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Adaptive Nonlinear Elimination
in Nonlinear FETI-DP Methods

Axel Klawonn, Martin Lanser, and Matthias Uran

1 Introduction

In recent years, we have formulated a unified framework that covers all nonlinear
FETI-DP as well as nonlinear BDDC methods; see [3]. Both belong to the class of
non-overlapping domain decomposition methods and can be used for the solution
of discrete nonlinear problems of the form �(D̄) = 0. For example, such systems
arise from the discretization of nonlinear partial di�erential equations. In contrast
to the traditional Newton-Krylov-DD approach (see [3]), where we first linearize
the problem and then decompose it into subdomains, the order of operations is
turned around in nonlinear domain decomposition methods. A nonlinear elimination
of a subset of finite element unkowns before linearization allows us to interpret
nonlinear FETI-DP methods as nonlinear right-preconditioned Krylov methods; see
[3]. Although the unified framework covers arbitrary choices of elimination sets,
only a few di�erent types of elimination sets have been considered so far. All of
them are based on the classification in interior, dual, and primal variables, which
is a natural thing to do in FETI-DP methods but obviously not problem-dependent.
In order to design a nonlinear FETI-DP method that fits optimally to an arbitrary
problem, it is necessary to use problem-dependent or adaptive elimination sets. In
this article, we describe, how to use the residual of the nonlinear FETI-DP saddle
point system to choose the elimination set. First studies were performed under our
guidance as part of a master thesis [6] and can also be found in [7]. The idea of using
the residual to determine an elimination set is adapted from Cai and Gong in [1],
where they have introduced the idea in the context of inexact Newton methods.

Axel Klawonn1,2, Martin Lanser1,2, Matthias Uran1,2

1Departement of Mathematics and Computer Science, Division of Mathematics, University
of Cologne, Weyertal 86-90, 50931 Cologne, Germany, e-mail: axel.klawonn@uni-koeln.de,
martin.lanser@uni-koeln.de, m.uran@uni-koeln.de, url: https://www.numerik.uni-koeln.de
2Center for Data and Simulation Science, University of Cologne, Germany, url: https://www.cds.uni-
koeln.de

1



2 Axel Klawonn, Martin Lanser, and Matthias Uran

2 Nonlinear FETI-DP

Before we describe the process of determining problem-dependent elimination sets,
let us first recall the most relevant ideas of nonlinear domain decomposition methods
and of the unified framework of nonlinear FETI-DP methods to introduce a suitable
notation. For a detailed description, we also refer to [2, 3] and the references therein.

Throughout this paper, we assume that we have a computational domain ⌦ ⇢ R3 ,
3 = 2, 3, which is divided into # non-overlapping subdomains ⌦8 , i.e., ⌦ =

–#
8=1 ⌦8 .

Each subdomain is the union of finite elements and the associated finite element
spaces are denoted by, (8) . We denote the product space of all finite element spaces
as , = , (1) ⇥ · · · ⇥ , (# ) . In FETI-DP methods, we partition all variables into
interior (�), dual (�), and primal (⇧) variables, where only continuity in the primal
variables is prescribed and continuity in the dual variables is enforced by Lagrange
multipliers _ iteratively. Therefore, we further introduce a subspace e, ⇢ , of
all finite element functions from , that are continuous in the primal variables. A
simple choice of primal variables are subdomain vertices. For completeness, we also
introduce the subspace b, ⇢ , , which contains all finite element functions that are
continuous across the complete interface and it holds b, ⇢ e, ⇢ , .

As it was shown in [2], finding the solution of the fully assembled finite element
problem is equivalent to solving the nonlinear FETI-DP saddle point system

�(D̃, _) =
e (D̃) + ⌫) _ � 5̃

⌫D̃

�
=

0
0

�
, D̃, 5̃ , e (D̃) 2 e, . (1)

This system is the basis for all nonlinear FETI-DP methods. Here, the linear con-
straints ⌫D̃ = 0 together with Lagrange multipliers _ 2 + := range(⌫) enforce
continuity in all dual variables.

As introduced in [3, 4], we use a nonlinear right-preconditioner " (D̃, _) that is
nonlinear in D̃ and linear in _; see [3, 4] for some desirable properties of " . Instead
of �(D̃, _) = 0, we now solve �(" (D̃, _)) = 0 with a Newton-Krylov method.

Following [3], the application of a nonlinear right-preconditioner can be in-
terpreted as (partial) nonlinear elimination process (see also [5]), where di�erent
choices of " lead to di�erent elimination sets. With this interpretation, it is obvious
to divide the overall set of variables into two di�erent subsets ⇢ and !, where ⇢
contains all variables that should be nonlinearly eliminated by the preconditioner " ,
and ! contains the remaining variables in which will be linearized.

After an appropriate rearrangement, we can represent all quantities in eq. (1)
according to the variable split into the subsets ⇢ and !. For example, we obtain
5̃ =

⇥
5̃ )⇢ 5̃ )!

⇤)
and ⌫ =

⇥
⌫⇢ ⌫!

⇤
. Thus, we can write the nonlinear saddle point

system (eq. (1)) as

�(D̃⇢ , D̃! , _) =
266664
e ⇢ (D̃⇢ , D̃!) + ⌫)⇢_ � 5̃⇢e ! (D̃⇢ , D̃!) + ⌫)!_ � 5̃!

⌫⇢ D̃⇢ + ⌫! D̃!

377775
=
266664
0
0
0

377775
.
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With the application of the nonlinear right-preconditioner, we now aim to eliminate
all variables D̃⇢ , which correspond to the subset ⇢ . Thus, our preconditioner is
implicitly defined by solving the nonlinear equation

e ⇢ ("D̃⇢ (D̃! , _), D̃!) + ⌫)⇢_ � 5̃⇢ = 0, (2)

where we have " (D̃⇢ , D̃! , _) := ("D̃⇢ (D̃! , _), D̃! , _), since, by construction, " is
linear in D̃! and _. After we have computed the nonlinear preconditioner " by
solving eq. (2) with Newton’s method, we obtain the nonlinear Schur complement
system

(! (D̃! , _) :=
e ! ("D̃⇢ (D̃! , _), D̃!) + ⌫)!_ � 5̃!

⌫⇢"D̃⇢ (D̃! , _) + ⌫! D̃!

�
=

0
0

�
.

This can be solved with the traditional Newton-Krylov-FETI-DP approach ([2]); see
[3]. Putting it all together, in each of these (outer) Newton iterations, " has to be
recomputed, resulting in two nested Newton loops.

3 A Problem-Dependent Choice of the Elimination Set

In [3], we have considered four di�erent variants of Nonlinear-FETI-DP which are
denoted as NL-8, 8 = 1, . . . , 4. In all these methods, the elimination set is chosen a
priori with respect to the sets �, �, and ⇧. We have ⇢NL�1 = ;, ⇢NL�2 =

⇥
� � ⇧

⇤
,

⇢NL�3 =
⇥
� �

⇤
, and ⇢NL�4 =

⇥
�
⇤
. In our earlier experiments, these methods often

improved the nonlinear convergence behavior compared to the traditional Newton-
Krylov-FETI-DP approach; see [3]. Furthermore, NL-3 and NL-4 show a high
potential in reducing the computing time for large problems since the nonlinear
elimination can be carried out completely independently for each subdomain without
the need for communication and synchronization. For further information, we refer
to [3] and the references therein.

However, we have also considered a model problem in [3] for which the perfor-
mance of NL-4 is worse than the traditional NK-FETI-DP approach. This demon-
strates that the choice of a good elimination set is essential for the performance
of nonlinear FETI-DP methods. At the same time, it also suggests that there are
problems for which the other NL-FETI-DP variants might perform poorly. Accord-
ingly, we should incorporate information about the problem into the choice of the
elimination set in order to construct a nonlinear FETI-DP method that is tailored to
the specific problem in the best possible way.

In this paper, we introduce a Nonlinear-FETI-DP method with problem-dependent
or adaptive elimination sets, which are determined with respect to the residual of the
nonlinear saddle point system eq. (1). This strategy is inspired by an article by Gong
and Cai [1], where a similar approach was presented in the context of a nonlinear
elimination preconditioned inexact Newton method. The underlying idea is that the
elimination set contains all variables corresponding to large absolute values in the
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nonlinear residual. First studies for the use in nonlinear FETI-DP methods are also
presented in [6, 7].

Let us first specify the residual that we consider. As usual, we are interested in
finding the solution (D⇤, _⇤) of �(D⇤, _⇤) = 0 with (D⇤, _⇤) = " (D̃, _). Especially,
we are interested in the first component D⇤, since the Lagrange multipliers are
only introduced to guarantee continuity of the final solution across the interface.
Therefore, we do not consider the complete residual of the nonlinear saddle point
system but only the part belonging to the variable D̃. Let us assume that we have
finished the :-th outer iteration, i.e., we have computed _ (:) = _ (:�1) � X_ (:�1)

and D̃ (:) = 6 (:�1) � XD̃ (:�1) , where 6 (:�1) :=
h
"D̃⇢

⇣
D̃ (:�1)
! , _ (:�1)

⌘
, D̃ (:�1)

!

i
is

the vector after eliminating D̃⇢ and X_ (:�1) , XD̃ (:�1) are the corresponding Newton
updates. Thus, 6 (:�1) includes the solution of the inner Newton method in the :-th
outer loop. Then, the elimination set for iteration : + 1 is build with respect to the
residual

�
⇣
D̃ (:) , _ (:)

⌘ ���
D̃
= e ⇣

D̃ (:)
⌘
+ ⌫) _ (:) � 5̃ ;

cf. the first line of eq. (1). As the tilde indicates, all quantities are only assembled
in the primal variables and might have di�erent values in a physical point belonging
to more than one subdomain. To obtain a single value for each global degree of
freedom, we make use of the dual assembly operator ')� : e, ! b, which yields the
residual

A (:) := ')� · �
⇣
D̃ (:) , _ (:)

⌘ ���
D̃
.

From ')� ⌫
) _ (:) = 0, we obtain

A (:) = ')� e ⇣
D̃ (:)

⌘
� ')� 5̃ = ')� ')⇧ 

⇣
'⇧D̃

(:)
⌘
� ')� ')⇧ 5 ,

where ')⇧ : , ! e, is the assembly operator in the primal variables; see, e.g. [2].
From the last line of [3, Eq. 17], we obtain

⌫6 (:�1) � ⌫⇢XD̃
(:�1)
⇢ � ⌫!XD̃

(:�1)
! = ⌫

⇣
6 (:�1) � XD̃ (:�1)

⌘
= 0,

which automatically implies that D̃ (:) is continuous across the interface. Thus, the
residual is identical to the fully assembled residual ')� '

)
⇧ 

�
'⇧'�D̄ (:)

�
�')� ')⇧ 5 =

')  
�
'D̄ (:)

�
� ') 5 as long as we use a step length equal to 1 in the outer Newton

iteration, which we assume throughout this article for simplicity.
Next, we describe the process how to assign variables to the elimination set used

for the outer iteration : + 1. Similar to [7], we introduce the following notation.
We assume that we have = finite element nodes with ; degrees of freedom each and
introduce the two index setsN := {1, . . . , =} and D := {1, . . . ,<}, where the overall
number of degrees of freedom belonging to D̄ or Ā (:) computes as < = = · ;. Since
we have ; degrees of freedom for each finite element node, the residual vector A (:)
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decomposes into = subvectors A (:)(8) 2 R; , 8 2 N , where the entries A (:)(8) 9 , 9 = 1, . . . , ;,
belong to the corresponding degrees of freedom of finite element node 8. Analogously
to [1], the idea is to assign those degrees of freedom to the elimination set ⇢ (:+1)

which correspond to a finite element node 8 with at least one degree of freedom with
a high absolute residual value, i.e., | |A (:)(8) | |1 � dres · | |A (:) | |1, where dres 2 (0, 1]
is a tolerance specified by the user. Let us note that thus all degrees of freedom
belonging to the same physical node are either all assigned to ⇢ (:+1) or not. Hence,
the size of the elimination set increases with a decreasing tolerance. Consequently,
the index set of degrees of freedom that belong to the elimination set writes

D(:+1)
⇢ :=

n
81, . . . 8; 2 D | 8 2 N , | |A (:)(8) | |1 � dres · | |A (:) | |1

o
.

For the final elimination set ⇢ (:+1) , we introduce a Xres 2 R and extend the index
set D(:+1)

⇢ with the indices of degrees of freedom belonging to finite element nodes
with a distance of at most Xres to any finite element node whose degrees of freedom
have been assigned to D(:+1)

⇢ ; see c) and d) in fig. 1. Denoting the coordinates of
finite element node 8 with E8 , the final elimination set writes

⇢ (:+1) := D(:+1)
⇢

ÿ (
81, . . . , 8; 2 D

�����
8 2 N , | |A (:)(8) | |1 < dres · | |A (:) | |1,

9 B 2 N , | |A (:)(B) | |1 � dres · | |A (:) | |1 : dist(E8 , EB)  Xres

)
.

Following [1], this Xres is introduced to avoid sharp jumps in the residual function.
With this strategy, we are able to construct a new elimination set ⇢ (:) in each outer
Newton iteration. However, if the problem at hand is completely unknown and the
initial value is somehow random, it might be disadvantageous to choose an elim-
ination set based on the initial residual. In such cases, we recommend to choose
⇢ (1) = ; in the first iteration before switching to the elimination strategy.

4 Numerical Results

In this section, we present numerical results for a first problem-dependent nonlinear
FETI-DP variant. Since the elimination set is build with respect to the nonlinear
residual, we refer to this method as Nonlinear-FETI-DP-Res method or, shorter, NL-
Res. Within this section, we discuss di�erent variants of NL-Res specified by di�erent
choices of dres and Xres. Moreover, for a single (dres, Xres) pair, we compare the
numerical results to those of NL-8, 8 = 1, . . . , 4. We do not compare to the traditional
NK-FETI-DP approach since the NL-1 method without the computation of an initial
value (see [3, 2]) is closely related to it. To distinguish between di�erent variants of
NL-Res in our tables and figures, we introduce the notation NL-R(dres, [res), with
[res · ⌘ = Xres and ⌘ is the diameter of a finite element.

The results shown in this section have all been computed using our sequential
MATLAB implementation. If we exceed 80 inner Newton iterations within a single
elimination process or if more than 40 outer Newton iterations are required, the sim-
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ulation is terminated and considered as diverged. Inner and outer Newton iterations
reach convergence if | |e ⇢ ("D̃⇢ (D̃! , _), D̃!) + ⌫)⇢_ � 5̃⇢ | |!2  14 � 12 (see eq. (2))
and | |�(D̃, _) | |!2  14 � 12, respectively. Here, we consider two-dimensional scalar
model problems of the form

�U�4D � V�2D = 1 in ⌦,

D = 0 on m⌦,

where U, V : ⌦ ! R and �?D is the ?-Laplace operator with ? = 2, 4. For model
problems from nonlinear elasticity (2D) with and without contact, we refer to [6, 7].

As a computational domain ⌦, we always consider the unit square and a decom-
position into equally sized square subdomains of diameter �. Each subdomain is
discretized by equally sized piecewise linear finite elements (P1) of diameter ⌘. As
primal variables, we exclusively use subdomain vertices which is the most simple
choice. Analogously to [4], we have to measure the parallel potential of our non-

a) b) c) d)

Fig. 1 a) and b): Di�erent types of coe�cient distributions. We have U = 1, V = 0 in the white
areas and U = 0, V = 1 in the remaining (black) part. All channels as well as the cross have a width
of �/3. c) and d): First elimination sets for NL-Res(0.1,3) for coe�cients presented in a) and b).
Red points belong to D(1)

⇢ and blue points are added due to a distance along main axes not larger
than 3⌘ to a red point; see section 3.

linear FETI-DP methods by considering di�erent metrics and indicators due to our
sequential MATLAB implementation. However, we have to look at slightly di�erent
indicators compared to [4], since the structure of the elimination set of NL-Res is
flexible and not known a priori.

As before, we measure the need for global communication by counting the number
of Krylov iterations, which are denoted as “# Krylov Its.“. In addition to that, we also
count inner (“# Inner Its.“) and outer (“# Outer Its.“) Newton iterations. Note that each
outer Newton iteration requires a factorization of the FETI-DP coarse problem, which
is also true for each iteration in the elimination process of NL-2. In contrast to this, in
NL-3 and NL-4 no coarse components are eliminated and thus a coarse factorization
is only necessary in the outer loop. This property o�ers a higher potential for
parallelization and we therefore precisely distinguished in [3] between the number of
necessary coarse and local factorizations to measure the performance of the di�erent
nonlinear FETI-DP methods. In NL-Res, the elimination set is chosen problem-
dependent and can contain arbitrary parts of the coarse problem and arbitrary parts
of the local subdomains. Simply counting local and coarse factorizations is thus
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not su�cient anymore. Here, to measure the cost of the inner Newton iteration, we
introduce the average size of the elimination set as an additional indicator, which
allows us to evaluate the e�ciency of our nonlinear FETI-DP variants. A single
iteration of the elimination process is expected to be cheaper for a small elimination
set. Accordingly, the most e�cient nonlinear FETI-DP method has minimal inner
and outer iteration numbers and, at the same time, the smallest average size of the
elimination set.

First studies regarding the NL-Res approach have been carried out for the ?-
Laplace problem in [6, 7]. For relatively simple distributions of nonlinearity, param-
eters dres and Xres have been found in [7] such that the NL-Res variant yields quite
similar iteration numbers compared to the best NL-FETI-DP-8 method, 8 = 2, 3, 4,
but using a significantly smaller average size of the elimination set ⇢ for each outer
Newton iteration. Additionally, for most tested pairs of dres and Xres the NL-Res
method was at least robust and converged in an acceptable number of iterations.
However, in preliminary considerations of more complex distributions of nonlinear-
ity, we already observed a significant influence of the choice of parameters on the
convergence behavior of NL-Res, which complicates the right choice. The focus of
this article is to discuss this observation in detail. Therefore, we consider two very
complex distributions of nonlinearity; see a) and b) in fig. 1. For both problems,
we obtain similar results; see table 1 as well as fig. 2. It turns out that NL-4 is the
best variant of the more traditional nonlinear FETI-DP methods. Compared to NL-1
without the computation of an initial value, the number of outer Newton iterations is
reduced by a factor of 2 to 3 for the largest problem sizes for both model problems.

Table 1 Simulation results of di�erent variants of the NL-Res approach as well as the NL-1 method
without computation of an initial value and the best nonlinear FETI-DP method with a constant
non-empty elimination set which is NL-4 in this case. For the distribution of the coe�cients; see
fig. 1 a). Computational domain ⌦ = [0, 1]2 decomposed into 8⇥ 8 square subdomains discretized
with P1 elements; �/⌘ = 16.

NL-1 NL-4 NL-R NL-R NL-R NL-R NL-R NL-R NL- R NL-R NL-R NL-R NL-R NL-R
no Init. (0.8,0) (0.8,3) (0.8,5) (0.5,0) (0.5,3) (0.5,5) (0.1,0) (0.1,3) (0.1,5) (0.01,0) (0.01,3) (0.01,5)

Inner Its. - 37 55 62 61 56 68 72 122 no 71 63 no 37
Outer Its. 15 8 14 13 13 13 13 12 18 conv. 11 12 conv. 6
Krylov Its. 307 155 287 270 267 268 256 240 355 220 207 112
Avg. Size
⇢ [%] 0.00 89.44 0.04 0.33 0.51 0.17 1.41 2.10 1.48 9.46 9.43 23.75

The performance of the various NL-Res methods can be summarized as follows:
if the combination of dres and Xres leads to extremely small elimination sets, the
performance of NL-Res is quite similar to that of NL-1 without the computation
of an initial value. However, with the right choice of parameters, we also find
variants of NL-Res that give iteration numbers at least as good as NL-4. In that
case NL-Res is superior due to the much smaller average size of ⇢ . Let us remark
that NL-Res(0.01,5) seems to be a good choice for both problems. However, as
already mentioned, finding the right parameters is di�cult. This is demonstrated
by the results presented in table 1, where a small change in Xres turns the best
NL-Res methods (NL-Res(0.01,5) and NL-Res(0.1,5)) into non-convergent variants
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(NL-Res(0.01,3) and NL-Res(0.1,3)). This hints that the elimination set cannot be
chosen completely arbitrarily and especially the optimal selection of parameters
has to be further analyzed; this is ongoing research. To summarize, choosing the

Fig. 2 Simulation results of di�erent nonlinear FETI-DP methods including di�erent variants of
NL-Res with problem-dependent choices of the elimination set for the p-Laplace equation with a
coe�cient distribution as presented in fig. 1 b); square subdomains; P1 finite elements; �/⌘ = 16.

right parameters is crucial for the performance of NL-Res methods, but with the
right parameters, NL-Res yields similar iteration numbers compared to the best
of the more traditional NL-FETI-DP-8 methods, 8 = 2, 3, 4. The advantage is a
variable elimination set, which is formed depending on the problem. This results in a
significantly smaller average size of the elimination set and thus less computational
e�ort in the inner loops.
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