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Kurzzusammenfassung

Das AKNS System, ein integrables System partieller Differentialgleichungen (PDEs), ist 1974 von
Mark J. Ablowitz, David J. Kaup, Alan C. Newell und Harvey Segur eingeführt und nach diesen
benannt worden. Folgt man dem Schemata, das für diese Systeme entwickelt worden ist, so lässt sich
ein integrables Anfangswertproblem (AWP) auf der reellen Linie zu einer Kompatibilitätsbedingung,
oder einer Nullkrümmungsbedingung, bezüglich zweier linearer gewöhnlicher Differentialgleichungen
umschreiben. Wichtige Beispiele, die in diese Kategorie fallen, sind die nichtlineare Schrödinger-
Gleichung (NLS) und die sinus-Gordon-Gleichung (sG). Die NLS-Gleichung ist bekannt für ihre
Beschreibung von Lichtwellen und dem Bose-Einstein-Kondensat, wohingegen die sG-Gleichung
bekannt ist für ihre Beschreibung von der Bewegung von Bloch-Wänden, der Versetzungsbewegung
in Kristallen und dem magnetischen Fluss auf einer Josephson-Kreuzung. Durch ihre Verbindung
zum AKNS System sind beide Gleichungen für die Anwendung der inversen Streutransformation
geeignet und daher ist es möglich exakte Lösungen herzuleiten. Eine interessante Ansichtsweise,
die dabei natürlicherweise aufkommt, ist das Betrachten von geringen Störungen in der jeweiligen
PDE, die dazu führen können, dass das AWP nicht mehr integrabel ist. Eine bestimmte Klasse von
internen Randbedingungen, die Defektbedingungen, ist untersucht worden und dabei ist festgestellt
worden, dass in besonderen Fällen die Integrabilität erhalten werden kann. Des Weiteren hat sich
die Kombination einer solchen Defektbedingung mit einer Randbedingung in speziellen Fällen als
hilfreich in der Herleitung von integrablen Anfangsrandwertproblemen (ARWP) in den erwähnten
PDEs auf der reellen Halbgeraden herausgestellt. Insbesondere sind mit diesem Ansatz die neuen
Randwertbedingungen für die NLS-Gleichung konstruiert worden.

Folglich ist es von besonderem Interesse eine Methode zu entwicklen um exakte Lösungen in
diesen integrablen Modellen zu finden. Eine Methode, die diese Aufgabe bezüglich der ARWP
übernimmt, ist das nichtlineare Analogon der Methode der Spiegelladung aus der Elektrostatik.
Dazu wird die Bäcklund-Transformation genutzt um die Lösung bezüglich der reellen Halbgeraden
auf die Lösung bezüglich der reellen Linie so zu erweitern, dass die Randwertbedingung automatisch
erfüllt ist. Ein anderer, als „dressing the boundary“ bekannter Ansatz ist entwickelt worden und
basiert auf der Methode der vereinheitlichten Transformation und der „Dressing“ Methode, die
für sich genommen neben inverser Streutransformation und Bäcklund-Transformation eine weitere
Methode liefert um Lösungen für integrable AWP, die als AKNS System darstellbar sind, zu
konstruieren. Bezüglich der Konstruktion exakter Lösungen für ARWP auf der reellen Halbgeraden
ist diese Methode genauso effizient wie das nichtlineare Analogon der Methode der Spiegelladung.
Des Weiteren birgt der Ansatz dressing the boundary den strukturellen Vorteil, den räumlichen
Bereich nicht auf die reelle Linie erweitern zu müssen. Daher eignet sich dieser Ansatz für die
Anwendung bezüglich integrabler Modelle auf zwei Halbgeraden, die einer Defektbedingung folgen.

In der vorliegenden Dissertation entwickeln wir zunächst ebendiesen Ansatz weiter um alle im
ersten Absatz erwähnten integrablen Modelle miteinbeziehen zu können. Anschließend nutzen wir
diese Resultate um in den Modellen Solitone, spezielle exakte Lösungen, zu konstruieren, die bei
der Betrachtung von den jeweiligen physikalischen Phänomenen hilfreich sein könnten.
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Abstract

The AKNS system, an integrable system of partial differential equations (PDEs), has been introduced
in 1974 by and named after Mark J. Ablowitz, David J. Kaup, Alan C. Newell and Harvey Segur.
Following the scheme developed for these systems, the integrable initial value problem on the
line can be rewritten as a compatibility condition, or as a zero curvature condition, of two linear
ordinary differential equations. Important examples falling into this category are the nonlinear
Schrödinger (NLS) equation and the sine-Gordon (sG) equation. The NLS equation is known
for its application to the propagation of light and Bose–Einstein condensates, whereas the sG
equation is known for its application to Bloch-Wall motion, the propagation of a crystal dislocation
and magnetic flux on a Josephson junction. Due to their description as AKNS systems, these
two equations are suited for the application of the inverse scattering method implying that exact
solutions can be derived. An interesting viewpoint, which naturally arises in that context, is
the occurrence of small perturbations in the respective partial differential equation, which may
or may not leave the initial value problem integrable. A particular class of internal boundary
conditions, the defect conditions, have been investigated for which in some cases it can be verified
that integrability is preserved. Further, the combination of such a defect condition with a boundary
condition has in specific cases proven instructive in the derivation of integrable initial-boundary
value problems regarding the mentioned PDEs on the half-line. Particularly, the new boundary
conditions for the NLS equation on the half-line have been constructed through this approach.

Thus, the development of a method in order to obtain exact solutions in these integrable
models is of particular interest. One approach with regards to initial-boundary value problems
on the half-line is the nonlinear analog of the method of images, where the idea is to utilize the
Bäcklund transformation to extend the half-line solution to a solution on the whole line while the
boundary condition is automatically satisfied. A different approach, called dressing the boundary,
has been developed based on the ideas of the unified transform method combined with the Dressing
method, which is yet another method in addition to the inverse scattering method and the Bäcklund
transformation commonly used to construct exact solutions for initial value problems associated
with the AKNS system. When it comes to the construction of exact solutions for integrable
initial-boundary value problems on the half-line this approach seems just as powerful as the
nonlinear analog of the method of images. Further, due to the structural advantage that it is not
necessary to extend the spatial domain to the whole line for the dressing the boundary method,
this approach may therefore also be applied to integrable models on two half-lines connected via
the defect condition.

The present thesis provides the application of the method of dressing the boundary to the
integrable models mentioned in the first paragraph. By this application, it is then possible to
construct solitons, special exact solutions, which may prove useful in the corresponding physical
models.

v





Contents

1 Introduction 1
1.1 Nonlinear Schrödinger equation with a delta-potential . . . . . . . . . . . . . . . . 1
1.2 Inverse scattering method vs. unified transform method . . . . . . . . . . . . . . . 2
1.3 Initial-boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Nonlinear method of images . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Dressing the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 The NLS equation with a new integrable boundary . . . . . . . . . . . . . 4

1.4 PDEs with defect conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 NLS and sG with defect conditions . . . . . . . . . . . . . . . . . . . . . . 6
1.5.2 NLS and sG with boundary conditions . . . . . . . . . . . . . . . . . . . . 7

2 Inverse scattering method 11
2.1 Inverse scattering method for the NLS equation . . . . . . . . . . . . . . . . . . . 11

2.1.1 Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Jost functions and direct scattering . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Scattering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Inverse scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Inverse scattering method for the sG equation . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Jost functions and direct scattering . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Scattering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Inverse scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Solution construction methods 31
3.1 Dressing method vs. Bäcklund transformation . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Bäcklund transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 (Classical) Darboux transformations vs. Dressing method . . . . . . . . . . 34

3.2 Dressing method for the Lax systems of the NLS and sG equation . . . . . . . . . 37
3.3 Change of scattering data under the Dressing method . . . . . . . . . . . . . . . . 47

4 Models 51
4.1 Implementing defect conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Models of the NLS and sG equation . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Bäcklund transformation vs. Dressing method for Lax systems . . . . . . . . . . . 55
4.3 Implementing boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



viii CONTENTS

4.3.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Models of NLS and sG equation . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Preliminary considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 A ‘space-evolution’ interpretation . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Frozen one-fold dressing matrix . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Dressing 73
5.1 Initial value problems with defect conditions . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 The sG equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 The NLS equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Initial-boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.1 The sG equation with boundary conditions . . . . . . . . . . . . . . . . . . 88
5.2.2 The NLS equation with boundary conditions . . . . . . . . . . . . . . . . . 94

6 Soliton solutions 105
6.1 Soliton solutions for models of the sG equation . . . . . . . . . . . . . . . . . . . . 107

6.1.1 sG equation on two half-lines connected by a defect condition . . . . . . . 109
6.1.2 sG equation on the half-line with sin-boundary condition . . . . . . . . . . 112

6.2 Soliton solutions for the NLS equation . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.1 NLS equation on two half-lines connected by a defect condition . . . . . . 114
6.2.2 NLS equation on the half-line with boundary conditions . . . . . . . . . . 126

7 Conclusion 133

Appendices 135

A Calculations 137
A.1 Proof of Proposition 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.2 Proof of Proposition 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.3 Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.4 Proof of Proposition 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Chapter 1

Introduction

1.1 Nonlinear Schrödinger equation with a delta-potential
The nonlinear Schrödinger equation (NLS) with an external potential W (x), also known as the
Gross–Pitaevskii equation, given by

iut(t, x) +W (x)u(t, x) + ∆u(t, x) + 2ε|u(t, x)|2u(t, x) = 0, ε = ±1 (1.1.1)

is a model characterizing a great number of phenomena in physics. It provides, for instance,
a description of the evolution of Bose–Einstein condensates in dilute boson gases at very low
temperatures, which has first been realized experimentally in 1995 and whereupon its significance
and importance ultimately has come to light through the 2001 Nobel prize in Physics, see [17, 37]
and the references therein. Moreover, the Gross–Pitaevskii equation appears to be one of the
most commonly utilized models in the theories of superfluidity and superconductivity, where it
provides a fairly solid basis for the understanding on a microscopic level of some of the fundamental
properties of the superfluid and superconducting states [31]. In theory, exact solutions of the
corresponding initial value problem are sought, simply because of the practical applications to real
life physical systems. However, apart from the spatially homogeneous case, where the external
potential is assumed to be constant W (x) ≡ c, it turns out to be difficult to find such solutions,
even in one dimension.

Nonetheless, if the one-dimensional case is reduced even further to the delta-potential at x = 0,
W (x) = αδ0(x) with α ∈ R, and combined with an initial condition u0(x) = u(0, x) being an
even function, the resulting model of (1.1.1) becomes integrable. This is due to the fact that the
delta-potential is to be understood as introducing a jump in the first x-derivative at x = 0,

ux(t, 0+)− ux(t, 0−) + 2αu(t, 0) = 0, t > 0, (1.1.2)

which if u(t, x) is even with respect to space, reduces to the (homogenous) Robin boundary condition
ux(t, 0+) + αu(t, 0) = 0. Therefore, the initial value problem with an even initial condition can
be reduced to the initial-boundary value problem for the NLS equation on a half-line and this
problem with the Robin boundary condition has already been proven to be integrable in 1987, see
[39]. In [17], the authors use the integrability of this very initial-boundary value problem together
with a method for Riemann–Hilbert problems, developed by Deift and Zhou, which emerge in the
context of the so-called inverse scattering method, in order to state some remarkable results on the
long time asymptotic behavior of solutions. If, however, the assumption of an even initial condition
u0(x) is dropped, then the approach they have developed can not be applied. In that regard,
advances have been made in order to analyze initial-boundary value problems on the half-line more
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2 CHAPTER 1. INTRODUCTION

naturally. A method developed by Fokas, known as unified transform method has in this context
been successfully applied to the linear Schrödinger equation with a point singular potential in the
case of a general initial condition u0(x) resulting not only in an expression of the solution in terms
of Fourier transforms of the initial condition, but also in their long time asymptotic behavior, see
[37]. To expand on this idea, let us first give an overview of the mentioned methods.

1.2 Inverse scattering method vs. unified transform method

Both methods rely on the fact that the equation of interest can be written as a so-called Lax system,
a system of linear ordinary differential equations involving an additional spectral parameter λ. In
particular, establishing the compatibility condition of the derived Lax system is then equivalent
to the initial equation. In the inverse scattering method used for solving initial value problems
of such equations, one then proceeds to change the relevant variable with the help of the spatial
equation of the Lax system, passing from functions of the spatial variable to functions of the
spectral parameter. Thus, one particular function of the spectral parameter ρ(λ; 0), together with
simple eigenvalues λj(0) of another function and correlated norming constants Cj(0), j = 1, . . . , N ,
constitute the so-called scattering data for the initial condition u0(x), while the process is known
as the direct scattering. Further, the time equation of the Lax system then induces a linear time
evolution for the scattering data. Afterwards, the solution u(t, x) needs to be recovered from the
evolved scattering data, for instance, through a Riemann–Hilbert problem, which therefore realizes
the inverse scattering [2]. The well known visualization of this procedure is given by:

u0(x) S(u0) = (ρ(λ; 0), {λj(0), Cj(0)}Nj=1)

u(t, x) S(u) = (ρ(λ; t), {λj(0), Cj(t)}Nj=1)

NLS

direct scattering

inverse scattering

linear time evolution

We perform a more precise implementation of this method in Chapter 2, where not only the
scattering map S, but also the resulting scattering data is described in great detail.

The unified transform method, similar to the method for initial value problems, is based on
the representation of the equation as a compatibility condition for a Lax system. However, the
structural innovation of the unified transform method lies in the simultaneous use of the spatial and
time equation of this system in the direct scattering process, which are directly connected to the
given initial and boundary condition, respectively. Afterwards, the resulting scattering data is again
put into a Riemann–Hilbert problem in order to recover the solution u(t, x) on the half-line. Even
though Fokas’ approach seems to be an appropriate generalization of the inverse scattering method
to initial-boundary value problems, where both an initial and a boundary condition are given, in
practice, it is difficult to obtain the solutions of the corresponding Riemann–Hilbert problem and
therefore to give explicit solutions of the model in question. In that context, a particular class of
boundary conditions has been identified, the so-called linearizable boundary condition, for which it
is possible to bypass the additional intricacies and therefore to solve the Riemann–Hilbert problem
as effectively as the problem on the line, see [23] for the relevant treatment in the case of the NLS
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equation. Moreover, an effective description of the long time asymptotic behavior of u(t, x) can be
provided as explained in [22].

1.3 Initial-boundary value problem

With these two methods in mind, different approaches have been developed in order to tackle the
derivation of explicit solutions for initial-boundary value problems of not only the NLS equation,
but also other partial differential equations (PDEs) for which it is possible to state an appropriate
Lax system.

1.3.1 Nonlinear method of images

One such approach is the nonlinear analog of the method of images or for short nonlinear method of
images: An extension ue(t, x) of the half-line solution u(t, x) is sought such that it solves the NLS
equation on the whole line and the boundary condition is automatically satisfied. Subsequently,
the inverse scattering method may be used to solve the initial value problem for the extended
solution ue(t, x), which at the same time serves as a solution of the initial-boundary value problem,
see [5, 17]. An essential ingredient in this approach is the notion of a Bäcklund transformation
which serves as the means to extend the solution under these particular conditions.

Originally, the transformation introduced by Bäcklund in 1882 is meant to be used to iteratively
construct pseudospherical surfaces, that is, surfaces with constant negative Gaussian curvature.
The application to PDEs has been established much later, even after the impressive breakthrough,
by which Bianchi demonstrates that the Bäcklund transformation admits a commutativity property.
Thus, in 1974, Lamb constructs an (auto-)Bäcklund transformation for the NLS equation, a
mapping B of a solution u of the NLS equation to a solution ũ = B(u) of the NLS equation. In
general, a Bäcklund transformation may map a solution of an equation to a solution of a different
equation. Since then, the Bäcklund transformation has been utilized in a more elegant version to
Lax systems, associated to an AKNS system, which have been developed at fairly the same time,
see [1]. Furthermore, the commutativity property has once more been established in connection
with the application to PDEs resulting in the concept of a nonlinear superposition principle for
PDEs of that type.

The investigation of the same problem through the unified transform method may seem more
natural in the sense that the initial domain prescribed by the problem is retained, rather than
extended. In that context, with respect to specific linearizable boundary conditions it has been
shown that this approach ultimately results in a Riemann–Hilbert problem coinciding with the
one derived from the nonlinear method of images, see [28]. What is more, this framework, while
further insisting on the restriction to integrable boundary conditions, has then been successfully
combined with a purely algebraic algorithm to construct explicit solutions, the Dressing method.

1.3.2 Integrability

On one hand, integrability for initial value problems, which can be expressed in the form of an
AKNS system, is well-established. By analyzing relations of the spectral functions, see [1], it
is possible to give an infinite set of conserved quantities. Thus, for equations solvable by the
inverse scattering method, the method may be interpreted as a canonical transformation from
physical variables to an infinite set of action-angle variables. On the other hand, integrability for
initial-boundary value problems is not as imminent. Initialized by Sklyanin [39], one formalism
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to derive integrable boundary conditions on an interval is based on the Hamiltonian formulation
of integrable PDEs, see [21], where the half-line can be realized as a special case of the interval
setting one end to zero and the other to infinity. Following the ideas therein, given the classical
r matrix and boundary matrices associated to either end of the interval, the so-called classical
reflection equation is used to give rise to a generating function of commuting integrals of motion,
which leads to the generation of infinitely many conserved quantities implying integrability. Note
that the boundary matrices are usually associated with the formulation of the respective PDE as a
Lax system.

1.3.3 Dressing the boundary

The Dressing method is based on the Darboux transformation, which has been introduced in the
late nineteenth century by Darboux to study Sturm–Liouville problems. Then, after it has been
shown by Crum that it could be applied iteratively to Sturm–Liouville problems, it has been
successfully applied to integrable equations with Lax systems to generate so-called multi-soliton
solutions. Based on the fundamental solution of the Lax system for a given solution u[0](t, x) of the
PDE and given a spectral parameter λ1 ∈ C\R, which is distinct from the set of simple eigenvalues
of the scattering data, and a solution ψ1(t, x) of the Lax system at this value, it is possible to
algebraically construct a new solution u[1](t, x) of the PDE by the application of a one-fold dressing
matrix while simultaneously updating the Lax system and fundamental solution which are then
associated to the new solution. As indicated before, this process can be iterated which essentially
boils down to incrementing by 1 the number indexing the previous solution and effectively leads to
the realization of an N -fold dressing matrix D[N ](t, x, λ), where N is finite. Subsequently, various
researchers have been motivated to make attempts in analyzing the connection of Bäcklund and
Darboux transformations with respect to soliton theory, see for example [14, 32, 33, 36].

Hence, it is not surprising that in the pursuit of explicit solutions of integrable initial-boundary
value problems, the Dressing method turns out to be a promising alternative approach along
with the nonlinear method of images incorporating the Bäcklund transformation. Having said
that, the first well documented implementation of this idea goes back to [42], where it is called
dressing the boundary. It has successfully been applied to the NLS equation on the half-line with
the Robin boundary condition and therefore, it constitutes a method at least equally as effective
as the nonlinear method of images [5]. Prior to that, dressing the boundary has been applied in an
abbreviated manner to the sine-Gordon (sG) equation on the half-line [43] with the sin-boundary
condition. The sG equation is a model, which describes numerous physical phenomena including
for example Bloch-wall motion, the propagation of a crystal dislocation and magnetic flux on a
Josephson junction and fits into the framework of AKNS systems. Therefore, the application of
dressing the boundary in both the NLS and sG equation on the half-line are fundamentally related,
which is further supported by the fact that the associated boundary matrices representing the
boundary condition are structurally similar, that is, diagonal and time independent 2× 2-matrices.
In this thesis, we pursue the goal of generalizing the dressing the boundary method to incorporate
a broader spectrum of integrable problems while retaining the models already covered.

1.3.4 The NLS equation with a new integrable boundary

In [41], particular boundary conditions for the NLS equation on the half-line, see [30], have been
revisited pursuing a different approach. Namely, they are derived by the combination of the
so-called defect conditions with a (Dirichlet) boundary condition. In the course of this approach, a
time dependent boundary matrix including off-diagonal entries is obtained, which then ultimately
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corresponds to the new boundary condition

ux(t, 0) =
iut(t, 0)

2Ω(t, 0)
− u(t, 0)Ω(t, 0)

2
+
u(t, 0)|u(t, 0)|2

2Ω(t, 0)
− u(t, 0)α2

2Ω(t, 0)

for the NLS equation on the half-line, that is, (1.1.1) with W (x) ≡ 0 and ε = 1. At the same time,
it has been shown with the classical r matrix method that the corresponding initial-boundary
value problem is integrable in the sense of the existence of infinitely many conserved quantities.

1.4 PDEs with defect conditions
A different approach to the idea of generalizing the analysis of initial-boundary value problems is
to lift the initial-boundary value problem on one half-line to one on a finite number of half-infinite
edges, which corresponds with respect to the unified transform method to lifting the relevant
spectral functions and consequently the scattering data to diagonal-matrix valued spectral functions
and scattering data enabling the analysis of integrable PDEs on a star-graph [12]. In that context,
the one-dimensional NLS equation with the delta-potential at x = 0 therefore has an equivalent
expression in this framework. By dividing the whole line at x = 0 into two half-lines and denoting
the potential to the left and right of the partition by ũ and u, respectively, the jump (1.1.2) takes
the form ux(t, 0) + ũx(t, 0) + 2αu(t, 0) = 0 for t > 0. In combination with the potential being
continuous across x = 0, i.e. ũ(t, 0) = u(t, 0) for t > 0, and an even initial condition ũ0(x) = u0(x),
it is obvious that the situation is the same as the above described integrable model of the NLS on
the half-line with the Robin boundary condition. Alternatively, with these notations the conditions
on the boundary imply that a specific symmetry relation can be applied to the diagonal-matrix
valued spectral functions, which, in turn, simplifies the Riemann–Hilbert problem originating from
the unified transform method to the one found in [17] by the nonlinear method of images.

This idea sheds light on the principle of having an internal boundary which links a potential
on x < 0 with a potential on x > 0, commonly known as a defect condition. Again, it is of
interest to find defect conditions corresponding to an integrable model, which has been pursued
in [7]. In that context, an approach based on a Lagrangian formalism has been utilized and
moreover, a connection between defect conditions and Bäcklund transformations frozen at the
location of the defect has been indicated. Based on this observation, general results on defect
conditions for integrable PDEs with corresponding AKNS systems have been established in [11],
which particularly encompasses the modification of the generating functionals for the conserved
quantities implying integrability. Hence, it can be expected that in this context the theory of
solitons can be applied to a certain extent. The foundation for that idea has been put forward in
[15], where the one- and two-soliton solutions for the NLS equation on two half-lines connected by
the defect condition have been calculated by a direct ansatz.

1.5 Scope of this thesis
As indicated by the argumentation above, the subject matter of integrability has been widely
covered in the literature not only with the mentioned methods but also with other developed
methods, see for example [40]. The derivation of exact solutions seems to be of interest, considering
that the validation by a direct ansatz of a two-soliton solution satisfying the defect condition is by
no means easy. Hence, the goal of this thesis is to generalize the dressing the boundary method
introduced in [42, 43] by the following means: Firstly, to enable the analysis of more than just
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diagonal and time independent boundary matrices. Secondly, to lift the dressing the boundary
method to more than just one half-line, particularly, including (integrable) defect conditions,
thereby making it possible to introduce multi-soliton solutions in the presented integrable models
of initial-boundary value problems and PDEs with defect conditions.

In the case of the NLS equation, the set of all solutions u(t, ·) ∈ H1,1(R) = {f ∈ L2(R) : xf, fx ∈
L2(R)}, for which the scattering map admits the following data S(u) = (ρ(λ; t), {λj(0), Cj(t)}Nj=1)
with distinct λj ∈ C \ R, is denoted by GN . On one hand, if the spectral function ρ(λ; t) ≡ 0, then
the corresponding solution is a pure N -soliton solution. On the other hand, if u(t, ·) ∈ G0, then
the solution is soliton free. Hence, with regard to the Dressing method, the connection to the
construction of solitons can be made, see Section 3.3. Without giving the complete explanation
on soliton solutions in advance, let us give the main results worked out in this thesis or rather in
[25, 26].

1.5.1 NLS and sG with defect conditions

Given so-called seed solutions ũ[0] and u[0] subject to the NLS equation on either side of the
defect location and the defect condition, it is possible to construct the matrix B0(t, 0, λ) repre-
senting the frozen Bäcklund transformation and thus the defect condition. Further, assuming
ũ[0](·, 0), u[0](·, 0), ũx[0](·, 0), ux[0](·, 0) ∈ H1,1

t (R), where H1,1
t (R) = {f ∈ L2(R) : tf, ft ∈ L2(R)},

and taking a specific parameter λ0 constructed from constant known parameters of the defect
condition, the following statement holds.

Proposition A. Applying N-fold dressing matrices D̃[N ](t, x, λ) and D[N ](t, x, λ) to the seed
solutions on either side of the defect location constructed by distinct λ = λj ∈ C \

(
R ∪ {λ0, λ

∗
0}
)

and associated solutions of the Lax systems given by ψ̃j(t, x) and ψj(t, x), which need to satisfy

ψ̃j
∣∣
x=0

= B0(t, 0, λj)ψj
∣∣
x=0

, j = 1, . . . , N,

leads to solutions ũ[N ] and u[N ] of the NLS equation on either side of the defect location preserving
the defect condition if for the matrix BN(t, 0, λ) = D̃[N ](t, 0, λ)B0(t, 0, λ)(D[N ])−1(t, 0, λ) the
following holds:

Im
(

lim
λ→0

[2λ(BN(t, 0, λ)− 1)]11

)
is greater than or equal to or rather less than or equal to 0 for all t ∈ R depending on its limit as
|t| → ∞.

Similarly, for zero seed solutions, θ̃[0] ≡ 0 and θ[0] ≡ 0, subject to the sG equation, which we
specify in Section 2.2, on either side of the defect location and the defect condition, it is possible
to construct the matrix B0(λ) representing the frozen Bäcklund transformation and thus the defect
condition. Further, taking a specific parameter λ0 constructed from a constant known parameter
of the defect condition, the following statement holds.

Proposition B. Applying N-fold dressing matrices D̃[N ](t, x, λ) and D[N ](t, x, λ) to the seed
solutions on either side of the defect location constructed by distinct λ = λj ∈ C \

(
R ∪ {λ0, λ

∗
0}
)

and associated solutions of the Lax systems given by ψ̃j(t, x) and ψj(t, x), which need to satisfy

ψ̃j
∣∣
x=0

= B0(λj)ψj
∣∣
x=0

, j = 1, . . . , N,

leads to solutions θ̃[N ] and θ[N ] of the sG equation on either side of the defect location preserving
the defect condition.
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1.5.2 NLS and sG with boundary conditions

Given the seed solution u[0] subject to the NLS equation on the half-line and the Robin boundary
condition, it is possible to construct the boundary matrix K0(λ) representing the spectral version of
the boundary condition. Further, taking a specific parameter λ0 constructed from a constant known
parameter of the boundary condition and dividing the number of solitons, which are envisaged to
be constructed, into solitons Ns and boundary-bound solitons Nbbs, the following statement holds.

Proposition C. Applying a (2Ns +Nbbs)-fold dressing matrix D[Nd](t, x, λ) to the seed solution
constructed by distinct λ = λj ∈ C \

(
R ∪ {λ0, λ

∗
0}
)
, j = 1, . . . , Ns +Nbbs, as well as additionally

distinct λ = −λj (only if Im(λj) 6= 0 corresponding to Ns), and associated solutions of the Lax
system given by ψj(t, x) as well as ψ̂j(t, x), which need to satisfy

ψ̂j
∣∣
x=0

= K0((−1)Nbbsλj)ψj
∣∣
x=0

, only if Im(λj) 6= 0,

ϕj
∣∣
x=0

= K0((−1)Nbbsλj)ψj
∣∣
x=0

, only if Im(λj) = 0,

where ϕj(t, x) = −iσ2ψ
∗
j (t, x) is the solution of the same Lax system at λ = λ∗j , leads to a solution

u[Nd] of the NLS equation on the half-line preserving the Robin boundary condition.

Assuming, alternatively, that the seed solution and its x-derivative u[0](·, 0), ux[0](·, 0) ∈ H1,1
t (R)

and the seed solution is subject to the NLS equation on the half-line and the new boundary condition,
it is possible to construct the boundary matrix K0(t, 0, λ), again, representing the spectral version
of the boundary condition. Further, taking a specific parameter λ0 constructed from constant
known parameters of the boundary condition, the following statement holds.

Proposition D. Applying a 2N -fold dressing matrix D[2N ](t, x, λ) to the seed solution constructed
by distinct λ = λj ∈ C\

(
R∪ iR∪{λ0, λ

∗
0,−λ0,−λ∗0}

)
, j = 1, . . . , N , as well as additionally distinct

λ = −λj and associated solutions of the Lax system given by ψj(t, x) as well as ψ̂j(t, x), which
need to satisfy

ψ̂j
∣∣
x=0

= K0(t, 0, λj)ψj
∣∣
x=0

,

leads to a solution u[2N ] of the NLS equation on the half-line preserving the new boundary condition
if for the matrix K(t, 0, λ) = D[2N ](t, 0, λ)K0(t, 0, λ)(D[2N ](t, 0, λ))−1 the following holds:

Im

(
lim
λ→0

1

λ

[(
(λ− i| Im(λ0)|)2 − (Re(λ0))2

)
KN(t, 0, λ) +

(
(Re(λ0))2 + (Im(λ0))2

)
1
]

11

)
is greater than or equal to or rather less than or equal to 0 for all t ∈ R+ depending on its limit as
t→∞.

Finally, given a zero seed solution θ[0] ≡ 0 subject to the sG equation on the half-line and the
sin-boundary condition, it is possible to construct the boundary matrix K(λ). Further, taking
specific parameters λ±0 constructed from a constant known parameter of the boundary condition
and dividing the number of solitons, which are envisaged to be constructed, into single solitons Ns,
breathers Nb and boundary-bound breathers Nbbb, the following statement holds.

Proposition E. Applying an (2Ns + 4Nb + 2Nbbb)-fold dressing matrix D[Nd](t, x, λ) to the seed
solution constructed by distinct λ = λj ∈ C \

(
R ∪ {−i, i, λ±0 , (λ±0 )∗}

)
, j = 1, . . . , Ns +Nb +Nbbb as

well as additionally distinct λ = λ−1
j (only if |λj| 6= 1 corresponding to Ns and Nb) and λ = −λ∗j
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(only if Im(λj) 6= 0 corresponding to Nb and Nbbb) and associated solutions of the Lax system given
by ψj(t, x) as well as ψ̂j(t, x) and Φj(t, x), which need to satisfy

ψ̂j
∣∣
x=0

= K0(λ
(−1)Nbbb

j )ψj
∣∣
x=0

, only if |λj| 6= 1,

Φ̂j

∣∣
x=0

= K0((−λ∗j)(−1)Nbbb )Φj

∣∣
x=0

, only if |λj| 6= 1 and Im(λj) 6= 0,

Φj

∣∣
x=0

= K0((−λj)(−1)Nbbb )ϕj
∣∣
x=0

, only if |λj| = 1 and Im(λj) 6= 0,

where ϕj(t, x) = σ1ψj(t, x) is the solution of the same Lax system at λ = −λj, leads to a solution
θ[Nd] of the sG equation on the half-line preserving the sin-boundary condition.

The notion of dividing the simple eigenvalues λj by their spectral properties such as Im(λj) 6= 0,
j = 1, . . . , N , is closely related to their role in the scattering data and is here only given superficially.
For a more detailed depiction of these necessities, the inverse scattering method proves to be
instructive.
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The thesis is structured as follows. We present an analysis of the inverse scattering method
regarding the NLS and sG equation in Chapter 2, which is sufficient for our purposes. This enables
us to compare the inverse scattering method to other solution construction methods, that is, the
Dressing method and the Bäcklund transformation in Chapter 3. Then, in Chapter 4, we introduce
the defect conditions for both PDEs, which are related to the Bäcklund transformation, and the
boundary matrices associated with the relevant integrable boundary conditions. Further, we give
some insight into preliminary considerations in order for the dressing the boundary method to
be smoothly applicable. Subsequently, in Chapter 5, we state the propositions, presented in an
abbreviated form in the Introduction, with more insight and prove them explicitly. Chapter 6
contains the application of the aforementioned propositions starting from a detailed consideration
of multi-soliton solutions.
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Chapter 2

Inverse scattering method

2.1 Inverse scattering method for the NLS equation
We begin with a brief summary of the inverse scattering method of the focusing NLS equation.
As in [6, 24], it serves as a guideline for the implementation of additional results on top of the
construction of solutions. Let us state the NLS equation

iut + uxx + 2|u|2u = 0 (2.1.1)

for u(t, x) : R× R 7→ C. Formulated as a Cauchy problem, we look for solutions of (2.1.1) with
u(0, x) = u0(x) and given initial condition u0(x) for x ∈ R. Mainly, we follow the analysis provided
in [2, Sec. 2.2].

2.1.1 Lax pair

As suggested in the Introduction, an important concept in the context of applying the inverse
scattering method is the existence of a so-called Lax pair, a pair of 2× 2-matrices U(t, x, λ) and
V(t, x, λ), which enables us to restate the NLS equation as a compatibility condition of the following
linear spectral problems

ψx(t, x, λ) = U(t, x, λ)ψ(t, x, λ),

ψt(t, x, λ) = V(t, x, λ)ψ(t, x, λ),
(2.1.2)

where the function ψ(t, x, λ) is used as an auxiliary 2×2-matrix and the newly introduced parameter
λ ∈ C is the so-called spectral parameter, which itself is independent of t and x. We call (2.1.2)
the Lax system corresponding to the potential u(t, x), whereas in the literature it is more generally
referred to as 2× 2 AKNS system [1]. For a solution ψ(t, x, λ) of the Lax system (2.1.2) with an
appropriate Lax pair, it can be shown that the compatibility condition ψtx(t, x, λ) = ψxt(t, x, λ)
for all λ ∈ C holds if and only if u(t, x) satisfies the NLS equation (2.1.1). Since the choice of the
Lax pair is by no means unique, it is important to carefully select the right matrices in order for
the inverse scattering method to be applicable. Here, the Lax pair takes the form

U(t, x, λ) = −iλσ3 +Q, V(t, x, λ) = −2iλ2σ3 +Q1, (2.1.3)

where the potentials Q and Q1 of U and V and the third Pauli matrix σ3 are defined by

Q(t, x) =

(
0 u
−u∗ 0

)
, Q1(t, x, λ) =

(
i|u|2 2λu+ iux

−2λu∗ + iu∗x −i|u|2
)

and σ3 =

(
1 0
0 −1

)
.

11
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Throughout this thesis, we write u = u(t, x), Q = Q(t, x) and Q1 = Q1(t, x, λ) as well as
U = U(t, x, λ) and V = V(t, x, λ) to simplify notation, unless specified otherwise. Moreover, we
shall refer to U and V as the x and t part of the Lax pair, respectively. The connection between
the Lax pair U and V and the NLS equation can also be made without the auxiliary function
ψ(t, x, λ) in terms of the zero curvature condition, that is:

Ut − Vx + [U ,V ] = 0 for all λ ∈ C,

which holds if and only if u satisfies the NLS equation (2.1.1). In the literature, the existence of a
Lax pair for an equation means that the equation is integrable [21]. The Lax pair is not unique,
however, one essential property, among others, of our particular choice for the Lax pair is that the
matrices U and V admit the following symmetry relation

U(t, x, λ) = σ2

(
U(t, x, λ∗)

)∗
σ2, V(t, x, λ) = σ2

(
V(t, x, λ∗)

)∗
σ2, (2.1.4)

where the second Pauli matrix σ2 is given by

σ2 =

(
0 −i
i 0

)
.

From here, the goal is to describe the spectrum and the eigenfunctions of the Lax pair.

2.1.2 Jost functions and direct scattering

In order to study the Lax system in more detail, we assume that the potential u(t, x)→ 0 with
respect to x as well as its derivative ux(t, x) → 0 decay sufficiently fast as |x| → ∞. Therefore,
it is natural to assume for λ ∈ R that there exist 2× 2-matrix-valued solutions ψ− and ψ+, also
known as Jost functions, of the Lax system with the asymptotic behavior

ψ±(t, x, λ) ∼ e−i(λx+2λ2t)σ3 , as x→ ±∞

derived in accordance with the limits of the potential Q and Q1, where the phase is Θ(t, x, λ) =
λx+ 2λ2t in the case of the NLS equation. For a function f(t, x, λ), the term eif(t,x,λ)σ3 is defined
by

eif(t,x,λ)σ3 ..=

(
eif(t,x,λ) 0

0 e−if(t,x,λ)

)
.

Further, we define the modified Jost functions under time evolution as ψ̂(t, x, λ) = ψ(t, x, λ) ·
eiΘ(t,x,λ)σ3 , which then serve as solutions of the modified Lax system given by

ψ̂x + iλ[σ3, ψ̂] = Qψ̂, ψ̂t + 2iλ2[σ3, ψ̂] = Q1ψ̂.

Then, the modified Jost functions admit constant limits as x→ ±∞ and for all λ ∈ R, i.e.

ψ̂±(t, x, λ)→ 1, as x→ ±∞,

where 1 = diag(1, 1) is the identity matrix and thus they are solutions of the following Volterra
integral equations:

ψ̂−(t, x, λ) = 1 +

∫ x

−∞
e−iΘ(0,x−y,λ)σ3Q(t, y)ψ̂−(t, y, λ)eiΘ(0,x−y,λ)σ3 dy,

ψ̂+(t, x, λ) = 1−
∫ ∞
x

e−iΘ(0,x−y,λ)σ3Q(t, y)ψ̂+(t, y, λ)eiΘ(0,x−y,λ)σ3 dy.

(2.1.5)
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Writing the modified Jost functions ψ̂± = (ψ̂
(1)
± , ψ̂

(2)
± ) in terms of column vectors ψ̂(1)

± and ψ̂(2)
± , the

following theorem provides information on the possible continuations for the column vectors in
terms of the spectral parameter.

Theorem 2.1.1 (Deift & Zhou, [18]). Let u(t, ·) ∈ H1,1(R) = {f ∈ L2(R) : xf, fx ∈ L2(R)}.
Then, for every λ ∈ R, there exist unique solutions ψ̂±(t, ·, λ) ∈ L∞(R) satisfying the integral
equations (2.1.5). Therefore, the two column vectors ψ̂(2)

− (t, x, λ) and ψ̂(1)
+ (t, x, λ) of the modified

Jost functions can be continued analytically in λ ∈ C− and continuously in λ ∈ C− ∪ R, while the
two column vectors ψ̂(1)

− (t, x, λ) and ψ̂(2)
+ (t, x, λ) of the modified Jost functions can be continued

analytically in λ ∈ C+ and continuously in λ ∈ C+ ∪ R.

Proof. It suffices to prove the statement for the column function ψ̂
(1)
− (t, x, λ). The fact that

u(t, ·) ∈ L1(R) ensures that each entry of Q(t, ·) is in L1(R) and therefore the operator

T [f ](t, x, λ) =

∫ x

−∞

(
1 0
0 e2iλ(x−y)

)
Q(t, y) f(t, y, λ) dy

is a bounded operator mapping functions with respect to x from L∞(R) to L∞(R) for any fixed λ
such that λ ∈ C+ ∪ R, since x− y ≥ 0. Now, defining

Tj[f ](t, x, λ) =

∫ x

xj−1

(
1 0
0 e2iλ(x−y)

)
Q(t, y) f(t, y, λ) dy,

where we fix λ such that λ ∈ R, for an arbitrary interval (xj−1, xj) ⊂ R we obtain the estimate

||Tj[f ](t, ·, λ)||L∞(xj−1,xj) ≤ ||Q(t, ·, λ)||
L1(xj−1,xj)

||f(t, ·, λ)||L∞(xj−1,xj).

Then, we can choose xj, j = 1, . . . , `, in such a way that the operator Tj is a contraction from
L∞(xj−1, xj) to L∞(xj−1, xj). Repeating this argument starting from x0 = −∞ and appropriately
chosen x1, . . . , to x`−1 and x` =∞, we can obtain finitely many intervals so that Tj is contraction
from L∞(xj−1, xj) to L∞(xj−1, xj), j = 1, . . . , `. Setting f0(t, x, λ) ≡ e1 on (x0, x1), e1 = (1, 0)ᵀ,
where ·ᵀ indicates taking the transpose, we can find a unique function fj(t, ·, λ) ∈ L∞(xj−1, xj) by
the Banach Fixed Point Theorem such that it solves the equation

fj(t, x, λ) = fj−1(t, xj, λ) + Tj[fj](t, x, λ), x ∈ (xj−1, xj)

for every j = 2, . . . , `. Combining these functions, we find a continuous function in L∞(R) satisfying
the first column of the first Volterra integral equation (2.1.5). The exponential in t comes from
the additional assumption that u(t, ·) ∈ H1,1(R). Given that, the entries of Q1(t, x, λ) go to zero
and moreover V → −2iλ2σ3 as |x| → ∞. Hence, the time dependent Jost functions have the
supplementary exponential term e2iλ2tσ3 in order for the limit to be consistent. Here, the first
column of the Jost function ψ−(t, x, λ) in (2.1.5) takes the form

ψ
(1)
− (t, x, λ) = ψ̂

(1)
− (t, x, λ)e−iΘ(t,x,λ).

Now, for the continuation of ψ̂(1)
− (t, x, λ) to λ ∈ C+ ∪ R. The Neumann series ψ̂(1)

− (t, x, λ) =∑∞
j=0 T

j[f0](t, x, λ), where f0(t, x, λ) ≡ e1, is formally a solution of the first column of the first
Volterra integral equation (2.1.5). We can derive the bound |T j[f0](t, x, λ)| ≤ c||f0(t, ·, λ)||L∞(R) ·
(h(t,x))j

j!
with a positive constant c for all λ such that λ ∈ C+ ∪ R and all j ∈ N, where

h(t, x) =

∫ x

−∞
|Q(t, y)| dy ≤

∫ ∞
−∞
|Q(t, y)| dy ≤ ‖Q(t, ·)‖L1(R).



14 CHAPTER 2. INVERSE SCATTERING METHOD

By induction, we have

|T j+1[f0](t, x, λ)| ≤ c
‖f0(t, ·, λ)‖L∞(R)

j!

∫ x

−∞
|Q(t, y)| (h(t, y))j dy

= c
‖f0(t, ·, λ)‖L∞(R)

j!

∫ h(t,x)

0

sj ds

= c‖f0(t, ·, λ)‖L∞(R)
(h(t, x))j+1

(j + 1)!
,

where we put s = h(t, y). Thus, as
∑∞

j=0 T
j[f0](t, x, λ) is majorized in norm by a uniformly

convergent power series, the series itself is uniformly convergent for λ ∈ C+ ∪ R. The analyticity
and continuity domains of the series transfer to its limit and therefore ψ̂(1)

− (t, x, λ) can be continued
analytically in λ ∈ C+ and continuously in λ ∈ C+ ∪ R.

Having two solutions g1(t, x, λ) and g2(t, x, λ) to the first column of the first Volterra integral
equation (2.1.5), their difference f(t, x, λ) = g1(t, x, λ)− g2(t, x, λ) satisfies

f(t, x, λ) =

∫ x

−∞
e−iΘ(0,x−y,λ)σ3Q(t, y)f(t, y, λ)eiΘ(0,x−y,λ)σ3 dy

or, individually,

[f(t, x, λ)]1 = −
∫ x

−∞
u(t, y)

∫ y

−∞
e2iλ(y−y′)u∗(t, y′)[f(t, y′, λ)]1 dy′ dy,

[f(t, x, λ)]2 = −
∫ x

−∞
e2iλ(x−y)u∗(t, y)[f(t, y, λ)]1 dy.

Estimating [f(t, x, λ)]1 and iterating this estimate j times, similarly to the estimation for T j+1[f0],
we get that in the case [f(t, x, λ)]1 is bounded, i.e. |[f(t, x, λ)]1| ≤ C, the following estimate

|[f(t, x, λ)]1| ≤ C

(∫∞
−∞ |u(t, y)| dy

)(2j)

(2j)!
,

which goes to 0 as j → ∞. Hence, f(t, x, λ) is identically zero and the solution of the Volterra
integral equation (2.1.5) is unique in the space of continuous functions.

Analogously, the columns of ψ±(t, x, λ) = (ψ
(1)
± , ψ

(2)
± ) can be continued analytically and contin-

uously into the complex λ-plane. That is, ψ(2)
− and ψ(1)

+ can be continued analytically in λ ∈ C−
and continuously in λ ∈ C− ∪ R, while ψ(1)

− and ψ(2)
+ can be continued analytically in λ ∈ C+ and

continuously in λ ∈ C+ ∪ R.
The limits of the Jost functions imply

lim
x→±∞

detψ± = 1

and the zero trace of the matrix U , which is another essential property of the selected Lax pair,
then gives detψ± = 1 for all x ∈ R. Further, ψ+ and ψ− are both fundamental matrix solutions of
the Lax system (2.1.2), so there exists an x and t independent matrix A(λ) such that

ψ−(t, x, λ) = ψ+(t, x, λ)A(λ), λ ∈ R. (2.1.6)
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If we consider an arbitrary matrix A(t, x, λ), then taking the derivative with respect to x and
using the x part of the Lax system leads to Uψ− = Uψ+A+ ψ+Ax. With the initial relation, we
then find that 0 = ψ+Ax and analogously, differentiating with respect to t and using the t part of
the Lax system, we find that 0 = ψ+At. Taking the determinant and the limit value of ψ+ into
account, we obtain the equality (2.1.6) with a t and x independent matrix A(λ), which, in turn,
determines the so-called scattering matrix uniquely, since we have

A(λ) =

(
a11(λ) a12(λ)
a21(λ) a22(λ)

)
= ψ−1

+ (t, x, λ)ψ−(t, x, λ)

and additionally it can be deduced from the determinants of ψ± that detA(λ) = 1 for λ ∈ R.
Moreover, its entries can be written in terms of Wronskians determinants. In particular, the
diagonal entries of the scattering matrix are a11(λ) = det[ψ

(1)
− |ψ

(2)
+ ] and a22(λ) = − det[ψ

(2)
− |ψ

(1)
+ ]

implying that they can be continued in λ ∈ C+ and λ ∈ C−, respectively. On the other hand,
the off-diagonal entries of the scattering matrix can be derived by a12(λ) = det[ψ

(2)
− |ψ

(2)
+ ] and

a21(λ) = − det[ψ
(1)
− |ψ

(1)
+ ], which can in general not be continued off λ ∈ R.

Lemma 2.1.2. The Jost functions satisfy the symmetry relation

ψ±(t, x, λ) = σ2

(
ψ±(t, x, λ∗)

)∗
σ2.

Proof. By the symmetry of the Lax pair (2.1.4), we have that ψ±(t, x, λ) and σ2

(
ψ±(t, x, λ∗)

)∗
σ2

are solutions of the Lax system, since

(ψ±(t, x, λ))x = U(t, x, λ)ψ±(t, x, λ),

multiplied by the second Pauli matrix σ2 from the left and the right, complex conjugated and λ∗
inserted, can be written as(
σ2

(
ψ±(t, x, λ∗)

)∗
σ2

)
x

= σ2(U(t, x, λ∗))∗σ2 · σ2

(
ψ±(t, x, λ∗)

)∗
σ2 = U(t, x, λ)σ2

(
ψ±(t, x, λ∗)

)∗
σ2.

Further, both respective solutions have the same normalization as x→ ±∞, which is

lim
x→±∞

ψ±(t, x, λ)eiΘ(t,x,λ)σ3 = 1,

lim
x→±∞

σ2

(
ψ±(t, x, λ∗)

)∗
σ2e

iΘ(t,x,λ)σ3 = lim
x→±∞

σ2

(
ψ±(t, x, λ∗)

)∗(
eiΘ(t,x,λ∗)σ3

)∗
σ2 = 1.

Consequently, the assertion ψ±(t, x, λ) = σ2

(
ψ±(t, x, λ∗)

)∗
σ2 holds.

Therefore, the entries of the scattering matrix satisfy the following relations.

Proposition 2.1.3. The elements of the scattering matrix A(λ) are related by a11(λ) = a∗22(λ
∗)

for λ ∈ C+ and a12(λ) = −a∗21(λ) for λ ∈ R.

Proof. We have by definition

A(λ) = ψ−1
+ (t, x, λ)ψ−(t, x, λ)

and with the symmetry relation of the Jost solutions

= σ2

(
ψ−1

+ (t, x, λ∗)
)∗(

ψ−(t, x, λ∗)
)∗
σ2

= σ2A∗(λ∗)σ2

for λ ∈ R. Solely for the diagonal entries the relation can be continued to the upper/lower half
plane corresponding to the continuations of a11(λ) and a22(λ), thereby proving the assertion.
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For λ ∈ R, we then have |a11(λ)|2 + |a12(λ)|2 = 1 due to detA(λ) = 1 and Proposition 2.1.3.
The asymptotic behavior of the modified Jost functions and scattering matrix as |λ| → ∞ is

ψ̂− = 1 +
1

2iλ
σ3Q+

1

2iλ
σ3

∫ x

−∞
|u(t, y)|2 dy +O(1/λ2),

ψ̂+ = 1 +
1

2iλ
σ3Q−

1

2iλ
σ3

∫ ∞
x

|u(t, y)|2 dy +O(1/λ2),

(2.1.7)

which can be shown using integration by parts and the Riemann–Lebesgue lemma. Exemplary,
ψ̂

(1)
− has the following integral expressions, see proof of Theorem 2.1.1, with regard to [ψ̂−]11:

[ψ̂−(t, x, λ)]21 = −
∫ x

−∞
u∗(t, y)[ψ̂−(t, y, λ)]11e

2iλ(x−y) dy, (2.1.8)

[ψ̂−(t, x, λ)]11 = 1−
∫ x

−∞
u(t, y)

∫ y

−∞
u∗(t, z)[ψ̂−(t, z, λ)]11e

2iλ(y−z) dz dy. (2.1.9)

Here, [ψ̂−]ij means that we take the (ij)-entry of the matrix ψ̂−. Now, integration by parts used
for the inner integral, the property u(t, x)→ 0 as x→ −∞ and applying the Riemann–Lebesgue
lemma to the remaining integral to replace it with O(1/λ2), we obtain for (2.1.9) the following

[ψ̂−(t, x, λ)]11 = 1 +
1

2iλ

∫ x

−∞
|u(t, y)|2[ψ̂−(t, y, λ)]11 dy +O(1/λ2).

Utilizing essentially the same steps, (2.1.8) amounts to

[ψ̂−(t, x, λ)]21 =
1

2iλ
u∗(t, x)[ψ̂−(t, x, λ)]11 +O(1/λ2)

and therefore considering a power series ansatz with respect to λ, the asymptotic behavior (2.1.7)
proves well-founded. Note that A(λ) = 1 +O(1/λ).

2.1.3 Scattering data

Now, we are prepared to introduce the second crucial concept in the context of applying the inverse
scattering method—the scattering data, which consists of particular properties of the (modified)
Jost functions in combination with the scattering matrix. First off, it is easy to see that a zero
of a11(λ) leads to det[ψ

(1)
− |ψ

(2)
+ ] = 0 at a particular spectral parameter, say λ = λ1, which implies

that the two vector-valued functions ψ(1)
− (t, x, λ1), ψ

(2)
+ (t, x, λ1) are linearly dependent. Therefore,

we define the following.

Definition 2.1.4. For N ∈ N, the function u admits simple eigenvalues if a11(λ) is nonzero
in C+ ∪ R except at a finite number of points λ1, . . . , λN ∈ C+, where it has simple zeros, i.e.
a11(λj) = 0, da11

dλ
(λj) 6= 0, j = 1, . . . , N . Moreover, the relation a11(λ) = a∗22(λ∗) from Proposition

2.1.3 implies that if λ1, . . . , λN are simple eigenvalues, then a22(λ) is nonzero in C− ∪ R except
at the points λ∗1, . . . , λ∗N ∈ C−. Then, by GN , N ∈ N0, let us denote all functions u(t, ·) ∈ H1,1(R)
that admit exactly N simple eigenvalues in the upper half-plane, where the infinite union of these
sets

G ..=
∞⋃
N=0

GN

gives the set of generic functions, which is, particularly, an open dense subset of H1,1(R), see
[4, 44].
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Beside the linear dependence of the vector-valued functions ψ(1)
− (t, x, λj), ψ

(2)
+ (t, x, λj) at simple

eigenvalues λj, j ∈ {1, . . . , N}, of u, we therefore also have in accordance with the zeros of a22(λ)

and its equality to − det[ψ
(2)
− |ψ

(1)
+ ] that the vector-valued functions ψ(2)

− (t, x, λ∗j), ψ
(1)
+ (t, x, λ∗j) are

linearly dependent. Hence, there exist constants bj(t, x) and b̄j(t, x) such that

ψ
(1)
− (t, x, λj) = bj(t, x)ψ

(2)
+ (t, x, λj), ψ

(2)
− (t, x, λ̄j) = b̄j(t, x)ψ

(1)
+ (t, x, λ̄j), (2.1.10)

where we write λ̄j = λ∗j . These constants are independent of t and x, which can be demonstrated
by differentiating (2.1.10) and using either the x or t part of the Lax system (2.1.2) similar to the
argument for the t and x independence of A(λ). Thus, the relations (2.1.10) can be reduced to the
following relations for the modified Jost functions:

ψ̂
(1)
− (t, x, λj) = bjψ̂

(2)
+ (t, x, λj)e

2iΘ(t,x,λj), ψ̂
(2)
− (t, x, λ̄j) = b̄jψ̂

(1)
+ (t, x, λ̄j)e

−2iΘ(t,x,λ̄j). (2.1.11)

For j = 1, . . . , N , the relations (2.1.11) then provide residue conditions

Res
λ=λj

( ψ̂(1)
−

a11

)
= Cje

2iΘ(t,x,λj)ψ̂
(2)
+ (t, x, λj),

Res
λ=λ̄j

( ψ̂(2)
−

a22

)
= C̄je

−2iΘ(t,x,λ̄j)ψ̂
(1)
+ (t, x, λ̄j),

(2.1.12)

which are used in the inverse scattering method. The norming constants are defined by

Cj = bj

(da11

dλ

∣∣
λ=λj

)−1

, C̄j = b̄j

(da22

dλ

∣∣
λ=λ̄j

)−1

(2.1.13)

and they satisfy the symmetry relations b̄j = −b∗j and C̄j = −C∗j .

Definition 2.1.5. For N ∈ N, let the initial condition u0 ∈ GN and define the reflection coefficient
ρ(λ) = a21(λ)/a11(λ), where ρ : R → C. Further, let λ1, . . . , λN be the pairwise distinct simple
eigenvalues of u0 in the upper half-plane and C1, . . . , CN the corresponding norming constants
defined in (2.1.13). Then, the scattering data of u0 is given by

S(u0) = (ρ(λ; 0), {λj(0), Cj(0)}Nj=1). (2.1.14)

In fact, one can prove that u ∈ H1,1(R) implies that ρ ∈ H1,1
1 (R) = {f ∈ H1,1(R) : ‖f‖L∞(R) <

1}, see [18]. Effectively, this can be used to show that the scattering map satisfies the following.

Theorem 2.1.6 (Zhou, [44]). For each N ∈ N0, the scattering maps S : GN → H1,1
1 (R)× (C+)N ×

(C \ {0})N are Lipschitz continuous.

2.1.4 Inverse scattering

The idea of inverse scattering is to recover the function u from given scattering data. Hence, we
want to construct an inverse map (ρ, {λj, Cj}Nj=1) 7→ u. With the relation (2.1.6) containing the
scattering matrix in mind, we define the sectionally meromorphic functions

M−(t, x, λ) = (ψ̂
(1)
+ , ψ̂

(2)
− /a22), M+(t, x, λ) = (ψ̂

(1)
− /a11, ψ̂

(2)
+ ).

The functions M− and M+ enable us to rewrite the relation with the reflection coefficient ρ(λ) as

M+(t, x, λ) = M−(t, x, λ)

(
1 + |ρ(λ)|2 e−2iΘ(t,x,λ)ρ∗(λ)
e2iΘ(t,x,λ)ρ(λ) 1

)
for λ ∈ R, (2.1.15)
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where we define the so-called jump matrix by

J (t, x, λ) ..=

(
|ρ(λ)|2 e−2iΘ(t,x,λ)ρ∗(λ)

e2iΘ(t,x,λ)ρ(λ) 0

)
.

In particular, let us note that the jump matrix J is written in terms of the reflection coefficient ρ(λ)
and the phase Θ(t, x, λ). Considering the meromorphic functions, we obtain the following Riemann–
Hilbert problem for M(t, x, ·) from the residue conditions (2.1.12) and the discontinuity condition
(2.1.15) only relying on the scattering data (2.1.14), which is essential in the reconstruction of the
function u(t, x).

Riemann–Hilbert problem 1. For given scattering data (ρ, {λj, Cj}Nj=1) as well as t, x ∈ R,
find a 2× 2-matrix-valued function C \ R 3 λ 7→M(t, x, λ) satisfying

1. M(t, x, ·) is meromorphic in C \ R.

2. M(t, x, λ) = 1 +O(1/λ) as |λ| → ∞.

3. Non-tangential boundary values M±(t, x, λ) exist, satisfying the following jump condition
M+(t, x, λ) = M−(t, x, λ)(1 + J (t, x, λ)) for λ ∈ R.

4. M(t, x, λ) has simple poles at λ1, . . . , λN , λ̄1, . . . , λ̄N with

Res
λ=λj

M(t, x, λ) = lim
λ→λj

M(t, x, λ)

(
0 0

Cje
2iΘ(t,x,λj) 0

)
,

Res
λ=λ̄j

M(t, x, λ) = lim
λ→λ̄j

M(t, x, λ)

(
0 C̄je

−2iΘ(t,x,λ̄j)

0 0

)
.

In that regard, note that the scattering data (ρ(λ; 0), {λj(0), Cj(0)}Nj=1) given in Definition 2.1.5
are commonly understood as being derived from the known initial condition u0(x) in the context of
the inverse scattering process. Then, at any time t ∈ R, the evolution of the scattering data S(u)
can be derived by observing the additional time dependent terms multiplied with each component
of the scattering data. Hence, due to the coefficient a11(λ) being time independent, we have

S(u) = (ρ(λ; 0)e4iλ2t, {λj(0), Cj(0)e4iλ2j t}Nj=1).

In comparison to the usual asymptotic behavior of the Jost functions, which are taken to be e−iλxσ3
as x goes to plus or minus infinity, in the asymptotic behavior we choose, the time dependence is
not as apparent. Respecting this difference in the normalization, the usual scattering matrix A(λ)

is not time independent, since under the assumption ψ(1)
± ∼ e−iλx as x→ ±∞, the (12)-entry then

has the following time dependency

a21(λ) = − det[ψ
(1)
− e2iλ2t, ψ

(1)
+ e2iλ2t] = −e4iλ2t det[ψ

(1)
− , ψ

(1)
+ ].

However, due to the fact that we are primarily interested in the inverse scattering method in
order to elaborate on a few key features the method has to offer, we conclude that it is sufficiently
clarified by this treatment.

With regards to the asymptotic expansions (2.1.7) of the modified Jost functions as |λ| → ∞,
the reconstruction formula for the function u(t, x) in terms of the solution of the Riemann–Hilbert
problem 1 can be derived by

u(t, x) = 2i lim
|λ|→∞

λ[M(t, x, λ)]12.
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Therefore, the missing link to recover u from the scattering data (2.1.14) is to actually evaluate
the solution of the Riemann–Hilbert problem which involves the Cauchy operator C defined as

C[f ](λ) ..=
1

2πi

∫
R

f(ζ)

ζ − λ
dζ, λ ∈ C \ R

for f ∈ Lp(R) with 1 ≤ p <∞. Further, we need to introduce the projection operators P± which
are given by

P±[f ](λ) = lim
ε→0

1

2πi

∫ ∞
−∞

f(ζ)

ζ − (λ± iε)
dζ, λ ∈ R,

corresponding to the Cauchy operator in the case λ approaches the real line transversely from
C±. We need the following results for these projection operators in order to establish the inverse
scattering map.

Proposition 2.1.7.

(i) (Plemelj formulae) For f ∈ Lp(R), 1 ≤ p <∞, the limits of the projection operators P± satisfy

P±[f ](λ) =
±f(λ) + iH[f ](λ)

2
for λ ∈ R,

where H : Lp(R) → Lp(R) is a special case of the principal value integral, namely, the Hilbert
transform given by

H[f ](λ) ..= lim
ε→0

1

π

(∫ λ−ε

−∞
+

∫ ∞
λ+ε

) f(ζ)

ζ − λ
dζ, λ ∈ R.

(ii) If f±(λ) is analytic for λ in C± and f±(λ)→ 0 as |λ| → ∞, then

P±[f∓](λ) = 0, P±[f±](λ) = ±f±(λ) for λ ∈ R.

(iii) If f ∈ L1(R), C[f ](λ) decays to zero as |λ| → ∞ and it admits the asymptotic

lim
|λ|→∞

λC[f ](λ) = − 1

2πi

∫
R
f(ζ) dζ,

taking the limit in either the upper or lower half-plane.

Proof. (i) A proof for the Plemelj formulae is standard in complex analysis and can be found for
example in [35].

(ii) The Plemelj formulae together with Cauchy’s integral theorem prove the assumption, since
H[f+](λ) = −if+(λ) and H[f−](λ) = if−(λ).

(iii) For the asymptotic, one can calculate

lim
|λ|→∞

λC[f ](λ) = lim
|λ|→∞

λ

2πi

∫
R

f(ζ)

ζ − λ
dζ

=
1

2πi

∫
R

lim
|λ|→∞

λ
f(ζ)

ζ − λ
dζ

= − 1

2πi

∫
R
f(ζ) dζ.

Considering similar steps for C[f ](λ), we obtain zero as the limit for |λ| → ∞.
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Now, let us assume that the solution of the Riemann–Hilbert problem has no simple poles, i.e.
u ∈ G0. Applying P− and P+ to the jump condition of the Riemann–Hilbert problem 1 yields

M−(t, x, λ) = 1 + lim
ε→0

1

2πi

∫ ∞
−∞

M−(t, x, ζ)J (t, x, ζ)

ζ − (λ− iε)
dζ,

since M+(t, x, λ)− 1 is analytic in C+ and tends to 0 as |λ| goes to infinity, and

M+(t, x, λ) = 1 + lim
ε→0

1

2πi

∫ ∞
−∞

M−(t, x, ζ)J (t, x, ζ)

ζ − (λ+ iε)
dζ,

since M−(t, x, λ)− 1 is analytic in C− and tends to 0 as |λ| goes to infinity, respectively. Hence,

M(t, x, λ) = 1 +
1

2πi

∫ ∞
−∞

M−(t, x, ζ)J (t, x, ζ)

ζ − λ
dζ

is formally a solution of the Riemann–Hilbert problem and using the third property proven in
Proposition 2.1.7, we find the asymptotic expansion of M(t, x, λ) to be

M(t, x, λ) = 1− 1

2πiλ

∫ ∞
−∞

M−(t, x, ζ)J (t, x, ζ) dζ +O(λ−2).

Comparing this to the asymptotics of the modified Jost functions (2.1.7), we obtain the potential
in terms of the scattering data. Particularly,

u(t, x) = − 1

π

∫ ∞
−∞

e−2iΘ(t,x,λ)ρ∗(λ)[M(t, x, λ)]11 dλ

= − 1

π

∫ ∞
−∞

e−2iΘ(t,x,λ)ρ∗(λ)[ψ̂∗+(t, x, λ)]22 dλ.

In general, assuming that the function u is generic with N ∈ N simple eigenvalues, i.e. u ∈ GN , the
Riemann–Hilbert problem 1 also comprises of N simple poles. Writing (2.1.6) as

ψ̂
(1)
− (t, x, λ)

a11(λ)
= ψ̂

(1)
+ (t, x, λ) + ρ(λ)e2iΘ(t,x,λ)ψ̂

(2)
+ (t, x, λ), (2.1.16)

ψ̂
(2)
− (t, x, λ)

a22(λ)
= ψ̂

(2)
+ (t, x, λ)− ρ∗(λ)e−2iΘ(t,x,λ)ψ̂

(1)
+ (t, x, λ), (2.1.17)

we can utilize the projection operators P− and P+ on both sides of equations (2.1.16) and (2.1.17),
respectively, to obtain the following system

ψ̂
(1)
+ (t, x, λ) =

(
1
0

)
+

N∑
j=1

Resζ=λj

(
ψ̂
(1)
−
a11

)
λ− λj

+ lim
ε→0

1

2πi

∫ ∞
−∞

e2iΘ(t,x,ζ)ρ(ζ)ψ̂
(2)
+ (t, x, ζ)

ζ − (λ− iε)
dζ,

ψ̂
(2)
+ (t, x, λ) =

(
0
1

)
+

N∑
j=1

Resζ=λj

(
ψ̂
(2)
−
a22

)
λ− λj

+ lim
ε→0

1

2πi

∫ ∞
−∞

e−2iΘ(t,x,ζ)ρ∗(ζ)ψ̂
(1)
+ (t, x, ζ)

ζ − (λ+ iε)
dζ,

(2.1.18)

where the residues are as in the Riemann–Hilbert problem 1. Inserting λ = λ` into (2.1.18), the
resulting system of equations together with (2.1.18) constitute a linear algebraic-integral system of
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equations, which, in principle, solves the inverse problem for the eigenfunctions ψ̂(1)
+ (t, x, λ) and

ψ̂
(2)
+ (t, x, λ). Comparing (2.1.18) to the asymptotic expansion (2.1.7) yields the reconstruction

formula

u(t, x) = −2i
N∑
j=1

C∗j e
−2iΘ(t,x,λ∗j )[ψ̂∗+(t, x, λj)]22 +

1

π

∫ ∞
−∞

e−2iΘ(t,x,λ)ρ∗(λ)[ψ̂∗+(t, x, λ)]22 dλ. (2.1.19)

In the reflectionless case we have ρ(λ) = 0 for λ ∈ R and then the Riemann–Hilbert problem can
be reduced to an algebraic system

ψ̂
(1)
+ (t, x, λ`) = e1 +

N∑
j=1

Cje
2iΘ(t,x,λj)ψ̂

(2)
+ (t, x, λj)

(λ̄` − λj)
,

ψ̂
(2)
+ (t, x, λj) = e2 +

N∑
m=1

C̄me
−2iΘ(t,x,λ̄j)ψ̂

(1)
+ (t, x, λm)

(λj − λ̄m)

for `, j = 1, . . . , N . This particular restriction of the scattering data is the third important concept
in the context of applying the inverse scattering method. Especially in connection with the second
concept, the scattering data, this is the foundation of further considerations in this thesis. First
off, let us continue the analysis of the algebraic system. For N = 1, the modified Jost function
ψ̂

(2)
+ (t, x, λ) at λ = λ1 takes the form

[ψ̂+(t, x, λ1)]21 = − C∗1
λ1 − λ∗1

e−2iΘ(t,x,λ∗1)

[
1− |C1|2e2i(Θ(t,x,λ1)−Θ(t,x,λ∗1))

(λ1 − λ∗1)2

]−1

,

[ψ̂+(t, x, λ1)]22 =

[
1− |C1|2e2i(Θ(t,x,λ1)−Θ(t,x,λ∗1))

(λ1 − λ∗1)2

]−1

. (2.1.20)

Therefore, inserting (2.1.20) into (2.1.19), we obtain the so-called one-soliton solution, which can
be written with λ1 = ξ1 + iη1 as

u(t, x) = −2iη1
C∗1
|C1|

e−i(2ξ1x+4(ξ21−η21)t) sech
(

2η1(x+ 4ξ1t)− log
|C1|
2η1

)
.

We adapt the notation u(t, x) = usol(t, x; {λ1, C1}) resulting in

usol(t, x; {ξ1 + iη1, 2η1e
2η1x1+iφ1}) = 2η1e

−i(2ξ1x+4(ξ21−η21)t+(φ1+π/2)) sech(2η1(x+4ξ1t−x1)), (2.1.21)

where φ1 = arg(C1) and x1 = 1
2η1

log |C1|
2η1

. We invite the reader to make a mental note of the
relations between the scattering data and the parameters of the solution and bear in mind that
the inverse scattering transform is by no means exclusive to derive these kind of solutions. We
shall come back to these points later on in the thesis. Further, it is worth mentioning that in [44],
it has also been proven that the inverse scattering map maps ρ ∈ H1,1

1 (R) to u ∈ H1,1(R), which
we capture without the proof in the following statement.

Theorem 2.1.8 (Zhou, [44]). For each N ∈ N0, the inverse scattering maps S−1 : H1,1
1 (R) ×

(C+)N × (C \ {0})N → H1,1(R) are Lipschitz continuous.
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2.2 Inverse scattering method for the sG equation
The second PDE of interest in this thesis is the sine-Gordon equation which in laboratory coordinates
has the form

θtt − θxx + sin θ = 0 (2.2.1)

for θ(t, x) : R × R 7→ C. Formulated as a Cauchy problem, we look for solutions of (2.2.1) with
θ(0, x) = θ0(x) and θt(0, x) = θ1(x), where the functions θ0(x) and θ1(x) are the given initial data
for x ∈ R.

2.2.1 Lax pair

Similarly to the direct scattering for the NLS equation, the sG equation is another candidate for
which there exists a Lax pair. Given the 2× 2-matrices U and V of the form

U = − i
4

(θt − θx)σ1 −
iλ

4
σ3 +

i

4λ

(
cos θ −i sin θ
i sin θ − cos θ

)
,

V = − i
4

(θx − θt)σ1 +
iλ

4
σ3 +

i

4λ

(
cos θ −i sin θ
i sin θ − cos θ

)
,

(2.2.2)

where we again have the spectral parameter λ ∈ C as well as the third Pauli matrix σ3 = diag(1,−1)
and the first Pauli matrix σ1 which is defined as

σ1 =

(
0 1
1 0

)
,

the sG equation can be written as a compatibility condition of the following linear spectral problems

ψx(t, x, λ) = U(t, x, λ)ψ(t, x, λ),

ψt(t, x, λ) = V(t, x, λ)ψ(t, x, λ).
(2.2.3)

In that regard, for a 2 × 2-matrix solution ψ(t, x, λ), the compatibility condition ψtx(t, x, λ) =
ψxt(t, x, λ) for all λ ∈ C \ {0} is satisfied if and only if θ(t, x) is a solution of the sG equation
(2.2.1). Without the auxiliary function, the equivalent zero curvature condition is again

Ut − Vx + [U,V] = 0 for all λ ∈ C \ {0}.

Note that a solution ψ(t, x, λ) of the Lax system of the NLS equation is not the same as a solution
of the Lax system of the sG equation. However, we denote solutions of either of these systems by
ψ, since it should be clear from the context which setting the solution belongs to. Further, under
the condition that θ is real, the Lax pair U, V satisfies the symmetry relations

U(t, x, λ) = σ1U(t, x,−λ)σ1, U(t, x, λ) = σ2

(
U(t, x, λ∗)

)∗
σ2, U(t, x, λ) = σ3

(
U(t, x,−λ∗)

)∗
σ3,

V(t, x, λ) = σ1V(t, x,−λ)σ1, V(t, x, λ) = σ2

(
V(t, x, λ∗)

)∗
σ2, V(t, x, λ) = σ3

(
V(t, x,−λ∗)

)∗
σ3.

(2.2.4)

2.2.2 Jost functions and direct scattering

Under the assumption that limx→−∞ θ = 0, limx→∞ θ = 2πC sufficiently fast and C ∈ Z, the
topological charge, it is reasonable to assume that there exist 2× 2-matrix-valued functions ψ− and
ψ+, solutions of the equations (2.2.3), with asymptotic behavior

ψ±(t, x, λ) ∼ e(− i
4

(λ− 1
λ

)x+ i
4

(λ+ 1
λ

)t)σ3 as x→ ±∞,
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for λ ∈ R. Similarly to the case of the NLS equation, we can define the modified Jost functions
ψ̂(t, x, λ) = ψ(t, x, λ)eiΘ(t,x,λ), where for the sG equation the phase Θ(t, x, λ) is equal to 1

4
(λ −

1
λ
)x− 1

4
(λ+ 1

λ
)t. Again, as in the case of the solutions of the Lax system, we use the same notation

as for the phase of the NLS equation and the context should be clear. In particular, the modified
Jost functions satisfy the modified Lax system

ψ̂x +
i

4

(
λ− 1

λ

)
[σ3, ψ̂] = Qψ̂, ψ̂t −

i

4

(
λ+

1

λ

)
[σ3, ψ̂] = Q1ψ̂, (2.2.5)

where

Q =
i

4

(
λ−1(cos θ − 1) −iλ−1 sin θ − θt + θx

iλ−1 sin θ − θt + θx λ−1(1− cos θ)

)
,

Q1 =
i

4

(
λ−1(cos θ − 1) −iλ−1 sin θ + θt − θx

iλ−1 sin θ + θt − θx λ−1(1− cos θ)

)
.

Therefore, the modified Jost solutions have constant limits for all λ ∈ R,

ψ̂±(t, x, λ)→ 1, as x→ ±∞

and are solutions of the following Volterra integral equations:

ψ̂−(t, x, λ) = 1 +

∫ x

−∞
e−iΘ(0,x−y,λ)σ3Q(t, y, λ)ψ̂−(t, y, λ)eiΘ(0,x−y,λ)σ3 dy,

ψ̂+(t, x, λ) = 1−
∫ ∞
x

e−iΘ(0,x−y,λ)σ3Q(t, y, λ)ψ̂+(t, y, λ)eiΘ(0,x−y,λ)σ3 dy,

(2.2.6)

which can be derived from the modified Lax system. Here again, we continue to denote the Jost
functions in terms of their column vectors as ψ± = (ψ

(1)
± , ψ

(2)
± ) and also the modified Jost functions

in terms of their column vectors as ψ̂± = (ψ̂
(1)
± , ψ̂

(2)
± ).

Lemma 2.2.1. Let 1− cos(θ(t, ·)), sin(θ(t, ·)), θt(t, ·), θx(t, ·) ∈ L1(R). Then for each x ∈ R, the
columns ψ̂(2)

− (t, x, λ) and ψ̂(1)
+ (t, x, λ) of the modified Jost functions are analytic for λ ∈ C− and

continuous for λ ∈ (C− ∪ R) ∩ {λ ∈ C : |λ| ≥ ε}, while the columns ψ̂(1)
− (t, x, λ) and ψ̂(2)

+ (t, x, λ)
are analytic for λ ∈ C+ and continuous for λ ∈ (C+ ∪ R) ∩ {λ ∈ C : |λ| ≥ ε} for each ε > 0.

Proof. The proof is analogous to the second part of the proof of Theorem 2.1.1 with the exception
that the operator T is uniformly bounded for |λ| ≥ ε: An iteration of the operator

T [f ](t, x, λ) =

∫ x

−∞

(
1 0

0 e
i
2

(
λ− 1

λ

)
(x−y)

)
Q(t, y, λ) f(t, y, λ) dy,

starting with the unit vector f0(t, x, λ) ≡ e1, formally provides a solution in the form of an infinite
series

∑∞
j=0 T

j [f0](t, x, λ) to the first column of the first Volterra integral equation (2.2.6), which we
denote by ψ̂(1)

− . Observing that λ ∈ C+ implies that λ− λ−1 ∈ C+ and therefore if we additionally
take x − y ≥ 0, then the kernel function with respect to y is bounded by a linear combination
of the entries 1 − cos(θ(t, y)), sin(θ(t, y)), θt(t, y), θx(t, y) of Q(t, y, λ) with constant coefficients
independent of y and uniformly bounded for |λ| ≥ ε > 0. As in the case of the NLS equation, if
we take h(t, x) =

∫ x
−∞ |Q(t, y, λ)| dy, we have

|T j[f0](t, x, λ)| ≤ c‖f0(t, ·, λ)‖L∞(R)
(h(t, x))j

j!
.
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Hence, it follows that the partial sums of ψ̂(1)
− are majorized by those of an exponential series

implying the convergence of the partial sums. Since the partial sums are uniformly convergent,
analyticity for λ ∈ C+ and continuity for λ ∈ (C+ ∪R) ∩ {λ ∈ C : |λ| ≥ ε} extend from the partial
sums to the limit ψ̂(1)

− . The argument can essentially be repeated for the other columns of the
modified Jost functions.

Even though the argument which is sufficient for the NLS equation fails for the sG equation,
it is still possible to prove that the (modified) Jost solutions are continuous on the complete
half-planes. Using a gauge transformation, a new set of functions with respect to the Jost functions
can be defined by

Ψ±(t, x, λ) =

(
cos θ

2
−i sin θ

2

i sin θ
2
− cos θ

2

)
ψ±(t, x, λ). (2.2.7)

As before, the new set of functions can be written in terms of its column vectors as Ψ±(t, x, λ) =

(Ψ
(1)
± (t, x, λ),Ψ

(2)
± (t, x, λ)) and it can be calculated that these matrices Ψ±(t, x, λ) satisfy the

modified eigenvalue equation

Ψx =
(
− i

4

(
λ− 1

λ

)
σ3 + Q2

)
Ψ,

where
Q2 =

i

4

(
λ(1− cos θ) iλ sin θ + θt + θx

−iλ sin θ + θt + θx λ(cos θ − 1)

)
.

Note that the terms containing a power of λ changed from λ−1 in Q1 to λ in Q2. Under the same
assumption that limx→−∞ θ = 0, limx→∞ θ = 2πC as before, it is reasonable to assume that there
exist functions Ψ± with asymptotic behavior

Ψ−(t, x, λ) ∼ σ3e
−iΘ(t,x,λ)σ3 as x→ −∞,

Ψ+(t, x, λ) ∼ (−1)Cσ3e
−iΘ(t,x,λ)σ3 as x→ +∞

for λ ∈ R. Then, we define Ψ̂(t, x, λ) = Ψ(t, x, λ)eiΘ(t,x,λ)σ3 denoted in terms of its column vectors
by Ψ̂(t, x, λ) = (Ψ̂(1)(t, x, λ), Ψ̂(2)(t, x, λ)). Their Volterra integral equations are of the form

Ψ̂−(t, x, λ) = σ3 +

∫ x

−∞
e−iΘ(0,x−y,λ)σ3Q2(t, x, y)Ψ̂−(t, y, λ)eiΘ(0,x−y,λ)σ3 dy,

Ψ̂+(t, x, λ) = (−1)Cσ3 −
∫ ∞
x

e−iΘ(0,x−y,λ)σ3Q2(t, x, y)Ψ̂+(t, y, λ)eiΘ(0,x−y,λ)σ3 dy.

(2.2.8)

Given these modified integral equations for the transformed solutions Ψ̂±(t, x, λ), we can prove
that the columns of ψ̂±(t, x, λ) are continuous in a neighborhood of λ = 0 in the upper or lower
half-plane.

Lemma 2.2.2. Let 1 − cos(θ(t, ·)), sin(θ(t, ·)), θt(t, ·), θx(t, ·) ∈ L1(R). Then for each x ∈ R,
the columns ψ̂(2)

− (t, x, λ) and ψ̂(1)
+ (t, x, λ) of the modified Jost functions are continuous for λ ∈

(C− ∪ R) ∩ {λ ∈ C : |λ| ≤ ε}, while the columns ψ̂(1)
− (t, x, λ) and ψ̂(2)

+ (t, x, λ) are continuous for
λ ∈ (C+ ∪ R) ∩ {λ ∈ C : |λ| < ε} for each ε > 0.

Proof. Following the proof of Lemma 2.2.1, we have the initial vector f0(t, x, λ) ≡ e1 and the
operator T [f ](t, x, λ) with Q replaced by Q2. This means that every factor of λ−1 which occurred
in T through Q is now a factor of λ coming from Q2. Hence, instead of the condition |λ| ≥ ε, we
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have for Ψ̂
(1)
− the same analysis under the condition |λ| < ε. Thus, the first column Ψ̂

(1)
− of the

modified transformed Jost function Ψ̂− is analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R,
where |λ| < ε. Further, the gauge transformation (2.2.7) is independent of λ and therefore it is not
affecting the continuity with respect to λ, which enables to transfer the results to the columns of
the modified Jost functions. This procedure can be applied in a similar way to each column.

By Lemmas 2.2.1 and 2.2.2, we have that the columns of the modified Jost functions in the
case of the sG equation can be continued analytically in λ ∈ C± and continuously in λ ∈ C± ∪ R,
which we summarize in the following statement.

Theorem 2.2.3 (Kaup, [9, 29]). Let 1− cos(θ(t, ·)), sin(θ(t, ·)), θt(t, ·), θx(t, ·) ∈ L1(R). Then, for
every λ ∈ R, there exist unique solutions ψ̂±(t, ·, λ) ∈ L∞(R) satisfying the integral equations
(2.2.6). The two column vectors ψ̂(1)

− (t, x, λ) and ψ̂(2)
+ (t, x, λ) of the modified Jost functions can be

continued analytically in λ ∈ C− and continuously in λ ∈ C− ∪ R, while the two column vectors
ψ̂

(2)
− (t, x, λ) and ψ̂(1)

+ (t, x, λ) of the modified Jost functions can be continued analytically in λ ∈ C+

and continuously in λ ∈ C+ ∪ R.

Proof. Repeating the first part of the proof of Theorem 2.1.1, we have, since each entry of the
matrix Q(t, ·, λ) is in L1(R), that we can find a unique continuous function in L∞(R) satisfying for
example the first column of the first Volterra integral equation (2.2.6).

Then, to continue the function in λ ∈ C+, we utilize Lemmas 2.2.1 and 2.2.2 under consideration
of the sign of the real part of the exponential factors including Im(λ− λ−1) in the Volterra integral
equations (2.2.6). An analogous result holds for the other columns of the modified Jost functions.

Now, these properties imply that the columns of the Jost functions can be continued analytically
and continuously into the complex λ-plane as their modified counter part. The limits of the Jost
solutions and the zero trace of the matrix U gives detψ± = 1 for all x ∈ R. Moreover, ψ± are both
fundamental matrix solutions of the Lax system (2.2.3), so there exists an x and t independent
matrix A(λ), see Section 2.1, such that

ψ−(t, x, λ) = ψ+(t, x, λ)A(λ), λ ∈ R. (2.2.9)

The scattering matrix A is determined by this system and therefore we can write the scattering
matrix as A(λ) = ψ−1

+ (t, x, λ)ψ−(t, x, λ), whose entries can be written in terms of Wronskians. In
particular, a11(λ) = det[ψ

(1)
− |ψ

(2)
+ ] and a22(λ) = − det[ψ

(2)
− |ψ

(1)
+ ] implying that they can be continued

in λ ∈ C+ and λ ∈ C−, respectively. The eigenfunctions inherit the symmetry relation of the Lax
pair:

Lemma 2.2.4. Assuming that θ is real, the Jost functions ψ±(t, x, λ) satisfy the three symme-
try relations ψ±(t, x, λ) = σ1ψ±(t, x,−λ)σ1, ψ±(t, x, λ) = σ2

(
ψ±(t, x, λ∗)

)∗
σ2 and ψ±(t, x, λ) =

σ3

(
ψ±(t, x,−λ∗)

)∗
σ3.

Proof. As in Lemma 2.1.2, it is possible to show that ψ±(t, x, λ), σ1ψ±(t, x,−λ)σ1 as well as
σ2

(
ψ±(t, x, λ∗)

)∗
σ2 and σ3

(
ψ±(t, x,−λ∗)

)∗
σ3 are all solutions of the same Lax system. This means

(ψ±(t, x, λ))x = U(t, x, λ)ψ±(t, x, λ),

(σ1ψ±(t, x,−λ)σ1)x = σ1U(t, x,−λ)ψ±(t, x,−λ)σ1 = U(t, x, λ)(σ1ψ±(t, x,−λ)σ1),

(σ2

(
ψ±(t, x, λ∗)

)∗
σ2)x = σ2

(
U(t, x, λ∗)

)∗(
ψ±(t, x, λ∗)

)∗
σ2 = U(t, x, λ)σ2

(
ψ±(t, x, λ∗)

)∗
σ2,

(σ3

(
ψ±(t, x,−λ∗)

)∗
σ3)x = σ3

(
U(t, x,−λ∗)

)∗(
ψ±(t, x,−λ∗)

)∗
σ3 = U(t, x, λ)σ3

(
ψ±(t, x,−λ∗)

)∗
σ3.
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This also holds for the t part of the Lax system, since both matrices U and V of the Lax pair
satisfy the same symmetry relations. Further, the normalization of each of these matrices can be
derived by

lim
x→±∞

ψ±(t, x, λ)eiΘ(t,x,λ)σ3 = 1,

lim
x→±∞

σ1

(
ψ±(t, x,−λ)

)
σ1e

iΘ(t,x,λ)σ3 = lim
x→±∞

σ1

(
ψ±(t, x,−λ)

)
eiΘ(t,x,−λ)σ3σ1 = 1,

lim
x→±∞

σ2

(
ψ±(t, x, λ∗)

)∗
σ2e

iΘ(t,x,λ)σ3 = lim
x→±∞

σ2

(
ψ±(t, x, λ∗)

)∗(
eiΘ(t,x,λ∗)σ3

)∗
σ2 = 1,

lim
x→±∞

σ3

(
ψ±(t, x,−λ∗)

)∗
σ3e

iΘ(t,x,λ)σ3 = lim
x→±∞

σ3

(
ψ±(t, x,−λ∗)

)∗(
eiΘ(t,x,−λ∗)σ3

)∗
σ3 = 1.

We use the fact that −Θ(t, x, λ) = Θ(t, x,−λ) and Θ(t, x, λ) = Θ∗(t, x, λ∗). Hence, the assertion is
proven.

As in the case of the NLS equation, these symmetries can be used to derive relations between
the elements of the scattering matrix A(λ), which then can be utilized to specify particularities in
the scattering data.

Proposition 2.2.5. Assuming that θ is real, the elements of the scattering matrix A(λ) are related
by a11(λ) = a22(−λ) = a∗22(λ

∗) = a∗11(−λ∗) for λ ∈ C+ and a12(λ) = a21(−λ) = −a∗21(λ) =
−a∗12(−λ) for λ ∈ R.

Proof. We have by definition

A(λ) = ψ−1
+ (t, x, λ)ψ−(t, x, λ)

and with the symmetry relations of Lemma 2.2.4 regarding the Jost functions, we have

= σ1A(−λ)σ1

= σ2A∗(λ∗)σ2

= σ3A∗(−λ∗)σ3

for λ ∈ R. Solely for the diagonal entries the relation can be continued to the upper/lower
half-plane corresponding to the continuations of a11(λ) and a22(λ).

For the NLS equation, the relations of the elements of the scattering matrix resulted in the
pairing of zeros in the scattering data, i.e. if λ1 ∈ C+ is a zero for a11(λ), then λ∗1 ∈ C− is a zero
for a22(λ), see Definition 2.1.4. In the case of the sG equation, the derived relations of the elements
of the scattering matrix cause the zeros to come in quadruples: Given a zero λ1 ∈ C+ of a11(λ),
−λ∗1 ∈ C+ is a zero of a11(λ) and −λ1, λ

∗
1 ∈ C− are zeros of a22(λ); in the special case λ1 ∈ iR, the

pairs in either half-plane (upper/lower) coincide, leaving only two zeros λ1 ∈ iR+ of a11(λ) and
λ∗1 = −λ1 ∈ iR− of a22(λ).

If λ ∈ R, we have |a11(λ)|2 + |a12(λ)|2 = 1 since detA(λ) = 1 and Proposition 2.2.5. From
the integral equations (2.2.6), one can show that the asymptotic behavior of the modified Jost
functions and scattering coefficient a11(λ) satisfy

ψ̂±(t, x, λ) = 1 +O(1/λ),

a11(λ) = 1 +O(1/λ)
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as |λ| → ∞ in the appropriate half-planes and considering the gauge transformed modified Jost
functions, we have

ψ̂+(t, x, λ) = (−1)C
(

cos θ
2

i sin θ
2

i sin θ
2

cos θ
2

)
+O(λ),

ψ̂−(t, x, λ) =

(
cos θ

2
−i sin θ

2

i sin θ
2
− cos θ

2

)
+O(λ),

a(λ) = (−1)C +O(λ)

(2.2.10)

as |λ| → 0 in the appropriate half-planes, see [9, 29].

2.2.3 Scattering data

As for the NLS equation, the scattering data can be derived from particular properties of the
functions dependent on the spectral parameter λ introduced in the last section. As mentioned
in the last subsection, the simple eigenvalues for the function θ introduce up to four zeros of the
functions a11(λ) and a22(λ) of the scattering matrix. Hence, we have the following definition.

Definition 2.2.6. For θ real and N ∈ N, the function θ admits simple eigenvalues if a11(λ) is
nonzero in C+ ∪ R except at a finite number of points λ1, . . . , λN ∈ C+, where it has simple
zeros, i.e. a11(λj) = 0, da11

dλ
(λj) 6= 0, j = 1, . . . , N . Moreover, the relation a11(λ) = a22(−λ) =

a∗22(λ∗) = a11(−λ∗) from Proposition 2.2.5 implies that if λ1, . . . , λN are simple eigenvalues, then
−λ∗1, . . . ,−λ∗N ∈ C+ are simple zeros of a11(λ) and a22(λ) is nonzero in C−∪R except at the points
−λ1, . . . ,−λN , λ∗1, . . . , λ∗N ∈ C−. Then, we define by GN , N ∈ N0, the set of all functions θ(t, x)
with 1− cos(θ(t, ·)), sin(θ(t, ·)), θt(t, ·), θx(t, ·) ∈ L1(R) that admit exactly N simple eigenvalues in
the upper half-plane. The infinite union of these sets

G ..=
∞⋃
N=0

GN

gives the set of generic functions.

When connecting simple zeros, two distinct cases can occur.

Definition 2.2.7. Assuming that θ is real, we split the number of simple eigenvalues into N =
Ns +Nb. Here,

(i) Ns is the number of simple eigenvalues lying on the imaginary axis λj = iηj, ηj > 0 and
therefore corresponding to single solitons.

(ii) Nb is the number of simple eigenvalues not lying on the imaginary axis λj = ξj + iηj, ξj 6= 0
and therefore corresponding to the so-called breather solutions.

The topological charge C can be related to the number of single solitons Ns. Basically, an even
number of single solitons corresponds to 0 as charge, whereas an odd number of single solitons
corresponds to a value of 1 or −1 for the charge.

From Lemma 2.2.4, we obtain the following relations for the column vectors of the modified
Jost functions

ψ
(1)
± (t, x, λ) = σ1ψ

(2)
± (t, x,−λ) = iσ2

(
ψ

(2)
± (t, x, λ∗)

)∗
= σ3

(
ψ

(1)
± (t, x,−λ∗)

)∗
,

ψ
(2)
± (t, x, λ) = σ1ψ

(1)
± (t, x,−λ) = −iσ2

(
ψ

(1)
± (t, x, λ∗)

)∗
= −σ3

(
ψ

(2)
± (t, x,−λ∗)

)∗
.

(2.2.11)
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Now, given a simple eigenvalue λj, j ∈ {1, . . . , N}, of a real valued θ, we have that the column
vectors ψ(1)

− (t, x, λj) and ψ(2)
+ (t, x, λj) are linearly dependent, i.e. there exists a constant bj such

that
ψ

(1)
− (t, x, λj) = bjψ

(2)
+ (t, x, λj),

where the constant is independent of t and x, see Subsection 2.1.3. Then, the relations (2.2.11)
imply that

ψ
(2)
− (t, x,−λj) = bjψ

(1)
+ (t, x,−λj), ψ

(2)
− (t, x, λ∗j) = −b∗jψ

(1)
+ (t, x, λ∗j)

and also
ψ

(1)
− (t, x,−λ∗j) = −b∗jψ

(2)
+ (t, x,−λ∗j).

In the case λj lies on the imaginary axis λj = iηj with ηj > 0, we particularly have λj = −λ∗j and
−λj = λ∗j . From which −b∗j = bj follows and therefore bj is as λj necessarily purely imaginary.

As for the NLS equation, these facts enable us to provide residue conditions which are essential
for the Riemann–Hilbert problem. We have

Res
λ=λj

( ψ̂(1)
−

a11

)
= Cje

2iΘ(t,x,λj)ψ̂
(2)
+ (t, x, λj), Res

λ=−λj

( ψ̂(2)
−

a22

)
= Cje

−2iΘ(t,x,−λj)ψ̂
(1)
+ (t, x,−λj),

Res
λ=λ∗j

( ψ̂(2)
−

a22

)
= C̄je

−2iΘ(t,x,λ∗j )ψ̂
(1)
+ (t, x, λ∗j), Res

λ=−λ∗j

( ψ̂(1)
−

a11

)
= C̄je

2iΘ(t,x,−λ∗j )ψ̂
(2)
+ (t, x,−λ∗j),

(2.2.12)
where the norming constant

Cj = bj

(da11

dλ

∣∣
λ=λj

)−1

(2.2.13)

is defined similarly to the one for the NLS equation (2.1.13). By this definition, we also have

C̄j = −b∗j
(da22

dλ

∣∣
λ=λ∗j

)−1

= −b∗j
(da∗11

dλ

∣∣
λ=λj

)−1

= −C∗j .

Definition 2.2.8. Let N ∈ N and suppose a11(λ) has only simple zeros in C+. Then, the
scattering data associated to the initial data θ0(x), θ1(x) is given by the reflection coefficient
ρ(λ) = a21(λ)/a11(λ), where ρ : R → C, the simple eigenvalues λ1, . . . , λN which are pairwise
distinct in C+ and the norming constants C1, . . . , CN as in (2.2.13). We write

S(θ0, θ1) = (ρ(λ; 0), {λj, Cj(0)}Nj=1).

Following the same ideas we motivated for the NLS equation, the time dependence of the
scattering data can be observed to be influenced by the phase for both the norming constant and
the reflection coefficient. Thus, the scattering data corresponding to the potential θ ∈ GN is in
general given by

S(θ) = (ρ(λ; 0)e−
i
2

(λ+ 1
λ

)t, {λj, Cj(0)e
− i

2
(λj+

1
λj

)t}Nj=1). (2.2.14)

2.2.4 Inverse scattering

As for the NLS equation, we want to establish the inverse scattering to recover the function θ
from the scattering data, which can be expressed as a mapping (ρ, {λj, Cj}Nj=1) 7→ θ. Therefore,
we define the sectionally meromorphic functions

M−(t, x, λ) = (ψ̂
(1)
+ , ψ̂

(2)
− /a22), M+(t, x, λ) = (ψ̂

(1)
− /a11, ψ̂

(2)
+ ),
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which are used to rewrite the relation (2.2.11) into

M+(t, x, λ) = M−(t, x, λ)(1 + J(t, x, λ)), (2.2.15)

where the jump matrix for the sG equation is given by

J(t, x, λ) =

(
|ρ(λ)|2 e−2iΘ(t,x,λ)ρ∗(λ)

e2iΘ(t,x,λ)ρ(λ) 0

)
.

Then, the Riemann–Hilbert problem for M(t, x, ·) is obtained with regard to the residue conditions
(2.2.12) and the jump condition (2.2.15) from the scattering data (2.2.14) and therefore we have a
method of recovering the solution θ(t, x) from the scattering data.

Riemann–Hilbert problem 2. For given scattering data (ρ, {λj, Cj}Nj=1) as well as t, x ∈ R,
find a 2× 2-matrix-valued function C \ R 3 λ 7→M(t, x, λ) satisfying

1. M(t, x, ·) is meromorphic in C \ R.

2. M(t, x, λ) = 1 +O(1/λ) as |λ| → ∞.

3. Non-tangential boundary values M±(t, x, λ) exist, satisfying the following jump condition
M+(t, x, λ) = M−(t, x, λ)(1 + J(t, x, λ)) for λ ∈ R.

4. M(t, x, λ) has simple poles at λj,−λ∗j ,−λj, λ∗j , j = 1, . . . , N , with

Res
λ=λj

M(t, x, λ) = lim
λ→λj

M(t, x, λ)

(
0 0

Cje
2iΘ(t,x,λj) 0

)
,

Res
λ=−λ∗j

M(t, x, λ) = lim
λ→−λ∗j

M(t, x, λ)

(
0 0

C̄je
2iΘ(t,x,−λ∗j ) 0

)
,

Res
λ=−λj

M(t, x, λ) = lim
λ→−λj

M(t, x, λ)

(
0 Cje

−2iΘ(t,x,−λj)

0 0

)
,

Res
λ=λ∗j

M(t, x, λ) = lim
λ→λ∗j

M(t, x, λ)

(
0 C̄je

−2iΘ(t,x,λ∗j )

0 0

)
.

Then, for the reconstruction formula we expand the solution M(t, x, ·) of the Riemann–Hilbert
problem 2 as

M(t, x, λ) = M0(t, x) + λM1(t, x) +O(λ2), as λ→ 0

in contrast to the asymptotic expansion for the NLS equation. Hence, if we set

M0(t, x) =

(
M11 M12

M21 M22

)
,

the solution of the sG equation can be reconstructed as in the following proposition.

Proposition 2.2.9 (Cheng, Venakides & Zhou, [13]). Assume that M(t, x, λ) is the solution of the
Riemann–Hilbert problem 2. Then, the solution θ(t, x) of the sG equation (2.2.1) can be expressed
as

cos θ = 1 + 2M12M21,

sin θ = −2iM21M22.
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Proof. The equality ψ̂x = − i
4
(λ − λ−1)[σ3, ψ̂] + Qψ̂ for the solution M of the Riemann–Hilbert

problem 2 gives

(M0)x + λ(M1)x +O(λ2) = − i
4
λ[σ3,M0 + λM1 +O(λ2)]

− i

4
(θt − θx)σ1(M0 + λM1 +O(λ2))

+
i

4
λ−1[σ3,M0 + λM1 +O(λ2)]

+
i

4
λ−1((cos θ − 1)σ3 + sin θσ2)(M0 + λM1 +O(λ2)).

Equating the coefficient of λ−1 to 0, we obtain

[σ3,M0] + ((cos θ − 1)σ3 + sin θσ2)M0 = 0,

which can be solved for ((cos θ − 1)σ3 + sin θσ2) through

cos θσ3 + sin θσ2 = M0σ3M
−1
0 .

Having detM0 = 1, the equality gives

cos θσ3 + sin θσ2 =

(
M11M22 +M12M21 −2M11M12

2M21M22 −M11M22 −M12M21

)
,

which proves the assertion.

In fact, this can also be retraced using the asymptotic expansions of the modified Jost functions
as |λ| → 0 in the equation (2.2.10) similar to the asymptotic behavior derived for the modified
Jost functions of the NLS equation.

Let us again emphasize the fact that the inverse scattering method for both the NLS and the
sG equation is, in general, a powerful framework not solely in order to construct solutions, but
also due to the simple time dependence and versatility of the scattering data. Therefore, the
three important concepts, we wanted to highlight in this section, are precisely the equivalence of
the respective PDE to the compatibility of the Lax system, the scattering data derived from the
spectrum and the eigenfunctions of the Lax pair and the correspondence of the scattering data to
parameters of solutions, in particular, for the solutions of the NLS equation. In the next chapter,
we present different methods in order to find solutions, which have other advantages themselves.
In particular, one can observe that two of the three highlighted concepts again emerge in these
methods [27]. As for the third concept, the connection of the scattering data to the parameters of
the solution, we see that it follows naturally, having the knowledge of the scattering data.



Chapter 3

Solution construction methods

Due to the importance of the PDEs introduced in the last section, the search for solutions has been
vividly carried out especially in the last century. As a result, besides the inverse scattering method
introduced in the last Sections 2.1 and 2.2, a diverse spectrum of methods has been discovered
which enables us to solve integrable nonlinear PDEs, which, in particular, are associated with the
AKNS system [1, 38], such as the NLS and sG equation. There are—just to mention a few—the
Hirota direct method, the Bäcklund transformation technique and the Dressing method, which is
somewhat equivalent to the Darboux transformation. Since, together with the inverse scattering
method, each of these methods is applied to the very same integrable nonlinear PDE to construct
a solution, one may think that they are all in some way equivalent.

In this chapter, we deal not only with the introduction of a certain subset of these methods,
but also with necessary comparisons and resemblances between them. Furthermore, this is the
foundation for the next chapter, where we introduce different models of the NLS and sG equation.
However, due to the fact that the presentation of more than two methods for the search of solutions
is in general not too commonly found in the literature, this chapter takes influences of quite a few
sources [5, 11, 14, 21, 27, 10, 32, 33, 34].

3.1 Classical Darboux transformation vs. Dressing method
vs. Bäcklund transformation

In the following, we want to present three additional methods, which can be used to find solutions
for the suggested integrable nonlinear PDEs, and show that under the relevant conditions they are
indeed equivalent as far as the construction of soliton solutions is concerned.

Therefore, let us first focus on the Bäcklund transformation technique [11, 34], which transforms
the problem into two first-order partial matrix differential equations (3.1.2) for a matrix B, which
is commonly known as a Darboux matrix, with respect to the Lax system.

3.1.1 Bäcklund transformation

Obtaining solutions for nonlinear partial differential equations is usually not as easy as it is
illustrated in Section 2.1 for the construction of a one-soliton solution for the NLS equation by
the inverse scattering method. In this section, we want to present the Bäcklund transformation
technique, which can be used to obtain new solutions from a known solution by solving a system

31
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of integrable PDEs. By defining

ψ̃(t, x, λ) = B(t, x, λ)ψ(t, x, λ), (3.1.1)

we consider analogous systems to the ones found in (2.1.2), (2.2.3):

ψ̃x = Ũ ψ̃,

ψ̃t = Ṽ ψ̃,

where Ũ , Ṽ are either Ũ , Ṽ with u replaced by ũ in the case of the NLS equation or Ũ, Ṽ with θ
replaced by θ̃ in the case of the sG equation. Simply taking the derivative in equation (3.1.1), we
require that the Darboux matrix B satisfies the following partial matrix differential equations for
any t and x,

Bx = ŨB −BU,
Bt = Ṽ B −BV.

(3.1.2)

In the case of the NLS equation with Ũ = Ũ and Ṽ = Ṽ , it can be found that if one restricts the
matrix B(t, x, λ) to be of the form

B(t, x, λ) = B(1)(t, x) +B(0)(t, x)λ−1, (3.1.3)

we actually have the following:

Proposition 3.1.1 (Caudrelier, [11]). Under the condition that B(t, x, λ) is of the form (3.1.3),
the Darboux matrix in the case of the NLS equation takes the explicit form

B(t, x, λ) = 1 +
1

2λ

(
α± i

√
β2 − |ũ− u|2 −i(ũ− u)

−i(ũ− u)∗ α∓ i
√
β2 − |ũ− u|2

)
, (3.1.4)

where α, β ∈ R are the t and x independent parameters of the transformation.

Similarly, it can be found that in the case of the sG equation with Ũ = Ũ and Ṽ = Ṽ, we have:

Proposition 3.1.2 (Caudrelier, [11]). Under the condition that B(t, x, λ) is of the form (3.1.3),
the Darboux matrix in the case of the sG equation takes the explicit form

B(t, x, λ) = 1± iα

λ

(
cos θ̃+θ

2
−i sin θ̃+θ

2

i sin θ̃+θ
2
− cos θ̃+θ

2

)
, (3.1.5)

where α ∈ R is the t and x independent parameter of the transformation.

Effectively, to implement this transformation one has to take two functions u and ũ or θ and θ̃.
One of these functions, say u or θ, has to be a solution of the underlying PDE. Based on these
functions, we construct two Lax pairs as we have demonstrated in the corresponding Sections 2.1
or rather 2.2. Now, if the matrix B(t, x, λ) is chosen as in one of the two Propositions 3.1.1 or
3.1.2 and satisfies (3.1.2), then it follows that the second function, ũ or θ̃, is also a solution of the
underlying PDE.

The proofs for these propositions involve a thorough analysis of the relations (3.1.2) individually
equated for each power with respect to λ. We give the proof of Proposition 3.1.1 as a demonstration:
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Proof. With the matrix B(t, x, λ) being of the form (3.1.3), we have that the x part of relation
(3.1.2) gives the following three equalities

0 = [B(1), σ3], (3.1.6)
B(1)
x = i[B(0), σ3] + Q̃B(1) − B(1)Q, (3.1.7)
B(0)
x = Q̃B(0) − B(0)Q (3.1.8)

as requirements for the powers λ1, λ0 and λ−1, respectively. Similarly, we derive from the t part of
relation (3.1.2) the following four equalities

0 = [B(1), σ3], (3.1.9)
0 = 2i[B(0), σ3] + 2Q̃B(1) − 2B(1)Q, (3.1.10)

B(1)
t = (Q̃1

∣∣
λ=0

)B(1) − B(1)(Q1

∣∣
λ=0

) + 2Q̃B(0) − 2B(0)Q, (3.1.11)

B(0)
t = (Q̃1

∣∣
λ=0

)B(0) − B(0)(Q1

∣∣
λ=0

) (3.1.12)

as requirements for the powers λ2, λ1, λ0 and λ−1, respectively. Equality (3.1.6) immediately
implies that the off-diagonal entries of B(1) are identically zero. Then by (3.1.7), we find that the
diagonal entries are independent of x. Further, if we take the limit |x| → ∞ in equation (3.1.11),
we obtain that B(1)

t ≡ 0, since the entries are independent of x. Subsequently, normalizing the
Darboux matrix B(t, x, λ) via multiplication by (B(1))−1 which is independent of t and x from
the left, we only need to determine the entries of the new matrix (B(1))−1B(0) which we continue
to denote simply as B(0) and therefore B(t, x, λ) = 1 + λ−1B(0). This freedom in normalization
stems from the fact that left multiplying of B(t, x, λ) by a matrix G−1 independent of t and x is
equivalent to transforming the Lax pair Ũ , Ṽ of the NLS equation as G−1ŨG, G−1ṼG. However,
the zero curvature condition is invariant under such transformations.

Therefore, denote

B(0) =

(
b1 b2

b3 b4

)
and α1, α2 its eigenvalues, which proves helpful in recovering the diagonal entries. First off, we
obtain from equation (3.1.7) that the off-diagonal entries can be expressed by b2 = −i/2(ũ− u)
and b3 = −i/2(ũ− u)∗. Then, if we compare the coefficients of the characteristic polynomial of
B(0), we find

detB(0) = α1α2, TrB(0) = α1 + α2,

from which it is possible to determine b1 and b2. Therefore, we have

b1 =
1

2

(
β1 ± i

√
(iβ2)2 − |ũ− u|2

)
, b4 =

1

2

(
β1 ∓ i

√
(iβ2)2 − |ũ− u|2

)
,

where β1 = α1 + α2 and β2 = α1 − α2. To conclude, we still need to prove that β1 and β2 are
independent of t and x and particularly β1 ∈ R as well as β2 ∈ iR. For that let us first show that
f(t, x, λ) = detB(t, x, λ) and g(t, x, λ) = TrB(t, x, λ) are independent of t and x:

fx(t, x, λ) = detB(t, x, λ) Tr
(
B−1(t, x, λ)

dB
dx

(t, x, λ)
)

by the Jacobi’s formula and with the x part of (3.1.2) and the properties of the trace, we obtain

= detB(t, x, λ) Tr(Ũ − U) = 0
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due to Ũ and U being traceless. This can be analogously repeated for ft(t, x, λ), where the
tracelessness of Ṽ and V provides the independence of t. Since the trace is linear, we find for
g(t, x, λ) that

gx(t, x, λ) = Tr(B(t, x, λ)(Ũ − U))

= λ−1 Tr(B(0)(t, x)(Ũ − U)),

where equation (3.1.7) can be used to derive

= iλ−1 Tr(B(0)(t, x)[σ3,B(0)(t, x)]) = 0.

As before, this result can be utilized, taking the limit |x| → ∞, to obtain gt(t, x, λ) = Tr(B(t, x, λ) ·
(Ṽ − V)) = 0, since we already know that g(t, x, λ) is independent of x and Ṽ − V goes to zero
as |x| → ∞. Further, we have that the symmetry relation (2.1.4) together with the system
(3.1.2) implies that the Darboux matrix satisfies B(t, x, λ) = σ2(B(t, x, λ∗))∗σ2 and therefore the
eigenvalue problem boils down to either αj = α∗j , j = 1, 2, implying αj ∈ R or α1 = α∗2. In
the first case α ..= β1 = α1 + α2 ∈ R and β ..= β2 = α1 − α2 = 0 ∈ iR; in the second case
α = α1 + α2 = 2 Reα1 ∈ R and β = α1 − α2 = 2i Imα1 ∈ iR.

The proof for Proposition 3.1.2 can be repeated analogously to this proof, especially, considering
light-cone coordinates instead of laboratory coordinates. For a large class of integrable PDEs which
can be formulated in a specific Lax pair which satisfies similar properties as the Lax pair of the NLS
equation, this theory has been proven more general in [11]. In particular, both Darboux matrices
for the NLS equation and the sG equation (in laboratory coordinates) can be found therein.

Nevertheless, the point of this method is to construct a solution ũ of the PDE corresponding
to the Lax pair Ũ , Ṽ from the solution u of the PDE corresponding to the Lax pair U , V. At
first glance, it is not obvious that the system (3.1.2) with either the Darboux matrix for the NLS
equation (3.1.4) or the sG equation (3.1.5) provides the means to achieve this. In [5], it has been
shown how to rewrite the relevant equations of the partial matrix differential equations (3.1.2)
into a linear system of ordinary differential equations in the case of the NLS equation. Later
on, when we mention relations with respect to the solutions u and ũ or rather θ and θ̃, which
correspond to the relations (3.1.2), we show how to obtain a transformed solution explicitly. For
now, however, we have a different goal in mind: We want to present the Bäcklund transformation
technique in the course of introducing the classical Darboux transformation or rather the Dressing
method. Therefore, we give a simple example on how the Bäcklund transformation can actually be
applied through the computation of an ordinary differential equation. On top of that, we indicate
similarities in the presented methods as suggested in the introduction of this chapter. Hence, in
the next subsection, we mainly deal with one of the other methods to implement new solutions for
integrable nonlinear PDEs: the Dressing method. We base this presentation on [14, 32, 33].

3.1.2 (Classical) Darboux transformations vs. Dressing method

The common example introducing the classical Darboux transformation discovered by G. Darboux
[16] is related to the one-dimensional, time independent Schrödinger equation

yxx(x, λ) + (λ2 − q(x))y(x, λ) = 0, (3.1.13)

where the potential q is assumed to be real and vanishing sufficiently fast as |x| → ∞. One should
think of q as a substitute for the potential u or θ. Analogous to the direct scattering, we introduce
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the (time independent) Jost functions

y±(x, λ) ∼ e±iλx, as x→∞.

If we take a real parameter p and an arbitrary constant κ, a solution of equation (3.1.13) is given
by

f(x) = y−(x, ip) + κy+(x, ip), (3.1.14)

which is derived from the fundamental solution and is commonly known as the intermediate wave
function. Then, Darboux showed that there is a mapping from the pair {q(x), y(x, λ)} to a new
pair {q̃(x), ỹ(x, λ)} satisfying equation (3.1.13).

Theorem 3.1.3 (Darboux). Let f = f(x) be a particular solution of equation (3.1.13) for the
value of the parameter p and σ = fxf

−1. Consider the Darboux operator

D =
−i

λ+ ip
(∂x − σ).

Given a pair {q(x), y(x, λ)} satisfying equation (3.1.13), a new pair {q̃(x), ỹ(x, λ)} also satisfying
the equation can be found by the definitions

q̃(x) = q(x)− 2σx, (3.1.15)
ỹ(x, λ) = Dy(x, λ).

Proof. Inserting ỹ(x, λ) and q̃(x) into the left hand side of equation (3.1.13), omitting for the
moment the dependencies and the quotient −i/(λ+ ip) which arises in each term, leads to

ỹxx + (λ2 − q̃)ỹ = yxxx − (σy)xx + (λ2 − q + 2σx)(yx − σy)

and after using the equation (3.1.13) for yxxx and yxx to cancel out terms

= y(qx − σxx − 2σxσ) = 0,

where it can be shown with similar arguments that the bracket is zero, thereby providing a solution
ỹ(x, λ) to equation (3.1.13) with the potential q̃(x).

Based on the definition for the new potential q̃(x), we can derive the corresponding Bäcklund
transformation. Identifying

σx(x) =
(fx(x)

f(x)

)
x

=
fxx(x)f(x)− f 2

x(x)

f 2(x)
= q(x) + p2 − σ2(x),

we have by the definition of the potential (3.1.15) the following

q̃(x) + q(x) + 2p2 = 2σ2(x).

Therefore, 2σ(x) =
√

2(q̃(x) + q(x) + 2p2) and by differentiating this equality with respect to x
inserting again the definition of the new potential as σx(x) = 1

2
(q(x) − q̃(x)), we obtain after

reordering of the terms

q̃x(x) + qx(x) = (q(x)− q̃(x))
√

2(q̃(x) + q(x) + 2p2). (3.1.16)
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Introducing the new fields

w̃(x) =

∫ ∞
x

q̃(y) dy, w(x) =

∫ ∞
x

q(y) dy and due to lim
x→∞

σ(x) = p,

we obtain the commonly known standard Bäcklund transformation for the Korteweg–de Vries
equation, thereby taking the form

w̃x(x) + wx(x) =
1

2
(w(x)− w̃(x))(w̃(x)− w(x) + 4p).

Further, equation (3.1.13) can be cast in matrix form as

Yx(x, λ) =

(
iλ q(x)
1 −iλ

)
Y (x, λ), (3.1.17)

where we say that the fundamental solution is given by

Y (x, λ) =

(
Y11(x, λ) Y12(x, λ)
Y21(x, λ) Y22(x, λ)

)
=

(
(y+)x(x, λ) + iλy+(x, λ) (y−)x(x, λ) + iλy−(x, λ)

y+(x, λ) y−(x, λ)

)
.

(3.1.18)
Therefore, the Darboux transformation described through Theorem 3.1.3 written in terms of matrix
solutions Y (x, λ) and Ỹ (x, λ) of the spectral problem (3.1.17), where the potentials are given by
q(x) and q̃(x), respectively, becomes

Ỹ (x, λ) = DY (x, λ),

where D is a 2×2 matrix commonly known as a Darboux matrix. In particular, the correspondence
to the matrix in Subsection 3.1.1 is not surprising, since the definition Ỹ (x, λ) = DY (x, λ) resembles
the one we assumed in (3.1.1). Moreover, the derivatives are eliminated and only a pure matrix
multiplication is applied with D taking the form

D =
−i

λ+ ip

(
iλ− σ σ2 − p2

1 −iλ− σ

)
.

The Darboux matrix D is nonsingular for λ 6= ±iλ1 and we note that for our purposes it takes the
convenient form

D =
(
1− 2ip

λ+ ip
P (x)

)
σ3, P (x) =

1

2

(
1− σ

p
p− σ2

p
1
p

1 + σ
p

)
,

where P is a 2 × 2 projection matrix, i.e. P 2 = P , which can be calculated by hand with the
expressions we already mentioned in this subsection.

With the fundamental solution (3.1.18), we can introduce two particular solutions of equation
(3.1.17) at ip and −ip obtained through

F (x) = Y (1)(x, ip) + κY (2)(x, ip), G(x) = Y (1)(x,−ip) + κ̄Y (2)(x,−ip).

Expressing the entries of F (x) = (F1(x), F2(x))ᵀ in terms of the intermediate wave function f(x),
we have F1(x) = fx(x)−pf(x) and F2(x) = f(x). Then, to be able to write G(x) = (G1(x), G2(x))ᵀ

in terms of the intermediate wave function, we need to demand that κ̄ = κ such that the relation
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y+(x,−ip) = y−(x, ip) gives the appropriate coefficients for the entries of G(x) in order to obtain
G1(x) = fx(x) + pf(x) and G2(x) = f(x). Taking the quotients

∆(x) = −F2(x)

F1(x)
= −(σ − p)−1, ∆̃(x) =

G1(x)

G2(x)
= (σ + p),

the projector matrix can be written as

P (x) =
1

1 + ∆(x)∆̃(x)

(
1 ∆̃(x)

∆(x) ∆(x)∆̃(x)

)
.

Ultimately, this enables us to obtain the new potential through

q̃(x) = q(x)− 2∆̃x(x) (3.1.19)

via what is called the Dressing method.

Example 3.1.4. Given the initial potential q(x) ≡ 0 and the parameter p = 0, the three equivalent
methods (3.1.15), (3.1.16) and (3.1.19) can be used to derive the new potential q̃(x) = 2(x+ c)2.

(i) For the Darboux transformation, we find that the intermediate wave function needs to be zero
when differentiated twice with respect to x. Hence, f(x) = c1 + c2x and this leads to the result
using (3.1.15) when defining c = c1/c2.

(ii) For the Bäcklund transformation inserting the assumptions into (3.1.16), we obtain the first-
order nonlinear ordinary differential equation q̃x(x) = −

√
2q̃3(x), which can be solved to obtain the

same new potential, where the constant c comes from integrating.

(iii) For the Dressing method, the intermediate wave function from (i) also gives the expression of
∆(x) and therefore with (3.1.19) the same result.

Hence, we have shown with this simple application that the two methods, the Darboux
transformation and the Dressing method, are actually the same in the context of the one-dimensional,
time independent Schrödinger equation (3.1.13), since the Darboux matrix D is just the Darboux
operator D in matrix form. While we established this result, we also connected these methods to
the Bäcklund transformation technique presented in the last subsection.

However, this consideration is only a representative introduction into the idea of the equivalence
of these methods. The next step is therefore to apply a similar reasoning for the methods applied
to the AKNS systems of the NLS and sG equation for which these circumstances are by no means
that obvious. The presentation of the Dressing method for Lax systems follows primarily [21, 27],
where in the case of the sG equation additional information [10] is necessary in order to give the
complete picture in laboratory coordinates.

3.2 Dressing method for the Lax systems of the NLS and sG
equation

Based on the last section, it is reasonable to think of the Dressing method as an extension of the
Darboux transformation if it can be applied and when it comes to the construction of soliton
solutions for any nonlinear PDE the expressions are usually used tantamount. In particular, it
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is the goal of this section to develop this very theory of constructing soliton solutions with the
Darboux transformation for both the NLS and the sG equation.

As we worked out for the linear Schrödinger equation, first off we want to introduce the
fundamental solution of the matrix equations (2.1.2). Therefore, the fundamental solution given
by the composition of two linearly independent column solutions of the Lax system is

Y (t, x, λ) = (ψ
(1)
− , ψ

(2)
+ ) =

(
[ψ−]11 [ψ+]12

[ψ−]21 [ψ+]22

)
.

Since the vectors ψ(1)
− and ψ(2)

+ are initially taken as column vectors from the 2× 2-matrices ψ−
and ψ+, the notation above makes sense. Now, we want to introduce the function related to the
intermediate wave function (3.1.14) regarding the Dressing method for the AKNS systems. For
that, we take two complex numbers λ1 and λ∗1 which belong to the upper and lower half-plane
of the complex λ-plane, respectively; in particular, λ1, λ

∗
1 /∈ R. Further, let u0, v0 be arbitrary

constants so that a solution at λ = λ1 is given by

ψ1(t, x) = u0ψ
(1)
− (t, x, λ1) + v0ψ

(2)
+ (t, x, λ1). (3.2.1)

In fact, given this column solution of the initial Lax system at λ = λ1, we take the intermediate
wave function to be ∆(t, x) = [ψ1]2/[ψ1]1 in order to write D[1], the one-fold dressing matrix, in
the following form

D[1] = 1 +
λ∗1 − λ1

λ− λ∗1
P [1], P [1] =

1

1 + |∆(t, x)|2

(
1 ∆∗(t, x)

∆(t, x) |∆(t, x)|2
)
, (3.2.2)

where P [1](t, x) is a projector matrix depending on ψ1(t, x). Then as before, assume that we are
given a pair of solutions u[0] or θ[0] and ψ[0] of the so-called undressed Lax system of the NLS
equation (2.1.2) or the sG equation (2.2.3). This should remind of the given pair q and Y in the
context of the time independent Schrödinger equation. However, due to possibilities of iteration
in the Dressing method for AKNS systems, we denote the transformation instead of {q, Y } to
{q̃, Ỹ } by {u[0], ψ[0]} to {u[1], ψ[1]} or rather {θ[0], ψ[0]} to {θ[1], ψ[1]}. Further, note that we
reasonably use the Lax pairs U [0], V [0] and U [1], V [1] instead of u[0] and u[1] or rather U[0], V[0]
and U[1], V[1] instead of θ[0] and θ[1]. The solutions u[0] and θ[0] associated with the undressed
Lax system are commonly called seed solutions. Consequently, the gauge-like transformation

ψ[1] = D[1]ψ[0]

introduces a new solution of the Lax system

ψ[1]x = U [1]ψ[1],

ψ[1]t = V [1]ψ[1]

with the corresponding Lax pair U [1], V [1]. Moreover, the Lax pairs U [0], V [0] and U [1], V [1] are
required to be structurally identical with updated potentials u[1] for the NLS equation and θ[1]
for the sG equation. Particularly, this condition implies that the one-fold dressing matrix D[1],
similar to the Darboux matrix in (3.1.2), satisfies

D[1]x = U [1]D[1]−D[1]U [0],

D[1]t = V [1]D[1]−D[1]V [0].
(3.2.3)
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Therefore, we should have all the necessary information to introduce the new pair of solutions
from the given pair as in Theorem 3.1.3. Indeed, the last step is to calculate or rather verify the
existing reconstruction formulae for the new solutions u[1] and θ[1]. Even though, the idea is that
this method can be iterated, we treat at first only the one-fold dressing matrix in the case of the
NLS equation:

Proposition 3.2.1. Let ψ1 = ψ1(t, x) be a particular solution of the undressed Lax system (2.1.2)
corresponding to the seed solution u[0](t, x) for the NLS equation at the spectral parameter λ = λ1

and D[1] be the one-fold dressing matrix (3.2.2). Now, given a solution ψ[0](t, x, λ) to the undressed
Lax system, a new pair satisfying the Lax system with updated Lax pair U [1] and V [1] associated to
the new solution u[1](t, x) can be found by

Q[1](t, x) = Q[0](t, x)− i(λ1 − λ∗1)[σ3, P [1]],

ψ[1](t, x, λ) = D[1](t, x, λ)ψ[0](t, x, λ).
(3.2.4)

A similar summary as for the Bäcklund transformation can be given. The idea of the Dressing
method for the NLS equation consists of the following: Given a seed solution u[0] of the NLS
equation, we construct the Lax pair U [0], V[0]. Furthermore, we take the general solution ψ[0]
of the resulting Lax system consisting of ψ[0]x = U [0]ψ[0] and ψ[0]t = V[0]ψ[0]. Additionally,
define ψ1 as in (3.2.1) and subsequently P [1] as well as D[1] as in (3.2.2). Then, let ψ[1](t, x, λ) =
D[1](t, x, λ)ψ[0](t, x, λ). With the definition

Q[0](t, x) =

(
0 u[0]

−u[0]∗ 0

)
,

adapted from Section 2.1, it follows that(
0 u[1]

−u[1]∗ 0

)
= Q[1](t, x) = Q[0](t, x)− i(λ1 − λ∗1)[σ3, P [1]]

contains a new solution u[1] to the NLS equation, from which a Lax pair U [1], V[1] may be
constructed.

To prove this statement, we need to show that the definitions (3.2.4) are indeed enough to
prove that the one-fold dressing matrix satisfies relations (3.2.3). Therefore, we give an equivalent
expression [27] for the one-fold dressing matrix

D[1](t, x, λ) =
1

λ− λ∗1
(λ1− S(t, x)), (3.2.5)

where it can be shown that the matrix S(t, x) can be written as the product S(t, x) = HΛH−1,
where Λ is given as a diagonal matrix with entries λ1, λ∗1 and H(t, x) consists of the column vectors
ψ1(t, x), ϕ1(t, x) = −iσ2ψ

∗
1(t, x). It should be noted that due to the symmetry relation given

in Lemma 2.1.2, −iσ2ψ
∗
1(t, x) is in fact a solution of the Lax system at the spectral parameter

λ = λ∗1. Expressing D[1](t, x, λ) in this manner simplifies the calculations in the proof substantially.
However before proving Proposition 3.2.1, let us mention some useful properties we can derive
from equality (3.2.5):

Lemma 3.2.2. Let ψ1 = ψ1(t, x) be a particular solution of the undressed Lax system (2.1.2)
corresponding to the seed solution u[0](t, x) for the NLS equation at the spectral parameter λ = λ1
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and D[1] be the one-fold dressing matrix (3.2.2). Then,

D[1]−1 =
1

λ− λ1

(λ1− S†), (3.2.6)

Sx = −i[σ3, S]S + [Q[0], S], (3.2.7)

St = −2i[σ3, S]S2 + 2[Q[0], S]S + [V [0]
∣∣
λ=0

, S], (3.2.8)

1 =
λ21− λ(S + S†) + SS†

(λ− λ∗1)(λ− λ1)
. (3.2.9)

In particular, we have det(D[1]) = λ−λ1
λ−λ∗1

independent of t and x as well as

S† = HΛ∗H−1 and S−1 = HΛ−1H−1. (3.2.10)

Proof. First off, equations (3.2.10) can be easily calculated

S† = (HΛH−1)† = (H†)−1Λ†H† = HΛ∗H−1,

where H† = H−1 det(H) and Λ† = diag(λ∗1, λ1) = Λ∗ as well as

S−1 = (HΛH−1)−1 = HΛ−1H−1.

Then, the identity (3.2.9) is implied, due to

S + S† = H(Λ + Λ∗)H−1 = H(λ1 + λ∗1)1H−1 = (λ1 + λ∗1)1,

SS† = HΛH−1HΛ∗H−1 = H|λ1|21H−1 = |λ1|21.

The multiplication of the matrix D[1]−1 defined in (3.2.6) with D[1] as defined in (3.2.5) leads
exactly to the right hand side of (3.2.9), thereby proving that D[1]−1 is indeed the inverse of D[1].
For the derivatives of S with respect to t and x it is useful to consider the respective derivative of
H first, since

St = HtΛH
−1 −HΛH−1HtH

−1 = HtH
−1HΛH−1 −HΛH−1HtH

−1 = [HtH
−1, S]

and the same for the x derivative. In particular, since the column entries of H are solutions of the
Lax system (2.1.2) for λ = λ1 and λ = λ∗1, we obtain the following

Ht = ((ψ1)t, (ϕ1)t)

= ((−2iλ2
1σ3 + 2λ1Q[0] + V [0]

∣∣
λ=0

)ψ1, (−2i(λ∗1)2σ3 + 2λ∗1Q[0] + V [0]
∣∣
λ=0

)ϕ1)

= −2iσ3HΛ2 + 2Q[0]HΛ + V [0]
∣∣
λ=0

H.

Therefore, equation (3.2.8) follows with HtH
−1 = −2iσ3S

2 + 2Q[0]S + V [0]
∣∣
λ=0

. Further, we have

Hx = ((ψ1)x, (ϕ1)x)

= ((−iλ1σ3 +Q[0])ψ1, (−iλ∗1σ3 +Q[0])ϕ1)

= −iσ3HΛ + 2Q[0]H
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and therefore, we find HxH
−1 = −iσ3S +Q[0] and also (3.2.7). Finally,

det(D[1]) = det
(
1 +

λ∗1 − λ1

λ− λ∗1
1

1 + |∆|2

(
1 ∆∗

∆ |∆|2
))

=
(1 + |∆|2)−2

(λ− λ∗1)2
det

(
(λ− λ1) + (λ− λ∗1)|∆|2 (λ∗1 − λ1)∆∗

(λ∗1 − λ1)∆ (λ− λ∗1) + (λ− λ1)|∆|2
)

=
(1 + |∆|2)−2

(λ− λ∗1)2
(λ− λ∗1)(λ− λ1)(1 + |∆|2)2

=
λ− λ1

λ− λ∗1
,

where we only give the important steps.

Note that most properties shown in Lemma 3.2.2 hold in theory not only for the NLS equation,
but also among others for the sG equation, except for the equalities (3.2.7) and (3.2.8), where the
Lax system of the specific equation needs to be utilized.

With that, we can give a comprehensible proof to Proposition 3.2.1:

Proof. By relations (3.2.3), we find

U [1] = D[1]xD[1]−1 +D[1]U [0]D[1]−1

and by Lemma 3.2.2, this is equal to

=
1

(λ− λ∗1)(λ− λ1)
(−iλ3σ3 + iλ2σ3S

† + λ2Q[0] + iλ2Sσ3

− λSx − λQ[0]S† − iλSσ3S
† − λSQ[0] + SxS

† + SQ[0]S†).
(3.2.11)

Here, the trick to structure the terms in the brackets of (3.2.11) is to sort them by powers of λ
and to identify the important terms utilizing identity (3.2.9) so that we can be write the terms as

(−iλσ3 +Q[0] + i[S, σ3])(λ21− λ(S + S†) + SS†).

Hence, by the identity and noting that S = λ∗11 − (λ∗1 − λ1)P [1], the definition (3.2.4) gives
U [1] = −iλσ3 +Q[1].

Further, we have for the t part of the relations (3.2.3) the following

V [1] = D[1]tD[1]−1 +D[1]V [0]D[1]−1

and by Lemma 3.2.2, this is equal to

=
1

(λ− λ∗1)(λ− λ1)
(−2iλ4σ3 + 2iλ3σ3S

† + 2λ3Q[0] + 2iλ3Sσ3

− 2λ2Q[0]S† + λ2V [0]
∣∣
λ=0
− 2iλ2Sσ3S

† − 2λ2SQ[0]

− λSt − λV [0]
∣∣
λ=0

S† + 2λSQ[0]S† − λSV [0]
∣∣
λ=0

+ StS
† + SV [0]

∣∣
λ=0

S†).
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This leads after a lengthy calculation with the same ideas as for the x part to

V [1] = −2iσ3λ
2 + 2λ(Q[0] + i[S, σ3]) + (V [0]

∣∣
λ=0
− 2[S,Q[0]] + 2i[S, σ3]S).

Due to the definition of Q[1], we see that the coefficient of λ is indeed 2Q[1]. The coefficient of
zero-th power needs to be verified explicitly. With the definition (3.2.4), we obtain

V [1]
∣∣
λ=0

= iσ3(Q[1]x − (Q[1])2)

= σ3(iQ[0]x − [Sx, σ3]− i(Q[0])2 +Q[0][S, σ3] + [S, σ3]Q[0] + i[S, σ3][S, σ3]).

Noting that V [0]
∣∣
λ=0

= iσ3(Q[0]x− (Q[0])2), we need to prove that the remaining terms of V [1]
∣∣
λ=0

are equal to the remaining terms of the 0-th power coefficient: Combining the first term of
−σ3[Sx, σ3], when we insert Sx, see (3.2.7), with i[S, σ3][S, σ3], we obtain

iσ3([[σ3, S]S, σ3] + [S, σ3][S, σ3]) = 2iσ3(σ3Sσ3S − SS) = 2i[S, σ3]S

and combining the remaining term of −σ3[Sx, σ3] with Q[0][S, σ3] + [S, σ3]Q[0], we derive

σ3(−[[Q[0], S], σ3] +Q[0][S, σ3] + [S, σ3]Q[0]) = 2(Q[0]S − SQ[0]) = −2[S,Q[0]],

where we use the fact that for the off-diagonal matrix Q[0] the following equality σ3Q[0] = −Q[0]σ3

holds.

It is worth noting that the method of constructing a new pair of solutions by Proposition 3.2.1
is indeed—analogous to Theorem 3.1.3—only relying on the intermediate wave function and not
as relations (3.2.3) might suggest on the solutions U [1], V[1] and therefore on u[1] which is not
known in the beginning.

Since Proposition 3.2.1 holds for an arbitrary seed solution u[0](t, x), the method can be iterated
with distinct spectral parameters λ = λj, j = 1 . . . N , such that λj 6= λ∗k, j, k = 1, . . . , N . As a
consequence, the N column solutions ψj(t, x) of the undressed Lax system (2.1.2) corresponding
to λ = λj are linearly independent. After the first iteration the updated particular solution which
is necessary to apply Proposition 3.2.1 is given by ψ2[1] = D[1]

∣∣
λ=λ2

ψ2 and so on. Therefore, the
N-fold dressing matrix D[N ] is given by the iteration of D[1] in the following sense

D[N ] =
(
1 +

λ∗N − λN
λ− λ∗N

P [N ]
)
· · ·
(
1 +

λ∗1 − λ1

λ− λ∗1
P [1]

)
, (3.2.12)

where P [j] are projector matrices defined by

P [j] =
ψj[j − 1]ψ†j [j − 1]

ψ†j [j − 1]ψj[j − 1]
, ψj[j − 1] = D[j − 1]

∣∣
λ=λj

ψj. (3.2.13)

To summarize, we then have

Proposition 3.2.3 (Gu, Hu & Zhou, [27]). Let ψj = ψj(t, x), j = 1, . . . , N , be particular solutions
of the undressed Lax system (2.1.2) corresponding to the seed solution u[0](t, x) for the NLS equation
at pairwise distinct spectral parameters λ = λj and D[N ] be the dressing matrix (3.2.12). Now,
given a solution ψ[0](t, x, λ) to the undressed Lax system (2.1.2), a new pair satisfying the Lax
system with updated Lax pair U [N ] and V [N ] associated to the new solution u[N ](t, x) can be found
by

Q[N ](t, x) = Q[0](t, x)− i
N∑
j=1

(λj − λ∗j)[σ3, P [j]],

ψ[N ](t, x, λ) = D[N ](t, x, λ)ψ[0](t, x, λ).

(3.2.14)
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In particular, the pairwise distinct spectral parameters λj and therefore the linear independence
of the solutions ψj ensuress that ψj[j − 1] = D[j − 1]

∣∣
λ=λj

ψj is not zero, j = 1, . . . , N . As before,
the spectral analogue of (3.2.14) is given by

D[N ]x = U [N ]D[N ]−D[N ]U [0],

D[N ]t = V [N ]D[N ]−D[N ]V [0]
(3.2.15)

and connects the undressed Lax system with the following Lax system

ψ[N ]x = U [N ]ψ[N ],

ψ[N ]t = V [N ]ψ[N ].

Once again, this method can also be applied to the sG equation, see [10, 21, 43], where we waive
the application of the one-fold dressing matrix and immediately state the proposition in terms of
an N -fold dressing matrix.

Proposition 3.2.4. Let ψj = ψj(t, x), j = 1, . . . , N , be particular solutions of the undressed
Lax system (2.2.3) corresponding to the seed solution θ[0](t, x) ≡ 0 of the sG equation at spectral
parameters λ = λj and D[N ] be the corresponding N-fold dressing matrix (3.2.12). Now, given a
solution ψ[0](t, x, λ) of the undressed Lax system (2.2.3), a new pair satisfying the Lax system with
updated Lax pair U[N ] and V[N ] associated to the new solution θ[N ] can be found by

ei
θ[N ]
2
σ1 = D[N ]

∣∣
λ=0

σNs3 ,

ψ[N ](t, x, λ) = D[N ](t, x, λ)ψ[0](t, x, λ).
(3.2.16)

Proof. We follow the ideas given in the proof in [10]. For θ[0](t, x) ≡ 0, we have U[0] = −i(λ−
λ−1)/4σ3 and V[0] = i(λ+ λ−1)/4σ3. By (3.2.16), we therefore obtain

(ψ[N ])x(ψ[N ])−1 = D[N ]xD[N ]−1 − i(λ− λ−1)

4
D[N ]σ3D[N ]−1,

(ψ[N ])t(ψ[N ])−1 = D[N ]tD[N ]−1 +
i(λ+ λ−1)

4
D[N ]σ3D[N ]−1.

Now, if we expand D[N ] in the limit of |λ| → ∞:

D[N ](t, x, λ) = 1 + λ−1Σ(t, x) +O(λ−2),

we can derive the limit behavior of (ψ[N ])x(ψ[N ])−1. We have

(ψ[N ])x(ψ[N ])−1
∣∣
λ=0

=
i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
+D[N ]x

∣∣
λ=0

(
D[N ]

∣∣
λ=0

)−1 (3.2.17)

as |λ| → 0 and

(ψ[N ])x(ψ[N ])−1 = −iλ
4
σ3 −

i

4
[Σ(t, x), σ3] +O(λ−1) as |λ| → ∞.

Therefore, the difference

(ψ[N ])x(ψ[N ])−1 −
(
−iλ

4
σ3 −

i

4
[Σ(t, x), σ3] +

i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
)
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is constructed to be analytic in the whole complex λ-plane. Further taking the limit |λ| → ∞, we
have that the difference is zero and therefore by Liouville’s theorem it is equal to zero for all λ.
Repeating the same steps for the t part, we obtain

(ψ[N ])x(ψ[N ])−1 = −iλ
4
σ3 −

i

4
[Σ(t, x), σ3] +

i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
,

(ψ[N ])t(ψ[N ])−1 =
iλ

4
σ3 +

i

4
[Σ(t, x), σ3] +

i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1

so that subtracting the first line from the second results in

(ψ[N ])t(ψ[N ])−1 − (ψ[N ])x(ψ[N ])−1 =
iλ

2
σ3 +

i

2
[Σ(t, x), σ3]. (3.2.18)

Again, taking the limit |λ| → 0 and using equation (3.2.17) and the corresponding equation of the
t part, we ultimately derive

(D[N ]t
∣∣
λ=0
−D[N ]x

∣∣
λ=0

)
(
D[N ]

∣∣
λ=0

)−1
=
i

2
[Σ(t, x), σ3].

Therefore, this enables us to give an expression of U[N ] and V[N ] only relying on the dressing
matrix evaluated at λ = 0:

U[N ] = (ψ[N ])x(ψ[N ])−1 = −iλ
4
σ3 −

1

2
(D[N ]t

∣∣
λ=0
−D[N ]x

∣∣
λ=0

)
(
D[N ]

∣∣
λ=0

)−1

+
i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
,

V[N ] = (ψ[N ])t(ψ[N ])−1 =
iλ

4
σ3 +

1

2
(D[N ]t

∣∣
λ=0
−D[N ]x

∣∣
λ=0

)
(
D[N ]

∣∣
λ=0

)−1

+
i

4λ
D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
.

Assuming that U[N ] and V[N ] are of the same form as the Lax pair (2.2.2) for the sG equation,
we have that the following equalities should hold

i

2
(θ[N ]t − θ[N ]x)σ1 = (D[N ]t

∣∣
λ=0
−D[N ]x

∣∣
λ=0

)
(
D[N ]

∣∣
λ=0

)−1
, (3.2.19)

ei
θ[N ]
2
σ1σ3e

−i θ[N ]
2
σ1 = D[N ]

∣∣
λ=0

σ3

(
D[N ]

∣∣
λ=0

)−1
, (3.2.20)

where we use that the matrix coefficient of λ−1 in U[N ] can be written in the form ei
θ[N ]
2
σ1σ3e

−i θ[N ]
2
σ1 .

Equation (3.2.20) implies, while keeping track of the determinants of both sides, that necessarily

ei
θ[N ]
2
σ1 = D[N ]

∣∣
λ=0

σNs3 , (3.2.21)

where det(D[N ]) = (−1)N = (−1)Ns . Then, inserting this into equation (3.2.19), we see that
(3.2.21) is, in fact, sufficient to uphold both equalities, which concludes the proof.

There are several important properties of the dressing matrix. Since it has been studied
thoroughly, the literature on the method is extensive. In the following, we want to mention some of
these results in order to convey a better understanding of the transformation. First, let us comment
once more on why we imposed that the spectral parameters λ1, . . . , λN , λj 6= λ∗k, j, k = 1, . . . , N ,
have to be pairwise distinct.
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Proposition 3.2.5. Under the condition that the spectral parameters λ1, . . . , λN and λ∗1, . . . , λ∗N
are distinct as well as in the complex plane without the real line, i.e. C \ R, we have that the
corresponding solutions of the Lax system (2.1.2) of the NLS equation are linearly independent.

Proof. We prove this by contradiction. Therefore, assume that the solutions ψ1, . . . , ψN and
ϕ1, . . . , ϕN corresponding to the spectral parameters λ1, . . . , λN and λ∗1, . . . , λ∗N are linearly depen-
dent. Hence, we have that there exist 2N − 1 constants c1, . . . , c2N−1 so that ψ1 can be written as
a linear combination

ψ1 =
N∑
j=1

c2j−1ϕj +
N∑
j=2

c2j−2ψj. (3.2.22)

By the x part of the Lax system (2.1.2), we can write the x derivative of ψ1 in two ways:

(−iλ1σ3 +Q)ψ1 =
N∑
j=1

c2j−1(−iλ∗jσ3 +Q)ϕj +
N∑
j=2

c2j−2(−iλjσ3 +Q)ψj.

For the term involving the matrix Q multiplied with the solutions, we obtain equality on both
sides and inserting an additive zero, we find that for the remaining terms

−iλ1σ3ψ1 = −iλ∗Nσ3

( N∑
j=1

c2j−1ϕj+
N∑
j=2

c2j−2ψj

)
+i

N−1∑
j=1

(λ∗N−λ∗j)c2j−1ϕj+
N∑
j=2

c2j−2(λ∗N−λj)ψj.

In particular, the linear combination (3.2.22) implies that

iσ3

(
(λ1 − λ∗N)ψ1 +

N−1∑
j=1

(λ∗N − λ∗j)c2j−1ϕj +
N∑
j=2

c2j−2(λ∗N − λj)ψj
)

= 0.

Then, by assumption λ1, . . . , λN , λ
∗
1, . . . , λ

∗
N are distinct and because of that it is possible to write

ψ1 as a linear combination of only ψ2, . . . , ψN , ϕ1, . . . , ϕN−1. Repeating this step additional 2N − 3
times to also eliminate ψ2, . . . , ψN , ϕ2, . . . , ϕN−1, we derive that ψ1 and ϕ1 are linearly dependent
which gives a contradiction.

Moreover, the 2N × 2N -matrix
H1 H2 · · · HN

H1Λ1 H2Λ2 · · · HNΛN
...

...
...

H1ΛN−1
1 H2ΛN−1

2 · · · HNΛN−1
N


is non-degenerate with the assumptions declared in Proposition 3.2.5, due to the linear independence
of the column vectors of H1, . . . , HN .

Remark 3.2.6. Proposition 3.2.5 also applies to the sG equation. For the proof one would follow
the same steps while considering the difference of the x and t part of the Lax system (2.2.3)
such that one essentially deals with the Lax system of the sG equation in light-cone coordinates.
Regarding these coordinates the x part of the Lax pair of the sG equation is closely related to the
x part of the Lax pair of the NLS equation.
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The second result, we want to mention, is bound to the application of higher order dressing
matrices. It answers the question whether it makes a difference changing the order of the solutions
ψj and corresponding spectral parameter λ = λj, j = 1, . . . , N , in the process of determining the
dressing matrix. Therefore, it is sufficient to investigate what happens if we apply a two-fold
dressing matrix

D[2] = D′2D1 =
1

(λ− λ∗1)(λ− λ∗2)
(λ1−S ′2)(λ1−S1) =

1

(λ− λ∗1)(λ− λ∗2)
(λ1−S ′1)(λ1−S2) = D′1D2

from a pair of solutions ψ1 and ψ2 in connection with the corresponding spectral parameters λ1

and λ2, see Figure 3.1. As before, we find Sj = HjΛjH
−1
j and Hj consisting of the column vectors

ψj, ϕj and Λj as a diagonal matrix diag(λj, λ
∗
j) for j = 1, 2.

Theorem 3.2.7 (Theorem of permutability, Gu, Hu & Zhou, [27]). Suppose

det

(
H1 H2

H1Λ1 H2Λ2

)
6= 0, (3.2.23)

then the two-fold dressing matrix is symmetric to S1 and S2.

Proof. With the process of updating the solution ψ2[1] = D[1]
∣∣
λ=λ2

ψ2 in mind, it follows that ψ2,
ϕ2 are transformed to (λ21− S1)ψ2, (λ21− S1)ϕ2 implying the transformation H ′2 = (S2 − S1)H2.
Then again, S ′2 = (S2 − S1)S2(S2 − S1)

−1, where S2 − S1 is non-degenerate due to (3.2.23).
Hence, changing the order corresponds to first applying the unmodified S2 and subsequently
S ′1 = (S1 − S2)S1(S1 − S2)−1 in the dressing matrix and the symmetry stands for

(λ1− S ′2)(λ1− S1) = (λ1− S ′1)(λ1− S2), (3.2.24)

where the left and right hand side can be calculated as

λ2 − λ(S2
2 − S2

1)(S2 − S1)−1 + (S2 − S1)S2(S2 − S1)−1S1

and the same with S1 and S2 interchanged. Then, the coefficients of the two resulting polynomials
with respect to λ can be compared. The equality for the first order coefficient is straightforward
and for the zero-th order coefficient, one uses basic matrix multiplication rules S2(S2 − S1)−1S1 =
(S−1

1 − S−1
2 )−1 and S1(S1 − S2)−1S2 = (S−1

2 − S−1
1 )−1.

This important property of permutability in the Dressing method can be summarized in a
Bianchi diagram, see Figure 3.1. Further, the symmetries of the Lax systems imply another
interesting property.

Remark 3.2.8. In the context of the NLS and sG equation, the dressing matrix admits the inverse

D[N ]−1(t, x, λ) = D[N ]†(t, x, λ∗).

For N = 1, the result is already stated in Lemma 3.2.2 and written in terms of (3.2.2), we note
that P [1]† = P [1]. Thus, this idea can easily be generalized to each factor of the N -fold dressing
matrix D[N ] which means(

1 +
λ∗j − λj
λ∗ − λ∗j

P [j]
)†(

1 +
λ∗j − λj
λ− λ∗j

P [j]
)

= 1, for j = 1, . . . , N

and therefore D[N ](t, x, λ)D[N ]−1(t, x, λ) = D[N ](t, x, λ)D[N ]†(t, x, λ∗) = 1. Then, the determi-
nant of the N -fold dressing matrix can similarly be generalized, since for each factor of the product
an analogous calculation as for detD[1] = λ−λ1

λ−λ∗1
in Lemma 3.2.2 can be applied.



3.3. CHANGE OF SCATTERING DATA UNDER THE DRESSING METHOD 47

(u[0], ψ[0])

(u[1], ψ[1])1

(u[1], ψ[1])2

(u[2], ψ[2])12 = (u[2], ψ[2])21

D1

D2

D′2

D′1

Fig. 3.1. Permutability D′2D1 = D′1D2 defined as in (3.2.24). Here, the prime and the
indices correspond to the order in which the dressing matrix is applied.

Remark 3.2.9. The determinant of the one-fold dressing matrix can be generalized to

D[N ] =
N∏
k=1

λ− λk
λ− λ∗k

,

where λ1, . . . , λN are the spectral parameters used in the dressing method.

Consequently, we have seen that the Dressing method is a powerful method to introduce specific
solutions into the framework of AKNS systems for the NLS and sG equation. So now, let us take
a closer look at the specificity of these solutions. As for the inverse scattering method, distinct
spectral parameters λ1, . . . , λN are introduced representing simple eigenvalues of the function
u[N ]. In the context of the Dressing method, these simple eigenvalues arise in the algebraic
construction of the N -fold dressing matrix D[N ], providing zeros and associated kernel vectors
of
∏N

j=1(λ− λ∗j)D[N ](t, x, λ), which is of importance later on. Nevertheless, since it seems to be
the case that part of the scattering data arise in the context of the Dressing method, we want to
investigate further if it is possible to give a complete description.

3.3 Change of scattering data under the Dressing method
With scattering data (ρ, {λj, Cj}Nj=1), λj ∈ C+ for all j = 1, . . . , N , we want to give the relevant
information needed to retrace the change of scattering data under the Dressing method. As in
the inverse scattering method, it is of importance that the solution and its derivative with respect
to x is sufficiently fast decaying as |x| → ∞. Then, assume we are given a spectral parameter
λ0 ∈ C+ \ {λ1, . . . , λN} and a column solution of the undressed Lax system

ψ0(t, x) = u0ψ
(1)
− (t, x, λ0) + v0ψ

(2)
+ (t, x, λ0)

= u0ψ̂
(1)
− (t, x, λ0)e−iΘ(t,x,λ0) + v0ψ̂

(2)
+ (t, x, λ0)eiΘ(t,x,λ0),

which is given in both cases for the NLS equation and the sG equation. As before, the intermediate
wave function, the quotient of the second and first entry of this solution, is given by

∆(t, x) =
[ψ̂−]21(t, x, λ0) + v0

u0
[ψ̂+]22(t, x, λ0)e2iΘ(t,x,λ0)

[ψ̂−]11(t, x, λ0) + v0
u0

[ψ̂+]12(t, x, λ0)e2iΘ(t,x,λ0)
.

Then, in turn, we obtain an expression for the ratio of v0
u0
, i.e.

v0

u0

= − [ψ̂−]21(t, x, λ0)−∆(t, x)[ψ̂−]11(t, x, λ0)

[ψ̂+]22(t, x, λ0)−∆(t, x)[ψ̂+]12(t, x, λ0)
e−2iΘ(t,x,λ0). (3.3.1)
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Also, the one-fold Darboux transformation corresponding to λ0 and ψ0 or rather ∆(t, x) takes the
form

D[1] =
1

λ− λ∗0

(
λ1 +

1

1 + |∆(t, x)|2

(
−λ0 − λ∗0|∆(t, x)|2 (λ∗0 − λ0)∆∗(t, x)
(λ∗0 − λ0)∆(t, x) −λ∗0 − λ0|∆(t, x)|2

))
. (3.3.2)

The properties of the Jost functions imply

lim
x→−∞

∆(t, x) =∞, lim
x→+∞

∆(t, x) = 0. (3.3.3)

Therefore, adding a simple eigenvalue or pole or zero of the one-fold dressing matrix to the
scattering data (2.1.14) or (2.2.14) under Dressing method can be explained by the following:

Theorem 3.3.1 (Gu, Hu & Zhou, [27]). Let the scattering data (ρ, {λj, Cj}Nj=1) be given. Applying
the Dressing method with λ0 ∈ C+ \ {λ1, . . . , λN} and ψ0(t, x) = u0ψ

(1)
− (t, x, λ0) + v0ψ

(2)
+ (t, x, λ0),

where u0 ∈ C, v0 ∈ C \ {0}, we add an eigenvalue to the scattering data leaving the original
eigenvalues unchanged. In particular, denoting the transformed spectral functions and parameters
with a prime, we have

a′11(λ) =
λ− λ0

λ− λ∗0
a11(λ),

a′21(λ) = a21(λ),

b′j = bj,

b′0 = −v0

u0

,

λ ∈ C+ ∪ R,

λ ∈ R,

j = 1, . . . , N,

ρ′(λ) =
λ− λ∗0
λ− λ0

ρ(λ),

C ′j =
λj − λ∗0
λj − λ0

Cj,

C ′0 = −v0

u0

λ0 − λ∗0
a11(λ0)

.

λ ∈ R,

j = 1, . . . , N,

Proof. The scattering data rely heavily on the Jost functions. That is why, the first step is to find
the behavior of the Jost functions in the transformed system. Therefore, we need to see what the
limit values of the one-fold dressing matrix are. By the observations (3.3.2) and (3.3.3), we derive

lim
x→−∞

D[1](t, x, λ) =
1

λ− λ∗0
diag(λ− λ∗0, λ− λ0),

lim
x→+∞

D[1](t, x, λ) =
1

λ− λ∗0
diag(λ− λ0, λ− λ∗0).

Then, we can deduce that the transformed Jost functions can be expressed through

(ψ
(1)
− )′(t, x, λ) = D[1](t, x, λ)ψ

(1)
− (t, x, λ), (ψ

(2)
+ )′(t, x, λ) = D[1](t, x, λ)ψ

(2)
+ (t, x, λ),

which is also passed onto (ψ̂
(1)
− )′ and (ψ̂

(2)
+ )′. As already mentioned in Section 2.1, a11(λ) =

det[ψ
(1)
− |ψ

(2)
+ ]. It follows that for λ ∈ C+ ∪ R, the limit values of [ψ̂−]11 and [ψ̂+]22 are a11(λ) as x

goes to +∞ and −∞, respectively. So that we have

a′11(λ) = lim
x→∞

([ψ̂−]11)′ =
λ− λ0

λ− λ∗0
a11(λ).

Analogously, we find for a21(λ) that

a21(λ) = −[ψ−]11[ψ+]21 + [ψ−]21[ψ+]11 = (−[ψ̂−]11[ψ̂+]21 + [ψ̂−]21[ψ̂+]11)e−2iΘ(t,x,λ),
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and therefore the limit values of [ψ̂−]21 and −[ψ̂+]21 behave as a21(λ)e2iΘ(t,x,λ) as x goes to +∞
and −∞, respectively. Consequently,

a′21(λ) = lim
x→∞

([ψ̂−]21)′ = a21(λ).

Also resulting in ρ′(λ) =
λ−λ∗0
λ−λ0ρ(λ). Since the Jost functions we relate in order to obtain bj are

changed identically by multiplication with D[1](t, x, λ), the parameters bj remain unchanged, i.e.
b′j = bj for j = 1, . . . , N . Then, by the definition of Cj, we can calculate

C ′j = b′j

(da′11(λj)

dλ

)−1

=
λj − λ∗0
λj − λ0

Cj, j = 1, . . . , N.

At the new eigenvalue λ = λ0, we have that the transformed Jost function are also identically
changed by

D[1](t, x, λ0) =
1

1 + |∆(t, x)|2

(
|∆(t, x)|2 −∆∗(t, x)
−∆(t, x) 1

)
.

Hence, as we calculated already in (3.3.1), we obtain

b′0 =
([ψ−]21)′(t, x, λ0)

([ψ+]22)′(t, x, λ0)
=

[ψ−]21(t, x, λ0)−∆(t, x)[ψ−]11(t, x, λ0)

[ψ+]22(t, x, λ0)−∆(t, x)[ψ+]12(t, x, λ0)
= −v0

u0

.

Subsequently, the weight for the added eigenvalue is readily obtained by

C ′0 = b′0

(da′11(λ0)

dλ

)−1

= −v0

u0

λ0 − λ∗0
a11(λ0)

,

thereby concluding the proof.

Remark 3.3.2. A particular example is dressing a pure soliton solution into the NLS equation
(or the sG equation) from the zero seed solution u[0](t, x) = usol(t, x; {}) ≡ 0 for which a11(λ) = 1,
a21(λ) = 0 such that ρ(λ) = 0. Then, successively inserting simple eigenvalues λ1, . . . , λN ∈ C+

with corresponding vj
uj
∈ C \ {0}, j = 1, . . . , N , results in the transformed spectral functions

a
(N)
11 (λ) =

N∏
j=1

λ− λj
λ− λ∗j

, a
(N)
12 (λ) = 0,

which then also gives the transformed scattering data as

S(u[N ]) = (0, {λj, C(N)
j }Nj=1),

where

C
(N)
j = −vj

uj

N∏
k=1

(λj − λ∗k)
( N∏′

k=1

(λj − λk)
)−1

.

Here, the prime indicates that the term with k = j is omitted from the product.

Now, after establishing the connection between the Dressing method and the scattering data,
we want to continue elaborating on the equivalence between the methods of constructing certain
solutions for the integrable nonlinear PDEs. Moreover, we incorporate this into the presentation of
the proper models of the NLS and sG equation, which are the main focus of this thesis.
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Chapter 4

Models

4.1 Implementing defect conditions

With the preliminary consideration of the scattering method in mind, we introduce the integrable
models which are the main focus of this thesis. Therefore, we need to follow up on the idea of
the Bäcklund transformation presented in Subsection 3.1.1. In particular, the context, in which
the Bäcklund matrices (3.1.4) and (3.1.5) have been analyzed in [11], is to generate the so-called
defect conditions, which essentially corresponds to considering the Bäcklund transformation as
frozen at a specific point xf and for all t ∈ R. And since we are talking about conditions for the
solutions, the application completely changes. So instead of the transformation of solutions into
different solutions satisfying the same system via the Bäcklund transformation, the frozen Bäcklund
transformation should here be understood as a condition connecting two existing solutions at a
specific point xf . To ease notation, we only work with xf = 0. However, it should be noted that all
of the upcoming arguments still hold even with an arbitrary xf ∈ R and further that the arguments
also hold with more than just one point where defect conditions are present.

4.1.1 General setting

First off, we make this idea more precise in the context of the first important concept worked
out in Chapter 2, the Lax systems. Based on the transformation (3.1.1), we view the two Lax
systems with U , V and Ũ , Ṽ not as two systems corresponding to the same integrable PDE on
the whole line x ∈ R. Rather, we restrict the potentials—u, ũ and θ, θ̃ for the NLS and sG
equation, respectively, to either side of the defect. Here, since xf = 0, we restrict u and θ or rather
U and V to the positive half-line x ∈ R+ as well as ũ and θ̃ or rather Ũ and Ṽ to the negative
half-line x ∈ R−. Thus, the potentials are still solutions of the same PDE as before, which is, in
particular, equivalent to the zero curvature condition, with the difference that they satisfy the
PDE on different domains. Consequently, given solutions of the PDE on the respective domain,
we also have knowledge of the complete Lax pairs and with that the partial matrix differential
equations (3.1.2), which are reduced to a single point in space xf = 0, connect these Lax pairs
given a matrix B. Hence, instead of serving as a transformation of one solution to another of the
same PDE on the whole line, the relations

Bx

∣∣
x=0

= (ŨB −BU)
∣∣
x=0

,

Bt

∣∣
x=0

= (Ṽ B −BV )
∣∣
x=0

(4.1.1)

51
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for t ∈ R now constitute the spectral equivalent to some conditions. However, as we have seen for
the Bäcklund transformation itself, not just any matrix suffices in order to obtain a system which
is indeed solvable or by the ideas mentioned in the Introduction integrable. If we however choose
B to be for example the identity matrix, then (4.1.1) implies U = Ũ and V = Ṽ at x = 0 which
therefore corresponds together with the inherent Lax systems to the ordinary PDE on the whole
line. In the following subsection, we elaborate on the more relevant examples for matrices B which
leave the NLS and sG equation integrable. Note that integrability for these models is meant in the
sense explained in the Introduction. Further, by noticing a symmetry in the phase Θ(t, x, λ), one is
able to adapt this idea to also include boundary conditions for only one potential on one half-line.

4.1.2 Models of the NLS and sG equation

As indicated before, the Darboux matrices (3.1.4) and (3.1.5) are derived with the idea of the frozen
Bäcklund transformation in mind. Hence, it is straightforward to give the defect conditions, which
are equivalent to relations (4.1.1), for the NLS and sG equation with respect to their solutions. In
this subsection, we only give the essentials of the algebraic calculations in order not to disturb the
flow of reading, since it is indeed quite lengthy to perform them accurately. Nevertheless, due to
the fact that there is no uniqueness when it comes to Lax pairs and thus to the corresponding
Darboux matrix and the importance of these computations to be exact, we can not just simply
cite the existing literature and therefore we give the complete algebraic calculations in Appendix
A. For the NLS equation, we find:

Proposition 4.1.1. Inserting the Lax pairs U , V and Ũ , Ṽ of the NLS equation (2.1.3) corre-
sponding to the solutions u and ũ on the positive and negative half-line, respectively, together with
the Darboux matrix (3.1.4) into the frozen Bäcklund transformation (4.1.1) is equivalent to the
defect conditions

(ũ− u)x = iα(ũ− u)± Ω(ũ+ u),

(ũ− u)t = −α(ũ− u)x ± iΩ(ũ+ u)x + i(ũ− u)(|u|2 + |ũ|2)
(4.1.2)

at x = 0 with Ω =
√
β2 − |ũ− u|2 and defect parameters α, β ∈ R.

Proof. Inserting the Lax pairs U , V and Ũ , Ṽ of the NLS equation (2.1.3) and the Darboux matrix
B into (4.1.1), we obtain for the left hand side of the x part

i

(
±Ωx −(ũ− u)x

−(ũ− u)∗x ∓Ωx

)
and calculating the right hand side of the x part, we have

i

(
−(|ũ|2 − |u|2) −iα(ũ− u)∓ Ω(ũ+ u)

iα(ũ− u)∗ ∓ Ω(ũ+ u)∗ (|ũ|2 − |u|2)

)
and for the t-part Bt = ṼB − BV, we find the (11)- as well as the (12)-entry after a similar
calculation to be

±iΩt = (iα∓ Ω)(|ũ|2 − |u|2) + ũx(ũ− u)∗ − u∗x(ũ− u)

−i(ũ− u)t = (ũ− u)(|ũ|2 + |u|2) + 2λũ(α∓ iΩ) + iũx(2λ+ α∓ iΩ)

− 2λu(α± iΩ)− iux(2λ+ α± iΩ),

(4.1.3)
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respectively. Using the (12)-entry of the x part, we see that the term of first order in λ in the
(12)-entry of the t part is zero. Hence, the left hand side

i

(
±Ωt −(ũ− u)t

−(ũ− u)∗t ∓Ωt

)
is equal to the right hand side of the t part (4.1.3) at x = 0 if and only if the defect conditions
(4.1.2) hold. With the definition of Ω as in the proposition, it can further be verified that the
(11)-entries of the x part and of the t part of these relations are satisfied for all t ∈ R and x = 0.

Proposition 4.1.2. Inserting the Lax pairs U, V and Ũ, Ṽ of the sG equation (2.2.2) corresponding
to the solutions θ and θ̃ on the positive and negative half-line, respectively, together with the Darboux
matrix (3.1.5) into the frozen Bäcklund transformation (4.1.1) is equivalent to the defect conditions

θ̃x + θt = ±
(
α sin

θ̃ + θ

2
+

1

α
sin

θ̃ − θ
2

)
,

θ̃t + θx = ∓
(
α sin

θ̃ + θ

2
− 1

α
sin

θ̃ − θ
2

)
,

(4.1.4)

at x = 0 and with the defect parameter α ∈ R.

Proof. Inserting the Lax pairs U, V and Ũ, Ṽ of the sG equation (2.2.2) and the Darboux matrix
B into (4.1.1), we obtain for the left hand sides

Bx = ±iα
λ

(θ̃ + θ)x
2

(
σ2 cos

θ̃ + θ

2
− σ3 sin

θ̃ + θ

2

)
,

Bt = ±iα
λ

(θ̃ + θ)t
2

(
σ2 cos

θ̃ + θ

2
− σ3 sin

θ̃ + θ

2

)
.

On the right hand sides of ŨB− BU and ṼB− BV, we obtain

i

4λ

[
±α(θ̃t + θt − θ̃x − θx)− 2 sin

θ̃ − θ
2

]
σ3 sin

θ̃ + θ

2

i

4λ

[
±α(θ̃x + θx − θ̃t − θt) + 2 sin

θ̃ − θ
2

]
σ3 sin

θ̃ + θ

2

for the diagonal entries of order λ−1 and

i

4λ

[
±α(θ̃x + θx − θ̃t − θt) + 2 sin

θ̃ − θ
2

]
σ2 cos

θ̃ + θ

2

i

4λ

[
±α(θ̃t + θt − θ̃x − θx)− 2 sin

θ̃ − θ
2

]
σ2 cos

θ̃ + θ

2

for the off-diagonal entries of order λ−1, so that for both sides to be equal,

θ̃t + θt + θ̃x + θx = ± 2

α
sin

θ̃ − θ
2

(4.1.5)

needs to hold at x = 0. Further, the off-diagonal entries (which correspond to the expressions
multiplied with the first Pauli matrix σ1) of zero-th order in λ give

−θ̃t + θt + θ̃x − θx = ±2α sin
θ̃ + θ

2
. (4.1.6)

Adding and subtracting these two equalities (4.1.5) and (4.1.6), the defect conditions for the sG
equation are readily obtained.
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Remark 4.1.3. In [11], the defect conditions were initially introduced in the context of light-cone
coordinates

ξ =
x− t

2
, η =

x+ t

2
,

for the sG equation, which considering the transformation

v(η, ξ) = θ(η − ξ, η + ξ), θ(t, x) = v
(x+ t

2
,
x− t

2

)
takes the form vξη = sin v. Therefore, the two equalities (4.1.5) and (4.1.6) can be written as

(ṽ − v)ξ = ±2α sin
ṽ + v

2
,

(ṽ + v)η = ± 2

α
sin

ṽ − v
2

.

(4.1.7)

In the literature the relations (4.1.2) and (4.1.4) are commonly found with regard to the usual
Bäcklund transformation holding for all t, x ∈ R. The significance in using the very same Bäcklund
transformation frozen at a specific point x = xf lies in the fact that the generating function for
the integral of motion can be adjusted to include the defect conditions. Hence, in the sense of
integrability as the presence of an infinite set of conservation laws, the systems including a defect
presented above can be shown to be integrable [11]. In fact,

Remark 4.1.4. The connection of the defect conditions to a frozen Bäcklund transformation
(4.1.1) has been discussed, among other publications, in [11, 15]. The authors additionally prove
for both models that there exists an infinite set of modified conservation laws, which means that
the defect conditions are integrable in the aforementioned sense.

Resuming the elaboration of equivalence in the solution construction methods, we want to briefly
address this idea in the context of the sG equation in light-cone coordinates. The derived conditions
are when viewed as transformation holding for all η, ξ ∈ R the usual Bäcklund transformation and
therefore, if we consider the Bäcklund transformation (4.1.7) of the vacuum solution v ≡ 0, we
find that:

Remark 4.1.5. Equations (4.1.7) can be integrated to give the solution

ṽ(η, ξ) = 4 arctan eαξ+
1
α
η+c

under the assumption of v ≡ 0 and the plus sign, see [19]. Transforming the coordinates back
to laboratory coordinates, we find the single one-soliton solution which we associate to the sG
equation in this thesis as

θ̃(t, x) = 4 arctan e(α+ 1
α

)x−(α− 1
α

)t+c.

Note that, as indicated before, even though this is in combination with the Theorem of
permutability 3.2.7 a powerful method to explicitly construct solutions, the scattering data are
outside the scope of this method. Nonetheless, we continue this consideration of equivalence
between the solution construction methods in the next section.
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4.2 Bäcklund transformation vs. Dressing method for Lax
systems

Another important property, we want to highlight, is that, similar to Subsection 3.1.2, the one-fold
Dressing matrices for the Lax system of the NLS and sG equation are strongly related to the
respective Bäcklund transformation presented in Subsection 3.1.1. Among the literature we already
mentioned in this context in Chapter 3, this section is particularly inspired by the ideas mentioned
in [11, 36]. In fact, with the right spectral parameters, one matrix can be transformed into the
other. Note that these results hold for t and x in the respective domains and not necessarily x = 0.
With respect to the model introduced in Sections 2.1 and 2.2, one has t, x ∈ R.

Proposition 4.2.1.

(i) The one-fold dressing matrix (3.2.2), constructed by C\R 3 λ1 = ξ1 + iη1 and ψ1(t, x), satisfies
(3.1.2) with Ũ = U [1] and U = U [0].

• For the NLS equation, we have that, up to a function of λ, the dressing matrix can be written
as λ−λ∗1

λ
D[1] = B, see (3.1.4), where α = −2ξ1, β2 = (2η1)

2 6= 0 and the ± sign in front of the
square root is determined by the sign of η1 and by the condition that the absolute value of the
intermediate wave function is either greater or equal, or less or equal than 1.

• For the sG equation, we find that, up to a function of λ, the dressing matrix can be written as
λ−λ∗1
λ
D[1] = B, see (3.1.5), where ξ1 = 0, α = η1 6= 0 and the ± sign is determined by sign η1.

(ii) (Caudrelier, [11]) The Bäcklund transformation

• for the NLS equation B with α ∈ R, β ∈ R \ {0} admits a projector matrix

P =
1

λ∗1 − λ1

(B(0)/2 + λ∗11), (4.2.1)

where λ1 = −α
2

+ iβ
2
and B(0) is the matrix coefficient of the Bäcklund transformation of λ−1. In

particular, there exists a t and x dependent kernel vector of B at λ1.

• for the sG equation B with α ∈ R \ {0} admits a projector matrix

P =
1

λ∗1 − λ1

(B(0)/2 + λ∗11), (4.2.2)

where λ1 = iα
2

and B(0) is the matrix coefficient of the Bäcklund transformation of λ−1. In
particular, there exists a t and x dependent kernel vector of B at λ1.

Proof. We begin with the proof for the NLS equation. By the reconstruction formula for the
one-fold dressing matrix (3.2.4), we have

u[1]− u[0] = 4η1
∆∗

1 + |∆|2
(4.2.3)

and therefore a simple calculation leads to

√
(2η1)2 − |u[1]− u[0]|2 = 2|η1|

|1− |∆|2|
1 + |∆|2

. (4.2.4)
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Then, we want to utilize the definition of the Bäcklund transformation as in (4.1.2) and therefore
we calculate

∆x = −u[0]∗ + 2iλ1∆− u[0]∆2,

∆t = (−2λ1u[0]∗ + iu[0]∗x) + 2i(2λ2
1 − |u[0]|2)∆− (2λ1u[0] + iu[0]x)∆

2.

Therefore, we can derive the t and x derivatives of the difference of the dressed solution and the
seed solution

(u[1]− u[0])x = 4η1

( ∆∗

1 + |∆|2
)
x

= 4η1
∆∗x −∆x(∆

∗)2

(1 + |∆|2)2

= −2iξ1

(
4η1

∆∗

1 + |∆|2
)

+ 4η1
1− |∆|2

1 + |∆|2
(
−u[0]− 2η1

∆∗

1 + |∆|2
)
.

By equality (4.2.3), we find the first bracket to be u[1] − u[0] and the second bracket to be
−(u[1] + u[0])/2 and using the equality for the square root (4.2.4), we obtain

(u[1]− u[0])x = i(−2ξ1)(u[1]− u[0])− sign(η1(1− |∆|2))
√

(2η1)2 − |u[1]− u[0]|2(u[1] + u[0]).

Comparing this result with (4.1.2), we confirm that −2ξ1 = α, (2η1)2 = β2 and sign(η1) determines
the sign in front of the square root under the assumption made for the absolute value of the
intermediate wave function ∆. The same can be done for (u[1]− u[0])t using the expression for ∆t.

On the other hand, given the Bäcklund transformation (3.1.4), we define λ1 = −α
2

+ iβ
2
as well

as the matrix P as in (4.2.1). Hence, we derive

D(t, x, λ) =
λ

λ− λ∗1
B(t, x, λ) = 1 +

λ∗1 − λ1

λ− λ∗1
P(t, x).

For D to be a one-fold dressing matrix, we need that P is indeed a projection matrix, i.e. P2 = P
and that there exists a kernel vector of D at the chosen spectral parameter λ1. Therefore, we
calculate

P2 =

(
1

2β

(
β ∓ Ω ũ− u

(ũ− u)∗ β ± Ω

))2

=
1

4β2

(
(β ∓ Ω)2 + |ũ− u|2 (ũ− u)(β ∓ Ω + β ± Ω)

(ũ− u)∗(β ∓ Ω + β ± Ω) (β ± Ω)2 + |ũ− u|2
)

=
1

2β

(
β ∓ Ω ũ− u

(ũ− u)∗ β ± Ω

)
= P .

Thus, P is a projector matrix and particularly it can be easily seen that the determinant and the
trace of P are detP = 0 and TrP = 1. Therefore, P has the eigenvalues 0 and 1. In particular,
the vector

υ = c1

(
(β ∓ Ω)
(ũ− u)∗

)
+ c2

(
(ũ− u)
(β ± Ω)

)
satisfies Pυ = υ such that Dυ = 0 at λ = λ1.
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Now, we prove the result for the sG equation. Note that in this case, we have θ = θ[0] ≡ 0,
θ̃ = θ[1] and λ1 = iη1. Again, by the reconstruction formula for the one-fold dressing matrix
(3.2.21), we have that

cos
θ[1]

2
= −1− |∆|2

1 + |∆|2
, i sin

θ[1]

2
=

2∆∗

1 + |∆|2
.

Using the definition of ∆, we also find

∆x = −1

2

(
η1 +

1

η1

)
∆, ∆t =

1

2

(
η1 −

1

η1

)
∆.

Calculating the x and t derivative of

θ[1] = −2 arcsin
( 2i∆∗

1 + |∆|2
)

and using the equalities for ∆x and ∆t, we end up with

θ[1]x =
(
η1 +

1

η1

)
sin

θ[1]

2
, θ[1]t = −

(
η1 −

1

η1

)
sin

θ[1]

2
,

which matches relation (3.1.5) if η1 = α and sign η1 determines the sign in each relation.
Given the Bäcklund transformation (3.1.5) for the sG equation corresponding to θ ≡ 0, we

define λ1 = iα
2
and the matrix P as in (4.2.2). We calculate

P2 =

(
1

2

(
1∓ cos θ[1]

2
i sin θ[1]

2

−i sin θ[1]
2

1± cos θ[1]
2

))2

= P.

Again, detP = 0 and TrP = 1 so that there exists a vector

υ = c1

(
−1± cos θ[1]

2

i sin θ[1]
2

)
+ c2

(
−i sin θ[1]

2

−1∓ cos θ[1]
2

)

for which Pυ = υ and where c1 and c2 may depend on t and x, but not on λ and therefore
D = λ

λ−λ∗1
Bυ = 0 at λ = λ1.

So, let us stress again that this is an important observation: In general, there is a way to
interpret the Bäcklund transformation, specifically, from Subsection 3.1.1 for the NLS or sG
equation as one-fold dressing matrix which we introduced in Section 3.2. Note that, starting
from a Bäcklund transformation, we also identified the kernel vector corresponding to the spectral
parameter λ = λ1 from which the dressing matrices in Propositions 3.1.1 and 3.1.2 are constructed.
Further, we take from this proposition that it is possible that a solution constructed through the
Dressing method satisfies the equalities (4.1.2) with the plus sign on a specific domain x ∈ E ⊂ R
and the minus sign on the complement x ∈ R \ E with respect to the whole line. On the other
hand, a solution constructed with the Bäcklund transformation can always be expressed in terms
of the Dressing method.

Remark 4.2.2. As a special case of Proposition 4.2.1 it is also possible to apply it to a frozen
Bäcklund transformation or one-fold dressing matrix at x = 0.
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4.3 Implementing boundary conditions
In Section 4.1, we presented the model of the NLS equation or sG equation on two half-lines which
are connected through the defect conditions at x = 0 while conserving integrability. Taking this
idea further, we want to look at these PDEs in the quarter plane x ∈ R+, t ∈ R+ in connection with
boundary conditions which correspond to integrable models. In fact, one way to approach boundary
conditions is by the unified transform method, initially invented to serve as a generalization to
the inverse scattering method for half-line problems. Therefore, a class of boundary conditions
has been filtered out for which it is possible to solve the generalized problem with the same level
of efficiency as the one for the problem on the full line. These boundary conditions are called
linearizable boundary conditions.

4.3.1 General setting

For the NLS and sG equation this means that we assume that there exists an t dependent, x
independent, nonsingular matrix K(t, 0, λ) such that

Kt(t, 0, λ) = V (t, 0, r(λ))K(t, 0, λ)−K(t, 0, λ)V (t, 0, λ), (4.3.1)

where r(λ) reflects a certain symmetry inherent to the respective equation.
Note that this relation (4.3.1) has structural differences to the relations (4.1.1). Instead of

relating one side of the defect with the other, in this case, we exploit a symmetry of the system.
Moreover, it is in fact just a condition on the t part in contrast to conditions on both the t and x
part of the Lax pair. Again, we give brief calculations to ensure the flow of reading and refer to
Appendix A for more details, since these results may be found in a similar but not exactly the
same manner in the literature.

4.3.2 Models of NLS and sG equation

For the NLS equation, we have that the symmetry yields that r(λ) = −λ. With that in mind,
we find two matrices which satisfy the relation (4.3.1), thereby correlating to certain boundary
conditions for the NLS equation.

Proposition 4.3.1. Boundary matrices for the Lax pair U , V of the NLS equation (2.1.3) corre-
sponding to the Robin boundary condition, see [28],

ux(t, 0) = αu(t, 0) (4.3.2)

with α ∈ R and the new boundary condition, see [41],

ux(t, 0) =
iut(t, 0)

2Ω(t, 0)
− u(t, 0)Ω(t, 0)

2
+
u(t, 0)|u(t, 0)|2

2Ω(t, 0)
− u(t, 0)α2

2Ω(t, 0)
(4.3.3)

with Ω(t, 0) =
√
β2 − |u(t, 0)|2, α, β ∈ R are given by

K(λ) =
1

iα + 2λ

(
iα− 2λ 0

0 iα + 2λ

)
, (4.3.4)

K(t, 0, λ) =
1

(2λ− i|β|)2 − α2

(
4λ2 + 4iλΩ(t, 0)− (α2 + β2) 4iλu(t, 0)

4iλu∗(t, 0) 4λ2 − 4iλΩ(t, 0)− (α2 + β2)

)
,

(4.3.5)
respectively. Moreover, for both boundary matrices, K−1(t, 0, λ) = K(t, 0,−λ) holds.
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Proof. We omit the denominator of the boundary matrices in the following calculations, since it is
time independent in both cases and thus present in every term of the equalities. For the boundary
matrix of the Robin boundary condition, we immediately have that the diagonal entries of the
relation (4.3.1) are zero. For the off-diagonal entries, after cancellation we obtain

V(t, 0,−λ)K(λ)−K(λ)V(t, 0, λ) =

(
0 4iλ(ux − αu)

−4iλ(ux − αu)∗ 0

)
,

which is at (t, x = 0) equivalent to the Robin boundary condition.
For the boundary matrix of the new boundary conditions, the left hand side of (4.3.1) amounts

to
4iλ

(
Ωt ut
u∗t −Ωt

)
and after some calculation, the right hand side can be written as

4iλ

(
i(u∗ux − uu∗x) −iu(α2 + β2)− 2iΩux + 2iλ|u|2u

iu∗(α2 + β2) + 2iΩu∗x − 2iλ|u|2u∗ −i(u∗ux − uu∗x)

)
.

Hence with the identification Ω2 = β2 − |u|2, the off-diagonal at (t, x = 0) is equivalent to the new
boundary condition and with this condition it can be confirmed that the equality Ωt = i(u∗ux−uu∗x)
for the diagonal entries holds.

The property that the inverse boundary matrix is equal to the boundary matrix with λ changed
to −λ relies on the fact that the denominator normalizes the determinant of the boundary matrix.
For the Robin boundary condition, we have

K−1(λ) =
det(K(λ))−1

iα + 2λ

(
iα + 2λ 0

0 iα− 2λ

)
=

1

(iα + 2(−λ))

(
iα− 2(−λ) 0

0 iα + 2(−λ)

)
,

which is K(−λ) with det(K(λ)) = iα−2λ
iα+2λ

. Further, for the new boundary condition, the equality of

K−1(t, 0, λ) =
det(K(t, 0, λ))−1

(2λ− i|β|)2 − α2

(
4λ2 − 4iλΩ− (α2 + β2) −4iλu

−4iλu∗ 4λ2 + 4iλΩ− (α2 + β2)

)
to K(t, 0,−λ) holds, since we can derive the following equality

det(K(t, 0, λ)) =
(4λ2 − α2 − β2 + 4iλΩ) · (4λ2 − α2 − β2 − 4iλΩ) + 16λ2|u|2

((2λ− i|β|)2 − α2)2

=
(4λ2 − α2 − β2)2 + 16λ2(Ω2 + |u|2)

((2λ− i|β|)2 − α2)2

=
((2λ− i|β|)2 − α2) · ((2λ+ i|β|)2 − α2)

((2λ− i|β|)2 − α2)2

=
(2λ+ i|β|)2 − α2

(2λ− i|β|)2 − α2

for the determinant, thereby concluding the proof of the assertions.

For the sG equation, we have that the symmetry yields that r(λ) = λ−1. With that in mind,
we find three matrices which satisfy the relation (4.3.1), thereby correlating to certain boundary
conditions for the sG equation.
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Proposition 4.3.2. Boundary matrices for the Lax pair U, V of the sG equation (2.2.2) corre-
sponding to a Dirichlet boundary condition

θ(t, 0) = α (4.3.6)

with α ∈ R and a sin-boundary condition, see [43],

θx(t, 0) = α sin
θ(t, 0)

2
(4.3.7)

with α ∈ R and a cos-boundary condition

θx(t, 0) = α cos
θ(t, 0)

2
(4.3.8)

with α ∈ R are given by

K(λ) =
1√

λ2 + 1
λ2

+ 2 cosα

[(
λ+

1

λ

)
1 cos

α

2
+ i
(
λ− 1

λ

)
σ1 sin

α

2

]
, (4.3.9)

K(t, 0, λ) =
1√

(λ− 1
λ
)2 + α2

[
−α1− i

(
λ− 1

λ

)(
σ3 cos

θ(t, 0)

2
+ σ2 sin

θ(t, 0)

2

)]
, (4.3.10)

K(t, 0, λ) =
1√

(λ+ 1
λ
)2 + α2

[
iασ1 − i

(
λ+

1

λ

)(
σ3 cos

θ(t, 0)

2
+ σ2 sin

θ(t, 0)

2

)]
, (4.3.11)

respectively. Furthermore, for the Dirichlet boundary and sin-boundary matrices K−1(t, 0, λ) =
K(t, 0, λ−1) and for the cos-boundary matrix K−1(t, 0, λ) = −K(t, 0, λ−1) holds.

Proof. Similarly to the calculation for the boundary matrices of the NLS equation, we omit the
denominators due to their time independence. Starting with the Dirichlet boundary condition, we
see that the left hand side of (4.3.1) is zero. On the other hand, the right hand side results after
cancellation and under the use of appropriate trigonometric identities in

iλ

2

(
λ− 1

λ

)(
λ+

1

λ

)(
σ3 sin

θ

2
− σ2 cos

θ

2

)[
sin

α

2
cos

θ

2
− cos

α

2
sin

θ

2

])
,

which is zero for all t ∈ R+ if and only if θ(t, 0) ≡ α. Then, we have for the left hand side of (4.3.1)
for the sin- and cos-boundary condition

i
(
λ− 1

λ

)(
σ3 sin

θ

2
− σ2 cos

θ

2

)θt
2
,

i
(
λ+

1

λ

)(
σ3 sin

θ

2
− σ2 cos

θ

2

)θt
2
,

respectively. After some calculation, we obtain for the right hand side of (4.3.1) for the sin- and
cos-boundary condition

i

2

(
λ− 1

λ

)(
σ3

[α
2

(1− cos θ) + (θt − θx) sin
θ

2

]
− σ2

[α
2

sin θ + (θt − θx) cos
θ

2

])
,

i

2

(
λ+

1

λ

)(
σ3

[α
2

sin θ + (θt − θx) sin
θ

2

]
− σ2

[α
2

(cos θ + 1) + (θt − θx) cos
θ

2

])
,
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respectively. Comparing the two sides in each case, we see that the time derivatives θt cancel and
the remaining terms

α

2
(1− cos θ)− θx sin

θ

2
,

α

2
sin θ − θx cos

θ

2
,

α

2
sin θ − θx sin

θ

2
,

α

2
(cos θ + 1)− θx cos

θ

2

are, after dividing by either sin θ
2
or cos θ

2
and using the appropriate trigonometric identities

α
(1− cos θ)

2 sin θ
2

− θx = α sin
θ

2
− θx = α

sin θ

2 cos θ
2

− θx,

α
sin θ

2 sin θ
2

− θx = α cos
θ

2
− θx = α

(cos θ + 1)

2 cos θ
2

− θx,

equivalent to the sin-boundary condition (4.3.7) and the cos-boundary condition (4.3.8), respec-
tively.

The property that the inverse of the boundary matrix is equal to the boundary matrix with λ
changed to λ−1 relies on the fact that the denominator normalizes the determinant of the boundary
matrix. The boundary matrix of the Dirichlet boundary condition satisfies

K−1(λ) =
det(K(λ))−1√
λ2 + 1

λ2
+ 2 cosα

[
(λ+

1

λ
)1 cos

α

2
− (λ− 1

λ
)σ1 sin

α

2

]
= K(λ−1),

since det(K(λ)) = 1. For the sin-boundary condition, we have

K−1(t, 0, λ) =
det(K(t, 0, λ))−1√

(λ− 1
λ
)2 + α2

[
−α1 + i

(
λ− 1

λ

)(
σ3 cos

θ

2
+ σ2 sin

θ

2

)]
= K(t, 0, λ−1),

and for the cos-boundary condition, we have

K−1(t, 0, λ) =
det(K(t, 0, λ))−1√

(λ+ 1
λ
)2 + α2

[
−iασ1 + i

(
λ+

1

λ

)(
σ3 cos

θ

2
+ σ2 sin

θ

2

)]
= −K(t, 0, λ−1),

where in each case the determinant of the boundary matrix is normalized as det(K(t, 0, λ)) = 1.

4.4 Preliminary considerations
Before we turn to apply the Dressing method to the presented models of the NLS and sG equation
with either defect or boundary conditions, we preliminarily consider some aspects which prove
to be useful in this endeavor. In the case of the NLS or sG equation on the whole line x ∈ R,
we have seen that it is possible to construct soliton solutions or breather solutions using distinct
spectral parameters which are taken from C \ R. Now, it is a priori not obvious which spectral
parameters need to be paired on each side of the defect for it to be preserved under the Dressing
method. Therefore, the goal of the following subsection is to clarify under which conditions for the
spectral parameters—that we know of—the defect conditions and further the boundary conditions
are preserved. As shown in detail in Section 4.2, the frozen Bäcklund transformation can in theory
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be connected to a frozen one-fold dressing matrix. Hence, we can also view the defect conditions as
a single soliton which is bound to x = 0. Therefore, one of the solutions, which we ignore for the
time being, is to construct a one-soliton on one side of the defect interacting destructively with the
‘frozen’ soliton at x = 0; Especially, since this is a very specific scenario which can not be iterated.
Hence, we consider the Dressing method using spectral parameters which are not on the real line
and differ from the spectral parameters mentioned in Proposition 4.2.1 being λ0 = −α

2
+ iβ

2
and λ∗0

for the NLS and λ0 = iα
2
and λ∗0 for the sG equation.

4.4.1 A ‘space-evolution’ interpretation

We want to discuss time direct scattering for the t part of the respective Lax pair U , V at x = 0
under the simplifying assumption that we have the zero seed solution. This subsection is inspired
by the analysis given in [42] combined with the direct scattering process [2], we presented in
Chapter 2. Assuming that, the function and its derivatives with regard to x vanish faster than any
exponential as |t| goes to infinity, similar to the case for the (space) direct scattering, one obtains
Jost functions

φ±(t, 0, λ) ∼ e−iΘ(t,0,λ)σ3 , as t→ ±∞. (4.4.1)

Regarding the space scattering process, the x part of the phase in case of the NLS equation is
multiplied by λ and in the case of the sG equation by (λ− λ−1) and we have seen in Sections 2.1
and 2.2 that the Jost functions can be continued analytically in either the upper or lower half-plane.
With regard to the time scattering process, the phase in the case of the NLS equation is multiplied
by λ2 and in the case of the sG equation by (λ+ λ−1) so that the domains in the λ-plane in which
the Jost functions (4.4.1) can in general be continued analytically are split into four quadrants in
the case of the NLS equation and into four distinct domains in the case of the sG equation, see
Figure 4.1. The proof is essentially the same as for the (space) direct scattering, see Theorems
2.1.1 and 2.2.3 or [2]. Therefore, we have that the first column of φ− as well as the second column
of φ+, i.e. φ

(1)
− and φ(2)

+ , and the second column of φ− as well as the first column of φ+, i.e. φ
(2)
− and

φ
(1)
+ , can be continued analytically into the gray and the white domain, respectively. However, note

that due to the zero seed solution, all four Jost functions are entire functions of λ, since Volterra
integral equations on a finite interval always have absolutely convergent Neumann series solutions
[2].

Fig. 4.1. Analyticity domains of the Jost functions for the time direct scattering

Hence, the same reasoning as in the (space) direct scattering implies that there exists a t
independent matrix A(λ) such that

φ−(t, 0, λ) = φ+(t, 0, λ)A(λ), λ ∈ R,
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where all the scattering coefficients can be analytically extended, since we assume to have the zero
seed solution. In particular, we have

A(λ) =

(
a11(λ) a12(λ)
a21(λ) a22(λ)

)
.

As indicated in Chapter 2, where the inverse scattering method is presented, normalizing the Jost
functions as above leads to a linear evolution of the entries of the space scattering matrix A(λ):

∂A(λ)

∂x
= (φ−φ

−1
+ )x = Uφ−φ

−1
+ − φ−φ−1

+ U = [U,A(λ)],

where U(t, x, λ) is in the case of the zero seed solution equal to U(λ) = −iλσ3 and U(λ) =
− i

4
(λ− 1

λ
)σ3 in the case of the NLS equation and the sG equation, respectively.

Following the analysis in Sections 2.1 as well as 2.2, one could derive a Riemann–Hilbert
problem, where soliton solutions of the NLS equation and sG equation correspond to zeros of
a11(λ), which in general come from the gray domains of Figure 4.1.

Now, with the consideration of defect conditions (4.1.2) or (4.1.4) at x = 0, we examine the Jost
functions φ̃±(t, 0, λ) and φ±(t, 0, λ) which are related through the frozen Bäcklund transformation
according to φ̃(t, 0, λ) = B(t, 0, λ)φ(t, 0, λ). Therefore, we derive

Ã(λ) = φ̃−(t, 0, λ)φ̃−1
+ (t, 0, λ)

= B(t, 0, λ)φ−(t, 0, λ)
(
B(t, 0, λ)φ+(t, 0, λ)

)−1

= B(t, 0, λ)A(λ)B−1(t, 0, λ).

Similarly for the boundary conditions (4.3.2), (4.3.3), (4.3.8) and (4.3.7), we obtain with the
relation φ(t, 0, r(λ)) = K(t, 0, λ)φ(t, λ) the constraint on A(λ) of the form

A(r(λ)) = φ−(t, 0, r(λ))φ−1
+ (t, 0, r(λ)) = K(t, 0, λ)A(λ)K−1(t, 0, λ).

Since we assume to have zero seed solutions, the frozen Bäcklund transformations are of the form
B = diag(1 + (α± i|β|)/(2λ), 1 + (α∓ i|β|)/(2λ)) and B = diag(1± iα/λ, 1∓ iα/λ) for the NLS
and sG equation, respectively. Therefore,

ã11(λ) = a11(λ), ã21(λ) =
2λ+ α∓ i|β|
2λ+ α± i|β|

a21(λ),

ã11(λ) = a11(λ), ã21(λ) =
λ∓ iα
λ± iα

a21(λ)

holds for the NLS and the sG equation, respectively. The same concept applied to the boundary
matrices K(λ) for the Robin boundary and K(t, 0, λ) for the new boundary condition as well as
K(t, 0, λ) for the sin-boundary condition results in the relations

a11(−λ) = a11(λ), a21(−λ) =
iα + 2λ

iα− 2λ
a21(λ),

a11(−λ) = a11(λ), a21(−λ) =
(2λ− i|β|)2 − α2

(2λ+ i|β|)2 − α2
a21(λ)

as well as

a11(λ−1) = a11(λ), a21(λ−1) =
α− i(λ− λ−1)

α + i(λ− λ−1)
a21(λ),
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respectively. These relations give the fundamental idea on how to choose the zeros of a11(λ) and
ã11(λ) on each side of the defect or a11(λ) for the boundary condition for the respective condition
to be preserved under the Dressing method. That is if λ1, . . . , λN and λ̃1, . . . , λ̃N are the zeros of
a11(λ) and ã11(λ) on the right and the left side of the defect, respectively, then ã11(λ) = a11(λ)
implies that one way to construct a solution corresponds to choosing the set of zeros to be the same
not necessarily in the right order. However by the Theorem of permutability 3.2.7 for the Dressing
method, the order is not of primary importance and therefore we can take λ̃1 = λ1, . . . , λ̃N = λN
without loss of generality. Further, the relation of ã21(λ) to a21(λ) provides an insight into
the relation of the norming constants. On the other hand, the relations a11(−λ) = a11(λ) and
a11(λ

−1) = a11(λ) for the NLS equation and the sG equation with a boundary condition imply
that if λ1 is used in the Dressing method to introduce new zeros, then −λ1 and λ−1

1 or rather r(λ1)
should also emerge as a zero. Beyond that, the relations of a21(r(λ)) to a21(λ) again foreshadow
the relation of the norming constants. Nonetheless, this is only an idea and the effort of this thesis
is to make it precise. That being said, it is still instrumental to see that the choice of relations of
zeros has an origin. We refer to Figure 4.2 for an exemplary distribution of such zeros.

λj−λ∗j

λ∗j−λj

λj−λ∗j

λ∗j−λj

1
λ∗j

− 1
λj

1
λj

− 1
λ∗j

Fig. 4.2. Distribution of zeros in the presence of boundary conditions for the NLS
equation (left) and for the sG equation (right).

Remark 4.4.1. The zero seed solution θ ≡ 0 for the sG equation only satisfies the sin-boundary
condition out of the three boundary conditions given in Proposition 4.3.2 and therefore this
viewpoint only makes sense for this boundary condition.

Now assume we are given seed solutions which satisfy the defect conditions (4.1.2) or (4.1.4).
Then, Propositions 3.1.1 and 3.1.2 imply that this is equivalent to the respective frozen Bäcklund
transformation, say B0, satisfying (4.1.1) and thus connecting the Lax pairs of the respective
solution, which shifts the problem to the spectral side. Subsequently, we utilize the Dressing
method to construct new solutions, as illustrated in this subsection. In theory, the last step would
be to verify that the constructed solutions again satisfy the defect conditions. In order to be
able to check this assertion, we want to show that there exists a frozen Bäcklund transformation
represented through the matrix BN which satisfies (3.1.2) at x = 0 for the Lax pairs corresponding
to the by the Dressing method constructed solutions, see Figure 4.3.

In particular, the frozen Bäcklund transformation represented by the matrix B0 is initially
treated as a (frozen) one-fold dressing matrix as in Proposition 4.2.1. In turn, the frozen Bäcklund
transformation represented by the matrix BN is then at first also introduced as a (frozen) one-fold
dressing matrix connecting the new solutions. So the last step mentioned above is to show that
the constructed dressing matrix can be written as a matrix representing the frozen Bäcklund
transformation containing the right parameters which are needed in order for the defect conditions
to be preserved. In the case of a nonzero seed solution for the NLS equation, determining the
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θ[0] = 0 θ[N ]

θ̃[0] = 0 θ̃[N ]

B0 BN
D[N ]

D̃[N ]

u[0] u[N ]

ũ[0] ũ[N ]

B0 BN
D[N ]

D̃[N ]

Fig. 4.3. Schematic plan of the preservation of the frozen Bäcklund transformation
under the Dressing method for the sG (left) and NLS equation (right).

± sign turns out to be more convoluted. Indeed a similar requirement as in Proposition 4.2.1
regarding the value of the intermediate wave function is necessary in order to make sure that the
sign stays the same. On top of that, the crux of the matter is that we need to determine a value at
which we can verify that the sign is preserved in the first place which is structurally different from
Proposition 4.2.1. In that regard, it turns out to be purposeful to analyze the (frozen) dressing
matrix in more detail beforehand.

4.4.2 Frozen one-fold dressing matrix

So, the goal of this subsection is to establish conditions under which we can determine the sign of
a matrix representing the frozen Bäcklund transformation of two solutions for which we applied
the Dressing method. In that regard, important properties of a Bäcklund transformation with
respect to x have been in detail discussed in detail in [17]. In particular, it is shown that the
transformation BIm(λ1),ψ1 : u 7→ ũ = BIm(λ1),ψ1u, the Bäcklund transformation of u(t, ·) with respect
to {Im(λ1), ψ1} on R, is a bijection from H1,1(R) onto H1,1(R). Similarly, we want to analyze the
iteration of N one-fold dressing matrices as Bäcklund transformations with respect to t at x = 0.
Thus, for functions f(·, 0, λ), we introduce the function spaces

H0,1
t (R) = {f ∈ L2(R) : tf ∈ L2(R)}, H1,1

t (R) = {f ∈ L2(R) : ∂tf, tf ∈ L2(R)}

and state the following lemma, which is essential in the proof.

Lemma 4.4.2. Let f(·, 0, λ) ∈ H0,1
t (R), g(·, 0, λ) ∈ H1,1

t (R) and Im(λ2) < 0. Then,∥∥∥∫ ∞
〈t〉

f(τ, 0, λ)g(τ, 0, λ) dτ
∥∥∥
H1,1
t (R+)

≤ c‖f(·, 0, λ)‖H0,1
t (R+)‖g(·, 0, λ)‖H1,1

t (R+),∥∥∥∫ ∞
〈t〉

f(τ, 0, λ)e−4 Im(λ2)(〈t〉−τ) dτ
∥∥∥
H1,1
t (R)

≤ c‖f(·, 0, λ)‖H0,1
t (R),

where c depends on λ.

Proof. Analogously to the proof in [17], we take t > 0 and show∣∣∣∫ ∞
t

f(τ, 0, λ)g(τ, 0, λ) dτ
∣∣∣ ≤ ∫ ∞

t

τ 2 + 1

t2 + 1
|f(τ, 0, λ)| |g(τ, 0, λ)| dτ

≤ 1

t2 + 1
‖f(·, 0, λ)‖H0,1

t (R+)‖g(·, 0, λ)‖H0,1
t (R+).
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Thus, the integral is in H0,1
t (R+). For the first derivative of the integral, we have the following

equality d
dt

∫∞
t
f(τ, 0, λ)g(τ, 0, λ) dτ = −f(t, 0, λ)g(t, 0, λ) and therefore the first inequality follows.

Observing that ∫ ∞
t

f(τ, 0, λ)e−4 Im(λ2)(t−τ) dτ =

∫ ∞
0

f(t+ τ, 0, λ)e4 Im(λ2)τ dτ,

we have ∥∥∥(1 + |〈t〉|)
∫ ∞
〈t〉

f(τ, 0, λ)e−4 Im(λ2)(〈t〉−τ) dτ
∥∥∥
L2(R)

≤
∫ ∞

0

‖(1 + |〈t〉|)f(〈t〉+ τ, 0, λ)‖L2(R)e
4 Im(λ2)τ dτ

adding a zero with τ − τ in the bracket, we can use the Minkowski inequality to obtain

≤ c‖f(·, 0, λ)‖H0,1
t (R)

∫ ∞
0

(1 + τ)e4 Im(λ2)τ dτ ≤ c
1− Im(λ2)

Im(λ2)2
‖f(·, 0, λ)‖H0,1

t (R+)

Since the derivative of the integral is

d

dt

∫ ∞
t

f(τ, 0, λ)e−4 Im(λ2)(t−τ) dτ = −f(t, 0, λ)− 4 Im(λ2)

∫ ∞
t

f(τ, 0, λ)e−4 Im(λ2)(t−τ) dτ,

we use the same steps to show that it is in L2(R) and can conclude the proof.

Given the spectral parameter λ1 = ξ1 + iη1, we can denote the one-fold dressing matrix (3.2.2)
as

D[1](t, x, λ) =
1

λ− λ∗1

(
λ− ξ1 − iη1

1−|∆(t,x)|2
1+|∆(t,x)|2 −2iη1

∆∗(t,x)
1+|∆(t,x)|2

−2iη1
∆(t,x)

1+|∆(t,x)|2 λ− ξ1 + iη1
1−|∆(t,x)|2
1+|∆(t,x)|2

)
.

Therefore, the reconstruction formula (3.2.4) implies

u[1](t, x) = u(t, x) + 4η1
∆∗(t, x)

1 + |∆(t, x)|2
,

u[1]x(t, x) = ux(t, x)− 2iξ1(u[1](t, x)− u(t, x))− 2η1
1− |∆(t, x)|2

1 + |∆(t, x)|2
(u[1](t, x) + u(t, x)).

(4.4.2)

In particular, we assume that in the following u(t, 0) is given and the one-fold dressing matrix is
used to determine u[1](t, 0). So, we have a well defined transformation Btλ1,ψ1

: u 7→ u[1] = Btλ1,ψ1
u

mapping u(·, 0) ∈ L1
loc(R)→ L1

loc(R) 3 u[1](·, 0). The denominator 1 + |∆(t, 0)|2 can not be zero,
since ψ1 is a solution of ψt = (−2iλ2σ3 + Q1)ψ at λ = λ1. If there exists a t0 ∈ R such that
ψ1(t0, 0) = 0, then (ψ1)t(t0, 0) = 0 and therefore ψ1(t, 0) = 0 for every t ∈ R. The assumption of a
nonzero asymptotic limit of ψ1 gives the contradiction. In particular, we want to have that if u(t, 0)
vanishes for |t| → ∞, then the same is true for the transformed function u[1](t, 0). Therefore, we
work with functions u(·, 0), ux(·, 0) ∈ H1,1

t (R). In particular, for u(·, 0), ux(·, 0) ∈ H0,1
t (R), we can

show that

‖Q1(·, 0, λ)‖L1(R) ≤
(

‖u2‖L1(R) ‖2λu+ iux‖L1(R)

‖2λu∗ + iu∗x‖L1(R) ‖u2‖L1(R)

)
≤

(
‖u‖2

L2(R) 2|λ|‖u‖H0,1
t (R) + ‖ux‖H0,1

t (R)

2|λ|‖u‖H0,1
t (R) + ‖ux‖H0,1

t (R) ‖u‖2
L2(R)

)
.

Thus, we can prove the following result.
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Proposition 4.4.3. Btλ1,ψ1
, where λ1 ∈ C \ (R ∪ iR), maps functions u(·, 0), ux(·, 0) ∈ H1,1

t (R)

onto u[1](·, 0), u[1]x(·, 0) ∈ H1,1
t (R).

Proof. Following the proof for the Bäcklund transformation with respect to x, see [17, Prop. 4.7],
we want to introduce a t dependent (Jost) function. In that regard, we freeze the space variable x,
particularly, at x = 0. Then, given the limit behaviors |u(t, 0)| → 0 and |ux(t, 0)| → 0 as |t| → ∞,
it is reasonable to assume that there exists a 2× 1-vector-valued solution m to the spectral problem

ψt = (−2iλ2σ3 +Q1)ψ

admitting the asymptotic behavior m(t, 0, λ) ∼ e1e
−2iλ2t as t → ∞. Then, we also define the

normalized t dependent (Jost) function by

m̂(t, 0, λ) = m(t, 0, λ)e2iλ2t,

which admits the normalization limt→∞ m̂(t, 0, λ) = e1. The solution m(t, 0, λ) = m̂(t, 0, λ)e−2iλ2t is
uniquely specified by the asymptotic behavior m̂(t, 0, λ)→ e1 as t→∞. As in the usual scattering
process, see [2], the normalized (Jost) function can be constructed by solving the following Volterra
integral equation

m̂(t, 0, λ) = e1 −
∫ ∞
t

(
1 0

0 e4iλ2(t−τ)

)
Q1(τ, 0, λ) m̂(τ, 0, λ) dτ. (4.4.3)

This, we show by defining the operator

T [m̂](t, 0, λ) = −
∫ ∞
t

(
1 0

0 e4iλ2(t−τ)

)
Q1(τ, 0, λ) m̂(τ, 0, λ) dτ,

which is a bounded operator mapping from L∞(R) to L∞(R) for any fixed λ such that Im(λ2) < 0,
since t− τ ≤ 0. Also, we define

Tj[m̂](t, 0, λ) = −
∫ tj−1

t

(
1 0

0 e4iλ2(t−τ)

)
Q1(τ, 0, λ) m̂(τ, 0, λ) dτ,

where we fix λ such that Im(λ2) = 0. For an arbitrary interval (tj−1, tj) ⊂ R, we obtain the
estimate

||Tj[m̂](·, 0, λ)||L∞(tj−1,tj) ≤ ||Q1(·, 0, λ)||
L1(tj−1,tj)

||m̂(·, 0, λ)||L∞(tj−1,tj).

Then, we can choose tj in such a way that the operator Tj is a contraction from L∞(tj−1, tj)
to L∞(tj−1, tj). Repeating this argument starting from t0 = −∞ and appropriately chosen t1,
. . . , to t`−1 and t` = ∞, we can obtain finitely many intervals so that Tj is contraction from
L∞(tj−1, tj) to L∞(tj−1, tj), j = 1, . . . , `. Setting m̂0(t, 0, λ) ≡ e1 on (t0, t1), we can find a function
m̂j(·, 0, λ) ∈ L∞(tj−1, tj) by the Banach Fixed Point Theorem such that it solves the equation

m̂j(t, 0, λ) = m̂j−1(tj, 0, λ) + Tj[m̂j](t, 0, λ), t ∈ (tj−1, tj)

for every j = 2, . . . , `. Combining these functions, we find a continuous function in L∞(R) satisfying
the Volterra integral equation (4.4.3), which covers the existence.

Now, for the claims regarding the continuation of m̂(t, 0, λ) to Im(λ2) ≤ 0. Analogously
to the x dependent Jost solution ψ̂

(1)
− (t, x, λ), we introduce for m̂(t, 0, λ) the Neumann series∑∞

j=0 T j[m0](t, 0, λ), where m0(t, 0, λ) ≡ e1, which is formally a solution of the Volterra integral
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equation (4.4.3). Then, it is possible to derive a bound of the iterated operator T . We define
h(t, λ) by

h(t, λ) =

∫ ∞
t

|Q1(τ, 0, λ)| dτ ≤
∫ ∞

0

|Q1(τ, 0, λ)| dτ ≤ ‖Q1(·, 0, λ)‖L1(R).

By induction, we have

|T j+1[m̂](t, 0, λ)| ≤ c
‖m̂(·, 0, λ)‖L∞(R)

j!

∫ ∞
t

|Q1(τ, 0, λ)| (h(τ, λ))j dτ

≤ c
‖m̂(·, 0, λ)‖L∞(R)

j!

∫ h(t,λ)

0

sj ds

= c‖m̂(·, 0, λ)‖L∞(R)
(h(t, λ))j+1

(j + 1)!
,

where we put s = h(τ, λ). Thus, we have that
∑∞

j=0 T j[m0](t, 0, λ) is majorized in norm by a
uniformly convergent power series and is therefore itself uniformly convergent for Im(λ) ≤ 0.
The analyticity and continuity continuation for m̂(t, 0, λ) in {λ ∈ C \ {0} : Im(λ2) ≤ 0} and in
{λ ∈ C \ {0} : Im(λ2) < 0}, respectively, holds for the function m(t, 0, λ), which can be proven
similarly as in the proof of Theorem 2.1.1. It is left, to show that the entries of m̂(·, 0, λ)− e1 are
in H1,1

t (R). Since T maps L∞(R) to L∞(R) and writing m̂(t, 0, λ) = (m̂1, m̂2), we can estimate
using Lemma 4.4.2,

‖m̂2(·, 0, λ)‖H1,1
t (R) ≤ c‖([Q1]21m̂1)(·, 0, λ)‖H0,1

t (R) + c‖([Q1]22m̂2)(·, 0, λ)‖H0,1
t (R)

≤ ‖m̂1(·, 0, λ)‖L∞(R)‖[Q1(·, 0, λ)]21‖H0,1
t (R)

+ ‖m̂2(·, 0, λ)‖L∞(R)‖[Q1(·, 0, λ)]22‖H0,1
t (R)

and

‖m̂1(·, 0, λ)− 1‖H1,1
t (R) ≤ c‖([Q1]11m̂1)(·, 0, λ)‖H1,1

t (R) + c‖([Q1]12m̂2)(·, 0, λ)‖H1,1
t (R)

≤ ‖m̂1(·, 0, λ)‖L∞(R)‖[Q1(·, 0, λ)]11‖H1,1
t (R)

+ ‖m̂2(·, 0, λ)‖L∞(R)‖[Q1(·, 0, λ)]12‖H1,1
t (R).

And for the entries of Q1(t, 0, λ), we find

‖[Q1(·, 0, λ)]11‖H1,1
t (R) ≤ ‖u(·, 0)‖L∞(R)‖u(·, 0)‖H1,1

t (R),

‖[Q1(·, 0, λ)]12‖H1,1
t (R) ≤ 2|λ|‖u(·, 0)‖H1,1

t (R) + ‖ux(·, 0)‖H1,1
t (R),

‖[Q1(·, 0, λ)]21‖H0,1
t (R) ≤ 2|λ|‖u(·, 0)‖H0,1

t (R) + ‖ux(·, 0)‖H0,1
t (R),

‖[Q1(·, 0, λ)]22‖H0,1
t (R) ≤ ‖u(·, 0)‖L∞(R)‖u(·, 0)‖H0,1

t (R).

(4.4.4)

Thus, if u(·, 0), ux(·, 0) ∈ H1,1
t (R), then m̂(·, 0, λ)− e1 ∈ H1,1

t (R). For the uniqueness, we refer to
the proof of Theorem 2.1.1. Next, we consider a solution n(t, 0, λ) of the t part of the Lax pair
defined on Im(λ2) ≤ 0 and t ∈ R with the property

n(t, 0, λ) = (e2 + r1(t))e2iλ2t, r1 ∈ H1,1
t (R).

Here, e2 = (0, 1)ᵀ and n(t, 0, λ) is a non-unique solution of the differential equation defined on the
same domain as m(t, 0, λ) and these vectors are linearly independent for all t ∈ R:
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For given u(·, 0), ux(·, 0) ∈ H1,1
t (R) and λ ∈ {λ ∈ C \ {0} : Im(λ2) ≤ 0}, we fix t0 > −∞ such

that each entry of
∫∞
t0
|Q1(τ, 0, λ)| dτ is bounded by a constant ct0 < 1 and by the arbitrary choice

of t0, the non-uniqueness is apparent. For Im(λ2) ≤ 0, we consider the following integral equation
for n(t, 0, λ),

n(t, 0, λ) = e2iλ2te2 +

∫ t

t0

(
e−2iλ2(t−τ) 0

0 0

)
Q1(τ, 0, λ)n(τ, 0, λ) dτ

−
∫ ∞
t

(
0 0

0 e2iλ2(t−τ)

)
Q1(τ, 0, λ)n(τ, 0, λ) dτ, t ≥ t0.

Set n̂(t, 0, λ) = n(t, 0, λ)e−2iλ2t, then the integral equation becomes

n̂(t, 0, λ) = e2 + (N n̂)(t, 0, λ), t ≥ t0, (4.4.5)

where N is an integral operator defined by

(N n̂)(t, 0, λ) =

∫ t

t0

(
e−4iλ2(t−τ) 0

0 0

)
Q1(τ, 0, λ) n̂(τ, 0, λ) dτ

−
∫ ∞
t

(
0 0
0 1

)
Q1(τ, 0, λ) n̂(τ, 0, λ) dτ, n̂(·, 0, λ) ∈ L∞[t0,∞).

By the same argument as for m̂(t, 0, λ), we have existence of n̂(t, 0, λ) for t ∈ (t0,∞). As Im(λ2) ≤ 0
and each entry of Q1(·, 0, λ) being in L1[t0,∞), N is a bounded operator from L∞[t0,∞) to
L∞[t0,∞). Similar to before, put n̂0(t, 0, λ) = e2 and define n̂j+1(t, 0, λ) = e2 + (N n̂j)(t, 0, λ),
inductively. Then,

‖(n̂j+1 − n̂j)(·, 0, λ)‖L∞[t0,∞) ≤ cjt0 , j ≥ 0.

Indeed ‖n̂1(·, 0, λ)− n̂0(·, 0, λ)‖L∞[t0,∞) ≤ ct0 and for j ≥ 1,

‖(n̂j+1 − n̂j)(·, 0, λ)‖L∞[t0,∞) = ‖(N (n̂j − n̂j−1))(·, 0, λ)‖L∞[t0,∞)

≤ ‖(n̂j − n̂j−1)(·, 0, λ)‖L∞[t0,∞)

∫ ∞
t0

|Q1(τ, 0, λ)| dτ

= ct0‖(n̂j − n̂j−1)(·, 0, λ)‖L∞[t0,∞).

Therefore, n̂(t, 0, λ) = n̂0(t, 0, λ) +
∑∞

j=1 n̂j(t, 0, λ)− n̂j−1(t, 0, λ) converges in L∞[t0,∞) and solves
the integral equation (4.4.5). Writing n̂(t, 0, λ) = (n̂1, n̂2)ᵀ, (4.4.5) becomes

n̂1(t, 0, λ) =

∫ t

t0

e−4iλ2(t−τ)([Q1(τ, 0, λ)]11n̂1(τ, 0, λ) + [Q1(τ, 0, λ)]12n̂2(τ, 0, λ)) dτ,

n̂2(t, 0, λ) = 1−
∫ ∞
t

[Q1(τ, 0, λ)]21n̂1(τ, 0, λ) + [Q1(τ, 0, λ)]22n̂2(τ, 0, λ) dτ.

As for m̂(t, 0, λ), we can prove that if u(·, 0), ux(·, 0) ∈ H1,1
t (R), then n̂1(·, 0, λ) ∈ H1,1

t [t0,∞).
Therefore, we consider with Lemma 4.4.2 the estimate

‖n̂1(·, 0, λ)‖H1,1
t [t0,∞) ≤ c‖([Q1]11n̂1)(·, 0, λ)‖H0,1

t [t0,∞) + c‖([Q1]12n̂2)(·, 0, λ)‖H0,1
t [t0,∞)

≤ ‖n̂1(·, 0, λ)‖L∞[t0,∞)‖[Q1(·, 0, λ)]11‖H0,1
t (R)

+ ‖n̂2(·, 0, λ)‖L∞[t0,∞)‖[Q1(·, 0, λ)]12‖H0,1
t (R).
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A similar reasoning involving Lemma 4.4.2 implies that n̂2(·, 0, λ)− 1 ∈ H1,1
t [t0,∞). We have

‖n̂2(·, 0, λ)− 1‖H1,1
t [t0,∞) ≤ c‖([Q1]21n̂1)(·, 0, λ)‖H1,1

t [t0,∞) + c‖([Q1]22n̂2)(·, 0, λ)‖H1,1
t [t0,∞)

≤ ‖n̂1(·, 0, λ)‖L∞[t0,∞)‖[Q1(·, 0, λ)]21‖H1,1
t (R)

+ ‖n̂2(·, 0, λ)‖L∞[t0,∞)‖[Q1(·, 0, λ)]22‖H1,1
t (R).

Except for

‖[Q1(·, 0, λ)]21‖H1,1
t (R) ≤ 2|λ|‖u(·, 0)‖H1,1

t (R) + ‖ux(·, 0)‖H1,1
t (R),

‖[Q1(·, 0, λ)]22‖H1,1
t (R) ≤ ‖u(·, 0)‖L∞(R)‖u(·, 0)‖H1,1

t (R),

all estimates on the entries of Q1(t, 0, λ) are already done in (4.4.4). Therefore, we indeed have that
n̂(·, 0, λ)− e2 ∈ H1,1

t [t0,∞) if u(·, 0), ux(·, 0) ∈ H1,1
t (R). We know that n(t, 0, λ) defined through

n̂(t, 0, λ) solves the integral equation (4.4.3) for t ∈ R and we have its existence in t ≥ t0, it follows
that, given t0, n(t, 0, λ) can be uniquely extended to a solution of the t part of the Lax system for
Im(λ2) < 0.

The linear independence of m(t, 0, λ1) and n(t, 0, λ1), λ1 ∈ {λ ∈ C : Im(λ2) < 0}, can be shown
by

lim
t→∞

det(m(t, 0, λ1), n(t, 0, λ1)) = 1.

Since V has zero trace, we conclude that

det(m(t, 0, λ1), n(t, 0, λ1)) = 1, t ∈ R.

Then, for t ∈ R, we can write ψ1(t, 0) as a linear combination of m(t, 0, λ1) and n(t, 0, λ1) so that

ψ1(t, 0) = c1m(t, 0, λ1) + c2n(t, 0, λ1)

for some constants c1, c2. If c2 = 0, then as t→∞,

ψ1(t, 0) = c1e
−2iλ21t

(
1 + r2(t)
r3(t)

)
, rj ∈ H1,1

t (R), j = 2, 3.

Hence,

[P [1](t, 0)]12 =
(1 + r2(t))r3(t)∗

|1 + r2(t)|2 + |r3(t)|2
∈ H1,1

t (R).

As in the argumentation for the Darboux matrix being a map from u(·, 0) ∈ L1
loc(R)→ L1

loc(R) 3
u[1](·, 0), the denominator |1 + r2(t)|2 + |r3(t)|2 can not be zero, due to m(t, 0, λ) being a solution
of the spectral problem ψt = (−2iλ2σ3 + Q1)ψ and given its asymptotic behavior as t goes to
infinity. If c2 6= 0, then as t→∞,

ψ1(t, 0) = c2e
2iλ21t

(
r4(t)

1 + r5(t)

)
, rj ∈ H1,1

t (R), j = 4, 5.

The same reasoning makes sure that the denominator can not be zero and hence,

[P [1](t, 0)]12 =
(1 + r5(t))∗r4(t)

|1 + r4(t)|2 + |r5(t)|2
∈ H1,1

t (R).

Thus,
u[1](t, 0) = u(t, 0) + 4η1[P [1](t, 0)]12 ∈ H1,1

t (R).

By the second line of equation (4.4.2), it can also be shown that u[1]x(·, 0) ∈ H1,1
t (R) in both cases.

For Im(λ2) ≥ 0, the choice of the normalization of m(t, 0, λ) and n(t, 0, λ) is reversed.
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If we extend this reasoning to the dressing matrix D[1](t, x, λ), we can infer a helpful property in
the determination of a value for which the sign of the matrix corresponding to the frozen Bäcklund
transformation is preserved.

Lemma 4.4.4 (Deift & Park, [17]). Let u(·, 0), ux(·, 0) ∈ H1,1
t (R), and D[1](t, x, λ) be a dressing

matrix constructed by λ1 and ψ1(t, x) = ([ψ1]1, [ψ1]2)
ᵀ. Then, (λ− λ∗1)D[1](t, 0, λ) goes to either

diag(λ− λ∗1, λ− λ1) or diag(λ− λ1, λ− λ∗1) as t→∞, depending on the limit behavior of ψ1(t, 0).

Proof. At t = 0 and x = 0, ψ1 is either being produced by (1, c)ᵀ, c ∈ C, or (0, 1)ᵀ. In the
first case, ψ1(t, 0) = c1m(t, 0, λ1) + c2n(t, 0, λ1) for some constants c1, c2, where m(t, 0, λ) and
n(t, 0, λ) are the linearly independent solutions of the t part of the Lax system as constructed in
the proof of Proposition 4.4.3. If ψ1 is proportional to m(t, 0, λ1), then necessarily c2 = 0. As a
consequence [ψ1]2

[ψ1]1
= m2(t,0,λ1)

m1(t,0,λ1)
→ 0 as t→∞ and so (λ−λ∗1)D[1](t, 0, λ) goes to diag(λ−λ1, λ−λ∗1)

as t → ∞. If c2 6= 0, then, as t → ∞, ψ1(t, 0) = c2e
2iλ21t

(
r4(t)

1 + r5(t)

)
, where r4, r5 ∈ H1,1

t (R+) as

before. Therefore, [ψ1]1
[ψ1]2
→ 0 as t → ∞ and so (λ − λ∗1)D[1](t, 0, λ) goes to diag(λ − λ∗1, λ − λ1)

as t→∞. In the second case, we necessarily have c1 = 0 and again by n(t, 0, λ1), we have that
(λ− λ∗1)D[1]

∣∣
x=0

goes to diag(λ− λ∗1, λ− λ1) as t→∞.

In particular, this property can be restated in the following sense:

Remark 4.4.5. Let u(·, 0), ux(·, 0) ∈ H1,1
t (R), then consecutively using one-fold dressing matrices

corresponding to distinct spectral parameters λ1, . . . , λN maps the functions u, ux onto a function
u[N ](·, 0), u[N ]x(·, 0) ∈ H1,1

t (R). Moreover, the N -fold dressing matrix defined as in (3.2.12)
multiplied by

∏N
j=1(λ− λ∗j) goes to a product of diagonal matrices of the form diag(λ− λ∗j , λ− λj)

or diag(λ− λj, λ− λ∗j) depending on the limit behavior of ψj(t, 0) for j = 1, . . . , N .
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Chapter 5

Dressing

In the first section of this chapter, we want to apply a method, which we call dressing the defect,
based on the Dressing method for Lax systems to prove that it is possible to explicitly construct
soliton and breather solutions for the models of the sG and NLS equation on two half-lines which
are connected via defect conditions as presented in Subsection 4.1.2. Initially, this method has
been introduced as an alternative and more natural approach to the mirror image technique
[5, 6] in order to construct solutions regarding the sG and NLS equation on the half-line with a
sin-boundary condition [43] and a Robin boundary condition [42], respectively, where the authors
called the method in the second more detailed paper dressing the boundary. As it turns out, it is
by no means sufficient to take the method presented in [42] and to just apply it to other models as
is, since it seems to be more or less specifically tailored to the NLS equation on the half-line with
a Robin boundary condition or rather boundary conditions which are structurally similar to the
Robin boundary condition. Thus, even though the methods of dressing the defect or dressing the
boundary are called the same in this thesis, they should be understood as generalizations of the
method initially developed.

5.1 Initial value problems with defect conditions

In general, the method of dressing the defect, as we generalized it, can be divided into three steps:

(a) We show that the functions derived by the Dressing method indeed satisfy the respective PDE
on the appropriate domain which is more or less a formality. In order to verify this, Proposition
3.2.5 and Remark 3.2.6 are of importance.

(b) Afterwards, we construct a matrix, which is on the one hand not determined in terms of
the solutions from (a) and on the other hand it is chosen so that the spectral equivalent of the
defect conditions at x = 0 is satisfied. This is due to the fact that the spectral condition itself
can be transformed into an equivalent, more handy expression which can, in turn, be proven by a
comparison of two polynomial matrices with respect to the spectral parameter λ.

(c) Then, since the matrices are, up to a function of λ, polynomial matrices of degree one with
respect to λ, we know by Propositions 3.1.1 and 3.1.2 the explicit forms of the (frozen) Darboux
matrices. Thus, the goal is to determine the sign and the defect parameters and to verify that
they match the sign and the defect parameters of the frozen Bäcklund transformation associated
with the seed solutions.

73
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In that regard, it appears that in every application, whether it is in the case of the sG or NLS
equation, there are slightly different conditions which, in turn, lead to subtle changes in the proof.
For example, in the case of the sG equation, it turns out to be advantageous that the seed solution
is naturally assumed to be zero as utilized in Proposition 3.2.4 and also that for the reconstruction
formula one evaluates the zero-th order matrix coefficient of the dressing matrix. Thus, we first
apply dressing the defect to construct solutions in the case of the sG equation, since the proof has
the most basic specifications.

5.1.1 The sG equation

For the convenience of the reader, we invoke the model we want to solve explicitly. Therefore,
consider the sG equation on two half-lines

θtt − θxx + sin θ = 0 (5.1.1)

for θ(t, x) : R × R+ 7→ C and initial conditions θ(0, x) = θ0(x) and θt(0, x) = θ1(x) for x ∈ R+

together with
θ̃tt − θ̃xx + sin θ̃ = 0 (5.1.2)

for θ(t, x) : R × R− 7→ C and initial condition θ̃(0, x) = θ̃0(x) and θ̃t(0, x) = θ̃1(x) for x ∈ R−.
Further in accordance to the defect conditions, θ(t, 0) and θ̃(t, 0) satisfy (4.1.4).

Similar to the method applied in [26], we want to utilize dressing the defect to insert soliton
and breather solutions. As worked out in Subsection 4.4.1, it is sufficient when constructing a
soliton and/or breather on one side of the defect to also construct a soliton and/or breather on the
other side of the defect in order for the defect conditions to be preserved. Structurally, one way to
achieve this preservation is to consider the same spectral parameter λj and appropriately chosen
quotients of vj and uj used in the Dressing method on each of the half-lines for j = 1, . . . , N . This
is worked out in the following statement.

Proposition 5.1.1. Consider zero seed solutions θ[0] = 0 and θ̃[0] = 0 to the sG equation (5.1.1)
and (5.1.2), which at x = 0 satisfy the defect conditions (4.1.4) with α ∈ R \ {0}. Further,
take solutions ψj, j = 1, . . . , N , of the Lax system (2.2.3) corresponding to θ[0] for distinct
λ = λj ∈ C\

(
R∪{−iα, iα}

)
. Assume that there exist paired solutions ψ̃j, j = 1, . . . , N , of the Lax

system (2.2.3) corresponding to θ̃[0] for the same spectral parameter λ = λj and that they satisfy

ψ̃j
∣∣
x=0

= B0(t, 0, λj)ψj
∣∣
x=0

, j = 1, . . . , N, (5.1.3)

where the matrix B0 is associated to the frozen Bäcklund transformation (3.1.5) representing the
defect conditions with either a plus or a minus sign. Then, two N-fold dressing matrices D[N ],
D̃[N ] using the corresponding solutions and spectral parameters lead to solutions θ[N ] and θ̃[N ] to
the sG equation on the respective half-line, for which the defect conditions (4.1.4) are preserved.

To this end, we shall show that the functions θ[N ] and θ̃[N ] constructed with the N -fold
dressing matrices (a) satisfy the sG equation on the positive and negative half-line, respectively,
(b) are regarding the Lax systems subject to defect conditions with a matrix BN , which is for the
time being unspecified with respect to the solutions, and further, that (c) BN can be written as a
matrix corresponding to the frozen Bäcklund transformation (3.1.5) for the two solutions θ[N ] and
θ̃[N ] with the sign and spectral parameter being preserved.
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Proof. (a) Due to the analysis in Section 2.2, it is clear that there are two cases for spectral
parameters λj, j ∈ {1, . . . , N}. The first case is represented by paired spectral parameters
λj ∈ iR and λ∗j = −λj corresponding to single solitons for which there is another solution
ϕj(t, x) = −iσ2ψ

∗
j (t, x) or ϕj(t, x) = σ1ψj(t, x) according to the symmetry of the Lax pair, see

(2.2.4). Since the norming constant is purely imaginary in that case, the choices for ϕj are not
necessarily equal to ψj, but ψj and ϕj are linearly dependent. In the second case, the spectral
parameters come in quadruples λj ∈ C \

(
R ∪ iR

)
, λk = −λj, λ∗j and −λ∗j = λ∗k, k ∈ {1, . . . , N}

and k 6= j, corresponding to breathers for which there are two additional solutions of the Lax
system ϕj(t, x) = −iσ2ψ

∗
j (t, x) for λ = λ∗j and ϕk(t, x) = −iσ2ψ

∗
k(t, x) for λ = λ∗k. Furthermore,

there is also a connection between the solutions corresponding to λj and λk = −λj given by
ψk(t, x) = σ1ψj(t, x), which follows again from the symmetry of the Lax pair (2.2.4). Here, this
distinction turns out to be not as important as later on in the case of the sG equation on the
half-line with boundary conditions, however, one should be aware of this fact.

From Remark 3.2.6, we then derive that, since the spectral parameters λ1, . . . , λN and their
complex conjugates are distinct, all solutions mentioned are linearly independent. Moreover,
constructing the dressing matrix D[N ] from the vectors ψj and corresponding spectral parameters
λj, we know that the dressing matrix multiplied by

∏N
k=1(λ − λ∗k) has the following zeros and

associated kernel vectors( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

λ=λj
ψj = 0,

( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

λ=λ∗j
ϕj = 0 (5.1.4)

for j = 1, . . . , N . Moreover, the same reasoning for ψ̃j, j = 1, . . . , N , and ϕ̃j chosen accordingly
leads to ( N∏

k=1

(λ− λ∗k)D̃[N ]
)∣∣

λ=λj
ψ̃j = 0,

( N∏
k=1

(λ− λ∗k)D̃[N ]
)∣∣

λ=λ∗j
ϕ̃j = 0. (5.1.5)

In particular, if we arrange the systems (5.1.4) and (5.1.5) separately as sets of algebraic equations
with the dressing matrices written in terms of a polynomial matrix in λ:

N∏
k=1

(λ− λ∗k)D[N ] = λN1 +
N∑
k=1

λN−kΣk,
N∏
k=1

(λ− λ∗k)D̃[N ] = λN1 +
N∑
k=1

λN−kΣ̃k,

it is possible to determine each matrix coefficient Σ1, . . . ,ΣN and Σ̃1, . . . , Σ̃N explicitly if the
vectors are linearly independent. We have

(Σ1, · · · ,ΣN)

λ
N−1
1 ψ1 (λ∗1)N−1ϕ1 · · · λN−1

N ψN (λ∗N)N−1ϕN
...

...
...

...
...

ψ1 ϕ1 · · · ψN ϕN

 =

−λ
N
1 ψ1
...

−λNNϕN

 .

The 2N × 2N -matrix λ
N−1
1 ψ1 (λ∗1)N−1ϕ1 · · · λN−1

N ψN (λ∗N)N−1ϕN
...

...
...

...
...

ψ1 ϕ1 · · · ψN ϕN


filled with the kernel vectors is invertible. Assuming it is not invertible, it follows that the columns
of the matrix are linearly dependent vectors. Therefore, there exist constants c1, . . . , c2N ∈ C so
that

c1ψ1 + c2ϕ1 + · · ·+ c2N−1ψN + c2NϕN = 0,
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which is a contradiction to the linear independence of the kernel vectors derived in Remark 3.2.6
due to the corresponding spectral parameters being distinct. Applying the very same reasoning
to
∏N

k=1(λ − λ∗k)D̃[N ], we have that every matrix coefficient can be determined explicitly and
therefore the solutions derived via Proposition 3.2.4 are in fact solutions of the sG equation on the
respective half-line.

(b) Without loss of generality, we assume that the plus sign is used in the frozen Bäcklund
transformation B0 which is then given by

B0(t, 0, λ) = 1 +
iα

λ
σ3,

not only taken at x = 0, but also t independent. The goal of this step is to construct a matrix,
which we note as BN and which particularly satisfies BN = D̃[N ]B0D[N ]−1 at x = 0. Equivalent
to this equality, we have at x = 0 the following

( N∏
k=1

(λ− λ∗k)D̃[N ]
)

(λB0)
∣∣
x=0

= (λBN)
( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

x=0
, (5.1.6)

where both sides are multiplied by λ
∏N

k=1(λ− λ∗k) to have polynomials with positive powers in
λ which is be used later on. This equality functions as a way to prove the spectral equivalent
(4.1.1) of the defect conditions (4.1.4) for the sG equation. Therefore, let us show that if we have
a matrix BN satisfying (5.1.6), then BN satisfies the relations (4.1.1) at x = 0 connecting Ũ[N ],
Ṽ[N ] and U[N ], V[N ]. To demonstrate this, we exemplary take the equality BN = D̃[N ]B0D[N ]−1

and differentiate with respect to x (evaluated at x = 0) in order to obtain

(BN)x = (D̃[N ]B0(D[N ])−1)x

= (D̃[N ])xB0(D[N ])−1 + D̃[N ](B0)x(D[N ])−1 + D̃[N ]B0((D[N ])−1)x.

Then, the first two summands can be simplified using (3.2.15) and the x part of the spectral version
of the frozen Bäcklund transformation (4.1.1) so that

(D̃[N ])xB0 + D̃[N ](B0)x = (Ũ[N ]D̃[N ]− D̃[N ]Ũ[0])B0 + D̃[N ](Ũ[0]B0 − B0U[0])

= Ũ[N ]D̃[N ]B0 − D̃[N ]B0U[0].

In addition, it can be shown with (3.2.15) that ((D[N ])−1)x from the third summand satisfies

((D[N ])−1)x = −(D[N ])−1(D[N ])x(D[N ])−1

= −(D[N ])−1U[N ] + U[0](D[N ])−1.

If we put these results together and notice that the expressions D̃[N ]B0(D[N ])−1 are in fact again
BN , we obtain

(BN)x = Ũ[N ]D̃[N ]B0(D[N ])−1 − D̃[N ]B0(D[N ])−1U[N ]

= Ũ[N ]BN − BNU[N ].

Similarly, the t part of (4.1.1) is implied effectively using the t part of the relations (3.2.15) and
the t part of the frozen Bäcklund transformation (4.1.1) for B0, which is indeed simplified to
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Ṽ[0]B0 − B0V[0] = 0 due to the t independence of B0. Note that the terms in this calculation are
always evaluated at x = 0 which is not written out in every term to ensure readability.

Now for the construction of the matrix BN , we define λ0 = iα and take a closer look at the
matrix multiplication D̃[N ]B0D[N ]−1. By Remark 3.2.8, D[N ]−1(t, x, λ) = D[N ]†(t, x, λ∗) and
therefore multiplying both sides with λ

∏N
k=1((λ− λ∗k)(λ− λk)) and relating the factors λ to B0,∏N

k=1(λ−λ∗k) to D̃[N ] as well as
∏N

k=1(λ−λk) to D[N ]−1, we obtain a polynomial matrix of degree
2N + 1 in λ: (2N+1∑

k=1

λkmk

)
BN =

2N+1∑
k=0

λkMk,

where the exact expressions of the constant coefficients mk and constant matrix coefficients Mk

with respect to λ are not relevant in their entirety. One observation, we want to note, is, that the
highest order coefficients are m2N+1 = 1 and M2N+1 = 1. Therefore, it makes sense to assume that
BN is of the form BN = 1+ 1

λ
B(0) at x = 0. However, for now we want to think of the matrices B0

and BN being, up to a function of λ, one-fold dressing matrices. On the one hand, Proposition
4.2.1 implies that B0 admits at x = 0 a kernel vector υ(t) = −2c2(t)e2, since θ[0] = 0 and θ̃[0] = 0,
corresponding to the spectral parameter λ0. On the other hand, we have that a solution of the Lax
system at λ = λ0 is given by ψ0(t, x) = u0ψ

(1)
− (t, x, λ0) + v0ψ

(2)
+ (t, x, λ0), where u0, v0 are complex

constants. Since we consider zero seed solutions θ[0] ≡ 0 and θ̃[0] ≡ 0, the Jost functions adopt the
explicit forms ψ(1)

− (t, x, λ0) = e1e
−iΘ(t,x,λ0) and ψ(2)

+ (t, x, λ0) = e2e
iΘ(t,x,λ0). Hence, choosing u0 = 0

and c2(t) appropriately, we can infer that ψ0(t, 0) = υ(t) holds. Then, in particular, B0ψ0

∣∣
x=0

= 0.
With these preliminary considerations, it turns out to be advantageous to construct the one-fold
dressing matrix BN with the vector ψ′0 = D[N ]

∣∣
λ=λ0

ψ0 corresponding to the spectral parameter
λ = λ0 ∈ iR \ {0} so that BN

∣∣
λ=λ0

ψ′0 = 0. Note that the constructed matrix is initially known for
x ∈ R underlining the free choice of the point of the defect.

Now, we write the left and right hand side of the equality (5.1.6) at x = 0 as matrix polynomials
L(λ) and R(λ), respectively. Hence,

L(λ) =
( N∏
k=1

(λ− λ∗k)D̃[N ]
)

(λB0)
∣∣
x=0

= λN+1LN+1 + λNLN + · · ·+ L0,

R(λ) = (λBN)
( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

x=0
= λN+1RN+1 + λNRN + · · ·+R0.

Further, we have made sure that the highest order matrix coefficient for both polynomials are
equal LN+1 = 1 = RN+1, since the highest order coefficients of each individual matrix is the
identity matrix. In the following, we want to show similarly to step (a) that the remaining matrix
coefficients LN , RN , . . . , L0, R0 are equal. However, since we only need them to be equal and we
have that the highest order coefficients already satisfy this assertion, it is advantageous to consider
the difference of the two matrix polynomials and the corresponding zeros and associated kernel
vectors. First off, it is obvious that the zeros and kernel vectors for the dressing matrix D[N ] also
function as zeros and associated kernel vectors for R(λ) at x = 0. Moreover, due to assumption
(5.1.3), at x = 0 the same is true for L(λ) yielding

L(λ)
∣∣
λ=λj

ψj = 0, R(λ)
∣∣
λ=λj

ψj = 0, j = 1, . . . , N.

Then, having cancelled out the singularities λ∗j of the dressing matrices, this equality is transferred
to the solutions ϕj of the Lax system at λ = λ∗j which can be expressed in terms of ψj . In particular,
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at x = 0 we obtain

L(λ)
∣∣
λ=λ∗j

ϕj = 0, R(λ)
∣∣
λ=λ∗j

ϕj = 0, j = 1, . . . , N.

For R(λ), this is again true due to the properties of the dressing matrix and for L(λ), we need
to consider the assumption (5.1.3) in combination with the fact that the matrix B0 representing
the frozen Bäcklund transformation admits similar symmetry relations to (2.2.4), i.e. B0(λ) =
σ2B∗0(λ∗)σ2 or B0(λ) = σ1B0(−λ)σ1. If we compare the prerequisites in (b) with the ones in (a), it
can be noticed that for a polynomial matrix of degree N with N + 1 unknown matrix coefficients
there is a need for 2(N + 1) zeros and associated kernel vectors in order to determine them
completely. Not counting the highest order coefficients for which we already have equality, it is
therefore necessary to have 2(N + 1) zeros and associated kernel vectors which is two more than
the ones we obtain from the dressing matrix and assumption (5.1.3). This is exactly the reasoning
for the interpretation of the matrices representing the frozen Bäcklund transformations as one-fold
dressing matrices. Therefore, we have at x = 0 and for j = 0 that

L(λ)
∣∣
λ=λ0

ψ0 = 0, L(λ)
∣∣
λ=λ∗0

ϕ0 = 0, R(λ)
∣∣
λ=λ0

ψ0 = 0, R(λ)
∣∣
λ=λ∗0

ϕ0 = 0

from the properties we stated for B0 and BN . Then, to deduce the matrix coefficients of the
difference C(λ) = L(λ)− R(λ) = λNCN + · · ·+ C0, we arrange this system as a set of algebraic
equations (

λN0 CN + · · ·+ λ0C1 + C0

)
ψ0 = 0,

(
(λ∗0)NCN + · · ·+ λ∗0C1 + C0

)
ϕ0 = 0,

...
...(

λNNCN + · · ·+ λNC1 + C0

)
ψN = 0,

(
(λ∗N)NCN + · · ·+ λ∗NC1 + C0

)
ϕN = 0.

This set of algebraic equations can further be written in matrix form resulting in

(CN , · · · , C0)

λ
N
0 ψ0 (λ∗0)Nϕ0 · · · λNNψN (λ∗N)NϕN
...

...
...

...
...

ψ0 ϕ0 · · · ψN ϕN

 = 0. (5.1.7)

We can determine the matrix coefficients C0, . . . , CN , since the 2(N + 1)× 2(N + 1)-matrix filled
with the kernel vectors is invertible. This again holds, due to the same argumentation we have
given in step (a) and the two additional kernel vectors coming from distinct spectral parameters.
Hence, it follows that all matrix coefficients C0, . . . , CN are zero which comes from multiplying the
equality (5.1.7) with the inverse 2(N + 1)× 2(N + 1)-matrix filled with the kernel vectors from
the right. Since every matrix coefficient of C(λ) is zero, the matrix polynomial C(λ) is identically
zero and consequently the matrix coefficient of L(λ) and R(λ) of the same power with respect to
λ are necessarily equal. In summary, we present a way to construct a one-fold dressing matrix
BN which admits kernel vectors at the same spectral parameters as the initial frozen Bäcklund
transformation represented through B0. Further by choosing BN as proposed, equality (5.1.6) is
satisfied so that BN can at x = 0 also be expressed as D̃[N ]B0(D[N ])−1. Therefore, this concludes
the task of step (b).

(c) By the reconstruction formula (3.2.16), we have two possibilities: First, an even or an odd
number Ns of single solitons corresponding to the reconstruction formula ei

θ[N ]
2
σ1 = D[N ]

∣∣
λ=0

or
ei
θ[N ]
2
σ1 = D[N ]

∣∣
λ=0

σ3, respectively, and similarly for θ̃[N ] and D̃[N ] as the multi-soliton on the two
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half-lines only differ regarding the norming constants represented through the different coefficients
of the vectors ψj and ψ̃j, j = 1, . . . , N . In both cases we use the respective reconstruction formula
to obtain the expression of the matrix BN = 1 + 1

λ
B(0) at x = 0 representing the frozen Bäcklund

transformation of θ[N ] and θ̃[N ] in terms of the solution space. In theory, taking into account
Proposition 3.1.2, we know that B(0) needs to be of the form

B(0) = ±iγ
λ

(
cos θ̃[N ]+θ[N ]

2
−i sin θ̃[N ]+θ[N ]

2

i sin θ̃[N ]+θ[N ]
2

− cos θ̃[N ]+θ[N ]
2

)
with the parameter γ ∈ R and the sign ± to be determined. Assuming an

• even number of single solitons, we consider the equality of the zero-th order matrix coefficients
in λ of L(λ) and R(λ) which is given by

L(λ)
∣∣
λ=0

=
(( N∏

k=1

(λ− λ∗k)D̃[N ]
)

(λB0)
∣∣
x=0

)∣∣
λ=0

=
N∏
k=1

(−λ∗k)ei
θ̃[N ]
2
σ1 · (iα)σ3

as well as

R(λ)
∣∣
λ=0

=
(

(λBN)
( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

x=0

)∣∣
λ=0

=
N∏
k=1

(−λ∗k)B(0)(t) · ei
θ[N ]
2
σ1 .

Evaluating for example the (11)-entry of L(0) = R(0), we have

±iγ

(
cos

θ̃[N ] + θ[N ]

2
cos

θ[N ]

2
+ sin

θ̃[N ] + θ[N ]

2
sin

θ[N ]

2

)
= iα cos

θ̃[N ]

2
.

Under the trigonometric identities

cos
θ̃[N ] + θ[N ]

2
= cos

θ̃[N ]

2
cos

θ[N ]

2
− sin

θ̃[N ]

2
sin

θ[N ]

2
,

sin
θ̃[N ] + θ[N ]

2
= sin

θ̃[N ]

2
cos

θ[N ]

2
+ cos

θ̃[N ]

2
sin

θ[N ]

2
,

see (A.0.1), we can conclude that ±γ = α. In particular, the other entries consolidate this result
and therefore BN is at x = 0 determined in terms of the solutions θ[N ] and θ̃[N ].

• odd number of single solitons, consider the equality of the zero-th order matrix coefficients

L(λ)
∣∣
λ=0

=
N∏
k=1

(−λ∗k)ei
θ̃[N ]
2
σ1 · (iα) =

N∏
k=1

(−λ∗k)B(0)(t) · ei
θ[N ]
2
σ1σ3 = R(λ)

∣∣
λ=0

,

which motivates the same calculation: Evaluating the (11)-entry of L(0) = R(0), we obtain

±iγ

(
cos

θ̃[N ] + θ[N ]

2
cos

θ[N ]

2
+ sin

θ̃[N ] + θ[N ]

2
sin

θ[N ]

2

)
= iα cos

θ̃[N ]

2
,

yielding the same result ±γ = α for the one-fold dressing matrix BN at x = 0 as in the case
of an even number of single solitons. Checking this with the other entries may have different
expressions than in the other case at some point, but eventually confirms the result.
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Therefore at x = 0, both cases lead to the same matrix

BN(t, 0, λ) = 1 +
iα

λ

(
cos θ̃[N ]+θ[N ]

2
−i sin

˜θ[N ]+θ[N ]
2

i sin
˜θ[N ]+θ[N ]

2
− cos

˜θ[N ]+θ[N ]
2

)
,

representing the frozen Bäcklund transformation connecting θ̃[N ] and θ[N ]. Further, the spectral
parameter α and the sign of the frozen Bäcklund transformation represented by B0 are preserved.
The proof can be adapted to a minus sign of the initial frozen Bäcklund transformation.

With Proposition 5.1.1, we have given a first impression on the utility of the dressing the defect
method. In particular, we have seen that the method can be applied to the sG equation on two
half-lines connected via defect conditions (4.1.4). The application has been simplified due to the
inherent assumption of zero seed solutions in the case of the sG equation. At this point we want
to give some insight on how to take this further. First off, we mention step (a) in the upcoming
propositions. However, since the argumentation is straightforward, the parts in the proof, which
are close to this argumentation we have already seen, can be omitted. Then, step (b) and (c)
become in the case of the NLS equation more intricate, mainly due to the consideration of nonzero
seed solutions, where the defect conditions need to be satisfied initially. However, the main steps
of the proofs are the same for dressing the defect in the case of the NLS equation.

In general, we deal with the dressing the defect and the dressing the boundary method in this
chapter. Particularly, this means that we only give propositions which build the foundation to
construct solutions via the Dressing method, while the construction itself is treated separately.
In that regard, we have shown for the model of the sG equation on two half-lines (5.1.1) and
(5.1.2) connected via defect conditions (4.1.4) that there is a way to explicitly construct soliton
and/or breather solutions, where the spectral parameters on each side need to be equal and the
norming constants need to satisfy some kind of relation which we inspect later on. As suggested in
other works, the defect conditions with defect parameter α seem to behave as though they are
‘half’ a soliton [15]. Structurally, this explains the fact that the spectral parameters used for the
Dressing method need to be distinct of the spectral parameter ±iα. If we use such a parameter for
the construction of the dressing matrix, the defect conditions interact with the soliton in a such
way that Proposition 5.1.1 would not be applicable. Since, in this case, the soliton is infinitely
delayed—or swallowed—by the defect conditions, the need to construct a paired soliton solution
on the other half-line becomes no longer necessary. Nonetheless, it can still be proven that such a
swallowed solution exists. Later on, we elaborate on this particular case.

5.1.2 The NLS equation

As a generalization of the NLS equation (2.1.1), we present the model of the NLS equation on two
half-lines

iut + uxx + 2|u|2u = 0 (5.1.8)

for u(t, x) : R× R+ 7→ C and initial condition u(0, x) = u0(x) for x ∈ R+ and

iũt + ũxx + 2|ũ|2ũ = 0 (5.1.9)

for ũ(t, x) : R× R− 7→ C and initial condition ũ(0, x) = ũ0(x) for x ∈ R−. In that context, taking
for example u(t, 0) = ũ(t, 0) and ux(t, 0) = ũx(t, 0) as boundary conditions, the two half-lines
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are connected so that there is no reflection and trivial transmission and by redefining the initial
condition accordingly, we end up with the NLS equation as in (2.1.1). As suggested before, this idea
corresponds to the choice of the identity matrix representing the frozen Bäcklund transformation
(4.1.1). However, the model we are interested in arises with defect conditions (4.1.2) at x = 0.
Therefore, assume we are given seed solutions u[0](t, x) and ũ[0](t, x) to the NLS equations on the
respective half-line and two defect parameters α ∈ R and β ∈ R \ {0} together with the plus or
minus sign for the defect so that these solutions satisfy the defect conditions (4.1.2). Then, this is
equivalent to the fact that the matrix

B0(t, 0, λ) = 1 +
1

2λ

(
α± i

√
β2 − |ũ[0]− u[0]|2 −i(ũ[0]− u[0])

−i(ũ[0]− u[0])∗ α∓ i
√
β2 − |ũ[0]− u[0]|2

)
(5.1.10)

represents the frozen Bäcklund transformation (4.1.1) connecting the Lax pairs associated to
u[0](t, x) and ũ[0](t, x). In contrast to the model of the sG equation with defect conditions, in
the model of the NLS equation with defect conditions it is possible to start with more general
seed solutions u[0](t, x) and ũ[0](t, x), since the reconstruction formula is not reliant on the seed
solutions to be zero. In that regard, it is not surprising that this generalization is accompanied
by a more intricate proof to show that dressing the defect can be applied. Especially, we use the
results of Subsection 4.4.2 to ensure that the signs of the frozen Bäcklund transformations match,
which was in the case of the sG equation not a difficulty.

Proposition 5.1.2. Consider seed solutions u[0] and ũ[0] to the NLS equation (5.1.8) and (5.1.9),
which at x = 0 both satisfy the defect conditions (4.1.2) with α ∈ R and β ∈ R\{0} and are together
with their first x-derivatives in the function space H1,1

t (R). Further, take solutions ψj, j = 1, . . . , N ,
of the Lax system (2.1.2) corresponding to u[0] for distinct λ = λj ∈ C\

(
R∪iR∪{−α

2
+iβ

2
,−α

2
−iβ

2
}
)
,

j = 1, . . . , N . Assume that there exist paired solutions ψ̃j, j = 1, . . . , N , of the Lax system (2.1.2)
corresponding to ũ[0] for the same spectral parameter λ = λj and that they satisfy

ψ̃j
∣∣
x=0

= B0(t, 0, λj)ψj
∣∣
x=0

, j = 1, . . . , N, (5.1.11)

where the matrix B0 is associated to the frozen Bäcklund transformation (5.1.10) representing the
defect conditions with either a plus or a minus sign. Then, two N-fold dressing matrices D[N ],
D̃[N ] using the corresponding solutions and spectral parameters lead to solutions u[N ] and ũ[N ] to
the NLS equation on the respective half-line, for which the defect conditions (4.1.2) are preserved
under BN of form (3.1.4) if

Im
(

lim
λ→0

[2λ(BN(t, 0, λ)− 1)]11

)
is greater than or equal to or rather less than or equal to 0 for all t ∈ R depending on its limit as
|t| → ∞.

Proof. (a) The N -fold dressing matrices D[N ], D̃[N ] construct, as presented in Section 3.2,
solutions u[N ], ũ[N ] from seed solutions u[0], ũ[0], which satisfy the same partial differential
equations. In contrast to the sG equation, we have that each solution ψj(t, x) to the Lax system
corresponding to the spectral parameter λ = λj comes as a pair, where ϕj(t, x) = −iσ2ψ

∗
j (t, x) is

the paired solution to the spectral parameter λ = λ∗j , j = 1, . . . , N . The requirement that the 2N
solution vectors ψj(t, x) and ϕj(t, x), j = 1, . . . , N , are linearly independent relies on the fact that
the spectral parameter λ1, . . . , λN and their complex conjugates λ∗1, . . . , λ∗N are distinct which is
ensured by assumption.
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(b) We define λ0 = −α
2

+ iβ
2
and assume that the ± sign in the matrix B0, see (5.1.10), is a plus.

Again, the idea is to construct a one-fold dressing matrix we note by BN which at x = 0 satisfies
the equality ( N∏

k=1

(λ− λ∗k)D̃[N ]
)

(λB0)
∣∣
x=0

= (λBN)
( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

x=0
. (5.1.12)

The argumentation for the form of the matrix BN = 1 + 1
λ
B(0) as well as that equality (5.1.12)

implies that BN satisfies the relations of the frozen Bäcklund transformation for the dressed solutions
u[N ], ũ[N ] is close to the one given in Proposition 5.1.1. However, due to the seed solutions not
being zero, we have that the initial matrix representing the frozen Bäcklund transformation is
time dependent and therefore the derivative of B0 is in this case not equal to zero. Therefore, we
need to include at x = 0 the following equality (B0)t = Ṽ [0]B0 − B0V [0] in the derivation of (BN)t
resulting in

(BN)t = (D̃[N ]B0(D[N ])−1)t

= D̃t[N ]B0(D[N ])−1 + D̃[N ](B0)t(D[N ])−1 + D̃[N ]B0((D[N ])−1)t.

= Ṽ [N ]D̃[N ]B0(D[N ])−1 − D̃[N ]B0(D[N ])−1V [N ]

= Ṽ [N ]BN − BNV [N ].

Moreover, due to B0 having off-diagonal entries, we can not simply identify the compatible kernel
vector for the spectral parameter λ0 immediately as for the sG equation. Rather, we need to
assume in a more general fashion that there exists a kernel vector υ0 of the defect matrix B0 by
means of Proposition 4.2.1 in addition to the vector ψ0 chosen as the usual solution of the Lax
system (2.1.2) corresponding to u[0] for the spectral parameter λ0. In theory, we would want to
use the zero λ0 and associated kernel vector υ0 for B0 to introduce a new kernel vector to the same
zero in order to construct a one-fold dressing matrix as in the case of the sG equation so that we
obtain two additional zeros and associated kernel vectors for the equality of the matrix polynomials.
However, at this point it is not clear that the vector υ0 and ψ1, . . . , ψN , ϕ1, . . . , ϕN are linearly
independent. With that in mind, we differentiate two cases: The two vectors υ0 and ψ0 are

1. linearly dependent at x = 0. This is the case we covered in the proof of Proposition 5.1.1. Since
by Proposition 3.2.5 ψ0 can not be expressed as a linear combination of ψ1, . . . , ψN , we define

ψ′0 = D[N ](t, x, λ0)ψ0 6= 0.

Then, constructing, up to a function of λ, a one-fold dressing matrix, which we denote by BN with
the vector ψ′0 and the corresponding spectral parameter λ0, at x = 0 we have

D̃[N ](t, x, λ0)(λB0)(t, x, λ0)ψ0 = (λBN)(t, x, λ0)D[N ](t, x, λ0)ψ0 = 0,

D̃[N ](t, x,−λ∗0)(λB0)(t, x, λ∗0)ϕ0 = (λBN)(t, x, λ∗0)D[N ](t, x, λ∗0)ϕ0 = 0,
(5.1.13)

where ϕ0 = −iσ2ψ
∗
0 is orthogonal to ψ0.

2. linearly independent at x = 0. Then, the diagram of Figure 5.1 holds. In other words, if we
have that ψ0 is a solution of the Lax system (2.1.2) corresponding to u[0], where ψ0, . . . , ψN are by
assumption linearly independent, then the N -fold dressing matrix D[N ] is nonsingular at λ = λ0.
Therefore, we can transform ψ0 to ψ′0 = D[N ]

∣∣
λ=λ0

ψ0 and by this transformation and the fact that
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the dressing matrix satisfies relations (3.2.15), we can infer that

(ψ′0)x =
(
D[N ]

∣∣
λ=λ0

)
x
ψ0 +D[N ]

∣∣
λ=λ0

(ψ0)x

= U [N ]
∣∣
λ=λ0

D[N ]
∣∣
λ=λ0

ψ0

= U [N ]
∣∣
λ=λ0

ψ′0

and the same for the t part so that ψ′0 is a solution of the Lax system corresponding to u[N ] at
λ = λ0. Now, since the kernel vector and ψ0 are linearly independent, we can at x = 0 follow
the same argumentation to derive a transformed solution ψ̃0 = B0(t, 0, λ)ψ0, which is not the
zero vector and satisfies the Lax system corresponding to ũ[0] at x = 0 and λ = λ0 due to the
matrix B0(t, 0, λ) representing the frozen Bäcklund transformation satisfying (4.1.1). Then again,
this can be expanded by the application of D̃[N ] to a solution ψ̃′0 = D̃[N ]ψ̃0 of the Lax system
corresponding to ũ[N ] also at x = 0 and λ = λ0. Then, the connection of ψ′0 to ψ̃′0 implies that
the product of matrices D̃[N ]B0(D[N ])−1 satisfies the relations (4.1.1) with Ũ [N ], Ṽ [N ] and U [N ],
V[N ] at x = 0 and λ = λ0. In other words, there exists a matrix, we call BN = D̃[N ]B0(D[N ])−1

satisfying

((BN)x − Ũ [N ]BN + BNU [N ])ψ′0 = 0,

((BN)t − Ṽ [N ]BN + BNV [N ])ψ′0 = 0

at λ = λ0 and x = 0. In that regard, as we have already shown this is equivalent to

D̃[N ](t, x, λ0)(λB0)(t, x, λ0)ψ0 = (λBN)(t, x, λ0)D[N ](t, x, λ0)ψ0 6= 0,

D̃[N ](t, x,−λ∗0)(λB0)(t, x, λ∗0)ϕ0 = (λBN)(t, x, λ∗0)D[N ](t, x, λ∗0)ϕ0 6= 0
(5.1.14)

at x = 0. Note that we have not exactly constructed the matrix BN , but merely given a reasoning
for the existence of a polynomial matrix λBN of degree one which satisfies (5.1.14).

ψ0 solves

{
ψx = U [0]ψ

ψt = V [0]ψ
ψ′0 = D[N ]ψ0 solves

{
ψx = U [N ]ψ

ψt = V [N ]ψ

ψ̃0 = B0ψ0 solves

{
ψx = Ũ [0]ψ

ψt = Ṽ [0]ψ
ψ̃′0 = D̃[N ]ψ̃0 solves

{
ψx = Ũ [N ]ψ

ψt = Ṽ [N ]ψ

B0

D[N ]

D̃[N ]

BN

Fig. 5.1. Properties of ψ0 at λ = λ0 and x = 0 if B0(t, 0, λ0)ψ0(t, 0) 6= 0 for all t ∈ R.

Given BN as in one of the two cases leads to commuting matrices at the point x = 0 of the defect
conditions. To prove (5.1.12), we write each side as a matrix polynomial. Denoting the left and
right hand side as L(λ) and R(λ), respectively, we obtain in both cases the following

L(λ) =
( N∏
k=1

(λ− λ∗k)D̃[N ]
)

(λB0)
∣∣
x=0

= λN+1LN+1 + λNLN + · · ·+ λL1 + L0,

R(λ) = (λBN)
( N∏
k=1

(λ− λ∗k)D[N ]
)∣∣

x=0
= λN+1RN+1 + λNRN + · · ·+ λR1 +R0.
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Since again LN+1 = 1 = RN+1, only LN , RN , . . . , L1, R1, L0 and R0 need to be determined. In
that regard, we consider the zeros and associated kernel vectors of L(λ) and R(λ). By construction
of the dressing matrices D[N ], D̃[N ], we have that D[N ](t, x, λj)ψj = 0 and D̃[N ](t, x, λj)ψ̃j = 0,
j = 1, . . . , N , which we combine with the assumed relation between ψj and ψ̃j. Thus, for the 2N
linearly independent vectors ψ1, . . . , ψN and ϕ1, . . . , ϕN , at x = 0 we obtain

L(λ)
∣∣
λ=λj

ψj = 0, R(λ)
∣∣
λ=λj

ψj = 0,

L(λ)
∣∣
λ=λ∗j

ϕj = 0, R(λ)
∣∣
λ=λ∗j

ϕj = 0

for j = 1, . . . , N . For the matrix λBN of order one, this is not enough to ensure equality in
(5.1.12). However, we derived additional conditions for BN , i.e. (5.1.13) and (5.1.14), so that there
is an additional vector pair for which the two sides are equal, but not necessarily zero. Hence in
both cases, at x = 0 we have L(λ)

∣∣
λ=λ0

ψ0 = R(λ)
∣∣
λ=λ0

ψ0, where this equality is either nonzero
in the case of linear independence or zero in the case of linear dependence of υ0 and ψ0. As
before, the symmetry of the Lax pair provides another vector ϕ0 for which at x = 0 the equality
L(λ)

∣∣
λ=λ∗0

ϕ0 = R(λ)
∣∣
λ=λ∗0

ϕ0 holds. Let us stress again that it is not important having additional
zeros and associated kernel vectors of L(λ) and R(λ), but rather linearly independent vectors for
which an equality as above holds, since, in the end, we consider the difference of the polynomial
matrices rather than the polynomial matrices themselves. Thus, this additional pair of vectors is
sufficient to determine the difference C(λ) = L(λ) − R(λ) = λNCN + · · · + λC1 + C0. Together
with the zeros and associated kernel vectors of the dressing matrices D[N ], D̃[N ], it can be written
as a set of algebraic equations. In matrix form, we have

(CN , · · · , C0)

λ
N
0 ψ0 (λ∗0)Nϕ0 · · · λNNψN (λ∗N)NϕN
...

...
...

...
...

ψ0 ϕ0 · · · ψN ϕN

 = 0.

As for the sG equation, the (2N + 2)× (2N + 2) matrix filled with ψ0, ϕ0, . . . , ψN , ϕN is invertible.
If the determinant is zero, we could find coefficients in C such that a linear combination of
ψ0, ϕ0, . . . , ψN , ϕN would be zero, which is a contradiction to their linear independence, which we
justified in Proposition 3.2.5. Therefore, L(λ) = R(λ) holds in both cases either linear dependence
or linear independence of the kernel vector υ0 and ψ0, which, in turn, implies that we actually
have found a matrix BN satisfying equality (5.1.12). Moreover, since we now know that in both
cases BN can be written as D̃[N ]B0(D[N ])−1 at x = 0, we can infer that the matrix λBN becomes
singular at λ = λ0 and λ = λ∗0. Moreover, note that the determinant of each factor is t and x
independent to begin with. In fact,

det(λBN) = det
( N∏
k=1

(λ− λ∗k)D̃[N ]
)

det(λB0) det
( N∏
k=1

(λ− λ∗k)D[N ]
)−1

= det(λB0)

=
(
λ+

α

2

)2

+
β2 − |ũ[0]− u[0]|2

4
+

1

4
|ũ[0]− u[0]|2

= (λ− λ0)(λ− λ∗0)

= λ2 + αλ+
α2 + β2

4
,
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where the determinant of the dressing matrices is given by

det
( N∏
k=1

(λ− λ∗k)D[N ]
)

= det
( N∏
k=1

(λ− λ∗k)D̃[N ]
)

=
N∏
k=1

((λ− λk)(λ− λ∗k)),

see Remark 3.2.9. Consequently, the matrix λBN admits kernel vectors at these spectral parameters.
Due to the fact that in the case of linear dependence we already identified a kernel vector
ψ′0 = D[N ]

∣∣
λ=λ0

ψ0, this kernel vector is the foundation for both constructions of a one-fold dressing
matrix BN satisfying (5.1.12). Particularly, the dressing matrix BN is initially defined for t ∈ R,
x ∈ R and for the equality (5.1.12) restricted to x = 0.

(c) Consequently, part (b) implies that there exists a matrix B(0)
1 which is t and x dependent

such that BN(t, x, λ) = 1 + 1
λ
B(0)

1 (t, x) satisfies the frozen Bäcklund transformation (4.1.1) with
Ũ = Ũ [N ], U = U [N ] and with Ṽ = Ṽ[N ], V = V[N ]. By Proposition 3.1.1, there exist spectral
parameters γ, δ ∈ R and a plus or minus sign such that BN(t, x, λ) can be at x = 0 expressed as

BN(t, 0, λ) = 1 +
1

2λ

(
γ ± i

√
δ2 − |ũ[N ]− u[N ]|2 −i(ũ[N ]− u[N ])

−i(ũ[N ]− u[N ])∗ γ ∓ i
√
δ2 − |ũ[N ]− u[N ]|2

)
.

Comparing the determinant of this matrix multiplied by λ to the determinant of λBN we already
calculated by the definition as a matrix multiplication, we obtain two conditions on the spectral
parameters:

γ = α,
γ2 + δ2

4
=
α2 + β2

4
.

Hence, the spectral parameter of BN (t, 0, λ) can effectively be determined to be γ = α and δ2 = β2.
However, this observation carries no information on the ± sign. In that regard, we know that
from solutions u[0], ũ[0] to the defect conditions with a selected sign, we can construct solutions
u[N ], ũ[N ] which satisfy the defect conditions with either the plus or the minus sign. A particular
case can be determined for which we are able to prove that the sign stays the same, ultimately
restricting the solution space. Therefore, two additional assertions are necessary in order to ensure
that

(i) the plus sign is preserved at least at a specific time;

(ii) the sign can not change under time evolution.

For the first point, the assertion

u[0](·, 0), ũ[0](·, 0), u[0]x(·, 0), ũ[0]x(·, 0) ∈ H1,1
t (R) (5.1.15)

is sufficient. Then, we have by Proposition 4.4.3 that u[N ](·, 0), ũ[N ](·, 0), u[N ]x(·, 0), ũ[N ]x(·, 0) ∈
H1,1
t (R), since D[N ], D̃[N ] are N transformations of the form Btλj ,ψj [j−1] for j = 1, . . . , N . In this

class of solutions, we can derive that the ± sign of the frozen Bäcklund transformation, or rather
their matrix representation being either B0(t, 0, λ) or BN(t, 0, λ), is closely related to the kernel
vector at the corresponding spectral parameter of their respective form as dressing matrix. In
relation to that, we have worked out in (b) that ψ0 is the kernel vector of B0 at λ = λ0 and by
construction, we have that ψ′0 = D[N ]

∣∣
λ=λ0

ψ0 is the kernel vector of BN at λ = λ0 and x = 0. On
the other hand, if one interprets B0(t, 0, λ) as a dressing matrix transforming ψj(t, 0) to ψ̃j(t, 0),
by Lemma 4.4.4, we have that as |t| goes to infinity B0(t, 0, λ) becomes a diagonal matrix and
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as a consequence, the limit behaviors of ψj(t, 0), ψ̃j(t, 0) are the same for j = 1, . . . , N due to
assumption (5.1.11). Consequently, by Lemma 4.4.4, the dressing matrices

(∏N
k=1(λ− λ∗k)D̃[N ]

)
and

(∏N
k=1(λ−λ∗k)D[N ]

)
have at x = 0 the same distribution of λ−λj and λ−λ∗j in their diagonal

form as |t| → ∞. Thus,

lim
|t|→∞

BN(t, 0, λ) = lim
|t|→∞

D̃[N ](t, 0, λ)B0(t, 0, λ)(D[N ](t, 0, λ))−1

= lim
|t|→∞

B0(t, 0, λ). (5.1.16)

Alternatively, one could look at the vectors ψ0 and ψ′0, which are at λ = λ0 and x = 0 the kernel
vectors of B0 and BN , respectively. Since they are connected by D[N ]

∣∣
λ=λ0

which admits a diagonal
structure as |t| → ∞, the kernel vectors also have the same limit behavior as |t| → ∞. Both
reasonings imply that given a plus sign in the (11)-entry of the matrix B0 corresponding to the
frozen Bäcklund transformation, we can then conclude by the limit behavior of ψ0 and ψ′0 or
(5.1.16) that the sign in the (11)-entry of the matrix BN(t, 0, λ) also needs to be a plus sign at
least for |t| big enough.

Then, for the second point, the assertion regarding the imaginary part of a particular entry
of the matrix BN , which is exactly the term influenced by the sign, is sufficient to ensure that
the sign stays the same. By the definition of the matrix BN representing the frozen Bäcklund
transformation, we have on the one hand that Im(2λB(0)

1 (t, 0)) = ±
√
β2 − |ũ[N ](t, 0)− u[N ](t, 0)|2.

On the other hand, by the construction in (b) we find that it can also be expressed as

Im(2λB(0)
1 (t, 0)) = −β 1− |∆0(t, 0)|2

1 + |∆0(t, 0)|2
, ∆0(t, 0) =

[D[N ](t, 0, λ0)ψ0(t, 0)]2
[D[N ](t, 0, λ0)ψ0(t, 0)]1

.

Now, by the first point, the sign of the imaginary part is fixed as +|β| for |t| big enough.
Consequently, the limit behavior of |∆0(t, 0)| is either zero or infinity as |t| goes to infinity
depending on the sign of β, so that Im(2λB(0)

1 (t, 0)) goes to −β or β in order to match |β|. Then,
the assertion, which is equivalent to either |∆0(t, 0)| ≥ 1 or |∆0(t, 0)| ≤ 1, ensures that the sign
stays the same for all t ∈ R.

Therefore, the solutions ũ[N ] and u[N ] satisfy defect conditions based on the same defect
parameters and sign as the defect conditions for ũ[0] and u[0] inferring the result under the
assertions of Proposition 5.1.2.

Here, the frozen Bäcklund transformation of Proposition 5.1.2 actually admits a t dependence
accompanied by a matrix representation which not only has entries on the diagonal in contrast
to the one applied in Proposition 5.1.1. This leads to a necessary development in order for the
method of dressing the defect to still be applicable. Superficially, the same steps (a), (b) and (c)
which we have worked out earlier need to be employed in order to prove the result for the model of
the NLS equation. However, no particular changes are needed to adapt step (a) apart from the
different analysis regarding the spectral parameters. The main difference in step (b) is that due to
the seed solution not necessarily being zero the connection of the kernel vector of B0(t, 0, λ) at
λ = λ0 to the solution ψ0 of the Lax system corresponding to u[0] at λ = λ0 is not as evident as
for the sG equation with defect conditions. That being said, if we use zero seed solutions for the
NLS model as in Proposition 5.1.1 for the sG model, the t dependence of the frozen Bäcklund
transformation would disappear and further we would be left with a diagonal matrix for which the
steps are basically indistinguishable. Continuing, in step (c) the consequences of this more general
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frozen Bäcklund transformation ultimately go back to the arbitrariness of the kernel vector that is
the inability to exactly determine the parameters and the sign of the matrix BN (t, 0, λ) in the form
of a matrix representing the frozen Bäcklund transformation of ũ[N ] and u[N ]. At the same time,
the kernel vector in this case can be used to resolve this additional complication by considering the
limits as the time goes to infinity and assuming that the sign stays that way under time evolution.
Again, starting with zero seed solutions, this step would be the same as in Proposition 5.1.1 for
the sG model. Moreover, this calls for the necessity to restrict the solution space in order to be
able to analyze the limits of the kernel vectors as time goes to infinity.

The important feature of the two proofs of Proposition 5.1.1 and 5.1.2 is that the matrix
B0(t, 0, λ) (or B0(t, 0, λ)) is interchangeable with the dressing matrices D[N ] and D̃[N ] in the
sense of Figure 4.3. In turn, this is realized through the transition of the matrix B0 to a dressing
transformation and vice versa the introduced one-fold dressing matrix BN(t, x, λ) (or BN(t, x, λ))
to a matrix which at x = 0 represents a frozen Bäcklund transformation.
Initially, the method of dressing the defect has been developed for models of partial differential
equations on the half-line subject to boundary conditions at x = 0, for which it is known as dressing
the boundary. In this context, it has been successfully applied to the NLS equation with Robin
boundary conditions [42] and the sG equation with sin-boundary conditions [43]. Both of these
models can be written with a corresponding Lax system for which the boundary matrix is diagonal
and particularly t independent. As we have seen in this section, inserting solitons with N -fold
dressing matrices under these circumstances requires slightly less effort due to correspondence of
the kernel vector and the solution of the Lax system corresponding to the seed solution both at
the same spectral parameter λ = λ0. In fact, the consideration of the kernel vector can be omitted
entirely if it is e.g. possible to identify an additional equality for the coefficients of the matrix
polynomials L(λ) and R(λ) instead. In the next section, we want to show that the method we
have developed for dressing the defect can without difficulty be adapted to most of the models for
the NLS and sG equation on the half-line with boundary conditions presented in Section 4.3. In
that regard, we have suggested in Subsection 4.4.1 on how to choose pairs of spectral parameters
for the boundary conditions, which can be expressed with the corresponding boundary matrix by
relation (4.3.1) to be preserved.

5.2 Initial-boundary value problems

Not surprisingly, there are plenty of differences between dressing the defect and dressing the
boundary. The first one coming to mind is the spectral side equivalent to the defect or boundary
conditions, which is in the case of the defect conditions given by two matrix relations (4.1.1)
representing the t and x part and in the case of the boundary conditions by a matrix relation
(4.3.1) representing a symmetry with respect to λ inherent only to the t part. Further due to these
relations, sets of spectral parameters, which are sufficient for the defect or boundary conditions to
be preserved under the Dressing method, could be deduced. For the defect conditions, we have
identified the possibility where on both half-lines the same spectral parameter is used to construct
a solution preserving the defect conditions. On the other hand for the boundary condition, the
same process has led us to the choice of a pair of spectral parameters which underlies the inherent
symmetry with respect to λ of the t part of the matrix relation [42]. It also turns out that in the
cases where the boundary matrix for the seed solution is not a diagonal matrix, i.e. the Dirichlet
and cos-boundary condition for the sG equation, this process of finding sufficient pairings of spectral
parameters is not adequate. Furthermore, having the distribution of zeros under the symmetry
from Figure 4.2 in mind as well as the proofs for the method of dressing the defect, where the
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existence of sufficiently many kernel vectors with associated spectral parameters is ensured, it is
predictable that the cases in which zeros may coincide need to be treated separately. For the NLS
equation, this case occurs with boundary-bound soliton solutions if for example λ1 = iη1, since
then −λ∗1 = iη1; for the sG equation, this case occurs with boundary-bound single soliton solutions
or boundary-bound breather solutions if for example Ns = 1 and |λ1| = 1, since then λ1 = ±i and
1/λ∗1 = ±i. In particular, λ 7→ −λ and λ 7→ 1/λ are the aforementioned symmetries of the t part
for the NLS and the sG equation, respectively.

5.2.1 The sG equation with boundary conditions

Consider the sG equation on the (positive) half-line

θtt − θxx + sin θ = 0 (5.2.1)

for θ(t, x) : R+ × R+ 7→ C and initial conditions θ(0, x) = θ0(x) and θt(0, x) = θ1(x) for x ∈ R+

together with the sin-boundary condition

θx(t, 0) = α sin
θ(t, 0)

2
,

where α ∈ R. Then, it is obvious that the zero seed solution θ[0](t, x) ≡ 0 satisfies this model
with zero initial conditions. Note that in the case of cos- or even Dirichlet boundary conditions
this is in general not true for arbitrary α ∈ R and for the case that it is true (α = 0), we
have that these are already special cases of the sin-boundary condition. For this result, we
split the simple eigenvalues or zeros of the Dressing method into N = Ns + 2Nb + 2Nbbb, Ns

the number of single solitons for which we have two linearly independent solutions ψj(t, x) and
ϕj(t, x) = σ1ψj(t, x), j = 1, . . . , Ns, of the Lax system (2.2.3) corresponding to θ[0] for the spectral
parameter λ = λj and λ = λ∗j = −λj, respectively, Nb the number of breathers for which we
have four linearly independent solutions ψj(t, x), ϕj(t, x) = σ1ψj(t, x), ψj+Nb(t, x) = σ3ψ

∗
j (t, x)

and ϕj+Nb(t, x) = σ1ψj+Nb(t, x), j = Ns + 1, . . . , Ns + Nb to the spectral parameter λj, −λj,
λj+Nb = −λ∗j and λ∗j+Nb = λ∗j , respectively, and Nbbb the number of boundary-bound breathers
for which these four spectral parameters additionally lie on {λ ∈ C : |λ| = 1}. Further, we
assume that the selected spectral parameter are always sorted so that for λj, j = 1, . . . , N , we
have that λ1, . . . , λNs ∈ iR \ {−i, 0, i}, λNs+1, . . . , λNs+2Nb ∈ C \

(
R ∪ iR ∪ {λ ∈ C : |λ| = 1}

)
and

λNs+2Nb+1, . . . , λN ∈ {λ ∈ C : |λ| = 1}\{−i,−1, 1, i}. Moreover, we define Nd = 2Ns+4Nb+2Nbbb.

Proposition 5.2.1. Consider the zero seed solution θ[0] = 0 to the sG equation on the half-
line (5.2.1), which at x = 0 satisfies the sin-boundary condition with α ∈ R \ {0}. Further,
take solutions ψj, j = 1, . . . , N , of the Lax system (2.2.3) corresponding to θ[0] for distinct
λ = λj ∈ C \

(
R ∪ {−i, i}

)
. If |α| < 2, the spectral parameters λj, j = 1, . . . , N , further need to be

different from the four points ± iα
2
±
√

1− α2

4
, whereas if |α| > 2, the spectral parameters λj need

to be different from the four purely imaginary points i
(
±α

2
±
√

α2

4
− 1
)
. Assume that there exist

paired solutions

(i) ψ̂j, j = 1, . . . , Ns, of the same Lax system for the spectral parameter λ = λ−1
j and that they

satisfy
ψ̂j
∣∣
x=0

= K0(λ
(−1)Nbbb

j )ψj
∣∣
x=0

; (5.2.2)
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(ii) ψ̂j, ψ̂j+Nb, j = Ns + 1, . . . , Ns +Nb, of the same Lax system for the spectral parameter λ = λ−1
j

and λ = λ−1
j+Nb

, respectively, and that they satisfy

ψ̂j
∣∣
x=0

= K0(λ
(−1)Nbbb

j )ψj
∣∣
x=0

, ψ̂j+Nb
∣∣
x=0

= K0((−λ∗j)(−1)Nbbb )ψj+Nb
∣∣
x=0

. (5.2.3)

• Further, for j = Ns + 2Nb + 1, . . . , Ns + 2Nb +Nbbb, assume that the solutions of the Lax system
ψj, ϕj, ψj+Nbbb and ϕj+Nbbb satisfy the following relations

ϕj+Nbbb
∣∣
x=0

= K0(λ
(−1)Nbbb

j )ψj
∣∣
x=0

, ψj+Nbbb
∣∣
x=0

= K0((−λj)(−1)Nbbb )ϕj
∣∣
x=0

. (5.2.4)

The matrix K0(λ) is associated to the boundary matrix (4.3.10) representing the sin-boundary
condition. Then, an Nd-fold dressing matrix D[Nd] using the corresponding solutions and spectral
parameters leads to the solution θ[Nd] to the sG equation on the half-line, for which the sin-boundary
condition (4.3.7) with either α or −α as boundary parameter is preserved.

As for dressing the defect, we shall show that the function θ[Nd] constructed with the Nd-fold
dressing matrix (a) satisfies the sG equation on the half-line, (b) is regarding to the Lax system
subject to the boundary constraint with a matrix KN , which is not specified in terms of the
solution, and in conclusion, that (c) KN inherits the parameter α or −α from K0. Therefore, it
is important to note that the zero seed solution satisfies the sin-boundary condition with both
boundary parameters α and −α.

Proof. (a) For j = 1, . . . , Ns, we take the distinct spectral parameters λj and λ−1
j and corresponding

linearly independent solutions of the Lax system. Further, for j = Ns + 1, . . . , Ns +Nb, we take
the distinct spectral parameters λj, λj+Nb , λ

−1
j and λ−1

j+Nb
and corresponding linearly independent

solutions of the Lax system. Finally for j = Ns + 2Nb + 1, . . . , Ns + 2Nb + Nbbb, we take the
distinct spectral parameters λj and λj+Nbbb and corresponding linearly independent solutions of
the Lax system. Altogether, we then construct the Nd-fold dressing matrix with these Nd linearly
independent solutions, see Remark 3.2.6, of the Lax system (2.2.3) corresponding to θ[0]. This
ensures that θ[Nd] is, in fact, a solution of the sG equation on the half-line (5.2.1). Clarifying which
particular spectral parameter we use in order to construct the dressing matrix comprehensibly
provides us with the means to obtain the equality of the polynomial matrices more easily. Now, for
the dressing matrix D[Nd](t, x, λ) and the dressing matrix D[Nd](t, x, λ

−1) where we inverse the
spectral parameter, we suggest multiplying the matrices with polynomials of λ in order to remove
the singularities: For single solitons, we multiply D[Nd](t, x, λ) with Π1 =

∏Ns
k=1((λ−λ∗k)(λ−1/λ∗k))

which is the same for D[Nd](t, x, λ
−1) since

∏Ns
k=1((λ−λ∗k)(λ−1/λ∗k)) = λ2

∏Ns
k=1((λ−1−1/λ∗k)(λ

−1−
λ∗k)). Similarly for breathers, we denote the following term

Ns+Nb∏
k=Ns+1

((
λ−λ∗k

)(
λ+λk

)(
λ− 1

λ∗k

)(
λ+

1

λk

))
= λ4

Ns+Nb∏
k=Ns+1

((1

λ
− 1

λ∗k

)(1

λ
+

1

λk

)(1

λ
−λ∗k

)(1

λ
+λk

))
by Π2 and multiply D[Nd](t, x, λ) and D[Nd](t, x, λ

−1) with it. Merely, the factors for the boundary
bound breathers differ, i.e. Π3 =

∏Ns+2Nb+Nbbb
k=Ns+2Nb+1 ((λ − λ∗k)(λ + λk)) for D[Nd](t, x, λ) and Π′3 =

λ2
∏Ns+2Nb+Nbbb

k=Ns+2Nb+1 ((λ−1 − λ∗k)(λ
−1 + λk)) for D[Nd](t, x, λ

−1). Therefore, we prove step (b) with
the dressing matrices multiplied with their respective three products denoting each one again as
D[Nd](t, x, λ) and D[Nd](t, x, λ

−1). Further, given these modifications, the new dressing matrices
are polynomial matrices of degree Nd and can be written as

D[Nd](t, x, λ) = λNd1 + · · ·+ ΣNd(t, x) and D[Nd](t, x, λ
−1) = λNdΣNd(t, x) + · · ·+ 1.
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(b) The sin-boundary matrix is given by

K0(t, λ(−1)Nbbb ) =
1√

(λ− 1
λ
)2 + α2

(
−(−1)Nbbbi

(
λ− 1

λ

)
σ3 − α1

)
.

which is, in particular, t independent, and therefore

V[0](t, 0, λ−1)K0(λ(−1)Nbbb )−K0(λ(−1)Nbbb )V[0](t, 0, λ) = (K0(λ(−1)Nbbb ))t = 0. (5.2.5)

The minus sign for α can also be chosen to be plus due to the zero seed solution satisfying the
sin-boundary condition with α and −α. Therefore, the goal is to construct a matrix, which we
note as KN and which particularly satisfies KN

∣∣
x=0

= D[Nd](t, 0, λ
−1)K0(λ(−1)Nbbb )D[Nd]

−1(t, 0, λ).
Similarly to equality (5.1.6), we have

(D[Nd](t, x, λ
−1)K0(λ(−1)Nbbb ))

∣∣
x=0

= (KN(t, x, λ)D[Nd](t, x, λ))
∣∣
x=0

. (5.2.6)

Moreover, it is important to note that equality (5.2.6) is sufficient for KN to satisfy (4.3.1) at x = 0
except for the zeros of the Lax system. To show this explicitly, we multiply the equation with
(D[Nd](t, 0, λ))−1 from the right and differentiate the resulting equation with respect to t to obtain

(KN)t
∣∣
x=0

= (D[Nd](t, 0, λ
−1)K0(λ(−1)Nbbb )(D[Nd](t, 0, λ))−1)t

= Dt[Nd](t, 0, λ
−1)K0(λ(−1)Nbbb )(D[Nd](t, 0, λ))−1

+D[Nd](t, 0, λ
−1)K0(λ(−1)Nbbb )((D[Nd](t, 0, λ))−1)t.

Utilizing the t part of (3.2.15) for a Nd-fold dressing matrix, we have

Dt[Nd](t, 0, λ
−1) = V[Nd](t, 0, λ

−1)D[Nd](t, 0, λ
−1)−D[Nd](t, 0, λ

−1)V[0](t, 0, λ−1),

(D[Nd](t, 0, λ))−1
t = −(D[Nd](t, 0, λ))−1V[Nd](t, 0, λ) + V[0](t, 0, λ)(D[Nd](t, 0, λ))−1.

Hence, since equality (5.2.5) holds, by identifying every product of the matrices D[Nd](t, 0, λ
−1),

K0(λ(−1)Nbbb ) and D[Nd]
−1(t, 0, λ) with KN

∣∣
x=0

we can derive that

(KN)t
∣∣
x=0

= V[Nd](t, 0, λ
−1)KN(t, 0, λ)−KN(t, 0, λ)V[Nd](t, 0, λ). (5.2.7)

The multiplication of the dressing matrices with a product only depending on λ has no impact
on this calculation. Now for the construction of the matrix KN , we take a closer look at the
matrix multiplication. Due to the polynomial expressions of D[Nd](t, x, λ) and D[Nd](t, x, λ

−1), it
is reasonable to assume that as in the proof of Proposition 5.1.1 the matrix KN can be written as(√(

λ− 1

λ

)2

+ α2

)
·KN

∣∣
x=0

= K(1)λ+ K(0) +
1

λ
K(−1),

where K(1), K(0) and K(−1) are t dependent matrix coefficients which need to be determined.
Therefore multiplying both sides of equality (5.2.6) with λ

√
(λ− 1

λ
)2 + α2, we obtain polynomials

L(λ) and R(λ) with matrix coefficients on each side. In particular,

L(λ) = λNd+2LNd+2 + λNd+1LNd+1 + · · ·+ L0,

R(λ) = λNd+2RNd+2 + λNd+1RNd+1 + · · ·+R0.
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Considering the highest order matrix coefficient of each factor, we have LNd+2 = −(−1)NbbbiΣNdσ3.
Furthermore, similarly to the proof of Proposition 5.1.1, by assumptions (5.2.2), (5.2.3) and (5.2.4)
and the construction of the dressing matrix we have 2Nd zeros and associated kernel vectors at
x = 0 for the right and left side given by

R(λ)
∣∣
λ=λj

ψj = 0, R(λ)
∣∣
λ=−λ∗j

ψj+Nb = 0, R(λ)
∣∣
λ= 1

λj

ψ̂j = 0, R(λ)
∣∣
λ=−1

λ∗
j

ψ̂j+Nb = 0,

R(λ)
∣∣
λ=−λj

ϕj = 0, R(λ)
∣∣
λ=λ∗j

ϕj+Nb = 0, R(λ)
∣∣
λ=−1

λj

ϕ̂j = 0, R(λ)
∣∣
λ= 1

λ∗
j

ϕ̂j+Nb = 0

and

L(λ)
∣∣
λ=λj

ψj = 0, L(λ)
∣∣
λ=−λ∗j

ψj+Nb = 0, L(λ)
∣∣
λ= 1

λj

ψ̂j = 0, L(λ)
∣∣
λ=−1

λ∗
j

ψ̂j+Nb = 0,

L(λ)
∣∣
λ=−λj

ϕj = 0, L(λ)
∣∣
λ=λ∗j

ϕj+Nb = 0, L(λ)
∣∣
λ=−1

λj

ϕ̂j = 0, L(λ)
∣∣
λ= 1

λ∗
j

ϕ̂j+Nb = 0,

respectively. Therefore, the whole set of eight zeros and associated kernel vectors is only provided
in the case of breathers, i.e. for j = Ns+1, . . . , Ns+Nb. In the case of single solitons, j = 1, . . . , Ns,
we have λ∗j = −λj so that there are essentially four zeros and associated kernel vectors after
matching the ones which are replicates. In particular, the second and the fourth column are
repetitions of the first and third column, respectively. Also in the case of boundary-bound
breathers, j = Ns + 2Nb + 1, . . . , Ns + 2Nb +Nbbb, we have λ∗j = λ−1

j so that again there are only
four zeros and associated kernel vectors after matching the ones which are identical under the
assumption (5.2.4). In fact, the third and the fourth column are repetitions of the second and
the first column, respectively. Hence, there are 4Ns + 8Nb + 4Nbbb = 2Nd equalities. Note that
the property K−1

0 (λ±1) = K0(λ∓1) for the sin-boundary matrix proven in Proposition 4.3.2 is used
here in order to derive K0(λ∓1

j )ψ̂j = ψj at x = 0 justified by assumption (5.2.2), etc. Further, the
symmetry of K0 given by K0(λ) = σ1K0(−λ)σ1 is needed to identify the zeros for the left hand side.
As we have explicitly seen in the proof of Proposition 5.1.1, we need to have double the amount
of zeros and associated kernel vectors if we want to determine the unknown matrix coefficients.
Therefore, the 2Nd zeros are not enough to prove equality of L(λ) and R(λ).

Consequently, we devote special attention to the boundary matrix. Interpreting the boundary
matrixK0(λ(−1)Nbbb ) as a two-fold dressing matrix, we again have that the zeros are actually the zeros
of the diagonal entries of K0(λ(−1)Nbbb ). As a result, we calculate the zeros of λ2 − (−1)Nbbbiαλ− 1
which are in the case |α| < 2 given by

λ± = (−1)Nbbb
iα

2
±
√

1− α2

4
∈ {λ ∈ C : |λ| = 1} \ {−i, i,−1, 1},

in the case of |α| = 2, there is a double zero λ± = (−1)Nbbbi, and in the case |α| > 2 by

λ± = i
(

(−1)Nbbb
α

2
±
√
α2

4
− 1
)
∈ iR \ {−i, 0, i}.

At the same time, we have that λ∗± are the zeros of iλ times the (22)-entry of K0(λ) yielding

K0(λ(−1)Nbbb ) =
(−1)Nbbb

iλ
√

(λ− 1
λ
)2 + α2

(
(λ− λ+)(λ− λ−) 0

0 (λ− λ∗+)(λ− λ∗−)

)
.
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Then, as before due to the zero seed solution θ[0] = 0, we take the solutions ψ±,0 of the Lax system
corresponding to the zero seed solution at λ = λ± with u0 6= 0 and v0 = 0 in (3.2.1) for which
we then have K0(λ

(−1)Nbbb
± )ψ±,0

∣∣
x=0

= 0. Therefore, constructing KN(t, x, λ) as a multiplication of
λLNd+2 with a two-fold dressing matrix with the kernel vectors D[Nd]

∣∣
λ=λ±

ψ±,0 corresponding to
the zeros λ±, we have at least two additional zeros and associated kernel vectors of both matrix
polynomials L(λ) and R(λ), which, in particular, are together with the vectors used for the dressing
matrix linearly independent. In other words, at x = 0 we obtain

R(λ)
∣∣
λ=λ±

ψ±,0 = 0, L(λ)
∣∣
λ=λ±

ψ±,0 = 0,

R(λ)
∣∣
λ=λ∗±

ϕ±,0 = 0, L(λ)
∣∣
λ=λ∗±

ϕ±,0 = 0.

In the case of |α| = 2, we technically only have a one-fold dressing matrix which we just multiply by
itself to obtain a matrix of sufficient order. If we arrange these 2Nd + 2 equalities of the difference
C(λ) = L(λ)−R(λ) which is a polynomial matrix of degree Nd + 1 in λ as a system of zeros and
associated kernel vectors in matrix form similar to (5.1.7), it can be concluded that the difference
is in fact zero. In case |α| 6= 2, the additional observation that the highest order coefficients are
equal is unnecessary. Hence, we have found a matrix KN for which at x = 0 equality (5.2.6) holds.

(c) By the reconstruction formula (3.2.16), we have that the dressing matrix multiplied with the
products can be expressed as(

Π1Π2Π3D[Nd]
)∣∣
λ=0

= (−1)NbbbD[Nd]
∣∣
λ=0

= (−1)Nbbbei
θ[Nd]

2
σ1 ,

since Nd is always even. On the other hand, we have written D[Nd] multiplied by the products at
x = 0 also as polynomial matrix so that

(
Π1Π2Π3D[Nd]

)∣∣
λ=0

= ΣNd(t, 0). Thus, if we compare at
x = 0 the zero-th and the (2Nd + 2)-th order matrix coefficients, we obtain the equality of

L0 = (−1)Nbbbiσ3 = K(−1)ΣNd(t, 0) = R0

and the equality of

LNd+2 = −(−1)NbbbiΣNd(t, 0)σ3 = K(1) = RNd+2,

respectively. Consequently, the two t dependent matrix coefficients of KN are at x = 0 given by

K(1) = −K(−1) = −i

(
σ3 cos

θ[Nd]

2
+ σ2 sin

θ[Nd]

2

)∣∣∣∣∣
x=0

.

Moreover, the symmetries of V(t, x, λ) given in Section 2.2 imply that

KN(t, x, λ) = σ1

(
KN(t, x,−λ)

)
σ1,

KN(t, x, λ) = σ2

(
KN(t, x, λ∗)

)∗
σ2,

KN(t, x, λ) = σ3

(
KN(t, x,−λ∗)

)∗
σ3.

From the first symmetry, we deduce that K(0)(t, 0) = σ1K(0)(t, 0)σ1 so that

K(0)(t, 0) =

(
K(0)

11 (t, 0) K(0)
12 (t, 0)

K(0)
12 (t, 0) K(0)

11 (t, 0)

)
,
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where the entries K(0)
11 (t, 0) and K(0)

12 (t, 0) still need to be determined. By the second and third
symmetry, we obtain K(0)(t, 0) = σ2K(0)(t, 0)∗σ2 = σ3K(0)(t, 0)∗σ3 and as a consequence

Im(K(0)
11 (t, 0)) = Re(K(0)

12 (t, 0)) = 0.

Finally, by the particular choice of the products Π1,Π2,Π3 and Π′3, we have

det
(

Π1Π2Π3D[Nd](t, x, λ)
)

= det
(

Π1Π2Π′3D[Nd](t, x, λ
−1)
)

so that calculating the determinant of KN at x = 0 via the matrix product, we derive

detKN

∣∣
x=0

= det(K0(λ(−1)Nbbb )) = 1,

where we already calculated the determinant of K0(λ±1) in the proof of Proposition 4.3.2. Then,
comparing this determinant of the matrix KN at x = 0 to simply calculating it with the information
we have, we see that (K(0)

11 (t, 0))2 − (K(0)
12 (t, 0))2 = (Re(K(0)

11 (t, 0)))2 + (Im(K(0)
12 (t, 0)))2 = α2. With

regards to the expressions of the boundary matrices for the sG equation, see Proposition 4.3.2,
it seems that KN could be consisting of a mixture of α1 and iασ1 representing the sin- and
cos-boundary matrix, respectively. However, as suggested in the proof of Proposition 4.3.2,
there is a way to distinguish both cases, since they differ in the condition regarding the inverse.
Correspondingly, let us show that K−1

N (t, 0, λ) = KN(t, 0, λ−1), where we know that this property
holds for K0(λ(−1)Nbbb ). On one hand, we have

K−1
N (t, 0, λ) = D[Nd](t, 0, λ)K−1

0 (λ(−1)Nbbb )D[Nd](t, 0, λ
−1)

and on the other hand, we have

KN(t, 0, λ−1) = D[Nd](t, 0, λ)K0((λ−1)(−1)Nbbb )D[Nd](t, 0, λ
−1),

which is thus equal. Hence, if we write out this property for the matrix KN as devised so far,
K(0)

12 (t, 0) = 0 is implied immediately and furthermore K(0)
11 (t, 0) = ±α1.

Therefore, we have found a matrix KN which at x = 0 is of the form of the sin-boundary matrix
and also satisfies equality (5.2.7) so that the sin-boundary condition with either α or −α or θ[Nd]
is satisfied.

As for dressing the defect, applying the method of dressing the boundary to the sG equation is
simplified considerably due to the zero seed solution. By the process of determining the sign of the
frozen Bäcklund transformation we have developed for the NLS equation, it is possible to take the
limit t to infinity in order to match the sign in front of the spectral parameter in the proof we have
just worked out. However, this is only feasible in the case where there are no boundary-bound
breathers, since we could then show similarly to the NLS equation that θ[Nd] goes to a multiple
of 2π as t goes to infinity. Nonetheless, we omit this analysis here, since the seed solution of the
sG equation satisfies the boundary condition with both α and −α and therefore ‘preserving’ this
condition is a given either way.

Remark 5.2.2. In the case of a boundary-bound single soliton solution which corresponds to the
choice λ1 = ±i, we can explicitly calculate that the sin-boundary condition is not satisfied for
arbitrary α ∈ R.
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Nevertheless, Proposition 5.2.1 gives the means to implement an arbitrary combination of
a single soliton, breather and boundary-bound breather solutions into the sG equation on one
half-line subject to the sin-boundary condition. Therefore, the partition of the spectral parameters
plays a crucial role. Comparing the initial number N of spectral parameters which are meant to
be used in the Dressing method and the actual number Nd which is used in Proposition 5.2.1, it is
noticeable that single solitons and breathers come in pairs and boundary-bound breathers need
to satisfy a particular relation. Moreover, this distribution is also used in the upcoming models
of the NLS equation. An attentive reader might as well have noticed that the exception of the
boundary-bound single solitons is not limited to the application of the Nd-fold dressing matrix, but
also influences the proof where this is equivalent to |α| = 2. Particularly, the following observation
comes in handy.

Remark 5.2.3. The sin-boundary matrix K(t, 0, λ) with the boundary parameter α, where |α| > 2,

can be viewed with κα,j =
(
α
2

+ (−1)j
√

α2

4
− 1
)
as the product of two Darboux matrices and a

rotation matrix. Let
Bj(t, x, λ) = 1± iκα,j

λ

(
cos θ

2
−i sin θ

2

i sin θ
2
− cos θ

2

)
where both matrices have the same sign, then the sin-boundary condition (4.3.10) admits the
factorization

K(t, 0, λ) =
−iλ√

(λ− 1
λ
)2 + α2

(
cos θ

2
−i sin θ

2

i sin θ
2
− cos θ

2

)
B1(t, x, λ)B2(t, x, λ)

∣∣
x=0

.

Note the following instrumental equalities κα,1 + κα,2 = α, κα,1κα,2 = 1 as well as (σ3 cos θ
2

+
σ2 sin θ

2
)2 = 1.

Taking this into consideration, the factorization of K0(λ(−1)Nbbb ) in the proof of Proposition 5.2.1
in order to identify the zeros and associated kernel vectors becomes more transparent. Effectively
for |α| > 2, the boundary condition is represented by two single solitons which are present at the
boundary. In that regard, it is comprehensible that in the case of |α| < 2, where the zeros are
represented by a boundary-bound breather at the boundary, the expression in Remark 5.2.3 is not
sufficient due to the defect matrix B only corresponding to single solitons.

5.2.2 The NLS equation with boundary conditions

Now, we consider the NLS equation on the (positive) half-line

iut + uxx + 2|u|2u = 0 (5.2.8)

for u(t, x) : R+×R+ 7→ C and initial condition u(0, x) = u0(x) for x ∈ R+ and complement it with
a Robin boundary condition

ux(t, 0) = αu(t, 0), (5.2.9)

where α ∈ R. The Robin boundary condition is one of the conditions for which the boundary matrix
has entries only on the diagonal and is time independent. Therefore, it is not necessary to restrict
the solution space. In contrast to the sin-boundary condition regarding the sG equation, for the
Robin boundary condition regarding the NLS equation it is possible to construct single boundary-
bound solitons. In a similar fashion as for Proposition 5.2.1, we divide the number N = Ns +Nbbs

of spectral parameters λj ∈ C \ R and order them accordingly so that the spectral parameters
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λj ∈ C \
(
R ∪ iR

)
, j = 1, . . . , Ns, correspond to solitons and λj ∈ iR \ {0}, j = Ns + 1, . . . , N ,

correspond to boundary-bound solitons. Moreover, we define Nd = 2Ns + Nbbs so that only the
number of solitons is doubled. Thus, we can state the following

Proposition 5.2.4. Consider the seed solution u[0] to the NLS equation on the half-line (5.2.8),
which at x = 0 satisfies the Robin boundary condition with α ∈ R \ {0}. Further, take solutions
ψj, j = 1, . . . , N , of the Lax system (2.1.2) corresponding to u[0] for distinct λ = λj ∈ C \

(
R ∪

{−iα, iα}
)
. Assume that there exist paired solutions ψ̂j, j = 1, . . . , Ns, of the same Lax system for

the spectral parameter λ = λ̂j = −λj and that they satisfy

ψ̂j
∣∣
x=0

= K0((−1)Nbbsλj)ψj
∣∣
x=0

, λ̂k 6= λj. (5.2.10)

Further for j = Ns + 1, . . . , N , assume that the solutions of the Lax system ψj, ϕj = −iσ2ψ
∗
j

corresponding to the spectral parameters λj and λ∗j satisfy the following relation

ϕj
∣∣
x=0

= K0((−1)Nbbsλj)ψj
∣∣
x=0

. (5.2.11)

The matrix K0(λ) is associated to the boundary matrix (4.3.4) representing the Robin boundary
condition. Then, an Nd-fold dressing matrix D[Nd] using the corresponding solutions and spectral
parameters leads to the solution u[Nd] to the NLS equation on the half-line, for which the Robin
boundary condition (5.2.9) is preserved.

Proof. (a) The spectral parameters are divided into λj ∈ C \
(
R ∪ iR

)
, j = 1, . . . , Ns, and

λj ∈ iR \ {0}, j = Ns + 1, . . . , N , for the sole purpose of having distinct Nd spectral parameters
λ1, . . . , λNs , −λ1, . . . ,−λNs , λNs+1, . . . , λN . Therefore, constructing an Nd-fold dressing matrix
D[Nd] with these exact spectral parameters and their associated solutions of the Lax system (2.1.2),
which are by Proposition 3.2.5 linearly independent, we can derive a solution u[Nd] to the NLS
equation on the half-line (5.2.8). Note that it is again helpful to multiply the dressing matrices
with Π1 =

∏Ns
k=1((λ+ λ∗j)(λ− λ∗j)) =

∏Ns
k=1(((−λ)− λ∗j)((−λ) + λ∗j)) and Π2 =

∏N
k=Ns+1(λ− λ∗j) or

Π′2 =
∏N

k=Ns+1((−λ)− λ∗j) so that

Π1Π2D[Nd](t, x, λ) = λNd1 + · · ·+ ΣNd ,

Π1Π′2D[Nd](t, x,−λ) = (−1)NbbsλNd1 + · · ·+ ΣNd .
(5.2.12)

For notational purposes, we redefine the dressing matrix D[Nd](t, x, λ) and the dressing matrix
with the negative spectral parameter D[Nd](t, x,−λ) as the first and second row of (5.2.12) for
the upcoming steps (b) and (c).

(b) By assumption, we have

K0((−1)Nbbsλ) =
1

iα + 2(−1)Nbbsλ
(iα1− 2(−1)Nbbsλσ3).

Therefore, analogously to the proof of Proposition 5.2.1, we need to show that there exists a matrix
KN which satisfies

(D[Nd](t, x,−λ)K0((−1)Nbbsλ))
∣∣
x=0

= (KN(t, x, λ)D[Nd](t, x, λ))
∣∣
x=0

. (5.2.13)

Additionally to the zeros and kernel vectors of the Nd-fold dressing matrix, it is straightforward
to see that there are two zeros λ0 = (−1)Nbbsiα/2 and the parameter with opposite sign of the
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boundary matrix (iα+ 2(−1)Nbbsλ)K0(λ) for which υ0 = e1 and −iσ2υ
∗
0 = e2 are the kernel vectors.

In theory, by the definition of the dressing matrix we have given in Section 3.2, the matrix KN we
want to construct is, in fact, a dressing matrix multiplied by σ3, which means that the highest
order matrix coefficients of the usual polynomial matrices L(λ) and R(λ) agree. Consequently,
considering the solution ψ0 of the Lax system (2.1.2) corresponding to u[0] at λ = λ0, there are
two scenarios:

1. The kernel vector υ0 of K0(λ0) and ψ0 are linearly dependent at x = 0. As before, we can then
define with ψ0, since ψ0, . . . , ψN are linearly independent, the following

ψ′0 = D[Nd](t, x, λ0)ψ0,

which serves as the kernel vector for the dressing matrix KN(t, x, λ). It is important to note that
constructing KN (t, x, λ) in this manner results in the following relations for ψ0 and the orthogonal
vector ϕ0 = −iσ2ψ

∗
0 at x = 0:

D[Nd](t, x,−λ0)K0(λ0)ψ0 = KN(t, x, λ0)D[Nd](t, x, λ0)ψ0 = 0,

D[Nd](t, x,−λ∗0)K0(λ∗0)ϕ0 = KN(t, x, λ∗0)D[Nd](t, x, λ
∗
0)ϕ0 = 0.

(5.2.14)

2. The kernel vector υ0 of K0(λ0) and ψ0 are linearly independent at x = 0. Then, a similar diagram
to Figure 5.1 holds with B0 and BN replaced by K0 and KN , respectively, so that there exists a
matrix KN which is at x = 0 the product of the three matrices D[Nd](t, x,−λ) · K0((−1)Nbbsλ) ·
(D[Nd](t, x, λ))−1 and for which at x = 0 the following holds

(D[Nd](t, x,−λ0)K0(λ0)ψ0) = (KN(t, x, λ0)D[Nd](t, x, λ0)ψ0) 6= 0,

(D[Nd](t, x,−λ∗0)K0(λ∗0)ϕ0) = (KN(t, x, λ∗0)D[Nd](t, x, λ
∗
0)ϕ0) 6= 0.

(5.2.15)

Further, if we evaluate the determinant of KN |x=0 at the spectral parameter λ0 or λ∗0, we obtain
in accordance with the matrix product that both det(KN(t, 0, λ0)) and det(KN(t, 0, λ∗0)) are zero.
Thus, there exists a kernel vector at the specific parameter λ = λ0 which we use to construct the
dressing matrix KN subject to the relations (5.2.15).

By the same argumentation as before, it is reasonable to assume that the following product
(iα + 2(−1)Nbbsλ)KN(t, x, λ) is a matrix polynomial of degree one. We construct this matrix as in
one of the two cases multiplied by an arbitrary t dependent, λ independent matrix. Then, the left
and right hand side of equality (5.2.13) multiplied by (iα + 2(−1)Nbbsλ)) is given by

L(λ) = (D[Nd](t, x,−λ)K0((−1)Nbbsλ))
∣∣
x=0

= λNd+1LNd+1 + λNdLNd + · · ·+ L0,

R(λ) = (KN(t, x, λ)D[Nd](t, x, λ))
∣∣
x=0

= λNd+1RNd+1 + λNdRNd + · · ·+R0,

respectively, admitting at x = 0 the following zeros and associated kernel vectors, j = 1, . . . , N ,

R(λ)
∣∣
λ=λj

ψj = 0, R(λ)
∣∣
λ=−λj

ψ̂j = 0, R(λ)
∣∣
λ=λ∗j

ϕj = 0, R(λ)
∣∣
λ=−λ∗j

ϕ̂j = 0,

L(λ)
∣∣
λ=λj

ψj = 0, L(λ)
∣∣
λ=−λj

ψ̂j = 0, L(λ)
∣∣
λ=λ∗j

ϕj = 0, L(λ)
∣∣
λ=−λ∗j

ϕ̂j = 0.

The whole set of four zeros and associated kernel vectors is only provided in the case of solitons,
i.e. for j = 1, . . . , Ns. In the case of boundary-bound solitons, j = Ns, . . . , N , we have λ∗j = −λj
so that there are essentially two zeros and associated kernel vectors after matching the ones which
are replicates. In particular, the second and the fourth column are repetitions of the third and first
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column, respectively. For R(λ), these relations follow simply by the construction of the dressing
matrix D[Nd]. On the other hand, for L(λ), we additionally need assumptions (5.2.10) and (5.2.11)
as well as the properties K−1

0 (λ) = K0(−λ) given in Proposition 4.3.1 and K0(λ) = σ2K0(λ
∗)∗σ2

which follows from the symmetry of the Lax pair (2.1.4). Moreover, due to the construction of KN ,
we have (for j = 0) two values and associated vectors which are equal by equalities (5.2.14) and
(5.2.15), but not necessarily zero for L(λ) and R(λ), i.e.

R(λ)
∣∣
λ=λ0

ψ0 = L(λ)
∣∣
λ=λ0

ψ0, R(λ)
∣∣
λ=−λ0

ϕ0 = L(λ)
∣∣
λ=−λ0

ϕ0.

However, for the difference C(λ) = L(λ)− R(λ) which is a matrix polynomial of degree 2N + 1
in λ these values and vectors function as zeros and associated kernel vectors. Arranging these
4N + 2 equalities of the difference C(λ) once again as a system of zeros and associated kernel
vectors in matrix form, it follows that each matrix coefficient is zero and therefore the constructed
KN satisfies equality (5.2.13) in both cases.

(c) To reconstruct (iα + (−1)Nbbs2λ)KN = λK(1) +K(0) at x = 0 as boundary matrix, we analyze
the equality (5.2.13). In particular for the equality of the matrix coefficients of order Nd + 1 in λ,
we have

LNd+1 = (−2σ3)(−1)2Nbbs = −2σ3 = K(1) = RNd+1, (5.2.16)

confirming the suspected form of K(1) as σ3 times the highest order matrix coefficient of the dressing
matrix which is 1, up to a function of λ. For the equality of the matrix coefficients of order Nd, we
obtain with (5.2.16) that

2(Σ1(t, 0)σ3 + σ3Σ1(t, 0)) + (−1)2Nbbsiα1 = K(0),

where Σ1 is the (Nd− 1)-th order matrix coefficient of D[Nd]. Thus, the off-diagonal entries of K(0)

are zero and to determine the diagonal entries, we consider the determinant of KN at x = 0 in two
ways. First, note that the dressing matrices multiplied by the products defined in (a) satisfy

detD[Nd](t, x, λ) =
Ns∏
k=1

((λ− λk)(λ− λ∗k)(λ+ λk)(λ+ λ∗k))
N∏

k=Ns+1

((λ− λk)(λ− λ∗k)),

detD[Nd](t, x,−λ) =
Ns∏
k=1

((λ+ λk)(λ+ λ∗k)(λ− λk)(λ− λ∗k))
N∏

k=Ns+1

((λ+ λk)(λ+ λ∗k)),

where the equality of the first products can be seen right away and the equality of the second
products is justified by −λj = λ∗j for j = Ns + 1, . . . , N and therefore the determinants are equal.
Thus, by the matrix product, we have

det((iα + 2(−1))2Nbbsλ)KN
∣∣
x=0

) = det((iα + 2(−1))2Nbbsλ)K0((−1))2Nbbsλ)) = −4λ2 − α2.

Subsequently, due to what we have found for KN already, we can calculate

det((iα− 2(−1)Nλ)KN
∣∣
x=0

) = (−2λ+K(0)
11 )(2λ+K(0)

22 ) = −4λ2 + 2λ(K(0)
11 −K

(0)
22 ) +K(0)

11 K
(0)
22

so that the following two equalities need to hold

K(0)
11 −K

(0)
22 = 0, K(0)

11 K
(0)
22 = −α2.
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This system can be solved and we obtain K(0) = ±iα1. However, by the zero-th order equality of
(5.2.13), we can verify that the sign of the boundary parameter is preserved, since we need to have
K(0) = iα1 in order for

L0 = iαΣN(t, 0) = K(0)ΣN(t, 0) = R0

to hold.

This concludes the theoretical application of the dressing the boundary method to the NLS
equation on the half-line subject to the Robin boundary condition (5.2.9). Now, a combination of
the framework in all propositions regarding the Dressing method applied in the presence of defect
or boundary conditions is necessary in order to expand the results to the new boundary condition

ux(t, 0) =
iut(t, 0)

2Ω(t, 0)
− u(t, 0)Ω(t, 0)

2
+
u(t, 0)|u(t, 0)|2

2Ω(t, 0)
− u(t, 0)α2

2Ω(t, 0)
(5.2.17)

for the NLS equation on the half-line (5.2.8), see [25]. First off, a similar observation as in Remark
5.2.3 can be made, where, in particular, every boundary matrix representing the new boundary
condition can be expressed by a multiplication of two matrices (3.1.4) representing frozen Bäcklund
transformations.

Proposition 5.2.5. The boundary matrix K(t, 0, λ) for the new boundary condition (4.3.5) can be
viewed, up to a function of λ, as combination of two Darboux matrices

B0,α(t, x, λ) = 1 +
1

2λ

(
α± i

√
β2 − |u|2 iu

iu∗ α∓ i
√
β2 − |u|2

)
,

sharing the same sign ± and where α, β ∈ R \ {0} as well as the potential ũ is assumed to be zero.
Then,

((2λ− i|β|)2 − α2)K(t, 0, λ) = 4λ2B0,α(t, x, λ)B0,−α(t, x, λ)
∣∣
x=0

.

In particular, it is important that the product of the two matrices B0,α and B0,−α is commutative.
Therefore, it is comprehensible that a kernel vector for each of the matrices B0,±α at particular,
different λ1, λ2 introduce the same kernel vectors for the product K(t, 0, λ) at these values of λ.

Remark 5.2.6. In the case of a boundary-bound soliton solution which corresponds to the choice
λ1 ∈ iR \ {0}, we can calculate explicitly that the new boundary conditions are not satisfied.

This exclusion of boundary-bound solitons solidifies the choice we have to make in order to
determine whether the new boundary conditions are preserved. Namely as in Proposition 5.1.2, it
is sufficient to assume that the seed solution—and therefore by Proposition 4.4.3 also the solution
constructed by the Dressing method—and its first x-derivative are in the function space H1,1

t (R) at
x = 0. And since, by that assumption, the choice of spectral parameters is restricted to C\

(
R∪iR

)
,

spectral parameters corresponding to boundary-bound solitons can not be considered. Given these
assumptions, we can state the following:

Proposition 5.2.7. Consider a seed solution u[0](t, x) of the NLS equation on the half-line (5.2.8),
which at x = 0 both satisfies the new boundary conditions (4.3.3) with α ∈ R, β ∈ R \ {0} and
is together with its first x-derivative in the function space H1,1

t (R). Further, take solutions ψj,
j = 1, . . . , N , of the Lax system (2.1.2) corresponding to u[0] for distinct λ = λj ∈ C \

(
R ∪ iR ∪
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{−α
2

+ iβ
2
,−α

2
− iβ

2
, α

2
+ iβ

2
, α

2
− iβ

2
}
)
. Assume that there exist paired solutions ψ̂j, j = 1, . . . , N , of

the same Lax system for the spectral parameter λ = λ̂j = −λj and that they satisfy

ψ̂j
∣∣
x=0

= K0(t, 0, λj)ψj
∣∣
x=0

, λ̂k 6= λj, (5.2.18)

where the matrix K0(t, 0, λ) is associated to the boundary matrix (4.3.5) representing the new
boundary condition. Then, a 2N-fold dressing matrix D[2N ] using the corresponding solutions
and spectral parameters leads to the solution u[2N ], denoted by û[N ], of the NLS equation on the
half-line, for which the new boundary condition (4.3.3) is preserved under KN of form (4.3.5) if

Im

(
lim
λ→0

1

λ

[
(2λ− i|β|)2 − α2

4
KN(t, 0, λ) +

α2 + β2

4
1

]
11

)
is greater than or equal to or rather less than or equal to 0 for all t ∈ R+ depending on its limit as
t→∞.

Proof. (a) As discussed in step (a) of Proposition 5.2.4, the condition λ̂k 6= λj implies that all
spectral parameters λj and −λj, j = 1, . . . , N , used in the construction of the dressing matrix
are distinct. Therefore, the dressing matrix is uniquely determined and the constructed solution
û[N ] satisfies the NLS equation on the half-line (5.2.8). Multiplying the dressing matrices with
Π1 =

∏N
k=1((λ+ λ∗j)(λ− λ∗j)) =

∏N
k=1(((−λ)− λ∗j)((−λ) + λ∗j)), we obtain

Π1D[2N ](t, x, λ) = λ2N1 + · · ·+ Σ2N ,

Π1D[2N ](t, x,−λ) = λ2N1− · · ·+ Σ2N ,
(5.2.19)

which we then again redefine as the actual dressing matrices for steps (b) and (c).

(b) As before, in order to prove that there is a matrix KN(t, x, λ) satisfying

(KN)t(t, x, λ)
∣∣
x=0

= (V [2N ](t, x,−λ)KN(t, x, λ)−KN(t, x, λ)V [2N ](t, x, λ))
∣∣
x=0

,

it is of advantage to consider the equivalent equality

(D[2N ](t, x,−λ)K0(t, 0, λ))
∣∣
x=0

= (KN(t, x, λ)D[2N ](t, x, λ))
∣∣
x=0

, (5.2.20)

where on both sides the matricesK0(t, 0, λ) andKN (t, x, λ)
∣∣
x=0

are multiplied by ((2λ−i|β|)2−α2)/4.
Further, we define λ0 = −α

2
− i |β|

2
. In view of this equation, it is plausible to assume that the

matrix, we wish to find, is of second order in λ, i.e. KN
∣∣
x=0

= λ2K(2)(t, 0) + λK(1)(t, 0) +K(0)(t, 0).
Due to Proposition 5.2.5, K0(t, 0, λ) = 4λ2B0,α(t, x, λ)B0,−α(t, x, λ)

∣∣
x=0

and we can deduce that
there exist two kernel vectors υ0 and υ̂0 at two distinct spectral parameters λ0 and λ̂0 = −λ0,
respectively, for which

B0,α(t, x, λ0)υ0 = 0, B0,−α(t, x, λ̂0)υ̂0 = 0.

Therefore, K0(t, 0, λ) can be seen as (frozen) two-fold dressing matrix with the inherited kernel
vectors of B0,±α at λ0 and λ̂0, so that

K0(t, 0, λ0)υ0

∣∣
x=0

= 0, K0(t, 0, λ̂0)υ̂0

∣∣
x=0

= 0.

As before, these kernel vectors are introduced in order to ensure that the vectors with which we
construct the two-fold dressing matrix KN(t, x, λ) are linearly independent. Therefore, consider
the solutions of the Lax system (2.1.2) corresponding to u[0] at λ = λ0 and λ = λ̂0 given by ψ0

and ψ̂0. Then, we distinguish two cases for each of these vectors:
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1. The kernel vector υ0 of K0(t, 0, λ0) and ψ0 are linearly dependent at x = 0. As before, define
ψ′0 = D[2N ](t, x, λ0)ψ0 serving as one of the kernel vectors for the dressing matrix KN(t, x, λ).
Hence, we obtain at x = 0 the following relations

D[2N ](t, x,−λ0)K0(t, 0, λ0)ψ0 = KN(t, x, λ0)D[2N ](t, x, λ0)ψ0 = 0,

D[2N ](t, x,−λ∗0)K0(t, 0, λ∗0)ϕ0 = KN(t, x, λ∗0)D[2N ](t, x, λ∗0)ϕ0 = 0.
(5.2.21)

2. The kernel vector υ0 of K0(t, 0, λ0) and ψ0 are linearly independent at x = 0. Then, a similar
diagram to Figure 5.1 holds implying the existence of a kernel vector by which the dressing matrix
KN(t, x, λ) can be constructed so that at x = 0 the following relations can be given

(D[2N ](t, x,−λ0)K0(t, 0, λ0)ψ0) = (KN(t, x, λ0)D[2N ](t, x, λ0)ψ0) 6= 0,

(D[2N ](t, x,−λ∗0)K0(t, 0, λ∗0)ϕ0) = (KN(t, x, λ∗0)D[2N ](t, x, λ∗0)ϕ0) 6= 0.
(5.2.22)

This idea of deriving the kernel vector in order to construct the two-fold dressing matrix KN (t, x, λ)

can be repeated for the second, distinct parameter λ̂0. As a result, we can use the two kernel
vectors corresponding to the spectral parameters λ = λ0 and λ = λ̂0 to construct a two-fold
dressing matrix multiplied by a function of λ in order to adjust the highest matrix coefficient, call
it KN , which may be only given at x = 0 and which satisfies a combination of relations (5.2.21)
and (5.2.22) at these spectral parameters. Thus, we use this constructed matrix to prove that
equalition (5.2.20) holds. First, we write the equality as matrix polynomials of degree 2N + 2 in λ
and denote them as L(λ) and R(λ) so that

L(λ) = (D[2N ](t, x,−λ)K0(t, 0, λ))
∣∣
x=0

= λ2N+2L2N+2 + λ2N+1L2N+1 + · · ·+ λL1 + L0,

R(λ) = (KN(t, x, λ)D[2N ](t, x, λ))
∣∣
x=0

= λ2N+2R2N+2 + λ2N+1R2N+1 + · · ·+ λR1 +R0.

Since every factor on the left and right hand side has, after adapting the one for KN , the identity
matrix times a constant as matrix coefficient of the highest order in λ, we find L2N+2 = 1 = R2N+2.
If α 6= 0, this property is obsolete. With respect to the property K−1(t, 0, λ) = K(t, 0,−λ) for K0

proven in Proposition 4.3.1, the spectral parameters and corresponding solutions of the Lax system
provide 4N zeros and associated kernel vectors

R(λ)
∣∣
λ=λj

ψj = 0, R(λ)
∣∣
λ=λ̂j

ψ̂j = 0, R(λ)
∣∣
λ=λ∗j

ϕj = 0, R(λ)
∣∣
λ=λ̂∗j

ϕ̂j = 0,

L(λ)
∣∣
λ=λj

ψj = 0, L(λ)
∣∣
λ=λ̂j

ψ̂j = 0 L(λ)
∣∣
λ=λ∗j

ϕj = 0, L(λ)
∣∣
λ=λ̂∗j

ϕ̂j = 0
(5.2.23)

at x = 0 for j = 1, . . . , N . For R(λ), the equalities are clear from the definition of the dressing
matrix D[2N ] and with the assumption (5.2.18), the equalities for L(λ) follow immediately. The
choice of KN further implies that the relations (5.2.23) can be extended to j = 0 in the following
sense

R(λ)
∣∣
λ=λ0

ψ0 = L(λ)
∣∣
λ=λ0

ψ0, R(λ)
∣∣
λ=λ̂0

ψ̂0 = L(λ)
∣∣
λ=λ̂0

ψ̂0,

R(λ)
∣∣
λ=λ∗0

ϕ0 = L(λ)
∣∣
λ=λ∗0

ϕ0, R(λ)
∣∣
λ=λ̂∗0

ϕ̂0 = L(λ)
∣∣
λ=λ̂∗0

ϕ̂0.

In the case α = 0, λ0 and λ̂∗0 coincide and consequently we only have two spectral parameters
where the equality holds. At this point, it is important that all vectors are linearly independent.
In view of the additional vectors from the construction of KN , we see that these equalities are at
this point not necessarily zero. Nevertheless, arranging the zeros and associated kernel vectors for
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the difference C(λ) = L(λ)−R(λ) in matrix form, we can conclude that the matrix coefficients of
L(λ) and R(λ) are the same. In particular, this gives us that independently of the construction of
KN , the kernel vectors are indeed as described in the first case, namely the dressing matrix D[2N ]

evaluated at λ = λ0 and λ = λ̂0 multiplied with the solution of the Lax system corresponding to
the seed solution u[0] for λ = λ0 and λ = λ̂0 and thus the matrix KN is given for x ∈ R+.

(c) Given KN (t, x, λ) of the form λ21+ λK(1)(t, 0) +K(0)(t, 0) at x = 0, we want to determine the
matrix coefficients to confirm that the boundary conditions are preserved. Therefore, the symmetry
of the t part of the Lax pair V given in (2.1.4) implies KN(t, x, λ) = σ2(KN(t, x, λ∗))∗σ2 resulting
in

KN(t, 0, λ) = λ21 + λ

(
K(1)

11 (t, 0) K(1)
12 (t, 0)

−
(
K(1)

12 (t, 0)
)∗ (

K(1)
11 (t, 0)

)∗
)

+

(
K(0)

11 (t, 0) K(0)
12 (t, 0)

−
(
K(0)

12 (t, 0)
)∗ (

K(0)
11 (t, 0)

)∗
)
.

The equality L2N+1 = R2N+1 gives for the off-diagonal entries of K(1)(t, 0) that K(1)
12 (t, 0) =

iu[2N ](t, 0) and K(1)
21 (t, 0) = −

(
K(1)

12 (t, 0)
)∗

= iu∗[2N ](t, 0). For the entries on the diagonal of
K(1)(t, 0), we obtain from the same equality

K(1)
11 (t, 0) = i

√
β2 − |u[0](t, 0)|2 − 2(Σ1(t, 0))11,(

K(1)
11 (t, 0)

)∗
= −i

√
β2 − |u[0](t, 0)|2 − 2(Σ∗1(t, 0))11,

(5.2.24)

where Σ1 is the matrix coefficient of λ2N−1 of the matrix D[2N ](t, x, λ). To determine the remaining
entries of the matrix coefficients, we need to extract information from the determinant of KN (t, x, λ).
Again, we have that

det
( N∏
k=1

(λ− λ∗k)(λ+ λ∗k)D[2N ](t, x, λ)
)

= det
( N∏
k=1

(λ− λ∗k)(λ+ λ∗k)D[2N ](t, x,−λ)
)
,

which implies for the determinant of KN that

det
((2λ− i|β|)2 − α2

4
KN
∣∣
x=0

)
= det

((2λ− i|β|)2 − α2

4
K0

)
= λ4 − α2 − β2

2
λ2 +

(α2 + β2)2

16
.

Formally, calculating the determinant of the matrix KN (t, 0, λ) in polynomial form as given above,
we can match the coefficients yielding

Tr(K(1)(t, 0)) = 0,

Tr(K(0)(t, 0)) + det(K(1)(t, 0)) = −α
2 − β2

2
,

2 Re(K(1)
11 (t, 0)

(
K(0)

11 (t, 0)
)∗

)− 2
(
K(0)

12 (t, 0)
)∗

Im(u[2N ](t, 0)) = 0,

det(K(0)(t, 0)) =
(α2 + β2)2

16
.

(5.2.25)

Combining the first line in (5.2.25) with the expressions we have for K(1)
11 (t, 0) and its complex

conjugate, see (5.2.24), we can deduce that Re(K(1)
11 (t, 0)) = 0. Further, evaluating the equality of

(5.2.20) of order 2N in λ, i.e. L2N = R2N , we obtain

−iΣ1

(√
β2 − |u[0](t, 0)|2 u[0](t, 0)

u[0]∗(t, 0) −
√
β2 − |u[0](t, 0)|2

)
− α2 + β2

4
1 = K(1)(t, 0)Σ1 +K(0)(t, 0)
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at x = 0. Matching the (12)-entry of this equality, we derive

(u[2N ](t, 0)− u[0](t, 0))

√
β2 − |u[0](t, 0)|2

2
− iu[0](t, 0)(Σ1(t, 0))11 =

− i

2
K(1)

11 (t, 0)(u[2N ](t, 0)− u[0](t, 0)) + iu[2N ](t, 0)(Σ∗1(t, 0))11 +K(0)
12 (t, 0)

and using the expressions in (5.2.24) we have for (Σ1)11 and (Σ∗1)11, we obtain after cancellation
that

K(0)
12 (t, 0)− iu[2N ] Re(K(1)

11 (t, 0)) = 0.

However, we already calculated that Re(K(1)
11 (t, 0)) needs to be zero in order for the determinants

to be equal. Hence, also K(0)
12 (t, 0) and thus the off-diagonal of K(0)(t, 0) vanishes. It follows by

the third equation of (5.2.25) that Im(K(0)
11 (t, 0)) = 0 and then, by the fourth equation we have

K(0)(t, 0) = ±α2+β2

4
1. To verify that it is indeed minus as for K0(t, 0, λ), we confirm with the

equality of L0 = R0, which gives

−α
2 + β2

4
Σ2N(t, 0) = K(0)(t, 0)Σ2N(t, 0),

where Σ2N is the zero-th order matrix coefficient of the dressing matrix D[2N ](t, x, λ). For
this to be satisfied for all t ∈ R+, we need to have K(0) = −α2+β2

4
1. Therefore, we obtain

Tr(K(0)(t, 0)) = −α2+β2

2
. Thus, the second equation of (5.2.25) implies that

K(1)
11 (t, 0) = ±i

√
β2 − |u[2N ](t, 0)|2,(

K(1)
11 (t, 0)

)∗
= ∓i

√
β2 − |u[2N ](t, 0)|2.

Now, we need to determine the sign of the diagonal entries of K(1)(t, 0) to ensure that KN(t, x, λ)
preserves the boundary constraint at x = 0, i.e. we need to show that the signs coincide with the
signs in the same entry of K0(t, 0, λ) in front of the square root.

Therefore, a similar analysis as in Proposition 5.1.2 is needed, where we use the fact that under
the Dressing method functions u[0](·, 0), u[0]x(·, 0) in the function space H1,1

t (R) are mapped onto
functions, here u[2N ](·, 0), u[2N ]x(·, 0), which lie in the function space H1,1

t (R). Further, assume
that K0(t, 0, λ) has a positive sign in the (11)-entry in front of the square root. We have identified
the kernel vectors ψ0 and ψ̂0 of K0(t, 0, λ) at x = 0 and λ = λ0 and λ = λ̂0, respectively. Then, for
K0(t, 0, λ) multiplied by ((2λ− i|β|)2 − α2)/4 as t goes to infinity, we have that

(2λ− i|β|)2 − α2

4
lim
t→∞
K0(t, 0, λ) = diag

(
λ2 + i|β|λ− (α2 + β2)

4
, λ2 − i|β|λ− (α2 + β2)

4

)
= diag((λ− λ0)(λ− λ̂∗0), (λ− λ∗0)(λ− λ̂0)).

In turn, this implies that the kernel vectors of K0(t, 0, λ) necessarily admit the limit behavior ψ0 ∼ e1

and ψ̂0 ∼ e2 as t goes to infinity. Since the dressing matrix D[2N ](t, x, λ) also becomes diagonal
as t goes to infinity, see Lemma 4.4.4, the kernel vectors ψ′0 = D[2N ]

∣∣
λ=λ0

ψ0, ψ̂′0 = D[2N ]
∣∣
λ=λ̂0

ψ̂0

of KN inherit the long time behavior of their corresponding vector. Therefore, the signs can be
determined to be positive in the (11)-entry and negative in the (22)-entry in front of the square
root.
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Secondly, the assertion regarding the imaginary part corresponding to the sign of K(1)
11 (t, 0) for

t ∈ R+ makes sure that the sign can not simply change over time.
Hence, the boundary condition for the solution û[N ] of the NLS equation on the half-line is

preserved.

Remark 5.2.8. Similar to the analysis of the long time behavior of the kernel vectors, one could
look at the long time behavior of the dressing matrix D[2N ](t, x, λ) to deduce the same result
through the equality of KN

∣∣
x=0

with the product of the three matrices D[2N ](t, x,−λ) · K0(t, 0, λ) ·
(D[2N ](t, x, λ))−1 at x = 0. Nevertheless, these behaviors are closely related to one another, since
the limit behavior of the kernel vectors of D[2N ](t, 0, λ) determines the distribution of factors
λ− λj, λ− λ̂j, λ− λ∗j and λ− λ̂∗j for j = 1, . . . , N in the diagonal entries as t goes to infinity.

Remark 5.2.9. As for the NLS equation with defect conditions, it is possible to express the
assertion about the sign of K(1)

11 (t, 0) in terms of the kernel vectors the boundary matrix KN is
constructed from. However, this condition becomes very situational due to the fact that in theory
we deal with a two-fold dressing matrix.

We have shown that the method of dressing the boundary can as well be applied to the new
boundary conditions constituted as in [30]. In order to achieve this, it is necessary to apply
the techniques developed for the other defect and boundary conditions, most importantly, the
determination of a dressing matrix which satisfies a particular equality, see (5.2.21) and (5.2.22) as
well as the identification procedure for the ± sign inside the boundary matrix KN . Integrability for
this boundary condition has been established recently in [40] together with a simplified application
of the Dressing method.

In conclusion, we have in theory established the method of dressing the defect for the defect
conditions (4.1.2) regarding the NLS equation and (4.1.4) regarding the sG equation on two
half-lines as presented in Section 5.1 as well as the method of dressing the boundary for the
sin-boundary condition (4.3.7) regarding the sG equation and the Robin (4.3.2) as well as the
new boundary condition (4.3.3) regarding the NLS equation on the half-line in Section 5.2. As
emphasized before, the Dressing method stands, in particular, for a straightforward application to
practically obtain soliton or breather solutions in connection with the Lax systems of the NLS
and sG equation. Therefore, we dedicate the next chapter to the application of the presented
propositions to derive explicit solutions of the respective model and further to graphically present
the results. Moreover, we use the theory introduced in Section 3.3 for the change of scattering data
under the Dressing method to explicitly describe the complete scattering data which is needed in
order to utilize the propositions and prove in the case of the defect conditions for the NLS equation
that each soliton is transmitted through the defect independently as conjectured in [15].
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Chapter 6

Soliton solutions

In this chapter, we want to apply the main results worked out in Chapter 5 in order to construct
and visualize explicit solutions of the presented models using Matlab. Thus, we are interested
in those solutions, which can be constructed by the Dressing method. Nonetheless, let us first
elucidate the notion of solitons especially for the NLS and sG equation more accurately. Before we
give mathematically rigorous definitions of solitons in these two cases, in general solitons can be
described as solutions of a nonlinear equation which admit three properties:

1. They are of permanent form;

2. They are localized within a region;

3. They can interact with other solitons, and emerge from the collision unchanged, except for a
phase shift.

This definition has been given in [20] and it should be mentioned that, due to the broad spectrum
of where these solutions can be found, it is by no means the only definition. In particular, solitons
arise when the properties of a nonlinear equation are such that the dispersion and nonlinear effects
precisely counteract each other, see Figure 6.1 for a sketch of this idea. The NLS and sG equation

Balance

t = 0

Nonlinear breaking of wave

t > 0

t = 0

Dispersion of wave

t > 0

t = 0

Soliton

t > 0

Fig. 6.1. Balance effects of dispersion and breaking in a soliton, see also [20].

both meet this criteria and the inverse scattering transformation is typically utilized to obtain
these solutions, as worked out in Sections 2.1 and 2.2. Moreover, with Definitions 2.1.4 and 2.2.6
in mind, we can give rigorous definitions of N -soliton solutions with respect to the scattering data

105
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S(u) = (ρ(λ), {λj, Cj}Nj=1) or S(θ) = (ρ(λ), {λj, Cj}Nj=1) associated to the initial data u ∈ GN or
θ ∈ GN .

Definition 6.0.1. Given the initial data generates pairwise distinct simple eigenvalues λ1, . . . , λN
and moreover ρ(λ) = 0 for all λ ∈ R, the corresponding solution of (2.1.1) or (2.2.1) is called an
N-soliton solution. For DN = {λj, Cj}Nj=1 ⊂ (C+)N × (C \ {0})N , we adapt the notation

usol(t, x;DN), θsol(t, x;DN).

Note that the one-soliton solution given in (2.1.21) is based on this definition. Moreover, the
zero solutions u = 0 and θ = 0 are covered by this definition as zero-soliton solutions. In both
equations, special solitonic structures, the so-called breathers, can be found. In addition to the
properties of a soliton, the breather also admits a periodicity as can be seen later on. As indicated
before, breathers in the case of the NLS equation at least require that two simple eigenvalues share
the same real part, whereas in the case of the sG equation they correspond to a pair of simple
eigenvalues λ1 and λ2 = −λ∗1 not lying on the imaginary axis. Beyond that, all these solutions can
appear as boundary-bound soliton solutions. Again, differentiating the cases of the NLS equation
and the sG equation, for which boundary-bound solitons correspond to simple eigenvalues lying on
the imaginary axis and on the unit circle of the complex plane, respectively. In Figure 6.2, we give
examples associated to the distributions of simple eigenvalues for both equations.

Now, in the forthcoming sections, we especially aspire to construct new solutions and keep
information which can be obtained through other literature to a sensible minimum. Dealing with
the reconstruction formulae from the Dressing method in both cases, the sG equation (3.2.16) and
NLS equation (3.2.14), one may notice that the solutions arising in the case of the sG equation are
more complicated than the ones in the case of the NLS equation. Thus, connecting the expressions
of the scattering data with relevant parameters on the solution side is less feasible. Nevertheless,
we shall provide some insights by explicitly constructing the single one-soliton and a breather
solution under the Dressing method in the case of the sG equation. For the NLS equation, however,
we utilize these relations of the scattering data to parameters of the solution in order to prove that
each soliton is transmitted through the defect independently in the model with defect conditions
and that the parameters for the suggested pairs of solitons have specific relations in the model
with boundary conditions.

λ1

λ2

λ∗1

λ∗2

λ1

λ∗1

λ1λ2

−λ2−λ1

λ1λ2

−λ2−λ1

NLS equation sG equation

Fig. 6.2. Exemplary distribution of simple eigenvalues for breathers (in each case left)
and boundary-bound solitons (in each case right).
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6.1 Soliton solutions for models of the sG equation
As we have seen, the zero seed solution θsol(t, x; {}) = 0 corresponds to the scattering data
(ρ(λ) = 0). In fact, one can derive a11(λ) = 1 and a21(λ) = 0. Therefore, applying a one-fold
dressing matrix to construct a one-soliton solution with the new simple eigenvalue λ1 = iη1 ∈ iR
and constants u1, v1 such that the quotient v1/u1 ∈ iR \ {0}, by Theorem 3.3.1 we obtain the
following new data

a11(λ) =
λ− λ1

λ− λ∗1
,

a21(λ) = 0,

b1 = −v1

u1

,

λ ∈ C+ ∪ R,

λ ∈ R,

ρ(λ) = 0,

C1 = −v1

u1

(λ1 − λ∗1).

λ ∈ R,

The relevant scattering data (ρ = 0, {λ1, C1}) corresponds to a one-soliton solution which we
construct in the following:

Lemma 6.1.1. Given the scattering data (0, {λ1 = iη1, C1 = 2iη1b1}), the one-soliton solution of
the sG equation is given by

θsol(t, x; {λ1, C1}) = 4 sign Im(b1) arctan e
1
2

(η1+ 1
η1

)x− 1
2

(η1− 1
η1

)t−log |b1|. (6.1.1)

Proof. The proof structurally follows the ideas given in [27]. For the Dressing method, we first
state the fundamental solution

Φ(t, x, λ) = (ψ
(1)
− , ψ

(2)
+ ) =

(
e
ϑ(λ)−iζ(λ)

2 0

0 e−
ϑ(λ)−iζ(λ)

2

)
for the Lax system (2.2.3) of the sG equation corresponding to the zero seed solution, where

−ϑ(λ) = Re(2iΘ(t, x, λ)) =
Im(λ)

2

[(
1 +

1

|λ|2
)
x−

(
1− 1

|λ|2
)
t
]
,

ζ(λ) = Im(2iΘ(t, x, λ)) =
Re(λ)

2

[(
1− 1

|λ|2
)
x−

(
1 +

1

|λ|2
)
t
]
.

Therefore, we can give an explicit solution of the Lax system (2.2.3) at the spectral parameter
λ = λ1 by

ψ1(t, x) = u1ψ
(1)
− (t, x, λ1) + v1ψ

(2)
+ (t, x, λ1) = e−iΘ(t,x,λ1)σ3

(
u1

v1

)
, (6.1.2)

where (u1, v1)ᵀ is connected to C1 as noted beforehand and the phase Θ(t, x, λ) is the phase function
from the scattering process for the sG equation. Effectively, only the quotient of v1 and u1 is
relevant and as in Section 3.2, we take the quotient of the second entry and the first entry of ψ1 to
obtain

∆1 = −b1e
2iΘ(t,x,λ1) = −b1e

−ϑ(λ1)+iζ(λ1),

where b1 = − v1
u1
. Then, we derive the one-fold dressing matrix D[1] for an arbitrary C\R 3 λ = λ1,

for which we take on the usual notation λ1 = ξ1 + iη1, and b1 = − v1
u1
. By adopting the notation

ϑ = ϑ(λ1)− log |b1| and ζ = ζ(λ1) + arg b1, we obtain

D[1] = 1− iη1

λ− λ∗1

(
1 + tanh(ϑ) − sech(ϑ)e−iζ

− sech(ϑ)eiζ 1− tanh(ϑ)

)
. (6.1.3)
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Consequently for Ns = 1, we can calculate the one-soliton solution of the sG equation corresponding
to a purely imaginary spectral parameter, ξ1 = 0. The reconstruction formula (3.2.16) implies that
sin(θ[1]/2) can be constructed by evaluating the (12)-entry of −iD[1]

∣∣
λ=0

σ3, which ultimately gives

θ[1] = 2 sign Im(b1) arcsin(sechϑ). (6.1.4)

Further, this can be transformed into the more commonly known version of the one-soliton solution

θ[1] = 4 sign Im(b1) arctan e
1
2

(η1+ 1
η1

)x− 1
2

(η1− 1
η1

)t−log |b1|.

Note that the general one-fold dressing matrix (6.1.3) can be used to obtain the breather
solution, since the Dressing method is an iterative method. Hence, we have:

Lemma 6.1.2. Given the scattering data (0, {λ1 = ξ1 + iη1,−λ∗1, C1 = 2iλ1
η1
ξ1
b1,−C∗1}), where

λj /∈ iR, the breather solution of the sG equation is given by

θ[2] = 4 arctan

(
−

η1 cos
(
ξ1
2

[(
1− 1

|λ1|2
)
x−

(
1 + 1

|λ1|2
)
t
]

+ arg(b1)
)

ξ1 cosh
(
−η1

2

[(
1 + 1

|λ1|2
)
x−

(
1− 1

|λ1|2
)
t
]
− log |b1|

)). (6.1.5)

Proof. The calculations to obtain the one-fold dressing transformation come in handy for the
derivation of a breather solution, where the scattering data consist of λ1 ∈ C \ (R ∪ iR) and
λ2 = −λ∗1 with respective norming constants b1 = − v1

u1
and b2 = −b∗1 =

v∗1
u∗1
. By the one-fold dressing

transformation D[1], we can work out the fundamental solution for the Lax system of the Lax pair
U[1] and V[1] as

Φ[1](t, x, λ) =

(1− iη1
λ−λ∗1

(1 + tanh(ϑ)
)
e
ϑ(λ)−iζ(λ)

2
iη1
λ−λ∗1

sech(ϑ)e−iζe−
ϑ(λ)−iζ(λ)

2

iη1
λ−λ∗1

sech(ϑ)eiζe
ϑ(λ)−iζ(λ)

2

(
1− iη1

λ−λ∗1
(1− tanh(ϑ)

)
e−

ϑ(λ)−iζ(λ)
2

 ,

where we continue to utilize the notation we have introduced in the proof of Lemma 6.1.1. From
this we obtain at λ2 = −λ∗1 and b2 = −b∗1 that the quotient yields

∆2[1] =
−iη1 cos ζ + ξ1e

−ϑ−iζ coshϑ

ξ1 coshϑ− iη1e−ϑ−iζ cos ζ
.

Hence by the reconstruction formula (3.2.16), evaluating the (12)-entry of the two-fold dressing
matrix

D[2] =

(
1− 2iη1

λ− λ1

1

1 + |∆2[1]|2

(
1 ∆∗2[1]

∆2[1] |∆2[1]|2
))(

1− 2iη1

λ− λ∗1
1

1 + |∆1|2

(
1 ∆∗1

∆1 |∆1|2
))

at λ = 0 and multiplying the result by −i, gives an expression for the solution in terms of sin(θ[2]/2).
Then, we have

θ[2] = 2 arcsin
(
− 2ξ1η1 cos ζ coshϑ

η2
1 cos2 ζ + ξ2

1 cosh2 ϑ

)
(6.1.6)

or in the more commonly known form of the breather solution

θ[2] = 4 arctan
(
− η1 cos ζ

ξ1 coshϑ

)
.
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With these two explicitly constructed soliton solutions, we want to give examples of the solutions
of the models of the sG equation on two half-lines connected by defect conditions and on one
half-line with the sin-boundary condition. In general, if one merely wants to calculate expressions
of soliton solutions for the sG equation, it seems that other methods for instance the Bäcklund
transformation or variable transformations are more efficient when it comes to the direct derivation
of expressions with the arctan, based on the available literature. Nevertheless, we want to address
two pivotal advantages of the Dressing method, which aligns the resulting soliton solutions with
the structural analysis we want to apply. Firstly, let us emphasize that in the Dressing method
the parameters of the resulting soliton solutions are completely determined by the scattering data,
which we have defined during the process of the direct scattering. Not only that, but in regards to
the propositions we have worked out in Chapter 5, which are stated with the Dressing method in
mind, the solutions depend on relations of the scattering data, making it extremely important to
have a direct connection of the scattering data to parameters in the N -soliton solution. Secondly,
particularly for the NLS equation, the Dressing method provides the means to let the computer
handle the lengthy algebraic computations. Therefore, even without having the explicit expressions
of the solutions at hand, it is still possible to visualize exact N -soliton solutions until the processing
capacity is reached.

6.1.1 sG equation on two half-lines connected by a defect condition

Now, given the explicit soliton solutions derived in Section 6.1 and the assumption (5.1.3), we can
give the explicit expressions of a one-solion and a breather solution for the sG equation on two
half-lines connected via defect conditions. Taking paired solutions ψ̃j, j = 1 or j = 1, 2, to the
Lax system corresponding to the sG equation on the negative half-line (5.1.2), it follows that each
indiviual quotient ṽj/ũj needs to satisfy

ṽj
ũj

=
λj − iα
λj + iα

vj
uj

(6.1.7)

by assumption (5.1.3), where we choose the + sign in the matrix B0(λ) = 1 + iασ3 representing
the frozen Bäcklund transformation, which is used in Proposition 5.1.1. The quotient representing
the defect conditions in the spectral data is transferred to the norming constants C̃j, j = 1 or
j = 1, 2, of the scattering data yielding

C̃j =
λj − iα
λj + iα

Cj.

Hence, a one-soliton solution of the sG equation on two half-lines connected by the defect conditions
is given by the combination of the solutions

θ̃sol(t, x; {λ1, C̃1}) = 4 sign
(C̃1

η1

)
arctan e

1
2

(η1+ 1
η1

)x− 1
2

(η1− 1
η1

)t−log

∣∣ C̃1
2η1

∣∣
,

θsol(t, x; {λ1, C1}) = 4 sign
(C1

η1

)
arctan e

1
2

(η1+ 1
η1

)x− 1
2

(η1− 1
η1

)t−log

∣∣ C1
2η1

∣∣
on the negative and positive half-line, respectively. Therefore, similar observations based on the
quotient λj−iα

λj+iα
as in [8] hold, see also Figure 6.3.

1. If η1 > α, then the soliton is simply delayed, since the quotient is less than or equal to one. For
bigger η1 the delay is getting less, since the quotient gets closer to one.
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Fig. 6.3. One-soliton interacting with the defect (left: α = 1, right: α = 1.8).

2. If η1 = α, then the soliton can not be described by Proposition 5.1.1, since it is swallowed by
the defect.

3. If η1 < α, then the constant C̃1 has the opposite sign of C1. Therefore, an incoming soliton is
transmitted through the defect as an anti-soliton, or vice-versa.

The same steps can be applied to the breather solution which then amounts to

θ̃sol(t, x; {λ1,−λ∗1, C̃1,−C̃∗1}) = 4 arctan

(
−

η1 cos
(
ξ1
2

[(
1− 1

|λ1|2
)
x−

(
1 + 1

|λ1|2
)
t
]

+ arg(b̃1)
)

ξ1 cosh
(
−η1

2

[(
1 + 1

|λ1|2
)
x−

(
1− 1

|λ1|2
)
t
]
− log |b̃1|

)),
θsol(t, x; {λ1,−λ∗1, C1,−C∗1}) = 4 arctan

(
−

η1 cos
(
ξ1
2

[(
1− 1

|λ1|2
)
x−

(
1 + 1

|λ1|2
)
t
]

+ arg(b1)
)

ξ1 cosh
(
−η1

2

[(
1 + 1

|λ1|2
)
x−

(
1− 1

|λ1|2
)
t
]
− log |b1|

))

on the negative an the positive half-line, respectively. The connections between b1, b̃1 and C1, C̃1

are given by

b1 =
C1

2iλ1

ξ1

η1

, b̃1 =
C̃1

2iλ1

ξ1

η1

,

respectively, where λ1 = ξ1 + iη1 ∈ C \ (R∪ iR) is the spectral parameter. Further, the parameters
b1, b2 and b̃1, b̃2 indeed satisfy the following relations

b1 = −v1

u1

,

b̃1 = −v1

u1

λ1 − iα
λ1 + iα

,

b2 = −v2

u2

=
v∗1
u∗1

= −b∗1,

b̃2 = −v2

u2

λ2 − iα
λ2 + iα

=
v∗1
u∗1

λ∗1 + iα

λ∗1 − iα
= −b̃∗1

due to assumption (5.1.3). In both cases, of the single soliton and the breather solution, these
relations amount to

x̃1 − x1 = − log
∣∣∣λ1 − iα
λ1 + iα

∣∣∣,
ϕ̃1 − ϕ1 = arg

(λ1 − iα
λ1 + iα

)
,

(6.1.8)
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where x1 = − log |b1| and ϕ1 = arg b1 and similar notation for the other two constants. In that
regard, we have shown that each soliton in the one-soliton solution and the specific two-soliton
solution experience the defect independently, which seems to be not as easily generalizable as for
the NLS equation. We give examples of the breather (two-soliton) solution in Figures 6.4 and 6.5.

Fig. 6.4. Breather interacting with the defect (α = −1) and its contour.

Fig. 6.5. Boundary-bound breather interacting with the defect (α = 1√
2
) and its contour.

A special solution can be identified [7], which interacts destructively with the defect condition.
Therefore, a specific choice of the simple eigenvalue λ1 is necessary which is λ1 = iα, α ∈ R \ {0}.
This results for example in the following formula

θ̃sol(t, x; {λ1, C̃1}) = 4 sign(Im(b̃1)) arctan e
1
2

(α+ 1
α

)x− 1
2

(α− 1
α

)t−log |b̃1|,

θsol(t, x; {}) = 0

and very similarly for the other half-line which we visualize in Figure 6.6. Inserting this solution
into the defect condition (4.1.4) of the sG equation, we find

(θ̃sol(t, x; {λ1, C̃1}))x
∣∣
x=0

= 4 sign(Im(b̃1))
1

4

(
α +

1

α

)
sech

(1

2
(α− 1

α
)t+ log |b̃1|

)
=
(
α +

1

α

)
sin

θ̃sol(t, 0; {λ1, C̃1})
2

(6.1.9)
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in combination with the expression (6.1.4) of sin(θ/2) from the proof of Lemma 6.1.1. It then also
follows that

(θ̃sol(t, x; {λ1, C̃1}))t
∣∣
x=0

= − sign(Im(b̃1))
(
α− 1

α

)
sech

(1

2
(α− 1

α
)t+ log |b̃1|

)
= −

(
α− 1

α

)
sin

θ̃sol(t, 0; {λ1, C̃1})
2

.

This analysis can be repeated with λ1 = −iα where the solution then satisfies the defect condition
with the other sign. In fact, the existence of these solutions, which are not fitting in the description
of solutions by Proposition 5.1.1, provides no added value to the construction of N -soliton solutions
due to the requirement of a zero seed solution in the propositions for the sG equation. Nevertheless,
since in some special cases, the construction of N -soliton solutions combined with destructively
interacting solutions could turn out useful, it is at least worth mentioning them for the sG equation.

Fig. 6.6. Single soliton swallowed by (left) or emerging from (right) the defect (α = −2).

6.1.2 sG equation on the half-line with sin-boundary condition

Subsequently, we consider the sG equation on the half-line (5.2.1) with the sin-boundary condition
(4.3.7). As it is imminent from Proposition 5.2.1, single solitons and breathers come in pairs and
boundary-bound breathers are subject to a specific condition represented by assumption (5.2.4).
In that regard, results for the paired single soliton solution have been discussed in [43], where it
can be seen that similarly to the sG equation with defect condition, the boundary can effectively
combine a soliton with a soliton or an anti-soliton depending on the boundary parameter α. By
the exact formulae for the single one-soliton (6.1.1) and breather solution (6.1.5), we are satisfied
by giving the solution formula of a boundary-bound breather solution

θsol(t, x; {λ1,−λ∗1, C1,−C∗1}) = 4 arctan

(
−

η1 cos
(
ξ1t
)

ξ1 cosh
(
η1x+ log |b1|

))
with |λ1| = 1 and the usual relations of the parameters. Then, we can visualize the solution,
see Figure 6.7 of a boundary-bound breather solution subject to the sin-boundary condition.
Assumption (5.2.4) implies that b1 = − v1

u1
= −

√
α−2η1
α+2η1

, where the quotient inside the root needs to
be positive.
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Fig. 6.7. Boundary-bound breather solution interacting with the sin-boundary (α = 2).

As it can be seen in equation (6.1.9), if we take a spectral parameter λ1 = iη1 with the property
η1 + 1/η1 = α, then the constructed single soliton solution satisfies the sin-boundary condition.
Again, this solution is not compatible with Proposition 5.2.1. It may be natural to think that,
since for the defect condition the destructively interacting one-soliton solution is constructed with
the zero as simple eigenvalue, which is associated to the defect parameter, the zeros, which are
associated to the boundary parameter, can also be used to construct destructively interacting
solutions. However, given the boundary parameter α, the boundary-bound breather

θbreather(t, x) ..= θsol(t, x; {λ1,−λ∗1, C1,−C∗1}) = 4 arctan

(
−

η1 cos
(
ξ1t− arg b1

)
ξ1 cosh

(
η1x+ log |b1|

)),
where λ1 is such that |λ1| = 1, satisfies the sin-boundary condition

(θbreather(t, x))x
∣∣
x=0

= −2η1 tanh(log |b1|)
(
−

2ξ1η1 cos
(
ξ1t− arg b1

)
cosh(log |b1|)

η2
1 cos2

(
ξ1t− arg b1

)
+ ξ2

1 cosh2(log |b1|)

)
= α sin

θsol(t, 0; {λ1,−λ∗1, C1,−C∗1})
2

if −2η1 tanh(log |b1|) = α by the expression (6.1.6) of the breather from the proof of Lemma 6.1.2.
And as it turns out, this equation is equivalent to b1 = − v1

u1
= −

√
α−2η1
α+2η1

stated generally for
breather solutions.

6.2 Soliton solutions for the NLS equation
The Dressing method presented in Section 3.2 gives the algebraic means to derive, in the case
of the NLS equation, N -soliton solutions simply by calculating the (12)-entry of the projector
matrices (P [j])12 for j = 1, . . . , N recursively and then sum them up or by the direct calculation
of the quotient of two 2N × 2N matrices, which represents the (12)-entry of the sum of projector
matrices, i.e. (Σ1)12, as presented in [42]. In that sense, it is in theory feasible to give an explicit
expression for an arbitrary soliton solution, however, as indicated by the recursiveness or rather
the dimension of the matrix, the expressions rapidly become unhandy. On the other hand, since we
have algebraic expressions, it is reasonable to use programming in order to calculate these solutions
and thus to visualize them.
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As for the sG equation, we concentrate on the construction of soliton solutions originating
from the zero seed solutions for the NLS equation. With that said, it is clear that the zero seed
solutions are in the appropriate function spaces for all three propositions to be applicable, which
translates into u[0](·, 0), ũ[0](·, 0), u[0]x(·, 0), ũ[0]x(·, 0) ∈ H1,1

t (R). Due to the seed solution being
constant, this property holds particularly for an arbitrary fixed value xf which corresponds to
the point where the defect conditions are imposed. For the defect condition, the generality of the
point of the defect gives some further insight. In fact, this circumstance implies that there exists a
matrix corresponding to a frozen Bäcklund transformation for every xf ∈ R connecting the Lax
pairs corresponding to the zero seed solutions for x < xf and x > xf . Consequently, applying
Proposition 5.1.2 without the additional assumption on the imaginary part of the (11)-entry of the
matrix corresponding to the frozen Bäcklund transformation for ũ[N ](t, xf ) and u[N ](t, xf ), xf 6= 0,
for different values of xf , we obtain matrices corresponding to frozen Bäcklund transformations
for every xf ∈ R connecting the Lax pairs corresponding to the N -soliton solutions constructed
through the method of dressing the defect. With that in mind, let us construct solutions in the
model of the NLS equation subject to a defect condition.

6.2.1 NLS equation on two half-lines connected by a defect condition

In addition to the zero seed solutions usol(t, x; {}) = 0 and ũsol(t, x; {}) = 0, we take α ∈ R and
β ∈ R\{0} and define λ0 = −α

2
+ iβ

2
∈ C\R. Hence, the matrix B0(λ), corresponding to the frozen

Bäcklund transformation connecting the Lax pairs of the zero seed solutions and representing the
defect conditions, can be written as

B0(λ) = 1 +
1

2λ

(
α− iβ 0

0 α + iβ

)
= 1 +

1

λ

(
−λ0 0

0 −λ∗0

)
,

where the ± sign is chosen so that ±|β| = −β. Then, for the N -fold dressing matrix, we take
solutions ψj to the Lax system (2.1.2) corresponding to u[0] for distinct λ = λj ∈ C\

(
R∪{λ0, λ

∗
0}
)
,

j = 1, . . . , N , which are given by

ψj(t, x) = ujψ
(1)
− (t, x, λj) + vjψ

(2)
+ (t, x, λj) = e(−iλjx−2iλ2j t)σ3

(
uj
vj

)
(6.2.1)

with constants uj and vj. Further, since the relation

ψ̃j
∣∣
x=0

= B0(λj)ψj
∣∣
x=0

is assumed to hold for j = 1, . . . , N and solutions defined by ψ̃j(t, x) = e(−iλjx−2iλ2j t)σ3(ũj, ṽj)
ᵀ of

the Lax system corresponding to ũ[0] for λ = λj with constants ũj and ṽj, we obtain the following
relation for the constants ũj, ṽj, uj and vj:

ũj
ṽj

=
2λj + α− iβ
2λj + α + iβ

uj
vj
, j = 1, . . . , N. (6.2.2)

Note that effectively only the quotient of uj and vj, j = 1, . . . , N , is relevant for the scattering
data and that changing the sign of β is, via the relation ±|β| = −β, the same as changing the ±
sign in the defect condition. The exact expressions for Cj and C̃j for j = 1, . . . , N can be derived
straightforwardly and we state them in Remark 6.2.2. Therefore, we can apply Proposition 5.1.2
in order to construct N -soliton solutions usol(t, x; {λj, Cj}Nj=1) and ũsol(t, x; {λj, C̃j}Nj=1) which at
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x = xf = 0 are in the function space H1,1
t (R), see Proposition 4.4.3, and with respect to x, we

have usol(t, ·; {λj, Cj}Nj=1) ∈ H1,1(R+) and ũsol(t, ·; {λj, C̃j}Nj=1) ∈ H1,1(R−) by [17, Prop. 4.7]. As
in the proof of Proposition 5.1.2, we can use this fact to make sure that, after finding the matrices
BN(t, xf , λ), xf ∈ R, corresponding to the frozen Bäcklund transformation for the N -soliton
solutions, the sign in front of the root in the (11)-entry is consistent with the sign of the initial
matrix B0(λ). Ultimately, we can use this extension to show that each soliton of the N -soliton
solution interacts with the defect individually.

Taking the same dressing matrices, applying them to zero seed solutions usol(t, x; {}) = 0
and ũsol(t, x; {}) = 0 on the whole line x ∈ R, we obtain two N -soliton solutions for the NLS
equation for x ∈ R, which we denote by uN(t, x) and ũN(t, x) for now to distinguish them from
the half-line solutions. By the aforementioned argumentation in Section 4.1, we have that at each
point xf ∈ R, we can give by Proposition 5.1.2 a matrix BN(t, xf , λ) corresponding to a frozen
Bäcklund transformation. Hence, it makes sense to assume that the solutions of the Lax systems
for uN(t, x) and ũN(t, x) are connected by a matrix of degree one in λ or in other words

ψ̃(t, x, λ) = BN(t, x, λ)ψ(t, x, λ).

Hence, the matrix BN(t, x, λ) solves the system (4.1.1). Assuming this matrix is linear in λ, it
can only be of the form described in Proposition 3.1.1, which means there exist real parameters δ,
γ ∈ R and a ± sign to be determined and

BN(t, x, λ) = 1 +
1

2λ

(
δ ± i

√
γ2 − |ũN(t, x)− uN(t, x)|2 −i(ũN(t, x)− uN(t, x))

−i(ũN(t, x)− uN(t, x))∗ δ ∓ i
√
γ2 − |ũN(t, x)− uN(t, x)|2

)
.

However, precisely at x = 0, we have by Proposition 5.1.2 that

BN(t, 0, λ) = 1 +
1

2λ

(
α− i

√
β2 − |ũN(t, 0)− uN(t, 0)|2 −i(ũN(t, 0)− uN(t, 0))

−i(ũN(t, 0)− uN(t, 0))∗ α + i
√
β2 − |ũN(t, 0)− uN(t, 0)|2

)
,

where the full line solutions uN(t, 0) and ũN(t, 0) can effectively be reduced to their half-line
counterpart usol(t, 0; {λj, Cj}Nj=1) and ũsol(t, 0; {λj, C̃j}Nj=1), respectively. Therefore, we can deduce
that δ = α, γ2 = β2 and the sign complies with B0 for x = 0 and t ∈ R. Additionally, we
fix the sign to be minus and, for −|β| = −β to hold, thus β > 0. Moreover, starting with
zero seed solutions, we can assume that the matrix BN(t, x, λ) is constructed by the vector
ψ′0(t, x) = D[N ](t, x, λ0)u0ψ

(1)
− (t, x, λ0), u0 ∈ C \ {0}, as suggested in the proof of Proposition 5.1.2.

Hence, for the quotient ∆0(t, x) = [ψ′0(t, x)]2/[ψ
′
0(t, x)]1, we have

lim
|t|→∞

|∆0(t, 0)| = lim
|t|→∞

∣∣∣ [ψ′0]2(t, 0)

[ψ′0]1(t, 0)

∣∣∣ = lim
|t|→∞

∣∣∣ [D[N ]]21(t, 0, λ0)

[D[N ]]11(t, 0, λ0)

∣∣∣ = 0

by Remark 4.4.5. Furthermore, by the construction of dressing matrices, we find for BN(t, x, λ),
up to a polynomial in λ, that

BN(t, x, λ) =
λ− λ∗0
λ

(
1 +

λ∗0 − λ0

λ− λ∗0
1

1 + |∆0(t, x)|2

(
1 ∆∗0(t, x)

∆0(t, x) |∆0(t, x)|2
))

= 1 +
1

λ

1

1 + |∆0(t, x)|2

(
−(λ0 + λ∗0|∆0(t, x)|2) (λ∗0 − λ0)∆∗0(t, x)

(λ∗0 − λ0)∆0(t, x) −(λ∗0 + λ0|∆0(t, x)|2).

)
(6.2.3)

Then, to put the additional property of Proposition 5.1.2 into perspective, we identify

Im
(

2λ([BN(t, 0, λ)]11 − 1)
)

= −
√
β2 − |ũN(t, 0)− uN(t, 0)|2 ≤ 0.
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On the other hand, by the construction (6.2.3) of BN , we find

Im
(

2λ([BN(t, x, λ)]11 − 1)
)

= Im
(
α + iβ

|∆0(t, x)|2 − 1

|∆0(t, x)|2 + 1

)
= β
|∆0(t, x)|2 − 1

|∆0(t, x)|2 + 1

so that the assumed property is equivalent to

β
|∆0(t, 0)|2 − 1

|∆0(t, 0)|2 + 1
≤ 0 (6.2.4)

and indeed, since limt→∞ |∆0(t, 0)| = 0, we find −β < 0, which is true by the choice of the sign in
the matrix representing the frozen Bäcklund transformation. By the same reasoning as for t to
infinity, we can deduce that the quotient |∆0(t, x)| has the following limits

lim
|x|→∞

|∆0(t, x)| = lim
|x|→∞

∣∣∣ [ψ′0(t, x)]2
[ψ′0(t, x)]1

∣∣∣ = lim
|x|→∞

∣∣∣ [D[N ](t, x, λ0)]21

[D[N ](t, x, λ0)]11

∣∣∣ = 0.

Consequently, there exists an R ∈ R for which

BN(t, x, λ) = 1 +
1

2λ

(
α− i

√
β2 − |ũN(t, x)− uN(t, x)|2 −i(ũN(t, x)− uN(t, x))

−i(ũN(t, x)− uN(t, x))∗ α + i
√
β2 − |ũN(t, x)− uN(t, x)|2

)
,

where |x| > R. This means that the matrix BN(t, x, λ), constructed in the proof in order to show
that the defect condition is preserved, has in fact a continuation BN(t, x, λ) for x ∈ R and even
though the square root in the diagonal entries may become zero at a point (t, x) ∈ R× (R \ {0})
and even change sign, ultimately, the sign changes back for big enough x and consequently, we have

B∞(λ) = lim
|x|→∞

BN(t, x, λ) = lim
|x|→∞

B0(λ) = 1 +
1

λ

(
−λ0 0

0 −λ∗0

)
. (6.2.5)

Then again, this can be generalized for arbitrary seed solutions satisfying the assumptions of
Proposition 5.1.2. Due to the dressing matrix always admitting a diagonal form for the limit of
|x| or t going to infinity, the limit behavior of |∆0(t, x)| strongly depends on the limit behavior of
the kernel vector ψ0 of the matrix B0 representing the frozen Bäcklund transformation associated
to the parameter λ0. Knowing that, we see that the Jost functions have relations induced by the
Bäcklund transformation and the same normalization factor B−1

∞ (λ),

ψ̃±(t, x, λ) = BN(t, x, λ)ψ±(t, x, λ)B−1
∞ (λ). (6.2.6)

In turn, this relation implies the following relation for the corresponding scattering matrices (2.1.6):

Ã(λ) = B∞(λ)A(λ)B−1
∞ (λ), λ ∈ R. (6.2.7)

This observation is, in fact, similar to the ‘space-evolution’ interpretation given in Subsection
4.4.1. However, this time the relation is with respect to the usual functions emerging in the
scattering process. With these insights, we can give a similar formula for the relations of the
soliton parameters in the solution space as (6.1.8) in the case of the sG equation. Yet, due to the
well-known correspondence of the scattering data to soliton parameters in the solution space in the
case of the NLS equation, we can state more generally the following:
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Corollary 6.2.1. Let u(t, x) and ũ(t, x) be two N-soliton solutions of the NLS equation on R
constructed by the corresponding vectors used in and satisfying the assumptions of Proposition
5.1.2 and let their restrictions to the positive and negative half-line, respectively, be subject to the
defect conditions (4.1.2) at x = 0. Then for λj = ξj + iηj ∈ C+ \

(
iR ∪ {−α

2
+ iβ

2
}
)
, α ∈ R and

β ∈ R+, it follows that solitons are transmitted through the defect independently of one another,
i.e. for all j = 1, . . . , N the following holds

x̃j − xj =
1

2ηj
log
(∣∣∣2λj + α + iβ

2λj + α− iβ

∣∣∣),
φ̃j − φj = arg

(2λj + α + iβ

2λj + α− iβ

)
.

Proof. By the definition λ0 = −α
2

+ iβ
2
and the analysis above, we know that in the assumed

scenario
B∞(λ) = lim

|x|→∞
BN(t, x, λ) = 1− 1

λ
diag(λ0, λ

∗
0).

The relation of the Jost functions (6.2.6) gives

ψ̃
(1)
− = BN(t, x, λ)ψ

(1)
−

(
1− λ0

λ

)−1

, ψ̃
(2)
+ = BN(t, x, λ)ψ

(2)
+

(
1− λ∗0

λ

)−1

. (6.2.8)

Using (6.2.8), we can deduce for the respective relation (2.1.10) regarding u(t, x) and ũ(t, x) that,
j = 1, . . . , N ,

ψ̃
(1)
− (t, x, λj) =

λjbj
λj − λ0

BN(t, x, λj)ψ
(2)
+ (t, x, λj) =

λj − λ∗0
λj − λ0

bj

b̃j
ψ̃

(1)
− (t, x, λj).

Therefore, the constants b̃j and bj can be related by

b̃j
bj

=
λj − λ∗0
λj − λ0

, j = 1, . . . , N. (6.2.9)

Moreover, the relation (6.2.7) for the scattering matrices implies

ã11(λ) = a11(λ), (6.2.10)

ã21(λ) =
λ− λ∗0
λ− λ0

a21(λ).

These two relations (6.2.9) and (6.2.10) can be combined to relate the norming constants C̃j and
Cj, j = 1, . . . , N , of the respective scattering data in the following way

C̃j
Cj

=
b̃j
bj

da11
dλ

dã11
dλ

∣∣∣
λ=λj

=
λj − λ∗0
λj − λ0

,

from where we can see the influence on the N -soliton solution. Therefore, writing the norming
constants as

Cj = 2ηje
2ηjxj+iφj , C̃j = 2ηje

2ηj x̃j+iφ̃j

for j = 1, . . . , N as motivated for the one-soliton solution in Section 2.1, we obtain for the spatial
shift x̃j − xj and the phase shift φ̃j − φj the following

x̃j − xj =
1

2ηj
log
(∣∣∣λj − λ∗0
λj − λ0

∣∣∣), φ̃j − φj = arg
(λj − λ∗0
λj − λ0

)
,

which indicates that the solitons experience the defect independently of one another.
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Remark 6.2.2. Another way to prove the assertion of Corollary 6.2.1 is by the ideas given in
Theorem 3.3.1. Therefore, after iterative application of the Dressing method to the zero seed
solutions, we obtain

a
(N)
11 (λ) =

N∏
j=1

λ− λj
λ− λ∗j

, ã
(N)
11 (λ) =

N∏
j=1

λ− λj
λ− λ∗j

, λ ∈ C+ ∪ R,

a
(N)
21 (λ) = 0, ã

(N)
21 (λ) = 0, λ ∈ R,

C
(N)
j = −vj

uj
2i Im(λj)

N∏′

k=1

λj − λ∗k
λj − λk

, C̃
(N)
j = − ṽj

ũj
2i Im(λj)

N∏′

k=1

λj − λ∗k
λj − λk

, j = 1, . . . , N.

The relevant equations appearing in the proof of Corollary 6.2.1 hold and particularly, by equation
(6.2.2) we have

C̃
(N)
j

C
(N)
j

=
ṽj
ũj

uj
vj

=
2λj + α + iβ

2λj + α− iβ
, j = 1, . . . , N.

From the first approach, we can deduce two helpful properties. First off, we can give an
equivalent expression for the assumption on Im

(
limλ→0[2λ(BN(t, 0, λ)− 1)]11

)
from Proposition

5.1.2 on the spectral side, see (6.2.4), thereby underlining the necessity of this assumption. With
the choice β > 0 and the minus sign in the defect condition, the assumption is equivalent to

|∆0(t, 0)| ≤ 1, t ∈ R. (6.2.11)

And by a similar reasoning |∆′0(t, 0)| ≥ 1 for t ∈ R and ∆′0(t, x) =
[D[N ](t,x,λ∗0)]22
[D[N ](t,x,λ∗0)]12

which is equivalent
to (6.2.11). Now, assuming that there exists a t0 ∈ R such that |∆0(t0, 0)| = 1, for the one-fold
dressing matrix D[1](t0, 0, λ0), see (3.2.2), we find that this is equivalent to

|[D[1](t0, 0, λ0)]11|2 − |[D[1](t0, 0, λ0)]21|2 = 0

|(λ0 − λ1) + (λ0 − λ∗1)|∆(t0, 0)||2 − |λ∗1 − λ1|2|∆(t0, 0)|2 = 0,

where both entries of the one-fold dressing matrix are multiplied by (λ0−λ∗1)(1 + |∆(t0, 0)|2). Then,
given the usual identification λ0 = −α

2
+ iβ

2
and λ1 = ξ1 + iη1, we have

((α
2

+ ξ1

)2
+
(β

2
+ η1

)2
)
|∆(t0, 0)|4 +

(
2
(α

2
+ ξ1

)2
+
β2

2
− 6η2

1

)
|∆(t0, 0)|2

+
((α

2
+ ξ1

)2
+
(β

2
− η1

)2
)

= 0.

Thus, we want to show that there exists a combination of solutions of the NLS equation on
the respective half-line for which the defect condition is satisfied with either plus or minus sign
depending on the time t, which underlines the necessity of assumption (6.2.11). Writing the
equation for |∆(t0, 0)| as a polynomial p(y) = y4 + c1y

2 + c2 in y ≥ 0, we have

p(y) = y4 +
2
(
α
2

+ ξ1

)2
+ β2

2
− 6η2

1(
α
2

+ ξ1

)2
+
(
β
2

+ η1

)2 y
2 +

(
α
2

+ ξ1

)2
+
(
β
2
− η1

)2(
α
2

+ ξ1

)2
+
(
β
2

+ η1

)2 = 0.

Since c2 > 0, the effective behavior of the polynomial only depends on c1, see Figure 6.8. If η1 is
big enough in order for p(y) to have real zeros, then there indeed exists at least one t0 ∈ R such
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c2

c1 ≥ 0

y

p(y)

c2

c1 < 0

y

p(y)

c2

c1 < 0

y

p(y)

Fig. 6.8. Behavior of the polynomial p(y) for different values of c1.

that |∆0(t0, 0)| = 1.
Let us elaborate on this occurrence with the following selection of parameters: α = 0, β = 2,
λ1 = ξ1 + iη1 = 1 + 2i, C1 = −4i, which further implies b1 = −1, C̃1 = 4 − 8i and b̃1 = −2 − i
and particularly c1 = −2 as well as c2 = 0.2. Correspondingly, we obtain by Proposition 5.1.2 the
following solution formulae for usol and ũsol:

usol(t, x; {1 + 2i,−4i}) = 4e−i(2x−12t) sech(4(x+ 4t)),

ũsol(t, x; {1 + 2i, 4− 8i}) = 4e−i(2x−12t+π/2−arctan(2)) sech(4(x+ 4t)− log(5)/2).

By the constants of the polynomial p(y), we can derive that the third plot in Figure 6.8 represents
the polynomial with the positive zeros

√
1±
√

0.8. If we want to connect these zeros to the
times t they occur at, we need to look at the time evolution of |∆0(t, 0)|, which is given by
|∆0(t, 0)| = |b1|e−16t. Therefore, we find that between the critical values t+0 = − log(

√
1 +
√

0.8)/16

and t−0 = − log(
√

1−
√

0.8)/16, the sign of the defect condition is not as desired. Now, for the
first equation of the defect condition (4.1.2), we obtain that

(ũsol − usol)x = −2i(ũsol − usol)− 4 tanh(4(x+ 4t)− log(5)/2)ũsol + 4 tanh(4(x+ 4t))usol

is supposed to be equal to
±
√

4− |ũsol − usol|2(ũsol + usol)

for x = 0 and t ∈ R. If we approximate the critical interval as [t+0 , t
−
0 ] ≈ [−0.02, 0.07], we have for

t /∈ [t+0 , t
−
0 ], i.e. t = −0.25 and t = 1, that the defect condition in the first equality hold with a

minus sign

(ũsol − usol)x
∣∣
(t,x)=(−0.25,0)

≈ 0.4139− 0.0001i ≈ −
√

4− |ũsol − usol|2(ũsol + usol)
∣∣
(t,x)=(−0.25,0)

,

(ũsol − usol)x
∣∣
(t,x)=(1,0)

≈ (−3.5921 + 4.4178i) · 10−6 ≈ −
√

4− |ũsol − usol|2(ũsol + usol)
∣∣
(t,x)=(1,0)

.

However, if we check inside the interval t ∈ (t+0 , t
−
0 ), we have that the defect condition in the first

equality is satisfied with a plus sign

(ũsol − usol)x
∣∣
(t,x)=(0,0)

≈ 4.4444− 0.8889i ≈ +
√

4− |ũsol − usol|2(ũsol + usol)
∣∣
(t,x)=(0,0)

.

Swapping the roles of D[N ] and D̃[N ] in Proposition 5.1.2, while retaining the norming constants
C̃1 = 4 − 8i and adjusting the norming constant C1 to C1 = (4 − 8i)1+2i+i

1+2i−i = 16 − 12i, leads to
a different critical interval, now depending on the values of t for which

√
1 +
√

0.8 < |∆̃(t, 0)| <
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1−
√

0.8, where ∆̃(t, x) is the quotient of the solution (3.2.1) used in the one-fold dressing
matrix D̃[1] as in (3.2.2). In this particular example, the associated simplified interval is then
given by [t+0 , t

−
0 ] = [log(5/(1 +

√
0.8))/32, log(5/(1−

√
0.8))/32]. In that regard, it may seem that

the determination of solutions for the NLS equation with defect conditions is more complicated
than just applying the Dressing method to construct them. The actual aim of the preceding
analysis is however just to give an easy example for solutions of the NLS equation on the respective
half-lines which are not subject to the defect condition with consistent sign for t ∈ R. In general,
the inequality of (6.2.11) can be verified easily with the expressions for the N -fold dressing matrix
D[N ] and given the kernel vector ψ0 of the matrix B0 corresponding to the frozen Bäcklund
transformation for the seed solutions u[0] and ũ[0]. Now, since we have complete knowledge of the
kernel vector ψ0 in the case of zero seed solutions, the verification is a matter of adding a few lines
in the code which lets us calculate the N -soliton solution.

The advantage of the first approach in determining the difference in the initial position and
phase is that it is easy to imagine making a comparison between a soliton under trivial transmission,
a soliton subject to the defect condition and a soliton-soliton interaction with the defect considered
to be half a soliton. For that comparison, let us first discuss what is known [2, 38] about the
asymptotic states as t→ ±∞ of an N -soliton solution for the NLS equation on the full line. If
Re(λj) = ξj 6= ξk = Re(λk) for j 6= k, then for t → ±∞ the potential u ∈ GN breaks up into
individual solitons of the form of a one-soliton (2.1.21) so that

u±sol(t, x; {λj, Cj}Nj=1) ∼
N∑
j=1

usol(t, x; {λj, C±j }), as t→ ±∞

with
usol(t, x; {λj, C±j }) = 2ηje

−i(2ξjx+4(ξ2j−η2j )t+(φ±j +π/2)) sech(2ηj(x+ 4ξjt− x±j )),

where λj = ξj + iηj , j = 1, . . . , N . Let us assume that the soliton parameters related to the velocity
−4ξj of the soliton are arranged in such a way that ξ1 < ξ2 < · · · < ξN . Then, for a large enough
negative time or rather t→ −∞, the solitons are distributed along the x-axis in order of decreasing
velocities, thus, ξ1, ξ2, . . . , ξN , while this order is reversed as t→∞. Based on this circumstance,
we want to discuss the consequence of the interaction between solitons by tracing the influence this
development has on the respective eigenfunctions. Further, let xj(t) denote the soliton coordinates
at the instant of time t, where |t| is assumed to be large enough so that it makes sense to talk
about individual solitons. By the above argumentation if t → −∞, then x1 � x2 � · · · � xN .
The function ψ(1)

− (t, x, λj) admits the form ψ
(1)
− (t, x, λj) ∼ e1e

−i(λjx+2λ2j t) in the region x� x1. If
there is any interaction between the soliton corresponding to λ1 and a soliton corresponding to
λj, according to equation (2.1.6) and Remark 3.3.2 the form of ψ(1)

− (t, x, λ1) would change by the
factor of the coefficient a1(λj) for x� x1, where a1(λ) = λ−λ1

λ−λ∗1
is the scattering coefficient a11(λ)

relative to the first soliton. After repeated application of this argument, we obtain

ψ
(1)
− (t, x, λj) ∼

j−1∏
k=1

ak(λj)

(
e−i(λjx+2λ2j t)

0

)
, xj−1 � x� xj.

Then, through the j-th soliton interaction corresponding to a bound state, we find

ψ
(1)
− (t, x, λj) ∼ 2ηje

2ηjx
−
j +iφ−j

j−1∏
k=1

ak(λj)

(
0

ei(λjx+2λ2j t)

)
, xj � x� xj+1.
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Coming from the other side x� xN and repeating the argument, we have

ψ
(2)
+ (t, x, λj) ∼

N∏
k=j+1

ak(λj)

(
0

ei(λjx+2λ2j t)

)
, xj � x� xj+1.

Therefore, relation (2.1.10) implies, using the expressions of the norming constants, that

Cj ∼ 2ηje
2ηjx

−
j +iφ−j

1
da11
dλ

∣∣
λ=λj

j−1∏
k=1

ak(λj)
N∏

k=j+1

ak(λj)
−1, t→ −∞,

where x−j and φ−j describe the asymptotics of the functions xj, φj as t→ −∞.
Analogously, for t→ +∞, we find

Cj ∼ 2ηje
2ηjx

+
j +iφ+j

1
da11
dλ

∣∣
λ=λj

j−1∏
k=1

ak(λj)
−1

N∏
k=j+1

ak(λj), t→ +∞.

Combining these two results, we can deduce

e2ηj(x
+
j −x

−
j )+i(φ+j −φ

−
j ) =

j−1∏
k=1

ak(λj)
2

N∏
k=j+1

ak(λj)
−2 =

j−1∏
k=1

(
λj − λk
λj − λ∗k

)2 N∏
k=j+1

(
λj − λ∗k
λj − λk

)−2

.

In general, this means that under the condition stated in the beginning, Re(λj) = ξj 6= ξk = Re(λk)
for j 6= k, we have that an N -soliton is actually a combination of N single solitons and that the
N -soliton solution characterizes the interaction of these individual solitons. Consequently, the
two-soliton interaction with Re(λ1) < Re(λ2) corresponds to the following spatial and phase shift:

x+
1 − x−1 =

1

ηj
log
∣∣∣λ1 − λ∗2
λ1 − λ2

∣∣∣, x+
2 − x−2 =

1

ηj
log
∣∣∣λ1 − λ2

λ1 − λ∗2

∣∣∣
φ+

1 − φ−1 = 2 arg
(λ1 − λ∗2
λ1 − λ2

)
, φ+

2 − φ−2 = 2 arg
(λ1 − λ2

λ∗1 − λ2

)
.

(6.2.12)

By these explicit expressions, we can capture three cases of interaction. If we furthermore assume
Im(λj) > 0, j = 1, 2, so that ∣∣∣λ1 − λ∗2

λ1 − λ2

∣∣∣ > 1,

then we see that the spatial shift for the first and second soliton is x+
1 − x−1 > 0 corresponding to

a shift into the positive x-direction and x+
2 − x−2 < 0 corresponding to a shift into the negative

x-direction, respectively. In addition, we can differentiate the three cases by the velocities
νj = −4 Re(λj), j = 1, 2, and find for

(i) ν2 < ν1 < 0 that the second soliton is on the right of the first soliton as t→ −∞ and that they
both travel from the right to the left so that as t→ +∞ the places are switched. Consequently,
the second soliton overtakes the first one due to it being faster |ν2| > |ν1|. The faster soliton is
shifted forward and the slower soliton backward with respect to the direction of travel;

(ii) ν1 < 0 < ν2 that the first soliton is on the right of the second soliton as t→ −∞ and travels
from the right to the left and the the second soliton travels from the left to the right so that again
as t→ +∞ the places are switched. Consequently, due to them travelling towards each other, they
interact. Both soltions are shifted forward with respect to their direction of travel;
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Fig. 6.9. One-soliton purely transmitted and its contour.

Fig. 6.10. One-soliton interacting with the defect (α = 1, β = 3) and its contour.

Fig. 6.11. Two-soliton purely transmitted with the defect interpreted as soliton and its
contour.
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(iii) 0 < ν1 < ν2 that the second soliton is on the left of the first soliton as t→ −∞ and that they
both travel from the left to the right so that as t→ +∞ the places are switched. Consequently,
the second soliton overtakes the first one due to it being faster |ν2| > |ν1| as in (i). Analogous to
the first case, the faster soliton is shifted forward and the slower soliton backward with respect to
the direction of travel.
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If we compare these expressions with the spatial and phase shift each soliton experiences
independently after interacting with the defect, it becomes evident that the defect can in theory
be seen as ‘half’ a soliton, see [8]. Since, as we have seen before, the defect parameters are used as
half the real and half the imaginary part of a spectral parameter from which we construct a frozen
one-fold dressing matrix in the proof of Proposition 5.1.2. On the other hand, by comparison
of the spatial and phase shift (6.2.12) with the result of Corollary 6.2.1, there is again a factor
of one half. To summarize this idea, we refer to Figures 6.9, 6.10 and 6.11, where we compare
a one-soliton solution being purely transmitted, satisfying the defect condition and interacting
with the defect condition interpreted as half a soliton. In the transition from the second to the
third plot, one can observe that the phase shift one of the solitons experiences is doubled when the
defect is interpreted as a soliton itself.

The expression 2λj+α+iβ

2λj+α−iβ lets us, similarly to the argumentation for the sG equation, state some
facts about the behavior of the spatial and phase shift of the N -soliton after interacting with
the defect. For the general idea of the spatial shift and the influence of the relation of Re(λj) to
the defect parameter α, we refer to the explanation regarding the two-soliton interaction, we just
have given. Additionally, letting β go to zero, the quotient goes to 1, which indicates that the
discontinuity at x = 0 disappears, suggesting that α by itself can not maintain the defect condition.
On the other hand, letting |β| go to infinity, the quotient goes to −1, which means no considerable
spatial shift as x̃j − xj goes to zero and essentially a shape inversion as φ̃j − φj goes to π for all
j = 1, . . . , N . The effect of the spatial shift growing and decreasing can be observed in Figure 6.12,
where for α = 0 the maximal space shift is given at β = 2.5. However, if we take β ∈ R \ {0} and
let |α| go to infinity, the effect of the discontinuity also disappears, i.e. x̃j − xj and φ̃j − φj both
go to zero for all j = 1, . . . , N . Hence, the second defect parameter may be understood as a means
to smooth out the discontinuity in the presence of the defect condition (β 6= 0).

Fig. 6.12. One-soliton |ũsol(t, x, {−0.75 + i, 1})| interacting with the defect resulting
in |usol(t, x, {−0.75 + i,−3i})| on the left and in |usol(t, x, {−0.75 + i,−5/3− 4/3i})| on
the right.

Remark 6.2.3. To translate the expression into the notation used in [15], where the authors
confirmed by direct calculation the one- and two-soliton satisfying the defect condition with
switched defect parameter notation and α = 0, first off, we need to forget about the defect
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parameter we call β and additionally take Ω =
√
α2 − |ũ− u|2. Then, for the one-soliton solution

consider v1
u1

= 1, a = 2η1, c = −2ξ, p = e−2η1x̃1 and finally q = e−iφ̃1 to recover the same result.

In the method we have presented, there are no limitations on the amount of solitons one can
construct. Even though, it may not be obvious that the defect conditions are satisfied, we give a
four-soliton solution which satisfies the defect conditions in Figure 6.13.

Fig. 6.13. Four-soliton |ũsol(t, x, {−0.75 + i, 1 + i, 0.5 + 0.75i,−2 + 0.5i, 1, 2, e−5, e15})|
interacting with the defect (α = −1, β = 3) and its contour.

There is also a particular solution known which is not covered by Proposition 5.1.2. As in the
case of the sG equation, this solution interacts destructively with the defect. Firstly, let us give
the resulting solution

ũdsol(t, x) = ũsol

(
t, x;

{
−α

2
+ i

β

2
, C1

})
= βe−i(−αx+(α2−β2)t+(φ1+π/2)) sech(β(x− 2αt− x1)),

usol(t, x; {}) = 0,

where α, β and x1 again need to be chosen in such a way that the argument β(2αt+ x1) is either
positive or negative for all t ∈ R. Therefore, it can be derived that α needs to be zero and
subsequently, the ± sign of the defect condition needs to be chosen in order to compensate the
resulting sign of βx1, where it is imminent that x1 6= 0. This property is equivalent to the assertion
on Im

(
limλ→0[2λ(BN(t, 0, λ)− 1)]11

)
in Proposition 5.1.2, since in this case

± Im
(

lim
λ→0

[2λ(BN(t, 0, λ)− 1)]11

)
= Ω(t, 0) =

√
β2 − |ũdsol(t, 0)|2 = |β tanh(βx1)|.

Moreover, we can calculate that this solution satisfies the defect condition with α = 0, thus we
need

(ũdsol)x(t, 0) = ±Ω(t, 0)ũdsol(t, 0),

(ũdsol)t(t, 0) = ±iΩ(t, 0)(ũdsol)x(t, 0) + iũdsol(t, 0)|ũdsol(t, 0)|2.

The derivatives of ũdsol(t, x) evaluated at x = 0 are

(ũdsol)x(t, 0) = β tanh(βx1))ũdsol(t, 0),

(ũdsol)t(t, 0) = iβ2ũdsol(t, 0).

Due to Ω(t, 0) being equal to |β tanh(βx1)|, both these equations hold if sign(x1) = ±1.
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Remark 6.2.4. The destructive soliton solution with α = 0 is in fact a boundary-bound soliton
solution, which is not covered by Proposition 5.1.2, but mentioned in [15].

6.2.2 NLS equation on the half-line with boundary conditions

By the argumentation of the proofs in Chapter 5, it follows that in the case of zero seed solutions,
it is not necessary to distinguish cases when introducing the frozen dressing matrix KN(t, 0, λ).
Due to the complete knowledge of the solutions of the Lax system (2.1.2) and the fact that the
boundary matrices are diagonal, we can immediately identify the linear dependence of the two
vectors υ0 and ψ0 by a particular choice of constants as in the proofs of the propositions for the
sG equation. On the other hand, given for example a non-zero seed solution u[0] = ρe2iρ2t with
constant background ρ > 0 which satisfies the Neumann boundary condition ux(t, 0) = 0, this
criterion can not be applied.

As for the defect condition connecting two half-lines, the zero seed solution u[0] = 0 can be
taken as a foundation to construct soliton solutions for the NLS equation on the half-line with
both the Robin and the new boundary condition. In compliance with Proposition 5.2.4, we thus
take pairs of solutions ψj(t, x) = e−i(λjx+2λ2j t)σ3(uj, vj)

ᵀ and ψ̂j(t, x) = e−i(−λjx+2λ2j t)σ3(ûj, v̂j)
ᵀ of

the Lax system (2.1.2) at the spectral parameters λ = λj and λ = −λj , j = 1, . . . , Ns, respectively,
making sure that they are distinct −λk 6= λj for all 1 ≤ j ≤ k ≤ Ns. Further, with regards to
assumption (5.2.10), we impose

ψ̂j
∣∣
x=0

=

(
ûje
−2iλ2j t

v̂je
2iλ2j t

)
=

(
iα− (−1)Nbbs2λj 0

0 iα + (−1)Nbbs2λj

)(
uje
−2iλ2j t

vje
2iλ2j t

)
,

which is K0((−1)Nbbsλj)ψj
∣∣
x=0

and easily translates into the following equality for the quotients

ûj
v̂j

=
iα− (−1)Nbbs2λj
iα + (−1)Nbbs2λj

uj
vj
, j = 1, . . . , Ns. (6.2.13)

As in the proposition, Ns and Nbbs are the numbers of the solitons for which the spectral parameter
satisfies λj ∈ C\(R∪iR), j = 1, . . . , Ns, corresponding to solitons or λj ∈ iR\{0}, j = Ns+1, . . . , N
corresponding to boundary-bound solitons, respectively. On the other hand, the assumption (5.2.11)
prescribes the choice of the norming constant for the included boundary-bound solitons. We have

∣∣∣vj
uj

∣∣∣ =

√
−α− (−1)Nbbs2 Im(λj)

α + (−1)Nbbs2 Im(λj)
, j = Ns + 1, . . . , N.

The argument under the square root needs to be positive. Since we are not able to freely construct
boundary-bound solitons for the new boundary condition due to the restriction in Proposition 5.2.7,
we take this opportunity to give an example of boundary-bound solitons on the half-line with the
Robin boundary condition in Figure 6.14.

Note that if λj ∈ C+, then λ̂j = −λj ∈ C− which, in turn, implies that ψ̂j has ‘opposite’
limit behavior as ψj for x → ±∞. In order to apply Theorem 3.3.1 to the Dressing method
corresponding to λ̂j and ψ̂j, we instead use the counterpart λ̂∗j and ϕ̂j. Since with λ̂∗j ∈ C+, the
vector ϕ̂j = e−i(λ̂

∗
jx+2(λ̂∗j )2t)σ3(−v̂∗j , û∗j)ᵀ, admits the same limit behavior as ψj for x→ ±∞. Similar

to Remark 3.3.2 following Theorem 3.3.1, we can deduce for a two-fold dressing matrix consisting
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of the spectral parameters λ1 ∈ C+ \ iR and −λ∗1 ∈ C+ \ iR with the corresponding solutions ψ1

and ϕ̂1 of the Lax system (2.1.2) that the weights of the scattering data can be calculated as

C
(2)
1 = −v1

u1

(λ1 − λ∗1)(λ1 − λ̂1)

λ1 − λ̂∗1
, C

(2)
2 = − û∗1

−v̂∗1
(λ̂∗1 − λ∗1)(λ̂∗1 − λ̂1)

λ̂∗1 − λ1

.

This results in the following relation for the norming constants of the scattering data under the
Robin boundary condition

C
(2)
1 (C

(2)
2 )∗ = −4λ2

1 ·
iα− 2λ1

iα + 2λ1

· Im(λ1)2

Re(λ1)2
, (6.2.14)

which is up to notation the same as in [6]. To align the notation, one would need to complex
conjugate (6.2.14) and then it would be compliant with equation (2.36) in their paper after
replacing k1 = −λ∗1. This is due to the differently defined potential Q1 of the matrix V, which
as a consequence gives the existence of Jost functions with different asymptotic behavior and
continuations into different parts of the complex plane. Further, the following relations between
the initial positions and phases of a 2Ns-soliton solution are valid.

Remark 6.2.5 (Biondini & Hwang, [6]). In general, we can construct a 2Ns-fold dressing matrix
using the information given by the distinct spectral parameters λ1, . . . , λNs and −λ∗1, . . . ,−λ∗Ns in
C+ \ iR as well as their respective solutions of the Lax system (2.1.2) corresponding to the zero
seed solution ψ1, . . . , ψNs and ϕ̂1, . . . , ϕ̂Ns . In particular, we have λj = ξj + iηj and consequently
−λ∗j = −ξj + iηj for j = 1, . . . , Ns. Then, for j = 1, . . . , N the relation for a pair of initial positions
xj and x̂j = xNs+j as well as phases φj and φ̂j = φNs+j amounts to

xj + x̂j =
1

2ηj
log
(

1 +
η2
j

ξ2
j

)
+

1

4ηj
log
((2ξj)

2 + (α− 2ηj)
2

(2ξj)2 + (α + 2ηj)2

)
− 1

2ηj

Ns∑′

k=1

log
[(ξj − ξk)2 + (ηj − ηk)2][(ξj + ξk)

2 + (ηj − ηk)2]

[(ξj + ξk)2 + (ηj + ηk)2][(ξj − ξk)2 + (ηj + ηk)2]
,

φj − φ̂j = 2 arg(λj) + arg
(2ξj + i(2ηj − α)

2ξj + i(2ηj + α)

)
−

Ns∑′

k=1

arg
( [(ξj − ξk) + i(ηj − ηk)][(ξj + ξk) + i(ηj − ηk)]

[(ξj + ξk) + i(ηj + ηk)][(ξj − ξk) + i(ηj + ηk)]

)
,

Fig. 6.14. Boundary-bound two-soliton subject to (5.2.9) with α = −1 and its contour.
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while the product of a pair of weights Cj, Ĉj = CNs+j is

CjĈ
∗
j = −4λ2

j

iα− 2λj
iα + 2λj

(2ηj)
2

(2ξj)2

[ Ns∏′

k=1

(λj − λ∗k)(λj + λk)

(λj − λk)(λj + λ∗k)

]2

.

Before graphically presenting the results, we want to give a similar argumentation for the new
boundary condition corresponding, in the case of the zero seed solution, to the boundary matrix

K0(λ) =
1

(2λ− i|β|)2 − α2

(
4λ2 + 4iλ|β| − (α2 + β2) 0

0 4λ2 − 4iλ|β| − (α2 + β2)

)
.

Taking the spectral parameters λ = λj and λ = −λj, j = 1, . . . , N , as well as their corresponding
solutions ψj and ψ̂j of the Lax system (2.1.2) as in the case of Robin boundary conditions with
the difference that the paired solutions need to satisfy assumption (5.2.18), we obtain the relevant
relation for the quotients

ûj
v̂j

=
(2λj + i|β|)2 − α2

(2λj − i|β|)2 − α2

uj
vj
, j = 1, . . . , N,

which is the counterpart to relation (6.2.13). For the two-soliton solution, this yields the relation

C
(2)
1 (C

(2)
2 )∗ = −4λ2

1 ·
(2λ1 + i|β|)2 − α2

(2λ1 − i|β|)2 − α2
· Im(λ1)2

Re(λ1)2

regarding the norming constants, where it is obvious that the factor (2λ1+i|β|)2−α2

(2λ1−i|β|)2−α2 is the only
difference to the same result regarding the Robin boundary condition, where one has iα−2λ1

iα+2λ1
.

Moreover, by defining λ1 = ξ1 + iη1 and λ̂∗1 = −ξ1 + iη1 as well as the corresponding weights
C1 = 2η1e

2η1x1+iφ1 = C
(2)
1 and Ĉ1 = 2η1e

2η1x̂1+iφ̂1 = C
(2)
2 , we obtain a relation between the initial

positions and phases of the two-soliton

x1 + x̂1 =
1

2η1

log
(

1 +
η2

1

ξ2
1

)
+

1

4η1

log
( (4ξ2

1 − α2 − (2η1 + |β|)2)2 + (4ξ1(2η1 + |β|))2

(4ξ2
1 − α2 − (2η1 − |β|)2)2 + (4ξ1(2η1 − |β|))2

)
,

φ1 − φ̂1 = 2 arg(λ1) + arg
(4ξ2

1 − α2 − (2η1 + |β|)2 + i4ξ1(2η1 + |β|)
4ξ2

1 − α2 − (2η1 − |β|)2 + i4ξ1(2η1 − |β|)

)
+ π.

Remark 6.2.6. In general, we can construct a 2N -fold dressing matrix using the information
given by the distinct spectral parameters λ1, . . . , λN and −λ∗1, . . . ,−λ∗N in C+ \ iR as well as their
respective solutions of the Lax system (2.1.2) corresponding to the zero seed solution ψ1, . . . , ψN
and ϕ̂1, . . . , ϕ̂N . In particular, we have λj = ξj + iηj and consequently −λ∗j = −ξj + iηj for
j = 1, . . . , N . Then, for j = 1, . . . , N the relation for a pair of initial positions xj and x̂j = xN+j

as well as phases φj and φ̂j = φN+j amounts to

xj + x̂j =
1

2ηj
log
(

1 +
η2
j

ξ2
j

)
+

1

4ηj
log
( (4ξ2

j − α2 − (2ηj + |β|)2)2 + (4ξj(2ηj + |β|))2

(4ξ2
j − α2 − (2ηj − |β|)2)2 + (4ξj(2ηj − |β|))2

)
− 1

2ηj

N∑′

k=1

log
[(ξj − ξk)2 + (ηj − ηk)2][(ξj + ξk)

2 + (ηj − ηk)2]

[(ξj + ξk)2 + (ηj + ηk)2][(ξj − ξk)2 + (ηj + ηk)2]
,

φj − φ̂j = 2 arg(λj) + arg
(4ξ2

j − α2 − (2ηj + |β|)2 + i4ξj(2ηj + |β|)
4ξ2
j − α2 − (2ηj − |β|)2 + i4ξj(2ηj − |β|)

)
+ π

−
N∑′

k=1

arg
( [(ξj − ξk) + i(ηj − ηk)][(ξj + ξk) + i(ηj − ηk)]

[(ξj + ξk) + i(ηj + ηk)][(ξj − ξk) + i(ηj + ηk)]

)
,
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whereas the product of a pair of weights Cj and Ĉj = CN+j is

CjĈ
∗
j = −4λ2

j

(2λj + i|β|)2 − α2

(2λj − i|β|)2 − α2

(2ηj)
2

(2ξj)2

[ N∏′

k=1

(λj − λ∗k)(λj + λk)

(λj − λk)(λj + λ∗k)

]2

,

where the prime indicates that the term with k = j is omitted from the sum and product.

Let us now focus on the visualization of the solutions in the case of boundary conditions
for the NLS equation. For Ns = 1, consider the spectral parameter λ1 = ξ1 + iη1, where it is
comprehensible with regard to (2.1.21) that ξ1 and η1 describe the velocity and the amplitude
of the physical one-soliton, respectively, as indicated in the discussion for the defect conditions.
Further, the quotient of the constants u1 and v1 is highly related to the initial position x1 and phase
φ1 of the soliton. Consequently, the mirror soliton corresponding to λ̂∗1 = −ξ1 + iη1 has opposite
velocity to and the same amplitude as the physical soliton. Particularly, we have visualized the
behavior in Figures 6.15 and 6.16 for the Robin and the new boundary condition.

On the other hand, the Dirichlet boundary condition u(t, 0) = 0 occurs as a special case of
the Robin boundary condition, when α→∞, or of the new boundary condition (4.3.3), when for
example |α| → ∞, |β| → ∞ or β → 0; the Neumann boundary condition ux(t, 0) = 0 only occurs
when α = 0 in the Robin boundary condition. Indeed, structurally these cases correspond to the
boundary matrix K0(λ) = 1 or K0(λ) = −σ3. Therefore, we plotted in Figure 6.17 on the left and
right the reflection of a one-soliton solution |usol(t, x; {λj, Cj}2

j=1)| subject to the Dirichlet and
Neumann boundary condition, respectively.

Then, in Figure 6.18, we choose particular parameters for the new boundary condition to plot
an example of a physical three-soliton solution |usol(t, x; {λj, Cj}6

j=1)|, which is reflected at the
boundary, in three dimensions on the left and as a contour plot together with the mirror soliton on
the right. Then, in Figure 6.19, we repeat this idea with the scattering data of a breather{3 + 3i

4
,
3 + 1i

4
,−3 + 3i

4
,−3 + 1i

4
, 1.6e28.8, 0.6e10.8, 1.6

−541 + 12i

1105
e28.8, 0.6

−77− 84i

265
e10.8

}
for the NLS equation subject to the new boundary condition which is characterised by two spectral
parameters having the same real part or rather velocity and overlapping spatial positions. It is
observable that in these cases the physical soliton and the mirror soliton change roles, after the
usual soliton interaction, with the physical soliton visible before and the mirror soliton visible after
the interaction with the boundary. Additionally, in the case of the Dirichlet boundary condition
the interaction of the pair of solitons results in the whole solution being zero at the boundary.

Picking up, the one-soliton solution swallowed by the defect is given by

udsol(t, x) = usol

(
t, x;

{
−α

2
+ i

β

2
, C1

})
= βe−i(−αx+(α2−β2)t+(φ1+π/2)) sech(β(x− 2αt− x1)),

and hence, we can infer that it satisfies

(udsol)x(t, 0) = β tanh(βx1)udsol(t, 0) = −
√
β2 − |udsol(t, 0)|2udsol(t, 0),

(udsol)t(t, 0) = iβ2udsol(t, 0) = −i
√
β2 − |udsol(t, 0)|2(udsol)x(t, 0) + i|udsol(t, 0)|2udsol(t, 0),

under the condition that α = 0 and if sign(x1) = −1. Therefore, multiplying the first equality with√
β2 − |udsol(t, 0)|2 and adding the second one multiplied with −i, we obtain

2
√
β2 − |udsol(t, 0)|2(udsol)x(t, 0) = i(udsol)t(t, 0) + 2|udsol(t, 0)|2udsol(t, 0)− β2udsol(t, 0),
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Fig. 6.15. One-soliton interacting with the Robin boundary (α = −2) and its contour.

Fig. 6.16. One-soliton interacting with the new boundary (α = −1, β = 2) and its
contour.

Fig. 6.17. One-soliton interacting with the Dirichlet (left) and the Neumann (right)
boundary.
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Fig. 6.18. Three-soliton interacting with the new boundary (α = 4, β = 2) and its
contour.

Fig. 6.19. Breather interacting with the new boundary (α = 2, β = 0.5) and its contour.

Fig. 6.20. Boundary-bound soliton interacting destructively with the new boundary
with α = 0 as well as β = 1 on the right and β = 2 on the left.
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which corresponds exactly to the new boundary condition with α = 0. Hence, this boundary-bound
soliton is a solution of the new boundary condition interacting destructively with the boundary
which eliminates the need to construct a paired soliton. This viewpoint is based on the idea that
we already know what we want to achieve. In theory, we could assume more generally that α ∈ R.
Indeed, it yields the same result which in hindsight one might connect to the assertion concerning
the imaginary part of the (11)-entry of KN or rather |udsol(t, 0)| = |β sech(−β(αt+ x1))| < |β| if
β 6= 0.



Chapter 7

Conclusion

The main result of this work is the application of the Dressing method to different integrable
models on the half-line and two half-lines connected through defect conditions. Explicitly, starting
from zero seed solutions, we have constructed pure N -soliton solutions subject to the Robin and
new boundary condition for the NLS equation on the half-line and the sin-boundary condition for
the sG equation on the half-line. Furthermore, for the NLS equation, we have taken a closer look
at the corresponding relations of the norming constants and put forth their explicit relations in
terms of parameters of the solution. Again, given zero seed solutions, we have also constructed
pure N -soliton solutions subject to defect conditions connecting the NLS or sG equation on two
half-lines. Particularly, for the NLS equation, we have shown that each soliton is transmitted
through the defect independently, which proves the statement conjectured in [15].
Different extensions of the presented method could probably be realized. Among them the
application to integrable models on a star-graph with more than two half-lines, to integrable
models of other PDEs associated to the AKNS system and to nonzero seed solutions for the NLS
equation satisfying the corresponding boundary or defect conditions. Unsurprisingly, for each of
these extensions the application is made more intricate. To begin with, for the consideration of
three or more half-lines the concept of integrability needs to be generalized and the preliminary
considerations with respect to the distribution of simple eigenvalues on each half-line needs to
adapted. If one is interested in a different equation other than the NLS or sG equation particularly
on the half-line, the associated symmetry with respect to the spectral parameter of the term
including the time t of the phase needs to be considered, e.g. λ2 for the NLS and λ+λ−1 for the sG
equation. In that regard, it is not always straightforward to obtain this very symmetry as pointed
out to us by C. Zhang. Finally, the topic of a nonzero seed solution at least for the Neumann
boundary condition has been treated in [42] and it is interesting to see if it is possible to give other
examples, which then may also be related to physical phenomena.
Since the nonlinear method of images serves as an alternative method to find exact solutions for
integrable models on the half-line, it should be possible to formulate Proposition 5.2.7 in terms of
this method. This may lead to further insights regarding the boundary conditions.
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Appendix A

Calculations

For the proofs, we want to reiterate on, the following trigonometric identities are instrumental.

Lemma A.0.1 (trigonometric identities, [3]). The Product-to-sum formulae give

sin(x± y) = sinx cos y ± cosx sin y, cos(x± y) = cos x cos y ∓ sinx sin y. (A.0.1)

Conversely, the Sum-to-product formulae are

2 sin
x− y

2
cos

x+ y

2
= sinx− sin y, −2 sin

x− y
2

sin
x+ y

2
= cosx− cos y. (A.0.2)

2 cos
x− y

2
sin

x+ y

2
= sinx+ sin y, 2 cos

x− y
2

cos
x+ y

2
= cosx+ cos y. (A.0.3)

The double-angle formulae yield

sinx = 2 sin
x

2
cos

x

2
, (A.0.4)

cosx+ 1 = 2 cos2 x

2
, (A.0.5)

cosx− 1 = −2 sin2 x

2
. (A.0.6)

Proof. By Euler’s formula, we know that sinx = i(e−ix − eix)/2 and cosx = (e−ix + eix)/2.
Therefore, the left hand sides of equalities (A.0.1) are, in fact,

sin(x± y) =
i

2
(e−i(x±y) − ei(x±y)), cos(x± y) =

1

2
(e−i(x±y) + ei(x±y)).

On the other hand, we find for the first line

sinx cos y ± cosx sin y =
i

4

[
(e−ix − eix)(e−iy + eiy)± (e−ix + eix)(e−iy − eiy)

]
=
i

4

[
(e−i(x+y) − ei(x+y))(1± 1) + (e−i(x−y) − ei(x−y))(1∓ 1)

]
,

which is the same as the expression for sin(x± y) and for the second line

cosx cos y ∓ sinx sin y =
1

4

[
(e−ix + eix)(e−iy + eiy)± (e−ix − eix)(e−iy − eiy)

]
=
i

4

[
(e−i(x+y) + ei(x+y))(1± 1) + (e−i(x−y) + ei(x−y))(1∓ 1)

]
,
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which is the same as the expression for cos(x± y). Further, we have the simple equality

sin2 x+ cos2 x = −1

4
(e−2ix − 2 + e2ix) +

1

4
(e−2ix + 2 + e2ix) = 1.

Using the identities (A.0.1), we have

2 sin
x± y

2
cos

x∓ y
2

= 2
(

sin
x

2
cos

y

2
± cos

x

2
sin

y

2

)(
cos

x

2
cos

y

2
± sin

x

2
sin

y

2

)
= 2 sin

x

2
cos

x

2

[
cos2 y

2
+ sin2 y

2

]
± 2 sin

y

2
cos

y

2

[
cos2 x

2
+ sin2 x

2

]
= sin x± sin y,

where incidentally, sinx = sin x+x
2

= 2 sin x
2

cos x
2
is a special case of (A.0.1). We also have

−2 sin
x− y

2
sin

x+ y

2
= −2

(
sin

x

2
cos

y

2
− cos

x

2
sin

y

2

)(
sin

x

2
cos

y

2
+ cos

x

2
sin

y

2

)
= −

(
sin2 x

2

(
1− sin2 y

2
+ cos2 y

2

)
− cos2 x

2

(
1− cos2 y

2
+ sin2 y

2

))
=
(

cos2 x

2
− sin2 x

2

)
−
(

cos2 y

2
− sin2 y

2

)(
cos2 x

2
+ sin2 x

2

)
,

= cos x− cos y,

where we have used that 2 cos2 y
2

= 1− sin2 y
2

+ cos2 y
2
and 2 sin2 y

2
= 1− cos2 y

2
+ sin2 y

2
in the first

line and the special case of the second line of (A.0.1), which is cosx = cos x+x
2

= cos2 x
2
− sin2 x

2
, in

the third line. Lastly, we have

2 cos
x− y

2
cos

x+ y

2
= 2
(

cos
x

2
cos

y

2
+ sin

x

2
sin

y

2

)(
cos

x

2
cos

y

2
− sin

x

2
sin

y

2

)
=
(

cos2 x

2

(
1− sin2 y

2
+ cos2 y

2

)
− sin2 x

2

(
1− cos2 y

2
+ sin2 y

2

))
=
(

cos2 x

2
− sin2 x

2

)
+
(

cos2 y

2
− sin2 y

2

)(
cos2 x

2
+ sin2 x

2

)
,

= cos x+ cos y.

And since these two equalities hold, we find with y = 0 that

cosx+ 1 = cosx+ cos 0 = 2 cos2 x

2
,

cosx− 1 = cos x− cos 0 = −2 sin2 x

2
,

which implies the last two trigonometric identities stated in Lemma A.0.1.

A.1 Proof of Proposition 4.1.1
Proposition A.1.1. The matrix

B(t, x, λ) = 1 +
1

2λ

(
α± i

√
β2 − |ũ− u|2 −i(ũ− u)

−i(ũ− u)∗ α∓ i
√
β2 − |ũ− u|2

)
,
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σ3 σ+ σ−
σ3 1 −σ+ σ−
σ+ σ+ 0 diag(0, 1)
σ− −σ− diag(1, 0) 0

Table A.1. Row entry times column entry. Elementary matrix multiplications (NLS
equation).

σ1 σ2 σ3

σ1 1 −iσ3 iσ2

σ2 iσ3 1 −iσ1

σ3 −iσ2 iσ1 1

Table A.2. Row entry times column entry. Pauli matrix multiplications (sG equation).

representing the frozen Bäcklund transformation (4.1.1) for the Lax pairs

U =

(
−iλ u
−u∗ iλ

)
, V =

(
−2iλ2 + i|u|2 2λu+ iux
−2λu∗ + iu∗x 2iλ2 − i|u|2

)
,

Ũ =

(
−iλ ũ
−ũ∗ iλ

)
, Ṽ =

(
−2iλ2 + i|ũ|2 2λũ+ iũx
−2λũ∗ + iũ∗x 2iλ2 − i|ũ|2

)
,

of the NLS equation corresponds to the defect conditions

(ũ− u)x = iα(ũ− u)±
√
β2 − |ũ− u|2(ũ+ u),

(ũ− u)t = −α(ũ− u)x ± i
√
β2 − |ũ− u|2(ũ+ u)x + i(ũ− u)(|u|2 + |ũ|2)

(A.1.1)

at x = 0 and α, β ∈ R.

Proof. Writing the relevant matrices in terms of 1, σ3, σ+ and σ−, we obtain

2λB(t, x, λ) = (2λ+ α)1± i
√
β2 − |ũ− u|2σ3 − i(ũ− u)σ+ − i(ũ− u)∗σ−,

U(t, x, λ) = −iλσ3 + uσ+ − u∗σ−, Ũ(t, x, λ) = −iλσ3 + ũσ+ − ũ∗σ−,
V(t, x, λ) = (−2iλ2 + i|u|2)σ3 + (2λu+ iux)σ+ + (−2λu∗ + iu∗x)σ−,

Ṽ(t, x, λ) = (−2iλ2 + i|ũ|2)σ3 + (2λũ+ iũx)σ+ + (−2λũ∗ + iũ∗x)σ−.

Therefore, on the left hand side of equality (2λB)x = Ũ(2λB)− (2λB)U , we have at x = 0 that

2λBx(t, 0, λ) = ∓i(ũ− u)x(ũ− u)∗ + (ũ− u)(ũ− u)∗x

2
√
β2 − |ũ− u|2

σ3 − i(ũ− u)xσ+ − i(ũ− u)∗xσ− (A.1.2)

and on the right hand side, due to the elementary matrix multiplications given in Tabular A.1, that

Ũ(2λB) =− iλ
[
(2λ+ α)σ3 ± i

√
β2 − |ũ− u|2 · 1− i(ũ− u)σ+ − i(ũ− u)∗(−σ−)

]
+ ũ
[
(2λ+ α)σ+ ± i

√
β2 − |ũ− u|2 · (−σ+)− i(ũ− u) · 0− i(ũ− u)∗ diag(1, 0)

]
− ũ∗

[
(2λ+ α)σ− ± i

√
β2 − |ũ− u|2 · σ− − i(ũ− u) diag(0, 1)− i(ũ− u)∗ · 0

]
,

−(2λB)U = + iλ
[
(2λ+ α)σ3 ± i

√
β2 − |ũ− u|2 · 1− i(ũ− u)(−σ+)− i(ũ− u)∗σ−

]
− u
[
(2λ+ α)σ+ ± i

√
β2 − |ũ− u|2 · σ+ − i(ũ− u) · 0− i(ũ− u)∗ diag(0, 1)

]
+ u∗

[
(2λ+ α)σ− ± i

√
β2 − |ũ− u|2 · (−σ−)− i(ũ− u) diag(1, 0)− i(ũ− u)∗ · 0

]
.
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Thus, we can make out the terms corresponding to the matrices σ3, σ+ and σ−. For σ+, we have

−2λ(ũ− u) + ũ(2λ+ α∓ i
√
β2 − |ũ− u|2)− u(2λ+ α± i

√
β2 − |ũ− u|2)

and noticing that the expression of order λ cancel, we are left with

α(ũ− u)∓ i
√
β2 − |ũ− u|2(ũ+ u), (A.1.3)

which is with respect to the equality (A.1.2) equivalent to the first equality of the defect condition
(A.1.1). Analogously, for σ−, we find

2λ(ũ− u)∗ − ũ∗(2λ+ α± i
√
β2 − |ũ− u|2) + u∗(2λ+ α∓ i

√
β2 − |ũ− u|2)

so that, similar to the expression multiplied by σ− in (A.1.2), it can be written as the negative
complex conjugate of the expression (A.1.3) multiplied by σ+:

−α(ũ− u)∗ ∓ i
√
β2 − |ũ− u|2(ũ+ u)∗.

After cancellation, the remaining terms on the diagonal are

−i(ũ(ũ− u)∗ + u∗(ũ− u)) diag(1, 0) + i(ũ∗(ũ− u) + u(ũ− u)∗) diag(0, 1),

which can be simplified to
−i(|ũ|2 − |u|2)σ3.

Hence, it suffices to check with the first equality of the defect condition (A.1.1) that

(ũ− u)x(ũ− u)∗ + (ũ− u)(ũ− u)∗x = ±
√
β2 − |ũ− u|22(|ũ|2 − |u|2), (A.1.4)

which then, in turn, gives the equality of (2λB)x = Ũ(2λB)− (2λB)U at x = 0 on the diagonal.
On the other hand, on the left hand side of equality (2λB)t = Ṽ(2λB)− (2λB)V, we have at

x = 0 that

2λBt(t, 0, λ) = ∓i(ũ− u)t(ũ− u)∗ + (ũ− u)(ũ− u)∗t

2
√
β2 − |ũ− u|2

σ3 − i(ũ− u)tσ+ − i(ũ− u)∗tσ− (A.1.5)

and on the right hand side, due to the elementary matrix multiplications given in Tabular A.1, that

Ṽ(2λB) = + (−2iλ2 + i|ũ|2)
[
(2λ+ α)σ3 ± i

√
β2 − |ũ− u|2 · 1− i(ũ− u)σ+ − i(ũ− u)∗(−σ−)

]
+ (2λũ+ iũx)

[
(2λ+ α)σ+ ± i

√
β2 − |ũ− u|2 · (−σ+)− i(ũ− u)∗ diag(1, 0)

]
+ (−2λũ∗ + iũ∗x)

[
(2λ+ α)σ− ± i

√
β2 − |ũ− u|2 · σ− − i(ũ− u) diag(0, 1)

]
,

−(2λB)V =− (−2iλ2 + i|u|2)
[
(2λ+ α)σ3 ± i

√
β2 − |ũ− u|2 · 1− i(ũ− u)(−σ+)− i(ũ− u)∗σ−

]
− (2λu+ iux)

[
(2λ+ α)σ+ ± i

√
β2 − |ũ− u|2 · σ+ − i(ũ− u)∗ diag(0, 1)

]
− (−2λu∗ + iu∗x)

[
(2λ+ α)σ− ± i

√
β2 − |ũ− u|2 · (−σ−)− i(ũ− u) diag(1, 0)

]
.

This time, for σ+, we find

(−4λ2 + (|ũ|2 + |u|2))(ũ− u) + (2λũ+ iũx)(2λ+ α∓ i
√
β2 − |ũ− u|2)

− (2λu+ iux)(2λ+ α± i
√
β2 − |ũ− u|2),
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which equates after cancellation of the second and first order terms of λ to

(|ũ|2 + |u|2)(ũ− u) + iα(ũ− u)x ±
√
β2 − |ũ− u|2(ũ+ u)x. (A.1.6)

Equating (A.1.6) to −i(ũ − u)t from (A.1.5) is equivalent to the second equality of the defect
condition (A.1.1). And again, we find for σ− that

(4λ2 − (|ũ|2 + |u|2))(ũ− u)∗ + (iũ∗x − 2λũ∗)((2λ+ α± i
√
β2 − |ũ− u|2)

+ (2λu∗ − iu∗x)(2λ+ α∓ i
√
β2 − |ũ− u|2),

which equates also after cancellation of the second and first order terms of λ to

−(|ũ|2 + |u|2)(ũ− u) + iα(ũ− u)∗x ∓
√
β2 − |ũ− u|2(ũ+ u)∗x,

the negative complex conjugate of (A.1.6), and therefore to −i(ũ− u)∗t from (A.1.5). However, for
the diagonal entries, we have

(|ũ|2 − 2λ2)[(2λ+ α)iσ3 ∓
√
β2 − |ũ− u|21] + (2λ2 − |u|2)[(2λ+ α)iσ3 ∓

√
β2 − |ũ− u|21]

+ (ũx − 2iλũ)(ũ− u)∗ diag(1, 0)− (2iλu∗ + u∗x)(ũ− u) diag(1, 0)

+ (ũ∗x + 2iλũ∗)(ũ− u) diag(0, 1) + (2iλu− ux)(ũ− u)∗ diag(0, 1).

After eliminating −2λ2 from the first line with 2λ2 from the second line, we find for the coefficient
of order one in λ that

2i(|ũ|2 − |u|2)σ3 + (−2i(ũ(ũ− u)∗ + u∗(ũ− u))) diag(1, 0) + (2i(ũ∗(ũ− u) + u(ũ− u)∗)) diag(0, 1),

which equates to

2i(|ũ|2 − |u|2)σ3 + (−2i(|ũ|2 − |u|2)) diag(1, 0) + (2i(|ũ|2 − |u|2)) diag(0, 1) = 0.

Hence, the remaining expression is independent of λ. Particularly,

(|ũ|2 − |u|2)[iασ3 ∓
√
β2 − |ũ− u|21] + (ũx(ũ− u)∗ − u∗x(ũ− u)) diag(1, 0)

+ (ũ∗x(ũ− u)− ux(ũ− u)∗) diag(0, 1).
(A.1.7)

Using the first equality of the defect condition (A.1.1) to express ũ∗x and ux in terms of ũ, u, u∗x
and ũ, u, ũx, respectively, we obtain for the last expression in (A.1.7) the following

ũ∗x(ũ− u)− ux(ũ− u)∗ = (u∗x − iα(ũ− u)∗ ±
√
β2 − |ũ− u|2(ũ+ u)∗)(ũ− u)

− (ũx − iα(ũ− u)∓
√
β2 − |ũ− u|2(ũ+ u))(ũ− u)∗

= u∗x(ũ− u)− ũx(ũ− u)∗ ± 2
√
β2 − |ũ− u|2(|ũ|2 − |u|2) (A.1.8)

so that (A.1.7) can be written as

[ũx(ũ− u)∗ − u∗x(ũ− u) + (iα∓
√
β2 − |ũ− u|2)(|ũ|2 − |u|2)]σ3. (A.1.9)

Hence, we check with the second equality of the defect condition (A.1.1) that

(|ũ− u|2)t = (−α(ũ− u)x ± i
√
β2 − |ũ− u|2(ũ+ u)x + i(ũ− u)(|u|2 + |ũ|2))(ũ− u)∗

− (ũ− u)(α(ũ− u)∗x ± i
√
β2 − |ũ− u|2(ũ+ u)∗x + i(ũ− u)∗(|u|2 + |ũ|2)).

We already calculated the term ((ũ− u)x(ũ− u)∗ + (ũ− u)(ũ− u)∗x) which is multiplied by α in
(A.1.4) and with regards to (A.1.9), substituting the term ũ∗x(ũ− u)− ux(ũ− u)∗, which we also
calculated already in (A.1.8), we obtain

(|ũ− u|2)t = ±2i
√
β2 − |ũ− u|2[ũx(ũ− u)∗ − u∗x(ũ− u) + (iα∓

√
β2 − |ũ− u|2)(|ũ|2 − |u|2)]

from which we can ultimately confirm the equality (2λB)t = Ṽ(2λB)− (2λB)V , thereby concluding
the proof.
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A.2 Proof of Proposition 4.1.2
Proposition A.2.1. The matrix

B(t, x, λ) = 1± iα

λ

(
cos

θ̃ + θ

2
σ3 + sin

θ̃ + θ

2
σ2

)
,

representing the frozen Bäcklund transformation (4.1.1) for the Lax pairs

U =
i

4

[
(θx − θt)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ − λ

)
σ3

]
,

V =
i

4

[
(θt − θx)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ + λ

)
σ3

]
,

Ũ =
i

4

[
(θ̃x − θ̃t)σ1 +

1

λ
sin θ̃σ2 +

(1

λ
cos θ̃ − λ

)
σ3

]
,

Ṽ =
i

4

[
(θ̃t − θ̃x)σ1 +

1

λ
sin θ̃σ2 +

(1

λ
cos θ̃ + λ

)
σ3

]
,

of the sG equation corresponds to the defect conditions

θ̃x + θt = ±
(
α sin

θ̃ + θ

2
+

1

α
sin

θ̃ − θ
2

)
,

θ̃t + θx = ∓
(
α sin

θ̃ + θ

2
− 1

α
sin

θ̃ − θ
2

) (A.2.1)

at x = 0 with α ∈ R.

Proof. As for the defect condition for the NLS equation, only elementary matrix multiplications,
see Table A.2, are necessary in order to prove the claim. For the left hand side of the equality
Bx = ŨB− BU, we have at x = 0 the following

Bx(t, 0, λ) = ±iα
λ

(θ̃ + θ)x
2

(
− sin

θ̃ + θ

2
σ3 + cos

θ̃ + θ

2
σ2

)
. (A.2.2)

For the right hand side, we calculate

Ũ(t, 0, λ)B(t, 0, λ) =
i

4

[
(θ̃x − θ̃t)σ1 +

1

λ
sin θ̃σ2 +

(1

λ
cos θ̃ − λ

)
σ3

]
∓ α

4λ
cos

θ̃ + θ

2

[
(θ̃x − θ̃t)(−iσ2) +

1

λ
sin θ̃(iσ1) +

(1

λ
cos θ̃ − λ

)
1
]

∓ α

4λ
sin

θ̃ + θ

2

[
(θ̃x − θ̃t)(iσ3) +

1

λ
sin θ̃ · 1 +

(1

λ
cos θ̃ − λ

)
(−iσ1)

]
,

−B(t, 0, λ)U(t, 0, λ) =− i

4

[
(θx − θt)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ − λ

)
σ3

]
± α

4λ
cos

θ̃ + θ

2

[
(θx − θt)(iσ2) +

1

λ
sin θ(−iσ1) +

(1

λ
cos θ − λ

)
1
]

± α

4λ
sin

θ̃ + θ

2

[
(θx − θt)(−iσ3) +

1

λ
sin θ · 1 +

(1

λ
cos θ − λ

)
(iσ1)

]
.

Picking out the expressions corresponding to the identity matrix 1, we have

∓ α

4λ
cos

θ̃ + θ

2

[(1

λ
cos θ̃ − λ

)
−
(1

λ
cos θ − λ

)]
∓ α

4λ2
sin

θ̃ + θ

2

[
sin θ̃ − sin θ

]
,
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which, using the trigonometric identities (A.0.2), equates to

∓ α

4λ2

[
cos

θ̃ + θ

2

(
−2 sin

θ̃ − θ
2

sin
θ̃ + θ

2

)
+ sin

θ̃ + θ

2

(
2 sin

θ̃ − θ
2

cos
θ̃ + θ

2

)]
= 0.

Then, proceeding similarly with the expressions corresponding to the first Pauli matrix σ1, we find

i

4
[(θ̃ − θ)x − (θ̃ − θ)t]∓

iα

4λ2
cos

θ̃ + θ

2
(sin θ̃ + sin θ)± iα

4λ
sin

θ̃ + θ

2

(1

λ
(cos θ̃ + cos θ)− 2λ

)
so that the term corresponding to the negative second order in λ again using the trigonometric
identities (A.0.3) equates to

∓ iα

4λ2

[
cos

θ̃ + θ

2

(
2 sin

θ̃ + θ

2
cos

θ̃ − θ
2

)
− sin

θ̃ + θ

2

(
2 cos

θ̃ − θ
2

cos
θ̃ + θ

2

)]
= 0.

Assuming that the remaining term multiplied by −4i is zero:

(θ̃ − θ)x − (θ̃ − θ)t ∓ 2α sin
θ̃ + θ

2
= 0, (A.2.3)

we can derive that this is equivalent to the subtraction of the second from the first equality of the
defect condition (A.2.1). Now, for the expressions corresponding to the second Pauli matrix σ2, we
have

i

4λ

[
sin θ̃ − sin θ

]
± iα

4λ
cos

θ̃ + θ

2

[
θ̃x − θ̃t + θx − θt

]
.

Utilizing the trigonometric identity (A.0.2) for sin(x)− sin(y), we thus obtain

i

4λ
cos

θ̃ + θ

2

[
2 sin

θ̃ − θ
2
± α(θ̃x − θ̃t + θx − θt)

]
.

Equating this to the expression corresponding to σ2 in (A.2.2) gives

(θ̃ + θ)x + (θ̃t + θt) = ± 2

α
sin

θ̃ − θ
2

, (A.2.4)

which is equivalent to the addition of the two equalities of the defect condition (A.2.1). This leaves
the examination of the expressions corresponding to the third Pauli matrix σ3, for which we obtain

i

4

[(1

λ
cos θ̃ − λ

)
−
(1

λ
cos θ − λ

)]
∓ iα

4λ
sin

θ̃ + θ

2

[
θ̃x − θ̃t + θx − θt

]
.

By means of the trigonometric identities (A.0.2) for cos(x)− cos(y), we then find in combination
with the equality to the expression corresponding to the third Pauli matrix σ3 in (A.2.2) that

∓iα
λ

(θ̃ + θ)x
2

sin
θ̃ + θ

2
=

i

4λ

[
−2 sin

θ̃ + θ

2
sin

θ̃ − θ
2

]
∓ iα

4λ
sin

θ̃ + θ

2

[
θ̃x − θ̃t + θx − θt

]
.

Multiplying this equality with ∓4λ
iα

(sin θ̃+θ
2

)−1 and transferring all derivatives to the left hand side,
we obtain the same equality (A.2.4) as the one corresponding to the second Pauli matrix. Therefore,
we have shown that the defect condition imply both derived equalities (A.2.3) and (A.2.4). On
the other hand, assuming the equalities (A.2.3) and (A.2.4), derived from the frozen Bäcklund
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transformation, hold, then adding them up and subtracting (A.2.3) from (A.2.4) is equivalent to
two times the first and second equality of the defect condition (A.2.1), respectively.

For the left hand side of the equality Bt = ṼB− BV, we have at x = 0 the following

Bt(t, 0, λ) = ±iα
λ

(θ̃ + θ)t
2

(
− sin

θ̃ + θ

2
σ3 + cos

θ̃ + θ

2
σ2

)
. (A.2.5)

For the right hand side, we calculate

Ṽ(t, 0, λ)B(t, 0, λ) =
i

4

[
(θ̃t − θ̃x)σ1 +

1

λ
sin θ̃σ2 +

(1

λ
cos θ̃ + λ

)
σ3

]
∓ α

4λ
cos

θ̃ + θ

2

[
(θ̃t − θ̃x)(−iσ2) +

1

λ
sin θ̃(iσ1) +

(1

λ
cos θ̃ + λ

)
1
]

∓ α

4λ
sin

θ̃ + θ

2

[
(θ̃t − θ̃x)(iσ3) +

1

λ
sin θ̃ · 1 +

(1

λ
cos θ̃ + λ

)
(−iσ1)

]
,

−B(t, 0, λ)V(t, 0, λ) =− i

4

[
(θt − θx)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ + λ

)
σ3

]
± α

4λ
cos

θ̃ + θ

2

[
(θt − θx)(iσ2) +

1

λ
sin θ(−iσ1) +

(1

λ
cos θ + λ

)
1
]

± α

4λ
sin

θ̃ + θ

2

[
(θt − θx)(−iσ3) +

1

λ
sin θ · 1 +

(1

λ
cos θ + λ

)
(iσ1)

]
.

Picking out the expressions corresponding to the identity matrix 1, we have

∓ α

4λ
cos

θ̃ + θ

2

[(1

λ
cos θ̃ + λ

)
−
(1

λ
cos θ + λ

)]
∓ α

4λ2
sin

θ̃ + θ

2

[
sin θ̃ − sin θ

]
,

which is the same as for the x part after eliminating λ−λ = 0 in the first bracket. Then, proceeding
similarly with the expressions corresponding to the first Pauli matrix σ1, we find

i

4
[(θ̃ − θ)t − (θ̃ − θ)x]∓

iα

4λ2
cos

θ̃ + θ

2
(sin θ̃ + sin θ)± iα

4λ
sin

θ̃ + θ

2

(1

λ
(cos θ̃ + cos θ) + 2λ

)
,

which results, up to an insignificant minus sign, in the same as (A.2.3). For the expressions
corresponding to the second Pauli matrix σ2, we have

i

4λ

[
sin θ̃ − sin θ

]
± iα

4λ
cos

θ̃ + θ

2

[
θ̃t − θ̃x + θt − θx

]
.

Utilizing the trigonometric identity (A.0.2) for sin(x) − sin(y) and equating the term to the
expression corresponding to σ2 in (A.2.5), we thus obtain

(θ̃ + θ)x + (θ̃t + θt) = ± 2

α
sin

θ̃ − θ
2

,

where we multiplied with ±4λ
iα

(cos θ̃+θ
2

)−1 and transferred the derivatives on the left hand side.
Repeating this for the expressions corresponding to the third Pauli matrix σ3, we find

i

4λ

[
cos θ̃ − cos θ

]
∓ iα

4λ
sin

θ̃ + θ

2

[
θ̃t − θ̃x + θt − θx

]
.

Therefore, applying the trigonometric identity (A.0.2) for cos(x) − cos(y), equating the result
to the expression corresponding to the third Pauli matrix from (A.2.5), then multiplying with
∓4λ
iα

(sin θ̃+θ
2

)−1 and finally transferring all derivatives to the left hand side, again leads to the
same equality as for the second Pauli matrix and thus to (A.1.6). Hence, the t part for the frozen
Bäcklund transformation is merely a repetition of the results we derived for the x part.
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A.3 Proof of Proposition 4.3.1
Proposition A.3.1. The boundary matrices

K(λ) =
1

iα + 2λ
(iα1− 2λσ3),

K(t, 0, λ) =
1

(2λ− i|β|)2 − α2
((4λ2 − (α2 + β2))1 + 4iλΩ(t, 0)σ3 + 4iλu(t, 0)σ+ + 4iλu∗(t, 0)σ−),

representing the symmetry relation (4.3.1) for the Lax pair

U = −iλσ3 + uσ+ − u∗σ−, V = (−2iλ2 + i|u|2)σ3 + (2λu+ iux)σ+ + (−2λu∗ + iu∗x)σ−,

of the NLS equation correspond to the Robin boundary condition

ux(t, 0) = αu(t, 0)

with α ∈ R and the new boundary condition

ux(t, 0) =
iut(t, 0)

2Ω(t, 0)
− u(t, 0)Ω(t, 0)

2
+
u(t, 0)|u(t, 0)|2

2Ω(t, 0)
− u(t, 0)α2

2Ω(t, 0)

with Ω(t, 0) =
√
β2 − |u(t, 0)|2, α, β ∈ R, respectively.

Proof. For the Robin boundary condition, we need to verify the symmetry relation 0 = V(t, 0,−λ) ·
((iα + 2λ)K(λ))− ((iα + 2λ)K(λ)) · V(t, 0, λ). Hence, by Table A.1 the multiplications yield

V(t, 0,−λ)((iα + 2λ)K(λ)) = + iα
[
(−2iλ2 + i|u|2)σ3 + (−2λu+ iux)σ+ + (2λu∗ + iu∗x)σ−

]
− 2λ

[
(−2iλ2 + i|u|2)1 + (−2λu+ iux)(−σ+) + (2λu∗ + iu∗x)σ−

]
,

−((iα + 2λ)K(λ))V(t, 0, λ) =− iα
[
(−2iλ2 + i|u|2)σ3 + (2λu+ iux)σ+ + (−2λu∗ + iu∗x)σ−

]
+ 2λ

[
(−2iλ2 + i|u|2)1 + (2λu+ iux)σ+ + (−2λu∗ + iu∗x)(−σ−)

]
.

It can easily be seen that the expressions corresponding to the identity 1 and third Pauli matrix σ3

are of opposite sign and therefore vanishing. For the expressions corresponding to σ+, we obtain

iα[(−2λu+ iux)− (2λu+ iux)] + 2λ[(−2λu+ iux) + (2λu+ iux)] = 4iλ[ux − αu];

for the expressions corresponding to σ−, we find

iα[(2λu∗ + iu∗x)− (−2λu∗ + iu∗x)]− 2λ[(2λu∗ + iu∗x) + (−2λu∗ + iu∗x)] = −4iλ[u∗x − αu∗],

thereby confirming the equivalence of the the symmetry relation to the Robin boundary condition.
Now, for the new boundary condition, we need to verify the symmetry relation

Kt(t, 0, λ) = V(t, 0,−λ)K(t, 0, λ)−K(t, 0, λ)V(t, 0, λ).

As should be clear and as we have seen in the other cases, the multiplication of a polynomial in λ
with the boundary matrix is not affecting this relation. Thus, the boundary matrix for the new
boundary condition is to be taken without its denominator (2λ− i|β|)2 − α2. For the left hand
side, we find that

Kt(t, 0, λ) = 4iλΩt(t, 0)σ3 + 4iλut(t, 0)σ+ + 4iλu∗t (t, 0)σ−
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and for the right hand side, we find with Table A.1 that

V(t, 0,−λ)K(t, 0, λ) = + (4λ2 − (α2 + β2))
[
(−2iλ2 + i|u|2)σ3 + (−2λu+ iux)σ+ + (2λu∗ + iu∗x)σ−

]
+ 4iλΩ

[
(−2iλ2 + i|u|2)1+ (−2λu+ iux)(−σ+) + (2λu∗ + iu∗x)σ−

]
+ 4iλu

[
(−2iλ2 + i|u|2)σ+ + (−2λu+ iux) · 0 + (2λu∗ + iu∗x) diag(0, 1)

]
+ 4iλu∗

[
(−2iλ2 + i|u|2)(−σ−) + (−2λu+ iux) diag(1, 0) + (2λu∗ + iu∗x) · 0

]
,

−K(t, 0, λ)V(t, 0, λ) =− (4λ2 − (α2 + β2))
[
(−2iλ2 + i|u|2)σ3 + (2λu+ iux)σ+ + (−2λu∗ + iu∗x)σ−

]
− 4iλΩ

[
(−2iλ2 + i|u|2)1+ (2λu+ iux)σ+ + (−2λu∗ + iu∗x)(−σ−)

]
− 4iλu

[
(−2iλ2 + i|u|2)(−σ+) + (2λu+ iux) · 0 + (−2λu∗ + iu∗x) diag(1, 0)

]
− 4iλu∗

[
(−2iλ2 + i|u|2)σ− + (2λu+ iux) diag(0, 1) + (−2λu∗ + iu∗x) · 0

]
.

Then, picking the expressions corresponding to the matrix σ+, we obtain

(4λ2 − (α2 + β2))[(−2λu+ iux)− (2λu+ iux)]− 4iλΩ[(−2λu+ iux) + (2λu+ iux)]

+ 4iλu[(−2iλ2 + i|u|2) + (−2iλ2 + i|u|2)].

If we compare the coefficients with respect to a polynomial in λ, we find that the third order
coefficient −16u+ 16u is zero as well as the second and zero-th order coefficient so that the only
contribution in the equality to Kt(t, 0, λ) comes from the first order coefficient. Therefore, the
equality with respect to σ+ divided by 4λ amounts to

iut(t, 0) = u(t, 0)(α2 + β2) + 2Ω(t, 0)ux(t, 0)− 2u(t, 0)|u(t, 0)|2, (A.3.1)

which is under simply conversion equivalent to the new boundary condition. Similarly, the
expressions corresponding to the matrix σ− give

(4λ2 − (α2 + β2))[4λu∗] + 4iλΩ[2iu∗x]− 4iλu∗[−4iλ2 + 2i|u|2].

Hence, the resulting contribution to the equality to Kt(t, 0, λ) is again limited to the coefficient
with respect to the first order in λ and for this equality, we can write after dividing by 4λ:

iu∗t (t, 0) = −u∗(t, 0)(α2 + β2)− 2Ω(t, 0)u∗x(t, 0) + 2u∗(t, 0)|u(t, 0)|2, (A.3.2)

which is equivalent to the complex conjugate of the new boundary condition. Now, after simply
cancellation of the expressions corresponding to the identity 1 and third Pauli matrix σ3, we are
left with the equalities

4iλΩt = 4iλu∗(−2λu+ iux)− 4iλu(−2λu∗ + iu∗x)

−4iλΩt = 4iλu(2λu∗ + iu∗x)− 4iλu∗(2λu+ iux)

on the diagonal coming from the expressions corresponding to diag(1, 0) and diag(0, 1). First, by
simplifying these equalities, one can notice that they are redundant and in particular, dividing by
4λ, one has

iΩt(t, 0) = u(t, 0)u∗x(t, 0)− u∗(t, 0)ux(t, 0).

On the other hand, by the definition of Ω(t, 0), we can calculate

iΩt(t, 0) = −iu(t, 0)u∗t (t, 0) + u∗(t, 0)ut(t, 0)

2Ω(t, 0)
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for which we can use the to the new boundary condition equivalent expressions (A.3.1) and (A.3.2)
in order to find after cancellation the following

= −u(t, 0)(−2Ω(t, 0)u∗x(t, 0)) + u∗(t, 0)(2Ω(t, 0)ux(t, 0))

2Ω(t, 0)

= u(t, 0)u∗x(t, 0)− u∗(t, 0)ux(t, 0).

In particular, this calculation confirms the equivalence of the new boundary condition to the
symmetry relation with regards to the chosen boundary matrix K(t, 0, λ).

A.4 Proof of Proposition 4.3.2
Proposition A.4.1. The boundary matrices

K(λ) =
1√

λ2 + 1
λ2

+ 2 cosα

[(
λ+

1

λ

)
1 cos

α

2
+ i
(
λ− 1

λ

)
σ1 sin

α

2

]
,

K(t, 0, λ) =
1√

(λ− 1
λ
)2 + α2

[
−α1− i

(
λ− 1

λ

)(
σ3 cos

θ(t, 0)

2
+ σ2 sin

θ(t, 0)

2

)]
,

K(t, 0, λ) =
1√

(λ+ 1
λ
)2 + α2

[
iασ1 − i

(
λ+

1

λ

)(
σ3 cos

θ(t, 0)

2
+ σ2 sin

θ(t, 0)

2

)]
.

for the Lax pair of the sG equation

U =
i

4

[
(θx − θt)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ − λ

)
σ3

]
,

V =
i

4

[
(θt − θx)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ + λ

)
σ3

]
,

correspond to a Dirichlet boundary condition

θ(t, 0) = α

with α ∈ R, a sin-boundary condition

θx(t, 0) = α sin
θ(t, 0)

2

with α ∈ R and a cos-boundary condition

θx(t, 0) = α cos
θ(t, 0)

2

with α ∈ R, respectively.

Proof. For all three cases, we need to check the symmetry relation

Kt(t, 0, λ) = V(t, 0, λ−1)K(t, 0, λ)−K(t, 0, λ)V(t, 0, λ),



148 APPENDIX A. CALCULATIONS

where we multiply this equality by the denominator of K in each case. Therefore, the left hand
sides of the Dirichlet, the sin- and the cos-boundary condition are given by

Kt(λ) = 0,

Kt(t, 0, λ) = i
(
λ− 1

λ

)θt(t, 0)

2

(
σ3 sin

θ(t, 0)

2
− σ2 cos

θ(t, 0)

2

)
,

Kt(t, 0, λ) = i
(
λ+

1

λ

)θt(t, 0)

2

(
σ3 sin

θ(t, 0)

2
− σ2 cos

θ(t, 0)

2

)
,

respectively. Then, only elementary matrix multiplications are necessary in order to obtain

V(t, 0, λ−1)K(λ) = +
i

4

(
λ+

1

λ

)
cos

α

2

[
(θt − θx)σ1 + λ sin θσ2 +

(
λ cos θ +

1

λ

)
σ3

]
− 1

4

(
λ− 1

λ

)
sin

α

2

[
(θt − θx)1 + λ sin θ(−iσ3) +

(
λ cos θ +

1

λ

)
iσ2

]
,

−K(λ)V(t, 0, λ) =− i

4

(
λ+

1

λ

)
cos

α

2

[
(θt − θx)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ + λ

)
σ3

]
+

1

4

(
λ− 1

λ

)
sin

α

2

[
(θt − θx)1 +

1

λ
sin θiσ3 +

(1

λ
cos θ + λ

)
(−iσ2)

]
for the Dirichlet boundary condition. Since the expressions for the identity 1 and the first Pauli
matrix σ1 show up in pairs with opposite sign, it is clear that they cancel out. Leaving the
expressions corresponding to the second Pauli matrix σ2 which can be summarized as

i

4

(
λ+

1

λ

)
cos

α

2

[
λ sin θ − 1

λ
sin θ

]
− i

4

(
λ− 1

λ

)
sin

α

2

[
λ cos θ +

1

λ
+

1

λ
cos θ + λ

]
.

This, however, can be simplified to

i

4

(
λ+

1

λ

)(
λ− 1

λ

)[
cos

α

2
sin θ − sin

α

2
(cos θ + 1)

]
. (A.4.1)

From the trigonometric identities (A.0.4), sin θ = 2 sin θ
2

cos θ
2
, and (A.0.5), cos θ + 1 = 2 cos2 θ

2
, we

have that equation (A.4.1) can be written as

i

2

(
λ+

1

λ

)(
λ− 1

λ

)
cos

θ

2

[
cos

α

2
sin

θ

2
− sin

α

2
cos

θ

2

]
=
i

2

(
λ+

1

λ

)(
λ− 1

λ

)
cos

θ

2
sin

θ − α
2

,

which is zero for all t ∈ R+ if either θ(t, 0)− α = 2πC or θ(t, 0) = πC − π/2 for C ∈ Z. However,
since one identifies the solutions of the sG equation up to a multiple of 2π, the first condition is
essentially the Dirichlet boundary condition. Moreover, the expressions corresponding to the third
Pauli matrix σ3 are

i

4

(
λ+

1

λ

)
cos

α

2

[(
λ cos θ +

1

λ

)
−
(1

λ
cos θ + λ

)]
+
i

4

(
λ− 1

λ

)
sin

α

2

[
λ sin θ +

1

λ
sin θ

]
,

where we can use similar means, in particular the trigonometric identities (A.0.4) and (A.0.6),
cos θ − 1 = −2 sin2 θ

2
, in order to obtain

i

4

(
λ+

1

λ

)(
λ− 1

λ

)[
cos

α

2
(cos θ − 1) + sin

α

2
sin θ

]
= − i

4

(
λ+

1

λ

)(
λ− 1

λ

)
sin

θ

2
sin

θ − α
2

.

Consequently, the expressions corresponding to the third Pauli matrix σ3 are zero if either
θ(t, 0)− α = 2πC or θ(t, 0) = πC for C ∈ Z. Combining the results for the second and third Pauli
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matrix, the only possibility for both expressions to be zero is given by the Dirichlet boundary
condition. And vice versa, the Dirichlet boundary condition is sufficient for the symmetry relation
with the respective boundary matrix to hold.

In the case of the sin-boundary condition, the right hand side of the symmetry relation yields

V(t, 0, λ−1)K(t, 0, λ) =− iα

4

[
(θt − θx)σ1 + λ sin θσ2 +

(
λ cos θ +

1

λ

)
σ3

]
+

1

4

(
λ− 1

λ

)
cos

θ

2

[
(θt − θx)(−iσ2) + λ sin θiσ1 +

(
λ cos θ +

1

λ

)
1
]

+
1

4

(
λ− 1

λ

)
sin

θ

2

[
(θt − θx)iσ3 + λ sin θ1 +

(
λ cos θ +

1

λ

)
(−iσ1)

]
,

−K(t, 0, λ)V(t, 0, λ) = +
iα

4

[
(θt − θx)σ1 +

1

λ
sin θσ2 +

(1

λ
cos θ + λ

)
σ3

]
− 1

4

(
λ− 1

λ

)
cos

θ

2

[
(θt − θx)iσ2 +

1

λ
sin θ(−iσ1) +

(1

λ
cos θ + λ

)
1
]

− 1

4

(
λ− 1

λ

)
sin

θ

2

[
(θt − θx)(−iσ3) +

1

λ
sin θ1 +

(1

λ
cos θ + λ

)
iσ1

]
.

Following the same strategy as before, we filter the expressions corresponding to the identity matrix

1

4

(
λ− 1

λ

)
cos

θ

2

[(
λ cos θ +

1

λ

)
−
(1

λ
cos θ + λ

)]
+

1

4

(
λ− 1

λ

)
sin

θ

2

[
λ sin θ − 1

λ
sin θ

]
,

which can be written as

1

4

(
λ− 1

λ

)2[
cos

θ

2
(cos θ − 1) + sin

θ

2
sin θ

]
.

With the trigonometric identities (A.0.4) and (A.0.6), we find

1

4

(
λ− 1

λ

)2[
−2 cos

θ

2
sin2 θ

2
+ 2 sin

θ

2
sin

θ

2
cos

θ

2

]
= 0.

First, note that the derivatives of θ in the expressions corresponding to the first Pauli matrix σ1

cancel so that we effectively obtain the following

i

4

(
λ− 1

λ

)(
λ+

1

λ

)[
cos

θ

2
sin θ − sin

θ

2
(cos θ + 1)

]
for the expressions corresponding to the first Pauli matrix σ1. Then, the trigonometric identities
(A.0.4) and (A.0.5) yield

i

4

(
λ− 1

λ

)(
λ+

1

λ

)[
2 cos

θ

2
sin

θ

2
cos

θ

2
− 2 sin

θ

2
cos2 θ

2

]
= 0.

Further, the expressions corresponding to the second Pauli matrix σ2 are given by

−iα
4

[
λ sin θ − 1

λ
sin θ

]
− i

4

(
λ− 1

λ

)
cos

θ

2

[
(θt − θx) + (θt − θx)

]
.

If we utilize the trigonometric identity (A.0.4), we obtain

− i
2

(
λ− 1

λ

)
cos

θ

2

[
α sin

θ

2
+ (θt − θx)

]
.
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By the expression corresponding the second Pauli matrix of the derivative with respect to t of the
boundary matrix, we see that the term − iθt

2

(
λ− 1

λ

)
cos θ

2
is the same on each side of the equality

and therefore, we are left with

− i
2

(
λ− 1

λ

)
cos

θ

2

[
α sin

θ

2
− θx

]
= 0. (A.4.2)

On the other hand, analyzing the expressions corresponding to the third Pauli matrix σ3 yields

−iα
4

[(
λ cos θ +

1

λ

)
−
(1

λ
cos θ + λ

)]
+
i

4

(
λ− 1

λ

)
sin

θ

2

[
(θt − θx) + (θt − θx)

]
.

Again, the application of the trigonometric identity (A.0.6) then implies

− i
2

(
λ− 1

λ

)
sin

θ

2

[
−α sin

θ

2
− θt + θx

]
.

Together with the expression corresponding to the same Pauli matrix of the t derivative of the
boundary matrix, we see that the terms iθt

2

(
λ− 1

λ

)
sin θ

2
on both sides cancel. Therefore, we obtain

− i
2

(
λ− 1

λ

)
sin

θ

2

[
−α sin

θ

2
+ θx

]
= 0. (A.4.3)

As for the Dirichlet boundary condition, the combination of the two equalities (A.4.2) and (A.4.3)
is equivalent to the sin-boundary condition, even though the the first and second equality are also
satisfied if cos θ

2
= 0 and sin θ

2
= 0 hold, respectively.

Lastly, in the case of the cos-boundary condition, the right hand side of the symmetry relation
can be calculated as

V(t, 0, λ−1)K(t, 0, λ) =− α

4

[
(θt − θx)1 + λ sin θ(−iσ3) +

(
λ cos θ +

1

λ

)
iσ2

]
+

1

4

(
λ+

1

λ

)
cos

θ

2

[
(θt − θx)(−iσ2) + λ sin θiσ1 +

(
λ cos θ +

1

λ

)
1
]

+
1

4

(
λ+

1

λ

)
sin

θ

2

[
(θt − θx)iσ3 + λ sin θ1 +

(
λ cos θ +

1

λ

)
(−iσ1)

]
,

−K(t, 0, λ)V(t, 0, λ) = +
α

4

[
(θt − θx)1 +

1

λ
sin θiσ3 +

(1

λ
cos θ + λ

)
(−iσ2)

]
− 1

4

(
λ+

1

λ

)
cos

θ

2

[
(θt − θx)iσ2 +

1

λ
sin θ(−iσ1) +

(1

λ
cos θ + λ

)
1
]

− 1

4

(
λ+

1

λ

)
sin

θ

2

[
(θt − θx)(−iσ3) +

1

λ
sin θ1 +

(1

λ
cos θ + λ

)
iσ1

]
.

For the expressions corresponding to the identity matrix 1, we have, after the obvious cancellation
of the derivatives of θ, the following

1

4

(
λ+

1

λ

)
cos

θ

2

[(
λ cos θ +

1

λ

)
−
(1

λ
cos θ + λ

)]
+

1

4

(
λ+

1

λ

)
sin

θ

2

[
λ sin θ − 1

λ
sin θ

]
.

Using the trigonometric identities (A.0.4) and (A.0.6) for sin θ and cos θ − 1 yields

1

4

(
λ+

1

λ

)(
λ− 1

λ

)[
−2 cos

θ

2
sin2 θ

2
+ 2 sin

θ

2
sin

θ

2
cos

θ

2

]
= 0.
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Then, for the expressions corresponding to the first Pauli matrix σ1, we find

i

4

(
λ+

1

λ

)
cos

θ

2

[
λ sin θ − 1

λ
sin θ

]
− i

4

(
λ+

1

λ

)
sin

θ

2

[(
λ cos θ +

1

λ

)
+
(1

λ
cos θ + λ

)]
,

which under the trigonometric identities (A.0.4) and (A.0.5) equates to

i

4

(
λ+

1

λ

)(
λ− 1

λ

)[
2 cos

θ

2
sin

θ

2
cos

θ

2
− 2 sin

θ

2
cos2 θ

2

]
= 0.

Subsequently, the expressions corresponding to the second Pauli matrix σ2 are given by

−iα
4

[(
λ cos θ +

1

λ

)
+
(1

λ
cos θ + λ

)]
− i

4

(
λ+

1

λ

)
cos

θ

2

[
(θt − θx) + (θt − θx)

]
.

By the trigonometric identity (A.0.5) for cos θ + 1, we derive

− i
2

(
λ+

1

λ

)
cos

θ

2

[
α cos

θ

2
+ θt − θx

]
.

After cancelling the term − iθt
2

(
λ + 1

λ

)
cos θ

2
involving the factor θt with the derivative of the

boundary matrix on the left hand side of the equality, we are left with

− i
2

(
λ+

1

λ

)
cos

θ

2

[
α cos

θ

2
− θx

]
= 0. (A.4.4)

Finally, we mention the expressions corresponding to the third Pauli matrix σ3:

iα

4

[
λ sin θ +

1

λ
sin θ

]
+
i

4

(
λ+

1

λ

)
sin

θ

2

[
(θt − θx) + (θt − θx)

]
,

which can be written as
i

2

(
λ+

1

λ

)
sin

θ

2

[
α cos

θ

2
+ θt − θx

]
with the trigonometric identity (A.0.4) for sin θ. Noticing that iθt

2

(
λ+ 1

λ

)
sin θ

2
is cancelled with

the same term on the left hand side of the equality with the time derivative of the boundary matrix,
this can be reduced to

i

2

(
λ+

1

λ

)
sin

θ

2

[
α cos

θ

2
− θx

]
= 0. (A.4.5)

As for the other two boundary conditions, the combination of equalities (A.4.4) and (A.4.5) leads
to the equivalence of the cos-boundary condition to the symmetry relation with the respective
boundary matrix K(t, 0, λ).
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