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Zusammenfassung

Diese Arbeit beschaftigt sich mit den Grundlagen der klassischen Elektro-
dynamik, mit ihrer grundlegenden mathematischen Struktur, mit den elek-
tromagnetischen Eigenschaften der Raumzeit und, insbesondere, mit den
notwendigen Bedingungen, die von dem elektromagnetischen Medium erfiillt
werden miissen, damit eine Lichtkegelstruktur folgt.

In den Kapiteln 2 und 3 stellen wir die allgemeingiiltige Struktur der Elek-
trodynamik in einem beliebigen Medium dar. Ein wichtiges Ergebnis dieser
Untersuchung ist die allgemeine Ableitung der Fresnel’schen Gleichung, die
die lokalen Eigenschaften der Lichtfortpflanzung beschreibt. Es ist uns gelun-
gen, eine allgemein-kovariante Ableitung der Fresnel’schen Gleichung fiir ein
beliebiges Medium mit linearer Konstitutivrelation zu geben. Diese Entwick-
lungen sind niitzlich im Zusammenhang mit den folgenden drei Aspekten:
1) Sie stellen die grundlegende Struktur der klassischen Elektrodynamik
transparent dar; 2) Sie kénnen als Grundlage fiir allgemeinere Modelle der
Raumzeit und deren elektromagnetischen Eigenschaften betrachtet werden.
Mogliche Anwendungen des Formalismus auf Test-Theorien sind Beispiele
dafiir; 3) Der in den Kapiteln 2 und 3 entwickelte Formalismus kann auch
im Bereich der klassischen Optik als eine allgemein kovariante Theorie der
Elektrodynamik in inhomogenen, anisotropen, und dissipativen materiellen
Medien interpretiert und benutzt werden.

Im Kapitel 4 untersuchen wir den speziellen Fall, in dem ein Lichtkegel
vorhanden ist, und die Bedingungen dafiir, dass eine solche Struktur moglich
ist. Insbesondere werden wir den Zusammenhang zwischen den unter bes-
timmten Bedingungen vom Konstitutivtensor definierten dualen Operatoren
und der Existenz einer konformen Metrik untersuchen. Es stellt sich heraus,
dass die sogenannte Abgeschlossenheitsrelation und die Symmetrie des Kon-
stitutivtensors hinreichende Bedingungen fiir die Existenz einer konformen
Metrik sind. Wir werden auch untersuchen, wie die Metrik-Komponenten von



den Komponenten des Konstitutivtensors abgeleitet werden konnen, wenn
die zwei oben genannten Bedingungen erfiillt sind. Wir werden auch eine al-
ternative und einfachere Ableitung der Metrik-Komponenten geben, die auf
der direkten Anwendung der allgemeinen Ergebnisse iiber die Fresnel’sche
Gleichung basiert. Am Ende dieser Arbeit werden wir dieselbe Methode
anwenden, um die Auswirkungen der Lockerung der Symmetrie-Bedingung,
und wie sie die Existenz des Lichtkegels beeinflusst, zu untersuchen.

ii



Abstract

This thesis deals with the foundations of classical electrodynamics, its funda-
mental mathematical structure, the electromagnetic properties of spacetime
and, in particular, the conditions necessarily to be satisfied by a electromag-
netic medium such that it induces a lightcone structure.

In chapters 2 and 3, we formulate a general framework for electrody-
namics in an arbitrary linear medium. An important result of this study
is the derivation of the Fresnel equation describing the local properties of
the propagation of electromagnetic waves. We were able to give a generally
covariant derivation of the Fresnel equation for an arbitrary medium with lin-
ear constitutive law. These developments are useful at least in three different
aspects. First, they make the fundamental structures of classical electrody-
namics more transparent. Second, they may provide a basis for a deeper
understanding and for generalized models of spacetime and its electromag-
netic properties. This includes for instance the application of the formalism
to study test theories. Third, the formalism developed in chapters 2 and 3
can be also interpreted and used in optics as a general covariant theory of
electrodynamics in inhomogeneous, anisotropic, and in general dissipative,
material media.

Finally, in chapter 4 we study the particular case in which a light cone
structure is induced, and the circumstances under which such a structure
emerges. In particular, we will study the relationship between dual operators
defined by the constitutive tensor under certain conditions and the existence
of a conformal metric. Closure and symmetry of the constitutive tensor will
be found to be conditions which ensure the existence of a conformal metric.
We will also see how the metric components can be explicitly derived from
the constitutive tensor if these two conditions are satisfied. We will also give
an alternative, simpler, and more physical derivation of the metric, based on
direct use of our general results about the Fresnel equation describing the
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local properties of light propagation. Finally, we will apply the same method
to explore the consequences of relaxing the condition of symmetry and how
this affects the emergence of the light cone.
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Chapter 1

Introduction

1.1 Motivation

In Einstein’s theory of gravity, General Relativity (GR), the fundamental
variable describing the gravitational field is the spacetime metric. Einstein’s
equations are partial differential equations which, together with suitable
boundary conditions, determine the metric field from the energy distribution
of matter. The metric tensor defines, on the one side, the causal structure
of spacetime: it allows to distinguish between timelike, spacelike, and null
vectors. On the other hand, a metric tensor also determines the length of
any worldline. The length of a timelike worldline is interpreted as proper
time, i.e. the time measured by standard clocks when transported along that
timelike curve. This was called by Synge the ‘chronometric hypothesis’ [87].
In Einstein’s theory the metric determines additionally the affine properties
of spacetime. The causal properties are, however, also of an electromagnetic
nature. Light rays are integral lines of null vectors fields, null hypersurfaces
are the regions through which electromagnetic waves can propagate. From an
operational point of view it is clear that most of our knowledge of spacetime
is extracted from the properties of electromagnetic fields and how they prop-
agate. Today, we send electromagnetic waves towards (reflecting) objects to
measure distances. We measure velocities by means of Doppler-shifted elec-
tromagnetic waves, etc. The properties of spacetime itself are then defined as
those independent of the specific configuration of the fields and interpreted
as describing the underlying ‘substrate’ on which we make measurements.

From the ten independent components of a metric tensor (in a given coor-
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dinate system), nine define the causal (or conformal) structure. This means,
nine out of then components of the metric are related to electromagnetic
properties of spacetime.

In the last decades the idea that GR cannot be the fundamental theory of
gravity and spacetime has gained much support. It is known that quantizing
GR leads to a quantum theory which is not renormalizable. This means
that the theory is inconsistent (at least perturbatively) at high energies.
Therefore, it is important to seek for different approaches to understand every
aspect of GR and to explore possibilities of how to generalize the concepts
on which it is build on. Some promising alternative approaches have been
developed, which lead to generalized theories or to alternative formulations
or interpretations of GR. As an example, gauge theories of gravity have been
proposed, which seem to be in a better position to be unified with the other
three fundamental interactions, and found under suitable conditions to have
GR as limit. Most alternative theories include additional degrees of freedom,
apart from those corresponding to the spacetime metric.

My goal here is not to propose a concrete alternative spacetime theory,
but the more modest one of studying a more general framework describing
classical electrodynamics in which a metric tensor is not assumed as a basic
fundamental field from the very beginning. This will raise the question of
which fundamental structures of classical electrodynamics can be formulated
without a metric and for which developments it is indispensable. The frame-
work will be called pre-metric (or sometimes metric-free) electrodynamics,
and it shares many features and analogies with the theory of electrodynamics
in a material medium. By studying such a general framework, the conformal
properties of spacetime, i.e., the conformal spacetime metric with its nine
independent components, can eventually emerge as an special case under
certain particular circumstances. The study of the conditions under which
a conformal metric structure is induced is also one of the subjects of this
work. This framework could then be useful to develop a generalized theory
of spacetime in which the properties of vacuum are treated in analogy to
a material medium and in which GR which its causal structure could be
recovered in suitable limiting cases.

The idea of considering the spacetime metric as a secondary, derived field,
is not new. Already in 1921 Eddington studied a ‘purely affine gravity’ model,
in which the metric is defined in terms of a symmetric affine connection, see
[79]. Thus, in Eddingston’s theory, the causal properties of spacetime are
derived from its affine properties. Other models have proposed to replace



the metric by a trio of self-dual 2-forms [8, 9]. In [10] the metric is obtained
from a solution of a theory formulated only in terms of a SL(2, C') connection,
a tetrad, and a scalar density. More recently, it has been shown by Barcel6
et al. [2, 3] that an effective metric can be derived (defined) for almost
any lagrangian theory of scalar fields, provided one considers perturbations
of the fields around some background configuration. If the theory depends
of a single scalar field, then a metric can be uniquely defined (so that the
equation for the field perturbation can be written as a Klein-Gordon equation
with respect to that metric) [2]. If more scalar fields are involved, multiple
metrics can be introduced in general, which can be described as refringence
(birefringence, trirefringence, ...) in the sense that different fields of the
theory would ‘see’ different effective metric structures [3]. In these models,
the causal properties of space are again a manifestation of the dynamics of
some more fundamental fields.

In a related context, there has been renewly interest in recent years for
so-called ‘analogue models of gravity’, see [99]. These models are based
on the results that some condensed matter systems, as for instance acoustic
perturbations in a moving fluid, light in a moving dielectric, or quasiparticles
in a moving superfluid, can be described in term of some ‘effective metric’.
The metric is also here a derived, secondary object which turns out to be
useful for a geometrical description (a la GR) of the system properties and
depends on the more fundamental degrees of freedom of the system. The
interest in these analogue models lies in the possibility to construct systems
in which kinematical properties of physics in curved space could be simulated
and tested in the laboratory. In [80], for instance, the possibility constructing
‘dielectric black hole analogs’ is discussed, i.e. dielectric materials in which
the effective metric describes the analog of an event horizon, see also [47, 98|
Dynamics, on the other hand is not likely to be simulated, since in general the
dynamics of the effective metric can be completely different to that imposed
by Einstein’s equations in GR.

The axiomatic approach to classical electrodynamics presented here has
been developed from the original ideas of Kottler [42] and van Dantzig [97].
They seem to be the firsts who recognized that the fundamental structure
of Maxwell’s equations is independent of the metric and affine structure of
spacetime. In what concerns the derivation of the spacetime metric from lin-
ear electrodynamics, in which we are interested here, Peres [68], already in
1962, wrote: ‘It is therefore suggested to consider the electromagnetic field as
fundamental, and the metric field only as a subsidiary quantity’. This same



idea was also developed by Toupin [92] and by Schénberg [77] who showed
that a conformal metric structure is induced assuming that the ‘constitutive
tensor’ defining the ‘spacetime relation’ between electromagnetic field excita-
tions and strengths (see section 2.6) satisfies the conditions of symmetry and
closure (section 4). Jadczyk [36] also showed that a spacetime metric can be
introduced under the above mentioned conditions. However, only very re-

cently and explicit derivation of the induced conformal metric has been given
by Obukhov and Hehl [63].

In chapters 2 and 3, we formulate a general framework for electrodynam-
ics in an arbitrary linear medium!. These developments are useful at least in
three different aspects. First, they make the fundamental structures of clas-
sical electrodynamics more transparent. Second, they may provide a basis
for a deeper understanding and for generalized models of spacetime and its
electromagnetic properties. This includes for instance the application of the
formalism to study test theories, see for instance [25] and references therein.
Third, the formalism developed in chapters 2 and 3 can be also interpreted
and used in optics as a general covariant theory of electrodynamics in inho-
mogeneous, anisotropic, and in general dissipative, material media.

Finally, in chapter 4 we study the particular case in which a light cone
structure is induced, and the circunstances under which such structure emer-
ges. In particular, we will study the relationship between dual operators
defined by the constitutive tensor under certain conditions and the existence
of a conformal metric. Closure and symmetry of the constitutive tensor will
be found to be conditions which ensure the existence of a conformal metric.
We will also see how the metric components can be explicitly derived from
the constitutive tensor if these two conditions are satisfied. We will also give
an alternative, simpler, and more physical derivation of the metric, based on
direct use of our general results about the Fresnel equation describing the
local properties of light propagation. Finally, we will apply the same method
to explore the consequences of relaxing the condition of symmetry and how
this affects the emergence of the light cone.

1We use the word ‘medium’ in a general sense, to refer to any ‘arena’ on which elec-
tromagnetic phenomena could take place. We, in particular, include the vacuum as a
particular ‘medium’. On the other hand, ‘material’ or ‘material medium’ will be used to
refer to media with a known (atomic) substructure, as for instance, crystal, liquids, etc.
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1.2 Maxwell-Lorentz equations in vector no-
tation

We start with electrodynamics within the framework of Special Relativity
(SR).

In the usual 3-dimensional vector notation, V := (V* VY V?) the
Maxwell-Lorentz equations in integral form read:

D-dS:/ﬁdV, H-dr:/J-dS+i(/D-dS),(l.l)
v 1% as S dt \Js

d
B.dS =0, E.d =——( B-dS). 1.2
v as ! dt /s (1.2)

Here D is the electric excitation (historically called ‘electric displacement’),
p the electric charge density, H the magnetic excitation (historically called
‘magnetic field’), J the electric current density, B the magnetic field strength
and E the electric field strength. The integrals above are defined over ar-
bitrary volumes V with boundary 0V and over arbitrary surfaces S with
boundary 05, respectively. The corresponding volume elements of the three-
, two-, and one-dimensional regions are denoted by dV', dS, and dr. Finally,
the dot - denotes the 3-dimensional scalar product of vectors, which is a
metric-dependent object.

Equation (1.1a) summarizes the Gauss law. It implies that the field lines
defined by D can be open, the ends of which are located at points where
the charge is located. Equation (1.2a) is usually interpreted as expressing
the absence of magnetic monopoles in nature?. It implies that the magnetic
lines defined by B must be closed. Equation (1.2b) summarizes Faraday’s
induction law (‘a time-variation of an magnetic field induces an electric field’).

The field strengths E and B are operationally defined by means of the
Lorentz force law. On test charges, the force density is given by

F=3E+J xB. (1.3)

Here x is the 3-dimensional vector product, also a metric-dependent object.

The Maxwell equations are completed by the relations
1
D = ¢yE, H=—B. (1.4)
Ho

2For recent (unsuccessful) searches for magnetic monopoles, see [26, 1, 37] and refer-
ences therein.



The constants €y and pg are called permittivity and permeability of vacuum,
respectively. The speed of light, i.e., the speed with which electromagnetic
perturbations propagate, is given by ¢ = \/;)W

As it is well known, the Maxwell equations (1.1) and (1.2) can be written

in differential form as

D
V-D=jp, VXH:J+66—t, (1.5)
OB

V.B=0, VxE=-—.
ot

(1.6)
The inhomogeneous Maxwell equations (1.5) are such that the conserva-
tion of electric charge is automatically satisfied, i.e.
9p
—+V.J=0. 1.7

Actually, Maxwell completed the electromagnetic equations known at his

time by adding the ‘electric displacement’ term %—It) such that the resulting

equations were consistent with charge conservation.

1.3 Electrodynamics in a material medium

It is well known that a macroscopic description of electromagnetic phenomena
inside a material medium (treated as a continuum) can be achieved using
macroscopic Mazwell equations which are of the same form as (1.5) and (1.6),
but were now

e D and H denote macroscopic field strengths,

e the sources p and J are now ezternal charge and current densities,
respectively, and

e the relation between (D, H) and (E,B) is now not given by (1.4) but
by a constitutive relations

D=D[E,B], H=H[EB]|, (1.8)

which contain the information of the particular electromagnetic prop-
erties of the medium under consideration.



Among the many possible particular cases (nonlocal constitutive laws,
...) we recall here the case of a linear anisotropic medium for which the
constitutive relations are usually written, in components (see for instance
[45], page 313), as

D, = eqp By + 0qp By, H, = pg By + BaEy. (1.9)

Here a,b,... = 1,2, 3, €4p is the permittivity tensor, and pu.; the permeability
tensor of the medium. The tensors a and 3 describe magneto-electrical prop-
erties. For examples of and further discussions on magneto-electric media,
see [65].

Consider the case in which a4, and B4 vanish. A non-magnetic medium
corresponds to the subcase in which e, = pdes so that the vacuum rela-
tion (1.4b) holds. Interesting properties of non-magnetic anisotropic media
regarding propagation of plane electromagnetic waves include [45]:

e In general, for a triaxial crystal (i.e. when the three eigenvalues of €4
are different), a fourth order Fresnel equation determines the dispersion
relation of plane waves.

e The wave vector k and the ray vector s are in general not parallel:
k is the vector normal to the wave front, s is the direction of energy
propagation.

e Birefringence in uniaxial crystals (two eigenvalues of €, are equal):
the Fresnel equation factorizes into two quadratic factors, one isotropic
factor corresponding to ‘ordinary’ waves and an anisotropic one corre-
sponding to ‘extraordinary’ waves.

Effects analogous to the above mentioned will be discussed in chapter 3.
Other examples of local constitutive laws include:

e Double refraction induced by an electric field. This so-called Kerr effect
can be induced if an isotropic material is placed in a constant electric
field. The electric field breaks the isotropy of the medium producing
a change in the dielectric constant, leading to effects similar to those
observed in uniaxial crystals. This effect can be described by the non-
linear constitutive law corresponding to the following dielectric tensor:

Eab = €00ab + @B Ey, (1.10)

with some constant o.



vector /scalar || p H D E| B
p-form plj|H|D|E|B
D 3121 ]21]2

Table 1.1: Correspondence between vectors and exterior forms.

e Magneto-optical effects: The dielectric constant depends on the mag-
netic field strength H.

1.4 Maxwell-Lorentz equations in 3+1 exte-
rior form notation

From the Maxwell-Lorentz equations in their integral form, see (1.1) and
(1.2), one can see that the different fields appear associated to integrals
over regions of different dimensionality. For the sources, we see that p is
integrated over 3-dimensional regions (volumes) while J is integrated over
surfaces, i.e. 2-dimensional regions. The field excitations H and D are
integrated over 1- and 2-dimensional domains, respectively. Finally, the field
strengths EE and B appears in the Maxwell-Lorentz equations under 1- and
2-dimensional integrals, respectively. From the theory of exterior forms, see
for instance [18] and appendix C.4, we know that a p-form is the natural
object to be integrated over a p-dimensional domain. This means that the
Maxwell-Lorentz equations can be reformulated in terms of exterior forms
according to the identifications of table 1.1. In terms of exterior forms, the
Maxwell-Lorentz equations (1.1) and (1.2) are naturally expressed as

dD=p, dH= Qvﬂ', (1.11)
ot
8

dB=0, dE+ 5 B=0. (1.12)

Here d = dz® A 3, denotes the 3-dimensional exterior derivative (we will use
d for the 4-dimensional exterior derivative). Note the internal consistency
of these equations, since d increases by one the rank of the exterior form on
which it is applied. Conversely, taking the equations (1.11) and (1.12) as
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starting point, one can derive the corresponding field equations in terms of
field components. We decompose each form as follows:

1
p= gpabcdac“/\dar:b/\oiacC = pdx N dy Ndz, (1.13)
. L. a b 1 ~ -C a b
j= Ejabdx Adzx® = 5 €abe] dz® N dx’, (1.14)
a 1 a b 1 ~ c a b
H=H,dz?, D= §Dabdx ANdz’ = Eeabc’D dz® N dz’, (1.15)
1 p_ 1. b
E = E,dz°, B = 5 By dz® A dz’ = 5 €ape B¢ dx® N dx”, (1.16)

Here €50 = €[qpc), With €193 = 1, is the 3-dimensional Levi-Civita symbol.
Then, using (1.13)—(1.16) into the equations (1.11) and (1.12) one directly
finds, see for instance [78],

)
0, D% = p, e oM, = EDG + 59, (1.17)
a abc 8 a
0,B* = 0, "0, E, + 58" =0, (1.18)

which generalize (1.5) and (1.6).

However, the formulation in terms of exterior forms has the advantage
that the corresponding p-forms are independent of the 3-dimensional coor-
dinate system used. In other words (1.11) and (1.12), and therefore also
(1.17) and (1.18), are valid not only in cartesian coordinates but in any
3-dimensional coordinate system. Actually, if one considers the exterior
forms in (1.13)—(1.16) as basic field variables, and we do here, then equa-
tions (1.11) and (1.12) are independent of any metric or affine structure of
the 3-dimensional space.

1.5 Poincaré covariant Maxwell equations

As usually shown in textbooks on SR, the Maxwell equations (1.5) and (1.6)
can be written covariantly under Poincaré transformations by defining the
field strength F;; = —F}; (4,7,... =t,z,y,2) by

F, .= —FE", F, = —E", F,, .= —F~*, (1.19)



Fyy = B?, F,, = B, F,, := BY, (1.20)
Ht.’L‘ = H.’L" th = Hy, th = HZ’ (121)
H,, :=D?, H,, = D7, H,, = D". (1.22)

Additionally, the electric current 4-vector density J* is defined as

Tt =, J* = J", JY = JY, J? = J?. (1.23)
Then, we can write (1.5) and (1.6) as

Ee”klajﬂkl = jz, (124)

€ijklaijl = 0, (125)
where €7*! is the Levi-Civita symbol. See appendix C.1. The relation between

F;j and H;;, namely equation (1.4), is translated into

1 /gg.
Hij = 5\/—0%“ 10" Fr, (1.26)
Ho

where 7%/ are the components of the Minkowski metric in cartesian coor-
dinates: m;; = diag(c?,—1,—1,—1), ¥ = diag(c ?,—1,—1,—1). Inserting
(1.26) into (1.24) we obtain (always in cartesian coordinates) the inhomoge-
neous Maxwell equations in a form which is often used in SR, namely

J 2o F = g (1.27)
Ho

1.6 Poincaré group invariance and ‘natural’
invariance

It is well known that the Maxwell equations (1.24), (1.25) and (1.26) are
form invariant under Lorentz transformations of the form

ot — zt = AT L (1.28)
with A¥, € SO(1, 3), i.e. satisfying

!

NN =ntd (1.29)

10



This form invariance of the Maxwell equations means that the physics of the
electromagnetic fields remains the same on rotated frames and in frames mov-
ing with constant velocity with respect to each other (i.e. boosted frames).

However, a more careful analysis shows that the field equations (1.24) and
(1.25) are actually form invariant under any coordinate transformation z* —
¥ =g (z%), provided F;;, and H;; are considered as components of a second
order (antisymmetric) tensor field, and J* as the components of a vector
density field of weight +1. This feature of (1.24) and (1.25) is sometimes
called ‘natural invariance’ of the Maxwell equations, see [72], chapter 3, for
an extended discussion. The natural invariance shows, on the other hand,
that the physical information about the equivalence of frames under Lorentz
transformations is contained exclusively in the spacetime relation between
field excitation and field strength (1.26). This is a property of the vacuum.
Furthermore, we note that the Minkowski metric appears only in (1.26).
Looking at (1.26) it is then clear that this invariance of the vacuum is a direct
consequence of the form invariance of the Minkowski metric with respect to
Lorentz transformations, see (1.29).

1.7 Maxwell equations in curved spacetime

The traditional recipe to construct a theory including the interaction with the
gravitational field is to ‘replace partial derivatives by covariant derivatives’,
also called ‘minimal coupling’ to the gravitational field. This procedure en-
sures that the resulting equations are covariant under an arbitrary change
of coordinates, see, for instance, [54] for more details and examples. The
procedure is not free of ambiguities when one considers the electromagnetic
potential as fundamental variable, since then the Maxwell equations are of
second order and then a ‘normal ordering’ problem appears when applying
the recipe above. This is a consequence of the fact that covariant derivatives
do not commute in a curved spacetime.

A not widely recognized fact is however, that in the case of electrody-
namics, the mentioned recipe is completely unnecessary since the Maxwell
equations, when properly formulated, are ‘naturally covariant’, as we have
seen in section 1.6. For the (rather trivial) transition from a Minkowski space
to a Riemannian space with metric g one just needs to replace the spacetime
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relation by

6 2 m n
Hij = ‘/u_(;eijkl V1919 g™ Frnn, (1.30)

with g := det (g;;), so that F' and H are tensors, as required by the natural
invariance of (1.24) and (1.25). At every event one can find riemannian co-
ordinates which will reduce the metric to its minkowskian form, i.e. g;; = ij
and then (1.30) reduces to the form (1.4), in agreement with the equivalence
principle.

Equation (1.30) can be written in terms of the Hodge dual operator * of
to the metric g, namely
~(F)

Hij = ij )
Ho

" L,
CF)y; = o Cigkl \/ 199" " Frn. (1.31)
For the properties of these operator, see appendix C.3.

The Maxwell equations in a Riemannian space are therefore, in terms of
F and g¢:

0; (‘ / %\/@gikgﬂFkl) =Ji, MY Fy =0. (1.32)

The fact that the Maxwell equations (1.24) and (1.25) are naturally invari-
ant and that the metric structure of space does not enter in their formulation
is not an accident. It is a consequence of the fundamental property that the
basic structure of electrodynamics can be derived from counting procedures of
charge and magnetic flux, with do not require a metric (nor an affine) struc-
ture of spacetime. This properties will be further clarified in the axiomatic
approach of chapter 2.
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Chapter 2

Electrodynamics on an
arbitrary 4D-manifold

In this chapter, we would like to present an axiomatic construction of clas-
sical electrodynamics which intends to be as general as possible. Structures
are only introduced when they are indispensable for the development and
not earlier than necessary. This approach will provide us a very general
framework which can then be applied to many different particular cases.
We model spacetime as a smooth 4-dimensional manifold X which, at
least in some neighborhood, admits a foliation into 3-dimensional submani-
folds, parameterized by a monotonic ‘time’ parameter o, see figure 2.1.

2.1 Charge conservation

Probably the most important and defining property of electromagnetic the-
ory is the experimentally well tested fact of charge conservationl. A basic
property of electric charge is that it is an additive quantity which can be
distributed in space, i.e. an extensive quantity. In nature, electric charge
is know to be quantized, its fundamental quanta, the electric charges of the
quarks are +e/3 and +2e/3, where e denotes the electron charge. In a clas-
sical field theory, we describe the distribution of an extensive quantity in
terms of a current density, a 3-form, containing the information of how many
charges are distributed in spacetime, and how they move.

1See, for instance, [59, 85] for experiments testing charge conservation/violation.
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Figure 2.1: Foliation of spacetime: Each hypersurface h, represents, at a
‘time’ o, a 3-dimensional submanifold.

Consider the total charge within some 3-dimensional region. This total
charge should be independent of the orientation of any coordinate system
used. Then, the electric charge distribution is described by the twisted elec-
tric current 3-form J, see appendix C.3 and [18] for definitions. For a 3-
dimensional region X3 of a hypersurface h, one can interpret [5, J as the
total charge contained in ¥3. On the other hand, if the 3-dimensional region
is of the type (23 = ¥y X |01, 0;] one can interpret [, J as the total charge
crossing the 2-dimensional surface 35 during the ‘time’ interval [0y, 05]. Con-
sequently, the 3-form J carries the dimension of charge, i.e. [J] = q.

Note that no concept of distance or parallel displacement, i.e. no metric or
connection, are necessary to define the concepts of charge and charge current
3-form specifically. Of course, quantities like ‘charge per unit volume’ and
‘charge per unit area and unit time’ are useful, after one provides prescriptions
for what ‘unit volume’, ‘unit area’ and ‘unit time’ are. The latter are however
concepts not needed to describe , e.g., how many electrons, and therefore how
much charge, are contained in a certain region. Clearly, the total charge is
independent of the unit in which volume is measured.

The components J,g, of the electric current 3-form with respect to some

14



Figure 2.2: Local conservation of charge: Each worldline of a charged particle
that enters the finite 4-volume €24 via its boundary 024 has also to leave €)y.

coframe basis ¥, o, 3,...=0,1, 2,3, are given by
1 (67
T = 37 Jagy ¥ A 9P AT (2.1)

If one associates a dimension [, in the sense of a segment 2 to the coframe 4,
i.e. [9] =1, then the components J,s, carry the dimension [Jus,] = ¢l 7>

The conservation of electric charge is then expressed as the vanishing of
the integral

J =0, V Qy, (2.2)
804
i.e., for any 3-dimensional boundary of a 4-dimensional region 4. In par-
ticular, for a region Q4 = X3 X [0, 03], the integral conservation law (2.2)
requires the balance between the charge change in the region ¥3 during the
interval |01, 03] and the flux across its 2-dimensional boundary 0%;.
Since the region €4 in (2.2) is arbitrary, the Stokes theorem tells us that
the current 3-form must be closed, i.e.

dJ = 0. (2.3)

2j.e. a one dimensional extension on the manifold, not in the sense of a unit of length.
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Now, according to the de Rham theorem, see for instance [18], the current
3-form is not only closed but also ezact, i.e. it can be derived from some 2-
form H by exterior derivation, if all its integrals over 3-dimensional regions
without boundaries vanish. Under these assumptions, this means that there
must be a 2-form H such that

dH = J. (2.4)

The twisted 2-form H is called the electromagnetic excitation, and must then
carry dimension of charge, [H| = q. As we will see, in a 3+1 decomposition
its components can be identified with the usual dielectric displacement and
magnetic field, see (1.21) and (1.22).

However, the conditions above are not enough to uniquely define the 2-
form H, since a ‘gauge’ transformation

H— H :=H +d¥ (2.5)

leaves (2.4) invariant, for an arbitrary twisted 1-form V.

Equation (2.4) are thus the inhomogeneous Maxwell equations (4 equa-
tions). More than defining the values of H, the above arguments show that
the inhomogeneous Maxwell equations must be of the form (2.4), since this
is the only kind of field equation which are compatible with electric charge
conservation.

A single electromagnetic excitation will be picked out by the requirement
that H = 0 for F = 0 for the spacetime/constitutive relation, see sections
2.5 and 2.6.

2.2 Lorentz force

We assume now that the concept of force density is known from mechanics
and use it to define the electromagnetic field strength 2-form F', as usual, as
force per unit charge. We define F' by means of

o= (ea| F)AJ, (2.6)

where e, is a frame® and f, € A*(X) are the corresponding components of
the force density covector-valued 4-form in that frame?*. From the definition

3This is again a metric-independent quantity. A frame is just a basis of the tangent
space.

4Remember, in classical mechanics f; = 2%

oz

(force), p; = 2% (momentum), and f; = p;.
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(2.6) F is a untwisted 2-form, i.e. an intensive quantity. The dimension of
F is [F] = h/q, with h denoting the dimension of an action. The definition
above is a very restrictive one, since it tells us that the force on test charges is
determined only by the six independent components of the 2-form F', instead
of the 16 independent quantities that a linear relation between force density
and current density would in principle admit®. This assumption is part of
our axiomatic, and it is suggested by the fact that the excitation is described
by a field with 6 independent components and one therefore expects the field
strength to have the same number of independent components. We know, of
course, that this choice is reasonable since we know that in Maxwell’s theory,
the Lorentz force is determined by the six independent components of the
electric and magnetic fields.

It is true that in order to have a complete predictive theory, one still
has to specify the relation between velocities and momenta of test currents.
This is required in order to be able to predict the evolution of test currents
in a given electromagnetic field. This relation includes the metric tensor in
the known case of GR. However, we are interested here in the structure of
the general electromagnetic theory, and not in particular in this mechanical
‘constitutive relation’. We assume that it is known, whether involving a
metric tensor or not, so that the theory is complete.

2.3 Magnetic flux conservation

The next step in our axiomatic construction is to find conditions for the
electromagnetic field strength to satisfy. The natural operation that can be
done with a 2-form is to integrate it on a given 2-dimensional region. If we
assume, in analogy to conservation of charge, that

74 F =0, (2.7)

for an arbitrary 3-dimensional submanifold €23, then Stokes’s theorem pro-
vides us with a differential equation for F, namely that the field strength
must be closed,

dF =0, (2.8)

5Consider for instance a relation of the form f, = ¥, A J. Then ¥, is a covector
valued 1-form, and has therefore 16 independent components.
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and (at least in some neighborhood of each event) exact, i.e. F' = dA. The
untwisted 1-form A is then the electromagnetic potential.

We take (2.7), or equivalently (2.8) as third axiom. It represents the
homogeneous Maxwell equations (4 equations) and expresses the conservation
of magnetic flux. In general, magnetic flux is not quantized, as it is the case
of electric charge. In Type II superconductors, however, as, e.g., in Niobium,
quantized magnetic flux lines are possible.

This formulation does not admit magnetic charges (i.e. magnetic mono-
poles) in a natural way. Since the field strength F is by its very definition
an intensive quantity, a hypothetical magnetic charge density p,, such that
dF = pm, would necessarily also be an intensive quantity (an untwisted 3-
form), quite in contrast to the extensive nature of any charge-like quantity
like, e.g., electric charge, energy-momentum, all twisted 3-forms.

Locally at least, see above, the homogeneous Maxwell equation (2.8) im-
ply that the field strength F' can be derived from a untwisted 1-form A, the
electromagnetic potential, such that

F =dA. (2.9)
Of course, A is only determined up to a gauge transformation
A— A =A+dY, (2.10)

for any untwisted 0-form (scalar) 0.
The electromagnetic potential carries the same physical dimension as the
electromagnetic field strength, namely [A] = h/q.

2.4 ‘Space’-‘time’ Decomposition

Consider a foliation characterized by the monotonic ‘time-like’ parameter
o. Consider also a vector field n not lying on a ¢ = const. surface, i.e.
n|do # 0, so that it can be used to ‘evolve’ the folia. See figure 2.1. In
particular, one can rescale the vector field to make it fulfill the normalization
condition n|do = 1, which turns out to be useful.

We will call any p-form w ‘transverse with respect to the vector n’ if
n|w = 0. Then, given any p-form ¥ one can define the p-form ¥ and the
(p—1)-form ¥, both of which are transverse with respect to n in the above
sense, as

W :=n](doAT), (2.11)
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Figure 2.3: Conservation of magnetic flux in spacetime: For an arbitrary

3-dimensional integration domain €3, the integral § F vanishes.
893

and
U, :=n|V. (2.12)
For p = n we have ¥ = 0. Similarly, for p =0, ¥, = 0.

These two quantities ¥ and ¥, contain the complete information of the
original form W. The later can be written as

U=do AT, + . (2.13)
From their definition, ¥ and ¥, satisfy the following properties

e Transversality of ¥, with respect to n,

n|¥, =0 (2.14)
e | of a product,

(TA®), =0, A+ (-1)PTAND, (2.15)
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e _of a product,

YAS=TAD, (2.16)
e Lie derivative £,, and ;| commute,

(LaT), = LT, (2.17)
e Lie derivative £,, and _ commute,

LU =L,0. (2.18)

Additionally, it is useful to define a transverse part of the exterior derivative,
d, such that for any p-form ¥

d¥ :=n]|(do AT). (2.19)
It has the following properties:
e Transversality of d with respect to n,
d¥ =n|(d¥) =0, (2.20)
e | of a derivative,
(d¥), =L,¥ —dV¥,, (2.21)
e _ of a derivative,

d¥ = 4. (2.22)

By means of this general decomposition procedure, we decompose the
Maxwell equations (2.4) and (2.8). First decompose the fields J, H, F and
A and introduce the notation

ji==J, p:=J. (2.23)
H:=H,|, D:=H, (2.24)
E:=-F|, B:=F, (2.25)
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p:=A4A, A=A (2.26)

The 4-dimensional quantities can be reconstructed according to

J=—jNdo+p, (2.27)
H=—-HNAdo+D, (2.28)
F=ENAdo+B, (2.29)
A=pANdo+ A (2.30)

Now one can take the inhomogeneous Maxwell equation (2.4) and find

(dH—J)L = (dH)J__JJ_
= L,H-dH, —J,

= L,D—dH+]j (2.31)
dH-J = dH-J

= dH-J

= dD - p. (2.32)

Analogously, from the homogeneous Maxwell equations (2.8) we obtain

= L,B+dE, (2.33)

dF

IR
o

(2.34)
Thus, we find the Maxwell equations in a 3+1 decomposed form to be
dD=p, dH=LD+] (2.35)

dB=0, dE+L,B=0. (2.36)

We can now decompose the law of charge conservation (2.3). It is im-
portant to note that no information is obtained from dJ since this quantity
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vanishes for any 3-form J, as can be seen from the definition (2.11). We then
compute

dJ), = LpJ—dJ,

so that charge conservation means

Lop+dj=0. (2.38)
Finally, we decompose equation (2.9). We find

(d4), = L.A—dA,

dA dA
dA, (2.40)
so that
E=dyp—L,A, B=dA. (2.41)

The decomposed Maxwell equations (2.35) and (2.36) naturally generalize
equations (1.11) and (1.12) from chapter 1.4. The Lie derivative £, is the
natural generalization of the time derivative since it measures the change
of the (integral of the) corresponding field between folia, according to the
displacement induces by the vector field n, see figure 2.4.

2.5 Measuring H

In this section, we discuss a general procedure for measuring the excitation H.
This can be done by using an idealized object, namely, and ideal conductor.
This special material is assumed to have the following two properties:

1. In an ideal conductor, all charges are located on its surface. In other
words, the ideal conductor is such that inside it no free charges can be
found. If )3 is the 3-dimensional region describing the conductor, then
the free charges are all located on 023.
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Figure 2.4: Under the displacement z* — z" = z' + an’(z) (a being an
infinitesimal constant parameter) the integral [, ¥ of a p-form ¥ over the
corresponding p-dimensional mapped region €2, is given by f% U=Jfo F+
afo, Ln¥.

2. In the ‘rest frame’ of the conductor the electric excitation D vanishes. If
at some event inside the conductor a volume element is spanned by the
vectors eq, a,b,... =1,2,3 and ey = n is a vector pointing in the fourth
independent ‘time’ direction, then we assume H,, := ep|e,|H = 0, or
equivalently H = do A ‘H, with n|do =1 and e, |do = 0, see (2.28).

With these assumptions one can measure the excitation by use of ‘Max-
wellian double plates’. Consider two (uncharged) parallel plates made of an
ideal conductor and locate them at the point P where the excitation should be
measured. The field strength (whatever value it may have) will induce surface
charges in the conductor. Separate now the plates and measure the charge
Q@ induced in one of its surfaces. One can then integrate the inhomogeneous
Maxwell equation over a volume with one side in one conducting plate and the
other between the plates, see figure 2.5. In the limit of vanishing ‘thickness’
of €23, see fig. 2.5, one finds

f dH = [ H = (erler] M)y~ (ealer] H)epa (2.42)
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Figure 2.5: Maxwellian plates. Here e; and e; span the surface element
parallel to the plates.

and [, J = @, so that

(Hi2)p — (H12) eong = Q- (2.43)

The second term on the left hand side of (2.43) vanishes because of the prop-
erty 2 of ideal conductors. Therefore, the induced charge () determines the
component Hi, of the excitation. Similarly, by orienting the plates differently
one can measure, e.g. Hi3. Furthermore, by changing the state of motion of
the conductor (i.e. different 4-velocities) one can measure components of H
which are, in the notation we are using, of the form (e |eq |H) = Hy;.

2.6 Constitutive relations

As it is clear from the last sections, the Maxwell equations in their form (2.4)
and (2.8) are valid for any medium. They describe the general features of
electrodynamics which follow from charge and magnetic flux conservation.
In this form, Maxwell equations are valid, for instance, in vacuum in Special
Relativity, but also if gravitational effects are included in the context of Gen-
eral Relativity or alternative theories, as for instance in those formulated in
a general metric-affine spacetime. They are also applicable to any material
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creates acts on
excitation field strength
H F
\ spacetime relation/
H=H(F)

Figure 2.6: The spacetime/constitutive relation connecting excitation and
field strength.

medium. In other words, (2.4) and (2.8) are general structures of electro-
magnetic theory. The additional structure that really defines the particular
physical properties of the system under consideration, is the subject of this
section.

We saw that the Maxwell equations (2.4) and (2.8) amount to only 8
independent equations for the 12 independent fields, H and F. A further
relation between the excitation and field strength, i.e. a connection between
the field generated by the charges and the field acting on test currents, is
therefore necessary in order to make the theory complete. Such a relation is
referred to as the constitutive relation when corresponding to some material
medium, and as the spacetime relation when describing the vacuum proper-
ties. The formalism presented here can thus be used in both situations. In
the first one, the current 3-form describes the so-called ‘external’ (‘free’) cur-
rents flowing through a material medium. In vacuum, J represents the total
current density. In any case, the relation between H and F' describes the
properties of the arena in which the electromagnetic phenomena of interest
take place.

Actually, under some circumstances, the distinction can even be diffuse.
This is related to the problem of deciding whether the charge current J,
which is the starting point of the formalism, corresponds to the ‘fundamen-
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tal charges’ of the system or if they are ‘total’ charges within a given region.
This decision is in general part of the physical assumptions of the particu-
lar electromagnetic model under consideration. For instance, in a material
medium one can consider the charge current J as the free, unbound charge
and base the corresponding electromagnetic theory on this assumption. We
know, however, that this medium has an microscopic structure, since the
material is composed by atoms, which are formed by protons, neutrons and
electrons, with positive, zero and negative electric charges respectively. Then
one can construct a more fundamental electromagnetic theory when J now
resolves the individual proton and electron charges, and the constitutive law
corresponds to that of ‘vacuum’, i.e. to what we call the spacetime relation.
One could however go a step further and recognize the fact that the classical
vacuum can be understood, according Quantum Electrodynamics (QED), as
a ‘medium’ in which particle-antiparticle pairs are continuously created and
destroyed. Macroscopically, however, only the total charge of, say, electrons
and protons survive. The Heisenberg-Euler spacetime relation is an explicit
example of this approach, which includes the effects of quantum corrections
to Maxwell-Lorentz electrodynamics. On the other hand, the above argu-
ments mean that one could in principle construct an electromagnetic theory
in which the classical vacuum is now treated as a composite system. This
kind of approach is not usually followed, but shows that the identification of
what is understood as being ‘vacuum’ depends on the model for the charges
of the system.

In general, constitutive relations H = H(F') can have any functional
dependence, i.e, they can be non-linear and non-local. Non-local constitutive
relations are common for material media because in general the macroscopic
electromagnetic properties at some point of the material are influenced by the
field and charge configuration at other points of it. Additionally, the finite
propagation speed of the microscopical electromagnetic interaction between
the different parts of the material leads to time-like non-locality. In many
cases (typically, for slowly varying fields), however, this non-local effects are
negligible and the medium can be treated as if the field excitation H where
depending only of the value of the field strength at the same point, i.e. with
a local constitutive law. In what follows, we restrict ourselves only to this
later case.
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2.6.1 Linear constitutive relations

We now concentrate on the particular case in which the field strength and
excitations are proportional. A great number of material media are known
in which this is valid for a variety of conditions, see for instance [45]. We also
expect the spacetime relation (i.e. the vacuum relation) to be simple and, in
particular, linear. Linearity is taken for granted in all traditional approaches
to vacuum electrodynamics.

Given a local frame 9%, with o = 0, 1, 2, 3, we can decompose the exterior
forms H and F as

1 1
H = 2 Hag I*NI, F= 5 Fas 9* N 9P, (2.44)
and write a general linear constitutive law (spacetime relation) as
1 1. .
Hop = 5 op" Fos = 4 €aprs X'’ Feo, (2.45)

where é,4,s is the Levi-Civita symbol with é3;33 := 1 and x*%? is called the
constitutive tensor density, which is an untwisted tensor density of weight
+1, carrying dimension [x] = [H] / [F] = ¢*/h.

From its definition, the constitutive tensor satisfies the following symme-
try properties

afByd — _ Bayd — _

X, (2.46)

X X

which means that it has 36 independent components. Due to these symmetry
properties the constitutive tensor can also be represented by 6 x 6 matrix,
say x'’/, where each index I, J,... corresponds to a pair of antisymmetrized
4-dimensional indices, i.e., I — [i14s], etc. In this notation, e.g., ¢!/ —
€1%20132 . One can enumerate the 6-dimensional indices according to I, J,... =
01,02, 03,23, 31, 12.

We want to identify some irreducible components of the constitutive ten-
sor. Remember that so far no metric structure has been introduced. However,
we always have the Levi-Civita tensor density e*#7® at our disposal, and thus
we can decompose the constitutive tensor according to, see [76],

@78 — (1,78 | (2), 288, (3) e (2.47)
where the different irreducible pieces Dy, @y, and @)y are determined by
the symmetry properties

(1) 30878 _ (1),7608 W)y lard] — (2.48)
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(2), 0875 — _(2)y1608 (2)y[2B7] — o (2.49)
(3)y 2878 — (3) laB0] (3)y2B18 — (3)y1daB (2.50)
or, explicitly,
(3) 5 @878 . o leB73]. (2.51)
1
(Z)Xoeﬂ'yﬁ = 5 [X’)’50¢5 _ X“B’Y‘S , (252)
(1) y @818 . @Brd _ (2)yaBys _ (3) [aBrd] (2.53)

One can introduce an alternative, but equivalent, parametrization of the 15
independent components of the asymmetric piece ®y in terms of a traceless
second rank tensor S.° (thus, also with 15 independent components) [32] as

(2) 32878 — Eaﬁfhsetﬂ — 6765[a556], S =0. (2.54)
Now, contracting (2.54) with the Levi-Civita symbol, one finds that

1
5.8 = 7 bantc OX°, (2.55)

which shows that the traceless tensor S,° is uniquely determined by (2.54).
The third piece )y can always be written as

)y @818 — () B9, (2.56)

where a(z) is uniquely determined to be

1 2 Q
Q= 5 EaproX s, (2.57)

It is called an abelian axion field.
Denote the contribution of each piece of the constitutive tensor to the
excitation as WH, @ H and ®) H, such that

1 ~ €
WH,5 = 4 Eaprs W)y o (2.58)

and analogously for the other pieces. Then

H=WH4+®H+OH, (2.59)
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and
®OH=aF. (2.60)
Using (2.4) and (2.8), we find

(O8O -0
( )—i—d(a/\F)
= d(( >H+( H) +daAF, (2.61)

showing that the axion piece contributes to the Maxwell equations only if
da # 0.

Equation (2.47) represents the irreducible decomposition of the corre-
sponding 6 x 6 matrix with respect to the linear group into a symmetric trace-
less piece, an antisymmetric piece and a trace piece. The Levi-Civita symbol
serves as a kind of ‘metric’ in the 6-dimensional formulation ("% — €!7)
which is used to construct the traces of x!/. The constitutive tensor is there-
fore reduced as x = My + @y 4+ Gy in 36 = 20 + 15 + 1 independent com-
ponents, respectively. No further decomposition of the constitutive tensor is
possible at this point, since no additional geometric objects are available.

For later application, see section 3.1, we abbreviate the action of the
irreducible pieces )y and )y by defining the operator # : A2 — A2 such
that

1
7 Cans (x4 21y 2B10) Q9 9% N 9P, (2.62)
for any 2-form 2 with frame components {},3. Then we can rewrite our

constitutive/spacetime relation (2.45) as

QO =

H = #F + o(z)F. (2.63)

Each irreducible piece is expected to describe different aspects of the
medium. Additional information about the different properties of each piece
will be obtained with the study of the electromagnetic energy—momentum
current and of wave propagation. Notice for example that, if Dy # 0 the
Maxwell equations cannot follow as Euler-Lagrange equations from a La-
grangian of the form V := H A F, since ®)x # 0 drops out from V due to its
symmetry properties. However, our intention is to try to develop our elec-
tromagnetic theory as generally as possible. Therefore we want to include
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systems for which no Lagrange density can be found. Typical examples of
such kind of physical systems are those including dissipative effects. One can
therefore expect the ‘extra’ irreducible piece ®x to be related to some kind
of intrinsic dissipative property of the medium. As we will see in section
2.7, this is indeed the case. Furthermore, constitutive laws (for matter) with
2)x # 0 (non-vanishing “skewon fields”) have been discussed by Nieves and
Pal [57, 58]. They yield T- and P-violating terms in the field equations.

Non-abelian axions were postulated for the first time by Peccei and Quinn
[66], see also [104, 106]. Abelian axions coupling to electromagnetism were
first considered by Ni [55] and correspond to a non-vanishing piece ()y.
There have been intensive experimental searches for axions, see [56, 84, 96|
and references therein. To date, no evidence of such a field has been found.
Constraints on the axion mass and coupling to the electromagnetic field have
been obtained both from astrophysical observations as from laboratory exper-
iments, see [56, 84, 96| for details. However, as we will see later, the axion-like
term does not enter into important quantities as the energy-momentum cur-
rent and the Fresnel equation. The axion remains a serious candidate for a
particle search in experimental high energy physics and is a candidate for
cold dark matter. The discussion about the possible existence of such field
for some material medium has been rather controversial, see [102, 103, 93]
and references therein. In this context the vanishing on the axion piece is
referred to as the ‘Post constraint’ (PC), after the work of Post [72]. Sihvola
and collaborators have correctly recognized that the axion piece is allowed by
the basic structure of electrodynamics. However, if the medium is homoge-
neous, « is constant® and then the corresponding term drops out completely
from the Maxwell field equations. Therefore, a possible axion field can only
be detected if it is inhomogeneous (da # 0), or eventually by its effects on
the boundary separating two homogeneous media with different axion fields
each. Some theoretical work on the reflexion and transmition properties of
this kind of medium can be found in [93] and references therein. No clear
example of a material medium with a nontrivial axion-like term in its con-
stitutive law has been reported in the literature.

Finally, some astrophysical observations have been used to constrain some
components of a possible constitutive tensor deviating from the vacuum
minkowskian one, see [24, 17, 41].

by the very definition of an homogenous medium.
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Three dimensional decomposition of the constitutive tensor

In some particular applications in which a 3 + 1 decomposition is used, as
for instance in nonrelativistic and/or noncovariant formulations of electrody-
namics, see section 2.6.1 for a particular example, it is convenient to express
the constitutive tensor (36 components) in terms of four 3 x 3 matrices A, B,C
and D (each with 9 independent components). We define” them as follows:

AP 1= 0900 By := %éachCdef €efb) (2.64)

ct = %éacdxc‘mb, D, := %xoac‘lécdb, (2.65)
Here a,b,c,... =1,2,3. The inverse relations are

20200 — goa X% = D gedve, (2.66)

xe = eabdge x%ed = ¢abe B efed, (2.67)

Additionally, one can (3 + 1)-decompose the coordinate components of
field excitation and strength as

D® := (Hy3, H31, Hi2), Ha:= (Ho1, Hoz, Hos), (2.68)

B® := (Fy3, F31, F1a), B, = (Fio, F, Fy) - (2.69)
With these definitions, the spacetime/constitutive relation can be written as

D% := —~A"E, + D,*B®, H,:= —C° Ey+ By B. (2.70)
Furthermore, using the 6-dimensional notation, we have

H; = (H,, DY), Fr=(—-E,,B%). (2.71)
And the spacetime relation is written as

HI = GIJXJKFK, (272)

"The conventions in these definitions are taken such that they are consistent with those
of [31].
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with

By Dl 03 1
1 _ ab  LDa 1 _ _ 3 13
X = < ca, Aab ) ) €° =€y = ( 1, 0 ) . (2.73)
Then the irreducible decomposition of x can be found to be
W) JIJ _ B(ap) % (pab_’_ ¢ba) 2.74
X = 1 a a (ad) ’ ( : )
5 (2%+ D7) A

N [

B (C” -D b) )
2). 1J [ab] a a
X = a ) (2-75)
( % (Dba - Cab) Al

1
@yIT =2 (., +D,f) €. (2.76)

6

We introduced the 3-dimensional traceless quantities

1 1
¢% =C% — 3 C°.0, ’Dab = Dab —3 DCC(SZ, (2.77)
so that
¢, =0, Do=0. (2.78)

In terms of S, see (2.55), the second irreducible piece of the 3-dimensional
matrices (2.64)-(2.65) are found to be given by

() gbe — cabeg O @ By = —ape S,°, (2.79)
Oct, = -8 +obs,°,  ODo=52-65y (2.:80)
Therefore
O = gy g ) = (g g. TnE ) @
and
@ps — (eg0F 4+ (Sy® — 68S5.°) B (2.82)
@YU, = éueSo®B° + (Sab — 53506) Ep. (2.83)
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The asymmetric constitutive tensor of Nieves and Pal

Consider the particular case in which Sz-j is the traceless part of the product
of a covector w and a vector v, i.e.,

. 1 ,
J _ a0 k J

S;) = wpw 1 (wkv ) 5. (2.84)

Then we have
(2) goo — 40¢ey),. @) Bya = —wo Eape V5, (2.85)
1
@b = — [wavb + 552 (wovo — wcvc)] , (2.86)
1
@D, = wy + 5(5},’ (wovo - wcvc) . (2.87)

As we mentioned, Nieves and Pal [57, 58] discussed P- and T-violating gener-
alizations of the Maxwell-Lorentz equations for isotropic materia media. The
constitutive tensor they study has a nonvanishing skew-symmetric piece (?)y.
A 4-dimensional formulation of the constitutive tensor (Nieves and Pal used
the 3+1 form of Maxwell’s equations in cartesian coordinates) can be given
by considering, in addition to the Minkowski metric n, a time-like vector v,
which explicitly breaks Lorentz invariance.
Consider, in addition to the usual ‘metric’ piece

WxoH === (™" — ') = 2/, (288)
Mo Ho

an antisymmetric piece (!)y defined by (2.54) and (2.84) for the particular
case in which w and v are, in cartesian coordinates w, = (w,0,0,0) and
v® = (v,0,0,0). This choice implies in particular that the material will look
spatially isotropic in this frame. The corresponding 3-dimensional constitu-
tive matrices A%, B,,, C% and D,°, according to their definitions (2.64) and
(2.65), are then found to be

Aab = _EO(sab’ Bab = )ual(saln (289)
2 2
et = —% D X wgc ae. (2.90)

* * * *
Here we have also used 7gy = 2, Nap = —dap, 1°° = ¢ 2 and n?® = —§.
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With this constitutive matrices, the 3+1 decomposition of the constitutive
law takes the form
wvc? . woc?

B° .=
g B M=

D = 40y + E, + pg 6a B, (2.91)

or, in the vector notation used by Nieves and Pal [57, 58],
D = E + v B, H=+vE+u;'B. (2.92)

Therefore, the constitutive relation of Nieves and Pal can be recovered pro-
vided v = wvc?/2.

Since we have introduced an additional timelike vector, it is natural that
the material will violate T invariance, since v defines a preferred ‘time direc-
tion’.

Another example is found by considering S,° = ng, S,* =0, S,° = 0 and
S.% = 0. In this case, we obtain

Aba ol —605ab + eabcnc’ Bba * ,U'al(saba (293)

cb, =0, DS°=0. (2.94)

and therefore
DZgE+nxE, H= ung. (2.95)

This kind of constitutive tensor has the same algebraic form as that consid-
ered by Nieves and Pal in [57]. The P-violating term they considered can

be reproduces if one takes n, = ic,k, where k, are the components of their
wave vector, see [57].

2.6.2 Nonlinear constitutive relations
Heisenberg-Euler constitutive relation

Even when the classical vacuum constitutive relation (i.e. the classical space-
time relation) is linear in Maxwell-Lorentz electrodynamics, its quantum ver-
sion, QED, predicts corrections due to photon interaction with the quantum
vacuum. The effects of this interaction (e.g., vacuum polarization) can be
phenomenologically described in a classical theory by means of a nonlinear
constitutive law. This effective constitutive law was derived by Heisenberg
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and Euler [33] and can be written, to second order in the fine structure
constant oy = —%—, as [33, 35, 74]

4meghc’?

o 327’(’0!%7),380
H = — 1+ — *(FAN*F)| *F
\/po{[+45 mc3 ( )
56T aZh’eg
— *(FANF)F 2.
O (P AF) P (2.96)

where m is the mass of the electron.

The nonlinear terms describe then the vacuum polarizability due to the
interaction of a classical electromagnetic field with the quantum fluctuations
of the electron-positron field.

Born-Infeld electrodynamics

Born-Infeld electrodynamics [5] is a classical nonlinear generalization of Maxwell
electrodynamics. The spacetime relation for this model can be written as

H:\/§ P FAD)E . (2.97)
Ho\J1+ 3 *(FA*F) — gz ["(F A F)P?

Here f is a dimensionfull parameter, [f] = h/q, the so-called maximal field
strength. One of the particular features of this model is that, due to the
nonlinearity of the spacetime relation, the electric field corresponding to
a point particle (an ‘electron’) does not follows the usual 1/r? law which,
in particular, implies that the field is singular at » = 0. In fact, in the
Born-Infeld theory the electric field reaches a maximum value E., = cf.
Maxwell-Lorentz electrodynamics is recovered at the limit f — oco. One can
consider En.x ~ e/dmeqr? where r, denotes the ‘classical’ electron radius,
re = agh/me. Then the differences between the usual Maxwell-Lorentz elec-
trodynamics and the Born-Infeld model are important only at scales of the
order 7, ~ 2.82 x 1071%m. However, since the model is nonlinear, no super-
position principle is valid and the propagation of waves depends on the field
configuration, see 3.4 for more details.

2.6.3 Effective constitutive tensor

Consider an arbitrary local relation H = H(F). The corresponding Maxwell
equation in vacuum is written, in components, as

9; (€7 Hy) = 0. (2.98)
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Consider now the properties of a small perturbation AF' of the electromag-
netic field around some background configuration F. We write the total
electromagnetic field strength F' as F = F' + AF. Then the field excitation
can be written, to first order in the perturbation AF, as

AFy. (2.99)

Inserting (2.99) into (2.98) and assuming that the background field F is a
solution of (2.98), i.e. 0; [eijlekl(F')] = 0, we obtain an equation for the
perturbation:

1 .. OH
| = igkl kl
% (26 0 F

Aan) =0. (2.100)

F

We can write this equation in the same form as in the linear case, i.e. as
ijkl
0; (X?ff AFkl) =0, (2.101)
with the ‘effective constitutive tensor’

= . 2.102

F

The tensor Xiﬂd will, in general, depend on the local constitutive law and on
the background field F. This result shows that most of the results obtained
for linear constitutive/spacetime relations can also be applied to every local
electromagnetic theory provided one considers perturbations on some back-
ground solution. This is the case of the propagation of waves in nonlinear
media, e.g., where the waves are precisely weak perturbations on a given field

configuration.
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2.7 Symmetries and Energy-momentum

2.7.1 Symmetry of a linear medium

Here I would like to define the concept of a symmetry of the medium. This
definition applies to the linear case, when a constitutive tensor y is available.

To motivate our definition, consider the particular case in which the
field configuration is such that the Lie-derivative of the electromagnetic field
strength along some vector field £ vanishes, i.e.

LeF =0. (2.103)

The geometric interpretation of the condition (2.103) is clear. It means
that the electromagnetic field strength F' is ‘constant’ along the direction &.
More precisely, the integral [, F' on some 2-dimensional surface 2, (which
is the natural physical quantity associated to the field) is invariant under
the displacement of the integration region 2 induced by &. This property
follows from the very definition of the Lie derivative, see, for instance, the
discussion in [72] and figure 2.4 for ¥ = F and n = &.

Now, in linear electrodynamics the excitation is determined by the field
strength F' and the constitutive tensor x. It is clear that even if (the integral
of) the field strength F' is constant under the displacements defined by &,
i.e., if (2.103) holds, the excitation will not be constant unless the medium
itself, i.e. the constitutive tensor, satisfies some condition. We will call this
condition a symmetry condition for the medium. Clearly, the condition we
are referring to is the vanishing of the Lie derivative of the constitutive tensor,
since in this case (2.103) implies that H is also constant, i.e. L;H = 0. This
lead us to the following definition:

Definition: A linear medium is said to have a symmetry under the dis-
placement induced by a vector field ¢ if the Lie derivative along & of its
constitutive tensor vanishes, i.e. if

Lex7H =0, (2.104)

for some vector field &.

For the explicit expression of the Lie derivative of the tensor density x
one should compare appendix C.2, equation (C.6). Notice that this condition
implies the independent vanishing of the Lie derivative of each irreducible
piece of the constitutive tensor, see the general decomposition formula (2.47).

37



From this definition and the property about the noncommutativity of the
Lie derivative, it follows that if & and & are two vector fields describing
symmetries of the medium, then the new vector [£;, &;] is also a symmetry of
the medium, see appendix C.2 for more details.

This immediately raises questions analogous to those one encounters in
the study of isometries in GR, namely (a) what is the maximum number 7,4
of symmetries that a linear medium allows? And then, assuming that npy.y is
finite, (b) what is the form of a ‘maximally symmetric’ constitutive tensor?,
i.e., of a constitutive tensor allowing the maximum number of symmetries?

I do not have at this moment the answers to these questions. However, it
can be speculated that maybe the maximally symmetric constitutive tensor
can correspond to x = X, i.e., to the (conformal) Minkowski vacuum, since
we know that it is a highly symmetric case, see also the particular case
below. This result would be interesting since it would provide a further way
to ‘derive’ the vacuum spacetime relation by postulating that it has to be
maximally symmetric. These questions will be investigated in the future.

Riemannian case

Here I show that in the special case for which x = xyg}, i.e. for the ‘vacuum’
on a riemannian space®, the equation (2.104) defining the symmetries of the
medium is equivalent to the conformal Killing equation for the metric g, i.e.
to

Le (191" g7) =0, (2.105)
or, explicitly
mj % im i m i __ 1 i m m kl
GIOE" + G OE) + €O = 17 [20mE™ + E"guOng"] . (2.106)
One proves this as follows. From (4.3) one finds
ijhl 1/4 1/4 ]
Lexph = 2(lgl" 6") £e (191 o)
+2 (lg1"* ") ¢ (lg1* g%) . (2.107)
Contracting (2.107) with (|g\_1/4 gjl), one obtains
(I917" 9n) Le Xy = ™ anLe (19" ") +2L¢ (1o ™), (2.108)

or a material medium in Minkowski space with an ‘effective metric’ g.

8
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so that the condition (2.104) implies
g*gile (1" g) + 2L¢ (19]'* g™) = 0. (2.109)

Contracting this equation with g;; one obtains g;L¢ (\9\1/4 gjl) = 0 which,
when substituted back into (2.109), results in the conformal Killing equation
for the metric g, namely (2.105). This means that the conformal Killing
equation is a necessary condition for £ to be a symmetry of the medium. On
the other hand, from (2.107) one sees that if £ is a conformal Killing vector
then (2.105) is automatically satisfied. Therefore, (2.105) is also a sufficient
condition.

In other words, in the riemannian case, all symmetries of the medium are
conformal symmetries of the metric.

2.7.2 Conservation of energy-momentum

In physics conservation laws play a central role. Among other properties, they
allow the definition of conserved quantities in terms of which the description
of the system and its evolution becomes simpler. In particular, energy and
momentum are quantities associated to any field. In GR and similar theories
they are the source of the gravitational field.

In field theory, energy-momentum distribution and flow are described by
a covector valued 3-form, which in the electromagnetic case we will denote
as Y,. Usually, one also needs an additional vector field £ to construct a
frame-independent 3-form @ := %, £* following the general scheme ‘con-
served quantity’ ~ ‘momentum’ x ‘vector field’. The vector field is usually
related to some symmetry of the system. As an example of this general
scheme recall the case of GR. There, a conserved quantity along the trajec-
tory of a free test particle (i.e. a particle moving along a geodesic) can be
defined provided the spacetime admits a symmetry. This symmetry is de-
scribed by a Killing vector field £k, i.e. an isometry of the spacetime metric,
so that L¢ gi;; = 0. The corresponding conserved quantity is then given by
the projection (contraction) of the momentum® of the test particle of mass'®
m, p; = mgij‘fii:, along the direction of the Killing vector i.e. q := p; &k.

Back to our original problem, the main property that ¢ has to fulfill in
order to be interpreted as energy-momentum is that it has to be related to

9Momentum is always a 1-form, i.e., a covector, see, for instance, figure 2 in [72].
For a photon, use simply p; = g;; <.
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the corresponding force law through a derivative of the form £%f, ~ dQ. If,
for instance, £ happens to be timelike, £%f, can be interpreted as the rate
of energy transfer to the particles via the Lorentz force. A second condition
on () is that it must be conserved under some conditions, i.e. dQQ = 0. One
expects again the condition for energy-momentum conservation to be related
to the symmetries of the system, at least when a Lagrangian is available, as
we know from the Noether theorem. In linear electrodynamics this latter can
happen when the irreducible piece ¥y of the constitutive tensor vanishes.

Therefore, to find an adequate energy-momentum ¥, for the electromag-
netic field, we try to express £%f, as a total derivative of some 3-form dQ),
with @ = X,&%.

First, we use the expression for the Lorentz force law (2.6), replace the
current J from the inhomogeneous Maxwell equation (2.4) and ‘partially
integrate’. One finds

fa = (el F)NJ
= (EJF)AJ
— (EJF)ndH
= —d[{|F)NH]+ HAd(E]F)
—d[(€|F) A H] + H A (LeF). (2.110)

In the last step we have used the definition of the Lie derivative of F' and
the homogenous Maxwell equation, dF' = 0.

The choice of @ that equation (2.110) suggests, namely Q@ = — ({|F)AH,
is not what we are looking for since it would lead to conservation of () only
if the field strength is constant in the direction &, i.e. if L;F = 0, which is a
too restrictive condition.

To improve the situation we use now the fact that (2.110) can be rewritten
as

¢ fy=d[Z — (¢|F) NH] + H A (LeF) — dZ, (2.111)

where Z is an arbitrary 3-form.

To be sure that one is covering all the available possibilities, one should
consider the most general 3-form Z that can be constructed using the avail-
able objects. In our case, they are only ', H and £ 1. Under these conditions,

1Tn principle, one could also use the potential A as a further object. However, it seems
that no 3-form linear in £, as required by the left hand side of (2.111), can be constructed
using this 1-form together with F' and H.
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Z can only be a linear combination of the terms (£ |F) A H and (§|H) A F.
The other 3-form that can be easily constructed, namely &| (F A H), is a
particular linear combination of the two former terms. Therefore, we take
the ansatz

Z=ua,(&|F)NH+ay(§|H)NF, (2.112)
with arbitrary constants a; and as. This implies
dZ = ad(E|F)NH —a,(§|F)NdH +a2d ((|H)NF
—ay (E|H) NdF
= aqdl|F)NH —a1 ((|F)NJT +axd (E|H)NF
= a (EgF) NH — alfafa + ao [EgH — (§J dH)] NF
= a1(EgF)/\H—a1§°‘fa+a2(£§H)/\F—a2(§JJ)/\F
= m (LgF) ANH + [25) (EgH) ANF + (0/2 — al) é-afa. (2113)
Thus, we rewrite (2.110) as

fa = dllai —1)(EJF)ANH + a2 (E/H) AF]+ (1 —a1) HA (L¢F)
—a2 (LgH) ANF — (CLQ - al) §afa. (2114)
This expression, which is an identity as soon as F' and H satisfy the Maxwell

equation and f, is given by (2.6), leads us to define
1

Qi=m (a1 — 1) ((JF)ANH + a2 (E|H) A F], (2.115)
- ﬁ;% (1= ) H A (CeF) — ay (CeH) A F], (2.116)

so that
§fa = dQ + X. (2.117)

The identity (2.117) summarizes all the possibilities to write £%f, as a
total derivative of the available fields plus some rest. The problem now is to
find suitable values for a; and as so that () and X satisfy our requirements.
In particular, we need X to vanish under some reasonable circumstances.

Up to here our results in this section are valid for any medium, since the
constitutive/spacetime relation has not been used. To make up our minds
about a reasonable choice of the constants it is useful to study the particular
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case of linear electrodynamics and compute X explicitly in terms of the field
strength and the irreducible pieces of the constitutive tensor.
We use L F = EgF,] dzi Adx’ and similarly for H, EgH E,EH“ dz A

dz’. Furthermore, we introduce the abbreviation a := 4(1&7 and compute
1+a2)

X = a[(1 —a1) Hy; (LeFy) — ag (LeHyj) Fiy) dot A d2? A dz* A dat
= a[(1 —a1) Hyj (LeFy) — ag (LeHyj) Fiy] €%e
= 2a[(1— ay) H* (LeFu) — ap (LeHM) Fu @
= a|(1 - a1) XM Fy; (LeFu) — an (Lex™Fy) F| @
= a [(1 — a1) X" Fyj (LeFy) — az (ng'“”j) FijFua
—apX* (LeFyy) Fiu) ¢
= a [[(1 —ap) XM — azxijkl] Fij (LeFr) — as (ngk”j) Fi,-Fkl] é
= a [(1 —a; — ay) <(1)Xk”j + (3)Xk“j) Fj (LeFia)
+ (1 — a1 + ag) OXHIE; (LeFy)
—apLe (W + C)xH7) FiFy| €. (2.118)
Therefore, we find

1 (1—a1 —a2) (1) wi
X = -F; | ——= i 4 (3) klu L. F
4 J[(1—al+az)< X ) (LeFa)

+( Xklz] (‘CEFkl)

—mﬁg ((I)Xkl” + (3)Xkl”) Fkl] €. (2119)
From this result, one recognizes first that no choice of a; and a; makes X
to vanish in general. Thus, no conservation law is possible, unless addi-
tional conditions are fulfilled. This is, however, what one expects. One also
sees that the irreducible pieces enter with different weighting factors in the
term Fj; (L¢Fy). In particular, notice that the factor (1 — a; + az) in front
of the irreducible piece ?)x cancels completely. This means that the term
@) x k43 B (LeFry) will always be present on the decomposition of X, no matter
which values of a; and a; one chooses. In other words, the irreducible piece
@) x of the constitutive tensor will always prevent @ from being a conserved
quantity (in charge-free regions), unless of course a much more restrictive
condition, like L,F' = 0, is satisfied by the field configuration. This result
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is consistent with our interpretation of ?y as related to intrinsic dissipative
properties of the medium.
The ‘best’ one can do is to choose

1-— a; —ag = 0, (2120)

so that the terms proportional to the symmetric irreducible pieces x and
(®)x in the first term on the right hand side of (2.119) vanish. In this case,
after substituting as = 1 — a; into (2.115) and (2.116) one finds that @ and
X do not depend on a;, so that one obtains a unique result, namely

Q= [(EJH)AF - (£]F) A H, (2.121)

N[ =

X = % [H A (LeF) — (LeH) A F. (2.122)

Furthermore, for linear media we obtain, from (2.119),

X = —% Fyj 20098 (LeF) + Le (WX + Oxi) Fyle. (2.123)

That the choice (2.121) and (2.122) is reasonable can be seen as follows.
Consider the case in which @y = 0 so that a Lagrangian is available for
the description of the system. In a charge-free region, (2.123) shows that
Q is conserved provided ¢ is a symmetry of the medium, i.e. Lex*9 = 0.
Furthermore, our choice agrees with the results valid in a Riemannian space.

Notice also that @) does not depend on the axion-like piece (®)y entering
the linear constitutive law. This can directly be seen using (2.121) and (2.60),
since

(EIOH)AF - (JF)ANPH = (4] (aF))AF = (£]F) A (aF)
= al|F)ANF—a(]F)AF
= 0. (2.124)

However, the axion-like piece does appear in (2.123) and therefore can con-
tribute to the non-conservation of Q if L, a # 0.
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2.7.3 Axiom 4: Energy-momentum tensor

The results in section 2.7.2 show how to construct a 3-form which for a
linear medium leads to conservation laws, under reasonable conditions. We
take these results and generalize them to our fourth axiom, by means of
which the kinematic energy-momentum 3-form ¥%,, of any medium is defined

by

= S IF A (cal H) — H A (ca ). (2.125)
Then the 3-form @ of section 2.7.2 is given by Q = *X,£¢.

The adjective ‘kinematic’ is used here to emphasize that our definition
of ¥, was not based on dynamical properties of the system, but rather on
kinematic arguments.

One can also now define the components *7_# of the kinetic energy-
momentum tensor by

P NS, = KT Pe, (2.126)

kza

where ¢ ;== P A9 A 92 AP, In particular, in a coordinate basis, with
%ij = Gijlekl/2 ;

k- = i(gml%kz _ iy Hi*, (2.127)
For a general medium, we summarize our results as
Efa=dQ + X, (2.128)
with
Q =*T¢, (2.129)
X = % (H A (CeF) — (LeH) A F. (2.130)

For a linear medium, we notice first that the axion-like piece ¥y does
not contributes to the kinematic energy-momentum tensor, i.e.,

“La(X) = “Ta (Ox + @x + Ox) = ¥u (Ox + @), (2.131)

as can be seen from the linear dependence of ¥ on the constitutive tensor,
see (2.125), and from (2.124).
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Additionally, we have shown, see (2.119) and (2.128), that the corre-
sponding global conservation law takes the form

dQ = fa&®

+% i [Ce (DX + xR By 4 2@3M (L. Fy)] €, (2.132)
for any vector field £&. In this equation the contributions of the three irre-
ducible pieces My, @y, and @)y are isolated from each other.

From these results, a consistent interpretation of (2.132) can be given as a
‘balance equation’ for the energy-momentum content of the electromagnetic
field.

Recall first that even if £ is a symmetry of the medium, in which case the
second and third terms on the right hand side of (2.132) vanish, there is still
a contribution proportional to the irreducible piece )y of the constitutive
tensor. This is interpreted as an intrinsic dissipative property of the medium
generated by the irreducible piece ().

In the case that £ is a timelike field (for instance for a material medium
in flat spacetime) the result above generalizes an equation given by Landau
~E- %—? [45] and can be interpreted as an ‘energy balance’ equation for the
change of the total electromagnetic energy. The integration of (2.132) over
a 4-dimensional region of the form ; = ¥ X [0y, 0] will produce'? at the
left hand side the ‘change of the total energy of the electromagnetic field’
between the ‘times’ oy and o, i.e., [y Q— fzao Q. The first term on the right
hand side, f,£%, will lead to the energy transfered from the electromagnetic
field to the test particles via the Lorentz force, i.e., [q, faf®. The term
proportional to )y can be then interpreted as the rate at which the energy
of the electromagnetic field is dissipated, 1 [o, F;;®x"* (L¢Fy) €. The other
terms will be proportional to the time derivative of the constitutive tensor,
5 Jo, FiiLe ((1)Xijkl + C”x““) Fp;é. When the medium is time independent
this term vanishes. If the time derivative does not vanishes, it means that
the properties of the medium are changing in time. Therefore, one could
try to interpret this term as the energy per unit time needed to change the
material properties!3.

12We assume that the fields vanish at 8%, (‘spatial infinity’).
13Maybe with a change of some suitably defined ‘internal energy’ of the medium.
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Chapter 3
Wave propagation

We turn our attention to the wave propagation properties in our general
framework of linear pre-metric electrodynamics.

Consider a region in spacetime without charges, i.e., J = 0. Maxwell’s
equations take then the form

dF =0 dH =0, (3.1)

completed by the linear constitutive/spacetime relations (2.45). These equa-
tions will allow solutions propagating in spacetime, the behavior of which is
determined by the properties of the medium/spacetime.

Since the constitutive tensor can have a very complicated spacetime de-
pendence, many specific features of the propagation of waves over finite dis-
tances cannot be studied in general terms here. However, an important local
property of the propagation of waves, namely the dispersion relation that the
covectors tangent to a wave fronts must satisfy, can be derived in general.
This is done by deriving the so-called Fresnel equation for the wave covectors.

3.1 Propagation of singularities

In the theory of partial differential equations, the propagation of waves is
described by Hadamard discontinuities of solutions across a characteristic
(wave front) hypersurface S [21]. One can locally define S by the equation
®(z') = const, for some function ®(z). The Hadamard discontinuity of
any function F(z) across the hypersurface S is defined as the difference
[Flg (x) := F(zy) — F(x_), where z, := lim (x + €) are points on the
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Figure 3.1: Characteristic surface for propagation of electromagnetic distur-
bances. The 1-form ¢ := d® corresponds geometrically to two small parallel
planes tangent to S at each point z.

opposite sides of S 5 z. An ordinary electromagnetic wave is a solution of
the vacuum Maxwell equations (3.1) for which the derivatives of H and F
have discontinuities across the wave front hypersurface S.

Thus, in terms of field components, we have on the characteristic hyper-
surface S,

[Fijls = 0, [0:Fjkls = ai fiks (3.2)
[Hij]s =0, [0 Hjx]s = qi hjk, (3.3)

where f;; and h;; are the components of the 2-forms f and h describing the
corresponding jumps of the derivatives of field strength and excitation across
S, respectively, and the covector normal to the wave front is given by

q:=d® = q; dz’. (3.4)

Notice that (3.2) and (3.3), taken together, are covariant conditions. In par-
ticular, alltough (3.2b) and (3.3b) may not look covariant at first sight, they
are, provided (3.2a) and (3.3a) are also satisfied. This can be seen by con-
sidering the transformation law of 0;F}; under coordinate transformations.
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Consider the coordinate transformation z* — z¥, for example. Then we have

0 (0x7 ox* oz 0z Ox*
Oy Fyp = =—; —— | Fix + — == 0iFjk- 3.5
T o (8357 Ox* ) ik T+ Ox? Oxi' Ox* ik (3:5)
Assuming that the coordinate transformation is smooth across S, i.e. | gf:, s =
0, [%]5 = 0, we find that the jump of 8;F}; across S is given by
o (0x7 ox* oz 0z Ox*
ailF'l ! = 7] -7 N F —I—I—I 81'F 9 3-6
100 Firwe s ozt <3x7 8:13’“) Pl Ozt 0zi' Ox* [0:F5n]s (3.6)

which reduces to the transformation law of a tensor field, provided (3.2a) is
satisfied, i.e.

ozt Oxi' Oz*'

The compatibility conditions on the discontinuities of the solutions of Maxwell’s
equations are then

[0y Fjip]g = [0iFjk) g - (3.7)

gANh=0, gNf=0. (3.8)

This ensures that the Maxwell equations (3.1) are satisfied. The Hadamard
method used here is equivalent to the usual geometric optics limit made by
expanding a solution for the electromagnetic potential of the form A = ae‘®.
The covector q := d® corresponds thus to the wave covector.

Assuming now that the constitutive tensor is regular on S (in a geometric
optics limit this means that we assume the scale of variations of the consti-
tutive tensor to be much bigger that the scale of variation of the wave field)
we obtain from (2.45) the corresponding relation between h and f, namely

h=%f+af. (3.9)

Substituting (3.9) into (3.8a) and using (3.8b), we see that the equations
(3.8) reduce to

gATf=0, gANf=0, (3.10)

showing that the pseudo-scalar field o drops out completely. Thus it will
not contribute to the Fresnel equation. This is no big surprise since we saw
that only inhomogeneities of o contribute to Maxwell’s equations, and the
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assumption of regularity of the constitutive tensor, i.e.., [@]s = 0, means that
a does not have discontinuities across S.
Now, the general solution of (3.10b) is of the form

f=aqNa, (3.11)
where the 1-form a is defined up to ‘gauge transformations’
a— a+ g, (3.12)

for any scalar function ¢. This is an algebraic consequence of the gauge
freedom in the definition of the electromagnetic potential. Then the compat-
ibility condition (3.10) reduces to

gA?(gna)=0. (3.13)

Since (3.13) is an equation for a 3-form, it implies four equations that f
and h must satisfy in order to allow non-vanishing wave covectors gq.

Furthermore, in order to allow solutions, the fields f and A must satisfy
some ‘integrability’ conditions. Since the form of the general solutions of
(3.8)is f =qAaand h =qAb, we find

fAf=0, hAh=0, fAh=0. (3.14)
or, in components,

eMfijfu=0,  €™Mhihu=0, €™ fijhy=0. (3.15)

3.2 Fresnel equation

As has been noticed before, see [62], not all the equations in (3.13) are
independent. This fact makes the derivation of the Fresnel equation more
involved.

In order to isolate the trivial parts of (3.13), we use a covector basis ¥*
to write the covector a in terms of its frame components a, as a = a,¥*
and choose the covector 9° as the covector g, i.e. ¥ = ¢. This can, of
course, always be done at each point of spacetime, since we assume ¢ #
0. With this choice, a gauge transformation (3.12) can then be completely
accounted for by a transformation ay — a5 + ¢. This means that the other

A

frame components a4, A, B, ... = 1,2, 3, are gauge invariant. Since the term
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coming from the basis covector 90 identically vanishes, i.e. ¢ A% (gA 196) =0,
(3.13) can be written as

g AT (gNIB)ap =0, (3.16)
Furthermore, only 3 of the 4 components in the 3-form (3.16) are non-trivial,
since multiplying (3.16) by ¥° one finds

PAgAF(gAP)ap=0. (3.17)
The remaining 3 components are

A ANgAF(gAIP)ag =0. (3.18)
This equation can be written as

EWABap =0, (3.19)

with a volume element ¢ that we choose to be & := 99 A9 A92 A9 (it doesn’t
matter very much which 4-form one uses, since the equation is homogeneous)
and a 3 x 3 matrix W4B. Using (2.62) and (3.18) we compute

1 " "
IAGAF(GAD®) = ot AP0 A (eaprex ™ 6255 9 A 9°)

1 - S . 5 5
= 3 e208¢ 55X 1B 90 A 91 A 9% A 93

€
= —x040B ¢ (3.20)
Thus, since the negative sign is unimportant, we can define,
WAB = 0408, (3.21)

The corresponding Fresnel equation is then obtained from the vanishing of
the determinant of W, as the necessary and sufficient condition for existence
of non-vanishing solutions ag. Now, since W is a 3 X3 matrix, its determinant
is given by

W = det(W)

1
= ? AABC éDEF WADWBEWCF
_ ggABC Epmi xA0D 5 OBOE, OCOF (3.22)
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We apply now the following procedure to rewrite W as a fully 4-dimensional
covariant expression. We ‘complete’ the 3-dimensional Levi-Civita symbols,
e.g. €spc to obtain the 4-dimensional one, by first using €apc = €54pc
and then using one of the 0-components of the constitutive tensors as fourth
summation index. This leads us to consider the following identity:

éﬁABC XﬁAﬁD XﬁBﬁExﬁcﬁF = aB0D . 0+0E 6601?_ (3‘23)
This identity holds because on the right hand side of (3.23), due to the proper-
ties of the Levi-Civita symbol, one of the indices «, 3,y or § must be zero, but
on the other hand only a and 3 will contribute, due to the (anti)symmetry
properties of the constitutive tensor, see (2.46), which would otherwise make
one of the two last y-factors vanish. Finally, the two remaining contributions
are equal, canceling the factor 1/2 and proving the identity. This allows us
to rewrite (3.22) as

11,

W = gieaﬂ’ﬁ eDEF XaBODXO'yOEXOJOF. (324)

We repeat the same procedure to complete the remaining 3-dimensional Levi-
Civita symbol. Now, we can use the following identity:

N 0D .. 04O0E. 060F _ - » 0p.. 0y0c .. 06X
&perxX™ X = = e X PP Y07 X P (3.25)

DN | =

Using (3.25) in (3.24), we finally obtain

1 ol ~ 0 0 AO' 0 T
W = s ExprrxEPX 0NN (3.26)

Since 90 = g = ¢; dz*, the above result can be written in coordinate compo-
nents as
92

W= E Emnpq Erstu X

mnri lgtu

x PR x M g qiqran, (3.27)

with 6 := det(ef). We define the fourth order tensor density of weight +1,
the ‘Fresnel tensor’ Gi* as

gijkl = % émnpll érstu anr(i Xj|ps\k Xl)qtu, gijkl = g(ijkl)’ (328)
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which has 35 independent components. Then the Fresnel equation is written
finally as

G*g.qiqpq = 0. (3.29)

At each point, the Fresnel equation (3.29) defines in the space of wave
covectors the wave (co-)vector surface, see for instance [45]. I would like to
emphasize the generality of the above result. The Fresnel equation (3.29)
is valid for any linear medium. This means for media that in general are
inhomogeneous, anisotropic and dissipative. As we have already discussed,
this result can even be applied for the propagation of perturbation of any
local medium, by using an efective constitutive tensor.

The general Fresnel equation (3.29) is always a quartic equation in g;
despite the fact that it was derived from a determinant of a 3 X 3 matrix
quadratic in the wave covectors. This is because the remaining quadratic
term factorizes in the trivial factor 2. This corrects Denisov & Denisov [14]
who claim that a particular case of the general linear constitutive law may
yield a sixth order Fresnel equation; in [44], even a Fresnel equation of eighth
order is claimed to hold.

3.2.1 Coordinate 3 + 1 decomposition of the Fresnel
equation

We rewrite now our general result (3.27) by performing a 3 + 1 coordinate
decomposition, and obtain

W = 6% (ggM + gig M® + g3qugs M*® + qoGatsge M*™
+GasGega MP?) (3.30)
with
M = gOOOO

Me -— 4g000a’ Mab — 6g00ab’ (331)

b

Mabc — 4g0abc, Mabcd — gabcd’ (332)

or explicitly in terms of the 3 x 3 matrices defined in (2.64) and (2.65):

M = detA,
M® = —éq (A" A*CY + AP A=D1 (3.34)
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1
Mab — 5‘/4(ab) [(Cdd)2+(Dcc)2 _ (Ccd+Ddc)(Cdc+Dcd)]

+(C% + D) (AN 4 + DAY - CgAeCY,
_DC(aAb)chd _ Adcc(aCDdb)

+ ( Alab) gde _ gd(a Ab)C) By, (3.35)
Mabc — ede(c\ [Bdf(Aab) Def . DeaAb)f) + de(Aab) Cfe
—.Af‘“Csz) +C% Deb) 'Ddf +Df (,’bl Cfd] , (3.36)
1
Moabed  _ ef(c lghld By [5 A%) B, —C%, ng)] . (3.37)

Each 3-dimensional tensor M is totally symmetric, i.e. M = M(eb) pfabe —
M) etc. This results have been verified many times using the Maple
computer algebra features, together with the tensor package GrTensor!.

3.2.2 Properties of the Fresnel tensor density

First, as we already mentioned, one notices that the Fresnel equation is
independent of the axion-like piece )y of the constitutive tensor:

GM(x) = M (Wx + @), (3.38)
Which in particular implies that

gijkl((?:)x) —0. (3.39)
Furthermore, due to the antisymmetry property of () one verifies that also

Gk (@) = 0. (3.40)
Actually, properties (3.39) and (3.40) generalize to

gz’jkl((Z)X + (3)X) =0, (3.41)

which can be verified, for instance, using computer algebra. Notice that this
identity is not trivial since G depends cubically on the constitutive tensor y.
The identity (3.41) shows that the symmetric piece (Vx is indispensable in
order to obtain well behaved wave properties: if )y = 0, the Fresnel equation
is trivially satisfied and thus no lightcone structure could be induced.

1See http://grtensor.org.
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Furthermore, since
gz‘jkl((l)X 4 (2)X) + gijkl((l)x), (3.42)

the ‘skewon’ field does influences the Fresnel equation, and therefore, eventu-
ally the light cone structure. An example of this general result can be found
again in the asymmetric constitutive tensor studied by Nieves and Pal, see
section 2.6.1 and references [57, 58].

Actually, after some algebra one finds

gijkl((l)x+(2)x) — gijkl((l)x)
2

+5 Emnpq Erstu (1) mnr(i () dlpslk (2)y Datu

5 Emnpa Grsta Py WA @y Dt (343

or, in a (more of less) obvious notation (see the definition (3.28))
G x00) = GHH(Ox, Wy, D) + 2G5 (W, By, @)
+GTR (@ x, Wx, Bx). (3.44)

The other terms vanish due to the symmetry properties of each irreducible
piece.

‘Take now (3.43) and substitute the parametrization of )y in terms of
S;7, see (2.54). After some lengthy but straightforward algebra, one finds

T )

that the two last constributions to the right hand side of (3.43) are actually
equal, namely

gz’jkl((l)x, (2)X, (2)X) _ gijkl((2)x, (1)X’ (Z)X) (3.45)
_ %(1)Xm(i|n|j SkSD. (3.46)

Therefore, the final result is
gijkl((l)x n (2)X) _ gijkl((l)x) + (1)X7n(i|n\j5nf5nl), (3.47)

A very simple expression indeed.
For the particular case of Nieves and Pal, see (2.54) and (2.84), one finds

e\ 2
Mgy = —V/—g (M_(())) X
[%(Q-Q)2—(Q'Q)(U‘U)(U'q)2+(v“1)4 - (348)
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Compare this result with equation (5.7) and reference 12 in [58]. Use ¢; =
(w, —k), v' = (v,0,0,0), g;; = ni; = (%, —1,-1,-1), = ﬁ and obtain

y . 2 ¢t
G qqiqmq = —€} l(w2 — k202) + z—2k2w2v41 . (3.49)
0

This results agrees with that in [58] (in their e = u = 1 case) for { = %

Nieves and Pal use a different system of units, compare, for instance,
their vacuum equations (2.1) and (2.2) with our Maxwell equations (1.1)
and (1.2). Their equations can be obtained from our ones by substituting
D =Dn, H=Hx/c, E = Ex/ey, B= Bx/(cep), p=pn, j = jn and t = ty,
where the subindex N refers to the fields in the notation of Nieves and Pal.

Notice that in general, for { # 0, the Fresnel equation will have complex
solutions. This is again a manifestation of the dispersive properties described
by the antisymmetric piece )y of the constitutive tensor.

3.3 Light rays

In a riemannian space, light rays are defined as the integral lines of the
vector field defined by Viiem := g“¢;0;, which is then a null vector. It satisfies
Viiem |¢ = 0, so that the vector Ven is orthogonal to the wave front S. This
definition makes direct use of a metric, it is not a trivial question whether it
is possible to define light rays in our more general, pre-metric, framework.

In analogy to the riemannian case, one can try to define light rays as the
integral lines of a vector field V' which satisfies

Vi]g=0. (3.50)

Equation (3.50) represents one condition for the 4 independent components
of V. Therefore, this information is not enough to define light rays uniquely.
We know, however, that in the riemannian case the light rays defined by Viiem
are also orthogonal to the polarization vector a (such that f = q A a), i.e.
Viiem]a = 0. The same is true for b with A = ¢ A b, i.e. Viem|b = 0. These
known properties suggest to define the vector V for a given solution of the
Maxwell equations as those satisfying

Vl]g=0, Via=0, V]b=0. (3.51)

The three conditions (3.51) determine then the vector V up to a scalar factor
(V! = ¢V is also a solution, since (3.51) are homogeneous equations). This
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ambiguity in the definition of V' is however irrelevant, since the integral lines
of V are independent of that scalar factor?.

One can construct immediately a solution of (3.51), since they imply that
V* has to be proportional to €/*g;ab;. We therefore define

V' i= 9% gaib. (3.52)

This quantity is a vector density of weight +1. Again, the fact that (3.52)
does not define a true vector field represents no problem for the definition of
light rays as its integral lines. [Alternatively, one could try to ‘normalize’ V
in order to construct a true vector, for example by dividing V by the density
la* := G¥*q,a;ara;, with |a| being a kind of ‘norm’ of a. Obviously, this
procedure only makes sense if |a| # 0].

Now, using the identities €7¥qub, = £e¥hy = Lx' ¥ fi; = x"*qra; we
can write (3.52) in terms of only ¢, a and the constitutive tensor, namely

ijkl

V' i= Mg arq. (3.53)

Notice that, as a consequence of our definitions, V depends explicitly not only
on the wave 1-form ¢ but also on the polarization 1-form a. This property is
in agreement with the results that, for a general constitutive tensor, different
polarization states will propagate in different directions. Birefringence is
again a particular example of the above. One also verifies that the axion-like
piece of the constitutive tensor drops out from V), so it depends only on M)y
and @y.

To gain more physical insight on our definition of light rays, we evaluate
the kinematic energy-momentum 3-form XX, for our particular solutions.
From its definition (2.125) and using F — f =¢Aaand H — h = gA b, we
find

1
ks, = 5[q/\a/\(qo‘b—qbo‘)—q/\b/\(f]ota—qaa)]

1
= E[qaq/\a/\b—qaq/\b/\a]

= gaqANaAlb. (3.54)

2If one computes the integral line by ‘fi—i = V%, then the freedom of choosing the scalar
factor corresponds to the freedom of choosing the parameter p along the curve. In other
words, an arbitrary scalar factor can always be absorbed by a reparametrization p' = p'(p).
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Compute now the components T, ? according to (2.126). One finds
PAEKS, = gu9P AgAand
= qaq7a5bez93 AT A I A
= QnQyasb. P ¢
= Ve (3.55)
Therefore,
“T.P = qaV’. (3.56)

This result shows that )V determines the direction in which the energy-
momentum of the wave is transported.

3.3.1 Fresnel equation for V

Now, since f =g Aa and h = g A b we see that the conditions (3.51) imply
V]h =0, V|f=0. (3.57)

Kiehn [40] uses (3.57) to define V' as an ‘extremal’ vector field. Further-
more, it can be shown that (3.57) are equivalent to (3.51). Take for instance
(3.52b), then we have

Vif=V](gha)=(V]ga—q(V]a) =0 (3.58)

Suppose now that the scalar V' |q does not vanish, then (3.58) implies that
a is proportional to g. But this would imply that f = ¢ A a = 0. Therefore,
nontrivial solutions (f # 0) require (3.51a) to hold. Replacing this into (3.58)
shows that also (3.51b) must be satisfied. Similarly, starting from (3.52b),
the same argument shows that (3.51c) is required.

The equations (3.57) for the vector V are similar to the Hadamard com-
patibility conditions (3.8) for the wave 1-form ¢. This suggests to apply a
similar method as that used in section 3.2 to derive the Fresnel equation for
q.

First, we solve (3.57b). A general solution can be written as

f=Vl]e (3.59)

where c is an arbitrary 3-form. We write the 4 independent components of ¢
as Capy =: €apys €. Using this in (3.57a) and (2.63) we find

V]#(V]c)=0. (3.60)
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This equation is analogous to (3.13). As in the case of the wave 1-form ¢, not
all the equations in (3.60) are independent, since inner product of V with
(3.60) vanishes identically. In analogy to the method used in section 3.2, it
is convenient to use a vector frame basis e, and its dual 9¥¢, with the special
‘gauge’ e5 = V. Then, after some algebra one finds that (3.60) is equivalent
to

Mypc® =0, (3.61)
with the 3 x 3 matrix M4p defined as
Mg = & 400 X“PP Eppps- (3.62)

Again, nontrivial solutions (c? # 0) exist only if det (Map) = 0, i.e. if and

only if
1
3!

Using (3.62) and (3.63), and applying the same method as in section 3.2

to complete two Levi-Civita symbols, we finally find also a quartic equation
that now the components of V' must satisfy, namely

eABCPEE N by MppMerp = 0. (3.63)

Mii VVIVEVE =0, (3.64)
where
1 miej ~ A n ra A uvns
Mijr = X L &t (inem jlnpX Y Eqrik sCenun X", (3.65)

is a totally symmetric tensor density of weight —1.
Equation (3.64) defines in the space of ray vectors the ray surface, see
[45].

3.3.2 Particular cases

One can verify after some algebra that in the riemannian case the tensor
density M;r; reduces to

M == 4lg|7'? 9(i5 9xi)- (3.66)
Additionally, one verifies from (3.53) that the vector density V reduces to
Vi =4[ [(g%ax) (¢"aja) — (9"a) (9 asax)] . (3.67)
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Since in a riemannian space we additionally have g“a;q; = 0, the first term
vanishes and the above result shows that V' ~ ¢' := ¢g"g;, as expected.
Notice also that G is a kind of inverse of M, since they satisfy

GM Mijkm = 85sgn(g) ot (3.68)

It would be interesting to investigate in the future if this property holds also
for a general linear medium.

3.4 Application to propagation of perturba-
tions in media with nonlinear constitu-
tive relations

This section is based on the results of Obukhov and myself, see [64].

As a particular case, one can show that the analysis in [60] and references
therein about wave propagation in nonlinear theories can be studied with
our formalism.

Consider a nonlinear theory in a riemannian space, defined by an action
of the form

S = / L, L)'z, I = F;Fi,  I:= F;Fi (3.69)

with £ a density of weight +1, in general nonlinear, function of the combi-
nations F := gtk gi'F,; and Fii = %\g\*l/Zeijlekl.

From our definition (2.102) we find after some algebra that in this case
the effective constitutive tensor is given by

Xz_gcl = Kk gi[kgl]j + ko Fij Fkl + k3 Fvij Fkl

kg FUFR 4 g 9 FF 4 kgl g| /2 €99, (3.70)

The coefficients k4, A =1,...,6, are function of the electromagnetic fields:
ki = 4L, ko = 8L41, ks = k4 = 8L2, (3.71)
ks = 8Lo, ke = 2L, (3.72)

and £ := g—fl, Liy:= %, etc. The constitutive tensor (3.70) is symmetric,

i.e. the corresponding piece )y vanishes, since k3 = k4. We can however
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perform the calculations for the more general case (3.70) for arbitrary factors
k4. In particular, a direct but rather lengthy calculation of the Fresnel tensor
density (3.28) gives

Gkl — _ % (X g(z'jgkl) 12y g(ijtkl) + Zt(ijtkl)) , (3.73)
with

t9 .= F* i} (3.74)
and

k 1

X = k)% + 51 (kg -+ k4) I2 — k1k5 Il + Z (k3k4 — k2k5) I22, (375)

)7 = kl (kz + k5) + (k3k4 — k2k5) I1, (376)

Z = 4 (k2k5 — k3k4). (377)

After inspection of (3.73) one finds that it can be factorized into a product
of two second order tensors. One can verify that

GiiM — ;_;1 (X9 + (¥ + VIT = X 2]

< [Xg") + (v - VIR X))
- ;_21 (= V7= XZ)gli + 24]
< [V + VIE=XZ)g" + 2],

where the alternative forms are used according to whether Z or X vanishes,
respectively. If both Z or X vanish, then G¥¥ = —%Y gl a5 can be
seen from (3.73).

Thus, it is a general fact that in any nonlinear electrodynamics model
of the type (3.69) the 4th order wave surface always reduces to the two
lightcones. These cones are described by the following pair of optical metric
tensors:

For X # 0, we define

g = Xgi+ (V+VYI-XZ)HY, (3.78)
g = XgT+ (Y- VYT-XZ)t (3.79)
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For Z # 0,

gl = (V-VYT—XZ) g+ 2t (3.80)
¢7 = (YV+VYI—XZ) g+ 2. (3.81)
And if X # 0 and Z # 0,
gij = g¥, (3.82)
gi = Y, (3.83)

First, one sees that necessarily k; # 0 in order to have well behaved wave
vectors. Additionally, one can use the definitions (3.75)—(3.77) to compute
V? — X Z. After some algebra, one can show that

V2—XZ = [ky (ko — ks)+ (kska — koks) I]?
+  [2kiks + (ksks — koks) L] [2k1ks + (ksks — koks) I]3.84)

This result shows that for k3 = k4 the quantity Y2 — X Z is a sum of two
squares, and hence non-negative. This means that the corresponding optical
metrics g; and g» are always real. See (3.78)-(3.81). For an asymmetric
effective constitutive tensor, i.e. ks # k4, two optical metrics still can be
defined, but they are complex in general. For a more complete study, see

[64].
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Chapter 4

Light cone structure

In this chapter, we want to study the particular case of our general theory
in which a light cone structure is induced. In terms of the Fresnel tensor G,
this means that the spacetime/medium is such that

GiM _ gliigh) _ % (979G + gHigt + glig™), (4.1)

for some symmetric second order tensor density G of weight +1/2. Then the
Fresnel equation, which in general is quartic in the wave-covector, reduces to
a second order equation, namely to a lightcone condition:

gij ¢:q; = 0. (4-2)

Obviously, we are interested in this subcase because in GR (and its par-
ticular case SR) the local properties of light propagation in vacuum are de-
termined by the conformal structure of the underlying riemannian geometry.
This in particular implies that the wave covectors satisfy a condition (4.2),
with G¥ ~ g%. Here g% denotes the spacetime metric.

We are in particular interested in the following questions: a) What is
the most general constitutive tensor leading to a lightcone structure? b) Is
it possible to obtain a lightcone structure as a consequence of some metric-
independent conditions? In other words, can a lightcone structure be in-
duced/deduced without postulating the existence of a metric from the very
beginning? c) If this is the case, how can a conformal metric be explicitly
constructed from the underlying constitutive tensor?
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4.1 Looking for metric-independent conditions

It is clear that, in order to induce a lightcone structure, additional informa-
tion or assumptions must the added to the general pre-metric framework,
where the constitutive tensor is arbitrary.

We look for these additional conditions. First, we consider the particular
case of vacuum in a riemannian space to see if it is possible to find some
properties which can be then used as a guide in the pre-metric framework.

We know that the constitutive tensor corresponding to ‘vacuum’ in a
riemannian space, i.e.

i =22yt 43)

is such that the Fresnel equation reduces to the light cone condition. Note

that xyg is invariant under conformal transformations g;; — e‘I’(“”)gij; this

takes care that only 9 of the 10 components of the metric can enter x.
However, since the Fresnel equation is homogeneous, we see that

X{iy = 2f(z) V=g 4"¢", (4.4)
will also imply the same lightcone structure, for any scalar function f(z).

One can use the definition (3.28) of the Fresnel tensor for this particular case
and, after some algebra, obtain

jkl ij ki
Gy = sen(g) f*4/1g| 9 g™ (4.5)
Let us summarize the properties of the constitutive tensor (4.4). Obvi-
ously @xyg.73 = 0, because X{4s} is symmetric under the exchange of the
first and last pair of indices. Furthermore, (3)X{g,f} = 0, i.e., no axion-like
term is present. Additionally, one verifies that
L, klmn »
5 EmXby T emmfiy = 120155, (4.)
Notice that in this expression, the metric tensor does not explicitly appear,
but the negative sign on the right hand side is due to the its lorentzian
signature.
These two properties, can be rewritten in terms of the corresponding
linear operator  related to x4 = 0, see (2.45). The symmetry property
@ (.53 = 0 is equivalent to

AA (kB) = (kA) A B, (4.7)
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for any 2-form A and B, while the condition (4.6) can be written as
K* = —f21. (4.8)

From this particular example from GR, we learn that the riemannian
vacuum constitutive tensor satisfies some properties with can be written in
a metric-independent way. As we will see in the next sections, an operator
satisfying the two conditions above defines a dual operator.

The particular riemannian example can therefore motivate the question
whether (4.7) and (4.8) can be taken as the additional conditions to be as-
sumed in order to induce a lightcone structure from the general pre-metric
electrodynamic framework, in which the constitutive tensor is arbitrary, and
whether these conditions are necessary and/or sufficient to induce a lightcone
structure. In fact, it turns out that there exists a relationship between dual
operators and conformal metrics.

4.2 Reciprocity and closure

Furthermore, the two conditions (4.7) and (4.8) can be motivated already in
the pre-metric framework.

From the discussion of section 2.7.2 it is clear that the condition of sym-
metry ensures that the medium/spacetime will not possess intrinsic dissipa-
tive properties. This can then be taken as an additional metric-independent
condition. See, however, the discussion in sections 2.6.1 and 3.2.2 about the
constitutive tensor of Nieves and Pal, for which @y # 0.

The condition of closure can be motivated as follows. An interesting
feature of electrodynamics is its electric/magnetic reciprocity property. From
the general expression of the kinetic energy-momentum current (2.125), one
can be see that the energy-momentum content of the electromagnetic field
remains the same if one exchanges excitation H and field strength F' in an
appropriate way. Consider the transformation

H — (F, F—>—%H. (4.9)

Here ( is a pseudoscalar carrying the same physical dimension as the constitu-
tive tensor, i.e. [(] = [H/F] = ¢*/h. Direct inspection of (2.125) shows that
the energy-momentum current remains invariant under this transformation,
ie.

kYo = K24, (4.10)
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In terms of the 3-dimensional forms defined in section 2.4, the transfor-
mation H — (F implies X - —CE and D — (B and F — —%H implies
E — %’H and B — —%D. This clearly shows that (4.9) exchange electric and
magnetic quantities.

So far, this invariance, which we call electric/magnetic reciprocity?, is
a property only of the energy-momentum current. If one, as an additional
postulate, requires the spacetime/constitutive relation also to be reciprocal,
a condition on the constitutive tensor can be found.

Take the spacetime/constitutive relation (2.45) and perform the transfor-
mation (4.9) while leaving the constitutive tensor unchanged. One finds

1, o 1
CFap = 7 Eapr X' (-1 He. (4.11)

We use again (2.45) to replace the components of the excitation in terms of
those of the field strength, and obtain

L € ~ v
afBvyé X76 0650;“/ X“ )\pF)\p- (412)

2
—C’F5=—
C“Fop 6 ¢

This expression leads us to a condition for the constitutive tensor, namely to

L, €f ~ v
_C25¢[x)‘5§] = E aBvyd X76 0660[“/ X“ )\p- (413)

Define now the dimensionless tensor
oo 1 apvs (4.14)
¢
with
1

96 (éijmn xX""?) (épqm Xmij)~ (4.15)

¢t =
Then (4.13) can be rewritten as

1
g Aa,@'yé )% 7669@0”1/ >0< WA — _25,[1)\5[;} (416)

4o distinguish it from the usual metric-dependent duality transformation Fj; — ﬁ'ij =
1V/=9&ijkt 9" g Fnyp, under which the vacuum (J = 0) Maxwell equations in a rieman-
nian space are invariant.
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It is convenient to define
1, 0

Jaﬂ'yé = 5 €aBno Xna'yé‘ (4.17)
Then the closure relation (4.16) reads

1 o

5 Jas" Ty = A (4.18)
or, in the corresponding notation in terms of 6 x 6 matrices,

J?=—1,. (4.19)

We call this condition on the constitutive tensor the closure relation. Notice
that the negative sign on (4.9b) and therefore the one on the right hand
side of (4.18), is a consequence of the negative relative sign of the two terms
entering in the energy-momentum current, see (2.45). Below we will see
that this negative sign will be responsible of the lorentzian signature of the
induced metric.

Mathematically, this means that the operator J represents an almost
complex structure on the space of 2-forms.

4.3 Dual operators and metrics

A linear operator J : A*(X) — A?(X) acting on 2-forms is said to be a dual
operator defining a complex structure if it satisfies the properties of symmetry,

AN (JB)=(JA) A B, (4.20)
for any 2-form A and B, and if it is closed such that
J? = —1. (4.21)

Many people have studied this relationship, both as a useful tool in GR
[6, 7] and as a method which could allow to consider the metric of spacetime
as a secondary quantity, constructed from some other fields, see for instance
[8]. Clearly, the dimensionless part of the riemannian constitutive tensor
f! XZ,I?;}, defines a dual operator, which is just the Hodge dual of the metric
g.

In the context of electrodynamics, it seems that Peres [68] was the first
to try to reconstruct the conformally invariant part of the spacetime metric
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from the excitation H and field strength F'. In his approach, however, the
metric is assumed to exist such that the relation between H and F' is just the
same that the one of vacuum in a riemannian space. In our notation, this
condition is equivalent to postulate that the operator « is a dual operator in
the sense defined above and that it also equals the Hodge dual of some metric,
to be determined. In this sense, the approach of Peres can be considered as
a sort of ‘inverse problem’. Contrary to define the operator x as the dual of
the metric tensor, as is done in GR, Peres tried to determine a metric such
that its Hodge dual operator coincides with k. To that goal, it is assumed
that the operator k satisfies the conditions equivalent, in our notation, to
symmetry and closure, as a Hodge dual operator does. However, as we will
discuss, see below, Peres did not succeed in deriving the conformally metric,
since his result is not unique.

Toupin [92] and Schénberg [77] also studied how a conformal metric struc-
ture is induced and in particular how the conformally invariant part of the
metric can be deduced from the spacetime/constitutive relation under the
assumption of symmetry and closure. They seem to be the first who were
able to show that a conformal metric structure is actually implied as a con-
sequence of symmetry and closure. Brans [6, 7] also recognized that, within
general relativity, it is possible to recover the metric from its Hodge dual
operator. These structures were subsequently discussed by numerous peo-
ple, by 't Hooft [91], Harnett [22], and Obukhov & Tertychniy [61], amongst
others, see also the references given there.

From these studies, it seems clear by now that there is a one-to-one cor-
respondence between linear operators (of the kind of k) satisfying symmetry
and closure, and conformal metrics. If a metric is available, one can immedi-
ately construct the corresponding Hodge dual operator, which, for a metric
with lorentzian signature, will satisfy (4.20) and (4.21). On the other hand,
the contrary is also valid. If an operator J satisfying (4.20) and (4.21) is
available, then a conformal metric structure is induced, such that the oper-
ator J can be written as a Hodge dual operator. Furthermore, the metric
components can be (re-)constructed using the so-called Schénberg-Urbantke
formula. Schonberg seems to be the first to derive this formula in the context
of electrodynamics. This formula was also found by Urbantke [94, 95], but in
a different context, namely SU(2) Yang-Mills theories. We will discuss some
derivations of this important formula below.

Finally, by using Schonberg-Urbantke’s formula in the context of linear
pre-metric electrodynamics, Obukhov and Hehl [63] presented an ezplicit
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construction of the conformally invariant part of the metric tensor in terms
of quantities parametrizing a constitutive tensor satisfying symmetry and
closure.

After discussing these developments, an alternative procedure to deduce
the conformal metric and its lightcone structure will be presented. It relies
on the general results about the Fresnel equation governing the local prop-
erties of electromagnetic waves. This alternative approach is therefore much
more suitable to understand the physics underlying the emergence of the
conformal structure of spacetime, since it directly involves the properties of
the propagation of waves. Finally, this approach also allows to study what
would be the effects of dropping or modifying the assumptions of symme-
try and closure on the lightcone structure. In particular, we will explore the
consequences of a possible asymmetric spacetime/constitutive relation would
have on the lightcone, but maintaining the assumption of closure.

4.3.1 Peres’s early work

In [68] Peres already explores the idea of deriving the metric tensor from the
electromagnetic fields H and F. Here we discuss the attempt of Peres to
reconstruct the conformal metric.

Assume that a metric tensor is defined on the manifold such that the
closure relation takes its usual riemannian form, namely

H = \*F, (4.22)

with A := y/eo/uo and * is the Hodge dual operator of the metric g. This is
equivalent to assume that a metric tensor g exists such that the constitutive
tensor can be written in the form (4.3).

The problem is then basically to determine the conformal metric com-
ponents g in terms of H and F such that (4.22) is satisfied. A necessary
condition for g to satisfy (4.22) can be found by computing the 4-form HAH.
Using (4.22) one finds

HAH=XN*FA*F=-)MFAF. (4.23)
Therefore, it is necessary that

HAH=-)NXFAF (4.24)
for every field configuration F' and H. The negative sign in this equation is

a consequence of the lorentzian signature of the metric g. Equation (4.24) is
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Peres’s version of the closure relation (4.18). Since it must be satisfied for
any field configuration, (4.24) is equivalent to

1. . -
7 Ciikl XZ{]_(,} Xl{c_,lﬁq = —e"", (4.25)

which is equivalent to the closure relation (4.18), since (2))({9} =0, as it is
implicitly assumed in (4.22).

In order to reconstruct the metric, Peres uses the following method. Con-
sider now the eigenvalue problem

VIM =0, (4.26)
with
M := H + \kF (4.27)

and k being a dimensionless scalar and V' a vector. This eigenvalue problem
defines the vectors V in terms of H and F'.

The condition for nonvanishing solutions V' to exist can be found as fol-
lows. The condition (4.26) implies

V] (M AM) =0, (4.28)

and since M A M is a 4-form this later condition necessarely implies M AM =
0. Using the definition (4.27) and the property (4.24) we then obtain

MAM = HAH+2XHAF+)XK2FAF
~NFAF+2XkHAF + XE*FAPF. (4.29)

If we write the 4-forms H A F' and F' A F in terms of the invariants I; and
I, as

HAF=:AL¢, FAF=:1I¢ (4.30)

then we find that the eigenvalue equation (4.26) allows nonvanishing solutions
if and only if the scalar k satisfy the quadratic equation

k’I, + 2kI, — I, = 0. (4.31)

Notice that I; and I, are defined such that they carry the same dimension:
(L] = [I,] = h?/¢*.
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The solutions of (4.31) are
1
+ _
=1 [11 +. /2 + 122] , (4.32)

which in particular imply that K™k~ = —1, so that one solution is necessarily
positive and the other negative.

Using a particular coordinate system, Peres finds solutions of the equation
(4.26) for the vector V. The particular coordinate system is chosen such that
the Lorentzian metric (that Peres is looking for) assumes its minkowskian
form, i.e.,

9ij = mij = diag(+1, -1, -1,-1). (4.33)

Additionally, a local Lorentz transformation is performed such that the elec-
tromagnetic field strength adopts the simple form given by E, = (E,0,0)
and B® = (B,0,0). It is also assumed that E > 0 and B > 0. This means
that

F £ —Ed2° Adx' + Bdx® A dax®. (4.34)
As a consequence of (4.22) and (4.33) one finds the excitation to be
H = \[Bda® Adz' + Eda? N dz®]. (4.35)

In this particular coordinate system, the invariants defined in (4.30) take the
form

I, £ B> - E?, I, = —2EB. (4.36)

This implies, see (4.32), that k can assume the values
kT = — I — (4.37)

Additionally, if one writes the vector V as V = V%9, + V19, + V29, + V30,
then the eigenvalue equation (4.26) reduces to

V|M = \(B—kE) (vodxl - vldxo)-l—)\(E-i—kB) (vzalalc3 - v3dm2) .(4.38)

With this information, one sees that for k& = k* necessarely V2 = V3 = 0.
This means that the vectors V which are solutions of the above equations
for k = k™ are linear combinations of V, 4, A, B, ... = 1,2, with

Vi = (EB)Y48y,,  Viy:=(EB)'/*0d,. (4.39)
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For k = k= (4.38) implies V® = V! = 0 and therefore the corresponding
solutions are linear combinations of V_,4 with

V. :=(EB)Y48,, V_,:=(EB)Y/*0s. (4.40)

The factors (EB)Y* are introduced for later convenience. It can then be
verified by direct computation that these vectors satisfy the following prop-
erties:

Vial (VeslF) =0, (441
Vial (Vis)F) = =2 [ V2eas, (4.42)
V_a] (V_B|F) = % k€4, (4.43)

with eap = €ap) and €3 := 1.
Furthermore, the excitation and field strength can be written as

F =2 [ (VealVisle) — K12 (ValV s)0) (440
H= =2 k2 (VoalVis)e) + 2 (ValV 5)0) . (145)

Compute, for instance, the field strength F"

* 1 ¢ - 3
F = _§€AB [|k+|1/2 (VialViplé) = k72 (Vo4 V_p] E)]

L =P[R (Vi Via)€) = [B7[2 (Vo V-5 ]8)]

. [(g)/ (EB)Y? (8]0, ]¢) — (g)/ (EB)"? (azJagJé)]

< Bdz® Ndz® — Edx® Adx?, (4.46)

which agrees with (4.34).

Although (4.41)—(4.45) were derived in a particular coordinate system,
they are covariant equations and therefore are valid in any coordinate system.
In other words, when solving the eigenvalue problem (4.26) one can always

find a basis of solutions V, 4 and V_4 corresponding to k™ and k= (given by
(4.32)) such that (4.41)—(4.42) are fulfilled.
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Finally, in Peres’s approach the metric tensor is also constructed bilinearly
in the covectors V. 4. We define the inverse metric g¥ by

gi=29 (QﬁB ViaVig+Q2? V—iAVzB) , (4.47)

where Q4B = QP4 are two symmetric 2 x 2 matrices. As a consequence, the
determinant is found to be given by

_ I
9l = -T5%Q.Q ', (4.48)

where ()1 denote the respective determinants, i.e., Q4+ := det (Q‘i‘B).

With the ansatz (4.47) one can look for the conditions for the matrices
Q42 to be satisfied so that the metric (4.47) fulfills (4.22). The action of the
Hodge dual operator of g on F' can be written as

1 , ,
*F = Z\g|1/2 €ijki g*™ g Frp dact A da? (4.49)

Rewriting the right hand side of (4.49) using (4.47), (4.48), and the properties
(4.41)—(4.43), one finds

1 S
Fo= Z|g\1/2 &kt 99" Frpy, dz* N da?
1 .
2IZ|Q+Q— |1/2 Ezjkl
x (QEP VIoVip + QAP V! V) Fun da' A da?
1 2 m n
~350, a7 o [Q1P QT ViVl (VisViFan)
+QAPQEPVE V! o (VI VI Fry)| da’ A da?
€

BD N _
= T40.q [QﬁBQﬁD VE Vi Y2

(QEP VEVT, + QP VEVT,)

- 41Q,
— QAPQEP VRV [KH'?] da' A da
e 1/2 vk 171
= _W €ijkl [Q+ ‘k | V+AV+C
—Q_ [k V2 VE, V] dat A dal. (4.50)
We now use the identity
éijle:tAV:Il:C dx’ A d.’IIj =-2 (V:I:AJ V:th é) ) (451)

73



and rewrite (4.50) as

6AC

Fo= 210,012 [QHI(WZ (VialViclé)

—Q_ KT (V_alV_cle)] da’ Ndal. (4.52)

With this result and the expression (4.45) for the excitation we find that
the conditions on the @-matrices for (4.47) to fulfill (4.22) are:

Qe Q-
Qo= e b (4:59)
which is fulfilled provided
Q-=-Qs, Q>0 (4.54)

Furthermore, due to the arbitrary factor S in the ansatz (4.47), one can
choose

RQ-=-Q+=1 (4.55)

without restricting the generality of the metric. For the special coordinate
system in which (4.39) and (4.40) hold, the choice

+1 0
4B — ( 0 1 ) (4.56)
leads to
g9 = S(EB)'/?n¥, (4.57)

i.e., to a conformal Minkowski metric.
Summing up, Peres re-constructs the spacetime metric, which is assumed

to exist, in terms of four vectors V.4, A, B, ... = 1,2, satisfying
Vial (Vop]F) = 0. (4.58)
L 1/2
Via] (Vi) F) = = [k~ eas, (4.59)
I +11/2
V_a| (V_g|F) = 0l |kT | *eap. (4.60)

74



Then the metric is given by
g =5(QIPVia®Vip+ QP V.40V p), (4.61)
with

Q. =-Q, =1 (4.62)

However, this prescription for constructing the metric is not unique. Con-
sider that (4.58)—(4.60) are solved for some particular vectors V. 4 in a given
coordinate system. Then the only condition on the symmetric matrices Q42
is @ = —Q, = 1. This leaves 2 independent functions for each matrix Q.
Additionally, the function S, related to the conformal invariance of (4.22), is
also arbitrary. Therefore, the metric constructed by Peres contains 5 arbi-
trary functions. In the approach of Peres, therefore, not all the information
about the lightcone structure is extracted from the fields F' and H. It is
also unclear which additional conditions must be imposed to obtain a unique
class of conformal metrics.

There seems to be no clear relationship between the quantities involved in
the work of Peres (for instance, the vectors V.r) with the objects introduced
by Schonberg and Harnett, see below.

4.3.2 Schonberg-Urbantke formula

Here we discuss the the successful derivation of of the conformal metric by
Schonberg and the related work of Harnett.

Schonberg’s derivation

In his work [77] Schonberg studied a different derivation of the metric from
electromagnetism. Additionally, the analysis in [77] helps to better under-
stand the group theoretical aspects of the emergence of a lorentzian metric
structure, and therefore of the Lorentz group.

As we already saw before, the electromagnetic field strength F', with its
six independent components, can be described as a vector in a 6-dimensional
real vector space. We call this space Sg. One can map a basis of the space
of 2-form, dz® A dz™ to a basis b of S¢ by means of the rule [ijis] — I =
01,02, 03,23, 31,12. Then one can write a vector A € Sg as A = A;b'.
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An important role is played by an inner product € on Sg induced by the
4-dimensional Levi-Civita symbol €/*. Given two vectors A and B of Se,
one can define their product as

€(A,B) := ¢!’ A;B;. (4.63)
In 4-dimensional notation, this is equivalent to
€(A,B)é:= AN B, (4.64)

or, in components,
1 ..
G(A, B) = Z E”klAz'jBkl. (465)

Thus, the Levi-Civita symbol acts as a metric in the 6-dimensional space
Ss. Notice however that €(A, B) is a 4-dimensional density of weight +1.
Since the eigenvalues of ¢!/ are +1 and —1, each with multiplicity 3 (see
(2.73b)), the signature of e/’ is (+1,+1,+1,—1,—1,—1). This immediately
shows that the 6-dimensional space Sg naturally contains a SO(3,3) group
structure. Transformation of Sg-vectors under the action of the SO(3,3)
group leaves the product (4.63) invariant. It is important to emphasize that
this group structure is always present, independent of any metric, affine, or
whatever additional structure on the 4-dimensional manifold.

Using this product, one can express the assumption of symmetry of the
constitutive tensor, i.e. @y =0 as

€(A,JB) =¢€(JA,B) (4.66)
for all A, B € Sg, because

€(A,JB) = 7 A; J X B = x'"* A/ Bg (4.67)
since x'¥ = ¢!/ J,X and

€(JA,B) = ' J, X AxB; = x'* AxB; = x*' A Bk, (4.68)

so that (4.66) requires symmetry of ¥, i.e., x'/ = x/I.
Furthermore, the additional condition of closure of the operator J, i.e.,

J? = -1, (4.69)

is assumed to hold.
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In the 6-dimensional real space Sg, the introduction of the linear operator
J satisfying (4.66) and (4.69) induces a complez structure. In order to be able
to discuss this structure and in particular the eigenvectors of the operator J,
consider the complex extension of Sg, i.e. the vector space of the complex 2-
forms Sg¢(C). The negative sign on the right hand side of (4.69) implies that
the eigenvalues of J are ¢, and since J is a real operator each eigenvalue must
have multiplicity 3. This means that the corresponding self-dual and antiself-
dual subspaces spanned by vectors with eigenvalues +¢ and —¢ are both 3-
dimensional. We denote these subspaces as S; (C') and S; (C) respectively.
The vectors of S5 (C) will be denoted as A* and satisfy

J A = +iA*, (4.70)
Take any A* € S5 (C) and write it as A* = A +iA’ with A and A’ real
6-dimensional vectors (i.e. A, A’ € Sg). Then from (4.70) one finds that

J(A+iA") = +i(A+iA"), (4.71)
with implies

JA=TFA, JA =+A. (4.72)

Using (4.72) one can rewrite every element S* of 5%, in terms of only the
real A € Sg and the operator J, as

A= ATiJA. (4.73)

The spaces S (C) and Sz (C) are orthogonal with respect to the product
e. Take any AT € S (C) and B~ € S5 (C). Write them in the form (4.73),
ie. At =A—1iJA and B- = B +iJB, and compute their e-product. Using
the symmetry and closure properties (4.66) and (4.69) one finds
e(A",B7) = ¢(A—1iJA B+iJB)
= ¢(A,B) +ie(A,JB) —ie(J A,B) + ¢(J A, J B)
= ¢(A,B) +ie(A,JB) —ie(A,J B) +¢(A, J* B)
= ¢(A,B) +¢€(A,-B)

0 (4.74)

Consider a real operator M acting on the real space Sg. If A € Sg then
also MA € Sg. However, the self-dual element (M A)" of S5 will in general
not be the result of the application of the linear operator M on A*, since

(MA)™ = (MA) — iJ(MA) £ M(A — iJA) = M(A"), (4.75)
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unless the operators M and J commute, i.e. [M,J] = 0. In other words,
not every linear operator on Sg is a linear operator in S;5". In particular, not
every element of the group O(3,3) which leaves € invariant defines a linear
operator in the self-dual space Sy .

The corresponding subgroup of O(3,3) which commutes with J, i.e. the
subgroup form by those operators N such that

e(NA,NB)=¢(A,B), [N,J]=0, (4.76)

can be shown to be isomorphic to the Lorentz group. To prove this, consider
the product ¢ restricted to the self-dual subspace S;, which we denote as €',
and is defined by

et (A*,B") :=¢(A",B"). (4.77)

Consider operators N satisfying (4.76) which are therefore also linear oper-
ators of S5 . It is clear that they will also leave invariant the 3-dimensional
product €, since in this case

e (WA, (NB)Y) = € (NAT,NBT)
= ¢(NAT,NBY)
- c(anp)
= ¢ (4%, BT). (4.78)

This shows that the subgroup of O(3,3) commuting with J forms the in-
variance group of the 3-dimensional metric induced by €t in S;. But since
S5 is a complex linear space, the corresponding invariance group of e* is
clearly SO(3,C), which is isomorphic to the Lorentz group SO(3,1). In
other words, an operator J satisfying symmetry (4.66) and closure (4.69)
induces a SO(3,C) ~ SO(3,1) group structure, which manifest itself as the
symmetry group of the natural metric structure on the self-dual space of J.
Alternatively, the same arguments can be repeated considering the anti-self-
dual space S5

We consider now how to reconstruct the metric components of the corre-
sponding induced lorentzian metric. Consider a basis for each subspace. We
denote the basis of S5 by Sf), a,b,...=1,2,3. Then the complex conjugate

5@ = (sz))* is a basis of S5, see (4.70). Since Ss(C) = S5 & S5, the
six Sg-vectors {ng ),S(_a)} form a basis of Sg(C). Then the orthogonality
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property (4.74) implies that the components of the metric € of Sg(C) in the
basis {SSf ), S(_a)} form a block-diagonal matrix, since € (ng ), s )) = 0.

One can use the exterior product of vectors in Sg(C'), which we denote by
A\, and determine a volume element of S5 as

]. ~ a [
W, :=SPASPASE = 5 fate SWASPASE, (4.79)

Then W, is a 3-form on S, i.e. W, € A3(Sg). Since S; is 3-dimensional,
W, is, up to a scalar factor, independent of the choice of the basis S(f).
Furthermore, any product of order higher that 3 of basis vectors S(ﬁ’ vanishes
identically (e.g., SELG)A S@A SJ(f)A S(f) = 0). A volume element W_ for
S can be similarly defined using the basis S of S;, which then satisfies
W_ = (W,)".

A 3-form W € A3(Ss) has 20 independent components Wy sk, which corre-
spond to a 4-dimensional tensor W, i, ;, j,k,k, Of order six, with the symmetries
Wi1i2j1j2k1k2 = _I/lejzilizklkz = _Wklkzjljziliz = _VViﬂzklkzjljz and of course
Wiiisjrjokiks = —Wigiijiiskiks» €tC. From this tensor, a symmetric second order
4-dimensional tensor density of weight +1 can be defined as

1
Wij == 5 eklmn Wiklmnja (480)

which has therefore 10 independent components. The remaining 10 compo-
nents of W can be mapped to a second order contravariant tensor density of
weight +2, defined by

— 1 . .
WY = 1 €F M W tmnpq €PY. (4.81)
Following (4.80) we define the tensor density W;} associated to W, as
1 mn
Wl—.i; = 5 ekl I/I/vi—lli:—lmn]" (482)
or, equivalently,
1 mn » +(a) a+() ot+(c
WZ_; = 2‘—3! fkl €abe Szk( ) Slﬂ’l(, ) Sn]( ). (4.83)

Furthermore, we saw that a change of the basis Sf ) of S3 to a new one

Sﬁa) leads to a new volume W which is necessarily proportional to W, i.e.
W = a3 W, for some a3. One can therefore define a new tensor density by

—1/4

Wy = (det W) " Wi (4.84)
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Then W+ is a tensor density of weight —1/2 which is independent of the
choice of the basis SS? ) of S5, Because of this important property, W:; must
describe an intrinsic property of the self-dual space S; and therefore of the
operator J. It is then tempting to identify the symmetric tensor density
(4.84) with the comformally invariant part of the metric tensor |g|~'/*g;;,

which is also a tensor density of weight —1/2, i.e.,
W = algl™*gi;, (4.85)

with some (in general complex) factor a.

That this identification is consistent with our expectations can be checked
as follows. Consider the linear operator £ acting on vectors of Sg(C'), defined
by

1
(LA),; = 3 LM Ay, (4.86)
with
L* = Wi Wi, emnkt, (4.87)

This operator is expected to be related to the original operator J, because
the identification (4.85) would imply

Ly* = a” |g|™ gim gjn €™, (4.88)

which is proportional to the Hodge dual operator of the metric g, when
applied to 2-forms.
Using (4.84) one re-writes the definition (4.87) of the operator £ as

L = (det)/v;,;)_”2 Wit Wi, em, (4.89)

Furthermore. it can be proved that £ is a complex operator. From (4.89) and
the definition (4.83) one can verify by direct but rather lengthy calculations
that the elements of S5 and S; are eigenvectors of £ with eigenvalues +1
and —1, respectively, i.e.

LSt =87, LS~ =-5". (4.90)

Since S3 = (S;)*, the operator £ cannot be real. If it were (4.90a) would
imply £S5~ = —S~, contradicting (4.90b). It is therefore clear that the real
operator J is just given by J = <L, because

(i£)ST =iST,  (iL)S™ = —iS™, (4.91)
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which coincides with (4.70). The property (4.91) is valid for any vector of

Sy and since Sg(C) = Sy @ Sy, it implies that the action of i£ and J on

any vector of Sg(C') is exactly the same, hence they are the same operator.
Thus, we have proved that

J = iL. (4.92)
so that, from (4.89), we have
—-1/2
T = (—detws) " Wi, Wy, emni (4.93)
With the identification (4.85) we write the operator J as

Jii H—./—g GimGjn €Mkl (4.94)

From this expression, one sees that the metric g;; can be taken to be real,
with lorentzian signature, since J is a real operator. In other words, the
results and (4.83) allow us to reconstruct the metric components as

Gij ~ 6klmn éabc S:l—c(a) Sl_'—m(b) S;;(C), (495)

with g;; real. The conformal factor remains of course undetermined.

Harnett’s proof

In ref. [23] Clifford algebra methods are used to derive the Urbantke formula.
This Clifford algebra is defined in a metric-independent way, since it requires
only the use of the totally antisymmetric tensor density €, which serves as a
metric for the 6-dimensional space Sg (of 2-forms). Therefore, the Clifford

algebra is defined as that corresponding to the metric ¢!/, I, J,...=1,...,6,
i.e., as given by six algebra elements v/ acting on a ‘spin’ space S, satisfying
{'yI,'yJ} =271, (4.96)

It is a general result of the theory of Clifford algebras that for a metric space
of dimension n the dimension of the irreducible representation of the algebra
(4.96) is of dimension N = 2"2 for n even, and N = 2(®~1)/2 for n odd, see
for instance [67], appendix B.

Thus, for instance, N = 4 in 4-dimensional Minkowski space, correspond-
ing to the Dirac representation of the Clifford algebra. In our case n = 6 so
that the irreducible representation is 8-dimensional.
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Natural elements constructed using the elements v/ are the totally anti-
symmetric objects

e L I R A (4.97)
etc. Due to (4.96), other combinations of products can be written as lin-
ear combinations of the above and the identity. These totally antisym-
metric objects are in correspondence to the spaces of exterior forms on
the 6-dimensional linear space A%(V'). This means that given a p-form (p-
vector) Ajrs..] one can define an element of the Clifford algebra by v(A) :=
P A
First, an explicit representation of the Clifford algebra (4.96) is con-
structed. Consider, for every second order antisymmetric tensor Fj;, the
linear operator I'(F') € Hom(V,V*), i.e. an operator which, when applied to
a vector u’ € V, gives a covector [I'(F)ul; := [[(F)];; w’ € V*, where
[F(F)]i]‘ = Fij. (4.98)
A second operator f‘(F ) € Hom(V*,V) is defined in an analogous way
by
2 i1
[F(F)]” = 5 € P (4.99)

Denoting each pair of antisymmetric indices [¢;i5] using the bivector index
I, etc., we define now the quantities

7, = 20006, DT .= chiid (4.100)
so that
[T(F)]y = FIijFI’ [f‘(F)T] =T (4.101)

From these definitions, it is direct to verify that the following property is
identically satisfied

y ik
2[0(F)],; [D(F)]" = sk e(F, F), (4.102)
where ¢(F, F) is the inner product induced by the ‘metric’ €/’ of Sg, see
(4.63). Since (4.102) holds for any F' € Sg, we have
or ([ [k = gk el (4.103)
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As next step, the 8-dimensional operator y(F') is defined by

P 0 £ 104
O ={ s o) (4.104)
with ‘components’
7= ( f\?ij F(;ij ) ) (4.105)

: '
such that, when applied on a pair ( ﬁz ) € V*@V gives a new pair ( fi’, ) €
V* @ V, defined by

(ﬁ):<ﬁéﬁjm?h)(ﬁ)- (4.106)

Using the identity (4.103) we find that

2[(F)) = —€(F, F) 15. (4.107)
As the identity (4.107) is valid for any Fj, we obtain
2UyD) = 1€l (4.108)

showing that the matrices (4.105) form an 8-dimensional (metric-free) rep-
resentation of the 6-dimensional Clifford algebra (4.96). The spinors in this
representation are given by the 8-dimensional quantities on which the matri-
ces y(F) act.

This explicit construction agrees with the general result that for a Clifford
algebra of even dimension n, it is possible to find representations with the
form (4.105), i.e., with block off-diagonal matrices /. In this case the spaces
on which T';; and 74 act are called reduced spin spaces, see [67]. In other
words, the explicit representation of Harnett shows that the reduced spin
spaces of the irreducible representation of the 6-dimensional Clifford algebra
(4.96) correspond to the tangent and cotangent spaces of the 4-dimensional
spacetime. The spinors of the representation are then direct sums of vector
and covectors, i.e. S=V*p V.

Now, we compute the higher order elements v// and v//X as defined in
(4.97). Direct application of their definition gives

FI.Ij 0

1J i

Y= ( IJ i ) ’ (4109)
0 Iy
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with

7 Z.j — F[Iikfu] kj, fIJij — f[[\z‘k|FJ]kj , (4.110)
and

I = ( fIJOKij FI;Ii{j ) ) (4.111)
with

FIJI(ij — F[Iikf\ﬂkurKl}j, [IIKij . f\[I|ik|FJklfwk] ij (4.112)

It follows from these definitions that I''/%X; and I'"/X% are symmetric in

the pair of spacetime indices ij. These objects will be directly related to
the derivation of the metric tensor when the additional structure provided
by a symmetric duality operator is introduced. In what follows, explicit
expressions for the I''/%; and I'7Kij will be useful. From (4.111), (4.112)
and (4.100) we find

IJK  _ = k1 g2 d1iskej1 _ Ski §J1 _d1ickaje _ Sk2 §72 d1i2k1j1
+(5f2(5§16“12k”2 _ 6;15}26791/6212]1 + 5;15}161611%12]2
+o7 62 ekrkanin _ g g hikaind) (4.113)

f\IJK i — 1 (€i1’i2ij1€k1k2j1j o €i1i2’ij2€k1k2jzj o Eilizik1€jlj2k2j

+€i1i2ik2€j1j2k1j + ejljziklehizkzj _ ejljzikzeilizklj

_€j1j2ii1€k1k2’i2j + ejljziizeklkz’ilj + eklkziilejljzizj

_eklkzuzehjzzu _ €k1k221161122]2] + €k1k221262112]1]) . (4_114)
With this, one can verify the identities

VK T, M =48 560k, (4.115)

7]
TE Tk =0,  TYEOIL M —0. (4.116)

Here the 6-dimensional indices I, J,... have been raised and lowered using

the ‘metric’ 7.
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Given a quantity of the form A;;x = Ayyk), i-e a 3-form of Sg (20
independent components), one can define the ‘spinor’ y(A) by v(A4) :=
3,71 JK A;;k (the same can be done for any form on the 6-dimensional space).
Looking at (4.111) we see that y(A) defines in fact two second order sym-
metric (co)tensors, namely 1I‘”K Ak and I‘UK” Arskx. This objects
are equivalent to the deﬁn1t10ns (4 81) and (4. 80) of Schonberg, respectively.
This vector will provide, when applied to a volume element of a selfdual space
of the dual operator J, the contravariant and covariant components of the
metric tensor, respectively, see below.

The identities (4.115) and (4.116) can be used to prove a formula for the
inverse of y(A). One verifies that if

1 .
Ay = g( 10 Ui+ Tuax 5 V) (4.117)

then
0 U
v(A) = ( Vi 0] ) ) (4.118)

With these objects, Harnett finally defines, assuming the presence of a
metric g;j, the quantity Sryx (a 3-form on Ss) defined by

o 0 i|g‘1/4gz'j
v(5) = ( |g|71/4gz'j 0 ) (4.119)

and the inverse formula (4.117).

The definition (4.119), and in particular the choice of the imaginary factor
¢ on the right hand side, which is necessary in the case of a lorentzian metric,
is constructed such that ** = —1 and the following property is fulfilled

1CF) = v(Sh(F)(S5), (4.120)

where * is the Hodge dual operator defined by the metric, i.e.

\ V19l
("Fig = ~5— &mg™ 9" Frun. (4.121)

The identity (4.120) can be directly proved computing the right hand
side:

_ 0 ilg| g 0 F,
Y(S)V(F)y(S) = <|g\1/4 ij 0 %ejklm};vlm 0
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% 0 i|g|71/4gkn
|g‘1/4gkn 0
_ 0 ilg|~ gy
- |g‘1/4 ij 0

|9\1/4F kg™ 0
% |g|_1/461klmF1lmgkn

— _% |g‘_1/26jklm}7lmgkngij
‘1/2 ng g 0

_ %|g|1/2éinjkgjlgkmﬂm

- | 1/2 z]F g 0

_ ( . mlm (*Fo)in )

_ (4.122)

Here we used that g = det g;; < 0 for a lorentzian metric.

Finally, Harnett shows that the S;;x defined above is in fact a volume
element of the 3-dimensional space S; (C) which is self-dual with respect to
the Hodge dual operator of the metric. This volume element is unique up to
a scalar factor and can therefore be computed using any basis of the space
of self dual 2-forms. The definition (4.119) provides then explicit formulas
for the (covariant and contravariant components of the) metric tensor of
spacetime from a quantity that depends only on the properties of the Hodge
dual.

Therefore, this approach also assumes the existence of a metric such that
the dual operator corresponds to its Hodge operator. However, the proof that
S must be a volume element of the selfdual space is not clear. It involves the
consideration of the so called ‘twisted adjunct representation’ and a theorem
by Harvey, see [23]. This is of course, one of the essential points of this proof
of the Urbantke formula.

However, once it is proven that S is a volume element of the space of self-
dual 2-forms (2-vectors) S*, the Urbantke formula is found in the following
way. If S@ a = 1,2,3 is a basis of the 3-dimensional space Sy, then a
volume element can be constructed as

Sirx ~ EapeSDSP 5 (4.123)
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This quantity is unique up to an overall factor. Using this result, the associ-
ated y(S) consists of the metric componets g;; and g%, given by

g5 = TV . Sppac ~ THE 60,5508 (4.124)
igh = TR Gy o T, S SP S (4.125)

Finally, using (4.113) and (4.114), we find

gij ~ Earec ™SS0 SK (4.126)
g7 ~ igee™meinre 5 51 ) (4.127)

The derivation of Harnett seems to be then equivalent to that of Schon-
berg, but using the formalism of the Clifford algebra naturally defined in the
6-dimensional space Sg. In both approaches a fundamental role is played by
the self-dual space defined by the duality operator, and in particular by the
volume element of S3, which is mapped in the 4-dimensional space into the
conformal metric components. The formalism developed by Harnett offers,
however, a more powerfull framework for the case in which one in interested
in formulate the whole conformal geometry in term of the 6-dimensional
quantities related to Sg.

4.3.3 Necessary and sufficient conditions for the con-
stitutive tensor

The results discussed above can be summarized as follows. If the operator
J defined in (4.14) by the dimensionless part of the constitutive tensor is
symmetric and defines a complex structure, i.e. (4.20) and (4.21) are satisfied,
then a lorentzian metric g is determined, up to a conformal factor such that

X ik = 9. /=g gilkglli, (4.128)

with g := detg;; < 0. In other words, the conditions (4.20) and (4.21) are

sufficient to be able to write X in the form (4.128)
But it is clear, see the discussion in section 4.1, that (4.128) is sufficient
to ensure that the corresponding operator J satisfies (4.20) and (4.21).
Therefore,
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The necessary and sufficient conditions to be able to write the dimension-
[o]
less part X of the constitutive tensor as

y ikl _ 2v/—9 gilkgli (4.129)
with a lorentzian metric g are symmetry

X ikt =X Mij (4.130)
and closure

L. o v
g €aByé 5.( 7660650;11/ >0< AP — _263)‘65} (4131)

4.4 (General solution of the Closure Relation

In order to be able to find an explicit expression for the metric in terms
of quantities describing the components of the constitutive tensor, we have
to solve the closure relation (4.13), or equivalently (4.18). We will solve this
equations for the general case in which the constitutive tensor is asymmetric,
so that we can later investigate the effect of relaxing the symmetry condition.

Let us now make the closure relation explicit. We turn back to the consti-
tutive 6 x 6 matrix (4.19). We define dimensionless 3 x 3 matrices A= AJ¢,
etc. In terms of these dimensionless matrices (we immediately drop the small
circle for convenience), the closure relation reads,

A*Bg +C°C% = -6,
C A? + Aachb = 0,
B.C%+D, By = 0,
B, A+ DD = -8,

In 3 x 3 matrix notation, we then have

AB+C? = —13, (4.136)
CA+AD = 0, (4.137)
BC+DB = 0, (4.138)
BA+D? = —1s. (4.139)
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Assume det B # 0. Then we can find the general non-degenerate solution as
follows. Define the matrix K, by

K:=BC, ie. C=B"K, (4.140)
and substitute it into (4.138), then

D=-KB' (4.141)
Next, solve (4.136) with respect to A:

A=-B'-B'KB'KB" (4.142)

Multiply (4.142) by C from the left and by D from the right, respectively,
and find with (4.140) and (4.141),

CA = -B'KB'-B'KB'KB 'KB, (4.143)

AD = +B'KB'+B'KB 'KB'KB . (4.144)
Thus, (4.137) is automatically satisfied. Accordingly, only (4.139) has still
to be checked. We compute its first and second term of its left side,

BA = —-13—- KB 'KB™, (4.145)

D?* = KB 'KB, (4.146)
and find that it is fulfilled, indeed.

Summing up, we have derived the general solution of the closure relation
(4.19) in terms of two arbitrary matrices B and K as

A = -B'-B'KB'KB, (4.147)
C = B'K, (4.148)
D = —-KB, (4.149)

or, in components,

A? = —B® - B“K B%K, B, (4.150)
B® = B* (4.151)
C% = B*Kg, (4.152)
DY = —K,.B®. (4.153)
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Here B are the components of the inverse B!, i.e. B%®By, = 6¢. The
solution thus has 2 x 9 = 18 independent components. Alternatively, one
can write the solution in a more compact notation, as

A = —(1;+C)B 1, (4.154)
D = —-BCB, (4.155)

which is parametrized by the arbitrary matrices B and C with altogether 18
independent components. In components, this means

A® = —(85+ DS DSf)BY, (4.156)
By = Ba, (4.157)
ct —B..DSBY, (4.158)
D,* = D, (4.159)

(4.160)

4.4.1 Explicit derivation of the metric components from
the constitutive tensor

Here, the Schonberg-Urbantke formula will be used to find an explicit ex-
pression for the conformal metric in terms of quantities parametrizing a con-
stitutive tensor satisfying the assumptions of symmetry and closure. From
the symmetry condition one finds that the constitutive tensor has the form
(2.73), but with

A% =A% By =By,  D,°=CC, (4.161)

so that )y = 0, see (2.75). These symmetry conditions restrict the general
solution of the closure relation found in the last section. From (4.152) and
(4.153) we see that (4.161c) implies —K,.B°¢ = B*K,. Multiplying this
equation by B,; and using (4.161c) we obtain —Kpy = Ky which tells us
that the matrix K must be antisymmetric. Then (4.150) implies that A is
automatically symmetric, so no further conditions on K arise from (4.161a).
In summary, a symmetric constitutive tensor satisfying the closure relation
is given by (4.150)—(4.153) with

Bab = Bea, Kup = —Kpo. (4.162)
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As we saw in section 4.3.2, to construct the metric using the Schonberg-
Urbantke formula, we need a basis of the 3-dimensional space S5 of self-dual
2-forms of the duality operator J.

To that end, we decompose the basis b’ of Sg into two 3-dimensional
column vectors, according to

bfz(ﬁ ) a,b,...=1,2,3. (4.163)
Yo
Then we can find their self-dual parts,
1 .
vl = E(bI — i JbY), (4.164)

and decompose them similarly as in (4.163), into

vl = ( Py ) : (4.165)

T
Assuming, as we did before to find a solution of the closure relation, that
the matrix B is nonsingular, we can show that one can take y* as a basis
of the self-dual space Sj, since the remaining self-dual 2-forms 3, can be
written as linear combinations of the former. This is expected since Sj is
3-dimensional. Explicitly, we have

B = (6§ + B*K o) By (4.166)
This allows us to choose the 2-forms «;" or, equivalently, the triplet
S% = —B%y, (4.167)

as basis of Sy .
The information of the constitutive tensor x is now encoded into the
: : (a)
triplet of 2-forms S7”.

The (Si)z’j are the components of the 2-form triplet S¢ = (Si)ij dxt A

dz'/2. If we substitute the self-dual 2-forms S into (4.95), we can display
the metric explicitly in terms of the constitutive coefficients:

_ det B ‘ —k,
i _¢< “ Ty | —Ba + (det B) kg k,,) ' (4.168)

Here k® := € Kyc/2, kq := Bgpk® and ¢ is an arbitrary factor. The determi-
nant of this metric is found to be g = —¢* (det B)? so that we verify that the
metric in (4.168) has lorentzian signature.
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4.4.2 Properties of the metric
The inverse of (4.168) can be found to be

(4.169)

4 1 <1—(det8)1kck°\ —k )

" bdetB —ka | —(det B)B*

With the help of (4.168) and (4.169), we can compute the Hodge duality
operator * attached to this metric. In terms of the components of the 2-form
F', we have

*Ej = 2_9 éijkl gkmglnan. (4170)

This equation can be rewritten, in analogy to (2.45), by using the constitutive
tensor xyg) defined in (4.3), so that

1

*E]:Z

&kt Xy " Frnns (4.171)

In order to compare Xy, with the original constitutive tensor x, we com-
pute the corresponding 3-dimensional constitutive matrices of x4 according
to (2.64) and (2.64).

Then straightforward calculations yield

Ay = V=g (9% — g"g™) = A, (4.172)
1 ~ ~
(B{g})ab fd Z‘ /_g (gCegdf _ gdegef) facd eefb fnd Baba (4.173)
1 C Qa ac ~ a a
Cip)s = 5V (9%°9° — 9%°9") bhea = B Ky = C%.  (4.174)

Thus, x{g} = X, i.e., the metric extracted allows us to write the original
duality operator J as Hodge duality operator, J = *, when applied on 2-
forms.

4.4.3 Alternative derivation

Here we provide an alternative derivation of the conformal metric, this time
based on a direct computation of the Fresnel equation for the symmetric
solution of the closure relation given by (4.150), (4.153) and (4.162). Us-
ing this equation and our general expressions (3.34)-(3.37) for the Fresnel
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equation in terms of the 3-dimensional constitutive matrices, we find after a
straightforward calculation that

1 k ke \”
M — ]_ —_ a 4175
det B ( det B) ’ ( )
1 kpk®
Ma — 4 a 1 _ 41
det B b ( det B) ’ (4.176)
1 k.k°
M® = — _—— _4k%kP 4+ 2B% 1 - = 4.1
L ket 1 2 ( X B) , (4.177)
Mabc — _4 Bb(a kc), (4178)
M(abcd) - _ (det B) B(abBCd). (4179)

Substituting all this into the general Fresnel equation (3.30), we find

0 [ (. ke
S 1- — 2g0(qak®
W det B lq" ( det B) O

~ (det B) (2,0,B™)]". (4.180)

Therefore we find that the Fresnel equation, W = 0, can be written as

(9%a0;)” =0, (4.181)

where g¥ is the (inverse) 4-dimensional conformal metric which arises from
the duality operator and the closure relation. Direct comparison with (4.180)
shows that

koke
@ = o (1— detB), (4.182)
@ = -y (4.183)
g = —v (det B) B. (4.184)

Here % in the undertermined conformal factor.

Thus we indeed recover the null cone structure for the propagation of
electromagnetic waves from our general analysis. The quartic surface degen-
erates to the null cone for the conformal metric g.
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4.5 Relaxing the symmetry condition

Having verified and explicitly constructed the metric tensor from the consti-
tutive tensor in the case in which it is symmetric and satisfies the closure
relation, we want to study what consequences on the emergence of a confor-
mal structure a nonvanishing skewon piece in the constitutive tensor could
have. In particular, can the spacetime metric still be constructed? We have
seen that the skewon piece does influence the lightcone structure, and we also
saw that an asymmetric constitutive tensor satisfying closure can accommo-
date 18 independent functions. Could this case for instance correspond to
the emergence of two lightcones, each with its 9 independent components?

Unfortunately, a computation of the Fresnel tensor and the Fresnel equa-
tion using the general asymmetric solution (4.150) of the closure relation
does not help much to recognize a possible double light cone structure. The
Fresnel equation is still a quartic equation, in general.

In what follows, we will study a particular case to try to get an idea of
the qualitative properties that an additional skewon piece can induce. We
will consider the case in which K = 0, which implies D = 0, C = 0 2 and
A = —B~!. Furthermore, we decompose the arbitrary matrix B into its
symmetric and antisymmetric parts,

Bab = bab + éabcnc, with bab = B(ab); nt .= Gcab B[ab]- (4185)

Note that by, contributes to M)y and n¢ to @y. Now we can lower the index
of n® by means of b, namely, n, := by, n° and n? := nn, = by nn®, and,
provided det b # 0, we can raise an index by 5% which denotes the inverse of
bas- We find det B = det b + n?, and the inverse of (4.185a) reads

1 —
ab ab a, b _abc
B* = detbn? (b +n'n’ —e nc) . (4.186)
Here the symmetric matrix b is the matrix of the minors of byy. If det b # 0,
then b = b det b.

Then, by substituting (4.185) into (3.30), we obtain:

W=a [q§ —2q¢5 (q2 detb — (qn)2) + (q2 detb + (qn)2)2] i (4.187)

2

Here we used the abbreviation (¢n) := ¢, n® and a := — (det%ﬁz).

%i.e., a medium with no ‘magneto-electrical’ properties.
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In general, this expression is neither a square of a quadratic polyno-
mial nor a product of two quadratic polynomials. In other words, neither a
lightcone nor a birefringence (double lightcone) structure arises generically.
In order to study the reduction conditions, let us assume that the Fresnel
equation is a product of two quadratic equations for g;, i.e., the spacetime
‘medium’ is birefringent. Accordingly, for (4.187) we make the general ansatz

2
0 2 2
W = — — — 4.188
2
9o 4 2
- _ — 4.189
with some polynomials o and 3 of order 2 in g,. This implies the relations
2
a+pB=2(~(m)?), oB=(F+@)?), (4.190)

with @ := g,q3b®. Since o and 3 enter symmetrically in (4.190), the solutions
of this nonlinear system can be given in the form

a=— [(qn) + —qzr, B=- [(qn) — \/—7@2]2 . (4.191)

Thus, the question of the reducibility of the Fresnel equation translates

into the algebraic problem of whether the square root \/—7@2 is a real linear
polynomial in g,. There are three cases, depending on the rank of the 3 x 3
matrix bgp.

(i) When b, has rank 3, in other words, when detd # 0, then we can
write 2 = ¢.qs b® det b, and the general conclusion is that no factorization
into light cones is possible (the roots o are complex), unless n® = 0. This
latter condition implies that the constitutive tensor is symmetric, and the
previous results are recovered.

(ii) When by has rank 2, i.e., detb = 0, but at least one of the minors
is nontrivial. Then, without loss of generality, we can assume the following
structure of the matrix b:

bir bz 0
bap = | b1z b2 O |[. (4.192)
0 0 0

Its only non-vanishing minor is

bll b12
b21 b22

33

b = = by1boy — b2, # 0. (4.193)
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Note that (4.192) is the most general form of a rank 2 matrix b, up to a
renaming of the coordinates. In order to avoid complex solutions, we have
to assume that the minor o> = — u? < 0, so that v/—@% = pgz. Then (4.191)
leads to

2

o = — |an' +en’+ g0 +p)] (4.194)
2

g = - [qml +qon® + g3(n° — ,u)} : (4.195)

The interpretation is clear: we have birefringence, i.e., two light cones. In
this case, W is found to be

W= - %
b11 (n1)2 + 2b12n1n2 + b22 (n2)2

2
X [qg + (@' + @n® + gs(n® + 1)) ]

x [+ (' + an? + s — )] (4196)

Then we can read off, up to conformal factors, the components of the two
corresponding ‘metric’ tensors defining the light cones:

1 0 0 0
py 0 nl)2 nin? nl(nd +
9’ = 0 (nl7,22 (n2)? (n2n3 2 ) (4.197)
0 nt(nd+pu) n?n® (n®+ p)?
1 0 0 0
3 0 (n!)? nln? nl(nd — p)
ij _
9 =1 o nln? (n2)? n2n3 : (4.198)
0 ni(n®—p) n’n® (n®—p)?

We can verify that det(g¥) = det(g¥) = (n')?(n?)%0% = —(n')?(n?)?u? < 0,
so that both metrics have the correct Lorentzian signature.

(iii) When the 3 x 3 matrix b, has rank 1. In this case all the minors
are zero, i.e., g® = 0, which corresponds to the case 2 for u = 0. We then
see that the Fresnel equation reduces to a single light cone, but the resulting
metric is degenerated, since det(g¥/) = 0.

Thus, we have demonstrated that some of the asymmetric solutions of
the closure relation can yield birefringence.
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We saw that the conditions of closure and symmetry of x are sufficient for
the existence of a well-defined light cone structure. If any of these conditions
is violated, the light cone structure seems to be lost. The necessary conditions
have still to be found.
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Chapter 5

Conclusions and Prospects

In this work, we have developed a general framework for describing classical
electrodynamics in a general 4-dimensional medium. We have paid special
attention to identify the structures which are metric-independent, and which
can therefore be applied to a great variety of particular cases, from classical
optics in material media, to generalized models describing the electromag-
netic properties of spacetime.

One of the central results of this work is summarized in the Fresnel equa-
tion (3.29) and in particular in the Fresnel tensor (3.28). This equation
determines the local properties of the propagation of waves, in particular
it describes the geometry of the wave covectors. It is a remarkable result
that this important equation could be derived for any linear medium. Fur-
thermore, the result can also be used to describe the effective properties of
electromagnetic perturbations in nonlinear media. Its structure, i.e., its de-
pendence on the constitutive tensor of the corresponding medium is highly
nontrivial. Cubic structures are not very common in physics. To the best of
my knowledge, no previous derivation of the Fresnel equation has been given,
which is as general as that in section 3.2.

It is also important to emphasize that the Fresnel equation and the whole
formalism is generally covariant. This means in particular that no artificial or
particular coordinate choices are necessary and that only quantities describ-
ing intrinsic properties, in our case the constitutive tensor, of the physical
system under consideration enter in the formalism. Of course, inside a given
medium, for example, one can choose particular coordinates which are useful
for concrete calculations. This is usually the case if the medium possess some
symmetry, as defined in section 2.7.1. Then an adapted coordinate system
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can be used which exploits this symmetry, so that calculations become sim-
pler. This is, however, only a convenient choice, determined by the properties
of the system (the constitutive tensor), but not a necessary a priori ingredi-
ent. In a material medium which is not isotropic, for instance, there is no
a priori reason to use cartesian coordinates, the later are rather coordinates
adapted to an isotropic medium, as for instance the minkowskian vacuum.
Therefore, it is highly satisfactory to be able to describe the electromagnetic
properties of a material medium in a generally covariant way.

We also studied the properties of the three different irreducible pieces
which a general constitutive tensor can contain. We have proved that the
first, symmetric, piece My is essential for the medium to admit well behaved
wave properties. This piece is therefore the most important principal object
determining the geometry of wave covectors, and the lightcone structure un-
der some particular conditions. The second piece ?x was shown to describe
dissipative properties of the medium. A nonvanishing )y piece can lead to
dissipation of electromagnetic energy, even is the material is time indepen-
dent. Furthermore, the skewon piece does influence the wave propagation
and therefore the lightcone structure. We have shown, studying some par-
ticular cases, that the skewon field can even give rise to a double lightcone
structure. The third possible irreducible piece ®)x of a constitutive tensor,
the abelian axion, is more elusive. It does not contribute to the energy-
momentum density of the electromagnetic field, and does not affect the local
properties of the electromagnetic waves and therefore the lightcone struc-
ture. It is possible, however, that it could influence the properties of wave
propagation over finite (long) distances. Examples of all the three irreducible
pieces of a constitutive can be found in the literature. The skewon field has
been discussed so far only for material media violating C'P symmetry, but
so far not as a model for the classical electromagnetic properties of space-
time. If one follows the common assumption that a fundamental physical
system should be describable from an action principle, then the detection of
a skewon piece could be interpreted as indicating an underlying substructure
of the system under study. Of course, we do not claim here that the ske-
won field ist actually nonvanishing in spacetime. We however believe that
it is a possible piece which can be used to quantify well defined, in general
dissipative, properties of spacetime. Additionally, the skewon piece can be
used to model possible effects violating local Lorentz invariance. Within the
framework of GR, where a metric is present, one can show that the skewon
piece necessarily violates local Lorentz invariance, see appendix D.
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Furthermore, we have studied the conditions under which a lightcone
structure is induced. We have seen that if the constitutive tensor is symmet-
ric and satisfies a closure relation, a lightcone is in fact induced. We also
saw that the necessary and sufficient conditions for a constitutive tensor to
be written as proportional to the Hodge dual operator of some metric are
symmetry and closure. This one-to-one relationship is valid when we for-
mulate it in terms of the constitutive tensor. However, it is still an open
question whether symmetry and closure are necessary conditions for defin-
ing a lightcone, in the sense that the quartic Fresnel equation reduces to a
quadratic equation for the wave covectors, as discussed at the beginning of
chapter 4. We proved that symmetry and closure are sufficient conditions
for such reduction. Strictly speaking closure of the whole constitutive tensor
is not a necessary condition since an additional axion piece does not disturb
the Fresnel equation but violates closure. However, it may be that closure of
only the principal irreducible piece ")y and symmetry, i.e. @y = 0, could be
the necessary conditions. A proof of this conjecture is, however, still missing.
Non-trivial examples supporting this conjecture can be found in [64].

Other interesting open issues which could be investigated are: We have
seen that the constitutive tensor defines a certain generalization of the con-
formal properties of spacetime. Does it also defines a (generalized) affine
structure?. To answer this question, it would be interesting to study some
additional properties of the propagation of waves, for instace, how does the
polarization vector propagates along a light ray?. It should be possible to
find an answer to this question within our general formalism and it is ex-
pected to involve some affine properties (under which parallel displacement
is the polarization vector constant along the light ray?).

5.1 A possible dynamical theory for the con-
stitutive tensor ?

After developing the framework of linear pre-metric electrodynamics, and
having shown that, under favorable circumstances, the conformal metric can
be constructed from the constitutive tensor of the medium, one wonders if
it could be possible to develop a dynamical theory of spacetime in which the
constitutive tensor, and not the metric, is considered to be the fundamental
dynamical variable.
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It is also clear from the previous work that a possible dynamical theory
of spacetime as a linear electromagnetic medium can easily accommodate
phenomena beyond GR (e.g., birefringence), maintaining the possibility to
recover GR and its riemannian geometry in some limit.

Incidentally, it is interesting to notice in this context that GR was devel-
oped based on a description of spacetime in terms of riemannian geometry.
The later can be considered as a generally covariant theory of 4-dimensional
curved ’surfaces’ (manifolds), in which the metric tensor is the fundamental
variable describing the intrinsic properties of the ’surface’. One then wonders
if it could be possible to describe spacetime based on a generally covariant
theory of 4-dimensional inhomogeneous 'material’.

Here I speculate about this possibility and present a toy model to be
studied in the future.

Of course, the first problem which comes to mind is how to recover rie-
mannian geometry in a dynamical theory for the constitutive tensor.

Consider the Lagrange density

- 1 ..
E(X, F, F) = G_1/4g”klRinkl — ZX“le;ijl. (51)

Here R;; := Ric;;(T') is the Ricci tensor of a connection I';;* (consider first
a symmetric one) taken as a second independent dynamical field, G is the
Fresnel tensor defined in (3.28) and G is the ‘generalized determinant’ of G,
defined by

R A A A ~ i k1l kol kal kal
G:= $6i1i2i31’46]'1]'2]'3]'4€k1kzk3k4€lllzlg,l4g ki Grazbata Glajshals Grajafisla (5 2)

Notice that G is a scalar. Therefore, the Lagrange density above, which is a
scalar density of weight +1 as it should be, depends only on the constitutive
tensor, the connection and the electromagnetic field strength.

This choice of a Lagrangian was motivated by the work of Tapia [89].
In [89] it was shown that, in vacuum (F = 0), the tensor G must reduce
such that Gk oc g(@gk)  recovering the (conformal) metric. Furthermore,
the equations obtained by variation with respect to the connection are then
equivalent to some conformal Einstein equations with cosmological constant.
However, in [89] the ’fourth order metric’ G is assumed to be fundamental.
In our case, it has substructure in terms of the constitutive tensor. But, since
its dependence is algebraic in x and G also appears algebraically in (5.1), it
is to be expected that in our case the reduction also takes place, at least
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in vacuum. Furthermore, in our context is it clear how the coupling to the
electromagnetic field has to be included (last term in (5.1)). In the model
[89] this was not possible since G was assumed to be fundamental.

Theses possibilities, considered as a toy model, look interesting, but the
field equations must be computed in detail.
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Appendix A

The situation so far

e.g. riemannian vacuum .
closure Lightcone

@y =0 Einrﬁ:::n e.g. uniaxial crysta] Birefringence
No
closure Unkown | e.g. biaxial crystal | 4™ order
condition Fresnel eq.
th
rank(b)=3 ) 4" order
Fresnel eq.
—
=0 rank(b)=2J—’ Birefringence
_ , Degenerated
closure rank(b)=1 light cone
@y 20 K40 , O apparent
dissipation reduction
1
No e.g. Nieves & Pal R igri)e; :ller
closure
Fresnel eq.

Figure A.1: Different subcases summarized.
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Appendix B

Electrodynamics in a material
medium

In a material medium, treated as a continuum, one can also describe the
properties of electromagnetic fields by means of macroscopic Maxwell’s equa-
tions. A material medium, can be defined in general terms as a region which
is neutral at macroscopic scales, but with a microscopic charge substructure.
This substructure corresponds to the individual electrons, ions, etc. which
form the medium. The particular distribution and dynamics of the charges
forming the material are however in general unknown or difficult to model.
Therefore, it is useful to describe the electrodynamics of materials only in
term of the so called ‘external’ charges, which are those that can be, in
principle, manipulated in experiments.

The procedure to define macroscopic Maxwell equations for the material
medium starting from the microscopic ones consist then in the separation
of the total charge in the sum of the two contributions originating ‘from
the inside’ (bound or polarizational charge) and ‘from the outside’ (free or
external charge):

J = Jmt 4 Jet, (B.1)

Bound charges and bound currents are inherent characteristics of matter
determined by the medium itself. In contrast, external charges and external
currents appear in general outside and inside matter and can be prepared for
a specific purpose.

The external charge is assumed to be conserved, and consequently the
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bound charge is conserved, too:
dJ™* =0, dJ=* = 0. (B.2)

As in the case of vacuum, see Refs. [63, 28, 31], this allows us to introduce
the corresponding excitation H™ as a ‘potential’ for the bound current:

dH™ = Jmat. (B.3)

In a (143) decomposition, the 6 components of H™®" are identified with the
polarization P and magnetization M.
Defining now the external excitation H** as

H* .= H — H™* (B.4)
we find the inhomogeneous Maxwell equation
dH® = J*o*. (B.5)

Here, only external quantities are involved.

It remains to specify the constitutive law. In addition to the spacetime
relation, H = H(F'), the knowledge of the internal structure of a medium
yields the macroscopic excitation H™2* (i.e., the polarization and magneti-
zation) as a function of the electromagnetic field strength F' (and possibly of
some thermodynamical variables describing the material continuum). Then
the constitutive law of the material is given by

H™ = H™(F) = H(F) — H™(F). (B.6)
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Appendix C

Some exterior and tensor
calculus

C.1 Tensor and tensor densities

A (twisted) tensor density T of weight w and type [§] can be defined as an

object with components T in a given coordinate system ¢ and which

jl"'jq
. . 4 !
under a coordinate transformation z* — z* transforms as

i < az*F \1° | oz* | oz Azt
.y . = n 7 7 - “ e -
J1Jq & oxk ok | Oz Ox'r
8$j1 ijq i1-ip
ozt Bzl U g (C.1)

If s =1, we say that T is a twisted tensor density, if s = 0 then 7" is a normal
or untwisted tensor density. If w = 0 and s = 0 we refer to T simply as a
tensor of type [5].

The Levi-Civita symbol e*

is defined by the properties
¢kl — (liikl] 0128 . 1 (C.2)

in any coordinate system. It can be shown that it is a twisted tensor density
of weight 4+1. Analogously, the Levi-Civita twisted tensor density of weight
—1 is defined by

€ijkl = €[ijk1) €o123 := 1. (C.3)
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Notice that these tensor densities are metric-independent. They can be
defined in any 4-dimensional manifold. In particular, € is not the ten-
sor density obtained by lowering the indices of €% by means of a met-
ric. This later object, usually denoted with the same symbol € is givem by
€ijkl = YimTjingkpJig € P? and is a tensor density of weight +1. It is related
to our €k by €jr = det(gmn) €ijri- Therefore, to avoid confusion, we de-
note the metric-independent Levi-Civita tensor density of weight —1 with an
additional hat, i.e. €.

C.2 Lie derivative

.jl---jq

The Lie derivative of a tensor density of weight w 7;, ,°

field € is defined as
LTyl = €T,

1---ip

along a vector

K ..z',,jlqu +w (5k§k) El...ijlqu
+ (00€") Taig. 29 + (8, T 22
+...+ (aipfk) 7:1z£1qu _ (aké-ﬁ) T, kjz...jq

— <3k§jz) T Gikeda

11...0p

— (Bug) T, 7, (C4)

tp

Important properties of the Lie derivative are:

1. L¢(a¥) =ale¥ (Linearity),
2. Le(TD) = (LT)D+ T (LeD) (Leibniz rule),
3. ['61 ([«52 ‘I') - [«51 (['52 ‘I’) = ﬁ[51,§2] v (noncommutativity),

where £; and & are two vector fields, and [, &;] is a new vector field, with
components

&1, 6] = €068 — €9;€L. (C.5)

Important particular cases of Lie derivatives we have used are, for a tensor
density of weight +1, as the constitutive tensor:

LEXijkl _ 8p (é-pxijkl) o (8p£i) ijkl . (8p§j) Xipkl
- (@) X~ (3,€") X7 ©8
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for a second order covariant tensor, as for instance the field strength:

LeFy; = € (9,Fy) + (9€°) Fyy + (9,€7) Fy (1)
for all &; and for the Levi-Civita symbol:

L™ = 0. (C.8)

C.3 Differential forms

A differential p-form w at a point z of a manifold is a map w : X; x --- X
X, — R from a direct product of p times the tangent space X, into the
real numbers. The space of differential p-forms on the manifold X will be
denoted by AP(X).

If vy, - - -, v, are p vectors of X, then w(vy, -, vp) is a real number, which

is totally antisymmetric under the exchange of vectors vy, -+, vp, i.e.
w(’Ul,"',’Ua,'",U,B,"'7Up) — _w(vla"';Uﬂ7"';va7"'7vp)- (Cg)
The components of w with respect to a basis e,, a,3,... = 0,1,2,3 of X,

are defined by

Way-map = W(€ays* ") €qy)- (C.10)

In terms of a basis 9 of the cotangent space X, dual to e,, i.e. 9%(eg) = &5,
we have

1
W= = Wayena, (T) I A - NGO, Way oy = Wayap]- (C.11)

p!
In particular, the basis e, and 9% can be taken as the natural basis associated

to a given local coordinate system z‘, i.e. e, — &; and ¥* — dz', with
dz*(9;) = &%. Then,

1 . ,
w= p Wiy vy () AT A -+ - A d', (C.12)
with w;,..;, being the coordinate components of w. It is clear from the an-
tisymmetry property (C.11b) that p-forms with p > n vanish identically.
Finally, O-forms can be defined as being functions from X to the real num-
bers.
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C.4 Exterior derivative

The exterior derivative d is a map d : AP(X) — AP™(X) which takes p-form
w, with components as in (C.12), and produces a (p+ 1)-form dw, defined by

dw := I% [8]-(4),-1...1-?] (z)dz? Adz™ A--- A dz'e. (C.13)
The exterior derivative satisfies the following properties:
L. d(w+v) = dw + di (linearity),
2. dwNP)=dwAo+ (—1)fwAdd ((anti-)Leibniz rule),
3. d(dw) =0 (nilpotency),

for any w, ¢ € AP(X), ¢ € AY(X).

C.5 Interior product of a vector and a p-form

Given a vector u, we define the interior product of u as a map u] : AP(X) —
AP71(X), i.e. an operator which decreases the rank of a form. If w € AP(X)
then u|w is the (p — 1)-form defined by

(u]w) (v1, -+, vp—1) == w (U, v1,- -+, Vp_1), (C.14)

see (C.9). Additionally, the interior product of any vector with a 0-form is
defined to be zero.
The interior product satisfies:

L ou|l (w+vY) =u]w+ul (distributivity),
2. (ut+v)|w=ulw+vw (linearity in a vector),
3. (au)|w = a (u|w) (multiplicative law),
4. u] (v|w) = —v] (u]w) (anticommutativity),
5. ul (WA @) = (u]w) A b+ (—1)Pw A (u] @) ((anti-)Leinniz rule).

Explicitly, if w has components as in (C.12), then
1
(p—1)!

ujw = u? Wity -wigy_yy (T) dz A -+ Ndzie-n, (C.15)
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C.6 Lie derivative of a p-form

The Lie derivative of a differential form along a vector field £(x) is a map
Le: AP(X) — AP(X), defined by

Lew = & (dw) + d(€]w), (C.16)

and satisfies the following properties:

1. L¢(dw) = d(Lew) (£ and d commute),
2. Le(wNA @) = (Lew) Np+w A (Led) (Leibniz rule),
3. Ligow = fLew +df N (€]w) (rescaled vector),
4. Le (Legyw) — Lgy (Lgyw) = L, 0w (non-commutativity),
5. Le, (€)w) — &) (Lgyw) = [€,6]lw (£ and | do not commute),

for every w € AP(X), ¢ € AY(X), f € A°(X), and any vectors £; and &.
Notice that this definition is consistent with that of the Lie derivative

of tensors. For example, if F' is a 2-form with components Fj;, so that
F := F;;d2* A dz? /2, then

1 o
LeF = o (LeFy) da* A do. (C.17)

C.7 Twisted and untwisted forms

The differential forms we have considered so far are independent of any coor-
dinate system. However, their components with respect to some coordinates
z! are, obviously, coordinate-dependent. In particular, if 7 is a differential
form of maximun rank, i.e. 7 € A*(X) in our 4-dimensional case, its sin-
gle coordinate component 79103, defined by n = 19103 dz® A dz! A dz? A da?
will change sign under a coordinate transformation of opposite orientation
(i.e., with negative Jacobian). Consider, for example, z¥ := (z°, 2!, 2%, —z°).
Then ngryr913r = —np123. This property has as the consequence that the inte-
gral of a n-form on a n-dimensional manifold (which is defined as the Riem-
man integral of its single independent component) will change sign under a
coordinate transformation changing orientation. In other words, integration
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of normal or untwisted depends on the orientation of the used coordinate sys-
tem. As a consequence, untwisted forms can be integrated only on manifolds
which are orientable.

On the other hand, twisted* forms are defined such that their integral is
orientation-independent and are thus possible to integrate on non-orientable
manifolds. An twisted p-form p can be defined in analogously to normal forms
with respect to all coordinate systems of the same orientation, but changing
stgn in a coordinate system of opposite orientation. This means, however,
that if p is a 4-form then the sign of its component pg193 is independent of
the orientation of the coordinate system. As a consequence, the integral of p
on a 4-dimensional region has the same value, independent of the coordinate
system in which it is computed. Because of this property, twisted forms
are the natural objects used to describe densities, i.e. quantities related to
properties defined as integrals over some p-dimensional region, since the later
should be independent of the orientation of any coordinate system.

C.8 Hodge dual operator

When a metric g is available, one can immediately define the corresponding
Hodge dual operator * : AP(X) — twisted A" P(X) and * : twisted AP(X) —
A" P(X). It is a linear operator, whose action on the respective basis of
AP(X) is given by

, 1
L=1n= s 9" A 9P NI NS, (C.18)
1
9 =e%|n = 3 9% 550 9T NI N, (C.19)
* (67 o 1 o -~ g
(92 9%) =€) (e)m) = 5 679" ya 07 NP, (C-20)
* (19 AP A 19"’) =e€] (eﬁj (e"‘Jn)) = g™ gP7 g7 Esppr D, (C.21)

"B AP AT AP = & (7] (] (e Im))
= 9°79P°9™ ¢’ esprus (C.22)

with e := g*Pe,.
The Hodge operator satisfies **w = (—1)P(*"P)*1y for w € AP(X).

1Sometimes also called odd, impair, or pseudo forms.
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Appendix D

Local Lorentz invariance

Given a lorentzian metric, we can define the notion of local Lorentz invari-
ance. Let T be the contravariant coordinate components of a tensor field
and T = ¢g; ¥ ... ¢; T jts frame components with respect to an
orthonormal frame e, = €*, 3;. A tensor is said to be local Lorentz invariant
at a given point, if its frame components are invariant under a local Lorentz
rotation of the orthonormal frame. Similar considerations extend to tensor
densities.

There are only two geometrical objects which are numerically invariant
under local Lorentz transformations: the Minkowski metric 7,4 and the Levi-
Civita tensor density €,3,5. Thus

TP = ¢(z) (1 — nP*?) + o) €27 (D.1)

is the most general form of the frame components of a locally Lorentz invari-
ant contravariant fourth rank tensor with the symmetries 7% = — 77kl —
—T4%_ Here ¢ and « are scalar and pseudo-scalar fields, respectively. There-
fore, back in coodinate components, we find that

XM = ¢(z) v=g (9% 9" — ¢’*g") + a(z) €M (D-2)

is the most general form of a locally Lorentz invariant constitutive tensor
allowed in a space with a lorentzian metric. Notice that this constitutive
tensor is necessarily symmetric. In other words, any additional asymmetric
piece ~ ?)x would violate local Lorentz invariance. This was found before
in the particular examples of constitutive tensors studied by Nieves and Pal,
see section 2.6.1.
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Appendix E

Computer Algebra

E.1 Defining the components of the constitu-
tive tensor

The following file is used to define the components of a constitutive tensor.

# file: chi_general.components
# G. Rubilar, 2002.03.04
# Uses Grtensor package

grG_chiupupupup_[gen4,grG_operands,1,2,1,2] := chixyxy:
grG_chiupupupup_[gen4,grG_operands,1,2,1,3] := chixyxz:
grG_chiupupupup_[gen4,grG_operands,1,2,1,4] := chixyxt:
grG_chiupupupup_[gen4,grG_operands,1,2,2,3] := chixyyz:
grG_chiupupupup_[gen4,grG_operands,1,2,2,4] := chixyyt:
grG_chiupupupup_[gen4,grG_operands,1,2,3,4] := chixyzt:
grG_chiupupupup_[gen4,grG_operands,1,3,1,2] := chixzxy:
grG_chiupupupup_[gen4,grG_operands,1,3,1,3] := chixzxz:
grG_chiupupupup_[gen4,grG_operands,1,3,1,4] := chixzxt:
grG_chiupupupup_[gen4,grG_operands,1,3,2,3] := chixzyz:
grG_chiupupupup_[gen4,grG_operands,1,3,2,4] := chixzyt:
grG_chiupupupup_[gen4,grG_operands,1,3,3,4] := chixzzt:
grG_chiupupupup_[gen4,grG_operands,1,4,1,2] := chixtxy:
grG_chiupupupup_[gen4,grG_operands,1,4,1,3] := chixtxz:
grG_chiupupupup_[gen4,grG_operands,1,4,1,4] := chixtxt:
grG_chiupupupup_[gen4,grG_operands,1,4,2,3] := chixtyz:
grG_chiupupupup_[gen4,grG_operands,1,4,2,4] := chixtyt:
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grG_chiupupupup_[gen4,grG_operands,1,4,3,4] := chixtzt:
grG_chiupupupup_[gen4,grG_operands,2,3,1,2] := chiyzxy:
grG_chiupupupup_[gen4,grG_operands,2,3,1,3] := chiyzxz:
grG_chiupupupup_[gen4,grG_operands,2,3,1,4] := chiyzxt:
grG_chiupupupup_[gen4,grG_operands,2,3,2,3] := chiyzyz:
grG_chiupupupup_[gen4,grG_operands,2,3,2,4] := chiyzyt:
grG_chiupupupup_[gen4,grG_operands,2,3,3,4] := chiyzzt:
grG_chiupupupup_[gen4,grG_operands,2,4,1,2] := chiytxy:
grG_chiupupupup_[gen4,grG_operands,2,4,1,3] := chiytxz:

grG_chiupupupup_[gen4,grG_operands,2,4,1,4] := chiytxt:
grG_chiupupupup_[gen4,grG_operands,2,4,2,3] := chiytyz:
grG_chiupupupup_[gen4,grG_operands,2,4,2,4] := chiytyt:
grG_chiupupupup_[gen4,grG_operands,2,4,3,4] := chiytzt:
grG_chiupupupup_[gen4,grG_operands,3,4,1,2] := chiztxy:
grG_chiupupupup_[gen4,grG_operands,3,4,1,3] := chiztxz:
grG_chiupupupup_[gen4,grG_operands,3,4,1,4] := chiztxt:
grG_chiupupupup_[gen4,grG_operands,3,4,2,3] := chiztyz:
grG_chiupupupup_[gen4,grG_operands,3,4,2,4] := chiztyt:
grG_chiupupupup_[gen4,grG_operands,3,4,3,4] := chiztzt:

#--- Object definitions for GRTensorIIl -—--
#
grG_newObjects := {chi(up,up,up,up)}:

grdef (‘chi{[~a “b] ["c ~dl}‘):
grG_savedObjects := [chi(up,up,up,up)]:

E.2 Computing the Fresnel tensor

The following program computes the Fresnel tensor according to (3.28) and
save its components in the file ‘Guuuu.chi_general.components‘ .

# file: generate.Guuuu.components.txt
# G. Rubilar, 2002.03.04

# Uses Grtensor package

restart:

with(linalg):
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grtw();
# Loads a ficticious metric, which is necessary to use GRtensor.
# It is also used to verify the covariance of the results.
# If some metric component appears in the final result,
# then something was wrong.

qload(gen4);

grloadobj(gen4, ‘chi_general.components‘):
# grdisplay(chi(up,up,up,up));

grdef (‘G{("a "b “c ~d)}:=(1/24)*chi{"e “f ~g ("a}
*chi{"b| ~h ~i| “c}*chi{"d) ~j "k "1}*LevCS{e f h j}
*LevCS{g i k 1}°);

grcalcalter(G(up,up,up,up), simplify);
grdisplay(G(up,up,up,up));

grsaveobj (G(up,up,up,up), ‘Guuuu.chi_general.components‘);

E.2.1 Output

The ouput file ‘Guuuu.chi_general.components‘ is of the form

grG_Gupupupup_[gen4,grG_operands,1,1,1,1] :=

—-chixyxt*chixtxy*chixzxz+chixtxt*chixyxy*chixzxz
+chixyxt*chixzxy*chixtxz+chixzxt*chixtxy*chixyxz
-chixzxt*chixyxy*chixtxz-chixtxt*chixzxy*chixyxz:

grG_Gupupupup_[gen4,grG_operands,1,1,1,2] :=

-1/4*chixyxt*chixtxy*chixzyz-1/4*chixzxz*chixtxy*chixyyt
+1/4*chixyxt*chixzxy*chixtyz+1/4*chixzxz*chixyxy*chixtyt
+1/4*chixzxzxchixyxy*chiytxt+1/4*chixzxt*chixtxy*chixyyz
-1/4xchixzxt*chixyxy*chixtyz+1/4*chixzxt*chiytxy*chixyxz
-1/4xchixzxt*chixyxy*chiytxz+1/4*chixtxz*chixzxy*chixyyt
-1/4xchixtxz*chixyxy*chixzyt-1/4*chixyxz*chixzxy*chixtyt
+1/4xchixyxz*chixtxy*chixzyt-1/4*chixtxt*chixzxy*chixyyz
-1/4xchixyxt*chiytxy*chixzxz-1/4*chixyxz*chixzxy*chiytxt
+1/4*chixtxt*chixyxy*chiyzxz+1/4*chixyxz*chixtxy*chiyzxt
+1/4*chixtxt*chixyxy*chixzyz-1/4*chixyxt*chixtxy*chiyzxz
-1/4*chixtxzxchixyxy*chiyzxt+1/4*chixyxt*chixzxy*chiytxz
+1/4*chixyxt*chiyzxy*chixtxz-1/4*chixtxt*chiyzxy*chixyxz:
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grG_Gupupupup_[gen4,grG_operands,4,4,4,4] :=

—-chixtzt*chiztxt*chiytyt+chixtzt*chiytxt*chiztyt
+chixtyt*chiztxt*chiytzt-chixtyt*chiytxt*chiztzt
—chixtxt*chiztyt*chiytzt+chixtxt*chiytyt*chiztzt:

#

#-—— 0Object definitions for GRTensorII ---

#

grG_newObjects := {G(up,up,up,up)}:

grdef (‘G{("a "b “¢ ~d)}:=(1/24)*chi{"e “f “g ("a}
xchi{"b| "h "i| “c}*chi{"d) ~j "k "1}*LevCS{e f h j}
xLevCS{g i k 1}):

grG_savedObjects := [G(up,up,up,up)]:

E.3 Checking equations (3.41)

The following program checks that the Fresnel tensor of a constitutive tensor
consisting only of the pieces ¥y and ®)x vanishes.

#
#
#

H O H H H

file: check.Guuuu.chi2and3.zero.txt

G. Rubilar, 2002.03.04

Uses Grtensor package

restart:

grtw();

Loads a ficticious metric, which is necessary to use GRtensor.
It is also used to verify the covariance of the results.

If some metric component appears in the final result,

then something was wrong.

qload(gen4) ;

grloadobj(gen4, ‘Guuuu.chi_general.components‘) ;
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grdisplay(G(up,up,up,up));

chi23:= {chixyxy=0,chixyxz=chi2xyxz,chixyxt=chi2xyxt,
chixyyz=chi2xyyz,chixyyt=chi2xyyt,chixyzt=chi2xyzt+alpha,
chixzxy=-chi2xyxz,chixzxz=0, chixzxt=chi2xzxt,
chixzyz=chi2xzyz,chixzyt=chi2xzyt-alpha,chixzzt=chi2xzzt,
chixtxy=-chi2xyxt,chixtxz=-chi2xzxt,chixtxt=0,
chixtyz=chi2xtyz+alpha,chixtyt=chi2xtyt,chixtzt=chi2xtzt,
chiyzxy=-chi2xyyz,chiyzxz=-chi2xzyz,
chiyzxt=-chi2xtyz+alpha,chiyzyz=0,chiyzyt=chi2yzyt,
chiyzzt=chi2yzzt,chiytxy=-chi2xyyt,
chiytxz=-chi2xzyt-alpha,chiytxt=-chi2xtyt,
chiytyz=-chi2yzyt,chiytyt=0,chiytzt=chi2ytzt,
chiztxy=-chi2xyzt+alpha,chiztxz=-chi2xzzt,
chiztxt=-chi2xtzt,chiztyz=-chi2yzzt,chiztyt=-chi2ytzt,
chiztzt=0};

grmap ( G(up,up,up,up), subs, chi23, ’x’):
gralter(G(up,up,up,up),simplify);
grdisplay(G(up,up,up,up));

E.4 Defining the 3-dimensional constitutive
matrices

The following file defines the components of the 3-dimensional constitutive
matrices .4, B,C and D, according to (2.64) and (2.65).

# file: ABCD.components

# G. Rubilar, 2002.03.04

# Uses Grtensor package
grG_Aupup_[gen3,grG_operands,1,1] := chixtxt:
grG_Aupup_[gen3,grG_operands,2,1] := chixtyt:
grG_Aupup_[gen3,grG_operands,3,1] := chixtzt:
grG_Aupup_[gen3,grG_operands,1,2] := chiytxt:
grG_Aupup_[gen3,grG_operands,2,2] := chiytyt:
grG_Aupup_[gen3,grG_operands,3,2] := chiytzt:
grG_Aupup_[gen3,grG_operands,1,3] := chiztxt:
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grG_Aupup_[gen3,grG_operands,2,3]
grG_Aupup_[gen3,grG_operands, 3, 3]
grG_Bdndn_[gen3,grG_operands,1,1]
grG_Bdndn_[gen3,grG_operands,2,1]
grG_Bdndn_[gen3,grG_operands,3,1]
grG_Bdndn_[gen3,grG_operands,1,2]
grG_Bdndn_[gen3,grG_operands,2,2]
grG_Bdndn_[gen3,grG_operands,3,2]
grG_Bdndn_[gen3,grG_operands,1,3]
grG_Bdndn_[gen3,grG_operands,2, 3]
grG_Bdndn_[gen3,grG_operands,3, 3]
grG_Cupdn_[gen3,grG_operands,1,1]
grG_Cupdn_[gen3,grG_operands,2,1]
grG_Cupdn_[gen3,grG_operands,3,1]
grG_Cupdn_[gen3,grG_operands,1,2]
grG_Cupdn_[gen3,grG_operands,2,2]
grG_Cupdn_[gen3,grG_operands, 3, 2]
grG_Cupdn_[gen3,grG_operands,1,3]
grG_Cupdn_[gen3,grG_operands,2, 3]
grG_Cupdn_[gen3,grG_operands, 3, 3]
grG_DDdnup_ [gen3,grG_operands,1,1]
grG_DDdnup_ [gen3,grG_operands,2,1]
grG_DDdnup_[gen3,grG_operands, 3,1]
grG_DDdnup_[gen3,grG_operands,1,2]
grG_DDdnup_[gen3,grG_operands,2,2]
grG_DDdnup_[gen3,grG_operands, 3,2]
grG_DDdnup_[gen3,grG_operands, 1, 3]
grG_DDdnup_[gen3,grG_operands, 2, 3]
grG_DDdnup_[gen3,grG_operands, 3, 3]
#

chiztyt:

= chiztzt:
= chiyzyz:
= -chiyzxz:
= chiyzxy:
= -chixzyz:
= chixzxz:
= -chixzxy:
= chixyyz:
= -chixyxz:
= chixyxy:
= -chiyzxt:
= -chiyzyt:
= -chiyzzt:
= chixzxt:
= chixzyt:
= chixzzt:
= -chixyxt:
= -chixyyt:
= -chixyzt:

-chixtyz:
chixtxz:
-chixtxy:
-chiytyz:
chiytxz:
-chiytxy:
-chiztyz:
chiztxz:
-chiztxy:

#--- Object definitions for GRTensorIl —-—-

#
grG_newObjects

grdef (‘A{"a “b}‘):
grdef (‘B{a b}):

grdef (‘C{"a b}*):
grdef (‘DD{a "b}‘):
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:= {B(dn,dn), A(up,up), C(up,dn), DD(dn,up)}:



grG_savedObjects := [A(up,up), B(dn,dn), C(up,dn), DD(dn,up)]:

E.5 Fresnel equation in terms of 3-dimensional
constitutive matrices

The following program computes the Fresnel equation in terms 3-dimensional
constitutive matrices A, B,C and D, accordinng to (3.30) and (3.37).

# file: compute.Fresnel3D.txt

# G. Rubilar, 2002.03.04

# Uses Grtensor package

# Verifies the correctness of the explicit formula for the
# Fresnel eq. in terms of the 3-D constitutive matrices.
restart:with(linalg):

grtw();

qload(gen3);

grloadobj(gen3, ‘ABCD.components‘):
grdef(‘q{a}t:=[ql1,92,93]1):

AA:=grarray(A(up,up)):

grdef (‘guess:=det (AA) ¥q0~4+q0~3*q{a}*(-1)*LevCS{b c d}
*(A{"b ~a}*A{"c e} *C{"d e}+A{"a "b}xA{"e ~c}*DD{e ~d})
+ q072*xq{a}*q{b}*((1/2)*A{"a "b} *(C{"d d}*C{"e e}
+DD{d ~d}*DD{e “e}-(C{"c d}+DD{d ~c})*(C{"d c}+DD{c ~d}))
+(C{"d c}+DD{c ~d})*(A{"c ~a}*C{"b d}+DD{d ~a}*A{"b ~c})
-C{"d d}*A{"c "a}*C{"b c} -DD{c “a}* A{"b “c}*DD{d ~d}
-A{"d “c}*C{"a c}*DD{d ~b}+(A{"a “b}*A{"d “c}-A{"d "a}
*A{"b “c})*B{d c}) + qO*q{ar*q{b}*q{c}*LevCS{~d ~e ~c}
*(B{d f}*(A{"a "b}*DD{e ~f} - DD{e ~al}*A{"b ~f})

+ B{f d}*x(A{"a "b}*C{"f e} - A{"f ~a}*C{"b e})+C{"a f}
*DD{e ~b}*DD{d ~f}+ DD{f ~a}*C{"b e}*C{"f d})

+ q{a}r*q{b}*q{c}*q{d}*LevCS{"e ~f ~c}*LevCS{"g ~h ~d}
*B{h f}*(A{"a "b}*B{g e}/2 - C{"a e}*DD{g "b})‘);
grOptionDisplayLimit:=80000:

grcalcalter(guess, simplify):
Fresnel3D:=series(grcomponent (guess),q0,8):

save Fresnel3D, ‘Fresnel3D.maple.txt‘:
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E.6 Checking equations (3.30)—(3.37)

The following program verifies equations (3.30)—(3.37).

# file: compare.Frensel3D.with.Fresnel4D.txt
# G. Rubilar, 2002.03.04
# Uses Grtensor package
restart:
grtw();
qload(gen4) ;
grloadobj(gen4, ‘Guuuu.chi_general.components‘):
grdef(‘q{a}t:=[q1,92,93,90]):
grdef (‘Fresnel4Da:=G{"a "b "¢ ~d}xq{a}xq{b}*q{c}*q{d}‘):
grcalcalter(Fresneld4Da,simplify):
grOptionDisplayLimit:=180000:
FresneldD:=series(grcomponent (Fresnel4Da),q0,8);
read ‘Fresnel3D.maple.txt‘;
differ:=series(simplify(Fresnel4D-Fresnel3D),q0,8);
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