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Automatic Palaeographic Exploration of
Genizah Manuscripts

Lior Wolf, Nachum Dershowitz, Liza Potikha, Tanya German, Roni Shweka,
Yaacov Choueka

Abstract

The Cairo Genizah is a collection of hand-written documents containing approximately
350,000 fragments of mainly Jewish texts discovered in the late 19th century. The
fragments are today spread out in some 75 libraries and private collections worldwide,
but there is an ongoing e�ort to document and catalogue all extant fragments.
Palaeographic information plays a key role in the study of the Genizah collection.
Script style, and–more speci�cally–handwriting, can be used to identify fragments that
might originate from the same original work. Such matched fragments, commonly
referred to as “joins”, are currently identi�ed manually by experts, and presumably only
a small fraction of existing joins have been discovered to date. In this work, we show
that automatic handwriting matching functions, obtained from non-speci�c features
using a corpus of writing samples, can perform this task quite reliably. In addition, we
explore the problem of grouping various Genizah documents by script style, without
being provided any prior information about the relevant styles. The automatically
obtained grouping agrees, for the most part, with the palaeographic taxonomy. In cases
where the method fails, it is due to apparent similarities between related scripts.

Zusammenfassung

Die Geniza aus Kairo ist eine Sammlung von ca. 350.000 handschriftlichen Fragmenten
jüdischer Texte, die im späten 19. Jahrhundert entdeckt wurde. Die Fragmente
werden heute in 75 Bibliotheken und privaten Sammlungen auf der ganzen Welt
aufbewahrt. Eine umfassende Dokumentation und Katalogisierung aller Fragmente ist
in Arbeit. Paläographische Informationen spielen für die Erforschung der Geniza eine
entscheidende Rolle. Schriftstil und Handidenti�zierung können genutzt werden, um
Fragmente der selben Quelle zu identi�zieren. Solche zusammengehörigen Fragmente
(sog. “joins”) müssen zur Zeit manuell von Experten gefunden werden. Es ist
davon auszugehen, dass nur eine kleine Zahl solcher “joins” bis heute entdeckt
werden konnte. In diesem Beitrag sollen zuverlässige Methoden zur automatischen
Identi�kation von Händen vorgestellt werden, die auf unspezi�schen Merkmalen
beruhen und einen Corpus von Schriftbeispielen benutzen. Zusätzlich untersucht der
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Beitrag Möglichkeiten, Geniza-Dokumente nach der Schriftart zu klassi�zieren. Diese
automatisch erschlossenen Gruppen stimmen größtenteils mit einer paläographischen
Taxonomie überein. In einzelnen Fällen scheitert die Methode auf Grund o�ensichtlicher
Ähnlichkeiten zwischen den Schriftarten.

1. Introduction

Written text is one of the best sources for understanding historical life. Community
documents, religious works, personal letters, and commercial records can all contribute
to a better understanding of a given place and time. In this respect, the Cairo Genizah
is a unique treasure trove of middle-eastern texts, comprising some 350,000 manuscripts
fragments, written mainly in the 10th to 15th centuries. Discovered in the 1890s in the
attic of a synagogue in Fostat, an old quarter of Cairo, the Genizah is a large collection
of discarded codices, scrolls, and documents. It contains a mix of religious Jewish
documents with a smaller proportion of secular texts. With few exceptions, these
documents are made of paper or parchment, and the texts are written mainly in Hebrew,
Aramaic, and Judeo-Arabic (Arabic language in Hebrew characters), but also in many
other languages (including Arabic, Judeo-Spanish, Coptic, Ethiopic, and even one in
Chinese).
After its discovery, the Genizah attic was emptied in several stages. The bulk of the

material was obtained by Solomon Schechter for Cambridge University, but there were
various acquisitions by others, too. By now, the contents have found their way to over
75 libraries and collections around the world. Most of the items recovered from the
Cairo Genizah have been micro�lmed and catalogued in the intervening years, but
the photographs are of mediocre quality and the data incomplete, with thousands of
fragments still not listed in published catalogues.
Genizah documents have had an enormous impact on 20th-century scholarship

in a multitude of �elds, including Bible, rabbinics, liturgy, history, and philology.
The major �nds include fragments of lost works (such as the Hebrew original of the
apocryphal Book of Ecclesiasticus), fragments of hitherto unknown works (such as the
Damascas Document, later found among the Qumran scrolls), and autographs by famous
personages, including the Andalusians Yehuda Halevi (1075–1141) and Maimonides
(1138–1204). Genizah research has, for example, transformed our understanding
of medieval Mediterranean society and commerce, as evidenced by S. D. Goiten’s
monumental �ve-volume work, A Mediterranean Society.1

The philanthropically-funded Friedberg Genizah Project, headquartered in Jerusalem,
is in the midst of a multi-year process of digitally photographing (in full color, at

1 See Reif for the history of the Genizah and of Genizah research.
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600dpi) most–if not all–of the extant manuscripts. The entire Genizah collections of
the Jewish Theological Seminary in New York (ENA), the Alliance Israelite Universelle
in Paris (AIU), The Jewish National and University Library in Jerusalem (JNUL), the
recently rediscovered collection in Geneva, and many smaller collections have already
been digitized and comprise about 90,000 images (recto and verso of each fragment).
The digital preservation of another 140,000 fragments of the Taylor-Schechter Genizah
Collection at The Cambridge University Library is currently underway. At the same
time, everything that is known about the fragments is being extracted from books,
catalogues, and scholarly articles. The images and all the information about them are
made freely available to researchers online at www.genizah.org.

Late in 2008, the Friedberg Genizah Project embarked on an ambitious e�ort to apply
the latest image-processing technology and arti�cial-intelligence research to the analysis
of its archive of images, thereby providing scholars of the humanities with new and
powerful tools for Genizah research. This work is being carried out in cooperation
with computer-science researchers in the �elds of vision and machine learning from Tel
Aviv University, the Hebrew University of Jerusalem, and Ben-Gurion University of the
Negev and in consultation with palaeographers and Genizah scholars. We report on
some aspects of that endeavor here.
Consider that, unfortunately, most of the leaves that were found were not found in

their original bound state. Worse, many are fragmentary, whether torn or otherwise
mutilated. Pages and fragments from the same work (book, collection, letter, etc.) may
have found their way to disparate collections around the world. Some fragments are
very di�cult to read, as the ink has faded or the page discolored. Scholars have therefore
spent a great deal of time and e�ort on manually rejoining leaves of the same original
book or pamphlet, and on piecing together smaller fragments, usually as part of their
research in a particular topic or literary work. Throughout the years, scholars have
devoted a great deal of time to manually identify such groups of fragments, referred to
as joins, often visiting numerous libraries for this purpose. Despite the several thousands
of such joins that have already been identi�ed by researchers, much more remains to
be done (Lerner and Jerchower). Accordingly, to make the future study of the Genizah
more e�cient, there is an urgent need to group the fragments together and to try to
reconstruct the original codices as well as possible.

Manual classi�cation is currently the “gold standard” for �nding joins. However this
is not scalable and cannot be applied to the entire corpus. We suggest automatically
identifying candidate joins to be veri�ed by human experts. To this end we
employ modern image-recognition tools such as local descriptors, bag-of-features
representations, and discriminative metric learning techniques, as explained in Section
3 of this chapter. These techniques are modi�ed by applying suitable preprocessing
and by using task-speci�c key-point selection techniques. Furthermore, a bag of visual
keywords approach is taken in which palaeographic samples of various script styles are

http://www.genizah.org/
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used. It can be shown that this step increases performance considerably. The results are
presented in Sections 4 and 5.
In addition to the automated join-�nding e�ort, we also study the problem of

automatically deriving the script style of Genizah documents. We choose to do it in an
unsupervised manner, in which a clustering algorithm groups the various documents,
thereby separating the image sets according the script style of each image, with no
a priori bias towards a particular classi�cation scheme. Nevertheless, the resulting
division is a close match to the standard taxonomy. This aspect of our work is the
subject of Section 6.
Section 7 discusses related work and is followed by a brief summary of our

achievements.

2. Image Processing and Physical Analysis

The images supplied by the Friedberg Genizah Project were in the format of 300–600
dpi JPEGs with arbitrarily aligned fragments placed on varying backgrounds. Although
uncompressed images of higher resolution are available, we choose not to use these since
the type of methods we use do not require higher resolution, and since the compression
artifacts can be neglected in comparison to the deformations created to the original
fragment over the centuries. An example, which is relatively clean, is shown in Figure
1(a). Many of the images, however, contain super�uous parts for our task, such as
paper tags, rulers, color tables, etc. (as in Figure 5). Therefore, a necessary step in our
pipeline is preprocessing of the images to separate fragments from the background and
to align fragments so the rows of text are horizontal. Then the physical properties of
the fragments and of the text lines are measured. Both stages are described in detail in
a previous work (Wolf et al.).

2.1. Preprocessing

The goal of the preprocessing stage is to eliminate parts of the images that are irrelevant
or may bias the join �nding process, and to prepare the images for the representation
stage.
Coarse manual alignment. In a �rst manual stage, the written sides of each

fragment were identi�ed. All the images were then manually rotated as necessary
in multiples of 90°, resulting in alignment in the range of [-45°, 45°] from upright. This
initial rotation prevents the following auto-alignment from rotating documents upside-
down. Both the identi�cation of the written side and the coarse alignment stages are
now being automated; however, the manual e�ort expended for the work reported here
was not great.
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Figure 1. Example of a document from the Cairo Genizah (ENA collection). (a) The original image. (b) After
removing the black folder. (c) After segmentation (using the convex hull). (d) After binarization and
alignment.

Foreground segmentation. The process of separating fragments from the back-
ground in the photographs depends on the way the image was captured. At �rst, a
machine classi�er was used to identify foreground pixels based on RGB color values
or HSV values. To create a region-based segmentation of the fragments, the connected
components of the detected foreground pixels are marked, and the convex hull of each
component is calculated. By connected component, we mean a contiguous region of
foreground pixels; by convex hull, we mean the smallest possible encompassing convex
(angles opening inward) polygon. Those steps retain almost all of the relevant parts of
the images while excluding most of the background.
Detection and removal of non-relevant components. Labels, ruler, color swatches,

and any other non-relevant components that fall in separated regions were manually
removed. In some images, especially of large documents, a ruler appears adjacent to the
actual fragments and is not separated by the region-segmentation process. The ruler
used in the images is of a known type, so we locate it by an automated detector based
on correspondence to a reference image of this ruler. The correspondence is done by
employing a randomized algorithm, RANSAC (Fischler and Bolles), in combination
with scale-invariant feature transform (SIFT) (Lowe) keypoint matching. The region of
the detected ruler is segmented by color and removed.
Binarization. The regions detected in the foreground segmentation process are then

binarized, that is, every ink pixel is assigned a value of 1 (representing black), and all
other pixels are assigned a value of 0 (for white). This is done using the auto-binarization
tool of the ImageXpress 9.0 package by Accusoft Pegasus. To cope with failures of the
Pegasus binarization, we also binarized the images using the local threshold set at 0.9
of the local average of the 50x50 patch around each pixel. The �nal binarization is
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the pixel-wise AND of those two binarization techniques. Pixels near the fragment
boundary are set to 0. A sample result is shown in Figure 1(b). Experiments with more
sophisticated binarization methods, such as Bar-Yosef et al. (2007), are ongoing.
Auto-alignment. Each region is automatically rotated so the rows (lines of text) are

in the horizontal direction. This is done using a simple method, which is similar to
Baird and to Srihari and Govindaraju. For each possible rotation angle we consider the
ratio of black (binary value 1) to white (binary value of 0) pixels for each horizontal line.
We then calculate the variance of the projection for each angle, and select the angle for
which the variance is the largest.

Physical measurements. The measurements that are being used in fragment
matching are characteristics of the text rows, and dimensions of the text bounding box
(smallest rectangle containing all the text). The number of text rows, height of the
rows and the spaces between the rows are calculated automatically using the projection
pro�le of the fragment (the proportion of black in each row of pixels). The text rows
themselves are localized at the maxima points of these projections. In addition, the
minimal-area bounding box of each fragment is computed. Note that this bounding box
need not be axis-aligned.

3. Image Handwriting Representation

We decided to employ a general framework for image representation that has been
shown to excel in domains far removed from document processing, namely, a method
based on a bag of visual keywords (Dance et al.; Lazebnik, Schmid, and Ponce). The
“signature” of a leaf is based on descriptors collected from local patches in its fragments,
centered around key visual locations, called “keypoints”. Such methods follow this
pipeline: �rst, keypoints in the image are localized by examining the image locations
that contain most visual information. In our case, the pixels of the letters themselves are
good candidates for keypoints, while the background pixels are less informative. Next,
the local appearance at each such location is encoded as a vector. The entire image
is represented by the obtained set of vectors, which in turn is represented as a single
vector. This last encoding is based on obtaining a “dictionary” containing representative
prototypes of visual keywords and counting, for each image, the frequency of visual
keywords that resemble each prototype appearing in the dictionary.

3.1. Keypoint Detection

We detect the image keypoints using the fact that, in Hebrew writing, letters are usually
separated. We start by calculating the connected components (CCs) of the binarized
images. To �lter broken letter parts and dark patches arising from stains and border
artifacts, we compare the size of the CC to the height of the lines, which is estimated



Automatic Palaeographic Exploration of Genizah Manuscripts 163

Figure 2. (a) Keypoint detection methods using the proposed CC method. (b) SIFT descriptors of three
neighboring detected keypoints.

in a similar fashion to the alignment stage of the previous section. For encoding, each
keypoint requires a scale, which is taken as the maximum dimension of the associated
CC. Figure 2(a) shows the keypoints found using the SIFT and CC detectors.

3.2. Local Descriptors

Each keypoint is described by a descriptor vector. After experimenting with a large
variety of such descriptors, the most popular descriptor, the scale-invariant feature
transform (SIFT), was chosen for its accuracy. SIFT (Lowe) encodes histograms of
gradients in the image. Figure 2(b) illustrates the application of SIFT to one fragment.

3.3. Dictionary Creation and Vectorization

Bag-of-visual-keyword techniques (Dance et al.) rely on a dictionary that contains
a representative selection of descriptors obtained on various interest points. To this
end, we �rst set aside a small dataset of 500 documents. We detect keypoints in those
documents and subsample a large collection of 100,000 descriptors. These are then
clustered by the k-means algorithm to obtain a dictionary of varying sizes.2 The result
is a set of prominent prototypes or “visual keywords”; see Figure 3.

2 Clustering algorithms (in machine learning parlance) assign input samples to homogenous groups that
are distinctive from each other. The k-means algorithm is one of the simplest such algorithms. After an
initialization stage, it repeats two steps multiple times: �rst, each sample is assigned to a cluster based on
its distance to all cluster centers, and second, each cluster center is updated to be the mean vector value of
all points that were assigned to this cluster.
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Figure 3. Cluster “centers” obtained by taking the average image of all images in each cluster. By clustering
(grouping into homogenous groups) a large collection of visual descriptors obtained from random
images, a set of distinctive visual keywords or prototypes, referred to as a “dictionary”, is formed.
Note that the cluster centers look blurry, since they stem from averaging multiple images.

Given a dictionary, we employ either histogram-based methods or distance-based
methods to encode each manuscript leaf as a vector. In histogram-type vectorization
methods (Dance et al.), for each cluster-center in the dictionary, one counts the number
of leaf descriptors (in the encoded image) closest to it. The result is a histogram of
the descriptors in the encoded leaf with as many bins as the size of the dictionary.
To account for the variability in fragment sizes we normalize the histogram vector to
sum to 1, that is, we divide the histogram vector by its sum. Another alternative is to
normalize each vector so that its Euclidean norm is 1.3

Distance-based representation techniques (Serre, Wolf, and Poggio) are based on
computing the minimum distance to all descriptors of the given leaf for each prototype
in the dictionary.

3 The Euclidean, or L2, norm is the square-root of the sum of the squares of each dimension. An L1 norm is
just the sum of absolute values.
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Script style Number of samples Page list

Square and Semi-Square Oriental 51 images I-1 – I-51
Semi-cursive Oriental 61 images I-52 – I-112
Yemenite 42 images I-113 – I-154
Square Spanish 62 images II-1 – II-62
Semi-cursive Spanish 99 images II-63 – II-161
Cursive Spanish 48 images II-162 – II-209

Table 1. The images of document samples used to obtain dictionaries for each script style were taken from the
indicated pages of the palaeography volumes I (Beit-Arie, Engel, and Yardeni 1987) and II (Beit-Arie,
Engel, and Yardeni 2002).

3.4. Employing Palaeographic Data in the Representation

The resulting representation transforms each image into a vector based on a global
dictionary, in which prototypes from various script types are mixed together. Since
most Genizah joins contain just one script style, it might be helpful to have multiple
dictionaries, each corresponding to one script style. To obtain such dictionaries we
apply the procedure described in Section 3.3 repeatedly, each time on documents of the
same script.
Sample documents for each style were extracted from the pages of the medieval

Hebrew script specimen volumes by Beit-Arie, Engel, and Yardeni (1987, 2002). These
volumes contain many examples of medieval Hebrew manuscripts whose provenances
are known, and serve as an important tool in Hebrew palaeography. High-quality
sample pages of manuscripts are printed side-by-side with professionally-drawn sample
letters of the alphabet, based on exemplars from the manuscript. Note that we use the
images of the original documents and not the individually hand-drawn letter samples.

The groups of script styles obtained from this collection, and the corresponding page
numbers of the collection are listed in Table 1. As can be seen, the major script styles are
square script, semi-cursive script, and cursive script. The geographic location in�uences
script style, so we extracted Oriental, Yemenite, and Spanish script groups from the
same source.

4. Finding Joins

To determine whether two fragments originate from the same manuscript, we compare
their vector representations. The comparison can be performed in several ways and it is
often bene�cial to combine multiple methods.
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4.1. Similarity Inference

Focusing on just one representation, each leaf is represented by one vector, for example,
by the L2-normalized histogram of keypoint types. For every pair of leaves, we need
to determine whether they are from the same join or not. Ideally, we would have a
similarity function that would return a high value when two leaves are from the same
join, and a low value otherwise. In this ideal case, a threshold value of the similarity
function provides a decision cuto� value.
The basic similarity score is obtained by considering, for every two vectors p and q,

the similarity derived from their Euclidean distance e−�p−q�.
In our work we also employ learned similarities. Tailoring similarity measures to

available training data by applying learning techniques is gaining popularity. Here,
the similarity is to be learned from pairs of samples that are known to belong to the
same join or not, and we choose to use a similarity that has been shown to be extremely
successful in face-recognition work.

The One Shot Similarity (OSS) (Wolf, Hassner, and Taigman 2008, 2009) is a similarity
learning technique designed for the same/not-same problem. Given two vectors p and q,
their OSS score is computed by considering a training set of background sample vectors
A. This set of vectors contains examples of items di�erent from either p and q (that
is, they do not belong in the same class as neither p or q). Note, however, that these
training samples are otherwise unlabeled. In our experiments we take the set A to be
one split out of the nine splits used for training at each iteration (see Section 4.3).
A measure of the similarity of p and q is then obtained as follows. First, a

discriminative model is learned4 with p as a single positive example and A as a set
of negative examples. This model is then used to classify the second vector, q, and
obtain a classi�cation score. The nature of this score depends on the particular classi�er
used. We employ a Linear Discriminant Analysis (LDA) classi�er, and the score is the
signed distance of q from the decision boundary learned using p (positive example) and
A (negative examples). A second such score is then obtained by repeating the same
process with the roles of p and q switched: this time, a model learned with q as the
positive example is used to classify p, thus obtaining a second classi�cation score. The
�nal OSS is the sum of these two scores.

4 Classi�ers or learned discriminative models (in machine learning terminology) are functions whose
parameters are �t in a way that they predict the class of a given input. Typically, training samples are given
that are divided into two sets—a positive set and a negative set. Learning then takes place by computing
the function parameters that would assign a positive or a negative label to every training sample similarly
to the given labels. In this paper, we use two classi�cation algorithms: Linear Discriminant Analysis
(LDA), which is a learning method that assumes Gaussian conditional density models, and linear Support
Vector Machine (SVM), a classi�er that strives to separate the positive samples from the negative ones as
much as possible.
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4.2. Classi�cation and Combinations of Features

For the recognition of joins we need to convert the similarity values of Section 4.1 to
a decision value. Moreover, it is bene�cial to combine several similarities. For both
these tasks we employ linear support vector machines (SVM), with �xed parameter
value C = 1, as was done in Wolf, Hassner, and Taigman (2008) and Wolf, Bileschi, and
Meyers (2006).

In the case of one-similarity, the similarity is fed to SVM as a one-dimensional vector
and training is performed on all training examples. In this case, SVM just scales the
similarities and determines a threshold for classi�cation.
To combine several similarities together we use the SVM output (signed distance

from dividing hyperplane) obtained separately from each similarity and construct a
vector. This vector is then fed to another SVM. The value output by the last classi�er
is our �nal classi�cation score. This method of combining classi�er output is called
“stacking” (Wolpert).

4.3. The Genizah Benchmark

To evaluate the quality of our join-�nding e�orts, we constructed a comprehensive
benchmark. Our benchmark, modeled after the LFW face recognition benchmark
(Huang et al.), consists of 31,315 leaves, all from the New York (ENA), Paris (AIU), and
Jerusalem (JNUL) collections.

The benchmark consists of ten equally sized sets. Each contains 1000 positive pairs
of images taken from the same joins, and 2000 negative (non-join) pairs. Care is taken
to ensure that no known join appears in more than one set, and that the number of
positive pairs taken from one join does not exceed 20.

The ROC (receiver operating characteristic) curve is an accepted form of measuring
classi�cation success. It is a graph (see Figure 4) in which the trade-o� between false
positive (type I error) results and the recall (true positive) rate is displayed. One would
like to obtain perfect recall (identifying all joins) making no false-positive errors, that is,
without identifying non-joins as joins. However, in reality the task is challenging and
therefore a certain number of false detections is expected for reaching high levels of
recall.
To report results, the classi�cation process is repeated 10 times. In each iteration,

nine sets are taken as training, and the results are evaluated on the tenth set. Results are
reported by constructing an ROC curve for all splits together (the outcome value for
each pair is computed when this pair is a testing pair), by computing statistics of the
ROC curve (area under curve, equal error rate, and true positive rate at a certain low
false positive rate) and by recording average recognition rates for the 10 splits.
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The most interesting statistic from the practical point of view is the recall at a low-
false positive rate. Since there are many theoretical join candidates in the Genizah and
since human veri�cation e�ort is limited, any practical join-�nding system should mark
non-joins as joins only for a small percentage of these candidates.

4.4. Benchmark Results

We compare the performance of several methods, each based on a separate source of
information. Not surprisingly, combining these methods yields the best results.
Subject classi�cation. Over 95% of the digitized Genizah documents have already

been manually classi�ed by subject matter. The classi�cation contains categories such as
“Biblical”, “Correspondence”, “Liturgy”, “Arabic tafsir”, “Aramaic translation”, and more.
A similarity of -1 is assigned to pairs of documents with incompatible classi�cations.
A score of +1 is given if the classi�cations are compatible, and a score of 0 when
compatibility cannot be determined.
Physical measurements. Eight measurements are considered: number of lines,

average line height, standard deviation of line height, average space between lines,
standard deviation of interline space, minimal bounding box width, minimal bounding
box height, and area of the minimal bounding box. Each one of these measurements
is hardly discriminative; however, combined together, they are able to discriminate
pretty reliably between joins and random pairs, although not as well as the handwriting
approach below.
Handwriting. The handwriting is represented using the bag of visual keywords

approach described above. With a global dictionary, the best performing method uses
the One-Shot-Similarity (OSS) of Section 4.1.
Multiple script-style dictionaries. The OSS scores obtained from the various

dictionaries described in Section 3.4 are combined using the stacking technique of
Section 4.2. This method provides a noticeable improvement over the single-dictionary
method.
Combined methods. In addition, we combine the handwriting-based scores (single

or multiple dictionaries) with the physical score and with the subject-classi�cation
score.
The results are summarized in Table 2. It can be seen that the best method, the one

that combines the multiple script-style dictionaries with the physical measurements
and the subject classi�cation, obtains a recall rate of up to 84.5% at a false-positive
rate of 0.1%. The obtained ROC curves are depicted in Figure 4(a). While some of the
improvements seem incremental, they actually make a signi�cant di�erence in the low
false-positive region (Figure 4(b)).
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Method Area Equal Mean success TP rate at
under error ± FP rate of
ROC rate standard error 0.001

Subject classi�cation 0.7932 0.3081 0.4935 ± 0.0042 0
Physical measurements 0.9033 0.1843 0.8483 ± 0.0034 0.3596
Single dictionary 0.9557 0.0918 0.9374 ± 0.0048 0.7600
Single dictionary + physical 0.9785 0.0627 0.9566 ± 0.0028 0.8116
Multiple script-style dictionaries 0.9805 0.0564 0.9596 ± 0.0029 0.8053
Multiple dictionaries + physical 0.9830 0.0524 0.9625 ± 0.0028 0.8229
Multiple + physical + subject 0.9888 0.0430 0.9680 ± 0.0024 0.8451

Table 2. Results obtained for various similarity measures and combinations thereof. See text for the description
of each method.

Figure 4. ROC curves (true positive rate vs. false positive rate) averaged over 10 folds. The plots compare
the results obtained for the subject classi�cation criterion, physical measurements, a single global
dictionary, multiple script-type dictionaries, and the multiple dictionary approach combined with
physical measurements and subject classi�cation.
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5. Newly-Found Joins

We have conducted three sets of examinations to evaluate the value of our system in
�nding joins beyond the settings of the benchmark.

5.1. A Small Benchmark

A set of experiments was performed on an initial benchmark we created for a
preliminary work (Wolf et al.). This benchmark was much smaller and contained
ten splits each containing 196 positive pairs and 784 negative ones. All images were
taken from the ENA and AIU collections. As mentioned above, the negative pairs
we work with are not necessarily negative. This does not a�ect the numerical results
much, since the fraction of joins is overall low; however, it implies that there may exist
unknown joins in the set of leaves that are currently available to us.

We applied our classi�cation technique to all possible pairs of leaves and then looked
at the 30 leaf pairs that were not known to be joins, but which received the highest
matching scores. The resulting pairs were submitted to a human expert for validation.
The manual labor involved was about 2.5 hours. Eighty percent of the newly detected
join candidates were actual joins. Seventeen percent are not joins and one pair could
not readily be determined.

5.2. The Geneva Collection

We applied our system to the task of locating joins with the recently recovered Geneva
collection. The search for joins using our tools was pretty e�cient, with about 30% of
the top 100 matches returned turning out to be actual joins. Figure 5 shows a variety
of previously-unknown joins proposed by our method. Example (a) consists of two
leaves from the same copy of the Mishnah, written on vellum in Hebrew in a square
script. The texts are from di�erent tractates of Order Zeraim. The left page is from the
Geneva collection and the right one from the small collection of the Jewish National
and University Library (JNUL). Other leaves from the same manuscript are in Oxford
and Cambridge.5 Example (b) shows fragments from a codex of the Bible, both from the
book of Exodus (Hebrew, square script, on vellum), one from Geneva and the other from
the Jewish Theological Seminary (JTS) in New York, part of a batch of 69 fragments
from various biblical manuscripts (partially vocalized and with cantillation signs). Such
codices are written using a very rigid set of typographic rules, and the identi�cation of
such joins based on handwriting is considered extremely challenging. Example (c) is in
alternating Hebrew and Aramaic (Targum, square script), one page from Geneva and

5 It turns out that this speci�c automatically-proposed join has already been discovered and is documented
in the very recent Geneva catalogue (Rosenthal), and in the forthcoming Sussmann Catalog.
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Range Strong join Weak join Total join Excluding empty

1–2000 17.05% 6.95% 24.00% 44.8%
5791–8790 7.16% 6.20% 13.37% 18.0%

Table 3. The percentile of veri�ed new joins out of the candidate joins suggested by our system.

the other from the New York JTS collection. Example (d) shows a join of two leaves
of Hebrew liturgical supplications from Geneva and from Pennsylvania, in rabbinic
script. Example (e) is from a book of precepts by Saadiah ben Joseph al-Fayyumi, a lost
halakhic work by the 10thcentury gaon. The left page is from the Geneva collection
and the right one from JTS. The language is Judeo-Arabic, and the text is written in a
square oriental script on vellum. This is a good example of how joins can help identify
new fragments from lost works. Once one member of a pair is identi�ed correctly, the
identi�cation of the second one is self-determined. Example (f) is from a responsum in
Hebrew (rabbinic script). Both leaves are from the Alliance Israelite Universelle Library
in Paris, but they are catalogued under di�erent shelfmarks.

5.3. Between Collections

A third set of join-seeking e�orts was conducted on all between-collection pairs of
fragments unknown to be joins in the ENA, AIU, and JNUL collections, as well as in
smaller European collections of mixed quality.
Note that inter-collection joins are harder for humans to �nd, and are more

challenging and rare. The top scoring 9,000 pairs were extracted. After further analysis
of catalogue information some additional known pairs were removed resulting in 8,790
pairs. The �rst 2,000 pairs and the last 3,000 fragments of this list were studied. The
results are given in Table 3. It separates between “strong” joins, meaning same scribe
and same manuscript, and “weak” joins—a join between di�erent manuscripts that seem
to be written by the same scribe. In contrast to strong joins, the certainty of a weak join
coming from the same document is doubtful, and in many cases should be examined
carefully again by an expert. In any event, a weak join represents a good candidate for
fragments written by the same scribe, and as such it is considered a success.
As can be seen, 24% of the top discoveries are true joins, mostly strong. More than

13% of the 6th, 7th, and 8th thousands of matches are validated joins. At least half of those
are strong joins. Going over the examples it became apparent that many of the proposed
joins were artifacts caused by normalized vectors arising from empty documents. This
was to be expected, since the benchmark that was used to develop the join-discovery
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Figure 5. Each row shows samples from a single cluster. The left three samples are from the main script style
of this cluster, while the two samples to the right are samples of the same cluster that belong to
other script styles. Shown, from top to bottom are clusters 4, 5, 6, 8, 17. Also shown (last row) are
samples of singletons, i.e., documents that were not assigned to any of the clusters.
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tool was not designed to handle blank documents. After the removal of 49 empty
fragments and all their discovered joins, the recognition rates grew considerably.

6. Unsupervised Grouping by Script Style

As we have found, the most distinguishing visual information between the fragments
arises from the handwriting. The search for joins focuses on minute di�erences that
exist between various scribes. We now turn our attention into grouping the documents
by a much coarser distinction: the one between script styles.
We sample 300 leaves from the Genizah collection that have been classi�ed into

one of 12 script styles: “Square Ashkenazi”, “Square Italian”, “Semi-cursive Oriental”,
“Square Oriental”, “Cursive Oriental”, “Semi-cursive Spanish”, “Square Spanish”,
“Cursive Spanish”, “Semi-cursive Yemenite”, “Square Yemenite”, “Square North-African”,
“Cursive North-African”. We then attempt to group the leaves automatically, a process
called “clustering”.
We found that conventional clustering algorithms such as k-means work poorly for

separating the documents into script-styles. Indeed, k-means focuses on clusters of
similar sizes, and might produce unintuitive results for data that is not distributed
homogeneously in the parameter space.
We therefore employed the following method that was developed in order to deal

with an unknown number of clusters, variability in cluster size, and inhomogeneous
data.
First, each leaf is represented as a vector using the bag of visual keyword approach

and a single global dictionary. Multiple dictionaries would not be appropriate here,
since we would like to obtain the script styles from the data, and not impose it on the
representation.
Recall that the vector representing each leaf contains visual “keyword” frequencies.

To eliminate noise and remove spurious correlations between documents, we focus
on the most prominent keywords for each document. This is done by replacing each
keyword frequency that is less than half of the maximal frequency by 0.
In the next step, we build a graph in which every leaf is a node, and an edge exists

between two nodes if the correlation between their modi�ed vectors is above 0.5.
The connected components of this graph are taken as the initial clusters. Connected
components that contain single points are referred to below as “singletons” and are
considered unclustered.
We then re�ne these clusters by iterating, until convergence, two alternating steps.

In the �rst step, pairs of clusters for which the distances between each cluster’s points
and the cluster mean point are similar to the distances between the two clusters are
merged. In the second step, singletons are assigned to clusters if their distance to the
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Square Ashkenazi 0.00 0.00 0.00 0.33 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
Square Italian 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Semi-cursive Oriental 0.00 1.00 1.00 0.67 0.00 0.00 0.20 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
Square Oriental 0.00 0.00 0.00 0.00 0.64 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18
Cursive Oriental 0.00 0.00 0.00 0.00 0.04 0.00 0.80 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Semi-cursive Spanish 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
Square Spanish 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
Cursive Spanish 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.15
Semi-cursive Yemenite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Square Yemenite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.06
Square North-African 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.09
Cursive North-African 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 1.00 0.00

Table 4. A confusion matrix that shows that frequency within each obtained cluster of each script style. For
example, the �rst cluster is composed entirely out of leaves of square Italian script style, while the
forth cluster is one-third square Ashkenazi and two-thirds Semi-cursive Oriental.

closest cluster is not larger than three times the standard deviation of distances within
that cluster.
After convergence, this procedure yields 18 clusters and 34 singletons. The clusters

are pretty homogenous with regard to script style: 93% of the documents are clustered
within clusters in which their script-style is the most frequent script-style; 7% are
clustered in clusters in which they belong to the minority.

The distribution of documents of various script styles among the 18 clusters is shown
in the confusion matrix presented in Table 4. Each row of this matrix corresponds to
one script style, and each column to one cluster.
Figure 6 shows samples from representative clusters. As can be seen, confusion is

often a result of script styles that are super�cially similar. Naturally a more detailed
analysis of individual letters would lead to more accurate results; however, this requires
accurate optical character recognition, which is beyond the current state of the art for
the vast majority of Genizah images.

7. Related Work

7.1. Writer Identi�cation

A related task to that of join �nding is the task of scribe identi�cation, in which the goal
is to identify the writer by morphological characteristics of a writer’s handwriting. Since
historical documents are often incomplete and noisy, preprocessing is often applied
to separate the background and to remove noise (Bres, Eglin, and Volpilhac-Auger;
Leedham et al.). Latin letters are typically connected, unlike Hebrew ones which
are usually only sporadically connected. E�orts were thus expended on designing
segmentation algorithms to disconnect letters and facilitate identi�cation (Casey and
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Figure 6. Each row shows samples from a single cluster. The left three samples are from the main script style
of this cluster, while the two samples to the right are samples of the same cluster that belong to
other script styles. Shown, from top to bottom are clusters 4, 5, 6, 8, 17. Also shown (last row) are
samples of singletons, i.e., documents that were not assigned to any of the clusters.



176 Wolf – Dershowitz – Potikha – German – Shweka – Choueka

Lecolinet). The identi�cation itself is done either by means of local features or by global
statistics. Most recent approaches are of the �rst type and identify the writer using
letter- or grapheme-based methods, which use textual feature matching (Panagopoulos
et al.; Bense�a, Paquet, and Heutte). The work of Bres, Eglin, and Volpilhac-Auger
(2006) uses text-independent statistical features, while other e�orts combine both local
and global statistics (Bulacu and Schomaker 2007a; Dinstein and Shapira).
Interestingly, there is a specialization to individual languages, employing language-

speci�c letter structure and morphological characteristics (Bulacu and Schomaker 2007a;
Panagopoulos et al.; Dinstein and Shapira). In our work, we rely on the separation of
Hebrew characters by employing a keypoint detection method that relies on connected
components in the thresholded images.

Most of the abovementioned works identify the writer of the document from a list of
known authors. Here, we focus on �nding join candidates, and do not assume a labeled
training set for each join. Still, since writers are usually unknown (in the absence
of a colophon or signature), and since joins are the common way to catalog Genizah
documents, we focused on this task. Note that the handwriting techniques we use
are not entirely suitable for distinguishing between di�erent works of the same writer.
However, additional data, such as text or topic identi�cation, page size and number of
lines, as used in Section 4, can help distinguish di�erent works by the same writer.

7.2. Digital Palaeography

Palaeographers traditionally use a mix of qualitative and quantitative features
to distinguish hands (Mallon). Early uses of image analysis and processing for
palaeographic research include the work of Founder and Vienot, Sirat, and Dinstein
and Shapira; Plamondon and Lorette survey other early work. Quantitative aspects
can be measured by automated means and the results can be subjected to computer
analysis and to automated clustering techniques (Ciula; Aussems; Aiolli and Ciula).
Features amenable to automatization, including texture (Said, Tan and Baker; Bulacu
and Schomaker 2007b), angularities (Bulacu, Schomaker, and Vuurpijl), and others
(Aussems and Brink) have been suggested. Concavity, moments, and other features
have been used to correctly classify selected Hebrew letters by writer (Bar-Yosef et al.
2004, 2007). What distinguishes our work is that we are using generic image features for
this purpose.

8. Conclusion

We have presented a framework for identifying joins in Genizah fragments, which
has already provided results of value to Genizah researchers by identifying heretofore
unknown joins. We have shown how handwriting data, especially when combined with
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prior knowledge of script styles, physical measurements, and subject classi�cation, can
produce a reliable system.
Through our semi-automated e�orts approximately 1000 new joins have been

identi�ed. Given that the overall number of joins found in over a century of Genizah
research and by hundreds of researchers is only a few thousand, our system has proved
its scalability and value. The main limiting factor in �nding more joins is the short
supply of human experts. We hope to alleviate this constraint by making our join
candidates available over the internet to the Genizah research community.
We also explored the grouping of Genizah documents in a top-down manner, and

have shown that, when the heterogenous nature of the data set is accounted for, the
palaeographic information emerges as the most visually prominent characteristic.
The methods presented here are applicable to other corpora as well. Many archives

hold large unstructured sets of handwritten forms, letters, or other documents. The
same technology could provide meta-data and enable queries based on similarity, and
automatic grouping of the documents. The information employed is complementary
to that obtained by Optical Character Recognition (OCR) systems, and would remain
so even were the accuracy of the OCR systems to increase substantially. Note that
although we did not focus on Latin scripts, the method is suitable to such scripts as well,
with relatively straightforward adaptations to the keypoint mechanisms.
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