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1. Introduction 

 

1.1 Flower development in angiosperms 

Organ development in plants occurs largely post-embryonic (Steeves and Sussex, 1989). 

Plant embryos contain only a small fraction of the final body plan. Organs develop throughout 

the lifetime of the organism, emerging from the shoot and root meristems in response to 

different endogenous and environmental signals.   

Flower formation in higher plants is a complex process influenced and controlled by 

genetic as well as environmental factors (Steeves and Sussex, 1989). The transition to 

flowering is a fundamental change in the life of a plant which means the change from 

vegetative to reproductive development. The transition occurs in shoot meristems, which are 

reprogrammed to produce inflorescences or flowers on receiving appropriate environmental 

and developmental signals. There are two types of transition. In the determinate type, the 

inflorescence meristem produces a terminal flower, whereas in the indeterminate type the 

inflorescence meristem gives rise to a number of floral meristems which develop into flowers. 

Floral organs in dicotyledonous plants develop in four concentric rings (whorls). Sepal 

primordia arise first in the outermost whorl, around the periphery of the meristem dome. Petal 

primordia emerge next in alternate positions in the second whorl. Stamen (male organ) 

primordia appear in the third whorl, and finally, carpel (female organ) primordia are produced 

in the innermost whorl. In general, the structures of sepals and petals are displaying 

dorsoventral differences (there are differences in cell types on the upper and the lower sides) 

almost from the beginning, whereas this is not the case for stamens and carpels during early 

stages of development. 
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1.2 Antirrhinum majus as a model plant 

Antirrhinum majus, a member of the Scrophulariaceae, is one of the well-studied model 

plants that contributed to the understanding of genetic and molecular processes of flower 

development. 

During vegetative growth, Antirrhinum plants have pairs of leaves at each node. Each leaf 

pair is arranged in decussate phyllotaxy (successive leaf pairs being set at right angles to each 

other) with long internodes separating them. After the vegetative meristem has changed to the 

inflorescence meristem, much smaller leaves (bracts) are produced in a spiral arrangement. The 

bracts are separated by short internodes, and each has a floral meristem in its axil (Carpener et 

al., 1995). The flower is composed of five sepals, five petals, four stamens (male organs) and 

one stamenoid (aborted stamen), and two fused carpels (female organs) arranged in a whorled 

phyllotaxy. The basal parts of the petals are fused and form the corolla tube, while the higher 

parts form the upper (adaxial) and lower (abaxial) lobes. The flower of Antirrhinum is 

zygomorphic, which means that it has a vertical axis with bilateral symmetry. 

As a model system for studying flower development, Antirrhinum majus has several 

advantages. 

1. The transposon mutagenesis technique to generate new mutants has been established and 

transposable elements have been used as a tool for isolation of genes (transposon tagging) in 

Antirrhinum majus (Coen and Carpenter, 1986; Sommer et al., 1988). 

2. Many developmental mutants have been isolated by various groups (Stubbe, 1966), and most 

of them are still available. 

3. The plant can be vegetatively propagated, therefore allowing the rescue of sterile mutants. 

4. The large flowers of Antirrhinum make crossing experiments easier than with Arabidopsis 

and facilitate collecting of sufficient material for molecular studies. 
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5. A good genetic map exists (Stubbe, 1966). 

6. A transformation technique was established (Heidmann et al., 1998).  

 

 

1.3 The classical ABC model of floral organ identity 

During the past decade, there has been a great advance in our understanding of flower 

development. Floral organ identity is genetically controlled and can be described by the 

classical ABC model which is based on the genetic analysis of single, double and triple mutants. 

The appearance of floral organs, their type, number and position is controlled by a set of 

regulatory genes (Meyerowitz et al., 1989; Schwarz-Sommer et al., 1990; Bowman et al., 

1991; Coen, 1991). Mutations in these genes result in organs with morphologically altered 

phenotypes, mutant floral organs have lost their original wild type identities. The different 

classes of mutations known as ‘homeotic’ are particularly important and useful for 

understanding the genetic programs controlling development. Many floral developmental 

mutants with defects in the control of meristem identity and organ types are available and are 

studied in snapdragon (Antirrhinum majus) and thale cress (Arabidopsis thaliana).  

Morphological and genetic analysis of the floral homeotic mutants in these plants led to the 

classical ABC model (Fig.1) which tries to explain how the specification of organ identity 

during flower development is controlled (Haughn and Sommerville, 1988; Schwarz-Sommer et 

al., 1990; Coen and Meyerowitz, 1991). 

The ABC model proposes three function A, B and C which are active each in two adjacent 

whorls. The functions are established by the homeotic genes which can be grouped in three 

classes: A, B and C. In Antirrhinum, an A-function gene like in Arabidopsis has not been 

reported; B-function genes are DEFICIENS (DEF) and GLOBOSA (GLO). The C-function 
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gene is PLENA (PLE). In Arabidopsis, the A-function is established by both APETALA1 (AP1) 

and APETALA2 (AP2), the B-function by APETALA3 (AP3) and PISTILLATA (PI), and the C-

function by AGAMOUS (AG). 

Class A genes function in whorls 1 and 2, class B in whorls 2 and 3, and class C in whorls 3 

and 4. Expression of the class A genes alone determines sepal development, combinatorial 

action of class A and B genes or class B and C genes specifies petals or stamens, respectively, 

and expression of the class C genes alone results in carpel development. The activity of class A 

and class C genes are mutually antagonistic, so that A genes prevent expression of C genes in 

whorl 1 and 2, and C genes prevent expression of A genes in whorl 3 and 4. Mutants of class A 

genes have carpels in the first whorl instead of sepals. Class B mutants have sepals rather than 

petals in the second whorl and carpels rather than stamens in the third whorl. Class C mutants 

have petals instead of stamens in the third whorl and replacement of the carpels in the fourth 

whorl by sepals. Class C mutants are indeterminate, so there is a continued production of 

mutant floral organs inside the fourth whorl. 
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Fig. 1. The classical ABC model for the organ identity in Arabidopsis. 

Floral organ identity is specified by the combinatorial interaction of homeotic functions A, B and C 

which are active in two adjacent whorls. Function A alone is expressed in whorl 1 and specifies sepals. 

The combined functions of A and B are expressed in whorl 2 and specifies petals; B and C are expressed 

in whorl 3 and specifies stamens. Function C alone is expressed in whorl 4 and specifies carpels.  

 

 

1.4 MADS-box genes control floral development 

Isolation and characterization of the floral homeotic genes led to the discovery that most of 

them belong to a conserved family of transcription factors, called the MADS-box family 

(Schwarz-Sommer et al., 1990; Yanofsky et al., 1990; Troebner et al., 1992; Coen et al., 1991; 

Mandel et al., 1992; Jack et al., 1992; Bradly et al., 1993; Goto et al., 1994; Jofuku et al., 

1994; Theissen et al., 2000).  

MADS is an acronym of the four founding members, MCM1, AGAMOUS, DEFICIENS, 

and SRF (Schwarz-Sommer et al., 1990). The MCM1 protein (the product of the 

minichromosome maintenance gene) from yeast (Saccharomyces cerevisiae) participates in the 

regulation of a- and α-cell-type specific genes and in pheromone response (Ammerer, 1990). 

The AGAMOUS (AG) gene controls organogenesis of stamens and carpels in Arabidopsis 
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(Yanofsky et al., 1990). The DEFICIENS (DEF) gene controls the formation of petals and 

stamens in Antirrhinum (Sommer et al., 1990). The SRF (Serum Response Factor) protein from 

mammals is essential for the serum-inducible transcriptional activation of the c-fos nuclear 

proto-oncogene that is involved in the transcriptional regulation of genes controlling cell 

growth in response to growth factors (Norman, 1988). This shows that the MADS-box 

transcription factors can be found not only in the plant kingdom but also in animals and yeast, 

where they control a variety of developmental processes. The MADS-box is a 180 bp long 

highly conserved region that codes for the DNA-binding domain (Pollock and Treisman, 1991). 

 In flowering plants, MADS-box genes constitute a large multigene family (about 80 

different genes in Arabidopsis) whose members control diverse biological developmental 

processes ranging from root to flower and fruit development (Muenster et al., 2001). Novel 

MADS-box genes with regulatory roles in guard cell, trichome, root, pollen and endosperm 

development provided useful markers for the functional and evolutionary analyses of this gene 

family (Alvarez-Buylla et al., 2000). 

Phylogeny reconstruction revealed that the MADS-box gene family is composed of several 

defined gene clades (Theissen et al., 2000; Muenster et al., 2001). The majority of plant 

MADS-box genes known so far are members of a monophyletic superclade of genes with a 

conserved structural organization, the so called MIKC-type, composed of a MADS (M-), an 

intervening (I-), a K-box (K-), and a C-terminal (C-) domain. 

The MADS domain is the most highly conserved region of the proteins. In most cases, it is 

found at the very N-terminus of the proteins, although some MADS proteins contain additional 

amino acids N-terminal to the M-domain. The highly conserved M-domain of plant MADS-box 

proteins comprises about 60 amino acids and is the major determinant of DNA-binding. The 

relatively weakly conserved I-domain, directly downstream of the M-domain, comprises about 
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30 amino acids but is somewhat variable in length. The K-domain is defined by a conserved 

regular spacing of hydrophobic residues, which is proposed to allow the formation of two 

amphipathic helixes which are involved in selective protein dimerization. It is assumed that 

these amphipathic helixes interact with those of another K-domain-containing protein, thus 

promoting dimerization. The K-domain is not present in any of the animal or fungal MADS-

box proteins known so far, indicating that the plant MADS-box proteins have a different way of 

interaction compared to the animal ones (Muenster et al., 1997). The most variable region, both 

in sequence and length, is the C-domain at the C-terminus of the MADS-box proteins. In a few 

cases the C-domain is involved in transcriptional activation, but the main function seems to be 

the formation of multimeric transcription factor complexes (Cho et al., 1999; Egea-Cortines et 

al., 1999). 

 

 

1.5 The role of the B-function genes, DEF and GLO, in flower development in 

Antirrhinum majus 

In Antirrhinum the B-function genes DEF and GLO, shown to heterodimerize via their K-

domain, control petal and stamen organogenesis (Schwarz-Sommer et al., 1992; Troebner et al., 

1992; Davies et al., 1996a; Zachgo et al., 1995). Upon dimerization, DEF and GLO proteins 

are capable of binding DNA at specific CArG-box motifs [CC(A/T)6GG] in their own 

promoters and can boost and maintain transcription in an autoregulatory manner (Fig. 2). A 

DEF promoter mutant, the def-chl allele, does not show transcriptional up-regulation of the 

gene in petals and stamens, although the induction and basal level of expression of DEF and 

GLO are not affected. This promoter mutant strongly supports the hypothesis of autoregulatory 

maintenance of transcription.  
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The temporal and spatial expression patterns of DEF and GLO in a variety of mutants have 

indicated that, although the transcription of each gene is independently induced, the later organ 

specific regulation of transcription is mutually interdependent (Troebner et al., 1992).   

Independent induction of the two genes was suggested by the following facts. First, there is 

a basal low level of DEF transcripts in flowers homozygous for the glo-75 null allele, and a 

basal low level of GLO transcripts in flowers homozygous for the def-gli null allele. Second, 

transcripts of the two B-function genes are initially detected in young floral primordia, but 

there are differences in their spatial expression. In early stages of development, transcripts of 

DEF are detectable in the second and third whorl primordia. In later stages, DEF transcripts are 

found in first and fourth-whorl organs. GLO mRNA is found mainly in the second- and third-

whorl primordial cells, but later also in fourth whorl organs (Schwarz-Sommer et al., 1992; 

Troebner et al., 1992; Zachgo et al., 1995). 

The transcriptional regulation and the maintenance of GLO and DEF activity are positively 

correlated with the expression pattern of DEF and GLO. Because in genetically unstable lines, 

generating somatic revertant sectors, GLO transcription clearly follows the pattern of 

restoration of DEF transcription, and the DEF gene transcription vice versa. The autoregulatory 

model of expression of the DEF and GLO genes depends on the preexisting low level of basal 

expression of the GLO and DEF proteins, respectively. 
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Fig.2. Autoregulatory model for DEF and GLO expression in the determination of organ identity in 

Antirrhinum majus (Troebner et al., 1992). The independent induction of DEF and GLO allows 

formation of heterodimers. The heterodimers bind to CArG motifs in the promoters of each gene and 

boost transcription. In addition, the heterodimers may regulate the expression of downstream target genes 

required for petal and stamen development. 

 

 

1.5.1 Regulators for the spatial and temporal control of DEF and GLO expression 

DEF and GLO transcripts are autoregulatory maintained at a high level only in the 

primordia of second and third-whorl organs, and persist in the developing petals and stamens 

until flower development is completed. However, the spatial and temporal expression of DEF 

and GLO is not uniform. Low levels of basal DEF transcripts are detected also in the first-

whorl and fourth-whorl organs of flowers in later stages of development (see above).  

The expression patterns of DEF and GLO suggests that they are independently induced and 

highly regulated. Indeed, several genes are known to be required for this process as deduced 

from genetic analysis of Antirrhinum mutants (Simon et al., 1994; Ingram et al., 1997; 

CArG CArGDEF GLO

DEF GLO

GLODEF

5‘       3‘ 3‘         5‘

Target genes

induction Induction
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Wilkinson et al., 2000).  

The FIMBRIATA (FIM) gene plays a key role in the activation of the DEF and GLO, and is 

also needed for the activation of the C-function gene PLE in the center of the floral meristem. 

FIM acts in the regions between floral organs to specify the whorl patterning and maintenance 

of morphological boundaries (Simon et al., 1994; Ingram et al., 1997).  

Mutants of two genes, CHORIPETALA (CHO) and DESPENTEADO (DESP), exhibit 

petaloid transformation of first whorl sepals, narrowing of vegetative organs and of all floral 

organs, partial female sterility, abnormal root growth and delayed germination (Wilkinson et al., 

2000). The transformation of sepals to petaloid structure results from ectopic expression of 

DEF and GLO and is correlated with the ectopic expression of FIM. 

While FIM, CHO and DESP are involved in the regulation of floral B- and C-function 

genes at the genetic level, little is known about the molecular mechanisms that control the B-

function gene DEF.  

 

1.5.2 RSI, a putative regulatory factor in the control of DEF expression 

There are several mutant alleles (morphoalleles) known, which show distinct def mutant 

phenotypes. In the def-chlorantha allele, which is a promoter mutant, a three base pairs deletion 

and one base pair exchange are found 32 bp upstream of a CArG-box, which is a binding site 

for MADS-box transcription factors. In this mutant allele, transcription of DEF is strongly 

decreased in the second and third whorls, but the basic low levels of mRNA in sepals and 

carpels are not affected. This mutation indicates functional importance of this region of about 

200 bp, which contains several conserved motifs for regulation of DEF gene expression 

(Schwarz-Sommer et al., 1992).    

Using this promoter region in a yeast one-hybrid screen as bait, a putative regulator of DEF 
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was isolated, called ROSINA (RSI; M. Roccaro, personal communication). 

The RSI protein is 558 amino acids long and contains several domains characteristic for 

transcription factors, including a b-ZIP domain at the C-terminal end and a serine rich region 

followed by two acidic amino acids at the N-terminus.  

RSI expression is quite low compared to that of DEF. Expression of RSI is observed in 

primary apices and floral buds but not in leaves. In floral organs, RSI mRNA is first detected in 

stamens and at later stages in sepals and carpels. 

DEF expression starts to appear in petal and stamen primordia at stage 3 of flower 

development and is getting localized in developing petals and stamens as judged from in-situ 

hybridization (Schwarz-Sommer et al., 1992). Especially in later stages of stamen development 

(stage 6 of Antirrhinum flower development), DEF expression is detected in incipient filaments 

and the connective, whereas RSI expression is found, complementary to DEF, in sporogenous 

tissue of the stamens (M. Roccaro, personal communication).  

Taken together, the complementary expression data and the ability of RSI to bind to a 

region of the DEF promoter, suggested that RSI may act as a putative repressor of DEF activity.  

 

 

1.6 Formation of multimeric complexes among MADS-box proteins 

In animals and yeast, it was reported that several proteins involved in signaling, can 

interact by forming ternary complexes. For example, RhoA, CDC42hs, and Rac1 can activate 

SRF-linked signaling in this way (Hill et al., 1995). Another example is MCM1, a yeast 

MADS-box protein, which is a general regulator of cell type-specific genes in yeast and which 

is implicated in the response to extracellular signals. This response to pheromones is mediated 

by a signal transduction pathway connecting the cell surface receptors STE2 and STE3 to the 
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transcription factor MCM1 and STE12 (Errede et al., 1989; Dolan et al., 1989; Song et al., 

1991). Subsequent transcriptional induction of pheromone-responsive genes is transduced 

through a complex consisting of STE12 and MCM1.  

MADS-box proteins recognize specific DNA motifs in the control regions of other genes as 

homo- or heterodimers, thus regulate the transcription of these target genes. MADS-box 

proteins can interact with each other with a high degree of partner specificity, either as hetero- 

and/or as homodimers (Davies et al., 1996b; Fan et al., 1997). 

But MADS proteins cannot only form homo- or heterodimers. Recently evidence for 

multimeric MADS protein complexes was found in Antirrhinum (Egea-Cortines et al., 1999; 

Egea-Cortines and Davies, 2000). The formation of a ternary protein complex between 

DEF/GLO heterodimer and the SQUA homodimer via their carboxy-termini, both in vitro and 

in vivo (in yeast) supports the observed genetic interaction between the floral meristem identity 

gene SQUA and the B-function genes DEF and GLO which is required for the establishment of 

the whorled phyllotaxis of floral organs in Antirrhinum. 

Similar results were abtained in Arabidopsis. In addition to the A-, B- and C-function genes, 

the MADS-box genes SEP1, 2, and 3 are required to specify the organ identity of petals, 

stamens and carpels (Pelaz et al., 2000; Honma and Goto, 2001). The floral homeotic MADS-

box proteins, AP1, AP3, PI and AG, form ternary and quaternary DNA-binding complexes with 

the SEP3 protein, in order to specify petal identity (AP3/PI/AP1/SEP), stamen identity 

(AP3/PI/SEP/AG) and carpel identity (AG/SEP/AG/SEP). It was the basis for the floral quartet 

model (Theissen, 2000; Theissen and Saedler, 2001). 

A phenotype remarkably similar to that of the sep1 sep2 sep3 triple mutant was observed 

from co-suppression of FBP2 in petunia (Angenent et al., 1994) and antisense expression of 

TM5 in tomato (Pnueli et al., 1994). FBP2 and TM5 are candidate SEP3 orthologues from 
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petunia and tomato. The existence of SEP orthologous in distantly related eudicots, in 

monocots (Kang and An, 1997) and even in gymnosperms (Mouradov, 1998) suggests similar 

roles of the SEP genes in diverse species.   

The SEP 1, 2 and 3 MADS-box genes of Arabidopsis were called Im (Identity mediating) 

genes (Egea-Cortines and Davies, 2000). They have counterparts in Antirrhinum: DEFH72, 

DEFH200 and DEFH84. They are expressed in the three inner whorls of the flower and are 

absolutely required, together with the class A, B and C genes, to establish the organ identity of 

petals, stamens and carpels. Since they can interact, at the protein level, with the B-function 

factors AP3 and PI as well as with the C-function factor AG, they provide the link for the 

genetic interactions, proposed by the ABC model, in stamen and carpel specification. Thus, 

formation of multimeric protein complexes seems to be a common feature in the control of 

floral organ development. 

 

 

1.7 Aims of this work  

In the past developmental processes were conceived as linear hierarchical pathways, where 

a gene product exerted its activity on a downstream target gene of a pathway. Recently it 

became evident that networks of protein-protein interactions are important to specify floral 

organ identity (Honma and Goto, 2001; Pelaz et al., 2000; Egea-Cortines and Davies, 2000). 

The focus of the research was mainly on the interaction of the flower homeotic genes. So far, 

no evidence has been obtained about how the expression of the homeotic genes themselves is 

regulated. To get insight into the regulation of the Antirrhinum DEF gene, a yeast one-hybrid 

screen with its promoter was carried out, which yielded RSI, a putative regulator of DEF 

activity (M. Roccaro, personal communication). With the information that the multimeric 
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complexes of MADS-box transcription factors are a common feature for the establishment of 

the right organ identity, it was interesting to know whether RSI acts alone or requires other 

proteins to control DEF activity. Thus, the yeast two-hybrid system has been utilized to detect 

possible partners of RSI, and to understand how RSI, together with putative interacting proteins, 

might regulate DEF gene expression. 

This dissertation describes the isolation and characterization of several proteins, 

interacting with RSI, in the control of DEF activity. 
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2. Materials and Methods 
 

2.1 Materials 
 

2.1.1 Plants 

 
Arabidopsis thaliana         Cultivar Columbia 

Antirrhinum majus             Line 165E 

                                           Line Sippe 50 
 
2.1.2 Bacteria strains 
 
2.1.2.1 Escherichia coli 
 
DH10B: F-, mrcA, ∆(mrr, hsdRMS-mcrBC), Φ80dlacZ∆M15, ∆lacX74, deoR, recA1, endA1, 
araD139, V(ara,leu)7697, galU, galK, λ-, rpsL, nupG 
 
BL21DE3: F-,hsdSB(rB-mB-), gal dcm(DE3), ompT 
 
2.1.2.2 Epicurian coli 
 
BL21-CodonPlus(DE3)-RIL: E. coli B F� ompT hsdS(rB� mB�) dcm+ Tetr gal l (DE3) endA 
Hte [argU ileY leuW Camr] 
 
2.1.2.3 Agrobacterium tumefaciens 
 
GV3103 (pMP90RK): C58C1, Rifr, Gmr (Koncz and Schell, 1986) 
 
 
2.1.3 Yeast strains 
 
SFY526: MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, canr, gal4-542, 
dal80-538, URA3::GAL1UAS-Gal1UAS-GAL1TATA-lacZ 
 
HF7C: MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, gal4-542, gal80-
538, LYS::GAL1UAS-GAL1TATA-HIS3, URA3::GAL417-mer(×3)-CYC1TATA-lacZ 
 
Y187: MATα, ura3-52, his3-200, ade 2-101, trp 1-901, leu 2-3, 112, gal4∆, met-, gal80∆, 
URA3GAL1UAS-GAL1TATA-lacZ 
 
Y190: MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, lue2-3, 112, gal4∆, gal80∆, 
cyhr2, LYS2::GAL1UAS-HIS3TATA-HIS3, URA3::GAL1UAS-GAL1TATAZ 
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2.1.4 Plasmids 
 
pBluescript II SK(+/−)   Stratagene, La Jolla/USA 
pBluescript II KS(+/−)   Stratagene, La Jolla/USA 
pGEX-5X-1    Pharmacia Biotech Products 
pGBT9     CLONTECH  
pGAD424    CLONTECH  
pGBKT7    CLONTECH  
other vectors    in this thesis 
 
 
 
2.1.5 Antibiotics 
 

Name Stock Storage 
Final 

concentration 
Organism 

Ampicilin 100 mg/ml in water −20°C 100 µg/ml E.coli 

Gentamycin   25 mg/ml  in water −20°C   25 µg/ml A.tumefaciens 

Kanamycin   50 mg/ml in water −20°C   50 µg/ml 
E.coli/ 

A.tumefaciens 

Rifampicin 
100 mg/ml  in    

       methanol 
−20°C 100 µg/ml E.coli 

 

 

2.1.6 Enzymes, Chemicals and Oligonucleotides 
Enzymes were obtained from Roche Molecular Biochemicals (Mannheim), Biolab 

(England), Life Technologies (Freiburg), and used with the 10× buffer supplied. 

Laboratory chemicals were obtained from following companies: Sigma (Deisenhofen), 

Merck (Damstadt), Roth (Karlsruhe), Serva (Heidelberg), Promega (Madison), Duchefa 

(Haarlem), Bio-Rad (Munich), Fluka (Neu-Ulm), Pharmacia (Freiburg) and Life Technologies. 

Radioisotopes were purchased from Amersham Buchler (Braunschweig). 

Oligonucleotides were synthesized by Life Technologies and Metabion. 
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2.1.7 Primers used for cloning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Methods 
 

2.2.1 Isolation and purification of nucleic acids 
 

2.2.1.1 Small scale plasmid DNA isolation from E.coli by the alkaline lysis method 

For small scale plasmid DNA isolation and purification, a single bacterial colony was 

transferred to 3-5 ml of LB medium and incubated overnight at 37°C with vigorous shaking.  

Overnight cultures were poured into 1.5 ml eppendorf tube and centrifuged down at 2,000 g  

for 5 min (5,000 rpm in a Heraeus #3325 rotor). The supernatant was removed by aspiration, 

Primer name Sequence (5� � 3�) Amplification 

Lac 26 
Lac 25 
5BD 
3BD 
5AD 
3AD 
EcoRV2Y16-3 
2Y16PstIEND 
 
EL1 
ER2 
BGAI 
Xba2Y16-3 
 
BamHI2Y16-5 
PstBGA5 
 
2RS 
5RS 
6RS 
5RS-1 
6RS-1 
EB 
EF 
Y6Xho-3 
2Y16L-1 
2Y16L-4 
2Y19Xho-3 
2Y14-3SmaI 
2Y6-3SmaI 
Y13-3SmaI 
35S  
pAnos 

TCA CAC AGG AAA CAG CTA TGA CCA TG 
CAG TCA CGA CGA TGT AAA ACG ACG G 
GAA TAA GTG CGA CAG CAT CAT CAT CGG  
TGA GAA AGC AAC CTG ACC TAC AGG 
TGG TTG GAC GGA CCA AAC TG 
GAT GCA CAG TTG AAG TGA ACT TGC 
CTT GAG ATA TCT CAA CTC GGC CTC CAA GC 
CCA ATG CAT TGG TTC TGC AGT CAC CAT CAA 
ACA CAT ACT CA 
TTG CGT ACT GAC GGA TTC ATC GTT G 
ATA TAT GCT TTC CAT TCC ATG GGG A 
GGA CTC GAG CCA GGA GGA GAG ATC 
GCT CTA GAA CTC GGC CTC GGC CTC CAA GCC 
GAT GT 
ACG GGA TCC ATG AAA AGG GAT AGC AGT 
CCA ATG CAT TGG TTC TGC AGT CAG GGT GGG 
GGT TGA GGG TA 
GGG GAA GAG TTG ATG ATT AAT 
CAA GAA TAT CTC ATC AAA AGA 
ATG TAT AAG TTA TTG GCA TTA 
GGT TCA CTG TCC GGT TCG GTT 
ATT GGC ATT AGA GAC CAA GTT 
CCG GGA GCT GCA TGT GTC AGA GG 
GGG CTG GCA AGC CAC GTT TGG TG 
CCG CTC GAG ATC AGA ATT GGG AAA AGA 
GGG GTA CCT CAA CTC GGC CTC CAA GC 
TTG CTG CAT CGG CTT GGA GGC CGA GTT 
CCG CTC GAG GTT GCT CTT TCT CTT TGT 
TCC CCC GGG ATT TTC ATC CAA AAG 
TCC CC GGG GCA TTT ATG TTG AAC 
TCC CCC GGG GTT GTT GTA CGA ATG 
GAC GCA CAA TCC CAC TAT CCT TCG 
TAT TAC ATG CTT AAC GTA ATT CAA CAG 

pBluescript® 
pBluescript® 
pGBT9 
pGBT9 
pGAD424 
pGAD424 
AmGRAS 
AmGRAS 
 
EMBL3 
EMBL3 
AmGRAS 
AmGRAS 
 
AmGRAS 
AmGRAS 
 
Promoter 
Promoter 
Promoter 
Promoter 
Promoter 
pGEX5X-1 
pGEX5X-1 
Y6 
AmGRAS 
AmGRAS 
2Y19 
2Y14 
2Y6  
Y13 
pGPTV-BAR 
pGPTV-BAR 
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and the bacterial pellet was left as dry as possible. The bacterial pellet was resuspended in 250 

µl of ice-cold alkaline lysis solution I by vigorous shaking. The same volume of lysis solution 

II was added and gently inverted five times. All the complexes including bacterial proteins, 

broken cell walls, and denatured chromosomal DNA were efficiently precipitated with solution 

III containing potassium ions. After the debris has been removed by centrifugation at maximum 

speed, plasmid DNA was recovered from the supernatant using a QIAprep column. The 

supernatant, after addition of solution III, was decanted into QIAprep column and centrifuged  

for 1 min at high speed (12,000 rpm in a Heraeus #3325 rotor). The flow-through was 

discarded, the column washed with 0.75 ml of ethanol containing PE buffer (provided from 

QIAGEN®) and the residual wash buffer was removed by centrifugation at maximum speed 

(12,000 rpm in a Heraeus #3325 rotor).  The plasmid DNA was eluted from the column by 

adding 50 µl of elution buffer (EB) and centrifugation. 

 

LB medium/l: 10 g of bacto tryptone, 5 g of bacto yeast extract, 10 g of NaCl, and 15 g of bacto 

agar (for plates only) 

Solution I: 50 mM Tris-HCl pH 8.0, 10 mM EDTA , 100 µg of RNase A/ml 

Solution II: 0.2N NaOH, 1% SDS 

Solution III: 3M KOAc pH. 5.5 

Elution buffer (EB): 10 mM Tris-HCl, pH 8.0. 

 

 

2.2.1.2 Large scale plasmid DNA isolation from E.coli by the alkaline lysis method 

The principle of a large scale plasmid DNA isolation is similar to that of the small scale 

plasmid DNA isolation. Volumes of solutions were accordingly scaled up and a different 

column (NUCLEOBOND®) was used. Thirty to fifty milliliter of LB overnight culture 

obtained from a single colony was centrifuged down at 4,000 g (5,000 rpm in a Heraeus christ 

Typ-Nr. 4400 roter). The bacterial cells were resuspended in 4 ml of buffer S1 for 5 minutes. 

The same volume of S2 buffer was added, and the suspension was immediately mixed by 

inverting the tube 5 times. This mixture was incubated for 5 minutes at RT.  Four milliliters of 

the S3 solution was then added and the mixture was incubated for 5 min on ice to precipitate 

chromosomal DNA. The bacterial lysate was clarified by centrifugation at maximum speed for 

30 minute and by filtration using miracloth. With centrifugation, SDS was also removed from 

the buffer S3 solution (white precipitate).  The NUCLEOBOND® column was equilibrated 

with 2 ml of buffer N2.  The cleared  bacterial lysate was poured onto an equilibrated column 

and the flow-through was discarded.  The NUCLEOBOND® column was washed twice with 4 



Materials and Methods 
 

 19

ml of N3 buffer and the plasmid DNA was eluted by adding 4 ml of the N5 buffer. The purified 

plasmid DNA was precipitated with 0.8 volume of isopropanol, and centrifugation for 30 min 

at high speed (10,000 rpm in a Beckman JS-13.1 rotor, 19,100 g) at 4°C. The DNA pellet was 

dried for 5 min at RT and resuspended in an appropriate volume of elution buffer (ca. 500 µl -1 

ml).  

 

Buffer S1: 50 mM Tris-HCl (pH8.0), 10 mM EDTA, 100 µg RNase A / ml 

Buffer S2: 0.2 M NaOH, 1% SDS 

Buffer S3: 2.8 M KOAc, pH 5.1 

Buffer N2 : 100 mM Tris, 15% EtOH, 900 mM KCl, pH 6.3 

Buffer N3 : 100 mM Tris, 15% EtOH, 1150 mM KCl, pH 6.3 

Buffer N5: 100 mM Tris, 15% EtOH, 1000 mM KCl, pH 8.5. 
 

 

2.2.1.3 Large scale genomic DNA isolation from Antirrhinum majus  

Three grams of plant material was frozen in liquid nitrogen and ground using mortor and 

pestle. The ground power was thawed in an extraction buffer (3×SSC, 0.1 M EDTA, 0.1 M Na-

diethyldithiocarbonate, and 10% SDS) as described with some modification (Coen et al., 1986). 

The preparation was extracted once with chloroform, once with phenol:chloroform (1:1), and 

again with chloroform. Nucleic acids were precipitated with 0.6 volume of isopropanol,  

redissolved in 5 ml of TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA)  and treated with 

RNase A (25 µg/ml) for 30 min. 5 M NaCl was added to the solution, followed by an equal 

volume of 2% cetyltrimethylammoniumbromide (CTAB), 50 mM Tris-HCl (pH 8.0), 10 mM 

EDTA. The precipitate was washed with 70% EtOH  and air-dried for 1 hour. The pellet was 

resuspended in 200 µl of TE buffer. 

 

 

2.2.1.4 Small scale isolation of genomic DNA for PCR analysis 

Plant leaf discs were collected in sterile eppendorf tubes containing 300 µl of extraction 

buffer, incubated  for 30 to 60 min at RT. The leaf discs were ground roughly using a plastic 

macerator and mixed well by vortexing. The same volume of phenol:chloroform(1:1, pH 8.0 )  

was added and incubated for 15 min at RT. The resulting suspension was centrifuged down at 

13,000 g (14,000 rpm in a HERAEUS #3754 rotor) for 10 min. The supernatant was transferred 

into a new eppendorf tube and precipitated with equal volume of isopropanol. Precipitated 

genomic DNA was centrifuged down at 13,000 g, washed with ice-cold 70% EtOH and air-
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dried for 10 min. The pellet was redissolved in 200 µl of TE and 2 µl was taken for the PCR 

reaction (Edwards et al., 1991). 

 

Extraction buffer: 200 mM Tris-HCl (pH7.5), 250 mM NaCl, 25 mM EDTA, 0.5% SDS 

TE: 10 mM Tris-HCl(pH 8.0), 1 mM EDTA. 

 

 

2.2.1.5 Isolation of total RNA from plant tissue 

To isolate intact RNA from plant tissues, guanidine thiocyanate was used to disrupt cells, 

solubilize their components, and to denature endogenous Ribonucleases (RNases) 

simultaneously. RNases are very stable and active enzyme that generally do not require 

cofactors to function.  To minimise the ribonuclease activity, sterile plastic ware and sterilized 

glassware (baking for 8hrs at 180°C) was used.  

One gram of freshly-collected plant tissues was ground in a mortar. The tissue powder was 

suspended in 9 ml of buffer R1 containing 9 µl of buffer R2 and homogenized 3-5 times with a 

POLYTRON® for 15 sec. All operations were done quickly and keeping cold.  The homogenate 

was mixed by adding of 720 µl of buffer R3, and incubated on ice for 15 min. Thereafter, 9 ml 

of ice-cold buffer R4 was added, and the sample was incubated on ice for additional 15 min. 

The homogenized cells were collected by centrifugation at 15,000g for 30 min at 4°C. The 

supernatant was decanted on ice into a sterile 50 ml tube and precipitated by adding 0.8 volume 

of isopropanol for 5 min. The RNA pellet was collected in a COREX® tube by centrifugation at 

10,000 rpm in a Beckman JS-13.1 rotor. The pellet was dissolved in 16 ml of ice-cold buffer 

R5. To minimize column clogging, a pipet with a cut-off tip was used for a thorough 

resuspension of the pellet and an additional incubation at 60°C was applied for 5�10 min.  If 

the suspension still contained particulate matter, it was recentrifuged prior to mixing with 

buffer R6 and loading onto a column. Completely dissolved RNA solution was mixed with 4 

ml of buffer R6, applied onto QIAGEN-tip 500 column (preequilibrated with 10 ml of buffer 

QAT) and allowed to enter the resin by gravity flow.  The QIAGEN-tip 500 column was 

washed with 30 ml of buffer QA.  The RNA was eluted with 20 ml of buffer QRU. Eluted 

RNA was precipitated with 1 volume of isopropanol for 10 min on ice and collected by 

centrifugation at 10,000 rpm at 4°C. The pellet was washed with 80% EtOH, air dried for 10 

min at RT and dissolved in DEPC-treated H2O. 

 

Buffer R1: 4 M Guanidine thiocyanate(GIT), 100 mM Tris-HCl, 25 mM MgCl, 25 mM EDTA, 

pH7.5 
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Buffer R2: β-mercaptoethanol 

Buffer R3: 25% Triton X-100 

Buffer R4: 3 M NaAc, pH 6.0 

Buffer R5: 20 mM Tris-HCl, 1 mM EDTA, pH 8.0 

Buffer R6: 2 M NaCl, 250 mM MOPS, pH 7.0 

Buffer QAT: 400 mM NaCl, 50 mM MOPS, 15% ethanol, 0.15% Triton X-100, pH 7.0 

Buffer QA: 400 mM NaCl, 50 mM MOPS, 15% ethanol, pH 7.0 

Buffer QR: 1.2 M NaCl, 67 mM MOPS, 20% ethanol, pH 6.7 

Buffer QRU: 900 mM NaCl, 50 mM MOPS, 15% ethanol, 6 M urea (added to Buffer QR just 

prior to use), pH 7.0. 

 

 

2.2.1.6 Purification of mRNA from total RNA using DYNABEADS®®®® OLIGO(dT)25 

Dynabeads® Oligo (dT) 25 kit (Deutsche Dynal GmbH) is designed for the rapid isolation of 

pure, intact poly (A)+ RNA. Dynabeads are uniform, superparamagnetic polystyrene beads, 2.8 

µm in diameter.  Chains of deoxythymidylate, 25 nucleotides long, have been covalently 

attached to the surface of the beads. 

This method of mRNA purification is based on base pairing between the poly (A) residues 

of mRNA and oligo (dT) residues covalently coupled to the surface of the beads.  The 

suggested protocol uses 75 µg total RNA as starting material. The approximate capacity of the 

beads is 2 µg per mg, therefore 1 mg beads could purify sufficient amount of mRNA for any 

application. 

Up to 75 µg of total RNA was adjusted to 100 µl with DEPC treated water. Less 

concentrated RNA solution (more dilute than 75 µg/100 µl) were simply mixed with an equal 

volume of 2× binding buffer. RNA mixture was heated at 65°C for 2 minutes to disrupt 

secondary structures.  One milligram of Dynabeads was taken into MPC®-E-1 (magnetic 

particle concentrator) and washed with 2× binding buffer. Total RNA was added to the bead 

suspension, mixed gently, left to hybridize for 3-5 minutes, and beads were separated from 

supernatant  using MPC®-E-1 magnet.  The beads were washed twice with 200 µl washing 

buffer. Pure mRNA was eluted by adding 100 µl of elution buffer, followed by heating at 65°C 

for 2 minute and separating immediately using MPC®-E-1. The eluted mRNA was used 

immediately or stored frozen at -70°C until needed. 

 

2× Binding buffer: 20 mM Tris-HCl, 2 mM EDTA, 1 M LiCl, pH 7.5 
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1× Washing buffer: 10 mM Tris-HCl, 1 mM EDTA, 0.15 M LiCl, pH 7.5 

Elution buffer: 2 mM EDTA, pH 7.5. 

 

 

2.2.1.7 Spectrophotometric quantification of DNA and RNA 

For quantitating DNA or RNA, reading was taken at wavelength of 260 nm and 280 nm.  

The reading at 260 nm allows calculation of the concentration of nucleic acids in the sample.  

OD of 1 corresponds to approximately 50 µg/ml for double-stranded DNA, 40 µg/ml for single-

stranded DNA and RNA. The OD260/OD280 value provides an estimate of the purity of the 

nucleic acid. Pure DNA or RNA have OD260/OD280 values of 1.8 and 2.0, respectively.  If there 

is a contamination with protein or phenol, the OD260/OD280 would be significantly less than the 

values given above. 

 

 

2.2.1.8 Separation of DNA by agarose gel electrophoresis 

Electrophoresis through agarose gels is a standard method used to separate and purify DNA 

fragments. The agarose concentraion depends on the size of the fragments to be resolved.  The 

gel was solidified with 1× TBE buffer containing 5 µl of ethidium bromide (5 mg/ml).  DNA 

fragments were mixed with 1/10 of 10× Gel loading buffer and separated on the agarose gel. 

Electrophoresis was performed at 5V/cm using 1× TBE buffer.  Separated DNA fragments 

were visualized on a transilluminator by fluorescence under UV light (254 nm).  DNA size 

marker was loaded to estimate the size of fragments. 

 

10× Gel loading buffer: 50% glycerol, 1 mM EDTA, 0.25% bromophenol blue, 0.25% xylene 

cyanol. 

1× TBE buffer: 90 mM Tris-HCl (pH 8.3), 90 mM boric acid, 2.5 mM EDTA. 

 

 

2.2.1.9 Separation of RNA through formaldehyde gels 

For the electrophoretic separation of RNA fragments, a 0.8% formaldehyde gel was 

prepared.  To prepare 100  ml of formaldehyde agarose gel, 0.8 g of agarose was dissolved in 

10 ml of 10× MOPS  buffer and 73 ml of DEPC-treated water.  Once the gel was cooled down 

to ca. 60°C, 17 ml of formaldehyde was added in a fume hood with stirring.  The gel was 

prepared for horizontal electrophoresis.  Poly (A)+ RNA sample (2 µg/2 µl) was mixed with 15 
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µl of a sample buffer and 2 µl of a loading buffer, then denatured by heating at 60°C for 10 

min.  The gel was run at ca 2V/cm in 1× MOPS buffer until BPB marker has migrated ca. 6 cm 

(approximately 5 hrs) in fume hood.  

 

Sample buffer: 700 µl of deionized formamide, 270 µl of 35% formaldehyde, 30 µl of 10× 

MOPS. 

 

Deionization of formamide: For suspension deionization of formamide, 0.5% of Serdolit®MB-

1(SERVA # 45500) resin was added.  The suspension was slowly agitated for 1 hr at room 

temperature and filtered.  After filtration, the purified formamide was stored at -20°C.  

 

 

2.2.1.10 Transfer of nucleic acids onto nylon membranes 

Nucleic acids were transferred onto nylon membrane (Hybond+, Amersham) by capillary 

blotting.  DNA was separated on a 0.8% agarose gel in fresh 1× TBE buffer and transferred to a 

nylon membrane using 20× SSC.  The RNA was separated under denaturing conditions by 

agarose gel eletrophoresis.  To remove the formaldehyde, the agarose gel was washed with 

distilled water several times and transferred to a nylon membrane using 20× SSPE.  The 

membrane with transferred nucleic acid was washed with 6× SSC, air-dried and exposed to UV 

light (Stratalinker, Stratagene) to cross-link nucleic acids. 

 

20× SSC: 3 M NaCl, 0.3 M sodium citrate, pH 7.0. 

20× SSPE: 3.6 M NaCl, 20 mM EDTA, 200 mM NaH2PO4, pH 7.4. 

 

 

2.2.1.11 Radiolabeling of DNA probes with [αααα-32P] dCTP 

The klenow fragment of E.coli DNA polymerase I lacks 5�→ 3� exonuclease activity, so the 

radiolabeled product is synthesized exclusively by primer extension. A DNA fragment to be 

labeled was diluted with distilled H2O to a concentration of 50 ng in 21 µl and denatured by 

boiling for 5 min. The denatured DNA was mixed with 4.2 µl of an oligonucleotide mixture 

(dATP, dTTP, and dGTP) 1.5 µl of BSA(1mg/ml), 3 µl of [α-32P] dCTP and 1U of Klenow 

fragment. The mixture was incubated at 37°C for 1-2hrs.  Labeled DNA fragment was purified 

using the QIAquick nucleotide removal kit according to the provided protocol. 

 



Materials and Methods 
 

 24

2.2.1.12 Southern blot hybridization  

Genomic DNA (3-4 µg) was digested with different restriction enzymes, and the resulting 

fragments were separated according to size by electrophoresis through  an agarose gel. To 

improve transfer efficiency, DNA was depurinated by soaking the gel for 10 min in several 

volumes of 0.25 N HCl, then denatured in denaturation solution  for 30 min. In each step, the 

agarose gel was rinsed briefly with deionized water. The DNA was then soaked with 

neutralization solution for 30 min and transferred onto nylon membrane  by capillary blotting.   

The membrane was briefly washed with 6 × SSC, air dried, baked for 30 min at 80°C and used 

for hybridization. The Southern blot hybridization (Southern, 1975) was performed at 68°C. 

Before the hybridization, the nylon filter was prehybridized for 30 min. During the 

prehybridization, 32P-labeled probe and 50µl/ml of salmon sperm DNA was denatured and 

added to the hybridization solution. After pouring off the prehybridization solution, the filter 

was incubated in hybridization solution overnight and washed with a series of washing buffers.  

The efficiency of washing was monitored with a Geiger counter. The filter was covered with 

transparent plastic foil and exposed to a X-ray film. The film was normally developed after 3-5 

days of exposure at -70°C with an intensifying screen. 

 

Denaturation solution: 0.5 N NaOH, 1.5 M NaCl 

Neutralization solution: 3 M NaCl, 0.5 M Tris-HCl, pH 7.5 

Prehybridization solution: 6× SSPE, 3% SDS, 0.02% PVP, 0.02% Ficoll 400 

Hybridization solution: 3× SSPE, 1% SDS, 0.02% PVP, 0.02% Ficoll 400  

Salmon Sperm DNA: Salmon Sperm DNA (Sigma type III sodium salt) was dissolved in TE, 

pH7.6 at a concentration of 5 mg/ml. If necessary, the solution was boiled in a microwave oven 

for 5-10 min, then stirred for 3- 4 hrs to dissolve the DNA 

Washing solution: 2× SSPE, 0.1% SDS or 1× SSPE, 0.1% SDS or 0.1× SSPE, 0.1% SDS. 

 

 

2.2.1.13 Northern blot hybridization 

  Northern blot hybridization was carried out with RNA immobilized on a nylon filter and a 

radiolabeled probe at 42°C. All procedures were the same as in the Southern blot hybridization 

protocol, but the solution was as follows. 

 

Pre/hybridization solution: 50% deionized formamide, 5× SSPE, 10× Denhardt mix, 0.5% SDS, 

100 µg/ml of salmon sperm DNA 
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Non-stringent washing solution: 2× SSPE, 0.1% SDS at 25°C 

Stringent washing solution: 1× SSPE, 0.1% SDS at 40°C. 

 

 

2.2.2 Enzymatic modifications of DNA 
 

2.2.2.1 Digestion with restriction enzymes 

Digestion with restriction enzymes was performed according to the supplier�s 

recommendations and in the provided buffers. The digestion was carried out for 1-2hrs with 10 

units of enzyme at an appropriate temperature (mostly at 37°C), and stopped by heat 

inactivation at 75°C for 10 min. 

 

2.2.2.2 Ligation of DNA fragments 

  Ligation of DNA fragments to a linearlized plasmid vector involves the formation of new 

bonds between a phosphate residue located at the 5� termini of double-stranded DNA and a 3�-

hydroxyl moieties. To avoid recircularisation of the vector, the 5� terminal ends  were 

dephosphorylated using alkaline phosphatase. The ligation reaction contained 1 mM of ATP 

and 5% of PEG 8000. The insert was also sometimes incubated at 65°C for 5 min. Before 

adding T4 DNA ligase. Ligation was performed for at least 4 hrs at 12-16°C. 

 

 

2.2.3 Bacterial Transformation 

 
2.2.3.1 Preparation of electro-competent cells of E.coli and A.tumefaciens  

Basically, the bacteria were grown to mid-log phase, chilled, centrifuged, and then washed 

extensively in sterile conditions to reduce the ionic strength of the cell suspension. 

A single colony was inoculated into 10 ml of LB media and cultured overnight. This 

overnight culture was used to inoculate a 500 ml culture in the next morning, and grown at 

18°C till the OD at 600 nm reached 0.4. Freshly grown bacterial cells were centrifuged down 

at 4,000 g for 15 min at 0°C, resuspended with 500 ml of ice-cold distilled water.  

Resuspended cells were washed again with 250 ml of ice-cold distilled water after 

centrifugation. Finally, the cells were washed with 20 ml of distilled water, centrifuged down, 

resuspended in 1ml of distilled water containing 7% DMSO. The cells were aliquoted in 100 µl 

in sterile tubes, quickly frozen in liquid nitrogen and stored at -70°C. 
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2.2.3.2 Elcetroporation of bacterial cells 

Frozen elecrocompetent cells were thawed on ice and mixed with 2 µl of ligation mix.  The 

mixture was transferred into a prechilled cuvette. The electroporation was done at 1800 V. A 

single electroporation pulse was given, and 1 ml of SOC media immediately added.  After 

incubation at 37°C (or at 28°C for the Agrobacterium) for 1.5 hrs, the cells were plated onto 

selective media. 

 

SOC media:  2% Bacto tryptone, 0.5% Bacto yeast extract, 10 mM NaCl, 250 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4, 20 mM glucose (filter sterilized, added whenever it is needed). 

 

 

2.2.4 Methods for proteins analysis 
 

2.2.4.1 Purification of GST-fusion proteins from E.coli  

Fusion proteins expressed from pGEX vectors (Promega) contain a glutathione S-transferase 

(GST) moiety and can be purified by affinity chromatography on glutathione agarose (G4510, 

SIGMA) (Smith and Johnson, 1998). GSTs are a class of enzymes that utilize glutathione (γ-

glutamylcysteinylglycine) as a substrate to inactivate toxic small molecules via formation of 

mercapturic acids. Because the affinity of GST for its substrate is in the submillimolar range, 

immobilization of glutathione on an agarose matrix makes a highly efficient affinity 

chromatography resin. 

cDNA fragments from pGAD424 and  pACT2 plasmids were suhcloned into pGEX-5X-1, 

transformed into Escherichia coli DH10B for propagation and retransformed into  Escherichia 

coli BL21 or Epicurian coli BL21-CodonPlus (DE3)-RIL for purification of glutathione S-

transferase (GST)-fusion protein. 

The 25 ml overnight culture containing 100 µg/ml ampicillin was used to inoculate a 500 ml 

culture, and grown at 30°C until the OD600 is 0.8-0.9 (ca. 2-2.5 hr). A 1 ml sample was 

immediately taken before induction (noninduced cells), centrifuged down and resuspended in 

2× SDS gel loading buffer. The sample was frozen at -20°C until needed for SDS-PAGE. The 

rest of the cells was induced by adding IPTG  to a final concentration of 0.5 mM. The culture 

was grown for an additional 2.5-3hrs. A second 1 ml sample was taken and stored at -20°C as 

done above. The induced cells were harvested by centrifugation at 4000 g for 15 min, 

resuspended in 9 ml of MTBS buffer containing 1% Triton, 1 mM PMSF, 1 mg/ml lysozyme 

and incubated on ice for 15 min. To lyse cells, sonification (Branson sonifier model B-12/B-15) 
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was used for 3×15 seconds continuously at 3-4 power. The lysed cells were centrifuged down 

at higher speed (10,000 rpm in a Beckman JS-13.1 rotor). The supernatant was combined with 

1 ml of swolen glutathione-agarose (7 mg glutathione agarose in 5 ml MTBS buffer was rotated 

gently at 4°C O/N) for 30 min at 4°C. Bound proteins were precipitated at 1,000 rpm in a 

Heraeus CHRIST  Typ-Nr. 4400 roter. For analysis, a third 1 ml sample was taken from the 

supernatant.  The bound proteins were in the pellet together with agarose beads.  To get rid of 

unbound proteins, beads were extensively washed 5 times with 2 ml of MTBS buffer at 800 

rpm in a Heraeus CHRIST  Typ-Nr. 4400 roter. Specifically bound proteins were eluted with 

100 µl of elution buffer after 1-2 hr incubation, and eluted again after overnight incubation at 

4°C.  The amount of protein was estimated by SDS-polyacrylamide electrophoresis with a 

defined amount of BSA, and the protein was stored at -70°C until  needed. 

 

MTBS buffer/l:  8.77 g NaCl, 2.85 g Na2HPO4, 0.55 g NaH2PO4, pH 7.3. 

Elution buffer: 10 mM reduced glutathione(SIGMA), 50 mM Tris-HCl, pH 8.0. 

 

 

2.2.4.2 SDS-polyacrylamide gel electrophoresis of proteins 

The analytical electrophoresis of proteins was carried out in SDS-polyacrylamide gel that 

ensured denaturation of the proteins and minimized aggregation. The denatured polypeptides 

bind SDS and become negatively charged, because the amount of bound SDS is almost 

proportional to the size of the polypeptide and is mearly independent of its sequences. 

The electrophoresis was carried out with a discontinuous buffer system in which the 

stacking gel contains Tris-HCl (pH 6.8), the upper and lower reservoirs contain Tris-glycine 

(pH 8.3), and the resolving gel contains Tris-HCl (pH 8.8) to increase the resolution of SDS-

polyacrylamide gels. 

A minigel apparatus (Hoefer), which contains 10x8 cm glass plates was routinely used for 

protein analysis and in vitro GST pull-down assay. Once the resolving gel has  been poured, the 

isobutanol was used to overlay  the solution. This overlay prevents oxygen from diffusing into 

the gel and inhibiting polymerization. After polymerization was completed (ca. 30 min), the 

overlay was poured off and the stacking gel was poured up to the top of the glass plates. 

Immediately, a clean comb (1.6 cm) was inserted  and the gel was polymerized in a vertical 

position. 
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Samples were mixed with a loading buffer, boiled for 5 min to denature proteins and loaded 

onto the gel.  The electrophoresis was carried out at a constant current of 15 mA when the dye 

was in the stacking gel and 30 mA when the dye reached to the separating gel. 

 

 

Resolving gel (10%)/30 ml              dH2O   11.88 ml 

                                                                  30% acrylamide mix 10.02 ml 

     1.5 M Tris-HCl (pH8.8)   7.50 ml 

     10% SDS    0.30 ml 

     10% APS    0.30 ml 

     TEMED  20.00 µl 

Stacking gel (5%)/10 ml  dH2O     6.80 ml 

     30% acrylamide mix   1.70 ml 

     1 M Tris-HCl (pH 6.8)   1.25 ml 

     10% SDS     100 µl 

     10% APS     100 µl 

     TEMED                     6 µl 

2x SDS loading buffer:                            100 mM Tris-HCl(pH 6.8), 200 mM DTT, 4% SDS 

                                                                 0.2% bromophenol blue, 10% glycerol 

 

Running buffer:                            3% Tris, 14.4% Glycine, 1% SDS. 

 

 

2.2.4.3 Staining  of gels with coomassie brilliant blue 

Coomassie brilliant blue is an aminotriarylmethane dye that forms strong  but not covalent 

complexes with proteins by a combination of van der Waals forces and electrostatic 

interactions with NH3
+ groups. After electrophoresis in a SDS-polyacrylamide gel, 1% 

coomassie brilliant blue was used to stain proteins for 30 min at RT.  The stained gel was 

washed several times with a destaining solution. 

 

Coomassie  staining solution: 1% Coomassie brilliant blue R-250, 45% methanol, 10% acetic 

acid. 

Destaining solution:  45% methanol, 10% acetic  acid. 
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2.2.4.4 Electroblotting of proteins 

Electrophoretic transfer of proteins was carried out perpendicularly from the direction of 

travel of proteins through the separating gel. The gel and positively charged nylon membranes 

(Hybond N+, Amersham) were sandwiched between pieces of a Whatman 3MM paper that 

have been soaked in a transfer buffer. The sandwich was then placed between graphite plate 

electrodes, with nylon membrane on the anodic side. Transfer of proteins from the gel to 

membrane was carried for 1.5 hr to 2 hr. The gel was dried for  1hr at RT, and the  membrane 

was then used for Western blot with antibody. 

 

10× Western transfer buffer:  1.5 M Glycine, 0.2 M Tris base. 

 

 

2.2.4.5 In vitro translation and transcription 

For in vitro translation and transcription, TNT® Coupled Reticulocyte Lysate Systems 

(Promega);offering an eukaryotic in vitro coupled trancription/translation system, was used. 

The circular plasmid DNA was phenol:chloroform extracted and ethanol precipitated before 

use in a transcription/translation reaction. The following is an example of standard reactions 

using  [35S] methionine. 

 

TNT® Rabbit Reticulocyte  Lysate  25 µl 

TNT® Reaction buffer      2 µl 

TNT® RNA T7 polymerase     1 µl 

Amino acid mixture, minus methionine, 1mM   1 µl 

[ 35S ] methionine ( 37TBq/mmol at 10mCi/ml)   2 µl 

RNAse inhibitor      1 µl 

DNA        1 µg 

ddH2O         to a final volume of    50 µl 

 

 

2.2.4.6 In vitro GST fusion protein pull-down assay  

cDNA fragments cloned in pGAD424 and pACT2 were subcloned in pGEX-5X-1 and used 

for purification of glutathione S-transferase(GST) fusion proteins. A cDNA fragment of RSI 

(obtained from Dr. M. Roccaro) served as a template to synthesize [35S] methionine-labeled 

proteins in TNT® Coupled Reticulocyte Lysate Systems (Promega). GST fusion proteins (10 µg, 
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estimated using BSA protein staining), a control GST protein and the empty matrix (glutatione-

agarose beads alone) was immobilized with glutathione-agarose in 150 µl of a binding buffer 

(100 mM NaCl, 20 mM Tris· HCl pH. 7.5, and  0.1% Nonidet P 40) for 30 min at 4°C.  The 

beads were centrifuged down at 2,000 g for 1 min and washed with 500 µl of the binding buffer.  

In order to reduce unspecific binding, the beads were incubated using 300 µl of a blocking 

buffer (5 mg/ml of a milk powder) for 30 min at 4°C , then washed again with 500 µl of the 

binding buffer. Equal amounts (3 µl) of the 35S-labeled RSI protein were incubated with 

glutatione-agarose coupled to GST fusion proteins, the control GST protein and empty matrix 

in 200µl of the blocking buffer (1 mg/ml) for 1 hr at 4°C. After removal of the supernatant, the 

beads were extensively (3 times) washed with binding buffer, and together with the supernatant 

fractions, separated on a 10% SDS-polyacrylamide gel. The 35S-labeled RSI protein was 

detected by autoradiography. 

 

 

2.2.5 Methods for yeast two-hybrid system 
 

2.2.5.1 Yeast two-hybrid screen 

  The vectors and strains provided in the MATCHMAKER Two Hybrid System 

(CLONTECH ®) were used for screening of the Antirrhinum cDNA expression Library 

obtained from Dr. H. Sommer. A 1 l culture of a yeast strain Y190 in YPD medium, containing 

the appropriate bait, was transformed with a total of 100 µg of cDNA (1:1 of random-primed 

cDNA in pACT2 and oligo(dT)-labeled cDNA in pGAD424) library, and 900 µg of carrier 

DNA (Schiestl et al., 1989) by the lithium acetate method (Gietz et al., 1992). After additional 

growth in 1 l of YPDA medium, the cells were pelleted, resuspended in 10 ml of YSD medium 

without glucose and plated onto six 24 cm square plates containing a medium to select for all 

possible interactors (Trp-Leu-). Transformation efficiency was also determined by growing a 

small aliquot on medium lacking Trp and Leu. Colonies from 6 plates scraped off after growing 

for 2 days. They were plated again onto fifty-five 15 cm square plates containing 3-AT (25-30 

mM) to select for histidine prototrophy (Trp-His-Leu-). Approximately 100,000 cells per plate 

were plated, grown for 10-14 days, picked and re-streaked on selective medium for 

conformation. β-Galactosidase activity was assayed on filters as described  (Breedon and 

Nasmyth, 1985).  

The yeast strains used in this study have been described previously:  
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Y190 (Harper et al., 1993), HF7c (Feilotter et al., 1994) and  SFY526 (Bartel et al., 1993). 

 

YPD media/l: 20 g of Difco peptone, 10 g of yeast extract, 18 g of agar (for plates only). 

                       Add H2O to 950 ml. Adjust pH to 5.8, autoclave, and cool to ~55°C . 

                       Add dextrose  (glucose) to 2% (50 ml of a sterile 40% stock solution). 

 

YPDA medium: To 1 liter of YPD medium, add 15 ml of filter-sterilized 0.2% adenine 

hemisulfate to a final concentration of 0.003%. 

 

 

2.2.5.2 Plasmid  isolation from yeast  

Shuttle plasmids which replicate in both Escherichia coli and Saccharomyces cerevisiae can 

be isolated from yeast, and used to transform E.coli.  Plasmid DNA isolated from yeast 

(Hoffman et al., 1987) is often contaminated by yeast genomic DNA, therefore 

retransformation into E.coli is necessary. 

A single colony, grown on a selective YSD media lacking Trp and Leu for 3 to 4 days, was 

inoculated into 5 ml of YPD liquid medium and grown overnight at 30°C. Freshly grown yeast 

cells were centrifuged down at 2,000 g for 5 min. The pellet was resuspended with 0.2 ml of a 

yeast lysis solution, an equal volume of phenol/chloroform (1:1 pH 8.0) and 0.3 g of acid 

washed glass beads (Sigma, G-8772) were added, and mixed vigorously by vortexing. The 

suspension was centrifuged down at 13,000 g for 15 min at RT.  The supernatant was 

precipitated with 0.8 volume of isopropanol. The pellet was washed with 70% EtOH, air-dried 

and dissolved in 200 µl of TE. 

 

Yeast lysis buffer: 2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl (pH 8.0), 1 

mM EDTA 

 

YSD media/l: 6.7 g of Difco yeast nitrogen base, 20 g agar (for plates only)  

                     Add H2O to 850 ml. Add 100 ml of the appropriate sterile 10× dropout solution.  

                     Adjust pH to 5.8, autoclave, and cool to ~55°C.  Then add dextrose  (glucose)  

                     to 2% (50ml of a sterile 40% stock solution) 

 

10× Dropout solution/l: 300 mg of L-Isoleucine, 1500 mg of L-Valine, 200 mg of L-Adenine 

hemisulfate salt, 200 mg of L-Arginine HCL, 200 mg of L-Histidine HCL monohydrate, 1000 
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mg of L-Leucine, 300 mg of L-Lysine-HCL, 200 mg of L-Methionine, 500 mg of L-

Phenylalanine, 2000 mg of L-Threonine, 200 mg of L-Tryptophan, 300 mg of L-Tyrosine, 200 

mg of L-Uracil. 

10× Dropout solution was autoclaved and stored at RT. 

 

 

2.2.5.3  ββββ-galatosidase filter assay  

As a result of a two-hybrid protein-protein interaction, the GAL4 transcriptional activator is 

functionally reconstituted and activates transcription of reporter genes (LacZ and HIS3) 

carrying upstream a GAL 4 binding site. Screening for expression of the LacZ reporter  gene, 

which has a different promoter as the HIS3 reporter gene, eliminates many of the false positives 

that arise in a yeast two-hybrid screening (Breedon and Nasmyth, 1985). 

A single yeast colony was streaked and grown on a filter and placed on YSD media with an 

appropriate selection for 2 to 3 days at 30°C. The filter (nylon membrane) was permeabilized 

with liquid nitrogen for 10 sec. The filter was carefully placed, colony side up, on a filter 

prewetted with β-galactosidase filter assay buffer.  The appearance of blue color was checked 

periodically during incubation at 30°C. 

 

β-galactosidase filter assay buffer: 10 ml of Z-buffer, 27 µl of β-mercaptoethanol, 167 µl of X-

gal (20 mg/ml in DMF) 

 

Z-buffer/l: 16.1 g of Na2HPO4·7H2O, 5.50 g of NaH2PO4·H2O, 0.75 g of KCl, 0.246 g of 

MgSO4·7H2O, pH 7.0. 

 

 

2.2.5.4  ββββ-galatosidase liquid assay 

A single yeast colony was transferred into 5 ml of a selective YSD liquid media (Trp-Leu-), 

and incubated overnight at 30°C with shaking (250 rpm). From the overnight culture, 2 ml was 

diluted with 8 ml of YPD liquid media and grown for ca. 3 hrs until the OD600 reached 0.5-0.8. 

After vortexing to disperse cell clumps, the exact OD600 was recorded.  One and half milliliter 

of culture was centrifuged and washed carefully with Z buffer.  The pellet was resuspended in 

300 µl of Z buffer, thereby concentrating the cells 5- fold. 100 µl of the cell suspension were 

transferred into a new tube, liquid nitrogen permeabilized for 1 min, and thawed in a 37°C 

water bath for 1 min. As a control, a tube with 100 µl of Z buffer was used. For each tube, 0.7 
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ml of Z buffer plus β-mercaptoethanol was added, and immediately 0.16 ml of ONPG in Z 

buffer (4 mg/ml) was added. After the yellow color developed, 0.4 ml of 1 M Na2CO3 was 

added to the tubes. The elapsed time in minutes was recorded. Cell debris was pelleted by 

centrifugation, and the supernatants were carefully transferred into clean cuvettes. The units of 

β-galactosidase enzymatic activity was calculated using the following formula 

(1000×A420)/T×V×A600 

A420: absorbacce of yellow colour developed by the reaction at 420 nm 

A600: the turbidity or absorbance of the yeast culture at 600 nm 

T:   time of the reaction in minutes 

V:   0.1 ml×concentration factor (0.1 ml was used for the reaction). 

 

 

2.2.5.5 Small scale yeast co-transformation 

A single yeast colony grown in YPD medium was transferred into 10 ml of the YPD liquid 

media, and grown overnight. Freshly grown yeast cells were collected by centrifugation at 2000 

g for 15 min, washed once with 1/10 volume of distilled water and once with 1/10 volume of 

1×LiAc/TE solution. Plasmid DNA together with 5 µl of DMSO and 5 µl of carrier DNA (10 

mg/ml) was mixed well, thereafter 50 µl of yeast cells and 350 µl of 1× PEG/LiAc/TE were 

added. The mixture was incubated at 30°C for 30 min and heat-shocked at 42°C for 15 min. 

The cells were centrifuged down and resuspended with 500 µl of distilled water. From the 

resuspended cells, 50 � 100 µl were spread onto selectable YSD plates and co-transformed cells 

were visible after approximately 4-5 days. 

 

1×LiAc/TE: 1×LiAc, 1×TE 

1× PEG/LiAc/TE: 40% PEG 4000, 1×LiAc, 1×TE 

10×TE: 0.1 M Tris-HCl (pH7.5), 0.1 M EDTA 

10×LiAc: 1 M lithium acetate (Sigma #L-6883), pH7.5. 

 

 

2.2.5.6 Yeast mating 

Yeast mating is an alternative method to verify positive two-hybrid interactors by 

introducing two different plasmids into the same host cells.  The reporter genes will be 

activated only in the presence of bait protein and prey protein. 
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RSI fused to the GAL4 DNA binding domain vector was transformed into Y187 (MATa), 

and all putative RSI interactors fused to the GAL4 activation domain vector were transformed 

into Y190 (MATα).  The two haploid yeast strains were then mated for 6-8 hrs at 30°C and 

spread on selective media (Trp-His-Leu-). After 3-5days, diploid cells were tested for β-

galactosidase activity using the filter assay.  

 

 

2.2.5.7 Preparation of yeast competent cells 

A single yeast colony which was grown on an appropriate selective YSD media (-T) was 

transferred into 25 ml of the selective YSD liquid media (-T). The overnight culture was used 

to inoculate a 500 ml of the YPD media (OD600 was around 0.2) and grown till OD600 reached to 

0.4-0.5. This took approximately 4-4.5 hrs.  If the cells had visibly clumped, they were 

dispersed with gently vortexing before using them in the next step. The cells were collected by 

centrifugation at 2,000 g for 5 mim, washed once with 1/10 volume of distilled water and 

1×LiAc/TE.  The cells were resuspended in the YSD media without 10× dropout and used for 

library screening.   

 

 

2.2.5.8 Preparation of carrier DNA  

High efficiency transformation of yeast cells uses single stranded nucleic acids as a carrier 

(Schiestl and Gietz, 1989). Salmon testis DNA (Sigma-D1626 Type III Sodium from Salmon 

testis) was dissolved in TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA), 10 mg/ml, by pipetting the 

solution. It was then incubated overnight at 4°C to give a homogenous viscous solution.  

Thereafter, it was sonicated twice for 30 s with a large probe at ¾ power. The resulting DNA 

had an average size of 7 kb as judged from an ethidium bromide gel, ranging in size from 2 to 

15 kb. Too strong sonication, leading to carrier DNA with smaller average size of about 1-2 kb, 

dramatically reduced the transformation efficiency. 

The DNA solution was extracted once with TE-saturated phenol, once with TE-saturated 

phenol:chloroform (1:1), and once with chloroform. The DNA was then percipitated by adding 

1/10 volume of 3 M sodium acetate (pH 6.0) and 2.5 volume of ice cold ethanol (99.9%).  The 

precipitate was collected by centrifugation at 12,000 g and washed with 70% ethanol, partially 

dried under vacuum and redissolved in TE at 10 mg/ml.  The DNA was denatured in a boiling 

water bath for 20 min, then immediately cooled in an ice water bath.  The DNA solution was 

stored in aliquots at -70°C and thawed when needed. 
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2.2.6 In planta transformation of Arabidopsis thaliana by vacuum infiltration  
 

2.2.6.1 Growth of plants for transformation (T0) 

Seeds were germinated in a community tray in a short day (SD) growth chamber (9 hrs light, 

22°C). Three weeks after sowing, seedlings were transferred into 10 cm pots. The plants were 

further grown for two more weeks. If desired, it was possible to keep the plants longer under 

SD for up to 2 to 3 more weeks. Thereafter, they were transferred to long day (LD) conditions 

(16 hrs light, 22°C) to promote bolting.  Once the primary inflorescence shoots reached about 

10 cm (approx. 2 to 3 weeks later), they were removed in order to induce the development of 

rosette inflorescence shoots.  The plants were ready for infiltration 6 to 7 days later. 

 

 

2.2.6.2 Growth of Agrobacterium 

The T-DNA constructs were made in the pBIN19 binary vector system (Frisch et al., 1995).  

The vector carrying the BAR gene was generally used because it allowed a more reliable 

selection of transformants. Binary vectors were transformed by electroporation into the 

Agrobacterium strain GV3101 (pMP90) (Koncz and Schell, 1986).  A 25 ml liquid culture 

(YEB + antibiotics) was started from a single colony and grown at 28°C for 2 days. The day 

before the infiltration (Becker et al., 1992), 10 ml of this preculture was used to inoculate 500 

ml medium (YEB+antibiotics) and incubated overnight. On the following day, the cells were 

harvested by centrifugation at 4000 g for 15 min and resuspended in infiltration medium (IM) 

to an OD between 0.8 � 1.2.  The bacterial cells were routinely resuspended in 1 l of IM. 

 

YEB medium/l: 5 g of Gibco beef extract, 1 g of bacto yeast extract, 1 g of bacto tryptone, 5 

g of sucrose pH 7.4, and add 2 ml of 1 M MgSO4 after autoclaving 

 

Antibiotics for GV3103 (pMP90) +KanR binary vector: 100 mg/ml Rifampicin, 25 mg/ml of 

Gentamycin, 50 mg/ml of Kanamycin 

 

Infiltration medium (IM): 0.5× MS salts, 1× B5 vitamins, 5% sucrose, 0.044 µM 

benzylaminopurine (10 µl/l of a 1 mg/ml stock), pH 5.7 (with KOH). After autoclaving and 

prior to use, add BAP and the surfactant SILWET L-77 (Osi Specialties, Inc; 0.005% v/v-50 

µl/l). 
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2.2.6.3 Vacuum infiltration and selection of transformants 

A 30 cm diameter glass bell jar was connected via a condensation trap to a Leybold Trivac 

oil pump (type S 8B/AF 4-8).  To the bell jar 2 glass trays (29 cm×10 cm×5 cm)  were fit, each 

containing 500 ml of the Agrobacterium suspension. Each tray could hold two inverted pots. 

Only the inflorescence shoots were submerged in the Agrobacterium suspension. During the 

treatment under vacuum of about 16 mbar for 5 min, the suspension bubbles profusely.  After 

the treatment the vacuum was released quickly by removing the rubber tubing that connects the 

bell jar to the condensation trap.  The bacterial suspension was reused for the next plants.  After 

the infiltration treatment the plants looked somewhat glassy.  Plants were taken back to a LD 

growth chamber or to the greenhouse, the temperature was kept lower than 25°C.  Under this 

condition, plants recovered quickly, and one day after the infiltration treatment already 

displayed normal newly-opened flowers. 

The seeds were collected in paper bags. Bagged plants were watered for one more week and 

then allowed to dry for 1 to 2 more weeks. Hundreds of seeds were distributed in several 12 cm 

pots. Transgenic plants were selected by spraying with a BASTA (herbicide) solution (0.1% for 

one-two week old plants, 0.5% for two-three week old plants). 

   

 

2.2.7 Methods for in situ hybridization in Planta 

 
2.2.7.1 In situ hybridization with digoxigenin (DIG) labeled probes 

In Situ hybridization techniques (Coen et al., 1990) allow to detect spatial and temporal 

expression of specific genes in morphologically preserved plant tissue sections. The DIG 

labeling method is based on a steroid isolated from digitalis plants (Digitalis purpurea and 

Digitalis lanata). As the blossoms and leaves of these plants are the only natural source of 

digoxigenin, the anti-DIG antibody does not bind to other biological material. 

 

 

2.2.7.1.1 Size of tissue and penetration of fixative 

Plant tissues were fixed immediately after dissection in 4% formaldehyde. In general, the 

smaller the size of tissues is the better results of in situ hybridization.  Plant tissues were 

dissected using a razor blade.  Before use, any fat or grease was removed from the blade using 

100% ethanol because of the fat might seal the tissue thus infiltration of the fixative is 
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prevented.  The tissues were cut as small as possible on a clean glass-plate.  One dimension of 

the tissue was < 1mm, and the others was < 10mm. 

To preserve the morphology, the biological material was fixed using 4% formaldehyde.  

Plant tissues contain air between the cells, therefore they float on the surface of the fixative.  

For the better penetration of the fixative, the tissues were vacuum infiltrated for a few minutes.  

Because formaldehyde vapor is volative, the fixative was replaced after the vacuum treatment. 

 

 

2.2.7.1.2 The procedure of fixation (Day 1), dehydration steps (Day 2-4), wax embedding 

(Day 4-8) 

Fixation is one of the most critical steps for successful in situ hybridization.  Poorly fixed 

material will give little or no in situ signal even with probes for highly abundant mRNAs.  

Fixation should provide RNA retention while allowing accessibility of the probe to the RNA. 

After fixation, the tissue was washed and subsequently dehydrated in an ethanol series. 

Replacement of fresh paraffin wax (melted at 60°C) was done to get rid of any traces of 

histoclear. 

 

Day 1 

4% paraformaldehyde: 10× PBS and paraformaldehyde (stored in a cold room) 

Method: Prepare PBS using a graduate cylinder, pour into a sterile flask, add 2-3 pellets of 

NaOH, microwave up to 60 °C.  Weigh paraformaldehyde in fume hood, add to PBS, seal flask 

with parafilm, shake until dissolved, put flask on ice.  Adjust pH to 7.0 with H2SO4. 

Paraformaldehyde is very toxic, always seal well or keep in fume hood. 

 

Day 2 

0.85% saline                 30 mins  on ice 

50% ethanol/0.85% saline   3 hrs  on ice 

70% ethanol/0.85% saline   3 hrs  on ice 

85% ethanol/0.85% saline  overnight 4°C 

 

Day 3 

 

95% ethanol/dH2O                            4 hrs                   4°C 

100% ethanol/dH2O                 4 hrs               4°C 
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100% ethanol/dH2O                     overnight  4°C 

 

Day 4 

100% ethanol       2 hrs  room temp 

50% ethanol/50% histoclear     1 hr  room temp 

100% histoclear       1 hr  room temp 

100% histoclear       1 hr  room temp 

100% histoclear       1 hr  room temp 

50% histoclear/50% wax chippings,   overnight at  58°C 

 

Day 5-7 

The 50% histoclear/50% wax chippings was replaced with 100% wax and changed twice daily. 

The wax was poured slowly to avoid  formation of bubbles. 

 

Day 8 

The tissue blocks was made using 15 cm Petri dish. A layer or wax was poured sufficient to 

cover the tissue and to orientate the tissue in the mold using preheated forceps. Tissue blocks 

was kept molten in a 58°C incubator for a while. They were solidified on ice and waited till 

wax just begins to come solid, then the mould floated on water. After the surface began to 

solidify and indent, the mould was inverted and left for 5 min to solidify completely. The 

blocks were stored at 4°C until used. 

 

2.2.7.1.3 Sectioning 

The block was cut to a trapezoid shape, leaving about 2 mm of wax around the tissue.  The 

ribbons of section was cut at 8 µm thickness, floated onto sterile water on coated slides then 

placed on a 42°C hotplate for a few minutes until the ribbon flattened out. The excess water 

was drained off and then tissues pressed with lens.  Sections were left on the hotplate overnight 

to dry. 

 

2.2.7.1.4 Probe preparation 

To obtain a specific probe, the DNA fragment was subcloned into a vector containing T3 or 

T7 RNA polymerase promoters. The insert, together with T3 or T7 RNA polymerase binding 

sequences, was amplified by PCR, gel purified by using the agarose gel extraction kit and 

eluted in DEPC-treated water to give a concentration of 100-200 ng/µl. 
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2.2.7.1.5 Procedure for digoxigenin labeling of probes 

The reaction mixture was incubated for 2 hrs at 37°C. From the reaction mixture, 1 µl was 

taken and tested on agarose gel.  To the rest of reaction mixture, 75 µl of 1× MS buffer, 4 µl of 

tRNA (50 mg/ml) and 2 µl of DNAse (Boehringer) were added and incubated further for 15 

min at 37°C. The mixture was checked again on agarose gel by loading 2 µl of it. To the 

mixture 100 µl of 3.8 M NH4Ac, 600 µl of ice-cold absolute EtOH was added and left 

overnight. On the following day it was centrifuged down at 13,000g (14,000 rpm in a 

HERAEUS #3754 roter), washed with 80% EtOH, air-dried and resuspended in 50 µl of 

DEPC-treated water.  The concentration of the probe was determined before hybridization 

following the manual provided by the Boehringer DNA labeling kit. 

 

Reaction mixture:  

template     2 µl 

Dig-UTP mix   2 µl 

transcription buffer   2 µl 

RNA polymerase (T3 or T7)  2 µl 

DEPC-water    up to  20 µl total volume 

 

1×MS buffer: 10 mM Tris-HCl pH 7.5, 10 mM NaCl2, 50 mM NaCl. 

 

 

2.2.7.2 In situ hybridization 

 

2.2.7.2.1 Tissue pretreatment  

The procedures of tissue pretreatment were performed using a glass cylinder rinsed with 

autoclaved water and with the sterilized solution using autoclaved distilled water.  All solutions 

were poured in glass troughs.  The slides were put in stainless steel racks and passed through 

the following series of solutions. 

 

1. Histoclear      10 min 

2. Histoclear      10 min 

3. 100% EtOH     1 min 

4. 100% EtOH     30 sec 

5. 95%EtOH     30 sec 
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6. 85%EtOH, 0.85% saline   30 sec 

7. 50%EtOH, 0.85% saline   30 sec 

8. 30%EtOH, 0.85% saline   30sec 

9. 0.85% saline     2 min 

10. PBS in 2×SSPE           20 min at 70°C 

11. PBS     2 min 

12. Pronase in 1× Pronase buffer  10 min 

13. Glycine (0.2% in PBS)   10 min 

14. PBS       2 min 

15. Paraformaldehyde    10 min 

16. PBS      2 min 

17. PBS      2 min 

18. 0.85% saline     2 min 

19. Dehydrated through the ethanol series from No. 8 to 4 in a reverse way 

 

 

10× PBS: 1.3 M NaCl, 0.03 M Na2HPO4, 0.03 M NaH2PO4 

 

Pronase (Sigma P-6911): 40 mg/ml in dH2O. Predigested by incubating for 4hrs at 37°C. 

Stored in 1 ml aliquots at -20°C 

 

20× pronase buffer: 1 M Tris-HCl, pH 7.5, 0.1 M EDTA 

 

10% Glycine: 10 g in 100 ml of dH2O. Stored at 4°C. 

 

 

2.2.7.2.2 Hybridization 

The following hybridization mixture was prepared, spun down shortly and left at room 

temperature till it is needed.  The hybridization mixture was prepared by mixing 2 µl of probe, 

2 µl of dH2O, 4 µl of formamide. The riboprobes were commonly used at a concentration of 

0.1-0.3 ng/µl/kb. The probe was denatured for 2 min at 80°C, spun down and cooled on ice. 

Then the probe was mixed with the hybridization buffer (32 µl/slide) and left at room 

temperature. The slides were taken out from a pretreatment solution, allowed to dry completely. 

Per slide 40 µl of hybridization mix was used.  To keep the hybridization tray humid, a paper 
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towel was soaked with 2× SSC, 50% formamide and placed to the bottom of the tray.  

Hybridization was performed in a chamber at 50°C overnight.  

 

Hybridization buffer for 24 slides: 

10× salts     100 µl 

Deionized formamide   400 µl 

tRNA 50mg/ml     10 µl 

100× Denhardt�s solution    10 µl 

H2O       80 µl 

50% dextran sulphate   200 µl 

Final volume     800 µl 

 

2.2.7.2.3 Hybridization washes 

Before starting the washing step, two water bathes were set at 37°C and 50°C.  Slides 

hybridized overnight were put back into stainless steel racks, placed in a trough containing the 

washing buffer (2× SSC, 50% formamide) and left for 30 min at 50°C. The washing buffer was 

replaced with a new one, and slides were incubated further for 1.5 hrs at 50°C. The slides were 

washed again with the 1× NTE buffer two times for 5 min at 37°C. The racks containing slides 

were incubated in the NTE buffer containing 20 µg/ml RNase A for 30 min at 37°C.  After the 

incubation with RNase A, the slides were washed step by step: two times for 5 min at RT with 

NTE buffer, 1 hr at 50°C with the washing buffer, 2 min at RT with 1× SSC and 5 min at RT 

with PBS. In the final washing step with PBS, the slides were left at 4°C overnight. 

 

10× NTE buffer: 5 M NaCl, 100 mM Tris-HCl pH 7.5, 10 mM EDTA. 

 

 

2.2.7.2.4 Antibody staining 

For the antibody staining, a 15 cm square Petri dish was used.  It contained 5 slides in 20 ml 

of buffers used in series: 

 

Bufferr 1  5 min 

Buffer 2  1 hr 

Buffer 3  30 min 

Buffer 4  1.5 hrs 
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Then the slides were washed with buffer 3 four times each time for 20 min, equilibrated in 

buffer 1 for 5 min and in buffer 5 for 5 min.  The slides were incubated with buffer 6 for 1 � 2 

days in the dark. The expression signal was checked after incubation for 12 hrs. According to 

the intensity of the signal and the background, additional dehydration washing was performed.  

For counter-staining the slides were incubated with 0.1% of calcofluor for 5 min and washed 

briefly with water.  The slides were air-dried and covered with coverslips after dropping 

Entellan (Sigma). The slides were inspected with a light microscope. 

 

Buffer 1: 100 mM Tris-HCl, 150 mM NaCl 

 

Buffer 2: 0.5% blocking reagent (Boehringer provided) in buffer 1. It was made freshly. 

Dissolved at 60-70°C for 1 hr, the solution remained turbid 

 

Buffer 3: 1% BSA, 0.3% Triton X-100 in buffer 1 

 

Buffer 4: Anti-digoxigenin-AP 1:30000 in buffer 3 

 

Buffer 5: 100 mM Tris-HCl, 100 mM NaCl, 50 mM MgCl2, pH 9.5 

 

Buffer 6: 90 µl of NBT, 90 µl of BCIP in 45 ml of Buffer 5. 

 

 

2.3 Genetic nomenclature 

In this dissertation, genotypes are written in italics with the wild-type genotype in capitals 

(e.g., AmGRAS) and the mutant genotype is lowercase letters (e.g., amgras). Wild-type 

polypeptide gene products are written in nonitalic capital letters (e.g., AmGARS). Double 

mutant genotypes are written in italic lowercase letter (e.g., rga-24 gai-t6). 
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3. Results 

 

3.1 Isolation of RSI interacting partners using the yeast two-hybrid system 

RSI was isolated as a putative regulator of DEF gene activity based on the spatial and 

temporal complementary expression pattern. In later floral developmental stages, there is no 

transcript of DEF found in sporogenous tissue of stamens, in contrast to the presence of RSI 

transcripts. To test whether RSI requires other factors to regulate the spatial and temporal 

expression of DEF, a GAL4-based yeast two-hybrid system with two reporter genes, HIS3 and 

LacZ , was utilized. 

The yeast two-hybrid system is based on the fact that many eukaryotic transcriptional 

activators have at least two domains which are physically separable and functionally 

independent. The yeast GAL4 transcription factor contains a DNA-binding domain and a 

transcriptional activation domain (Keegan et al., 1986; Hope and Struhl, 1986; Ma and Ptashne, 

1987). If a protein fused to the GAL4 DNA-binding domain (the bait) interacts with a protein 

fused to the GAL4 activation domain (the prey), then the reporter gene is activated (Fields, 

1989). 

RSI cannot activate transcription on its own in different yeast genetic backgrounds which 

was confirmed by testing it for reporter gene activation in the pGBT9 binding domain vector. 

Therefore, it could be used as a bait to screen an Antirrhinum cDNA expression library.  

In the first screen of approximately 4,000,000 recombinant yeast colonies, three 

independent positive (His3+, Trp+, Leu+ and LacZ+) candidates (Y6, Y13 and Y35) were 

identified.  In the second screen of 12,000,000 recombinant yeast colonies, five times Y6, three 

times Y35 and additionally four independent clones (2Y6, 2Y14, 2Y16 and 2Y19) were 

rescued.  
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All positive clones were further tested for histidine prototrophy with RSI in three different 

yeast genetic backgrounds, together with a negative control construct (pGBT9 and pLAM5’) 

which was provided by CLONTECH®.  In addition, β-galactosidase filter assay was used to 

demonstrate the interaction of RSI with these proteins in yeast (Fig. 3).   

 

 

 
 

Fig. 3. β-Gal filter assay of seven putative RSI interactors. 

Different combinations of bait and activation domain constructs were co-transformed into the yeast strain 

SFY526, grown for 3 days on filters and tested for blue colour staining after being permeabilized by 

liquid nitrogen. 
A: full length RSI containing vector (RfpGBT9) + putative RSI interactors in pGAD424. 

B: empty binding domain vector (pGBT9) + putative RSI interactors in pGAD424. 

C: lamin protein containing vector (pLAM5’) + putative RSI interactors in pGAD424. 

No. 1=Y6,  No. 2=Y35, No. 3=Y13, No. 4=2Y6, No. 5=2Y14, No. 6=2Y16, No. 7=2Y19. 

P: DEF in pGBT9 + GLO in pGAD424 as positive control. 

N: RSI in pGBT9 + empty pGAD424 as negative control. 
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All seven putative RSI interactors were co-transformed into the yeast strain SFY526 for the 

β-galactosidase filter assay. The co-transformation was repeated three times with the full length 

RSI construct (RfpGBT9, Fig. 3,A), the ‘empty’ binding domain vector pGBT9 (Fig. 3,B) and  

the lamin containing construct pLAM5’ (Fig. 3, C).  All co-transformed yeast clones were 

grown on SD selective (-Trp ,-Leu) media and tested for LacZ gene expression.   

To quantify the strength of interaction, β-gal liquid assays were performed and the β-

galactosidase enzymatic activity was calculated (Fig. 4). 
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 Fig.4. β-galactosidase enzymatic activity of seven RSI interactors. β-gal units were calculated by the 

formula, (1000×A420)/T×V×A600. The histogram table is displaying the average of β-gal activity from the 

two different yeast strains, Y190 and SFY526.  Seven interactors were co-transformed with the RSI, bait 

construct.  These yeast cells were incubated in YSD selective liquid media ( -Trp and -Leu) at 30°C 

overnight and next day the cultures were transferred into YPD liquid media to quantify the β-

galactosidase activity.  DEF in pGBT9 as bait + GLO in pGAD424 as prey was used as a positive control. 
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Y6 (No.1 in Fig.3) and 2Y19 (No. 7 in Fig. 3) showed strong LacZ expression in the 

presence of RSI. Whereas Y13 (No. 3 in Fig. 3) showed only weak LacZ activity in the liquid 

and solid β-galactosidase assay, suggesting that the interaction with RSI is either weak or of 

transient nature. 2Y16 (later renamed AmGRAS) is highlighted with a red box, because this 

clone was of prime interest in the following work. 

 

3.2 Verification of protein-protein interaction with RSI using yeast mating  

As an independent method to confirm protein-protein interaction in vivo, yeast mating was 

utilized.  With this method, the protein fused to the GAL4 DNA binding domain vector (the 

bait) and the protein fused to the activation domain vector (the prey) are expressed in two 

different haploid yeast strains of opposite mating type (a and α). The strains were mated using 

a replica-plating tool to determine whether two proteins are interacting.  Only mated diploid 

cells grow on selective media. Mated cells were further tested for LacZ gene expression using 

the β-gal filter assay (Fig. 5). 
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Fig. 5. Yeast mating with RSI and seven putative RSI interactors. 

RSI, pGBT9 (empty binding domain vector) and Lamin (lamin protein in pLAM5’vector) were 

transformed into yeast strain Y187 (MATa). These proteins are depicted in a left column lines. All 

individual seven putative RSI interactors (in a top line) were transformed into yeast strain Y190 (MATα). 

Independently grown two haploid yeast strains (depicted above in rows and columns) were mated using a 

replica-plating tool covered with sterile velvet, and were grown on a selective media (Trp-His-Leu-) for 2 

days. Diploid cells were transferred into sterile filter and tested for the β-galactosidase activity. As a 

positive control DEF/GLO proteins, expressed in the appropriate vectors, have been used.   

 

 

3.3 Possible functions of putative RSI interactors deduced by sequence 

comparison 

To gain insight into the nature of these clones, BLAST searches were performed to identify 

similar proteins from different organisms in various databases (Table 1). In the following each 

clone (a total of seven obtained from the yeast two-hybrid screen) will be described 

individually. In addition, GST pull-down assays to confirm the interaction in an in vitro system 

were carried out. 
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Clone 
 

LacZ 
expres
-sion 
in vivo 

Self-
activation 

In vitro 
 GST 
pull-
down  

Amino acid 
sequence similarity 

Data bank 
No. Organism 

E-value 
Positives 
(Identities) 
% 

Y6 yes yes positive 

Hypothetical protein 

Unknown protein 

KIAA0775 gene 
product 

AL132964 

AB016881 

AB018318 

Arabidopsis 

Arabidopsis 

Homo 
sapiens 

62(41) 

60(36) 

52(32) 

Y13 yes yes positive Ser/Thr kinase BAB02869 Arabidopsis 87(70) 

Y35 yes yes * Hypothetical 
protein AAD19768 Arabidopsis 89(85) 

2Y6 yes * positive 
Hypothetical protein 

Unknown protein 
Hypothetical protein 

AL133421 

AB006696 

AE000718 

Arabidopsis 

Arabidopsis 

Aquifex 
aeolicus 

61(38) 

59(37) 

44(23) 

2Y14 yes no positive 

Centromere protein 

Probable centromere 
protein 
RHO-associated 
coiled-coil forming 
kinase 

AB022223 

AL161539 
 
U58513 

Arabidopsis 

Arabidopsis 
Mus 
musculus 

61(41) 

57(37) 
 

49(29) 

2Y16 yes yes positive 
RGA 
GAI 
SCR 

AJ224957 
AL161539 
U58513 

Arabidopsis 
Arabidopsis 
Arabidopsis 

68(50) 
69(48) 
40(25) 

2Y19 yes no positive 

Putative 
N-methyl transferase 
Hypothetical protein 
 

Y16952 
 
NC_002696 

Amycolatop-
sis 
Caulobacter 

53(24) 
 

48(33) 

 

Table 1. Putative interacting partners of RSI. 

Amino acid sequence similarity and the percentage of Expected (E)-value have been obtained using the BLAST 

search program.  

The Expect value (E) is a parameter that describes the number of hits one can "expect" to see just by chance when 

searching a database of a particular size. It decreases exponentially with the Score (S) that is assigned to a match 

between two sequences. Essentially, the E value describes the random background noise that exists for matches 

between sequences. Positives: the number of hits of similar amino acids, Identities: the number of hits of identical 

amino acids 

Highly scored protein sequences are bolded. * : not tested. 
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3.3.1 Clone Y6 

DNA sequencing revealed that Y6 encodes a protein of 104 amino acids.  This protein was 

rescued five times from the yeast two-hybrid screening and showed sequence similarity with a 

hypothetical protein from Arabidopsis, the function of which is unknown (Table. 1). The Y6 

protein contains a highly conserved acidic domain. It turned out to be self-activating, because if 

the Y6 ORF (Open Reading Frame) was swapped from the pGAD424 activation domain vector 

(AD) into the pGBT9 DNA binding domain (BD) vector, it could activate the reporter gene on 

its own. Therefore, swapping the Y6 ORF was not feasible to test the interaction in the other 

direction. However, if RSI in the BD vector and Y6 in the AD vector are expressed together, 

there is transcriptional activation of the reporter gene. 

The data bank search revealed three proteins from Arabidopsis with homology to clone Y6, 

the function of which is not known. 

The alignment of Y6 with the three hypothetical, acid domain containing proteins is shown 

in Fig. 5.  
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Fig. 5. Amino acid sequence alignment of and the three unknown proteins (CAB62462, CAB62461 and 

BAB09648) from Arabidopsis. Identical residues, conserved between Y6 and the other unknown proteins, 

are displayed in reverse type, and similar residues are in gray boxes. Gaps introduced to improve the 

alignment are indicated by blanks and sequence truncations by dashes. The highly conserved acidic 

domain is underlined. 

 

 

3.3.1.1 In-vitro GST–Y6 fusion protein pull-down assay 

As an independent method to confirm the protein-protein interaction, an in vitro GST pull-

down assay was carried out. The principle of the GST fusion protein pull-down assay is to use 

the affinity of GST for glutathione-coupled beads to purify complexes of interacting proteins 

from a solution of non interacting proteins, in order to confirm suspected interactions (modified 
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from Bhalerao et al., 1999). 

A PCR generated EcoRI-XhoI cDNA fragment containing the Y6 ORF from the pGAD424 

clone was cloned into the pGEX-5X-1 vector and used for the purification of the glutathione S-

transferase (GST)-fusion protein. The EcoRI-XhoI cDNA fragment was generated using primer 

5AD (contains an EcoRI site) and primer y6Xho-3 introducing a XhoI site at the 3’-end of the 

PCR fragment. 

The GST-Y6 fusion protein was expressed and purified from bacteria. To prepare a cell 

lysate, cDNA fragment of RSI (obtained from Dr. M. Roccaro) served as a template to 

synthesize [35S] methionine-labeled RSI protein in a TNT® Coupled Reticulocyte Lysate 

Systems (Promega). The GST-Y6 fusion protein and the RSI cell lysate were mixed in the 

presence of glutathione-agarose beads and incubated to allow protein association to occur. The 

GST-Y6 fusion protein and associated proteins were collected by centrifugation and the 

complexes were washed. The protein complexes were eluted from the beads with excess free 

glutathione and separated on a 10% SDS-polyacrylamide gel to detect 35S-labeled RSI protein 

by autoradiography (Fig. 6). 
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Fig. 6. In-vitro GST-Y6 fusion protein pull-down assay with 35S-labeled RSI. The empty matrix (GS), 

control GST and GST-Y6 (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl of in 

vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems. Proteins bound 

specifically to glutathione agarose, together with the supernatant fraction, were separated on a 10% SDS-

polyacrylamide gel to detect the 35S-labeled RSI protein by autoradiography.  The film was exposed for 

5-6 days at -70°C. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, 

and GST-Y6: GST-Y6 fusion protein. 

 

 

3.3.1.2 Summary of clone Y6 features 

Y6 displays homology to three Arabidopsis proteins with unknown function. Y6 interacts 

with RSI in the yeast two-hybrid system and also in vitro, as judged from a GST pull-down 

experiment. Its function so far is unknown. 

 

3.3.2 Clone Y13 

The partial Y13 clone which was rescued as a 1500 bp fragment showed 70% identity with 

a Ser/Thr protein kinase from Arabidopsis. The β-galactosidase filter assay shows that the 

interaction of Y13 with RSI is weak which is a typical feature of kinase/ substrate interactions 
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(Fig.3). The swapping of Y13 from the AD vector to the BD vector showed self-activation of 

the reporter gene, indicating that Y13 contains a transcription activation domain. 

Alignment of the partial Y13 protein with the Ser/Thr protein kinase (BAB02869) shows 

the presence of highly conserved stretches of amino acids (Fig. 7).   

 

 

 

 

Fig.7.  Amino acid sequence comparison of Y13 and to the Ser/Thr protein kinase (BAB02869) from 

Arabidopsis. Identical residues conserved between Y13 and the Ser/Thr protein kinase are displayed in 

reverse type, and similar residues are in gray boxes.  Gaps introduced to improve the alignment are 

indicated by blanks and sequence truncations by dashes. 
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3.3.2.1 In-vitro GST–Y13 fusion protein pull-down assay 

A PCR generated EcoRI-SmaI cDNA fragment containing the Y13 ORF was used for 

purification of the glutathione S-transferase (GST)-fusion protein.  The EcoRI-SmaI cDNA 

fragment was generated using primer 5AD and primer y13Sma-3 (introducing a SmaI site in 

the 3’ end). The experiment was carried out as described for clone Y6.  35S-labeled RSI protein 

was detected from the matrix-bound proteins by autoradiography (Fig.8). 

 

 

Fig. 8. In-vitro GST-Y13 fusion protein pull-down assay with 35S-labeled RSI. The empty matrix (GS), 

control GST and GST-Y13 (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl of in 

vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems.  The procedure of 

separation and detection of proteins followed that of clone Y6. 

 Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, 

and GST-Y13: GST-Y13 fusion protein. 

 

 

3.3.2.2 Summary of  clone Y13 characteristics 

Y13 displays homology to a Ser/Thr protein kinase (BAB02869) from Arabidopsis. Y13 

interacts with RSI in the yeast two-hybrid system and also in vitro, as judged from a GST pull-
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down experiment.  

 

3.3.3 Clone Y35 

Y35 showed 85% amino acid identity with a hypothetical protein (AAD19768) of unknown 

function from Arabidopsis. The alignment of this clone with the hypothetical protein is shown 

in Fig. 9. 

In vitro GST pull down assay was not performed for this protein. 

 

 
 

Fig. 9. Amino acid sequence comparison of Y35 with the hypothetical protein (AAD19768) from 

Arabidopsis.  Only the highly conserved region between Y35 and the protein from Arabidopsis is aligned. 

Identical residues conserved between Y35 and the hypothetical protein are displayed in reverse type, and 

similar residues are in gray boxes.  Gaps introduced to improve the alignment are indicated by blanks 

and sequence truncations by dashes. 
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3.3.4 Clone 2Y6 

2Y6 was rescued as a 1500 bp long fragment. It showed high sequence similarity with 

hypothetical proteins from Arabidopsis, the function of which are unknown (Table 1). 

 A database search with Y6 detected similarity to a conserved domain of a 116KDa 

subfamily of V-type ATPases from bacteria, which plays a role in proton transport and 

assembly of the V-type ATPase complex. In yeast, its subunits are encoded by two homologous 

genes, VPH1 and STV1.  

Vector swapping was not performed, therefore it is not known whether this protein contains 

a transcription activation domain. 

 

3.3.4.1 In-vitro GST–2Y6 fusion protein pull-down assay 

A PCR generated EcoRI-SmaI cDNA fragment was used for purification of glutathione S-

transferase (GST)-fusion protein. The EcoRI-SmaI cDNA fragment was generated using primer 

5AD and 2y6Sma-3 primer (introducing a SmaI site in the 3’ end). 

The GST pull-down experiment was performed as described before. 35S-labeled RSI protein 

was detected by autoradiography (Fig. 10). 
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Fig.10. In-vitro GST-2Y6 fusion protein pull-down assay with 35S-labeled RSI.  The empty matrix (GS), 

control GST and GST-2Y6 (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl of in 

vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems. The separation and 

detection of protein followed the way of clone Y6. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, 

and GST-2Y6: GST-2Y6 fusion protein. 

 

 

3.3.4.2 Summary of features of clone 2Y6 

2Y6 displays homology to unknown proteins from Arabidopsis and Aquifex aeolicus. 2Y6 

interacts with RSI in the yeast two-hybrid system and also in vitro, as judged from a GST pull-

down experiment.  

 

3.3.5 Clone 2Y14 

2Y14 was rescued as a 1100 bp long fragment. It showed sequence similarity with a 

centromere protein homolog from Arabidopsis and with a Rho-associated coiled-coil 

containing protein kinase p160 ROCK-2 from Mus musculus (Table 1).  This protein did not 

show self-activation upon swapping to the BD vector. Therefore the interaction with RSI could 

be confirmed further via co-transformation with 2Y14 in the BD vector and RSI in the AD 



                                                                          Results 
 

 

 58

vector. 

 

3.3.5.1  In-vitro GST–2Y14 fusion protein pull-down assay 

A PCR generated EcoRI-SmaI cDNA fragment was used for purification of the glutathione 

S-transferase (GST)-fusion protein. The EcoRI-SmaI cDNA fragment was generated using 

primer 5AD and primer 2y14Sma-3 containing a SmaI site in the 3’end.  

The GST pull-down experiment was performed as described before. 35S-labeled RSI protein 

was detected in the SDS gel by autoradiography (Fig. 11). 

 

 

 

 

Fig.11. In-vitro GST-2Y14 fusion protein pull-down assay with 35S-labeled RSI.  The empty matrix (GS), 

control GST and GST-2Y14 (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl of 

in vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems. The separation and 

detection of protein followed the way of clone Y6. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, 

and GST-2Y14: GST-2Y14 fusion protein. 
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3.3.5.2 Summary of clone 2Y14 properties 

2Y14 displays homology to centromere protein homologs from Arabidopsis and to a Rho-

associated coiled-coil containing protein kinase, p160 ROCK-2, from Mus musculus. 2Y14 

interacts with RSI in the yeast two-hybrid system and also in vitro, as judged from a GST pull-

down experiment. The interaction of 2Y14/RSI was extremely weaker compare to other 

interaction.  

 

3.3.6 Clone 2Y16 (AmGRAS) 

A BLAST search has revealed that 2Y16 contains highly conserved domains like GAI, 

RGA, and SCR which belong to the GRAS transcription factor family of Arabidopsis. This 

clone was chosen and further characterized. 2Y16 was renamed to AmGRAS (Antirrhinum 

majus GRAS protein).  The alignment of AmGRAS with other GRAS family proteins is shown 

in Fig. 15.  Several conserved domains are detectable which will be explained in detail later. 

 

3.3.6.1 In-vitro GST–AmGRAS fusion protein pull-down assay 

To confirm the protein-protein interaction by an independent method, an in vitro GST pull-

down assay was carried out. A PCR generated BamHI-EcoRV cDNA fragment containing the 

AmGRAS ORF was used for the isolation and purification of the glutathione S-transferase 

(GST)-fusion protein. The BamHI-EcoRV cDNA fragment was generated using primer 

2y16BamHI-5 (introducing a BamHI site in the 5’end) and primer 2y16EcoRV-3 primer 

(introducing an EcoRV site in the 3’end). 

The opposite combination with RSI as GST-fusion protein was also tested to be sure the 

AmGRAS/RSI interaction in a more confirmative way. The EcoRI-SalI cDNA fragment of RSI 

from the pBluescript® was cloned into the pGEX-5X-1 and used for the purification of GST- 
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RSI fusion protein. 

A cDNA fragment of RSI (obtained from Dr. M. Roccaro) served as a template to 

synthesise [35S] methionine-labeled proteins in a TNT® Coupled Reticulocyte Lysate Systems 

(Promega). A PCR generated NcoI-PstI cDNA fragment of AmGRAS was cloned in pGBKT7 

and served to synthesize [35S] methionine-labeled protein. 35S-labeled RSI or AmGRAS 

proteins were detected as matrix-bound proteins by autoradiography (Fig.12 and Fig. 13). 

 

 

 

 
 

Fig.12. In-vitro GST-AmGRAS fusion protein pull-down assay with 35S-labeled RSI.  The empty matrix 

(GS), control GST and GST-AmGRAS (10 µg of each) bound to glutathione-agarose were incubated with 

2.5 µl of in vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems. The 

separation and detection of protein followed that of clone Y6. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, and 

GST- AmGRAS: GST-AmGRAS fusion protein. 
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Fig.13. In-vitro GST-RSI fusion protein pull-down assay with 35S-labeled AmGRAS.  The empty matrix 

(GS), control GST and GST-RSI (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl 

of in vitro translated 35S-labeled AmGRAS using TNT® Coupled Reticulocyte Lysate Systems. The 

separation and detection of protein followed the way of clone Y6. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, and 

GST-RSI: GST-RSI fusion protein. 

 
 
 

3.3.6.2 Summary of clone 2Y16 features 

2Y16 displays high sequence homology with GAI, RGA, and SCR which belong to the 

GRAS transcription factor family of Arabidopsis. 2Y16 interacts with RSI in the yeast two-

hybrid system and also in vitro, as judged from a GST pull-down experiment.  
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3.3.7 Clone 2Y19 

Clone 2Y19 was isolated as a 800 bp fragment. It displayed sequence similarity with a 

putative N-methyl transferase and a hypothetical protein from Arabidopsis. Interestingly, this 

protein showed high β-galactosidase activity in yeast and strong interaction in the in vitro GST 

pull-down assay. It does not contain a transcription activation domain. 

 

3.3.7.1 In-vitro GST–2Y19 fusion protein pull-down assay 

A PCR genetated EcoRI-XhoI cDNA fragment containing the 2Y19 ORF was used for 

purification of the GST-fusion protein. The EcoRI-XhoI cDNA fragment was generated using 

primer 5AD and primer 2y19Xho-3 primer (introducing a XhoI site in the 3’end). 

The GST pull-down experiment was performed as described before. 35S-labeled RSI protein 

was detected by autoradiography as described before (Fig. 14). 
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Fig.14. In-vitro GST-2Y19 fusion protein pull-down assay with 35S-labeled RSI. The empty matrix, 

control GST and GST-2Y19 (10 µg of each) bound to glutathione-agarose were incubated with 2.5 µl of 

in vitro translated 35S-labeled RSI using TNT® Coupled Reticulocyte Lysate Systems. The separation and 

detection of protein followed the way of clone Y6. 

Empty matrix (GS): glutathione-agarose beads, control GST: glutathione S-transferase (GST) protein, and 

GST-2Y19: GST-2Y19 fusion protein. 

 

 

3.4 AmGRAS is a new member of the GRAS transcription factor family 

Most of the putative interaction partners did not show high sequence similarity to database 

entries or, if they did, the function of the proteins is unknown.  2Y16 is the exception, because it 

shows high sequence similarity to members of the GRAS (formerly called VHIID)  transcription 

factor family, such as RGA and GAI from Arabidopsis (Silverstone et al., 1998, Peng J et al., 

1997). 

The predicted AmGRAS protein contains 528 amino acids with an estimated molecular 

mass of approximately 58 KDa. AmGRAS shares 70% sequence identity with RGA  and  69%  

sequence identity with GAI, and belongs to the plant specific GRAS (for GAI, RGA, 

SCARECROW) family of regulatory proteins (Pysh et al., 1999). Other members of this family 
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include Rht-D1 from wheat (Harberd et al., 1989), D8 from maize (Winkler et al., 1994), Ls, a 

protein from tomato that is required for formation of axillary branches and which shows high 

sequence similarity with other GRAS family members in the carboxy–terminal region 

(Schumacher et al., 1999) and PAT1, which is involved in phytochrome A signal transduction 

(Bolle et al., 2000). Both D8 and Rht-D1, are functional orthologues of the Arabidopsis GAI 

and RGA factors, which are involved in the gibberellin signaling pathway. 

The first member of the GRAS family to be identified was SCARECROW (SCR). The SCR 

gene regulates asymmetric cell division of cortex/endodermis initial cells during root 

development (Di Laurenzio et al., 1996). The sequence similarity of SCR with other GRAS 

family members such as Ls (Schumacher et al., 1999) is limited to the carboxy–terminal region. 

Up to now, more than 38 GRAS family members have been identified in Arabidopsis.   All 

GRAS family proteins contain the highly conserved DELLA domain, two large leucine heptad 

regions, nuclear localization signals (NLS), a VHIID domain (for the conserved Val-His-Ile-Ile-

Asp), a LXXLL domain, a RVER domain, a SH2-like domain, and a SAW domain (Fig. 15). 

The features of these domains are described in the following. 

 

DELLA domain:   

AmGRAS, RGA, GAI and several other members have a unique conserved region near the 

amino terminus called DELLA. This region seems to be involved in modulating GA response, 

because the gain-of-function gai-1 allele contains a deletion of 17-amino acids in the amino 

terminal DELLA domain resulting in a mutant protein which causes a reduction in GA 

responses. 

 

Leucine heptad repeats:   



                                                                          Results 
 

 

 65

Two leucine heptad repeats are found before and after the VHIID domain in the GRAS 

family proteins.  The presense of leucine heptad repeats is a strong indication of protein-protein 

interaction as demonstrated for other proteins (Hurst, 1994), and this was proven again by the 

interaction of AmGRAS with RSI. 

 

VHIID domain: 

  This domain is common in all members of the GRAS family, although it is not absolutely 

conserved. The VHIID domain is more accurately described as (V/I)H(V/I)(V/I)D, where V is  

valine, I is isoleucine, H is histidine, and D is aspartic acid. 

 

LXXLL domain: 

 This motif fits the consensus amino acid sequence LXXLL, where L is leucine, and X is 

any amino acid. It was demonstrated that it mediates the binding of steroid receptor co-activator 

complexes to nuclear receptors (Heery et al., 1997). 

 

SH2-like domain: 

The putative SH2 (Src homology 2) domain binds certain phosphotyrosine containing 

proteins and is thought to be involved in protein-protein interaction in signal transduction. The 

SH2 domain has been identified in Rht, D8, GAI, and RGA (Peng et al., 1999). This domain is 

present in a family of transcription factors called STATs (Signal Transducers and Activators of 

Transcription) in animals (Darnell et al., 1997). The function of this domain is to mediate the 

binding of STATs to various receptor tyrosine kinases. The STATs are then activated by the 

recpetor kinase , and  translocated from the cytoplasm to the nucleus.  

A typical SH2 domain is a peptide stretch of 100 amino acids containing an invariant 
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arginine (R) that recognizes the phosphate group of phosphotyrosine. 

 

RVER domain: 

Conserved set of amino acids located at the C-terminus, of which no function is known until 

now. 

 

SAW domain: 

This domain is also conserved set of amino acids (Serine, Alanine, and Tryptophan) located 

at the C-terminus. No function is known until now. 

 

 

A sequence comparison of AmGRAS with GRAS family proteins is shown in Fig. 15. 
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RGA 1 MKRDHHQFQGRLSNHGTSSSSSSISKDKMMMVKKEEDGGGNMDDELLAVL 50
GAI 1 MKRDHHHHHQ----------------DKKTMMMNEEDDG-NGMDELLAVL 33
AmGRAS 1 MKRDSSMNNNNNNNQAEQKSS-----SSKNMWPSSSCEATDEVDELFAVL 45

**** * *** ***
DELLA

RGA 51 GYKVRSSEMAEVALKLEQLETMMSNVQEDGLSHLATDTVHYNPSELYSWL 100
GAI 34 GYKVRSSEMADVAQKLEQLEVMMSNVQEDDLSQLATETVHYNPAELYTWL 83
AmGRAS 46 GYKVKPSDMADVAIKIQQLEQVMGNG--AAVSDLASDTVHYNPSDLSSWL 93

****. *.**.** *..*** .* * .* **..******..* .**

RGA 101 DNMLSELNPPPLPASSNGLDPVLPSPEICGFPASDYDLKVIPGNAIYQFP 150
GAI 84 DSMLTDLNPP----SSN----------------AEYDLKAIPGDAILNQF 113
AmGRAS 94 ESMITGLNQFDPPPPTQMD--------------FGSDLVAIPGEAAMYP- 128

. *.. ** .. ** *** *

RGA 151 AIDSSSSSNNQNKRLKSCSSPDSMVTSTSTGTQIGGVIGTTVTTTTTTTT 200
GAI 114 AIDSASSSN-QG---GGG---DTYTTNKRLKCSNG---------VVETTT 147
AmGRAS 129 ----------QP---PPI------KK---LKTTPHQ-------------- 142

* .

RGA 201 AAAESTRSVILVDSQENGVRLVHALMACAEAIQQNNLTLAEALVKQIGCL 250
GAI 148 ATAESTRHVVLVDSQENGVRLVHALLACAEAVQKENLTVAEALVKQIGFL 197
AmGRAS 143 -EQPPK--VVLVDSQENGVRLVHTLMACAEAVQQENFKLAETLVKNIGFL 189

*.*************.*.*****.*. * .**.***.** *
• •

RGA 251 AVSQAGAMRKVATYFAEALARRIYRLSPPQNQIDHCLSDTLQMHFYETCP 300
GAI 198 AVSQIGAMRKVATYFAEALARRIYRLSPSQSPIDHSLSDTLQMHFYETCP 247
AmGRAS 190 AVSQVGAMRKVATYFAEALARRIYRLYPTSNLQDSAFTDLLQMHFYETCP 239

**** ********************* * * . .* **********
NLS

RGA 301 YLKFAHFTANQAILEAFEGKKRVHVIDFSMNQGLQWPALMQALALREGGP 350
GAI 248 YLKFAHFTANQAILEAFQGKKRVHVIDFSMSQGLQWPALMQALALRPGGP 297
AmGRAS 240 YLKFAHFTANQAILEAFAGKTRVHVIDFSMKQGMQWPALLQALALRPGGP 289

***************** ** ********* **.*****.****** ***
VHIID

RGA 351 PTFRLTGIGPPAPDNSDHLHEVGCKLAQLAEAIHVEFEYRGFVANSLADL 400
GAI 298 PVFRLTGIGPPAPDNFDYLHEVGCKLAHLAEAIHVEFEYRGFVANTLADL 347
AmGRAS 290 PSFRLTGVGPPSPDNTDHLQEVGWKLAQLAESINVEFEYRGFVANSLADL 339

* *****.***.*** * *.*** ***.***.*.***********.****
• • • •

RGA 401 DASMLELRPSDTEAVAVNSVFELHKLLGRPGGIEKVLGVVKQIKPVIFTV 450
GAI 348 DASMLELRPSEIESVAVNSVFELHKLLGRPGAIDKVLGVVNQIKPEIFTV 397
AmGRAS 340 NASMFDVR--EGETVAVNSIFELHQLLARGGAIEKVLGVVRELKPEILTV 387

*** ..* . *.*****.****.** * * *.****** ..** * **
• LXXLL

RGA 451 VEQESNHNGPVFLDRFTESLHYYSTLFDSLEGVP--------NSQDKVMS 492
GAI 398 VEQESNHNSPIFLDRFTESLHYYSTLFDSLEGVP--------SGQDKVMS 439
AmGRAS 388 VEQEANHNGVAFLDRFTESLHYYSTLFDSLESCGGGVEGGVVSDQDKVMS 437

****.*** ******************** ******
SH2-like

RGA 493 EVYLGKQICNLVACEGPDRVERHETLSQWGNRFGSSGLAPAHLGSNAFKQ 542
GAI 440 EVYLGKQICNVVACDGPDRVERHETLSQWRNRFGSAGFAAAHIGSNAFKQ 489
AmGRAS 438 EVYLGRQICNVVACEGVDRVERHESLVQWRTRFNGAGFKPVHLGSNAYKQ 487

*****.****.***.* *******.* ** .**. .* *.****.**
RVER

RGA 543 ASMLLSVFNSGQGYRVEESNGCLMLGWHTRPLITTSAWKLSTAAH 587
GAI 490 ASMLLALFNGGEGYRVEESDGCLMLGWHTRPLIATSAWKLSTN 532
AmGRAS 488 ASMLLALFAGGDGYRVEENDGCLMLGWHTRPLIATSAWRPS 528

*****..* * ****** *************.****. *
SAW
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Fig. 15. Amino acid sequence comparison of the AmGRAS protein with other members of the GRAS 

family.  

The AmGRAS amino acid sequence is compared with RGA (Silverstone et al., 1997a) and GAI (Peng et 

al., 1997). Identical residues conserved between AmGRAS and other GRAS family member are indicated 

with a star (*) in the bottom line, and similar residues are indicated with a dot (.) in  the bottom line. Gaps  

introduced to improve the alignment are indicated by blanks, and sequence truncations by dashes. The 

acidic DELLA domain, NLS, VHIID, LXXLL, SH2, RVER and SAW domains are underlined. The 

leucine heptad repeat regions are marked with a triangle (•), and each leucine is marked in bold. In SH2-

like domain, invariant arginene (R) and other strongly conserved residues (T and S) are bold.   

 

  

3. 5 Evolutionary relationships of AmGRAS with other GRAS family genes 

  To determine the evolutionary relationship of AmGRAS with the other members of the 

GRAS family, a phylogenetic tree was constructed using the MacVector program. The tree was 

generated using amino acid sequences of GRAS family proteins from different species.  

RGA and GAI are closely related. They share 73 % amino acid sequence identity and 7 % 

amino acid sequence similarity. AmGRAS has a higher nucleic acid sequence similarity with 

RGA (70%) than with GAI (69%). However, at the protein level, AmGRAS is more related to 

GAI than to RGA (Fig. 16). AmGRAS shares 66% identity and 11% similarity with GAI, 

whereas it has 59% identity and 9% similarity with RGA at the amino acid sequence level. 
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Fig. 16. Phylogenetic tree of AmGRAS and other GRAS family proteins. 

The tree was generated using the neighbor joining method of the MacVector program. Gap penalty was 10 

and extended gap penalty was 0.1. DWARF8 (AAL10303) is from maize, OsGAI(BAA90749) is from 

rice, and RGA(CAA72177), GAI(CAA75492), RGAL(CAA12242), and SCR(NM_124189) are from 

Arabidopsis. 

 

 

3.6 Isolation and characterization of the AmGRAS gene 

In order to obtain information about the structure of the AmGRAS gene, and especially 

about the promoter, an attempt was made to isolate genomic clones from a λEMBL4 library of 

A.majus. The library was screened with a radioactively labeled AmGRAS cDNA. Half a million 

recombinants were screened, 18 positive candidates were isolated.  Two EMBL3 vector primers 

(EL1 and ER2), flanking the insert, and a gene specific primer (BGA5) were used for PCR to 

obtain information about the orientation of the insert and about the size. From one strongly 

hybridizing clone a 3.7kb long fragment was amplified by PCR with BGA5 and  ER2. The gene 

sequence of AmGRAS, and of the promoter, could be obtained by ‘primer walking’ sequencing.  
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Two additional primers (BGA3 and BGA4) were used to obtain 1.5 kb sequence upstream from 

the translation start site. 

DNA sequence analysis of the genomic DNA revealed that the AmGRAS has an interrupted  

1585 bp ORF with no introns. 

A putative TATA-box is indicated in Fig. 17. It was identified by using a promoter 

search program (http://www.fruitfly.org/cgi.bin/seq_tools/promoter). Several other transcription 

factor binding sites are predicted by the TFSEARCH search program 

(http://www.cbrc.jp/research/db/ TFSEARCH.html). The putative core motifs are marked in Fig. 

17. in bold and by underlining. 

Four core motifs for a petal epidermis-specific MYB transcription factor, similar to that for 

MYB.ph3 from Petunia hybrida binding site, CNGTT(A/G) or AGTTAGTTA (Solano et al., 

1995) and one core motif for SBF-1, a GTTA motif closely related to the GT-1 binding site, 

GGTTAA(A/T)(A/T)(A/T), (Lawton et al., 1991) were found. MYB.ph3 is localized in the 

epidermal cell layer of petals, where flavonoid biosynthetic genes are actively expressed. SBF-1 

specifically interacts with regulatory sequences in the promoter of the bean defense gene 

CHS15, which encodes the flavonoid biosynthetic enzyme chalcone synthase. GT-1 is involved 

in the light-dependent expression of the ribulose bisphosphate carboxylase small subunit gene in 

green tissue.  

http://www.fruitfly.org/cgi.bin/seq_tools/promoter
http://www.cbrc.jp/research/db/
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TTTTTTTTTTTTTTTTATAATTGTCCCTTACAAGAACCTTTGGACATTGC -1507

TCATCTGTAAAAAAATGTATTCTAGTCATTTATTGACCAAAAATGTACAT -1457

CTGAGATTCCGTTACCTTTGGAAAAATATTAATTGTCAGAGAATAGTTTA -1407

TTGGAACTCTGAAAAGTTAACTTCCATCTCACTAAAAGCAAAGTTACAAG -1357

TAATCCCTTTTTCTTTGTTTGAGGATTTTGTAAACTGCATCAGTTGACTA -1307

AGCATGCAGGTTACGAAGTTAACCCAAATACAAGCAATTTGCACTTTAAG -1257

AATTTATCATCAATTTCTTCCTTCCACTTCACCAGTAAAAAAGCATTCCA -1207

GTAACAAAAATAACTGTATTTATGGTGGTAAAAGAAAAAAGAAACGATAA -1157

CTTTTAATTAGTAAAAGAGTGCCGACCTGTTAAATGAACCGTACTCATTT -1107

AAAGTTGGACTAGGTAGTACGCTTAGTTATATAGTACTAATTACTGAAAC -1057

CATACTGCCAATTGTGTACTAAAGTTAGATAATATATTAGGCAAATTTGC -1007

AAGCATTTTCCATTTGTGGAAGTCTAAACTATCTTTAAAGGCAACTTAAC -957

TTACTTTTTTTTATGAAAACCCACCTTAGTTTCCATATAAGCTAAAATAT -907

TTTGTTGCATAAAAATTTCGGTACCCATAAATTTAGCAAGGTGTCATTTT -857

AAACGATTTCTAACAATTAAACTGAAATTGTTTTCTGTTTAATATTAAAG -807

TTTAAATACCACGCACTAATATTTTTTTTTTAAATTTTAAATTTTCCATT -757

TATTTGTCCAGAATGTAGAAATAAAAGTACCTTTTGCAAATGACGTTCCA -707

GATGATAGCTGCATGAGCTCAATTTACTTTTAATTTTCTAATAAACCAAT -657

ATTAAACGCCTCTTATTTTTAACACAAAGCTAAGATAACTGGTGATTTTT -607

CGCAACAAAGAATGTCAATATGATGATAATCTAAAATATTTAAGGAGTAA -557

GTTAAGAAGTGGCATATATATATTTGTAGCATCTGAAAAAATTCTAAAAA -507

ATTGAACATGAACATTATACATCACATTGACACAGGTAAATAAATAGTCT -457

CGAGAACTCTCGTATGTTTATCATCAGTAAAAGATTATGAGTCACAGAGT -407

GTAACAAATTATTACCGCTTACTACAATAATAAGCATCTGGTGGAAAAAA -357

ATAAAATAAAAAAGCATAAAAAAGTGGATATTATTTTTTGTATGTAAAAT -307

TGATCTGCTGTTGCTGTTGCTGGTGCTGGTGCAGCAGCAATAATATTGAT -257

AAGTGTGTATTGAAGGTGGCGCCCCCACCTTCACGAGCCTTTCCTTTTCT -207

CTCTCTATTCTATTATTATACTATACTCCCTCCAATCACATCACTTTTTC -157

TCTCTCCTCTCCCCAAAACACACACACACACACACACACACACACACTTT -107

CTTCAATCCCCCAATGCTCTACTTCTTCTTCCTCACAGAAACAAAAGAAA -57

            ATAAAAAATGAAAAGGGATAGCAGTATGAACAACAACAACAACAACAACC 43

M K R D S S M N N N N N N N

AAGCTGAACAGAAGAGCAGTTCCTCAAAGAACATGTGGCCCTCCTCCTCC 93

Q A E Q K S S S S K N M W P S S S

TGCGAGGCAACCGACGAGGTGGACGAGCTCTTCGCCGTACTAGGTTACAA 143

C E A T D E V D E L F A V L G Y K
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GGTCAAACCCTCCGACATGGCCGACGTGGCAATCAAGATCCAGCAGCTCG 193

V K P S D M A D V A I K I Q Q L

AGCAAGTCATGGGCAACGGCGCCGCCGTCTCGGATCTCGCATCCGACACC 243

E Q V M G N G A A V S D L A S D T

GTCCACTACAACCCCTCCGATCTCTCCTCCTGGCTCGAGTCCATGATCAC 293

V H Y N P S D L S S W L E S M I T

CGGCCTCAACCAATTCGACCCGCCTCCCCCGACCCAGATGGATTTCGGGT 343

G L N Q F D P P P P T Q M D F G

CGGATCTCGTCGCCATACCCGGTGAGGCCGCCATGTACCCTCAACCCCCA 393

S D L V A I P G E A A M Y P Q P P

CCCATCAAAAAACTCAAAACCACACCGCATCAAGAGCAGCCGCCTAAAGT 443

P I K K L K T T P H Q E Q P P K V

GGTGCTTGTTGACTCACAGGAGAACGGCGTGAGGCTGGTGCACACTCTAA 493

V L V D S Q E N G V R L V H T L

TGGCTTGTGCCGAGGCCGTACAGCAGGAGAATTTCAAACTAGCGGAGACT 543

M A C A E A V Q Q E N F K L A E T

CTTGTCAAGAACATTGGGTTTTTAGCCGTTTCTCAAGTGGGTGCTATGCG 593

L V K N I G F L A V S Q V G A M R

TAAGGTCGCTACTTATTTTGCTGAGGCTTTGGCCAGGAGAATCTACAGGT 643

K V A T Y F A E A L A R R I Y R

TGTATCCCACATCGAATCTGCAAGACTCCGCCTTTACGGATTTGCTGCAA 693

L Y P T S N L Q D S A F T D L L Q

ATGCATTTCTACGAGACTTGTCCGTACCTCAAGTTCGCGCATTTCACGGC 743

M H F Y E T C P Y L K F A H F T A

GAATCAAGCGATTCTCGAGGCTTTTGCGGGTAAGACGAGAGTACACGTGA 793

N Q A I L E A F A G K T R V H V

TTGATTTTAGTATGAAGCAGGGTATGCAGTGGCCTGCTCTGTTACAGGCT 843

I D F S M K Q G M Q W P A L L Q A

TTGGCCTTGCGTCCCGGGGGCCCGCCCAGCTTTCGATTAACCGGGGTCGG 893

L A L R P G G P P S F R L T G V G

GCCTCCGTCGCCCGATAACACCGATCATTTGCAGGAGGTTGGATGGAAAT 943

P P S P D N T D H L Q E V G W K

TGGCGCAATTGGCTGAATCGATAAACGTCGAGTTTGAGTACAGAGGGTTT 993

L A Q L A E S I N V E F E Y R G F

GTGGCGAATTCGTTGGCTGATTTGAATGCGTCGATGTTTGATGTGCGTGA 1043

V A N S L A D L N A S M F D V R E
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GGGTGAGACTGTTGCGGTGAATTCGATATTCGAGCTGCATCAGTTGTTGG 1093

G E T V A V N S I F E L H Q L L

CGAGGGGTGGAGCAATTGAGAAGGTGTTGGGTGTGGTTAGAGAGTTGAAG 1143

A R G G A I E K V L G V V R E L K

CCTGAGATTTTGACTGTTGTTGAGCAAGAAGCTAATCACAATGGGGTTGC 1193

P E I L T V V E Q E A N H N G V A

GTTCTTGGACAGGTTTACGGAGTCGTTGCACTATTATTCGACCCTTTTCG 1243

F L D R F T E S L H Y Y S T L F

ACTCGTTGGAGAGCTGCGGTGGCGGTGTCGAAGGGGGCGTGGTGAGCGAT 1293

D S L E S C G G G V E G G V V S D

CAAGATAAGGTGATGAGTGAGGTTTATTTGGGTCGACAAATCTGTAATGT 1343

Q D K V M S E V Y L G R Q I C N V

GGTGGCGTGTGAGGGAGTGGACCGAGTCGAGAGGCACGAGAGCTTGGTTC 1393

V A C E G V D R V E R H E S L V

AGTGGCGAACCCGGTTCAATGGTGCCGGTTTTAAGCCGGTTCATTTGGGT 1443

Q W R T R F N G A G F K P V H L G

TCCAATGCTTATAAGCAAGCTAGTATGCTGTTGGCTTTGTTTGCAGGTGG 1493

S N A Y K Q A S M L L A L F A G G

TGATGGGTATAGAGTTGAGGAGAACGATGGGTGTTTGATGTTGGGATGGC 1543

D G Y R V E E N D G C L M L G W

ACACGAGGCCATTGATTGCTACATCGGCTTGGAGGCCGAGTTGACTCACT 1593

H T R P L I A T S A W R P S *

AACTCACTGAGTTGGTATTCTTTTGGCTGAGTTTAGTGGGTGTTTTGCTG 1643

AGCTGTTTGGTTGTTAAGGGTGAGACCCCACCACTCGTTTAATGGTGTCA 1693

CTCTCAAGTTCGATCTTTTGATGCTGCTCTTTCTTTTCTCGTAGCTTTTT 1743

GCCCTATCTTTTTTTAGTTTTTAATTTAAATTTAAAGTTTATTTGGTTGA 1793

ATCTCTTGTAATTCTCGGAGGGGGATCTGAAGTGGATGTGTATTTATTAT 1843

ATTTATATATATAGCTCTTTTTTCTTTAGCAAAATAAAAGGGTGTGGAGC 1893

TTTTGGGATATTTGAGTATGTGTTTGATGGCAAAAA 1929

Fig. 17.  Genomic structure of the AmGRAS gene. 

The deduced amino acid sequence of AmGRAS is shown below the nucleotide sequence.  The probable 

TATA box is in bold. Four times possible binding sites for a petal epidermis-specific MYB transcription 

factor like MYB.ph3 from petunia hybrida, are bolded and underlined.  A SBF-1, closely related to GT-1, 

binding site is indicated in italics and bold.    
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3.7 AmGRAS is a single-copy gene  

RGA and GAI, members of the GRAS family of transcription factors in Arabidopsis are 

single copy genes (Silverstone AL et al., 1998, Peng J et al., 1997).  To test whether this is also 

true for AmGRAS of Antirrhinum, Southern hybridization was carried out using various 

restriction enzymes for digestion of genomic DNA. The digested DNAs were separated on a 

0.8% agarose gel and blotted on nylon membrane. The filter was hybridized with α 32P-labeled 

AmGRAS cDNA probe at high stringency (68°C) and washed at the same temperature and 

exposed to an X-ray filter. The result is shown in Fig. 18. Only one band is visible in each lane, 

suggesting that AmGRAS is a single copy gene. 
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Fig.18. Genomic Southern blot analysis of the AmGRAS gene at high stringency. Antirrhinum genomic 

DNA (3 µg per lane) from two different wild type lines (165E and Sippe50) was digested with various 

enzymes indicated above the lanes, size separated on a 0.8% agarose gel and capillary blotted onto a 

nylon membrane.  The blot was probed with α-32P dCTP labeled AmGRAS cDNA in 3×SSPE and 

0.1%SDS at 68°C.  The blot was washed with 2×SSPE, 0.1%SDS and 1×SSPE, 0.1%SDS, respectively, 

at 68°C for ca. 1-2hr and exposed  to X-ray film at -70°C for 5 days.  

 

 

To get insight whether AmGRAS is also a member of a gene family, like GAI and RGA of 

Arabidopsis, Southern hybridization at lower temperatures, at 60°C and 58°C, was performed 

(Fig. 19). The blot previously used for genomic Southern hybridization of AmGRAS was 

stripped to remove the probe and re-used for hybridization at lower temperatures with AmGRAS 

as probe. 

The hybridizations at 60°C and at 58°C show one to three additional weaker signals which 

indicates the existence of a GRAS-like family also in Antirrhinum. 
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Fig. 19. Genomic Southern blot analysis of the AmGRAS gene at low stringency condition.  Antirrhinum 

genomic DNA (3 µg per lane) from two different wild type (165E and Sippe 50) lines was digested with 

various enzymes indicated above the lanes, size separated on a 0.8% agarose gel and capillary blotted 

onto a nylon membrane. The blot was probed with α-32P dCTP labeled AmGRAS cDNA in 3×SSPE and 

0.1% SDS at 60°C (A), and at 58°C (B). The blot was washed with 2×SSPE, 0.1% SDS and 1× SSPE, 

0.1% SDS, respectively, at 60°C (A), and 58°C (B) for ca. 1-2hr and exposed to X-ray film at -70°C for 

5 days.  
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3.8 Spatial and temporal expression pattern of AmGRAS 

To gain insight into the possible function of AmGRAS in plant organs and to obtain 

information about its expression, the spatial and temporal expression pattern of AmGRAS was 

analyzed. 

The expression pattern of AmGRAS in several plant organs was investigated by Northern 

hybridization with mRNA isolated from different flower organs and leaves.  

 As Fig. 20 shows, AmGRAS is expressed in all plant tissues tested, with the corresponding 

transcript length of 2.4 kb. The transcript of AmGRAS was also detected in roots by RT-PCR.  

 

 

 

 

 

       

2.4Kb 

 

Fig. 20.  Expression pattern of the AmGRAS gene. 

Each lane contains 2 µg of mRNA isolated from different tissues, as indicated above the lanes.  The 

mRNAs were size separated on a 0.8% agarose gel and capillary blotted onto a nylon membrane. The blot 

was probed with α-32P dCTP labeled AmGRAS cDNA in 50% deionized formamide, 5× SSPE, 10× 

Denhardt mix, 0.5% SDS and 100 µg/ml of salmon sperm DNA. The blot was washed with 2× SSPE, 

0.1% SDS at 25°C /1× SSPE, 0.1% SDS at 40°C, and exposed to X-ray film at -70°C for 5 days. 

 

 

In situ hybridization was used to determine the spatial mRNA expression pattern of 

AmGRAS more precisely. To avoid cross hybridization with other GRAS family members, 

probes derived from the least conserved regions have been used, 5’ AmGRAS and 3’ AmGRAS 
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(Fig. 21). The 5’ AmGRAS probe is located between the DELLA domain and the NLS domain, 

and the 3’ AmGRAS probe corresponds to the 3’UTR region (Fig. 21). The BamHI/PstI 

fragment of  5’ AmGRAS was obtained by PCR amplification using the primers BamHIGAI and 

PstBGA5, and the 3’ AmGRAS fragment by PCR amplification using the primers 2Y16BamHI-

end and 2Y16PstIend. The fragments were cloned into the pBluescript® SK vector. The 

antisense probe was generated using T7 RNA polymerase. 

Sectioning and in situ hybridization was carried out as described in Materials and Methods. 

 

 

 

 

Fig. 21. Schematic representation  of  the AmGRAS cDNA  and the regions from which the probes for in 

situ hybridization were derived. 

 

 

 

DELLA NLS VHIID LXXLL

5‘ AmGRAS 3‘ AmGRAS

 100 bp

SAWRVER
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Fig. 22. In situ hybridization with AmGRAS.  Longitudinal sections of young floral buds were hybridized 

with either an antisense 5’AmGRAS riboprobe (A and C) or a sense 5’AmGRAS riboprobe (B). 
Antisense and sense riboprobes were labeled with digoxigenin-11-rUTP using the Boehringer nucleic acid 

labelling kit. DNA templates were either cDNAs subcloned into pBluescript SK and prepared by PCR 

using T3/T7 primers. T7 RNA polymerase was used to synthesize antisense DIG-RNA.  

se: sepal, pe: petal, st: stamen, ov: ovule. Scale bars in  A, B and C are 100 µm. 

 

 

As shown in Fig. 22, expression of AmGRAS in early stages was dectected in several 

different tissues, such as the inflorescence apical meristems, floral meristem, and flower organ 

primordia. Therefore, AmGRAS expression seems to occur in nearly all parts of the plant 
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although high background signal in stamens and in the areas of active cell division cannot be 

excluded. This ubiquitous expression is also similar to that of RGA  (Silverstone AL et al., 

1998) in Arabidopsis. 

The in situ hybridization experiments indicate that the spatial expression of AmGRAS is 

higher in the reproductive organs, stamens and ovules.  In stamens, the AmGRAS mRNA is 

primarily localized in sporogenous tissue Fig. 23, B (indicated by arrow), which is 

complementary to DEF expression. DEF expressed in the filament and the connective (Fig. 23, 

A).  In female reproductive organs, the AmGRAS expression is observed in ovules (Fig. 23, B). 

The expression of AmGRAS in reproductive organs is very similar to that of RSI, supporting a 

possible in vivo interaction of both proteins, as observed in in vitro experiments. 

 

 

 

Fig. 23.  In situ hybridization with DEF and AmGRAS probes.  Longitudinal sections of young floral buds 

were hybridized with either an antisense DEF  riboprobe (A) or an antisense AmGRAS riboprobe (B).  
Antisense and sense riboprobes were labeled with digoxigenin-11-rUTP using the Boehringer nucleic acid 

labelling kit.  DNA templates were either cDNAs subcloned into pBluescript SK and prepared by PCR 

using T3/T7 primers. T7 RNA polymerase was used to synthesize antisense DIG-RNA.  

pe: petal, st: stamen, ov: ovule.  The arrow in B indicates sporogenous tissue.  

Scale bars in (A) and (B) are both  100 µm. 
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3.9 Generation of AmGRAS knock-out plants by the Engrailed technique 

There are two distinct classes of repressors, one is passive and the other is active.  Passive 

repressors would directly interfere with the binding of activators, while active repressors could 

counteract transcriptional activators at a distance with separable DNA binding and effector 

domains.  Many higher eukaryotic transcription factors have been found to have such an active 

repressor domain (Jaynes, et al., 1991). One well-characterized protein is EN (Engrailed) from 

Drosophila, containing a homeodomain related in DNA binding specificity to that of members 

of the Antennapedia class.  By swapping homeodomains between FTZ (fushi tarazu), a member 

of the Antennapedia class of transcriptional activations, and EN, it was shown that EN was 

counteracting to the function of the endogenous FTZ protein, to generate a ftz mutant phenotype 

in embryos (Jaynes, et al., 1991; Tolkunova et al., 1998).  

To generate transgenic knock-out plants of AmGRAS, the AmGRAS ORF was fused to  the 

engrailed domain (EN) to produce a  35S::EN::AmGRAS::pGPTV-BAR construct (Fig. 24) 

which was for plant transformation (Dr. W. Werr, personal communication). A schematic 

diagram indicates the insertion of the 35S::EN::AmGRAS cassette into the binary vector 

between the right and the left T-DNA border.  The binary vector, pGPTV-BAR (Becker et al., 

1992), contains the phosphinothricin acetyl transferase (bar) as selectable marker, located near 

the left T-DNA border.  The AscI linker was ligated into the SmaI site of the original pGPTV-

BAR, into which the engrailed domain from pUC 19, digested with AscI, was integrated 

(Ueberlacker et al., 1996).  

Fused to the engrailed domain (EN) AmGRAS was digested with AscI from pUC 19 and 

integrated into the AscI site of the pGPTV-BAR vector. The correct direction of insertion of the 

gene was confirmed by PCR using the gene specific primer 2Y16L4, and a primer from the 

pAnos region, or one from the 35S promoter region. Using this construct, plant transformation 
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of A. thaliana by vacuum infiltration was performed. 

Transgenic plants are easily selected by spraying with the BASTA herbicide (Hoechst).  

 

 

 

 

 

Fig. 24.  Schematic diagrams of the 35S::EN::AmGRAS::pGPTV-BAR vector construct. It contains 

unique cloning sites (*) upstream of the β-glucuronidase (uidA) gene which allow the construction of 

promoter fusions. The T-DNA nopaline synthase (pAnos) and gene 7 (pAg7) poly (A) signals follow the 

uidA gene and selectable marker genes (bar), respectively. Arrows indicate direction of transcription; R, 

right T-DNA; L, left T-DNA border. 
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3.9.1 Phenotypes of 35S::EN::AmGRAS transgenic Arabidopsis plants 

A total of 37 BASTA resistant transgenic plants were obtained. The presence of the 

EN::AmGRAS insert was checked by PCR.  The overall phenotype of 35S::EN::AmGRAS plants 

is described in Table 2. Generally, no striking phenotype was observed in plants from successive 

generations, which were grown in long day (LD) condition of the 37 transgenic plants (Fig 25).   

 

Table 2. Phenotype of EN::AmGRAS transgenic plants 

generation Phenotype 

LD: no differences to wild type 

T1 SD: dwarfism, shorter internode length, occasionally reduced 

numbers of petal  

LD: no differences to wild type 
T2 

SD: growth retardation, partial floral organ defects* 

LD: no differences to wild type 
T3 

SD: similar to T2 

 

LD (Long day) condition: 16rs day and 8hrs night. 

SD (Short day) condition: 8hrs day and 16hrs night. 

* this phenotype was obtained under poorly controlled growth condition during summer season or in  a 

not well controlled growth chamber. 
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Fig. 25. Mutant phenotype of a 35S::EN::AmGRAS plants in LD compared to wild type in T1 generation 

A: Wild type plants  

B: Trasngenic 35S::EN::AmGRAS plants 

Transgenic plants were selected by spraying with BASTA after germination (0.1% for one-two week old 

plants, 0.5% for two-three week old plants and 1% for four week old plants; 0.5 l for one tray which 

contains 11 pots (12cm×12cm). All plants were grown in LD condition after sowing. 

 
 

Several defects were only observed on plants in short day (SD) condition from the T1 

generation. These defects, which are described in the following were restored to wild type 

phenotype when plants were shifted to LD condition. 

Three lines which were extensively analysed (in SD condition) from the T1 generation, first 

showed phenotypically dwarfism compared to wild type (Fig. 26, only two lines are shown). 

Later in development, these lines showed shorther internode length and occasionally reduced 

numbers of petals (Fig. 27 B,C and D).  
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Fig. 26. Mutant phenotype of 35S::EN::AmGRAS plants in the vegetative stage of the T1 generation (SD 

condition). 

A: Transgenic 35S::EN::AmGRAS plants  

B: Wild type plants 

Transgenic plants were selected by spraying with BASTA after germination (0.1% for one-two week old 

plants, 0.5% for two-three week old plants and 1% for four week old plants; 0.5 l for one tray which 

contains 11 pots (12cm×12cm). All plants were grown in SD condition after sowing. 
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Fig. 27. Mutant phenotype of 35S::EN::AmGRAS T1 plants after flowering  in SD condition. 

A: Wild type plants  

B: 35S::EN::AmGRAS  transgenic plants  

C and D: 35S::EN::AmGRAS  transgenic plants after flowering.  

C is a magnified picture of B. Lower number of petals is visible in D. 

Transgenic plants were selected by spraying with in BASTA after germination (0.1% for one-two week 

old plants, 0.5% for two-three week old plants and 1% for four week old plants; 0.5 l for one tray which 

contains 11 pots (12cm×12cm). All plants were grown in SD condition after sowing. 

 

 

In addition to the wild type plants (Columbia ecotype), transgenic plants containing only the 

vector construct without AmGRAS were also compared with plants of the T2 generation. The 

dwarf phenotype seems to be lost in the T2 generation as compared to the T1 generation. 
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However, several features of growth retardation and partial floral organ defects were still 

observed in almost all plants of the T2 generation. 

The floral organ defects including male sterility, ovule defects, shorter petals and shorter 

stamens were observed in poorly controlled constitutive SD condition or poor environmental 

condition during the summer (Fig. 28, B and D). These phenotypes were sometimes also 

observed in wild type plants. Therefore, further analysis is probably necessary to decide whether 

these floral organ defects are caused by environmental effects or whether they are due to the 

EN::AmGRAS transgene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                          Results 
 

 

 88

 
 

Fig. 28. . Mutant phenotype of floral organs of 35S::EN::AmGRAS plants in SD condition. 

Detailed floral organ defects were visualized using light microscopy 

A and C show wild type plants 

B and D are transgenic 35S::EN::AmGRAS plants  

B shows ovule abortion, and D shows that male organs are shortened and dried. D displays reduction of 

petal’s  size. 
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4. Discussion 

 

4.1 Spatial and temporal control of B-function gene DEF 

The spatial and temporal expression patterns of the floral B-function genes DEF and GLO 

in Antirrhinum throughout flower development have been characterized in several different 

mutants (Schwarz-Sommer et al., 1992; Troebner et al., 1992). Specially focusing on DEF, 

there are several genes, which play a key role in activation and repression of gene expression 

during development and which are described in the following. 

 

4.1.1 FIMBRIATA (FIM), CHORIPETALA (CHO), and DESPENTEADO (DES) 

FIM, CHO, and DES are regulators of the B-function which were analyzed extensively at 

the genetic level and partially at the molecular level.  

fim mutants cause an overall reduction in the activity of the B-function genes, and 

restriction of the C domain to the innermost whorl of the flower (Simon et al., 1994). Its 

expression pattern in early stages encompasses the presumptive domain of the B- and C-

function genes in the floral meristem, and in later stages rapidly expands outwards as a ring 

around the center of the floral meristem, adjacent to the sepal primordia. Thereafter, FIM is 

localized at the junction between sepals and petals, and between petals and stamens throughout  

later floral development (Simon et al., 1994). The overlapping mRNA expression of FIM with 

the B-function gene DEF in early stages is indicating that DEF is activated by FIM. 

FIM contains an F-box motif and is able to interact with FIM–associated proteins which are 

closely related to yeast SKP1 proteins. This suggests that these complexes promote degradation 

of a repressor of the B- and C-function genes through the ubiquitin degradation pathway 

(Ingram et al., 1997).  
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CHO and DES were reported to be negative regulators of the expression of B- and C-

function genes based on the pleiotropic phenotype of these mutants (Wilkinson et al., 2000). 

The epistasy of cho over fim in the cho fim double mutant suggests that CHO is a potential 

target of degradation by the F-box protein (Ingram et al., 1997). 

While FIM activates expression of the B-function in whorl 2 and 3, prevent CHO and DES 

expression in the first whorl. 

 

4.1.2 PLENA (PLE) and FARINELLI (FAR) switch the B-function gene off in the fourth 

whorl  

In early stages of wild type flowers, the mRNA expression pattern of DEF overlapps with 

that of the C-function gene PLE in the central region of the floral meristem when sepal 

primordia become visible, though DEF expression extends beyond PLE towards the periphery 

(Bradly et al., 1993). The PLE signal is more restricted than that of DEF to the center of the 

dome. In later stages, both DEF and PLE signals persist in whorl 2 and 3 and whorl 3 and 4, 

respectively, through to late stages of organ differentiation. The overlapping expression of PLE 

and DEF in the third whorl explains the positive role of PLE for the establishment of stamen 

organ identity. 

In contrast to Arabidopsis, Antirrhinum has a second C-function gene. FAR was isolated 

(Davies et al., 1999) using the Arabidopsis C-function gene AGAMOUS  (Yanofsky et al., 

1990) as a probe. Despite strong similarities between FAR and PLE, the phenotypes of their 

respective mutants are dramatically different (Davies et al., 1999). Unlike ple mutants, which 

show homeotic conversion of reproductive organs to petaloid or sepaloid organs and a loss of 

floral determinacy, the far mutant has normal flowers which are partially male-sterile.  

In the third whorl, the ple-1 mutant contains petaloid organs which resemble stamens in 
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that their lower part is filament-like and narrow. However, the third whorl organs of the ple-1 

far double mutant have more pronounced petaloid morphology which suggests that although 

FAR is unable to compensate the loss of PLE, FAR also plays a positive role in establishing 

stamen organ identity, like PLE does (Davies et al., 1999). 

Genetic and molecular analysis of the ple-1 far double mutant reveals a negative control 

over the B-function genes in the fourth whorl (Davies et al., 1999). The fourth whorl of ple-1 

far double mutant flowers consist of four to five petals, which are similar to the second whorl 

petals. Expression of B-function genes in ple-1 far mutant is markedly stronger in the second 

and third whorls, and clearly detectable in the fourth whorl. This ectopic expression of DEF 

and GLO in the fourth whorl of ple-1 far double mutants clearly indicates that PLE and FAR 

exert a negative regulatory function in wild type Antirrhinum flowers to prevent the expression 

of the B-function genes in the fourth whorl. 

 

4.1.3 RSI, a putative repressor in the control of DEF expression 

However, none of above genes has been shown to be a direct regulator of the DEF gene at 

the molecular level. There is a functionally important region in the DEF promoter, which 

containss several conserved motifs important for regulation of DEF gene expression (Schwarz-

Sommer et al, 1992). Using this promoter region in a yeast one-hybrid screen as bait, a putative 

regulator of DEF was isolated, called ROSINA (RSI; M. Roccaro, personal communication). 

The RSI protein contains several domains characteristic for transcription factors, including 

a b-ZIP domain at the C-terminal end and a serine rich region (M. Roccaro, personal 

communication). In floral organs, RSI mRNA is first detected in stamens and at later 

developmental stages in sepals and carpels. In later stages of stamen development, RSI 

expression is found in sporogenous tissue of anthers and ovules (M. Roccaro, personal 



Discussion 
 

 92

communication) which is complementary to that of DEF.  

The complementary expression pattern between DEF and RSI, and the ability of RSI to 

bind to a region of the DEF promoter, suggested that RSI may act as a putative repressor of 

DEF activity.  

 

4.1.4 Spatial and temporal control for stamen development 

In stamens, the expression of PLE is found in the filament and connective and is strong in 

the anther wall. In later stages the mRNA of PLE is weak or absent from sporogenous tissue. 

Detailed mRNA expression analysis of PLE and FAR in reproductive organ, shows complex 

patterns of both genes in wild type flowers. In the anther, PLE transcripts become localized to 

the region of the stomium, whereas FAR transcripts are predominant in the connective (Davies 

et al., 1999). In the gynoecium, PLE is expressed mainly in the developing ovules and to a 

lesser extent in the placenta and carpel wall, whereas the expression of FAR is complementary 

to that of PLE. 

Taken together, the expression of DEF in stamen is very similar to that of PLE and FAR, 

on the basis of strong expression in the filament and connective, and the analysis of later stages 

revealed that DEF is absent from sporogenous tissue of anthers.  

To better understand the function of RSI, which has a complementary mRNA 

expression in sporogenous tissue of stamens compared to other genes described above, the 

isolation and characterization of seven RSI interactors are quite informative. 
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4.2 Interactors of RSI 

Several candidates interacting with RSI were isolated from an cDNA expression library of 

Antirrhinum majus using a yeast two-hybrid screening.   

BLAST searches were performed to identify similar proteins from different organisms in 

various databases (Table 1). Taking into account only highly scoring proteins from databases, 

three of the proteins (Y6, Y35 and 2Y6) that were isolated in the screening are homologous to 

database entries with unknown functions. 2Y6 and Y6, rescued five times, showed high amino 

acid sequence similarity to three proteins from human and Arabidopsis, the function of which is 

unknown, and Y35 also showed 85% amino acid identity with a hypothetical protein of 

unknown function from Arabidopsis. 

Y13 displays 70% identity with a Ser/Thr protein kinase from Arabidopsis. Intracellular 

serine/threonine kinases are important for the transmission of signals from the membrane to 

cytoplasmic components and the nucleus, and for the integration of a signaling pathway. The 

prototype for all protein kinases, including tyrosine kinases, is PKA (Protein Kinase A). PKAs 

are important in the regulation of a number of physiological processes, including metabolism, 

cell differentiation, gene transcription and membrane transport (Beebe, 1994). 2Y14 has 

similarity to a RHO-associated coiled-coil forming kinase. RHO proteins are a subgroup of the 

RAS superfamily. RAS is known to be involved in the regulation of cellular proliferation and 

terminal differentiation (Hooykaas et al., 1999). In mammals, RAS is activated by tyrosine 

kinases. Some of these kinases phosphorylate the SHC protein which, together with 

autophosphorylated receptor proteins, then bind the SH2 domain of GRB2. The resulting 

complex recruits SOS, a guanine nucleotide dissociation stimulator, to the plasma membrane 

and SOS promotes release of GDP from inactive RAS, allowing GTP to bind and activate RAS. 

Active RAS can directly stimulate effector proteins further downstream in the transduction 
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cascade. Some of the downstream proteins are believed to include the mitogen-activated 

protein kinases (MAPKa) and other serine/threonine protein kinases such as RAF (Bokoch et 

al., 1993).  

The finding that a Ser/Thr protein kinase and a RHO-associated coiled-coil forming kinase 

interacting with RSI may be an indication that DEF is possibly regulated via protein kinase 

mediated signaling. So far no experimental data have been reported about the roles of protein 

kinases for the growth and development of plants. 

Among the interactors, 2Y16 (later renamed AmGRAS) showed similarity to GAI (Peng et 

al., 1997) and RGA (Silverstone et al., 1998) from Arabidopsis. Both proteins belong to the 

GRAS family of transcription factors. Genetic studies and the predicted gene functions, which 

will be described later, suggested that they encode repressors of GA signaling.  

 

 

4.3 AmGRAS and GA signaling genes  

The GRAS family proteins (formerly called VHIID proteins) which contain the VHIID 

domain are found in diverse plant species but not in yeast, prokaryotes, or animals. So, they are 

probably unique for plants, like also the AP2 family of transcription factors (Okamuro et al., 

1997; Weigel, 1995).  

AmGRAS is a new member of the GRAS family in Antirrhinum majus. AmGRAS has 

several highly conserved domains characteristic of GRAS family proteins. The PSORT 

program (Nakai and Kanehisa, 1992; http://psort.nibb.ac.jp) predicts that AmGRAS should 

localize to the nucleus, because it contains a bipartite nuclear localization signal (NLS). 

AmGRAS contains also a DELLA domain, two large leucine heptad regions, a VHIID domain, 

a LXXLL domain, a RVER domain, a SH2-like domain, and a SAW domain (Fig. 15.).   

http://psort.nibb.ac.jp/
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Leucine heptad repeats have been demonstrated to mediate protein-protein interactions 

among proteins (Hurst et al., 1994). AmGRAS has a LHQLL motif, which is identical to the 

consensus sequence LXXLL that was demonstrated to mediate the binding of steroid receptor 

coactivator complexes to nuclear receptors (Heery et al., 1997). The SH2 domain is also an 

indicator of protein-protein interaction, it binds phosphotyrosine containing proteins. There is 

also a SH2-like domain present in AmGRAS. These three domains further support the idea that 

AmGRAS is interacting with other proteins. 

GAI and RGA are homologous genes that encode putative transcription regulators which 

repress GA signaling, because some aspects of growth in Arabidopsis, such as stem and 

hypocotyl elongation in plants lacking either GAI or RGA function, require less GA than those 

of wild-type plants. 

The GAI (Gibberellin Insensitive) gene has been isolated by insertional mutagenesis of the 

gain-of-function gai allele (Peng et al., 1997). The loss-of-function (null) alleles restored the 

dwarfism phenotype to wild-type. The gibberellin response pathway is partially de-repressed in 

these plants. Thus, this gene was suggested to be a negative regulator of the GA response (Peng 

et al., 1997).  

The RGA (Repressor of the ga1-3 mutant) is also reported to be a negative regulator of the 

GA signal transduction pathway (Silverstone et al., 1998), because the recessive rga mutant is 

able to partially suppress phenotypic defects of the Arabidopsis gibberellin biosynthetic mutant 

ga1-3 (Sun et al., 1992; Silverstone et al., 1997a). Defects in stem elongation, flowering time, 

and leaf abaxial trichome initiation are suppressed by rga. The ga1-3 allele is a GA 

biosynthetic mutant which is a non-germinating, male-sterile, extreme dwarf blocked in the 

first committed step of GA biosynthesis (Koornneef et al., 1980). This mutant requires GA for 

germination and seed set.  
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The rga-24 gai-t6 double null mutant in ga1-3 background completely restores all defects 

which are partially rescued by rga except for the male sterility (Dill and Sun, 2001; King et al., 

2001). However, the gai-t6 null allele alone has little effect in suppressing the phenotype of 

ga1-3 (Dill and Sun, 2001; King et al., 2001). Therefore, GAI and RGA seem to have partially 

redundant functions in repressing GA signaling with RGA playing a more dominant role than 

GAI. 

It has been hypothesized that the GA signal may inhibit GAI function by interacting 

directly or indirectly with the DELLA sequence, because the semi-dominant gai-1 mutant 

which has a deletion in the DELLA domain resembles GA-deficient mutants, with the 

difference that it cannot be rescued by GA treatment (Koornneef et al., 1985; Peng et al., 1997). 

The functional homologs of GAI and RGA in several crop plants, such as Rht in wheat, D8 in 

maize, and SLR in rice (Ogawa et al., 2000; Ikeda et al., 2001) have been isolated. Deletions of 

the DELLA region in these genes also confer a similar semi-dominant dwarf phenotype in these 

crop plants.   

Expression of GAI and RGA is only slightly affected in different GA response mutant 

backgrounds or by GA treatement. However, the endogenous RGA protein levels are 

dramatically reduced after GA application. Therefore, it was hypothesized that the GA signal 

seems to derepress the GA signaling pathway by degrading the repressor protein RGA (Dill et 

al., 2001). 

The functional homolog of GAI and RGA in Antirrhinum is very likely AmGRAS which is 

closer related to GAI than to RGA at the protein level, with higher amino acid identity. It 

contains a DELLA domain, which could suggest that AmGRAS is also involved in GA 

signaling, probably having a similar function as GAI or RGA in Arabidopsis. 
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4.4 RSI as an interactor of AmGRAS 

 

4.4.1 The role of gibberellin signaling in flower development   

Plant hormones like gibberellins (GAs) and auxins modulate growth and development in 

response to both endogenous and environmental signals. Gibberellins were first discovered in 

the 1930s, as a metabolite produced by a pathogenic fungus (Gibberella fujikuroi) that caused 

excessive elongation of rice stems (Takahashi, et al 1990). 

GAs, which are tetracyclic diterpenoid growth factors, control a variety of plant growth and 

developmental processes including seed germination, stem elongation, flower initiation, and 

flower and fruit development (Hooley, 1994). GAs are very important in agriculture. World 

crops yields were substantially increased in the 1960s and 1970s, because farmers rapidly 

adopted the new varieties and cultivation methods of the so-called green revolution. The new 

varieties are shorter, have increased grain yield and reduced straw biomass, and are more 

resistant to damage by wind and rain. Although the GA biosynthetic pathway has been well 

characterized biochemically, until now little is known about GA action even though several GA 

response mutants which cause characteristic features of the new varieties, have been isolated. 

Several of these genes which encode GA response modulators belong to the GRAS family 

(Peng et al., 1999). 

To gain deeper insight into GA signal transduction, SPY (Jacobsen et al., 1996), GAI (Peng 

et al., 1997) and RGA (Silverstone et al., 1998), were extensively studied with genetic and 

biochemical methods. The original spy mutants were isolated based on their ability to 

germinate in the presence of the GA biosynthesis inhibitor paclobutrazol (Jacobsen and 

Olszewski, 1993). The cloning of SPY provided information about the protein which contains 

tetratricopeptide repeats in the deduced amino acid sequence, the function of which is to 
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mediate protein-protein interactions. These characteristic repeats occur in a diverse range of 

proteins (Jacobsen et al., 1996). 

Recently several cloned Ser (Thr)-O-GlcNAc transferases were shown to be homologous to 

SPY (Kreppel et al., 1997; Lubas et al., 1997). These glycosyltransferases play important roles 

in regulating the activities of various nuclear and cytosolic proteins. These enzymes can modify 

proteins by glycosylation alone or by competing for phosphorylation sites. The modified sites 

are typically rich in Ser and Thr, and both RGA and GAI have such a region at their N-termini. 

Based on the biochemical function of these genes, it was proposed that SPY might activate 

RGA and GAI by GlcNAc modification. A second enzyme is required for removing the 

GlcNAc residue.   

Two other genes, GAI and RGA, are involved in GA signal transduction. From genetic 

studies, it was shown that the spy mutant is epistatic to the gai mutant. Concerning SPY and 

RGA, there are additive effects between the spy and rga mutants in suppressing the defects of 

the ga1-3 mutants (Jacobsen et al., 1996; Silverstone et al., 1997). Because RGA and GAI are 

functionally not completely redundant and do not contain well-defined DNA-binding domains, 

it was suggested that possibly other interacting or modifying proteins are required which are 

specific for either RGA or GAI. Due to these functional features of the two proteins, it was 

intriguing to search for interacting partners of the GRAS proteins. 

 

4.4.2 Are GRAS proteins functional homologues of STATs ? 

The GRAS family proteins were suggested to be functionally related to the STATs (Signal 

Transducers and Activators of Transcription) of mammals, since they have several important 

structural features in common with the STATs, and the arrangement of those features in the two 

protein families is the same (Richards et al., 2000). They have a divergent N-terminal region, 
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leucine heptad repeats, a DNA-binding domain, and a SH2 domain, although the DNA-binding 

domain and the SH2 domain are not yet clearly defined for the GRAS proteins.  

STATs are known in many non-plant species, where they act as intracellular intermediaries 

between extracellular ligands and the transcriptional activation of genes (Darnell, 1997). STATs 

form homo- or heterodimers, are activated by phosphorylation, translocate to the nucleus, and 

bind to DNA, thus regulating transcription of genes.  

In the STATs, two conserved amino acid motifs were shown to be involved in DNA binding 

(Horvath et al., 1995). One is the sequence VX(E,D)E, the other is a motif containing several 

valines (LPVVV/II). GRAS proteins also contain a valine rich motif (VVLV, between amino 

acids 148-151 in AmGRAS) which is very similar to the sequence LPVVV/II in STATs. In 

addition they contain a VHIID domain, the first motif identified to be common to all GRAS 

proteins. Although there are putative DNA-binding domains in GRAS proteins which are 

similar to those of STATs, no biochemical evidence for DNA binding has been reported so far. 

In Antirrhinum, AmGRAS is an interactor of RSI, which binds to the DEF promoter. RSI in 

the AmGRAS/RSI complex could mediate DNA-binding of the heterodimers and thus connect 

signal transduction with transcriptional gene activation. Thus, the interaction of AmGRAS with 

RSI is perhaps a step forward to understand the role of the GRAS proteins in flower 

development by GA signaling and their relationship with STATs.  

At the molecular level, little is known about how GAs regulate flowering, but there are 

some genes known which are regulated by GA during flowering. LEAFY, a floral meristem-

identity gene in Arabidopsis, is known to regulate early floral events, and its promoter is 

responsive to GA (Blazquez et al., 1998). In addition, applied GA can rescue the weak 

flowering phenotype of leafy mutants (Okamuro et al., 1996). A further candidate gene is the 

GAMYB transcription factor that is specific to the GA signal transduction pathway in 



Discussion 
 

 100

flowering, especially floral transition of the shoot apex (Gocal et al., 1999). The LEAFY 

promoter contains a potential MYB-binding motif that is required for normal LFY promoter 

activity (Blazquez and Weigel, 2000). The AmGRAS promoter also contains putative MYB 

binding core motifs, GTTA. It might be interesting to test whether these core motifs in the 

AmGRAS promoter are really functional in flower development. Further biochemical and 

genetic studies of these roles of AmGRAS and RSI in floral organ development will shed light 

on the control of floral B-function and GA singal transduction. 

The SH2 domain, present in STATs family, was shown to mediate the binding of STATs to 

various receptor tyrosine kinases, which then gets activated by the receptor kinase. Interestingly, 

there is a putative sequence-specific binding motif for SH2 domain proteins in the amino acid 

sequence of RSI between amino acids 142 and 156, G-VYENDD-VYENDD-G (M. Roccaro, 

personal communication). AmGRAS contains a SH2-like domain (Fig. 15). This putative 

binding site was identified based on the specific phosphopeptide sequence recognized by SH2 

domains (Songyang et al., 1993). The tyrosine (Y) present in this RSI motif might be 

phosphorylated and could be a putative target of SH2 proteins.  

Since AmGRAS contains a SH2-like domain, the interaction with other RSI interactors, 

like a Ser/Thr protein kinase and RHO-associated coiled-coil forming kinase, which were 

thought to be downstream proteins of RAS, was tested. No interaction between these RSI 

interactors and AmGRAS when AmGRAS was used as bait in the yeast two-hybrid system. 

If one can show that the SH2-like domain in AmGRAS is functional, by using the binding 

motif of RSI, it will support the idea that the GRAS proteins are plant STATs and will 

contradict the idea that the SH2 domain is exclusively associated with the evolution of 

multicellularity in animals (Schindler et al., 1995). 
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4.5 AmGRAS is a putative orthologue of GAI or RGA 

The phylogenetic comparison of AmGRAS with other GRAS family proteins shows 

that AmGRAS is closely related to the GAI and RGA proteins from Arabidopsis. AmGRAS 

shares 66% identity with GAI and 59% identity with RGA at the amino acid sequence level. 

The growth of rga-24 gai-t6 double mutant in a wild type background is similar to that 

of wild type plants. However, although there are no big differences in the plant height 

compared to that of wild type plants, there are some differences between the rga-24 gai-t6 

double mutant and wild type plants. The rga-24 gai-t6 mutant has much reduced fertility (Dill 

and Sun, 2001; King et al., 2001). The double mutant has shorter siliques producing fewer 

seeds, reduced amounts of pollen and the stamen filaments are shorter than the carpels. 

The rga-24, gai-t6, and rga-24 gai-t6 mutant allele in the ga1-3 mutant background do 

not restore the defects in germination and flower development as reflected in the 

nongerminating, male-sterile phenotype of ga1-3. The rga-24 gai-t6 ga1-3 triple mutant 

flowers have severely reduced petal and stamen growth and are sterile. The failure to rescue 

several defects regarding germination and flower development in rga-2 ga1-3 and gai-t6 ga1-3 

double or rga-24, gai-t6 ga1-3 triple mutant suggests that there are additional genes in 

functionally redundant ways involved. These genes could be RGL (RGA-LIKE; Sanchez-

Fernandez et al., 1998), RGA1-LIKE (Genebank accession No. AC009895), and RGA-LIKE 

PROTEIN (Genebank accession No. AL391150). All of them contain a DELLA domain with 

56-60% amino acid sequence identity to GAI and RGA (Dill and Sun, 2001). 

Although the double and triple mutants in a ga1-3 background do not tell the functional 

roles of GAI and RGA in flower development, there is some indication of the roles of GAI and 

RGA from the phenotype of the rga-24, gai-t6, and rga-24 gai-t6 alleles in a wild-type 

background (Dill and Sun, 2001; King et al., 2001). The fertility defects in reproductive organs 
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of the rga-24 gai-t6 double mutant are consistent with the spatial expression pattern of 

AmGRAS (Fig.22 and 23). The floral defects of AmGRAS transgenic plants grown in SD 

condition are very similar to those of the rga-24 gai-t6 ga1-3 triple mutant (Fig. 28), although 

these AmGRAS transgenics have to be analyzed more in detail. 

Taken together, all this indicates that AmGRAS is functionally closer to GAI and/or 

RGA, and suggests that AmGRAS is the Anrirrhunum orthologue of GAI and RGA of 

Arabidopsis. 

 

 

4.6 Overlapping expression patterns of AmGRAS and RSI in stamens 

AmGRAS is more or less ubiquitously expressed in nearly all plant organs, including sepals, 

petals, stamens, carpels and leaves. The mRNA expression pattern of AmGRAS was dectected 

by in situ hybridization in several different tissues such as inflorescence apical meristems, 

floral meristem, and flower organ primordia.  

It is interesting that the expression of AmGRAS is differentially higher in the reproductive 

organs compared to others.  In stamens, the AmGRAS mRNA is more localized in sporogenous 

tissue which is complementary to DEF expression (Fig. 23). In the female organ, AmGRAS 

expression is primarily in ovules (Fig. 23, B). The expression of AmGRAS in reproductive 

organs is very similar to that of RSI. The similar spatial expression patterns of AmGRAS and 

RSI clearly supports the interaction of both proteins in the yeast two-hybrid system and in GST 

pull-down experiments, and indicates its biological relevance. 
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4.7 Possible roles of AmGRAS and RSI for the regulation of DEF  

Transgenic knock-out plants of AmGRAS, using the Engrailed domain did not give a clear 

answer about the functional roles of this gene, although the plants showed several defects in the 

floral reproductive organs. However, the expression pattern of AmGRAS and RSI is 

complementary to that of DEF. Based on the similar expression patterns of RSI and AmGRAS 

and the interaction of the encoded proteins, it is reasonable to speculate that the heterodimer is 

involved in the control of DEF gene activity, thereby linking GA-signaling and activation of 

the floral B-function. 

It is also possible that the AmGRAS/RSI heterodimer participates in the regulation of other 

genes and developmental pathways in flower development.  

 

 

4.8 Perspectives 

The work described in this thesis allowed the identification of AmGRAS, which might be 

involved in the GA signaling pathway in flower development. So far the evidence is 

preliminary and has to be substantiated. Whether AmGRAS is playing a STAT-like role in 

signaling in plants, is an interesting question, which should be investigated. For this 

biochemical analysis of the putative interaction of the SH2-like domain in AmGRAS with the 

putative sequence-specific binding motif for SH2 domain proteins in RSI should be informative.  

The similar mutant phenotype of floral organs of AmGRAS transgenics compared to that of 

the rga-24 gai-t6 ga1-3 triple mutant is probably due to the fact that other genes of the GRAS 

family are also knocked out. To identify the specific function of AmGRAS, other constructs 

have to be designed using only specific parts of the ORF, such as the more divergent N-

terminal region of GRAS proteins, which could be analyzed in transgenic plants in Arabidopsis 
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and Antirrhinum. The specific function of AmGRAS in transgenic knock-out plants can be 

checked by RT-PCR, and also the question whether other GAI or RGA-like genes are intact or 

also inactivated. 

The result from these experiment possibly will not only contribute to the understanding of 

the role of AmGRAS/RSI in DEF control but also shed light on various aspects of GA signaling 

in flower development. 
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5. Summary 

 

In Antirrhinum, development of petals and stamens in the second and third whorl is 

controlled by the homeotic B-function genes DEFICIENS and GLOBOSA, which belong to the 

MADS-box family of transcription factors. The encoded proteins form heterodimers via their 

K-domain, which control petal and stamen organogenesis. According to the genetic ABC 

model, these two genes establish the B-function, which, together with the A- and C-functions, 

regulate floral organ development. The spatial and temporal expression patterns of DEF and 

GLO is not uniform during this process. In early stages of development transcripts of DEF are 

detectable in the second and third whorl primordia. In later stages, DEF transcripts are found 

also in first and fourth whorl organs. GLO mRNA is found mainly in the second- and third 

whorl primordia, but later on also in fourth whorl organs (Schwarz-Sommer et al., 1992; 

Troebner et al., 1992; Zachgo et al., 1995). The analysis of expression patterns of DEF and 

GLO in mutants suggests that they are independently induced and highly regulated. Indeed, 

several genes are known to be required for this process, as deduced from genetic analysis of 

Antirrhinum mutants, but little is known about the molecular mechanisms that control the B-

function genes DEF and GLO.  

A first step for a better understanding of the molecular control mechanisms was the 

isolation of ROSINA (RSI), a putative regulator of DEF, in a yeast one-hybrid screen (M. 

Roccaro, pers. Communication), using a 200 bp long DEF promoter fragment which contains 

several potential binding sites for transcription factors like b-ZIP- and MADS-box proteins. In 

addition, a three bp deletion in this region in the mutant allele deficiens-chlorantha (def-chl) 

leads to a strong reduction of DEF expression in the second and third whorl, phenotypically 

visible as partial homeotic changes of the petals and stamens (Schwarz-Sommer et al., 1992).  
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RSI is a member of the b-ZIP family of transcription factors which contains, besides the basic 

domain and the leucin zipper, several other domains of uncertain function. 

Since such factors often need partners for exerting their regulatory function as heterodimers 

or multimers, RSI was used as 'bait' in a yeast two-hybrid system to search for such potential 

partners. With this strategy several candidates interacting with RSI were isolated and the DNA 

sequence determined. A data bank search revealed homologies to known proteins like Ser/Thr 

kinases or transcription factors from plants and mammals, but also to proteins of unknown 

functions. The most interesting candidate was clone 2Y16 (later renamed 'AmGRAS') which 

showed strong similarity to members of the GRAS family (GAI and RGA) of Arabidopsis. This 

candidate was chosen for further analysis. The protein-protein interaction between AmGRAS 

and RSI was confirmed also biochemically by GST-pull down experiments. Expression studies 

of AmGRAS, by mRNA northern and in situ hybridisation, revealed great similarity to the 

expression patterns of GAI and RGA of Arabidopsis, which were suggested to be transcription 

factors involved in gibberellin signal transduction. For further functional characterisation of 

AmGRAS by 'knock-out' stategies, transgenic AmGRAS plants in Arabidopsis were made, 

using the 'engrailed method' of gene inactivation (W. Werr, pers. communication). Transgenic 

plants with mutant phenotypes were obtained and preliminary characterised, but a more careful 

analysis is not completed yet. 

The current results and data suggest that AmGRAS is the Antirrhinum orthologue of one of 

the two Arabidopsis GRAS family members GAI and/or RGA. Since it is well known that 

gibberellins (GAs) play an important role in floral organ development, the protein interaction 

between RSI and AmGRAS could be the link which connects GA signal transduction and 

expression/regulation of the floral B-function gene DEFICIENS. 
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5. Zusammenfassung 
 

 In Antirrhinum majus (Löwenmäulchen) wird die Entwicklung der Petalen und 

Stamen, der Blütenorgane des zweiten und dritten Wirtels, von den homöotischen Genen 

DEFICIENS (DEF) und GLOBOSA (GLO) gesteuert. Die von den beiden Genen kodierten 

Proteine sind Transkriptionsfaktoren, die zu der MADS-Box Familie gehören und die als 

Heterodimere die Organogenese von Petalen und Stamen kontrollieren. Nach dem genetischen 

ABC-Modell der Blütenentwicklung etablieren die beiden Gene die B-Funktion, die im 

Zusammenwirken mit der A- und der C-Funktion die Entwicklung der floralen Organe im 

zweiten beziehungsweise dritten Wirtel steuern. Die Expression der beiden B-Funktionsgene ist 

zeitlich und räumlich veränderlich. In frühen Stadien sind DEF und GLO in den Primordien 

exprimiert, aus denen sich später die Organe des zweiten und des dritten Blütenkreises - Petale 

und Stamen - entwickeln. In späteren Entwicklungsstadien der Blüte sind beide auch im Karpel 

des vierten Wirtels - wenn auch schwächer als in den Organen zweiten und dritten - exprimiert, 

und DEF auch schwach in den Sepalen des ersten Wirtels  (Schwarz-Sommer et al, 1992; 

Tröbner et al,1992; Zachgo et al, 1995). Die Analyse der Expressionsmuster in DEF- und 

GLO-Mutanten ergab, daß beide Gene unabhängig von einander angeschaltet werden und 

danach organ- und gewebespezifisch streng reguliert werden (Tröbner et al, 1992). Über die 

molekularen Mechanismen dieser Regulation ist bislang wenig bekannt. 

 Ein erster Schritt zum besseren Verständnis der molekularen Kontrollmechanismen 

war die Isolierung von ROSINA (RSI), eines möglichen Regulators von DEFICIENS, mittels 

des One-hybrid Systems in Hefe (M. Roccaro, pers. Mitteilung). RSI wurde isoliert mit einem 

200 Bp langen Promotorfragment des DEF-Gens, das mehrere potentielle Bindemotive für 

Transkriptionsfaktoren wie z.B.  bZIP- und MADS-Box Proteine enthält. Außerdem führt eine 
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Deletion von drei Basenpaaren in dieser Region in dem Mutantenallel deficiens-chlorantha 

(def-chl) zu einer starken Reduktion der Expression im zweiten und dritten Wirtel, die 

phänotypisch als partielle homöotische Änderungen der Petalen und Stamen sichtbar wird. RSI 

ist ein Mitglied der b-ZIP-Familie von Transkriptionsfaktoren, das neben der basischen Region 

und dem Leucin-Zipper noch andere Domänen mit unbekannter Funktion enthält (M. Roccaro, 

pers. Mitteilung).  

 Da solche Faktoren für die Ausübung ihrer regulatorischen Funktion meistens Partner 

benötigen, mit denen sie dimere oder multimere Proteinkomplexe bilden, wurde RSI in einem 

Hefe-Two-hybrid System als "Bait" benutzt, um potentiellen Interaktoren zu isolieren. Mit 

dieser Strategie wurden eine Reihe (sieben) von interagierenden Kandidaten isoliert, die 

zunächst durch verschiedene Kontrollexperimente in Hefe bestätigt und deren DNA-Sequenz 

dann ermittelt wurde. Eine Suche in verschiedenen Datenbanken zeigte in einigen Fällen 

Homologie der RSI-Interaktoren zu bereits bekannten Proteinen wie Ser/Thr-Kinasen oder 

Transkriptionsfaktoren von Pflanzen (Arabidopsis) und Tieren, aber teilweise auch zu 

Proteinen mit unbekannten Funktionen. Der interessanteste Kandidat war 2Y16 (später 

umbenannt zu "AmGRAS"), der starke Ähnlichkeit zu Mitgliedern (RGA und GAI) der GRAS-

Familie von Arabidopsis zeigte und der daher für eine tiefergehende funktionelle Analyse 

ausgewählt wurde. Die Protein-Interaktion mit RSI wurde biochemisch durch "GST-

pulldown"-Experimente bestätigt. Expressionsanalysen mit mRNA Northern und in situ 

Hybridisierung zeigten große Ähnlichkeiten zwischen AmGRAS und RGA und GAI von 

Arabidopsis, von denen vermutet wird, daß sie Transkriptionsfaktoren sind, die in der 

Gibberellin-Signal-Transduktion involviert sind. Zur weiteren funktionellen Charakterisierung 

von AmGRAS wurde die "Engrailed-Methode" (W. Werr, pers. Mitteilung) benutzt, um mit 



Summary/Zusammenfassung 
 

 109

AmGRAS "Knock-out"-Mutanten in Arabidopsis zu erzeugen, deren Analyse allerdings noch 

nicht beendet ist. 

 Die bisherigen Ergebnisse und Daten legen die Vermutung nahe, daß AmGRAS das 

Antirrhinum-Ortholog einer der beiden Arabidopsis-Gene - RGA oder GAI - ist. Da bekannt ist, 

daß Gibberelline (GA) eine wichtige Rolle spielen in der Entwicklung der Blütenorgane, 

könnte die Interaktion von RSI und AmGRAS einen der Verbindungspunkte von GA-

Signaltransduktion und der Expression/Regulation des floralen B-Funktionsgens DEFICIENS 

darstellen. 
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7. Amino acid sequence of putative RSI interactors 
 
7.1.1  Y6 
MAQTIENSEFSLQERNVELEKELRNSLEREEWMKQELQKAYQRLRVAEEAEERLCLQL
GELEAEAVDHAREYRAHVMELMEQIAFAQKLLQQTSVDDISFPNSD 
 
7.1.2  Y35 
LRLRLRLRLREREIMMSSADRHSSSLSAPHHPDDNNNNNNLFLDILQDAPLFGHRKPTI
LVGSIFYCLLLTGYAILAVGAAWILQPVQELVALILCSSDVILLLVTGIFQQYLVYQVQK
IRLQGYYGFSQKLKHIIRLPFATIAYGTAAMLLIMAWKPHISILSISMLLRITMLVQAICA
GFFMSIYIGYVHQYNSLDSQPDVLNSLYSPLQQSSSLEGSRYHDGGRLSDQQMALLQY
QRENLNFLSEEILRLQECLSKYERSDDGSTPQVDLAHLLAARDQELRTLSAEMNQLQSE
LRLARSLIAERDMEIQRVRITNNQYVEENERLRAILGEWSARAAKLERALEAERMSNL
ELQKNITTLKSQTMQEQVEPKSQMDH 
 
7.1.3  Y13 
RQDGQPNHNDDYDLTDDGLFASGPQEPEFAANEDSAAIYDELVINDNKNDDYEIFELRI
IHRKNRTGFEEHKEFPIVLNSIIAGRYYVTEFLGSAAFSRVVQAHDLYSGMDVCLKIIKN
DKDFFDQSLDEIKLLKFVNKHDPADERHILRLYDYFYHQEHLFIVTELLRANLYEFQKF
NRESDGELYFSMHRLQVITRQCLEALSYLHDLGIIHCDLKPENILIKSYRRCEIKIIDLGSS
CFETDHLSLYVQSRSYRAPEVMLGLAYDQKIDLWSVGCILAELYSGEVLFPNEAVVLL
LARMVGLLGPIDMDMLRKGQEVHKYFTKEFDLYHVNEDTNQLEYIIPEESSLEDHLQI
LDPLFIDFLKYLLEINPKRRPTAREALVHPWLSHSY 
 
 
7.1.4  2Y6 
EFGTSGTREKETIRDSKSESFELIKRLEFHIKTLSEVHEQDKKHIEELERELSNCCQEIDY
LQDQLKIRNSDLNCLVEQVSSLQLKLADMDNLAEETESLREHVKISEYERSLLMQDIED
KEVAIRYSASRVEELEESISSIGLEFQCEIESTKLESMALEQKLFEIKELLHERTQESSRM
HELIQDLESQIRDANKVIEGLDKENKDFREKLQRRIKCQCICQEVEDQFDDRVQHKC 
 
7.1.5  2Y14 
EFGTRSSIFALDREKSKGLEEICDLLKSERSYLLTERSSLALKLENVERKLEGMEKRYM
GLEQKYADVEKEKDAMHGKVVELMFSLGMEKQERTSSQLQSETRLAGLENQIHLLQQ
DNRWKKKEFEEELEKALKAQFEISILQKFMKDMEEKNYALITECQKHVEASKLAEKLI
SELESESLEQQVESELLLDEN 
 
7.1.6  2Y16 
MKRDSSMNNNNNNNQAEQKSSSSKNMWPSSSCEATDEVDELFAVLGYKVKPSDMAD
VAIKIQQLEQVMGNGAAVSDLASDTVHYNPSDLSSWLESMITGLNQFDPPPPTQMDFG
SDLVAIPGEAAMYPQPPPIKKLKTTPHQEQPPKVVLVDSQENGVRLVHTLMACAEAVQ
QENFKLAETLVKNIGFLAVSQVGAMRKVATYFAEALARRIYRLYPTSNLQDSAFTDLL
QMHFYETCPYLKFAHFTANQAILEAFAGKTRVHVIDFSMKQGMQWPALLQALALRPG
GPPSFRLTGVGPPSPDNTDHLQEVGWKLAQLAESINVEFEYRGFVANSLADLNASMFD
VREGETVAVNSIFELHQLLARGGAIEKVLGVVRELKPEILTVVEQEANHNGVAFLDRFT
ESLHYYSTLFDSLESCGGGVEGGVVSDQDKVMSEVYLGRQICNVVACEGVDRVERHE
SLVQWRTRFNGAGFKPVHLGSNAYKQASMLLALFAGGDGYRVEENDGCLMLGWHT
RPLIATSAWRPS 
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7.1.7  2Y19 
EFGTSGTSVTERTLEQESPQYQQLNTVLPVNETDEKVDCMVQAVDESKSLVPERQNAD
PCAEISYKSLYIESQKRIEELMENNFDLVRKLDFAHGKIEAYEKMMVPAKEVILVSDQG
KATEATVSLSPQEVQRPISQIGAAADRILSTKRKKINSKVAADATEGHNASPKQKKKYT
KRKSN 
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