Borodzik, Maciej ORCID: 0000-0002-1101-6724 and Friedl, Stefan (2014). THE UNKNOTTING NUMBER AND CLASSICAL INVARIANTS II. Glasg. Math. J., 56 (3). S. 657 - 681. NEW YORK: CAMBRIDGE UNIV PRESS. ISSN 1469-509X

Full text not available from this repository.

Abstract

In [3] the authors (M. Borodzik and S. Friedl, Unknotting number and classical invariants (preprint 2012)) associated to a knot K subset of S-3 an invariant n(R)(K), which is defined using the Blanchfield form and which gives a lower bound on the unknotting number. In this paper, we express n(R) (K) in terms of the Levine-Tristram signatures and nullities of K. We also show in the proof that the Blanchfield form for any knot K is diagonalisable over R[t(+/- 1)].

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Borodzik, MaciejUNSPECIFIEDorcid.org/0000-0002-1101-6724UNSPECIFIED
Friedl, StefanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-431160
DOI: 10.1017/S0017089514000081
Journal or Publication Title: Glasg. Math. J.
Volume: 56
Number: 3
Page Range: S. 657 - 681
Date: 2014
Publisher: CAMBRIDGE UNIV PRESS
Place of Publication: NEW YORK
ISSN: 1469-509X
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/43116

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item