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Abstract

This thesis deals with rigorous mathematical techniques for higher-dimensional nons-

mooth systems and their applications. Motivated by various examples of nonsmooth

systems in applications, we propose to explore the concept of invariant surfaces in

the phase space which is separated by a discontinuity hypersurface. For such sys-

tems the corresponding Poincaré map can be determined; it turns out that under

suitable conditions an invariant cone occurs which is characterized by a fixed point

of the Poincaré map. The invariant cone seems to serve in a similar way as a gen-

eralisation of the classical center manifold for smooth differential systems. Hence,

the stability of the whole system can be reduced to investigate the stability on the

two-dimensional surface of the cone. Motivated to study the generation of invariant

cones out of smooth systems, a numerical procedure to establish invariant cones and

their stability is presented. It has been found that the flat degenerate cone in a

smooth system develops under nonsmooth perturbations into a cone-like configura-

tion. Also a simple example is used to explain a paradoxical situation concerning

stability. Theoretical results concerning the existence of invariant cones and possible

mechanisms responsible for the observed behavior for general three dimensional non-

smooth systems are discussed. These investigations reveal that the system possesses

a rich dynamic behavior and new phenomena such as, for instance, the existence of

multiple invariant cones for such system.

Our approach is developed to include the case when sliding motion takes place on the

manifold. Sliding dynamical equations are formulated by using Filippov’s method.

Existence of invariant cones containing a segment of sliding orbits are given as well

as stability on these cones. Different sliding bifurcation scenarios are treated by

theoretical analysis and simulation.

As an application we have investigated the dynamics of an automotive brake system

model under the excitation of dry friction force which has served as a motivating

example to develop our concepts. This model belongs to the class of nonsmooth

systems of Filippov type which is investigated from direct crossing and a sliding

motion point of view. Existence of invariant cones and different types of bifurca-

tion phenomena such as sliding periodic doubling and multiple periodic orbits are

observed.
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Finally, extensions to nonlinear perturbations of nonsmooth linear systems have

been obtained by using the nonsmooth linear system as basic system. If the ba-

sic system possesses an attractive invariant cone without sliding motion, we have

shown that locally the Poincaré map contains the necessary information with re-

gard to attractivity of the invariant cone. The existence of a generalized center

manifold reduction of nonlinear system has been proven by using Hadamard graph

transformation approach. A class of nonlinear systems having a cone-like invariant

”manifold” is presented to illustrate the center manifold reduction and associated

bifurcation.

The scientific contributions of parts of this thesis are presented in [32,39,66].
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Zusammenfassung

In dieser Dissertation werden mathematische Verfahren für höher dimensionale nicht-

glatte Systeme und deren Anwendung behandelt. Aufgrund der Nicht-Glattheit der

Systeme ist die Untersuchung des dynamischen Verhaltens keine lokale Problem-

stellung mehr. Angeregt durch Anwendungen von nicht-glatten Systemen unter-

suchen wir das Konzept von invarianten Ebenen in Phasenräumen, welche durch

eine Unstetigkeitsebene getrennt sind. Für solche Systeme kann die entsprechende

Poincaré-Abbildung bestimmt werden; unter geeigneten Bedingungen kann ein in-

varianter Kegel entstehen, welcher durch die Fixpunkte der Poincaré-Abbildung

charakterisiert ist. Der invariante Kegel kann auf ähnliche Weise wie die Verall-

gemeinerung der klassischen Zentrumsmannigfaltigkeit für Systeme von Differen-

tialgleichungen behandelt werden. Folglich kann die Stabilität des ganzen Sys-

tems auf die Untersuchung der Stabilität auf einer zwei-dimensionalen Ebene des

Kegels reduziert werden. Um die Entstehung invarianter Kegel aus glatten Sys-

temen heraus zu studieren, werden numerische Methoden zur Bestimmung invari-

anter Kegel und deren Stabilität aufgezeigt. Es wird festgestellt, dass unter nicht-

glatten Störungen in glatten Systemen ein Kegel entsteht; ein einfaches Beispiel

dient zur Erläuterung der paradoxen Ergebnisse bezüglich Stabilität. Theoretis-

che Analyse der Existenz von invarianten Kegeln sowie mögliche Mechanismen, die

für das beobachtete Verhalten in allgemeinen drei-dimensionalen nicht-glatten Sys-

temen verantwortlich sind, werden diskutiert. Diese Untersuchungen brachten die

Erkenntnis, dass das System ein vielfältiges dynamisches Verhalten aufweist sowie

neue Phänomene,wie zum Beispiel die Existenz mehrerer-invarianter Kegel in einem

solchen System. Unser Ansatz berücksichtigt auch die Situation, wenn ”Sliding Mo-

tion” auf der Mannigfaltigkeit stattfindet. Die ”Sliding”-Bewegung des dynamischen

Systems wird durch die Filippov Methode beschrieben. Neben der Existenz von in-

varianten Kegeln mit einem ”Sliding”-Segment werden sowohl die Stabilität dieser

Kegel als auch verschiedene ”Sliding”-Bifurkationsszenarien anhand theoretischer

Analysen und Simulationsergebnissen behandelt. Außerdem untersuchen wir das

dynamische Verhalten in Kraftfahrzeugbremssystemen unter Anregung von trock-

ener Reibung. Dieses Modell ist bei nicht-glatten Systemen der Filippov Klasse

einzuordnen und wird aus der Sicht von ”Direct Crossing” und ”Sliding”-Motion”
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untersucht. Die Existenz von invarianten Kegeln und verschiedene Bifurkation-

sphänomene, wie beispielsweise die Sliding-Periodenverdopplung und mehrfache pe-

riodische Orbits, können beobachtet werden. Eine Erweiterung der nicht-linearen

Störungen von nicht-glatten linearen Systemen wird unter Verwendung von nicht-

glatten linearen Systemen als Grundsystem erreicht. Die Grundsysteme weisen einen

attraktiven Kegel ohne ”Sliding Motion” auf; wie bereits gezeigt, enthält die lokale

Poincaré-Abbildung die wesentlichen Informationen bezüglich der Attraktivität in-

varianter Kegeln. Die Reduktion auf eine verallgemeinerte Zentrumsmannigfaltigkeit

wird mittels Hadamard-Transformation bewiesen. Zur Veranschaulichung der Re-

duktion auf Zentrumsmannigfaltigkeit sowie der entsprechenden Bifurkationen wird

eine Klasse von nicht-linearen Systemen, welche ein kegelartige ”Mannigfaltigkeit”

aufweisen, dargestellt.
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Chapter 1

Introduction and Objectives

”Der Anfang der Erkenntnis ist die Entdeckung von etwas, das wir nicht

verstehen.”

Frank Herbert (1920-1986)

In this chapter we motivate our research and give an introduction to the subject and

define the objective and scope of this work.

1.1 Motivation and objectives

Common physical phenomena in engineering, biological and medical systems such as

friction, impact and backlash can be described by mathematical models with some

kind of discontinuity or nonsmoothness. A system model with nonsmoothness is

sometimes referred to as a discontinuous differential system (nonsmooth dynamical

system or piecewise smooth system). An important source for nonsmoothness is due

to dry friction arising in dampers, drilling processes or rail-wheel contacts audible

as creaking. A simple instance of a mechanical system is a point mass falling down

to the ground with one unilateral contact. In planar nonsmooth modeling, the point

mass’s two degrees of freedom are reduced to one when the point mass touches

the ground. If friction is considered additionally, then the degrees of freedom are

reduced to zero in the case of sticking. Thus, there are different equations of motion

in minimal coordinates for these different configurations. In case of an impact, an

additional impact law must be applied. Many situations can be considered in this

way. Hence, we list some simple examples which have been used as model examples

in the investigation of nonsmooth systems:

(i) Pendulum with friction [22].

The equation of motion of the system in Figure 1.1 is

ẍ+ x+ a sgn ẋ = p(t).

1



Introduction and Objectives 2

Figure 1.1: Pendulum with dry friction.

where p(t) is a periodic forcing, sgn r = r/|r| for all r ∈ R|{0} and a parameter

a > 0.

(ii) Relay control systems [70].

Relay control systems are of the most commonly used control techniques in prac-

tical applications. A single-input single-output relay feedback system is often well

modeled by equations of the form

ẋ = Ax+ bu,

ζ = Cx,

u = sgn(ζ),

where x ∈ Rn is the state vector, A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n are constant

matrices, ζ is the input signal to the relay element or switch, u is the output signal

of the relay.

(iii) Brake system for a bike [74].

The mathematical model is a system of two differential equations:

mẍ+ d1ẋ+ c1x = σ+(x, ẋ, λ), if x > 0

mẍ+ (d1 + d2)ẋ+ (c1 + c2)x = σ−(x, ẋ, λ), if x < 0

where the mass rests on a smooth surface and is connected to the walls by springs

cj and dampers dj , j = 1, 2, σ± represent external force and λ is a free parameter,
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Figure 1.2: A simplified model and brake system for a bike.

see Figure 1.2.

Further applications have been investigated as nonsmooth systems such as mechan-

ical systems including the occurrence of impact motion [7, 40, 49], vibro-imapacting

systems modeled by nonsmooth systems [44], stick-slip motion in oscillators with fric-

tion [56], switching in electronic circuits [5,15] and examples of relevance to applica-

tions which are modelled by systems with nonsmooth nonlinearities [26,27,31,44,63].

Due to the nonsmoothness that appears in the system model, classical theo-

ries of differential systems are no longer applicable. Filippov’s differential inclu-

sions [24,25,61], evolution variational inequalities [1] and complementarity dynami-

cal systems [30] are commonly used to study nonsmooth system. These approaches

depend on the purpose of the model system at hand and the degree of nonsmooth-

ness. The focus of this thesis is on Filippov’s differential inclusions. General results

concerning the theory of differential inclusions can be found in [24, 25], where in

particular the standard concepts concerning existence, uniqueness, continuous de-

pendence and stability are covered. These aspects do not address the issue of bifur-

cations that arise specifically from Filippov systems with nonsmooth behavior.

Filippov’s differential inclusion provides a set of possible candidates for motion

switching or sliding, Filippov systems can exhibit a wide range of nonlinear phenom-

ena including bifurcations and chaos. In addition to classical bifurcations (occurring

in smooth systems), nonsmooth systems can exhibit unique phenomena such as for

instance discontinuity-induced bifurcations.

More recent investigations focus on classifying, unfolding and applying novel kinds

of bifurcation that are unique to nonsmooth systems. For a review of the available

results see [14–16,44, 70]. We note that the current theory of bifurcations for nons-

mooth systems is still incomplete.

In planar nonsmooth systems, existence of periodic orbits by means of Hopf-like

bifurcation, existence of sliding motion with bifurcations, homoclinic or heteroclinic

orbits and discontinuity-induced bifurcations of periodic orbits can be studied by

taking a Poincaré section transversal to these orbits and analysing the resulting re-

turn map. In this manner, bifurcations in planar nonsmooth dynamical systems are

rather well understood [14, 15, 48, 71–74], but we know of no general result valid in

n-dimensions. The notation PWS refers to n-dimensional nonsmooth system, when

one can identify a finite number of (n − 1)-dimensional boundaries, such that the



Introduction and Objectives 4

system is locally smooth outside these boundaries.

The main objective of this thesis is to derive results concerning the dynamics, bifur-

cations and stability of PWS using the concept of cone-like invariant manifolds. For

smooth dynamical systems the bifurcation theory is quite well developed, the reduc-

tion of smooth dynamical systems to lower dimensional center manifolds containing

the essential bifurcation dynamics is a very useful approach both for theoretical

investigations as well as for numerical computation. This approach and the imple-

mentation requires smoothness properties and the existence of a basic linearization

at the equilibrium point; in particular the number of purely imaginary eigenvalues

and the corresponding eigenvectors define the reduced space. This approach is not

available in PWS. At the present time many results are already known about the

dynamics of planar PWS [41,71–74]. The occurrence of periodic orbits due to Hopf-

bifurcation relies on an analytical criterium of eigenvalues crossing the imaginary

axis. Since an appropriate definition of eigenvalues does not exist in the case of

PWS the geometric equivalent of a change in the phase space from a stable focus

to an unstable focus via a center has been used for planar systems. For planar

systems the approach to split the system into a basic piecewise linear system and

nonsmooth higher order terms has been successful, since a suitable Poincaré map

could be derived. It has been shown that the occurrence of periodic orbits in terms of

“generalized Hopf” bifurcation can be achieved. In that way, for higher dimensional

smooth systems that approach goes along with a reduction to a lower dimensional

system. Of course a similar result is desired for nonsmooth system as well. Of course

for planar systems there is no need for any reduction of the system.

According to the researchers in PWS [10,11,14,15,45,74], there is no result at hand

on the existence of invariant manifolds for high dimensional PWS since the extension

to higher dimensional systems is more complicated. This means that the reduction

of a PWS from high dimension to low dimension is not available so far. First ideas

for three dimensional systems have already been sketched in [38,39].

In this work the ”generalized Hopf” bifurcation for PWS in dimensions exceeding 2

will be worked out as well as the development of methods to reduce a high dimen-

sional PWS to a low dimensional one. For such systems (n ≥ 3) the corresponding

Poincaré map can be determined; it turns out that under suitable conditions an

invariant cone occurs which is characterized by an “eigenvector” ξ corresponding

to an eigenvalue µc > 0 of the Poincaré map. The invariant cone can be regarded

as a generalization of the standard center manifold in smooth system which allows

the reduction of the large system to an invariant two-dimensional surface on the

cone. The existence of invariant cones seems to play an important role in the dy-

namic behaviour of PWS to characterize in particular topological type and stability
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of equilibrium points.

We now address each aspect of our results in the following:

• Generation of invariant cones based on smooth systems.

• Existence of invariant cones for PWS and associated bifurcations.

• Generalized Hopf Bifurcation: Generation of periodic orbits.

• Bifurcations of sliding solutions for PWS in case of having invariant cone.

• Analysis of dynamics and bifurcation for a six-dimensional PWS brake system.

• Reduction of a PWS from high dimension to low dimension via existence of

generalized center manifold.

This study is concerned with the analysis of bifurcations in n-dimensional PWS. We

present detailed examples of standard and nonstandard bifurcation with the help of

the notion of invariant cones.

1.2 Invariant manifold concept

Smooth dynamical systems for example occur as sets of ordinary differential equa-

tions that arise in scientific problems and engineering applications of the form

ξ̇ = f(ξ, λ) (1.1)

where the function f : Rn × Rp → Rn is sufficiently smooth and dependents on

a real parameter λ ∈ Rp, n, p ∈ N. In smooth systems there exist well-developed

qualitative mathematical tools to describe bifurcations and stability such as the

computation of Lyapunov exponents, the reduction to lower dimensional manifolds

like the center manifold or a direct determination of the bifurcation behaviour [37,

58,67].

To understand the often complicated dynamical behaviour it is a well established

tool to use the concept of invariant manifolds of the system. In this way, we briefly

recall some of the background relevant to the concepts of invariant manifolds for

smooth systems (1.1).

Definition 1.1. Let C be a nonempty subset of Rn. C is said to be invariant with

respect to motions of (1.1) if for each initial value ξ0 ∈ C, the motion emanating

from ξ0 remains in C for all times. For a discrete system C is said to be invariant

under the map ξ → g(ξ) if for any ξ0 ∈ C we have gn(ξ0) ∈ C for all n ∈ Z.
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If we restrict ourselves to positive times (i.e., t ≥ 0) then we refer to C as a positively

invariant set and, for negative time as a negatively invariant set.

Let {φ(t)}t≥0 be an operator semi-group generated by (1.1), which enjoys the fol-

lowing properties

(i) φ(t) : Rn → Rn,

(ii) φ(0) identity on Rn,

(iii) φ(t+ s) = φ(t).φ(s), t, s ≥ 0.

Then the solution of (1.1) can be expressed as

ξ(t, ξ0) = φ(t)ξ0 = φ(t, ξ0), ∀t ≥ 0.

Definition 1.2. [46]. An invariant set C ⊂ Rn of (1.1) is called an attractor if C
is compact, and if there exists a neighborhood U ⊂ Rn of C, such that for any ξ0 ∈ U

we have

dist(φ(t, ξ0), C) → 0 in Rn − norm as t → ∞. (1.2)

The largest open set U satisfying (1.2) is called the basin of attraction of C.

Definition 1.3. [14]. A point p is an ω-limit point of a trajectory φ(t, ξ0) if

there exists a sequence of times t1 < t2 < ... with ti → ∞ as i → ∞ such that

φ(ti, ξ
0) → p as ti → ∞. If instead there exists a sequence of times with t1 > t2 > ...

and ti → −∞ and φ(ti, ξ
0) → p, then we say that p is an α-limit point of ξ0. The

ω-(α-) limit set of ξ0 is the set of all possible ω-(α-) limit points. The set of all

such ω-limit points (or α-limit points) for all ξ0 ∈ Rn is called the ω-limit set (or

α-limit set) of the system. This set is closed and invariant.

The smooth system (1.1) can exhibit the following kinds of invariant sets:

Equilibria. The simplest form of an invariant set of (1.1) is an equilibrium solution

ξ∗ which satisfies f(ξ∗) = 0. These are also called stationary solution of the flow

since φ(t, ξ∗) = φ(0, ξ∗) for all t.

Limit cycles. A periodic orbit is an invariant set, which is determined by an initial

condition ξ0 and a period T . Here T is defined as smallest time T > 0 for which

φ(T, ξ0) = ξ0. By definition a limit cycle is isolated.

Invariant tori. Invariant tori are the nonlinear equivalent of two-frequency mo-

tions. Further, an invariant torus may possess a quasi-periodic solutions which can

degenerate into chaotic solutions, if the tori surfaces become unstable.

Homoclinic and heteroclinic orbits. Another class of invariant sets are con-

necting orbits, which tend to other invariant sets as time runs to +∞ and to −∞,

more details can be found in [37,67].

Further interesting invariant objects are obtained for example as manifolds.
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Definition 1.4. [67]. An invariant set C ⊂ Rn is said to be a Ck(k ≥ 1) invariant

manifold if C has the structure of a Ck differential manifold. Similarly, a positively

(res., negatively) invariant set C ⊂ Rn is said to be a Ck positively (res., negatively)

invariant manifold if C has the structure of a Ck differential manifold.

A manifold is a set which locally has the structure of Euclidean space. In applica-

tions, manifolds are most often met as m-dimensional surfaces embedded in Rn. If

the surface has no singular points, i.e., the derivative of the function representing

the surface has maximal rank, then by the implicit function theorem it can locally

be represented as a graph. The surface is a Ck manifold if the (local) graphs repre-

senting it are Ck.

We recall the smooth system (1.1) with a stationary solution ξ∗(0) = 0. Using

linearization and transformations according to the structure of the eigenvalues of

the linearization A := Df(ξ∗), D = ∂f
∂ξ of f , equation (1.1) can be stated in the

following form with ξ = (x, y, z)T and an accordingly arranged matrix A

A =


A− 0 0

0 A0 0

0 0 A+

 ,

where the submatrices A−, A0 and A+ correspond to the eigenvalues λi in the

spectrum σ(A) = σ(A−)∪σ(A0)∪σ(A+) of A with negative, vanishing and positive

real part respectively:

˙̂
x

y

z

 =


A− 0 0

0 A0 0

0 0 A+




x

y

z

+


g−(x, y, z, λ)

g0(x, y, z, λ)

g+(x, y, z, λ)

 , (1.3)

here g−, g0 and g+ collect terms of higher order in x, y and z.

Theorem 1.1. [67]. Suppose (1.3) is Ck, k ≥ 2. Then the equilibrium point

0 of (1.3) possesses a Ck s-dimensional local, stable manifold, W−
loc(0), a Ck u-

dimensional local, unstable manifold, W+
loc(0), and a Ck c-dimensional local, center

manifold, W 0
loc(0), all intersecting at 0. These manifolds are all tangent to the

respective invariant subspaces of the linear vector field ξ̇ = Aξ at the origin, and

hence, are locally representable as graphs. In particular, we have

W−
loc(0) = {(x, y, z) ∈ Rn| y = H−

y (x), z = H−
z (x);DH−

y (0) = 0, DH−
z (0) = 0;

|x| sufficiently small},

W 0
loc(0) = {(x, y, z) ∈ Rn| x = H0

x(y), z = H0
z (y);DH0

x(0) = 0, DH0
z (0) = 0;

|y| sufficiently small},

W+
loc(0) = {(x, y, z) ∈ Rn| x = H+

x (z), y = H+
y (z);DH+

x (0) = 0, DH+
y (0) = 0;

|z| sufficiently small},
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where H−
y (x), H−

z (x) H0
x(y), H

0
z (y) H

+
x (z), and H+

y (z) are Ck functions.

The following subsection explains as in [39] how to perform the reduction of the

original system (1.1) to the center manifold using Theorem 1.1.

Since the stationary solution is already unstable if σ(A+) ̸= ∅, we assume for sim-

plicity that σ(A+) = ∅, hence equation (1.1) is equivalent to

ẋ = A−x+ g−(x, y, λ)

ẏ = A0y + g0(x, y, λ).
(1.4)

The center manifold approach performs a locally equivalent reduction to a system

defined in the center space, i.e. there exists a function H, defined in a neigh-

borhood of ȳ = 0 in the center space mapping into the stable space satisfying

H(0) = 0, ∂H
∂y (0) = 0 such that the reduced equation

ẏ = A0y + g0(H(y), y, λ), (1.5)

is locally equivalent to (1.4).

The advantage of this approach relies on the fact that usually in relevant applica-

tions n0 := dim y ≪ n, typically n0 = 1 or n0 = 2.

Once (1.5) has been established the dynamics, stability and bifurcation behavior of

(1.1) can be obtained by studying (1.5). The underlying center manifold approach

essentially depends on smoothness properties of the original problem using the prop-

erties of the linearized problem. For Piecewise smooth dynamical systems (PWS)

linearization is not at hand due to a lack of smoothness. The 5th chapter is dedicated

to the study of the existence of generalized center manifolds for PWS.

Further we will need the well known:

Theorem 1.2 (Implicit Function Theorem). Let f : D → Rn; D ⊂ Rn × Rp be a

function of class Ck (k ≥ 1) on an open neighborhood D0 ⊂ D of a point (x0, y0) for

which f(x0, y0) = 0. Assume that Dxf exists in a neighborhood of (x0, y0) and is

continuous at (x0, y0), and that Dxf(x
0, y0) is nonsingular. Then there exist open

sets S1 ⊂ Rn and S2 ⊂ Rn of x0 and y0, respectively, such that,

• For any y ∈ S̄2, there exists a unique solution x = H(y) ∈ S̄1 for f(x, y) = 0.

• The function H : S2 → Rn, defined above, is Ck.

• If Dyf(x
0, y0) ̸= 0 then DyH(y0) = −[Dxf(x

0, y0)]−1Dyf(x
0, y0).

Proof. See [51].



Introduction and Objectives 9

1.3 Nonsmooth dynamical systems

Dynamical systems with discontinuous events fall into a wide group of systems

that are often referred to as discontinuous or nonsmooth dynamical systems. In

various applications physical systems can operate in different modes separated by

boundaries; in electrical networks if nonsmooth characteristics are used to rep-

resent switches; further systems involving Coulomb friction [3, 4, 26, 27, 64], im-

pacts [7,15,40,49] and mechanical systems subjected to unilateral constraints [7,53].

Mathematical models of physical systems may lead to dynamical systems whose

righthand sides are not continuous or not differentiable due do switches between

different modes. In such cases the existence of solutions is not guaranteed further

in general the study of bifurcations for those systems is not yet completed.

Piecewise smooth dynamical systems occur as discrete or continuous-time dynamical

system whose phase space is partitioned in different regions, each associated to a

different functional form of the system vector field.

PWS can be classified into three different types according to their degree of non-

smoothness

• Piecewise smooth continuous systems (PWCS): These systems have a continu-

ous vector field but the Jacobian of the vector field is discontinuous. Examples

include mechanical systems with bilinear elastic support [59] and systems mod-

elling electrical circuits [10].

• Filippov systems: The vector field of these systems is bounded but discon-

tinuous on certain hypersurfaces in the state-space. As examples we refer to

systems with viscoelastic supports and dry friction [64, 74] and discontinuity

induced bifurcations [14,15].

• Impact systems: Here the discontinuous surface acts as a boundary between

allowed and forbidden regions of the phase space such that there is a jump

of the state at this boundary, for example mechanical systems with velocity

jumps due to impacts [7, 40,49].

The first two groups are called PWS and can be described as a dynamical system

such that the state space splits into various components Di separated by manifolds

Mj , i.e.

ξ̇ = fi(ξ, λ), ξ ∈ Di ⊂ Rn, Rn = (∪iDi) ∪ (∪jMj) (1.6)

where Di, i = 1, 2, ..., N are finitely many open domains of an n-dimensional state

space, Mj are (n− 1)-dimensional manifolds Mj separating the domains Dj .

Suppose that ξ0 ∈ Di and that the solution trajectory stays inside the same domain

Di and does not reach any Mj . Then the dynamics behaves as in a conventional
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smooth system which is sufficiently understood. The interesting case occurs when

there exists a finite time at which the solution trajectory reaches any particular

manifold Mj . What will happen at such a point?. Several forms of interaction may

occur, some of them giving birth to new dynamical phenomena. Such interactions

may be: direct crossing [39, 41, 71, 74], sliding [14], grazing [15], and jumping [40],

each with single or multiple interactions.

For simplicity we restrict our attention to PWS consisting of two components sepa-

rated by a hyperplane

M(λ) := {ξ ∈ Rn| h(ξ, λ) = 0}, (1.7)

Although the separation manifold may depend in general on time, we have restricted

our consideration to the case of a static separation manifold with nonvanishing

gradient ∇h(ξ, λ) ̸= 0, (∇ = ∇ξ) on M. The normal vector n(ξ, λ) perpendicular

to the manifold M is given by n(ξ, λ) = ∇h(ξ,λ)
|∇h(ξ,λ)|2 , ∥n(ξ, λ)∥ = 1.

System (1.6) can be written as a n-dimensional nonlinear system with right-hand

side

ξ̇ =

{
f+(ξ, λ), ξ ∈ Rn

+,

f−(ξ, λ), ξ ∈ Rn
−,

(1.8)

here f± : Rn × R → Rn are sufficiently smooth functions and Rn is split into two

regions Rn
+ and Rn

− by the separation manifold M such that Rn = Rn
+ ∪M ∪ Rn

−.

The regions Rn
+(λ) and Rn

−(λ) are defined as

Rn
+(λ) = {ξ ∈ Rn|h(ξ, λ) > 0},

Rn
−(λ) = {ξ ∈ Rn|h(ξ, λ) < 0}.

Definition 1.5 (Direct crossing). Let ρ(ξ, λ) =
(
nT (ξ, λ)f+(ξ, λ)

)(
nT (ξ, λ)f−(ξ, λ)

)
.

The direct crossing set is the set of all points (ξ, λ) ∈ M, such that both vectors

f±(ξ, λ) have nontrivial projections on nT (ξ, λ) in the same direction, hence

Mc = {(ξ, λ) ∈ M| ρ(ξ, λ) > 0}.

Direct crossing implies that all trajectories of (1.8) approaching the hyperspace M
cross it immediately. Thus, for such initial condition, there is a unique absolutely

continuous solution.

Definition 1.6 (Sliding mode). The sliding mode set is the complement of Mc in

M,i.e.

Ms = {(ξ, λ) ∈ M| ρ(ξ, λ) ≤ 0}.

where the vector fields are both pointing towards or away from M.
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This situation is further classified as attracting or repulsive, depending on the fol-

lowing cases.

An attracting sliding mode for Ms occurs if the following conditions are satisfied at

ξ ∈ Ms [
nT (ξ, λ)f+(ξ, λ)

]
< 0 and

[
nT (ξ, λ)f−(ξ, λ)

]
> 0, (1.9)

hence a flow of (1.8) reaching Ms has to stay in Ms until it reaches the boundary

of Ms. Since the righthand sides f± are smooth the flow is uniquely defined in

forward time.

A repulsive sliding mode at Ms occurs if the following conditions are satisfied at

ξ ∈ Ms [
nT (ξ, λ)f+(ξ, λ)

]
> 0 and

[
nT (ξ, λ)f−(ξ, λ)

]
< 0, (1.10)

meaning that trajectories starting in Ms are directed away from the surface in both

into Rn
+ and Rn

−, hence the flow can not be continued uniquely.

1.4 Filippov’s solution concept

Due do (1.8), f(ξ, λ) is not yet defined if ξ is on M. In order to overcome this diffi-

culty Filippov [24, 25] has extended the notion of solutions by means of differential

inclusions

ξ̇ ∈ F (ξ, λ) =


{f+(ξ, λ)}, ξ ∈ Rn

+,

{q(ξ, λ)f+(ξ, λ) + (1− q(ξ, λ))f−(ξ, λ),∀q ∈ [0, 1]}, ξ ∈ M,

{f−(ξ, λ)}, ξ ∈ Rn
−.

(1.11)

Existence of solutions of (1.11) can be guaranteed with the notion of upper semi-

continuity of set-valued functions. General results can be found in [24,25].

Definition 1.7 (Filippov solution). An absolutely continuous function ξ : [a, b] →
Rn, a, b ∈ Rn, a < b is a solution of (1.11) if for almost all t ∈ [a, b] it holds that

ξ̇(t) ∈ F (ξ(t)).

Theorem 1.3. Let f± be C1 in Rn
+∪M and Rn

−∪M , respectively, and h(ξ) be C2 on

M . If at any point ξ ∈ M we have that at least one of the conditions nT (ξ)f+(ξ) < 0

and nT (ξ)f−(ξ) > 0 holds, then there exists a unique Filippov solution for each initial

condition [25].

The parameter q will be selected such that the vector field is tangential to the

separation manifold, i.e., nT (ξ)F (ξ, λ) = 0, ξ ∈ M and therefore q is determined as

q(ξ, λ) =
nT (ξ, λ)f−(ξ, λ)

nT (ξ, λ)(f−(ξ, λ)− f+(ξ, λ))
.
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Therefore, we have an explicit form of the sliding vector field, i.e.

Fs(ξ, λ) =
nT (ξ, λ)f−(ξ, λ) · f+(ξ, λ)− nT (ξ, λ)f+(ξ, λ) · f−(ξ, λ)

nT (ξ, λ)(f−(ξ, λ)− f+(ξ, λ))
. (1.12)

If for some ξ ∈ M, nT (ξ, λ)(f−(ξ, λ)−f+(ξ, λ)) = 0, then we say that ξ is a singular

sliding point. In terms of Filippov’s notion, the boundary of the sliding mode region

is defined as

∂M s
+ =

{
ξ ∈ M : q(ξ, λ) = 1, i.e. nT (ξ, λ)f+(ξ, λ) = 0

}
,

∂M s
− =

{
ξ ∈ M : q(ξ, λ) = 0, i.e. nT (ξ, λ)f−(ξ, λ) = 0

}
.

We assume that the separating manifold is flat; i.e. ∇n(ξ, λ) = 0; locally this can

be achieved after a series of appropriate near-identity transformation.

In that case we obtain:

∇q(ξ, λ) =

[
nT (ξ, λ)∇f−(ξ, λ) n

T (ξ, λ)
(
f−(ξ, λ)− f+(ξ, λ)

)
− nT (ξ, λ)f−(ξ, λ)

nT (ξ, λ)
(
∇f−(ξ, λ) +∇f+(ξ, λ)

)]/[
nT (ξ, λ)

(
f−(ξ, λ)− f+(ξ, λ)

)]2
.

At the boundary (q(ξ, λ) = 1), since F (ξ, λ) = {f+(ξ, λ)}, we get

∇q(ξ, λ) =
nT (ξ, λ)∇f+(ξ, λ)

nT (ξ, λ)f−(ξ, λ)
, (1.13)

and at the boundary (q(ξ, λ) = 0), since F (ξ, λ) = {f−(ξ, λ)}, we get

∇q(ξ, λ) = −nT (ξ, λ)∇f−(ξ, λ)

nT (ξ, λ)f+(ξ, λ)
. (1.14)

System (1.11) can exhibit so-called sliding bifurcation which has been observed to

cause dramatic transitions in the dynamics of several systems relevant for applica-

tions [14, 15, 19]. Sliding bifurcations occur in four fundamental scenarios: grazing-

sliding, crossing-sliding, adding-sliding and switching-sliding. We will present a brief

description and the analytical conditions that must hold for each case of four possible

scenarios in Chapter 3.

1.5 Poincaré map

For smooth systems a Poincaré section M is a (n− 1)-dimensional a manifold such

that the flow crossesM transversally. The Poincaré map P is defined by the property

that it assigns to ξ0 ∈ M the point of the first return map under the flow ξ(t; ξ0) of

(1.1). In that way the dynamical system (1.1) can be replaced by a discrete system

given by P. Then, a fixed point ξ̄ of P corresponds to a periodic orbit of (1.1), i.e.,

a trajectory starting at ξ̄ returns to ξ̄ after some time T . By looking at the behavior

of P near a fixed point we can determine the stability of an periodic orbit.

Topological changes of the Poincaré map can be brought about either by changing
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a system parameter so that an invariant object changes in such a way that its

intersection with the section is affected, or equivalently by changing the position of

the section in the flow, [37,67].

It appears as a natural choice to define a Poincaré map for nonsmooth systems by

choosing the separating manifold as (local) Poincaré section. For a proper definition

we consider 3 types of sub-maps:

• P− associated to the flow of ξ̇ = f−(ξ, λ).

• P+ associated to the flow of ξ̇ = f+(ξ, λ).

• Ps associated to the flow of ξ̇ = Fs(ξ, λ) .

From a local point of view, the first return map P is an unknown combination of

the maps P+, P− and Ps; and it can be equal to P = P+ ◦ P−, P = P− ◦ Ps or

P = P+ ◦ P− ◦ Ps or another combination of maps. A precise definition of those

maps in given in Chapter 2.

1.6 Classification of bifurcations

Due to the presence of discontinuities on the manifold, PWS present a wide variety

of standard and nonstandard bifurcations. If the behavior of PWS does not involve

the dynamics of separation boundaries, we speak about standard bifurcations. That

is, all the bifurcation which may occur in smooth system [37]. If the behavior of

PWS relies on the dynamics of the separation boundaries, we deal with nonstandard

bifurcations.

In other way, we can classify bifurcation of PWS according to the following:

(i) Bifurcations that rely on the collapse or change of stability of equilibrium points

(Saddle-node,Pitchfork, Hopf, etc.);

(ii) Bifurcations related to the change of the real/virtual character of equilibrium

points;

(iii) Vanishing or appearing of a sliding mode domain (Sliding bifurcation).

Examples are given by the following situation:

If a limit cycle or a flow becomes sliding leads to sliding bifurcation [14,44], if limit

cycle becomes tangent to the separation boundary leads to grazing bifurcation [49]

and bifurcations due to the existence of corners when M has more than 2 crosses; for

instance the corners formed by the intersections of two smooth surfaces M1 and M2

[15, 72, 73]. Further bifurcation of equilibria leading to nonsmooth bifurcation such

as multiple crossing bifurcations [45], or discontinuity-induced bifurcations [14,15].

Next, our attention is particularly focused on two of the phenomena that can occur

for PWS, namely, discontinuity-induced bifurcation and Hopf-bifurcation.
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1.6.1 Discontinuity-induced bifurcations

Generic equilibria of (1.8) can be standard equilibria of f± in Rn
± or equilibria of the

Filippov vector field Fs in M. Hence, we review the following definitions [14,15].

Definition 1.8 (Standard equilibrium).

(i) A point ξ∗ is a standard equilibrium point if ξ∗ ∈ Rn such that either

f−(ξ
∗, λ) = 0, h(ξ∗, λ) < 0, or f+(ξ

∗, λ) = 0, h(ξ∗, λ) > 0.

(ii) A point ξ∗ ∈ Rn is a virtual equilibrium if either

f−(ξ
∗, λ) = 0, h(ξ∗, λ) > 0, or f+(ξ

∗, λ) = 0, h(ξ∗, λ) < 0.

For sliding vector fields Fs there are equilibrium points which are not equilibria for

the vector fields f± (f± are nonzero and anticollinear).

Definition 1.9 (Pseudo-equilibrium ). A point ξ∗ is a pseudo-equilibrium point if

ξ∗ ∈ M such that

h(ξ∗, λ) = 0,

q(ξ∗, λ)f+(ξ
∗, λ) + (1− q(ξ∗, λ))f−(ξ

∗, λ) = 0,

(i) A Pseudo-equilibrium is called admissible if 0 ≤ q(ξ∗, λ) ≤ 1,

(ii) A pseudo-equilibrium is virtual if q(ξ∗, λ) < 0 or q(ξ∗, λ) > 1.

Definition 1.10 (Boundary equilibrium). A point ξ∗ is a boundary equilibrium point

if ξ∗ ∈ M such that

h(ξ∗, λ) = 0,

f+(ξ
∗, λ) = 0, or f−(ξ

∗, λ) = 0,

hence it is an equilibrium on the manifold and it is on the boundary between standard

and virtual versions of both standard and pseudo-equilibria.

Definition 1.11 (Boundary equilibrium bifurcation). PWS (1.8) has a boundary

equilibrium bifurcation at the point (ξ∗, λ∗) if a equilibrium collides with the discon-

tinuity boundary such that:

• ξ∗ is a boundary equilibrium; f−(ξ
∗, λ∗) = 0 and h(ξ∗, λ∗) = 0.

• Dξf−(ξ
∗, λ∗) ̸= 0; ξ∗ is a non-singular boundary equilibrium.

• (ξ∗, λ∗) is an isolated equilibrium to vector field f− (non-degeneracy condition):

hλ(ξ
∗, λ∗)− hξ(ξ

∗, λ∗)(Dξf−(ξ
∗, λ∗))−1Dλf−(ξ

∗, λ∗) ̸= 0.
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Note that, similar definition if (ξ∗, λ∗) is a boundary equilibrium of f−(ξ, λ).

Discontinuity induced bifurcations can be classified into two generic scenarios, namely,

persistence of an equilibrium for the Filippov system or nonsmooth-fold of equilibria

for the Filippov system. Persistence (or border crossing) bifurcation is said to take

place if a standard equilibrium point on one side of M becomes a boundary equilib-

rium at the bifurcation point and turns into a virtual equilibrium due to variation

of the parameter or if a virtual pseudo-equilibrium of one side of M in a Filippov

system becomes admissible. In the case of Nonsmooth-fold bifurcation the two

branches of an admissible equilibria collide on the manifold M at the bifurcation

point, becoming a boundary equilibrium, and then both turn into two branches of

virtual equilibria. For more details and applications [14,15].

1.6.2 Generalized Hopf bifurcation

A smooth system undergoes a Hopf-bifurcation if the equilibrium point loses stabil-

ity via a pair of purely imaginary eigenvalues, giving rise to the birth of a periodic

motion called a limit cycle [37,58].

A similar phenomenon in PWS is called generalized Hopf bifurcation due to a combi-

nation of the eigenstructure of the smooth subsystems together with the behavior of

the vector field on the manifold M and relevant to the switching laws or transition

laws between the subsystems. For nonsmooth systems we are interested to discuss

extension of Hopf-bifurcation to high dimensional systems. In recent works [41,71,74]

the bifurcation of periodic orbits for planar PWS of the form (1.8) has been studied,

we briefly recall the results for two-dimensional problems.

We assume that the right-hand side of PWS (1.8) is of the form

ξ̇ = f±(ξ, λ) = A±(λ)ξ︸ ︷︷ ︸
basic linear term

+ g±(ξ, λ),︸ ︷︷ ︸
nonlinear term

λ ∈ R, ξ ∈ R2,
(1.15)

where λ is a parameter and the separation manifold is defined by M = {ξ ∈ R2|ξ1 =
0}.
In this case the Poincaré map for the two-dimensional linear piecewise linear system

ξ̇ = A±(λ)ξ turns out to be of the form

P (ξ2, λ) = eπb(λ)ξ2, b(λ) = α+(λ)/ω+(λ) + α−(λ)/ω−(λ).

We consider the following assumptions:

(H1) f±(ξ, λ) are Ck-smooth (k ≥ 2) for (ξ, λ) ∈ R±
2 × R.

(H2) f±(0, λ) ≡ 0 for λ ∈ R.

(H3) The spectrum of A±(λ) consists of a pair of complex conjugate eigenvalues

α±(λ)± iω±(λ), ω(λ) > 0 for λ ∈ R.
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(H4) a±12 > 0 or a±12 < 0.

(H5) transversality condition, b(0) = 0, db
dλ ̸= 0.

Under the previous assumptions, the main results are given in the following theorem

[74].

Theorem 1.4. Suppose that (H1) − (H5) hold, then there bifurcates a continuous

branch of periodic orbits for the planar PWS (1.15) from the origin at λ = 0.

The stability of stationary solution of piecewise linear system (i.e., g±(ξ, λ) = 0 in

(1.15)) can be determined by the sign of b(λ). For planar systems there is of course

no need for any reduction of the system, since the Poincaré map is essentially one-

dimensional and it contains all necessary information. Various cases are investigated

in [41,71,74].

The situation of high dimensional systems is significantly more complicated. There

are examples of three-dimensional piecewise linear system (PWLS) when A± are sta-

ble (i.e., A± have eigenvalues with negative real parts) and the stability of stationary

solutions is not a simple problem. Hence, that stationary solution of a composite

problem may be unstable even if both subsystems are stable. The first example

of this surprising result has been given in [10]; in Chapter 2, we will present more

examples.

1.7 Outline of the thesis

This thesis is a contribution to the field of nonsmooth dynamical systems with par-

ticular application to a brake system with dry friction. Each chapter is structured

in five sections and the content is revised as follows:

Chapter 2: This chapter is concerned with a class of n-dimensional PWS involving

invariant cones with discontinuity surface. Specifically, we will study direct crossing

from one half-space Rn
+ (or Rn

−) to the other Rn
− (or Rn

+) via Mc and only one equi-

librium at the origin lying on the discontinuity manifold and for the important case

where both matrices for basic PWLS have complex eigenvalues. We obtain results

by direct composition of Poincaré maps which will help to establish the existence of

invariant cones, stability of equilibrium point and generalized Hopf bifurcation. We

will also describe numerical procedures to compute the dynamics of invariant cones

in the case of PWS seen as a perturbation of smooth systems. Part of this Chapter

has already been published in [39]

Chapter 3: If both vector fields f−(ξ, λ) and f+(ξ, λ) are locally pointing away

from or towards the manifold M, then a sliding mode may occur. In other words,

once a trajectory reaches the sliding surface, it will stay on it. In this chapter we

investigate necessary and sufficient conditions for the existence of cones consisting
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of periodic orbits for a class of PWS including sliding motion. The stability of the

cones consisting of sliding motion is the topic of this chapter. This topic will be

studied by either considering the stability of stationary solution or the bifurcation

of limit cycles such as sliding bifurcation. Again we prove a generalization concern-

ing invariant cones for a class of PWS.

Chapter 4: In this chapter we study a mechanical model for investigating different

aspects of bifurcations in PWS of a six -dimensional brake system. We will pay

attention to reduction from high dimension to low dimension. Instead of consid-

ering the six-dimensional phase space a reduction to the invariant two-dimensional

surface of the cone will be formulated and analyzed. In that way mathematical in-

vestigations about the existence of self-sustained oscillations caused by variation of

parameters are carried out. Furthermore we show the existence of a sliding motion

within the separating manifold and we show which parameters have the strongest

influence on the self-induced oscillations.

Chapter 5: We continue to extend the concept of dimension reduction via a gen-

eralized center manifold analysis for nonlinear PWS. The reduction procedure has

been established for nonlinear PWS allowing a bifurcation and stability analysis of

a reduced system. The proof of existence of generalized center manifold is based on

Hadamard’s graph transform and the Poincaré map approach. Finally, we present

the explicit construction of lower dimensional invariant manifolds for a class of non-

linear PWS having a cone-like invariant ”manifold” carrying the essential dynamics

of the full system under appropriate conditions and determine the leading coeffi-

cients of the function generating the invariant surface. The results in this Chapter

have been published in [66].

Chapter 6: Here the conclusions of the thesis are presented and several open prob-

lems are outlined for further research.



Chapter 2

Invariant cones for a class of a

high-dimensional PWS

Part I: In the first part of this Chapter, we discuss various aspects for n-

dimensional PWS such as: the manifold can be partitioned into sectors al-

lowing the existence of direct transition and sliding motion regions, Poincaré

map, times intersection, fundamental matrix solution associated to PWS and

monodromy matrix whose eigenvalues, the Floquet multipliers, determine the

stability of limit cycles. The concept of invariant cones for PWLS is established

to understand the often complicated dynamical behaviour. A nonsmooth per-

turbation approach is introduced for the generation of invariant cones and

stability of the bifurcating limit cycle. Finally we show a paradoxical situation

where the behavior of a simple PWLS can be rather complex even if all of its

subsystems are stable.

2.1 N-dimensional PWS

Define an n-dimensional two region PWS consisting of Rn
± and fixed λ. Thus,

we rewrite PWS (1.8) in the form

ξ̇ =

{
f+(ξ), h(ξ) > 0,

f−(ξ), h(ξ) < 0.
(2.1)

An important observation in the study of (2.1) is that there are two main types

of motion namely, direct crossing between Rn
− and Rn

+ through Mc and sliding

motion in Ms, see Figure 2.1. Thus, in order to understand the behavior of

the composed motion we will first discuss the vector field on M = Mc ∪Ms

18
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Figure 2.1: Partitioned separation manifold: (a) and (b) are sectors of direct cross-

ing, (c) is sector of attractive sliding motion, (c) is a sector of repulsive sliding

motion.

where the separation manifold can be partitioned into sectors defined as:

Mc
− = {ξ ∈ Mc| nT (ξ)f−(ξ) < 0}

Mc
+ = {ξ ∈ Mc| nT (ξ)f−(ξ) > 0}

Ms
− = {ξ ∈ Ms| nT (ξ)f−(ξ) > 0}

Ms
+ = {ξ ∈ Ms| nT (ξ)f−(ξ) < 0}

(2.2)

Remark 2.1.

1. For ξ ∈ Mc
− or ξ ∈ Mc

+ there is a direct crossing of the flow of (2.1)

through the sector Mc
− or Mc

+, respectively.

2. For ξ ∈ Ms
− or ξ ∈ Ms

+ the flow near ξ is restricted to Ms
− (attractive

sliding motion) or Ms
+ (repulsive sliding motion), respectively. The flow

in Ms is generated by (1.12).

Here, we restrict our attention to trajectories with immediate transition

between the half spaces; for any initial value trajectories never slide or jump on

the manifold leading to the existence of a unique absolutely continuous solution

of (2.1). Let us start from the initial position ξ ∈ Mc
− or ξ ∈ Mc

+, then the

solutions respectively are denoted by φ−(τ−, ξ) or φ+(τ+, ξ), which both are

Ck, k ≥ 1. Assume that φ−(τ−, ξ) reaches Mc
+ of the minimum return time

τ−(ξ) at η = φ−(τ−, ξ) ∈ Mc
+, hence there exists the first intersection time

τ−(ξ) = inf{τ > 0 | nT (ξ)φ−(τ, ξ) = 0}. (2.3)
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In a similar way we can define τ+(η) as

τ+(η) = inf{τ > 0 | nT (ξ)φ+(τ, η) = 0}. (2.4)

Poincaré map: without loss of generality we will assume that ξ ∈ Mc
− and

φ−(τ−, ξ) reaches Mc
+ transversally at time τ−(ξ). Thus, we can define the

map

P−(ξ) : Mc
− → Mc

+,

ξ → φ−(τ−, ξ) = P−(ξ),

Similarly the flow φ+(τ+, η) reaches Mc
− at the time τ+(η)

P+(η) : Mc
+ → Mc

−,

η → φ+(τ+, η) = P+(η).

Consequently, PWS (2.1) yields a (n− 1)-dimensional map defined by

P(ξ) : Mc
− → Mc

−

P(ξ) := P+ ◦ P−(ξ) = φ+(τ+(η), η), η = φ−(τ−(ξ), ξ).

Note that P is a nonlinear map due to the nonlinearity contained in (2.1) and

the nonlinear return times.

Lemma 2.1.

(i) For all ξ̂ ∈ Mc
−, P−(ξ̂) ∈ Mc

+ and φ−(τ, ξ̂) ∈ Rn
−, (0 < τ < τ−(ξ̂)):

(a) The function τ−(ξ) is differentiable in ξ̂.

(b) P− is differentiable in ξ̂ and ∂P−
∂ξ

(ξ̂) =

(
∂φ−

∂ξ
+ f−(ξ)

∂τ−
∂ξ

)
(ξ̂).

(ii) For all η̂ ∈ Mc
+, P+(η̂) ∈ Mc

− and φ+(τ, η̂) ∈ Rn
+,(0 < τ < τ−(η̂)):

(a) The function τ+(η) is differentiable in η̂.

(b) P+ is differentiable in ξ̂ and ∂P+

∂ξ
(ξ̂) =

(
∂φ+

∂ξ
+ f+(ξ)

∂τ+
∂ξ

)
(η̂).

(iii) For ξ̂ ∈ Mc
−, η̂ ∈ Mc

+:

(a) P(ξ̂) = P+(P−(ξ̂)) is differentiable in ξ̂ and

∂P
∂ξ
(ξ̂) =

(
∂φ+

∂η
+ f+(η)

∂τ+
∂η

)
.

(
∂φ−

∂ξ
+ f−(ξ)

∂τ−
∂ξ

)
(ξ̂).

To determine the stability properties of the limit cycle for a smooth system

(1.1), we consider the solutions of the variational equation for trajectories.

Specifically, let φ(t, ξ̃), t > 0 denote the solution of (1.1) with initial condition

ξ̃ ∈ Rn. The fundamental matrix solution is the derivative of the solution with
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respect to ξ̃. Then the matrix Y = ∂
∂ξ
φ(t, ξ̃) is a solution of the variational

system [58]

Ẏ =
∂

∂ξ
f(ξ̃)Y, Y (0) = I.

For PWS (2.1) the effects of the discontinuity surface must be taken into

account when calculating the monodromy matrix.

Definition 2.1. For PWS (2.1) the two matrices Y− = Φ−(τ−, ξ0) and Y+ =

Φ+(τ+, η0) are called fundamental matrix solutions of (2.1) where ξ̃ ∈ Rn
− and

η̃ ∈ Rn
+ related to{
ξ̇ = f−(ξ), ξ(0) = ξ̃ : Ẏ− = ∂

∂ξ
f−(ξ̃)Y−, Y−(0) = I, 0 ≤ τ− ≤ τ̃−;

η̇ = f+(η), η(τ̃−) = η̃ : Ẏ+ = ∂
∂η
f+(η̃)Y+, τ̃− ≤ τ+ ≤ τ̃+.

Theorem 2.1. If ρ(ξ) > 0 and ξ̃ ∈ Mc
− the flow given by φ−(τ, ξ) crosses the

manifold Mc at the time τ̃− . Then for Y− and Y+ at the time τ̃− we have

Y+ = J−Y−, J− = I +

(
f+(τ̃−, η̃)− f−(τ̃−, η̃)

)
nT (η̃)

nT (η̃)f−(τ̃−, η̃)

where I is the identity matrix of the same order as the number of state variables

and J− is called jump or saltation matrix [21,25,44].

Proof : if ξ ∈ Mc
−, and φ

+(τ+, η) is a solution of ⊕-system of (2.1), we obtain

φ+(τ+, η) = η +

∫ τ+

τ−

f+(s, η)ds, η = φ+(τ−(ξ), ξ) ∈ Mc
+.

Differentiate with respect to ξ and set (τ̃−, η̃) are boundary points that satisfy

h(η̃) = 0 and (2.3),

∂

∂ξ
φ+(τ+, η) =

∂η

∂ξ
− f+(τ−, η)

∂τ−
∂ξ

+

∫ τ+

τ̃−

∂

∂ξ
f+(s, η)ds,

∂η

∂ξ
=

∂

∂ξ
φ−(τ−, ξ) + f−(ξ, τ−)

∂τ−
∂ξ

, nTφ(τ̃−, η̃) = 0.

Since φ−(τ−, ξ) ∈ Mc
−, we have

h(φ−(τ−, ξ)) = 0 ⇒ ∂τ−
∂ξ

= −
nT ∂φ−

∂ξ
(τ−, ξ)

nTf−(τ−, ξ)
.

Therefore, we get

∂

∂ξ
φ+(τ+, η) =

(
I +

(
f+(τ−, η)− f−(τ−, ξ)

)
nT (ξ)

nT (ξ)f−(τ−, ξ)

)
∂

∂ξ
φ−(τ−, ξ) +

∫ τ+(η)

τ̃−

∂

∂ξ
f+(s, η)ds.

At the first exact intersection time τ̃− substituting τ̃− into (τ−, τ+) and η̃ into

(ξ, η), thus

∂

∂ξ
φ+(τ̃−, η̃) =

(
I +

(
f+(τ̃−, η̃)− f−(τ̃−, η̃)

)
nT (η̃)

nT (η̃)f−(τ̃−, η̃)

)
︸ ︷︷ ︸

J−

∂

∂ξ
φ−(τ̃−, ξ̃).
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Remark 2.2. For ξ ∈ Mc
+ there is an analogous result of Theorem 2.1, for

this case we get the jump matrix as J+ = I +

(
f−(τ̃+,η̃)−f+(τ̃+,η̃)

)
nT (η̃)

nT (η̃)f+(τ̃+,η̃)
.

In order to examine the structural behaviour of limit cycle arise from trajectory

of (2.1), where ξ is a closed trajectory of limit cycle, we examine the eigenvalues

of the monodromy matrix which has the form

Y (T, ξ) = J+ Y+(τ̃+, ξ(τ̃−)) J− Y−(τ̃−, ξ̃), T = τ̃+ + τ̃−,

The eigenvalues of Y (T, ξ) are also called the Floquet multipliers. If all the

eigenvalues are inside the unit circle, the system is stable.

2.2 The basic piecewise linear problem

We assume that the right-hand side of (2.1) is of the form

f+(ξ) = A+ξ + g+(ξ),

f−(ξ) = A−ξ + g−(ξ),

where A± are constant matrices representing the basic piecewise linear part and

g± are nonlinear perturbations of higher order. Here we restrict our attention

to trajectories with immediate transition between the half spaces for PWLS

defined as:

ξ̇ =

A+ξ, h(ξ) > 0,

A−ξ, h(ξ) < 0,
(2.5)

where ξ ∈ Rn and A± are n×n real matrices, the stationary solution is always

an equilibrium point. System (2.5) is a general form of PWLS which can be

divided into two main categories: first, continuous PWLS where both matrices

satisfy the continuity relation A+−A− = (A+−A−)eT1 e1, e1 is the first vector

of the standard basis Rn. Note that A+ and A− share the same structures and

are only different in the first column [8,10,11]. Second, for the general PWLS,

the two vector fields A±ξ are not necessarily continuously on M [38, 39].

In order to study the local bifurcation for the continuous PWLS it is often

helpful to obtain a normal form first. Therefore, we extend the notions of

observability and controllability from control theory [6, 8, 60].

Definition 2.2. The observability matrix is defined as

Ob =



eT

eTA−

eT (A−)2

...

eT (A−)n−1


, Co =



b

A−b

(A−)2b
...

(A−)n−1b


,
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where b = (A+ −A−)e, the continuous PWLS (2.5) is said to be observable or

controllable if rank(Ob) = n or rank(Co) = n, respectively.

The following lemma provides a geometric interpretation of the notion of ob-

servability.

Lemma 2.2. [6, 8, 60]

The continuous PWLS (2.5) is observable if and only if A− has no eigenspace

orthogonal to e and when continuous PWLS (2.5) is not observable, then the

system can be decomposed into two, one of them decoupled from the other.

This lemma explains why the canonical form may only be obtained when

A± has no eigenspace tangent to the switching manifold at the bifurcation

point. Furthermore, the continuous PWLS (2.5) can be transformed by a lin-

ear change of variables into the observability canonical form, some canonical

form for specific cases of continuous PWLS (2.5) introduced in [8, 10].

Let us consider the general form of (2.5) (continuous or discontinuous PWLS).

If ξ ∈ Mc
− and φ(t−, ξ) ∈ Mc

+ in forward time, then we can define the Poincaré

map for the full system (2.5) as:

P−(ξ) : Mc
− → Mc

+ := et−(ξ)A−
ξ

P+(η) : Mc
+ → Mc

− := et+(η)A+

η

P (ξ) := P+(P−(ξ)) = et+(η)A+

et−(ξ)A−
ξ,

where t−(ξ) and t+(η) are determined as smallest positive root, i.e.

t−(ξ) = inf{t > 0 | nT (ξ)et(ξ)A
−
ξ = 0}, (2.6)

t+(η) = inf{t > 0 | nT (ξ)et(η)A
+

η = 0}, (2.7)

respectively. Note that t− and t+ are constant on rays in Mc
− and Mc

+ and

thus provide useful (linearity) properties which we collect in:

Lemma 2.3. [39]

(i) For ξ̂ ∈ Mc
−, and all λ > 0:

(a) λξ̂ ∈ Mc
−, t−(λξ̂) = t−(ξ̂) and P−(λξ̂) = λP−(ξ̂).

(b) t− is differentiable in ξ̂ and ∇t−(ξ̂).ξ̂ = 0.

(c) P− is differentiable in ξ̂ and ∂P−
∂ξ
ξ̂ = et−(ξ̂)A−

[A−ξ̂∇t−(ξ̂) + I].

(ii) For η̂ ∈ Mc
+, and each λ > 0:
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(a) λη̂ ∈ Mc
+, t+(λη̂) = t+(η̂) and P+(λη̂) = λP+(η̂).

(b) t+ is differentiable in η̂ and ∇t+(η̂).η̂ = 0.

(c) P+ is differentiable in η̂ and ∂P+

∂η
η̂ = et+(η̂)A+

[A+η̂∇t+(η̂) + I].

(iii) For ξ̂ ∈ Mc
−, η̂ ∈ Mc

+, and all λ > 0:

(a) P (ξ̂) = P+(P−(ξ̂)) is differentiable in ξ̂ and
∂P
∂ξ
(ξ̂) = et+(η̂)A+

[A+η̂∇t+(η̂) + I].et−(ξ̂)A−
[A−ξ̂∇t−(ξ̂) + I].

(b) ∂P−
∂ξ

(ξ̂).ξ̂ = P (ξ̂).

(c) P (λξ̂) = λP (ξ̂) .

(iv) (a) t
(j)
− (λξ̂)λ(j) = t

(j)
− (ξ̂) and t

(j)
− (λξ̂)ξ̂ = 0 for all ξ̂ ∈ Mc

− and j ≥ 1.

(b) t
(j)
+ (λη̂)λ(j) = t

(j)
− (η̂) and t

(j)
+ (λη̂)η̂ = 0 for all η̂ ∈ Mc

+ and j ≥ 1.

Invariant cone: We assume that ξ̄ ∈ Mc, then the trajectory of the consid-

ered system (2.5) through ξ̄ crosses immediately M and never slides on M.

Both Poincaré half maps P+ and P− transform half rays contained in Mc and

passing through the origin into half rays contained in Mc again and passing

through the origin. Then the first return Poincaré map P has an invariant

half straight line if P (ξ̄) = µcξ̄. A manifold C formed by P such that for

all P (ξ̄) ∈ C we have that P (λξ̄) ∈ C for every λ ≥ 0 is called a two-zonal

invariant cone. Furthermore if the flow has no intersection with M c, C will be

called one-zonal invariant cone.

The following theorem explains the stability of the origin in the presence of in-

variant cones with two-zones. Further, it can be understood as a generalization

of the center manifold concept besides the lack of smoothness.

Theorem 2.2. [38]

If there exists ξ̄ ∈ Mc
− and µc > 0 such that

P (ξ̄) = µcξ̄,

then ξ̄ generates an invariant cone under the flow of (2.5) due to P (λξ̄) =

λP (ξ̄) = λµcξ̄; moreover,

(a) If µc > 1, then the stationary solution 0 is unstable

(b) If µc = 1, then the cone consists of periodic orbits

(c) If µc < 1, then the stability of 0 depends on the stability of P with respect

to the complimentary directions.
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Figure 2.2: Different dynamics on cones, µc < 1, µc = 1 and µc > 1, respectively.

These three possible situations are drawn in Figure 2.2.

Note that the above theorem indicates the difficult task to determine µc and

to characterize the attractivity of C, because µc depends on t± in a nonlinear

way.

To explain the attractivity of C [66], we assume that the remaining (n − 2)

eigenvalues µ1,...,µn−2 of ∂P
∂ξ
(ξ̄) satisfy

| µj |≤ α̃ < min{1, µc}, (j = 1, ..., n− 2). (2.8)

Then the invariant cone is attractive under the flow of (2.5) while the dynamics

on the cone is determined by µc < 1, µc = 1 or µc > 1. In that way the

investigation of the dynamical behavior of the original problem can be reduced

to the dynamics on a 2-dimensional surface.

Remark 2.3. The attractivity condition (2.8) guarantees that all solutions

with initial values close to C are attracted to the cone. In case of contracting

spiraling on C itself these solutions converge faster to the cone than to the

origin. These statements will be discussed in more detail in Chapter 5.

2.3 Generation of invariant cones for PWLS

In this section, we present a procedure to establish the invariant cone and sta-

bility of the bifurcating limit cycle of PWLS (2.5) born from a smooth system

which has been set up in [38].

In a smooth system [37, 46, 58] ξ̇ = A(α)ξ + g(ξ, α), ξ ∈ Rn, g ∈ Ck, α ∈ R: if
0 is an isolated stationary point and A(α) has one pair of complex eigenvalues

λ(α) ± i ω(α) that becomes purely imaginary when α = 0, i.e., λ(0) = 0 and

ω(0) > 0, and if moreover, all other eigenvalues of A(α) have negative real

part, then, generically, we get a Hopf bifurcation. As α passes through α = 0,

the dynamics of 0 changes stability, and the system will exhibit limit cycle be-

havior. Furthermore, the interesting feature occurs of according to the center

manifold theorem any system undergoing Hopf bifurcation can be reduced to
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a two-dimension dynamical system.

The generation of invariant cones plays a similar role for PWLS as the pres-

ence of purely imaginary eigenvalues of the linearization of smooth systems

with respect to the generation of bifurcation of periodic orbits for nonlinearly

perturbed systems. Seen from the perspective of PWLS the periodic orbits of

a smooth linear system might be seen as a degenerate (flat) cone. It appears

as a natural approach to investigate how a (flat) cone for a smooth system

develops under non-smooth perturbations.

Starting from the vector ξ ∈ Mc
− we want to determine an invariant cone given

by

P (ξ) = µcξ.

Following [38] we can transform this nonlinear eigenvalue problem into a non-

linear set of (n+3) equations for the (n+3) variablesX = (ξ, t−(ξ), t+(P−(ξ), µc)
T :

0 = F (X) =


et+A+

et−A−
ξ − µcξ

nT et
−
Aξ

nT ξ

ξT ξ − 1

 , (2.9)

The Jacobian matrix is evaluated at a special solution X0 = (ξ̄, s−, s+, µ̄c)
T :

J =


es

+A+
es

−A− − µ̄cI es
+A+

es
−A−

A−ξ̄ µ̄cA
+ξ̄ −ξ̄

nT es
−A−

nT es
−A−

A−ξ̄ 0 0

nT 0 0 0

2ξ̄T 0 0 0

 =


−ξ̄

J1 0

0

2ξ̄T 0 0 0

 .

Note that A+, es
+A+

commute. Newton’s method can be applied to determine

X as:

J∆Xν = −F (Xν), Xν+1 = Xν +∆Xν , (2.10)

if J is nonsingular at X0. To check regularity the bordering lemma is helpful.

Lemma 2.4. [33, 35]

Assume that J =

(
J1 b

cT d

)
. Then

i- If J1 is nonsingular ⇒ J is nonsingular if and only if d− cTJ−1
1 b ̸= 0

ii- If J1 is singular with dimN (J1) = dimN (JT
1 ) = 1, then J is nonsingular

if and only if b /∈ R(J1) and c /∈ R(AT )

iii- If J1 is singular with dimN (J1) ≥ 2 then J is singular.
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2.3.1 Bordering algorithm

The following algorithm is valid if J or J1 are nonsingular [33,35].

We write the coefficient of the linear system in Newton’s method (2.10) in the

form (
J1 b

cT d

)(
x

z

)
=

(
f

h

)
, (2.11)

where J1 is n × n matrix, b, c ∈ Rn and d ∈ R, then the following bordered

LU -decomposition will be efficient:(
J1 b

cT d

)
=

(
L 0

βT 1

)(
U γ

0T δ

)
,

we compute γ, β and δ from

Lγ = b, UTβ = c, δ = d− βTγ.

The linear system can than be written as(
L 0

βT 1

)(
U γ

0T δ

)(
x

z

)
=

(
f

h

)
,

Defining (
f̃

h̃

)
=

(
U γ

0T δ

)(
x

z

)
,

we obtain the solution (x, z) by the following steps:

Lf̃ = f, h̃ = h− βT f̃ , z = h̃/δ, Ux = f̃ − zγ.

If J is nonsingular and J1 is singular we assume that

N (J1) = span{ϕ}, N (JT
1 ) = span{ψ}, b /∈ R(J1) and c /∈ R(JT

1 )

Conditions in (ii) Lemma 2.4 are equivalent to

ψT b ̸= 0, cTϕ ̸= 0,

where ϕ and ψ are nontrivial solutions of

J1ϕ = 0, JT
1 ψ = 0.

Multiplying the first equation of (2.11) by ψT , we get

z =
ψTf

ψT b
.
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Therefore x is a solution of

J1x = f − ψTf

ψT b
b ∈ R(J1).

Therefore, the previous equation says, all solutions of x have the form

x = xp + αϕ,

where xp is a particular solution and α is obtain by α = h−dz−cT xp

cTϕ
. To

evaluate this solution we need the vectors ψ, ϕ and xp. Next, we will show

how to compute ψ, and ϕ efficiently (left and right null vectors of J1).

Assume that J1 has been decomposed into J1 = PL̃ŨQ, where P and Q are

permutation matrices and

L̃ =

(
L 0

lT 1

)
, Ũ =

(
U u

0T 0

)
,

where L and U are lower and triangular matrices, respectively, of order (n −
1)× (n−1) and L̃, Ũ ∈ Rn−1. Thus, ϕ is a solution of J1ϕ = 0, or equivalently,

since P and Q are nonsingular, of(
U u

0 0

)(
ν

µ

)
=

(
0

0

)
,

(
ν

µ

)
≡ Qϕ.

Choose µ = −1. Then find ν from

Uν = u.

Since Q is a permutation matrix we have ϕ = QT

(
ν

µ

)
. we can also find ψ by

just one backsolve: Form JT
1 ψ = 0, we have QT L̃T ŨTP Tψ = 0, or equivalently,

since Q is nonsingular(
UT 0

uT 0

)(
LT l

0T 1

)(
w

ν

)
, where

(
w

ν

)
≡ P Tψ.

Since U is nonsingular, we must have(
LT l

0T 1

)(
w

ν

)
=

(
0

ν

)
,

where ν ̸= 0 is arbitrary (e.g., ν = −1). Then w is found from

LTw = l, ψ = P

(
w

−1

)
.
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To compute a particular solution xp of J1xp = f̃ , when N (J1) = span{ϕ}, f̃ ∈
R(J1), we have the LU decomposed from

P

(
L 0

lT 1

)(
U u

0T 0

)
Qxp = f̃ .

First solve (
L 0

lT 1

)(
f̂

ĥ

)
= P T f̃ .

Followed by (
U u

0T 0

)
Qxp =

(
f̂

ĥ

)
,

where ĥ = 0 because f̂ ∈ R(J1) (the system must be solvable). Write(
yp

zp

)
≡ Qxp.

Note that zp can be have any value (e.g., zp = 0). Now fond yp from

Uyp = f̂ , xp = QT

(
yp

zp

)
.

2.3.2 Periodic orbits via Hopf-points

The eigenvectors in the Hopf point allow one to find the periodic orbit in the

phase space. Then a continuation technique with linear prediction is used

to further trace behavior of the observed periodic orbit. In our approach we

use this notion and replace the basic linear system by a basic piecewise linear

system. Therefore, we consider the PWLS (2.5) dependent on two parameters

and given in the following form with two perturbation matrices B± and C±

as:

A±(α, β) = A±
0 + αB± + βC±. (2.12)

without loss of generality, the two matrices A+
0 and A−

0 share the eigenvectors

to the same two purely imaginary eigenvalues. Then a periodic orbit can be

started from the Hopf bifurcation point for the system ξ̇ = A±
0 ξ and develops

or grow under nonsmooth perturbation.

To simplify the computation, we take A+
0 = A−

0 = A0, where the matrix A0

has exactly two purely imaginary eigenvalues. We assume ξ̄ is a fixed point of

the Poincaré map if and only if α = β = 0. To determine periodic orbits we set

µc = 1 and M = {ξ ∈ Rn|h(ξ) = eT1 ξ = 0}. For this special situation we try to

parameterize the solution by the parameter β. The system to determine the

unknown (n + 4) quantities ξ, t−(ξ), t+(ξ), α, β is given by (2.9) after setting
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A± = A±(α, β).

The Jacobian matrix at a special solution X̄ = (ξ̄, s−, s+, 0) for β = 0 can be

written in the form

J =


e(s

++s−)A0 − I A0ξ̄ A0ξ̄
∂F1
∂α

(X̄)

nT es
−A0 nT es

−A0A0 − ξ̄ 0 nT s−es
−A0B−ξ̄

nT 0 0 0

2ξ̄T 0 0 0

 =


b

J1 0

0

2ξ̄T 0 0 0

 ,

where
∂F1

∂α
X̄ = es

+A0

(
s+B+es

−A0 + s−es
−A0B−

)
(ξ̄).

Regularity of J leads to the existence of nontrivial solutions X(β) with X(0) =

(ξ̄, s−, s+, 0).

In this case J1 is singular because of the J1(ξ̄, 0, 0, 0)
T = 0.

We assume that the leading matrix of the smooth system where A0 has exactly

two purely imaginary eigenvalues ± iω with corresponding ξ0 and ξ̄0 where

ξ̄ = ξ0 + ξ̄0 generates a degenerate (flat) cone under the flow given by etA0 .

Since the vector fields depends on two parameters, we obtain that there is

a function X(β) = (ξ(β), t−(β), t+(β), α(β)) satisfying X0 = (ξ̄, π
ω
, π
ω
, 0) such

that

F (X(β), β) = 0.

Existence of invariant periodic cones corresponds to existence of solutions for

the above system with µc = 1. The stability analysis of these cones consists of

computing the other eigenvalues of P at the periodic orbits.

As specific example we choose A0, B
± and C± in the following form:

A0 =

 0 −w 0

w 0 0

0 0 µ

 , B± =

 0 0 0

0 b±22 0

0 0 0

 , C± =

 0 c±12 0

0 c±22 0

0 c±32 0

 .

In order to analyze what happens with such periodic orbits as the parameter

β varies in the neighborhood of X0, we use the fixed-point system (2.9). The

solutions of system (2.9) are functions of β at 0 if −2πω
(
e2πµ/ω−1

)
(b−22+b

+
22) ̸=

0 which is equivalent to µ ̸= 0, b−22 ̸= −b+22, hence the solution is of the form
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ξ(β)T =

(
0, 1,

π

ω

(
eπµ/ωc+32 − e2πµ/ωc−32

)
β/
(
e2πµ/ω − 1

))T

+O(β2),

α(β) = −c
−
22 + c+22
b−22 + b−22

β +O(β2),

t−(β) =
π

ω
+

π

ω2
c−12β +O(β2),

t+(β) =
π

ω
+

π

ω2
c+12β +O(β2).

It is obvious that solution of (2.9) are verified by the existence of intersection

times of every periodic solution living in the two regions such that ξ(β) ∈ Mc
−.

Remark 2.4. All system parameters should be determined such that ξ(β) ∈

Mc
−, i.e.

(
− ω + βc±12 +O(β2)

)
< 0, since it is possible that the vector ξ(β)

leaves the admissible range so that sliding motion may occur.

As specific values for the coefficients we choose

(a) ω = 1.0, µ = −1.0, b+22 = −1, b−22 = 0.5, c±12 = c±22 = 0.1, c+32 = 0.5 and c−32 =

−1. Newton’s Method is used to compute the roots of F (X(β), β) = 0.

Figure 2.3 shows an attractive invariant cone consisting of periodic orbits.

We also take an example of the form treated in [10] where we choose C± as

C± =

 c±11 −1 0

c±21 0 −1

c±31 0 0

 .

As specific values of the coefficients we choose

(b) ω = 1, µ = 0.1, b±22 = 1, c+11 = −3.2, c+21 = 25.61, c+13 = −75.03, c−11 =

−1.0, c−21 = 1.28 and c−31 = −0.624, Figure 2.4. shows a repulsive invariant

cone consisting of periodic orbits.

2.3.3 Parameter dependent stability switches on invariant cones

We assume that

A±(ϵ) = A0 +B±(ϵ); (2.13)

where

A0 =

 λ0 −ω0 0

ω0 λ0 0

0 0 µ0

 , B±(ϵ) = ϵ

 0 0 b±13

0 b±22 0

b±31 0 0

 . (2.14)
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Figure 2.3: Attractive invariant cone consisting of periodic orbits β = 1.5,

α = 0.6, t− = t+ = 3.5138.
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Figure 2.4: Repulsive invariant cone consisting of periodic orbits β = 0.01,

α = 0.0175, t− = 3.0664 t+ = 2.8229.
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Figure 2.5: An attractive invariant cone with unstable orbits even though all eigen-

values of A± has negative real parts.

We consider the system

0 = F (X(ϵ), ϵ) =


et+A+(ϵ)et−A−(ϵ)ξ − µcξ

nT et−A−(ϵ)ξ

nT ξ

ξT ξ − 1

 , X(ϵ) =
(
ξ(ϵ), t−(ϵ), t+(ϵ), µ̄c(ϵ)

)T
,

(2.15)

The Jacobian matrix is

J =



e2πλ0/ω0 − µ̄I 0 0 −ω0e
2πλ0/ω0 −ω0e

2πλ0/ω0 0

0 e2πλ0/ω0 − µ̄I 0 λ0e
2πλ0/ω0 λ0e

2πλ0/ω0 −1

0 0 e2πµ0/ω0 − µ̄I 0 0 0

−eπλ0/ω0 0 0 −ω0e
2πλ0/ω0 0 0

1 0 0 0 0 0

0 2 0 0 0 0


.

We consider the special situation of the discontinuity surface, which may be

defined as M = {ξ ∈ Rn|h(ξ) = eT1 ξ = 0}.

For smooth system (2.13) with (ϵ = 0), the origin is the only equilibrium point

of the system. The stability of the origin with µ0 < 0 is determined by the

sign of the parameter λ0. Then, λ0 = 0 is a bifurcation point of the system.

For λ0 < 0, the origin is an asymptotically equilibrium solution of the system

and for λ0 > 0, the origin is an unstable equilibrium solution of the system.

A nonsmooth perturbation (2.13) with ϵ ̸= 0 sufficiently small leads to quite

different dynamics of the system due to the ratio of deformation of eigenvalues
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and eigenvectors of the system and the interaction between the trajectory and

the discontinuity surface.

We compute eigenvalues and eigenvectors as polynomials of ϵ as:

λ(ϵ) = λ0 ± iω +
1

2
b±22ϵ+O(ϵ2),

µ(ϵ) = µ0 +O(ϵ2),

corresponding to eigenvectors

Ξλ(ϵ) = e1 ∓ i e2 +

[(
0, −b±22/ω0, (λ0 − µ0)b

±
31/(ω

2
0 + (λ0 − µ0)

2)
)

∓ i
(
b±22/(2ω0), 0, ωb

±
31/(ω

2
0 + (λ0 − µ0)

2)
)]T

ϵ+O(ϵ2),

Ξµ(ϵ) = e3 +
ϵ

(ω2
0 + (λ0 − µ0)2)

(
(µ0 − λ0)b

±
13, ω0b

±
13, 0

)T
+O(ϵ2).

Clearly, in a generic system (2.13) we may encounter that stability cannot be

gained from the stability properties of the subsystems alone. For example,

an equilibrium of (2.13) on Mc may be unstable even if all eigenvalues of

both A±(ϵ) have negative real part. To detect this situation consider specific

values of the coefficient of A±; w0 = 1, µ0 = λ0 = −ϵ = −0.01, b−13 = −11.0,

b−22 = −0.01, b−31 = −95.0, b+13 = −1.0, b+22 = 0, and b+31 = −75.0. Using

the above algorithm to compute the roots of F (X(ϵ), ϵ) = 0. We explain this

situation by means of invariant cone as: Figure 2.5 shows the corresponding

invariant cone which is attracting under the Poincaré map while the motion on

C itself or outside C is unstable ( orbits spiraling “out” of zero). Furthermore,

the dynamics on the cone can be stabilized by moving the parameter ϵ and

keeping all the parameters fixed.



Invariant cones for a class of a high-dimensional PWS 35

Part II: The second part of the Chapter will address the general situation of

three-dimensional PWLS which may be continuous PWLS or discontinuous.

First, a sufficient condition for the non-existence of invariant cones is given.

Next, we give an analytical proof of the existence of invariant cones which

depends crucially on an explicit construction of a Poincaré map and its rela-

tion with a slope transition map. Through the present investigation several

case studies are considered, such as; continuous PWLS; existence of multiple

invariant cones for discontinuous PWLS.

2.4 Theoretical analysis for general situation

In this section, we provide a systematic analysis and a bifurcation analysis for

general PWLS. We will consider a general 3-dimensional PWLS described as

ξ̇ =

A+ξ, eT1 ξ > 0,

A−ξ, eT1 ξ < 0.
(2.16)

where h(ξ) = ξ1 and A
± are 3×3 real matrices both having complex eigenvalues

with non-vanishing imaginary part; hence the spectrum of A± is of the form

µ± and λ± ± iω±, ω± > 0.

To state our results we consider the general case and the specific subcases (a)

without sliding motion and (b) with continuous vector fields

(a) 3D PWLS without sliding motion

A± =

 a±11 a12 a13

a±21 a±22 a±23

a±31 a±32 a±33

 .

According to (2.2) and Figure 2.1, there is no of a sliding motion possible.

(b) 3D PWLS with continuous vector fields

A± =

 a±11 a12 a13

a±21 a22 a23

a±31 a32 a33

 .

Again, there is no attractive or repulsive sliding motion possible. In this

situation, the existence of invariant cones for a special form of the above

3D continuous PWLS has already been discussed in [10].
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In the following study, we first consider the general situation of homogeneous

3D PWLS which is given by

A± =

 a±11 a±12 a±13

a±21 a±22 a±23

a±31 a±32 a±33

 . (2.17)

Let us start from the initial position ξ ∈ Mc
− or ξ ∈ Mc

+, then the solutions

respectively are denoted by φ−(t−, ξ) or φ
+(t+, ξ), which are both Ck,

2.4.1 Existence of periodic orbits

Depending on the sign of a±12 and a±13 of (2.17), we obtain a classification for

direct crossing and sliding motion showing the regions where different types

of bifurcations occur.

Lemma 2.5. If ξ ∈ M, ξ ̸= 0 and if the coefficients of A± satisfy one of the

following conditions (i) or(ii) or (iii) there is no periodic orbit through ξ

(i) a±13 ≷ 0, −a−12
a−13
ξ2 ≷ ξ3 ≷ −a+12

a+13
ξ2,

(ii) a+13 = 0, a+12 ≶ 0 ξ2 ≶ 0, a−13 ≷ 0, ξ3 ≶ −a−12
a−13
ξ2,

(iii) a−13 = 0, a−12 ≶ 0, ξ2 ≷ 0, a+13 ≷ 0, ξ3 ≷ −a+12
a+13
ξ2,

Proof :

By observation and study of the location and the dynamic properties of the

vector field, i.e., by means of a vectors field evaluation on the four sectors

which are defined in (2.2), where the M is a two-dimensional space such that

horizontal axis is the ξ2-axis and vertical axis is ξ3-axis on a graph. For in-

stance, appropriate specification of these quantities will lead to the various

situations, see Figures 2.6 and 2.7. It is interesting to study the changes from

one constellation to another.

Remark 2.5. To obtain nontrivial invariant cones or periodic orbits none of

the conditions in Lemma 2.5 should hold.

Next, we will establish slope transition maps by means of Poincaré map tech-

niques and based on some topological characterization of the fixed points of

P . The point ξ0 = (0, ξ02 , ξ
0
3) will be transformed into ξ1 = (0, ξ12 , ξ

1
3) by

the Poincaré half map P−. Analogously the point ξ1 will be transformed

into ξ2 = (0, ξ22 , ξ
2
3) by P+, see Figure 2.8. Note that if the composite map

P (ξ0) = ξ2 has a fixed points, then, system (2.16) has a two-zonal invariant

cone.
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Figure 2.6: Location of direct/sliding motion if a±12 > 0, a±13 > 0, there is no periodic

orbit if −a−12
a−13

ξ2 > ξ3 > −a+12
a+13

ξ2.

Figure 2.7: Location of direct/sliding motion if a±12 > 0, a−13 > 0, a+13 < 0, there is

no periodic orbit if −a−12
a−13

ξ2 < ξ3 < −a+12
a+13

ξ2.
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Figure 2.8: Structure of invariant cone with slope transition maps

Definition 2.3. Using the Poincaré half maps P± and where M = {ξ ∈
R3 | eT1 ξ = 0}, Figure 2.8. Then by {ξ ∈ R3 | eT1 φ±(t±, ξ) = 0} we can define

two slope transition maps S± : R → R, m1 = S−(m0) and n1 = S+(n0),

respectively

• m0 =
ξ03
ξ02
,i.e., the slope of the line ξ03 = m0ξ

0
2 , (ξ

0
2 , ξ

0
3) ∈ Mc

− through P−

and m1 =
ξ13
ξ12

is the image of m0 which passes through the point (ξ12 , ξ
1
3) =

P−(ξ
0
2 , ξ

0
3), (ξ

1
2 , ξ

1
3) ∈ Mc

+.

• n0 is the slope of line ξ13 = n0ξ
1
2 , (ξ

1
2 , ξ

1
3) ∈ Mc

+ through P+ and n1 =
ξ23
ξ22

is the image of n0 which passes through the point (ξ22 , ξ
2
3) = P+(ξ

1
2 , ξ

1
3),

(ξ22 , ξ
2
3) ∈ Mc

−.

Lemma 2.6. Let µ± and λ± ± iω±, ω± > 0 be eigenvalues of A± of (2.17).

The following statements hold with quantities A1,B1, ... given below.

(i) For an initial value ξ0 ∈ Mc
−, the trajectory given by the Poincaré halfmap

P− transforms the point ξ0 into the point ξ1 ∈ Mc
+, with (ξ0)T ξ1 ̸= 0 for

the first positive time t− > 0 which can be defined from eT1 φ
−(t−, ξ

0) = 0,

so that

m0(t−) = − αA1B1 + 2A2B2 − σA3B3

2αA1R1 − 2A2R2 +A3R3

,

m1(t−) =
αK4B1 − 2K3B2 + σγEB3 + (2αK4R1 + 2K3R2 − γER3)m0(t−)

αK1B1 − 2K2B2 + 2βσEB3 + (2αK1R1 + 2K2R2 − 2βER3)m0(t−)
.

Furthermore, we can also get

ξ12
ξ02

=
1

∆

[
eλ

−t−
(
αK1B1 − 2K2B2

)
+ 2βσB3e

µ−t− +

(
eλ

−t−
(
2αK1R1 + 2K2R2

)
−2βR3e

µ−t−

)
m0(t−)

]
,
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ξ13
ξ03

=
1

∆

[
eλ

−t−
(
αK4B1 − 2K3B2

)
+ σγB3e

µ−t−

m0(t−)
+ eλ

−t−
(
2αK4R1 + 2K3R2

)
−γR3e

µ−t−

]
.

The above parameters only refer to ⊖-system with the matrix A−.

(ii) In a similar way, the point ξ1 ∈ Mc
+ is transformed into ξ2 ∈ Mc

− via

Poincaré halfmap P+, with (ξ1)T ξ2 ̸= 0 for the first positive time t+ > 0

which can be defined from eT1 φ
−(t−, ξ

1) = 0, so that

n0(t+) = − αA1B1 + 2A2B2 − σA3B3

2αA1R1 − 2A2R2 +A3R3

,

n1(t+) =
αK4B1 − 2K3B2 + σγEB3 + (2αK4R1 + 2K3R2 − γER3)n0(t+)

αK1B1 − 2K2B2 + 2βσEB3 + (2αK1R1 + 2K2R2 − 2βER3)n0(t+)
.

Furthermore, we can also get

ξ22
ξ12

=
1

∆

[
eλ

+t+
(
αK1B1 − 2K2B2

)
+ 2βσB3e

µ+t+ +

(
eλ

+t+
(
2αK1R1 + 2K2R2

)
−2βR3e

µ+t+

)
n0(t+)

]
,

ξ23
ξ13

=
1

∆

[
eλ

+t+
(
αK4B1 − 2K3B2

)
+ σγB3e

µ+t+

n0(t+)
+ eλ

+t+
(
2αK4R1 + 2K3R2

)
−γR3e

µ+t+

]
.

Currently, the above parameters only refer to ⊕-system with the matrix

A+.

iii- A similar result holds for ξ0 ∈ Mc
+ and ξ1 ∈ Mc

−.

Proof :

If ξ0 ∈ Mc
− and assuming that A±

N are given in Jordan normal form and (S±)−1

denote the inverse of transformation matrix as:

A±
N =

 λ± −w± 0

w± λ± 0

0 0 µ±

 , (S±)−1 =

 1 −α±(α±+1)
2

−α±

β± + σ± k± 2β±

β±σ± k±σ± γ±

 .

Thus, we can replace (2.17) by the following form:

A± = (S±)−1A±
N S±.

Note that this transformation does not perturb the separation manifold M.

Then the general solution of (2.16) is given by

ξ(t±) = eλ
±t±{(cos(ω±t±)(S

±)−1e1 + sin(ω±t±)(S
±)−1e2)ξ̄1

+(cos(ω±t±)(S
±)−1e2 − sin(ω±t±)(S

±)−1e1)ξ̄2}+ eµ
±t±(S±)−1e3ξ̄3,

(2.18)
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where

S±ξ(0) = ξ̄, ξ(0) = (0, ξ02 , ξ
0
3)

T ∈M c.

The general solution (2.18) allows us to construct Poincaré halfmaps P± for ⊖
and ⊕-systems; the flow starts from the initial point ξ0 ∈ Mc

− and spends a

time t− before it returns to ξ1(t−) ∈ Mc
−. At that point, the flow starts once

again and spends a time t+ before it reaches ξ2(t+) ∈ Mc
−, see Figure 2.8. The

return times t±(ξ) depend on ξ and are determined as smallest positive root of

eT1 ξ(t±) = 0. Consequently, by solving ξ1(t−) = ξ0 and ξ2(t+) = ξ1 we can get

the coordinate ratios for the initial and end values in terms of the parameters

as (i) and (ii).

Following, we give a list of assignments for parameters that are used in this

Lemma. Note that for simplicity, we omit superscripts (±) in the following

parameters.

A1 = (c− α(α+ 1)

2
s), A2 = (

α(α+ 1)

2
c+ s), A3 = αE,

B1 = (2kσ − γ(1 + α)), B2 = (γ + αβσ), B3 = (2k + αβ(1 + α)),

R1 = β(1 + α)− k, R2 = ((2 + α)β + ασ), R3 = (2k + α(β + σ)(1 + α)),

K1 = sk+c(β+σ), K2 = ck−s(β+σ), K3 = ckσ−sβσ, K4 = cβσ+skσ,

∆ = (1 + α)(2β2σα− αγ(σ + β)) + k(2σ(2β + ασ)− 2γ),

E = e(µ−λ)t, s = sin(ωt), c = cos(ωt).

If the initial point ξ0 ∈ Mc
+ and ξ1 ∈ Mc

−, i.e. P+(ξ
0) = ξ1, and P−(ξ

1) = ξ2,

ξ2 ∈ Mc
+. Then property (iii) is seen immediately as analogous scenario.

Theorem 2.3. Suppose the eigenvalues of A± are λ± ± iω±, µ± with ω± > 0,

corresponding eigenvectors (S±)−1e1 ± i(S±)−1e2, (S±)−1e3 and gi satisfies

det(P ′ − gjI) = 0, j = 1, 2. Then system (2.16) has an invariant cone C if

and only if there exist t± > 0 such that

(i) n0(t+) = m1(t−),

(i) n1(t+) = m0(t−).

The dynamics on the invariant cone C is determined by the following rules:

• If |g1 | > 1or|g2 | > 1, then C is an unstable focus.

• If |g1 | ≤ 1 and |g2 | ≤ 1, then C is an stable focus.

• If (g1 = 1 and |g2 | ≤ 1) or (g2 = 1 and |g1 | ≤ 1) then C is attractive

and consists of periodic orbits (center+stable focus).
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• If (g1 = 1 and |g2 | > 1) or (g2 = 1 and |g1 | > 1) then C is repulsive

and consists of periodic orbits (center+unstable focus).

In other words, the dynamics on C can be monitored simply by measuring the

ratio of the distance between start and end points on the invariant straight line

as:

D =

√
(ξ22)

2 + (ξ23)
2

(ξ02)
2 + (ξ03)

2
=

√
(ξ22)

2(1 + n2
1)

(ξ02)
2(1 +m2

0)
=
ξ22
ξ02
,

hence, C is a stable focus (center focus or unstable focus) if D < 1 (D = 1 or

D > 1).

Note that, using Lemma 2.6, we can explicitly compute D.

Lemma 2.7. Considering PWLS (2.16) with α± = β± = 0 in S±, then both

intersection times are constant t± = π
ω± and sliding motion occurs if k+ and

k− have opposite signs.

Proof :

If α± = β± = 0, then the both subsystems given as:

A± =


λk+ωσ

k
−ω
k

0
ω(σ2+k2)

k
λk−ωσ

k
0

σ(ωk − σ(λ− µ)) σ(λ− µ) µ


±

,where (S±)−1 =

 1 0 0

σ± k± 0

0 k±σ± γ±

 .

The return times t±(ξ) are determined as smallest positive root of eT1 ξ(t±) = 0.

Then, we have 2s±γ±ξ2 = 0 leads to t± = π
ω± and ξ2 ̸= 0. According to the

definition of Ms
± in (2.2), sliding motion is possible if k+ and k− have opposite

signs.

2.4.2 Case I: α± = β± = σ+ = 0, k± = γ± = 1, σ− = −δ.

In this case, PWLS (2.16) allows to ensure that a simple situation will be

considered, where A+ = A+
N and

A− =

 λ− − δω− −ω 0

ω(δ2 + 1) λ− + δω− 0

−δ(ω− + δ(λ− − µ−)) −δ(λ− − µ−) µ−

 .

Then there are two invariant half-planes for the ⊕ and ⊖-system respectively,

spanned by ⟨e1, e2⟩ for the ⊕-system and ⟨(1,−δ, 0)T , (0, 1,−δ)T ⟩ for the ⊖-

system. For both systems we obtain Mc
∓ = {ξ ∈ R3|ξ1 = 0,±ξ2 > 0} and

Ms
∓ = {∅}, hence there is no sliding motion. Note that ξ = (0, 0, 1)T is an

eigenvector representing the z-axis which can be considered as a degenerated
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invariant cone although ξ is not contained in Mc
±. According to Theorem 2.3

and Lemma 2.7 we obtain t± = π
ω± as solution of eT1 ψ(t±, ξ) = 0, hence the

Poincaré map is linear in ξ on Mc
−. The explicit Poincaré map P mapping

⟨ξ2, ξ3⟩-plane into itself is given by

P =

(
e(λ

+/ω++λ−/ω−)π 0

δeµ
+π/ω+(

eλ
−π/ω−

+ eµ
−π/ω−)

e(µ
+/ω++µ−/ω−)π

)(
ξ2

ξ3

)
.

There are 2 cases to obtain an invariant cone of periodic orbits: Since an

invariant cone requires that either g1 or g2 equals 1 where

g1 = e(λ
+/ω++λ−/ω−)π,g2 = e(µ

+/ω++µ−/ω−)π.

(i) We get: g1 = 1, (i.e. λ+/ω+ + λ−/ω−) = 0 and g2 ̸= 1.

The corresponding eigenvector is calculated as

ξ̄ =

 1

δ
eµ

+π/ω+
(
eλ

−π/ω−
+eµ

−π/ω−
)

1−g2

 ,

the corresponding cone is attractive if µ+/ω++µ−/ω− < 0 and repulsive

if µ+/ω+ + µ−/ω− > 0, hence stability is determined by the time spent

in each half-space, which is measured by ω− and ω+. For example see

Figure 2.10 and Figure 2.9.

For δ = 0 (the smooth case i.e. A± = A±
N) there is a degenerate (flat)

cone within the (ξ1, ξ2)-plane, for δ ̸= 0 a nontrivial cone tending to

the positive z-axis for δ(1 − g2) → ∞ and to the negative z-axis for

δ(1−g2) → −∞.

For fixed δ ̸= 0, variation of µ+ for example from −∞ to ∞ corresponds

to an attractive cone developing out of the (ξ1, ξ2)-plane approaching the

ξ3-axis for µ
+ → −µ−ω−/ω+; for µ+ = −µ−ω−/ω+ there is no invariant

cone; for µ+ > −µ−ω−/ω+ there is an repulsive cone.

(ii) g2 = 1, (i.e. µ+/ω++µ−/ω− = 0) implies δξ2 = 0, and e(λ
+/ω++λ−/ω−)π ξ2 =

ξ2, hence either ξ2 = 0 or δ = 0, λ+/ω+ + λ−/ω− = 0. The case δ ξ2 = 0

corresponds to an invariant z-axis. Iterations of the Poincaré map start-

ing in (ξ02 , ξ
0
3) ∈ Mc

− give

ξn+1
2 = g1ξ

n
2 = gn+1

1 ξ02 ,

ξn+1
3 = δ

(
e(µ

+/ω++λ−/ω−)π + 1
)
ξn2 + ξn3 ,
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Figure 2.9: Attractive invariant cone consists of periodic orbits for λ+ = −λ− = 1,

ω± = 1, µ− = −1.5, µ+ = 1.2.
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Figure 2.10: Repulsive invariant cone consists of periodic orbits for λ+ = −λ− =

1.0, ω± = 1.0, µ− = −1.5, µ+ = 1.62.
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hence

ξn+1
2 = gn+1

1 ξ02 ,

ξn+1
3 = Σn

i=0δ
(
e(µ

+/ω++λ−/ω−)π + 1
)
ξi2 + ξ03 ,

= δ
(
e(µ

+/ω++λ−/ω−)π + 1
)
Σn

i=0ξ
i
2 + ξ03 ,

= δ
(
e(µ

+/ω++λ−/ω−)π + 1
)
Σn

i=0 g1 ξ02 + ξ03 ,

= δ
(
e(µ

+/ω++λ−/ω−)π + 1
)
ξ02Σ

n
i=0 gi

1 +ξ03 ,

hence

ξn2 →


0, g1 < 1

≡ ξ02 , g1 = 1

∞, g1 > 1

ξn3 →

δ
(
e(µ

+/ω++λ−/ω−)π + 1
)
ξ02

1
1−g1

, g1 < 1.

∞, g1 ≥ 1

Since t− = π/w− the relation g1 = 1 is equivalent to λ+/ω++λ−/ω− = 0.

In any case there is no periodic cone.

2.4.3 Case II: α± = −1, β± = λ±, k± = ω±, σ± = µ±, γ± = (λ±)2+(ω±)2

In this case, we have a continuous PWLS such that:

A± =

 µ± + 2λ± −1 0

2µ±λ± + (λ±)2 + (ω±)2 0 −1

µ±((λ±)2 + (ω±)2
)

0 0

 , (2.19)

where

(S±)−1 =

 1 0 1

λ± + µ± ω± 2λ±

λ±µ± µ±ω± (λ±)2 + (ω±)2

 .

Clearly no sliding motion can occur on M. Hence, there is only a direct cross-

ing between the half spaces. The existence of invariant cones and the stability

of the origin for the above system has already been investigated in [9, 11] by

using the properties of the auxiliary function and transferring (2.19) to a con-

tinuous piecewise cubic system.

Here, we give some direct results concerning the existence of C based on exis-

tence of solutions of (i),(ii) in Theorem 2.3. Hence, from Lemma (2.6) we can

rewrite quantities in (i) and (ii) as follows :

m0(t−) =
µ−ω−(E− − c−) + s−((λ−)2 + (ω−)2 − λ−µ−)

ω−(E− − c−) + s−(λ− − µ−)
,
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m1(t−) =
ω−µ−(c−E− − 1) + s−E−((λ−)2 + (ω−)2 − λ−µ−)

ω−(c−E− − 1) + s−E−(λ− − µ−)
,

n0(t+) =
µ+ω+(E+ − c+) + s+((λ+)2 + (ω+)2 − λ+µ+)

ω+(E+ − c+) + s+(λ+ − µ+)
,

n1(t+) =
ω+µ+(c+E+ − 1) + s+E+((λ+)2 + (ω+)2 − λ+µ+)

ω+(c+E+ − 1) + s+E+(λ+ − µ+)
.

Further

D =
F
(
ω+(c+E+ − 1)− s+E+(µ+ − λ+)

)(
ω−(c−E− − 1)− s−E−(µ− − λ−)

)(
ω+(E+ − c+) + s+(λ+ − µ+)

)(
ω−(E− − c−) + s−(λ− − µ−)

) .

Lemma 2.8. For the continuous PWLS (2.16) where A± are given by (2.19),

the following statements hold:

(c1) n0(
π
ω+ ) = n1(

π
ω+ ) = µ+, m0(

π
ω− ) = m1(

π
ω− ) = µ−,

lim
t→0

m0(t) = lim
t→0

n0(t) = ∞, lim
t→0

m1(t) = lim
t→0

n1(t) = −∞.

(c2) If λ+ = λ− = µ̂, µ̂ ∈ R, then the continuous PWLS has only one invariant

cone for t± = π/ω±, which is stable focus ( center focus or unstable focus)

if µ̂ < 0(µ̂ = 0 or µ̂ > 0).

(c3) If λ± = µ± = µ̂, µ̂ ∈ R, then the continuous PWLS has only one invariant

cone if and only if t± = π/ω±, which is stable focus ( center focus or

unstable focus) if µ̂ < 0 (µ̂ = 0 or µ̂ > 0).

(c4) If the continuous PWLS (2.19) has no invariant cones, then the origin is

asymptotically stable if λ± < 0, µ± < 0.

(c5) If λ± = λ < 0, ω± = ω > 0, then the origin is asymptotically stable if

µ± < 0.

To display more results on the existence of C and stability of continuous PWLS

(2.19), see [9, 10].

2.4.4 Case III: α+ = −1, α− = α, β− = σ± = 0, β+ = λ+; k± = γ± = 1.

In this case we get

A− =

 λ− − α
2
(α+ 1)ω− −ω− − ω−

4
(α+ α2)2 α(λ− − µ− − α

2
(α+ 1)ω−)

ω− λ− + α
2
(α+ 1)ω αω−

0 0 µ−

 ,

A+ =

 λ+(1 + ω+) −ω+ λ+(ω+ − 1) + µ+

ω+(λ+2 + 1) λ+(1− ω+) λ+2(ω+ − 2) + 2λ+µ+ − ω+

0 0 µ+

 ,

(2.20)
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where α is a free parameter.

Because ξ ∈ Mc
− we get (according to Lemma 2.5)

ξ3
ξ2
<

w−(1 + (α+ α2)2/4)

α(λ− − µ−)− α2(α+ 1)ω−/2
, if α(λ−−µ−)−α2(α+1)ω−/2 > 0,

ξ3
ξ2
>

w−(1 + (α+ α2)2/4)

α(λ− − µ−)− α2(α+ 1)ω−/2
, if α(λ−−µ−)−α2(α+1)ω−/2 < 0,

and
ξ3
ξ2
<

ω+

λ+(ω+ − 1) + µ+
, if λ+(ω+ − 1) + µ+ > 0,

ξ3
ξ2
>

ω+

λ+(ω+ − 1) + µ+
, if λ+(ω+ − 1) + µ+ < 0.

For the ⊖-system we obtain via (2.6) and (2.18) a representation of the return

time as solution of

(4 + α2 + 2α3 + α4)s−ξ2 + 2α
(
2(E− − c−) + αs−(1 + α)

)
ξ3 = 0, (2.21)

and from Lemma 2.6 we get the following

m0(t−) = −1

2

s−(4 + α2 + 2α3 + α4)

α
(
2(E− − c−) + αs−(1 + α)

) ,
m1(t−) = −1

2

s−E−(4 + α2 + 2α3 + α4)

α
[
(αs−(1 + α) + 2c−)E− − 2

] ,
ξ12
ξ02

=
eλ

−t−
[
(αs−(1 + α) + 2c−)E− − 2

]
2(E− − c−) + αs−(1 + α)

,

ξ13
ξ03

= eµ
−t− .

For the ⊕-system we get

−s+ξ2 +
(
λ+s+ − c+ + E+

)
ξ3 = 0, (2.22)

and from Lemma 2.6 we get the following

n0(t+) =
s+

λ+s+ − c+ + E+
,

n1(t+) =
s+E+

(c+ + λ+s+)E+ − 1
,

ξ22
ξ12

=
eλ

+t+
(
(c+ + λ+s+)E+ − 1

)
λ+s+ − c+ + E+

,
ξ23
ξ13

= eµ
+t+ .

g1 =
F
(
E+(c+ + λ+s+)− 1

)(
E−s−α−(1 + α−) + 2E−c− − 2

)
(λ−s+ − c+ + E+)(α−s−(α− + 1) + 2E− − 2c−)

,

g2 = FE+E−, F = eλ
+t++λ−t− .
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Since there are still many parameters involved we illustrate various situations

for a special choice of parameters.

In the case α = 0, the ⊖-system possesses an invariant plane ξ3 = 0 with

t−(ξ) = π/ω−. In this situation we assume that the starting point ξ ∈ Mc
+,

hence ξ2 < 0 from (2.2), and we get

ξ3
ξ2
< n0(0); if n0(0) > 0, (2.23a)

ξ3
ξ2
> n0(0); if n0(0) < 0, (2.23b)

where n0(0) = ω+

λ+(ω+−1)+µ+ . Geometrically the line ξ3 = n0(0)ξ2 determines

the boundary of the sliding motion area in the (ξ2, ξ3)-plane.

The Poincaré map P = P− ◦ P+(ξ) mapping ⟨ξ2, ξ3⟩-plane into itself

(i.e., P (ξ) : Mc
+ → Mc

+) is given by

P =

(
F (λ+s+ − c+) F (s+(1− λ+) + λ+(c+ − 2E+))

0 FE+E−

)(
ξ2

ξ3

)
.

For t+(ξ) defined by (2.22) we can determine an invariant cone spanned by

invariant line ξ3 = n0(t+)ξ2 provided (2.23) and the fixed point equation

P (ξ) = ξ is satisfied. In this case P is a triangular matrix which will al-

low easy access to eigenvalues and eigenvectors; note that the map P depends

through t+(ξ) in a nonlinear way on ξ.

The eigenvalues of P can be obtained as follows:

g1 = F (λ+s+ − c+),g2 = FE+E−.

Then there are 2 cases to obtain an invariant cone consisting of periodic orbit.

(a) If λ+/ω+ + λ−/ω− = 0 and t+ = π/ω+. Then system (2.16) has invariant

cone if and only if µ+/ω+ + µ−/ω− ̸= 0. Furthermore the dynamics of

the system can be established by observing the sign of
(
µ+

ω+ + µ−

ω− ). To

see this note that the fixed point equation yields (FE+E− − 1)ξ3 = 0 if

F (λ+s+ − c+) = 1

If ξ3 = 0 then s+ = 0, hence t+ = π/ω− and c+ = −1, corresponding to

a flat cone for which of course ξ ∈ Mc
+.

If ξ3 ̸= 0 then FE−E+ = 1. The first part of the fixed point equation

requires s+(1−λ+)+λ+(c+−2E+) = 0 which means that the solution does

not exist on the interval (0, π) where ξ ∈ Mc
+ (i.e.λ+(ω+ − 1)+ µ+ < 0),

hence ξ3 = 0.

In this case we obtain a flat cone given as the invariant plane. The cone
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corresponding to λ+/ω++λ−/ω− = 0 is attractive if µ+/ω++µ−/ω− < 0

and repulsive if µ+/ω+ + µ−/ω− > 0.

(b) If FE+E− = 1 hence µ+t+ + µ−t− = 0.

The corresponding eigenvector is calculated as

ξ̄ =

(
−1

− 1+F (λ+s+−c+)
F (s+(1−λ+)+λ+(c+−2E+))

)
Since t+ must satisfy t+ = −(µ−/µ+)π/ω− we can check by considering

the graph of n0(t+) for which parameters (2.23) holds, that is for t+ =

−(µ−/µ+)π/ω−, ξ2 = −1. We have to check if ξ3 = −n0(t+) satisfies

(2.23).

Let (T0, T1) ⊆ (0,∞) denote the interval such that for t+ ∈ (T0, T1),

ξ3 = −n0(t+) satisfies (2.23). Let T ∗ denote the smallest positive root

of h1(t+) where h1(t+) = λ+s+ − c+ + E+, then h1(0) = 0 and h́1(0) =

ω+/n0(0).

In the case 0 > n0(0) we obtain T0 = T ∗ and T1 as the smallest positive

root of n0(t+)− n0(0) = 0. The typical graph of n0(t+) in case (2.23b) is

given in Figure 2.11.

In the case 0 < n0(0) we obtain T0 = 0 and T1 = T ∗. Note that both T0

and T1 depend on the parameters w−, λ−, µ−, and may be fixed point

exists only at t+ = π/ω+

Based on this construction, we are able to consider a variety of special

cases:

2.4.4.1 One-parameter bifurcation for invariant cone

In order to illustrate the three possible situations of dynamics on the cone

as described in Theorem 2.3, we consider a parameter dependent example to

control switching of stability for the invariant cone from a stable focus type to

an unstable focus type via a center. We can arrange that λ+s+ − c+ = 0 for

λ+ = −1, − µ−π
µ+ω− = t+ = 3π

4ω+ and take

A− =

 0.4259 −1 0

1 0.4259 0

0 0 −3µ+/4

 , A+ =

 −2 −1 µ+

2 0 −2− 2µ+

0 0 µ+


where ω± = −λ+ = 1, λ− = 0.4259 and varying µ+ as parameter. Thus, for

µ+ = −1.3 the corresponding system has one invariant cone and the dynamics

on it is of stable focus type. By moving the real value µ+ and keeping fixed

all the remaining eigenvalues, a dynamics of center type is obtained on the
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Figure 2.11: Graph of n0(t+) for parameter values λ+ = −λ− = 0.6, µ+ =

−1.13, µ− = 0.4266, ω± = 1

invariant cone for µ+ = −1.13, and being the the dynamics of unstable focus

type for µ+ > −1.13.

2.4.4.2 Existence of multiple cones

Here we face a situation which is more complicated in smooth system if there

exist two limit cycles such that one of these is unstable, located inside the

stable one, for instance this scenario has been observed in [54]. The question

considered here is this: Is it possible to get the same scenario for PWLS?

Lemma 2.9. If ξ ∈ M c
± and λ+/ω+ + λ−/ω− = 0, then the system (2.16)

has, at least, two invariant cones with periodic orbits. One of them can be

asymptotically stable and the other unstable or both can be unstable focus; but

there is also the situation where both invariant cones are asymptotically stable.

Remark 2.6. It should be noted that the existence of multiple attractive in-

variant cones is not possible in continuous PWLS, see Theorem 2 in [10].

The following situation establishes the existence of attractive multiple invari-

ant cones.

If ξ ∈ Mc
+ and λ+/ω++λ−/ω− = 0 and µ++µ− < 0, then by (a) there exists

an attractive invariant flat cone with t± = π/ω±.

We use this constellation to construct another invariant cone by using case (b)

for a different t+ = −µ−

µ+
π
ω− ; that cone is attractive as well if |F (λ+s+−c+)| < 1
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Figure 2.12: Two attractive invariant cones, λ+ = −λ− = 0.6, µ+ = −1.13,

µ− = 0.4266, ω± = 1 where t+ = π for the flat cone and t+ = 1.1306 for the other.

for this choice of t+. For example this situation holds for the special choice of

parameters used in Figure 2.12.

2.4.5 Mechanism to generate an invariant cone and its stability

In view of the previous results, we will show the mechanism which is responsible

to generate invariant cones and to determine the stability of the origin for mast

general PWLS (2.16) where A± are given in (2.20) by the following steps:

step 1: Lemma 2.5 indicates the possibility of obtaining an invariant cone

with periodic orbit. Without loss of generality, one can assume that ξ ∈ Mc
−

and ξ2 > 0 and α ̸= 0 requires essentially the following conditions:

ξ3
ξ2
< m0(0); if m0(0) > 0, (2.24a)

ξ3
ξ2
> m0(0); if m0(0) < 0, (2.24b)

with (2.23) where m0(0) =
ω−(1+(α+α2)2/4)

α(λ−−µ−)−α2(α+1)ω−/2
.

step 2: Construction of Poincaré map via (2.18). In this case, we consider

P = P+ ◦ P−(ξ) mapping ⟨ξ2, ξ3⟩-plane into itself (i.e., P (ξ) : Mc
− → Mc

−) is
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given by

P = F

 (c+ − λ+s+)(c− + α(1+α)s−

2
) (c+ − λ+s+)αs− + 2λ+E+E−

+E−(λ+2s+ − s+ − 2λ+c+)

0 E+E−

( ξ2

ξ3

)
.

(2.25)

If there exists ξ̄ such that P+ ◦ P−(ξ̄) = ξ̄, then the existence of an invariant

half straight line which defines a two-zonal invariant cone is concluded.

The eigenvalues of P can be obtained as follows:

g1 = F (c+ − λ+s+)(c− +
α(1 + α)s−

2
),g2 = FE+E−.

step 3: We emphasize that, according to Lemma 2.3, t− and t+ are constant

on rays in Mc
− and Mc

+. Furthermore the relations (i-ii) in Theorem 2.3 allow

to define in parameter form a slope of two straight lines, hence t± is a unique

solution of the following system

−1

2

s−E−(4 + α2 + 2α3 + α4)

α
[
(αs−(1 + α) + 2c−)E− − 2

] = s+

λ+s+ − c+ + E+
(2.26a)

−1

2

s−(4 + α2 + 2α3 + α4)

α
(
2(E− − c−) + αs−(1 + α)

) =
s+E+

(c+ + λ+s+)E+ − 1
. (2.26b)

In other words, the existence of solutions for this system, provides necessary

conditions for the existence of two invariant straight lines which in turn leads

to two-zonal invariant cone. Note that the above system of equations has a

trivial solution at t± = π/ω±.

step 4: In general the existence of an attractive invariant cone with periodic

orbits requires solution of a fixed point equation P (ξ) = ξ with exactly one

eigenvalue equal to 1 and all of the other eigenvalues with modulus less than 1.

The current example requires that only one of the two eigenvalues of P equals

1, hence we distinguish two cases to obtain invariant cones:

a- F (c+ − λ+s+)(c− + α−(1+α−)s−

2
) = 1. The fixed point equation P (ξ) = ξ,

where P is given by (2.25) requires either ξ3 = 0 or ξ3 ̸= 0.

(i) ξ3 = 0 is invariant plane such that FE+E− ̸= 1. Therefore, we obtain

an invariant flat cone with trivial solution of (2.26) at t± = π/ω±. The

stability of the origin depends on the sign of the quantity
(
µ+

ω+ + µ−

ω−

)
.

(ii) ξ3 ̸= 0 leading to µ+t+ + µ−t− = 0 where t± satisfies (2.26) with

investigate the existence of solutions for F (c+ − λ+s+)α−s− + 2λ+ +

FE−(λ+2s+ − s+ − 2λ+c+) = 0.
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b- FE+E− = 1. For t± satisfying (2.26) we can determine an invariant cone

spanned by

ξ2 = 1, ξ3 =
1− F (c+ − λ+s+)(c− + α−(1+α−)s−

2
)

F (c+ − λ+s+)α−s− + 2λ+ + FE−(λ+2s+ − s+ − 2λ+c+)
.

The same idea can be used if ξ ∈ Mc
+.

For illustration a few examples of PWLS (2.16) are given below:

Example I: A typical example illustrate the previous mechanism.

Consider PWLS (2.16) where A± are given in (2.20), we take α = 1, get

m0(0) =
2ω−

λ−−µ−−ω− and n0(0) =
ω+

λ+(ω+−1)+µ+ where (2.23) and (2.24) have

been taken into account. The system (2.26) is reduced to the following

expression

2s−E−(λ+s+ − c+ + E+)− s+(1− (s− + c−)E−) = 0, (2.27a)

2s−((c+ + λ+s+)E+ − 1)− s+E+(c− − s− − E−) = 0. (2.27b)

Here t± must be computed numerically. Regarding Step 4 we get the

eigenvector ξ in two cases which is responsible to generate invariant cones

with periodic orbits as well as dynamics on C can be achieved. Keeping(
µ+

ω+ + µ−

ω−

)
< 0 and t± = π

ω± , the dynamics on the planar invariant cone is

of a center (unstable/stable focus) if and only if
(
λ+

ω+ +
λ−

ω−

)
= 0(> 0/ < 0).

By perturbing this situation corresponding µ+t+ +µ−t− = 0, it is imme-

diate to get a similar dynamics on a nonplanar invariant cone. To show

the existence of stable dynamics on the invariant cone, let us choose

ω± > λ− > µ+ > 0 and µ− < 0. Then if λ+ = 1 and 0 < t± < π, we

get an invariant cone with periodic orbit and the dynamics on the cone

is of (center+stable focus), for example see Figure 2.13. By increasing

λ+ ∼= 1.12 the dynamics on the cone is of (center+unstable focus).

Example II: The next result is concerned with the existence of multiple cones

of (2.16) where A± are given in (2.20). Note that we are still under

the same constraints as in I. It becomes evident from Lemma 2.9 that

the existence of multiple cones requires λ+/ω+ + λ−/ω− = 0. Taken

into account the above four steps. Hence, for ξ ∈ Mc
−, we have a fairly

complete analysis of the orbit structure of the Poincaré map and existence

of solutions of the system (3.14). For example this situation holds for the

special choice of parameters used in Figure 2.14. Both locally repulsive

invariant cones are separated by an attractive manifold. Notice that the

same situation holds if ξ ∈ Mc
+.



Invariant cones for a class of a high-dimensional PWS 53

−8
−7

−6
−5

−4
−3

−2
−1

0
1

2

−8
−6

−4
−2

0
2

4

ξ
1

ξ
2

Figure 2.13: An invariant cone with (center+stable focus ), ω± = λ+ = 1,

λ− = 0.3338 , µ+ = 0.2027, µ− = −0.1014, t+ = 0.3π and t− = 0.6π.
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Figure 2.14: Two invariant cones where both are of (center+unstable focus ),

ω± = 1, λ+ = −λ− = −.5, µ+ = −1.5, µ− = 1.6203, t+ = 3.76 and t− = 3.48.



Invariant cones for a class of a high-dimensional PWS 54

Example III: Coming back now to the case 2.4.4 posed at the beginning of

this section. Without restriction we can assume that the ⊕-system of

(2.16) can be considered as classical Jordan normal form [39]; i.e. to be

in

A+ =

 λ+ −ω+ 0

ω+ λ+ 0

0 0 µ+

 ,

by setting α+ = β+ = 0 and fixing all other parameters as in case2.4.4.

Hence, the ⊖-system is under the same constraints, i.e., A− is given in

(2.20). To see different dynamics on invariant cone corresponding to The-

orem 2.3, let us begin to study the existence of t− for (2.21) where α = 1

and m0(t−) = − 2s−

E−+s−c−
. Since 0 < t− ≤ π we can always arrange that

s− + c− = 0 for − µ+π
µ−ω+ = t− = 3π

4ω− . The matrix associated with the

Poincaré map (2.25) has one eigenvalue equal to zero and the stability

on the cone is determined by the quantity (µ+ + 3µ−/4). This situation

can be classified as follows [39]:

If ξ ∈ Mc
− and according to (2.24a) require m0(0) = λ− − µ− − ω− > 0

and t− = 3t+/4 with ω+ = ω−, thus, existence of center (unstable/stable

focus) dynamics on the invariant cone if 4µ+ + 3mu− = 0(> 0/ < 0)

without any restriction on λ+. The three possible situations with specific

parameters are illustrated in Figure 2.15

Further, according to Lemma 2.9 and the same way of analysis, we can

get two invariant cones separated by a repulsive manifold [39] on which

solutions converge towards the origin. An example with specific values

of parameters is shown in Figure 2.16. An interpretation of the existence

of multiple cones in term of generalized center manifolds provides a situ-

ation that there are locally multiple generalized center manifolds at the

same time, hence there is a chance of bifurcation of multiple separate

periodic orbits if nonlinear terms are added. The class of nonlinear PWS

will be investigated in Chapter 5.
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Chapter 3

Invariant cones for a class of

systems with sliding motion

Over the past few years, many problems of interest have been treated as Fil-

ippov models [13, 42, 43, 57]. In this chapter, we analyse the case of limit

cycles interacting for such systems, presenting sliding bifurcations as well as

an investigation of necessary and sufficient conditions for the existence of pe-

riodically invariant cones for a class of PWS including sliding motion. These

investigations are based on a constructive approach which is a combination

of theoretical analysis and numerical computation. This approach allows us

to prove the existence of some sliding bifurcations for a class of PWS related

to invariant cones. The stability of invariant cones containing sliding motion

can be studied by either considering the stability of stationary solutions or

the bifurcation of limit cycles. Further, we prove a generalization concerning

invariant cones of class of PWS.

3.1 Sliding mode, dynamics on Ms
±

In PWS there are many bifurcation phenomena that cannot be explained by

classical bifurcation theory for smooth systems. A special phenomena for

example occurs for PWS if the trajectories reach one or more discontinuity

surfaces and stay on it. Sliding bifurcation has been shown to give rise to com-

plex phenomena including deterministic chaos and it can be used to explain

the formation and metamorphosis of stick-slip oscillations in friction oscilla-

tors [15, 16, 52]. We wish to emphasize that, the practically interests case is

when the sliding region is attractive (i.e.ξ ∈ Ms
−). This means that trajecto-

ries in Ms
− stay within this region until the boundary is reached. The other

case when the sliding region is repulsive (i.e. ξ ∈ Ms
+) leads solutions of the

56
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sliding system that can not be continued uniquely. Thus, we will not further

consider repulsive sliding motion during this work.

Consider a trajectory of (2.1), and suppose that ξ ∈ Ms. Two formalisms exist

in the literature for deriving the equations for flows governing the dynamics

within the sliding region. These are Utkin’s equivalent control method [61]

and Filippov’s convex method [25]. To describe Utkin’s approach, we con-

sider systems where the discontinuity is due to effects of control. The system

considered then is of the form:

ξ̇ = f(ξ, u), u(ξ) =

u−(ξ), h(ξ) < 0,

u+(ξ), h(ξ) > 0,

where u− and u+ are Ck function of ξ. The system defined above presents a

sliding motion when ξ ∈ Ms. Therefore, the sliding dynamics is determined

by replacing the discontinuous function u by an equivalent control [61]. Then,

the dynamic of the sliding mode is given by the equivalent system

ξ̇ = Fs(ξ, ueq),

where ueq is the equivalent control which makes the surface invariant. For

ξ ∈ Ms, ueq satisfies the following inequality

min(u−(ξ), u+(ξ)) < ueq < max(u−(ξ), u+(ξ)).

Remark 3.1. The dynamics of Filippov and Utkin methods are generally dif-

ferent. Utkin method corresponds to systems which are made discontinuous by

the choice of discontinuous control. Filippov’s method is derived corresponding

to a situation when we deal with discontinuous vector field.

In [20,61], there are some special cases where the two methods lead to different

results.

Next, we show that both methods are equivalent in special situation . In

Utkin’s method we can derive the vector field Fs(ξ) as an average of the two

vector fields f−(ξ) and f+(ξ) plus a control β(ξ) ∈ [−1, 1] in the direction of

the difference between the vector fields [14]:

Fs(ξ) =
f+(ξ) + f−(ξ)

2
+
f−(ξ)− f+(ξ)

2
β(ξ). (3.1)

Since Fs(ξ) must be tangent to Ms, which yields

β(ξ) = −n
T (ξ)f+(ξ) + nT (ξ)f−(ξ)

nT (ξ)f−(ξ)− nT (ξ)f+(ξ)
.
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Figure 3.1: Filippov (F) and Utkin (U) methods .

Both methods are equivalent if β(ξ) = 1− 2q(ξ), Figure 3.1.

In this work, we are only going to use Filippov method. Boundaries between

sliding and crossing regions satisfy nT (ξ)f±(ξ) = 0, implying that a trajectory

of (2.1) is tangent to M.

Remark 3.2. The tangency points play an important role in the nongeneric

bifurcations of limit cycles; limit cycles undergo a sliding bifurcation precisely

when it passes through one of these points.

Lemma 3.1. The equivalent dynamics of PWS (2.1) for ξ ∈ Ms during the

sliding motion is described by (1.11) if and only if

nT (ξ)(f−(ξ)− f+(ξ)) ̸= 0.

Proof: If ξ ∈ M, the solution of (2.1) is also solution of (1.11) for q = 0 or

q = 1, respectively. While if ξ ∈ Ms, then we get h(ξ) = 0 and

0 =
d

dt
h(ξ) =

∂h

∂ξ
ξ̇ =

∂h

∂ξ

(
q(ξ)f+(ξ) + (1− q(ξ))f−(ξ)

)
= q(ξ)nT (ξ)

(
f+(ξ)− f−(ξ)

)
+ nT (ξ)f−(ξ),

which can be solved for q iff nT (ξ)(f−(ξ)− f+(ξ)) ̸= 0.

3.2 Sliding bifurcations

Bifurcations due to interactions between limit cycles and the boundary of

sliding regions in PWS are called sliding bifurcations. Recently, analytical and

numerical investigations of PWS (Fillipov system) have shown that there are

four fundamental types of sliding bifurcation which are called crossing-sliding,

grazing-sliding, switching-sliding, and adding-sliding, see Figure 3.2. For a

review and more thorough exposition of this topic where Fs is defined (3.1) by

using Utkin method, the reader is referred to [14–17]. Next, we will present

a brief description and the analytical conditions that must hold for each case

where Fs is defined (1.11) by using Filippov method,
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3.2.1 Crossing-sliding Bifurcations

Crossing-sliding bifurcation (Figure 3.2(a)) occurs when the trajectory of a

subsystem under the effect of parameter variation crosses the manifold M
transversally (direct crossing) at the boundary of the sliding region ∂Ms

+(or

∂Ms
−), which means that the flow given by Fs moves locally towards ∂Ms

+(or

∂Ms
−). Thus, at the crossing-sliding bifurcation point ξ∗ where λ is fixed, we

must have

h(ξ∗) = 0, ∇h(ξ)|ξ∗ ̸= 0. (3.2)

Without loss of generality, we assume that the boundary bifurcation point lies

on ∂Ms
+ (i.e. q(ξ) = 1, Fs(ξ) = f+(ξ)). Thus, we have

d(h(φ+(ξ, t)))

dt
|t=0 = 0 ⇔

(
nT (ξ)f+(ξ)

)
|ξ∗ = 0, (3.3)

where φ± represents the flow corresponding to f±. The sliding flow will be

forced to leave the sliding region through the boundary ∂Ms
+ if the time deriva-

tive of q(ξ) along the flow lines is positive. Hence, we get

d(q(φ+(ξ, t)))

dt
|t=0 =

(
∇q(ξ)f+(ξ)

)
|ξ∗ > 0. (3.4)

After substituting ∇q(ξ) which is defined in (1.13), and taken into account

(1.9), we can clearly see (3.4) as(
nT (ξ).∇f+(ξ).f+(ξ)

)
|ξ∗ > 0. (3.5)

Conditions (3.2) and (3.3) are general conditions that must be satisfied for

all cases of sliding bifurcations. These conditions ensure that the bifurcation

point is located on the boundary of the sliding motion area, i.e., ξ∗ ∈ ∂M s
+

and that it is a tangent point.

3.2.2 Grazing-sliding bifurcation

Grazing-sliding bifurcation will take place when the sliding flow moves towards

the boundary of sliding ∂Ms
+ and the sliding trajectory tends to leaves M (see

Figure 3.2(b)). In this case the same analytical conditions of crossing-sliding

bifurcation hold.

3.2.3 Switching-sliding bifurcation

In this case, the vector field Fs(ξ) must point away from the boundary of the

sliding region at the bifurcation point on ∂M s
+, conditions (3.2) and (3.3) hold

as well and at ξ∗ we require that the flow leaves the boundary point towards

the sliding region, (Figure 3.2(c)), the additional condition is given by(
nT (ξ).∇f+(ξ).f+(ξ)

)
|ξ∗ < 0. (3.6)
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(a) Crossing-sliding (b) Grazing-sliding

(c) Switching-sliding (d) Adding-sliding

Figure 3.2: Structures of sliding bifurcation

3.2.4 Adding-sliding bifurcation

In this case the segment of the sliding flow lies entirely within the sliding region

Ms
− which is tangential to ∂Ms

− at the bifurcation point, see Figure 3.2(d),

hence the following additional condition(
nT (ξ).∇f+(ξ).f+(ξ)

)
|ξ∗ = 0. (3.7)

The sliding flow in this case has a local minimum with respect to the boundary

∂M s. Thus, we have (
nT (ξ).(∇f+(ξ))2.f+(ξ)

)
|ξ∗ < 0. (3.8)

Remark 3.3. If ξ∗ ∈ ∂Ms
−, then q(ξ) = 0, hence Fs(ξ) = f−(ξ). An analogous

analytical conditions of sliding bifurcation is obtained with opposite sign.

A sliding segment is a smooth curve which is a trajectory of ξ̇ = Fs(ξ), h(ξ) =

0, and Fs is given by (1.11) or (3.1).

The question arises, if the trajectory of (2.1) for ξ ∈ Ms
−, thereby loses/gains

a segment of sliding, as well as how and when the trajectory leaves the sliding

region through the boundary ?

If ξ ∈ Rn and nT (ξ)f±(ξ) ̸= 0, Filippov [24,25] devised a theory which helps to

decide what to do in this situation. At ξ ∈ ∂Ms, such that one of nT (ξ)f±(ξ) =

0, (not both) where one of them always occurs immediately at the boundary

of sliding area, see Section 1.4. In this situation there are two possibilities:

(i) If nT (ξ)f+(ξ) = 0, we get q = 1 and Fs = f+(ξ) or n
T (ξ)f−(ξ) = 0, then



Invariant cones for a class of systems with sliding motion 61

we get q = 0 and Fs = f−(ξ). As can be expected the trajectory enters Mc
+

in the case nT (ξ)f+(ξ) = 0 and enters Mc
− in the other case nT (ξ)f−(ξ) = 0.

(ii) The trajectory hits the boundary and thereafter remains on Ms
−.

In this way, Dieci and Lopez [19] examined second order corrections to the

theory of Filippov. We can limit ourselves to a very brief summary of this

below.

For ξ ∈ M, we assume that

g1(ξ) = nT (ξ)f−(ξ), g2(ξ) = nT (ξ)f+(ξ), g(ξ) = g1(ξ)g2(ξ).

With the notation t = 0± means limt→0± , for t in a right/left neighborhood of

t = 0, we have

gi(ξ) = Ai + tB±
i +

t2

2
C±

i +O(t3), i = 1, 2,

where Ai = gi(ξ(0)), B
±
i =

[
∂
∂ξ
gi(ξ(t))ξ̇

]
t=0±

, C±
i =

[
(ξ̇(t))T ∂2

∂ξ2
gi(ξ(t))ξ̇(t) +

∂
∂ξ
gi(ξ(t))ξ̈(t)

]
t=0±

. Taking into account the properties of the vector field on the

four sectors 2.2 and depending on the sign of Ai, B
±
i and C±

i many possibilities

of motion can be observed [19]. Our main interest here is the situation where

the trajectory leaves the boundary in between crossing and sliding regions,

hence when the two cases below are satisfied.

Lemma 3.2. [19] Using the above setting, at ξ ∈ ∂Ms
− or ξ ∈ ∂Ms

+, respec-

tively. The following holds true:

i- If A1 = 0, A2 < 0, B−
1 < 0, then the trajectory leaves ∂Ms

− and enters

Mc
− with vector field f−(ξ).

ii- If A2 = 0, A1 > 0, B−
2 > 0, then the trajectory leaves ∂Ms

+ and enters

Mc
+ with vector field f+(ξ).

3.3 Fundamental matrix solutions

The fundamental matrix solutions on the sliding surface [25, 44] can be esti-

mated from the evolution of the linearized Filippov system (1.11) with respect

to the sliding vector field, i.e. for all initial ξ̃ ∈ Ms, we get

Ẏs =
∂

∂ξ
Fs(ξ̃)Ys, Ys(0) = I,

where Ys =
∂
∂ξ
φ(τs, ξ̃), φ(τs, ξ̃) is the solution of ξ̇ = Fs(ξ) and

Fs(ξ) =
nT (ξ)f−(ξ) · f+(ξ)− nT (ξ)f+(ξ) · f−(ξ)

nT (ξ)(f−(ξ)− f+(ξ))
. (3.9)
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In order to state the appropriate generalization of Theorem 2.1, we consider

the flow given by φ(τ−, ξ) with respect to ⊖-system of (2.1) reaching Ms, but

not crossing the manifold (i.e. no direct crossing). Rather the motion starts

to slide on it beginning at the boundary point η̃ at time τ̃ which is given by

equation (2.3).

Thus, we get

Ys = JsY−, Js = I +

(
Fs(τ̃−, η̃)− f−(τ̃−, η̃)

)
nT (η̃)

nT (η̃)f−(τ̃−, η̃)
. (3.10)

On the other hand, if the trajectory of ⊕-system reaches Ms coming from

Mc
+, we get the same form of the jump matrix (3.10) due to the attractivity

of the sliding manifold. Obviously there is a singularity of the jump matrix

ensuring that the motion on Ms
− will take place on a lower dimensional man-

ifold. Furthermore we cannot uniquely trace the orbit backward in time.

3.3.1 Monodromy matrix in PWS with sliding

Again, the eigenvalues of the monodromy matrix, known as Floquet charac-

teristic multipliers, are used to study the local stability of periodic orbits of

a smooth nonlinear system (1.1). In PWS, without loss of generality, we can

assume that the periodic orbit of PWS (2.1) without sliding motion starts from

ξ(0) ∈ Mc
− with the ⊖-system, intersects the manifold at η̃ ∈ Mc

+ and passes

over to the ⊕-system, and finally the periodic orbit closes at ξ(0) = ξ(T ),

where T = τ− + τ+. Thus, one can define the monodromy matrix by

Y (T, ξ) = J+ Y+(τ+, ξ(τ−)) J− Y−(τ−, ξ(0)). (3.11)

Note that if the periodic orbit crosses different discontinuity surfaces Mi, one

just has to compose the monodromy matrix out of the state jump matrices

for the passage through each subsystem. This strategy will allow us to de-

termine periodic orbits with multiple discontinuity surfaces. Furthermore, the

processes described in this strategy also apply to the case of attractive sliding

motion, for example the monodromy matrix around an periodic orbit with

sliding segment can be obtained by replacing Mc
+ by Ms

−, i.e.,

Y (T, ξ) = Ys(τs, ξ(τ−)) Js Y−(τ−, ξ(0)), T = τ− + τs. (3.12)

Note that, the trajectory leaves the separation manifold tangentially, i.e. the

corresponding jump matrix is equal to the identity matrix.

The monodromy matrix essentially represents the linearization of the Poincaré

map around the periodic orbit, and hence its eigenvalues known as Floquet
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multipliers determine the stability of the periodic orbit. The invariant cone is

locally attractive if the absolute values of the Floquet multipliers except the

trivial one are less than 1.

Lemma 3.3. For PWS (2.1) without sliding motion the monodromy matrix

has at least one eigenvalue equal to 1 (Periodicity) and the dynamics of the

orbit is determined by the other eigenvalues µj, (j = 1, ..., n − 1). If Ms
− is

involved the monodromy matrix has one eigenvalue equal to 1 in case of an

periodic orbit and at least one eigenvalue equal to 0 due to the singularity of

Js. The dynamics of the orbit depends on the remaining eigenvalues µj, (j =

1, ..., n− 2).

3.4 Invariant cones with sliding motion for PWLS

In this section, our objective is to discuss the situation that the invariant cone

contains a segment of sliding motion or evolves under the sliding flow towards

∂Ms
− or ∂Ms

+.

For an initial position inMs
− or if the flow of a subsystem of (2.5) arrives at the

sliding region Ms
−, the sliding motion can be observed along the discontinuity

surface in phase space. Let φs(ts(ξ), ξ) in Ck, k ≥ 1, denote the sliding flow

generated by

ξ̇ = Fs = k1A
+ξ + k2A

−ξ, (3.13)

with k1, k2 ∈ (0, 1), ξ ∈ Ms
−, and let ts be the time spent in the Ms

− region.

Then we define the sliding map as

Ps : Ms
− → Ms

−,

ξ → Ps(ξ) = φs(ts, ξ).

The sliding flow will either stay on Ms
− for all future times ts → ∞ or reach

one of the boundaries ∂Ms
± at some time. Furthermore, the sliding trajectory

will move along Ms
− to approach ∂Ms

+ if ∇q(ξ).Fs(ξ) > 0 or it will come close

to ∂M s
− if ∇q(ξ).Fs(ξ) < 0. Thus, ts depend on the direction of the sliding

flow and it can be computed as the time evaluation from ξ0 to ∂Ms
− (or to

∂Ms
+) by using the following sliding boundary conditions

q(φs(ts, ξ)) = 1, if ξ ∈ ∂Ms
+, (3.14a)

q(φs(ts, ξ)) = 0, if ξ ∈ ∂Ms
−, . (3.14b)

Clearly (3.13) is non-linear in ξ and homogeneous and preserves a linear ho-

mogeneity, i.e., if φs(ts, ξ) is a solution of (3.13), then φ̃s(ts, ξ) := λφs(ts, ξ) is

a solution as well. Then we have the following lemma.
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Lemma 3.4.

For all ξ̂ ∈ Ms
−, Ps(ξ̂) ∈ Ms

− and φs(t, ξ̂) ∈ Rn, 0 < t < ts(ξ̂):

(i) The function ts is differentiable in ξ̂, ts(λξ̂) = ts(ξ̂), and Ps(λξ) =

λPs(ξ), 0 < λ <∞.

(ii) Ps is differentiable in ξ̂, and ∂Ps

∂ξ
(ξ̂) =

(
∂φs

∂ξ
+ Fs(ξ)

∂ts
∂ξ

)
(ξ̂).

The existence of an invariant cone passing through the sliding region depends

on the existence of an “eigenvector” ξ̄ ̸∈ Ms
+ of the nonlinear eigenvalue

problem

P (ξ̄) = µcξ̄,

where P is the composition of one or both of (P−, P+) and Ps. Without

loss of generality, we may assume that the Poincaré map can be expressed as:

P (ξ̄) = Ps ◦ P+ ◦ P−(ξ̄). In general, it is not possible to obtain in this way an

explicit expression for the sub-map Ps due to the nonlinearity of Fs, and only

a numerical solution can be obtained. Thus, we will show that it is possible

to construct the linearizations of P± and Ps. In the present situation, we get

a non-smooth map DP (ξ̄) = DPsDP+DP−(ξ̄), where D = ∂
∂ξ
, and DPi is

the linearized matrix of sub-maps Pi, i = (−,+, s). In fact, there are many

possibilities of flow that passes through Ms
− to generate an invariant cone. In

this Chapter, we will discuss several different scenarios.

In order to study the attractivity of the cone we consider the eigenvalues of

the Jacobian DP (λξ̄), which are independent of λ > 0 due to the properties

and linearity of the system: Since the intersection times t± and ts are constant

on half-rays, we get the identity

P (λξ) = λP (ξ), 0 < λ <∞.

Differentiating this identity with respect to ξ yields DP (λξ) = DP (ξ), which

confirms independency of λ. By differentiating with respect to λ we obtain

DP (λξ̄)ξ̄ = P (ξ̄) = µcξ̄. Hence µc is an eigenvalue of DP (ξ̄) with eigenvector

ξ̄. For the remaining n− 2 eigenvalues µi we assume

|µi| ≤ min{1, µc}, i = 1, . . . , n− 2. (3.15)

This approach is suitable for the stability analysis of invariant cones, but we

will need some facts concerning the Jacobian DP , when P cannot be de-

termined in closed form. The construction of DP is given precisely by the

monodromy matrix of the normal variational equations at the period T .

In order to illustrate the theoretical considerations, we consider a class of 3D

PWLS.
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3.5 Analysis of a class of 3D PWLS

Now we concentrate our attention on PWLS (2.16) in R3. We are interested

in the case when the system (2.16) has a sliding motion, thus we write the full

dynamical system with one discontinuity surface as:

ξ̇ ∈ F (ξ) =


A+ξ, ξ ∈ R3

+,

Fs(ξ) = q(ξ)A+ξ + (1− q(ξ))A−ξ, ξ ∈ Ms,

A−ξ, ξ ∈ R3
−.

(3.16)

where q(ξ) = nT (ξ)A−ξ
nT (ξ)(A−ξ−A+ξ)

∈ (0, 1), consequently we get

Fs(ξ) =
nT (ξ)A−ξ · A+ξ − nT (ξ)A+ξ · A−ξ

nT (ξ)(A−ξ − A+ξ)
. (3.17)

To be more precise, we assume that A± are given as

A+ =

 λ+ −ω+ 0

ω+ λ+ α+

0 0 µ+

 , A− =

 a−11 a−12 a−13

a−21 a−22 a−23

a−31 a−32 a−33

 .

Then A+ has eigenvalues λ+±iω+, µ+, and we assume that A− has eigenvalues

λ− ± iω−, µ−, and the only equilibrium point is at the origin. The manifold

M is given by h(ξ) = ξ1. This form of A± is used since we can always assume

that one of the subsystems is in normal form (here: A+) and take the other

in general form. Already such systems exhibit a rich variety of bifurcation

behavior.

3.5.1 Detecting sliding region

The idea of this section is to investigate the existence of stable sliding motion on

the manifold. The system (2.16) is said to have an attractive sliding motion if

at ξ ∈ M s, nT (ξ)A+ξ < 0 and nT (ξ)A−ξ > 0, where nT (ξ)A+ξ and nT (ξ)A−ξ

be the projection of A+ξ and A−ξ onto the normal to the hyperplane M s.

Thus, we get

nT (ξ)A+ξ = −ω+ξ2, nT (ξ)A−ξ = a−12ξ2 + a−13ξ3.

In order to determine the region of attractivity on the sliding manifold, we

analyze the domain in R3 for which(
nT (ξ)A+ξ

)(
nT (ξ)A−ξ

)
≤ 0,

ξ2
(
a−12ξ2 + aT13ξ13

)
≥ 0,

(3.18)
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giving the attractivity domain

Ms
− = {ξ ∈ R3 : ξ1 = 0, ξ2 > 0, a−12ξ2 + a−13ξ3 > 0}. (3.19)

The repulsive domain is given by

Ms
+ = {ξ ∈ R3 : ξ1 = 0, ξ2 < 0, a−12ξ2 + a−13ξ3 < 0}. (3.20)

According to Lemma 2.5, depending on the sign of a−12 and a
−
13, the solution of

system (2.16) exhibits an attractive/repulsive sliding motion along the surface

M as indicated in the graphs in Figure 3.3.

(a) a−
13 > 0, a−

12 < 0 (b) a−
13 > 0, a−

12 > 0

(c) a−
13 < 0, a−

12 > 0 (d) a−
13 < 0, a−

12 < 0

Figure 3.3: Location of attractive sliding motion Ms
−.

3.5.2 Vector field of sliding motion

If ξ ∈ Ms, the equivalent dynamics in the sliding region is given by

˙̂(
ξ2
ξ3

)
=

a−12ξ2 + a−13ξ3
(a−12 + ω+)ξ2 + a−13ξ3

(
λ+ξ2 + α+ξ3

µ+ξ3

)

+
ω+ξ2

(a−12 + ω+)ξ2 + a−13ξ3

(
a−22ξ2 + a−23ξ3

a−32ξ2 + a−33ξ3

)
.

(3.21)
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We also consider the dynamics on the boundaries ∂Ms
− = Mc

−
∩

Ms
− and

∂Ms
+ = Mc

+

∩
Ms

−, respectively

• If ξ ∈ ∂Ms
− then q = 0, Fs = A−ξ and ξ3 =

−a−12
a−13

ξ2. Thus, the dynamics

on this boundary is given by ξ̇ =

 (a−22 −
a−23a

−
12

a−13
)ξ2

(a−32 −
a−33a

−
12

a−13
)ξ2

 .

• If ξ ∈ ∂Ms
+ then q = 1 , Fs = A+ξ and ξ2 = 0. Thus, the dynamics on

this boundary is given by ξ̇ =

(
α+ξ3

µ+ξ3

)
.

This means the dynamics around any point ξ ∈ ∂Ms
± is significantly distinct,

depending on the kind of tangency at this point.

3.5.3 Generalized Poincaré map

The simple choice of the ⊕-system implies: For all η ∈ Mc
+, the function t+(η)

depends on η in a nonlinear way (2.7), and it is determined by the smallest

positive solution of the following condition

0 = ω+(σ+2 + 1)s+η2 − α+(σ+s+ + c+ − E+)η3, (3.22)

where σ+ = µ+−λ+

ω+ , t+ = t+
ω+ . Thus, the slope function n0(t+) of the initial

half-plane is given by

n0(t+) =
ω+(σ+2 + 1)s+

α+(σ+s+ + c+ − E+)
. (3.23)

Further, the sub-Poincaré map is given as

P+(η) =

(
c+eλ

+t+/ω+ α+(s+−σ+c++σ+eσ
+t+ )eλ

+t+/ω+

ω+(σ+2+1)

0 eµ
+t+/ω+

)(
η2

η3

)
.

For the ⊖-system, to be specific we assume that A− is obtained through a

similarity transformation of a suitable Jordan normal form incorporating the

desired properties of the eigenvalues:

A− = S−1A−
NS

where

A−
N =

 λ− −ω− 0

ω− λ− 0

0 0 µ−

 , S =

 1 0 −1
a(δ−λ−µ−−α−)+µ−−λ−

a
ω−(1−aµ−)

a
α−

−λ−µ− −µ−ω− δ

 ,
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where α−, δ and a are constant parameters.

The general solution of the ⊖-system is given by

ξ(t−) = eλ
−t−
{
(c−S−1e1+ s

−S−1e2)ξ̄1+(c−S−1e2− s−S−1e1)ξ̄2
}
+ eµ

−t−S−1e3,

(3.24)

where Sξ(0) = ξ̄. In order to keep the calculations simple, we discuss the

situation for δ = (λ−)2 + (ω−)2, and a suitable parameter α−, hence

A− =

 a−11 a−12 a−13

a−21 a−22 a−23

a−31 a−32 a−33

 =

 µ− + a(δ − α−) −a a
δ(1−2aλ−)+a2(α−−δ)+aα−(2λ−−µ−)

a
a(α− − δ) + 2λ− 1+a2(δ−α−)−2aλ−

a

−µ−δ 0 0

 .

The return time function t−(ξ) in (2.6) is determined as the smallest positive

root of (we recall from Chapter 2 that E− = e(µ
−−λ−)t− , s− = sin(ω−t−), c

− =

cos(ω−t−))

a
[
µ−ω−(c− − E−) + (λ−µ− − δ)s−

]
ξ2

+
[
ω−(1− aµ−)(c− − E−) + (a(δ − λ−µ−) + µ− − λ−)s−

]
ξ3 = 0.

Therefore, it is easy to show for all ξ ∈ Mc
− that the slope function m0(t−) in

the initial half-plane is given by

m0(t−) = −
a
[
µ−ω−(c− − E−) + (λ−µ− − δ)s−

][
ω−(1− aµ−)(c− − E−) + (a(δ − λ−µ−) + µ− − λ−)s−

] . (3.25)

By the general solution (3.24), the Poincaré map for the ⊖-system is given as:

P−(ξ) =

(
p1 p2

p3 p4

)(
ξ2

ξ3

)
,

where

p1 = − 1

aω−((ω−)2 + (λ− − µ−)2)

[
eλ

−t−

((
a2δ((ω−)2 − α− + (µ−)2 − 2λ−µ−)

+a2(λ−)2δ − aλ−δ + aµ−λ−(2λ− − µ− + aα−)
)
s− − aω−(δ − µ−(2λ− − µ− + aα−)

)
c−
)

−a2α−ω−µ−eµ
−t−

]
,

p2 = − 1

aω−((ω−)2 + (λ− − µ−)2)

[
eλ

−t−

((
a2δ(α− + 2λ−µ− − (µ−)2 − (ω−)2) + δ(2aλ− − 1)

−(µ−)2 − a2λ−δ + µ−λ−(2 + 2aµ− − a2α− − 4aλ−)
)
s− + aα−ω−(1− aµ−)c−

)
+aα−ω−(aµ− − 1)eµ

−t−

]
,
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p3 = − 1

ω−((ω−)2 + (λ− − µ−)2)

[
aeλ

−t−

((
(µ−)2δ − λ−µ−δ

)
s− + ω−µ−δc−

)
−eµ−t−aω−µ−δ

]
,

p4 = − 1

ω−((ω−)2 + (λ− − µ−)2)

[
eλ

−t−

((
− a(µ−)2δ + λ−(µ−)2 + µ−((ω−)2 − (λ−)2)

+aλ−µ−δ
)
s− +

(
− aω−µ−δ − ω−(µ−)2 + 2µ−ω−λ−

)
c− + eµ

−t−(aω−µ−δ − ω−δ)

]
.

In the case α+ = 0, the Poincaré return map (without having sliding motion)

can be computed rigorously as

P c(ξ) =

(
−eλ+t+p1 −eλ+t+p2

eµ
+t+p3 eµ

+t+p4

)(
ξ2

ξ3

)
, (3.26)

where P c = P+P−(ξ) .

Lemma 3.5.

Under the above hypotheses, the slope transition maps n1(t+) with ξ ∈ Mc
+

and m1(t−) with ξ ∈ Mc
− are given by

n1(t+) =
ω+(σ+2 + 1)eσ

+t+n0(t+)

c+ω+(σ+2 + 1) + α+(s+ − σ+c+ + σ+eσ+t+)n0(t+)
, m1(t−) =

p3 + p4m0(t−)

p1 + p2m0(t−)
.

Furthermore α+ = 0 implies that t+ = π and P c(ξ) = P+P−(ξ). Then, P
c(ξ) ∈

Ms
− if ξ2 = eT1 P

c(ξ) > 0 and E+m1(t−) < 1.

The flow of attractive sliding motion has been defined by Ps(ξ) : M
s
− → M s

−,

for all ξ ∈ Ms
−. Due to nonlinearity of equation (3.21), the map Ps must be

evaluated by numerical methods solving (3.21) with regard to the boundary

equations related to Ms
−.

The PWS (3.16) possesses an invariant cone if 0 < µc ∈ ρ(DP (ξ)). The map

DP is a composition of maps DP± and DPs which is mapped into itself and

then we examine whether the map DP has a fixed point. A fixed point of DP

will give rise to a periodic orbit of (3.16). However here we note that it is not

an easy task to study the existence of fixed-point of DP due to nonlinearity of

exists the intersection times t±, the time evolution of sliding segment ts, and

composition of sub-maps.

Coming back now to the structure of A−, we note that the existence of Ms
±

depends on the sign of the parameter a. For a > 0 or a < 0 the locations of

Ms
± are depicted in Figure 3.3a, or Figure 3.3c, respectively.

Lemma 3.6.

If ξ ∈ ∂Ms
−, and (i) in Lemma 3.2 holds, then for the function t−(ξ) =

t−(ξ)
ω−

defined in (3.25) and σ− = µ−−λ−

ω− , the following statements hold
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(i) If σ− ≤ 0, then t− ∈ (π, 2π);

(ii) If σ− = 0, then t− = 2π;

(iii) If σ− > 0, the trajectory starting inside Mc
− given by φ−(ξ, t−) cannot

leave M for all future times, hence there is no finite return time and

thus, there is no invariant cone starting in Mc
− .

Proof: If ξ ∈ ∂Ms
− implies that m0(t−) = m0(t−/ω

−) = 1 and using (3.25)

we can define Φσ−(t−) = c− + σ−s− − eσ
−t− where t− is the return time which

defined as smallest root of Φσ−(t−) = 0. It can be seen that Φ−σ−(−t−) =

Φσ−(t−) for any (σ−, t−) ∈ R. Furthermore, if σ− ̸= 0, then we get Φσ−(0) =

Φ′
σ−(0) = 0, Φ′′

σ−(0) = Φ′
σ−(π) < 0, while Φσ−(2π) > 0 iff σ− ≤ 0 implies (i)

and (iii) hold and if σ− = 0, then we get Φ0(t−) = c− − 1, satisfies (ii).

Lemma 3.7. If η ∈ ∂Ms
+, α

+ ̸= 0, then the function t+(η) defined in (3.22)

the following statements hold

(i) If σ+ ≤ 0, then t+ ∈ (π, 2π);

(ii) If σ+ = 0, then t+ = 2π;

(iii) If σ+ > 0, the trajectory starting inside Mc
+ given by φ+(η, t+) cannot

leave M for all future times, hence there is no finite return time and

thus, there is no invariant cone starting in Mc
+.

Proof:

If η ∈ ∂Ms
+ and α+ ̸= 0, using (3.22) we can define Φσ+(t+) = σ+s++c+−eσ+t+

which is taken a similar behaviour of Φσ−(t−). Thus, the proof is finished.

Based on the above analysis, we can describe various scenarios of invariant

cones with periodic orbits involving sliding segment. To simplify the compu-

tation, we set α− = δ − 2λ− + 1, a = 1 in the following. Then the dynamics

on Ms
− is governed by

˙̂(
ξ2
ξ3

)
=

ξ3 − ξ2
(ω+ − 1)ξ2 + ξ3

(
λ+ξ2 + α+ξ3

µ+ξ3

)
+

ω+ξ2
(ω+ − 1)ξ2 + ξ3

(
ξ2

0

)
, if ξ ∈ Ms

−,

ξ̇ =

(
α+ξ3

µ+ξ3

)
, if ξ ∈ ∂Ms

+, ξ̇ =

(
ξ2

0

)
, if ξ ∈ ∂Ms

−.

(3.27)
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Note that the dynamic on Ms
− depends only on parameters λ+, α+ and µ+.

Further, when ξ0 ∈ ∂Ms
− implies m0(t−) = 1 (i.e.,ξ03 = ξ02), then we get

ξ12
ξ02

= − 1

ω−((ω−)2 + (λ− − µ−)2)

[
eλ

−t−

((
((λ−)2 − (ω−)2)(1− µ−) + (µ−)2(λ− − 1)

+µ− − λ−
)
s− + ω−(2λ−(µ− − 1) + 1− (µ−)2)

)
c−
)

+eµ
−t−
(
2λ− − (λ−)2 − (ω−)2 − 1

)
ω−
]
,

ξ13
ξ03

= − 1

ω−((ω−)2 + (λ− − µ−)2)

[
eλ

−t−

(
µ−((ω−)2 − (λ−)2 + µ−λ−)s−

+ω−(2µ−λ− − (µ−)2)c− − eµ
−t−((λ−)2 + (ω−)2)ω−

]
,

(3.28)

hence, m1(t−) =
ξ13
ξ12

=
p3 + p4
p1 + p2

.

Also, ξ̃ ∈ ∂Ms
+ implies that for the line of ∂Ms

+ determined by (0, ξ̃3), we get

n1(t+) =
ω+(σ+2 + 1)eσ

+t+

α+(s+ − σ+c+ + σ+eσ+t+)
.

3.5.4 One-zonal invariant cone

In this case, according to Figure 3.3a and 3.3c,(a = 1) we are led to define the

Poincaré return map in two ways as: P (ξ) = Ps ◦P−(ξ) or P (ξ) = P− ◦Ps(ξ) .

Let us start by treating the situation where P (ξ) = P− ◦ Ps(ξ). This means

that the flow is coming from Ms
− where ξ03 = np ξ02 , where np > 1 is the slope

of initial position of half-rays. If λ+ ≥ 0 in (3.27), then the trajectory reaches

the boundary ∂Ms
− in forward time. At the boundary point ξ̃ ∈ ∂Ms

−, the

trajectory leaves ∂Ms
− tangentially or smoothly and continues into Mc

− under

the ⊖-system. The trajectory of a periodic point is called a closed trajectory

if P− ◦ Ps(ξ)− ξ = 0, which implies that m1(t−) > 1.

Corollary 3.1. If (λ+, α+) ≥ 0, np > 1 and σ± < 0. Then the system (3.16)

has an invariant cone with a segment of sliding motion living in one-zone if

the following conditions hold.

m1(t−) = np.

Note that this implies that
ξ12
ξ02

= 1 and
ξ13
ξ03

= 1.



Invariant cones for a class of systems with sliding motion 72

0.2 0.4 0.6 0.8 1 1.2 1.4
ξ

2
5 10 15 20 25 30

t
−

0.2 0.4 0.6 0.8 1 1.2 1.4
ξ

2

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
ξ

3

−40−35−30−25−20−15−10−505

40 60 80 100 120 140

 

ξ
1

ξ
2

Ps

P−

Figure 3.4: Invariant cone (only Sliding) with sliding segment and solution compo-

nents: λ+ = 1.3, µ+ = −0.5, ω+ = 0.9, α+ = 0, λ− = 1, µ− = 0.212, ω− = 3.0.
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More precisely, the above corollary leads to t− ∈ (π, 2π), and practically nec-

essary conditions of existence of invariant cone for the present case which can

be explicitly written as[
eλ

−t−

((
(λ2 − ω2)(1− µ−) + µ−2(λ− − 1) + µ− − λ−

)
s−

+ω−(2λ−(µ− − 1) + 1− µ−2)
)
c−
)
+ eµ

−t−
(
2λ− − λ2 − ω−2 − 1

)
ω−
]
ξ̃2

+ω−(ω−2 + (λ− − µ−)2)ξ02 = 0,[
eλ

−t−

(
µ−(ω−2 − λ−2 + µ−λ−)s− + ω−(2µ−λ− − µ−2)c− − eµ

−t−(λ−2 + ω−2)ω−
]
ξ̃2

+ω−(ω−2 + (λ− − µ−)2)ξ02 = 0,[
eλ

−t−

(
µ−(ω−2 − λ−2 + µ−λ−)s− + ω−(2µ−λ− − µ−2)c− − eµ

−t−(λ−2 + ω−2)ω−
]

−
[
eλ

−t−

((
(λ2 − ω2)(1− µ−) + µ−2(λ− − 1) + µ− − λ−

)
s−

+ω−(2λ−(µ− − 1) + 1− µ−2)
)
c−
)
+ eµ

−t−
(
2λ− − λ2 − ω−2 − 1

)
ω−
]
np = 0.

In order to examine the stability of the periodic orbit, we compute the mon-

odromy matrix which in the present case takes the form

Y (T, ξ) = Js. Y−(t̃−, ξ(t̃s)). Ys(t̃s, ξ
0), T = t̃− + t̃s, (3.29)

where t̃s is the time spent before the trajectory reaches ∂Ms
− and t̃− is the

exact positive solution of (3.25).

An example to illustrate the current scenario can be found in Figure 3.4. By

numerical evaluating of Y (T, ξ) in (3.29) for the bifurcating cycle after one pe-

riod T = 3.2962, we find numerically that the multipliers are: (1.00, 1.43, 0),

implying that the invariant cone consist of periodic orbit but the motion out-

side the cone is unstable (center+unstable focus).

3.5.5 Two-zones invariant cones (Crossing + Sliding)

We consider now a trajectory related to the form P (ξ) = Ps ◦ P+ ◦ P−(ξ), see

Figure 3.5, which is a composition of three maps. Any trajectory starting in

Mc
− spends a time determined by (3.25) before it reaches Mc

+. We assume

that the trajectory starts at the boundary ξ0 ∈ ∂Ms
− with m0(t−) = 1 . In

order to decide at this point if the trajectory will leave ∂Ms
− to enter Mc

−

or Ms
−, we can check the sign of B−

1 where A2 < 0, see Lemma 3.2. For

our system situation B−
1 is negative and leads to the trajectory entering Mc

−

with the ⊖-system. After some time it reaches the switching manifold at some
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Figure 3.5: Poincaré map structure is a composition of three maps P±, Ps .

point in Mc
+. Note that in view of Lemma 3.6 the return time t− is uniquely

determined. The trajectory after reaching Mc
+ switches to ⊕-system. This

trajectory starting in Mc
+ spends a time t+ ∈ Mc

+ which is determined in

view of Lemma 3.7 before it reaches the switching manifold M again. At this

point there are several possibilities of motion: The trajectory may reach again

Mc
− and moves towards the ⊖-system without sliding motion. This means

that the dynamics of the full system can be achieved by studying the map P c

for instance that has been given in (3.26), or under the influence of varying

dynamic parameters the trajectory may reach one of Ms
± (Ms

+ is less interest-

ing), after reaching Ms
− the trajectory follows the vector field Fs hence there

is sliding governed by (3.27).

Corollary 3.2. If λ+ ≥ 0, m0(t−) = 1 and σ− < 0. Then the system (3.16)

has an invariant cone with a segment of sliding motion living in two-zones if

the following conditions hold.

i- (p1 + p2) < 0 and (p3 + p4) > |p1 + p2| > 0.

ii- The solution of (3.27) satisfies the boundary conditions ξ(t1) = P c(ξ0), i.e.

ξ(t1) ∈ Ms
−, and ξ(t2) = ξ0 ∈ ∂Ms

−, i.e. m0(t−) = 1, where ts ∈ (t1, t2).

Based on the closed-form solution which has been discussed in Section (3.4),

the above corollary indicates necessary conditions for two-zones C involving a

sliding segment which are described explicitly as

p1 + p2 < 0 ⇒
[(
(λ2 − ω2)(1− µ−) + µ−2(λ− − 1) + µ− − λ−

)
s−

+ω−(2λ−(µ− − 1) + 1− µ−2)
)
c− + E−(2λ− − λ2 − ω−2 − 1

)
ω−
]
> 0,
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Figure 3.6: Invariant cone (Crossing + Sliding) with sliding segment and solution

components: λ+ = 0.3, µ+ = −0.087, ω+ = 1.0, α+ = 0, λ− = 1.0, µ− = 0.1, ω− =

3.0.

(p3 + p4) =
ξ13
ξ02
> |p1 + p2|,

where
ξ13
ξ02

is given by (3.28). It may be also useful to remark that the ts value

is computed by (3.14b). To investigate the stability of invariant cones located

using the necessary conditions outlined above, we compute the Monodromy

matrix which is of the from

Y (T, ξ) = Ys(t̃s, ξ(t̃+)) Js Y+(t̃+, ξ(t̃−)) J− Y−(t̃−, ξ
0), T =

π

ω+
+ t̃− + t̃s,

(3.30)

An example of a two-zone invariant cone together with solution components

in the present scenario satisfying the above conditions can be found in Figure

3.6. Numerical evaluation of Y (T, ξ) in (3.30) provides eigenvalues: (1.00,

0.5635,0) after one period T = 5.2159. Thus, the invariant cone is attractive

(center+stable focus).
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3.5.6 Two-zones invariant cones (Sliding + Crossing)

In this case, we consider the mapping structure described by P (ξ) = P+ ◦P− ◦
Ps(ξ), in a manner similar to that in Figure 3.5. The trajectory is starting

at the point ξ0 where np > 1 reaching the boundary if λ+ ≥ 0 (set α+ = 0)

in finite time. The sliding trajectory on the boundary will vanish and such a

motion will switch into the domainMc
− which leaving ∂Ms

− tangentially under

⊖-system; this was already observed during the examination of the one-zonal

invariant cone in Figure 3.4. The trajectory in M c
− returns to the manifold

Mc
+, i.e., the motion switches from Mc

− to Mc
+. Finally the flow in Mc

+

returns to the starting point so that a periodic orbit is achieved. Next, we

establish necessary and sufficient conditions for the existence of such a fixed

point of P .

Corollary 3.3. Let λ+ ≥ 0, np > 1 and σ− < 0. Then the system (3.16) has

an invariant cone with a segment of sliding motion living in two-zones if the

following conditions hold:

i- (p1 + p2) < 0 and (p3 + p4) > |p1 + p2|,

ii- The solution of (3.27) satisfies the boundary conditions ξ(0) = ξ0 ∈ Ms
−,

i.e. np > 1, and ξ(t2) = ξ̃, i.e. m0 = 1, where ts ∈ (0, t2).

iii- P c(ξ̃) = ξ0.

The monodromy matrix is given by

Y (T, ξ) = Js Y+(t̃+, ξ(t̃−)) J− Y−(t̃−, ξ(t̃s)) Ys(t̃s, ξ
0), T =

π

ω+
+ t̃− + t̃s,

(3.31)

For example, Figure 3.7 shows a family of periodic trajectories involving a

sliding segment generated by the above map P . The eigenvalues of the mon-

odromy matrix are computed to be (1.00,0.03,0). Due to size of the second

smallest eigenvalue the current invariant cone is attractive.

3.6 Invariant cones: Sliding bifurcation

Here we show the existence of invariant cones for (3.16) which undergo sliding

bifurcation. From the results discussed above, there are many opportunities

for invariant cones to exhibit sliding bifurcation behaviour due to many pos-

sible transitions between crossing and sliding regions through ∂Ms
− or ∂Ms

+.

Thus, we set the parameters according to geometrical consideration.
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For crossing-sliding bifurcation we will check that the set of analytical con-

ditions is satisfied at the bifurcation point under investigation. For exam-

ple, let us consider the trajectory starting from Mc
−, i.e. np < 1 which

in forward time reaches the bifurcation point (t− is determined according to

Lemma 3.6). The bifurcation occurs when α+ = −1, ω± = 3.0, µ− = 0.41,

λ+ = .294, µ+ = −0.92 and λ− = 0.9654, and the bifurcation point is

ξ∗ = (0,−3.2813E − 4, 0.1990)T . At this point we get

(i) h(ξ∗) = 0, ∇h(ξ)|ξ∗ ̸= 0,

(ii)
(
nT (ξ)A+ξ

)
|ξ∗ = 1.0938E − 4 ≃ 0,

(iii)
(
nT (ξ) A+ A+ξ

)
|ξ∗ = 0.5970 > 0.

Thus, at ξ∗ ∈ ∂Ms
+, the system (3.16) satisfies all three conditions and it is

simple to show that the existence of an invariant cone depends on the exis-

tence of a fixed point of the Poincaré map describing the flow close to the

bifurcation point. To illustrate the nature of the change in the dynamics as we

pass through a crossing-sliding bifurcation we present in Figure 3.8 an invari-

ant cone and solution components passing through ξ∗. After the bifurcation

point the invariant cone acquires a segment of sliding motion due to decreasing

values of λ− ≃ 0.95. Solution components are depicted in Figure3.9.

An invariant cone undergoing a grazing-sliding bifurcation point is charac-

terized by a trajectory of the subsystem of (3.16) that becomes tangent to

the sliding region at ∂Ms
− or ∂Ms

+. In other words, there is a set of points

that does not interact with ∂Ms
− or ∂Ms

+ and a set of point that hits ∂Ms
−

or ∂Ms
+. If we’re going to find evidence of this phenomenon it is appropri-

ate to use an one-zonal invariant cone with sliding segment as discussed in

section 3.5.4. Therefore, by varying parameters the sliding segment contained

in an invariant cone becomes an infinitesimally small sliding segment that

is close to a grazing-sliding bifurcation point. Making things more precise,

let us now get back to the ⊖-system in (3.16) and set the parameter values:

λ− = µ− = 0, ω− = 2.0 and ξ0 = (−.4931, 1.609, 1)T i.e. np < 1. An invariant

cone passing through the grazing bifurcation point ξ∗ = (0, 1, 1)T is obtained.

We indeed find that at ξ∗ the following conditions hold:

(i) h(ξ∗) = 0, ∇h(ξ)|ξ∗ ̸= 0,

(ii)
(
nT (ξ)A−ξ

)
|ξ∗ = 0,

(ii)
(
nT (ξ) A− A−ξ

)
|ξ∗ = −1 < 0, ( Note that ξ∗ lies in ∂Ms

−).
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Figure 3.8: Invariant cone and solution components at the crossing-sliding bifurca-

tion point, λ− = 0.9654.

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
ξ

2

Sliding segment 

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
ξ

2

0.5 1 1.5 2 2.5 3

T −0.5
0

0.51

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

ξ
2ξ

1

Figure 3.9: Invariant cone and solution components after the crossing-sliding bifur-

cation point, λ− = 0.95.



Invariant cones for a class of systems with sliding motion 80

1 2 3 4 5 6 7 8
ξ

1

 

Grazing point

−0.5 −0.4 −0.3 −0.2 −0.1 0
ξ

1

Grazing point

Strat  point

−14
−12

−10
−8

−6
−4

−2
0

0

10

20

30

40

50
0

5

10

15

20

25

30

ξ 3

ξ
1

ξ
2

Figure 3.10: One-zonal invariant cone and solution components at grazing-sliding

bifurcation point.

0 1 2 3 4 5 6 7 8
−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

T
0.04 0.06 0.08 0.1 0.12 0.14 0.16

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

ξ
2

−0.8
−0.6

−0.4
−0.2

0
0.2 0

0.5
1

1.5
2

2.5
3

3.5
4

ξ
2

ξ
1

Figure 3.11: One-zonal invariant cone and solution components after grazing-sliding

bifurcation point, λ+ = µ+ = α+ = 0 and ω+ = 1



Invariant cones for a class of systems with sliding motion 81

Figure 3.10 shows an invariant cone and related components undergo a graz-

ing bifurcation point. Consequently, for increasing values of the bifurcation

parameter λ−, we see that system (3.16) turns from a no sliding cone into

a sliding cone at λ− = 0, Figure 3.11. Note that, in the present case, if

λ+ = µ+ = α+ = 0, the sliding vector (3.27) requires ω+ ̸= 0, and therefore,

the explicit solution can be found.

Finally, we present an invariant cone exhibiting switching-sliding bifurca-

tion corresponding to the case when the trajectory has a piece of sliding mo-

tion in a one-zone orbit. If the system is perturbed, the orbit hits the sliding

boundary ∂Ms
+ at the bifurcation point and starting in Ms

−. For our sys-

tem, we set the parameter values: λ+ = ω+ = 1, µ− = α+ = .1, ω− = 2

µ+ = −0.663, λ− = 0.35 and ξ0 = (0, 0.5, 0.5)T i.e. m0(t−) = 1. Hence, an

invariant cone passing through the switching-sliding bifurcation point ξ∗ =

(0, 0.0003, 0.7129)T is achieved see Figure 3.12. We indeed find that at ξ∗ the

following conditions hold:

(i) h(ξ∗) = 0, ∇h(ξ)|ξ∗ ̸= 0,

(ii)
(
nT (ξ)A+ξ

)
|ξ∗ ≃ 0,

(ii)
(
nT (ξ) A− A−ξ

)
|ξ∗ = −0.0719 < 0.

After the bifurcation event the invariant cone is switching to the ⊕-system and

finally slides, see Figure 3.13 where µ+ = −0.1778, λ− = 0.45.



Invariant cones for a class of systems with sliding motion 82

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ξ

2

00.10.20.30.40.50.60.70.80.9
ξ

2

2 4 6 8 10 12 14
T

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 00.5
1

1.5
2

ξ
1

ξ
2

 ∂ Ms
−
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Chapter 4

A 6-dimensional non-smooth

brake-system

The aim of our research in this Chapter is to carry out a case study dealing

with an automotive brake system under the excitation of a dry friction force,

which usually strongly affects the behaviour of the system by introducing non-

smoothness to the system. We use an analytical approach to investigate the

local behaviour of the phase flow of the smooth system (continuous system)

which in some sense converges to the nonsmooth system. We have performed

analytical and numerical studies concerning of the cone like manifold for the

model, based on the mapping structure and an event function. The normal

vector field on the discontinuity surface gives the analytical compatibility cri-

teria for sliding and direct transition of motions. It is shown how the brake

system exhibits different types of bifurcation phenomena such as sliding peri-

odic doubling and multiple periodic orbits, in some cases, we observe a sudden

transition through discontinuous manifold.

4.1 Introduction

Dry friction is common in many mechanical and structural systems such as

squeaking doors, string instruments, squealing railway wheels, brakes and rat-

tling machine tools, valves, hydraulic and pneumatic cylinders, as well as in

our everyday life, see [2,23,29,44,56] for a comprehensive survey. Over the last

few decades, this phenomenon plays a key role in the dynamical behaviour of

engineering problems because it is a source of self-sustained oscillations termed

stick-slip vibrations. Therefore, oscillations induced by dry friction have re-

ceived a lot of attention from researchers in an attempt to improve the analysis

of friction dampers and it is still a very important topic of fundamental re-

search in engineering today.

83
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The theory of dry friction, or Coulomb friction, allows us to estimate the max-

imum friction forces that can be exerted by dry, contacting surfaces that are

stationary relative to each other or the friction forces exerted by the surfaces

when they are in relative motion (sliding). Stick-slip may occur at low speeds

when the motion of one surface sliding along another becomes discontinuous.

So one has to assume slipping between contact surfaces and also situations in

which the two surfaces in contact may have zero relative velocity. Dry fric-

tion in the system complicates the dynamic analysis of the system due to its

nonlinear and nonsmoothness nature. The mathematical modelling induced

by dry friction often leads to differential inclusion of Filippov type. Filippov

systems, describing systems with friction, can exhibit equilibrium sets, which

correspond to the stiction behaviour of those systems and different types of bi-

furcation phenomena. The discontinuity of these so called slip-stick vibrations

makes these systems interesting and a rich bifurcation behaviour under param-

eter variation is exhibited. Popp and Stelter [56] investigated the motion of

four different models including a single-degree-of-freedom nonsmooth oscillator

with external excitation that is used to describe the behaviour of stick-slip sys-

tems. Beside the well known periodic limit cycle, periodic-doubling and chaotic

motions are also possible. In [4] a smoothing procedure is applied to illustrate

different bifurcations such as a period-doubling route to stick-slip chaos, stick-

slip hyper-chaos as well as quasi-periodic attractors. In [26] a one-dimensional

map was introduced for studying bifurcations in a four-dimensional system.

Hence, a class of bifurcations leading to the onset of stick-slip motion has

been observed. In fact, many investigators [17,18,26–28] were working to link

standard/nonstandard bifurcations with slip to stick-slip transitions, thus con-

jecturing that similar abrupt qualitative changes of the system attractors could

be observed when slip to stick-slip transitions take place.

As motivation for this work, we consider an automotive brake device as a

typical system with dry friction. The noise of the brake systems is an impor-

tant problem and has received considerable attention from researchers. This

attention is due to the economics of the related customer complaints, war-

ranty claims and repairs to disc brake systems, and also due to the difficult

nature of the problem. There is a great amount of literature about automotive

disc brake, [34, 47, 50, 62, 63, 69] provide a very comprehensive review. More

precisely, we consider an automotive brake model which was introduced by

Popp [55].
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Figure 4.1: Three-degree-of-freedom brake system model

4.2 General description of model

The mechanical system to be investigated, shown schematically in Figure 4.1

is a simple model for a brake system. A brake pad 1 on a rigid frame acts on a

brake disc 2. Between brake pad and brake disc there is a relative displacement

with constant velocity v > 0, thus the frictional forces depend only on the

normal force Fn and the kinematic friction µ2. The coefficients of the linear

viscous dampers are represented by d1 , d2 and spring constants are denoted

by c1, c2 . Therefore, the brake pad is equipped with three mechanical degrees

of freedom:

• Vertical movement x1 .

• Horizontal movement x2.

• Rotation ϕ.

4.2.1 Mathematical model

The equations of motion for the brake model depend on the the relative velocity

and are given as in [55]:

mẍ1 = −(d1 + d2)ẋ1 +
b

2
(d2 − d1)ϕ̇− (c1 + c2)x1 +

b

2
(c2 − c1)ϕ

− µ2sgn(ẋ1 − aϕ̇)c3x2

(4.1a)

mẍ2 = (d1 + d2)µ1ẋ1 +
µ1b

2
(d1 − d2)ϕ̇+ (c1 + c2)µ1x1 − c3x2

+
µ1b

2
(c2 − c1)ϕ,

(4.1b)
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jϕ̈ =
( b
2
(d2 − d1) + (d1 + d2)hµ1

)
ẋ1 −

(b2
4
(d1 + d2) +

bhµ1

2
(d2 − d1)

)
ϕ̇

−
( b
2
(c1 − c2)− (c1 + c2)hµ1

)
x1 + c3sx2 −

(b2
4
(c1 + c2) +

bhµ1

2
(c2 − c1)

)
ϕ

+ µ2sgn(ẋ1 − aϕ̇)c3ax2.

(4.1c)

The covering is connected with a brake holder through a velocity depending

friction force F (νrel) acting on the contact surfaces, where νrel is the relative ve-

locity between the contacting surfaces. Stick-slip motion is intimately related

to the nature of the frictional force and is often attributed to the difference

between the static and kinematic coefficients of friction. Initially, this system

is modelled by simple Coulomb’s law F (νrel) = Fnµ2sgn(νrel), νrel = ẋ1 − aϕ̇

where µ2 is the coefficient of kinematic friction, the friction force acts in a

direction opposite to the motion. If a more realistic form of the friction force

with a typically nonlinear characteristic will be taken, nonlinear terms have

to be added. Therefore, a different version of the dynamic friction coefficient

µ2(νrel) is given by

µ2(νrel) :=

{
α1

1+γ1|νrel|
+ β1 + ην2rel, νrel > 0

−α1

1+γ1|νrel|
− β1 − ην2rel, νrel < 0.

(4.2)

where the kinematic friction is an approximation of the measured friction char-

acteristic, γ1 is a shape coefficient, α1 may vary in interval (0, 1). To avoid

unrealistic changes of sign in the friction force, η is positive because the dy-

namic friction force is usually assumed to be increasing for large values of the

relative velocity, see [27,52,56].

4.2.2 Simplification and reduction

System (4.1) contains six unknown variables (x1, ẋ1, x2, ẋ2, ϕ, ϕ̇) and 13 pa-

rameters. It is clear, that an exact analytic solutions is unavailable. For that

reason we fix some parameters to simplify the problem for a start. To simplify

the analysis, we set the parameters c := c1 = c2 and d := d1 = d2. Under this

assumption the system (4.1) is reduced to the following

mẍ1 = −2dẋ1 − 2cx1 − µ2sgn(ẋ1 − aϕ̇)c3x2, (4.3a)

mẍ2 = 2dµ1ẋ1 + 2cµ1x1 − c3x2, (4.3b)

jϕ̈ = 2dhµ1ẋ1 −
db2

2
ϕ̇+ 2chµ1x1 + c3sx2 −

cb2

2
ϕ+ µ2sgn(ẋ1 − aϕ̇)c3ax2,(4.3c)
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Table 4.1: parameters are presented in [55]

Description Unit Value Remark

m kg 0.3 weighed, rounded

j kgm2 3.10−4 from m and geometry

a m 58.10−3 measured

b m 50.10−3 estimated

h m 8.10−3 measured

s m 1.10−3 measured

µ1 1 0.4 static friction

µ2 1 0.15 kinetic friction

c1, c2 Nm−1 18.108 spring coefficients

c3 Nm−1 13.107 Spring constant, estimated

d1, d2 Nsm−1 657.3 damping coefficients

which shill contains 11 parameters, Table 4.1.

Our approach to such a problem is to view it as a non-smooth system. Hence,

using the following transformation and scaling of t described as:

z1 := x1, z2 := x2, z3 := x1 − aϕ, z4 := µ1x1, z5 := ẋ2, z6 := ẋ2 − aϕ̇, t→ maµ1t,

where a,m, µ1 > 0, it seems natural to expect that such a scaling should have

no effect on solution behaviour of the model system.

To be specific, we rewrite (4.3) by using the above transformation as an equiv-

alent six-dimensional system as follows:

ż =

A+z, h(z) > 0,

A−z, h(z) < 0,
(4.4)

with the simple form of the matrices

A± =



0 0 0 a 0 0

0 0 0 0 b 0

0 0 0 0 0 b

−c ∓α 0 −d 0 0

c γ 0 d 0 0

e ∓β g h 0 f


, (4.5)

where A± are constant matrices containing various parameters; the system

has a unique standard equilibrium at the origin. Note that the elements of the
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matrices are constant functions of eleven parameters i.e.

a = ma, b = maµ1, c = 2acµ2
1,

α = ac3µ
2
1µ2, d = 2adµ1, γ = −ac3µ1,

e = −2acµ1 +
acmb2µ1 − 4a2cmhµ2

1

2j
,

β =
a3c3mµ1µ2 − a2c3smµ1

j
,

g =
−ab2cmµ1

2j
, f =

−ab2dmµ1

2j
,

h = −2ad+
ab2dm− 4a2dhmµ1

2j
.

The general structure is given by the observation that A+ and A− only differ

in two entrances due to the simple (piecewise constant) form of the friction

force. In a typical situation such as in the special case given by Table 4.1, The

structure of the eigenvalues is that all eigenvalues of A± are complex which A−

stable (i.e. only eigenvalues with negative real part) and A+ has two eigenval-

ues with positive real part and four eigenvalues with negative real part. Hence

there is an interplay of damping and excitation or mathematically there is in-

teraction between stable and unstable behaviour.

The discontinuity surface in the phase space is defined asM := {z ∈ R6|h(z) =
z6 = 0}.

4.3 Smooth system

The setting α = β = 0 in (4.4) leads to A = A±, hence a smooth system:

ż = Az, z ∈ R6. (4.6)

For small values of α and β the system is of the form A±(α, β) = A+αB±+βC±

as discussed in Chapter 2. In fact this example has stimulated to consider

problems of that form. The methods developed there however do not apply

in the present situation since the brake system typically exhibits stick-slip

transition. Furthermore, due to the fast movement that occurs between the

two sides, the brake system will involve multiple crossings with sliding motion.

We shall here first concentrate on the situation α = β = 0. The eigenvalues

and eigenvectors of A play a significant role in determining the behavior of

linear system (4.6) near an equilibrium point.

Lemma 4.1. The matrix A has the following complex eigenvalues

l± im, ±i n, k± i o,
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with corresponding complex eigenvectors

V (j, 1)∓ iV (j, 2), V (j, 3)∓ iV (j, 4), V (j, 5)∓ iV (j, 6), j = 1, ..., 6,

where the eigenvector matrix V is computed as follows :

V =



0 0 0 0 ak
k2+o2

ao
k2+o2

0 0 0 b
n

bkV (3,5)−boV (3,6)
k2+o2

bkV (3,6)+boV (3,5)
k2+o2

bl
l2+m2

bm
l2+m2 0 0 bkV (6,5)−boV (6,6)

k2+o2

bkV (6,6)+boV (6,5)
k2+o2

0 0 0 0 1 0

0 0 1 0 (ac+kd)(k2−o2−γb)+2kdo2

(k2−o2−γb)+4k2o2

2ko(ac+kd)−od(k2−o2−γb)
(k2−o2−γb)+4k2o2

1 0 0 0 (hk−ae)(k2−o2−kf−bg)+oh(2ko−of)
(k2−o2−kf−bg)+(2ko−of)2

K
(k2−o2−kf−bg)+(2ko−of)2


,

l =
f

2
=

−ab2dmµ1

4j
,

m =
1

2

√
−(f2 + 4bg) =

abmµ1

4j

√
8jc− b2d2,

n =
√

−γb =
√
ma2c3µ2

1,

k =
−d

2
= −adµ1,

o =
1

2

√
4ac− d2 = aµ1

√
2mc− d2,

K = (2ko− of)(hk− ae)− oh(k2 − o2 − kf − bg).

The general solution of (4.6) is given by:

z(t) =

elt
[
a1
(
cos(mt)V (j, 1) + sin(mt)V (j, 2)

)
+ a2

(
− sin(mt)V (j, 1) + cos(mt)V (j, 2)

)]
+a3

(
cos(nt)V (i, 3) + sin(nt)V (j, 4)

)
+ a4

(
− sin(nt)V (j, 3) + cos(nt)V (j, 4)

)
+ekt

[
a5
(
cos(ot)V (j, 5) + sin(ot)V (j, 6)

)
+ a6

(
− sin(ot)V (j, 5) + cos(ot)V (j, 6)

)]
,

(4.7)

the integration constants can be computed from the initial value z(0) = V a⃗,

where a⃗ = [a1, a2, a3, a4, a5, a6]
T .

The following result establishes the existence of periodic orbits.

Theorem 4.1.

The linear system (4.6) has a stable periodic orbit in the (z2, z5)-plane with

period T = 2π
n
. In addition to this periodic orbit, there are two other periodic

orbits if d = 0, namely, one of them in the (z3, z6)-plane with period T = 2π
m

and another in the plane spanned by the the last two columns of V .

With regard to an investigation of the perturbed system (4.4) we consider the

Poincaré map of (4.6). Since the general solution of the linear system is known
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explicitly the Poincaré map is known. It is of the following structure:

P (z) =


p11 0 0 p14 0

p21 p22 0 p24 p25

p31 0 p33 p34 p35

p41 0 0 p44 0

p51 p52 0 p54 p55




z1

z2

z3

z4

z5

 , (4.8)

the elements used in P are given in Appendix A.

The eigenvalues of P are computed as (where t is taken as a parameter):

• µ̄1 = elt
(
cos(mt)− l

m
sin(mt)

)
,

• µ̄2,3 = cos(nt)± i sin(nt),

• µ̄4,5 = ekt
[
cos(ot)±i 1

o

(
sin(ot)

(
2k2 sin(ot)−2ko cos(ot)+o2 sin(ot)

))1/2]
.

A periodic orbit corresponds to a fixed point of P , hence an eigenvalue equal

to one. There are two possibilities; they depend on the presence of damping

effects:

(i) If d = 0 (the case without any damping, hence l = k = 0). If µ1 = 1 then

T = 2π
m
, and if µ2 = µ3 = 1 then T = 2π

o
and if µ4 = µ5 = 1 then T = 2π

n
.

Hence, the linear system (4.6) has 3 periodic orbits corresponding to

those fixed points of P .

(ii) d > 0 (presence of damping). If µ4 = µ5 = 1 then T = 2π
n
, therefore, the

linear system (4.6) has a periodic orbit in the (z2, z5)-plane.

For a specific situation we fix all parameters in Table 4.1 and consider the case

with damping. The real parts of the eigenvalues of A are always negative with

|l| > 9.53, |k| > 15.23. Consequently, the two parts of the general solution

(4.7) converge by a factor of elt and ekt very quickly to 0 for increasing t, Figure

4.2. Furthermore, the periodic orbit is generated by a fixed point of P in the

(z2, z5)-plane at T = 2π
n
. Since all eigenvalues of A have non-positive real part,

the equilibrium point 0 is stable.

These two cases may indicate that in our smooth system, it is possible to

have a transition from one type of motion to the other one via the effect of

friction damping d. This effect of damping clearly shows when we consider the

nonsmooth system.
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Figure 4.2: Solution components behaviour with presence of damping and time

increases, there is only one periodic orbit in (z2, z5)-plane for the coefficients as in

Table 4.1
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4.4 Non-smooth model

It is clear that a lack of smoothness for the model is due to the presence of

(α, β). In PWLS , it is useful to know the direction of flow of the vector field

as well as when the trajectory reaches M. We will discuss the vector-field on

M in two main cases, namely direct crossing through M or sliding motion on

M where the sliding surface is particularly important with regard due to the

friction coefficient.

4.4.1 Detecting crossing and sliding regions

In this section we demonstrate the existence of a crossing and sliding mode

from the point of view of a Filippov system. Let Υ(z) = ez1 + gz3 +hz4. The

direct crossing in Mc for z6 = 0 occurs if both quantities [nT (z)f±(z)] have the

same sign. Therefore, the crossing region Mc := {z ∈ M|Υ(z)2 − (βz2)
2 > 0}

is divided into two main region regions, namely

Mc
+ := {z ∈ Mc|Υ(z) > βz2},

Mc
− := {z ∈ Mc|Υ(z) < βz2}.

In a similar way, we can define the sliding mode region as Ms := {z ∈
M|Υ(z)2 − (βz2)

2 ≤ 0} which is divided into two main region regions, namely

Ms
− := {z ∈ Ms|Υ(z) < βz2},

Ms
+ := {z ∈ Ms|Υ(z) > βz2},

where we use the notation Ms
− to represent the attractive sliding motion and

Ms
+ to represent repulsive sliding motion.

It is well-known that the solutions of (4.4) connect standard solutions in Mc
±

and sliding solutions on Ms.

Sliding trajectories are solutions of

ż = Fs(z), z ∈ Ms

where Fs(z) = q(z)f+(z) + (1− q(z))f−(z) and q(z) = 1
2
+ Υ(z)

2βz2
.

Therefore, we obtain an explicit definition of the dynamics along Ms, namely

ż =


az4

bz5

0

−(c+ αe
β
)z1 − αg

β
z3 − (d+ αh

β
)z4

cz1 + γz2 + dz4

 .

Additionally, the dynamics along the boundary of the sliding regions is ex-

pressed as:
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* z ∈ ∂Ms
− implies q = 0, Fs(z) = A−z, z6 = 0 and z2 = −Υ(z)

β
, i.e.,

ż =



az4

bz5

0

−cz1 − αΥ(z)
β

− dz4

cz1 − γΥ(z)
β

+ dz4


.

** z ∈ ∂Ms
+ implies q = 1, Fs(z) = A+z, z6 = 0 and z2 =

Υ(z)
β

, i.e.,

ż =



az4

bz5

0

−cz1 − αΥ(z)
β

− dz4

cz1 +
γΥ(z)

β
+ dz4


.

Remark 4.1. If β = 0 then there is only a direct transition of the flow of

(4.4) through M in forward time due to Ms = {ϕ}, hence β is a key parameter

determining the sliding motion of M.

If z ∈ Ms
− then the systems trajectory enters the attractive sliding region, but

this does not assert that it stays there. The trajectory may leave the sliding

mode due to the fact that the equilibrium point of Fs can be unstable or stable

with a small domain of attraction (the sliding surface Ms can change from

being attractive to be repulsive), [25]. However, if this happens, the trajectory

may eventually return to Ms
−.

4.4.2 Construction of Poincaré maps

Our results are based on the existence of invariant cones for the brake system

(4.3). In order to be able to discuss the existence of invariant cones and their

stability of PWLS (4.4) where α ̸= 0 and β ̸= 0, we construct the Poincaré

map. Without loss of generality, we assume z ∈ Mc
− and that the trajectory

given by φ−(t−(z), z) crosses M transversally (i.e., M = Mc
−) or slides on it

(i.e., M = Ms
−) at the time t−(z). Hence, we can find the map

P−(z) : Mc
− → M,

z → φ−(t−(z), z) = P−(z)

where φ−(t−(z), z) = et−(z)A−
z and t−(z) is computed as

t−(z) = inf{t > 0 | eT6 et(ξ)A
−
z = 0}. (4.9)
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In a similar way, for all z ∈ Mc
+, the trajectory given by φ+(t+(z), z) crosses

M transversally or slides on it. Then, we get

P+(z) : Mc
+ → M,

z → φ+(t+(z), z) = P+(z)

where φ+(t+(z), z) = et+(z)A+
z and t+(z) is computed as

t+(z) = inf{t > 0 | eT6 et(ξ)A
+

z = 0}. (4.10)

Fortunately, one can observe that the sliding vector field is linear due to our

simple choice of friction force. Hence, for an initial value z ∈ Ms
− the trajectory

is given by φs(ts(z), z) = ets(z)As z where ts is the time spent during sliding

before it reaches one point of ∂Ms
± and As is given as As =

∂
∂z
Fs. Moreover,

we can define the map

Ps(z) : Ms
− → ∂M s

−,

z → φs(ts(z), z) = P s(z).

The map Ps satisfies Lemma 2.3 (replace P− by Ps) and ts is computed via

system (3.14).

In effect, this procedure is similar to that which has been described in detail in

the previous two chapters. The existence of exactly one positive eigenvalue µ̄ of

P that is given as the composition of partial Poincaré maps leads to existence

of invariant cone. The remaining eigenvalues determine the dynamics on the

cone.

4.5 Case α = 0, β ̸= 0

In this case the non-smoothness depends only on one parameter β, but we will

show that the dynamics of the system can be quite different from that in the

smooth system.

Lemma 4.2. The matrices A± share identical eigenvalues of A, but their

eigenvectors differ by Vβ such that

V ± = V ∓ Vβ, (4.11)

where
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Vβ = β



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −b2f
(n2+bg)2+(nf)2

b2(n2+bg)
(n2+bg)2+(nf)2

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 b(n2+bg)

(n2+bg)2+(nf))
bnf

(n2+bg)2+(nf)2
0 0


, (4.12)

Hence the general solution of ż = A±z, z ∈ Mc
± can be obtained by replacing

V = V ± in (4.7).

Lemma 4.3. The Poincaré section is replaced by the discontinuity surface M.

By using Lemma 4.2 we obtain the following structure for the Poincaré map

for the ⊖-system (the elements aij are given in Appendix B):

P−(z) =


a11 0 0 a14 0

a21 a22 0 a24 a25

a31 0 a33 a34 a35

a41 0 0 a44 0

a51 a52 0 a54 a55




z1

z2

z3

z4

z5

 . (4.13)

The return time t−(z) is defined as the smallest positive root of

a61z1 + a62z2 + a63z3 + a64z4 + a65z5 = 0. (4.14)

Furthermore, the Poincaré map P+ and the return time t+(z) for the ⊕-system

can be obtained by replacing β = −β in P− and equation (4.14), respectively.

To obtain a preliminary illustration of the behaviour without sliding motion

we present the following theorem.

Theorem 4.2. We assume that no sliding motion can take place on M. With-

out loss of generality, the first return Poincaré map is a composition of P− and

P+ defined by P (z) = P+P−(z). Then the nonsmooth system (4.4) has at least

3 invariant cones in the case without any damping.

Proof:

It can be shown by direct computation that the Poincaré map P = P+P−(z)

has five eigenvalues explicitly written when d = 0 as:

µ̄1 = cos(mt−) cos(mt−),

µ̄2,3 = cos(nt+) cos(nt−)− sin(nt+) sin(nt−)± i
(
cos(nt+) sin(nt−) + cos(nt−) sin(nt+)

)
.

µ̄4,5 = cos(ot+) cos(ot−)− sin(ot+) sin(ot−)± i
(
cos(ot+) sin(ot−) + cos(ot−) sin(ot+)

)
.
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In order to have an invariant cone consisting of periodic orbits one of the above

eigenvalues have to equal one. We distinguish 3 cases:

(i) cos(mt−) cos(mt−) = 1. Then t± = π
m

and there is a degenerate (flat)

cone within the (z3, z6)-plane.

(ii)
(
cos(nt+) cos(nt−) − sin(nt+) sin(nt−)

)
= 1 and

(
cos(nt+) sin(nt−) +

cos(nt−) sin(nt+)
)
= 0. Then t± = π

n
and there is a flat cone within

the (z2, z5)-plane.

(iii)
(
cos(ot+) cos(ot−) − sin(ot+) sin(ot−)

)
= 1 and

(
cos(ot+) sin(ot−) +

cos(ot−) sin(ot+)
)
= 0. Then t± = π

m
and there is a flat cone within

the (z1, z4)-plane.

The remaining eigenvalues of P for each case of (i)-(iii) determine the stability

of the corresponding periodic orbit.

In general, the trajectory may intersect the manifold with zero time (direct

crossing) or with non-zero time (sliding motion) n-times before closing on it-

self. We describe the solution of invariant cones involving several crossing of

the manifold in:

Lemma 4.4. Consider a generalized Poincaré mapping structure for a periodic

motion without sliding motion as:

Pn(z) = (Pi ◦ Pj)
n(z), i, j ∈ {+,−}, i ̸= j, n = 2, ...

Pn(z) = z.

or with sliding motion

Pn(z) = (Pi ◦ Pk ◦ Pj)
n(z), i, j, k ∈ {+,−, s}, i ̸= j ̸= k,n = 2, ...

Pn(z) = z.

Then, the corresponding invariant cone is consists of periodic orbits without

or with sliding motion, respectively.

Stick-slip occurs if the trajectory enters and leaves frequently the sliding sur-

face Ms
−. In this case, the equilibrium point of Fs can be unstable or stable

with a small region of attraction, hence the trajectory may leave Ms
− to enter

Mc due to the loss of attractivity of Ms. This means that, when the relative

velocity increases and attends its maximum value (slip state). Then, the man-

ifold becomes attractive, and the trajectory returns to Ms
− and then decreases

to the minimum value of relative velocity (stick state). This is repeated con-

tinuously. For instance see Figure 4.7
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4.6 Simulation results

In this section, we present numerical results of PWS (4.4) for different param-

eters. The numerical results presented show the occurrence of different types

of motion.

It is noteworthy that for numerical simulation of PWS it is essential to record

the transitions between different vector fields through the manifold M. Such

transitions are called events and are triggered by zero crossings of scalar val-

ued event functions. Hence, it is possible to locate numerically where the

discontinuity occurs and numerical solution for t± and ts are achieved with

high accuracy. Further, the conditions of regions Mc
± and Ms

± providing

the location of nonsmooth events corresponding to different vector fields are

computed as accurately as possible. The ODE solvers of MATLAB contain

routines for detecting zero crossings of event functions with high accuracy. We

use a fourth-order Runge-Kutta algorithm for dissipative systems in order to

perform simulations for our system.

Now, in order to present the influence of friction and of the parameters values,

we restrict our-self to the case without sliding motion. For α = 0, Theorem

4.2 provided that there is at least one fixed point of P in the (z2, z5)-plane,

with t± = π
n
. For α ̸= 0, small we expect that the system exhibits a rich

dynamics when simulation due to deformation of eigenvalues with varying of

parameters.

For instance, we fix all parameters in Table 4.1 and choose the kinetic coeffi-

cient smaller than the static one (i.e., µ2 ≪ µ1). The main reason for choosing

µ2 is that this choice rapidly restores the spring to a more relaxed length. A

change of this parameter changes the control parameters α, β (i.e. the friction

force). The parameter β in turn causes the existence of sliding and crossing

regions.

In Figure 4.3(c) an invariant cone consisting of periodic orbits without sliding

motion is shown. Further, there is a sudden transition from Mc
+ to Mc

− due

to the strong effect of the spring constant c. Figure 4.3(a) the fixed point can

be computed by P (z) = P+P−P+(z) = z without damping effect d = 0. In

Figure 4.3(d), we shall take the same parameters values, but we choose our

starting point in the attractive sliding motion ξ ∈ Ms
−, we show that there is

sudden transition after segment of sliding from negative to positive side of z6.

It is obvious that a significant amount of time is spent outside the discontinuity

surface, since the sliding motion disappears in the system with forward time.
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Moreover, if we move only the spring parameter c to the value indicated in

Table 4.1 we show that the system has 4-periodic orbit without sudden tran-

sition between Mc
± and no sliding motion, Figure 4.4.

If we consider α = 0 and β ̸= 0 (all other parameters fixed) there is quite

a difference in motion between the smooth system and PWS (case 4.5). The

smooth system (4.6) has flat cone with periodic orbit in the (z2, z5)-plane,

but in PWS this cone is developed to govern other aspects of motion such

as invariant cone consisting of sliding segment and a periodic orbit involving

multiple crossing due to the fast movement that occurs between the two sides.

For instance, an invariant cone involving an double-periodic orbit with sliding

segment can be shown in Figure 4.5 with d = 467.9 . However, it is interesting

to notice that the numerical evidence shows that there is a transition from

double-periodic to a 3-periodic at d = 468.9 as shown in Figure 4.6. It indi-

cates that damping plays an important role in periodic stick-slip phenomena

Finally, it should be pointed out that in the general situation such as α ̸= 0, β ̸=
0, and for special choice that kinetic friction equal to static µ2 = µ1 = 0.4, the

complex behavior in the brake system is revealed to multiple sliding periodic.

Within this multiple periodic is governed by an attractor of 4-periodic orbits

involving sliding. The importance of this stick-slip phenomena is revealed in

Figure 4.7 after some transition we show the small slip length.
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4.1 and µ2 = 0.00014 is quite small, c = 1.8E7, d = 0 where (a)-(c) without sliding

z ∈ Mc
+, (d) starting point z ∈ Ms

−



High-dimensional non-smooth brake-system 100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

T

z 6

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

z
6

z 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3
x 10

−5

z
6

z 3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−30

−20

−10

0

10

20

30

z
6

z 5

−600
−400

−200
0

200
400

600

−8

−6
−4

−2
0

2

4
6

x 10
−3

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

z
6

z
3

z
5

−600
−400

−200
0

200
400

600

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

z
6

z
2

z
5

Figure 4.4: Invariant cones and solution components, existence of 4-periodic orbit

due to spring parameter without sliding motion.
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Figure 4.5: Invariant cones and solution components, existence of double-sliding

periodic orbit when d = 467.9.
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Figure 4.6: Invariant cones and solution components, existence of 3-sliding periodic

orbit when d = 468.9.
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Figure 4.7: Invariant cones and solution components, existence of 4-sliding periodic

orbit when α ̸= 0, β ̸= 0.



Chapter 5

Invariant manifold for PWS

The aim of this chapter is to obtain a similar reduction to lower dimen-

sional system for PWS as has been achieved for smooth system via the center

manifold approach. In PWLS the invariant sets are given as invariant cones

which have been discussed in previous chapters. For nonlinear perturbations

of PWLS the invariant sets are deformations of those cones. The generation of

invariant manifolds and a bifurcation analysis establishing periodic orbits are

demonstrated. Hence, we present a class of nonlinear PWS having a cone-like

invariant ”manifold” carrying the essential dynamics of the full system. We

explain the theoretical results by numerical examples, the analytical results

included in the chapter confirm accurately the observed behavior.

5.1 Introduction

It is well known that the asymptotic behavior of high dimensional smooth

systems can be described by corresponding systems of lower dimensional via

center manifold analysis. In the context of bifurcations of equilibria and sta-

bility analysis, center manifold theory is a well established and mathematically

proven procedure to reduce the dimension of dynamical systems. The lower

dimensional systems are further simplified by normal form theory, allowing for

a mainly analytical and numerical analysis of the bifurcation. This technique

is crucial for understanding complex dynamical systems of high dimension.

However in PWS a lack of smoothness does not admit a dimensional reduction

surface. Hence a natural question arises: How it is possible to reduce PWS

to a lower-dimensional invariant manifold? For PWLS the notion of an in-

variant cone appeared generalizing the focus to an object on a cone consisting

of periodic orbits or orbits spiraling “in” respectively “out” of zero. In the

case of smooth systems the cone reduces to an object which can be regarded

104
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as a flat, degenerated cone. It is the key observation to view that cone as a

generalized invariant “manifold” determining the dynamics. In fact it is the

main result of this chapter to establish that even for nonlinear perturbations

of piecewise linear systems there is a cone-like invariant “manifold” carrying

the essential dynamics of the full system under appropriate conditions. In that

way a reduction procedure to a two-dimensional surface has been established

for nonsmooth systems allowing a bifurcation and stability analysis of a re-

duced system.

For simplicity, let us consider PWS with the separation manifold define by a

hyperplane M := {ξ ∈ Rn|eT1ξ = ξ1 = 0}, written in the form

ξ̇ =

{
f+(ξ), ξ1 > 0,

f−(ξ), ξ1 < 0
(5.1)

with smooth functions f+, f− : Rn → Rn. In order to give the statements of

the main results, we also introduce the following hypotheses.

The hypotheses on the PWS (5.1) are the following:

(a) We assume that

f+(ξ) = A+ξ + g+(ξ)

f−(ξ) = A−ξ + g−(ξ)

with constant matrices A± and nonlinear Ck-parts g±(ξ) = o(∥ξ∥), k ≥ 1.

(b) Direct transition between Rn
− and Rn

+ through M, hence, without loss of

generality, ξ ∈ Mc
−.

(c) Existence of µc and ξ̄ such that P (ξ̄) = µcξ̄ for linear PWS.

(d) The attractivity condition (2.8) for (5.1) is satisfied.

The main result is the following theorem which has been obtained in a coop-

eration with D. Weiss and T. Küpper and which has already been presented

in [66]. For a better understanding of the results and the following appli-

cation we include an abbreviated version of the proof using subtle estimates

essentially due to D. Weiss.

Theorem 5.1. [66]

Under the previous hypotheses on the corresponding PWLS and g±, there exists

a sufficiently small δ and a C1-function h : [0, δ) → M satisfying h(0) = 0

and ∂
∂u
h(0) = ξ̄ such that

{h(u) | 0 ≤ u < δ}
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is locally invariant and attractive under the Poincaré map of system (1). For

k = 2 the function h is Ck in case of µc ≥ 1 and Cmin(k,j) in case of µc < 1

and α < µj
c.

The first idea we use in the proof is to decompose the Poincaré maps of PWLS

and PWNS into a linear part and a nonlinearity. The Poincaré map P for

PWNS will be written using properties of the Poincaré map of PWLS, P .

In that way, we are able to use the approach relying on Hadamard’s graph

transformation.

5.2 Properties of PWLS

We first decompose P using the derivative at ξ̄ and an appropriate nonlinear

term Q as

P (ξ) = P ′(ξ̄)ξ +Q(ξ).

Using the properties of P we immediately obtain Q(ξ̄) = 0, Q′(ξ̄) = 0 and

Q(λξ) = λQ(ξ),

Q′(λξ) = Q′(ξ), 0 < λ <∞.

Hence, the function Q′ is constant on half-rays. Differentiating the second

equation with respect to ξ gives

Q(j+1)(λξ)λj = Q(j+1)(ξ), 0 < λ <∞,

for j ≥ 1, again indicating possible difficulties for λ → 0. On the other hand

we find vanishing derivatives of the return time t− applied in the direction of

the ray leading to corresponding results for derivatives of Q.

Lemma 5.1. For j ≥ 1 we get Q(j+1)(λξ)ξ = 0 for ξ ∈ Mc
− and P−(ξ) ∈ Mc

+.

Proof. The statement follows due to Q(j+1)(ξ) = P (j+1)(ξ), P ′
−(ξ)ξ = P−(ξ)

and

P
(j+1)
− (λξ)ξ = 0,

P
(j+1)
+ (P−(λξ))P−(ξ) = 0,

which is guaranteed by Lemma 2.3.

To simplify matters we linearly transform the coordinates of system (5.1) by

a constant matrix (
1 0

0 T

)
, T ∈ R(n−1)×(n−1)
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to get ξ̄ = e2 ∈ Rn and

P ′(ξ̄) =

(
µc 0

0 As

)
, (5.2)

where the eigenvalues of the matrix As are exactly the µr, r = 1, ..., n − 2.

Note that M remains the separating plane, and that the transformation of the

last (n− 1) components is independent of ξ1.

We decompose

P =

(
Pc

Ps

)
, ξ =

(
y

z

)
according to the blocks in (5.2), so that y is a scalar and z ∈ Rn−2. Due to

assumption (2.8) we can choose a norm on Rn−2 such that

∥As∥ =: α < min{1, µc}.

On Rn−1 we define a norm by

∥ξ∥ = max{|y|, ∥z∥}.

Remark 5.1. Due to the properties of the derivative of Q we are able to obtain

an estimate for Q′ in a neighborhood of the vector ξ̄:

∥Q′(ξ)∥ ≤ Lε, ξ Sε(ξ̄),

Sε(ξ̄) := {(y, z)T ∈ M | y > 0, ∥z/y∥ ≤ ε}, for some constant Lε with Lε → 0

for ε→ 0.

We now use the property of the sector Sε(ξ̄) to obtain an estimate relating

relations of Pc and Ps, hence the approximation property mentioned in Remark

2.3. For ξ ∈ Sε(ξ̄) we know ∥z∥/y ≤ ε and hence ∥ξ∥ = y for ε < 1. According

to Remark 5.1 and Q(y, 0) = 0 we know

∥Ps(ξ)∥ ≤ ∥Asz∥+ ∥Q(ξ)∥

≤ (α+ Lε)εy, (5.3)

Pc(ξ) ≥ (µc − Lεε)y.

Combining these two estimates we see

∥Ps(λξ)∥
Pc(λξ)

≤ α+ Lε

µc − Lεε
ε < ε (5.4)

for sufficiently small ε. Additionally we get α + Lε < 1 for small values of ε.

Hence (5.3) shows the local attractivity of the cone C, whereas (5.4) guarantees
that in case of contracting spiraling on C solutions close to the cone converge

faster to the cone than to the origin.
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Figure 5.1: ε-sector of the cone in M.

5.3 The piecewise nonlinear system (PWNS)

As we are interested to prove the existence of a local manifold we use the

usual techniques of “cut-off and scale” and without restriction we end up with

a piecewise nonlinear system of the form

ξ̇ =

A+ξ + g+(ξ), ξ1 > 0,

A−ξ + g−(ξ), ξ1 < 0,
(5.5)

where the nonlinear perturbations g± are Ck-maps, k ≥ 1, defined on the whole

phase space Rn with supp g± ⊂ {ξ ∈ Rn | ∥ξ∥ ≤ δ} and g± = o(∥ξ∥), ∥ξ∥ → 0.

Obviously we find a constant o(1) depending on the scaling parameter δ with

∥g±∥+ ∥g′±∥ ≤ o(1), δ → 0.

A global invariant manifold of system (5.5) gives a local invariant manifold of

system (5.1).

5.3.1 The Poincaré map

The Poincaré maps P−, P+ and P = P+(P−(ξ)) will be defined on sectors

Sϵ(ξ̄) resp. Sϵη(η̄) as long as ε, εη and δ are sufficiently small.

We decompose the Poincaré map of system (5.5) using the Poincaré map of

the PWLS:

P(ξ) = P (ξ) +R(ξ), R(ξ) := P(ξ)− P (ξ).

Due to the compact support of the perturbations g± depending on δ, we know

R(ξ) = 0 for ∥ξ∥ ≥ const · δ, const sufficiently large. In this section we will
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study further properties of the remaining term R.

A crucial step in the definition of P−, P+, relies on the definition and properties

of the intersection times τ± of PWNS (5.5), which in case of the ⊖-system is

given by (we omit the (−)-indices)

τ−(ξ) = inf{τ > 0 | F (τ, ξ) = 0},

F (t, ξ) = eT1[e
Atξ +

∫ t

0

eA(t−s)g(y(s, ξ))ds],

where y(t, ξ) is the solution of ẏ = Ay + g(y), y(0) = ξ. Applying Gronwalls

Lemma it is obvious, that we have y(t, ξ) = eAtξ + o(∥ξ∥) for t ∈ [0, T ]. The

existence of Ck-functions τ± for initial values close to the cone is guaranteed by

the Implicit Function Theorem due to the transversality condition (2.8) and

the hypothesis on the perturbations g± (see proof of Lemma 5.2). Furthermore

we know that τ±(ξ) is “close” to t±(ξ) for small perturbations g±:

eT1A
−et

∗A−
ξ
[
t−(ξ)− τ−(ξ)

]
=

eT1

∫ τ−(ξ)

0

eA
−(τ−(ξ)−s)g−(y−(s, ξ))ds

with intermediate time t∗. Due to the transversality condition (2.8) and the

hypothesis on g− we find

τ−(ξ)− t−(ξ) = o(1) (5.6)

for δ → 0 or ∥ξ∥ → 0. Differentiating the equations defining t−(ξ) and τ−(ξ)

with respect to ξ and using (2.8) and the properties of g− we find τ ′(ξ) =

O(∥ξ∥−1) and with (5.6) additionally

τ ′−(ξ)− t′−(ξ) = o(∥ξ∥−1) (5.7)

for δ → 0 or ∥ξ∥ → 0.

Remark 5.2. In case of k ≥ 2 we assume without loss of generality g± =

O(∥ξ∥2). Thus we can replace the o-terms in (5.6) and (5.7) by O(∥ξ∥) and

O(1) respectively. Similarly we conclude

τ ′′−(ξ)− t′′−(ξ) = O(∥ξ∥−1).

All o- and O-terms are independent of ε.

Corresponding to Lemma 2.3 we get
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Lemma 5.2. The intersection time τ− is Ck in Sε(ξ̄), ε suitably small. Let

ξ ∈ Sε(ξ̄) with ∥ξ∥ = 1. For 0 ≤ j ≤ k we get

τ
(j)
− (λξ) = O(λ−j), 0 < λ.

In case of k ≥ 2 we gain one power of λ in direction of the ray ξ:

τ
(j+1)
− (λξ)ξ = O(λ−j), 0 < λ.

Similar results hold for τ+.

Proof. Let ε and δ be sufficiently small, so that transversaltity of the perturbed

vectorfields is still given. Application of the Implicit Function Theorem im-

plies the existence of τ−(ξ) for ξ = (1, z)T, ∥z∥ ≤ ε. The existence on Sε(ξ̄)

can be concluded applying the Contraction-Mapping Theorem to the operator

t→ t− 1
λβ
F (t, λξ) for λ > 0, where eT1A

−eτ−(ξ)A−
ξ = β > 0.

The statements about τ− and τ ′− are given by (5.6), (5.7) and Lemma 2.3 in

case of k = 1. Let k ≥ 2. By (5.7), Remark 5.2 and Lemma 2.3 we find

τ ′(λξ)ξ = O(1).

The statement for higher derivatives follows inductively by differentiating F (τ(ξ), ξ) =

0 with respect to ξ, by the transversality condition (2.8) and by the observation
∂
∂t
F (τ(λξ), λξ) = O(λ).

Lemma 5.3. The remaining term R is Ck in Sε(ξ̄). Furthermore there is a

constant Kδ independent of ε with Kδ → 0 for δ → 0 and

∥R(ξ)∥+ ∥R′(ξ)∥ ≤ Kδ, ξ ∈ Sε(ξ̄).

Let ξ ∈ Sε(ξ̄) with ∥ξ∥ = 1. In case of k = 2 we get

R′′(λξ) = O(1), 0 < λ <∞.

Proof. Since the intersection times τ± are Ck the same holds for the remaining

term R. Using P±(ξ) = eA
±τ±ξ +

∫ τ±
0
eA

±(τ±−s)g±(y±(s, ξ))ds we get

R(ξ) =
[
eA

+τ+eA
−τ− − eA

+t+eA
−t−
]
ξ

+ eA
+τ+

∫ τ−

0

eA
−(τ−−s)g−(y−(s, ξ))ds

+

∫ τ+

0

eA
+(τ+−s)g+(y+(s,P−(ξ)))ds,

τ− = τ−(ξ), τ+ = τ+(P−(ξ)), t− = t−(ξ), t+ = t+(P−(ξ)). Obviously the

Lemma is true for the last two terms. For the first term we write equivalently[
eA

+τ+eA
−τ− − eA

+t+eA
−t−
]
ξ =

eA
+τ+
[
eA

−τ− − eA
−t−
]
ξ

+
[
eA

+τ+ − eA
+t+
]
eA

−t−ξ.
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By differentiating [eA
−τ− − eA

−t− ]ξ with respect to ξ and using (5.6), (5.7) and

Remark 5.2 it is easy to conclude that the Lemma holds for this term and thus

for R.

5.3.2 Hadamard’s Graph Transform

Using the explicit form of P leads to the composition of P which we can use

to define Hadamard’s graph transformation:

P(ξ) =

(
µc 0

0 As

)
ξ +R(ξ),

R(ξ) := Q(ξ) +R(ξ). Obviously the remaining term R is Ck in Sε(ξ̄) and we

get

∥R′(ξ)∥ ≤ Lε,δ := Lε +Kδ, (5.8)

so that Lε,δ can be made as small as necessary by setting ε and δ suitably

small.

We will prove the existence of a smooth function H : [0,∞) → Rn−2 with

H(0) = 0, which satisfies the invariance condition

H(Pc(y,H(y))) = Ps(y,H(y)) (5.9)

for y ≥ 0 using Hadamard’s Graph Transform T : D → D defined by

[TH](ζ) := Ps(y,H(y))), ζ ≥ 0, (5.10)

and ζ = Pc(y,H(y)). Obviously, a fixed point of the operator T vanishes at

y = 0 and fulfills the invariance condition (5.9).

In case of k = 1 we define D as a set of maps H : [0,∞) → Rn−2, satisfying

H(0) = 0, ∥H∥∞ ≤ ε, graph(H) ⊂ Sε(ξ̄), i.e. (y,H(y)) ∈ Sε(ξ̄) for all y ≥ 0

and ∥H(y1)−H(y2)∥ ≤ ε|y1 − y2| for y1, y2 ≥ 0.

Due to Remark 5.1, Lemma 5.3 and the following Lemma 5.4 the existence of

a fix-point of the operator T can be proved quite similar to [36]. We only have

to make use of Q(ξ̄) = 0 and to guarantee graph(H̃) ⊂ Sε(ξ̄) for H̃ = TH,

which can easily be seen: We will show

P(Sε(ξ̄)) ⊂ Sε(ξ̄)

which holds for ε and δ sufficiently small. For ξ ∈ Sε(ξ̄) we get similar to (5.3)

∥Ps(ξ)∥ ≤ ∥Asz∥+ ∥Q(ξ)∥+ ∥R(ξ)∥

≤ (α+ Lε +Kδε
−1)εy,

Pc(ξ) ≥ (µc − Lεε−Kδ)y.
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Combining these two estimates we get for sufficiently small ε and δ as in (5.4)

∥Ps(ξ)∥
Pc(ξ)

≤ α+ Lε +Kδε
−1

µc − o(ε)−Kδ

ε ≤ ε.

Lemma 5.4. For each ζ ≥ 0 and each H ∈ D there is a unique y = ω(ζ,H)

with

Pc(y,H(y)) = ζ.

Furthermore the function ω( . , H) is Lipschitz-continuous with constant 1/(µc−
Lε,δ).

Proof. Since

|Rc(y1, H(y1))−Rc(y2, H(y2))|

≤ Lε,δ max{|y1 − y2|, ∥H(y1)−H(y2)∥}

≤ Lε,δ|y1 − y2|, (5.11)

the function Pc( . , H( . )) given by Pc(y,H(y)) = µcy + Rc(y,H(y)) ≥ 0 is

strictly monotonically increasing as long as Lε,δ < µc. Hence there exists

such a function ω( . , H). Using (5.11) a second time we find |ζ1 − ζ2| ≥
µ|y1 − y2| − Lε,δ|y1 − y2|.

The differentiability of the fix-point H = TH can be shown as in [12]. To prove

H ′(0) = 0 we use Lemma 5.4 and the invariance condition (5.9) to conclude

lim sup
ζ→0

∥H(ζ)∥
|ζ|

≤ 1

µc − Lε,δ

lim sup
y→0

∥AsH(y) +Rs(y,H(y))∥
|y|

≤ α+ Lε,δ

µc − Lε,δ

lim sup
y→0

∥H(y)∥
|y|

.

For k = 2 we define D as a set of C1-maps H : [0,∞) → Rn−2, satisfying the

additional conditions

• ∥H∥1,∞ := max{∥H∥∞, ∥H ′∥∞} ≤ ε,

• ∥H ′(y1)−H ′(y2)∥ ≤ L′|y1 − y2|

for all y1, y2 ≥ 0, where the Lipschitz-constant L′ will be determined later. D

is a Banach space with respect to the norm ∥ · ∥1,∞.

Additionally to Lemma 5.4 we need
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Lemma 5.5. The function y = ω( . , H) is continuously differentiable with

|y′1 − y′2| ≤ K|ζ1 − ζ2| (5.12)

for y′i := ∂
∂ζ
ω(ζi, H), where the constant K is independent of L′ for (ε +

Lε,δ)L
′ ≤ const. Furthermore for yi := ω(ζ,Hi) and y′i := ∂

∂ζ
ω(ζ,Hi) we

find

|y1 − y2|+ |y′1 − y′2| ≤ Kε,δ∥H1 −H2∥1,∞

for some constant Kε,δ with Kε,δ → 0 for ε, δ → 0.

Proof. Obviously the function ω( . , H) is C1 together with P and H. Differ-

entiating ζ = Pc(y,H(y)) gives

1 = µcy
′ +R′

c(y,H(y))

(
1

H ′(y)

)
y′.

Setting y′i := y′(ζi), i = 1, 2, and using the abbreviationsR′
j := R′(yj, H(yj)), H

′
j :=

H ′(yj), j = 1, 2, we estimate

µ|y′1 − y′2| ≤
∥∥R′

1

(
1

H ′
1

)
y′1 −R′

2

(
1

H ′
2

)
y′2
∥∥

≤
∥∥R′

1

(
1

H ′
1

)
(y′1 − y′2)

∥∥
+
∥∥R′

1

(
0

H ′
1 −H ′

2

)
y′2
∥∥

+
∥∥[R′

1 −R′
2

]( 1

H ′
2

)
y′2
∥∥,

where the first term can be estimated by Lε,δ|y′1 − y′2|, the second term by

Lε,δL
′|y1 − y2||y′2| and the third using Lemma 5.1 and 5.3:

∥∥[R′
1 −R′

2]

(
1

H ′
2

)∥∥ ≤ K|y1 − y2|.

More precisely we get

∥∥[R′
i,1 −R′

i,2]

(
1

H ′
2

)∥∥
=
∥∥R′′

i,∗(

(
1

H ′
∗

)
,

(
1

H ′
2

)
)
∥∥|y1 − y2|
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with intermediate value y∗, where Ri is the ith component of R and R′′
i,∗ :=

R′′
i (y

∗, H(y∗)), H ′
∗ := H ′(y∗). Finally

∥∥Q′′
i,∗(

(
1

H ′
∗

)
,

(
1

H ′
2

)
)
∥∥ = O(ε)L′,

∥∥R′′
i,∗(

(
1

H ′
∗

)
,

(
1

H ′
2

)
)
∥∥ = O(1),

prove the first statement.

We now set yi := ω(ζ,Hi), i.e.

ζ = Pc(yi, Hi(yi)) = µcyi +Rc(yi, Hi(yi)).

Hence

µc|y1 − y2|

≤ ∥R(y1, H1(y1))−R(y2, H2(y2))∥

≤ Lε,δ

[
|y1 − y2|+ ∥H1 −H2∥∞

]
and therefore

|y1 − y2| ≤
Lε,δ

µc − Lε,δ

∥H1 −H2∥∞.

For y′i :=
∂
∂ζ
ω(ζ,Hi) and Rk,i := R(yi, Hk(yi)), Hk,i = Hk(yi) we get

µc|y′1 − y′2|

≤
∥∥R′

1,1

(
1

H ′
1,1

)
y′1 −R′

2,2

(
1

H ′
2,2

)
y′2
∥∥

≤
∥∥R′

1,1

(
1

H ′
2,1

)
y′1 −R′

2,2

(
1

H ′
2,2

)
y′2
∥∥

+
Lε,δ

µc − Lε,δ

∥H ′
1 −H ′

2∥∞

≤
∥∥R′

2,1

(
1

H2,1

)
y′1 −R′

2,2

(
1

H2,2

)
y′2
∥∥

+
∥∥[R′

1,1 −R′
2,1

]( 1

H2,1

)∥∥|y′1|
+

Lε,δ

µc − Lε,δ

∥H ′
1 −H ′

2∥∞,
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where the first term is already estimated above. For the second term we find

∥∥[R′
i,1,1 −R′

i,2,1

]( 1

H2,1

)∥∥
=
∥∥R′′

i (y1, z
∗)(

(
0

H1,1 −H2,1

)
,

(
1

H2,1

)
)
∥∥

≤ [O(ε) +O(δ)]∥H ′
1 −H ′

2∥∞

with intermediate value z∗. More precisely:

∥∥Q′′
i (y1, z

∗)
(( 0

H1,1 −H2,1

)
,

(
1

H2,1

))∥∥
≤ O(ε)∥H ′

1 −H ′
2∥∞∥∥R′′

i (y1, z
∗)
(( 0

H1,1 −H2,1

)
,

(
1

H2,1

))∥∥
≤ O(δ)∥H ′

1 −H ′
2∥∞

for y1 = O(δ).

In the following we will prove that T : D → D is a contraction. Defining

H̃ := TH for H ∈ D gives

H̃(ζ) = Ps(y,H(y)), y = ω(ζ,H).

Clearly, H̃ is a continuously differentiable function with H̃(0) = 0. Further we

get with Q(y, 0) = 0, Remark 5.1 and Lemma 5.3

∥H̃(ζ)∥ ≤ ∥As∥∥H(y)∥+ ∥R(y,H(y))∥

≤ (α+ Lε +Kδε
−1)ε.

Using Q′(y, 0) = 0, Lemma 5.1 and 5.3 we find

∥H̃ ′(ζ)∥ ≤ ∥As∥∥H ′(y)∥|y′|

+ ∥R′(y,H(y))

(
1

H ′(y)

)
∥|y′|

≤ α+O(ε) +Kδε
−1

µc − Lε,δ

ε.

Eventually we can guarantee

∥H̃∥1,∞ ≤ ε
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for ε and δ sufficiently small.

Indeed, H̃ ′ is Lipschitz continuous: For ζ1, ζ2 ≥ 0 we define y1 := ω(ζ1, H) and

y2 := ω(ζ2, H). Then

∥H̃ ′(ζ1)− H̃ ′(ζ2)∥ ≤ ∥As∥∥H ′
1y

′
1 −H ′

2y
′
2∥

+ ∥R′
1

(
1

H ′
1

)
y′1 −R′

2

(
1

H ′
2

)
y′2∥.

The first term of the right-hand side can be estimated by

∥H ′
1y

′
1 −H ′

2y
′
2∥ ≤ ∥H ′

1(y
′
1 − y′2)∥

+ ∥H ′
1 −H ′

2∥|y′2|

≤ ε|y′1 − y′2|+ L′|y1 − y2||y′2|

whereas the second term is already estimated in the proof of Lemma 5.5. We

then arrive at

∥H̃ ′(ζ1)− H̃ ′(ζ2)∥ ≤ (αε+ Lε,δ)|y′1 − y′2|

+ (αL′ + Lε,δL
′ +O(1))|y1 − y2||y′2|,

where the O-term is independent of L′. Using Lemma 5.5 we eventually get

∥H̃ ′(ζ1)− H̃ ′(ζ2)∥

≤ αL′ + Lε,δL
′ +O(1)

(µc − Lε,δ)2
|ζ1 − ζ2|,

where the O-term is still independent of L′. Choosing L′ sufficiently large and

ε, δ small we end up with

∥H̃ ′(ζ1)− H̃ ′(ζ2)∥ ≤ L′|ζ1 − ζ2|

which proves T (D) ⊂ D.

For any H1, H2 ∈ D we define H̃i = THi and yi, y
′
i as in Lemma 5.5. Then by

definition (5.10) and Lemma 5.5 we find

∥H̃1(ζ)− H̃2(ζ)∥

≤ ∥As∥∥H1,1 −H2,2∥+ ∥R1,1 −R2,2∥

≤ α(ε|y1 − y2|+ ∥H1 −H2∥∞)

+ Lε,δ

(
|y1 − y2|+ ∥H1 −H2∥∞

)
≤ [α+ o(1)]∥H1 −H2∥1,∞

for ε, δ → 0.
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Furthermore we get

∥H̃ ′
1(ζ)− H̃ ′

2(ζ)∥ ≤ ∥As∥∥H ′
1,1y

′
1 −H ′

2,2y
′
2∥

+ ∥R′
1,1

(
1

H ′
1,1

)
y′1 −R′

2,2

(
1

H ′
2,2

)
y′2∥,

where the first term can be estimated by

∥H ′
1,1y

′
1 −H ′

2,2y
′
2∥

≤ ∥H ′
1,1∥|y′1 − y′2|

+
(
∥H ′

1,1 −H ′
1,2∥+ ∥H ′

1,2 −H ′
2,2∥
)
|y′2|

≤ ε|y′1 − y′2|

+
1

µc − Lε,δ

(
L′|y1 − y2|+ ∥H ′

1 −H ′
2∥∞

)
and the second term is already estimated in the proof of Lemma 5.5:

∥R′
1,1

(
1

H ′
1,1

)
y′1 −R′

2,2

(
1

H ′
2,2

)
y′2∥

≤ Lε,δ

µc − Lε,δ

∥H ′
1 −H ′

2∥∞

+ o(1)∥H1 −H2∥1,∞

for ε, δ → 0. Finally we end up with

∥H̃ ′
1(ζ)− H̃ ′

2(ζ)∥

≤ α+ Lε,δ + o(1)

µc − Lε,δ

∥H1 −H2∥1,∞

for ε, δ → 0.

Since α < min{1, µ − c} we can guarantee that T is a contraction for ε, δ

sufficiently small, hence by the Contraction-Mapping Theorem there is a fixed

point defining the invariant graph.

Remark 5.3. Theorem 5.1 holds even in case of k = 3. The proof depends

crucially on Lemma 5.2, which guarantees

R′′′(λξ)ξ = O(λ−1),

R′′′(λξ)ξ2 = O(1), 0 < λ <∞.

5.4 Bifurcation

Once the existence of H(y) = a1y + a2y
2 + ..., has been established, we can

use H to determine the dynamics on {h(y) = (y,H(y)) | 0 ≤ y < δ}.
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For example to determine periodic solutions we consider the fixed point equa-

tion P(ξ) = ξ, reduced to the first component

µcy +Rc(y,H(y)) = y, (y ≥ 0).

Dividing by y we obtain

µc − 1 = Rc(y,H(y))/y. (5.13)

Solutions y > 0 of (5.13) then lead to periodic orbits.
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5.5 Class of PWNS

We illustrate the results by class of PWNS where the PWLS is designed ac-

cording to setting parameters in general situation presented in Chapter 2 as:

β± = σ+ = α+ = 0, k± = γ± = 1, σ− = −δ, α− = α. Hence, the ⊕-system is

taken in normalized form A+ = A+
N and the ⊖-system is give by

A− = (S−)−1A−
NS

−, (S−)−1 =

 1 −α(α+1)
2

−α
−δ 1 0

0 −δ 1

 ,

with suitable parameters α and δ. Further we have chosen a nonlinearity such

that the solution is explicitly known for comparison.

Hence we consider the system

ξ̇ = A±ξ + g±(ξ), ±eT1ξ > 0, (5.14)

where

g+(ξ) = ρ+

 0

0

ξ21 + ξ22

 , g−(ξ) = ρ−

ξ
2
3

0

0

 .

Note that the eigenvalues of A± are given by λ± ± iω±, µ±, and the existence

of a direct crossing domain is guaranteed by (2.2).

For η = (y, z)T ∈ Mc
+, we have t+ := τ+(η) = π/ω+ independent of the

nonlinearity g+ and therefore

P+(y, z) =

(
−eλ+t+y

eµ
+t+z +G3y

2

)
,

where G3 = ρ+
(
e2λ

+t+ − eµ
+t+
)
/(2λ+ − µ+).

Since there are still many parameters involved we illustrate various situations

for a special choice of parameters.

5.5.1 Case I: α = ρ− = 0

In this case, PWNS (5.14) ensures that a simple situation will be considered,

where we have only direct crossing between half spaces and τ± = t± indepen-

dent of the nonlinearity g± and ξ. For ξ = (y, z)T ∈ Mc
− the intersection time

is constant, i.e. τ−(ξ) = π/ω−, and the map P− is given by

P−(y, z) =

(
eλ

−π/ω−
0

δ
(
eλ

−π/ω−
+ eµ

−π/ω−)
eµ

−π/ω−

)(
y

z

)
.
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Figure 5.2: An attractive C with invariant graph H(y) of PWNS.

For ξ ∈ Mc
−, then P(y, z) = P+(P−(y, z)) we obtain

P(y, z) =

(
µc 0

d µ1

)(
y

z

)
+

(
0

G3µcy
2

)
,

with

µc = eλ
−π/ω−+λ−π/ω−

, d = δeµ
+π/ω+(

eλ
−π/ω−

+ eµ
−π/ω−)

, µ1 = eµ
−π/ω−+µ+π/ω+

.

Attractivity of the cone is then guaranteed if |µ1| < min{1, µc} and the

invariant “eigenvector” ξ̄ satisfying P (ξ̄) = µcξ̄ in PWLS is chosen as ξ̄ =

(ȳ, z̄)T = (1,m)T with m = d/(µc − µ1).

By Theorem 5.1 , we know there exists a local invariant set tangent to the cone

at 0 which is generated by a graph of the form H(y) = my + a2y
2 + O(y3).

Using Q(ξ̄) = 0, Q′(ξ̄) = 0 and g± = O(∥ξ∥2), we obtain

Q(y,H(y)) = O(y3),

R(y,H(y)) =

(
b1

b2

)
y2 +O(y3).

where b1 = 0, b2 = µcG3. To determine the coefficient a2 we substitute H into

the equation representing the invariance condition; hence

H(Pc(y,H(y))) = Ps(y,H(y)), (5.15)
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then, we deduce that

a2 =
b2

µ2
c − µ1

.

The generation of an invariant cone is given by using the graph functionH(y) =

my + b2
µ2
c−µ1

y2 and for a periodic orbit we set µc = 1. An attractive invariant

cone for PWNS (5.14) which is generated by H(y) is shown in Figure 5.2 with

parameters set as ω± = 1.0, λ+ = −λ− = 1.0, µ− = −0.5, µ+ = 0.02, ρ+ =

12.3.

5.5.2 Case II: δ = 0, α = 1

In this case, the existence of an invariant cone for PWLS has been fully in-

vestigated in Chapter 2 and [39]. The PWNS (5.14) has direct crossing if

ξ2
[
− 2ω−ξ2 + (λ− − µ− − ω−)ξ3 + ρ−ξ

2
3

]
< 0, see 2.2.

For ξ = (y, z)T ∈ Mc
− the intersection time τ−(ξ) = τ− is determined as

smallest positive root of equation

0 = −2syeλ
−τ− + [(c− s)eλ

−τ− − eµ
−τ− ]z +G1(τ−)z

2 (5.16)

with

G1(τ−) = ρ−
(µ− − κ)(s− c) + 2ω−c

(λ− − 2µ−)2 + ω−2
eλ

−τ−

+ ρ−
2µ− − λ− − ω−

(λ− − 2µ−)2 + ω−2
e2µ

−τ− ,

where we have used the abbreviations s := sin(ω−τ−) and c := cos(ω−τ−).

Further the map P− is given by

P−(y, z) =

(
(c+ s)eλ

−τ− αseλ
−τ−

0 eµ
−τ−

)(
y

z

)
+

(
G2(τ−)z

2

0

)
,

where

G2(τ−) = ρ−
(λ− − 2µ−)s− ω−c

(λ− − 2µ−)2 + ω−2
eλ

−τ−

+ ρ−
ω−

(λ− − 2µ−)2 + ω−2
e2µ

−τ− .

For ξ ∈ Mc
−, then P(y, z) = P+(P−(y, z)) we obtain

P(y, z) =

(
µ1(τ−) d(τ−)

0 µc(τ−)

)(
y

z

)
+

(
−G2(τ−)e

λ+t+z2

G3

[
((c+ s)y + αsz)eλ

−τ− +G2(τ−)z
2
]2
)
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with

µ1(τ−) = −(c+ s)eλ
−τ−+λ+t+ ,

d(τ−) = −seλ−τ−+λ+t+ ,

µc(τ−) = eµ
−τ−+µ+t+ .

We write P(y, z) as

P(y, z) =

(
µ1 d

0 µc

)(
y

z

)
+R(y, z),

with µ1 = µ1(t−(ξ̄)), d = d(t−(ξ̄)), µc = µ(t−(ξ̄)); further t−(ξ̄) is determined

as smallest positive root of

0 = −2s̄+ α[c̄− s̄− e(µ
−−λ−)t−

]
m, (5.17)

where we have used the abbreviations s̄ = sin(ω−t−(ξ̄)), c̄ = cos(ω−t−(ξ̄)), and

the invariant “eigenvector” ξ̄ satisfying P (ξ̄) = µcξ̄ is chosen as ξ̄ = (ȳ, z̄)T =

(1,m)T with m = (µc − µ1)/d.

Note that we want to consider the situation that µc ≈ 1; again attractivity of

the cone is then guaranteed if |µ1| < min{1, µc}. By Theorem 1, the invariant

graph is tangent to the cone at 0 which is taken of the form H(y) = my +

a2y
2 +O(y3). Using Q(ξ̄) = 0, Q′(ξ̄) = 0 and g± = O(∥ξ∥2),we obtain

Q(y,H(y)) = O(y3),

R(y,H(y)) =

(
b1

b2

)
y2 +O(y3).

After lengthy computations we obtain

b1 = −
[
Ḡ2 −

eT2A
−η̄

eT1A
−η̄
Ḡ1

]
eλ

+t+m2,

b2 = −e
T
3A

−η̄

eT1A
−η̄
Ḡ1e

µ+t+m2 +G3η̄
2
2,

where η̄ = P−(ξ̄) and Ḡj = Gj(t−(ξ̄)),j=1,2,3.

To determine the coefficient a2 we substitute H into the equation representing

the invariance condition; hence

H(P1(y,H(y))) = P2(y,H(y)),

which leads to

mµcy +m(da2 + b1)y
2 + a2µ

2
cy

2

= mµcy + µca2y
2 + b2y

2 +O(y3),
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Figure 5.3: Two attractive invariant cones of PWLS for µ− = µ−
0 .
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Figure 5.4: Two generalized center manifolds of PWNS (ρ− = −0.01, ρ+ = 0.1) for

µ− = µ−
0 .
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Figure 5.5: Stable periodic orbit of PWNS for µ− = −1.06 > µ−
0 .

and thus

a2 =
b2 −mb1
µ2
c − µ1

.

Finally we can use the expression for H(y) to study bifurcation of periodic

orbits by determining fixed points of the reduced system

P1(y,H(y)) := µcy +
db2 − µc(1− µc)b1

µ2
c − µ1

y2

+O(y3).

Thus the fixed point is approximately given by

y∗ ≈ 1− µc

db2 − µc(1− µc)b1
(µ2

c − µ1).

Using this general form various situations can be derived by a special choice of

parameters. The simulation is done with parameters set at λ+ = −0.5, λ− =

0.5, µ+ = 0.2, α = 0.5, t+ = π,w+ = w− = 1.0, ρ− = −0.01, ρ+ = 0.1 and

bifurcation parameter µ− close to µ−
0 := −µ+t+/t−(ξ̄) ≈ −1.0604, where

t−(ξ̄) ≈ 0.5928 is determined by

0 = −2s̄+ α[c̄− s̄− e−(µ+t++λ−t−(ξ̄))]m,

where m = 1−µ1

d
. We get µ(µ−

0 ) = 1 and ∂
∂µ−µ(µ

−
0 ) > 0. For this set of values

in PWLS (i.e. ρ− = ρ+ = 0), the phase space contains two attractive invari-

ant cones (Figure 5.3), likewise there are two generalized center manifolds of



Invariant manifold for PWS 125

PWNS (5.14), Figure 5.4. These attractive cones are given by ξ̄ = (0, 1, 0)T and

ξ̄ = (0, 1,m) with eigenvalues µ1 = 1, µc ≈ 0.0671 and µc = 1, µ1 ≈ −0.3881

respectively and are separated by a nonattractive cone. Recall, that the ex-

istence of two attractive cones is not possible in continuous PWLS (see [10]

Theorem 2). A periodic orbit on the manifold generated by Hopf bifurcation

is shown in Figure 5.5.



Chapter 6

Summary and future work

Es ist besser, einige Fragen zu haben als alle Antworten zu wissen

James Thurber (1894 - 1961)

The main goal of this thesis was to develop rigorous mathematical techniques

to investigate the existence of cone-like invariant manifolds for nonsmooth

systems. The crossing and sliding regions have been determined by means of a

vectors field evaluation without knowledge about the existence of solutions for

PWS. Therefore, the general behavior on M and non-existence of an C were

obtained for different classes of PWS.

It was shown that the existence of C played an important role in describing

the dynamical behavior for PWS. The dynamics on C in the phase space Rn

was collected into 3 cases as: (i) Stable focus type, (ii) Center focus type (iii)

Unstable focus type. Hence the dynamics on C behaved like a classical center

manifold and we have used it to explain paradoxical situations concerning sta-

bility.

To find all possible invariant cones, numerical procedure and theoretical re-

sults were combined via the construction of Poincaré return map. A general-

ized Poincaré map for PWS exhibiting a strongly attracting C and describing

the dynamics on C was introduced that allowed us to describe explicitly the

systems behavior close to the bifurcation point. The mechanism to deter-

mine attractivity of the original system and various ways to generate invariant

cones were investigated that yields a complete analysis of dynamics for 3D lin-

ear PWS. The existence of multiple invariant cones were found for 3D PWLS

which is completely different correspond to smooth systems . An interpreta-

tion for this situation in terms of generalized center manifolds is that there are

locally multiple generalized center manifolds at the same time.

Further, have shown how to generalize the notion of an invariant cone when

sliding motion takes place on M. A generalized Poincaré map also has been

126
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used to predict analytically the scenarios following a sliding bifurcation with

the notion of C. The existence of an C and non-standard bifurcations have been

reported for different values of the system parameters such as: Invariant cones

exhibiting crossing-sliding, grazing-sliding and switching-sliding bifurcation.

Also as specific applications, an automotive brake with dry friction has been

proposed and investigated; the dynamics of this system offers much inter-

est because it is a simple representation of a mechanical model containing

non-smooth characteristics; its response exhibits different types of bifurcation

phenomena. The discontinuities have been transformed into discontinuities of

the vector field and therefore the system model is converted into a Filippov

system. The existence of invariant cones, nonsmooth phenomena such as slid-

ing periodic doubling and multiple periodic orbits, and the possibility of more

complex bifurcation scenarios have been identified and discussed; theoretical

predictions and numerical tools were used.

The existence of cone-like invariant manifolds as an extension to nonlinear per-

turbations of certain n-dimensional PWS under appropriate conditions in the

case without sliding motion carrying the essential dynamics of the full system

has also been proved. A class of PWNS for which multiple cones exist has

been proposed and investigated to illustrate a technique for generalized center

manifold reduction and associated bifurcation. It was shown that the gener-

alized Hopf-bifurcation provided a well established way to generate periodic

orbits for PWNS.

This following will be topic in future work:

• It should be possible to extend the results of this thesis to non-homogeneous

and affine linear PWS, i.e., an investigation concerning the existence,

uniqueness and bifurcations of invariant cones in both cases.

• In this thesis, we have only considered a single discontinuity surface, but

the existence of C and its stability for a system whose vector fields lead

to several manifolds including manifolds of various dimensions requires

further attention.

• More complicated invariant cones for PWS may exhibit catastrophic bi-

furcation.

• Development of numerical methods for computing cone-like invariant

manifolds and their dynamics for non-linear PWS .

• Reduction of PWS to lower-dimensional invariant manifolds when the

sliding motion is involving.
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• The existence of invariant cones and sliding-bifurcation are important

aspects of the analysis which should be carried out for non-linear pertur-

bation of the brake system.



Chapter 7

Appendix

7.1 Appendix A

p11 =
ekt

V (1,6)

(
cos(ot)V (1, 6)− sin(ot)V (1, 5)

)
,

p14 =
ekt

V (1,6)

(
V (1, 6)(cos(ot)V (1, 5) + sin(ot)V (1, 6)) + V (1, 5)(sin(ot)V (1, 5)

− cos(ot)V (1, 6))
)
,

p21 = − 1
V (1,6)

[
V (1, 6) cos(nt) + V (5, 6)V (2, 4) sin(nt) − ekt

(
cos(ot)V (2, 6) −

sin(ot)V (2, 5)
)]
,

p22 = cos(nt),

p24 =
1

V (1,6)

[
(V (5, 6)V (1, 5)−V (1, 6)V (5, 5))V (2, 4) sin(nt)+(V (2, 6)V (1, 5)−

V (1, 6)V (2, 5))

cos(nt)+ekt
(
V (1, 6)V (2, 5) cos(ot)+V (1, 6)V (2, 6) sin(ot)−V (1, 5)(cos(ot)V (2, 6)

− sin(ot)V (2, 5))
]
,

p25 = V (2, 4) sin(nt),

p31 = elt
[
−V (6,6)
V (1,6)

(
cos(mt)V (3, 1)+sin(mt)V (3, 2)

)
+ V (3,1)V (2,4)V (6,6)−V (2,4)V (6,3)

V (2,4)V (1,6)V (3,2)(
cos(mt)V (3, 2)−sin(mt)V (3, 1)

)]
+ ekt

V (3,2)

(
cos(ot)V (3, 6)−sin(ot)V (3, 5)

)
,

p33 =
elt

V (3,2)

(
cos(mt)V (3, 2)− sin(mt)V (3, 1)

)
,

p34 =
elt

V (3,2)V (1,6)V (2,4)

[(
cos(mt)V (3, 1)+sin(mt)V (3, 2)

)(
V (2, 4)V (1, 6)V (6, 6)

−V (2, 4)V (6, 6)V (1, 5)
)
− 1

V (2,4)V (1,6)V (3,2)

(
V (3, 1)V (2, 4)V (1, 6)−V (1, 6)V (2, 4)V (6, 5)

+V (2, 4)V (6, 6)V (1, 5)−V (3, 1)V (2, 4)V (1, 5)
)(

cos(mt)V (3, 2)−sin(mt)V (3, 1)
)]
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+ ekt

V (1,6)

[
V (1, 6)

(
cos(ot)V (3, 5) + sin(ot)V (3, 6)

)
− V (1, 5)

(
cos(ot)V (3, 6) −

sin(ot)V (3, 5)
)]
,

p35 =
elt

V (3,2)

[
V (3, 2)

(
cos(mt)V (3, 1)+sin(mt)V (3, 2)

)
−V (3, 1)

(
cos(mt)V (3, 2)

− sin(mt)V (3, 1)
)]
,

p41 = − ekt sin(ot)
V (6,1)

p44 =
ekt

V (1,6)

(
V (1, 6) cos(ot) + V (1, 5) sin(ot)

)
,

p51 = −V (5,6) cos(nt)
V (1,6)

+ V (2,6) sin(nt)
V (1,6)V (2,4)

+ ekt

V (1,6)

(
cos(ot)V (5, 6)− sin(ot)V (5, 5)

)
,

p52 = − sin(nt)
V (3,2)

,

p54 =
elt

V (3,2)V (1,6)V (2,4)

[
−V (1, 6)

(
cos(mt)V (1, 5)+sin(mt)V (1, 6)

)(
V (2, 4)V (1, 6)V (6, 5)

− V (2, 4)V (6, 5)V (1, 5)
)
+ V (2, 4)V (1, 6)

(
V (1, 5)V (6, 5)− V (3, 5)

+ V (3, 6)− V (3, 1)V (6, 6)
)(

cos(mt)V (3, 2)− sin(mt)V (3, 1)
)]

+ ekt

V (1,6)

[
V (1, 6)

(
cos(ot)V (3, 5) + sin(ot)V (3, 6)

)
− V (1, 6)

(
cos(ot)V (3, 6)

−sin(ot)V (3, 5)
)
+V (5,6)V (6,1)−V (6,1)V (5,6)

V (1,6)
cos(nt)−V (2,6)V (1,5) −V (1,6)V (2,5)

V (1,6)V (2,4)
sin(nt)+

ekt

V (1,6)

[
V (1, 6)

(
cos(ot)V (5, 5) + sin(ot)V (5, 6)

)
− V (1, 6)

(
cos(ot)V (5, 6)− sin(ot)V (5, 5)

)]
p55 = cos(nt),

p63 = − elt sin(mt)
V (3,2)

,

7.2 Appendix B

a11 =
ekt−

V −(1,6)

(
cos(ot−)V

−(1, 6)− sin(ot−)V
−(1, 5)

)
,

a14 =
ekt−

V −(1,6)

(
V −(1, 6)(cos(ot−)V

−(1, 5)+sin(ot)V −(1, 6))+V −(1, 5)(sin(ot)V −(1, 5)

− cos(ot−)V
−(1, 6))

)
,

a21 = − 1
V −(1,6)

[
V −(1, 6) cos(nt−)+V

−(5, 6)V −(2, 4) sin(nt−)−ekt−
(
cos(ot−)V (2, 6)

− sin(ot−)V
−(2, 5)

)]
,
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a22 = cos(nt−),

a24 =
1

V −(1,6)

[
(V −(5, 6)V −(1, 5)−V −(1, 6)V −(5, 5))V −(2, 4) sin(nt−)+(V −(2, 6)V −(1, 5)

− V −(1, 6)V −(2, 5)) cos(nt−) + ekt−
(
V −(1, 6)V −(2, 5) cos(ot−)

+V −(1, 6)V −(2, 6) sin(ot−)−V −(1, 5)(cos(ot−)V
−(2, 6)−sin(ot−)V

−(2, 5))
]
,

a25 = V −(2, 4) sin(nt−),

a31 = elt
[
−
(
V (2,4)V (6,6)−V (2,4)V (6,4)V (5,6)−V (6,4)V (2,6)

)
V (1,6)V (2,4)

(
cos(mt)V (3, 1)+sin(mt)V (3, 2)

)
+−V (3,1)V (2,4)V (6,2)+V (3,1)V (2,4)V (6,6)−V (3,1)V (6,4)V (2,6)−V (2,4)V (3,6)+V (3,4)V (2,6)+V (2,4)V (3,3)V (5,6)

V (2,4)V (1,6)V (3,2)(
cos(mt)V (3, 2)− sin(mt)V (3, 1)

)]
−V (5,6)

(
cos(nt−)V (3,2)+sin(nt−)V (3,4)

V (1,6)
− V (2,6)

(
cos(nt−)V (3,4)−sin(nt−)V (3,3)

V (1,6)V (2,4)

ekt−
(
cos(nt−)V (3,6)−sin(ot−)V (3,5)

)
V (1,6)

,

a32 = elt−
[
− V (6,2)

V (2,4)

(
cos(mt−)V (3, 1) + sin(mt−)V (3, 2)

)
+
(
V (3, 1)V (6, 4)V (1, 6)−V (3, 4)V (1, 6)

)(
cos(mt−)V (3, 2)−sin(mt−)V (3, 1)

)
cos(nt−)V (3,4)−sin(nt+)V (3,3)

V (2,4)
,

a33 =
elt−

V −(3,2)

(
cos(mt−)V

−(3, 2)− sin(mt−)V
−(3, 1)

)
,

a34 = − eIt−

V −(1,6)V −(2,4)

(
V −(2, 4)V −(1, 6)V −(6, 5)− V −(2, 4)V −(6, 6)V −(1, 6)

+ V −(2, 4)V −(6, 3)V −(5, 6)V −(1, 6)− V −(2, 4)V −(6, 3)V −(1, 6)V −(5, 6)

+ V −(6, 4)V −(2, 6)V −(1, 6) − V −(6, 4)V −(1, 6)V −(2, 6)
)(

cos(nt−)V
−(3, 1) +

sin(nt−)V
−(3, 2)

)
1

V −(2,4)V −(1,6)V −(3,1)

[
V −(2, 4)V −(3, 3)V −(1, 6)V −(5, 6)+V −(3, 1)V −(4, 2)V −(1, 6)V −(6, 6)−

V −(2, 4)V −(1, 6)V −(3, 6)

+V −(2, 4)V −(3, 6)V −(1, 5)+V −(3, 4)V −(1, 6)V −(2, 5)−V −(3, 4)V −(2, 6)V −(1, 5)−
V −(3, 1)V −(2, 4)V −(6, 6)V −(1, 5)

−V −(3, 1)V −(2, 4)V −(6, 3)V −(1, 6)V −(5, 5)−V −(2, 4)V −(3, 3)V −(5, 6)V −(1, 5)

+ V −(3, 1)V −(6, 4)V −(2, 6)V −(1, 5)− V −(3, 1)V −(6, 4)V −(1, 6)V −(2, 6)

+ V −(3, 1)V −(2, 4)V −(6, 3)V −(5, 6)V −(1, 6)
][
cos(nt−)V

−(3, 1)

− sin(nt−)V
−(3, 2)

]
+

(
V −(5,6)V −(1,5)−V −(1,6)V −(5,6)

)(
cos(nt−)V −(3,3)+sin(nt−)V −(3,4)

V −(1,6)

+

(
V −(2,6)V −(1,6)−V −(1,6)V −(2,6)

)(
cos(nt−)V −(3,2)−sin(nt−)V −(3,1)

V −(1,6)V −(2,4)
+ekt−

[
cos(ot−)V

−(3, 5)

+ sin(ot−)V
−(3, 6)− V −(1,5)

V −(1,6)

(
cos(ot−)V

−(3, 6)

− sin(ot−)V
−(3, 6)

)]
,

a35 = elt−
(
− V −(6, 3)

(
cos(mt−)V

−(3, 1) + sin(mt−)V
−(3, 2)

)
+ (−V −(2,4)V −(3,3)V −(1,6)+V −(3,1)V −(2,4)V −(6,3)V −(1,6))(cos(mt−)V −(3,2)−sin(mt−)V −(3,1))

V −(2,4)V −(1,6)V −(3,2)
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+
(
cos(nt−)V

−(2, 3) + sin(nt−)V
−(3, 4)

)
,

a41 = − ekt− sin(ot−)
V −(6,1)

a44 =
ekt−

V −(1,6)

(
V −(1, 6) cos(ot−) + V −(1, 5) sin(ot−)

)
,

a51 = −V −(5,6) cos(nt−)
V −(1,6)

+V −(2,6) sin(nt−)
V −(1,6)V −(2,4)

+ ekt−

V −(1,6)

(
cos(ot−)V

−(5, 6)−sin(ot−)V
−(5, 5)

)
,

a52 = − sin(nt−)
V −(3,2)

,

a54 =
(V −(5,5)V −(1,6)−V −(1,6)V −(5,6)) cos(nt−)

V −(1,6)
− (V −(2,6)V −(1,5)−V −(1,6)V −(2,5)) sin(nt−)

V −(2,4)V −(1,6)

ekt−

V −(1,6)

(
cos(ot−)V

−(5, 6)+sin(ot−)V
−(5, 6)−V −(1, 6)(cos(ot−)V

−(5, 6)−sin(ot−)V
−(5, 5))

)
,

a55 = cos(nt−),
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[52] M. Östreich, N. Hinrichs, K. Popp, Bifurcation and stability analysis for

a non-smooth friction oscillator. Arch. Appl. Mech. 66 (1996) 301-314.

[53] F. Pfeiffer, C. Glocker, Multibody dynamics with unilateral contacts, Wiley

Series in Nonlinear Science, Wiley, 1996.

[54] S. S. Pilyugin, P. Waltman, Multiple limit cycles in the chemostat with

variable yield, Math. Biosci. 182 (2003) 151-166.

[55] K. Popp, Private communication.

[56] K. Popp, P. Stelter, Stick-slip vibrations and chaos, Phil. Trans. R. Soc.

London/A, (1990) 89-105.

[57] S.J. Schreiber, R.N. Lipcius, R.D. Seitz, W.C. Long, Dancing between the

devil and deep blue sea: the stabilizing effect of enemy-free and victimless

sinks. Oikos 113 (2006) 67-81.

[58] R. Seydel, Practical Bifurcation and Stability Analysis; From Equilibrium

to Chaos, IAM 5, Springer-Verlag, New York, 1994.

[59] S. W. Shaw, P. J. Holmes, A periodically forced piecewise linear oscillator,

J. Sound Vibr, 90(1) (1983) 129-155.

[60] H. L. Trentelman, A. A. Stoorvogel, M.L.J. Hautus, Control Theory for

Linear Systems, Springer, London, 2001.

[61] V. I. Utkin. Sliding Modes in Control Optimization, Springer-Verlag, New

York, 1992.

[62] S. Yang, R. F. Gibson, Brake vibration and noise: reviews, comment, and

proposals, Int. J. Mater Product. Technol. 12 (1997)496-513.

[63] F. H. Yang, W. Zhang, J. Wang, Sliding bifurcations and chaos induced

by dry friction in a braking system, Chaos, Solitons and Fractals 40 (2009)

1060-1075.



Bibliography 138

[64] N. van de Wouw, R. I. Leine, Attractivity of equlibrium sets of systems

with dry friction, Int. J. Nonlin. Dyn. Chaos Engin. Syst. 35 (2004) 19-39.

[65] L. N. Virgin, C. J. Begley, Grazing bifurcations and basins of attraction

in impact-friction oscillator, Physica D 130 (1999)43-57.
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schluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen

der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation

ist von Herr Prof. Dr. Tassilo Küpper betreut worden.
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Liste der Veröffentlichungen

• H. A. Hosham, Fourth-Order Finite Difference Method for Solving Burg-

ers’ Equation, Applied Mathematics and Computation, 170 (2005), 781-

800 (with I. A. Hassanien, A. A. Salama). This article is one of the

”ScienceDirect TOP 25 hottest Articles (Oct. 2005).

• H. A. Hosham, Analytical and Numerical Solutions of Generalized Burg-

ers’ Equation Via Buckingham’s Pi-Theorem, Conidian Journal of Physics,

83 (2005) 1035-1049 (with I. A. Hassanien, A. A. Salama).

• H. A. Hosham, Group Theoretic Method Analysis for Unsteady Boundary

Layer Flow Near a Stagnation Point, Taiwanese Journal of Mathematics,

9 (2005) 639-660 (with I. A. Hassanien, A. A. Salama).

• H. A. Hosham, An Implicit Finite-Difference Method for Solving the

Transient Coupled Thermoelastic of an Annular Fin, Applied Mathe-

matics − Information Sciences, 1 (2007), 79-93. (with A. M. Abd-Alla,

A. A. Salama, M. R. Abd-El-Salam).

• Hany A. Hosham, A Numerical Solution of Magento-Thermo elastic Prob-

lem in Non-Homogenous Isotropic Cylinder by the Finite Difference Method,

Applied Mathematical Modelling, 31, 8 (2007) 1662-1670 .(with M.R.

Abd-El-Salam, A.M. Abd-Alla).

• H. A. Hosham, Reduction to Invariant Cones for Non-smooth Systems,

Mathematics and Computers in Simulation, 81, (5)(2011) 980-995. With

(T. Küpper).
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