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Kurzzusammenfassung

Das AKNS System, ein integrables System partieller Differentialgleichungen (PDEs), ist 1974 von
Mark J. Ablowitz, David J. Kaup, Alan C. Newell und Harvey Segur eingefiithrt und nach diesen
benannt worden. Folgt man dem Schemata, das fiir diese Systeme entwickelt worden ist, so lésst sich
ein integrables Anfangswertproblem (AWP) auf der reellen Linie zu einer Kompatibilitatsbedingung,
oder einer Nullkrimmungsbedingung, beziiglich zweier linearer gewohnlicher Differentialgleichungen
umschreiben. Wichtige Beispiele, die in diese Kategorie fallen, sind die nichtlineare Schrodinger-
Gleichung (NLS) und die sinus-Gordon-Gleichung (sG). Die NLS-Gleichung ist bekannt fiir ihre
Beschreibung von Lichtwellen und dem Bose-Einstein-Kondensat, wohingegen die sG-Gleichung
bekannt ist fiir ihre Beschreibung von der Bewegung von Bloch-Wénden, der Versetzungsbewegung
in Kristallen und dem magnetischen Fluss auf einer Josephson-Kreuzung. Durch ihre Verbindung
zum AKNS System sind beide Gleichungen fiir die Anwendung der inversen Streutransformation
geeignet und daher ist es moglich exakte Losungen herzuleiten. Eine interessante Ansichtsweise,
die dabei natiirlicherweise aufkommt, ist das Betrachten von geringen Stérungen in der jeweiligen
PDE, die dazu fiihren kénnen, dass das AWP nicht mehr integrabel ist. Eine bestimmte Klasse von
internen Randbedingungen, die Defektbedingungen, ist untersucht worden und dabei ist festgestellt
worden, dass in besonderen Fillen die Integrabilitdt erhalten werden kann. Des Weiteren hat sich
die Kombination einer solchen Defektbedingung mit einer Randbedingung in speziellen Fillen als
hilfreich in der Herleitung von integrablen Anfangsrandwertproblemen (ARWP) in den erwédhnten
PDEs auf der reellen Halbgeraden herausgestellt. Insbesondere sind mit diesem Ansatz die neuen
Randwertbedingungen fiir die NLS-Gleichung konstruiert worden.

Folglich ist es von besonderem Interesse eine Methode zu entwicklen um exakte Losungen in
diesen integrablen Modellen zu finden. Eine Methode, die diese Aufgabe beziiglich der ARWP
iibernimmt, ist das nichtlineare Analogon der Methode der Spiegelladung aus der Elektrostatik.
Dazu wird die Bdcklund-Transformation genutzt um die Losung beziiglich der reellen Halbgeraden
auf die Losung beziiglich der reellen Linie so zu erweitern, dass die Randwertbedingung automatisch
erfiillt ist. Ein anderer, als ,,dressing the boundary” bekannter Ansatz ist entwickelt worden und
basiert auf der Methode der wvereinheitlichten Transformation und der ,,Dressing” Methode, die
fiir sich genommen neben inverser Streutransformation und Bécklund-Transformation eine weitere
Methode liefert um Losungen fiir integrable AWP, die als AKNS System darstellbar sind, zu
konstruieren. Beziiglich der Konstruktion exakter Losungen fiir ARWP auf der reellen Halbgeraden
ist diese Methode genauso effizient wie das nichtlineare Analogon der Methode der Spiegelladung.
Des Weiteren birgt der Ansatz dressing the boundary den strukturellen Vorteil, den rdumlichen
Bereich nicht auf die reelle Linie erweitern zu miissen. Daher eignet sich dieser Ansatz fiir die
Anwendung beziiglich integrabler Modelle auf zwei Halbgeraden, die einer Defektbedingung folgen.

In der vorliegenden Dissertation entwickeln wir zunéchst ebendiesen Ansatz weiter um alle im
ersten Absatz erwihnten integrablen Modelle miteinbeziehen zu kénnen. Anschliefsend nutzen wir
diese Resultate um in den Modellen Solitone, spezielle exakte Losungen, zu konstruieren, die bei
der Betrachtung von den jeweiligen physikalischen Phanomenen hilfreich sein kénnten.
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Abstract

The AKNS system, an integrable system of partial differential equations (PDEs), has been introduced
in 1974 by and named after Mark J. Ablowitz, David J. Kaup, Alan C. Newell and Harvey Segur.
Following the scheme developed for these systems, the integrable initial value problem on the
line can be rewritten as a compatibility condition, or as a zero curvature condition, of two linear
ordinary differential equations. Important examples falling into this category are the nonlinear
Schrodinger (NLS) equation and the sine-Gordon (sG) equation. The NLS equation is known
for its application to the propagation of light and Bose-Einstein condensates, whereas the sG
equation is known for its application to Bloch-Wall motion, the propagation of a crystal dislocation
and magnetic flux on a Josephson junction. Due to their description as AKNS systems, these
two equations are suited for the application of the inverse scattering method implying that exact
solutions can be derived. An interesting viewpoint, which naturally arises in that context, is
the occurrence of small perturbations in the respective partial differential equation, which may
or may not leave the initial value problem integrable. A particular class of internal boundary
conditions, the defect conditions, have been investigated for which in some cases it can be verified
that integrability is preserved. Further, the combination of such a defect condition with a boundary
condition has in specific cases proven instructive in the derivation of integrable initial-boundary
value problems regarding the mentioned PDEs on the half-line. Particularly, the new boundary
conditions for the NLS equation on the half-line have been constructed through this approach.

Thus, the development of a method in order to obtain exact solutions in these integrable
models is of particular interest. One approach with regards to initial-boundary value problems
on the half-line is the nonlinear analog of the method of images, where the idea is to utilize the
Backlund transformation to extend the half-line solution to a solution on the whole line while the
boundary condition is automatically satisfied. A different approach, called dressing the boundary,
has been developed based on the ideas of the unified transform method combined with the Dressing
method, which is yet another method in addition to the inverse scattering method and the Backlund
transformation commonly used to construct exact solutions for initial value problems associated
with the AKNS system. When it comes to the construction of exact solutions for integrable
initial-boundary value problems on the half-line this approach seems just as powerful as the
nonlinear analog of the method of images. Further, due to the structural advantage that it is not
necessary to extend the spatial domain to the whole line for the dressing the boundary method,
this approach may therefore also be applied to integrable models on two half-lines connected via
the defect condition.

The present thesis provides the application of the method of dressing the boundary to the
integrable models mentioned in the first paragraph. By this application, it is then possible to
construct solitons, special exact solutions, which may prove useful in the corresponding physical
models.
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Chapter 1

Introduction

1.1 Nonlinear Schrodinger equation with a delta-potential

The nonlinear Schrédinger equation (NLS) with an external potential W (z), also known as the
Gross—Pitaevskii equation, given by

iug(t, ) + W(x)u(t, x) + Au(t, x) + 2¢|u(t, 2)|*u(t, z) = 0, e==+1 (1.1.1)

is a model characterizing a great number of phenomena in physics. It provides, for instance,
a description of the evolution of Bose-Einstein condensates in dilute boson gases at very low
temperatures, which has first been realized experimentally in 1995 and whereupon its significance
and importance ultimately has come to light through the 2001 Nobel prize in Physics, see |17, 37|
and the references therein. Moreover, the Gross—Pitaevskii equation appears to be one of the
most commonly utilized models in the theories of superfluidity and superconductivity, where it
provides a fairly solid basis for the understanding on a microscopic level of some of the fundamental
properties of the superfluid and superconducting states [31]. In theory, exact solutions of the
corresponding initial value problem are sought, simply because of the practical applications to real
life physical systems. However, apart from the spatially homogeneous case, where the external
potential is assumed to be constant W (z) = ¢, it turns out to be difficult to find such solutions,
even in one dimension.

Nonetheless, if the one-dimensional case is reduced even further to the delta-potential at x = 0,
W(x) = adp(x) with a € R, and combined with an initial condition uy(z) = w(0,x) being an
even function, the resulting model of (1.1.1) becomes integrable. This is due to the fact that the
delta-potential is to be understood as introducing a jump in the first x-derivative at x = 0,

Uy (t,04) — uy(t,0—) + 2cu(t,0) = 0, t>0, (1.1.2)

which if u(t, z) is even with respect to space, reduces to the (homogenous) Robin boundary condition
uz(t,04+) + au(t,0) = 0. Therefore, the initial value problem with an even initial condition can
be reduced to the initial-boundary value problem for the NLS equation on a half-line and this
problem with the Robin boundary condition has already been proven to be integrable in 1987, see
[39]. In [17], the authors use the integrability of this very initial-boundary value problem together
with a method for Riemann—Hilbert problems, developed by Deift and Zhou, which emerge in the
context of the so-called inverse scattering method, in order to state some remarkable results on the
long time asymptotic behavior of solutions. If, however, the assumption of an even initial condition
up(z) is dropped, then the approach they have developed can not be applied. In that regard,
advances have been made in order to analyze initial-boundary value problems on the half-line more
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2 CHAPTER 1. INTRODUCTION

naturally. A method developed by Fokas, known as unified transform method has in this context
been successfully applied to the linear Schrédinger equation with a point singular potential in the
case of a general initial condition wuy(z) resulting not only in an expression of the solution in terms
of Fourier transforms of the initial condition, but also in their long time asymptotic behavior, see
[37]. To expand on this idea, let us first give an overview of the mentioned methods.

1.2 Inverse scattering method ws. unified transform method

Both methods rely on the fact that the equation of interest can be written as a so-called Laz system,
a system of linear ordinary differential equations involving an additional spectral parameter \. In
particular, establishing the compatibility condition of the derived Lax system is then equivalent
to the initial equation. In the inverse scattering method used for solving initial value problems
of such equations, one then proceeds to change the relevant variable with the help of the spatial
equation of the Lax system, passing from functions of the spatial variable to functions of the
spectral parameter. Thus, one particular function of the spectral parameter p(\;0), together with
simple eigenvalues \;(0) of another function and correlated norming constants C;(0), j =1,..., N,
constitute the so-called scattering data for the initial condition ug(x), while the process is known
as the direct scattering. Further, the time equation of the Lax system then induces a linear time
evolution for the scattering data. Afterwards, the solution u(t, z) needs to be recovered from the
evolved scattering data, for instance, through a Riemann—Hilbert problem, which therefore realizes
the inverse scattering [2]. The well known visualization of this procedure is given by:

uo(w) —— : S(uo) = (p(X;0),{A;(0), C;(0)}iL,)

| irect scattering

'NLS linear time evolution
u(t, ) S(u) = (p(A;1), {A;(0),C5(1) L)

inverse scattering

We perform a more precise implementation of this method in Chapter 2, where not only the
scattering map &, but also the resulting scattering data is described in great detail.

The unified transform method, similar to the method for initial value problems, is based on
the representation of the equation as a compatibility condition for a Lax system. However, the
structural innovation of the unified transform method lies in the simultaneous use of the spatial and
time equation of this system in the direct scattering process, which are directly connected to the
given initial and boundary condition, respectively. Afterwards, the resulting scattering data is again
put into a Riemann—Hilbert problem in order to recover the solution u(¢, z) on the half-line. Even
though Fokas’ approach seems to be an appropriate generalization of the inverse scattering method
to initial-boundary value problems, where both an initial and a boundary condition are given, in
practice, it is difficult to obtain the solutions of the corresponding Riemann—Hilbert problem and
therefore to give explicit solutions of the model in question. In that context, a particular class of
boundary conditions has been identified, the so-called linearizable boundary condition, for which it
is possible to bypass the additional intricacies and therefore to solve the Riemann—Hilbert problem
as effectively as the problem on the line, see [23] for the relevant treatment in the case of the NLS
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equation. Moreover, an effective description of the long time asymptotic behavior of u(t,x) can be
provided as explained in [22].

1.3 Imitial-boundary value problem

With these two methods in mind, different approaches have been developed in order to tackle the
derivation of explicit solutions for initial-boundary value problems of not only the NLS equation,
but also other partial differential equations (PDEs) for which it is possible to state an appropriate
Lax system.

1.3.1 Nonlinear method of images

One such approach is the nonlinear analog of the method of images or for short nonlinear method of
images: An extension u.(t,z) of the half-line solution u(t, z) is sought such that it solves the NLS
equation on the whole line and the boundary condition is automatically satisfied. Subsequently,
the inverse scattering method may be used to solve the initial value problem for the extended
solution w,(t, z), which at the same time serves as a solution of the initial-boundary value problem,
see [5, 17]. An essential ingredient in this approach is the notion of a Bdacklund transformation
which serves as the means to extend the solution under these particular conditions.

Originally, the transformation introduced by Béacklund in 1882 is meant to be used to iteratively
construct pseudospherical surfaces, that is, surfaces with constant negative Gaussian curvature.
The application to PDEs has been established much later, even after the impressive breakthrough,
by which Bianchi demonstrates that the Backlund transformation admits a commutativity property.
Thus, in 1974, Lamb constructs an (auto-)Bécklund transformation for the NLS equation, a
mapping B of a solution u of the NLS equation to a solution @ = B(u) of the NLS equation. In
general, a Backlund transformation may map a solution of an equation to a solution of a different
equation. Since then, the Bécklund transformation has been utilized in a more elegant version to
Lax systems, associated to an AKNS system, which have been developed at fairly the same time,
see [1]. Furthermore, the commutativity property has once more been established in connection
with the application to PDEs resulting in the concept of a nonlinear superposition principle for
PDEs of that type.

The investigation of the same problem through the unified transform method may seem more
natural in the sense that the initial domain prescribed by the problem is retained, rather than
extended. In that context, with respect to specific linearizable boundary conditions it has been
shown that this approach ultimately results in a Riemann—Hilbert problem coinciding with the
one derived from the nonlinear method of images, see [28]. What is more, this framework, while
further insisting on the restriction to integrable boundary conditions, has then been successfully
combined with a purely algebraic algorithm to construct explicit solutions, the Dressing method.

1.3.2 Integrability

On one hand, integrability for initial value problems, which can be expressed in the form of an
AKNS system, is well-established. By analyzing relations of the spectral functions, see [1], it
is possible to give an infinite set of conserved quantities. Thus, for equations solvable by the
inverse scattering method, the method may be interpreted as a canonical transformation from
physical variables to an infinite set of action-angle variables. On the other hand, integrability for
initial-boundary value problems is not as imminent. Initialized by Sklyanin [39], one formalism
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to derive integrable boundary conditions on an interval is based on the Hamiltonian formulation
of integrable PDEs, see [21]|, where the half-line can be realized as a special case of the interval
setting one end to zero and the other to infinity. Following the ideas therein, given the classical
r matrix and boundary matrices associated to either end of the interval, the so-called classical
reflection equation is used to give rise to a generating function of commuting integrals of motion,
which leads to the generation of infinitely many conserved quantities implying integrability. Note
that the boundary matrices are usually associated with the formulation of the respective PDE as a
Lax system.

1.3.3 Dressing the boundary

The Dressing method is based on the Darbouz transformation, which has been introduced in the
late nineteenth century by Darboux to study Sturm-Liouville problems. Then, after it has been
shown by Crum that it could be applied iteratively to Sturm—Liouville problems, it has been
successfully applied to integrable equations with Lax systems to generate so-called multi-soliton
solutions. Based on the fundamental solution of the Lax system for a given solution u[0](¢, z) of the
PDE and given a spectral parameter A\; € C\ R, which is distinct from the set of simple eigenvalues
of the scattering data, and a solution (¢, x) of the Lax system at this value, it is possible to
algebraically construct a new solution u[1](¢, z) of the PDE by the application of a one-fold dressing
matrix while simultaneously updating the Lax system and fundamental solution which are then
associated to the new solution. As indicated before, this process can be iterated which essentially
boils down to incrementing by 1 the number indexing the previous solution and effectively leads to
the realization of an N-fold dressing matrix D[N](¢,z, \), where N is finite. Subsequently, various
researchers have been motivated to make attempts in analyzing the connection of Backlund and
Darboux transformations with respect to soliton theory, see for example [14, 32, 33, 36].

Hence, it is not surprising that in the pursuit of explicit solutions of integrable initial-boundary
value problems, the Dressing method turns out to be a promising alternative approach along
with the nonlinear method of images incorporating the Backlund transformation. Having said
that, the first well documented implementation of this idea goes back to [42|, where it is called
dressing the boundary. It has successfully been applied to the NLS equation on the half-line with
the Robin boundary condition and therefore, it constitutes a method at least equally as effective
as the nonlinear method of images [5]. Prior to that, dressing the boundary has been applied in an
abbreviated manner to the sine-Gordon (sG) equation on the half-line [43] with the sin-boundary
condition. The sG equation is a model, which describes numerous physical phenomena including
for example Bloch-wall motion, the propagation of a crystal dislocation and magnetic flux on a
Josephson junction and fits into the framework of AKNS systems. Therefore, the application of
dressing the boundary in both the NLS and sG equation on the half-line are fundamentally related,
which is further supported by the fact that the associated boundary matrices representing the
boundary condition are structurally similar, that is, diagonal and time independent 2 x 2-matrices.
In this thesis, we pursue the goal of generalizing the dressing the boundary method to incorporate
a broader spectrum of integrable problems while retaining the models already covered.

1.3.4 The NLS equation with a new integrable boundary

In [41], particular boundary conditions for the NLS equation on the half-line, see [30], have been
revisited pursuing a different approach. Namely, they are derived by the combination of the
so-called defect conditions with a (Dirichlet) boundary condition. In the course of this approach, a
time dependent boundary matrix including off-diagonal entries is obtained, which then ultimately
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corresponds to the new boundary condition

uy(t,0) = Ll 0)  ult, 00, 0) u(t, 0)[u(t,0)>  u(t,0)a?
z(ly 2Q(t,0) 2 2Q(¢,0) 2011, 0)

for the NLS equation on the half-line, that is, (1.1.1) with W (z) =0 and € = 1. At the same time,
it has been shown with the classical r matrix method that the corresponding initial-boundary
value problem is integrable in the sense of the existence of infinitely many conserved quantities.

1.4 PDEs with defect conditions

A different approach to the idea of generalizing the analysis of initial-boundary value problems is
to lift the initial-boundary value problem on one half-line to one on a finite number of half-infinite
edges, which corresponds with respect to the unified transform method to lifting the relevant
spectral functions and consequently the scattering data to diagonal-matrix valued spectral functions
and scattering data enabling the analysis of integrable PDEs on a star-graph [12]. In that context,
the one-dimensional NLS equation with the delta-potential at x = 0 therefore has an equivalent
expression in this framework. By dividing the whole line at x = 0 into two half-lines and denoting
the potential to the left and right of the partition by @ and w, respectively, the jump (1.1.2) takes
the form w,(t,0) 4+ @,(¢,0) + 2au(t,0) = 0 for ¢ > 0. In combination with the potential being
continuous across x = 0, i.e. a(t,0) = u(t,0) for t > 0, and an even initial condition () = uy(z),
it is obvious that the situation is the same as the above described integrable model of the NLS on
the half-line with the Robin boundary condition. Alternatively, with these notations the conditions
on the boundary imply that a specific symmetry relation can be applied to the diagonal-matrix
valued spectral functions, which, in turn, simplifies the Riemann—Hilbert problem originating from
the unified transform method to the one found in [17] by the nonlinear method of images.

This idea sheds light on the principle of having an internal boundary which links a potential
on x < 0 with a potential on x > 0, commonly known as a defect condition. Again, it is of
interest to find defect conditions corresponding to an integrable model, which has been pursued
in |7]. In that context, an approach based on a Lagrangian formalism has been utilized and
moreover, a connection between defect conditions and Béacklund transformations frozen at the
location of the defect has been indicated. Based on this observation, general results on defect
conditions for integrable PDEs with corresponding AKNS systems have been established in [11],
which particularly encompasses the modification of the generating functionals for the conserved
quantities implying integrability. Hence, it can be expected that in this context the theory of
solitons can be applied to a certain extent. The foundation for that idea has been put forward in
[15], where the one- and two-soliton solutions for the NLS equation on two half-lines connected by
the defect condition have been calculated by a direct ansatz.

1.5 Scope of this thesis

As indicated by the argumentation above, the subject matter of integrability has been widely
covered in the literature not only with the mentioned methods but also with other developed
methods, see for example [40|. The derivation of exact solutions seems to be of interest, considering
that the validation by a direct ansatz of a two-soliton solution satisfying the defect condition is by
no means easy. Hence, the goal of this thesis is to generalize the dressing the boundary method
introduced in [42, 43| by the following means: Firstly, to enable the analysis of more than just
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diagonal and time independent boundary matrices. Secondly, to lift the dressing the boundary
method to more than just one half-line, particularly, including (integrable) defect conditions,
thereby making it possible to introduce multi-soliton solutions in the presented integrable models
of initial-boundary value problems and PDEs with defect conditions.

In the case of the NLS equation, the set of all solutions u(t,-) € H"(R) = {f € L*(R): zf, f, €
L?(R)}, for which the scattering map admits the following data S(u) = (p(A;t), {A;(0), C;(t)}))
with distinct A\; € C\ R, is denoted by Gy. On one hand, if the spectral function p(X;¢) = 0, then
the corresponding solution is a pure N-soliton solution. On the other hand, if u(t,-) € Gy, then
the solution is soliton free. Hence, with regard to the Dressing method, the connection to the
construction of solitons can be made, see Section 3.3. Without giving the complete explanation
on soliton solutions in advance, let us give the main results worked out in this thesis or rather in

[25, 26].

1.5.1 NLS and sG with defect conditions

Given so-called seed solutions @]0] and u[0] subject to the NLS equation on either side of the
defect location and the defect condition, it is possible to construct the matrix By(t,0,\) repre-
senting the frozen Bécklund transformation and thus the defect condition. Further, assuming
ﬂ[O](, 0)7 U[O](, 0)> aw[o](v 0)7 um[O](v O) < HtLl(R)v where HIELI(R> = {f € LQ(R> Dtf i € LQ(R>}7
and taking a specific parameter )\ constructed from constant known parameters of the defect
condition, the following statement holds.

Proposition A. Applying N-fold dressing matrices D|N](t,z,\) and D[N](t,z,)\) to the seed
solutions on either side of the defect location constructed by distinct A = X; € C\ (RU {Xo, A\j})
and associated solutions of the Lax systems given by 1;(t,x) and ;(t, z), which need to satisfy

Gil. o = Bo(t,0,0)0_ G=1,...,N,

leads to solutions u[N] and u[N] of the NLS equation on either side of the defect location preserving

the defect condition if for the matriz By(t,0,\) = D[N](t,0,\)By(t,0, \)(D[N])"*(¢,0,\) the
following holds:

Im (liﬂ% 2A(Bu (£, 0, \) — 11)]11)

s greater than or equal to or rather less than or equal to 0 for all t € R depending on its limit as
|t] — oo.

Similarly, for zero seed solutions, 5[0] = 0 and 6[0] = 0, subject to the sG equation, which we
specify in Section 2.2, on either side of the defect location and the defect condition, it is possible
to construct the matrix Bo(A) representing the frozen Bécklund transformation and thus the defect
condition. Further, taking a specific parameter \y constructed from a constant known parameter
of the defect condition, the following statement holds.

Proposition B. Applying N-fold dressing matrices D[N](t,z,\) and D[N](t,z,)\) to the seed
solutions on either side of the defect location constructed by distinct A = X; € C\ (RU {Xo, \j})
and associated solutions of the Lax systems given by 1;(t,x) and ;(t, z), which need to satisfy

Gil,o =BoA)Y|, s G=1,..0, N,

leads to solutions é[N} and O[N] of the sG equation on either side of the defect location preserving
the defect condition.
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1.5.2 NLS and sG with boundary conditions

Given the seed solution u[0] subject to the NLS equation on the half-line and the Robin boundary
condition, it is possible to construct the boundary matrix Ky(A) representing the spectral version of
the boundary condition. Further, taking a specific parameter A\g constructed from a constant known
parameter of the boundary condition and dividing the number of solitons, which are envisaged to
be constructed, into solitons Ny and boundary-bound solitons Ny, the following statement holds.

Proposition C. Applying a (2Ng 4+ Nys)-fold dressing matriz D[Ny|(t,xz,\) to the seed solution
constructed by distinct A = \; € C\ (]R U { o, )\3}), j=1,..., Ny + Nus, as well as additionally
distinct X = —\; (only if Im()\;) # 0 corresponding to N;), and associated solutions of the Lax
system given by ;(t,x) as well as zzj (t,x), which need to satisfy

bil_y = Ko((=1) N X)), only if Tm();) # 0,
@il = Ko((=1)MX)5] ., only if Tm(};) =0,
where @;(t,r) = —iog}(t,x) is the solution of the same Lax system at X = X, leads to a solution

u[Ny] of the NLS equation on the half-line preserving the Robin boundary condition.

Assuming, alternatively, that the seed solution and its 2-derivative u[0](-, 0), uz[0](-, 0) € H}'(R)
and the seed solution is subject to the NLS equation on the half-line and the new boundary condition,
it is possible to construct the boundary matrix Ky(t,0, \), again, representing the spectral version
of the boundary condition. Further, taking a specific parameter \y constructed from constant
known parameters of the boundary condition, the following statement holds.

Proposition D. Applying a 2N -fold dressing matriz D[2N](t, z, X) to the seed solution constructed
by distinct A = \; € C\ (RUZ’RU {0, A§, — o, —)\E‘)}), j=1,...,N, as well as additionally distinct
A = —\; and associated solutions of the Lax system given by ;(t,z) as well as @j(t,x), which
need to satisfy

Ui|._y = Ko(t.0,0)85]_,.

leads to a solution u[2N] of the NLS equation on the half-line preserving the new boundary condition
if for the matriz K(t,0,\) = D[2N](t,0, \)Ko(t, 0, \)(D[2N](t,0, X))~ the following holds:

T ( Tim [((A = [ Im(X0)])* = (Re(X0))*) Kn (2,0, M) + ((Re(Xo))? + (Im(Xo))*) 1],
A—0 A\

1s greater than or equal to or rather less than or equal to 0 for allt € Ry depending on its limit as
t — o0.

Finally, given a zero seed solution #[0] = 0 subject to the sG equation on the half-line and the
sin-boundary condition, it is possible to construct the boundary matrix K()A). Further, taking
specific parameters )\3[ constructed from a constant known parameter of the boundary condition
and dividing the number of solitons, which are envisaged to be constructed, into single solitons N,
breathers N, and boundary-bound breathers Ny, the following statement holds.

Proposition E. Applying an (2N + 4Ny, + 2Nyy)-fold dressing matriz D[Ny|(t, z, ) to the seed
solution constructed by distinct A = \; € C\ (RU{—4,i, A7, (Ay)*}), j=1,..., No+ Ny + Ny as
well as additionally distinct A = )\;1 (only if |\;| # 1 corresponding to Ny and Ny) and A = — X}
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(only if Im(A;) # 0 corresponding to Ny, and Nyy) and associated solutions of the Laz system given
by V;(t,x) as well as ¢;(t,z) and ®;(t, x), which need to satisfy

wj‘x 0 KO(A 1) bbb)wj|:p =0’ Only Zf ‘)\J’ 7é 17
(I)j‘x = Ko((—\; ) (=1)owt )P, ‘m o only if |\;| # 1 and Im();) # 0,
;o = Ko((=4)C ”bbb)goj\xzo, only if |\ =1 and Im();) # 0,
where @;(t, ) = 019;(t, ) is the solution of the same Lax system at A = —\;, leads to a solution

O[Ny] of the sG equation on the half-line preserving the sin-boundary condition.

The notion of dividing the simple eigenvalues A; by their spectral properties such as Im(\;) # 0,
j=1,...,N,is closely related to their role in the scattering data and is here only given superficially.
For a more detailed depiction of these necessities, the inverse scattering method proves to be
instructive.
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The thesis is structured as follows. We present an analysis of the inverse scattering method
regarding the NLS and sG equation in Chapter 2, which is sufficient for our purposes. This enables
us to compare the inverse scattering method to other solution construction methods, that is, the
Dressing method and the Bécklund transformation in Chapter 3. Then, in Chapter 4, we introduce
the defect conditions for both PDEs, which are related to the Backlund transformation, and the
boundary matrices associated with the relevant integrable boundary conditions. Further, we give
some insight into preliminary considerations in order for the dressing the boundary method to
be smoothly applicable. Subsequently, in Chapter 5, we state the propositions, presented in an
abbreviated form in the Introduction, with more insight and prove them explicitly. Chapter 6
contains the application of the aforementioned propositions starting from a detailed consideration
of multi-soliton solutions.
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Chapter 2

Inverse scattering method

2.1 Inverse scattering method for the NLS equation

We begin with a brief summary of the inverse scattering method of the focusing NLS equation.
As in [6, 24], it serves as a guideline for the implementation of additional results on top of the
construction of solutions. Let us state the NLS equation

iU + Ugy + 2Ju)*u =0 (2.1.1)

for u(t,z): R x R — C. Formulated as a Cauchy problem, we look for solutions of (2.1.1) with
u(0, z) = up(z) and given initial condition ug(x) for z € R. Mainly, we follow the analysis provided
in [2, Sec. 2.2|.

2.1.1 Lax pair

As suggested in the Introduction, an important concept in the context of applying the inverse
scattering method is the existence of a so-called Lax pair, a pair of 2 x 2-matrices U(t, z, A) and
V(t,x, \), which enables us to restate the NLS equation as a compatibility condition of the following
linear spectral problems

Ve (t,x, ) = Ut 2, (L, x, N),
Uity z, A) = V(t, z, N(t, z, A),

where the function v (¢, x, \) is used as an auxiliary 2 x 2-matrix and the newly introduced parameter
A € C is the so-called spectral parameter, which itself is independent of ¢ and xz. We call (2.1.2)
the Lax system corresponding to the potential u(¢, z), whereas in the literature it is more generally
referred to as 2 x 2 AKNS system [1]. For a solution (¢, z,\) of the Lax system (2.1.2) with an
appropriate Lax pair, it can be shown that the compatibility condition ¥, (¢, z, A) = (¢, z, \)
for all A € C holds if and only if u(¢, z) satisfies the NLS equation (2.1.1). Since the choice of the
Lax pair is by no means unique, it is important to carefully select the right matrices in order for
the inverse scattering method to be applicable. Here, the Lax pair takes the form

(2.1.2)

Ut,z,\) = —idos + Q, V(t,z,\) = —2i\03 + Q, (2.1.3)

where the potentials @ and Q; of i and V and the third Pauli matrix o3 are defined by

0 ilul? 2 U + iy, L 0
Q(t,z) = (—u* 0) . Otz ) = (—2>\1|L* |+ et —iful? > and o3 = <O —1) '

11
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Throughout this thesis, we write u = wu(t,z), @ = Q(t,z) and Q; = Q;(t,z,\) as well as
U=U(t,z,\) and V = V(t,z,\) to simplify notation, unless specified otherwise. Moreover, we
shall refer to U and V as the x and t part of the Lax pair, respectively. The connection between
the Lax pair & and V and the NLS equation can also be made without the auxiliary function
(t,x, \) in terms of the zero curvature condition, that is:

U, —V, + U, V] =0 for all A € C,

which holds if and only if u satisfies the NLS equation (2.1.1). In the literature, the existence of a
Lax pair for an equation means that the equation is integrable [21]. The Lax pair is not unique,
however, one essential property, among others, of our particular choice for the Lax pair is that the
matrices ¢ and V admit the following symmetry relation

Ut,z,\) = o (Ut 2,27)) 09, V(t,z,A) = a2 (V(E, 2, X7)) 03, (2.1.4)

where the second Pauli matrix o5 is given by

0 —1
0'2:<Z. 0)

From here, the goal is to describe the spectrum and the eigenfunctions of the Lax pair.

2.1.2 Jost functions and direct scattering

In order to study the Lax system in more detail, we assume that the potential u(t, x) — 0 with
respect to x as well as its derivative u,(t,x) — 0 decay sufficiently fast as |z| — oo. Therefore,
it is natural to assume for A € R that there exist 2 x 2-matrix-valued solutions v_ and v, also
known as Jost functions, of the Lax system with the asymptotic behavior

Witz \) ~ e TOTH2003 - ag 0y 400

derived in accordance with the limits of the potential @ and Q;, where the phase is O(t, z, \) =
Az + 2)2t in the case of the NLS equation. For a function f(¢,x,\), the term e/(:>Ys is defined

by
, if (tz,A) 0
if(taNos . [ €
e ’ .— ( O elf(tzxv)‘)> :

Further, we define the modified Jost functions under time evolution as {ZJ\(t,a:, A) =Ytz \) -
e®©tm 93 which then serve as solutions of the modified Lax system given by

Up 4 iMos, 0] = Qb + 2N (03, 9] = Qo).

Then, the modified Jost functions admit constant limits as z — oo and for all A € R, i.e.

o~

Yy(t,z,\) — 1, as x — F00,

where 1 = diag(1, 1) is the identity matrix and thus they are solutions of the following Volterra
integral equations:

T

127 (t,:L‘, )\) -1 +/ efi@(o,:rfy,k)as Q(t, y){/}l (t,y, )\)e’i@(o,wfy,)\)o'g dy,
oo (2.1.5)
¢+(t,x, )\) -1 — / e%@(o,zfy,/\)as Q(t,y)er(t, n )\)ei@(o,mfy,A)Ug dy.
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Writing the modified Jost functions @/Ji (@/Ji 7%[ ) in terms of column vectors zz(il ) and z/ﬁ\(f ), the
following theorem provides information on the possible continuations for the column vectors in
terms of the spectral parameter.

Theorem 2.1.1 (Deift & Zhou, [18]). Let u(t,-) € H''(R) = {f € L*(R): zf, f, € L*(R)}.
Then, for every A € R, there exist unique solutions @i(t, A) € L®(R) satisfying the integral
equations (2.1.5). Therefore, the two column vectors e (t,z,\) and Jg)(t, x,\) of the modified
Jost functions can be continued analytically in A € C_ and continuously in A € C_ UR, while the
two column vectors 12(_1)(@3:, A) and @f) (t,z,\) of the modified Jost functions can be continued
analytically in A € C, and continuously in A € Cy UR.

Proof. It suffices to prove the statement for the column function '(Z(_l )(t,x, A). The fact that
u(t,) € L'(R) ensures that each entry of Q(¢,-) is in L'(R) and therefore the operator

1N = [ (§ gen) Q) )y

is a bounded operator mapping functions with respect to x from L>*(R) to L>(R) for any fixed A
such that A € C; UR, since x —y > 0. Now, defining

(1 0
T'J[f] (t7 x, )‘) = / (0 62i)\(zy)) Q(t7 y) f(ta Y, /\) dya
Tj—1
where we fix A such that A\ € R, for an arbitrary interval (z;_1,x;) C R we obtain the estimate

||Tj[f]<t7 " )‘)HL"O(wj—l,wj) < ||Q(t> K )\>|’L1(zj,1,zj)||f(t’ " )‘)HL"O(:EJ'—LIJ')'

Then, we can choose z;, j = 1,...,¢, in such a way that the operator 7Tj is a contraction from
L>(zj_1,x;) to L>®(x;_1,z;). Repeating this argument starting from z, = —oo and appropriately
chosen x1, ..., to zy—; and xy = 00, we can obtain finitely many intervals so that 7} is contraction
from L*>®(x;_1,x;) to L>®(xj_1,2;), j = 1,..., L. Setting fo(t,2,\) = ey on (zg, 1), e1 = (1,0)T,
where -T indicates taking the transpose, we can find a unique function f;(¢,-,A\) € L®(x;_1,z;) by
the Banach Fixed Point Theorem such that it solves the equation

itz A) = fia(t 2, A) + Tilfil(t 2, A, @ € (20, 75)

for every j = 2,...,¢. Combining these functions, we find a continuous function in L>°(R) satisfying
the first column of the first Volterra integral equation (2.1.5). The exponential in ¢ comes from
the additional assumption that u(t,-) € H“!(R). Given that, the entries of Q;(¢,z,)\) go to zero
and moreover V — —2i\?03 as |r| — oo. Hence, the time dependent Jost functions have the
supplementary exponential term 2195 in order for the limit to be consistent. Here, the first
column of the Jost function ¥_(¢,z,\) in (2.1.5) takes the form

W0t 2, A) = §0 (1 2, \)e 00,

Now, for the continuation of 12(_1) (t,z,\) to A € C; UR. The Neumann series 12(_1)(15, T, \) =
Z?io T fo](t, z, \), where fo(t,x,\) = ey, is formally a solution of the first column of the first
Volterra integral equation (2.1.5). We can derive the bound [T7[fo](t, z, N)| < ¢|| fo(t, -, N)|| e (r)

(hitz))? (t]x) with a positive constant ¢ for all A such that A € C, UR and all j € N, where

Wt ) = / "0ty dy < / Tty dy < 10w

—00 o0
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By induction, we have

© QG )| ((t ) dy

T 1, )] < el 2Dl ]

J! oo
oo ) oo h(tz)
:CHfO( ) 7‘>HL ) s/ ds
J! 0

(h(t, z))™*

= ellolts s Ml (5

where we put s = h(t,y). Thus, as > 22, T7[fo](t,z,\) is majorized in norm by a uniformly
convergent power series, the series itself is uniformly convergent for A\ € C, UR. The analyticity
and continuity domains of the series transfer to its limit and therefore 121\(,1) (t,x, ) can be continued
analytically in A € C, and continuously in A € C, UR.

Having two solutions ¢ (¢, z, A) and go(t, z, A) to the first column of the first Volterra integral
equation (2.1.5), their difference f(¢, 2z, \) = g1(t,x,\) — gao(t, z, A) satisfies

f(t, x, )\) — / e*’i@(o,x*y)\)og Q(t, y)f(t, n )\)e’i@(o,xfy,)\)o'g dy

—00

or, individually,

T

e = [

—0o0
T

[f(t,2,M)]2 = —/ NI (8, y) £ty A dy.

—00

Yy , ,
u(t,y) / Mty ) [f (8, N1 dy dy,

Estimating [f(¢,z, \)]; and iterating this estimate j times, similarly to the estimation for 77| fq],
we get that in the case [f(t,x,\)]; is bounded, i.e. |[f(t, 2, A)]1| < C, the following estimate

0 (29)
[t ML < © (2% It )1 )

(25)! ’
which goes to 0 as j — oco. Hence, f(t,z, ) is identically zero and the solution of the Volterra
integral equation (2.1.5) is unique in the space of continuous functions. ]

Analogously, the columns of ¥, (¢, z, \) = (@Dil ), Q/Jf )) can be continued analytically and contin-
uously into the complex A-plane. That is, w(,g) and ¢$) can be continued analytically in A € C_

and continuously in A € C_ U R, while 1[)(_1 ) and @/zf) can be continued analytically in A € C, and
continuously in A € C, UR.
The limits of the Jost functions imply

lim detey = 1

r—+o0

and the zero trace of the matrix U, which is another essential property of the selected Lax pair,
then gives det¢. =1 for all z € R. Further, ¢/, and ¢_ are both fundamental matrix solutions of
the Lax system (2.1.2), so there exists an = and ¢ independent matrix A(\) such that

bo(t A =i (L, N)AR),  AER. (2.1.6)



2.1. INVERSE SCATTERING METHOD FOR THE NLS EQUATION 15

If we consider an arbitrary matrix A(¢, z, ), then taking the derivative with respect to x and
using the z part of the Lax system leads to Uy = Uy, A+ ¥ A,. With the initial relation, we
then find that 0 = 1,4, and analogously, differentiating with respect to ¢t and using the ¢t part of
the Lax system, we find that 0 = ¢, A,. Taking the determinant and the limit value of v, into
account, we obtain the equality (2.1.6) with a ¢ and z independent matrix A()), which, in turn,
determines the so-called scattering matriz uniquely, since we have

_ (an(A) an(V)) _
AN = <a21()‘) a22(/\)) = Ve (e APtz )

and additionally it can be deduced from the determinants of ¢, that det A(A) = 1 for A € R.
Moreover, its entries can be written in terms of Wronskians determinants. In particular, the
diagonal entries of the scattering matrix are a;;(\) = det[w(_l)]wf)] and ag(A) = — det[w(_z)]wf)]
implying that they can be continued in A € C, and A € C_, respectively. On the other hand,
the off-diagonal entries of the scattering matrix can be derived by aja(\) = det[@b@l@/}f)] and

ag (\) = —det W)(—I)WS)L which can in general not be continued off A € R.
Lemma 2.1.2. The Jost functions satisfy the symmetry relation
77b:|:(t, xZ, )\) = 09 (¢:|:<t7 Z, )\*)>*O'2.

Proof. By the symmetry of the Lax pair (2.1.4), we have that ¢4 (f,z, \) and o9 (Q/Ji(t, x, )\*))*02
are solutions of the Lax system, since

(w:l:(tv Z, /\))x = Z/[(t, Z, A)¢i(tv €, )‘)a

multiplied by the second Pauli matrix o9 from the left and the right, complex conjugated and \*
inserted, can be written as

(0'2 (1/)i<t, xZ, )\*))*0'2)1 = OQ(Z/{(t, xZ, )\*))*0'2 + 09 (wi(ta x, )\*))*0'2 = Z/{(t, x, )\)0'2 (wi(t, x, )\*>)*O'2.
Further, both respective solutions have the same normalization as * — 400, which is
: iO(t,z, o3 _
x1_1>I:'tnoo Yy(t,z, Ne 1,

:cgrinoo 02 (¢i (t7 T, )‘*>) *0-26i@(t’x7>\)03 - zgrinoo 02 (77Z}:|: (tu Z, /\*)) ’ (eie(tz’)\*)ag) *02 =1

Consequently, the assertion ¢4 (¢, z, \) = o9 (1/}1 (t,z, )\*))*02 holds. ]
Therefore, the entries of the scattering matrix satisfy the following relations.

Proposition 2.1.3. The elements of the scattering matriz A(X) are related by a1 () = ajy(\*)
for X € C4 and ajp(\) = —as, (N) for A € R.

Proof. We have by definition
A = 9 (2, Ny (t, @, A)
and with the symmetry relation of the Jost solutions
= oo (Y (82, \)) (V- (t, 2, 07)) "o
= 02 A" (\")o2

for A € R. Solely for the diagonal entries the relation can be continued to the upper/lower half
plane corresponding to the continuations of a;1(A) and as2(A), thereby proving the assertion. [
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For A € R, we then have |a;;(A\)|* + |a12(A\)|> = 1 due to det A(\) = 1 and Proposition 2.1.3.
The asymptotic behavior of the modified Jost functions and scattering matrix as |A| — oo is

1 1 r
D=1t o0t gz [ fulta)dy+ O/,
(2.1.7)
o~ - 1 1 e 2 2
e wog/ [ult, )2 dy + O(1/32),

which can be shown using integration by parts and the Riemann-Lebesgue lemma. Exemplary,
w( ) has the following integral expressions, see proof of Theorem 2.1.1, with regard to [w J11:

[ (t, 3, \)]z = — / ' Wt ) [ (t, y, N)] 122 dy, (2.1.8)

—00

[zz,(t,x, MNhii=1- /x u(t,y) /y u*(t,z)[ﬁ,(t,z, A2 0=2) 4z dy. (2.1.9)

—00 —00

Here, [J_]ij means that we take the (ij)-entry of the matrix 2,/0\_. Now, integration by parts used
for the inner integral, the property u(t,z) — 0 as x — —oo and applying the Riemann—Lebesgue
lemma to the remaining integral to replace it with O(1/A?), we obtain for (2.1.9) the following

xT

Ot N = 1+ oz [ ) Py dy + O(1/),

Utilizing essentially the same steps, (2.1.8) amounts to

(9, Nar = 5 (6206, N + O(1 %)

and therefore considering a power series ansatz with respect to A, the asymptotic behavior (2.1.7)
proves well-founded. Note that A(A) =1+ O(1/\).

2.1.3 Scattering data

Now, we are prepared to introduce the second crucial concept in the context of applying the inverse
scattering method—the scattering data, which consists of particular properties of the (modified)
Jost functions in combination with the scattering matrix. First off, it is easy to see that a zero
of aj1(A) leads to det [zp(_l)h/;f)} = 0 at a particular spectral parameter, say A = \;, which implies
that the two vector-valued functions 1/1(_1)(15, T, \), wf) (t,xz, A1) are linearly dependent. Therefore,
we define the following.

Definition 2.1.4. For N € N, the function u admits simple eigenvalues if a;;(\) is nonzero
in C, UR except at a finite number of points A1,..., Ay € C,, where it has simple zeros, i.e.
ar1(A;) =0, 9 (\;) #0, j = 1,..., N. Moreover, the relation a;;(\) = aj,(\*) from Proposition
2.1.3 implies that if Aj,..., Ay are simple eigenvalues, then ag(A) is nonzero in C_ UR except
at the points A}, ..., \% € (C Then, by Gy, N € Ny, let us denote all functions u(t,-) € H»(R)

that admit exactly N simple eigenvalues in the upper half-plane, where the infinite union of these

sets
o
=Jon
N=0

gives the set of generic functions, which is, particularly, an open dense subset of H“!(R), see
[4, 44].
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Beside the linear dependence of the vector-valued functions w(,l)(t, x, ), ¢f) (t,2,\;) at simple
eigenvalues \;, j € {1,..., N}, of u, we therefore also have in accordance with the zeros of ag(A)

and its equality to — det[ @ |1/J % ] that the vector-valued functions ¢ (t T, \}), o b (t, T, \}) are
linearly dependent. Hence, there exist constants b;(t, z) and b;(t, z) such that

VN = b 2Pz ), Pt x,A) = bt )iV (A, (2.1.10)

where we write \; = Aj. These constants are independent of ¢ and x, which can be demonstrated
by differentiating (2.1.10) and using either the x or ¢ part of the Lax system (2.1.2) similar to the
argument for the ¢ and x independence of A()\). Thus, the relations (2.1.10) can be reduced to the
following relations for the modified Jost functions:

QZ(_I)(TS’IH)\]) = j@f)(tvaja )‘j)€2i®(t’x¢\j)7 12(—2)(75%%7/_\ ) = ]w+ (t Z, Aj ) 72@61}‘%)\) <2111>

For j =1,..., N, the relations (2.1.11) then provide residue conditions

&(1) A ~
Res () = 290 (1,2, ),
-7
PR ) (2.1.12)
Res () = Cpe 290 (1,7, %),
-7

which are used in the inverse scattering method. The norming constants are defined by

C; = b, (da“h A)1, C; =1 (da”h A)1 (2.1.13)

and they satisfy the symmetry relations b; = —b7 and C; = —C5.

Definition 2.1.5. For N € N, let the initial condition ug € Gy and define the reflection coefficient
p(A) = ag1(N) /a1 (A), where p: R — C. Further, let Aj,..., Ay be the pairwise distinct simple

eigenvalues of ug in the upper half-plane and C',...,Cy the corresponding norming constants
defined in (2.1.13). Then, the scattering data of ug is given by
S(uo) = (p(X; 0), {X;(0),C;(0)}}L,). (2.1.14)

In fact, one can prove that u € H“'(R) implies that p € H{"'(R) = {f € H"'(R) : || fl|l @) <
1}, see [18]. Effectively, this can be used to show that the scattering map satisfies the following.

Theorem 2.1.6 (Zhou, [44]). For each N € Ny, the scattering maps S: Gy — H,"' (R) x (C)N
(C\ {0})Y are Lipschitz continuous.

2.1.4 Inverse scattering

The idea of inverse scattering is to recover the function u from given scattering data. Hence, we
want to construct an inverse map (p, {\;, C;}i.;) — u. With the relation (2.1.6) containing the
scattering matrix in mind, we define the sectionally meromorphic functions

M_(ta,\) = (V0P Jag), Motz \) = (@ fan, ).

The functions M_ and M, enable us to rewrite the relation with the reflection coefficient p(\) as

2 —2i0(t,x,\) *
My (t,z,\) = M_(t,x,\) ( rou il p*(A)

eQZ@(t,z,A)p()\> 1 ) for A € R, (2.1.15)
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where we define the so-called jump matriz by

B ’p()\) ‘2 6—21‘@(1;,1;,,\),0* ()\)
j(tu z, /\) T <€2i®(t,a§,)\)p()\) 0 :

In particular, let us note that the jump matrix 7 is written in terms of the reflection coefficient p(\)
and the phase O(¢, z, A). Considering the meromorphic functions, we obtain the following Riemann—
Hilbert problem for M(t,x,-) from the residue conditions (2.1.12) and the discontinuity condition
(2.1.15) only relying on the scattering data (2.1.14), which is essential in the reconstruction of the
function u(t, x).

Riemann—Hilbert problem 1. For given scattering data (p, {\;, C;}}_,) as well as ¢,z € R,
find a 2 x 2-matrix-valued function C\ R 3 A — M (t, z, \) satisfying

1. M(t,z,-) is meromorphic in C\ R.
2. M(t,z,\) =14+ O(1/)) as |\| = oo.

3. Non-tangential boundary values My (¢, x, \) exist, satisfying the following jump condition
M, (t,z,\) = M_(t,z, \)(1 + J(t,z,\)) for A € R.

4. M(t,z,)\) has simple poles at A,..., Ax, Aq, ..., Ay with

. 0 0
)]'ie)s M<t7 z, )‘) - )\hj&lj M(t7 T, )‘> (C«jeﬁe(t,x,/\j) 0) )
0 Cvje—Qi@(t,w,Aj)>

Res M (t,z,\) = lim M(t,z, \) (0 0

)‘:)‘j )\—>>\J

In that regard, note that the scattering data (p(X;0), {};(0), C;(0)}}L,) given in Definition 2.1.5
are commonly understood as being derived from the known initial condition uy(z) in the context of
the inverse scattering process. Then, at any time ¢ € R, the evolution of the scattering data S(u)
can be derived by observing the additional time dependent terms multiplied with each component
of the scattering data. Hence, due to the coefficient aq1(\) being time independent, we have

S(u) = (p(X; 00", {;(0), C;(0)e* '},

In comparison to the usual asymptotic behavior of the Jost functions, which are taken to be e~#*73
as x goes to plus or minus infinity, in the asymptotic behavior we choose, the time dependence is
not as apparent. Respecting this difference in the normalization, the usual scattering matrix A(\)
is not time independent, since under the assumption wil ) e as 1 — +00, the (12)-entry then
has the following time dependency

as(\) = — det[w(_l)e%)ﬁt?wil)e%)@t] AN det[w(_l), wi”]-

However, due to the fact that we are primarily interested in the inverse scattering method in
order to elaborate on a few key features the method has to offer, we conclude that it is sufficiently
clarified by this treatment.

With regards to the asymptotic expansions (2.1.7) of the modified Jost functions as || — oo,
the reconstruction formula for the function u(¢, ) in terms of the solution of the Riemann-Hilbert
problem 1 can be derived by

u(t,x) =20 lim A[M(t, z, \)]12.

[A| =00
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Therefore, the missing link to recover u from the scattering data (2.1.14) is to actually evaluate
the solution of the Riemann—Hilbert problem which involves the Cauchy operator C defined as

CLAN) = Q;Z/R(f“l« AEC\R

for f € LP(R) with 1 < p < co. Further, we need to introduce the projection operators P* which
are given by

i [T )
PN = lim 27m/mmdc, AER,

corresponding to the Cauchy operator in the case A\ approaches the real line transversely from
C*. We need the following results for these projection operators in order to establish the inverse
scattering map.

Proposition 2.1.7.
(i) (Plemelj formulae) For f € LP(R), 1 < p < oo, the limits of the projection operators P~ satisfy

where H: LP(R) — LP(R) is a special case of the principal value integral, namely, the Hilbert

transform given by
A—e
H[f](A\) = lim — / / A eR.
e—=0 T Ate

(11) If f+(X) is analytic for X in Cx and fr(\) — 0 as || — oo, then
PEfIN) =0, PEf](N) = £f2(0) for XER.
(iii) If f € LY(R), C[f]()\) decays to zero as |\| — oo and it admits the asymptotic
|/\1\1an AClf i / 1

taking the limit in either the upper or lower half-plane.

for A € R,

Proof. (i) A proof for the Plemelj formulae is standard in complex analysis and can be found for
example in [35].

(ii) The Plemelj formulae together with Cauchy’s integral theorem prove the assumption, since
H[f,](A) = =if+(A) and H[f_](A) = if-(}).

(iii) For the asymptotic, one can calculate

lim ACAIN) = lim =~ [ L (C)A d¢

|A|—o00 IA—oo 271 Jg C

1 o f(Q
_2_/|)\hgloo ¢ — )\dC

2m/f )dc.

Considering similar steps for C[f]()), we obtain zero as the limit for |\| — oo.
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Now, let us assume that the solution of the Riemann—Hilbert problem has no simple poles; i.e.
u € Go. Applying P~ and P* to the jump condition of the Riemann-Hilbert problem 1 yields

< M-
M_(t,z,\) =1+ lim — 2 < J(t2,Q)
e—0 278 — (A —ig)

dg,

since M, (t,z,\) — 1 is analytic in C; and tends to 0 as |A| goes to infinity, and

M(tx/\)—ﬂ+11m T M th J(t2,0)

d
e—0 2774 — (A +ie) ¢

since M_(t,z,\) — 1 is analytic in C_ and tends to 0 as |A| goes to infinity, respectively. Hence,

M(t,z, ) =1+ QLM h M(t’mﬁi(t% 9)

d¢

is formally a solution of the Riemann—Hilbert problem and using the third property proven in
Proposition 2.1.7, we find the asymptotic expansion of M (t,z, A) to be

Mty =1- o | T M_(t2, 0T (2,0 dC + O,

2TIA

Comparing this to the asymptotics of the modified Jost functions (2.1.7), we obtain the potential
in terms of the scattering data. Particularly,

u(tz) = -+ / e=2002) y* (V)M (E, 2, A)] 1y dA

o0

[ T (Ve

m 00

In general, assuming that the function u is generic with N € N simple eigenvalues, i.e. u € Gy, the
Riemann—Hilbert problem 1 also comprises of N simple poles. Writing (2.1.6) as

SOtz N~

) W, 2,0) + p(\)eXPE=NG P (¢ 1 \), (2.1.16)
QZ(_2) t,x, A ~ i i,
#: Bt 2, 0) = pr(N)e 2OtV (1 2 ), (2.1.17)

we can utilize the projection operators P~ and P+ on both sides of equations (2.1.16) and (2.1.17),
respectively, to obtain the following system

+ lim —

(1)
- N R v o 2i0(ta.0) (D)
w‘:)(t,x,»:(é)*z i) gy / TN ) o

A=A o 270 ¢—(\— ze)
. <$(2)> (2.1.18)
eS¢e—x. | — 0o ,—2i0(t,x,() 4*
~2) 0 =25 \ “ana . 1 € P (C) (t $ C)
tr\) = ———— 2 4 lim —
v (t2A) (1) * A=A - El_r’% 27 J_o C—(A+ 25) .

where the residues are as in the Riemann—Hilbert problem 1. Inserting A = )\, into (2.1.18), the
resulting system of equations together with (2.1.18) constitute a linear algebraic-integral system of
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equations, which, in principle, solves the inverse problem for the eigenfunctions ’(Zil)(t, x,\) and

IZJ\(E) (t,z,\). Comparing (2.1.18) to the asymptotic expansion (2.1.7) yields the reconstruction
formula

u(t, z) = —QZZC* “AOEE AN [ (8, 1, )] ag + — ! /Oo 20N (N[ (8, 2, Az AN (2.1.19)

7j=1

In the reflectionless case we have p(A) = 0 for A € R and then the Riemann-Hilbert problem can
be reduced to an algebraic system

2z®(t:c>\)w (t T )\)

ne (t Z, )\g
=)

c. e—20(t.a,A; 77Z)(l)(t z, )\ )

7(2)
t,w, ) =

for £,7 =1,..., N. This particular restriction of the scattering data is the third important concept
in the context of applying the inverse scattering method. Especially in connection with the second
concept, the scattering data, this is the foundation of further considerations in this thesis. First
off, let us continue the analysis of the algebraic system. For N = 1, the modified Jost function
P (t,2,A) at A = A takes the form

~ s o
[V (t, @, Mp)]og = ————e 2iOETAD)

]__
A — N

Oy Pe2itlta-e(taa) |
(A = AD)? ’

(2.1.20)

‘Cl|262i(9(t,x7/\1)—@(t7z7>‘f)) !
(A= Ap)?

[TZJF(t?wa )‘1)]22 - [1 —

Therefore, inserting (2.1.20) into (2.1.19), we obtain the so-called one-soliton solution, which can
be written with \; = & + i, as

*

u(t, ) = —2im—— G

C
c | pCan Gk sech(Qm(I + 4&1t) — | 1|>
1

2’[’/1

We adapt the notation u(t,x) = usu(t, x; {1, C1}) resulting in

Usor(t, 3 {E€1 4-imy, 2m M7 T01Y) = oy e~ et AE D) (d147/2) sech(2n; (v +4&t — 1)), (2.1.21)
where ¢, = arg(Cy) and x; = log |Cl|. We invite the reader to make a mental note of the
relations between the scattering data and the parameters of the solution and bear in mind that
the inverse scattering transform is by no means exclusive to derive these kind of solutions. We
shall come back to these points later on in the thesis. Further, it is worth mentioning that in [44],
it has also been proven that the inverse scattering map maps p € H,"'(R) to u € H“'(R), which
we capture without the proof in the following statement.

Theorem 2.1.8 (Zhou, [44]). For each N € Ny, the inverse scattering maps S~ H''(R) x
(CHN x (C\ {0})N — HYY(R) are Lipschitz continuous.
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2.2 Inverse scattering method for the sG equation

The second PDE of interest in this thesis is the sine-Gordon equation which in laboratory coordinates
has the form
Htt — emz -+ sinf =0 (221)

for 6(t,z): R x R — C. Formulated as a Cauchy problem, we look for solutions of (2.2.1) with
0(0,x) = Oy(x) and 6,(0,z) = 6;(x), where the functions 0y(x) and 6;(x) are the given initial data
for z € R.

2.2.1 Lax pair

Similarly to the direct scattering for the NLS equation, the sG equation is another candidate for
which there exists a Lax pair. Given the 2 x 2-matrices U and V of the form

) P ; P
U=—2(6: =)o — Fos+ 7 (cose Zs1n9>7

4 A) \isin® —cosf
. . . - (2.2.2)
V——z(ﬁ 0o +20 +L cosf@ —isinf
40" OELT T3 T N lisind  —cos6 )

where we again have the spectral parameter A € C as well as the third Pauli matrix o3 = diag(1, —1)
and the first Pauli matrix o7 which is defined as

01
0-1:107

the sG equation can be written as a compatibility condition of the following linear spectral problems

Y (t,x, N) = U(t,x, \)(t, x, N),

Yy(t,x, N) = V(t, 2, (L, x, \). (2.2.3)

In that regard, for a 2 x 2-matrix solution (¢, z, A), the compatibility condition ¥y, (¢, z,\) =
Yue(t, z, A) for all A € C\ {0} is satisfied if and only if 6(¢,z) is a solution of the sG equation
(2.2.1). Without the auxiliary function, the equivalent zero curvature condition is again

U, —V,+[U,V] =0 for all A € C\ {0}.

Note that a solution ¥(¢, z, A) of the Lax system of the NLS equation is not the same as a solution
of the Lax system of the sG equation. However, we denote solutions of either of these systems by
1, since it should be clear from the context which setting the solution belongs to. Further, under
the condition that 6 is real, the Lax pair U, V satisfies the symmetry relations

U(t,z,\) = o1U(t, x, —N)oy, U(t,xz,\) = 09 (U(t,x, )\*))*02, U(t,xz,\) = o3 ([U(t, x, —)\*))*03,

V(t,z,\) = o V(t,z,—N)o1, V(t,z,\) = oo(V(t,2,\")) 02, V(t,2,\) = 03(V(t,z, —\")) 0s.
(2.2.4)

2.2.2 Jost functions and direct scattering

Under the assumption that lim, , .0 = 0, lim,_,, 0 = 27C sufficiently fast and C' € Z, the
topological charge, it is reasonable to assume that there exist 2 x 2-matrix-valued functions 1_ and
¥, solutions of the equations (2.2.3), with asymptotic behavior

Vit \) ~ e(CIA—DTHIATs 4y 4o,
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for A € R. Similarly to the case of the NLS equation, we can define the modified Jost functions

w(t z,A) = (t,z, N2 where for the sG equation the phase ©(t, z, \) is equal to (X —

%)a: — }1()\ + %)t Again, as in the case of the solutions of the Lax system, we use the same notation

as for the phase of the NLS equation and the context should be clear. In particular, the modified
Jost functions satisfy the modified Lax system

~ 7 1 -~ -~ ~ 1 1 ~ ~
botz(A=3)lon B = Qb di—2(A+3)los 0] = Qi (2:25)
where
0= i A'cos®—1) —iX'sinf -6, +6,
4 \iXlsind — 6, + 0, A1 — cos ) ’

Q, = i A'cos®—1) —iX'sinf+6, -6,
P74 Ui tsin 4 6, — 6, A1 — cos ) '

Therefore, the modified Jost solutions have constant limits for all A € R,
?Zi(tﬁv,)\)—ﬂl, as © — +oo

and are solutions of the following Volterra integral equations:

T

{ﬂ\— (t7 '/I;’ )\) = ]]' + / e_le(o’x_y7)\)o—3@(t’ y? A)/I:Z)\_ (t7 y’ A)€Z9(07m_y’>\)o—3 dy’
e (2.2.6)

[ee]
by (t,a,\) =1 — / e~ OOTBNTQ (¢ y Ny (t,y, \)e®Or vV gy,

which can be derived from the modified Lax system. Here again, we continue to denote the Jost
functions in terms of their column vectors as ¢y = ( il ), wf )) and also the modified Jost functions

in terms of their column vectors as ¢, = («Zﬁj ), L/ZJ\f )).

Lemma 2.2.1. Let 1 — cos(ﬁ(t ), sin(0(t,-)), 0:(t,-), 0.(t,-) € L*(R). Then for each x € R, the
columns w( (t,z,\) and w+ (t,z,\) of the modified Jost functions are cmalytzc for X € (C_ and
continuous for A € (C_ UR) N {\ € C: |\ > £}, while the columns (¢, 2, ) and er (t,z, )
are analytic for A € C and continuous for A € (CL UR)N{A € C: |A\| > ¢} for each e > 0.

Proof. The proof is analogous to the second part of the proof of Theorem 2.1.1 with the exception
that the operator T is uniformly bounded for |A| > e: An iteration of the operator

z (1 0
T[f] (tv L, )‘) = /_ (0 e% ()\_i)(x_y)> Q(t> Y, )‘) f(t> Y, )‘) dy,

starting with the unit vector fo(¢, z, \) = ey, formally provides a solution in the form of an infinite
series 3~ o T7[fo(t, 2, A) to the first column of the first Volterra integral equation (2.2.6), which we

denote by 12(_1) Observing that A € C, implies that A — A~! € C,. and therefore if we additionally
take z — y > 0, then the kernel function with respect to y is bounded by a linear combination
of the entries 1 — cos(0(t,v)),sin(0(t,y)), 0:(t,y),0.(t,y) of Q(¢,y,\) with constant coefficients
independent of y and uniformly bounded for |[A| > ¢ > 0. As in the case of the NLS equation, if
we take h(t,z) = [*_|Q(t,y, A)| dy, we have

(h(t, )y

|Tj[f0](t,l‘,)\>’ < CHfO(ta'vA)“LOO(]R) j'
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Hence, it follows that the partial sums of {ﬂ\(,l) are majorized by those of an exponential series
implying the convergence of the partial sums. Since the partial sums are uniformly convergent,
analyticity for A € C; and continuity for A € (C; UR) N {\ € C: |A\| > £} extend from the partial
sums to the limit 1}\(_1). The argument can essentially be repeated for the other columns of the
modified Jost functions. O

Even though the argument which is sufficient for the NLS equation fails for the sG equation,
it is still possible to prove that the (modified) Jost solutions are continuous on the complete
half-planes. Using a gauge transformation, a new set of functions with respect to the Jost functions
can be defined by

cos? —igin?
_ 2 p)
U (t,z,\) = (z sing o8 g) Yy(t,z, \). (2.2.7)

As before the new set of functions can be written in terms of its column vectors as V. (t,x,\) =

WP (t,2,7), 0P (t, 2, 1)) and it can be calculated that these matrices W (t, ,)\) satisfy the
modified eigenvalue equation

b= (4= D)o

0 i A(1 — cos ) tAsin® + 0, + 0,
27 4 \—i\sin0 + 6, + 6, A(cosf — 1)

where

Note that the terms containing a power of A changed from A~! in Q; to A in Q,. Under the same
assumption that lim,_,_ . 0 =0, lim,_,.. # = 27C'" as before, it is reasonable to assume that there
exist functions ¥, with asymptotic behavior

U_(t,x,\) ~ oge 0Lz as T — —00,

U, (t,2,\) ~ (—=1)%ogeOtzMNos as * — +00

for A\ € R. Then, We define (I\J(t, x,\) = U(t, 2, \)e®t2N9s denoted in terms of its column vectors
by \I/(t T, \) = ( D(t, 2, \), U@ (¢ 2, \)). Their Volterra integral equations are of the form
{I\/_(t, T, /\) = 05 + / e—i@(O,x—y,)\)JgQQ(t’ T, y)@_(t, Y, )\)eiG(O,x—y,A)a;; dy,
o (2.2.8)
W (t,2,A) = (=1)03 — / e OOTTINEQy(t, 2, y) Wy (1, y, )e'@OTTINR dy,

Given these modified integral equations for the transformed solutions \Tli(t, x,\), we can prove
that the columns of ¥4 (¢, z, ) are continuous in a neighborhood of A = 0 in the upper or lower
half-plane.

Lemma 2.2. 2 Let 1 — cos(0(t,-)),sin(0(t,)), 0:(t, ), 0.(t,-) € L*(R). Then for each x € R,
the columns @/J (t x,\) and w+)(t x,\) of the modzﬁed Jost functions are continuous for A\ €
(C_UR)N{A € C: |A < &}, while the columns ¥V (t, 2, \) and @/)Sr)(t,x,)\) are continuous for
A€ (CLUR)N{A € C: |\ <€} for each e > 0.

Proof. Following the proof of Lemma 2.2.1, we have the initial vector fy(¢,z, ) = e; and the
operator T'[f](t, z, \) with Q replaced by Q,. This means that every factor of A= which occurred
in 7" through Q is now a factor of A coming from Q,. Hence, instead of the condition || > &, we
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have for U the same analysis under the condition |A\| < e. Thus, the first column U of the
modified transformed Jost function W_ is analytic for A € C, and continuous for A € C, UR,
where || < e. Further, the gauge transformation (2.2.7) is independent of A and therefore it is not
affecting the continuity with respect to A, which enables to transfer the results to the columns of
the modified Jost functions. This procedure can be applied in a similar way to each column. [J

By Lemmas 2.2.1 and 2.2.2, we have that the columns of the modified Jost functions in the
case of the sG equation can be continued analytically in A € C, and continuously in A € CL UR,
which we summarize in the following statement.

Theorem 2.2.3 (Kaup, (9, 29]). Let 1 — cos(6(t,-)),sin(0(t, ")), 0:(¢, ), 0.(t,-) € L*(R). Then, for
every A € R, there exist unique solutions V4 (t,-,\) € L®(R) satisfying the integral equations

(2.2.6). The two column vectors 12(_1)(@1;, A) and @f) (t,x, A) of the modified Jost functions can be
continued analytically in A € C_ and continuously in A € C_ UR, while the two column vectors

1;(_2) (t,xz,\) and QZSrl)(t,a:, A) of the modified Jost functions can be continued analytically in A € C,
and continuously in A € Cy UR.

Proof. Repeating the first part of the proof of Theorem 2.1.1, we have, since each entry of the
matrix Q(¢,-, \) is in L*(R), that we can find a unique continuous function in L>(R) satisfying for
example the first column of the first Volterra integral equation (2.2.6).

Then, to continue the function in A € C, we utilize Lemmas 2.2.1 and 2.2.2 under consideration
of the sign of the real part of the exponential factors including Im(A — A™!) in the Volterra integral
equations (2.2.6). An analogous result holds for the other columns of the modified Jost functions. [

Now, these properties imply that the columns of the Jost functions can be continued analytically
and continuously into the complex A-plane as their modified counter part. The limits of the Jost
solutions and the zero trace of the matrix U gives det ¢y = 1 for all x € R. Moreover, ¥, are both
fundamental matrix solutions of the Lax system (2.2.3), so there exists an = and ¢t independent
matrix A()), see Section 2.1, such that

btz ) = oo (t e, VAN,  AER. (2.2.9)

The scattering matrix A is determined by this system and therefore we can write the scattering
matrix as A(\) = ¢, (¢, 2, \)¥_(¢,z,A), whose entries can be written in terms of Wronskians. In
particular, a;;(A) = det[y™" |¢f)] and agn(\) = — det[yp? |¢$)] implying that they can be continued
in A € C, and A € C_, respectively. The eigenfunctions inherit the symmetry relation of the Lax
pair:

Lemma 2.2.4. Assuming that 0 is real, the Jost functions ¥y (t,xz, \) satisfy the three symme-
try relations Vi (t,z,\) = o1be(t,x,—N)oy, YL(t,x,\) = 02(1/Ji(t,x,)\*))*02 and Yo (t,x,\) =
03 (¢i(t7 xz, _)\*))*0-3

Proof. As in Lemma 2.1.2, it is possible to show that . (¢,z, ), o1¢+(t,x,—\)o;, as well as
09 (wi(t, x, )\*))*02 and o3 (¢i(t, X, —)\*))*03 are all solutions of the same Lax system. This means

(Ve(t 2, A)e = UL, 2, N (t, 2, N),
(01Y+(t, 2, —=A)o1)e = o1 U(t, 2, =AY (t, 2, —A)or = U(t, 2, A) (019 (¢, 2, —A)o1),
(Jz(wi(t x, \* )) 09)r = 02( (t,z, \* ))*(@bi(t,z,)\*))*ag = U(tw,)\)ag(wi(tw,)\*))*@,
(03 (a(t, 2, =A%) 03)0 = 03 (U(t, 2, —A"))" (Ya(t, 2, =A%) 05 = U(t, 2, N)os (Vi (t, 2, —A")) 03
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This also holds for the ¢ part of the Lax system, since both matrices U and V of the Lax pair
satisfy the same symmetry relations. Further, the normalization of each of these matrices can be
derived by

lim v (t, z, A)eie(t’x’A)US =1,

r—100
: O(t,x,\)o3 . 1: 1O (t,x,—\)o _
:L"Erinoo 01 (¢i(taxa —>\))0'16 (twdos — xgrinoo 01 (¢i(ta €, _)‘))6 & ) ‘o = ]17
: %)) * 1O(t,x,\)os __ 13 #\\*( _iO(t,x,\*)oz\* _
Igrilooag(wi(t,x,/\ )) a3 — xgrinooag(wi(t,:c,)\ )) (e ( ) 3) oy =1,

. ERTAN iO(tz,\)os _ 13 k) *(,i0(tz,—A*)oz )\ * —
xgrfooag(@bi(t,m, A )) o3e xgrfooag(gbi(t,x, A )) (e ) o3 =1.
We use the fact that —O(t, 2, \) = O(t,z, —\) and O(t,z, \) = O*(t, x, \*). Hence, the assertion is
proven. O

As in the case of the NLS equation, these symmetries can be used to derive relations between
the elements of the scattering matrix A()\), which then can be utilized to specify particularities in
the scattering data.

Proposition 2.2.5. Assuming that 0 is real, the elements of the scattering matriz A(X) are related
by ajn(N) = agx(—XA) = ak(X*) = afy(=A*) for X € Cy and a;p(N\) = axn(—A) = —a(N) =
—aiy(—A) for X € R.

Proof. We have by definition
A<)‘) = iﬂll(t, Z, )\)1/17 (ta Z, )‘)

and with the symmetry relations of Lemma 2.2.4 regarding the Jost functions, we have

for A € R. Solely for the diagonal entries the relation can be continued to the upper/lower
half-plane corresponding to the continuations of aj1(A) and aga (). O

For the NLS equation, the relations of the elements of the scattering matrix resulted in the
pairing of zeros in the scattering data, i.e. if A\; € C, is a zero for a;;()), then \j € C_ is a zero
for aga (), see Definition 2.1.4. In the case of the sG equation, the derived relations of the elements
of the scattering matrix cause the zeros to come in quadruples: Given a zero A; € C of aq1()\),
—\} € C, is a zero of ay;(A\) and —A;, A} € C_ are zeros of aga(A); in the special case \; € iR, the
pairs in either half-plane (upper/lower) coincide, leaving only two zeros A; € iR, of a;;(A\) and
AT ==X\ €iR_ of an(N).

If A € R, we have |a;;(N)]? + |aiz(A)[* = 1 since det A(\) = 1 and Proposition 2.2.5. From
the integral equations (2.2.6), one can show that the asymptotic behavior of the modified Jost
functions and scattering coefficient a11(A) satisfy

~

Ya(t,z, \) =1+ O(1/)N),
an(A) =1+ 0O(1/))
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as |\| = oo in the appropriate half-planes and considering the gauge transformed modified Jost
functions, we have

0 s i 0
™~ _(_1\C Cos5 18Ing
¢+(f7$7)\) - ( 1) <Z Sing COS%) + O<>\)7
9 s i 0
~ ~ (cos3 —ising (2.2.10)
77Z)_(t,l’,)\) - (ZSIH% —COS%) + O(/\)7

a(A) = (=) +O())
as |A\| = 0 in the appropriate half-planes, see |9, 29].

2.2.3 Scattering data

As for the NLS equation, the scattering data can be derived from particular properties of the
functions dependent on the spectral parameter A introduced in the last section. As mentioned
in the last subsection, the simple eigenvalues for the function # introduce up to four zeros of the
functions a1 (\) and ags () of the scattering matrix. Hence, we have the following definition.

Definition 2.2.6. For 6 real and N € N, the function 6 admits simple eigenvalues if ai1(N) is

nonzero in C, UR except at a finite number of points Ay,..., Ay € C,, where it has simple
zeros, ie. ajr(A;) = 0, 441()\;) # 0, j = 1,..., N. Moreover, the relation a;(A) = axn(—\) =
a3o(A*) = a1 (—A*) from Proposition 2.2.5 implies that if A1, ..., Ay are simple eigenvalues, then
=X, ..., —Ay € C, are simple zeros of a11(A) and asg(\) is nonzero in C_ UR except at the points
Ay = AN, AL, o, Ay € C_. Then, we define by Gy, N € Ny, the set of all functions 0(t, z)

with 1 — cos(6(t,-)),sin(6(t, ), 0s(t, -), 0.(t,-) € L' (R) that admit exactly N simple eigenvalues in
the upper half-plane. The infinite union of these sets

G:=Jon

gives the set of generic functions.
When connecting simple zeros, two distinct cases can occur.

Definition 2.2.7. Assuming that 6 is real, we split the number of simple eigenvalues into N =
N, + N,. Here,

(i) N, is the number of simple eigenvalues lying on the imaginary axis \; = in;, n; > 0 and
therefore corresponding to single solitons.

(i) N, is the number of simple eigenvalues not lying on the imaginary axis \; = &; +1in;, § # 0
and therefore corresponding to the so-called breather solutions.

The topological charge C' can be related to the number of single solitons Ny. Basically, an even
number of single solitons corresponds to 0 as charge, whereas an odd number of single solitons
corresponds to a value of 1 or —1 for the charge.

From Lemma 2.2.4, we obtain the following relations for the column vectors of the modified
Jost functions

¢$)(t,$7)\) = UW@(@% _)‘) = iUQ( :(|:2)<t7$7)‘*))* = US(w:(I:l)(tw%a _)‘*))*7

2.2.11
¢$)(t,$7)\) = Ulw:(tl)(taxa _)‘) = —102(¢(il)(t795> )‘*))* = —03(7/J§:2)(ta1’7 _)‘*))* ( )
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Now, given a simple eigenvalue \;, j € {1,..., N}, of a real valued 6, we have that the column

vectors 1#(,1 )(t, x, ;) and ¢f) (t,x, ;) are linearly dependent, i.e. there exists a constant b; such
that

w(—l)(ta L, )‘j) = j¢f)(t> Z, )‘j)a
where the constant is independent of ¢ and x, see Subsection 2.1.3. Then, the relations (2.2.11)
imply that
WOt 2, =Ap) = bt e, —xy), WP () = —biul(t @A)
and also
DOt 2, =N = 0Dtz — ).

In the case \; lies on the imaginary axis A; = in; with n; > 0, we particularly have \; = —A7 and
—A;j = Aj. From which —b] = b; follows and therefore b; is as \; necessarily purely imaginary.

As for the NLS equation, these facts enable us to provide residue conditions which are essential
for the Riemann—Hilbert problem. We have

R, 1/’(—1) _ 2i0(t,z,);), 7(2) w_2) _ —2i0(t,m,—A;) (1)
es( — ) = C; eVt x, Nj), Res (— ) = Cje DALt x, =),
A=X5\ aqq ==A;j \ G22
15(_2) ~ —2i0(ta, %) (1) QZ(—I) ~ _2i0(t,x,—A%) 7(2)
/B:e/\? (a_22> = Cye 20t G (¢ 2 \7), Ag{e%(a—n) — ;O NGB (¢ g N,
(2.2.12)
where the norming constant
dan -1
C; = bj< hos,) (2.2.13)

is defined similarly to the one for the NLS equation (2.1.13). By this definition, we also have

G, — _b*<d§)2\2 /\/\;>1 _ _b*<da11 {k N )1 _ ¢

Definition 2.2.8. Let N € N and suppose a;1(A\) has only simple zeros in C,. Then, the
scattering data associated to the initial data 6y(z), 61(x) is given by the reflection coefficient
p(A) = a1 (N)/a11(N), where p: R — C, the simple eigenvalues Aj,..., Ay which are pairwise
distinct in C; and the norming constants Ci, ..., Cy as in (2.2.13). We write

(6o, 01) = (p(X;0), {\;, C;(0) }iLy)-

Following the same ideas we motivated for the NLS equation, the time dependence of the
scattering data can be observed to be influenced by the phase for both the norming constant and
the reflection coefficient. Thus, the scattering data corresponding to the potential 8 € Gy is in
general given by

S(0) = (P 0)e 304, (. Gy o) HRN), (22.14)

7j=1

2.2.4 Inverse scattering

As for the NLS equation, we want to establish the inverse scattering to recover the function ¢
from the scattering data, which can be expressed as a mapping (p, {);, Cj}j.v:l) +— 0. Therefore,
we define the sectionally meromorphic functions

M_(t,2,0) = (0, 0P Jage),  My(t,z,2) = (0 fan, 02),
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which are used to rewrite the relation (2.2.11) into
Mi(t,z, N) = M_(t,z, \)(1 + J(t, z, \)), (2.2.15)

where the jump matrix for the sG equation is given by

(P e
J(t,z,\) = (€2i®(t,x,)\)p()\) 0 '

Then, the Riemann-Hilbert problem for M (t, z, ) is obtained with regard to the residue conditions
(2.2.12) and the jump condition (2.2.15) from the scattering data (2.2.14) and therefore we have a
method of recovering the solution 6(t, z) from the scattering data.

Riemann-Hilbert problem 2. For given scattering data (p, {\;, C;}}_,) as well as ¢,z € R,
find a 2 x 2-matrix-valued function C\ R 5 A\ — M (t, z, \) satisfying

1. M(t,z,-) is meromorphic in C\ R.
2. M(t,z,\) =14+ O(1/]) as |A| = oc.

3. Non-tangential boundary values M (¢, x, \) exist, satisfying the following jump condition
M, (t,x,\) = M_(t,z, \)(1 + J(¢t,z,\)) for A € R.

4. M(t,z,\) has simple poles at \;, =A5, —=A;, A}, j=1,..., N, with

VR B
Res M(t,2,\) = lim M(t,2,\) (., s 0
A=) 7 AN, ) Cje2z®(t,x,>\j) 0/’
Res M(t,x,\) = lim M(t,z,\) 0 0
)\:—)\;.‘ 7«'];7 - )\_1>I_n)\; 7I7 éjGQi@(t,w,—)\;) O )

Res M(t,x,A) = lim M(t, x,A) (

A=—)\; A=)

0 Cje—Qi@(t,CE,—Aj)
0 0 ’

Res M (1, \) = lim M(t,a.0) (0 G0
Res M(t,2,A) = lim, M(t,z, )(0 0 )

Then, for the reconstruction formula we expand the solution M(t, z,-) of the Riemann—Hilbert
problem 2 as
M(t,z,\) = My(t,z) + AM;(t,2) + O(N?), as A —0

in contrast to the asymptotic expansion for the NLS equation. Hence, if we set

My M

the solution of the sG equation can be reconstructed as in the following proposition.

Proposition 2.2.9 (Cheng, Venakides & Zhou, [13]). Assume that M (t,z,\) is the solution of the
Riemann—Hilbert problem 2. Then, the solution 6(t,x) of the sG equation (2.2.1) can be expressed
as

cosf =1 + 2M12M21,
sinf = —2?:M21M22.



30 CHAPTER 2. INVERSE SCATTERING METHOD

Proof. The equality 1@ = =LA =X"1)[os, @] + le for the solution M of the Riemann-Hilbert
problem 2 gives

(Mg)y + A(My), + O(N?) = —=Aos, My + AM; + O(A\?)]

|

(Qt — 0$)O'1(M0 + )\Ml + O(A2))

+ )\_1[0'3, MO + /\M1 + O()\Q)]

A ((cos O — 1)os + sin Ooy) (Mo + MM, + O(N\?)).

+
YRS SN

Equating the coefficient of A= to 0, we obtain
(o5, Mo] + ((cos O — 1)o3 + sinfog) My = 0,
which can be solved for ((cosf — 1)o3 + sinfoy) through
cosfos + sinfloy = M(]O'gMo_l.

Having det My = 1, the equality gives

. _ (M1 Mag + My Mo —2My1 Mo
cos Bos + sin oy = ;

2 M1 M3 — My Moy — Mia Moy
which proves the assertion. O

In fact, this can also be retraced using the asymptotic expansions of the modified Jost functions
as |A| = 0 in the equation (2.2.10) similar to the asymptotic behavior derived for the modified
Jost functions of the NLS equation.

Let us again emphasize the fact that the inverse scattering method for both the NLS and the
sG equation is, in general, a powerful framework not solely in order to construct solutions, but
also due to the simple time dependence and versatility of the scattering data. Therefore, the
three important concepts, we wanted to highlight in this section, are precisely the equivalence of
the respective PDE to the compatibility of the Lax system, the scattering data derived from the
spectrum and the eigenfunctions of the Lax pair and the correspondence of the scattering data to
parameters of solutions, in particular, for the solutions of the NLS equation. In the next chapter,
we present different methods in order to find solutions, which have other advantages themselves.
In particular, one can observe that two of the three highlighted concepts again emerge in these
methods [27]. As for the third concept, the connection of the scattering data to the parameters of
the solution, we see that it follows naturally, having the knowledge of the scattering data.



Chapter 3

Solution construction methods

Due to the importance of the PDEs introduced in the last section, the search for solutions has been
vividly carried out especially in the last century. As a result, besides the inverse scattering method
introduced in the last Sections 2.1 and 2.2, a diverse spectrum of methods has been discovered
which enables us to solve integrable nonlinear PDEs, which, in particular, are associated with the
AKNS system [1, 38], such as the NLS and sG equation. There are—just to mention a few—the
Hirota direct method, the Backlund transformation technique and the Dressing method, which is
somewhat equivalent to the Darboux transformation. Since, together with the inverse scattering
method, each of these methods is applied to the very same integrable nonlinear PDE to construct
a solution, one may think that they are all in some way equivalent.

In this chapter, we deal not only with the introduction of a certain subset of these methods,
but also with necessary comparisons and resemblances between them. Furthermore, this is the
foundation for the next chapter, where we introduce different models of the NLS and sG equation.
However, due to the fact that the presentation of more than two methods for the search of solutions
is in general not too commonly found in the literature, this chapter takes influences of quite a few
sources [5, 11, 14, 21, 27, 10, 32, 33, 34].

3.1 Classical Darboux transformation vs. Dressing method
vs. Backlund transformation

In the following, we want to present three additional methods, which can be used to find solutions
for the suggested integrable nonlinear PDEs, and show that under the relevant conditions they are
indeed equivalent as far as the construction of soliton solutions is concerned.

Therefore, let us first focus on the Bécklund transformation technique [11, 34|, which transforms
the problem into two first-order partial matrix differential equations (3.1.2) for a matrix B, which
is commonly known as a Darboux matriz, with respect to the Lax system.

3.1.1 Backlund transformation

Obtaining solutions for nonlinear partial differential equations is usually not as easy as it is
illustrated in Section 2.1 for the construction of a one-soliton solution for the NLS equation by
the inverse scattering method. In this section, we want to present the Backlund transformation
technique, which can be used to obtain new solutions from a known solution by solving a system

31
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of integrable PDEs. By defining

W(t,x, ) = B(t,x, \)(t, x, ), (3.1.1)

we consider analogous systems to the ones found in (2.1.2), (2.2.3):

Ve = U9,

wt = V¢>
where U , 1% are either u , VY with u replaced by @ in the case of the NLS equation or Hj, V with 6
replaced by € in the case of the sG equation. Simply taking the derivative in equation (3.1.1), we

require that the Darboux matrix B satisfies the following partial matrix differential equations for
any t and =,

B, =UB — BU,

~ (3.1.2)
B, =VB - BV.

In the case of the NLS equation with U=UandV = 9, it can be found that if one restricts the
matrix B(t,z, ) to be of the form

B(t,z,\) = BO(t,2) + BO(t, )\, (3.1.3)
we actually have the following:

Proposition 3.1.1 (Caudrelier, [11]). Under the condition that B(t,z, \) is of the form (3.1.3),
the Darbouz matrix in the case of the NLS equation takes the explicit form

Blt,w, ) =1 + — (O‘ii_iﬁg i —uf? —ili— ) ) (3.1.4)

2\ (@ —u)* aFi/PB? —|u— ul?

where a, B € R are the t and x independent parameters of the transformation.
Similarly, it can be found that in the case of the sG equation with U=Uand V = @’, we have:

Proposition 3.1.2 (Caudrelier, [11]|). Under the condition that B(t,z, \) is of the form (3.1.3),
the Darbouz matrixz in the case of the sG equation takes the explicit form

78in =22 —co

; 0+6 C i 040
(6% COS —— —1 81N ——
2 2

where a € R s the t and x independent parameter of the transformation.

Effectively, to implement this transformation one has to take two functions u and @ or 6 and 6.
One of these functions, say u or €, has to be a solution of the underlying PDE. Based on these
functions, we construct two Lax pairs as we have demonstrated in the corresponding Sections 2.1
or rather 2.2. Now, if the matrix B(¢,z,\) is chosen as in one of the two Propositions 3.1.1 or
3.1.2 and satisfies (3.1.2), then it follows that the second function, % or 6, is also a solution of the
underlying PDE.

The proofs for these propositions involve a thorough analysis of the relations (3.1.2) individually
equated for each power with respect to A. We give the proof of Proposition 3.1.1 as a demonstration:
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Proof. With the matrix B(t, z, ) being of the form (3.1.3), we have that the x part of relation
(3.1.2) gives the following three equalities

o = B0 (3.16)
BY = i[BO 5]+ OBY — BMQ, (3.1.7)
BO = 9B _pBOg (3.1.8)

as requirements for the powers A\', A\° and A\~!, respectively. Similarly, we derive from the ¢ part of
relation (3.1.2) the following four equalities

— [BY, 0], (3.1.9)

= 2i[BO 53] +20BY —2BWQ, (3.1.10)
B = (@], B - B, ) +208 - 2500 .11
BY - (@‘AZO)B(O)_B(O)(QJA:O) (3.1.12)

as requirements for the powers A2, A\!; A’ and A™!, respectively. Equality (3.1.6) immediately
implies that the off-diagonal entries of B! are identically zero. Then by (3.1.7), we find that the
diagonal entries are independent of z. Further, if we take the limit |x| — oo in equation (3.1.11),
we obtain that BS) = 0, since the entries are independent of z. Subsequently, normalizing the
Darboux matrix B(t,z,\) via multiplication by (B("))~! which is independent of ¢ and z from
the left, we only need to determine the entries of the new matrix (BM)~1BO) which we continue
to denote simply as B®) and therefore B(t,z,\) = 1 + A~'1BO) This freedom in normalization
stems from the fact that left multlplylng of B(t,z,\) by a matrlx Gt 1ndependent of t and x is
equivalent to transforming the Lax pair U, V of the NLS equation as G-UG, G-VG. However,
the zero curvature condition is invariant under such transformations.

Therefore, denote
by b
0 _ (01 02
5= (i 1)

and «q, ay its eigenvalues, which proves helpful in recovering the diagonal entries. First off, we
obtain from equation (3.1.7) that the off-diagonal entries can be expressed by by = —i/2(u — u)
and by = —i/2(u — u)*. Then, if we compare the coefficients of the characteristic polynomial of
B we find

det BO = 0, TrBO = ay + o,

from which it is possible to determine b; and b,. Therefore, we have

b= 5 (5 =i/ @BR — [ uF), b= 3 (5 F iv/ @B — i — ),

where 57 = a3 + a and 3 = a3 — as. To conclude, we still need to prove that 5; and fy are
independent of ¢ and x and particularly 8; € R as well as 8, € iR. For that let us first show that
f(t,z, A) =det B(t,z, \) and g(t,z, A) = Tr B(t, z, A) are independent of ¢ and x:

d
folt, 2, ) = det B(t, z, \) Tr (B’l(t, z, )\)d—B(t, z, )\))
x
by the Jacobi’s formula and with the z part of (3.1.2) and the properties of the trace, we obtain

= det B(t,2,\) Tr(U —U) =0



34 CHAPTER 3. SOLUTION CONSTRUCTION METHODS

due to U and U being traceless. This can be analogously repeated for f;(¢,z, ), where the

tracelessness of ¥V and V provides the independence of ¢t. Since the trace is linear, we find for
g(t,z, \) that

g (t,x, \) = Tr(B(t, z, )\)(ﬁ —U))
= AT Te(BO(t, 2) (U — U)),

where equation (3.1.7) can be used to derive
= N Te(BO(t, 2)[o3, BO(t, 2)]) = 0.

As before, this result can be utilized, taking the limit |z| — oo, to obtain g,(t,z, A) = Tr(B(t, z, ) -
()7 —V)) = 0, since we already know that g(¢,z, \) is independent of x and V — V goes to zero
as |r| — oo. Further, we have that the symmetry relation (2.1.4) together with the system
(3.1.2) implies that the Darboux matrix satisfies B(t, z, \) = 02(B(t, z, \*))*0y and therefore the
eigenvalue problem boils down to either a; = o, j = 1,2, implying a; € R or oy = a3. In
the first case a == 1 = a1 + a3 € Rand = 8 = a1 — ay = 0 € iR; in the second case
a=a+a;=2Rea; e Rand f =a; —ay =2i:Ima; € iR. O

The proof for Proposition 3.1.2 can be repeated analogously to this proof, especially, considering
light-cone coordinates instead of laboratory coordinates. For a large class of integrable PDEs which
can be formulated in a specific Lax pair which satisfies similar properties as the Lax pair of the NLS
equation, this theory has been proven more general in [11]. In particular, both Darboux matrices
for the NLS equation and the sG equation (in laboratory coordinates) can be found therein.

Nevertheless, the point of this method is to construct a solution @ of the PDE corresponding
to the Lax pair U, V from the solution u of the PDE corresponding to the Lax pair U, V. At
first glance, it is not obvious that the system (3.1.2) with either the Darboux matrix for the NLS
equation (3.1.4) or the sG equation (3.1.5) provides the means to achieve this. In [5], it has been
shown how to rewrite the relevant equations of the partial matrix differential equations (3.1.2)
into a linear system of ordinary differential equations in the case of the NLS equation. Later
on, when we mention relations with respect to the solutions u and @ or rather 6 and 9~, which
correspond to the relations (3.1.2), we show how to obtain a transformed solution explicitly. For
now, however, we have a different goal in mind: We want to present the Bécklund transformation
technique in the course of introducing the classical Darboux transformation or rather the Dressing
method. Therefore, we give a simple example on how the Backlund transformation can actually be
applied through the computation of an ordinary differential equation. On top of that, we indicate
similarities in the presented methods as suggested in the introduction of this chapter. Hence, in
the next subsection, we mainly deal with one of the other methods to implement new solutions for
integrable nonlinear PDEs: the Dressing method. We base this presentation on [14, 32, 33|.

3.1.2 (Classical) Darboux transformations vs. Dressing method

The common example introducing the classical Darboux transformation discovered by G. Darboux
[16] is related to the one-dimensional, time independent Schrédinger equation

Yoo (2, X) + (N = q(2))y(z,A) =0, (3.1.13)

where the potential ¢ is assumed to be real and vanishing sufficiently fast as |z| — oo. One should
think of ¢ as a substitute for the potential u or . Analogous to the direct scattering, we introduce
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the (time independent) Jost functions
yr(z,\) ~ e as x — oo.

If we take a real parameter p and an arbitrary constant s, a solution of equation (3.1.13) is given
by

f(x) = y_(z,ip) + Ky (z,ip), (3.1.14)
which is derived from the fundamental solution and is commonly known as the intermediate wave

function. Then, Darboux showed that there is a mapping from the pair {¢(z),y(x,\)} to a new
pair {q(x), g(x, \)} satisfying equation (3.1.13).

Theorem 3.1.3 (Darboux). Let f = f(z) be a particular solution of equation (3.1.13) for the
value of the parameter p and o = f,f~t. Consider the Darbouz operator

1
A fip

(0, — o).

Given a pair {q(x),y(x, )} satisfying equation (3.1.13), a new pair {q(x),y(x, \)} also satisfying
the equation can be found by the definitions

G(x) = q(x) — 20, (3.1.15)
g(x,\) = Dy(x, \).

Proof. Inserting y(z, A) and ¢(z) into the left hand side of equation (3.1.13), omitting for the
moment the dependencies and the quotient —i/(\ + ip) which arises in each term, leads to

Yz + ()‘2 - (j)g = Yzaz — (U?J)m + ()‘2 —q+ 2090)(%: - U?J)

and after using the equation (3.1.13) for y,., and y,, to cancel out terms

- y(Qw — Oggx — QUmU) - 07

where it can be shown with similar arguments that the bracket is zero, thereby providing a solution
g(x, ) to equation (3.1.13) with the potential ¢(z). O

Based on the definition for the new potential ¢(x), we can derive the corresponding Bécklund
transformation. Identifying

we have by the definition of the potential (3.1.15) the following

G(x) 4 q(z) + 2p* = 20 ().

Therefore, 20(z) = 1/2(¢(z) + g(x) + 2p?) and by differentiating this equality with respect to x
inserting again the definition of the new potential as 0,(z) = 1(q(z) — G(z)), we obtain after

2
reordering of the terms

Gx(2) + a2 () = (a(2) — 4(2)) v/ 2(d(x) + q(z) + 2p?). (3.1.16)
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Introducing the new fields

w(x) = /OO q(y) dy, w(x) = /OO q(y)dy and due to lim o(z) = p,

T—r00

we obtain the commonly known standard Bécklund transformation for the Korteweg—de Vries
equation, thereby taking the form

Wy (1) + we () = %(w(l’) — w(x))(w(xr) = w(zr) + 4p).

Further, equation (3.1.13) can be cast in matrix form as

EM»V:(? %g)Y@AL (3.1.17)

where we say that the fundamental solution is given by

Y(l’ /\) — (}/ll(xa >‘) }/12(‘%7 )‘)) — <(y+)x('x> )‘) + Z-)‘er(xa )‘) (y*)x('xa )‘) + Z)‘y* (.Z', )‘)
7 5/21($7 >‘) Y’22(x7)‘) y+(l‘,)\> y—(%}\)
(3.1.18)
Therefore, the Darboux transformation described through Theorem 3.1.3 written in terms of matrix
solutions Y'(z, A\) and Y (z, A) of the spectral problem (3.1.17), where the potentials are given by
q(z) and G(x), respectively, becomes

Y(z,\) = DY (2, \),

where D is a 2 X 2 matrix commonly known as a Darboux matrix. In particular, the correspondence
to the matrix in Subsection 3.1.1 is not surprising, since the definition Y (z, \) = DY (z, A) resembles
the one we assumed in (3.1.1). Moreover, the derivatives are eliminated and only a pure matrix
multiplication is applied with D taking the form

D_ —i. IN—0 (72'—])2 ‘
A+ p 1 —iN—0O
The Darboux matrix D is nonsingular for A # +i\; and we note that for our purposes it takes the
convenient form

D (11 2ip P( )) p() 1(1 % p_%f
=(1- x))o x) ==
. 37 2 1+% ?

where P is a 2 x 2 projection matrix, i.e. P> = P, which can be calculated by hand with the
expressions we already mentioned in this subsection.

With the fundamental solution (3.1.18), we can introduce two particular solutions of equation
(3.1.17) at ip and —ip obtained through

S|

F(z) =YW (x,ip) + kY P (2,ip), G(z) =YW (x,—ip) + &Y (x, —ip).

Expressing the entries of F(z) = (Fi(x), F2(x))T in terms of the intermediate wave function f(z),
we have Fi(z) = f.(x) —pf(z) and Fy(x) = f(x). Then, to be able to write G(z) = (G1(x), Ga(x))T
in terms of the intermediate wave function, we need to demand that £ = s such that the relation
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yy(z, —ip) = y_(x,ip) gives the appropriate coefficients for the entries of G(x) in order to obtain
Gi(z) = fo(x) + pf(z) and Go(z) = f(x). Taking the quotients

Aw) =~ =~ =p By = Gh =)

the projector matrix can be written as

1 1 Az
P AwEm <A<x> A@(i@)) '
Ultimately, this enables us to obtain the new potential through
i(x) = q(z) — 2A,(x) (3.1.19)
via what is called the Dressing method.

Example 3.1.4. Given the initial potential q(z) = 0 and the parameter p = 0, the three equivalent
methods (3.1.15), (3.1.16) and (3.1.19) can be used to derive the new potential G(x) = 2(x + ¢)?.

(1) For the Darboux transformation, we find that the intermediate wave function needs to be zero
when differentiated twice with respect to x. Hence, f(x) = ¢; + cox and this leads to the result
using (3.1.15) when defining ¢ = ¢y /cs.

(it) For the Backlund transformation inserting the assumptions into (3.1.16), we obtain the first-
order nonlinear ordinary differential equation §,(x) = —\/2¢3(x), which can be solved to obtain the
same new potential, where the constant ¢ comes from integrating.

(111) For the Dressing method, the intermediate wave function from (i) also gives the expression of
A(x) and therefore with (3.1.19) the same result.

Hence, we have shown with this simple application that the two methods, the Darboux
transformation and the Dressing method, are actually the same in the context of the one-dimensional,
time independent Schrodinger equation (3.1.13), since the Darboux matrix D is just the Darboux
operator D in matrix form. While we established this result, we also connected these methods to
the Bécklund transformation technique presented in the last subsection.

However, this consideration is only a representative introduction into the idea of the equivalence
of these methods. The next step is therefore to apply a similar reasoning for the methods applied
to the AKNS systems of the NLS and sG equation for which these circumstances are by no means
that obvious. The presentation of the Dressing method for Lax systems follows primarily [21, 27],
where in the case of the sG equation additional information [10] is necessary in order to give the
complete picture in laboratory coordinates.

3.2 Dressing method for the Lax systems of the NLS and sG
equation

Based on the last section, it is reasonable to think of the Dressing method as an extension of the
Darboux transformation if it can be applied and when it comes to the construction of soliton
solutions for any nonlinear PDE the expressions are usually used tantamount. In particular, it
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is the goal of this section to develop this very theory of constructing soliton solutions with the
Darboux transformation for both the NLS and the sG equation.

As we worked out for the linear Schrédinger equation, first off we want to introduce the
fundamental solution of the matrix equations (2.1.2). Therefore, the fundamental solution given
by the composition of two linearly independent column solutions of the Lax system is

Yt ) = (), f”i(%i %Q)

Since the vectors w(_l) and wf) are initially taken as column vectors from the 2 x 2-matrices ¥ _
and v, the notation above makes sense. Now, we want to introduce the function related to the
intermediate wave function (3.1.14) regarding the Dressing method for the AKNS systems. For
that, we take two complex numbers \; and A} which belong to the upper and lower half-plane
of the complex A-plane, respectively; in particular, A\;, A\] ¢ R. Further, let ug, vy be arbitrary
constants so that a solution at A = \; is given by

bt x) = ugbD (2, M) + vor P (£, 2, Ay). (3.2.1)

In fact, given this column solution of the initial Lax system at A = \;, we take the intermediate
wave function to be A(t,x) = [t)1]2/[¢1]1 in order to write D[1], the one-fold dressing matriz, in
the following form

D[] =1+ Af__;{lpm, P[] = m (A(L}? 2) ﬁzgffl) : (3.2.2)

where P[1](t,x) is a projector matrix depending on v (¢, z). Then as before, assume that we are
given a pair of solutions u[0] or §[0] and ¢[0] of the so-called undressed Lax system of the NLS
equation (2.1.2) or the sG equation (2.2.3). This should remind of the given pair ¢ and Y in the
context of the time independent Schrédinger equation. However, due to possibilities of iteration
in the Dressing method for AKNS systems, we denote the transformation instead of {¢,Y} to
{4, Y} by {u[0],[0]} to {u[1],%[1]} or rather {A]0],%[0]} to {A[1],%[1]}. Further, note that we
reasonably use the Lax pairs ¢[0], V[0] and U[1], V[1] instead of u[0] and u[1] or rather U[0], V[0]
and U[1], V[1] instead of §[0] and #[1]. The solutions u[0] and #[0] associated with the undressed
Lax system are commonly called seed solutions. Consequently, the gauge-like transformation

introduces a new solution of the Lax system

Y[l = U[Jy[1],

Y1y = V{A]Y[1]
with the corresponding Lax pair U[1], V[1]. Moreover, the Lax pairs U[0], V[0] and U[1], V[1] are
required to be structurally identical with updated potentials u[1] for the NLS equation and 6[1]

for the sG equation. Particularly, this condition implies that the one-fold dressing matrix D[1],
similar to the Darboux matrix in (3.1.2), satisfies

(3.2.3)
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Therefore, we should have all the necessary information to introduce the new pair of solutions
from the given pair as in Theorem 3.1.3. Indeed, the last step is to calculate or rather verify the
existing reconstruction formulae for the new solutions u[1] and [1]. Even though, the idea is that
this method can be iterated, we treat at first only the one-fold dressing matrix in the case of the
NLS equation:

Proposition 3.2.1. Let ¢y = ¢y (t,z) be a particular solution of the undressed Laz system (2.1.2)
corresponding to the seed solution u[0](t,x) for the NLS equation at the spectral parameter A = A\
and DI1] be the one-fold dressing matriz (3.2.2). Now, given a solution ¥[0](t,z, \) to the undressed
Lax system, a new pair satisfying the Lax system with updated Lazx pair U[1] and V(1] associated to
the new solution u[l](t, x) can be found by

Q)(t,) = QUU)(t,2) — i — ADlos, PI1]) o
P, 2, A) = DL, 2, Y[O](E, @, ).
A similar summary as for the Bécklund transformation can be given. The idea of the Dressing
method for the NLS equation consists of the following: Given a seed solution u[0] of the NLS
equation, we construct the Lax pair ¢[0], V[0]. Furthermore, we take the general solution (0]
of the resulting Lax system consisting of ¥[0], = U[0])[0] and ¢[0]; = V[0]¥[0]. Additionally,
define 1, as in (3.2.1) and subsequently P[1] as well as D[1] as in (3.2.2). Then, let ¢[1](t,z,\) =
D[1)(t,x, \)¥[0](t, z, A). With the definition

Qul(t.a) = (o "))

adapted from Section 2.1, it follows that

0 ull]) B v e
(Ll V) = Qtittn) = Qo) — i3, = Ao, P11

contains a new solution u[l] to the NLS equation, from which a Lax pair U[1], V[1] may be
constructed.

To prove this statement, we need to show that the definitions (3.2.4) are indeed enough to
prove that the one-fold dressing matrix satisfies relations (3.2.3). Therefore, we give an equivalent
expression [27| for the one-fold dressing matrix

1

DLt = 3=

(ML — S(t, 7)), (3.2.5)

where it can be shown that the matrix S(¢,z) can be written as the product S(t,z) = HAH!,
where A is given as a diagonal matrix with entries Ay, A} and H (¢, x) consists of the column vectors
Uy (t, ), o1(t,x) = —io9hi(t,x). It should be noted that due to the symmetry relation given
in Lemma 2.1.2, —ioat)}(t, z) is in fact a solution of the Lax system at the spectral parameter
A = A}, Expressing D[1](¢,z, A) in this manner simplifies the calculations in the proof substantially.
However before proving Proposition 3.2.1, let us mention some useful properties we can derive
from equality (3.2.5):

Lemma 3.2.2. Let ¢; = ¢1(t,x) be a particular solution of the undressed Lax system (2.1.2)
corresponding to the seed solution u[0](t,x) for the NLS equation at the spectral parameter A = A\
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and D[1] be the one-fold dressing matriz (3.2.2). Then,

41 o
D17 = N (AL —ST), (3.2.6)
S, = —i[os, S|S + [Q[0], S, (3.2.7)
Sy = —2i[o3, §]5% + 2[Q[0], 515 + [V[0]], _,. 5], (3.2.8)

A1 — (S + ST) + 951
1= 3.2.9
B M0 ) 329
In particular, we have det(D[1]) = i:i% independent of t and x as well as

ST=HANH™' and S'=HA'H. (3.2.10)

Proof. First off, equations (3.2.10) can be easily calculated
ST = (HAH ™ = (H)'ATH' = HA*H Y,
where H' = H='det(H) and AT = diag(\, \;) = A* as well as
STt = (HAH ) ' =HA'H™.
Then, the identity (3.2.9) is implied, due to
SH+ST=HA+AVH = HO +X)1TH ™ = (A + M),

SST= HAH'HA*H™' = HIM|PLH™ = |\ 1.
The multiplication of the matrix D[1]™! defined in (3.2.6) with D[1] as defined in (3.2.5) leads
exactly to the right hand side of (3.2.9), thereby proving that D[1]7! is indeed the inverse of D[1].

For the derivatives of S with respect to ¢ and x it is useful to consider the respective derivative of
H first, since

Sy =HAH ' - HAH 'HH ' = HHH '"HAH ' — HAH 'H,H ' = [H,H ', ]

and the same for the x derivative. In particular, since the column entries of H are solutions of the
Lax system (2.1.2) for A = A\; and A = A}, we obtain the following

Hy = ((¥1), (01)1)
= ((—2iA{os + 20 Q[0] + V[0]],_, )1, (—2i(A])%03 + 2X70[0] + V(0] |, )¢1)
= —2iosHA? + 2Q[0]HA + V[0]|,_ H.

Therefore, equation (3.2.8) follows with H;H ' = —2i035? + 2Q[0]S + V[0 Further, we have

HA:O'

Hx = ((wl)xa (901)96)
= ((—=iAio3 + Q[0])¢n, (—iAjoz + Q[0])¢1)
= —io3HA + 2Q[O]H
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and therefore, we find H,H ™' = —io3S + Q0] and also (3.2.7). Finally,

(D) = der 1+ 3575w (A jap))

A= 1T+ |AP?
_ (1+]A]%)~2 dot A=)+ (A =A)|A)? (AT — A AT
(A= AD)? (AT = M)A (A=A + (A= M)[AP
(L+]AP)~ ) 2y
= W(A — A =2+ [AF)
A=A
- /\*’
where we only give the important steps. [

Note that most properties shown in Lemma 3.2.2 hold in theory not only for the NLS equation,
but also among others for the sG equation, except for the equalities (3.2.7) and (3.2.8), where the
Lax system of the specific equation needs to be utilized.

With that, we can give a comprehensible proof to Proposition 3.2.1:

Proof. By relations (3.2.3), we find
U[1] = D[1],D[1]"" + D[1juU[0]D[1]*
and by Lemma 3.2.2, this is equal to

B 1
BTES U W

— AS, — A\Q[0]ST — iASa3ST — ASQ[0] + S,ST + SQ[0]ST).

—iXo3 +iX203ST + N2Q[0] + iA%Sas
(3.2.11)

Here, the trick to structure the terms in the brackets of (3.2.11) is to sort them by powers of A
and to identify the important terms utilizing identity (3.2.9) so that we can be write the terms as

(—iXos + Q[0] +i[S, o3])(AN*1 — A(S + ST) 4 SST).
Hence, by the identity and noting that S = A1 — (A} — A1) P[1], the definition (3.2.4) gives

U[1] = —idas + Q1].
Further, we have for the ¢ part of the relations (3.2.3) the following

V(1] = D[1],D[1]"' + D[1]v[0]D[1] !
and by Lemma 3.2.2, this is equal to

B 1
A=A =)

—2X%Q[0]ST + N*V[0]],_, — 2iA’So3ST — 2A25 Q0]

(—2iN*o3 + 2iX303ST + 203Q[0] + 2iM* S0

— Sy = AV[0]],_, ST+ 2A5Q[0]ST — ASV[0]|,_, + S:ST+ SV[0

‘)\0 ‘)\0 )
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This leads after a lengthy calculation with the same ideas as for the x part to
V[l} = _22'0-3)‘2 + 2)‘<Q[O] + Z[Sa 03]) + (V[O] ‘)\:0 - 2[57 Q[OH + 2Z[S7 03]S)'

Due to the definition of Q[1], we see that the coefficient of A is indeed 2Q[1]. The coefficient of
zero-th power needs to be verified explicitly. With the definition (3.2.4), we obtain

VII|,_, = ios(Ql1) — (Q[1])*)
= 03(iQ[0], — [y, o] — i(Q[0])* + Q[O][S, 03] + [, 0] Q[0] + i[5, 75][S, 73)).

Noting that V[0]|,_, = io3(Q[0], — (Q[0])?), we need to prove that the remaining terms of V[1] |/\:0
are equal to the remaining terms of the 0-th power coefficient: Combining the first term of
—03[Ss, 03], when we insert S, see (3.2.7), with i[S, 03][S, 03], we obtain

iUg([[O’g, S]S, 0'3] + [S, 03][5, 0'3}) = 2i03(0’35035 — SS) == 27,[5, 03]5
and combining the remaining term of —o3[S,, 03] with Q[0][S, 03] + [, 03] Q[0], we derive
o3(—[[Q[0], 51, o3] + Q[O][S; o5] + [5, 03] Q[0]) = 2(Q[0]S — 5Q[0]) = —2[5, Q[0]],

where we use the fact that for the off-diagonal matrix Q[0] the following equality 030Q[0] = —Q[0]o3
holds. [

It is worth noting that the method of constructing a new pair of solutions by Proposition 3.2.1
is indeed—analogous to Theorem 3.1.3—only relying on the intermediate wave function and not
as relations (3.2.3) might suggest on the solutions U[1], V[1] and therefore on u[1] which is not
known in the beginning.

Since Proposition 3.2.1 holds for an arbitrary seed solution u[0](¢, ), the method can be iterated
with distinct spectral parameters A = A;, j = 1... N, such that \; # X}, j,k=1,...,N. As a
consequence, the N column solutions (¢, ) of the undressed Lax system (2.1.2) corresponding
to A = \; are linearly independent. After the first iteration the updated particular solution which
is necessary to apply Proposition 3.2.1 is given by ¢[1] = D[1] ‘ ex, Y2 and so on. Therefore, the
N-fold dressing matriz D[N] is given by the iteration of D[1] in the following sense

(1 T MW e (1 A
DI[N] = (]1 + WP[N]) (]1 +5h P[1]>, (3.2.12)
where P[j] are projector matrices defined by
1 (01 A I .
Plj] = . Wli—1=D[—1]|,_, ¥, 3.2.13
b= e = U= P (3:2.13)

To summarize, we then have

Proposition 3.2.3 (Gu, Hu & Zhou, [27]). Let¢; = ;(t,x), j =1,..., N, be particular solutions
of the undressed Laz system (2.1.2) corresponding to the seed solution u[0)(t,z) for the NLS equation
at pairwise distinct spectral parameters A = X\; and D[N] be the dressing matriz (3.2.12). Now,
given a solution Y|[0](t,xz,\) to the undressed Laz system (2.1.2), a new pair satisfying the Lax
system with updated Laz pair U[N]| and V[N] associated to the new solution u[N](t,x) can be found

by
N

QIN(t, ) = QUO](t,x) — i ) (A — X})[ow, PLjll,

Jj=1

VIN](t, 2z, A) = DIN](t, z, )p[0](t, z, A).

(3.2.14)
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In particular, the pairwise distinct spectral parameters A; and therefore the linear independence
of the solutions 1); ensuress that ¢;[j — 1] = D[j — 1”)\_)\_1/}]' is not zero, 7 =1,..., N. As before,
-

the spectral analogue of (3.2.14) is given by
(3.2.15)

and connects the undressed Lax system with the following Lax system

Y[N]e = U[N]Y[N],
Y[N]: = VIN][N].

Once again, this method can also be applied to the sG equation, see [10, 21, 43|, where we waive
the application of the one-fold dressing matrix and immediately state the proposition in terms of
an N-fold dressing matrix.

Proposition 3.2.4. Let ¢; = 9;(t,x), j = 1,..., N, be particular solutions of the undressed
Laz system (2.2.3) corresponding to the seed solution 8[0](t,x) =0 of the sG equation at spectral
parameters A = \; and D[N] be the corresponding N -fold dressing matriz (3.2.12). Now, given a
solution 1[0](t, z, A) of the undressed Lax system (2.2.3), a new pair satisfying the Lax system with
updated Lax pair UN| and V[N] associated to the new solution O[N] can be found by

L 0[N]

ez o = D[N]]AZO
W[N](t, z, A) = D[N](t, z, \)Y[0](t, z, \).

Ns
% (3.2.16)

Proof. We follow the ideas given in the proof in [10]. For [0](¢,z) = 0, we have U[0] = —i(A —
A1) /403 and V[0] = (A + A1) /403. By (3.2.16), we therefore obtain

IV AN = DN DN A=A Do, pia
IND(@IND ™ = DINLDN + {2 i, ppv .

Now, if we expand D[N] in the limit of |A| — oo:
DIN|(t,,\) = 1+ A\"I5(t, 2) + O(\2),
we can derive the limit behavior of (1/[N]),(¢[N])~t. We have

WINDLIND 7,y = 15 DIV, gos (DINI], o)™+ DINL L, (DIV)|, )™ (321)

as |A] = 0 and
WINDL(@IN]) ! = — 2y — L5t 2),05] + OO as A — oo.

WINDL(IN) ™ — (o5 — $15(2), 03] + 35 DIV, _yos (DINT], ) ™)
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is constructed to be analytic in the whole complex A-plane. Further taking the limit |A\| — oo, we
have that the difference is zero and therefore by Liouville’s theorem it is equal to zero for all \.
Repeating the same steps for the ¢ part, we obtain

(BINDIN) ™ = WINDL(IN]) ™ = Loy + L[St 2), 03] (3.2.18)

Again, taking the limit |A\| — 0 and using equation (3.2.17) and the corresponding equation of the
t part, we ultimately derive

i

(DINL|y_g = DINL|,_o) (DIN]| ) ™" = 5[5(t, ), 0.

Therefore, this enables us to give an expression of UN| and V[N] only relying on the dressing
matrix evaluated at A = 0:

UIN] = I (IV]) ! = =2y — 1(D[N]th:o ~ DINL|,_)(DIN][,_,) "

2
i _
+EDN |A:0‘73(D[NH,\:0) 17

VIN) = WIND(WIV) ™ = 2oy + L(DINL,_, ~ DINL,_)(DINT],_,) ™

i -1
+ 1 DIV 03 (DIN

HA:O

Assuming that U[N] and V[N] are of the same form as the Lax pair (2.2.2) for the sG equation,
we have that the following equalities should hold

L(BIN), ~ 0[N]2)or = (DINL,_, — DIV, _y) (DINT], )™ (3:2.19)
¢ 7y = DIN]|,_ 05 (DIN]|,_,) " (3.2.20)

. : . 0[N ]
where we use that the matrix coefficient of A™! in U[N] can be written in the form ¢’ o ageﬂTN"l

Equation (3.2.20) implies, while keeping track of the determinants of both sides, that necessarily

iNMey _

e DIN]|,_,03", (3.2.21)

where det(D[N]) = (—1)" = (=1)". Then, inserting this into equation (3.2.19), we see that
(3.2.21) is, in fact, sufficient to uphold both equalities, which concludes the proof. ]

There are several important properties of the dressing matrix. Since it has been studied
thoroughly, the literature on the method is extensive. In the following, we want to mention some of
these results in order to convey a better understanding of the transformation. First, let us comment
once more on why we imposed that the spectral parameters \y,...,An, \; # A, j,k=1,...,N
have to be pairwise distinct.

* Y
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Proposition 3.2.5. Under the condition that the spectral parameters A1, ..., Any and A}, ..., Ny
are distinct as well as in the complex plane without the real line, i.e. C\ R, we have that the
corresponding solutions of the Lax system (2.1.2) of the NLS equation are linearly independent.

Proof. We prove this by contradiction. Therefore, assume that the solutions vy,...,¢¥y and
©1, ..., N corresponding to the spectral parameters Aj, ..., Ay and Aj,..., Ay are linearly depen-
dent. Hence, we have that there exist 2N — 1 constants cy,...,con_1 so that ¢); can be written as

a linear combination
N

N
(e Z C2j-15 + Z Coj—21j. (3.2.22)
j=2

J=1

By the = part of the Lax system (2.1.2), we can write the x derivative of 1; in two ways:

(—idos + Q) = Zczgl Z>\03+Q%+Zczj2 —iXjog + Q)1;.

Jj=1 Jj=2

For the term involving the matrix @ multiplied with the solutions, we obtain equality on both
sides and inserting an additive zero, we find that for the remaining terms

2

-1

N
—i\O3Y) = —Z/\N03<Zcza 10 Zczg 2%)“ AN =A)esj 10+ > cajma(Av = A0y
=2

1

.
Il

In particular, the linear combination (3.2.22) implies that

Ws(()\l AN + Z (Ay — C2J 15 +ZC2J 2 )%)

J=1 j=2
Then, by assumption Aj,..., An, A],..., Ay are distinct and because of that it is possible to write
¥y as a linear combination of only s, ..., ¥N, @1, ..., ©n_1. Repeating this step additional 2N — 3
times to also eliminate v, ..., ¥n, o, ..., @n_1, we derive that ¢); and ¢; are linearly dependent

which gives a contradiction.
Moreover, the 2N x 2/N-matrix

H, H, Hy
HlAl H2A2 tee HNAN
HAYY H A oo HyAY!

is non-degenerate with the assumptions declared in Proposition 3.2.5, due to the linear independence
of the column vectors of Hy,..., Hy. m

Remark 3.2.6. Proposition 3.2.5 also applies to the sG equation. For the proof one would follow
the same steps while considering the difference of the z and ¢ part of the Lax system (2.2.3)
such that one essentially deals with the Lax system of the sG equation in light-cone coordinates.
Regarding these coordinates the x part of the Lax pair of the sG equation is closely related to the
x part of the Lax pair of the NLS equation.
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The second result, we want to mention, is bound to the application of higher order dressing
matrices. It answers the question whether it makes a difference changing the order of the solutions
1; and corresponding spectral parameter A = \;, 7 = 1,..., N, in the process of determining the
dressing matrix. Therefore, it is sufficient to investigate what happens if we apply a two-fold
dressing matrix

D[2] = DyD; = (AL—=S5)(A1—S8,) = (AL—=S))(AL—S,) = D, Dy

(A=ADA=X3) (A=A =A35)
from a pair of solutions ¢; and 15 in connection with the corresponding spectral parameters \;
and A, see Figure 3.1. As before, we find S; = HjAjHj_1 and H; consisting of the column vectors
¥;, p; and A; as a diagonal matrix diag(\;, A¥) for j =1,2.

70 7%
Theorem 3.2.7 (Theorem of permutability, Gu, Hu & Zhou, [27]). Suppose
H; H,
det <H1A1 HQAQ) £ 0, (3.2.23)

then the two-fold dressing matrix is symmetric to S and Ss.

Proof. With the process of updating the solution ¢»[1] = D[1] ! ey, Y2 in mind, it follows that s,
o are transformed to (Aol — S1)te, (A2l — S1)¢y implying the transformation H) = (Sy — S1)Ho.
Then again, S = (Sy — 51)S2(Sy — S1)~!, where Sy — S; is non-degenerate due to (3.2.23).
Hence, changing the order corresponds to first applying the unmodified Sy and subsequently
Si = (51 — S9)S1(S; — S9)7! in the dressing matrix and the symmetry stands for

(AL — S5)(AL — 5) = (AT — S7)(AT — Sy), (3.2.24)
where the left and right hand side can be calculated as
A2 = A(52 — 52)(Sy — S1)7H+ (8o — 51)S55(Ss — S1) 7Sy

and the same with S; and S5 interchanged. Then, the coefficients of the two resulting polynomials
with respect to A can be compared. The equality for the first order coefficient is straightforward
and for the zero-th order coefficient, one uses basic matrix multiplication rules So(Sy — S;)71S; =

(S7t = S5 1)~ and Sy(S1 — o) 715, = (S5t — ;)L )

This important property of permutability in the Dressing method can be summarized in a
Bianchi diagram, see Figure 3.1. Further, the symmetries of the Lax systems imply another
interesting property.

Remark 3.2.8. In the context of the NLS and sG equation, the dressing matrix admits the inverse
D[N]™'(t,x, \) = D[N]'(t, 2, X*).

For N =1, the result is already stated in Lemma 3.2.2 and written in terms of (3.2.2), we note
that P[1]' = P[1]. Thus, this idea can easily be generalized to each factor of the N-fold dressing
matrix D[N] which means

(]1 + %PU])T@ n %P[j]) —1, forj=1,...,N

and therefore D[N](t,z, \)D[N]~*(t,z,\) = D[N](t,z,\) D[N](t,z, \*) = 1. Then, the determi-

nant of the N-fold dressing matrix can similarly be generalized, since for each factor of the product

an analogous calculation as for det D[1] = i:;\i in Lemma 3.2.2 can be applied.
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1

&é;

(u[2], ¥[2])12 = (u[2],9[2])21

—

(u[1], ¥[1])
(u[1], ¥[1])2

-
(u[0],4[0])
R

Fig. 3.1. Permutability D,D; = D} D, defined as in (3.2.24). Here, the prime and the
indices correspond to the order in which the dressing matrix is applied.

Remark 3.2.9. The determinant of the one-fold dressing matrix can be generalized to

N
A— A
D|N| =
k=1
where A1, ..., Ay are the spectral parameters used in the dressing method.

Consequently, we have seen that the Dressing method is a powerful method to introduce specific
solutions into the framework of AKNS systems for the NLS and sG equation. So now, let us take
a closer look at the specificity of these solutions. As for the inverse scattering method, distinct
spectral parameters Ai,..., Ay are introduced representing simple eigenvalues of the function
u[N]. In the context of the Dressing method, these simple eigenvalues arise in the algebraic
construction of the N-fold dressing matrix D[N], providing zeros and associated kernel vectors
of H;V:1()‘ — A7)D[N](t, z, A), which is of importance later on. Nevertheless, since it seems to be
the case that part of the scattering data arise in the context of the Dressing method, we want to
investigate further if it is possible to give a complete description.

3.3 Change of scattering data under the Dressing method

With scattering data (p, {);, C;}X.,), A; € C4 for all j =1,..., N, we want to give the relevant
information needed to retrace the change of scattering data under the Dressing method. As in
the inverse scattering method, it is of importance that the solution and its derivative with respect
to x is sufficiently fast decaying as |z| — oco. Then, assume we are given a spectral parameter
Ao € CL\ {A1,...,An} and a column solution of the undressed Lax system

Yo(t,x) = U0¢9)(t>$, o) + Uo?ﬁf)(t»x, o)
— ugt)™M (£, 2, Ao)e TN b P (8, 1, A ) OB

which is given in both cases for the NLS equation and the sG equation. As before, the intermediate
wave function, the quotient of the second and first entry of this solution, is given by

[0 Jan (.2, 20) + %['@Jr]zz(t, T, \g) 2Ot 0)
(-] (t, 2, Ao) + Z—g[{b:r]m(t’ 2, Ao)e2i®(t:.M0)

Then, in turn, we obtain an expression for the ratio of Z—g, ie.

Vo [&—]21(t7:67 )\0)

Alt,z) =

to [V ]22(t, 7, Ao)

}11(25, 2, A0) 20 (t0.h0) (3.3.1)
1

- Q(tvra)\())

A(t, z) [zg_
A(t, x) [ty
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Also, the one-fold Darboux transformation corresponding to \g and vy or rather A(t, z) takes the
form

| | o= MAGDIE (A — M)A (t, 7)
PR (” e d QNS R A0|A<t,x>|2>)' (332

The properties of the Jost functions imply

lim A(t,z) =00, lim A(t,z)=0. (3.3.3)

T—r—00 T—r+00

Therefore, adding a simple eigenvalue or pole or zero of the one-fold dressing matrix to the
scattering data (2.1.14) or (2.2.14) under Dressing method can be explained by the following:

Theorem 3.3.1 (Gu, Hu & Zhou, [27]). Let the scattering data (p, {);, C’j}é\;l) be given. Applying
the Dressing method with Mg € C4 \ {A1, ..., An} and to(t, 2) = ugy™ (¢, 2, Ag) + 001/153) (t,z, N\o),
where ug € C, vg € C\ {0}, we add an eigenvalue to the scattering data leaving the original
eigenvalues unchanged. In particular, denoting the transformed spectral functions and parameters
with a prime, we have

A=A A=A\
ahuwzyjﬁmmM,Ae@+UR PN =55 PN, AER
Cllzl()\) = a21(>\), )\ € R,

: Aj—Ag .
b, =b;, j=1,...,N, C;:)\J )\OCJ-, j=1,...,N,
j — Ao
Vo Vo )\0—>\*
b/ =2 C/ - _20 O‘
0 Uo 0 Ug CL11(>\0)

Proof. The scattering data rely heavily on the Jost functions. That is why, the first step is to find
the behavior of the Jost functions in the transformed system. Therefore, we need to see what the
limit values of the one-fold dressing matrix are. By the observations (3.3.2) and (3.3.3), we derive

1
lim D[L(t,a,\) = 5

T——00 — A

diag(A — N, A — o),

lim D[1](t,z,\) =

T—+00 — >\[*)

diag(A — Ao, A — Ap).

Then, we can deduce that the transformed Jost functions can be expressed through
@WY (2, ) = DA, 2, VoD (2, 0), @Y (42, A) = DI 2, N (¢, ),

which is also passed onto (12(,1))’ and (QZEE))’ As already mentioned in Section 2.1, aj;(\) =

det[w(_l)|1/}s_2)]. It follows that for A € C, UR, the limit values of [12_]11 and [1Z+]22 are a;1(\) as x
goes to +00 and —oo, respectively. So that we have

d(N) = lim ([P_]1) = 220

500 IPYEDY:

ar(A).

Analogously, we find for ag (\) that

~

ag1(A) = =[] [Yq]or + [V ]a [y ]in = <—[1Z7]11[¢+]21 + [1//1\7]21 [$+]11)672i@(t,x,,\)’
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and therefore the limit values of [th_]o; and —[t, ]2 behave as ag (A)eX©®aN)

and —oo, respectively. Consequently,

aly (V) = lim ([9_]a1)" = az(N).

T—00

as x goes to +00

Also resulting in p'(A) = :\\:ig p(A). Since the Jost functions we relate in order to obtain b; are

changed identically by multiplication with D[1](¢,z, A), the parameters b; remain unchanged, i.e.
b} =b; for j =1,...,N. Then, by the definition of C}, we can calculate

dal (AN A — A ,
Ch =V (—2) =200 =1,...
J ]( X ) A=A T

N.

At the new eigenvalue A = )y, we have that the transformed Jost function are also identically
changed by
1 A2)P —A%(ta)
D|1|(t,z, ) = ———F—— ) ’ .
[ ](71;7 0) 1+|A(t7317)|2 <—A(t,x) 1

Hence, as we calculated already in (3.3.1), we obtain

b = ([p-]21)'(t, 2, Ao) _ [0]on(F, 2, Mo) — Al 2)[W-J1a (8,2, 00) o

([4]22) (B, 2, Xo)  [U]aa(t, @, Ao) — AL, )[04 ]12(E, 2, Ao) Uy

Subsequently, the weight for the added eigenvalue is readily obtained by

Y da/11(>‘0) -1 Yo /\0 - )‘S
CO N bo( dA > N _U,_O CLH(/\()) ’

thereby concluding the proof. m

Remark 3.3.2. A particular example is dressing a pure soliton solution into the NLS equation
(or the sG equation) from the zero seed solution u[0](¢, ) = usu(t, z;{}) = 0 for which ay;(\) =1,
as1(A) = 0 such that p(A) = 0. Then, successively inserting simple eigenvalues Aq,..., Ay € C,.
with corresponding Z—j € C\ {0}, j=1,..., N, results in the transformed spectral functions

J

Al

N A N

W= a2’ =0,
Jj=1

which then also gives the transformed scattering data as
N
S(ulN]) = (0. {3, V1L,
where
N N , 1
N Uj % -
o) = —i (Aj — Ak)(H (A —/\k)> :
T k=1 k=1
Here, the prime indicates that the term with k£ = j is omitted from the product.
Now, after establishing the connection between the Dressing method and the scattering data,
we want to continue elaborating on the equivalence between the methods of constructing certain

solutions for the integrable nonlinear PDEs. Moreover, we incorporate this into the presentation of
the proper models of the NLS and sG equation, which are the main focus of this thesis.
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Chapter 4

Models

4.1 Implementing defect conditions

With the preliminary consideration of the scattering method in mind, we introduce the integrable
models which are the main focus of this thesis. Therefore, we need to follow up on the idea of
the Béacklund transformation presented in Subsection 3.1.1. In particular, the context, in which
the Béacklund matrices (3.1.4) and (3.1.5) have been analyzed in [11], is to generate the so-called
defect conditions, which essentially corresponds to considering the Backlund transformation as
frozen at a specific point x; and for all £ € R. And since we are talking about conditions for the
solutions, the application completely changes. So instead of the transformation of solutions into
different solutions satisfying the same system via the Bécklund transformation, the frozen Bdicklund
transformation should here be understood as a condition connecting two existing solutions at a
specific point z;. To ease notation, we only work with z; = 0. However, it should be noted that all
of the upcoming arguments still hold even with an arbitrary zy € R and further that the arguments
also hold with more than just one point where defect conditions are present.

4.1.1 General setting

First off, we make this idea more precise in the context of the first important concept worked
out in Chapter 2, the Lax systems. Based on the transformation (3.1.1), we view the two Lax
systems with U, V and U V not as two systems corresponding to the same integrable PDE on
the whole line x € R. Rather, we restrict the potentials—u, u and 6, 6 for the NLS and sG
equation, respectively, to either side of the defect. Here, since x; = 0, we restrict v and ¢ or rather
U and V to the positive half-line z € R, as well as @ and # or rather U and V to the negative
half-line x € R_. Thus, the potentials are still solutions of the same PDE as before, which is, in
particular, equivalent to the zero curvature condition, with the difference that they satisfy the
PDE on different domains. Consequently, given solutions of the PDE on the respective domain,
we also have knowledge of the complete Lax pairs and with that the partial matrix differential
equations (3.1.2), which are reduced to a single point in space zy = 0, connect these Lax pairs
given a matrix B. Hence, instead of serving as a transformation of one solution to another of the
same PDE on the whole line, the relations

B,|,_, = (UB - BU)|

~ v=0’ (4.1.1)
B = (VB—BV)]

ol
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for ¢t € R now constitute the spectral equivalent to some conditions. However, as we have seen for
the Bécklund transformation itself, not just any matrix suffices in order to obtain a system which
is indeed solvable or by the ideas mentioned in the Introduction integrable. If we however choose
B to be for example the identity matrix, then (4.1.1) implies U = U and V =V at x = 0 which
therefore corresponds together with the inherent Lax systems to the ordinary PDE on the whole
line. In the following subsection, we elaborate on the more relevant examples for matrices B which
leave the NLS and sG equation integrable. Note that integrability for these models is meant in the
sense explained in the Introduction. Further, by noticing a symmetry in the phase (¢, x, A), one is
able to adapt this idea to also include boundary conditions for only one potential on one half-line.

4.1.2 Models of the NLS and sG equation

As indicated before, the Darboux matrices (3.1.4) and (3.1.5) are derived with the idea of the frozen
Bécklund transformation in mind. Hence, it is straightforward to give the defect conditions, which
are equivalent to relations (4.1.1), for the NLS and sG equation with respect to their solutions. In
this subsection, we only give the essentials of the algebraic calculations in order not to disturb the
flow of reading, since it is indeed quite lengthy to perform them accurately. Nevertheless, due to
the fact that there is no uniqueness when it comes to Lax pairs and thus to the corresponding
Darboux matrix and the importance of these computations to be exact, we can not just simply
cite the existing literature and therefore we give the complete algebraic calculations in Appendix
A. For the NLS equation, we find:

Proposition 4.1.1. Inserting the Lax pairs U, V and ﬁ, % of the NLS equation (2.1.3) corre-
sponding to the solutions u and u on the positive and negative half-line, respectively, together with
the Darboux matriz (3.1.4) into the frozen Bdcklund transformation (4.1.1) is equivalent to the
defect conditions

(@ —u)y = ia(t —u) £ Q0+ u),

(@ —w)y = —alit — u), £ Qi+ u), + (i — w)(|Juf* + |@]) (4.1.2)

at x =0 with Q = \/f? — |t — u|? and defect parameters o, 5 € R.

Proof. Inserting the Lax pairs U, V and U, V of the NLS equation (2.1.3) and the Darboux matrix
B into (4.1.1), we obtain for the left hand side of the z part

(ot "5

and calculating the right hand side of the z part, we have

Z( —(laf? - |ul?) —ia(@ — u) :FQ(ﬂ+u)>
ialii — u)* F Qi +u)* (Jaf2 — [u)?)

and for the t-part B, = VB — BV, we find the (11)- as well as the (12)-entry after a similar
calculation to be

+iQy = (ia F Q) (|a|* — [uf?) + b, (7 — u)* — vl (i@ — u)
—i(a —u)y = (@ —w)(Jal” + |u?) + 2Xa(a F i) + it (2N + o« F i) (4.1.3)
— 2 u(a £ 1) — du, (2X + a i),
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respectively. Using the (12)-entry of the x part, we see that the term of first order in A in the
(12)-entry of the ¢ part is zero. Hence, the left hand side

i (—@t o _(i@wt)

is equal to the right hand side of the ¢ part (4.1.3) at x = 0 if and only if the defect conditions
(4.1.2) hold. With the definition of 2 as in the proposition, it can further be verified that the
(11)-entries of the x part and of the ¢ part of these relations are satisfied for allt € R and x = 0. [

Proposition 4.1.2. Inserting the Laz pairs U, V and [[7, \ of the sG equation (2.2.2) corresponding
to the solutions 6 and 6 on the positive and negative half-line, respectively, together with the Darbouz
matriz (3.1.5) into the frozen Bdcklund transformation (4.1.1) is equivalent to the defect conditions

6+60 1 .é—&»

9$—|—9t:j:<asin + —sin

@ (4.1.4)
~ . 0+0 1 . 0-—4
9t+9x::F(asm — —sin >,

o 2

at x = 0 and with the defect parameter o € R.

Proof. Inserting the Lax pairs U, V and [[NJ, V of the sG equation (2.2.2) and the Darboux matrix
B into (4.1.1), we obtain for the left hand sides

i (0+0), 0+0 0+0
Bm:iﬂu<02COS i — 03sin i ),
A2 ) )
_ia(6+0), 6+ 6 . 0+0
B, = :l:T 5 (02 cos — o3 sin )
On the right hand sides of UB — BU and VB — BV, we obtain
i - - _0—07 0+90
ﬁ[:toz(et—l—@t—em—@x)—QSln ]UgSlnT
i . . 10— .0+
ﬁ[ia(ﬁx + 0, — 0, —0;) + 2sin ]03 sin ——
for the diagonal entries of order A~! and
i _ - . 0— 0+0
Y [:I:oz(é’gc + 0, — 0, — 0;) + 2sin }02 cos —5
i - ~ .0 — 0+6
Y [j:a(et +6,—0, —0,) —2sin }02 cos —
for the off-diagonal entries of order A=!, so that for both sides to be equal,

-0

~ ~ 2
0, +60,+60,+0,= ia sin (4.1.5)

needs to hold at x = 0. Further, the off-diagonal entries (which correspond to the expressions
multiplied with the first Pauli matrix o7) of zero-th order in A give

—§t+9t+§m—0x:i2asin9;—0. (4.1.6)

Adding and subtracting these two equalities (4.1.5) and (4.1.6), the defect conditions for the sG
equation are readily obtained. O
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Remark 4.1.3. In [11], the defect conditions were initially introduced in the context of light-cone
coordinates
¢ = z—1 _x+t

- 2 9 77 - 2 9

for the sG equation, which considering the transformation

x4+t x—t)

o8 =0 —En+6. o) =v(5

takes the form vg, = sinv. Therefore, the two equalities (4.1.5) and (4.1.6) can be written as

(0 —v)e —:|:20481nv+v,
2 (4.1.7)
. 2 . v—w o
(04+v), =E£—sin
a

In the literature the relations (4.1.2) and (4.1.4) are commonly found with regard to the usual
Bécklund transformation holding for all ¢, € R. The significance in using the very same Bécklund
transformation frozen at a specific point x = z; lies in the fact that the generating function for
the integral of motion can be adjusted to include the defect conditions. Hence, in the sense of
integrability as the presence of an infinite set of conservation laws, the systems including a defect
presented above can be shown to be integrable [11]. In fact,

Remark 4.1.4. The connection of the defect conditions to a frozen Bécklund transformation
(4.1.1) has been discussed, among other publications, in [11, 15|. The authors additionally prove
for both models that there exists an infinite set of modified conservation laws, which means that
the defect conditions are integrable in the aforementioned sense.

Resuming the elaboration of equivalence in the solution construction methods, we want to briefly
address this idea in the context of the sG equation in light-cone coordinates. The derived conditions
are when viewed as transformation holding for all n,£ € R the usual Bécklund transformation and
therefore, if we consider the Bécklund transformation (4.1.7) of the vacuum solution v = 0, we
find that:

Remark 4.1.5. Equations (4.1.7) can be integrated to give the solution

(n, €) = 4 arctan e®stante

under the assumption of v = 0 and the plus sign, see [19]. Transforming the coordinates back
to laboratory coordinates, we find the single one-soliton solution which we associate to the sG
equation in this thesis as

é(t; x) = 4 arctan elota—(a—Dt+e.

Note that, as indicated before, even though this is in combination with the Theorem of
permutability 3.2.7 a powerful method to explicitly construct solutions, the scattering data are
outside the scope of this method. Nonetheless, we continue this consideration of equivalence
between the solution construction methods in the next section.
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4.2 Backlund transformation vs. Dressing method for Lax
systems

Another important property, we want to highlight, is that, similar to Subsection 3.1.2, the one-fold
Dressing matrices for the Lax system of the NLS and sG equation are strongly related to the
respective Backlund transformation presented in Subsection 3.1.1. Among the literature we already
mentioned in this context in Chapter 3, this section is particularly inspired by the ideas mentioned
in [11, 36]. In fact, with the right spectral parameters, one matrix can be transformed into the
other. Note that these results hold for ¢ and x in the respective domains and not necessarily z = 0.
With respect to the model introduced in Sections 2.1 and 2.2, one has t,x € R.

Proposition 4.2.1.

(i) The one-fold dressing matriz (3.2.2), constructed by C\R > Ay = & +im and Y1(, @), satisfies
(3.1.2) with U = U[1] and U = U|[0].

e For the NLS equation, we have that, up to a function of A\, the dressing matrix can be written

s ’\j\’\lD[l] = B, see (3.1.4), where a = —2&;, %2 = (2m1)? # 0 and the + sign in front of the

square root is determined by the sign of n; and by the condition that the absolute value of the
intermediate wave function is either greater or equal, or less or equal than 1.

e [For the sG equation, we find that, up to a function of A\, the dressing matriz can be written as

’\_/\’\ID[l] =B, see (3.1.5), where & =0, a = n; # 0 and the + sign is determined by signmn;.

(11) (Caudrelier, [11]) The Bdcklund transformation

e for the NLS equation B with « € R, § € R\ {0} admits a projector matriz

P

= B9 /2 1+ N1 4.2.1
>\>{ o >\1< / + 1 )7 ( )

where Ay = —5 + % and BO) is the matriz coefficient of the Bicklund transformation of \™'. In

particular, there exists a t and x dependent kernel vector of B at \.

e for the sG equation B with « € R\ {0} admits a projector matriz

P

= B /2 + \*1 4.2.92
>\>{ . )\1( / + 1 )7 ( )

where A\ = % and B©) is the matriz coefficient of the Béicklund transformation of \~1. In
particular, there exists a t and x dependent kernel vector of B at \;.

Proof. We begin with the proof for the NLS equation. By the reconstruction formula for the
one-fold dressing matrix (3.2.4), we have

A*

ull] — u[0] = 47]1T|A|2

(4.2.3)

and therefore a simple calculation leads to

/@ = all] 0T = 2 §I2L (124
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Then, we want to utilize the definition of the Bécklund transformation as in (4.1.2) and therefore
we calculate

A, = —u[0]* + 2iM A — u[0]A?,
Ay = (=2X\uf0]" + du[0]F) + 20 (222 — [u[0]*)A — (2A1u[0] + iu[0],) A%

Therefore, we can derive the t and = derivatives of the difference of the dressed solution and the
seed solution

(1+[AP)?
L A* 1—|A2 A*
= —2i& (4771—1 n |A|2> +47711 NP <_U[O] - 27}1—1 n |A|2)'

By equality (4.2.3), we find the first bracket to be u[l] — u[0] and the second bracket to be
—(u[1] + u[0])/2 and using the equality for the square root (4.2.4), we obtain

(u[l] = u[0]); = i(—260) (u[1] — u[0]) — sign(m (1 —|AP))v/(2m)? — [ul1] — u[0]2(u[1] + u[0]).

Comparing this result with (4.1.2), we confirm that —2¢; = «, (211)% = 3% and sign(rn;) determines
the sign in front of the square root under the assumption made for the absolute value of the
intermediate wave function A. The same can be done for (u[1] — u[0]); using the expression for A,;.

On the other hand, given the Bécklund transformation (3.1.4), we define A\; = —§ + g as well
as the matrix P as in (4.2.1). Hence, we derive

AT — M

B(t,z.\) =1 L
(b2 0) =1+ T

D(t,xz,\) = P(t, ).

A=\

For D to be a one-fold dressing matrix, we need that P is indeed a projection matrix, i.e. P? = P
and that there exists a kernel vector of D at the chosen spectral parameter A\;. Therefore, we

calculate
PL__L(B$Q a—u>2
“\28 \(@—u)r BEQ

:L< (BF Y + i — u? (a—u><ﬁm+6i9>)
42 \(a—u) (BFQ+£Q)  (B£Q+]0—ul”

_L(BZFQ ﬂ—u)_P
T3 \(a—w) BEQ) T

Thus, P is a projector matrix and particularly it can be easily seen that the determinant and the
trace of P are det’ P = 0 and TrP = 1. Therefore, P has the eigenvalues 0 and 1. In particular,

the vector r
o= (0T +a (E58)

satisfies Pv = v such that Dv =0 at A = .
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Now, we prove the result for the sG equation. Note that in this case, we have § = 0[0] = 0,

0 = 0[1] and \; = in;. Again, by the reconstruction formula for the one-fold dressing matrix
(3.2.21), we have that
[1] 1—|A? .. o[ 2A*
cos = - isin = :
2 1+ |AP 2 1+ |AJ2

Using the definition of A, we also find

1 1 1 1
Ax:——<771+—>A, At:—<771——>A-
2 m 2 m
Calculating the x and ¢ derivative of
21A*
o[1] = -2 arcsin(ﬁ)
and using the equalities for A, and A;, we end up with
1y . 0[1] 1y . 0[1]
[1] 771+771 SN =5 [1]: m m s =

which matches relation (3.1.5) if 71 = « and signn; determines the sign in each relation.
Given the Bécklund transformation (3.1.5) for the sG equation corresponding to § = 0, we
define A\; = ¢ and the matrix P as in (4.2.2). We calculate

2
9 1 (1Fcos - sin 9[21]
Pr=13g| _, . o o | | =P
—isin =+ 1+ cos =+

Again, det P = 0 and TrP = 1 so that there exists a vector

v ¢ —1 &4 cos [1] Y zsm%
! 78in [21] | o1 F cos ==+ 9[1]

for which Pv = v and where ¢; and ¢, may depend on ¢ and z, but not on A and therefore

D—A/\*IBU—Oat)\ Al ]

So, let us stress again that this is an important observation: In general, there is a way to
interpret the Béacklund transformation, specifically, from Subsection 3.1.1 for the NLS or sG
equation as one-fold dressing matrix which we introduced in Section 3.2. Note that, starting
from a Béacklund transformation, we also identified the kernel vector corresponding to the spectral
parameter A = \; from which the dressing matrices in Propositions 3.1.1 and 3.1.2 are constructed.
Further, we take from this proposition that it is possible that a solution constructed through the
Dressing method satisfies the equalities (4.1.2) with the plus sign on a specific domain z € E C R
and the minus sign on the complement x € R\ E with respect to the whole line. On the other
hand, a solution constructed with the Backlund transformation can always be expressed in terms
of the Dressing method.

Remark 4.2.2. As a special case of Proposition 4.2.1 it is also possible to apply it to a frozen
Backlund transformation or one-fold dressing matrix at z = 0.
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4.3 Implementing boundary conditions

In Section 4.1, we presented the model of the NLS equation or sG equation on two half-lines which
are connected through the defect conditions at x = 0 while conserving integrability. Taking this
idea further, we want to look at these PDEs in the quarter plane x € R, , ¢ € R, in connection with
boundary conditions which correspond to integrable models. In fact, one way to approach boundary
conditions is by the unified transform method, initially invented to serve as a generalization to
the inverse scattering method for half-line problems. Therefore, a class of boundary conditions
has been filtered out for which it is possible to solve the generalized problem with the same level
of efficiency as the one for the problem on the full line. These boundary conditions are called
linearizable boundary conditions.

4.3.1 General setting

For the NLS and sG equation this means that we assume that there exists an ¢ dependent, x
independent, nonsingular matrix K (¢,0, A) such that

Ki(t,0,0) = V(£,0,7(\)K(t,0,)) — K(t,0, \)V(£,0, ), (4.3.1)

where r(\) reflects a certain symmetry inherent to the respective equation.

Note that this relation (4.3.1) has structural differences to the relations (4.1.1). Instead of
relating one side of the defect with the other, in this case, we exploit a symmetry of the system.
Moreover, it is in fact just a condition on the ¢ part in contrast to conditions on both the ¢ and x
part of the Lax pair. Again, we give brief calculations to ensure the flow of reading and refer to
Appendix A for more details, since these results may be found in a similar but not exactly the
same manner in the literature.

4.3.2 Models of NLS and sG equation

For the NLS equation, we have that the symmetry yields that »(\) = —A. With that in mind,
we find two matrices which satisfy the relation (4.3.1), thereby correlating to certain boundary
conditions for the NLS equation.

Proposition 4.3.1. Boundary matrices for the Lax pair U, V of the NLS equation (2.1.3) corre-
sponding to the Robin boundary condition, see 28],

uz(t,0) = au(t,0) (4.3.2)
with o € R and the new boundary condition, see [41],

Caw(t,0)  u(t,0)Q(¢,0)  w(t,0)u(t,0)]*  u(t,0)a?

el 0) = 20(t,0) 2 om0 200,0) (4.3.3)
with Q(t,0) = /8% — |u(t,0)], o, B € R are given by
1 i — 2\ 0
KN =% + 2\ ( 0  da+ 2>\) : (4.3.4)
K(t,0,\) = 1 AN 4 4iAQ(t, 0) — (0 + 52) diu(t, 0)
YT A —]8))? — a2 4idu*(t,0) AN = 4idQ(t,0) — (o® + %) )7
(4.3.5)

respectively. Moreover, for both boundary matrices, K=1(t,0,\) = K(t,0, =) holds.
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Proof. We omit the denominator of the boundary matrices in the following calculations, since it is
time independent in both cases and thus present in every term of the equalities. For the boundary
matrix of the Robin boundary condition, we immediately have that the diagonal entries of the
relation (4.3.1) are zero. For the off-diagonal entries, after cancellation we obtain

V@Q—MKQy—KQW@ﬁA%:( 0 “M%“aw),

—4iN(u, — au)* 0

which is at (¢, = 0) equivalent to the Robin boundary condition.
For the boundary matrix of the new boundary conditions, the left hand side of (4.3.1) amounts

to 0
. t Ut
43\ (u;‘ _Qt>

and after some calculation, the right hand side can be written as

. i(u*u, —uuk) —iu(a? + B?) — 2iQu, + 2iNul*u
i | *( 2 2 : >i<m ; 2, % (0% * :
iu (o + B%) + 2iQul — 2i\|ul*u —i(u*u, — uul)

Hence with the identification Q2 = 3% — |u|?, the off-diagonal at (¢, = 0) is equivalent to the new
boundary condition and with this condition it can be confirmed that the equality €, = i(u*u, —uu?)
for the diagonal entries holds.

The property that the inverse boundary matrix is equal to the boundary matrix with A changed
to — A\ relies on the fact that the denominator normalizes the determinant of the boundary matrix.
For the Robin boundary condition, we have

PN det(K(A)™! fia + 2) 0 B 1 i —2(=\) 0
K W—W( 0 z’a—%) ‘M( 0 m+2<—k>>’

which is (=) with det(K()\)) = 272 Further, for the new boundary condition, the equality of

2"
K(E.0,) = det(KC(t,0, X)) [4X% — 4i)Q — (a? + B?) —4didu
T 2\ —i|B])? — 2 —4idu* AN + 4iXQ — (a? + ?)

to KC(t,0, —\) holds, since we can derive the following equality

(402 — 0% — 2 + 4iX\Q) - (4N — o® — B2 — 4idQ) + 16)2|ul?
((2x —1|8])? — a?)?
(4N — a2 — 522 4 16X2(02 + |uf?)
((2X —i|A])? — a?)?
(@A =g = a?) - (A +ilB)? = o?)
((2A —[])? — a2)?
(2A+1|8])? — o®

det(KC(,0,\)) =

(2A —ilB])* — o
for the determinant, thereby concluding the proof of the assertions. O

For the sG equation, we have that the symmetry yields that r(\) = A=, With that in mind,
we find three matrices which satisfy the relation (4.3.1), thereby correlating to certain boundary
conditions for the sG equation.
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Proposition 4.3.2. Boundary matrices for the Lax pair U, V of the sG equation (2.2.2) corre-
sponding to a Dirichlet boundary condition

0(t,0) = o (4.3.6)

with « € R and a sin-boundary condition, see [43],

0,(1,0) = a sin 200 (4.3.7)

with o € R and a cos-boundary condition
6.(t,0) = acos (t,0) (4.3.8)

with o € R are given by
K()) = ! [()\ + %)]1 cos% + i()\ - ;)0—1 sin %} , (4.3.9)
\/)\2 + 37 + 2cos
K(t,0,\) = 11 [—a]l — i()\ — %) <03 coS 0(1;’ 0) + 09 sin 9(2’ O))] , (4.3.10)
(= b+

K(t,0,\) = ! [mal — 2'()\ + %) <0'3 cos 6(752, 0 + oy sin 9(7;’ O)>], (4.3.11)

A+3)?+0?

respectively. Furthermore, for the Dirichlet boundary and sin-boundary matrices K=1(¢,0,\) =
K(t,0,\™1) and for the cos-boundary matriz K=1(¢,0,\) = —K(t,0, \7!) holds.

Proof. Similarly to the calculation for the boundary matrices of the NLS equation, we omit the
denominators due to their time independence. Starting with the Dirichlet boundary condition, we
see that the left hand side of (4.3.1) is zero. On the other hand, the right hand side results after
cancellation and under the use of appropriate trigonometric identities in

%()\_§> ()\4—%) <03sing—02cosg> [Sin%cosg—cos%singp,

which is zero for all ¢ € R, if and only if §(¢,0) = . Then, we have for the left hand side of (4.3.1)
for the sin- and cos-boundary condition

i()\— 1) <0'3Sin€ —UQCOSQ>&

A 2 2/ 27
i()\—i— %) <agsing — 09 COS g)%,

respectively. After some calculation, we obtain for the right hand side of (4.3.1) for the sin- and
cos-boundary condition

%()\ — %) (03 [%(1 —cosf) + (0, — 0,) sin g} — 03 [% sin@ + (6, — 6,) cos g])

%()\—l— %) (ag[%sirﬂ—l— (6, —%)Sing} —02[ (cos 6 + 1)"‘(916—93:)0052}),

«

2
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respectively. Comparing the two sides in each case, we see that the time derivatives ; cancel and
the remaining terms

0
g(1—(:08(9)—9‘%sin—, gsinG—chosi,

2 2 2
0 0
%sinQ—stin§, %(00394—1)—0330085

are, after dividing by either Sing or cosg and using the appropriate trigonometric identities

1-— 0 0 in 6
a%—@mzasin——@:a S 7 — Oz,
28in 3 2 2cos 5
in 6 0 0+1
o SlTl 7 —Hmzacos——ex:a(cos—t,)—ﬁx,
2sin 2 2 cos

2 2
equivalent to the sin-boundary condition (4.3.7) and the cos-boundary condition (4.3.8), respec-
tively.

The property that the inverse of the boundary matrix is equal to the boundary matrix with A
changed to A~! relies on the fact that the denominator normalizes the determinant of the boundary
matrix. The boundary matrix of the Dirichlet boundary condition satisfies

K = KO,

det(K(X))! 1 « 1 a]

_ A ) cos S — (A= ~)oy sin &
\/)\2+i+2605a( +)‘> 2 ( /\)OISIDQ
\2

since det(K(\)) = 1. For the sin-boundary condition, we have
det(K(¢,0, )™
- e

K™'(t,0,\) = [—a]l + 2'()\ — l) (03 COSQ + oy sin g)] =K(t,0,A71),

A 2

and for the cos-boundary condition, we have

det(K(¢,0, 1))~
A+ 3)?+a?

K™(t,0,\) =

[—iam + Z'<)\ + %) <U3 oS g + 02 sin g)] = —K(t,0,A7),

where in each case the determinant of the boundary matrix is normalized as det(K(¢,0,\)) = 1. O

4.4 Preliminary considerations

Before we turn to apply the Dressing method to the presented models of the NLS and sG equation
with either defect or boundary conditions, we preliminarily consider some aspects which prove
to be useful in this endeavor. In the case of the NLS or sG equation on the whole line z € R,
we have seen that it is possible to construct soliton solutions or breather solutions using distinct
spectral parameters which are taken from C\ R. Now, it is a priori not obvious which spectral
parameters need to be paired on each side of the defect for it to be preserved under the Dressing
method. Therefore, the goal of the following subsection is to clarify under which conditions for the
spectral parameters—that we know of—the defect conditions and further the boundary conditions
are preserved. As shown in detail in Section 4.2, the frozen Bécklund transformation can in theory
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be connected to a frozen one-fold dressing matrix. Hence, we can also view the defect conditions as
a single soliton which is bound to x = 0. Therefore, one of the solutions, which we ignore for the
time being, is to construct a one-soliton on one side of the defect interacting destructively with the
‘frozen’ soliton at x = 0; Especially, since this is a very specific scenario which can not be iterated.
Hence, we consider the Dressing method using spectral parameters which are not on the real line
and differ from the spectral parameters mentioned in Proposition 4.2.1 being A\g = —5 + % and A
for the NLS and Ao = % and Aj for the sG equation.

4.4.1 A ‘space-evolution’ interpretation

We want to discuss time direct scattering for the ¢ part of the respective Lax pair U, V at x =0
under the simplifying assumption that we have the zero seed solution. This subsection is inspired
by the analysis given in [42] combined with the direct scattering process [2|, we presented in
Chapter 2. Assuming that, the function and its derivatives with regard to x vanish faster than any
exponential as [t| goes to infinity, similar to the case for the (space) direct scattering, one obtains
Jost functions

G (t,0,\) ~ e OWONIs  qg b 5 Ho0. (4.4.1)

Regarding the space scattering process, the x part of the phase in case of the NLS equation is
multiplied by A and in the case of the sG equation by (A — A™!) and we have seen in Sections 2.1
and 2.2 that the Jost functions can be continued analytically in either the upper or lower half-plane.
With regard to the time scattering process, the phase in the case of the NLS equation is multiplied
by A? and in the case of the sG equation by (A + A™!) so that the domains in the A-plane in which
the Jost functions (4.4.1) can in general be continued analytically are split into four quadrants in
the case of the NLS equation and into four distinct domains in the case of the sG equation, see
Figure 4.1. The proof is essentially the same as for the (space) direct scattering, see Theorems
2.1.1 and 2.2.3 or [2]. Therefore, we have that the first column of ¢_ as well as the second column
of ¢, i.e. gb(_l) and ¢f), and the second column of ¢_ as well as the first column of ¢, i.e. gb(_Q) and

¢S_1), can be continued analytically into the gray and the white domain, respectively. However, note
that due to the zero seed solution, all four Jost functions are entire functions of A, since Volterra
integral equations on a finite interval always have absolutely convergent Neumann series solutions

12].

A1
\ |/

Fig. 4.1. Analyticity domains of the Jost functions for the time direct scattering

Hence, the same reasoning as in the (space) direct scattering implies that there exists a t
independent matrix A(\) such that

b_(L,0,3) = 6, (1,0, )A(N), AER,
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where all the scattering coefficients can be analytically extended, since we assume to have the zero
seed solution. In particular, we have

0= (0 )

As indicated in Chapter 2, where the inverse scattering method is presented, normalizing the Jost
functions as above leads to a linear evolution of the entries of the space scattering matrix A(\):
0A(N)

o = (0-07)a = Uboy! = 0_67'U = U A(V)]

where U(t,x,\) is in the case of the zero seed solution equal to U(N\) = —idos and U(\) =
—%()\ — %)03 in the case of the NLS equation and the sG equation, respectively.

Following the analysis in Sections 2.1 as well as 2.2, one could derive a Riemann—Hilbert
problem, where soliton solutions of the NLS equation and sG equation correspond to zeros of
a11(A), which in general come from the gray domains of Figure 4.1.

Now, with the consideration of defect conditions (4.1.2) or (4.1.4) at x = 0, we examine the Jost
functions gi(t, 0,\) and ¢4 (¢,0,\) which are related through the frozen Bécklund transformation
according to g(t, 0,\) = B(t,0,\)¢(t,0, A). Therefore, we derive

A(N) = ¢ (£,0,\)d71(t,0,\)
= B(t,0,\)¢_(t,0,A)(B(t,0,\) ¢+ (t,0,\))
= B(t,0, \)A(A\)B~(t,0, \).

1

Similarly for the boundary conditions (4.3.2), (4.3.3), (4.3.8) and (4.3.7), we obtain with the
relation ¢(t,0,r(\)) = K(¢,0,\)¢(t, A) the constraint on A(\) of the form

A(r(N) = ¢-(t,0,7(\) ' (£,0,7(N)) = K (t,0, \) AN K '(¢,0, ).

Since we assume to have zero seed solutions, the frozen Bécklund transformations are of the form
B = diag(1 + (a« £1i|8])/(2N\), 1 + (o F i|5])/(2))) and B = diag(1 +ia /A, 1 Fia/A) for the NLS
and sG equation, respectively. Therefore,

- N 2\ + '

an()\) = an()\), a21(>\) = ﬁmam@\);
- N AT

ay(A) = an(N), Ao () = 3 I 22&21()\)

holds for the NLS and the sG equation, respectively. The same concept applied to the boundary
matrices () for the Robin boundary and KC(¢,0, A) for the new boundary condition as well as
K(¢,0,A) for the sin-boundary condition results in the relations

an(=X) = an (), (=) = =0 (),

ann(—) = an (). T oy
as well as

(V1) = an (), (1) = ST ),

a+i(A— A1)
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respectively. These relations give the fundamental idea on how to choose the zeros of a;1(\) and
a11(A) on each side of the defect or aj;(\) for the boundary condition for the respective condition
to be preserved under the Dressing method. That is if A\y,..., Ay and A1, ..., \y are the zeros of
ai1(A) and a;;(A\) on the right and the left side of the defect, respectively, then a1(\) = a1 (N)
implies that one way to construct a solution corresponds to choosing the set of zeros to be the same
not necessarily in the right order. However by the Theorem of permutability 3.2.7 for the Dressing
method, the order is not of primary importance and therefore we can take M=M= Ay
without loss of generality. Further, the relation of as;(A) to as;(A) provides an insight into
the relation of the norming constants. On the other hand, the relations a;1(—)\) = a11(\) and
ai1(A™) = a1 (A) for the NLS equation and the sG equation with a boundary condition imply
that if A; is used in the Dressing method to introduce new zeros, then —A; and A" or rather r(\;)
should also emerge as a zero. Beyond that, the relations of ag;(r(\)) to as;(\) again foreshadow
the relation of the norming constants. Nonetheless, this is only an idea and the effort of this thesis
is to make it precise. That being said, it is still instrumental to see that the choice of relations of
zeros has an origin. We refer to Figure 4.2 for an exemplary distribution of such zeros.

—Aj A A

J

Fig. 4.2. Distribution of zeros in the presence of boundary conditions for the NLS
equation (left) and for the sG equation (right).

Remark 4.4.1. The zero seed solution # = 0 for the sG equation only satisfies the sin-boundary
condition out of the three boundary conditions given in Proposition 4.3.2 and therefore this
viewpoint only makes sense for this boundary condition.

Now assume we are given seed solutions which satisfy the defect conditions (4.1.2) or (4.1.4).
Then, Propositions 3.1.1 and 3.1.2 imply that this is equivalent to the respective frozen Bécklund
transformation, say By, satisfying (4.1.1) and thus connecting the Lax pairs of the respective
solution, which shifts the problem to the spectral side. Subsequently, we utilize the Dressing
method to construct new solutions, as illustrated in this subsection. In theory, the last step would
be to verify that the constructed solutions again satisfy the defect conditions. In order to be
able to check this assertion, we want to show that there exists a frozen Backlund transformation
represented through the matrix By which satisfies (3.1.2) at x = 0 for the Lax pairs corresponding
to the by the Dressing method constructed solutions, see Figure 4.3.

In particular, the frozen Béacklund transformation represented by the matrix By is initially
treated as a (frozen) one-fold dressing matrix as in Proposition 4.2.1. In turn, the frozen Bécklund
transformation represented by the matrix By is then at first also introduced as a (frozen) one-fold
dressing matrix connecting the new solutions. So the last step mentioned above is to show that
the constructed dressing matrix can be written as a matrix representing the frozen Béacklund
transformation containing the right parameters which are needed in order for the defect conditions
to be preserved. In the case of a nonzero seed solution for the NLS equation, determining the
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00] = 0 iV O[N] u[0] iV u[N]

By By By ] \ By

6[0] = 0 — O[N] a[0] - a[N]
DIN] DIN]

Fig. 4.3. Schematic plan of the preservation of the frozen Bécklund transformation
under the Dressing method for the sG (left) and NLS equation (right).

+ sign turns out to be more convoluted. Indeed a similar requirement as in Proposition 4.2.1
regarding the value of the intermediate wave function is necessary in order to make sure that the
sign stays the same. On top of that, the crux of the matter is that we need to determine a value at
which we can verify that the sign is preserved in the first place which is structurally different from
Proposition 4.2.1. In that regard, it turns out to be purposeful to analyze the (frozen) dressing
matrix in more detail beforehand.

4.4.2 Frozen one-fold dressing matrix

So, the goal of this subsection is to establish conditions under which we can determine the sign of
a matrix representing the frozen Backlund transformation of two solutions for which we applied
the Dressing method. In that regard, important properties of a Béacklund transformation with
respect to z have been in detail discussed in detail in [17]. In particular, it is shown that the
transformation Bimx, ), 1 4 — % = Brm(x,),e, U, the Backlund transformation of u(t, -) with respect
to {Im(\;), 1} on R, is a bijection from H"'(R) onto H"'(R). Similarly, we want to analyze the
iteration of IV one-fold dressing matrices as Béacklund transformations with respect to ¢t at x = 0.
Thus, for functions f(-,0,\), we introduce the function spaces

HY'(R) = {f € L(R): tf € L’(R)},  H'(R) ={f € L*(R): O,f,tf € L*(R)}
and state the following lemma, which is essential in the proof.

Lemma 4.4.2. Let f(-,0,\) € H''(R), g(-,0,\) € H"'(R) and Im()\?) < 0. Then,

H/@> f(r,o,A)g(r,o,A)dT)HH )gc|yf(.,o,A)HHSJ(R”HQ(.,O,A)HHEJ(M

t +
[ 0 e o ar
)

HL(R) < CHf(a 07 )\)HHS’l(R)a

t

where ¢ depends on .
Proof. Analogously to the proof in [17], we take ¢t > 0 and show

©r241
t24+1

1
10 s 0 M) e,

£ (7,0, )] |g(7,0, A)[ d7

/too F(7,0, \)g(7, 0, \) dT‘ < /t

<
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Thus, the integral is in Hy"'(R,). For the first derivative of the integral, we have the following
equality % j;oo f(m,0,\)g(7,0,\)dT = —f(t,0, \)g(t,0,\) and therefore the first inequality follows.
Observing that

/ f(T7 07 )\)674Im()\2)(t77-) dT - / f(t + T, 07 )\)€4Im()\2)7 dTa
t 0

we have

a1 [ 0. netmon= ar|
(t)

12(R)
s/ 1L+ 1O DF + 7, 0,0 Loy ™09 dr
0

adding a zero with 7 — 7 in the bracket, we can use the Minkowski inequality to obtain

o m(\2)r 1-— Im()\2)
< | f(-,0, /\)||Hg,1(R)/O (14 7)et M7 47 < Tm2)? (5 0, Mo e,

Since the derivative of the integral is

d [ 0o

%/ f(T, 0, )\)6—4Im()\2)(t—‘r) dr = —f(t7 0, )\) _ 4Im()\2)/ f(T, 0, )\)6—4Im()\2)(t—7) dr,
t t

we use the same steps to show that it is in L?(R) and can conclude the proof. ]

Given the spectral parameter A\; = & + in;, we can denote the one-fold dressing matrix (3.2.2)

as
I T e
D[l](t,l’, )‘> = A\ — \F 2 A(t,x) 7 A . lffA(t,z)\Q :
AN e e A I T
Therefore, the reconstruction formula (3.2.4) implies
A*(t,x)
1(t,z) = u(t Ay —————
U[](,Z‘) ’LL(,LE)—l— 7711+|A<t’x)|2’
1= A ) (4.4.2)
- x
U, (¢, 2) = up(t, z) — 2i& (u[l](t, 2) — u(t, 2)) — 2 —— "7 (y[1)(¢, t, ).
1o (1:2) = (1) = 2060 (u(1)(2)  u(t. ) — 201 15 o (8 ) (e )
In particular, we assume that in the following wu(t,0) is given and the one-fold dressing matrix is
used to determine u[1](Z,0). So, we have a well defined transformation B, , : u > u[l] = B, u

I (R) — L (R) 2 u[1](+,0). The denominator 1 + |A(t,0)|* can not be zero,
since v is a solution of ¥y = (—=2iA%03 + Qi)Y at A = A;. If there exists a ty € R such that
1 (to,0) = 0, then (¢91)¢(to,0) = 0 and therefore 1 (¢,0) = 0 for every ¢ € R. The assumption of a
nonzero asymptotic limit of 1; gives the contradiction. In particular, we want to have that if u(t,0)
vanishes for |t| — oo, then the same is true for the transformed function u[1](t,0). Therefore, we
work with functions u(-,0), uz(-,0) € H'(R). In particular, for u(-,0),u,(-,0) € H'(R), we can
show that

mapping u(-,0) € L.

W2 11 (m 12w + g L1 (r
Qi(-,0,A S( el .
1900 Mt < \ones it pawy v
< [ 2‘)‘H|UHH§)’1(R)2+HUI”HE’I(R) ‘
= L2l o gy + [t o1 gy ullZ2 g

Thus, we can prove the following result.



4.4. PRELIMINARY CONSIDERATIONS 67

Proposition 4.4.3. B ,, , where \; € C\ (RUR), maps functions u(-,0),u,(-,0) € H(R)
onto u[1](-,0), u[1].(,0) € H'(R).

Proof. Following the proof for the Bécklund transformation with respect to x, see [17, Prop. 4.7],
we want to introduce a t dependent (Jost) function. In that regard, we freeze the space variable x,
particularly, at « = 0. Then, given the limit behaviors |u(t,0)| — 0 and |u,(¢,0)| — 0 as |t| = oo,
it is reasonable to assume that there exists a 2 x 1-vector-valued solution m to the spectral problem

Yy = (—Qi/\203 + Q)Y

admitting the asymptotic behavior m(t,0,\) ~ e;e 2**t as t — co. Then, we also define the

normalized t dependent (Jost) function by

m(t,0,A) = m(t,0,\)e*,

which admits the normalization lim,_, 7i2(¢,0, \) = e;. The solution m(t, 0, ) = (L, 0, \)e 2> is
uniquely specified by the asymptotic behavior m(¢,0, \) — e; as t — 0o. As in the usual scattering
process, see 2], the normalized (Jost) function can be constructed by solving the following Volterra

integral equation

. > /1 0 .
m(t,0,\) = e — / (0 64M2(tT)> Q1(7,0,\) m(7,0, \) dr. (4.4.3)
t

This, we show by defining the operator

. > (1 0 .
Tm](t,0,\) = —/ (0 647:)\2(157-)) Q1 (7,0, \) m(r,0, ) dr,
t

which is a bounded operator mapping from L>(R) to L*>°(R) for any fixed A such that Im(A\?) < 0,
since t — 7 < 0. Also, we define

A bt 0 )
Tilm)(t,0,)) = - / <O GMQ(”)) Q1 (7,0, \) (7,0, ) dr,
t

where we fix A such that Im(\?) = 0. For an arbitrary interval (¢;_1,¢;) C R, we obtain the
estimate

1750m] ¢ 0, Mooty 1ty < N0, 1720 00 A oo -

Then, we can choose ¢; in such a way that the operator 7; is a contraction from L*(t;_1,t;)
to L>(t;_1,t;). Repeating this argument starting from ¢, = —oo and appropriately chosen ¢,
..., to ty_1 and t; = oo, we can obtain finitely many intervals so that 7; is contraction from
L>(t;_q,t;) to L>(t;_1,t;), j =1,..., L. Setting 1o(t,0,A) = ey on (to,t1), we can find a function
m;(-,0,\) € L>®(t;_1,t;) by the Banach Fixed Point Theorem such that it solves the equation

m;(t, 0, \) = 1;_1(t5,0,X) + T;[m;](¢, 0, ), t e (tj_1,tj)

for every j = 2,...,¢. Combining these functions, we find a continuous function in L>°(R) satisfying
the Volterra integral equation (4.4.3), which covers the existence.

Now, for the claims regarding the continuation of m(¢,0,\) to Im(A?) < 0. Analogously
to the x dependent Jost solution 1;(_1)(15,3:, A), we introduce for m(t,0,\) the Neumann series
> 020 T?[mol(t, 0, X), where mg(t,0,A) = e1, which is formally a solution of the Volterra integral
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equation (4.4.3). Then, it is possible to derive a bound of the iterated operator 7. We define
h(t,\) by

h(t,)\)—/t |Ql(7,o,x)|dfs/o 1Q1(7, 0, A)[d7 < [|Q1(+, 0, N[ 1wy

By induction, we have

Il O’j)'\)”Lm(R) /OO 1Q1(7,0, \)| (h(7,\))? dr
' t

5950 0. M) 7o ht,A)
_c”m(7 - )“L ®) s? ds
J! 0

|77 m) (t,0,\)] < ¢

) (h(t, X))t
— CHm(-,O;)\)HLO"(R)T)l))!a

where we put s = h(7,A). Thus, we have that Y22 T7[mo](t,0,\) is majorized in norm by a
uniformly convergent power series and is therefore itself uniformly convergent for Im(\) < 0.
The analyticity and continuity continuation for 7(¢,0,A) in {\ € C\ {0}: Im(\?) < 0} and in
{X\ € C\ {0}: Tm(A\?) < 0}, respectively, holds for the function m(¢,0,\), which can be proven
similarly as in the proof of Theorem 2.1.1. It is left, to show that the entries of m(-,0,\) — e; are
in H'(R). Since T maps L™(R) to L>(R) and writing 72(t,0,\) = (721, 7i23), we can estimate
using Lemma 4.4.2,
[72(, 0, M)l 21y < ell([Qu]21771) (-, 0, A) | or gy + ¢l ([Qu]a2rii2) (- 0, M) o1
< Hml(v 0, )‘)HLN(R) || [Ql('7 0, A)]21||H?’1(]R)

+ ”m2(’ 07 )\) HLOO(R)H [Ql(‘7 07 A)]QQHH?J(R)
and
17321+, 0,A) = 1l gy < ell([Qu)1a7710) (- 0, )| g1y + €l ([Qulzrin) (- 0, M| g1y
< Hml(v 07 >‘) HLOO(R) H [Ql(‘, 0, )\)]11 HHtl’l(R)
+ ||m2(7 07 >‘)||L°°(R) || [Ql(‘, O, A)]HHH,}’I(R)'

And for the entries of Q;(¢,0,\), we find

1191 (0. Ml gy < e, Oyl 0) -
11910 0. Ml gy < 2, Oy gy + (- 0) 2 "
1191 0, Vet o1z < 2, ) o gy + [t (- 0 g0 .

1116 0, Mlaall o ey < -, 0) [z oy llul-, 0) o ey

Thus, if u(-,0), uy(-,0) € H''(R), then (-0, \) — e; € H'(R). For the uniqueness, we refer to
the proof of Theorem 2.1.1. Next, we consider a solution n(t,0, A) of the ¢ part of the Lax pair
defined on Im(\?) < 0 and ¢t € R with the property

n(t,0,)) = (ea +r1(t)e*™™, € H'(R).

Here, e5 = (0,1)T and n(t,0,\) is a non-unique solution of the differential equation defined on the
same domain as m(t,0, A) and these vectors are linearly independent for all ¢ € R:
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For given u(-,0), u,(-,0) € H"'(R) and A € {\ € C\ {0}: Im(\?) < 0}, we fix t, > —oo such
that each entry of ftzo |Q: (7,0, )| d7 is bounded by a constant ¢;, < 1 and by the arbitrary choice

of ty, the non-uniqueness is apparent. For Im(\?) < 0, we consider the following integral equation
for n(t,0, \),

9in2t b [e2iX(t-T)
n(tv Oa )‘) =e” €2 + / 0 0 Ql(Tv Oa )‘) TL(T, Oa )‘) dr
to

_/ <8 621)\20t T> Q1(1,0,\)n(r,0,\)dr, t>tq.
t

Set n(t,0,\) = n(t,0, /\)6*21“2’5, then the integral equation becomes
n(t,0,\) = es + (N7)(¢,0,)), t>to, (4.4.5)

where A is an integral operator defined by

3 (641')\2 (t—7) 0

(N7)(E0,0) = / o

to

) Q1(7,0,\) n(7,0, A) dr

_ /Oo (8 (1)> Qu(7,0,A)A(7,0,A)dr, A(,0,A) € L®[to,00).
t

By the same argument as for m(t,0, \), we have existence of n(¢,0, \) for t € (tg,00). As Im(A?) <0
and each entry of Q(-,0,\) being in L'[ty,c0), N is a bounded operator from L*[ty, 00) to
L>®ty,00). Similar to before, put fg(t,0,\) = ey and define n;41(t,0,\) = eg + (Nn;)(t,0,N),
inductively. Then, '

[(os1 = )0, Ml ity < hys 52 0.

Indeed ||71(-,0,A) — 70(+, 0, A) || Loo[tg,00) < € and for j > 1,

(741 — 725) (-, 0, M) || oo to,00) = I[N (5 — 715-1)) (5,0, A) || oo t,00)
< 1y — 1) (0, Ml ) / 1Q1(7,0,\)] dr

to
= o |[(75 — 7j—1) (-, 0, A)|| oo [tg,00) -

Therefore, n(t,0,\) = ng(t,0, \) + 3272 7;(t, 0, ) — 721 (¢, 0, A) converges in L>®[ty, 00) and solves
the integral equation (4.4.5). Writing n(¢,0, ) = (71, 7n2)7, (4.4.5) becomes

P (4,0, 0) = /t =T (10, (7, 0, ]1yiin (7 0, A) 4+ [Q1 (7, 0, Vrafia(r, 0, A)) dr,

ﬁg(t, O, /\) =1- / [Ql (T, 0, )\)]21’&1(7’, O, )\) + [Ql (T, 07 A)]QQﬁQ(T, 0, )\) dT.
t

As for m(t,0,)), we can prove that if u(-,0),u,(-,0) € H'(R), then 7,(-,0,\) € H}'[ty, 00).
Therefore, we consider with Lemma 4.4.2 the estimate
1710, 0, M)l 124 00y < €ll([Qa]1121) (45 0, Ml oy ooy + €ll([Qu]1272) (- 0, M) oy o
< (171 (5 0, Ml poetto,00) 1121 0, M]anl oo )
+ Hﬁ@(’ 0, )‘)HL"o[to,OO) H [Q1<'7 0, A>]12HH?’1(]R)
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A similar reasoning involving Lemma 4.4.2 implies that 7y(-,0,\) — 1 € H,"'[ty, 00). We have

172050, A) = Ll g2 ey < €ll([Q1]21701) (5 0 M) | gz ey + €l ([Qal22722) (0 M| 7111 )
< ||In1(+, 0, )\)HLoo[tO,oo)H[Ql('a0>)\)]21HH§’1(R)
+ 1720, 0, Ml L2 t0,00) [ [Q1 (- 0, A2l 1.1 gy -

Except for

11910 0. Ml 2y < 2, )t gy + et )l

11Q1(, 0, Mzl 12 gy < Nluls, )| ooy lul-, 0] g1 ),
all estimates on the entries of Q;(¢,0, \) are already done in (4.4.4). Therefore, we indeed have that
A(-,0,\) — ey € H ' [tg, 00) if u(-,0), ug(-,0) € H''(R). We know that n(t,0,\) defined through
n(t, 0, \) solves the integral equation (4.4.3) for ¢ € R and we have its existence in ¢ > t, it follows
that, given to, n(¢,0,\) can be uniquely extended to a solution of the ¢ part of the Lax system for
Im(A\?) < 0.
The linear independence of m(t,0, A1) and n(¢,0,\;), Ay € {\ € C: Im()\?) < 0}, can be shown

by

tlim det(m(t,0, A1), n(t,0,\)) = 1.

—00

Since V has zero trace, we conclude that
det(m(t,0,\1),n(t,0,\)) =1, teR.
Then, for t € R, we can write ¢ (t,0) as a linear combination of m(¢,0, A1) and n(t,0, A1) so that
P1(t,0) = cym(t, 0, A1) + can(t,0, \y)

for some constants ¢y, ¢o. If ¢ = 0, then as t — oo,

In(t,0) = ¢e= 2t <1 jﬁ)(t)) Cr e HYYR), j=23.
Hence,
[P[1])(,0)]12 = (1 + 7A2<t))703(t> c Htl’l(R).

11+ ra(8)[* + [rs(t)]?
As in the argumentation for the Darboux matrix being a map from u(-,0) € L. (R) — L. (R) >
u[1](+,0), the denominator |1 + 75()|* + |r3(¢)|* can not be zero, due to m(t,0, \) being a solution
of the spectral problem 1); = (—2i\?03 + Q1)1 and given its asymptotic behavior as ¢ goes to

infinity. If ¢o # 0, then as t — oo,
_ 2iN2¢ 7“4(75) } 1,1 .
P1(t,0) = e (1 +7"5(t)) , r;e H (R), j=4,5.
The same reasoning makes sure that the denominator can not be zero and hence,

PO = (+1 2(7;3'(;)1;2(3)’2 c H'\(R).

Thus,
u1](t,0) = u(t,0) + 4y [P1](¢, 0)]1> € H, " (R).

By the second line of equation (4.4.2), it can also be shown that u[1],(-,0) € H'(R) in both cases.
For Im()\?) > 0, the choice of the normalization of m(¢,0,\) and n(t,0, ) is reversed. O
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If we extend this reasoning to the dressing matrix D[1](¢, z, \), we can infer a helpful property in
the determination of a value for which the sign of the matrix corresponding to the frozen Béacklund
transformation is preserved.

Lemma 4.4.4 (Deift & Park, [17]). Let u(-,0),u,(-,0) € H'(R), and D[1](t,z,\) be a dressing
matriz constructed by Ay and ¥y (t,x) = ([1]1, [1]2)T. Then, (A — A7) DI[1](t,0,\) goes to either
diag(A — A7, A — Ap) or diag(A — A, A — A}) as t — oo, depending on the limit behavior of 11 (t,0).

Proof. At t = 0 and = = 0, 1, is either being produced by (1,¢)7, ¢ € C, or (0,1)T. In the
first case, ¥1(t,0) = cym(t,0, 1) + can(t,0, A;) for some constants ¢1, co, where m(¢,0,\) and
n(t,0, \) are the linearly independent solutions of the ¢ part of the Lax system as constructed in
the proof of Proposition 4.4.3. If 1 is proportional to m(¢,0, \;), then necessarily ¢; = 0. As a

consequence %Hf = zjggt; — 0 ast — oo and so (A — A)D[1](¢,0, \) goes to diag(A — A, A — AT)

as t — 0o. If ¢y # 0, then, as t — 0o, 1 (t,0) = cpe?it ( ra(t) ), where 4,75 € H''(R,) as

1+ T5(t)
before. Therefore, mﬁ — 0 as t — oo and so (A — A])D[1](¢,0,\) goes to diag(A — A, A — \p)
as t — 0o. In the second case, we necessarily have ¢; = 0 and again by n(¢,0, A1), we have that
(A= /\{)D[leZO goes to diag(A — Aj, A — ;) as t — oo. O

In particular, this property can be restated in the following sense:

Remark 4.4.5. Let u(-,0),u,(-,0) € H"'(R), then consecutively using one-fold dressing matrices
corresponding to distinct spectral parameters Ay, ..., Ay maps the functions u, u, onto a function
u[N](-,0),u[N],(-,0) € H''(R). Moreover, the N-fold dressing matrix defined as in (3.2.12)
multiplied by ijzl()\ — Aj) goes to a product of diagonal matrices of the form diag(A — A5, A — A;)
or diag(A — Aj, A — A7) depending on the limit behavior of ¢;(¢,0) for j =1,..., N.



72

CHAPTER 4. MODELS



Chapter 5

Dressing

In the first section of this chapter, we want to apply a method, which we call dressing the defect,
based on the Dressing method for Lax systems to prove that it is possible to explicitly construct
soliton and breather solutions for the models of the sG and NLS equation on two half-lines which
are connected via defect conditions as presented in Subsection 4.1.2. Initially, this method has
been introduced as an alternative and more natural approach to the mirror image technique
[5, 6] in order to construct solutions regarding the sG and NLS equation on the half-line with a
sin-boundary condition [43] and a Robin boundary condition [42], respectively, where the authors
called the method in the second more detailed paper dressing the boundary. As it turns out, it is
by no means sufficient to take the method presented in [42] and to just apply it to other models as
is, since it seems to be more or less specifically tailored to the NLS equation on the half-line with
a Robin boundary condition or rather boundary conditions which are structurally similar to the
Robin boundary condition. Thus, even though the methods of dressing the defect or dressing the
boundary are called the same in this thesis, they should be understood as generalizations of the
method initially developed.

5.1 Initial value problems with defect conditions
In general, the method of dressing the defect, as we generalized it, can be divided into three steps:

(a) We show that the functions derived by the Dressing method indeed satisfy the respective PDE
on the appropriate domain which is more or less a formality. In order to verify this, Proposition
3.2.5 and Remark 3.2.6 are of importance.

(b) Afterwards, we construct a matrix, which is on the one hand not determined in terms of
the solutions from (a) and on the other hand it is chosen so that the spectral equivalent of the
defect conditions at x = 0 is satisfied. This is due to the fact that the spectral condition itself
can be transformed into an equivalent, more handy expression which can, in turn, be proven by a
comparison of two polynomial matrices with respect to the spectral parameter .

(c¢) Then, since the matrices are, up to a function of A, polynomial matrices of degree one with
respect to A, we know by Propositions 3.1.1 and 3.1.2 the explicit forms of the (frozen) Darboux
matrices. Thus, the goal is to determine the sign and the defect parameters and to verify that
they match the sign and the defect parameters of the frozen Bécklund transformation associated
with the seed solutions.

73
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In that regard, it appears that in every application, whether it is in the case of the sG or NLS
equation, there are slightly different conditions which, in turn, lead to subtle changes in the proof.
For example, in the case of the sG equation, it turns out to be advantageous that the seed solution
is naturally assumed to be zero as utilized in Proposition 3.2.4 and also that for the reconstruction
formula one evaluates the zero-th order matrix coefficient of the dressing matrix. Thus, we first
apply dressing the defect to construct solutions in the case of the sG equation, since the proof has
the most basic specifications.

5.1.1 The sG equation

For the convenience of the reader, we invoke the model we want to solve explicitly. Therefore,
consider the sG equation on two half-lines

ett—exm‘f—SinH:O (5]_]_)

for 6(t,z): R x Ry — C and initial conditions 6(0,z) = 6y(z) and 6;(0,z) = 0;(x) for x € R
together with
O — O, + sinf =0 (5.1.2)

for O(t,z): R x R_ — C and initial condition (0, ) = y(x) and 6,(0,z) = 6;(z) for z € R_.
Further in accordance to the defect conditions, 6(t,0) and 6(t,0) satisfy (4.1.4).

Similar to the method applied in [26], we want to utilize dressing the defect to insert soliton
and breather solutions. As worked out in Subsection 4.4.1, it is sufficient when constructing a
soliton and/or breather on one side of the defect to also construct a soliton and/or breather on the
other side of the defect in order for the defect conditions to be preserved. Structurally, one way to
achieve this preservation is to consider the same spectral parameter A; and appropriately chosen
quotients of v; and w; used in the Dressing method on each of the half-lines for j =1,..., N. This
is worked out in the following statement.

Proposition 5.1.1. Consider zero seed solutions [0] = 0 and 0[0] = 0 to the sG equation (5.1.1)
and (5.1.2), which at x = 0 satisfy the defect conditions (4.1.4) with a € R\ {0}. Further,
take solutions v;, j = 1,...,N, of the Lax system (2.2.3) corresponding to 0[0] for distinct
A=) eC\ (RU {—ia, ia}). Assume that there exist paired solutions Jj, j=1,...,N, of the Lax
system (2.2.3) corresponding to 5[0] for the same spectral parameter A = \; and that they satisfy

Jj‘xzo :Bo(t’ 07/\]')77bj|x:07 .7 = 17"'7N7 (513)

where the matriz By is associated to the frozen Bdicklund transformation (3.1.5) representing the
defect conditions with either a plus or a minus sign. Then, two N-fold dressing matrices D[N],
DI[N] using the corresponding solutions and spectral parameters lead to solutions O[N] and §[N] to
the sG equation on the respective half-line, for which the defect conditions (4.1.4) are preserved.

To this end, we shall show that the functions §[N] and 6[N] constructed with the N-fold
dressing matrices (a) satisfy the sG equation on the positive and negative half-line, respectively,
(b) are regarding the Lax systems subject to defect conditions with a matrix By, which is for the
time being unspecified with respect to the solutions, and further, that (c) By can be written as a
matrix corresponding to the frozen Bécklund transformation (3.1.5) for the two solutions #[N| and
0 [N] with the sign and spectral parameter being preserved.
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Proof. (a) Due to the analysis in Section 2.2, it is clear that there are two cases for spectral
parameters \;, j € {1,...,N}. The first case is represented by paired spectral parameters
Aj € iR and A} = —)\; corresponding to single solitons for which there is another solution
w;(t,r) = —ioapi(t,x) or p;(t,x) = o1;(t, x) according to the symmetry of the Lax pair, see
(2.2.4). Since the norming constant is purely imaginary in that case, the choices for ¢; are not
necessarily equal to 1;, but ¢; and ¢; are linearly dependent. In the second case, the spectral
parameters come in quadruples \; € C\ (R U iR), A= —=Aj, A and =\ = AL ke {l,... N}
and k # j, corresponding to breathers for which there are two additional solutions of the Lax
system ¢;(t, x) = —iopi(t, x) for X = X7 and ¢ (t, z) = —ioahi(t,x) for A = A;. Furthermore,
there is also a connection between the solutions corresponding to A; and A\, = —\; given by
Yi(t, x) = 01¢;(t, x), which follows again from the symmetry of the Lax pair (2.2.4). Here, this
distinction turns out to be not as important as later on in the case of the sG equation on the
half-line with boundary conditions, however, one should be aware of this fact.

From Remark 3.2.6, we then derive that, since the spectral parameters A, ..., Ay and their
complex conjugates are distinct, all solutions mentioned are linearly independent. Moreover,
constructing the dressing matrix D[N] from the vectors 1); and corresponding spectral parameters
A;j, we know that the dressing matrix multiplied by Hfj:l()\ — A;) has the following zeros and
associated kernel vectors

N N
(TT = 202) ], s =0, (TTO = A)DINT) s =0 (5.1.4)
k=1 k=1 !
for j =1,..., N. Moreover, the same reasoning for zzj, j=1,...,N, and ¢, chosen accordingly
leads to
N N N N N
(TT = X0DIVT) [, 5 = 0. (TT = A)DIN) |, 85 = 0. (5.1.5)
k=1 k=1

In particular, if we arrange the systems (5.1.4) and (5.1.5) separately as sets of algebraic equations
with the dressing matrices written in terms of a polynomial matrix in \:

N N N N
[T =2)DIN =M1+ > AV, [ = M)DIN] = AVL + Y AVFS,,
k=1 k=1 k=1 k=1
it is possible to determine each matrix coefficient »¢,..., Xy and il, e 5 ~ explicitly if the
vectors are linearly independent. We have
AT DY e AT o (AN e =AY
(Z1,-++, EN) : : ; : : = :
(0 P1 e YN ON —ANPN
The 2N x 2N-matrix
Mo DY o - AT ()Y e
U1 ¥1 T YN YN
filled with the kernel vectors is invertible. Assuming it is not invertible, it follows that the columns
of the matrix are linearly dependent vectors. Therefore, there exist constants ci,...,con € C so
that

ar + capr + - -+ con1UN + caven = 0,
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which is a contradiction to the linear independence of the kernel vectors derived in Remark 3.2.6
due to the corresponding spectral parameters being distinct. Applying the very same reasoning
to Hk (A= )\*)D[N ], we have that every matrix coefficient can be determined explicitly and
therefore the solutions derived via Proposition 3.2.4 are in fact solutions of the sG equation on the
respective half-line.

(b) Without loss of generality, we assume that the plus sign is used in the frozen Béacklund
transformation By which is then given by

Bo(t,o, )\) =1+ %0'3

not only taken at x = 0, but also ¢ independent. The goal of this step is to construct a matrix,
which we note as By and which particularly satisfies By = D[N|ByD[N]~! at x = 0. Equivalent
to this equality, we have at © = 0 the following

(ﬂ(A—AZ)E[N])uBOM — (\By) (f[A ANIDINT) o (5.1.6)

k=1

where both sides are multiplied by A Hszl()\ — A}) to have polynomials with positive powers in
A which is be used later on. This equality functions as a way to prove the spectral equivalent
(4.1.1) of the defect conditions (4.1.4) for the sG equation. Therefore, let us show that if we have
a matrix By satisfying (5.1.6), then By satisfies the relations (4.1.1) at # = 0 connecting U[N],
V[N] and U[N], V[N]. To demonstrate this, we exemplary take the equality By = D[N]BoD[N] ™!
and differentiate with respect to x (evaluated at x = 0) in order to obtain

= (D[N)).Bo(D[N])"' + D[N](Bo).(D[N])~* + D[N]Bo((D[N])1)..

Then, the first two summands can be simplified using (3.2.15) and the = part of the spectral version
of the frozen Bécklund transformation (4.1.1) so that

(D[N1)2Bo + D[N](Bo). = (U[N]D[N] — D[N]U[0])B, + D[N](U[0]B, — ByU[0])
— U[N]D[N]By — D[N]B,U[0].

In addition, it can be shown with (3.2.15) that ((D[N])™!), from the third summand satisfies

((DIN)) s = ~(D]
— (D]

N]) " (D[N])o(DIN]) ™
N])~'U[N] + U[0](D[N]) .

If we put these results together and notice that the expressions D[N]Bo(D[N])~* are in fact again
By, we obtain

(B). = U[N]D[NBo(D[N])™" — D[N]By(D[N])~"U[N]
— U[N]|By — ByU[N].

Similarly, the ¢ part of (4.1.1) is implied effectively using the ¢ part of the relations (3.2.15) and
the t part of the frozen Bécklund transformation (4.1.1) for By, which is indeed simplified to



5.1. INITIAL VALUE PROBLEMS WITH DEFECT CONDITIONS 7

V[0]By — ByV|[0] = 0 due to the ¢ independence of By. Note that the terms in this calculation are
always evaluated at x = 0 which is not written out in every term to ensure readability.

Now for the construction of the matrix By, we define \y = ia and take a closer look at the
matrix multiplication D[N|ByD[N]~!. By Remark 3.2.8, D[N]|*(t,z,\) = D[N]'(¢,z, \*) and
therefore multiplying both sides with AT]r_, (A — AL)(A — Ax)) and relating the factors A to By,
[T, (A= A}) to D[N] as well as T2, (A= \x) to D[N]~, we obtain a polynomial matrix of degree

2N +1in A:
2N+1 2N+1

(Z )\’“mk>IB%N = 3 MM,
k=1 k=0

where the exact expressions of the constant coefficients m; and constant matrix coefficients M),
with respect to A\ are not relevant in their entirety. One observation, we want to note, is, that the
highest order coefficients are moyy1 = 1 and Msy.1 = 1. Therefore, it makes sense to assume that
By is of the form By =1 + %IB%(O) at x = 0. However, for now we want to think of the matrices By
and By being, up to a function of A\, one-fold dressing matrices. On the one hand, Proposition
4.2.1 implies that By admits at 2 = 0 a kernel vector v(t) = —2¢5(t)es, since 8[0] = 0 and 6[0] = 0,
corresponding to the spectral parameter \y. On the other hand, we have that a solution of the Lax
system at A = )¢ is given by ¢y(t,z) = uow(_l)(t, x,\o) + vowf) (t,x, \o), where ug, vy are complex
constants. Since we consider zero seed solutions [0] = 0 and 6[0] = 0, the Jost functions adopt the
explicit forms 1/)(,1)(15, 7, \g) = e;e”©tmr0) and w(f) (t, 2, \g) = e2e?®®®2)  Hence, choosing ug = 0
and co(t) appropriately, we can infer that 1y(¢,0) = v(t) holds. Then, in particular, Bowo}xzo =0.
With these preliminary considerations, it turns out to be advantageous to construct the one-fold
dressing matrix By with the vector ¢ = D[N] | e, Yo corresponding to the spectral parameter

A =X € iR\ {0} so that By]| rex, %0 = 0. Note that the constructed matrix is initially known for
x € R underlining the free choice of the point of the defect.

Now, we write the left and right hand side of the equality (5.1.6) at = = 0 as matrix polynomials
L(A) and R(\), respectively. Hence,

L) = (T~ A)DINT) (ABo)|,_y = M Lsr + ALy -+ + Lo,

k=1

RO = (Bx) (TTO~ M)DIND) |,y = M5 Ras + AV Ry 4+ Ry,

k=1

Further, we have made sure that the highest order matrix coefficient for both polynomials are
equal Ly, = 1 = Ry.q, since the highest order coefficients of each individual matrix is the
identity matrix. In the following, we want to show similarly to step (a) that the remaining matrix
coefficients Ly, Ry, ..., Ly, Ry are equal. However, since we only need them to be equal and we
have that the highest order coefficients already satisfy this assertion, it is advantageous to consider
the difference of the two matrix polynomials and the corresponding zeros and associated kernel
vectors. First off, it is obvious that the zeros and kernel vectors for the dressing matrix D[N] also
function as zeros and associated kernel vectors for R(\) at z = 0. Moreover, due to assumption
(5.1.3), at = 0 the same is true for L(\) yielding

L) |yoy, %5 =0, R(N) |,y %5 =0, j=1,...,N.

Then, having cancelled out the singularities A} of the dressing matrices, this equality is transferred
to the solutions ; of the Lax system at A = A} which can be expressed in terms of ¢;. In particular,
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at £ = 0 we obtain
L(/\)’)\:)\;Soj:()’ R(A)’)\:A;Soj =0, ]:1,,N

For R(\), this is again true due to the properties of the dressing matrix and for L()), we need
to consider the assumption (5.1.3) in combination with the fact that the matrix By representing
the frozen Bécklund transformation admits similar symmetry relations to (2.2.4), i.e. By(\) =
9By (A*)og or Bo(A\) = 01Bo(—A)o;. If we compare the prerequisites in (b) with the ones in (a), it
can be noticed that for a polynomial matrix of degree N with N + 1 unknown matrix coefficients
there is a need for 2(N + 1) zeros and associated kernel vectors in order to determine them
completely. Not counting the highest order coefficients for which we already have equality, it is
therefore necessary to have 2(INV 4 1) zeros and associated kernel vectors which is two more than
the ones we obtain from the dressing matrix and assumption (5.1.3). This is exactly the reasoning
for the interpretation of the matrices representing the frozen Bécklund transformations as one-fold
dressing matrices. Therefore, we have at x = 0 and for j = 0 that

L()\)|/\:/\o¢0 =0, L()‘)})\:)\SSOO =0, R(A)lA:AO¢O =0, R()\)L\:/\S(po =0

from the properties we stated for By and By. Then, to deduce the matrix coefficients of the
difference C(\) = L(A\) — R(\) = AVCy + - - - + Cp, we arrange this system as a set of algebraic
equations

()\{)VCN EE Wo A co)wo —0, ((A(’;)NCN NG+ 00> 00 = 0,

This set of algebraic equations can further be written in matrix form resulting in

Ao (M) Yo o AN (AN)New

(Cn,- -+, Co) = 0. (5.1.7)

Yo ®o ey ©N
We can determine the matrix coefficients Cy, ..., Cy, since the 2(N + 1) x 2(N + 1)-matrix filled
with the kernel vectors is invertible. This again holds, due to the same argumentation we have
given in step (a) and the two additional kernel vectors coming from distinct spectral parameters.
Hence, it follows that all matrix coefficients Cy, ..., Cy are zero which comes from multiplying the
equality (5.1.7) with the inverse 2(N + 1) x 2(N + 1)-matrix filled with the kernel vectors from
the right. Since every matrix coefficient of C'(\) is zero, the matrix polynomial C'()) is identically
zero and consequently the matrix coefficient of L(A) and R(\) of the same power with respect to
A are necessarily equal. In summary, we present a way to construct a one-fold dressing matrix
By which admits kernel vectors at the same spectral parameters as the initial frozen Béacklund
transformation represented through By. Further by choosing By as proposed, equality (5.1.6) is
satisfied so that By can at 2 = 0 also be expressed as D[N]Bo(D[N])~!. Therefore, this concludes
the task of step (b).

(c) By the reconstruction formula (3.2.16), we have two possibilities: First, an even or an odd
o[N

number N, of single solitons corresponding to the reconstruction formula el — D|N] } \—p O
LOIN]

ez 7t = D[N]| \_O3, Tespectively, and similarly for O[N] and D[N] as the multi-soliton on the two
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half-lines only differ regarding the norming constants represented through the different coefficients
of the vectors ¢; and v, j = 1,..., N. In both cases we use the respective reconstruction formula
to obtain the expression of the matrix By = 1 + %B(O) at x = 0 representing the frozen Backlund

transformation of 6[N] and 6[N] in terms of the solution space. In theory, taking into account

Proposition 3.1.2, we know that B(®Y) needs to be of the form
B® = iil cos w —isin w
-7 A \isin w o8 w

with the parameter v € R and the sign 4+ to be determined. Assuming an

e cven number of single solitons, we consider the equality of the zero-th order matrix coefficients

in A of L(\) and R(\) which is given by

N N

*\ 7 * iﬂmvl .
L], = ((TT = X DINT) (ABo)|,_y )|, = [T(~A0)e™s* - (i)
k=1 k=1
as well as
N N -
RO, = (OBx) (TTO = XDINT) o) [y = TT-ABO @) - e,
k=1 k=1
Evaluating for example the (11)-entry of L(0) = R(0), we have
+iy (COS 6N + 6N cos oLV + sin 6N + 6N sin ﬂN]) = 1 COS M
2 2 2 2
Under the trigonometric identities
O[N] + 0[N O[N] O[N] O[N] . O[N]
CO0S ——————— = C0S —— €08 —— — 8in —— sin ——,
2 2 2 2 2
sin —Q[N] IV _ sin oY) oS —Q[N] + cos oIN] si —Q[N]
2 B 2 2 2 2’

see (A.0.1), we can conclude that +v = «. In particular, the other entries consolidate this result

and therefore By is at © = 0 determined in terms of the solutions #[N| and [ N].
e odd number of single solitons, consider the equality of the zero-th order matrix coefficients

N N

* imal - * i—5—01 _
LNy = [T - (i) = [T (=ADBO®) - 7= 705 = ROV,
k=1 k=1

which motivates the same calculation: Evaluating the (11)-entry of L(0) = R(0), we obtain

L (COS GIN] +6[N] 6[N] . O[N] +6[N] 9[N]> o ]
2

coS 5 + sin 5 sin 5 —_—

Y

yielding the same result &y = «a for the one-fold dressing matrix By at z = 0 as in the case
of an even number of single solitons. Checking this with the other entries may have different
expressions than in the other case at some point, but eventually confirms the result.
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Therefore at = 0, both cases lead to the same matrix

1 ( CoS —é[N];G[N] —18in —H[N]ZH[N]>

By(t,0,A) =1+ BN i sin g[jv].ge[j\/] oS G[N]—;-G[N]
representing the frozen Bécklund transformation connecting A[N] and 6[N]. Further, the spectral
parameter a and the sign of the frozen Béacklund transformation represented by By are preserved.

The proof can be adapted to a minus sign of the initial frozen Backlund transformation.
O

With Proposition 5.1.1, we have given a first impression on the utility of the dressing the defect
method. In particular, we have seen that the method can be applied to the sG equation on two
half-lines connected via defect conditions (4.1.4). The application has been simplified due to the
inherent assumption of zero seed solutions in the case of the sG equation. At this point we want
to give some insight on how to take this further. First off, we mention step (a) in the upcoming
propositions. However, since the argumentation is straightforward, the parts in the proof, which
are close to this argumentation we have already seen, can be omitted. Then, step (b) and (c)
become in the case of the NLS equation more intricate, mainly due to the consideration of nonzero
seed solutions, where the defect conditions need to be satisfied initially. However, the main steps
of the proofs are the same for dressing the defect in the case of the NLS equation.

In general, we deal with the dressing the defect and the dressing the boundary method in this
chapter. Particularly, this means that we only give propositions which build the foundation to
construct solutions via the Dressing method, while the construction itself is treated separately.
In that regard, we have shown for the model of the sG equation on two half-lines (5.1.1) and
(5.1.2) connected via defect conditions (4.1.4) that there is a way to explicitly construct soliton
and /or breather solutions, where the spectral parameters on each side need to be equal and the
norming constants need to satisfy some kind of relation which we inspect later on. As suggested in
other works, the defect conditions with defect parameter a seem to behave as though they are
‘half’ a soliton [15]. Structurally, this explains the fact that the spectral parameters used for the
Dressing method need to be distinct of the spectral parameter +ia. If we use such a parameter for
the construction of the dressing matrix, the defect conditions interact with the soliton in a such
way that Proposition 5.1.1 would not be applicable. Since, in this case, the soliton is infinitely
delayed—or swallowed—Dby the defect conditions, the need to construct a paired soliton solution
on the other half-line becomes no longer necessary. Nonetheless, it can still be proven that such a
swallowed solution exists. Later on, we elaborate on this particular case.

5.1.2 The NLS equation

As a generalization of the NLS equation (2.1.1), we present the model of the NLS equation on two
half-lines

iy + Upy + 2|ul*u =0 (5.1.8)
for u(t,z): R x Ry — C and initial condition u(0,x) = ug(x) for z € R, and
ity + gy + 2|1)*0 =0 (5.1.9)

for a(t,z): R x R_ + C and initial condition 4(0,z) = @y(z) for x € R_. In that context, taking
for example u(t,0) = a(t,0) and wu,(t,0) = @,(t,0) as boundary conditions, the two half-lines
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are connected so that there is no reflection and trivial transmission and by redefining the initial
condition accordingly, we end up with the NLS equation as in (2.1.1). As suggested before, this idea
corresponds to the choice of the identity matrix representing the frozen Béacklund transformation
(4.1.1). However, the model we are interested in arises with defect conditions (4.1.2) at x = 0.
Therefore, assume we are given seed solutions u[0](¢, z) and @[0](¢, ) to the NLS equations on the
respective half-line and two defect parameters a € R and § € R\ {0} together with the plus or
minus sign for the defect so that these solutions satisfy the defect conditions (4.1.2). Then, this is
equivalent to the fact that the matrix

_ g, L (eEiy/B — alo] - 0] —i(a[0] — u[0])
Bo(t,0,A) =1 + ¢ ( i @[0] — uf0])* o T in/FE— T = u[o]|2> (5.1.10)

represents the frozen Bécklund transformation (4.1.1) connecting the Lax pairs associated to
u[0](t,z) and @[0](t,x). In contrast to the model of the sG equation with defect conditions, in
the model of the NLS equation with defect conditions it is possible to start with more general
seed solutions u[0](¢,z) and @[0](t, x), since the reconstruction formula is not reliant on the seed
solutions to be zero. In that regard, it is not surprising that this generalization is accompanied
by a more intricate proof to show that dressing the defect can be applied. Especially, we use the
results of Subsection 4.4.2 to ensure that the signs of the frozen Béacklund transformations match,
which was in the case of the sG equation not a difficulty.

Proposition 5.1.2. Consider seed solutions u[0] and 0] to the NLS equation (5.1.8) and (5.1.9),
which at x = 0 both satisfy the defect conditions (4.1.2) with o € R and B € R\{0} and are together
with their first z-derivatives in the function space H'(R). Further, take solutions Y, 5=1,...,N,
of the Laz system (2.1.2) corresponding to u[0] for distinct A = \; € C\ (RUIRU{—2+i2, —2—i5}),
j=1,...,N. Assume that there exist paired solutions 7,,va, j=1,...,N, of the Lax system (2.1.2)
corresponding to u[0] for the same spectral parameter X = \; and that they satisfy

Jj|:p:0 :BO(t,(),)\j)ijE:O, J= 17"'7N7 (5111)

where the matriz By is associated to the frozen Bécklund transformation (5.1.10) representing the
defect conditions with either a plus or a minus sign. Then, two N-fold dressing matrices D[N],
DIN] using the corresponding solutions and spectral parameters lead to solutions u[N] and @[N] to
the NLS equation on the respective half-line, for which the defect conditions (4.1.2) are preserved
under By of form (3.1.4) if

Im @35 2A(Bu (£, 0, \) — ]1)]11)

18 greater than or equal to or rather less than or equal to 0 for all t € R depending on its limit as
[t| — oo.

Proof. (a) The N-fold dressing matrices D[N], D[N] construct, as presented in Section 3.2,
solutions u[N], @[N] from seed solutions w[0], @[0], which satisfy the same partial differential
equations. In contrast to the sG equation, we have that each solution ;(¢, ) to the Lax system
corresponding to the spectral parameter A = \; comes as a pair, where ¢;(t,r) = =i} (t, ) is
the paired solution to the spectral parameter A = A7, j =1,..., N. The requirement that the 2V
solution vectors v;(t, x) and ¢;(t,z), j =1,..., N, are linearly independent relies on the fact that
the spectral parameter A, ..., Ay and their complex conjugates Aj,..., Ay are distinct which is
ensured by assumption.
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(b) We define A\g = —5 + z§ and assume that the + sign in the matrix By, see (5.1.10), is a plus.
Again, the idea is to construct a one-fold dressing matrix we note by By which at x = 0 satisfies

the equality
N N

(TT = X)DINT) (ABo) |, = (ABx) (TTA = X)DINT)] (5.1.12)

k=1 k=1

The argumentation for the form of the matrix By = 1 + %B(O) as well as that equality (5.1.12)
implies that By satisfies the relations of the frozen Bécklund transformation for the dressed solutions
u[N], u[N] is close to the one given in Proposition 5.1.1. However, due to the seed solutions not
being zero, we have that the initial matrix representing the frozen Bécklund transformation is
time dependent and therefore the derivative of By is in this case not equal to zero. Therefore, we

need to include at x = 0 the following equality (By); = V[0]By — ByV[0] in the derivation of (Bx);
resulting in

= Di[N|By(D[N])™ + D[N](By)«(D[N])™" + D[N]By((D[N]) ™),
= V[N|D[N]By(D[N])~* — DIN]By(D[N])~'V[N]
= V[N|By — ByV[N].

Moreover, due to By having off-diagonal entries, we can not simply identify the compatible kernel
vector for the spectral parameter \g immediately as for the sG equation. Rather, we need to
assume in a more general fashion that there exists a kernel vector vy of the defect matrix By by
means of Proposition 4.2.1 in addition to the vector 1y chosen as the usual solution of the Lax
system (2.1.2) corresponding to u[0] for the spectral parameter ). In theory, we would want to
use the zero \y and associated kernel vector vy for By to introduce a new kernel vector to the same
zero in order to construct a one-fold dressing matrix as in the case of the sG equation so that we
obtain two additional zeros and associated kernel vectors for the equality of the matrix polynomials.
However, at this point it is not clear that the vector vy and ¥1,...,¥nN, @1, ..., pN are linearly
independent. With that in mind, we differentiate two cases: The two vectors vy and vy are

1. linearly dependent at x = 0. This is the case we covered in the proof of Proposition 5.1.1. Since
by Proposition 3.2.5 1y can not be expressed as a linear combination of ¢, ..., ¥y, we define

Yo = DIN(t, %, Ao)tbo # 0.

Then, constructing, up to a function of A, a one-fold dressing matrix, which we denote by By with
the vector ¢, and the corresponding spectral parameter \g, at x = 0 we have

D[N] (t, xZ, )\0)()\60)@, xZ, )\Q)wo = ()\BN)(t, Z, Ao)D[N] (t, x, /\0)’(/10 = 0,

~ (5.1.13)
D[N] (t> Z, _AS)()‘BO)(ta €, AS)SDO = ()‘BN)(t> Z, )‘S)D[N] (tv Z, AS)@O = Oa

where @y = —i027); is orthogonal to .

2. linearly independent at x = 0. Then, the diagram of Figure 5.1 holds. In other words, if we
have that v is a solution of the Lax system (2.1.2) corresponding to u[0], where vy, ...,y are by
assumption linearly independent, then the N-fold dressing matrix D[N] is nonsingular at A = X.
Therefore, we can transform g to ¢, = D[N] ’ — /\01/10 and by this transformation and the fact that
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the dressing matrix satisfies relations (3.2.15), we can infer that

<¢6)$ = (D[N]|)\:)\O)$77Z)U + D[NH)\:)\O(Q/}O)CC
=U[N]|,_, DIN]

=UIN]|,_, %%

and the same for the ¢ part so that vy, is a solution of the Lax system corresponding to u[N] at
A = Xo. Now, since the kernel vector and v are linearly independent, we can at x = 0 follow
the same argumentation to derive a transformed solution vy = By(¢,0, A)thg, which is not the
zero vector and satisfies the Lax system corresponding to u[0] at = 0 and A = \g due to the
matrix By(t, 0, ) representing the frozen Bécklund transformation satisfying (4.1.1). Then again,
this can be expanded by the application of D[N] to a solution 9, = D[N]t of the Lax system
corresponding to @[N] also at £ =0 and A = \y. Then, the connection of @/}0 to ¢0 implies that
the product of matrices D[N]Bo(D[N])~! satisfies the relations (4.1.1) with Z[N], V[N] and U[N],
VIN] at 2 = 0 and A = A. In other words, there exists a matrix, we call By = D[N]By(D[N])™*
satisfying

|>\:>\0 wo

((Bw)x — UIN]By + ByU[N])¥) =0,

((Bx): — VIN|By + By VN =0
at A = A\g and x = 0. In that regard, as we have already shown this is equivalent to
5[]\[] (t, Z, )\0)()\60)(15, Z, )\0)1/10 == ()\BN)(t, Z, Ao)D[N] (t, Z, /\0)1/}0 §é 0, (5 1 14)
D[N] (t7 Z, _)‘8)()‘80)<t7 Z, )‘8)900 = (/\BN)(t> Z, )‘S)D[N] (tv Z, /\6)900 7é 0

at x = 0. Note that we have not exactly constructed the matrix By, but merely given a reasoning
for the existence of a polynomial matrix ABy of degree one which satisfies (5.1.14).

1)y solves {¢ V{0l DIN Wy = D[Nty solves {% VN
Bol By

- Vo = U] N T e = U[N]

g = Bythg solves {wt Ry BT Yy = D[Nty solves {wt _ PN

Fig. 5.1. Properties of 1y at A = \g and = = 0 if By(¢,0, Ag)1ho(t,0) # 0 for all t € R.

Given By as in one of the two cases leads to commuting matrices at the point x = 0 of the defect
conditions. To prove (5.1.12), we write each side as a matrix polynomial. Denoting the left and
right hand side as L(\) and R(\), respectively, we obtain in both cases the following

N
L) = ([T = X)DINT) (ABo)|,_y = AV Lvar + AV Ly + -+ + ALy + L,
k=1
N
R(A) = (ABw) <H<>‘ - )‘Z)D[ND |z:0 = ARy + ARy + -+ + ARy + Ro.
k=1
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Since again Ly,y =1 = Ryy1, only Ly, Ry, ..., L1, Ry, Ly and Ry need to be determined. In
that regard, we consider the zeros and associated kernel vectors of L(\) and R(\). By construction

of the dressing matrices D[N], D[N], we have that D[N](t, z, Aj)Y; =0 and D[N](t,, )\j)zzj =0,
Jj=1,..., N, which we combine with the assumed relation between v; and ;. Thus, for the 2N

linearly independent vectors vy, ..., %N and @q,..., N, at £ = 0 we obtain
L<)‘)‘)\:)\jwj =0, R<)\)‘)\:)\j¢j =0,
LN|,op9i =0, R[5y 05 =0
for j = 1,...,N. For the matrix ABy of order one, this is not enough to ensure equality in

(5.1.12). However, we derived additional conditions for By, i.e. (5.1.13) and (5.1.14), so that there
is an additional vector pair for which the two sides are equal, but not necessarily zero. Hence in
both cases, at x = 0 we have L()\)|/\:/\Ow0 = R()\)L\:,\Owo, where this equality is either nonzero
in the case of linear independence or zero in the case of linear dependence of vy and 1. As
before, the symmetry of the Lax pair provides another vector ¢y for which at x = 0 the equality
L(N)| Ao PO = R(N)| Aex; PO holds. Let us stress again that it is not important having additional

zeros and associated kernel vectors of L(A) and R(A), but rather linearly independent vectors for
which an equality as above holds, since, in the end, we consider the difference of the polynomial
matrices rather than the polynomial matrices themselves. Thus, this additional pair of vectors is
sufficient to determine the difference C(\) = L(\) — R(\) = ANCOy + -+ + AC; + Cy. Together
with the zeros and associated kernel vectors of the dressing matrices D[N], D[N], it can be written
as a set of algebraic equations. In matrix form, we have

Mo (N)Neo -+ AVon (M) Ven

(CN7“'JCO> =0.

Yo %Yo ey ¥YN
As for the sG equation, the (2N + 2) x (2N + 2) matrix filled with g, @0, ..., %N, @n is invertible.
If the determinant is zero, we could find coefficients in C such that a linear combination of
Yo, ©o, - - -, Un, oy Would be zero, which is a contradiction to their linear independence, which we
justified in Proposition 3.2.5. Therefore, L(A\) = R(A) holds in both cases either linear dependence
or linear independence of the kernel vector vy and vy, which, in turn, implies that we actually
have found a matrix By satisfying equality (5.1.12). Moreover, since we now know that in both
cases By can be written as D[N]By(D[N])™" at = = 0, we can infer that the matrix ABy becomes

singular at A = Ao and A = Aj. Moreover, note that the determinant of each factor is ¢ and z
independent to begin with. In fact,

det(\MBy) = det(H()\ - A;;)E[N]) det(\Bo) det( = A;;)D[N])1
= det()\Bo)
= (r+ %)2 i Iﬂ[(ﬁ —uldll }l\a[()] — u[0]]?
= (A= 20)(A =)
N qang T

4 ?
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where the determinant of the dressing matrices is given by

det<ﬂ(A—A;)D[N}>:det(ﬂ(A D ) ﬁ A=A = AD),

k=1 k=1

see Remark 3.2.9. Consequently, the matrix A\By admits kernel vectors at these spectral parameters.
Due to the fact that in the case of linear dependence we already identified a kernel vector
Yy = D|N]| | — AO@DO, this kernel vector is the foundation for both constructions of a one-fold dressing

matrix By satisfying (5.1.12). Particularly, the dressing matrix By is initially defined for ¢ € R,
z € R and for the equality (5.1.12) restricted to z = 0.

(c) Consequently, part (b) implies that there exists a matrix B which is ¢ and = dependent
such that By(t,z,\) =1+ 1[)’(0) (t :1:) satisfies the frozen Bécklund transformation (4.1.1) with

U =U[N], U = U[N] and with V = V[N], V = V[N]. By Proposition 3.1.1, there exist spectral
parameters 7,6 € R and a plus or minus sign such that By (¢, x, A) can be at x = 0 expressed as

L (i /@ AN = u[N]P —i(a[N] — u[N])

Comparing the determinant of this matrix multiplied by A to the determinant of ABy we already
calculated by the definition as a matrix multiplication, we obtain two conditions on the spectral
parameters:
V462 o+

4 4
Hence, the spectral parameter of By(t,0, \) can effectively be determined to be v = a and 6% = 2.
However, this observation carries no information on the + sign. In that regard, we know that
from solutions u[0], 4[0] to the defect conditions with a selected sign, we can construct solutions
u[N], @[N] which satisfy the defect conditions with either the plus or the minus sign. A particular
case can be determined for which we are able to prove that the sign stays the same, ultimately
restricting the solution space. Therefore, two additional assertions are necessary in order to ensure
that

7=

(i) the plus sign is preserved at least at a specific time;

(i) the sign can not change under time evolution.

For the first point, the assertion
u[0)(,0), al0)(:, 0), ul0]a(-, 0), [0l (-, 0) € H; " (R) (5.1.15)

is sufficient. Then, we have by Proposition 4.4.3 that u[N](-,0), a[N](-,0),u[N].(-,0), a[N].(-,0) €
H}''(R), since D[N], D[N] are N transformations of the form B -y for j=1,..., N. In this
class of solutions, we can derive that the + sign of the frozen Backlund transformatlon or rather
their matrix representation being either By(t,0, ) or By(t,0, ), is closely related to the kernel
vector at the corresponding spectral parameter of their respective form as dressing matrix. In
relation to that, we have worked out in (b) that 1), is the kernel vector of By at A = \g and by
construction, we have that 1, = D[N] ’/\:/\Owo is the kernel vector of By at A = Ay and x = 0. On

the other hand, if one interprets By(¢,0, \) as a dressing matrix transforming 1;(¢,0) to Jj (t,0),
by Lemma 4.4.4, we have that as |t| goes to infinity By(¢,0, ) becomes a diagonal matrix and
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as a consequence, the limit behaviors of (¢, 0), @(t, 0) are the same for j = 1,..., N due to
assumption (5.1.11). Consequently, by Lemma 4.4.4, the dressing matrices (Hgil(/\ — )\Z)ZN?[N])

and (Hff:l()\ — /\}Z)D[N]) have at z = 0 the same distribution of A —\; and A— A7 in their diagonal

form as |t| — oco. Thus,

lim By(t,0,A) = lLim D[N](t,0,\)By(t,0,\)(D[N](t,0,A))"

[t|—o0 [t| =00

= lim By(t,0,\). (5.1.16)

[t| =00

Alternatively, one could look at the vectors ¢y and ¢, which are at A = Ao and z = 0 the kernel
vectors of By and By, respectively. Since they are connected by D[N] { g which admits a diagonal
structure as |t| — oo, the kernel vectors also have the same limit behavior as |t| — co. Both
reasonings imply that given a plus sign in the (11)-entry of the matrix By corresponding to the
frozen Bécklund transformation, we can then conclude by the limit behavior of ¢y and 1, or
(5.1.16) that the sign in the (11)-entry of the matrix By(t,0,A) also needs to be a plus sign at
least for |t| big enough.

Then, for the second point, the assertion regarding the imaginary part of a particular entry
of the matrix By, which is exactly the term influenced by the sign, is sufficient to ensure that
the sign stays the same. By the definition of the matrix By representing the frozen Bécklund
transformation, we have on the one hand that Im(2)\B§0) (t,0)) = £+/82 — |a[N](t,0) — u[N](t,0)[2.
On the other hand, by the construction in (b) we find that it can also be expressed as

[D[N](t,0, Xo)bo(t,0)]2
[DIN](t,0, Ao)tho(t,0)]1

- |A0(ta0)|2
1+ [Ag(t,0)2

Im(2AB"(¢,0)) = -3 Ao(t,0) =

Now, by the first point, the sign of the imaginary part is fixed as +|3| for |t| big enough.
Consequently, the limit behavior of |Ag(¢,0)| is either zero or infinity as |t| goes to infinity
depending on the sign of /3, so that Im(2)\B§0) (t,0)) goes to —f or 8 in order to match |3|. Then,
the assertion, which is equivalent to either |Ay(¢,0)] > 1 or |Ay(¢,0)| < 1, ensures that the sign
stays the same for all t € R.

Therefore, the solutions u[N| and u[N] satisfy defect conditions based on the same defect
parameters and sign as the defect conditions for u[0] and w[0] inferring the result under the
assertions of Proposition 5.1.2. n

Here, the frozen Bécklund transformation of Proposition 5.1.2 actually admits a ¢ dependence
accompanied by a matrix representation which not only has entries on the diagonal in contrast
to the one applied in Proposition 5.1.1. This leads to a necessary development in order for the
method of dressing the defect to still be applicable. Superficially, the same steps (a), (b) and (c)
which we have worked out earlier need to be employed in order to prove the result for the model of
the NLS equation. However, no particular changes are needed to adapt step (a) apart from the
different analysis regarding the spectral parameters. The main difference in step (b) is that due to
the seed solution not necessarily being zero the connection of the kernel vector of By(t,0,\) at
A = Ao to the solution 1 of the Lax system corresponding to u[0] at A = \g is not as evident as
for the sG equation with defect conditions. That being said, if we use zero seed solutions for the
NLS model as in Proposition 5.1.1 for the sG model, the ¢ dependence of the frozen Bécklund
transformation would disappear and further we would be left with a diagonal matrix for which the
steps are basically indistinguishable. Continuing, in step (c) the consequences of this more general
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frozen Bécklund transformation ultimately go back to the arbitrariness of the kernel vector that is
the inability to exactly determine the parameters and the sign of the matrix By(¢,0, A) in the form
of a matrix representing the frozen Béacklund transformation of u[N] and u[N]. At the same time,
the kernel vector in this case can be used to resolve this additional complication by considering the
limits as the time goes to infinity and assuming that the sign stays that way under time evolution.
Again, starting with zero seed solutions, this step would be the same as in Proposition 5.1.1 for
the sG model. Moreover, this calls for the necessity to restrict the solution space in order to be
able to analyze the limits of the kernel vectors as time goes to infinity.

The important feature of the two proofs of Proposition 5.1.1 and 5.1.2 is that the matrix
By(t,0,\) (or By(t,0,A)) is interchangeable with the dressing matrices D[N] and D[N] in the
sense of Figure 4.3. In turn, this is realized through the transition of the matrix By to a dressing
transformation and vice versa the introduced one-fold dressing matrix By (t,z,\) (or By(t, z, \))
to a matrix which at x = 0 represents a frozen Backlund transformation.

Initially, the method of dressing the defect has been developed for models of partial differential
equations on the half-line subject to boundary conditions at z = 0, for which it is known as dressing
the boundary. In this context, it has been successfully applied to the NLS equation with Robin
boundary conditions [42| and the sG equation with sin-boundary conditions [43]|. Both of these
models can be written with a corresponding Lax system for which the boundary matrix is diagonal
and particularly ¢ independent. As we have seen in this section, inserting solitons with N-fold
dressing matrices under these circumstances requires slightly less effort due to correspondence of
the kernel vector and the solution of the Lax system corresponding to the seed solution both at
the same spectral parameter A = \g. In fact, the consideration of the kernel vector can be omitted
entirely if it is e.g. possible to identify an additional equality for the coefficients of the matrix
polynomials L(A) and R(\) instead. In the next section, we want to show that the method we
have developed for dressing the defect can without difficulty be adapted to most of the models for
the NLS and sG equation on the half-line with boundary conditions presented in Section 4.3. In
that regard, we have suggested in Subsection 4.4.1 on how to choose pairs of spectral parameters
for the boundary conditions, which can be expressed with the corresponding boundary matrix by
relation (4.3.1) to be preserved.

5.2 Initial-boundary value problems

Not surprisingly, there are plenty of differences between dressing the defect and dressing the
boundary. The first one coming to mind is the spectral side equivalent to the defect or boundary
conditions, which is in the case of the defect conditions given by two matrix relations (4.1.1)
representing the ¢ and x part and in the case of the boundary conditions by a matrix relation
(4.3.1) representing a symmetry with respect to A inherent only to the ¢ part. Further due to these
relations, sets of spectral parameters, which are sufficient for the defect or boundary conditions to
be preserved under the Dressing method, could be deduced. For the defect conditions, we have
identified the possibility where on both half-lines the same spectral parameter is used to construct
a solution preserving the defect conditions. On the other hand for the boundary condition, the
same process has led us to the choice of a pair of spectral parameters which underlies the inherent
symmetry with respect to A of the ¢ part of the matrix relation [42]. It also turns out that in the
cases where the boundary matrix for the seed solution is not a diagonal matrix, i.e. the Dirichlet
and cos-boundary condition for the sG equation, this process of finding sufficient pairings of spectral
parameters is not adequate. Furthermore, having the distribution of zeros under the symmetry
from Figure 4.2 in mind as well as the proofs for the method of dressing the defect, where the
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existence of sufficiently many kernel vectors with associated spectral parameters is ensured, it is
predictable that the cases in which zeros may coincide need to be treated separately. For the NLS
equation, this case occurs with boundary-bound soliton solutions if for example A\; = in;, since
then —\} = un;; for the sG equation, this case occurs with boundary-bound single soliton solutions
or boundary-bound breather solutions if for example Ny = 1 and |A;| = 1, since then \; = +i and
1/A\} = %i. In particular, A — —X and A — 1/ are the aforementioned symmetries of the ¢ part
for the NLS and the sG equation, respectively.

5.2.1 The sG equation with boundary conditions
Consider the sG equation on the (positive) half-line
Htt — emz -+ sinf =0 (521)

for 0(t,z): Ry x Ry — C and initial conditions 6(0,z) = 0y(z) and 6,(0,2) = 6,(z) for x € R,
together with the sin-boundary condition

o(t
0.(t,0) = asin (2’0),

where o € R. Then, it is obvious that the zero seed solution 0[0](¢,z) = 0 satisfies this model
with zero initial conditions. Note that in the case of cos- or even Dirichlet boundary conditions
this is in general not true for arbitrary v € R and for the case that it is true (o = 0), we
have that these are already special cases of the sin-boundary condition. For this result, we
split the simple eigenvalues or zeros of the Dressing method into N = Ny + 2N, + 2Ny, N,
the number of single solitons for which we have two linearly independent solutions v;(t,z) and
w;(t,x) = o1(t,z), j =1,..., N, of the Lax system (2.2.3) corresponding to 6[0] for the spectral
parameter A = \; and A = A} = —)\;, respectively, N, the number of breathers for which we
have four linearly independent solutions 9;(t, ), p;(t,z) = o19;(t, ), VN, (t, x) = o395 (L, )
and @i, (t,x) = o1¢en,(t,2), j = Ns+ 1,...,N; + N, to the spectral parameter \;, —\;,

Aj+N, = —Aj and Aj,y, = A, respectively, and Ny, the number of boundary-bound breathers
for which these four spectral parameters additionally lie on {A € C: |A\| = 1}. Further, we
assume that the selected spectral parameter are always sorted so that for A\;, 7 =1,..., N, we

have that Ar,..., Ay, € iR\ {=4,0,i}, An,+1,- -, An,42n, € C\ (RUIRU{X € C: || =1}) and
ANg+2Ny+15 - - -, AN € {A € C: |A| = 1}\ {—i, —1,1,4}. Moreover, we define Ny = 2N+ 4N}, + 2Ny,

Proposition 5.2.1. Consider the zero seed solution 0]0] = 0 to the sG equation on the half-
line (5.2.1), which at x = 0 satisfies the sin-boundary condition with o € R\ {0}. Further,
take solutions v;, 7 = 1,...,N, of the Lax system (2.2.3) corresponding to 0[0] for distinct
A=) eC\ (]RU {—z,z}) If |o| < 2, the spectral parameters \;, j =1,..., N, further need to be

different from the four points j:%a +4/1 whereas if |o| > 2, the spectral parameters \; need

_a?
47
Ot2

to be different from the four purely imaginary points z(:l:% T4/ T — ) Assume that there exist

paired solutions

(i) 1?, j=1,..., Ny, of the same Lax system for the spectral parameter A = )\;1 and that they
satisfy

-~ _ 1\,
Dil_o = Ko ")y (5.2.2)
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(1) f@j, 'le+Nb7 j=Ns+1,....,Ng+ Ny, of the same Lax system for the spectral parameter A = )\;1
and A = )\j_iNb, respectively, and that they satisfy

~ 1\, -~ #\ (—
7\pj‘m:o - K0<A§ ) bbb)wj|z:0’ 2/}j's'Nb‘gv:O - KO((_)\J)( I)Nbbb)¢j+Nb|m:0‘ (52?))

o [Further, for j = Ny +2Ny+1,..., Ny + 2Ny + Ny, assume that the solutions of the Lax system
Vi, @i, Yixn,, and @iin,,, satisfy the following relations

—1)V _ 1\,
N | o = Koy o YN | o = Ko((= A1) )s] . (5.2.4)

The matriz Ko(X) is associated to the boundary matriz (4.3.10) representing the sin-boundary
condition. Then, an Ngy-fold dressing matriz D[ Ny| using the corresponding solutions and spectral
parameters leads to the solution 0[Ny to the sG equation on the half-line, for which the sin-boundary
condition (4.3.7) with either a or —a as boundary parameter is preserved.

As for dressing the defect, we shall show that the function 6[V,] constructed with the Ny-fold
dressing matrix (a) satisfies the sG equation on the half-line, (b) is regarding to the Lax system
subject to the boundary constraint with a matrix Ky, which is not specified in terms of the
solution, and in conclusion, that (c¢) Ky inherits the parameter o or —a from Ky. Therefore, it
is important to note that the zero seed solution satisfies the sin-boundary condition with both
boundary parameters o and —a.

Proof. (a) For j =1,..., N,, we take the distinct spectral parameters \; and )\;1 and corresponding
linearly independent solutions of the Lax system. Further, for j = Ny, +1,..., N, + N,, we take
the distinct spectral parameters \;, Ajin,, )\j_l and )\J_j n, and corresponding linearly independent
solutions of the Lax system. Finally for j = Ny + 2N, + 1,..., Ny + 2N, + Ny, we take the
distinct spectral parameters A\; and \;y,,, and corresponding linearly independent solutions of
the Lax system. Altogether, we then construct the Ny-fold dressing matrix with these Ny linearly
independent solutions, see Remark 3.2.6, of the Lax system (2.2.3) corresponding to #[0]. This
ensures that §[N,] is, in fact, a solution of the sG equation on the half-line (5.2.1). Clarifying which
particular spectral parameter we use in order to construct the dressing matrix comprehensibly
provides us with the means to obtain the equality of the polynomial matrices more easily. Now, for
the dressing matrix D[Ny](t, z, \) and the dressing matrix D[Ny|(t, z, A\™') where we inverse the
spectral parameter, we suggest multiplying the matrices with polynomials of A in order to remove
the singularities: For single solitons, we multiply D[Ng](t, z, \) with TI; = [Tr=, (A=A (A—=1/A%))
which is the same for D[N (t, 2, \™1) since [Ta2, (A=A A=1/A5) = A2 T, (AP =1/A8) (A1 =
A;)). Similarly for breathers, we denote the following term

T (=) 000~ T (G- G G- G o)

by I, and multiply D[Ng|(t, z, \) and D[N](¢, z, \™') with it. Merely, the factors for the boundary
bound breathers differ, i.e. II3 = g;}ig}ivjbf(()\ — M)A+ X)) for D[NyJ(t,z,\) and II} =
A2 Hgi}ffg}ﬁbf(@(l — X))\t + ) for D[NyJ(t,z, A71). Therefore, we prove step (b) with
the dressing matrices multiplied with their respective three products denoting each one again as
D[NJ(t,z,\) and D[Ny|(t,z, \™'). Further, given these modifications, the new dressing matrices
are polynomial matrices of degree Ny and can be written as

D[Ny (t, 2, \) = ANl + -+ By, (t, ) and  D[N(t, 2, A7) = ANXy (8, 2) + -+ + 1.
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(b) The sin-boundary matrix is given by

—_

Ko (t, A0 =

e )

which is, in particular, ¢ independent, and therefore

(=2 +a

VI[0](£,0, A" HKe(ATD™) — Ky(ACD™™)Y[0] (2,0, A) = (Ko(ATD™™)), = 0. (5.2.5)

The minus sign for a can also be chosen to be plus due to the zero seed solution satisfying the
sin-boundary condition with a and —a. Therefore, the goal is to construct a matrix, which we
note as Ky and which particularly satisfies KN’:E:O — D[N (t,0, A" Ko(ACD™) D[N, (£, 0, \).
Similarly to equality (5.1.6), we have

(DINGJ(t, 2, A" Ko(ACD™ )| = (R (t, 2, N D[N (t, 2, \)] (5.2.6)

=0 z=0"

Moreover, it is important to note that equality (5.2.6) is sufficient for Ky to satisfy (4.3.1) at z =0
except for the zeros of the Lax system. To show this explicitly, we multiply the equation with
(D[Ny|(t,0,X))~! from the right and differentiate the resulting equation with respect to ¢ to obtain

(Kn)e|,_y = (DINa)(t,0, A" Ko(ATD™ ) (DIN](t,0, 1))
— Dy[Ng](t, 0, A" HKo(ACD™ Y (D[N (£,0, X))~
+D[Nd](t70’)‘ )KO()‘( 2 bbb)((D[Nd](tv()?)‘))_l)t‘

Utilizing the ¢ part of (3.2.15) for a Ny-fold dressing matrix, we have

(
DUING](£,0, A7) = VNG (£, 0, A" D[N (£, 0, A™1) — DNI(t, 0, A" V[0](£,0, A1),
(D[Na)(t,0,A); " = —=(D[Ng](t,0, X))~ V[Ng] (2,0, %) + V[0] (£, 0, \) (D[N (¢, 0, 1))

Hence, since equality (5.2.5) holds, by identifying every product of the matrices D[Ny|(¢,0, A\71),
Ko(ACD™Y and D[N~ (t,0, \) with KN‘:L‘:O we can derive that

(K|, = VIN(£,0, A K (1,0, \) = Ky (£, 0, V[N, (£, 0, \). (5.2.7)

The multiplication of the dressing matrices with a product only depending on A has no impact
on this calculation. Now for the construction of the matrix Ky, we take a closer look at the
matrix multiplication. Due to the polynomial expressions of D[Ny|(t,z, \) and D[Ng|(t,z, A1), it
is reasonable to assume that as in the proof of Proposition 5.1.1 the matrix Ky can be written as

142 1
<\/<)\ - X) + a2> K|, _, =KX+ KO 4 XK( L

where KM, K© and K-V are ¢ dependent matrix coefficients which need to be determined.

Therefore multiplying both sides of equality (5.2.6) with Ay/(A — ) + a2, we obtain polynomials
L(A) and R(X) with matrix coefficients on each side. In particular,

L) = AN Ly o + AN Ly 4+ L,
R\ = AN Ry o + AV Ry o+ - 4 Ry
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Considering the highest order matrix coefficient of each factor, we have Ly, o = —(—1)Ni3y 03.
Furthermore, similarly to the proof of Proposition 5.1.1, by assumptions (5.2.2), (5.2.3) and (5.2.4)
and the construction of the dressing matrix we have 2N, zeros and associated kernel vectors at
x = 0 for the right and left side given by

R()\M)\:)\jwj = 07 R(A)h:,)\;iﬁﬂm = 07 R()‘)|/\: wj = 07 R()\)‘)\:%leJrNb = 07

R()\)‘A:_Aj%' =0, R(A)|>\:>\;ﬁ(‘pj+Nb =0, RAN)|,_1@=0,  R\)|,_1 ®jsn, =0

a1
Aj

A A

<
<. %]

and

L<)‘)’)\:)\j¢j - 07 L()‘>‘)\:_)\;1/Jj+]\/b - 07 L()‘)})\:ij - 07 L(A)|>\:%¢j+Nb = 07

L(/\)’A:_)\j@j =0, L()‘)‘)\:)\; @j+n, =0, L()‘)})\:— @j =0, L(A)|>\:%@j+Nb =0,

J J

respectively. Therefore, the whole set of eight zeros and associated kernel vectors is only provided
in the case of breathers, i.e. for j = Ny+1,..., Ng+ N,. In the case of single solitons, j = 1,..., Ny,
we have A\ = —)\; so that there are essentially four zeros and associated kernel vectors after
matching the ones which are replicates. In particular, the second and the fourth column are
repetitions of the first and third column, respectively. Also in the case of boundary-bound
breathers, ) = Ny + 2Ny, +1,..., Ny + 2N, + Ny, we have )\;f = )\;1 so that again there are only
four zeros and associated kernel vectors after matching the ones which are identical under the
assumption (5.2.4). In fact, the third and the fourth column are repetitions of the second and
the first column, respectively. Hence, there are 4N, + 8Ny + 4Ny, = 2N, equalities. Note that
the property Ky'(A*!) = Ko(AT!) for the sin-boundary matrix proven in Proposition 4.3.2 is used
here in order to derive Ko()\;-Fl){/)\j =1); at © = 0 justified by assumption (5.2.2), etc. Further, the
symmetry of Kq given by Ko(A) = 01Ko(—A)oy is needed to identify the zeros for the left hand side.
As we have explicitly seen in the proof of Proposition 5.1.1, we need to have double the amount
of zeros and associated kernel vectors if we want to determine the unknown matrix coefficients.
Therefore, the 2N, zeros are not enough to prove equality of L(\) and R(\).

Consequently, we devote special attention to the boundary matrix. Interpreting the boundary
matrix KO(A(*I)NM’}’) as a two-fold dressing matrix, we again have that the zeros are actually the zeros
of the diagonal entries of Ko(ACD™). As a result, we calculate the zeros of A2 — (—1)Nesbia\ — 1
which are in the case |o| < 2 given by

: 2
Ay = (_1)Nbbb%i\/1—% e{ANeC: |\ =1} \{—i,i,—1,1},

in the case of |a| = 2, there is a double zero Ay = (—1)™4 and in the case |a| > 2 by

2
A = i((—l)Nbb”% + O‘Z - 1) € iR\ {—i,0,i}.

At the same time, we have that A% are the zeros of ¢\ times the (22)-entry of Ky(\) yielding

e D™ a0 A ) 0
Ko(A )_i)\ (/\_%)2+a2( 0 ()‘_/\i)(/\_/\i))'
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Then, as before due to the zero seed solution §[0] = 0, we take the solutions 1 o of the Lax system
corresponding to the zero seed solution at A = Ay with uy # 0 and vy = 0 in (3.2.1) for which

we then have Ko( bbb

AL, 42 with a two-fold dressing matrix with the kernel vectors D[Ny] | N 14 o corresponding to

)+ o| = 0. Therefore, constructing Ky (¢, z, A) as a multiplication of

the zeros A1, we have at least two additional zeros and associated kernel vectors of both matrix
polynomials L(\) and R()\), which, in particular, are together with the vectors used for the dressing
matrix linearly independent. In other words, at x = 0 we obtain

R(/\)|)\:)\iwi,0 = 07 L()\>‘)\:)\iwi,0 = 07
R(/\)l/\:/\:tcpzl:,o = 07 L()‘”)\:)\;(P:I:,O = 0.

In the case of || = 2, we technically only have a one-fold dressing matrix which we just multiply by
itself to obtain a matrix of sufficient order. If we arrange these 2IN; + 2 equalities of the difference
C(A) = L(A) — R(X\) which is a polynomial matrix of degree Ny + 1 in A as a system of zeros and
associated kernel vectors in matrix form similar to (5.1.7), it can be concluded that the difference
is in fact zero. In case || # 2, the additional observation that the highest order coefficients are
equal is unnecessary. Hence, we have found a matrix Ky for which at 2 = 0 equality (5.2.6) holds.

(c¢) By the reconstruction formula (3.2.16), we have that the dressing matrix multiplied with the
products can be expressed as

= (—1)Nwei 3t

(LI, D[NG)) |, _, = (—1)"" D[Ny

)

‘)\:0

since Ny is always even. On the other hand, we have written D[/N;] multiplied by the products at
z = 0 also as polynomial matrix so that (II;IIsII3D[N,]) ‘/\:0 = Y, (t,0). Thus, if we compare at
x = 0 the zero-th and the (2Ny + 2)-th order matrix coefficients, we obtain the equality of

Lo = (—1)Nowigy = KEVSy (£,0) = Ry
and the equality of
L2 = —(=1)"iZy, (t,0)o5 = KV = Ry, 1,

respectively. Consequently, the two ¢ dependent matrix coefficients of Ky are at = 0 given by

0[N, 0| N,
KV = —-KY = —4 (03 COS —[2 d + oz sin —[2 d)

=0

Moreover, the symmetries of V(¢,z, \) given in Section 2.2 imply that

Ky (t,x,\) —al(KN )017
K t.CL’ )\ —O'Q(KNtI /\* ) 09,
Ky (t,x, \) —0'3(KN ) 03.

From the first symmetry, we deduce that K (¢,0) = 01 K((¢,0)0; so that

K90 K90
K(O)(t,o):( Bo0 KgeD),
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where the entries Kg? (¢,0) and g ( O) still need to be determined. By the second and third
symmetry, we obtain K©(¢,0) = 0, KO (¢,0)*cy = 03K (¢,0)*03 and as a consequence

Im(K1Y(,0)) = Re(K13(£,0)) = 0.
Finally, by the particular choice of the products Iy, Iy, I3 and II5, we have
det <H1H2H3D[Nd] (t 2, A)) — det (HlnzngD[Nd] (t,z, xl))
so that calculating the determinant of Ky at x = 0 via the matrix product, we derive
det Ky| _, = det(Ko(\V™")) =1,

where we already calculated the determinant of Ky(A*!) in the proof of Proposition 4.3.2. Then,
comparing this determinant of the matrix Ky at z = 0 to snnply calculating it with the information
we have, we see that (K7 (¢,0))2 — (K\9(¢,0))% = (Re(K{Y(¢,0)))2 + (Im(K\Y(¢,0)))? = a2. With
regards to the expressions of the boundary matrices for the sG equation, see Proposition 4.3.2,
it seems that Ky could be consisting of a mixture of al and iao; representing the sin- and
cos-boundary matrix, respectively. However, as suggested in the proof of Proposition 4.3.2,
there is a way to distinguish both cases, since they differ in the condition regarding the inverse.
Correspondingly, let us show that Ky'(¢,0,A) = Ky(¢,0, A7), where we know that this property
holds for Ko(ACD™*). On one hand, we have

Ky (£,0,A) = D[N (t, 0, VK5 (AT D[N, (¢,0, A7)
and on the other hand, we have

K (t,0,A71) = DINgJ(t,0, \Ko(A™) V™) DINJ(£,0,A7Y),

which is thus equal. Hence, if we write out this property for the matrix Ky as devised so far,
K'9(t,0) = 0 is implied immediately and furthermore K\ (¢, 0) = +al.

Therefore, we have found a matrix Ky which at = 0 is of the form of the sin-boundary matrix
and also satisfies equality (5.2.7) so that the sin-boundary condition with either a or —a or 6[/Vy]
is satisfied. O

As for dressing the defect, applying the method of dressing the boundary to the sG equation is
simplified considerably due to the zero seed solution. By the process of determining the sign of the
frozen Bécklund transformation we have developed for the NLS equation, it is possible to take the
limit ¢ to infinity in order to match the sign in front of the spectral parameter in the proof we have
just worked out. However, this is only feasible in the case where there are no boundary-bound
breathers, since we could then show similarly to the NLS equation that 8| Ny| goes to a multiple
of 2 as t goes to infinity. Nonetheless, we omit this analysis here, since the seed solution of the
sG equation satisfies the boundary condition with both o and —« and therefore ‘preserving’ this
condition is a given either way.

Remark 5.2.2. In the case of a boundary-bound single soliton solution which corresponds to the
choice \; = +i, we can explicitly calculate that the sin-boundary condition is not satisfied for
arbitrary o € R.
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Nevertheless, Proposition 5.2.1 gives the means to implement an arbitrary combination of
a single soliton, breather and boundary-bound breather solutions into the sG equation on one
half-line subject to the sin-boundary condition. Therefore, the partition of the spectral parameters
plays a crucial role. Comparing the initial number N of spectral parameters which are meant to
be used in the Dressing method and the actual number N; which is used in Proposition 5.2.1, it is
noticeable that single solitons and breathers come in pairs and boundary-bound breathers need
to satisfy a particular relation. Moreover, this distribution is also used in the upcoming models
of the NLS equation. An attentive reader might as well have noticed that the exception of the
boundary-bound single solitons is not limited to the application of the Ny-fold dressing matrix, but
also influences the proof where this is equivalent to |a| = 2. Particularly, the following observation
comes in handy.

Remark 5.2.3. The sin-boundary matrix K(¢, 0, A) with the boundary parameter «, where |a| > 2,

can be viewed with rk,; = <% + (=1)74/ %2 — 1) as the product of two Darboux matrices and a

rotation matrix. Let

. 0 .. 0
' _ iKa,j (cos§ —ising
Bt ) =1+ A (z’sing —cos§>

where both matrices have the same sign, then the sin-boundary condition (4.3.10) admits the
factorization

(0.0, = o (25 T ) Byt VBalt )
(A= 1)2 4 a2 ising —cosg w=

Note the following instrumental equalities ko1 + Ka2 = @, Kaika2 = 1 as well as (o3 cosg +
o 0\2
oysin5)* = 1.

Taking this into consideration, the factorization of Ko(A)"*) in the proof of Proposition 5.2.1

in order to identify the zeros and associated kernel vectors becomes more transparent. Effectively
for |a| > 2, the boundary condition is represented by two single solitons which are present at the
boundary. In that regard, it is comprehensible that in the case of |a| < 2, where the zeros are
represented by a boundary-bound breather at the boundary, the expression in Remark 5.2.3 is not
sufficient due to the defect matrix B only corresponding to single solitons.

5.2.2 The NLS equation with boundary conditions

Now, we consider the NLS equation on the (positive) half-line
iUy + Uy + 2|ul?u =0 (5.2.8)

for u(t,z): Ry x Ry — C and initial condition u(0,z) = ug(z) for x € Ry and complement it with
a Robin boundary condition
u.(t,0) = au(t,0), (5.2.9)

where a € R. The Robin boundary condition is one of the conditions for which the boundary matrix
has entries only on the diagonal and is time independent. Therefore, it is not necessary to restrict
the solution space. In contrast to the sin-boundary condition regarding the sG equation, for the
Robin boundary condition regarding the NLS equation it is possible to construct single boundary-
bound solitons. In a similar fashion as for Proposition 5.2.1, we divide the number N = N, + Ny
of spectral parameters A\; € C\ R and order them accordingly so that the spectral parameters
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A e C\ (RUZ’R), j =1,..., Ny, correspond to solitons and \; € iR\ {0}, j = Ny +1,..., N,
correspond to boundary-bound solitons. Moreover, we define N; = 2N, + Ny so that only the
number of solitons is doubled. Thus, we can state the following

Proposition 5.2.4. Consider the seed solution u[0] to the NLS equation on the half-line (5.2.8),
which at x = 0 satisfies the Robin boundary condition with o € R\ {0}. Further, take solutions
V;, j=1,...,N, of the Lax system (2.1.2) corresponding to u[0] for distinct \ = X; € C\ (RU
{—ia, ia}). Assume that there exist paired solutions QZj, j=1,..., Ny, of the same Lax system for

the spectral parameter A\ = /):j = —\; and that they satisfy

Vilamo = Ko=) M), e # N (5.2.10)

Further for j = Ng+1,..., N, assume that the solutions of the Lax system v;, ¢; = —i029)]
corresponding to the spectral parameters A; and \; satisfy the following relation

Pilmo = Kol(=D)N X)) . (5.2.11)

The matriz KCo(\) is associated to the boundary matriz (4.3.4) representing the Robin boundary
condition. Then, an Ny-fold dressing matriz D[ Ny| using the corresponding solutions and spectral
parameters leads to the solution u[N,| to the NLS equation on the half-line, for which the Robin
boundary condition (5.2.9) is preserved.

Proof. (a) The spectral parameters are divided into A\; € C\ (R U iR), j=1,...,N,, and
A; € iR\ {0}, j = Ny+1,..., N, for the sole purpose of having distinct Ny spectral parameters
Alyeo s ANGy — ALy ooy —ANL, AN.41,- .-, An. Therefore, constructing an Ng-fold dressing matrix
D[Ny with these exact spectral parameters and their associated solutions of the Lax system (2.1.2),
which are by Proposition 3.2.5 linearly independent, we can derive a solution u[N,] to the NLS
equation on the half-line (5.2.8). Note that it is again helpful to multiply the dressing matrices
with T = 1% (A4 A= A7) =TI (=) = A)((=0) + A7) and Iy = [T 4, (A= A7) or
I = [Tisn, 1 ((=A) = A7) so that

LT, D[N (t, 2, A) = AVT - 4+ Sy,

5.2.12
LI, D[N (t, 2, =) = (= 1) AN oo Yy ( )

For notational purposes, we redefine the dressing matrix D[Ny(¢, 2, \) and the dressing matrix
with the negative spectral parameter D[Ny|(¢,z, —\) as the first and second row of (5.2.12) for
the upcoming steps (b) and (c).

(b) By assumption, we have

1
i+ 2(—1)News \

Ko((—1)Nebs \) = (ial — 2(—=1)ers \grg).
Therefore, analogously to the proof of Proposition 5.2.1, we need to show that there exists a matrix
K which satisfies

(D[Nth’ T, _/\)ICO((_l)Nbbs)‘))’ -0 (’CN<t’ €, )‘)D[Nd] (tv Z, /\))|

= z=0"

(5.2.13)

Additionally to the zeros and kernel vectors of the Ng-fold dressing matrix, it is straightforward
to see that there are two zeros \g = (—1)"sja/2 and the parameter with opposite sign of the
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boundary matrix (i + 2(—1)"s \)Ko(A) for which vy = e; and —io9v] = ey are the kernel vectors.
In theory, by the definition of the dressing matrix we have given in Section 3.2, the matrix Ky we
want to construct is, in fact, a dressing matrix multiplied by o3, which means that the highest
order matrix coefficients of the usual polynomial matrices L(A) and R()\) agree. Consequently,
considering the solution 1y of the Lax system (2.1.2) corresponding to u[0] at A = A, there are
two scenarios:

1. The kernel vector vy of Ko(Ag) and 1)y are linearly dependent at = 0. As before, we can then
define with g, since 1)y, ..., ¥y are linearly independent, the following

¢6 = D[Nd] (ta z, AO)Q/}Oa

which serves as the kernel vector for the dressing matrix Ky (¢, z, ). It is important to note that
constructing ICn (¢, z, A) in this manner results in the following relations for ¢y and the orthogonal
vector ¢y = —i029; at x = 0:

D[Nd](t, Z, —)\0)ICO<)\0)’¢0 = K:N(t, Z, /\0)D[Nd] (t, Z, Ao)wo = O, (5 9 14)
D[Ng|(t,z, =X5)Ko(A)po = Kn(t, 2, A\y) D[Ng)(t, 2, \j)po = 0. o
2. The kernel vector vy of ICy(Ag) and 1) are linearly independent at x = 0. Then, a similar diagram
to Figure 5.1 holds with By and By replaced by Ky and Ky, respectively, so that there exists a
matrix Ky which is at # = 0 the product of the three matrices D[Ny](t,x, —\) - Ko((—1)Nets \) -
(D[Ng](t,z,\))~" and for which at z = 0 the following holds

(D[NgJ(t, 2, = X0)Ko(Ao)to) = (Kn(t, 2, Xo) D[Na|(t, 2, Xo)1o) # 0,

(D[Ng)(t, z, = A)Ko(Ag) o) = (Kn(t, z, A5) D[ Ng(t, z, Ay) o) # 0. (5.2.15)

Further, if we evaluate the determinant of Ky|,—¢ at the spectral parameter A\g or A§, we obtain
in accordance with the matrix product that both det(ICx(t,0, A\g)) and det(Kn (¢, 0, \j)) are zero.
Thus, there exists a kernel vector at the specific parameter A = \q which we use to construct the
dressing matrix Ky subject to the relations (5.2.15).

By the same argumentation as before, it is reasonable to assume that the following product
(i + 2(—1)Mos \)KC v (¢, 2, A) is a matrix polynomial of degree one. We construct this matrix as in
one of the two cases multiplied by an arbitrary ¢ dependent, A\ independent matrix. Then, the left
and right hand side of equality (5.2.13) multiplied by (ic + 2(—1)"ebs X)) is given by

L(A) = (D[N (t, z, =N\ Ko((=1)M* X))| _, = AV Ly, 1 + A¥ Ly, + -+ + Lo,
R(\) = (Kn(t, 2, \)D[N](t, z, /\))| 0= MRy 0+ ARy 4 -+ Ry,

r=

respectively, admitting at = 0 the following zeros and associated kernel vectors, j =1,..., N,

R()‘)‘)\:A].wj =0, RO‘)’A:_)\].I/)J' =0, R()‘)‘)\:)\;on =0, RO‘)’)\:_)\;@J' =0,
L(/\){A:quﬁj =0, L(/\)lkz_)\jwj =0, L(A){A:A;gpj =0, L(/\)|>\:_)\;C0\j = 0.

The whole set of four zeros and associated kernel vectors is only provided in the case of solitons,
Le. for j=1,..., N,. In the case of boundary-bound solitons, j = Nj,..., N, we have \] = —J;
so that there are essentially two zeros and associated kernel vectors after matching the ones which
are replicates. In particular, the second and the fourth column are repetitions of the third and first
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column, respectively. For R()), these relations follow simply by the construction of the dressing
matrix D[Ny]. On the other hand, for L(\), we additionally need assumptions (5.2.10) and (5.2.11)
as well as the properties Kj'(\) = Ko(—)) given in Proposition 4.3.1 and Ko()\) = 02Ko(\*)*0o
which follows from the symmetry of the Lax pair (2.1.4). Moreover, due to the construction of Ky,
we have (for j = 0) two values and associated vectors which are equal by equalities (5.2.14) and
(5.2.15), but not necessarily zero for L(\) and R(\), i.e.

R(/\)|)\:)\OZZJ0 - L()‘)L\:,\OW” R()\)‘)\:_)\OQDO - LO‘MA:—AO@O'

However, for the difference C'(\) = L(\) — R(\) which is a matrix polynomial of degree 2N + 1
in A\ these values and vectors function as zeros and associated kernel vectors. Arranging these
AN + 2 equalities of the difference C'(\) once again as a system of zeros and associated kernel
vectors in matrix form, it follows that each matrix coefficient is zero and therefore the constructed
K satisfies equality (5.2.13) in both cases.

(¢) To reconstruct (ia + (—1)Nes2\)KCy = ALY + K@ at 2 = 0 as boundary matrix, we analyze
the equality (5.2.13). In particular for the equality of the matrix coefficients of order N; + 1 in A,
we have

Ly, = (—203) (1) = 255 = KV = Ry, 11, (5.2.16)

confirming the suspected form of K as o5 times the highest order matrix coefficient of the dressing
matrix which is 1, up to a function of A. For the equality of the matrix coefficients of order Ny, we
obtain with (5.2.16) that

2(21(t,0)05 4+ 03X (t,0)) + (=1)*Newsjal = £,

where X; is the (Ng — 1)-th order matrix coefficient of D[Ny]. Thus, the off-diagonal entries of A(©)
are zero and to determine the diagonal entries, we consider the determinant of Ky at x = 0 in two
ways. First, note that the dressing matrices multiplied by the products defined in (a) satisfy

det DIN( 2, 0) = T[( = M) = A0+ A+ 20 T (= M)A — A0,
det DIN (1, ~2) = T[4 M)+ M)A - A0 =A0) T (0 + M)+ A,
k=1 k=Ng+1

where the equality of the first products can be seen right away and the equality of the second
products is justified by —A; = A} for j = Ny +1,..., N and therefore the determinants are equal.
Thus, by the matrix product, we have

det((ior + 2(—=1))*" X\ KCn | _ ) = det((ior 4 2(—1))* " X) Ko ((—1))25 X)) = —4X* — o,
Subsequently, due to what we have found for Iy already, we can calculate
det((ia — 2(=1)"NKn|,_ ) = (=22 + L) (21 + KH) = —4x% + 20K — K9) + KPS
so that the following two equalities need to hold

0 0 0) 1-(0
’CER - K§2) =0, ’C§1)’C§2) =—a’.
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This system can be solved and we obtain K(© = +ial. However, by the zero-th order equality of
(5.2.13), we can verify that the sign of the boundary parameter is preserved, since we need to have
K© =jal in order for

Lo = iaXn(t,0) = K9Sy (t,0) = Ry

to hold.
O]

This concludes the theoretical application of the dressing the boundary method to the NLS
equation on the half-line subject to the Robin boundary condition (5.2.9). Now, a combination of
the framework in all propositions regarding the Dressing method applied in the presence of defect
or boundary conditions is necessary in order to expand the results to the new boundary condition

iwn(t,0)  u(t,0)0(,0)  ult,0)u(t,0)F* _ u(t,0)0? (5.2.17)

ua(t,0) = 20(1,0) 2 2Q(t,0) 20)(t,0)

for the NLS equation on the half-line (5.2.8), see [25]. First off, a similar observation as in Remark
5.2.3 can be made, where, in particular, every boundary matrix representing the new boundary
condition can be expressed by a multiplication of two matrices (3.1.4) representing frozen Backlund
transformations.

Proposition 5.2.5. The boundary matriz KC(t,0, ) for the new boundary condition (4.3.5) can be
viewed, up to a function of X\, as combination of two Darboux matrices

1 (atiy/(%— |ul? iu
Boo(t,z,A) =1+ — _ , :
ot 2, A) +2)\( iu* a F i/ P2 — |ul?

sharing the same sign + and where o, 5 € R\ {0} as well as the potential @ is assumed to be zero.
Then,

((2X = iB])* = &®)K(t,0,A) = 4X*Bo o (t, 2, \) By~ (t, 2, V)|

z=0"

In particular, it is important that the product of the two matrices By o, and By _, is commutative.
Therefore, it is comprehensible that a kernel vector for each of the matrices By 1, at particular,
different Aq, Ao introduce the same kernel vectors for the product IC(t,0, \) at these values of A.

Remark 5.2.6. In the case of a boundary-bound soliton solution which corresponds to the choice
A1 € iR\ {0}, we can calculate explicitly that the new boundary conditions are not satisfied.

This exclusion of boundary-bound solitons solidifies the choice we have to make in order to
determine whether the new boundary conditions are preserved. Namely as in Proposition 5.1.2, it
is sufficient to assume that the seed solution—and therefore by Proposition 4.4.3 also the solution
constructed by the Dressing method—and its first z-derivative are in the function space H,"'(R) at
x = 0. And since, by that assumption, the choice of spectral parameters is restricted to C\ (RUZ’R),
spectral parameters corresponding to boundary-bound solitons can not be considered. Given these
assumptions, we can state the following:

Proposition 5.2.7. Consider a seed solution u[0](t, x) of the NLS equation on the half-line (5.2.8),
which at x = 0 both satisfies the new boundary conditions (4.3.3) with « € R, § € R\ {0} and
18 together with its first x-derivative in the function space Htl’l(R). Further, take solutions 1;,
j=1,...,N, of the Lax system (2.1.2) corresponding to u[0] for distinct A = X; € C\ (RURU
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{=5+ ig, -5 = ig, 5 —|—z’§, 5 — zg}) Assume that there exist paired solutions zzj, j=1,...,N, of

the same Lax system for the spectral parameter A = Xj = —); and that they satisfy

{p\j’zzo - Ko(t’()’)\j)wj‘mzoa /):k 7& >‘j7 (5218)

where the matriz Ko(t,0,\) is associated to the boundary matriz (4.3.5) representing the new
boundary condition. Then, a 2N-fold dressing matriz D[2N| using the corresponding solutions
and spectral parameters leads to the solution u[2N], denoted by u[N], of the NLS equation on the
half-line, for which the new boundary condition (4.3.3) is preserved under Ky of form (4.3.5) if

Im <1'1m = [(QA —iB” - a2/CN(t, 0,\) + o 1_ F ]l} )
11

A—0 4

is greater than or equal to or rather less than or equal to 0 for all t € Ry depending on its limit as
t — 00.

Proof. (a) As discussed in step (a) of Proposition 5.2.4, the condition N 7 A; implies that all

spectral parameters A\; and —\;, j = 1,..., N, used in the construction of the dressing matrix

are distinct. Therefore, the dressing matrix is uniquely determined and the constructed solution

u[N] satisfies the NLS equation on the half-line (5.2.8). Multiplying the dressing matrices with
N * * N * * :

I = [Temt (A + A5 (A = A7) = [Tima ((=A) = A7) ((=A) + A7), we obtain

I D2N](t, 2, \) = MV + - + Sy,

5.2.19
IL D[2N](t, 7, =) = AN 1 — - 4 Sy, ( )

which we then again redefine as the actual dressing matrices for steps (b) and (c).
(b) As before, in order to prove that there is a matrix y(¢, z, \) satisfying
(Kn)e(t, 2, )| _, = (VI2N](t, 2, =N EKn(t, 2, A) — Ky (t, 2, AV[2N](t, 2, N)))|

=0’

it is of advantage to consider the equivalent equality

(D[2N](t, z, —=A\)Ko(t,0,N))| _, = (Kn(t,, A)D[2N](t, z, \))|

r= (E:07

(5.2.20)

where on both sides the matrices Ko(t,0, A) and K (¢, 2, A)|__, are multiplied by ((2A—i|8])*—a?) /4.

Further, we define A\g = —5 — z@ In view of this equation, it is plausible to assume that the

matrix, we wish to find, is of second order in \, i.e. ICNLC:O = XK@ (t,0) + ML (£, 0) + KO (¢,0).
Due to Proposition 5.2.5, Ko(t,0,\) = 4\*By o (t, 2, \) By o (t, z, )\)‘x:O and we can deduce that
there exist two kernel vectors vy and vy at two distinct spectral parameters Ay and XO = — o,
respectively, for which

Bo7a(t, Z, )\0)1)0 = O, B(]’,a(t, x, /XQ)@O = O
Therefore, ICy(t,0, A) can be seen as (frozen) two-fold dressing matrix with the inherited kernel
vectors of By 1, at A\g and Ag, so that

,CO(tJ 07 /\0>U0‘$:0 = 07 ’CO(tJ OJ X0)60‘m:0 = 0.

As before, these kernel vectors are introduced in order to ensure that the vectors with which we
construct the two-fold dressing matrix Ky(t, z, \) are linearly independent. Therefore, consider
the solutions of the Lax system (2.1.2) corresponding to u[0] at A = A\g and A = o given by g
and 1//1\0. Then, we distinguish two cases for each of these vectors:
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1. The kernel vector vy of Ko(t,0, Ag) and 1y are linearly dependent at x = 0. As before, define
vy = D[2N](t,x, \o)o serving as one of the kernel vectors for the dressing matrix Ky (¢, z, A).
Hence, we obtain at x = 0 the following relations

D[2N] (t, Z, —Ao)lC()(t, O, /\0)1/)0 == ’CN(t, Z, )\0)D[2N] (t, Z, )\o)wo = O, (5 9 21)

D2N](t,z, —X5)Ko(t, 0, A5) o = Kn(t, 2, \§) D[2N|(t, x, \j)po = 0. o
2. The kernel vector vy of Ky(t,0, \g) and 1y are linearly independent at z = 0. Then, a similar
diagram to Figure 5.1 holds implying the existence of a kernel vector by which the dressing matrix
Kn(t,z, ) can be constructed so that at x = 0 the following relations can be given

(D2N](t, , —Ao)o(t, 0, Ao)tho) = (K (L, , o) D[2N](t, 2, Ao)tho) # 0, (5.2.22)

(D[2N] (tv Z, _)‘S)K:O(t? 0, AS)SOO) = (ICN(t7 €, )\S)D[QN](t, Z, )‘8)900) 7£ 0. o
This idea of deriving the kernel vector in order to construct the two-fold dressing matrix Ky /(t, z, \)
can be repeated for the second, distinct parameter /):0. As a result, we can use the two kernel
vectors corresponding to the spectral parameters A = A\g and A = )\ to construct a two-fold
dressing matrix multiplied by a function of A in order to adjust the highest matrix coefficient, call
it Ky, which may be only given at = 0 and which satisfies a combination of relations (5.2.21)
and (5.2.22) at these spectral parameters. Thus, we use this constructed matrix to prove that
equalition (5.2.20) holds. First, we write the equality as matrix polynomials of degree 2N + 2 in A
and denote them as L(\) and R()) so that

L(X) = (D2N](t, z, —\)Ko(t,0,N))| __
R(X\) = (Kn(t,z, \)D[2N](t, 2, \))| _

- )\2N+2L2N+2 + )\2N+1L2N+1 ‘|‘ cee ‘I’ )\Ll + LOa
/\2N+2R2N+2 + )\2N+1R2N+1 + te + )\Rl + R(].

0

0

Since every factor on the left and right hand side has, after adapting the one for Ky, the identity
matrix times a constant as matrix coefficient of the highest order in A, we find Loyio =1 = Rono.
If a # 0, this property is obsolete. With respect to the property K~1(¢,0,\) = K(t,0, —)) for K,
proven in Proposition 4.3.1, the spectral parameters and corresponding solutions of the Lax system
provide 4N zeros and associated kernel vectors

)‘)})\:)\j,@bj =0, R(A)‘/\:ijj =0, R()\)})\:)\;f(pj =0, R(A)‘/\:X;@J =0, (5 5 23)
A)’,\z,\j%’ =0, L()\)|/\:Xv ;=0 L(A)’,\z,\;%’ =0, L()‘)|,\:X;@ =0

at x =0 for j =1,...,N. For R()\), the equalities are clear from the definition of the dressing
matrix D[2N] and with the assumption (5.2.18), the equalities for L(\) follow immediately. The
choice of Ky further implies that the relations (5.2.23) can be extended to j = 0 in the following
sense

R(A)|y_y %o = LV, Yo, ROV|,_s, %o = LV ,_5, Yo,
R(/\)|)\:)\8900 = L(A)|>\:>\8g007 R()\)‘

In the case a = 0, \p and //{3 coincide and consequently we only have two spectral parameters
where the equality holds. At this point, it is important that all vectors are linearly independent.
In view of the additional vectors from the construction of Ky, we see that these equalities are at
this point not necessarily zero. Nevertheless, arranging the zeros and associated kernel vectors for
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the difference C(\) = L(A) — R(\) in matrix form, we can conclude that the matrix coefficients of
L(A) and R(\) are the same. In particular, this gives us that independently of the construction of
K, the kernel vectors are indeed as described in the first case, namely the dressing matrix D[2N]

evaluated at A = \g and A\ = Xo multiplied with the solution of the Lax system corresponding to
the seed solution u[0] for A = Ay and A = A\ and thus the matrix Ky is given for z € R,.

(c) Given Ky(t,x,\) of the form A21 + AKM(¢,0) + K(©(¢,0) at z = 0, we want to determine the
matrix coefficients to confirm that the boundary conditions are preserved. Therefore, the symmetry
of the ¢ part of the Lax pair V given in (2.1.4) implies Ky (t, 2, ) = 02(Kn(, z, A*))* 02 resulting

in
(1) (1) (0) (0)
- (ICIQ (t7 0)) (Icll (tv O)) _(]C12 (tv 0)) (K:ll (tu 0))
The equality Lonyi = Rons1 gives for the off-diagonal entries of K1) (¢,0) that KU (¢,0) =
u[2N](t,0) and K8 (¢,0) = —(IC%) (t,0))" = u*[2N](t,0). For the entries on the diagonal of
KM(t,0), we obtain from the same equality
K3 (£,0) = iv/B2 — [u[0] (¢ o>|2 — 2(4(t,0))ua,

(K (1,0)" = Mﬂ? I, 0)F — 2(i(1,0))u,

where ¥ is the matrix coefficient of A*¥~! of the matrix D[2N]|(¢,z, ). To determine the remaining

entries of the matrix coefficients, we need to extract information from the determinant of Ky (t, z, A).
Again, we have that

(5.2.24)

det(H()\ — XA+ A D2N|(t 2, \) ) - det(H (A — X\ + \:)D2N](¢t, o, —A)),

which implies for the determinant of Iy that

(2A —i]B])* — o (2A —i]B)* — o
det : g ) = det( : Ko)
VRl S5 CO ot}
2 16
Formally, calculating the determinant of the matrix ICx(¢,0,\) in polynomial form as given above,

we can match the coefficients yielding

Tr(KW(¢,0)) = 0,

Tr(K©(t,0)) + det (KM (£, 0)) = - 52,
2 (5.2.25)
2Re(K1)(£,0) (K (£,0)") — 2(K19(£,0))" Im(u[2N](t,0)) = 0,
det(K©(¢,0)) = W.

Combining the first line in (5.2.25) with the expressions we have for lcﬁ) (t,0) and its complex
conjugate, see (5.2.24), we can deduce that Re(K{}(¢,0)) = 0. Further, evaluating the equality of
(5.2.20) of order 2N in A, i.e. Loy = Roy, we obtain

VA= [ul0](t, 0)? u[0] (£, 0) R i
( [OJ <t 0) —\/ﬁ2—!u[0](t,0)!2)_ L= K@ 0R + K0 ,0)
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at x = 0. Matching the (12)-entry of this equality, we derive

(l2t.0) = a0t 0 Y EHEOE i ,0) 1,0 -

- %K?R (t,0)(u[2N](t,0) — u[0](¢, 0)) + iu[2N](t, 0)(£5(t, 0))11 + K13 (t,0)

and using the expressions in (5.2.24) we have for (3;); and (X7)11, we obtain after cancellation
that
K9 (t,0) — iu2N] Re(KY (¢, 0)) = 0.

However, we already calculated that Re(lC (t 0)) needs to be zero in order for the determinants
to be equal. Hence, also ICQ (t,0) and thus the off-diagonal of K(%)(¢,0) vanishes. It follows by
the third equation of (5.2.25) that Im(ng(i) (t,0)) = 0 and then, by the fourth equation we have
KO(t,0) = i#]l. To verify that it is indeed minus as for ICy(¢,0, A), we confirm with the
equality of Ly = Ry, which gives

_a2+52

7 Son(t,0) = KO (t,0)San (¢, 0),

where Y,y is the zero-th order matrix coefficient of the dressing matrix D[2N](t,z,\). For
this to be satisfied for all t € Ry, we need to have K = —#]l. Therefore, we obtain
Tr(K©(t,0)) = —@. Thus, the second equation of (5.2.25) implies that

IC11 (t,0) j:Z\/BQ 2N|(t,0)[2,
(K(t.0))" = Fiy/B% — [u[2N](t, 0) 2.

Now, we need to determine the sign of the diagonal entries of KM (¢,0) to ensure that Ky (¢, z, \)
preserves the boundary constraint at x = 0, i.e. we need to show that the signs coincide with the
signs in the same entry of Ky(¢,0, A) in front of the square root.

Therefore, a similar analysis as in Proposition 5.1.2 is needed, where we use the fact that under
the Dressing method functions u[0](-,0), u[0],(-,0) in the function space H."'(R) are mapped onto
functions, here u[2N](-,0),u[2N],(-,0), which lie in the function space H,”'(R). Further, assume
that ICo(t,0, A) has a positive sign in the (11)-entry in front of the square root. We have identified
the kernel vectors 1y and 7:/1\0 of Ko(t,0,\) at x =0 and A = A\g and \ = //{0, respectively. Then, for
Ko(t,0,\) multiplied by ((2X\ — i|3])* — a?)/4 as t goes to infinity, we have that

2 2
lim Ko(t,0, 1) = diag<A2 + 4| BN — w, A2 — |3 -
—00

= diag((A — X)) (A = Ag), (A = A5 (A = o).

(2A — i B])? — o?
4

(v Zﬁ))

In turn, this implies that the kernel vectors of ICy(t, 0, A) necessarily admit the limit behavior ¢y ~ e;
and 120 ~ ey as t goes to infinity. Since the dressing matrix D[2N]|(¢,z, \) also becomes diagonal
as t goes to infinity, see Lemma 4.4.4, the kernel vectors ¢j = D[2N] |/\:/\0¢0, 126 = D[2N] ‘A:XO{Z)\O
of ICx inherit the long time behavior of their corresponding vector. Therefore, the signs can be
determined to be positive in the (11)-entry and negative in the (22)-entry in front of the square
root.



5.2. INITIAL-BOUNDARY VALUE PROBLEMS 103

Secondly, the assertion regarding the imaginary part corresponding to the sign of ngll) (¢,0) for
t € R, makes sure that the sign can not simply change over time.

Hence, the boundary condition for the solution u[/N] of the NLS equation on the half-line is
preserved. O

Remark 5.2.8. Similar to the analysis of the long time behavior of the kernel vectors, one could
look at the long time behavior of the dressing matrix D[2N](t,z, A) to deduce the same result
through the equality of ICN|z:0 with the product of the three matrices D[2N](t, z, —\) - KCo(t, 0, \) -
(D2N](t,z,\))"! at x = 0. Nevertheless, these behaviors are closely related to one another, since
the limit behavior of the kernel vectors of D[2N](¢,0, ) determines the distribution of factors

A—=Aj, A — Xj, A—Ajand A — X}" for 7 =1,..., N in the diagonal entries as ¢ goes to infinity.

Remark 5.2.9. As for the NLS equation with defect conditions, it is possible to express the
assertion about the sign of ICgll)(t, 0) in terms of the kernel vectors the boundary matrix Ky is
constructed from. However, this condition becomes very situational due to the fact that in theory
we deal with a two-fold dressing matrix.

We have shown that the method of dressing the boundary can as well be applied to the new
boundary conditions constituted as in [30]. In order to achieve this, it is necessary to apply
the techniques developed for the other defect and boundary conditions, most importantly, the
determination of a dressing matrix which satisfies a particular equality, see (5.2.21) and (5.2.22) as
well as the identification procedure for the 4 sign inside the boundary matrix y. Integrability for
this boundary condition has been established recently in [40] together with a simplified application
of the Dressing method.

In conclusion, we have in theory established the method of dressing the defect for the defect
conditions (4.1.2) regarding the NLS equation and (4.1.4) regarding the sG equation on two
half-lines as presented in Section 5.1 as well as the method of dressing the boundary for the
sin-boundary condition (4.3.7) regarding the sG equation and the Robin (4.3.2) as well as the
new boundary condition (4.3.3) regarding the NLS equation on the half-line in Section 5.2. As
emphasized before, the Dressing method stands, in particular, for a straightforward application to
practically obtain soliton or breather solutions in connection with the Lax systems of the NLS
and sG equation. Therefore, we dedicate the next chapter to the application of the presented
propositions to derive explicit solutions of the respective model and further to graphically present
the results. Moreover, we use the theory introduced in Section 3.3 for the change of scattering data
under the Dressing method to explicitly describe the complete scattering data which is needed in
order to utilize the propositions and prove in the case of the defect conditions for the NLS equation
that each soliton is transmitted through the defect independently as conjectured in [15].
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Chapter 6

Soliton solutions

In this chapter, we want to apply the main results worked out in Chapter 5 in order to construct
and visualize explicit solutions of the presented models using Matlab. Thus, we are interested
in those solutions, which can be constructed by the Dressing method. Nonetheless, let us first
elucidate the notion of solitons especially for the NLS and sG equation more accurately. Before we
give mathematically rigorous definitions of solitons in these two cases, in general solitons can be
described as solutions of a nonlinear equation which admit three properties:

1. They are of permanent form;
2. They are localized within a region;

3. They can interact with other solitons, and emerge from the collision unchanged, except for a
phase shift.

This definition has been given in [20] and it should be mentioned that, due to the broad spectrum
of where these solutions can be found, it is by no means the only definition. In particular, solitons
arise when the properties of a nonlinear equation are such that the dispersion and nonlinear effects
precisely counteract each other, see Figure 6.1 for a sketch of this idea. The NLS and sG equation

Dispersion of wave

—
\ Soliton
t=0 t>0
—

Balance
Nonlinear breaking of wave

E—
t=20 t>0

Fig. 6.1. Balance effects of dispersion and breaking in a soliton, see also [20].

both meet this criteria and the inverse scattering transformation is typically utilized to obtain
these solutions, as worked out in Sections 2.1 and 2.2. Moreover, with Definitions 2.1.4 and 2.2.6
in mind, we can give rigorous definitions of N-soliton solutions with respect to the scattering data

105
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S(u) = (p(N), {A;, C31L1) or S(0) = (p(A), {);, Cj}iL,) associated to the initial data u € Gy or
0 e QN.

Definition 6.0.1. Given the initial data generates pairwise distinct simple eigenvalues A1, ..., Ay
and moreover p(A) = 0 for all A € R, the corresponding solution of (2.1.1) or (2.2.1) is called an
N-soliton solution. For Dy = {X;, C;})_; C (C4)N x (C\ {0})", we adapt the notation

usol(tax;DN)u Qsol(tax;DN)-

Note that the one-soliton solution given in (2.1.21) is based on this definition. Moreover, the
zero solutions u = 0 and € = 0 are covered by this definition as zero-soliton solutions. In both
equations, special solitonic structures, the so-called breathers, can be found. In addition to the
properties of a soliton, the breather also admits a periodicity as can be seen later on. As indicated
before, breathers in the case of the NLS equation at least require that two simple eigenvalues share
the same real part, whereas in the case of the sG equation they correspond to a pair of simple
eigenvalues \; and A2 = —A7] not lying on the imaginary axis. Beyond that, all these solutions can
appear as boundary-bound soliton solutions. Again, differentiating the cases of the NLS equation
and the sG equation, for which boundary-bound solitons correspond to simple eigenvalues lying on
the imaginary axis and on the unit circle of the complex plane, respectively. In Figure 6.2, we give
examples associated to the distributions of simple eigenvalues for both equations.

Now, in the forthcoming sections, we especially aspire to construct new solutions and keep
information which can be obtained through other literature to a sensible minimum. Dealing with
the reconstruction formulae from the Dressing method in both cases, the sG equation (3.2.16) and
NLS equation (3.2.14), one may notice that the solutions arising in the case of the sG equation are
more complicated than the ones in the case of the NLS equation. Thus, connecting the expressions
of the scattering data with relevant parameters on the solution side is less feasible. Nevertheless,
we shall provide some insights by explicitly constructing the single one-soliton and a breather
solution under the Dressing method in the case of the sG equation. For the NLS equation, however,
we utilize these relations of the scattering data to parameters of the solution in order to prove that
each soliton is transmitted through the defect independently in the model with defect conditions
and that the parameters for the suggested pairs of solitons have specific relations in the model
with boundary conditions.

NLS equation sG equation
b /\1 )\1
¢ Xy
‘ /\;
- Al Al

Fig. 6.2. Exemplary distribution of simple eigenvalues for breathers (in each case left)
and boundary-bound solitons (in each case right).
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6.1 Soliton solutions for models of the sG equation

As we have seen, the zero seed solution 6,y (t,2;{}) = 0 corresponds to the scattering data
(p(A) = 0). In fact, one can derive aj;(\) = 1 and a9 () = 0. Therefore, applying a one-fold
dressing matrix to construct a one-soliton solution with the new simple eigenvalue A\; = in; € «R
and constants uy,v; such that the quotient vy /uy; € iR\ {0}, by Theorem 3.3.1 we obtain the
following new data

A—A
CLH(/\) :)\_—)\i, /\EC+UR, p(/\) :07 /\E]R7
1
asn (N) =0, A€ R,
v *
b, :—%, Cy :—u—io\l—%)-
1

The relevant scattering data (p = 0,{\1,C1}) corresponds to a one-soliton solution which we
construct in the following:

Lemma 6.1.1. Given the scattering data (0, {\; = in, Cy = 2inb, }), the one-soliton solution of
the sG equation is given by

Oso1(t, x; {1, C1}) = 4signIm(by) arctan e3(nTap)z=3m—g)t-logltnl (6.1.1)

Proof. The proof structurally follows the ideas given in [27]. For the Dressing method, we first
state the fundamental solution

1 2
(I)(tall%)\) = (w(_),wi)) = ( 0 6_0(A)2i<(A))

for the Lax system (2.2.3) of the sG equation corresponding to the zero seed solution, where
, Im(\) 1 1
o0 = R, ) = O N1 Ly (12 Ly,
() = Re(2i(t.3) = 252 (14 5 )e = (1= 1o

C(\) = Im(2i0(t, 2, \)) = RQQ(A) [(1 - M%)x - (1 + #)t}

Therefore, we can give an explicit solution of the Lax system (2.2.3) at the spectral parameter
A=\ by
it ) = w2, A) 4+ 0Pt 2, Ay) = e OEEAs (“1> , (6.1.2)

U1

where (uq,v1)T is connected to C; as noted beforehand and the phase ©(¢, z, \) is the phase function
from the scattering process for the sG equation. Effectively, only the quotient of v; and wu, is
relevant and as in Section 3.2, we take the quotient of the second entry and the first entry of ¥; to

obtain
A]_ — _b1€2i@(t,x,)\1) — _bl6—19(x\1)-i—i<()\1)7

where b; = — . Then, we derive the one-fold dressing matrix D[1] for an arbitrary C\R 3 A = A,
for which we take on the usual notation Ay = & + 4, and by = —3+. By adopting the notation
U =139(\) —log|b1]| and ¢ = ((\) + arg by, we obtain

o tm 1 + tanh(9) — sech(d))e %
bij=1 A— <— sech(9)e® 1 —tanh(d) /- (6.1.3)
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Consequently for N, = 1, we can calculate the one-soliton solution of the sG equation corresponding
to a purely imaginary spectral parameter, £&; = 0. The reconstruction formula (3.2.16) implies that
sin(A[1]/2) can be constructed by evaluating the (12)-entry of —iD]1] ‘/\:003, which ultimately gives

0[1] = 2sign Im(b;) arcsin(sech ). (6.1.4)
Further, this can be transformed into the more commonly known version of the one-soliton solution
1

0[1] = 4 sign Im(b,) arctan g3 mtay)em g (m=g )t-loglb|

]

Note that the general one-fold dressing matrix (6.1.3) can be used to obtain the breather
solution, since the Dressing method is an iterative method. Hence, we have:

Lemma 6.1.2. Given the scattering data (0,{A\1 = & +im, —A}, C1 = 2iA by, —CT}), where
A; ¢ iR, the breather solution of the sG equation is given by

™ cos(%[(l — th)x —(1+ M+I2)t] —|—arg(b1)) )
& cosh(—%1 [(1 + ﬁ)x —(1- ﬁ)t] — log |b1|>

Proof. The calculations to obtain the one-fold dressing transformation come in handy for the
derivation of a breather solution, where the scattering data consist of A; € C\ (R UiR) and

A2 = —A] with respective norming constants b; = —Z—i and by = —b] = % By the one-fold dressing

0[2] = 4 arctan (— (6.1.5)

transformation D[1], we can work out the fundamental solution for the Lax system of the Lax pair
U[1] and V[1] as

(1 — 34 (1 + tanh(ﬁ))eﬁ(k);im) e sech(d)e~ e~
@[ﬂ(lf, T, )\) = in ! i 20— iv;l Ce)—icky) | o
Py sech(d)ee™ 2 <1 — 357 (1-— tanh(ﬁ))e ?

where we continue to utilize the notation we have introduced in the proof of Lemma 6.1.1. From
this we obtain at Ao = —A] and by = —bj that the quotient yields

Agfl] = —iny cos ¢ + eV~ cosh ¥
2T g cosh ) — ipe "€ cos ¢

Hence by the reconstruction formula (3.2.16), evaluating the (12)-entry of the two-fold dressing
matrix

B 2 1 1 A3l 2im 1 1A
bR]= (]l A=A L+ A1]? (Az[l] |A2[1]|2)> (ﬂ A LA (AI |A1|2)>

at A = 0 and multiplying the result by —i, gives an expression for the solution in terms of sin(6[2]/2).
Then, we have

(6.1.6)

2&1my cos C cosh ¥ )
n? cos? ¢ + €7 cosh® o)

or in the more commonly known form of the breather solution

0[2] =2 arcsin(—

chSC)‘

9[2] = 4 arctan <—m
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With these two explicitly constructed soliton solutions, we want to give examples of the solutions
of the models of the sG equation on two half-lines connected by defect conditions and on one
half-line with the sin-boundary condition. In general, if one merely wants to calculate expressions
of soliton solutions for the sG equation, it seems that other methods for instance the Backlund
transformation or variable transformations are more efficient when it comes to the direct derivation
of expressions with the arctan, based on the available literature. Nevertheless, we want to address
two pivotal advantages of the Dressing method, which aligns the resulting soliton solutions with
the structural analysis we want to apply. Firstly, let us emphasize that in the Dressing method
the parameters of the resulting soliton solutions are completely determined by the scattering data,
which we have defined during the process of the direct scattering. Not only that, but in regards to
the propositions we have worked out in Chapter 5, which are stated with the Dressing method in
mind, the solutions depend on relations of the scattering data, making it extremely important to
have a direct connection of the scattering data to parameters in the N-soliton solution. Secondly,
particularly for the NLS equation, the Dressing method provides the means to let the computer
handle the lengthy algebraic computations. Therefore, even without having the explicit expressions
of the solutions at hand, it is still possible to visualize exact N-soliton solutions until the processing
capacity is reached.

6.1.1 sG equation on two half-lines connected by a defect condition

Now, given the explicit soliton solutions derived in Section 6.1 and the assumption (5.1.3), we can
give the explicit expressions of a one-solion and a breather solution for the sG equation on two
half-lines connected via defect conditions. Taking paired solutions ¢;, 7 = 1 or j = 1,2, to the
Lax system corresponding to the sG equation on the negative half-line (5.1.2), it follows that each
indiviual quotient v,/%; needs to satisfy

U Niey

(6.1.7)

ﬂj N /\j + i Uj
by assumption (5.1.3), where we choose the + sign in the matrix Bo(\) = 1 + ‘o3 representing
the frozen Bécklund transformation, which is used in Proposition 5.1.1. The quotient representing
the defect conditions in the spectral data is transferred to the norming constants C;, j = 1 or
j = 1,2, of the scattering data yielding

~ i — o
C. =2 y
J )\j+ioz J

Hence, a one-soliton solution of the sG equation on two half-lines connected by the defect conditions
is given by the combination of the solutions

A ~ C = —)x—5(nm—=)t—lo, e
Osor(t, 3 {1, C1}) = 4Sign(_1) arctan e2 M a7z (m =)0 g‘2n11 |7
m
C Lt e Lin — 1y loe| 1
Osor(t, 2 { A1, C1}) = 4sign(—1) arctan e2 M+ apr 3 (m—gp)-log 2n11|
m

on the negative and positive half-line, respectively. Therefore, similar observations based on the
quotient $2—== as in [8] hold, see also Figure 6.3.

X —
Aj+
1. If 71 > «, then the soliton is simply delayed, since the quotient is less than or equal to one. For
bigger n; the delay is getting less, since the quotient gets closer to one.
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21 Otz {1.4i,—1}) 2m
esol(tv x5 {147’7 _6})

Fig. 6.3. One-soliton interacting with the defect (left: o =1, right: o = 1.8).

2. If n; = «, then the soliton can not be described by Proposition 5.1.1, since it is swallowed by
the defect.

3. If n; < a, then the constant C; has the opposite sign of ;. Therefore, an incoming soliton is
transmitted through the defect as an anti-soliton, or vice-versa.

The same steps can be applied to the breather solution which then amounts to

it

&1 1 1 7
R _ ~ nmeos( 3 |(1—57=)r— (14 53)t| +arg(by)
Osor(t, {1, = AT, C1, —CT }) =4arctan<— ' <2 [( all ) ( al ) } - 1~> >7

& cosh(—% _(1 + ‘)\hQ)x — (1 — l/\hz)t_ — log|b1|>
& 1 1
npcos( 3 |(1— x—(1+ t| + arg(by)
Ouor(t, 7 { M1, = A7, Cy, —C1}) =4arctan<— : <2 [(_ )~ (4 ) } _ ' ) )
& cosh(_ L (14 ‘AhQ)x - (1- |/\h2 t| — log]b1|>

on the negative an the positive half-line, respectively. The connections between by, 51 and Cf, 51
are given by

by — C1 §1 B_ 51 51
Yaam U 2w
1AL T A1

respectively, where Ay = & +im € C\ (RUIR) is the spectral parameter. Further, the parameters
b1, by and by, by indeed satisfy the following relations

(%1 (%) (%]

*
bl :——, b2:——:—*:—bl’
U1 U9 Uy
~ V1 A1 — iQ ~ vy Ay —ia U] AT i i
1= . 9 = —— — = — — = —
up A\ +ia’ ug Ao i ui AN} — i !

due to assumption (5.1.3). In both cases, of the single soliton and the breather solution, these
relations amount to

~ 1 ‘)\1—2'0(‘
I, —x1=—1o ,
L S (6.1.8)
. . (Al—ia) o
—_ = I
Y1 — ¥1 g N +ia)
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where 1 = —log |b;| and ¢; = argb; and similar notation for the other two constants. In that
regard, we have shown that each soliton in the one-soliton solution and the specific two-soliton
solution experience the defect independently, which seems to be not as easily generalizable as for
the NLS equation. We give examples of the breather (two-soliton) solution in Figures 6.4 and 6.5.

20

Ouot (t, 2 {2 4+ 10, =2 + 13,1 4 1i, —1 + 1i})
2T Gt w {2+ 16, -2+ 13,1, —11)

10

—20
-10 -5 0 5 10

x

Fig. 6.4. Breather interacting with the defect (& = —1) and its contour.

) esol 1\;;, =i 1 -+ ll, -1 ~+ 12}
™
Osor (t, 5 { 2 —1“ —1+3i,1+3i})

\/57

-10 =5 0 5 10

Fig. 6.5. Boundary-bound breather interacting with the defect (o = \%2) and its contour.

A special solution can be identified |7], which interacts destructively with the defect condition.
Therefore, a specific choice of the simple eigenvalue \; is necessary which is A; = ia, « € R\ {0}.
This results for example in the following formula

Bt 0, G} = dsign(Im () arctan 3@+ Hr—Fembiboslil
esol(t7 T, {}) =0

and very similarly for the other half-line which we visualize in Figure 6.6. Inserting this solution
into the defect condition (4.1.4) of the sG equation, we find

(Bur(t,7; D01, O}l = sign(im (b)) (o + ) sech (50— )t + log ]

_ (a+ 1) “in Osar(t, 0; {1, C1})
Q 2

(6.1.9)
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in combination with the expression (6.1.4) of sin(f/2) from the proof of Lemma 6.1.1. It then also
follows that

~ ~ ) - 1 1 1 ~
(Osor(t, 25 {1, C’l}))t{mzo = —sign(Im(by)) (a — a) SeCh(é(C\{ - a)t + log |b1|>
1 ) {\, C
_ _ (Oé i _) sin esol(ta Oa {)\la Cl}) .
o 2
This analysis can be repeated with \; = —ia where the solution then satisfies the defect condition

with the other sign. In fact, the existence of these solutions, which are not fitting in the description
of solutions by Proposition 5.1.1, provides no added value to the construction of N-soliton solutions
due to the requirement of a zero seed solution in the propositions for the sG equation. Nevertheless,
since in some special cases, the construction of N-soliton solutions combined with destructively
interacting solutions could turn out useful, it is at least worth mentioning them for the sG equation.

or Otz {-2i,1})
Oso(t,5{})

Fig. 6.6. Single soliton swallowed by (left) or emerging from (right) the defect (v = —2).

6.1.2 sG equation on the half-line with sin-boundary condition

Subsequently, we consider the sG equation on the half-line (5.2.1) with the sin-boundary condition
(4.3.7). As it is imminent from Proposition 5.2.1, single solitons and breathers come in pairs and
boundary-bound breathers are subject to a specific condition represented by assumption (5.2.4).
In that regard, results for the paired single soliton solution have been discussed in [43|, where it
can be seen that similarly to the sG equation with defect condition, the boundary can effectively
combine a soliton with a soliton or an anti-soliton depending on the boundary parameter a.. By
the exact formulae for the single one-soliton (6.1.1) and breather solution (6.1.5), we are satisfied
by giving the solution formula of a boundary-bound breather solution

t
Osor(t, x; {1, — A}, C1, —C7}) = 4arctan | — m cos(&1t)
& cosh(mz + log |b1])

with [A;| = 1 and the usual relations of the parameters. Then, we can visualize the solution,
see Figure 6.7 of a boundary-bound breather solution subject to the sin-boundary condition.

_ Ja=2m

T where the quotient inside the root needs to

Assumption (5.2.4) implies that by = —* =

be positive.
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21

Goor (£ {35 =35 1 — /35, —1 — \/3i})

-5 —2.5 0 2.5 5
x

Fig. 6.7. Boundary-bound breather solution interacting with the sin-boundary (« = 2).

As it can be seen in equation (6.1.9), if we take a spectral parameter A\; = in; with the property
m + 1/m = «, then the constructed single soliton solution satisfies the sin-boundary condition.
Again, this solution is not compatible with Proposition 5.2.1. It may be natural to think that,
since for the defect condition the destructively interacting one-soliton solution is constructed with
the zero as simple eigenvalue, which is associated to the defect parameter, the zeros, which are
associated to the boundary parameter, can also be used to construct destructively interacting
solutions. However, given the boundary parameter «, the boundary-bound breather

7)1 COS (§1t —arg bl)
& cosh(mx + log |b1|) ’

Opreathon (12 2) = Oy (1, 23 {1, — N, Cu, —C1}) = darctan (_

where )\ is such that |A\;| = 1, satisfies the sin-boundary condition

2811 cos (&1t — arg by ) cosh(log |b1])
(ebreather<t7 x))mlm:(] = _2771 tanh(log |b1|) <_ 2 D) ( )2 D) )
n? cos? (&1t — arg by ) + &F cosh®(log |by|)

050l<t7 07 {)‘17 _)‘T7 Cl? _CT})

= asin 5
if —2n, tanh(log |b1|) = « by the expression (6.1.6) of the breather from the proof of Lemma 6.1.2.
And as it turns out, this equation is equivalent to b; = — =/ ergfﬁ stated generally for

breather solutions.

6.2 Soliton solutions for the NLS equation

The Dressing method presented in Section 3.2 gives the algebraic means to derive, in the case
of the NLS equation, N-soliton solutions simply by calculating the (12)-entry of the projector
matrices (P[j])12 for j = 1,..., N recursively and then sum them up or by the direct calculation
of the quotient of two 2N x 2NN matrices, which represents the (12)-entry of the sum of projector
matrices, i.e. (X1)12, as presented in [42]|. In that sense, it is in theory feasible to give an explicit
expression for an arbitrary soliton solution, however, as indicated by the recursiveness or rather
the dimension of the matrix, the expressions rapidly become unhandy. On the other hand, since we
have algebraic expressions, it is reasonable to use programming in order to calculate these solutions
and thus to visualize them.
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As for the sG equation, we concentrate on the construction of soliton solutions originating
from the zero seed solutions for the NLS equation. With that said, it is clear that the zero seed
solutions are in the appropriate function spaces for all three propositions to be applicable, which
translates into u[0](-,0), @[0](-, 0), u[0],(-, 0), @[0]4(-,0) € H}/"'(R). Due to the seed solution being
constant, this property holds particularly for an arbitrary fixed value x; which corresponds to
the point where the defect conditions are imposed. For the defect condition, the generality of the
point of the defect gives some further insight. In fact, this circumstance implies that there exists a
matrix corresponding to a frozen Bécklund transformation for every z; € R connecting the Lax
pairs corresponding to the zero seed solutions for x < z;y and x > xy. Consequently, applying
Proposition 5.1.2 without the additional assumption on the imaginary part of the (11)-entry of the
matrix corresponding to the frozen Bécklund transformation for a[N|(¢, z;) and u[N|(t, zy), x5 # 0,
for different values of x;, we obtain matrices corresponding to frozen Backlund transformations
for every z; € R connecting the Lax pairs corresponding to the N-soliton solutions constructed
through the method of dressing the defect. With that in mind, let us construct solutions in the
model of the NLS equation subject to a defect condition.

6.2.1 NLS equation on two half-lines connected by a defect condition

In addition to the zero seed solutions sy (t, z; {}) = 0 and @ (t, x; {}) = 0, we take o € R and
B € R\ {0} and define Ay = —% +i§ € C\R. Hence, the matrix By(\), corresponding to the frozen
Bécklund transformation connecting the Lax pairs of the zero seed solutions and representing the
defect conditions, can be written as

B 1 fa—ip 0 - 1 /=X O
Bo()\)—]l—Fﬁ( 0 a+iﬁ)_ﬂ+X(0 _/\8),

where the + sign is chosen so that +|5| = —f. Then, for the N-fold dressing matrix, we take
solutions 9; to the Lax system (2.1.2) corresponding to u[0] for distinct A = A; € C\ (RU{Ao, Aj}),
7 =1,..., N, which are given by

Uj

(s x) = b, w, \) ot @, ) = e (u]> (6.2.1)
with constants u; and v;. Further, since the relation

,lvbj‘m:() = BO(A])¢] ‘x:()
is assumed to hold for j = 1,..., N and solutions defined by Jj(t, x) = e(~iAjw=2iXjt)os (@, v;)7 of
the Lax system corresponding to @[0] for A = A; with constants @; and ©;, we obtain the following
relation for the constants u;, v;, u; and v;:

T 2\ —iBu
U 2y tamibuy oy (6.2.2)

f)j - 2/\j+a+iﬁvj’

Note that effectively only the quotient of u; and v;, j = 1,..., N, is relevant for the scattering
data and that changing the sign of § is, via the relation +|3| = —f, the same as changing the +
sign in the defect condition. The exact expressions for C; and 5j for j =1,..., N can be derived
straightforwardly and we state them in Remark 6.2.2. Therefore, we can apply Proposition 5.1.2
in order to construct N-soliton solutions wsu(t, z; {\;, C;},) and e (t, z; {A;, C;}L,) which at
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r = xy = 0 are in the function space Htl’l(R), see Proposition 4.4.3, and with respect to x, we
have wgo (L, - {A;, C;}1L,) € HY'(Ry) and Gsa(t, -5 { N, @};V:l) € HY'(R_) by [17, Prop. 4.7]. As
in the proof of Proposition 5.1.2, we can use this fact to make sure that, after finding the matrices
By(t,zp, A), x5 € R, corresponding to the frozen Bécklund transformation for the N-soliton
solutions, the sign in front of the root in the (11)-entry is consistent with the sign of the initial
matrix By(\). Ultimately, we can use this extension to show that each soliton of the N-soliton
solution interacts with the defect individually.

Taking the same dressing matrices, applying them to zero seed solutions usy(t,z;{}) = 0
and Ug,(t, z;{}) = 0 on the whole line x € R, we obtain two N-soliton solutions for the NLS
equation for € R, which we denote by uy(t,z) and ty(t,z) for now to distinguish them from
the half-line solutions. By the aforementioned argumentation in Section 4.1, we have that at each
point zy € R, we can give by Proposition 5.1.2 a matrix By(t, s, A) corresponding to a frozen
Béacklund transformation. Hence, it makes sense to assume that the solutions of the Lax systems
for un(t,z) and uy(t, z) are connected by a matrix of degree one in A or in other words

Dt 2, \) = By (t, 2, \b(t, z, ).

Hence, the matrix By (t,z, \) solves the system (4.1.1). Assuming this matrix is linear in A, it
can only be of the form described in Proposition 3.1.1, which means there exist real parameters 9,
v € R and a =+ sign to be determined and

1 (6 +iy/v?— lan(t,z) — un(t, z)[? —i(un(t,z) —un(t,x))
t,r,\) =1 ’ ' ’ ’ :
Bu(t,o,A) =1+ 53 2\ < —i(an(t,r) —un(t,x))* 0 Fi/? — lan(t,x) — un(t, x)|?
However, precisely at x = 0, we have by Proposition 5.1.2 that
o —iy/B% — |an(t,0) — un(t,0)[2 —i(an(t,0) —upn(t,0))
t =1
Bu(t,0,A) =1+ 3 2\ ( —i(un(t,0) —uN(t,O)) o+ i/ B2 — |an(t,0) — un(t,0)?

where the full line solutions uy(t,0) and ay(t,0) can effectively be reduced to their half-line
counterpart wyo(t,0; {\;, C;},) and e (t, 05 {A;, 5j}§V:1), respectively. Therefore, we can deduce
that 6 = o, v = (8% and the sign complies with By for z = 0 and t € R. Additionally, we
fix the sign to be minus and, for —|3| = —f to hold, thus g > 0. Moreover, starting with
zero seed solutions, we can assume that the matrix By(t,z,\) is constructed by the vector
Yy(t, ) = D[N|(t, z, )\o)uow(_l)(t, x, \o), ug € C\ {0}, as suggested in the proof of Proposition 5.1.2.
Hence, for the quotient Ay(t, z) = [¢}(t, x)]2/[¥(t, 2)]1, we have

0)2(t,0) [D[N]]21(t,0, Ao)
L |Ao(t, 0)] = Woo‘ ol (t,O)‘ |t£noo‘[D[NH11(t, 0. %)

=0

by Remark 4.4.5. Furthermore, by the construction of dressing matrices, we find for By (¢, x, \),
up to a polynomial in A, that

AN A= 1 1 Ata)
By(t,z,\) = 3 <]1—|— NN 1+ Dot 7)) (Ao(t z) |A0(t,x)|2)>
L1 Co+ X1l 0)) O~ Ai(r, )
BRI S PRy x)\z( (08 — A Ao(t, ) —(/\3+/\0|A0(t,:r)|2).> (6.2.3)

Then, to put the additional property of Proposition 5.1.2 into perspective, we identify

Im<2)\([BN(t,O, i — 1) ) /B2 — |an(t,0) — un(t,0)[2 < 0.
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On the other hand, by the construction (6.2.3) of By, we find

Im<2/\([BN<t’xa M — 1)) = Im(a + iﬂM> = BM

|Ag(t, z)|> 4+ 1 |[Ao(t, z)[2+ 1
so that the assumed property is equivalent to
|Ao(t,0)]> =1
— <0 6.2.4
6|A0(t,0)|2+1 - ( )

and indeed, since lim;_,+, |Ag(,0)] = 0, we find —3 < 0, which is true by the choice of the sign in
the matrix representing the frozen Bécklund transformation. By the same reasoning as for ¢ to
infinity, we can deduce that the quotient |Aq(¢, )| has the following limits

D N] (t, Z, )\0)]21

lim |Ay(t,xz)| = lim = lim ‘:0.
|z\—>oo| 0( )| |z| =00 @/JO |m|—>oo D N](t,:ﬂ,)\g)]ll
Consequently, there exists an R € R for which
a — i/ B — |un(t, ) — un(t, z)|? —i(an(t,z) —un(t,z))
By(t,z,\) =1
(@A) =1+53 2\ ( —i(an(t,z) —un(t,z))* a+iy/B32 — lun(t, ) —un(t,z)2)’

where |z| > R. This means that the matrix By(t,z, A), constructed in the proof in order to show
that the defect condition is preserved, has in fact a continuation By (t,z, A) for x € R and even
though the square root in the diagonal entries may become zero at a point (¢,x2) € R x (R\ {0})
and even change sign, ultimately, the sign changes back for big enough = and consequently, we have

Boo(N) = lim By(t,z,)) = lim By(\) = ]1+A< Yo 0 > (6.2.5)

Then again, this can be generalized for arbitrary seed solutions satisfying the assumptions of
Proposition 5.1.2. Due to the dressing matrix always admitting a diagonal form for the limit of
|z| or ¢ going to infinity, the limit behavior of |Ag(¢, )| strongly depends on the limit behavior of
the kernel vector vy of the matrix By representing the frozen Bécklund transformation associated
to the parameter \g. Knowing that, we see that the Jost functions have relations induced by the
Bécklund transformation and the same normalization factor B (),

Uu(t, 2, \) = By (t, 2, s (t, 2, NBZLN). (6.2.6)
In turn, this relation implies the following relation for the corresponding scattering matrices (2.1.6):
AN = Boo(MNANBI(N), MeR. (6.2.7)

This observation is, in fact, similar to the ‘space-evolution’ interpretation given in Subsection
4.4.1. However, this time the relation is with respect to the usual functions emerging in the
scattering process. With these insights, we can give a similar formula for the relations of the
soliton parameters in the solution space as (6.1.8) in the case of the sG equation. Yet, due to the
well-known correspondence of the scattering data to soliton parameters in the solution space in the
case of the NLS equation, we can state more generally the following:
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Corollary 6.2.1. Let u(t,z) and u(t,x) be two N-soliton solutions of the NLS equation on R
constructed by the corresponding vectors used in and satisfying the assumptions of Proposition
5.1.2 and let their restrictions to the positive and negative half-line, respectively, be subject to the
defect conditions (4.1.2) at x = 0. Then for \; = & +1in; € Cy \ ((RU{-% + zg}), a € R and
B € Ry, it follows that solitons are transmitted through the defect independently of one another,
i.e. for all j =1,..., N the following holds

e

YT 2)\] + o — Z,B
~ 2)\1 + o+ 26
e arg(zAj Y- w)‘
Proof. By the definition \g = —5 + zg and the analysis above, we know that in the assumed

scenario

Bo(A) = lim Byt \) = 1 — ~ diag(h, \2).

|z|—o00 A
The relation of the Jost functions (6.2.6) gives
- Ao —1 - ALy L
WU =Byt e (1-3) L 0P =Byta P (1-3) (6.2.8)

Using (6.2.8), we can deduce for the respective relation (2.1.10) regarding u(t, z) and @(t, x) that,
j=1,... N,

() Aj —
t,x,\j) = t,x, \; t,x, N\ :
w— (7'1:7 ,]) )\ _)\OBN< ‘T )w ( :U ) )\ _A(] ]'l/) ( )
Therefore, the constants bj and b; can be related by
b N — N
b] )\J _ )\O ) ] Y ) ( )

Moreover, the relation (6.2.7) for the scattering matrices implies

d11(>\) = a11(>\), (6210)
dgl(/\) = i : iiaﬂ()\).

These two relations (6.2.9) and (6.2.10) can be combined to relate the norming constants 5j and
C;,3=1,...,N, of the respective scattering data in the following way

~ dayy *
Cj_by A\ AN

) daiy [y_y. ). — ’
Cy b SE =y Aj— Ao

from where we can see the influence on the N-soliton solution. Therefore, writing the norming

constants as )
C; = ane%jfwﬂqﬁj, C; = 277j6277j$.7'+1¢j

for j =1,..., N as motivated for the one-soliton solution in Section 2.1, we obtain for the spatial
shift ; — z; and the phase shift ¢; — ¢; the following
1 A — A Aj =G
i~ 0 = 2 tog (2220, (),
x] x] 27’]] 08 )\j — )\0 Cb Cb] are )\ — )\0

which indicates that the solitons experience the defect independently of one another. O
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Remark 6.2.2. Another way to prove the assertion of Corollary 6.2.1 is by the ideas given in
Theorem 3.3.1. Therefore, after iterative application of the Dressing method to the zero seed
solutions, we obtain

YN YA
aY =] —22 a0 =[5 AECLUR,
L1\ L1\
j=1 J j=1 J
asy’ (A) = 0, asy ) (\) = 0, AER,
v N A 7 Al WY
(N) o J %k AN) J VA
k=1 k=1

The relevant equations appearing in the proof of Corollary 6.2.1 hold and particularly, by equation
(6.2.2) we have

CY wuy 2\ tatip
C(N) _’lNLj’Uj - 2/\j+Of—Z.B7

j=1,...,N.

From the first approach, we can deduce two helpful properties. First off, we can give an
equivalent expression for the assumption on Im (limA_m [2A(Bn(t,0,X) — ]1)]11> from Proposition

5.1.2 on the spectral side, see (6.2.4), thereby underlining the necessity of this assumption. With
the choice § > 0 and the minus sign in the defect condition, the assumption is equivalent to

1Ao(t,0)] <1, teR. (6.2.11)

And by a similar reasoning |Aj(¢,0)| > 1 for ¢t € R and Ay(t, z) = % which is equivalent
1T5Ag

to (6.2.11). Now, assuming that there exists a ¢, € R such that |Ag(tp,0)| = 1, for the one-fold
dressing matrix D[1](to, 0, \o), see (3.2.2), we find that this is equivalent to

[D[1](to, 0, Xo)]11]* — [[D[1](to, 0, Ag)]21|* = 0
(Ao = A1) + (Ao = ADIA(to, )] = [A] = Ai*|A(to, 0)]* = 0,

where both entries of the one-fold dressing matrix are multiplied by (Ag — A¥)(1+ |A(tp,0)[?). Then,
given the usual identification A\ = —5 + zg and \; = & + in1, we have

2

(G+a)'+ c m)”) Ao, 0)[* + (2(5 +&)* + 5 — 60} ) [A(to, )

2 2
o} 2 2
+ ((—+£1) + (5 —m) ) = 0.

2 2
Thus, we want to show that there exists a combination of solutions of the NLS equation on
the respective half-line for which the defect condition is satisfied with either plus or minus sign
depending on the time ¢, which underlines the necessity of assumption (6.2.11). Writing the
equation for |A(ty,0)| as a polynomial p(y) = y* + 13> + ¢ in y > 0, we have

=0.

28+ -6, (5+&) +(E-m)
=yt +
N P e A P L

Since ¢ > 0, the effective behavior of the polynomial only depends on ¢y, see Figure 6.8. If n; is
big enough in order for p(y) to have real zeros, then there indeed exists at least one ¢, € R such
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p(y)
p(y) p(y)
Co (&)
& ] ]
Yy Y Yy
c1>0 c1 <0 ¢ <0

Fig. 6.8. Behavior of the polynomial p(y) for different values of ¢;.

that |Ag(tp,0)] = 1.

Let us elaborate on this occurrence with the following selection of parameters: a = 0, 8 = 2,
A =& 4+ iy = 1+ 2i, Cp = —44, which further implies b; = —1, C’1 =4 — 8 and b1 =—-2—1
and particularly ¢; = —2 as well as ¢, = 0.2. Correspondingly, we obtam by Proposition 5.1.2 the
following solution formulae for s, and .:

Ugor (t, 23 {1 + 20, —43}) = 4e @120 sech (4(x + 4t)),
Tsor(t, 3 {1 + 20,4 — 8i}) = e~ 1x—12t4m/2arctan(2)) goch (4 (1 + 4t) — log(5)/2).

By the constants of the polynomial p(y), we can derive that the third plot in Figure 6.8 represents

the polynomial with the positive zeros 1+ v/0.8. If we want to connect these zeros to the
times ¢ they occur at, we need to look at the time evolution of |Ay(¢,0)|, which is given by

|Ag(t,0)| = |b1|e~ 6%, Therefore, we find that between the critical values t& = —log(/1 + 1/0.8)/16

and t; = —log(v/1 — +/0.8)/16, the sign of the defect condition is not as desired. Now, for the
first equation of the defect condition (4.1.2), we obtain that

(TUsor — Usor) e = —2i(Usop — Usor) — 4 tanh(4(x 4 4t) — log(5)/2) sy + 4 tanh(4(z + 4t))use

is supposed to be equal to

i\/4 - |ﬁsol - usol|2(a50l + usol)

for ¥ = 0 and ¢ € R. If we approximate the critical interval as [t{,t,] &~ [—0.02,0.07], we have for
t ¢t ty], i.e. t = —0.25 and t = 1, that the defect condition in the first equality hold with a
minus sign

(ot = tsot)e | (01— (_0.25.0) = 0-4139 = 0.00017 & /4 = [hsor — ot |* (ot + tsor) |, 11— (0350
(ot = tsot)z | ., —3.5921 + 4.41787) - 1070 &~ — /4 — |ligor — sor|*(Thsor + Usol)| (401 (1.0)°

However, if we check inside the interval ¢ € (tJ, ¢, ), we have that the defect condition in the first
equality is satisfied with a plus sign

(ot = tsor)a | .0y (0.0) 44444 — 0.8889i ~ /4 = Jtor — st (Tsor + tsol) | (ta)—(0.0)"

Swapping the roles of D|N]| and E[N | in Proposition 5.1.2, while retaining the norming constants

C7 = 4 — 8i and adjusting the norming constant C to C} = (4 — 8i) iﬁ’“ = 16 — 124, leads to

a different critical interval, now depending on the values of ¢ for which /1 4+ /0.8 < |A t,0)| <



120 CHAPTER 6. SOLITON SOLUTIONS

1 — /0.8, where A(t, ) is the quotient of the solution (3.2.1) used in the one-fold dressing
matrix D[1] as in (3.2.2). In this particular example, the associated simplified interval is then
given by [t5,t5] = [log(5/(1 +/0.8))/32,1og(5/(1 — 1/0.8))/32]. In that regard, it may seem that
the determlnatlon of solutions for the NLS equation with defect conditions is more complicated
than just applying the Dressing method to construct them. The actual aim of the preceding
analysis is however just to give an easy example for solutions of the NLS equation on the respective
half-lines which are not subject to the defect condition with consistent sign for ¢ € R. In general,
the inequality of (6.2.11) can be verified easily with the expressions for the N-fold dressing matrix
DIN] and given the kernel vector ¢y of the matrix By corresponding to the frozen Bécklund
transformation for the seed solutions u[0] and @[0]. Now, since we have complete knowledge of the
kernel vector v in the case of zero seed solutions, the verification is a matter of adding a few lines
in the code which lets us calculate the N-soliton solution.

The advantage of the first approach in determining the difference in the initial position and
phase is that it is easy to imagine making a comparison between a soliton under trivial transmission,
a soliton subject to the defect condition and a soliton-soliton interaction with the defect considered
to be half a soliton. For that comparison, let us first discuss what is known |2, 38] about the
asymptotic states as ¢ — £oo of an N-soliton solution for the NLS equation on the full line. If
Re(\;) = & # & = Re(\g) for j # k, then for ¢ — +oo the potential u € Gy breaks up into
individual solitons of the form of a one-soliton (2.1.21) so that

N
sol(t L5 {)\370} Nzusol@;x;{)\j,cji}), as t — +oo

with
sor(t, 5 {Ny, O }) = 2y Pt A=/ soch (2, (2 + 48t — 27)),

where \; = &;+1in;, 7 =1,..., N. Let us assume that the soliton parameters related to the velocity
—4¢; of the soliton are arranged in such a way that {; < & < --- < &y. Then, for a large enough
negative time or rather ¢ — —oo, the solitons are distributed along the z-axis in order of decreasing
velocities, thus, &, &, ..., &y, while this order is reversed as t — oo. Based on this circumstance,
we want to discuss the consequence of the interaction between solitons by tracing the influence this
development has on the respective eigenfunctions. Further, let x;(¢) denote the soliton coordinates
at the instant of time ¢, where [t| is assumed to be large enough so that it makes sense to talk
about 1nd1v1dual solitons. By the above argumentatlon if t > —o0, then 11 € 17 € -+ K zy.
The function 3" (t, x, A;) admits the form W (t, 2, \;) ~ e v 42X in the region r < ;. If
there is any interaction between the soliton corresponding to A; and a soliton corresponding to
A;, according to equation (2.1.6) and Remark 3.3.2 the form of M (¢, 2, \;) would change by the
factor of the coefficient aj();) for x > x1, where a;(\) = {=3¢ il is the scattering coefficient aq;(\)
relative to the first soliton. After repeated application of this argument, we obtain

i(Aj :z:+2)\2 t)

w(l tgj)\ Hak ( 0 ), T << L.

Then, through the j-th soliton interaction corresponding to a bound state, we find

7j—1
1 x . i O
w(_)<t, x, )\j> ~ 277]'6277] 5 tio; H ak()\j) (ei()\jx-i-?)\?t) , T LT KL Tjy1-
k=1



6.2. SOLITON SOLUTIONS FOR THE NLS EQUATION 121

Coming from the other side x > xy and repeating the argument, we have

N
2 0
WP (t, 2, A;) ~ I @) <€i()\]~x+2)\§t) y % <L L T
k=j+1

Therefore, relation (2.1.10) implies, using the expressions of the norming constants, that

.y 1 7j—1 N -
C; ~ 2m;e2m% +io; TH e T ex)™, £ = o0,
A=) k=1 k=j+1

where ;" and ¢; describe the asymptotics of the functions z;, ¢; as ¢ — —o0.
Analogously, for t — 400, we find

onjat +igh 1 =

Cj ~ 2n,e”% ™ H ap(A;), t— 4o0.

a11’
A=\ k=1 k=j+1

Combining these two results, we can deduce

y 2= S (-
23(:p—a: +z¢>+ " N2 j Nk J Nk
e™ Hak‘ H ar(A;) _H<>\j_)\;;> H ()\j_/\k) ’

k=j+1 k=1 k=j+1
In general, this means that under the condition stated in the beginning, Re(\;) = &; # & = Re(\)
for j # k, we have that an N-soliton is actually a combination of NV single solitons and that the

N-soliton solution characterizes the interaction of these individual solitons. Consequently, the
two-soliton interaction with Re(\;) < Re(Ay) corresponds to the following spatial and phase shift:

1 —AS 1 —
xf—a:l_:—l ;1 12, a:;—x;:—l il ii
Al Xf Al ™ (6.2.12)
+ - + - 1 2

By these explicit expressions, we can capture three cases of interaction. If we furthermore assume
Im();) >0, j =1,2, so that
A1 — A
Al — Ag

then we see that the spatial shift for the first and second soliton is z1 — 27 > 0 corresponding to

a shift into the positive z-direction and x5 — z, < 0 corresponding to a shift into the negative

x-direction, respectively In addition, we can differentiate the three cases by the velocities
= —4Re()\;), j = 1,2, and find for

> 1,

(i) vy < 11 < 0 that the second soliton is on the right of the first soliton as ¢ — —oo and that they
both travel from the right to the left so that as t — +o00 the places are switched. Consequently,
the second soliton overtakes the first one due to it being faster |v5| > |v4]. The faster soliton is
shifted forward and the slower soliton backward with respect to the direction of travel,

(ii) »1 < 0 < 1 that the first soliton is on the right of the second soliton as ¢ — —oo and travels
from the right to the left and the the second soliton travels from the left to the right so that again
as t — +oo the places are switched. Consequently, due to them travelling towards each other, they
interact. Both soltions are shifted forward with respect to their direction of travel;
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5 -
|Tsor (t, 25 {—0.75 + 17, 1})] 4
4 Jug(t, 25 {=0.75 + 1i,1})] g
+« 0 7
"S5 -0 -5 0 5 10 15
x
Fig. 6.9. One-soliton purely transmitted and its contour.
5 : : : —
|0t (¢, 25 {—0.75 + 14, 1})]|
4 Jug(t, 3 {—0.75 4 14, —3.8 — 2.4i})|
+~ 0 y
i
_5 Lz . . . .
-5 -10 -5 0 5 10 15

i1 (¢, 25 {—0.75 + 1i, —0.5 — 1.54,1,0.25})|
4 Jugy(t, 2;{—0.75 + 13, —0.5 — 1.54,1,0.25})|

10 15

Fig. 6.11. Two-soliton purely transmitted with the defect interpreted as soliton and its
contour.
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(iii) 0 < 14 < vy that the second soliton is on the left of the first soliton as ¢ — —oo and that they
both travel from the left to the right so that as t — 400 the places are switched. Consequently,
the second soliton overtakes the first one due to it being faster |v5| > |v1] as in (i). Analogous to
the first case, the faster soliton is shifted forward and the slower soliton backward with respect to

the direction of travel.
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If we compare these expressions with the spatial and phase shift each soliton experiences

independently after interacting with the defect, it becomes evident that the defect can in theory
be seen as ‘half’ a soliton, see [8]. Since, as we have seen before, the defect parameters are used as
half the real and half the imaginary part of a spectral parameter from which we construct a frozen
one-fold dressing matrix in the proof of Proposition 5.1.2. On the other hand, by comparison
of the spatial and phase shift (6.2.12) with the result of Corollary 6.2.1, there is again a factor
of one half. To summarize this idea, we refer to Figures 6.9, 6.10 and 6.11, where we compare
a one-soliton solution being purely transmitted, satisfying the defect condition and interacting
with the defect condition interpreted as half a soliton. In the transition from the second to the
third plot, one can observe that the phase shift one of the solitons experiences is doubled when the
defect is interpreted as a soliton itself.
The expression % lets us, similarly to the argumentation for the sG equation, state some
facts about the behavior of the spatial and phase shift of the N-soliton after interacting with
the defect. For the general idea of the spatial shift and the influence of the relation of Re();) to
the defect parameter «, we refer to the explanation regarding the two-soliton interaction, we just
have given. Additionally, letting S go to zero, the quotient goes to 1, which indicates that the
discontinuity at x = 0 disappears, suggesting that « by itself can not maintain the defect condition.
On the other hand, letting |5] go to infinity, the quotient goes to —1, which means no considerable
spatial shift as Z; — x; goes to zero and essentially a shape inversion as qgj — ¢; goes to 7 for all
j=1,...,N. The effect of the spatial shift growing and decreasing can be observed in Figure 6.12,
where for @ = 0 the maximal space shift is given at 5 = 2.5. However, if we take g € R\ {0} and
let |a| go to infinity, the effect of the discontinuity also disappears, i.e. Z; — x; and <5j — ¢; both
go to zero for all j = 1,..., N. Hence, the second defect parameter may be understood as a means
to smooth out the discontinuity in the presence of the defect condition (3 # 0).

a=0 =25 a=0,8=5

) ) ) . 5 ¢ . , ) )
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
Xz X
Fig. 6.12. One-soliton |t (¢, z, {—0.75 + i,1})| interacting with the defect resulting
in |use(t, z, {—0.75 + i, —3i})| on the left and in |usy (¢, x,{—0.75 4+ i,—5/3 — 4/3i})| on
the right.

Remark 6.2.3. To translate the expression into the notation used in [15]|, where the authors
confirmed by direct calculation the one- and two-soliton satisfying the defect condition with
switched defect parameter notation and o = 0, first off, we need to forget about the defect
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parameter we call 5 and additionally take Q = \/a? — |4 — u|?. Then, for the one-soliton solution
consider Z—ll =1,a=2n, c= -2 p=e?M% and finally ¢ = e~ to recover the same result.
In the method we have presented, there are no limitations on the amount of solitons one can

construct. Even though, it may not be obvious that the defect conditions are satisfied, we give a
four-soliton solution which satisfies the defect conditions in Figure 6.13.

~ 5 —
‘ﬂ/sol(tvx;{Aijj}?:lﬂ \

4 |usor (¢, 23 {>‘.7'7C_7'}j':1)|

2
w 0l
0 WM“ M
5 % Al
o
¢ -5 —10 50

Fig. 6.13. Four-soliton |ts(t, z,{—0.75 + 4,1 +4,0.5 + 0.75i, =2 + 0.5i, 1,2, 75, e!})|
interacting with the defect (« = —1, = 3) and its contour.

There is also a particular solution known which is not covered by Proposition 5.1.2. As in the
case of the sG equation, this solution interacts destructively with the defect. Firstly, let us give
the resulting solution

ﬂdsol(ta x) = asol <t’ x; {_5 + Zﬁ Cl}) _ 5e—i(—ax+(a2_52)t+(¢1+7r/2)) Sech(ﬁ(w — %20t — xl)),

usol(ta T3 {}) = 07

where «,  and z; again need to be chosen in such a way that the argument 5(2at + x;) is either
positive or negative for all t € R. Therefore, it can be derived that « needs to be zero and
subsequently, the + sign of the defect condition needs to be chosen in order to compensate the
resulting sign of Sz, where it is imminent that x; # 0. This property is equivalent to the assertion

on Im (limAﬁo[Q)\(BN(t, 0,\) — ]l)]11> in Proposition 5.1.2, since in this case

ilm(mm(&v(uo,x) - 11)]11) - = /B — [tige(t, 0) = |3 tanh(Bz:)|.

Moreover, we can calculate that this solution satisfies the defect condition with a = 0, thus we
need

(ﬁdsol)x(ta O) = iQ<t7 O)Iadsol(ta 0)7
(adsol)t(ta O) - ﬂ:ZQ(t, O)(adsol)az(ta O) + iﬁ'dsol(t: 0)|ﬁ'dsol(t> 0)|2

The derivatives of tgs0(t, z) evaluated at x = 0 are
(adsol)x(ta O) = ﬂtanh(ﬂxl))ad80l<t7 0)7
(adsol)t(tu O) = Z.62@(150[(157 0)
Due to €(t,0) being equal to |3 tanh(Bz)|, both these equations hold if sign(x;) = +1.
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Remark 6.2.4. The destructive soliton solution with o = 0 is in fact a boundary-bound soliton
solution, which is not covered by Proposition 5.1.2, but mentioned in [15].

6.2.2 NLS equation on the half-line with boundary conditions

By the argumentation of the proofs in Chapter 5, it follows that in the case of zero seed solutions,
it is not necessary to distinguish cases when introducing the frozen dressing matrix Iy (%,0, ).
Due to the complete knowledge of the solutions of the Lax system (2.1.2) and the fact that the
boundary matrices are diagonal, we can immediately identify the linear dependence of the two
vectors vy and vy by a particular choice of constants as in the proofs of the propositions for the
sG equation. On the other hand, given for example a non-zero seed solution u[0] = pe2P"t with
constant background p > 0 which satisfies the Neumann boundary condition wu,(¢,0) = 0, this
criterion can not be applied.

As for the defect condition connecting two half-lines, the zero seed solution u[0] = 0 can be
taken as a foundation to construct soliton solutions for the NLS equation on the half-line with
both the Robin and the new boundary condition. In compliance with Proposition 5.2.4, we thus
take pairs of solutions t;(t,2) = e~ TH2jt)os (uj,v;)7 and w] (t,z) = e (e t2\it)os (u 0;)7 of
the Lax system (2.1.2) at the spectral parameters A = \; and A = —\;, j =1,..., N;, respectively,
making sure that they are distinct —A\; # A; for all 1 < 7 < k < N;. Further, with regards to
assumption (5.2.10), we impose

{Z]\’ B ﬁje_%’\?t ~ (ia— (=1)News2)); 0 uje_%’\z
Ta=0 7\ gye®A5t | 0 io+ (=1)Newe2); )\ 2Nt

which is Ko((—1)Mews A )¢]| and easily translates into the following equality for the quotients

4 da— (=1)Vw2Nu;
a4y _ Y o iZ1,....N, 6.2.13
Aj 1o+ <—1)Nbbs2/\j V; > J ’ ’ ( )

v

As in the proposition, Ny and Ny, are the numbers of the solitons for which the spectral parameter
satisfies \; € C\(RUiR), j = 1,..., Ny, corresponding to solitons or A; € iR\{0}, j = Ny+1,..., N
corresponding to boundary-bound solitons, respectively. On the other hand, the assumption (5.2.11)
prescribes the choice of the norming constant for the included boundary-bound solitons. We have

a— (=1)Mws2Im(N;)
= — - NS 1,...,N.
\/ a+ (=1)Nws2Im(A;)’ J i

Yi

Uj

The argument under the square root needs to be positive. Since we are not able to freely construct
boundary-bound solitons for the new boundary condition due to the restriction in Proposition 5.2.7,
we take this opportunity to give an example of boundary-bound solitons on the half-line with the
Robin boundary condition in Figure 6.14. R

Note that if \; € C4, then \; = —); € C_ which, in turn, implies that 1; has ‘opposite’
limit behavior as % for x — j:oo In order to apply Theorem 3.3.1 to the Dressmg method

corresponding to )\ and %7 we instead use the counterpart )\* and ;. Since with )\* € C4, the

vector p; =e Z(A*”?(A*)%)‘”(—@;, 47)7, admits the same limit behavior as ¢; for # — do0. Similar

to Remark 3.3.2 following Theorem 3.3.1, we can deduce for a two-fold dressing matrix consisting
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of the spectral parameters \; € C, \ iR and —\} € C, \ iR with the corresponding solutions 1),
and @ of the Lax system (2.1.2) that the weights of the scattering data can be calculated as
RN YR [N R Y) R R CYp DI CY R
1 - - -~ Y 2 - A% ~ -
(1 AL — A} —U; AT =\
This results in the following relation for the norming constants of the scattering data under the
Robin boundary condition

@) (25 o da—2)\; Im()\)?

Cy7(C7) = —4A] - . Ro(\ )2 (6.2.14)
which is up to notation the same as in [6]. To align the notation, one would need to complex
conjugate (6.2.14) and then it would be compliant with equation (2.36) in their paper after
replacing k; = —Aj. This is due to the differently defined potential Q; of the matrix V, which
as a consequence gives the existence of Jost functions with different asymptotic behavior and
continuations into different parts of the complex plane. Further, the following relations between
the initial positions and phases of a 2/N,-soliton solution are valid.

Remark 6.2.5 (Biondini & Hwang, [6]). In general, we can construct a 2N,-fold dressing matrix

using the information given by the distinct spectral parameters Ay,..., Ay, and —AJ, ..., =AY in
C, \ iR as well as their respective solutions of the Lax system (2.1.2) corresponding to the zero
seed solution 91, ...,9¥n, and @1,...,Pn,. In particular, we have \; = &; + in; and consequently

=A==+ for j=1,..., Ns. Then, for j =1,..., N the relation for a pair of initial positions
x; and T; = xn,4; as well as phases ¢; and éj = ¢n,+; amounts to

) 1 2 1 26:)2 + (a0 — 21,)?
xj+xj:—log(1+n—]>+4—nlog<( &) +(a 773))
j

21, & (2§;)% + (a + 2n;)?
LN L6 =) (= ) 80 oy —
2n; = (&G + &)+ +me)?][(& — &)+ (0 +me)?]

265 +i(2n; — 04))

@ = ;= 2arg(A;) + arg(zg- +i(2n; + )
J J

16 = 6 il = )l + &) + i — o)
; g( [(& + &) + i(ny + ne)][(& — &) + i(n; + i) >’

-15 =10 -5 5 10 15

Fig. 6.14. Boundary-bound two-soliton subject to (5.2.9) with &« = —1 and its contour.
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~

while the product of a pair of weights C;, C; = Cy,4; is

. N, .
0,0 = —an = 2); (2m;)° [H/ (A = A (A + Ae)7?
Tia 42X (26)2 LS (A — M) (N + A7)
Before graphically presenting the results, we want to give a similar argumentation for the new
boundary condition corresponding, in the case of the zero seed solution, to the boundary matrix

1 AN? + 4i)N|B) — (o? + B%) 0
@A — Bl — a? 0 AN — 4i]B] — (02 + 52) )
Taking the spectral parameters A = A\; and A = —\;, j =1,..., N, as well as their corresponding

/Co()\) =

solutions 1; and v; of the Lax system (2.1.2) as in the case of Robin boundary conditions with
the difference that the paired solutions need to satisfy assumption (5.2.18), we obtain the relevant
relation for the quotients

B _ oA ety

v; (2N —1i|B])? — a? vy
which is the counterpart to relation (6.2.13). For the two-soliton solution, this yields the relation
(2M\; +14|8])? — a? ' Im(\;)?
(2A1 —1|5])2 —a? Re(\)?

CE(CP) = —4ar2.

2
% is the only
To—2\1

difference to the same result regarding the Robin boundary condition, where one has 2= e

Moreover, by defining \; = & + i, and X“{ = =& + 1 as well as the corresponding weights

Cy = 2 e?maition — 01(2) and C| = 2ne2métion — 02(2), we obtain a relation between the initial

positions and phases of the two-soliton
0’

T+ 2 = L10g(1—|—£1>—|——1 (E
(

regarding the norming constants, where it is obvious that the factor

16t — o - (21 + A1) + (412 + 9D
48 — a2 — (2 — BV + (42 — |8]))?
it —o?— Ot 0+ 6O 1Ay

2m

b1 — ngSI = 2arg(\) + arg(

A7 — o — (2m1 — |B])? + & (2m — |B])
Remark 6.2.6. In general, we can construct a 2N-fold dressing matrix using the information
given by the distinct spectral parameters Ay,..., Ay and —Af, ..., =X} in C, \ iR as well as their
respective solutions of the Lax system (2.1.2) corresponding to the zero seed solution vy, ...,y
and $y,...,on. In particular, we have \; = & + in; and consequently —\; = —&; + in; for
j=1,...,N. Then, for j =1,..., N the relation for a pair of initial positions z; and Z; = x4,

as well as phases ¢, and ggj = ¢n4; amounts to

1 By 1 (A€ —a? = (20, + |8])?)? + (4,20, + 18)°
o+ = - log(1+ ?>+4?7j1 <<4f2—a2—<2m—m|>2>2+< =G —TA0F)

L5 6 =80+ (= I+ 60° + (= 0
2 B e T e oy (G — 807 (T )
452_(1 _(27734“5‘) +Z4’SJ(277]+WD)
462 — a2 — (2n; — |B1)% + 14&;(2n; — 18])
e (6 = 6+ iy — w6 + iy — )
; g< [(&5 + &) +i(nj +n)][(& — &) + i(n; + nk)]>7
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whereas the product of a pair of weights C; and @ = Cpyj is

: N
C’é\* — _4)\2 (2)\3‘ + Zlﬁ’)2 [H/ )\ 4 )\k)
J X . il )\ — )\k )\ ¥+ )\Z) )

where the prime indicates that the term with k = j is omitted from the sum and product.

Let us now focus on the visualization of the solutions in the case of boundary conditions
for the NLS equation. For Ny = 1, consider the spectral parameter A\ = & + in;, where it is
comprehensible with regard to (2.1.21) that & and n; describe the velocity and the amplitude
of the physical one-soliton, respectively, as indicated in the discussion for the defect conditions.
Further, the quotient of the constants u; and vy is highly related to the initial position 21 and phase
¢ of the soliton. Consequently, the mirror soliton corresponding to A} = —&; + 41, has opposite
velocity to and the same amplitude as the physical soliton. Particularly, we have visualized the
behavior in Figures 6.15 and 6.16 for the Robin and the new boundary condition.

On the other hand, the Dirichlet boundary condition u(t,0) = 0 occurs as a special case of
the Robin boundary condition, when o« — 0o, or of the new boundary condition (4.3.3), when for
example |a| — oo, |B| = 00 or § — 0; the Neumann boundary condition u,(t,0) = 0 only occurs
when a = 0 in the Robin boundary condition. Indeed, structurally these cases correspond to the
boundary matrix Ko(A) = 1 or Ky(A) = —o3. Therefore, we plotted in Figure 6.17 on the left and
right the reflection of a one-soliton solution |u(t,z;{);, Cj}3_,)| subject to the Dirichlet and
Neumann boundary condition, respectively.

Then, in Figure 6.18, we choose particular parameters for the new boundary condition to plot
an example of a physical three-soliton solution | (t, z; {A;, C;}9_,)|, which is reflected at the
boundary, in three dimensions on the left and as a contour plot together with the mirror soliton on
the right. Then, in Figure 6.19, we repeat this idea with the scattering data of a breather

343 341 343 341 gxs o o10s . —DALH 120 hoy  —TT—84i 14
, — - 1.6675%,0.6e108, 1,622 2l a8 g g1~ 01 }
{ 1 1 A 1 ¢ © 1105 ¢ 265 ¢

for the NLS equation subject to the new boundary condition which is characterised by two spectral

parameters having the same real part or rather velocity and overlapping spatial positions. It is

observable that in these cases the physical soliton and the mirror soliton change roles, after the

usual soliton interaction, with the physical soliton visible before and the mirror soliton visible after

the interaction with the boundary. Additionally, in the case of the Dirichlet boundary condition

the interaction of the pair of solitons results in the whole solution being zero at the boundary.
Picking up, the one-soliton solution swallowed by the defect is given by

Ugsol (t, T) = Usoy (t, x; {—% + ig, Cl}) = 5e’i(’ax+(a2’52)t+(¢l*“/2)) sech(B(z — 2at — x1)),

and hence, we can infer that it satisfies

(udsol)x( ) Btanh(ﬁxl)udsol t 0 \/B2 ‘udsol t 0)‘2udsol<t 0)
(udsol)t(t ) Zﬁ udsol t 0 - _Z\//B2 |udsol t O)| (udsol)z(tyo) +Z|udsol(t70)|2udsol(t70)a

under the condition that v = 0 and if sign(z;) = —1. Therefore, multiplying the first equality with
\/ B2 — |ugsor(t, 0)|? and adding the second one multiplied with —i, we obtain

2\/ﬁ2 |udsol t O)l (udsol)ac<t7 0) = Z.(udsol)t(ta 0) + 2|udsol (t, O)‘Qudsol(ta 0) - B2udsol(t7 0)7
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|tsor (£, 5 {1 + 1d, —1 — 14, 2%, (0.4 — 0.8i)e™) |

15

10

—2) and its contour.

Fig. 6.15. One-soliton interacting with the Robin boundary («

[usor (, 23 {1 + 1i, —1 — 13,2, (78 + 96i)e* /425})|

15

10

—1, 8 = 2) and its

Fig. 6.16. One-soliton interacting with the new boundary (o =

contour.

[t (£, 3 {1 + 13, +1 — 14, 2¢2°, 2¢%) |

[ttt (£, 23 {1 + 1d, —1 — 14, 2¢2°, —2¢2) |

Fig. 6.17. One-soliton interacting with the Dirichlet (left) and the Neumann (right)

boundary.
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[wsor (t, 25 {2, C;}5_1)]

-15 =10 =5

Fig. 6.18. Three-soliton interacting with the new boundary (o = 4, = 2) and its
contour.

12 ——

[wsor (£, 23 {N;, Cj} 1)
10 +

—20 -10 0 10 20

Fig. 6.19. Breather interacting with the new boundary (o = 2, § = 0.5) and its contour.

|tsor (£, 75 {0.54, €71} |sor (£, 23 {13, 2702 }))|

Fig. 6.20. Boundary-bound soliton interacting destructively with the new boundary
with a = 0 as well as § = 1 on the right and 5 = 2 on the left.
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which corresponds exactly to the new boundary condition with a = 0. Hence, this boundary-bound
soliton is a solution of the new boundary condition interacting destructively with the boundary
which eliminates the need to construct a paired soliton. This viewpoint is based on the idea that
we already know what we want to achieve. In theory, we could assume more generally that o € R.
Indeed, it yields the same result which in hindsight one might connect to the assertion concerning
the imaginary part of the (11)-entry of Ky or rather |ug(t,0)| = |8 sech(—=5(at + x1))| < |8] if
g #0.



Chapter 7

Conclusion

The main result of this work is the application of the Dressing method to different integrable
models on the half-line and two half-lines connected through defect conditions. Explicitly, starting
from zero seed solutions, we have constructed pure N-soliton solutions subject to the Robin and
new boundary condition for the NLS equation on the half-line and the sin-boundary condition for
the sG equation on the half-line. Furthermore, for the NLS equation, we have taken a closer look
at the corresponding relations of the norming constants and put forth their explicit relations in
terms of parameters of the solution. Again, given zero seed solutions, we have also constructed
pure N-soliton solutions subject to defect conditions connecting the NLS or sG equation on two
half-lines. Particularly, for the NLS equation, we have shown that each soliton is transmitted
through the defect independently, which proves the statement conjectured in [15].

Different extensions of the presented method could probably be realized. Among them the
application to integrable models on a star-graph with more than two half-lines, to integrable
models of other PDEs associated to the AKNS system and to nonzero seed solutions for the NLS
equation satisfying the corresponding boundary or defect conditions. Unsurprisingly, for each of
these extensions the application is made more intricate. To begin with, for the consideration of
three or more half-lines the concept of integrability needs to be generalized and the preliminary
considerations with respect to the distribution of simple eigenvalues on each half-line needs to
adapted. If one is interested in a different equation other than the NLS or sG equation particularly
on the half-line, the associated symmetry with respect to the spectral parameter of the term
including the time ¢ of the phase needs to be considered, e.g. A\? for the NLS and A+ A~ for the sG
equation. In that regard, it is not always straightforward to obtain this very symmetry as pointed
out to us by C. Zhang. Finally, the topic of a nonzero seed solution at least for the Neumann
boundary condition has been treated in [42] and it is interesting to see if it is possible to give other
examples, which then may also be related to physical phenomena.

Since the nonlinear method of images serves as an alternative method to find exact solutions for
integrable models on the half-line, it should be possible to formulate Proposition 5.2.7 in terms of
this method. This may lead to further insights regarding the boundary conditions.
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Appendix A

Calculations

For the proofs, we want to reiterate on, the following trigonometric identities are instrumental.

Lemma A.0.1 (trigonometric identities, [3]). The Product-to-sum formulae give
sin(x 4+ y) = sinx cosy =+ cos x siny, cos(x +y) = cosxcosy Fsinxsiny. (A.0.1)

Conversely, the Sum-to-product formulae are

2sinx_ycosx+y:sinx—siny, —QSinx_ysinz—'—y:coscc—cosy. (A.0.2)
2 2 2 2

2cosx;ysinx;y:sinx+siny, QCosxgycosx;y:cosx+cosy. (A.0.3)

The double-angle formulae yield
sinz = 2sin = cos E, (A.0.4)

2 2

cosz + 1 = 2 cos® g, (A.0.5)
cosx — 1 = —2sin? g (A.0.6)
Proof. By Euler’s formula, we know that sinz = i(e™™ — ¢)/2 and cosz = (e + ') /2.

Therefore, the left hand sides of equalities (A.0.1) are, in fact,

) ) ) 1 . .
sin(x £+ ,y) _ %(e—z(ziy) _ ez(mﬂ:y))) COS(JI + y) _ 5(e—z(ocj:y) + 6z(gcj:y))_

On the other hand, we find for the first line

sinz cosy + coszsiny = i [(e‘i”” — ) (eTW 4 e¥) £ (e 4 ) (e — eiy)]
- i[(e‘i(uy) B ei($+y))(1 +1)+ (e—i(w—y) _ ei(x—y))(l T 1)]7

which is the same as the expression for sin(z £ y) and for the second line

cosxcosy Fsinzsiny = 2 [(e‘ch +e) e +eY) L (e —e)(e — ely)}
= ;1 [(e*i(wﬂ/) + 6z‘(m+y))(1 +1) + (e,i(x,y) + ei(xfy))(l T 1)} ’
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which is the same as the expression for cos(xz £ y). Further, we have the simple equality

1 , , 1 ; ;
_Z(e—Qw o 2+62m) + Z(e—sz +2+€21$) =1.

sin? z + cos® x =

Using the identities (A.0.1), we have

== TFY .z Y T .Y x y ., . T Y
2 sin CcoS =2 (sm — Cos = £ cos — sin —> (cos — cos = &£ sin — sin —>
2 2 2 2 2 2 2 2 2 2
= 2sin z CcoS z [cos2 y + sin? Q} + 2sin y Cos y [cos2 m + sin? q
2 2 2 2 2 2 2 2
= sinx + siny,
where incidentally, sinz = sin 2 = 2sin £ cos £ is a special case of (A.0.1). We also have
—28in =Y singlj Y _ —2<sin£cosg — COSESiny> <sin£cosg + COSESing>
2 2 2 72 27792 272 2772
= —(sin2 g(l sin? g + cos? g) — cos? g(l cos? g + sin? Z))
= <0032 ; sin? g) — <c3032 % — sin? %) <C082 ; + sin? g),

= CcOSX — COSY,

where we have used that 2cos? =1 —sin® ¥ + cos? ¥ and 2sin* 4 =1 — cos® ¥ 4+ sin* ¥ in the ﬁrst
line and the special case of the second line of (A.O.l) which is cos x = cos &£ “x

=cos? £ —sin® %, in
the third line. Lastly, we have

ZCosx_y x+y—2<cos cosyjtsmzsmy)((:oszcosg—sinzsiny>

2 N 22 2772 2 2 272
(o amar e ) s

= (COS ;>+<COS2%—SH12 %) <cos 2—1—81112 g)

= COSZ + COS Y.
And since these two equalities hold, we find with y = 0 that
2 x
cosz + 1 =cosx + cos0 = 2cos 5
x
cosxz — 1 = cosz — cos 0 = —2sin? 5

which implies the last two trigonometric identities stated in Lemma A.0.1. O]

A.1 Proof of Proposition 4.1.1

Proposition A.1.1. The matrix

B(t,x,A)ZH—I—i(aii”62_|a_u|2 Z(u_u> ‘2>,

2\ —i(a — u)* p?—|u—
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03 ot o_
O3 1 —0 o_
04 (o 0 dlag(O, 1)
o_ —0o_ diag(1,0) 0
Table A.1. Row entry times column entry. Elementary matrix multiplications (NLS
01 02 03
o1 1 —io3 109
g2 i03 1 —iUl
(o8] —iUg iUl 1
Table A.2. Row entry times column entry. Pauli matrix multiplications (sG equation).
representing the frozen Bdcklund transformation (4.1.1) for the Laz pairs
—i\ —20\% +ijul?  2Mu + i,
U= * ) V= * T ¥ 7\ 2 ; 2>
—u* QA =2 \u* 4wk 200° — i|ul
g~ —20\2 +d|u)?  2M\a + ity
o\ =at N —2\u* +iur 20N —ilul? )’
of the NLS equation corresponds to the defect conditions
=ia(t—u) £ 2—|a—wul*(u+u),
(@ — ) & /T =i — Pl + ) )

(U —u),

(@ —u)y = —a(@t — u)y £i\/B% — |&— ul?(@ 4+ u)y + i(0 —u)(jul* + |a]*)

atx =0 and o, 8 € R.

Proof. Writing the relevant matrices in terms of 1, o3, o, and o_, we obtain

20B(t, x, \)
U(t,z, \) =
V(t,x,\) =
V(t,z,\) =

Therefore, on the left hand side of equality (2AB), = U(2\B) —

2AB,(t,0,\) =

—iAog +uoy —u'o_,

(@ —w) (0 —u) + (0 —u)(a—u)k

2/ o= P

=2 N+ )l +i/[% — i — ul?03 —i(0 — u)oy —i(a —u)*o_,

Ut,z,\) =

—iAo3 +Uuo, —uo_,

(—=2iN° +ilul)os + (2A\u + iug)oy + (=2 u* + iul)o_
(=2iN° +ilaf*) oz + (2A\@ + ity )oy + (—2X\T* + i) o

(2AB)U, we have at © = 0 that

o3 — it —u)zoqp —i(0—u)ro_

(A.1.2)

and on the right hand side, due to the elementary matrix multiplications given in Tabular A.1, that

U2M\B) = —iX[(2A + a)os + i
+a[(2A + a)oy +i

—(2AB)U

+u

—a—ul? 1 —i(a—u)oy —i(a—u)*(—o_)]

32— | —

ul?- (=)

—i(a—u)-0—

i(t — u)* diag(1,0)]

A+ a)o_ £iy/B? — o —ul?>- o —i(a — u) diag(0, 1) — i(@ — u)* - 0],

—u

(

[
)\[2)\+a o3 i

(

I

—a—ul? 1 —i(a—u)(—oy) —i(a — u)o_]

2 A+ a)o, tin/p2P—|u—ul2-op —i(a—u)-0
A+ a)o_ £iy/B? — i —ul?- (—o-) — i(a — u) diag(1,0) — i(a — u)* - 0].

—i(@ — u)* diag(0, 1)]
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Thus, we can make out the terms corresponding to the matrices o3, o, and o_. For o, we have
—2A(@ — u) 4+ @(2A + a Fi/B% — |i — uf?) — u(2A + a £ i/ B2 — | — ul?)
and noticing that the expression of order A cancel, we are left with
o —u) F i/ B2 — |a— ul2(@+ u), (A.1.3)

which is with respect to the equality (A.1.2) equivalent to the first equality of the defect condition
(A.1.1). Analogously, for o_, we find

2N —u)" — A+ axi/ B2 —|u—ul?) +ut 2N+ a F i/ 2 — i —ul?)

so that, similar to the expression multiplied by ¢_ in (A.1.2), it can be written as the negative
complex conjugate of the expression (A.1.3) multiplied by o,:

—a(t—u)* Fi/f?— i —ul(a+ u)*.
After cancellation, the remaining terms on the diagonal are
—i(u(a —u)* +u* (@ —u)) diag(1,0) + i(a* (@ — u) + u(a — u)*) diag(0, 1),

which can be simplified to
—i(lal* — [ul*)os.

Hence, it suffices to check with the first equality of the defect condition (A.1.1) that
(@ — ) (@ — )" + (@ — ) (i@ — u)y = £/ 52 — | — ul2(|af* — |uf?), (A.1.4)

which then, in turn, gives the equality of (2\B), = U(2AB) — (2AB)U at z = 0 on the diagonal.
On the other hand, on the left hand side of equality (2AB); = V(2AB) — (2AB)V, we have at
x = 0 that

INB,(1,0,2) — i = Wil _BUQ)* +| (a_— ;)(ﬂ —u);

o3 —i(t —u)or —i(a—u);jo- (A1)

and on the right hand side, due to the elementary matrix multiplications given in Tabular A.1, that

V(2AB) = + (—2i\? + i AN A+ a)os i/ B2 —|a—ul?- 1 —i(a—u)oy —i(a—u)(—o_)]
(20 + d1,) [N 4+ @Yoy £in/F2 — |a@ — ul? - (—oy) — (i — u)* diag(1,0)]
(=200 i) [ + @)oo £ i/ B2 — |a — ul? - o- — (i — u) diag(0,1)],
—(2AB)Y = — (=2iN +iu]?) [N + a)og £ i/ — o —ul> - 1T —i(a — u)(—oy) — i(d — u) o]
— (2A\u + iuy) [(2A + a)oy £ i/ B2 — i —ul? - oy —i(G — u)* diag(0, 1)]
— (=20 +iul) [(2A + a)o_ £ i/ B2 = |u—ul?- (—o_) —i(t — u) diag(1, 0)].

This time, for o, we find

(=4 + (Ja* + |ul®) (@ — u) + (2N + i1,) (2N + a F i/ 32 — [T — ul?)

— (2Au +iug ) 2A + a i/ 0% — |a — ul?),
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which equates after cancellation of the second and first order terms of A\ to
(Jaf* + [ul*) (@ — u) + ot — u), £ /B2 — |G — ul2( + u),. (A.1.6)

Equating (A.1.6) to —i(@ — u); from (A.1.5) is equivalent to the second equality of the defect
condition (A.1.1). And again, we find for o_ that

(402 — (Ja* + |u®) (@ — u)* + (i@ — 2037 (2N + a £ i/ 52 — |& — ul?)

+ (20" —iul) (2N + a F i/ % — |u — ul?),
which equates also after cancellation of the second and first order terms of A to
—(Jaf* + [ul*) (@ — ) + ia(d — u); F /B2 = [@ — ul*(@ +u);,

the negative complex conjugate of (A.1.6), and therefore to —i(a — u); from (A.1.5). However, for
the diagonal entries, we have

(Ja]* = 2X*)[(2X + a)ios F /5% — |t — u? 1] + (2X* — [u]*)[(2A + a)ios F /5% — & — u|?1]
+ (G, — 2iM0) (@ — u)* diag(1,0) — (20 u” + ) (a — u) diag(1, 0)
+ () 4 2iAa”™) (0 — w) diag(0,1) + (20 u — uy)(a — u)* diag(0, 1).

After eliminating —2\? from the first line with 2)\? from the second line, we find for the coefficient
of order one in A that

2i(|a* — |ul*)os + (—2i(a(d — u)* 4+ u* (@ — u))) diag(1, 0) + (2i(@* (@ — u) + u(@ — u)*)) diag(0, 1),
which equates to
2i(|af* — ul*)os + (=2i(|a]* — [ul*)) diag(1, 0) + (2i(|al* — |u[*)) diag(0, 1) = 0.
Hence, the remaining expression is independent of A. Particularly,
(Jaf* — [u*)liaos F /B2 — |& — ul*1] + (d@:(@ — u)* — uy (@ — u)) diag(1,0)
+ (ki (a — u) — ug (@ — u)*) diag(0, 1).

Using the first equality of the defect condition (A.1.1) to express 4} and u, in terms of 4, u, u}
and 4, u, U,, respectively, we obtain for the last expression in (A.1.7) the following

(A.17)

~ %

Wt —u) —ug(t —u)" = (u) —ic(t—u)" £ /5% — o —ul?(t+ u)*)(a — u)
(i — u) F /B — & — uP(i + ) (i — )"

(g —i
(@ —u) — (@ —u)" £ 2/ — |[u —ul(ja]’ —[u]’)  (A18)

_ *
_UCE

so that (A.1.7) can be written as
[ (T — w)* — ul (@ — u) + (ia F /B2 — |a — ul?)(|a]* — |u]?)]os. (A.1.9)

Hence, we check with the second equality of the defect condition (A.1.1) that
(I8 = ul*)e = (=i — w)e £ iv/ B2 — [ — ul* (@ + u)y + i@ — u)(ful* + [a]*)) (@ — u)*
— (@ —w)(a(@ —u)y £ iy/B2 = Ji— ul*(@+ u); + i@ — u)"(Jul* + [a])).
We already calculated the term ((4 — ), (@ — u)* 4+ (@ — w)(@ — w)%) which is multiplied by « in
(A.1.4) and with regards to (A.1.9), substituting the term @} (@ — u) — u, (@ — u)*, which we also
calculated already in (A.1.8), we obtain

(It —uf*)e = £2i/B? — | — ul[ts (@ — u)" — uz (@ — u) + (o F /32 = |@ — u)([a]* — [ul*)]

from which we can ultimately confirm the equality (2AB); = V(2AB) — (2AB)V, thereby concluding
the proof. O
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A.2 Proof of Proposition 4.1.2

Proposition A.2.1. The matrix

i 0+0 NEY
B(t,x,)\)—]lix<cos 5 03 + sin 5 02>,

representing the frozen Bdcklund transformation (4.1.1) for the Lax pairs

U= i (Qx — 0o + % sin 6oy + (% cosf — )\>03: )
YV = i :(Qt —0,)01 + %sin@crg + (% cos b + )\>03_ ;
U= i (éx — )0y + %sinéog + (% cos 0 — )\)O’g: ,
V= i _(ét —0,)01 + %SiﬂéO’z + (% cos ) + )\>0'3: ;

of the sG equation corresponds to the defect conditions

0, + 0, = j:(asin

+ —sin

6+6 1 é—9>7

] a 2 (A.2.1)
~ . 0+0 1 60-—4
9t+0x::|2<ozsm —asm 5 )

at x =0 with a € R.

Proof. As for the defect condition for the NLS equation, only elementary matrix multiplications,
see Table A.2, are necessary in order to prove the claim. For the left hand side of the equality
B, = UB — BU, we have at x = 0 the following

A 2
For the right hand side, we calculate

B,(t,0,\) = +X 0+ 0)a (— sin o ;_ 903 + cos 0 —; 9@). (A.2.2)

F O 1 1
U(t,0, \)B(t,0,\) :i [(9:,3 —0)o + 5 sinfo, + (X cosf — >\> ag]

- - ’ L
T % cos i ;— i [((91, —0;)(—ioy) + %sin O(ioy) + (X cosf — )\) ]1}
=S % sin ? ; f [(éx —0,)(io3) + %mé 1 (% cos 0 — /\> (—wlﬂ ,
' 1 1
—B(t,0,\)U(¢,0,\) = — %[(Hx — 0oy + 3 sin foy + <X cos ) — )\> 03]
+ % cos b _; i [(01 — 0:)(io9) + %sin 0(—ioy) + (% cosf — A) ]l}
£ sin ¢ . ¢ (6, — 80)(~ios) + %sin@ Sy (% cost — 2 (io)].

Picking out the expressions corresponding to the identity matrix 1, we have

$%COS§;0[(§COS§—)\) — (%cosG—)\ﬂ F &siné—;e[siné—sine],
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which, using the trigonometric identities (A.0.2), equates to
0+0
2

<—2siné_esin0~+9> ~+ sin
2 2

0406
2

v
$4)\2 cos

<2sinégecos§;0>} = 0.

Then, proceeding similarly with the expressions corresponding to the first Pauli matrix o¢, we find

0+6 . - i 0+0/1,
e 5 (st—l—sm@)iﬁsm 5 (X(cosé’+cos€)—2/\)

so that the term corresponding to the negative second order in A again using the trigonometric
identities (A.0.3) equates to

i—a[cos—0~+0<2s' 0~+0C080~_0> ] é+0
e R 2

Assuming that the remaining term multiplied by —44 is zero:

(G—0), — (6 — 0), F 2005in 22

—0, (A.2.3)

we can derive that this is equivalent to the subtraction of the second from the first equality of the
defect condition (A.2.1). Now, for the expressions corresponding to the second Pauli matrix o, we
have ~
' ~ ' 0+0r~ -~
ﬁ [sin& — sine] + %COS% 0, —0;+60,— 9,5].

Utilizing the trigonometric identity (A.0.2) for sin(z) — sin(y), we thus obtain
i 0+0r, . 0-0
) [2 sin

+ a(f, — 0, + 0, — et)].
Equating this to the expression corresponding to o3 in (A.2.2) gives

. . 2 0-0
(9+9)x+(9t+9t) :Zl:ESiH 9 s

(A.2.4)

which is equivalent to the addition of the two equalities of the defect condition (A.2.1). This leaves
the examination of the expressions corresponding to the third Pauli matrix o3, for which we obtain

)]+ a0, -0, -0,

3[(10089—)\)—(10089—)\ ) 5

41\ A

By means of the trigonometric identities (A.0.2) for cos(z) — cos(y), we then find in combination
with the equality to the expression corresponding to the third Pauli matrix o3 in (A.2.2) that

[ C0+0 . 0—07 i . O+6
—2sin sin ] F
2 2

gﬂé+9n$né+9_ i

TN 2 2 T In

Multiplying this equality with :F%(sin 5%9)*1 and transferring all derivatives to the left hand side,

we obtain the same equality (A.2.4) as the one corresponding to the second Pauli matrix. Therefore,
we have shown that the defect condition imply both derived equalities (A.2.3) and (A.2.4). On

the other hand, assuming the equalities (A.2.3) and (A.2.4), derived from the frozen Bécklund
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transformation, hold, then adding them up and subtracting (A.2.3) from (A.2.4) is equivalent to
two times the first and second equality of the defect condition (A.2.1), respectively.
For the left hand side of the equality B; = VB — BV, we have at x = 0 the following

ia(@+0),, . 0+6 046
5N 5 (— sin 03 + cos 02> .

For the right hand side, we calculate

By(t,0,\) = + (A.2.5)

A 1. - 1 -
V(t,0,\)B(t,0, \) zi (0, — 0,)o1 + X sin foy + <X cos 0 + )\) 03}

Or,~ = 1. = 1 -
T % cos — [(9,5 —0,)(—iog) + X sinf(ioy) + <X cosf + )\> ]l}
a O+01: . 1. 1 .
F oy sin— [(Ht —0,)(ios) + X sinf -1 + <X cosf + A)(—wl)],
—B(¢,0,\)V(t,0,\) = — % [(Qt —0,)o1 + %Sin Ooy + <% cos @ + >\>03:|
0+0 1 1
+ % cos JQF [(Ht —0,)(ioa) + X sin f(—ioy) + (X cosf + /\> ]l}
+ % sin 0 [(et —0,)(—iay) + %Sinﬁ 1+ (% cos + A) (ial)].

Picking out the expressions corresponding to the identity matrix 1, we have

0+0r/1 - 1 0+607 . -
:F%cos _5 [(XCOSQ+)\) — (XCOSQ-F/\)} ZF&sin _5 [Sin@—sine],
which is the same as for the x part after eliminating A— A = 0 in the first bracket. Then, proceeding

similarly with the expressions corresponding to the first Pauli matrix oy, we find

i - i« 0+0 i . 0+60,1, -
—(0—=0),—(0—-0).]F 2 %08 5 (sinf + sinf) + ﬁsmT(X(COSG + cosf) + 2)\),

which results, up to an insignificant minus sign, in the same as (A.2.3). For the expressions
corresponding to the second Pauli matrix g9, we have

. B . é Or- B
ﬁ[sin@ — sin@} + %COS _g 0, — 0, + 0, — 9:6].
Utilizing the trigonometric identity (A.0.2) for sin(z) — sin(y) and equating the term to the
expression corresponding to oy in (A.2.5), we thus obtain

. . 2 0-0
(9+9)x+(9t+0t) :Zl:aSin 9 s

where we multiplied with +22(cos 5%9)‘1 and transferred the derivatives on the left hand side.
Repeating this for the expressions corresponding to the third Pauli matrix o3, we find
ﬁ[cosé—cos@] F %sin#[@} —0} +6,—0,].

Therefore, applying the trigonometric identity (A.0.2) for cos(z) — cos(y), equating the result
to the expression corresponding to the third Pauli matrix from (A.2.5), then multiplying with
:F%(Sin é%)*l and finally transferring all derivatives to the left hand side, again leads to the
same equality as for the second Pauli matrix and thus to (A.1.6). Hence, the ¢ part for the frozen

Béacklund transformation is merely a repetition of the results we derived for the x part. O
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A.3 Proof of Proposition 4.3.1

Proposition A.3.1. The boundary matrices

1
1o+ 2

K(\) = (iad — 2)03),

1
(2A —1|B[)? = o?
representing the symmetry relation (4.3.1) for the Lax pair

K(t,0,\) = (4N — (@ + B2) 1 + 4iAQ(t, 0)o3 + didu(t,0)oy + 4idu*(t,0)0_),

U=—ilos+uoy —uo_, V= (=2i\* +ilul*)os + (20 + iug )y + (=2 u* +iut)o_
of the NLS equation correspond to the Robin boundary condition
u.(t,0) = au(t,0)
with o € R and the new boundary condition

i (t,0) (¢, 0)Q(,0) u(t, 0)|u(t,0)[? B u(t,0)a?
20(t,0) 2 20(t,0) 20(t, 0)

with Q(t,0) = /5% — |u(t,0)|?, a, B € R, respectively.

Proof. For the Robin boundary condition, we need to verify the symmetry relation 0 = V(¢,0, —\) -
((la+ 20K (M) — ((ia + 20)K(N)) - V(¢,0, A). Hence, by Table A.1 the multiplications yield

ua(t,0) =

V(t,0, =) ((ic + 20)KC(N)) = + da[(—2iX* + i|u*)os + (=2 u + iug)oy + (2Au* + iu)o_]
= 2A[(=20N +iful®) L + (=2Mu + iuy ) (—oy) + (2Au* + iul)o_],
— (i + 20K (N))V(,0,\) = — ia[(=2iN* + i|ul*) o3 + (2Au + dug)or 4+ (—2Xu” + iul)o_]
+ 2A[(=20N +ifu)®) L + (20 u + iug)oy + (=20 + k) (—o

).

It can easily be seen that the expressions corresponding to the identity 1 and third Pauli matrix o
are of opposite sign and therefore vanishing. For the expressions corresponding to o, we obtain

iaf(—2 u + dug) — (2Au + dug )| + 2A[(—2A\u + iuy,) + (2A\u + iu,)] = 4iN[u, — aul;
for the expressions corresponding to o_, we find
ia(2A U +iu)) — (=22 u” +iuy)] — 2A[(2 " + i) + (=2 " 4 )] = —4iA[ul — au’],

thereby confirming the equivalence of the the symmetry relation to the Robin boundary condition.
Now, for the new boundary condition, we need to verify the symmetry relation

IC,(£,0,0) = V(E,0, =N (t, 0, \) — K(t,0, \)V(t, 0, ).

As should be clear and as we have seen in the other cases, the multiplication of a polynomial in A
with the boundary matrix is not affecting this relation. Thus, the boundary matrix for the new
boundary condition is to be taken without its denominator (2\ — i|3|)? — a?. For the left hand
side, we find that

ICo(, 0, 0) = 4iAQ(t, 0)s + diduy(t, 0)os + 4idul (¢, 0)o_
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and for the right hand side, we find with Table A.1 that

V(t,0,=N)K(t,0,A) =+ (4X* — (a® + B))[(—2iN* + i|ul*) o3 + (—2Au + iug)oy + (2Au* + iul)o_]
+ 4IXQ (20N + i|u) T+ (=20 4 dug) (—op) + (20 4 iuk)o ]
+ didu[(—2iN% +i[ul?)oy + (—20u + dug) - 0+ (20u* + iul) diag(0,1)]
+ didu* [(=2iN% +iful?) (—o-) + (—2Xu + du,) diag(1, 0) + (2Au* + iul) - 0],
—KC(t,0, \)V(t,0,A) = — (4X* — (a® + B%)) [(—2iA* +i[u|?)o3 + (2 u + iug)ot + (=2 ™ + iuk)o_]
— LAQ[(=2iA% + i[u|®)L + (2Au + dug)oy + (—20u* + iulk) (—o_)]
— didu[(—2iN% +ifu?)(—o4) + (2 u + duy) - 0 + (—2Au* + du) diag(1, 0)]
— 4idu*[(=2i0* +i|u[?)o_ + (20 + duy) diag(0, 1) + (—2Mu* + duk) - 0].

Then, picking the expressions corresponding to the matrix o, , we obtain

(402 — (® + B [(—2 u + duy) — (2 u + iuy)] — 4iIAQ[(—2 u + iuy) + (2 u + iuy)]
+ didu[(—2i\* + ilul®) + (=2i\* + i|u?)].
If we compare the coefficients with respect to a polynomial in A, we find that the third order
coefficient —16u + 16w is zero as well as the second and zero-th order coefficient so that the only

contribution in the equality to IC;(¢,0,\) comes from the first order coefficient. Therefore, the
equality with respect to o, divided by 4\ amounts to

iug(t,0) = u(t,0)(a® + 5%) + 2Q(t, 0)u,(t,0) — 2u(t, 0)|u(t,0)|?, (A.3.1)

which is under simply conversion equivalent to the new boundary condition. Similarly, the
expressions corresponding to the matrix o_ give

(407 — (a* + %)) [ \u*] + 4idQ[2iu}] — 4idu*[—4iN? + 2i|ul?].

Hence, the resulting contribution to the equality to KC;(¢,0, A) is again limited to the coefficient
with respect to the first order in A and for this equality, we can write after dividing by 4A\:

iuf (t,0) = —u*(t,0)(a? 4 B2) — 2Q(t, 0)u’ (L, 0) + 2u*(t,0)|u(t, 0)[%, (A.3.2)

which is equivalent to the complex conjugate of the new boundary condition. Now, after simply
cancellation of the expressions corresponding to the identity 1 and third Pauli matrix o3, we are
left with the equalities

4iNQy = 4idu™ (=2 u + duy) — didu(—2 " + iu))
—4iAQ = didu(2 u” + iu)) — didu” (2Au + tuy,)
on the diagonal coming from the expressions corresponding to diag(1,0) and diag(0,1). First, by
simplifying these equalities, one can notice that they are redundant and in particular, dividing by

4, one has
i (t,0) = u(t,0)ur(t,0) — u*(t,0)u.(t,0).

On the other hand, by the definition of (¢, 0), we can calculate

t,0)uf(t,0) + u*(t,0)us(t,0)
2Q(¢,0)

it 0) = —i 2
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for which we can use the to the new boundary condition equivalent expressions (A.3.1) and (A.3.2)
in order to find after cancellation the following

u(t,0)(—28(t,0)ui(t,0)) + u*(t,0)(22(¢, 0)u,(,0))
2Q(¢,0)

= u(t,0)u(¢,0) — u*(t,0)u.(t,0).

In particular, this calculation confirms the equivalence of the new boundary condition to the
symmetry relation with regards to the chosen boundary matrix IC(¢,0, \). O]

A.4 Proof of Proposition 4.3.2

Proposition A.4.1. The boundary matrices

K(\) = \/)\2 " $1+ - [()\ + %)]l COS% + i()\ — %)O‘l sin%],
K(t,0,\) = . 1%)2 Y [—a]l — i(A — %) (03 COS H(tz, 0) + oy 8in g(tT’O)ﬂ ,
K(t,0,\) = ! [iaal — i()\ + ;) (03 cos «9(752, 0 + 0y sin 0(2;’ 0))} :

(A + %)2 + a?

for the Lax pair of the sG equation

U= Z[(Qx — 0y)o1 +§Sin902 + <%COS€_ )‘>03]7
V= 1[0~ 6.)01 + § sinbos + (5 o+ 2) o],

correspond to a Dirichlet boundary condition
0(t,0) = «
with o € R, a sin-boundary condition

o(t
0.(t,0) = ozsinM

with o € R and a cos-boundary condition

6.(t,0) = acos 6(,0)

with o € R, respectively.

Proof. For all three cases, we need to check the symmetry relation

K, (t,0,\) = V(¢,0, \"HK(¢,0,\) — K(¢,0, \)V(¢,0, \),
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where we multiply this equality by the denominator of K in each case. Therefore, the left hand
sides of the Dirichlet, the sin- and the cos-boundary condition are given by

Kt(/\) =0,
K, (,0,\) = z’()\ . %) Qt(;’ 0 (o—g sin 269 _ o @)

respectively. Then, only elementary matrix multiplications are necessary in order to obtain

V(t,0, A\"HK(N) = + 2()\ + 1) cos = [(6?,5 —0,)01 + Asinfoy + </\ cosf + %)O‘g}

4 A 2
_ i()\ — %) sin% :(Qt —0,)1 4+ AsinO(—ios3) + </\ cosf + ;)iUQ]v
CKO)V(£,0,\) = — i(x + %) cos % [(et —0,)or + ; sin 0oy + (% cosf + /\> 03}
+ i()\ — %) sin% :(Gt —0,)1 + %sin ios + (% cos ) + )\> (—Wz)]

for the Dirichlet boundary condition. Since the expressions for the identity 1 and the first Pauli
matrix o; show up in pairs with opposite sign, it is clear that they cancel out. Leaving the
expressions corresponding to the second Pauli matrix o, which can be summarized as

i()\—i—%) cos%[AsinG—%sinG] —%(A—%) sin%[kcos&—i—%—l—%cosﬁ—l—)\ .

This, however, can be simplified to

’ 1 1
i()\ + X> ()\ - X> [cos % sin f — sin %(cos@ + 1)] . (A4.1)
From the trigonometric identities (A.0.4), sin@ = 2sin £ cos &, and (A.0.5), cos6 + 1 = 2 cos® &, we
have that equation (A.4.1) can be written as

i 1 1 0 a . 0 |« 0 i 1 1 0 . 00—«
5()\—1— X> ()\ — X> COS§[COS§SIH§ —SIH§COS§] = §<A+ X> ()\— X) cos o sin ——,
which is zero for all ¢ € R, if either §(¢,0) — a = 27C or 0(t,0) = 7C — 7/2 for C' € Z. However,
since one identifies the solutions of the sG equation up to a multiple of 27, the first condition is
essentially the Dirichlet boundary condition. Moreover, the expressions corresponding to the third
Pauli matrix o3 are

i()\+§) cos%[(AcosH%—%) — (%cos@—i—)\)} +i<)\— %) sin%[AsinQ—i—%sinQ},

where we can use similar means, in particular the trigonometric identities (A.0.4) and (A.0.6),

cosf — 1 = —2sin? g, in order to obtain
i 1 1 o .o 7 1 N . 0. 00—«
Z()\ + X) ()\ - X) [cos E(COSQ - 1) +sm§sm€] = _é_l<)\ + X) ()x - X) sin o sin —

Consequently, the expressions corresponding to the third Pauli matrix o3 are zero if either
0(t,0) —a =27C or 0(t,0) = 7C for C' € Z. Combining the results for the second and third Pauli
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matrix, the only possibility for both expressions to be zero is given by the Dirichlet boundary
condition. And vice versa, the Dirichlet boundary condition is sufficient for the symmetry relation
with the respective boundary matrix to hold.

In the case of the sin-boundary condition, the right hand side of the symmetry relation yields

V(t,0,A"K(¢,0,A) = — % [wt —0,)01 + Asinfoy + ()\ cos 6 + ;)03}

+ i()\ - %) Ccos g [(Gt —0,)(—iog) + Asinfioy + ()\ cos 0 + %) ]l]

+ i(A - %) sin g (0, — 0,)ios + Asin 01 + (A cos 0 + %) (—io)],
—K(t,0,\)V(¢,0,\) = + z’za [(Ht —0,)o1 + isin Ooy + (; cosf + /\> 03]

— %(A — %) cos g [(Ht —0,)ioy + % sinf(—ioy) + (% cosf + )\> ]l]

— %(A — %) sin g [(Qt —0,)(—io3) + %sin@]l + (% cos 0 + /\>i01} .

Following the same strategy as before, we filter the expressions corresponding to the identity matrix
1 1 0 1 1 1 1 0 1
Z<>\ — X) COS§[<)\COSQ + X> — <XCOSQ + )x)] + Z()\ — X> sin§ [Asin@ — Xsin@},
which can be written as
1 1\2 0 0
1 </\ — X) [cos 5((:089 —1) +sin o) sin&] :
With the trigonometric identities (A.0.4) and (A.0.6), we find
1 12 0 0 0 . 0 0
Z_L()\ — X) [—2cos§sin2 3 + ZSinisinﬁcos 5] = 0.

First, note that the derivatives of # in the expressions corresponding to the first Pauli matrix o,
cancel so that we effectively obtain the following

%()\ - ;) ()\ + %) [cosgsine — sin%(cos@ + 1)]

for the expressions corresponding to the first Pauli matrix o;. Then, the trigonometric identities

(A.0.4) and (A.0.5) yield

i(A—%) <)\+§> [QCOSgsingCOSg—QSingCOSQg} = 0.

Further, the expressions corresponding to the second Pauli matrix o, are given by

-2 frano— hane] 20 H om0+ 0]

If we utilize the trigonometric identity (A.0.4), we obtain

_%<A — %) cosg[asing + (0 — 9:{:)}
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By the expression corresponding the second Pauli matrix of the derivative with respect to ¢ of the

boundary matrix, we see that the term —% ()\ — %) cosg is the same on each side of the equality
and therefore, we are left with
' 1 0 o
—% <)\ — X) co8 [04 sin 5 91} = 0. (A.4.2)

On the other hand, analyzing the expressions corresponding to the third Pauli matrix o3 yields

—%[(}\COSG—F%) — (%cosﬁ—i-)\)} +%</\— %) sing[(ﬁt—ﬁx) + (6 — 02) |-

Again, the application of the trigonometric identity (A.0.6) then implies

_%<A_ %) sing[—asing _9t+9x:|~

Together with the expression corresponding to the same Pauli matrix of the ¢ derivative of the

boundary matrix, we see that the terms % ()\ — %) sin g on both sides cancel. Therefore, we obtain

—% ()\ — %) sin g [—a sing + (94 = 0. (A.4.3)
As for the Dirichlet boundary condition, the combination of the two equalities (A.4.2) and (A.4.3)
is equivalent to the sin-boundary condition, even though the the first and second equality are also
satisfied if cosg =0 and sing = 0 hold, respectively.

Lastly, in the case of the cos-boundary condition, the right hand side of the symmetry relation
can be calculated as

V(t, 0, A" HK(t,0,)) = — % [(et — 0,)1 + Asin0(—ioy) + ()\COSQ + %)m}
+ i(A + %) cos g [(et — 0,)(—iow) + Asinfio; + (A cos + %)1}
+ i(A + %) sin g [0 — 02 )ios + Asin 01 + (Acost + %) (—ion)],
CK(,0, V(£ 0,)) = + % [(et 91+ %sin Bioy + (% cos§ + A) (—i@]
- }l(A + %) cos g [0 — 6.)ic + isme(—wl) + (% cos 0+ A)1]
. }l(x + %) sin g [(et —0,)(—ioy) + %sin o1 + (% cos§ + A)wl].

For the expressions corresponding to the identity matrix 1, we have, after the obvious cancellation
of the derivatives of 6, the following

1 1 0 1 1 1 1y . 0 . 1.
Z()\ + X) cos 3 [()\c059+ X) - (X cos 0 + )\ﬂ + Z()\ + X) sin o [Asm@ — Xsm&]
Using the trigonometric identities (A.0.4) and (A.0.6) for sin# and cosf — 1 yields

%(A+§) (A—%) [—2cosgsin22+2singsingcosg} =0.
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Then, for the expressions corresponding to the first Pauli matrix o1, we find

1 1 0 . 1 . 1 1\ . 0 1 1

Z_l()\ + X) cos§[Asm9 — Xsm@] — Z()mt X) smg [()\COSG + X) + (X cos 6 + A)},
which under the trigonometric identities (A.0.4) and (A.0.5) equates to

) 1 1 6 0 0 Y,
Z()\—FX)()\—X) [2cos§sm§cosé—281n§cos 5} =0.

Subsequently, the expressions corresponding to the second Pauli matrix oy are given by

—%[(/\COSQ+§>+ (%COSQjL/\)} _£<)\+§> COSg[(Qt—Q:c)JF(et_ex) :

By the trigonometric identity (A.0.5) for cos @ + 1, we derive
i 1 0 0
—§<)\+ X) cosﬁ[acos§ +60; — OI]
9
2
boundary matrix on the left hand side of the equality, we are left with

After cancelling the term —% </\ + %) cos 5 involving the factor 6, with the derivative of the

—% ()\ + %) cos g [04 cosg — 91] =0. (A.4.4)

Finally, we mention the expressions corresponding to the third Pauli matrix o3:

%ﬁxgne+§sme]+£(A+§)gngﬁa—eg+«&—9d}

which can be written as
(A+1)'9[ 9+9—9}
3 sin 5 Q. COS 5 t .

1
2

with the trigonometric identity (A.0.4) for sinf. Noticing that % ()\ + %) Sing is cancelled with

the same term on the left hand side of the equality with the time derivative of the boundary matrix,
this can be reduced to

%(A + %) sin g [oz cosg — «94 =0. (A.4.5)

As for the other two boundary conditions, the combination of equalities (A.4.4) and (A.4.5) leads
to the equivalence of the cos-boundary condition to the symmetry relation with the respective
boundary matrix K(¢, 0, A). O



152 APPENDIX A. CALCULATIONS



Bibliography

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur. The inverse scattering transform-
Fourier analysis for nonlinear problems. Studies in Applied Mathematics, 53(4):249-315,
1974.

[2] M. J. Ablowitz, B. Prinari, and A. D. Trubatch. Discrete and Continuous Nonlinear
Schrodinger Systems. Cambridge University Press, Cambridge, 2004.

[3] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover, New York, NY, 1972.

[4] R. Beals, P. Deift, and C. Tomei. Direct and Inverse Scattering on the Line. Mathematical
Surveys and Monographs, 28. American Mathematical Society, Providence, RI, 1988.

[5] G. Biondini and A. Bui. On the nonlinear Schrédinger equation on the half line with
homogeneous Robin boundary conditions. Studies in Applied Mathematics, 129(3):249-271,
2012.

[6] G. Biondini and G. Hwang. Solitons, boundary value problems and a nonlinear method of
images. Journal of Physics A, 42(20):205207, 2009.

[7] P. Bowcock, E. Corrigan, and C. Zambon. Classically integrable field theories with defects.
International Journal of Modern Physics A, 19(02):82-91, 2004.

[8] P. Bowcock, E. Corrigan, and C. Zambon. Some aspects of jump-defects in the quantum
sine-Gordon model. Journal of High Energy Physics, 2005(08):023, 2005.

[9] R. Buckingham and P. D. Miller. Exact solutions of semiclassical non-characteristic Cauchy
problems for the sine-Gordon equation. Physica D, 237(18):2296-2341, 2008.

[10] H. Cai, J. Shi, D.-C. Tian, and N.-N. Huang. Darboux transformation method for solving the
sine-Gordon equation in a laboratory reference. Chinese Physics Letters, 19(7):908-911, 2002.

[11] V. Caudrelier. On a systematic approach to defects in classical integrable field theories.
International Journal of Geometric Methods in Modern Physics, 5(07):1085-1108, 2008.

[12] V. Caudrelier. On the inverse scattering method for integrable PDEs on a star graph.
Communications in Mathematical Physics, 338:893-917, 2015.

[13] P.-J. Cheng, S. Venakides, and X. Zhou. Long-time asymptotics for the pure radiation
solution of the sine-Gordon equation. Communications in Partial Differential Equations,
24(7-8):1195-1262, 1999.

153



154 BIBLIOGRAPHY

[14] A. A. Coley. Baicklund and Darbouz Transformations: The Geometry of Solitons: AARMS-
CRM Workshop, June 4-9, 1999, Halifax, NS, Canada. CRM Proceedings and Lecture Notes.
American Mathematical Society, Providence, RI, 2001.

[15] E. Corrigan and C. Zambon. Jump-defects in the nonlinear Schrodinger model and other
non-relativistic field theories. Nonlinearity, 19(6):1447-1469, 2006.

[16] G. Darboux. Sur une proposition relative aux équations linéaires. Comptes Rendus de
I’Académie des sciences, 94:1456-1459, 1882.

[17] P. Deift and J. Park. Long-time asymptotics for solutions of the NLS equation with a delta
potential and even initial data. International Mathematics Research Notices, 2011(24):5505—
5624, 2011.

[18] P. Deift and X. Zhou. Long-time asymptotics for solutions of the NLS equation with initial
data in a weighted Sobolev space. Communications on Pure and Applied Mathematics,
56(8):1029-1077, 2003.

[19] R. Dodd and R. K. Bullough. Bécklund transformations for the sine-Gordon equations.
Proceedings of the Royal Society of London, 351(1667):499-523, 1976.

[20] P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge University Press,
Cambridge, 1989.

[21] L. D. Faddeev and L. A. Takhtajan. Hamiltonian Methods in the Theory of Solitons. Springer-
Verlag, Berlin, 1987.

[22] A. S. Fokas and A. R. Its. The linearization of the initial-boundary value problem of the
nonlinear Schrodinger equation. SIAM Journal on Mathematical Analysis, 27(3):738-764,
1996.

[23] A. S. Fokas, A. R. Its, and L.-Y. Sung. The nonlinear Schrodinger equation on the half-line.
Nonlinearity, 18(4):1771-1822, 2005.

[24] A. S. Fokas and B. Pelloni. Unified transform for boundary value problems: Applications and
advances. STAM, Philadelphia, PA, 2015.

[25] K. T. Gruner. Dressing a new integrable boundary of the nonlinear Schrédinger equation.
arXiv:2008.03272v1, 2020.

[26] K. T. Gruner. Soliton solutions of the nonlinear Schrodinger equation with defect conditions.
arXiv:1908.05101v2, 2020.

[27] C. Gu, H. Hu, and Z. Zhou. Darboux Transformations in Integrable Systems: Theory and
their Applications to Geometry. Springer-Verlag, New York, NY, 2005.

[28] A. Its and D. Shepelsky. Initial boundary value problem for the focusing nonlinear Schrédinger
equation with Robin boundary condition: half-line approach. Proceedings of the Royal Society
of London, 469(2149):20120199, 2013.

[29] D. J. Kaup. Method for solving the sine-Gordon equation in laboratory coordinates. Studies
in Applied Mathematics, 54(2):165-179, 1975.



BIBLIOGRAPHY 155

[30] I. T. Khabibullin. Boundary conditions for nonlinear equations compatible with integrability.
Theoretical and Mathematical Physics, 96(1):845-853, 1993.

[31] N. B. Kopnin. Introduction to Ginzburg-Landau and Gross-Pitaevskii Theories for supercon-
ductors and superfluids. Journal of Low Temperature Physics, 129(5):219-262, 2002.

[32] D. Levi, O. Ragnisco, and A. Sym. Bécklund transformation vs. the Dressing method. Lettere
al Nuovo Cimento, 33(13):401-406, 1982.

[33] D. Levi, O. Ragnisco, and A. Sym. Dressing method vs. classical Darboux transformation. I
Nuovo Cimento B, 83(1):34-42, 1984.

[34] V. B. Matveev and M. A. Salle. Darboux Transformations and Solitons. Springer-Verlag,
Berlin, 1991.

[35] N. I. Muskhelishvili. Singular Integral Equations. Dover, New York, NY, 1992.

[36] C. Rogers and W. K. Schief. Bdicklund and Darbouz Transformations: Geometry and Modern
Applications in Soliton Theory. Cambridge University Press, Cambridge, 2002.

[37] Y. Rybalko. Initial value problem for the time-dependent linear Schrodinger equation with a
point singular potential by the unified transform method. Opuscula Mathematica, 38(6):883—
898, 2018.

[38] A. Shabat and V. Zakharov. Exact theory of two-dimensional self-focusing and one-dimensional
self-modulation of waves in nonlinear media. Soviet physics JETP, 34(1):62-69, 1972.

[39] E. K. Sklyanin. Boundary conditions for integrable equations. Functional Analysis and Its
Applications, 21(2):164-166, 1987.

[40] B. Xia. On the nonlinear Schrédinger equation with a time-dependent boundary condition.
arXiv:2008.03955v1, 2020.

[41] C. Zambon. The classical nonlinear Schréodinger model with a new integrable boundary.
Journal of High Energy Physics, 2014(8):036, 2014.

[42] C. Zhang. Dressing the boundary: On soliton solutions of the nonlinear Schrédinger equation
on the half-line. Studies in Applied Mathematics, 142(2):190-212, 2019.

[43] C. Zhang, Q). Cheng, and D.-J. Zhang. Soliton solutions of the sine-Gordon equation on the
half line. Applied Mathematics Letters, 86:64-69, 2018.

[44] X. Zhou. L*-Sobolev space bijectivity of the scattering and inverse scattering transforms.
Communications on Pure and Applied Mathematics, 51(7):697-731, 1998.



156 BIBLIOGRAPHY



Erklarung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstdndig angefertigt, die benutzten
Quellen und Hilfsmittel vollstandig angegeben und die Stellen der Arbeit — einschlieflich Tabellen,
Karten und Abbildungen —, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind,
in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner
anderen Fakultidt oder Universitit zur Priifung vorgelegen hat; dass sie — abgesehen von unten
angegebenen Teilpublikationen — noch nicht verdffentlich worden ist sowie, dass ich eine solche
Veroffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die vorgelegte Dissertation ist von
Univ.-Prof. Dr. Markus Kunze betreut worden.

Solingen, 4. Dezember 2020 %

Kevin Tim Gruner

Teilpublikationen:

[25] K. T. Gruner. Dressing a new integrable boundary of the nonlinear Schrédinger equation.
arXiv:2008.03272v1, 2020.

[26] K. T. Gruner. Soliton solutions of the nonlinear Schrodinger equation with defect conditions.
arXiv:1908.05101v2, 2020. (submitted).

157



