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�The scientist has a lot of

experience with ignorance and

doubt and uncertainty, and this

experience is of very great

importance, I think. When a

scientist does not know the answer

to a problem, he is ignorant.

When he has a hunch as to what

the result is, he is uncertain. And

when he is pretty darn sure of

what the result is going to be, he

is in some doubt. We have found

it of paramount importance that

in order to progress we must

recognize the ignorance and leave

room for doubt. Scienti�c

knowledge is a body of statements

of varying degrees of certainty

some most unsure, some nearly

sure, none absolutely certain.�

Richard Feynman





Summary

There are many processes in the genome and epigenome level that still remain
elusive. Recent developments in high-throughput in sequencing have increased
the amount of data exponentially. In order to analyze and obtain meaningful
information and �nd natural patterns or clusters within these data sets, many
bioinformatics laboratories are developing new algorithms and pipelines to face
these challenges. On the genome, genomic and epigenomic data points within
the same loci are generally more similar than distant data. Nevertheless, regions
with similar functions that are scattered through the genome will as well produce
similar data points. In order to model this linear dependency in the locus and �nd
similar clusters throughout the genomic position, Hidden Markov models (HMMs)
have been widely used.

In this thesis, we will introduce the theory of HMMs and the extended case
of bidirectional HMMs (bdHMMs). In the genome context, many processes take
place in a speci�c direction, e.g. DNA repair or DNA transcription. bdHMMs were
developed to model processes that have some intrinsic directionality by de�ning
conjugate, or twin, states.

In addition, we show a method by which any HMM model can be transformed
into a clustering model and vice versa. Thus, the learning algorithm for HMM can
be used to learn and �t the parameters for a clustering method. Moreover, the
same procedure can be used for bdHMM and what we have named as bidirectional
clustering.

In the second chapter, we have applied the bdHMM algorithm to study the
tri-methylation status of histone three (H3) in three di�erent lysines of its tail
(H3K4me3, H3K36me3 and H3K79me3) together with their putative methyltrans-
ferase proteins (Set1, Set2 and Dot1 respectively) and new possible candidates
that might use these modi�cations as a signaling mark to carry out their function
(Asr1, Ioc4, Nto1, Pdp3, Rad9 and, Set4). Transcriptomics data was used to
evaluate more closely the relationship of the marks and the gene expression in a
metagene analysis.

Finally, we have worked out a new class of HMMs in which an extra hidden
layer is added to infer haplotypes in populations of recombinant parents using
low coverage sequencing. This extra layer models the high variability in SNP
detection and provides a probability of how good is the speci�c marker based on
the information provided by all the samples being analyzed. We use this method
to study the e�ect of three proteins (RECQ4A, RECQ4B, and FIGL1) with known
roles in resolving recombinant events during meiosis I.

Taken together, we have extended the theory of Hidden Markov models. First
by introducing bidirectionality and second by a transformation of HMMs into
clustering models. Using these new models in real data, we investigated actual
questions that molecular biology is facing.
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Zusammenfassung

Viele Prozesse auf der Genom- und Epigenomebene sind immer noch nicht voll-
ständig erforscht. Die jüngsten Entwicklungen im Bereich der Hochdurchsatz-
Sequenzierung haben zu einer exponentiellen Vergröÿerung der Datenmenge geführt.
Um aussagekräftige Informationen aus diesen Daten zu erhalten und natürlich
vorkommende Muster oder Cluster innerhalb der Datensätze zu �nden, entwick-
eln viele Bioinformatiklabore neue Algorithmen und Pipelines. In genomischen
und epigenomischen Daten sind Datenpunkte innerhalb derselben Loci ähnlicher
als Datenpunkte, die eine groÿe Distanz auf dem Genom aufweisen. Allerdings
führen Regionen mit ähnlichen Funktionen, die über das Genom verstreut sind,
ebenfalls zu ähnlichen Datenpunkten. Um diese lineare Abhängigkeit im Locus
zu modellieren und ähnliche Cluster im Genom zu �nden, werden häu�g Hidden
Markov-Modelle (HMMs) verwendet.

Thema der vorliegenden Doktorarbeit sind die theoretischen Grundlagen von
HMMs und die Erweiterung zu bidirektionalen HMMs (bdHMMs). Im Genom
kann bei einer Vielzahl von Prozessen wie DNA- Reparatur oder Transkription
eine de�nierte Richtung beobachtet werden.

bdHMMs wurden entwickelt, um Prozesse mit intrinsischer Direktionalität zu
modellieren. Dies geschieht durch die De�nition von Konjugaten, oder Twin,
Zuständen.

Darüber hinaus wurde eine Methode entwickelt, mit der jedes HMM in ein
Clustering-Modell umgewandelt werden kann und umgekehrt. Mit dem Lernalgo-
rithmus für HMMs können so die Parameter für eine Clustering-Methode erlernt
und angepasst werden. Das gleiche Verfahren kann für bdHMMs und das Ver-
fahren des bidirektionalen Clusterings verwendet werden.

Im zweiten Kapitel der Arbeit �ndet der bdHMM-Algorithmus seine Anwen-
dung: Der Tri-Methylierungsstatus von Histon drei (H3) wird in drei verschiede-
nen Lysinen seines Poly(A)-Schwanzes (H3K4me3, H3K36me3 und H3K79me3)
zusammen mit seinen mutmaÿlichen Methyltransferase-Proteinen (Set1, Set2 und
Dot1) und weiteren möglichen Genen untersucht, die diese Modi�kationen als Sig-
nalzeichen verwenden könnten (Asr1, Ioc4, Nto1, Pdp3, Rad9 und, Set4). Mithilfe
einer Metagenanalyze von Transkriptomikdaten konnte die Beziehung zwischen
den Marken und der Genexpression genauer bewertet werden.

Als weiterer Schritt wurde eine neue Klasse von HMMs mit einer zusätzlichen
versteckten Schicht entwickelt, um Haplotypen in Populationen rekombinanter
Eltern mittels Low-Coverage-Sequenzierung zu ermitteln. Die zusätzliche Schicht
modelliert die hohe Variabilität in der SNP-Erkennung und ermöglicht Aussagen
über die Zuverlässigkeit des spezi�schen Marker basierend auf den Informatio-
nen aller analysierten Proben. Die verwendete Methode untersucht die Wirkung
von drei verschiedenen Proteinen (RECQ4A, RECQ4B und FIGL1), von denen
bekannt ist, dass sie eine Rolle bei der Lösung rekombinanter Ereignisse während
der Meiose I spielen.

13



Insgesamt konnte so die Theorie über HMM in zweifacher Hinsicht erweitert
werden: Erstens durch die Einführung von Bidirektionalität und zweitens durch
die Überführung von HMMs in Clustering-Modelle. Die entwickelten Modelle
wurden auf reale Daten angewendet, um aktuelle Fragen der Molekularbiologie zu
untersuchen.
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Part I

(Bidirectional) Hidden Markov
Models and (Bidirectional)
Clustering Method

1 Introduction

The development of the new omic technologies is helping molecular biologists to
unravel the complexity of the genome [1]. Nevertheless, these technologies are
futile without appropriate unsupervised algorithms, which are able to detect pat-
terns within a large, high-dimensional dataset. Historically, di�erent clustering
methods have been applied to de�ne distinct clusters, e.g. in cancer research [2, 3],
gene expression analysis [4], prediction of gene function [5], etc. An important
characteristic of these methods is that they explicitly or implicitly rely on dis-
tributional assumptions, and the soundness of these assumptions will a�ect the
quality of the outcome.

At the genome level, most observations have a spatial dependency, e.g. adja-
cent loci tend to remain in the same cluster [6, 7]. Hidden Models (HMM) have
been widely used for the clustering of genomic data since HMMs model depen-
dency of consecutive observations. HMMs have proved to be extremely useful in
various �elds in Biology, such as gene prediction [8], protein structure [9], and
many others [8, 10].

Consortia like ENCODE [11], pENCODE [12], ROADMAP epigenomics [13],
etc. are gathering huge amounts of genomic and epigenomic data. In order to cope
with this load of data, algorithms such as Segway [14] or EpiCSeg [15], among oth-
ers [16], have been developed. Nevertheless, most of these algorithms do not model
strand-speci�c (RNA-Seq) data [17], nor do they take into account the intrinsic
directionality of many biochemical DNA-associated processes. During transcrip-
tion, e.g., polymerases synthesize RNA using the DNA template from the 3' to
5' end [6, 7]. To this end, HMMs have been extended to the double-stranded
HMM (dsHMM) [6], and the bidirectional HMM (bdHMM) [7]. While the former
models the forward and reverse DNA strands using two di�erent Markov chains
in opposite direction, the latter assigns to each state a directionality �ag, indi-
cating whether a state operates in forward (respectively reverse) direction, or is
undirected.

In this chapter, we introduce the STAN software, an R/Biocondcutor [7] pack-
age that implements algorithms for mixture clustering, direction-aware clustering
(bdClustering), HMM and bdHMM learning. First, the HMM theory and the
algorithms to update the parameters will be described. Second, it will be intro-
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Figure 1: Graphical structure HMMs. The latent variable Z is described by
a Markov chain. Therefore, the state of the variable zt depends exclusively on the
state of the variable zt−1. Moreover, the observation xt is conditioned in the value
of zt.

duced the bdHMMs and their semantic with some biological examples. Finally,
based on the HMM theory it will be shown how to derive the likelihood function
of clustering. Furthermore, it will be shown that a similar approach can be taken
to obtain a direction-aware clustering method similar to the bdHMMs.

2 Hidden Markov Models

2.1 Model Statement

Hidden Markov Models (HMM) are a powerful tool to analyze data points which
are not independent [18]. In other words, if the observation at a certain genomic
position depends on an observation at the previous position, HMM can capture
and model this dependency. Time series experiments, e.g. currency exchange rate,
speech recognition or online handwriting recognition generate data sets which the
time point of an observation is informative about future observations. Biological
sequences such proteins or DNA sequences also generate data with this kind of
dependency structure [8, 9]. For convenience, I will use the terms �past� and
�future� observations in a sequence synonymous to �previous� and �subsequent�
observations, respectively.

HMMs are composed by a latent variable which is a discrete and correspond
to a (time-independent) Markov chain, here the name of hidden. It assumes that
ever observation xt is emitted by the corresponent hidden variable zt1. Therefore,
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the value of zt de�nes the probability of observing xt by P (xt|zt) = ψzt(xt). From
1, it is clear thet the conditional proability distribution of the hidden variable zt
is dependent only on the value of zn−1, also known as markov property.

More formally, an HMM is deifned by a tuple θ = (K, π, A,D,Ψ) such that:

1. K is a �nite set, which elements are called states.

2. The initial probability vector π = πi∈K is a row vector with 0 ≤ πi ≤ 1,
i ∈ K, and

∑
i∈K πi = 1.

3. The matrix A is a stochastic matrix of dimension K ×K and de�nes the
transition probabilities aij. The row vectors are probability vectors with
0 ≤ aij ≤ 1, i ∈ K, and

∑
j∈K aij = 1.

4. The emission distribution Ψ = {ψi, i ∈ K} form a set of probability distri-
butions on a space D,the observation space.

Given a sequence of observations X = (x0,, ..., xT ) generated by a sequence of
hidden observations Z = (z0, ..., zT ) from an HMM, we can compute the likelihood:

P (X,Z; θ) = P (X|Z; θ) · P (S; θ) (1)

=
T∏
t=0

P (xt|zt; Ψ) ·
T∏
t=1

P (zt|zt−1;A) · P (z0; π)

=
T∏
t=0

ψzt(xt) ·
T∏
t=1

azt−1,zt · πz0

2.2 Parameter Inference

To estimate the model parameters θ, one must maximize the marginal likelihood
P (O; θ). This marginal probability can be obtained by summing the joint proba-
bility (1) over all possible state sequences:

P (O; θ) =
∑
all Z

P (X|Z; θ) · P (S; θ) (2)

This calculation increase in complexity as the time points T and number of
states K increases. The number of calculations needed to compute the marginal
likelihood augment in order 2T · KT . If one considers that the smallest known
genome is 220 base pairs (bp), the calculation of the marginal likelihood is already
unfeasible for any modern computer. The solution to this problem was given in
the Baum-Welch algorithm, an instance of the expectation-maximization (EM)
algorithm. The EM algorithm is an iterative method to estimate the parameters
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of models that contain latent variables. It iterates over 2 steps: the Expectations
(E) and the Maximization (M) step. The underlying idea of this algorithm is that
instead of working with the marginal likelihood (2) a new target functionQ(θ, θold)
is maximized with respect to the parameters θ, given a previous parameter guess
θold. The algorithm will converge to a local maximum of the marginal likelihood
P (X; θ). Therefore, the selection of the initial parameters is crucial to obtain
good results.

The target function, denoted as Q(θ, θold), is given by:

Q(θ, θold) =
∑
all Z

P (Z|X, θold) · logP (X,Z; θ) (3)

Nevertheless, the summation over all possible sequence of states Z needs to be
computed. An e�cient procedure to solve this problem in HMMs is the forward-
backward algorithm, developed in the early seventies by Leonard E. Baum and
Lloyd R. Welch [18, 19]. This method introduces two new probabilities:

αt(k) = P (zt = k, x0, ..., xt; θ
old) (4)

βt(k) = P (zt = k|xt+1, ..., xT , z = k; θold) (5)

The αt(k) is the joint probability of observing all data points up to time
t and the value of zt is k, whereas the conditional probability βt(k) de�nes the
conditional probability of the data points from t+1 to T given the state zt is equal
to k. More precisely, we can compute this probabilities inductively, as follows:

1. Forward/backward initiation:

α1(k) = πoldk ψoldk (x1) (6)

βT (k) = 1 (7)

2. Forward/backward induction:

αt(k) = ψoldk (xt)
∑
i∈K

aoldij αt−1(i) (8)

βt(k) = ψoldk (xt)
∑
i∈K

aoldji βt+1(i) (9)
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We can now use these terms to expresses two new posterior probabilities. The
posterior probability γt(k), de�ned as the conditional probability of being in state
k at time t, given the observation sequence X. And the value ξ(k, l), de�ned as
the probability of being in state k at time t and in state l at time t+ 1, given the
full observation X:

γt(k) = P (zt = k|X, θold)

=
αt(k)βt(k)∑
i∈K αt(i)βt(i)

(10)

ξ(j, k) = P (zt = k, zt+1 = l|X, θold)

=
αt(k)aoldkl βt+1(l)ψoldl (ot+1)∑

i∈K αt(i)βt(i)
(11)

The target function Q(θ, θold) can now be written using equation (10) and (11):

Q(θ, θold) =
∑
k,l

T∑
t=1

ξ(k, l)log akl +
∑
k

γ0(k)log πk +
∑
k

T∑
t=1

γt(k)log ψk(xt)(12)

The calculation of Q(θ, θold) in terms of (12) is now computationally feasible, its
time complexity is T ·|K|. To perfrom the M-step of the algorithm, i.e., to optimize
Q with respect to θ, we can di�erentiate and use appropiate Lagrange multipliers
to satisfy the constrains

∑
i∈K πi = 1 and

∑
j∈K aij = 1. Setting the derivate to

zero and solving for each parameter we obtain:

πi = γ0(i) (13)

and,

aij =

∑T
t=1 ξt(i, j)∑T
t=1 γt(i)

(14)

The update of the Ψ parameters is speci�c for each distribution family belong-
ing to the observations. For an update of the parameters of the used emission
distributions (Bernoulli, Negative Multinomial, (multivariate) Gaussian, Nega-
tive Binomial, Poisson and Poisson Log-normal in our case), refer to Zacher et.
al. [7]. Furthermore, we worked out the update formulas for the Beta-Binomial
distribution family in Chapter 4 of this thesis.
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2.3 Viterbi Algorithm

Given an HMM model θ and a sequence of observations X, the most common
problem is to �nd the most probable sequence of states Z that explain the obser-
vationsX. In other words, we want to �nd the sequence of states Z such P (Z,X|θ)
is maximized. The solution to this problem is given by a recursive method called
the Viterbi algorithm:

δ0(i) = πiψi(oo)

δt(i) = max
z0,z1,...,zt−1

P (z0, z1, ..., zt = i|θ)

δt+1(j) = max
i

δt(i)aijψj(ot+1)

The optimal hidden state path, or Viterbi path can be obtained applying back-
tracking [19].

3 Bidirectional Hidden Markov Models (bdHMM)

The bdHMM theory was developed by Achim Tresch and Benedikt Zacher. In
this section, I recover the theory explained in Zacher et al. [7] to introduce the
bdHMMs and then explain how to obtain the bidirectional clustering algorithm.

A bdHMM is a special instance of HMM that satis�es three additional condi-
tions. Two conditions de�ne the structure of the hidden variable Z, and the other
deals with the observations. These three conditions are not de�ned ad hoc as it
will be demonstrated in the semantic of bdHMMs.

De�nition.
A bdHMM is de�ned as a tuple θ = ((K, iK), π, A, (D, iD),Ψ). The parameter

tuple is composed by the parameters of an HMM θHMM = (K, π, A,Ψ) , and the
involutions iK : K → K, k 7→ k̄ and iD : D → D, o 7→ ō; (a map i is called an
involution if i2 = id). Morevoer, the following symmetry conditions hold:

1. Generalized detailed balance: The �rst symmetry condition satis�es cond-
tions in the initial probability and the transition probability

πiaij = πj̄aj̄ī , i, j ∈ K (15)

2. initiation symmetry: The initial probability π satis�es

πi = πī , i ∈ K (16)

3. Observation symmetry: The emission distribution Ψ satis�es

ψi(o) = ψī(ō) , i ∈ K, o ∈ D (17)
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3.1 The Semantic of bdHMMs

In the following subsection we will motivated the selection of the above mentioned
conditions: (15), (16) and (17), let θ = ((K, iK), π, A, (D, iD),Ψ) be a bdHMM.
By (15) and (16)

(πA)j =
∑
i∈K

πiaij =
∑
i∈K

πj̄aj̄ī = πj̄ = πj , j ∈ K,

which proves πA = π, so π is a (left) eigenvector of A. If π is an eigenvector
of the stochastic matrix A, then the initial probability π of a bdHMM is always
a stationary state distribution of A. Consequently, the previously mentioned as-
sumptions imply that

P (zt−1 = i, zt = j) = P (zt−1 = i) · P (zt = j|zt−1 = i) = πiaij

= πj̄aj̄ī = P (zt−1 = j̄) · P (zt = ī|zt−1 = j̄)

= P (zt−1 = j̄, zt = ī) (18)

holds for all i, j ∈ K and t = 1, ..., T. The consequence of this is that at any
location in the sequence, the probability of observing the state i preceding state j
is equal to the probability of observing the respective conjugates in reversed order.
Hence, equation (18) de�nes the Generalized detailed balance and the Initiation
symmetry. The reason to chose two di�erent conditions (condition (1) and (2))
over a simpler one (equation 18) is exclusively because conditions (1) and (2) are
explained based on model parameters, whereas equation (18) has a more abstract
de�nition.

To understand the involution iK one must understand that a bdHMM models
hidden processes with a directionality. These processes can occur in forward or
reverse direction, but as well undirected processes can be expected. The involution
iK splits the sets of states K in directed states, de�ned as pairs (k, k̄), k 6= k̄ of
conjugate states (or twin states). One of the conjugate, or twin, state de�ne
processes in forward and the other in reverse direction. The appointment of
which state (k, k̄) models forward or reverse is assigned in a post-processing step.
Those states that model forward processes are called forward states K+ and the
ones modeling reverse processes are called reverse states K−. Moreover, there is
a third set of states that describe undirected processes named undirected states
K0, and the conjugate states are equal k = k̄.

The third condition is related to the observations. The bdHMMs can model
observations generated by forward, reverse, and undirected underlying processes.
The observations may explain the directionality of such process that produced it.
Therefore, the involution iD maps the observation o ∈ D to its conjugate obser-
vation ō, which denotes the corresponding observation if the directionality of the
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Figure 2: De�ning Property of bdHMMs. The marginal likelihood
P (ot−1, ot, st−1, st; θ) for the hidden and observable variables in two consecutive
positions in the sequence is invariant under simultaneous reversal of state di-
rectionality and direction information in the observations. In simpler terms, the
model should be invariant under reversal of the annotation of the two DNA strand
as �forward� respectively �reverse� strand. This means that P (ot−1 = x, ot =
x, st−1 = i, st = j; θ) = P (ot−1 = ȳ, ot = x̄, st−1 = j̄, st = x̄; θ) for any admissible
values of x, y, i, j, t, t′.

process was reversed. A clear example of such observations is motivated by the
advent of strand-speci�c sequencing methods in genomics. In the case that one
wanted to include strand-speci�c data to ChIP-seq experiments, D is modeled as
the Cartesian product of D0, for the ChIP measurements of protein binding, a
space D+ generated by the transcription of genes in the forward or plus strand and
captured by the strand-speci�c RNA-seq protocol and the corresponding observa-
tions by the reverse or minus strand D−. Therefore, the involution iD acts on the
observations, iD : o = (o0, o+, o−) 7→ ō = (o0, o−, o+). The observation symmetry
is ligated to the involution iK, such that twin states have the same probability
distribution, up to involution iD of the observations (�gure 2).

Note that if there is no underlying directed process, meaning that the invo-
lution iK is the identity map, the condition (16) is void and the detailed balance
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Figure 3: Bidirectiona promoter example. Bidirectional promoters have been
widely described in literature. Eukaryotic cells use these functional region for
initiation of transcription of one gene in the Watson and another in the Crick
strand. From a sequential point of view (t−2, ..., t+2), if taken the Watson strand
as reference, the transcription of those two genes occur in opposite directions. Still,
the underlying process that explain the observations are the same. Therefore,
the transition from the elongation state of Pol II to initiation stage in the gene
transcribed in the Crick strand, also reverse strand (aē,̄i) is equal to the transition
from initiation to elongation in the Watson, or forward strand (ai,e). Hence, the
elongation state in reverse (ē) is the conjugate state of the elongation state in
forward (e), and so are the initiation state in forward and reverse (i, ī).

condition reduces to a reversible HMM. Additionally, if there is no information
about the directionality on the observations, such that the involution iD is the
identity map, the observation symmetry is void as well. Thus, our bdHMM is a re-
versible HMM which satis�es the detailed balance relation πiaij = πjaji, i, j ∈ K.
Consequently, our algorithm can model reversible HMMs observations.

Example: in many eukaryotic cells, some promoter regions can start tran-
scription in both strands, e.g. Watson and Crick strands. This family of promoters
are known in the literature as bidirectional promoters. After Pol II is bound to
the promoter region (initiation), it will start to transcribe the template DNA into
RNA (elongation). Depending in which direction this process takes place, the
Watson or Crick strand will be used as the template for transcription. For an ex-
ternal observer, these processes will take place in opposite directions. One taking
place in forward (Watson) and the other in reverse (Crick) direction. Neverthe-
less, (bd)HMM algorithm analyzes every genome position as time points using as
reference the Watson strand. This means that the transition from an elongation
stage to initiation stage in the Crick strand will have the same probability as the
transition from initiation to an elongation stage in the Watson 3. Therefore, the
elongation state in reverse is the conjugate of the elongation in forward and the
same for the initiation state.

Given an observation X = (x)t=0,...,t=T , we can de�ne the reversed observations
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by applying the involution iD and reverse the order, Xrev = (xrevt = x̄T−t)t=0,...,t=T .
The same can be applied to the hidden variable Z = (zt)t=0,...,T to obtain the
reversed Zrev = (zrevt = z̄T−t)t=0,...,t=T . We verify that bdHMM are symmetric
with respect to the �reversal� of the observation sequence:

P (Z; θ) = πzo

T∏
t=1

azt−1zt

(15)
= πzT

T∏
t=1

az̄tz̄t−1

(15,16)
= πz̄T

T∏
t=1

az̄T−(t−1) ¯zT−t
= πzrev0

T∏
t=1

azrevt−1z
rev
t

= P (Zrev; θ) (19)

Moreover,

P (X|Z; θ) =
T∏
t=0

ψzt(xt)
(17)
=

T∏
t=0

ψz̄t(x̄t)

=
T∏
t=0

ψz̄T−t
(x̄T−t) =

T∏
t=0

ψzrevt
(orevt )

= P (Xrev|Zrev; θ) (20)

The equalitites (19) and (20) imply

P (X,Z; θ) = P (X|Z; θ) · P (Z; θ)

= P (Xrev|Zrev; θ) · P (Zrev; θ)

= P (Xrev, Zrev; θ) (21)

also

P (Z|X; θ) = P (Zrev|Xrev; θ) (22)

Therefore, a bdHMM is reversible in the generalized sense

P (O; θ) = P (Orev; θ)

3.2 Baum-Welch Algorithm for bdHMMs

Given a parameter set θ = ((K, iK), π, A, (D, iD),Ψ) of a bdHMM, we can de�ne
a new target function such
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Q̂(θ, θold) = Q(θ, θold) +Q(θ, θ̄old) (23)

where θ̄old is the bdHMM with parameter set θ̄ = ((K, iK), π̄, Ā, (D, iD), Ψ̄). The
parameters are de�ned based on the bdHMM parameter as π̄i = πī, āij =
aīj̄, ψ̄i(x) = ψī(x), i, j ∈ K, o ∈ D.

The full derivation of the function Q̂(θ, θold) and the updated formulas for the
emission distributions can be found in Zacher et al. Here, we will only introduce
the update formulas for the parameters aij and πi:

aij =

∑T
t=1(ξt(i, j) + ξ(j̄, ī))∑T
t=1(γt−1(i) + γt(̄i))

, i, j ∈ K (24)

πi =
1

2T

T∑
t=1

(γt−1(i) + γt(̄i)) , i ∈ K (25)

Although this method has not been proved to converge, we have not found
any case in which that was not the case in practice. Moreover, the algorithm is
signi�cantly faster than other numerical approaches.

3.3 Directionality Score

The selection of the number of states is one of the major concerns in HMMs. Some
solutions to this problem have been proposed as using Bayesian Information Cri-
terion (BIC), Akaike information criterion (AIC) or minimum description length
(MLD). These methods try to balance the number of states and the precision of
the data �t.

Since our bdHMM have two di�erent sets of states, directed and undirected,
the solutions mentioned above might not be suitable. The goal is to �nd the
right number of directed and undirected states. To this end, we have de�ned a
directionality score, which will help us to �nd the most appropriate number of
directed states.

The directionality score uses the posterior probability γt(k) for the conjugate
states (k, k̄) over all the position to determine if, on average, one of there is no
ambiguity among the two states. Formally, we can de�ne our directionality score
as

DirScore =

∑T
t=0 |γt(k)− γt(k̄)|∑T
t=0(γt(k) + γt(k̄))

(26)

This score can be interpreted as a probability measure as well since 0 ≤ DirScore ≤
1. After computing the directionality score for all the pairs of conjugate states a
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threshold q must be selected and remove all states under this threshold q. There
is no proper way to determine a statistical value for q but we recommend using
q = 0.5. When a pair of twin states (k, k̄) has a directionality score bigger than
0.5, means that more than half of the time on of the conjugate states is suited
than the other. Thus, it is more likely that it belongs to a directed process in
which the conjugate state is not convenient.

One might notice that the directionality score might be a�ected by the number
of undirected states. Thus, as the method to �nd the correct number of directed
and undirected states consists in compute the dirScore for di�erent combinations
of directed and undirected states and chose the model which all directed states
have a dirScore higher than 0.5 and has the lower number of total states.

4 Bidirectional Clustering

We have introduced a solution to model observations with spatial or temporal
dependence. But, when the data points are independent of each other and the
order does not provide any information the mixture model is the most suitable
one. The goal of mixture models is to �nd the clusters K, or subpopulations, in a
dataset. It is similar to the HMM in that a new latent variable C is de�ned and
is responsible for each observation.

More formally, a mixture model is de�ned by a tuple θ = (K,φ,D,Ψ)such that:

1. K is a �nite set, which elements are called clusters.

2. The mixture weight vector φ = φi∈K is a row vector with 0 ≤ φi ≤ 1, i ∈ K,
and

∑
i∈K φi = 1.

3. The emission distribution Ψ = {ψi, i ∈ K} form a set probability distribu-
tion on a space D, the observation space.

Given a sequence of observations X = (xt)t=0,...,t=T , note that here the subscript
t does not have a temporal connotation. The observations xt were drawn from
the distribution ψct where ct ∈ K is a the latent class or cluster variable. Let
C = (ct)t=0,...,t=T . The likelihood takes the form:

P (X,C; θ) = P (X|C; θ) · P (C; θ)

=
T∏
t=0

P (xt|ct; Ψ) ·
T∏
t=0

P (ct;φ)

=
T∏
t=0

ψct(xt) ·
T∏
t=0

φi (27)

Thus, we verify that the likelihood of an HMM with parameter set θHMM =
(K, φ, A,D,Ψ) specializes to (27) if we set aij = φj, i, j ∈ K in equation (1):
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P (X,C; θHMM) = P (X|C; θHMM) · P (C; θHMM)

=
T∏
t=0

P (xt|ct; Ψ) ·
T∏
t=1

P (ct|ct−1;A) · P (z0;φ)

=
T∏
t=0

ψct(xt) ·
T∏
t=1

act−1,ct · φz0

=
T∏
t=0

ψct(xt) ·
T∏
t=1

φct · φz0

= P (X,C; θ) (28)

4.1 Update Formula for bdClustering

For the learning of φ, we will plug the addictional constraints into the equation
(3) and add the Lagrange multipliers. This leads to an EM update algorithm for
(bd)clustering:

Q(θ, θold) =
∑
k,l

T∑
t=1

ξ(k, l)log φl +
∑
k

γ0(k)log φk +
∑
k

T∑
t=0

γt(k)log ψk(xt)

+λ(1−
∑
k

φk)

=
∑
k

T∑
t=1

γt(k)log φl +
∑
k

T∑
t=0

γt(k)log ψk(xt) (29)

+λ(1−
∑
k

φk)

Since the observations are independent, the computation of the responsabilities
γt(k) can be performed in parallel:

γt(k) = P (ct = k|X; θold) =
P (xt|ct = k; θold)P (ct = k; θold

P (xt; θold)

=
φkψk(xt; θ

old)∑
j∈K φjψj(xt; θ

old)
, t = 0, ..., T (30)

The partial derivates of Q(θ, θold) with respect to φk are:

∂Q(θ, θold)

∂φk
=

{∑T
t=0

γy(k)

φk
− λ if k = k̄∑T

t=0
γt(k)+γt(k̄)

φk
− 2λ if k 6= k̄

(31)
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Setting the partial derivatives to zero and solving for λ in the usual fashion
leads to

λ =
∑
k

T∑
t=0

γt(k)

and the updated formula results in

φk =


∑T

t=0 γt(k)∑
k

∑T
t=0 γt(k)

if k = k̄∑T
t=0 γt(k)+γt(k̄)

2·
∑

k

∑T
t=0 γt(k)

if k 6= k̄
(32)

The learning of the emission distributions in bidrectional clustering can be done
exactly in the same way as for bdHMMs.

4.2 Semantics of bdClustering

We have de�ned the bdHMM by three main properties: (1) Generalized detailed
balance, (2) initiation symmetry, and (3) the observation symmetry. But, do
they hold for bdClustering? Since the hidden latent variables are not dependent,
there is no underlying process that has directionality. Therefore, condition (1)
and (2) are void in the case of bdClustering. condition(3) is a constraint of the
bdClustering model: Let iK : k 7→ k̄ be an involution on K mapping twin clusters
onto each other. Then,

ψk(o) = ψk̄(ō) (33)

Thus, bidirectional clustering will be only possible if the observations contain
information about the underlying direction of the process.

5 bdHMM vs bdClustering Example

To illustrate the di�erences between bdHMM and bdClustering, we applied our
method implemented in the R/Bioconductar package STAN to a set of ChIP-chip
experiments and RNA expression measures performed with tiling array in the
yeast genome.

For this experiment we used the signal of 9 ChIP-chip experiments on di�erent
proteins that regulate or are involve during transcription: the RNA polymerase
II (Pol II) subunit Rpb3, the CTD terminal of Pol II phosphorylated in Ser 5 and
2 (5SP, 2SP), the transcription factor II B (tfIIb), Ctk1 protein that phospho-
rylates Pol II, the Paf1, Spt5 and Spt16 proteins that regulates elongation, and
the 3' end processing factor that cleaves and polyadenylates the pre-mRNA, the
Pdf11 protein. To infer directionality, strand-speci�c expression signal is added
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to the data set. These tracks will inform whether the Watson or Crick strand is
transcribed in the region.

The bdHMM and bdClustering algorithms are applied to the data set using
4 directed and 1 undirected states. Viterbi decoding in the case of bdHMM,
and posterior decoding for bdClustering, is then used to infer the latent variable
Z and C respectively. In �gure 4 we show a segment of chromosome IV with the
data and results. As it has been mentioned in the introduction, genomic observa-
tions have a linear dependency. So close loci have similar properties. Therefore,
the bdHMM is the optimal model to decipher the underlying process. Moreover,
if compared with the SGD gene annotation, the bdHMM can di�er regions that
are expressed in the Watson (F states) or in the Crick (R states) strand, as well
as the undireceted (U) processes. bdClustering is more prone to jump to di�erent
states. This is due that every single data point is taken independently of the
surroundings, producing a discontinuous signal (�gure 4).

Although we could not �nd any practical application of our bdClustering al-
gorithm, the upcoming of single-cell technologies might be a �eld in which the
application of such algorithm could be helpful in the discovery of new cell clusters
using strand-speci�c sequencing methods. Nevertheless, bdClustering can be used
for the initialization of the parameters of a bdHMM.

6 Conclusion

In this chapter, we have introduced the concept of HMMs and their theory. The
Baum-Welch algorithm is able to estimate the HMM parameters through an it-
erative optimization process of the target function Q(θ, θold). Thereafter, we have
explained the properties that de�ne a bdHMM and we derived a modi�ed target
function to estimate the parameters of the bdHMM.

Finally, we introduced a simple method to transform a (bd)clustering model
into a (bd)HMM model such that we can re-use the EM algorithm implemented
in the STAN package to �t the parameters of a (bd)clustering. The STAN pack-
age has implemented a vast set of emission distribution families that can be used
to model genomic and other data: (multivariate) Gaussian, negative binomial,
zero-in�ated negative binomial, Poisson log-normal, Bernoulli, mulginomial and
negative multinomial. Therefore, our new method to transform mixture models
into HMM gives the opportunity to �t mixture models with all the previous men-
tioned distributions. Moreover, if the data set contains observations that may
have some directionality information, we can �nd twin clusters independently of
the source of the observation. In summary, here we have presented di�erent clus-
tering methods. We show that a mixture model can be expanded to HMM when
there is a linear dependence on the hidden variables. Moreover, if the underlying
process does is ruled by some directionality constraints we can generalized both
clustering methods to a whole new system of directionality, see �gure5.
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Figure 4: Example. (1) Nucleosome, (2) Rpb3, (3) S5P, (4) S2P, (5) TFIIB,
(6) Ctk1, (7) Paf1, (8) Spt5, (9) Spt16, (10) Pcf11, (11) RNA Watson strand,
(12) RNA Crick strand, (13) bdHMM Viterbi decoding; F- Forward states; U-
Unidrected states; R- Reverse states, (14) bdClustering posterior decoding; F- For-
ward clusters; U- Undirected clusters; R- Reverse clusters. We applied bdHMM
and bdClustering algorithm to segment a small fragment from Chromosome 4 of
the Saccharomyces cerevisiae genome. We used as undirected observations the
ChIP-chip signal of 9 proteins involved in the transcription machinery and, as di-
rected observations, the strand-speci�c expression signal. After Viterbi decoding
for the bdHMM and the posterior decoding for bdClustering, we compare the state
annotation for both algorithms together with the known SGD gene annotation.
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Figure 5: Summary. Clustering methods have been widely studied in the liter-
ature. Here, we show that when adding linear dependence to a standard mixture
model, we obtain an HMM. Moreover, we have added another layer of complexity
or information in which the underlying directionality of the process generating
the data can be estimated. Thus, mixture models and HMM can be expanded to
the bdClustering and bdHMM respectively.
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Part II

Histone binding proteins in the
regulation of Gene Expression

7 Introduction

Eukaryotic DNA is packaged inside the cell in the form of chromatin. Chromatin
is the total of all protein-DNA complexes found in the nucleus [20, 21]. One
of the challenges in the chromatin �eld is to understand how the transcription
machinery interacts with the packaged DNA [22, 23]. Several studies [24] have
demonstrated the involvement of di�erent factors such as DNA methylation, his-
tone modi�cations or even small nuclear RNA in the regulation of transcription.
The interaction of these factors has been called "epigenetic regulation" in the
literature [25].

The fundamental chromatin unit is the nucleosome. Nucleosomes are formed
by histone octamers (two copies of each histone H2a, H2b, H3, and H4) and 147 bp
of DNA that coil 1.7 times around the histone octamer. Nucleosome movement,
and remodeling (binding/unbinding to DNA) are related to chemical modi�ca-
tions of the histone proteins. The relationship between histone modi�cations and
transcription has been studied in depth [25, 26, 27, 28]. Speci�c histone mod-
i�cations or combinations thereof have been found to activate or repress gene
expression [26].

7.1 RNA Synthesis by RNA Polymerase

Eukaryotic organisms are equipped with a complex machinery for the transcription
of DNA into RNA. The most important protein are the RNA-polymerases, which
can transcribe a template DNA sequence into an RNA sequence always from
the 5' end of the gene to the 3'end [22, 29, 30]. Polymerases are assisted and
regulated by numerous enzymes during transcription. Several RNA polymerases
are known to act in the nucleus of the eukaryotic cell. These polymerases di�er
in their promoter regions and the chromatin structure that they can recognize.
Therefore, they target di�erent DNA regions: Pol I transcribes the 35S subunit of
the ribosomal precursor RNA (rRNA) [24], Pol III synthesizes the transfer RNA
(tRNA) and the small 5S subunit of the ribosomal RNA (rRNA) [24]. Pol II
performs the transcription of protein-coding genes (mRNAs), non-coding RNAs,
small nucleolar RNAs (snoRNAs) and cryptic unstable transcripts (CUTs) [24, 30].

There are also RNA Polymerases found in other DNA-containing cell or-
ganelles. Mitochondria and chloroplasts have their own polymerases that catalyze
the transcription of their own genes (mitoPol and PEP, respectively) [31]. Both
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have a structure similar to the RNA polymerase of prokaryotes. In addition, two
new polymerases have been identi�ed in plants: PolIV and Pol V that have a
speci�c function in DNA methylation.

7.2 Transcription Cycle of Pol II

The transcription process is tightly regulated by many di�erent factors that in-
teract with the Pol II and maintain the chromatin structure. The factors that
interfere at the start of transcription and the end are signi�cantly di�erent (�gure
6). Based on the factors required, the transcription process can be divided into
three essential phases: initiation, elongation, and termination. During transcrip-
tion, Pol II undergoes several post-translational changes, the best known being the
phosphorylation of the C-terminal domain (CTD) of the Rpb1 subunit [30, 24].
The CTD consists of a repetition of the heptamer Tyr-Ser-Pro-Thr-Ser-Pro-Ser
that undergoes speci�c chemical modi�cations throughout the transcription [32].

Initiation is the most crucial step for successful transcription of a gene [33].
In this step, Pol II is recruited to the promoter region of the gene by a protein
complex that forms upstream of the transcription start site (TSS) and forms the
preinitiation complex (PIC) [34]. The PIC is complete by the binding of TFIIH,
which unwinds the DNA and facilitates the binding of Pol II to the template
strand. Once the Pol II-DNA complex is established, TFIIH catalyzes the phos-
phorylation at the Ser5 residues in the heptamer repeats of the CTD and releases
the PIC complex. The COMPASS complex recognizes the Ser5 phosphorylation
of the CTD and links to the initiating Pol II. The methyltransferase Set1 belongs
to the COMPASS complex and is responsible to methylate the Lys4 of the histone
H3 at the promoter region [35, 36].

Around 150 nucleotides downstream from the TSS, Pol II enters in the elon-
gation state. At this state Pol II is tightly regulated by many factors that help
Pol II to transcribe and move along the chromatin. After phosphorylation of the
Ser2 of the CTD by the Ctk kinase, the methyltransferase Set2 is recruited to the
complex and methylates histone H3 at Lys 36 at the gene body region [24, 34].

For the termination of transcription, Pol II is released from the template DNA
strand through a process of endonucleolytic excision of RNA followed by synthesis
of the poly-A tail. To carry out this excision, termination factors (e.g. Pcf11 and
Rtt103) have to be recruited to the transcription machinery by de-phosphorylation
of Tyr 1 at the CTD, while some elongation factors (e.g. Nrd1) have to be released
[34].

Finally, Pol II can be recruited again through the complex mediator at the
promoter regions and facilitates the restart of the transcription. In yeast, gene
loops have been found, in which the promoter and terminator ends of a gene are
in physical proximity to each other, and assist in iterating transcription initiation
[37, 38, 39, 40].
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Figure 6: Essential steps of the Pol II transcription Cycle. In this �gure,
are highlighted those factors important for the histone methylation marks along
the chromatin. The histones are drawn as red circles. Only the N-terminal part of
histone H3 is shown in detail. I. Pre-initiation. During pre-initiation, the PIC
complex binds to the DNA at the nucleosome free region (NFR). This complex is
needed for Pol II to bind to the DNA. TFIIH phosphorylates the Ser5 of the CTD
heptamer of Pol II and releases it. II. initiation. Pol II synthesizes around 150
nucleotides of RNA (violet). Set 1, a methyltransferase protein, binds to Pol II
through the phosphorylated Ser 5 and introduces the methyl mark at Lys 4 of the
H3 N-terminal. III. Elongation. The Ser2 amino acid of the CTD repeats are
phosphorylated by the Ctk protein. This chemical modi�cation is recognized by
the Set2 protein, which in turn methylates the histone 3 at lysine 36. This mark is
set along the ORF body of the gene. IV. Termination. After the transcription
termination site (TTS), the RNA is cleaved from the Pol II and released from the
DNA.
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7.3 Histone Methylation and Gene Regulation

There is a wide literature about post-translational modi�cations (PTMs) of hi-
stones. Including: Acetylation, methylation, Phosphorylation etc [41, 25, 42].
They all occur at the N-terminal tail of histone proteins. PTMs are found through-
out the genome and many have been characterized to de�ne di�erent regions (e.g.
heterochromatin, telomeric, etc). Some modi�cations, like acetylation, change the
total charge of the histone altering the strength by which the DNA-histone bind
[41]. Therefore, changing the �uidity of the DNA and accessibility of other factors
to the DNA [43]. Methylation does not change the total charge of the histones but
rather works as a signaling mark that is recognized by other proteins [21, 28, 44].

Methylation at lysines in positions 4, 36, and 79 of histone H3 (H3K4me,
H3K36me, and H3K79me) are markers for transcribed genes and their methylation
state has been reported to correlate with active gene transcription [25, 29, 45, 46].
Moreover, Lys can carry up to three methylations on the ε−nitrogen and the
methylation state have di�erent locations and patterns along the genes (�gure 7).

Set1, is the methyltransferase that travels together with Pol II and methylates
monomethyl H3K4 (H3K4me1) [47]into the di- and tri- methyl state (H3K4me2
and H3K4me3). The H3K4me3 is correlated with the transcription frequency of
a gene and serves as the de�ning mark for the start of the ORF [46, 48]. The
function of this mark is not completely understood yet but it has been shown that
it serves as signaling mark for other histone modi�ers and chromatin remodelers,
which can recognize it and bind to it through their PHD domain [43, 20].

Tri-methylation of histone H3 at Lys 36 (H3K36me3) is associated with the
body of transcribed genes [49]. This mark is catalyzed by the enzyme Set2 that is
attached to Pol II during the elongation stage. The level of H3K36me3 has been
correlated to the transcription rate of the gene and recruits the Rpd3S histone
deacetylase complex to the gene body. H3K36me3 can be read by several proteins
that contain the domain PWWP, named after its central core Pro-Trp-Trp-Pro
(PWWP) [43, 46].

Lys 79 belong to the globular domain in H3 and it is methylated by the Dot1
protein [50, 36], which does not belong the Set family. H3K79me is a genome-wide
mark that can be found over 90% of the genome. Therefore, its function is not
well understood but it is associated with actively transcribed genes. It is also the
only methyl PTM that has no demethyltransferase known at the moment [25].
Proteins containing the Tudor domain are able to read and bind to H3K79me3
[43, 20].

Thus, the histone PTMs described above have an important role in gene tran-
scription and it has been hypothesized the �short term memory� model of tran-
scription based on these marks [25, 39]. When a gene is marked with H3K4me3
and H3K36me3, it informs the cell of its transcription status. Depletion or errors
of those marks have been linked to numerous cancers in humans [51, 29, 52, 50].

In this chapter, we are going to try to identify new histone protein readers
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Methyl-transferase Domain
H3K4me3 Set1 PHD
H3K36me3 Set2 PWWP
H3K79me3 Dot1 Tudor

Table 1: Histone marks, methyltransferases and binding domains. The
methylation at di�erent lysines is carried out by di�erent methyltransferases en-
zymes. These methyltransferases contain speci�c domains that allow the recogni-
tion of the speci�c chemical modi�cations. There are two main classes of methyl-
transferases for H3: those with the SET domain and the ones that do not contain
another domain (Dot1).

that can bind these di�erent marks and localize them inside the transcription
cycle. For that purpose, we used HHPred software to �nd possible candidates
that bind to those markers and ChIP-seq them. After pre-processing of the data
we applied our bdHMM model to identify possible candidate readers with the
di�erent histone marks.

7.4 Chromatin Immunoprecipitation Sequencing Assay

ChIP-seq is the reference method to localize protein-DNA interactions through-
out the genome by applying chromatin immunoprecipitations (ChIP) and DNA
sequencing[53]. The �rst step consists in the cross-linking of the DNA with the
proteins that are in contact in vivo. Next, the cells are lysed and the chromatin is
isolated. The DNA is fragmented and the protein-DNA complexes of interest are
precipitated with a speci�c antibody for the protein to be studied. The DNA is
released from the protein, labeled with an oligonucleotide adaptor and sequenced
[24, 30].

Generally, parallel to ChIP-seq a control experiment is run to identify non-
speci�c background called input signal. The experimental design of the control
is similar to the ChIP-seq but instead of a speci�c antibody, a mock immunopre-
cipitation is used before sequencing. This way, enrichment between the ChIP-seq
signal and the input can be computed controlling for potential biases.

8 Material and Methods

Our analysis work�ow consists of several steps: The candidate screening, the
raw data acquisition by ChIP-Seq, their mapping, and processing into a smooth,
genome-wide protein occupancy pro�le, and the joint analysis of all these pro�les
by a bidirecitonal HMM (see �gure 8).
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Figure 7: Histone methylation pattern at transcribed ORF. The distri-
bution of histone H3 methylation along the average ORF can be characterized
depending on the Lys and methylation state. H3K4me3 mark is found at the 5'
end of the ORF. The H3K36me3 is a known mark for the gene body and highly
correlates with gene expression status in a cell. The H3K79me3 is well known and
has several functions in the cell, e.g. cell cycle regulation and DNA repair. It has
also been linked to transcribed genes. The methyltransferase Dot1 is thought to
interact with Pol II due that the H3K79me3 signal is found enriched at the end of
the gene body of transcribed genes. Misplacement of these patterns or completely
loss have been linked to cancer in humans.
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8.1 Finding Candidate Readers

In order to obtain possible readers of the histone PTMs, we used the software
HHPred [54] to identify new proteins that might contain the domains necessary
to recognize them. We took the PHD (H3K4me3), PWWP (H3K36me3) and
Tudor (H3K79me3) domains to compare them against the protein database of the
Saccharomyces cerevisiae.

As a result we found 6 candidates that can bind to either of the marks:

� Asr1 is a ubiquitin ligase that interacts with Pol II during transcription. It
has not been reported to bind any of the histone marks but it contains the
PHD �nger that could bind the H3K4me3 and potentially the H3K36me3
mark [55, 56].

� Ioc4 belongs to the chromatin remodeler complex Isw1b. It contains the
PWWP domain that binds to H3K36me3 but the results of HHPred shows
that it contains a domain similar to the PHD [46].

� Nto1 is a subunit of the histone acetyltransferase complex NuA3. It has
been reported that binds to the H3K4me3 through its PHD domain and
potentially could bind H3K36me3 [57, 58, 45].

� Pdp3 as Nto1, Pdp3 also belongs to the complex NuA3 and relocalize to
the cytosol in response to hypoxia. Regulates the interaction of the histone
mark H3K36 and NuA3b subunit. It contains the PHD �nger that could
potentially bind to H3K4me3 [58, 45].

� Set4 is not well described in the literature. The function is nowadays still
unknown. It belongs to the methyltransferase family SET. The HHPred
results show that it has a domain that could bind to H3K4me3 or H3K36me3
[59, 49, 48].

� Rad9 is a DNA damage-dependent checkpoint protein. It is the only protein
found to have a Tudor domain able to bind H3K79me3 [60, 61, 62].

The candidate proteins and their known or putative binding preferences are listed
in table 2.

To investigate the link of these proteins with the histone marks ChIP-seq
experiments were carried out on the 3 histone marks (H3K4me3, H3K36me3, and
H3K79me3), 3 known methyltransferases to these marks (Dot1, Set1 and Set2 )
and the 6 candidates (Asr1, Ioc4, Nto1, Pdp3, Rad9 and, Set4 ).

8.2 ChIP-seq

Yeast strains were grown in 600 mL YPD medium to mid-log phase and cross-
linked with formaldehyde. DNA was extracted and whole-genome libraries for IP
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Asr1 Ioc4 Nto1 Pdp3 Set4 Rad9

H3K4me3
H3K36me3
H3K79me3

Table 2: Putative chromatin readers and their binding preferences. After
using HHPred to �nd candidates proteins in the Saccharomyces cerevisiae genome,
6 proteins arose as possible binders to the marks H3K4me3, H3K36me3, and
H3K79me3. Some of the proteins were known to bind some histone modi�cations
but potentially could bind di�erent ones. In this table are highlighted binding that
has previously been reported in green, binding predicted by HHPred algorithm in
orange and binding that can be excluded is marked in red.

and input were prepared using the ThruPLEX DNA-seq Kit. The libraries were
sequenced with an Illumina HiSeq 1500 sequencer in 50bp paired-end read mode.

Pre-processing of the data was carried out by Michael Lidschreiber. The
paired-end reads were aligned to the reference genome of Saccharomyces cere-
visiae (sacCer3, version 64.2.1) using Bowtie [63]. The reads were �ltered based
on standard quality control settings. The mid-points of the two ends of each read
were kept to obtain the coverage tracks (counts per genomic position). The data
was imported into R for further analysis, see table 3.

8.3 GenoGAM

The coverage tracks for IP and input samples of each protein were transformed
into protein occupancy tracks using the R/Bioconductor package GenoGAM. Each
chromosome was split in tiles of thousand nucleotides, such that consecutive tiles
had an overlap of 300nt. A generalized additive model (GAM) was �tted on each
tile using parallel processing. The result of this step was combined into a single
smooth signal representing the (log) occupancy of each protein of interest along
the genome. This signal was sampled every 50 nucleotides (nt) and served as
input to the next step, the bdHMM annotation.

8.4 RNA Sequencing

RNA sequencing (RNA-seq) is an experimental procedure to determine the amount
of RNA present in an organism at a given moment. Through this method, one
can capture the di�erent species, e.g., mRNA, tRNA, etc. For this work, the
strand-speci�c RNA-seq data set was prepared as in Battaglia et al. [24] in two
di�erent replicates.

The bam �les were loaded to R and the strand-speci�c read count for each
count was performed using the GenomicRanges package. The annotation of the
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features was taken from [24].
In order to normalize the read count of each gene by its length and library

size, we used the transcripts per million (TPM) measurement. TPM is a similar
measurement as reads per kilobase million (RPKM) but with some modi�cations:

Given an RNA-seq experiment, we can compute the reads per kilobase (RPK)
for gene i as:

RPKi =
ci
li

(34)

where ci and li are the read count and length for gene i. Next step is to
normalize for sequencing depth. To this end, the RPKi for all the transcritps T
are summed up:

N =
T∑
i=1

RPKi (35)

then, we can use equation 34 and 35 to obtain the TPM for gene i:

TPMi =
RPKi

N
(36)

The average TPM of both replicates per gene was used to estimate the level
of expression of each gene i.

8.5 Bidirectional HMM

We used di�erent combinations of directed and undirected states to �t a bdHMM
to the data. The directionality in all combinations was evaluated and the bdHMM
with the lowest number of directed states that had a directionality score higher
than 0.5 was taken for further analysis. For a more detailed understanding of
how the directionality score works refer to chapter 1. We chose multivariate
Gaussian distributions as emission distributions in the bdHMM algorithm. The
�tted model was applied to segment the genome in the di�erent states using the
Viterbi algorithm.

9 Results

We applied the bdHMM to ChIP-seq data in S. cerevisiae, including three histone
marks (H3K4me3, H4K36me3 and H3K79me3), three known methyltransferases
to these marks (Dot1, Set1 and Set2 ) and another six proteins which contain a
domain able to bind to either of the histone marks (Asr1, Ioc4, Nto1, Pdp3, Rad9
and, Set4 ).

ChIP-seq experiments are performed with an speci�c antibody to precipitate
the protein of interest and a mock antibody to identify nonspeci�c background.
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Figure 8: Method work�ow. The ChIP-seq IP and input reads are aligned
against the SacCer3 genome to �nd the physical location. The midpoint of the
paired-end reads is taken to compute the coverage of each track. Each protein
was immunoprecipitated using a di�erent number of replicates and inputs. Sev-
eral methods have been discussed in order to processed ChIP-seq signal along
the genome and estimate the real coverage. For our study, we used general-
ized additive models (GAM), which are implemented in the bioconductor package
GenoGAM. After obtaining a smooth signal for each protein, we learned a bdHMM
model and calculated its Viterbi path on the signal to segment the genome in 9
directed and 12 undirected genomic states.
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Protein # IP # Inp
H3K4me3 2 2
H3K36me3 2 1
H3K79me3 2 1

Dot1 1 1
Set1 1 1
Set2 1 1
Asr1 2 2
Ioc4 2 2
Nto1 1 1
Pdp3 2 2
Rad9 2 2
Set4 2 2

Table 3: IP and Input replicate. The genome-wide coverage of the histone
marks, methyltransferases and candidates was obtained using ChIP-seq experi-
ments. This table shows the number of replicates that were carried out for each
protein mark.

The raw reads from the speci�c antibody are comonly referred as IP signal and
the data from the mock experiment as input (Inp). Many heuristic methods have
been used to correct the bias using those two signals. Usually, the trivial way has
been to divide the IP counts by the control counts over some sliding window of
width w [64, 65]. This methodology carries some limitations, i.e., dividing count
data can lead to some problems (division by zero) or that there is no �exible way
to integrate multiple IPs and Inps. Moreover, there is no statistical solution to
estimate the correct coverage at each position [66, 67, 53].

Generalized additive models applied to ChIP-seq data have been recently de-
veloped by Stricker et al. [68]. This statistical framework is able to overcome the
problems mentioned above and provides a robust method to estimate the correct
coverage of each protein along the genome. We used the R/Bioconductor package
genoGAM [68] for each protein and used the provided IP and Inp raw data (see
table 3) signals to estimate the occupancy of each signal along the genome.

The smoothed signal for the 12 protein marks was then used as the training
data for the bdHMM using multivariate Gaussian distributions. The number
of directed and undirected states need to be chosen. Although standard model
selection criteria as BIC, AIC have been previously used to estimate the number of
states in HMM, this method does not apply well in our case. Fitting ChIP-seq data
with HMMs have been reported to be problematic due to the high dimension and
the high variance along the genome [7]. We tried di�erent directed and undirected
state numbers and computed the directionality score of the directed states in each
case. After analyzing the directionality score of all models we continued with a
model using nine directed states and twelve undirected states. The criteria to
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select this model was that it was the state with the lower number of states for
which all the directed states had a directionality score higher than 0.5. This way,
we aim to have the model that is capable to capture the real directionality of the
data while using the minimum number of states. This will help to interpret of
each state into a biological context.

The mean pro�le of a state identi�es co-occurrences of histone readers,
modi�ers and histone modi�cations. Each state represents a multivariate
Gaussian distribution. The mean of this distribution indicates the composition
of proteins in that state (�gure 9). For instance, state F/R0-8 is highly enriched
in all measured proteins (note that by de�nition, forward and reverse twin states
share identical emission distributions). In contrast, state U-2 is completely void
of any protein binding signal. State U-10 is characterized by its high Rad9 levels.
Another state worth noting is U5, which is undirected yet shows high occupancies
for most proteins. This is, at �rst sight, surprising for undirected states, which
are most likely found in intergenic regions. Vice versa, the absence of a strong
signal in the directed state F/R-7 is also unexpected.

Some states are enriched at functionally relevant genomic features. It
is natural to ask whether a certain state is enriched or depleted in speci�c genomic
regions. To this end, we used the annotation provided by Battaglia et al. to
de�ne genomic features, i.e., regions in the genome that share a common function.
The set of genomic features that we have looked at are: promoter regions, open
reading frames (ORF), 200 nucleotides downstream from the TTS, SUT and CUT
transcripts, tRNA genes, snoRNAs, and snRNAs. We then computed the fold
enrichment of each state in the di�erent genomic features, relative to its mean
frequency along in the whole genome (�gure 10). As observed in �gure �gure 10,
state U9 is highly enriched in the promoter regions, as well as state U-4 and U-1
but with less enrichment. Most of the directed states (e.g. F/R-3, F/R-4, F/R-5,
F/R-6, and F/R-8) are enriched in ORFs together with the state U-5. State U-8
and U-11 are mostly found at the 3' end of the genes. tRNA genes are decoded
by the state U-10 exclusively. The predominant mark in the state U-10 is Rad9
as previous studies by Clelland et al. [69] have shown the link between tRNA
genes and Rad9. Finally, snoRNA and snRNA are mostly integrated by states
U-11 and U-5.

To investigate the state frequencies along ORF we performed a metagene anal-
ysis. Since the histone marks that we are analyzing have been reported to ex-
pressed genes we cluster our genes in low expressed, medium expressed and highly
expressed based on RNA-seq data. To avoid problems when re-sizing the genes
we removed the short genes, leaving out 1234 genes (see table table 4). In our
metagene analysis, we looked in the state frequency 200 nucleotides upstream the
promoter start site, along with the gene body and 200 nucleotides downstream
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Figure 9: Mean signal of states. After �tting the bdHMM using the multivari-
ate Gaussian distribution, each state is de�ned by the mean vector of the state
and the covariance matrix. Twin states Forward-Reverse have the same mean vec-
tor since they describe the same combination of marks but in di�erent underlying
direction.
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Figure 10: State fold enrichment. We looked for the enrichment of each state
at di�erent genome feature. The x-axis shows the 8 features selected to test the
enrichment of each state (y-axis).
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Short Medium-Large

Low 444 819
Medium 554 1884
High 236 991

Total 1234 3694

Table 4: Number of genes per group. The set of total genes were divided
by length and expression level. The Low/Short and High genes were selected as
the lower and upper quantile respectively. Since the �nal goal is to performa a
metagene analysis of the state sequence along the ORF, all the short genes (1234
genes) were removed.

the transcription termination site (TTS) for the low, medium and high expressed
remaining genes.

9.1 Low Abundance Genes State Frequency

Low expressed genes (�gure 11) have a peak in the promoter region of state U-4
and U-9. State U-4 contains a low signal of all tracks and U-9 is rich in H3K4me3
(�gure 9). After this �rst states, it jumps to state F/R-5 with is mildly enriched
in H3K4me3, Ioc4, Pdp3, and Nto1 and in really low quantity H3K36 and H3k79
trimethylated. They reach the end of transcription by jumping to state F/R-9
which the mean tracks are Ioc4 and Pdp3 to end with the state U-8. State U-8
is also depleted in all tracks what indicates that it is a termination state before
entering intergenic regions.

9.2 Medium Expression Genes State Frequency

Medium expressed genes (�gure 12) have a similar starting and ending of the genes
as the low expressed with the di�erence that the state enriched in H3K4me3, state
U-9, is much more frequent. Therefore, state U-9 can be interpreted as an initia-
tion state for transcription. The main di�erence between the low expressed genes
comes from the gene body. First, we have a transition to the state F/R-2 which
is highly enriched in the histone marks H3K4me3, H3K36me3, and H3K79me3,
as well as the methyltransferase Set1 in higher amount followed by the Pdp3 and
Nto1. State U-1, which is present in low quantity, is enriched in most of the marks
except Set2, H3K36me3, and H3K79me3. It is arguably why an undirected state
is enriched in the gene body. This observation could be explained by the high
density of genes in the yeast genome. There are many genes that overlap, hence,
two directed mechanisms in opposite direction would be seen as an undirected
observation overall. After state F/R-2, the most common state is the state F/R-6
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Figure 11: Spatial state frequency of low abundance genes. A meta-
gene analysis of medium-large size genes with low expression levels (819 genes).
The y-axis shows the frequency of each state on an average gene. All genes
were normalized to a similar length and 200 nt upstream of the TSS and 200 nt
downstream of the TTS was taken as well.
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Figure 12: Spatial state frequency of medium expression genes. A meta-
gene analysis of medium-large size genes with medium expression level (1884
genes). The y-axis shows the frequency of each state on an average gene. All
genes were normalized to a similar length and 200 nt upstream of the TSS and
200 nt downstream of the TTS was taken as well.

55



which is predominated by the histone marks H3K36me3 and H3K79me3 and in
lower intensity by Set1, Pdp3, and Nto1.

The �ux diagram of states at genes with medium expression is illustrated in
(�gure 13). This graphic shows the most probable transitions in this set of genes
(arrows). As mentioned in the paragraph above, from an intergenic state U-4 we
enter to the promoter region at state U-9 which will go to state F/R-2 then to
F/R-6 in early elongation to terminate with states F/R-1 and F/R-9 and at the
TTS the state U-8. As a consequence of the close proximity of the genes in the
yeast genome, termination state U-8 can jump directly to a new promoter state
U-9 and start the transcription of a new gene.

9.3 Highly Expressed Genes State Frequency

The highly expressed genes (�gure 14) start in a similar way with state U-9 being
the most predominant one, then elongation is started with state F/R-2 to transit
to the state F/R-6. Together with F/R-6, it is equally abundant the state F/R-8
which is enriched in all marks led by H3K36me3, its methyltransferase Set2 and,
the Pdp3 and Nto1 proteins. Elongation is terminated with the state F/R-1,
which is enriched with all marks except H3K4me3 and its methyltransferase Set1.

Not highly enriched, but two new undirected states appear to be more enriched
in this set of genes. Those states are U-11 and U-5. State U-11 has a peak at the
TSS and at the TTS while the state U-5 is highly enriched at the gene body. To
investigate this further, we used hierarchical clustering of the state sequences of
all genes using the Hamming distance (�gure 14). Hamming distance measures
the similarity of two strings of equal length by comparing the symbols at each
position. One cluster of genes popped out having the state U-11 as initiation and
termination and the state U-5 at the gene bodies. This observation explains why
we observe undirected states in a directed process as gene transcription. Since the
initiation and termination of the states are equal, there is a symmetry along the
gene. Therefore, our symmetry assumptions for the bdHMM cannot distinguish
the directionality.

State U-11 is enriched by the methyltransferases Dot1 and Set1, which methy-
late H3K79me3 and H3K4me3, respectively. State U-5 is enriched in all marks but
speci�cally in the methyltransferases. Contradictory, the histone marks are not
enriched, with H3K79 being the lowest one. This results might suggest some spe-
cial mechanism involved on those genes. It has been reported previously [37, 38],
that some genes in the yeast genome might take a loop conformation so that the
polymerase can re-attach to the TSS in order to start another round of transcrip-
tion. The state sequence on these genes might point to this speci�c path.
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Bidirectional promoter state

fre

Figure 13: State �ow for a medium expressed gene. This graph diagram
is obtained after computing the most common transitions during transcription of
medium expressed genes. The standard �ow of states starts in state U-4 and jumps
to the promoter state U-9. After state U-9, transcription of the ORF starts by
transitioning to state F/R-2, then to state F/R6 and so on. Termination occurs
after state F/R-9 by state U-8. A new cycle of transcription can follow this
sequence by jumping to the initiation state U-9 after U-8. Note that genes in the
reverse strand had to be reversed in order to obtain the same �ow. 7
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Figure 14: Spatial state frequency of highly expressed genes. A meta-
gene analysis of medium-large size genes with high expression levels (991 genes).
The y-axis shows the frequency of each state on an average gene. All genes
were normalized to a similar length and 200 nt upstream of the TSS and 200
nt downstream of the TTS was taken as well. On the bottom, the genomic state
sequence of those genes is shown. The sequences are clustered using the Hamming
distance into 27 di�erent clusters.
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Figure 15: Bidirectional promoter state frequency. A meta-gene analysis of
bidirectional pair of genes. The y-axis shows the frequency of each state on an
average gene. From the pair of genes, the gene with higher expression level is on
the right-hand side of the bidiretional promoter region.

9.4 State Frequency in Bidirectional Promoters

As the yeast genome is highly compacted, there are many genes that share the
same promoter region. One gene is encoded on the minus strand and the other on
the plus strand. We further looked into these pairs of genes and analyzed their
shared promoter region.

On the left hand, we aligned the genes with the lower expression of the pair
and on the right the ones with higher expression and analyzed the state frequency
in both. In the central region, the state U-4 and U-9 compete with similar fre-
quencies. State U-4 is a state depleted from any protein mark, and in this case,
the frequency in the region between the TSS of both genes is increased. In bidi-
rectional promoters, these regions will be occupied by the PIC proteins and no
nucleosome could bind. This region is known as the nucleotide free region (NFR).
Besides these observations, the �ow of states along the genes are similar to those
of medium transcribed genes. With transitions from state U-9 to state F/R-2.
Although almost symmetric, states with higher expression (to the right of the red
dashed line) (�gure 15) have increased frequency of state F/R-2 and F/R-6.
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10 Discussion

In this section, we have analyzed a set of ChIP-seq experiments composed of three
histone methylation marks (H3K4me3, H3K36me3 and H3K79me3), their respec-
tive histone methyltransferases (Set1, Set2 and Dot1) and six candidate proteins
that contain a potential binding domain for either of the 3 histone marks (Asr1,
Ioc4, Nto1, Pdp3, Rad9 and, Set4). Our goal was to �nd evidence of the associa-
tion of the candidate binders with the histone marks using clustering techniques.
To this end, we have used generalized additive models to estimate the coverage
of each track using multiple replicates of the IP and input. The smooth signal
was then analyzed by our bdHMM algorithm in order to �nd di�erent clusters
which contain possible combinations of the tracks that suggest any correlation of
the histone marks with the candidates. We further performed metagene analysis
to provide a biological interpretation of the states in our bdHMM.

The metagene analysis based on expression (low abundance, medium, and
highly expressed genes) shows di�erences in the transcription state �ow. These
di�erences are more obvious along the gene bodies, with genes highly expressed
being enriched by states with a higher signal in most of the tracks. Low abundance
genes show states almost depleted of any ChIP signal.

Despite the di�erences along the gene body, state U-9 is the promoter state
in all cases. State U-9 is enriched in the H3K4me3 signal, which agrees with
previous studies that show experimentally that H3K4me3 is a mark characteristic
of promoter regions [45, 57]. As termination state, the state U-8, which is depleted
from all signals, is the unique state at the TTS.

Although we could verify already published results about the location of the
histone methylations along the gene body during transcription, and their relation-
ship with known binders, our approach does not provide information regarding
which histone modi�cation (if any) might be bound by the new candidates. Re-
cently, however, it has been shown that Pdp3 binds to H3K36me3 [58]. We provide
here ChIP-seq data con�rming their in vitro binding result. The reason of such
negative results might be caused by the close spatial co-occurrence of these histone
marks along the genome and inside the genes. Also, many of the candidates belong
to protein complexes that are known to bind to other histone marks [58, 46, 48]
and participate in the epigenetic signal pathway [44, 43]. The high combinatorial
complexity of our analysis makes the discovery of new interactions di�cult. Our
model often cannot discern binding patterns with su�cient resolution.

Interestingly, we found a small set of genes with a symmetric �ow of three
states. initiation and termination of those genes are annotated by the state U-11,
whereas the gene body is covered by the state U-5. These results may be explained
by a physical conformation of a loop. By this conformation the 3' and 5' ends
of the gene are in close proximity which has been previously reported to enhance
transcription [37, 38, 39, 70]. This model would explain the observation of state
U-11 at initiation and termination.
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Hi-C or 3-C experiments have been developed in the last decades that can
study the physical conformation of the genome [71, 72]. Although gene looping
is a dynamic mechanism that the cell uses depending on the environment and
necessities, these experiments could be carried out to investigate this further.
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Part III

HMM for Genotyping

11 Introduction

Somatic cells of diploid organisms contain two copies of each chromosome (homol-
ogous chromosomes) and hence every individual has two possible alleles for a gene.
Di�erent alleles can be manifested in speci�c traits in the phenotype or even be
defective [73, 74]. The extra copy lends robustness to the organism when one of
the copies carries a non-functional mutation. Therefore, a recessive mutation does
not necessarily result in a reduced �tness [75]. If both alleles at a speci�c locus
are identical, the organism is homozygous with respect to that allele, otherwise,
the organism is heterozygous with respect to the same allele [73, 76](�gure 16).

Meiotic recombination is an essential mechanism in the sexual reproduction of
diploid eukaryotic organisms that consists of the overcrossing (chiasmata) between
pairs of homologous chromosomes [77]. This process ensures equitable segregation
of the genomic material in each gamete. Due to this process, new combinations
of alleles are transmitted to new generations allowing genetic variability among
individuals and bene�ts the adaptation of populations. Recombination occurs in
the so-called meiosis I and is triggered by double strand breaks (DBSs). The DBSs
can be repaired by crossover with the homologous chromosome (CO) or by the
same chromosome (NCO). The CO/NCO ratio is controlled in each chromosome
and taxa and the mechanism by which it is determined the proportion of DSBs is
resolved as CO is unknown [78, 77, 79].

Genotyping is the process by which the di�erent alleles in an organism are
characterized [80, 81]. Given some phenotype which is measured on a contin-
uous scale (a quantitative trait), one seeks to �nd those genetic loci whose al-
leles explain the phenotypic variation in the quantitative trait. Such a locus is
called a quantitative trait locus (QTL)[82]. In QTL studies, many individuals
are genotyped and phenotyped, in order to �nd a statistical dependency between
the alleles of a certain locus and the phenotype [73]. Most quantitative traits
are complex traits, which result from the interaction of several weak QTLs [82].
Therefore, traditional genome-wide association approaches, which start perform
the genotyping and phenotyping of naturally occurring populations, often lack the
statistical power to detect such QTLs.

In plants, the distribution of CO along the chromosome is largely random, with
some locations such as the centromere being disfavored, and some CO hotspots
[83]. A better understanding of the crossing over process is essential for various
branches of molecular biology such as medicine, agriculture, etc. [77]. The aim
of this chapter is to o�er a possible solution for the genotyping of recombinant
populations, generated from ancestors with known genotype, by sparse sequencing
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of their genomes.

11.1 Genotyping using NGS (GBS)

A detailed QTL analysis may still require the genotyping of hundreds or even
thousands of individuals [81, 84, 85, 73]. The genotyping of individuals by par-
tial sequencing of genomes by next generation sequencing (NGS) has become a
fundamental tool in molecular biology as it allows the genotyping of thousands of
markers in one batch, at an a�ordable cost.

Thanks to the development of NGS, the study of the genome of thousands of
organisms has accelerated dramatically in the last decades [86, 87]. Illumina short
read sequencing technology is an NGS that consists of random fragmentation of
the genome into small fragments, called reads, which are anchored to adapters
at both ends of these to bind them on the surface of a plate called �owcell[84,
88]. The �owcell contains the complementary oligos to the adapter �xed on the
surface to which the reads will be attached. After bonding the adapters to the
surface, several ampli�cation cycles are carried out to create identical clusters of
the same sequence. Once these clusters have formed, sequencing begins with the
help of �uorescence-labeled terminator nucleotides and DNA polymerase. After
the addition of each nucleotide, a laser scans the plate to excite the �uorophores
that will emit a speci�c light pulse for each nucleotide. The light emission is
stored in the form of a photograph, the terminator is enzymatically removed
and the cycle is repeated. The images taken after each cycle are converted into
nucleotide sequences thanks to a �base-calling� software [88, 89].

Today this technique is so e�cient that it allows the sequencing of multiple
samples. To this end, in addition to the adapter, a speci�c barcode is added to
all the reads of each sample. These barcodes are short sequences, usually 6-mers
[85, 88], of nucleotides that allow to map back each read to the sample from which
it was obtained. This method supposes a great advantage for the laboratories since
it allows to sequence multiple samples to a very reduced and a�ordable price but
it is a great challenge for the bioinformatics analysis since new algorithms capable
of working with low coverage are needed.

Once the sequences of the reads have been obtained, they have to be aligned
to a reference genome to locate their position in the genome. The reference
genome is a representative sequence example of a species that is constructed by
the sequencing of di�erent individuals. Di�erences in nucleotides between the
sample genotype and the reference genome are marked as a mismatch and form
the allelic position marks. GBS uses this di�erence between the reference sequence
and the sequence on the sample reads to reconstruct the complete genome [73].
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Figure 16: Crossover events. The founding generation consists of two homozy-
gous, genetically diverse parental lines. Those are obtained by repeated inbreed-
ing. After sexual reproduction between two homozygous organisms, the o�spring
F1 has one copy from each parent. To produce gametes, during meiosis I, crossover
events (CO) will occur among homologous chromosomes. After CO, new recom-
binant chromosomes are formed and transferred to the new generation F2. The
pair of chromosomes in the F2 will have loci were both chromosomes have the
same allelic information as one of the ancestral parental lines (homozygous) and
locus were each chromosome has the allele information from a di�erent ancestral
line (heterozygous).
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11.2 Genotyping Based on Sparse Sequencing Data

Multiplexed sequencing is a great method to sequence multiple samples in one
batch in a cost-e�ective manner. However, it goes along with a lower read coverage
compared with deep sequencing methods. However, the low number of reads will
make it di�cult to distinguish SNPs from sequencing errors and not all markers
will be sequenced in di�erent samples [81] (�gure 17).

Low coverage is an obstacle when estimating the allelic frequency of SNPs.
Besides that, the low number of reads in each allele can be responsible for high
variability in the measurements (�shot noise�) [90, 91]. Some other alleles might
even be missed entirely. To overcome this bias, di�erent bioinformatics methods
have been developed [73, 85, 84, 79]. These methods take advantage of the non-
random association of alleles in neighboring loci in recombinant genomes. This
means that it is very likely that consecutive alleles in the sequence come from the
same parent.

We have developed a method which integrates information from all sequenced
samples in the study, thus avoiding the loss of alleles due to low sequencing and
increasing the power to uncover mapping or other errors.

Here, we present a bioinformatics strategy to genotype many individuals with
very low sequencing coverage. We present a pipeline that can genotype and detect
CO positions with low coverage data. We apply the pipeline to investigate the role
of RECQ4A, REQ4B and �dgetin-like 1 (FIGL1) proteins in CO during Meiosis I
in Arabidopsis thaliana. RECQ4A is a helicase protein that acts upon DNA during
replication, recombination, and repair. [92, 93] Loss of function in Arabidopsis
thaliana has been proved to increase the number of CO events [94, 79]. FIGL1 is
an AAA-ATPase protein that acts as a negative regulator of COs. Hence, loss of
the function has also been shown to increase CO frequency up to 72% compared
with wild type[95]. Our analysis con�rms these results quantitatively.

12 A HMM for Genotyping by Sequencing

12.1 Model Statement

Hidden Markov models are widely used to assign ancestry of parental lines to
chromosomal segments [73, 85]. The reason for using this statistical framework
is that SNPs have a strong spatial dependency along the genome. We consider
the situation in which each SNP locus can carry one of two alleles, originating
either from parent one or parent two. Merely for ease of presentation, we will call
the two parental lines �paternal� and �maternal�, without assuming any speci�c
mode of reproduction. At each genomic position, one then has to identify one
out of three di�erent haplotypes inside each chromosome: Homozygous paternal
(p), homozygous maternal (m), or heterozygous (h). Additionally, we address
the problem of �bad� SNP positions. Due to sequencing errors, alignment errors,
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Figure 17: Raw data and decoding by 3-betabinomial-mixture cluster-
ing. SNPs are distributed randomly along the chromosomes. In re-sequencing
experiments one can count the number of reads suporting the allele from parent
one (red) or parent two (blue) at each SNP position. Upper panel: The number of
counts for each parental line at each SNP position. Lower panel: A simple mixture
of 3 beta-binomail distributions is �tted to the raw data to estimate which SNPs
are homozygous in homologous chromosomes for parent one (red bars), for parent
two (blue bars) or heterozygous (violet bars). If the spatial dependency structure
of the genome (linkage) is neglected, the assigned homozygozity/heterozygozity
calls are erratic and do not reveal the expected haplotypes.
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parental allele bias etc., a certain SNP position may be covered by DNA sequences
originating from a di�erent region of the genome. This will lead to a distorted
overrepresentation of one allele at this locus, across all samples. In our method,
we use the information from the combined samples to infer the quality of each
marker. The expected allele frequency in the pooled data should be around 0.5.
If a marker has a ratio closer to one means that most of the samples have a
higher allele frequency towards the parental line one and this marker should be
considered a bad marker (bp). If on the contrary, it is closer to 0, the marker
shows a higher frequency towards the other parental line. Hence, it should be
called a bad marker as well (bm).

The speci�c hidden Markov Model presented here was developed by professor
Achim Tresch. Given a set of T conesecutive markers, which were measured in J
di�erent samples, a single observation Oj

t = (kjt , n
j
t) consists of the number n

j
t of

reads that were mapped to position t in sample j, and the number kjt of which that
mapped to the allele from the paternal line. The complete data is O = (Oj

t ; t =
1, ..., T, j = 1, ..., J). The variable Mt ∈ {+, bm, bp} tells whether the marker
at position t is a good marker (+), or whether it is a bad marker based on the
observations in all the samples (bp most of the samples contain the allele belonging
to the parental line one / bm most of the samples contain the allele belonging to the
parental line two). The memory variables V j

t ∈ S = {m, p, h}, record the marker
state of the most recent good marker position s, s = max{s′ ≤ t,Ms′ = +}.
Here, p, m, and h denote respectively parental line one, parental line two and
heterozygous states. We will adopt the convention that Oj = (Oj

t , t = 1, ..., T ),
and V j = (V j

t , t = 1, ..., T ), j = 1, ..., J . According to its graphical representation
(�gure 18), the model factors into

P (O, V,M) = P (M) ·
J∏
j=1

P (V j |M) ·
J∏
j=1

P (Oj | V j,M) (37)

An obsevation ojt can be drawn from one of �ve distributions Ψ = (ψe, e ∈ E =
{m, p, h, bm, bp}). In addition to the p(parental line one), m(parental line two),
and h(eterozygous) distributions, bm and bp denote the distributions for bad mark-
ers. The index e of the emission distribution ψe from which the observations at
position t in sample j were drawn is a function of Mt and V

j
t ,

e(V j
t ,Mt) =

{
V j
t if Mt = +

Mt if Mt 6= +
(38)

The model is fully speci�ed by
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Figure 18: Graphical representation of the HMM model. Our statistical
framework for analyzing mapping recombinant population is based on a Hidden
Markov model. The allele count of each sample at every position t is assumed
to be produced by an underlying Markov chain of three states Vt ∈ {m, p, h}.
Furthermore, we de�ne a new hidden layer ofM ∈ {+, bm, bp} which is the hidden
layer given the observations of all the samples J. This new layer discerns each
position as a good (+) or bad marker(bm, bp). The bad marker bp (higher than
expected) and bm (lower than expected) are de�ned by the observed frequencies
of the allele counts.
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P (M) =
T∏
t=1

πMMt
(39)

P (V j |M) = πV
V j
1
·
T∏
t=2

P (V j
t | V

j
t−1,Mt) (40)

P (V j
t | V

j
t−1,Mt) =

{
aV j

t−1V
j
t

if Mt = +

δ(V j
t = V j

t−1) if Mt 6= +
, t = 2, ..., T (41)

P (Oj | V j,M) =
T∏
t=1

ψe(V j
t ,Mt)

(Oj
t ) (42)

Its parameters are Θ = (πM , πV , A = (ars)r,s∈S ,Ψ = (ψs)s∈E). Here, πM is the
prior for the markers, πV are the initial probabilities for the hidden states, A is a
transition matrix (i.e., it has non-negative entries, and its row sums are 1), and
Ψ are the state-speci�c emission probabilities.

12.2 The Forward-Backward Algorithm

For the moment, assume Θ to be known. For each sample j, the variables (Oj, V j)
form an HMM with transition probabilities B = (brs)r,s∈S , initial state probabil-
ities πV , and emission probabilities Φ = (φs)s∈S . Here,

brs = P (V j
t = s | V j

t−1 = r) (43)

=
∑
Mt

P (V j
t = s,Mt | V j

t−1 = r)

=
∑
Mt

P (V j
t = S | V j

t−1 = r,Mt)π
M
Mt

= (πMbp + πMbm)δ(r = s) + πM+ ars

and hence B = πM+ A+ (πMbp + πMbm)E. Further,

φs(O
j
t ) := P (Oj

t | V
j
t = s) (44)

=
∑
Mt

πMMt
P (Oj

t | V
j
t = s,Mt)

= πMbp ψbp(Oj
t ) + πMbmψbm(Oj

t ) + πM+ ψs(O
j
t )

and hence φs = πM+ ψs + πMbp ψbp + πMbmψbm .
We apply the standard forward-backward algorithm with the parameter set

(B, πV ,Φ) in order to calculate the sample-speci�c forward- and backward prob-
abilities
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αjt (V
j
t ) := P (V j

t , O
j
1, ..., O

j
t ) , t = 1, ..., TThe (45)

βjt (V
j
t ) := P (Oj

t+1, ..., O
j
T | V

j
t ) , t = 1, ..., T − 1; βT (V j

T ) = 1 (46)

12.3 Bad Marker Detection

The �nal goal of this new model is to �nd the bad markers. To do so we calculate
the posterior probabilites for the marker states, µt(s) := P (Mt = s | O). To this
end, we will de�ne some auxiliary quantities:

P (V j
1 , O

j
1 |M1) = ψe(V j

1 ,M1)(O1)πV
V j
1

(47)

P (V j
t , , O

j
1, ..., O

j
t |Mt) =

∑
V j
t−1

P (V j
t−1, V

j
t , O

j
1, ..., O

j
t |Mt) , t = 2, ..., T (48)

=
∑
V j
t−1

P (Oj
t , V

j
t | V

j
t−1,Mt)P (V j

t−1, O
j
1, ..., O

j
t−1)

= ψe(V j
t ,Mt)

(Oj
t )
∑
V j
t−1

P (V j
t | Vt−1,Mt)α

j
t−1(V j

t−1)

= ψe(V j
t ,Mt)

(Oj
t )

{∑
V j
t−1

aV j
t−1V

j
t
αjt−1(V j

t−1) if Mt = +

αjt−1(V j
t ) if Mt ∈ {bp, bm}

With these auxilar terms now we can calculate

P (Oj |Mt) =
∑
V j
t

P (V j
t , O

j |Mt) (49)

=
∑
V j
t

P (V j
t , O

j
1, ..., O

j
t |Mt)P (Oj

t+1, ..., O
j
T | V

j
t )

=
∑
V j
t

P (V j
t , O

j
1, ..., O

j
t |Mt)β

j
t (V

j
t )

(47,48)
=

∑
V j
t

βjt (V
j
t )ψe(V j

t ,Mt)
(Oj

t ) ·


πV
V j
t

if t = 1∑
V j
t−1

aV j
t−1V

j
t
αjt−1(V j

t−1) if t > 1,Mt = +

αjt−1(V j
t ) if t > 1,Mt ∈ {bp, bm}

In the next line, we use a naive Bayes approximation:

P (Mt, O) = πMMT
· P (O |Mt) ≈ πMMT

·
∏
j

P (Oj |Mt) (50)
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From equation (50), we �nally obtain

µt(s) = P (Mt = s | O) (51)

= P (Mt = s,O)/P (O) = P (MT = s,O)/
∑

s′∈{+,bm,bp}

P (Mt = s′, O)

12.4 Marginalization with respect to Hidden Genetic States

Following, we can compute the posterior probabilities for the hidden states, γjt (s) :=
P (V j

t = s | O). For t = 1, this is obtained from

P (V j
1 ,M1, O

j) = P (V j
1 ,M1, O

j
1) · P (Oj

2, ..., O
j
T | V

j
1 ) (52)

(47)
= ψe(V j

1 ,M1)(O
j
1)πV

V j
1
πMM1
· βj1(V j

1 )

P (M j
1 , O

j) =
∑
V j
1

P (V j
1 ,M1, O

j) = πMM1

∑
V j
1

ψe(V j
1 ,M1)(O

j
1)πV

V j
1
βj1(V j

1 ) (53)

γ1(s) = P (V j
1 = s | O) =

∑
M1

P (V j
1 = s,M1 | O) (54)

=
∑
M1

P (V j
1 = s |M1, O)P (M1 | O)

=
∑
M1

P (V j
1 = s |M1, O

j)µ1(M1)

=
∑
M1

P (V j
1 = s,M1, O

j)

P (M1, Oj)
µ1(M1) (55)

=
∑
M1

ψe(s,M1)(O
j
1)πVs β

j
1(s)∑

r ψe(r,M1)(O
j
1)πVr β

j
1(r)

µ1(M1)

For t > 1, γt(s) can be calculated from

P (V j
t ,Mt, O

j) = P (V j
t ,Mt, O

j
1, ...O

j
t ) · P (Oj

t+1, ..., O
j
T | V

j
t )
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(47)
= ψe(V j

1 ,M1)(O
j
1)πV

V j
1
πMM1
· βjt (V

j
t ) (56)

P (M j
1 , O

j) =
∑
V j
1

P (V j
1 ,M1, O

j) = πMM1

∑
V j
1

ψe(V j
1 ,M1)(O

j
1)πV

V j
1
βj1(V j

1 ) (57)

γt(s) = P (V j
t = s | O) =

∑
Mt

P (V j
t = s,Mt | O) =

∑
Mt

P (V j
t = s |Mt, O)P (Mt | O) (58)

=
∑
Mt

P (V j
t = s |Mt, O

j)µt(Mt) =
∑
Mt

P (V j
t = s,Mt, O

j)

P (M1, Oj)
µt(Mt)

=
∑
M1

ψe(s,M1)(O
j
1)πVs β

j
1(s)∑

r ψe(r,M1)(O
j
1)πVr β

j
1(r)

µ1(M1)

Note that γjt (s) = P (V j
t = s | O) di�ers from the conventional posterior

probability P (V j
t = s | Oj) =

αj
t (s)βj

t (s)∑
r α

j
t (r)βj

t (r)
. Nevertheless, this di�erence is small

though for positions t with �good� markers, for which µt(Mt = +) ≈ 1.
After calculating the posterior probabilities for the markers, we remove all

markers for which P (Mt = + | O) < c for some threshold c, which we set to
c = 0.99 (it is more relevant not to include bad markers than to include all good
markers). Based on the remaining good marker positions, we then calculate a (ro-
bust) Viterbi path for each sample j using a standard HMM with the parameters
(πV , A,Ψ).

12.5 Parameter Learning

Parameter estimation for this model can be carried out using the Baum-Welch
algorithm, the EM algorithm [19]. Given a previous parameter guess Θ′, we have
to optimize a target function Q(Θ; Θ′) with respect to Θ, replace Θ′ by this Θ,
and iterate until convergence to a local minimum. The target function is

Q(Θ; Θ′) = EP (V,M |O;Θ′) logP (O, V,M ; Θ) (59)

=
∑
V,M

P (M,V | O; Θ′) logP (O, V,M ; Θ)

=
∑
V,M

P (V,M | O; Θ′) ·
[
logP (O | V,M ; Ψ) + logP (V |M ;A, πV ) + logP (M ; πM)

]
12.5.1 Update of the Transition Probability

Let us start with the transition probability matrix A.
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∂

∂ars
Q(Θ; Θ′) =

∑
V,M

P (V,M | O; Θ′)
∂

∂ars
logP (M,V,H,O; Θ) (60)

=
∑
V,M

P (V,M | O; Θ′)
∂

∂ars
logP (V |M ;A, πV )

=
∑
V,M

P (V,M | O; Θ′)

(∑
j

T∑
t=2

∂

∂ars
logP (V j

t | V
j
t−1,Mt;A)

)

=
∑
j

T∑
t=2

(∑
V,M

P (V,M | O; Θ′)
∂

∂ars
logP (V j

t | V
j
t−1,Mt;A)

)

(41)
=

∑
j

T∑
t=2

 ∑
V j
t−1,V

j
t

P (Mt = +, V j
t−1, V

j
t | O; Θ′)

∂

∂ars
log aV j

t−1V
j
t


=

1

ars

∑
j

T∑
t=2

P (Mt = + | O; Θ′) · P (V j
t−1 = r, V j

t = s |Mt = +, O; Θ′)︸ ︷︷ ︸
=:ζjt (r,s)

=
1

ars

∑
j

T∑
t=2

µt(+)ζjt (r, s)

We point out that the terms µt(+) and ζjt (r, s) are both calculated with respect
to the known parameter set Θ′. The terms ζjt (r, s) can be obtained from the
forward/backward probabilities via

ζjt (r, s) = P (V j
t−1 = r, V j

t = s |Mt = +, O) (61)

= P (V j
t−1 = r, V j

t = s |Mt = +, Oj)

∝ P (V j
t−1 = r, V j

t = s,Mt = +, Oj)

= P (Oj
1, ..., O

j
t−1, V

j
t−1 = r)P (V j

t = s | V j
t−1 = r,Mt = +)

·P (Oj
t | V

j
t = s,Mt = +)P (Oj

t+1, ..., O
j
T | V

j
t = s)

= αjt−1(r) · ars · ψs(Oj
t ) · β

j
t (s)

Again, we emphasize that the forward and backward probabilities αjt−1(r) and
βjt (s) are calculated with respect to the known parameter set Θ′. After calculating
the terms in (61) for all r, s, we exploit that

∑
r′,s′ ζ

j
t (r
′, s′) = 1 in order to �nd

the missing normalization factor:

ζjt (r, s) =
αjt−1(r) · ars · ψs(Oj

t ) · β
j
t (s)∑

r′,s′ α
j
t−1(r′) · ar′s′ · ψs′(Oj

t ) · β
j
t (s
′)

(62)
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Introducing Lagrange multipliers λr, which account for the contraints
∑

s ars = 1,
r ∈ {m, p, h}, and solving for ∂

∂ars
Q(Θ; Θ′) = 0 in equation (60) yields

0 =
∂

∂ars
Q(Θ; Θ′) +

∂

∂ars

∑
r

λ(1−
∑
s

ars)

0 =
1

ars

∑ T∑
t=2

µt(+)ζjt (r, s)− λ

arsλ =
∑
j

T∑
t=2

µt(+)ζjt (r, s) (63)

We can solve λ by summing over s:

λ =
∑
s

arsλ =
∑
s

∑
j

T∑
t=2

µt(+)ζjt (r, s) (64)

and thus, we can substitute λ and obtaine the estimate for ars:

ars =

∑T
t=2 µt(+)

(∑
j ζ

j
t (r, s)

)
∑

s

∑T
t=2 µt(+)

(∑
j ζ

j
t (r, s)

) (65)

12.5.2 Parameter Estimation of the Beta-Binomial Distribution

Allele counts in each marker can be taken in account as a binomial trial if the
allele count of one of the parental lines is interpreted as a succes. Hence, one could
assume that the distribution in each marker follows a binomial distribution with
probability pe, e ∈ E = {m, p, h, bm, bp}, of success. Fitting a binomial distribution
have undesired consequences. For instance, the parameter pe provides a rigidity
to the model that makes it unable to capture the overdispersion created during
sequencing methods [96]. For that reason, a beta-binomial distribution is more
appropriate to capture the overdispersion and allow a more �exible estimation of
the states [97]. It can be assumed that the probability of success pe is randomly
drawn from a beta distribution B(αe, βe), e ∈ E = {m, p, h, bm, bp}.

Therefore, we learn the parameter αe and βe for the beta-binomial emission
probabilities ψe for each state s. We assume that ψe(k;n, αe, βe) is a Beta-Binomial
distribution with parameters (αe, βe) (the parameter n is determined by the obser-
vations). Let Oj

t = (kjt , n
j
t), where n

j
t is the number of mapped reads at position t

in sample j, and kjt is the number of those reads that support the alleles from one
of the parental genome. In the following, �∝ ” means that we left out additive
or multiplicative terms that are irrelevant for the optimization with respect to
(αe, βe).
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Q(Θ; Θ′) =
∑
V,M

P (V,M | O; Θ′) logP (O, V,M ; Θ) (66)

∝
∑
V,M

P (V,M | O; Θ′) logP (O | V,M ; Ψ)

=
∑
V,M

P (V,M | O; Θ′)

(∑
j

T∑
t=1

logψe(V j
t ,Mt)

(kjt ;n
j
t , αHj

t
, βHj

t
)

)

=
∑
j

T∑
t=1

∑
V j
t ,Mt

P (V j
t ,Mt | O) logψe(V j

t ,Mt)
(kjt ;n

j
t , αs, βs)


∝

∑
j

T∑
t=2

∑
V j
t ,Mt;e(V

j
t ,Mt)=s

P (V j
t ,Mt | O)

︸ ︷︷ ︸
=:τ jt (s)

· logψs(k
j
t ;n

j
t , αs, βs)

where the quantity τ jt (s) is given as

τ jt (s) = P (Mt = s | O) = µt(s) , if s ∈ {bp, bm}, t = 1, ..., T (67)

τ jt (s) = P (V j
t = s,Mt = + | O) , if s ∈ {m, p, h}, t = 2, ..., T (68)

= P (V j
t = s |Mt = +, O)P (Mt = + | O)

=
∑
r

P (V j
t−1 = r, V j

t = s |Mt = +, O)µt(+) = µt(+)
∑
r

ζjt (r, s)

In order to obtain τ1(s), s ∈ {m, p, h}, we �rst calculate

P (V j
1 = s,M1 = +, Oj) = P (V j

1 = s,M1 = +, Oj
1) · P (Oj

2, ..., O
j
T | V

j
1 )(69)

(47)
= ψs(O

j
1)πVs π

M
+ · β

j
1(s)

P (M1 = +, Oj) =
∑

s′∈{m,p,h}

P (V j
1 = s,M1 = +, Oj) (70)

=
∑

s′∈{m,p,h}

ψs′(O
j
1)πVs′π

M
+ · β

j
1(s′)

This yields

τ j1 (s) = P (V j
1 = s,M1 = + | O) = P (M1 = + | O) · P (V j

1 = s |M1 = +, O) (71)

= µ1(+) · P (V j
1 = s |M1 = +, Oj) = µ1(+) · P (V j

1 = s,M1 = +, Oj)/P (M1 = +, Oj)

= µ1(+) · ψs(O
j
1)πVs β

j
1(s)∑

s′∈{m,p,h} ψs′(O
j
1)πVs′β

j
1(s′)
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The optimization of (66) is analytically intractable. We suggest to use a
method of moments: the expectation of ψs according to the τ

j
t -weighted empirical

mean of the observations,

αs
αs + βs

=
1

n
E (ψs(.;n, αs, βs)) =

∑
j,t k

j
t τ

j
t (s)∑

j,t n
j
tτ
j
t (s)

(72)

and then perform a line search along αs + βs.

12.5.3 Initial Probabilitites πV and Marker Frequencies πM

We can use a similar strategy as in the previous section to learn πM and πV .

∂

∂πMs
Q(Θ; Θ′) =

∑
V,M

P (V,M | O; Θ′)
∂

∂πMs
logP (O, V,M ; Θ)− λ∂(1−

∑
S π

M
S )

∂πMS
(73)

∝
∑
V,M

P (V,M | O; Θ′)
∂

∂πMs
logP (M ; πM)− λ∂(1−

∑
S π

M
S )

∂πMS

=
∑
M

P (M | O; Θ′)

(
T∑
t=1

∂

∂πMs
log πMMt

)
− λ∂(1−

∑
S π

M
S )

∂πMS

=
T∑
t=1

∑
Mt

P (,Mt | O)
∂

∂πMs
log πMMt

− λS

=
1

πMs

T∑
t=1

µt(s)− λ

Using the same strategy as in equation (64):

λ =
∑

m′∈{+,bm,bp}

λπMS =
∑

m′∈{+,bm,bp}

T∑
t=1

µt(s) (74)

∂

∂πMs
Q(Θ; Θ′) =

1

πMs

T∑
t=1

µt(s)−
∑

m′∈{+,bm,bp}

T∑
t=1

µt(s) = 0 (75)

πMs =

∑
t µt(s)∑

m′∈{+,bm,bp}
∑

t µt(m
′)

=

∑
t µt(s)

T
(76)
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Similar calculations for πV lead to
∂

∂πVs
Q(Θ; Θ′) =

∑
V,M

P (V,M | O; Θ′)
∂

∂πVs
logP (O, V,M ; Θ) (77)

∝
∑
V,M

P (V,M | O; Θ′)
∂

∂πVs
log
∏
j

P (V j |M ; πM)

∝
∑
V

P (V | O; Θ′)

(∑
j

∂

∂πVs
log πV

V j
1

)
=

∑
j

P (V j
1 = s | O; Θ′)/πVs

=
1

πVs

J∑
j=1

νj1(s)

Using the Lagrange multiplier λ(1−
∑

s π
V
s ), and setting the above derivatives to

zero yields

πVs =

∑
j ν

j
1(s)∑

s′
∑

j ν
j
1(s′)

=

∑
j ν

j
1(s)

J
(78)

Generally, it needs to be taken into account that each sample consists of several
parts (e.g., chromosomes), which have to be treated as independent observations
respectively Markov chains. One has to introduce another index to the formu-
las above, but this leaves the above formulas essentially unchanged (mostly, the
summation over the samples j has to be replaced by summation over j and the
parts).

13 Localization of Cross Over Events

The crossover points represent a change in the ancestral genome of the analyzed
sample. Being able to locate and estimate them with some precision is very im-
portant and challenging for genotyping methods. In HMMs, Viterbi path will
provide a good inference method to call genomic breakpoints. However, the very
location where a state change of the Viterbi sequence takes place is itself a ran-
dom variable and cannot be safely limited to one single SNP position. In order to
address this problem, we de�ne �interval transitions� and �wiggly interval transi-
tions�, which are events describing a transition from one state to another within a
given interval. We calculate the probability of these events, and we derive an e�-
cient method to screen for the occurrence of these events along the whole genome.
Our calculations apply to any HMM and therefore serve the general purpose of
localizing state transitions in HMMs. Our method consist of three steps:

1. Screening for valid interval transitions: Before computing the score for a
transition in every position, one must do a screening along the genome in
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order to �nd possible transitions. Our method uses the posterior probability
γt(s) to identify potential locations where transition may arise.

2. Calculation of the probability of an interval transition / wiggly interval
transition. Given a list of candidates for transitions, we apply our score
method in order to give a numerical value to the probability of a transition
occurring.

3. Filtering non-valid transitions. We remove all transitions with a score lower
than a threshold c. If a transition is predicted inside a speci�c interval, but,
there is no change of states in the Viterbi chain, this interval transition will
be discarded as well.

13.1 Probability of an Interval Transition

We say that the hidden state chain s = (s1, s2, ..., sT ), st ∈ {1, ..., S}, transitions
from state j to state k within the interval [a, b], a, b ∈ {1, ..., T}, a < b, if

st = fm(t) :=

{
j for a ≤ t ≤ m

k for m < t ≤ b
(79)

for some m ∈ [a, ..., b− 1]. Let Tjk[a, b] denote the corresponding event, which we
call interval transition. Assume that the hidden state sequence belongs to a hidden
Markov model with parameters Θ = (π,A,Ψ). Here, π = (πs) is the vector of
initiation probabilities, A = (ajk) is the transition matrix with ajk = P (st+1 = k |
st = j), and Ψ = (ψs) are the emission distributions. We keep these parameters
�xed and omit their explicit mention in the following. Let O = (o1, ..., oT ) be a
sequence of observations generated by this HMM. We are interested in calculating
the posterior probability

P (Tjk[a, b] | O) = P (Tjk[a, b],O)/P (O) (80)

Let αt(s) = P (st = s, o1, ..., ot), t = 1, ..., T , respectively βt(s) = P (ot+1, ..., oT |
st = s), t = 1, ..., T -1, s = 1, ..., S, denote the well-known forward and backward
probabilities, which can be calculated e�ciently using the forward-backward al-
gorithm. For convenience, let βT (s) = 1, s = 1, ..., S. The denominator in
(80) can be obtained easily, given the forward/backward probabilities. For any
t = 1, ..., T − 1,
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P (O) =
S∑
s=1

P (O, st)

=
S∑

st=1

P (st = s, o1, ..., ot) · P (ot+1, ..., oT | st = s) (81)

=
S∑
s=1

αt(s)βt(s)

Note that this formula also holds for t = T . Following, the joint probability can
be calculated

P (sa+1, ..., sb, oa+1, ..., ob | sa) =
b−1∏
t=a

P (st+1 | st)P (ot+1 | st+1) (82)

=
b−1∏
t=a

astst+1 · ψst+1(ot+1)

P (sa = j, sa+1, ..., sb = k,O) = P (sa+1, ..., sb = k, oa+1, ..., ob | sa = j) (83)

·P (sa = j, o1, ..., oa)︸ ︷︷ ︸
=αa(j)

·P (ob+1, ..., oT | sb = k)︸ ︷︷ ︸
=βb(k)

(82)
= αa(j) · βb(k) ·

b−1∏
t=a

astst+1 · ψst+1(ot+1)

This allows us to calculate

P (Tjk[a, b],O) =
b−1∑
m=a

P (st = fm(t), t = a, ..., b,O) (84)

(83)
= αa(j)βb(k) ·

b−1∑
m=a

P (st = fm(t), t = a+ 1, ..., b, oa+1, ..., ob | sa = j)

= αa(j)βb(k) ·
b−1∑
m=a

b−1∏
t=a

afm(t)fm(t+1) · ψfm(t+1)(ot+1)

13.2 Numerically Stable Calculation of P (Tjk[a, b] | O)

If a� b, equation (84) contains large products, which may become very small and
prone to numerical under�ow. In order to avoid numerical instability, we make
use of the normalized forward probabilities, which are calculated via the recursion
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α̃1(s) := πsψs(o1)/N1 , N1 =
S∑
r=1

πsψs(o1) (85)

and for t = 1, ..., T − 1:

α̃t+1(s) :=
S∑
r=1

α̃t(r) · ars · ψs(ot+1)/Nt+1 , Nt+1 =
S∑
r=1

α̃t(r) · ars · ψs(ot+1) (86)

Note that the original forward probabilities can be obtained from their normalized
counterparts via

α1(s) := πsψ(o1) = N1α̃1(s) (87)

αt+1(s) :=
S∑
r=1

αt(r) · ars · ψs(ot+1)

=

(
t∏

u=1

Nu

)
S∑
r=1

α̃t(r) · ars · ψs(ot+1) (88)

=

(
t+1∏
u=1

Nu

)
α̃t+1(s)

As opposed to the calculation of the αt(s), the calculation of their normalized
counterparts is numerically stable. Let β̃t(s) be the normalized backward proba-

bilities, obtained in an analogous way. In particular, βb+1(k)

βb+1(s)
= β̃b+1(k)

β̃b+1(s)
holds. We

can therefore write

P (Tjk[a, b] | O) =
P (Tjk[a, b],O)

P (O)
(89)

=
(
∏a

u=1Nu) α̃a(j)βb(k) ·
∑b−1

m=a

∏b−1
t=a

(
afm(t)fm(t+1) · ψfm(t+1)(ot+1)

)(∏b
u=1 Nu

)
·
∑S

s=1 α̃b(s)βb(s)

=
α̃a(j)β̃b(k) ·

∑b−1
m=a

∏b−1
t=a

(
afm(t)fm(t+1) · ψfm(t+1)(ot+1)/Nt+1

)∑S
s=1 α̃b(s)β̃b(s)

Be aware that the product in the nominator will not su�er from numerical under-
�ow in case the transition from j to k in [a, b] is a likely event.

13.3 Probability of a Wiggly Interval Transition

We say that the hidden state chain s = (s1, s2, ..., sT ), st ∈ {1, ..., S}, transitions
wiggly from state j to state k within the interval [a, b], a, b ∈ {1, ..., T}, a < b, if
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sa = j, sb = k, st ∈ {j, k} for a < t < b (90)

Let Wjk[a, b] denote the corresponding event, which we call wiggly interval transi-
tion. Note that the event Tjk[a, b] implies Wjk[a, b]. Similar to equation (84), we
calculate

P (Wjk[a, b],O) = P (sb = k, st ∈ {j, k}, a < t < b,O) (91)

= αa(j)βb(k) · P (sb = k, st ∈ {j, k}, a < t < b, oa+1, ..., ob | sa = j)

(83)
= αa(j)βb(k) ·

∑
sa+1∈{j,k}

...
∑

sb−1∈{j,k}

b−1∏
t=a

astst+1 · ψst+1(ot+1)

︸ ︷︷ ︸
=:gb(k)

= αa(j)βb(k) · gb(k)

with sa = j and sb = k in the last line. The term gb−1(k) is calculated recursively
and in a numerically stable way by letting

g̃a(j) = 1, g̃a(k) = 0 (92)

g̃t+1(s) = (g̃t(j)ajs + g̃t(k)aks)ψs(ot+1)/Nt+1 , t = a, ..., b− 1, s ∈ {j, k}

The quantities Nt in the equation above are de�ned in (85) and (86). Then

gb(k) = g̃b(k) ·
b∏

t=a+1

Nt

Then,

P (Wjk[a, b] | O) =
P (Wjk[a, b],O)

P (O)
=
αa(j)βb(k) · gb(k)∑S

s=1 αb(s)βb(s)
(93)

=
(
∏a

t=1 Nt) α̃a(j)β̃b(k) ·
(∏b

t=a+1 Nt

)
g̃b−1(k)(∏b

t=1 Nt

)∑S
s=1 α̃b(s)β̃b(s)

=
α̃a(j)β̃b(k) · g̃b−1(k)∑S

s=1 α̃b(s)β̃b(s)

13.4 E�cient Screening for Valid Interval Transitions

Suppose for a given threshold probability q > 0.5 and some maximum interval
length d ≥ 1, suppose we want to �nd all tuples (j, k, a, b), j, k = 1, ..., S, a, b =
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1, ..., T , b−a ≤ d, such that the interval transition Tjk[a, b] or the wiggly transition
Wjk[a, b] has posterior probability greater than q. We call these interval transitions
valid.

Let γt(s) = P (st = s | O) is the marginal posterior probability for state st.
These quantities are obtained from the normalized forward / backward probabil-
ities,

γt(s) = αt(s)βt+1(s)/P (O) =
α̃t(s)β̃t(s)∑
j α̃t(j)β̃t(j)

(94)

Since the event Tjk[a, b] implies Wjk[a, b], which in turn implies sa = j and
sb = k, it follows that

P (Tjk[a, b] | O) ≤ P (Wjk[a, b]) ≤ min(P (sa = j | O), P (sb = k | O)) = min(γa(j), γb(k))
(95)

Since q > 0.5, it follows that at every position t, there is at most one state
which may serve as an endpoint of a valid transition interval. Hence, the sequence

rt =

{
s if γt(s) > q for some s = 1, ..., S

0 else
is well-de�ned. A valid interval tran-

sition Tjk[a, b] therefore needs to satisfy the conditions

1.
b− a ≤ d

2.
ra 6= rb , ra, rb 6= 0

This gives rise to a very simple and e�cient pre-screening algorithm, which returns
a list including all valid interval transitions (and, possibly some more invalid
candidates).

14 HMM Augmentation and Rigid Viterbi Recod-

ing

HMM have been widely used for genome segmentation into haplotypes [73, 85].
Yet, when using the Viterbi decoding the haplotype segments might result shorter
than expected, or non-natural transitions of states might be estimated. Many
di�erent heurisitic strategies have been applied to match the real haplotype dis-
tribution with the estimated one. These errors usually arise from the intrinsic
variability and low coverage of the data, and the innate characteristics of the
HMM.

In diploid organisms, when attempting to infer the ancestral genome at di�er-
ent chromosome loci, the expected sequence is the succession of one of the parental
genomes to a heterogeneous state and then to the genome of the other parental
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Figure 19: Haplotype representation. When two recombinant homologous
chromosomes are genotyped, every locus can have 3 possible outcomes: parental
line one, parental line two or heterozygous. Moreover, the transition between these
outcomes must be: From one of the parental genotypes to a heterozygous state to
the other parental line. The reason for such observation is that CO events happen
randomly along the chromosomes and independently in each parental gametoge-
nesis. Therefore, the probability of one parental line block to lie inside a bigger
block of the other parental line is negligible, as well as, blocks of heterozygous
states inisde a bigger block of one of the parental lines.
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line (�gure 19). Our preliminary analyzes showed small regions coding for one of
the parental lines embedded within a larger block coding for the other parental
line. This type of error was already studied by Patel et al. and they call them
"islands" [98, 83]. This error arises due to HMM have no �memory�. After the
�rst transition from one of the ancestor genotype to heterozygous state, it will
�forget� whether the last non-heterozygous state was from one parental line or the
other. Therefore, the HMM will allow a transition to any of the two homozygous
states.

Further, there is no restriction on the minimum times that a state must be
called before changing to another. Crossover events are rare in the chromosome.
Therefore, genomic states are hundreds of thousands of nucleotides long. Standard
Viterbi decoding produces state chains which can have haplotypes shorter than
expected due to local random �uctuations in the data.

In order to account for these two drawbacks, we augment the HMM in two
steps. First, we duplicate the heterozygous state depending on whether the pre-
vious state was the parental line one (hetp) or parental line two (hetm). Second,
each state must be repeated at least a number of times R until it can transition
to another. The allowed transitions are from parental state one to heterogeneous
state "hetp", from "hetp" state to paternal state two, from this to "hetm" state
and from "hetm" to parental state one.

Therefore, this method only requires to extend the matrix of transitions by
substituting the �tted transition probabilities as shown in �gure 20 and setting
all other transition probabilities to 0. Once the observations have been Viterbi
decoded by the augmented HMM, it is possible to map the three initial states
again, thus removing the "island" regions.

The value for the rigidity parameter must be chosen manually. The rigidity
depends on the quality of the reference genome, and the evolutionary distance of
the two parental genomes. Consequently, the value R depends on the experiment
in question.

15 Experimental Methods

Six F2 seeds from Arabidopsis thaliana Columbia-0 (Col-0) x Landsberg erecta
(Ler-0), as well as 13 o�spring genomes from a cross of recq4a/b and �gl1 mu-
tants of the same backgrounds, were strati�ed for 7 days at 4°C, sown on soil,
and grown under normal greenhouse conditions. DNA was extracted and whole-
genome libraries were prepared using the Illumina DNA TruSeq protocol. These
Illumina libraries were then sequenced by the Max Planck Genome Center using
a HiSeq 3000 machine with 151 bp paired-end reads targeting 2x genome cover-
age per sample. The short reads of each genome were aligned to the Arabidopsis
reference TAIR10 using bowtie2 with default parameters. The initial marker set
was composed of 519.215 SNPs which includes the actual position and knowl-
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Figure 20: Rigid Viterbi decoding. The raw data contain many sources of
variability that arise from many sources of errors and biases introduced during
the sequencing and mapping of the reads. This leads to underperformance of the
Viterbi algorithm. Standard Viterbi decoding will predict much more transitions
among states than what one may expect from real haplotypes. Moreover, the
transition probabilities are learned without any restriction. This results in the
estimation of virtual transitions which have not been reported and are unlikely
to happen. The crossover events are rather low and the expected transition of
states in an organism would be: One of the parental lines to a heterozygous
state and jump to the other parental line. For that reason, we have implemented
an intermediate step where we duplicate the heterozygous state depending on
whether the anterior state is of parental line one (hp) or the parental line two
(hm). We force to stay in the same state a minimum of times R before jumping
to another state to ensure a minimum length of the haplotypes.
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edge of the genotypes of the two parental genomes for each SNP marker. These
markers were selected from comparing Col-0 and Ler-0 assemblies [99]. For each
sequenced sample and marker position we recorded the number of aligned bases
to either of the parental alleles. All those SNPs with total allele count equal to 0
were removed from our initial set. These step discarded 172.499 SNPs.

To increase the coverage, the genome was partitioned in bins of thousand
nucleotides and the number of bases in each SNP was summed up for both parental
alleles in each bin for all samples. While some bins had allele count for all 19
samples, some other had for few samples or even none. In order to set a lower
threshold, we �ltered out all those bins that did not have allele counts in at least
5 samples. After the preprocessing, 65.623 bins per sample were kept to further
train the HMM model.

The allele counts from Col-0 accession were used as the �success� counts and
the sum of both alleles counts as the number of trials. Our model was �tted to the
data and the marker annotation was obtained. All those bins that were classi�ed
as bad markers were removed and the rigid Viterbi algorithm was applied.

Finally, we screened all samples for potential transition regions and applied
our transition estimation score. Only those transitions that had a higher score
than 0.65 and agreed with a transition in the rigid Viterbi path were taken as
valid transitions.

16 Results

16.1 In Silico Validation

The validation of our method was comparing the underlying genotype generated
from 19 models, which parameters values were chosen randomly, with the pre-
dicted genotype after applying our learning method. Each sample contains 5
chromosomes and 5 thousand bins per chromosome. The coverage in each ge-
nomic position was generated from the empirical count distribution of the actual
data. We also introduced missing values at some marker positions re�ecting the
missing information in our marker set.

The true genomic state was generated using an HMM and the marker states
were set with πm distribution. The data was generated from the Viterbi chain
and marker states using di�erent emission probabilities for each.

The generated data was used to �t a new model. The bad markers were
removed and the markers were labeled using the Viterbi algorithm. Finally, the
transition regions were pinpointed and compared against the transitions of the un-
derlying genotype producing the observations. The same procedure was repeated
ten more times to evaluate the accuracy of our method.

To asses the performance of our method to infer bad markers and state chains
we compared our results with the model real states generating the observations.
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Figure 21: Marker and State Accuracy. Marker and State Accuracy in a
simulation of 10 di�erent experiments with 19 samples each. After �tting the
model, the accuracy in recalling good and bad markers is 99.82%. The Viterbi
path was applied to the data after removing bad markers. The agreement with
the real underlying genotype is 98.1%.

With our method, we are able to correctly predict 99.82% of the markers as good
or bad. Moreover, the predicted Viterbi chain agrees with the original one with
an accuracy of 98.81% (�gure 21).

The estimated bad markers were removed from the simulated data and the
transitions regions were estimated with three di�erent thresholds for our wiggly
transitions scores (0.65, 0.75 and 0.95).

To evaluate the precision of our method we computed the percentage of our
estimated transition regions contain a transition of genotypes in the real underly-
ing Viterbi path, denoted as true positives (TP), percentage of regions that do not
contain a real transition, denoted as false positive (FP) and the percentage of real
transitions that our method missed, denoted as false negative (FN) (�gures ??
and ??).

The results of the analysis show that in general, our method performs well
in predicting the transition regions. Our accuracy calling transition regions is
on average higher than 80% and false negative rate lower than 20% with a mild
threshold (0.65). Although, no big signi�cant di�erence in true positive and false
positive rates are found among di�erent thresholds the false negative rate increases
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Figure 22: Graphical Representation FP, FN, TP. First, given a state se-
quence, we generated a set of data points. Then, the data was used to �t an HMM
and estimate the intervals within a change of states was given. If in the interval
that we estimated there was a real switch of states in the real Viterbi path, we
call it a true positive (TP, black box), if on the contrary there is no real switch of
states, we call it false positive (FP, red box). If our analysis missed a transition,
then this is a false negative (FN, dashed box).

considerably when the threshold is too high. Hence, many true transitions will be
missed out (�gure 23).

If the aim is to �nd the maximum true transitions one must use a mild thresh-
old.

The results show that using a stringent threshold for the score of transitions
boost the false negative rate signi�cantly without an increase in the same mag-
nitude of the true positive rate. Therefore, many transitions are missed. In
consequence, for an exploratory analysis in which the aim is to �nd the maximum
transitions, it will be preferred not to use a so stringent analysis. Thus, a thresh-
old of 0.65 will be an optimum solution to obtain a good ratio of false negative
and false positive maintaining a high true positive rate.

16.2 F2 Mapping Recombinant Population of Arabidopsis

thaliana

Firstly, the genome was tiled in bins of thousand nucleotides and the number
of SNPs per bin is presented in �gure 24. On average, every bin contained 4.1
SNPs (�gure 24). Secondly, the count numbers for each allele were summed up
increasing the coverage of each position. After preprocessing the data the mean
coverage of our data sets was ∼ 10x which guarantees a rise in the statistical
power for our model (�gure 25).

The count data at each bin was used to �t our model. The state path was
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Figure 23: Transition score threshold. In order to determine the most ad-
equate transition threshold, we computed the false negative (FN), false positive
(FP) and true positive (TP) rates for the transition regions (y-axis). These val-
ues were computed as explained in �gures ?? and ??. The thresholds used for
the analysis were 0.65 (green boxplot), 0.75 (yellow boxplot) and 0.95 (orange
boxplot).
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Figure 24: SNP density distribution. Distribution of number of SNPs per
thousand nucleotides in Arabidopsis thaliana genome.

Figure 25: Bin coverage distribution. Total allele count distribution per bin
after summing up the allele counts of the SNPs in each bin.
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decoded using the Viterbi algorithm even at those positions which had no allele
count information. We used the state blocks length distribution to estimate the
minimum block length and �lter out short haplotypes. All blocks shorter than 27
thousand nucleotides were removed using our rigid Viterbi decoding method. As
observed in �gure 26 our method smooths the Viterbi sequence and is less exposed
to variability in the data.

To study the e�ect of the triple mutant in Arabidopsis, we estimated the
intervals where a valid transition in wild-type and mutant samples. To this end,
we have set the threshold to 0.65 for the wiggly transition score and ensure that
exist a transition by comparing with the R-Viterbi path. Our method is able to
map 50 % of the CO breakpoints within intervals of four thousand nucleotides
wether is a wild-type or mutant (�gure 27).

The ratio of COs per Mb was computed genome-wide and compared between
wild-type and mutant samples. Mutant samples have a 3.86 fold increase in the
number of estimated CO per Mb compared to wild-type (Wilcoxon test p.value
< 0.01) (�gure 28).

To determine whether the increase in CO breakpoints in mutants is consistent
within all chromosomes, we computed the number of meiotic CO and compared
in each chromosome to wild type. All chromosomes have an increased number of
CO events in mutant and are in agreement with previous results from Serra et
al [79] (�gure 29).

Further analysis to investigate the CO frequency along the chromosome was
carried out. All chromosomes show a depletion in CO events at the centromeres
positions and increasing CO frequency along the chromosomal arms. This ob-
servations, agree with previous studies on the CO landscape in Arabidsopsis
[100, 76, 83]. The increased CO frequency can also be observed in the arms
indistinctly of the location.

17 Discussion

The construction of genetic maps is of great importance for the study of the
relation between genotype and phenotype. GBS is a major technique for obtain-
ing genetic information. We have developed a bioinformatics method capable of
obtaining the ancestor genotype from mapping populations with low sequencing
coverage. In this way, GBS has become an e�ective and e�cient tool in genetic
association studies.

HMMs are the method of choice for GBS [85, 84]. We have introduced several
novel twists to the design of the HMM in order to boost its performance. First,
our method uses Beta-Binomial distributions as emission distributions instead
of Binomial distributions, to account for the overdispersion of the of the low
sequencing data.

jointly exploits the information provided by all samples at a given genomic
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Figure 26: Genome segmentation with di�erent methods. After the model
is �tted there are several strategies to segment the genome to estimate ancestral
parental genome. Here is shown the raw data from chromosome 4 in a wild-type
sample and 3 di�erent methods to estimate the underlying state responsible for
the observable raw counts. (1) Posterior: The posterior decoding assumes that the
state that generated the observable data point is the state k with higher posterior
probability P (st|ot). (2) The Viterbi algorithm �nds the most likely sequence
of hidden states given the sequence of observed data points. (3) Our R-Viterbi
method exploits the dynamic programming algorithm of the Viterbi algorithm but
the transition matrix is transformed to ensure speci�c transitions. As a result the
Viterbi path is smoother and �ts better previous knowledge about recombinant
chromosomes.
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Figure 27: CO resolution. After screening for (wiggly) interval transitions, we
obtain a set of regions of putative CO regions. The length of these regions is an
objective measure of the precision by which CO breakpoints can be mapped.

Figure 28: CO events per Mb. Histogram of the ratio of CO events per Mb
estimated by our algorithm. The blue histogram shows the CO ratio in the wild-
type samples. The triple mutant Recq4a/4b and Figl1 histogram is shown in
orange.
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Figure 29: CO events per chromosome. Boxplot of the number of CO events
predicted by our algorithm per chromosome (x-axis). The blue boxplots show the
CO number in the wild-type chromosomes. The triple mutant Recq4a/4b and
Figl1 boxplots are shown in orange.
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break 102

Figure 30: CO frequency along chromosomes. The x-axis describes the
genomic position at each chromosome, and the y-axis describes the ratio of CO
events per 500 KB per wild-type samples (blue) respectively mutants (orange).
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position to spot invalid respectively uninformative marker positions. As a second
novelty, we have introduced an algorithm which augments the standard HMM used
for genotype analysis. The augmented HMM is more accurate in the sense that
it forbids fast (and presumably erroneous) forth-and-back state changes. Finally,
we have de�ned the notion of a (wiggly) interval transition, and we provide an
e�cient formula for calculating the probability of such an event. We can use this
new de�ned score in further steps to de�ne regions that guarantees a transition
from one haplotype to another base on the underlying Viterbi path. This score
is not exclusive of our method and can be further used in all kinds of HMMs
methods.

We have applied our pipeline to simulated data, where we have shown that we
are able to reconstruct the sample genotypes with superior precision.

Further, we have applied our method in real data to investigate the e�ect of the
triple mutant recq4a/4b and �gl1 on the resolution of CO events during meiosis I.
As demonstrated above, our results show a signi�cant increase in the frequency of
CO in the triple mutant as well as in the number of breakpoints. This increase is
constant along the chromosome except for the centromeres where recombination
is null in both cases [101].

To narrow down the length of our estimated transition regions one might
decompose the bins into the original SNPs markers and apply again the HMM
method. The additional step would focus on the markers and estimate new tran-
sition regions to place the CO breakpoints.

The use of third generation sequencing methods will improve also the analysis
since the mapping errors would decrease. This might be an experimental solution
to the islands [98].

Furthermore, remains to wrap up the source scripts into an R package to ease
the analysis by the scienti�c community.
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