Borodzik, Maciej ORCID: 0000-0002-1101-6724 and Friedl, Stefan (2014). THE UNKNOTTING NUMBER AND CLASSICAL INVARIANTS II. Glasg. Math. J., 56 (3). S. 657 - 681. NEW YORK: CAMBRIDGE UNIV PRESS. ISSN 1469-509X
Full text not available from this repository.Abstract
In [3] the authors (M. Borodzik and S. Friedl, Unknotting number and classical invariants (preprint 2012)) associated to a knot K subset of S-3 an invariant n(R)(K), which is defined using the Blanchfield form and which gives a lower bound on the unknotting number. In this paper, we express n(R) (K) in terms of the Levine-Tristram signatures and nullities of K. We also show in the proof that the Blanchfield form for any knot K is diagonalisable over R[t(+/- 1)].
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-431160 | ||||||||||||
DOI: | 10.1017/S0017089514000081 | ||||||||||||
Journal or Publication Title: | Glasg. Math. J. | ||||||||||||
Volume: | 56 | ||||||||||||
Number: | 3 | ||||||||||||
Page Range: | S. 657 - 681 | ||||||||||||
Date: | 2014 | ||||||||||||
Publisher: | CAMBRIDGE UNIV PRESS | ||||||||||||
Place of Publication: | NEW YORK | ||||||||||||
ISSN: | 1469-509X | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/43116 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |