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1. INTRODUCTION 

1.1 Tubular organs - an overview 

 

Tubular structures are a recurring anatomic feature in all multicellular life forms. The 

branched and hierarchal nature of tubes is common among several organs in the vertebrates. 

Among higher vertebrates, organs with tubular composition include the vascular, pulmonary, 

digestive and excretory systems, as well as the secretory organs such as the mammary, 

pancreatic and salivary glands. The Drosophila melanogaster tracheal system, the equivalent 

of the vertebrate lung is a prototypical model for studying molecular mechanisms governing 

tubular network development owing to the relatively simple structure of the respiratory 

system.  

 

1.2 Tracheal morphogenesis in Drosophila 

 

Tracheal branches are monolayer epithelial cells wrapped into tubes surrounding a central 

lumen through which gases flow (CASANOVA 2007). The tracheal system is bilaterally 

symmetric and segmentally repeated in its organisation, which reflects its developmental 

origin. The tracheal system comprises of three kinds of branches; the primary, secondary and 

the tertiary (terminal) branches, each established according to the sequence of migration and 

tube formation. During embryonic development (5hr After Egg Lay), 10 bilaterally 

symmetrical ectodermal cell clusters consisting of ~ 80 cells invaginate into an epithelial sac 

called the tracheal placode. The tracheal placode develops into interconnected tubes through 

a series of events including cell migration, intercalation and fusion (Fig.1). Over the course of 

the next few hours, six primary tracheal branches migrate out from each tracheal placode at 

stage 12 (Fig.1b, e). The branches bud out with a pair of leading cells followed by a small 

number of cells that organise into a tube during the migration process. At stage 15, the 

primary branches are ensued by the two-dozen secondary branches (Fig.1d, e). During further 

stages of development, the secondary branches sprout terminal branches. Much of the 

development of terminal cells takes place during larval phases in response to physiological 

oxygen demands. 
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Figure 1: Stages of embryonic tracheal development in Drosophila melanogaster 

The Drosophila tracheal system develops by sequential branching from a tracheal sac in each hemisegment. (a–

d) Embryonic tracheal development visualised by immunostaining of the tracheal lumen. Embryo stage and age 

(in hours) are indicated. The first (Tr1) and the tenth (Tr10) tracheal hemisegments are indicated in (a). Brackets 

indicate position of fifth tracheal hemisegment (Tr5). Lateral views, anterior left, dorsal up. (e) Development of 

Tr5. The spiracular branch (SB), transverse connective (TC) and the six primary branches (DB, dorsal branch; 

DTa and DTp, anterior and posterior dorsal trunk; VB, visceral branch; LTa, anterior lateral trunk; LTp/GB, 

posterior lateral trunk/ganglionic branch) are indicated. Primary branches at stage 12 and secondary branches at 

stage 15 are highlighted green. Most secondary branches ramify to form terminal branches in the larval period 

(not shown). The branches that cease branching and fuse with branches in neighbouring hemisegments are 

indicated (arrowheads).Adapted from (GHABRIAL et al. 2003). 

 

Branching morphogenesis of the trachea involves the Fibroblast Growth Factor (FGF) 

signalling pathway that is used repeatedly to control branch budding and outgrowth 

(GHABRIAL et al. 2003; METZGER 1999; SATO 2002; SKAER 1997). branchless (bnl) 

(SUTHERLAND et al. 1996), and breathless (btl) (KLÄMBT et al. 1992) encode the Drosophila  

homologues of the mammalian FGF and the FGF receptor and are critical for the induction 
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and maintenance of the tracheal system (Fig.2a). Although the Bnl/Btl signalling provides the 

cues for development, a different tubulogenesis mechanism is used at each level of branching 

concurrent with stages of development (Fig.2b). 

 

 

Figure 2: The Branchless FGF pathway controls each step of branching. 

(a) branchless/ FGF (blue) is expressed in clusters of cells surrounding the developing tracheal system, at each 

position where a primary branch will bud. The secreted growth factor activates the Breathless FGFR on nearby 

tracheal cells (black), and acts as a chemoattractant that guides outgrowth of primary branches. It also induces 

expression of secondary branch genes and triggers secondary branch sprouting at the ends of outgrowing 

primary branches (green; stages 12–16). branchless turns back on again, but in a completely different pattern, 

during larval life to control outgrowth of terminal branches. The gene is expressed yet again during pupal life 

where it controls budding of adult air sacs (not shown). (b) The genes that function upstream of Branchless and 

downstream of Breathless change during development, giving rise to different patterns and structures of 

branches at each step. Adapted from (GHABRIAL et al. 2003)  

 

 

 

Further, different branches within each metamere have a fixed number of cells (SAMAKOVLIS 

et al. 1996) with each branch featuring characteristic tube dimensions (BEITEL and KRASNOW 

2000). Primary branches are composed of multicellular tubes with two to five wedge-shaped 
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cells surrounding a lumen and interconnected by intracellular junctions (Fig.3a). In secondary 

branches, tubes are made up of interconnected cells lying in a single row that form a tube by 

folding over itself along the long axis and sealing via an autocellular junction (Fig.3b). 

However, unlike primary and secondary branches terminal cells form a junctionless and 

therefore “seamless” lumen (Fig.3c). Also present within the tracheal system are pairs of 

doughnut-shaped cells (fusion cells) that are derived from primary branches. Two fusion cells 

extending from the primary branches of each metamere connect to form a fusion anastomosis 

to give rise to a continuous network. The tube formed by fusion cells is as a result seamless 

and without intracellular junction (Fig.4). The developmental design of the primary and 

secondary branch formation is highly stereotyped and pre-programmed unlike branch 

formation in terminal cells, where branching is highly variable and regulated by oxygen 

demand.  

 

 

 

 
Figure 3: Types of simple epithelial tubes that constitute the Drosophila tracheal system 
Tube walls are formed by polarised epithelial cells with their apical membrane surface (red) facing inward 

toward the lumen space and their basal surface (green) exposed to the extracellular matrix. (a) A multicellular 

tube with four curved cells in a cross-sectionof the tube; (b) A unicellular tube formed by a single cell, rolled up 

to enclose the lumen, and sealed with an autocellular junction; (c) A unicellular tube with the lumen in the 

cytoplasm of the cell. There is no autocellular junction; the tube is “seamless.”Adapted from (LUBARSKY and 

KRASNOW 2003). 
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Figure 4: Schematic representation of fusion anastomosis  

Fusion branches (anastomoses) connect the individual metameres and are made by two cells that, before fusion, 

are positioned at the tips of the two branches that will fuse. Each fusion cell is doughnut shaped with no 

autocellular junctions and forms intercellular junctions with its fusion partner and with the following cell in the 

primary branch Adapted from (UV et al. 2003). 

 

1.3 Terminal cell and branch development 

 

Cells that do not participate in the formation of secondary branches are specified to become 

terminal cells. Though the specification to become terminal cells occurs in embryonic stages 

much of the development takes place during larval phases. Terminal cells are outposts of the 

tracheal system responsible for oxygen delivery to target tissues. Terminal branches originate 

as cytoplasmic protrusions that develop a lumen intracellularly (Fig.5). Branching 

morphogenesis in terminal cells is a reiterative process that occurs during the five days of 

larval development, involving rounds of cytoplasmic extension, followed by lumen formation 

to create a ramified network that contacts cells of the target tissue (KEISTER 1948). Oxygen 

carried through the terminal branches is made available at target tissues through diffusion that 

is facilitated by the close contact between the plasma membrane of the tissue and the blind-

end of the terminal branch (MANNING 1993).  

 

The terminal branches consist of a lumen whose diameter, decreases progressively along with 

the branch diameter with increasing distance from the nucleus. The average lumen diameter 

of a terminal is less than 1 µm (GUILLEMIN et al. 1996; LUBARSKY and KRASNOW 2003; 

WIGGLESWORTH 1954). Terminal cells also show apical-basal polarity, with the outer 

membrane being the basal membrane, and the membrane facing the lumen being apical which 
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shows enrichment of the apical polarity complex Par6/aPKC/Baz along with Crumbs (Jayan 

N. Nair, PhD thesis) (GERVAIS and CASANOVA 2010). Terminal cells on an average have 20 

branches and the branching points are regularly spaced and do not cross over one another. 

The terminal cell arborisation may span distances over 100 µm. Unlike earlier stages of 

tracheal branching, terminal cell branching is not stereotyped but governed by oxygen 

physiology in tissues, resulting in terminal cells with varied branching patterns.  

 

 

Figure 5: A terminal cells from a third instar larval trachea 

The terminal cell is visualised by trachea specific expression of cytoplasmic GFP using btlGal4. The terminal 

cell extends long processes toward target tissues, called the terminal branches. Each terminal branch bears a 

lumen within through which air is transported to be supplied to tissues. The terminal cell nucleus is marked with 

a star (Jayan N. Nair PhD thesis). 

 

The process of lumen formation within the terminal branches is not quite well understood. 

Early work in Drosophila showed the presence of cytoplasmic vesicles in the terminal 

branches distal from the nucleus (Fig.6a) (SHAFIQ 1963). It is believed that these vesicles fuse 

to form a larger vesicular body that would coalesce with the already existing tracheal lumen. 

This is supported by the presence of Crumbs-positive vesicles at the distal regions of terminal 

branches that did not yet possess a lumen (Fig.6b) (Jayan N. Nair PhD thesis). Moreover, 
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these Crumbs-positive vesicles appear to line up parallel to each other as if forming a lumen. 

Further, work on angiogenesis using cell lines have shown that vacuoles are generated prior 

to lumen formation and a lumen is formed when these vesicles fuse together (FOLKMAN and 

HAUDENSCHILD 1980). 

 

Figure 6: Growing ends of the tracheoles show multi-vesicular structures  

(a) Electron micrograph of the tip of a developing tracheal branch. Arrows mark vesicular structures within the 

distil region of the tracheoles. (b) Crumbs-GFP localisation in vesicles at distal regions of a terminal branch 

where the lumen is beginning to develop. The branch is marked with DsRed expressed using btlGal4. The red 

and green arrows mark the proximal (to the nucleus) and distal ends of the branch, respectively. Adapted from 

(a) (SHAFIQ 1963) and (b) Jayan N. Nair (PhD thesis). 

 

 However, contrary to the idea of de novo tube formation through vesicular fusion, lumen 

formation has also been described to occur in a proximal to distal manner. Work in 

embryonic tracheal system showed that lumen in terminal cells formed by the growth of a 

new membrane into the cell from the surface contacting the adjacent cell. The membrane 

formed was the apical membrane as seen from the accretion of apical polarity complexes, 

aPKC/Par6/Baz and Crb/DPatj complexes (GERVAIS and CASANOVA 2010).  Perhaps lumen 
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formation is a combination of both mechanisms, where lumen formation in early stages of 

tracheal development is predominantly from extensions from previously existing membranes 

and then during later stages incorporating de novo tube formation in order to hasten the 

process of tube formation in response to local oxygen demand. 

 

1.4 Factors influencing terminal branch development 

 

Tracheation is modulated by oxygen availabilty in tissues. Both hypoxia and hyperoxia are 

known to influence tracheal branching (JARECKI et al. 1999; WIGGLESWORTH 1954). Under 

conditions of low oxygen, terminal branch formation is induced, whereas in hyperoxia 

terminal branch formation is supressed. The Drosophila counterparts of the mammalian 

hypoxia-inducible factor (HIF), Similar (Sima) and Tango (Tgo) which function
 
as HIF-α and 

HIF-β homologues, activate the hypoxia induced signalling pathway (LAVISTA-LLANOS et al. 

2002). Oxygen starved tissues produce a trachaetion signal which induces tracheal branching 

in regions depreived of oxygen (WIGGLESWORTH 1954). This tracheogenic signal was later 

identified as branchless (bnl). Bnl is a potent inducer and chemoattractant of terminal 

branches that results in proliferation of terminal branches (JARECKI et al. 1999). Btl signalling 

through FGFR induces terminal branching (REICHMAN-FRIED and SHILO 1995) and also the 

expression of the downstream targets important to terminal cell development, such as 

srf/blistered/pruned/ (srf/bs). srf encodes the Drosophila homologue of the mammalian 

serum response factor and is specifically expressed in terminal cells. Mutants of srf fail to 

develop cytoplasmic outgrowths that later form terminal branches, thus severely affecting 

branching morphogenesis (AFFOLTER 1994; GUILLEMIN et al. 1996). Srf recruits the co-factor 

Elk-1( a Ternary Complex Factor, TCF) to the serum response elements (SRE) to form the 

ternary complex. FGF signalling activates MAPK pathway, activation of the MAPK pathway 

results in phosphorylation of TCFs which leads to activation of the SRE in response to 

growth factor signalling (MARAIS et al. 1993; TREISMAN 1994). Concordant with this 

observation, expression of the activated forms of Srf and Elk-1 resulted in overgrowth of 

cytoplasmic extensions and terminal branches. 

 

Screens to identify genes that affect terminal branching have revealed a few genes involved 

in maintaining normal branching and terminal cell development. (BAER et al. 2007; LEVI et 
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al. 2006). Mutants of potential cytoskeletal regulators such as Drosophila talin (rhea), the β- 

integrin myospheroid (βmys) as well as double mutants of the α-integrins inflated (if) and 

multiple edematous wings (mew) have been shown to affect maintenance of tracheal tubes 

within terminal branches (Fig.7). Mutations in ikkε also affected tube formation within 

terminal cells (OSHIMA et al. 2006). The authors speculate that these genes contribute to tube 

stability by regulating the actin cytoskeleton. Further, work from our lab has shown the 

importance of moesin (moe) in terminal cell development (Jayan N. Nair PhD thesis). Much 

work remains to be done in order to understand the mechanisms behind tube formation and 

tube stability in terminal cells. 

  

 

Figure 7: Multilumen phenotype in talin and integrin mutants 

Bright field images of terminal cells showing multilumen phenotypes in mutant of (a) talin (rhea); (b) β- 

intergrin (mys); (c) and the two α - integrins (mew and if  double mutants).  a'-c' are enlargements of the boxed 

regions in a-c respectively. Adapted from (LEVI et al. 2006). 

 

1.5 Moesin is essential for terminal cell development 

 

Moesin (Moesin) is the only Drosophila homologue of the mammalian Ezrin-Radixin-

Moesin (ERM) family of proteins. Activated Moesin (p-Moesin) acts as an anchor for F-actin 

at the apical membrane of polarised epithelia (BRETSCHER et al. 2002). Moesin is anchored to 

the membrane via various membrane anchors such as Phosphatidylinositol 4,5-bisphosphate 

(PtdIns(4,5)P2), Crumbs and Bitesize (btsz) which are used in a cell specific context (MEDINA 

et al. 2002; NAKAMURA et al. 1999; PILOT et al. 2006).  



Introduction  

14 
 

The activation of ERM proteins is believed to occur upon recruitment to the apical 

membrane. In Drosophila embryos, btsz is involved in maintaining epithelial integrity and the 

stabilisation of adherens junctions through its interaction with Moesin (PILOT et al. 2006). 

Knockdown of btsz in the tracheal system leads to the loss of p-Moesin (Jayan N Nair, 

unpublished) in terminal cells, indicating that Btsz is an anchor for p-Moesin in the tracheal 

system. We also know that disruption of Moesin in the tracheal system through RNAi results 

in tube formation and branching defects within terminal cells (Jayan N Nair, PhD thesis). 

Recently, the kinase activating Moesin was identified as SLK and LOK like kinase (slik) 

(HIPFNER and COHEN 2003; HIPFNER et al. 2004). In order to better understand the relation 

between anchoring and activation of Moesin at the apical membrane and its importance in 

tracheal development, I explored the function of slik in terminal cell development.  

 

1.6 slik, a Sterile 20 like kinase involved in Drosophila growth control 

 

SLK (sterile 20 like kinase) is a serine/threonine kinase and a member of the group II 

germinal centre kinases (GCKs) which includes MST1-3 (Macrophage Stimulating) and the 

LOK (Lymphocyte Oriented Kinase). SLK is cleaved by Caspase 3 in two domains with 

distinct activities: an activated N-terminal kinase domain that promotes apoptosis and 

cytoskeletal rearrangements and a C-terminal domain that disassembles actin stress fibres 

(SABOURIN et al. 2000). LOK was identified to be expressed in mammalian lymphocytes and 

to specifically phosphorylate ERM proteins. 

 

slik (SLK- and LOK like kinase), a Drosophila member of the Ste20 kinase family, was 

identified in an overexpression screen as a gene causing increased growth of the posterior 

compartment of the wing imaginal disc (HIPFNER et al. 2002). slik was named on the basis of 

its similarity to the human SLK and LOK Ste20 kinases. slik shares high sequence similarity  

to the human Slk and Lok which is largely restricted to the N-terminal kinase domain and the 

conserved coiled-coil motif bearing C-terminus (Fig.8a). The sequence internal to the 

conserved domains of Slik is non-conserved and variable in length, a feature consistent 

within members of the same subfamily. The slik transcription unit covers approximately 11 

kb and is predicted to have at least 12 exons. There are about 6 predicted transcripts based on 

cDNA clones and partial ESTs. 
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Two slik mutants, slik
1
 and slik

KG04837
,
 
have been described and used in various studies 

(HIPFNER and COHEN 2003; HIPFNER et al. 2004; HUGHES and FEHON 2006). slik
1 

represents 

a null allele which is a deletion of exons 2–8 and part of exon 9 of the slik transcript, 

including the translation start site and the entire kinase domain. slik
KG04837 

is a partial loss of 

function allele, an insertion of the P-element KG04837 in the first intron of slik (Fig.8b). slik
1
 

mutant larvae display a striking phenotype through delay in overall growth and 

developmental timing. The mutant larvae grew at the maximum up to about one-third the size 

of wild type larvae and rarely progressed beyond third instar larval phase (Fig.9). 

Intriguingly, about 5% of the mutant larvae have exceptionally long life spans of 15 days 

which is three times the normal larval phase of development.   

 

 

Figure 8: Schematic representation of Slik and the human homologues 

(a) Comparison of Slik with human SLK and LOK proteins. Numbers show sequence identity/similarity within 

the indicated domains. Predicted coiled-coil regions in the C-terminal domain are indicated by hatching; (b) 

Detailed view of the slik region. The insertion sites of EPg(2)23048 and KG04837 in the first intron and the 

extent of the slik
1
 deletion  are indicated. Adapted from (HIPFNER and COHEN 2003). 
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Figure 9: Growth defect in slik mutant larvae 
Heterozygous slik

1
/+ control and homozygous slik

1
 mutant larvae after 5d of growth under uncrowded 

conditions (HIPFNER and COHEN 2003). 

 

1.7 Functional relevance of slik in Drosophila development 

 

Hipfner et al. (HIPFNER et al. 2004), reported that Slik regulates cytoskeletal organisation 

during wing disc development by regulating the Drosophila ERM (ezrin/radixin/Moesin) 

protein Moesin. ERM proteins link cortical actin cytoskeleton to the cell membrane by the N-

terminal FERM domain which binds to membrane proteins directly or through adaptor 

proteins, and the C-teminal actin binding domain which binds to F-actin. Slik was shown to 

be enriched at the apical membrane in cells of the wing imaginal disc. Also, Slik colocalised 

with activated Moesin (Phosphorylated Moesin/p-Moesin) and F-actin in these cells. slik
1
 

clones in wing discs showed a considerable reduction of p-Moesin levels in comparison to 

wild type cells. Further, expression of the kinase domain of Slik (Slik
kin

) in slik mutant wing 

discs restored p-Moesin to normal levels. These results suggest that Slik kinase activates 

Moesin through its phosphorylation.    

 

Consistent with these results, in an RNAi screen in Drosophila Kc cells to identify kinases 

that activate Moesin during mitosis, slik was identified as a positive regulator of Moesin 

phosphorylation. During the onset of mitosis, cells retract their actin-based protrusion and 

change their morphology from a flattened to a rounded up form. Perturbing P-Moesin through 

slik RNAi mimicked the Moesin knockdown phenotype, i.e., failure to withdraw the actin 

rich protrusions, highlighting the importance of Slik in activating Moesin during cell division 

(KUNDA et al. 2008). 
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Recent work shows that Slik’s localisation to the apical membrane is mediated by another 

protein, SRY interacting protein 1 (Sip1) (HUGHES et al. 2010). Sip1 is the Drosophila 

homologue of mammalian EBP50 (ERM binding protein 50) that acts as a scaffold linking 

ERM proteins to transmembrane proteins and other membrane associated cytoplasmic 

proteins. Sip1 mutant follicle cells show a marked reduction of Slik levels and the subsequent 

loss of p-Moesin. On the other hand, moesin mutant cells show a drop in overall Sip1 levels, 

while slik mutant clones showed an increase in Sip1 levels. In addition, Sip1 co-

immunoprecipitates Moesin and Slik together, suggesting that both proteins form a complex 

with Sip1. Though the exact nature of the relationship between Sip1, Moesin and Slik is yet 

unknown, the authors suggest that Sip1 functions as a scaffold to bring Slik and Moesin in to 

proximity to phosphorylate Moesin (Fig.10). 

 

 

Figure 10: Possible model for Sip1 in Slik-dependent activation of Moesin. 

Inactive, folded Moesin in the cell cortex might associate with PIP2 in the plasma membrane, inducing a 

conformational change which results in partial unfolding of Moesin. This event, or other modifications such as 

phosphorylation of residues in the FERM domain (Krieg and Hunter, 1992), allow Moesin, Sip1 and Slik to 

form a complex that results in phosphorylation of the C-terminal Threonine residue and full activation of 

Moesin. Adapted from (HUGHES et al. 2010). 

 

In another study, Merlin (Mer), the Drosophila homologue of the human tumour suppressor 

Neurofibromatosis 2 (NF2) was shown to be under the control of Slik kinase (HUGHES and 

FEHON 2006). Merlin shares ~45% sequence similarity with ERM proteins and the similarity 
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is restricted to the N and C-terminal regions, which shares feature common to the ERM 

proteins and other family members. However, unlike ERM proteins that promote 

maintenance of epithelial integrity through the actin cytoskeleton (SPECK et al. 2003), Merlin 

has a distinct role in regulating cell proliferation (ROULEAU et al. 1993). Moreover, while 

ERM proteins are activated upon phosphorylation, phosphorylation of Merlin renders it 

inactive. Merlin mutant clones in eye and wings show overproliferation.  

 

Merlin has a complex subcellular localisation that spans both the apical membrane and the 

endocytic compartments within the cytoplasm (HUGHES and FEHON 2006). In wild type wing 

disc epithelium Merlin is found to localise apically. However, loss of Slik results in an 

increase in Merlin levels in the mutant cells and bulk of Merlin is redistributed to the 

basolateral regions with an increased association with punctate structures. Western blotting 

analysis with extracts from Slik and Slik kinase dead (Slik
kd

) overexpressing wing discs 

showed increased levels of phosphorylated Merlin upon Slik expression while remaining  

unchanged in Slik
kd

 expressing discs (HUGHES and FEHON 2006).  Further, activated Merlin 

suppressed wing growth, which is suppressed by removal of a copy of slik, suggesting that 

Slik antagonises Merlin function. The authors also find that Moesin and Merlin are 

competitive substrates of Slik’s kinase activity.   

 

Additionally, experiments in S2 cells with wild type, phosphomimetic and non-

phosphorylable forms of Merlin revealed a dynamic trafficking of Merlin depending on its 

phosphorylation status. In cells transfected with wild type Merlin, upon induction Merlin 

initially localised to the membrane but after 2-4 hours became enriched in endocytic 

compartments. When Merlin expression is induced in cells coexpressing Slik there is a drastic 

shift in the distribution of Merlin, with the majority localising to the membrane. In contrast, 

when Merlin expression is induced in Slik
kd

 transfected cells, Merlin localisation decreased at 

cell membranes but increased within endocytic compartments in the cytoplasm. Trafficking 

of activated/non-phosphorylated Merlin to the endocytic compartments may be of functional 

relevance in tumour suppression, by facilitating removal of receptors from cell surface that 

promote cell proliferation. expanded (ex), a Merlin-related tumour suppressor is partially 

redundant to Merlin in regulating proliferation and differentiation (MCCARTNEY et al. 2000). 

Merlin:ex double mutant cells in wing discs present abnormal accumulation of receptors such 
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as Notch and EGFR at the plasma membrane, possibly due to the lack of endocytosis of the 

receptor-bearing plasma membrane along with endocytosing Merlin fraction. Collectively, 

the activity of Slik kinase results in an orchestrated but opposite regulation of Moesin and 

Merlin to promote epithelial integrity and cell proliferation (Fig.11).  

 

Figure 11: Schematic diagram of functional relationships between Slik, Merlin, Moesin, and the 

regulation of tissue integrity and proliferation in developing epithelia. 

Slik activity simultaneously promotes Moesin function and inhibits Merlin. Previous results have shown that 

Moesin functions to negatively regulate Rho activity and promote epithelial integrity (Speck et al., 2003). 

Merlin functions to restrict proliferation in the same epithelia. Thus, the net result of Slik activity is to drive 

proliferation and simultaneously stabilise epithelial integrity (HUGHES and FEHON 2006) 

 

Apart from its kinase activity, Silk also contributes to the growth of wing disc epithelium in a 

kinase independent manner. Overexpression of Slik in the patched (ptc) domain in wing disc 

caused wing overgrowth due to increased cell proliferation. However, the Slik driven wing 

overgrowth is counteracted by an increased number of apoptotic cells. Moreover, 

overexpression of Slik
kd

 recapitulated the Slik driven overgrowth of wings suggesting that the 

Slik derived cell proliferation is through a kinase-independent mechanism. Tissue overgrowth 

resulting from Slik overexpression is suppressed through removal of the raf and the wings are 

restored to normal proportions.  

 

Apoptosis also occurs in slik mutant cells of the wing disc which is mediated by the c-Jun N-

terminal kinase (JNK) and can be suppressed by removing hemipterous (hep/JNKK) which 

encodes the activating kinase. Additionally, reduction of Raf levels in slik mutant background 

further increased the numbers of apoptotic cells suggesting that Raf is an important 

downstream effector of Slik. Since Raf was found to coimmunoprecipitate both Slik and 

Slik
kd

, the authors conclude that that activation of Raf is through its physical interaction with 

Slik, rather than phosphorylation by Slik. Finally, slik mutant cell’s growth defect can be 

rescued by expression of activated Raf, but not by activated ERK (MAPK) suggesting a 
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signalling independent of the canonical ERK pathway. Briefly, Slik functions to maintain 

epithelial integrity and promote growth through proliferation in tissues. In conclusion Slik’s 

activity is comparable to several oncogenes that promote proliferation and apoptosis in 

parallel. 

 

1.8 Aim 

 

This work aims to investigate the underlying role of Slik in tracheal development. It explores 

the contribution of Slik in terminal cell development through the phosphorylation of targets 

Moesin and Merlin. In addition, this work addresses the possible signalling input by Slik into 

the Btl/MAPK pathway, mediated through its interaction partner Raf. 
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2. MATERIALS AND METHODS 

2.1 Materials 

 

2.1.1 Drosophila melanogaster stocks 

 

w[1118]; ; embryos were used for Slik antibody stainings 

 

2.1.2 UAS Transgenes 

 

From Bloomington stock centre 

 

w[*]; P{w[+mC]=UAS-phl.gof}F179 

w[1118]; P{w[+mC]=UAS-Ras85D.V12}TL1 

 

From other sources 

 

w[1118]; ;P{w[+mC]=UAS-Slik
kin

/TM6B,Tb [1] (David Hipfner) 

w[1118]; ;P{w[+mC]=UAS-Slik
kd

/TM6B,Tb[1] (David Hipfner) 

P{hsFLP}, w[1118]; P{neoFRT}42D P {w[+mC]=tubGal80; P{w[+mC]=btl-Gal4, btl-

moesin-mRFP, UAS-CD-GFP} T(2;3)CyO -TM6 (Mirka Uhlirova) 

 

From VDRC stock centre 

 

UAS-IR-btl        VDRC 27106 

UAS-IR-egfr VDRC 107130 

UAS-IR ex  VDRC 109281 

UAS-IR-Merlin   VDRC 7161 

UAS-IR-moesin  VDRC 37917 

UAS-IR-raf        VDRC 107766 

UAS-IR-slik      VDRC 43783 

UAS-IR-srf          VDRC 100609 

UAS-IR-cad 96Cb   VDRC 103296 
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From NIG Japan 

 

UAS-IR-Ras               NIG 9375-2     

 

2.1.3 Gal4 driver lines 

 

w[1118]; P{w[+mC]=btl-Gal4}; +/+ 

w[1118]; P{w[+mC]=UAS-dicer }; P{w[+mC]= btl-Gal4}, P{w[+mC]=  UAS-GFP} 

w[1118]; P{w[+mC]=btl-Gal4}, P{w[+mC]=UAS-2XEGFP}; MKRS/TM6B,Tb[1] 

w[1118]; If/Cyo; {w[+mC]= btl-Gal4}, P{w[+mC]=  UAS-GFP} 

w[1118]; slik
1
, {w[+mC]= btl-Gal4}, P{w[+mC]=  UAS-GFP}/Cyo; MKRS/TM6B,Tb[1] 

 

2.1.4 Mutants 

 

y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P}slik[KG04837]/CyO; ry[506] 

w[1118]; slik
1
/Cyo, P{GAL4-kr}2, P{UAS- GFP}; 

w[1118]; P{neoFRT}42D slik
1
/CyO P{GAL4-kr}2, P{UAS- GFP}; 

 

 2.1.5 Antibodies 

 

The following primary antibodies were used: guinea pig anti-Slik (1:100, Hipfner et al 2004), 

mouse anti-SRF (1:200, DSHB), rat anti-E-Cadherin (1:200, DSHB), rabbit anti-Dof (1:200, 

Vincent et al., 1998), rabbit anti-P Moesin (1:200, S3149 Cell Signaling), rabbit anti-Moesin 

(1: 5000, François Payre), rabbit anti-GFP (1:500, Torrey Pines Biolabs Inc). Fluorophore 

conjugated secondary antibodies: Alexa468 and Alexa568 and Alexa647 (Molecular Probes) 

were used at a dilution of 1:2000. 

 

2.1.6 Oligonucleotides  

 

Btl RT_F  tccacacggaaacctcaaggacttc 

Btl RT_R acgtcgctctgtgagtcgtacttc 

bs_RT_F  cgctgcccaacaagaagtctccgcctg 

bs_RT_R   cagcttgcgcgtggcaaatgtgtaca 

Ex_RT_F              acttctggggcagcagcagccgaa 
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Ex_RT_R             gtgggtgtgcgatgatcgccagc 

Merlin _RT  tgtggctgggcgtcacctccgtg 

Merlin _RT_R      gcaggtgctccatgctcttctccag 

Moesin_F_500     cctggacaccgacgagcatatcaaggac 

Moesin _R_SalI   acgcgtcgaccatgttctcaaactgatcgacgcg 

Raf RT_F actgctgtccgcttcaatatgagcag 

Raf RT_R  ccagttttcctcggaacttttggcgt 

RpL32 RT_F tcctaccagcttcaagatgacc 

RpL32 RT_R cacgttgtgcaccaggaact 

Slik RT_F gatccgcaggtgaggcccacgacgga 

Slik RT_R  gtttgtcaatgtcttggctctgcagc 

 

2.1.7 Microscopes  

 

Olympus FV1000, Leica TCS SP2, Zeiss Axioplan 2-imaging, Zeiss Apotome and Leica M2 

16FA were used for microscopy.  

 

2.1.8 Imaging and data analysis software 

 

Image acquiring softwares FV10-ASW 2.0 Viewer, Leica Confocal Software LCS, 

Axiovision Rel 4.6 (Zeiss) and Axiovision 1 (Zeiss) were used. Images were edited using 

Adobe Photoshop (Adobe Systems) and ImageJ softwares. All images are maximum intensity 

projection unless otherwise mentioned. DNA sequence alignments, analysis and 

oligonucleotide designing were done using VectorNTI. Imaris (Bitplane) 3D/4D image 

processing software was used for 3D reconstruction of the tracheal system. 

 

2.1.9 Reagents 

 

TritonX 100, Tween20 and BSA were purchased from Sigma. Vectashield mounting media 

for fluorescent samples was from Vector Laboratories. Restriction enzymes used were from 

New England Biolabs. Expand High Fidelity PCR system was supplied by Roche 
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Diagnostics. Agarose electrophoresis grade was from Gibco BRL. Unless otherwise 

mentioned, all the other chemicals were purchased from Merck, Sigma or Roth. 

 

2.2 Methods 

 

2.2.1 Collection of embryos 

 

The flies were maintained under standard conditions (Ashburner, 1989; Wieschaus and 

Nuesslein-Volhard, 1986). 

 

To fix the embryos, an overnight egg lay (16 hr) was collected on an apple juice–agar plate, 

dechorionated using 50% bleach and washed in tap water. Embryos were fixed in 4% 

formaldehyde in PBS:heptane = 1:1 solution at 37°C for 20 minutes, with vigorous shaking, 

followed by devitellinilisation with methanol:heptane = 1:1 solution by vortexing for 30 

seconds. Embryos were washed several times in methanol and stored in methanol at -20°C if 

not used immediately.  

 

2.2.2 Immunostaining in embryos 

 

The fixed embryos were rehydrated and washed with 0.3% PTX (1XPBS+ 0.3% TritonX 

100) three times for 10 min each followed by 30 min incubation in blocking reagent (1X 

PBS+ 0.1% TritonX 100 + 1% BSA). After blocking, the liquid phase was taken off and the 

primary antibody was added to the embryos. The samples were left at 4°C overnight, on a 

rotating wheel. Embryos were washed with 0.3% PTX several times, at room temperature 

followed by incubation with Alexa coupled secondary antibody at room temperature for 90 

minutes. The embryos were washed four times (15 minutes each) in 0.3% PTX at room 

temperature and mounted in Vectashield before imaging.  

 

2.2.3 RNAi in the tracheal system  

 

Crosses were set up using the UAS-RNAi transgenic line and the btlGal4, UAS-GFP 

recombinant driver line, with UAS-dicer or excluding UAS-dicer in cases where 
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coexpression of UAS-dicer caused lethality or resulted in extremely small larvae. The crosses 

were maintained at 29°C unless otherwise mentioned. Wandering third instar larvae were 

collected and dissected to expose the tracheal system. Larvae were fixed using 4% 

paraformaldehyde in PBS for 20 minutes and washed with 0.3% PTX (1XPBS+ 0.3% 

TritonX 100) followed by mounting the larval fillets using Vectashield. In case where 

antibody staining was required the larvae were subjected to the antibody staining protocol 

described below. 

 

2.2.4 Immunostaining in larvae 

 

Post fixation fillets were washed with 0.3% PTX (1XPBS+ 0.3 % TritonX 100) three times 

for 10 min each followed by 30 min incubation in blocking reagent (1X PBS+ 0.1% TritonX 

100 + 1% BSA). After blocking, the samples were incubated overnight in antibody solution 

at 4°C. Fillets were washed four times (15 minutes each) in 0.3% PTX after overnight 

incubation. Fillets were incubated in Alexa fluorophore conjugated secondary antibodies for 

2 hours at room temperature. Next, the fillets were washed four times (15 minutes each) in 

0.3% PTX at room temperature, mounted in Vectashield and taken for microscopy. 

 

2.2.5 Generation of slik
1 
MARCM clones in the tracheal system 

 

Crosses were set up using the appropriate stocks and maintained at 25°C. A 24-hr egg lay 

collection was taken and heat shocked for about 2 hours. After heat shock the tubes were 

placed at 29°C. Around day 5-6 post egg lay, wandering third instar larvae were collected, 

dissected and mounted on slides as described in the previous section. 

 

2.2.6 Tracheal cDNA synthesis 

 

Wild type third instar larvae were dissected, the tracheal system was isolated and the tissue 

macerated in Trizol (Invitrogen).  RNA was isolated using the standard Trizol-based isolation 

protocol. RNA isolated was treated with DNase according to manufacturer’s protocol 

(Invitrogen). 200 ng of RNA was used for cDNA synthesis using First strand synthesis 
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kit/SuperscriptIII according to manufacturer’s instructions (Invitrogen) using a 1:1 mix of 

both random hexamers and oligo dT. 

 

2.2.7 RT PCRs 

 

1 l of the tracheal cDNA was used as the template for PCR reactions. The reaction 

components were: 20 pmols of each primer, 1X Red Taq Readymix (Sigma) in a 20 l PCR 

reaction mix. The PCR was carried out on a Thermoblock (Biometra). The PCR programme 

included a denaturation step of 2 minutes at 94°C followed by 30 cycles: 15 seconds at 94°C, 

30 seconds annealing at 57°C, 30 seconds extension at 72°C. No final extensions were 

included in the programme. The PCR products were analysed on a 1.5% agarose gel.  
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3. RESULTS 

3.1 Slik is required for tracheal development 

 

Studies on tracheal development and more specifically on terminal cells have outlined the 

importance of Moesin in tube formation and maintenance of the tube within the branches. 

One of the factors that regulate Moesin in other tissues is the Moesin activating kinase Slik, 

implicated in wing imaginal disc development, mitotic events in S2 cells and normal 

development of follicle cells of oocytes (HIPFNER et al. 2004; HUGHES and FEHON 2006; 

HUGHES et al. 2010). This study explores the function of Slik in terminal cell development in 

conjunction with Moesin and another signalling molecule, Raf. 

 

3.1.1 Slik is expressed in both the embryonic and the larval tracheal system 

 

To analyse Slik distribution in the tracheal system, I used an antibody against Slik (HIPFNER 

and COHEN 2003). This antibody was previously used to examine Slik localisation in wing 

discs, oocytes and mitotic S2 cells (CARRENO et al. 2008; HIPFNER et al. 2004; HUGHES et al. 

2010). Stainings from these studies showed that Slik was enriched at the apical membrane of 

cells in the wing imaginal disc and also in the follicular epithelium of oocytes. In mitotic S2 

cells Slik is localised at the mitotic cortex of the dividing cells. To mark the tracheal cells 

antibodies against Dof was used. Dof is an adaptor protein specific to the two FGFRs, 

breathless (btl) and heartless (htl) which are active in the tracheal system and the migrating 

mesoderm, respectively (VINCENT et al. 1998). Dof is expressed through all stages of tracheal 

development. The distribution of Slik and Dof was visualised using secondary antibodies 

coupled to fluorescent (Alexa Fluor®) dyes (Fig.12).   

 

At embryonic stage 10, tracheal development commences with the invagination of the 

tracheal placodes within each segment. In the invaginating tracheal placode, cells constrict 

their apical surface which is the concave side of the depression. Staining for Slik reveals that 

Slik is expressed in the invaginating placode with enrichment at the apical side of the cell 

(Fig.12a). In stage 12 embryos, cells within the migrating placode continue to have an apical 

enrichment of Slik (Fig.12b). At stage 14 of development, cells from each placode migrate 
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and are arranged side-by-side and interdigitate to form a continuous tube. At this stage of 

tracheal development Slik enrichment persists at the apical regions of cells forming the tube, 

i.e. the membrane facing the lumen of the developing tube (Fig.12c.)  Also, previous studies 

in wing imaginal discs reported Slik to be enriched at the apical membrane of the cells 

(HIPFNER et al. 2004). 

 

 

Figure 12: Slik expression during embryonic development of the tracheal system 

Tracheal cells are visualised by anti-Dof staining (a-c). (a) Slik expression during tracheal placode invagination 

at stage 10; (b) Outgrowth of primary branches at stage 12 and (c) Stage 14. Slik expression shows strong apical 
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enrichment within the trachea. a', b' and c' are enlargements of the corresponding stages in a, b and c. Scale a, b, 

c - 50 µm and a', b', c' - 10 µm. 

 

At the end of embryonic development, patterning of the tracheal system is complete with the 

dorsal trunk, the dorsal branches, the lateral branches and the terminal cells in place. 

Terminal cells at this stage are morphologically distinct from those found in larvae as they  

possesses only a single branch extension with a tube within. Over the larval phases of 

development these cells generate multiple branches to form a functional terminal cell. 

Branching events in a terminal cell alter the morphology of the cell from a simple cell to a 

cell that is highly ramified and spanning over a large area (Fig.13). The tips of these branches 

establish direct contact with tissues requiring oxygen. 

 

 

Figure 13: A terminal tracheal cell from a larva at third instar phase of development 

Tracheal cells are visualised by tracheal specific cytoplasmic GFP expressed using btlGal4. The terminal cell is 

highly branched and carries a tube within each branch (arrows). Oxygen is transported through these tubes to 

surrounding tissues and organs. Star denotes the cell nucleus. Also seen are parts of the secondary branches 

from adjacent areas (marked by dots). Scale - 50 µm.  
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To analyse the distribution of Slik in the terminal branches, Slik staining was performed in 

larvae expressing the UAS-GFP transgene in the tracheal cells using the tracheal specific btl-

Gal4 line. The GFP is expressed in both the nucleus and the cytoplasm and hence is used to 

highlight the tracheal system. Staining for Slik in third instar larvae showed that Slik is 

expressed in the terminal cells (Fig.14a). Further, high resolution imaging showed that Slik is 

enriched at the apical membrane within the terminal branches, with occasional diffused 

staining at sub-apical regions (Fig.14b).  

 

 
 

Figure 14: Slik expression in terminal cell of the tracheal system 

Tracheal cells are visualised by tracheal specific cytoplasmic GFP expressed using btlGal4 (a, b). (a) Slik 

expression in a terminal cell; (b) Enlargement of the corresponding area in image a (boxed) showing Slik 

enrichment in the apical membrane of the branch. Scale a - 25 µm, b - 10 µm. 

 

Next, I investigated the localisation of Slik within cellular junctions of the tracheal system. 

The tracheal terminal cells are junctionless cells except for a junction connecting terminal 

cells to the secondary branch. However, the dorsal trunk is a multicellular tube and therefore 

suited for studies on junctions within the tracheal system. Of particular ease in studying 

junctions within the tracheal system are the fusion cells, a pair of doughnut shaped cells that 

form the anastomoses of the dorsal trunk (Fig.4). In epithelial cells E-Cadherin (E-Cad) is 

localised to the apicolateral regions where it is a component of the adherens junction. In order 

to mark the junctions within the dorsal trunk I performed immunostaining for E-Cad. At the 
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point of fusion of the dorsal trunk E-Cad is expressed in 3 stripes, the central stripe which 

marks the adherens junction formed at the point of contact between fusion cells and the two 

other flanking stripes that delineate the junction between the fusion cell and the dorsal trunk 

at either side (Fig.15b). Analysis of the dorsal trunk for Slik protein expression shows that 

Slik is expressed in the fusion cells of the dorsal trunk (Fig.15a). A simple maximum 

intensity z-projection of images of the dorsal trunk was not sufficient to determine the 

localisation of Slik in relation to the junction. Therefore, I performed 2D reconstruction of the 

dorsal trunk using Imaris imaging software. 2D reconstruction of the dorsal trunk revealed 

that Slik expressed in the fusion cell localised to the apical membrane of the fusion cells. 

Optical sections across various planes of the dorsal trunk showed that the localisation of Slik 

was more apical to E-Cad at the lumen (Fig.15c). This result is consistent with the results 

from a previous study where the authors observed that Slik localised apical to the adherens 

junction in wing disc epithelium (HIPFNER et al. 2004) 

 

3.1.2 Slik is required for normal branching, lumen formation and tube 

stability in terminal cell development 

 

To investigate the function of slik in tracheal development, slik
1 

mutant larvae were analysed.  

slik
1
 is a null allele as it is a deletion that removes exons 2–8 and part of exon 9. This deletion 

removes the translation start site and the entire kinase domain. slik mutant clones of terminal 

cells were generated through the MARCM method. Also, I performed tracheal specific 

knockdown of slik through RNAi and analysed the outcome. Results from experiments using 

various approaches showed similar phenotypes and are discussed in the following sections. 
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Figure 15: Slik expression in fusion cells of the dorsal trunk  

Tracheal cells are visualised by tracheal specific cytoplasmic 

GFP (green), antibodies specific for Slik (red) and E-Cadherin 

(Cad) (blue). a and b are maximum intensity projections. (a-a''') 

A segment of the dorsal trunk showing fusion anastomosis 

(boxed). The fusion cells are two ring shaped cells connecting 

the multicelluar dorsal trunk from each segment. (a') Slik is 

expressed at high levels in fusion cells; (a'') E-Cad at the fusion 

point is seen as three stripes, marking junctions between the 

fusion cells and that between the fusion cells and the 

multicellular tube; (a''') overlay of Slik and E-Cad; (a'''') 

overlay of GFP, Slik and E-Cad. (b-b'') Enlargement of boxed 

area in a'''; (c-c'') 2D projection of the dorsal trunk showing 

apical localisation of Slik; view of the dorsal trunk centred at the 

fusion anastomosis along (c) the XY plane; (c') the YZ plane 

(sagittal section) shows Slik localisation apical to E-Cad 

localisation. (c'') View across the XZ (transverse section) plane 

shows that Slik is localised more apical to E-Cad. Inset-  

magnified view of indicated region. Scale a - 25 µm, b - 10 µm 
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3.1.2.1 Analysis of the tracheal system in slik
1
 mutant animals 

 

slik
1 

homozygous mutants are larval lethal and therefore very few escapers of the 

homozygous mutant larvae were obtained. The escaper slik
1
 mutant larvae had a smaller body 

size (Fig.16), which was consistent with previous observation (HIPFNER and COHEN 2003). 

 

slik
1 

homozygous third instar larvae were filleted and processed. The larvae showed gross 

abnormalities in the tracheal system. The dorsal branches showed lumen defects. In a wild 

type dorsal trunk the multicellular tube is composed of cells arranged with their apical 

surfaces facing the lumen. The apical surface of the tracheal cells expands permitting tube 

dilation and at the same time secretes chitin to reinforce the expanding tube. A bright field 

image of the wild type dorsal trunk showed that the lumen diameter spans almost the entire 

width of the dorsal trunk. By contrast, bright field images of the dorsal trunk from a slik
1
 

mutant larva showed lumen defects. While the outer diameters of the dorsal trunk from both 

wild type and mutant larvae were comparable, the diameter of the lumen in the mutant was 

less than half as wide as in the wild type. The presence of a narrow lumen despite of the 

normal branch size indicated a failure in lumen expansion within the mutant dorsal trunk 

(Fig.17a', b').  

 

To further analyse tracheal phenotypes in slik
1
 mutants, the terminal cells from these larvae 

were compared with the wild type cells. The mutant terminal cells showed defects in 

branching. Wild type terminal cells on an average had over 20 branches, whereas in slik
1
 

mutant cells branching was restricted to fewer than 10 branches (Fig.13 and 18). In addition 

to reduction in number of branches the mutant terminal cells also exhibited luminal defects. 

Normally in terminal cells each branch bears a single lumen but in the mutant terminal cells 

multiple lumens were observed, either within a single branch or clustered near the nucleus. 

This phenotype is henceforth addressed as the mutilumen phenotype (Fig.18c').   
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Figure 16: slik
1
mutant larvae show altered body size 

Larvae in the image above have been dissected on their ventral side to expose the tracheal system. (a) wild type 

third instar larva; (b) and (c) are  slik
1
mutant larvae also at third instar larval stage as judged by the presence of 

completely extruded anterior spiracles with spiracular papillae,  but exhibiting smaller body sizes. 

 

 

 
 
Figure 17:  slik

1
 mutant larvae show tube defects within the dorsal trunk  

slik
1
 mutant tracheal system is visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4 

and tubes within the trachea are visible in bright field (BF) (a, b). (a-a'') Dorsal trunk from a wild type larva; 

(b-b'') dorsal trunk from a slik mutant larva. (a') Bright field image of the wild type  trachea shows that the 

dorsal trunk and the tube within are almost of the same diameter and therefore not clearly visible as two distinct 

components. (b') Dorsal trunk from a slik mutant larva shows that the dorsal trunk and the tube (marked by 

short and long arrow respectively) are easily identified. The tube within the dorsal trunk is not centrally 

positioned and has not expanded sufficiently to line the inner wall of the dorsal trunk. Scale - 50 µm. 

. 
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Figure 18: Terminal cells from slik

1
 mutant third instar larvae show branching and lumen defects 

Tracheal system is visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4. (a-c) 

Terminal cells from slik
1
 mutant larvae show reduced branching. (c') Enlargement of the corresponding area in 

image c (boxed), showing multilumen (multiple tubes within a branch) phenotype. Scale - 25 µm. 

 

3.1.2.2 Analysis of slik
1
 MARCM clones in the tracheal system  

 

In addition to analysis of the slik
1 

mutant tracheal system, slik
1
 mutant clones were generated 

in the tracheal system using the MARCM (Mosaic Analysis with a Repressible Cell Marker) 

technique. I chose this approach due to the unavailability of sufficient numbers of 

homozygous mutant third instar escapers, coupled with the difficulty of dissecting small sized 

larvae. The mutant terminal cells express GFP which distinguishes these cells from the 



Results 

36 
 

neighbouring wild type cells. Very few terminal cells (MARCM clone) of the mutant 

genotype were obtained indicating that slik is required for cell survival. The few MARCM 

clones that survived showed abnormal terminal cell development. Like terminal cells from 

slik
1
 homozygous mutant larvae, mutant terminal cells from the MARCM clones displayed 

tube and branching growth defects. The mutant terminal cell had fewer branches (Fig.19a,b). 

Clonal slik
1
 terminal cells also showed the multilumen phenotype (Fig.19a) as observed with 

slik
1
 homozygous mutant larvae. These results indicated that slik definitely has a role in 

branching morphogenesis of terminal cells. 

 

 
 
Figure 19: slik

1
 MARCM clones in the tracheal system from third instar larvae  

slik
1 

mutant clonal terminal cells generated by MARCM technique express cytoplasmic GFP. (a-a'') A terminal 

cell showing multilumen phenotype (marked by an arrow); (b-b'') mutant terminal cell showing reduced 

branching phenotype, Scale a -25 µm and b - 10 µm 

 

 

Given the low frequency of occurrence of the MARCM clones and the difficulty in working 

with slik
1
 mutant larvae that barely grew in size, RNAi mediated knockdown of slik was 

employed to study the slik mediated terminal cell development.  
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3.1.2.3 Analysis of slik mutant tracheal system using RNAi  

 

An alternate in vivo strategy to study the function of genes is to deplete the protein by 

knocking down the gene products within tissues. Slik levels in the tracheal system were 

depleted using slik RNAi constructs expressed specifically in the tracheal system using 

btlGal4. Two slik RNAi lines were tested in the tracheal system, VDRC 43783 and VDRC 

43784. Since both these lines had a potential off-target, pKC98E, RNAi for this gene in the 

tracheal system was performed as control. Knockdown for pKC98E did not result in any 

observable phenotypes; therefore I concluded that knockdown of slik using these lines gives 

only Slik specific phenotypes. Knockdown of slik using both lines resulted in similar 

phenotypes; therefore all further experiments were performed using line VDRC 43783. 

 

The knockdown of slik resulted in a similar phenotype as seen in slik
1 

mutants. The most 

obvious effect of slik knockdown in the tracheal system was the reduction of the larval body 

size (Fig.20), but still larger than slik
1
 mutant larvae. Moreover, the larvae had substantially 

smaller fat bodies than a wild type animal which gave the larvae a more transparent 

appearance. Reduction in body size could be an effect of reduced metabolism resulting from 

a deficit in oxygen supply due a physiologically inefficient tracheal system as a result of 

defective terminal branching. Next, I investigated if slik knockdown affected terminal cell 

differentiation.  

 

To address this, immunostainings with antibodies against Drosophila Serum response factor 

(Srf) was performed. Srf is a transcription factor expressed only in terminal cells among all 

tracheal cells. srf is also expressed in muscle nuclei, but since the tracheal system is marked 

by GFP the terminal cells nuclei can be identified by the overlay (Fig.21). Terminal cells 

identified by Srf expression were counted in five animals from both wild type and slik RNAi 

animals. Terminal cells from the tracheal segments tr3-5 were counted which were located by 

the presence of tracheoblast at the dorsal trunk (Fig.21). The results from these cell counting 

experiments showed that the number of terminal cells, both in wild type and slik RNAi, were 

comparable. (Fig.22, Appendix Fig.50). The average terminal cells count in both genotypes 

were as follows, wild type = 29.2 ± 2.68, slik RNAi = 31± 3.08. The p value from a Student’s 

t-test was p = 0.35. Thus branch counting showed that slik knockdown in the tracheal system 
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does not interfere with the specification of terminal cells but rather with the development of 

terminal cells and branches. 

 

  

Figure 20: Knockdown of slik in the tracheal system affects larval body size 

Comparison of third instar slik knockdown larva with a wild type larva of the same stage. The larvae were raised 

at 29°C. Third instar larva were identified by the presence of the characteristically exposed spiracular papillae of 

the anterior spiracles. Tracheal specific knockdown of Slik reduced body size in larvae.  

 

 

 
Figure 21: Dorsal terminal cells of the tracheal segments tr3-tr5 from third instar larvae  

Tracheal system is visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4 and the 

terminal cells are identified by Srf staining (red). (a) Schematic representation of the tracheal system in a third 

instar larva, marking tracheal segments tr3, tr 4 and tr5. (b) An assembly of a series of snapshots that cover tr3, 

the specific tracheal segment is identified by the presence of tracheoblasts (blue dots) while the preceding 

tracheal segment lacks the tracheoblast. Terminal cells express Srf (marked by arrows) and therefore in this 

overlay are seen as yellow. 
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Figure 22: Average terminal cell counts in wild type and slik RNAi trachea 

Third instar wild type and slik RNAi larvae were dissected and the terminal cells from tracheal segments tr3-5 

were counted. Terminal cells from five animals were counted for each genotype and the bars represent the 

average of terminal cells counted. The average values were as follows wild type = 29.1 and slik RNAi = 31. A 

Student’s t-test gave the value p = 0.35. 

 

 
 
Figure 23: Knockdown of slik in the tracheal system affects branching in terminal cells  

(a, b) Terminal cells from a slik knockdown larva show reduced branching with branch points varying between 

(a) 6 and in an extreme case (b) 2 branches. Branching points were counted by scoring branches that possessed 

a lumen that was connected to the parent/previous branch’s lumen. Scale - 50 µm. 

  

Analysis of terminal cells in slik knockdown larvae revealed multiple defects. First, terminal 

cells in knockdown larvae showed an overall reduction in branching. Consistent with slik
1 

mutants and MARCM clones, on average fewer than 10 branches per terminal cell were 

observed compared to about 20 branches per cell in the wild type (Fig.23a). In some terminal 
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cells the knockdown resulted in severe branching defects such that the terminal cells were 

restricted to just two branches (Fig.23b). In addition to the branching phenotype, the terminal 

cells also showed tube abnormalities. Knockdown of slik in terminal branches lead to the 

formation of multiple lumens (multilumen phenotype) within the branches (Fig.24), as also 

observed in slik
1 

mutants.  

 

 

Figure 24: Knockdown of slik in the tracheal system affects lumen formation in terminal cells 

Tracheal system is visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4. Terminal 

cell branches show multiple lumens upon slik RNAi in the tracheal system. The multiple tubes/lumens are 

marked by arrows. Scale - 25 µm. 

 

3.2. Slik, Moesin and Merlin in tracheal development 

 

We know that Slik is expressed in the tracheal system and enriched at the apical membrane 

within branches of the terminal cell. Further, Slik is essential for terminal cell development as 

mutants for slik do not have normal branch and lumen formation. Earlier reports have 

described Moesin and Merlin as two known targets of Slik (HIPFNER and COHEN 2003; 

HIPFNER et al. 2004; HUGHES and FEHON 2006). Slik phosphorylates both these proteins and 

regulates their activity in various cellular processes. slik RNAi phenotypes could arise as a 

result of loss of Slik’s function over Moesin and Merlin. To address this possibility I looked 

at moesin and Merlin expression in the tracheal system. 
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3.2.1 Moesin and its activated form (p-Moesin) are expressed in the 

tracheal system 

 

Slik is known to activate Moesin through phosphorylation and activated Moesin (p-Moesin) 

stabilises filamentous actin by anchoring it to the plasma membrane (POLESELLO et al. 2002). 

Phosphorylation of Moesin induces conformational changes in the protein, from closed to 

open state, thereby activating and facilitating its interaction with the actin cytoskeleton. 

Multiple lumens can be associated with loss of stabilisation of actin cytoskeleton as a result 

of depletion of the crosslinker proteins (LEVI et al. 2006). Thus disruption of Moesin function 

by knockdown of its activating kinase could lead to tube destabilisation within branches 

resulting in the multilumen phenotype. This is supported by evidence from previous work 

which that showed knockdown of Moesin in the tracheal system resulted in reduced 

branching and multiple lumen phenotypes in terminal cells (Jayan N.Nair, PhD Thesis). Since 

Slik is critical in terminal cell development, I examined the subcellular localisation of 

Moesin.   

 

 

Figure 25: Moesin is expressed in terminal cell of the tracheal system 

Tracheal cells are visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4 (a, b) and 

antibodies specific for Moesin (in red) (a', b'). (a-a') Overview of a terminal cell; (b-b') enlargement of the 

corresponding area in image a (boxed) showing Moesin enrichment in the apical membrane of the branch. Scale 

a - 50 µm, b - 10 µm. 
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Immunostaining using antibodies against Moesin was performed on third instar larval fillets 

expressing UAS-GFP in the tracheal system. The stainings showed that Moesin was 

expressed in the tracheal system. Moesin was found enriched at the apical membrane within 

terminal cell branches (Fig.25). As Moesin is also expressed in all other tissues, Moesin from 

the underlying muscle tissue was also detected.    

 

Fly Moesin is phosphorylated at amino acid residue Threonine
556

 and so far Slik is the only 

kinase known to regulate this phosphorylation. To visualise activated p-Moesin in terminal 

branches, an antibody that specifically recognised phosphorylation at T
556 

of Moesin was 

used. Immunostainings showed that p-Moesin was enriched at the apical membrane of 

terminal cells. The results were consistent with the earlier published data where 

immunostainings in wing discs showed p-Moesin enriched at the apical membrane (HIPFNER 

et al. 2004)  

 

 

Figure 26: Phosphorylated-Moesin expression in terminal cell of the tracheal system 

Tracheal cells are visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4 (a, b) and 

antibodies specific for the phosphorylated form of Moesin (red) (a', b'). (a-a') Overview of a terminal cell; (b-

b') enlargement of the corresponding area in image a (boxed) showing p-Moesin enrichment in the apical 

membrane of the terminal branch. Scale a - 50 µm, b - 10 µm 
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A previous study on p-Moesin in the tracheal system (Jayan N. Nair 2008, PhD thesis) has 

shown that p-Moesin is localised at the apical membrane, which was confirmed here for the 

terminal cells (Fig.26). p-Moesin expression was also analysed in the dorsal trunk. The dorsal 

trunk showed a clear enrichment of p-Moesin at the junctions between fusion cells and those 

between the dorsal trunk and the fusion cells, visible as diffuse stripes (Fig.27). These 

experiments confirm that activated Moesin is expressed in the tracheal system and shows a 

clear apical membrane localisation in terminal cells and junctions of the fusion cells in the 

dorsal trunk. 

  

 

Figure 27: Phosphorylated Moesin is expressed in fusion cells of the dorsal trunk 

Tracheal cells are visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4 and 

antibodies specific for the phosphorylated form of Moesin (red) (a, b). (a-a') p-Moesin expression in dorsal 

trunk; (b-b') enlargement of the corresponding area of the dorsal trunk (boxed) showing p-Moesin enriched 

within the fusion cells. Scale a - 20 µm, b - 10 µm. 

 

3.2.2 Merlin is expressed in the tracheal system 

 

Merlin the Drosophila homologue of the human Neurofibromatosis 2 (NF2) tumour 

suppressor is also a target of Slik’s kinase activity. In the Drosophila embryonic epithelium 

Merlin is expressed as punctae both at the apical membrane and the cytoplasm (MCCARTNEY 

and FEHON 1996). expanded (ex) is a tumour suppressor closely related to Merlin. Ex and 
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Merlin has been shown to function in a redundant manner participating in receptor 

endocytosis and trafficking (MAITRA et al. 2006). The subcellular distribution of Merlin in 

the tracheal system could not be analysed by immunostaining due to unavailability of the 

antibody. Therefore, I tested for the presence of Merlin in trachea by reverse transcription 

PCR (RT-PCR). Tracheae from wild type larvae were dissected and total RNA was isolated 

from the dissected samples. cDNAs were synthesised by reverse transcription reaction 

followed by detection with PCR with oligonucleotides specific for slik, moesin, Merlin and 

ex.  

 

Oligonucleotides used spanned over two exons so that amplicons from both genomic DNA 

and transcripts were identifiable as genomic products were larger than the products amplified 

from transcripts. As control, ribosomal protein L32 (RpL32), a component of the 60S subunit 

of the ribosome was used. The results showed that in addition to slik and moesin, as observed 

with immunostaining, both Merlin and its interaction partner ex were indeed expressed in the 

tracheal system (Fig.28).  

 

 

Figure 28: slik, moesin and Merlin are expressed in the Drosophila tracheal system 

RT-PCR using tracheal cDNA shows that slik, moesin and Merlin are expressed in the tracheal system. The 

products here are amplicons from cDNA as they are of expected sizes. The control, RpL32 encodes for the 

ribosomal protein L32. The RT-PCR shows that Expanded, a protein distantly related to Merlin and also an 

interaction partner of Merlin is expressed in the tracheal system. 
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Figure 29: Slik and phosphorylated Moesin colocalise at the apical membrane within terminal cell branches 

(a-a''') Tracheal cells are visualised by tracheal specific cytoplasmic GFP (green), antibodies specific for Slik (red) and the phosphorylated form of Moesin (p-Moesin) 

(blue). (b -b''') enlargement of the corresponding area in image a (boxed) showing; (b) Slik - Moesin colocalisation at the apical membrane; (b') Slik and (b'') p-Moesin 

enrichment at apical membrane; (b''') overlay of GFP, Slik and p-Moesin. Positions at which all three proteins are present are seen as white in the overlay, and are 

restricted to the apical membrane of the cell.  Scale a - 50 µm, b - 5 µm. 
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3.3 Slik and Moesin colocalise at the apical membrane in terminal cells  

 

The above observations from immunostainings and RT-PCRs have confirmed the expression 

of Slik and its phosphorylation targets Moesin and Merlin in the tracheal system. To 

investigate if Moesin was indeed a target of Slik in the tracheal system like in other tissues, I 

first investigated the localisation of these two proteins by double labelling with both anti-Slik 

and anti-p-Moesin antibodies. The stainings were performed in larvae expressing cytosolic 

GFP in the tracheal system under the btlGal4 driver (Fig.29). The immunostainings were 

visualised by detection with secondary antibodies coupled to fluorophore (Alexa Fluor®) 

dyes. Analysis of the immunostainings revealed that Slik and Moesin colocalised at the apical 

membrane of terminal branches (Fig.29b), which was consistent with earlier reports on wild 

type wing imaginal discs (HIPFNER et al. 2004).  

 

3.4 Knockdown of moesin in the tracheal system results in phenotypes 

similar to slik RNAi 

 

Moesin plays multiple roles in Drosophila development and is involved in processes such as 

oocyte anterior/posterior axis specification (JANKOVICS et al. 2002), actin cytoskeleton 

organization (KUNDA et al. 2008), establishment or maintenance of epithelial cell apical/basal 

polarity of larval imaginal disc epithelium (SPECK et al. 2003) and  rhabdomere development 

(KARAGIOSIS and READY 2004). In addition, Moesin is regulated by Slik kinase activity. As 

moesin mutant animals are not viable, I used moesin RNAi constructs to study the effect of 

Moesin depletion in the tracheal system.  The moesin RNAi construct VDRC 37917 was used 

along with UAS-dicer and UAS-GFP driven by btlGal4 to have a tracheal specific 

expression. However, only very few progeny grew up to third instar larval stages and these 

were comparable in size to a wild type first instar larva. To reduce the severity of the 

knockdown phenotype I performed the knockdown without expressing dicer. The larvae thus 

obtained were of moderate size and suitable for dissection.  

 

moesin mutant terminal cells exhibited abnormal branching and lumen phenotypes as 

observed in case of slik knockdown. The number of branches in terminal cells of moesin 

mutant larvae was significantly reduced compared to wild type larvae (Fig.30). Moreover, the 
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mutant terminal cells also showed the multilumen phenotype (Fig.30b) though the phenotype 

was not completely penetrant. Apart from slik mutants, multilumen phenotype has also been 

reported with mutants for bitesize (btsz). A previous study showed that Btsz protein localised 

apically in epithelial cells and was required for recruiting Moesin to the adherens junctions 

(PILOT et al. 2006). Work from our lab showed that btsz RNAi in tracheal cells lead to 

destabilised tubes and similar branching defects (unpublished data Jayan N. Nair Appendix 

Fig.49).   

 

 

Figure 30: Effect of moesin RNAi on terminal cells 

moesin RNAi transgene was expressed in trachea marked with cytosolic GFP. Terminal cells from a third instar 

moesin knockdown shows (a) a terminal cell with few branches; (b) a terminal cell displaying the multilumen 

phenotype, multiple lumens are marked by arrows. Scale a - 50 µm, b - 25 µm 

 

3.5 Knockdown of Merlin and expanded in the larval tracheal system 

 

Previous studies showed that Slik negatively regulated Merlin through phosphorylation.  

Since RT analysis of the tracheal system confirmed the expression of Merlin, I investigated 

whether Merlin has any role in larval tracheal development. For this purpose, Merlin RNAi 

construct VDRC 7161 was used along with the UAS-dicer and UAS-GFP driven by btlGal4 

to achieve tracheal specific expression. Knockdown of Merlin in the tracheal system did not 

affect the larval growth unlike the slik and moesin knockdowns, more importantly the 

knockdown did not result in branching defects as seen with slik and moesin RNAi.  
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However, Merlin knockdown resulted in terminal cells with abnormal morphology. To 

exclude the possibility that the phenotype was an off-target effect, I tested the predicted off-

target Cad96Cb as control. RNAi for Cad96Cb did not result in any tracheal phenotypes. 

Terminal cells from Merlin knockdown larvae showed a phenotype different from those 

observed previously for slik or moesin. Terminal branches were larger in comparison to the 

wild type branches. Though the terminal cell nuclei were of comparable sizes, the branches 

from Merlin depleted cells appeared to have large amounts of cytoplasmic material (Fig.31). 

This phenotype was unexpected, but fits with the known function of Merlin, a tumour 

suppressor. Merlin mutants tissues and organs are known to grow to enormous sizes (YI and 

KISSIL 2010).  

 

 
 
Figure 31: Effect of Merlin RNAi in larval terminal cells 

Tracheal system is visualised by tracheal specific cytoplasmic GFP (green) expressed using btlGal4. (a) Wild 

type terminal cell; (b) terminal cells from a Merlin knockdown larvae showing increased cytoplasm in the 

branches. Note nuclei (marked by arrows) are of comparable sizes. Scale - 50 µm. 

 

Since Merlin RNAi did not result in any phenotypes similar to either slik and/or moesin 

knockdowns, I investigated if the difference was due to the presence of Ex the interaction 

partner and a protein functionally redundant to Merlin. To determine if Ex had any role in 

terminal cell development, ex specific RNAi construct was expressed in the tracheal system. 

The line used in the experiment was VDRC 109281, which had no predicted off-targets. 

However, the knockdown of ex in trachea did not result in any observable phenotype 

whatsoever. This suggests that Ex has no function in terminal cell development. 
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Alternatively, since ex RNAi knockdown was performed alone, the possible compensation by 

Merlin for the loss of Ex in trachea cannot be ruled out. 

 

3.6 Knockdown of slik leads to loss of activated Moesin in terminal cells 

    

Moesin is activated by phosphorylation on the conserved threonine residue (T
556

) in the C-

terminal domain of the protein. It is known that Slik can phosphorylate Moesin and that 

activated Moesin (p-Moesin) is lost in slik
1 

clones and on slik RNAi in S2 cells. To study the 

phosphorylation of Moesin in slik mutant terminal cells, I performed immunostainings with 

the p-Moesin antibody in third instar larvae. Third instar larvae expressing UAS-slik RNAi 

(VDRC 43783), UAS-GFP and UAS-dicer under the btlGal4 were dissected to analyse the 

tracheal system. p-Moesin staining was performed on slik depleted and as well as wild type 

larvae.  

 

 
 
Figure 32: Effect of slik RNAi on p-Moesin levels in larval terminal cells 

Terminal cells from larvae of the genotypes (a-a'') wild type; (b-b'') slik RNAi, visualised by tracheal specific 

cytoplasmic GFP (green) and p-Moesin (red).  p-Moesin expression is lost in terminal cells of a slik knockdown 

larva (a'and b'). p-Moesin is expressed in all tissues therefore Moesin from surrounding tissues is also detected.  

Scale - 25 µm. 
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In wild type terminal cells, p-Moesin was localised at the apical membrane of the terminal 

cell branches (Fig.32a). However, in slik mutant terminal cells, the apical localisation of p-

Moesin was completely lost (Fig.32b), consistent with loss of p-Moesin in the slik
1
 clones in 

wing disc. Even with increased exposure parameters while imaging no p-Moesin was 

detected in the terminal branches in case of mutants, which is substantiated by the effect of 

increased signal from underlying muscle tissue exceeding levels seen in wild type (compare 

Fig.32a' and b'). As all tissues express p-Moesin, p-Moesin is detected from underlying 

muscle tissues. These results confirm that Slik regulates p-Moesin expression/localisation at 

the apical membrane in the terminal cells and that loss of Slik leads to the subsequent loss of 

p-Moesin from terminal branches. The results are consistent with previously published data 

from wing disc (HIPFNER and COHEN 2003; HIPFNER et al. 2004). 

 

3.7 Slik’s kinase function is critical in terminal cell lumen formation 

 

Loss of Slik from the tracheal system lead to the loss of phosphorylated Moesin and also 

resulted in similar tracheal phenotypes, i.e. multilumen defects. The multilumen phenotype 

probably results from the destabilisation of tubes resulting from depletion of the activated 

crosslinker p-Moesin, the function of which is regulated by Slik. To test this, I expressed the 

following functional variants of Slik in the tracheal system - Slik kinase dead (Slik
kd

) and 

Slik kinase domain (Slik
kin

) (Fig.33). Slik
kd

 is a slik mutant construct that lacks the kinase 

function as a consequence of a missense mutation in Asp
176

 residue within the kinase 

subdomain VII of the protein (HIPFNER and COHEN 2003). The Slik
kd

 mutation does not 

interfere with the protein’s ability to carry out its kinase independent function through the 

interaction with Raf (HIPFNER and COHEN 2003). On the other hand the Slik
kin

 construct 

retains only the kinase domain and lacks all other regions of the protein. Expression of the 

Slik
kin

 construct in wing disc has shown to increase levels of p-Moesin in cells (HIPFNER et 

al. 2004).  

  

Slik
kd

 overexpression in the larval tracheal system resulted in lethality during early larval 

stages and therfore only very few third instar larvae expressing the construct were obtained. 

Larvae from the overexpression experiment were dissected to examine the terminal cells. 

Overexpression of the Slik
kd

 construct resulted in terminal cells displaying the multilumen 

phenotype, similar to Slik/Moesin depletion (Fig.34a), suggesting that Slik’s kinase function 
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is responsible for the Slik depletion phenotype. A similar effect was observed with Slik
kin

 

overexpression, resulting in lethality with very few escapers. Examination of the terminal 

cells from Slik
kin

 overexpressing larvae revealed the occurrence of the multilumen phenotype 

(Fig.34b). On the other hand, expression of UAS-slik constructs did not result in any 

observable phenotypes in the tracheal system. 

 

 
 
Figure 33: Schematic representation of Slik variants used in the tracheal system 

Two variants constructs of Slik were used to study the effect of interfering with Slik kinase function. Wild type 

Slik protein is about 1300aa. The Slik kinase dead (Slik
kd

) construct is mutated in the kinase domain via 

substitution of the aspartate
176 

to asparagine and therefore is not capable of performing the phosphorylation 

function. The Slik kinase domain (Slik
kin

) construct lacks the entire C-terminus retaining only the kinase domain 

of the protein. 

 

 
 
Figure 34: Effect of overexpression of the kinase variants of Slik 

Terminal cells from third instar larvae visualised by tracheal specific cytoplasmic GFP (green) in (a) Slik
kd

 

overexpressing cell and; (b) Slik
kin

 overexpressing cell. Over expression of both the Slik variant constructs result 

in the same multilumen phenotype. Scale - 25 µm. 
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3.8 Breathless regulates expression of p-Moesin in the tracheal system 

 

To determine if the loss of p-Moesin seen in terminal cells was specific to slik RNAi, control 

knockdowns were also performed. I tested the expression of p-Moesin in knockdowns of 

other kinases expressed in the tracheal system. btl, raf and egfr were the kinases analysed by 

knockdowns. FGF signalling involving the ligand branchless (bnl) and the Receptor Tyrosine 

Kinase (RTK) breathless (btl) is indispensible for normal tracheal morphogenesis (GLAZER 

and SHILO 1991). Loss of btl expression or of any downstream signalling components such as 

Ras or raf perturbs tracheal development (LEE et al. 1996; REICHMAN-FRIED et al. 1994). 

Further, egfr is also involved in tracheal placode invagination and tracheal cell migration 

(CELA and LLIMARGAS 2006; LLIMARGAS and CASANOVA 1999). The results from the 

experiments are discussed below. 

 

3.8.1 p-Moesin levels are affected by breathless knockdown 

 

btl RNAi in the tracheal system was performed using the transgenic line VDRC 27106, a line 

with no potential off-target effect. The RNAi construct was expressed in the tracheal system 

using btlGal4 along with the expression of UAS-GFP and UAS-dicer. Knockdown of btl was 

performed at 25°C unlike other knockdowns performed at 29°C as larvae at higher 

temperatures were small in size and difficult to dissect. The larvae were filleted to reveal the 

tracheal system and stained using anti-Slik antibody. The phenotypes associated with the 

knockdown are described in section 3.9.1.  

 

Immunostaining for p-Moesin was done in btl RNAi larvae along with control larvae to check 

p-Moesin levels in terminal cells. Wild type larvae showed p-Moesin enriched at the apical 

membrane of terminal branches (Fig.35a). Surprisingly, the btl mutant larvae showed a 

complete loss of p-Moesin from the terminal cell branches (Fig.35c), similar to that observed 

in the case of slik knockdown (Fig.35b). To check if this phenotype was a result of the loss of 

signalling through the RTK-MAPK pathway, knockdown for raf was performed and analysed 

through immunostainings for p-Moesin.  
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Figure 35: Effect of knockdown of slik, btl and raf on p-Moesin in larval terminal cells  

Terminal cells from larvae of the genotypes (a-a'') wild type; (b-b'') slik RNAi; (c-c'') btl RNAi and (d-d'') raf 

RNAi, are visualised by tracheal specific cytoplasmic GFP (green) and antibodies specific for the 

phosphorylated form of Moesin (p-Moesin) (red). While the p-Moesin is clearly seen in surrounding tissues, 

levels of p-Moesin are reduced within the terminal cells upon slik (b') and btl (c') knockdown in comparison to 

wild type (a') and levels that remain unchanged in raf knockdown (d'). As p-Moesin is ubiquitously expressed, 

p-Moesin from underlying muscle tissue is also detected.  Scale - 25 µm. 
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raf knockdown was performed using the RNAi transgenic line VDRC 107766 which has no 

predicted off-targets. Crosses set at a higher temperature (29°C) resulted in larvae of small 

size and therefore difficult to dissect. RNAi was performed at 25°C as in the case of btl 

knockdown. Immunostaining for p-Moesin in the raf knockdown larvae did not show any 

changes in levels of p-Moesin (Fig.35d) suggesting that raf or the signalling pathway 

downstream of Btl is not involved in maintaining p-Moesin levels in terminal cells. Together, 

these results indicate that both slik and btl are critical for the p-Moesin levels in the terminal 

cell. There are no precedents implicating btl as an upstream activating kinase of Moesin.  In 

order to determine if the loss of p-Moesin was as result of transcriptional regulation of slik by 

btl, I performed immunostainings for Slik in btl knockdown larvae. 

 

3.8.2 breathless RNAi does not affect slik expression in terminal cells 

 

Staining for Slik in the tracheal system showed that Slik expression in terminal cells was not 

affected by btl knockdown (Fig.36). This result implied that Slik expression was not 

controlled by Btl and it was unlikely to be a transcriptional target of Btl signalling. However 

this does not exclude the possibility that Slik is post-translationally activated by Btl. 

Therefore I investigated if Moesin is a transcriptional or a post-translational target of the Btl 

signalling. 

 

 

Figure 36: Effect of btl RNAi on Slik levels in larval terminal cells 

Terminal cell from a btl knockdown third instar larva (a-a''). (a) Terminal cell is visualised by tracheal specific 

cytoplasmic GFP (green) and (a') anti-Slik antibody staining (red). Slik expression is undisturbed upon btl 

knockdown.  Slik expressed in surrounding tissues is also detected. Scale - 25 µm. 
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3.8.3 Moesin is a phosphorylation target specific to Breathless 

 

In order to ascertain whether the observed down regulation of p-Moesin in the btl RNAi 

terminal cells was a result of transcriptional or post-translational regulation, I carried out 

immunostainings for Moesin using a pan-Moesin antibody (F. Payre) in wild type and btl 

RNAi larvae. Staining for Moesin in wild type terminal cells showed that Moesin was 

distributed within the cytoplasm, with enrichment at the apical membrane (Fig.37a). In btl 

mutant terminal branches, Moesin distribution remained unchanged. This result indicated that 

Moesin expression was not under the transcriptional control of Btl. Together with the 

observation from p-Moesin immunostainings in btl mutants, these results support the idea 

that Moesin directly or indirectly (perhaps through Slik), is a post-translational target of Btl’s 

activity. This implies a novel role for btl in regulating the activity of Moesin through 

phosphorylation.  

 

 

Figure 37: Effect of btl RNAi on Moesin levels in larval terminal cells 

Terminal cells from larvae of the genotypes (a-a'') wild type; (b-b'') btl RNAi, visualised by tracheal specific 

cytoplasmic GFP (green) and antibodies specific for Moesin (red). Levels of Moesin remain unaltered in a btl 

knockdown terminal cell (a’ and b'), unlike levels of p-Moesin that is reduced upon btl knockdown. Moesin is 

expressed in all tissues therefore Moesin from surrounding tissues is also detected. Scale - 25 µm. 
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3.9 Knockdown of RTK/MAPK pathway components affect terminal cell 

branching  

 

The Bnl/Btl RTK pathway is essential for tracheal development in both embryonic and larval 

phases of development. The signalling from the RTK pathway is modulated through 

downstream effector molecules such as Ras/Raf and the MAPK. An important target of this 

Bnl/Btl MAPK signalling is the expression of the target gene srf. Srf is a transcription factor 

specifically expressed in the terminal cells. Loss of Srf results in loss of cytoplasmic 

outgrowth during terminal branching (AFFOLTER 1994; GUILLEMIN et al. 1996). It is also 

known that Slik apart from its kinase dependent function genetically and physically interacts 

with Raf and is consequently involved in the signalling mediated by Raf to promote cell 

growth and proliferation. However the growth and proliferative effect of Raf signalling has 

been shown to be independent of the MAPK pathway in wing imaginal discs (HIPFNER and 

COHEN 2003). In the tracheal system the RTK-MAPK signalling is active and we know that 

Slik is expressed and has a crucial role in normal tracheal development. The multilumen 

phenotype in slik RNAi can be attributed to the loss of activated Moesin, however these 

terminal cells also showed reduced branch growth. As raf functions to promote cell growth it 

would be interesting to know if the branching phenotype was a result of impaired Slik-Raf 

signalling in slik mutants. To study the possibility that in slik mutants the branching defects 

could be due to perturbed signalling via Raf, or as a consequence of disruption of the MAPK 

signalling pathway and the subsequent loss of Srf expression, I performed RNAi on the 

components of the pathway. RNAi was performed for the following genes, the two RTKs btl 

and egfr, the transducers Ras and raf and finally the terminal specific target, srf. I analysed 

the outcomes from various knockdowns and scored for branching phenotypes.  

 

3.9.1 Effect of breathless RNAi in the larval tracheal system 

 

btl RNAi knockdown was performed in terminal cells as previously described in chapter 

3.8.1 

. 
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3.9.1.1 Knockdown of breathless disrupts branching in terminal cells 

 

Apart from the regulation of p-Moesin described earlier, knockdown of btl produces tracheal 

defects. In btl RNAi terminal cells branching was severely compromised with no more than 

two branches per terminal cell (Fig.38). This is consistent with the branching phenotype seen 

in slik RNAi. The phenotype was observed in all terminal cells from the btl knockdown 

animals. 

 

 

Figure 38: Effect of btl RNAi on branching in terminal cells 

A terminal cell from a btl RNAi larva. Terminal cell were visualised by the tracheal specific expression of 

cytoplasmic GFP using btlGal4. Depletion of btl severely affects growth of terminal branches and the phenotype 

was 100% penetrant with no terminal cells having more two branches. Scale - 25 µm. 

 

 

3.9.1.2 breathless RNAi results in abnormal morphology of the cells of the 

dorsal trunk 

 

 In addition, I also examined the dorsal trunk in the mutant larvae. To visualise the cells of 

the dorsal trunk E-Cadherin (E-Cad) staining was performed. E-Cad localises to the 

membrane marking cell-cell junctions. In wild type, the dorsal trunk is composed of regular 

shaped cells that are intercalated, with the junctions between these cells having a smooth 

appearing (Fig.39a). In btl RNAi animals the staining showed distinct morphological changes 

in the cells of the dorsal trunk. The cells appeared to have lost their regular shape as 

visualised by the presence of irregular cell boundaries, as outlined by E-cad staining 

(Fig.39b).  
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Figure 39: Effect of btl RNAi on the dorsal trunk 

Dorsal trunk from larvae of the genotypes (a-a'') wild type; (b-b'') btl RNAi, visualised by tracheal specific 

cytoplasmic GFP (green) and antibodies specific for E-Cadherin (red). The cells that constitute the dorsal trunk 

in btl RNAi larvae showed abnormal morphology, the cell outlines were irregular in comparison to the wild type 

cells. E-Cad outlines the cell membrane as it is expressed at points of cell-cell contact (marked by arrow). Scale 

- 25 µm. 

 

3.9.2 Knockdown of Ras disrupts branching in terminal cells 

 

Ras is an important effector of FGF signalling. Ras transduces the signal from Btl to activate 

the MAPK signalling. Ras binds the serine/threonine kinase Raf and targets it to the 

membrane, which then leads to the activation of Raf, a step preceding MAPK induction in the 

tracheal system.  

 

Knockdown for Ras was performed using the line NIG 9375-2. This line has no potential off-

targets. Ras RNAi constructs were expressed along with UAS-GFP and UAS-dicer at 29°C. 

Expression of the Ras RNAi constructs in the tracheal system resulted in terminal cell 

branching defects similar to that of slik knockdown and btl knockdown discussed above. 

Branching in terminal cells was reduced compared to the wild type (Fig.40), albeit the 

phenotype was not as severe as with btl knockdown. Ras RNAi resulted in terminal cells with 
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branch counts ranging between 2 to 10 branches per cell. These results confirmed that 

tracheal branching morphogenesis was affected by knocking down components of the RTK-

MAPK signalling pathway. 

 

 
 

Figure 40: Effect of Ras RNAi in terminal cell branching 

A terminal cell from a Ras RNAi larva. Terminal cells were visualised by the tracheal specific expression of 

cytoplasmic GFP using btlGal4. Knockdown of Ras caused a moderate reduction in terminal branching. Scale - 

25 µm. 

 

3.9.3 Effect of raf RNAi on terminal cell development 

 

Knockdown for raf was performed as described in section 3.8.2.  

 

3.9.3.1 Knockdown of raf branching in terminal cells 

 

raf RNAi resulted in various tracheal defects. The most prominent phenotype was reduction 

in terminal cell branching as with other members of the RTK pathway, btl and Ras or slik.  

Knockdown of raf resulted in terminal branches with approximately 4-10 branches per cell 

(Fig.41). This phenotype was fully penetrant and therefore observed in all terminal cells of 
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the knockdown larvae. Also, the knockdown induced lethality at pupal stages. However, the 

branching phenotype observed was not as severe as observed with the btl knockdown. In 

addition, raf knockdown presented additional phenotypes which are described below. 

 

 
 

Figure 41: Tracheal specific raf RNAi reduces terminal branching in terminal cells 

Terminal cell from a raf knockdown third instar larva, expressing cytoplasmic GFP in the tracheal system. raf 

RNAi results in reduced branching in terminal cells. Scale - 25 µm 

 

3.9.3.2 Knockdown of raf results in cystic lumen within terminal cells 

 

In addition to the branching defects induced upon raf RNAi, the terminal cells showed 

another. Though not a completely penetrant phenotype, I observed the presence of cystic 

lumen within the terminal branches. The cystic lumen phenotype is best described as a 

bubble-like expansion of lumen at random intervals in the branch (Fig.42). The cystic lumen 

phenotype was observed as a sole phenotype or in combination with the reduced branching 
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phenotype or even the multilumen phenotype described in the next section. This is a distinct 

phenotype and previously unobserved in any knockdowns of the other members of RTK-

MAPK pathway.  

 

 
 
Figure 42: Tracheal specific raf RNAi in results cystic lumen within terminal cell 

Terminal cell from a raf knockdown third instar larvae were imaged. The larval trachea is visualised by the 

expression of cytoplasmic GFP by btlGal4. In addition to the branching phenotype the knockdown also resulted 

in luminal phenotypes, cystic lumen (marked by arrow) phenotype. Scale - 25 µm. 

 

3.9.3.3 Knockdown of raf results in multilumen phenotype in terminal cells 

 

A third phenotype commonly observed in the tracheal system of raf RNAi larvae was the 

multilumen phenotype. The terminal cells showed the occurrence of multiple tubes within a 

branch with or without additional phenotypes (Fig.43).  
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Figure 43: raf RNAi in terminal cells results in the multilumen phenotype 

The terminal cells were visualised by expression of cytoplasmic GFP using the btlGal4 driver. Upon raf RNAi 

terminal cells often resulted displayed in the multilumen phenotype (marked by arrows). Sometimes the 

multilumen phenotype was observed in combination with other phenotypes; here multilumen phenotype is 

present along with the cystic lumen phenotype (marked by arrow head). Scale - 25 µm. 

 

 

3.9.4 Knockdown of srf disrupts branching in terminal cells 

 

srf is a target of the FGF-MAPK signalling and a transcription factor that is critical in 

terminal cell development. srf mutants have abnormal terminal branching (GUILLEMIN et al. 

1996). In order to make a phenotypic comparison between slik and srf mutant phenotypes I 

performed srf RNAi in the tracheal system. Srf in the tracheal system was depleted using 

RNAi constructs for srf expressed using btlGal4 along with the expression of UAS-GFP and 

UAS-dicer constructs. The line used was VDRC 100609, which had no predicted off-targets 

and the RNAi was performed at 29°C. The knockdown resulted in animals with reduced body 

size. Third instar larvae from the knockdown experiment were dissected and imaged. 
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Analysis of the mutant larvae showed abnormal tracheal development. Branching was 

affected in almost all terminal cells of the knockdown larvae (Fig.44). The phenotype was 

similar to that observed with btl knockdown and any other members of the Btl/MAPK 

signalling pathway. The phenotype was also consistent with previously published data on srf 

mutants (AFFOLTER 1994; GUILLEMIN et al. 1996). In addition, the knockdown larvae did not 

progress to pupal stages. 

 

 

Figure 44: Effect of srf RNAi on terminal cell branching 

A terminal cell from a third instar larva upon srf knockdown, also expressing cytoplasmic GFP in the tracheal 

system. The knockdown resulted in severe reduction in terminal branching. Scale - 25 µm. 

 

 

3.9.5 Knockdown of egfr disrupts branching in terminal cells  

 

In addition to the RTK Btl, I also studied the effect of knockdown of the other functional 

RTK in the tracheal system; viz. egfr. Egfr plays an important role in tracheal placode 

invagination and migration of primary branches. To examine the role of EGFR in terminal 

cell development I performed egfr RNAi using the line VDRC 107130.  
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Knockdown of egfr resulted in a moderate reduction of branching in terminal cells (Fig.45).  

egfr knockdown animals entered pupal phases of development but did not eclose. The 

terminal cells showed a reduction in branch numbers but no other phenotypes were observed. 

 

 

Figure 45: Knockdown of egfr in the tracheal system affects terminal branching 

egfr knockdown was performed specifically in the tracheal system with RNAi constructs expressed using 

btlGal4. Also expressed in the trachea were UAS-dicer and UAS-GFP, the latter was used to help visualise the 

tracheal system. The RNAi resulted in a moderate reduction of terminal branch numbers. Scale - 25 µm. 

 

3.9.6 Evaluation of branching phenotype in mutants of RTK and 

downstream components 

 

As described in the previous sections, knockdowns for slik, Ras, raf, srf, btl and egfr all 

resulted in a branching phenotype. To evaluate and derive a phenotypic correlation between 

individual knockdowns for the branching phenotype I counted branches from terminal cells 

from each of the knockdowns. For this purpose, terminal branches from a specific subset of 
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terminal cells called the dorsal terminal cells were counted. Dorsal terminal cells are the two 

terminal cells found at the region of dorsal branch fusion (Fig.46). Branching points were 

counted in dorsal terminal cells from the tracheal segments tr3- tr5 (Fig.21a). These segments 

were identified by the presence of the tracheal stem cell cluster, the tracheoblasts (Fig.21b). 

A branching point was scored when the branch in question contained a lumen within and that 

the lumen was continuous with the lumen from the preceding branch (Fig.47). Cytoplasmic 

extensions from an existing branch bearing no lumen within were not scored for. Terminal 

cell branch count was performed on an average of 5-6 larvae, as often only 1-2 intact dorsal 

terminal cells from tr3-tr5 were obtained after dissection, partly due to the difficulty in 

dissection of small-sized animals resulting from knockdown.  

 

. 

Figure 46: Overview of the dorsal terminal cells in the third instar larva 

The tracheal system is visualised by the expression of cytoplasmic GFP in a tracheal specific manner using 

btlGal4. Visible here are the two dorsal trunks in a segment of the larva, from each of which arise a dorsal 

branch directed to the midline of the animal. The dorsal branches fuse with each other at the body midline and 

project two terminal cells beyond this fusion point. These terminal cells arising beyond the point of the fusion 

cells are called referred to as the dorsal terminal cells. Scale - 100 µm. 
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Figure 47: A terminal cell from a third instar wild type larva 

A branching point is considered so when the tube within the branch is connected to the tube from the preceding 

branch (yellow dots). Cytoplasmic extensions that do not contain a tube within are not considered as branching 

points (red dots). Scale - 25 µm. 

 

 

 
 

Figure 48: Number of branches in dorsal terminal cells from wild type and mutant larvae 

Number of branching points was counted for dorsal terminal cells in wild type, slik, btl, Ras, srf, and egfr 

knockdowns. To visualise terminal cells cytoplasmic GFP was expressed in the tracheal system using btlGal4, 

third instar larvae were filleted and the terminal cells were analysed. Numbers of branching points are plotted as 

dots; each dot represents the number of branching points for one cell, a total of 10 terminal cells were counted 

per genotype (n=10). The following were the average number of branches per cell along with their p-values 

from a Student’s t-test: wild type 17.95 ± 2.69, slik 6.3±4.76, p=2.72x 10
-6

, btl 1.1 ± 0.32, p= btl  1.75x10
-14

, Ras 



Results 

67 
 

4.3 ± 3.16, p= 5.1x10
-9

, raf  5.9 ± 2.51, p=5.5x10
-9

, srf  2 .7± 1.34, p= 4.35x10
-12

 and egfr 12.3 ± 2.11, p= 

6.25x10
-5

 

 

 

Branch counting was performed in the tracheal knockdowns for slik, btl, egfr, Ras, raf, srf 

along with wild type as control.  Branches from individual terminal cells were counted and 

plotted on a scatter plot. Branch counts form 10 dorsal terminal cells were analysed. Each dot 

on the scatter plot represents the number of branches in a single dorsal terminal cell (Fig.48). 

Branch counting in wild type terminal cells showed that average branch numbers in these 

cells were about 17.95 ± 2.69 (n=10). Branch counting from the knockdown animals showed 

that all knockdowns influenced terminal cells branch numbers but to different degrees 

(Fig.48, values in Appendix Fig.52). Branch counts revealed an overall reduction in the 

number of branches per cell. A Student’s t-test was also done to calculate the p-values for the 

branch numbers.  The p-values obtained were highly significant with all p values being p 

<0.001. These results confirmed that branching is indeed perturbed in knockdowns of slik, its 

interaction partner raf and members of the RTK-MAPK signalling and its target, srf.  
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4. DISCUSSION 

The Drosophila tracheal system is commonly used as a model to study the molecular and 

cellular basis of tube morphogenesis. Although several studies have focussed on 

understanding tracheal patterning and tube formation, the events that lead to the tracheal 

development in larval phases remain largely unexplored. Our interest in the tracheal system 

focuses on the development of the terminal cells, the cells that deliver oxygen to the target 

tissues. Of particular interest is the mechanism of terminal branch development and lumen 

formation. Very little is known about the molecular and cellular aspects of terminal cell 

development. Earlier studies in the larval tracheal system have shown that tube formation 

within terminal cells is ensued by tube stabilisation.  Only a handful of candidate genes have 

been identified with respect to fulfilling these functions. Tube stabilisation has been shown to 

require talin (rhea) and integrins (mew, if, mys) (LEVI et al. 2006), while the lumen formation 

requires the apical polarity complex Baz/Par6/aPKC, Crumbs, Btsz, Ikkε, Dlis-1 (Jayan N. 

Nair, PhD thesis) (GERVAIS and CASANOVA 2010; OSHIMA et al. 2006). It is understood that 

Moesin, by regulating actin organisation at the apical membrane, is essential for terminal 

branching and tube development (POLESELLO et al. 2002) (Jayan N. Nair, PhD thesis). While 

it is known that Moesin is essential for tube formation, it is not clear whether Moesin 

regulates the process of tube formation or whether it is required subsequent to tube formation 

in order to stabilise the newly formed tube. Moesin is a well characterised membrane anchor 

for the actin cytoskeleton and studies have shown that activation of Moesin through 

phosphorylation is a prerequisite for this function. Until recently, the kinase that activates 

Moesin was unknown, studies in wing imaginal discs identified Slik (a member of the Sterile-

20 kinase family) as the activation factor (HIPFNER and COHEN 2003; HIPFNER et al. 2004). 

This study demonstrates the functional relevance of Slik in the development and maintenance 

of the larval tracheal system. 

  

4.1 Persistent Slik expression in all stages of tracheal development 

 

Slik is known to regulate both Moesin and Merlin through phosphorylation leading to distinct 

effects. Phosphorylation activates Moesin, which then binds to F-actin and stabilises the actin 

cytoskeleton (POLESELLO et al. 2002). However, in case of Merlin, phosphorylation results in 
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the loss of its tumour suppressor function (HUGHES and FEHON 2006). In addition, Slik 

genetically and physically interacts with Raf in a kinase independent manner to promote 

growth and cell survival (HIPFNER and COHEN 2003). Previous works showed that both Slik 

and Moesin are enriched at the apical membrane of the wing disc epithelium and that the loss 

of Slik results in loss of p-Moesin (HIPFNER and COHEN 2003; HIPFNER et al. 2004).  

 

My experiments to investigate Slik expression and localisation in the tracheal system showed 

that that Slik is indeed expressed in the tracheal system. Slik showed enriched apical 

localisation from the very first stage of embryonic tracheal development, which then 

persisted through the entire embryonic tracheal development. Interestingly, the apical 

enrichment of Slik in the embryonic trachea is also mirrored by F-actin distribution in the 

tracheal cells (Appendix Fig.54) (LLIMARGAS and CASANOVA 1999). This suggests a possible 

role for Slik in regulating Moesin for actin stabilisation during the tracheal development. 

Stainings in larvae showed that Slik was also enriched at the apical membrane within 

terminal cells i.e. the membrane facing the tracheal lumen. Further, coimmunostainings for 

Slik and E-Cad in fusion cell of the dorsal trunk demonstrated that Slik localises more 

apically than the E-Cad labelled adherens junctions. These finding are consistent with the 

previously reported distribution pattern of Slik in the wing disc epithelium (HIPFNER et al. 

2004). Further, coimmunostainings for Slik and p-Moesin in the larval trachea showed that in 

addition to the enrichment of activated Moesin at the apical membrane, Moesin also 

colocalised with Slik in the terminal cells.  

 

4.2 Slik is important for tracheal development in Drosophila 

 

Earlier reports have implicated Slik in the proliferation and growth of cells in the wing 

imaginal disc through regulation of Moesin and Raf (HIPFNER and COHEN 2003; HIPFNER et 

al. 2004). Tracheal specific knockdown of slik disrupted the normal terminal cell 

development. The knockdown also resulted in reduced larval sizes along with perturbing 

further development from the larval stages. The reduced body size in larvae could be an 

indirect consequence of lowered metabolism due to lack of oxygenation. These results 

suggest that Slik’s function in the tracheal system is required not only for the terminal cell 
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development but also for the overall development in Drosophila. The observed phenotypes 

are consistent with slik
1
 mutants and MARCM clone phenotypes. However, unlike in wing 

discs where slik mutant cells undergo apoptosis slik RNAi does not reduced terminal cell 

numbers. Careful analysis revealed branching/growth and tube formation defects in slik 

compromised terminal cells. Further, immunostainings showed that loss of Slik leads to a 

complete loss of activated Moesin (p-Moesin) at the apical membrane of terminal cells. This 

is consistent with previously published data that Slik phosphorylates Moesin and specifically 

at the amino acid residue Threonine
556

.  

 

4.3 Moesin is essential for tube formation and stability in terminal cells 

 

In addition to the loss of p-Moesin, knockdown of slik also resulted in tube formation and 

branching defects within terminal cells. Most of the mutant cells showed a significant 

reduction in branching, as well as the multilumen phenotype. Moreover, the multilumen 

phenotype observed in slik mutant terminal cells is similar to the previously observed moesin 

knockdown phenotype (Jayan N. Nair, PhD thesis), indicating a possible link between the 

status of activated Moesin and the observed phenotypes. Since Slik has been shown to 

phosphorylate Moesin in other tissues (CARRENO et al. 2008; HIPFNER and COHEN 2003; 

HIPFNER et al. 2004; HUGHES et al. 2010), the similarity of the phenotypes between the loss 

of Moesin and Slik in the terminal cells, might be expected.  

 

Further evidence for the regulation and activation of Moesin at the apical membrane in 

terminal branches comes from studies in our lab. Terminal cells of bitesize (btsz) mutants as 

well as RNAi larvae showed tube formation and branching defects (unpublished data, Jayan 

N. Nair, Appendix Fig.50). btsz was previously identified as one of the membrane anchors of 

Moesin at the apical membrane in the embryonic epithelium (PILOT et al. 2006). 

Additionally, mutant alleles of talin, α-integrins and β -integrins also showed multiple 

lumens in terminal branches (Fig.6)(LEVI et al. 2006). The talin-integrin complex positioned 

at the basal membrane acts as an anchor for terminal branches to connect to the underlying 

tissues. This positioning is thought to occur through the interaction of the actin cytoskeleton 

with the talin-integrin complex leading to stabilisation of the tube in terminal branches. Since 

activated Moesin, which localises at the apical membrane in terminal branches, is an anchor 
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for F-actin it could stabilise the actin cytoskeleton at the apical membrane and thereby 

regulate terminal branching and tube formation.  

 

4.4 Kinase activity of Slik is essential for its function in terminal cells 

 

We know from earlier work that Slik’s kinase function is important for maintaining the 

epithelial integrity of wing imaginal discs (HIPFNER and COHEN 2003). Comparable terminal 

cell phenotypes in slik and moesin RNAi and the loss of p-Moesin enrichment at the apical 

membrane in slik mutants indicated that Slik’s kinase activity is essential for its function in 

terminal cells. To confirm this aspect, I tested the effects of expression of Slik variants in 

terminal cells. Overexpression of wild type Slik did not result in any phenotypes in the 

tracheal system. Overexpression of the kinase dead form of Slik (Slik
kd

) resulted in 

multilumen phenotype indicating that the kinase activity of Slik is indispensible in tracheal 

development. An explanation to this phenotype is that the Slik kinase dead construct acts as a 

dominant negative. The Slik
kd

 construct is a point mutation in the kinase subdomain of the 

protein and therefore the construct is likely to retain its kinase independent functions. This 

would allow other Slik interacting proteins to still associate with the kinase dead form. One 

such protein is Sip1 which is the Drosophila homologue of the mammalian EBP50/NHERF1. 

Sip1 is a scaffold protein which regulates several transmembrane receptors as well as 

downstream signal transduction
 
activity. Sip1 functions as a scaffold for Slik at the apical 

membrane (HUGHES et al. 2010). Slik
kd

 could still interact with Sip1 and occupy postions at 

membrane and at the same time bind to Moesin. However, despite the interaction Slik
kd

 

would be unable to phosphorylate Moesin and thus deplete pools of p-Moesin available to act 

as crosslinkers of F-actin to the apical membrane, leading to destabilised tubes and hence the 

multilumen phenotype. 

 

On the other hand, expression of Slik
kin

 has shown to increase levels of p-Moesin and cause 

relocalisation of p-Moesin from the apical surface (HIPFNER et al. 2004). Slik
kin 

has intact 

kinase domain but lacks the remaining domains, therefore cannot interact with Sip1 leading 

to loss of apical localisation. Unanchored Slik (Slik
kin

) perhaps activates Moesin at regions 

other than the apical membrane. Stabilisation of F-actin at random positions within the cells 

could lead to a disorganised cytoskeleton and thus the multilumen phenotype. This is 
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consistent with phenotype associated with overexpression of phosphomimetic form of 

Moesin in the tracheal system. Work from our lab showed that overexpression of Moesin
TD556 

(phosphomimetic form) in the trachea resulted in abnormal lumen phenotypes (Jayan N Nair, 

PhD thesis, Appendix Fig.52)  

 

Further evidence to support the idea that slik stabilises the cytoskeleton through Moesin can 

be obtained from slik
1 

mutant animals. Dorsal trunks of slik
1
 mutant larvae have smaller 

lumen when compared with wild type dorsal trunks of similar sizes. Lumen formation is 

determined by several factors, one of them is the arrangement of F-actin core at luminal site 

(OSHIMA et al. 2006). Also lumen expansion requires rearrangement of the actin 

cytoskeleton. Actin rearrangement and stabilisation requires the function of crosslinkers such 

as Moesin to anchor to the membrane. Loss of Slik in the dorsal branches affect levels of 

activated Moesin and this could lead to defects in actin organisation resulting in failure of 

lumen expansion. The severity of the phenotype is perhaps attenuated by the presence of the 

maternally expressed Slik which allows development of the trachea in escapers. To exclude 

the maternal contribution of Slik, analysis of the trachea from germline clone of slik
1 

have to 

be performed. 

 

To address the question if anchorage of Moesin to the membrane is a prerequisite to 

phosphorylation, further experiments have to be implemented. Mutations in two residues at 

the N-terminus of Moesin have been shown to inhibit binding to Phosphatidylinositol 4,5-

bisphosphate (PtdIns(4,5)P2) (ROCH et al. 2010). Experiments to rescue slik mutant 

phenotype with Moesin
TD556 

and Moesin
TD556

with additional PtdIns(4,5)P2 binding mutations 

should address the question
 
. 

 

4.5 FGF/RTK Breathless regulates Moesin in trachea 

 

Results from RNAi experiments demonstrated that in addition to Slik, Btl also contributes to 

the phosphorylation of Moesin. Stainings to detect pan-Moesin and Slik in the btl RNAi 

terminal cells showed levels of these remained unchanged. Further, knockdown of 

downstream signalling component of the Btl/MAPK pathway raf, did not affect levels of p-

Moesin in the terminal cells. These results imply that both Slik and Btl are equally important 
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for activation of Moesin. Further, my studies suggests that Btl mediated regulation of Moesin 

is at post-translational level and not at transcriptional level. p-Moesin staining in larvae of 

egfr knockdowns showed that distribution of p-Moesin was unaffected in the tracheal system 

(unpublished data Jayan N. Nair Appendix Fig.53). This confirmed that regulation of p-

Moesin was specific to just one of the RTKs expressed in the tracheal system, namely btl.  

 

It is clear from the results that activation of Moesin through phosphorylation at T
556

 in the 

tracheal system requires the function of both Btl and Slik. Btl mediated regulation of Moesin 

is a novel finding from this study. The contribution of Btl in the phosphorylation of Moesin 

may be either direct or indirect. The possibility that an RTK phosphorylates ERM protein is 

not unfounded. Substantial amount of evidence show that RTK phosphorylates ERM proteins 

directly or indirectly. First, Btl is a Receptor Tyrosine Kinases (RTK) with proven kinase 

activity (LEE et al. 1996). Direct phosphorylation of ERM proteins by RTK has been long 

established. Studies in mammalian systems have shown Ezrin the homologue of Moesin to 

the phosphorylated at N-terminal positions by EGFR (KRIEG and HUNTER 1992). Perhaps, Btl 

phosphorylates Moesin at N-terminal regions permitting subsequent phosphorylation by Slik 

at T
556

. A second possibility is that Slik itself needs to be activated to perform its kinase 

function in the trachea, the prerequisite being activation by Btl. Finally, recent work in 

mammalian cell culture systems showed that Nik (Nck interacting kinase/ Misshapen (Msn) 

in Drosophila), a Sterile 20 kinase induced phosphorylation of ERM proteins in response to 

EGF stimulation. Also, Moesin was shown to physically interact with Nik via its N-terminus 

and also to be directly phosphorylated at amino acid residue T
558

 by the NIK domain 

(BAUMGARTNER et al. 2006). It is probable the relation between Btl and Slik is similar to that 

described above for EGFR and NIK. Moreover, previous work has not biochemically proven 

that Slik directly phosphorylates Moesin (HIPFNER and COHEN 2003; HIPFNER et al. 2004) 

therefore one cannot exclude the possibility that one of the two kinase (Slik or Btl) activates 

an unknown protein that would phosphorylate the later allowing activation of Moesin. 

 

In order to determine how the two kinases Slik and Btl regulate and activate Moesin further 

studies are required. A kinase assay should reveal if Slik directly phosphorylates Moesin or 

whether it requires the coordinated action of Btl. It would also be interesting to know if Slik 
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is phosphorylated by Btl. Finally it would be important to look at p-Moesin level is an msn 

RNAi background to test if this also contributes to the activation of Moesin.  

 

 4.6 Possible function of Merlin in terminal cell development  

 

In addition to the regulating Moesin through its kinase activity Slik also regulates Merlin 

function, hence it is imperative to investigate the function of Merlin in tracheal development. 

The role of Merlin in tracheal development is unexplored. The large amounts of cytoplasmic 

material seen in terminal cells of Merlin knockdown animals can be attributed to the loss of 

the tumour suppressor function of Merlin. Loss of Merlin in mice have been to show to result 

in uncontrolled growth of tissues leading to enormous sized organs (YI and KISSIL 2010). 

Another possible factor contributing to size of terminal cells is the sustained expression of 

signalling molecules. Experiments in wing discs have showed Merlin to localise to both 

membrane and cytoplasmic compartment of the cell. The functional form of Merlin, i.e. the 

non-phosphorylated form showed a clear enrichment in the cytoplasm and often colocalised 

to endocytic compartments. Merlin and Expanded have been shown to regulate steady-state 

levels of signalling receptors (EGFR, Notch, Smoothened, and Patched) as well as adhesion 

molecules (E-cad, Fat). Loss of these proteins can cause hyperactivation of associated 

signalling pathways. In addition, Merlin;ex double mutant cells show that the receptor levels 

are upregulated at the plasma membrane as a result of defect in receptor clearance. Consistent 

with this, knockdown of Merlin would result in the failure of receptor endocytosis. EGFR is 

an important factor in tracheal development and also upregulates E-cad to maintain epithelial 

integrity of the migrating tracheal tubes. EGFR also promotes invagination of the tracheal 

placode (LLIMARGAS and CASANOVA 1999) as well primary branching (WAPPNER et al. 

1997). Perhaps sustained expression of some of these or other factors in the tracheal system 

results in the growth phenotype. Finally, as Merlin RNAi was not performed in combination 

with expanded, the activity of the functionally redundant protein/ interaction partner of 

Merlin cannot be disregarded unless a Mer/ex double knockdown is performed.  
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4.7 Does Slik modulate the MAPK pathway to regulate growth of terminal 

cells? 

 

Previous studies have shown that Slik-Raf mediated signalling in wing disc is independent of 

the canonical MAPK signalling and also independent of Silk’s kinase function. Slik-Raf 

interaction promotes cell proliferation and provides survival cues to cells of the wing disc 

epithelium (HIPFNER and COHEN 2003; HIPFNER et al. 2004). I wished to determine if the 

branching defect resulted from the loss of Moesin function or kinase independent Slik-Raf 

signalling events.  

 

However, raf is also an integral component of the Btl/MAPK signalling which is 

indispensable for tracheal development. Btl/MAPK signalling positively regulates expression 

of Srf, the transcription factor absolutely essential for terminal cell development. To test the 

hypothesis that Slik-Raf interaction modulated the Btl/MAPK pathway in the tracheal system, 

growth of terminal cells in Btl/MAPK and slik RNAi were compared by evaluating the 

number of branches in the knockdown terminal cells. Knockdown of members of the 

Btl/MAPK pathway and srf resulted in branching phenotypes. The phenotypes resulting from 

the knockdowns were comparable to those of slik RNAi larvae, with all knockdowns 

resulting in a significant reduction in branches. The results suggest a possible input into the 

Btl/MAPK signalling pathway via the Slik-Raf interaction, but these results still do not 

exclude the possibility that the Slik-Raf interaction may contribute to terminal branch 

development via a yet unknown pathway. 

 

To understand the dynamics of Slik-Raf interaction and its input into the Btl/MAPK 

signalling, further experiments are required. Since Slik and Raf interact genetically an 

epistatic experiment rescuing slik RNAi phenotype with Raf
gof

 should restore branching in 

terminal cells. An alternate assay would be to analyse if the phenotypes from Raf
gof

 is an 

attenuated by slik RNAi. A distinction between the Slik-Raf input into the Btl/MAPK and to 

the yet unknown pathway needs to be assessed through a few epistatic experiments such as 

rescue of slik branching phenotype by the expression of  rolled/erk, or srf. Additionally, 
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immunostaining for dpERK in trachea of slik knockdown larvae should reveal if slik 

contributes to Btl/MAPK signalling to promote terminal cell development.  

 

 

Figure 48: Schematic representation of the Silk’s role in terminal cell development 

Slik contributes to both tube and branch formation in terminal cells through two different pathways. Previous 

studies have showed that Slik regulates Moesin function by phosphorylation (P) (denoted by blue).  This works 

shows that both Breathless and Slik phosphorylate Moesin to activate it (denoted by green arrows). Activation 

of Moesin stabilises F-actin and in turn positions the tube within the terminal branch. The exact mechanism of 

how Breathless phosphorylates Moesin is yet unknown and could be achieved through any of the three 

mechanisms indicated (a) direct, (b) through regulation of slik and (c) through an unknown factor (denoted by 

red arrows). Slik’s input in to the Btl/MAPK signalling pathway is yet to be ascertained.  

 

From results so far, I can conclude that Slik is essential for normal tracheal development and 

in particular for tube formation and branching in the terminal cells (Fig.48). Further, my work 

shows that Moesin is a crucial effector downstream of Slik. In addition to Slik-mediated 

regulation of Moesin, this works shows that Btl is also involved in Moesin regulation. The 

mechanism by which Btl mediates regulation of Moesin is yet to be elucidated. Finally, in 

addition to tube formation, Slik may contribute to the branch formation in terminal cells 

through providing signalling input in to the Btl/MAPK pathway through the Slik-Raf 

interaction.  
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6. APPENDIX 

6.1 Terminal cell counts from tracheal segments tr3-5 from wild type and 

slik RNAi larvae 

  wt slik 

L1 32 32 

L2 25 29 

L3 29 34 

L4 31 34 

L5 29 27 

Avg. 29.2 31 

St.dev 2.68 3.082 
 

Figure 50: Terminal cell counts from wild type and slik RNAi  

 

L1-10 represents five different animals from which terminal cells were counted. Terminal 

cells were counted from the tracheal segments tr3-tr5 in both wild type and slik RNAi 

larvae. The average and standard deviation of both the data sets are shown in red 

 

6.2 Knockdown of btsz leads to lumen formation and branching defects in 

terminal cells 

 
 

Figure 51: btsz knockdown in terminal cell affect branching  

Terminal cells from btsz RNAi larva al cell were visualised by the tracheal specific expression of cytoplasmic 

GFP using btlGal4. Depletion of btl severely affects growth of terminal branches. Scale - 25µm 
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6.3 Branch counts from various knockdowns in the tracheal system 

 wt slik btl Ras raf srf egfr 

TC1 20 3 1 10 10 4 10 

TC2 16 6 1 7 8 3 17 

TC3 17 1 1 1 3 3 12 

TC4 17 2 1 1 3 2 11 

TC5 18 6 1 1 3 2 11 

TC6 21 2 2 3 7 1 13 

TC7 23 15 1 8 8 2 14 

TC8 16 6 1 4 4 1 10 

TC9 17 13 1 5 7 5 13 

TC10 14 9 1 3 6 4 12 

avg. 17.9 6.3 1.1 4.3 5.9 2.7 12.3 

st.dv 2.685351 4.762

119 

0.316228 3.16403

4 

2.514403 1.33749

4 

2.110819 

 
Fig 52: Branch counts in terminal cells upon RNAi of slik, btl, Ras, raf, srf, egr 

 

TC 1-10 represents 10 differenct terminal cells from which measurement was taken. The 

average and standard deviation of dboth the data sets are shown in red 

 

6.4 Overexpression of phosphomimetic form of Moesin in the tracheal 

system 

 
 

Figure 53: Overexpression of MoeTD
559

 (phosphomimetic form) in the terminal cells affect branching  

Terminal cells were visualised by the tracheal specific expression of  DS-Red along with the MoeTD
559

 using 

btlGal4. Depletion of btl severely affects growth of terminal branches and tube formation within the branches. 

Scale - 25µm 
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6.5 Knockdown of egfr does not affect p-Moesin localisation in terminal 

cells 

 
 
Figure 54: Effect of egfr knockdown on p-Moesin localisation in the terminal cell 

Terminal cell from a egfr knockdown third instar larva (a-a''). (a) Terminal cell is visualised by tracheal 

specific cytoplasmic GFP (green) and (a') p-Moesin (red). p-Moesin expression is undisturbed upon egfr 

knockdown.  p-Moesin expressed in surrounding tissues is also detected.  Scale - 25µm (Unpublished data, 

Jayan N.Nair ) 

 

6.6 Localisation of F-actin in developing embryonic tracheal system  

 

 

Figure 55: F-actin distribution in tracheal placodes of wild type stage 11 embryos 

Single confocal sections of embryos stained with anti-Vvl to visualise the tracheal cells (green) and incubated 

with phalloidin-Texas red to visualise actin distribution (red). Each image shows two metameres; anterior is to 

the left and dorsal is up. First panel shows a merged image of actin distribution and anti-Vvl to visualise the 

tracheal cells; the single image of the actin distribution is also shown in the next panel. A, B In wildtype 

embryos actin accumulates in the centre of the tracheal pit, outlining the point of invagination. (LLIMARGAS and 

CASANOVA 1999)  
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ABBREVIATIONS 

 

bp                  base pairs 

BSA Bovine Serum Albumen 

btl        breathless 

btsz           bitesize 

dNTP deoxy nucleotide tri phosphate 

dof Downstream of FGF 

egfr Epidermal growth factor receptor 

ERM              Ezrin-Radixin-Moesin  

ERK Extracellular-signal-Regulated Kinase (MAPK) 

FGF Fibroblast growth factor 

FLP  yeast Flp recombinase 

FRT               Flp recombinase target site 

GFP  Green fluorescent protein  

if  inflated 

Kb Kilo base 

M mol per litre 

m milli 

MAPK Mitogen Activated Protein Kinase 

MEK Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase  

Mer          Merlin 
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mew multiple edematous wings 

moe moesin  

mys myospheroid 

 Micro 

ng               Nanogram 

PCR Polymerase Chain Reaction 

RTK  Receptor Tyrosine Kinase 

slik  SLK and LOK like kinase 

srf                  Serum response factor 

UAS  Upstream activating sequence 

VDRC  Vienna Drosophila Research Center
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ABSTRACT 

 

The Drosophila Sterile20 like kinase Slik is involved in maintaining epithelial integrity and 

promotes tissue growth during development. It regulates activity of members of the band 

4.1/Ezrin/Radixin/Moesin (ERM) superfamily proteins through phosphorylation. Apart from 

its kinase activity, Slik also interacts with Raf to promote cell survival and growth. Raf is an 

important downstream effector of the Bnl/Btl RTK pathway crucial for tracheal development. 

An immediate target of the RTK-MAPK signalling is SRF (serum response factor), a 

transcription factor known to be indispensible for terminal cell development. Here, I show 

that Slik contributes to tracheal terminal cell development through both its kinase-dependent 

and independent functions. Both Slik and activated Moesin (p-Moesin) are enriched at the 

apical membrane in terminal cells. slik mutant or knockdown terminal cells show branching 

defects and destabilised tubes similar to the phenotype of moesin mutants, suggesting that slik 

is an essential factor in terminal cell growth and development. This is further supported by 

the effect of expressing a kinase-dead form of slik, which causes a multilumen phenotype 

similar as the one seen in slik mutant cells. In addition, slik depletion results in the loss of p-

Moesin at the apical membrane in the terminal cells indicating that Slik through its kinase 

dependent function towards Moesin regulates tracheal terminal cell development. This study 

also reports a novel regulator of Moesin; I have identified Btl as an important factor that post-

translationally regulates the phosphorylation of Moesin.  

 

Apart from the luminal defects, slik depletion also resulted in reduced branching of terminal 

cells. The same phenotype is observed upon knockdown of raf. As Raf is thought not be a 

kinase substrate of Slik but rather a binding partner, the results suggest an additional, kinase 

independent function of Slik in tracheal development. The disruption of the downstream 

target of the Bnl/Btl signalling pathway srf, the signalling transducer Ras, or the receptor btl 

itself also resulted in similar branching defects. We propose that slik acts in the development 

of terminal cells through activation of Moesin at the apical membrane and a possible 

regulation of the Bnl/Btl RTK pathway through its interaction with Raf. 
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ZUSAMMENFASSUNG  

 

Die Drosophila Sterile 20 like kinase Slik ist sowohl am Erhalt der epithelialen Integrität als 

auch an der Förderung des Gewebewachstums während der Entwicklung beteiligt. Sie 

reguliert die Aktivität von Proteinen der Band 4.1/Ezrin/Radixin/Moesin (ERM) 

Proteinfamilie durch Phosphorylierung. Zusätzlich zur Kinaseaktivität interagiert Slik mit Raf 

und wirkt dadurch positiv auf die Überlebensrate und das Wachstum von Zellen ein. Raf ist 

ein wichtiger Faktor im Bnl/Btl RTK Signaltransduktionsweg, der unverzichtbar für die 

Tracheenentwicklung ist.  Ein direktes Zielgen des RTK-MAPK Signalwegs ist srf (serum 

response factor), ein Transkriptionsfaktor der für die Entwicklung der Terminalzellen 

unentbehrlich ist. In der vorliegenden Arbeit zeige ich, dass Slik auf zwei unterschiedlichen 

Wegen zur Tracheenentwicklung beiträgt; durch eine Kinase-abhängige als auch eine Kinase-

unabhängige Funktion. Sowohl Slik als auch aktiviertes Moesin (p-Moesin) liegen an der 

apikalen Membran der Terminalzelle angereichert vor. Terminalzellen, in denen die Funktion 

von slik entweder durch eine Mutation oder durch einen RNAi induzierten Knockdown 

gestört ist, zeigen Defekte in der Verästelung sowie eine Destabilisierung der intrazellulären 

Röhre. Dieser Phänotyp gleicht dem von moesin Mutanten und indiziert eine essentielle 

Funktion von slik im Wachstum und der Entwicklung der Terminalzellen. Der Effekt der 

Überexpression einer Kinase-defizienten Form von Slik unterstützt diese Annahme: es wird 

ein Multilumen-Phänotyp beobachtet, wie er auch in slik mutanten Zellen zu finden ist. 

Desweiteren  resultiert die Reduktion von Slik in einem Verlust von p-Moesin an der 

apikalen Membran in Terminalzellen. Dies deutet darauf hin, dass Slik durch seine Kinase-

Aktivität gegenüber Moesin die Entwicklung der trachealen Terminalzellen reguliert. In 

dieser Studie konnte ich überdies einen neuen Regulator von Moesin nachweisen: es zeigte 

sich, dass Btl die post-translationelle Phosphorylierung von Moesin reguliert.   

 

Zusätzlich zu den luminalen Defekten resultierte die Reduktion von Slik auch in einer 

geringeren Verästelung der Terminalzellen. Der Knockdown von Raf erzeugt denselben 

Phänotyp. Da Raf kein direktes Substrat der Slik Kinase zu sein scheint, sondern ein 

Interaktionspartner, legen diese Ergebnisse eine zweite, Kinase-unabhängige Funktion von 
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Slik in der Tracheenentwicklung nahe. Die Unterbrechung des Bnl/Btl 

Signaltransduktionsweges durch Knockdown des Zielgens srf, des Signalmoleküls ras oder 

des Rezeptors btl resultierte in ähnlichen Verästelungsdefekten.  Zusammenfassend 

postulieren wir folgendes Modell: Slik reguliert die Entwicklung der Terminalzellen durch 

die Aktivierung von Moesin an der apikalen Membran und beeinflusst den Bnl/Btl RTK 

Signaltransduktionsweg über die direkte Interaktion mit Raf.  
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