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This thesis describes the development of a new organocatalytic asymmetric epoxidation of 

cyclic and acyclic α,β-unsaturated ketones employing chiral primary amine salts as catalysts 

and hydrogen peroxide as inexpensive and environmentally benign oxidant. During the course 

of our work and stemming from serendipitous observations, we also developed an 

unprecedented and powerful catalytic asymmetric hydroperoxidation of α,β-enones providing 

access to optically active five-membered cyclic peroxyhemiketals (including representatives 

with a bicyclic peroxidic skeleton), in a single operation. The synthetic value and versatility 

of the products obtained was further illustrated by their expeditious conversion to highly 

enantioenriched acyclic as well as cyclic aldol products, the latter hitherto inaccessible by 

other synthetic means. Moreover, peroxyhemiketals serve as precursors to optically active 

1,2-dioxolanes of potential biological relevance. The epoxidation method described herein 

further constitutes an interesting conceptual crossover between the well-established 

organocatalytic activation modes known as iminium ion and enamine catalysis, and the 

underlying mechanistic rationale is presented and discussed. 

 

Die vorliegende Arbeit beschreibt die Entwicklung einer neuen organokatalytischen 

asymmetrischen Epoxidierung von cyclischen und acyclischen α,β-ungesättigten Ketonen 

unter Einsatz von chiralen primären Aminen als Katalysatoren und wässrigem Wasserstoff-

peroxid, ein preiswertes und umweltfreundliches Oxidationsmittel. Des Weiteren wurde resul-

tierend aus unerwarteten Beobachtungen im Verlauf der Arbeit eine bis zu diesem Zeitpunkt 

beispiellose, effektive Methode zur asymmetrischen Hydroperoxidierung von α,β-Enonen 

entwickelt, welche in einem Schritt fünfgliedrige cyclische, und auch bicyclische Peroxy-

hemiketale in optisch aktiver Form liefert. Den synthetische Nutzen und die Vielseitigkeit der 

erhaltenen Verbindungen belegt deren direkte Umsetzung zu hoch enantiomerenange-

reicherten acyclischen als auch cyclischen Aldolprodukten, wovon letztere bisher nicht 

andersweitig synthetisch zugänglich waren. Darüber hinaus dienen die Peroxyhemiketale als 

Ausgangssubstanz für die Synthese von optisch aktiven, potentiell biologisch relevanten 1,2-

Dioxolanen. Unsere Epoxidierung beinhaltet eine konzeptuell interessante Verknüpfung von 

etablierten organokatalytischen Aktivierungsmodi, bekannt als Iminium-Ionen und Enamin-

Katalyse, und die zugrunde liegenden mechanistischen Aspekte werden vorgestellt und 

diskutiert. 
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1 Introduction 

Although the origin of chirality is still obscure,[1] it is the source of diverse phenomena at the 

macro- and microscopic level, governing our environment and the existence of living 

organisms. The principles of molecular chirality were established over a century ago by van’t 

Hoff and LeBel, but awareness of how they affect the biological activity of molecules is much 

more recent.[2] 

The biological machinery made up from the basic building blocks of life - chiral amino acids, 

sugars, and lipids - is susceptible to enantioselective interactions. Biological systems are thus 

commonly capable of differentiating between enantiomeric forms of chiral molecules, 

including odorants, pheromones, agrochemicals, environmental pollutants and, most 

importantly, drug compounds. The two different enantiomers of a compound may have 

distinctly different effects on a given biological system. For instance, naturally occurring α-

ionone of violets exhibits (R)-configuration and, differs significantly from the (S)-enantiomer 

in its olfactory properties (Figure 1.1).[3] 

 
O O

(S)-α-ionone
woody, cedar-like

threshold: 20-40 μg kg-1

(R)-α-ionone
bloomy, violet-like

threshold: 0.5-5 μg kg-1  

Figure 1.1 Enantiomers of α-ionone. 
 
Due to increased interest in the consequences of chirality on physical, biological and 

pharmacological properties of molecules,[4] the preparation of pure stereoisomers has become 

a topic of great importance, and methods of supplying optically pure materials are being 

intensively pursued. Nature has provided a variety of enantiomerically pure compounds 

referred to as the chiral pool, which can be subjected to further transformations. Besides this 

there are two general methods for obtaining enantiopure compounds: resolution of racemic 

mixtures and asymmetric synthesis. Among the stereoselective synthetic methodologies, 

catalytic processes hold a prominent place. In 1996, Nicolaou and Sorensen stated that “in a 

catalytic asymmetric reaction, a small amount of an enantiomerically pure catalyst, either an 

enzyme or a synthetic, soluble transition metal complex, is used to produce large quantities of 

an optically active compound from a precursor that may be chiral or achiral.”[5] However, 

during the last decade, organocatalysis, catalysis by low-molecular weight organic 
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1  Introduction 
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molecules,a has garnered increased importance within the realm of asymmetric catalysis by 

allowing a broad and diverse array of equally efficient and selective transformations, thereby 

complementing metal and biocatalysis.[6] 

Organocatalysis can even offer certain advantages over metal-catalyzed and biocatalytic 

methods: in particular, its operational simplicity and practicability represent major benefits. 

Most organocatalysts are readily available from inexpensive starting materials and are 

typically bench-stable and robust (inert towards moisture and oxygen). Thus, organocatalytic 

reactions generally do not require inert reaction conditions. They can regularly be conducted 

in wet solvents under an aerobic atmosphere. Indeed, the presence of water is often beneficial 

to the reaction rate and selectivity. In addition, organocatalytic - and thus commonly metal-

free - methods are especially attractive in food and drug related contexts for the preparation of 

pharmaceutical products and agrochemicals that do not tolerate residual heavy metal 

impurities, not even in trace amounts. 

 
This thesis deals with the utilization of organocatalysis for the synthesis of chiral, enantiopure 

epoxides. The importance of epoxides in organic synthesis arises partly from the occurrence 

of the strained three-membered ring unit in a number of interesting natural products, but more 

so because the stereospecific ring opening of epoxides allows straightforward elaboration to 

useful new functionality.[7] Nature’s chiral pool has not proven to be a useful direct source of 

optically active epoxides for synthetic applications. Instead, enantioenriched epoxides have 

been accessed in indirect fashion via multistep procedures. These, however, tend to be 

inherently inefficient, and the range of epoxides available by this approach is also quite 

limited. As a consequence, the preparation of enantioenriched epoxides has long stood as a 

particularly significant endeavor in asymmetric synthesis. In particular, the identification of 

catalytic asymmetric olefin epoxidation methods has been an area of active research for 

several decades.[8] 

 
In the following chapters, both the history of organocatalysis and catalytic asymmetric 

epoxidation will be briefly outlined. This serves as a prelude for our own journey through the 

development of new organocatalytic asymmetric epoxidations and hydroperoxidations of α,β-

unsaturated ketones - with its fair share of reaction design, rational analysis, and serendipitous 

discovery. 

 

                                                 
a Organocatalysts may contain metals if these play exclusively a structure-defining role and are not involved in 
the working principle. 
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2.1 Asymmetric Organocatalysis 

For a long time, the realm of asymmetric catalysis was dominated by metal and biocatalysis. 

Yet, at the beginning of this century, List’s discovery of the (S)-proline-catalyzed direct 

asymmetric intermolecular aldol reaction[9] together with the development of an asymmetric 

Diels-Alder reaction catalyzed by a chiral imidazolidinone salt by MacMillan et al.[10] have 

raised awareness of the potential of purely organic molecules as efficient catalysts for a 

variety of asymmetric transformations and brought to life the term “organocatalysis” to 

address this research field (Scheme 2.1). 

 

 
Scheme 2.1 (a) (S)-proline (1)-catalyzed direct asymmetric intermolecular aldol reaction; (b) Imidazolidinone 
(2) salt-catalyzed enantioselective Diels-Alder reaction. 
 

2.1.1 Historical Development 

Organocatalysis has a rich background as it is suggested that extraterrestrial, enantiomerically 

enriched amino acids such as (S)-alanine and (S)-isovaline played a decisive role in the 

prebiotic formation of key building blocks such as sugars by promoting the self-aldol reaction 

of glycolaldehydes in water.[11] In this way, the reactions might have led to the introduction 

and widespread of homochirality in the living world. The historic roots of organocatalysis 

date back to the mid of the 19th century with von Liebig’s accidentally discovery of what is 

today considered the first organocatalytic reaction, the transformation of dicyan into oxamide 

in the presence of an aqueous solution of acetaldehyde.[12] In the early 1900s, Bredig’s 

pioneering studies on the use of natural Cinchona alkaloids as enantioselective catalysts were 

motivated by searching the chemical origin of enzyme activity observed in living 

organisms.[13] In this context, he developed the first asymmetric organocatalytic reaction by 
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adding hydrogen cyanide to benzaldehyde in the presence of catalytic amounts of either 

quinine (3) or quinidine (4) (Scheme 2.2). These studies were conceptually groundbreaking, 

although the enantiomeric ratio remained rather low (~ 55:45 er), and initiated a line of 

research which had been continued by Pracejus[14] (~ 60:40 er) and others. 

 
Scheme 2.2 First enantioselective organocatalytic reaction: asymmetric hydrocyanation of benzaldehyde by 
Bredig. 
 

Another key event in the history of organocatalysis was the use of (S)-proline as an 

aldolization catalyst by Hajos and Parrish at Hoffmann-La Roche[15] and Eder, Sauer, and 

Wiechert at Schering[16] in the early 1970s (Scheme 2.3). Their parallel studies were 

decisively inspired by the seminal work of Knoevenagel in the late 19th century.[17] 

 

 
Scheme 2.3 Hajos-Parrish-Eder-Sauer-Wiechert reaction catalyzed by (S)-proline (1). 
 

Nonetheless, the real potential of this chemistry was only revealed three decades later by the 

groups of List and MacMillan who have demonstrated that aminocatalysis, the activation of 

carbonyl groups via enamine and iminium ion intermediates, is indeed a general concept for 

(asymmetric) catalysis (cf. Scheme 2.1). Evolving from a small collection of chemically 

unique and unusual, mechanistically poorly understood reactions, organocatalysis has 

advanced at a truly breathtaking pace since its birth in 2000 and has during the last ten years 

grown into a thriving area of research, which today represents the third pillar of asymmetric 

catalysis besides metal and biocatalysis.[6] 
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2.1.2 Classification 

Organocatalysis can be divided into four areas: Lewis base, Lewis acid, Brønsted base and 

Brønsted acid catalysis.[18] The corresponding (simplified) catalytic cycles are depicted in 

Scheme 2.4. Accordingly, Lewis base catalysts (B:) initiate the catalytic cycle via 

nucleophilic addition to the substrate (S). The resulting complex undergoes a reaction and 

then releases the product (P) and the catalyst for further turnover. Lewis acid catalysts (A) 

activate nucleophilic substrates (S:) in a similar manner. Brønsted base and acid catalytic 

cycles are initiated via a (partial) deprotonation or protonation, respectively. 

 

 
Scheme 2.4 (Simplified) catalytic cycles of Lewis base, Lewis acid, Brønsted base, and Brønsted acid catalysis. 
 

The majority of organocatalysts are N-, C-, O-, P-, and S-based Lewis bases such as amines, 

carbenes, formamides, phosphanes, phosphoramides, and sulfides. Of those, nitrogen-based 

systems account for the largest share, partly due to their abundance in the chiral pool. Lewis 

base organocatalysts operate through diverse mechanisms and convert the substrates into 

either activated nucleophiles or electrophiles. Typical reactive intermediates are iminium ions, 

enamines, acyl ammonium ions,[19] 1-, 2-, or 3-ammonium enolates,[20] among others. The 

underlying principle of the work discussed within this thesis is the activation of carbonyl 

compounds as enamine or iminium ion, which represents the basis of what is often called 

aminocatalysis. 

 

2.1.3 Aminocatalysis 

The roots of modern aminocatalysis trace back to the pioneering work of Knoevenagel who, 

at the turn of the 19th century, found that primary and secondary amines, as well as their salts, 

catalyze the aldol condensation of β-ketoesters or malonates with aldehydes or ketones.[21] 

Remarkably, Knoevenagel himself suggested a possible role of imine formation with the 

amine catalyst in the course of the reaction.[21b] In the first half of the 19th century, Kuhn and 

Fischer and Marschall discovered that amines and amine salts also catalyze aldol addition 

and condensation reactions.[22] The first iminium-catalyzed conjugate addition reaction to α,β-
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unsaturated carbonyl compounds was reported in 1937 by Langenbeck using piperidinium 

acetate as catalyst for the hydration of crotonaldehyde.[23] In the history of iminium catalysis, 

further important landmarks are: (a) the discovery of iminium-catalyzed transimination by 

Cordes and Jencks,[24] (b) the reports of Baum and Viehe, and more recently Jung et al., on 

the acceleration of Diels-Alder reactions provided by α,β-unsaturated iminium ions,[25] (c) the 

proline-catalyzed deracemization of a thianone intermediate in the synthesis of erythromycin 

by Woodward and co-workers,[26] and most importantly (d) the use of alkali metal and 

ammonium proline salts in the conjugate addition of malonates to α,β-unsaturated aldehydes 

and ketones in the pioneering work of Yamaguchi and Taguchi between 1991 and 1996.[27] 

 

Today’s aminocatalytic transformations of carbonyl compounds via iminium ion and enamine 

intermediates using chiral primary and secondary amines (as well as their salts) as 

organocatalysts, hinges upon four distinct activation modes and is categorized accordingly in: 

(a) enamine, (b) iminium ion, (c) dienamine, and (d) SOMO catalysis, which involves the 

formation of enamine radical cations.[28] 

All distinct activation modes have in common that the initial step constitutes the reversible 

formation of an iminium ion by condensation of the amine (salt) catalyst (A) with the 

carbonyl compound (Scheme 2.5). The formation of iminium ion B effectively lowers the 

LUMO energy of the system (a) - as does the coordination of a Lewis acid (b). As a result, 

both nucleophilic additions and α-deprotonation become more facile. α-Deprotonation leads 

to the generation of enamine C, which is more nucleophilic than the enol form of the parent 

carbonyl compound. The formation of the enamine corresponds to a raise in the HOMO 

energy of the system and allows for subsequent reaction with a range of electrophiles to 

obtain α-functionalized carbonyl compounds. For conjugated π-systems, the electronic 

redistribution induced by the formation of iminium ion D facilitates nucleophilic additions (c), 

including conjugate additions as well as pericyclic reactions. γ-Deprotonation, finally, 

generates dienamine intermediates (vide infra). 

In all aspects, the principle of aminocatalytic activation emulates the mechanism of the 

activation of carbonyl compounds by Lewis acids. In reactions of α,β-unsaturated ketones the 

steric and electronic similarity of the two carbonyl substituents does not generally permit high 

levels of discrimination between the free electron lone pairs in the metal-association step, 

which is essential for attaining high stereocontrol in the following transformation. In 

aminocatalysis by contrast, iminium ion formation overcomes the necessity of discriminating 

between the free electron lone pairs. 
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Scheme 2.5 Activation of carbonyl compounds by aminocatalysis (a, c) vs. Lewis acid catalysis (b, d). (LA: 
Lewis acid; E: electrophile; Nu: nucleophile) 
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An overview of the divergent reaction pathways and functionalizations amenable to (a) 

aldehydes and ketones or (b) enals and enones, respectively, by means of aminocatalysis is 

provided in Scheme 2.6. 

 
Scheme 2.6 (a) Aminocatalytic activation modes and divergent reaction pathways with aldehydes and 
ketones. 
 

 
Scheme 2.6 (b) Aminocatalytic activation modes and divergent reaction pathways with enals and enones. 
 

More recently, the formation of dienamines F from α,β-unsaturated iminium ions by γ-depro-

tonation has been synthetically exploited to give rise to γ-functionalized enals upon reaction 
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with electrophiles (Scheme 2.6).[29] Their use as electron rich dienes in Diels-Alder reaction 

has also been reported.[30] A fourth synthetic tool constitutes the SOMO activation of carbonyl 

compounds. Oxidation of the initially formed enamine C affords a radical cation E which 

allows the use of a group of reagents that has previously not been applicable to aminocatalysis 

such radicals (e.g. TEMPO), π-nucleophiles (e.g. allylsilanes, styrenes), or halides (e.g. 

LiCl).[31] 

Enamine and iminium ion catalysis are two divergent reaction modes in organocatalysis, 

though sharing a common origin. Enamine catalysis proceeds via iminium ion formation and 

almost always results in iminium ion formation (cf. Scheme 2.6). In a complementary fashion, 

conjugate addition of a nucleophile to an iminium ion generates an enamine intermediate G 

which can in turn react with another electrophile.[32] The interdependency of those two 

catalytic intermediates (cf. Scheme 2.7, (a)) combined with the ability of most amine catalysts 

to promote several types of transformations based on different activation modes side by side 

makes aminocatalysis the perfect platform for domino and tandem or cascade reactions and a 

powerful tool in the construction of complex molecular skeletons in a highly stereocontrolled 

manner as illustrated with numerous elegant examples in the recent literature.[33] 

One example which presumably operates through the same mechanistic rationale, is the 

amine-catalyzed asymmetric epoxidation of α,β-unsaturated carbonyl compounds with alkyl 

hydroperoxides or hydrogen peroxide as studied within this thesis. In the course of this 

reaction, the hydroperoxide serves as both the nucleophile and the electrophile (Scheme 

2.7, (b)). 

 

 
 
Scheme 2.7 (a) General picture of the iminium ion-enamine interdependency; (b) iminium ion-enamine 
interplay in the nucleophilic epoxidation reaction. (Nu-H: nucleophile; E: electrophile; R = H, Alk) 
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hydroperoxides or hydrogen peroxide as studied within this thesis. In the course of this 

reaction, the hydroperoxide serves as both the nucleophile and the electrophile (Scheme 

2.7, (b)). 
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has also been reported.[30] A fourth synthetic tool constitutes the SOMO activation of carbonyl 

compounds. Oxidation of the initially formed enamine C affords a radical cation E which 
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2.1.3.1 Asymmetric Counteranion-Directed Catalysis (ACDC) 

Most chemical reactions proceed via charged intermediates or transition states. Such “polar 

reactions” can be influenced by the counterion, especially if conducted in organic solvents, 

where ion pairs are ineffectively separated by the solvent. Although efficient asymmetric 

catalytic transformations involving anionic intermediates with chiral, cationic catalysts have 

been realized in the context of phase-transfer catalysis,[34] analogous versions of inverted 

polarity attaining reasonable enantioselectivity have been elusive until recently. Attempts 

toward this end have been undertaken by Arndtsen and Nelson and co-workers (Scheme 2.8, 

eq. (a) and (b)).[35] Both groups applied chiral borate anions such as BINOL-derived borate 5 

to several catalytic transformations including copper-catalyzed aziridination and 

cyclopropanation of olefins and ring opening reactions of meso-aziridinium ions, albeit with 

only moderate success. The highest enantioselectivity observed in all those reactions was 

67:33 er along with a yield of 3% of the desired product by using a chiral tartrate-derived 

borate anion.[35a] Lacour et al. studied the influence of chiral TRISPHAT anions on 

enantioselective olefin epoxidation reactions catalyzed by iminium ion 6. However, only 

racemic product was obtained (eq. (c)).[36] 

 

 
 
Scheme 2.8 Preliminary attempts toward the use of chiral counteranions in asymmetric catalysis. 
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It was not until recently that the use of chiral counteranions in asymmetric catalysis was 

brought to a useful level of enantioselectivity. 

In recent years, chiral BINOL phosphates of the general structure 7 (Scheme 2.9, (a)) have 

emerged as powerful Brønsted acid catalysts triggered by the seminal works of Akiyama and 

Terada in 2004 on their use in asymmetric Mannich-type reactions.[37] Chiral BINOL-derived 

phosphoric acids are believed to function as specific Brønsted acid catalysts.a The substrate 

(S) is protonated by the catalyst HX* generating a chiral ion pair [(S−H)+ X*−], in which the 

asymmetry is communicated by the chiral counteranion X*− (Scheme 2.9 ((b); with Cat = H). 

 

 
Scheme 2.9 (a) Chiral BINOL-derived phosphoric acids (e.g. TRIP (7a)); (b) general concept of asymmetric 
counteranion-directed catalysis (ACDC) (with Cat = H: special case of Brønsted acid catalysis). (S: substrate; P: 
product; CatX: catalyst; X*−: chiral anion) 
 

Studies undertaken in our laboratory pushed forward the generalization and conceptualization 

of this approach, namely asymmetric counteranion-directed catalysis (ACDC), by expanding 

it to catalyst systems with Cat ≠ H (Scheme 2.9, (b)). The efficiency of this concept was 

initially illustrated with various highly enantioselective catalytic transformations based on 

iminium ion catalysis (Scheme 2.10).[38] Remarkably, the highest enantioselectivities were 

consistently observed when using the chiral BINOL-based phosphoric acid TRIP (7a), 

bearing sterically demanding 2,4,6-triisopropylphenyl substituents at the 3,3'-positions of the 

binaphthyl scaffold, as chirality inducing counteranion (Scheme 2.9, (a)).[39] Later, the ACDC 

concept was further expanded to Lewis acid and transition-metal catalysis, by our[40] and other 

research groups.[41] The asymmetry transfer from the chiral counteranion X*− to the activated 

substrate (Cat−S)+ within a tight ion pair [(Cat−S)+ X*−] (Scheme 2.9, (b); Cat ≠ H) is most 

likely the result of a cooperative effect of electrostatic and coordinative interactions 

conceivably assisted by hydrogen bonding. 

 

                                                 
a Specific Brønsted acid catalysis relies on the use of strong Brønsted acids as catalysts. 
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Scheme 2.10 The ACDC concept in iminium ion catalysis: application to the transfer hydrogenation of (a) enals 
and (b) enones as well as (c) the epoxidation of enals. 
 

The ACDC approach to asymmetric catalysis offers a manifest advantage compared with 

traditional strategies for catalyst design and optimization. Combinatorial libraries of ACDC 

catalysts are readily accessible by interchanging the two catalyst components separately. In 

addition, when using two chiral components matched combinations commonly allows further 

improvement of the asymmetric induction as has been demonstrated in the asymmetric 

transfer hydrogenation of ketones catalyzed by the (S)-valin-tert-butyl ester (9) (R)-TRIP salt 

[(S)-9 • (R)-TRIP] (Scheme 2.10, (b)). This strategy will also find application in the work 

described within this thesis. 
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2.1.3.2 Primary Amine Salt Catalysts 

At the outset, the focus of modern aminocatalysis was on the use of chiral secondary amine 

catalysts, especially substituted pyrrolidines, proline, or imidazolidinone derivatives, for the 

activation and functionalization of carbonyl compounds. In contrast, chiral primary amine 

catalysts have been largely neglected, possibly due to unfavorable imine-enamine 

equilibria.[42] This is surprising in view of the fact that early studies on aminocatalysis have 

already included the use of primary amino acids, amines and amine salts as catalysts,[22b, 43] 

and even more so since primary amine catalysis is effectively exploited by natural enzymes 

such as type I aldolases and decarboxylases, both containing catalytically active lysine 

residues (Figure 2.1).[44] 

 

 
Figure 2.1 Active site of type I rabbit muscle FDP (fructose-1,6-diphosphate) aldolase.[44] 
 

Only recently has primary amine catalysis emerged as a powerful tool for the iminium ion 

activation of challenging classes of unsaturated carbonyl compounds such as sterically 

demanding α,β-unsaturated ketones and α-branched enals which are difficult to activate with 

conventional secondary amine catalysts.[45] Owing to reduced steric requirements, the use of 

primary amines overcomes the inherent difficulties of secondary amine catalysts in generating 

congested covalent iminium ion intermediates, and thus enables transformations of sterically 

demanding carbonyl compounds which have previously not been realized through secondary 

amine catalysis (D1 and D3, Scheme 2.11). Primary amine catalysts may provide higher 

equilibrium concentrations of the requisite iminium ion (D2 and D4), and thus account for 

increased reaction rates. 
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Scheme 2.11 Iminium ion activation of (a) α,β-unsaturated ketones and (b) α-branched α,β-enals: secondary vs. 
primary amine catalysts. 
 

The past years since 2005 have witnessed the rapid development of catalytic asymmetric 

transformations employing chiral primary amine catalysts.[45] Selected examples are depicted 

in Scheme 2.12. 

Ishihara et al. succeeded in activating α-substituted acroleins, in particular α-(acyloxy)acro-

leins, for Diels-Alder and [2+2] cycloaddition reactions by using novel primary amine 11 

together with an acid co-catalyst.[46] First evidence of the potential of primary amines as 

iminium ion activators of α,β-unsaturated ketones was provided by Chin and co-workers in 

2006. Their synthesis of warfarin, a widely prescribed anticoagulant, via conjugate addition of 

4-hydroxycoumarin to benzylideneacetone was catalyzed by (S,S)-DPEN (1,2-
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publications since 2007 on their use as chiral organocatalysts from various research groups all 

around the world including the groups of Melchiorre, Connon, Deng and our group among 

others.[45, 50] 

 

 
 
Scheme 2.12 Iminium ion catalysis with primary amine salt catalysts: seminal reports. 
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2.2 Catalytic Asymmetric Epoxidation of Electron-Deficient Olefins 

 

2.2.1 Milestones in Catalytic Asymmetric Olefin Epoxidations 

Olefin epoxidation holds a venerable place in the history of catalytic asymmetric synthesis. 

The pioneering work by Sharpless in the early 1980s on the titanium-tartrate-catalyzed 

asymmetric epoxidation of allylic alcohols (Scheme 2.13), paved the way for much of today’s 

catalytic asymmetric synthesis.[51] 

 

 
Scheme 2.13 Sharpless’ catalytic asymmetric epoxidation of allylic alcohols. 
 

Following this discovery, much progress has been made towards the asymmetric epoxidation 

of other classes of olefins. Jacobsen and Katsuki introduced manganese-salen complexes as 

valuable catalysts for the catalytic asymmetric epoxidation of unfunctionalized, and 

particularly (Z)-disubstituted olefins (Scheme 2.14).[52] 

 

 
Scheme 2.14 Jacobsen-Katsuki epoxidation. 
 

More recently, the work of several groups, in particular Shi and co-workers, established 

dioxiranes, generated in situ from chiral ketones and Oxone, as asymmetric epoxidation 

reagents for a range of alkenes, especially (E)-disubstituted olefins (Scheme 2.15).[53] 
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The advances made in this field have increased greatly the number of enantiomerically 

enriched epoxides available for use in organic synthesis. Although a few different methods 

exist for the asymmetric epoxidation of electron-deficient olefins (vide infra), no system has 

gained widespread popularity amongst synthetic organic chemists.[54] However, due to the 

value of the corresponding optically active epoxides as versatile synthetic intermediates, 

much effort is devoted to the development of a general, highly enantioselective method 

applicable to a wide range of electron-deficient olefins. 

 

2.2.2 Weitz-Scheffer Epoxidation 

The general approach for the epoxidation of electron-deficient olefins is their treatment with 

alkaline hydroperoxides, well-known as the Weitz-Scheffer epoxidation.[55] It is well-

established that epoxide formation occurs via a two-step mechanism (Scheme 2.16), which 

was first proposed by Bunton and Minkoff.[56] Conjugate addition of a peroxyanion generated 

from hydrogen peroxide or alkyl hydroperoxides under basic conditions at the β-position of 

an α,β-unsaturated ketone 16 affords β-peroxyenolate 17. Subsequent intramolecular 

nucleophilic displacement at the proximal oxygen atom breaks the weak O-O single bond 

with concomitant ejection of a leaving group - hydroxide or alkoxide - to furnish epoxide 18. 

 

 
 
Scheme 2.16 (a) Two-step mechanism of the Weitz-Scheffer epoxidation: conjugate addition of a hydro- or alkyl 
peroxide followed by epoxide ring closure; (b) putative transition state for epoxide ring closure. 
 

The non-stereospecificity of these reactions is a strong indication for the formation of an 

intermediate 17 in the course of the reaction. Unlike for epoxidations with peracids, the 

alkene geometry is not necessarily retained in the epoxide. For example, the epoxidation of 

both trans- and cis-configured α,β-unsaturated ketones with alkaline hydrogen peroxide in 

methanol furnishes predominantly the corresponding trans-epoxide. The non-stereospecificity 
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further implies that hydroperoxide addition is fast, reversible, and causes isomerisation by 

rotation about the vinylic bond in the peroxyenolate 17.[57] 

Electron-deficient olefins exhibit low reactivity toward common electrophilic oxidants such 

as meta-chloroperbenzoic acid (MCPBA). However, under Weitz-Scheffer conditions they are 

selectively epoxidized in the presence of electron-rich olefins. 

Extensive research has been devoted to the development of asymmetric versions of the Weitz-

Scheffer epoxidation owing to the synthetic importance of enantiomerically enriched α,β-

epoxyketones as chiral building blocks and products of pharmaceutical and biological interest 

(cf. Figure 2.2, vide infra). 

In the mid-1970s, Wynberg et al. disclosed the first asymmetric Weitz-Scheffer epoxidation of 

trans-chalcone and derivatives attaining enantioselectivities of up to 77:23 er (Scheme 

2.17).[58] Cinchona alkaloid-derived quaternary ammonium salts were applied as chiral phase-

transfer catalysts with either hydrogen peroxide, tert-butyl hydroperoxide, or sodium hypo-

chlorite as the oxidant under biphasic reaction conditions. Pseudoenantiomeric[59]a catalysts 

19 and 20 derived from quinine and quinidine, respectively, produced opposite epoxide 

enantiomers. 

 

 
 
Scheme 2.17 First asymmetric Weitz-Scheffer epoxidation by Wynberg using N-benzylquininium or –quinidini-
um chloride 19 or 20 as chiral phase-transfer catalyst. 
 

The phase-transfer catalyzed nucleophilic asymmetric epoxidation for the first time provided 

access to enantiomerically enriched chalcone- and naphthoquinone-derived epoxides, and 

moreover, this approach represents one of the first methods in general for the synthesis of 

optically active epoxides. 

                                                 
a  Pseudoenantiomeric catalysts are diastereomers that afford antipodal products in catalytic asymmetric 
transformations. The configuration of catalysts 19 and 20 is inverted at C-8 and C-9 whereas it is identical at N-1, 
C-4, and C-5. Likewise, the starting materials, the naturally abundant cinchona alkaloids quinine and quinidine, 
are pseudoenantiomers themselves. 
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Scheffer epoxidation owing to the synthetic importance of enantiomerically enriched α,β-

epoxyketones as chiral building blocks and products of pharmaceutical and biological interest 

(cf. Figure 2.2, vide infra). 

In the mid-1970s, Wynberg et al. disclosed the first asymmetric Weitz-Scheffer epoxidation of 

trans-chalcone and derivatives attaining enantioselectivities of up to 77:23 er (Scheme 

2.17).[58] Cinchona alkaloid-derived quaternary ammonium salts were applied as chiral phase-

transfer catalysts with either hydrogen peroxide, tert-butyl hydroperoxide, or sodium hypo-

chlorite as the oxidant under biphasic reaction conditions. Pseudoenantiomeric[59]a catalysts 

19 and 20 derived from quinine and quinidine, respectively, produced opposite epoxide 

enantiomers. 

 

 
 
Scheme 2.17 First asymmetric Weitz-Scheffer epoxidation by Wynberg using N-benzylquininium or –quinidini-
um chloride 19 or 20 as chiral phase-transfer catalyst. 
 

The phase-transfer catalyzed nucleophilic asymmetric epoxidation for the first time provided 

access to enantiomerically enriched chalcone- and naphthoquinone-derived epoxides, and 

moreover, this approach represents one of the first methods in general for the synthesis of 

optically active epoxides. 

                                                 
a  Pseudoenantiomeric catalysts are diastereomers that afford antipodal products in catalytic asymmetric 
transformations. The configuration of catalysts 19 and 20 is inverted at C-8 and C-9 whereas it is identical at N-1, 
C-4, and C-5. Likewise, the starting materials, the naturally abundant cinchona alkaloids quinine and quinidine, 
are pseudoenantiomers themselves. 
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2.2.3 Synthetic Versatility of α,β-Epoxy Ketones 

Enantiomerically enriched α,β-epoxy ketones are of particular value due to their dense 

functionalization.[60] Such optically active epoxides may be transformed into numerous 

products (i. a. pharmaceuticals, agricultural chemicals, and fragrances), where it is distinctly 

advantageous to use chiral starting materials of high optical purity. Both the epoxide and the 

adjacent ketone group constitute the starting point for manifold transformations as depicted in 

Figure 2.2.[7, 60-61] Since epoxide opening almost invariably occurs with inversion of configu-

ration, the stereochemistry of the product can be reliably predicted. 

 

 

 

Figure 2.2 Selected one-step transformations of α,β-epoxy ketones. (Nu = nucleophile; E = electrophile) 
 

2.2.4 State of the Art: Catalytic Asymmetric Epoxidation of α,β-Unsaturated Ketones 

Since the pioneering report of Wynberg in 1976, the catalytic asymmetric epoxidation of α,β-

unsaturated ketones has been the subject of numerous investigations, and a number of useful 

methodologies have been developed.[8, 54] Moreover, the scope of asymmetric Weitz-Scheffer-

type epoxidations was extended to various electron-deficient olefins including nitro olefins[62] 

and α,β-unsaturated sulfones.[63] In the following section, the state of the art in catalytic 

asymmetric epoxidation of α,β-unsaturated ketones will be outlined. 
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2.2.4.1 Asymmetric Phase-Transfer Catalysis 

Asymmetric phase-transfer catalysis (PTC) is a powerful strategy applicable to a wide range 

of transformations that proceed through anionic intermediates. 

The most commonly used phase-transfer catalysts for the catalytic asymmetric epoxidation of 

α,β-unsaturated ketones are alkylated Cinchona alkaloids. Based on the seminal studies of 

Wynberg et al. (cf. Chapter 2.2.2), contributions from several research groups during the late 

1990s led to dramatic improvements in terms of scope and level of enantioselection of the 

enone epoxidation. The groups of Lygo[64] and Corey[65] achieved significant improvements 

by structural modification of the original Wynberg-type phase-transfer catalysts 19 and 20 

(Scheme 2.17).[64-66] In particular, the introduction of a large 9-anthracenylmethyl group in 

place of the benzyl group at the quinuclidine nitrogen and a benzyl group on the secondary 

alcohol at C-9 in phase-transfer catalyst 21 was found to have a profound effect on the 

enantioselectivity of the epoxidation reaction (up to 99:1 er) (Scheme 2.18).[64a] Aqueous 

solutions of hypochlorites emerged as the oxidizing agents of choice giving superior results 

when compared to hydrogen peroxide, whenever O-alkylated Cinchona alkaloid-derived 

phase-transfer catalysts such as 21 were employed. Corey found that the use of freshly 

prepared 65% potassium hypochlorite at lower temperature instead of sodium hypochlorite 

led to further improvement in enantioselectivities.[65] 

 

 
Scheme 2.18 Asymmetric PTC: enone epoxidation according to Lygo and Corey with N-9-anthracenylmethyl-
O-benzyl-modified dihydroquinine-derived phase-transfer catalysts 21. 
 
Whereas the epoxidation reaction turned out to be general for a broad range of trans-chalcone 

derivatives, α,β-enones bearing alkyl substituents at the β-position furnished epoxides with 

reduced enantioselectivity. Moreover, substrates with enolizable alkyl groups adjacent to the 

ketone (substituent R2) gave only low conversions under the standard reaction conditions 

(<10%), and the starting material was recovered in high yield. Competing enolization is the 

most likely explanation for this observation.[67] 
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Recently, C2-symmetric axially chiral quaternary N-spiroammonium salts such as catalysts 

22a or 22b were introduced by the Maruoka group as powerful chiral phase-transfer 

catalysts.[68] By means of these catalysts, the high enantioselectivities achieved for chalcone-

type substrates were also retained for α,β-enones bearing alkyl substituents at the β-position, 

and moreover, for β-benzylidene-α-indanone and its tetralone analogue (Scheme 2.19). 

 

 

Scheme 2.19 Catalytic asymmetric epoxidation of α,β-unsaturated ketones (including β-benzylidene-α-
indanone) with PTCs 22a or 22b by Maruoka et al. 
 

2.2.4.2 Polyamino Acid-Mediated Epoxidation (Juliá-Colonna Epoxidation) 

The polyamino acid-catalyzed asymmetric epoxidation of α,β-unsaturated ketones was first 

reported by Juliá and Colonna and co-workers in the early 1980s.[69] The original reaction 

conditions were triphasic, consisting of the insoluble polyamino acid catalyst (poly-L-alanine 

(PLA) or poly-L-leucine (PLL)), an aqueous solution of sodium hydroxide, aqueous hydrogen 

peroxide as the oxidant, and a solution of chalcone in an organic solvent (Scheme 2.20). A 

range of α,β-enones, in particular chalcone and simple analogues, were epoxidized with high 

enantioselectivities (generally ≥ 95:5 er). It was found that the level of enantiocontrol of the 

epoxidation was dependent on the chain length of the polyamino acid and increased as the 

average chain length increased from 10 to 30 residues. Somewhat surprisingly, poly-L-valine 

emerged to be completely ineffective as epoxidation catalyst.[70] 

 

 
 
Scheme 2.20 Scope of the Juliá-Colonna epoxidation under triphasic reaction conditions. 
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Despite the excellent enantioselectivity, a number of problems limited the applicability of this 

methodology, namely the long reaction times even for relatively reactive substrates such as 

chalcone and the narrow substrate scope. In particular, enolizable substrates such as 

benzylidene acetone are found to be epoxidized very slowly or not at all. 

Extensive studies by Roberts and co-workers resulted in significant improvements to 

overcome these limitations. The modified reaction conditions comprised the use of a non-

aqueous solvent, an organic base (e. g. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)), water-

free oxidants such as urea-hydrogen peroxide (UHP) or percarbonate, along with 

immobilized poly-L-leucine as catalyst.[71] These non-aqueous, biphasic reaction conditions 

allowed for greatly enhanced reaction rates (from ca. 24 h to 30 min in the case of chalcone) 

and lower catalyst loadings (5 instead of 20 mol%). Moreover, substantial expansion of the 

range of α,β-enones was achieved and previously unreactive enolizable substrates such as 

benzylidene acetone as well as those bearing alkyl groups at the β-position readily underwent 

the epoxidation reaction (Scheme 2.21).[71c] 

 

 
Scheme 2.21 Expanded substrate scope under Robert’s biphasic reaction conditions.[71c] 
 

The mechanism of the polyleucine-catalyzed epoxidation is still under investigation.[57, 72] 

Kinetic studies indicate that the reaction proceeds via the reversible addition of polyleucine-

bound hydroperoxide to the enone.[73] 

 

2.2.4.3 Metal Peroxides in Combination with Chiral Ligands 

Several methods for the catalytic asymmetric epoxidation of α,β-unsaturated ketones rely on 

the use of a chiral ligand coordinated to the metal atom of a metal peroxide, which then 

effects a Weitz-Scheffer epoxidation. A number of metals and chiral ligands have been used 

for this purpose and the most successful approaches are discussed below. 

Jackson et al. had previously established the use of lithium tert-butylperoxide generated 

in situ from n-butyl lithium and tert-butyl hydroperoxide (TBHP) together with stoichiometric 

amounts of diethyl tartrate (DET) for the epoxidation of trans-chalcone resulting in moderate 

yield and enantioselectivity (81:19 er) of the chalcone epoxide (Scheme 2.22, (a)). However, 

2  Background 

22 

Despite the excellent enantioselectivity, a number of problems limited the applicability of this 

methodology, namely the long reaction times even for relatively reactive substrates such as 

chalcone and the narrow substrate scope. In particular, enolizable substrates such as 

benzylidene acetone are found to be epoxidized very slowly or not at all. 

Extensive studies by Roberts and co-workers resulted in significant improvements to 

overcome these limitations. The modified reaction conditions comprised the use of a non-

aqueous solvent, an organic base (e. g. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)), water-

free oxidants such as urea-hydrogen peroxide (UHP) or percarbonate, along with 

immobilized poly-L-leucine as catalyst.[71] These non-aqueous, biphasic reaction conditions 

allowed for greatly enhanced reaction rates (from ca. 24 h to 30 min in the case of chalcone) 

and lower catalyst loadings (5 instead of 20 mol%). Moreover, substantial expansion of the 

range of α,β-enones was achieved and previously unreactive enolizable substrates such as 

benzylidene acetone as well as those bearing alkyl groups at the β-position readily underwent 

the epoxidation reaction (Scheme 2.21).[71c] 

 

 
Scheme 2.21 Expanded substrate scope under Robert’s biphasic reaction conditions.[71c] 
 

The mechanism of the polyleucine-catalyzed epoxidation is still under investigation.[57, 72] 

Kinetic studies indicate that the reaction proceeds via the reversible addition of polyleucine-

bound hydroperoxide to the enone.[73] 

 

2.2.4.3 Metal Peroxides in Combination with Chiral Ligands 

Several methods for the catalytic asymmetric epoxidation of α,β-unsaturated ketones rely on 

the use of a chiral ligand coordinated to the metal atom of a metal peroxide, which then 

effects a Weitz-Scheffer epoxidation. A number of metals and chiral ligands have been used 

for this purpose and the most successful approaches are discussed below. 

Jackson et al. had previously established the use of lithium tert-butylperoxide generated 

in situ from n-butyl lithium and tert-butyl hydroperoxide (TBHP) together with stoichiometric 

amounts of diethyl tartrate (DET) for the epoxidation of trans-chalcone resulting in moderate 

yield and enantioselectivity (81:19 er) of the chalcone epoxide (Scheme 2.22, (a)). However, 

2  Background 

22 

Despite the excellent enantioselectivity, a number of problems limited the applicability of this 

methodology, namely the long reaction times even for relatively reactive substrates such as 

chalcone and the narrow substrate scope. In particular, enolizable substrates such as 

benzylidene acetone are found to be epoxidized very slowly or not at all. 

Extensive studies by Roberts and co-workers resulted in significant improvements to 

overcome these limitations. The modified reaction conditions comprised the use of a non-

aqueous solvent, an organic base (e. g. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)), water-

free oxidants such as urea-hydrogen peroxide (UHP) or percarbonate, along with 

immobilized poly-L-leucine as catalyst.[71] These non-aqueous, biphasic reaction conditions 

allowed for greatly enhanced reaction rates (from ca. 24 h to 30 min in the case of chalcone) 

and lower catalyst loadings (5 instead of 20 mol%). Moreover, substantial expansion of the 

range of α,β-enones was achieved and previously unreactive enolizable substrates such as 

benzylidene acetone as well as those bearing alkyl groups at the β-position readily underwent 

the epoxidation reaction (Scheme 2.21).[71c] 

 

 
Scheme 2.21 Expanded substrate scope under Robert’s biphasic reaction conditions.[71c] 
 

The mechanism of the polyleucine-catalyzed epoxidation is still under investigation.[57, 72] 

Kinetic studies indicate that the reaction proceeds via the reversible addition of polyleucine-

bound hydroperoxide to the enone.[73] 

 

2.2.4.3 Metal Peroxides in Combination with Chiral Ligands 

Several methods for the catalytic asymmetric epoxidation of α,β-unsaturated ketones rely on 

the use of a chiral ligand coordinated to the metal atom of a metal peroxide, which then 

effects a Weitz-Scheffer epoxidation. A number of metals and chiral ligands have been used 

for this purpose and the most successful approaches are discussed below. 

Jackson et al. had previously established the use of lithium tert-butylperoxide generated 

in situ from n-butyl lithium and tert-butyl hydroperoxide (TBHP) together with stoichiometric 

amounts of diethyl tartrate (DET) for the epoxidation of trans-chalcone resulting in moderate 

yield and enantioselectivity (81:19 er) of the chalcone epoxide (Scheme 2.22, (a)). However, 

2  Background 

22 

Despite the excellent enantioselectivity, a number of problems limited the applicability of this 

methodology, namely the long reaction times even for relatively reactive substrates such as 

chalcone and the narrow substrate scope. In particular, enolizable substrates such as 

benzylidene acetone are found to be epoxidized very slowly or not at all. 

Extensive studies by Roberts and co-workers resulted in significant improvements to 

overcome these limitations. The modified reaction conditions comprised the use of a non-

aqueous solvent, an organic base (e. g. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)), water-

free oxidants such as urea-hydrogen peroxide (UHP) or percarbonate, along with 

immobilized poly-L-leucine as catalyst.[71] These non-aqueous, biphasic reaction conditions 

allowed for greatly enhanced reaction rates (from ca. 24 h to 30 min in the case of chalcone) 

and lower catalyst loadings (5 instead of 20 mol%). Moreover, substantial expansion of the 

range of α,β-enones was achieved and previously unreactive enolizable substrates such as 

benzylidene acetone as well as those bearing alkyl groups at the β-position readily underwent 

the epoxidation reaction (Scheme 2.21).[71c] 

 

 
Scheme 2.21 Expanded substrate scope under Robert’s biphasic reaction conditions.[71c] 
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upon replacement of n-butyllithium by dibutylmagnesium, catalytic amounts of the chiral 

ligand DET and the base were sufficient to provide high levels of asymmetric induction on a 

range of chalcone-type substrates (Scheme 2.22, (b)).[74] 

 

 
 
Scheme 2.22 Jackson’s asymmetric chalcone epoxidation using either the (a) stoichiometric lithium tert-butyl 
peroxide−(+)-DET or the (b) catalytic magnesium tert-butyl peroxide−(+)-DET system. 
 

Intriguingly, the catalytic magnesium system provided epoxides antipodal to those obtained 

using stoichiometric lithium peroxides, despite employing the identical enantiomer of the 

chiral ligand (+)-DET. The Jackson group further optimized the magnesium-based catalyst 

system and identified conditions which not only tolerated chalcone-type substrates but were 

applicable to a variety of enolizable aliphatic enones without loss of catalyst efficiency 

(Scheme 2.23).[75] 

 

 

Scheme 2.23 Catalytic asymmetric epoxidation of aliphatic enones with (a) magnesium−di-tert-butyl tartrate 
under anhydrous and with (b) magnesium−diisopropyl tartrate under “wet” reaction conditions. 
 

The addition of 4 Å molecular sieves was crucial to retain as high conversions for aliphatic 

enones as for chalcone-type substrates. Moreover, the use of tartrate esters derived from 

secondary or tertiary alcohols instead of DET led to improved enantioselectivities with the 

optimal ligand being di-tert-butyl tartrate (Scheme 2.23, (a)).[75a] The use of “wet” tert-butyl 
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hydroperoxide in combination with 4 Å molecular sieves at lower catalyst loadings of both 

dibutylmagnesium and diisopropyl tartrate further enhanced the operational simplicity and 

practicability of the process which was illustrated by a large scale synthesis of 4,5-epoxy-3-

hexanone in good yields along with improved enantioselectivity of 96.5:3.5 er (Scheme 2.23, 

(b)) compared to 85.5:14.5 er previously attained (Scheme 2.23, (a)).[75b] Jackson’s catalytic 

asymmetric epoxidation of aliphatic α,β-enones proceeds with the highest enantioselectivities 

obtained prior to this work for this substrate class. 

 

Probably the most general method for the catalytic asymmetric epoxidation of α,β-

unsaturated carbonyl compounds was developed by Shibasaki and co-workers and uses a 

combination of lanthanoid alkoxides and BINOL or its derivatives with alkyl hydroperoxides 

as the oxygen source.[76] Two types of catalyst systems exist: (a) one of them is represented 

by the general structure LnM3[(R)-BINOL] (Ln=lanthanoid, M=alkali metal) and comprises 

alkali metals whereas (b) the other one is alkali metal-free. In both cases oligomeric 

complexes between the lanthanoid metal and BINOL are formed. 

Alkali metal-free catalyst systems gave superior results in the catalytic asymmetric 

epoxidation of α,β-unsaturated ketones. The choice of the optimal lanthanoid metal depended 

on the nature of the enone substrate. The lanthanum-(R)-3-hydroxymethyl-BINOL complex 

(La-(R)-23a) in combination with cumyl hydroperoxide (CHP) was the ideal choice for the 

epoxidation of aromatic chalcone-type substrates (Scheme 2.24, (a)), whereas the catalytic 

activity for aliphatic α,β-unsaturated ketones could be improved by the use of ytterbium 

complexes along with TBHP as the oxidant (Scheme 2.24, (b)).[77] 

 

 

Scheme 2.24 Catalytic asymmetric epoxidation of α,β-unsaturated ketones with lanthanoid-BINOL complexes 
according to Shibasaki et al.[77a] 
 

Remarkably, the alkali metal-free complex ytterbium-(R)-3-hydroxymethyl-BINOL (Yb-(R)-

23a) converted cis-enones to the corresponding cis-epoxides in good yields and with high 

levels of asymmetric induction when using TBHP as the oxygen source (Scheme 2.25).[78] 
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Only for aromatic cis-enones (R2 = Ar) minor amounts (up to 32%) of the corresponding 

trans-epoxy ketones were formed at the same time. This report is remarkable since it 

constitutes one of the rare examples of the selective formation of cis-epoxides through 

nucleophilic epoxidation of cis-olefins.[67] 

 

 

Scheme 2.25 Catalytic asymmetric formation of cis-epoxides from cis-enones by Shibasaki et al.[78] 
 

Later on, Inanaga et al. found that the use of additives such as triphenylphosphine oxide or 

tris(4-flourophenyl)phosphine oxide led to enhanced reaction rates which allowed for 

significantly shortened reaction times (Scheme 2.26).[77c, 79] The optimized conditions applied 

best to chalcone-type substrates (up to >99.5:0.5 er) whereas simple aliphatic enones lagged 

behind in terms of the level of enantiocontrol (93.5:6.5 er with R1=PhCH2CH2, R
2=Me). 

 

 

Scheme 2.26 Catalytic asymmetric epoxidation of α,β-unsaturated ketones with a lanthanum-BINOL complex 
and triarylphosphine oxide as additive according to Inanaga et al.[79b] 
 

According to the authors, the increased catalyst activity resulted from the deoligomerization 

of the lanthanoid-BINOL complexes through coordinative saturation of the lanthanoid metal 

with additional ligands.[79c] 

Shibasaki’s lanthanoid-BINOL and related catalyst systems proved to be very general,[76a] and 

found widespread application in the catalytic asymmetric epoxidation of α,β-unsaturated 

esters,[80] amides,[81] and several ester surrogates such as N-acylpyrroles[82] or imidazoles.[83] 
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2.2.5 Recent Advances: The Organocatalytic Approach 

This chapter focuses on catalytic asymmetric epoxidations of α,β-unsaturated carbonyl 

compounds mediated by small molecule organocatalysts such as (S)-proline and its 

derivatives. Recent advances within the realm of phase-transfer catalysis, the Julia-Colonna, 

and the Shi epoxidation, which can be considered borderline organocatalytic, were covered in 

the previous chapter (Chapter 2.2.4). 

 

2.2.5.1 Organocatalytic Asymmetric Epoxidation of α,β-Unsaturated Aldehydes 

The development of new organocatalytic methods − in particular of those based on iminium 

ion catalysis − for the asymmetric epoxidation of α,β-unsaturated carbonyl compounds has 

advanced this research field decisively by extending the substrate scope beyond ester, amide, 

and chalcone derivatives. 

In 2005, Jørgensen and co-workers presented the first direct catalytic asymmetric epoxidation 

of α,β-unsaturated aldehydes, a reaction that had remained a challenge to chemists.[84] Indeed 

direct approaches to enantiomerically enriched α,β-epoxy aldehydes were hitherto not 

available. In the presence of catalytic amounts of the chiral secondary amine α,α-[3,5-

bis(trifluoromethyl)phenyl]prolinol trimethylsilyl ether (24) and with aqueous hydrogen 

peroxide as the oxidant, a range of α,β-epoxy aldehydes could be obtained in high yields 

along with high enantioselectivities from both aromatic and aliphatic enals in a single step 

(Scheme 2.27). 

 

 

Scheme 2.27 First catalytic asymmetric epoxidation of α,β-unsaturated aldehydes by Jørgensen et al.[84] 
 

This seminal work also revealed the compatibility of amine catalysts with various oxidants 

and dispelled scepticism, which predicted severe difficulties from catalyst degradation via 

competing catalyst N-oxidation. 

Alternative protocols for the catalytic asymmetric epoxidation of α,β-unsaturated aldehydes 

based on iminium ion activation were developed by the MacMillan and List groups. 
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This seminal work also revealed the compatibility of amine catalysts with various oxidants 

and dispelled scepticism, which predicted severe difficulties from catalyst degradation via 

competing catalyst N-oxidation. 

Alternative protocols for the catalytic asymmetric epoxidation of α,β-unsaturated aldehydes 

based on iminium ion activation were developed by the MacMillan and List groups. 
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2.2.5 Recent Advances: The Organocatalytic Approach 
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MacMillan and co-workers identified chiral imidazolidinone 25 as its perchlorate salt to 

effectively mediate the epoxidation reaction with hypervalent iodine reagents as oxidants 

(which are rarely used in nucleophilic epoxidation reactions) (Scheme 2.28).[85] A mechanistic 

study with 15N labelled imidazolidinone catalyst 25 revealed that iodosobenzene indeed 

brought about slow catalyst degradation by oxidation. Thus, key to achieving high levels of 

both reaction efficiency and enantioselectivity was the use of [(N-Nosylimino)iodo]benzene 

(PhI=NNs) as an iodosobenzene surrogate which, in the presence of acetic acid, provided a 

slow release of iodosobenzene over time (‘internal syringe pump’). 

 

 

Scheme 2.28 Catalytic asymmetric epoxidation of α,β-unsaturated aldehydes by MacMillan et al. 
 

List and Wang successfully applied the ACDC concept to the catalytic asymmetric 

epoxidation of α,β-unsaturated aldehydes.[38a] Among all combinations tested, catalyst salt 

[10 • (R)-TRIP] comprising an achiral dibenzylamine derivative 10 together with the BINOL 

phosphate TRIP (7a) as the chiral counteranion and only source of chirality, turned out to be 

the catalyst of choice furnishing the desired α,β-epoxy aldehydes in high yields and 

enantioselectivities (Scheme 2.29). 

 

 

Scheme 2.29 Catalytic asymmetric epoxidation of α,β-unsaturated aldehydes by List and Wang. 
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Remarkably, symmetrically β,β-disubstituted enals such as senecialdehyde (3-methylbutenal) 

gave the desired epoxides with excellent enantioselectivities up to 97:3 er in the presence of 

the ACDC catalyst [10 • (R)-TRIP] (Scheme 2.30, (a)). This represents a great advancement 

compared to the results obtained with the catalyst system described by Jørgensen and co-

workers, where this substrate class was converted into the corresponding epoxides with 

significantly lower enantioselectivities (87.5:12.5 er; cf. Scheme 2.30, (a)). Moreover, this 

observation raises interesting mechanistic questions. Since the initial conjugate addition 

product is achiral, the stereogenic center is created during the epoxide ring closure. 

Consequently, the chiral BINOL phosphate (R)-TRIP (7a) must be involved in this C−O 

bond-forming event and presumably assists the enantioselective cyclization of the achiral 

peroxyenamine intermediate (Scheme 2.30, (b)). 

 

 
Scheme 2.30 (a) Catalytic asymmetric epoxidation of senecialdehyde according to List and Wang; (b) Proposed 
reaction pathway. 
 

2.2.5.2 Organocatalytic Asymmetric Epoxidation of α,β-Unsaturated Ketones 

Unfortunately, secondary amine catalysts such as trimethylsilyl diarylprolinol ether 24 and 

related compounds which efficiently mediated the catalytic asymmetric epoxidation of α,β-

unsaturated aldehydes turned out to be less active to completely inactive for the epoxidation 

of α,β-unsaturated ketones. 

Lattanzi and later Zhao and co-workers identified unprotected α,α-diarylprolinol derivatives 

such as 26a or 26b and other structurally diverse β-amino alcohols to provide an effective 

platform for the epoxidation of an array of electron deficient olefins including α,β-

unsaturated ketones with tert-butylhydroperoxide as the oxidant (Scheme 2.31, (a) and (b)).[86] 
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Scheme 2.31 Catalytic asymmetric epoxidation of electron deficient olefins including α,β-unsaturated ketones 
by (a) Lattanzi[86c] and (b) Zhao et al.[86j] 
 

Within these reports it was proposed by the authors that α,α-diarylprolinol catalysts may be 

operating through hydrogen bonding interactions. TBHP may be activated via general base 

catalysis by the prolinol derivative (Figure 2.3). 
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Figure 2.3 Proposed mode of activation of electron deficient olefins by diarylprolinol derivatives via 
hydrogen bonding interaction. (R1 = Ar, Alk; R2 = Ar, Alk, CO2R, CCl3, CF3) 
 

The formation of iminium ions between α,β-unsaturated ketones and catalysts 26a-b as an 

alternative activation pathway was ruled out by the authors given the known unreactive nature 

of enone carbonyls and the detrimental effect of an acid co-catalyst on the outcome of those 

reactions. a  Moreover, a strong solvent effect could be detected further supporting the 

involvement of non-covalent hydrogen bonding interactions. However, whereas this method 

is well developed for chalcone and derivatives, it was scarcely applied to simple aliphatic 

enones, and when so, giving inferior results and enantioselectivities of 87.5:12.5 er at the 

most. In addition, the present epoxidation protocol requires the use of TBHP as the oxidant. 

Aqueous hydrogen peroxide which is an inexpensive and environmentally benign alternative 

cannot be employed.[86f] 

                                                 
a Although smaller in number, reports exist which denote the activation of enone systems as iminium ion in the 
presence of secondary amine (salt) catalysts. 
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Furthermore, chiral guanidines have been explored as base catalysts in the nucleophilic 

epoxidation of different types of α,β-enones. Promising, but not yet fully satisfactory levels of 

stereocontrol have been achieved to date by means of this approach.[87] In contrast, chiral 

guanidinium salts as well as bifunctional guanidinium-urea and guanidinium-hydroxyl 

organocatalysts delivered α,β-epoxy ketones mostly derived from chalcone-type substrates in 

high yields and with good to high enantioselectivities with either hydrogen peroxide or TBHP 

as the oxidant.[88]
 

A catalytic asymmetric epoxidation of α,β-unsaturated ketones truly relying on iminium ion 

activation of the enone carbonyls and a method giving highly enantioenriched α,β-epoxy 

ketones from simple aliphatic enones had not been put into practice prior to this work. 

 

2.2.6 Asymmetric Epoxidation of Cyclic α,β-Unsaturated Ketones 

Cyclic enones constitute a special class of α,β-unsaturated ketones. Up to a ring size with 

n ≤ 4, they feature a (Z)-configured double bond as well as a rigid s-trans conformation of the 

enone moiety in their thermodynamically stable form (Scheme 2.32). 

 
Scheme 2.32 Asymmetric epoxidation of simple cyclic enones. 
 
Strained (E)-2-cycloheptenone (n = 2), -octenone (n = 3), and –nonenone (n = 4) can only be 

generated via photoisomerization.[89] As the ring size increases, the amount of strain decreases 

and (E)-configured cycloalkenones (n ≥ 5) are the stable isomers. 

Cyclic systems (n ≤ 4) are restricted to the s-trans conformation, which avoids problems 

arising from s-cis/s-trans interconversion. By contrast, in open-chain systems the equilibrium 

between the s-cis and s-trans conformer has to be taken into account. Based on this, one 

might suspect that the minimal conformational flexibility inherent in cyclic enones would 

facilitate their asymmetric epoxidation. Yet, the asymmetric epoxidation of s-trans-fixed 

cyclic enones under Weitz-Scheffer conditions has been little studied to date. Indeed, some 

asymmetric Weitz-Scheffer-epoxidations rigorously require s-cis conformation of acceptors, 

and are thus not applicable to cyclic enones.[90] Successful implementations of cyclic enones 

in asymmetric nucleophilic epoxidations had been limited to particular substrate classes such 

as benzoquinone,[91] naphthoquinones,[92] the respective monoketals,[93] isoflavones,[94] and 

perinaphthenone prior to this work.[67] 
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facilitate their asymmetric epoxidation. Yet, the asymmetric epoxidation of s-trans-fixed 

cyclic enones under Weitz-Scheffer conditions has been little studied to date. Indeed, some 

asymmetric Weitz-Scheffer-epoxidations rigorously require s-cis conformation of acceptors, 

and are thus not applicable to cyclic enones.[90] Successful implementations of cyclic enones 

in asymmetric nucleophilic epoxidations had been limited to particular substrate classes such 

as benzoquinone,[91] naphthoquinones,[92] the respective monoketals,[93] isoflavones,[94] and 

perinaphthenone prior to this work.[67] 
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Scheme 2.32 Asymmetric epoxidation of simple cyclic enones. 
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Until 2008, to the best of our knowledge, there was not a single general method available 

which would allow for the highly enantioselective (catalytic) epoxidation of simple cyclic 

enones.[95] The literature precedence for the (catalytic) asymmetric epoxidation of 2-

cyclohexenone is compiled in Table 2.1. 

 

Table 2.1 Comprehensive data for the (catalytic) asymmetric epoxidation of 2-cyclohexenone. 
 

 
 

 

 

The highest enantioselectivity of 81.5:18.5 er was attained by Baba and co-workers in 1986 

by using a quinine-derived bis(phase-transfer catalyst) 27 together with 9-methylflourenyl 

hydroperoxide (28) as the oxidant (Table 2.1).[95-96] All other attempts gave inferior results.[69a, 

86b, 97] In many cases, 2,3-epoxycyclohexanone was obtained in almost racemic form although 

the respective catalyst systems efficiently mediated the epoxidation of other types of α,β-

unsaturated ketones such as chalcone and derivatives with good to high enantioselectivities. 

The use of a TADDOL-derived stoichiometric hydroperoxide 29 has recently been studied by 

Seebach et al.[97c] Whereas an enantiomeric ratio of 91:9 er was achieved in the epoxidation 

of 3-methyl-2-cyclohexenone, 2,3-epoxycyclohexanone derived from unsubstituted 2-

cyclohexenone was obtained in only 55:45 er. In contrast, the phase-transfer conditions 

applied by Wynberg and Marsman were suitable for the asymmetric epoxidation of 2-
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cyclohexenone, but not so for 3-methyl-2-cyclohexenone since this olefin may be too 

sterically crowded to be epoxidized with tert-butylhydroperoxide.[97a] 

The development of a highly enantioselective and general catalytic epoxidation of cyclic 

enones was desirable in light of the synthetic value of enantiomerically pure cyclic α,β-epoxy 

ketones,[98] and even more so due to the absence of such a method prior to this work.a 

 

2.3 Synthesis and Relevance of 3-Hydroxy-1,2-dioxolanes and 1,2-Dioxolanes 

3-Hydroxy-1,2-dioxolanes (Scheme 2.33) and 1,2-dioxolanes are organic peroxides. Both 

contain an O-O bond embedded in a five-membered ring. 3-Hydroxy-1,2-dioxolanes are 

cyclic peroxyhemiketals of β-hydroperoxy carbonyl compounds with the equilibrium 

distribution being dependent on the precise structure and substitution pattern of those 

compounds. However, monocyclic peroxyhemiketals are of remarkable stability and the 

content of the ring-opened form in the equilibrium mixture is low as detected by 13C NMR 

(no carbonyl resonances) (vide infra). 

 

 

Scheme 2.33 Equilibrium between cyclic peroxyhemiketals and β-hydroperoxy carbonyl compounds. 
 

Peroxide-containing natural products, including several examples of 3-hydroxy-1,2-

dioxolanes and related ring systems, occur widely in nature and often possess desirable 

pharmacological properties as pointed out in the following section.[99] 

 

2.3.1 Peroxidic Natural Products 

The most prominent example among all peroxide natural products is the active antimalarial 

agent sesquiterpene 1,2,4-trioxane artemisinin (qinghaosu, 30) isolated from the common 

shrub Artemisia annua (sweet wormwood) (Figure 2.4).[100] Similar antimalarial activities 

were found for the naturally occurring peroxides yingzhaosu A (31) and yingzhaosu C (32) 

containing a 1,2-dioxane core structure.[101] 

 

                                                 
a The asymmetric epoxidation of higher homologues has indeed not been studied at all and for the asymmetric 
epoxidation of cyclopentenone only one literature report is known to date.[96d] 
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Figure 2.4 Peroxidic natural products with antimalarial activity. 
 

However, the most aggressive parasite, Plasmodium falciparum, is showing first resistance 

effects to artemisinin and its semisynthetic derivatives.[102] Consequently, there is an urgent 

need for the development of new effective antimalarial remedies. Synthetic cyclic peroxides 

command increasing attention. They offer a structurally simpler, synthetically readily 

accessible alternative to artemisinin (30) and its analogues. Therefore, much effort is devoted 

to the development of new strategies for the synthesis of novel cyclic peroxidic compounds of 

diverse structures to identify a promising new lead in search of efficient antimalarials.[103] 

Strikingly, tetroxane 33, trioxane 34, or trioxolane 35 show artemisinin-like antimalarial 

activity although their carbocyclic skeletons bear no resemblance to that of artemisinin 

(Figure 2.5).[103-104] 

 

 
 
Figure 2.5 Potent antimalarial drug candidates: tetroxane 33, trioxane 34, and trioxolane 35. 
 

Accordingly, it is not necessary to simulate the artemisinin framework to secure superior 

antimalarial potency. The indispensable feature for antimalarial efficacy appears to be the 

peroxide unit.[105] 

Naturally occurring five-membered cyclic peroxides containing a 1,2-dioxolane unit such as 

plakinic acid A 36a (a member of the plakinic acid natural products family characterized by a 

common 1,2-dioxolane-3-acetic acid “head” and different aliphatic “tails”),[106] or mycan-

gimycin 37, but also synthetic 1,2-dioxolane-based analogues display anticancer, antifungal, 

and antiplasmodial activity (Figure 2.6).[107] 
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Figure 2.6 Naturally occurring plakinic acid A (36a) and mycangimycin (37). 
 

2.3.2 General Methods for the Synthesis of 3-Hydroxy-1,2-dioxolanes 

The methods to introduce a peroxide functionality into organic compounds are limited. In the 

synthesis of most peroxides, irrespective of their structural complexity, the peroxide moiety is 

pre-formed and introduced as either a) molecular oxygen (through a reaction with singlet 

oxygen or radical trapping with triplet oxygen), b) by nucleophilic addition of hydrogen or 

alkyl peroxides, or c) by reaction with ozone.[108] 

Syntheses of 3-hydroxy-1,2-dioxolanes (cf. Scheme 2.33) have been achieved by various 

methods.[109] Currently available methodologies mainly rely on the reaction of hydrogen 

peroxide or singlet oxygen with α,β-unsaturated carbonyl compounds or exploit the aerobic 

oxidation of cyclopropanols. These methods will be briefly introduced in the following 

sections. A direct enantioselective approach to 3-hydroxy-1,2-dioxolanes from simple, readily 

available starting materials had not been described prior to this work. 

 

2.3.2.1 Aerobic Oxidation of Cyclopropanol Derivatives 

Cyclopropanols undergo ring-opening under metal-catalyzed aerobic oxidation; when 

subjected to single-electron oxidants Fe(acac)3, Cu(acac)2, VO(acac)2, or Mn(II) abietate 

under an atmosphere of oxygen, they are converted to β-hydroperoxo ketones which exist in 

equilibrium predominantly as the cyclic peroxyhemiketals (vide infra, Scheme 2.34).[110] 

Among the metal salts listed above, Mn(II) abietate and Mn(II) acetylacetonate did not only 

mediate the aerobic oxidation of bicyclic cyclopropanols but also of simple, readily available 

cyclopropanols of the general structure 38.[110d] The reaction proceeds via the successive 

formation of an alkoxy radical 39 and a β-carbonyl radical 40. The oxidation of cyclopropanol 

derivatives provides expedient access to cyclic peroxyhemiketals 41a; yet, this transformation 

holds little promise for the development of an asymmetric version since it proceeds through a 

radical pathway involving the ablation of preexisting stereocenters. 
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available starting materials had not been described prior to this work. 

 

2.3.2.1 Aerobic Oxidation of Cyclopropanol Derivatives 

Cyclopropanols undergo ring-opening under metal-catalyzed aerobic oxidation; when 

subjected to single-electron oxidants Fe(acac)3, Cu(acac)2, VO(acac)2, or Mn(II) abietate 

under an atmosphere of oxygen, they are converted to β-hydroperoxo ketones which exist in 

equilibrium predominantly as the cyclic peroxyhemiketals (vide infra, Scheme 2.34).[110] 

Among the metal salts listed above, Mn(II) abietate and Mn(II) acetylacetonate did not only 

mediate the aerobic oxidation of bicyclic cyclopropanols but also of simple, readily available 

cyclopropanols of the general structure 38.[110d] The reaction proceeds via the successive 

formation of an alkoxy radical 39 and a β-carbonyl radical 40. The oxidation of cyclopropanol 

derivatives provides expedient access to cyclic peroxyhemiketals 41a; yet, this transformation 

holds little promise for the development of an asymmetric version since it proceeds through a 

radical pathway involving the ablation of preexisting stereocenters. 
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Figure 2.6 Naturally occurring plakinic acid A (36a) and mycangimycin (37). 
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Scheme 2.34 Aerobic oxidation of cyclopropanols 38 to cyclic peroxyhemiketals 41a.[110d] 
 

2.3.2.2 Nucleophilic Addition of Peroxides to α,β-Unsaturated Ketones 

Nucleophilic conjugate addition of alkaline hydrogen peroxide to α,β-unsaturated ketones 16 

generates β-peroxyenolate intermediates 17 which undergo ring closure to form α,β-

epoxyketones 18 (cf. Scheme 2.16). Alternatively, intermediates 17 can be intercepted by 

protonation to afford cyclic peroxyhemiketals 41a (Scheme 2.35). 

 

 
Scheme 2.35 Competing reaction pathways under Weitz-Scheffer reaction conditions: epoxide formation vs. 
protonation of β-peroxyenolate intermediate 17. (Base = i.a. NaOH, LiOH, t-BuNH2) 
 

Although β-peroxyenolates 17 show an overwhelming preference for epoxide formation, 

cyclic peroxyhemiketals of type 41a have occasionally been observed as by-products of 

Weitz-Scheffer-type epoxidations of α,β-unsaturated ketones 16. Their formation was first 

noticed in 1950 by Nazarov and Akhrem who studied the epoxidation of mesityl oxide.[111] 

They were the first ones to separate, purify, and characterize a slightly higher boiling by-

product, before in 1958, Payne unambiguously elucidated its structure as 3-hydroxy-3,5,5-

trimethyl-1,2-dioxolane (41a with R1 = R2 = R3 = Me).[112] 

3-Hydroxy-l,2-dioxolanes are formed in varying amounts along with the corresponding 

epoxides depending on the enone structure and the precise reaction conditions.[111-113] 
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Although this method provides in most cases low yields (< 20%) of 3-hydroxy-l,2-dioxolanes, 

it is highly valuable and still used on a preparative scale due to the limited number of 

operationally simple alternative approaches to this substrate class.[114] Extension of this 

approach to an asymmetric route to 3-hydroxy-l,2-dioxolanes seems feasible since it has 

previously been demonstrated in the context of asymmetric Weitz-Scheffer-type epoxidations, 

that it is possible to render the conjugate addition of hydrogen peroxide to α,β-unsaturated 

carbonyl compounds enantioselective in the presence of a chiral catalyst. 

 

2.3.2.3 Singlet Photooxygenation 

Akin to the reaction with alkaline hydrogen peroxide (vide supra), photooxygenation with 

singlet oxygen (1O2) provides direct access to 3-hydroxy-1,2-dioxolanes from α,β-unsaturated 

carbonyl compounds in a single step. As shown in Scheme 2.36, (a), pulegone (42) readily 

reacts with singlet oxygen to give ene adduct 43b, which spontaneously cyclizes to the 

corresponding peroxyhemiketal 43a.[115] Analogous results were obtained with α,β-

unsaturated aldehydes: tiglic aldehyde (44) gave peroxyhemiacetal 45 in 96% yield (Scheme 

2.36, (b)).[116] α,β-Unsaturated carbonyl compounds with fixed s-cis conformation are more 

rapidly oxidized by singlet oxygen than conformationally flexible substrates whereas those 

substrates which are constrained to the s-trans conformation did not participate at all in the 

reaction. 

 

 

Scheme 2.36 Photooxygenation of α,β-unsaturated carbonyl compounds with singlet oxygen.[115-116] 
 

The oxidative thermolysis of cyclic α-azo hydroperoxides developed by Baumstark et al. 

demonstrates an alternative method for the direct synthesis of 3-hydroxy-1,2-dioxolanes.[117] 

Dussault and co-workers have disclosed stereoselective routes to 3-alkoxy-substituted-1,2-

dioxolanes. Methoxymethyl (MOM)-protected 3-hydroxy-1,2-dioxolanes were obtained via 

regio- and diastereoselective photooxygenations of chiral, racemic (Z)-allylstannanes by 
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singlet oxygen.[118] Stereospecific cyclization of hydroperoxy acetals onto chiral, 

enantiomerically enriched oxetanes furnished optically active 3-methoxy-1,2-dioxolanes,[119] 

a strategy which was later exploited in the context of the synthesis of plakinic acid A 

(36a).[106] 
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3 Objectives of this Ph.D. Work 

 
The vast majority of organic compounds contain oxygenated functionalities. One of the main 

pathways for the introduction of oxygen into organic molecules is via the epoxidation of carbon-

carbon double bonds. Thus, olefin epoxidation constitutes a central transformation in organic 

chemistry and one of the main routes to access epoxides on both a laboratory and an industrial scale. 

Asymmetric olefin epoxidation, in particular catalytic asymmetric olefin epoxidation, has gained 

increasing importance since optically active epoxides are valuable chiral building blocks and versatile 

synthetic intermediates.[8] Their enantioselective production is a subject of considerable interest for 

academia as well as for industry. In view of the industrial applicability, catalytic asymmetric 

epoxidation methods should employ considerably safe oxidants and produce little waste. Hydrogen 

peroxide meets these criteria. It is low in cost, safe to handle, readily available, and generates water as 

the only by-product. Hence, it is probably the best oxidant with respect to environmental and 

economic considerations.a, [120] 

 

Despite the wealth of catalytic asymmetric epoxidations of α,β-unsaturated ketones, particular 

substrate classes still pose a challenge to synthetic chemists. Indeed, most methods described 

to date are tailored to chalcone-type substrates but give inferior results with other enone 

classes. For instance, a highly enantioselective epoxidation of simple cyclic enones (such as 

cyclohexenone) has not been reported thus far (cf. Chapter 2.2.6). Similarly, there is no 

general method for the epoxidation of enolizable aliphatic acyclic enones, let alone using 

hydrogen peroxide as the oxidant (cf. Chapter 2.2.4). The related peroxidation of ketones, 

which generates the synthetically and medicinally relevant 1,2-dioxolane unit, is equally 

orphaned of any catalytic asymmetric method that proceeds with high enantioselectivity. 

 
The goal of this Ph.D. work was to develop an efficient and general method for the catalytic 

asymmetric epoxidation of cyclic as well as acyclic α,β−unsaturated ketones with hydrogen 

peroxide as environmentally benign and atom-economic oxidant. In the event, our work also 

allowed the serendipitous discovery of a highly enantioselective catalytic hydroperoxidation 

of enones which directly delivers the valuable 3-hydroxy-1,2-dioxolane-moiety. 

 
Recently, iminium ion catalysis was successfully applied to the enantioselective epoxidation 

of α,β-unsaturated aldehydes by the groups of Jørgensen, MacMillan, and our group using 

                                                 
a Indeed, in certain circumstances, hydrogen peroxide is even better than oxygen insofar as oxygen-organic 
mixtures are prone to spontaneous ignition. 
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catalytic amounts of chiral secondary amines or amine salts (cf. Section 2.2.5.1).[84-85, 121] 

Inspired by these findings, we reasoned that it should be possible to develop a conceptually 

similar asymmetric Weitz-Scheffer-type epoxidation of α,β-unsaturated ketones with 

hydroperoxides as potential oxidants (Scheme 3.1).[55a] 
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the successful application of chiral primary amine salt [(S)-9 • (R)-TRIP] in the catalytic 

asymmetric transfer hydrogenation of cyclic as well as acyclic enones established in our 

group (Scheme 3.2),[38c] encouraged us to accept the challenge of developing a catalytic 

asymmetric epoxidation process of such substrates based on the same concept. 
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epoxidation, TRIP is the single source of chiral information in the system, whereas in the 

enone reduction the matched combination of (R)-TRIP with (S)-valin-tert-butyl ester (9) 
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accounts for excellent enantioselectivities. Thus, both methods illustrate successful 

implementations of the ACDC-concept in asymmetric catalysis (see Section 2.1.3.1). 

Our strategy for the catalytic asymmetric epoxidation is outlined in the following section. 

Mechanistically, the reaction was envisaged to proceed via asymmetric iminium ion catalysis 

by means of a chiral primary amine salt [R-NH2 • HX]* (Figure 3.1). Initial reversible 

formation of iminium ion A may effectively lower the LUMO energy of the substrate and 

thus activate the enone (e.g. 2-cyclohexenone (46a)) for the enantioselective conjugate 

addition of hydroperoxide ROOH (R = H, Alk). Subsequent intramolecular nucleophilic 

substitution at the proximal oxygen atom may break the weak peroxide bond of β-peroxy 

enamine intermediate B and close the epoxide ring. Finally, hydrolysis of α,β-epoxy iminium 

ion C releases the product (e.g. 2,3-epoxycyclohexanone (48a)) and regenerates the catalyst. 
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Figure 3.1 Proposed catalytic cycle for the asymmetric epoxidation of α,β-unsaturated ketones, as 
exemplified by the reaction of 2-cyclohexenone (46a), catalyzed by a chiral primary amine salt [R-NH2 • HX]*. 
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4 Results and Discussion 

Simple cyclic enones have generally been omitted within the vast majority of studies on the 

asymmetric epoxidation of α,β-unsaturated ketones. Thus, we decided to focus on these 

challenging cyclic substrates as a departure point before extending the methodology to 

different types of α,β-unsaturated ketones. 

 

4.1 Catalytic Asymmetric Epoxidation of Cyclic Enones 

4.1.1 Screening Studies 

The screening studies were carried out in a collaborative effort with X. Wang. 

4.1.1.1 Development and Optimization of the Catalytic System 

Initial experiments were devoted to identifying an effective system for the catalytic 

asymmetric epoxidation of cyclic enones employing 2-cyclohexenone (46a) as the model 

substrate. The results of our comprehensive screening studies are summarized in Table 4.1. At 

the outset, we tested dibenzylamine together with (S)-TRIP [50 • (S)-TRIP], a combination, 

which had previously emerged as an efficient catalyst system for the asymmetric epoxidation 

of α,β-unsaturated aldehydes developed by X. Wang in our group (cf. Scheme 2.29).[38a] 

Aqueous hydrogen peroxide was chosen as the oxidant and reactions were conducted in 

dioxane (0.25 M) at 50 °C. Yet, the activity of [50 • (S)-TRIP] in the asymmetric epoxidation 

of 2-cyclohexenone (46a) was rather low and moreover, 2,3-epoxycyclohexanone (48a) was 

generated with only low enantioselectivity (entry 1). Chiral primary amine salt [(S)-9 • (R)-

TRIP] had proven to be a powerful catalyst for the asymmetric transfer hydrogenation of 

cyclic and acyclic ketones (cf. Scheme 3.2).[38c] However, [(S)-9 • (R)-TRIP] as well as its 

diastereomeric salt [(S)-9 • (S)-TRIP] performed worse in the asymmetric epoxidation of 2-

cyclohexenone (46a) and afforded epoxide 48a with low enantiomeric excess albeit in good 

yields (entries 2-3). In the presence of the amino acid (S)-tert-leucine (51), the desired product 

was formed with moderate enantioselectivity of 73.5:26.5 er, yet again at very low rates 

(entry 4). Its tert-butyl ester 52, however, did not mediate the epoxidation reaction (entry 5). 

In contrast, the combination with (R)-TRIP gave epoxide 48a in high yield and slightly higher 

optical purity than that attained with the corresponding salt [(S)-9 • (R)-TRIP] derived from 

(S)-valine (entry 6 vs. entry 3). This result nicely illustrates the crucial effect of an acid co-

catalyst (or acidic functionality embedded in the catalyst motif) in the present transformation. 
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Notably, (S)-proline (1) displayed high catalytic activity but generated epoxide 48a with low 

enantioselectivity (entry 7).[27a-c, 122] 

 
Table 4.1 Evaluation of various catalyst systems for the catalytic asymmetric epoxidation of 2-
cyclohexenone (46a). 

 

Entry               Amine Acid co-catalyst [mol%] t [h] Yield [%]a erb 

1 
 

50 (S)-TRIP 10 72 22 58:42 

2 

 
(S)-9 

(S)-TRIP 10 24 92 56:44 

3 (R)-TRIP 10 24 73 62:38 

4 

 
(S)-51 - - 72 30 73.5:26.5 

5 

 
(S)-52 

- - 72 - - 

6 (R)-TRIP 10 72 95 67.5:32.5 

7 (S)-proline 1 - - 72 90 58.5:41.5 

8 
 

53 (R)-TRIP 10 48 85 66:34 

9 
 

54 (R)-TRIP 10 48 >99 73.5:26.5 

10 
NH2

 
55 (R)-TRIP 10 24 95 59:41 

11 

 

56 (R)-TRIP 10 24 99 59.5:40.5 

12 

 
(S)-57 

(S)-TRIP 10 24 >99 55.5:44.5 

13 (R)-TRIP 10 24 >99 56:44 

14 

 

(S)-58 
(S)-TRIP 10 24 >99 75:25 

15 (R)-TRIP 10 24 >99 80:20 

aDetermined by GC. bDetermined by chiral GC. 
 
Next, we turned our attention to salts of primary aromatic amines. A broad variety of aniline 

derivatives were evaluated with p-methoxyphenyl amine (53) and 2-amino fluorene (54) in 

combination with TRIP giving the best results with good yields and enantiomeric ratios of up 

to 73.5:26.5 er (entries 8-9).[123] In contrast, benzyl amines 55 and 56 showed superior 

catalytic activity, yet induced lower levels of enantioselectivity (entries 10-11). 
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Next, we turned our attention to salts of primary aromatic amines. A broad variety of aniline 

derivatives were evaluated with p-methoxyphenyl amine (53) and 2-amino fluorene (54) in 

combination with TRIP giving the best results with good yields and enantiomeric ratios of up 

to 73.5:26.5 er (entries 8-9).[123] In contrast, benzyl amines 55 and 56 showed superior 

catalytic activity, yet induced lower levels of enantioselectivity (entries 10-11). 
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At this point, we speculated that the use of a bifunctional amine catalyst might benefit the 

catalyst efficiency. A directing group in close proximity to the primary amine functionality 

could direct the attack of the hydroperoxide nucleophile as suggested in Figure 4.1. 

 

 
Figure 4.1 Pre-transition state assembly invoking a directing effect of a bifunctional amine catalyst. (FG = i. a. 
OH, NH2) 
 

Based on this hypothesis, we tested various chiral amino alcohols such as (S)-2-amino-2-

phenylethanol (57) and (S)-2-amino-1,1,2-triphenylethanol (58) with the latter being sterically 

encumbered and conformationally rigidified due to the geminal diphenyl substitution (entries 

12-15). Indeed, amino alcohol (S)-58 in combination (R)-TRIP gave full conversion after 24 

hours along with an increased enantiomeric ratio of 80:20 which was the highest observed at 

this point of the screening experiments (entry 15). 

 

Encouraged by this result, we went on to study different types of bifunctional primary amines 

among them (S)-BINAM (2,2'-diamino-1,1'-binaphthalene; 59), (R,R)-DACH (1,2-

diaminocyclohexane; 60), (R,R)-DPEN (1,2-diphenylethylenediamine; 12), (R,R)-DPEN 

derivative 61, (S)-2-aminomethylpyrrolidine (62), as well as primary amines derived from 

naturally occurring Cinchona alkaloids (Table 4.2). In particular, the TFA salts of (R,R)-

DPEN 12 and 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) emerged as powerful catalysts 

giving the desired epoxide 48a with high yield and enantiomeric ratios of 95:5 and 96:4 er, 

respectively (entries 3 and 5). Notably, truncated forms of 13, the 2-aminomethyl quinuc-

lidines 63 and 64, proved to be highly active, yet less enantioselective (entries 7-12). 
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Table 4.2 Evaluation of various bifunctional amine salts for the catalytic asymmetric epoxidation of 2-
cyclohexenone (46a). 

 

Entry Amine Acid co-catalyst [mol%] Yield [%]a erb 

1 

 

(S)-59 TFA 10 71 38:62 

2 
 

(R,R)-60 TFA 10 98 82:18 

3  
(R,R)-DPEN 

(R,R)-12 TFA 10 95 95:5 

4 

 

(R,R)-61 TFA 10 77 93:7 

5 

 

9-NH2-epiQ 

13 TFA 20 76 4:96 

6 
 

(S)-62 (S)-TRIP 10 84 94:6 

7c 

 

(8S)-63 TFA 10 >99 56:44 

8c (8S)-63 TFA 20 >99 58:42 

9c (8S)-63 (S)-TRIP 10 >99 63:37 

10c 

 

(8R)-64 TFA 10 96 38:62 

11c (8R)-64 TFA 20 >99 31.5:68.5 

12c (8R)-64 (S)-TRIP 10 >99 18:82 

aDetermined by GC. bDetermined by chiral GC. c12 h. 
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The most promising catalyst candidates (R,R)-DPEN 12 and 9-amino(9-deoxy)epiquinine (9-

NH2-epiQ; 13) were subjected to further screening experiments to refine the catalyst 

composition with respect to the nature of the acid co-catalyst. In doing so, we took into 

account the decisive effect of chiral counteranions in catalytic asymmetric transformations as 

recently revealed in our laboratories.[38b] A range of variously 3,3'-disubstituted chiral 

BINOL-derived phosphoric acids were tested in combination with (R,R)-DPEN. The first 

attempts were performed with chiral BINOL phosphate TRIP (7a) bearing sterically 

demanding 2,4,6-triisopropylphenyl substituents at the 3,3'-positions (Table 4.3). TRIP had 

already surfaced as the chiral counteranion of choice in several catalytic asymmetric 

transformations developed in our group. Indeed, also in the epoxidation of 2-cyclohexenone 

(46a), none of the chiral BINOL phosphates tested could compete with TRIP in terms of both 

activity and enantioselectivity. Pairing of (R,R)-DPEN 12 with (S)-TRIP in a 1:1 ratio 

improved both the yield and the enantioselectivity compared to the reaction catalyzed by 

[(R,R)-DPEN • TFA] (entry 3). In contrast, the results obtained with [(R,R)-DPEN • (R)-

TRIP] were inferior and denoted a significant matched/mismatched scenario (entry 5). 

Moreover, we evaluated other chiral acid motifs. In the presence of chiral BINOL-derived N-

triflyl phosphoramide 65, (R,R)-2,3-epoxycyclohexanone (48a) was formed in only moderate 

yield and reduced enantioselectivity (86:14 er) (entry 6). 

Notably, the use of achiral diphenyl phosphate salt [(R,R)-DPEN • 66] resulted in excellent 

enantioselectivity of 96:4 er; nevertheless increased by-product formation was observed 

(entry 7). When TRIP was used in combination with meso-DPEN (meso-12), and thus was the 

only source of chirality in the system, the enantioselectivity remained low (entry 11). 
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Table 4.3 Evaluation of different acid co-catalysts in combination with (R,R)-DPEN ((R,R)-12). 
 

 
 

Entry Acid co-catalyst [mol%] Yield [%]a erb 

1 TFA 10 95 95:5 

2 TFA 20 88c 94:6 

3 (S)-TRIP 10 99 96:4 

4 (S)-TRIP 20 91 92:8 

5 (R)-TRIP 10 49 90:10 

6 (S)-65 10 38 86:14 

7 (PhO)2PO(OH) (66) 10 77c 96:4 

8 HCl 10 60 90.5:9.5 

9 p-TsOH • H2O 10 92 89.5:10.5 

10 TfOH 10 30 73:27 

11d (R)-TRIP 10 95 42:58 
aDetermined by GC. bDetermined by chiral GC. cBy-product formation was observed. dmeso-DPEN (meso-12) 
was used. 
 
In addition, we evaluated a variety of DPEN derivatives bearing either electron-donating or 

electron-withdrawing substituents at the phenyl rings in combination with TRIP. Yet, none of 

the derivatives studied was able to enhance the stereocontrol obtained with unsubstituted 

(R,R)-DPEN ((R,R)-12). 

In parallel, we investigated the use of Cinchona alkaloid-derived primary amines in the 

epoxidation of 2-cyclohexenone (46a) (Table 4.4). In particular, 9-amino(9-deoxy)epiquinine 

(13) generated epoxide 48a in high yield along with an excellent enantioselectivity of 96:4 er 

(entry 1). The results obtained with analogous primary amines 67-70 derived from quinidine, 

cupreidine, cinchonidine, or cinchonine, respectively, were slightly inferior (entries 4-7). In 

contrast, amine 71 derived from 6'-isopropoxycinchonidine and 9-amino(9-deoxy)epidihydro-

quinine (72) both furnished epoxide 48a with comparable efficiencies (entries 8-9); the 

former one even afforded a slightly higher yield and enantioselectivity of 96.5:3.5 er than 9-

amino(9-deoxy)epiquinine (13) under otherwise identical conditions. However, we have 

selected amine 13 for further investigations since it is readily accessible from quinine via a 
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9 p-TsOH • H2O 10 92 89.5:10.5 

10 TfOH 10 30 73:27 

11d (R)-TRIP 10 95 42:58 
aDetermined by GC. bDetermined by chiral GC. cBy-product formation was observed. dmeso-DPEN (meso-12) 
was used. 
 
In addition, we evaluated a variety of DPEN derivatives bearing either electron-donating or 

electron-withdrawing substituents at the phenyl rings in combination with TRIP. Yet, none of 

the derivatives studied was able to enhance the stereocontrol obtained with unsubstituted 

(R,R)-DPEN ((R,R)-12). 

In parallel, we investigated the use of Cinchona alkaloid-derived primary amines in the 

epoxidation of 2-cyclohexenone (46a) (Table 4.4). In particular, 9-amino(9-deoxy)epiquinine 

(13) generated epoxide 48a in high yield along with an excellent enantioselectivity of 96:4 er 

(entry 1). The results obtained with analogous primary amines 67-70 derived from quinidine, 

cupreidine, cinchonidine, or cinchonine, respectively, were slightly inferior (entries 4-7). In 

contrast, amine 71 derived from 6'-isopropoxycinchonidine and 9-amino(9-deoxy)epidihydro-

quinine (72) both furnished epoxide 48a with comparable efficiencies (entries 8-9); the 

former one even afforded a slightly higher yield and enantioselectivity of 96.5:3.5 er than 9-

amino(9-deoxy)epiquinine (13) under otherwise identical conditions. However, we have 

selected amine 13 for further investigations since it is readily accessible from quinine via a 
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two step-one pot sequence whereas the synthesis of the 6'-isopropoxy derivative 71 requires a 

lengthy five-step procedure (cf. Chapter 4.7.1). Intriguingly, 9-amino(9-deoxy)quinine (9-

NH2-Q; 73) featuring the natural configuration of quinine at C-9 was less active and 

significantly less enantioselective compared to amine 13. Indeed, the opposite enantiomer 

(R,R)-48a was generated with only 79:21 er (entry 10). In general, pseudoenantiomeric amine 

catalysts such as quinine-derived 13 and quinidine-derived 67 provide antipodal 2,3-

epoxycyclohexanone (48a) with similar levels of enantiocontrol (entries 1 and 4). 

 

Table 4.4 Screening of various Cinchona alkaloid-derived primary amines. 
 

 

Entry 9-NH2 Cinchona alkaloid derivative Conv. [%]a Yield [%]a erb

1 13 (9-NH2-epiQ) 97 76 96:4 

2c 13 (9-NH2-epiQ) 95 82 96:4 

3d 13 (9-NH2-epiQ) 97 93 97:3 

4 67 (9-NH2-epiQD) 94 87 6:94 

5d 68 98 89 91:9 

6 69 full 77 94.5:5.5 

7 70 full 78 7:93 

8 71 96 83 96.5:3.5 

9 72 96 75 95.5:4.5 

10e 73 (9-NH2-Q) 82 80 21:79 

aDetermined by GC. bDetermined by chiral GC. c24 h. dAt 30 °C. e72 h. 
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In the course of our screening studies, we noted that prolonged reaction times had a 

detrimental effect on the yield. Whereas a yield of 82%a of epoxide 48a was detected after 

24 h (entry 2), only 76%a were present in the reaction mixture after continued heating for 48 h 

(entry 1). In addition, increased side product formation presumably resulting from product 

decomposition was noticable under these conditions. Similarly, decreasing the temperature 

from 50 °C to 30 °C proved beneficial to the reaction (entry 3). Taking these observations into 

account, (S,S)-2,3-epoxycyclohexanone (48a) was obtained in 93% yielda and with excellent 

enantioselectivity of 97:3 er in the presence of 10 mol% of [13 • 2 TFA]. 

Attempts to refine the catalyst composition with regard to the acid co-catalyst (Table 4.5), 

confirmed [13 • 2 TFA] as the optimum choice. A ratio of 1:1 amine 13/TFA resulted in 

somewhat lower catalytic activity (entry 2). However, both increasing and decreasing the 

loading of TFA only marginally influenced the reaction outcome in terms of yields and 

enantioselectivities (entries 2-3). With diphenyl phosphoric acid (66) as co-catalyst, 2,3-

epoxycyclohexanone was obtained in 94% yield and 96:4 er (entry 13). This value could be 

further enhanced to 97:3 er by pairing 9-amino(9-deoxy)epiquinine (13) with (R)-TRIP (entry 

14). However, [13 • (R)-TRIP] exhibited significantly decreased catalytic activity. Notably, 

combining (S)-TRIP with 9-amino(9-deoxy)epiquinidine (67) furnished the (R,R)-isomer of 

48a with 96:4 er (entry 17) whereas catalyst [67 • 2 TFA] generated epoxide (R,R)-48a with a 

reduced 94:6 er (cf. Table 4.4, entry 5). Subsequent optimization experiments were carried 

out with [13 • 2 TFA]. 

 

                                                 
a Yield determined by GC with an internal standard method. 
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Table 4.5 Screening of acid co-catalysts for the epoxidation of 2-cyclohexenone (46a) with 9-amino(9-
deoxy)epiquinine (13). 

 

Entry        Acid co-catalyst Acid conc. [mol%] Conv. [%]a Yield [%]a erb

1c TFA  20 97 93 97:3 

2c   10 90 89 96.5:3.5 

3c   30 97 90 96.5:3.5 

4 HCl  10 79 70 87:13 

5   20 85 69 92:8 

6 DNBA  10 92 92 93:7 

7 
 

74 10 85 85 93.5:6.5 

8  20 88 88 93.5:6.5 

9 

 
(S)-75 

10 88 88 93.5:6.5 

10 20 91 91 94:6 

11 

 
(R)-75 

10 89 89 94.5:5.5 

12 20 93 89 95:5 

13 (PhO)2PO(OH) 66 10 94 94 96:4 

14 (R)-TRIP 7a 10 56 50 97:3 

15 (S)-TRIP 7a 10 56 50 87:13 

16d (R)-TRIP 7a 10 71 69 15:85 

17d (S)-TRIP 7a 10 65 65 4:96 

aDetermined by GC. bDetermined by chiral GC. cAt 30 °C for 20 h. d9-Amino(9-deoxy)epiquinidine (67; 10 mol%) 
was used. 
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4.1.1.2 Optimization of the Reaction Conditions 

After having identified two efficient catalytic systems - [9-NH2-epiQ (13) • 2 TFA] and 

[(R,R)-DPEN • (S)-TRIP] (Table 4.6), our objective was to further optimize the reaction 

conditions prior to investigating the scope of the asymmetric epoxidation reaction. 

 

Table 4.6 Catalytic asymmetric epoxidation of 2-cyclohexenone (46a). 
 

 

Entry Catalyst Product Temp. [°C] Conv. [%]a Yield [%]b erc

1 

 

[9-NH2-epiQ (13) • 2 TFA] 

(S,S)-48a 30 97 58 (93) 97:3

2 

Ph

H3N NH2

Ph

O
P

O O

O-

i-Pr

i-Pr
i-Pr

i-Pr

i-Pr

i-Pr
+

 

[(R,R)-DPEN • (S)-TRIP] 

(R,R)-48a 50 full 68 (99) 96:4

aDetermined by GC. bYields of pure, isolated products. Values in parenthesis correspond to yields determined by 
GC with an internal standard method. cDetermined by chiral GC. 
 
With both catalyst systems, the crude reaction mixtures were extremely clean as determined 

by GC and 1H NMR and cyclohexenone epoxide 48a was the only product detected; only its 

pronounced volatility precluded the obtention of high isolated yields (Table 4.6). The absolute 

configuration of 2,3-epoxycyclohexanone (48a) was established by comparing the optical 

rotation with literature values.[97a] 

In the context of the reaction optimization, we also wanted to evaluate the applicability of 

different oxygen sources. Not only is aqueous hydrogen peroxide unquestionably the most 

favourable oxidant besides molecular oxygen, but it also proved superior to all the other 

oxygen sources tested (Table 4.7). In particular, 50 wt% aqueous hydrogen peroxide afforded 

cyclohexenone epoxide 48a with slightly higher enantioselectivity and higher yield than the 

less concentrated reagent (entries 1-2). The use of anhydrous H2O2 sources (urea-hydrogen 
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different oxygen sources. Not only is aqueous hydrogen peroxide unquestionably the most 

favourable oxidant besides molecular oxygen, but it also proved superior to all the other 

oxygen sources tested (Table 4.7). In particular, 50 wt% aqueous hydrogen peroxide afforded 

cyclohexenone epoxide 48a with slightly higher enantioselectivity and higher yield than the 

less concentrated reagent (entries 1-2). The use of anhydrous H2O2 sources (urea-hydrogen 

4  Results and Discussion 

50 

4.1.1.2 Optimization of the Reaction Conditions 

After having identified two efficient catalytic systems - [9-NH2-epiQ (13) • 2 TFA] and 

[(R,R)-DPEN • (S)-TRIP] (Table 4.6), our objective was to further optimize the reaction 

conditions prior to investigating the scope of the asymmetric epoxidation reaction. 

 

Table 4.6 Catalytic asymmetric epoxidation of 2-cyclohexenone (46a). 
 

 

Entry Catalyst Product Temp. [°C] Conv. [%]a Yield [%]b erc

1 

 

[9-NH2-epiQ (13) • 2 TFA] 

(S,S)-48a 30 97 58 (93) 97:3

2 

Ph

H3N NH2

Ph

O
P

O O

O-

i-Pr

i-Pr
i-Pr

i-Pr

i-Pr

i-Pr
+

 

[(R,R)-DPEN • (S)-TRIP] 

(R,R)-48a 50 full 68 (99) 96:4

aDetermined by GC. bYields of pure, isolated products. Values in parenthesis correspond to yields determined by 
GC with an internal standard method. cDetermined by chiral GC. 
 
With both catalyst systems, the crude reaction mixtures were extremely clean as determined 

by GC and 1H NMR and cyclohexenone epoxide 48a was the only product detected; only its 

pronounced volatility precluded the obtention of high isolated yields (Table 4.6). The absolute 

configuration of 2,3-epoxycyclohexanone (48a) was established by comparing the optical 

rotation with literature values.[97a] 

In the context of the reaction optimization, we also wanted to evaluate the applicability of 

different oxygen sources. Not only is aqueous hydrogen peroxide unquestionably the most 

favourable oxidant besides molecular oxygen, but it also proved superior to all the other 

oxygen sources tested (Table 4.7). In particular, 50 wt% aqueous hydrogen peroxide afforded 

cyclohexenone epoxide 48a with slightly higher enantioselectivity and higher yield than the 

less concentrated reagent (entries 1-2). The use of anhydrous H2O2 sources (urea-hydrogen 



4 Results and Discussion 

 51

peroxide (UHP) or sodium percarbonate) gave inferior results in terms of both reactivity and 

selectivity (entries 3-4). Alkylhydroperoxides were also tested (entries 5-6). Among them, 

tert-butylhydroperoxide furnished the desired product in good yield but with moderate optical 

purity. As expected, electrophilic oxidants were generally less effective in epoxidizing the 

electron-deficient double bond of 2-cyclohexenone (46a) (entries 7-10). 

 

Table 4.7 Evaluation of different oxidants for the epoxidation of 2-cyclohexenone (46a) catalyzed by [(R,R)-
DPEN • (S)-TRIP]. 

 

Entry Oxidant Yield [%]a erb 

1 H2O2 (50 wt%) 99 96:4 

2 H2O2 (30 wt%) 96 95:5 

3 UHP 69 87:13 

4 (H2O2)3(Na2CO3)2 10 52.5:47.5 

5c TBHP (5.5 M in decane) 71 74:26 

6c CMHP (~80% in cumene) 10 71:29 

7c PhI=O <5 n.d. 

8c KHSO5 20 79.5:20.5 

9c m-CBPA 18 n.d. 

10c NaBO3 • H2O 12 67.5:32.5 

aDetermined by GC. bDetermined by chiral GC. c72 h. 
 
Both catalyst components of [(R,R)-DPEN • (S)-TRIP] are commercially available. Yet, due 

to the high molecular weight of the BINOL-derived phosphoric acid (S)-TRIP, a reduction in 

catalyst loading seemed desirable. However, this led to a drop in activity while the 

enantioselectivity remained essentially unaffected (Table 4.8, entries 2-4). We hypothesized 

that it might be possible to counter the loss of acitivity by keeping the concentration of the 

amine component (R,R)-DPEN constant while lowering the loading of (S)-TRIP. Previously, 

this strategy had proven successful in the catalytic asymmetric transfer hydrogenation of α,β-

unsaturated ketones.[124] However, the results depicted in Table 4.8 indicate that a 1:1 (R,R)-

DPEN/(S)-TRIP ratio is crucial to obtain high enantioselectivity. Lowering the loading of (S)-

TRIP while keeping the concentration of (R,R)-DPEN constant had a detrimental effect on 

both the activity and selectivity of the catalyst system (entries 5-8). 
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Table 4.8 Optimization of the loading of the (R,R)-DPEN/(S)-TRIP catalyst system. 
 

 

Entry (S)-TRIP [mol%] (R,R)-DPEN [mol%] Yield [%]a erb

1 20 20 91 96:4 

2 10 10 99 96:4 

3 5 5 78 95:5 

4c 1 1 38 97:3 

5 5 10 80 95:5 

6 3 10 65 93.5:6.5 

7 2 10 49 90.5:9.5 

8 1 10 30 85:15 
aDetermined by GC. bDetermined by chiral GC. c72 h. 

 
Screening of different solvents revealed that ethereal solvents are vital for high catalytic 

activity (Table 4.9). Among all ethereal solvents tested, 1,4-dioxane afforded the best results 

(entries 1 and 10). With catalyst [(R,R)-DPEN • (S)-TRIP], excellent results were also 

obtained in dimethoxyethane (DME) (entry 13). In chlorinated solvents and non-polar 

solvents such as hexane and toluene the catalytic efficiency was greatly reduced (entries 7-

9, 17). Polar solvents including methanol, ethanol, DMSO, and DMF had been tested 

previously under slightly modified conditions, and overall gave inferior results than all the 

ethereal solvents. 
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Table 4.9 Solvent screening. 
 

 

Catalyst [13 • 2 TFA] [(R,R)-DPEN • (S)-TRIP] 

Solvent Entry Yield [%]a er (S,S)b Entry Yield [%]a er (R,R)b

1,4-dioxane 1 93 96.5:3.5 10 99 96:4 

MTBE 2 89 84:16 12 99 95:5 

DME 3 90 91:9 13 96 96:4 

Et2O 4 86 73.5:26.5 14 97 94.5:5.5 

n-Bu2O 5 69 57:43 15 88 90.5:9.5 

THF 6 n.d. n.d. 16 99 94:6 

hexane 7 69 59.5:40.5 17 83 84:16 

toluene 8 50 58.5:41.5 18 n.d. n.d. 

CH2Cl2 9 41 74:26 19 n.d. n.d. 
aDetermined by GC. bDetermined by chiral GC. 

 
Before investigating the scope of the reaction, we sought the possibility of increasing the 

substrate concentration (thus minimizing the amount of solvent required). However, a 

substrate concentration of 0.5 M brought about reduced enantioselectivity and increased the 

formation of by-products in the epoxidation of 2-cyclohexenone (46a). We were similarly 

interested in decreasing the loading of hydrogen peroxide. However, a slight reduction to 1.25 

equivalents of hydrogen peroxide resulted in a pronounced drop in the reaction rate as such 

that the reaction did not reach full conversion within 48 hours of reaction time. 

 

4.1.2 Reaction Scope and Discussion 

After having established optimal conditions for the highly enantioselective epoxidation of 2-

cyclohexenone (46a), we became interested in exploring the scope of this new catalytic 

asymmetric transformation to cyclic α,β-unsaturated ketones of different ring sizes and with 

different substitution patterns. The following protocol was applied: catalyst salts [(R,R)-

DPEN • (S)-TRIP] or [9-NH2-epiQ (13)• 2 TFA] were prepared in situ by mixing chiral 

primary amines ((R,R)-DPEN or 9-NH2-epiQ (13); 10 mol%) with the respective acids ((S)-

TRIP: 10 mol%; TFA: 20 mol%) in dioxane for 10 min at room temperature. Then, cyclic 

enone 46 (0.25 M) was added followed by the addition of aqueous hydrogen peroxide (50 

wt%; 1.5 equiv) and the reaction mixture was stirred at 30-50 °C for 24-48 hours. 
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4.1.2.1 Scope of Substituted Cyclohexenones 

At the outset, we focused on 2-cyclohexenones bearing substituents at the 4-, 5-, and 6-

positions (Table 4.10). Both catalyst systems [(R,R)-DPEN • (S)-TRIP] and [13 • 2 TFA] 

efficiently mediated the epoxidation of 4,4-dimethyl-2-cyclohexenone (46b) to afford the 

corresponding epoxides (R,R)- and (S,S)-48b, respectively, in high yields along with high 

enantiomeric ratio of 97:3 in both cases (entries 3-4). Substitution at the 5-position was well 

tolerated by the catalyst system [(R,R)-DPEN • (S)-TRIP], whereas [13 • 2 TFA] provided 

5,5-dimethyl-substituted 2,3-epoxycyclohexanones 48c and 48d with slightly lower enantio-

selectivity, albeit in a comparable yield (entries 5-8). 

 
Table 4.10 Substrate scope I: 4-, 5-, and 6-substituted 2-cyclohexenones.a 
 

 

Entry Catalyst Enone Product  Yield [%]a erb 

1 

2 

[13 • 2 TFA] 

[(R,R)-12 • (S)-TRIP]  

46a 
 

48a 

(S,S)-48a 

(R,R)-48a 

58 (93) 

68 (99) 

97:3 

96:4 

3 

4 

[13 • 2 TFA] 

[(R,R)-12 • (S)-TRIP] 
 

46b 
 

48b 

(S,S)-48b 

(R,R)-48b 

84 

80 

97:3 

97:3 

5 

6 

[13 • 2 TFA] 

[(R,R)-12 • (S)-TRIP] 
 

46c 
 

48c 

(S,S)-48c 

(R,R)-48c 

72 

76 

96:4 

98:2 

7 

8 

[13 • 2 TFA] 

[(R,R)-12 • (S)-TRIP] 
 

46d 
 

48d 

(S,S)-48d 

(R,R)-48d 

52 

63 

95.5:4.5 

96.5:3.5 

9c 

10c 

[13 • 2 TFA] 

[(R,R)-12 • (S)-TRIP]  

rac-46e 
 

48e 

(2S,3S)-48e

(2R,3R)-48e

47 

34 

n.d. 

n.d. 

aYields of pure, isolated products. Values in parenthesis correspond to yields determined by GC. bDetermined by 
chiral GC. cAt 50 °C. 

                                                 
a Results obtained in collaboration with X. Wang. 
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At the outset, we focused on 2-cyclohexenones bearing substituents at the 4-, 5-, and 6-

positions (Table 4.10). Both catalyst systems [(R,R)-DPEN • (S)-TRIP] and [13 • 2 TFA] 

efficiently mediated the epoxidation of 4,4-dimethyl-2-cyclohexenone (46b) to afford the 

corresponding epoxides (R,R)- and (S,S)-48b, respectively, in high yields along with high 

enantiomeric ratio of 97:3 in both cases (entries 3-4). Substitution at the 5-position was well 

tolerated by the catalyst system [(R,R)-DPEN • (S)-TRIP], whereas [13 • 2 TFA] provided 

5,5-dimethyl-substituted 2,3-epoxycyclohexanones 48c and 48d with slightly lower enantio-

selectivity, albeit in a comparable yield (entries 5-8). 

 
Table 4.10 Substrate scope I: 4-, 5-, and 6-substituted 2-cyclohexenones.a 
 

 

Entry Catalyst Enone Product  Yield [%]a erb 
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n.d. 

aYields of pure, isolated products. Values in parenthesis correspond to yields determined by GC. bDetermined by 
chiral GC. cAt 50 °C. 

                                                 
a Results obtained in collaboration with X. Wang. 
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To evaluate the effect of substituents at the 6-position, we studied the epoxidation of racemic 

6-methyl-2-cyclohexenone (rac-46e). This substrate exhibited with both catalyst systems a 

significantly reduced reactivity compared to 4- and 5-substituted cyclohexenone: With 

[13 • 2 TFA] (10 mol%) after 48 h at 50 °C, a mixture of cis- and trans-epoxides 48e were 

formed in 47% yield; and in even lower yield of 34% in the presence of the catalyst [(R,R)-

DPEN • (S)-TRIP] (10 mol%) under otherwise identical conditions (entries 9-10). Presumably, 

steric constraints may hinder iminum ion formation and may account for the low reactivity of 

6-methyl-2-cyclohexenone (46e). 

 
Next, we investigated the epoxidation of 3-methyl-2-cyclohexenone (46f). Both catalyst 

systems were tested and to our delight, [13 • 2 TFA] gave the desired epoxide 48f as the (S,S)-

isomer in good yield along with high enantioselectivity (70%, 98:2 er) (Table 4.11, entry 1), 

while [(R,R)-DPEN • (S)-TRIP] was both considerably less active and less enantioselective 

providing (R,R)-48f in only 90.5:9.5 er (entry 3). In combination with TFA as acid co-catalyst, 

(R,R)-DPEN displayed slightly higher catalytic efficiency (entries 4-5). By using catalytic 

amounts of [(R,R)-DPEN • TFA], (R,R)-3-methyl-2,3-epoxycyclohexanone (48f) was formed 

in 71% yield along with 92.5:7.5 er (entry 4). 

 

Table 4.11 Catalytic asymmetric epoxidation of 3-methyl-2-cyclohexenone (46f). 
 

 

Entry Catalyst Product Conv. [%]a Yield [%]b erc 

1d [13 • 2 TFA] (S,S)-48f 95 70 (91) 98:2 

2 [13 • 2 TFA] (S,S)-48f 93 (79) 97:3 

3 [(R,R)-12 • (S)-TRIP] (R,R)-48f 66 (47) 90.5:9.5 

4 [(R,R)-12 • TFA] (R,R)-48f 81 (71) 92.5:7.5 

5 [(R,R)-12 • 2 TFA] (R,R)-48f 90 (58) 90:10 
aDetermined by GC. bYields of pure, isolated products. Values in parenthesis correspond to yields determined by 
GC. cDetermined by chiral GC. dAt 30 °C for 24 h. 
 
While studying the scope of 3-substituted cyclohexenones, [9-NH2-epiQ (13) • 2 TFA] 

emerged as highly efficient and general catalyst giving a broad range of 3-substituted 2,3-

epoxycyclohexanones 48f-48m in good to high yields and with excellent enantiomeric ratios 
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of up to 99.5:0.5 (Table 4.12, entries 1-9).a A wide variety of linear and branched alkyl 

substituents including ethyl, isopropyl, isobutyl, benzyl, and phenethyl groups were well 

tolerated and the corresponding epoxides 48 were obtained with consistently high 

enantioselectivity. Even cyclohexenone 46j bearing a sterically demanding tert-butyl group at 

the 3-position was readily converted into the corresponding epoxide 48j with essentially 

perfect stereocontrol (99.5:0.5 er) (entry 5). Pleasingly, for 3-substituted cyclohexenones, the 

pseudoenantiomeric catalyst [67 • 2 TFA] (with amine 67 derived from quinidine, cf. Table 

4.4) provided access to antipodal epoxides with equally high enantioselectivities as 

demonstrated for 3-benzyl-2-cyclohexenone (46m) (entry 9). 

 

Table 4.12 Substrate scope II: 3-substituted 2-cyclohexenones. 
 

dioxane (0.25 M), 50 °C, 48 h

[13 2 TFA] (10 mol%)
H2O2 (50 wt%; 1.5 equiv)

O O

R

O

R46 48

N

N

MeO

NH2

H

13
 

Entry R Enone Product Yield [%]a erb 

1c Me 46f (2S,3S)-48f 70 98:2 

2d Et 46g (2S,3S)-48g 73 98.5:1.5 

3 i-Bu 46h (2S,3R)-48h 73 98:2 

4 i-Pr 46i (2S,3R)-48i 79 99:1 

5 t-Bu 46j (2S,3R)-48j 68 99.5:0.5 

6 allyl 46k (2S,3R)-48k 23 97.5:2.5 

7 CH2CH2Ph 46l (2S,3R)-48l 84 98.5:1.5 

8 CH2Ph 46m (2S,3R)-48m 78 99:1 

9e CH2Ph 46m (2R,3S)-48m 77 1.5:98.5 

10 Ph 46n (2S,3R)-48n 0 - 

11 vinyl 46o (2S,3R)-48o 0 - 

12 ethinyl 46p (2S,3R)-48p 0 - 
aYields of pure, isolated products. bDetermined by chiral GC. cAt 30 °C for 24 h. d30 h. e[67 • 2 TFA] (10 mol%) 
was used as the catalyst. 
 
In the case of 3-allyl-2-cyclohexenone (46k), partial isomerization of the terminal double 

bond into conjugation with the α,β-enone moiety accounts for the low yield of 23% of 3-allyl-

2,3-epoxycyclohexanone (48k) (entry 6). This facile isomerization is probably enhanced upon 

                                                 
a Catalyst system [(R,R)-DPEN • (S)-TRIP] exhibited low catalytic efficiency also with other 3-substituted 2-
cyclohexenones; i.a. (2R,3S)-3-benzyl-2,3-epoxycyclohexanone (48m) was obtained in 35% yield and 86:14 er 
and (2R,3S)-3-isopropyl-2,3-epoxycyclohexanone (48i) in 36% yield and 89.5:10.5 er, respectively. 
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formation of the iminium ion A, which should lead to increased acidity in the γ'-position 

(Scheme 4.1). 

 

 
Scheme 4.1 Catalytic asymmetric epoxidation of 3-allyl-2-cyclohexenone (46k). (aDetermined by GC.) 
 

3-(Prop-1-en-1-yl)-2-cyclohexenone (76) is not susceptible to epoxidation under our reaction 

conditions neither at the endocyclic double bond (1,4-addition of hydrogen peroxide) nor at 

the acyclic double bond (1,6-addition). Accordingly, both 3-vinyl- and 3-ethinyl-2-

cyclohexenones 46o and 46p as further examples of α,β-γ,δ-unsaturated cyclic ketones could 

not be converted into the desired epoxides (Table 4.12, entries 11 and 12). The related 3-

phenyl-2-cyclohexenone 46n, as a representative of 3-aryl substituted cyclohexenones, did 

not productively engage in the reaction either (entry 10). Extended conjugation either through 

an aromatic or olefinic substituent at the 3-position seems to affect the electronic properties of 

the system to the point that conjugate addition of hydrogen peroxide does not proceed. 

Ketoisophorone (46q) gave the corresponding epoxide 48q in a reasonable yield along with 

high enantioselectivity of 96:4 er (Scheme 4.2). However, this enedione substrate turned out 

to be less reactive, and therefore 20 mol% [13 • 2 TFA] were employed in the reaction.a 

 

 
Scheme 4.2 Catalytic asymmetric epoxidation of ketoisophorone (46q). (aDetermined by GC.) 
 

                                                 
a [(R,R)-DPEN • TFA] and [(R,R)-DPEN • (S)-TRIP] were tested, but gave inferior results (~40% conversion, 
80:20 and 93:7 er, respectively). 
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Unfortunately, physiologically relevant vitamin K3 (menadion, 77) did not participate in the 

epoxidation reaction under the present reaction conditions, neither did benzoquinone 

dimethylmonoacetal (78) (Figure 4.2). 

 

 
Figure 4.2 Current limitations of the catalytic asymmetric enone epoxidation. 
 

In addition, α-substituted cyclic enones did not respond productively to iminium ion catalysis 

as exemplified by the attempted epoxidation of 2-methyl-2-cyclohexenone (79). Even after 

prolonged reaction times up to five days at 50 °C in the presence of either catalyst [9-NH2-

epiQ (13) • 2 TFA] or [(R,R)-DPEN • (S)-TRIP], only a trace amount of product could be 

detected by GC-MS. 

The inherent difficulties in generating congested iminium ion intermediates from ketone 

substrates have been partly overcome with the rising use of primary amine catalysts. Owing to 

reduced steric constraints, primary amines are (in contrast to most secondary amines) able to 

activate sterically demanding ketone substrates. Nevertheless, the activation of α-substituted 

α,β-unsaturated ketones remains challenging in this context and has, to the best of our 

knowledge, not been implemented to date (cf. Scheme 2.11). 
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4.1.2.2 Scope of Cyclic Enones of Different Ring Sizes 

Cyclic α,β-unsaturated ketones of different ring sizes were subjected to our catalytic 

asymmetric epoxidation protocol in the presence of catalytic amounts of [9-NH2-epiQ 

(13) • 2 TFA] or [(R,R)-DPEN • (S)-TRIP]. Except for 2-cyclopentenone (46r), the 

corresponding epoxides 48a, 48s-48x were generated in high yields and with high optical 

purity by using either of the two catalyst systems (Table 4.13). 

Cycloheptenone oxide 48s was provided by both catalyst systems with excellent enantiomeric 

ratios of 99:1 with [(R,R)-DPEN • (S)-TRIP] and >99.5:0.5 with [13 • 2 TFA] (entries 5-6). 

Moreover, catalyst [13 • 2 TFA] afforded 3-substituted cycloheptenone oxides 48t-u in high 

yields along with outstanding enantioselectivities (entries 7-8). The corresponding eight-

membered ring epoxide 48v was obtained from 2-cyclooctenone (46v) in good yield and high 

enantioselectivity (55%, 98:2 er) (entry 9). In addition, we studied macrocyclic enones in the 

epoxidation reaction. These proved to be somewhat more reactive than the seven- and eight-

membered ring analogues, just as cyclohexenone and its derivatives. As the ring size 

increased, the 9-amino(9-deoxy)epiquinine TFA salt [13 • 2 TFA] gave superior results 

compared to the catalyst system [(R,R)-DPEN • (S)-TRIP]. The two examples of macrocyclic 

enones nicely illustrate this trend: whereas epoxycyclododecanone 48w was still obtained in 

an enantiomeric ratio of 97:3 er with [(R,R)-DPEN • (S)-TRIP] (entry 11), epoxycyclopenta-

decanone 48x was formed in a slightly reduced 95.5:4.5 er (entry 14). Since both rings are 

large enough to allow s-cis and s-trans conformational interconversion, they resemble acyclic 

enones in their conformational flexibility. Indeed, we had found, during our studies with 

acyclic enones as substrates, that catalyst [(R,R)-DPEN • (S)-TRIP] gave inferior results 

compared to [13 • 2 TFA] with this substrate class (cf. Table 4.21). 

Yet, the quinine-derived catalyst system [13 • 2 TFA] proved highly efficient and gave 

macrocyclic epoxides 48w-x in high yields along with outstanding enantioselectivities of 

99.5:0.5 er in both cases (entries 10 and 12). Pleasingly, the pseudoenantiomeric catalyst salt 

[67 • 2 TFA] derived from quinidine gave epoxide 48x with the opposite sense and identical 

magnitude of stereoinduction (0.5:99.5 er) (entry 13). 
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Table 4.13 Substrate scope III: cyclic enones of different ring sizes. 
 

 

Entry Catalyst Enone Product  Yield [%]a erb 

1c 

2c 

[13 • 2 TFA] 

[(R,R)-DPEN • (S)-TRIP]  

46r 

 

48r 

(S,S)-48r 

(R,R)-48r 

(33) 

(33) 

87:13 

90:10 

3d 

4d 

[13 • 2 TFA] 

[(R,R)-DPEN • (S)-TRIP]  

46a 

 

48a 

(S,S)-48a 

(R,R)-48a 

58 (93) 

68 (>99) 

97:3 

96:4 

5 

6 

[13 • 2 TFA] 

[(R,R)-DPEN • (S)-TRIP]  

46s 

 

48s 

(S,S)-48s 

(R,R)-48s 

62 

65e 

>99.5:0.5

99:1 

  

  

   

7 

8 

[13 • 2 TFA] 

[13 • 2 TFA] 

R = Et: 46t 

R = CH2Ph: 46u

R = Et: 48t 

R = CH2Ph: 48u

(S,S)-48t 

(S,R)-48u 

82 

85 

>99.5:0.5

>99.5:0.5

9f [13 • 2 TFA] 
 

46v 

 

48v 

(S,S)-48v 55 98:2 

10 

11g 

[13 • 2 TFA] 

[(R,R)-DPEN • (S)-TRIP] 

O

 

46w 

 

48w 

(2S,3R)-48w 

(2R,3S)-48w 

92 

92 

99.5:0.5

97:3 

12 

13 

14g 

[13 • 2 TFA] 

[67 • 2 TFA] 

[(R,R)-DPEN • (S)-TRIP]  

46x 

O

O

 

48x 

(2S,3R)-48x 

(2R,3S)-48x 

(2R,3S)-48x 

87 

86 

52 

99.5:0.5

99.5:0.5

95.5:4.5

aYields of pure, isolated products. Values in parenthesis correspond to yields determined by GC. bDetermined by 
chiral GC. c48 h. dAt 30/35 °C. eDetermined by 1H NMR analysis of the crude mixture. fCrude product was treated 
with 1N NaOH (1 equiv) in THF. gAt 35 °C for 48 h. 
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Cyclopentenone epoxide 48r was obtained in moderate yield along with a good 

enantioselectivity of 90:10 er with catalyst [(R,R)-DPEN • (S)-TRIP] and still with 87:13 er in 

the presence of [9-NH2-epiQ (13) • 2 TFA] (entries 1-2), which are the highest enantioselec-

tivities reported to date for the catalytic asymmetric epoxidation of 2-cyclopentenone 

(46r).[97d] Nevertheless, the results obtained with 2-cyclopentenone are only moderate if 

compared with those for cyclohexenone and higher homologues, which is a general 

phenomenon observed in catalytic asymmetric conjugate additions to cyclic enones.[125] 

Likewise, cyclopentenone is a special case in our epoxidation reaction and requires an 

individual treatment. Thus, a separate catalyst screening was conducted dedicated to the 

epoxidation of 2-cyclopentenone (46r) and the results are summarized and discussed in 

Chapter 4.1.2.5. 

Whereas the epoxides were essentially the only products observed in the reaction of 2-

cyclopentenone, 2-cyclohexenone, as well as the macrocyclic enones, 2-cycloheptenone (46s) 

and 2-cyclooctenone (46v) afforded a second product along with the expected epoxide. This 

product was identified as the conjugate addition product of hydrogen peroxide. Such β-hydro-

peroxycycloalkanones exist in equilibrium with the bicyclic peroxyhemiketals as depicted in 

Scheme 4.3. 

 

 
Scheme 4.3 Primary amine salt-catalyzed reaction of seven- and eight-membered cyclic enones 46s and 46v 
with hydrogen peroxide. 
 

A detailed analysis of this observation, as well as a study of the influence of different 

catalysts and reaction conditions on the product distribution, will be presented in Chapter 

4.2.2.6. 

 

4.1.2.3 Toward (Dynamic) Kinetic Resolutions of 4-Substituted Cyclohexenones 

At this juncture, we were intrigued by the asymmetric epoxidation of racemic 4-substituted 

cyclohexenones of the general structure rac-80. We envisaged that one enantiomer of the 

starting material rac-80 might react preferentially in the sense of a kinetic resolution (KR) of 

cyclohexenones via asymmetric epoxidation as depicted in Scheme 4.4, (a). Thus, 

synthetically valuable enantioenriched 4-substituted cyclohexenones 80 and enantioenriched 

4 Results and Discussion 

 61

Cyclopentenone epoxide 48r was obtained in moderate yield along with a good 

enantioselectivity of 90:10 er with catalyst [(R,R)-DPEN • (S)-TRIP] and still with 87:13 er in 

the presence of [9-NH2-epiQ (13) • 2 TFA] (entries 1-2), which are the highest enantioselec-

tivities reported to date for the catalytic asymmetric epoxidation of 2-cyclopentenone 

(46r).[97d] Nevertheless, the results obtained with 2-cyclopentenone are only moderate if 

compared with those for cyclohexenone and higher homologues, which is a general 

phenomenon observed in catalytic asymmetric conjugate additions to cyclic enones.[125] 

Likewise, cyclopentenone is a special case in our epoxidation reaction and requires an 

individual treatment. Thus, a separate catalyst screening was conducted dedicated to the 

epoxidation of 2-cyclopentenone (46r) and the results are summarized and discussed in 

Chapter 4.1.2.5. 

Whereas the epoxides were essentially the only products observed in the reaction of 2-

cyclopentenone, 2-cyclohexenone, as well as the macrocyclic enones, 2-cycloheptenone (46s) 

and 2-cyclooctenone (46v) afforded a second product along with the expected epoxide. This 

product was identified as the conjugate addition product of hydrogen peroxide. Such β-hydro-

peroxycycloalkanones exist in equilibrium with the bicyclic peroxyhemiketals as depicted in 

Scheme 4.3. 

 

 
Scheme 4.3 Primary amine salt-catalyzed reaction of seven- and eight-membered cyclic enones 46s and 46v 
with hydrogen peroxide. 
 

A detailed analysis of this observation, as well as a study of the influence of different 

catalysts and reaction conditions on the product distribution, will be presented in Chapter 

4.2.2.6. 

 

4.1.2.3 Toward (Dynamic) Kinetic Resolutions of 4-Substituted Cyclohexenones 

At this juncture, we were intrigued by the asymmetric epoxidation of racemic 4-substituted 

cyclohexenones of the general structure rac-80. We envisaged that one enantiomer of the 

starting material rac-80 might react preferentially in the sense of a kinetic resolution (KR) of 

cyclohexenones via asymmetric epoxidation as depicted in Scheme 4.4, (a). Thus, 

synthetically valuable enantioenriched 4-substituted cyclohexenones 80 and enantioenriched 

4 Results and Discussion 

 61

Cyclopentenone epoxide 48r was obtained in moderate yield along with a good 

enantioselectivity of 90:10 er with catalyst [(R,R)-DPEN • (S)-TRIP] and still with 87:13 er in 

the presence of [9-NH2-epiQ (13) • 2 TFA] (entries 1-2), which are the highest enantioselec-

tivities reported to date for the catalytic asymmetric epoxidation of 2-cyclopentenone 

(46r).[97d] Nevertheless, the results obtained with 2-cyclopentenone are only moderate if 

compared with those for cyclohexenone and higher homologues, which is a general 

phenomenon observed in catalytic asymmetric conjugate additions to cyclic enones.[125] 

Likewise, cyclopentenone is a special case in our epoxidation reaction and requires an 

individual treatment. Thus, a separate catalyst screening was conducted dedicated to the 

epoxidation of 2-cyclopentenone (46r) and the results are summarized and discussed in 

Chapter 4.1.2.5. 

Whereas the epoxides were essentially the only products observed in the reaction of 2-

cyclopentenone, 2-cyclohexenone, as well as the macrocyclic enones, 2-cycloheptenone (46s) 

and 2-cyclooctenone (46v) afforded a second product along with the expected epoxide. This 

product was identified as the conjugate addition product of hydrogen peroxide. Such β-hydro-

peroxycycloalkanones exist in equilibrium with the bicyclic peroxyhemiketals as depicted in 

Scheme 4.3. 

 

 
Scheme 4.3 Primary amine salt-catalyzed reaction of seven- and eight-membered cyclic enones 46s and 46v 
with hydrogen peroxide. 
 

A detailed analysis of this observation, as well as a study of the influence of different 

catalysts and reaction conditions on the product distribution, will be presented in Chapter 

4.2.2.6. 

 

4.1.2.3 Toward (Dynamic) Kinetic Resolutions of 4-Substituted Cyclohexenones 

At this juncture, we were intrigued by the asymmetric epoxidation of racemic 4-substituted 

cyclohexenones of the general structure rac-80. We envisaged that one enantiomer of the 

starting material rac-80 might react preferentially in the sense of a kinetic resolution (KR) of 

cyclohexenones via asymmetric epoxidation as depicted in Scheme 4.4, (a). Thus, 

synthetically valuable enantioenriched 4-substituted cyclohexenones 80 and enantioenriched 

4 Results and Discussion 

 61

Cyclopentenone epoxide 48r was obtained in moderate yield along with a good 

enantioselectivity of 90:10 er with catalyst [(R,R)-DPEN • (S)-TRIP] and still with 87:13 er in 

the presence of [9-NH2-epiQ (13) • 2 TFA] (entries 1-2), which are the highest enantioselec-

tivities reported to date for the catalytic asymmetric epoxidation of 2-cyclopentenone 

(46r).[97d] Nevertheless, the results obtained with 2-cyclopentenone are only moderate if 

compared with those for cyclohexenone and higher homologues, which is a general 

phenomenon observed in catalytic asymmetric conjugate additions to cyclic enones.[125] 

Likewise, cyclopentenone is a special case in our epoxidation reaction and requires an 

individual treatment. Thus, a separate catalyst screening was conducted dedicated to the 

epoxidation of 2-cyclopentenone (46r) and the results are summarized and discussed in 

Chapter 4.1.2.5. 

Whereas the epoxides were essentially the only products observed in the reaction of 2-

cyclopentenone, 2-cyclohexenone, as well as the macrocyclic enones, 2-cycloheptenone (46s) 

and 2-cyclooctenone (46v) afforded a second product along with the expected epoxide. This 

product was identified as the conjugate addition product of hydrogen peroxide. Such β-hydro-

peroxycycloalkanones exist in equilibrium with the bicyclic peroxyhemiketals as depicted in 

Scheme 4.3. 

 

 
Scheme 4.3 Primary amine salt-catalyzed reaction of seven- and eight-membered cyclic enones 46s and 46v 
with hydrogen peroxide. 
 

A detailed analysis of this observation, as well as a study of the influence of different 

catalysts and reaction conditions on the product distribution, will be presented in Chapter 

4.2.2.6. 

 

4.1.2.3 Toward (Dynamic) Kinetic Resolutions of 4-Substituted Cyclohexenones 

At this juncture, we were intrigued by the asymmetric epoxidation of racemic 4-substituted 

cyclohexenones of the general structure rac-80. We envisaged that one enantiomer of the 

starting material rac-80 might react preferentially in the sense of a kinetic resolution (KR) of 

cyclohexenones via asymmetric epoxidation as depicted in Scheme 4.4, (a). Thus, 

synthetically valuable enantioenriched 4-substituted cyclohexenones 80 and enantioenriched 



4  Results and Discussion 

62 

epoxy cyclohexanones 81 would be concomitantly obtained. We might even encounter a case 

of dynamic kinetic resolution (DKR) if interconversion of iminium ions A and C via a 

dienamine intermediate B would proceed at rates greater than those of the epoxidation 

pathways (krac»k>kent; Scheme 4.4, (b)). An analogous scenario may be anticipated for the 

chiral amine salt-catalyzed asymmetric epoxidation of 6-substituted cyclohexenones rac-46e 

(Scheme 4.4). Racemization of the corresponding 6-substituted α,β-unsaturated iminium ions 

(equivalent to the iminium ions A) via a cross-conjugated dienamine intermediate may occur 

more readily due to the increased acidity of the α'-position of cyclohexenone compared to the 

vinylogous γ-position.[126] However, since the iminium ion formation with substrate rac-46e 

seems to be hindered by steric constraints caused by the substituent at the 6-position (Table 

4.10, entries 9-10), we decided to start our investigations with 4-substituted racemic 

substrates rac-80. 

 
Scheme 4.4 General scheme for the (a) kinetic resolution (KR) or (b) dynamic kinetic resolution (DKR) of 4- 
(or 6-) substituted cyclohexenones via asymmetric epoxidation. 
 

To test our hypothesis, 4-methyl-2-cyclohexenone (rac-80a) was subjected to the standard 

reaction conditions and samples were taken at different time intervals (Table 4.14). GC 

analysis of the samples revealed that both diastereomeric epoxides cis- and trans-81a were 
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formed with high enantioselectivities at similar rates (54:46 dr(trans/cis)). In stark contrast, 

the racemic synthesis with alkaline hydrogen peroxide in methanol proceeded with a 

diastereoselectivity of 74:26 dr in favour of the trans-epoxide 81a.[127] 

This result represents a manifest case of strong catalyst control. The configuration of the 

substrate appears to play only a minor role and, therefore, (dynamic) kinetic resolution did not 

take place - at least not to a synthetically useful extent. At 55% conversion the starting 

material exhibited an enantiomeric ratio of only 56:44. 

 
Table 4.14 Asymmetric epoxidation of racemic 4-methyl-2-cyclohexenone (rac-80a). 
 

 

Entry t [h] conv. [%]a dr (trans/cis)a er (trans-81a)b er (cis-81a)b er (80a)b

1 4 55 54:46 n.d. n.d n.d 

2 26 94 54:46 93.5:6.5 99:1 56:44 
aDetermined by GC. bDetermined by chiral GC. 

 

Interestingly, the cis- and trans-epoxides 81a were obtained with in both cases high, yet 

noticeably different levels of enantiocontrol. Whereas cis-81a was formed in an excellent 

enantiomeric ratio of 99:1 er, corresponding trans-81a exhibited a considerably lower optical 

purity (93.5:6.5 er). This can be rationalized through analysis of the putative pre-transition 

state assemblies depicted in Scheme 4.5. 

Singleton and co-workers have found that the lowest-energy transition state structure for the 

conjugate addition of tert-butyl hydroperoxide to 4-methyl-2-cyclohexenone is the one which 

combines the prerequisite axial attack of the nucleophile with the methyl group adopting a 

pseudo-axial rather than a pseudo-equatorial orientation.[128] Despite the concomitant strain 

caused by the latter orientation, this transition state structure is favored since an equatorial 

substituent at C-4 would suffer from unfavorable interactions with the incoming tert-butyl 

peroxy anion. 

Accordingly, Scheme 4.5 shows the possible pre-transition state assemblies A-D for the 

conjugate addition of hydrogen peroxide to the α,β-unsaturated iminium ions generated from 

(S)- and (R)-4-methyl-2-cyclohexenone (A/B and C/D, respectively) and 9-amino(9-

deoxy)epiquinine (13) (simplified as R-NH2). Trans-epoxide trans-81a arises from a reaction 

proceeding through half-chair C. Both catalyst and substrate direct the hydrogen peroxide 
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Accordingly, Scheme 4.5 shows the possible pre-transition state assemblies A-D for the 
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attack to the si-face of the double bond. The addition of hydrogen peroxide through half-chair 

A to generate cis-epoxide cis-81a occurs as well in accordance with catalyst control on the si-

face of the molecule. However, in this setting, the pseudo-equatorial methyl group at C-4 

experiences steric interactions with the incoming nucleophile. Thus, half-chair A may have an 

inherent tendency to undergo ring inversion and place the methyl group in pseudo-axial 

orientation (cf. half-chair B). Subsequent axial attack of hydrogen peroxide to half-chair B 

would afford the opposite enantiomer of trans-81a accounting for its lower experimentally 

obtained enantioselectivity compared to the corresponding cis-81a. 
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Scheme 4.5 Pre-transition state assemblies A-D for the conjugate addition of hydrogen peroxide to 4-methyl-2-
cyclohexenone-derived iminium ions. 
 

We tried to improve the efficiency of the envisaged kinetic resolution by increasing the size 

of the substituent R in rac-80. 

4-tert-Butyl-2-cyclohexenone 80b gave trans-epoxide 81ba in 48% yield, after 4 d at 50 °C in 

the presence of catalyst salt [13 • 2 TFA], with a diastereomeric ratio of 92:8 (trans/cis).b 

Although the remaining starting material (44%) was significantly enantioenriched with 86:14 

er, the enantiomeric ratio of trans-epoxide 81b remained relatively low (79.5:20.5 er) 

(Scheme 4.6). 

                                                 
a The relative configuration was assigned by NOE analysis. 
b Racemate was obtained with alkaline hydrogen peroxide in methanol with 98:2 dr. 
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Scheme 4.6 Asymmetric epoxidation of racemic 4-tert-butyl-2-cyclohexenone (rac-80b). (aDetermined by GC; 
bDetermined by chiral GC.) 
 

We rationalized this observation in an analogous manner to the reaction with 4-methyl-2-

cyclohexenone (80a), by analyzing the corresponding plausible pre-transition state assemblies 

(cf. Scheme 4.5). In addition, we take into account the increased bulkiness of the tert-butyl 

group at C-4 and its resultant reluctance towards adopting a pseudo-axial orientation. The 

large size of this substituent may further multiply steric interactions arising from cis-selective 

axial attack of hydrogen peroxide. Thus, we invoke pre-transition state assemblies A'and D', 

with the tert-butyl group in pseudo-equatorial orientation, and assume an equatorial attack of 

hydrogen peroxide, which is in line with trans-epoxide 81b being formed as essentially a 

single diastereomer (Scheme 4.7). The observed enantioselectivity, however, remains only 

moderate (79.5:20.5 er) as a consequence of this. 

 

 
Scheme 4.7 Pre-transition state assemblies A' and D' for the conjugate addition of hydrogen peroxide to 4-tert-
butyl-2-cyclohexenone-derived iminium ions. 
 

Further attempts to achieve higher efficiency in the kinetic resolution of racemic 4-substituted 

cyclohexenones rac-80 via asymmetric epoxidation should strive to assist the interconversion 

of the enantiomers of the starting material. For instance, if Hagemann’s ester (Figure 4.3) is 
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employed, the expected increased acidity at the γ-position may render dynamic kinetic 

resolutions via dienamine formation more feasible (cf. Scheme 4.4).[129] 

 

 
Figure 4.3 Hagemann’s ester. 
 

4.1.2.4 Epoxidation of Enantioenriched 5-Substituted Cyclohexenones 

We were further interested how our catalyst system would deal with pre-existing stereocenters 

embedded in the ring scaffold which cannot be equilibrated in the course of the reaction. To 

this end, we prepared chiral enantioenriched 5-phenyl-3-methyl-2-cyclohexenone ((S)-83) 

according to a method previously developed in our group (Scheme 4.8).[123] The aldol 

cyclodehydration of 4-substituted 2,6-heptandiones such as 82 in presence of the chiral 

catalyst [13 • 3 HOAc] afforded 5-substituted-3-methyl-2-cyclohexenones in high yields and 

with enantioselectivities greater than 95:5 er. 

 

 
Scheme 4.8 Synthesis of (S)-5-phenyl-3-methyl-2-cyclohexenone ((S)-83).[123] 
 

We then subjected enantiomerically enriched (S)-83 to our epoxidation reaction. The results 

are depicted in Table 4.15.a 

 

                                                 
a One-pot syntheses of epoxide 84 starting from diketone 82 are possible in the presence of catalyst [67 • 2 TCA] 
but have not been optimized. 
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Table 4.15 Catalytic asymmetric epoxidation of (S)-83 with pseudoenantiomeric catalysts [9-NH2-
epiQ (13) • 2 TFA] and [9-NH2-epiQD (67) • 2 TFA]. 
 

 

Entry Catalyst Conv. [%]a Yield [%]a dr (trans/cis)a er (trans-84)b

1 [13 • 2 TFA] 83 75 97:3 98.5:1.5 

2 [67 • 2 TFA] 79 74 63:37 92.5:7.5 
aDetermined by GC. bDetermined by chiral GC. 

 

Both catalysts tested − [13 • 2 TFA] and its pseudoenantiomeric form [67 • 2 TFA] − 

mediated the epoxidation of cyclohexenone (S)-83 with similar rates. However, whereas 

[13 • 2 TFA] gave epoxide 84 with a diastereomeric ratio of 97:3 (trans/cis) and an enantio-

meric ratio of 98.5:1.5 (trans), the latter gave epoxide 84 as a 63:37 (trans/cis) mixture of 

diastereomers along with inferior enantioselectivity of 92.5:7.5 er (major).a 

In the presence of catalyst [13• 2 TFA], the epoxidation of the major enantiomer (S)-83 is 

directed by both the catalyst and the substrate to the si-face of the enone (Scheme 4.9, A). On 

the contrary, the reaction of the minor enantiomer (R)-83 (via B) is kinetically disfavoured 

and thus, we observed an enantiomeric enrichment in trans-epoxide 84. 

In general, pseudoenantiomeric catalyst [67 • 2 TFA] derived from quinidine preferentially 

delivers hydrogen peroxide from the re-face. However, the asymmetric epoxidation of 

cyclohexenone (S)-83 in the presence of [67 • 2 TFA] furnished a mixture of diastereomers 

(63:37 dr) in favour of the trans-epoxide 84 which was obtained in reduced optical purity of 

only 92.5:7.5 er. Putative pre-transition state assemblies C-E imply that the reaction of the 

minor enantiomer (R)-83 is kinetically favoured in the presence of catalyst [67 • 2 TFA]. 

Moreover, trans-epoxide 84 is obtained as the major product; this presumably arises since 

pre-transition state assembly C, which may account for the formation of cis-epoxide 84, 

suffers from disadvantageous steric interactions with the phenyl substituent. Therefore, 

inverted half-chair D with the phenyl group in pseudo-equatorial orientation may as well 

come into consideration, which would explain the formation of significant quantities of the 

trans-epoxide 84 via the preferred axial attack (from the si-face of the molecule regardless of 

the catalyst’s bias). 

                                                 
a Racemate was obtained with alkaline hydrogen peroxide in methanol with 94:6 dr from racemic enone 83. 
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Entry Catalyst Conv. [%]a Yield [%]a dr (trans/cis)a er (trans-84)b

1 [13 • 2 TFA] 83 75 97:3 98.5:1.5 

2 [67 • 2 TFA] 79 74 63:37 92.5:7.5 
aDetermined by GC. bDetermined by chiral GC. 

 

Both catalysts tested − [13 • 2 TFA] and its pseudoenantiomeric form [67 • 2 TFA] − 

mediated the epoxidation of cyclohexenone (S)-83 with similar rates. However, whereas 

[13 • 2 TFA] gave epoxide 84 with a diastereomeric ratio of 97:3 (trans/cis) and an enantio-

meric ratio of 98.5:1.5 (trans), the latter gave epoxide 84 as a 63:37 (trans/cis) mixture of 

diastereomers along with inferior enantioselectivity of 92.5:7.5 er (major).a 

In the presence of catalyst [13• 2 TFA], the epoxidation of the major enantiomer (S)-83 is 

directed by both the catalyst and the substrate to the si-face of the enone (Scheme 4.9, A). On 

the contrary, the reaction of the minor enantiomer (R)-83 (via B) is kinetically disfavoured 

and thus, we observed an enantiomeric enrichment in trans-epoxide 84. 

In general, pseudoenantiomeric catalyst [67 • 2 TFA] derived from quinidine preferentially 

delivers hydrogen peroxide from the re-face. However, the asymmetric epoxidation of 

cyclohexenone (S)-83 in the presence of [67 • 2 TFA] furnished a mixture of diastereomers 

(63:37 dr) in favour of the trans-epoxide 84 which was obtained in reduced optical purity of 

only 92.5:7.5 er. Putative pre-transition state assemblies C-E imply that the reaction of the 

minor enantiomer (R)-83 is kinetically favoured in the presence of catalyst [67 • 2 TFA]. 

Moreover, trans-epoxide 84 is obtained as the major product; this presumably arises since 

pre-transition state assembly C, which may account for the formation of cis-epoxide 84, 

suffers from disadvantageous steric interactions with the phenyl substituent. Therefore, 

inverted half-chair D with the phenyl group in pseudo-equatorial orientation may as well 

come into consideration, which would explain the formation of significant quantities of the 

trans-epoxide 84 via the preferred axial attack (from the si-face of the molecule regardless of 

the catalyst’s bias). 

                                                 
a Racemate was obtained with alkaline hydrogen peroxide in methanol with 94:6 dr from racemic enone 83. 
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The racemate synthesis with alkaline hydrogen peroxide in methanol proceeded with a 

diastereoselectivity of 94:6 (trans/cis), which could be either enhanced to 97:3 with catalyst 

[13 • 2 TFA] (matched case) or reduced to 63:37 with catalyst [67 • 2 TFA] (mismatched 

case). However, it was not possible to invert the diastereoselectivity within the bias of the 

cyclic system. In addition, this experiment lends further experimental support to the 

assignment of the absolute stereochemistry of 3-substituted-2,3-epoxycyclohexanones 

generated with quinine-derived catalyst [13 • 2 TFA] as (S,S) (as we have also deduced by 

analogy to 2,3-epoxycyclohexanone). 
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4.1.2.5 Cyclopentenone: A Special Case 

A problem connected to cyclopentenone substrates is a considerable “flatness” of the 

molecules, rendering them less sensitive to the steric requirements of the chiral catalyst. As a 

result, lower enantioselectivities are obtained than with cyclohexenone or higher 

homologues.[125a] Another common issue associated with the use of cyclopentenone as 

substrate pertains to its high reactivity. The enolate generated after conjugate addition is 

reactive enough to undergo conjugate addition to unreacted cyclopentenone.a, [130] 

In the catalytic epoxidation reaction, 2-cyclopentenone (46r) gave inferior results in terms of 

both yield and enantioselectivity compared with other cyclic enone substrates. Nevertheless, 

an enantiomeric ratio of 90:10 still represents the highest level of asymmetric induction 

attained to date for the epoxidation of this particular substrate (Table 4.16, cf. Table 4.13). 

 
Table 4.16 Catalytic asymmetric epoxidation of 2-cyclopentenone (46r). 
 

 

Entry Catalyst Product Yield [%]a erb 

1 [9-NH2-epiQ (13) • 2 TFA] (S,S)-48r 33 87:13 

2 [(R,R)-DPEN • (S)-TRIP] (R,R)-48r 33 90:10 
aDetermined by GC. bDetermined by chiral GC. 

 

Indeed, only one report is known in the current literature which addresses the epoxidation of 

cyclopentenone.[97d] By using chiral diketopiperazine-derived hydroperoxide 85 as 

stoichiometric oxidant, 2,3-epoxycyclopentanone (48r) was generated in 31% yield and 56:44 

er (Figure 4.4). 

 
Figure 4.4 Diketopiperazine-derived hydroperoxide 85 by Laschat et al. 
 

Eager to address the challenge that cyclopentenones pose to asymmetric catalysis, we re-

evaluated the catalytic potential of a variety of chiral primary amine salts for the epoxidation 

of cyclopentenone (Table 4.17). (R,R)-DPEN (12) as its TFA salt showed to be slightly less 

                                                 
a This is in accordance with our observation that 2-cyclopentenone (46r) dimerizes in the presence of the 
catalytic salt [13 • 2 TFA] as detected by GC-MS and ESI-MS. 
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active and at the same time considerably less enantioselective than when employed in 

combination with (S)-TRIP (entries 1-2). Enantioselectivities attained with 9-amino(9-

deoxy)epicinchona alkaloid derivatives 13, 67-72 (as their diTFA salts) (cf. Table 4.4) all 

ranged between 84:16 and 86.5:13.5 er with cyclopentenone epoxide 48r being generated in 

27-45% yield. Re-screening different solvents for the cyclopentenone epoxidation confirmed 

dioxane as the solvent of choice. The use of mono TFA salt [13 • TFA] increased the catalytic 

activity slightly and afforded the desired product in 44% yield with essentially equal optical 

purity (87:13 er) (entry 3), whereas a 1:3 amine/TFA ratio resulted in a drop of 

enantioselectivity to 79.5:20.5 er (entry 6). As for 2-cyclohexenone, the epoxidation 

proceeded with low enantioselectivity in the presence of amine 73 (9-NH2-Q; cf. Table 4.4) 

featuring the natural (R)-configuration of quinine at C-9 (entry 7). We then had a look at 

different acid co-catalysts. Pleasingly, the use of diphenyl phosphoric acid (66) instead of 

TFA enhanced the catalytic activity, and moreover had a positive impact on the 

enantioselectivity. In the presence of [13 • DPPOH], 2,3-epoxycyclopentanone was furnished 

in 52% yield with an enantiomeric ratio of 88.5:11.5 (entry 8). Unfortunately, replacing 

achiral diphenyl phosphate by chiral phosphate counteranions, e.g. TRIP (7a), could not 

improve the result (entries 10-13). 
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proceeded with low enantioselectivity in the presence of amine 73 (9-NH2-Q; cf. Table 4.4) 

featuring the natural (R)-configuration of quinine at C-9 (entry 7). We then had a look at 

different acid co-catalysts. Pleasingly, the use of diphenyl phosphoric acid (66) instead of 

TFA enhanced the catalytic activity, and moreover had a positive impact on the 

enantioselectivity. In the presence of [13 • DPPOH], 2,3-epoxycyclopentanone was furnished 

in 52% yield with an enantiomeric ratio of 88.5:11.5 (entry 8). Unfortunately, replacing 

achiral diphenyl phosphate by chiral phosphate counteranions, e.g. TRIP (7a), could not 

improve the result (entries 10-13). 
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Table 4.17 Evaluation of various primary amine salts for the catalytic asymmetric epoxidation of 2-
cyclopentenone (46r). 

 

Entry Amine Acid co-catalyst [mol%] Yield [%]a erb 

1 (R,R)-DPEN TFA 10 19 17.5:82.5 

2 (R,R)-DPEN TFA 20 28 29:71 

3 

13 

TFA 10 44 87:13 

4 TFA 20 33 87:13 

5c TFA 20 45 87:13 

6 TFA 30 34 79.5:20.5 

7 73 TFA 20 42d 65:35 

8 13 (PhO)2PO(OH) (66) 10 52 88.5:11.5 

9 13 (PhO)2PO(OH) (66) 20 50e 72.5:27.5 

10 13 (S)-TRIP 10 23 77:23 

11 13 (S)-TRIP 20 22 56:44 

12 13 (R)-TRIP 10 21 88:12 

13 13 (R)-TRIP 20 29 69:31 

14c,f 13 TFA 20 26 88:12 
aDetermined by GC. bDetermined by chiral GC. c[13 • 2 TFA] (20 mol%), 48 h. d72 h. eIncreased side product 
formation observed. fWith 3-methyl-2-cyclopentenone as substrate. 

 

Beside improving the enantioselectivity of the process, we also strove to identify an 

exceedingly active primary amine salt catalyst with regard to the use of 3-substituted cyclo-

pentenone derivatives (e.g. 3-methyl-2-cyclopentenone) which exhibit reduced reactivity 

compared to the parent compound (entry 14).a 

With this aim, we re-evaluated truncated Cinchona alkaloid derivatives α-(aminomethyl)-

quinuclidines 63 and 64 (Table 4.18). In particular, 64 effectively mediated the epoxidation 

reaction. In combination with (S)-TRIP in a 1:1 ratio, epoxide 48r was formed in 91% yield 

after 24 h and with a promising enantioselectivity of 76.5:23.5 er (entry 11). However, 

screening of a wide range of chiral BINOL-derived phosphoric acids bearing different 

substituents at the 3,3'-positions could not improve the result. 

 

                                                 
a This trend had previously been observed with the six-membered ring analogues. 
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Table 4.18 Evaluation of truncated Cinchona alkaloid catalysts 63 and 64 in the catalytic asymmetric 
epoxidation of 2-cyclopentenone (46r). 
 

dioxane (0.25 M), 50 °C, 24 h

63 or 64 (10 mol%)
acid co-catalyst

H2O2 (50 wt%; 1.5 equiv)

O O

O
46r (R,R)-48r  

Entry Diamine Acid co-catalyst [mol%] Yield [%]a erb 

1 

 

- - 21c rac 

2 TFA 10 69 55:45 

3 TFA 20 67 54.5:45.5 

4 DPPOH (66) 10 57 rac 

5 DPPOH (66) 20 31 rac 

6 (S)-TRIP 10 59 63:37 

7 (R)-TRIP 10 62 48:52 

8 

 

- - 28c 46.5:53.5 

9 TFA 10 80 44:56 

10 TFA 20 82d 34.5:65.5 

11 (S)-TRIP 10 91 23.5:76.5 

12 (R)-TRIP 10 49 43:57 

13 (S)-TRIP 20 91 29:71 

aDetermined by GC. bDetermined by chiral GC. c48 h. d18 h. 

 

Encouraged by the results obtained with α-(aminomethyl)quinuclidine (64), we sought a way 

to modify the catalyst structure to enhance its stereoselectivity while at the same time 

retaining the high catalytic activity. We envisaged that α-(aminobenzyl)quinuclidine (86a), 

bearing an additional phenyl group at C-9 could meet these criteria (Figure 4.5, (a)). We 

speculated that such a de-novo designed catalyst motif would ideally merge the high 

enantioselectivity of Cinchona alkaloid-derived catalysts such as 9-amino(9-deoxy)epiquinine 

(13) with the significantly more active truncated representative 64, presumably due to reduced 

steric congestion surrounding the primary amine function. 
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Figure 4.5 (a) Design of α-(aminobenzyl)quinuclidine (86a) as new catalyst target structure; and (b) retro-
synthetic analysis of 86a. 
 

α-(Aminobenzyl)quinuclidine (86a) was obtained in two steps from quinuclidine according to 

the retrosynthetic strategy presented in Figure 4.5 (b). α-Lithiation of quinuclidine and 

subsequent reaction of the lithiated species with benzaldehyde gave α-(hydroxylbenzyl)qui-

nuclidine. The aminoalcohol was further converted into α-(aminobenzyl)quinuclidine (86a) 

via a Mitsunobu reaction with azide followed by a Staudinger reduction to afford the desired 

amine. A detailed presentation and discussion of this synthetic approach is provided in 

Chapter 4.7.1.2. 

Separation of the enantiomers of racemic 86a was attempted by chiral HPLC. Unfortunately, 

only the erythro- but not the threo-isomer of 86a could be readily separated and tested as 

chiral catalyst in combination with different acid co-catalysts in the asymmetric epoxidation 

of 2-cyclopentenone (46r) (Table 4.19; entries 3-8). The best result was obtained by using 

erythro-86a as its di TFA salt (entry 4). Under these conditions, epoxycyclopentanone 48r 

was generated in a maximum yield of 54% along with moderate enantioselectivity of 74:26 er. 

threo-86a was tested in racemic form to at least estimate its catalytic potential in the 

attempted asymmetric transformation (entries 1-2). Indeed, the threo-isomer turned out to be 

slightly more active than the erythro-form and afforded cyclopentenone epoxide 48r in 65% 

yield at best (entry 1). This is not surprising since the threo-isomer resembles the powerful 

epicinchona alkaloid derivatives such as 9-NH2-epiQ (13) with regard to the relative 

configuration at the carbon atoms C-8 and C-9. On the opposite, the erythro-diastereomer of 

86a just like 9-amino(9-deoxy)quinine (73) resembles natural Cinchona alkaloids, which in 

general display inferior catalytic potential compared with the epicinchona alkaloid analogues 
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as has already been demonstrated in many cases including our epoxidation reaction of cyclic 

enones (cf. Table 4.4). Thus, future efforts in this area are aimed at providing the threo-86a in 

enantiomerically pure form to finally evaluate its catalytic activity and selectivity in the 

asymmetric epoxidation of 2-cyclopentenone (46r) among other asymmetric transformations. 

 

Table 4.19 Catalytic asymmetric epoxidation of 2-cyclopentenone (46r) in the presence of α-(amino-
benzyl)quinuclidine (86a) as catalyst. 
 

 
 

Entry Amine Acid co-catalyst [mol%] Yield [%]a erb 

1 rac-threo-86a TFA 10 65 - 

2 rac-threo-86a TFA 20 37 - 

3c (-)-erythro-86a TFA 10 5 74:26 

4c (-)-erythro-86a TFA 20 54 74:26 

5c (-)-erythro-86a (S)-TRIP 10 9 64:36 

6c (-)-erythro-86a (S)-TRIP 20 29 65:35 

7c (+)-erythro-86a (S)-TRIP 10 5 32.5:67.5 

8c (+)-erythro-86a (S)-TRIP 20 32 32:68 
aDetermined by GC. bDetermined by chiral GC. c30 h. 
 

 

 

During our screening studies, amino acid ester salts had turned out as highly active albeit 

poorly enantioselective catalysts. However, the encouraging results obtained with the DPEN-

based catalyst [(R,R)-DPEN • (S)-TRIP] and the recent reports in the literature on the 

successful implementation of various chiral diamine catalysts, especially those bearing a 

primary amine moiety (some of which are readily availabe from naturally abundant amino 

acids), prompted us to further investigate on this.[131] For this purpose, diamines exhibiting 

primary, secondary, and tertiary amine functionalities were quickly assembled through 

conventional synthetic methods (cf. Chapter 4.7.2) and tested in the epoxidation reaction 

(Table 4.20). Unfortunately, the original result obtained with [(R,R)-DPEN • (S)-TRIP] as 

catalyst could not be further improved. 
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Entry Amine Acid co-catalyst [mol%] Yield [%]a erb 

1 rac-threo-86a TFA 10 65 - 

2 rac-threo-86a TFA 20 37 - 

3c (-)-erythro-86a TFA 10 5 74:26 

4c (-)-erythro-86a TFA 20 54 74:26 

5c (-)-erythro-86a (S)-TRIP 10 9 64:36 

6c (-)-erythro-86a (S)-TRIP 20 29 65:35 

7c (+)-erythro-86a (S)-TRIP 10 5 32.5:67.5 

8c (+)-erythro-86a (S)-TRIP 20 32 32:68 
aDetermined by GC. bDetermined by chiral GC. c30 h. 
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poorly enantioselective catalysts. However, the encouraging results obtained with the DPEN-

based catalyst [(R,R)-DPEN • (S)-TRIP] and the recent reports in the literature on the 

successful implementation of various chiral diamine catalysts, especially those bearing a 

primary amine moiety (some of which are readily availabe from naturally abundant amino 

acids), prompted us to further investigate on this.[131] For this purpose, diamines exhibiting 

primary, secondary, and tertiary amine functionalities were quickly assembled through 

conventional synthetic methods (cf. Chapter 4.7.2) and tested in the epoxidation reaction 

(Table 4.20). Unfortunately, the original result obtained with [(R,R)-DPEN • (S)-TRIP] as 

catalyst could not be further improved. 
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Table 4.20 Screening of diamines 87-89 for the catalytic asymmetric epoxidation of 2-cyclopentenone (46r). 
 

 

              diamine 

        acid 
 

87 

 
88 

 
89a 

 yield [%]a er b yield [%]a er b yield [%]a er b 

TFA (10 mol%) 27 74:26 36 60.5:39.5 82 71:29 

TFA (20 mol%) 28 69.5:30.5 51 59.5:40.5 60 73.5:26.5 

(S)-TRIP (10 mol%) 28 82.5:17.5 36 62.5:37.5 47 66.5:33.5 

(R)-TRIP (10 mol%) 31 85:15 38 41.5:58.5 48 74.5:25.5 

- 6 69.5:30.5 10 58.5:41.5 35 62.5:37.5 
aDetermined by GC. bDetermined by chiral GC. 

 

In conclusion, during our screening studies for the catalytic asymmetric epoxidation of 2-

cyclopentenone (46r), we have identified an alternative, highly active, yet moderately 

enantioselective catalyst system for the enantioselective epoxidation of five-membered cyclic 

enones: [64• (S)-TRIP] (cf. Table 4.18). Due to the increased catalytic activity of [64• (S)-

TRIP] compared to the previously employed catalysts [9-NH2-epiQ (13)• 2 TFA] and [(R,R)-

DPEN • (S)-TRIP], the less reactive 3-substituted cyclopentenone derivative 90 could be 

converted to the corresponding epoxide 2,3-epoxy-3-phenethyl-cyclopentanone (91) in 

reasonable yield of 65% with an enantiomeric ratio of 85.5:14.5 er. As a comparison, after 48 

h, the reaction catalyzed by [13 • 2 TFA] had reached only 32% conversion as determined by 

GC. However, under those conditions the product was formed with superior enantioselectivity 

of 91:9 er. 

 

 
 
Scheme 4.10 Asymmetric epoxidation of 3-substituted cyclopentenone 90 catalyzed by [64 • (S)-TRIP]. 
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4.1.3 Summary and Conclusions 

 
In summary, we have successfully developed a method for the highly enantioselective 

epoxidation of simple cyclic enones catalyzed by chiral primary amine salts and employing 

aqueous hydrogen peroxide as a cheap and environmentally benign oxidant. 

Prior to this work, and in spite of the wealth of enantioselective enone epoxidation methods 

known to date, cyclic α,β-epoxy ketones such as 48 have been difficult to access in optically 

active form. Indeed, there was no single asymmetric epoxidation method available which was 

applicable to a broad range of simple cyclic enones of the general structure 46 to furnish the 

corresponding epoxides with satisfying yields and enantioselectivities (cf. Chapter 2.2.6). 

In the course of our screening studies we have identified two powerful and complementary 

chiral primary amine salt catalysts which efficiently mediated the desired transformation: the 

[(R,R)-DPEN (12) • (S)-TRIP (7a)] salt and 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) as 

its trifluoroacetic acid salt [9-NH2-epiQ (13) • 2 TFA]. Both catalyst salts have in common the 

bifunctional nature of the amine component. Whereas the primary amine group was found to 

be crucial for catalytic activity, the second basic site seems to direct the attack of the 

hydrogen peroxide as depicted in Figure 4.1, thus presumably accounting for the improved 

selectivities typically attained in reactions with diamine catalyst salts (cf. Table 4.2). 

Using either catalyst [(R,R)-DPEN • (S)-TRIP] or [9-NH2-epiQ • 2 TFA] at 10 mol% loadings, 

we achieved the highly enantioselective epoxidation of variously substituted cyclohexenone 

derivatives 46. The (R,R)-DPEN-based catalyst system turned out to be particularly suitable 

for cyclohexenone derivatives 46 equipped with substituents at the 4- and 5-positions (Table 

4.10). The 9-amino(9-deoxy)epiquinine salt [9-NH2-epiQ • 2 TFA] provided in addition an 

array of 3-substituted 2,3-epoxycyclohexanones 48 with high yields along with excellent 

enantioselectivities of up to 99.5:0.5 er - including inter alia epoxides 48i-j bearing sterically 

demanding isopropyl and even tert-butyl substituents at the 3-position (Table 4.12). 

Moreover, both catalyst systems were applicable to cyclic enones of different ring sizes 

(Table 4.13). Macrocyclic enones such as 2-cyclododecenone (46v) and 2-

cyclopentadecenone (46x) could be converted into the corresponding epoxides in high yields 

and outstanding enantioselectivity of 99.5:0.5 er in the presence of Cinchona alkaloid-derived 

catalyst [9-NH2-epiQ (13) • 2 TFA]. Interestingly, seven and eight-membered cyclic enones 

46s and 46v, respectively, provided mixtures of the corresponding α,β-epoxyketones along 

with the unanticipated bicyclic peroxyhemiketals 116 and 117 (Scheme 4.3), which will be 

the subject of further investigations described within this thesis (cf. Chapter 4.2.2.6). 
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Among the cyclic enone series, cyclopentenones proved to be particularly challenging 

substrates (cf. Chapter 4.1.2.5). In the reaction of 2-cyclopentenone (46r), both of our 

catalytic systems showed significantly reduced activity and selectivity compared with the 

reactions of the higher homologues. Therefore, we initiated a separate screening to identify a 

chiral primary amine salt with superior catalytic efficiency for the epoxidation of 

cyclopentenone and derivatives. Truncated Cinchona alkaloid 64 (cf. Table 4.18) equipped 

with a less sterically hindered primary amine group than the parent 9-amino(9-

deoxy)epiquinine (13) displayed promising catalytic activity. Gratifyingly, the 

enantioselectivity of 65.5:34.5 er obtained with [64• 2 TFA] could be increased to 76.5:23.5 

er by pairing amine 64 with the chiral BINOL phosphate TRIP (7a). At the same time, the 

high catalytic activity is retained, which also renders catalyst system [64• (S)-TRIP] suitable 

for the epoxidation of less reactive 3-substituted cyclopentenone derivatives such as 3-

phenethyl-2-cyclopentenone (Scheme 4.10). Although not yet optimal, we anticipate that 

these encouraging results may constitute a valid starting point for further developments, 

inspiring future research in this area. 
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these encouraging results may constitute a valid starting point for further developments, 

inspiring future research in this area. 
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4.2 Catalytic Asymmetric Epoxidation and Hydroperoxidation of Acyclic Enones 

After having established a highly efficient and general method for the asymmetric epoxidation 

of cyclic enones catalyzed by chiral primary amine salts, we became interested in expanding 

the scope to acyclic substrates with a focus on aliphatic enolizable enones which still 

constitute challenging substrates for the currently available epoxidation methods. 

4.2.1 Screening Studies 

4.2.1.1 Initial Results 

In a first attempt, we applied the optimized reaction conditions for the epoxidation of cyclic 

enones with 9-amino(9-deoxy)epiquinine (9-NH2-epiQ, 13) TFA salt as the catalyst system to 

the epoxidation of 3-decen-2-one (92a) as an example of a simple aliphatic acyclic enolizable 

enone. After 20 h, we obtained a product mixture consisting of the desired trans-epoxide 93a 

in excellent enantioselectivity of >99.5:0.5 er along with the cyclic peroxyhemiketal (PHK) 

94a in a ratio of 43 to 57 as determined by 1H NMR of the crude mixture (Scheme 4.11). 

 

 
 
Scheme 4.11 Catalytic asymmetric epoxidation of 3-decen-2-one (92a): initial attempt. (aDetermined by 
1H NMR.) 
 

This result was surprising in view of the fact that peroxyhemiketals are typically only isolated 

in minor amounts (as by-products) in Weitz-Scheffer reactions, due to the overwhelming 

preference for epoxide formation under those conditions (cf. Chapter 2.3.2).[111-113] Thus, we 

were highly intrigued by our observation of a peroxyhemiketal-selective “epoxidation” 

reaction, even more so since a catalytic asymmetric hydroperoxidation of α,β-unsaturated 

ketones to obtain optically active peroxides such as 94a was unprecedented in the literature. 

At this stage, we speculated that the chiral amine salt catalyst, e.g. [13 • 2 TFA], might not 

only render enantioselective the conjugate addition of hydrogen peroxide but also affect the 

product distribution between epoxide and peroxyhemiketal. Thus, we decided to optimize the 

catalyst system and reaction conditions towards increased peroxyhemiketal formation. 
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In this context, we tested alternative catalyst systems in the hydroperoxidation-epoxidation 

reaction of 6-phenyl-3-hexen-2-one (92b). (R,R)-DPEN salts such as [(R,R)-DPEN • TFA], 

[(R,R)-DPEN • 2TFA], [(R,R)-DPEN • (S)-TRIP], and [(R,R)-DPEN • (R)-TRIP] displayed 

moderate to high catalytic activity, yet gave inferior results in terms of enantioselectivity with 

acyclic compared to the previously studied cyclic substrates (Table 4.21, entries 3-6). Among 

all catalysts tested, 9-amino(9-deoxy)epiquinine (9-NH2-epiQ, 13) coped best with the main 

challenge arising from the transition from cyclic to acyclic enones, which presumably is the 

control of the s-cis and s-trans geometry, and afforded excellent enantioselectivity also for 

acyclic substrates when employed together with an acid co-catalyst (TFA) in a ratio of 1:2 

(entry 2). A 1:1 amine/TFA ratio led to only slightly lower enantioselectivity, but 

significantly reduced catalyst activity (entry 1). 

 
Table 4.21 Evaluation of different catalysts for the catalytic asymmetric epoxidation of 6-phenyl-3-hexen-2-
one (92b).a 

 

 
Entry Catalyst Conv. [%]b er(93b)c 

1 [9-NH2-epiQ • TFA] 57 98:2 

2 [9-NH2-epiQ • 2 TFA] full 99.5:0.5 

3 [(R,R)-DPEN • TFA] 61 13:87 

4 [(R,R)-DPEN • 2 TFA] 92 6:94 

5 [(R,R)-DPEN • (S)-TRIP] 70 9:91 

6 [(R,R)-DPEN • (R)-TRIP] 52 25:75 
aIdentical reactivity and selectivity trends were observed with 4-hexen-3-one (92c) as substrate. bDetermined by 
GC. cDetermined by chiral GC. 
 

Our proposed catalytic cycle for the reaction of acyclic α,β-unsaturated ketones 92 with 

hydrogen peroxide in the presence of the 9-amino(9-deoxy)epiquinine (13) TFA salt accounts 

for the formation of both peroxyhemiketals 94 and epoxides 93 (Scheme 4.12). 

The initial steps are identical to those invoked for the epoxidation of 2-cyclohexenone (46a) 

(cf. Figure 3.1). The catalytic cycle is triggered by the reversible formation of iminium ion A 

from the enone substrate 92 and the catalyst [9-NH2-epiQ (13) • HX] (step (a)). Iminium ion 

formation may effectively lower the LUMO energy of the substrate and facilitate the 

enantioselective conjugate addition of hydrogen peroxide (step (b)) to provide β-

peroxyenamine intermediate B. Subsequent intramolecular nucleophilic substitution may 

break the weak peroxide bond (step (c)), and afford α,β-epoxy ketone 93 after hydrolysis of 

4 Results and Discussion 

 79

In this context, we tested alternative catalyst systems in the hydroperoxidation-epoxidation 

reaction of 6-phenyl-3-hexen-2-one (92b). (R,R)-DPEN salts such as [(R,R)-DPEN • TFA], 

[(R,R)-DPEN • 2TFA], [(R,R)-DPEN • (S)-TRIP], and [(R,R)-DPEN • (R)-TRIP] displayed 

moderate to high catalytic activity, yet gave inferior results in terms of enantioselectivity with 

acyclic compared to the previously studied cyclic substrates (Table 4.21, entries 3-6). Among 

all catalysts tested, 9-amino(9-deoxy)epiquinine (9-NH2-epiQ, 13) coped best with the main 

challenge arising from the transition from cyclic to acyclic enones, which presumably is the 

control of the s-cis and s-trans geometry, and afforded excellent enantioselectivity also for 

acyclic substrates when employed together with an acid co-catalyst (TFA) in a ratio of 1:2 

(entry 2). A 1:1 amine/TFA ratio led to only slightly lower enantioselectivity, but 

significantly reduced catalyst activity (entry 1). 

 
Table 4.21 Evaluation of different catalysts for the catalytic asymmetric epoxidation of 6-phenyl-3-hexen-2-
one (92b).a 

 

 
Entry Catalyst Conv. [%]b er(93b)c 

1 [9-NH2-epiQ • TFA] 57 98:2 

2 [9-NH2-epiQ • 2 TFA] full 99.5:0.5 

3 [(R,R)-DPEN • TFA] 61 13:87 

4 [(R,R)-DPEN • 2 TFA] 92 6:94 

5 [(R,R)-DPEN • (S)-TRIP] 70 9:91 

6 [(R,R)-DPEN • (R)-TRIP] 52 25:75 
aIdentical reactivity and selectivity trends were observed with 4-hexen-3-one (92c) as substrate. bDetermined by 
GC. cDetermined by chiral GC. 
 

Our proposed catalytic cycle for the reaction of acyclic α,β-unsaturated ketones 92 with 

hydrogen peroxide in the presence of the 9-amino(9-deoxy)epiquinine (13) TFA salt accounts 

for the formation of both peroxyhemiketals 94 and epoxides 93 (Scheme 4.12). 

The initial steps are identical to those invoked for the epoxidation of 2-cyclohexenone (46a) 

(cf. Figure 3.1). The catalytic cycle is triggered by the reversible formation of iminium ion A 

from the enone substrate 92 and the catalyst [9-NH2-epiQ (13) • HX] (step (a)). Iminium ion 

formation may effectively lower the LUMO energy of the substrate and facilitate the 

enantioselective conjugate addition of hydrogen peroxide (step (b)) to provide β-

peroxyenamine intermediate B. Subsequent intramolecular nucleophilic substitution may 

break the weak peroxide bond (step (c)), and afford α,β-epoxy ketone 93 after hydrolysis of 

4 Results and Discussion 

 79

In this context, we tested alternative catalyst systems in the hydroperoxidation-epoxidation 

reaction of 6-phenyl-3-hexen-2-one (92b). (R,R)-DPEN salts such as [(R,R)-DPEN • TFA], 

[(R,R)-DPEN • 2TFA], [(R,R)-DPEN • (S)-TRIP], and [(R,R)-DPEN • (R)-TRIP] displayed 

moderate to high catalytic activity, yet gave inferior results in terms of enantioselectivity with 

acyclic compared to the previously studied cyclic substrates (Table 4.21, entries 3-6). Among 

all catalysts tested, 9-amino(9-deoxy)epiquinine (9-NH2-epiQ, 13) coped best with the main 

challenge arising from the transition from cyclic to acyclic enones, which presumably is the 

control of the s-cis and s-trans geometry, and afforded excellent enantioselectivity also for 

acyclic substrates when employed together with an acid co-catalyst (TFA) in a ratio of 1:2 

(entry 2). A 1:1 amine/TFA ratio led to only slightly lower enantioselectivity, but 

significantly reduced catalyst activity (entry 1). 

 
Table 4.21 Evaluation of different catalysts for the catalytic asymmetric epoxidation of 6-phenyl-3-hexen-2-
one (92b).a 

 

 
Entry Catalyst Conv. [%]b er(93b)c 

1 [9-NH2-epiQ • TFA] 57 98:2 

2 [9-NH2-epiQ • 2 TFA] full 99.5:0.5 

3 [(R,R)-DPEN • TFA] 61 13:87 

4 [(R,R)-DPEN • 2 TFA] 92 6:94 

5 [(R,R)-DPEN • (S)-TRIP] 70 9:91 

6 [(R,R)-DPEN • (R)-TRIP] 52 25:75 
aIdentical reactivity and selectivity trends were observed with 4-hexen-3-one (92c) as substrate. bDetermined by 
GC. cDetermined by chiral GC. 
 

Our proposed catalytic cycle for the reaction of acyclic α,β-unsaturated ketones 92 with 

hydrogen peroxide in the presence of the 9-amino(9-deoxy)epiquinine (13) TFA salt accounts 

for the formation of both peroxyhemiketals 94 and epoxides 93 (Scheme 4.12). 

The initial steps are identical to those invoked for the epoxidation of 2-cyclohexenone (46a) 

(cf. Figure 3.1). The catalytic cycle is triggered by the reversible formation of iminium ion A 

from the enone substrate 92 and the catalyst [9-NH2-epiQ (13) • HX] (step (a)). Iminium ion 

formation may effectively lower the LUMO energy of the substrate and facilitate the 

enantioselective conjugate addition of hydrogen peroxide (step (b)) to provide β-

peroxyenamine intermediate B. Subsequent intramolecular nucleophilic substitution may 

break the weak peroxide bond (step (c)), and afford α,β-epoxy ketone 93 after hydrolysis of 

4 Results and Discussion 

 79

In this context, we tested alternative catalyst systems in the hydroperoxidation-epoxidation 

reaction of 6-phenyl-3-hexen-2-one (92b). (R,R)-DPEN salts such as [(R,R)-DPEN • TFA], 

[(R,R)-DPEN • 2TFA], [(R,R)-DPEN • (S)-TRIP], and [(R,R)-DPEN • (R)-TRIP] displayed 

moderate to high catalytic activity, yet gave inferior results in terms of enantioselectivity with 

acyclic compared to the previously studied cyclic substrates (Table 4.21, entries 3-6). Among 

all catalysts tested, 9-amino(9-deoxy)epiquinine (9-NH2-epiQ, 13) coped best with the main 

challenge arising from the transition from cyclic to acyclic enones, which presumably is the 

control of the s-cis and s-trans geometry, and afforded excellent enantioselectivity also for 

acyclic substrates when employed together with an acid co-catalyst (TFA) in a ratio of 1:2 

(entry 2). A 1:1 amine/TFA ratio led to only slightly lower enantioselectivity, but 

significantly reduced catalyst activity (entry 1). 

 
Table 4.21 Evaluation of different catalysts for the catalytic asymmetric epoxidation of 6-phenyl-3-hexen-2-
one (92b).a 

 

 
Entry Catalyst Conv. [%]b er(93b)c 

1 [9-NH2-epiQ • TFA] 57 98:2 

2 [9-NH2-epiQ • 2 TFA] full 99.5:0.5 

3 [(R,R)-DPEN • TFA] 61 13:87 

4 [(R,R)-DPEN • 2 TFA] 92 6:94 

5 [(R,R)-DPEN • (S)-TRIP] 70 9:91 

6 [(R,R)-DPEN • (R)-TRIP] 52 25:75 
aIdentical reactivity and selectivity trends were observed with 4-hexen-3-one (92c) as substrate. bDetermined by 
GC. cDetermined by chiral GC. 
 

Our proposed catalytic cycle for the reaction of acyclic α,β-unsaturated ketones 92 with 

hydrogen peroxide in the presence of the 9-amino(9-deoxy)epiquinine (13) TFA salt accounts 

for the formation of both peroxyhemiketals 94 and epoxides 93 (Scheme 4.12). 

The initial steps are identical to those invoked for the epoxidation of 2-cyclohexenone (46a) 

(cf. Figure 3.1). The catalytic cycle is triggered by the reversible formation of iminium ion A 

from the enone substrate 92 and the catalyst [9-NH2-epiQ (13) • HX] (step (a)). Iminium ion 

formation may effectively lower the LUMO energy of the substrate and facilitate the 

enantioselective conjugate addition of hydrogen peroxide (step (b)) to provide β-

peroxyenamine intermediate B. Subsequent intramolecular nucleophilic substitution may 

break the weak peroxide bond (step (c)), and afford α,β-epoxy ketone 93 after hydrolysis of 



4  Results and Discussion 

80 

α,β-epoxy iminium ion D (step (d)). However, the epoxidation pathway may be converted 

into a hydroperoxidation pathway if β-peroxyenamine B may be trapped by protonation (step 

(e)). β-Hydroperoxy iminium ion C may release a β-peroxyketone upon hydrolysis (step (f)), 

which in the case of acyclic enones such 3-decen-2-one (92a) exists in equilibrium 

exclusively as the cyclic peroxyhemiketal 94. 

Indeed, there are only isolated cases evident in the literature where the β-hydroperoxide  

generated by conjugate addition of hydrogen peroxide to α,β-unsaturated carbonyl 

compounds could be isolated.[111-113, 132] Yet, none of them allows access to β-hydroperoxides 

in optically active form. 
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Scheme 4.12 Hypothetical catalytic cycle: hydroperoxidation vs. epoxidation pathway in the reaction of acyclic 
enones (92). 
 
As for the epoxidation of cyclic enones, we reckoned that while the primary amine function of 

9-amino(9-deoxy)epiquinine (13) activates the enone as iminium ion in cooperation with the 

acid co-catalyst, the quinuclidine moiety either as the free base (Figure 4.6, E), or in 

protonated form (F) may bind the hydrogen peroxide via hydrogen bonding interactions,[48a] 

thereby bringing it into close proximity to the reactive center and directing its attack to one 

face of the double bond. 
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Scheme 4.12 Hypothetical catalytic cycle: hydroperoxidation vs. epoxidation pathway in the reaction of acyclic 
enones (92). 
 
As for the epoxidation of cyclic enones, we reckoned that while the primary amine function of 

9-amino(9-deoxy)epiquinine (13) activates the enone as iminium ion in cooperation with the 

acid co-catalyst, the quinuclidine moiety either as the free base (Figure 4.6, E), or in 

protonated form (F) may bind the hydrogen peroxide via hydrogen bonding interactions,[48a] 

thereby bringing it into close proximity to the reactive center and directing its attack to one 

face of the double bond. 
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Figure 4.6 Putative pre-transition state assemblies E and F for the conjugate addition of hydrogen peroxide to 
iminium ion A. 
 

When the epoxide is formed the O–O bond must be anti-periplanar to the enamine π-system 

to enable overlap with the O–O anti-bonding orbital. Taking this into account, we rationalized 

the preference for the hydroperoxidation pathway under our reaction conditions as an 

apparent failure of peroxyenamine intermediate B to adopt the requisite O–O bond orientation 

by which the enamine is optimally aligned for epoxide formation to take place such as in B' 

(Scheme 4.12). Presumably, secondary catalyst-substrate interactions via hydrogen bonding 

between the peroxyenamine moiety and the covalently linked Cinchona alkaloid scaffold 

might rigidify β-peroxyenamine intermediate B. This might impede its bond-rotational 

freedom (cf. equilibrium between B and B'). As a result, the peroxyenamine intermediate B 

may be stabilized and the barrier associated with epoxide formation may have become so high 

that peroxyenamine B is relegated to protonation and the reaction terminated at the 

hydroperoxidation stage. 

On the basis of our mechanistic hypothesis, we reckoned that we could possibly further 

influence the peroxy hemiketal to epoxide ratio by the choice of the acid co-catalyst and by 

further fine-tuning of the reaction conditions. In this, we considered that an increased water 

content in the system might benefit the protonation and subsequent hydrolysis of β-

peroxyenamine intermediate B prior to the irreversible epoxide ring closure. The acidity of 

the acid co-catalyst might influence the partitioning of the peroxyenamine intermediate B 

between the hydroperoxidation and epoxidation pathways insofar that a relatively strong acid 

co-catalyst might interfere with the multipoint binding interactions to the covalently linked 

quinine scaffold, with the result that the conformational rigidity might be reduced. Moreover, 

a strong acid co-catalyst should be able to bring forward epoxide formation by enhancement 

of the nucleofugacity of the hydroxyl moiety by protonation of the distal oxygen atom of the 

peroxy moiety in intermediate B. On the contrary, the use of a weaker acid might promote the 

hydroperoxidation pathway. 
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4.2.1.2 Optimization of the Catalytic System 

Indeed, when we studied the influence of different acid co-catalysts on the reaction of enone 

substrate 92a with hydrogen peroxide in the presence of 9-amino(9-deoxy)epiquinine (9-NH2-

epiQ; 13) as its TFA salt [13 • 2 TFA], we found a correlation between the pKa value of the 

acid and the peroxyhemiketal to epoxide ratio (Table 4.22).[133] Whereas a relatively strong 

acid such as para-toluene sulfonic acid gave predominately the epoxide (entries 1-3), the 

peroxyhemiketal was obtained as major product in presence of weaker acids (entries 4-29). 

Moreover, a decrease in temperature favoured PHK formation. Whereas the PHK-epoxide 

ratio was 57:43 at 50 °C, (entry 4) it could be increased to 73:27 by lowering the temperature 

to 10 °C albeit at the expense of reactivity (entry 8); 32 °C appeared to be optimal with regard 

to both selectivity and reactivitiy (entry 5). An increase in the amount of acid co-catalyst 

slightly enhanced the catalyst activity; however, the increased activity came along with 

reduced PHK selectivity (entries 7-8). The use of acids with a pKa greater than 2 benefits the 

peroxyhemiketal-epoxide ratio but entails diminished catalyst efficiency. 2,4-Dinitrobenzoic 

acid (pKa ~2.17) does promote the reaction giving a PHK-epoxide ratio of 75:25 - albeit at a 

lower rate (entry 24). The same holds true for 3,3,3-trifluoropropanoic acid (pKa 3.07) (entry 

10). However, acetic acid (pKa 4.76) as well as benzoic acid (pKa 4.20) were both ineffective 

(entries 19-20, 23). The best compromise between selectivity and reactivity was exhibited by 

trichloroacetic acid (pKa 0.65) with a PHK-epoxide ratio of 72:28 and virtually full 

conversion after 24 h at 28 °C (entry 15). Thus the 9-amino(9-deoxy)epiquinine (13) TCA salt 

[13 • 2 TCA] was used in further optimization experiments. 
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Table 4.22 Evaluation of the influence of acid co-catalysts (HX) on the PHK 94a to epoxide 93a ratio in the 
[13 • HX]-catalyzed reaction of 3-decen-2-one (92a) with aqueous hydrogen peroxide. 
 

 
 
Entry Acid co-catalyst (HX) pKa (H2O)a [mol%] T [° C] Conv. [%]b 94a:93ac er(93a)d 

1 

pTsOH • H2O -2.80 

20 28 82 (48 h) 35:65 98:2 

2 30 28 98 (48 h)e 31:69 92:8 

3 30 10 65 (48 h) 35:65 94.5:5.5 

4 

 

(TFA) 

0.52 

20 50 full (20 h) 57:43 >99.5:0.5 

5 20 32 full (24 h) 68:32 >99.5:0.5 

6 20 28 95 (24 h) 70:30 >99.5:0.5 

7 30 28 97 (48 h) 72:28 >99.5:0.5 

8 30 10 76 (48 h) 73:27 >99.5:0.5 

9 

 

n.a. 20 32 97 (24 h) 69:31 >99.5:0.5 

10 
 

3.07 20 32 44 (28 h) n.d. 99.5:0.5 

11 

 

n.a. 20 32 full (24 h) 68:32 >99.5:0.5

12 OH

O

F

F  

1.24 20 32 88 (48 h) 78:22 >99.5:0.5 

13 

 

(TCA) 

0.65 

20 50 full (20 h) 60:40 >99.5:0.5 

14 20 32 full (24 h) 70:30 >99.5:0.5 

15 20 28 97 (24 h) 72:28 >99.5:0.5 

16 20 20 90 (48 h) 75:25 >99.5:0.5 

17 20 10 79 (48 h) 75:25 >99.5:0.5 

18 

 

1.35 20 32 84 (48 h) 77:23 >99.5:0.5 

19 
HOAc 4.76 

20 28 <10 n.d. n.d.

20 30 28 <10 n.d. n.d.

21 EtCO2H 4.87 20 28 <10 n.d. n.d.

22 i-PrCO2H n.a. 20 28 <10 n.d. n.d.
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Entry Acid pKa (H2O)a [mol%] T [° C] Conv. [%]b 94a:93ac er(93a)d 

23 PhCO2H 4.20 20 28 15 n.d. 95.5:4.5 

24 2,4-(NO2)2-C6H4CO2H 2.17f 20 32 98% (48 h) 75:25 99.5:0.5 

25 4-NO2-C6H4CO2H 3.44 20 32 45 (28 h) n.d. n.d.

26 2,6-F2-C6H3CO2H n.a. 20 32 52 (28 h) n.d. n.d.

27 3,5-(CF3)2-C6H3CO2H n.a. 20 32 43 (28 h) n.d. n.d.

28 4-Cl-C6H4CO2H 3.99 20 32 23 (28 h) n.d. n.d.

29 (PhO)2PO(OH) 1.29g 20 32 96 (24 h) 64:36 99.5:0.5 
aThe pKa values are adopted from the pKa compilations of Williams and Bordwell.[133] bDetermined by GC. 
cDetermined by 1H NMR of the crude mixture. dDetermined by chiral GC. eExtensive side product formation 
observed.[134] fpKa of 2-NO2-C6H4CO2H gpKa of (MeO)2PO(OH). 

 

4.2.1.3 Optimization of the Reaction Conditions 

Further experiments were aimed at evaluating the dependency of the product distribution on 

the reaction time. To this end, samples were taken from an exemplary reaction at different 

time intervals (Table 4.23). The PHK-epoxide ratio remained unchanged between 4.5 and 28 
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Scheme 4.13 Effect of the catalyst loading on the reaction efficiency. (aDetermined by 1H NMR of the crude 
mixture; bDetermined by chiral GC.) 
 

A screening of different ethereal solvents validated 1,4-dioxane as the solvent of choice, as 

previously observed in the catalytic asymmetric epoxidation of cyclic enones (Table 4.24, 

entry 5; cf. Table 4.9). In Et2O and MTBE the catalyst system [13 • 2 TCA] showed 

comparable activity; yet the PHK to epoxide ratio was unfavourably affected (entries 2 and 4). 

Nonetheless, both may be alternative solvents for applications which directly target epoxide 

synthesis rather than formation of peroxyhemiketals (cf. Chapter 4.2.2.2). Moreover, MTBE 

might also be a suitable substitute for 1,4-dioxane in large-scale applications (with the 

advantage of MTBE being for instance its lower hazardous potential). 

Increasing the substrate concentration from 0.25 M to 0.5 M had a positive effect on the PHK-

epoxide ratio but was accompanied by increasing formation of unidentified side products 

(entry 6). As the concentration was lowered (0.125 M), proportionally more epoxide was 

obtained (entry 7). On the basis of these results, the screening studies were continued in 

dioxane at a substrate concentration of 0.25 M (entry 5). 

 
Table 4.24 Screening of various ethereal solvents at different concentrations. 
 

solvent, 32 °C, 24 h

[13 2 TCA] (10 mol%)
H2O2 (50 wt%; 1.5 equiv)

n-C6H13 Me

O

n-C6H13

O O

Me
OH

94a (~1:1 dr)92a

n-C6H13 Me

O
O

93a  

Entry Solvent Conc. [M] Conv. [%]a 94a:93a ratiob er(93a)c 

1 THF 0.25 43 n.d. n.d. 

2 Et2O 0.25 99 65:35 99:1 

3 DME 0.25 38 n.d. n.d. 

4 MTBE 0.25 full 68:32 99.5:0.5 

5 dioxane 0.25 full 70:30 >99.5:0.5 

6 dioxane 0.5 fulld 71:29 >99.5:0.5 

7 dioxane 0.125 89 67:33 >99.5:0.5 
aDetermined by GC. bDetermined by 1H NMR of the crude mixture. cDetermined by chiral GC. dIncreasing side 
product formation observed. 
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Next, we focused on the effect of the concentration of hydrogen peroxide (Table 4.25). Two 

trends emerged: The peroxyhemiketal to epoxide ratio increased as the amount of hydrogen 

peroxide increased (entries 1-4). Moreover, the use of less concentrated solutions of hydrogen 

peroxide (30 wt% instead of 50 wt%-solutions) had a beneficial effect (entry 2 vs. 5). A PHK-

epoxide ratio of 80:20 was obtained by using 3 equivalents of a 30 wt% aqueous hydrogen 

peroxide solution (entry 7). Indeed, higher dilution (25 wt% aqueous hydrogen peroxide) 

further increased this value albeit at the expense of catalyst efficiency with regard to both 

activity and selectivity (entries 8-11). 

 
Table 4.25 Optimization of the hydrogen peroxide concentration. 
 

n-C6H13 Me

O

n-C6H13

O O

Me
OH

94a (~1:1 dr)

dioxane (0.25 M), 32 °C

[13 2 TCA] (10 mol%)
aqueous H2O2

92a

n-C6H13 Me

O
O

93a  

Entry H2O2 equiv. H2O2 conc. [wt%] Conv. [%]a 94a:93a ratiob er(93a)c 

1 1.2 50 full (24 h) 65:35 >99.5:0.5 

2 1.5 50 full (24 h) 70:30 >99.5:0.5 

3 2 50 full (24 h) 71:29 >99.5:0.5 

4 5 50 full (24 h) 76:24 99.5:0.5 

5 1.5 30 full (24 h) 76:24 >99.5:0.5 

6d 1.5 30 full (36 h) 77:23 >99.5:0.5 

7 3 30 full (24 h) 80:20 >99.5:0.5 

8 1.5 25 full (30 h) 78:22 >99.5:0.5 

9 3 25 full (30 h) 81:19 99.5:0.5 

10 1.5 10 79 (6 d) 78:22 99:1 

11 1.5 5 57 (6 d) n.d. 98:2 
aDetermined by GC. bDetermined by 1H NMR of the crude mixture. cDetermined by chiral GC. dAt 28 °C. 
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4.2.1.4 Tert-butylhydroperoxide as the Oxidant 

Although hydrogen peroxide is arguably the most attractive oxidant with respect to environ-

mental and economic considerations it was interesting to find out how our system would 

respond to other oxidants. Initial experiments with aqueous tert-butylhydroperoxide (70 wt%) 

gave also promising, yet inferior results compared to the catalytic reaction with aqueous 

hydrogen peroxide as oxidant under otherwise identical conditions (Table 4.26). 

 

Table 4.26 Screening of alternative oxidants: tert-butylhydroperoxide. 
 

 

Entry R1 R2 Enone Peroxide Epoxide Yield (95:93 ratio) [%]a er(93)b 

1 Me Et 92c (5S)-95c (4R,5S)-93c 88 (82:6) 14.5:85.5 

2 n-C6H13 Me 92a (4R)-95a (3S,4R)-93a 91 (55)c (70:21) 99:1 
aDetermined by GC. bDetermined by chiral GC. cIsolated yield of pure 95a in parentheses. 

 

Very much like in the catalytic reaction with hydrogen peroxide, α,β-epoxy ketone 93 was 

only formed in minor amounts. In contrast, the product of the conjugate addition of tert-

butylhydroperoxide (TBHP) – tert-butylperoxide 95 was obtained as the major product with 

high selectivities. An intriguing feature was the inverted enantiofacial selectivity observed in 

the reaction of 4-hexen-3-one (92c) compared to the corresponding hydrogen peroxide 

reaction (entry 1, cf. Table 4.30, entry 18). 

In general, we assume that acyclic α,β-unsaturated ketones 92 or the corresponding 

unsaturated iminium ions generated in the presence of catalyst [13 • 2 TXA] (with X = Cl, F), 

respectively, react preferentially in the s-trans conformation which is in agreement with the 

observed absolute stereochemistry of both cyclic and acyclic enones (cf. Chapter 4.5.4). We 

speculate that the formation of the opposite epoxide enantiomer might indicate participation 

of the s-cis conformation. Moreover, epoxide 93c was formed with relatively low enantio-

selectivity of 85.5:14.5 er which may support a competition of s-cis and s-trans reactive 

conformations. 

The equilibrium distribution of s-trans and s-cis conformations of α,β-unsaturated ketones 

depends on the extent of van der Waals interaction between substituents (Table 4.27).[135] In 

3-penten-2-one (R1=R2=Me) the mole fraction of the s-cis conformer in equilibrium amounts 

to 30% (entry 2). Yet, this value progressively increases as the size of the alkyl group R2 
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Although hydrogen peroxide is arguably the most attractive oxidant with respect to environ-

mental and economic considerations it was interesting to find out how our system would 
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gave also promising, yet inferior results compared to the catalytic reaction with aqueous 
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increases beyond methyl. Although the situation in the corresponding iminium ions might 

differ significantly, the s-cis/s-trans equilibrium should always be considered while analyzing 

the results obtained with acyclic enone substrates. 

 

Table 4.27 Equilibrium distribution of s-trans and s-cis conformations of α,β-unsaturated ketones.[135] 
 

 

Entry R1 R2 s-trans [%] s-cis [%] 

1 H Me 73 27 

2 Me Me 70 30 

3 Me Et 55 45 

4 Me i-Pr 30 70 

5 Me t-Bu 0 100 

 

Nevertheless, it can not be ruled out that the reaction of 4-hexen-3-one (92c) proceeds through 

a distinct, competing mechanism which accounts for the inverted enantiofacial selectivity, 

potentially involving activation by hydrogen bonding interactions. 

In fact, subsequent experiments validated the assumption of a substrate-specific effect in that 

our standard substrate 3-decen-2-one (92a) showed the same facial selectivity as previously 

observed in the reaction with hydrogen peroxide as terminal oxidant (Table 4.26, entry 2). 

With TBHP as oxidant under otherwise identical reaction conditions, tert-butylperoxide 95a 

was obtained in good yield along with high enantioselectivity of 99:1 er. 
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Thus, tert-butyl hydroperoxide not only constitutes an alternative oxidant for the synthesis of 

epoxides but also provides concise access to interesting optically active β-alkylperoxy ketones 

95 via conjugate addition. Yet, hydrogen peroxide meets all criteria for future applications 

potentially also on an industrial scale: it is inexpensive, readily available, and gives water as 

the only by-product. Thus, we continued our research with hydrogen peroxide as the oxidant 

of choice. 

In 2008, after our group has introduced 9-amino(9-deoxy)epiquinine (13) (as its TFA salt) as 

powerful catalyst for the epoxidation of cyclic enones, the Deng group reported a catalytic 

asymmetric alkylperoxidation of α,β-unsaturated ketones using the same catalyst system [9-

NH2-epiQ (13) • 2-3 TFA] (Scheme 4.14).[121, 136] 

 

 
 
Scheme 4.14 Catalytic asymmetric alkylperoxidation of α,β-unsaturated ketones according to Deng et al.[136] 
 

Further oxidants were not tested since a broad screening of potential oxidizing reagents had 

already been carried out in the context of the asymmetric epoxidation of 2-cyclohexenone (cf. 

Table 4.7). 
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4.2.2 Reaction Scope and Discussion 

Once we had identified the optimal catalyst system and established the optimal reaction 

conditions, we proceeded to investigate the scope of this novel asymmetric transformation. 

The following protocol was applied: the catalytic asymmetric hydroperoxidation of α,β-

unsaturated ketones 92 was conducted in dioxane (0.25 M) at 32 °C in the presence of 9-

amino(9-deoxy)epiquinine TCA salt [13 • 2 TCA] (10 mol%) and with 30 wt% aqueous 

hydrogen peroxide (3 equiv) as oxidant to afford optically active peroxyhemiketal 

diastereomers 94 virtually as a 1:1 mixture of C-1 hemiketal epimers in good yields along 

with high enantioselectivities. Details of the scope of the catalytic asymmetric hydroperoxi-

dation are outlined in the following Section 4.2.2.1. 

 

4.2.2.1 Hydroperoxidation of α,β-Unsaturated Ketones 

The catalytic asymmetric hydroperoxidation of α,β-unsaturated ketones 92 proved to have a 

broad substrate scope. Various α,β-enones 92 were converted to the optically active peroxy-

hemiketals 94 in reasonable to good yields (30-72%) along with high enantioselectivities 

(96:4 to 98.5:1.5 er). In general, the only detected by-products were the corresponding 

epoxides 93, which are easily separated from peroxides 94. The absolute configuration of 

products 94 and 93 was established by reducing peroxide 94b to the corresponding aldol-type 

product 4-hydroxy-6-phenyl-2-hexanone (96b) (see Chapter 4.3.2) and comparing its optical 

rotation with literature data.[137] 4-Hydroxy-6-phenyl-2-hexanone (96b) was obtained as the 

(R)-isomer; absolute configurations of other products 94 and 93 were assigned by analogy. 

α,β-Unsaturated methyl ketones 92 (R2=Me) with linear as well as α'- and β'-branched alkyl 

residues R1 at the β-position were suitable substrates (Table 4.28, entries 1-4). Compared with 

92a-b, and d, 4-cyclohexyl-3-buten-2-one (92e) proved to be slightly less reactive. Moreover, 

the percentage of peroxyhemiketal decreased as the degree of branching in the substituent R1 

increased. With 3-decen-2-one (R1=n-C6H13) it accounted for 80% of the PHK-epoxide 

product mixture, whereas a cyclohexyl substituent such as in enone 92e reduced it to 68%. 

Moreover, our hydroperoxidation reaction features high functional group compatibility 

(entries 5-10). Enones equipped with an ester, keto, or protected hydroxyl group, a halide, or 

an olefin were well tolerated. Notably, the survival of acid labile acetal and silyl ether functio-

nalities testifies the mildness of the adopted reaction conditions (Table 2, entries 7-8). The 

hydroperoxidation reactions were generally conducted on a 0.5 or 1 mmol scale; yet a 3 mmol 
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(~500 mg) scale affected neither the isolated yield nor the observed enantioselectivity 

(entry 1). 

 

Table 4.28 Scope of the hydroperoxidation of α,β-unsaturated methyl ketones 92. 
 

 

Entry R1 Enone Product 94:93 ratioa Yield [%]b er(94)c 

1d n-C6H13 92a 94a 80:20 65 98.5:1.5 

2 PhCH2CH2 92b 94b 78:22 68 97:3 

3 i-Bu 92d 94d 71:29 61 97.5:2.5 

4 Cy 92e 94e 68:32 54 98:2 

5  92f 94f 80:20 69 97.5:2.5 

6  92g 94g 79:21 72 97:3 

7  92h 94h 76:24 64 96.5:3.5 

8 
 

92i 94i 80:20 68 98:2 

9 
 

92j 94j 85:15 70 96.5:3.5 

10e 

 

92k 94k 63:37 30 96:4 

11e  92l 94l - 25f (98:2)g 

aDetermined by 1H NMR of the crude mixture. bYields of pure, isolated products. cDetermined by chiral GC after 
conversion to the corresponding epoxide with 1N NaOH (1 equiv) in THF. dReaction conducted on a 3 mmol scale. 
eWith [13 • 2 TFA] (10 mol%), H2O2 (50 wt%; 1.5 equiv). f69% conv. determined by 1H NMR. ger of the initially 
formed epoxide 93l. 

 

The hydroperoxidation product derived from keto-enone 92k was isolated in 30% yield. 
1H NMR analysis of the purified peroxidic product 94k revealed a mixture of three isomeric 

peroxyhemiketals consisting of the two 3-hydroxy-1,2-dioxolane diastereomers 94k' and 3-

hydroxy-1,2-dioxane 94k'' which was formed via hemiketalization of the remote keto group 

and obtained as a single diastereomer. The relative configuration of compound 94k'' depicted 

in Scheme 4.15 was tentatively assigned on the basis of anomeric stabilization. 
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Scheme 4.15 Hydroperoxidation of keto-enone 92k: formation of regioisomeric peroxyhemiketals 94k' and 
94k''. (aDetermined by 1H NMR.) 
 

Table 4.29 displays the results obtained with α,β-unsaturated ketones 92 bearing substituents 

R2 other than methyl (R2 ≠ Me). All enones 92c, m-o smoothly participated in the reaction 

and alterations of the steric properties of the aliphatic ketone substituent did not impact 

negatively on the enantioselectivity. However, the desired peroxide was obtained in varying 

yields depending on the steric bias of the substrate (entries 2-6). Increasing the steric demand 

of residue R2 impeded the formation of peroxyhemiketals in favour of the corresponding 

epoxides. For instance, replacing the methyl group in enone 92a (R2 = Me) by an n-pentyl 

group decreased the peroxide to epoxide ratio from 80:20 to 45:55 (entry 1 vs. 2). Somewhat 

surprisingly, with a β'-branched isobutyl group as ketone substituent R2, essentially only the 

epoxide was isolated (entry 3). On the contrary, sterically crowded isopropyl ketone 92o 

exhibited greatly reduced reactivity but still allowed for a reasonable yield of 39% of peroxide 

94o in slightly lower enantioselectivity of 96:4 er (entry 4). Increasing the steric demand of 

substituent R1 also affected the reaction, yet to a minor extent: Whereas 3-hexen-4-one (92c) 

gave 74% of peroxyhemiketal in the crude product mixture, this value was reduced to 63% in 

3-tetradecen-4-one (92p) (entry 5 vs. 6). 
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Table 4.29 Influence of the substituent R2 on the peroxide to epoxide ratio. 
 

 

Entry R1 R2 Enone Product 94:93 ratioa Yield [%]b er(94)c 

1d n-C6H13 Me 92a 94a 80:20 (57:43) 65 98.5:1.5 

2 n-C5H11 n-C5H11 92m 94m 45:55 (25:75) 40 97:3 

3 n-C5H11 i-Bu 92n 94n 5:95 (<1:>99) -e - 

4f Me i-Pr 92o 94o 50:50 39g 96:4 

5 Me Et 92c 94c 74:26 (67:33) 56 97:3 

6 n-C9H19 Et 92p 94p 63:37 (47:53) 48 98:2 
aDetermined by 1H NMR of the crude mixture. Values in parentheses correspond to the reaction with [13 • 2 TFA] 
(10 mol%), H2O2 (50 wt%; 1.5 equiv) at 50 °C. bYields of pure, isolated products. cDetermined by chiral GC after 
conversion to the corresponding epoxide with 1N NaOH (1 equiv) in THF. dConducted on a 3 mmol scale. e90% 
conv. determined by 1H NMR. fWith [13 • 2 TFA] (20 mol%), H2O2 (50 wt%; 1.5 equiv) at 50 °C. g96% conv. 
determined by 1H NMR. 

 

The influence of the reaction conditions on the product distribution between PHK and 

epoxide is dependent on the nature of the substrate as highlighted by the 94:93 values given in 

parentheses for the reaction catalyzed by [13 • 2 TFA] at 50 °C with 50 wt% hydrogen 

peroxide (1.5 equiv). With 7-tridecen-6-one (92m) an increase from 25:75 to 45:55 could be 

achieved by optimizing the reaction conditions (cf. Chapter 4.2.1) which then allows for 

synthetically useful yields of peroxyhemiketal 94m (entry 2). 

 

4.2.2.2 Epoxidation of Acyclic α,β-Unsaturated Ketones 

The reaction of acyclic α,β-unsaturated ketones 92 with hydrogen peroxide in the presence of 

a 9-amino(9-deoxy)epiquinine (13) salt can further serve as entry to optically active α,β-

epoxy ketones 93. 

To this end, [13 • 2 TFA] (10 mol%) was used as catalyst system at 50 °C in dioxane 

(0.25 M) together with 50 wt% hydrogen peroxide (1.5 equiv) as oxidant. These conditions 

bring forward epoxide formation with the result that the epoxide content of the crude product 

mixture is proportionally higher than under the conditions previously established for the 

hydroperoxidation reaction (cf.Chapter 4.2.1.3). 

Yet under the “epoxidation conditions”, substantial amounts of peroxides 94 are still detected 

as by-products in the crude product mixture. Neither prolonged reaction times nor elevated 

temperatures were sufficient to significantly increase the epoxide yield (Table 4.30, entry 2). 

Cyclic peroxyhemiketals of the general type 94 are known to be transformed to the 
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corresponding epoxides under basic conditions (Scheme 4.16, (a)).[110b, 110d] Thus, basic work-

up of the crude product mixture will always enable quantitative epoxide formation 

independent of the initial product distribution between peroxyhemiketal 94 and epoxide 93 

(Scheme 4.16, (b)). 

 

 
Scheme 4.16 (a) Mechanism of the peroxyhemiketal-epoxide rearrangement; (b) General strategy for the 
epoxidation of α,β-unsaturated ketones 92. 
 

Peroxide 94c was cleanly converted to α,β-epoxy ketone 93c in the presence of catalytic 

amounts of aqueous NaOH (Scheme 4.17). However, the reaction was greatly accelerated 

without affecting the optical purity of the product when stoichiometric amounts of base were 

used. 

 
 
Scheme 4.17 Peroxyhemiketal-to-epoxide rearrangement mediated by aqueous NaOH. 
 

Initial attempts to conduct the basic rearrangement following the catalytic reaction in the 

sense of a sequential one-pot process gave good to high yields of pure, isolated α,β-epoxy 

ketones 93 albeit with slightly reduced enantioselectivities. Thus, we decided to carry out an 

aqueous work-up once the hydroperoxidation-epoxidation reaction was complete, and then 

treat the crude product containing peroxide 94 and epoxide 93 with 1N aqueous NaOH (1 

equiv) in THF or diethyl ether at room temperature until TLC analysis indicated full 

conversion to the epoxide (generally within less than 20 min). According to this protocol, a 

wide range of α,β-epoxy ketones 93 were obtained in good to high yields (50-90%) as a 
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single diastereomer along with excellent enantioselectivities (96.5:3.5 to 99.5:0.5 er) (Table 

4.30). 

 
Table 4.30 Substrate scope of the catalytic asymmetric epoxidation of α,β-unsaturated ketones 92. 
 

 
 
Entry R1 R2 Enone Product 94:93 ratioa Yield [%]b erc 

1 n-C6H13 Me 92a 93a 57:43 75 98.5:1.5 

2d n-C6H13 Me 92a 93a 51:49 n.d. n.d. 

3e n-C6H13 Me 92a ent-93a 70:30 81 96:4 

4 PhCH2CH2 Me 92b 93b 56:44 85 98.5:1.5 

5e PhCH2CH2 Me 92b ent-93b 72:28 90 95:5 

6i PhCH2 Me 92q 93q 47:53 70a,f 99:1 

7 i-Bu Me 92d 93d 71:29 77 98.5:1.5 

8 
 

Me 92r 93r 45:55 81 >99.5:0.5

9 i-Pr Me 92s 93s 52:48 50g 98:2 

10 Cy Me 92e 93e 42:58 84 98.5:1.5 

11  Me 92f 93f 63:37 76 98.5:1.5 

12  Me 92g 93g 67:33 75 98.5:1.5 

13  Me 92h 93h 58:42 88 98:2 

14 
 

Me 92i 93i 66:34 72 98.5:1.5 

15h 
 

Me 92j 93j 68:32 81 98:2 

16i 

 

Me 92k 93k 58:42 40 98.5:1.5 

17i  Me 92l 93l 50:50 51j 98:2 

18 Me Et 92c 93c 67:33 55g 98.5:1.5 

19 n-C9H19 Et 92p 93p 47:53 82 99:1 

20k n-C5H11 n-C5H11 92m 93m 25:75 76 99:1 

21k,i n-C5H11 i-Bu 92n 93n <1:>99 81 >99.5:0.5

22k Me i-Pr 92o 93o 50:50 60g 96.5:3.5 
aDetermined by 1H NMR of the crude mixture.bYields of pure, isolated products. cDetermined by chiral GC. d7 d. 
eWith [67 • 2 TFA] (10 mol%). fSum of 93q and the corresponding PHK 94q (at 94% conv. determined by 
1H NMR). gReduced yield due to the high volatility of the product. hNaOEt (1 equiv) was used instead of NaOH. 
iSecond step was omitted. jSum of 93l and the corresponding PHK 94q (at 69% conv. determined by 1H NMR). 
kWith [13 • 2 TFA] (20 mol%). 
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Various α,β-enones 92 bearing linear and branched alkyl groups both at the β-position and 

adjacent to the carbonyl were suitable substrates giving optically active epoxides 93 regard-

less of the steric congestion in >98.5:1.5 er in most of the cases. Substrates which stood out 

were 6,6-dimethyl-3-hepten-2-one (92r) and 2-methyl-5-undecen-4-one (92n) (entries 8 and 

21). Both furnished the corresponding epoxides 93r and 93n, respectively, with an 

exceptional enantiomeric ratio of >99.5:0.5 and in high yields. Moreover, with enone 92n the 

epoxide was the only product detected whereas formation of the corresponding 

peroxyhemiketal was not observed. 

Gratifyingly, pseudoenantiomeric 9-amino(9-deoxy)epiquinidine (9-NH2-epiQD; 67) as its 

TFA salt afforded opposite enantiomeric epoxides with only slightly lower enantioselectivity, 

as exemplified by the epoxidation of enones 92a-b in presence of [67 • 2 TFA] (entries 3 and 

5). Pseudoenantiomeric catalyst [67 • 2 TFA] emerged as slightly more active than its 

quinine-derived analogue [13 • 2 TFA] and the corresponding epoxides 93a-b were obtained 

in high yields along with 96:4 er and 95:5 er, respectively. 

In contrast to the hydroperoxidation, the procedure for the epoxidation requires basic 

conditions for the peroxide-epoxide rearrangement which creates an additional challenge in 

terms of functional group compatibility (entries 11-17). Enones 92f-i corresponded well to the 

two-step protocol and gave the desired functionalized α,β-epoxy ketones 93f-i in good yields 

and high enantioselectivities. Clean conversion of dienone 92f to α,β-epoxy ketone 93f 

illustrated the selectivity for electron-deficient olefins. Despite the short exposure time, the 

ethyl ester group of enone 92j was partly saponified in the presence of 1N NaOH (1 equiv) 

resulting in only a moderate 47% yield of epoxide 93j, yet in high enantioselectivity of 98:2 

er. The use of NaOEt (1 equiv) as base in ethanol cleared that issue and α,β-epoxy ketone 93j 

was isolated in 81% yield and identical optical purity (entry 15). In case of substrate 92k, the 

second step was omitted since the base treatment did not improve the yield of epoxide 93k 

(26%, 96:4 er). Product loss might arise from competing base-catalyzed aldol reaction. Thus, 

epoxide 93k was isolated from the peroxide-epoxide product mixture in 40% yield along with 

98.5:1.5 er (entry 16). 

The reaction of 9-hydroxy-3-nonen-2-one (92l) equipped with an unprotected hydroxyl group 

stopped at 69% conversion as determined by 1H NMR of the crude product and did not 

progress even upon extended runtime (entry 17). Epoxide 93l could not be easily separated by 

column chromatography from the remaining starting material and was obtained in a moderate 

yield of 20% along with the corresponding peroxyhemiketal 94l (25%), albeit with high 

enantioselectivity (98:2 er). 

4  Results and Discussion 

96 

Various α,β-enones 92 bearing linear and branched alkyl groups both at the β-position and 

adjacent to the carbonyl were suitable substrates giving optically active epoxides 93 regard-

less of the steric congestion in >98.5:1.5 er in most of the cases. Substrates which stood out 

were 6,6-dimethyl-3-hepten-2-one (92r) and 2-methyl-5-undecen-4-one (92n) (entries 8 and 

21). Both furnished the corresponding epoxides 93r and 93n, respectively, with an 

exceptional enantiomeric ratio of >99.5:0.5 and in high yields. Moreover, with enone 92n the 

epoxide was the only product detected whereas formation of the corresponding 

peroxyhemiketal was not observed. 

Gratifyingly, pseudoenantiomeric 9-amino(9-deoxy)epiquinidine (9-NH2-epiQD; 67) as its 

TFA salt afforded opposite enantiomeric epoxides with only slightly lower enantioselectivity, 

as exemplified by the epoxidation of enones 92a-b in presence of [67 • 2 TFA] (entries 3 and 

5). Pseudoenantiomeric catalyst [67 • 2 TFA] emerged as slightly more active than its 

quinine-derived analogue [13 • 2 TFA] and the corresponding epoxides 93a-b were obtained 

in high yields along with 96:4 er and 95:5 er, respectively. 

In contrast to the hydroperoxidation, the procedure for the epoxidation requires basic 

conditions for the peroxide-epoxide rearrangement which creates an additional challenge in 

terms of functional group compatibility (entries 11-17). Enones 92f-i corresponded well to the 

two-step protocol and gave the desired functionalized α,β-epoxy ketones 93f-i in good yields 

and high enantioselectivities. Clean conversion of dienone 92f to α,β-epoxy ketone 93f 

illustrated the selectivity for electron-deficient olefins. Despite the short exposure time, the 

ethyl ester group of enone 92j was partly saponified in the presence of 1N NaOH (1 equiv) 

resulting in only a moderate 47% yield of epoxide 93j, yet in high enantioselectivity of 98:2 

er. The use of NaOEt (1 equiv) as base in ethanol cleared that issue and α,β-epoxy ketone 93j 

was isolated in 81% yield and identical optical purity (entry 15). In case of substrate 92k, the 

second step was omitted since the base treatment did not improve the yield of epoxide 93k 

(26%, 96:4 er). Product loss might arise from competing base-catalyzed aldol reaction. Thus, 

epoxide 93k was isolated from the peroxide-epoxide product mixture in 40% yield along with 

98.5:1.5 er (entry 16). 

The reaction of 9-hydroxy-3-nonen-2-one (92l) equipped with an unprotected hydroxyl group 

stopped at 69% conversion as determined by 1H NMR of the crude product and did not 

progress even upon extended runtime (entry 17). Epoxide 93l could not be easily separated by 

column chromatography from the remaining starting material and was obtained in a moderate 

yield of 20% along with the corresponding peroxyhemiketal 94l (25%), albeit with high 

enantioselectivity (98:2 er). 

4  Results and Discussion 

96 

Various α,β-enones 92 bearing linear and branched alkyl groups both at the β-position and 

adjacent to the carbonyl were suitable substrates giving optically active epoxides 93 regard-

less of the steric congestion in >98.5:1.5 er in most of the cases. Substrates which stood out 

were 6,6-dimethyl-3-hepten-2-one (92r) and 2-methyl-5-undecen-4-one (92n) (entries 8 and 

21). Both furnished the corresponding epoxides 93r and 93n, respectively, with an 

exceptional enantiomeric ratio of >99.5:0.5 and in high yields. Moreover, with enone 92n the 

epoxide was the only product detected whereas formation of the corresponding 

peroxyhemiketal was not observed. 

Gratifyingly, pseudoenantiomeric 9-amino(9-deoxy)epiquinidine (9-NH2-epiQD; 67) as its 

TFA salt afforded opposite enantiomeric epoxides with only slightly lower enantioselectivity, 

as exemplified by the epoxidation of enones 92a-b in presence of [67 • 2 TFA] (entries 3 and 

5). Pseudoenantiomeric catalyst [67 • 2 TFA] emerged as slightly more active than its 

quinine-derived analogue [13 • 2 TFA] and the corresponding epoxides 93a-b were obtained 

in high yields along with 96:4 er and 95:5 er, respectively. 

In contrast to the hydroperoxidation, the procedure for the epoxidation requires basic 

conditions for the peroxide-epoxide rearrangement which creates an additional challenge in 

terms of functional group compatibility (entries 11-17). Enones 92f-i corresponded well to the 

two-step protocol and gave the desired functionalized α,β-epoxy ketones 93f-i in good yields 

and high enantioselectivities. Clean conversion of dienone 92f to α,β-epoxy ketone 93f 

illustrated the selectivity for electron-deficient olefins. Despite the short exposure time, the 

ethyl ester group of enone 92j was partly saponified in the presence of 1N NaOH (1 equiv) 

resulting in only a moderate 47% yield of epoxide 93j, yet in high enantioselectivity of 98:2 

er. The use of NaOEt (1 equiv) as base in ethanol cleared that issue and α,β-epoxy ketone 93j 

was isolated in 81% yield and identical optical purity (entry 15). In case of substrate 92k, the 

second step was omitted since the base treatment did not improve the yield of epoxide 93k 

(26%, 96:4 er). Product loss might arise from competing base-catalyzed aldol reaction. Thus, 

epoxide 93k was isolated from the peroxide-epoxide product mixture in 40% yield along with 

98.5:1.5 er (entry 16). 

The reaction of 9-hydroxy-3-nonen-2-one (92l) equipped with an unprotected hydroxyl group 

stopped at 69% conversion as determined by 1H NMR of the crude product and did not 

progress even upon extended runtime (entry 17). Epoxide 93l could not be easily separated by 

column chromatography from the remaining starting material and was obtained in a moderate 

yield of 20% along with the corresponding peroxyhemiketal 94l (25%), albeit with high 

enantioselectivity (98:2 er). 

4  Results and Discussion 

96 

Various α,β-enones 92 bearing linear and branched alkyl groups both at the β-position and 

adjacent to the carbonyl were suitable substrates giving optically active epoxides 93 regard-

less of the steric congestion in >98.5:1.5 er in most of the cases. Substrates which stood out 

were 6,6-dimethyl-3-hepten-2-one (92r) and 2-methyl-5-undecen-4-one (92n) (entries 8 and 

21). Both furnished the corresponding epoxides 93r and 93n, respectively, with an 

exceptional enantiomeric ratio of >99.5:0.5 and in high yields. Moreover, with enone 92n the 

epoxide was the only product detected whereas formation of the corresponding 

peroxyhemiketal was not observed. 

Gratifyingly, pseudoenantiomeric 9-amino(9-deoxy)epiquinidine (9-NH2-epiQD; 67) as its 

TFA salt afforded opposite enantiomeric epoxides with only slightly lower enantioselectivity, 

as exemplified by the epoxidation of enones 92a-b in presence of [67 • 2 TFA] (entries 3 and 

5). Pseudoenantiomeric catalyst [67 • 2 TFA] emerged as slightly more active than its 

quinine-derived analogue [13 • 2 TFA] and the corresponding epoxides 93a-b were obtained 

in high yields along with 96:4 er and 95:5 er, respectively. 

In contrast to the hydroperoxidation, the procedure for the epoxidation requires basic 

conditions for the peroxide-epoxide rearrangement which creates an additional challenge in 

terms of functional group compatibility (entries 11-17). Enones 92f-i corresponded well to the 

two-step protocol and gave the desired functionalized α,β-epoxy ketones 93f-i in good yields 

and high enantioselectivities. Clean conversion of dienone 92f to α,β-epoxy ketone 93f 

illustrated the selectivity for electron-deficient olefins. Despite the short exposure time, the 

ethyl ester group of enone 92j was partly saponified in the presence of 1N NaOH (1 equiv) 

resulting in only a moderate 47% yield of epoxide 93j, yet in high enantioselectivity of 98:2 

er. The use of NaOEt (1 equiv) as base in ethanol cleared that issue and α,β-epoxy ketone 93j 

was isolated in 81% yield and identical optical purity (entry 15). In case of substrate 92k, the 

second step was omitted since the base treatment did not improve the yield of epoxide 93k 

(26%, 96:4 er). Product loss might arise from competing base-catalyzed aldol reaction. Thus, 

epoxide 93k was isolated from the peroxide-epoxide product mixture in 40% yield along with 

98.5:1.5 er (entry 16). 

The reaction of 9-hydroxy-3-nonen-2-one (92l) equipped with an unprotected hydroxyl group 

stopped at 69% conversion as determined by 1H NMR of the crude product and did not 

progress even upon extended runtime (entry 17). Epoxide 93l could not be easily separated by 

column chromatography from the remaining starting material and was obtained in a moderate 

yield of 20% along with the corresponding peroxyhemiketal 94l (25%), albeit with high 

enantioselectivity (98:2 er). 



4 Results and Discussion 

 97

Unprotected hydroxyl enones 92t-u were less suitable substrates for our catalytic reaction 

(Scheme 4.18). The nature of the competing pathway was dependent on the chain length 

between the hydroxyl group and the enone moiety. Whereas 7-hydroxy-3-hepten-2-one (92t) 

furnished exclusively racemic substituted tetrahydrofuran 97 via intramolecular conjugate 

addition of the pendant hydroxyl group (Scheme 4.18, (a)), 6-hydroxy-3-hexen-2-one (92u) 

suffered from elimination as major side reaction which generated hexa-3,5-dien-2-one (98) a 

as side product (Scheme 4.18, (b)). 
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Scheme 4.18 Specific side reaction patterns with substrates 92t and 92u. (aDetermined by 1H NMR; bDetermined by 
GC.) 
 

Enones equipped with free hydroxyl groups constitute problematic substrates giving either 

low conversion or diverse side reactions. However, CAN-catalyzed deprotection of the THP 

ether functionality in epoxide 93h cleanly provided 3,4-epoxy-9-hydroxy-2-nonanone (93l) in 

88% yield (Scheme 4.19).[138] Deprotection of the THP ether under standard conditions using 

catalytic para-toluenesulfonic acid in methanol was impeded by competing epoxide ring 

opening entailing a moderate yield of product 93l. 

 

 

 
Scheme 4.19 CAN-catalyzed THP ether deprotection of epoxide 93h. 
 

                                                 
a Determined by GC-MS. 
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Enones equipped with free hydroxyl groups constitute problematic substrates giving either 

low conversion or diverse side reactions. However, CAN-catalyzed deprotection of the THP 

ether functionality in epoxide 93h cleanly provided 3,4-epoxy-9-hydroxy-2-nonanone (93l) in 

88% yield (Scheme 4.19).[138] Deprotection of the THP ether under standard conditions using 

catalytic para-toluenesulfonic acid in methanol was impeded by competing epoxide ring 

opening entailing a moderate yield of product 93l. 
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4.2.2.3 Effect of the Enone Geometry 

We also investigated the influence of the olefin geometry on the [13 • 2 TFA]-catalyzed 

epoxidation reaction. Remarkably, enones (E)-92b and (Z)-92b furnished the same 

enantiomer of trans-epoxide 93b in very high enantioselectivity evidencing its complete 

stereoconvergency (Scheme 4.20). Thus, this transformation does not require the use of pure 

enone isomers 92; E/Z-mixtures can also be employed (if necessary) without any problems. 
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Scheme 4.20 Effect of the enone geometry on the catalytic asymmetric epoxidation reaction: illustration of the 
stereoconvergency. 
 

GC-MS analysis of samples taken from the epoxidation of pure (Z)-enone 92b revealed the 

formation of the (E)-enone 92b indicating a rapid isomerisation of the (Z)-enone to the 

corresponding (E)-isomer under reaction conditions prior to enantioselective epoxidation. (Z)-

enone 92b also isomerizes in the presence of only catalytic amounts of the primary amine salt 

[13 • 2 TFA] - and without assistance of hydrogen peroxide. This suggests that isomerization 

takes place via a dienamine intermediate which allows free rotation about the carbon-carbon 

single bound as illustrated in Scheme 4.21. 

The observation that trans-epoxide 92b was formed from (Z)-enone 92b with slightly lower 

optical purity than in the reaction of the corresponding (E)-enone may be rationalized by a 

minor contribution of conjugate addition of hydrogen peroxide prior to isomerization to the 

iminium ion A with (Z)-configuration which should deliver the opposite enantiomeric product 

(cf. Figure 4.16 vide infra). 
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Scheme 4.21 Isomerization of (Z)-enone (Z)-92b in the presence of [13 • 2 TFA] via dienamine intermediates B 
and C. 
 

The progress of the isomerization was monitored by GC-MS. Samples were taken from the 

reaction mixture at different time intervals and GC-MS analysis revealed that the starting (Z)-

enone 92b was isomerized after 20, 40, and 120 min to 35, 50 and 75%, respectively. After 15 

h, the (E)-isomer accounted for 99% of enone 92b. Only trace amounts of (Z)-enone 92b were 

present in the reaction mixture at this stage. Moreover in absence of hydrogen peroxide, 

regioisomeric enone iso-92 was detected by GC-MS after extended reaction times. Whereas γ-

protonation of dienamine C gives rise to the formation of (E)-92b (via iminium ion D), 

regioisomeric enone iso-92 presumably is generated via competing α-protonation.a, [139] An 

alternative mechanism for the double bond isomerisation may be taken into considerations 

which is the reversible conjugate addition of the amine base 9-amino(9-deoxy)epiquinine 

(13).[140] 

However, the observation of deconjugated starting material iso-92 in the reaction mixture 

supports the involvement of dienamine intermediates in the isomerisation process. Dienamine 

intermediates may according to the present mechanistic rationale explain best the observation 

of a typically thermodynamically unfavourable isomerization of an conjugated double bond 

out of conjugation (cf. Scheme 4.21). 

Undesired deconjugation was also observed in the epoxidation of 4-benzyl-3-buten-2-one 

(92q) (Scheme 4.22). With enone 92q, “deconjugation” becomes a favourable pathway since 

                                                 
a The sterically demanding 9-amino(9-deoxy)epiquinine (13) catalyst may somewhat shield the α-position and 
thus hinder α-protonation in favour of competing γ-protonation. 
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in contrast to other acyclic substrates 92 the double bond in the isomerized product iso-92q 

benefits from conjugation with the phenyl ring. The isomerisation hampered the isolation of 

epoxide 93q since it could not be readily separated by column chromatography from the 

isomerized starting material iso-92q. 

 

 
Scheme 4.22 Catalytic asymmetric epoxidation of 4-benzyl-3-buten-2-one (92q): double bond isomerization as 
side reaction. (aDetermined by 1H NMR of the crude mixture; bDetermined by chiral GC.) 
 

4.2.2.4 Current Limitations 

Currently, the catalytic asymmetric epoxidation is limited to aliphatic enones (Table 4.31). 

Among those, β-monosubstituted enones are more reactive than β,β-disubstituted analogues 

(entry 1; cf. Chapter 4.2.2.5). 4-Oxoenoates did not undergo our epoxidation reaction 

although their use in related transformations via asymmetric iminium ion catalysis is well-

precedented in the literature (entries 2-3). To date, neither substitution at the α-position, nor 

extended conjugation of the double bond is tolerated, as illustrated by the reaction of 1-

acetylcyclohexene (103) (entry 4) and β-ionone (104) (entry 5), respectively. Moreover, a 

benzyloxy group at the γ-position impeded the reaction (entry 6), whereas enones with remote 

protected hydroxyl functionalities readily reacted with hydrogen peroxide (vide supra). 

Benzylideneacetone (106a) gave the corresponding epoxide in less than 10% yield as detected 

by GC-MS albeit with high enantioselectivity of 98.5:1.5 er (entry 7). Even catalyst [64 • (S)-

TRIP] (cf. Table 4.2), which exhibited superior catalytic activity compared with [13 • 2 TFA] 

in the asymmetric epoxidation of 2-cyclopentenone (46r), was unable to efficiently mediate 

the reaction (entry 8). In both cases, considerable amounts of the starting material 106a 

decomposed to phenylacetaldehydea (up to 12%) presumably via a Dakin pathway. The use of 

a benzylideneacetone derivative bearing electron withdrawing substituents at the phenyl ring 

(4'-nitrophenyl-3-buten-2-one, 106b), and thus constituting a more potent acceptor substrate, 

suppressed this side reaction, but overall did not improve the results (entry 9). Other aromatic 

enones such as furfurylidenacetone (107), 1-phenyl-2-buten-1-one (108), or chalcone (109) 

proved to be unreactive under the present reaction conditions (entries 10-12). Thus, both 

                                                 
a Determined by GC-MS. 
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a Determined by GC-MS. 



4 Results and Discussion 

 101

substituents R1 and R2 are limited to alkyl groups.[136], a Indeed, the same substrate scope 

limitation has previously been detected in several iminium-catalytic transformations of α,β-

unsaturated ketones employing 9-amino(9-deoxy)epicinchona alkaloid catalysts. Indeed, the 

substituent R2 adjacent to the ketone only very rarely tolerates aromatic rings.[141] In this, our 

catalytic epoxidation of α,β-unsaturated ketones very much complements conventional 

methods such as metal-catalyzed or Juliá-Colonna epoxidations. 

Somewhat surprisingly, terminal enones were unsuitable substrates (entry 13), in the presence 

of catalyst [13 • 2 TFA] as well as [64 • (S)-TRIP]. We speculate that in the case of more 

active Michael acceptors, conjugate addition of 9-amino(9-deoxy)epiquinine (13) to form β-

amino ketones is favoured over the 1,2-addition to the ketone carbonyl group, even more so 

since hydrogen peroxide is not a particular strong nucleophile to compete with (Scheme 4.23). 

 

 
Scheme 4.23 Reversible acid-catalyzed conjugate addition of 9-amino(9-deoxy)epiquinine (13) to 3-octenone 
(110a). 
 
To support our hypothesis, we conducted the epoxidation of 3-decen-2-one (92a) in the 

presence of the terminal enone 7-octen-6-one (110a). Epoxide 93a derived from 3-decen-2-

one (92a) was still generated, yet at lower rates. This is consistent with the assumption of the 

catalyst being captured as β-amino ketone and only partly released from this “catalyst resting 

state” keeping its absolute concentration low.[142] 

 

                                                 
a Deng and co-workers reported identical substrate scope limitations in their [13 • 3 TFA]-catalyzed asymmetric 
alkylperoxidation of α,β-unsaturated ketones with TBHP and related oxidants. 
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Table 4.31 Limitations of the catalytic asymmetric epoxidation-hydroperoxidation of α,β-unsaturated ketones. 
 

R1 R2

O

dioxane (0.25 M), 50-70 °C, 48 h

[13 2 TFA] (10 mol%)
H2O2 (50 wt%; 1.5-3 equiv)

R1 R2

O
O

R4 R4

R3 R3 O O

R2

R3

R1

OH

R4  
 

Entry R1 R4 R3 R2 Enone Conv. [%]a erb 

1 
 

H Me Me 100 43 (23) - 

2 CO2Et H H Me 101 - - 

3 CO2Et H Me Me 102 - - 

4 

                     

H Me 103 - - 

5 

 

H H Me 104 <10 n.d. 

6 BnOCH2 H H Me 105 28 (20) n.d. 

7 Ph H H Me 106a 15 (5) 98.5:1.5 

8d Ph H H Me 106a <10 (3) 99.5:0.5 

9 4-NO2-C6H4 H H Me 106b - - 

10 
 

H H Me 107 <5 n.d. 

11 Me H H Ph 108 - - 

12 Ph H H Ph 109 - - 

13 H H H n-C5H11 110a - - 
aDetermined by GC. Values in parentheses correspond to the total yield of PHK and epoxide determined by GC. 
bDetermined by chiral GC. d[64 • (S)-TRIP] (10 mol%) was used. 

 

4.2.2.5 Application to β,β-Disubstituted α,β-Unsaturated Ketones 

The scope of the catalytic asymmetric hydroperoxidation-epoxidation reaction was further 

explored by using β,β-disubstituted α,β-unsaturated ketones as potential substrates. 

This substrate class had turned out to be considerably less reactive than β-monosubstituted 

analogues and only moderate conversions of up to 43% were achieved with citral-derived 

enone 100 (Table 4.32). Under the reaction conditions, E/Z-isomerization of the starting 

material 100 took place - presumably via a dienamine intermediate (cf. Scheme 4.21), and 

from both the E-and Z-isomer of citral-derived enone 100, the trans-isomer of epoxide 111 

was generated predominantly. In the case of β,β-disubstituted enones, the E/Z-interconversion 

of enone 100 also seems to proceed at higher rates than the conjugate addition of hydrogen 
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peroxide which allowed us to employ a 73:27 mixture of E and Z isomers of 100 without 

noticeably affecting the reaction outcome. Detection of dienone iso-100 by 1H NMR and GC 

analysis of the crude product mixture denoted the isomerisation of α,β-enone 100 to the β,γ-

unsaturated derivative as competing side reaction. This behaviour has been observed earlier 

with 4-benzyl-3-buten-2-one (92q) (cf. Scheme 4.20). 

 

Table 4.32 Screening studies: hydroperoxidation-epoxidation of 4,8-dimethyl-3,7-nonadien-2-one (100). 
 

 

Entry E/Z(100)a TXA 
H2O2 

[equiv] 

T 

[° C] 

conv.

[%]a
E/Z(100')a Yield (trans/cis) 

111 [%]a 
er(111)c 

Yield 

112 [%]a

1 4:96 TCA 3 32 14 17:83 4 n.d. 5 

2 4:96 TFA 3 50 30 26:74 7 (77:23) n.d. 14 

3 95:5 TCA 3 32 29 83:17 5 n.d. 8 

4 95:5 TFA 3 50 42 76:24 5 (85:15) n.d. 17 

5 95:5 TFA 1.5d 50 43 74:26 3 n.d. 20 

6 95:5 TFA 1.5d 70 65b 64:36 12b (81:19) 
90.5:9.5 er(trans) 

57:43 er(cis) 
40b 

7e 73:27 TFA 3d 70 85b 66:34 10b (88:12) 
95.5:4.5 er(trans) 

59.5:40.5 er(cis) 
69b 

aDetermined by GC. bDetermined by 1H NMR of the crude mixture. cDetermined by chiral GC. d50 wt% aqueous 
H2O2 was used. e[13 • 2 TFA] (20 mol%) was used. 

 

Forcing reaction conditions comprising increased catalyst and hydrogen peroxide loadings at 

elevated temperature proved essential to achieve reasonable conversions (entries 6-7). Under 

not yet fully optimized reaction conditions, peroxyhemiketal 112 was obtained in 56% yield 

with an enantiomeric ratio of 78:22 er. Epoxide 111 was formed concomitantly in 10% yield 

and 88:12 dr(trans/cis) with 95.5:4.5 er for the trans- and 59.5:40.5 er for the cis-isomer, 

respectively (Scheme 4.24). 
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Scheme 4.24 Catalytic asymmetric hydroperoxidation of 4,8-dimethyl-3,7-nonadien-2-one (100) (73:27 E/Z). 
(aDetermined by 1H NMR.) 
 

As illustrated by the group of Dussault, 3-hydroxy-1,2-dioxolanes such as 112 may function 

as key intermediates in the synthesis of plakinic acid natural products (cf. Figure 2.6) which 

display promising antitumor and antifungal activity.[114] 

 

Another β,β-disubstituted α,β-unsaturated ketone which was examined in the catalytic 

asymmetric epoxidation reaction was mesityloxide. Mesityloxide (113) is in contrast to citral-

derived enone 100, symmetrically substituted at the β-position. The enantiodetermining step 

is not the conjugate addition but the epoxide ring closure (like in the case of terminal enones) 
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temperature. At 70 °C, α,β-epoxy ketone 114 was obtained in slightly higher yield of 32%, 

albeit in lower optical purity (57:43 er). 

 

Table 4.33 Screening studies: epoxidation of mesityloxide (113). 
 

 

Entry Catalyst Conv. [%]a Yield (114)a Yield (115)a er (114)b 

1 [13 • 2 TFA] 66 28 38 19:81 

2 [(R,R)-DPEN • TFA] 10 7 3 74.5:25.5 

3 [(R,R)-DPEN • (S)-TRIP] 66 34 32 93.5:6.5 
aDetermined by 1H NMR of the crude mixture. bDetermined by (chiral) GC. c70 °C. 

 

Recently our group solved the problem of highly enantioselective epoxidation of 

symmetrically β,β-disubstituted α,β-unsaturated aldehydes, e.g. 3-methyl-2-butenal, by using 

a chiral catalyst [10 • (S)-TRIP] featuring TRIP as chiral counteranion (cf. Scheme 2.30). 

Inspired by this work, we tested catalyst [(R,R)-DPEN • (S)-TRIP] which had proven to 

efficiently mediate the asymmetric epoxidation of cyclic enones in the epoxidation of 

mesityloxide (113) envisaging high asymmetric induction from a TRIP-assisted cyclization of 

the β-peroxyenamine intermediate A (cf. Scheme 4.25). Indeed, epoxide 114 was obtained 

with increased enantioselectivity of 93.5:6.5 er in moderate yield of 32% (entry 3). To 

quantify the impact of the chiral counteranion TRIP on the enantioselectivity of the reaction, 

we conducted the epoxidation with catalytic amounts of [(R,R)-DPEN • TFA]. Yet, this 

catalyst furnished epoxide 114 with significantly reduced optical purity, and moreover, 

exhibited dramatically lower catalytic activity (entry 2). 

 

4.2.2.6 Medium and Large Ring Enones Revisited 

Whereas epoxides were the only products observed in the primary amine salt-catalyzed 

reaction of hydrogen peroxide with five- and six-membered as well as large ring enones (cf. 

Chapter 4.1.2.2), 2-cycloheptenone (46s) and 2-cyclooctenone (46v) provided under identical 

reaction conditions a product mixture consisting of the expected epoxides 48s and 48v along 

with peroxidic by-products 116 and 117 - both in optically active form - as previously 

described for acyclic enones (Scheme 4.26). Yet, in contrast to monocyclic peroxyhemiketals 

94 derived from acyclic enones, varying amounts of cyclic β-hydroperoxyketones 116b and 
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117b, which in solution exist in equilibrium with the corresponding bicyclic peroxyhemi-

ketals (116a and 117a), could be detected by NMR. 

Scheme 4.26 displays the results obtained for the reaction of 2-cycloheptenone (46s) and 2-

cyclooctenone (46v) with the 9-amino(9-deoxy)epiquinine salt [13 • 2 TFA] as catalyst (cf. 

Table 4.10). 2-Cycloheptenone (46s) afforded predominantly the expected α,β-epoxy ketone 

48s, which was isolated in 65% yield with excellent enantioselectivity of >99.5:0.5 er 

(Scheme 4.26, (a)). In contrast, β-hydroperoxycyclooctanone 117b was obtained as the major 

product (30:70 48v/117) in the reaction of eight-membered ring enone 46v. Moreover, 

significant amounts of deconjugated 3-cyclooctenone iso-46v could be detected by GC and 1H 

NMR of the crude product mixture.a  Yet, as previously seen for acyclic enones 92 (cf. 

Scheme 4.16, (a)), peroxide 117 can be transformed to the corresponding epoxide under basic 

conditions and thus, 2,3-epoxycyclooctanone (48v) was finally obtained in 55% yield with 

98:2 er over two steps (Scheme 4.26, (b)).b 
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Scheme 4.26 Catalytic reaction of 2-cycloheptenone (46s) and -octenone (46v): formation of peroxidic by-
products. (aDetermined by 1H NMR of the crude mixture; bYields of pure, isolated products; cDetermined by 
chiral GC.) 
 

The peroxidic compounds 116 and 117 piqued our interest since both substances had not been 

previously described in the literature. Notably, the bicyclic peroxidic structure (of 116b and 

117b) resembles potent antimalarial agents. With the goal of optimizing the yield of the 

                                                 
a Iso-46v was detected in the crude product mixture prior to treatment with base. Deconjugation was also noticed 
in the reaction of 2-cycloheptenone (46s), yet only to a negligible extent (~1%). 
b  The same two-step protocol was applied to 2-cycloheptenone (46s). Yet, the yield was not significantly 
improved to compensate for the loss of enantioselectivity (96.5:3.5 er). 
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peroxidic products at the expense of the corresponding epoxides, we evaluated various 

catalyst systems in the reaction of 2-cycloheptenone (46s) and 2-cyclooctenone (46v). 

Since the peroxidic compound 116 was only isolated in 29% yield under the original reaction 

conditions (cf. Scheme 4.26, (a)), we were pleased to see that the previously observed product 
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4 [(R,R)-DPEN • TFA] 66 (2R,3R)-48s 41:59 4:96 

5 [(R,R)-DPEN • 2 TFA] 87 (2R,3R)-48s 55:45 2:98 
aDetermined by 1H NMR of the crude product. bDetermined by chiral GC. cAt 32 °C with H2O2 (30 wt%; 3 equiv). 

 

Similar trends were observed with 2-cyclooctenone (Table 4.35). The amount of peroxidic 

product 117 could be further increased by applying the optimized hydroperoxidation 

conditions (entries 1-2). Catalyst [(R,R)-DPEN• (S)-TRIP] gave comparable results, yet at 

slightly reduced catalyst activity (entry 3). Moreover, simple TFA salts [(R,R)-DPEN• 1-2 

TFA] exhibited lower catalytic activity, and again their use brought about an erosion of 

enantioselectivity (entries 4-5). Interestingly, in contrast to five- and six-membered cyclic 

enones for which DPEN-mono-TFA salt afforded superior results than DPEN-di-TFA salt, 

their catalytic efficiency is inverted with cycloheptenone and cyclooctenone. 
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Table 4.35 Evaluation of different catalyst systems for the reaction of 2-cyclooctenone (46v). 
 

 

entry catalyst conv. [%]a product 48v:117a er(48v)b 

1 [13 • 2 TFA] 99 (2S,3S)-48v 30:70 >99.5:0.5 

2c [13 • 2 TCA] 91 (2S,3S)-48v 12:88 >99.5:0.5 

3 [(R,R)-DPEN • (S)-TRIP] 80 (2R,3R)-48v 37:63 1:99 

4 [(R,R)-DPEN • TFA] 52 (2R,3R)-48v 26:74 10.5:89.5 

5 [(R,R)-DPEN • 2 TFA] 71 (2R,3R)-48v 19:81 9:91 
aDetermined by 1H NMR of the crude product. bDetermined by chiral GC. cAt 32 °C with H2O2 (30 wt%; 3 equiv). 

 

Under the optimum conditions, peroxidic compounds 116 and 117 were isolated in 

synthetically useful yields of 55 and 59%, respectively (Scheme 4.27). 

 

 
 
Scheme 4.27 Catalytic asymmetric hydroperoxidation of (a) 2-cycloheptenone (46s) and (b) 2-cyclooctenone 
(48v). (aYields of pure, isolated products; bDetermined by chiral GC; cDetermined by 1H NMR of the crude 
product.) 
 

Interestingly, hydroperoxidation product 116 exists in equilibrium preferentially as bicyclic 

peroxyhemiketal 116a rather than as hydroperoxyketone 116b (Scheme 4.28). The precise 

ratio is depending on the solvent with the concentration of peroxyhemiketal being slightly 

increased in non-coordinating solvents such as CHCl3. In contrast, peroxidic product 117 

derived from 2-cyclooctenone (46v) exists predominantly as hydroperoxyketone 117b. DFT 
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calculationsa revealed the existence of an internal hydrogen bond which may account for the 

stabilization of hydroperoxyketones 116b and 117b as illustrated in Scheme 4.28; though, due 

to geometric considerations less so in the case of the seven-membered ring. 
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Scheme 4.28 Mole fractions of bicyclic peroxyhemiketals and β-hydroperoxyketones in different solvents at 
ambient temperature. 
 

Alike in the case of acyclic enones, the use of tert-butyl hydroperoxide as oxidant instead of 

hydrogen peroxide generated predominantly the conjugate addition product in the reaction 

catalyzed by [13 • 2 TFA], thereby offering an alternative entry to peroxidic compounds 

related to 116 and 117 (cf. Chapter 4.2.1.4). 

In contrast to 2-cycloheptenone (46s) and 2-cyclooctenone (46v), 3-substituted cyclo-

heptenone derivatives afforded exclusively the corresponding epoxide. Thus, our approach to 

such bicyclic peroxyhemiketals is complementary to that of Blanco et al. - the oxidation of 

bicyclic cyclopropanols - which is only feasible for the synthesis of 3-substituted bicyclic 

peroxides.[110a, 110b] 

While studying the epoxidation of cyclic enones of different ring sizes, macrocyclic enones 

attracted our attention and we came across very intriguing observations: in contrast to both 

acyclic enones and medium ring enones, macrocyclic enones give almost exclusively 

epoxides in the reaction with hydrogen peroxide and [13• 2 TFA] (or [(R,R)-DPEN • (S)-

TRIP]) as catalyst (Table 4.36, entries 1 and 3; cf. Chapter 4.1.2.2). Moreover, these epoxides 

are formed with an outstanding optical purity of 99.5:0.5 er. Even under reaction conditions 

which usually promote the hydroperoxidation pathway (conditions B), the maximum yield of 

bicyclic peroxyhemiketal remained below 10% (entries 2 and 4). 

 

                                                 
a Density functional theory (DFT) computation at the B3LYP/6-31G* level of theory (Vacuum) was performed 
using Spartan ’08 Windows from Wavefunction, Inc. 
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Table 4.36 Catalytic asymmetric epoxidation of macrocyclic enones: cyclododecenone (46w) (n = 3) and 
cyclopentadecenone (46x) (n = 6). 
 

 
 
Entry (E)-enone (E)-epoxide PHK Conditionsa Epoxide:PHKb Yield (epoxide) [%] er(epoxide)c

1 46w 48w 118 A 100:0 92 99.5:0.5 

2 46w 48w 118 B 97:3 n.d. 99.5:0.5 

3 46x 48x 119 A 96:4 87 99.5:0.5 

4 46x 48x 119 B 91:9 n.d. 99.5:0.5 
aConditions A: [13 • 2 TFA] (10 mol%), H2O2 (50 wt%; 1.5 equiv), dioxane (0.25 M), 50 °C, 20 h; Conditions B: 
[13• 2 TCA] (10 mol%), H2O2 (30 wt%; 3 equiv), dioxane (0.25 M), 32 °C, 20 h. bDetermined by 1H NMR of the 
crude mixture. cDetermined by chiral GC. 

 

We presume that conformational constraints in the seven- and eight-membered ring systems, 

in contrast to 2-cyclohexenone, may hamper the peroxyenamine intermediate in adopting the 

proper conformation for epoxide ring closure which requires the antiperiplanar alignment of 

the π-system of the enamine with the O-O single bond. Those difficulties might be reflected 

in the accumulation of hydroperoxidation product in the course of the reaction. Large rings 

are very flexible, and show complex conformational behaviour. Presumably, as a result, 

cyclododecenone and cyclopentadecenone alike cyclohexenone provide almost exclusively 

the corresponding α,β-epoxyketones both under epoxidation (A) and hydroperoxidation (B) 

conditions. 
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aConditions A: [13 • 2 TFA] (10 mol%), H2O2 (50 wt%; 1.5 equiv), dioxane (0.25 M), 50 °C, 20 h; Conditions B: 
[13• 2 TCA] (10 mol%), H2O2 (30 wt%; 3 equiv), dioxane (0.25 M), 32 °C, 20 h. bDetermined by 1H NMR of the 
crude mixture. cDetermined by chiral GC. 
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proper conformation for epoxide ring closure which requires the antiperiplanar alignment of 
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in the accumulation of hydroperoxidation product in the course of the reaction. Large rings 
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It might be interesting to study the cyclic enone series continuously to identify a cross-over 

point from which on the amount of peroxyhemiketal would start decreasing whereas the 

epoxide formation begins rising again (Figure 4.7). A correlation with the inherent ring strain 

seems likely. 

 

 

 

Figure 4.7 Cyclic enone series: concentration of hydroperoxide and epoxide against ring size. (blue: epoxide; 
red: peroxide; green: ring strain/CH2 of the corresponding cycloalkanes).[135] 
 

In contrast, acyclic enones possess enhanced conformational freedom. Yet, at the transition to 

acylic enones, other conformational considerations as for instance the allylic strain might 

become decisive. 
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4.2.3 Summary and Conclusions 

 

After having developed a method for the asymmetric epoxidation of cyclic α,β-unsaturated 

ketones (cf. Chapter 4.1), we became further interested in expanding the scope of this 

powerful transformation. We therefore turned our attention toward acyclic substrates. In 

particular, salts of the readily available quinine-derived primary amine 9-amino(9-

deoxy)epiquinine (9-NH2-epiQ; 13) retained their high catalytic activity and selectivity for the 

reaction with hydrogen peroxide when facing acyclic rather than cyclic substrates (Table 

4.21). 

Our work with acyclic enones is marked by two major achievements, namely: the 

development of a catalytic asymmetric hydroperoxidation to furnish optically active 3-

hydroxy-1,2-dioxolanes; and the implementation of a highly enantioselective epoxidation 

protocol applicable to a broad array of acyclic aliphatic, enolizable enones, a substrate class 

which has long eluded existing catalytic systems. 

Interestingly, both transformations share a common origin. Initial experiments with acyclic 

enones 92 had revealed that those substrates (in contrast to cyclic enones) furnish product 

mixtures comprising the expected α,β-epoxyketones 93 along with unanticipated five-

membered cyclic peroxyhemiketals 94 upon exposure to aqueous hydrogen peroxide in the 

presence of a primary amine catalyst (Scheme 4.11). Notably, such an asymmetric 

hydroperoxidation reaction has not previously been reported in the literature. Optimization 

studies revealed factors affecting the product distribution between peroxyhemiketals and the 

corresponding epoxides. By adjusting the amount and concentration of the hydrogen peroxide 

used (30 wt%; 3 equiv; Table 4.25) and the choice of the acid co-catalyst (TCA instead of 

TFA; Table 4.22), we were able to identify reaction conditions which allowed the obtention of 

good isolated yields (up to 72%) of highly enantiomerically enriched 3-hydroxy-1,2-

dioxolanes (up to 98.5:1.5 er). The asymmetric hydroperoxidation is applicable to a range of 

enones 92 and high enantiomeric ratios are obtained irrespective of the substitution pattern as 

far as β-substituted enones are concerned (Table 4.28). The yields vary only slightly, and 

typically decrease to some extent as the steric demand of the enone substituents increases 

(Table 4.29). The mild reaction conditions are testified by the high functional group 

compatibility. Enone substrates 92h and 92i equipped with acid labile functional groups are 

well tolerated and cleavage of the TBS or THP ethers was not observed. 3-Hydroxy-1,2-

dioxolanes 94 can furthermore serve as valuable precursors to optically active aldol products 
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96 and 1,2-dioxolanes such as 127 as will be illustrated within the next Chapter (cf.Chapter 

4.3). 

Importantly, they can be cleanly converted to the corresponding epoxides 93 under basic 

conditions. Based on this, we have converged initially obtained product mixtures (of 

peroxides and epoxides) selectively to the epoxide by treatment with 1N NaOH once the 

starting material was consumed. According to this protocol, we prepared a broad range of 

trans-epoxides 93 in good to high yields (up to 90%) and excellent enantioselecivities of up to 

>99.5:0.5 as demonstrated with substrates 92n and 92r (Table 4.30). Once again functional 

groups are well-tolerated, and notably, the process proceeds with full stereoconvergency 

which allows the use of E/Z isomeric enone mixtures as starting materials without affecting 

the reaction outcome (Scheme 4.20). 

Encouraging results have also been obtained with β,β-disubstituted enones which are 

generally less reactive than their β-monosubstituted counterparts when using primary amine 

salt catalysts such as [9-NH2-epiQ (13)• 2 TFA] (cf. Chapter 4.2.2.5). Remarkably, citral-

derived enone 100 provided the corresponding peroxyhemiketal 112 in good yield and 

encouraging enantioselectivity of 78:22 er when reacted with aqueous hydrogen peroxide in 

the presence of [13• 2 TFA] (Scheme 4.24). Peroxyhemiketals similar to compound 112 

might play a pivotal role toward the enantioselective synthesis of members of the plakinic 

acid natural product family (cf. Figure 2.6). Moreover, structurally interesting optically active 

bicyclic peroxidic compounds of potentially biological importance were obtained in the 

reaction of seven- and eight-memberd cyclic enones as substrates (cf. Chapter 4.2.2.6). 

Gratifyingly, the use of the pseudoenantiomeric catalyst as [9-NH2-epiQD (67)• 2 TFA] 

derived from naturally abundant quinidine (instead of quinine), provides an entry to the 

antipodal product series with only slightly reduced enantioselectivity as has been highlighted 

with the syntheses of α,β-epoxyketones ent-93a and ent-93b (Table 4.30). 

Overall, our asymmetric epoxidation process significantly advances the area of chemical 

space formed by highly enantioenriched α,β-epoxyketones. Indeed, and thanks to the 

groundbreaking advances in olefin cross-metathesis, such compounds can now be fashioned 

in only two steps (Scheme 4.29). 
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Scheme 4.29 Concise access to optically active α,β-epoxyketones via a CM-epoxidation sequence. 
 

Cross metathesis of any functionalized terminal olefin with the appropriate vinyl ketone (cf. 

Table 4.41, vide infra), followed by organocatalytic epoxidation delivers the highly valuable 

epoxyketone building blocks. This synthetic manifold can be contrasted with the more 

“classical” approach to those compounds, relying on preparation of a suitable allylic alcohol 

(typically employing Wittig and related olefinations), followed by Sharpless epoxidation and 

finally adjustment of the oxidation state.[143] It is evident that both the low atom and redox 

economy of this “classical” blueprint render it fairly unattractive from the standpoint of 

synthetic efficiency. Conversely, the merits of the approach described in Scheme 4.29 to these 

valuable intermediates rest precisely on both its high atom economy and the conceptual and 

practical advantages of employing two catalytic transformations to rapidly increase molecular 

complexity. 
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economy of this “classical” blueprint render it fairly unattractive from the standpoint of 

synthetic efficiency. Conversely, the merits of the approach described in Scheme 4.29 to these 

valuable intermediates rest precisely on both its high atom economy and the conceptual and 

practical advantages of employing two catalytic transformations to rapidly increase molecular 

complexity. 
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4.3 Synthetic Transformations of Optically Active α,β-Epoxy Ketones and 3-

Hydroxy-1,2-dioxolanes 

 

4.3.1 One-Pot Synthesis of Aldol Products from α,β-Unsaturated Ketones 

The aldol reaction is arguably one of the most important methods for the formation of 

carbon–carbon bonds. It creates β-hydroxy carbonyl compounds of high interest as key 

intermediates in construction of a variety of important natural products and drugs. Extensive 

research is therefore devoted toward the development of highly efficient direct catalytic 

enantioselective aldol reactions employing either synthetic metal complexes, enzymes, or 

purely organic molecules as chiral catalysts.[28a, 44, 144] 

Despite the progress made in recent years mainly within the realm of organocatalysis, the use 

of α-unsubstituted, and thus readily enolizable aldehydes 120 is generally problematic. That is 

the case also in aldol reactions catalyzed by proline or proline derivatives with this substrate 

class affording inferior enantioselectivities compared to aromatic aldehydes and low yields 

due to competing self-aldolization and the formation of condensation products (Scheme 

4.30).[145] 
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Scheme 4.30 Aldol addition of acetone to α-unbranched aliphatic aldehydes 120 catalyzed by (S)-proline 
(1)[145d] and proline derivatives (122-123).[145a-c] 
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With the catalytic asymmetric hydroperoxidation/epoxidation of α,β-unsaturated ketones 92, 

we hold a powerful reaction that affords peroxides and epoxides with excellent 

enantioselectivities of up to >99.5:0.5 er for a range of enones bearing aliphatic enolizable 

substituents at the β-position and adjacent to the ketone group (cf. Chapter 4.2.2). 

We became intrigued by the idea of developing a one-pot synthesis of optically active aldol-

type products 96 from α,β-unsaturated ketones 92 which capitalizes on this highly enantio-

selective transformation. Notably, such a process would overall represent a formal olefin 

hydration. 

 
 
Scheme 4.31 Asymmetric, one-pot synthesis of aldol products from α,β-enones. 
 

3-Hydroxy-1,2-dioxolanes 94 are readily converted to the corresponding β-hydroxy ketones 

by a variety of reducing agents such as trivalent phosphorus compounds,[110c, 146] sulfur-based 

reducing agents,[147] or by catalytic hydrogenation (Scheme 4.32).[112] 

 

 
Scheme 4.32 Reduction of peroxyhemiketals 94 to aldol-type products 96 by (a) P(OEt)3 and (b) NaHSO3. 
 

For the one-pot synthesis of β-hydroxy ketones 96, triethyl phosphite was added directly to 

the reaction mixture once the hydroperoxidation of α,β-unsaturated ketones 92 was complete 

as indicated by TLC analysis. The best results were obtained via the portionwise addition of 5 

equivalents of P(OEt)3. According to this protocol, aldol-type products 96 were isolated in 

good yields along with high enantioselectivities of up to 97:3 er (Table 4.37). 

The reduction of 3-hydroxy-1,2-dioxolanes 94 with trivalent phosphorus reagents PX3 is 

considered to proceed via a sequence involving biphilic insertion of PX3 into the O-O bond 

followed by scission of the phosphorane intermediate A and elimination of X3P=O to yield 

directly β-hydroxy ketones 96 (Scheme 4.33).[146] 
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Scheme 4.33 Mechanism of the reduction of 3-hydroxy-1,2-dioxolanes 94 by trivalent phosphorus reagents PX3. 
 

Table 4.37 Scope of the one-pot synthesis of aldol-type products 96 from α,β-enones 92. 
 

R1 R2

O

dioxane (0.25 M), 32 °C, 12-48 h
then P(OEt)3 (5 equiv)

0°C to 32°C, 10 h

[13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)
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Entry R Enone Product Yield [%]b erc 

1 n-C6H13 92a 96a 59 97:3 

2 PhCH2CH2 92b 96b 53 96.5:3.5 

3 i-Bu 92d 96d 56 96.5:3.5 

4 Cy 92e 96e 46 96:4 

5  92f 96f 55 96:4 

aDetermined by 1H NMR of the crude product. bYields of pure, isolated products. cDetermined by chiral HPLC/GC. 

 

Alternatively, catalytic hydrogenation effected the desired transformation to give aldol 

products 96 with the same level of enantioselectivity as illustrated with the reaction of 3-

decen-2-one (92a).a 

 

dioxane (0.25 M), 32 °C, 24 h
2. H2 (1 atm), Pd/C (15% wt)

MeOH

1. [13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

n-C6H13 Me

O
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61% yield, 97:3 er
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Scheme 4.34 Alternative protcol: aldol synthesis from α,β-enones through a hydroperoxidation-hydrogenation 
sequence.b 
 

Employing comparatively simple starting materials - α,β-unsaturated ketones 92 and 

hydrogen peroxide, this approach nicely complements aldol reactions catalyzed by proline 

and its derivatives since it affords high enantioselectivities also for β-hydroxy ketones 96 

                                                 
a Due to the incompatibility of the reaction conditions of the hydroperoxidation and the hydrogenation, this 
transformation was carried out in a stepwise fashion simply interrupted by an aqueous work-up alike in the 
epoxidation protocol. 
b This reaction was carried out by O. Lifchits. 
 

4 Results and Discussion 

 117

 

 
Scheme 4.33 Mechanism of the reduction of 3-hydroxy-1,2-dioxolanes 94 by trivalent phosphorus reagents PX3. 
 

Table 4.37 Scope of the one-pot synthesis of aldol-type products 96 from α,β-enones 92. 
 

R1 R2

O

dioxane (0.25 M), 32 °C, 12-48 h
then P(OEt)3 (5 equiv)

0°C to 32°C, 10 h

[13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

92

R1 R2

O

96

OH

 

Entry R Enone Product Yield [%]b erc 

1 n-C6H13 92a 96a 59 97:3 

2 PhCH2CH2 92b 96b 53 96.5:3.5 

3 i-Bu 92d 96d 56 96.5:3.5 

4 Cy 92e 96e 46 96:4 

5  92f 96f 55 96:4 

aDetermined by 1H NMR of the crude product. bYields of pure, isolated products. cDetermined by chiral HPLC/GC. 

 

Alternatively, catalytic hydrogenation effected the desired transformation to give aldol 

products 96 with the same level of enantioselectivity as illustrated with the reaction of 3-

decen-2-one (92a).a 

 

dioxane (0.25 M), 32 °C, 24 h
2. H2 (1 atm), Pd/C (15% wt)

MeOH

1. [13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

n-C6H13 Me

O

92a

n-C6H13 Me

O

96a
61% yield, 97:3 er

OH

 

Scheme 4.34 Alternative protcol: aldol synthesis from α,β-enones through a hydroperoxidation-hydrogenation 
sequence.b 
 

Employing comparatively simple starting materials - α,β-unsaturated ketones 92 and 

hydrogen peroxide, this approach nicely complements aldol reactions catalyzed by proline 

and its derivatives since it affords high enantioselectivities also for β-hydroxy ketones 96 

                                                 
a Due to the incompatibility of the reaction conditions of the hydroperoxidation and the hydrogenation, this 
transformation was carried out in a stepwise fashion simply interrupted by an aqueous work-up alike in the 
epoxidation protocol. 
b This reaction was carried out by O. Lifchits. 
 

4 Results and Discussion 

 117

 

 
Scheme 4.33 Mechanism of the reduction of 3-hydroxy-1,2-dioxolanes 94 by trivalent phosphorus reagents PX3. 
 

Table 4.37 Scope of the one-pot synthesis of aldol-type products 96 from α,β-enones 92. 
 

R1 R2

O

dioxane (0.25 M), 32 °C, 12-48 h
then P(OEt)3 (5 equiv)

0°C to 32°C, 10 h

[13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

92

R1 R2

O

96

OH

 

Entry R Enone Product Yield [%]b erc 

1 n-C6H13 92a 96a 59 97:3 

2 PhCH2CH2 92b 96b 53 96.5:3.5 

3 i-Bu 92d 96d 56 96.5:3.5 

4 Cy 92e 96e 46 96:4 

5  92f 96f 55 96:4 

aDetermined by 1H NMR of the crude product. bYields of pure, isolated products. cDetermined by chiral HPLC/GC. 

 

Alternatively, catalytic hydrogenation effected the desired transformation to give aldol 

products 96 with the same level of enantioselectivity as illustrated with the reaction of 3-

decen-2-one (92a).a 

 

dioxane (0.25 M), 32 °C, 24 h
2. H2 (1 atm), Pd/C (15% wt)

MeOH

1. [13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

n-C6H13 Me

O

92a

n-C6H13 Me

O

96a
61% yield, 97:3 er

OH

 

Scheme 4.34 Alternative protcol: aldol synthesis from α,β-enones through a hydroperoxidation-hydrogenation 
sequence.b 
 

Employing comparatively simple starting materials - α,β-unsaturated ketones 92 and 

hydrogen peroxide, this approach nicely complements aldol reactions catalyzed by proline 

and its derivatives since it affords high enantioselectivities also for β-hydroxy ketones 96 

                                                 
a Due to the incompatibility of the reaction conditions of the hydroperoxidation and the hydrogenation, this 
transformation was carried out in a stepwise fashion simply interrupted by an aqueous work-up alike in the 
epoxidation protocol. 
b This reaction was carried out by O. Lifchits. 
 

4 Results and Discussion 

 117

 

 
Scheme 4.33 Mechanism of the reduction of 3-hydroxy-1,2-dioxolanes 94 by trivalent phosphorus reagents PX3. 
 

Table 4.37 Scope of the one-pot synthesis of aldol-type products 96 from α,β-enones 92. 
 

R1 R2

O

dioxane (0.25 M), 32 °C, 12-48 h
then P(OEt)3 (5 equiv)

0°C to 32°C, 10 h

[13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

92

R1 R2

O

96

OH

 

Entry R Enone Product Yield [%]b erc 

1 n-C6H13 92a 96a 59 97:3 

2 PhCH2CH2 92b 96b 53 96.5:3.5 

3 i-Bu 92d 96d 56 96.5:3.5 

4 Cy 92e 96e 46 96:4 

5  92f 96f 55 96:4 

aDetermined by 1H NMR of the crude product. bYields of pure, isolated products. cDetermined by chiral HPLC/GC. 

 

Alternatively, catalytic hydrogenation effected the desired transformation to give aldol 

products 96 with the same level of enantioselectivity as illustrated with the reaction of 3-

decen-2-one (92a).a 

 

dioxane (0.25 M), 32 °C, 24 h
2. H2 (1 atm), Pd/C (15% wt)

MeOH

1. [13 2 TCA] (10 mol%)
H2O2 (30 wt%; 3 equiv)

n-C6H13 Me

O

92a

n-C6H13 Me

O

96a
61% yield, 97:3 er

OH

 

Scheme 4.34 Alternative protcol: aldol synthesis from α,β-enones through a hydroperoxidation-hydrogenation 
sequence.b 
 

Employing comparatively simple starting materials - α,β-unsaturated ketones 92 and 

hydrogen peroxide, this approach nicely complements aldol reactions catalyzed by proline 

and its derivatives since it affords high enantioselectivities also for β-hydroxy ketones 96 

                                                 
a Due to the incompatibility of the reaction conditions of the hydroperoxidation and the hydrogenation, this 
transformation was carried out in a stepwise fashion simply interrupted by an aqueous work-up alike in the 
epoxidation protocol. 
b This reaction was carried out by O. Lifchits. 
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formally derived from α-unbranched aldehydes 120 (cf. Scheme 4.30). This asymmetric 

hydroperoxidation-reduction sequence also represents an attractive and simple solution to the 

long-standing challenge of enantioselectively adding water to α,β-unsaturated ketones.[137, 148] 

 

4.3.2 Synthesis of Aldol Products by Reductive Cleavage of α,β-Epoxy Ketones 

Regioselective α-reduction of α,β-epoxyketones is a synthetically useful transformation 

providing an alternative to the aldol addition for the formation of β-hydroxy ketones (Scheme 

4.35). 

 

Scheme 4.35 β-Hydroxy ketones (a) via aldol addition or (b) through reductive epoxide cleavage. 
 

Nevertheless, this transformation is far from trivial due the presence of a reducible ketone 

functional group combined with the intrinsic instability of β-hydroxy ketone systems (which 

tend to give rise to the formation of enones and other by-products). Several reducing agents 

have been investigated for this particular process with the most prominent being single 

electron-transfer reagents such as aluminium amalgam[149] and samarium diiodide,[150] or 

organoselenium reagents.[151] 

 

Catalytic asymmetric epoxidation of cyclic enones 46 with hydrogen peroxide in the presence 

of 9-amino(9-deoxy)epiquinine salt [13 • 2 TFA] provides concise access to highly enantioen-

riched cyclic α,β-epoxyketones 48 as outlined in Chapter 4.1.2. These cyclic α,β-

epoxyketones 48 may function as precursors to optically active cyclic aldol products 124 

which are difficult to access by any other means.[152] In addition, the reductive cleavage of the 

epoxide ring of acyclic α,β-epoxyketones 93 complements the hydroperoxidation-reduction 

sequence (see Chapter 4.3.1) for those acyclic enone substrates 92 which give only minor 

amounts of peroxyhemiketal (or none at all) (cf. Table 4.29). 

Reductive epoxide cleavage of α,β-epoxycyclohexanone (48a) with samarium diiodide 

afforded 3-hydroxycyclohexanone (124a) in 52% yield. In the event, the formation of several 

by-products was concomitantly observed. In contrast, treatment of 48a with phenyl selenide 

anion (generated from diphenyl diselenide by reduction with sodium borohydride) was more 

effective and furnished cyclic aldol product 124a in excellent yield of 94% within a very short 

reaction time (<5 min) (Scheme 4.36).[151a] Most importantly, the optical purity of the starting 
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material (96.5:3.5 er) was retained under the reaction conditions and 3-hydroxycyclo-

hexanone (124a) was isolated for the first time in enantiomerically enriched form with 96:4 er. 

 

 
 
Scheme 4.36 Reductive cleavage of optically active cyclic α,β-epoxyketones. 
 

Remarkably, tertiary cyclic aldol product 124b was obtained from 2,3-epoxy-3-

methylcyclohexanone (48f) (98:2 er) in 87% yield with only a slight loss of enantiopurity 

(95.5:4.5 er). Whereas seven-membered ring epoxide 48s (n = 2, R = H) afforded 3-

hydroxycycloheptanone (124c) in analogous fashion with a high yield and excellent 

enantioselectivity (84%, 99:1 er), the reaction of 2,3-epoxycyclooctanone (48v) proceeded 

rather sluggishly, and after 60 h, GC-MS analysis indicated a conversion of 95%.a At this 

stage, 3-hydroxycyclooctanone (124d) was isolated in a yield of 53%. Moreover, 3-hydroxy-

2-(phenylselanyl)cyclooctanone, an intermediate which is formed upon epoxide opening by 

phenyl selenide anion via SN2-substitution at the α-carbon atom (cf. intermediate A, Scheme 

4.37),[153] was recovered from the reaction mixture in 15% yield. Somewhat surprisingly, an 

erosion of optical purity took place in the course of the reaction: whereas the starting material 

48v exhibited an optical purity of 97:3 er, eight-membered cyclic aldol 124d was obtained 

with only 86:14 er. 

 

                                                 
a We discovered a catalytic effect of the eight-membered ring peroxide 117 on the reductive cleavage of 2,3-
epoxycyclooctanone 48v which is to date unknown in nature. Full conversion to 3-hydroxycyclooctanone 124d 
was achieved within 10 min at ambient temperature albeit once again with erosion of optical purity. 
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Scheme 4.37 (a) Generation of sodium phenylseleno(triethyl)borate complex Na[PhSeB(OEt)3]; (b) Mechanism 
of the reductive cleavage of α,β-epoxyketones by benzeneselenolate. 
 

Notably, cyclic aldol products 124a-d have not, to the best of our knowledge, been reported in 

the literature in optically active form to this date. The synthesis of seven- and eight-membered 

cyclic aldol products 124c and 124d is of particular value in light of the fact that they can not 

(easily) be accessed via aldol disconnection. Intramolecular aldol reactions of keto-aldehydes 

of the general type 125 give rise to six-membered cyclic aldol products 126 through enolexo-

aldolizations rather than to 3-hydroxycycloheptanone (124c) or −octanone (124d) through 

enolendo-aldolizations (Scheme 4.38 and Scheme 4.39). 
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Scheme 4.38 Enolendo- vs. enolexo-aldolization of keto-aldehydes of the general type 125. 
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Scheme 4.39 Enolexo-aldolizations of keto-aldehydes of the general type 125 according to (a) List et al.[154] and 
(b) Baati et al.[155] 
 

We speculate that the reactivity differences between six- and eight-membered α,β-

epoxyketones 48a and 48v arise from their different conformations. Minimized energy 

structures and LUMO orbitals of α,β-epoxyketones ent-48a and ent-48v are depicted in 

Scheme 4.40.a Whereas the α-position of α,β-epoxycyclohexanone (48a) appears accessible 

and the LUMO orbital at the carbonyl group ideally aligned for stabilizing interactions with 

the benzeneselenolate nucleophile (anticipating an SN2-displacement of the Cα-O bond), the 

α-position in the corresponding eight-membered ring epoxyketone 48v seems to be sterically 

encumbered. Moreover, according to the model the trajectory of the incoming nucleophile lies 

in the node plane of the LUMO orbital. This should minimize the possibility for stabilizing 

orbital interactions during the SN2 displacement and hamper the reductive cleavage. 

                                                 
a Density functional theory (DFT) computation at the B3LYP/6-31G* level (Vacuum) was performed using 
Spartan ’08 Windows from Wavefunction, Inc. 
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in the node plane of the LUMO orbital. This should minimize the possibility for stabilizing 

orbital interactions during the SN2 displacement and hamper the reductive cleavage. 

                                                 
a Density functional theory (DFT) computation at the B3LYP/6-31G* level (Vacuum) was performed using 
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Scheme 4.40 Minimized energy structures and LUMO orbitals of (a) α,β-epoxycyclohexanone 48a and (b) α,β-
epoxycyclooctanone 48v (grey: C, red: O, white: H; O-Cα-C=O: 48a: -111.02°, 48v: -34.15°; Cβ-Cα-C=O: 48a: -
177.04°, 48v: 116.95°). 
 

The reaction of hydrogen peroxide and acyclic enone 92n equipped with an iso-butyl group as 

ketone substituent afforded in the presence of 9-amino(9-deoxy)epiquinine salt [13 • 2 TCA] 

essentially exclusively α,β-epoxyketone 93n and only traces of the desired peroxyhemiketal 

94n (93n:94n = 95:5; cf. Table 4.29, entry 3). Thus, the asymmetric hydroperoxidation-

reduction sequence (see Chapter 4.3.1) is not feasible to access the aldol product in this 

particular case. However, 6-hydroxy-2-methyl-4-undecanone (96n) was readily obtained in 

excellent yield and enantioselectivity (99:1 er) via reductive cleavage of the corresponding 

epoxyketone 93n (Scheme 4.41). 

 

 

Scheme 4.41 Synthesis of aldol product 96n by reductive cleavage of α,β-epoxyketone 93n.a 
 

4.3.3 Synthesis of 1,2-Dioxolanes from Peroxyhemiketals 

The noticeable lack of asymmetric syntheses of 1,2-dioxolanes in the chemical literature 

stimulated us to seek for approaches to this substrate class based on our methodology.[109a] We 

envisaged optically active 3-hydroxy-1,2-dioxolanes 94 as potential precursors which may be 

converted into the corresponding 1,2-dioxolanes 127 upon reduction (Scheme 4.42 (a)), a 
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transformation which has not been described to date. Whereas reduction to aldol products 96 

proceeds with cleavage of the O-O single bond (cf. Chapter 4.3.1, Scheme 4.42 (b)), the 

synthesis of 1,2-dioxolane 127 requires a chemoselective reduction which does not affect the 

O-O linkage. 

 

 
Scheme 4.42 Complementary reduction pathways of 3-hydroxy-1,2-dioxolanes 94: (a) via O-O bond cleavage to 
give aldol products 96 and (b) via C-O bond cleavage to afford 1,2-dioxolanes 127. 
 

Several Lewis acids are known to mediate the ionization of peroxyacetals and hemiacetals to 

provide peroxocarbenium ions which can be trapped by various nucleophiles.[114, 156] 

Applying this strategy, Dussault et al. accomplished the synthesis of 1,2-dioxolanes (in 

racemic form) from 3-alkoxy-1,2-dioxolanes and allylsilanes, silyl enol ethers, and silyl 

ketene acetals as nucleophiles.[114] 

Guided by this precedent, we carried out the reduction of 3-alkoxy-1,2-dioxolane 128 in the 

presence of titanium tetrachloride as Lewis acid and triethylsilane as reducing agent to obtain 

1,2-dioxolane 127 in 80% yield and a 75:25 diastereomeric ratio in favor of the cis-isomer 

(Scheme 4.43, (a)).[157] Changing to n-tributylsilane under otherwise identical conditions 

slightly improved the diastereomeric ratio to 82:18. 

 

 
 
Scheme 4.43 Silane reduction of (a) 3-alkoxy-1,2-dioxolane 128 mediated by TiCl4 and (b) 3-hydroxy-1,2-
dioxolane 94a mediated by TfOH. (aDetermined by 1H NMR of the crude product.) 
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Moreover, 1,2-dioxolane 127 could be directly obtained in good yield and only slightly lower 

diastereoselectivity (67:23 dr) via reduction of 3-hydroxy-1,2-dioxolane 94a with triethyl-

silane in the presence of stoichiometric amounts of triflic acid (Scheme 4.43, (b)), which 

presumably generates triethylsilyl triflate as catalytically active species under the reaction 

conditions. Whereas related Brønsted acid-mediated reductions of hemiacetals are well-

precedented, a corresponding transformation with peroxyhemiketals has not been described to 

date. Notably, this is also the first report on the direct conversion of peroxyhemiketals into the 

corresponding dioxolanes, obviating the need for prior formation of a peroxyketal. 

 

4.4 Summary and Conclusions 

 

In summary, the synthetic usefulness of the peroxyhemiketal and epoxide products obtained 

could be demonstrated. In retrospect, the former intermediates allowed the greatest versatility 

due to the combination of their high-energy O-O bond and the hemiketal linkage. Not only 

could they lead to their epoxide counterparts (cf. Chapter 4.2.2.2), but also to aldol products 

96 (Chapter 4.3.1) and 1,2-dioxolanes such as 127 (Chapter 4.3.3) simply through appropriate 

choice of reaction conditions. While the thus obtained aldols are actually generated with 

higher enantioselectivities than those currently afforded by state-of-the-art aldol technology 

(e.g. proline-catalyzed aldol reaction), the enantioenriched 1,2-dioxolanes represent intriguing 

and biologically relevant substructures in their own right. 

In addition, the epoxides 48 derived from cyclic enones afforded, through reductive epoxide 

cleavage, a new class of chiral enantioenriched cyclic aldols 124 which (to the best of our 

knowledge) have not been reported prior to this work (Chapter 4.3.2). 

That the long sought-after products of our methodology are themselves easily converted to 

additional, highly valuable chiral building blocks with essentially no loss in enantiopurity is 

but further demonstration of the plethora of possible applications of this synthetic method in a 

preparative context. 
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4.5 Mechanistic Considerations 

4.5.1 Evaluation of Modified Catalysts: Structure-Activity Relationships 

Mechanistically, we propose the epoxidation/hydroperoxidation reaction to proceed via 

activation of α,β-unsaturated ketones 46 and 92 as iminium ions in the presence of chiral 

amine salt catalysts [9-NH2-epiQ • 2 TXA] (X = F, Cl) or [(R,R)-DPEN • (S)-TRIP]. The 

amine catalysts which proved optimal in terms of both activity and selectivity, 9-amino(9-

deoxy)epiquinine (13) and (R,R)-diphenylethylenediamine (12), both possess, in addition to a 

primary amine functionality, (at least) one additional basic site being either another primary 

or a tertiary amine moiety. Thus, we suggest that the second basic amine site may bring in 

hydrogen peroxide via hydrogen bonding interactions, pre-organize the transition state, and 

direct its attack toward one enantiotopic face of the double bond of cyclic enones 46 or 

acyclic enones 92. 

 

Figure 4.8 Hypothetical pre-transition state assembly for the catalytic epoxidation/hydroperoxidation of α,β-
unsaturated ketones 46 or 92. 
 

To provide experimental support for our proposed mechanism based on iminium ion catalysis 

we performed the epoxidation reaction of 2-cyclohexenone 46a in the presence of various 

modified catalyst systems (Table 4.38). These experiments revealed that both primary amine 

functionality and acid co-catalyst are crucial for high catalyst efficiency. 
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Table 4.38 Evaluation of modified catalyst systems for the catalytic asymmetric epoxidation of 2-
cyclohexenone (46a). 
 

 

Entry Catalyst Yield [%]a erb 

1 [13 • 2 TFA] 82 96:4 

2 13 45 92:8 

3 [129 • 2 TFA] 13 67:33 

4 quinine (130) 0 - 

5c quinine (130) 0 - 

6 [130 • TFA] 0 - 

7 131 12 rac. 

8 [131 • 2 TFA] 18 76.5:23.5 

9 132 <5 rac. 

10 [132 • 2 TFA] <5 77:23 

11 [(R,R)-DPEN • (S)-TRIP] 92 4:96 

12d [(R,R)-DPEN • (S)-TRIP] 10 5:95 

13 (R,R)-DPEN 43 48:52 

14 [133 • TFA] 92 17:83 

15 134 0 - 

16 [134 • TFA] 0 - 

17 [134 • (S)-TRIP] 0 - 

aDetermined by GC. bDetermined by chiral GC. c20 mol% quinine was used. dWith 4Å MS. 
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Whereas [13 • 2 TFA] efficiently promotes the reaction giving epoxycyclohexanone 48a in 

high yield and excellent enantiomeric ratio (82%, 96:4 er; entry 1), the use of 9-amino(9-

deoxy)epiquinine (13) in absence of TFA entailed somewhat lower enantioselectivity and a 

significantly reduced reaction rate (45%, 92:8 er; entry 2). Moreover, derivatives of 9-

amino(9-deoxy)epiquinine which lack the primary amine group such as monomethylated 129, 

thiourea- and sulfonamide-functionalized 131 and 132, and quinine (130) itself showed very 

low catalytic activity (with or without acid co-catalyst) or were not catalytically active at all 

(entries 3-10). Similar trends were detected upon modifying the catalyst system [(R,R)-

DPEN • (S)-TRIP] (entry 11). When only (R,R)-DPEN was present in the reaction mixture, 

epoxide 48a was generated in modest yield and essentially without stereocontrol 

(43%, 48:52 er; entry 13). Blocking one of the primary amine groups by tosylation, which 

concomitantly decreases its basicity, preserved the catalytic activity but led to inferior 

enantiocontrol (92%, 17:83 er; entry 14). This may suggest that amine 133 - due to the 

absence of the second, presumably directing basic site - does not achieve the same high 

degree of transition state organization, which then translates to a lower enantioselectivity of 

product 48a. Tetramethylated DPEN derivative 134 did not promote the reaction, which 

nicely demonstrates once more that the primary amine group is a vital prerequisite for catalyst 

activity (entries 15-17). Similar structure selectivity relationships were also identified for 

other catalyst motifs such as 1,2-diaminocyclohexane (DACH; 60) (cf. Chapter 4.1.1.1). 

In the presence of molecular sieves, catalyst turnover was inhibited and 2,3-

epoxycyclohexanone (48a) was generated in only 10% yield, albeit with essentially equally 

high enantioselectivity of 95:5 er. 

Overall, these experiments provide strong support for the catalytic asymmetric epoxidation of 

2-cyclohexenone (46a) (as a representative of other α,β-unsaturated ketones) proceeding via 

iminium ion catalysis, and not via general base catalysis or phase-transfer catalysis. In 

addition, the substrate scope commonly observed in phase transfer catalysis complements the 

one of our reaction. Whereas PTC consistently affords higher yields of the desired epoxide 

with 5-and 6-substituted cyclohexenones compared to 4-mono- or disubstituted derivatives, 

the trend in our reaction is vice versa. This indicates that steric hindrance in proximity to the 

carbonyl group has a detrimental effect on our reaction, which supposedly proceeds via 

iminiun ion catalysis, but not so in phase-transfer catalysis.[96] 

The interruption of catalyst turnover in the presence of molecular sieves neatly testifies to the 

crucial role of water in the reaction (entry 12). This observation is consistent with the 

assumption of a catalytic cycle based on iminium ion activation of α,β-unsaturated ketones, 
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insofar as water is essential for catalyst turnover since the catalyst is regenerated by 

hydrolysis of intermediate iminium ions. 

 

4.5.2 ESI-MS Studies 

To gain further insight into the reaction mechanism of the epoxidation-hydroperoxidation 

process we monitored the progress of the reaction by using Electrospray-Ionization Mass 

Spectroscopy (ESI-MS). For this purpose we carried out the reaction of 3-decen-2-one (92a) 

with hydrogen peroxide in the presence of catalytic amounts of the 9-amino(9-

deoxy)epiquinine catalyst salt [9-NH2-epiQ (13) • 2 TXA] (X = F, Cl): once under the 

standard conditions of the epoxidation reaction (Scheme 4.44, (a)), and the other time 

according to the optimized hydroperoxidation protocol (Scheme 4.44, (b)). 

 

 
 
Scheme 4.44 Test reactions for ESI-MS analysis: reaction of 3-decen-2-one (92a) with hydrogen peroxide under 
(a) epoxidation and (b) hydroperoxidation conditions. 
 

Samples were taken from the reaction mixtures at different time intervals over 24 hours and 

submitted to ESI-MS analysis. Spectra recorded prior to hydrogen peroxide addition and after 

1 and 12 hours of reaction time, respectively, are depicted in the following figures (Figure 4.9, 

4.12 and 4.15). 

It should be noted that 3-decen-2-one (92a), its corresponding epoxide 93a and peroxide 94a 

could not be detected by ESI-MS, as the spectrometer utilized could only detect molecules 

with molecular weights higher than 200 g mol-1. Therefore, neither signals corresponding to 

the starting material nor to the products appear in Figure 4.9-Figure 4.13. 

The ESI-MS spectra of the samples taken prior to hydrogen peroxide addition (Figure 4.9) 

showed a signal at m/z 460 which corresponds to the imininium ion A formed by 

condensation of 9-amino(9-deoxy)epiquinine (13) with 3-decen-2-one (92a). Moreover, the 

signal of 9-amino(9-deoxy)epiquinine at m/z 324 [(13+H)+] could be identified. The signal at 

m/z 596 could not be assigned at this stage. 
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Figure 4.9 ESI-MS spectrum of reaction (a) recorded prior to H2O2-addition. (MW: molecular weight; EM: 
exact mass) 
 

The fact that the signal at m/z 460 could not be detected any longer after addition of hydrogen 

peroxide (Figure 4.10), indicates that iminium ion A is consumed by hydrogen peroxide, and 

thus validates our assumption that iminium ions such as A are indeed intermediates in our 

epoxidation/hydroperoxidation reaction. The signal corresponding to 9-amino(9-deoxy)epi-

quinine at m/z 324 [(13+H)+] is still present. Yet, after 1 h of reaction time, two new signals 

have appeared at m/z 476 and 494, which match the masses of the iminium ion B derived 

from 2,3-epoxy-2-decanone (93a) and iminium ion C derived from the corresponding β-

hydroperoxyketone which upon hydrolysis affords peroxyhemiketal 94a. The fact that the 

signal of the unsaturated iminium ion A at m/z 460 cannot be detected in the presence of 

hydrogen peroxide suggests that its concentration remains low under reaction conditions. 

Thus, based on these results, we may propose that neither the conjugate H2O2-addition nor the 

intramolecular epoxide closure, but indeed the formation of the iminium ion intermediate A 

represents the rate-limiting step of these transformations. 

In particular in reaction (a) run at 50 °C, additional signals at m/z 340, 492, and 510 can be 

detected which presumably arise from the oxidation of the catalyst under reaction conditions 

(Figure 4.10, (a)). Since an excess of oxidant was used and the amine was employed in 

catalytic amount, it is reasonable to expect oxidation of the amine to occur. The signal at 

m/z 340 may correspond to monooxygenated 9-amino(9-deoxy)epiquinine 13+O. Moreover, 

signals at m/z 492 and 510 were assigned to iminium ions B+O and C+O, analogous to B and C, 

yet incorporating oxygenated 9-amino(9-deoxy)epiquinine 13+O instead of 13. On the contrary, 

in reaction (b) run at 32 °C only one signal of low intensitiy at m/z 510 was detected to 

witness beginning catalyst oxidation (Figure 4.10, (b)). 
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quinine at m/z 324 [(13+H)+] is still present. Yet, after 1 h of reaction time, two new signals 

have appeared at m/z 476 and 494, which match the masses of the iminium ion B derived 

from 2,3-epoxy-2-decanone (93a) and iminium ion C derived from the corresponding β-

hydroperoxyketone which upon hydrolysis affords peroxyhemiketal 94a. The fact that the 

signal of the unsaturated iminium ion A at m/z 460 cannot be detected in the presence of 

hydrogen peroxide suggests that its concentration remains low under reaction conditions. 

Thus, based on these results, we may propose that neither the conjugate H2O2-addition nor the 

intramolecular epoxide closure, but indeed the formation of the iminium ion intermediate A 

represents the rate-limiting step of these transformations. 

In particular in reaction (a) run at 50 °C, additional signals at m/z 340, 492, and 510 can be 

detected which presumably arise from the oxidation of the catalyst under reaction conditions 

(Figure 4.10, (a)). Since an excess of oxidant was used and the amine was employed in 

catalytic amount, it is reasonable to expect oxidation of the amine to occur. The signal at 

m/z 340 may correspond to monooxygenated 9-amino(9-deoxy)epiquinine 13+O. Moreover, 

signals at m/z 492 and 510 were assigned to iminium ions B+O and C+O, analogous to B and C, 

yet incorporating oxygenated 9-amino(9-deoxy)epiquinine 13+O instead of 13. On the contrary, 

in reaction (b) run at 32 °C only one signal of low intensitiy at m/z 510 was detected to 

witness beginning catalyst oxidation (Figure 4.10, (b)). 
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Figure 4.10 ESI-MS spectra after 1 hour from the reaction (a) with [13 • 2 TFA] at 50 °C and (b) [13 • 2 TCA] 
at 32 °C. 
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completion. Partially oxidized amine 13+O could already be detected after 1 h of reaction time 
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seems to not shut down the catalytic cycle. The fact that we can detect signals at m/z  492 and 

510, which presumably correspond to α,β-epoxy and β-peroxy iminium ions B+O and C+O, 

respectively, allows us to conclude that the primary amine functionality of the catalyst may 
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assume that amine 13 gets oxidized to the N-oxide at either the tertiary quinuclidine or 

chinoline nitrogen and suggest the structures depicted in Figure 4.11 for compound 13+O. Due 

to its higher basicity and nucleophilicity, the quinuclidine nitrogen atom should get oxidized 

preferentially to form the N-oxide 13+O,1.
[158] However, in addition, the molecular confor-

mation of amine 13 and the precise reaction conditions may play a critical role.[159] In the 

presence of two equivalents of the acid co-catalysts (TFA or TCA), the quinuclidine nitrogen 

may mostly exist in protonated form what should impede its oxidation. Double oxidation of 

amine 13, in other words a signal at m/z 356, could not be perceived throughout the ESI-MS 

experiments. 

 
Figure 4.11 Proposed structures of regioisomeric 9-amino(9-deoxy)epiquinine N-oxides 13+O,1 and 13+O,2. 
 

What is intriguing about these results is, that the epoxide 93a continues to be formed in 

outstanding enantioselectivities in the presence of 13+O as competing catalytic species. Thus, 

we suspect that 13+O likewise mediates the epoxidation reaction via a highly organized 

transition state despite. In the α,β-unsaturated iminium ion derived from N-oxide 13+O,1, 

which lacks the quinuclidine nitrogen as directing element, the N-oxide itself may bring in 

hydrogen peroxide for the conjugate addition (Figure 4.12). 
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Figure 4.12 N-oxide as directing element. 
 

Signals attributed to catalyst oxidation were also perceived with increasing intensity in the 

reaction with [13 • 2 TFA] at 32 °C (Figure 4.13, (b)). Yet in this case, the signals at m/z 324, 

476 and 494 still dominate the picture which reveals the higher reaction temperature of 50 °C 

compared to 32 °C as a major cause of catalyst oxygenation.[160] 
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Figure 4.13 ESI-MS spectra after 12 hours from the reaction (a) with [13 • 2 TFA] at 50 °C and (b) 
[13 • 2 TCA] at 32 °C. 
 

The complete data of the putative intermediates of the hydroperoxidation-epoxidation process 

found during the ESI-MS investigation is summarized in Table 4.39. 
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Figure 4.13 ESI-MS spectra after 12 hours from the reaction (a) with [13 • 2 TFA] at 50 °C and (b) 
[13 • 2 TCA] at 32 °C. 
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Table 4.39 Potential intermediates found during ESI-MS studies. 
 

species 

 

    
 13+H A B C B+O 

HRMS      

formula C20H26N3O C30H42N3O C30H42N3O2 C30H44N3O3 C30H44N3O3 

found 324.207039 460.332803 476.327879 494.338147 492.322675 

calcd 324.206741 460.332238 476.327154 494.337720 494.322065 

error[ppm] 0.92 1.23 1.52 0.86 1.24 

 

4.5.3 Further Mechanistic Investigations 

In particular, one intriguing feature of our hydroperoxidation-epoxidation reaction piqued our 

interest: namely, the truly outstanding enantioselectivity of >99.5:0.5 er (in most of the cases) 

observed for the initially formeda epoxides 93 in the reaction of acyclic α,β-enones 92 in the 

presence of catalytic amounts of [9-NH2-epiQ (13) • 2 TXA] (X = F, Cl). However, the 

peroxyhemiketals 94 which were obtained concomitantly with the epoxides generally 

exhibited a slightly lower optical purity (cf. Scheme 4.45). 

 

 
Scheme 4.45 Catalytic asymmetric hydroperoxidation-epoxidation of 3-decen-2-one (92a): discrepancy in 
optical purity between epoxide 93a and peroxide 94a. (aDetermined by 1H NMR of the crude mixture.) 
 

This observation suggests that a kinetic resolution is associated with the epoxide ring closure 

step, as verified through a control experiment. In the event, cyclization of racemic 

peroxyhemiketal rac-94a took place upon treatment with catalyst salt [13 • 2 TFA] in dioxane 

at 50 °C, giving scalemic epoxide (3S,4R)-93a and PHK (5S)-94a at 44% conversion (Scheme 

4.46).[38a, 161] 

                                                 
a Initially formed refers to the epoxide fraction which is formed directly under the reaction conditions, and not 
through conversion of the corresponding peroxyhemiketal to the epoxide while treating the crude mixture with 
base (NaOH). 
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Scheme 4.46 Kinetic resolution I: racemic peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by 1H NMR.) 
 

Moreover, optically active peroxyhemiketal (R)-94a with an enantiomeric ratio of 98.5:1.5 er 

was resolved by converting it into the epoxide in the presence of catalyst [13 • 2 TCA] 

(Scheme 4.47). 
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Scheme 4.47 Kinetic resolution II: Optically active peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by GC/MS.) 
 

Both experiments clearly demonstrate that chiral catalyst [13 • 2 TXA] (X = F, Cl) is indeed 

involved in the conversion of peroxyhemiketals 94 to epoxides 93 under our reaction 

conditions with the effect of a moderately efficient kinetic resolution accompanying this 

reaction step. This kinetic resolution may well contribute to the truly outstanding 

enantioselectivities observed for epoxides 93 generated under reaction conditions. Yet, for the 

same reason, peroxides 94 are obtained with slightly lower enantiomeric ratios. The “true” 

enantioselectivity of the conjugate addition of hydrogen peroxide for the reaction depicted in 

Scheme 4.45 may thus lie at about 99:1 er. 

Another explanation could be put forward to account for the observation of slightly lower 

enantioselectivity values for peroxyhemiketals: under the basic conditions of the 

peroxyhemiketal-epoxide rearrangement (carried out prior to er-determination)a the conjugate 

addition of hydrogen peroxide could exhibit (to some extent) reversibility since those 

conditions resemble classic Weitz-Scheffer reaction conditions. Nevertheless, since enone 

formation was not perceived under those conditions while rearranging purified PHKs, we 

believe that the slightly reduced optical purity is indeed a result of the resolution of PHKs by 

epoxide formation. 

 

                                                 
a Enantiomeric ratios were determined after converting the peroxyhemiketals to the corresponding epoxides. 

4  Results and Discussion 

134 

 

 
Scheme 4.46 Kinetic resolution I: racemic peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by 1H NMR.) 
 

Moreover, optically active peroxyhemiketal (R)-94a with an enantiomeric ratio of 98.5:1.5 er 

was resolved by converting it into the epoxide in the presence of catalyst [13 • 2 TCA] 

(Scheme 4.47). 

 

99.5:0.5 er

dioxane (0.25M), 32 °C, 21 h

[13 2 TCA] (10 mol%)

(3S,4R)-93a20% conversiona

n-C6H13

O
O

n-C6H13

O O
OH

(5R)-94a
98.5:1.5 er

 
Scheme 4.47 Kinetic resolution II: Optically active peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by GC/MS.) 
 

Both experiments clearly demonstrate that chiral catalyst [13 • 2 TXA] (X = F, Cl) is indeed 

involved in the conversion of peroxyhemiketals 94 to epoxides 93 under our reaction 

conditions with the effect of a moderately efficient kinetic resolution accompanying this 

reaction step. This kinetic resolution may well contribute to the truly outstanding 

enantioselectivities observed for epoxides 93 generated under reaction conditions. Yet, for the 

same reason, peroxides 94 are obtained with slightly lower enantiomeric ratios. The “true” 

enantioselectivity of the conjugate addition of hydrogen peroxide for the reaction depicted in 

Scheme 4.45 may thus lie at about 99:1 er. 

Another explanation could be put forward to account for the observation of slightly lower 

enantioselectivity values for peroxyhemiketals: under the basic conditions of the 

peroxyhemiketal-epoxide rearrangement (carried out prior to er-determination)a the conjugate 

addition of hydrogen peroxide could exhibit (to some extent) reversibility since those 

conditions resemble classic Weitz-Scheffer reaction conditions. Nevertheless, since enone 

formation was not perceived under those conditions while rearranging purified PHKs, we 

believe that the slightly reduced optical purity is indeed a result of the resolution of PHKs by 

epoxide formation. 

 

                                                 
a Enantiomeric ratios were determined after converting the peroxyhemiketals to the corresponding epoxides. 

4  Results and Discussion 

134 

 

 
Scheme 4.46 Kinetic resolution I: racemic peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by 1H NMR.) 
 

Moreover, optically active peroxyhemiketal (R)-94a with an enantiomeric ratio of 98.5:1.5 er 

was resolved by converting it into the epoxide in the presence of catalyst [13 • 2 TCA] 

(Scheme 4.47). 

 

99.5:0.5 er

dioxane (0.25M), 32 °C, 21 h

[13 2 TCA] (10 mol%)

(3S,4R)-93a20% conversiona

n-C6H13

O
O

n-C6H13

O O
OH

(5R)-94a
98.5:1.5 er

 
Scheme 4.47 Kinetic resolution II: Optically active peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by GC/MS.) 
 

Both experiments clearly demonstrate that chiral catalyst [13 • 2 TXA] (X = F, Cl) is indeed 

involved in the conversion of peroxyhemiketals 94 to epoxides 93 under our reaction 

conditions with the effect of a moderately efficient kinetic resolution accompanying this 

reaction step. This kinetic resolution may well contribute to the truly outstanding 

enantioselectivities observed for epoxides 93 generated under reaction conditions. Yet, for the 

same reason, peroxides 94 are obtained with slightly lower enantiomeric ratios. The “true” 

enantioselectivity of the conjugate addition of hydrogen peroxide for the reaction depicted in 

Scheme 4.45 may thus lie at about 99:1 er. 

Another explanation could be put forward to account for the observation of slightly lower 

enantioselectivity values for peroxyhemiketals: under the basic conditions of the 

peroxyhemiketal-epoxide rearrangement (carried out prior to er-determination)a the conjugate 

addition of hydrogen peroxide could exhibit (to some extent) reversibility since those 

conditions resemble classic Weitz-Scheffer reaction conditions. Nevertheless, since enone 

formation was not perceived under those conditions while rearranging purified PHKs, we 

believe that the slightly reduced optical purity is indeed a result of the resolution of PHKs by 

epoxide formation. 

 

                                                 
a Enantiomeric ratios were determined after converting the peroxyhemiketals to the corresponding epoxides. 

4  Results and Discussion 

134 

 

 
Scheme 4.46 Kinetic resolution I: racemic peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by 1H NMR.) 
 

Moreover, optically active peroxyhemiketal (R)-94a with an enantiomeric ratio of 98.5:1.5 er 

was resolved by converting it into the epoxide in the presence of catalyst [13 • 2 TCA] 

(Scheme 4.47). 

 

99.5:0.5 er

dioxane (0.25M), 32 °C, 21 h

[13 2 TCA] (10 mol%)

(3S,4R)-93a20% conversiona

n-C6H13

O
O

n-C6H13

O O
OH

(5R)-94a
98.5:1.5 er

 
Scheme 4.47 Kinetic resolution II: Optically active peroxyhemiketal in the presence of catalyst [13 • 2 TFA]. 
(aDetermined by GC/MS.) 
 

Both experiments clearly demonstrate that chiral catalyst [13 • 2 TXA] (X = F, Cl) is indeed 

involved in the conversion of peroxyhemiketals 94 to epoxides 93 under our reaction 

conditions with the effect of a moderately efficient kinetic resolution accompanying this 

reaction step. This kinetic resolution may well contribute to the truly outstanding 

enantioselectivities observed for epoxides 93 generated under reaction conditions. Yet, for the 

same reason, peroxides 94 are obtained with slightly lower enantiomeric ratios. The “true” 

enantioselectivity of the conjugate addition of hydrogen peroxide for the reaction depicted in 

Scheme 4.45 may thus lie at about 99:1 er. 

Another explanation could be put forward to account for the observation of slightly lower 

enantioselectivity values for peroxyhemiketals: under the basic conditions of the 

peroxyhemiketal-epoxide rearrangement (carried out prior to er-determination)a the conjugate 

addition of hydrogen peroxide could exhibit (to some extent) reversibility since those 

conditions resemble classic Weitz-Scheffer reaction conditions. Nevertheless, since enone 

formation was not perceived under those conditions while rearranging purified PHKs, we 

believe that the slightly reduced optical purity is indeed a result of the resolution of PHKs by 

epoxide formation. 

 

                                                 
a Enantiomeric ratios were determined after converting the peroxyhemiketals to the corresponding epoxides. 



4 Results and Discussion 

 135

4.5.4 Summary and Conclusions 

 

4.5.4.1 Proposed Catalytic Cycle 

Based on experimental evidence and the information gained from the ESI-MS studies, we 

propose the catalytic cycle, which is depicted for clarity again in Figure 4.14, for the catalytic 

asymmetric hydroperoxidation and epoxidation of α,β-unsaturated ketones 92 in the presence 

of catalytic amounts of [13 • 2 TXA] (X = F, Cl).a In the case of cyclic enones 46 (except for 

2-cycloheptenone 46s and -octenone 46v), only the epoxidation pathway is relevant. 

The catalytic cycle is initiated by the reversible formation of α,β-unsaturated iminium ion A 

from the enone and the catalyst (step (a)) to activate the substrate, by lowering its LUMO 

energy. Conjugate nucleophilic addition of hydrogen peroxide then takes place in the 

following step (step (b)). 

In Weitz-Scheffer epoxidations under basic conditions, hydroperoxide anion is the active 

nucleophile and the addition step is considered to be fast and reversible as confirmed by 

kinetic data.[57, 162] Under our reaction conditions in the presence of catalyst salts [13 • 2 TXA] 

(X = F, Cl) including two equivalents of either TFA or TCA, neutral hydrogen peroxide rather 

than the hydroperoxide anion may be the active nucleophile,b and the conjugate addition is 

most likely irreversible and constitutes the enantiodetermining step of the catalytic cycle. The 

same holds true for the epoxidation in the presence of catalyst system [(R,R)-DPEN • (S)-

TRIP].c An alternative scenario would be a reversible addition of hydrogen peroxide followed 

by an enantioselective irreversible epoxide ring closure. However, this possibility could be 

excluded by the experiment presented in Scheme 4.46. That is to say, the epoxide should have 

been furnished with the same enantioselectivity as under reaction conditions if the latter 

assumption was valid.d Besides, β-peroxycyclooctanone (117) was isolated in 97:3 er (cf. 

Scheme 4.27). If the addition step was reversible and not irreversible and under kinetic 

control, this β-peroxy compound would have been inevitably obtained in racemic form. 

                                                 
a The reaction catalyzed by [(R,R)-DPEN • (S)-TRIP] supposedly proceeds in an analogous fashion. 
b pKa(H2O2) 11.8, for comparison: pKa(quinuclidine) 11.1, pKa(i-PrNH2) 10.7, pKa(benzyl amine) 9.34, 
pKa(quinoline) 4.85 
c pKa(2,3-diaminobutane, rac.) 10.00, 6.91. 
d Alternatively, a cross-over experiment could have been carried out by mixing a peroxyhemiketal with a 
different enone substrate under reaction condition in the absence of H2O2. 
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different enone substrate under reaction condition in the absence of H2O2. 
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Figure 4.14 Proposed catalytic cycle for the epoxidation and hydroperoxidation in the reaction of α,β-
unsaturated ketones 92 and cyclic enones 46s and 46v. (TXA with X = F, Cl) 
 

The conjugate addition of hydrogen peroxide generates β-peroxyenamine intermediate B (step 

(b)). This intermediate can either pursue the epoxidation pathway and afford epoxide 93 via 

intramolecular nucleophilic substitution at the proximal oxygen atom (step (c)) followed by 

hydrolysis (step (d)) or remain at the hydroperoxidation stage to deliver 3-hydroxy-1,2-

dioxolane 94 after protonation (step (e)) and hydrolysis (step (f)). It is the β-peroxyenamine 

intermediate B which cyclizes to provide epoxide 93 and not the corresponding enol form. 

Beside the enamine being more nucleophilic, cyclization of the corresponding β-peroxyenol 

would not result in an enhancement of the enantioselectivity as revealed in independent 

experiments (cf. Scheme 4.47). Cyclic peroxyhemiketals 94 derived from acyclic α,β-

unsaturated ketones 92 exist in equilibrium with the acylic form. However, the equilibrium 

distribution favours the peroxyhemiketal whereas the acyclic form cannot be perceived by 

NMR. On the contrary, with seven- and eight membered cyclic enones 46s and 46v, the β-

peroxyketone form significantly contributes to the equilibrium mixture of hydroperoxidation 

products 116 and 117 as detected by NMR. Both the epoxidation and the hydroperoxidation 

pathway are terminated by hydrolysis of an iminium ion D or C to release the product and 

regenerate the catalyst (step (d) and (f), respectively). 
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Figure 4.14 Proposed catalytic cycle for the epoxidation and hydroperoxidation in the reaction of α,β-
unsaturated ketones 92 and cyclic enones 46s and 46v. (TXA with X = F, Cl) 
 

The conjugate addition of hydrogen peroxide generates β-peroxyenamine intermediate B (step 

(b)). This intermediate can either pursue the epoxidation pathway and afford epoxide 93 via 

intramolecular nucleophilic substitution at the proximal oxygen atom (step (c)) followed by 

hydrolysis (step (d)) or remain at the hydroperoxidation stage to deliver 3-hydroxy-1,2-

dioxolane 94 after protonation (step (e)) and hydrolysis (step (f)). It is the β-peroxyenamine 

intermediate B which cyclizes to provide epoxide 93 and not the corresponding enol form. 

Beside the enamine being more nucleophilic, cyclization of the corresponding β-peroxyenol 

would not result in an enhancement of the enantioselectivity as revealed in independent 

experiments (cf. Scheme 4.47). Cyclic peroxyhemiketals 94 derived from acyclic α,β-

unsaturated ketones 92 exist in equilibrium with the acylic form. However, the equilibrium 

distribution favours the peroxyhemiketal whereas the acyclic form cannot be perceived by 

NMR. On the contrary, with seven- and eight membered cyclic enones 46s and 46v, the β-

peroxyketone form significantly contributes to the equilibrium mixture of hydroperoxidation 

products 116 and 117 as detected by NMR. Both the epoxidation and the hydroperoxidation 

pathway are terminated by hydrolysis of an iminium ion D or C to release the product and 

regenerate the catalyst (step (d) and (f), respectively). 
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The epoxidation of cyclic enones in the presence of catalytic amounts of either [13 • 2 TFA] 

or [(R,R)-DPEN • (S)-TRIP] are assumed to proceed accordingly. Presumably, due to 

conformational constraints, in five- and six-membered as well as in macrocyclic enones, only 

epoxide formation is observed. Thus, the hydroperoxidation manifold is not operative in those 

cases (cf. Figure 3.1). 

Based on the ESI-MS investigations, we may take into account an alternative, simultaneously 

operating catalytic cycle with N-oxide 13+O (as its TFA salt) as the catalytically active 

species.a 

 

4.5.4.2 Rationalizing the Absolute Stereochemistry 

Of major interest is the identification of a plausible model for the transition state of the H2O2-

conjugate addition to the α,β-enone, which constitutes the enantiodetermining step of the 

hydroperoxidation-epoxidation process. Such an endeavour may allow us to rationalize the 

observed absolute stereochemistry with both primary amine salt catalyst systems [9-NH2-

epiQ (13) • 2 TFA] and [(R,R)-DPEN • (S)-TRIP]. 

DFT calculationsb at the B3LYP/6-31G* level of theory (Vacuum) on the structure of the 

relevant α,β-unsaturated iminium ions Z-A and E-A (cf. Figure 4.15; with 2-cyclohexenone 

(46a) as the substrate) revealed a steric shielding of the re-face by the quinoline moiety of 9-

amino(9-deoxy)epiquinine (13) in the Z-configured iminium ion Z-A (Figure 4.15, (a)). A 

preferred attack at the si-face of the cyclohexenone is in accordance with the absolute 

stereochemistry observed with 9-amino(9-deoxy)epiquinine-based catalyst systems (cf. Table 

4.5). On the contrary, the E-configured iminium ion, which is higher in energy, would suggest 

a re-face attack of hydrogen peroxide in contradiction with the experimental observations 

(Figure 4.15, (b)). Thus, Z-configured iminium ion Z-A might be invoked as a working model 

for the transition state structure. 

 

                                                 
a In particular for reactions conducted at elevated temperatures of 50 °C or higher. 
b DFT calculations were performed using Spartan ’08 Windows from Wavefunction, Inc. 
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Figure 4.15 Calculated structures of (a) Z-configured α,β-unsaturated iminium ions Z-A and (b) E-configured 
α,β-unsaturated iminium ions E-A. 
 
At this stage, a directing effect of the second basic amine site of catalyst 9-NH2-epiQ (13) 

could not be testified by calculations. DFT Calculations conducted on structures of the 

corresponding iminium ions Z-A and E-A generated from (R,R)-DPEN (12) with 2-

cyclohexenone gave similar results. However, it might be desirable to calculate structures of 

the pivotal α,β-unsaturated iminium ions A in solution and at a higher level of theory. 

Furthermore, it might be critical to take the influence of the counteranion into account. 

DFT calculations need not, however, be the single tool used in order to gain access to 

structural data of those intermediates. For instance, it would be particularly interesting to 

synthesize imines resulting from the condensation of an array of enone substrates and the 

primary amines 9-NH2-epiQ (13) or (R,R)-DPEN (12). These imines should, at the outset, be 

carefully analyzed for their structural features. Addition of equimolar amounts of (S)-TRIP or 

TFA would then generate iminium salts A. At this stage, single-crystal X-ray diffraction 

studies could prove extremely useful to shed further light into the geometric and structural 

intricacies of these iminium ions in the solid state. Relating these structures to the in situ 

formed analogues in solution might finally allow us to gaze at “snapshots” of our transition 

state structures. Other acids (beside TFA and (S)-TRIP) might be tested - both to eventually 
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facilitate crystallization of iminium ion A and for assessment of its counterion’s influence on 

structure. 

 

 
 
Scheme 4.48 Proposed preparation of α,β-unsaturated iminium ions A for X-ray structure analysis. 
 

The observed absolute configuration of 2,3-epoxycyclohexanone (48a) and 4-hydroxy-6-

phenyl-2-hexanone (96b) (derived from the corresponding peroxyhemiketal 94b through 

P(OEt)3-reduction) was established by comparison of their optical rotation with literature 

values;[97a, 137] absolute configurations of cyclic as well as acyclic epoxides 48 and 93, and 

peroxyhemiketals 94 were assigned by analogy considering an uniform mechanistic path. 

The absolute stereochemistry observed is the result of a si(β)-attacka in the [13 • 2 TFA]-

catalyzed epoxidation of cyclic enones 46 (n = 0-3) (re(β)-attack with catalyst [(R,R)-

DPEN • (S)-TRIP]), and of a re(β)-attack in the corresponding reaction of acyclic enones 92 

(Figure 4.16, (a) and (b)). Based on the assumption that the bias of the catalyst system is 

identical for both cyclic and acyclic substrates, the absolute stereochemistry observed for 

acyclic enones would be consistent with those substrates (or more precisely the corresponding 

α,β-unsaturated iminium ions generated with the amine salt catalyst) reacting preferentially in 

s-trans conformation. 

 

 

Figure 4.16 (a) si(β)-Attack in the [13 • 2 TFA]-catalyzed epoxidation of cyclic enones (n = 0-3), and re(β)-
attack in the [13 • 2 TXA]-catalyzed hydroperoxidation/epoxidation of (b) acyclic enones and (c) macrocyclic 
enones (n = 7-10). (X = F, Cl) 
 

                                                 
a Due to a change in priority of the substituent attached to the β-carbon, compounds 46h-m formally undergo 
attack from the re(β)-face in the presence of catalyst [13 • 2 TFA], although in practice there is no change in 
facial selectivity. 
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Figure 4.16 (a) si(β)-Attack in the [13 • 2 TFA]-catalyzed epoxidation of cyclic enones (n = 0-3), and re(β)-
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a Due to a change in priority of the substituent attached to the β-carbon, compounds 46h-m formally undergo 
attack from the re(β)-face in the presence of catalyst [13 • 2 TFA], although in practice there is no change in 
facial selectivity. 
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Macrocyclic enones 46w-x gave exclusively trans-configured epoxides when exposed to 

hydrogen peroxide in the presence of catalytic amounts of [13 • 2 TXA]. These enone rings 

are large enough to allow s-cis and s-trans conformational interconversion and due to their 

conformationally flexibility, we assume them to behave similarly to the acyclic substrates – 

implying a re(β)-attack (Figure 4.16, (c)). 
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4.6 Preparation of Starting Materials 

4.6.1 Preparation of Cyclic α,β-Unsaturated Ketones 

The synthesis of six- to fifteen-membered cyclic α,β-unsaturated ketones was carried out 

following two general strategies: firstly, through the addition of Grignard reagents to 3-

ethoxy-2-cyclohexenone (135) and 3-ethoxy-2-cycloheptenone (136) according to the method 

of Woods and co-workers (Table 4.40),[163] a  and secondly, via Saegusa oxidation of the 

corresponding saturated cyclic ketones in case of six-, and eight- to fifteen-membered ring 

cyclic enones 80 and 46v-x (Scheme 4.50).[164] 

 
Table 4.40 Synthesis of 3-substituted 2-cyclohexenones and 2-cycloheptenones 46 according to the method of 
Woods et al.[163] 

 

Entry R n Product Yield [%]b 

1 i-Pr 1 46i 71 

2 allyl 1 46k 47 

3 PhCH2 1 46m 76 

4 Ph 1 46n 98 

5 vinyl 1 46o 75 

6 ethinyl 1 46p 77 

7 Et 2 46t 45a 

8 PhCH2 2 46u 61a 

aOverall yield from 1,3-cycloheptadione. 

 

Whereas 3-ethoxy-2-cyclohex-2-enone (135) is commercially available, 3-ethoxy-2-

cycloheptenone (136) was obtained from 1,3-cycloheptanedione and ethanol in the presence 

of a catalytic amount of p-toluenesulfonic acid at a Dean-Stark trap in 90% yield.[165] 

For the synthesis of 3-tert-butyl-2-cyclohexenone (46j) the addition of tert-butyl magnesium 

chloride to the vinylogous ester 135 proved to be less practical. The desired product was 

obtained in a non satisfying yield of <15% due to increased formation of by-products caused 

by using the sterically hindered Grignard reagent. However, tert-butyl-substituted enone 46j 

                                                 
a Cyclic enones 46g, h and l were prepared by N. J. A. Martin through the same route. 
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could be readily accessed in 58% yield by a palladium-catalyzed allylic oxidation of 1-tert-

butylcyclohexene developed by Corey and Yu (Scheme 4.49).[166] 

 

 
Scheme 4.49 Synthesis of 3-tert-butyl-2-cyclohexenone (46j) through palladium-catalyzed allylic oxidation. 
 

Cyclic enones 80 and 46v-x were prepared via Saegusa oxidation from the corresponding 

saturated cyclic ketones.a First, the cyclic ketones were converted to the trimethylsilyl enol 

ethers, which were then dissolved in dimethylsulfoxide and subjected to catalytic amounts of 

palladium acetate under an atmosphere of oxygen as stoichiometric oxidant (Scheme 4.50). 

Under those conditions (Larock modification) the use of catalytic palladium acetate is 

sufficient, whereas the original Saegusa oxidation requires stoichiometric palladium acetate 

and employs acetonitrile as the solvent.[167] 

 

 
Scheme 4.50 Synthesis of cyclic enones 80 and 46v-x through a Saegusa oxidation (Larock modification).[167] 
 

To further explore the substrate scope, we studied the asymmetric epoxidation of 2-methyl-2-

cyclohexenone (79) as an example for an α-substituted cyclic α,β-unsaturated ketone. To this 

end, 2-methyl-2-cyclohexenone (79) was prepared in two steps from 2-cyclohexenone (46a) 

according to the reaction sequence depicted in Scheme 4.51 comprising the α-iodination of 2-

cyclohexenone and subsequent iron-catalyzed cross coupling of 2-iodo-2-cyclohexenone 

(137) with methyl magnesium bromide.[168] 

                                                 
a Cyclic enones 46v-x were prepared in collaboration with X. Wang. 
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Scheme 4.51 Synthesis of 2-methyl-2-cyclohexenone (79) via α-iodination and iron-catalyzed cross coupling. 
(aReduced yield of 79 due to its high volatility.) 
 

4.6.2 Preparation of Acyclic α,β-Unsaturated Ketones 

Acyclic α,β-unsaturated methylketones were prepared either by cross metathesis of a terminal 

olefin with methyl vinyl ketone in the presence of Grubbs second generation catalyst 138 

(Table 4.41),[169] or through a Wittig reaction of various aldehydes with 1-(triphenylphosphor-

anylidene)-2-propanone (Table 4.42). 

 

Table 4.41 Synthesis of acyclic α,β-unsaturated ketones 92 by cross metathesis. 

 

Entry R1 Enone Yield [%]a 

1  92g 78 

2 
 

92j 80 

3 
 

92k 99 

4  92l 94 

5  92t 99 

6  92u 64 

aYields of pure, isolated products. 
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Table 4.42 Synthesis of various acyclic α,β-unsaturated ketones 92, 101 and 105 through a Wittig reaction. 
 

 

Entry R1 Enone Yield [%]a 

1 PhCH2CH2 92b 75 

2 PhCH2 92q 26 

3 i-Bu 92d 60 

4  92r 56 

5 Cy 92e 92 

6  92f 88 

7  92h 85 

8  92i 72 

9 CO2Et 101 50 

10 BnOCH2 105 88 
aYields of pure, isolated products. 

 

Most of the aldehydes were commercially available except for aldehydes 139h and 139i, 

which were prepared from the corresponding diols in two steps via monoprotection with 

either tert-butyl-dimethylsilyl chloride or dihydropyrane (DHP), followed by oxidation of the 

monoprotected diols 140 to the corresponding aldehydes 139h-i (Scheme 4.52). 
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Scheme 4.52 Synthesis of aldehydes 139h-i. 
 

Comparing the results of the epoxidation and hydroperoxidation reactions conducted with 

enones 92 (R2 ≠ Me) with those obtained in the reactions of methyl ketones 92 (R2 = Me) may 

allow us to evaluate the influence of the substituent R2 on the reaction outcome. 

α,β-Unsaturated ketones of the general structure 92 with R2 ≠ Me were prepared in two steps 

from α,β-unsaturated aldehydes through Grignard addition followed by Swern oxidation or 

oxidation with MnO2 of the resultant allylic alcohol (Scheme 4.53).[170] 
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Scheme 4.52 Synthesis of aldehydes 139h-i. 
 

Comparing the results of the epoxidation and hydroperoxidation reactions conducted with 

enones 92 (R2 ≠ Me) with those obtained in the reactions of methyl ketones 92 (R2 = Me) may 

allow us to evaluate the influence of the substituent R2 on the reaction outcome. 

α,β-Unsaturated ketones of the general structure 92 with R2 ≠ Me were prepared in two steps 

from α,β-unsaturated aldehydes through Grignard addition followed by Swern oxidation or 

oxidation with MnO2 of the resultant allylic alcohol (Scheme 4.53).[170] 
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Table 4.42 Synthesis of various acyclic α,β-unsaturated ketones 92, 101 and 105 through a Wittig reaction. 
 

 

Entry R1 Enone Yield [%]a 

1 PhCH2CH2 92b 75 

2 PhCH2 92q 26 

3 i-Bu 92d 60 

4  92r 56 

5 Cy 92e 92 

6  92f 88 

7  92h 85 

8  92i 72 

9 CO2Et 101 50 

10 BnOCH2 105 88 
aYields of pure, isolated products. 

 

Most of the aldehydes were commercially available except for aldehydes 139h and 139i, 

which were prepared from the corresponding diols in two steps via monoprotection with 

either tert-butyl-dimethylsilyl chloride or dihydropyrane (DHP), followed by oxidation of the 

monoprotected diols 140 to the corresponding aldehydes 139h-i (Scheme 4.52). 
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Scheme 4.53 Grignard addition-oxidation sequence: synthesis of enones 92m-n, p.a 
 

Alternatively, an aldol-dehydration sequence provided concise access to such enones 92 

(R2 ≠ Me).[171] This strategy was used for the synthesis of 2-methyl-4-hexen-3-one (92o) 

(Scheme 4.54). 

O O OMs

O OHO LDA (1.05 equiv)
THF, 78 °C, 30 min

then acetaldehyde
(2.5 equiv)
78 °C, 1 h

MsCl (1.18 equiv)
pyridine, 0 °C, 16 h

141
95%

142
63%

92o
62%

Et2O, r.t.

Et3N (1.5 equiv)

 
Scheme 4.54 Aldol-dehydration sequence: synthesis of 2-methyl-4-hexen-3-one (92o). 
 

To investigate the effect of the enone geometry on the asymmetric epoxidation reaction 

catalyzed by 9-amino(9-deoxy)epiquinine (13) TFA salt (cf. Scheme 4.20), we prepared (Z)-

6-phenyl-3-hexen-2-one (Z)-92b in three steps from commercially available 4-phenyl-1-

butyne according to a reaction sequence described by Heathcock et al. (Scheme 4.55).[171] 

Reaction of the lithiated alkyne with acetaldehyde gave propargylic alcohol 143, which was 

oxidized with PCC to the corresponding ketone 144. Finally, Lindlar reduction of the alkyne 

gave the desired (Z)-enone in an overall yield of 55%. 

 

                                                 
a Enones 92m-n, p were prepared by X. Wang. 

4 Results and Discussion 

 145

 

 
Scheme 4.53 Grignard addition-oxidation sequence: synthesis of enones 92m-n, p.a 
 

Alternatively, an aldol-dehydration sequence provided concise access to such enones 92 

(R2 ≠ Me).[171] This strategy was used for the synthesis of 2-methyl-4-hexen-3-one (92o) 

(Scheme 4.54). 

O O OMs

O OHO LDA (1.05 equiv)
THF, 78 °C, 30 min

then acetaldehyde
(2.5 equiv)
78 °C, 1 h

MsCl (1.18 equiv)
pyridine, 0 °C, 16 h

141
95%

142
63%

92o
62%

Et2O, r.t.

Et3N (1.5 equiv)

 
Scheme 4.54 Aldol-dehydration sequence: synthesis of 2-methyl-4-hexen-3-one (92o). 
 

To investigate the effect of the enone geometry on the asymmetric epoxidation reaction 

catalyzed by 9-amino(9-deoxy)epiquinine (13) TFA salt (cf. Scheme 4.20), we prepared (Z)-

6-phenyl-3-hexen-2-one (Z)-92b in three steps from commercially available 4-phenyl-1-

butyne according to a reaction sequence described by Heathcock et al. (Scheme 4.55).[171] 

Reaction of the lithiated alkyne with acetaldehyde gave propargylic alcohol 143, which was 

oxidized with PCC to the corresponding ketone 144. Finally, Lindlar reduction of the alkyne 

gave the desired (Z)-enone in an overall yield of 55%. 

 

                                                 
a Enones 92m-n, p were prepared by X. Wang. 

4 Results and Discussion 

 145

 

 
Scheme 4.53 Grignard addition-oxidation sequence: synthesis of enones 92m-n, p.a 
 

Alternatively, an aldol-dehydration sequence provided concise access to such enones 92 

(R2 ≠ Me).[171] This strategy was used for the synthesis of 2-methyl-4-hexen-3-one (92o) 

(Scheme 4.54). 

O O OMs

O OHO LDA (1.05 equiv)
THF, 78 °C, 30 min

then acetaldehyde
(2.5 equiv)
78 °C, 1 h

MsCl (1.18 equiv)
pyridine, 0 °C, 16 h

141
95%

142
63%

92o
62%

Et2O, r.t.

Et3N (1.5 equiv)

 
Scheme 4.54 Aldol-dehydration sequence: synthesis of 2-methyl-4-hexen-3-one (92o). 
 

To investigate the effect of the enone geometry on the asymmetric epoxidation reaction 

catalyzed by 9-amino(9-deoxy)epiquinine (13) TFA salt (cf. Scheme 4.20), we prepared (Z)-

6-phenyl-3-hexen-2-one (Z)-92b in three steps from commercially available 4-phenyl-1-

butyne according to a reaction sequence described by Heathcock et al. (Scheme 4.55).[171] 

Reaction of the lithiated alkyne with acetaldehyde gave propargylic alcohol 143, which was 

oxidized with PCC to the corresponding ketone 144. Finally, Lindlar reduction of the alkyne 

gave the desired (Z)-enone in an overall yield of 55%. 

 

                                                 
a Enones 92m-n, p were prepared by X. Wang. 

4 Results and Discussion 

 145

 

 
Scheme 4.53 Grignard addition-oxidation sequence: synthesis of enones 92m-n, p.a 
 

Alternatively, an aldol-dehydration sequence provided concise access to such enones 92 

(R2 ≠ Me).[171] This strategy was used for the synthesis of 2-methyl-4-hexen-3-one (92o) 

(Scheme 4.54). 

O O OMs

O OHO LDA (1.05 equiv)
THF, 78 °C, 30 min

then acetaldehyde
(2.5 equiv)
78 °C, 1 h

MsCl (1.18 equiv)
pyridine, 0 °C, 16 h

141
95%

142
63%

92o
62%

Et2O, r.t.

Et3N (1.5 equiv)
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Scheme 4.55 Synthesis of (Z)-6-phenyl-3-hexen-2-one ((Z)-92b). 
 

Trisubstituted α,β-unsaturated methyl ketone 100 - both the (E)- and (Z)-isomer - were 

prepared from citral to study the effect of an additional substituent attached to the β-position 

and to see if those enones are suitable substrates in the asymmetric epoxidation/hydro-

peroxidation reaction (see Chapter 4.2.2.5). Citral, which constitutes a mixture of geranial and 

neral in a 64:36 ratio, was converted to secondary alcohols 145 by the addition of methyl 

lithium. Subsequent Ley oxidation gave methyl ketones 100 as a mixture of (E)- and (Z)-

isomers. Pure fractions of each isomer were readily obtained by column chromatography 

(Scheme 4.56).[172] 

 

 
Scheme 4.56 Synthesis of 4,8-dimethylnona-3,7-dien-2-one (100). 
 

4.7 Catalyst Synthesis 

4.7.1 Synthesis of Chiral Primary Amines based on the Quinuclidine Scaffold 

 

4.7.1.1 Synthesis of 9-Amino(9-deoxy) Cinchona Alkaloid Derivatives 

9-Amino(9-deoxy)epiquinine (13) was first prepared by Brunner et al. in 1995 from naturally 

abundant quinine via a Mitsunobu reaction with hydrazoic acid followed by an in situ 

Staudinger reduction of the azide intermediate.[49a] Whereas Brunner et al. mostly explored 

the catalytic potential of amides derived from 9-amino(9-deoxy)cinchona alkaloids in 

asymmetric transformations,[49b, 173] 9-amino(9-deoxy)cinchona alkaloids themselves have 
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only recently drawn considerable attention as primary amine catalysts in organocatalysis, both 

enamine and iminium ion catalysis (cf. Chapter 2.1.3.2).[50c, 174] 

In 2005, Sóos et al. reported a modified synthesis of 9-amino(9-deoxy)cinchona alkaloids, in 

which hydrazoic acid was replaced by a less hazardous azide source – diphenylphosphoryl 

azide (DPPA).[175] Starting from quinine (Q), 9-amino(9-deoxy)epiquinine (13) was obtained 

in 76% yield, and moreover, a range of 9-amino(9-deoxy)epicinchona alkaloid derivatives 

were prepared from the parent 9-hydroxy-substituted compounds in good yields (42-77%) 

according to this operationally simple one pot-two step reaction sequence (Scheme 4.57). 
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Scheme 4.57 Synthesis of 9-amino(9-deoxy)cinchona alkaloids and derivatives through a Mitsunobu 
reaction/Staudinger reduction sequence. 
 
In the case of 9-amino(9-deoxy)cinchona alkaloid derivatives 71 and 73, the corresponding 9-

hydroxy-substituted precursors, 6'-isopropoxycinchonidine (146) and epiquinine (147), 

respectively, were not commercially available. However, both compounds could be readily 

accessed from quinine in only two steps according to literature procedures (Scheme 4.58).[92d, 

176] 
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Scheme 4.58 (a) Synthesis of 6'-isopropoxycinchonidine (146); (b) synthesis of epiquinine (147). 
 

9-Amino(9-deoxy)epicupreidine (68) bearing a free hydroxy group as potential hydrogen 

bonding donor point was prepared in only one step from 9-amino(9-deoxy)epiquinine (13) by 

borontribromide-mediated deprotection of the methoxy group (Scheme 4.59).[161] 
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Scheme 4.59 Synthesis of 9-amino(9-deoxy)epicupreidine (68). 
 

4.7.1.2 De-Novo Design and Synthesis of α-(Aminobenzyl)quinuclidine 

α-(Aminobenzyl)quinuclidine (86a) can be regarded as truncated 9-amino(9-deoxy)cinchona 

alkaloids featuring a less hindered primary amine group due to the replacement of the 
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We planned to access compound 86 in two steps from quinuclidine. First, quinuclidine is 

lithiated at the α-position and then reacted with benzaldehyde to give α-(hydroxyl-

benzyl)quinuclidine (150), which is in the second step converted into α-(amino-

benzyl)quinuclidine (86a) by the reaction sequence described above (cf. Scheme 4.56) 

consisting of a Mitsunobu reaction to stereoselectively introduce the azide and subsequent 

Staudinger reduction to afford the corresponding amine. Finally, classical resolution 

techniques or separation by chiral preparative HPLC would allow access to the pure 

enantiomers of the target compound 86a. 

The group of Kessar has demonstrated that α-deprotonation of quinuclidine with Schlosser-

Lochmann base is possible upon activation of the quinuclidine nitrogen either as the N-oxide 

or by complexation with borontrifluoride.[177] They also sought to develop this chemistry into 

an enantioselective process by performing the α-lithiation in the presence of (-)-sparteine, 

however attaining only moderate enantioselectivities (up to 70:30 er).[178] 

Following their procedure, α-lithiation of the quinuclidine borontrifluoride complex and 

quenching of the α-lithiated species with benzaldehyde afforded α-(hydroxylbenzyl)quinuc-

lidine (150) as an approximately 1:1 mixture of diastereomers, a  which could be readily 

separated during the work-up procedure, and further purified by column chromatography. 

Recrystallization afforded both the threo- and the erythro-isomer of 150 in a yield of 26% and 

31%, respectively (Scheme 4.60). Subsequently, both isomers were stereoselectively 

converted into amines 86a, and the enantiomers of erythro-86a were separated by chiral 

HPLC. Despite numerous attempts, no separation was achieved until now in case of threo-86a, 

as it was the case at the alcohol stage (erythro-150 and threo-150).[175] 

                                                 
a Despite several reruns, we were not able to reproduce the diastereoselectivity of >12:1 (threo/erythro) reported 
by the Kessar group. 
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Scheme 4.60 Synthesis of racemic α-(aminobenzyl)quinuclidine (threo- and erythro-86a). 
 

4.7.2 Synthesis of Amino Acid-derived Diamines 

Recently, optically active diamines which are readily accessible from commercially available 

and naturally abundant amino acids in only a few steps, have emerged as highly efficient 

catalysts for a wide range of transformations proceeding via enamine or iminium ion 

catalysis.[179] Thus, we became interested to evaluate their catalytic potential in our 

epoxidation reaction, in particular in the asymmetric epoxidation of 2-cyclopentenone (46r) 

which had emerged as especially challenging substrate among the cyclic enone series. For this 

purpose, we prepared different diamines bearing (at least) one primary amine functionality 

through conventional synthetic routes, including peptide coupling chemistry. First, the amide 

bond is formed, which then gets reduced in the next step to obtain the desired diamines 

(Figure 4.17). 

 

 
Figure 4.17 General strategy for the synthesis of optically active diamines from the corresponding amino acids. 
 

For the synthesis of primary−primary amine 87 and primary−secondary amine 88, the amide 

bond was formed by simple aminolysis of the respective amino acid ester, followed by 

reduction with lithium aluminium hydride. 
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Scheme 4.61 (a) Synthesis of primary−primary diamine 87; (b) synthesis of primary−secondary diamine 88. 
 

The synthesis of primary−tertiary amines 89a-d commenced with the peptide coupling 

between N-Boc-protected amino acids and dimethyl amine mediated by HBTU. After removal 

of the Boc group, reduction of the amides furnished the desired diamines in moderate to good 

yields. 

 

 

Scheme 4.62 Synthesis of primary−tertiary diamine 89a-d. 
 

All diamines 87-89 were tested as catalysts in the asymmetric epoxidation of 2-

cyclopentenone, albeit with only moderate success (cf. Table 4.20). 

 

4 Results and Discussion 

 151

 

 

Scheme 4.61 (a) Synthesis of primary−primary diamine 87; (b) synthesis of primary−secondary diamine 88. 
 

The synthesis of primary−tertiary amines 89a-d commenced with the peptide coupling 

between N-Boc-protected amino acids and dimethyl amine mediated by HBTU. After removal 

of the Boc group, reduction of the amides furnished the desired diamines in moderate to good 

yields. 

 

 

Scheme 4.62 Synthesis of primary−tertiary diamine 89a-d. 
 

All diamines 87-89 were tested as catalysts in the asymmetric epoxidation of 2-

cyclopentenone, albeit with only moderate success (cf. Table 4.20). 

 

4 Results and Discussion 

 151

 

 

Scheme 4.61 (a) Synthesis of primary−primary diamine 87; (b) synthesis of primary−secondary diamine 88. 
 

The synthesis of primary−tertiary amines 89a-d commenced with the peptide coupling 

between N-Boc-protected amino acids and dimethyl amine mediated by HBTU. After removal 

of the Boc group, reduction of the amides furnished the desired diamines in moderate to good 

yields. 

 

 

Scheme 4.62 Synthesis of primary−tertiary diamine 89a-d. 
 

All diamines 87-89 were tested as catalysts in the asymmetric epoxidation of 2-

cyclopentenone, albeit with only moderate success (cf. Table 4.20). 

 

4 Results and Discussion 

 151

 

 

Scheme 4.61 (a) Synthesis of primary−primary diamine 87; (b) synthesis of primary−secondary diamine 88. 
 

The synthesis of primary−tertiary amines 89a-d commenced with the peptide coupling 

between N-Boc-protected amino acids and dimethyl amine mediated by HBTU. After removal 

of the Boc group, reduction of the amides furnished the desired diamines in moderate to good 

yields. 

 

 

Scheme 4.62 Synthesis of primary−tertiary diamine 89a-d. 
 

All diamines 87-89 were tested as catalysts in the asymmetric epoxidation of 2-

cyclopentenone, albeit with only moderate success (cf. Table 4.20). 

 



4  Results and Discussion 

152 

4.7.3 Synthesis of BINOL-derived Phosphoric Acids 

At the outset of our studies, only chiral phosphoric acids derived from unsubstituted (S)- or 

(R)-BINOL were commercially available. All other chiral BINOL-derived phosphoric acids 7 

were obtained via phosphorylation of appropriately 3,3'-disubstituted BINOL derivatives 156, 

which could be readily accessed from commercially available enantiomerically pure (S)- or 

(R)-BINOL in four steps involving cross coupling methods (Scheme 4.63). 

 

 
Scheme 4.63 Retrosynthetic approach to the preparation of 3,3'-disubstituted BINOL-derived phosphates 7. 
(R = Ar; X = B(OH)2, Br) 
 

Depending on the nature of the substituents R at the 3,3'-positions, two different cross-

coupling strategies were applied: Most aromatic residues were successfully introduced via 

palladium-catalyzed Suzuki-Miyaura coupling of boronic diacid 157 and the respective 

aromatic halide according to the procedures of Jørgensen et al. and Wipf et al. (Scheme 

4.64).[180] 

 

 
Scheme 4.64 General procedure for the synthesis of BINOL phosphates 7 via Suzuki-Miyaura cross-coupling. 
 

The introduction of sterically hindered substituents such as the 2,4,6-triisopropylphenyl group 

of the chiral phosphoric acid TRIP (7a) was accomplished via a nickel-catalyzed Kumada 

cross coupling of dibromide 158a and the respective aryl magnesium bromide.a The pre-

paration of the chiral phosphoric acid TRIP was developed and optimized by A. M. Seayad 

according to the procedures of Schrock et al. and Akiyama et al. (Scheme 4.65).[181] 

 

                                                 
aSuzuki-Miyaura reaction of boronic diacid 157 with 2,4,6-triisopropylphenyl bromide afforded poor yields of 
the dicoupling product. 
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Scheme 4.65 Synthesis of TRIP (7a) via Kumada cross-coupling. 
 

The synthesis of sterically hindered 3,3'-bis(triphenylsilyl)-1,1'-bi-2-naphthol hydrogen 

phosphate (7b)[182] relied on the remarkably facile 1,3-rearrangement of O-silylated dibromide 

158c to 3,3'-disilylated BINOL derivative 159 as the key step.[183] 
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Scheme 4.66 Synthesis of bis(triphenylsilyl)-substituted phosphoric acid (S)-7b via -Osilyl to -Csilyl 
rearrangement. 
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5 Summary 

Our laboratory has a long-term interest in the development of organocatalytic asymmetric 

epoxydation methods, since optically active epoxides are valuable chiral building blocks and 

versatile synthetic intermediates. 

This Ph.D. thesis describes the successful development of organocatalytic asymmetric 

epoxidation and hydroperoxidation reactions of α,β-unsaturated ketones with aqueous 

hydrogen peroxide as the oxidant in the presence of catalytic amounts of a chiral primary 

amine salt. The focus was placed on challenging substrate classes such as simple cyclic 

enones and enolizable aliphatic acyclic enones. Indeed, and despite the wealth of 

enantioselective enone epoxidation methods known, these substrates have been systematically 

omitted and their enantioselective epoxidation is a challenge thus far unmet by the synthetic 

community. 

 

At the outset, we concentrated our work on the asymmetric epoxidation of cyclic α,β-

unsaturated ketones. In the course of our studies, we identified two powerful and 

complementary catalytic systems based on chiral primary amines for the desired 

transformation: the [(R,R)-DPEN • (S)-TRIP] salt and 9-amino(9-deoxy)epiquinine (9-NH2-

epiQ; 13) as its trifluoroacetic acid salt [9-NH2-epiQ • 2 TFA] (Figure 5.1). 

 

 

Figure 5.1 Catalyst systems developed for the asymmetric epoxidation of cyclic α,β-enones. 
 

Using these chiral primary amine salts as catalysts at 10 mol% loadings, we achieved an 

efficient asymmetric epoxidation of variously substituted cyclic enones of different ring sizes, 

in good to high yields along with excellent enantioselectivities of up to > 99.5:0.5 er in many 

cases (Scheme 5.1). 
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Scheme 5.1 Catalytic asymmetric epoxidation of cyclic α,β-unsaturated ketones. (aYields of pure, isolated 
products; bDetermined by GC with an internal standard method.) 
 

Mechanistically, we propose the reaction to proceed via activation of the α,β-unsaturated 

ketones as iminium ions (cf. Figure 3.1). This assumption was supported by structure-activity 

relationships uncovered during our evaluation of modified catalyst candidates (cf. Chapter 

4.5.1). Since primary amine catalysts equipped with a second basic amine functionality gave 

superior results in terms of enantioselectivity, we hypothesized that this additional binding 

site might bring the hydrogen peroxide into close proximity to the reactive center (via 

hydrogen bonding interactions) and direct its attack to one of the enantiotopic faces of the 

double bond (Figure 5.2). 
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Figure 5.2 Pre-transition state assembly invoking a directing effect of the bifunctional amine catalyst’s 
second amino group. 
 

In addition, our efforts were aimed at evaluating the synthetic potential of optically active 

cyclic α,β-epoxyketones 48. We envisaged them to function as precursors to enantiomerically 

enriched cyclic aldol products through reductive epoxide opening. After screening different 

reduction methods, we identified conditions which provided cyclic aldol products 124 of 
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different ring sizes in excellent yields. It should be noted that these aldols, which were 

obtained essentially without loss of optical purity, would be particularly difficult to access by 

any other synthetic means (Scheme 5.2). 

 

 
Scheme 5.2 Cyclic aldols through reductive epoxide cleavage. 
 

We then became interested in expanding the scope of our catalytic asymmetric epoxidation 

reaction. Thus, the second part of this thesis concerned the work with acyclic α,β-unsaturated 

ketones. It could quickly be established that the 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) 

TFA salt was furthermore a viable catalytic system for the reaction of acyclic enones with 

aqueous hydrogen peroxide. In contrast to the reaction of cyclic substrates under identical 

reaction conditions, we found that acyclic enones 92 provide mixtures of trans-epoxides 93 

along with unanticipated cyclic peroxyhemiketals of the general type 94 in varying ratios 

(Scheme 5.3). 

 

 

Scheme 5.3 [9-NH2-epiQ • 2 TFA]-catalyzed reaction of acyclic α,β-enones with aqueous hydrogen peroxide. 
 

Intriguingly, careful optimization of the catalyst composition and reaction conditions enabled 

us to direct the reaction either toward increasing peroxyhemiketal 94 or epoxide 93 formation. 

Thereby, we have established the first catalytic asymmetric hydroperoxidation of α,β-

unsaturated ketones, which delivers prized, synthetically and medicinally relevant 3-hydroxy-

1,2-dioxolanes 94 (as ~1:1 mixtures of hemiketal isomers) in good yields along with high 

enantioselectivities of up to 98.5:1.5 er (Scheme 5.4). The reaction performed well within a 

wide range of aliphatic α,β-unsaturated ketones, whereas aromatic enones were not tolerated. 

Notably, the survival of a broad array of functional groups (featuring acid labile acetal and 

silyl ether functionalities) testifies the mildness of the adopted reaction conditions. 
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ketones. It could quickly be established that the 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) 

TFA salt was furthermore a viable catalytic system for the reaction of acyclic enones with 

aqueous hydrogen peroxide. In contrast to the reaction of cyclic substrates under identical 

reaction conditions, we found that acyclic enones 92 provide mixtures of trans-epoxides 93 

along with unanticipated cyclic peroxyhemiketals of the general type 94 in varying ratios 

(Scheme 5.3). 
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Intriguingly, careful optimization of the catalyst composition and reaction conditions enabled 

us to direct the reaction either toward increasing peroxyhemiketal 94 or epoxide 93 formation. 

Thereby, we have established the first catalytic asymmetric hydroperoxidation of α,β-

unsaturated ketones, which delivers prized, synthetically and medicinally relevant 3-hydroxy-

1,2-dioxolanes 94 (as ~1:1 mixtures of hemiketal isomers) in good yields along with high 

enantioselectivities of up to 98.5:1.5 er (Scheme 5.4). The reaction performed well within a 

wide range of aliphatic α,β-unsaturated ketones, whereas aromatic enones were not tolerated. 

Notably, the survival of a broad array of functional groups (featuring acid labile acetal and 

silyl ether functionalities) testifies the mildness of the adopted reaction conditions. 

 

5  Summary 

156 

different ring sizes in excellent yields. It should be noted that these aldols, which were 

obtained essentially without loss of optical purity, would be particularly difficult to access by 

any other synthetic means (Scheme 5.2). 

 

 
Scheme 5.2 Cyclic aldols through reductive epoxide cleavage. 
 

We then became interested in expanding the scope of our catalytic asymmetric epoxidation 

reaction. Thus, the second part of this thesis concerned the work with acyclic α,β-unsaturated 

ketones. It could quickly be established that the 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) 

TFA salt was furthermore a viable catalytic system for the reaction of acyclic enones with 

aqueous hydrogen peroxide. In contrast to the reaction of cyclic substrates under identical 

reaction conditions, we found that acyclic enones 92 provide mixtures of trans-epoxides 93 

along with unanticipated cyclic peroxyhemiketals of the general type 94 in varying ratios 

(Scheme 5.3). 

 

 

Scheme 5.3 [9-NH2-epiQ • 2 TFA]-catalyzed reaction of acyclic α,β-enones with aqueous hydrogen peroxide. 
 

Intriguingly, careful optimization of the catalyst composition and reaction conditions enabled 

us to direct the reaction either toward increasing peroxyhemiketal 94 or epoxide 93 formation. 

Thereby, we have established the first catalytic asymmetric hydroperoxidation of α,β-

unsaturated ketones, which delivers prized, synthetically and medicinally relevant 3-hydroxy-

1,2-dioxolanes 94 (as ~1:1 mixtures of hemiketal isomers) in good yields along with high 

enantioselectivities of up to 98.5:1.5 er (Scheme 5.4). The reaction performed well within a 

wide range of aliphatic α,β-unsaturated ketones, whereas aromatic enones were not tolerated. 

Notably, the survival of a broad array of functional groups (featuring acid labile acetal and 

silyl ether functionalities) testifies the mildness of the adopted reaction conditions. 

 

5  Summary 

156 

different ring sizes in excellent yields. It should be noted that these aldols, which were 

obtained essentially without loss of optical purity, would be particularly difficult to access by 

any other synthetic means (Scheme 5.2). 

 

 
Scheme 5.2 Cyclic aldols through reductive epoxide cleavage. 
 

We then became interested in expanding the scope of our catalytic asymmetric epoxidation 

reaction. Thus, the second part of this thesis concerned the work with acyclic α,β-unsaturated 

ketones. It could quickly be established that the 9-amino(9-deoxy)epiquinine (9-NH2-epiQ; 13) 

TFA salt was furthermore a viable catalytic system for the reaction of acyclic enones with 

aqueous hydrogen peroxide. In contrast to the reaction of cyclic substrates under identical 

reaction conditions, we found that acyclic enones 92 provide mixtures of trans-epoxides 93 

along with unanticipated cyclic peroxyhemiketals of the general type 94 in varying ratios 

(Scheme 5.3). 

 

 

Scheme 5.3 [9-NH2-epiQ • 2 TFA]-catalyzed reaction of acyclic α,β-enones with aqueous hydrogen peroxide. 
 

Intriguingly, careful optimization of the catalyst composition and reaction conditions enabled 

us to direct the reaction either toward increasing peroxyhemiketal 94 or epoxide 93 formation. 

Thereby, we have established the first catalytic asymmetric hydroperoxidation of α,β-

unsaturated ketones, which delivers prized, synthetically and medicinally relevant 3-hydroxy-

1,2-dioxolanes 94 (as ~1:1 mixtures of hemiketal isomers) in good yields along with high 

enantioselectivities of up to 98.5:1.5 er (Scheme 5.4). The reaction performed well within a 

wide range of aliphatic α,β-unsaturated ketones, whereas aromatic enones were not tolerated. 

Notably, the survival of a broad array of functional groups (featuring acid labile acetal and 

silyl ether functionalities) testifies the mildness of the adopted reaction conditions. 

 



5 Summary 

 157

 
 
Scheme 5.4 Catalytic asymmetric hydroperoxidation of α,β-unsaturated ketones 92. 
 

An exception among the cyclic enones constituted 2-cycloheptenone (46s) and the 

corresponding eight-membered ring enone (46v), which in analogous fashion to the acyclic 

substrates afforded bicyclic peroxyhemiketals along with the expected epoxides (Scheme 5.5). 

Those bicyclic peroxyhemiketals, which have not been described previously, piqued our 

interest since their bicyclic peroxidic scaffold resembles potent antimalarial agents. After 

optimization, both compounds 116 and 117 were obtained in good yields and with high 

optical purity. 
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Scheme 5.5 Catalytic asymmetric hydroperoxidation of 2-cycloheptenone (46s) and 2-cyclooctenone (48v). 
 

The versatility of cyclic peroxyhemiketals 94 (cf. Scheme 5.4) was illustrated by converting 

them into epoxides 93, aldol products 96, and 1,2-dioxolane 127 (Scheme 5.6). 

Epoxides 93 were obtained via base-mediated rearrangement of crude hydroperoxidation 

products (cf. Chapter 4.2.2.2), whereas silane reduction of peroxyhemiketals 94 in the 

presence of a Brønsted acid afforded 1,2-dioxolane 127 (cf. Chapter 4.3.3). The reduction to 

aldol products 96 could be accomplished in situ by the addition of P(OEt)3 directly to the 

reaction mixture once the hydroperoxidation of α,β-unsaturated ketones 92 was complete (cf. 

Chapter 4.3.1). Alternatively, the crude hydroperoxidation product could be subjected to 

catalytic hydrogenation. The hydroperoxidation-reduction sequence furnished aldol products 
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which are formally derived from linear α-unbranched aldehydes with high enantioselectivities. 

This is particularly interesting in view of the fact that α-unbranched aldehydes still represent 

challenging substrates in proline-catalyzed aldol reactions. 

Remarkably, aldols 96, epoxides 93 and 1,2-dioxolane 127 could all be readily accessed in 

nearly enantiopure fashion, at will from a common peroxyhemiketal precursor. 

 

 
 
Scheme 5.6 Versatility of cyclic peroxyhemiketals 94: syntheses of epoxides 93, aldol products 96, and 1,2-
dioxolane 127. 
 

Our postulated mechanism invokes the formation of a peroxyenamine intermediate B 

resulting from the conjugate addition of hydrogen peroxide to the activated enone A (cf. 

Figure 5.2). This intermediate can either undergo ring closure providing epoxides 93 or 

furnish peroxyhemiketals 94 upon hydrolysis (Scheme 5.7). Experimental support of this 

hypothesis was inter alia provided by monitoring the reaction by ESI-MS (cf. Chapter 

1284.5.2). 
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Scheme 5.7 Competing reaction pathways accounting for both the formation of peroxyhemiketals 94 and 
epoxides 93. 
 

An intriguing feature of our asymmetric hydroperoxidation-epoxidation reaction of α,β-

unsaturated ketones is the complete stereoconvergency. We have demonstrated that both E- 

and Z-isomers of a respective enone furnish the same enantiomer of the corresponding trans-

epoxide in equally high enantioselectivity, with the isomerization most likely taking place via 

a dienamine intermediate (cf. Chapter 4.2.2.3). 

 
Interestingly, the use of pseudoenantiomeric 9-amino(9-deoxy)epiquinidine (9-NH2-epiQD; 

67) instead of 9-NH2-epiQ (13) as the primary amine component provided antipodal products 

with equally high enantioselectivity as has been demonstrated for cyclic as well as acyclic 

substrates. We thus hold an efficient synthetic entry to either enantiomeric series of the 

compounds described throughout this dissertation. 

Finally, it should be pointed out that a significant and general strength of the 

hydroperoxidation and epoxidation methods presented in this thesis lies in the use of aqueous 

hydrogen peroxide as the oxidant. Hydrogen peroxide meets all criteria for future applications 

potentially also on an industrial scale. It is an environmentally benign and economic oxidant: 

cheap, readily available, and gives water as the only by-product. 

 

 

Part of this work has been published in scientific journals: 

 

“Catalytic Asymmetric Hydroperoxidation of α,β-Unsaturated Ketones”: An Approach to 

Enantiopure Peroxyhemiketals, Epoxides, and Aldols”: C. M. Reisinger, X. Wang, B. List, 

Angew. Chem., Int. Ed. 2008, 47, 8112-8115; Angew. Chem., 2008, 120, 8232-8235. 

 

“Catalytic Asymmetric Epoxidation of Cyclic Enones”: X. Wang, C. M. Reisinger, B. List,  

J. Am. Chem. Soc. 2008, 130, 6070-6071. 
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6 Outlook 

As can be inferred from the chemistry described in the previous chapters, there are exciting 

perspectives ahead for further development of our catalytic asymmetric epoxidation and 

hydroperoxidation reactions. 

9-Amino(9-deoxy)epiquinine as its TFA salt ([9-NH2-epiQ • 2 TFA]) proved to be a highly 

efficient and general iminium ion activator of cyclic as well as acyclic α,β-unsaturated ketone 

substrates, allowing the highly enantioselective conjugate addition of hydrogen peroxide. It 

might be desirable to explore the catalytic potential of such chiral primary amine salts in 

enantioselective epoxidation and hydroperoxidation reactions of other, sterically demanding 

α,β-unsaturated carbonyl compounds. In this context, future efforts might address the 

catalytic enantioselective epoxidation of α-substituted-α,β-unsaturated aldehydes in the 

presence of chiral primary amine salts such as [9-NH2-epiQ • 2 TFA] and others.[46c, 50b] To 

date, there is no general and efficient method available for the direct epoxidation of this class 

of so-called α-branched-α,β-unsaturated aldehydes.[184] Noteworthy, the corresponding 

optically active epoxyaldehydes constitute attractive chiral building blocks and pivotal 

intermediates in many natural product syntheses. Strikingly, current synthetic strategies 

typically rely on reaction sequences involving Sharpless asymmetric epoxidation of allylic 

alcohols followed by oxidation of the intermediate epoxyalcohols. A direct epoxidation of α-

branched-α,β-unsaturated aldehydes would thus pave the way for the synthesis of such 

epoxyaldehydes with significantly improved redox economy.[185] 

Initial attempts toward the direct asymmetric epoxidation of α-substituted-α,β-enals afforded 

very promising results, and clearly warrant further optimization efforts. For instance, 

epoxyaldehyde 159 was formed in 37% yield along with good enantioselectivity of 93:7 er 

from 2-methyl-2-pentenal (158) in the presence of catalytic amounts of [9-NH2-epiQ • 2 TFA] 

and hydrogen peroxide as the oxidant (Scheme 6.1). 

 

 

Scheme 6.1 Initial attempt toward the direct asymmetric epoxidation of α-substituted-α,β-unsaturated 
aldehydes. 
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As can be inferred from the chemistry described in the previous chapters, there are exciting 
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hydroperoxidation reactions. 

9-Amino(9-deoxy)epiquinine as its TFA salt ([9-NH2-epiQ • 2 TFA]) proved to be a highly 

efficient and general iminium ion activator of cyclic as well as acyclic α,β-unsaturated ketone 

substrates, allowing the highly enantioselective conjugate addition of hydrogen peroxide. It 

might be desirable to explore the catalytic potential of such chiral primary amine salts in 

enantioselective epoxidation and hydroperoxidation reactions of other, sterically demanding 

α,β-unsaturated carbonyl compounds. In this context, future efforts might address the 

catalytic enantioselective epoxidation of α-substituted-α,β-unsaturated aldehydes in the 

presence of chiral primary amine salts such as [9-NH2-epiQ • 2 TFA] and others.[46c, 50b] To 

date, there is no general and efficient method available for the direct epoxidation of this class 

of so-called α-branched-α,β-unsaturated aldehydes.[184] Noteworthy, the corresponding 

optically active epoxyaldehydes constitute attractive chiral building blocks and pivotal 

intermediates in many natural product syntheses. Strikingly, current synthetic strategies 

typically rely on reaction sequences involving Sharpless asymmetric epoxidation of allylic 
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Most of the work in this thesis focused on asymmetric epoxidations and hydroperoxidations 

of α,β-unsaturated ketones. Whereas aliphatic enones gave the corresponding α,β-

epoxyketones with good yields and excellent enantioselectivities, aromatic enones were not 

tolerated. In addition, vinyl ketones 110 constituted the second major limitation regarding the 

scope of α,β-unsaturated ketones. These substrates proved to be essentially unreactive under 

the conditions of the catalytic reaction, an observation which was attributed to catalyst 

inhibition (cf. Section 4.2.2.4). Despite the synthetic importance of optically active terminal 

epoxides, to date no general and highly enantioselective method has been identified for their 

direct preparation; more so when terminal α,β-epoxyketones 160 are considered.[186] Guided 

by this challenge, we envisage that the use of preformed achiral β-hydroperoxy ketones-cyclic 

peroxyhemiketals 161 might prove beneficial,[113a, 113b] since they could allow us to 

circumvent difficulties associated with the conjugate addition of hydrogen peroxide in the 

presence of the primary amine catalyst (Scheme 6.2, step (a)). Subsequent chiral primary 

amine or chiral primary amine salt-catalyzed transformation of such achiral β-hydroperoxy 

ketones via asymmetric enamine catalysis would give rise to the formation of the desired 

enantiomerically enriched epoxides (step (b)). 

 

 

Scheme 6.2 Proposed two step approach to terminal α,β-epoxy ketones 160 starting from vinyl ketones 110. 
 

Preliminary experiments have demonstrated the viability of this approach. In the presence of 

[(R,R)-DPEN • (S)-TRIP] at a loading of 10 mol%, α,β-epoxyketone 160a was formed in 

50% yield and with encouraging enantioselectivity of 58.5:41.5 er from cyclic 

peroxyhemiketal 161a (Scheme 6.3). Future work might be directed toward evaluating 

different catalyst motifs and optimizing the reaction conditions. In addition, the successful 

implementation of asymmetric enamine catalysis has earlier been illustrated by our group in 
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the context of asymmetric epoxidations of both symmetrically β,β-disubstituted enals[38a] and 

enones (cf. Section 4.2.2.5). 

 

 
Scheme 6.3 [(R,R)-DPEN • (S)-TRIP]-catalyzed transformation of cyclic peroxyhemiketal 161a into scalemic 
epoxyketone 160a. 
 

Another interesting expansion of these methodologies would be the coupling of our 

asymmetric epoxidation and hydroperoxidation of α,β-unsaturated ketones with an efficient 

kinetic or dynamic kinetic resolution process. Based on our previous experiments toward 

(dynamic) kinetic resolutions via asymmetric epoxidation within the bias of a cyclic system, 

future attempts might preferentially focus on acyclic racemic enone substrates according to 

the general strategy depicted in Scheme 6.4. 
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Scheme 6.4 Proposed (dynamic) kinetic resolution of α,β-unsaturated ketones via asymmetric epoxidation. 
 

Progress has also been made toward the de-novo design of chiral primary amine catalysts of 

the general structure 86 based on the quinuclidine scaffold. Racemic synthesis of 86 

according to the strategy introduced in Chapter 4.7.1.2, followed by the separation of the 

diastereomers and subsequent resolution would afford single enantiomers of both threo- and 

erythro-derivatives (Scheme 6.5). This promising direction of research might lead to the 

identification of new, potent primary amine catalysts with superior catalytic activity compared 

with parent Cinchona alkaloid-derived catalyst motifs. In particular, the de-novo approach 

may significantly facilitate catalyst optimization since one is not restricted to naturally 

abundant Cinchona alkaloids as starting materials. This further renders such compounds the 

ideal platform to conduct systematic structure-selectivity studies.[187] Moreover, it nicely 

circumvents one of the most stringent, inherent limitations of the of Cinchona alkaloids in 

asymmetric catalysis: the inaccessibility of a truly enantiomeric form of these compounds. 
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Scheme 6.5 Rapid library generation of de-novo designed chiral aminoquinuclidine derivatives. 
 
Given the impressive results obtained with our epoxidation and hydroperoxidation processes, 

we believe that the methods described herein might be mature enough to be tested in the 

context of natural product synthesis. In particular, the optically active 3-hydroxy-1,2-

dioxolanes made available in one step from α,β-unsaturated ketones through asymmetric 

hydroperoxidation could allow the development of a concise route to various members of the 

plakinic acid natural product family. These naturally ocurring peroxidic compounds display 

promising antitumor and antifungal activity.[114] Only one asymmetric synthesis of plakinic 

acid A (36a; cf. Figure 2.6) has been reported to date. It is striking to note that this synthesis 

comprises 23 steps in a linear sequence with an overall yield of 5.7%, while requiring the use 

of ethereal hydrogen peroxide and semipreparative HPLC separation techniques.[106] 

Providing access to peroxyketals of the general type 162 in optically active form as described 

in Chapter 4.2.2.5 may pave the way to concise asymmetric syntheses of a broad range of 1,2-

dioxolane acetic acid derivatives 36. These should include naturally occurring representatives 

as well as synthetic analogues which might exhibit improved pharmacological activities, all 

prepared according to the unified retrosynthetic strategy depicted in Figure 6.1.[114] 

 

 
 
Figure 6.1 Proposed retrosynthesis of 1,2-dioxolane-3-acetic acids from α,β-unsaturated ketones. 
 

In recent years, macrocyclic natural products have gained increasing attention. They often 

display remarkable biological activities, and many of these compounds (or their derivatives) 

are used as drugs.[188] Our intriguing discovery of an asymmetric epoxidation of macrocyclic 

enones proceeding under mild reaction conditions with extremely high stereocontrol might 

provide intriguing synthetic versatility. In particular, we find the possibility of effecting 

stereoselective, catalyst-controlled late-stage introduction of epoxide functionality onto a 
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macrocyclic core very enticing. Such a possibility would clearly expand the toolbox of 

existing strategies toward the synthesis of macrocyclic natural products and their derivatives. 

One strength of our method is its stereoconvergency. Regardless of the geometry of a 

macrocyclic enone precursor (available inter alia through ring-closing metathesis or through 

Wittig and related olefination reactions), the (E)-configured macrocyclic epoxide would be 

generated exclusively. Moreover, pseudoenantiomeric amine catalysts (derived from quinine 

and quinidine) would allow concise access to diastereomeric products suitable for SAR 

studies with equally high enantioselectivity. Possible target molecules to illustrate the 

feasibility of a late-stage introduction of an epoxide moiety via chiral primary amine-

catalyzed asymmetric epoxidation of enones might be among others Novaxenicin B[189] or 

Cespihypotin C (Figure 6.2).[190] 

 

 
Figure 6.2 Natural products Novaxenicin B and Cespihypotin C. 
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and quinidine) would allow concise access to diastereomeric products suitable for SAR 

studies with equally high enantioselectivity. Possible target molecules to illustrate the 

feasibility of a late-stage introduction of an epoxide moiety via chiral primary amine-

catalyzed asymmetric epoxidation of enones might be among others Novaxenicin B[189] or 

Cespihypotin C (Figure 6.2).[190] 

 

 
Figure 6.2 Natural products Novaxenicin B and Cespihypotin C. 
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7.1 General Experimental Conditions 

 
Solvents and reagents 

All solvents were purified by distillation before use following standard procedures. Absolute 

solvents were obtained by distillation over appropriate drying agent (vide infra) and then kept 

under an atmosphere of argon: diethyl ether, tetrahydrofuran, toluene, and n-hexane (sodium, 

benzophenone as indicator), chloroform, dichloromethane, triethylamine (calcium hydride), 

ethanol (magnesium). Absolute 1,4-dioxane, TBME, di(n-butyl)ether, DME, NMP, 

acetonitrile, and DMSO were purchased from Sigma-Aldrich and used as received. Other 

commercial reagents were obtained from various sources and used without further 

purification. 

 

Inert gas atmosphere 

Air and moisture-sensitive reactions were conducted under an argon atmosphere. Argon was 

obtained from Air Liquide with higher than 99.5% purity. All organocatalytic reactions within 

this thesis were carried out without exclusion of air and moisture. 

 

Chromatographic methods 

Reactions were mostly monitored by thin layer chromatography (TLC) using silica gel 

precoated glass plates (E. Merck, 0.25 mm thickness, silica gel 60F-254) or silica gel 

precoated aluminium foil plates (Macherey-Nagel MN, 0.20 mm thickness, Polygram SIL 

G/UV254). The spots were visualized with UV-light (λ = 254 nm) and/or by staining with 

anisaldehyde, phosphomolybdic acid, ninhydrin, dinitrophenylhydrazine, or potassium 

permanganate stains. Preparative scale TLC was conducted on Macherey-Nagel glass plates 

with a thickness of 0.25, 1, or 2 mm silica gel, respectively. 

Flash column chromatography was performed using silica gel 60 (Merck, 60 Å, 230-400 

mesh 0.040-0.063 mm) and separations were either conducted at slightly elevated pressure in 

a glass column or using the automated Sepacore Flash system from Büchi, consisting of 

fraction collector C-660, UV-photometer C-635, and pump module C-605. 

 

7 Experimental Part 

 165

 

7 Experimental Part 

 

7.1 General Experimental Conditions 

 
Solvents and reagents 

All solvents were purified by distillation before use following standard procedures. Absolute 

solvents were obtained by distillation over appropriate drying agent (vide infra) and then kept 

under an atmosphere of argon: diethyl ether, tetrahydrofuran, toluene, and n-hexane (sodium, 

benzophenone as indicator), chloroform, dichloromethane, triethylamine (calcium hydride), 

ethanol (magnesium). Absolute 1,4-dioxane, TBME, di(n-butyl)ether, DME, NMP, 

acetonitrile, and DMSO were purchased from Sigma-Aldrich and used as received. Other 

commercial reagents were obtained from various sources and used without further 

purification. 

 

Inert gas atmosphere 

Air and moisture-sensitive reactions were conducted under an argon atmosphere. Argon was 

obtained from Air Liquide with higher than 99.5% purity. All organocatalytic reactions within 

this thesis were carried out without exclusion of air and moisture. 

 

Chromatographic methods 

Reactions were mostly monitored by thin layer chromatography (TLC) using silica gel 

precoated glass plates (E. Merck, 0.25 mm thickness, silica gel 60F-254) or silica gel 

precoated aluminium foil plates (Macherey-Nagel MN, 0.20 mm thickness, Polygram SIL 

G/UV254). The spots were visualized with UV-light (λ = 254 nm) and/or by staining with 

anisaldehyde, phosphomolybdic acid, ninhydrin, dinitrophenylhydrazine, or potassium 

permanganate stains. Preparative scale TLC was conducted on Macherey-Nagel glass plates 

with a thickness of 0.25, 1, or 2 mm silica gel, respectively. 

Flash column chromatography was performed using silica gel 60 (Merck, 60 Å, 230-400 

mesh 0.040-0.063 mm) and separations were either conducted at slightly elevated pressure in 

a glass column or using the automated Sepacore Flash system from Büchi, consisting of 

fraction collector C-660, UV-photometer C-635, and pump module C-605. 

 

7 Experimental Part 

 165

 

7 Experimental Part 

 

7.1 General Experimental Conditions 

 
Solvents and reagents 

All solvents were purified by distillation before use following standard procedures. Absolute 

solvents were obtained by distillation over appropriate drying agent (vide infra) and then kept 

under an atmosphere of argon: diethyl ether, tetrahydrofuran, toluene, and n-hexane (sodium, 

benzophenone as indicator), chloroform, dichloromethane, triethylamine (calcium hydride), 

ethanol (magnesium). Absolute 1,4-dioxane, TBME, di(n-butyl)ether, DME, NMP, 

acetonitrile, and DMSO were purchased from Sigma-Aldrich and used as received. Other 

commercial reagents were obtained from various sources and used without further 

purification. 

 

Inert gas atmosphere 

Air and moisture-sensitive reactions were conducted under an argon atmosphere. Argon was 

obtained from Air Liquide with higher than 99.5% purity. All organocatalytic reactions within 

this thesis were carried out without exclusion of air and moisture. 

 

Chromatographic methods 

Reactions were mostly monitored by thin layer chromatography (TLC) using silica gel 

precoated glass plates (E. Merck, 0.25 mm thickness, silica gel 60F-254) or silica gel 

precoated aluminium foil plates (Macherey-Nagel MN, 0.20 mm thickness, Polygram SIL 

G/UV254). The spots were visualized with UV-light (λ = 254 nm) and/or by staining with 

anisaldehyde, phosphomolybdic acid, ninhydrin, dinitrophenylhydrazine, or potassium 

permanganate stains. Preparative scale TLC was conducted on Macherey-Nagel glass plates 

with a thickness of 0.25, 1, or 2 mm silica gel, respectively. 

Flash column chromatography was performed using silica gel 60 (Merck, 60 Å, 230-400 

mesh 0.040-0.063 mm) and separations were either conducted at slightly elevated pressure in 

a glass column or using the automated Sepacore Flash system from Büchi, consisting of 

fraction collector C-660, UV-photometer C-635, and pump module C-605. 

 

7 Experimental Part 

 165

 

7 Experimental Part 

 

7.1 General Experimental Conditions 

 
Solvents and reagents 

All solvents were purified by distillation before use following standard procedures. Absolute 

solvents were obtained by distillation over appropriate drying agent (vide infra) and then kept 

under an atmosphere of argon: diethyl ether, tetrahydrofuran, toluene, and n-hexane (sodium, 

benzophenone as indicator), chloroform, dichloromethane, triethylamine (calcium hydride), 

ethanol (magnesium). Absolute 1,4-dioxane, TBME, di(n-butyl)ether, DME, NMP, 

acetonitrile, and DMSO were purchased from Sigma-Aldrich and used as received. Other 

commercial reagents were obtained from various sources and used without further 

purification. 

 

Inert gas atmosphere 

Air and moisture-sensitive reactions were conducted under an argon atmosphere. Argon was 

obtained from Air Liquide with higher than 99.5% purity. All organocatalytic reactions within 

this thesis were carried out without exclusion of air and moisture. 

 

Chromatographic methods 

Reactions were mostly monitored by thin layer chromatography (TLC) using silica gel 

precoated glass plates (E. Merck, 0.25 mm thickness, silica gel 60F-254) or silica gel 

precoated aluminium foil plates (Macherey-Nagel MN, 0.20 mm thickness, Polygram SIL 

G/UV254). The spots were visualized with UV-light (λ = 254 nm) and/or by staining with 

anisaldehyde, phosphomolybdic acid, ninhydrin, dinitrophenylhydrazine, or potassium 

permanganate stains. Preparative scale TLC was conducted on Macherey-Nagel glass plates 

with a thickness of 0.25, 1, or 2 mm silica gel, respectively. 

Flash column chromatography was performed using silica gel 60 (Merck, 60 Å, 230-400 

mesh 0.040-0.063 mm) and separations were either conducted at slightly elevated pressure in 

a glass column or using the automated Sepacore Flash system from Büchi, consisting of 

fraction collector C-660, UV-photometer C-635, and pump module C-605. 

 



7  Experimental Part 

166 

Nuclear magnetic resonance spectroscopy (NMR) 

Spectra were recorded on Bruker DPX 300 (1H: 300 MHz, 13C: 75 MHz), Bruker AV 400 

(1H: 400 MHz, 13C: 100 MHz), and Bruker AV 500 (1H: 500 MHz, 13C: 125 MHz) spectro-

meters at room temperature (298 K). Chemical shifts for protons and carbons are reported in 

parts per million (ppm) relative to tetramethylsilane as internal standard or to the residual 

signal of the NMR solvents (e.g. CD2Cl2: δ H 5.32, δ C 53.8, CDCl3: δ H 7.26, δ C 77.0, 

THF-d8: δ H 3.58, δ C 67.6). Chemical shifts for phosphorus are reported relative to H3PO4 as 

external standard. The 1H NMR multiplicities are assigned as follows: singlet (s), doublet (d), 

triplet (t), q (quartet), quin (quintet), sext (sextet), sept (septet), m (multiplet), broad (br). The 

coupling constants (J) are reported in Hertz (Hz). The signals have been assigned using 1D 

and 2D experiments. 

 

Gas chromatography (GC) 

Gas chromatography (GC) was performed on HP 6890 and 5890 Series instruments (carrier 

gas: hydrogen) equipped with a split-mode capillary injection system and a flame ionization 

detector (FID). 

The enantiomeric ratios of chiral molecules were determined using chiral columns containing 

the following chiral stationary phases: 

BGB 176: 2,3-dimethyl-6-tert-butyldimethylsilyl-β-cyclodextrin 

(achiral component: SE-52 or BGB-15); 30 m × 0.25 mm × 0.25 mm. 

BGB 178: 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin 

(achiral component: OV-1701); 30 m × 0.25 mm × 0.25 mm. 

G-TA: trifluoroacetyl-γ-cyclodextrin; 30 m × 0.25 mm × 0.25 mm. 

Ivadex 1: dimethylpentyl-β-cyclodextrin (achiral component: PS086); 25 m × 0.25 mm × 

0.25 mm. 

Ivadex 7: diethyl-tert-butyl-dimethyl-β-cyclodextrin; 25 m × 0.25 mm × 0.25 mm. 

Lipodex A: hexakis(2,3,6-tri-O-pentyl)-α-cyclodextrin; 25 m × 0.25 mm × 0.25 mm. 

Lipodex E: octakis(2,6-O-dipentyl-3-O-butyryl)-γ-cyclodextrin; 25 m × 0.25 mm × 0.25 

mm. 

Lipodex G: octakis(2,3-O-dipentyl-6-O-methyl-γ-cyclodextrin; 25 m × 0.25 mm × 0.25 

mm. 

Hydrodex-β-TBDAC: 

heptakis(2,3-O-diacetyl-6-O-tert-butyldimethyl-silyl)-β-cyclodextrin; 

25 m × 0.25 mm × 0.25 mm. 
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GC-MS couplings were performed on an Agilent Technology GC 6890 Series and MSD 5973 

(carrier gas: helium) with HP6890 Series Injector, employing an MN Optima®5 column 

(30 m × 0.25 mm × 0.25 mm). The mass spectra were recorded with an Agilent Technology 

5973 Network MSD. 

 

Mass spectrometry (MS) 

Mass spectra were measured on a Finnigan MAT 8200 (70 eV) or MAT 8400 (70 eV) by 

electron ionization, chemical ionization, of fast atom/ion bombardment techniques. High 

resolution masses were determined on a Bruker APEX III FT-MS (7 T magnet). All masses 

are given in atomic units/elementary charge (m/z) and reported in percentage relative to the 

basic peak. The mechanistic studies (cf. Chapter 4.5.2) were performed by ESI-MS with a 

Finnigan Ultra Mass TSQ 7000. 

 

Specific rotation ([α]) 

Optical rotations were measured on a Perkin Elmer 343 or Rudolph Analytical Autopol IV 

polarimeter using a 1 mL cell with a path length of 1 dm at the temperature and wavelength 

indicated, with “D” referring to the sodium D-line wavelength (589 nm). Concentrations are 

given in g/100 mL. 

 

Determination of the optical purity 

Enantiomeric ratios (er) were determined either by chiral GC or chiral HPLC analysis (as 

specified in the individual experiments) by comparing the samples with the appropriate 

racemic mixtures. The optical purity of peroxyhemiketals 94 was determined after converting 

it to the corresponding epoxide (with 1N NaOH (1 equiv) in Et2O) or to the corresponding 

aldol-type product (with triethylphosphite (2 equiv) in Et2O). Racemic samples of epoxides 

were obtained by reaction of the enone with alkaline, aqueous hydrogen peroxide. These 

reactions were conducted in methanol in the presence of either tert-butylamine or NaOH as 

the catalytic base.[191] Racemic samples of aldol products were obtained through aldol 

reaction of the respective aldehyde with acetone catalyzed by either KOH or rac-proline. 

Racemic cyclic aldol products were obtained by reductive cleavage of the epoxide of racemic 

α,β-epoxyketones. The absolute configuration of 2,3-epoxycyclohexanone (48a) and 4-

hydroxy-6-phenyl-2-hexanone (96b) (derived from the corresponding peroxyhemiketal 94b 

through P(OEt)3-reduction) was established by comparison of their optical rotation with 

literature values.[97a, 137] All other absolute configurations were assigned by analogy. 
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7.2 Catalytic Asymmetric Epoxidation of Cyclic Enones 

7.2.1 General Procedure[121] 

 

 
 
Conditions A: Catalyst salt [(R,R)-DPEN • (S)-TRIP] was prepared in situ by stirring (R,R)-
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mmol, 1.0 equiv) was added, and 20 minutes later, aqueous hydrogen peroxide (50 wt%; 46 

μL, 0.75 mmol, 1.5 equiv). After 12-72 h of stirring at 30-50 °C, the reaction mixture was 

extracted with Et2O (3×10 mL). The combined organic phases were washed with brine, dried 

(Na2SO4), and filtered. For the highly volatile products 48a and 48r, the resulting solution 

was analyzed by GC for yield and er determination. Removal of the volatiles furnished the 

crude product, which was purified by flash column chromatography (silica gel, eluent: Et2O-

pentane) to afford pure cyclic α,β-epoxy ketone 48. 

 
Conditions B: Catalyst salt [13 • 2 TFA] was prepared in situ by the addition of 9-amino(9-

deoxy)epiquinine (13; 32.3 mg, 0.1 mmol, 10 mol%) to a solution of trifluoroacetic acid 

(TFA; 15.3 μL, 0.2 mmol, 20 mol%) in dioxane (4 mL). Then, cyclic enone 46 (1.0 mmol, 1.0 
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7.2.2 Scope of Optically Active Cyclic α,β-Epoxyketones 

2,3-Epoxycyclohexanone (48a) 

Conditions A: After 48 h at 35 °C, the conversion was determined to be 99% 

by GC using an Optima-5-Accent column (5 min at 40°C, 5.0 °C/min until 

100 °C, 25 °C/min until 250 °C, 1.0 min at 250°C, 0.35 bar He; starting 

material: τR = 12.35 min, product: τR = 15.66 min). After purification by flash column 

chromatography (silica gel, 5-10% Et2O in pentane) (2R,3R)-48a was obtained as a clear 

liquid (76 mg, 678 µmol, 68% (reduced yield due to the high volatility of 48a); 96:4 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 16.62 min, minor enantiomer: τR = 16.23 min. 

Optical rotation [α]23
D = +101.2 (c = 1.0, CH2Cl2, 96:4 er (2R,3R)), [Lit.:[97a] (2S,3S)-48a, 

[α]rt
D = −38.0 (c = 0.82, CH2Cl2, 60:40 er)] 

Conditions B: After 24 h at 30 °C, the conversion was determined to be 91% 

by GC using an Optima-5-Accent column (5 min at 40°C, 5.0 °C/min until 

100 °C, 25 °C/min until 250 °C, 1.0 min at 250°C, 0.35 bar He; starting 

material: τR = 12.34 min, product: τR = 15.65 min). After purification by flash column 

chromatography (silica gel, 5-10% Et2O in pentane) (2S,3S)-48a was obtained as a clear 

liquid (65 mg, 580 µmol, 58% (reduced yield due to the high volatility of 48a); 97:3 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 16.22 min, minor enantiomer: τR = 17.08 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.57-3.55 (m, 1H, CH2CepoH), 3.15 (d, J = 4.2 Hz, 1H, 

CepoHC(=O)), 2.47 (dt, J = 17.5, 4.6 Hz, 1H, CHHC(=O)), 2.26-2.19 (m, 1H, CHHCepoH), 

2.07-2.00 (m, 1H, CHHC(=O)), 1.94-1.84 (m, 2H, CHHCepoH and CH2CHHCH2), 1.69-1.60 

(m, 1H, CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.0 (C=O), 56.2 (CH2CHepo), 55.4 (CHepoC(=O)), 36.7 

(CH2C(=O)), 23.2 (CH2CHepo), 17.3 (CH2CH2CH2). 

The analytical data were identical in all respects to those of the commercially available 2,3-

epoxycyclohexanone (48a; Sigma-Aldrich). 
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(2R,3R)-4,4-Dimethyl-2,3-epoxycyclohexanone ((2R,3R)-48b) 

Conditions A: The title compound was isolated after 48 h at 35 °C and 

purification by flash column chromatography (silica gel, 2% Et2O in pentane) 

as a clear liquid (56 mg, 400 µmol, 80%; 97:3 er). The enantiomeric ratio 

was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m (80 

°C, 1.5 °C/min until 170 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 25.75 min, minor enantiomer: τR = 21.91 min. 
1H NMR (500 MHz, CDCl3) δ 3.20 (d, J = 3.9 Hz, 1H, CepoHC(=O)), 3.15 (dd, J = 4.0, 1.3 

Hz, 1H, CMe2CepoH), 2.37 (ddd, J = 18.9, 6.3, 3.1 Hz, 1H, CHHC(=O)), 2.20-2.13 (m, 1H, 

CHHC(=O)), 1.88 (ddd, J = 13.6, 11.8, 6.4 Hz, 1H, CHHCqMe2), 1.31 (dddd, J = 13.6, 7.1, 

3.0, 1.2 Hz, 1H, CHHCqMe2), 1.19 (s, 3H, CH3), 1.04 (s, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 205.9 (C=O), 64.1 (CMe2CHepo), 55.9 (CHepoC(=O)), 33.1 

(CH2C(=O)), 30.7 (CqMe2), 29.7 (CH2CqMe2), 27.4 (CH3), 22.8 (CH3). 

MS (EI) m/z (%) 140 [M+] (14), 124 (2), 111 (20), 97 (27), 85 (58), 69 (100), 55 (73), 43 (29), 

41 (95), 39 (32), 29 (31). 

HRMS calcd for C8H12O2 [M
+] 140.0839, found 140.0837. 

 

(2R,3R)-5,5-Dimethyl-2,3-epoxycyclohexanone ((2R,3R)-48c) 

Conditions A: The title compound was isolated after 48 h at 35 °C and 

purification by flash column chromatography (silica gel, 3% Et2O in 

pentane) as a clear liquid (53 mg, 757 µmol, 76%; 98:2 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(80 °C, 1.2 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 29.57 min, minor enantiomer: τR = 27.55 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.48 (t, J = 4.1 Hz, 1H, CH2CepoH), 3.14 (d, J = 3.8 Hz, 1H, 

CepoHC(=O)), 2.61 (d, J = 13.2 Hz, 1H, CHHC(=O)), 2.00 (d, J = 15.4 Hz, 1H, CHHCHepo), 

1.86-1.74 (m, 2H, CHHC(=O) and CHHCHepo), 1.00 (s, 3H, CH3), 0.90 (s, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 207.5 (C=O), 57.4 (CHepoC(=O)), 55.0 (CH2CHepo), 49.0 

(CH2C(=O)), 37.5 (CH2CHepo), 37.4 (CqMe2), 31.0 (CH3), 28.1 (CH3). 

GC-MS (EI-DE) m/z (%) 140 [M+] (20), 125 (1), 112 (4), 97 (20), 83 (100), 79 (8), 69 (28), 

55 (90), 53 (13), 43 (19), 41 (73), 39 (34), 27 (20). 

HRMS calcd for C8H12O2 [M
+] 140.0839, found 140.0837. 
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Conditions A: The title compound was isolated after 48 h at 35 °C and 

purification by flash column chromatography (silica gel, 2% Et2O in pentane) 

as a clear liquid (56 mg, 400 µmol, 80%; 97:3 er). The enantiomeric ratio 
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(2R,3R)-3,5,5-Trimethyl-2,3-epoxycyclohexanone ((2R,3R)-48d) 

Conditions A: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 1.5% Et2O in 

pentane) as a clear liquid (48 mg, 623 µmol, 62%; 96:4 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(60 °C, 1.0 °C/min until 90 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 27.80 min, minor enantiomer: τR = 27.24 min. 
1H NMR (500 MHz, CDCl3) δ 3.01 (s, 1H, CepoH), 2.58 (d, J = 13.5 Hz, 1H, CHHC(=O)), 

2.04 (d, J = 14.7 Hz, 1H, CqepoCHH), 1.77 (ddd, J = 13.4, 2.0, 1.0 Hz, 1H, CHHC(=O)), 1.70 

(dd, J = 14.8, 2.2 Hz, 1H, CqepoCHH), 1.38 (s, 3H, CqepoCH3), 0.98 (s, 3H, CH3), 0.87 (s, 3H, 

CH3). 
13C NMR (75 MHz, CDCl3) δ 207.8 (C=O), 64.2 (Cqepo), 61.4 (CHepo), 48.0 (CH2C(=O)), 

42.7 (CH2Cqepo), 36.1 (CqMe2), 30.8 (Cq(CH3)2), 27.8 (Cq(CH3)2), 24.0 (CqepoCH3). 

MS (EI-DE) m/z (%) 154 [M+] (30), 139 (33), 126 (17), 111 (12), 97 (25), 83 (100), 69 (50), 

55 (39), 53 (9), 43 (40), 41 (65), 29 (23). 

HRMS calcd for C9H14O2 [M
+] 154.0992, found 154.0994. 

 

(2S,3S)-2,3-Epoxy-3-methylcyclohexanone ((2S,3S)-48f) 

Conditions B: The title compound was isolated after 24 h at 30 °C and 

purification by flash column chromatography (silica gel, 2-10% Et2O in 

pentane) as a clear oil (88 mg, 698 µmol, 70% (reduced yield due to the high 

volatility of 48f); 98:2 er). The enantiomeric ratio was determined by GC using a chiral BGB-

178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min 

at 220 °C, 0.5 bar H2); major enantiomer: τR = 16.79 min, minor enantiomer: τR = 19.18 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.01 (s, 1H, CepoH), 2.42 (dt, J = 17.6, 4.1 Hz, 1H, 

CHHC(=O)), 2.13-1.84 (m, 4H, CHHC(=O), CH2Cqepo, and CH2CHHCH2), 1.66-1.58 (m, 1H, 

CH2CHHCH2), 1.42 (s, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 206.7 (C=O), 62.6 (Cqepo), 62.3 (CHepo), 36.1 (CH2C(=O)), 

28.7 (CH2Cqepo), 22.3 (CH3), 17.5 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 126 [M+] (78), 111 (8), 97 (46), 83 (35), 81 (21), 79 (5), 71 (79), 69 (26), 

67 (8), 58 (3), 55 (61), 53 (12), 43 (89), 41 (100), 39 (49), 31 (2), 27 (36). 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

 

O

O

C9H14O2

154,21

O

O

Me

C7H10O2

126,15

7 Experimental Part 

 171
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(2R,3R)-3,5,5-Trimethyl-2,3-epoxycyclohexanone ((2R,3R)-48d) 

Conditions A: The title compound was isolated after 48 h at 50 °C and 
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HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 
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(2S,3S)-3-Ethyl-2,3-epoxycyclohexanone ((2S,3S)-48g) 

Conditions B: The title compound was isolated after 30 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 5-10% Et2O in pentane) as 

a clear oil (102 mg, 728 µmol, 73% ; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 

115 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 23.73 

min, minor enantiomer: τR = 25.43 min. 
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CHHC(=O)), 2.12-1.95 (m, 2H, CHHC(=O) and CHHCqepo), 1.94-1.83 (m, 2H, CHHCqepo 

and CH2CHHCH2), 1.78-1.61 (m, 3H, CH2CH3 and CH2CHHCH2), 0.96 (t, J = 7.5 Hz, 3H, 

CH3). 
13C NMR (100 MHz, CD2Cl2) δ 206.9 (C=O), 66.3 (Cqepo), 61.1 (CHepo), 36.4 (CH2C(=O)), 

29.2 (CH2CH3), 26.5 (CH2Cqepo), 17.8 (CH2CH2CH2), 8.8 (CH3). 

MS (EI-DE) m/z (%) 140 [M+] (90), 125 (5), 111 (49), 107 (1), 97 (55), 95 (24), 85 (79), 79 

(12), 67 (24), 57 (30), 55 (84), 43 (38), 41 (100), 39 (58), 29 (92), 27 (77). 

HRMS (EI-FE) calcd for C8H12O2 [M
+] 140.0836, found 140.0837. 

 

(2S,3R)-2,3-Epoxy-3-isobutylcyclohexanone ((2S,3R)-48h) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (123 mg, 731 µmol, 73%; 98:2 er). The enantio-

meric ratio was determined by GC using a chiral BGB-178/OV-1701 

column 30 m (80 °C, 0.8 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 

bar H2); major enantiomer: τR = 43.77 min, minor enantiomer: τR = 45.20 min. 
1H NMR (400 MHz, CD2Cl2) δ 2.98 (s, 1H, CepoH), 2.45 (dt, J = 17.4, 4.3 Hz, 1H, 

C(=O)CHH), 2.11-1.81 (m, 5H, C(=O)CHH, CH2Cqepo, CHMe2, and CH2CHHCH2), 1.67-

1.60 (m, 2H, CH2CHHCH2 and CHHi-Pr), 1.40 (dd, J = 13.8, 8.1 Hz, 1H, CHHi-Pr), 0.96 (d, 

J = 6.6 Hz, 3H, CH(CH3)2), 0.91 (d, J = 6.6 Hz, 3H, CH(CH3)2). 
13C NMR (75 MHz, CD2Cl2) δ 206.9 (C=O), 64.8 (Cqepo), 61.8 (CHepo), 45.4 (CH2i-Pr), 36.4 

(C(=O)CH2), 26.5 (CH2Cqepo), 25.4 (CHMe2), 23.2 (CH(CH3)2), 22.7 (CH(CH3)2), 17.7 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 168 [M+] (45), 153 (7), 139 (7), 126 (36), 112 (31), 79 (32), 67 (43), 55 

(56), 41 (100), 39 (43), 27 (54). 

HRMS (EI-FE) calcd for C10H16O2 [M
+] 168.1149, found 168.1150. 
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(2S,3R)-2,3-Epoxy-3-isopropylcyclohexanone ((2S,3R)-48i) 

Conditions B: The title compound was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 5-10% Et2O in pentane) as 

a clear oil (121 mg, 785 µmol, 79%; 99:1 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 

120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 27.79 

min, minor enantiomer: τR = 29.24 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.03 (s, 1H, CepoH), 2.46 (dt, J = 17.3, 4.7 Hz, 1H, 

CHHC(=O)), 2.11-1.99 (m, 2H, CHHC(=O) and CHHCqepo), 1.95-1.83 (m, 2H, CHHCqepo 

and CH2CHHCH2), 1.70-1.60 (m, 2H, CH2CHHCH2 and CHMe2), 1.03 (d, J = 6.8 Hz, 3H, 

CH(CH3)2), 0.97 (d, J = 7.0 Hz, 3H, CH(CH3)2). 
13C NMR (100 MHz, CD2Cl2) δ 207.0 (C=O), 69.3 (Cqepo), 61.1 (CHepo), 36.6 (CH2C(=O)), 

34.5 (CHMe2), 23.3 (CH2Cqepo), 18.1 (CH2CH2CH2), 18.0 (CH(CH3)2), 17.9 (CH(CH3)2). 

MS (EI-DE) m/z (%) 154 [M+] (61), 139 (4), 125 (24), 111 (78), 99 (34), 81 (41), 71 (6), 69 

(30), 55 (93), 53 (18), 43 (84), 41 (100), 29 (32), 27 (56) 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0993, found 154.0994. 

 

(2S,3R)-3-tert-Butyl-2,3-epoxycyclohexanone ((2S,3R)-48j) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (57 mg, 339 µmol, 68%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 125 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 13.22 min, minor enantiomer: tR = 14.25 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (s, 1H, CepoH), 2.46 (dt, J = 17.7, 4.7 Hz, 1H, 

CHHC(=O)), 2.19-2.13 (m, 1H, CH2), 2.07-1.99 (m, 1H, CH2), 1.95-1.86 (m, 2H, CH2), 1.67-

1.60 (m, 1H, CH2), 0.97 (s, 9H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 207.3 (C=O), 70.5 (Cqepo), 59.2 (CepoH), 36.1 (CH2C(=O)), 

34.0 (CqMe3), 25.4 (3C, CH3), 23.2 (CqepoCH2), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 168 [M+] (22), 153 (5), 139 (14), 125 (39), 113 (15), 96 (87), 83 (24), 69 

(61), 55 (100), 41 (57), 29 (26). 

HRMS (EI-FE) calcd for C10H16O2 [M
+] 168.1150, found 168.1150. 
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and CH2CHHCH2), 1.70-1.60 (m, 2H, CH2CHHCH2 and CHMe2), 1.03 (d, J = 6.8 Hz, 3H, 

CH(CH3)2), 0.97 (d, J = 7.0 Hz, 3H, CH(CH3)2). 
13C NMR (100 MHz, CD2Cl2) δ 207.0 (C=O), 69.3 (Cqepo), 61.1 (CHepo), 36.6 (CH2C(=O)), 

34.5 (CHMe2), 23.3 (CH2Cqepo), 18.1 (CH2CH2CH2), 18.0 (CH(CH3)2), 17.9 (CH(CH3)2). 

MS (EI-DE) m/z (%) 154 [M+] (61), 139 (4), 125 (24), 111 (78), 99 (34), 81 (41), 71 (6), 69 

(30), 55 (93), 53 (18), 43 (84), 41 (100), 29 (32), 27 (56) 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0993, found 154.0994. 

 

(2S,3R)-3-tert-Butyl-2,3-epoxycyclohexanone ((2S,3R)-48j) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (57 mg, 339 µmol, 68%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 125 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 13.22 min, minor enantiomer: tR = 14.25 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (s, 1H, CepoH), 2.46 (dt, J = 17.7, 4.7 Hz, 1H, 

CHHC(=O)), 2.19-2.13 (m, 1H, CH2), 2.07-1.99 (m, 1H, CH2), 1.95-1.86 (m, 2H, CH2), 1.67-

1.60 (m, 1H, CH2), 0.97 (s, 9H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 207.3 (C=O), 70.5 (Cqepo), 59.2 (CepoH), 36.1 (CH2C(=O)), 

34.0 (CqMe3), 25.4 (3C, CH3), 23.2 (CqepoCH2), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 168 [M+] (22), 153 (5), 139 (14), 125 (39), 113 (15), 96 (87), 83 (24), 69 

(61), 55 (100), 41 (57), 29 (26). 

HRMS (EI-FE) calcd for C10H16O2 [M
+] 168.1150, found 168.1150. 
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(2S,3R)-2,3-Epoxy-3-isopropylcyclohexanone ((2S,3R)-48i) 

Conditions B: The title compound was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 5-10% Et2O in pentane) as 

a clear oil (121 mg, 785 µmol, 79%; 99:1 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 

120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 27.79 

min, minor enantiomer: τR = 29.24 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.03 (s, 1H, CepoH), 2.46 (dt, J = 17.3, 4.7 Hz, 1H, 

CHHC(=O)), 2.11-1.99 (m, 2H, CHHC(=O) and CHHCqepo), 1.95-1.83 (m, 2H, CHHCqepo 

and CH2CHHCH2), 1.70-1.60 (m, 2H, CH2CHHCH2 and CHMe2), 1.03 (d, J = 6.8 Hz, 3H, 

CH(CH3)2), 0.97 (d, J = 7.0 Hz, 3H, CH(CH3)2). 
13C NMR (100 MHz, CD2Cl2) δ 207.0 (C=O), 69.3 (Cqepo), 61.1 (CHepo), 36.6 (CH2C(=O)), 

34.5 (CHMe2), 23.3 (CH2Cqepo), 18.1 (CH2CH2CH2), 18.0 (CH(CH3)2), 17.9 (CH(CH3)2). 

MS (EI-DE) m/z (%) 154 [M+] (61), 139 (4), 125 (24), 111 (78), 99 (34), 81 (41), 71 (6), 69 

(30), 55 (93), 53 (18), 43 (84), 41 (100), 29 (32), 27 (56) 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0993, found 154.0994. 

 

(2S,3R)-3-tert-Butyl-2,3-epoxycyclohexanone ((2S,3R)-48j) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (57 mg, 339 µmol, 68%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 125 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 13.22 min, minor enantiomer: tR = 14.25 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (s, 1H, CepoH), 2.46 (dt, J = 17.7, 4.7 Hz, 1H, 

CHHC(=O)), 2.19-2.13 (m, 1H, CH2), 2.07-1.99 (m, 1H, CH2), 1.95-1.86 (m, 2H, CH2), 1.67-

1.60 (m, 1H, CH2), 0.97 (s, 9H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 207.3 (C=O), 70.5 (Cqepo), 59.2 (CepoH), 36.1 (CH2C(=O)), 

34.0 (CqMe3), 25.4 (3C, CH3), 23.2 (CqepoCH2), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 168 [M+] (22), 153 (5), 139 (14), 125 (39), 113 (15), 96 (87), 83 (24), 69 

(61), 55 (100), 41 (57), 29 (26). 

HRMS (EI-FE) calcd for C10H16O2 [M
+] 168.1150, found 168.1150. 
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(2S,3R)-2,3-Epoxy-3-allylcyclohexanone ((2S,3R)-48k) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 2-15% Et2O in 

pentane) as a clear oil (34.8 mg, 229 μmol, 23%; 97.5:2.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (21 min at 125 °C, 14 °C/min until 230 °C, 10 min at 230°C, 0.6 bar 

H2); major enantiomer: τR = 24.39 min, minor enantiomer: τR = 25.96 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.77 (ddt, J = 17.0, 10.1, 7.1 Hz, 1H, CH=CH2), 5.17-5.13 (m, 

2H, CH=CH2), 3.06 (s, 1H, CepoH), 2.48-2.38 (m, 3H, CH2CH=CH2 and CHHC(=O)), 2.13-

2.09 (m, 1H, CH2, cycl.), 2.05-1.98 (m, 1H, CH2, cycl.), 1.93-1.85 (m, 2H, CH2, cycl.), 1.67-1.61 

(m, 1H, CH2, cycl.). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 132.3 (CH=CH2), 119.1 (CH=CH2), 64.7 

(Cqepo), 60.6 (CHepo), 40.6 (CH2CH=CH2), 36.3 (CH2C(=O)), 26.7 (CH2Cqepo), 17.7 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 152 [M+] (8), 137 (4), 123 (60), 109 (13), 97 (41), 91 (11), 79 (53), 69 

(29), 67 (61), 55 (85), 53 (23), 41 (100), 39 (55), 29 (18), 27 (31). 

HRMS (EI-FE) calcd for C9H12O2 [M
+] 152.0836, found 152.0837. 

 
(E)-3-(1-propenyl)cyclohex-2-enone (76) 

The title compound (70.2 mg, 516 μmol, 52%) was obtained as a side product 

in the epoxidation reaction of 3-allylcyclohex-2-enone (46k) under the 

conditions B. 
1H NMR (500 MHz, CD2Cl2) δ 6.30-6.22 (m, 2H, Cq=CH and CH=CHCH3), 5.81-5.80 (m, 

1H, CH=CHCH3), 2.45 (t, J = 5.9 Hz, CH2C(=O)), 2.34 (t, J = 6.6 Hz, CH2Cq=CH), 2.00 

(quint, J = 6.4 Hz, CH2CH2CH2), 1.87 (d, J = 5.6 Hz, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 202.2 (C=O), 157.9 (Cq=CH), 134.2 (CH=CH), 133.0 

(CH=CH), 126.4 (Cq=CH), 38.2 (CH2C(=O)), 25.4 (CH2Cq=CH), 23.0 (CH2CH2CH2), 19.2 

(CH3). 

 

(2S,3R)-2,3-Epoxy-3-phenethylcyclohexanone ((2S,3R)-48l) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 1-10% Et2O in 

pentane) as a clear oil (182 mg, 843 µmol, 84%; 98.5:1.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 
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(2S,3R)-2,3-Epoxy-3-allylcyclohexanone ((2S,3R)-48k) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 2-15% Et2O in 

pentane) as a clear oil (34.8 mg, 229 μmol, 23%; 97.5:2.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (21 min at 125 °C, 14 °C/min until 230 °C, 10 min at 230°C, 0.6 bar 

H2); major enantiomer: τR = 24.39 min, minor enantiomer: τR = 25.96 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.77 (ddt, J = 17.0, 10.1, 7.1 Hz, 1H, CH=CH2), 5.17-5.13 (m, 

2H, CH=CH2), 3.06 (s, 1H, CepoH), 2.48-2.38 (m, 3H, CH2CH=CH2 and CHHC(=O)), 2.13-

2.09 (m, 1H, CH2, cycl.), 2.05-1.98 (m, 1H, CH2, cycl.), 1.93-1.85 (m, 2H, CH2, cycl.), 1.67-1.61 

(m, 1H, CH2, cycl.). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 132.3 (CH=CH2), 119.1 (CH=CH2), 64.7 

(Cqepo), 60.6 (CHepo), 40.6 (CH2CH=CH2), 36.3 (CH2C(=O)), 26.7 (CH2Cqepo), 17.7 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 152 [M+] (8), 137 (4), 123 (60), 109 (13), 97 (41), 91 (11), 79 (53), 69 

(29), 67 (61), 55 (85), 53 (23), 41 (100), 39 (55), 29 (18), 27 (31). 

HRMS (EI-FE) calcd for C9H12O2 [M
+] 152.0836, found 152.0837. 

 
(E)-3-(1-propenyl)cyclohex-2-enone (76) 

The title compound (70.2 mg, 516 μmol, 52%) was obtained as a side product 

in the epoxidation reaction of 3-allylcyclohex-2-enone (46k) under the 

conditions B. 
1H NMR (500 MHz, CD2Cl2) δ 6.30-6.22 (m, 2H, Cq=CH and CH=CHCH3), 5.81-5.80 (m, 

1H, CH=CHCH3), 2.45 (t, J = 5.9 Hz, CH2C(=O)), 2.34 (t, J = 6.6 Hz, CH2Cq=CH), 2.00 

(quint, J = 6.4 Hz, CH2CH2CH2), 1.87 (d, J = 5.6 Hz, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 202.2 (C=O), 157.9 (Cq=CH), 134.2 (CH=CH), 133.0 

(CH=CH), 126.4 (Cq=CH), 38.2 (CH2C(=O)), 25.4 (CH2Cq=CH), 23.0 (CH2CH2CH2), 19.2 

(CH3). 

 

(2S,3R)-2,3-Epoxy-3-phenethylcyclohexanone ((2S,3R)-48l) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 1-10% Et2O in 

pentane) as a clear oil (182 mg, 843 µmol, 84%; 98.5:1.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 
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(2S,3R)-2,3-Epoxy-3-allylcyclohexanone ((2S,3R)-48k) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 2-15% Et2O in 

pentane) as a clear oil (34.8 mg, 229 μmol, 23%; 97.5:2.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (21 min at 125 °C, 14 °C/min until 230 °C, 10 min at 230°C, 0.6 bar 

H2); major enantiomer: τR = 24.39 min, minor enantiomer: τR = 25.96 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.77 (ddt, J = 17.0, 10.1, 7.1 Hz, 1H, CH=CH2), 5.17-5.13 (m, 

2H, CH=CH2), 3.06 (s, 1H, CepoH), 2.48-2.38 (m, 3H, CH2CH=CH2 and CHHC(=O)), 2.13-

2.09 (m, 1H, CH2, cycl.), 2.05-1.98 (m, 1H, CH2, cycl.), 1.93-1.85 (m, 2H, CH2, cycl.), 1.67-1.61 

(m, 1H, CH2, cycl.). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 132.3 (CH=CH2), 119.1 (CH=CH2), 64.7 

(Cqepo), 60.6 (CHepo), 40.6 (CH2CH=CH2), 36.3 (CH2C(=O)), 26.7 (CH2Cqepo), 17.7 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 152 [M+] (8), 137 (4), 123 (60), 109 (13), 97 (41), 91 (11), 79 (53), 69 

(29), 67 (61), 55 (85), 53 (23), 41 (100), 39 (55), 29 (18), 27 (31). 

HRMS (EI-FE) calcd for C9H12O2 [M
+] 152.0836, found 152.0837. 

 
(E)-3-(1-propenyl)cyclohex-2-enone (76) 

The title compound (70.2 mg, 516 μmol, 52%) was obtained as a side product 

in the epoxidation reaction of 3-allylcyclohex-2-enone (46k) under the 

conditions B. 
1H NMR (500 MHz, CD2Cl2) δ 6.30-6.22 (m, 2H, Cq=CH and CH=CHCH3), 5.81-5.80 (m, 

1H, CH=CHCH3), 2.45 (t, J = 5.9 Hz, CH2C(=O)), 2.34 (t, J = 6.6 Hz, CH2Cq=CH), 2.00 

(quint, J = 6.4 Hz, CH2CH2CH2), 1.87 (d, J = 5.6 Hz, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 202.2 (C=O), 157.9 (Cq=CH), 134.2 (CH=CH), 133.0 

(CH=CH), 126.4 (Cq=CH), 38.2 (CH2C(=O)), 25.4 (CH2Cq=CH), 23.0 (CH2CH2CH2), 19.2 

(CH3). 

 

(2S,3R)-2,3-Epoxy-3-phenethylcyclohexanone ((2S,3R)-48l) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 1-10% Et2O in 

pentane) as a clear oil (182 mg, 843 µmol, 84%; 98.5:1.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 
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(2S,3R)-2,3-Epoxy-3-allylcyclohexanone ((2S,3R)-48k) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 2-15% Et2O in 

pentane) as a clear oil (34.8 mg, 229 μmol, 23%; 97.5:2.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (21 min at 125 °C, 14 °C/min until 230 °C, 10 min at 230°C, 0.6 bar 

H2); major enantiomer: τR = 24.39 min, minor enantiomer: τR = 25.96 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.77 (ddt, J = 17.0, 10.1, 7.1 Hz, 1H, CH=CH2), 5.17-5.13 (m, 

2H, CH=CH2), 3.06 (s, 1H, CepoH), 2.48-2.38 (m, 3H, CH2CH=CH2 and CHHC(=O)), 2.13-

2.09 (m, 1H, CH2, cycl.), 2.05-1.98 (m, 1H, CH2, cycl.), 1.93-1.85 (m, 2H, CH2, cycl.), 1.67-1.61 

(m, 1H, CH2, cycl.). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 132.3 (CH=CH2), 119.1 (CH=CH2), 64.7 

(Cqepo), 60.6 (CHepo), 40.6 (CH2CH=CH2), 36.3 (CH2C(=O)), 26.7 (CH2Cqepo), 17.7 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 152 [M+] (8), 137 (4), 123 (60), 109 (13), 97 (41), 91 (11), 79 (53), 69 

(29), 67 (61), 55 (85), 53 (23), 41 (100), 39 (55), 29 (18), 27 (31). 

HRMS (EI-FE) calcd for C9H12O2 [M
+] 152.0836, found 152.0837. 

 
(E)-3-(1-propenyl)cyclohex-2-enone (76) 

The title compound (70.2 mg, 516 μmol, 52%) was obtained as a side product 

in the epoxidation reaction of 3-allylcyclohex-2-enone (46k) under the 

conditions B. 
1H NMR (500 MHz, CD2Cl2) δ 6.30-6.22 (m, 2H, Cq=CH and CH=CHCH3), 5.81-5.80 (m, 

1H, CH=CHCH3), 2.45 (t, J = 5.9 Hz, CH2C(=O)), 2.34 (t, J = 6.6 Hz, CH2Cq=CH), 2.00 

(quint, J = 6.4 Hz, CH2CH2CH2), 1.87 (d, J = 5.6 Hz, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 202.2 (C=O), 157.9 (Cq=CH), 134.2 (CH=CH), 133.0 

(CH=CH), 126.4 (Cq=CH), 38.2 (CH2C(=O)), 25.4 (CH2Cq=CH), 23.0 (CH2CH2CH2), 19.2 

(CH3). 

 

(2S,3R)-2,3-Epoxy-3-phenethylcyclohexanone ((2S,3R)-48l) 

Conditions B: The title compound was isolated after 48 h at 50 °C and 

purification by flash column chromatography (silica gel, 1-10% Et2O in 

pentane) as a clear oil (182 mg, 843 µmol, 84%; 98.5:1.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 
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column 30 m (100 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 

bar H2); major enantiomer: τR = 56.99 min, minor enantiomer: τR = 58.46 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.31-7.27 (m, 2H, CHar), 7.23-7.18 (m, 3H, CHar), 3.01 (s, 

1H, CepoH), 2.74 (t, J = 8.3 Hz, 2H, CH2Ph), 2.46 (dt, J = 17.0, 4.7 Hz, 1H, C(=O)CHH), 

2.20-2.12 (m, 1H, CHHCqepo), 2.08-1.87 (m, 5H, C(=O)CHH, CHHCqepo, CH2CHHCH2, and 

CH2CH2Ph), 1.71-1.62 (m, 1H, CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.5 (C=O), 141.5 (Cqar), 128.8 (2C, CHar), 128.6 (2C, 

CHar), 126.5 (CHar, p), 65.1 (Cqepo), 61.4 (CHepo), 38.2 (CH2CH2Ph), 36.3 (C(=O)CH2), 31.2 

(CH2Ph), 26.9 (CH2Cqepo), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 216 [M+] (2), 198 (2), 187 (1), 169 (3), 154 (1), 143 (11), 128 (4), 104 

(100), 97 (13), 91 (69), 79 (13), 69 (5), 65 (17), 55 (12), 41 (31). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1149, found 216.1150. 

 

3-Benzyl-2,3-epoxycyclohexanone (48m) 

Conditions B: The title compound (2S,3R)-48m was isolated after 48 h at 

50 °C and purification by flash column chromatography (silica gel, 2-10% 

Et2O in pentane) as a clear oil (158 mg, 781 µmol, 78%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 175 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); 

major enantiomer: τR = 45.74 min, minor enantiomer: τR = 46.65 min. 

Conditions B: 9-amino(9-deoxy)epiquinidine (67) was used (instead of 13). 

The title compound (2R,3S)-48a was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 2-10% Et2O in pentane) 

as a clear oil (156 mg, 771 µmol, 77%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral Hydrodex-β-TBDAc column 25 m (100 °C, 1.2 °C/min until 175 °C, 

20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); major enantiomer: τR = 46.37 min, 

minor enantiomer: τR = 45.88 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.34-7.21 (m, 5H, C6H5), 3.04 (s, 1H, CepoH), 2.98 (s, 2H, 

CH2Ph), 2.44 (dt, J = 17.7, 4.4 Hz, 1H, C(=O)CHH), 2.10-1.95 (m, 2H, C(=O)CHH and 

CHHCqepo), 1.89-1.80 (m, 2H, CHHCqepo and CH2CHHCH), 1.65-1.56 (m, 1H, 

CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.4 (C=O), 136.2 (Cqar), 130.0 (2C, CHar), 128.8 (2C, 

CHar), 127.3 (CHar, p), 65.4 (Cqepo), 60.8 (CHepo), 42.4 (CH2Ph), 36.4 (C(=O)CH2), 26.7 

(CH2Cqepo), 17.6 (CH2CH2CH2). 
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column 30 m (100 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 

bar H2); major enantiomer: τR = 56.99 min, minor enantiomer: τR = 58.46 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.31-7.27 (m, 2H, CHar), 7.23-7.18 (m, 3H, CHar), 3.01 (s, 

1H, CepoH), 2.74 (t, J = 8.3 Hz, 2H, CH2Ph), 2.46 (dt, J = 17.0, 4.7 Hz, 1H, C(=O)CHH), 

2.20-2.12 (m, 1H, CHHCqepo), 2.08-1.87 (m, 5H, C(=O)CHH, CHHCqepo, CH2CHHCH2, and 

CH2CH2Ph), 1.71-1.62 (m, 1H, CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.5 (C=O), 141.5 (Cqar), 128.8 (2C, CHar), 128.6 (2C, 

CHar), 126.5 (CHar, p), 65.1 (Cqepo), 61.4 (CHepo), 38.2 (CH2CH2Ph), 36.3 (C(=O)CH2), 31.2 

(CH2Ph), 26.9 (CH2Cqepo), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 216 [M+] (2), 198 (2), 187 (1), 169 (3), 154 (1), 143 (11), 128 (4), 104 

(100), 97 (13), 91 (69), 79 (13), 69 (5), 65 (17), 55 (12), 41 (31). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1149, found 216.1150. 

 

3-Benzyl-2,3-epoxycyclohexanone (48m) 

Conditions B: The title compound (2S,3R)-48m was isolated after 48 h at 

50 °C and purification by flash column chromatography (silica gel, 2-10% 

Et2O in pentane) as a clear oil (158 mg, 781 µmol, 78%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 175 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); 

major enantiomer: τR = 45.74 min, minor enantiomer: τR = 46.65 min. 

Conditions B: 9-amino(9-deoxy)epiquinidine (67) was used (instead of 13). 

The title compound (2R,3S)-48a was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 2-10% Et2O in pentane) 

as a clear oil (156 mg, 771 µmol, 77%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral Hydrodex-β-TBDAc column 25 m (100 °C, 1.2 °C/min until 175 °C, 

20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); major enantiomer: τR = 46.37 min, 

minor enantiomer: τR = 45.88 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.34-7.21 (m, 5H, C6H5), 3.04 (s, 1H, CepoH), 2.98 (s, 2H, 

CH2Ph), 2.44 (dt, J = 17.7, 4.4 Hz, 1H, C(=O)CHH), 2.10-1.95 (m, 2H, C(=O)CHH and 

CHHCqepo), 1.89-1.80 (m, 2H, CHHCqepo and CH2CHHCH), 1.65-1.56 (m, 1H, 

CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.4 (C=O), 136.2 (Cqar), 130.0 (2C, CHar), 128.8 (2C, 

CHar), 127.3 (CHar, p), 65.4 (Cqepo), 60.8 (CHepo), 42.4 (CH2Ph), 36.4 (C(=O)CH2), 26.7 

(CH2Cqepo), 17.6 (CH2CH2CH2). 
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column 30 m (100 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 

bar H2); major enantiomer: τR = 56.99 min, minor enantiomer: τR = 58.46 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.31-7.27 (m, 2H, CHar), 7.23-7.18 (m, 3H, CHar), 3.01 (s, 

1H, CepoH), 2.74 (t, J = 8.3 Hz, 2H, CH2Ph), 2.46 (dt, J = 17.0, 4.7 Hz, 1H, C(=O)CHH), 

2.20-2.12 (m, 1H, CHHCqepo), 2.08-1.87 (m, 5H, C(=O)CHH, CHHCqepo, CH2CHHCH2, and 

CH2CH2Ph), 1.71-1.62 (m, 1H, CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.5 (C=O), 141.5 (Cqar), 128.8 (2C, CHar), 128.6 (2C, 

CHar), 126.5 (CHar, p), 65.1 (Cqepo), 61.4 (CHepo), 38.2 (CH2CH2Ph), 36.3 (C(=O)CH2), 31.2 

(CH2Ph), 26.9 (CH2Cqepo), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 216 [M+] (2), 198 (2), 187 (1), 169 (3), 154 (1), 143 (11), 128 (4), 104 

(100), 97 (13), 91 (69), 79 (13), 69 (5), 65 (17), 55 (12), 41 (31). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1149, found 216.1150. 

 

3-Benzyl-2,3-epoxycyclohexanone (48m) 

Conditions B: The title compound (2S,3R)-48m was isolated after 48 h at 

50 °C and purification by flash column chromatography (silica gel, 2-10% 

Et2O in pentane) as a clear oil (158 mg, 781 µmol, 78%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 175 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); 

major enantiomer: τR = 45.74 min, minor enantiomer: τR = 46.65 min. 

Conditions B: 9-amino(9-deoxy)epiquinidine (67) was used (instead of 13). 

The title compound (2R,3S)-48a was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 2-10% Et2O in pentane) 

as a clear oil (156 mg, 771 µmol, 77%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral Hydrodex-β-TBDAc column 25 m (100 °C, 1.2 °C/min until 175 °C, 

20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); major enantiomer: τR = 46.37 min, 

minor enantiomer: τR = 45.88 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.34-7.21 (m, 5H, C6H5), 3.04 (s, 1H, CepoH), 2.98 (s, 2H, 

CH2Ph), 2.44 (dt, J = 17.7, 4.4 Hz, 1H, C(=O)CHH), 2.10-1.95 (m, 2H, C(=O)CHH and 

CHHCqepo), 1.89-1.80 (m, 2H, CHHCqepo and CH2CHHCH), 1.65-1.56 (m, 1H, 

CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.4 (C=O), 136.2 (Cqar), 130.0 (2C, CHar), 128.8 (2C, 

CHar), 127.3 (CHar, p), 65.4 (Cqepo), 60.8 (CHepo), 42.4 (CH2Ph), 36.4 (C(=O)CH2), 26.7 

(CH2Cqepo), 17.6 (CH2CH2CH2). 
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column 30 m (100 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 

bar H2); major enantiomer: τR = 56.99 min, minor enantiomer: τR = 58.46 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.31-7.27 (m, 2H, CHar), 7.23-7.18 (m, 3H, CHar), 3.01 (s, 

1H, CepoH), 2.74 (t, J = 8.3 Hz, 2H, CH2Ph), 2.46 (dt, J = 17.0, 4.7 Hz, 1H, C(=O)CHH), 

2.20-2.12 (m, 1H, CHHCqepo), 2.08-1.87 (m, 5H, C(=O)CHH, CHHCqepo, CH2CHHCH2, and 

CH2CH2Ph), 1.71-1.62 (m, 1H, CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.5 (C=O), 141.5 (Cqar), 128.8 (2C, CHar), 128.6 (2C, 

CHar), 126.5 (CHar, p), 65.1 (Cqepo), 61.4 (CHepo), 38.2 (CH2CH2Ph), 36.3 (C(=O)CH2), 31.2 

(CH2Ph), 26.9 (CH2Cqepo), 17.8 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 216 [M+] (2), 198 (2), 187 (1), 169 (3), 154 (1), 143 (11), 128 (4), 104 

(100), 97 (13), 91 (69), 79 (13), 69 (5), 65 (17), 55 (12), 41 (31). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1149, found 216.1150. 

 

3-Benzyl-2,3-epoxycyclohexanone (48m) 

Conditions B: The title compound (2S,3R)-48m was isolated after 48 h at 

50 °C and purification by flash column chromatography (silica gel, 2-10% 

Et2O in pentane) as a clear oil (158 mg, 781 µmol, 78%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 175 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); 

major enantiomer: τR = 45.74 min, minor enantiomer: τR = 46.65 min. 

Conditions B: 9-amino(9-deoxy)epiquinidine (67) was used (instead of 13). 

The title compound (2R,3S)-48a was isolated after 48 h at 50 °C and purifi-

cation by flash column chromatography (silica gel, 2-10% Et2O in pentane) 

as a clear oil (156 mg, 771 µmol, 77%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral Hydrodex-β-TBDAc column 25 m (100 °C, 1.2 °C/min until 175 °C, 

20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); major enantiomer: τR = 46.37 min, 

minor enantiomer: τR = 45.88 min. 
1H NMR (400 MHz, CD2Cl2) δ 7.34-7.21 (m, 5H, C6H5), 3.04 (s, 1H, CepoH), 2.98 (s, 2H, 

CH2Ph), 2.44 (dt, J = 17.7, 4.4 Hz, 1H, C(=O)CHH), 2.10-1.95 (m, 2H, C(=O)CHH and 

CHHCqepo), 1.89-1.80 (m, 2H, CHHCqepo and CH2CHHCH), 1.65-1.56 (m, 1H, 

CH2CHHCH2). 
13C NMR (100 MHz, CD2Cl2) δ 206.4 (C=O), 136.2 (Cqar), 130.0 (2C, CHar), 128.8 (2C, 

CHar), 127.3 (CHar, p), 65.4 (Cqepo), 60.8 (CHepo), 42.4 (CH2Ph), 36.4 (C(=O)CH2), 26.7 

(CH2Cqepo), 17.6 (CH2CH2CH2). 
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MS (EI-DE) m/z (%) 202 [M+] (60), 184 (5), 173 (53), 156 (4), 145 (12), 129 (46), 117 (21), 

91 (100), 78 (11), 65 (28), 55 (28), 51 (15), 39 (36). 

HRMS (EI-DE) calcd for C13H14O2 [M
+] 202.0991, found 202.0994. 

 

(2R,3S)-2,6,6-Trimethyl-2,3-epoxy-1,4-cyclohexanedione ((2R,3S)-48q) 

Conditions B: 20 mol% catalytic salt [13 • 2 TFA] was used. The title 

compound was isolated after 48 h at 50 °C and purification by flash 

column chromatography (silica gel, 2.5% Et2O in pentane) as a clear oil 

(82 mg, 488 μmol, 49%; 96:4 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 130°C, 20 

°C/min until 220°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.27 min, minor 

enantiomer: τR = 22.67 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.49 (d, J = 1.1 Hz, 1H, CepoH), 3.15 (d, J = 13.6 Hz, 1H, 

CHH), 2.15 (dd, J = 13.5, 1.2 Hz, 1H, CHH), 1.55 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.08 (s, 

3H, CH3). 
13C NMR (75 MHz, CDCl3) δ 205.6 (C=O), 204.1 (C=O), 64.8 (Cqepo), 62.8 (CHepo), 47.0 

(CH2), 45.5 (CqMe2), 26.9 (CH3), 26.1 (CH3), 15.9 (CqepoCH3). 

MS (EI) m/z (%) 168 [M+] (59), 153 (27), 125 (65), 85 (77), 83 (21), 69 (34), 56 (100), 43 

(91), 41 (95), 39 (41), 27 (34). 

HRMS calcd for C9H12O3 [M
+] 168.0785, found 168.0786. 

 

(2R,3R)-2,3-Epoxycyclopentanone ((2R,3R)-48r) 

Conditions A: After 48 h at 50 °C, the conversion was determined to be 33% 

by GC and the enantiomeric ratio was determined to be 90:10 er by chiral GC 

using a Lipodex E column 25 m (60 °C, 1.2 °C/min until 90 °C, 18 °C/min 

until 220 °C, 10 min at 220°C, 0.5 bar H2); major enantiomer: τR = 14.49 min, minor 

enantiomer: τR = 13.33 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.89-3.88 (m, 1H, CH2CHepo), 3.26 (d, J = 2.6 Hz, 1H, 

CHepoC(=O)), 2.37-2.17 (m, 2H, CHH), 2.09-1.97 (m, 2H, CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 58.3 (CHepoC(=O)), 55.2 (CH2CHepo), 30.9 

(CH2C(=O)), 23.5 (CH2CHepo). 

GC-MS (GC-EI) m/z (%) 98 [M+] (41), 82 (13), 69 (25), 55 (22), 53 (6), 42 (100), 39 (37), 31 

(1), 27 (18). 

HRMS (EI-FE) calcd for C5H6O2 [M
+] 98.0367, found 98.0368. 
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MS (EI-DE) m/z (%) 202 [M+] (60), 184 (5), 173 (53), 156 (4), 145 (12), 129 (46), 117 (21), 

91 (100), 78 (11), 65 (28), 55 (28), 51 (15), 39 (36). 

HRMS (EI-DE) calcd for C13H14O2 [M
+] 202.0991, found 202.0994. 

 

(2R,3S)-2,6,6-Trimethyl-2,3-epoxy-1,4-cyclohexanedione ((2R,3S)-48q) 

Conditions B: 20 mol% catalytic salt [13 • 2 TFA] was used. The title 

compound was isolated after 48 h at 50 °C and purification by flash 

column chromatography (silica gel, 2.5% Et2O in pentane) as a clear oil 

(82 mg, 488 μmol, 49%; 96:4 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 130°C, 20 

°C/min until 220°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.27 min, minor 

enantiomer: τR = 22.67 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.49 (d, J = 1.1 Hz, 1H, CepoH), 3.15 (d, J = 13.6 Hz, 1H, 

CHH), 2.15 (dd, J = 13.5, 1.2 Hz, 1H, CHH), 1.55 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.08 (s, 

3H, CH3). 
13C NMR (75 MHz, CDCl3) δ 205.6 (C=O), 204.1 (C=O), 64.8 (Cqepo), 62.8 (CHepo), 47.0 

(CH2), 45.5 (CqMe2), 26.9 (CH3), 26.1 (CH3), 15.9 (CqepoCH3). 

MS (EI) m/z (%) 168 [M+] (59), 153 (27), 125 (65), 85 (77), 83 (21), 69 (34), 56 (100), 43 

(91), 41 (95), 39 (41), 27 (34). 

HRMS calcd for C9H12O3 [M
+] 168.0785, found 168.0786. 

 

(2R,3R)-2,3-Epoxycyclopentanone ((2R,3R)-48r) 

Conditions A: After 48 h at 50 °C, the conversion was determined to be 33% 

by GC and the enantiomeric ratio was determined to be 90:10 er by chiral GC 

using a Lipodex E column 25 m (60 °C, 1.2 °C/min until 90 °C, 18 °C/min 

until 220 °C, 10 min at 220°C, 0.5 bar H2); major enantiomer: τR = 14.49 min, minor 

enantiomer: τR = 13.33 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.89-3.88 (m, 1H, CH2CHepo), 3.26 (d, J = 2.6 Hz, 1H, 

CHepoC(=O)), 2.37-2.17 (m, 2H, CHH), 2.09-1.97 (m, 2H, CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 58.3 (CHepoC(=O)), 55.2 (CH2CHepo), 30.9 

(CH2C(=O)), 23.5 (CH2CHepo). 

GC-MS (GC-EI) m/z (%) 98 [M+] (41), 82 (13), 69 (25), 55 (22), 53 (6), 42 (100), 39 (37), 31 

(1), 27 (18). 

HRMS (EI-FE) calcd for C5H6O2 [M
+] 98.0367, found 98.0368. 
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MS (EI-DE) m/z (%) 202 [M+] (60), 184 (5), 173 (53), 156 (4), 145 (12), 129 (46), 117 (21), 

91 (100), 78 (11), 65 (28), 55 (28), 51 (15), 39 (36). 

HRMS (EI-DE) calcd for C13H14O2 [M
+] 202.0991, found 202.0994. 

 

(2R,3S)-2,6,6-Trimethyl-2,3-epoxy-1,4-cyclohexanedione ((2R,3S)-48q) 

Conditions B: 20 mol% catalytic salt [13 • 2 TFA] was used. The title 

compound was isolated after 48 h at 50 °C and purification by flash 

column chromatography (silica gel, 2.5% Et2O in pentane) as a clear oil 

(82 mg, 488 μmol, 49%; 96:4 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 130°C, 20 

°C/min until 220°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.27 min, minor 

enantiomer: τR = 22.67 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.49 (d, J = 1.1 Hz, 1H, CepoH), 3.15 (d, J = 13.6 Hz, 1H, 

CHH), 2.15 (dd, J = 13.5, 1.2 Hz, 1H, CHH), 1.55 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.08 (s, 

3H, CH3). 
13C NMR (75 MHz, CDCl3) δ 205.6 (C=O), 204.1 (C=O), 64.8 (Cqepo), 62.8 (CHepo), 47.0 

(CH2), 45.5 (CqMe2), 26.9 (CH3), 26.1 (CH3), 15.9 (CqepoCH3). 

MS (EI) m/z (%) 168 [M+] (59), 153 (27), 125 (65), 85 (77), 83 (21), 69 (34), 56 (100), 43 

(91), 41 (95), 39 (41), 27 (34). 

HRMS calcd for C9H12O3 [M
+] 168.0785, found 168.0786. 

 

(2R,3R)-2,3-Epoxycyclopentanone ((2R,3R)-48r) 

Conditions A: After 48 h at 50 °C, the conversion was determined to be 33% 

by GC and the enantiomeric ratio was determined to be 90:10 er by chiral GC 

using a Lipodex E column 25 m (60 °C, 1.2 °C/min until 90 °C, 18 °C/min 

until 220 °C, 10 min at 220°C, 0.5 bar H2); major enantiomer: τR = 14.49 min, minor 

enantiomer: τR = 13.33 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.89-3.88 (m, 1H, CH2CHepo), 3.26 (d, J = 2.6 Hz, 1H, 

CHepoC(=O)), 2.37-2.17 (m, 2H, CHH), 2.09-1.97 (m, 2H, CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 58.3 (CHepoC(=O)), 55.2 (CH2CHepo), 30.9 

(CH2C(=O)), 23.5 (CH2CHepo). 

GC-MS (GC-EI) m/z (%) 98 [M+] (41), 82 (13), 69 (25), 55 (22), 53 (6), 42 (100), 39 (37), 31 

(1), 27 (18). 

HRMS (EI-FE) calcd for C5H6O2 [M
+] 98.0367, found 98.0368. 

O

O

O

C9H12O3

168,19

O

O
C5H6O2

98,10

7  Experimental Part 

176 

MS (EI-DE) m/z (%) 202 [M+] (60), 184 (5), 173 (53), 156 (4), 145 (12), 129 (46), 117 (21), 

91 (100), 78 (11), 65 (28), 55 (28), 51 (15), 39 (36). 

HRMS (EI-DE) calcd for C13H14O2 [M
+] 202.0991, found 202.0994. 

 

(2R,3S)-2,6,6-Trimethyl-2,3-epoxy-1,4-cyclohexanedione ((2R,3S)-48q) 

Conditions B: 20 mol% catalytic salt [13 • 2 TFA] was used. The title 

compound was isolated after 48 h at 50 °C and purification by flash 

column chromatography (silica gel, 2.5% Et2O in pentane) as a clear oil 

(82 mg, 488 μmol, 49%; 96:4 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 1.2 °C/min until 130°C, 20 

°C/min until 220°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.27 min, minor 

enantiomer: τR = 22.67 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.49 (d, J = 1.1 Hz, 1H, CepoH), 3.15 (d, J = 13.6 Hz, 1H, 

CHH), 2.15 (dd, J = 13.5, 1.2 Hz, 1H, CHH), 1.55 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.08 (s, 

3H, CH3). 
13C NMR (75 MHz, CDCl3) δ 205.6 (C=O), 204.1 (C=O), 64.8 (Cqepo), 62.8 (CHepo), 47.0 

(CH2), 45.5 (CqMe2), 26.9 (CH3), 26.1 (CH3), 15.9 (CqepoCH3). 

MS (EI) m/z (%) 168 [M+] (59), 153 (27), 125 (65), 85 (77), 83 (21), 69 (34), 56 (100), 43 

(91), 41 (95), 39 (41), 27 (34). 

HRMS calcd for C9H12O3 [M
+] 168.0785, found 168.0786. 

 

(2R,3R)-2,3-Epoxycyclopentanone ((2R,3R)-48r) 

Conditions A: After 48 h at 50 °C, the conversion was determined to be 33% 

by GC and the enantiomeric ratio was determined to be 90:10 er by chiral GC 

using a Lipodex E column 25 m (60 °C, 1.2 °C/min until 90 °C, 18 °C/min 

until 220 °C, 10 min at 220°C, 0.5 bar H2); major enantiomer: τR = 14.49 min, minor 

enantiomer: τR = 13.33 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.89-3.88 (m, 1H, CH2CHepo), 3.26 (d, J = 2.6 Hz, 1H, 

CHepoC(=O)), 2.37-2.17 (m, 2H, CHH), 2.09-1.97 (m, 2H, CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 58.3 (CHepoC(=O)), 55.2 (CH2CHepo), 30.9 

(CH2C(=O)), 23.5 (CH2CHepo). 

GC-MS (GC-EI) m/z (%) 98 [M+] (41), 82 (13), 69 (25), 55 (22), 53 (6), 42 (100), 39 (37), 31 

(1), 27 (18). 

HRMS (EI-FE) calcd for C5H6O2 [M
+] 98.0367, found 98.0368. 
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2,3-Epoxycycloheptanone (48s) 

Conditions A: The title compound (2R,3R)-48s was isolated after 20 h at 

30 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (41 mg, 325 µmol, 65%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 23.46 min, minor enantiomer: τR = 20.62 min. 

Conditions B: The title compound (2S,3S)-48s was isolated after 24 h at 

50 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (78 mg, 621 µmol, 62%; >99.5:0.5 er). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 

m (80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); 

major enantiomer: τR = 20.66 min, minor enantiomer: τR = 24.29 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.37-3.35 (m, 2H, CHepo), 2.62 (ddd, J = 13.6, 11.3, 3.8 Hz, 

1H, C(=O)CHH), 2.48-2.40 (m, 1H, CHHCHepo), 2.30-2.23 (m, 1H, C(=O)CHH), 1.87-1.63 

(m, 4H, C(=O)CH2CHH, CHHCHepo, and CH2CH2CHepo), 1.06-0.91 (m, 1H, 

C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.1 (C=O), 59.5 (C(=O)CHepo), 55.1 (CH2CHepo), 40.6 

(C(=O)CH2), 27.5 (CH2CHepo), 23.6 (C(=O)CH2CH2), 23.1 (CH2CH2CHepo). 

GC-MS (GC-EI) m/z (%) 126 [M+] (16), 110 (12), 97 (33), 83 (24), 81 (35), 79 (14), 70 (58), 

68 (32), 55 (79), 41 (100), 39 (52), 27 (37). 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0679, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-3-ethylcycloheptanone ((2S,3S)-48t) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5% Et2O in 

pentane) as a clear oil (127 mg, 824 µmol, 82%; >99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 18.25 

min, minor enantiomer: τR = 19.50 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.20 (d, J = 1.3 Hz, 1H, CepoH), 2.67 (ddd, J = 13.5, 11.0, 4.1 

Hz, 1H, C(=O)CHH), 2.24-2.18 (m, 1H, C(=O)CHH), 2.18-2.12 (m, 1H, CHHCqepo), 1.87-
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2,3-Epoxycycloheptanone (48s) 

Conditions A: The title compound (2R,3R)-48s was isolated after 20 h at 

30 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (41 mg, 325 µmol, 65%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 23.46 min, minor enantiomer: τR = 20.62 min. 

Conditions B: The title compound (2S,3S)-48s was isolated after 24 h at 

50 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (78 mg, 621 µmol, 62%; >99.5:0.5 er). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 

m (80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); 

major enantiomer: τR = 20.66 min, minor enantiomer: τR = 24.29 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.37-3.35 (m, 2H, CHepo), 2.62 (ddd, J = 13.6, 11.3, 3.8 Hz, 

1H, C(=O)CHH), 2.48-2.40 (m, 1H, CHHCHepo), 2.30-2.23 (m, 1H, C(=O)CHH), 1.87-1.63 

(m, 4H, C(=O)CH2CHH, CHHCHepo, and CH2CH2CHepo), 1.06-0.91 (m, 1H, 

C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.1 (C=O), 59.5 (C(=O)CHepo), 55.1 (CH2CHepo), 40.6 

(C(=O)CH2), 27.5 (CH2CHepo), 23.6 (C(=O)CH2CH2), 23.1 (CH2CH2CHepo). 

GC-MS (GC-EI) m/z (%) 126 [M+] (16), 110 (12), 97 (33), 83 (24), 81 (35), 79 (14), 70 (58), 

68 (32), 55 (79), 41 (100), 39 (52), 27 (37). 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0679, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-3-ethylcycloheptanone ((2S,3S)-48t) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5% Et2O in 

pentane) as a clear oil (127 mg, 824 µmol, 82%; >99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 18.25 

min, minor enantiomer: τR = 19.50 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.20 (d, J = 1.3 Hz, 1H, CepoH), 2.67 (ddd, J = 13.5, 11.0, 4.1 

Hz, 1H, C(=O)CHH), 2.24-2.18 (m, 1H, C(=O)CHH), 2.18-2.12 (m, 1H, CHHCqepo), 1.87-
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2,3-Epoxycycloheptanone (48s) 

Conditions A: The title compound (2R,3R)-48s was isolated after 20 h at 

30 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (41 mg, 325 µmol, 65%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 23.46 min, minor enantiomer: τR = 20.62 min. 

Conditions B: The title compound (2S,3S)-48s was isolated after 24 h at 

50 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (78 mg, 621 µmol, 62%; >99.5:0.5 er). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 

m (80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); 

major enantiomer: τR = 20.66 min, minor enantiomer: τR = 24.29 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.37-3.35 (m, 2H, CHepo), 2.62 (ddd, J = 13.6, 11.3, 3.8 Hz, 

1H, C(=O)CHH), 2.48-2.40 (m, 1H, CHHCHepo), 2.30-2.23 (m, 1H, C(=O)CHH), 1.87-1.63 

(m, 4H, C(=O)CH2CHH, CHHCHepo, and CH2CH2CHepo), 1.06-0.91 (m, 1H, 

C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.1 (C=O), 59.5 (C(=O)CHepo), 55.1 (CH2CHepo), 40.6 

(C(=O)CH2), 27.5 (CH2CHepo), 23.6 (C(=O)CH2CH2), 23.1 (CH2CH2CHepo). 

GC-MS (GC-EI) m/z (%) 126 [M+] (16), 110 (12), 97 (33), 83 (24), 81 (35), 79 (14), 70 (58), 

68 (32), 55 (79), 41 (100), 39 (52), 27 (37). 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0679, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-3-ethylcycloheptanone ((2S,3S)-48t) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5% Et2O in 

pentane) as a clear oil (127 mg, 824 µmol, 82%; >99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 18.25 

min, minor enantiomer: τR = 19.50 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.20 (d, J = 1.3 Hz, 1H, CepoH), 2.67 (ddd, J = 13.5, 11.0, 4.1 

Hz, 1H, C(=O)CHH), 2.24-2.18 (m, 1H, C(=O)CHH), 2.18-2.12 (m, 1H, CHHCqepo), 1.87-
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2,3-Epoxycycloheptanone (48s) 

Conditions A: The title compound (2R,3R)-48s was isolated after 20 h at 

30 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (41 mg, 325 µmol, 65%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 23.46 min, minor enantiomer: τR = 20.62 min. 

Conditions B: The title compound (2S,3S)-48s was isolated after 24 h at 

50 °C and purification by flash column chromatography (silica gel, 3-15% 

Et2O in pentane) as a clear liquid (78 mg, 621 µmol, 62%; >99.5:0.5 er). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 

m (80 °C, 1.5 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); 

major enantiomer: τR = 20.66 min, minor enantiomer: τR = 24.29 min. 
1H NMR (300 MHz, CD2Cl2) δ 3.37-3.35 (m, 2H, CHepo), 2.62 (ddd, J = 13.6, 11.3, 3.8 Hz, 

1H, C(=O)CHH), 2.48-2.40 (m, 1H, CHHCHepo), 2.30-2.23 (m, 1H, C(=O)CHH), 1.87-1.63 

(m, 4H, C(=O)CH2CHH, CHHCHepo, and CH2CH2CHepo), 1.06-0.91 (m, 1H, 

C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.1 (C=O), 59.5 (C(=O)CHepo), 55.1 (CH2CHepo), 40.6 

(C(=O)CH2), 27.5 (CH2CHepo), 23.6 (C(=O)CH2CH2), 23.1 (CH2CH2CHepo). 

GC-MS (GC-EI) m/z (%) 126 [M+] (16), 110 (12), 97 (33), 83 (24), 81 (35), 79 (14), 70 (58), 

68 (32), 55 (79), 41 (100), 39 (52), 27 (37). 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0679, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-3-ethylcycloheptanone ((2S,3S)-48t) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5% Et2O in 

pentane) as a clear oil (127 mg, 824 µmol, 82%; >99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 18.25 

min, minor enantiomer: τR = 19.50 min. 
1H NMR (400 MHz, CD2Cl2) δ 3.20 (d, J = 1.3 Hz, 1H, CepoH), 2.67 (ddd, J = 13.5, 11.0, 4.1 

Hz, 1H, C(=O)CHH), 2.24-2.18 (m, 1H, C(=O)CHH), 2.18-2.12 (m, 1H, CHHCqepo), 1.87-
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1.66 (m, 5H, CHHCqepo, C(=O)CH2CHH, CH2CH2Cqepo, and CHHCH3), 1.59-1.49 (m, 1H, 

CHHCH3), 1.13-1.02 (m, 1H, C(=O)CH2CHH), 0.93 (t, J = 7.5 Hz, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 210.7 (C=O), 65.0 (CHepo), 64.9 (Cqepo), 41.1 (C(=O)CH2), 

31.9 (CH2CH3), 31.4 (CH2Cqepo), 25.3 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo), 9.1 (CH3). 

GC-MS (GC-EI) m/z (%) 154 [M+] (1), 138 (1), 125 (11), 109 (12), 98 (68), 93 (8), 83 (29), 

67 (35), 55 (100), 53 (16), 41 (65), 29 (57), 27 (23). 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0995, found 154.0994. 

 

(2S,3R)-3-Benzyl-2,3-epoxycycloheptanone ((2S,3R)-48u) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (184 mg, 851 µmol, 85%; >99.5:0.5 er). The 

enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column (2% i-PrOH 

in heptane, 0.5 mL/min); major enantiomer: τR = 13.74 min, minor enantiomer: τR = 14.83 

min. 
1H NMR (400 MHz, CD2Cl2) δ 7.33-7.22 (m, 5H, C6H5), 3.20 (d, J = 1.2 Hz, 1H, CepoH), 

2.94 (dd, J = 18.8, 14.3 Hz, 2H, CH2Ph), 2.67 (ddd, J = 13.4, 11.0, 4.0 Hz, 1H, C(=O)CHH), 

2.25-2.16 (m, 2H, C(=O)CHH and CHHCqepo), 1.86-1.63 (m, 4H, CHHCqepo, CH2CH2Cqepo, 

and C(=O)CH2CHH), 1.11-1.00 (m, 1H, C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 136.5 (Cqar), 130.1 (2C, CHar), 128.8 (2C, CHar), 

127.2 (CHar, p), 64.6 (CHepo), 64.1 (Cqepo), 44.6 (CH2Ph), 41.1 (C(=O)CH2), 31.7 (CH2Cqepo), 

25.2 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo). 

MS (EI-DE) m/z (%) 216 [M+] (22), 198 (3), 187 (19), 169 (6), 159 (3), 143 (7), 129 (12), 118 

(30), 104 (4), 97 (20), 91 (100), 78 (8), 65 (18), 55 (11), 41 (23). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1152, found 216.1150. 

 

(2S,3S)-2,3-Epoxycyclooctanone ((2S,3S)-48v) 

Conditions B: After 24 h at 50 °C and base treatment of the crude product 

in THF, purification by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless solid (77 mg, 

550 µmol, 55%; 98:2 er). The enantiomeric ratio was determined by GC using a chiral BGB-

176/SE-52 30 m (80 °C, 2 °C/min until 135 °C, 18 °C/min until 220 °C, 10 min at 220°C, 0.6 

bar H2); major enantiomer: τR = 23.43 min, minor enantiomer: τR = 21.95 min. 
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1.66 (m, 5H, CHHCqepo, C(=O)CH2CHH, CH2CH2Cqepo, and CHHCH3), 1.59-1.49 (m, 1H, 

CHHCH3), 1.13-1.02 (m, 1H, C(=O)CH2CHH), 0.93 (t, J = 7.5 Hz, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 210.7 (C=O), 65.0 (CHepo), 64.9 (Cqepo), 41.1 (C(=O)CH2), 

31.9 (CH2CH3), 31.4 (CH2Cqepo), 25.3 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo), 9.1 (CH3). 

GC-MS (GC-EI) m/z (%) 154 [M+] (1), 138 (1), 125 (11), 109 (12), 98 (68), 93 (8), 83 (29), 

67 (35), 55 (100), 53 (16), 41 (65), 29 (57), 27 (23). 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0995, found 154.0994. 

 

(2S,3R)-3-Benzyl-2,3-epoxycycloheptanone ((2S,3R)-48u) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (184 mg, 851 µmol, 85%; >99.5:0.5 er). The 

enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column (2% i-PrOH 

in heptane, 0.5 mL/min); major enantiomer: τR = 13.74 min, minor enantiomer: τR = 14.83 

min. 
1H NMR (400 MHz, CD2Cl2) δ 7.33-7.22 (m, 5H, C6H5), 3.20 (d, J = 1.2 Hz, 1H, CepoH), 

2.94 (dd, J = 18.8, 14.3 Hz, 2H, CH2Ph), 2.67 (ddd, J = 13.4, 11.0, 4.0 Hz, 1H, C(=O)CHH), 

2.25-2.16 (m, 2H, C(=O)CHH and CHHCqepo), 1.86-1.63 (m, 4H, CHHCqepo, CH2CH2Cqepo, 

and C(=O)CH2CHH), 1.11-1.00 (m, 1H, C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 136.5 (Cqar), 130.1 (2C, CHar), 128.8 (2C, CHar), 

127.2 (CHar, p), 64.6 (CHepo), 64.1 (Cqepo), 44.6 (CH2Ph), 41.1 (C(=O)CH2), 31.7 (CH2Cqepo), 

25.2 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo). 

MS (EI-DE) m/z (%) 216 [M+] (22), 198 (3), 187 (19), 169 (6), 159 (3), 143 (7), 129 (12), 118 

(30), 104 (4), 97 (20), 91 (100), 78 (8), 65 (18), 55 (11), 41 (23). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1152, found 216.1150. 

 

(2S,3S)-2,3-Epoxycyclooctanone ((2S,3S)-48v) 

Conditions B: After 24 h at 50 °C and base treatment of the crude product 

in THF, purification by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless solid (77 mg, 

550 µmol, 55%; 98:2 er). The enantiomeric ratio was determined by GC using a chiral BGB-

176/SE-52 30 m (80 °C, 2 °C/min until 135 °C, 18 °C/min until 220 °C, 10 min at 220°C, 0.6 

bar H2); major enantiomer: τR = 23.43 min, minor enantiomer: τR = 21.95 min. 
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1.66 (m, 5H, CHHCqepo, C(=O)CH2CHH, CH2CH2Cqepo, and CHHCH3), 1.59-1.49 (m, 1H, 

CHHCH3), 1.13-1.02 (m, 1H, C(=O)CH2CHH), 0.93 (t, J = 7.5 Hz, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 210.7 (C=O), 65.0 (CHepo), 64.9 (Cqepo), 41.1 (C(=O)CH2), 

31.9 (CH2CH3), 31.4 (CH2Cqepo), 25.3 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo), 9.1 (CH3). 

GC-MS (GC-EI) m/z (%) 154 [M+] (1), 138 (1), 125 (11), 109 (12), 98 (68), 93 (8), 83 (29), 

67 (35), 55 (100), 53 (16), 41 (65), 29 (57), 27 (23). 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0995, found 154.0994. 

 

(2S,3R)-3-Benzyl-2,3-epoxycycloheptanone ((2S,3R)-48u) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (184 mg, 851 µmol, 85%; >99.5:0.5 er). The 

enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column (2% i-PrOH 

in heptane, 0.5 mL/min); major enantiomer: τR = 13.74 min, minor enantiomer: τR = 14.83 

min. 
1H NMR (400 MHz, CD2Cl2) δ 7.33-7.22 (m, 5H, C6H5), 3.20 (d, J = 1.2 Hz, 1H, CepoH), 

2.94 (dd, J = 18.8, 14.3 Hz, 2H, CH2Ph), 2.67 (ddd, J = 13.4, 11.0, 4.0 Hz, 1H, C(=O)CHH), 

2.25-2.16 (m, 2H, C(=O)CHH and CHHCqepo), 1.86-1.63 (m, 4H, CHHCqepo, CH2CH2Cqepo, 

and C(=O)CH2CHH), 1.11-1.00 (m, 1H, C(=O)CH2CHH). 
13C NMR (75 MHz, CD2Cl2) δ 210.3 (C=O), 136.5 (Cqar), 130.1 (2C, CHar), 128.8 (2C, CHar), 

127.2 (CHar, p), 64.6 (CHepo), 64.1 (Cqepo), 44.6 (CH2Ph), 41.1 (C(=O)CH2), 31.7 (CH2Cqepo), 

25.2 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo). 

MS (EI-DE) m/z (%) 216 [M+] (22), 198 (3), 187 (19), 169 (6), 159 (3), 143 (7), 129 (12), 118 

(30), 104 (4), 97 (20), 91 (100), 78 (8), 65 (18), 55 (11), 41 (23). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1152, found 216.1150. 

 

(2S,3S)-2,3-Epoxycyclooctanone ((2S,3S)-48v) 

Conditions B: After 24 h at 50 °C and base treatment of the crude product 

in THF, purification by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless solid (77 mg, 

550 µmol, 55%; 98:2 er). The enantiomeric ratio was determined by GC using a chiral BGB-

176/SE-52 30 m (80 °C, 2 °C/min until 135 °C, 18 °C/min until 220 °C, 10 min at 220°C, 0.6 

bar H2); major enantiomer: τR = 23.43 min, minor enantiomer: τR = 21.95 min. 

O

O

Ph

C14H16O2

216,28

O

O

C8H12O2

140,18

7  Experimental Part 

178 

1.66 (m, 5H, CHHCqepo, C(=O)CH2CHH, CH2CH2Cqepo, and CHHCH3), 1.59-1.49 (m, 1H, 

CHHCH3), 1.13-1.02 (m, 1H, C(=O)CH2CHH), 0.93 (t, J = 7.5 Hz, 3H, CH3). 
13C NMR (75 MHz, CD2Cl2) δ 210.7 (C=O), 65.0 (CHepo), 64.9 (Cqepo), 41.1 (C(=O)CH2), 

31.9 (CH2CH3), 31.4 (CH2Cqepo), 25.3 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo), 9.1 (CH3). 

GC-MS (GC-EI) m/z (%) 154 [M+] (1), 138 (1), 125 (11), 109 (12), 98 (68), 93 (8), 83 (29), 

67 (35), 55 (100), 53 (16), 41 (65), 29 (57), 27 (23). 

HRMS (EI-FE) calcd for C9H14O2 [M
+] 154.0995, found 154.0994. 

 

(2S,3R)-3-Benzyl-2,3-epoxycycloheptanone ((2S,3R)-48u) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-10% Et2O in 

pentane) as a clear oil (184 mg, 851 µmol, 85%; >99.5:0.5 er). The 

enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column (2% i-PrOH 

in heptane, 0.5 mL/min); major enantiomer: τR = 13.74 min, minor enantiomer: τR = 14.83 

min. 
1H NMR (400 MHz, CD2Cl2) δ 7.33-7.22 (m, 5H, C6H5), 3.20 (d, J = 1.2 Hz, 1H, CepoH), 
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25.2 (C(=O)CH2CH2), 23.9 (CH2CH2Cqepo). 

MS (EI-DE) m/z (%) 216 [M+] (22), 198 (3), 187 (19), 169 (6), 159 (3), 143 (7), 129 (12), 118 

(30), 104 (4), 97 (20), 91 (100), 78 (8), 65 (18), 55 (11), 41 (23). 

HRMS (EI-DE) calcd for C14H16O2 [M
+] 216.1152, found 216.1150. 
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in THF, purification by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless solid (77 mg, 

550 µmol, 55%; 98:2 er). The enantiomeric ratio was determined by GC using a chiral BGB-

176/SE-52 30 m (80 °C, 2 °C/min until 135 °C, 18 °C/min until 220 °C, 10 min at 220°C, 0.6 

bar H2); major enantiomer: τR = 23.43 min, minor enantiomer: τR = 21.95 min. 
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1H NMR (500 MHz, CD2Cl2) δ 3.70 (d, J = 5.4 Hz, 1H, CHepoC(=O)), 3.22 (ddd, J = 9.8, 5.3, 

3.7 Hz, 1H, CH2CHepo), 2.66 (ddd, J = 13.2, 7.7, 4.2 Hz, 1H, CHHC(=O)), 2.30 (ddd, J = 13.6, 

10.1, 3.6 Hz, 1H, CHHC(=O)), 2.19-2.14 (m, 1H, CHHCHepo), 1.94-1.87 (m, 1H, 

CHHCH2C(=O)), 1.77-1.70 (m, 1H, CHH(CH2)2CHepo), 1.69-1.62 (m, 1H, CHHCH2C(=O)), 

1.60-1.51 (m, 2H, CH2CH2CHepo), 1.49-1.40 (m, 1H, CHH(CH2)2CHepo), 0.99-0.91 (m, 1H, 

CHHCHepo). 
13C NMR (125 MHz, CD2Cl2) δ 207.3 (C=O), 58.8 (CHepoC(=O)), 55.7 (CH2CHepo), 43.0 

(CH2C(=O)), 27.2 (2C, CH2CHepo and CH2(CH2)2CHepo), 24.7 (CH2CH2C(=O)), 24.6 

(CH2CH2CHepo). 

MS (EI-DE) m/z (%) 140 [M+] (18), 111 (5), 97 (16), 83 (37), 79 (17), 70 (30), 57 (27), 55 

(100), 53 (11), 41 (84), 39 (43), 27 (45). 

HRMS (EI-DE) calcd for C8H12O2 [M
+] 140.0836, found 140.0837. 

 

(E)-(2S,3R)-2,3-Epoxycyclododecanone ((2S,3R)-48w) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 10-20% Et2O in 

pentane) as a white solid (45 mg, 229 μmol, 92%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc 

column 25 m (100 °C, 1.2 °C/min until 170 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 54.36 min, minor enantiomer: τR = 53.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.51 (d, J = 1.6 Hz, 1H, CepoHC(=O)), 2.93 (td, J = 9.5, 2.2 

Hz, 1H, CH2CepoH), 2.91-2.87 (m, 1H, CHHC(=O)), 2.32-2.67 (m, 1H, CHHC(=O)), 2.23-

2.17 (m, 1H, CHHCepoH), 1.84-1.69 (m, 3H, -(CH2)n-), 1.54-1.35 (m, 9H, -(CH2)n-), 1.29-

1.24 (m, 1H, -(CH2)n-), 1.20-1.12 (m, 2H, -(CH2)n- and CHHCepoH). 
13C NMR (125 MHz, CD2Cl2) δ 206.9 (C=O), 61.2 (CH2CepoH), 59.2 (CepoHC(=O)), 41.4 

(CH2C(=O)), 32.2 (CH2CepoH), 26.9 (CH2), 26.5 (CH2), 25.7 (CH2), 25.5 (CH2), 24.4 (CH2), 

24.0 (CH2), 23.2 (CH2). 

MS (EI) m/z (%) 196 [M+] (8), 178 (1), 168 (1), 149 (2), 139 (4), 135 (6), 121 (14), 111 (29), 

107 (8), 98 (54), 84 (31), 67 (36), 55 (100), 41 (92), 29 (39). 

HRMS (EI-DE) calcd for C12H20O2 [M
+] 196.1465, found 196.1463. 
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1H NMR (500 MHz, CD2Cl2) δ 3.70 (d, J = 5.4 Hz, 1H, CHepoC(=O)), 3.22 (ddd, J = 9.8, 5.3, 
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at 320 °C, 0.6 bar H2); major enantiomer: τR = 54.36 min, minor enantiomer: τR = 53.35 min. 
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1H NMR (500 MHz, CD2Cl2) δ 3.70 (d, J = 5.4 Hz, 1H, CHepoC(=O)), 3.22 (ddd, J = 9.8, 5.3, 
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1.60-1.51 (m, 2H, CH2CH2CHepo), 1.49-1.40 (m, 1H, CHH(CH2)2CHepo), 0.99-0.91 (m, 1H, 
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1.24 (m, 1H, -(CH2)n-), 1.20-1.12 (m, 2H, -(CH2)n- and CHHCepoH). 
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1H NMR (500 MHz, CD2Cl2) δ 3.70 (d, J = 5.4 Hz, 1H, CHepoC(=O)), 3.22 (ddd, J = 9.8, 5.3, 

3.7 Hz, 1H, CH2CHepo), 2.66 (ddd, J = 13.2, 7.7, 4.2 Hz, 1H, CHHC(=O)), 2.30 (ddd, J = 13.6, 

10.1, 3.6 Hz, 1H, CHHC(=O)), 2.19-2.14 (m, 1H, CHHCHepo), 1.94-1.87 (m, 1H, 

CHHCH2C(=O)), 1.77-1.70 (m, 1H, CHH(CH2)2CHepo), 1.69-1.62 (m, 1H, CHHCH2C(=O)), 

1.60-1.51 (m, 2H, CH2CH2CHepo), 1.49-1.40 (m, 1H, CHH(CH2)2CHepo), 0.99-0.91 (m, 1H, 

CHHCHepo). 
13C NMR (125 MHz, CD2Cl2) δ 207.3 (C=O), 58.8 (CHepoC(=O)), 55.7 (CH2CHepo), 43.0 

(CH2C(=O)), 27.2 (2C, CH2CHepo and CH2(CH2)2CHepo), 24.7 (CH2CH2C(=O)), 24.6 

(CH2CH2CHepo). 

MS (EI-DE) m/z (%) 140 [M+] (18), 111 (5), 97 (16), 83 (37), 79 (17), 70 (30), 57 (27), 55 

(100), 53 (11), 41 (84), 39 (43), 27 (45). 

HRMS (EI-DE) calcd for C8H12O2 [M
+] 140.0836, found 140.0837. 

 

(E)-(2S,3R)-2,3-Epoxycyclododecanone ((2S,3R)-48w) 

Conditions B: The title compound was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 10-20% Et2O in 

pentane) as a white solid (45 mg, 229 μmol, 92%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc 

column 25 m (100 °C, 1.2 °C/min until 170 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 54.36 min, minor enantiomer: τR = 53.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.51 (d, J = 1.6 Hz, 1H, CepoHC(=O)), 2.93 (td, J = 9.5, 2.2 

Hz, 1H, CH2CepoH), 2.91-2.87 (m, 1H, CHHC(=O)), 2.32-2.67 (m, 1H, CHHC(=O)), 2.23-

2.17 (m, 1H, CHHCepoH), 1.84-1.69 (m, 3H, -(CH2)n-), 1.54-1.35 (m, 9H, -(CH2)n-), 1.29-

1.24 (m, 1H, -(CH2)n-), 1.20-1.12 (m, 2H, -(CH2)n- and CHHCepoH). 
13C NMR (125 MHz, CD2Cl2) δ 206.9 (C=O), 61.2 (CH2CepoH), 59.2 (CepoHC(=O)), 41.4 

(CH2C(=O)), 32.2 (CH2CepoH), 26.9 (CH2), 26.5 (CH2), 25.7 (CH2), 25.5 (CH2), 24.4 (CH2), 

24.0 (CH2), 23.2 (CH2). 

MS (EI) m/z (%) 196 [M+] (8), 178 (1), 168 (1), 149 (2), 139 (4), 135 (6), 121 (14), 111 (29), 

107 (8), 98 (54), 84 (31), 67 (36), 55 (100), 41 (92), 29 (39). 

HRMS (EI-DE) calcd for C12H20O2 [M
+] 196.1465, found 196.1463. 
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(E)-2,3-Epoxycyclopentadecanone (48x) 

Conditions B: The title compound (2S,3R)-48x was isolated after 20 h at 

50 °C and purification by flash column chromatography (silica gel, 5-15% 

Et2O in pentane) as a white solid (52 mg, 218 µmol, 87%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc 

column 25m (100 °C, 1.2 °C/min until 185 °C, 18 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 65.00 min, minor enantiomer: τR = 63.68 min. 

Conditions B: 9-amino(9-deoxy)epiquinidine (67) was used (instead of 13). 

The title compound (2R,3S)-48x was isolated after 20 h at 50 °C and 

purification by flash column chromatography (silica gel, 5-15% Et2O in 

pentane) as a white solid (51 mg, 215 µmol, 86%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 190 °C, 18 °C/min until 230 °C, 5 min at 320 °C, 0.6 bar H2); major 

enantiomer: τR = 64.72 min, minor enantiomer: τR = 65.60 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.27 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.01 (td, J = 8.6, 2.7 

Hz, 1H, CH2CepoH), 2.47-2.39 (m, 2H, CH2C(=O)), 2.06-2.00 (m, 1H, CHHCepoH), 1.73-1.63 

(m, 2H, -(CH2)n-), 1.53-1.50 (m, 2H, -(CH2)n-), 1.39-1.21 (m, 17H, -(CH2)n- and CepoHCHH). 
13C NMR (125 MHz, CD2Cl2) δ 207.0 (C=O), 60.2 (CepoHC(=O)), 59.2 (CH2CepoH), 37.6 

(CH2C(=O)), 31.0 (CH2CepoH), 27.5 (CH2), 27.1 (CH2), 26.9 (CH2), 26.6 (CH2), 26.4 (CH2), 

26.4 (CH2), 26.2 (CH2), 25.7 (CH2), 24.9 (CH2), 22.6 (CH2). 

MS (EI) m/z (%) 238 [M+] (19), 220 (1), 209 (1), 195 (3), 177 (3), 163 (3), 149 (3), 121 (12), 

111 (29), 98 (48), 81 (38), 67 (39), 55 (100), 41 (86), 29 (34). 

HRMS (EI-DE) calcd for C15H26O2 [M
+] 238.1931, found 238.1933. 
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(E)-2,3-Epoxycyclopentadecanone (48x) 
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50 °C and purification by flash column chromatography (silica gel, 5-15% 

Et2O in pentane) as a white solid (52 mg, 218 µmol, 87%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc 

column 25m (100 °C, 1.2 °C/min until 185 °C, 18 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 65.00 min, minor enantiomer: τR = 63.68 min. 
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pentane) as a white solid (51 mg, 215 µmol, 86%; 99.5:0.5 er). The 

enantiomeric ratio was determined by GC using a chiral Hydrodex-β-TBDAc column 25 m 

(100 °C, 1.2 °C/min until 190 °C, 18 °C/min until 230 °C, 5 min at 320 °C, 0.6 bar H2); major 

enantiomer: τR = 64.72 min, minor enantiomer: τR = 65.60 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.27 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.01 (td, J = 8.6, 2.7 

Hz, 1H, CH2CepoH), 2.47-2.39 (m, 2H, CH2C(=O)), 2.06-2.00 (m, 1H, CHHCepoH), 1.73-1.63 

(m, 2H, -(CH2)n-), 1.53-1.50 (m, 2H, -(CH2)n-), 1.39-1.21 (m, 17H, -(CH2)n- and CepoHCHH). 
13C NMR (125 MHz, CD2Cl2) δ 207.0 (C=O), 60.2 (CepoHC(=O)), 59.2 (CH2CepoH), 37.6 

(CH2C(=O)), 31.0 (CH2CepoH), 27.5 (CH2), 27.1 (CH2), 26.9 (CH2), 26.6 (CH2), 26.4 (CH2), 

26.4 (CH2), 26.2 (CH2), 25.7 (CH2), 24.9 (CH2), 22.6 (CH2). 

MS (EI) m/z (%) 238 [M+] (19), 220 (1), 209 (1), 195 (3), 177 (3), 163 (3), 149 (3), 121 (12), 

111 (29), 98 (48), 81 (38), 67 (39), 55 (100), 41 (86), 29 (34). 

HRMS (EI-DE) calcd for C15H26O2 [M
+] 238.1931, found 238.1933. 
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(E)-2,3-Epoxycyclopentadecanone (48x) 
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111 (29), 98 (48), 81 (38), 67 (39), 55 (100), 41 (86), 29 (34). 

HRMS (EI-DE) calcd for C15H26O2 [M
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(2S,3S)-2,3-Epoxy-4-methylcyclohexanone ((2S,3S)-81a) 

Conditions B: After 24 h at 30 °C, the conversion was determined to be 94% 

(54:46 dr (trans/cis)) by GC/MS. The enantiomeric ratio was determined by 

GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 0.8 °C/min until 

105 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2). trans-81a: 

93.5:6.5 er (major enantiomer: τR = 27.25 min, minor enantiomer: τR = 29.13 min); cis-81a: 

99:1 er (minor enantiomer: τR = 28.64 min, minor enantiomer: τR = 29.65 min). 

trans-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.37 (dd, J = 3.7, 2.2 Hz, 1H, CHCHepo), 3.15 (d, J 

= 4.0 Hz, 1H, CHepoC(=O)), 2.46-2.40 (m, 2H, CHMe and CHHC(=O)), 2.18-2.04 (m, 2H, 

CHHC(=O) and CHHCH), 1.48-1.41 (m, 1H, CHHCH), 1.08 (d, J = 7.2 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 66.0 (CHCHepo), 61.7 (CHepoC(=O)), 33.3 

(CH2C(=O)), 27.9 (CHMe), 25.6 (CH2CH), 15.9 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

cis-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.38 (d, J = 3.9 Hz, 1H, CHCHepo), 3.16 (d, J = 3.8 

Hz, 1H, CHepoC(=O)), 2.42 (ddd, J = 18.6, 5.0, 3.5 Hz, 1H, CHHC(=O)), 2.19-2.12 (m, 1H, 

CHMe), 2.07 (ddd, J = 18.6, 11.8, 6.9 Hz, 1H, CHHC(=O)), 1.67-1.57 (m, 2H, CH2CH), 1.22 

(d, J = 6.9 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.6 (C=O), 60.1 (CHCHepo), 55.9 (CHepoC(=O)), 36.5 

(CH2C(=O)), 29.3 (CHMe), 24.1 (CH2CH), 18.8 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-4-tert-butylcyclohexanone ((2S,3S)-81b) 

Conditions B: After 96 h at 50 °C, the conversion was determined to be 

56% by GC/MS with a yield of epoxide 81b of 48% (92:8 dr (trans/cis)). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (100 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 

0.5 bar H2). trans-81b:a 79.5:20.5 er (major enantiomer: τR = 26.00 min, minor enantiomer: τR 

= 29.01 min).[192] 

                                                 
a  Relative configuration was assigned on the basis of NOE correlations in collaboration with the NMR 
department of the Max-Planck-Institut für Kohlenforschung. 
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(2S,3S)-2,3-Epoxy-4-methylcyclohexanone ((2S,3S)-81a) 

Conditions B: After 24 h at 30 °C, the conversion was determined to be 94% 

(54:46 dr (trans/cis)) by GC/MS. The enantiomeric ratio was determined by 

GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 0.8 °C/min until 
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= 4.0 Hz, 1H, CHepoC(=O)), 2.46-2.40 (m, 2H, CHMe and CHHC(=O)), 2.18-2.04 (m, 2H, 

CHHC(=O) and CHHCH), 1.48-1.41 (m, 1H, CHHCH), 1.08 (d, J = 7.2 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 66.0 (CHCHepo), 61.7 (CHepoC(=O)), 33.3 

(CH2C(=O)), 27.9 (CHMe), 25.6 (CH2CH), 15.9 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

cis-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.38 (d, J = 3.9 Hz, 1H, CHCHepo), 3.16 (d, J = 3.8 

Hz, 1H, CHepoC(=O)), 2.42 (ddd, J = 18.6, 5.0, 3.5 Hz, 1H, CHHC(=O)), 2.19-2.12 (m, 1H, 

CHMe), 2.07 (ddd, J = 18.6, 11.8, 6.9 Hz, 1H, CHHC(=O)), 1.67-1.57 (m, 2H, CH2CH), 1.22 

(d, J = 6.9 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.6 (C=O), 60.1 (CHCHepo), 55.9 (CHepoC(=O)), 36.5 

(CH2C(=O)), 29.3 (CHMe), 24.1 (CH2CH), 18.8 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-4-tert-butylcyclohexanone ((2S,3S)-81b) 

Conditions B: After 96 h at 50 °C, the conversion was determined to be 

56% by GC/MS with a yield of epoxide 81b of 48% (92:8 dr (trans/cis)). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (100 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 

0.5 bar H2). trans-81b:a 79.5:20.5 er (major enantiomer: τR = 26.00 min, minor enantiomer: τR 

= 29.01 min).[192] 

                                                 
a  Relative configuration was assigned on the basis of NOE correlations in collaboration with the NMR 
department of the Max-Planck-Institut für Kohlenforschung. 
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(2S,3S)-2,3-Epoxy-4-methylcyclohexanone ((2S,3S)-81a) 

Conditions B: After 24 h at 30 °C, the conversion was determined to be 94% 

(54:46 dr (trans/cis)) by GC/MS. The enantiomeric ratio was determined by 

GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 0.8 °C/min until 

105 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2). trans-81a: 

93.5:6.5 er (major enantiomer: τR = 27.25 min, minor enantiomer: τR = 29.13 min); cis-81a: 

99:1 er (minor enantiomer: τR = 28.64 min, minor enantiomer: τR = 29.65 min). 

trans-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.37 (dd, J = 3.7, 2.2 Hz, 1H, CHCHepo), 3.15 (d, J 

= 4.0 Hz, 1H, CHepoC(=O)), 2.46-2.40 (m, 2H, CHMe and CHHC(=O)), 2.18-2.04 (m, 2H, 

CHHC(=O) and CHHCH), 1.48-1.41 (m, 1H, CHHCH), 1.08 (d, J = 7.2 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 206.5 (C=O), 66.0 (CHCHepo), 61.7 (CHepoC(=O)), 33.3 

(CH2C(=O)), 27.9 (CHMe), 25.6 (CH2CH), 15.9 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

cis-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.38 (d, J = 3.9 Hz, 1H, CHCHepo), 3.16 (d, J = 3.8 

Hz, 1H, CHepoC(=O)), 2.42 (ddd, J = 18.6, 5.0, 3.5 Hz, 1H, CHHC(=O)), 2.19-2.12 (m, 1H, 

CHMe), 2.07 (ddd, J = 18.6, 11.8, 6.9 Hz, 1H, CHHC(=O)), 1.67-1.57 (m, 2H, CH2CH), 1.22 

(d, J = 6.9 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.6 (C=O), 60.1 (CHCHepo), 55.9 (CHepoC(=O)), 36.5 

(CH2C(=O)), 29.3 (CHMe), 24.1 (CH2CH), 18.8 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-4-tert-butylcyclohexanone ((2S,3S)-81b) 

Conditions B: After 96 h at 50 °C, the conversion was determined to be 

56% by GC/MS with a yield of epoxide 81b of 48% (92:8 dr (trans/cis)). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (100 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 

0.5 bar H2). trans-81b:a 79.5:20.5 er (major enantiomer: τR = 26.00 min, minor enantiomer: τR 

= 29.01 min).[192] 

                                                 
a  Relative configuration was assigned on the basis of NOE correlations in collaboration with the NMR 
department of the Max-Planck-Institut für Kohlenforschung. 
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(2S,3S)-2,3-Epoxy-4-methylcyclohexanone ((2S,3S)-81a) 

Conditions B: After 24 h at 30 °C, the conversion was determined to be 94% 

(54:46 dr (trans/cis)) by GC/MS. The enantiomeric ratio was determined by 

GC using a chiral BGB-178/OV-1701 column 30 m (80 °C, 0.8 °C/min until 

105 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2). trans-81a: 
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CHHC(=O) and CHHCH), 1.48-1.41 (m, 1H, CHHCH), 1.08 (d, J = 7.2 Hz, 3H, CH3). 
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(CH2C(=O)), 27.9 (CHMe), 25.6 (CH2CH), 15.9 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

cis-81a: 1H NMR (500 MHz, CD2Cl2) δ 3.38 (d, J = 3.9 Hz, 1H, CHCHepo), 3.16 (d, J = 3.8 

Hz, 1H, CHepoC(=O)), 2.42 (ddd, J = 18.6, 5.0, 3.5 Hz, 1H, CHHC(=O)), 2.19-2.12 (m, 1H, 

CHMe), 2.07 (ddd, J = 18.6, 11.8, 6.9 Hz, 1H, CHHC(=O)), 1.67-1.57 (m, 2H, CH2CH), 1.22 

(d, J = 6.9 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.6 (C=O), 60.1 (CHCHepo), 55.9 (CHepoC(=O)), 36.5 

(CH2C(=O)), 29.3 (CHMe), 24.1 (CH2CH), 18.8 (CH3). 

GC-MS (GC-EI) m/z (%) 126 [M+]. 

HRMS (EI-FE) calcd for C7H10O2 [M
+] 126.0680, found 126.0681. 

 

(2S,3S)-2,3-Epoxy-4-tert-butylcyclohexanone ((2S,3S)-81b) 

Conditions B: After 96 h at 50 °C, the conversion was determined to be 

56% by GC/MS with a yield of epoxide 81b of 48% (92:8 dr (trans/cis)). 

The enantiomeric ratio was determined by GC using a chiral Hydrodex-β-

TBDAc column 25 m (100 °C, 1.2 °C/min until 220 °C, 10 min at 220 °C, 

0.5 bar H2). trans-81b:a 79.5:20.5 er (major enantiomer: τR = 26.00 min, minor enantiomer: τR 

= 29.01 min).[192] 

                                                 
a  Relative configuration was assigned on the basis of NOE correlations in collaboration with the NMR 
department of the Max-Planck-Institut für Kohlenforschung. 
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trans-81b: 1H NMR (400 MHz, CDCl3) δ 3.49-3.47 (m, 1H, CHCHepo), 3.15 (d, J = 3.8 Hz, 

1H, CHepoC(=O)), 2.70-2.62 (m, 1H, CHHC(=O)) 2.15-2.09 (m, 1H,CHHC(=O)), 2.02-1.94 

(m, 2H, CHt-Bu and CHHCH), 1.74-1.64 (m, 1H, CHHCH), 0.99 (s, 9H, CH3). 
13C NMR (100 MHz, CDCl3) δ 208.3 (C=O), 61.5 (CHCHepo), 55.2 (CHepoC(=O)), 43.5 

(CHt-Bu), 34.7 (CH2C(=O)), 32.6 (CqMe3), 27.6 (3C, CH3), 26.1 (CH2CH). 

MS (EI-DE) m/z (%) 168 [M+] (8), 153 (1), 139 (4), 125 (2), 112 (21), 107 (4), 97 (8), 83 (24), 

70 (32), 67 (11), 57 (100), 41 (43), 39 (16), 29 (19). 

HRMS (EI-FE) calcd for C10H16O2 [M
+] 168.1152, found 168.1150. 

 

trans-(2S,3S,5S)-2,3-Epoxy-3-methyl-5-phenylcyclohexanone (trans-(2S,3S,5S)-84) 

Conditions B: After 48 h at 50 °C, the conversion was determined to be 83% 

by GC/MS with a yield of epoxide 84 of 75% (97:3 dr (trans/cis)). The 

enantiomeric ratio was determined to be 98.5:1.5 by chiral GC using a 

Hydrodex-β-TBDAc column 25 m (80 °C, 1.2 °C/min until 180 °C, 20 °C/min 

until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 67.61 min, minor 

enantiomer: τR = 69.91 min). 
1H NMR (500 MHz, CD2Cl2) δ 7.33 (t, J = 7.7 Hz, 2H, CHPh, m), 7.24-7.20 (m, 3H, CHPh, o, p), 

3.34 (tt, J = 12.3, 4.5 Hz, 1H, CHPh), 3.14 (s, 1H, CHepo), 2.63 (dd, J = 18.7, 4.9 Hz, 1H, 

CHHC(=O)), 2.34 (dd, J = 14.3, 3.9 Hz, 1H, CHHCqMe), 2.23 (dd, J = 18.6, 12.7 Hz, 1H, 

CHHC(=O)), 2.11 (dd, J = 15.0, 12.4 Hz, 1H, CHHCqMe), 1.49 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.3 (C=O), 143.8 (CqPh), 129.0 (2C, CHPh, m), 127.3 (2C, 

CHPh, o), 127.1 (CHPh, p), 61.5 (CHepo), 61.4 (Cqepo), 44.0 (CH2C(=O)), 36.8 (CH2Cqepo), 34.3 

(CHPh), 21.9 (CH3). 

MS (EI-DE) m/z (%) 202 [M+] (23), 184 (17), 174 (68), 159 (84), 145 (47), 131 (100), 115 

(49), 103 (84), 91 (74), 85 (33), 77 (62), 69 (50), 65 (22), 51 (31), 43 (54), 27 (16). 

HRMS (EI-FE) calcd for C13H14O2 [M
+] 202.0993, found 202.0994. 
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trans-81b: 1H NMR (400 MHz, CDCl3) δ 3.49-3.47 (m, 1H, CHCHepo), 3.15 (d, J = 3.8 Hz, 

1H, CHepoC(=O)), 2.70-2.62 (m, 1H, CHHC(=O)) 2.15-2.09 (m, 1H,CHHC(=O)), 2.02-1.94 

(m, 2H, CHt-Bu and CHHCH), 1.74-1.64 (m, 1H, CHHCH), 0.99 (s, 9H, CH3). 
13C NMR (100 MHz, CDCl3) δ 208.3 (C=O), 61.5 (CHCHepo), 55.2 (CHepoC(=O)), 43.5 

(CHt-Bu), 34.7 (CH2C(=O)), 32.6 (CqMe3), 27.6 (3C, CH3), 26.1 (CH2CH). 
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70 (32), 67 (11), 57 (100), 41 (43), 39 (16), 29 (19). 
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+] 168.1152, found 168.1150. 
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until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 67.61 min, minor 
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CHHC(=O)), 2.34 (dd, J = 14.3, 3.9 Hz, 1H, CHHCqMe), 2.23 (dd, J = 18.6, 12.7 Hz, 1H, 

CHHC(=O)), 2.11 (dd, J = 15.0, 12.4 Hz, 1H, CHHCqMe), 1.49 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 205.3 (C=O), 143.8 (CqPh), 129.0 (2C, CHPh, m), 127.3 (2C, 

CHPh, o), 127.1 (CHPh, p), 61.5 (CHepo), 61.4 (Cqepo), 44.0 (CH2C(=O)), 36.8 (CH2Cqepo), 34.3 

(CHPh), 21.9 (CH3). 

MS (EI-DE) m/z (%) 202 [M+] (23), 184 (17), 174 (68), 159 (84), 145 (47), 131 (100), 115 

(49), 103 (84), 91 (74), 85 (33), 77 (62), 69 (50), 65 (22), 51 (31), 43 (54), 27 (16). 
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+] 202.0993, found 202.0994. 
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+] 168.1152, found 168.1150. 
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(2S,3S)-2,3-Epoxy-3-phenethyl-cyclopentanone ((2S,3S)-91) 

Conditions A: Amine 64 was used (instead of (R,R)-DPEN (12)). The title 

compound was isolated after 48 h at 50 °C and purification by flash column 

chromatography (silica gel, 15-20% Et2O in pentane) as a clear oil (66 mg, 

326 μmol, 65%; 85.5:14.5 er). The enantiomeric ratio was determined by GC 

using a chiral Lipodex E column 25 m (80 °C, 1.2 °C/min until 180 °C, 18 

°C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); major enantiomer: τR = 68.62 min, minor 

enantiomer: τR = 67.99 min. 
1H NMR (500 MHz, CD2Cl2) δ 7.31-7.27 (m, 2H, CHPh, m), 7.21-7.19 (m, 3H, CHPh, o, p), 3.10 

(s, 1H, CepoH), 2.81-2.71 (m, 2H, PhCH2CH2), 2.37-2.27 (m, 2H, CH2CHHC(=O) and 

CHHCH2C(=O)), 2.23-2.12 (m, 2H, PhCH2CH2), 2.10-2.03 (m, 1H, CH2CHHC(=O)), 2.02-

1.97 (m, 1H, CHHCH2C(=O)). 
13C NMR (125 MHz, CD2Cl2) δ 210.5 (C=O), 141.1 (CqPh), 128.5 (2C, CHPh, m), 128.3 (2C, 

CHPh, o), 126.2 (CHar, p), 68.5 (Cqepo), 60.4 (CepoH), 33.6 (PhCH2CH2), 32.5 (CH2C(=O)), 31.1 

(PhCH2), 26.0 (CH2CH2C(=O)). 

MS (EI-DE) m/z (%) 202 [M+] (7), 173 (1), 155 (1), 142 (2), 130 (28), 104 (11), 91 (100), 83 

(19), 77 (6), 65 (12), 55 (11), 39 (7), 29 (5). 

HRMS (EI-FE) calcd for C13H14O2 [M
+] 202.0992, found 202.0994. 
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7.3 Catalytic Asymmetric Hydroperoxidation and Epoxidation of Acyclic Enones 

7.3.1 Catalytic Asymmetric Hydroperoxidation of Acyclic Enones 

7.3.1.1 General Procedure[193] 

 

 
 
Catalyst salt [13 • 2 TCA] was prepared in situ by the addition of 9-amino(9-deoxy)epiquinine 

(13; 32.3 mg, 0.1 mmol, 10 mol%) to a solution of trichloroacetic acid (32.6 mg, 0.2 mmol, 

20 mol%) in dioxane (4 mL). Then, enone 92 (1.0 mmol, 1.0 equiv) was added, and 20 

minutes later, aqueous hydrogen peroxide (30 wt%, 304 μL, 3.0 mmol, 3 equiv). After 20-48 

h of stirring at 32°C, the reaction mixture was extracted with Et2O (3×25 mL) and the 

combined organic phases were washed with brine, dried (Na2SO4), filtered, and concentrated 

in vacuo. The crude product was subjected to flash column chromatography (silica gel, eluent: 

Et2O-pentane) to afford the corresponding pure peroxyhemiketal 94. The optical purity was 

determined after converting the peroxyhemiketal to the corresponding epoxide (with 1N 

NaOH (1 equiv) in Et2O) or to the corresponding aldol-type product (with triethylphosphite (2 

equiv) in Et2O). 

 

7.3.1.2 Scope of Optically Active 3-Hydroxy-1,2-dioxolanes 

 

(5R)-5-Hexyl-3-methyl-1,2-dioxolan-3-ol ((5R)-94a): Peroxyhemiketal 94a was prepared 

according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-10% Et2O in pentane) 

provided the title compound 94a as a colorless oil (123 mg, 653 μmol, 65%; 98.5:1.5 er). The 

enantiomeric ratio was determined after converting peroxyhemiketal 94a into the 

corresponding epoxide 93a. The enantiomers were analyzed by GC using a chiral BGB-

176/SE-52 column 29.5 m (80 °C, 1.2 °C/min until 115 °C, 18 °C/min until 220 °C, 10 min at 

220 °C, 0.6 bar H2); major enantiomer: τR = 24.41 min, minor enantiomer: τR = 26.10 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
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1H NMR (500 MHz, CD2Cl2) δ 4.41-4.36 (m, 1H), 4.31-4.26 (m, 1H), 2.96 (br s, 2H), 2.77-

2.72 (m, 1H), 2.69-2.65 (m, 1H), 2.26-2.18 (m, 2H), 1.72-1.55 (m, 4H), 1.52 (s, 3H), 1.51 (s, 

3H), 1.47-1.35 (m, 2H), 1.34-1.24 (m, 14H), 0.89-0.87 (m, 6H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 105.0, 82.7, 81.3, 53.1, 52.8, 35.2, 32.6, 32.3, 32.2, 

29.8, 29.7, 26.7, 26.5, 23.4, 23.1, 23.1, 22.9, 14.4, 14.4. 

MS (EI-DE) m/z (%) 188 [M+] (1), 155 (56), 137 (3), 113 (8), 95 (7), 81 (5), 71 (63), 55 (14), 

43 (100), 29 (12). 

HRMS (EI-FE) calcd for C10H20O3 [M
+] 188.1413, found 188.1412. 

 

(5R)-3-Methyl-5-phenethyl-1,2-dioxolan-3-ol ((5R)-94b): Peroxyhemiketal 94a was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-40% Et2O in pentane) provided 

the title compound 94a as a colorless oil (141 mg, 677 μmol, 68%; 97:3 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94b into the corresponding epoxide 

93b. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 145 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 46.17 min, minor enantiomer: τR = 47.42 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 7.30-7.27 (m, 4H), 7.21-7.18 (m, 6H), 4.43-4.37 (m, 1H), 

4.34-4.28 (m, 1H), 2.94-2.93 (m, 2H), 2.80-2.61 (m, 6H), 2.30-2.22 (m, 2H), 2.06-1.97 (m, 

2H), 1.95-1.88 (m, 1H), 1.77-1.70 (m, 1H), 1.54 (s, 3H), 1.51 (s, 3H). 
13C NMR (125 MHz, CD2Cl2) δ 142.0, 141.8, 129.0, 129.0, 128.9, 128.9, 126.6, 126.5, 106.0, 

105.0, 81.8, 80.5, 52.9, 52.8, 37.0, 34.5, 32.9, 32.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 208 [M+] (trace), 190 (3), 174 (10), 159 (2), 148 (2), 131 (15), 117 (21), 

104 (93), 91 (100), 87 (7), 77 (15), 65 (14), 58 (4), 51 (9), 43 (77), 39 (6). 

HRMS (CI-FE, i-butane) calcd for C12H17O3 [M+H]+ 209.1175, found 209.1178. 

 

(5R)-3-Ethyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94c): The title compound was isolated after 

24 h at 32 °C and purification by flash column chromatography (silica gel, 

10-30% Et2O in pentane) as a colorless oil (74 mg, 560 μmol, 56%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94c to the 

corresponding epoxide 93c. The enantiomers were analyzed by GC using a chiral BGB-

178/BGB-15 column 30 m (60 °C, 1.0 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 
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1H NMR (500 MHz, CD2Cl2) δ 4.41-4.36 (m, 1H), 4.31-4.26 (m, 1H), 2.96 (br s, 2H), 2.77-

2.72 (m, 1H), 2.69-2.65 (m, 1H), 2.26-2.18 (m, 2H), 1.72-1.55 (m, 4H), 1.52 (s, 3H), 1.51 (s, 

3H), 1.47-1.35 (m, 2H), 1.34-1.24 (m, 14H), 0.89-0.87 (m, 6H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 105.0, 82.7, 81.3, 53.1, 52.8, 35.2, 32.6, 32.3, 32.2, 

29.8, 29.7, 26.7, 26.5, 23.4, 23.1, 23.1, 22.9, 14.4, 14.4. 

MS (EI-DE) m/z (%) 188 [M+] (1), 155 (56), 137 (3), 113 (8), 95 (7), 81 (5), 71 (63), 55 (14), 

43 (100), 29 (12). 

HRMS (EI-FE) calcd for C10H20O3 [M
+] 188.1413, found 188.1412. 

 

(5R)-3-Methyl-5-phenethyl-1,2-dioxolan-3-ol ((5R)-94b): Peroxyhemiketal 94a was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-40% Et2O in pentane) provided 

the title compound 94a as a colorless oil (141 mg, 677 μmol, 68%; 97:3 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94b into the corresponding epoxide 

93b. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 145 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 46.17 min, minor enantiomer: τR = 47.42 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 7.30-7.27 (m, 4H), 7.21-7.18 (m, 6H), 4.43-4.37 (m, 1H), 

4.34-4.28 (m, 1H), 2.94-2.93 (m, 2H), 2.80-2.61 (m, 6H), 2.30-2.22 (m, 2H), 2.06-1.97 (m, 

2H), 1.95-1.88 (m, 1H), 1.77-1.70 (m, 1H), 1.54 (s, 3H), 1.51 (s, 3H). 
13C NMR (125 MHz, CD2Cl2) δ 142.0, 141.8, 129.0, 129.0, 128.9, 128.9, 126.6, 126.5, 106.0, 

105.0, 81.8, 80.5, 52.9, 52.8, 37.0, 34.5, 32.9, 32.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 208 [M+] (trace), 190 (3), 174 (10), 159 (2), 148 (2), 131 (15), 117 (21), 

104 (93), 91 (100), 87 (7), 77 (15), 65 (14), 58 (4), 51 (9), 43 (77), 39 (6). 

HRMS (CI-FE, i-butane) calcd for C12H17O3 [M+H]+ 209.1175, found 209.1178. 

 

(5R)-3-Ethyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94c): The title compound was isolated after 

24 h at 32 °C and purification by flash column chromatography (silica gel, 

10-30% Et2O in pentane) as a colorless oil (74 mg, 560 μmol, 56%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94c to the 

corresponding epoxide 93c. The enantiomers were analyzed by GC using a chiral BGB-

178/BGB-15 column 30 m (60 °C, 1.0 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 
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1H NMR (500 MHz, CD2Cl2) δ 4.41-4.36 (m, 1H), 4.31-4.26 (m, 1H), 2.96 (br s, 2H), 2.77-

2.72 (m, 1H), 2.69-2.65 (m, 1H), 2.26-2.18 (m, 2H), 1.72-1.55 (m, 4H), 1.52 (s, 3H), 1.51 (s, 

3H), 1.47-1.35 (m, 2H), 1.34-1.24 (m, 14H), 0.89-0.87 (m, 6H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 105.0, 82.7, 81.3, 53.1, 52.8, 35.2, 32.6, 32.3, 32.2, 

29.8, 29.7, 26.7, 26.5, 23.4, 23.1, 23.1, 22.9, 14.4, 14.4. 

MS (EI-DE) m/z (%) 188 [M+] (1), 155 (56), 137 (3), 113 (8), 95 (7), 81 (5), 71 (63), 55 (14), 

43 (100), 29 (12). 

HRMS (EI-FE) calcd for C10H20O3 [M
+] 188.1413, found 188.1412. 

 

(5R)-3-Methyl-5-phenethyl-1,2-dioxolan-3-ol ((5R)-94b): Peroxyhemiketal 94a was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-40% Et2O in pentane) provided 

the title compound 94a as a colorless oil (141 mg, 677 μmol, 68%; 97:3 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94b into the corresponding epoxide 

93b. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 145 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 46.17 min, minor enantiomer: τR = 47.42 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 7.30-7.27 (m, 4H), 7.21-7.18 (m, 6H), 4.43-4.37 (m, 1H), 

4.34-4.28 (m, 1H), 2.94-2.93 (m, 2H), 2.80-2.61 (m, 6H), 2.30-2.22 (m, 2H), 2.06-1.97 (m, 

2H), 1.95-1.88 (m, 1H), 1.77-1.70 (m, 1H), 1.54 (s, 3H), 1.51 (s, 3H). 
13C NMR (125 MHz, CD2Cl2) δ 142.0, 141.8, 129.0, 129.0, 128.9, 128.9, 126.6, 126.5, 106.0, 

105.0, 81.8, 80.5, 52.9, 52.8, 37.0, 34.5, 32.9, 32.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 208 [M+] (trace), 190 (3), 174 (10), 159 (2), 148 (2), 131 (15), 117 (21), 

104 (93), 91 (100), 87 (7), 77 (15), 65 (14), 58 (4), 51 (9), 43 (77), 39 (6). 

HRMS (CI-FE, i-butane) calcd for C12H17O3 [M+H]+ 209.1175, found 209.1178. 

 

(5R)-3-Ethyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94c): The title compound was isolated after 

24 h at 32 °C and purification by flash column chromatography (silica gel, 

10-30% Et2O in pentane) as a colorless oil (74 mg, 560 μmol, 56%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94c to the 

corresponding epoxide 93c. The enantiomers were analyzed by GC using a chiral BGB-

178/BGB-15 column 30 m (60 °C, 1.0 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 
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1H NMR (500 MHz, CD2Cl2) δ 4.41-4.36 (m, 1H), 4.31-4.26 (m, 1H), 2.96 (br s, 2H), 2.77-

2.72 (m, 1H), 2.69-2.65 (m, 1H), 2.26-2.18 (m, 2H), 1.72-1.55 (m, 4H), 1.52 (s, 3H), 1.51 (s, 

3H), 1.47-1.35 (m, 2H), 1.34-1.24 (m, 14H), 0.89-0.87 (m, 6H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 105.0, 82.7, 81.3, 53.1, 52.8, 35.2, 32.6, 32.3, 32.2, 

29.8, 29.7, 26.7, 26.5, 23.4, 23.1, 23.1, 22.9, 14.4, 14.4. 

MS (EI-DE) m/z (%) 188 [M+] (1), 155 (56), 137 (3), 113 (8), 95 (7), 81 (5), 71 (63), 55 (14), 

43 (100), 29 (12). 

HRMS (EI-FE) calcd for C10H20O3 [M
+] 188.1413, found 188.1412. 

 

(5R)-3-Methyl-5-phenethyl-1,2-dioxolan-3-ol ((5R)-94b): Peroxyhemiketal 94a was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-40% Et2O in pentane) provided 

the title compound 94a as a colorless oil (141 mg, 677 μmol, 68%; 97:3 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94b into the corresponding epoxide 

93b. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m 

(80 °C, 1.2 °C/min until 145 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 46.17 min, minor enantiomer: τR = 47.42 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 7.30-7.27 (m, 4H), 7.21-7.18 (m, 6H), 4.43-4.37 (m, 1H), 

4.34-4.28 (m, 1H), 2.94-2.93 (m, 2H), 2.80-2.61 (m, 6H), 2.30-2.22 (m, 2H), 2.06-1.97 (m, 

2H), 1.95-1.88 (m, 1H), 1.77-1.70 (m, 1H), 1.54 (s, 3H), 1.51 (s, 3H). 
13C NMR (125 MHz, CD2Cl2) δ 142.0, 141.8, 129.0, 129.0, 128.9, 128.9, 126.6, 126.5, 106.0, 

105.0, 81.8, 80.5, 52.9, 52.8, 37.0, 34.5, 32.9, 32.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 208 [M+] (trace), 190 (3), 174 (10), 159 (2), 148 (2), 131 (15), 117 (21), 

104 (93), 91 (100), 87 (7), 77 (15), 65 (14), 58 (4), 51 (9), 43 (77), 39 (6). 

HRMS (CI-FE, i-butane) calcd for C12H17O3 [M+H]+ 209.1175, found 209.1178. 

 

(5R)-3-Ethyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94c): The title compound was isolated after 

24 h at 32 °C and purification by flash column chromatography (silica gel, 

10-30% Et2O in pentane) as a colorless oil (74 mg, 560 μmol, 56%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94c to the 

corresponding epoxide 93c. The enantiomers were analyzed by GC using a chiral BGB-

178/BGB-15 column 30 m (60 °C, 1.0 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 
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220 °C, 0.4 bar H2); major enantiomer: τR = 14.73 min, minor enantiomer: τR = 15.98 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, CD2Cl2) δ 4.60 (app. sext, J = 6.2 Hz, 1H, CH), 4.40-4.32 (m, 1H, CH), 

3.12 (br s, 2H, OH), 2.71 (dd overlapped, J = 12.8, 7.5 Hz, 1H, CHHcycl.), 2.69 (dd 

overlapped, J = 12.6, 7.1 Hz, 1H, CHHcycl.), 2.17 (dd overlapped, J = 12.6, 5.8 Hz, 1H, 

CHHcycl.), 2.13 (dd overlapped, J = 12.8, 8.5 Hz, 1H, CHHcycl.), 1.84-1.71 (m, 4H, CH2CH3), 

1.30 (d, J = 6.3 Hz, 3H, CH3CH), 1.26 (d, J = 6.1 Hz, 3H, CH3CH), 1.02 (t overlapped, J = 

7.5 Hz, 3H, CH2CH3), 1.00 (t overlapped, J = 7.6 Hz, 3H, CH2CH3). 
13C NMR (100 MHz, CD2Cl2) 108.5 (CqOH), 107.3 (CqOH), 78.4 (CH), 76.9 (CH), 52.3 

(CH2, cycl.), 52.0 (CH2, cycl.), 29.9 (CH2CH3), 29.7 (CH2CH3), 20.3 (CH3CH), 17.0 (CH3CH), 

9.2 (CH2CH3), 8.9 (CH2CH3). 

MS (EI-DE) m/z (%) 132 [M+] (3), 115 (1), 99 (100), 91 (1), 87 (3), 85 (27), 81 (4), 75 (3), 71 

(24), 69 (3), 61 (25), 57 (59), 43 (60), 31 (9), 29 (40), 27 (14). 

HRMS (EI-FE) calcd for C6H12O3 [M
+] 132.0785, found 132.0786. 

 

(5R)-5-Isobutyl-3-methyl-1,2-dioxolan-3-ol ((5R)-94d): Peroxyhemiketal 94a was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C. Purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in pentane) provided the title 

compound 94a as a colorless oil (98 mg, 612 μmol, 61%; 97.5:2.5 er). The enantiomeric ratio 

was determined after converting peroxyhemiketal 94d into the corresponding epoxide 93d. 

The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m (60 °C, 

0.8 °C/min until 80 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 15.10 min, minor enantiomer: τR = 17.20 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.53-4.47 (m, 1H), 4.39-4.33 (m, 1H), 3.03-2.98 (m, 2H), 

2.79-2.75 (m, 1H), 2.71-2.67 (m, 1H), 2.25-2.21 (m, 1H), 2.20-2.17 (m, 1H), 1.73-1.56 (m, 

4H), 1.53 (s, 3H), 1.51 (s, 3H), 1.50-1.44 (m, 1H), 1.30-1.25 (m, 1H), 0.93-0.90 (m, 12H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 104.9, 81.3, 79.7, 53.7, 53.2, 44.1, 41.7, 26.6, 26.1, 

23.5, 23.3, 23.2, 22.9, 22.8, 22.5. 

MS (EI-DE) m/z (%) 160 [M+] (2), 135 (0.09), 127 (39), 109 (10), 95 (3), 85 (12), 77 (1), 71 

(96), 69 (14), 57 (23), 43 (100), 41 (25), 29 (18). 

HRMS (EI-FE) calcd for C8H16O3 [M]+ 160.1098, found 160.1099. 
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220 °C, 0.4 bar H2); major enantiomer: τR = 14.73 min, minor enantiomer: τR = 15.98 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, CD2Cl2) δ 4.60 (app. sext, J = 6.2 Hz, 1H, CH), 4.40-4.32 (m, 1H, CH), 

3.12 (br s, 2H, OH), 2.71 (dd overlapped, J = 12.8, 7.5 Hz, 1H, CHHcycl.), 2.69 (dd 

overlapped, J = 12.6, 7.1 Hz, 1H, CHHcycl.), 2.17 (dd overlapped, J = 12.6, 5.8 Hz, 1H, 

CHHcycl.), 2.13 (dd overlapped, J = 12.8, 8.5 Hz, 1H, CHHcycl.), 1.84-1.71 (m, 4H, CH2CH3), 

1.30 (d, J = 6.3 Hz, 3H, CH3CH), 1.26 (d, J = 6.1 Hz, 3H, CH3CH), 1.02 (t overlapped, J = 

7.5 Hz, 3H, CH2CH3), 1.00 (t overlapped, J = 7.6 Hz, 3H, CH2CH3). 
13C NMR (100 MHz, CD2Cl2) 108.5 (CqOH), 107.3 (CqOH), 78.4 (CH), 76.9 (CH), 52.3 

(CH2, cycl.), 52.0 (CH2, cycl.), 29.9 (CH2CH3), 29.7 (CH2CH3), 20.3 (CH3CH), 17.0 (CH3CH), 

9.2 (CH2CH3), 8.9 (CH2CH3). 

MS (EI-DE) m/z (%) 132 [M+] (3), 115 (1), 99 (100), 91 (1), 87 (3), 85 (27), 81 (4), 75 (3), 71 

(24), 69 (3), 61 (25), 57 (59), 43 (60), 31 (9), 29 (40), 27 (14). 

HRMS (EI-FE) calcd for C6H12O3 [M
+] 132.0785, found 132.0786. 

 

(5R)-5-Isobutyl-3-methyl-1,2-dioxolan-3-ol ((5R)-94d): Peroxyhemiketal 94a was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C. Purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in pentane) provided the title 

compound 94a as a colorless oil (98 mg, 612 μmol, 61%; 97.5:2.5 er). The enantiomeric ratio 

was determined after converting peroxyhemiketal 94d into the corresponding epoxide 93d. 

The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m (60 °C, 

0.8 °C/min until 80 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 15.10 min, minor enantiomer: τR = 17.20 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.53-4.47 (m, 1H), 4.39-4.33 (m, 1H), 3.03-2.98 (m, 2H), 

2.79-2.75 (m, 1H), 2.71-2.67 (m, 1H), 2.25-2.21 (m, 1H), 2.20-2.17 (m, 1H), 1.73-1.56 (m, 

4H), 1.53 (s, 3H), 1.51 (s, 3H), 1.50-1.44 (m, 1H), 1.30-1.25 (m, 1H), 0.93-0.90 (m, 12H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 104.9, 81.3, 79.7, 53.7, 53.2, 44.1, 41.7, 26.6, 26.1, 

23.5, 23.3, 23.2, 22.9, 22.8, 22.5. 

MS (EI-DE) m/z (%) 160 [M+] (2), 135 (0.09), 127 (39), 109 (10), 95 (3), 85 (12), 77 (1), 71 

(96), 69 (14), 57 (23), 43 (100), 41 (25), 29 (18). 

HRMS (EI-FE) calcd for C8H16O3 [M]+ 160.1098, found 160.1099. 
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220 °C, 0.4 bar H2); major enantiomer: τR = 14.73 min, minor enantiomer: τR = 15.98 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, CD2Cl2) δ 4.60 (app. sext, J = 6.2 Hz, 1H, CH), 4.40-4.32 (m, 1H, CH), 

3.12 (br s, 2H, OH), 2.71 (dd overlapped, J = 12.8, 7.5 Hz, 1H, CHHcycl.), 2.69 (dd 

overlapped, J = 12.6, 7.1 Hz, 1H, CHHcycl.), 2.17 (dd overlapped, J = 12.6, 5.8 Hz, 1H, 

CHHcycl.), 2.13 (dd overlapped, J = 12.8, 8.5 Hz, 1H, CHHcycl.), 1.84-1.71 (m, 4H, CH2CH3), 

1.30 (d, J = 6.3 Hz, 3H, CH3CH), 1.26 (d, J = 6.1 Hz, 3H, CH3CH), 1.02 (t overlapped, J = 

7.5 Hz, 3H, CH2CH3), 1.00 (t overlapped, J = 7.6 Hz, 3H, CH2CH3). 
13C NMR (100 MHz, CD2Cl2) 108.5 (CqOH), 107.3 (CqOH), 78.4 (CH), 76.9 (CH), 52.3 

(CH2, cycl.), 52.0 (CH2, cycl.), 29.9 (CH2CH3), 29.7 (CH2CH3), 20.3 (CH3CH), 17.0 (CH3CH), 

9.2 (CH2CH3), 8.9 (CH2CH3). 

MS (EI-DE) m/z (%) 132 [M+] (3), 115 (1), 99 (100), 91 (1), 87 (3), 85 (27), 81 (4), 75 (3), 71 

(24), 69 (3), 61 (25), 57 (59), 43 (60), 31 (9), 29 (40), 27 (14). 

HRMS (EI-FE) calcd for C6H12O3 [M
+] 132.0785, found 132.0786. 

 

(5R)-5-Isobutyl-3-methyl-1,2-dioxolan-3-ol ((5R)-94d): Peroxyhemiketal 94a was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C. Purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in pentane) provided the title 

compound 94a as a colorless oil (98 mg, 612 μmol, 61%; 97.5:2.5 er). The enantiomeric ratio 

was determined after converting peroxyhemiketal 94d into the corresponding epoxide 93d. 

The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m (60 °C, 

0.8 °C/min until 80 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 15.10 min, minor enantiomer: τR = 17.20 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.53-4.47 (m, 1H), 4.39-4.33 (m, 1H), 3.03-2.98 (m, 2H), 

2.79-2.75 (m, 1H), 2.71-2.67 (m, 1H), 2.25-2.21 (m, 1H), 2.20-2.17 (m, 1H), 1.73-1.56 (m, 

4H), 1.53 (s, 3H), 1.51 (s, 3H), 1.50-1.44 (m, 1H), 1.30-1.25 (m, 1H), 0.93-0.90 (m, 12H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 104.9, 81.3, 79.7, 53.7, 53.2, 44.1, 41.7, 26.6, 26.1, 

23.5, 23.3, 23.2, 22.9, 22.8, 22.5. 

MS (EI-DE) m/z (%) 160 [M+] (2), 135 (0.09), 127 (39), 109 (10), 95 (3), 85 (12), 77 (1), 71 

(96), 69 (14), 57 (23), 43 (100), 41 (25), 29 (18). 

HRMS (EI-FE) calcd for C8H16O3 [M]+ 160.1098, found 160.1099. 
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220 °C, 0.4 bar H2); major enantiomer: τR = 14.73 min, minor enantiomer: τR = 15.98 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, CD2Cl2) δ 4.60 (app. sext, J = 6.2 Hz, 1H, CH), 4.40-4.32 (m, 1H, CH), 

3.12 (br s, 2H, OH), 2.71 (dd overlapped, J = 12.8, 7.5 Hz, 1H, CHHcycl.), 2.69 (dd 

overlapped, J = 12.6, 7.1 Hz, 1H, CHHcycl.), 2.17 (dd overlapped, J = 12.6, 5.8 Hz, 1H, 

CHHcycl.), 2.13 (dd overlapped, J = 12.8, 8.5 Hz, 1H, CHHcycl.), 1.84-1.71 (m, 4H, CH2CH3), 

1.30 (d, J = 6.3 Hz, 3H, CH3CH), 1.26 (d, J = 6.1 Hz, 3H, CH3CH), 1.02 (t overlapped, J = 

7.5 Hz, 3H, CH2CH3), 1.00 (t overlapped, J = 7.6 Hz, 3H, CH2CH3). 
13C NMR (100 MHz, CD2Cl2) 108.5 (CqOH), 107.3 (CqOH), 78.4 (CH), 76.9 (CH), 52.3 

(CH2, cycl.), 52.0 (CH2, cycl.), 29.9 (CH2CH3), 29.7 (CH2CH3), 20.3 (CH3CH), 17.0 (CH3CH), 

9.2 (CH2CH3), 8.9 (CH2CH3). 

MS (EI-DE) m/z (%) 132 [M+] (3), 115 (1), 99 (100), 91 (1), 87 (3), 85 (27), 81 (4), 75 (3), 71 

(24), 69 (3), 61 (25), 57 (59), 43 (60), 31 (9), 29 (40), 27 (14). 

HRMS (EI-FE) calcd for C6H12O3 [M
+] 132.0785, found 132.0786. 

 

(5R)-5-Isobutyl-3-methyl-1,2-dioxolan-3-ol ((5R)-94d): Peroxyhemiketal 94a was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C. Purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in pentane) provided the title 

compound 94a as a colorless oil (98 mg, 612 μmol, 61%; 97.5:2.5 er). The enantiomeric ratio 

was determined after converting peroxyhemiketal 94d into the corresponding epoxide 93d. 

The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 30 m (60 °C, 

0.8 °C/min until 80 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 15.10 min, minor enantiomer: τR = 17.20 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.53-4.47 (m, 1H), 4.39-4.33 (m, 1H), 3.03-2.98 (m, 2H), 

2.79-2.75 (m, 1H), 2.71-2.67 (m, 1H), 2.25-2.21 (m, 1H), 2.20-2.17 (m, 1H), 1.73-1.56 (m, 

4H), 1.53 (s, 3H), 1.51 (s, 3H), 1.50-1.44 (m, 1H), 1.30-1.25 (m, 1H), 0.93-0.90 (m, 12H). 
13C NMR (125 MHz, CD2Cl2) δ 105.9, 104.9, 81.3, 79.7, 53.7, 53.2, 44.1, 41.7, 26.6, 26.1, 

23.5, 23.3, 23.2, 22.9, 22.8, 22.5. 

MS (EI-DE) m/z (%) 160 [M+] (2), 135 (0.09), 127 (39), 109 (10), 95 (3), 85 (12), 77 (1), 71 

(96), 69 (14), 57 (23), 43 (100), 41 (25), 29 (18). 

HRMS (EI-FE) calcd for C8H16O3 [M]+ 160.1098, found 160.1099. 
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(5S)-5-Cyclohexyl-3-methyl-1,2-dioxolan-3-ol ((5S)-94e): Peroxyhemiketal 94e was 

prepared according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided the 

title compound 94e as a colorless oil (101 mg, 542 μmol, 54%; 98:2 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94e into the corresponding epoxide 

93e. The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 29.5 m 

(80 °C, 1.2 °C/min until 130 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 32.73 min, minor enantiomer: τR = 33.99 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.11-4.06 (m, 1H), 4.05-4.00 (m, 1H), 3.00 (br s, 2H), 2.68-

2.64 (m, 1H), 2.60-2.56 (m, 1H), 2.34-2.28 (m, 2H), 1.91-1.86 (m, 1H), 1.83-1.79 (m, 1H), 

1.75-1.53 (m, 10H), 1.52 (s, 3H), 1.50 (s, 3H), 1.31-1.12 (m, 6H), 1.08-0.90 (m, 4H). 
13C NMR (125 MHz, CD2Cl2) δ 105.8, 105.0, 86.7, 85.2, 51.1, 50.3, 42.6, 41.2, 30.3, 29.9, 

29.7, 29.3, 26.8, 26.7, 26.4, 26.3, 26.1, 26.0, 23.4, 22.6. 

MS (EI-DE) m/z (%) 186 [M+] (2), 153 (50), 135 (14), 125 (1), 111 (8), 95 (16), 83 (71), 71 

(60), 67 (20), 55 (100), 43 (95), 29 (21). 

HRMS (CI-FE, NH3) calcd for C10H22NO3 [M+NH4]
+ 204.1598, found 204.1600. 

 

(5R)-5-(3-Butenyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94f): Peroxyhemiketal 94f was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided 

the title compound 94f as a colorless oil (109 mg, 689 μmol, 69%; 97.5:2.5 er). The 

enantiomeric ratio was determined after converting peroxyhemiketal 94f into the 

corresponding aldol-type product 96f. The enantiomers were analyzed by HPLC using a 

chiral Chiralpak IA column (10% iPrOH/heptane, 0.5 mL/min); major enantiomer: τR = 13.19 

min, minor enantiomer: τR = 12.41 min. Characterized as mixture of hemiketal epimers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) δ 5.86-5.77 (m, 2H), 5.07-5.02 (m, 2H), 5.00-4.96 (m, 2H), 

4.44-4.39 (m, 1H), 4.34-4.28 (m, 1H), 3.10 (br s, 2H), 2.80-2.76 (m, 1H), 2.69-2.65 (m, 1H), 

2.29-2.25 (m, 1H), 2.24-2.21 (m, 1H), 2.19-2.05 (m, 4H), 1.83-1.75 (m, 2H), 1.73-1.54 (m, 

2H), 1.53 (s, 3H), 1.51 (s, 3H). 
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(5S)-5-Cyclohexyl-3-methyl-1,2-dioxolan-3-ol ((5S)-94e): Peroxyhemiketal 94e was 

prepared according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided the 

title compound 94e as a colorless oil (101 mg, 542 μmol, 54%; 98:2 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94e into the corresponding epoxide 

93e. The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 29.5 m 

(80 °C, 1.2 °C/min until 130 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 32.73 min, minor enantiomer: τR = 33.99 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.11-4.06 (m, 1H), 4.05-4.00 (m, 1H), 3.00 (br s, 2H), 2.68-

2.64 (m, 1H), 2.60-2.56 (m, 1H), 2.34-2.28 (m, 2H), 1.91-1.86 (m, 1H), 1.83-1.79 (m, 1H), 

1.75-1.53 (m, 10H), 1.52 (s, 3H), 1.50 (s, 3H), 1.31-1.12 (m, 6H), 1.08-0.90 (m, 4H). 
13C NMR (125 MHz, CD2Cl2) δ 105.8, 105.0, 86.7, 85.2, 51.1, 50.3, 42.6, 41.2, 30.3, 29.9, 

29.7, 29.3, 26.8, 26.7, 26.4, 26.3, 26.1, 26.0, 23.4, 22.6. 

MS (EI-DE) m/z (%) 186 [M+] (2), 153 (50), 135 (14), 125 (1), 111 (8), 95 (16), 83 (71), 71 

(60), 67 (20), 55 (100), 43 (95), 29 (21). 

HRMS (CI-FE, NH3) calcd for C10H22NO3 [M+NH4]
+ 204.1598, found 204.1600. 

 

(5R)-5-(3-Butenyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94f): Peroxyhemiketal 94f was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided 

the title compound 94f as a colorless oil (109 mg, 689 μmol, 69%; 97.5:2.5 er). The 

enantiomeric ratio was determined after converting peroxyhemiketal 94f into the 

corresponding aldol-type product 96f. The enantiomers were analyzed by HPLC using a 

chiral Chiralpak IA column (10% iPrOH/heptane, 0.5 mL/min); major enantiomer: τR = 13.19 

min, minor enantiomer: τR = 12.41 min. Characterized as mixture of hemiketal epimers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) δ 5.86-5.77 (m, 2H), 5.07-5.02 (m, 2H), 5.00-4.96 (m, 2H), 

4.44-4.39 (m, 1H), 4.34-4.28 (m, 1H), 3.10 (br s, 2H), 2.80-2.76 (m, 1H), 2.69-2.65 (m, 1H), 

2.29-2.25 (m, 1H), 2.24-2.21 (m, 1H), 2.19-2.05 (m, 4H), 1.83-1.75 (m, 2H), 1.73-1.54 (m, 

2H), 1.53 (s, 3H), 1.51 (s, 3H). 
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(5S)-5-Cyclohexyl-3-methyl-1,2-dioxolan-3-ol ((5S)-94e): Peroxyhemiketal 94e was 

prepared according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided the 

title compound 94e as a colorless oil (101 mg, 542 μmol, 54%; 98:2 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94e into the corresponding epoxide 

93e. The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 29.5 m 

(80 °C, 1.2 °C/min until 130 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 32.73 min, minor enantiomer: τR = 33.99 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.11-4.06 (m, 1H), 4.05-4.00 (m, 1H), 3.00 (br s, 2H), 2.68-

2.64 (m, 1H), 2.60-2.56 (m, 1H), 2.34-2.28 (m, 2H), 1.91-1.86 (m, 1H), 1.83-1.79 (m, 1H), 

1.75-1.53 (m, 10H), 1.52 (s, 3H), 1.50 (s, 3H), 1.31-1.12 (m, 6H), 1.08-0.90 (m, 4H). 
13C NMR (125 MHz, CD2Cl2) δ 105.8, 105.0, 86.7, 85.2, 51.1, 50.3, 42.6, 41.2, 30.3, 29.9, 

29.7, 29.3, 26.8, 26.7, 26.4, 26.3, 26.1, 26.0, 23.4, 22.6. 

MS (EI-DE) m/z (%) 186 [M+] (2), 153 (50), 135 (14), 125 (1), 111 (8), 95 (16), 83 (71), 71 

(60), 67 (20), 55 (100), 43 (95), 29 (21). 

HRMS (CI-FE, NH3) calcd for C10H22NO3 [M+NH4]
+ 204.1598, found 204.1600. 

 

(5R)-5-(3-Butenyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94f): Peroxyhemiketal 94f was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided 

the title compound 94f as a colorless oil (109 mg, 689 μmol, 69%; 97.5:2.5 er). The 

enantiomeric ratio was determined after converting peroxyhemiketal 94f into the 

corresponding aldol-type product 96f. The enantiomers were analyzed by HPLC using a 

chiral Chiralpak IA column (10% iPrOH/heptane, 0.5 mL/min); major enantiomer: τR = 13.19 

min, minor enantiomer: τR = 12.41 min. Characterized as mixture of hemiketal epimers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) δ 5.86-5.77 (m, 2H), 5.07-5.02 (m, 2H), 5.00-4.96 (m, 2H), 

4.44-4.39 (m, 1H), 4.34-4.28 (m, 1H), 3.10 (br s, 2H), 2.80-2.76 (m, 1H), 2.69-2.65 (m, 1H), 

2.29-2.25 (m, 1H), 2.24-2.21 (m, 1H), 2.19-2.05 (m, 4H), 1.83-1.75 (m, 2H), 1.73-1.54 (m, 

2H), 1.53 (s, 3H), 1.51 (s, 3H). 
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(5S)-5-Cyclohexyl-3-methyl-1,2-dioxolan-3-ol ((5S)-94e): Peroxyhemiketal 94e was 

prepared according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided the 

title compound 94e as a colorless oil (101 mg, 542 μmol, 54%; 98:2 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 94e into the corresponding epoxide 

93e. The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 29.5 m 

(80 °C, 1.2 °C/min until 130 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 32.73 min, minor enantiomer: τR = 33.99 min. Characterized as mixture of 

hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, CD2Cl2) δ 4.11-4.06 (m, 1H), 4.05-4.00 (m, 1H), 3.00 (br s, 2H), 2.68-

2.64 (m, 1H), 2.60-2.56 (m, 1H), 2.34-2.28 (m, 2H), 1.91-1.86 (m, 1H), 1.83-1.79 (m, 1H), 

1.75-1.53 (m, 10H), 1.52 (s, 3H), 1.50 (s, 3H), 1.31-1.12 (m, 6H), 1.08-0.90 (m, 4H). 
13C NMR (125 MHz, CD2Cl2) δ 105.8, 105.0, 86.7, 85.2, 51.1, 50.3, 42.6, 41.2, 30.3, 29.9, 

29.7, 29.3, 26.8, 26.7, 26.4, 26.3, 26.1, 26.0, 23.4, 22.6. 

MS (EI-DE) m/z (%) 186 [M+] (2), 153 (50), 135 (14), 125 (1), 111 (8), 95 (16), 83 (71), 71 

(60), 67 (20), 55 (100), 43 (95), 29 (21). 

HRMS (CI-FE, NH3) calcd for C10H22NO3 [M+NH4]
+ 204.1598, found 204.1600. 

 

(5R)-5-(3-Butenyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94f): Peroxyhemiketal 94f was 

prepared according to the general procedure. The reaction mixture was 

stirred for 36 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 5-30% Et2O in pentane) provided 

the title compound 94f as a colorless oil (109 mg, 689 μmol, 69%; 97.5:2.5 er). The 

enantiomeric ratio was determined after converting peroxyhemiketal 94f into the 

corresponding aldol-type product 96f. The enantiomers were analyzed by HPLC using a 

chiral Chiralpak IA column (10% iPrOH/heptane, 0.5 mL/min); major enantiomer: τR = 13.19 

min, minor enantiomer: τR = 12.41 min. Characterized as mixture of hemiketal epimers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) δ 5.86-5.77 (m, 2H), 5.07-5.02 (m, 2H), 5.00-4.96 (m, 2H), 

4.44-4.39 (m, 1H), 4.34-4.28 (m, 1H), 3.10 (br s, 2H), 2.80-2.76 (m, 1H), 2.69-2.65 (m, 1H), 

2.29-2.25 (m, 1H), 2.24-2.21 (m, 1H), 2.19-2.05 (m, 4H), 1.83-1.75 (m, 2H), 1.73-1.54 (m, 

2H), 1.53 (s, 3H), 1.51 (s, 3H). 
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13C NMR (125 MHz, CD2Cl2) δ 138.3, 138.1, 115.5, 115.4, 105.9, 105.0, 81.9, 80.6, 52.8, 

52.7, 34.4, 31.9, 30.9, 30.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 140 (trace), 125 (10), 107 (2), 97 (2), 83 (10), 71 (18), 55 (28), 43 (100), 

41 (13), 29 (14). 

HRMS (CI-FE, i-butane) calcd for C8H15O3 [M+H]+ 159.1020, found 159.1021. 

 

(5R)-5-(3-Bromopropyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94g): Peroxyhemiketal 94g was 

prepared according to the general procedure. The reaction mixture 

was stirred for 24 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 25-40% Et2O in pentane) 

provided the title compound 94g as a colorless oil (81 mg, 360 μmol, 72%; 97:3 er). The 

enantiomeric ratio was determined after converting dioxolane 94g into the corresponding 

epoxide 93g. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 

30 m (100 °C, 1.2 °C/min until 135 °C, 18 °C/min until 220 °C, 5 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 19.07 min, minor enantiomer: τR = 20.64 min. Contains traces of (E)-

7-chloro-3,4-epoxyheptan-2-one. Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.36 (s, 1H, OH), 5.33 (s, 1H, OH), 4.38-4.32 (m, 1H, CH), 

4.25-4.18 (m, 1H, CH), 3.51-3.40 (m, 4H, CH2Br), 2.68-2.64 (m, 1H, CH2COH), 2.61-2.55 

(m, 1H, CH2COH), 2.22-2.17 (m, 1H, CH2COH), 2.16-2.10 (m, 1H, CH2COH), 2.00-1.80 (m, 

4H, CH2), 1.79-1.68 (m, 3H, CH2), 1.63-1.54 (m, 1H, CH2), 1.41 (s, 3H, CH3), 1.39 (s, 3H, 

CH3). 
13C NMR (100 MHz, THF-d8): δ 105.9 (Cq), 104.9 (Cq), 81.9 (CH), 80.7 (CH), 53.6 

(COCH2CO), 53.5 (COCH2CO), 34.4 (CH2), 34.4 (CH2, 2C), 31.9 (CH2), 31.0 (CH2), 30.9 

(CH2), 24.6 (CH3), 23.6 (CH3). 

 

(5R)-3-Methyl-5-(5-(tetrahydro-2H-pyran-2-yloxy)pentyl)-1,2-dioxolan-3-ol ((5R)-94h): 

Peroxyhemiketal 94h was prepared according to the general 

procedure. The reaction mixture was stirred for 36 h at 32 °C. 

Purification of the crude product by flash column chromate-

graphy (silica gel, 30-40% Et2O in pentane) provided the title compound 94h (87 mg, 318 

μmol, 64%; 96.5:3.5 er) as a colorless oil. The enantiomeric ratio was determined after 

converting peroxyhemiketal 94h into the corresponding THP-deprotected epoxide 99. The 

enantiomers were analyzed by GC using a chiral Ivadex 1 column 25m (80 °C, 1.0 °C/min 
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13C NMR (125 MHz, CD2Cl2) δ 138.3, 138.1, 115.5, 115.4, 105.9, 105.0, 81.9, 80.6, 52.8, 

52.7, 34.4, 31.9, 30.9, 30.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 140 (trace), 125 (10), 107 (2), 97 (2), 83 (10), 71 (18), 55 (28), 43 (100), 

41 (13), 29 (14). 

HRMS (CI-FE, i-butane) calcd for C8H15O3 [M+H]+ 159.1020, found 159.1021. 

 

(5R)-5-(3-Bromopropyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94g): Peroxyhemiketal 94g was 

prepared according to the general procedure. The reaction mixture 

was stirred for 24 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 25-40% Et2O in pentane) 

provided the title compound 94g as a colorless oil (81 mg, 360 μmol, 72%; 97:3 er). The 

enantiomeric ratio was determined after converting dioxolane 94g into the corresponding 

epoxide 93g. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 

30 m (100 °C, 1.2 °C/min until 135 °C, 18 °C/min until 220 °C, 5 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 19.07 min, minor enantiomer: τR = 20.64 min. Contains traces of (E)-

7-chloro-3,4-epoxyheptan-2-one. Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.36 (s, 1H, OH), 5.33 (s, 1H, OH), 4.38-4.32 (m, 1H, CH), 

4.25-4.18 (m, 1H, CH), 3.51-3.40 (m, 4H, CH2Br), 2.68-2.64 (m, 1H, CH2COH), 2.61-2.55 

(m, 1H, CH2COH), 2.22-2.17 (m, 1H, CH2COH), 2.16-2.10 (m, 1H, CH2COH), 2.00-1.80 (m, 

4H, CH2), 1.79-1.68 (m, 3H, CH2), 1.63-1.54 (m, 1H, CH2), 1.41 (s, 3H, CH3), 1.39 (s, 3H, 

CH3). 
13C NMR (100 MHz, THF-d8): δ 105.9 (Cq), 104.9 (Cq), 81.9 (CH), 80.7 (CH), 53.6 

(COCH2CO), 53.5 (COCH2CO), 34.4 (CH2), 34.4 (CH2, 2C), 31.9 (CH2), 31.0 (CH2), 30.9 

(CH2), 24.6 (CH3), 23.6 (CH3). 

 

(5R)-3-Methyl-5-(5-(tetrahydro-2H-pyran-2-yloxy)pentyl)-1,2-dioxolan-3-ol ((5R)-94h): 

Peroxyhemiketal 94h was prepared according to the general 

procedure. The reaction mixture was stirred for 36 h at 32 °C. 

Purification of the crude product by flash column chromate-

graphy (silica gel, 30-40% Et2O in pentane) provided the title compound 94h (87 mg, 318 

μmol, 64%; 96.5:3.5 er) as a colorless oil. The enantiomeric ratio was determined after 

converting peroxyhemiketal 94h into the corresponding THP-deprotected epoxide 99. The 

enantiomers were analyzed by GC using a chiral Ivadex 1 column 25m (80 °C, 1.0 °C/min 
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13C NMR (125 MHz, CD2Cl2) δ 138.3, 138.1, 115.5, 115.4, 105.9, 105.0, 81.9, 80.6, 52.8, 

52.7, 34.4, 31.9, 30.9, 30.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 140 (trace), 125 (10), 107 (2), 97 (2), 83 (10), 71 (18), 55 (28), 43 (100), 

41 (13), 29 (14). 

HRMS (CI-FE, i-butane) calcd for C8H15O3 [M+H]+ 159.1020, found 159.1021. 

 

(5R)-5-(3-Bromopropyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94g): Peroxyhemiketal 94g was 

prepared according to the general procedure. The reaction mixture 

was stirred for 24 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 25-40% Et2O in pentane) 

provided the title compound 94g as a colorless oil (81 mg, 360 μmol, 72%; 97:3 er). The 

enantiomeric ratio was determined after converting dioxolane 94g into the corresponding 

epoxide 93g. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 

30 m (100 °C, 1.2 °C/min until 135 °C, 18 °C/min until 220 °C, 5 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 19.07 min, minor enantiomer: τR = 20.64 min. Contains traces of (E)-

7-chloro-3,4-epoxyheptan-2-one. Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.36 (s, 1H, OH), 5.33 (s, 1H, OH), 4.38-4.32 (m, 1H, CH), 

4.25-4.18 (m, 1H, CH), 3.51-3.40 (m, 4H, CH2Br), 2.68-2.64 (m, 1H, CH2COH), 2.61-2.55 

(m, 1H, CH2COH), 2.22-2.17 (m, 1H, CH2COH), 2.16-2.10 (m, 1H, CH2COH), 2.00-1.80 (m, 

4H, CH2), 1.79-1.68 (m, 3H, CH2), 1.63-1.54 (m, 1H, CH2), 1.41 (s, 3H, CH3), 1.39 (s, 3H, 

CH3). 
13C NMR (100 MHz, THF-d8): δ 105.9 (Cq), 104.9 (Cq), 81.9 (CH), 80.7 (CH), 53.6 

(COCH2CO), 53.5 (COCH2CO), 34.4 (CH2), 34.4 (CH2, 2C), 31.9 (CH2), 31.0 (CH2), 30.9 

(CH2), 24.6 (CH3), 23.6 (CH3). 

 

(5R)-3-Methyl-5-(5-(tetrahydro-2H-pyran-2-yloxy)pentyl)-1,2-dioxolan-3-ol ((5R)-94h): 

Peroxyhemiketal 94h was prepared according to the general 

procedure. The reaction mixture was stirred for 36 h at 32 °C. 

Purification of the crude product by flash column chromate-

graphy (silica gel, 30-40% Et2O in pentane) provided the title compound 94h (87 mg, 318 

μmol, 64%; 96.5:3.5 er) as a colorless oil. The enantiomeric ratio was determined after 

converting peroxyhemiketal 94h into the corresponding THP-deprotected epoxide 99. The 

enantiomers were analyzed by GC using a chiral Ivadex 1 column 25m (80 °C, 1.0 °C/min 
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13C NMR (125 MHz, CD2Cl2) δ 138.3, 138.1, 115.5, 115.4, 105.9, 105.0, 81.9, 80.6, 52.8, 

52.7, 34.4, 31.9, 30.9, 30.7, 23.4, 22.8. 

MS (EI-DE) m/z (%) 140 (trace), 125 (10), 107 (2), 97 (2), 83 (10), 71 (18), 55 (28), 43 (100), 

41 (13), 29 (14). 

HRMS (CI-FE, i-butane) calcd for C8H15O3 [M+H]+ 159.1020, found 159.1021. 

 

(5R)-5-(3-Bromopropyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94g): Peroxyhemiketal 94g was 

prepared according to the general procedure. The reaction mixture 

was stirred for 24 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 25-40% Et2O in pentane) 

provided the title compound 94g as a colorless oil (81 mg, 360 μmol, 72%; 97:3 er). The 

enantiomeric ratio was determined after converting dioxolane 94g into the corresponding 

epoxide 93g. The enantiomers were analyzed by GC using a chiral BGB-176/BGB-15 column 

30 m (100 °C, 1.2 °C/min until 135 °C, 18 °C/min until 220 °C, 5 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 19.07 min, minor enantiomer: τR = 20.64 min. Contains traces of (E)-

7-chloro-3,4-epoxyheptan-2-one. Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.36 (s, 1H, OH), 5.33 (s, 1H, OH), 4.38-4.32 (m, 1H, CH), 

4.25-4.18 (m, 1H, CH), 3.51-3.40 (m, 4H, CH2Br), 2.68-2.64 (m, 1H, CH2COH), 2.61-2.55 

(m, 1H, CH2COH), 2.22-2.17 (m, 1H, CH2COH), 2.16-2.10 (m, 1H, CH2COH), 2.00-1.80 (m, 

4H, CH2), 1.79-1.68 (m, 3H, CH2), 1.63-1.54 (m, 1H, CH2), 1.41 (s, 3H, CH3), 1.39 (s, 3H, 

CH3). 
13C NMR (100 MHz, THF-d8): δ 105.9 (Cq), 104.9 (Cq), 81.9 (CH), 80.7 (CH), 53.6 

(COCH2CO), 53.5 (COCH2CO), 34.4 (CH2), 34.4 (CH2, 2C), 31.9 (CH2), 31.0 (CH2), 30.9 

(CH2), 24.6 (CH3), 23.6 (CH3). 

 

(5R)-3-Methyl-5-(5-(tetrahydro-2H-pyran-2-yloxy)pentyl)-1,2-dioxolan-3-ol ((5R)-94h): 

Peroxyhemiketal 94h was prepared according to the general 

procedure. The reaction mixture was stirred for 36 h at 32 °C. 

Purification of the crude product by flash column chromate-

graphy (silica gel, 30-40% Et2O in pentane) provided the title compound 94h (87 mg, 318 

μmol, 64%; 96.5:3.5 er) as a colorless oil. The enantiomeric ratio was determined after 

converting peroxyhemiketal 94h into the corresponding THP-deprotected epoxide 99. The 

enantiomers were analyzed by GC using a chiral Ivadex 1 column 25m (80 °C, 1.0 °C/min 
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until 155 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.6 bar H2); major enantiomer: τR = 

60.79 min, minor enantiomer: τR = 61.52 min. Characterized as mixture of diastereomers. 
1H NMR (400 MHz, THF-d8) δ 5.30 (s, 2H, OH), 5.26 (s, 2H, OH), 4.53 (t, J = 3.2 Hz, 4H, 

CHTHP), 4.34-4.28 (m, 2H, CH), 4.21-4.14 (m, 2H, CH), 3.80-3.74 (m, 4H, OCHHTHP), 3.67 

(dt, J = 9.5, 6.6 Hz, 4H, THPOCHH), 3.44-3.38 (m, 4H, OCHHTHP), 3.30 (dt, J = 9.5, 6.4 Hz, 

4H, THPOCHH), 2.65-2.53 (m, 4H, CH2CqOH), 2.18-2.07 (m, 4H, CH2CqOH), 1.84-1.76 (m, 

4H, CH2), 1.65-1.42 (m, 40H, CH2), 1.40 (s, 12H, CH3), 1.38 (s, 12H, CH3). 
13C NMR (100 MHz, THF-d8) δ 105.8 (2C, CqOH), 104.9 (2C, CqOH), 99.3 (4C, OCHO), 82.7 

(2C, CH2CHCH2), 81.3 (2C, CH2CHCH2), 68.0 (4C, THPOCH2), 62.3 (4C, OCH2, THP), 54.0 

(2C, CH2CqOH), 53.6 (2C, CH2CqOH), 35.8 (2C, CH2), 33.3 (2C, CH2), 31.9 (4C, CH2), 31.0 

(2C, CH2), 30.9 (2C, CH2), 27.6 (2C, CH2), 27.5 (2C, CH2), 27.5 (2C, CH2), 27.3 (2C, CH2), 

26.9 (4C, CH2), 24.4 (2C, CH3), 23.8 (2C, CH3), 20.5 (4C, CH2). 

MS (EI-DE) m/z (%) 274 [M+] (trace), 185 (2), 173 (1), 155 (1), 139 (1), 115 (1), 99 (6), 85 

(100), 81 (9), 69 (9), 55 (13), 43 (38). 

HRMS (ESI+) calcd for C14H26O5Na [(M+Na)+] 297.1670, found 297.1672. 

 

(5R)-5-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94i): Per-

oxyhemiketal 94i was prepared according to the general procedure. 

The reaction mixture was stirred for 36 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 15-20% 

Et2O in pentane) provided the title compound as a colorless oil (89 mg, 340 μmol, 68%; 98:2 

er). The enantiomeric ratio was determined after converting peroxyhemiketal 94i into the 

corresponding epoxide 93i. The enantiomers were analyzed by GC using a chiral BGB-

176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 150 °C, 18 °C/min until 220 °C, 5 min at 

320 °C, 0.5 bar H2); major enantiomer: τR = 34.84 min, minor enantiomer: τR = 35.96 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.34 (s, 1H, OH), 5.28 (s, 1H, OH), 4.52-4.46 (m, 1H, CH), 

4.35-4.28 (m, 1H, CH), 3.85-3.64 (m, 4H, TBSOCH2), 2.69-2.55 (m, 2H, CH2CqOH), 2.25-

2.15 (m, 2H, CH2CqOH), 1.92-1.75 (m, 3H, TBSOCH2CH2), 1.64-1.55 (m, 1H, 

TBSOCH2CH2), 1.41 (s, 3H, CqOHCH3), 1.39 (s, 3H, CqOHCH3), 0.90 (s, 18H, Cq(CH3)3), 

0.04 (s, 12H, Si(CH3)2). 
13C NMR (100 MHz, THF-d8) δ 105.8 (CqOH), 104.9 (CqOH), 79.9 (CH), 78.3 (CH), 61.3 

(TBSOCH2), 61.0 (TBSOCH2), 53.8 (CH2CqOH), 53.6 (CH2CqOH), 38.9 (TBSOCH2CH2), 
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until 155 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.6 bar H2); major enantiomer: τR = 

60.79 min, minor enantiomer: τR = 61.52 min. Characterized as mixture of diastereomers. 
1H NMR (400 MHz, THF-d8) δ 5.30 (s, 2H, OH), 5.26 (s, 2H, OH), 4.53 (t, J = 3.2 Hz, 4H, 

CHTHP), 4.34-4.28 (m, 2H, CH), 4.21-4.14 (m, 2H, CH), 3.80-3.74 (m, 4H, OCHHTHP), 3.67 

(dt, J = 9.5, 6.6 Hz, 4H, THPOCHH), 3.44-3.38 (m, 4H, OCHHTHP), 3.30 (dt, J = 9.5, 6.4 Hz, 

4H, THPOCHH), 2.65-2.53 (m, 4H, CH2CqOH), 2.18-2.07 (m, 4H, CH2CqOH), 1.84-1.76 (m, 

4H, CH2), 1.65-1.42 (m, 40H, CH2), 1.40 (s, 12H, CH3), 1.38 (s, 12H, CH3). 
13C NMR (100 MHz, THF-d8) δ 105.8 (2C, CqOH), 104.9 (2C, CqOH), 99.3 (4C, OCHO), 82.7 

(2C, CH2CHCH2), 81.3 (2C, CH2CHCH2), 68.0 (4C, THPOCH2), 62.3 (4C, OCH2, THP), 54.0 

(2C, CH2CqOH), 53.6 (2C, CH2CqOH), 35.8 (2C, CH2), 33.3 (2C, CH2), 31.9 (4C, CH2), 31.0 

(2C, CH2), 30.9 (2C, CH2), 27.6 (2C, CH2), 27.5 (2C, CH2), 27.5 (2C, CH2), 27.3 (2C, CH2), 

26.9 (4C, CH2), 24.4 (2C, CH3), 23.8 (2C, CH3), 20.5 (4C, CH2). 

MS (EI-DE) m/z (%) 274 [M+] (trace), 185 (2), 173 (1), 155 (1), 139 (1), 115 (1), 99 (6), 85 

(100), 81 (9), 69 (9), 55 (13), 43 (38). 

HRMS (ESI+) calcd for C14H26O5Na [(M+Na)+] 297.1670, found 297.1672. 

 

(5R)-5-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94i): Per-

oxyhemiketal 94i was prepared according to the general procedure. 

The reaction mixture was stirred for 36 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 15-20% 

Et2O in pentane) provided the title compound as a colorless oil (89 mg, 340 μmol, 68%; 98:2 

er). The enantiomeric ratio was determined after converting peroxyhemiketal 94i into the 

corresponding epoxide 93i. The enantiomers were analyzed by GC using a chiral BGB-

176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 150 °C, 18 °C/min until 220 °C, 5 min at 

320 °C, 0.5 bar H2); major enantiomer: τR = 34.84 min, minor enantiomer: τR = 35.96 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.34 (s, 1H, OH), 5.28 (s, 1H, OH), 4.52-4.46 (m, 1H, CH), 

4.35-4.28 (m, 1H, CH), 3.85-3.64 (m, 4H, TBSOCH2), 2.69-2.55 (m, 2H, CH2CqOH), 2.25-

2.15 (m, 2H, CH2CqOH), 1.92-1.75 (m, 3H, TBSOCH2CH2), 1.64-1.55 (m, 1H, 

TBSOCH2CH2), 1.41 (s, 3H, CqOHCH3), 1.39 (s, 3H, CqOHCH3), 0.90 (s, 18H, Cq(CH3)3), 

0.04 (s, 12H, Si(CH3)2). 
13C NMR (100 MHz, THF-d8) δ 105.8 (CqOH), 104.9 (CqOH), 79.9 (CH), 78.3 (CH), 61.3 

(TBSOCH2), 61.0 (TBSOCH2), 53.8 (CH2CqOH), 53.6 (CH2CqOH), 38.9 (TBSOCH2CH2), 
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until 155 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.6 bar H2); major enantiomer: τR = 

60.79 min, minor enantiomer: τR = 61.52 min. Characterized as mixture of diastereomers. 
1H NMR (400 MHz, THF-d8) δ 5.30 (s, 2H, OH), 5.26 (s, 2H, OH), 4.53 (t, J = 3.2 Hz, 4H, 

CHTHP), 4.34-4.28 (m, 2H, CH), 4.21-4.14 (m, 2H, CH), 3.80-3.74 (m, 4H, OCHHTHP), 3.67 

(dt, J = 9.5, 6.6 Hz, 4H, THPOCHH), 3.44-3.38 (m, 4H, OCHHTHP), 3.30 (dt, J = 9.5, 6.4 Hz, 

4H, THPOCHH), 2.65-2.53 (m, 4H, CH2CqOH), 2.18-2.07 (m, 4H, CH2CqOH), 1.84-1.76 (m, 

4H, CH2), 1.65-1.42 (m, 40H, CH2), 1.40 (s, 12H, CH3), 1.38 (s, 12H, CH3). 
13C NMR (100 MHz, THF-d8) δ 105.8 (2C, CqOH), 104.9 (2C, CqOH), 99.3 (4C, OCHO), 82.7 

(2C, CH2CHCH2), 81.3 (2C, CH2CHCH2), 68.0 (4C, THPOCH2), 62.3 (4C, OCH2, THP), 54.0 

(2C, CH2CqOH), 53.6 (2C, CH2CqOH), 35.8 (2C, CH2), 33.3 (2C, CH2), 31.9 (4C, CH2), 31.0 

(2C, CH2), 30.9 (2C, CH2), 27.6 (2C, CH2), 27.5 (2C, CH2), 27.5 (2C, CH2), 27.3 (2C, CH2), 

26.9 (4C, CH2), 24.4 (2C, CH3), 23.8 (2C, CH3), 20.5 (4C, CH2). 

MS (EI-DE) m/z (%) 274 [M+] (trace), 185 (2), 173 (1), 155 (1), 139 (1), 115 (1), 99 (6), 85 

(100), 81 (9), 69 (9), 55 (13), 43 (38). 

HRMS (ESI+) calcd for C14H26O5Na [(M+Na)+] 297.1670, found 297.1672. 

 

(5R)-5-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94i): Per-

oxyhemiketal 94i was prepared according to the general procedure. 

The reaction mixture was stirred for 36 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 15-20% 

Et2O in pentane) provided the title compound as a colorless oil (89 mg, 340 μmol, 68%; 98:2 

er). The enantiomeric ratio was determined after converting peroxyhemiketal 94i into the 

corresponding epoxide 93i. The enantiomers were analyzed by GC using a chiral BGB-

176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 150 °C, 18 °C/min until 220 °C, 5 min at 

320 °C, 0.5 bar H2); major enantiomer: τR = 34.84 min, minor enantiomer: τR = 35.96 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.34 (s, 1H, OH), 5.28 (s, 1H, OH), 4.52-4.46 (m, 1H, CH), 

4.35-4.28 (m, 1H, CH), 3.85-3.64 (m, 4H, TBSOCH2), 2.69-2.55 (m, 2H, CH2CqOH), 2.25-

2.15 (m, 2H, CH2CqOH), 1.92-1.75 (m, 3H, TBSOCH2CH2), 1.64-1.55 (m, 1H, 

TBSOCH2CH2), 1.41 (s, 3H, CqOHCH3), 1.39 (s, 3H, CqOHCH3), 0.90 (s, 18H, Cq(CH3)3), 

0.04 (s, 12H, Si(CH3)2). 
13C NMR (100 MHz, THF-d8) δ 105.8 (CqOH), 104.9 (CqOH), 79.9 (CH), 78.3 (CH), 61.3 

(TBSOCH2), 61.0 (TBSOCH2), 53.8 (CH2CqOH), 53.6 (CH2CqOH), 38.9 (TBSOCH2CH2), 
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until 155 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.6 bar H2); major enantiomer: τR = 

60.79 min, minor enantiomer: τR = 61.52 min. Characterized as mixture of diastereomers. 
1H NMR (400 MHz, THF-d8) δ 5.30 (s, 2H, OH), 5.26 (s, 2H, OH), 4.53 (t, J = 3.2 Hz, 4H, 

CHTHP), 4.34-4.28 (m, 2H, CH), 4.21-4.14 (m, 2H, CH), 3.80-3.74 (m, 4H, OCHHTHP), 3.67 

(dt, J = 9.5, 6.6 Hz, 4H, THPOCHH), 3.44-3.38 (m, 4H, OCHHTHP), 3.30 (dt, J = 9.5, 6.4 Hz, 

4H, THPOCHH), 2.65-2.53 (m, 4H, CH2CqOH), 2.18-2.07 (m, 4H, CH2CqOH), 1.84-1.76 (m, 

4H, CH2), 1.65-1.42 (m, 40H, CH2), 1.40 (s, 12H, CH3), 1.38 (s, 12H, CH3). 
13C NMR (100 MHz, THF-d8) δ 105.8 (2C, CqOH), 104.9 (2C, CqOH), 99.3 (4C, OCHO), 82.7 

(2C, CH2CHCH2), 81.3 (2C, CH2CHCH2), 68.0 (4C, THPOCH2), 62.3 (4C, OCH2, THP), 54.0 

(2C, CH2CqOH), 53.6 (2C, CH2CqOH), 35.8 (2C, CH2), 33.3 (2C, CH2), 31.9 (4C, CH2), 31.0 

(2C, CH2), 30.9 (2C, CH2), 27.6 (2C, CH2), 27.5 (2C, CH2), 27.5 (2C, CH2), 27.3 (2C, CH2), 

26.9 (4C, CH2), 24.4 (2C, CH3), 23.8 (2C, CH3), 20.5 (4C, CH2). 

MS (EI-DE) m/z (%) 274 [M+] (trace), 185 (2), 173 (1), 155 (1), 139 (1), 115 (1), 99 (6), 85 

(100), 81 (9), 69 (9), 55 (13), 43 (38). 

HRMS (ESI+) calcd for C14H26O5Na [(M+Na)+] 297.1670, found 297.1672. 

 

(5R)-5-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94i): Per-

oxyhemiketal 94i was prepared according to the general procedure. 

The reaction mixture was stirred for 36 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 15-20% 

Et2O in pentane) provided the title compound as a colorless oil (89 mg, 340 μmol, 68%; 98:2 

er). The enantiomeric ratio was determined after converting peroxyhemiketal 94i into the 

corresponding epoxide 93i. The enantiomers were analyzed by GC using a chiral BGB-

176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 150 °C, 18 °C/min until 220 °C, 5 min at 

320 °C, 0.5 bar H2); major enantiomer: τR = 34.84 min, minor enantiomer: τR = 35.96 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.34 (s, 1H, OH), 5.28 (s, 1H, OH), 4.52-4.46 (m, 1H, CH), 

4.35-4.28 (m, 1H, CH), 3.85-3.64 (m, 4H, TBSOCH2), 2.69-2.55 (m, 2H, CH2CqOH), 2.25-

2.15 (m, 2H, CH2CqOH), 1.92-1.75 (m, 3H, TBSOCH2CH2), 1.64-1.55 (m, 1H, 

TBSOCH2CH2), 1.41 (s, 3H, CqOHCH3), 1.39 (s, 3H, CqOHCH3), 0.90 (s, 18H, Cq(CH3)3), 

0.04 (s, 12H, Si(CH3)2). 
13C NMR (100 MHz, THF-d8) δ 105.8 (CqOH), 104.9 (CqOH), 79.9 (CH), 78.3 (CH), 61.3 

(TBSOCH2), 61.0 (TBSOCH2), 53.8 (CH2CqOH), 53.6 (CH2CqOH), 38.9 (TBSOCH2CH2), 
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36.7 (TBSOCH2CH2), 26.6 (6C, Cq(CH3)3), 24.3 (CqOHCH3), 23.7 (CqOHCH3), 19.2 (2C, 

CqMe3), 5.02 (2C, Si(CH3)2), 5.05 (2C, Si(CH3)2). 

MS (EI-DE) m/z (%) 205 (1), 187 (1), 173 (1), 157 (2), 145 (8), 131 (32), 115 (22), 101 (26), 

89 (9), 75 (100), 59 (12), 43 (24), 29 (4). 

HRMS (ESI+) calcd for C12H26O4SiNa [(M+Na)+] 285.1491, found 285.1493. 

 

(5R)-5-(3-Ethoxy-3-oxopropyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94j): Peroxyhemiketal 

94j was prepared according to the general procedure. The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the crude 

product by flash column chromatography (silica gel, 25-50% Et2O in 

pentane) provided the title compound 94j (71 mg, 348 μmol, 70%; 96.5:3.5 er) as a colorless 

oil. The enantiomeric ratio was determined after converting peroxyhemiketal 94j into the 

corresponding epoxide 93j. The enantiomers were analyzed by GC using a chiral BGB-

176/SE-52 column 30 m (80 °C, 1.2 °C/min until 130 °C, 18 °C/min until 220 °C, 5 min at 

320 °C, 0.5 bar H2); major enantiomer: τR = 36.32 min, minor enantiomer: τR = 37.59 min. 

Characterized as mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, CD2Cl2) δ 4.47-4.41 (m, 1H, CH), 4.38-4.31 (m, 1H, CH), 4.11 (q 
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overlapped, J = 7.2 Hz, 3H, CH2CH3), 1.23 (t overlapped, J = 7.3 Hz, 3H, CH2CH3). 
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(CH2), 30.6 (CH2), 29.9 (CH2), 27.2 (CH2), 22.9 (CH3), 22.3 (CH3), 14.1 (CH2CH3), 14.0 

(CH2CH3). 
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prepared according to the general procedure. Catalyst [13 • 2 TFA] (10 

mol%) was used together with 50 wt% aqueous hydrogen peroxide (1.5 

equiv) as oxidant. The reaction mixture was stirred for 24 h at 32 °C. 

Purification of the crude product by flash column chromatography (silica gel, 30-50% Et2O in 
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36.7 (TBSOCH2CH2), 26.6 (6C, Cq(CH3)3), 24.3 (CqOHCH3), 23.7 (CqOHCH3), 19.2 (2C, 
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36.7 (TBSOCH2CH2), 26.6 (6C, Cq(CH3)3), 24.3 (CqOHCH3), 23.7 (CqOHCH3), 19.2 (2C, 

CqMe3), 5.02 (2C, Si(CH3)2), 5.05 (2C, Si(CH3)2). 
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(100), 29 (37). 

HRMS (ESI+) calcd for C9H16O5Na [(M+Na)+] 227.0890, found 227.0890. 
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36.7 (TBSOCH2CH2), 26.6 (6C, Cq(CH3)3), 24.3 (CqOHCH3), 23.7 (CqOHCH3), 19.2 (2C, 

CqMe3), 5.02 (2C, Si(CH3)2), 5.05 (2C, Si(CH3)2). 

MS (EI-DE) m/z (%) 205 (1), 187 (1), 173 (1), 157 (2), 145 (8), 131 (32), 115 (22), 101 (26), 

89 (9), 75 (100), 59 (12), 43 (24), 29 (4). 

HRMS (ESI+) calcd for C12H26O4SiNa [(M+Na)+] 285.1491, found 285.1493. 
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13C NMR (100 MHz, CD2Cl2) δ 172.9 (C=O), 172.8 (C=O), 105.5 (CqOH), 104.5 (CqOH), 

80.8 (CH), 79.8 (CH), 60.7 (CH2CH3), 60.5 (CH2CH3), 52.3 (CH2, cycl.), 51.9 (CH2, cycl.), 30.7 

(CH2), 30.6 (CH2), 29.9 (CH2), 27.2 (CH2), 22.9 (CH3), 22.3 (CH3), 14.1 (CH2CH3), 14.0 

(CH2CH3). 

MS (EI) m/z (%) 172 (3), 141 (2), 126 (11), 115 (5), 98 (28), 85 (13), 73 (12), 55 (13), 43 

(100), 29 (37). 

HRMS (ESI+) calcd for C9H16O5Na [(M+Na)+] 227.0890, found 227.0890. 

 

(5R)-5-(3-Oxobutyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94k): Peroxyhemiketal 94k was 

prepared according to the general procedure. Catalyst [13 • 2 TFA] (10 

mol%) was used together with 50 wt% aqueous hydrogen peroxide (1.5 
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pentane) provided the title compound 94k (26 mg, 151 μmol, 30%; 96:4 er) as a colorless oil. 

The enantiomeric ratio was determined after converting peroxyhemiketal 94k into the 

corresponding epoxide 93k The enantiomers were analyzed by GC using a chiral BGB-

176/SE-52 column 30 m (80 °C, 1.2 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 

220 °C, 0.5 bar H2); major enantiomer: τR = 28.87 min, minor enantiomer: τR = 30.28 min. 

Characterized as a mixture of three hemiketal isomers (~1:1:0.8). 
1H NMR (500 MHz, THF-d8) 3-hydroxy-1,2-dioxolane (mixture of 

hemiketal epimers (dr~1:1)): δ 5.33 (br s, 1H, OH), 5.30 (br s, 1H, 

OH), 4.37-4.28 (m, 1H, CH), 4.21-1.25 (m, 1H, CH), 2.64 (dd, J = 

12.0, 7.0 Hz, 1H, CH2, cycl.), 2.58-2.46 (m, 3H, CH2, cycl.), 2.20-2.05 (m, 

10H, CH3C(=O) and CH2(C=O)), 1.88-1.62 (m, 4H, CH2CH2CH), 1.40 

(s, 3H, CH3CqOH), 1.38 (s, 3H, CH3CqOH); 3-hydroxy-1,2-dioxane: 

5.34 (br s, 1H, OH), 4.37-4.28 (m, 1H, CH), 2.58-2.46 (m, 4H, CH2CqOH and CH2C(=O)), 

2.20-2.05 (m, 3H, CH3C(=O)), 1.88-1.62 (m, 2H, CHCH2, cycl.), 1.39 (s, 3H, CH3CqOH). 
13C NMR (125 MHz, THF-d8) 3-hydroxy-1,2-dioxolane (mixture of hemiketal epimers 

(dr~1:1)): δ 206.8 (C=O), 206.5 (C=O), 105.9 (CqOH), 105.0 (CqOH), 81.8 (CH), 80.6 (CH), 

53.5 (CH2, cycl.), 53.4 (CH2, cycl.), 40.3 (CH2C(=O)), 40.2 (CH2C(=O)), 29.8 (CH3C(=O)), 29.8 

(CH3C(=O)), 29.7 (CH2CH), 27.1 (CH2CH), 24.3 (CH3CqOH), 23.6 (CH3CqOH); 3-hydroxy-

1,2-dioxane: δ 204.4 (C=O), 99.2 (CqOH), 77.5 (CH), 47.6 (CH2C(=O)), 34.2 (CH2CqOH), 31.0 

(CH3C(=O)), 26.9 (CHCH2, cycl.), 26.7 (CH3CqOH). 

 

(5R)-5-(5-Hydroxypentyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94l): Peroxyhemiketal 94l was 

prepared according to the general procedure. Catalyst 

[13 • 2 TFA] (10 mol%) was used together with 50 wt% aqueous 

hydrogen peroxide (1.5 equiv) as oxidant. The reaction mixture 

was stirred for 36 h at 50 °C. Purification of the crude reaction mixture by flash column 

chromatography (silica gel, 10-40% Et2O in CH2Cl2) provided the title compound 94l (12 mg, 

63.1 μmol, 25%) as a colorless oil along with a mixture of the corresponding epoxide 93l (11 

mg, 64.0� μmol, 26%; 98:2 er) and unreacted starting material 92l (10 mg, 65.0� μmol, 

26%). Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.31 (s, 1H, CqOH), 5.27 (s, 1H, CqOH), 4.34-4.28 (m, 1H, 

CH), 4.17 (quint, J = 7.3 Hz, 1H, CH), 3.46 (t, J = 5.5 Hz, 4H, CH2OH), 3.35 (br s, 2H, 

CH2OH), 2.64-2.55 (m, 2H, CH2, cycl.), 2.20-2.07 (m, 2H, CH2, cycl.), 1.67-1.31 (m, 16H, -

(CH2)4-), 1.40 (s overlapped, 3H, CH3), 1.38 (s overlapped, 3H, CH3). 
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pentane) provided the title compound 94k (26 mg, 151 μmol, 30%; 96:4 er) as a colorless oil. 
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63.1 μmol, 25%) as a colorless oil along with a mixture of the corresponding epoxide 93l (11 
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pentane) provided the title compound 94k (26 mg, 151 μmol, 30%; 96:4 er) as a colorless oil. 

The enantiomeric ratio was determined after converting peroxyhemiketal 94k into the 

corresponding epoxide 93k The enantiomers were analyzed by GC using a chiral BGB-
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Characterized as a mixture of three hemiketal isomers (~1:1:0.8). 
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1,2-dioxane: δ 204.4 (C=O), 99.2 (CqOH), 77.5 (CH), 47.6 (CH2C(=O)), 34.2 (CH2CqOH), 31.0 

(CH3C(=O)), 26.9 (CHCH2, cycl.), 26.7 (CH3CqOH). 

 

(5R)-5-(5-Hydroxypentyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94l): Peroxyhemiketal 94l was 

prepared according to the general procedure. Catalyst 

[13 • 2 TFA] (10 mol%) was used together with 50 wt% aqueous 

hydrogen peroxide (1.5 equiv) as oxidant. The reaction mixture 

was stirred for 36 h at 50 °C. Purification of the crude reaction mixture by flash column 

chromatography (silica gel, 10-40% Et2O in CH2Cl2) provided the title compound 94l (12 mg, 

63.1 μmol, 25%) as a colorless oil along with a mixture of the corresponding epoxide 93l (11 

mg, 64.0� μmol, 26%; 98:2 er) and unreacted starting material 92l (10 mg, 65.0� μmol, 

26%). Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.31 (s, 1H, CqOH), 5.27 (s, 1H, CqOH), 4.34-4.28 (m, 1H, 

CH), 4.17 (quint, J = 7.3 Hz, 1H, CH), 3.46 (t, J = 5.5 Hz, 4H, CH2OH), 3.35 (br s, 2H, 

CH2OH), 2.64-2.55 (m, 2H, CH2, cycl.), 2.20-2.07 (m, 2H, CH2, cycl.), 1.67-1.31 (m, 16H, -

(CH2)4-), 1.40 (s overlapped, 3H, CH3), 1.38 (s overlapped, 3H, CH3). 

O O
OHHO

C9H18O4

190,24

O O
OH

O

OO
OHO

94k'

94k''

7 Experimental Part 

 191

pentane) provided the title compound 94k (26 mg, 151 μmol, 30%; 96:4 er) as a colorless oil. 

The enantiomeric ratio was determined after converting peroxyhemiketal 94k into the 

corresponding epoxide 93k The enantiomers were analyzed by GC using a chiral BGB-

176/SE-52 column 30 m (80 °C, 1.2 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 

220 °C, 0.5 bar H2); major enantiomer: τR = 28.87 min, minor enantiomer: τR = 30.28 min. 

Characterized as a mixture of three hemiketal isomers (~1:1:0.8). 
1H NMR (500 MHz, THF-d8) 3-hydroxy-1,2-dioxolane (mixture of 

hemiketal epimers (dr~1:1)): δ 5.33 (br s, 1H, OH), 5.30 (br s, 1H, 

OH), 4.37-4.28 (m, 1H, CH), 4.21-1.25 (m, 1H, CH), 2.64 (dd, J = 

12.0, 7.0 Hz, 1H, CH2, cycl.), 2.58-2.46 (m, 3H, CH2, cycl.), 2.20-2.05 (m, 

10H, CH3C(=O) and CH2(C=O)), 1.88-1.62 (m, 4H, CH2CH2CH), 1.40 

(s, 3H, CH3CqOH), 1.38 (s, 3H, CH3CqOH); 3-hydroxy-1,2-dioxane: 

5.34 (br s, 1H, OH), 4.37-4.28 (m, 1H, CH), 2.58-2.46 (m, 4H, CH2CqOH and CH2C(=O)), 

2.20-2.05 (m, 3H, CH3C(=O)), 1.88-1.62 (m, 2H, CHCH2, cycl.), 1.39 (s, 3H, CH3CqOH). 
13C NMR (125 MHz, THF-d8) 3-hydroxy-1,2-dioxolane (mixture of hemiketal epimers 

(dr~1:1)): δ 206.8 (C=O), 206.5 (C=O), 105.9 (CqOH), 105.0 (CqOH), 81.8 (CH), 80.6 (CH), 

53.5 (CH2, cycl.), 53.4 (CH2, cycl.), 40.3 (CH2C(=O)), 40.2 (CH2C(=O)), 29.8 (CH3C(=O)), 29.8 

(CH3C(=O)), 29.7 (CH2CH), 27.1 (CH2CH), 24.3 (CH3CqOH), 23.6 (CH3CqOH); 3-hydroxy-

1,2-dioxane: δ 204.4 (C=O), 99.2 (CqOH), 77.5 (CH), 47.6 (CH2C(=O)), 34.2 (CH2CqOH), 31.0 

(CH3C(=O)), 26.9 (CHCH2, cycl.), 26.7 (CH3CqOH). 

 

(5R)-5-(5-Hydroxypentyl)-3-methyl-1,2-dioxolan-3-ol ((5R)-94l): Peroxyhemiketal 94l was 

prepared according to the general procedure. Catalyst 

[13 • 2 TFA] (10 mol%) was used together with 50 wt% aqueous 

hydrogen peroxide (1.5 equiv) as oxidant. The reaction mixture 

was stirred for 36 h at 50 °C. Purification of the crude reaction mixture by flash column 

chromatography (silica gel, 10-40% Et2O in CH2Cl2) provided the title compound 94l (12 mg, 

63.1 μmol, 25%) as a colorless oil along with a mixture of the corresponding epoxide 93l (11 

mg, 64.0� μmol, 26%; 98:2 er) and unreacted starting material 92l (10 mg, 65.0� μmol, 

26%). Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 5.31 (s, 1H, CqOH), 5.27 (s, 1H, CqOH), 4.34-4.28 (m, 1H, 

CH), 4.17 (quint, J = 7.3 Hz, 1H, CH), 3.46 (t, J = 5.5 Hz, 4H, CH2OH), 3.35 (br s, 2H, 

CH2OH), 2.64-2.55 (m, 2H, CH2, cycl.), 2.20-2.07 (m, 2H, CH2, cycl.), 1.67-1.31 (m, 16H, -

(CH2)4-), 1.40 (s overlapped, 3H, CH3), 1.38 (s overlapped, 3H, CH3). 
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13C NMR (100 MHz, THF-d8) 105.8 (CqOH), 104.9 (CqOH), 82.7 (CH), 81.4 (CH), 62.7 

(CH2OH), 62.7 (CH2OH), 54.0 (CH2, cycl.), 53.6 (CH2, cycl.), 35.9 (CH2), 34.3 (CH2), 34.2 

(CH2), 33.4 (CH2), 27.6 (CH2), 27.3 (CH2), 27.3 (CH2), 27.1 (CH2), 24.4 (CH3), 23.8 (CH3). 

MS (EI-DE) m/z (%) 157 (5), 139 (5), 125 (1), 121 (3), 111 (2), 103 (1), 97 (13), 81 (15), 79 

(4), 71 (21), 55 (18), 43 (100), 41 (26), 31 (13). 

HRMS (ESI+) calcd for C9H18AgO4 [(M+Ag)+] 297.0249, found 297.0249. 

 

(5R)-3,5-Dipentyl-1,2-dioxolan-3-ol ((5R)-94m): Peroxyhemiketal 94m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94m as a colorless oil (46 mg, 201 μmol, 40%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94m into the 

corresponding epoxide 93m. The enantiomers were analyzed by GC using a chiral G-TA 

column 30 m (80 °C, 1 °C/min until 130 °C, 18 °C/min until 180 °C, 10 min at 320 °C, 0.9 

bar H2); major enantiomer: τR = 43.80 min, minor enantiomer: τR = 43.02 min. Characterized 

as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.20 (s, 1H, OH), 5.16 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.15-4.09 (m, 1H, CH), 2.61-2.52 (m, 2H, CH2CqOH), 2.10-2.04 (m, 2H, CH2CqOH), 1.68-

1.26 (m, 32H, CH2), 0.92-0.88 (m, 12H, CH3). 
13C NMR (125 MHz, THF-d8) δ 107.7 (CqOH), 106.9 (CqOH), 82.6 (CH), 81.0 (CH), 52.4 

(CH2, cycl.), 52.1 (CH2, cycl.), 38.3 (CH2), 37.9 (CH2), 35.8 (CH2), 33.4 (CH2), 33.4 (CH2), 33.3 

(CH2), 33.1 (CH2), 33.0 (CH2), 27.4 (CH2), 27.2 (CH2), 25.9 (CH2), 25.7 (CH2), 23.8 (3C, 

CH2), 23.7 (CH2), 14.7 (2C, CH3), 14.7 (CH3), 14.6 (CH3). 

MS (EI) m/z (%) 230 [M+] (1), 197 (100), 159 (1), 141 (3), 127 (30), 117 (5), 99 (50), 81 (6), 

71 (30), 55 (30), 43 (90), 29 (24). 

HRMS (EI-DE) calcd for C13H26O3 [M
+] 230.1880, found 230.1882. 

 

(5R)-3-Isopropyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94o): Peroxyhemiketal 94o was 

obtained by the general procedure. Catalyst salt [13 • 2 TCA] (20 mol%) 

were used and the reaction mixture was stirred for 48 h at 32 °C. 

Purification of the crude product by flash column chromatography (silica gel, 

30-40% Et2O in pentane) provided the title compound 94o (57 mg, 391 μmol, 39%; 96:4 er) 

as a colorless oil. The enantiomeric ratio was determined after converting peroxyhemiketal 
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13C NMR (100 MHz, THF-d8) 105.8 (CqOH), 104.9 (CqOH), 82.7 (CH), 81.4 (CH), 62.7 

(CH2OH), 62.7 (CH2OH), 54.0 (CH2, cycl.), 53.6 (CH2, cycl.), 35.9 (CH2), 34.3 (CH2), 34.2 

(CH2), 33.4 (CH2), 27.6 (CH2), 27.3 (CH2), 27.3 (CH2), 27.1 (CH2), 24.4 (CH3), 23.8 (CH3). 

MS (EI-DE) m/z (%) 157 (5), 139 (5), 125 (1), 121 (3), 111 (2), 103 (1), 97 (13), 81 (15), 79 

(4), 71 (21), 55 (18), 43 (100), 41 (26), 31 (13). 

HRMS (ESI+) calcd for C9H18AgO4 [(M+Ag)+] 297.0249, found 297.0249. 

 

(5R)-3,5-Dipentyl-1,2-dioxolan-3-ol ((5R)-94m): Peroxyhemiketal 94m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94m as a colorless oil (46 mg, 201 μmol, 40%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94m into the 

corresponding epoxide 93m. The enantiomers were analyzed by GC using a chiral G-TA 

column 30 m (80 °C, 1 °C/min until 130 °C, 18 °C/min until 180 °C, 10 min at 320 °C, 0.9 

bar H2); major enantiomer: τR = 43.80 min, minor enantiomer: τR = 43.02 min. Characterized 

as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.20 (s, 1H, OH), 5.16 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.15-4.09 (m, 1H, CH), 2.61-2.52 (m, 2H, CH2CqOH), 2.10-2.04 (m, 2H, CH2CqOH), 1.68-

1.26 (m, 32H, CH2), 0.92-0.88 (m, 12H, CH3). 
13C NMR (125 MHz, THF-d8) δ 107.7 (CqOH), 106.9 (CqOH), 82.6 (CH), 81.0 (CH), 52.4 

(CH2, cycl.), 52.1 (CH2, cycl.), 38.3 (CH2), 37.9 (CH2), 35.8 (CH2), 33.4 (CH2), 33.4 (CH2), 33.3 

(CH2), 33.1 (CH2), 33.0 (CH2), 27.4 (CH2), 27.2 (CH2), 25.9 (CH2), 25.7 (CH2), 23.8 (3C, 

CH2), 23.7 (CH2), 14.7 (2C, CH3), 14.7 (CH3), 14.6 (CH3). 

MS (EI) m/z (%) 230 [M+] (1), 197 (100), 159 (1), 141 (3), 127 (30), 117 (5), 99 (50), 81 (6), 

71 (30), 55 (30), 43 (90), 29 (24). 

HRMS (EI-DE) calcd for C13H26O3 [M
+] 230.1880, found 230.1882. 

 

(5R)-3-Isopropyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94o): Peroxyhemiketal 94o was 

obtained by the general procedure. Catalyst salt [13 • 2 TCA] (20 mol%) 

were used and the reaction mixture was stirred for 48 h at 32 °C. 

Purification of the crude product by flash column chromatography (silica gel, 

30-40% Et2O in pentane) provided the title compound 94o (57 mg, 391 μmol, 39%; 96:4 er) 

as a colorless oil. The enantiomeric ratio was determined after converting peroxyhemiketal 
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13C NMR (100 MHz, THF-d8) 105.8 (CqOH), 104.9 (CqOH), 82.7 (CH), 81.4 (CH), 62.7 

(CH2OH), 62.7 (CH2OH), 54.0 (CH2, cycl.), 53.6 (CH2, cycl.), 35.9 (CH2), 34.3 (CH2), 34.2 

(CH2), 33.4 (CH2), 27.6 (CH2), 27.3 (CH2), 27.3 (CH2), 27.1 (CH2), 24.4 (CH3), 23.8 (CH3). 

MS (EI-DE) m/z (%) 157 (5), 139 (5), 125 (1), 121 (3), 111 (2), 103 (1), 97 (13), 81 (15), 79 

(4), 71 (21), 55 (18), 43 (100), 41 (26), 31 (13). 

HRMS (ESI+) calcd for C9H18AgO4 [(M+Ag)+] 297.0249, found 297.0249. 

 

(5R)-3,5-Dipentyl-1,2-dioxolan-3-ol ((5R)-94m): Peroxyhemiketal 94m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94m as a colorless oil (46 mg, 201 μmol, 40%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94m into the 

corresponding epoxide 93m. The enantiomers were analyzed by GC using a chiral G-TA 

column 30 m (80 °C, 1 °C/min until 130 °C, 18 °C/min until 180 °C, 10 min at 320 °C, 0.9 

bar H2); major enantiomer: τR = 43.80 min, minor enantiomer: τR = 43.02 min. Characterized 

as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.20 (s, 1H, OH), 5.16 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.15-4.09 (m, 1H, CH), 2.61-2.52 (m, 2H, CH2CqOH), 2.10-2.04 (m, 2H, CH2CqOH), 1.68-

1.26 (m, 32H, CH2), 0.92-0.88 (m, 12H, CH3). 
13C NMR (125 MHz, THF-d8) δ 107.7 (CqOH), 106.9 (CqOH), 82.6 (CH), 81.0 (CH), 52.4 

(CH2, cycl.), 52.1 (CH2, cycl.), 38.3 (CH2), 37.9 (CH2), 35.8 (CH2), 33.4 (CH2), 33.4 (CH2), 33.3 

(CH2), 33.1 (CH2), 33.0 (CH2), 27.4 (CH2), 27.2 (CH2), 25.9 (CH2), 25.7 (CH2), 23.8 (3C, 

CH2), 23.7 (CH2), 14.7 (2C, CH3), 14.7 (CH3), 14.6 (CH3). 

MS (EI) m/z (%) 230 [M+] (1), 197 (100), 159 (1), 141 (3), 127 (30), 117 (5), 99 (50), 81 (6), 

71 (30), 55 (30), 43 (90), 29 (24). 

HRMS (EI-DE) calcd for C13H26O3 [M
+] 230.1880, found 230.1882. 

 

(5R)-3-Isopropyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94o): Peroxyhemiketal 94o was 

obtained by the general procedure. Catalyst salt [13 • 2 TCA] (20 mol%) 

were used and the reaction mixture was stirred for 48 h at 32 °C. 

Purification of the crude product by flash column chromatography (silica gel, 

30-40% Et2O in pentane) provided the title compound 94o (57 mg, 391 μmol, 39%; 96:4 er) 

as a colorless oil. The enantiomeric ratio was determined after converting peroxyhemiketal 
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13C NMR (100 MHz, THF-d8) 105.8 (CqOH), 104.9 (CqOH), 82.7 (CH), 81.4 (CH), 62.7 

(CH2OH), 62.7 (CH2OH), 54.0 (CH2, cycl.), 53.6 (CH2, cycl.), 35.9 (CH2), 34.3 (CH2), 34.2 

(CH2), 33.4 (CH2), 27.6 (CH2), 27.3 (CH2), 27.3 (CH2), 27.1 (CH2), 24.4 (CH3), 23.8 (CH3). 

MS (EI-DE) m/z (%) 157 (5), 139 (5), 125 (1), 121 (3), 111 (2), 103 (1), 97 (13), 81 (15), 79 

(4), 71 (21), 55 (18), 43 (100), 41 (26), 31 (13). 

HRMS (ESI+) calcd for C9H18AgO4 [(M+Ag)+] 297.0249, found 297.0249. 

 

(5R)-3,5-Dipentyl-1,2-dioxolan-3-ol ((5R)-94m): Peroxyhemiketal 94m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 48 h at 32 °C. Purification of the crude product by 

flash column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94m as a colorless oil (46 mg, 201 μmol, 40%; 97:3 er). 

The enantiomeric ratio was determined after converting dioxolane 94m into the 

corresponding epoxide 93m. The enantiomers were analyzed by GC using a chiral G-TA 

column 30 m (80 °C, 1 °C/min until 130 °C, 18 °C/min until 180 °C, 10 min at 320 °C, 0.9 

bar H2); major enantiomer: τR = 43.80 min, minor enantiomer: τR = 43.02 min. Characterized 

as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.20 (s, 1H, OH), 5.16 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.15-4.09 (m, 1H, CH), 2.61-2.52 (m, 2H, CH2CqOH), 2.10-2.04 (m, 2H, CH2CqOH), 1.68-

1.26 (m, 32H, CH2), 0.92-0.88 (m, 12H, CH3). 
13C NMR (125 MHz, THF-d8) δ 107.7 (CqOH), 106.9 (CqOH), 82.6 (CH), 81.0 (CH), 52.4 

(CH2, cycl.), 52.1 (CH2, cycl.), 38.3 (CH2), 37.9 (CH2), 35.8 (CH2), 33.4 (CH2), 33.4 (CH2), 33.3 

(CH2), 33.1 (CH2), 33.0 (CH2), 27.4 (CH2), 27.2 (CH2), 25.9 (CH2), 25.7 (CH2), 23.8 (3C, 

CH2), 23.7 (CH2), 14.7 (2C, CH3), 14.7 (CH3), 14.6 (CH3). 

MS (EI) m/z (%) 230 [M+] (1), 197 (100), 159 (1), 141 (3), 127 (30), 117 (5), 99 (50), 81 (6), 

71 (30), 55 (30), 43 (90), 29 (24). 

HRMS (EI-DE) calcd for C13H26O3 [M
+] 230.1880, found 230.1882. 

 

(5R)-3-Isopropyl-5-methyl-1,2-dioxolan-3-ol ((5R)-94o): Peroxyhemiketal 94o was 

obtained by the general procedure. Catalyst salt [13 • 2 TCA] (20 mol%) 

were used and the reaction mixture was stirred for 48 h at 32 °C. 

Purification of the crude product by flash column chromatography (silica gel, 

30-40% Et2O in pentane) provided the title compound 94o (57 mg, 391 μmol, 39%; 96:4 er) 

as a colorless oil. The enantiomeric ratio was determined after converting peroxyhemiketal 

O O
OH

C13H26O3

230,34

Me

O O

i-Pr
OH

C7H14O3

146,18



7 Experimental Part 

 193

94o into the corresponding epoxide 94o. The enantiomers were analyzed by GC using a chiral 

Lipodex G column 25 m (50 °C, 1.2 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 

230 °C, 0.5 bar H2); major enantiomer: τR = 8.36 min, minor enantiomer: τR = 8.80 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 6.98 (s, 1H, OH), 6.97 (s, 1H, OH), 6.34 (app. sext, J = 6.3 

Hz, 1H, CHCH2), 6.10-6.03 (m, 1H, CHCH2), 4.51 (dd, J = 12.6, 7.3 Hz, 1H, CHH), 4.33 

(dd, J = 12.1, 6.8 Hz, 1H, CHH), 3.93 (dd, J = 12.0, 6.3 Hz, 1H, CHH), 3.81 (dd, J = 12.6, 

8.5 Hz, 1H, CHH), 3.72 (hept, J = 7.0 Hz, 2H, CHMe2), 3.09 (d, J = 6.0 Hz, 3H, CH3CH), 

3.04 (d, J = 6.3 Hz, 3H, CH3CH), 2.81 (t, J = 6.8 Hz, 12H, CH(CH3)2). 
13C NMR (125 MHz, THF-d8) δ 110.2 (CqOH), 109.2 (CqOH), 78.6 (CHCH2), 76.9 (CHCH2), 

52.0 (CH2), 51.8 (CH2), 36.1 (CHMe2), 35.9 (CHMe2), 20.3 (CH3), 19.1 (CH3), 18.8 (CH3), 

18.3 (CH3), 18.1 (CH3), 17.4 (CH3). 

GC-MS (GC-EI) m/z (%) 146 [M+] (trace), 128 (1), 113 (12), 103 (6), 85 (4), 71 (22), 61 (17), 

43 (100), 27 (8). 

HRMS (EI-FE) calcd for C7H14O3 [M
+] 146.0941, found 146.0943. 

 

3-Ethyl-5-nonyl-1,2-dioxolan-3-ol (94p): Peroxyhemiketal 94p was prepared according to 

the general procedure. The reaction mixture was stirred for 

48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94p as a colorless oil (59 mg, 240 μmol, 48%; 98:2 er). 

The enantiomeric ratio was determined after converting dioxolane 94p into the corresponding 

epoxide 93p. The enantiomers were analyzed by GC using a chiral Lipodex E column 25 m 

(100 °C, 1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 37.10 min, minor enantiomer: τR = 35.28 min. Characterized as a 

mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.18 (s, 1H, OH), 5.15 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.12 (quint, J = 7.1 Hz, 1H, CH), 2.61-2.50 (m, 2H, CH2CqOH), 2.10-2.02 (m, 2H, CH2CqOH), 

1.71-1.52 (m, 7H, CH2), 1.42-1.36 (m, 3H, CH2), 1.35-1.26 (m, 26H, CH2), 0.97 (t, J = 7.6 

Hz, 3H, CqOHCH2CH3), 0.96 (t, J = 7.6 Hz, 3H, CqOHCH2CH3), 0.89 (t, J = 6.8 Hz, 6H, CH3). 
13C NMR (125 MHz, THF-d8) 108.1 (CqOH), 107.2 (CqOH), 82.7 (CH), 81.1 (CH), 51.9 

(CH2, cycl.), 51.5 (CH2, cycl.), 35.7 (CH2), 33.3 (CH2), 33.2 (2C, CH2), 31.2 (CH2), 30.9 (CH2), 

30.9 (CH2), 30.9 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.6 (2C, CH2), 27.7 
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94o into the corresponding epoxide 94o. The enantiomers were analyzed by GC using a chiral 

Lipodex G column 25 m (50 °C, 1.2 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 

230 °C, 0.5 bar H2); major enantiomer: τR = 8.36 min, minor enantiomer: τR = 8.80 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 6.98 (s, 1H, OH), 6.97 (s, 1H, OH), 6.34 (app. sext, J = 6.3 

Hz, 1H, CHCH2), 6.10-6.03 (m, 1H, CHCH2), 4.51 (dd, J = 12.6, 7.3 Hz, 1H, CHH), 4.33 

(dd, J = 12.1, 6.8 Hz, 1H, CHH), 3.93 (dd, J = 12.0, 6.3 Hz, 1H, CHH), 3.81 (dd, J = 12.6, 

8.5 Hz, 1H, CHH), 3.72 (hept, J = 7.0 Hz, 2H, CHMe2), 3.09 (d, J = 6.0 Hz, 3H, CH3CH), 

3.04 (d, J = 6.3 Hz, 3H, CH3CH), 2.81 (t, J = 6.8 Hz, 12H, CH(CH3)2). 
13C NMR (125 MHz, THF-d8) δ 110.2 (CqOH), 109.2 (CqOH), 78.6 (CHCH2), 76.9 (CHCH2), 

52.0 (CH2), 51.8 (CH2), 36.1 (CHMe2), 35.9 (CHMe2), 20.3 (CH3), 19.1 (CH3), 18.8 (CH3), 

18.3 (CH3), 18.1 (CH3), 17.4 (CH3). 

GC-MS (GC-EI) m/z (%) 146 [M+] (trace), 128 (1), 113 (12), 103 (6), 85 (4), 71 (22), 61 (17), 

43 (100), 27 (8). 

HRMS (EI-FE) calcd for C7H14O3 [M
+] 146.0941, found 146.0943. 

 

3-Ethyl-5-nonyl-1,2-dioxolan-3-ol (94p): Peroxyhemiketal 94p was prepared according to 

the general procedure. The reaction mixture was stirred for 

48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94p as a colorless oil (59 mg, 240 μmol, 48%; 98:2 er). 

The enantiomeric ratio was determined after converting dioxolane 94p into the corresponding 

epoxide 93p. The enantiomers were analyzed by GC using a chiral Lipodex E column 25 m 

(100 °C, 1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 37.10 min, minor enantiomer: τR = 35.28 min. Characterized as a 

mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.18 (s, 1H, OH), 5.15 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.12 (quint, J = 7.1 Hz, 1H, CH), 2.61-2.50 (m, 2H, CH2CqOH), 2.10-2.02 (m, 2H, CH2CqOH), 

1.71-1.52 (m, 7H, CH2), 1.42-1.36 (m, 3H, CH2), 1.35-1.26 (m, 26H, CH2), 0.97 (t, J = 7.6 

Hz, 3H, CqOHCH2CH3), 0.96 (t, J = 7.6 Hz, 3H, CqOHCH2CH3), 0.89 (t, J = 6.8 Hz, 6H, CH3). 
13C NMR (125 MHz, THF-d8) 108.1 (CqOH), 107.2 (CqOH), 82.7 (CH), 81.1 (CH), 51.9 

(CH2, cycl.), 51.5 (CH2, cycl.), 35.7 (CH2), 33.3 (CH2), 33.2 (2C, CH2), 31.2 (CH2), 30.9 (CH2), 

30.9 (CH2), 30.9 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.6 (2C, CH2), 27.7 
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94o into the corresponding epoxide 94o. The enantiomers were analyzed by GC using a chiral 

Lipodex G column 25 m (50 °C, 1.2 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 

230 °C, 0.5 bar H2); major enantiomer: τR = 8.36 min, minor enantiomer: τR = 8.80 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 6.98 (s, 1H, OH), 6.97 (s, 1H, OH), 6.34 (app. sext, J = 6.3 

Hz, 1H, CHCH2), 6.10-6.03 (m, 1H, CHCH2), 4.51 (dd, J = 12.6, 7.3 Hz, 1H, CHH), 4.33 

(dd, J = 12.1, 6.8 Hz, 1H, CHH), 3.93 (dd, J = 12.0, 6.3 Hz, 1H, CHH), 3.81 (dd, J = 12.6, 

8.5 Hz, 1H, CHH), 3.72 (hept, J = 7.0 Hz, 2H, CHMe2), 3.09 (d, J = 6.0 Hz, 3H, CH3CH), 

3.04 (d, J = 6.3 Hz, 3H, CH3CH), 2.81 (t, J = 6.8 Hz, 12H, CH(CH3)2). 
13C NMR (125 MHz, THF-d8) δ 110.2 (CqOH), 109.2 (CqOH), 78.6 (CHCH2), 76.9 (CHCH2), 

52.0 (CH2), 51.8 (CH2), 36.1 (CHMe2), 35.9 (CHMe2), 20.3 (CH3), 19.1 (CH3), 18.8 (CH3), 

18.3 (CH3), 18.1 (CH3), 17.4 (CH3). 

GC-MS (GC-EI) m/z (%) 146 [M+] (trace), 128 (1), 113 (12), 103 (6), 85 (4), 71 (22), 61 (17), 

43 (100), 27 (8). 

HRMS (EI-FE) calcd for C7H14O3 [M
+] 146.0941, found 146.0943. 

 

3-Ethyl-5-nonyl-1,2-dioxolan-3-ol (94p): Peroxyhemiketal 94p was prepared according to 

the general procedure. The reaction mixture was stirred for 

48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94p as a colorless oil (59 mg, 240 μmol, 48%; 98:2 er). 

The enantiomeric ratio was determined after converting dioxolane 94p into the corresponding 

epoxide 93p. The enantiomers were analyzed by GC using a chiral Lipodex E column 25 m 

(100 °C, 1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 37.10 min, minor enantiomer: τR = 35.28 min. Characterized as a 

mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.18 (s, 1H, OH), 5.15 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.12 (quint, J = 7.1 Hz, 1H, CH), 2.61-2.50 (m, 2H, CH2CqOH), 2.10-2.02 (m, 2H, CH2CqOH), 

1.71-1.52 (m, 7H, CH2), 1.42-1.36 (m, 3H, CH2), 1.35-1.26 (m, 26H, CH2), 0.97 (t, J = 7.6 

Hz, 3H, CqOHCH2CH3), 0.96 (t, J = 7.6 Hz, 3H, CqOHCH2CH3), 0.89 (t, J = 6.8 Hz, 6H, CH3). 
13C NMR (125 MHz, THF-d8) 108.1 (CqOH), 107.2 (CqOH), 82.7 (CH), 81.1 (CH), 51.9 

(CH2, cycl.), 51.5 (CH2, cycl.), 35.7 (CH2), 33.3 (CH2), 33.2 (2C, CH2), 31.2 (CH2), 30.9 (CH2), 

30.9 (CH2), 30.9 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.6 (2C, CH2), 27.7 
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94o into the corresponding epoxide 94o. The enantiomers were analyzed by GC using a chiral 

Lipodex G column 25 m (50 °C, 1.2 °C/min until 80 °C, 18 °C/min until 220 °C, 10 min at 

230 °C, 0.5 bar H2); major enantiomer: τR = 8.36 min, minor enantiomer: τR = 8.80 min. 

Characterized as a mixture of hemiketal epimers (1:1 dr). 
1H NMR (400 MHz, THF-d8) δ 6.98 (s, 1H, OH), 6.97 (s, 1H, OH), 6.34 (app. sext, J = 6.3 

Hz, 1H, CHCH2), 6.10-6.03 (m, 1H, CHCH2), 4.51 (dd, J = 12.6, 7.3 Hz, 1H, CHH), 4.33 

(dd, J = 12.1, 6.8 Hz, 1H, CHH), 3.93 (dd, J = 12.0, 6.3 Hz, 1H, CHH), 3.81 (dd, J = 12.6, 

8.5 Hz, 1H, CHH), 3.72 (hept, J = 7.0 Hz, 2H, CHMe2), 3.09 (d, J = 6.0 Hz, 3H, CH3CH), 

3.04 (d, J = 6.3 Hz, 3H, CH3CH), 2.81 (t, J = 6.8 Hz, 12H, CH(CH3)2). 
13C NMR (125 MHz, THF-d8) δ 110.2 (CqOH), 109.2 (CqOH), 78.6 (CHCH2), 76.9 (CHCH2), 

52.0 (CH2), 51.8 (CH2), 36.1 (CHMe2), 35.9 (CHMe2), 20.3 (CH3), 19.1 (CH3), 18.8 (CH3), 

18.3 (CH3), 18.1 (CH3), 17.4 (CH3). 

GC-MS (GC-EI) m/z (%) 146 [M+] (trace), 128 (1), 113 (12), 103 (6), 85 (4), 71 (22), 61 (17), 

43 (100), 27 (8). 

HRMS (EI-FE) calcd for C7H14O3 [M
+] 146.0941, found 146.0943. 

 

3-Ethyl-5-nonyl-1,2-dioxolan-3-ol (94p): Peroxyhemiketal 94p was prepared according to 

the general procedure. The reaction mixture was stirred for 

48 h at 32 °C. Purification of the crude product by flash 

column chromatography (silica gel, 10-20% Et2O in 

pentane) provided the title compound 94p as a colorless oil (59 mg, 240 μmol, 48%; 98:2 er). 

The enantiomeric ratio was determined after converting dioxolane 94p into the corresponding 

epoxide 93p. The enantiomers were analyzed by GC using a chiral Lipodex E column 25 m 

(100 °C, 1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 10 min at 320 °C, 0.5 bar H2); 

major enantiomer: τR = 37.10 min, minor enantiomer: τR = 35.28 min. Characterized as a 

mixture of hemiketal epimers (1:1 dr). 
1H NMR (500 MHz, THF-d8) δ 5.18 (s, 1H, OH), 5.15 (s, 1H, OH), 4.33-4.28 (m, 1H, CH), 

4.12 (quint, J = 7.1 Hz, 1H, CH), 2.61-2.50 (m, 2H, CH2CqOH), 2.10-2.02 (m, 2H, CH2CqOH), 

1.71-1.52 (m, 7H, CH2), 1.42-1.36 (m, 3H, CH2), 1.35-1.26 (m, 26H, CH2), 0.97 (t, J = 7.6 

Hz, 3H, CqOHCH2CH3), 0.96 (t, J = 7.6 Hz, 3H, CqOHCH2CH3), 0.89 (t, J = 6.8 Hz, 6H, CH3). 
13C NMR (125 MHz, THF-d8) 108.1 (CqOH), 107.2 (CqOH), 82.7 (CH), 81.1 (CH), 51.9 

(CH2, cycl.), 51.5 (CH2, cycl.), 35.7 (CH2), 33.3 (CH2), 33.2 (2C, CH2), 31.2 (CH2), 30.9 (CH2), 

30.9 (CH2), 30.9 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.8 (CH2), 30.6 (2C, CH2), 27.7 
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(CH2), 27.5 (CH2), 23.9 (2C, CH2), 14.7 (2C, (CH2)8CH3), 9.9 (CqOHCH2CH3), 9.7 

(CqOHCH2CH3). 

MS (EI) m/z (%) 244 [M+] (1), 211 (77), 197 (1), 181 (1), 155 (9), 137 (2), 95 (8), 85 (50), 71 

(17), 57 (100), 43 (46), 29 (34). 

HRMS (EI-DE) calcd for C14H28O3 [M
+] 244.2038, found 244.2038. 

 

7.3.2 Synthesis of (R)-4-(Tert-butylperoxy)decan-2-one ((R)-95a) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was followed. tert-Butylhydroperoxide (70 wt%; 

103 μL, 0.75 mmol, 1.5 equiv) was used under otherwise identical reaction conditions. 

 

 
 
Purification by flash column chromatography (silica gel, 1-20% Et2O in pentane) gave 

peroxide 95a (67 mg, 274 μmol, 55%) along with the corresponding epoxide 93a (~17 mg, 

100 μmol, 20%; 99:1 er) (vide infra), both as colorless oils. 
1H NMR (500 MHz, CD2Cl2) δ 4.37-4.32 (m, 1H, CH), 2.79 (dd, J = 15.2, 6.6 Hz, 1H, 

CHHC(=O)), 2.43 (dd, J = 15.7, 5.2 Hz, 1H, CHHC(=O)), 2.15 (s, 3H, C(=O)CH3), 1.56-1.25 

(m, 10H, (CH2)5), 1.19 (s, 9H, Cq(CH3)3), 0.88 (t, J = 6.9 Hz, 3H, (CH2)5CH3), 
13C NMR (125 MHz, CD2Cl2) δ 207.5 (C=O), 80.5 (Cq) 80.4 (CH), 48.0 (CH2C(=O)), 33.4 

(CH2), 31.2 (CH2), 30.9 (CH3C(=O)), 29.7 (CH2), 26.5 (3C, Cq(CH3)3), 25.9 (CH2), 23.0 

(CH2), 14.2 ((CH2)5CH3). 

MS (EI-DE) m/z (%) 244 [M+] (trace), 188 (4), 171 (5), 155 (80), 137 (4), 127 (1), 113 (23), 

95 (5), 85 (7), 71 (15), 57 (100), 43 (70), 29 (10). 

HRMS (ESI+) calcd for C14H28O3Na1 [(M+Na)+] 267.1928, found 267.1931. 
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(CH2), 27.5 (CH2), 23.9 (2C, CH2), 14.7 (2C, (CH2)8CH3), 9.9 (CqOHCH2CH3), 9.7 

(CqOHCH2CH3). 

MS (EI) m/z (%) 244 [M+] (1), 211 (77), 197 (1), 181 (1), 155 (9), 137 (2), 95 (8), 85 (50), 71 

(17), 57 (100), 43 (46), 29 (34). 

HRMS (EI-DE) calcd for C14H28O3 [M
+] 244.2038, found 244.2038. 

 

7.3.2 Synthesis of (R)-4-(Tert-butylperoxy)decan-2-one ((R)-95a) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was followed. tert-Butylhydroperoxide (70 wt%; 

103 μL, 0.75 mmol, 1.5 equiv) was used under otherwise identical reaction conditions. 

 

 
 
Purification by flash column chromatography (silica gel, 1-20% Et2O in pentane) gave 

peroxide 95a (67 mg, 274 μmol, 55%) along with the corresponding epoxide 93a (~17 mg, 

100 μmol, 20%; 99:1 er) (vide infra), both as colorless oils. 
1H NMR (500 MHz, CD2Cl2) δ 4.37-4.32 (m, 1H, CH), 2.79 (dd, J = 15.2, 6.6 Hz, 1H, 

CHHC(=O)), 2.43 (dd, J = 15.7, 5.2 Hz, 1H, CHHC(=O)), 2.15 (s, 3H, C(=O)CH3), 1.56-1.25 

(m, 10H, (CH2)5), 1.19 (s, 9H, Cq(CH3)3), 0.88 (t, J = 6.9 Hz, 3H, (CH2)5CH3), 
13C NMR (125 MHz, CD2Cl2) δ 207.5 (C=O), 80.5 (Cq) 80.4 (CH), 48.0 (CH2C(=O)), 33.4 

(CH2), 31.2 (CH2), 30.9 (CH3C(=O)), 29.7 (CH2), 26.5 (3C, Cq(CH3)3), 25.9 (CH2), 23.0 

(CH2), 14.2 ((CH2)5CH3). 

MS (EI-DE) m/z (%) 244 [M+] (trace), 188 (4), 171 (5), 155 (80), 137 (4), 127 (1), 113 (23), 

95 (5), 85 (7), 71 (15), 57 (100), 43 (70), 29 (10). 

HRMS (ESI+) calcd for C14H28O3Na1 [(M+Na)+] 267.1928, found 267.1931. 
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(CH2), 27.5 (CH2), 23.9 (2C, CH2), 14.7 (2C, (CH2)8CH3), 9.9 (CqOHCH2CH3), 9.7 

(CqOHCH2CH3). 

MS (EI) m/z (%) 244 [M+] (1), 211 (77), 197 (1), 181 (1), 155 (9), 137 (2), 95 (8), 85 (50), 71 

(17), 57 (100), 43 (46), 29 (34). 

HRMS (EI-DE) calcd for C14H28O3 [M
+] 244.2038, found 244.2038. 

 

7.3.2 Synthesis of (R)-4-(Tert-butylperoxy)decan-2-one ((R)-95a) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was followed. tert-Butylhydroperoxide (70 wt%; 

103 μL, 0.75 mmol, 1.5 equiv) was used under otherwise identical reaction conditions. 

 

 
 
Purification by flash column chromatography (silica gel, 1-20% Et2O in pentane) gave 

peroxide 95a (67 mg, 274 μmol, 55%) along with the corresponding epoxide 93a (~17 mg, 

100 μmol, 20%; 99:1 er) (vide infra), both as colorless oils. 
1H NMR (500 MHz, CD2Cl2) δ 4.37-4.32 (m, 1H, CH), 2.79 (dd, J = 15.2, 6.6 Hz, 1H, 

CHHC(=O)), 2.43 (dd, J = 15.7, 5.2 Hz, 1H, CHHC(=O)), 2.15 (s, 3H, C(=O)CH3), 1.56-1.25 

(m, 10H, (CH2)5), 1.19 (s, 9H, Cq(CH3)3), 0.88 (t, J = 6.9 Hz, 3H, (CH2)5CH3), 
13C NMR (125 MHz, CD2Cl2) δ 207.5 (C=O), 80.5 (Cq) 80.4 (CH), 48.0 (CH2C(=O)), 33.4 

(CH2), 31.2 (CH2), 30.9 (CH3C(=O)), 29.7 (CH2), 26.5 (3C, Cq(CH3)3), 25.9 (CH2), 23.0 

(CH2), 14.2 ((CH2)5CH3). 

MS (EI-DE) m/z (%) 244 [M+] (trace), 188 (4), 171 (5), 155 (80), 137 (4), 127 (1), 113 (23), 

95 (5), 85 (7), 71 (15), 57 (100), 43 (70), 29 (10). 

HRMS (ESI+) calcd for C14H28O3Na1 [(M+Na)+] 267.1928, found 267.1931. 
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(CH2), 27.5 (CH2), 23.9 (2C, CH2), 14.7 (2C, (CH2)8CH3), 9.9 (CqOHCH2CH3), 9.7 

(CqOHCH2CH3). 

MS (EI) m/z (%) 244 [M+] (1), 211 (77), 197 (1), 181 (1), 155 (9), 137 (2), 95 (8), 85 (50), 71 

(17), 57 (100), 43 (46), 29 (34). 

HRMS (EI-DE) calcd for C14H28O3 [M
+] 244.2038, found 244.2038. 

 

7.3.2 Synthesis of (R)-4-(Tert-butylperoxy)decan-2-one ((R)-95a) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was followed. tert-Butylhydroperoxide (70 wt%; 

103 μL, 0.75 mmol, 1.5 equiv) was used under otherwise identical reaction conditions. 

 

 
 
Purification by flash column chromatography (silica gel, 1-20% Et2O in pentane) gave 

peroxide 95a (67 mg, 274 μmol, 55%) along with the corresponding epoxide 93a (~17 mg, 

100 μmol, 20%; 99:1 er) (vide infra), both as colorless oils. 
1H NMR (500 MHz, CD2Cl2) δ 4.37-4.32 (m, 1H, CH), 2.79 (dd, J = 15.2, 6.6 Hz, 1H, 

CHHC(=O)), 2.43 (dd, J = 15.7, 5.2 Hz, 1H, CHHC(=O)), 2.15 (s, 3H, C(=O)CH3), 1.56-1.25 

(m, 10H, (CH2)5), 1.19 (s, 9H, Cq(CH3)3), 0.88 (t, J = 6.9 Hz, 3H, (CH2)5CH3), 
13C NMR (125 MHz, CD2Cl2) δ 207.5 (C=O), 80.5 (Cq) 80.4 (CH), 48.0 (CH2C(=O)), 33.4 

(CH2), 31.2 (CH2), 30.9 (CH3C(=O)), 29.7 (CH2), 26.5 (3C, Cq(CH3)3), 25.9 (CH2), 23.0 

(CH2), 14.2 ((CH2)5CH3). 

MS (EI-DE) m/z (%) 244 [M+] (trace), 188 (4), 171 (5), 155 (80), 137 (4), 127 (1), 113 (23), 

95 (5), 85 (7), 71 (15), 57 (100), 43 (70), 29 (10). 

HRMS (ESI+) calcd for C14H28O3Na1 [(M+Na)+] 267.1928, found 267.1931. 
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7.3.3 Catalytic Asymmetric Epoxidation of Acyclic Enones 

7.3.3.1 General Procedure[193] 

 

R1 R2

O

92

R1, R2 = Alk

dioxane (0.25 M), 50 °C, 12-48 h
2. 1N NaOH (1 equiv)

THF/Et2O, r.t., 10 min-1 h

1. [13 2 TFA] (10 mol%)
H2O2 (50 wt%; 1.5 equiv)

R1 R2

O
O

93

 
 
Catalyst salt [13 • 2 TFA] was prepared in situ by the addition of amine 13 (32.3 mg, 0.1 

mmol, 10 mol%) to a solution of trifluoroacetic acid (15.3 μL, 0.2 mmol, 20 mol%) in 

dioxane (4 mL). Then enone 92 (1.0 mmol, 1.0 equiv) was added, and 20 minutes later, 

aqueous hydrogen peroxide (50 wt%, 92 μL, 1.5 mmol, 1.5 equiv). After 12-48 h at 50°C, the 

reaction mixture was extracted with Et2O (3×25 mL). The combined organic phases were 

washed with brine and concentrated under reduced pressure to a volume of 5 mL. Aqueous 

1N NaOH solution (1.0 mL, 1.0 mmol, 1.0 equiv) was added and the reaction mixture stirred 

until TLC analysis indicated complete conversion to the epoxide (10 min to 1 h). The reaction 

mixture was extracted with Et2O (3×25 mL), and the combined organic phases were washed 

with brine, dried (Na2SO4), and filtered. Evaporation of the solvent furnished the crude 

product, which was purified by flash column chromatography (silica gel, eluent: Et2O-

pentane) to afford pure α,β-epoxy ketones 93. 

7.3.3.2 Scope of Optically Active α,β-Epoxyketones 

(E)-(3S,4R)-3,4-Epoxy-2-decanone (3S,4R)-93a): Epoxide (3S,4R)-93a was prepared 

according to the general procedure. The reaction mixture was stirred 

for 12 h at 50 °C. Purification by flash column chromatography 

(silica gel, 1-20% Et2O in pentane) provided the title compound 93a 

as a colorless oil (127 mg, 747 μmol, 75%; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 

120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 19.73 

min, minor enantiomer: τR = 21.60 min. 

(E)-(3R,4S)-3,4-Epoxy-2-decanone ((3R,4S)-93a): 9-Amino(9-deoxy)epiquinidine (67) was 

used (instead of 13) under otherwise identical conditions. The 

reaction mixture was stirred for 12 h at 50 °C. Purification by flash 

column chromatography (silica gel, 1-20% Et2O in pentane) 
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7.3.3 Catalytic Asymmetric Epoxidation of Acyclic Enones 

7.3.3.1 General Procedure[193] 
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R1, R2 = Alk

dioxane (0.25 M), 50 °C, 12-48 h
2. 1N NaOH (1 equiv)

THF/Et2O, r.t., 10 min-1 h

1. [13 2 TFA] (10 mol%)
H2O2 (50 wt%; 1.5 equiv)

R1 R2

O
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93

 
 
Catalyst salt [13 • 2 TFA] was prepared in situ by the addition of amine 13 (32.3 mg, 0.1 

mmol, 10 mol%) to a solution of trifluoroacetic acid (15.3 μL, 0.2 mmol, 20 mol%) in 

dioxane (4 mL). Then enone 92 (1.0 mmol, 1.0 equiv) was added, and 20 minutes later, 

aqueous hydrogen peroxide (50 wt%, 92 μL, 1.5 mmol, 1.5 equiv). After 12-48 h at 50°C, the 

reaction mixture was extracted with Et2O (3×25 mL). The combined organic phases were 

washed with brine and concentrated under reduced pressure to a volume of 5 mL. Aqueous 

1N NaOH solution (1.0 mL, 1.0 mmol, 1.0 equiv) was added and the reaction mixture stirred 

until TLC analysis indicated complete conversion to the epoxide (10 min to 1 h). The reaction 
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7.3.3 Catalytic Asymmetric Epoxidation of Acyclic Enones 
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provided the title compound 93a as a colorless oil (137 mg, 807 μmol, 81%; 96:4 er). The 

enantiomeric ratio was determined by GC using a chiral BGB-176/SE-52 column 30 m (80 °C, 

1.2 °C/min until 115°C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 25.06 min, minor enantiomer: τR = 24.13 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.14 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.05 (td, J = 5.5, 1.9 

Hz, 1H, CH2CHepo), 2.02 (s, 3H, CH3C(=O)), 1.64-1.55 (m, 2H, CH2CHepo), 1.49-1.41 (m, 

2H, CH2CH2CHepo), 1.37-1.25 (m, 6H, (CH2)3CH3), 0.89 (t, J = 7.0 Hz, 3H, (CH2)5CH3). 
13C NMR (125 MHz, CD2Cl2) δ 206.2 (C=O), 60.4 (CHepoC(=O)), 58.6 (CH2CHepo), 32.4 

(CH2CHepo), 32.2 (CH2), 29.5 (CH2), 26.3 (CH2CH2CHepo), 24.8 (CH3C(=O)), 23.1 (CH2), 

14.4 ((CH2)5CH3). 

GC-MS (GC-EI) m/z (%) 170 [M+] (trace), 139 (7), 125 (1), 109 (4), 97 (12), 85 (54), 81 (9), 

69 (21), 55 (41), 43 (100), 39 (9), 29 (17). 

HRMS (CI-FE, i-butane) calcd for C10H19O2 [(M+H)+] 171.1384, found 171.1385. 

 

(E)-(3S,4R)-3,4-Epoxy-6-phenyl-2-hexanone ((3S,4R)-93b): Epoxide (3S,4R)-93b was 

prepared according to the general procedure. The reaction mixture was 

stirred for 12 h at 50 °C. Purification by flash column chromatography 

(silica gel, 1-20% Et2O in pentane) provided the title compound 93b as a 

colorless oil (162 mg, 854 μmol, 85%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 140 °C, 20 

°C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 45.23 min, minor 

enantiomer: τR = 46.65 min. 

(E)-(3R,4S)-3,4-Epoxy-6-phenyl-2-hexanone ((3R,4S)-93b): Epoxide (3R,4S)-93b was 

prepared according to the general procedure. 9-Amino(9-

deoxy)epiquinidine  (67) was used (instead of 13) under otherwise 

identical conditions. The reaction mixture was stirred for 12 h at 50 °C. 

Purification by flash column chromatography (silica gel, 1-20% Et2O in pentane) provided the 

title compound 93b as a colorless oil (171 mg, 901 μmol, 90%; 95:5 er). The enantiomeric 

ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 

°C/min until 160 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major 

enantiomer: τR = 47.30 min, minor enantiomer: τR = 46.86 min. 
1H NMR (500 MHz, CD2Cl2) δ 7.32-7.28 (m, 2H, CHPh), 7.23-7.20 (m, 3H, CHPh), 3.15 (d, J 

= 1.8 Hz, 1H, CHepoC(=O)), 3.09 (td, J = 5.6, 1.8 Hz, 1H, CH2CHepo), 2.85-2.72 (m, 2H, 

PhCH2), 1.99 (s, 3H, CH3), 1.96-1.91 (m, 2H, CH2CHepo). 
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13C NMR (125 MHz, CD2Cl2) δ 205.7 (C=O), 141.3 (CqPh), 129.1 (2C, CHPh), 128.9 (2C, 

CHPh), 126.7 (CHPh, p), 60.3 (CHepoC(=O)), 58.1 (CH2CHepo), 34.1 (CH2), 32.5 (CH2), 25.0 

(CH3). 

MS (EI-DE) m/z (%) 190 [M+] (4), 172 (4), 157 (2), 147 (14), 134 (5), 129 (37), 117 (38), 104 

(34), 91 (100), 85 (22), 77 (8), 65 (17), 57 (8), 51 (6), 43 (64), 27 (5). 

HRMS (EI-FE) calcd for C12H14O2 [M
+] 190.0992, found 190.0994. 

 

(E)-(3S,4R)-3,4-Epoxy-5-phenyl-2-hexanone ((3S,4R)-93q): Epoxide (3S,4R)-93q was 

prepared according to the general procedure. Catalyst [13 • 3 TFA] was used 

under otherwise identical conditions. After 12 h at 50 °C, the conversion was 

determined to be 94% by 1H NMR of the crude mixture (37% epoxide 93q, 

33% 5-benzyl-3-methyl-1,2-dioxolan-3-ol (94q), 24% (E)-5-phenylpent-4-en-2-one (iso-92q, 

vide infra)). The enantiomeric ratio of epoxide 93q was determined to be 99:1 er by GC using 

a chiral Lipodex E column 25 m (80 °C, 1.2 °C/min until 145 °C, 18 °C/min until 220 °C, 10 

min at 220 °C, 0.5 bar H2); major enantiomer: τR = 42.87 min, minor enantiomer: τR = 41.72 

min. 
1H NMR (500 MHz, CDCl3) δ 7.32-7.21 (m, 5H, C6H5), 3.28 (td, J = 5.2, 1.9 Hz, 1H, 

CH2CHepo), 3.22 (d, J = 1.6 Hz 1H, CHepoC(=O)), 2.93 (app. qd, J = 14.4, 5.2 Hz, 2H, 

PhCH2), 2.02 (s, 3H, CH3). 

(E)-5-Phenylpent-4-en-2-one (iso-92q): 1H NMR (500 MHz, CDCl3) δ 7.35-7.21 (m, 5H, 

C6H5), 6.45 (d, J = 16.0 Hz, 1H, PhCH=), 6.28 (dt, J = 15.8, 7.5 Hz, 1H, 

=CHCH2), 3.31 (d, J = 7.2 Hz, 2H, =CHCH2), 2.19 (3H, CH3). 

 

(E)-(3S,4R)-3,4-Epoxy-6-methyl-2-heptanone ((3S,4R)-93d): Epoxide (3S,4R)-93d was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 1-20% Et2O in pentane) provided the title compound 93d as a 

colorless oil (109 mg, 768 μmol, 77%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/BGB-15 column 30 m (60 °C, 0.8 °C/min until 80 °C, 18 °C/min 

until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 15.45 min, minor 

enantiomer: τR = 17.76 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.12 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 3.06 (td, J = 5.8, 1.9 

Hz, 1H, CH2CHepo), 2.03 (s, 3H, CH3C(=O)), 1.83 (hept, J = 6.7 Hz, 1H, CHMe2), 1.48 (dd, J 

= 6.5 Hz, 2H, CH2), 0.98 (d, J = 4.6 Hz, 3H, CH(CH3)2), 0.97 (d, J = 4.6 Hz, 3H, CH(CH3)2). 
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13C NMR (125 MHz, CD2Cl2) δ 205.7 (C=O), 141.3 (CqPh), 129.1 (2C, CHPh), 128.9 (2C, 

CHPh), 126.7 (CHPh, p), 60.3 (CHepoC(=O)), 58.1 (CH2CHepo), 34.1 (CH2), 32.5 (CH2), 25.0 

(CH3). 

MS (EI-DE) m/z (%) 190 [M+] (4), 172 (4), 157 (2), 147 (14), 134 (5), 129 (37), 117 (38), 104 

(34), 91 (100), 85 (22), 77 (8), 65 (17), 57 (8), 51 (6), 43 (64), 27 (5). 

HRMS (EI-FE) calcd for C12H14O2 [M
+] 190.0992, found 190.0994. 

 

(E)-(3S,4R)-3,4-Epoxy-5-phenyl-2-hexanone ((3S,4R)-93q): Epoxide (3S,4R)-93q was 
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PhCH2), 2.02 (s, 3H, CH3). 
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until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 15.45 min, minor 
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13C NMR (125 MHz, CD2Cl2) δ 206.2 (C=O), 60.5 (CHepoC(=O)), 57.6 (CH2CHepo), 41.1 

(CH2), 27.0 (CHMe2), 24.9 (CH3C(=O)), 23.1 (CH(CH3)2), 22.6 (CH(CH3)2). 

MS (EI-DE) m/z (%) 142 [M+] (2), 127 (6), 100 (10), 85 (100), 81 (6), 74 (2), 69 (3), 57 (26), 

55 (12), 43 (79), 41 (14), 27 (11). 

HRMS (CI-FE, i-butane) calcd for C8H15O2 [(M+H)+] 143.1071, found 143.1072. 

 

(E)-(3S,4R)-3,4-Epoxy-6,6-dimethyl-2-heptanone ((3S,4R)-93r): Epoxide (3S,4R)-93r was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 1-20% Et2O in pentane) provided the title compound 93r as a 

colorless oil (127 mg, 812 μmol, 81%; >99.5:0.5 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.0 °C/min until 100 °C, 20 

°C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 15.39 min, minor 

enantiomer: τR = 16.03 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.10-3.07 (m, 2H, CHepo), 2.04 (s, 3H, CH3C(=O)), 1.53-1.44 

(m, 2H, CH2), 1.00 (s, 9 H, Cq(CH3)3). 
13C NMR (125 MHz, CD2Cl2) δ 206.2 (C=O), 60.2 (CHepoC(=O)), 56.2 (CH2CHepo), 46.3 

(CH2), 31.1 (CqMe3), 29.9 (3C, Cq(CH3)3), 25.0 (CH3C(=O)). 

GC-MS (GC-EI) m/z (%) 156 [M+] (trace), 141 (1), 125 (1), 107 (1), 100 (11), 95 (4), 85 

(53), 69 (16), 57 (97), 43 (100), 41 (41), 29 (24), 27 (7). 

HRMS (CI-FE, i-butane) calcd for C9H17O2 [(M+H)+] 157.1227, found 157.1229. 

 

(E)-(3S,4R)-3,4-Epoxy-5-methyl-2-hexanone ((3S,4R)-93s): Epoxide (3S,4R)-93s was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93s as a 

colorless oil (64 mg, 497 μmol, 50% (reduced yield due to the high volatility of 93s); 98:2 er). 

The enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(15 min at 60 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR 

= 8.34 min, minor enantiomer: τR = 10.30 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.19 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 2.87 (dd, J = 6.6, 1.9 

Hz, 1H, CHCHepo), 2.03 (s, 3H, CH3C(=O)), 1.62 (hept, J = 6.7 Hz, 1H, CHMe2), 1.03 (d, J = 

6.6 Hz, 3H, CH(CH3)2), 0.97 (d, J = 7.0, 3H, CH(CH3)2). 
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(CH2), 31.1 (CqMe3), 29.9 (3C, Cq(CH3)3), 25.0 (CH3C(=O)). 

GC-MS (GC-EI) m/z (%) 156 [M+] (trace), 141 (1), 125 (1), 107 (1), 100 (11), 95 (4), 85 

(53), 69 (16), 57 (97), 43 (100), 41 (41), 29 (24), 27 (7). 

HRMS (CI-FE, i-butane) calcd for C9H17O2 [(M+H)+] 157.1227, found 157.1229. 

 

(E)-(3S,4R)-3,4-Epoxy-5-methyl-2-hexanone ((3S,4R)-93s): Epoxide (3S,4R)-93s was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93s as a 

colorless oil (64 mg, 497 μmol, 50% (reduced yield due to the high volatility of 93s); 98:2 er). 

The enantiomeric ratio was determined by GC using a chiral BGB-176/BGB-15 column 30 m 

(15 min at 60 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR 

= 8.34 min, minor enantiomer: τR = 10.30 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.19 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 2.87 (dd, J = 6.6, 1.9 

Hz, 1H, CHCHepo), 2.03 (s, 3H, CH3C(=O)), 1.62 (hept, J = 6.7 Hz, 1H, CHMe2), 1.03 (d, J = 

6.6 Hz, 3H, CH(CH3)2), 0.97 (d, J = 7.0, 3H, CH(CH3)2). 
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13C NMR (125 MHz, CD2Cl2) δ 206.1 (C=O), 63.4 (CHCHepo), 59.2 (CHepoC(=O)), 30.8 

(CHMe2), 24.6 (CH3C(=O)), 18.9 (CH(CH3)2), 18.2 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (trace), 113 (14), 97 (2), 95 (13), 85 (94), 83 (1), 69 (5), 

67 (33), 65 (3), 59 (13), 55 (9), 45 (4), 43 (100), 41 (21), 39 (7), 29 (10). 

 
(E)-(3S,4R)-3,4-Epoxy-4-cyclohexyl-2-butanone ((3S,4R)-93e): Epoxide (3S,4R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93e as a 

colorless oil (140 mg, 842 μmol, 84%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/SE-52 column 29.5 m (80 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 33.22 min, minor 

enantiomer: τR = 34.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (d, J = 2.3 Hz, 1H, CHepoC(=O)), 2.86 (dd, J = 6.5, 2.3 

Hz, 1H, CHCHepo), 2.02 (s, 3H, CH3), 1.85-1.80 (m, 1H, CH2), 1.78-1.72 (m, 2H, CH2), 1.72-

1.64 (m, 2H, CH2), 1.35-1.07 (m, 6H, CHcycl. and CH2). 
13C NMR (125 MHz, CD2Cl2) δ 206.3 (C=O), 62.7 (CHCHepo), 59.3 (CHepoC(=O)), 40.4 

(CHcycl.), 30.0 (CH2), 29.3 (CH2), 26.7 (CH2), 26.1 (CH2), 26.0 (CH2), 24.8 (CH3). 

MS (EI-DE) m/z (%) 168 [M+] (2), 153 (1), 125 (1), 113 (3), 108 (7), 100 (2), 95 (11), 85 

(100), 81 (22), 70 (5), 67 (17), 55 (24), 43 (45), 29 (10). 

HRMS (ESI+) calcd for C10H16NaO2 [(M+Na)+] 191.1042, found 191.1042. 

 

(E)-(3S,4R)-3,4-Epoxy-7-octen-2-one ((3S,4R)-93f): Epoxide (3S,4R)-93f was prepared 

according to the general procedure. The reaction mixture was stirred for 

12 h at 50 °C. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93f as a colorless oil 

(107 mg, 764 μmol, 76%; 98.5:1.5 er). The enantiomeric ratio was determined by GC using a 

chiral BGB-176/BGB-15 column 30 m (80 °C, 0.8 °C/min until 100 °C, 20 °C/min until 220 

°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 11.06 min, minor enantiomer: τR = 

12.59 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.84 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H, CH=CH2), 5.07 (ddd, J 

= 17.1, 3.4, 1.7 Hz, 1H, CH=CHtransH), 5.01 (ddd, J = 10.2, 2.9, 1.3 Hz, 1H, CH=CHHcis), 

3.18 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 3.08 (td, J = 5.5, 1.9 Hz, 1H, CH2CHepo), 2.28-2.17 (m, 

2H, CH2=CHCH2), 2.03 (s, 3H, CH3), 1.75-1.66 (m, 2H, CH2CHepo). 
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13C NMR (125 MHz, CD2Cl2) δ 206.1 (C=O), 63.4 (CHCHepo), 59.2 (CHepoC(=O)), 30.8 

(CHMe2), 24.6 (CH3C(=O)), 18.9 (CH(CH3)2), 18.2 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (trace), 113 (14), 97 (2), 95 (13), 85 (94), 83 (1), 69 (5), 

67 (33), 65 (3), 59 (13), 55 (9), 45 (4), 43 (100), 41 (21), 39 (7), 29 (10). 

 
(E)-(3S,4R)-3,4-Epoxy-4-cyclohexyl-2-butanone ((3S,4R)-93e): Epoxide (3S,4R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93e as a 

colorless oil (140 mg, 842 μmol, 84%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/SE-52 column 29.5 m (80 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 33.22 min, minor 

enantiomer: τR = 34.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (d, J = 2.3 Hz, 1H, CHepoC(=O)), 2.86 (dd, J = 6.5, 2.3 

Hz, 1H, CHCHepo), 2.02 (s, 3H, CH3), 1.85-1.80 (m, 1H, CH2), 1.78-1.72 (m, 2H, CH2), 1.72-

1.64 (m, 2H, CH2), 1.35-1.07 (m, 6H, CHcycl. and CH2). 
13C NMR (125 MHz, CD2Cl2) δ 206.3 (C=O), 62.7 (CHCHepo), 59.3 (CHepoC(=O)), 40.4 

(CHcycl.), 30.0 (CH2), 29.3 (CH2), 26.7 (CH2), 26.1 (CH2), 26.0 (CH2), 24.8 (CH3). 

MS (EI-DE) m/z (%) 168 [M+] (2), 153 (1), 125 (1), 113 (3), 108 (7), 100 (2), 95 (11), 85 

(100), 81 (22), 70 (5), 67 (17), 55 (24), 43 (45), 29 (10). 

HRMS (ESI+) calcd for C10H16NaO2 [(M+Na)+] 191.1042, found 191.1042. 

 

(E)-(3S,4R)-3,4-Epoxy-7-octen-2-one ((3S,4R)-93f): Epoxide (3S,4R)-93f was prepared 

according to the general procedure. The reaction mixture was stirred for 

12 h at 50 °C. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93f as a colorless oil 

(107 mg, 764 μmol, 76%; 98.5:1.5 er). The enantiomeric ratio was determined by GC using a 

chiral BGB-176/BGB-15 column 30 m (80 °C, 0.8 °C/min until 100 °C, 20 °C/min until 220 

°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 11.06 min, minor enantiomer: τR = 

12.59 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.84 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H, CH=CH2), 5.07 (ddd, J 

= 17.1, 3.4, 1.7 Hz, 1H, CH=CHtransH), 5.01 (ddd, J = 10.2, 2.9, 1.3 Hz, 1H, CH=CHHcis), 

3.18 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 3.08 (td, J = 5.5, 1.9 Hz, 1H, CH2CHepo), 2.28-2.17 (m, 

2H, CH2=CHCH2), 2.03 (s, 3H, CH3), 1.75-1.66 (m, 2H, CH2CHepo). 
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13C NMR (125 MHz, CD2Cl2) δ 206.1 (C=O), 63.4 (CHCHepo), 59.2 (CHepoC(=O)), 30.8 

(CHMe2), 24.6 (CH3C(=O)), 18.9 (CH(CH3)2), 18.2 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (trace), 113 (14), 97 (2), 95 (13), 85 (94), 83 (1), 69 (5), 

67 (33), 65 (3), 59 (13), 55 (9), 45 (4), 43 (100), 41 (21), 39 (7), 29 (10). 

 
(E)-(3S,4R)-3,4-Epoxy-4-cyclohexyl-2-butanone ((3S,4R)-93e): Epoxide (3S,4R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93e as a 

colorless oil (140 mg, 842 μmol, 84%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/SE-52 column 29.5 m (80 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 33.22 min, minor 

enantiomer: τR = 34.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (d, J = 2.3 Hz, 1H, CHepoC(=O)), 2.86 (dd, J = 6.5, 2.3 

Hz, 1H, CHCHepo), 2.02 (s, 3H, CH3), 1.85-1.80 (m, 1H, CH2), 1.78-1.72 (m, 2H, CH2), 1.72-

1.64 (m, 2H, CH2), 1.35-1.07 (m, 6H, CHcycl. and CH2). 
13C NMR (125 MHz, CD2Cl2) δ 206.3 (C=O), 62.7 (CHCHepo), 59.3 (CHepoC(=O)), 40.4 

(CHcycl.), 30.0 (CH2), 29.3 (CH2), 26.7 (CH2), 26.1 (CH2), 26.0 (CH2), 24.8 (CH3). 

MS (EI-DE) m/z (%) 168 [M+] (2), 153 (1), 125 (1), 113 (3), 108 (7), 100 (2), 95 (11), 85 

(100), 81 (22), 70 (5), 67 (17), 55 (24), 43 (45), 29 (10). 

HRMS (ESI+) calcd for C10H16NaO2 [(M+Na)+] 191.1042, found 191.1042. 

 

(E)-(3S,4R)-3,4-Epoxy-7-octen-2-one ((3S,4R)-93f): Epoxide (3S,4R)-93f was prepared 

according to the general procedure. The reaction mixture was stirred for 

12 h at 50 °C. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93f as a colorless oil 

(107 mg, 764 μmol, 76%; 98.5:1.5 er). The enantiomeric ratio was determined by GC using a 

chiral BGB-176/BGB-15 column 30 m (80 °C, 0.8 °C/min until 100 °C, 20 °C/min until 220 

°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 11.06 min, minor enantiomer: τR = 

12.59 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.84 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H, CH=CH2), 5.07 (ddd, J 

= 17.1, 3.4, 1.7 Hz, 1H, CH=CHtransH), 5.01 (ddd, J = 10.2, 2.9, 1.3 Hz, 1H, CH=CHHcis), 

3.18 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 3.08 (td, J = 5.5, 1.9 Hz, 1H, CH2CHepo), 2.28-2.17 (m, 

2H, CH2=CHCH2), 2.03 (s, 3H, CH3), 1.75-1.66 (m, 2H, CH2CHepo). 
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13C NMR (125 MHz, CD2Cl2) δ 206.1 (C=O), 63.4 (CHCHepo), 59.2 (CHepoC(=O)), 30.8 

(CHMe2), 24.6 (CH3C(=O)), 18.9 (CH(CH3)2), 18.2 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (trace), 113 (14), 97 (2), 95 (13), 85 (94), 83 (1), 69 (5), 

67 (33), 65 (3), 59 (13), 55 (9), 45 (4), 43 (100), 41 (21), 39 (7), 29 (10). 

 
(E)-(3S,4R)-3,4-Epoxy-4-cyclohexyl-2-butanone ((3S,4R)-93e): Epoxide (3S,4R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided the title compound 93e as a 

colorless oil (140 mg, 842 μmol, 84%; 98.5:1.5 er). The enantiomeric ratio was determined by 

GC using a chiral BGB-176/SE-52 column 29.5 m (80 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 33.22 min, minor 

enantiomer: τR = 34.35 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.21 (d, J = 2.3 Hz, 1H, CHepoC(=O)), 2.86 (dd, J = 6.5, 2.3 

Hz, 1H, CHCHepo), 2.02 (s, 3H, CH3), 1.85-1.80 (m, 1H, CH2), 1.78-1.72 (m, 2H, CH2), 1.72-

1.64 (m, 2H, CH2), 1.35-1.07 (m, 6H, CHcycl. and CH2). 
13C NMR (125 MHz, CD2Cl2) δ 206.3 (C=O), 62.7 (CHCHepo), 59.3 (CHepoC(=O)), 40.4 

(CHcycl.), 30.0 (CH2), 29.3 (CH2), 26.7 (CH2), 26.1 (CH2), 26.0 (CH2), 24.8 (CH3). 

MS (EI-DE) m/z (%) 168 [M+] (2), 153 (1), 125 (1), 113 (3), 108 (7), 100 (2), 95 (11), 85 

(100), 81 (22), 70 (5), 67 (17), 55 (24), 43 (45), 29 (10). 

HRMS (ESI+) calcd for C10H16NaO2 [(M+Na)+] 191.1042, found 191.1042. 

 

(E)-(3S,4R)-3,4-Epoxy-7-octen-2-one ((3S,4R)-93f): Epoxide (3S,4R)-93f was prepared 

according to the general procedure. The reaction mixture was stirred for 

12 h at 50 °C. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93f as a colorless oil 

(107 mg, 764 μmol, 76%; 98.5:1.5 er). The enantiomeric ratio was determined by GC using a 

chiral BGB-176/BGB-15 column 30 m (80 °C, 0.8 °C/min until 100 °C, 20 °C/min until 220 

°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 11.06 min, minor enantiomer: τR = 

12.59 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.84 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H, CH=CH2), 5.07 (ddd, J 

= 17.1, 3.4, 1.7 Hz, 1H, CH=CHtransH), 5.01 (ddd, J = 10.2, 2.9, 1.3 Hz, 1H, CH=CHHcis), 

3.18 (d, J = 1.9 Hz, 1H, CHepoC(=O)), 3.08 (td, J = 5.5, 1.9 Hz, 1H, CH2CHepo), 2.28-2.17 (m, 

2H, CH2=CHCH2), 2.03 (s, 3H, CH3), 1.75-1.66 (m, 2H, CH2CHepo). 
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13C NMR (125 MHz, CD2Cl2) δ 205.9 (C=O), 137.7 (CH=CH2), 115.9 (CH=CH2), 60.4 

(CHepoC(=O)), 58.1 (CH2CHepo), 31.6 (CH2), 30.5 (CH2), 25.0 (CH3). 

MS (EI-DE) m/z (%) 140 [M+] (trace), 107 (3), 97 (34), 85 (30), 79 (8), 73 (3), 67 (11), 57 

(22), 55 (11), 43 (100), 41 (34), 39 (18), 27 (13). 

HRMS (CI-FE, i-butane) calcd for C8H13O2 [(M+H)+] 141.0916, found 141.0916. 

 

(E)-(3S,4R)-7-Bromo-3,4-epoxy-2-heptanone ((3S,4R)-93g): Epoxide (3S,4R)-93g was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 10-25% Et2O in pentane) provided the title compound 93g as 

a colorless oil (77 mg, 374 μmol, 75%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-176/BGB-15 column 30 m (100 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.40 min, minor 

enantiomer: τR = 20.75 min. Contains 11% (determined by GC) of (E)-7-chloro-3,4-epoxy-

heptan-2-one. 
1H NMR (400 MHz, CD2Cl2) δ 3.47 (td, J = 6.6, 1.5 Hz, 2H, BrCH2), 3.20 (d, J = 2.1 Hz, 1H, 

CepoHC(=O)), 3.11-3.08 (m, 1H, CepoHCH2), 2.05-1.98 (m, 2H, BrCH2CH2), 2.03 (s, 3H, 

CH3), 1.92-1.83 (m, 1H, CHHCepoH), 1.73-1.65 (m, 1H, CHHCepoH). 
13C NMR (100 MHz, CD2Cl2): δ 205.2 (C=O), 59.5 (CepoHC(=O)), 57.1 (CepoHCH2), 33.0 

(BrCH2), 30.3 (CH2CepoH), 29.1 (BrCH2CH2), 24.4 (CH3). 

MS (EI) m/z (%) 165 (35), 163 (36), 135 (2), 121 (1), 109 (2), 95 (1), 85 (67), 69 (1), 55 (32), 

43 (100), 27 (15). 

HRMS (CI-FE) calcd for C7H12BrO2 [(M+H)+] 207.0020, found 207.0021. 

 

(E)-(3S,4R)-3,4-Epoxy-9-(tetrahydro-2H-pyran-2-yloxy)nonen-2-one ((3S,4R)-93h): 

Epoxide (3S,4R)-93h was prepared according to the general 

procedure. The reaction mixture was stirred for 18 h at 50 °C. 

Purification by flash column chromatography (silica gel, 20-

30% Et2O in pentane) provided the title compound 93h as a colorless oil (113 mg, 440 μmol, 

88%). The enantiomeric ratio was determined after deprotection of the Thp ether (cf. epoxide 

93l; vide infra). Characterized as mixture of Thp ether diastereomers. 
1H NMR (500 MHz, CD2Cl2) δ 4.53 (t, J = 3.7 Hz, 1H, O-CH-O), 3.84-3.79 (m, 1H, 

OCHHTHP), 3.69 (dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.48-3.43 (m, 1H, OCHHTHP), 3.35 

Br

O
O

C7H11BrO2

207,07

O

THPO
O

C14H24O4

256,34

7  Experimental Part 

200 

13C NMR (125 MHz, CD2Cl2) δ 205.9 (C=O), 137.7 (CH=CH2), 115.9 (CH=CH2), 60.4 

(CHepoC(=O)), 58.1 (CH2CHepo), 31.6 (CH2), 30.5 (CH2), 25.0 (CH3). 

MS (EI-DE) m/z (%) 140 [M+] (trace), 107 (3), 97 (34), 85 (30), 79 (8), 73 (3), 67 (11), 57 

(22), 55 (11), 43 (100), 41 (34), 39 (18), 27 (13). 

HRMS (CI-FE, i-butane) calcd for C8H13O2 [(M+H)+] 141.0916, found 141.0916. 

 

(E)-(3S,4R)-7-Bromo-3,4-epoxy-2-heptanone ((3S,4R)-93g): Epoxide (3S,4R)-93g was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 10-25% Et2O in pentane) provided the title compound 93g as 

a colorless oil (77 mg, 374 μmol, 75%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-176/BGB-15 column 30 m (100 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.40 min, minor 

enantiomer: τR = 20.75 min. Contains 11% (determined by GC) of (E)-7-chloro-3,4-epoxy-

heptan-2-one. 
1H NMR (400 MHz, CD2Cl2) δ 3.47 (td, J = 6.6, 1.5 Hz, 2H, BrCH2), 3.20 (d, J = 2.1 Hz, 1H, 

CepoHC(=O)), 3.11-3.08 (m, 1H, CepoHCH2), 2.05-1.98 (m, 2H, BrCH2CH2), 2.03 (s, 3H, 

CH3), 1.92-1.83 (m, 1H, CHHCepoH), 1.73-1.65 (m, 1H, CHHCepoH). 
13C NMR (100 MHz, CD2Cl2): δ 205.2 (C=O), 59.5 (CepoHC(=O)), 57.1 (CepoHCH2), 33.0 

(BrCH2), 30.3 (CH2CepoH), 29.1 (BrCH2CH2), 24.4 (CH3). 

MS (EI) m/z (%) 165 (35), 163 (36), 135 (2), 121 (1), 109 (2), 95 (1), 85 (67), 69 (1), 55 (32), 

43 (100), 27 (15). 

HRMS (CI-FE) calcd for C7H12BrO2 [(M+H)+] 207.0020, found 207.0021. 

 

(E)-(3S,4R)-3,4-Epoxy-9-(tetrahydro-2H-pyran-2-yloxy)nonen-2-one ((3S,4R)-93h): 

Epoxide (3S,4R)-93h was prepared according to the general 

procedure. The reaction mixture was stirred for 18 h at 50 °C. 

Purification by flash column chromatography (silica gel, 20-

30% Et2O in pentane) provided the title compound 93h as a colorless oil (113 mg, 440 μmol, 

88%). The enantiomeric ratio was determined after deprotection of the Thp ether (cf. epoxide 

93l; vide infra). Characterized as mixture of Thp ether diastereomers. 
1H NMR (500 MHz, CD2Cl2) δ 4.53 (t, J = 3.7 Hz, 1H, O-CH-O), 3.84-3.79 (m, 1H, 

OCHHTHP), 3.69 (dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.48-3.43 (m, 1H, OCHHTHP), 3.35 
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13C NMR (125 MHz, CD2Cl2) δ 205.9 (C=O), 137.7 (CH=CH2), 115.9 (CH=CH2), 60.4 

(CHepoC(=O)), 58.1 (CH2CHepo), 31.6 (CH2), 30.5 (CH2), 25.0 (CH3). 

MS (EI-DE) m/z (%) 140 [M+] (trace), 107 (3), 97 (34), 85 (30), 79 (8), 73 (3), 67 (11), 57 

(22), 55 (11), 43 (100), 41 (34), 39 (18), 27 (13). 

HRMS (CI-FE, i-butane) calcd for C8H13O2 [(M+H)+] 141.0916, found 141.0916. 

 

(E)-(3S,4R)-7-Bromo-3,4-epoxy-2-heptanone ((3S,4R)-93g): Epoxide (3S,4R)-93g was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 10-25% Et2O in pentane) provided the title compound 93g as 

a colorless oil (77 mg, 374 μmol, 75%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-176/BGB-15 column 30 m (100 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.40 min, minor 

enantiomer: τR = 20.75 min. Contains 11% (determined by GC) of (E)-7-chloro-3,4-epoxy-

heptan-2-one. 
1H NMR (400 MHz, CD2Cl2) δ 3.47 (td, J = 6.6, 1.5 Hz, 2H, BrCH2), 3.20 (d, J = 2.1 Hz, 1H, 

CepoHC(=O)), 3.11-3.08 (m, 1H, CepoHCH2), 2.05-1.98 (m, 2H, BrCH2CH2), 2.03 (s, 3H, 

CH3), 1.92-1.83 (m, 1H, CHHCepoH), 1.73-1.65 (m, 1H, CHHCepoH). 
13C NMR (100 MHz, CD2Cl2): δ 205.2 (C=O), 59.5 (CepoHC(=O)), 57.1 (CepoHCH2), 33.0 

(BrCH2), 30.3 (CH2CepoH), 29.1 (BrCH2CH2), 24.4 (CH3). 

MS (EI) m/z (%) 165 (35), 163 (36), 135 (2), 121 (1), 109 (2), 95 (1), 85 (67), 69 (1), 55 (32), 

43 (100), 27 (15). 

HRMS (CI-FE) calcd for C7H12BrO2 [(M+H)+] 207.0020, found 207.0021. 

 

(E)-(3S,4R)-3,4-Epoxy-9-(tetrahydro-2H-pyran-2-yloxy)nonen-2-one ((3S,4R)-93h): 

Epoxide (3S,4R)-93h was prepared according to the general 

procedure. The reaction mixture was stirred for 18 h at 50 °C. 

Purification by flash column chromatography (silica gel, 20-

30% Et2O in pentane) provided the title compound 93h as a colorless oil (113 mg, 440 μmol, 

88%). The enantiomeric ratio was determined after deprotection of the Thp ether (cf. epoxide 

93l; vide infra). Characterized as mixture of Thp ether diastereomers. 
1H NMR (500 MHz, CD2Cl2) δ 4.53 (t, J = 3.7 Hz, 1H, O-CH-O), 3.84-3.79 (m, 1H, 

OCHHTHP), 3.69 (dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.48-3.43 (m, 1H, OCHHTHP), 3.35 
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13C NMR (125 MHz, CD2Cl2) δ 205.9 (C=O), 137.7 (CH=CH2), 115.9 (CH=CH2), 60.4 

(CHepoC(=O)), 58.1 (CH2CHepo), 31.6 (CH2), 30.5 (CH2), 25.0 (CH3). 

MS (EI-DE) m/z (%) 140 [M+] (trace), 107 (3), 97 (34), 85 (30), 79 (8), 73 (3), 67 (11), 57 

(22), 55 (11), 43 (100), 41 (34), 39 (18), 27 (13). 

HRMS (CI-FE, i-butane) calcd for C8H13O2 [(M+H)+] 141.0916, found 141.0916. 

 

(E)-(3S,4R)-7-Bromo-3,4-epoxy-2-heptanone ((3S,4R)-93g): Epoxide (3S,4R)-93g was 

prepared according to the general procedure. The reaction mixture was 

stirred for 18 h at 50 °C. Purification by flash column chromatography 

(silica gel, 10-25% Et2O in pentane) provided the title compound 93g as 

a colorless oil (77 mg, 374 μmol, 75%; 98.5:1.5 er). The enantiomeric ratio was determined 

by GC using a chiral BGB-176/BGB-15 column 30 m (100 °C, 1.2 °C/min until 135 °C, 18 

°C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 19.40 min, minor 

enantiomer: τR = 20.75 min. Contains 11% (determined by GC) of (E)-7-chloro-3,4-epoxy-

heptan-2-one. 
1H NMR (400 MHz, CD2Cl2) δ 3.47 (td, J = 6.6, 1.5 Hz, 2H, BrCH2), 3.20 (d, J = 2.1 Hz, 1H, 

CepoHC(=O)), 3.11-3.08 (m, 1H, CepoHCH2), 2.05-1.98 (m, 2H, BrCH2CH2), 2.03 (s, 3H, 

CH3), 1.92-1.83 (m, 1H, CHHCepoH), 1.73-1.65 (m, 1H, CHHCepoH). 
13C NMR (100 MHz, CD2Cl2): δ 205.2 (C=O), 59.5 (CepoHC(=O)), 57.1 (CepoHCH2), 33.0 

(BrCH2), 30.3 (CH2CepoH), 29.1 (BrCH2CH2), 24.4 (CH3). 

MS (EI) m/z (%) 165 (35), 163 (36), 135 (2), 121 (1), 109 (2), 95 (1), 85 (67), 69 (1), 55 (32), 

43 (100), 27 (15). 

HRMS (CI-FE) calcd for C7H12BrO2 [(M+H)+] 207.0020, found 207.0021. 

 

(E)-(3S,4R)-3,4-Epoxy-9-(tetrahydro-2H-pyran-2-yloxy)nonen-2-one ((3S,4R)-93h): 

Epoxide (3S,4R)-93h was prepared according to the general 

procedure. The reaction mixture was stirred for 18 h at 50 °C. 

Purification by flash column chromatography (silica gel, 20-

30% Et2O in pentane) provided the title compound 93h as a colorless oil (113 mg, 440 μmol, 

88%). The enantiomeric ratio was determined after deprotection of the Thp ether (cf. epoxide 

93l; vide infra). Characterized as mixture of Thp ether diastereomers. 
1H NMR (500 MHz, CD2Cl2) δ 4.53 (t, J = 3.7 Hz, 1H, O-CH-O), 3.84-3.79 (m, 1H, 

OCHHTHP), 3.69 (dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.48-3.43 (m, 1H, OCHHTHP), 3.35 
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(dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.15 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.06 (td, J = 5.2, 

1.9 Hz, 1H, CepoHCH2), 2.03 (s, 3H, CH3), 1.83-1.75 (m, 1H, CH2), 1.69-1.39 (m, 13H, CH2). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 98.9 (O-CH-O), 67.2 (THPOCH2), 62.2 

(OCH2, THP), 59.9 (CepoHC(=O)), 58.0 (CepoHCH2), 31.8 (CH2), 30.9 (OCHCH2), 29.7 (CH2), 

26.0 (CH2), 25.7 (CH2), 25.6 (CH2), 24.3 (CH3), 19.8 (CH2). 

MS (EI-DE) m/z (%) 256 [M+] (trace), 239 (1), 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 

111 (2), 97 (17), 85 (100), 81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO4 [(M+Na)+] 279.1565, found 279.1567. 

 
(E)-(3S,4R)-3,4-Epoxy-9-hydroxy-2-nonanone (93l): To a vial containing Thp ether 93h 

(40.0 mg, 156 μmol) dissolved in acetonitrile (1.6 mL) and borate 

buffer (pH = 8) (1.6 mL), was added with stirring CAN (2.7 mg, 

4.68 μmol, 3 mol%). After 3 h at 60 °C, the mixture was cooled to 

room temperature, diluted with water (4 mL) and repeatedly extracted with Et2O (3×10 mL). 

The combined organic layers were washed with brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure. After purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in CH2Cl2) the alcohol 93l (24 mg, 138 μmol, 88%; 

98:2 er) was obtained as a colorless oil. The enantiomeric ratio was determined by GC using a 

chiral Ivadex 1 column 25 m (80 °C, 1.0 °C/min until 155 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 60.50 min, minor enantiomer: τR = 61.21 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.60 (t, J = 6.5 Hz, 2H, CH2OH), 3.15 (d, J = 1.6 Hz, 1H, 

CepoHC=O), 3.06 (td, J = 5.6, 1.6 Hz, 1H, CH2CepoH), 2.03 (s, 3H, CH3), 1.69-1.37 (m, 9H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 62.6 (CH2OH), 59.9 (CepoHC(=O)), 58.0 

(CH2CepoH), 32.7 (CH2), 31.8 (CH2), 25.7 (CH2), 25.5 (CH2), 24.3 (CH3). 

MS (EI) m/z (%) 129 (1), 111 (2), 99 (3), 93 (4), 85 (36), 81 (13), 67 (8), 55 (31), 43 (100), 39 

(9), 31 (18). 

HRMS (CI-DE) calcd for C9H17O3 [(M+H)+] 173.1176, found 173.1178. 

 

(E)-(3S,4R)-3,4-Epoxy-6-tert-butyldimethylsilyloxyhexan-2-one ((3S,4R)-93i): Epoxide 93i 

was prepared according to the general procedure. The reaction mixture 

was stirred for 18 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 1-10% Et2O in pentane) provided the title compound 

93i as a colorless oil (88 mg, 359 μmol, 72%; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 
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(dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.15 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.06 (td, J = 5.2, 

1.9 Hz, 1H, CepoHCH2), 2.03 (s, 3H, CH3), 1.83-1.75 (m, 1H, CH2), 1.69-1.39 (m, 13H, CH2). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 98.9 (O-CH-O), 67.2 (THPOCH2), 62.2 

(OCH2, THP), 59.9 (CepoHC(=O)), 58.0 (CepoHCH2), 31.8 (CH2), 30.9 (OCHCH2), 29.7 (CH2), 

26.0 (CH2), 25.7 (CH2), 25.6 (CH2), 24.3 (CH3), 19.8 (CH2). 

MS (EI-DE) m/z (%) 256 [M+] (trace), 239 (1), 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 

111 (2), 97 (17), 85 (100), 81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO4 [(M+Na)+] 279.1565, found 279.1567. 

 
(E)-(3S,4R)-3,4-Epoxy-9-hydroxy-2-nonanone (93l): To a vial containing Thp ether 93h 

(40.0 mg, 156 μmol) dissolved in acetonitrile (1.6 mL) and borate 

buffer (pH = 8) (1.6 mL), was added with stirring CAN (2.7 mg, 

4.68 μmol, 3 mol%). After 3 h at 60 °C, the mixture was cooled to 

room temperature, diluted with water (4 mL) and repeatedly extracted with Et2O (3×10 mL). 

The combined organic layers were washed with brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure. After purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in CH2Cl2) the alcohol 93l (24 mg, 138 μmol, 88%; 

98:2 er) was obtained as a colorless oil. The enantiomeric ratio was determined by GC using a 

chiral Ivadex 1 column 25 m (80 °C, 1.0 °C/min until 155 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 60.50 min, minor enantiomer: τR = 61.21 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.60 (t, J = 6.5 Hz, 2H, CH2OH), 3.15 (d, J = 1.6 Hz, 1H, 

CepoHC=O), 3.06 (td, J = 5.6, 1.6 Hz, 1H, CH2CepoH), 2.03 (s, 3H, CH3), 1.69-1.37 (m, 9H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 62.6 (CH2OH), 59.9 (CepoHC(=O)), 58.0 

(CH2CepoH), 32.7 (CH2), 31.8 (CH2), 25.7 (CH2), 25.5 (CH2), 24.3 (CH3). 

MS (EI) m/z (%) 129 (1), 111 (2), 99 (3), 93 (4), 85 (36), 81 (13), 67 (8), 55 (31), 43 (100), 39 

(9), 31 (18). 

HRMS (CI-DE) calcd for C9H17O3 [(M+H)+] 173.1176, found 173.1178. 

 

(E)-(3S,4R)-3,4-Epoxy-6-tert-butyldimethylsilyloxyhexan-2-one ((3S,4R)-93i): Epoxide 93i 

was prepared according to the general procedure. The reaction mixture 

was stirred for 18 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 1-10% Et2O in pentane) provided the title compound 

93i as a colorless oil (88 mg, 359 μmol, 72%; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 

O

HO
O

C9H16O3

172,22

TBSO

O
O

C12H24O3Si
244,40

7 Experimental Part 

 201

(dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.15 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.06 (td, J = 5.2, 

1.9 Hz, 1H, CepoHCH2), 2.03 (s, 3H, CH3), 1.83-1.75 (m, 1H, CH2), 1.69-1.39 (m, 13H, CH2). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 98.9 (O-CH-O), 67.2 (THPOCH2), 62.2 

(OCH2, THP), 59.9 (CepoHC(=O)), 58.0 (CepoHCH2), 31.8 (CH2), 30.9 (OCHCH2), 29.7 (CH2), 

26.0 (CH2), 25.7 (CH2), 25.6 (CH2), 24.3 (CH3), 19.8 (CH2). 

MS (EI-DE) m/z (%) 256 [M+] (trace), 239 (1), 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 

111 (2), 97 (17), 85 (100), 81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO4 [(M+Na)+] 279.1565, found 279.1567. 

 
(E)-(3S,4R)-3,4-Epoxy-9-hydroxy-2-nonanone (93l): To a vial containing Thp ether 93h 

(40.0 mg, 156 μmol) dissolved in acetonitrile (1.6 mL) and borate 

buffer (pH = 8) (1.6 mL), was added with stirring CAN (2.7 mg, 

4.68 μmol, 3 mol%). After 3 h at 60 °C, the mixture was cooled to 

room temperature, diluted with water (4 mL) and repeatedly extracted with Et2O (3×10 mL). 

The combined organic layers were washed with brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure. After purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in CH2Cl2) the alcohol 93l (24 mg, 138 μmol, 88%; 

98:2 er) was obtained as a colorless oil. The enantiomeric ratio was determined by GC using a 

chiral Ivadex 1 column 25 m (80 °C, 1.0 °C/min until 155 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 60.50 min, minor enantiomer: τR = 61.21 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.60 (t, J = 6.5 Hz, 2H, CH2OH), 3.15 (d, J = 1.6 Hz, 1H, 

CepoHC=O), 3.06 (td, J = 5.6, 1.6 Hz, 1H, CH2CepoH), 2.03 (s, 3H, CH3), 1.69-1.37 (m, 9H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 62.6 (CH2OH), 59.9 (CepoHC(=O)), 58.0 

(CH2CepoH), 32.7 (CH2), 31.8 (CH2), 25.7 (CH2), 25.5 (CH2), 24.3 (CH3). 

MS (EI) m/z (%) 129 (1), 111 (2), 99 (3), 93 (4), 85 (36), 81 (13), 67 (8), 55 (31), 43 (100), 39 

(9), 31 (18). 

HRMS (CI-DE) calcd for C9H17O3 [(M+H)+] 173.1176, found 173.1178. 

 

(E)-(3S,4R)-3,4-Epoxy-6-tert-butyldimethylsilyloxyhexan-2-one ((3S,4R)-93i): Epoxide 93i 

was prepared according to the general procedure. The reaction mixture 

was stirred for 18 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 1-10% Et2O in pentane) provided the title compound 

93i as a colorless oil (88 mg, 359 μmol, 72%; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 
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(dt, J = 9.5, 6.6 Hz, 1H, THPOCHH), 3.15 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.06 (td, J = 5.2, 

1.9 Hz, 1H, CepoHCH2), 2.03 (s, 3H, CH3), 1.83-1.75 (m, 1H, CH2), 1.69-1.39 (m, 13H, CH2). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 98.9 (O-CH-O), 67.2 (THPOCH2), 62.2 

(OCH2, THP), 59.9 (CepoHC(=O)), 58.0 (CepoHCH2), 31.8 (CH2), 30.9 (OCHCH2), 29.7 (CH2), 

26.0 (CH2), 25.7 (CH2), 25.6 (CH2), 24.3 (CH3), 19.8 (CH2). 

MS (EI-DE) m/z (%) 256 [M+] (trace), 239 (1), 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 

111 (2), 97 (17), 85 (100), 81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO4 [(M+Na)+] 279.1565, found 279.1567. 

 
(E)-(3S,4R)-3,4-Epoxy-9-hydroxy-2-nonanone (93l): To a vial containing Thp ether 93h 

(40.0 mg, 156 μmol) dissolved in acetonitrile (1.6 mL) and borate 

buffer (pH = 8) (1.6 mL), was added with stirring CAN (2.7 mg, 

4.68 μmol, 3 mol%). After 3 h at 60 °C, the mixture was cooled to 

room temperature, diluted with water (4 mL) and repeatedly extracted with Et2O (3×10 mL). 

The combined organic layers were washed with brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure. After purification of the crude product by flash column 

chromatography (silica gel, 5-30% Et2O in CH2Cl2) the alcohol 93l (24 mg, 138 μmol, 88%; 

98:2 er) was obtained as a colorless oil. The enantiomeric ratio was determined by GC using a 

chiral Ivadex 1 column 25 m (80 °C, 1.0 °C/min until 155 °C, 20 °C/min until 220 °C, 10 min 

at 320 °C, 0.6 bar H2); major enantiomer: τR = 60.50 min, minor enantiomer: τR = 61.21 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.60 (t, J = 6.5 Hz, 2H, CH2OH), 3.15 (d, J = 1.6 Hz, 1H, 

CepoHC=O), 3.06 (td, J = 5.6, 1.6 Hz, 1H, CH2CepoH), 2.03 (s, 3H, CH3), 1.69-1.37 (m, 9H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) 205.7 (C=O), 62.6 (CH2OH), 59.9 (CepoHC(=O)), 58.0 

(CH2CepoH), 32.7 (CH2), 31.8 (CH2), 25.7 (CH2), 25.5 (CH2), 24.3 (CH3). 

MS (EI) m/z (%) 129 (1), 111 (2), 99 (3), 93 (4), 85 (36), 81 (13), 67 (8), 55 (31), 43 (100), 39 

(9), 31 (18). 

HRMS (CI-DE) calcd for C9H17O3 [(M+H)+] 173.1176, found 173.1178. 

 

(E)-(3S,4R)-3,4-Epoxy-6-tert-butyldimethylsilyloxyhexan-2-one ((3S,4R)-93i): Epoxide 93i 

was prepared according to the general procedure. The reaction mixture 

was stirred for 18 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 1-10% Et2O in pentane) provided the title compound 

93i as a colorless oil (88 mg, 359 μmol, 72%; 98.5:1.5 er). The enantiomeric ratio was 

determined by GC using a chiral BGB-176/BGB-15 column 30 m (80 °C, 1.2 °C/min until 
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125 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 34.31 

min, minor enantiomer: τR = 35.48 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.76 (t, J = 6.3 Hz, 2H, TBSOCH2), 3.22-3.19 (m, 2H, 

CepoH), 2.03 (s, 3H, CH3C(=O)), 1.87-1.81 (m, 1H, CepoHCHH), 1.79-1.73 (m, 1H, 

CepoHCHH), 0.90 (s, 9H, Cq(CH3)3), 0.07 (s, 3H, Si(CH3)2), 0.06 (s, 3H, Si(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 205.4 (C=O), 59.9 (CepoHC(=O)), 59.6 (TBSOCH2), 55.9 

(CH2CepoH), 35.1 (CH2CepoH), 25.7 (3C, C(CH3)3), 24.3 (CqMe3), 18.2 (CH3C(=O)), −5.7 

(2C, Si(CH3)2). 

MS (EI) m/z (%) 220 (1), 205 (2), 199 (4), 187 (11), 169 (1), 157 (100), 143 (8), 131 (2), 115 

(7), 99 (4), 85 (3), 75 (16), 59 (4), 43 (9), 29 (1). 

HRMS (ESI+) calcd for C12H24O3SiNa [(M+Na)+] 267.1386, found 267.1387. 

 

(E)-(3S,4R)-Ethyl 4,5-epoxy-6-oxoheptanoate ((3S,4R)-93j): Epoxide (3S,4R)-93j was 

prepared according to the general procedure. The reaction mixture was 

stirred for 24 h at 50 °C. Base treatment of the crude product with 

sodium ethoxide in THF followed by purification by flash column 

chromatography (silica gel, 15-30% Et2O in pentane) provided the title compound as a 

colorless oil (75 mg, 405 μmol, 81%; 98:2 er). The enantiomeric ratio was determined by GC 

using a chiral BGB-176/SE-52 column 30 m (80 °C, 1.2 °C/min until 130 °C, 20 °C/min until 

220 °C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 35.76 min, minor enantiomer: 

τR = 37.27 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.12 (q, J = 7.2 Hz, 2H, CH2CH3), 3.20 (d, J = 2.1 Hz, 1H, 
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(E)-(3S,4R)-7-Oxo-3,4-epoxy-2-octanone ((3S,4R)-93k): Epoxide (3S,4R)-93k was prepared 

according to the general procedure. The reaction mixture was stirred for 

24 h at 50 °C. Base treatment of the crude product was omitted. 

Purification by flash column chromatography (silica gel, 10-30% Et2O in 

pentane) provided the title compound as a colorless oil (31 mg, 202 μmol, 40%; 98.5:1.5 er). 

The enantiomeric ratio was determined by GC using a chiral BGB-176/SE-52 column 30 m 

(80 °C, 1.2 °C/min until 120 °C, 20 °C/min until 220 °C, 10 min at 220 °C, 0.5 bar H2); major 

enantiomer: τR = 29.03 min, minor enantiomer: τR = 30.33 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.17 (d, J = 1.8 Hz, 1H, CHepoC(=O)), 3.12-3.10 (m, 1H, 

CepoHCH2), 2.56 (t, J = 7.0 Hz, 2H, CH2C(=O)), 2.13 (s, 3H, CH2C(=O)CH3), 2.01 (s, 3H, 

CHepoC(=O)CH3), 2.00-1.93 (m, 1H, CHHCepoH), 1.78-1.72 (m, 1H, CHHCepoH). 
13C NMR (125 MHz, CD2Cl2) δ 207.1 (CH2C=O), 205.6 (CepoHC=O), 60.2 (CepoHC(=O)), 

57.3 (CH2CepoH), 39.2 (CH2C(=O)), 30.0 (CH3C(=O)CH2), 25.9 (CH2CepoH), 24.7 

(CH3C(=O)CHepo). 

 

(E)-(4S,5R)-4,5-Epoxy-3-hexanone ((4S,5R)-93c): Epoxide (4S,5R)-93c was prepared 

according to the general procedure. The reaction mixture was stirred for 12 h 

at 50 °C. Purification by flash column chromatography (silica gel, 1-20% Et2O 

in pentane) provided the title compound 93c as a colorless oil (63 mg, 552 

μmol, 55% (reduced yield due to the high volatility of 93c); 98.5:1.5 er). The enantiomeric 

ratio was determined by GC using a chiral BGB-178/OV-1701 30 m column (60 °C, 1.0 

°C/min until 70 °C 20 °C/min until 220 °C, 10 min at 220 °C, 0.4 bar H2); major enantiomer: 

τR = 12.45 min, minor enantiomer: τR = 12.74 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.15 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.10 (qd, J = 5.1, 2.0 

Hz, 1H, CH3CHepo), 2.44 (dq, J = 18.3, 7.4 Hz, 1H, CHH), 2.31 (dq, J = 18.5, 7.2 Hz, 1H, 

CHH), 1.37 (d, J = 5.2 Hz, 3H, CH3CHepo), 1.00 (t, J = 7.3 Hz, 3H, CH2CH3). 
13C NMR (125 MHz, CD2Cl2) δ 208.3 (C=O), 60.9 (CHepoC(=O)), 55.0 (CH3CHepo), 31.2 

(CH2), 17.9 (CH3CHepo), 7.3 (CH2CH3). 

GC-MS (GC-EI) m/z (%) 114 [M+] (1), 99 (17), 85 (14), 83 (2), 69 (70), 57 (75), 53 (6), 43 

(14), 41 (42), 39 (18), 29 (100), 27 (26). 

HRMS (EI-FE) calcd for C6H10O2 [M
+] 114.0680, found 114.0681. 
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13C NMR (125 MHz, CD2Cl2) δ 208.3 (C=O), 60.9 (CHepoC(=O)), 55.0 (CH3CHepo), 31.2 

(CH2), 17.9 (CH3CHepo), 7.3 (CH2CH3). 

GC-MS (GC-EI) m/z (%) 114 [M+] (1), 99 (17), 85 (14), 83 (2), 69 (70), 57 (75), 53 (6), 43 

(14), 41 (42), 39 (18), 29 (100), 27 (26). 

HRMS (EI-FE) calcd for C6H10O2 [M
+] 114.0680, found 114.0681. 
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(E)-(4S,5R)-4,5-Epoxy-3-tetradecanone ((4S,5R)-93p): Epoxide (4S,5R)-93p was prepared 

according to the general procedure. The reaction mixture 

was stirred for 24 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) 

provided the title compound 93p as a colorless oil (185 mg, 817 μmol, 82%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Lipodex E column 25 m (100 °C, 1.2 

°C/min until 180 °C, 18 °C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: 

τR = 30.53 min, minor enantiomer: τR = 29.18 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.19 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.01 (td, J = 5.5, 1.9 

Hz, 1H, CH2CHepo), 2.44 (dq, J = 18.3, 7.3 Hz, 1H, CHHC(=O)), 2.32 (dq, J = 18.4, 7.2 Hz, 

1H, CHHC(=O)), 1.62-1.55 (m, 2H, CH2CHepo), 1.48-1.41 (m, 2H, CH2CH2CHepo), 1.35-1.26 

(m, 12H, (CH2)6CH3), 1.01 (t, J = 7.2 Hz, 3H, C(=O)CH2CH3), 0.88 (t, J = 7.0 Hz, 3H, 

(CH2)8CH3). 
13C NMR (125 MHz, CD2Cl2) δ 208.4 (C=O), 60.0 (CHepoC(=O)), 59.0 (CH2CHepo), 32.4 

(2C, CH2), 31.2 (CH2), 30.0 (2C, CH2), 29.8 (2C, CH2), 26.3 (CH2), 23.2 (CH2), 14.4 

((CH2)8CH3), 7.4 (C(=O)CH2CH3). 

MS (EI-DE) m/z (%) 226 [M+] (2), 197 (1), 179 (1), 169 (2), 151 (3), 127 (1), 109 (4), 99 

(43), 95 (11), 81 (7), 69 (6), 57 (100), 41 (15), 29 (26). 

HRMS (ESI+) calcd for C14H26NaO2 [(M+Na)+] 249.1826, found 249.1825. 

 

(E)-(7S,8R)-7,8-Epoxy-6-tridecanone ((7S,8R)-93m): Epoxide (7S,8R)-93m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 24 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided 

the title compound 93m as a colorless oil (161 mg, 758 μmol, 76%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral G-TA column 30 m (80 °C, 1.0 

°C/min until 125 °C, 20 °C/min until 180 °C, 10 min at 180 °C, 0.9 bar H2); major 

enantiomer: τR = 44.18 min, minor enantiomer: τR = 43.42 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.18 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.01 (td, J = 5.5, 2.0 

Hz, 1H, CH2CHepo), 2.41 (ddd, J = 17.3, 8.3, 6.5 Hz, 1H, CHHC(=O)), 2.28 (ddd, J = 17.3, 

8.2, 6.8 Hz, 1H, CHHC(=O)), 1.62-1.52 (m, 4H, CH2), 1.48-1.42 (m, 2H, CH2), 1.34-1.23 (m, 

8H, CH2), 0.91-0.87 (m, 6H, CH3). 
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enantiomeric ratio was determined by GC using a chiral G-TA column 30 m (80 °C, 1.0 

°C/min until 125 °C, 20 °C/min until 180 °C, 10 min at 180 °C, 0.9 bar H2); major 

enantiomer: τR = 44.18 min, minor enantiomer: τR = 43.42 min. 
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(43), 95 (11), 81 (7), 69 (6), 57 (100), 41 (15), 29 (26). 
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enantiomeric ratio was determined by GC using a chiral G-TA column 30 m (80 °C, 1.0 
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(E)-(4S,5R)-4,5-Epoxy-3-tetradecanone ((4S,5R)-93p): Epoxide (4S,5R)-93p was prepared 

according to the general procedure. The reaction mixture 

was stirred for 24 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) 

provided the title compound 93p as a colorless oil (185 mg, 817 μmol, 82%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral Lipodex E column 25 m (100 °C, 1.2 

°C/min until 180 °C, 18 °C/min until 220 °C, 5 min at 220 °C, 0.5 bar H2); major enantiomer: 

τR = 30.53 min, minor enantiomer: τR = 29.18 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.19 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.01 (td, J = 5.5, 1.9 
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(m, 12H, (CH2)6CH3), 1.01 (t, J = 7.2 Hz, 3H, C(=O)CH2CH3), 0.88 (t, J = 7.0 Hz, 3H, 

(CH2)8CH3). 
13C NMR (125 MHz, CD2Cl2) δ 208.4 (C=O), 60.0 (CHepoC(=O)), 59.0 (CH2CHepo), 32.4 

(2C, CH2), 31.2 (CH2), 30.0 (2C, CH2), 29.8 (2C, CH2), 26.3 (CH2), 23.2 (CH2), 14.4 

((CH2)8CH3), 7.4 (C(=O)CH2CH3). 

MS (EI-DE) m/z (%) 226 [M+] (2), 197 (1), 179 (1), 169 (2), 151 (3), 127 (1), 109 (4), 99 

(43), 95 (11), 81 (7), 69 (6), 57 (100), 41 (15), 29 (26). 

HRMS (ESI+) calcd for C14H26NaO2 [(M+Na)+] 249.1826, found 249.1825. 

 

(E)-(7S,8R)-7,8-Epoxy-6-tridecanone ((7S,8R)-93m): Epoxide (7S,8R)-93m was prepared 

according to the general procedure. The reaction mixture was 

stirred for 24 h at 50 °C. Purification by flash column 

chromatography (silica gel, 1-20% Et2O in pentane) provided 

the title compound 93m as a colorless oil (161 mg, 758 μmol, 76%; 99:1 er). The 

enantiomeric ratio was determined by GC using a chiral G-TA column 30 m (80 °C, 1.0 

°C/min until 125 °C, 20 °C/min until 180 °C, 10 min at 180 °C, 0.9 bar H2); major 

enantiomer: τR = 44.18 min, minor enantiomer: τR = 43.42 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.18 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 3.01 (td, J = 5.5, 2.0 

Hz, 1H, CH2CHepo), 2.41 (ddd, J = 17.3, 8.3, 6.5 Hz, 1H, CHHC(=O)), 2.28 (ddd, J = 17.3, 

8.2, 6.8 Hz, 1H, CHHC(=O)), 1.62-1.52 (m, 4H, CH2), 1.48-1.42 (m, 2H, CH2), 1.34-1.23 (m, 
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13C NMR (125 MHz, CD2Cl2) δ 208.1 (C=O), 60.1 (CHepoC(=O)), 58.9 (CH2CHepo), 37.8 

(CH2C(=O)), 32.4 (CH2), 32.0 (CH2), 31.9 (CH2), 26.0 (CH2), 23.4 (CH2), 23.1 (CH2), 23.0 

(CH2), 14.3 (CH3), 14.2 (CH3). 

MS (EI-DE) m/z (%) 212 [M+] (6), 169 (1), 156 (3), 141 (58), 125 (4), 112 (7), 99 (98), 95 

(12), 82 (8), 71 (76), 55 (18), 43 (100), 29 (30). 

HRMS (ESI+) calcd for C13H24NaO2 [(M+Na)+] 235.1670, found 235.1668. 

 

(E)-(5S,6R)-5,6-Epoxy-2-methyl-4-undecanone ((5S,6R)-93n): Epoxide (5S,6R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The 

reaction mixture was stirred for 48 h at 50 °C. Base treatment of 

the crude product was omitted. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93n as a colorless oil (161 mg, 812 μmol, 

81%; >99.5:0.5 er). The enantiomeric ratio was determined by GC using a chiral G-TA 

column 30 m (80 °C, 1.0 °C/min until 115 °C, 20 °C/min until 180 °C, 10 min at 180 °C, 0.9 

bar H2); major enantiomer: τR = 30.89 min, minor enantiomer: τR = 30.09 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.16 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 2.99 (td, J = 5.5, 1.9 

Hz, 1H, CH2CHepo), 2.31 (dd, J = 16.0, 6.0 Hz, 1H, CHHi-Pr), 2.15 (dd, J = 16.2, 7.1 Hz, 1H, 

CHHi-Pr), 2.11 (hept, J = 6.5 Hz, 1H, CHMe2), 1.64-1.55 (m, 2H, CH2CHepo), 1.48-1.42 (m, 

2H, CH2CH2CHepo), 1.34-1.30 (m, 4H, (CH2)2CH3), 0.92-0.88 (m, 9H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 207.7 (C=O), 60.2 (CHepoC(=O)), 58.7 (CH2CHepo), 46.7 

(CH2i-Pr), 32.4 (CH2), 32.0 (CH2), 26.0 (CH2), 24.6 (CHMe2), 23.1 (CH2), 22.9 (CH(CH3)2), 

22.8 (CH(CH3)2), 14.3 ((CH2)4CH3). 

MS (EI-DE) m/z (%) 198 [M+] (1), 183 (1), 155 (1), 141 (2), 127 (33), 113 (5), 95 (6), 85 

(75), 69 (5), 57 (100), 41 (30), 29 (18). 

HRMS (ESI+) calcd for C12H22NaO2 [(M+Na)+] 221.1513, found 221.1512. 

 

(E)-(4S,5R)-4,5-Epoxy-2-Methyl-3-hexanone ((4S,5R)-93o): Epoxide (4S,5R)-93o was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 2-7% Et2O in pentane) provided the title compound as a colorless liquid 

(77 mg, 604 μmol, 60% (reduced yield due to the high volatility of 93o); 96.5:3.5 er). THF (5 

mL) was used as solvent for the base treatment with aqueous 1N NaOH. The enantiomeric 
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13C NMR (125 MHz, CD2Cl2) δ 208.1 (C=O), 60.1 (CHepoC(=O)), 58.9 (CH2CHepo), 37.8 
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2H, CH2CH2CHepo), 1.34-1.30 (m, 4H, (CH2)2CH3), 0.92-0.88 (m, 9H, CH3). 
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13C NMR (125 MHz, CD2Cl2) δ 208.1 (C=O), 60.1 (CHepoC(=O)), 58.9 (CH2CHepo), 37.8 

(CH2C(=O)), 32.4 (CH2), 32.0 (CH2), 31.9 (CH2), 26.0 (CH2), 23.4 (CH2), 23.1 (CH2), 23.0 

(CH2), 14.3 (CH3), 14.2 (CH3). 

MS (EI-DE) m/z (%) 212 [M+] (6), 169 (1), 156 (3), 141 (58), 125 (4), 112 (7), 99 (98), 95 

(12), 82 (8), 71 (76), 55 (18), 43 (100), 29 (30). 
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prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The 

reaction mixture was stirred for 48 h at 50 °C. Base treatment of 
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(CH2i-Pr), 32.4 (CH2), 32.0 (CH2), 26.0 (CH2), 24.6 (CHMe2), 23.1 (CH2), 22.9 (CH(CH3)2), 

22.8 (CH(CH3)2), 14.3 ((CH2)4CH3). 

MS (EI-DE) m/z (%) 198 [M+] (1), 183 (1), 155 (1), 141 (2), 127 (33), 113 (5), 95 (6), 85 

(75), 69 (5), 57 (100), 41 (30), 29 (18). 

HRMS (ESI+) calcd for C12H22NaO2 [(M+Na)+] 221.1513, found 221.1512. 

 

(E)-(4S,5R)-4,5-Epoxy-2-Methyl-3-hexanone ((4S,5R)-93o): Epoxide (4S,5R)-93o was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 2-7% Et2O in pentane) provided the title compound as a colorless liquid 

(77 mg, 604 μmol, 60% (reduced yield due to the high volatility of 93o); 96.5:3.5 er). THF (5 

mL) was used as solvent for the base treatment with aqueous 1N NaOH. The enantiomeric 
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13C NMR (125 MHz, CD2Cl2) δ 208.1 (C=O), 60.1 (CHepoC(=O)), 58.9 (CH2CHepo), 37.8 

(CH2C(=O)), 32.4 (CH2), 32.0 (CH2), 31.9 (CH2), 26.0 (CH2), 23.4 (CH2), 23.1 (CH2), 23.0 

(CH2), 14.3 (CH3), 14.2 (CH3). 

MS (EI-DE) m/z (%) 212 [M+] (6), 169 (1), 156 (3), 141 (58), 125 (4), 112 (7), 99 (98), 95 

(12), 82 (8), 71 (76), 55 (18), 43 (100), 29 (30). 

HRMS (ESI+) calcd for C13H24NaO2 [(M+Na)+] 235.1670, found 235.1668. 

 

(E)-(5S,6R)-5,6-Epoxy-2-methyl-4-undecanone ((5S,6R)-93n): Epoxide (5S,6R)-93e was 

prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The 

reaction mixture was stirred for 48 h at 50 °C. Base treatment of 

the crude product was omitted. Purification by flash column chromatography (silica gel, 1-

20% Et2O in pentane) provided the title compound 93n as a colorless oil (161 mg, 812 μmol, 

81%; >99.5:0.5 er). The enantiomeric ratio was determined by GC using a chiral G-TA 

column 30 m (80 °C, 1.0 °C/min until 115 °C, 20 °C/min until 180 °C, 10 min at 180 °C, 0.9 

bar H2); major enantiomer: τR = 30.89 min, minor enantiomer: τR = 30.09 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.16 (d, J = 2.0 Hz, 1H, CHepoC(=O)), 2.99 (td, J = 5.5, 1.9 
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(CH2i-Pr), 32.4 (CH2), 32.0 (CH2), 26.0 (CH2), 24.6 (CHMe2), 23.1 (CH2), 22.9 (CH(CH3)2), 

22.8 (CH(CH3)2), 14.3 ((CH2)4CH3). 

MS (EI-DE) m/z (%) 198 [M+] (1), 183 (1), 155 (1), 141 (2), 127 (33), 113 (5), 95 (6), 85 

(75), 69 (5), 57 (100), 41 (30), 29 (18). 

HRMS (ESI+) calcd for C12H22NaO2 [(M+Na)+] 221.1513, found 221.1512. 
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prepared according to the general procedure. 20 mol% of catalyst 

[13 • 2 TFA] was used under otherwise identical conditions. The reaction 

mixture was stirred for 48 h at 50 °C. Purification by flash column chromato-

graphy (silica gel, 2-7% Et2O in pentane) provided the title compound as a colorless liquid 

(77 mg, 604 μmol, 60% (reduced yield due to the high volatility of 93o); 96.5:3.5 er). THF (5 

mL) was used as solvent for the base treatment with aqueous 1N NaOH. The enantiomeric 
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ratio was determined by GC using a chiral Lipodex G column 25 m (50 °C, 1.2 °C/min until 

110 °C, 18 °C/min until 230 °C, 5 min at 230 °C, 0.5 bar H2); major enantiomer: τR = 8.24 

min, minor enantiomer: τR = 8.76 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.25 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.03 (dq, J = 5.1, 2.0 

Hz, 1H, MeCepoH), 2.70 (hept, J = 6.9 Hz, 1H, CHMe2), 1.38 (d, J = 5.0 Hz, 3H, CH3CepoH), 

1.09 (d, J = 7.3 Hz, 3H, CH(CH3)2), 1.06 (d, J = 6.9 Hz, 3H, CH(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 210.5 (C=O), 59.5 (CepoHC(=O)), 55.0 (MeCepoH), 36.7 

(CHMe2), 18.3 (CH3CepoH), 17.7 (CH(CH3)2), 17.4 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (1), 113 (10), 85 (16), 83 (2), 71 (41), 69 (4), 58 (21), 55 

(6), 45 (5), 43 (100), 41 (31), 39 (10), 29 (26). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

7.3.4 Hydroperoxidation of 4,8-Dimethylnona-3,7-dien-2-one (100) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was adapted to β,β-disubstituted enone 100 by 

using 20 mol% catalyst [13 • 2 TFA] and 3 equiv. of hydrogen peroxide (50 wt%) and the 

reaction temperature was increased to 70 °C. 

 

 

 

3,5-Dimethyl-5-(4-methylpent-3-enyl)-1,2-dioxolan-3-ol (112) 

The title compound was isolated after 48 h. Purification by flash 

column chromatography (silica gel; 5-10% Et2O in pentane) as a 

colorless oil (56 mg, 280 μmol, 56%; 78:22 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 112 into the corresponding epoxide 

111 (1:1 E/Z). The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 

30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 320 °C, 0.4 bar H2); 

(E)-111: major enantiomer: τR = 81.04 min, minor enantiomer: τR = 80.47 min; (Z)-111: 

major enantiomer: τR = 71.83 min, minor enantiomer: τR = 73.16 min. Characterized as a 

mixture of hemiketal epimers. 
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ratio was determined by GC using a chiral Lipodex G column 25 m (50 °C, 1.2 °C/min until 

110 °C, 18 °C/min until 230 °C, 5 min at 230 °C, 0.5 bar H2); major enantiomer: τR = 8.24 

min, minor enantiomer: τR = 8.76 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.25 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.03 (dq, J = 5.1, 2.0 

Hz, 1H, MeCepoH), 2.70 (hept, J = 6.9 Hz, 1H, CHMe2), 1.38 (d, J = 5.0 Hz, 3H, CH3CepoH), 

1.09 (d, J = 7.3 Hz, 3H, CH(CH3)2), 1.06 (d, J = 6.9 Hz, 3H, CH(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 210.5 (C=O), 59.5 (CepoHC(=O)), 55.0 (MeCepoH), 36.7 

(CHMe2), 18.3 (CH3CepoH), 17.7 (CH(CH3)2), 17.4 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (1), 113 (10), 85 (16), 83 (2), 71 (41), 69 (4), 58 (21), 55 

(6), 45 (5), 43 (100), 41 (31), 39 (10), 29 (26). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

7.3.4 Hydroperoxidation of 4,8-Dimethylnona-3,7-dien-2-one (100) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was adapted to β,β-disubstituted enone 100 by 

using 20 mol% catalyst [13 • 2 TFA] and 3 equiv. of hydrogen peroxide (50 wt%) and the 

reaction temperature was increased to 70 °C. 
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column chromatography (silica gel; 5-10% Et2O in pentane) as a 

colorless oil (56 mg, 280 μmol, 56%; 78:22 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 112 into the corresponding epoxide 
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30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 320 °C, 0.4 bar H2); 

(E)-111: major enantiomer: τR = 81.04 min, minor enantiomer: τR = 80.47 min; (Z)-111: 

major enantiomer: τR = 71.83 min, minor enantiomer: τR = 73.16 min. Characterized as a 

mixture of hemiketal epimers. 
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ratio was determined by GC using a chiral Lipodex G column 25 m (50 °C, 1.2 °C/min until 

110 °C, 18 °C/min until 230 °C, 5 min at 230 °C, 0.5 bar H2); major enantiomer: τR = 8.24 

min, minor enantiomer: τR = 8.76 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.25 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.03 (dq, J = 5.1, 2.0 

Hz, 1H, MeCepoH), 2.70 (hept, J = 6.9 Hz, 1H, CHMe2), 1.38 (d, J = 5.0 Hz, 3H, CH3CepoH), 

1.09 (d, J = 7.3 Hz, 3H, CH(CH3)2), 1.06 (d, J = 6.9 Hz, 3H, CH(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 210.5 (C=O), 59.5 (CepoHC(=O)), 55.0 (MeCepoH), 36.7 

(CHMe2), 18.3 (CH3CepoH), 17.7 (CH(CH3)2), 17.4 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (1), 113 (10), 85 (16), 83 (2), 71 (41), 69 (4), 58 (21), 55 

(6), 45 (5), 43 (100), 41 (31), 39 (10), 29 (26). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

7.3.4 Hydroperoxidation of 4,8-Dimethylnona-3,7-dien-2-one (100) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was adapted to β,β-disubstituted enone 100 by 

using 20 mol% catalyst [13 • 2 TFA] and 3 equiv. of hydrogen peroxide (50 wt%) and the 

reaction temperature was increased to 70 °C. 

 

 

 

3,5-Dimethyl-5-(4-methylpent-3-enyl)-1,2-dioxolan-3-ol (112) 

The title compound was isolated after 48 h. Purification by flash 

column chromatography (silica gel; 5-10% Et2O in pentane) as a 

colorless oil (56 mg, 280 μmol, 56%; 78:22 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 112 into the corresponding epoxide 

111 (1:1 E/Z). The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 

30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 320 °C, 0.4 bar H2); 

(E)-111: major enantiomer: τR = 81.04 min, minor enantiomer: τR = 80.47 min; (Z)-111: 

major enantiomer: τR = 71.83 min, minor enantiomer: τR = 73.16 min. Characterized as a 

mixture of hemiketal epimers. 
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ratio was determined by GC using a chiral Lipodex G column 25 m (50 °C, 1.2 °C/min until 

110 °C, 18 °C/min until 230 °C, 5 min at 230 °C, 0.5 bar H2); major enantiomer: τR = 8.24 

min, minor enantiomer: τR = 8.76 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.25 (d, J = 1.9 Hz, 1H, CepoHC(=O)), 3.03 (dq, J = 5.1, 2.0 

Hz, 1H, MeCepoH), 2.70 (hept, J = 6.9 Hz, 1H, CHMe2), 1.38 (d, J = 5.0 Hz, 3H, CH3CepoH), 

1.09 (d, J = 7.3 Hz, 3H, CH(CH3)2), 1.06 (d, J = 6.9 Hz, 3H, CH(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 210.5 (C=O), 59.5 (CepoHC(=O)), 55.0 (MeCepoH), 36.7 

(CHMe2), 18.3 (CH3CepoH), 17.7 (CH(CH3)2), 17.4 (CH(CH3)2). 

GC-MS (GC-EI) m/z (%) 128 [M+] (1), 113 (10), 85 (16), 83 (2), 71 (41), 69 (4), 58 (21), 55 

(6), 45 (5), 43 (100), 41 (31), 39 (10), 29 (26). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

7.3.4 Hydroperoxidation of 4,8-Dimethylnona-3,7-dien-2-one (100) 

The general procedure[193] described in Section 7.3.1.1 for the catalytic asymmetric hydro-

peroxidation of α,β-unsaturated ketones 92 was adapted to β,β-disubstituted enone 100 by 

using 20 mol% catalyst [13 • 2 TFA] and 3 equiv. of hydrogen peroxide (50 wt%) and the 

reaction temperature was increased to 70 °C. 

 

 

 

3,5-Dimethyl-5-(4-methylpent-3-enyl)-1,2-dioxolan-3-ol (112) 

The title compound was isolated after 48 h. Purification by flash 

column chromatography (silica gel; 5-10% Et2O in pentane) as a 

colorless oil (56 mg, 280 μmol, 56%; 78:22 er). The enantiomeric 

ratio was determined after converting peroxyhemiketal 112 into the corresponding epoxide 

111 (1:1 E/Z). The enantiomers were analyzed by GC using a chiral BGB-176/SE-52 column 

30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 min at 320 °C, 0.4 bar H2); 

(E)-111: major enantiomer: τR = 81.04 min, minor enantiomer: τR = 80.47 min; (Z)-111: 

major enantiomer: τR = 71.83 min, minor enantiomer: τR = 73.16 min. Characterized as a 

mixture of hemiketal epimers. 
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1H NMR (500 MHz, CDCl3) δ 5.10-5.06 (m, 2H, =CHCH2), 2.93 (br s overlapped, 1H, OH), 

2.90 (br s overlapped, 1H, OH), 2.53 (d, 1H, J = 12.8 Hz, CHHcycl.), 2.44 (s, 2H, CH2, cycl.), 

2.31 (d, 1H, J = 12.7 Hz, CHHcycl.), 2.09-1.94 (m, 4H, =CHCH2), 1.73 (ddd, 1H, J = 13.8, 

11.4, 5.3 Hz, =CHCH2CHH), 1.68-1.64 (m overlapped, 2H, =CHCH2CH2), 1.66 (s 

overlapped, 6H, CqolCH3), 1.59 (s, 6H, CqolCH3), 1.54-1.48 (m overlapped, 1H, 

=CHCH2CHH), 1.53 (s overlapped, 3H, CqOHCH3), 1.51 (s overlapped, 3H, CqOHCH3), 1.34 

(s, 3H, CqalCH3), 1.33 (s, 3H, CqalCH3). 
13C NMR (125 MHz, CDCl3) δ 132.3 (Cqol), 131.9 (Cqol), 123.8 (CHol), 123.5 (CHol), 105.9 

(CqOH), 105.7 (CqOH), 86.3 (Cqal), 85.9 (Cqal), 57.7 (CH2, cycl.), 57.1 (CH2, cycl.), 39.8 

(CHolCH2CH2), 37.9 (CHolCH2CH2), 25.7 (2C, Cqol(CH3)2), 25.2 (CH3Cqal), 23.5 (CHolCH2), 

23.2 (CH3CqOH), 23.1 (CH3CqOH), 23.0 (CHolCH2), 22.3 (CH3Cqal), 17.7 (Cqol(CH3)2), 17.6 

(Cqol(CH3)2). 

MS (EI-DE) m/z (%) 185 (1), 167 (1), 139 (1), 123 (2), 109 (5), 97 (3), 82 (16), 69 (32), 55 

(22), 43 (100), 29 (9). 

HRMS (ESI+) calcd for C11H20NaO3 [(M+Na)+] 223.1307, found 223.1305. 

 

3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (111): Epoxy ketone 111 was obtained as a colorless 

oil (9.1 mg, 50 μmol, 10% (88:12 dr(trans/cis); 95.5:4.5 er(trans), 

59.5:40.5 er(cis)). Purification by flash column chromatography (silica 

gel; 1-10% Et2O in pentane) provided pure samples of trans- and cis-

isomers of epoxy ketone 111. The enantiomeric ratio was determined by GC using a chiral 

BGB-176/SE-52 column 30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 

min at 320 °C, 0.4 bar H2); (E)-111: major enantiomer: τR = 81.25 min, minor enantiomer: τR 

= 80.71 min; (Z)-111: major enantiomer: τR = 73.29 min, minor enantiomer: τR = 72.18 min. 

The analytical data were identical in all respects to those previously reported.[172, 194] 

trans-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (trans-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.12 (t, J = 7.1 Hz, 1H, =CHCH2), 

3.40 (s, 1H, CepoH), 2.17 (s, 3H, CH3C(=O)), 2.12 (app. q, 2H, 

=CHCH2), 1.77 (dd, J = 14.2, 7.1 Hz, 1H, CHHCqepo), 1.70 (s, 3H, CH3Cqol), 1.62 (s, 3H, 

CH3Cqol), 1.56-1.49 (m, 1H, CHHCqepo), 1.20 (s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.1 (C=O), 132.8 (Cqol), 123.4 (CHol), 65.2 (CepoH), 63.4 

(Cqepo), 38.5 (CHolCH2), 28.2 (CH3C(=O)), 25.8 (CH3), 24.1 (CH2Cqepo), 17.7 (CH3), 16.1 

(CH3). 
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1H NMR (500 MHz, CDCl3) δ 5.10-5.06 (m, 2H, =CHCH2), 2.93 (br s overlapped, 1H, OH), 

2.90 (br s overlapped, 1H, OH), 2.53 (d, 1H, J = 12.8 Hz, CHHcycl.), 2.44 (s, 2H, CH2, cycl.), 

2.31 (d, 1H, J = 12.7 Hz, CHHcycl.), 2.09-1.94 (m, 4H, =CHCH2), 1.73 (ddd, 1H, J = 13.8, 

11.4, 5.3 Hz, =CHCH2CHH), 1.68-1.64 (m overlapped, 2H, =CHCH2CH2), 1.66 (s 

overlapped, 6H, CqolCH3), 1.59 (s, 6H, CqolCH3), 1.54-1.48 (m overlapped, 1H, 

=CHCH2CHH), 1.53 (s overlapped, 3H, CqOHCH3), 1.51 (s overlapped, 3H, CqOHCH3), 1.34 

(s, 3H, CqalCH3), 1.33 (s, 3H, CqalCH3). 
13C NMR (125 MHz, CDCl3) δ 132.3 (Cqol), 131.9 (Cqol), 123.8 (CHol), 123.5 (CHol), 105.9 

(CqOH), 105.7 (CqOH), 86.3 (Cqal), 85.9 (Cqal), 57.7 (CH2, cycl.), 57.1 (CH2, cycl.), 39.8 

(CHolCH2CH2), 37.9 (CHolCH2CH2), 25.7 (2C, Cqol(CH3)2), 25.2 (CH3Cqal), 23.5 (CHolCH2), 

23.2 (CH3CqOH), 23.1 (CH3CqOH), 23.0 (CHolCH2), 22.3 (CH3Cqal), 17.7 (Cqol(CH3)2), 17.6 

(Cqol(CH3)2). 

MS (EI-DE) m/z (%) 185 (1), 167 (1), 139 (1), 123 (2), 109 (5), 97 (3), 82 (16), 69 (32), 55 

(22), 43 (100), 29 (9). 

HRMS (ESI+) calcd for C11H20NaO3 [(M+Na)+] 223.1307, found 223.1305. 

 

3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (111): Epoxy ketone 111 was obtained as a colorless 

oil (9.1 mg, 50 μmol, 10% (88:12 dr(trans/cis); 95.5:4.5 er(trans), 

59.5:40.5 er(cis)). Purification by flash column chromatography (silica 

gel; 1-10% Et2O in pentane) provided pure samples of trans- and cis-

isomers of epoxy ketone 111. The enantiomeric ratio was determined by GC using a chiral 

BGB-176/SE-52 column 30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 

min at 320 °C, 0.4 bar H2); (E)-111: major enantiomer: τR = 81.25 min, minor enantiomer: τR 

= 80.71 min; (Z)-111: major enantiomer: τR = 73.29 min, minor enantiomer: τR = 72.18 min. 

The analytical data were identical in all respects to those previously reported.[172, 194] 

trans-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (trans-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.12 (t, J = 7.1 Hz, 1H, =CHCH2), 

3.40 (s, 1H, CepoH), 2.17 (s, 3H, CH3C(=O)), 2.12 (app. q, 2H, 

=CHCH2), 1.77 (dd, J = 14.2, 7.1 Hz, 1H, CHHCqepo), 1.70 (s, 3H, CH3Cqol), 1.62 (s, 3H, 

CH3Cqol), 1.56-1.49 (m, 1H, CHHCqepo), 1.20 (s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.1 (C=O), 132.8 (Cqol), 123.4 (CHol), 65.2 (CepoH), 63.4 

(Cqepo), 38.5 (CHolCH2), 28.2 (CH3C(=O)), 25.8 (CH3), 24.1 (CH2Cqepo), 17.7 (CH3), 16.1 

(CH3). 
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1H NMR (500 MHz, CDCl3) δ 5.10-5.06 (m, 2H, =CHCH2), 2.93 (br s overlapped, 1H, OH), 

2.90 (br s overlapped, 1H, OH), 2.53 (d, 1H, J = 12.8 Hz, CHHcycl.), 2.44 (s, 2H, CH2, cycl.), 

2.31 (d, 1H, J = 12.7 Hz, CHHcycl.), 2.09-1.94 (m, 4H, =CHCH2), 1.73 (ddd, 1H, J = 13.8, 

11.4, 5.3 Hz, =CHCH2CHH), 1.68-1.64 (m overlapped, 2H, =CHCH2CH2), 1.66 (s 

overlapped, 6H, CqolCH3), 1.59 (s, 6H, CqolCH3), 1.54-1.48 (m overlapped, 1H, 

=CHCH2CHH), 1.53 (s overlapped, 3H, CqOHCH3), 1.51 (s overlapped, 3H, CqOHCH3), 1.34 

(s, 3H, CqalCH3), 1.33 (s, 3H, CqalCH3). 
13C NMR (125 MHz, CDCl3) δ 132.3 (Cqol), 131.9 (Cqol), 123.8 (CHol), 123.5 (CHol), 105.9 

(CqOH), 105.7 (CqOH), 86.3 (Cqal), 85.9 (Cqal), 57.7 (CH2, cycl.), 57.1 (CH2, cycl.), 39.8 

(CHolCH2CH2), 37.9 (CHolCH2CH2), 25.7 (2C, Cqol(CH3)2), 25.2 (CH3Cqal), 23.5 (CHolCH2), 

23.2 (CH3CqOH), 23.1 (CH3CqOH), 23.0 (CHolCH2), 22.3 (CH3Cqal), 17.7 (Cqol(CH3)2), 17.6 

(Cqol(CH3)2). 

MS (EI-DE) m/z (%) 185 (1), 167 (1), 139 (1), 123 (2), 109 (5), 97 (3), 82 (16), 69 (32), 55 

(22), 43 (100), 29 (9). 

HRMS (ESI+) calcd for C11H20NaO3 [(M+Na)+] 223.1307, found 223.1305. 

 

3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (111): Epoxy ketone 111 was obtained as a colorless 

oil (9.1 mg, 50 μmol, 10% (88:12 dr(trans/cis); 95.5:4.5 er(trans), 

59.5:40.5 er(cis)). Purification by flash column chromatography (silica 

gel; 1-10% Et2O in pentane) provided pure samples of trans- and cis-

isomers of epoxy ketone 111. The enantiomeric ratio was determined by GC using a chiral 

BGB-176/SE-52 column 30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 

min at 320 °C, 0.4 bar H2); (E)-111: major enantiomer: τR = 81.25 min, minor enantiomer: τR 

= 80.71 min; (Z)-111: major enantiomer: τR = 73.29 min, minor enantiomer: τR = 72.18 min. 

The analytical data were identical in all respects to those previously reported.[172, 194] 

trans-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (trans-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.12 (t, J = 7.1 Hz, 1H, =CHCH2), 

3.40 (s, 1H, CepoH), 2.17 (s, 3H, CH3C(=O)), 2.12 (app. q, 2H, 

=CHCH2), 1.77 (dd, J = 14.2, 7.1 Hz, 1H, CHHCqepo), 1.70 (s, 3H, CH3Cqol), 1.62 (s, 3H, 

CH3Cqol), 1.56-1.49 (m, 1H, CHHCqepo), 1.20 (s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.1 (C=O), 132.8 (Cqol), 123.4 (CHol), 65.2 (CepoH), 63.4 

(Cqepo), 38.5 (CHolCH2), 28.2 (CH3C(=O)), 25.8 (CH3), 24.1 (CH2Cqepo), 17.7 (CH3), 16.1 

(CH3). 
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1H NMR (500 MHz, CDCl3) δ 5.10-5.06 (m, 2H, =CHCH2), 2.93 (br s overlapped, 1H, OH), 

2.90 (br s overlapped, 1H, OH), 2.53 (d, 1H, J = 12.8 Hz, CHHcycl.), 2.44 (s, 2H, CH2, cycl.), 

2.31 (d, 1H, J = 12.7 Hz, CHHcycl.), 2.09-1.94 (m, 4H, =CHCH2), 1.73 (ddd, 1H, J = 13.8, 

11.4, 5.3 Hz, =CHCH2CHH), 1.68-1.64 (m overlapped, 2H, =CHCH2CH2), 1.66 (s 

overlapped, 6H, CqolCH3), 1.59 (s, 6H, CqolCH3), 1.54-1.48 (m overlapped, 1H, 

=CHCH2CHH), 1.53 (s overlapped, 3H, CqOHCH3), 1.51 (s overlapped, 3H, CqOHCH3), 1.34 

(s, 3H, CqalCH3), 1.33 (s, 3H, CqalCH3). 
13C NMR (125 MHz, CDCl3) δ 132.3 (Cqol), 131.9 (Cqol), 123.8 (CHol), 123.5 (CHol), 105.9 

(CqOH), 105.7 (CqOH), 86.3 (Cqal), 85.9 (Cqal), 57.7 (CH2, cycl.), 57.1 (CH2, cycl.), 39.8 

(CHolCH2CH2), 37.9 (CHolCH2CH2), 25.7 (2C, Cqol(CH3)2), 25.2 (CH3Cqal), 23.5 (CHolCH2), 

23.2 (CH3CqOH), 23.1 (CH3CqOH), 23.0 (CHolCH2), 22.3 (CH3Cqal), 17.7 (Cqol(CH3)2), 17.6 

(Cqol(CH3)2). 

MS (EI-DE) m/z (%) 185 (1), 167 (1), 139 (1), 123 (2), 109 (5), 97 (3), 82 (16), 69 (32), 55 

(22), 43 (100), 29 (9). 

HRMS (ESI+) calcd for C11H20NaO3 [(M+Na)+] 223.1307, found 223.1305. 

 

3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (111): Epoxy ketone 111 was obtained as a colorless 

oil (9.1 mg, 50 μmol, 10% (88:12 dr(trans/cis); 95.5:4.5 er(trans), 

59.5:40.5 er(cis)). Purification by flash column chromatography (silica 

gel; 1-10% Et2O in pentane) provided pure samples of trans- and cis-

isomers of epoxy ketone 111. The enantiomeric ratio was determined by GC using a chiral 

BGB-176/SE-52 column 30 m (60 °C, 0.5 °C/min until 105 °C, 20 °C/min until 220 °C, 10 

min at 320 °C, 0.4 bar H2); (E)-111: major enantiomer: τR = 81.25 min, minor enantiomer: τR 

= 80.71 min; (Z)-111: major enantiomer: τR = 73.29 min, minor enantiomer: τR = 72.18 min. 

The analytical data were identical in all respects to those previously reported.[172, 194] 

trans-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (trans-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.12 (t, J = 7.1 Hz, 1H, =CHCH2), 

3.40 (s, 1H, CepoH), 2.17 (s, 3H, CH3C(=O)), 2.12 (app. q, 2H, 

=CHCH2), 1.77 (dd, J = 14.2, 7.1 Hz, 1H, CHHCqepo), 1.70 (s, 3H, CH3Cqol), 1.62 (s, 3H, 

CH3Cqol), 1.56-1.49 (m, 1H, CHHCqepo), 1.20 (s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.1 (C=O), 132.8 (Cqol), 123.4 (CHol), 65.2 (CepoH), 63.4 

(Cqepo), 38.5 (CHolCH2), 28.2 (CH3C(=O)), 25.8 (CH3), 24.1 (CH2Cqepo), 17.7 (CH3), 16.1 

(CH3). 
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MS (EI-DE) m/z (%) 182 [M+] (1), 164 (2), 149 (4), 139 (3), 121 (7), 109 (43), 99 (23), 82 

(45), 69 (56), 67 (24), 55 (18), 43 (100), 27 (10). 

HRMS (EI-FE) calcd for C11H18O2 [M
+] 182.1307, found 182.1307. 

cis-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (cis-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.02 (t, J = 7.2 Hz, 1H, =CHCH2), 3.37 

(s, 1H, CepoH), 2.19 (s, 3H, CH3), 2.14-1.98 (m, 2H, =CHCH2), 1.66 (s, 

3H, CH3Cqol), 1.59 (s, 3H, CH3Cqol), 1.57-1.42 (m, 2H, CH2Cqepo), 1.40 

(s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.0 (C=O), 132.8 (Cqol), 123.3 (CHol), 66.0 (CepoH), 64.0 

(Cqepo), 32.5 (CHolCH2), 28.5 (CH3C(=O)), 25.8 (CH3), 24.4 (CH2Cqepo), 22.2 (CH3), 17.6 

(CH3). 

 

7.3.5 Hydroperoxidation of Cycloheptenone (46s) and Cyclooctenone (46v) 

The reactions of 2-cycloheptenone (46s) and 2-cyclooctenone (46v) were performed 

according to the general procedure[193] described in Section 7.3.1.1 for the catalytic 

asymmetric hydroperoxidation of acyclic α,β-unsaturated ketones 92. 

 

7,8-Dioxabicyclo[4.2.1]nonan-1-ol/ 3-hydroperoxycycloheptanone (116): The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 

20-60% Et2O in pentane) provided peroxide 116 as a clear oil 

(79 mg, 551 μmol, 55%; 95:5 er). The enantiomeric ratio was 

determined after converting peroxide 116 into 2,3-epoxycycloheptanone (48s). The 

enantiomers were analyzed by GC using a chiral Hydrodex-β-TBDAc column 25 m (80 °C, 

1.5 °C/min until 135 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 24.31 min, minor enantiomer: τR = 28.24 min. 7,8-Dioxabicyclo[4.2.1]no-

nan-1-ol (116a) exists in equilibrium with 3-hydroperoxycycloheptanone (116b): 80:20 (in 

THF). 
1H NMR (500 MHz, THF-d8) 7,8-dioxabicyclo[4.2.1]nonan-1-ol (116a): δ 5.43 (br s, 1H, 

OH), 4.42-4.40 (m, 1H, CH), 2.61 (d, J = 12.6 Hz, 1H, CHCHHCq), 2.50 (dd, J = 12.0, 6.7 

Hz, 1H, CHCHHCq), 1.93-1.83 (m, 2H, CH2), 1.77-1.74 (m, 3H, CH2), 1.61-1.53 (m, 2H, 

CH2), 1.43-1.37 (m, 1H, CHHCH); 3-hydroperoxycycloheptanone (116b): δ 9.39 (br s, 1H, 

OOH), 4.09-4.04 (m, 1H, CH), 2.77 (dd, J = 14.7, 3.0 Hz, 1H, CHCHHC(=O)), 2.68 (dd, J = 
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MS (EI-DE) m/z (%) 182 [M+] (1), 164 (2), 149 (4), 139 (3), 121 (7), 109 (43), 99 (23), 82 

(45), 69 (56), 67 (24), 55 (18), 43 (100), 27 (10). 

HRMS (EI-FE) calcd for C11H18O2 [M
+] 182.1307, found 182.1307. 

cis-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (cis-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.02 (t, J = 7.2 Hz, 1H, =CHCH2), 3.37 

(s, 1H, CepoH), 2.19 (s, 3H, CH3), 2.14-1.98 (m, 2H, =CHCH2), 1.66 (s, 

3H, CH3Cqol), 1.59 (s, 3H, CH3Cqol), 1.57-1.42 (m, 2H, CH2Cqepo), 1.40 

(s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.0 (C=O), 132.8 (Cqol), 123.3 (CHol), 66.0 (CepoH), 64.0 

(Cqepo), 32.5 (CHolCH2), 28.5 (CH3C(=O)), 25.8 (CH3), 24.4 (CH2Cqepo), 22.2 (CH3), 17.6 

(CH3). 

 

7.3.5 Hydroperoxidation of Cycloheptenone (46s) and Cyclooctenone (46v) 

The reactions of 2-cycloheptenone (46s) and 2-cyclooctenone (46v) were performed 

according to the general procedure[193] described in Section 7.3.1.1 for the catalytic 

asymmetric hydroperoxidation of acyclic α,β-unsaturated ketones 92. 

 

7,8-Dioxabicyclo[4.2.1]nonan-1-ol/ 3-hydroperoxycycloheptanone (116): The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 

20-60% Et2O in pentane) provided peroxide 116 as a clear oil 

(79 mg, 551 μmol, 55%; 95:5 er). The enantiomeric ratio was 

determined after converting peroxide 116 into 2,3-epoxycycloheptanone (48s). The 

enantiomers were analyzed by GC using a chiral Hydrodex-β-TBDAc column 25 m (80 °C, 

1.5 °C/min until 135 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 24.31 min, minor enantiomer: τR = 28.24 min. 7,8-Dioxabicyclo[4.2.1]no-

nan-1-ol (116a) exists in equilibrium with 3-hydroperoxycycloheptanone (116b): 80:20 (in 

THF). 
1H NMR (500 MHz, THF-d8) 7,8-dioxabicyclo[4.2.1]nonan-1-ol (116a): δ 5.43 (br s, 1H, 

OH), 4.42-4.40 (m, 1H, CH), 2.61 (d, J = 12.6 Hz, 1H, CHCHHCq), 2.50 (dd, J = 12.0, 6.7 

Hz, 1H, CHCHHCq), 1.93-1.83 (m, 2H, CH2), 1.77-1.74 (m, 3H, CH2), 1.61-1.53 (m, 2H, 

CH2), 1.43-1.37 (m, 1H, CHHCH); 3-hydroperoxycycloheptanone (116b): δ 9.39 (br s, 1H, 

OOH), 4.09-4.04 (m, 1H, CH), 2.77 (dd, J = 14.7, 3.0 Hz, 1H, CHCHHC(=O)), 2.68 (dd, J = 
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MS (EI-DE) m/z (%) 182 [M+] (1), 164 (2), 149 (4), 139 (3), 121 (7), 109 (43), 99 (23), 82 

(45), 69 (56), 67 (24), 55 (18), 43 (100), 27 (10). 

HRMS (EI-FE) calcd for C11H18O2 [M
+] 182.1307, found 182.1307. 

cis-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (cis-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.02 (t, J = 7.2 Hz, 1H, =CHCH2), 3.37 

(s, 1H, CepoH), 2.19 (s, 3H, CH3), 2.14-1.98 (m, 2H, =CHCH2), 1.66 (s, 

3H, CH3Cqol), 1.59 (s, 3H, CH3Cqol), 1.57-1.42 (m, 2H, CH2Cqepo), 1.40 

(s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.0 (C=O), 132.8 (Cqol), 123.3 (CHol), 66.0 (CepoH), 64.0 

(Cqepo), 32.5 (CHolCH2), 28.5 (CH3C(=O)), 25.8 (CH3), 24.4 (CH2Cqepo), 22.2 (CH3), 17.6 

(CH3). 

 

7.3.5 Hydroperoxidation of Cycloheptenone (46s) and Cyclooctenone (46v) 

The reactions of 2-cycloheptenone (46s) and 2-cyclooctenone (46v) were performed 

according to the general procedure[193] described in Section 7.3.1.1 for the catalytic 

asymmetric hydroperoxidation of acyclic α,β-unsaturated ketones 92. 

 

7,8-Dioxabicyclo[4.2.1]nonan-1-ol/ 3-hydroperoxycycloheptanone (116): The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 

20-60% Et2O in pentane) provided peroxide 116 as a clear oil 

(79 mg, 551 μmol, 55%; 95:5 er). The enantiomeric ratio was 

determined after converting peroxide 116 into 2,3-epoxycycloheptanone (48s). The 

enantiomers were analyzed by GC using a chiral Hydrodex-β-TBDAc column 25 m (80 °C, 

1.5 °C/min until 135 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 24.31 min, minor enantiomer: τR = 28.24 min. 7,8-Dioxabicyclo[4.2.1]no-

nan-1-ol (116a) exists in equilibrium with 3-hydroperoxycycloheptanone (116b): 80:20 (in 

THF). 
1H NMR (500 MHz, THF-d8) 7,8-dioxabicyclo[4.2.1]nonan-1-ol (116a): δ 5.43 (br s, 1H, 

OH), 4.42-4.40 (m, 1H, CH), 2.61 (d, J = 12.6 Hz, 1H, CHCHHCq), 2.50 (dd, J = 12.0, 6.7 

Hz, 1H, CHCHHCq), 1.93-1.83 (m, 2H, CH2), 1.77-1.74 (m, 3H, CH2), 1.61-1.53 (m, 2H, 

CH2), 1.43-1.37 (m, 1H, CHHCH); 3-hydroperoxycycloheptanone (116b): δ 9.39 (br s, 1H, 

OOH), 4.09-4.04 (m, 1H, CH), 2.77 (dd, J = 14.7, 3.0 Hz, 1H, CHCHHC(=O)), 2.68 (dd, J = 
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MS (EI-DE) m/z (%) 182 [M+] (1), 164 (2), 149 (4), 139 (3), 121 (7), 109 (43), 99 (23), 82 

(45), 69 (56), 67 (24), 55 (18), 43 (100), 27 (10). 

HRMS (EI-FE) calcd for C11H18O2 [M
+] 182.1307, found 182.1307. 

cis-3,4-Epoxy-4,8-dimethyl-7-nonen-2-one (cis-111) 
1H NMR (500 MHz, CD2Cl2) δ 5.02 (t, J = 7.2 Hz, 1H, =CHCH2), 3.37 

(s, 1H, CepoH), 2.19 (s, 3H, CH3), 2.14-1.98 (m, 2H, =CHCH2), 1.66 (s, 

3H, CH3Cqol), 1.59 (s, 3H, CH3Cqol), 1.57-1.42 (m, 2H, CH2Cqepo), 1.40 

(s, 3H, CH3Cqepo). 
13C NMR (125 MHz, CD2Cl2) δ 204.0 (C=O), 132.8 (Cqol), 123.3 (CHol), 66.0 (CepoH), 64.0 

(Cqepo), 32.5 (CHolCH2), 28.5 (CH3C(=O)), 25.8 (CH3), 24.4 (CH2Cqepo), 22.2 (CH3), 17.6 

(CH3). 

 

7.3.5 Hydroperoxidation of Cycloheptenone (46s) and Cyclooctenone (46v) 

The reactions of 2-cycloheptenone (46s) and 2-cyclooctenone (46v) were performed 

according to the general procedure[193] described in Section 7.3.1.1 for the catalytic 

asymmetric hydroperoxidation of acyclic α,β-unsaturated ketones 92. 

 

7,8-Dioxabicyclo[4.2.1]nonan-1-ol/ 3-hydroperoxycycloheptanone (116): The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the 

crude product by flash column chromatography (silica gel, 

20-60% Et2O in pentane) provided peroxide 116 as a clear oil 

(79 mg, 551 μmol, 55%; 95:5 er). The enantiomeric ratio was 

determined after converting peroxide 116 into 2,3-epoxycycloheptanone (48s). The 

enantiomers were analyzed by GC using a chiral Hydrodex-β-TBDAc column 25 m (80 °C, 

1.5 °C/min until 135 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major 

enantiomer: τR = 24.31 min, minor enantiomer: τR = 28.24 min. 7,8-Dioxabicyclo[4.2.1]no-

nan-1-ol (116a) exists in equilibrium with 3-hydroperoxycycloheptanone (116b): 80:20 (in 

THF). 
1H NMR (500 MHz, THF-d8) 7,8-dioxabicyclo[4.2.1]nonan-1-ol (116a): δ 5.43 (br s, 1H, 

OH), 4.42-4.40 (m, 1H, CH), 2.61 (d, J = 12.6 Hz, 1H, CHCHHCq), 2.50 (dd, J = 12.0, 6.7 

Hz, 1H, CHCHHCq), 1.93-1.83 (m, 2H, CH2), 1.77-1.74 (m, 3H, CH2), 1.61-1.53 (m, 2H, 

CH2), 1.43-1.37 (m, 1H, CHHCH); 3-hydroperoxycycloheptanone (116b): δ 9.39 (br s, 1H, 

OOH), 4.09-4.04 (m, 1H, CH), 2.77 (dd, J = 14.7, 3.0 Hz, 1H, CHCHHC(=O)), 2.68 (dd, J = 
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14.8, 8.8 Hz, 1H, CHCHHC(=O)), 2.42-2.31 (m, 2H, CH2CH2C(=O)), 1.93-1.83 (m, 2H, 

CH2), 1.77-1.74 (m, 4H, CH2). 
13C NMR (125 MHz, THF-d8) 7,8-dioxabicyclo[4.2.1]nonan-1-ol (116a): δ 108.1 (Cq), 81.3 

(CH), 48.9 (CHCH2Cq), 37.3 (CH2), 35.9 (CH2), 24.7 (CH2), 24.3 (CH2); 3-hydroperoxy-

cycloheptanone (116b): δ 209.3 (C=O), 81.0 (CH), 48.4 (CHCH2C(=O)), 45.1 

(CH2CH2C(=O)), 35.0 (CH2), 26.2 (CH2), 25.4 (CH2). 

MS (EI-DE) m/z (%) 144 [M+] (10), 126 (1), 111 (100), 97 (16), 83 (18), 69 (12), 55 (52), 41 

(37), 39 (15), 29 (23). 

HRMS (EI-FE) calcd for C7H12O3 [M
+] 144.0787, found 144.0786. 

 

3-Hydroperoxycyclooctanone/ 8,9-dioxabicyclo[5.2.1]decan-1-ol (117): The reaction 

mixture was stirred for 24 h at 32 °C. Purification of the crude 

product by flash column chromatography (silica gel, 5-35% 

Et2O in pentane) provided peroxide 117 as a clear oil (93 mg, 

571 μmol, 59%; 97:3 er). The enantiomeric ratio was 

determined after converting peroxide 117 into 2,3-epoxycyclooctanone (48v). The 

enantiomers were analyzed by GC using a chiral BGB-176/SE-52 30 m (80 °C, 2 °C/min until 

140 °C, 20 °C/min until 220 °C, 10 min at 220°C, 0.6 bar H2); major enantiomer: τR = 27.52 

min, minor enantiomer: τR = 25.41 min. 3-Hydroperoxycyclooctanone (117b) exists in 

equilibrium with 8,9-dioxabicyclo[5.2.1]decan-1-ol (117a): 70:30 (in THF). 
1H NMR (500 MHz, CD2Cl2) 3-Hydroperoxycyclooctanone (117b): δ 8.98 (br s, 1H, OOH), 

4.32-4.27 (m, 1H, CH), 2.91 (dd, J = 12.1, 3.6 Hz, 1H, CHCHHC(=O)), 2.87 (d, J = 11.7 Hz, 

1H, CHCHHC(=O)), 2.43-2.32 (m, 2H, CH2CH2C(=O)), 1.97-1.91 (m, 2H, CH2), 1.88-1.23 

(m, 6H, -(CH2)n-); 8,9-Dioxabicyclo[5.2.1]decan-1-ol (117a): δ 4.58-4.56 (m, 1H, CH), 3.02 

(br s, 1H, OH), 2.88-2.84 (m, 2H, CHCH2Cq), 2.19-2.13 (m, 1H, CH2), 1.98-1.28 (m, 8H, -

(CH2)n-), 0.88 (t, J = 7.6 Hz, 1H, CH2). 
13C NMR (125 MHz, CD2Cl2) 3-Hydroperoxycyclooctanone (117b): δ 213.9 (C=O), 82.8 

(CH), 44.0 (CHCH2C(=O)), 42.4 (CH2CH2C(=O)), 29.6 (CH2), 28.1 (CH2), 22.9 (CH2), 19.7 

(CH2); 8,9-Dioxabicyclo[5.2.1]decan-1-ol (117a): δ 105.5 (Cq), 80.1 (CH), 52.6 (CHCH2Cq), 

37.3 (CH2), 35.5 (CH2), 28.0 (CH2), 26.2 (CH2), 25.3 (CH2). 

MS (EI-DE) m/z (%) 158 [M+] (18), 141 (2), 125 (64), 107 (18), 97 (17), 83 (21), 69 (12), 55 

(100), 43 (56), 41 (44), 29 (21). 

HRMS (CI-FE, i-butane) calcd for C8H15O3 [(M+H)+] 159.1022, found 159.1021. 
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7.4 Synthetic Transformations of Optically Active Products 

7.4.1 One-Pot Synthesis of Aldol Products 

7.4.1.1 General Procedure[193] 

 

 
 
Catalyst salt [13 • 2 TCA] was prepared in situ by the addition of 9-amino(9-deoxy)epiquinine 

(13; 32.3 mg, 0.1 mmol, 10 mol%) to a solution of trichloroacetic acid (32.6 mg, 0.2 mmol, 

20 mol%) in dioxane (4 mL). Then, enone 92 (1.0 mmol, 1.0 equiv) was added, and 20 

minutes later, aqueous hydrogen peroxide (30 wt%, 304 μL, 3.0 mmol, 3 equiv). After 36-48 

h of stirring at 32°C, triethylphosphite (519 μL, 3.0 mmol, 3 equiv) was added dropwise at 

0 °C and the reaction mixture was stirred for 10 h at room temperature. Additional 

triethylphosphite (346 μL, 2 mmol, 2 equiv) was added and the reaction was further stirred 

until TLC analysis indicated complete reduction of the peroxyhemiketals (2 h). The reaction 

mixture was repeatedly extracted with Et2O (3×25 mL) and the combined organic phases were 

washed with brine, dried (Na2SO4), and filtered. Removal of the volatiles under reduced 

pressure furnished the crude product, which was subjected to flash column chromatography 

(silica gel, eluent: Et2O-pentane) to afford the corresponding pure aldol-type product 96. 

 

7.4.1.2 Scope of Optically Active Aldol Products 

(R)-4-Hydroxy-2-decanone ((R)-96a): Aldol product (R)-96a was prepared according to the 

general procedure. The reaction mixture was stirred for 36 h at 32 °C 

followed by in situ reduction with triethylphosphite. Purification of 

the crude product by flash column chromatography (silica gel, 10-

50% Et2O in pentane) provided the title compound as a colorless oil (102 mg, 592 μmol, 59%; 

97:3 er). The enantiomeric ratio was determined by GC using a chiral G-TA column 30 m 

(80 °C, 1.0 °C/min until 115 °C, 20 °C/min, until 180 °C, 10 min at 320 °C, 0.9 bar H2); 

major enantiomer: τR = 31.94 min, minor enantiomer: τR = 31.38 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.00-3.95 (m, 1H, CH(OH)), 2.81 (br s, 1H, OH), 2.61 (dd, J 

= 17.5, 2.7 Hz, 1H, C(=O)CHH), 2.48 (dd, J = 17.5, 9.3 Hz, 1H, C(=O)CHH), 2.14 (s, 3H, 
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C(=O)CH3), 1.46-1.35 (m, 2H, CH2CH2CH(OH)), 1.34-1.26 (m, 8H, CH3(CH2)4), 0.88 (t, J = 

6.9 Hz, 3H, CH3CH2). 
13C NMR (125 MHz, CD2Cl2) δ 210.3 (C(=O)), 67.9 (CH(OH)), 50.3 (C(=O)CH2), 36.9 

(CH2CH2CH(OH)), 32.2 (CH2), 30.9 (C(=O)CH3), 29.6 (CH2), 25.8 (CH2), 23.0 (CH2), 14.2 

((CH2)5CH3). 

MS (EI-DE) m/z (%) 172 [M+] (trace), 154 (1), 139 (1), 125 (1), 111 (1), 96 (6), 87 (44), 84 

(2), 69 (5), 55 (17), 43 (100), 29 (11). 

HRMS (CI-FE, NH3) calcd for C10H24NO2 [(M+NH4)
+] 190.1805, found 190.1807. 

 

(R)-4-Hydroxy-6-phenyl-2-hexanone ((R)-96b): Aldol product (R)-96b was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C followed by in situ reduction with triethylphosphite. 

Purification of the crude product by flash column chromatography 

(silica gel, 10-60% Et2O in pentane) provided the title compound as a colorless oil (102 mg, 

531 μmol, 53%; 96.5:3.5 er). The enantiomeric ratio was determined by HPLC using a chiral 

Chiralpak IA column (10% i-PrOH in heptane, 0.5 mL/min); major enantiomer: τR = 16.75 

min, minor enantiomer: τR = 15.41 min. 

Optical rotation [α]25
D = 14.8 (c = 1.1, CHCl3, 96.5:3.5 er (R)) [Lit.:[137] (R)-96b, [α]rt

D = 

12.0 (c = 1.1, CHCl3, 94:6 er]. 
1H NMR (500 MHz, CD2Cl2) δ 7.29-7.26 (m, 2H, CHar, m), 7.21-7.16 (m, 3H, CHar, o, p), 4.03-

3.97 (m, 1H, CH(OH)), 2.95 (d, J = 3.5 Hz, 1H, OH), 2.81-2.75 (m, 1H, PhCHH), 2.69-2.64 

(m, 1H, PhCHH), 2.63 (dd, J = 17.7, 2.9 Hz, 1H, C(=O)CHH), 2.53 (dd, J = 17.7, 9.2 Hz, 1H, 

C(=O)CHH), 2.14 (s, 3H, CH3), 1.80-1.73 (m, 1H, PhCH2CHH), 1.70-1.64 (m, 1H, 

PhCH2CHH). 
13C NMR (125 MHz, CD2Cl2) δ 210.2 (C(=O)), 142.5 (Cqar), 128.8 (2C, CHar, o), 128.7 (2C, 

CHar, m), 126.1 (CHar, p), 67.2 (CH(OH)), 50.3 (C(=O)CH2), 38.5 (PhCH2CH2), 32.0 (PhCH2), 

30.9 (CH3). 

MS (EI-DE) m/z (%) 192 (2), 174 (34), 159 (4), 131 (29), 117 (17), 104 (17), 91 (73), 87 (9), 

77 (10), 65 (11), 58 (4), 51 (6), 43 (100), 39 (6), 27 (4). 

HRMS (CI-FE, NH3) calcd for C12H20NO2 [(M+NH4)
+] 210.1493, found 210.1494. 
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MS (EI-DE) m/z (%) 172 [M+] (trace), 154 (1), 139 (1), 125 (1), 111 (1), 96 (6), 87 (44), 84 

(2), 69 (5), 55 (17), 43 (100), 29 (11). 

HRMS (CI-FE, NH3) calcd for C10H24NO2 [(M+NH4)
+] 190.1805, found 190.1807. 

 

(R)-4-Hydroxy-6-phenyl-2-hexanone ((R)-96b): Aldol product (R)-96b was prepared 

according to the general procedure. The reaction mixture was stirred for 

36 h at 32 °C followed by in situ reduction with triethylphosphite. 
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(silica gel, 10-60% Et2O in pentane) provided the title compound as a colorless oil (102 mg, 

531 μmol, 53%; 96.5:3.5 er). The enantiomeric ratio was determined by HPLC using a chiral 

Chiralpak IA column (10% i-PrOH in heptane, 0.5 mL/min); major enantiomer: τR = 16.75 
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(R)-4-Hydroxy-6-methyl-2-heptanone ((R)-96d): Aldol product (R)-96d was prepared 

according to the general procedure. The reaction mixture was stirred for 36 

h at 32 °C followed by in situ reduction with triethylphosphite. Purification 

of the crude product by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless oil (81 mg, 562 μmol, 56%; 

96.5:3.5 er). The enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA 

column (10% i-PrOH in heptane, 0.5 mL/min); major enantiomer: τR = 11.84 min, minor 

enantiomer: τR = 11.39 min. 
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13C NMR (125 MHz, CD2Cl2) δ 210.3 (C(=O)), 66.0 (CH(OH)), 50.8 (C(=O)CH2), 46.0 (i-

PrCH2), 30.9 (C(=O)CH3), 24.7 (CHMe2), 23.4 (CH(CH3)2), 22.1 (CH(CH3)2). 

MS (EI-DE) m/z (%) 144 [M+] (trace), 126 (9), 111 (10), 108 (25), 93 (5), 87 (100), 83 (7), 69 

(17), 58 (20), 43 (90), 29 (5). 

HRMS (CI-FE, NH3) calcd for C8H20NO2 [(M+NH4)
+] 162.1494, found 162.1494. 

 

(S)-4-Cyclohexyl-4-hydroxy-2-butanone ((S)-96e): Aldol product (S)-96e was prepared 

according to the general procedure. The reaction mixture was stirred for 48 

h at 32 °C followed by in situ reduction with triethylphosphite. Purification 

of the crude product by flash column chromatography (silica gel, 10-40% 

Et2O in pentane) provided the title compound as a colorless oil (78 mg, 458 μmol, 46%; 96:4 

er). The enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column 

(10% i-PrOH in heptane, 0.5 mL/min); major enantiomer: τR = 14.65 min, minor enantiomer: 

τR = 13.19 min. 
1H NMR (500 MHz, CD2Cl2) δ 3.78-3.73 (m, 1H, CH(OH)), 2.77 (br s, 1H, OH), 2.61 (dd, J 

= 17.3, 2.7 Hz, 1H, CHHC(=O)), 2.49 (dd, J = 17.4, 9.9 Hz, 1H, CHHC(=O)), 2.15 (s, 3H, 

CH3), 1.84-1.79 (m, 1H, CH2), 1.77-1.71 (m, 2H, CH2), 1.68-1.61 (m, 2H, CH2), 1.35-1.27 

(m, 1H, CHcycl.), 1.26-1.10 (m, 3H, CH2), 1.07-0.94 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 210.6 (C(=O)), 72.0 (CH(OH)), 47.5 (C(=O)CH2), 43.4 

(CHcycl.), 30.9 (CH3), 29.2 (CH2), 28.5 (CH2), 26.9 (CH2), 26.6 (CH2), 26.5 (CH2). 

MS (EI-DE) m/z (%) 170 [M+] (trace), 152 (3), 137 (2), 112 (5), 109 (3), 95 (12), 87 (80), 83 

(6), 67 (14), 58 (9), 55 (26), 43 (100), 39 (9), 29 (10). 
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HRMS (CI-FE, NH3) calcd for C10H22NO2 [(M+NH4)
+] 188.1650, found 188.1651. 

 

4-Hydroxyoct-7-en-2-one (96f): Aldol product 96f was prepared according to the general 

procedure. The reaction mixture was stirred for 36 h at 32 °C followed by 

in situ reduction with triethylphosphite. Purification of the crude product 

by flash column chromatography (silica gel, 10-40% Et2O in pentane) 

provided the title compound as a colorless oil (78 mg, 549 μmol, 55%; 96:4 er). The 

enantiomeric ratio was determined by HPLC using a chiral Chiralpak IA column (10% i-

PrOH in heptane, 0.5 mL/min); major enantiomer:� τR = 13.35 min, minor enantiomer: τR = 

12.51 min. 
1H NMR (500 MHz, CD2Cl2) δ 5.84 (dddd, J = 17.0, 9.3, 7.7, 5.9 Hz, 1H, CH2=CH), 5.04 

(app. dq, 1H, J = 17.2, 1.8 Hz, CHtransH=CH), 4.96 (app. dq, 1H, J = 9.4, 1.5 Hz, 1H, 

CHHcis=CH), 4.03-3.98 (m, 1H, CH(OH)), 2.86 (d, J = 3.8 Hz, 1H, OH), 2.61 (dd, J = 17.3, 

3.0 Hz, 1H, CHHC(=O)), 2.50 (dd, J = 17.7, 9.3 Hz, 1H, CHHC(=O)), 2.24-2.07 (m, 2H, 

CH2), 2.14 (s, 3H, CH3), 1.57-1.42 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 210.1 (C(=O)), 138.8 (CH2=CH), 114.8 (CH2=CH), 67.3 

(CH(OH)), 50.3 (C(=O)CH2), 35.9 (=CHCH2CH2), 30.9 (CH3), 30.1 (=CHCH2). 
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(6), 67 (8), 58 (10), 43 (100), 41 (16), 29 (10). 

HRMS (CI-FE, NH3) calcd for C8H18NO2 [(M+NH4)
+] 160.1337, found 160.1338. 
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7.4.2 Organoselenium-Mediated Reductive Epoxide Opening 

7.4.2.1 General Procedure[151a] 

 

 
 
Under argon, acetic acid (15 μL, 0.25 mmol, 0.5 equiv) was added to an ethanolic solution of 

sodium phenylselenide, prepared by the reduction of diphenylselenide (234 mg, 0.75 mmol, 

1.5 equiv) with sodium borohydride (57 mg, 1.5 mmol, 3.0 equiv) in ethanol (3 mL), and the 

mixture was stirred for five minutes at room temperature. The resulting solution was added at 

once to a solution of α,β-epoxy ketone 48 (0.5 mmol, 1.0 equiv) in ethanol (2 mL) at 0 °C. 

After five minutes at room temperature, the reaction mixture was diluted with Et2O or EtOAc 

(15 mL) and washed with brine (5 mL). The aqueous layer was repeatedly extracted with 

Et2O or EtOAc (2×10 mL). The combined organic layers were washed with brine, dried over 

Na2SO4, filtered and concentrated under reduced pressure. Purification of the crude product 

by flash column chromatography (silica gel, eluent: Et2O-CH2Cl2) provided the corresponding 

β-hydroxy ketone 124. 

 

7.4.2.2 Scope of Optically Active Cyclic Aldol Products 

 
(S)-3-Hydroxycyclohexanone ((S)-124a): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (54 mg, 470 μmol, 94%; 96:4 

er) after purification by flash column chromatography (silica gel, 25-50% Et2O in 

CH2Cl2). The enantiomeric ratio was determined by GC using a chiral Hydrodex-

β-TBDAc column 25 m (35 min at 150 °C, 5 °C/min until 220°C, 10 min at 220 

°C, 0.5 bar H2); major enantiomer: τR = 17.65 min, minor enantiomer: τR = 21.68 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.18-4.13 (m, 1H, CH), 2.59 (dd, J = 14.2, 4.1 Hz, 1H, 

CHCHHC(=O)), 2.35 (dd, J = 14.0, 7.4 Hz, 1H, CHCHHC(=O)), 2.27 (t, J = 6.6 Hz, 2H, 

CH2C(=O)), 2.12 (br s, 1H, OH), 2.07-1.95 (m, 2H, CH2CHHCH and CH2CHHCH2), 1.77-

1.65 (m, 2H, CH2CHHCH and CH2CHHCH2). 

O

OH
C6H10O2

114,14

7  Experimental Part 

214 

7.4.2 Organoselenium-Mediated Reductive Epoxide Opening 

7.4.2.1 General Procedure[151a] 

 

 
 
Under argon, acetic acid (15 μL, 0.25 mmol, 0.5 equiv) was added to an ethanolic solution of 

sodium phenylselenide, prepared by the reduction of diphenylselenide (234 mg, 0.75 mmol, 

1.5 equiv) with sodium borohydride (57 mg, 1.5 mmol, 3.0 equiv) in ethanol (3 mL), and the 

mixture was stirred for five minutes at room temperature. The resulting solution was added at 

once to a solution of α,β-epoxy ketone 48 (0.5 mmol, 1.0 equiv) in ethanol (2 mL) at 0 °C. 

After five minutes at room temperature, the reaction mixture was diluted with Et2O or EtOAc 

(15 mL) and washed with brine (5 mL). The aqueous layer was repeatedly extracted with 

Et2O or EtOAc (2×10 mL). The combined organic layers were washed with brine, dried over 

Na2SO4, filtered and concentrated under reduced pressure. Purification of the crude product 

by flash column chromatography (silica gel, eluent: Et2O-CH2Cl2) provided the corresponding 

β-hydroxy ketone 124. 

 

7.4.2.2 Scope of Optically Active Cyclic Aldol Products 

 
(S)-3-Hydroxycyclohexanone ((S)-124a): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (54 mg, 470 μmol, 94%; 96:4 

er) after purification by flash column chromatography (silica gel, 25-50% Et2O in 

CH2Cl2). The enantiomeric ratio was determined by GC using a chiral Hydrodex-

β-TBDAc column 25 m (35 min at 150 °C, 5 °C/min until 220°C, 10 min at 220 

°C, 0.5 bar H2); major enantiomer: τR = 17.65 min, minor enantiomer: τR = 21.68 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.18-4.13 (m, 1H, CH), 2.59 (dd, J = 14.2, 4.1 Hz, 1H, 

CHCHHC(=O)), 2.35 (dd, J = 14.0, 7.4 Hz, 1H, CHCHHC(=O)), 2.27 (t, J = 6.6 Hz, 2H, 

CH2C(=O)), 2.12 (br s, 1H, OH), 2.07-1.95 (m, 2H, CH2CHHCH and CH2CHHCH2), 1.77-

1.65 (m, 2H, CH2CHHCH and CH2CHHCH2). 

O

OH
C6H10O2

114,14

7  Experimental Part 

214 

7.4.2 Organoselenium-Mediated Reductive Epoxide Opening 

7.4.2.1 General Procedure[151a] 

 

 
 
Under argon, acetic acid (15 μL, 0.25 mmol, 0.5 equiv) was added to an ethanolic solution of 

sodium phenylselenide, prepared by the reduction of diphenylselenide (234 mg, 0.75 mmol, 

1.5 equiv) with sodium borohydride (57 mg, 1.5 mmol, 3.0 equiv) in ethanol (3 mL), and the 

mixture was stirred for five minutes at room temperature. The resulting solution was added at 

once to a solution of α,β-epoxy ketone 48 (0.5 mmol, 1.0 equiv) in ethanol (2 mL) at 0 °C. 

After five minutes at room temperature, the reaction mixture was diluted with Et2O or EtOAc 

(15 mL) and washed with brine (5 mL). The aqueous layer was repeatedly extracted with 

Et2O or EtOAc (2×10 mL). The combined organic layers were washed with brine, dried over 

Na2SO4, filtered and concentrated under reduced pressure. Purification of the crude product 

by flash column chromatography (silica gel, eluent: Et2O-CH2Cl2) provided the corresponding 

β-hydroxy ketone 124. 

 

7.4.2.2 Scope of Optically Active Cyclic Aldol Products 

 
(S)-3-Hydroxycyclohexanone ((S)-124a): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (54 mg, 470 μmol, 94%; 96:4 

er) after purification by flash column chromatography (silica gel, 25-50% Et2O in 

CH2Cl2). The enantiomeric ratio was determined by GC using a chiral Hydrodex-

β-TBDAc column 25 m (35 min at 150 °C, 5 °C/min until 220°C, 10 min at 220 

°C, 0.5 bar H2); major enantiomer: τR = 17.65 min, minor enantiomer: τR = 21.68 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.18-4.13 (m, 1H, CH), 2.59 (dd, J = 14.2, 4.1 Hz, 1H, 

CHCHHC(=O)), 2.35 (dd, J = 14.0, 7.4 Hz, 1H, CHCHHC(=O)), 2.27 (t, J = 6.6 Hz, 2H, 

CH2C(=O)), 2.12 (br s, 1H, OH), 2.07-1.95 (m, 2H, CH2CHHCH and CH2CHHCH2), 1.77-

1.65 (m, 2H, CH2CHHCH and CH2CHHCH2). 

O

OH
C6H10O2

114,14

7  Experimental Part 

214 

7.4.2 Organoselenium-Mediated Reductive Epoxide Opening 

7.4.2.1 General Procedure[151a] 

 

 
 
Under argon, acetic acid (15 μL, 0.25 mmol, 0.5 equiv) was added to an ethanolic solution of 

sodium phenylselenide, prepared by the reduction of diphenylselenide (234 mg, 0.75 mmol, 

1.5 equiv) with sodium borohydride (57 mg, 1.5 mmol, 3.0 equiv) in ethanol (3 mL), and the 

mixture was stirred for five minutes at room temperature. The resulting solution was added at 

once to a solution of α,β-epoxy ketone 48 (0.5 mmol, 1.0 equiv) in ethanol (2 mL) at 0 °C. 

After five minutes at room temperature, the reaction mixture was diluted with Et2O or EtOAc 

(15 mL) and washed with brine (5 mL). The aqueous layer was repeatedly extracted with 

Et2O or EtOAc (2×10 mL). The combined organic layers were washed with brine, dried over 

Na2SO4, filtered and concentrated under reduced pressure. Purification of the crude product 

by flash column chromatography (silica gel, eluent: Et2O-CH2Cl2) provided the corresponding 

β-hydroxy ketone 124. 

 

7.4.2.2 Scope of Optically Active Cyclic Aldol Products 

 
(S)-3-Hydroxycyclohexanone ((S)-124a): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (54 mg, 470 μmol, 94%; 96:4 

er) after purification by flash column chromatography (silica gel, 25-50% Et2O in 

CH2Cl2). The enantiomeric ratio was determined by GC using a chiral Hydrodex-

β-TBDAc column 25 m (35 min at 150 °C, 5 °C/min until 220°C, 10 min at 220 

°C, 0.5 bar H2); major enantiomer: τR = 17.65 min, minor enantiomer: τR = 21.68 min. 
1H NMR (500 MHz, CD2Cl2) δ 4.18-4.13 (m, 1H, CH), 2.59 (dd, J = 14.2, 4.1 Hz, 1H, 

CHCHHC(=O)), 2.35 (dd, J = 14.0, 7.4 Hz, 1H, CHCHHC(=O)), 2.27 (t, J = 6.6 Hz, 2H, 

CH2C(=O)), 2.12 (br s, 1H, OH), 2.07-1.95 (m, 2H, CH2CHHCH and CH2CHHCH2), 1.77-

1.65 (m, 2H, CH2CHHCH and CH2CHHCH2). 

O

OH
C6H10O2

114,14



7 Experimental Part 

 215

13C NMR (125 MHz, CD2Cl2): δ 209.5 (C=O), 69.8 (CH), 50.3 (CHCH2C(=O)), 40.9 

(CH2C(=O)), 32.8 (CH2CH2CH), 20.7 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 114 [M+] (64), 96 (14), 86 (7), 81 (5), 73 (18), 68 (47), 60 (60), 58 (34), 

55 (81), 44 (100), 42 (85), 31 (9), 27 (28). 

HRMS (EI-FE) calcd for C6H10O2 [M
+] 114.0680, found 114.0681. 

 

(S)-3-Hydroxy-3-methylcyclohexanone ((S)-124b): The title compound was prepared 

according to the general procedure and obtained as a white solid (46 mg, 357 

μmol, 89%; 95.5:4.5 er) after purification by flash column chromatography 

(silica gel, 10-20% Et2O in CH2Cl2). The enantiomeric ratio was determined by 

GC using a chiral Hydrodex-β-TBDAc column 25 m (60 min at 145 °C, 6 

°C/min until 220°C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 11.84 min, minor 

enantiomer: τR = 14.81 min. 
1H NMR (500 MHz, CD2Cl2) δ 2.40 (d, J = 14.0 Hz, 1H, CqOHCHHC(=O)), 2.36 (td, J = 

13.9, 1.8 Hz, 1H, CqOHCHHC(=O)), 2.33-2.22 (m, 2H, CH2C(=O)), 2.08-1.99 (m, 1H, 

CH2CHHCH2), 1.89-1.76 (m, 3H, CH2CHHCH2 and CH2CH2CqOH), 1.55 (br s, 1H, OH), 

1.33 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2): δ 209.8 (C=O), 74.0 (CqOH), 54.9 (CqOHCH2C(=O)), 40.5 

(CH2C(=O)), 37.7 (CH2CH2CqOH), 30.1 (CH3), 21.4 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 128 [M+] (29), 110 (16), 99 (7), 86 (34), 71 (57), 68 (74), 60 (17), 57 

(86), 55 (100), 43 (97), 41 (71), 31 (13), 29 (43). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

(S)-3-Hydroxycycloheptanone ((S)-124c): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (31 mg, 242 μmol, 84%; 99:1 

er) after purification by flash column chromatography (silica gel, 40-60% Et2O 

in CH2Cl2). The enantiomeric ratio was determined by GC using a chiral 

Ivadex 7/PS086 column 25 m (40 min at 105 °C, 10 °C/min until 220°C, 10 

min at 320 °C, 0.5 bar H2); major enantiomer: τR = 27.66 min, minor enantiomer: τR = 29.55 

min. 
1H NMR (500 MHz, CD2Cl2) δ 4.06-4.02 (m, 1H, CH), 2.77-2.69 (m, 2H, CHCH2C(=O)), 

2.47-2.36 (m, 2H, CH2C(=O)), 2.03 (br s, 1H, OH), 1.90-1.78 (m, 3H, CH2CHHCH and 

CH2CH2CH2), 1.77-1.72 (m, 2H, CH2CH2C(=O)), 1.61-1.55 (m, 1H, CH2CHHCH). 
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55 (81), 44 (100), 42 (85), 31 (9), 27 (28). 

HRMS (EI-FE) calcd for C6H10O2 [M
+] 114.0680, found 114.0681. 

 

(S)-3-Hydroxy-3-methylcyclohexanone ((S)-124b): The title compound was prepared 

according to the general procedure and obtained as a white solid (46 mg, 357 

μmol, 89%; 95.5:4.5 er) after purification by flash column chromatography 

(silica gel, 10-20% Et2O in CH2Cl2). The enantiomeric ratio was determined by 

GC using a chiral Hydrodex-β-TBDAc column 25 m (60 min at 145 °C, 6 

°C/min until 220°C, 10 min at 220 °C, 0.6 bar H2); major enantiomer: τR = 11.84 min, minor 

enantiomer: τR = 14.81 min. 
1H NMR (500 MHz, CD2Cl2) δ 2.40 (d, J = 14.0 Hz, 1H, CqOHCHHC(=O)), 2.36 (td, J = 

13.9, 1.8 Hz, 1H, CqOHCHHC(=O)), 2.33-2.22 (m, 2H, CH2C(=O)), 2.08-1.99 (m, 1H, 

CH2CHHCH2), 1.89-1.76 (m, 3H, CH2CHHCH2 and CH2CH2CqOH), 1.55 (br s, 1H, OH), 

1.33 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2): δ 209.8 (C=O), 74.0 (CqOH), 54.9 (CqOHCH2C(=O)), 40.5 

(CH2C(=O)), 37.7 (CH2CH2CqOH), 30.1 (CH3), 21.4 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 128 [M+] (29), 110 (16), 99 (7), 86 (34), 71 (57), 68 (74), 60 (17), 57 

(86), 55 (100), 43 (97), 41 (71), 31 (13), 29 (43). 

HRMS (EI-FE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

(S)-3-Hydroxycycloheptanone ((S)-124c): The title compound was prepared according to the 

general procedure and obtained as a colorless oil (31 mg, 242 μmol, 84%; 99:1 

er) after purification by flash column chromatography (silica gel, 40-60% Et2O 

in CH2Cl2). The enantiomeric ratio was determined by GC using a chiral 

Ivadex 7/PS086 column 25 m (40 min at 105 °C, 10 °C/min until 220°C, 10 

min at 320 °C, 0.5 bar H2); major enantiomer: τR = 27.66 min, minor enantiomer: τR = 29.55 

min. 
1H NMR (500 MHz, CD2Cl2) δ 4.06-4.02 (m, 1H, CH), 2.77-2.69 (m, 2H, CHCH2C(=O)), 

2.47-2.36 (m, 2H, CH2C(=O)), 2.03 (br s, 1H, OH), 1.90-1.78 (m, 3H, CH2CHHCH and 

CH2CH2CH2), 1.77-1.72 (m, 2H, CH2CH2C(=O)), 1.61-1.55 (m, 1H, CH2CHHCH). 
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13C NMR (125 MHz, CD2Cl2) δ 211.5 (C=O), 67.6 (CH), 51.7 (CHCH2C(=O)), 44.3 

(CH2C(=O)), 38.9 (CH2CH2CH2), 24.4 (CH2CH2CH), 23.8 (CH2CH2C(=O)). 

MS (EI) m/z (%) 128 [M+] (26), 113 (6), 100 (16), 95 (8), 85 (15), 71 (44), 69 (17), 58 (60), 

55 (25), 43 (100), 27 (13). 

HRMS (EI-DE) calcd for C7H12O2 [M
+] 128.0836, found 128.0837. 

 

(R)-3-Hydroxycyclooctanone ((R)-124d): The title compound was prepared according to the 

general procedure. The reaction was stirred for 19 h at room temperature 

(90% conversion). Aldol product 124d was obtained as a colorless oil (5.4 mg, 

38 μmol, 53%; 86:14 er) after purification by flash column chromatography 

(silica gel, 40-60% Et2O in CH2Cl2). The enantiomeric ratio was determined 

by GC using a chiral Ivadex 7 column 25m (80 °C, 1 °C/min until 160°C, 20 

°C/min until 220°C, 10 min at 220 °C, 0.5 bar H2); major enantiomer: τR = 41.2 min, minor 

enantiomer: τR = 42.3 min. 
1H NMR (500 MHz, CDCl3) δ 4.07-4.02 (m, 1H, CH), 2.77 (dd, J = 11.7, 3.8 Hz, 1H, 

CHCHHC(=O)), 2.66 (dd, J = 11.4, 8.6 Hz, 1H, CHCHHC(=O)), 2.37-2.34 (m, 3H, CH2 and 

OH), 1.99-1.86 (m, 2H, CH2), 1.83-1.77 (m, 1H, CH2), 1.66-1.44 (m, 4H, CH2), 1.28-1.20 

(m, 1H, CH2). 
13C NMR (125 MHz, CDCl3) δ 214.2 (C=O), 70.5 (CH), 47.4 (CHCH2C(=O)), 44.4 

(CH2C(=O)), 34.6 (CH2CH2CH), 28.1 (CH2), 22.8 (CH2), 19.7 (CH2). 

MS (EI-DE) m/z (%) 142 [M+] (12), 124 (13), 109 (2), 99 (21), 86 (30), 81 (24), 71 (30), 60 

(8), 57 (64), 55 (100), 43 (88), 41 (55), 39 (33), 29 (36). 

HRMS (EI-FE) calcd for C8H14O2 [M
+] 142.0996, found 142.0996. 
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7.4.3 Synthesis of (3R,5S)-3-Hexyl-5-methyl-1,2-dioxolane (127) 

The ketalization of peroxyhemiketal 94a was conducted according to the protocol of Dussault 

et al.[114] 

n-C6H13

O O
OH

TiCl4 (1.12 equiv)
Et3SiH (3.0 equiv)

n-C6H13

O O
O

OMe

pTsOH H2O (cat.)

HO
OMe

n-C6H13

O O

cis-12794a (dr ~1:1)
98.5:1.5 er

r.t., 10 h 128

CH2Cl2, 78 °C
30 min

 
 
(5R)-5-Hexyl-3-(2-methoxyethoxy)-3-methyl-1,2-dioxolane (128):[114] p-Toluenesulfonic 

acid monohydrate (26 mg, 0.14 mmol) was added to a 

solution of peroxyhemiketal 94a (302 mg, 1.60 mmol; 

98.5:1.5 er) in 2-methoxyethanol (15 mL). After stirring for 

12 h at room temperature, the solvent was removed in vacuo and the residue subjected to flash 

column chromatography (silica gel, 5-15% Et2O in pentane) to afford peroxyketal 128 (236 

mg, 0.96 mmol, 60%) as a colorless oil. Characterized as a mixture of diastereoisomers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) isomer 1: δ 4.27 (quint, J = 7.1 Hz, 1H, CH), 3.69-3.64 (m, 1H, 

OCH2), 3.61-3.57 (m, 1H, OCH2), 3.52-3.46 (m, 2H, OCH2), 3.34 (s, 3H, OCH3), 2.57 (dd, J 

= 12.6, 7.6 Hz, 1H, CHHCq), 2.34 (dd, J = 12.6, 8.2 Hz, 1H, CHHCq), 1.69-1.63 (m, 1H, 

CH2CHHCH), 1.60-1.54 (m, 1H, CH2CHHCH), 1.45 (s, 3H, CqCH3), 1.34-1.24 (m, 8H, 

(CH2)4CH3), 0.88 (t, J = 7.1 Hz, 3H, (CH2)5CH3); isomer 2: δ 4.37 (quint, J = 6.5 Hz, 1H, 

CH), 3.69-3.64 (m, 1H, OCH2), 3.61-3.55 (m, 1H, OCH2), 3.52-3.45 (m, 2H, OCH2), 3.33 (s, 

3H, OCH3), 2.81 (dd, J = 12.5, 7.1 Hz, 1H, CHHCq), 2.15 (dd, J = 12.8, 6.2 Hz, 1H, 

CHHCq), 1.70-1.62 (m, 1H, CH2CHHCH), 1.47 (s, 3H, CqCH3), 1.39-1.24 (m, 9H, 

CH2CHHCH and (CH2)4CH3), 0.88 (t, J = 7.1 Hz, 3H, (CH2)5CH3). 
13C NMR (125 MHz, THF-d8) δ 108.6 (Cq), 107.6 (Cq), 82.7 (CH), 81.6 (CH), 73.1 (OCH2), 

73.1 (OCH2), 62.2 (OCH2), 62.1 (OCH2), 59.2 (OCH3), 59.1 (OCH3), 53.6 (CH2Cq), 53.3 

(CH2Cq), 36.0 (CH2), 33.1 (CH2), 33.0 (CH2), 32.9 (CH2), 30.5 (CH2), 30.4 (CH2), 27.5 (CH2), 

27.3 (CH2), 23.8 (CH2), 23.8 (CH2), 20.5 (CqCH3), 19.4 (CqCH3), 14.7 (2C, (CH2)5CH3). 

MS (EI-DE) m/z (%) 246 [M+] (trace), 213 (37), 171 (2), 155 (4), 129 (4), 113 (7), 95 (9), 87 

(9), 71 (8), 59 (88), 43 (100), 29 (20). 

HRMS (ESI+) calcd for C13H26NaO4 [(M+Na)+] 269.1720, found 269.1723. 
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HRMS (ESI+) calcd for C13H26NaO4 [(M+Na)+] 269.1720, found 269.1723. 
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7.4.3 Synthesis of (3R,5S)-3-Hexyl-5-methyl-1,2-dioxolane (127) 

The ketalization of peroxyhemiketal 94a was conducted according to the protocol of Dussault 

et al.[114] 

n-C6H13

O O
OH

TiCl4 (1.12 equiv)
Et3SiH (3.0 equiv)

n-C6H13

O O
O

OMe

pTsOH H2O (cat.)

HO
OMe

n-C6H13

O O

cis-12794a (dr ~1:1)
98.5:1.5 er

r.t., 10 h 128

CH2Cl2, 78 °C
30 min

 
 
(5R)-5-Hexyl-3-(2-methoxyethoxy)-3-methyl-1,2-dioxolane (128):[114] p-Toluenesulfonic 

acid monohydrate (26 mg, 0.14 mmol) was added to a 

solution of peroxyhemiketal 94a (302 mg, 1.60 mmol; 

98.5:1.5 er) in 2-methoxyethanol (15 mL). After stirring for 

12 h at room temperature, the solvent was removed in vacuo and the residue subjected to flash 

column chromatography (silica gel, 5-15% Et2O in pentane) to afford peroxyketal 128 (236 

mg, 0.96 mmol, 60%) as a colorless oil. Characterized as a mixture of diastereoisomers (1:1 

dr). 
1H NMR (500 MHz, CD2Cl2) isomer 1: δ 4.27 (quint, J = 7.1 Hz, 1H, CH), 3.69-3.64 (m, 1H, 

OCH2), 3.61-3.57 (m, 1H, OCH2), 3.52-3.46 (m, 2H, OCH2), 3.34 (s, 3H, OCH3), 2.57 (dd, J 

= 12.6, 7.6 Hz, 1H, CHHCq), 2.34 (dd, J = 12.6, 8.2 Hz, 1H, CHHCq), 1.69-1.63 (m, 1H, 

CH2CHHCH), 1.60-1.54 (m, 1H, CH2CHHCH), 1.45 (s, 3H, CqCH3), 1.34-1.24 (m, 8H, 

(CH2)4CH3), 0.88 (t, J = 7.1 Hz, 3H, (CH2)5CH3); isomer 2: δ 4.37 (quint, J = 6.5 Hz, 1H, 

CH), 3.69-3.64 (m, 1H, OCH2), 3.61-3.55 (m, 1H, OCH2), 3.52-3.45 (m, 2H, OCH2), 3.33 (s, 

3H, OCH3), 2.81 (dd, J = 12.5, 7.1 Hz, 1H, CHHCq), 2.15 (dd, J = 12.8, 6.2 Hz, 1H, 

CHHCq), 1.70-1.62 (m, 1H, CH2CHHCH), 1.47 (s, 3H, CqCH3), 1.39-1.24 (m, 9H, 

CH2CHHCH and (CH2)4CH3), 0.88 (t, J = 7.1 Hz, 3H, (CH2)5CH3). 
13C NMR (125 MHz, THF-d8) δ 108.6 (Cq), 107.6 (Cq), 82.7 (CH), 81.6 (CH), 73.1 (OCH2), 

73.1 (OCH2), 62.2 (OCH2), 62.1 (OCH2), 59.2 (OCH3), 59.1 (OCH3), 53.6 (CH2Cq), 53.3 

(CH2Cq), 36.0 (CH2), 33.1 (CH2), 33.0 (CH2), 32.9 (CH2), 30.5 (CH2), 30.4 (CH2), 27.5 (CH2), 

27.3 (CH2), 23.8 (CH2), 23.8 (CH2), 20.5 (CqCH3), 19.4 (CqCH3), 14.7 (2C, (CH2)5CH3). 

MS (EI-DE) m/z (%) 246 [M+] (trace), 213 (37), 171 (2), 155 (4), 129 (4), 113 (7), 95 (9), 87 

(9), 71 (8), 59 (88), 43 (100), 29 (20). 

HRMS (ESI+) calcd for C13H26NaO4 [(M+Na)+] 269.1720, found 269.1723. 

 

O O
O

OMeC13H26O4

246,34



7  Experimental Part 

218 

cis-(3R,5S)-3-Hexyl-5-methyl-1,2-dioxolane (cis-127): Peroxyketal 128 (20.0 mg, 81.2 

μmol) and triethylsilane (38.8 μL, 244 μmol, 3.0 equiv) were 

dissolved in CH2Cl2 (1 mL). At −78 °C, TiCl4 (90.9 μL, 90.9 μmol, 

1.12 equiv; 1.0 M in CH2Cl2) was added dropwise. After stirring for 

1 h, the reaction was quenched by the addition of saturated aqueous NaHCO3 solution (1.5 

mL) and repeatedly extracted with Et2O (2×7 mL). The combined organic layers were dried 

(Na2SO4), filtered, and evaporated. Dioxolane 127 (11.4 mg, 66.6 μmol, 80%; 3:1 dr 

(cis/trans)) was obtained by flash column chromatography (silica gel, 0-5% Et2O in pentane). 
1H NMR (400 MHz, CD2Cl2) cis-isomer: δ 4.37-4.28 (m, 1H, CHMe), 4.25-4.14 (m, 1H, n-

HexCH), 2.79 (dd, J = 11.6, 7.2 Hz, 1H, CHCHHCH), 1.76 (dd, J = 11.9, 6.8 Hz, 1H, 

CHCHHCH), 1.70-1.59 (m, 1H, CH2CHHCH), 1.53-1.43 (m, 1H, CH2CHHCH), 1.37-1.22 

(m, 8H, (CH2)4CH3), 1.25 (d overlapped, 3H, J = 6.1 Hz, 1H, CHCH3), 0.88 (t, J = 6.8 Hz, 

3H, (CH2)5CH3); trans-isomer: δ 4.37-4.28 (m, 1H, CHMe), 4.25-4.14 (m, 1H, n-HexCH), 
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CHCH3), 0.88 (t, J = 6.8 Hz, 3H, (CH2)5CH3). 
13C NMR (100 MHz, CD2Cl2) cis-isomer: δ 81.7 (n-HexCH), 77.3 (CHMe), 48.1 

(CHCH2CH), 34.5 (CH2CH2CH), 32.1 (CH2), 29.6 (CH2), 26.7 (CH2), 23.0 (CH2), 19.1 

(CHCH3), 14.2 ((CH2)5CH3); trans-isomer: δ 81.4 (n-HexCH), 77.1 (CHMe), 47.4 

(CHCH2CH), 33.6 (CH2CH2CH), 32.1 (CH2), 29.6 (CH2), 26.5 (CH2), 23.0 (CH2), 18.5 

(CHCH3), 14.2 ((CH2)5CH3). 

GC-MS (GC-EI) m/z (%) 172 [M+] (1), 131 (1), 113 (3), 95 (15), 87 (10), 81 (8), 69 (28), 55 

(36), 43 (100), 29 (15). 

HRMS (EI-FE) calcd for C10H20O2 [M
+] 172.1461, found 172.1463. 
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7.5 Preparation of Starting Materials 

7.5.1 Preparation of Cyclic α,β-Unsaturated Ketones 

7.5.1.1 General Procedure A: Protocol of Woods[163] 

 

 
 
3-Ethoxy-2-cyclohexenone or –heptenone (135 or 136; 21.4 mmol, 1.0 equiv) in THF (15 

mL) was added dropwise to a solution of a Grignard reagent (1 M in Et2O or THF, 1.5-2.0 

equiv) at 0 °C under argon. Once the addition was complete, the resulting solution was 

allowed to warm to room temperature and stirred until TLC indicated complete disappearance 

of the starting material (2-18 h). The reaction was slowly quenched with diluted aqueous acid 

(1 N HCl or 5% H2SO4) at 0 °C. The layers were separated, and the aqueous layer extracted 

with Et2O (3×50 mL). The combined organic layers were washed successively with saturated 

aqueous NaHCO3-solution, water, and brine, dried (Na2SO4), filtered, and evaporated under 

reduced pressure. The crude product was purified by flash column chromatography (silica gel, 

eluent: Et2O-pentane) to yield 3-substituted 2-cyclohexenone and –heptenone derivatives 46. 

 
Scope of Cyclic Enones Prepared According to General Procedure A 

 
3-Isopropyl-2-cyclohexenone (46i): The title compound was prepared according to the 

general procedure A from 3-ethoxy-2-cyclohexenone (135) and isopropyl 

magnesium chloride (2 M in Et2O). Purification by flash column 

chromatography (silica gel, 20% Et2O in pentane) gave enone 46i (2.10 g, 15.2 

mmol, 71%) as a pale yellow liquid. 
1H NMR (300 MHz, CD2Cl2) δ 5.81 (q, J = 1.4 Hz, 1H, =CH), 2.41 (hept, J = 6.9 Hz, 1H, 

CHMe2), 2.33-2.28 (m, 4H, CH2C(=O) and CH2Cqol), 1.96 (quint, J = 6.2 Hz, 2H, 

CH2CH2CH2), 1.09 (d, J = 7.2 Hz, 6H, CH(CH3)2). 
13C NMR (75 MHz, CDCl3) δ 200.3 (C=O), 171.8 (Cq=CH), 123.6 (Cq=CH), 37.6 

(CH2C(=O)), 35.7 (CHMe2), 27.7 (CH2Cqol), 22.9 (CH2CH2CH2), 20.6 (2C, CH(CH3)2). 

GC-MS (GC-EI) m/z 138 [M+]. 

HRMS (EI-FE) calcd for C9H14O [M+] 138.1043, found 138.1045. 
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7.5 Preparation of Starting Materials 

7.5.1 Preparation of Cyclic α,β-Unsaturated Ketones 

7.5.1.1 General Procedure A: Protocol of Woods[163] 
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3-Allyl-2-cyclohexenone (46k): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cyclohexenone (135) and allyl magnesium 

chloride (2 M in THF). Purification by flash column chromatography (silica 

gel, 20% Et2O in pentane) gave enone 46k (893 mg, 6.55 mmol, 47%) as a 

colorless liquid.[195] 
1H NMR (500 MHz, CDCl3) δ 5.87 (s, 1H, Cq=CH), 5.76 (ddt, J = 16.7, 10.3, 6.8 Hz, 1H, 

CH=CH2), 5.14-5.09 (m, 2H, CH=CH2), 2.92 (d, J = 7.1 Hz, 2H, CH2CH=CH2), 2.34 (t, J = 

6.8 Hz, 2H, CH2C(=O)), 2.27 (br t, J = 6.1 Hz, 2H, CH2CH2Cqol), 1.97 (quint, J = 6.4 Hz, 2H, 

CH2CH2CH2). 
13C NMR (125 MHz, CDCl3) δ 199.8 (C=O), 164.1 (Cq=CH), 133.2 (CH=CH2), 126.3 

(Cq=CH), 118.3 (CH=CH2), 42.2 (CH2CH=CH2), 37.3 (C=OCH2), 29.5 (CH2CH2Cqol), 22.6 

(CH2CH2CH2). 

MS (EI-DE) m/z (%) 136 [M+] (74), 121 (8), 108 (42), 93 (8), 79 (100), 77 (18), 74 (1), 67 

(19), 53 (9), 41 (19), 39 (43), 29 (2), 27 (13). 

HRMS (EI-FE) calcd for C9H12O [M+] 136.0888, found 136.0888. 

 

3-Benzyl-2-cyclohexenone (46m): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cyclohexenone (135) and benzyl magnesium 

chloride (1 M in Et2O). Purification by flash column chromatography (silica 

gel, 20% Et2O in pentane) gave enone 46m (3.02 g, 16.2 mmol, 76%) as a 

colorless liquid. 
1H NMR (500 MHz, CD2Cl2) δ 7.33-7.30 (m, 2H, CHPh, m), 7.28-7.24 (m, 1H, CHPh, p), 7.21-

7.18 (m, 2H, CHPh, o), 5.80 (s, 1H, =CH), 3.52 (s, 2H, PhCH2), 2.31 (t, J = 6.8 Hz, 2H, 

CH2C(=O)), 2.25 (br t, J = 6.0 Hz, 2H, CH2Cqol), 1.94 (quint, J = 6.4 Hz, 2H, CH2CH2CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.6 (C=O), 164.9 (Cqol), 137.8 (CqPh), 129.5 (2C, CHPh, o), 

129.0 (2C, CHPh, m), 127.1 (CHPh, p), 127.0 (=CH), 44.7 (PhCH2), 37.7 (CH2C(=O)), 29.6 

(CH2Cqol), 23.1 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 186 [M+] (100), 168 (8), 158 (91), 142 (9), 129 (58), 115 (34), 102 (3), 

91 (30), 77 (9), 67 (26), 51 (15), 39 (46), 27 (11). 

HRMS (EI-DE) calcd for C13H14O [M+] 186.1043, found 186.1045. 
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3-Phenyl-2-cyclohexenone (46n): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cyclohexenone (135) and phenyl magnesium 

chloride (2 M in THF). Purification by flash column chromatography (silica gel, 

30% Et2O in pentane) gave enone 46n (3.60 g, 20.9 mmol, 98%) as a white 

solid.[196] 
1H NMR (500 MHz, CD2Cl2) δ 7.57-7.55 (m, 2H, CHPh), 7.43-7.40 (m, 3H, CHPh), 6.37 (t, J 

= 1.5 Hz, 1H, =CH), 2.77 (td, J = 6.0, 1.4 Hz, 2H, CH2Cqol), 2.44 (app. t, J = 6.8 Hz, 2H, 

CH2C(=O)), 2.14 (quint, J = 6.3 Hz, 2H, CH2CH2CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.6 (C=O), 159.9 (Cq=CH), 139.3 (CqPh), 130.1 (CHPh, p), 

129.0 (2C, CHPh), 126.4 (2C, CHPh), 125.6 (Cq=CH), 37.6 (CH2C(=O)), 28.4 (CH2Cqol), 23.2 

(CH2CH2CH2). 

 

3-Vinyl-2-cyclohexenone (46o): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cyclohexenone (135) and vinyl magnesium 

bromide (1 M in THF). Purification by flash column chromatography (silica 

gel, 15-25% Et2O in pentane) gave enone 46o (1.97 g, 16.1 mmol, 75%) as a 

colorless oil. 

1H NMR (500 MHz, CD2Cl2) δ 6.50 (dd, J = 17.6, 10.7 Hz, 1H, CH=CH2), 5.89 (s, 1H, 

Cq=CH), 5.70 (d, J = 17.7 Hz, 1H, CH=CHtransH), 5.45 (d, J = 10.7 Hz, 1H, CH=CHHcis), 

2.47 (br t, J = 6.1 Hz, 2H, CH2Cqol), 2.37 (t, J = 6.8 Hz, 2H, CH2C(=O)), 2.02 (quint, J = 6.4 

Hz, 2H, CH2CH2CH2). 
13C NMR (126 MHz, CD2Cl2) δ 200.1 (C=O), 157.1 (Cq=CH), 138.3 (CH=CH2), 128.4 

(Cq=CH), 120.7 (CH=CH2), 37.8 (CH2C(=O)), 24.6 (CH2), 22.6 (CH2). 

GC-MS (GC-EI) m/z 122 [M+]. 

HRMS (EI-FE) calcd for C8H10O [M+] 122.0730, found 122.0732. 
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3-Ethynyl-2-cyclohexenone (46p): The title compound was prepared according to the 

general procedure A from 3-ethoxy-2-cyclohexenone (135) and ethynyl 

magnesium bromide (0.5 M in THF). Purification by flash column chromato-

graphy (silica gel, 10-25% Et2O in pentane) gave enone 46p (1.33 g, 11.1 mmol, 
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CH2CH2CH2). 
13C NMR (125 MHz, CD2Cl2) δ 198.4 (C=O), 142.3 (Cq=CH), 134.2 (Cq=CH), 87.0 

(Cq≡CH), 82.8 (Cq≡CH), 37.6 (CH2C(=O)), 30.5 (CH2Cqol), 22.9 (CH2CH2CH2). 

GC-MS (GC-EI) m/z (%) 120 [M+] (44), 92 (100), 89 (2), 77 (4), 64 (54), 50 (12), 42 (5), 39 

(15), 27 (3). 

HRMS (EI-FE) calcd for C8H8O [M+] 120.0576, found 120.0575. 

 

3-Ethyl-2-cycloheptenone (46t): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cycloheptenone (136) and ethyl magnesium 

bromide (3 M in THF). Purification by flash column chromatography (silica gel, 

20% Et2O in pentane) gave enone 46t (570 mg, 4.12 mmol, 61%) as a pale 

yellow liquid. 3-Ethoxy-2-cycloheptenone (136) was obtained by heating a 

mixture of 1,3-cycloheptanedione (0.85 g, 6.74 mmol), dry ethanol (1.7 mL), and a catalytic 

amount of p-toluene sulfonic acid monohydrate (17 mg) in benzene (40 mL) under reflux with 

a Dean-Stark trap. After 12 h, the mixture was allowed to cool to room temperature and the 

solvent was evaporated under reduced pressure. The resulting crude 3-ethoxy-2-

cycloheptenone (136; ~90% purity) was used without further purification for the synthesis of 

3-ethyl-2-cycloheptenone (46t). 
1H NMR (400 MHz, CD2Cl2) δ 5.83 (s, 1H, =CH), 2.52 (t, J = 6.1 Hz, 2H, CH2C(=O)), 2.41 

(t, J = 5.8 Hz, 2H, CH2Cqol), 2.22 (qd, J = 7.4, 1.2 Hz, 2H, CH2CH3), 1.81-1.72 (m, 4H, 
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13C NMR (75 MHz, CD2Cl2) δ 203.9 (C=O), 163.8 (Cq=CH), 128.2 (Cq=CH), 42.5 

(CH2C(=O)), 34.1 (CqolCH2, cycl.), 32.9 (CH2CH3), 25.5 (CH2, cycl.), 21.7 (CH2, cycl.), 12.3 (CH3). 

MS (EI-DE) m/z (%) 138 [M+] (29), 109 (100), 96 (18), 81 (32), 79 (10), 67 (17), 53 (17), 39 

(20), 27 (17). 

HRMS (EI-FE) calcd for C9H14O [M+] 138.1045, found 138.1045. 
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3-Benzyl-2-cycloheptenone (46u): The title compound was prepared according to the general 

procedure A from 3-ethoxy-2-cycloheptenone (136 vide supra) and benzyl 

magnesium chloride (1 M in Et2O). Purification by flash column 

chromatography (silica gel, 20% Et2O in pentane) gave enone 46u (551 mg, 

2.75 mmol, 41%) as a pale yellow liquid. 
1H NMR (400 MHz, CD2Cl2) δ 7.34-7.19 (m, 5H, C6H5), 5.89 (s, 1H, =CH), 3.49 (s, 2H, 

CH2Ph), 2.53 (t, J = 6.4 Hz, 2H, CH2C(=O)), 2.37 (t, J = 5.9 Hz, 2H, CH2Cqol), 1.78-1.64 (m, 

4H, CH2(CH2)2CH2). 
13C NMR (75 MHz, CD2Cl2) δ 203.8 (C=O), 160.2 (Cqol), 138.4 (CqPh), 130.9 (=CH), 129.5 

(2C, CHPh), 128.9 (2C, CHPh), 127.0 (CHPh, p), 47.3 (CH2Ph), 42.6 (CH2C(=O)), 32.7 

(CH2Cqol), 25.6 (CH2CH2Cqol), 21.7 (CH2CH2C(=O)). 

MS (EI-DE) m/z (%) 200 [M+] (14), 182 (1), 171 (4), 158 (4), 143 (3), 129 (13), 115 (12), 109 

(100), 91 (15), 81 (24), 65 (12), 53 (11), 39 (14), 27 (6). 

HRMS (EI-DE) calcd for C14H16O [M+] 200.1199, found 200.1201. 

 

7.5.1.2 General Procedure B: Saegusa Oxidation[167] 

 

 
 
To a solution of LDA, freshly prepared from n-BuLi (13.2 ml, 33.0 mmol, 1.1 equiv, 2.5M in 

hexanes) and diisopropylamine (5.06 mL, 36.0 mmol, 1.2 equiv) in THF (46 mL) at 0 °C, was 

added a cyclic ketone (30.0 mmol, 1.0 equiv) dissolved in THF (18 ml) at −78 °C. After 

stirring for 30 min, the solution was warmed to room temperature and stirred for additional 30 

min at room temperature. After re-cooling to −78 °C, TMSCl (6.47 ml, 51.0 mmol, 1.7 equiv) 

was added, and stirring was continued for 1 h. The reaction was quenched with saturated 

aqueous NH4Cl solution and extracted with Et2O (3 × 150 mL). The combined organic layers 

were dried (Na2SO4), filtered, and concentrated in vacuo. The crude silyl enol ether was 

dissolved in DMSO (600 mL), and Pd(OAc)2 (673 mg, 3.00 mmol, 10 mol%) was added. The 

flask was carefully evacuated, purged with O2, and equipped with an O2 ballon. After stirring 

for 12 h at room temperature, the reaction mixture was poured into ice water (300 mL), and 

repeatedly extracted with Et2O (2 × 300 mL). The combined organic phases were washed 
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(100), 91 (15), 81 (24), 65 (12), 53 (11), 39 (14), 27 (6). 

HRMS (EI-DE) calcd for C14H16O [M+] 200.1199, found 200.1201. 

 

7.5.1.2 General Procedure B: Saegusa Oxidation[167] 

 

 
 
To a solution of LDA, freshly prepared from n-BuLi (13.2 ml, 33.0 mmol, 1.1 equiv, 2.5M in 

hexanes) and diisopropylamine (5.06 mL, 36.0 mmol, 1.2 equiv) in THF (46 mL) at 0 °C, was 

added a cyclic ketone (30.0 mmol, 1.0 equiv) dissolved in THF (18 ml) at −78 °C. After 

stirring for 30 min, the solution was warmed to room temperature and stirred for additional 30 

min at room temperature. After re-cooling to −78 °C, TMSCl (6.47 ml, 51.0 mmol, 1.7 equiv) 

was added, and stirring was continued for 1 h. The reaction was quenched with saturated 

aqueous NH4Cl solution and extracted with Et2O (3 × 150 mL). The combined organic layers 

were dried (Na2SO4), filtered, and concentrated in vacuo. The crude silyl enol ether was 

dissolved in DMSO (600 mL), and Pd(OAc)2 (673 mg, 3.00 mmol, 10 mol%) was added. The 

flask was carefully evacuated, purged with O2, and equipped with an O2 ballon. After stirring 

for 12 h at room temperature, the reaction mixture was poured into ice water (300 mL), and 

repeatedly extracted with Et2O (2 × 300 mL). The combined organic phases were washed 
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with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, eluent: Et2O-pentane) to 

afford the corresponding pure cyclic α,β-unsaturated ketones 46. 

 

Scope of Cyclic Enones Prepared According to General Procedure B 

 
2-Cyclooctenone (46v): The title compound was prepared according to the general procedure 

B from cyclooctanone (3.79 g, 30.0 mmol). Purification by flash column 

chromatography (silica gel, 5-10% Et2O in pentane) gave 2-cyclooctenone 

(46v; 2.38 g, 19.2 mmol, 64%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.33 (dt, J = 12.5, 7.1 Hz, 1H, CH2CH=), 5.94 (d, J = 12.5 Hz, 

1H, CH2CH=CH), 2.60 (t, J = 6.9 Hz, 2H, CH2C(=O)), 2.52-2.47 (m, 2H, CH2CH=), 1.82-

1.77 (m, 2H, CH2CH2C(=O)), 1.63-1.53 (m, 4H, CH2CH2CHol and CH2(CH2)2C(=O)). 
13C NMR (125 MHz, CD2Cl2) δ 205.4 (C=O), 141.5 (CH2CH=), 132.2 (CH2CH=CH), 42.7 

(CH2C(=O)), 28.6 (CH2CH=), 25.3 (CH2(CH2)2C(=O)), 23.2 (CH2CH2CH=), 22.7 

(CH2CH2C(=O)). 

GC-MS (GC-EI) m/z 124 [M+] (8), 109 (1), 95 (11), 91 (2), 81 (100), 68 (40), 65 (4), 53 (39), 

51 (5), 41 (23), 39 (34), 27 (17). 

HRMS (EI-FE) calcd for C8H12O [M+] 124.0887, found 124.0888. 

 

4-Methyl-2-cyclohexenone (80a): The title compound was prepared according to the general 

procedure B from 4-methylcyclohexanone (1.84 mL, 15.0 mmol). 

Purification by flash column chromatography (silica gel, 10-20% Et2O in 

pentane) gave cyclohexenone 80a (1.36 g, 12.3 mmol, 82%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.80 (ddd, J = 10.2, 2.6, 1.3 Hz, 1H, =CHCH), 5.88 (dd, J = 

10.1, 2.5 Hz, 1H, CH=CHCH), 2.58-2.50 (m, 1H, CHMe), 2.42 (dt, J = 16.7, 4.7 Hz, 1H, 

CHHC(=O)), 2.33 (ddd, J = 16.8, 12.2, 4.7 Hz, 1H, CHHC(=O)), 2.09 (dqd, J = 13.6, 5.0, 1.3 

Hz, 1H, CHHCH), 1.68-1.61 (m, 1H, CHHCH), 1.14 (d, J = 7.3 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 199.6 (C=O), 156.5 (=CHCH), 128.8 (CH=CHCH), 37.2 

(CH2C(=O)), 31.5 (CHMe), 31.3 (CH2CH), 20.3 (CH3). 

GC-MS (GC-EI) m/z 110 [M+] (51), 95 (4), 82 (100), 79 (4), 68 (67), 65 (6), 54 (56), 41 (18), 

39 (40), 27 (20). 

HRMS (EI-FE) calcd for C7H10O [M+] 110.0731, found 110.0732. 
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with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, eluent: Et2O-pentane) to 

afford the corresponding pure cyclic α,β-unsaturated ketones 46. 
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(CH2C(=O)), 31.5 (CHMe), 31.3 (CH2CH), 20.3 (CH3). 

GC-MS (GC-EI) m/z 110 [M+] (51), 95 (4), 82 (100), 79 (4), 68 (67), 65 (6), 54 (56), 41 (18), 

39 (40), 27 (20). 
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with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, eluent: Et2O-pentane) to 

afford the corresponding pure cyclic α,β-unsaturated ketones 46. 

 

Scope of Cyclic Enones Prepared According to General Procedure B 
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B from cyclooctanone (3.79 g, 30.0 mmol). Purification by flash column 
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(46v; 2.38 g, 19.2 mmol, 64%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.33 (dt, J = 12.5, 7.1 Hz, 1H, CH2CH=), 5.94 (d, J = 12.5 Hz, 
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with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, eluent: Et2O-pentane) to 

afford the corresponding pure cyclic α,β-unsaturated ketones 46. 

 

Scope of Cyclic Enones Prepared According to General Procedure B 

 
2-Cyclooctenone (46v): The title compound was prepared according to the general procedure 

B from cyclooctanone (3.79 g, 30.0 mmol). Purification by flash column 

chromatography (silica gel, 5-10% Et2O in pentane) gave 2-cyclooctenone 

(46v; 2.38 g, 19.2 mmol, 64%) as a clear oil. 
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51 (5), 41 (23), 39 (34), 27 (17). 
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Hz, 1H, CHHCH), 1.68-1.61 (m, 1H, CHHCH), 1.14 (d, J = 7.3 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 199.6 (C=O), 156.5 (=CHCH), 128.8 (CH=CHCH), 37.2 

(CH2C(=O)), 31.5 (CHMe), 31.3 (CH2CH), 20.3 (CH3). 

GC-MS (GC-EI) m/z 110 [M+] (51), 95 (4), 82 (100), 79 (4), 68 (67), 65 (6), 54 (56), 41 (18), 

39 (40), 27 (20). 

HRMS (EI-FE) calcd for C7H10O [M+] 110.0731, found 110.0732. 
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4-tert-Butyl-2-cyclohexenone (80b): The title compound was prepared according to the 

general procedure B from 4-tert-butylcyclohexanone (2.31 g, 15.0 mmol). 

Purification by flash column chromatography (silica gel, 5% EtOAc in 

hexanes) gave cyclohexenone 80b (1.52 g, 9.97 mmol, 66%) as a clear oil. 
1H NMR (500 MHz, CDCl3) δ 6.99 (dt, J = 10.6, 2.1 Hz, 1H, =CHCH), 6.01 (dd, J = 10.4, 

2.8 Hz, 1H, CH=CHCH), 2.50 (dt, J = 16.9, 3.9 Hz, 1H, CHHC(=O)), 2.32 (ddd, J = 16.4, 

14.4, 4.9 Hz, 1H, CHHC(=O)), 2.20-2.16 (m, 1H, CHHCH), 2.11-2.05 (m, 1H, CHHCH), 

1.76-1.67 (m, 1H, CHt-Bu), 0.96 (s, 9H, CH3). 
13C NMR (125 MHz, CDCl3) δ 200.90 (C=O), 152.9 (=CHCH), 130.0 (CH=CHCH), 46.8 

(CHt-Bu), 37.8 (CH2C(=O)), 32.9 (CqMe3), 27.3 (3C, CH3), 24.4 (CH2CH). 

MS (EI-DE) m/z 152 [M+] (5), 137 (5), 119 (1), 109 (6), 96 (100), 91 (2), 81 (5), 67 (11), 57 

(83), 53 (6), 41 (53), 39 (23), 29 (36), 27 (19). 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1202, found 152.1201. 

 

(E)-2-Cyclododecenone (46x): The title compound was prepared according to the general 

procedure B from cyclododecanone (2.73 g, 15.0 mmol). Stoichiometric 

Pd(OAc)2 (3.37 g, 15.0 mmol) in acetonitrile (20 mL) was used in the oxidation 

step. Purification by flash column chromatography (silica gel, 2% Et2O in 

pentane) gave pure (E)-enone 46x (1.40 g, 7.80 mmol, 52%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.74 (td, J = 15.3, 7.7 Hz, 1H, =CHCH2), 6.29 

(d, J = 16.1 Hz, 1H, CH=CHCH2), 2.46-2.44 (m, 2H, CH2C(=O)), 2.28-2.24 (m, 2H, 

=CHCH2), 1.71-1.67 (m, 2H, CH2), 1.62-1.57 (m, 2H, CH2), 1.42-1.37 (m, 2H, CH2), 1.33-

1.29 (m, 4H, CH2), 1.28-1.21 (m, 4H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 203.1 (C=O), 146.7 (=CHCH2), 131.4 (CH=CHCH2), 40.2 

(CH2C(=O)), 32.8 (=CHCH2), 26.8 (CH2), 25.6 (CH2), 25.4 (CH2), 25.4 (CH2), 25.0 (CH2), 

24.8 (CH2), 24.0 (CH2). 

MS (EI) m/z (%) 180 [M+] (49), 162 (2), 151 (6), 137 (11), 123 (11), 109 (45), 98 (51), 95 

(29), 84 (39), 81 (100), 68 (65), 55 (78), 41 (76), 27 (23). 

HRMS (EI-FE) calcd for C12H20O [M+] 180.1515, found 180.1514. 
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4-tert-Butyl-2-cyclohexenone (80b): The title compound was prepared according to the 

general procedure B from 4-tert-butylcyclohexanone (2.31 g, 15.0 mmol). 

Purification by flash column chromatography (silica gel, 5% EtOAc in 

hexanes) gave cyclohexenone 80b (1.52 g, 9.97 mmol, 66%) as a clear oil. 
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14.4, 4.9 Hz, 1H, CHHC(=O)), 2.20-2.16 (m, 1H, CHHCH), 2.11-2.05 (m, 1H, CHHCH), 

1.76-1.67 (m, 1H, CHt-Bu), 0.96 (s, 9H, CH3). 
13C NMR (125 MHz, CDCl3) δ 200.90 (C=O), 152.9 (=CHCH), 130.0 (CH=CHCH), 46.8 

(CHt-Bu), 37.8 (CH2C(=O)), 32.9 (CqMe3), 27.3 (3C, CH3), 24.4 (CH2CH). 

MS (EI-DE) m/z 152 [M+] (5), 137 (5), 119 (1), 109 (6), 96 (100), 91 (2), 81 (5), 67 (11), 57 

(83), 53 (6), 41 (53), 39 (23), 29 (36), 27 (19). 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1202, found 152.1201. 

 

(E)-2-Cyclododecenone (46x): The title compound was prepared according to the general 

procedure B from cyclododecanone (2.73 g, 15.0 mmol). Stoichiometric 

Pd(OAc)2 (3.37 g, 15.0 mmol) in acetonitrile (20 mL) was used in the oxidation 

step. Purification by flash column chromatography (silica gel, 2% Et2O in 

pentane) gave pure (E)-enone 46x (1.40 g, 7.80 mmol, 52%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.74 (td, J = 15.3, 7.7 Hz, 1H, =CHCH2), 6.29 

(d, J = 16.1 Hz, 1H, CH=CHCH2), 2.46-2.44 (m, 2H, CH2C(=O)), 2.28-2.24 (m, 2H, 

=CHCH2), 1.71-1.67 (m, 2H, CH2), 1.62-1.57 (m, 2H, CH2), 1.42-1.37 (m, 2H, CH2), 1.33-

1.29 (m, 4H, CH2), 1.28-1.21 (m, 4H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 203.1 (C=O), 146.7 (=CHCH2), 131.4 (CH=CHCH2), 40.2 

(CH2C(=O)), 32.8 (=CHCH2), 26.8 (CH2), 25.6 (CH2), 25.4 (CH2), 25.4 (CH2), 25.0 (CH2), 

24.8 (CH2), 24.0 (CH2). 

MS (EI) m/z (%) 180 [M+] (49), 162 (2), 151 (6), 137 (11), 123 (11), 109 (45), 98 (51), 95 

(29), 84 (39), 81 (100), 68 (65), 55 (78), 41 (76), 27 (23). 
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4-tert-Butyl-2-cyclohexenone (80b): The title compound was prepared according to the 

general procedure B from 4-tert-butylcyclohexanone (2.31 g, 15.0 mmol). 

Purification by flash column chromatography (silica gel, 5% EtOAc in 

hexanes) gave cyclohexenone 80b (1.52 g, 9.97 mmol, 66%) as a clear oil. 
1H NMR (500 MHz, CDCl3) δ 6.99 (dt, J = 10.6, 2.1 Hz, 1H, =CHCH), 6.01 (dd, J = 10.4, 

2.8 Hz, 1H, CH=CHCH), 2.50 (dt, J = 16.9, 3.9 Hz, 1H, CHHC(=O)), 2.32 (ddd, J = 16.4, 

14.4, 4.9 Hz, 1H, CHHC(=O)), 2.20-2.16 (m, 1H, CHHCH), 2.11-2.05 (m, 1H, CHHCH), 
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4-tert-Butyl-2-cyclohexenone (80b): The title compound was prepared according to the 

general procedure B from 4-tert-butylcyclohexanone (2.31 g, 15.0 mmol). 

Purification by flash column chromatography (silica gel, 5% EtOAc in 

hexanes) gave cyclohexenone 80b (1.52 g, 9.97 mmol, 66%) as a clear oil. 
1H NMR (500 MHz, CDCl3) δ 6.99 (dt, J = 10.6, 2.1 Hz, 1H, =CHCH), 6.01 (dd, J = 10.4, 

2.8 Hz, 1H, CH=CHCH), 2.50 (dt, J = 16.9, 3.9 Hz, 1H, CHHC(=O)), 2.32 (ddd, J = 16.4, 

14.4, 4.9 Hz, 1H, CHHC(=O)), 2.20-2.16 (m, 1H, CHHCH), 2.11-2.05 (m, 1H, CHHCH), 

1.76-1.67 (m, 1H, CHt-Bu), 0.96 (s, 9H, CH3). 
13C NMR (125 MHz, CDCl3) δ 200.90 (C=O), 152.9 (=CHCH), 130.0 (CH=CHCH), 46.8 

(CHt-Bu), 37.8 (CH2C(=O)), 32.9 (CqMe3), 27.3 (3C, CH3), 24.4 (CH2CH). 

MS (EI-DE) m/z 152 [M+] (5), 137 (5), 119 (1), 109 (6), 96 (100), 91 (2), 81 (5), 67 (11), 57 

(83), 53 (6), 41 (53), 39 (23), 29 (36), 27 (19). 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1202, found 152.1201. 

 

(E)-2-Cyclododecenone (46x): The title compound was prepared according to the general 

procedure B from cyclododecanone (2.73 g, 15.0 mmol). Stoichiometric 

Pd(OAc)2 (3.37 g, 15.0 mmol) in acetonitrile (20 mL) was used in the oxidation 

step. Purification by flash column chromatography (silica gel, 2% Et2O in 

pentane) gave pure (E)-enone 46x (1.40 g, 7.80 mmol, 52%) as a clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.74 (td, J = 15.3, 7.7 Hz, 1H, =CHCH2), 6.29 

(d, J = 16.1 Hz, 1H, CH=CHCH2), 2.46-2.44 (m, 2H, CH2C(=O)), 2.28-2.24 (m, 2H, 

=CHCH2), 1.71-1.67 (m, 2H, CH2), 1.62-1.57 (m, 2H, CH2), 1.42-1.37 (m, 2H, CH2), 1.33-

1.29 (m, 4H, CH2), 1.28-1.21 (m, 4H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 203.1 (C=O), 146.7 (=CHCH2), 131.4 (CH=CHCH2), 40.2 

(CH2C(=O)), 32.8 (=CHCH2), 26.8 (CH2), 25.6 (CH2), 25.4 (CH2), 25.4 (CH2), 25.0 (CH2), 

24.8 (CH2), 24.0 (CH2). 

MS (EI) m/z (%) 180 [M+] (49), 162 (2), 151 (6), 137 (11), 123 (11), 109 (45), 98 (51), 95 

(29), 84 (39), 81 (100), 68 (65), 55 (78), 41 (76), 27 (23). 

HRMS (EI-FE) calcd for C12H20O [M+] 180.1515, found 180.1514. 
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(E)-2-Cyclopentadecenone (46w): The title compound was prepared according to the general 

procedure B from cyclopentadecanone (3.37 g, 15.0 mmol). Stoichiometric 

Pd(OAc)2 (3.37 g, 15.0 mmol) in acetonitrile (20 mL) was used in the 

oxidation step. Purification by flash column chromatography (silica gel, 2% 

Et2O in pentane) gave pure (E)-enone 46w (2.16 g, 9.71 mmol, 65%) as a 

clear oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.78 (td, J = 15.3, 7.7 Hz, 1H, =CHCH2), 6.16 (d, J = 16.1 Hz, 

1H, CH=CHCH2), 2.47-2.45 (m, 2H, CH2C(=O)), 2.29-2.25 (m, 2H, =CHCH2), 1.68-1.62 (m, 

2H, CH2), 1.56-1.51 (m, 2H, CH2), 1.35-1.22 (m, 16H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 201.5 (C=O), 148.0 (=CHCH2), 130.8 (CH=CHCH2), 40.1 

(CH2C(=O)), 31.7 (=CHCH2), 27.1 (CH2), 27.0 (CH2), 26.8 (3C, -(CH2)n-), 26.6 (CH2), 26.3 

(CH2), 26.1 (CH2), 25.5 (CH2), 25.3 (CH2). 

MS (EI) m/z (%) 222 [M+] (92), 207 (2), 193 (2), 179 (4), 164 (20), 151 (7), 135 (12), 121 

(14), 109 (53), 96 (63), 81 (52), 68 (57), 55 (100), 41 (78), 29 (24). 

HRMS (EI-DE) calcd for C15H26O [M+] 222.1982, found 222.1984. 

 

7.5.1.3 Synthesis of 3-tert-butylcyclohex-2-enone (46j)[166] 

A flask was charged with 10% Pd/C (96 mg, 0.09 mmol, 2.5 mol%), CH2Cl2 

(70 mL), TBHP (3.29 mL, 18.1 mmol, 5.5 M in decane, 5 equiv), K2CO3 (124 

mg, 0.91 mmol, 25 mol%), and 1-tert-butylcyclohexene (500 mg, 3.62 mmol, 

54 uL, 0.32 mmol, 1 equiv) under argon. The mixture was stirred at 0 °C for 

12 h. After removal of the solvent at 0 °C under reduced, the crude product was purified by 

flash column chromatography (silica gel, 30-60% Et2O in pentane) to provide the title 

compound (320 mg, 2.10 mmol, 58%) as a clear liquid. 
1H NMR (500 MHz, CD2Cl2) δ 5.88 (t, J = 1.3 Hz, 1H, =CH), 2.34 (td, J = 6.0, 1.3 Hz, 2H, 

CH2Cqol), 2.30 (app. t, J = 6.6 Hz, 2H, CH2C(=O)), 1.94 (quint, J = 6.3 Hz, 2H, 

CH2CH2CH2), 1.12 (s, 9H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 200.4 (C=O), 173.9 (Cq=CH), 123.1 (Cq=CH), 37.8 

(CH2C(=O)), 36.9 (CqMe3), 28.4 (3C, C(CH3)3), 26.3 (CH2), 23.7 (CH2). 

GC-MS (GC-EI) m/z (%) 152 [M+] (31), 137 (11), 124 (35), 109 (100), 96 (67), 81 (39), 79 

(13), 67 (32), 65 (7), 57 (20), 41 (32), 29 (7). 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1202, found 152.1201. 
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7.5.1.4 Synthesis of 2-Methyl-2-cyclohexenone (79) 

The iron-catalyzed cross coupling reaction of 2-iodo-2-cyclohexenone (137) was conducted 

according to the protocol of Cahiez et al.[168] 

 

 
 
2-Iodo-2-cyclohexenone (137): 2-Cyclohexenone (0.97 mL, 10.0 mmol) was dissolved in 

CH2Cl2 (20 mL) under an atmosphere of argon, and cooled to 0 °C. Pyridine 

was added (20 mL) followed by iodine (6.35 g, 25.0 mmol, 2.5 equiv). The 

reaction mixture was allowed to warm to room temperature, and stirred for 14 

h. EtOAc (100 mL) was added, and the organic layer was washed successively with saturated 

aqueous Na2S2O3 solution (2×30 mL), water (30 mL), aqueous 10% CuSO4 solution (6×30 

mL), water (30 mL), and brine (30 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated. Purification by flash column chromatography (silica gel, 15-20% Et2O in 

pentane) provided the title compound (2.01 g, 9.06 mmol; 91%) as a yellow solid. 
1H NMR (500 MHz, CD2Cl2) δ 7.77 (t, J = 4.5 Hz, 1H, CHol), 2.62 (t, J = 6.7 Hz, 2H, 

CH2C(=O)), 2.42 (t, J = 5.5 Hz, 2H, CH2CHol), 2.08-2.03 (m, 2H, CH2CH2CH2). 
13C NMR (125 MHz, CD2Cl2) 192.1 (C=O), 159.9 (CHol), 103.6 (Cqol), 37.3 (CH2C(=O)), 

30.0 (CH2Cqol), 22.9 (CH2CH2CH2). 

MS (EI-DE) m/z (%) 222 [M+] (100), 194 (52), 181 (5), 166 (10), 153 (1), 127 (2), 95 (8), 67 

(9), 55 (9), 39 (29). 

HRMS (EI-DE) calcd for C6H7OI [M+] 221.9540, found 221.9542. 

 

2-Methyl-2-cyclohexenone (79): To a solution of 2-iodo-2-cyclohexenone (137) (0.5 g, 2.25 

mmol) and Fe(acac)3 (8.0 mg, 0.0225 mmol, 1 mol%) in a solvent mixture of 

THF (4.5 mL) and NMP (2.25 mL, 9 equiv) was added dropwise (within 15 

min) at 0 °C, methylmagnesium bromide (0.85 mL, 2.55 mmol, 3.0 M in THF, 

1.1 equiv), and stirring was continued for 2 h. Then the reaction mixture was hydrolyzed with 

aqueous 1M HCl (7 mL), and the aqueous layer repeatedly extracted with Et2O (3×20 mL). 

The combined organic phases were washed successively with saturated aqueous NaHCO3 

solution, water, and brine. The organic layer was dried over Na2SO4, filtered, and 

concentrated. After purification of the crude product by flash column chromatography (silica 
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7.5.1.4 Synthesis of 2-Methyl-2-cyclohexenone (79) 
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gel, 5-10% Et2O in pentane) the title compound (84 mg, 760 μmol; 34% (reduced yield due to 

the high volatility of 79)) was obtained as a colorless oil. 
1H NMR (400 MHz, CD2Cl2) δ 6.75-6.73 (m, 1H, CHol), 2.39-2.36 (m, 2H, CH2C(=O)), 

2.33-2.28 (m, 2H, CH2CHol), 1.99-1.93 (m, 2H, CH2CH2CH2), 1.73-1.72 (m, 3H, CH3). 
13C NMR (100 MHz, CD2Cl2) 199.5 (C=O), 145.5 (CHol), 135.5 (Cqol), 38.4 (CH2C(=O)), 

26.1 (CH2CHol), 23.4 (CH2CH2 CH2), 15.8 (CH3). 

GC-MS (GC-EI) m/z 110 [M+]. 

HRMS (EI-FE) calcd for C7H10O [M+] 110.0731, found 110.0732. 

 

7.5.1.5 Synthesis of (S)-3-Methyl-5-phenyl-2-cyclohexenone (S)-(83)[123] 

Acetic acid (36.0 mg, 0.6 mmol, 60 mol%) was added to a solution of 9-

amino(9-deoxy)epiquinine (13; 64.7 mg, 0.2 mmol, 20 mol%) in toluene. After 

cooling to –15°C, 4-phenyl-2,6-heptandione (204 mg, 1.0 mmol) was added. 

The resulting mixture was stirred at –15°C for 48 h. The reaction mixture was 

then directly subjected to flash column chromatography (silica gel, 20% Et2O in pentane) to 

afford cyclohexenone derivative 83 (159 mg, 842 μmol, 84%; 95.5:4.5 er) as a colorless solid. 

The enantiomeric ratio was determined by HPLC using a chiral Chiralcel OJ-H column (10% 

i-PrOH in heptane, 0.5 mL/min); major enantiomer: τR = 21.71 min, minor enantiomer: τR = 

3.86 min. 
1H NMR (500 MHz, CDCl3) δ 7.36-7.33 (m, 2H, CHPh), 7.27-7.23 (m, 3H, CHPh), 5.92 (s, 

1H, =CH), (hept, J = 5.5 Hz, 1H, CHal), 2.60-2.47 (m, 4H, CH2), 2.00 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.8 (C=O), 162.0 (Cq=), 144.1 (CqPh), 129.0 (2C, CHPh), 

127.2 (2C, CHPh), 127.1 (CH), 126.6 (CH), 44.3 (CH2C(=O)), 41.2 (CHal), 39.2 (CH2Cqol), 

24.4 (CH3). 

MS (EI-DE) m/z (%) 186 [M+] (41), 171 (2), 158 (1), 142 (6), 128 (4), 115 (4), 104 (14), 91 

(4), 82 (100), 77 (7), 65 (3), 54 (10), 39 (10), 27 (2). 

HRMS (EI-DE) calcd for C13H14O [M+] 186.1043, found 186.1044. 
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7.5.2 Preparation of Acyclic α,β-Unsaturated Ketones 

7.5.2.1 General Procedure A: Cross Metathesis (CM) 

 

 
 
Methyl vinyl ketone (MVK; 12.5 mmol, 2.5 equiv) and Grubbs’ second generation catalyst 

(138; 106 mg, 0.125 mmol, 2.5 mol%) were successively added to the solution of a terminal 

alkene (5 mmol, 1 equiv) in CH2Cl2 (50 mL). The reaction mixture was heated to reflux 

overnight (12-16 h) and then allowed to cool to room temperature. The volatiles were 

removed under reduced pressure and the crude product was purified by flash column 

chromatography (silica gel, eluent: Et2O-pentane or Et2O-CH2Cl2) to obtain the corresponding 

pure (E)-enone 92. 

 

Scope of α,β-Unsaturated Ketones Prepared According to General Procedure A 

 
(E)-7-Bromo-3-hepten-2-one (92g): The title compound was prepared according to the 

general procedure A from MVK and 5-bromo-1-pentene. The crude 

product was purified by flash column chromatography (silica gel, 5-

15% Et2O in pentane) to give enone 92g (748 mg, 3.94 mmol, 78%) as 

a pale yellow oil. Contains 4% of (E)-7-chloro-3-hepten-2-one as determined by GC. 
1H NMR (500 MHz, CD2Cl2) δ 6.74 (dt, J = 15.9, 6.9 Hz, 1H, =CHCH2), 6.09 (dt, J = 16.1, 

1.4 Hz, 1H, CH=CHCH2), 3.44 (t, J = 6.6 Hz, 2H, BrCH2), 2.41-2.36 (m, 2H, =CHCH2), 2.21 

(s, 3H, CH3), 2.06-2.00 (m, 2H, CH2CH2CH2). 
13C NMR (125 MHz, CD2Cl2): δ 198.0 (C=O), 145.7 (=CHCH2), 132.1 (CH=CHCH2), 32.9 

(BrCH2), 31.0 (CH2CH2CH2), 30.8 (=CHCH2), 26.8 (CH3). 

GC-MS (GC-EI) m/z 190 [M+]. 

HRMS (EI-FE) calcd for C7H11BrO [M+] 189.9992, found 189.9993. 
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(E)-Ethyl 6-oxohept-4-enoate (92j): The title compound was prepared according to the 

general procedure A from MVK and ethyl 4-pentenoate. The crude 

product was purified by flash column chromatography (silica gel, 40-

55% Et2O in pentane) to give enone 92j (679 mg, 3.99 mmol, 80%) as 

a pale yellow oil. 
1H NMR (300 MHz, CD2Cl2) δ 6.77 (dt, J = 15.9, 6.3 Hz, 1H, =CHCH2), 6.08 (dt, J = 15.9, 

1.5 Hz, 1H, CH=CHCH2), 4.11 (q, J = 7.2 Hz, 2H, CH2CH3), 2.57-2.43 (m, 4H, CH2), 2.20 (s, 

3H, CH3C(=O)), 1.23 (t, J = 7.1 Hz, 3H, CH2CH3). 
13C NMR (100 MHz, CD2Cl2) δ 198.0 (C=O), 172.2 (CO2Et), 145.7 (=CHCH2), 131.7 

(CH=CHCH2), 60.5 (CH2CH3), 32.5 (CH2CO2Et), 27.5 (=CHCH2), 26.7 (CH3C(=O)), 14.0 

(CH2CH3). 

MS (EI-DE) m/z 170 [M+] (26), 155 (3), 141 (5), 124 (76), 109 (18), 97 (41), 83 (40), 68 (3), 

55 (20), 43 (100), 29 (27). 

HRMS (EI-FE) calcd for C9H14O3 [M
+] 170.0941, found 170.0943. 

 

(E)-3-Octene-2,7-dione (92k): The title compound was prepared according to the general 

procedure A from MVK and 5-hexen-2-one. The crude product was 
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(E)-9-hydroxy-3-nonen-2-one (92l): The title compound was prepared according to the 

general procedure A from MVK and 7-hydroxy-1-heptene. Flash 

column chromatography (silica gel, 10-30% Et2O in CH2Cl2) 

afforded enone 92l (503 mg, 3.22 mmol, 64%) as a greenish oil 

(contains ruthenium trace impurities). 
1H NMR (400 MHz, CD2Cl2) δ 6.79 (dt, J = 15.9, 7.0 Hz, 1H, CH2CH=), 6.03 (dt, J = 16.2, 

1.4 Hz, 1H, CH2CH=CH), 3.59 (t, J = 6.6 Hz, 2H, CH2OH), 2.21 (app. qd overlapped, J = 

7.1, 1.4 Hz, 2H, CH2), 2.20 (s, 3H, CH3), 1.75 (br s, 1H, OH), 1.56-1.46 (m, 4H, CH2), 1.41-

1.34 (m, 2H, CH2). 
13C NMR (100 MHz, CD2Cl2) δ 198.8 (C=O), 148.6 (CH2CH=), 131.6 (CH2CH=CH), 62.9 

(CH2OH), 32.9(CH2), 32.7 (CH2), 28.3 (CH2), 26.9 (CH3), 25.7 (CH2). 

MS (EI-DE) m/z (%) 156 [M+] (1), 138 (11), 123 (9), 113 (7), 95 (55), 84 (8), 81 (32), 71 (42), 

67 (32), 58 (9), 55 (49), 53 (15), 43 (100), 41 (27), 31 (19). 

HRMS (CI-FE, i-butane) calcd for C9H17O2 [(M+H)+] 157.1230, found 157.1229. 

 

7.5.2.2 General Procedure B: Wittig Reaction 

 

 
 
An aldehyde (20 mmol, 1 equiv) was dissolved in CH2Cl2 (30 mL) and 1-(triphenylphosphor-

anylidene)-2-propanone (6.37 g, 20 mmol, 1 equiv) was added at 0 °C. The reaction mixture 

was allowed to warm to room temperature and stirred until TLC or GC/MS analysis indicated 

complete consumption of the starting aldehyde (12-24 h). Then silica gel was added and the 

solvent was removed under reduced pressure. The residue was purified by flash column chro-

matography (silica gel, eluent: Et2O-pentane) to afford the corresponding (E)-α,β-enone 92. 
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Scope of α,β-Unsaturated Ketones Prepared According to General Procedure B 

 
(E)-6-Phenyl-3-hexen-2-one (92b): The title compound was prepared according to the 

general procedure B from hydrocinnamaldehyde and 1-(triphenylphos-

phoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give 

enone 92b (2.62 g, 15.0 mmol, 75%) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 7.30-7.27 (m, 2H, CHPh, m), 7.21-7.16 (m, 3H, CHPh, o, p), 6.80 

(dt, J = 15.9, 6.9 Hz, 1H, =CHCH2), 6.08 (dt, J = 16.1, 1.4 Hz, 1H, CH=CHCH2), 2.78 (t, J = 

7.7 Hz, 2H, PhCH2), 2.54 (app. qd, J = 7.3, 1.4 Hz, 2H, =CHCH2), 2.21 (s, 3H, CH3). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.1 (=CHCH2), 140.7 (CqPh), 131.7 

(CH=CHCH2), 128.5 (2C, CHPh), 128.3 (2C, CHPh), 126.2 (CHPh, p), 34.4 (CH2), 34.1 (CH2), 

26.9 (CH3). 

MS (EI-DE) m/z (%) 174 [M+] (5), 159 (4), 131 (5), 116 (16), 104 (2), 91 (100), 77 (2), 65 

(10), 51 (3), 43 (9), 27 (2). 

HRMS (EI-FE) calcd for C12H14O [M+] 174.1045, found 174.1045. 

 

(E)-6-Methylhept-3-en-2-one (92d): The title compound was prepared according to the 

general procedure B from isovaleraldehyde with 1-(triphenylphosphor-

anylidene)-2-propanone. The crude product was purified by flash column 

chromatography (silica gel, 5% Et2O in pentane) to give enone 92d (1.51 g, 

12.0 mmol, 60% (reduced yield due to the high volatility of 92d)) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 6.74 (dt, J = 16.0, 7.4 Hz, 1H, =CHCH2), 6.03 (dt, J = 16.0, 

1.4 Hz, 1H, CH=CHCH2), 2.21 (s, 3H, CH3C(=O)), 2.08 (app. td, J = 7.1, 1.3 Hz, 2H, CH2), 

1.74 (hept, J = 6.7 Hz, 1H, CHMe2), 0.90 (d, J = 6.7 Hz, 6H, CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.3 (=CHCH2), 132.3 (CH=CHCH2), 41.7 

(CH2), 27.8 (CHMe2), 26.8 (CH3C(=O)), 22.3 (2C, CH(CH3)2). 

GC-MS (GC-EI) m/z 126 [M+]. 

HRMS (EI-FE) calcd for C8H14O [M+] 126.1043, found 126.1045. 

 

(E)-4-Cyclohexylbut-3-en-2-one (92e): The title compound was prepared according to the 

general procedure B from cyclohexanecarbaldehyde with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give enone 92e 

(2.80 g, 18.4 mmol, 92%) as a pale yellow oil. 
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HRMS (EI-FE) calcd for C8H14O [M+] 126.1043, found 126.1045. 

 

(E)-4-Cyclohexylbut-3-en-2-one (92e): The title compound was prepared according to the 

general procedure B from cyclohexanecarbaldehyde with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give enone 92e 

(2.80 g, 18.4 mmol, 92%) as a pale yellow oil. 
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(E)-6-Phenyl-3-hexen-2-one (92b): The title compound was prepared according to the 

general procedure B from hydrocinnamaldehyde and 1-(triphenylphos-

phoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give 

enone 92b (2.62 g, 15.0 mmol, 75%) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 7.30-7.27 (m, 2H, CHPh, m), 7.21-7.16 (m, 3H, CHPh, o, p), 6.80 

(dt, J = 15.9, 6.9 Hz, 1H, =CHCH2), 6.08 (dt, J = 16.1, 1.4 Hz, 1H, CH=CHCH2), 2.78 (t, J = 

7.7 Hz, 2H, PhCH2), 2.54 (app. qd, J = 7.3, 1.4 Hz, 2H, =CHCH2), 2.21 (s, 3H, CH3). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.1 (=CHCH2), 140.7 (CqPh), 131.7 

(CH=CHCH2), 128.5 (2C, CHPh), 128.3 (2C, CHPh), 126.2 (CHPh, p), 34.4 (CH2), 34.1 (CH2), 

26.9 (CH3). 

MS (EI-DE) m/z (%) 174 [M+] (5), 159 (4), 131 (5), 116 (16), 104 (2), 91 (100), 77 (2), 65 

(10), 51 (3), 43 (9), 27 (2). 

HRMS (EI-FE) calcd for C12H14O [M+] 174.1045, found 174.1045. 

 

(E)-6-Methylhept-3-en-2-one (92d): The title compound was prepared according to the 

general procedure B from isovaleraldehyde with 1-(triphenylphosphor-

anylidene)-2-propanone. The crude product was purified by flash column 

chromatography (silica gel, 5% Et2O in pentane) to give enone 92d (1.51 g, 

12.0 mmol, 60% (reduced yield due to the high volatility of 92d)) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 6.74 (dt, J = 16.0, 7.4 Hz, 1H, =CHCH2), 6.03 (dt, J = 16.0, 

1.4 Hz, 1H, CH=CHCH2), 2.21 (s, 3H, CH3C(=O)), 2.08 (app. td, J = 7.1, 1.3 Hz, 2H, CH2), 

1.74 (hept, J = 6.7 Hz, 1H, CHMe2), 0.90 (d, J = 6.7 Hz, 6H, CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.3 (=CHCH2), 132.3 (CH=CHCH2), 41.7 

(CH2), 27.8 (CHMe2), 26.8 (CH3C(=O)), 22.3 (2C, CH(CH3)2). 

GC-MS (GC-EI) m/z 126 [M+]. 

HRMS (EI-FE) calcd for C8H14O [M+] 126.1043, found 126.1045. 

 

(E)-4-Cyclohexylbut-3-en-2-one (92e): The title compound was prepared according to the 

general procedure B from cyclohexanecarbaldehyde with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give enone 92e 

(2.80 g, 18.4 mmol, 92%) as a pale yellow oil. 
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(E)-6-Phenyl-3-hexen-2-one (92b): The title compound was prepared according to the 

general procedure B from hydrocinnamaldehyde and 1-(triphenylphos-

phoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give 

enone 92b (2.62 g, 15.0 mmol, 75%) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 7.30-7.27 (m, 2H, CHPh, m), 7.21-7.16 (m, 3H, CHPh, o, p), 6.80 

(dt, J = 15.9, 6.9 Hz, 1H, =CHCH2), 6.08 (dt, J = 16.1, 1.4 Hz, 1H, CH=CHCH2), 2.78 (t, J = 

7.7 Hz, 2H, PhCH2), 2.54 (app. qd, J = 7.3, 1.4 Hz, 2H, =CHCH2), 2.21 (s, 3H, CH3). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.1 (=CHCH2), 140.7 (CqPh), 131.7 

(CH=CHCH2), 128.5 (2C, CHPh), 128.3 (2C, CHPh), 126.2 (CHPh, p), 34.4 (CH2), 34.1 (CH2), 

26.9 (CH3). 

MS (EI-DE) m/z (%) 174 [M+] (5), 159 (4), 131 (5), 116 (16), 104 (2), 91 (100), 77 (2), 65 

(10), 51 (3), 43 (9), 27 (2). 

HRMS (EI-FE) calcd for C12H14O [M+] 174.1045, found 174.1045. 

 

(E)-6-Methylhept-3-en-2-one (92d): The title compound was prepared according to the 

general procedure B from isovaleraldehyde with 1-(triphenylphosphor-

anylidene)-2-propanone. The crude product was purified by flash column 

chromatography (silica gel, 5% Et2O in pentane) to give enone 92d (1.51 g, 

12.0 mmol, 60% (reduced yield due to the high volatility of 92d)) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 6.74 (dt, J = 16.0, 7.4 Hz, 1H, =CHCH2), 6.03 (dt, J = 16.0, 

1.4 Hz, 1H, CH=CHCH2), 2.21 (s, 3H, CH3C(=O)), 2.08 (app. td, J = 7.1, 1.3 Hz, 2H, CH2), 

1.74 (hept, J = 6.7 Hz, 1H, CHMe2), 0.90 (d, J = 6.7 Hz, 6H, CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 198.6 (C=O), 147.3 (=CHCH2), 132.3 (CH=CHCH2), 41.7 

(CH2), 27.8 (CHMe2), 26.8 (CH3C(=O)), 22.3 (2C, CH(CH3)2). 

GC-MS (GC-EI) m/z 126 [M+]. 

HRMS (EI-FE) calcd for C8H14O [M+] 126.1043, found 126.1045. 

 

(E)-4-Cyclohexylbut-3-en-2-one (92e): The title compound was prepared according to the 

general procedure B from cyclohexanecarbaldehyde with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was purified by flash 

column chromatography (silica gel, 10% Et2O in pentane) to give enone 92e 

(2.80 g, 18.4 mmol, 92%) as a pale yellow oil. 
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1H NMR (500 MHz, CD2Cl2) δ 6.71 (dd, J = 16.1, 6.8 Hz, 1H, =CHCH), 5.98 (dd, J = 16.3, 

1.2 Hz, 1H, CH=CHCH), 2.20 (s, 3H, CH3), 2.18-2.11 (m, 1H, =CHCH), 1.79-1.74 (m, 4H, 

CH2), 1.70-1.66 (m, 1H, CH2), 1.35-1.27 (m, 2H, CH2), 1.24-1.11 (m, 3H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.0 (C=O), 153.5 (=CHCH), 129.1 (CH=CHCH), 41.0 

(=CHCH), 32.2 (2C, CHCH2), 26.9 (CH3), 26.3 (CH2), 26.1 (2C, CH2). 

GC-MS (GC-EI) m/z 152 [M+]. 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1200, found 152.1201. 

 

(E)-Octa-3,7-dien-2-one (92f): The title compound was prepared according to the general 

procedure B from 4-pentenal and 1-(triphenylphosphoranylidene)-2-

propanone. The crude product was purified by flash column chromato-

graphy (silica gel, 5-10% Et2O in pentane) to give enone 92f (2.19 g, 17.6 

mmol, 88%) as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.77 (dt, J = 16.1, 6.8 Hz, 1H, CH2CH=CH), 6.05 (dt, J = 

15.9, 1.5 Hz, 1H, CH2CH=CH), 5.82 (ddt, J = 16.9, 11.7, 6.0 Hz, 1H, CH2=CH), 5.06 (app. 

dq, J = 17.0, 1.7 Hz, 1H, CHtransH=), 5.01 (app. dq, J = 10.5, 1.5 Hz, 1H, CHHcis=), 2.35-2.30 

(m, 2H, CH2CH=CH), 2.25-2.21 (m, 2H, CH2=CHCH2), 2.20 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.5 (C=O), 147.6 (CH2CH=CH), 137.7 (CH2=CH), 131.9 

(CH2CH=CH), 115.5 (CH2=CH), 32.5 (CH2=CHCH2), 32.0 (CH2CH=CH), 26.9 (CH3). 

GC-MS (GC-EI) m/z 124 [M+] (trace), 122 (4), 109 (14), 95 (12), 91 (3), 81 (58), 79 (35), 11 

(12), 66 (12), 55 (34), 53 (18), 51 (6), 43 (100), 41 (34), 27 (10). 

HRMS (CI-FE, i-butane) calcd for C8H13O [(M+H)+] 125.0966, found 125.0966. 

 

(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): 
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1H NMR (500 MHz, CD2Cl2) δ 6.71 (dd, J = 16.1, 6.8 Hz, 1H, =CHCH), 5.98 (dd, J = 16.3, 

1.2 Hz, 1H, CH=CHCH), 2.20 (s, 3H, CH3), 2.18-2.11 (m, 1H, =CHCH), 1.79-1.74 (m, 4H, 

CH2), 1.70-1.66 (m, 1H, CH2), 1.35-1.27 (m, 2H, CH2), 1.24-1.11 (m, 3H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.0 (C=O), 153.5 (=CHCH), 129.1 (CH=CHCH), 41.0 

(=CHCH), 32.2 (2C, CHCH2), 26.9 (CH3), 26.3 (CH2), 26.1 (2C, CH2). 

GC-MS (GC-EI) m/z 152 [M+]. 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1200, found 152.1201. 

 

(E)-Octa-3,7-dien-2-one (92f): The title compound was prepared according to the general 

procedure B from 4-pentenal and 1-(triphenylphosphoranylidene)-2-

propanone. The crude product was purified by flash column chromato-

graphy (silica gel, 5-10% Et2O in pentane) to give enone 92f (2.19 g, 17.6 

mmol, 88%) as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.77 (dt, J = 16.1, 6.8 Hz, 1H, CH2CH=CH), 6.05 (dt, J = 

15.9, 1.5 Hz, 1H, CH2CH=CH), 5.82 (ddt, J = 16.9, 11.7, 6.0 Hz, 1H, CH2=CH), 5.06 (app. 

dq, J = 17.0, 1.7 Hz, 1H, CHtransH=), 5.01 (app. dq, J = 10.5, 1.5 Hz, 1H, CHHcis=), 2.35-2.30 

(m, 2H, CH2CH=CH), 2.25-2.21 (m, 2H, CH2=CHCH2), 2.20 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.5 (C=O), 147.6 (CH2CH=CH), 137.7 (CH2=CH), 131.9 

(CH2CH=CH), 115.5 (CH2=CH), 32.5 (CH2=CHCH2), 32.0 (CH2CH=CH), 26.9 (CH3). 

GC-MS (GC-EI) m/z 124 [M+] (trace), 122 (4), 109 (14), 95 (12), 91 (3), 81 (58), 79 (35), 11 

(12), 66 (12), 55 (34), 53 (18), 51 (6), 43 (100), 41 (34), 27 (10). 

HRMS (CI-FE, i-butane) calcd for C8H13O [(M+H)+] 125.0966, found 125.0966. 

 

(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): 
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1H NMR (500 MHz, CD2Cl2) δ 6.71 (dd, J = 16.1, 6.8 Hz, 1H, =CHCH), 5.98 (dd, J = 16.3, 

1.2 Hz, 1H, CH=CHCH), 2.20 (s, 3H, CH3), 2.18-2.11 (m, 1H, =CHCH), 1.79-1.74 (m, 4H, 

CH2), 1.70-1.66 (m, 1H, CH2), 1.35-1.27 (m, 2H, CH2), 1.24-1.11 (m, 3H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.0 (C=O), 153.5 (=CHCH), 129.1 (CH=CHCH), 41.0 

(=CHCH), 32.2 (2C, CHCH2), 26.9 (CH3), 26.3 (CH2), 26.1 (2C, CH2). 

GC-MS (GC-EI) m/z 152 [M+]. 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1200, found 152.1201. 

 

(E)-Octa-3,7-dien-2-one (92f): The title compound was prepared according to the general 

procedure B from 4-pentenal and 1-(triphenylphosphoranylidene)-2-

propanone. The crude product was purified by flash column chromato-

graphy (silica gel, 5-10% Et2O in pentane) to give enone 92f (2.19 g, 17.6 

mmol, 88%) as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.77 (dt, J = 16.1, 6.8 Hz, 1H, CH2CH=CH), 6.05 (dt, J = 

15.9, 1.5 Hz, 1H, CH2CH=CH), 5.82 (ddt, J = 16.9, 11.7, 6.0 Hz, 1H, CH2=CH), 5.06 (app. 

dq, J = 17.0, 1.7 Hz, 1H, CHtransH=), 5.01 (app. dq, J = 10.5, 1.5 Hz, 1H, CHHcis=), 2.35-2.30 

(m, 2H, CH2CH=CH), 2.25-2.21 (m, 2H, CH2=CHCH2), 2.20 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.5 (C=O), 147.6 (CH2CH=CH), 137.7 (CH2=CH), 131.9 

(CH2CH=CH), 115.5 (CH2=CH), 32.5 (CH2=CHCH2), 32.0 (CH2CH=CH), 26.9 (CH3). 

GC-MS (GC-EI) m/z 124 [M+] (trace), 122 (4), 109 (14), 95 (12), 91 (3), 81 (58), 79 (35), 11 

(12), 66 (12), 55 (34), 53 (18), 51 (6), 43 (100), 41 (34), 27 (10). 

HRMS (CI-FE, i-butane) calcd for C8H13O [(M+H)+] 125.0966, found 125.0966. 

 

(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): 
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1H NMR (500 MHz, CD2Cl2) δ 6.71 (dd, J = 16.1, 6.8 Hz, 1H, =CHCH), 5.98 (dd, J = 16.3, 

1.2 Hz, 1H, CH=CHCH), 2.20 (s, 3H, CH3), 2.18-2.11 (m, 1H, =CHCH), 1.79-1.74 (m, 4H, 

CH2), 1.70-1.66 (m, 1H, CH2), 1.35-1.27 (m, 2H, CH2), 1.24-1.11 (m, 3H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 199.0 (C=O), 153.5 (=CHCH), 129.1 (CH=CHCH), 41.0 

(=CHCH), 32.2 (2C, CHCH2), 26.9 (CH3), 26.3 (CH2), 26.1 (2C, CH2). 

GC-MS (GC-EI) m/z 152 [M+]. 

HRMS (EI-FE) calcd for C10H16O [M+] 152.1200, found 152.1201. 

 

(E)-Octa-3,7-dien-2-one (92f): The title compound was prepared according to the general 

procedure B from 4-pentenal and 1-(triphenylphosphoranylidene)-2-

propanone. The crude product was purified by flash column chromato-

graphy (silica gel, 5-10% Et2O in pentane) to give enone 92f (2.19 g, 17.6 

mmol, 88%) as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.77 (dt, J = 16.1, 6.8 Hz, 1H, CH2CH=CH), 6.05 (dt, J = 

15.9, 1.5 Hz, 1H, CH2CH=CH), 5.82 (ddt, J = 16.9, 11.7, 6.0 Hz, 1H, CH2=CH), 5.06 (app. 

dq, J = 17.0, 1.7 Hz, 1H, CHtransH=), 5.01 (app. dq, J = 10.5, 1.5 Hz, 1H, CHHcis=), 2.35-2.30 

(m, 2H, CH2CH=CH), 2.25-2.21 (m, 2H, CH2=CHCH2), 2.20 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.5 (C=O), 147.6 (CH2CH=CH), 137.7 (CH2=CH), 131.9 

(CH2CH=CH), 115.5 (CH2=CH), 32.5 (CH2=CHCH2), 32.0 (CH2CH=CH), 26.9 (CH3). 

GC-MS (GC-EI) m/z 124 [M+] (trace), 122 (4), 109 (14), 95 (12), 91 (3), 81 (58), 79 (35), 11 

(12), 66 (12), 55 (34), 53 (18), 51 (6), 43 (100), 41 (34), 27 (10). 

HRMS (CI-FE, i-butane) calcd for C8H13O [(M+H)+] 125.0966, found 125.0966. 

 

(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): 
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6-(Tetrahydro-2H-pyran-2-yloxy)-1-hexanol (140h): A solution of 1,6-hexanediol (2.36 g, 

20.0 mmol, 1.7 equiv) and dihydropyrane (1.10 mL, 12.0 mmol) in 

THF (100 mL) in the presence of p-toluenesulfonic acid monohydrate 

(190 mg, 1.0 mmol) was stirred at 0 °C for 12 h. Then the solution was 

poured on saturated aqueous NaHCO3 solution and extracted with Et2O. The combined orga-

nic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, 40% EtOAc in hexanes) to 

provide THP-mono-protected alcohol 140h (1.44 g, 7.13 mmol, 59%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 4.55 (t, J = 3.4 Hz, 1H, OCHO), 3.88-3.81 (m, 1H, 

OCHHTHP), 3.72 (dt, J = 9.8, 6.8 Hz, 1H, THPOCHH), 3.62 (t, J = 6.6 Hz, 2H, CH2OH), 

3.51-3.44 (m, 1H, OCHHTHP), 3.37 (dt, J = 9.6, 6.5 Hz, 1H, THPOCHH), 1.86-1.35 (m, 15H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) δ 98.9 (OCHO), 67.5 (THPOCH2), 62.9 (OCH2), 62.4 (OCH2), 

32.7 (CH2), 30.8 (CH2), 29.7 (CH2), 26.0 (CH2), 25.6 (CH2), 25.5 (CH2), 19.7 (CH2). 

MS (EI-DE) m/z (%) 202 [M+] (trace), 129 (2), 117 (4), 101 (27), 85 (100), 67 (10), 55 (43), 

41 (22), 29 (9). 

HRMS (CI-FE, i-butane) calcd for C11H23O3 [(M+H)+] 203.1644, found 203.1647. 

 
6-(Tetrahydro-2H-pyran-2-yloxy)hexanal (139h): THP-mono-protected alcohol 140h (1.20 

g, 5.93 mmol) was dissolved in CH2Cl2 (15 mL) and anhydrous 

DMSO (2.36 mL, 33.2 mmol, 5.6 equiv) and Et3N (4.36 mL, 31.4 

mmol, 5.3 equiv) were added sequentially at room temperature. The 

resulting solution was cooled to 0 °C and SO3 • py complex (1.42 g, 8.90 mmol, 1.5 equiv) 

was added in several portions. The reaction mixture was kept at 0 °C for 1 h, and was then 

stirred at room temperature overnight (12 h). The reaction was quenched by the addition of 

water (10 mL) and extracted with Et2O (2×25 mL). The combined organic layers were 

washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude 

product was purified by flash column chromatography (silica gel, 20-30% Et2O in pentane) to 

afford aldehyde 139h (754 mg, 3.77 mmol, 64%) as a colorless liquid. 
1H NMR (500 MHz, CD2Cl2) δ 9.73 (t, J = 1.7 Hz, 1H, CHO), 4.53 (t, J = 3.8 Hz, 1H, 

CHTHP), 3.83-3.79 (m, 1H, OCHHTHP), 3.69 (dt, J = 9.6, 6.7 Hz, 1H, THPOCHH), 3.47-3.43 

(m, 1H, OCHHTHP), 3.35 (dt, J = 9.6, 6.4 Hz, 1H, THPOCHH), 2.42 (td, J = 7.3, 1.7 Hz, 2H, 

CH2CHO), 1.83-1.74 (m, 1H, CH2), 1.69-1.47 (m, 9H, CH2), 1.42-1.36 (m, 2H, CH2). 
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6-(Tetrahydro-2H-pyran-2-yloxy)-1-hexanol (140h): A solution of 1,6-hexanediol (2.36 g, 

20.0 mmol, 1.7 equiv) and dihydropyrane (1.10 mL, 12.0 mmol) in 

THF (100 mL) in the presence of p-toluenesulfonic acid monohydrate 

(190 mg, 1.0 mmol) was stirred at 0 °C for 12 h. Then the solution was 

poured on saturated aqueous NaHCO3 solution and extracted with Et2O. The combined orga-

nic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, 40% EtOAc in hexanes) to 

provide THP-mono-protected alcohol 140h (1.44 g, 7.13 mmol, 59%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 4.55 (t, J = 3.4 Hz, 1H, OCHO), 3.88-3.81 (m, 1H, 

OCHHTHP), 3.72 (dt, J = 9.8, 6.8 Hz, 1H, THPOCHH), 3.62 (t, J = 6.6 Hz, 2H, CH2OH), 

3.51-3.44 (m, 1H, OCHHTHP), 3.37 (dt, J = 9.6, 6.5 Hz, 1H, THPOCHH), 1.86-1.35 (m, 15H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) δ 98.9 (OCHO), 67.5 (THPOCH2), 62.9 (OCH2), 62.4 (OCH2), 

32.7 (CH2), 30.8 (CH2), 29.7 (CH2), 26.0 (CH2), 25.6 (CH2), 25.5 (CH2), 19.7 (CH2). 

MS (EI-DE) m/z (%) 202 [M+] (trace), 129 (2), 117 (4), 101 (27), 85 (100), 67 (10), 55 (43), 

41 (22), 29 (9). 

HRMS (CI-FE, i-butane) calcd for C11H23O3 [(M+H)+] 203.1644, found 203.1647. 

 
6-(Tetrahydro-2H-pyran-2-yloxy)hexanal (139h): THP-mono-protected alcohol 140h (1.20 

g, 5.93 mmol) was dissolved in CH2Cl2 (15 mL) and anhydrous 

DMSO (2.36 mL, 33.2 mmol, 5.6 equiv) and Et3N (4.36 mL, 31.4 

mmol, 5.3 equiv) were added sequentially at room temperature. The 

resulting solution was cooled to 0 °C and SO3 • py complex (1.42 g, 8.90 mmol, 1.5 equiv) 

was added in several portions. The reaction mixture was kept at 0 °C for 1 h, and was then 

stirred at room temperature overnight (12 h). The reaction was quenched by the addition of 

water (10 mL) and extracted with Et2O (2×25 mL). The combined organic layers were 

washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude 

product was purified by flash column chromatography (silica gel, 20-30% Et2O in pentane) to 

afford aldehyde 139h (754 mg, 3.77 mmol, 64%) as a colorless liquid. 
1H NMR (500 MHz, CD2Cl2) δ 9.73 (t, J = 1.7 Hz, 1H, CHO), 4.53 (t, J = 3.8 Hz, 1H, 

CHTHP), 3.83-3.79 (m, 1H, OCHHTHP), 3.69 (dt, J = 9.6, 6.7 Hz, 1H, THPOCHH), 3.47-3.43 

(m, 1H, OCHHTHP), 3.35 (dt, J = 9.6, 6.4 Hz, 1H, THPOCHH), 2.42 (td, J = 7.3, 1.7 Hz, 2H, 

CH2CHO), 1.83-1.74 (m, 1H, CH2), 1.69-1.47 (m, 9H, CH2), 1.42-1.36 (m, 2H, CH2). 
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6-(Tetrahydro-2H-pyran-2-yloxy)-1-hexanol (140h): A solution of 1,6-hexanediol (2.36 g, 

20.0 mmol, 1.7 equiv) and dihydropyrane (1.10 mL, 12.0 mmol) in 

THF (100 mL) in the presence of p-toluenesulfonic acid monohydrate 

(190 mg, 1.0 mmol) was stirred at 0 °C for 12 h. Then the solution was 

poured on saturated aqueous NaHCO3 solution and extracted with Et2O. The combined orga-

nic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, 40% EtOAc in hexanes) to 

provide THP-mono-protected alcohol 140h (1.44 g, 7.13 mmol, 59%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 4.55 (t, J = 3.4 Hz, 1H, OCHO), 3.88-3.81 (m, 1H, 

OCHHTHP), 3.72 (dt, J = 9.8, 6.8 Hz, 1H, THPOCHH), 3.62 (t, J = 6.6 Hz, 2H, CH2OH), 

3.51-3.44 (m, 1H, OCHHTHP), 3.37 (dt, J = 9.6, 6.5 Hz, 1H, THPOCHH), 1.86-1.35 (m, 15H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) δ 98.9 (OCHO), 67.5 (THPOCH2), 62.9 (OCH2), 62.4 (OCH2), 

32.7 (CH2), 30.8 (CH2), 29.7 (CH2), 26.0 (CH2), 25.6 (CH2), 25.5 (CH2), 19.7 (CH2). 

MS (EI-DE) m/z (%) 202 [M+] (trace), 129 (2), 117 (4), 101 (27), 85 (100), 67 (10), 55 (43), 

41 (22), 29 (9). 

HRMS (CI-FE, i-butane) calcd for C11H23O3 [(M+H)+] 203.1644, found 203.1647. 

 
6-(Tetrahydro-2H-pyran-2-yloxy)hexanal (139h): THP-mono-protected alcohol 140h (1.20 

g, 5.93 mmol) was dissolved in CH2Cl2 (15 mL) and anhydrous 

DMSO (2.36 mL, 33.2 mmol, 5.6 equiv) and Et3N (4.36 mL, 31.4 

mmol, 5.3 equiv) were added sequentially at room temperature. The 

resulting solution was cooled to 0 °C and SO3 • py complex (1.42 g, 8.90 mmol, 1.5 equiv) 

was added in several portions. The reaction mixture was kept at 0 °C for 1 h, and was then 

stirred at room temperature overnight (12 h). The reaction was quenched by the addition of 

water (10 mL) and extracted with Et2O (2×25 mL). The combined organic layers were 

washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude 

product was purified by flash column chromatography (silica gel, 20-30% Et2O in pentane) to 

afford aldehyde 139h (754 mg, 3.77 mmol, 64%) as a colorless liquid. 
1H NMR (500 MHz, CD2Cl2) δ 9.73 (t, J = 1.7 Hz, 1H, CHO), 4.53 (t, J = 3.8 Hz, 1H, 

CHTHP), 3.83-3.79 (m, 1H, OCHHTHP), 3.69 (dt, J = 9.6, 6.7 Hz, 1H, THPOCHH), 3.47-3.43 

(m, 1H, OCHHTHP), 3.35 (dt, J = 9.6, 6.4 Hz, 1H, THPOCHH), 2.42 (td, J = 7.3, 1.7 Hz, 2H, 

CH2CHO), 1.83-1.74 (m, 1H, CH2), 1.69-1.47 (m, 9H, CH2), 1.42-1.36 (m, 2H, CH2). 
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6-(Tetrahydro-2H-pyran-2-yloxy)-1-hexanol (140h): A solution of 1,6-hexanediol (2.36 g, 

20.0 mmol, 1.7 equiv) and dihydropyrane (1.10 mL, 12.0 mmol) in 

THF (100 mL) in the presence of p-toluenesulfonic acid monohydrate 

(190 mg, 1.0 mmol) was stirred at 0 °C for 12 h. Then the solution was 

poured on saturated aqueous NaHCO3 solution and extracted with Et2O. The combined orga-

nic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (silica gel, 40% EtOAc in hexanes) to 

provide THP-mono-protected alcohol 140h (1.44 g, 7.13 mmol, 59%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 4.55 (t, J = 3.4 Hz, 1H, OCHO), 3.88-3.81 (m, 1H, 

OCHHTHP), 3.72 (dt, J = 9.8, 6.8 Hz, 1H, THPOCHH), 3.62 (t, J = 6.6 Hz, 2H, CH2OH), 

3.51-3.44 (m, 1H, OCHHTHP), 3.37 (dt, J = 9.6, 6.5 Hz, 1H, THPOCHH), 1.86-1.35 (m, 15H, 

CH2 and OH). 
13C NMR (125 MHz, CD2Cl2) δ 98.9 (OCHO), 67.5 (THPOCH2), 62.9 (OCH2), 62.4 (OCH2), 

32.7 (CH2), 30.8 (CH2), 29.7 (CH2), 26.0 (CH2), 25.6 (CH2), 25.5 (CH2), 19.7 (CH2). 

MS (EI-DE) m/z (%) 202 [M+] (trace), 129 (2), 117 (4), 101 (27), 85 (100), 67 (10), 55 (43), 

41 (22), 29 (9). 

HRMS (CI-FE, i-butane) calcd for C11H23O3 [(M+H)+] 203.1644, found 203.1647. 

 
6-(Tetrahydro-2H-pyran-2-yloxy)hexanal (139h): THP-mono-protected alcohol 140h (1.20 

g, 5.93 mmol) was dissolved in CH2Cl2 (15 mL) and anhydrous 

DMSO (2.36 mL, 33.2 mmol, 5.6 equiv) and Et3N (4.36 mL, 31.4 

mmol, 5.3 equiv) were added sequentially at room temperature. The 

resulting solution was cooled to 0 °C and SO3 • py complex (1.42 g, 8.90 mmol, 1.5 equiv) 

was added in several portions. The reaction mixture was kept at 0 °C for 1 h, and was then 

stirred at room temperature overnight (12 h). The reaction was quenched by the addition of 

water (10 mL) and extracted with Et2O (2×25 mL). The combined organic layers were 

washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude 

product was purified by flash column chromatography (silica gel, 20-30% Et2O in pentane) to 

afford aldehyde 139h (754 mg, 3.77 mmol, 64%) as a colorless liquid. 
1H NMR (500 MHz, CD2Cl2) δ 9.73 (t, J = 1.7 Hz, 1H, CHO), 4.53 (t, J = 3.8 Hz, 1H, 

CHTHP), 3.83-3.79 (m, 1H, OCHHTHP), 3.69 (dt, J = 9.6, 6.7 Hz, 1H, THPOCHH), 3.47-3.43 

(m, 1H, OCHHTHP), 3.35 (dt, J = 9.6, 6.4 Hz, 1H, THPOCHH), 2.42 (td, J = 7.3, 1.7 Hz, 2H, 

CH2CHO), 1.83-1.74 (m, 1H, CH2), 1.69-1.47 (m, 9H, CH2), 1.42-1.36 (m, 2H, CH2). 
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13C NMR (125 MHz, CD2Cl2) δ 202.9 (C=O), 99.2 (O-CH-O), 67.5 (THPOCH2), 62.5 

(OCH2, THP), 44.2 (CH2CHO), 31.2 (CH2), 29.9 (CH2), 26.3 (CH2), 26.0 (CH2), 22.3 (CH2), 

20.1 (CH2). 

 
(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): The title compound was 

prepared according to the general procedure B from 6- 

(tetrahydro-2H-pyran-2-yloxy)hexanal (139h) with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was 

purified by flash column chromatography (silica gel, 10-30% Et2O in pentane) to afford enone 

92h (613 mg, 2.55 mmol, 85%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.79 (dt, J = 15.9, 7.0 Hz, 1H, =CHCH2), 6.04 (dt, J = 15.9, 

1.5 Hz, 1H, CH=CHCH2), 4.54-4.52 (br t, 1H, OCHO), 3.84-3.79 (m, 1H, OCHHTHP), 3.71-

3.67 (m, 1H, THPOCHH), 3.47-3.43 (m, 1H, OCHHTHP), 3.37-3.33 (m, 1H, THPOCHH), 

2.26-2.21 (m, 2H, =CHCH2), 2.20 (s, 3H, CH3), 1.82-1.75 (m, 1H, CH2), 1.69-1.64 (m, 1H, 

CH2), 1.60-1.47 (m, 8H, -(CH2)n-), 1.43-1.36 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 198.3 (C=O), 148.2 (=CHCH2), 131.4 (CH=CHCH2), 98.9 

(OCHO), 67.3 (THPOCH2), 62.2 (OCH2, THP), 32.4 (=CHCH2), 30.1 (CH2), 29.6 (CH2), 28.1 

(CH2), 26.6 (CH3), 25.9 (CH2), 25.7 (CH2), 19.8 (CH2). 

MS (EI-DE) m/z (%) 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 111 (2), 97 (17), 85 (100), 

81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO3 [(M+Na)+] 263.1615, found 263.1618. 

 

(E)-6-(tert-Butyldimethylsilyloxy)-3-hexen-2-one (92i): 
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3-(tert-Butyldimethylsilyloxy)-1-propanol (140i): 1,3-Propanediol (3.62 mL, 50.0 mmol, 

1.0 equiv) was dissolved in CH2Cl2 (150 mL) and triethylamine (6.93 mL, 

50.0 mmol, 1.0 equiv) and a solution of tert-butyldimethylsilyl chloride 

(7.54 g, 50.0 mmol, 1.0 equiv) in CH2Cl2 (20 mL) were added. After stirring for 16 h at room 
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13C NMR (125 MHz, CD2Cl2) δ 202.9 (C=O), 99.2 (O-CH-O), 67.5 (THPOCH2), 62.5 

(OCH2, THP), 44.2 (CH2CHO), 31.2 (CH2), 29.9 (CH2), 26.3 (CH2), 26.0 (CH2), 22.3 (CH2), 

20.1 (CH2). 

 
(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): The title compound was 

prepared according to the general procedure B from 6- 

(tetrahydro-2H-pyran-2-yloxy)hexanal (139h) with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was 

purified by flash column chromatography (silica gel, 10-30% Et2O in pentane) to afford enone 

92h (613 mg, 2.55 mmol, 85%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.79 (dt, J = 15.9, 7.0 Hz, 1H, =CHCH2), 6.04 (dt, J = 15.9, 

1.5 Hz, 1H, CH=CHCH2), 4.54-4.52 (br t, 1H, OCHO), 3.84-3.79 (m, 1H, OCHHTHP), 3.71-

3.67 (m, 1H, THPOCHH), 3.47-3.43 (m, 1H, OCHHTHP), 3.37-3.33 (m, 1H, THPOCHH), 

2.26-2.21 (m, 2H, =CHCH2), 2.20 (s, 3H, CH3), 1.82-1.75 (m, 1H, CH2), 1.69-1.64 (m, 1H, 

CH2), 1.60-1.47 (m, 8H, -(CH2)n-), 1.43-1.36 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 198.3 (C=O), 148.2 (=CHCH2), 131.4 (CH=CHCH2), 98.9 

(OCHO), 67.3 (THPOCH2), 62.2 (OCH2, THP), 32.4 (=CHCH2), 30.1 (CH2), 29.6 (CH2), 28.1 

(CH2), 26.6 (CH3), 25.9 (CH2), 25.7 (CH2), 19.8 (CH2). 

MS (EI-DE) m/z (%) 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 111 (2), 97 (17), 85 (100), 

81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO3 [(M+Na)+] 263.1615, found 263.1618. 

 

(E)-6-(tert-Butyldimethylsilyloxy)-3-hexen-2-one (92i): 
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3-(tert-Butyldimethylsilyloxy)-1-propanol (140i): 1,3-Propanediol (3.62 mL, 50.0 mmol, 

1.0 equiv) was dissolved in CH2Cl2 (150 mL) and triethylamine (6.93 mL, 

50.0 mmol, 1.0 equiv) and a solution of tert-butyldimethylsilyl chloride 

(7.54 g, 50.0 mmol, 1.0 equiv) in CH2Cl2 (20 mL) were added. After stirring for 16 h at room 
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13C NMR (125 MHz, CD2Cl2) δ 202.9 (C=O), 99.2 (O-CH-O), 67.5 (THPOCH2), 62.5 

(OCH2, THP), 44.2 (CH2CHO), 31.2 (CH2), 29.9 (CH2), 26.3 (CH2), 26.0 (CH2), 22.3 (CH2), 

20.1 (CH2). 

 
(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): The title compound was 

prepared according to the general procedure B from 6- 

(tetrahydro-2H-pyran-2-yloxy)hexanal (139h) with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was 

purified by flash column chromatography (silica gel, 10-30% Et2O in pentane) to afford enone 

92h (613 mg, 2.55 mmol, 85%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.79 (dt, J = 15.9, 7.0 Hz, 1H, =CHCH2), 6.04 (dt, J = 15.9, 

1.5 Hz, 1H, CH=CHCH2), 4.54-4.52 (br t, 1H, OCHO), 3.84-3.79 (m, 1H, OCHHTHP), 3.71-

3.67 (m, 1H, THPOCHH), 3.47-3.43 (m, 1H, OCHHTHP), 3.37-3.33 (m, 1H, THPOCHH), 

2.26-2.21 (m, 2H, =CHCH2), 2.20 (s, 3H, CH3), 1.82-1.75 (m, 1H, CH2), 1.69-1.64 (m, 1H, 

CH2), 1.60-1.47 (m, 8H, -(CH2)n-), 1.43-1.36 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 198.3 (C=O), 148.2 (=CHCH2), 131.4 (CH=CHCH2), 98.9 

(OCHO), 67.3 (THPOCH2), 62.2 (OCH2, THP), 32.4 (=CHCH2), 30.1 (CH2), 29.6 (CH2), 28.1 

(CH2), 26.6 (CH3), 25.9 (CH2), 25.7 (CH2), 19.8 (CH2). 

MS (EI-DE) m/z (%) 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 111 (2), 97 (17), 85 (100), 

81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO3 [(M+Na)+] 263.1615, found 263.1618. 
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3-(tert-Butyldimethylsilyloxy)-1-propanol (140i): 1,3-Propanediol (3.62 mL, 50.0 mmol, 

1.0 equiv) was dissolved in CH2Cl2 (150 mL) and triethylamine (6.93 mL, 

50.0 mmol, 1.0 equiv) and a solution of tert-butyldimethylsilyl chloride 

(7.54 g, 50.0 mmol, 1.0 equiv) in CH2Cl2 (20 mL) were added. After stirring for 16 h at room 
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13C NMR (125 MHz, CD2Cl2) δ 202.9 (C=O), 99.2 (O-CH-O), 67.5 (THPOCH2), 62.5 

(OCH2, THP), 44.2 (CH2CHO), 31.2 (CH2), 29.9 (CH2), 26.3 (CH2), 26.0 (CH2), 22.3 (CH2), 

20.1 (CH2). 

 
(E)-9-(Tetrahydro-2H-pyran-2-yloxy)-3-nonen-2-one (92h): The title compound was 

prepared according to the general procedure B from 6- 

(tetrahydro-2H-pyran-2-yloxy)hexanal (139h) with 1-(triphenyl-

phosphoranylidene)-2-propanone. The crude product was 

purified by flash column chromatography (silica gel, 10-30% Et2O in pentane) to afford enone 

92h (613 mg, 2.55 mmol, 85%) as a colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.79 (dt, J = 15.9, 7.0 Hz, 1H, =CHCH2), 6.04 (dt, J = 15.9, 

1.5 Hz, 1H, CH=CHCH2), 4.54-4.52 (br t, 1H, OCHO), 3.84-3.79 (m, 1H, OCHHTHP), 3.71-

3.67 (m, 1H, THPOCHH), 3.47-3.43 (m, 1H, OCHHTHP), 3.37-3.33 (m, 1H, THPOCHH), 

2.26-2.21 (m, 2H, =CHCH2), 2.20 (s, 3H, CH3), 1.82-1.75 (m, 1H, CH2), 1.69-1.64 (m, 1H, 

CH2), 1.60-1.47 (m, 8H, -(CH2)n-), 1.43-1.36 (m, 2H, CH2). 
13C NMR (125 MHz, CD2Cl2) δ 198.3 (C=O), 148.2 (=CHCH2), 131.4 (CH=CHCH2), 98.9 

(OCHO), 67.3 (THPOCH2), 62.2 (OCH2, THP), 32.4 (=CHCH2), 30.1 (CH2), 29.6 (CH2), 28.1 

(CH2), 26.6 (CH3), 25.9 (CH2), 25.7 (CH2), 19.8 (CH2). 

MS (EI-DE) m/z (%) 225 (2), 185 (1), 156 (11), 140 (10), 126 (6), 111 (2), 97 (17), 85 (100), 

81 (10), 67 (14), 55 (14), 43 (50), 29 (8). 

HRMS (ESI+) calcd for C14H24NaO3 [(M+Na)+] 263.1615, found 263.1618. 

 

(E)-6-(tert-Butyldimethylsilyloxy)-3-hexen-2-one (92i): 
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3-(tert-Butyldimethylsilyloxy)-1-propanol (140i): 1,3-Propanediol (3.62 mL, 50.0 mmol, 

1.0 equiv) was dissolved in CH2Cl2 (150 mL) and triethylamine (6.93 mL, 

50.0 mmol, 1.0 equiv) and a solution of tert-butyldimethylsilyl chloride 

(7.54 g, 50.0 mmol, 1.0 equiv) in CH2Cl2 (20 mL) were added. After stirring for 16 h at room 
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temperature, the reaction mixture was successively extracted with 10% aqueous NaHCO3 (50 

mL), water (50 mL), and brine (50 mL). The organic layer was dried (Na2SO4), filtered, and 

concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (silica gel, 10-30% EtOAc in hexane) to afford the title compound (9.00 g, 

47.3 mmol, 95%) as a colorless liquid. 
1H NMR (500 MHz, CDCl3) δ 3.81 (t, J = 5.5 Hz, 2H, TBSOCH2), 3.78 (app. br q, J = 5.1 

Hz, 2H, CH2OH), 2.59 (br s, 1H, OH), 1.75 (quint, J = 5.6 Hz, 2H, CH2CH2CH2), 0.88 (s, 9H, 

Cq(CH3)3), 0.05 (s, 6H, Si(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 63.0 (OCH2), 62.5 (OCH2), 34.2 (CH2CH2CH2), 25.9 (3C, 

Cq(CH3)3), 18.1 (CqMe3), -5.5 (2C, Si(CH3)2). 

GC-MS (GC-EI) m/z (%) 133 (14), 115 (3), 105 (41), 91 (3), 75 (100), 59 (5), 45 (6), 29 (2). 

HRMS (ESI+) calcd for C9H22NaO2Si [(M+Na)+] 213.1282, found 213.1281. 

 
3-(tert-Butyldimethylsilyloxy)propanal (139i): PCC (13.1 g, 60.6 mmol, 1.5 equiv) was 

added in one portion to a solution of 3-(tert-butyldimethylsilyloxy)-1-

propanol (140i; 7.69 g, 40.4 mmol, 1.0 equiv) in CH2Cl2 (130 mL). The 

mixture was stirred for 3 h at room temperature. Then the solution was 

separated from the black insoluble material, which was repeatedly extracted with Et2O (3 × 70 

mL). The combined organic layers were filtered through a plug of silica gel and evaporated to 

afford aldehyde 139i (5.20 g, 27.6 mmol) as a colorless liquid. The aldehyde was used in the 

next step without further purification. 
1H NMR (500 MHz, CDCl3) δ 9.78 (t, J = 2.0 Hz, 1H, CHO), 3.97 (t, J = 6.0 Hz, 2H, 

CH2OTBS), 2.58 (td, J = 6.0, 2.3 Hz, 2H, CH2CHO), 0.86 (s, 9H, Cq(CH3)3), 0.04 (s, 6H, 

Si(CH3)2). 

GC-MS (GC-EI) m/z (%) 131 (72), 117 (7), 101 (100), 89 (3), 75 (33), 73 (9), 59 (27), 45 (9), 

29 (4). 

 
(E)-6-(tert-Butyldimethylsilyloxy)-3-hexen-2-one (92i): The title compound was prepared 

according to the general procedure B from 3-(tert-butyldimethyl-

silyloxy)propanal (139i) with 1-(triphenylphosphoranylidene)-2-

propanone. The crude product was purified by flash column 

chromatography (silica gel, 5% Et2O in pentane) to afford enone 92i (819 mg, 3.59 mmol, 

72%) as a pale yellow oil. 
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temperature, the reaction mixture was successively extracted with 10% aqueous NaHCO3 (50 

mL), water (50 mL), and brine (50 mL). The organic layer was dried (Na2SO4), filtered, and 

concentrated under reduced pressure. The crude product was purified by flash column 
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1H NMR (500 MHz, CD2Cl2) δ 6.78 (dt, J = 16.1, 7.1 Hz, 1H, =CHCH2), 6.08 (dt, J = 16.1, 

1.6 Hz, 1H, CH=CHCH2), 3.74 (t, J = 6.3 Hz, 2H, TBSOCH2), 2.42 (app. qd, J = 6.6, 1.3 Hz, 

2H, =CHCH2), 2.21 (s, 3H, CH3C(=O)), 0.89 (s, 9H, Cq(CH3)3), 0.05 (s, 6H, Si(CH3)2). 
13C NMR (125 MHz, CD2Cl2) δ 198.4 (C=O), 145.4 (=CHCH2), 133.1 (CH=CHCH2), 61.9 

(TBSOCH2), 36.3 (=CHCH2), 26.8 (CH3C(=O)), 26.0 (3C, Cq(CH3)3), 18.5 (CqMe3), −5.3 

(2C, Si(CH3)2). 

MS (EI-DE) m/z (%) 228 [M+] (trace), 213 (3), 198 (5), 183 (2), 171 (93), 141 (100), 127 (33), 

115 (4), 103 (6), 89 (11), 75 (27), 59 (4), 43 (6), 29 (2). 

HRMS (ESI+) calcd for C12H24NaO2Si [(M+Na)+] 251.1437, found 251.1438. 

 

(E)-5-Phenyl-3-penten-2-one (92q): The title compound was prepared according to the 

general procedure B from phenylacetaldehyde with 1-(triphenylphosphor-

anylidene)-2-propanone. The reaction was constantly maintained at 0 °C. 

The crude product was purified by flash column chromatography (silica gel, 

5-10% Et2O in pentane) to afford enone 92q (414 mg, 2.58 mmol, 26%) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 7.32-7.28 (m, 2H, CHPh), 7.24-7.21 (m, 1H, CHPh, p), 7.16-

7.15 (m, 2H, CHPh), 6.89 (dt, J = 15.9, 6.9 Hz, 1H, =CHCH2), 6.05 (dt, J = 16.1, 1.6 Hz, 1H, 

CH=CHCH2), 3.52 (dd, J = 6.6, 1.3 Hz, 2H, PhCH2), 2.02 (s, 3H, CH3). 
13C NMR (125 MHz, CDCl3) δ 198.5 (C=O), 146.3 (=CHCH2), 137.6 (CqPh), 132.0 

(CH=CHCH2), 128.8 (2C, CHPh), 128.7 (2C, CHPh), 126.8 (CHPh, p), 38.8 (CH2), 26.9 (CH3). 

MS (EI-DE) m/z (%) 160 [M+] (59), 145 (27), 127 (31), 117 (100), 102 (3), 91 (38), 89 (8), 77 

(5), 65 (17), 58 (9), 51 (11), 43 (57), 39 (15), 27 (3). 

HRMS (EI-FE) calcd for C11H12O [M+] 160.0886, found 160.0888. 

 

(E)-6,6-Dimethylhept-3-en-2-one (92r): The title compound was prepared according to the 

general procedure B from 3,3-dimethylbutanal with 1-(triphenylphosphor-

anylidene)-2-propanone. The crude product was purified by flash column 

chromatography (silica gel, 5% Et2O in pentane) to give enone 92r (1.58 g, 

11.3 mmol, 56% (reduced yield due to the high volatility of 92r)) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3) δ 6.79 (dt, J = 15.6, 7.9 Hz, 1H, =CHCH2), 6.04 (dt, J = 15.9, 

1.4 Hz, 1H, CH=CHCH2), 2.22 (s, 3H, CH3C(=O)), 2.08 (dd, J = 7.8, 1.2 Hz, 2H, CH2), 0.92 

(s, 9H, Cq(CH3)3). 
13C NMR (125 MHz, CDCl3) δ 198.4 (C=O), 145.8 (=CHCH2), 133.2 (CH=CHCH2), 46.9 

(CH2), 31.4 (Cq), 29.4 (3C, Cq(CH3)3), 26.9 (CH3C(=O)). 
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GC-MS (GC-EI) m/z 140 [M+]. 

HRMS (CI-FE, i-butane) calcd for C9H17O [(M+H)+] 141.1280, found 141.1279. 

 

(E)-5-Benzyloxy-3-penten-2-one (105): The title compound was prepared according to the 

general procedure B from benzyloxyacetaldehyde with 1-(triphenyl-
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5-Hydroxy-2-methylhexan-3-one (141): To a solution of LDA, freshly prepared by addition 

of n-BuLi (26.8 ml, 67.0 mmol, 1.05 equiv, 2.5M in hexanes) to diisopropyl-

amine (9.40 mL, 67.0 mmol, 1.05 equiv) in THF (100 mL) at 0 °C, was added 

isopropylmethylketone (6.87 mL, 63.8 mmol) at −78 °C. After 30 min, 

acetaldehyde (9.01 mL, 159.5 mmol, 2.5 equiv) was added, and after stirring for 1h, the 

reaction was quenched by addition of saturated aqueous NaHCO3-solution (40 mL) −78 °C. 

Then, the reaction mixture was allowed to warm to room temperature, and the layers were 

separated. The aqueous layer was extracted with Et2O (2×75 mL) and the combined organic 

phases were successively washed with cold 1% aqueous HCl (80 mL), saturated aqueous 

NaHCO3-solution (80 mL), and brine (80 mL), dried over Na2SO4, filtered, and concentrated 

under reduced pressure to give aldol product 141 (7.91 g, 60.8 mmol, 95%) as a colorless oil. 
1H NMR (500 MHz, CDCl3) δ 4.21-4.14 (m, 1H, CH(OH)), 3.23 (d, J = 3.3 Hz, 1H, OH), 

2.62 (dd, J = 18.1, 3.3 Hz, 1H, CHH), 2.58-2.49 (m, 2H, CHH and CH(CH3)2), 1.16 (d, J = 

6.1 Hz, 3H, CH(OH)CH3), 1.08 (d, J = 7.0 Hz, 3H, CH(CH3)2), 1.07 (d, J = 6.9 Hz, 3H, 

CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 216.1 (C=O), 63.9 (CH(OH)), 47.9 (CH2), 41.4 (CH(CH3)2), 

22.3 (CH(OH)CH3), 18.0 (CH(CH3)2), 17.9 (CH(CH3)2). 

 

5-Methyl-4-oxohexan-2-yl methanesulfonate (142): The crude aldol product 141 (7.91 g, 

60.8 mmol) was dissolved in pyridine (60 mL) and methanesulfonyl chloride 

(5.59 mL, 71.7 mmol, 1.18 equiv) was added at 0 °C. The solution was kept at 

room temperature for 16 h. To work-up the reaction, water (120 mL) was 

added, and the mixture repeatedly extracted with Et2O (3×100 mL). The 

combined organic layers were washed with saturated aqueous CuSO4-solution (4×75 mL), 

and brine (100 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give mesylate 

142 (7.95 g, 38.2 mmol, 63%) as a yellow oil. 
1H NMR (500 MHz, CDCl3) δ 5.18-5.12 (m, 1H, CH(OMs)), 3.04-2.98 (m, 1H, CHH), 2.99 

(s, 3H, OSO2CH3), 2.62-2.54 (m, 2H, CHH and CH(CH3)2), 1.46 (d, J = 6.4 Hz, 3H, 

CH(OMs)CH3), 1.09 (d, J = 6.9 Hz, 3H, CH(CH3)2), 1.08 (d, J = 7.0 Hz, 3H, CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 210.7 (C=O), 75.8 (CH(OMs)), 46.3 (CH2), 41.2 (CH(CH3)2), 

38.0 (OSO2CH3), 21.6 (CH(OH)CH3), 17.8 (CH(CH3)2), 17.8 (CH(CH3)2). 
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(E)-2-Methylhex-4-en-3-one (92o): The crude mesylate 142 (7.85 g, 37.7 mmol) was 

dissolved in Et2O (40 mL), and triethylamine (7.84 mL, 56.6 mmol, 1.5 equiv) 

was added. After stirring for 18 h at room temperature, water (80 mL) was 

added, and the mixture was extracted with Et2O (3 × 80 mL). The combined 

organic layers were successively washed with cold aqueous 1% HCl (80 mL), saturated 

aqueous NaHCO3 solution (80 mL), water (80 mL), and brine (80 mL). The organic phase 

was dried (Na2SO4), filtered, and evaporated. The crude product was purified by flash column 

chromatography (silica gel, 3-5% Et2O in pentane) to afford enone 92o (2.64 g, 23.6 mmol, 

62% (reduced yield due to the high volatility of 92o)) as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 6.85 (dq, J = 15.4, 6.8 Hz, 1H, =CHCH3), 6.17 (dq, J = 15.4, 

1.6 Hz, 1H, CH=CHCH3), 2.80 (hept, J = 6.8 Hz, 1H, CHal), 1.88 (dd, J = 7.0, 1.9 Hz, 3H, 

=CHCH3), 1.06 (d, J = 6.6 Hz, 6H, CH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 203.7 (C=O), 142.4 (=CHCH3), 130.3 (CH=CHCH3), 38.6 

(CHMe2), 18.6 (2C, CH(CH3)2), 18.3 (=CHCH3). 

GC-MS (GC-EI) m/z 112 [M+]. 

HRMS (EI-FE) calcd for C7H12O [M+] 112.0888, found 112.0888. 

 

7.5.2.4 Synthesis of (Z)-6-phenyl-3-hexen-2-one ((Z)-92b) 

(Z)-6-Phenyl-3-hexen-2-one ((Z)-92b) was prepared according to a reaction sequence 

described by Heathcock et al.[171] 

 

 
 
6-Phenylhex-3-yn-2-ol (143): n-BuLi (8.0 mL, 20.0 mmol, 2.5M in hexanes, 1.0 equiv) was 

added to a stirred solution of 4-phenylbut-1-yne (2.81 mL, 20.0 mmol, 

1.0 equiv) in THF (11 mL) at −78 °C. After 15 min, acetaldehyde (1.70 

mL, 30.0 mmol, 1.5 equiv) was added over 1 min. Then the reaction 

mixture was allowed to warm to room temperature and after 1 h, the 
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reaction was quenched by the addition of aqueous saturated NH4Cl-solution (20 mL) and 

repeatedly extracted with Et2O (3×50 mL). The combined organic phases were successively 

washed with water and brine, dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The crude product was purified by flash column chromatography (silica gel, 20% 

Et2O in pentane) and 6-phenylhex-3-yn-2-ol (143; 3.13 g, 18.0 mmol, 90%) was obtained as a 

colorless oil. 
1H NMR (500 MHz, CD2Cl2) δ 7.32-7.29 (m, 2H, CHPh, m), 7.24-7.20 (m, 3H, CHPh, o, p), 

4.48-4.43 (m, 1H, CHOH), 2.81 (t, J = 7.5 Hz, 2H, PhCH2), 2.49 (td, J = 7.5, 1.9 Hz, 2H, 

PhCH2CH2), 1.92-1.88 (m, 1H, OH), 1.37 (d, J = 6.6 Hz, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 141.4 (CqPh), 129.1 (2C, CHPh), 128.8 (2C, CHPh), 126.8 

(CHPh, p), 84.0 (C≡C), 83.8 (C≡C), 58.9 (COH), 35.5 (PhCH2), 25.1 (CH3), 21.4 (PhCH2CH2). 

GC-MS (GC-EI) m/z (%) 173 (1), 156 (6), 141 (4), 129 (21), 115 (9), 102 (2), 91 (100), 77 

(4), 65 (16), 51 (7), 43 (9), 29 (7). 

HRMS (EI-FE) calcd for C12H15O [(M+H)+] 175.1124, found 175.1123. 

 

6-Phenylhex-3-yn-2-one (144): A solution of propargylic alcohol 143 (2.75 g, 15.8 mmol) 

and PCC (7.50 g, 34.7 mmol, 2.2 equiv) in CH2Cl2 (80 mL) was stirred 

at room temperature for 12 h. Florisil (5 g) was added to the reaction 

mixture, and stirring was continued for another 15 min. After filtration 

through a plug of silica gel (eluent: Et2O), the solvents were removed 

in vacuo giving 6-phenylhex-3-yn-2-one (144; 2.42 g, 14.1 mmol, 89%) as a clear oil, which 

was used in the next step without further purification. 
1H NMR (500 MHz, CD2Cl2) δ 7.34-7.31 (m, 2H, CHPh, m), 7.26-7.23 (m, 3H, CHPh, o, p), 2.89 

(t, J = 7.4 Hz, 2H, PhCH2), 2.67 (t, J = 7.4 Hz, 2H, PhCH2CH2), 2.26 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 184.8 (C=O), 140.2 (Cqar), 128.8 (2C, CHar), 128.7 (2C, 

CHar), 126.9 (CHPh, p), 92.9 (CH2C≡C), 82.0 (CH2C≡), 34.2 (PhCH2), 32.9 (CH3), 21.3 

(PhCH2CH2). 

MS (EI-DE) m/z (%) 172 [M+] (2), 157 (13), 144 (1), 129 (31), 115 (1), 102 (1), 91 (100), 77 

(2), 65 (13), 51 (4), 43 (14), 27 (1). 

HRMS (CI-FE, i-butane) calcd for C12H13O [(M+H)+] 173.0965, found 173.0966. 
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(Z)-6-phenyl-3-hexen-2-one ((Z)-92b): A mixture of ketone 144 (2.0 g, 11.6 mmol), 

quinoline (20 mg, 1 wt%), 5% Pd/BaSO4 (200 mg, 10 wt%), and Et2O 

(12 mL) as the solvent were placed under a hydrogen atmosphere (1 

atm) and stirred at room temperature for 22 h. The catalyst was removed 

by filtration and the volatiles under reduced pressure. 1H NMR of the 

crude product showed the desired (Z)-enone 92b contaminated with 25% of the (E)-isomer, 

which was separated by flash column chromatography (silica gel, 10-15% Et2O in pentane). 

Pure (Z)-enone ((Z)-92b; 1.40 g, 8.04 mmol, 69%) was obtained as a pale yellow oil. 
1H NMR (500 MHz, CD2Cl2) δ 7.30-7.27 (m, 2H, CHPh, m), 7.22-7.17 (m, 3H, CHPh, o and p), 

6.15 (dt, J = 11.3, 1.3 Hz, 1H, CH=CHCH2), 6.08 (dt, J = 11.4, 7.1 Hz, 1H, =CHCH2), 2.90 

(app. qd, J = 7.6, 1.2 Hz, 2H, =CHCH2), 2.74 (t, J = 7.7 Hz, 2H, PhCH2), 2.15 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.9 (C=O), 146.5 (=CHCH2), 141.5 (CqPh), 128.5 (2C, 

CHPh, o), 128.4 (2C, CHPh, m), 127.6 (CH=CHCH2), 126.0 (CHPh, p), 35.1 (PhCH2), 31.4 (CH3), 

30.9 (=CHCH2). 

MS (EI-DE) m/z (%) 174 [M+] (19), 159 (3), 141 (2), 131 (33), 117 (7), 104 (19), 91 (100), 83 

(2), 77 (3), 65 (12), 51 (3), 43 (21), 39 (4), 27 (2). 

HRMS (EI-FE) calcd for C12H14O [M+] 174.1045, found 174.1045. 

 

7.5.2.5 Synthesis of 4,8-dimethylnona-3,7-dien-2-one (100) 

4,8-Dimethylnona-3,7-dien-2-one (100) was prepared according to a procedure of Shibasaki 

et al.[172] 

 

 
 
4,8-Dimethylnona-3,7-dien-2-ol (145): MeLi (24.4 mL, 39.0 mmol, 1.3 equiv; 1.6M in Et2O) 

was added at −78 °C to a solution of citral (5.14 mL, 30.0 mmol, 1.0 

equiv; geranial/neral 64:36) in Et2O (150 mL). After stirring at the 

same temperature for 1.5 h, 1 N aqueous HCl was added slowly. The 

phases were separated and the aqueous phase was extracted twice with Et2O. The combined 

organic layers were washed with water and brine, dried (Na2SO4), and concentrated under 

reduced pressure. The residue was purified by flash column chromatography (silica gel; 20-
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(app. qd, J = 7.6, 1.2 Hz, 2H, =CHCH2), 2.74 (t, J = 7.7 Hz, 2H, PhCH2), 2.15 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.9 (C=O), 146.5 (=CHCH2), 141.5 (CqPh), 128.5 (2C, 

CHPh, o), 128.4 (2C, CHPh, m), 127.6 (CH=CHCH2), 126.0 (CHPh, p), 35.1 (PhCH2), 31.4 (CH3), 

30.9 (=CHCH2). 

MS (EI-DE) m/z (%) 174 [M+] (19), 159 (3), 141 (2), 131 (33), 117 (7), 104 (19), 91 (100), 83 

(2), 77 (3), 65 (12), 51 (3), 43 (21), 39 (4), 27 (2). 

HRMS (EI-FE) calcd for C12H14O [M+] 174.1045, found 174.1045. 

 

7.5.2.5 Synthesis of 4,8-dimethylnona-3,7-dien-2-one (100) 

4,8-Dimethylnona-3,7-dien-2-one (100) was prepared according to a procedure of Shibasaki 

et al.[172] 

 

 
 
4,8-Dimethylnona-3,7-dien-2-ol (145): MeLi (24.4 mL, 39.0 mmol, 1.3 equiv; 1.6M in Et2O) 

was added at −78 °C to a solution of citral (5.14 mL, 30.0 mmol, 1.0 

equiv; geranial/neral 64:36) in Et2O (150 mL). After stirring at the 

same temperature for 1.5 h, 1 N aqueous HCl was added slowly. The 

phases were separated and the aqueous phase was extracted twice with Et2O. The combined 

organic layers were washed with water and brine, dried (Na2SO4), and concentrated under 

reduced pressure. The residue was purified by flash column chromatography (silica gel; 20-

OH

C11H20O
168,28

O
C12H14O
174,24

7  Experimental Part 

242 
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4,8-Dimethylnona-3,7-dien-2-one (100) was prepared according to a procedure of Shibasaki 
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was added at −78 °C to a solution of citral (5.14 mL, 30.0 mmol, 1.0 

equiv; geranial/neral 64:36) in Et2O (150 mL). After stirring at the 

same temperature for 1.5 h, 1 N aqueous HCl was added slowly. The 
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reduced pressure. The residue was purified by flash column chromatography (silica gel; 20-

OH

C11H20O
168,28

O
C12H14O
174,24



7 Experimental Part 

 243

30% Et2O in pentane) to give alcohol 145 (4.55 g, 27.1 mmol, 90%; E/Z 64:36) as a colorless 

liquid. Characterized as a mixture of 3E/3Z-isomers. 
1H NMR (500 MHz, CD2Cl2) δ 5.21-5.17 (m, 2H, CHol), 5.14-5.08 (m, 2H, CHol), 4.56-4.47 

(m, 2H, CHOH), 2.11-1.97 (m, 8H, CH2), 1.71-1.66 (m, 12H, CqolCH3), 1.61 (s, 6H, 

CqolCH3), 1.42-1.40 (m, 2H, OH), 1.19-1.16 (m, 6H, CHCH3). 
13C NMR (125 MHz, CD2Cl2) 3E-4,8-dimethylnona-3,7-dien-2-ol: δ 137.4 (CH2Cqol), 131.9 

(Me2Cqol), 129.8 (CHolCH), 124.3 (CHolCH2), 64.9 (CHOH), 39.8 (CH2Cqol), 26.8 

(CHolCH2), 25.7 (CH3), 23.8 (CH3), 17.7 (CH3), 16.4 (CH3); 3Z-4,8-dimethylnona-3,7-dien-2-

ol: δ 137.7 (CH2Cqol), 132.6 (Me2Cqol), 130.7 (CHolCH), 124.3 (CHolCH2), 64.4 (CHOH), 

32.5 (CH2Cqol), 26.9 (CHolCH2), 25.7 (CH3), 23.8 (CH3), 23.3 (CH3), 17.7 (CH3). 

GC-MS (GC-EI) 3E-4,8-dimethylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (4), 135 

(9), 123 (4), 107 (53), 91 (13), 79 (20), 69 (100), 53 (11), 43 (34), 41 (72), 29 (8); 3Z-4,8-di-

methylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (6), 121 (5), 107 (72), 93 (18), 82 

(28), 69 (100), 65 (6), 59 (2), 53 (13), 41 (85), 39 (19), 29 (9). 

HRMS (EI-DE) calcd for C11H20O [M+] 168.1513, found 168.1514. 

 

4,8-Dimethylnona-3,7-dien-2-one (100): To a suspension of alcohol 145 (2.20 g, 13.1 mmol) 

and powered 4Å MS (6.54 g) in CH2Cl2 (40 mL) were added 

successively at 0 °C NMO (2.67 g, 19.7 mmol, 1.5 equiv) and TPAP 

(233 mg, 0.66 mmol, 0.05 mol%). After stirring for 45 min at 

ambient temperature, the mixture was filtered through a short pad of silica gel (eluent: 

EtOAc). The filtrate was concentrated under reduced pressure and flash column 

chromatography (silica gel, 8% Et2O in pentane) afforded pure fractions of 3E- and 3Z-

isomers as colorless oils [3E-4,8-dimethylnona-3,7-dien-2-one ((E)-100; 450 mg, 2.71 mmol, 

21%); 3Z-4,8-dimethylnona-3,7-dien-2-one ((Z)-100; 303 mg, 1.82 mmol, 14%); 3Z/E-4,8-

dimethylnona-3,7-dien-2-one (1.17 g, 7.04 mmol, 54%; E/Z 73:27)]. 

(3E)-4,8-Dimethylnona-3,7-dien-2-one (E-100):  
1H NMR (500 MHz, CD2Cl2) δ 6.06 (s, 1H, =CHC(=O)), 5.11-5.07 

(m, 1H, =CHCH2), 2.17-2.11 (m overlapped, 4H, CH2), 2.13 (s 

overlapped, 3H, CH3C(=O)), 2.09 (d, J = 1.2 Hz, 3H, CH3), 1.68 (s, 3H, CH3), 1.61 (s, 3H, 

CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.8 (C=O), 158.1 (CH2Cqol), 132.8 (Me2Cqol), 124.0 

(CHol), 123.5 (CHol), 41.4 (CH2Cqol), 31.9 (CH3C(=O)), 26.5 (CHolCH2), 25.7 (CH3), 19.2 

(CH3), 17.7 (CH3). 
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30% Et2O in pentane) to give alcohol 145 (4.55 g, 27.1 mmol, 90%; E/Z 64:36) as a colorless 

liquid. Characterized as a mixture of 3E/3Z-isomers. 
1H NMR (500 MHz, CD2Cl2) δ 5.21-5.17 (m, 2H, CHol), 5.14-5.08 (m, 2H, CHol), 4.56-4.47 
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32.5 (CH2Cqol), 26.9 (CHolCH2), 25.7 (CH3), 23.8 (CH3), 23.3 (CH3), 17.7 (CH3). 

GC-MS (GC-EI) 3E-4,8-dimethylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (4), 135 

(9), 123 (4), 107 (53), 91 (13), 79 (20), 69 (100), 53 (11), 43 (34), 41 (72), 29 (8); 3Z-4,8-di-

methylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (6), 121 (5), 107 (72), 93 (18), 82 

(28), 69 (100), 65 (6), 59 (2), 53 (13), 41 (85), 39 (19), 29 (9). 

HRMS (EI-DE) calcd for C11H20O [M+] 168.1513, found 168.1514. 

 

4,8-Dimethylnona-3,7-dien-2-one (100): To a suspension of alcohol 145 (2.20 g, 13.1 mmol) 

and powered 4Å MS (6.54 g) in CH2Cl2 (40 mL) were added 

successively at 0 °C NMO (2.67 g, 19.7 mmol, 1.5 equiv) and TPAP 

(233 mg, 0.66 mmol, 0.05 mol%). After stirring for 45 min at 

ambient temperature, the mixture was filtered through a short pad of silica gel (eluent: 

EtOAc). The filtrate was concentrated under reduced pressure and flash column 

chromatography (silica gel, 8% Et2O in pentane) afforded pure fractions of 3E- and 3Z-

isomers as colorless oils [3E-4,8-dimethylnona-3,7-dien-2-one ((E)-100; 450 mg, 2.71 mmol, 

21%); 3Z-4,8-dimethylnona-3,7-dien-2-one ((Z)-100; 303 mg, 1.82 mmol, 14%); 3Z/E-4,8-

dimethylnona-3,7-dien-2-one (1.17 g, 7.04 mmol, 54%; E/Z 73:27)]. 

(3E)-4,8-Dimethylnona-3,7-dien-2-one (E-100):  
1H NMR (500 MHz, CD2Cl2) δ 6.06 (s, 1H, =CHC(=O)), 5.11-5.07 

(m, 1H, =CHCH2), 2.17-2.11 (m overlapped, 4H, CH2), 2.13 (s 

overlapped, 3H, CH3C(=O)), 2.09 (d, J = 1.2 Hz, 3H, CH3), 1.68 (s, 3H, CH3), 1.61 (s, 3H, 

CH3). 
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(CHol), 123.5 (CHol), 41.4 (CH2Cqol), 31.9 (CH3C(=O)), 26.5 (CHolCH2), 25.7 (CH3), 19.2 

(CH3), 17.7 (CH3). 
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30% Et2O in pentane) to give alcohol 145 (4.55 g, 27.1 mmol, 90%; E/Z 64:36) as a colorless 

liquid. Characterized as a mixture of 3E/3Z-isomers. 
1H NMR (500 MHz, CD2Cl2) δ 5.21-5.17 (m, 2H, CHol), 5.14-5.08 (m, 2H, CHol), 4.56-4.47 

(m, 2H, CHOH), 2.11-1.97 (m, 8H, CH2), 1.71-1.66 (m, 12H, CqolCH3), 1.61 (s, 6H, 

CqolCH3), 1.42-1.40 (m, 2H, OH), 1.19-1.16 (m, 6H, CHCH3). 
13C NMR (125 MHz, CD2Cl2) 3E-4,8-dimethylnona-3,7-dien-2-ol: δ 137.4 (CH2Cqol), 131.9 

(Me2Cqol), 129.8 (CHolCH), 124.3 (CHolCH2), 64.9 (CHOH), 39.8 (CH2Cqol), 26.8 
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32.5 (CH2Cqol), 26.9 (CHolCH2), 25.7 (CH3), 23.8 (CH3), 23.3 (CH3), 17.7 (CH3). 

GC-MS (GC-EI) 3E-4,8-dimethylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (4), 135 

(9), 123 (4), 107 (53), 91 (13), 79 (20), 69 (100), 53 (11), 43 (34), 41 (72), 29 (8); 3Z-4,8-di-

methylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (6), 121 (5), 107 (72), 93 (18), 82 

(28), 69 (100), 65 (6), 59 (2), 53 (13), 41 (85), 39 (19), 29 (9). 

HRMS (EI-DE) calcd for C11H20O [M+] 168.1513, found 168.1514. 

 

4,8-Dimethylnona-3,7-dien-2-one (100): To a suspension of alcohol 145 (2.20 g, 13.1 mmol) 

and powered 4Å MS (6.54 g) in CH2Cl2 (40 mL) were added 

successively at 0 °C NMO (2.67 g, 19.7 mmol, 1.5 equiv) and TPAP 

(233 mg, 0.66 mmol, 0.05 mol%). After stirring for 45 min at 

ambient temperature, the mixture was filtered through a short pad of silica gel (eluent: 

EtOAc). The filtrate was concentrated under reduced pressure and flash column 

chromatography (silica gel, 8% Et2O in pentane) afforded pure fractions of 3E- and 3Z-
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30% Et2O in pentane) to give alcohol 145 (4.55 g, 27.1 mmol, 90%; E/Z 64:36) as a colorless 

liquid. Characterized as a mixture of 3E/3Z-isomers. 
1H NMR (500 MHz, CD2Cl2) δ 5.21-5.17 (m, 2H, CHol), 5.14-5.08 (m, 2H, CHol), 4.56-4.47 

(m, 2H, CHOH), 2.11-1.97 (m, 8H, CH2), 1.71-1.66 (m, 12H, CqolCH3), 1.61 (s, 6H, 

CqolCH3), 1.42-1.40 (m, 2H, OH), 1.19-1.16 (m, 6H, CHCH3). 
13C NMR (125 MHz, CD2Cl2) 3E-4,8-dimethylnona-3,7-dien-2-ol: δ 137.4 (CH2Cqol), 131.9 

(Me2Cqol), 129.8 (CHolCH), 124.3 (CHolCH2), 64.9 (CHOH), 39.8 (CH2Cqol), 26.8 
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GC-MS (GC-EI) 3E-4,8-dimethylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (4), 135 

(9), 123 (4), 107 (53), 91 (13), 79 (20), 69 (100), 53 (11), 43 (34), 41 (72), 29 (8); 3Z-4,8-di-

methylnona-3,7-dien-2-ol: m/z (%) 168 [M+] (trace), 150 (6), 121 (5), 107 (72), 93 (18), 82 

(28), 69 (100), 65 (6), 59 (2), 53 (13), 41 (85), 39 (19), 29 (9). 

HRMS (EI-DE) calcd for C11H20O [M+] 168.1513, found 168.1514. 

 

4,8-Dimethylnona-3,7-dien-2-one (100): To a suspension of alcohol 145 (2.20 g, 13.1 mmol) 

and powered 4Å MS (6.54 g) in CH2Cl2 (40 mL) were added 

successively at 0 °C NMO (2.67 g, 19.7 mmol, 1.5 equiv) and TPAP 

(233 mg, 0.66 mmol, 0.05 mol%). After stirring for 45 min at 

ambient temperature, the mixture was filtered through a short pad of silica gel (eluent: 

EtOAc). The filtrate was concentrated under reduced pressure and flash column 

chromatography (silica gel, 8% Et2O in pentane) afforded pure fractions of 3E- and 3Z-

isomers as colorless oils [3E-4,8-dimethylnona-3,7-dien-2-one ((E)-100; 450 mg, 2.71 mmol, 

21%); 3Z-4,8-dimethylnona-3,7-dien-2-one ((Z)-100; 303 mg, 1.82 mmol, 14%); 3Z/E-4,8-

dimethylnona-3,7-dien-2-one (1.17 g, 7.04 mmol, 54%; E/Z 73:27)]. 

(3E)-4,8-Dimethylnona-3,7-dien-2-one (E-100):  
1H NMR (500 MHz, CD2Cl2) δ 6.06 (s, 1H, =CHC(=O)), 5.11-5.07 

(m, 1H, =CHCH2), 2.17-2.11 (m overlapped, 4H, CH2), 2.13 (s 

overlapped, 3H, CH3C(=O)), 2.09 (d, J = 1.2 Hz, 3H, CH3), 1.68 (s, 3H, CH3), 1.61 (s, 3H, 

CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.8 (C=O), 158.1 (CH2Cqol), 132.8 (Me2Cqol), 124.0 

(CHol), 123.5 (CHol), 41.4 (CH2Cqol), 31.9 (CH3C(=O)), 26.5 (CHolCH2), 25.7 (CH3), 19.2 

(CH3), 17.7 (CH3). 
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GC-MS (GC-EI) m/z (%) 166 [M+] (5), 151 (8), 133 (2), 123 (24), 108 (21), 98 (19), 93 (7), 

83 (56), 69 (100), 53 (10), 41 (80), 39 (16), 27 (6). 

HRMS (EI-FE) calcd for C11H18O [M+] 166.1355, found 166.1358. 

(3Z)-4,8-Dimethylnona-3,7-dien-2-one (Z-100) 
1H NMR (500 MHz, CD2Cl2) δ 6.06 (s, 1H, =CHC(=O)), 5.15-5.12 (m, 

1H, =CHCH2), 2.55 (dd, J = 7.9 Hz, 2H, CH2Cqol), 2.14-2.09 (m 

overlapped, 2H, =CHCH2), 2.11 (s overlapped, 3H, CH3C(=O)), 1.86 (d, 

J = 1.3 Hz, 3H, CH3), 1.68 (s, 3H, CH3), 1.62 (s, 3H, CH3). 
13C NMR (125 MHz, CD2Cl2) δ 198.2 (C=O), 158.7 (CH2Cqol), 132.4 (Me2Cqol), 124.5 

(CHol), 124.1 (CHol), 33.9 (CH2Cqol), 31.8 (CH3C(=O)), 27.1 (CHolCH2), 25.7 (CH3), 25.5 

(CH3), 17.7 (CH3). 

GC-MS (GC-EI) m/z (%) 166 [M+] (6), 151 (10), 133 (4), 123 (34), 108 (34), 98 (23), 83 

(75), 69 (100), 65 (5), 59 (5), 55 (16), 41 (90), 39 (21), 27 (8). 

HRMS (EI-FE) calcd for C11H18O [M+] 166.1356, found 166.1358. 

 

7.6 Catalyst Synthesis 

7.6.1 Synthesis of 9-Amino(9-deoxy) Cinchona Alkaloid Derivatives 

Cinchona alkaloid-derived primary amines described in the following paragraphs were 

prepared according to literature procedures reported by Brunner et al.[49a] and Soós et al.[175] 

 
9-Amino(9-deoxy)epiquinine (9-NH2-epiQ; 13)[175] 

 

 
 
Quinine (Q; 6.48 g, 20.0 mmol) and triphenylphosphine (6.30 g, 24.0 mmol, 1.2 equiv) were 

dissolved in THF (100 mL) and the solution was cooled to 0 °C. Then diisopropyl 

azodicarboxylate (4.64 mL, 24.0 mmol, 1.2 equiv) was added all at once followed by the 

dropwise addition of a solution of diphenyl phosphoryl azide (5.16 mL, 24.0 mmol, 1.2 equiv) 

in THF (40 mL). Then the reaction mixture was allowed to warm to room temperature, stirred 

overnight (12 h), and the resulting solution was further heated to 50 °C for additional 2 h. 
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Next, triphenylphosphine (6.82 g, 26.0 mmol, 1.3 equiv) was added and the heating (50 °C) 

was maintained until the gas evolution has ceased (3 h). Then, the solution was cooled to 

room temperature, and water (2 mL) was added. After stirring for 12 h, the solvents were 

removed under reduced pressure, and the residue was extracted with CH2Cl2 and 10% 

aqueous HCl (1:1, 200 mL). The phases were separated, and the aqueous phase was 

repeatedly washed with CH2Cl2 (4 × 100 mL). Then the aqueous phase was made alkaline 

with excess aqueous ammonia at 0 °C and subsequently extracted with CH2Cl2 (4 × 100 mL). 

The combined organic phases were dried (Na2SO4), filtered, and concentrated in vacuo. The 

residue was purified by flash column chromatography (silica gel, methanol/EtOAc 50:50 with 

1% aq. NH4OH) affording the title compound as a white semi-solid (4.93 g, 15.3 mmol, 76%). 

The analytical data were identical in all respects to those previously reported.[49a] 
1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 4.5 Hz, 1H, CH2'), 8.01 (d, J = 9.2 Hz, 1H, CH8'), 

7.64 (br s, 1H, CH5'), 7.43 (br d, J = 4.2 Hz, 1H, CH3'), 7.36 (dd, J = 9.1, 2.8 Hz, 1H, CH7'), 

5.78 (ddd, J = 17.3, 10.1, 7.3 Hz, 1H, CH=CH2), 5.00-4.93 (m, 2H, CH=CH2), 4.57 (br d, J = 

9.7 Hz, 1H, CH9NH2), 3.94 (s, 3H, OCH3), 3.26 (dd, J = 13.8, 10.0 Hz, 1H, CHH2), 3.21-3.15 

(m, 1H, CHH6), 3.11-3.02 (m, 1H, CH8), 2.82-2.75 (m, 2H, CHH6 and CHH2), 2.30-2.23 (m, 

1H, CH3), 1.94 (br s, 2H, NH2), 1.62-1.58 (m, 1H, CH4), 1.57-1.50 (m, 2H, CH2
5), 1.45-1.36 

(m, 1H, CHH7), 0.75 (ddt, J = 13.6, 7.5, 1.9 Hz, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.6 (Cq6'OMe), 147.8 (C2'H), 147.0 (Cq), 144.7 (Cq), 141.7 

(CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 121.2 (C7'H), 119.9 (C3'H), 114.3 (CH=CH2), 102.0 

(C5'H), 61.9 (C8H), 56.3 (C2H2), 55.5 (OCH3), 52.5 (C9HNH2), 40.9 (C6H2), 39.8 (C3H), 28.2 

(C5H2), 27.5 (C4H), 26.0 (C7H2). 

MS (EI-DE) m/z (%) 323 [M+] (2), 199 (1), 187 (15), 160 (2), 136 (100), 108 (6), 95 (3), 82 

(8), 70 (5), 56 (4), 42 (4). 

HRMS (ESI+) calcd for C20H25N3NaO [(M+Na)+] 346.1889, found 346.1890. 

 

9-Amino(9-deoxy)epiquinidine (9-NH2-epiQD; 67):[49a] Amine 67 was prepared starting 

from quinidine (QD; 1.95 g, 6.0 mmol) following the same procedure 

described for the synthesis of 9-amino(9-deoxy)epiquinine (13). After 

hydrolyzing the reaction overnight (12 h), the solvents were removed 

under reduced pressure, and the residue was extracted with CH2Cl2 and 

10% aqueous HCl (1:1, 200 mL). The phases were separated, the aqueous 

phase was concentrated in vacuo, and the residue was crystallized from 

methanol. The white precipitate was collected and dissolved in water. Then the aqueous phase 
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was made alkaline by the addition of K2CO3, and repeatedly extracted with CH2Cl2 (3 × 50 

mL). The combined organic phases were dried (Na2SO4) and evaporated under reduced 

pressure affording the pure title compound (820 mg, 2.54 mmol, 42%) as a pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.72 (d, J = 4.6 Hz, 1H, CH2'), 8.00 (d, J = 9.1 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.50 (br s, 1H, CH3'), 7.34 (dd, J = 9.2, 2.7 Hz, 1H, CH7'), 5.86 (ddd, J 

= 17.0, 10.6, 6.4 Hz, 1H, CH=CH2), 5.07-5.01 (m, 2H, CH=CH2), 4.64 (br d, J = 9.1 Hz, 1H, 

CH9NH2), 3.94 (s, 3H, OCH3), 3.04-2.88 (m, 5H, CH8, CH2
6and CH2

2), 2.24 (app. br q, J = 

8.0 Hz, 1H, CH3), 2.02 (br s, 2H, NH2), 1.60-1.56 (m, 1H, CH4), 1.54-1.48 (m, 2H, CH2
5), 

1.11 (dd, J = 13.4, 8.8 Hz, 1H, CHH7), 0.96-0.88 (m, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.6 (Cq6'OMe), 147.8 (C2'H), 147.5 (Cq), 144.7 (Cq), 140.7 

(CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 121.6 (C7'H), 119.9 (C3'H), 114.4 (CH=CH2), 101.4 

(C5'H), 62.4 (C8H), 55.4 (OCH3), 51.6 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.4 (C3H), 27.6 

(C4H), 26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 323 [M+] (63), 306 (10), 282 (3), 265 (2), 240 (2), 200 (8), 187 (100),  

160 (11), 137 (67), 122 (11), 108 (33), 95 (10), 82 (43), 70 (15), 56 (11), 42 (7). 

HRMS (ESI+) calcd for C20H26N3O [(M+H)+] 324.2067, found 324.2070. 

 

9-Amino(9-deoxy)epidihydroquinine (9-NH2-epiDHQ; 72):[175] Amine 72 was prepared 

starting from dihydroquinine (DHQ; 1.95 g, 3.86 mmol) following 

the same procedure described for the synthesis of 9-amino(9-

deoxy)epiquinine (13). Purification by flash column chromate-

graphy (silica gel, methanol/EtOAc 50:50 with 1% aq. NH4OH) 

gave the title compound (842 mg, 2.59 mmol, 67%) as pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 4.5 Hz, 1H, CH2'), 7.99 (d, J = 9.1 Hz, 1H, CH8'), 

7.62 (br s, 1H, CH5'), 7.43 (br d, J = 4.0 Hz, 1H, CH3'), 7.34 (dd, J = 9.1, 2.8 Hz, 1H, CH7'), 

4.55 (br d, J = 9.6, 1H, CH9NH2), 3.92 (s, 3H, OCH3), 3.21 (dd, J = 13.6, 9.8 Hz, 1H, CHH2), 

3.17-3.10 (m, 1H, CHH6), 3.05-2.98 (m, 1H, CH8), 2.77-2.69 (m, 1H, CHH6), 2.47 (ddd, J = 

13.6, 4.6, 2.3 Hz, 1H, CHH2), 2.09 (br s, 2H, NH2), 1.54-1.19 (m, 7H, CH4, CH2
5, CHH7, 

CH3, and CH2CH3), 0.78 (t, J = 7.3 Hz, 3H, CH2CH3), 0.70 (dd, J = 13.6, 7.6 Hz, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.5 (Cq6'OMe), 147.8 (C2'H), 147.2 (Cq), 144.7 (Cq'), 131.7 

(C8'H), 128.8 (Cq4a'), 121.1 (C7'H), 119.9 (C3'H), 102.0 (C5'H), 61.7 (C8H), 57.9 (C2H2), 55.5 
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was made alkaline by the addition of K2CO3, and repeatedly extracted with CH2Cl2 (3 × 50 

mL). The combined organic phases were dried (Na2SO4) and evaporated under reduced 

pressure affording the pure title compound (820 mg, 2.54 mmol, 42%) as a pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.72 (d, J = 4.6 Hz, 1H, CH2'), 8.00 (d, J = 9.1 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.50 (br s, 1H, CH3'), 7.34 (dd, J = 9.2, 2.7 Hz, 1H, CH7'), 5.86 (ddd, J 

= 17.0, 10.6, 6.4 Hz, 1H, CH=CH2), 5.07-5.01 (m, 2H, CH=CH2), 4.64 (br d, J = 9.1 Hz, 1H, 

CH9NH2), 3.94 (s, 3H, OCH3), 3.04-2.88 (m, 5H, CH8, CH2
6and CH2

2), 2.24 (app. br q, J = 

8.0 Hz, 1H, CH3), 2.02 (br s, 2H, NH2), 1.60-1.56 (m, 1H, CH4), 1.54-1.48 (m, 2H, CH2
5), 

1.11 (dd, J = 13.4, 8.8 Hz, 1H, CHH7), 0.96-0.88 (m, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.6 (Cq6'OMe), 147.8 (C2'H), 147.5 (Cq), 144.7 (Cq), 140.7 

(CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 121.6 (C7'H), 119.9 (C3'H), 114.4 (CH=CH2), 101.4 

(C5'H), 62.4 (C8H), 55.4 (OCH3), 51.6 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.4 (C3H), 27.6 

(C4H), 26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 323 [M+] (63), 306 (10), 282 (3), 265 (2), 240 (2), 200 (8), 187 (100),  

160 (11), 137 (67), 122 (11), 108 (33), 95 (10), 82 (43), 70 (15), 56 (11), 42 (7). 

HRMS (ESI+) calcd for C20H26N3O [(M+H)+] 324.2067, found 324.2070. 

 

9-Amino(9-deoxy)epidihydroquinine (9-NH2-epiDHQ; 72):[175] Amine 72 was prepared 

starting from dihydroquinine (DHQ; 1.95 g, 3.86 mmol) following 

the same procedure described for the synthesis of 9-amino(9-

deoxy)epiquinine (13). Purification by flash column chromate-

graphy (silica gel, methanol/EtOAc 50:50 with 1% aq. NH4OH) 

gave the title compound (842 mg, 2.59 mmol, 67%) as pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 4.5 Hz, 1H, CH2'), 7.99 (d, J = 9.1 Hz, 1H, CH8'), 

7.62 (br s, 1H, CH5'), 7.43 (br d, J = 4.0 Hz, 1H, CH3'), 7.34 (dd, J = 9.1, 2.8 Hz, 1H, CH7'), 

4.55 (br d, J = 9.6, 1H, CH9NH2), 3.92 (s, 3H, OCH3), 3.21 (dd, J = 13.6, 9.8 Hz, 1H, CHH2), 

3.17-3.10 (m, 1H, CHH6), 3.05-2.98 (m, 1H, CH8), 2.77-2.69 (m, 1H, CHH6), 2.47 (ddd, J = 

13.6, 4.6, 2.3 Hz, 1H, CHH2), 2.09 (br s, 2H, NH2), 1.54-1.19 (m, 7H, CH4, CH2
5, CHH7, 

CH3, and CH2CH3), 0.78 (t, J = 7.3 Hz, 3H, CH2CH3), 0.70 (dd, J = 13.6, 7.6 Hz, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.5 (Cq6'OMe), 147.8 (C2'H), 147.2 (Cq), 144.7 (Cq'), 131.7 

(C8'H), 128.8 (Cq4a'), 121.1 (C7'H), 119.9 (C3'H), 102.0 (C5'H), 61.7 (C8H), 57.9 (C2H2), 55.5 
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was made alkaline by the addition of K2CO3, and repeatedly extracted with CH2Cl2 (3 × 50 

mL). The combined organic phases were dried (Na2SO4) and evaporated under reduced 

pressure affording the pure title compound (820 mg, 2.54 mmol, 42%) as a pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.72 (d, J = 4.6 Hz, 1H, CH2'), 8.00 (d, J = 9.1 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.50 (br s, 1H, CH3'), 7.34 (dd, J = 9.2, 2.7 Hz, 1H, CH7'), 5.86 (ddd, J 

= 17.0, 10.6, 6.4 Hz, 1H, CH=CH2), 5.07-5.01 (m, 2H, CH=CH2), 4.64 (br d, J = 9.1 Hz, 1H, 

CH9NH2), 3.94 (s, 3H, OCH3), 3.04-2.88 (m, 5H, CH8, CH2
6and CH2

2), 2.24 (app. br q, J = 

8.0 Hz, 1H, CH3), 2.02 (br s, 2H, NH2), 1.60-1.56 (m, 1H, CH4), 1.54-1.48 (m, 2H, CH2
5), 

1.11 (dd, J = 13.4, 8.8 Hz, 1H, CHH7), 0.96-0.88 (m, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.6 (Cq6'OMe), 147.8 (C2'H), 147.5 (Cq), 144.7 (Cq), 140.7 

(CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 121.6 (C7'H), 119.9 (C3'H), 114.4 (CH=CH2), 101.4 

(C5'H), 62.4 (C8H), 55.4 (OCH3), 51.6 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.4 (C3H), 27.6 

(C4H), 26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 323 [M+] (63), 306 (10), 282 (3), 265 (2), 240 (2), 200 (8), 187 (100),  

160 (11), 137 (67), 122 (11), 108 (33), 95 (10), 82 (43), 70 (15), 56 (11), 42 (7). 

HRMS (ESI+) calcd for C20H26N3O [(M+H)+] 324.2067, found 324.2070. 

 

9-Amino(9-deoxy)epidihydroquinine (9-NH2-epiDHQ; 72):[175] Amine 72 was prepared 

starting from dihydroquinine (DHQ; 1.95 g, 3.86 mmol) following 

the same procedure described for the synthesis of 9-amino(9-

deoxy)epiquinine (13). Purification by flash column chromate-

graphy (silica gel, methanol/EtOAc 50:50 with 1% aq. NH4OH) 

gave the title compound (842 mg, 2.59 mmol, 67%) as pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 4.5 Hz, 1H, CH2'), 7.99 (d, J = 9.1 Hz, 1H, CH8'), 

7.62 (br s, 1H, CH5'), 7.43 (br d, J = 4.0 Hz, 1H, CH3'), 7.34 (dd, J = 9.1, 2.8 Hz, 1H, CH7'), 

4.55 (br d, J = 9.6, 1H, CH9NH2), 3.92 (s, 3H, OCH3), 3.21 (dd, J = 13.6, 9.8 Hz, 1H, CHH2), 

3.17-3.10 (m, 1H, CHH6), 3.05-2.98 (m, 1H, CH8), 2.77-2.69 (m, 1H, CHH6), 2.47 (ddd, J = 

13.6, 4.6, 2.3 Hz, 1H, CHH2), 2.09 (br s, 2H, NH2), 1.54-1.19 (m, 7H, CH4, CH2
5, CHH7, 

CH3, and CH2CH3), 0.78 (t, J = 7.3 Hz, 3H, CH2CH3), 0.70 (dd, J = 13.6, 7.6 Hz, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.5 (Cq6'OMe), 147.8 (C2'H), 147.2 (Cq), 144.7 (Cq'), 131.7 

(C8'H), 128.8 (Cq4a'), 121.1 (C7'H), 119.9 (C3'H), 102.0 (C5'H), 61.7 (C8H), 57.9 (C2H2), 55.5 
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was made alkaline by the addition of K2CO3, and repeatedly extracted with CH2Cl2 (3 × 50 

mL). The combined organic phases were dried (Na2SO4) and evaporated under reduced 

pressure affording the pure title compound (820 mg, 2.54 mmol, 42%) as a pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.72 (d, J = 4.6 Hz, 1H, CH2'), 8.00 (d, J = 9.1 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.50 (br s, 1H, CH3'), 7.34 (dd, J = 9.2, 2.7 Hz, 1H, CH7'), 5.86 (ddd, J 

= 17.0, 10.6, 6.4 Hz, 1H, CH=CH2), 5.07-5.01 (m, 2H, CH=CH2), 4.64 (br d, J = 9.1 Hz, 1H, 

CH9NH2), 3.94 (s, 3H, OCH3), 3.04-2.88 (m, 5H, CH8, CH2
6and CH2

2), 2.24 (app. br q, J = 

8.0 Hz, 1H, CH3), 2.02 (br s, 2H, NH2), 1.60-1.56 (m, 1H, CH4), 1.54-1.48 (m, 2H, CH2
5), 

1.11 (dd, J = 13.4, 8.8 Hz, 1H, CHH7), 0.96-0.88 (m, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.6 (Cq6'OMe), 147.8 (C2'H), 147.5 (Cq), 144.7 (Cq), 140.7 

(CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 121.6 (C7'H), 119.9 (C3'H), 114.4 (CH=CH2), 101.4 

(C5'H), 62.4 (C8H), 55.4 (OCH3), 51.6 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.4 (C3H), 27.6 

(C4H), 26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 323 [M+] (63), 306 (10), 282 (3), 265 (2), 240 (2), 200 (8), 187 (100),  

160 (11), 137 (67), 122 (11), 108 (33), 95 (10), 82 (43), 70 (15), 56 (11), 42 (7). 

HRMS (ESI+) calcd for C20H26N3O [(M+H)+] 324.2067, found 324.2070. 

 

9-Amino(9-deoxy)epidihydroquinine (9-NH2-epiDHQ; 72):[175] Amine 72 was prepared 

starting from dihydroquinine (DHQ; 1.95 g, 3.86 mmol) following 

the same procedure described for the synthesis of 9-amino(9-

deoxy)epiquinine (13). Purification by flash column chromate-

graphy (silica gel, methanol/EtOAc 50:50 with 1% aq. NH4OH) 

gave the title compound (842 mg, 2.59 mmol, 67%) as pale yellow 

viscous oil. 
1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 4.5 Hz, 1H, CH2'), 7.99 (d, J = 9.1 Hz, 1H, CH8'), 

7.62 (br s, 1H, CH5'), 7.43 (br d, J = 4.0 Hz, 1H, CH3'), 7.34 (dd, J = 9.1, 2.8 Hz, 1H, CH7'), 

4.55 (br d, J = 9.6, 1H, CH9NH2), 3.92 (s, 3H, OCH3), 3.21 (dd, J = 13.6, 9.8 Hz, 1H, CHH2), 

3.17-3.10 (m, 1H, CHH6), 3.05-2.98 (m, 1H, CH8), 2.77-2.69 (m, 1H, CHH6), 2.47 (ddd, J = 

13.6, 4.6, 2.3 Hz, 1H, CHH2), 2.09 (br s, 2H, NH2), 1.54-1.19 (m, 7H, CH4, CH2
5, CHH7, 

CH3, and CH2CH3), 0.78 (t, J = 7.3 Hz, 3H, CH2CH3), 0.70 (dd, J = 13.6, 7.6 Hz, 1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 157.5 (Cq6'OMe), 147.8 (C2'H), 147.2 (Cq), 144.7 (Cq'), 131.7 

(C8'H), 128.8 (Cq4a'), 121.1 (C7'H), 119.9 (C3'H), 102.0 (C5'H), 61.7 (C8H), 57.9 (C2H2), 55.5 
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(OCH3), 54.5 (C9HNH2), 41.0 (C6H2), 37.5 (C3H), 28.9 (C5H2), 27.6 (CH2CH3), 25.8 (C7H2), 

25.2 (C4H), 12.0 (CH2CH3). 

MS (EI-DE) m/z (%) 325 [M+] (47), 308 (9), 279 (1), 251 (1), 201 (4), 187 (69), 160 (9),  139 

(69), 110 (97), 96 (3), 82 (100), 70 (5), 55 (15), 41 (7). 

HRMS (ESI+) calcd for C20H27N3NaO [(M+Na)+] 348.2046, found 348.2046. 

 

9-Amino(9-deoxy)epicinchonidine (9-NH2-epiCD; 69):[175] Amine 69 was prepared starting 

from cinchonidine (CD; 1.77 g, 6.0 mmol) following the same 

procedure described for the synthesis of 9-amino(9-deoxy)epiquinine 

(13). Purification by flash column chromatography (silica gel, 

methanol/EtOAc 50:50 with 1% aq. NH4OH) gave the title compound 

as colorless viscous oil (1.23 g, 4.19 mmol, 70%). 
1H NMR (400 MHz, CDCl3) δ 8.87 (d, J = 4.6 Hz, 1H, CH2'), 8.33 (br s, 1H, CH5'), 8.11 (dd, 

J = 8.6, 0.8 Hz, 1H, CH8'), 7.68 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, CH7'), 7.56 (ddd, J = 8.5, 6.9, 

1.3 Hz, 1H, CH6'), 7.49 (br d, J = 4.1 Hz, 1H, CH3'), 5.77 (ddd, J = 17.2, 10.1, 7.3 Hz, 1H, 

CH=CH2), 4.99-4.91 (m, 2H, CH=CH2), 4.67 (br d, J = 9.1, 1H, CH9NH2), 3.24 (dd, J = 13.9, 

10.1 Hz, 1H, CHH2), 3.20-3.13 (m, 1H, CHH6), 3.04 (app. br q, J = 8.7 Hz, 1H, CH8), 2.81-

2.73 (m, 2H, CHH2 and CHH6), 2.27-2.21 (m, 1H, CH3), 2.01 (br s, 2H, NH2), 1.59-1.50 (m, 

3H, CH4 and CH2
5), 1.38 (app. br t, J = 11.6 Hz, 1H, CHH7), 0.71 (ddt, J = 13.6, 7.5, 1.9 Hz, 

1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 150.3 (C2'H), 148.7 (Cq4'), 148.6 (Cq8a'), 141.8 (CH=CH2), 

130.4 (C8'H), 128.9 (C7'H), 127.8 (Cq4a'), 126.4 (C6'H), 123.3 (C5'H), 119.6 (C3'H), 114.2 

(CH=CH2), 61.9 (C8H), 56.3 (C2H2), 51.8 (C9HNH2), 40.9 (C6H2), 39.8 (C3H), 28.1 (C5H2), 

27.5 (C4H), 26.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (1), 196 (1), 181 (1), 169 (3), 157 (12), 136 (100), 108 (6), 95 

(4), 81 (9), 70 (4), 56 (4), 42 (6), 30 (2). 

HRMS (ESI+) calcd for C19H24N3 [(M+H)+] 294.1964, found 294.1965. 

 

9-Amino(9-deoxy)epicinchonine (9-NH2-epiC; 70):[49a] Amine 70 was prepared starting 

from cinchonine (C; 1.77 g, 6.0 mmol; contains ~10% of dihydrocin-

chonine) following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). After hydrolyzing the reaction overnight 

(12 h), the solvents were removed under reduced pressure, and the 

residue was extracted with CH2Cl2 and 10% aqueous HCl (1:1, 200 mL). 
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(OCH3), 54.5 (C9HNH2), 41.0 (C6H2), 37.5 (C3H), 28.9 (C5H2), 27.6 (CH2CH3), 25.8 (C7H2), 

25.2 (C4H), 12.0 (CH2CH3). 

MS (EI-DE) m/z (%) 325 [M+] (47), 308 (9), 279 (1), 251 (1), 201 (4), 187 (69), 160 (9),  139 

(69), 110 (97), 96 (3), 82 (100), 70 (5), 55 (15), 41 (7). 

HRMS (ESI+) calcd for C20H27N3NaO [(M+Na)+] 348.2046, found 348.2046. 

 

9-Amino(9-deoxy)epicinchonidine (9-NH2-epiCD; 69):[175] Amine 69 was prepared starting 

from cinchonidine (CD; 1.77 g, 6.0 mmol) following the same 

procedure described for the synthesis of 9-amino(9-deoxy)epiquinine 

(13). Purification by flash column chromatography (silica gel, 

methanol/EtOAc 50:50 with 1% aq. NH4OH) gave the title compound 

as colorless viscous oil (1.23 g, 4.19 mmol, 70%). 
1H NMR (400 MHz, CDCl3) δ 8.87 (d, J = 4.6 Hz, 1H, CH2'), 8.33 (br s, 1H, CH5'), 8.11 (dd, 

J = 8.6, 0.8 Hz, 1H, CH8'), 7.68 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, CH7'), 7.56 (ddd, J = 8.5, 6.9, 

1.3 Hz, 1H, CH6'), 7.49 (br d, J = 4.1 Hz, 1H, CH3'), 5.77 (ddd, J = 17.2, 10.1, 7.3 Hz, 1H, 

CH=CH2), 4.99-4.91 (m, 2H, CH=CH2), 4.67 (br d, J = 9.1, 1H, CH9NH2), 3.24 (dd, J = 13.9, 

10.1 Hz, 1H, CHH2), 3.20-3.13 (m, 1H, CHH6), 3.04 (app. br q, J = 8.7 Hz, 1H, CH8), 2.81-

2.73 (m, 2H, CHH2 and CHH6), 2.27-2.21 (m, 1H, CH3), 2.01 (br s, 2H, NH2), 1.59-1.50 (m, 

3H, CH4 and CH2
5), 1.38 (app. br t, J = 11.6 Hz, 1H, CHH7), 0.71 (ddt, J = 13.6, 7.5, 1.9 Hz, 

1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 150.3 (C2'H), 148.7 (Cq4'), 148.6 (Cq8a'), 141.8 (CH=CH2), 

130.4 (C8'H), 128.9 (C7'H), 127.8 (Cq4a'), 126.4 (C6'H), 123.3 (C5'H), 119.6 (C3'H), 114.2 

(CH=CH2), 61.9 (C8H), 56.3 (C2H2), 51.8 (C9HNH2), 40.9 (C6H2), 39.8 (C3H), 28.1 (C5H2), 

27.5 (C4H), 26.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (1), 196 (1), 181 (1), 169 (3), 157 (12), 136 (100), 108 (6), 95 

(4), 81 (9), 70 (4), 56 (4), 42 (6), 30 (2). 

HRMS (ESI+) calcd for C19H24N3 [(M+H)+] 294.1964, found 294.1965. 

 

9-Amino(9-deoxy)epicinchonine (9-NH2-epiC; 70):[49a] Amine 70 was prepared starting 

from cinchonine (C; 1.77 g, 6.0 mmol; contains ~10% of dihydrocin-

chonine) following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). After hydrolyzing the reaction overnight 

(12 h), the solvents were removed under reduced pressure, and the 

residue was extracted with CH2Cl2 and 10% aqueous HCl (1:1, 200 mL). 
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(OCH3), 54.5 (C9HNH2), 41.0 (C6H2), 37.5 (C3H), 28.9 (C5H2), 27.6 (CH2CH3), 25.8 (C7H2), 

25.2 (C4H), 12.0 (CH2CH3). 

MS (EI-DE) m/z (%) 325 [M+] (47), 308 (9), 279 (1), 251 (1), 201 (4), 187 (69), 160 (9),  139 

(69), 110 (97), 96 (3), 82 (100), 70 (5), 55 (15), 41 (7). 

HRMS (ESI+) calcd for C20H27N3NaO [(M+Na)+] 348.2046, found 348.2046. 

 

9-Amino(9-deoxy)epicinchonidine (9-NH2-epiCD; 69):[175] Amine 69 was prepared starting 

from cinchonidine (CD; 1.77 g, 6.0 mmol) following the same 

procedure described for the synthesis of 9-amino(9-deoxy)epiquinine 

(13). Purification by flash column chromatography (silica gel, 

methanol/EtOAc 50:50 with 1% aq. NH4OH) gave the title compound 

as colorless viscous oil (1.23 g, 4.19 mmol, 70%). 
1H NMR (400 MHz, CDCl3) δ 8.87 (d, J = 4.6 Hz, 1H, CH2'), 8.33 (br s, 1H, CH5'), 8.11 (dd, 

J = 8.6, 0.8 Hz, 1H, CH8'), 7.68 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, CH7'), 7.56 (ddd, J = 8.5, 6.9, 

1.3 Hz, 1H, CH6'), 7.49 (br d, J = 4.1 Hz, 1H, CH3'), 5.77 (ddd, J = 17.2, 10.1, 7.3 Hz, 1H, 

CH=CH2), 4.99-4.91 (m, 2H, CH=CH2), 4.67 (br d, J = 9.1, 1H, CH9NH2), 3.24 (dd, J = 13.9, 

10.1 Hz, 1H, CHH2), 3.20-3.13 (m, 1H, CHH6), 3.04 (app. br q, J = 8.7 Hz, 1H, CH8), 2.81-

2.73 (m, 2H, CHH2 and CHH6), 2.27-2.21 (m, 1H, CH3), 2.01 (br s, 2H, NH2), 1.59-1.50 (m, 

3H, CH4 and CH2
5), 1.38 (app. br t, J = 11.6 Hz, 1H, CHH7), 0.71 (ddt, J = 13.6, 7.5, 1.9 Hz, 

1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 150.3 (C2'H), 148.7 (Cq4'), 148.6 (Cq8a'), 141.8 (CH=CH2), 

130.4 (C8'H), 128.9 (C7'H), 127.8 (Cq4a'), 126.4 (C6'H), 123.3 (C5'H), 119.6 (C3'H), 114.2 

(CH=CH2), 61.9 (C8H), 56.3 (C2H2), 51.8 (C9HNH2), 40.9 (C6H2), 39.8 (C3H), 28.1 (C5H2), 

27.5 (C4H), 26.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (1), 196 (1), 181 (1), 169 (3), 157 (12), 136 (100), 108 (6), 95 

(4), 81 (9), 70 (4), 56 (4), 42 (6), 30 (2). 

HRMS (ESI+) calcd for C19H24N3 [(M+H)+] 294.1964, found 294.1965. 

 

9-Amino(9-deoxy)epicinchonine (9-NH2-epiC; 70):[49a] Amine 70 was prepared starting 

from cinchonine (C; 1.77 g, 6.0 mmol; contains ~10% of dihydrocin-

chonine) following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). After hydrolyzing the reaction overnight 

(12 h), the solvents were removed under reduced pressure, and the 

residue was extracted with CH2Cl2 and 10% aqueous HCl (1:1, 200 mL). 
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(OCH3), 54.5 (C9HNH2), 41.0 (C6H2), 37.5 (C3H), 28.9 (C5H2), 27.6 (CH2CH3), 25.8 (C7H2), 

25.2 (C4H), 12.0 (CH2CH3). 

MS (EI-DE) m/z (%) 325 [M+] (47), 308 (9), 279 (1), 251 (1), 201 (4), 187 (69), 160 (9),  139 

(69), 110 (97), 96 (3), 82 (100), 70 (5), 55 (15), 41 (7). 

HRMS (ESI+) calcd for C20H27N3NaO [(M+Na)+] 348.2046, found 348.2046. 

 

9-Amino(9-deoxy)epicinchonidine (9-NH2-epiCD; 69):[175] Amine 69 was prepared starting 

from cinchonidine (CD; 1.77 g, 6.0 mmol) following the same 

procedure described for the synthesis of 9-amino(9-deoxy)epiquinine 

(13). Purification by flash column chromatography (silica gel, 

methanol/EtOAc 50:50 with 1% aq. NH4OH) gave the title compound 

as colorless viscous oil (1.23 g, 4.19 mmol, 70%). 
1H NMR (400 MHz, CDCl3) δ 8.87 (d, J = 4.6 Hz, 1H, CH2'), 8.33 (br s, 1H, CH5'), 8.11 (dd, 

J = 8.6, 0.8 Hz, 1H, CH8'), 7.68 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, CH7'), 7.56 (ddd, J = 8.5, 6.9, 

1.3 Hz, 1H, CH6'), 7.49 (br d, J = 4.1 Hz, 1H, CH3'), 5.77 (ddd, J = 17.2, 10.1, 7.3 Hz, 1H, 

CH=CH2), 4.99-4.91 (m, 2H, CH=CH2), 4.67 (br d, J = 9.1, 1H, CH9NH2), 3.24 (dd, J = 13.9, 

10.1 Hz, 1H, CHH2), 3.20-3.13 (m, 1H, CHH6), 3.04 (app. br q, J = 8.7 Hz, 1H, CH8), 2.81-

2.73 (m, 2H, CHH2 and CHH6), 2.27-2.21 (m, 1H, CH3), 2.01 (br s, 2H, NH2), 1.59-1.50 (m, 

3H, CH4 and CH2
5), 1.38 (app. br t, J = 11.6 Hz, 1H, CHH7), 0.71 (ddt, J = 13.6, 7.5, 1.9 Hz, 

1H, CHH7). 
13C NMR (100 MHz, CDCl3) δ 150.3 (C2'H), 148.7 (Cq4'), 148.6 (Cq8a'), 141.8 (CH=CH2), 

130.4 (C8'H), 128.9 (C7'H), 127.8 (Cq4a'), 126.4 (C6'H), 123.3 (C5'H), 119.6 (C3'H), 114.2 

(CH=CH2), 61.9 (C8H), 56.3 (C2H2), 51.8 (C9HNH2), 40.9 (C6H2), 39.8 (C3H), 28.1 (C5H2), 

27.5 (C4H), 26.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (1), 196 (1), 181 (1), 169 (3), 157 (12), 136 (100), 108 (6), 95 

(4), 81 (9), 70 (4), 56 (4), 42 (6), 30 (2). 

HRMS (ESI+) calcd for C19H24N3 [(M+H)+] 294.1964, found 294.1965. 

 

9-Amino(9-deoxy)epicinchonine (9-NH2-epiC; 70):[49a] Amine 70 was prepared starting 

from cinchonine (C; 1.77 g, 6.0 mmol; contains ~10% of dihydrocin-

chonine) following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). After hydrolyzing the reaction overnight 

(12 h), the solvents were removed under reduced pressure, and the 

residue was extracted with CH2Cl2 and 10% aqueous HCl (1:1, 200 mL). 
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The phases were separated, the aqueous phase was concentrated in vacuo, and the residue was 

crystallized from methanol. The white precipitate was collected and dissolved in water. Then 

the aqueous phase was made alkaline by the addition of K2CO3, and repeatedly extracted with 

CH2Cl2 (3 × 50 mL). The combined organic phases were dried (Na2SO4) and evaporated 

under reduced pressure affording the pure title compound (808 mg, 2.75 mmol, 46%; 

contaminated by 9-amino(9-deoxy)epidihydrocinchonine (~10%)) as colorless viscous oil. 
1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 4.5 Hz, 1H, CH2'), 8.33 (br d, J = 8.0 Hz, 1H, 

CH5'), 8.11 (dd, J = 8.5, 0.9 Hz, 1H, CH8'), 7.69 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H, CH7'), 7.59-

7.53 (m, 2H, CH3' and CH6'), 5.84 (ddd, J = 16.6, 11.1, 6.6 Hz, 1H, CH=CH2), 5.07-5.01 (m, 

2H, CH=CH2), 4.73 (br d, J = 9.8, 1H, CH9NH2), 3.07-2.87 (m, 5H, CH8, CH2
6and CH2

2), 

2.25 (app. br q, J = 8.4 Hz, 1H, CH3), 1.99 (br s, 2H, NH2), 1.57-1.48 (m, 3H, CH4 and CH2
5), 

1.09 (dd, J = 13.3, 8.8 Hz, 1H, CHH7), 0.97-0.88 (m, 1H, CHH7). 
13C NMR (75 MHz, CDCl3) δ 150.3 (C2'H), 149.0 (Cq4'), 148.6 (Cq8a'), 140.6 (CH=CH2), 

130.4 (C8'H), 129.0 (C7'H), 127.9 (Cq4a'), 126.3 (C6'H), 123.3 (C5'H), 119.7 (C3'H), 114.5 

(CH=CH2), 62.2 (C8H), 51.4 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.7 (C3H), 27.7 (C4H), 

26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (87), 276 (13), 252 (6), 235 (3), 211 (3), 183 (9), 169 (14), 157 

(90), 136 (100), 122 (14), 115 (4), 108 (46), 95 (18), 82 (70), 70 (23), 56 (20), 42 (21). 

HRMS (ESI+) calcd for C19H23N3Na [(M+Na)+] 316.1785, found 316.1784. 

 

9-Amino(9-deoxy)-epi-6'-isopropoxycinchonidine (71):[175] Amine 71 was prepared starting 

from 6'-isopropoxycinchonidine (146; 650 mg, 1.84 mmol) 

following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). Purification by flash column chro-

matography (silica gel, methanol/EtOAc 50:50 with 1% 

aq. NH4OH) gave the title compound (498 mg, 1.41 mmol, 77%) as 

pale yellow solid. 
1H NMR (300 MHz, CDCl3) δ 8.71 (d, J = 4.4 Hz, 1H, CH2'), 8.01 (d, J = 9.1 Hz, 1H, CH8'), 

7.66 (br s, 1H, CH5'), 7.42 (br s, 1H, CH3'), 7.34 (dd, J = 9.3, 2.7 Hz, 1H, CH7'), 5.78 (ddd, J 

= 17.3, 9.9, 7.6 Hz, 1H, CH=CH2), 5.00-4.93 (m, 2H, CH=CH2), 4.72 (hept, J = 6.1 Hz, 1H, 

CHMe2), 4.55 (br s, 1H, CH9NH2), 3.26 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.22-3.15 (m, 1H, 

CHH6), 3.10-3.01 (m, 1H, CH8), 2.81-2.75 (m, 2H, CHH6 and CHH2), 2.28-2.24 (m, 1H, 

CH3), 1.89 (br s, 2H, NH2), 1.62-1.60 (m, 1H, CH4), 1.56-1.51 (m, 2H, CH2
5), 1.43-1.40 (m, 
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The phases were separated, the aqueous phase was concentrated in vacuo, and the residue was 

crystallized from methanol. The white precipitate was collected and dissolved in water. Then 

the aqueous phase was made alkaline by the addition of K2CO3, and repeatedly extracted with 

CH2Cl2 (3 × 50 mL). The combined organic phases were dried (Na2SO4) and evaporated 

under reduced pressure affording the pure title compound (808 mg, 2.75 mmol, 46%; 

contaminated by 9-amino(9-deoxy)epidihydrocinchonine (~10%)) as colorless viscous oil. 
1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 4.5 Hz, 1H, CH2'), 8.33 (br d, J = 8.0 Hz, 1H, 

CH5'), 8.11 (dd, J = 8.5, 0.9 Hz, 1H, CH8'), 7.69 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H, CH7'), 7.59-

7.53 (m, 2H, CH3' and CH6'), 5.84 (ddd, J = 16.6, 11.1, 6.6 Hz, 1H, CH=CH2), 5.07-5.01 (m, 

2H, CH=CH2), 4.73 (br d, J = 9.8, 1H, CH9NH2), 3.07-2.87 (m, 5H, CH8, CH2
6and CH2

2), 

2.25 (app. br q, J = 8.4 Hz, 1H, CH3), 1.99 (br s, 2H, NH2), 1.57-1.48 (m, 3H, CH4 and CH2
5), 

1.09 (dd, J = 13.3, 8.8 Hz, 1H, CHH7), 0.97-0.88 (m, 1H, CHH7). 
13C NMR (75 MHz, CDCl3) δ 150.3 (C2'H), 149.0 (Cq4'), 148.6 (Cq8a'), 140.6 (CH=CH2), 

130.4 (C8'H), 129.0 (C7'H), 127.9 (Cq4a'), 126.3 (C6'H), 123.3 (C5'H), 119.7 (C3'H), 114.5 

(CH=CH2), 62.2 (C8H), 51.4 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.7 (C3H), 27.7 (C4H), 

26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (87), 276 (13), 252 (6), 235 (3), 211 (3), 183 (9), 169 (14), 157 

(90), 136 (100), 122 (14), 115 (4), 108 (46), 95 (18), 82 (70), 70 (23), 56 (20), 42 (21). 

HRMS (ESI+) calcd for C19H23N3Na [(M+Na)+] 316.1785, found 316.1784. 

 

9-Amino(9-deoxy)-epi-6'-isopropoxycinchonidine (71):[175] Amine 71 was prepared starting 

from 6'-isopropoxycinchonidine (146; 650 mg, 1.84 mmol) 

following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). Purification by flash column chro-

matography (silica gel, methanol/EtOAc 50:50 with 1% 

aq. NH4OH) gave the title compound (498 mg, 1.41 mmol, 77%) as 

pale yellow solid. 
1H NMR (300 MHz, CDCl3) δ 8.71 (d, J = 4.4 Hz, 1H, CH2'), 8.01 (d, J = 9.1 Hz, 1H, CH8'), 

7.66 (br s, 1H, CH5'), 7.42 (br s, 1H, CH3'), 7.34 (dd, J = 9.3, 2.7 Hz, 1H, CH7'), 5.78 (ddd, J 

= 17.3, 9.9, 7.6 Hz, 1H, CH=CH2), 5.00-4.93 (m, 2H, CH=CH2), 4.72 (hept, J = 6.1 Hz, 1H, 

CHMe2), 4.55 (br s, 1H, CH9NH2), 3.26 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.22-3.15 (m, 1H, 

CHH6), 3.10-3.01 (m, 1H, CH8), 2.81-2.75 (m, 2H, CHH6 and CHH2), 2.28-2.24 (m, 1H, 

CH3), 1.89 (br s, 2H, NH2), 1.62-1.60 (m, 1H, CH4), 1.56-1.51 (m, 2H, CH2
5), 1.43-1.40 (m, 
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The phases were separated, the aqueous phase was concentrated in vacuo, and the residue was 

crystallized from methanol. The white precipitate was collected and dissolved in water. Then 

the aqueous phase was made alkaline by the addition of K2CO3, and repeatedly extracted with 

CH2Cl2 (3 × 50 mL). The combined organic phases were dried (Na2SO4) and evaporated 

under reduced pressure affording the pure title compound (808 mg, 2.75 mmol, 46%; 

contaminated by 9-amino(9-deoxy)epidihydrocinchonine (~10%)) as colorless viscous oil. 
1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 4.5 Hz, 1H, CH2'), 8.33 (br d, J = 8.0 Hz, 1H, 

CH5'), 8.11 (dd, J = 8.5, 0.9 Hz, 1H, CH8'), 7.69 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H, CH7'), 7.59-

7.53 (m, 2H, CH3' and CH6'), 5.84 (ddd, J = 16.6, 11.1, 6.6 Hz, 1H, CH=CH2), 5.07-5.01 (m, 

2H, CH=CH2), 4.73 (br d, J = 9.8, 1H, CH9NH2), 3.07-2.87 (m, 5H, CH8, CH2
6and CH2

2), 

2.25 (app. br q, J = 8.4 Hz, 1H, CH3), 1.99 (br s, 2H, NH2), 1.57-1.48 (m, 3H, CH4 and CH2
5), 

1.09 (dd, J = 13.3, 8.8 Hz, 1H, CHH7), 0.97-0.88 (m, 1H, CHH7). 
13C NMR (75 MHz, CDCl3) δ 150.3 (C2'H), 149.0 (Cq4'), 148.6 (Cq8a'), 140.6 (CH=CH2), 

130.4 (C8'H), 129.0 (C7'H), 127.9 (Cq4a'), 126.3 (C6'H), 123.3 (C5'H), 119.7 (C3'H), 114.5 

(CH=CH2), 62.2 (C8H), 51.4 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.7 (C3H), 27.7 (C4H), 

26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (87), 276 (13), 252 (6), 235 (3), 211 (3), 183 (9), 169 (14), 157 

(90), 136 (100), 122 (14), 115 (4), 108 (46), 95 (18), 82 (70), 70 (23), 56 (20), 42 (21). 

HRMS (ESI+) calcd for C19H23N3Na [(M+Na)+] 316.1785, found 316.1784. 

 

9-Amino(9-deoxy)-epi-6'-isopropoxycinchonidine (71):[175] Amine 71 was prepared starting 

from 6'-isopropoxycinchonidine (146; 650 mg, 1.84 mmol) 

following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). Purification by flash column chro-

matography (silica gel, methanol/EtOAc 50:50 with 1% 

aq. NH4OH) gave the title compound (498 mg, 1.41 mmol, 77%) as 

pale yellow solid. 
1H NMR (300 MHz, CDCl3) δ 8.71 (d, J = 4.4 Hz, 1H, CH2'), 8.01 (d, J = 9.1 Hz, 1H, CH8'), 

7.66 (br s, 1H, CH5'), 7.42 (br s, 1H, CH3'), 7.34 (dd, J = 9.3, 2.7 Hz, 1H, CH7'), 5.78 (ddd, J 

= 17.3, 9.9, 7.6 Hz, 1H, CH=CH2), 5.00-4.93 (m, 2H, CH=CH2), 4.72 (hept, J = 6.1 Hz, 1H, 

CHMe2), 4.55 (br s, 1H, CH9NH2), 3.26 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.22-3.15 (m, 1H, 

CHH6), 3.10-3.01 (m, 1H, CH8), 2.81-2.75 (m, 2H, CHH6 and CHH2), 2.28-2.24 (m, 1H, 

CH3), 1.89 (br s, 2H, NH2), 1.62-1.60 (m, 1H, CH4), 1.56-1.51 (m, 2H, CH2
5), 1.43-1.40 (m, 
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The phases were separated, the aqueous phase was concentrated in vacuo, and the residue was 

crystallized from methanol. The white precipitate was collected and dissolved in water. Then 

the aqueous phase was made alkaline by the addition of K2CO3, and repeatedly extracted with 

CH2Cl2 (3 × 50 mL). The combined organic phases were dried (Na2SO4) and evaporated 

under reduced pressure affording the pure title compound (808 mg, 2.75 mmol, 46%; 

contaminated by 9-amino(9-deoxy)epidihydrocinchonine (~10%)) as colorless viscous oil. 
1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 4.5 Hz, 1H, CH2'), 8.33 (br d, J = 8.0 Hz, 1H, 

CH5'), 8.11 (dd, J = 8.5, 0.9 Hz, 1H, CH8'), 7.69 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H, CH7'), 7.59-

7.53 (m, 2H, CH3' and CH6'), 5.84 (ddd, J = 16.6, 11.1, 6.6 Hz, 1H, CH=CH2), 5.07-5.01 (m, 

2H, CH=CH2), 4.73 (br d, J = 9.8, 1H, CH9NH2), 3.07-2.87 (m, 5H, CH8, CH2
6and CH2

2), 

2.25 (app. br q, J = 8.4 Hz, 1H, CH3), 1.99 (br s, 2H, NH2), 1.57-1.48 (m, 3H, CH4 and CH2
5), 

1.09 (dd, J = 13.3, 8.8 Hz, 1H, CHH7), 0.97-0.88 (m, 1H, CHH7). 
13C NMR (75 MHz, CDCl3) δ 150.3 (C2'H), 149.0 (Cq4'), 148.6 (Cq8a'), 140.6 (CH=CH2), 

130.4 (C8'H), 129.0 (C7'H), 127.9 (Cq4a'), 126.3 (C6'H), 123.3 (C5'H), 119.7 (C3'H), 114.5 

(CH=CH2), 62.2 (C8H), 51.4 (C9HNH2), 49.5 (C6H2), 47.4 (C2H2), 39.7 (C3H), 27.7 (C4H), 

26.7 (C5H2), 25.0 (C7H2). 

MS (EI-DE) m/z (%) 293 [M+] (87), 276 (13), 252 (6), 235 (3), 211 (3), 183 (9), 169 (14), 157 

(90), 136 (100), 122 (14), 115 (4), 108 (46), 95 (18), 82 (70), 70 (23), 56 (20), 42 (21). 

HRMS (ESI+) calcd for C19H23N3Na [(M+Na)+] 316.1785, found 316.1784. 

 

9-Amino(9-deoxy)-epi-6'-isopropoxycinchonidine (71):[175] Amine 71 was prepared starting 

from 6'-isopropoxycinchonidine (146; 650 mg, 1.84 mmol) 

following the same procedure described for the synthesis of 9-

amino(9-deoxy)epiquinine (13). Purification by flash column chro-

matography (silica gel, methanol/EtOAc 50:50 with 1% 

aq. NH4OH) gave the title compound (498 mg, 1.41 mmol, 77%) as 

pale yellow solid. 
1H NMR (300 MHz, CDCl3) δ 8.71 (d, J = 4.4 Hz, 1H, CH2'), 8.01 (d, J = 9.1 Hz, 1H, CH8'), 

7.66 (br s, 1H, CH5'), 7.42 (br s, 1H, CH3'), 7.34 (dd, J = 9.3, 2.7 Hz, 1H, CH7'), 5.78 (ddd, J 

= 17.3, 9.9, 7.6 Hz, 1H, CH=CH2), 5.00-4.93 (m, 2H, CH=CH2), 4.72 (hept, J = 6.1 Hz, 1H, 

CHMe2), 4.55 (br s, 1H, CH9NH2), 3.26 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.22-3.15 (m, 1H, 

CHH6), 3.10-3.01 (m, 1H, CH8), 2.81-2.75 (m, 2H, CHH6 and CHH2), 2.28-2.24 (m, 1H, 

CH3), 1.89 (br s, 2H, NH2), 1.62-1.60 (m, 1H, CH4), 1.56-1.51 (m, 2H, CH2
5), 1.43-1.40 (m, 

N

N

i-PrO

NH2

2

3
4

5

6
7

8
2´

3´
4´

5́

6´
7´

8´

8a´

4a´

9

C22H29N3O
351,49



7 Experimental Part 

 249

overlapped, 1H, CHH7), 1.42 (d overlapped, J = 6.3 Hz, 3H, CH(CH3)2), 1.41 (d overlapped, 

J = 6.3 Hz, 3H, CH(CH3)2), 0.78-0.73 (m, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 155.8 (Cq6'Oi-Pr), 147.8 (C2'H), 146.8 (Cq4'), 144.5 (Cq8a'), 

141.6 (CH=CH2), 131.8 (C8'H), 128.7 (Cq4a'), 122.1 (C7'H), 119.8 (C3'H), 114.4 (CH=CH2), 

104.7 (C5'H), 70.2 (OCHMe2), 61.9 (C8H), 56.2 (C2H2), 51.5 (C9HNH2), 40.9 (C6H2), 39.7 

(C3H), 28.0 (C5H2), 27.5 (C4H), 26.0 (C7H2), 22.1 (CH(CH3)2), 21.8 (CH(CH3)2). 

MS (EI-DE) m/z (%) 351 [M+] (3), 336 (1), 308 (2), 291 (1), 215 (12), 173 (12), 146 (7), 136 

(100), 108 (7), 95 (4), 81 (10), 56 (4), 43 (14). 

HRMS (EI-DE) calcd for C22H29N3O [M+] 351.2312, found 351.2311. 
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7.6.2 Synthesis of 9-epiquinine (147) 

9-Epiquinine (147) was prepared according to the protocol of Hoffmann et al.[176] 

 

 
 
O-Tosyl quinine (149): Sodium hydride (207 mg, 8.62 mmol, 1.4 equiv; 60 wt% suspension 

in mineral oil) was added all at once to a solution of quinine (2.0 g, 

6.16 mmol) in THF (35 mL), and the resulting suspension was heated 

to 70 °C for 2 h. Then, the reaction mixture was cooled to 0 °C, and a 

solution of tosyl chloride (1.64 g, 8.62 mmol, 1.4 equiv) in THF (10 

mL) was added dropwise. Once the addition was complete, heating 

(70 °C) was continued for 10 h. The solvents were removed under 

reduced pressure, and the residue was extracted with Et2O and 1N aqueous HCl (1:1, 60 mL). 

The phases were separated, and the aqueous phase was repeatedly washed with Et2O (3×20 

mL). Then the aqueous phase was made alkaline (pH ~11) by the addition of 2N aqueous 

NaOH, and subsequently extracted with Et2O (3×60 mL). The combined organic phases were 

washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product 

was filtered through a short plug of silica gel (eluent: 10% MeOH in Et2O) affording O-

tosylated quinine 149 as a white solid (1.73 g, 3.62 mmol, 59%). 
1H NMR (300 MHz, CDCl3) δ 8.49 (d, J = 4.5 Hz, 1H, CH2'), 7.85 (d, J = 9.0 Hz, 1H, CH8'), 

7.30-7.08 (m, 5H, CH3', CH5', CH7', and 2×CHtolyl), 6.75 (d, J = 7.5 Hz, 2H, CHtolyl), 6.07 (br 

s, 1H, CH9OTs), 5.80 (ddd, J = 17.5, 10.0, 7.3 Hz, 1H, CH=CH2), 5.01-4.94 (m, 2H, 

CH=CH2), 3.92 (s, 3H, OCH3), 3.38-3.20 (m, 1H), 3.15-3.01 (m, 1H), 2.97-2.88 (m, 1H), 

2.64-2.43 (m, 2H), 2.28-2.19 (m, 1H), 2.14 (s, 3H, C6H4CH3), 2.10-1.97 (m, 1H), 1.91-1.85 

(m, 1H), 1.78-1.60 (m, 2H), 1.57-1.45 (m, 1H). 

MS (EI-DE) m/z 478 [M+] (1), 323 (1), 306 (15), 251 (4), 225 (4), 172 (6), 136 (100), 81 (4), 

55 (2). 
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reduced pressure, and the residue was extracted with Et2O and 1N aqueous HCl (1:1, 60 mL). 

The phases were separated, and the aqueous phase was repeatedly washed with Et2O (3×20 

mL). Then the aqueous phase was made alkaline (pH ~11) by the addition of 2N aqueous 

NaOH, and subsequently extracted with Et2O (3×60 mL). The combined organic phases were 

washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product 

was filtered through a short plug of silica gel (eluent: 10% MeOH in Et2O) affording O-

tosylated quinine 149 as a white solid (1.73 g, 3.62 mmol, 59%). 
1H NMR (300 MHz, CDCl3) δ 8.49 (d, J = 4.5 Hz, 1H, CH2'), 7.85 (d, J = 9.0 Hz, 1H, CH8'), 

7.30-7.08 (m, 5H, CH3', CH5', CH7', and 2×CHtolyl), 6.75 (d, J = 7.5 Hz, 2H, CHtolyl), 6.07 (br 

s, 1H, CH9OTs), 5.80 (ddd, J = 17.5, 10.0, 7.3 Hz, 1H, CH=CH2), 5.01-4.94 (m, 2H, 

CH=CH2), 3.92 (s, 3H, OCH3), 3.38-3.20 (m, 1H), 3.15-3.01 (m, 1H), 2.97-2.88 (m, 1H), 
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(m, 1H), 1.78-1.60 (m, 2H), 1.57-1.45 (m, 1H). 

MS (EI-DE) m/z 478 [M+] (1), 323 (1), 306 (15), 251 (4), 225 (4), 172 (6), 136 (100), 81 (4), 

55 (2). 

 

N

N

MeO

OTs

2

3
4

5

6
7

8
2´

3´
4´

5́

6´ 8´

8a´

4a´

7´

9

C27H30N2O4S
478,60



7 Experimental Part 

 251

9-Epiquinine (147) : O-Tosyl quinine (149; 1.70 g, 3.55 mmol) and L-tartaric acid (533 mg, 

3.55 mmol) were dissolved in water (34 mL). The reaction mixture 

was heated to 100 °C for 12 h; then cooled to room temperature and 

neutralized with 1N aqueous NaOH. The aqueous phase was separated 

and repeatedly extracted with CH2Cl2. The combined organic phases 

were dried (Na2SO4), filtered, and concentrated. Purification of the 

crude product by flash column chromatography (silica gel, 

methanol/EtOAc 20:80 with 0.5% aq. NH4OH) gave 9-epiquinine (147; 1.15 g, 3.55 mmol, 

quant.) as a white solid. 
1H NMR (300 MHz, CDCl3) δ 8.70 (d, J = 4.5 Hz, 1H, CH2'), 8.02 (d, J = 9.4 Hz, 1H, CH8'), 

7.64 (d, J = 2.6 Hz, 1H, CH5'), 7.39 (d, J = 4.9 Hz, 1H, CH3'), 7.36 (dd, J = 9.0, 2.9 Hz, 1H, 

CH7'), 5.73 (ddd, J = 17.1, 9.9, 7.1 Hz, 1H, CH=CH2), 5.02-4.92 (m, 3H, CH=CH2 and 

CH9OH), 3.93 (s, 3H, OCH3), 3.26 (dd, J = 13.8, 10.0 Hz, 1H, CHH2), 3.22-3.04 (m, 2H, 

CHH6 and CH8), 2.83-2.74 (m, 2H, CHH6 and CHH2), 2.36-2.27 (m, 1H, CH3), 1.74-1.69 (m, 

1H, CH4), 1.63-1.57 (m, 2H, CH2
5), 1.51-1.41 (m, 1H, CHH7), 0.96 (ddt, J = 13.6, 7.9, 1.8 Hz, 

1H, CHH7). 

MS (EI-DE) m/z (%) 324 [M+] (1), 189 (4), 160 (2), 136 (100), 117 (3), 95 (2), 81 (6), 67 (1), 

55 (3), 42 (4). 

HRMS (ESI+) calcd for C20H25N2O2 [(M+H)+] 325.1913, found 325.1911. 

 

7.6.3 Synthesis of 6'-isopropoxycinchonidine (146) 

6'-Isopropoxycinchonidine (146) was prepared through a synthetic route reported by 

Berkessel et al.[92d] 
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MS (EI-DE) m/z (%) 324 [M+] (1), 189 (4), 160 (2), 136 (100), 117 (3), 95 (2), 81 (6), 67 (1), 

55 (3), 42 (4). 
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CH9OH), 3.93 (s, 3H, OCH3), 3.26 (dd, J = 13.8, 10.0 Hz, 1H, CHH2), 3.22-3.04 (m, 2H, 

CHH6 and CH8), 2.83-2.74 (m, 2H, CHH6 and CHH2), 2.36-2.27 (m, 1H, CH3), 1.74-1.69 (m, 

1H, CH4), 1.63-1.57 (m, 2H, CH2
5), 1.51-1.41 (m, 1H, CHH7), 0.96 (ddt, J = 13.6, 7.9, 1.8 Hz, 

1H, CHH7). 

MS (EI-DE) m/z (%) 324 [M+] (1), 189 (4), 160 (2), 136 (100), 117 (3), 95 (2), 81 (6), 67 (1), 
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CH9OH), 3.93 (s, 3H, OCH3), 3.26 (dd, J = 13.8, 10.0 Hz, 1H, CHH2), 3.22-3.04 (m, 2H, 

CHH6 and CH8), 2.83-2.74 (m, 2H, CHH6 and CHH2), 2.36-2.27 (m, 1H, CH3), 1.74-1.69 (m, 

1H, CH4), 1.63-1.57 (m, 2H, CH2
5), 1.51-1.41 (m, 1H, CHH7), 0.96 (ddt, J = 13.6, 7.9, 1.8 Hz, 

1H, CHH7). 

MS (EI-DE) m/z (%) 324 [M+] (1), 189 (4), 160 (2), 136 (100), 117 (3), 95 (2), 81 (6), 67 (1), 

55 (3), 42 (4). 

HRMS (ESI+) calcd for C20H25N2O2 [(M+H)+] 325.1913, found 325.1911. 
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6'-Hydroxycinchonidine (148): Under vigorous stirring, BBr3 (2.93 mL, 30.8 mmol, 4.0 

equiv) in CH2Cl2 (30 mL) was slowly added to a solution of quinine 

(2.5 g, 7.71 mmol) in CH2Cl2 (250 mL) at –78 °C. The reaction 

mixture was allowed to warm to room temperature, and then 

refluxed for 2h. The reaction was quenched by the addition of 10% 

aqueous NaOH (130 mL) at 0 °C, and stirring was maintained for 1 h. 

The phases were separated, and the aqueous phase was washed with CH2Cl2. Then, 2M 

aqueous HCl (80 mL) was added dropwise until a colorless solid precipitated (pH ~ 8). 

Extraction with CHCl3, drying (Na2SO4) of the organic phase, filtering, and evaporating to 

dryness in vacuo afforded the title compound (1.30 g, 4.19 mmol, 54%) as a white solid. 
1H NMR (400 MHz, CD3OD) δ 8.61 (d, J = 4.6 Hz, 1H, CH2'), 7.93(d, J = 9.1 Hz, 1H, CH8'), 

7.64 (d, J = 4.5 Hz, 1H, CH3'), 7.38-7.34 (m, 2H, CH5' and CH7'), 5.73 (ddd, J = 17.2, 10.1, 

7.3 Hz, 1H, CH=CH2), 5.58 (d, J = 3.0 Hz, 1H, CH9OH), 4.97 (dt, J = 17.2, 1.4 Hz, 1H, 

=CHtransH), 4.90 (dt, J = 10.4, 1.4 Hz, 1H, =CHHcis), 3.79-3.70 (m, 1H, CHH6), 3.15-3.07 (m, 

2H, CHH2 and CH8), 2.77-2.65 (m, 2H, CHH2 and CHH6), 2.39-2.31 (m, 1H, CH3), 1.93-

1.83 (m, 2H), 1.82-1.76 (m, 1H), 1.65-1.54 (m, 1H), 1.47-1.39 (m, 1H). 
13C NMR (100 MHz, CD3OD) δ 158.3 (Cq6'OH), 150.0 (Cq4'), 147.7 (C2'H), 144.2 (Cq8a'), 

142.8 (CH=CH2), 131.7 (C8'H), 128.7 (Cq4a'), 123.7 (C7'H), 120.1 (C3'H), 115.3 (CH=CH2), 

105.5 (C5'H), 72.4 (C9HOH), 61.2 (C8H), 57.8 (C2H2), 44.5 (C6H2), 41.1 (C3H), 29.4 (C4H), 

28.4 (C5H2), 21.9 (C7H2). 

MS (EI-DE) m/z (%) 310 [M+] (1), 175 (5), 158 (2), 136 (100), 95 (3), 81 (5), 67 (1), 55 (2), 

42 (2). 

HRMS (ESI+) calcd for C19H22N2NaO2 [(M+Na)+] 333.1576, found 333.1573. 

 
6'-Isopropoxycinchonidine (146): Cs2CO3 (2.36 g, 7.25 mmol, 2.5 equiv) was added to a 

stirred solution of 6-hydroxycinchonidine (148; 900 mg, 2.90 

mmol) in dry DMF (145 mL) and stirred at room temperature for 

10 min. 2-Bromopropane (0.55 mL, 5.80 mmol, 2.0 equiv) was 

added, and the reaction mixture was heated to 60 °C for 40 h. Then, 

the solvent was removed under reduced pressure, and the resulting 

solid was purified by flash column chromatography (silica gel, 10% MeOH in CHCl3) to 

obtain 6'-isopropoxycinchonidine (146; 733 mg, 2.08 mmol, 72%) as a white solid. 
1H NMR (500 MHz, CDCl3) δ 8.59 (d, J = 4.4 Hz, 1H, CH2'), 7.91 (d, J = 9.1 Hz, 1H, CH8'), 

7.47 (d, J = 4.4 Hz, 1H, CH3'), 7.47-7.21 (m, 2H, CH5' and CH7'), 5.69 (ddd, J = 17.3, 10.1, 

7.4 Hz, 1H, CH=CH2), 5.60 (br s, 1H, CH9OH), 4.93 (dt, J = 17.0, 1.3 Hz, 1H, CH=CHtransH), 
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refluxed for 2h. The reaction was quenched by the addition of 10% 
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dryness in vacuo afforded the title compound (1.30 g, 4.19 mmol, 54%) as a white solid. 
1H NMR (400 MHz, CD3OD) δ 8.61 (d, J = 4.6 Hz, 1H, CH2'), 7.93(d, J = 9.1 Hz, 1H, CH8'), 
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13C NMR (100 MHz, CD3OD) δ 158.3 (Cq6'OH), 150.0 (Cq4'), 147.7 (C2'H), 144.2 (Cq8a'), 
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42 (2). 

HRMS (ESI+) calcd for C19H22N2NaO2 [(M+Na)+] 333.1576, found 333.1573. 
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equiv) in CH2Cl2 (30 mL) was slowly added to a solution of quinine 

(2.5 g, 7.71 mmol) in CH2Cl2 (250 mL) at –78 °C. The reaction 

mixture was allowed to warm to room temperature, and then 

refluxed for 2h. The reaction was quenched by the addition of 10% 

aqueous NaOH (130 mL) at 0 °C, and stirring was maintained for 1 h. 

The phases were separated, and the aqueous phase was washed with CH2Cl2. Then, 2M 

aqueous HCl (80 mL) was added dropwise until a colorless solid precipitated (pH ~ 8). 

Extraction with CHCl3, drying (Na2SO4) of the organic phase, filtering, and evaporating to 

dryness in vacuo afforded the title compound (1.30 g, 4.19 mmol, 54%) as a white solid. 
1H NMR (400 MHz, CD3OD) δ 8.61 (d, J = 4.6 Hz, 1H, CH2'), 7.93(d, J = 9.1 Hz, 1H, CH8'), 
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42 (2). 

HRMS (ESI+) calcd for C19H22N2NaO2 [(M+Na)+] 333.1576, found 333.1573. 
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6'-Hydroxycinchonidine (148): Under vigorous stirring, BBr3 (2.93 mL, 30.8 mmol, 4.0 

equiv) in CH2Cl2 (30 mL) was slowly added to a solution of quinine 

(2.5 g, 7.71 mmol) in CH2Cl2 (250 mL) at –78 °C. The reaction 

mixture was allowed to warm to room temperature, and then 

refluxed for 2h. The reaction was quenched by the addition of 10% 

aqueous NaOH (130 mL) at 0 °C, and stirring was maintained for 1 h. 

The phases were separated, and the aqueous phase was washed with CH2Cl2. Then, 2M 

aqueous HCl (80 mL) was added dropwise until a colorless solid precipitated (pH ~ 8). 

Extraction with CHCl3, drying (Na2SO4) of the organic phase, filtering, and evaporating to 

dryness in vacuo afforded the title compound (1.30 g, 4.19 mmol, 54%) as a white solid. 
1H NMR (400 MHz, CD3OD) δ 8.61 (d, J = 4.6 Hz, 1H, CH2'), 7.93(d, J = 9.1 Hz, 1H, CH8'), 

7.64 (d, J = 4.5 Hz, 1H, CH3'), 7.38-7.34 (m, 2H, CH5' and CH7'), 5.73 (ddd, J = 17.2, 10.1, 

7.3 Hz, 1H, CH=CH2), 5.58 (d, J = 3.0 Hz, 1H, CH9OH), 4.97 (dt, J = 17.2, 1.4 Hz, 1H, 

=CHtransH), 4.90 (dt, J = 10.4, 1.4 Hz, 1H, =CHHcis), 3.79-3.70 (m, 1H, CHH6), 3.15-3.07 (m, 

2H, CHH2 and CH8), 2.77-2.65 (m, 2H, CHH2 and CHH6), 2.39-2.31 (m, 1H, CH3), 1.93-

1.83 (m, 2H), 1.82-1.76 (m, 1H), 1.65-1.54 (m, 1H), 1.47-1.39 (m, 1H). 
13C NMR (100 MHz, CD3OD) δ 158.3 (Cq6'OH), 150.0 (Cq4'), 147.7 (C2'H), 144.2 (Cq8a'), 

142.8 (CH=CH2), 131.7 (C8'H), 128.7 (Cq4a'), 123.7 (C7'H), 120.1 (C3'H), 115.3 (CH=CH2), 

105.5 (C5'H), 72.4 (C9HOH), 61.2 (C8H), 57.8 (C2H2), 44.5 (C6H2), 41.1 (C3H), 29.4 (C4H), 

28.4 (C5H2), 21.9 (C7H2). 

MS (EI-DE) m/z (%) 310 [M+] (1), 175 (5), 158 (2), 136 (100), 95 (3), 81 (5), 67 (1), 55 (2), 

42 (2). 

HRMS (ESI+) calcd for C19H22N2NaO2 [(M+Na)+] 333.1576, found 333.1573. 

 
6'-Isopropoxycinchonidine (146): Cs2CO3 (2.36 g, 7.25 mmol, 2.5 equiv) was added to a 

stirred solution of 6-hydroxycinchonidine (148; 900 mg, 2.90 

mmol) in dry DMF (145 mL) and stirred at room temperature for 

10 min. 2-Bromopropane (0.55 mL, 5.80 mmol, 2.0 equiv) was 

added, and the reaction mixture was heated to 60 °C for 40 h. Then, 

the solvent was removed under reduced pressure, and the resulting 

solid was purified by flash column chromatography (silica gel, 10% MeOH in CHCl3) to 

obtain 6'-isopropoxycinchonidine (146; 733 mg, 2.08 mmol, 72%) as a white solid. 
1H NMR (500 MHz, CDCl3) δ 8.59 (d, J = 4.4 Hz, 1H, CH2'), 7.91 (d, J = 9.1 Hz, 1H, CH8'), 

7.47 (d, J = 4.4 Hz, 1H, CH3'), 7.47-7.21 (m, 2H, CH5' and CH7'), 5.69 (ddd, J = 17.3, 10.1, 

7.4 Hz, 1H, CH=CH2), 5.60 (br s, 1H, CH9OH), 4.93 (dt, J = 17.0, 1.3 Hz, 1H, CH=CHtransH), 
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4.89 (dt, J = 10.4, 1.3 Hz, 1H, CH=CHHcis), 4.67 (sept, J = 6.1 Hz, 1H, OCHMe2), 3.94 (br s, 

1H, OH), 3.57-3.48 (m, 1H, CHH6), 3.16-3.06 (m, 2H, CHH2 and CH8), 2.71-2.64 (m, 2H, 

CHH2 and CHH6), 2.32-2.25 (m, 1H, CH3), 1.83-1.80 (m, 1H, CH4), 1.78-1.71 (m, 2H, CHH5 

and CHH7), 1.53-1.45 (m, 2H, CHH5 and CHH7), 1.33 (dd, J = 6.0 Hz, 6H, OCH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 155.9 (Cq6'Oi-Pr), 147.4 (C2'H), 147.0 (Cq4'), 143.9 (Cq8a'), 

141.4 (CH=CH2), 131.5 (C8'H), 126.5 (Cq4a'), 122.7 (C7'H), 118.4 (C3'H), 114.6 (CH=CH2), 

103.5 (C5'H), 71.6 (C9HOH), 70.1 (OCHMe2), 60.0 (C8H), 56.9 (C2H2), 43.3 (C6H2), 39.6 

(C3H), 27.7 (C4H), 27.3 (C5H2), 22.0 (OCH(CH3)2), 21.5 (OCH(CH3)2), 21.4 (C7H2). 

MS (EI-DE) m/z (%) 352 [M+] (2), 309 (4), 217 (2), 200 (1), 186 (1), 174 (4), 158 (2), 136 

(100), 117 (2), 95 (3), 81 (7), 67 (2), 55 (4), 43 (10). 

HRMS (EI-DE) calcd for C22H28N2O2 [M
+] 352.2154, found 352.2151. 

 

7.6.4 Synthesis of 9-amino(9-deoxy)epi-6'-hydroxycinchonidine (68) 

A literature-known procedure by the Chen group was followed.[161] 

 

BBr3 (23 mL, 23.0 mmol, 1.0M in CH2Cl2, 4.6 equiv) was added to a solution of amine 13 

(1.62 g, 5.01 mmol) in CH2Cl2 (15 mL) at –78 °C. The mixture was slowly warmed to room 

temperature and stirred for 12 h. The reaction was quenched by the addition of water (50 mL) 

at 0 °C, and further stirred for 4 h to ensure complete hydrolysis. The phases were separated, 

and the aqueous phase was washed with CH2Cl2 (3×50 mL). Subsequently the aqueous phase 

was neutralized with excess aqueous ammonia at 0 °C, and repeatedly extracted with EtOAc 

(3×50 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated. 

The residue was purified by flash column chromatography (silica gel, methanol/EtOAc 50:50 

with 1% aq. NH4OH) affording the title compound as a yellow solid (936 mg, 3.03 mmol, 

60%). The analytical data were identical in all respects to those previously reported.[161] 
1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 4.4 Hz, 1H, CH2'), 7.93 (d, J = 9.2 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.34 (br s, 1H, CH3'), 7.27 (dd, J = 8.9, 2.2 Hz, 1H, CH7'), 5.75 (ddd, J 

= 17.3, 9.6, 7.4 Hz, 1H, CH=CH2), 4.98-4.93 (m, 2H, CH=CH2), 4.90-4.63 (br s, 2H, NH2), 

4.48 (br s, 1H, CH9NH2), 3.20 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.14-3.06 (m, 1H, CH8), 

3.05-2.97 (m, 1H, CHH6), 2.78-2.65 (m, 2H, CHH6 and CHH2), 2.26-2.20 (m, 1H, CH3), 
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4.89 (dt, J = 10.4, 1.3 Hz, 1H, CH=CHHcis), 4.67 (sept, J = 6.1 Hz, 1H, OCHMe2), 3.94 (br s, 

1H, OH), 3.57-3.48 (m, 1H, CHH6), 3.16-3.06 (m, 2H, CHH2 and CH8), 2.71-2.64 (m, 2H, 

CHH2 and CHH6), 2.32-2.25 (m, 1H, CH3), 1.83-1.80 (m, 1H, CH4), 1.78-1.71 (m, 2H, CHH5 

and CHH7), 1.53-1.45 (m, 2H, CHH5 and CHH7), 1.33 (dd, J = 6.0 Hz, 6H, OCH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 155.9 (Cq6'Oi-Pr), 147.4 (C2'H), 147.0 (Cq4'), 143.9 (Cq8a'), 

141.4 (CH=CH2), 131.5 (C8'H), 126.5 (Cq4a'), 122.7 (C7'H), 118.4 (C3'H), 114.6 (CH=CH2), 

103.5 (C5'H), 71.6 (C9HOH), 70.1 (OCHMe2), 60.0 (C8H), 56.9 (C2H2), 43.3 (C6H2), 39.6 

(C3H), 27.7 (C4H), 27.3 (C5H2), 22.0 (OCH(CH3)2), 21.5 (OCH(CH3)2), 21.4 (C7H2). 

MS (EI-DE) m/z (%) 352 [M+] (2), 309 (4), 217 (2), 200 (1), 186 (1), 174 (4), 158 (2), 136 

(100), 117 (2), 95 (3), 81 (7), 67 (2), 55 (4), 43 (10). 

HRMS (EI-DE) calcd for C22H28N2O2 [M
+] 352.2154, found 352.2151. 

 

7.6.4 Synthesis of 9-amino(9-deoxy)epi-6'-hydroxycinchonidine (68) 

A literature-known procedure by the Chen group was followed.[161] 

 

BBr3 (23 mL, 23.0 mmol, 1.0M in CH2Cl2, 4.6 equiv) was added to a solution of amine 13 

(1.62 g, 5.01 mmol) in CH2Cl2 (15 mL) at –78 °C. The mixture was slowly warmed to room 

temperature and stirred for 12 h. The reaction was quenched by the addition of water (50 mL) 

at 0 °C, and further stirred for 4 h to ensure complete hydrolysis. The phases were separated, 

and the aqueous phase was washed with CH2Cl2 (3×50 mL). Subsequently the aqueous phase 

was neutralized with excess aqueous ammonia at 0 °C, and repeatedly extracted with EtOAc 

(3×50 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated. 

The residue was purified by flash column chromatography (silica gel, methanol/EtOAc 50:50 

with 1% aq. NH4OH) affording the title compound as a yellow solid (936 mg, 3.03 mmol, 

60%). The analytical data were identical in all respects to those previously reported.[161] 
1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 4.4 Hz, 1H, CH2'), 7.93 (d, J = 9.2 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.34 (br s, 1H, CH3'), 7.27 (dd, J = 8.9, 2.2 Hz, 1H, CH7'), 5.75 (ddd, J 

= 17.3, 9.6, 7.4 Hz, 1H, CH=CH2), 4.98-4.93 (m, 2H, CH=CH2), 4.90-4.63 (br s, 2H, NH2), 

4.48 (br s, 1H, CH9NH2), 3.20 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.14-3.06 (m, 1H, CH8), 

3.05-2.97 (m, 1H, CHH6), 2.78-2.65 (m, 2H, CHH6 and CHH2), 2.26-2.20 (m, 1H, CH3), 
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4.89 (dt, J = 10.4, 1.3 Hz, 1H, CH=CHHcis), 4.67 (sept, J = 6.1 Hz, 1H, OCHMe2), 3.94 (br s, 

1H, OH), 3.57-3.48 (m, 1H, CHH6), 3.16-3.06 (m, 2H, CHH2 and CH8), 2.71-2.64 (m, 2H, 

CHH2 and CHH6), 2.32-2.25 (m, 1H, CH3), 1.83-1.80 (m, 1H, CH4), 1.78-1.71 (m, 2H, CHH5 

and CHH7), 1.53-1.45 (m, 2H, CHH5 and CHH7), 1.33 (dd, J = 6.0 Hz, 6H, OCH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 155.9 (Cq6'Oi-Pr), 147.4 (C2'H), 147.0 (Cq4'), 143.9 (Cq8a'), 

141.4 (CH=CH2), 131.5 (C8'H), 126.5 (Cq4a'), 122.7 (C7'H), 118.4 (C3'H), 114.6 (CH=CH2), 

103.5 (C5'H), 71.6 (C9HOH), 70.1 (OCHMe2), 60.0 (C8H), 56.9 (C2H2), 43.3 (C6H2), 39.6 

(C3H), 27.7 (C4H), 27.3 (C5H2), 22.0 (OCH(CH3)2), 21.5 (OCH(CH3)2), 21.4 (C7H2). 

MS (EI-DE) m/z (%) 352 [M+] (2), 309 (4), 217 (2), 200 (1), 186 (1), 174 (4), 158 (2), 136 

(100), 117 (2), 95 (3), 81 (7), 67 (2), 55 (4), 43 (10). 

HRMS (EI-DE) calcd for C22H28N2O2 [M
+] 352.2154, found 352.2151. 

 

7.6.4 Synthesis of 9-amino(9-deoxy)epi-6'-hydroxycinchonidine (68) 

A literature-known procedure by the Chen group was followed.[161] 

 

BBr3 (23 mL, 23.0 mmol, 1.0M in CH2Cl2, 4.6 equiv) was added to a solution of amine 13 

(1.62 g, 5.01 mmol) in CH2Cl2 (15 mL) at –78 °C. The mixture was slowly warmed to room 

temperature and stirred for 12 h. The reaction was quenched by the addition of water (50 mL) 

at 0 °C, and further stirred for 4 h to ensure complete hydrolysis. The phases were separated, 

and the aqueous phase was washed with CH2Cl2 (3×50 mL). Subsequently the aqueous phase 

was neutralized with excess aqueous ammonia at 0 °C, and repeatedly extracted with EtOAc 

(3×50 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated. 

The residue was purified by flash column chromatography (silica gel, methanol/EtOAc 50:50 

with 1% aq. NH4OH) affording the title compound as a yellow solid (936 mg, 3.03 mmol, 

60%). The analytical data were identical in all respects to those previously reported.[161] 
1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 4.4 Hz, 1H, CH2'), 7.93 (d, J = 9.2 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.34 (br s, 1H, CH3'), 7.27 (dd, J = 8.9, 2.2 Hz, 1H, CH7'), 5.75 (ddd, J 

= 17.3, 9.6, 7.4 Hz, 1H, CH=CH2), 4.98-4.93 (m, 2H, CH=CH2), 4.90-4.63 (br s, 2H, NH2), 

4.48 (br s, 1H, CH9NH2), 3.20 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.14-3.06 (m, 1H, CH8), 

3.05-2.97 (m, 1H, CHH6), 2.78-2.65 (m, 2H, CHH6 and CHH2), 2.26-2.20 (m, 1H, CH3), 
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4.89 (dt, J = 10.4, 1.3 Hz, 1H, CH=CHHcis), 4.67 (sept, J = 6.1 Hz, 1H, OCHMe2), 3.94 (br s, 

1H, OH), 3.57-3.48 (m, 1H, CHH6), 3.16-3.06 (m, 2H, CHH2 and CH8), 2.71-2.64 (m, 2H, 

CHH2 and CHH6), 2.32-2.25 (m, 1H, CH3), 1.83-1.80 (m, 1H, CH4), 1.78-1.71 (m, 2H, CHH5 

and CHH7), 1.53-1.45 (m, 2H, CHH5 and CHH7), 1.33 (dd, J = 6.0 Hz, 6H, OCH(CH3)2). 
13C NMR (125 MHz, CDCl3) δ 155.9 (Cq6'Oi-Pr), 147.4 (C2'H), 147.0 (Cq4'), 143.9 (Cq8a'), 

141.4 (CH=CH2), 131.5 (C8'H), 126.5 (Cq4a'), 122.7 (C7'H), 118.4 (C3'H), 114.6 (CH=CH2), 

103.5 (C5'H), 71.6 (C9HOH), 70.1 (OCHMe2), 60.0 (C8H), 56.9 (C2H2), 43.3 (C6H2), 39.6 

(C3H), 27.7 (C4H), 27.3 (C5H2), 22.0 (OCH(CH3)2), 21.5 (OCH(CH3)2), 21.4 (C7H2). 

MS (EI-DE) m/z (%) 352 [M+] (2), 309 (4), 217 (2), 200 (1), 186 (1), 174 (4), 158 (2), 136 

(100), 117 (2), 95 (3), 81 (7), 67 (2), 55 (4), 43 (10). 

HRMS (EI-DE) calcd for C22H28N2O2 [M
+] 352.2154, found 352.2151. 

 

7.6.4 Synthesis of 9-amino(9-deoxy)epi-6'-hydroxycinchonidine (68) 

A literature-known procedure by the Chen group was followed.[161] 

 

BBr3 (23 mL, 23.0 mmol, 1.0M in CH2Cl2, 4.6 equiv) was added to a solution of amine 13 

(1.62 g, 5.01 mmol) in CH2Cl2 (15 mL) at –78 °C. The mixture was slowly warmed to room 

temperature and stirred for 12 h. The reaction was quenched by the addition of water (50 mL) 

at 0 °C, and further stirred for 4 h to ensure complete hydrolysis. The phases were separated, 

and the aqueous phase was washed with CH2Cl2 (3×50 mL). Subsequently the aqueous phase 

was neutralized with excess aqueous ammonia at 0 °C, and repeatedly extracted with EtOAc 

(3×50 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated. 

The residue was purified by flash column chromatography (silica gel, methanol/EtOAc 50:50 

with 1% aq. NH4OH) affording the title compound as a yellow solid (936 mg, 3.03 mmol, 

60%). The analytical data were identical in all respects to those previously reported.[161] 
1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 4.4 Hz, 1H, CH2'), 7.93 (d, J = 9.2 Hz, 1H, CH8'), 

7.60 (br s, 1H, CH5'), 7.34 (br s, 1H, CH3'), 7.27 (dd, J = 8.9, 2.2 Hz, 1H, CH7'), 5.75 (ddd, J 

= 17.3, 9.6, 7.4 Hz, 1H, CH=CH2), 4.98-4.93 (m, 2H, CH=CH2), 4.90-4.63 (br s, 2H, NH2), 

4.48 (br s, 1H, CH9NH2), 3.20 (dd, J = 13.9, 10.1 Hz, 1H, CHH2), 3.14-3.06 (m, 1H, CH8), 

3.05-2.97 (m, 1H, CHH6), 2.78-2.65 (m, 2H, CHH6 and CHH2), 2.26-2.20 (m, 1H, CH3), 
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1.57-1.53 (m, 1H, CH4), 1.49-1.40 (m, 2H, CHH5 and CHH7), 1.37-1.29 (m, 1H, CHH5), 

0.72-0.63 (m, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 156.6 (Cq6'OH), 146.5 (C2'H), 146.4 (Cq4'), 143.4 (Cq8a'), 

141.4 (CH=CH2), 131.1 (C8'H), 129.2 (Cq4a'), 122.7 (C7'H), 118.9 (C3'H), 114.7 (CH=CH2), 

105.1 (C5'H), 61.7 (C8H), 56.0 (C2H2), 50.7 (C9HNH2), 40.8 (C6H2), 39.6 (C3H), 27.7 (C5H2), 

27.4 (C4H), 26.1 (C7H2). 

MS (ESI+) m/z (%) 309 [M+] (trace), 294 (2), 225 (1), 212 (1), 199 (1), 185 (1), 173 (14), 159 

(1), 136 (100), 122 (3), 108 (9), 95 (5), 82 (11), 56 (6), 44 (10). 

HRMS (ESI+) calcd for C19H24N3O [(M+H)+] 310.1914, found 310.1914. 

 

7.6.5 Synthesis of 2-(α-aminobenzyl)quinuclidine (86a) 

2-(α-Hydroxybenzyl)quinuclidine (150) was prepared according to a procedure of Kessar et 

al.[177a] 

 

 

 

2-(α-Hydroxybenzyl)quinuclidine (150):[177a] Quinuclidine (1.11 g, 10.0 mmol, 1.0 equiv) 

was dissolved in THF (60 mL) and treated with BF3 • Et2O (1.38 mL, 11.0 

mmol, 1.1 equiv) at 0 °C for 40 min. In the meantime, s-BuLi (15.7 mL, 

22.0 mmol, 2.2 equiv; 1.4 M in cyclohexane) was added to a solution of 

potassium tert-butoxide (2.47 g, 22.0 mmol, 2.2 equiv) in THF (60 mL) at 

−78 °C, and the resulting solution was stirred for 30 min. Then, the solution of the 

quinuclidine−BF3 complex was added slowly to the flask containing the Schlosser base 

solution. After stirring for 4 h at −78 °C, freshly distilled benzaldehyde (2.22 mL, 22.0 mmol) 

dissolved in THF (20 mL) was added dropwise. The temperature was maintained at −78 °C 

for 30 min and then allowed to rise to −30 °C over a period of 1 h. The reaction was quenched 

with 10% aqueous HCl (50 mL) and repeatedly extracted with 10% aqueous HCl (2 × 40 mL). 

The phases were separated. The aqueous phase was made alkaline with excess aqueous 

NH4OH solution, and was then repeatedly extracted with Et2O (3 × 100 mL) and EtOAc (3 × 

100 mL). The combined Et2O/EtOAc layers were washed with brine (60 mL), dried (Na2SO4), 

filtered, and concentrated under reduced pressure. The crude product contained mainly the 

N

OH

C14H19NO
217,31
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1.57-1.53 (m, 1H, CH4), 1.49-1.40 (m, 2H, CHH5 and CHH7), 1.37-1.29 (m, 1H, CHH5), 

0.72-0.63 (m, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 156.6 (Cq6'OH), 146.5 (C2'H), 146.4 (Cq4'), 143.4 (Cq8a'), 

141.4 (CH=CH2), 131.1 (C8'H), 129.2 (Cq4a'), 122.7 (C7'H), 118.9 (C3'H), 114.7 (CH=CH2), 

105.1 (C5'H), 61.7 (C8H), 56.0 (C2H2), 50.7 (C9HNH2), 40.8 (C6H2), 39.6 (C3H), 27.7 (C5H2), 

27.4 (C4H), 26.1 (C7H2). 

MS (ESI+) m/z (%) 309 [M+] (trace), 294 (2), 225 (1), 212 (1), 199 (1), 185 (1), 173 (14), 159 

(1), 136 (100), 122 (3), 108 (9), 95 (5), 82 (11), 56 (6), 44 (10). 

HRMS (ESI+) calcd for C19H24N3O [(M+H)+] 310.1914, found 310.1914. 

 

7.6.5 Synthesis of 2-(α-aminobenzyl)quinuclidine (86a) 

2-(α-Hydroxybenzyl)quinuclidine (150) was prepared according to a procedure of Kessar et 

al.[177a] 

 

 

 

2-(α-Hydroxybenzyl)quinuclidine (150):[177a] Quinuclidine (1.11 g, 10.0 mmol, 1.0 equiv) 

was dissolved in THF (60 mL) and treated with BF3 • Et2O (1.38 mL, 11.0 

mmol, 1.1 equiv) at 0 °C for 40 min. In the meantime, s-BuLi (15.7 mL, 

22.0 mmol, 2.2 equiv; 1.4 M in cyclohexane) was added to a solution of 

potassium tert-butoxide (2.47 g, 22.0 mmol, 2.2 equiv) in THF (60 mL) at 

−78 °C, and the resulting solution was stirred for 30 min. Then, the solution of the 

quinuclidine−BF3 complex was added slowly to the flask containing the Schlosser base 

solution. After stirring for 4 h at −78 °C, freshly distilled benzaldehyde (2.22 mL, 22.0 mmol) 

dissolved in THF (20 mL) was added dropwise. The temperature was maintained at −78 °C 

for 30 min and then allowed to rise to −30 °C over a period of 1 h. The reaction was quenched 

with 10% aqueous HCl (50 mL) and repeatedly extracted with 10% aqueous HCl (2 × 40 mL). 

The phases were separated. The aqueous phase was made alkaline with excess aqueous 

NH4OH solution, and was then repeatedly extracted with Et2O (3 × 100 mL) and EtOAc (3 × 

100 mL). The combined Et2O/EtOAc layers were washed with brine (60 mL), dried (Na2SO4), 

filtered, and concentrated under reduced pressure. The crude product contained mainly the 

N
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217,31

7  Experimental Part 

254 

1.57-1.53 (m, 1H, CH4), 1.49-1.40 (m, 2H, CHH5 and CHH7), 1.37-1.29 (m, 1H, CHH5), 

0.72-0.63 (m, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 156.6 (Cq6'OH), 146.5 (C2'H), 146.4 (Cq4'), 143.4 (Cq8a'), 

141.4 (CH=CH2), 131.1 (C8'H), 129.2 (Cq4a'), 122.7 (C7'H), 118.9 (C3'H), 114.7 (CH=CH2), 

105.1 (C5'H), 61.7 (C8H), 56.0 (C2H2), 50.7 (C9HNH2), 40.8 (C6H2), 39.6 (C3H), 27.7 (C5H2), 

27.4 (C4H), 26.1 (C7H2). 

MS (ESI+) m/z (%) 309 [M+] (trace), 294 (2), 225 (1), 212 (1), 199 (1), 185 (1), 173 (14), 159 

(1), 136 (100), 122 (3), 108 (9), 95 (5), 82 (11), 56 (6), 44 (10). 

HRMS (ESI+) calcd for C19H24N3O [(M+H)+] 310.1914, found 310.1914. 

 

7.6.5 Synthesis of 2-(α-aminobenzyl)quinuclidine (86a) 

2-(α-Hydroxybenzyl)quinuclidine (150) was prepared according to a procedure of Kessar et 

al.[177a] 

 

 

 

2-(α-Hydroxybenzyl)quinuclidine (150):[177a] Quinuclidine (1.11 g, 10.0 mmol, 1.0 equiv) 

was dissolved in THF (60 mL) and treated with BF3 • Et2O (1.38 mL, 11.0 

mmol, 1.1 equiv) at 0 °C for 40 min. In the meantime, s-BuLi (15.7 mL, 

22.0 mmol, 2.2 equiv; 1.4 M in cyclohexane) was added to a solution of 

potassium tert-butoxide (2.47 g, 22.0 mmol, 2.2 equiv) in THF (60 mL) at 

−78 °C, and the resulting solution was stirred for 30 min. Then, the solution of the 

quinuclidine−BF3 complex was added slowly to the flask containing the Schlosser base 

solution. After stirring for 4 h at −78 °C, freshly distilled benzaldehyde (2.22 mL, 22.0 mmol) 

dissolved in THF (20 mL) was added dropwise. The temperature was maintained at −78 °C 

for 30 min and then allowed to rise to −30 °C over a period of 1 h. The reaction was quenched 

with 10% aqueous HCl (50 mL) and repeatedly extracted with 10% aqueous HCl (2 × 40 mL). 

The phases were separated. The aqueous phase was made alkaline with excess aqueous 

NH4OH solution, and was then repeatedly extracted with Et2O (3 × 100 mL) and EtOAc (3 × 

100 mL). The combined Et2O/EtOAc layers were washed with brine (60 mL), dried (Na2SO4), 

filtered, and concentrated under reduced pressure. The crude product contained mainly the 
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1.57-1.53 (m, 1H, CH4), 1.49-1.40 (m, 2H, CHH5 and CHH7), 1.37-1.29 (m, 1H, CHH5), 

0.72-0.63 (m, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 156.6 (Cq6'OH), 146.5 (C2'H), 146.4 (Cq4'), 143.4 (Cq8a'), 

141.4 (CH=CH2), 131.1 (C8'H), 129.2 (Cq4a'), 122.7 (C7'H), 118.9 (C3'H), 114.7 (CH=CH2), 

105.1 (C5'H), 61.7 (C8H), 56.0 (C2H2), 50.7 (C9HNH2), 40.8 (C6H2), 39.6 (C3H), 27.7 (C5H2), 

27.4 (C4H), 26.1 (C7H2). 

MS (ESI+) m/z (%) 309 [M+] (trace), 294 (2), 225 (1), 212 (1), 199 (1), 185 (1), 173 (14), 159 

(1), 136 (100), 122 (3), 108 (9), 95 (5), 82 (11), 56 (6), 44 (10). 

HRMS (ESI+) calcd for C19H24N3O [(M+H)+] 310.1914, found 310.1914. 

 

7.6.5 Synthesis of 2-(α-aminobenzyl)quinuclidine (86a) 

2-(α-Hydroxybenzyl)quinuclidine (150) was prepared according to a procedure of Kessar et 

al.[177a] 

 

 

 

2-(α-Hydroxybenzyl)quinuclidine (150):[177a] Quinuclidine (1.11 g, 10.0 mmol, 1.0 equiv) 

was dissolved in THF (60 mL) and treated with BF3 • Et2O (1.38 mL, 11.0 

mmol, 1.1 equiv) at 0 °C for 40 min. In the meantime, s-BuLi (15.7 mL, 

22.0 mmol, 2.2 equiv; 1.4 M in cyclohexane) was added to a solution of 

potassium tert-butoxide (2.47 g, 22.0 mmol, 2.2 equiv) in THF (60 mL) at 

−78 °C, and the resulting solution was stirred for 30 min. Then, the solution of the 

quinuclidine−BF3 complex was added slowly to the flask containing the Schlosser base 

solution. After stirring for 4 h at −78 °C, freshly distilled benzaldehyde (2.22 mL, 22.0 mmol) 

dissolved in THF (20 mL) was added dropwise. The temperature was maintained at −78 °C 

for 30 min and then allowed to rise to −30 °C over a period of 1 h. The reaction was quenched 

with 10% aqueous HCl (50 mL) and repeatedly extracted with 10% aqueous HCl (2 × 40 mL). 

The phases were separated. The aqueous phase was made alkaline with excess aqueous 

NH4OH solution, and was then repeatedly extracted with Et2O (3 × 100 mL) and EtOAc (3 × 

100 mL). The combined Et2O/EtOAc layers were washed with brine (60 mL), dried (Na2SO4), 

filtered, and concentrated under reduced pressure. The crude product contained mainly the 
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threo isomer of 150 (669 mg, 3.08 mmol, 31%) which was purified by flash column 

chromatography (silica gel, 15-25% methanol in EtOAc with 1% aq. NH4OH). Afterwards, 

the original reaction mixture was extracted again with 10% aqueous HCl (2 × 50 mL). The 

phases were separated and the aqueous phase was made alkaline with excess aqueous NH4OH 

solution. Backextraction of the aqueous phase II with EtOAc (3 × 100 mL) gave - after 

washing of the combined EtOAc layers with brine (60 mL), drying (Na2SO4), filtering, and 

evaporating - a crude product which contained predominantly the erythro isomer of 150. 

Purification by flash column chromatography (silica gel, 15-25% methanol in EtOAc with 1% 

aq. NH4OH) and subsequent recrystallization from Et2O gave pure erythro-150 (555 mg, 2.55 

mmol, 26%) as a white solid. The physical data were identical in all respects to those 

previously reported.[197] 

threo-150: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 7.3 Hz, 2H, CHPh, o), 

7.32 (t, J = 7.3 Hz, 2H, CHPh, m), 7.28-7.25 (m, 1H, CHPh, p), 4.36 (d, J = 

9.8 Hz, 1H, CH9OH), 3.10-3.04 (m, 1H, CHH), 2.95 (app. t, J = 7.7 Hz, 

2H, CH2), 2.80-2.73 (m, 2H, CHH and CH8), 1.97 (br s, 1H, OH), 1.78-

1.74 (m, 1H, CH4), 1.53-1.42 (m, 4H, CH2
3 and CH2

5), 1.34-1.28 (m, 1H, CHH7), 1.11 (ddt, J 

= 13.1, 8,4, 1.9 Hz, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 141.1 (CqPh), 128.3 (2C, CHPh, m), 127.8 (CHPh, p), 127.3 (2C, 

CHPh, o), 74.4 (C9HOH), 62.8 (C8H), 49.5 (CH2), 41.4 (CH2), 29.2 (C7H2), 26.6 (CH2), 25.6 

(CH2), 21.5 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (51), 200 (25), 188 (13), 176 (15), 158 (7), 140 (5), 120 (4), 

110 (69), 105 (11), 98 (23), 91 (17), 82 (100), 77 (27), 68 (9), 55 (89), 42 (34), 29 (23). 

HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

erythro-150: 1H NMR (500 MHz, CDCl3) δ 7.35-7.30 (m, 4H, CHPh), 

7.27-7.22 (m, 1H, CHPh, p), 4.85 (d, J = 6.3 Hz, 1H, CH9OH), 3.45 (br s, 

1H, OH), 3.29-3.22 (m, 1H, CHH2), 3.02 (dd, J = 16.4, 8.8 Hz, 1H, CH8), 

2.90-2.76 (m, 2H, CH2
6), 2.69-2.63 (m, 1H, CHH2), 1.87-1.84 (m, 1H, 

CH4), 1.71-1.66 (m, 1H, CHH7), 1.65-1.59 (m, 1H, CHH7), 1.55-1.43 (m, 4H, CH2
3 and 

CH2
5). 

13C NMR (125 MHz, CD2Cl2) δ 143.8 (CqPh), 128.2 (2C, CHPh), 127.4 (CHPh, p), 126.4 (2C, 

CHPh), 76.0 (C9HOH), 61.4 (C8H), 50.3 (C6H2), 43.3 (C2H2), 28.0 (C7H2), 26.4 (CH2), 25.5 

(CH2), 21.9 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (44), 200 (30), 188 (13), 176 (18), 158 (18), 140 (5), 120 (5), 

110 (95), 98 (25), 91 (19), 82 (93), 77 (30), 68 (9), 55 (100), 42 (36), 29 (26). 

N

OH

2

3
4

5

6
7

8
9

C14H19NO
217,31

N

OH

2

3
4

5

6
7

8
9

C14H19NO
217,31

7 Experimental Part 

 255

threo isomer of 150 (669 mg, 3.08 mmol, 31%) which was purified by flash column 

chromatography (silica gel, 15-25% methanol in EtOAc with 1% aq. NH4OH). Afterwards, 

the original reaction mixture was extracted again with 10% aqueous HCl (2 × 50 mL). The 

phases were separated and the aqueous phase was made alkaline with excess aqueous NH4OH 

solution. Backextraction of the aqueous phase II with EtOAc (3 × 100 mL) gave - after 

washing of the combined EtOAc layers with brine (60 mL), drying (Na2SO4), filtering, and 

evaporating - a crude product which contained predominantly the erythro isomer of 150. 

Purification by flash column chromatography (silica gel, 15-25% methanol in EtOAc with 1% 

aq. NH4OH) and subsequent recrystallization from Et2O gave pure erythro-150 (555 mg, 2.55 

mmol, 26%) as a white solid. The physical data were identical in all respects to those 

previously reported.[197] 

threo-150: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 7.3 Hz, 2H, CHPh, o), 

7.32 (t, J = 7.3 Hz, 2H, CHPh, m), 7.28-7.25 (m, 1H, CHPh, p), 4.36 (d, J = 

9.8 Hz, 1H, CH9OH), 3.10-3.04 (m, 1H, CHH), 2.95 (app. t, J = 7.7 Hz, 

2H, CH2), 2.80-2.73 (m, 2H, CHH and CH8), 1.97 (br s, 1H, OH), 1.78-

1.74 (m, 1H, CH4), 1.53-1.42 (m, 4H, CH2
3 and CH2

5), 1.34-1.28 (m, 1H, CHH7), 1.11 (ddt, J 

= 13.1, 8,4, 1.9 Hz, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 141.1 (CqPh), 128.3 (2C, CHPh, m), 127.8 (CHPh, p), 127.3 (2C, 

CHPh, o), 74.4 (C9HOH), 62.8 (C8H), 49.5 (CH2), 41.4 (CH2), 29.2 (C7H2), 26.6 (CH2), 25.6 

(CH2), 21.5 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (51), 200 (25), 188 (13), 176 (15), 158 (7), 140 (5), 120 (4), 

110 (69), 105 (11), 98 (23), 91 (17), 82 (100), 77 (27), 68 (9), 55 (89), 42 (34), 29 (23). 

HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

erythro-150: 1H NMR (500 MHz, CDCl3) δ 7.35-7.30 (m, 4H, CHPh), 

7.27-7.22 (m, 1H, CHPh, p), 4.85 (d, J = 6.3 Hz, 1H, CH9OH), 3.45 (br s, 

1H, OH), 3.29-3.22 (m, 1H, CHH2), 3.02 (dd, J = 16.4, 8.8 Hz, 1H, CH8), 

2.90-2.76 (m, 2H, CH2
6), 2.69-2.63 (m, 1H, CHH2), 1.87-1.84 (m, 1H, 

CH4), 1.71-1.66 (m, 1H, CHH7), 1.65-1.59 (m, 1H, CHH7), 1.55-1.43 (m, 4H, CH2
3 and 

CH2
5). 

13C NMR (125 MHz, CD2Cl2) δ 143.8 (CqPh), 128.2 (2C, CHPh), 127.4 (CHPh, p), 126.4 (2C, 

CHPh), 76.0 (C9HOH), 61.4 (C8H), 50.3 (C6H2), 43.3 (C2H2), 28.0 (C7H2), 26.4 (CH2), 25.5 

(CH2), 21.9 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (44), 200 (30), 188 (13), 176 (18), 158 (18), 140 (5), 120 (5), 

110 (95), 98 (25), 91 (19), 82 (93), 77 (30), 68 (9), 55 (100), 42 (36), 29 (26). 
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threo isomer of 150 (669 mg, 3.08 mmol, 31%) which was purified by flash column 

chromatography (silica gel, 15-25% methanol in EtOAc with 1% aq. NH4OH). Afterwards, 

the original reaction mixture was extracted again with 10% aqueous HCl (2 × 50 mL). The 

phases were separated and the aqueous phase was made alkaline with excess aqueous NH4OH 

solution. Backextraction of the aqueous phase II with EtOAc (3 × 100 mL) gave - after 

washing of the combined EtOAc layers with brine (60 mL), drying (Na2SO4), filtering, and 

evaporating - a crude product which contained predominantly the erythro isomer of 150. 

Purification by flash column chromatography (silica gel, 15-25% methanol in EtOAc with 1% 

aq. NH4OH) and subsequent recrystallization from Et2O gave pure erythro-150 (555 mg, 2.55 

mmol, 26%) as a white solid. The physical data were identical in all respects to those 

previously reported.[197] 

threo-150: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 7.3 Hz, 2H, CHPh, o), 

7.32 (t, J = 7.3 Hz, 2H, CHPh, m), 7.28-7.25 (m, 1H, CHPh, p), 4.36 (d, J = 

9.8 Hz, 1H, CH9OH), 3.10-3.04 (m, 1H, CHH), 2.95 (app. t, J = 7.7 Hz, 

2H, CH2), 2.80-2.73 (m, 2H, CHH and CH8), 1.97 (br s, 1H, OH), 1.78-

1.74 (m, 1H, CH4), 1.53-1.42 (m, 4H, CH2
3 and CH2

5), 1.34-1.28 (m, 1H, CHH7), 1.11 (ddt, J 

= 13.1, 8,4, 1.9 Hz, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 141.1 (CqPh), 128.3 (2C, CHPh, m), 127.8 (CHPh, p), 127.3 (2C, 

CHPh, o), 74.4 (C9HOH), 62.8 (C8H), 49.5 (CH2), 41.4 (CH2), 29.2 (C7H2), 26.6 (CH2), 25.6 

(CH2), 21.5 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (51), 200 (25), 188 (13), 176 (15), 158 (7), 140 (5), 120 (4), 

110 (69), 105 (11), 98 (23), 91 (17), 82 (100), 77 (27), 68 (9), 55 (89), 42 (34), 29 (23). 

HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

erythro-150: 1H NMR (500 MHz, CDCl3) δ 7.35-7.30 (m, 4H, CHPh), 

7.27-7.22 (m, 1H, CHPh, p), 4.85 (d, J = 6.3 Hz, 1H, CH9OH), 3.45 (br s, 

1H, OH), 3.29-3.22 (m, 1H, CHH2), 3.02 (dd, J = 16.4, 8.8 Hz, 1H, CH8), 

2.90-2.76 (m, 2H, CH2
6), 2.69-2.63 (m, 1H, CHH2), 1.87-1.84 (m, 1H, 

CH4), 1.71-1.66 (m, 1H, CHH7), 1.65-1.59 (m, 1H, CHH7), 1.55-1.43 (m, 4H, CH2
3 and 

CH2
5). 

13C NMR (125 MHz, CD2Cl2) δ 143.8 (CqPh), 128.2 (2C, CHPh), 127.4 (CHPh, p), 126.4 (2C, 

CHPh), 76.0 (C9HOH), 61.4 (C8H), 50.3 (C6H2), 43.3 (C2H2), 28.0 (C7H2), 26.4 (CH2), 25.5 

(CH2), 21.9 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (44), 200 (30), 188 (13), 176 (18), 158 (18), 140 (5), 120 (5), 

110 (95), 98 (25), 91 (19), 82 (93), 77 (30), 68 (9), 55 (100), 42 (36), 29 (26). 
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threo isomer of 150 (669 mg, 3.08 mmol, 31%) which was purified by flash column 

chromatography (silica gel, 15-25% methanol in EtOAc with 1% aq. NH4OH). Afterwards, 

the original reaction mixture was extracted again with 10% aqueous HCl (2 × 50 mL). The 

phases were separated and the aqueous phase was made alkaline with excess aqueous NH4OH 

solution. Backextraction of the aqueous phase II with EtOAc (3 × 100 mL) gave - after 

washing of the combined EtOAc layers with brine (60 mL), drying (Na2SO4), filtering, and 

evaporating - a crude product which contained predominantly the erythro isomer of 150. 

Purification by flash column chromatography (silica gel, 15-25% methanol in EtOAc with 1% 

aq. NH4OH) and subsequent recrystallization from Et2O gave pure erythro-150 (555 mg, 2.55 

mmol, 26%) as a white solid. The physical data were identical in all respects to those 

previously reported.[197] 

threo-150: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 7.3 Hz, 2H, CHPh, o), 

7.32 (t, J = 7.3 Hz, 2H, CHPh, m), 7.28-7.25 (m, 1H, CHPh, p), 4.36 (d, J = 

9.8 Hz, 1H, CH9OH), 3.10-3.04 (m, 1H, CHH), 2.95 (app. t, J = 7.7 Hz, 

2H, CH2), 2.80-2.73 (m, 2H, CHH and CH8), 1.97 (br s, 1H, OH), 1.78-

1.74 (m, 1H, CH4), 1.53-1.42 (m, 4H, CH2
3 and CH2

5), 1.34-1.28 (m, 1H, CHH7), 1.11 (ddt, J 

= 13.1, 8,4, 1.9 Hz, 1H, CHH7). 
13C NMR (125 MHz, CDCl3) δ 141.1 (CqPh), 128.3 (2C, CHPh, m), 127.8 (CHPh, p), 127.3 (2C, 

CHPh, o), 74.4 (C9HOH), 62.8 (C8H), 49.5 (CH2), 41.4 (CH2), 29.2 (C7H2), 26.6 (CH2), 25.6 

(CH2), 21.5 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (51), 200 (25), 188 (13), 176 (15), 158 (7), 140 (5), 120 (4), 

110 (69), 105 (11), 98 (23), 91 (17), 82 (100), 77 (27), 68 (9), 55 (89), 42 (34), 29 (23). 

HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

erythro-150: 1H NMR (500 MHz, CDCl3) δ 7.35-7.30 (m, 4H, CHPh), 

7.27-7.22 (m, 1H, CHPh, p), 4.85 (d, J = 6.3 Hz, 1H, CH9OH), 3.45 (br s, 

1H, OH), 3.29-3.22 (m, 1H, CHH2), 3.02 (dd, J = 16.4, 8.8 Hz, 1H, CH8), 

2.90-2.76 (m, 2H, CH2
6), 2.69-2.63 (m, 1H, CHH2), 1.87-1.84 (m, 1H, 

CH4), 1.71-1.66 (m, 1H, CHH7), 1.65-1.59 (m, 1H, CHH7), 1.55-1.43 (m, 4H, CH2
3 and 

CH2
5). 

13C NMR (125 MHz, CD2Cl2) δ 143.8 (CqPh), 128.2 (2C, CHPh), 127.4 (CHPh, p), 126.4 (2C, 

CHPh), 76.0 (C9HOH), 61.4 (C8H), 50.3 (C6H2), 43.3 (C2H2), 28.0 (C7H2), 26.4 (CH2), 25.5 

(CH2), 21.9 (C4H). 

MS (EI-DE) m/z (%) 217 [M+] (44), 200 (30), 188 (13), 176 (18), 158 (18), 140 (5), 120 (5), 

110 (95), 98 (25), 91 (19), 82 (93), 77 (30), 68 (9), 55 (100), 42 (36), 29 (26). 
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HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

 

erythro-2-(α-Aminobenzyl)quinuclidine (erythro-86): erythro-86 was prepared starting 

from threo-150 (200 mg, 920 μmol) following the same procedure 

described for the synthesis of 9-amino(9-deoxy)epiquinine (13). The 

reaction was always kept between 0 °C and room temperature. Purification 

by flash column chromatography (silica gel, methanol/EtOAc 40:60 with 

1% aq. NH4OH) gave erythro-86 as a white semi-solid (90.3 mg, 418 μmol, 45%). The 

enantiomers were separated by chiral HPLC (Chiralcel OD, 20 μm, 250 × 20 mm BIAX 

column; 10% i-PrOH in i-hexane with 0.1% diethylamine, 10 mL/min, 1.3 MPa, 308 K). 

Optical rotation [α]25
D = +61.0 (c = 0.7, CHCl3); [α]25

D = −63.0 (c = 0.6, CHCl3). 
1H NMR (500 MHz, CD2Cl2) δ 7.31-7.26 (m, 4H, CHPh), 7.23-7.19 (m, 1H, CHPh, p), 3.87 (d, 

J = 9.5 Hz, 1H, CH9NH2), 3.05-2.97 (m, 1H, CHH2), 2.87 (dd, J = 17.4, 8.9 Hz, 1H, CH8), 

2.76-2.73 (m, 2H, CH2
6), 2.61-2.55 (m, 1H, CHH2), 1.95-1.89 (m, 1H, CHH7), 1.87-1.83 (m, 

1H, CH4), 1.79 (br s, 2H, NH2), 1.54-1.43 (m, 5H, CH2
5, CH2

3 and CHH7). 
13C NMR (125 MHz, CD2Cl2) δ 147.1 (CqPh), 128.5 (2C, CHPh), 127.2 (2C, CHPh), 127.0 

(CHPh, p), 62.7 (C8H), 60.1 (C9HNH2), 50.3 (C6H2), 42.5 (C2H2), 32.6 (C7H2), 27.2 (CH2), 26.0 

(CH2), 22.6 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (6), 199 (1), 158 (1), 145 (2), 132 (3), 106 (48), 91 (4), 82 

(100), 79 (10), 69 (4), 55 (11), 42 (8), 28 (12). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1625, found 216.1626. 

 

threo-2-(α-Aminobenzyl)quinuclidine (threo-86): threo-86 was prepared starting from 

erythro-150 (200 mg, 920 μmol) following the same procedure described 

for the synthesis of 9-amino(9-deoxy)epiquinine (13). The reaction was 

always kept between 0 °C and room temperature. Purification by flash 

column chromatography (silica gel, methanol/EtOAc 40:60 with 1% 

aq. NH4OH) gave threo-86 as a white semi-solid (121 mg, 561 μmol, 61%). 
1H NMR (500 MHz, CD2Cl2) δ 7.38 (d, J = 7.6 Hz, 2H, CHPh, o), 7.31 (t, J = 7.6 Hz, 2H, 

CHPh, m), 7.24 (t, J = 7.1 Hz, 1H, CHPh, p), 3.79 (d, J = 10.1 Hz, 1H, CH9NH2), 3.07-3.00 (m, 

1H, CHH2), 2.93 (app. t, J = 7.7 Hz, 2H, C6H2), 2.75 (dd overlapped, J = 18.6, 9.5 Hz, 1H, 

CH8), 2.74-2.68 (m overlapped, 1H, CHH2), 1.92 (br s, 2H, NH2), 1.66-1.64 (m, 1H, CH4), 

1.47-1.41 (m, 4H, CH2
3 and CH2

5), 1.16-1.10 (m, 1H, CHH7), 0.98-0.94 (m, 1H, CHH7). 
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HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

 

erythro-2-(α-Aminobenzyl)quinuclidine (erythro-86): erythro-86 was prepared starting 

from threo-150 (200 mg, 920 μmol) following the same procedure 

described for the synthesis of 9-amino(9-deoxy)epiquinine (13). The 

reaction was always kept between 0 °C and room temperature. Purification 

by flash column chromatography (silica gel, methanol/EtOAc 40:60 with 

1% aq. NH4OH) gave erythro-86 as a white semi-solid (90.3 mg, 418 μmol, 45%). The 

enantiomers were separated by chiral HPLC (Chiralcel OD, 20 μm, 250 × 20 mm BIAX 

column; 10% i-PrOH in i-hexane with 0.1% diethylamine, 10 mL/min, 1.3 MPa, 308 K). 

Optical rotation [α]25
D = +61.0 (c = 0.7, CHCl3); [α]25

D = −63.0 (c = 0.6, CHCl3). 
1H NMR (500 MHz, CD2Cl2) δ 7.31-7.26 (m, 4H, CHPh), 7.23-7.19 (m, 1H, CHPh, p), 3.87 (d, 

J = 9.5 Hz, 1H, CH9NH2), 3.05-2.97 (m, 1H, CHH2), 2.87 (dd, J = 17.4, 8.9 Hz, 1H, CH8), 

2.76-2.73 (m, 2H, CH2
6), 2.61-2.55 (m, 1H, CHH2), 1.95-1.89 (m, 1H, CHH7), 1.87-1.83 (m, 

1H, CH4), 1.79 (br s, 2H, NH2), 1.54-1.43 (m, 5H, CH2
5, CH2

3 and CHH7). 
13C NMR (125 MHz, CD2Cl2) δ 147.1 (CqPh), 128.5 (2C, CHPh), 127.2 (2C, CHPh), 127.0 

(CHPh, p), 62.7 (C8H), 60.1 (C9HNH2), 50.3 (C6H2), 42.5 (C2H2), 32.6 (C7H2), 27.2 (CH2), 26.0 

(CH2), 22.6 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (6), 199 (1), 158 (1), 145 (2), 132 (3), 106 (48), 91 (4), 82 

(100), 79 (10), 69 (4), 55 (11), 42 (8), 28 (12). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1625, found 216.1626. 

 

threo-2-(α-Aminobenzyl)quinuclidine (threo-86): threo-86 was prepared starting from 

erythro-150 (200 mg, 920 μmol) following the same procedure described 

for the synthesis of 9-amino(9-deoxy)epiquinine (13). The reaction was 

always kept between 0 °C and room temperature. Purification by flash 

column chromatography (silica gel, methanol/EtOAc 40:60 with 1% 

aq. NH4OH) gave threo-86 as a white semi-solid (121 mg, 561 μmol, 61%). 
1H NMR (500 MHz, CD2Cl2) δ 7.38 (d, J = 7.6 Hz, 2H, CHPh, o), 7.31 (t, J = 7.6 Hz, 2H, 

CHPh, m), 7.24 (t, J = 7.1 Hz, 1H, CHPh, p), 3.79 (d, J = 10.1 Hz, 1H, CH9NH2), 3.07-3.00 (m, 

1H, CHH2), 2.93 (app. t, J = 7.7 Hz, 2H, C6H2), 2.75 (dd overlapped, J = 18.6, 9.5 Hz, 1H, 

CH8), 2.74-2.68 (m overlapped, 1H, CHH2), 1.92 (br s, 2H, NH2), 1.66-1.64 (m, 1H, CH4), 

1.47-1.41 (m, 4H, CH2
3 and CH2

5), 1.16-1.10 (m, 1H, CHH7), 0.98-0.94 (m, 1H, CHH7). 
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HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

 

erythro-2-(α-Aminobenzyl)quinuclidine (erythro-86): erythro-86 was prepared starting 

from threo-150 (200 mg, 920 μmol) following the same procedure 

described for the synthesis of 9-amino(9-deoxy)epiquinine (13). The 

reaction was always kept between 0 °C and room temperature. Purification 

by flash column chromatography (silica gel, methanol/EtOAc 40:60 with 

1% aq. NH4OH) gave erythro-86 as a white semi-solid (90.3 mg, 418 μmol, 45%). The 

enantiomers were separated by chiral HPLC (Chiralcel OD, 20 μm, 250 × 20 mm BIAX 

column; 10% i-PrOH in i-hexane with 0.1% diethylamine, 10 mL/min, 1.3 MPa, 308 K). 

Optical rotation [α]25
D = +61.0 (c = 0.7, CHCl3); [α]25

D = −63.0 (c = 0.6, CHCl3). 
1H NMR (500 MHz, CD2Cl2) δ 7.31-7.26 (m, 4H, CHPh), 7.23-7.19 (m, 1H, CHPh, p), 3.87 (d, 

J = 9.5 Hz, 1H, CH9NH2), 3.05-2.97 (m, 1H, CHH2), 2.87 (dd, J = 17.4, 8.9 Hz, 1H, CH8), 

2.76-2.73 (m, 2H, CH2
6), 2.61-2.55 (m, 1H, CHH2), 1.95-1.89 (m, 1H, CHH7), 1.87-1.83 (m, 

1H, CH4), 1.79 (br s, 2H, NH2), 1.54-1.43 (m, 5H, CH2
5, CH2

3 and CHH7). 
13C NMR (125 MHz, CD2Cl2) δ 147.1 (CqPh), 128.5 (2C, CHPh), 127.2 (2C, CHPh), 127.0 

(CHPh, p), 62.7 (C8H), 60.1 (C9HNH2), 50.3 (C6H2), 42.5 (C2H2), 32.6 (C7H2), 27.2 (CH2), 26.0 

(CH2), 22.6 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (6), 199 (1), 158 (1), 145 (2), 132 (3), 106 (48), 91 (4), 82 

(100), 79 (10), 69 (4), 55 (11), 42 (8), 28 (12). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1625, found 216.1626. 
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erythro-150 (200 mg, 920 μmol) following the same procedure described 

for the synthesis of 9-amino(9-deoxy)epiquinine (13). The reaction was 

always kept between 0 °C and room temperature. Purification by flash 

column chromatography (silica gel, methanol/EtOAc 40:60 with 1% 

aq. NH4OH) gave threo-86 as a white semi-solid (121 mg, 561 μmol, 61%). 
1H NMR (500 MHz, CD2Cl2) δ 7.38 (d, J = 7.6 Hz, 2H, CHPh, o), 7.31 (t, J = 7.6 Hz, 2H, 

CHPh, m), 7.24 (t, J = 7.1 Hz, 1H, CHPh, p), 3.79 (d, J = 10.1 Hz, 1H, CH9NH2), 3.07-3.00 (m, 

1H, CHH2), 2.93 (app. t, J = 7.7 Hz, 2H, C6H2), 2.75 (dd overlapped, J = 18.6, 9.5 Hz, 1H, 

CH8), 2.74-2.68 (m overlapped, 1H, CHH2), 1.92 (br s, 2H, NH2), 1.66-1.64 (m, 1H, CH4), 

1.47-1.41 (m, 4H, CH2
3 and CH2
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HRMS (EI-DE) calcd for C14H19NO [M+] 217.1465, found 217.1467. 

 

erythro-2-(α-Aminobenzyl)quinuclidine (erythro-86): erythro-86 was prepared starting 

from threo-150 (200 mg, 920 μmol) following the same procedure 

described for the synthesis of 9-amino(9-deoxy)epiquinine (13). The 

reaction was always kept between 0 °C and room temperature. Purification 

by flash column chromatography (silica gel, methanol/EtOAc 40:60 with 

1% aq. NH4OH) gave erythro-86 as a white semi-solid (90.3 mg, 418 μmol, 45%). The 

enantiomers were separated by chiral HPLC (Chiralcel OD, 20 μm, 250 × 20 mm BIAX 

column; 10% i-PrOH in i-hexane with 0.1% diethylamine, 10 mL/min, 1.3 MPa, 308 K). 

Optical rotation [α]25
D = +61.0 (c = 0.7, CHCl3); [α]25

D = −63.0 (c = 0.6, CHCl3). 
1H NMR (500 MHz, CD2Cl2) δ 7.31-7.26 (m, 4H, CHPh), 7.23-7.19 (m, 1H, CHPh, p), 3.87 (d, 

J = 9.5 Hz, 1H, CH9NH2), 3.05-2.97 (m, 1H, CHH2), 2.87 (dd, J = 17.4, 8.9 Hz, 1H, CH8), 

2.76-2.73 (m, 2H, CH2
6), 2.61-2.55 (m, 1H, CHH2), 1.95-1.89 (m, 1H, CHH7), 1.87-1.83 (m, 

1H, CH4), 1.79 (br s, 2H, NH2), 1.54-1.43 (m, 5H, CH2
5, CH2

3 and CHH7). 
13C NMR (125 MHz, CD2Cl2) δ 147.1 (CqPh), 128.5 (2C, CHPh), 127.2 (2C, CHPh), 127.0 

(CHPh, p), 62.7 (C8H), 60.1 (C9HNH2), 50.3 (C6H2), 42.5 (C2H2), 32.6 (C7H2), 27.2 (CH2), 26.0 

(CH2), 22.6 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (6), 199 (1), 158 (1), 145 (2), 132 (3), 106 (48), 91 (4), 82 

(100), 79 (10), 69 (4), 55 (11), 42 (8), 28 (12). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1625, found 216.1626. 

 

threo-2-(α-Aminobenzyl)quinuclidine (threo-86): threo-86 was prepared starting from 

erythro-150 (200 mg, 920 μmol) following the same procedure described 

for the synthesis of 9-amino(9-deoxy)epiquinine (13). The reaction was 

always kept between 0 °C and room temperature. Purification by flash 

column chromatography (silica gel, methanol/EtOAc 40:60 with 1% 

aq. NH4OH) gave threo-86 as a white semi-solid (121 mg, 561 μmol, 61%). 
1H NMR (500 MHz, CD2Cl2) δ 7.38 (d, J = 7.6 Hz, 2H, CHPh, o), 7.31 (t, J = 7.6 Hz, 2H, 

CHPh, m), 7.24 (t, J = 7.1 Hz, 1H, CHPh, p), 3.79 (d, J = 10.1 Hz, 1H, CH9NH2), 3.07-3.00 (m, 

1H, CHH2), 2.93 (app. t, J = 7.7 Hz, 2H, C6H2), 2.75 (dd overlapped, J = 18.6, 9.5 Hz, 1H, 

CH8), 2.74-2.68 (m overlapped, 1H, CHH2), 1.92 (br s, 2H, NH2), 1.66-1.64 (m, 1H, CH4), 

1.47-1.41 (m, 4H, CH2
3 and CH2

5), 1.16-1.10 (m, 1H, CHH7), 0.98-0.94 (m, 1H, CHH7). 

N

NH2

2

3
4

5

6
7

8
9

C14H20N2

216,32

N

NH2

2

3
4

5

6
7

8
9

C14H20N2

216,32



7 Experimental Part 

 257

13C NMR (125 MHz, CD2Cl2) δ 144.1 (CqPh), 128.6 (2C, CHPh, o), 128.5 (2C, CHPh, m), 127.5 

(CHPh, p), 62.5 (C8H), 58.9 (C9HNH2), 50.3 (C6H2), 41.8 (C2H2), 31.0 (C7H2), 27.3 (CH2), 26.1 

(CH2), 22.3 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (3), 158 (1), 146 (5), 130 (2), 118 (2), 106 (42), 91 (4), 82 

(100), 79 (11), 68 (5), 55 (14), 42 (12), 28 (23). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1628, found 216.1626. 

 

7.6.6 Synthesis of Amino Acid-Derived Diamines 

Amino acid-derived diamines were prepared according to standard peptide coupling protocols 

followed by amide reduction.[198] 

 
Synthesis of (S)-phenylglycine-N,N-dimethylamide (154a) 

 

 
 
To a solution of N-Boc-(S)-phenylglycine (1.51 g, 6.00 mmol, 1.0 equiv) in CH2Cl2 (48 mL) 

was added O-(benzotriazol-1-yl)-tetramethyluronium hexafluorophosphate (HBTU, 2.28 g, 

6.00 mmol, 1.0 equiv), and the white suspension was stirred for 5 min, followed by the 

sequential addition of diisopropylethylamine (3.06 mL, 18.0 mmol, 3.0 equiv) and dimethyl-

amine (0.33 mL, 6.60 mmol, 1.1 equiv). After 18 h at room temperature, the reaction mixture 

was combined with CH2Cl2 (50 mL) and water (50 mL). The organic layer was separated, 

repeatedly washed with aqueous 1N HCl (3×30 mL), dried (Na2SO4), filtered, and concen-

trated under reduced pressure. The crude N-Boc-protected N,N-dimethylamide was treated 

with trifluoroacetic acid (TFA, 6 mL) at 0 °C. After 1 h, the mixture was diluted with CH2Cl2, 

basified (pH 8~9) at 0 °C with saturated aqueous NaHCO3 solution, and then extracted with 

CH2Cl2 (3×50 mL). The combined organic layers dried (Na2SO4), filtered, and evaporated. L-

phenylglycine-N,N-dimethylamide (154a; 739 mg, 4.15 mmol, 69%) was obtained as a pale 

yellow solid by flash column chromatography (silica gel, 10-25% methanol in EtOAc). 
1H NMR (500 MHz, CDCl3) δ 7.27-7.17 (m, 5H, C6H5), 4.65 (s, 1H, CHNH2), 2.89 (s, 3H, 

CH3), 2.75 (s, 3H, CH3), 2.26 (br s, 2H, NH2). 
13C NMR (125 MHz, CDCl3) δ 172.7 (C=O), 141.0 (CqPh), 129.1 (2C, CHPh), 127.8 (CHPh, p), 

127.1 (2C, CHPh), 56.8 (CHNH2), 36.6 (CH3), 36.1 (CH3). 
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13C NMR (125 MHz, CD2Cl2) δ 144.1 (CqPh), 128.6 (2C, CHPh, o), 128.5 (2C, CHPh, m), 127.5 

(CHPh, p), 62.5 (C8H), 58.9 (C9HNH2), 50.3 (C6H2), 41.8 (C2H2), 31.0 (C7H2), 27.3 (CH2), 26.1 

(CH2), 22.3 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (3), 158 (1), 146 (5), 130 (2), 118 (2), 106 (42), 91 (4), 82 

(100), 79 (11), 68 (5), 55 (14), 42 (12), 28 (23). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1628, found 216.1626. 

 

7.6.6 Synthesis of Amino Acid-Derived Diamines 

Amino acid-derived diamines were prepared according to standard peptide coupling protocols 

followed by amide reduction.[198] 

 
Synthesis of (S)-phenylglycine-N,N-dimethylamide (154a) 

 

 
 
To a solution of N-Boc-(S)-phenylglycine (1.51 g, 6.00 mmol, 1.0 equiv) in CH2Cl2 (48 mL) 

was added O-(benzotriazol-1-yl)-tetramethyluronium hexafluorophosphate (HBTU, 2.28 g, 

6.00 mmol, 1.0 equiv), and the white suspension was stirred for 5 min, followed by the 

sequential addition of diisopropylethylamine (3.06 mL, 18.0 mmol, 3.0 equiv) and dimethyl-

amine (0.33 mL, 6.60 mmol, 1.1 equiv). After 18 h at room temperature, the reaction mixture 

was combined with CH2Cl2 (50 mL) and water (50 mL). The organic layer was separated, 

repeatedly washed with aqueous 1N HCl (3×30 mL), dried (Na2SO4), filtered, and concen-

trated under reduced pressure. The crude N-Boc-protected N,N-dimethylamide was treated 

with trifluoroacetic acid (TFA, 6 mL) at 0 °C. After 1 h, the mixture was diluted with CH2Cl2, 

basified (pH 8~9) at 0 °C with saturated aqueous NaHCO3 solution, and then extracted with 

CH2Cl2 (3×50 mL). The combined organic layers dried (Na2SO4), filtered, and evaporated. L-

phenylglycine-N,N-dimethylamide (154a; 739 mg, 4.15 mmol, 69%) was obtained as a pale 

yellow solid by flash column chromatography (silica gel, 10-25% methanol in EtOAc). 
1H NMR (500 MHz, CDCl3) δ 7.27-7.17 (m, 5H, C6H5), 4.65 (s, 1H, CHNH2), 2.89 (s, 3H, 

CH3), 2.75 (s, 3H, CH3), 2.26 (br s, 2H, NH2). 
13C NMR (125 MHz, CDCl3) δ 172.7 (C=O), 141.0 (CqPh), 129.1 (2C, CHPh), 127.8 (CHPh, p), 

127.1 (2C, CHPh), 56.8 (CHNH2), 36.6 (CH3), 36.1 (CH3). 
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13C NMR (125 MHz, CD2Cl2) δ 144.1 (CqPh), 128.6 (2C, CHPh, o), 128.5 (2C, CHPh, m), 127.5 

(CHPh, p), 62.5 (C8H), 58.9 (C9HNH2), 50.3 (C6H2), 41.8 (C2H2), 31.0 (C7H2), 27.3 (CH2), 26.1 

(CH2), 22.3 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (3), 158 (1), 146 (5), 130 (2), 118 (2), 106 (42), 91 (4), 82 

(100), 79 (11), 68 (5), 55 (14), 42 (12), 28 (23). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1628, found 216.1626. 

 

7.6.6 Synthesis of Amino Acid-Derived Diamines 

Amino acid-derived diamines were prepared according to standard peptide coupling protocols 

followed by amide reduction.[198] 

 
Synthesis of (S)-phenylglycine-N,N-dimethylamide (154a) 

 

 
 
To a solution of N-Boc-(S)-phenylglycine (1.51 g, 6.00 mmol, 1.0 equiv) in CH2Cl2 (48 mL) 

was added O-(benzotriazol-1-yl)-tetramethyluronium hexafluorophosphate (HBTU, 2.28 g, 

6.00 mmol, 1.0 equiv), and the white suspension was stirred for 5 min, followed by the 

sequential addition of diisopropylethylamine (3.06 mL, 18.0 mmol, 3.0 equiv) and dimethyl-

amine (0.33 mL, 6.60 mmol, 1.1 equiv). After 18 h at room temperature, the reaction mixture 

was combined with CH2Cl2 (50 mL) and water (50 mL). The organic layer was separated, 

repeatedly washed with aqueous 1N HCl (3×30 mL), dried (Na2SO4), filtered, and concen-

trated under reduced pressure. The crude N-Boc-protected N,N-dimethylamide was treated 

with trifluoroacetic acid (TFA, 6 mL) at 0 °C. After 1 h, the mixture was diluted with CH2Cl2, 

basified (pH 8~9) at 0 °C with saturated aqueous NaHCO3 solution, and then extracted with 

CH2Cl2 (3×50 mL). The combined organic layers dried (Na2SO4), filtered, and evaporated. L-

phenylglycine-N,N-dimethylamide (154a; 739 mg, 4.15 mmol, 69%) was obtained as a pale 

yellow solid by flash column chromatography (silica gel, 10-25% methanol in EtOAc). 
1H NMR (500 MHz, CDCl3) δ 7.27-7.17 (m, 5H, C6H5), 4.65 (s, 1H, CHNH2), 2.89 (s, 3H, 

CH3), 2.75 (s, 3H, CH3), 2.26 (br s, 2H, NH2). 
13C NMR (125 MHz, CDCl3) δ 172.7 (C=O), 141.0 (CqPh), 129.1 (2C, CHPh), 127.8 (CHPh, p), 

127.1 (2C, CHPh), 56.8 (CHNH2), 36.6 (CH3), 36.1 (CH3). 
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13C NMR (125 MHz, CD2Cl2) δ 144.1 (CqPh), 128.6 (2C, CHPh, o), 128.5 (2C, CHPh, m), 127.5 

(CHPh, p), 62.5 (C8H), 58.9 (C9HNH2), 50.3 (C6H2), 41.8 (C2H2), 31.0 (C7H2), 27.3 (CH2), 26.1 

(CH2), 22.3 (C4H). 

MS (EI-DE) m/z (%) 216 [M+] (3), 158 (1), 146 (5), 130 (2), 118 (2), 106 (42), 91 (4), 82 

(100), 79 (11), 68 (5), 55 (14), 42 (12), 28 (23). 

HRMS (EI-DE) calcd for C14H20N2 [M
+] 216.1628, found 216.1626. 

 

7.6.6 Synthesis of Amino Acid-Derived Diamines 

Amino acid-derived diamines were prepared according to standard peptide coupling protocols 

followed by amide reduction.[198] 

 
Synthesis of (S)-phenylglycine-N,N-dimethylamide (154a) 

 

 
 
To a solution of N-Boc-(S)-phenylglycine (1.51 g, 6.00 mmol, 1.0 equiv) in CH2Cl2 (48 mL) 

was added O-(benzotriazol-1-yl)-tetramethyluronium hexafluorophosphate (HBTU, 2.28 g, 

6.00 mmol, 1.0 equiv), and the white suspension was stirred for 5 min, followed by the 

sequential addition of diisopropylethylamine (3.06 mL, 18.0 mmol, 3.0 equiv) and dimethyl-

amine (0.33 mL, 6.60 mmol, 1.1 equiv). After 18 h at room temperature, the reaction mixture 

was combined with CH2Cl2 (50 mL) and water (50 mL). The organic layer was separated, 

repeatedly washed with aqueous 1N HCl (3×30 mL), dried (Na2SO4), filtered, and concen-

trated under reduced pressure. The crude N-Boc-protected N,N-dimethylamide was treated 

with trifluoroacetic acid (TFA, 6 mL) at 0 °C. After 1 h, the mixture was diluted with CH2Cl2, 

basified (pH 8~9) at 0 °C with saturated aqueous NaHCO3 solution, and then extracted with 

CH2Cl2 (3×50 mL). The combined organic layers dried (Na2SO4), filtered, and evaporated. L-

phenylglycine-N,N-dimethylamide (154a; 739 mg, 4.15 mmol, 69%) was obtained as a pale 

yellow solid by flash column chromatography (silica gel, 10-25% methanol in EtOAc). 
1H NMR (500 MHz, CDCl3) δ 7.27-7.17 (m, 5H, C6H5), 4.65 (s, 1H, CHNH2), 2.89 (s, 3H, 

CH3), 2.75 (s, 3H, CH3), 2.26 (br s, 2H, NH2). 
13C NMR (125 MHz, CDCl3) δ 172.7 (C=O), 141.0 (CqPh), 129.1 (2C, CHPh), 127.8 (CHPh, p), 

127.1 (2C, CHPh), 56.8 (CHNH2), 36.6 (CH3), 36.1 (CH3). 
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Synthesis of (S)-tert-leucine-N,N-dimethylamide (154b): N,N-dimethylamide 154b was 

obtained from (S)-N-Boc-tert-leucine by the method described for N,N-

dimethylamide 154a. Flash column chromatography (silica gel, 10-25% 

methanol in EtOAc) gave N,N-dimethylamide 154b as a white solid (949 

mg, 6.00 mmol, 95% yield). 
1H NMR (500 MHz, CDCl3) δ 3.56 (s, 1H, CH), 3.06 (s, 3H, N(CH3)2), 2.95 (s, 3H, 

N(CH3)2), 2.11 (br s, 2H, NH2), 0.96 (s, 9H, C(CH3)3). 
13C NMR (125 MHz, CDCl3) δ 174.2 (C=O), 57.6 (CHNH2), 38.1 (CqMe3), 35.6 (CH3), 35.3 

(CH3), 26.3 (3C, Cq(CH3)3). 

 

Synthesis of (S)-tryptophane-N,N-dimethylamide (154c): N,N-dimethylamide 154c was 

obtained from (S)-N-Boc-tryptophane by the method described for 

N,N-dimethylamide 154a. Flash column chromatography (silica gel, 

10-30% methanol in EtOAc) gave N,N-dimethylamide 154c as a pale 

yellow solid (505 mg, 2.16 mmol, 36%). 
1H NMR (500 MHz, CDCl3) δ 8.28 (br s, 1H, NH), 7.52 (d, J = 7.8 Hz, 1H, CHindol), 7.34 (d, 

J = 8.0 Hz, 1H, CHindol), 7.16 (app. t, J = 7.6 Hz, 1H, CHindol), 7.10-7.07 (m, 2H, CHindol), 

4.08-4.05 (m, 1H, CHNH2), 3.11 (dd, J = 14.6, 6.4 Hz, 1H, CHH), 2.94 (dd, J = 14.6, 7.7 Hz, 

1H, CHH), 2.84 (s, 3H, CH3), 2.76 (s, 3H, CH3), 2.40 (br s, 2H, NH2). 

 

Synthesis of (S)-phenylalanine amide (152) 
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1H, C(=O)NHH), 3.60 (dd, J = 9.5, 4.1 Hz, 1H, CHNH2), 3.26 (dd, J = 13.7, 4.2 Hz, 1H, 

CHH), 2.70 (dd, J = 13.7, 9.6 Hz, 1H, CHH), 1.38 (br s, 2H, CHNH2). 
13C NMR (125 MHz, CDCl3) δ 177.5 (C=O), 137.8 (CqPh), 129.2 (2C, CHPh), 128.7 (2C, 

CHPh), 126.8 (CHPh, p), 56.5 (CHNH2), 40.9 (CH2). 

MS (EI-DE) m/z (%) 164 [M+] (trace), 147 (2), 131 (1), 120 (100), 103 (14), 91 (18), 77 (9), 

73 (31), 65 (7), 51 (4), 42 (4), 28 (6). 

HRMS (CI-FE, i-butane) calcd for C9H13N2O [(M+H)+] 165.1027, found 165.1028. 

 

Synthesis of (S)-phenylalanine-N-methylamide (153) 

 

NH2
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O
MeNH2 (8M in EtOH)

r.t., 12 h
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(S)-Phenylalanine methyl ester (3.59 g, 20.0 mmol) was dissolved in an ethanolic solution of 

methylamine (12.5 mL, 100 mmol, 5.0 equiv; 8M in ethanol), and the resulting solution was 

stirred at room temperature overnight (12 h). The volatiles were removed in vacuo and (S)-

phenylalanine-N-methylamide (153; white solid; 3.56 g, >99% yield) was used in the next 

step without further purification. 
1H NMR (500 MHz, CDCl3) δ 7.29-7.17 (m, 6H, C6H5 and NHMe), 3.57 (dd, J = 9.5, 3.8 Hz, 

1H, CHNH2), 3.25 (dd, J = 13.8, 4.0 Hz, 1H, CHH), 2.78 (d, J = 5.0 Hz, 3H, CH3), 2.64 (dd, 

J = 14.0, 9.9 Hz, 1H, CHH), 1.41 (br s, 2H, NH2). 
13C NMR (125 MHz, CDCl3) δ 174.7 (C=O), 137.9 (CqPh), 129.2 (2C, CHPh), 128.6 (2C, 

CHPh), 126.7 (CHPh, p), 56.4 (CHNH2), 40.9 (CH2), 25.8 (CH3). 

MS (EI-DE) m/z (%) 178 [M+] (1), 161 (2), 131 (2), 120 (100), 103 (11), 91 (13), 87 (29), 77 

(7), 69 (5), 58 (4), 51 (2), 42 (7), 30 (3). 

HRMS (CI-FE, i-butane) calcd for C10H15N2O [(M+H)+] 179.1183, found 179.1184. 

 

Synthesis of (S)-3-Phenylpropane-1,2-diamine (87) 
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LiAlH4 (228 mg, 6.00 mmol, 2.0 equiv) was added in portions to a solution of amide 152 (493 

mg, 3.00 mmol) in THF (21 mL) at 0 °C. The reaction was heated to reflux until TLC analysis 

indicated complete disappearance of the starting material (18 h), and was then carefully 

quenched by the sequential addition of water, 15% aqueous NaOH, and water. The reaction 

mixture was repeatedly extracted with Et2O, and the combined organic layers were dried 

(Na2SO4), filtered, and evaporated. Purification of the residue by short path distillation (bp 

50-55 °C at 3.1-2 mbar) gave pure diamine 87 as a colorless liquid (255 mg, 1.55 mmol, 52%). 
1H NMR (500 MHz, CDCl3) δ 7.28 (t, J = 7.6 Hz, 2H, CHPh, m), 7.21 (d, J = 7.6 Hz, 1H, 

CHPh, p), 7.18 (d, J = 7.3 Hz, 2H, CHPh, o), 2.99-2.94 (m, 1H, CHNH2), 2.80 (dd, J = 12.6, 4.1 

Hz, 1H, CHHNH2), 2.77 (dd, J = 13.3, 4.8 Hz, 1H, PhCHH), 2.54 (dd, J = 12.6, 7.9 Hz, 1H, 

CHHNH2), 2.49 (dd, J = 13.6, 8.5 Hz, 1H, PhCHH), 1.56-1.46 (br m, 4H, NH2). 
13C NMR (125 MHz, CDCl3) δ 139.1 (CqPh), 129.2 (2C, CHPh), 128.5 (2C, CHPh), 126.3 

(CHPh, p), 55.0 (CHNH2), 48.0 (CH2NH2), 42.3 (PhCH2). 

MS (EI-DE) m/z (%) 150 [M+] (trace), 132 (1), 120 (100), 103 (17), 91 (19), 77 (11), 65 (8), 

59 (54), 51 (5), 42 (11), 30 (51), 28 (6). 

HRMS (CI-FE, i-butane) calcd for C9H15N2 [(M+H)+] 151.1236, found 151.1235. 

 

Synthesis of (S)-N1-methyl-3-phenylpropane-1,2-diamine (88): Diamine 88 was obtained 

from the corresponding N-methylamide 153 according to the procedure 

described for the synthesis diamine 87 (LiAlH4 (2.0 equiv); 4 h at reflux). 

Short path distillation (bp 38-39 °C at 4.2-4.4-2 mbar) gave pure diamine 

88 as a colorless liquid (218 mg, 1.33 mmol, 44%). 
1H NMR (500 MHz, CDCl3) δ 7.28 (t, J = 7.4 Hz, 2H, CHPh, m), 7.21 (d, J = 7.6 Hz, 1H, 

CHPh, p), 7.18 (d, J = 7.6 Hz, 2H, CHPh, o), 3.10 (ddd, J = 12.8, 8.6, 4.3 Hz, 1H, CHNH2), 2.77 

(dd, J = 13.4, 4.9 Hz, 1H, PhCHH), 2.65 (dd, J = 11.8, 3.9 Hz, 1H, CHHNHMe), 2.49 (dd, J 

= 13.4, 8.7 Hz, 1H, PhCHH), 2.44 (dd overlapped, J = 11.7, 8.5 Hz, 1H, CHHNHMe), 2.43 (s 

overlapped, 3H, CH3), 1.47 (br s, 3H, NH2 and NHMe). 
13C NMR (125 MHz, CDCl3) δ 139.1 (CqPh), 129.2 (2C, CHPh), 128.5 (2C, CHPh), 126.3 

(CHPh, p), 58.3 (CH2NHMe), 52.3 (CHNH2), 42.9 (PhCH2), 36.5 (CH3). 

MS (EI-DE) m/z (%) 164 [M+] (trace), 132 (1), 120 (100), 103 (12), 91 (12), 77 (7), 73 (28), 

65 (5), 56 (3), 44 (68), 30 (11). 

HRMS (CI-FE, i-butane) calcd for C10H17N2 [(M+H)+] 165.1392, found 165.1392. 
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Synthesis of (S)-N1,N1-dimethyl-3-phenylpropane-1,2-diamine (89d): Diamine 89d was 
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MS (EI-DE) m/z (%) 178 [M+] (4), 161 (1), 132 (1), 120 (65), 103 (7), 91 (12), 77 (4), 70 (3), 

65 (4), 58 (100), 51 (1), 42 (9), 30 (5). 

HRMS (EI-FE) calcd for C11H18N2 [M
+] 178.1469, found 178.1470. 
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HRMS (CI-FE, i-butane) calcd for C10H17N2 [(M+H)+] 165.1391, found 165.1392. 
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6H, N(CH3)2), 2.13-2.07 (m, 2H, CH2), 1.30 (br s, 2H, NH2), 0.86 (s, 9H, Cq(CH3)3). 
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equiv); 3 h at room temperature). Flash column chromatography 
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diamine 89c as a pale yellow solid (260 mg, 1.22 mmol, 69%). 
1H NMR (500 MHz, CDCl3) δ 8.22 (br s, 1H, NH), 7.61 (d, J = 7.3 Hz, 1H, CHar, 7.34 (d, J = 

8.2 Hz, 1H, CHar), 7.18 (app. t, J = 8.0 Hz, 1H, CHar), 7.10 (app. t, J = 7.7 Hz, 1H, CHar), 

7.06 (s, 1H, CHarNH), 3.25 (app. sept, J = 4.6 Hz, 1H, CHNH2), 2.91 (dd, J = 14.2, 4.1 Hz, 

1H, CqarCHH), 2.64 (dd, J = 14.2, 8.5 Hz, 1H, CqarCHH), 2.31 (dd, J = 12.0, 9.5 Hz, 1H, 

CHHNMe2), 2.25-2.23 (m overlapped, 1H, CHHNMe2), 2.23 (s ovelapped, 6H, CH3), 2.03 

(br s, 2H, NH2). 
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(CHar), 118.9 (CHar), 113.0 (Cqar), 111.2 (CHar), 66.5 (CH2NMe2), 48.8 (CHNH2), 45.9 (2C, 

CH3), 31.5 (CqarCH2). 

 

7.6.7 Synthesis of (1R,2R)-N-iso-propyl-1,2-diphenylethylene-1,2-diamine (61)[199] 

 

 
 
(1R,2R)-DPEN (200 mg, 0.94 mmol) and 4Å molecular sieves (500 mg) were placed in a 
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overnight (12 h), GC/MS analysis indicated full conversion to the corresponding acetonide. 

The mixture was filtered through Celite (eluent: Et2O) and the filtrate was concentrated to 

give the crude acetonide 155, which was used without further purification in the next step. 
1H NMR (300 MHz, CDCl3) δ 7.29-7.19 (m, 10H, C6H5), 4.24 (s, 2H, CHCH), 2.04 (br s, 2H, 

NH), 1.53 (s, 6H, Cq(CH3)2). 

The crude acetonide 155 was dissolved in ethanol (7 mL) and treated with NaBH4 (54 mg, 

1.41 mmol, 1.5 equiv). After stirring overnight, water and 1N aqueous NaOH (2:1, 7 mL), and 
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the reaction mixture was repeatedly extracted with Et2O (3×20 mL). The combined organic 

layers were washed with brine, dried (Na2SO4), filtered, and concentrated to give analytically 

pure (1R,2R)-N-isopropyl-1,2-diphenylethylene-1,2-diamine (61; 407 mg, 1.60 mmol, 63%) 

as a colorless oil. The analytical data were identical in all respects to those previously 

reported.[182]  
1H NMR (400 MHz, CD2Cl2) δ 7.21-7-09 (m, 10H, C6H5), 3.93 (d, J = 7.6 Hz, 1H, CHCH), 

3.78 (d, J = 7.6 Hz, 1H, CHCH), 2.51 (sept, J = 6.1 Hz, 1H, CHMe2), 1.72 (br s, 3H, NH2 and 

NH), 0.95 (dd, J = 6.3 Hz, 6H, CH(CH3)2). 
13C NMR (100 MHz, CD2Cl2) δ 144.5 (CqPh), 143.0 (CqPh), 128.2 (2C, CHPh), 128.2 (2C, 

CHPh), 128.1 (2C, CHPh), 127.6 (2C, CHPh), 127.0 (CHPh, p), 126.9 (CHPh, p), 67.3 (CHCH), 

62.3 (CHCH), 46.1 (CHMe2), 24.5 (CH(CH3)2), 22.0 (CH(CH3)2). 

MS (EI-DE) m/z (%) 254 [M+] (trace), 196 (1), 178 (1), 165 (1), 148 (100), 132 (2), 118 (1), 

106 (47), 91 (3), 79 (13), 51 (1), 43 (3). 

HRMS (ESI+) calcd for C17H22N2Na [(M+Na)+] 277.1673, found 277.1675. 

 

7.6.8 Synthesis of (S)-3,3'-bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diol phosphate ((S)-

7b) 

(S)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diol phosphate ((S)-7b) was prepared accor-

ding to literature-known procedures.[182-183] 
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(S)-(3,3'-Dibromo-1,1'-binaphthyl-2,2'-diyl)bis(oxy)bis(triphenylsilane) ((S)-157c): (S)-

3,3'-Dibromo-1,1'-binaphthyl-2,2'-diol (158b) (3.50 g, 7.88 mmol) was 

dissolved in DMF (47 mL) and then imidazole (1.64 g, 24.0 mmol) 

followed by triphenylsilyl chloride (5.90 g, 20.0 mmol) was added. The 

mixture was stirred at room temperature for 5 h, then poured into 

saturated aqueous NaHCO3 solution, and extracted with CH2Cl2. The 

organic layers were washed again with saturated aqueous NaHCO3 solution, dried (Na2SO4), 

filtered, and concentrated in vacuo. The residue was purified by flash column chromatography 

(silica gel, 1:2 CH2Cl2/hexane) to furnish bis(triphenyl)silyl ether 158c (7.15 g, 7.44 mmol, 

94%) as a colorless solid. 
1H NMR (300 MHz, CDCl3) δ 7.57 (s, 2H), 7.38-7.30 (m, 4H), 7.21-6.95 (m, 32H), 

6.74 (d, J = 8.3 Hz, 2H). 
13C NMR (75 MHz, CDCl3) δ 147.2 (Cq), 134.4, 134.2 (Cq), 133.6, 133.3, 132.8, 132.2, 

131.8, 128.9 (Cq), 128.7 (Cq), 128.4 (Cq), 128.2, 126.9 (Cq), 126.7, 126.2, 126.0, 125.0, 

124.9, 123.2 (Cq), 122.5 (Cq), 116.1 (Cq). 

MS (EI-DE) m/z 960 [M+] (27), 880 (1), 259 (100), 181 (6), 105 (1). 

HRMS (ESI+) calcd for C56H44N1O2Si2Br2 [(M+NH4)
+] 976.1267, found 976.1272. 

 

(S)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2´-diol ((S)-159): To a solution of 158c (6.60 

g, 6.87 mmol) in dry THF (100 mL) was added dropwise t-BuLi (11.7 mL, 

19.9 mmol; 1.7 M in pentane) over a period of 10 min at 0 °C. The mixture 

was stirred at room temperature for 1 h, poured into saturated aqueous 

NH4Cl solution, and extracted with CH2Cl2. The combined extracts were 

dried (Na2SO4), filtered, and concentrated. Pure diol (S)-159 (4.66 g, 5.81 

mmol, 85%) was obtained after flash column chromatography (silica gel, 1:2 CH2Cl2/hexane). 
1H NMR (300 MHz, CDCl3) δ 7.84 (s, 2H), 7.62-7.56 (m, 8H), 7.35-7.18 (m, 30H), 5.22 (s, 

2H). 
13C NMR (75 MHz, CDCl3) δ 155.5 (Cq), 141.0, 135.3, 133.7 (Cq), 133.3 (Cq), 128.5, 128.2, 

128.0, 127.2, 126.8 (Cq), 122.9, 122.8 (Cq), 122.6 (Cq), 109.6 (Cq). 

MS (EI-DE) m/z 802 [M+] (7), 724 (8), 646 (100), 567 (5), 491 (4), 429 (5), 369 (2), 323 (6), 

284 (27), 245 (9), 78 (1). 

HRMS (ESI+) calcd for C56H46N1O2Si2 [(M+NH4)
+] 820.3069, found 820.3062. 
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(S)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diol phosphate ((S)-7b): Diol 159 (2.20 g, 

2.74 mmol) was suspended in pyridine (10 mL) and phosphorus 

oxychloride (0.5 mL, 5.48 mmol) was added dropwise at room tempera-

ture with rapid stirring. The resulting suspension was heated to 95 °C for 

24 h. Then, the reaction mixture was cooled to room temperature and 

water (2 mL) was added. The resulting biphasic suspension was heated to 

95 °C for an additional 6 h. The reaction mixture was diluted with CH2Cl2 and repeatedly 

extracted with 1N aqueous HCl. The combined organic phases were dried (Na2SO4), filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography (silica 

gel, 2% methanol in CH2Cl2) provided phosphoric acid derivative (S)-7b (2.18 g, 2.52 mmol, 

92%) as a white solid. The analytical data were identical in all respects to those previously 

reported.[182] 
1H NMR (400 MHz, (CD3)2SO) δ 7.94 (s, 2H), 7.80 (d, J = 7.5 Hz, 2H), 7.60-7.57 (m, 12H), 

7.37-7.28 (m, 22H), 7.06 (d, J = 8.0 Hz, 2H). 
13C NMR (75 MHz, (CD3)2SO) δ 152.1 (Cq), 152.1 (Cq), 141.1 (Cq), 136.3, 134.0 (Cq), 

133.5 (Cq), 129.8, 129.5, 128.8, 127.7 (Cq), 126.2 (Cq), 125.8, 125.4 (Cq), 121.2 (Cq). 
31P NMR (161 MHz, (CD3)2SO) δ 2.49 (s). 

MS (ESI-) m/z 863 [(M-H)-]. 

HRMS (ESI-) calcd for C56H40O4Si2P1 [(M-H)] 863.2222, found 863.2208. 
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