Generierung und Charakterisierung von konditionalen *Bdp1-knockout*-Mausmodellen

Analysen des Transkriptionsfaktor IIIB-Komplexes

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Miriam Jakubik aus Wipperfürth

> > Köln 2011

Die hier vorliegende Dissertation wurde mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät am Institut für Humangenetik, am Institut für Genetik und am Zentrum für Molekulare Medizin Köln (ZMMK) der Universität zu Köln angefertigt.

Berichterstatter: Prof. Dr. rer. nat. Sigrun Korsching Prof. Dr. rer. nat. Brunhilde Wirth

Tag der mündlichen Prüfung: 30.06.2011

"Das Glück kommt nicht von außen, es beginnt im Allerheiligsten der Seele"

nach K. Gibran

meinen Eltern, Katja & Joachim

I. Inhaltsverzeichnis

١.	Inhal	tsverze	ichnis	I
II.	Abkü	rzungs	verzeichnis	VI
1.	Einlei	itung		1
	1.1	Die DN	IA-abhängige RNA Pol III	1
	1.1.1	I	Promotorklassen und Transkriptionsfaktoren	1
	1.1.2	I	Die Untereinheiten der Transkriptionsfaktoren und der RNA Pol III	4
	1.1.3	I	Die TFIIIB-Untereinheit BDP1	5
	1.1.4	I	Regulation des TFIIIB-Komplexes	7
	1.2	Das B	DP1-Protein und die spinale Muskelatrophie (SMA)	9
	1.2.1	I	Die autosomal rezessive proximale spinale Muskelatrophie (SMA)	9
	1.2.2	1	Molekulare Grundlagen der SMA	10
	1.2.3	2	SMA und die Ausbildung atypischer Symptome	11
	1.2.4	I	Das <i>Bdp1</i> -Gen und die murine SMA-Region	13
	1.3	Mause	genetik	14
	1.3.1	I	Die Embryonalentwicklung der Maus	14
	1.3.2	I	Die frühe Gehirnentwicklung der Maus und das Ventrikelsystem	17
	1.3.3	1	Manipulationen des Mausgenoms	19
	1.3.4		Gene targeting	19
	1.3.5	!	Sequenz-spezifische Rekombinationssysteme	20
	1.3	8.5.1	Das Cre/loxP-System	20
	1.3	8.5.2	Das Flp/FRT-System	21
	1.3.6	!	SMA-Mausmodelle	21
2.	Zielse	etzung	der Arbeit	23
3.	Mate	rial un	d Methoden	24
	3.1	Mater	ial	24
	3.1.1	(Chemikalien	24
	3.1.2	`	Verbrauchsmaterialien	24
	3.1.3	(Geräte und Zubehör	25
	3.1	3.1	Allgemeine Geräte und Zubehör	25
	3.1	3.2	Geräte und Zubehör zur Analyse von Nukleinsäuren	26
	3.1	3.3	Geräte und Zubehör zur Analyse von Proteinen	27
	3.1	3.4	Geräte und Zubehör für die Zellkultur	27
	3.1	3.5	Geräte und Zubehör für die Immunhistologie	27
	3.1	3.6	Geräte und Zubehör für die Arbeit mit Mäusen	28
	3.1.4	5	Substanzen und Chemikalien	28
	3.1	4.1	Allgemeine Substanzen und Chemikalien	28
	3.1	4.2	Substanzen und Chemikalien zur Analyse von Nukleinsäuren	29
	3.1	4.3	Substanzen und Chemikalien zur Analyse von Proteinen	30
	3.1	4.4	Substanzen und Chemikalien für die Zellkultur	30
	3.1	4.5	Substanzen und Chemikalien für die Immunhistologie	31
	3.1	4.6	Substanzen und Chemikalien für die HTN-Cre-Expression und Isolation	31

3.1.5	Lösungen, Medien und Puffer	32
3.1.5.1	Lösungen zur Analyse von Nukleinsäuren	32
3.1.5.2	Lösungen zur Analyse von Proteinen	35
3.1.5.3	Lösungen für die Zellkultur	36
3.1.5.4	Lösungen für die Immunhistologie	37
3.1.5.5	Lösungen für die HTN-Cre-Expression	38
3.1.6	Kits	39
3.1.6.1	Kits zur Analyse von Nukleinsäuren	39
3.1.6.2	Kits zur Analyse von Proteinen	40
3.1.6.3	Kits für die Immunhistochemie	40
3.1.7	Primer	40
3.1.8	Enzyme	43
3.1.8.1	Restriktionsenzyme	43
3.1.8.2	Sonstige Enzyme	43
3.1.9	Antikörper	43
3.1.10	Mauslinien und Zellen	45
3.1.11	Gentechnisch veränderte Organismen (GVO)	46
3.1.12	Sonstiges	47
3.1.12.1	Verwendete Größenmarker	47
3.1.12.2	Verwendete <i>software</i>	47
3.1.12.3	Verwendete Datenbanken	48
3.2 Meth	oden	48
3.2.1	Molekularbiologische Methoden	48
3.2.1.1	Isolierung genomischer DNA	48
3.2.1.	1.1 DNA-Isolation aus Mäuseschwanzspitzen	48
3.2.1.	1.2 DNA-Isolation mittels Charge Switch gDNA Mini Tissue Kit	49
3.2.1.	1.3 DNA-Isolation aus Geweben (Phenol-Chloroform-Extraktion)	49
3.2.1.	1.4 DNA-Isolation aus murinen embryonalen Fibroblasten	49
3.2.1.2	Die Polymerase Kettenreation	50
3.2.1.	2.1 Aufreinigung von PCR-Produkten	51
3.2.1.3	Amplifikation genomischer DNA (Blastozysten)	51
3.2.1.4	Spektrophotometrische Quantifizierung von DNA	51
3.2.1.	4.1 Quantifizierung mittels NanoDrop-Gerät	51
3.2.1.	4.2 Quantifizierung mittels <i>PicoGreen</i> -Methode	52
3.2.1.5	Gelelektrophoretische Separierung von DNA-Fragmenten	52
3.2.1.6	Realtime-Analysen zur Bestimmung der SMN2-Kopienanzahl	53
3.2.1.7	Southern Blot-Analysen (Southern 1975)	55
3.2.1.	7.1 Restriktionspaltung und gelelektrophoretische Auftrennung von DNA	55
3.2.1.	7.2 Transfer von DNA-Fragmenten auf eine Trägermembran	56
3.2.1.	7.3 Radioaktive Markierung von DNA-Fragmenten	56
3.2.1.	7.4 Prähybridisierung, Hybridisierung und Autoradiographie	56
3.2.1.8	Isolierung von RNA	57
3.2.1.	8.1 Isolierung von RNA aus Geweben	57
3.2.1.	8.2 Isolierung von RNA aus murinen embryonalen Fibroblasten	58

3.2.1.9	Spektrophotometrische Quantifizierung von RNA	58
3.2.1	9.1 Quantifizierung mittels NanoDrop-Gerät	58
3.2.1	9.2 Quantifizierung mittels <i>RiboGreen</i> -Methode	58
3.2.1.10	Reverse Transkription (RT)	59
3.2.1.11	Realtime-Analysen zur Bestimmung von Transkriptmengen	59
3.2.1.12	Northern Blot-Analysen (Alwine et al. 1977)	60
3.2.1	12.1 Gelelektrophoretische Auftrennung und Transfer von RNA	60
3.2.1	12.2 Radioaktive Markierung von RNA-Fragmenten und Hybridisierung	60
3.2.2	Methoden zur Proteinanalysen	60
3.2.2.1	Isolierung von Proteinen	60
3.2.2	1.1 Isolierung von Proteinen aus Geweben	61
3.2.2	1.2 Isolierung von Proteinen aus murinen embryonalen Fibroblasten	61
3.2.2.2	Spektrophotometrische Quantifizierung von Proteinen (BCA-kit)	61
3.2.2.3	Western Blot-Analysen	62
3.2.2.	3.1 Diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)	62
3.2.2.	3.2 Transfer von Proteinen auf eine Trägermembran (Western Blot)	63
3.2.2.	3.3 Immunhistologischer Nachweis von Proteinen	63
3.2.2.4	HTN-Cre-Expression	64
3.2.2.5	HTN-Cre-vermittelte in vitro-Deletion	65
3.2.2.6	MTT-Analysen	65
3.2.3	Zellbiologische Methoden	66
3.2.3.1	Allgemeine zellbiologische Arbeiten	66
3.2.3.2	Einfrieren und Auftauen von Zellen	66
3.2.3.3	Bestimmung der Zellzahl	67
3.2.3.4	Kultivierung von murinen embryonalen Fibroblasten	67
3.2.3	4.1 Präparation von MEF	67
3.2.3	4.2 Mitomycin C (MMC)-Behandlung	68
3.2.3.5	Kultivierung von ES-Zellen	69
3.2.3.6	Genetische Manipulation von embryonalen Stammzellen (ES-Zellen)	69
3.2.3	6.1 Transfektion von ES-Zellen	
3.2.3	6.2 Selektion transfizierter ES-Zellklone	
3.2.3	6.3 Isolierung von ES-Zellklonen	71
3.2.3	6.4 Analyse von ES-Zellen auf 96- <i>well</i> -Mikrotiterplatten	72
3.2.3	6.5 Auftauen und Expandieren von Klonen auf 96- <i>well</i> -Mikrotiterplatten	72
3.2.3	6.6 Blastozysteninjektion und -transfer	73
3.2.4	Immunhistologische Methoden	73
3.2.4.1	Fixieren, Einbetten und Schneiden von Gewebe und Embryonen	73
3.2.4.2	HE-Färbung von Paraffinschnitten	74
3.2.4.3	Immunhistologischer Nachweis von Proteinen	74
3.2.4.4	Immunfluoreszenz Färbungen von murinen embryonalen Fibroblasten	75
3.2.5	Arbeiten mit Mäusen	
3.2.5.1	Mausexperimente	
3.2.5.2	Generierung verschiedener Bdp1-Mauslinien	
3.2.5.3	Markierung und Genotypisierung von Mäusen	

3.2.5.4 3.2.5.5 3.2.5.5.		.2.5.4	Altersbestimmung pränataler Mausembryonen	79
		.2.5.5	Isolation pränataler Mausembryonen	80
		3.2.5.5.1	Isolierung von Morulae (E2,5 p.c.) und Blastozysten (E3,5 p.c.)	80
		3.2.5.5.2	Isolierung älterer Embryonen (E14,5 p.cE18,5 p.c.)	80
	3	.2.5.6	Präparation von adulten Mäusen und Organentnahme	81
	3.2.0	6 Sta	atistische Auswertungen	81
4.	Vor	arbeiten		
	4.1	Vorarbe	iten anderer Arbeitskollegen	82
	4.2	Eigene V	'orarbeiten	85
5.	Erg	ebnisse		
	5.1	Screenin	$m{g}$ von chimären Nachkommen	89
	5.2	Injektior	n homolog rekombinanter ES-Zellen in Blastozysten und Generierung chimärer	Mäuse 91
	5.3	Identifiz	ierung einer Keimbahntransmission und Verifizierung des rekombinanten Bdp1	-Allels 91
	5.4.	Generie	rung eines ubiquitären heterozygoten Bdp1-knockouts	93
	5.4.3	1 An	alysen heterozygoter Bdp1-knockouts	
	5	.4.1.1	Genexpressionsanalysen von <i>Bdp1^{wt/wt}</i> und <i>Bdp1^{ko/wt}</i> -Tieren	95
	5	.4.1.2	Genexpressionsanalysen muriner embryonaler Fibroblasten (MEF)	97
	5	.4.1.3	Northern Blot-Analysen von <i>Bdp1</i> ^{wt/wt} und <i>Bdp1</i> ^{ko/wt} -Tieren	98
	5	.4.1.4	Proteinexpressionsanalysen von <i>Bdp1^{wt/wt}</i> und <i>Bdp1^{ko/wt}</i> -Tieren	99
	5.5	Generie	rung eines ubiquitären homozygoten Bdp1-knockouts	101
	5.5.3	1 An	alysen homozygoter Bdp1-knockouts	102
	5	.5.1.1	Isolierung und Genotypisierung verschiedener Embryonalstadien	102
	5	.5.1.2	<i>In vitro</i> -Kultivierung und makroskopische Untersuchung von <i>Bdp1</i> ^{ko/ko} -Embryo	nen:
			Bestimmung des Zeitpunktes der Letalität	104
	5	.5.1.3	Generierung und Analysen von Bdp1 ^{fl/fl} -MEF	105
		5.5.1.3.1	In vitro-Deletion und Analysen des Bdp1-Gens	105
		5.5.1.3.2	MTT-Analysen von HTN-Cre-behandelten Bdp1 ^{fl/fl} -MEF	107
	5.6	Generie	rung eines konditionalen Bdp1-knockouts	108
	5.6.3	1 Ge	enerierung und Verifizierung der homozygot gefloxten <i>Bdp1</i> -Linie	108
	5.6.2	2 Ge	enerierung eines ZNS-spezifischen Bdp1-knockouts	110
	5.6.3	3 An	alysen des ZNS-spezifischen Bdp1-knockouts	111
	5	.6.3.1	Makroskopische Untersuchungen des ZNS-spezifischen Bdp1-knockouts	111
	5	.6.3.2	Immunhistologische Untersuchungen	114
		5.6.3.2.1	Übersichtsfärbungen	114
		5.6.3.2.2	Spezifische immunhistologische Färbungen	116
	5.7	Der Einf	luss von Smn-Deletionen auf Bdp1-Expressionen	119
	5.8	Generie	rung eines Bdp1-spezifischen Antikörpers	121
	5.8.3	1 Pr	oteinbiochemischer Nachweis des Bdp1-Proteins	122
	5.8.2	2 Im	munhistologischer Nachweis des Bdp1-Proteins	124
6.	Disl	kussion		
	6.1	Die Ausv	virkungen einer Haploinsuttizienz und die Umlagerung von chromosomalen Ab	schnitten
				127
	6.2	Die Gen	erierung eines <i>Bdp1</i> -Mausmodelles	129
	6.3	Der Phäi	notyp von <i>Bdp1^{~~, ~-}-</i> Tieren	130

6.4	1	Analysen des TFIIIB-Komplexes und Interaktionspartner von Bdp1 ^{ko/wt} -Tieren und murinen	
		embryonalen Fibroblasten (MEF) 1	.32
6.5		U6 snRNA-Expression im <i>Cerebellum</i> von <i>Bdp1</i> ^{ko/wt} -Tieren	.34
6.6	5	Der Einfluss von Smn-Deletionen auf Bdp1-Expressionen 1	.36
6.7	7	Analysen des homozygoten Bdp1-knockouts 1	.38
6.8	3	Analysen eines konditionalen Bdp1-knockouts 1	.39
6.9	Э	Verifizierung eines Bdp1-spezifischen Antikörpers 1	.42
7.	Ausb	lick1	.45
8.	Zusar	nmenfassungen1	.47
8.1	1	Zusammenfassung 1	.47
8.2	2	Summary 1	.49
9.	Veröf	ffentlichungen 1	51
9.1	1	Publikationen 1	.51
9.2	2	Poster 1	51
10.	Litera	aturverzeichnis	.53
11.	Anha	ng	i
11	.1	Abbildungen	i
11	.2	Sequenz des rekombinanten <i>Bdp1-Allels</i> (<i>Bdp1^{fineo}</i>) nach homologer Rekombination (bis Exon 6).	v
11	.3	Bdp1: Transkript und Aminosäurensequenz	ix
11	.4	Danksagung	.xv
12.	Erklä	rung	xvi
13.	Lebenslauf		

II. Abkürzungsverzeichnis

5'	Orientierung DNA/RNA	CoIP	coimmunoprecipitation
3'	Orientierung DNA/RNA	Cre	cyclization recombination,
A	A-Box		Cre recombinase
а	Atto-	Ct	cycle threshold
amol	Attomol	d	Таде
α-	anti- (bei Antikörpern)	Da	Dalton
$\alpha^{32}P dCTP$	Desoxycytosin-5'-[α^{32} P]-	DAB	3,3'-Diaminobenzidin
	triphosphat	ddH ₂ O	Milliporwasser (vollentsalzt)
ALPS	autoimmun lymphoproliferatives	DEPC	Diethylpyrocarbonat
	Syndrom	d.h.	das heißt
APS	Ammoniumpersulfat	DH5a	<i>E.Coli</i> -Stamm
ad	auf	D-MEM	Dulbecco's Modified Eagle
ATP	Adenosin-Triphosphat		Medium
В	B-Box	DMF	Dimethylformamid
BDP1/Bdp1/	B double prime 1	DMSO	Dimethylsulfoxid
sBdp1	(human, murin, Hefe)	DNA	Desoxyribonukleinsäure
BL/6NCrl	C57BL/6NCrl	dNTPs	Desoxyribonukleosid-
βΜΕ	β-Mercaptoethanol		triphosphate
bp	Basenpaare	DSE	distales Sequenzelement
BCA	bicinchoninic acid	DTT	Dithiothreitol
BIRC/Birc	baculoviral IAP repeat-	E	Embryonalstadium
(ehemals NAIP)	containing protein 1	E.Coli	Escherichia coli
BRF1/Brf1	TFIIB related factor 1	EDTA	Ethylendiamin-
BRF2/Brf2	TFIIB related factor 2		Tetraessigsäure
BSA	bovine serum albumin	ERK/Erk	extracellular signal-
bzw.	beziehungsweise		regulated protein kinase
С	C-Box	ESMS	electrospray mass spectrometry
°C	Grad Celsius	ESE	exonic splicing enhancer
ca.	zirka	ESS	exonic splicing silencer
CAMII	CaM kinase II	ES-Zellen	embryonale Stammzellen
Cartpt	CART prepropeptide	et al.	et alii
CDC 2	cyclin-dependent protein kinase 2	EtBr	Ethidiumbromid
cDNA	complementary DNA	EtOH	Ethanol
СКІІ	casein kinase II	Ex	Exon
CNV	copy number variation	fl	floxed (loxP flanked)
CO2	Kohlenstoffdioxid	flneo	floxed neo (loxP flanked)

Flp/FLPe	Flipase, Flp recombinase	М	Molar
FKS	fetales Kälberserum	m	Milli-
FRT	Flp recombinase target	MALDI	matrix-assisted laser desorption
fw	forward		ionization
G	relative centrifugation force	Mccc2	Methylcrotonyl-CoA
g	Gramm		carboxylase 2
G-418	Geniticin	MEF-Zellen	Murine embryonale
Ganc	Ganciclovir		Fibroblasten
GTF2H2/	generall transcription factor	mg	Milligramm
Gtf2h2	ІІН	MGI	Mouse genome informatics
GVO	gentechnisch veränderte	MgSO ₄	Magnesiumsulfat
	Organismen	min	Minute
Н	Histidin	mind.	mindestens
h	Stunde	ml	Milliliter
HCI	Salzsäure	mM	Millimolar
hCMV	human cytomegalo virus	mm	Millimeter
HE	Hämatoxylin-Eosin	MMC	Mitomycin C
HEPES	2-(4-(2-Hyroxyethyl)-1-	mmol	Millimol
	piperazinyl)-	MOPS	3 (N-Morpholino)-
	ethansulfonsäure		Propansulfonsäure
high conc.	high concentration	mRNA	messenger ribonucleic acid
H_2O_2	Wasserstoffperoxid	MRT	Magnetresonanztomographie
HRP	horse radish peroxidase	MS	Massenspektrometrie
HTC-Cre	His-TAT-NLS-Cre	Mtap2	microtubule-associated protein 2
ICR	internal control region	MTT	3-(4,5-Dimethylthiazol-2-yl)-
IE	intermediäres Element		2,5-diphenyltetrazolium-
IPTG	Isopropyl-β-D-		bromide
	thiogalactopyranosid	MWCO	molecular weight cut off
К	Lysin	MYB-Domäne	myeloblastosis-Domäne
k	Kilo-	MYC/Myc	Myelocytomatosis
kb	Kilobasen	(c-MYC/c-Myc)	oncogene homolog
KCI	Kaliumchlorid	n	Nano-
kDa	Kilodalton	ng	Nanogramm
ko	knockout	nm	Nanometer
I	Liter	nM	Nanomolar
LB	Luria Bertani	nmol	Nanomol
LCR	low copy repeats	NaAcetat	Natriumacetat
LIF	leukemia inhibitory factor	NaCitrat	Natriumcitrat
loxP	locus of x-ing over of phage P1	NaCl	Natriumchlorid

NaH ₂ PO ₄	Natriumdihydrogen-	RB/Rb	Retinoblastoma
	phosphat	rev	reverse
NaOH	Natriumhydroxid	rk	Rekombinant
NCBI	National Center for	RNA	Ribonukleinsäure
	Biotechnology Information	RNase A	ribonuclease A
NEAA	non essential amino acids	RNAi	RNA interference
NEB5a	<i>E.Coli</i> -Stamm	RNA Pol III	RNA Polymerase III
neg.	negativ	Rplp0	ribosomal protein large PO
Neo ^R /neo	Neomycin-Resistenzgen	rpm	revolutions per minute
Ni-NTA	nickel-nitrilotriacetic acid	RT	Raumtemperatur
NLS	nuclear localization signal	rRNA	ribosomal ribonucleic acid
Nr.	Nummer	S	Serin
n.s.	nicht signifikant	SANT-Domäne	SWI2/ADA2/N-CoR/TFIIIB
OCLN/OcIn	Occludin	SDS	Natrium dodecylsul fat
OD	optische Dichte	Sek.	Sekunde
ОН	Hydroxygruppe	SEM	standard error of the mean
ORF	open reading frame	SERF/Serf	small EDRK-rich factor 1
Р	post natal	SINE	short interspersed nuclear
р	Piko-		elements
P1	Bakteriophage <i>P1</i>	SMA	spinal muscular atrophy
PAA	Polyacrylamid	SMN1/Smn	survival motor neuron
PAGE	PAA Gelelektrophorese		<i>gene 1</i> (human/murin)
p53	tumor protein 53	SMN2	survival motor neuron
PBS	Phosphate buffered Saline		gene 2
	Dulbecco	SNAP _c	snRNA activating protein
p.c.	post coitum		complex
PCR	polymerase chain reaction	SSC	Trinatriumcitrat
Pen/Strep	Penicillin/Streptomycin	STH	Somatropin
PFA	Paraformaldehyd	s.u.	siehe unten
pg	Pikogramm	Т	Threonin
рН	negativer dekadischer	t	Telomer
	Logarithmus der [H⁺]	ΤΑΤΑ	TATA-Box
РКА/РКС	protein kinase A/C	TBE	Tris-Borat-EDTA
рМ	Pikomol	TBP/Tbp	TATA-binding protein
pmol	Pikomol	TBS	Tris-buffered Saline
pos.	Positiv	TBS-T	TBS-Tween
pRF	Plasmid Rapidflirt	TEMED	Tetramethyl-
Primer	Oligostartermoleküle		ethylenediamine
PSE	proximales Sequenzelement	TE-Puffer	(Tris-EDTA)-Puffer

TE ⁻⁴ -Puffer	(Tris-EDTA) ⁻⁴ -Puffer	μΙ	Mikroliter
TF	Transkriptionsfaktor	μm	Mikrometer
TFIIIA	Transkriptionsfaktor IIIA	μΜ	Mikromol
TFIIIB	Transkriptionsfaktor IIIB	μmol	Mikromolar
TFIIIC	Transkriptionsfaktor IIIC	ü.N.	über Nacht
tg	Transgen	UV	Ultraviolettes Licht
ТК	Thymidinkinase-Gen	V	Volt
TOP10	<i>E.Coli</i> -Stamm	vgl.	vergleiche
Tris	Tris-(hydorxymethyl)-	W	with
	aminomethat	w/o	without
tRNA	transfer RNA	wt	Wildtyp/wildtypisch
U	Units	Z	Zentromer
u.a.	unter anderem	z.B.	zum Beispiel
μ	Mikro-	ZNF	zinc finger protein
μCi	Mikrocurie	ZNS	zentrales Nervensystem
μF	Mikrofarad	z.T.	zum Teil
μg	Mikrogramm		

1. Einleitung

DNA-abhängige RNA Polymerasen (RNA Pol) sind die Schlüsselenzyme der Transkription. In eukaryontischen Zellen kommen drei verschiedene RNA Polymerasen vor, die sich in ihrer Matrizenspezifität, in ihrer Lokalisation sowie in ihrer Sensibilität gegenüber Inhibitoren (z.B. α -Amitin) unterscheiden (Chambon 1975; Roeder and Rutter 1969). Aufgrund ihrer Auftrennung im Säulenchromatogramm werden sie als RNA Pol I, RNA Pol II und RNA Pol III bezeichnet (Schwartz and Roeder 1974). Zur Ausbildung eines Initiationskomplexes am Promotor ist die Bindung weiterer spezifischer Transkriptionsfaktoren (TF) notwendig, da die Transkription nicht alleine durch die RNA Polymerasen ausgeführt werden kann (Wang and Roeder 1996).

Im Folgenden wird spezifisch auf die DNA-abhängige RNA Pol III, deren Regulation, verschiedene Promotorklassen und benötige TFs eingegangen. Im Fokus dieser Arbeit steht die TFIIIB-Untereinheit *BDP1*, da eine Haploinsuffizienz des Gens mit der Ausbildung atypischer Formen der spinalen Muskelatrophie (SMA) in Verbindung gebracht wurde. Eventuelle kausale Zusammenhänge zwischen dem *BDP1*-Gen und der atypischen SMA sollten im Rahmen dieser Arbeit über die Generierung und Charakterisierung adäquater Mausmodelle umgesetzt werden.

1.1 Die DNA-abhängige RNA Pol III

1.1.1 Promotorklassen und Transkriptionsfaktoren

Die RNA Pol III ist im Nukleoplasma lokalisiert und für die Transkription von niedermolekularen, nicht-proteinkodierenden Genen verantwortlich (Geiduschek and Tocchini-Valentini 1988). Die Transkription der RNA Pol III ist zellzyklusabhängig und nur während der S- und G2-Phase aktiv (Fairley et al. 2003; Gottesfeld et al. 1994; Paule and White 2000). Die bekanntesten Transkripte wurden Anfang der 90iger Jahre von Willis und White beschrieben (Willis 1993). Dazu zählen verschiedene Typen an Transfer RNAs (tRNAs), die 5S ribosomale RNA (5S rRNA) und die U6-Untereinheit der snRNAs (Weinmann and Roeder 1974). Ebenso gehören die 7SK und die BC1 RNA, die viralen Gene VA-I und VA-II (Dieci et al. 2007) und eine Anzahl an *short interspersed nuclear elements* (SINE) zu den Produkten der RNA Pol III. In den letzten Jahren wurden mit Hilfe von zahlreichen

Transkriptomanalysen und genomweiten Lokalisationsstudien bisher unbekannte, durch die RNA Pol III-transkribierte nicht-proteinkodierende RNAs identifiziert (Hannon et al. 2006; Mattick and Makunin 2006). Mit der weitgehenden Identifizierung des RNA Pol III-Transkriptoms wurden parallel auch gewebe- und entwicklungsspezifische Regulationen der Transkription beschrieben (z.B. neuronal-spezifische Expressionen), die weiter verbreitet sind, als bisher angenommen. So wurde z.B. den Transkripten *GPR51* (GABA-Rezeptor 2) und *KCNIP4* (Kaliumkanal-interagierendes Protein) eine spezifische Expression im Gehirn nachgewiesen (Pagano et al. 2007; Pruunsild and Timmusk 2005).

Innerhalb RNA Pol III-abhängiger Gene werden drei verschiedene Promotorklassen unterschieden, die in Abbildung 1 schematisch dargestellt sind. Die jeweiligen Initiationskomplexe werden in Abhängigkeit der Promotorklasse mit Hilfe unterschiedlicher Transkriptionsfaktoren ausgebildet (Abbildung 2) (Geiduschek and Kassavetis 2001).

Abbildung 1: Schematische Darstellung der drei Hauptpromotorklassen der RNA Pol III

(A.–C.) Hauptpromotorklassen eins bis drei. Die Positionen der *upstream* und internen Kontrollelemente sind relativ zum Transkriptionsstartpunkt und Richtung (Pfeil). A: A-Box (grün), B: B-Box (lila), C: C-Box (grau), DSE: distales Sequenzelement (gelb), ICR: interne Kontrollregion, IE: intermediäres Element (flieder), PSE: proximales Sequenzelement (blau), TATA: TATA-Box oder TATA-Elemente (rot), TTTT: Terminationssignal (modifiziert nach Dieci et al., 2007).

Abbildung 2: Ausbildung der Initiationskomplexe an den Hauptpromotorklassen

(A.–C.) Hauptpromotorklassen eins bis drei. Grüne Pfeile symbolisieren die Interaktionen von TFs und Promotorelementen, die blauen Pfeile deuten Protein-Protein-Interaktionen der TFs untereinander an. Die violettfarbenen Pfeile zeigen die Interaktion zwischen der RNA Pol III und den TFs. A: A-Box, B: B-Box, IIIA: TFIIIA, IIIB: TFIIIB, IIIC: TFIIIC, ICR: interne Kontrollregion, pol III: RNA Pol III, PSE: proximales Sequenzelement, SNAP_c: *snRNA activating protein complex*, TATA: TATA-Box (modifiziert nach Schramm and Herandez 2002).

Geninterne Promotoren (Abbildung 1A und 1B) können sogenannte A- und B-Boxen enthalten, die erstmals bei tRNA-Genen identifiziert wurden (Abbildung 1B) (Geiduschek and Tocchini-Valentini 1988; Sharp et al. 1985). Dabei kann der Abstand beider Elemente sehr variabel sein. In einigen Spezies wurde sogar eine doppelte B-Box in Kombination mit einer A-Box beschrieben (Schramm and Hernandez 2002). Der Faktor TFIIIC bindet direkt an der Aund B-Box, rekrutiert so den Transkriptionsfaktor TFIIIB, der die RNA Pol III zu dem Initiationskomplex führt (Abbildung 2B). Die RNA Pol III wiederum interagiert mit dem Transkriptionsfaktor IIIC (Geiduschek and Kassavetis 2001).

Statt der B-Box werden für die Transkription der 5S rRNA-Gene eine C-Box sowie intermediäre Elemente, die spezifisch von TFIIIA erkannt werden, benötig (Abbildung 1A und 2A). TFIIIA rekrutiert direkt TFIIIC, der wiederum TFIIIB an den Initiationskomplex führt.

Die dritte Promotorklasse von RNA Pol III-transkribierten Genen findet sich erst in höheren Eukaryonten (Abbildung 1C) (Willis 1993). Anstatt interner Elemente sind hier *upstream*-gelegene regulatorische Elemente vorhanden, wie sie z.B. bei der U6 snRNA gefunden wurden. Eine Schlüsselkomponente spielt dabei die TFIIIB-Untereinheit TBP (TATA*binding protein*), welche spezifisch an die TATA-Box binden kann. Somit verleiht erst die TATA-Box dem Promotor der RNA Pol III die Spezifität (Lobo and Hernandez 1989; Mattaj et al. 1988). Die Effizienz der Transkription kann durch die Anwesenheit proximaler und distaler Sequenzelemente beeinflusst werden, die aber nicht unbedingt notwendig sind. Beim Menschen wird z.B. die Bindung von TFIIIB an die TATA-Box durch die Interaktion von SNAP_C (*snRNA activating protein complex*) an das proximale Sequenzelement (PSE) gefördert (Abbildung 2C). (Schramm and Hernandez 2002). Die Genexpression kann darüber hinaus durch distale Sequenzelemente (DSE) beeinflusst werden. Diese besitzen Bindestellen für die Transkriptionsfaktoren *STAF* und *OCT1* (Schramm and Hernandez 2002), welche inhibierend auf die Transkription Pol III-abhängiger Gene wirken.

1.1.2 Die Untereinheiten der Transkriptionsfaktoren und der RNA Pol III

Mit Ausnahme von TFIIIA bestehen die einzelnen Transkriptionsfaktoren aus mehreren Untereinheiten. Beim Menschen sind zwei verschiedene TFIIIB-Komplexe bekannt: TFIIIBa und TFIIIBβ. TFIIIBα besteht aus den Untereinheiten TBP (TATA-binding protein), BDP1 (B double prime 1) und BRF2 (TFIIB related factor 2) und agiert bei der dritten Promotorklasse, wie z.B. für die Transkription der U6 snRNA (Abbildung 1C) (Buratowski and Zhou 1992; Kassavetis et al. 1992; Kassavetis et al. 1995; Roberts et al. 1996; Weser et al. 2000). Im Vergleich dazu besteht TFIIIBß aus TBP, BDP1 und BRF1 (TFIIB related factor 1) und wird bei geninternen Promotoren - wie die für die tRNA- und 5S rRNA-kodierenden Gene - benötigt (Abbildung 1A und 1B) (Schramm et al. 2000). Aus Untersuchungen mit S. cerevisiae ist bekannt, dass die Bindung von TFIIIB die Beugung der DNA fördert, um diese besser für die RNA Pol III zugänglich zu machen (Braun et al. 1992). Desweiteren erhöht die Bindung von sBdp1 die Stabilität des TFIIIB-Komplexes und führt so zum Öffnen des Promotors (Kassavetis et al. 1990; Kassavetis et al. 1998). Der TFIIIC-Komplex hingegen besteht aus zwei Fraktionen (C1 und C2), die wiederum auch aus mehreren Untereinheiten aufgebaut sind (Dean and Berk 1987; Wang and Roeder 1998; Yoshinaga et al. 1987). Die Funktionen der C1-Untereinheiten sind nicht genau beschrieben. Sie spielen jedoch bei der Rekrutierung der RNA Pol III an den Promotor eine wichtige Rolle und interagieren mit der TFIIIB-Untereinheit BDP1. Dabei ist BDP1 in der Lage, die Funktionen von TFIIIC1 zu übernehmen (Schramm and Hernandez 2002; Weser et al. 2004). Die C2-Einheiten TFIIIC63 und TFIIIC220 binden an der A- bzw. B-Box der Promotoren, wohingegen TFIIIC102 mit der TFIIIB-Untereinheit BRF1 interagiert und so den Faktor zum Aufbau des Initiationskomplexes rekrutiert. In der Hefe wurde weiterhin eine Interaktion von TFIIIC102 mit sBdp1 beschrieben (Geiduschek and Kassavetis 2001).

Ebenso wie die einzelnen Transkriptionsfaktoren ist auch die RNA Pol III aus verschiedenen Untereinheiten aufgebaut. Acht von insgesamt 17 Untereinheiten sind an

4

DNA-Interaktionen am Initiationskomplex beteiligt (Bartholomew et al. 1993; Wang and Roeder 1996, 1997). Von diesen Acht spielt der Faktor RPC39 eine entscheidene Rolle: die TFIIIB-Untereinheit BRF1 bindet direkt an die RPC39-Untereinheit der RNA Pol III und rekrutiert so das Enzym zum Initiationskomplex (Brun et al. 1997). Weiterhin soll die TBP-Untereinheit des TFIIIB-Komplexes mit der RPC39-Untereinheit der RNA Pol III in Verbindung stehen (Wang and Roeder 1997). Ob auch BRF2 mit der RNA Pol III interagiert, ist bisweilen nicht bekannt.

1.1.3 Die TFIIIB-Untereinheit BDP1

Das Gen für die humane TFIIIB-Untereinheit BDP1 (B double prime 1, TFNR, Gen ID: 55814) liegt auf dem chromosomalen Abschnitt 5q13 und wird ubiquitär exprimiert (siehe Kapitel 1.2.4, Abbildung 5A) (Kassavetis et al. 1995; Kelter et al. 2000; Teichmann and Seifart 1995). Mit Hilfe von Northern Blot-Analysen wurden neben einem Volllängetranskript von 12-15 kb (neueste Angaben NCBI: 11097 bp; siehe Kapitel 1.2.4, Tabelle 1) verschiedene Spleißvarianten identifiziert (4,4 kb, 3,4 kb, 2,2 kb und 1,1 kb), wobei die Stärke der Expression gewebeabhängig ist (Kelter et al. 2000). So werden z.B. im Herzmuskel alle Spleißvarianten exprimiert, wogegen in der Plazenta vorwiegend das Volllängetranskript und in der Leber die 1,9 kb Spleißvariante vorliegen. Eine erhöhte Expression des Volllängetranskriptes und der 2,2 kb-Variante wurden außerdem in der Körnerzellschicht des Cerebellums detektiert (Kelter et al. 2000). Die unterschiedlichen Transkriptgrößen sind auf alternative Spleißprozesse zurückzuführen, welche für die BDP1-prä-mRNA beschrieben wurden (BDP1Δ15: alternatives Spleißen von Exon 15 (Kelter et al. 2000), BDP1Δ18-39: alternatives Spleißen von Exon 18 bis Exon 39 (Schramm et al. 2000), BDP1Δ33-39: alternatives Spleißen von Exon 33 bis Exon 39 (Kelter et al. 2000). Die verschiedenen Spleißvarianten findet man auch auf Proteinebene. Mit Hilfe von Western Blot-Analysen konnte das Volllängeprotein bei 283 kDa nachgewiesen werden (neueste Angaben NCBI: 293 kDa; siehe Kapitel 1.2.4, Tabelle 1). Weitere Signale waren bei 150 kDa, 100 kDa, 90 kDa, 75 kDa und 70 kDa zu detektieren und entsprachen weiteren Isoformen, die teilweise gewebespezifisch exprimiert wurden (Kelter 2000). Welche dieser Spleißvarianten im Menschen für die RNA Pol III-abhängige Transkription verantwortlich ist, ist zurzeit noch nicht geklärt (Schramm and Hernandez 2002).

Im Menschen umfasst das BDP1-Volllängetranskript eine Größe von insgesamt 39 Exons. Ein offenes Leseraster von 7874 bp kodiert für ein im Zellkern lokalisiertes Protein von 2624 Aminosäuren (Protein ID: NP_060899) (siehe Kapitel 1.2.4, Tabelle 1). Insgesamt konnten 32 dieser Exons, die für ein Transkript von 7208 bp kodieren und ein Protein von 2254 Aminosäuren umfassen, in unserer Arbeitsgruppe identifiziert werden (Kelter et al. 2000).

Funktionell kann das BDP1-Protein in drei Bereiche unterteilt werden. Der Nterminale Bereich (Aminosäuren 298-345) kodiert für eine SANT/Myb-DNA-Bindedomäne. Aus Analysen in S. cerevisiae ist bekannt, dass diese Domäne absolut essentiell für die TFIIICabhängige RNA Pol III-Transkription ist und den TFIIIB-Komplex stabilisieren kann (Kumar et al. 1997; Shah et al. 1999). Außerdem sind in diesem Bereich eine ATP-abhängige DNA-Ligase (Aminosäuren 344-352) sowie ein zweigeteiltes Kernlokalisationssignal (Aminosäuren 380-396) vorhanden (Kelter et al. 2000). Weiterhin konnte innerhalb unserer Arbeitsgruppe mittels yeast two hybrid-Analysen ein N-terminaler Interaktionspartner (ZNF297B, zinc finger protein 297B) identifiziert werden (Schoenen and Wirth 2006). Im mittleren Bereich des BDP1-Proteins befindet sich ein neunfach wiederholtes 55-Aminosäurenmotiv (Aminosäuren 822-1353) (Schramm et al. 2000), welches ausschließlich von Exon 17 kodiert wird (Kelter et al. 2000). Im C-terminalen Bereich wurden neben einem zweigeteilten Kernlokalisationssignal (Aminosäuren 1834-1850) noch homologe Sequenzbereiche zur Topoisomerase II (Aminosäuren 1969-1983) und zum Elongationsfaktor 1β (Aminosäuren 1873-1892) nachgewiesen (Kelter et al. 2000).

Das BDP1 Protein wird posttranslational durch Phosphorylierung modifiziert (PKC, PKA, CAMII, CDC2 und CKII) (Schramm et al. 2000). Insgesamt sind elf potenzielle Phosphorylierungsstellen beschrieben, von denen einige als PEST-Motive innerhalb von Exon 17 vorliegen (Phosphorylierung von Serin- oder Threoninresten) (Geiduschek and Kassavetis 2001). Dabei ist die Phosphorylierung des BDP1-Proteins zellzyklusabhängig (Fairley et al. 2003; Hu et al. 2004; Schramm et al. 2000). Durch eine Hyperphosphorylierung während der Mitose dissoziiert das BDP1-Protein von der Promotorregion und inhibiert so die RNA Pol IIIabhängige Transkription. Phosphorylierung der PEST-Motive ermöglichen weiterhin einen geregelten Proteinabbau über das Ubiquitin-Proteasom-System (Rechsteiner and Rogers 1996).

6

1.1.4 Regulation des TFIIIB-Komplexes

Im Jahre 1974 wurde erstmals eine erhöhte RNA Pol III-Aktivität in Myelomen von Mäusen beschrieben (Schwartz et al. 1974). Heutzutage ist bekannt, dass viele Typen von transformierten Zellen eine Überexpression von RNA Pol III-abhängigen Transkripten aufweisen. Dazu zählen sowohl durch DNA- (z.B. Hepatitis B-Virus) oder RNA-Viren (z.B. humanes T-lymphotropes Virus 1, HTLV-1) transformierte Zellen als auch Zellen, die durch chemische karzinogene Substanzen transformiert wurden (Felton-Edkins and White 2002; Scott et al. 1983; Wang et al. 1995; White et al. 1990). Im Rahmen einer Studie von 1997 wurden in 19 von insgesamt 80 verschiedenen Tumorproben erhöhte Transkriptmengen der 7SL RNA nachgewiesen (Chen et al. 1997). Die Entstehung von Krebs scheint daher mit einer erhöhten Transkription von RNA Pol III-abhängigen Genen in Verbindung zu stehen, die oft mit Akkumulationen der Transkripte im Nukleolus einhergehen (Wang et al. 2003; White 2004).

Letztendlich lässt sich der molekulare Mechanismus einer erhöhten RNA Pol III-Transkription in drei Klassen unterteilen: (a) die Inaktivierung von Tumorsuppressorgenen, (b) die Aktivierung von Onkogenen und (c) die direkte Überexpression RNA Pol III-abhängiger Transkriptionsfaktoren (Abbildung 3).

Tumorsuppressorgene kodieren für Proteine, die den Zellzyklus regulieren. Mutationen oder Deletionen in diesen Genen erhöhen die Gefahr einer Tumorbildung. TFIIIB stellt ein direktes Ziel der Tumorsuppressoren p53, RB und RB-ähnlicher Proteine wie p107 und p130 dar. Diese binden direkt an den TFIIIB-Komplex und verhindern so dessen Rekrutierung zum Promotor (Chesnokov et al. 1996; Sutcliffe et al. 2000). So kann z.B. p53 direkt die TFIIIB-Untereinheit TBP binden und letztlich den gesamten Komplex regulieren (Crighton et al. 2003). Die Bindung von RB an TFIIIB unterbindet die Interaktionen zu TFIIIC2 und zur RNA Pol III (Larminie et al. 1997; Sutcliffe et al. 2000). Desweiteren ist bekannt, dass RB mit zwei Untereinheiten von SNAP_c interagiert und so den TFIIIB Komplex reguliert (Hirsch et al. 2000). Generell können andere Tumorsuppressorgene wie INK4A indirekt durch Inhibierung der Phosphorylierung des TFIIIB-Komplexes - in diese Regulation eingreifen (Scott et al. 2001). Darüberhinaus kann PTEN die RNA Pol III-abhängige Transkription über seine Lipidphosphataseaktivität inhibieren (Woiwode et al. 2008). Ebenso kann MAF1 direkt an TFIIIB binden und so den Komplex inhibieren (Willis and Moir 2007) -MAF1 gehört zwar nicht zu den Tumorsuppressorproteinen, hat jedoch ähnliche Wirkungen auf den TFIIIB-Komplex. Ein Verlust dieser Proteine kann somit die Transkription der meisten Transkripte der RNA Pol III aktivieren.

Im Gegensatz zu Tumorsuppressorgenen haben Onkoproteine eine aktivierende Wirkung auf den TFIIIB-Komplex. Onkoproteine üben meist unterschiedliche zelluläre Funktionen aus und stehen in Wechselwirkung mit Wachstumsfaktoren bzw- rezeptoren oder sind allgemein an der Signaltransduktion und Transkriptionsregulation beteiligt. Onkogene können dabei den TFIIIB-Komplex direkt oder indirekt regulieren. So bindet z.B. die MAP-(*mitogen activated protein*) Kinase ERK direkt an BRF1 und reguliert diese durch Phosphorylierung (Felton-Edkins et al. 2003). Onkogene wie E6 und E7 des humanen Papillomavirus inhibieren die Tumorsuppressorgene p53 und RB und aktivieren so TFIIIB (Stein et al. 2002; Sutcliffe et al. 1999). Andere dieser Proteine, wie z.B. MYC, können den Komplex auch direkt aktivieren (Gomez-Roman et al. 2003).

Die direkte Überexpression von RNA Pol III-abhängigen Transkriptionsfaktoren stellt den dritten Mechanismus dar, der letztlich in einer erhöhten Transkription RNA Pol IIIabhängiger Gene resultiert. Dies wurde z.B. für TFIIIC beschrieben, der verstärkt in von DNA-Viren transformierten Zellen exprimiert wird (z.B. Adenovirus, Epstein-Barr-Virus) (Felton-Edkins et al. 2006; Felton-Edkins and White 2002). Desweiteren wurden erhöhte TFIIIC-Level im humanen Ovarial- und Nasopharynxkarzinom nachgewiesen (Felton-Edkins et al. 2006; Winter et al. 2000). Ebenso konnte eine Überexpression des TFIIIB-Komplexes im Zervix- und Kolonkarzinomen gezeigt werden (Daly et al. 2005; Johnson et al. 2003).

Abbildung 3: Einfluss von Tumorsuppressoren und Onkogenen auf den TFIIIB-Komplex

Verschiedene Proteine inhibieren (blau) oder stimulieren (orange) den TFIIIB-Komplex (rot). Direkte Repressoren sind Tumorsuppressorgene wie RB, p107, p130, p53 und MAF1. Diese wiederum können durch verschiedene Faktoren (E1A, E7, E6, MDM2) oder durch Phosphorylierung (CDK2, CDK4, CDK69) inhibiert werden und TFIIIB somit aktivieren. Im Gegensatz dazu kann TFIIIB direkt durch die Bindung der Onkoproteine ERK, CK2, MYC und HTLV1 aktiviert werden. ERK selbst wird durch den RAS/RAF-Signalweg reguliert. Durchgezogene Linien deuten direkte, gestrichelte Linien indirekte Interaktionen an (Marshall and White 2008).

1.2 Das BDP1-Protein und die spinale Muskelatrophie (SMA)

Wie bereits unter 1.1.3 beschrieben, ist das *BDP1*-Gen auf dem chromosomalen Abschnitt 5q13 lokalisiert. In der unmittelbaren Umgebung befindet sich das *SMN1*-Gen (siehe Kapitel 1.2.4, Abbildung 5A). Der Verlust des *SMN1*-Gens führt zur proximalen **s**pinalen **M**uskel**a**trophie (SMA) - dem Forschungsschwerpunkt unserer Arbeitsgruppe. Bei Proben von zwei Patienten wurde neben der SMA eine atypische Gehirnatrophie diagnostiziert. Da dieser Phänotyp mit einem deletierten Marker für das *BDP1*-Gen korrelierte, wurde die Ausbildung einer Gehirnatrophie hypothetisch mit der Haploinsuffizienz des *BDP1*-Gens in Verbindung gebracht. Im Folgenden sollen zunächst die Grundlagen der SMA erläutert werden, bevor im darauffolgenden Absatz der eventuelle Zusammenhang zwischen dem *BDP1*-Gen und der atypischen Form der SMA näher erläutert wird.

1.2.1 Die autosomal rezessive proximale spinale Muskelatrophie (SMA)

Die spinalen Muskelatrophien sind eine genetisch heterogene Gruppe von neuromuskulären Erkrankungen, zu denen auch die SMA zählt. Die SMA ist eine autosomal rezessive Erkrankung und die häufigste Todesursache im Kindesalter (Crawford and Pardo 1996; Pearn 1978; Roberts et al. 1970). Innerhalb der westeuropäischen Bevölkerung liegt die Inzidenz bei 1:6000 bis 1:10000 und in Deutschland wird die Heterozygotenfrequenz auf 1:25 bis 1:35 geschätzt (Feldkotter et al. 2002). Die SMA ist durch die Degeneration der α-Motoneuronen im Vorderhorn des Rückenmarks gekennzeichnet. Die Degeneration führt in erster Linie zu einer Muskelschwäche, die sich progressiv zu einer Muskelatrophie entwickelt. Die beginnende Atrophie der proximalen Arm- und Beinmuskulatur breitet sich im weiteren Verlauf auf die gesamte Rumpfmuskulatur aus.

1.2.2 Molekulare Grundlagen der SMA

Das mit der SMA korrelierende Gen ist auf dem langen Arm von Chromosom 5 (5q11.2-13.3) innerhalb einer 500 kb-großen duplizierten und invertierten Region lokalisiert. So können mehrere Genkopien vorliegen, die man je nach Lokalisation als *SMN1* (telomerisch) oder *SMN2* (zentromerisch) bezeichnet (siehe Kapitel 1.2.4, Abbildung 5A) (Brzustowicz et al. 1990; Lefebvre et al. 1995; Melki et al. 1990; Wirth et al. 2006). Da die SMA durch die Degeneration der α -Motoneuronen charakterisiert ist, wurde das Gen als "*survival motor neuron gene"* (*SMN*-Gen) bezeichnet.

In über 96 % der Fälle wird die SMA durch eine homozygote Deletion bzw. Genkonversion des *SMN1*-Gens ausgelöst (Lefebvre et al. 1995; Wirth 2000). Alle Patienten besitzen jedoch mindestens eine Kopie des zentromerischen *SMN2*-Gens. Obwohl *SMN1* und *SMN2* für identische Proteine kodieren (neun Exons, 38 kDa-Protein (Lefebvre et al. 1995)), unterscheiden sie sich auf DNA-Ebene in fünf Nukleotiden, wobei drei von diesen intronisch und eine im 3'-nicht-translatierten Bereich liegen (Burglen et al. 1996). Eine C- zu T-Transition in Exon 7 (Position +6) führt zwar nicht zu einem Aminosäurenaustausch, generiert jedoch aberrante Transkripte, bei denen Exon 7 deletiert ist (*SMNΔ7*) (Burglen et al. 1996; Lefebvre et al. 1995; Monani et al. 1999). Zwei Theorien versuchen das alternative Spleißen von Exon 7 zu erklären, wobei eine auf der Zerstörung eines exonischen Spleißverstärkers (*exonic splicing enhancer*, ESE) beruht (Lorson and Androphy 2000; Lorson et al. 1999). Die andere Theorie befürwortet hingegen die Bildung eines *exonic splicing silencer* (ESS) (Kashima and Manley 2003).

Vom *SMN1*-Gen werden fast ausschließlich Volllängetranskripte generiert, wohingegen von *SMN2* zu 90 % Transkripte ohne Exon 7 generiert werden. Lediglich 10 % der *SMN2*-prä-mRNA werden korrekt zum Volllängetranskript gespleißt (Gennarelli et al. 1995; Lefebvre et al. 1995; Lorson et al. 1999). Das aberrante Proteinprodukt (SMNΔ7) kann die Funktion des Volllängeproteins nicht übernehmen (Lorson and Androphy 2000). Da das *SMN2*-Gen dennoch 10 % an Volllängeprotein generiert und SMA-Patienten keine *SMN1*-Kopie tragen, korreliert der Schweregrad der SMA mit der *SMN2*-Kopienanzahl. Aus diesem Grund kann die klinische Verlaufsform der SMA in vier Typen unterteilt werden (SMA Typ I: Werdnig-Hoffmann, SMA Typ II: intermediäre SMA, SMA Typ III: Kugelberg-Welander, SMA Typ IV: adulte Form der SMA) (Feldkotter et al. 2002; Lefebvre et al. 1995; Wirth 2000).

1.2.3 SMA und die Ausbildung atypischer Symptome

Neben den vier klassischen Typen der SMA existieren Formen, bei denen atypische Symptome auftreten können. Zu diesen zählen axonale Neuropathien und zerebelläre Hypoplasien (Korinthenberg et al. 1997; Omran et al. 1998; Wirth et al. 1997). Mit Hilfe von SMN-Deletionsanalysen konnte gezeigt werden, dass einige dieser Formen 5q-gekoppelt sind (Rudnik-Schoneborn et al. 1996; Rudnik-Schoneborn et al. 1995). Es ist bislang nicht geklärt, ob es sich dabei um eigenständige Symptomkomplexe handelt oder ob noch andere - dem *SMN* benachbarte - Gene für die Ausbildung mitverantwortlich sind (*contigous gene syndrom*).

Eine Anzahl der Patienten mit einem atypischen SMA-Phänotyp weist große homozygote Deletionen innerhalb der SMA-Region auf – hier sind zusätzlich zum *SMN1* die Gene *SERF1* und *BIRC* (ehemals *NAIP*) betroffen. Große Deletionen sind eher ungewöhnlich, da zuvor nur kleinere *de novo-rearrangements* beschrieben wurden (Capon et al. 1995; Melki et al. 1994; Rodrigues et al. 1995; Wirth et al. 1995). Als Kandidatengene für die Ausbildung zusätzlicher Symptome kommen die oben genannten Gene nicht in Frage, da bereits homozygote Deletionen von *SERF1*, *BIRC* und *GTF2H2* bei SMA-Patienten ohne atypischen Verlauf beschrieben wurden (Burglen et al. 1997; Carter et al. 1997; Roy et al. 1995; Scharf et al. 1998). So wurden z.B. bei 15 % der SMA-Patienten vom Typ I und 6 % vom Typ II Mutationen im *BIRC*-Gen beschrieben (Wirth et al. 1995). Jedoch scheint das Ausmaß benachbarter Gendeletionen den Schweregrad der SMA zu beeinflussen (Arkblad et al. 2009; Jedrzejowska et al. 2009; Liang et al. 2009; Omrani et al. 2009). Somit ist die Wahrscheinlichkeit groß, dass ein weiteres Gen in der direkten Nachbarschaft für die Ausbildung atypischer Symptome verantwortlich ist.

Bei Proben von zwei Patienten (Nr. 353 und Nr. 6432) wurde neben der SMA eine atypische Gehirnatrophie diagnostiziert. Bei der Patientin Nr. 353 wurde innerhalb der SMA-Region ein große *de novo* aufgetretene *large scale*-Deletion nachgewiesen (Wirth et al. 1997). Anhand von Markeranalysen konnte gezeigt werden, dass zusätzlich distal gelegene Gene der SMA-Region auf Chromosom 5q13 deletiert sind – darunter auch ein Marker in der Nähe des *BDP1*-Gens (Abbildung 4). Das *BDP1*-Gen liegt außerhalb der duplizierten SMA-Region, flankiert diese jedoch auf der telomerischen Seite (siehe Kapitel 1.2.4, Abbildung 5A). Anhand von experimentellen Daten konnte darauf geschlossen werden, dass durch die aufgetretene *de novo*-Deletion des beschriebenen Markers bei Patientin Nr. 353 eine hemizygote Deletion eines *BDP1*-Allels vorlag (Herchenbach, Dissertation 2002). Somit könnte eine Deletion des *BDP1*-Gens für die Ausbildung der Gehirnatrophie verantwortlich gewesen sein. Unterstützt wurde diese Hypothese durch die verstärkte Expression von *BDP1* im Kleinhirn, so dass eine zerebelläre Entwicklungsstörung durch eine *BDP1*-Haploinsuffizienz denkbar wäre (Kelter, Dissertation 2006). Mit Hilfe von Southern Blot-Analysen konnte bei der beschriebenen Patientin die heterozygote Deletion des *BDP1*-Gens nachgewiesen werden, die auf den Verlust einer *BDP1*-Kopie innerhalb der deletierten Region hinweisen könnte (Herchenbach, Dissertation 2002). Weiterhin wurde mittels quantitativer PCR eine schwächere Signalstärke des Amplifikats der Patientin im Vergleich zu Kontrollpersonen detektiert (Herchenbach, Dissertation 2002).

Abbildung 4: Stammbaum der Patientin Nr. 353

(A.) Stammbaum der Familie mit *de novo*-Deletion innerhalb der SMA-Region. Die für die Analysen verwendeten Marker sind dargestellt. Die Tochter mit der Nr. 353 zeigt eine *de novo*-Deletion auf dem paternalen Chromosom, die eventuell die Deletion des Markers in der Nähe des *BDP1*-Gens einschließt.
(B.) Magnetresonanztomographie (MRT) der Patientin Nr. 353 mit diagnostizierter Gehirnatrophie (von Rudnik-Schoneborn zur Verfügung gestellt) (modifiziert nach Wirth et al., 1997).

Bei einem weiteren SMA-Patienten mit Gehirnatrophie (Nr. 6432) wurde ebenfalls eine große Deletion benachbarter Gene innerhalb der SMA-Region festgestellt, die jedoch nicht *de novo* aufgetreten war. Ob auch bei diesem Patienten eine eventuelle Deletion des *BDP1*-Gens vorlag, konnte mittels Markeranalysen nicht geklärt werden.

Zur vergleichenden Analyse beider Patienten (Nr. 353 und Nr. 6432) wurden Daten zur Bestimmung der *BDP1*-Kopienanzahl und –Expression ermittelt. Die Ergebnisse quantitativer Western Blot-Analysen, semi-quantitativer RT-PCRs und *Realtime*-Analysen ergaben jedoch weder Hinweise auf eine reduzierte Proteinmenge noch auf einen verminderten RNA- oder DNA-Gehalt (Schönen, Dissertation 2006). Diese neueren Ergebnisse standen somit im Gegensatz zu den früheren Untersuchungen. Zur Klärung des Zusammenhangs zwischen dem *BDP1*-Gen und den atypischen Formen der SMA sollte ein Tiermodell weitere Aufschlüsse bringen.

1.2.4 Das *Bdp1*-Gen und die murine SMA-Region

Vergleicht man das humane BDP1 und das murine Bdp1, so findet man auf Aminosäurenebene eine 98 %-99 %ige Identität (Tabelle 1). Somit bestanden beste Voraussetzungen, um mit Hilfe eines *Bdp1*-Mausmodelles eventuelle Zusammenhänge zwischen Deletionen des *BDP1*-Gens und der Ausbildung atypischer SMA-Formen zu klären.

Die murine SMA-Region ist auf Chromosom 13 lokalisiert (Abbildung 5B) (DiDonato et al. 1997). In dieser Region befindet sich nur eine homologe Kopie zum humanen *SMN1*-Gen (*Smn*) (DiDonato et al. 1999; DiDonato et al. 1997; Viollet et al. 1997). Im Jahre 1999 konnte Endrizzi durch die Sequenzierung eines BAC-Klones - welcher die gesamte murine SMA-Region der Maus beinhaltet - zeigen, dass das murine Homolog zum *BDP1* am proximalen Ende des *Serf*-Gens auf Chromosom 13 lokalisiert ist (BAC 149m19) (Endrizzi et al. 1999). Im Menschen flankiert das *BDP1*-Gen distal die duplizierte Region, die auch das *SMN*-Gen beihhaltet (Endrizzi et al. 2000; Kelter et al. 2000).

	Mensch	Maus
Gen	BDP1 Gene ID: 55814	Bdp1 Gene ID: 55971
Lokalisation	5q13	13
Transkript	Volllängetranskript: 12-15 kb, Spleißvarianten: 4,4 kb; 3,4 kb; 2,2 kb; 1,9 kb; 1,1 kb (Kelter et al. 2000) neueste Angaben: 11097 bp, NM_018429	9921 bp NM_001081061
ORF	7874 bp	7403 bp
Protein/Exon	2624 Aminosäuren/ 39 Exons, NP_060899	2467 Aminosäuren/ 39 Exons, NP_001074530
Größe	283 kDa, Isoformen: 150 kDa, 100 kDa, 90kDa, 75kDa, 70 kDa (Kelter et al. 2000), neueste Angaben: 293 kDa	270 kDa
Homologie	98 %-99 % auf Proteinebene	

Tabelle 1: Vergleich BDP1 und Bdp1 (ID-Nummern: NCBI)

Abbildung 5: Schematische Übersicht der SMA-Region im Menschen und in der Maus

(A.) Humanes Chromosom 5, (B.) murines Chromosom 13. *BDP1/Bdp1* (*B* double prime 1), BIRC/Birc (baculoviral IAP repeat-containing protein 1; ehemals NAIP: neuronal apoptosis inhibitory protein), Cartpt (CART prepropeptide), Mtap2 (microtubule-associated protein 2), GTF2H2/Gtf2h2 (generall transcription factor II H, ehemals p44), Mccc2 (methylcrotonyl-CoA carboxylase 2), OCLN/Ocln (Occludin), SERF/Serf (small EDRK-rich factor 1, ehemals H4F5), SMN1/SMN2, Smn (survival motor neuron gene) z: Zentromer, t: Telomer.

1.3 Mausgenetik

Die Maus ist einer der wichtigsten Modellorganismen zur Untersuchung der vergleichenden Pathogenese im Menschen. Mäuse sind relativ leicht zu züchten, haben eine kurze Generationszeit sowie relativ große Wurfgrößen. Da im Rahmen dieser Arbeit ein Mausmodell zur funktionenellen Analyse von *Bdp1* generiert werden sollte, werden im Folgenden die wichtigsten Stadien der Embryonal- und Gehirnentwicklung sowie Techniken zur Manipulation des Mausgenoms erklärt.

1.3.1 Die Embryonalentwicklung der Maus

Die Embryonalentwicklung der Maus umfasst 19-21 Tage (je nach Mausstamm). Postnatal Geschlechtsreife vergehen bis zur sechs bis acht Wochen. so dass die Gesamtentwicklungsphase ca. drei Monate umfasst. Die einzelnen Embryonalstadien werden je nach Entwicklungstag als E0,5-21 p.c. (post coitum) bezeichnet. Ausgehend von einer Verpaarung in der zweiten Nachthälfte, wird das erste Embryonalstadium am Morgen nach der Befruchtung als E0,5 p.c. bezeichnet. Mit der Geburt an Tag 0 werden alle postnatalen Stadien mit P bezeichnet. Im Folgenden wird die frühe Embryonalentwicklung der Maus bis E7,5 p.c. beschrieben, die auch in Abbildung 6 dargestellt ist. Tabelle 2 zeigt zusätzlich einen Gesamtüberblick der Entwicklung.

Die Eizelle wird im Ovidukt befruchtet, wo sie von einer äußeren Zellschicht - der Zona pellucida - umhüllt und so geschützt wird. Unmittelbar nach der Befruchtung kommt es erst zum Abschluss der Meiose, der zweite Polkörper wird gebildet, woraufhin erste frühe Furchungsprozesse stattfinden. Die erste Teilung erfolgt 24 Stunden nach der Befruchtung, alle weiteren folgen in einem Abstand von 10-12 Stunden, so dass schließlich eine kompakte Zellkugel - die sogenannte Morula (E2,5 p.c.) - entsteht (Schenkel 1995). Im 8-16-Zell-Stadium vergrößern sich die einzelnen Blastomeren, die ihre Oberfläche verdichten. Durch tangentiale und radiale Furchungsprozesse entstehen zwei Zellgruppen: aus den äußeren Zellen der Morula geht das Trophoektoderm hervor, die inneren Zellen bilden die sogenannte innere Zellmasse (IZM). Das Trophoektoderm ist für die Ausbildung extraembryonaler Strukturen verantwortlich, die der Versorgung des Embryos dienen (z.B. Plazenta). Der eigentliche Embryo entwickelt sich aus einer kleinen Anzahl von Zellen der IZM (Beddington and Robertson 1999; Gardner 1983; Johnson and Ziomek 1981). In diesem Stadium wird der Embryo als Blastozyste bezeichnet (E3,5 p.c.). Das Trophoektoderm pumpt Flüssigkeit in das Innere der Blastozyste, wodurch ein flüssigkeitsgefüllter Vesikel (Blastozoel) entsteht.

Dreieinhalb bis viereinhalb Tage nach der Befruchtung teilt sich die IZM in zwei Bereiche auf: aus der obersten Schicht, die in Kontakt mit der flüssigkeitsgefüllten Höhle der Blastozyste steht, entwickelt sich das primitive Endoderm. Dieses ist an der Bildung extraembryonaler Strukturen beteiligt. Die übrigen Zellen der IZM werden zum primitiven Ektoderm (Epiblast), woraus letztendlich der eigentliche Embryo sowie einige andere extraembryonale Strukturen hervorgehen. In diesem Stadium löst sich der Embryo aus der Zona pellucida und nistet sich in der Uterusschleimhaut ein. Dabei replizieren die Zellen der muralen Trophoektodermwand, ohne sich zu teilen (Endoreduplikation). Die SO entstehenden sogenannten Riesenzellen des Trophoblasten dringen in die Uterusschleimhaut ein. Der restliche Teil des Trophoektoderms wächst zum ektoplazentalen Kegel und dem extraembryonalen Ektoderm heran – diese Strukturen tragen schließlich zur Ausbildung der Plazenta bei. Zusätzlich bedecken einige Zellen des primitiven Endoderms die innere Oberfläche des muralen Trophoektoderms (parietales Endoderm). Die verbleibenen Zellen des primitiven Endoderms umhüllen den Eizylinder (viscerales Endoderm), der sich in die Länge zieht und den Epiblasten enthält (Gardner 1983). Durch diese Vorgänge entsteht etwa sechs Tage nach der Befruchtung eine innere Höhle im Epiblasten (proamniotische Höhle), welche U-förmig ist. Die zukünftigen Körperachsen werden durch Bildung des Primitivstreifens beim Einsetzen der Gastrulation sichtbar.

Ab E6,5 p.c. beginnt die Gastrulation, welche nach achteinhalb Tagen abgeschlossen ist. In dieser Zeit werden die Keimblätter und die Körperachsen des Embryos angelegt. Weiterhin kommt es zur Ausbildung der *Chorda dorsalis* und der Somiten. Die Anlegung zusätzlicher extraembryonaler Strukturen umfasst Strukturen der Plazenta (*Amnion*, visceraler Dottersack, *Allantois* und *Chorion*).

Gegen Ende der Gastrulation entstehen die Neuralwülste und durch eine Anzahl an Faltungsprozessen wird der Darm gebildet. Desweiteren bilden sich Herz, Leber und Kopf. Mit Abschluss der Gastrulation setzt die Organogenese ein (Wolpert 1999).

Abbildung 6: Schematische Darstellung der Mausentwicklung bis E7,5 p.c.

(A.) Übersicht der Präimplantationsstadien bis E4,5 p.c. Nach der Befruchtung der Eizelle wird die Meiose abgeschlossen, der zweite Polkörper wird gebildet und durch mehrere Zellteilungprozesse entsteht die Morula (E2,5 p.c.). Durch Verdichtung der Blastomeren sowie weiteren Furchungsprozessen entsteht eine Blastozyste, die aus einer inneren Zellmasse (IZM) und einer äußeren Zellschicht (Trophoektoderm) besteht. Durch Aufnahme von Flüssigkeit entsteht ein flüssigkeitsgefüllter Hohlraum (Blastozoel). Am Embryonaltag 4,5 p.c. findet die Implantation (Nidation) statt, wobei Riesenzellen der muralen Trophoektodermwand in die Uterusschleimhaut eindringen. Während aller Präimplantationsstadien ist der Embryo von der *Zona pellucida* umhüllt. **(B.)** Übersicht einiger Postimplantationsstadien bis E7,5 p.c. Das Trophoektoderm bildet den ektoplazentalen Kegel sowie das extraembryonale Ektoderm. Ausbildung des parietalen und visceralen Endoderms. Ab E6,5 p.c. Beginn der Gastrulation und Bildung von Meso- und Endoderm. E: Embryonalstadium, p.c.: *post coitum* (modifiziert nach Beddington and Robertson, 1999).

Alter p.c. (Tage)	Stadium	Entwicklung
0,5	1-Zellstadium	Befruchtung der Eizelle im Ovidukt
1,5	2-Zellstadium	Proliferation
2,5	Morula	Proliferation, Ausbildung des Trophoektoderms
3,5	Blastozyste	Embryo mit innerer (IZM) und äußerer (Trophoektoderm) Zellmasse
4 5-6	Implantation	Freie Blastozyste ohne Zona pellucida und Implantation in der
1,5 0	mplantation	Uterusschleimhaut, Ausbildung und Differenzierung des Eizylinders
		Differenzierung in Endo-, Meso- und Ektoderm, Anlegung der
6,5-9,5	Gastrulation	embryonalen Achsen, Beginn der Herz- und Lungenentwicklung,
		Drehung des Embryos
10-19	Organogenese	Entwicklung der Organe sowie sexuelle Differenzierung
19-21		Wurf

Tabelle 2: Die Embryonalentwicklung der Maus (Schenkel 2006)

1.3.2 Die frühe Gehirnentwicklung der Maus und das Ventrikelsystem

Die Ausbildung der Neuralfalte bildet das erste Anzeichen einer Gehirnentwicklung in der Maus um E7,5 p.c. Die Vorstufen der einzelnen Hirnabschnitte - die sogenannten Hirnbläschen - bilden sich ab E8,5 p.c. am vorderen Ende des Neuralrohrs und bestimmen die ersten Unterteilungen des Gehirns (Vorderhirn [*Prosencephalon*], Mittelhirn [*Mesencephalon*] und Rautenhirn [*Rhombencephalon*]). Aus diesen Anlagen werden schließlich die verschiedenen Gehirnareale ausgebildet (Großhirn [*Telencephalon*], Zwischenhirn [*Diencephalon*], Mittelhirn [*Mesencephalon*], Brücke [*Pons*], Kleinhirn [*Cerebellum*] und verlängertes Mark [*Medulla oblongata*]) (Abbildung 7).

Das Lumen des Neuralrohrs entwickelt sich im Bereich des Gehirns zu einem Hohlraumsystem (Ventrikelsystem). Dieses besteht insgesamt aus vier Hohlräumen, die miteinander verbunden sind. Beide Großhirnhemispähren des *Telencephalon* weisen je einen Lateralventrikel auf. Des Weiteren werden ein dritter Ventrikel im *Diencephalon* und ein vierter Ventrikel im *Rhombencephalon* ausgebildet (Abbildung 7) (Faller and Schünke 1995). Das Ventrikelsystem ist mit einer Gehirnflüssigkeit (*Liquor*) gefüllt, der von Epithelzellen des *Plexus choroideus* produziert wird. Der *Liquor* schützt Gehirn und Rückemark vor Erschütterungen. Durch Diffusion und aktiven Transport fließt der *Liquor* in die einzelnen Ventrikel, gelangt von den Lateralventrikeln aus über das Aquädukt in den Dritten und schließlich in den vierten Ventrikel. Von dort aus verlässt der *Liquor* die inneren Räume und erreicht ein äußeres System, von wo aus er letztendlich zurück in das Lymphsystem gelangt.

Abbildung 7: Die frühe Gehirnentwicklung in der Maus

(A.) Erste Anzeichen einer Gehirnentwicklung um E8,5 p.c. und Bildung der drei Hirnbläschen (*Prosencephalon*, *Mesencephalon* und *Rhombencephalon*). Ab E9,5 p.c. entwickelt sich aus dem *Prosencephalon* das *Telencephalon* und *Diencephalon*. Um E11,0 p.c. werden die Anlagen der Lateralventrikel sowie des dritten und vierten Ventrikel sichtbar. Weiterhin entwickelt sich aus dem *Mesencephalon* das Aquädukt und aus dem *Rhombencephalon* das *Met-* und *Myelencephalon* (B.) Vereinfachte Darstellung der frühen Gehirnentwicklung in der Maus. Gezeigt sind die Embryonalstadien E8,5 p.c. bis E13,0 p.c. Die Abbildung ist auf die Hauptgehirnareale begrenzt (modifiziert nach Kaufman and Bard 1999).

1.3.3 Manipulationen des Mausgenoms

Nach neuesten Angaben umfasst das Mausgenom 20.210 proteinkodierende Gene (Church et al. 2009). Von 15.187 humanen und murinen Genen existieren Orthologe, die etwa 75 % des murinen und 80 % des humanen Genoms repräsentieren. In der Maus konnten in den letzten Jahrzehnten eine Vielzahl von Methoden zur Manipulation des Genoms entwickelt werden, wodurch die *in vivo*-Funktionsanalyse bestimmter Gene ermöglicht wird. Durch die beschriebenen Eigenschaften ist die Maus ein idealer Modellorganismus zur vergleichenden Pathogenese. So können mit Hilfe einer Pronukleus-Injektion (Gordon et al. 1980; Palmiter et al. 1982) oder durch die Transfektion von embryonalen Stammzellen (ES-Zellen) (Robertson et al. 1986) Tiere generiert werden, in welche eine heterologe Expression möglich ist oder die endogene Gene überexprimieren. Desweiteren ist es möglich, durch sogenanntes *gene targeting* murine Gene gezielt zu modifizieren.

1.3.4 *Gene targeting*

Mit Hilfe des *gene targeting* können gezielte Modifikationen mittels homologer Rekombination in das Mausgenom eingebracht werden (Gossler et al. 1986; Robertson et al. 1986; Thomas and Capecchi 1987). Dabei werden ES-Zellen verwendet, die *in vitro* genetisch manipuliert werden können. ES-Zellen werden aus der inneren Zellmasse einer Blastozyste (E3,5 p.c.) gewonnen und *in vitro* kultiviert (Evans and Kaufman 1981; Martin 1981). Aufgrund ihrer Pluripotenz sind sie in der Lage, nach einer genetischen Manipulation zur Generierung sogenannter chimärer Mäuse beizutragen (Bradley et al. 1984; Gossler et al. 1986). Entscheidend für die Modifikation der ES-Zellen ist die homologe Rekombination des sogenannten *targeting*-Konstruktes, das über Elektroporation in die Zellen gebracht wird (Thomas and Capecchi 1987). Wegen der geringen Frequenz einer homologen Rekombination (1:10⁶ bis 1:10⁹) (Schenkel 2006) beinhaltet das Konstrukt neben der eigentlichen genetischen Modifikation möglichst lange, homologe Sequenzabschnitte zu der genomischen Region, in die es eingebracht werden soll. Selektionsmarker im *targeting*-Konstrukt ermöglichen außerdem die Identifizierung homolog rekombinanter ES-Zellklone (Mansour et al. 1988).

1.3.5 Sequenz-spezifische Rekombinationssysteme

Das dauerhafte, vollständige Ausschalten einer Genfunktion kann zu einer frühen embryonalen Letalität führen, wodurch postnatale Untersuchungen nicht mehr möglich sind. Bei einem sogenannten konditionalen *gene targeting* werden sequenz-spezifische Rekombinationssysteme verwendet, die es erlauben, Gene zeit- oder gewebespezifisch auszuschalten (Marth 1996; Rajewsky et al. 1996). Die beiden am besten charakterisierten und am weitetesten verbreiteten sequenz-spezifischen Rekombinationssysteme sind das Cre/loxP (Hamilton and Abremski 1984) und das Flp/FRT-System (Andrews et al. 1985), die beide erfolgreich in der Maus angewendet werden (Farley et al. 2000; Rodriguez et al. 2000).

1.3.5.1 Das Cre/loxP-System

Das Cre/loxP-System stammt aus dem Bakteriophagen *P1* und ist sowohl für die Integration als auch für die Exzision des Phagengenoms in dessen Wirtsorganismus zuständig (Abremski et al. 1983; Hoess and Abremski 1985; Sternberg and Hamilton 1981). Die 38 kDa große Cre-Rekombinase (*causes recombination*) gehört zur Familie der λ -Integrasen und vermittelt ohne Hilfe von Co-Faktoren die basenpaargenaue Rekombination zwischen zwei sogenannten loxP-Stellen (*locus of crossing over* (*x*) *in P1*). Diese bestehen aus 13 bp langen, invertierten Wiederholungssequenzen (*inverted repeats*), die von einem 8 bp langen *spacer* separiert werden. Die Cre-induzierte Rekombination zwischen zwei loxP-Stellen gleicher Orientierung führt zur Exzision eines dazwischen liegenden DNA-Fragments, so dass nur eine intakte loxP-Stelle verbleibt (Kilby et al. 1993). LoxP-Stellen kommen im endogenen *Mammalia*-Genom nicht vor, dennoch kann eine Cre-vermittelte Rekombination durch entsprechende Modifikationen des Genoms induziert werden (Gu et al. 1993; Sauer and Henderson 1988).

Die Expression eines Cre-Transgens unter der Kontrolle eines zeit- oder gewebespezifischen Promotors ermöglicht konditionale *gene targetings* in der Maus (Gu et al. 1993; Hamilton and Abremski 1984; Utomo et al. 1999). Dafür wird die Zielsequenz im *targeting*-Vektor 5' und 3' von loxP-Stellen flankiert (gefloxt) und über homologe Rekombination in das Genom der ES-Zellen gebracht. Im Tier werden diese Zielsequenzen zunächst normal exprimiert und erst durch das Einkreuzen transgener Cre-exprimierender Mäuse wird die Deletion des Gens induziert (Lakso et al. 1992; Orban et al. 1992; Rajewsky et al. 1996).

20
1.3.5.2 Das Flp/FRT-System

Das Flp/FRT-Rekombinationssystem stammt aus *S. cerevisiae* und beinhaltet die 46 kDa große DNA-Rekombinase Flp-Rekombinase (Flp) sowie deren Zielsequenz FRT (*Flp recombinase target*) (Dymecki 1996; Huang et al. 1991). Eine FRT-Sequenz besteht aus einem 8 bp langen *spacer*, der von 13 bp langen *inverted repeats* flankiert ist. Der Mechanismus der Flp-vermittelten Rekombination verläuft ähnlich der Cre/loxP-vermittelten Rekombination, allerdings ist das System aufgrund der Thermolabilität des Enzyms bei physiologischen Bedingungen in *Mammalia* wenig effizient (Rodriguez et al. 2000). Mittlerweile wurden Proteine mit verbesserter Rekombinationseffizienz bei 37°C generiert (Schaft et al. 2001). Eine Flp-vermittelte Deletion von FRT-flankierten Zielsequenzen kann durch das Einkreuzen von transgenen Flp-Rekombinase-exprimierenden Mäusen induziert werden, welche die Rekombinase unter der Kontrolle des *ROSA26*-Promotors ubiquitär exprimieren (Farley et al. 2000; Rodriguez et al. 2000).

1.3.6 SMA-Mausmodelle

In den letzten Jahren wurden verschiedene Tiermodelle zur Analyse der Pathogenese der SMA generiert. Diese Tiermodelle umfassen sowohl ubiquitäre, transgene als auch konditionale SMA-Mausmodelle.

Ein ubiquitärer *knockout* des *Smn*-Allels führt zur embryonalen Letalität. Der Zeitpunkt der Letalität hängt sowohl von der *knockout*-Strategie als auch von dem genetischen Hintergrund der verwendeten Mausstämme ab (Hsieh-Li et al. 2000; Schrank et al. 1997).

Mit der Generierung transgener Mäuse, die neben dem ubiquitären *Smn-knockout* eine unterschiedliche Kopienanzahl des humanen *SMN2*-Transgens tragen, wurden adäquate Mausmodelle für die SMA generiert (*Smn^{ko/ko}; SMN2^{tg/tg}*). Wie beim ubiquitären *Smn-knockout* hängt der Phänotyp von dem genetischen Hintergrund des verwendeten Mausstammes ab und korreliert - wie beim Menschen - mit der *SMN2*-Kopienanzahl (Hsieh-Li et al. 2000; Michaud et al. 2010; Monani et al. 2000). Doppelt transgene Mausmodelle, die zusätzlich zum *SMN2*-Transgen ein weiteres Transgen (z.B. mit einer Mutation im *SMN*-Gen oder eine trunkierte *SMN2*Δ7 cDNA) tragen, zeigen einen wesentlich milderen SMA-Phänotyp (Le et al. 2005; Monani et al. 2003; Workman et al. 2009). Um die gewebespezifischen Funktionen des *SMN*-Gens zu untersuchen, wurden weiterhin eine Anzahl von konditionalen SMA-Mausmodellen - basierend auf dem Cre/loxP-System (1.3.5) - generiert (Cifuentes-Diaz et al. 2001; Frugier et al. 2000; Vitte et al. 2004).

Um die funktionellen Analysen des Bdp1-Gens im Zuge dieser Arbeit auszuweiten, sollte das Bdp1-Mausmodell mit einem SMA-Mausmodell verpaart werden. Dafür wurde ein SMA-Mausmodell verwendet (Hsieh-Li et al. 2000), das auf einen reinen FVB/NCrl-Hintergrund zur Verfügung stand (Riessland et al. 2010). Homozygote Smn-knockout-Tiere mit vier SMN2-Kopien (Smn^{ko/ko}; SMN2^{tg/tg}) sind überlebensfähig. Die Tiere entwickeln nekrotisches Gewebe an Schwanz und Ohren und zeigen somit ähnliche phänotypische Eigenschaften, wie sie bei einer geringen Anzahl von SMA-Patienten beschrieben wurden (Araujo Ade et al. 2009). Nachkommen, die eine homozygote Deletion für das Smn-Gen, jedoch das Transgen heterozygot tragen (Smn^{ko/ko}; SMN2^{tg/wt}), überleben etwa 10 Tage (Riessland et al. 2010). Dieses SMA-Mausmodell wurde in unserer Arbeitsgruppe mindestens sieben Generationen auf C57BL/6NCrl zurückgekreuzt. So generierte Tiere zeigen eine erhöhte Lebensdauer von 14,5 Tagen im Vergleich zu Tieren auf 100 % FVB/NCrl-Hintergrund, wenn sie das SMN2-Transgen heterozygot tragen (Ackermann et al., nicht veröffentlicht). Da das Bdp1-Mausmodell ebenfalls auf einem C57BL/6NCrl-Hintergrund basieren sollte, wären - nach erfolgter Verpaarung der Tiere - Analysen des Bdp1-Gens auf einen reinen genetischen Hintergrund durchführbar.

2. Zielsetzung der Arbeit

Ziel der vorliegenden Arbeit ist die Analyse von kausalen Zusammenhängen zwischen Deletionen des *BDP1*-Gens und der Ausbildung atypischer SMA-Formen, wie sie bei den Patienten Nr. 353 und Nr. 6432 diagnostiziert wurden (siehe Kapitel 1.2.3). Bisher konnte nicht abschließend geklärt werden, ob eine Haploinsuffizienz des *BDP1*-Gens für die Ausbildung der Gehirnatrophien dieser Patienten verantwortlich war. Bei Patientin Nr. 353 sprach ein deletierter Marker in der SMA-Region für eine Involvierung des *BDP1*-Gens bei der Ausprägung einer Gehirnatrophie. Daten aus Southern Blot-Analysen und quantitativer PCRs unterstützen die Theorie einer *BDP1*-Deletion. Ergebnisse neuerer Analysen (Western Blot-Analysen, semi-quantitative RT-PCRs, *Realtime*-Analysen) standen jedoch im Gegensatz zu dieser Theorie.

Um diese geschilderten Fragestellungen endgültig zu klären, sollte ein adäquates Mausmodell generiert werden. Zu diesem Zweck wurde in Vorarbeiten eine Strategie für einen konditionalen *knockou*t des murinen *Bdp1*-Gens entwickelt und im Rahmen dieser Arbeit umgesetzt. Dazu zählte die Transfektion von murinen embryonalen Stammzellen (ES-Zellen) mit dem in eigenen Vorarbeiten klonierten *Bdp1-targeting*-Konstrukt sowie die Selektion und Verifizierung der homolog rekombinanten ES-Zellklone. Über die Generierung von chimären Mäusen sollten verschiedene *Bdp1*-Linien generiert und weitmöglichst charakterisiert werden. Dabei sollte zunächst durch Einkreuzen einer entsprechenden transgenen Cre-Linie eine ubiquitäre Deletion des *Bdp1*-Gens induziert werden. Nach Möglichkeit sollte hier zusätzlich die *Bdp1*-Expression in Abhängigkeit von *Smn*-Deletionen untersucht werden, indem entsprechende Linien miteinander verpaart werden. Je nach phänotypischer Ausprägung der ubiquitären *Bdp1*-Deletion sollte weiterhin ein gewebespezifischer *Bdp1-knockout* generiert werden.

3. Material und Methoden

3.1 Material

3.1.1 Chemikalien

Für die hier beschriebenen Experimente wurden ausschließlich Chemikalien mit der Qualitätsbezeichnung *pro analysis* verwendet. Alle Standardchemikalien, organische Substanzen sowie Lösungsmittel wurden von folgenden Firmen bezogen:

Amersham (GE Healthcare)	Freiburg	Deutschland
AppliChem	Darmstadt	Deutschland
Merck	Darmstadt	Deutschland
Perkin-Elmer	Waltham (MA)	USA
Qiagen	Hilden	Deutschland
Roche	Mannheim	Deutschland
Roth	Karlsruhe	Deutschland
Serva	Heidelberg	Deutschland
Sigma-Aldrich (Fluka)	Taufkirchen	Deutschland

3.1.2 Verbrauchsmaterialien

Allgemeine Verbrauchsmaterialien (Glas- und Plastikwaren) wurden von folgenden Firmen bezogen:

Applied Biosystem	Carlsbad (CA)	USA
Axygen	Union City (CA)	USA
BD	Heidelberg	Deutschland
Bioplastics	Landgraaf	Niederlande
Brand	Wertheim	Deutschland
Braun	Melsungen	Deutschland
Corning Incorporated GmbH	Kaiserslautern	Deutschland
Duran	Wertheim/Main	Deutschland
Eppendorf	Hamburg	Deutschland
Greiner Bio-One GmbH	Frickenhausen	Deutschland

Hartenstein	Würzburg	Deutschland
Hartmann Analytik	Braumschweig	Deutschland
Nunc	Wiesbaden	Deutschland
Pechiney Plastic Packaging	Chicago (IL)	USA
Roth	Mannheim	Deutschland
Sarstedt	Nümbrecht	Deutschland
VWR	Darmstadt	Deutschland

3.1.3 Geräte und Zubehör

3.1.3.1 Allgemeine Geräte und Zubehör

Autoradiographiefilme	Hyperfilm MP	Amersham
	Hyperfilm ECL	Amersham
Autoradiographiekassetten	X-Ray	Kisker Biotech
	DUPONT Cronex III	Sigma-Aldrich
Blottingpapier	GB3M/GB40	Hartenstein
Bunsenbrenner	gasprofi 2	WLD Tec
Einwegspritzen		Braun
Entwicklermaschine	Curix 60	Agfa
Geldokumentationssystem	ChemiDoc XRS	BioRad
Gewebehomogenisator	Basis Ultra Turrax	ΙΚΑ
Heizblöcke	HBT-2-131	HLC
	HTMR-132	HLC
	HTMR-133	HLC
Kühlschränke		AEG, Liebherr
Kreisschüttler	GFL 3015	GFL
Magnetrührer	MR3001	Heidolph
Membranen	Hybond XL	Amersham
	Nitrocellulose	Whatman
	PVDF	Millipore
Mikroskope	Leica DMIL	Leica
	S8AP0	Leica
	Axioplan 2	Zeiss

Mikrowelle		Bosch
Netzgeräte	PowerPac 1000/HC	BioRad
pH-Meter	inolab level 1	WTW
Photometer	BioPhotometer	Eppendorf
	NanoDrop ND-1000	Peqlab
Pipetten/Multipipetten		Eppendorf
Pipettierhilfe	Easypet	Eppendorf
Reagenzglasschüttler	Vortexer	Heidolph
Reinstwasseranlage	Mili-Q-System	Millipore
Rollenmischer	RM 5	Hartenstein
Rotator	LD79	Kisker
Schweißgerät	Vacumaster	Ismet
Skalpell (chirurgisch)	5518040	Aesculap
Tiefkühlschränke		Liebherr, Bosch
Waagen	ARJ 120-4M	Sartorius
	EW 6000-1M	Kern
Wasserbäder	GFL 1083	GFL
	Hi1210	Leica
Zentrifugen	Allegra X22-R	Beckman Coulter
	Avanti J-20XPI	Beckman Coulter
	5415D	Eppendorf
	5415R	Eppendorf
	5804	Eppendorf
	Galaxy Mini	VWR

3.1.3.2 Geräte und Zubehör zur Analyse von Nukleinsäuren

Elektrophoresekammern	MGV-620T	C.B.S & Scientific
	SGE-020-02	C.B.S & Scientific
	E-H6	Febicon
Geigerzähler	LB 1210B	Berthold
Hybridisierungsofen	Typ 30 (Hyb 6.88)	Bachofer GmbH
Hybridisierungsröhren	732-1822	VWR

Inkubationsofen		Memmert/Fastnacht
Mikrotiterplatten	Realtime, B70501	Bioplastic
	TECAN, Fluotrac200	Greiner
Mikrotiterplatten Lesegerät	Safire ²	Tecan
Thermozykler	ABI 7500 Taqman	Applied Biosystem
	GeneAmp 9700	Applied Biosystem
	TETRAD2	MJ Research

3.1.3.3 Geräte und Zubehör zur Analyse von Proteinen

Dialyseschläuche	D0405-100FT	Sigma-Aldrich
Elektrophoresekammer (SDS-PAA)	MiniProtean 3 cell	BioRad
Glasplatten (MiniProtean)	0,75 mm	BioRad
Säulen	89898	Thermo Scientific
Sonifikator	Bioruptor	Diagenode
Transferkammer	MiniProtean 3 cell	BioRad

3.1.3.4 Geräte und Zubehör für die Zellkultur

Elektroporato	or	GenePulserXcell	BioRad
Elektroporatio	onsküvetten	GenePulser (0,4 cm)	BioRad
Flüssigkeitsbe	ehälter (Reservoir)	21007-970	Labcor Products
Sterilbänke		Hera Safe	Heraeus
		HA 2448	Heraeus
Sterilfilter	0,2 μm	FP30/0,2 CA-S	Schleicher&Schuell
	HTN-Cre-Filtration	Filtropur S	Sarstedt
Vakuumpump	be	BVC 21	VWR
Zellinkubator	en	BBD 6620	Heraeus
		Hera Cell 150	Heraeus
Zellsieb		REF352350	BD Falcon
Zellzählkamm	er	Neubauer	Optik Labor

3.1.3.5 Geräte und Zubehör für die Immunhistologie

Deckgläser	DK60, DKR2	Hartenstein
Einbettkästen		Roth

Einbettstation	EG1150H	Leica
Entwässerungsapparat	TP1028	Leica
Färbekammer	Rotilabo HA51.5	Roth
Färbekästen		Faust GmbH
Färberahmen		Faust GmbH
Heizplatte	Hi1220	Leica
Kanadabalsamglas	KG60	Hartenstein
Mikrotom	RM2255	Leica
mounting-Medium	H-1400/1500	VECTOR laboratories
Objektträger	Polysine	Hartenstein
Objektträgerbox	A10	Hartenstein

3.1.3.6 Geräte und Zubehör für die Arbeit mit Mäusen

Applikator für Ohrmarken	1005-s1	National Band & Tag Co.
Mikropinzette	FM002R	Aesculap
Mikropipetten	100 µl, blau	Blaubrand
Ohrmarken (Metall, nummeriert)	1005-1	National Band & Tag Co.
Pinzette (anatomisch)	BD047R	Aesculap
Scheren	BC321R	Aesculap
	BC8641R	Aesculap
	BC100R (fein)	Aesculap
	BC341R (stumpf)	Aesculap
Schlauch (Blastozystenisolation)		Biomedical Instruments
Splitterpinzetten	BD312 (gekrümmt)	Aesculap
	BD302 (spitz)	Aesculap

3.1.4 Substanzen und Chemikalien

3.1.4.1 Allgemeine Substanzen und Chemikalien

Bacillol	Bode Chemie
β-Mercaptoethanol	AppliChem/Merck
bovine serum albumin	Sigma-Aldrich
Ethylendiamintetraessigsäure	AppliChem

Ethanol		AppliChem
Gelatine	pulverisiert	AppliChem
	2 %	Sigma-Aldrich
Glycerin	99 %	AppliChem
Magermilchpulver		AppliChem
Natriumzitrat		AppliChem
Natriumchlorid		AppliChem
Natriumdihydrogenphosphat		AppliChem
Natriumdodecylsulfat		AppliChem
PBS	<i>w/o</i> CaCl ₂ , MgCl ₂	Biochrom/PAA
Seren	fetales Kälberserum	Biochrom
	Ziegenserum	PAA
Tris		AppliChem/Roth

Tris

3.1.4.2 Substanzen und Chemikalien zur Analyse von Nukleinsäuren

$[\alpha^{-32}P]dCTP$		Amersham/Perkin Elmer
Agarose		Cambrex, Invitrogen
Bromphenolblau		AppliChem
Chloroform-Isoamylalkohol	24:1	AppliChem
count-off-Lösung	6NE9422	Perkin Elmer
Desoxyribonukleosidtriphosphate		Peqlab
Diethylpyrocarbonat		AppliChem
Dithiothreitol		AppliChem
Ethidiumbromid	1 %	AppliChem
Formaldehyd	37 %	Sigma-Aldrich
Isopropanol		AppliChem
3(N-Morpholino)-Propansulfonsäu	AppliChem	
Natriumhydroxid		AppliChem
Magnesiumsulfat		Merck
Phenol		AppliChem
Proteinase K-Lösung	20 mg/ml	AppliChem
RNA-Ladepuffer	2 x	Fermentas

RNase A	10 mg/ml	Sigma-Aldrich
Salzsäure		AppliChem
Spermidin		AppliChem
SSC-Puffer	20 x	AppliChem
salm sperm-DNA		AppliChem
SYBR Green PCR Master Mix		Applied Biosystem
TBE-Puffer	10 x	AppliChem

3.1.4.3 Substanzen und Chemikalien zur Analyse von Proteinen

Aqua plus Acrylamid	30 %, 29:1	AppliChem
Ammoniumpersulfat		AppliChem
Protease Inhibitoren (mini complet	Roche	
Ponceau S		Sigma-Aldrich
RIPA-Puffer		Sigma-Aldrich
TEMED		AppliChem
Tris-Base		Sigma-Aldrich
Tween20		AppliChem
Western Blot-stripping buffer		Pierce

3.1.4.4 Substanzen und Chemikalien für die Zellkultur

Amphotericin B	250 μg/ml	Promocell
D-MEM (für Fibroblasten)	41966	Invitrogen
D-MEM (für ES-Zellen)	41965	Invitrogen
Dimethylformamid		Sigma-Aldrich
Dimethylsulfoxid		AppliChem
Ganciclovir	50 mg/ml	Hoffmann-La Roche
G418 (Geniticin)		Roche
L-Glutamin	200 mM	Invitrogen
leukemia inhibitory factor	1000 x	Embl
M2-Medium		Sigma-Aldrich
M16-Medium		Sigma-Aldrich
Mineralöl		Sigma-Aldrich
Mitomycin C		Sigma-Aldrich

Natriumpyruvat	1000 x	Invitrogen
Nicht-essentielle Aminosäuren	100 x	Invitrogen
Penicillin/Streptoymycin		Invitrogen
RPMI	<i>w/o</i> Phenolrot	Gibco
thiazolyl blue tetrazolium bromide		Sigma-Aldrich
Trypsin-EDTA	1 x	Invitrogen

3.1.4.5 Substanzen und Chemikalien für die Immunhistologie

Entellan/Eukitt		Fluka
Essigsäure		AppliChem
Formalin		AppliChem
HE-Färbelösung	Eosin Y-Lösung	Sigma-Aldrich
	Hämatoxylinlösung	Sigma-Aldrich
Paraffin		Sigma-Aldrich
Paraformaldehyd		Sigma-Aldrich
Xylol		AppliChem
Zitronensäure		AppliChem

3.1.4.6 Substanzen und Chemikalien für die HTN-Cre-Expression und Isolation

Ampicillin	AppliChem
Benzonase	Novagen/Merck
Carbenecillin	AppliChem
Chloramphenicol	Sigma-Aldrich
Hefeextrakt	AppliChem
HEPES	AppliChem
Glucose	AppliChem
Imidazol	AppliChem
Isopropyl-β-D-thiogalactopyranosid	AppliChem
Lysozym (aus Huhn)	Sigma-Aldrich
Natriumbicarbonat	AppliChem
Natriumtartrat dibasisch Dihydrat	Fluka
Nickel-NTA-Agarose	Qiagen
Trypton	AppliChem

3.1.5 Lösungen, Medien und Puffer

Die für die jeweiligen Lösungen, Medien und Puffer angegebenen Molaritäten bzw. Konzentrationen beziehen sich auf die Endkonzentrationen. Wenn nicht anders vermerkt, wurde zum Ansetzen der Lösungen und Puffer autoklaviertes Reinstwasser (Milliporwasser, ddH₂O) verwendet.

3.1.5.1 Lösungen zur Analyse von Nukleinsäuren

NaH₂PO₄- und EDTA-Lösungen vor Gebrauch autoklavieren, SDS-Lösung in autoklavierten ddH₂O unter Erhitzen lösen.

Agaros	segel	le (Northern Blot)	<i>ad</i> 200 ml	
	0	Agarose	1,5 %	3 g
	0	DEPC-H ₂ O		174 ml
	0	Lösen durch Aufkochen,	unter Rühren	auf 60°C abkühlen lassen
	0	Formaldehyd	3 %	6 ml 37 % Formaldehyd
	0	MOPS-Puffer	10 %	20 ml 10 x MOPS-Puffer
	0	EtBr	1 μg/ml	20 μl 1 % EtBr
DEPC-H	H₂O			ad 1
	0	DEPC		1 ml
	0	über Nacht rühren, auto	klavieren	
Desoxyribonukleosidtriphosphate ad 5 ml				
	0	dNTP-Mix	1,25 mM	62,5 μl pro 100 mM dNTP

Ladepuffer (10 x)				<i>ad</i> 50 ml
	0	EDTA	100 mM	10 ml 0,5 M EDTA, pH 8,0
	0	SDS	1 %	2,5 ml 20 % SDS
	0	Glycerin	50 %	28,7 ml
	0	Bromphenolblau	0,1 %	0,05 g

Lysispuf	Lysispuffer, pH 8,5 (für Gewebe und Zellen)		<i>ad</i> 500 ml
С	Tris	100 mM	50 ml 1 M Tris/HCl, pH 8,0
С	EDTA	5 mM	5 ml 0,5 M EDTA, pH 8,0
С	SDS	0,2 %	5 ml 20 % SDS
С	NaCl	200 mM	20 ml 5 M NaCl
С	Proteinase K	200 µg/ml	frisch zugeben
MOPS-P	uffer, pH 7,0 (10 x)		ad 1
C	MOPS	200 mM	41,9 g
C	NaAc	50 mM	4,1 g
C	EDTA	10 mM	20 ml 0,5 M EDTA, pH 8,0
PCR-Puffer (10 x)		<i>ad</i> 100 ml	
С	Tris	100 mM	10 ml 1 M Tris, pH 8,2
С	КСІ	500 mM	50 ml 1 M KCl
С	MgCl ₂	15 mM	1,5 ml 1 M MgCl ₂
С	Gelatine	0,1 %	10 ml 1 % Gelatine
(Prä-) Hy	/bridisierungsmix		
(Northern und Southern Blot)		<i>ad</i> 20 ml	
С	NaH ₂ PO ₄	0,5 M	10 ml 1 M NaH ₂ PO ₄ , pH 7,0
С	EDTA	1 mM	40 μl 0,5 M EDTA, pH 8,0
С	SDS	7 %	7 ml 20 % SDS
C	ddH ₂ O		2 ml
С	salm sperm-DNA	0,5 mg/ml	1 ml 1 % salm sperm-DNA

salm sperm-DNA, pH 8,0		<i>ad</i> 100 ml
0	salm sperm-DNA 1 %, sonifiziert	1 g

o über Nacht bei 37°C in TE-Puffer unter Rühren lösen, Lagerung bei 4°C

<i>strip</i> -Lösung (Northern und Southern Blot)		ad 1 I	
0	NaH ₂ PO ₄	40 M	40 ml 1 M NaH ₂ PO ₄ , pH 7,0
0	EDTA	1 mM	2 ml 0,5 M EDTA, pH 8,0
0	SDS	0,1 %	5 ml 20 % SDS
TE-Puffer			ad 1
0	Tris	10 mM	10 ml 1 M Tris, pH 8,0
0	EDTA	1 mM	2 ml 0,5 M EDTA, pH 8,0
0	autoklavieren		
TE ⁻⁴ -Puffe	r		ad 1
0	Tris	10 mM	10 ml 1 M Tris, pH 8,0
0	EDTA	0,1 mM	0,2 ml 0,5 M EDTA, pH 8,0
0	autoklavieren		
0	für DNA aus Geweben:	Zugabe RNase	e A (Endkonzentration: 50 μg/ml)
Transferp	uffer (Northern Blot)		ad 1
0	SSC	10 x	500 ml 20 x SSC, pH 7,0
Transferp	uffer (Southern Blot)		ad 1
0	NaOH	0,5 M	20 g
0	NaCl	1,5 M	87,66 g

Waschpu	ffer (Northern und South	ern Blot)	ad 1
0	NaH ₂ PO ₄	0,15 M	100 ml 1 M NaH ₂ PO ₄ , pH 7,0
0	EDTA	1 mM	2 ml 0,5 M EDTA, pH 8,0
0	SDS	0,1 %	5 ml 20 % SDS

3.1.5.2 Lösungen zur Analyse von Proteinen

Elektrophoreselaufpuffer, pH 8,0 (10 x)				<i>ad</i> 1 I
	0	Tris	0,25 M	30,29 g
	0	Glycin	1,92 M	144,13 g
	0	SDS	1 %	10 g
Laemm	nli-P	uffer (2 x)		<i>ad</i> 50 ml
Laemm	nli-P o	uffer (2 x) Tris-Base	62,5 mM	<i>ad</i> 50 ml 0,378 g
Laemm	nli-P	uffer (2 x) Tris-Base Glycerin	62,5 mM 10 %	<i>ad</i> 50 ml 0,378 g 10 ml
Laemm	o o o	uffer (2 x) Tris-Base Glycerin Bromphenolblau	62,5 mM 10 % 0,01 %	<i>ad</i> 50 ml 0,378 g 10 ml 5 mg

 \circ vor Gebrauch mit 1/10 Volumen β -ME versetzen

SDS-PAA-Gele

Tabelle 3: verschiedene Konzentrationen an SDS-PAA-Gelen

	Trenngel 8 %	Trenngel 12 %	Sammelgel
	2 Gele	2 Gele	2 Gele
ddH₂O	4,6 ml	3,3 ml	1,4 ml
Acrylamid (30 %, 29:1)	2,7 ml	4,0 ml	330 μl
1.5 M Tris pH 8,8	2,5 ml	2,5 ml	
1,5 M Tris pH 6,8			250 μl
10 % SDS	100 µl	100 µl	20 µl
10 % APS	100 µl	100 μl	20 µl
TEMED	6 μΙ	4 μΙ	2 µl

TBS-Tween-Puffer (TBST-Puffer), pH 7,56			<i>ad</i> 5 I
0	Tris	20 mM	12,1 g
0	NaCl	137 mM	40 g
0	Tween	0,5 %	25 ml
Transferpu	ıffer		<i>ad</i> 5 I
0	Tris-Base	15 mM	12,1 g
0	Glycin	150 mM	56,3 g
0	Methanol	20 %	1

3.1.5.3 Lösungen für die Zellkultur

Einfriermedium für embryonale Stammzellen (ES-Zellen) und murine embryonale Fibroblasten (MEF)

ad 600 ml

0	FKS	80 %	ES-Zellen
		90 %	MEF
0	DMSO	10 %	

Medium für ES-Zellen

0	D-MEM 41965		500 ml
0	FKS	15 %	75 ml
0	L-Glutamin	1 %	6 ml
0	Pen/Strep	1 %	6 ml
0	NEAA (100 x)	1 %	6 ml
0	LIF	1 %	6 ml
0	β-ΜΕ	1 %	6 ml

Medium für MEF			<i>ad</i> 600 ml
0	D-MEM 41966		500 ml
0	FKS	10 %	50 ml
0	Pen/Strep	1 %	5 ml
0	Amphotericin B	250 μg/ml	1,4 ml

Ganciclovir (Selektionsmedium)

- o 50 mg/ml
- ο 86 μl in 80 μl PBS lösen (= 1. Verdünnung)
- 10 μl aus 1. Verdünnung in 1 ml ES-Medium aufnehmen, sterilfiltrieren (= 2. Verdünnung)
- \circ 10 µl aus 2. Verdünnung pro 10 ml ES-Medium (2x10⁻⁶ M)

Gelatine

ad 250 ml

- Gelatine 0,1 % 12,5 ml 2 % Gelatine
- o Lösen durch Erwärmen im Wasserbad, Verdünnung in PBS

leukemia inhibitory factor (LIF)

- 1 ml LIF (10⁷ units) in 9 ml ES-Medium lösen
- o aliquots bei -20°C lagern

Mitomycin C (MMC)

- o 2 mg MMC in 2 ml MEF-Medium lösen, sterilfiltrieren
- o Endkonzentration: 10 μg/ml MEF-Medium
- o aliquots bei -20°C lagern

MTT-Stocklösung

• 50 mg MTT in 10 ml PBS lösen (1 mg/ml)

Solubilisierungslösung, pH 4,0

- 40 % SDS unter Erhitzen in H₂O lösen, rühren
- o 40 % SDS-Lösung 1:2 mit DMF mischen

3.1.5.4 Lösungen für die Immunhistologie

- Zitrat-Puffer, pH 6,0 ad 1 l
 - o Zitronensäure 0,01 M 2,1 g
 - Lagerung bei 4°C

Paraform	aldehyd, pH 7,4		<i>ad</i> 100 ml
0	PFA	4 %	4 g
0	in 30 ml ddH ₂ O unter I	Erwärmen (60°	C) lösen
0	Lösung mit 1 M NaOH klären, erkalten lassen und filtrieren		
0	Zugabe von 50 ml PBS (2 x), pH-Wert einstellen und auf 100 ml auffüllen		
0	aliquots bei -20°C lage	rn	
TBS-Puffe	er, pH 7,6 (10 x)		<i>ad</i> 1 I

/uffer, pH 7,6 (10 X)		<i>aa</i> 11	
0	Tris	0,1 M	12,114 g
0	NaCl	1,5 M	87,66 g

Lösungen für die HTN-Cre-Expression 3.1.5.5

Antibiotika und Imidazol stets frisch ansetzen, HEPES- und NaCl-Lösungen autoklavieren.

Antibiotika

0	Ampicillin	100 mg/ml in H ₂ O
0	Carbenicillin	100 mg/ml in H ₂ O
0	Chloramphenicol	34 mg/ml in 100 % EtOH

ad 100 ml

ad 2 I

Elutionspuffer, pH 7,4

0	Imidazol	250 mM	25 ml 1M Imidazol
0	NaCl	500 mM	10 ml 5 M NaCl
0	PTB-Puffer	1 x	10 ml 10 x PTB-Puffer

Glycerinpuffer, pH 7,4

0	Glycerin	50 %	1
0	HEPES	20 mM	40 ml 1 M HEPES
0	NaCl	500 mM	200 ml 5 M NaCl

high salt-Puffer, pH 7,4

alt-l	Puffer, pH 7,4		ad 2 I		
0	HEPES	20 mM	40 ml 1 M HEPES		
0	NaCl	600 mM	240 ml 5 M NaCl		

LB-Medium, pH 7,0 ad 2 l								
	0	Hefeextrakt	10 %	10 g				
	0	Natriumchlorid	20 %	20 g				
	0	Trypton	20 %	20 g				
	0	autoklavieren						
PTB-Pu	Iffer	, рН 7,8 (10 x)		<i>ad</i> 500 ml				
	0	NaH_2PO_4	500 mM	44,49 g				
	0	Tris	50 mM	3,03 g				
TSB-Pu	ffer	, рН 7,4		<i>ad</i> 120 ml				
	0	Imidazol	20 mM	2,4 ml 1 M Imidazol				
	0	Natriumtartrat	2 M	55,4 g				
	0	PTB-Puffer	1 x	12 ml 10 x PTB-Puffer				
Wasch	puff	fer, pH 7,4		<i>ad</i> 200 ml				
	0	Imidazol	20 mM	4 ml 1 M Imidazol				
	0	NaCl	500 mM	20 ml 5 M NaCl				
	0	PTB-Puffer	1 x	20 ml 10 x PTB-Puffer				

3.1.6 *Kits*

Soweit nicht anders vermerkt, wurden die folgenden *kits* nach Angaben Herstellerangaben verwendet.

3.1.6.1 *Kits* zur Analyse von Nukleinsäuren

Charge Switch gDNA Mini Tissue Kit	CS11204	Invitrogen
Phase Lock Gel (Heavy 2 ml)	2302830	5 Prime
Power SYBR green PCR Master Mix	4367659	Applied Biosystems
Probe Quant G-50 Micro Columns	28-9034-089	Amersham
Rediprime II RandomPrimeLabeling Kit	RPN1633	Amersham
Quant-iT PicoGreen dsDNA Assay Kit	P7589	Invitrogen
Quant-iT RiboGreen RNA Quantification Kit	Q33140	Invitrogen
QuantiTect Reverse Transcription Kit	205311	Qiagen

	QIAshredder	79656	Qiagen
	QIAquick PCR Purification Kit	28106	Qiagen
	QIAzol	79306	Qiagen
	Repli-g whole genome amplification Kit	150025	Qiagen
	RNase-free DNase I Set	79254	Qiagen
	RNeasy Mini Kit	74106	Qiagen
3.1.6.2	Kits zur Analyse von Proteinen		
	BCA Protein Assay Reagent	LF146254	Pierce
	SuperSignal West Pico ECL Substrate	LH146985	Pierce
3.1.6.3	Kits für die Immunhistochemie		
	Peroxidase Substrate Kit DAB	SK-4100	Linaris
	Vectastain ABC Kit	PK-6100	Linaris

3.1.7 *Primer*

Alle benötigten *Primer* wurden von der Firma Metabion synthetisiert, im lyophilisierten Zustand geliefert und in entsprechenden Volumina ddH₂O gelöst (Konzentration: 100 pmol)

Tabelle 4: Verwendete *Primer* und PCR-Bedingungen für die Genotypisierung der verschiedenen *Bdp1*-Linien

Bezeichnung		Nr.	Sequenz (5'→3')	bp	°C
<i>Bdp1^{fineo}-</i> Allel	fw rev	2158 2645	GGC GGA AAG AAC CAG CTG GGG GTC GAC CCA TGG AGG ATG GAC TGG ACT ACA GTT	659	60
Bdp1 knockout-Box	fw rev	2093 2645	GTC GAC TTG TAG TTA CTC ATG GCA GTC GG GTC GAC CCA TGG AGG ATG GAC TGG ACT ACA GTT	567	60
Bdp1 ^{wt} - und Bdp1 ^{fl} -Allel	fw rev	3718 2645	GTG TGC AGG AGC CAG AAA GTG GTC GAC CCA TGG AGG ATG GAC TGG ACT ACA GTT	wt 733 fl 893	58
Bdp1 ^{wt} - und Bdp1 ^{ko} -Allel	fw rev	3719 3707	GTG TTT GTG AAT ACC ACA TGT G CTC AAA TAT ACA ACT GAA CTA TC	fl 1265 wt 1031 ko 570	59

Smn ^{wt} - und Smn ^{ko} -Allel	fw rev rev	3370 3371 3372	ATA ACA CCA CCA CTC TTA CTC GTA GCC GTG ATG CCA TTG TCA AGC CTG AAG AAC GAG ATC AGC	wt 1150 ko 950	59
SMN2- Trangen	fw rev	3375 3376	CGA ATC ACT TGA GGG CAG GAG TTT G AAC TGG TGG ACA TGG CTG TTC ATT G	476	60
Cre- Transgen	fw rev	3104 3105	CGC ATA ACC AGT GAA ACA GCA T GAA AGT CGA GTA GGC GTG TAC G	600	60
Nestin- Transgen	fw rev	3478 3479	CGC TTC CGC TGG GTC ACT GTC G TCG TTG CAT CGA CCG GTA ATG CAG GC	300	58
Flp- Rekombinase	fw rev	3099 3100	TTA GTT CAG CAG CAC ATG ATG GGA GGA TTT GAT ATT CAC CTG	350	54

Tabelle 5: Verwendete Primer und PCR-Bedingungen für die Genotypisierung von isolierten

Blastozysten

Bezeichnung		Nr.	Sequenz (5'→3')	bp	°C
Bdp1 ^{wt} - und	fw	3719	GTG TTT GTG AAT ACC ACA TGT G	wt 1031	59
<i>Bdp1^{ko}-</i> Allel	rev	3707	CTC ΑΑΑ ΤΑΤ ΑCΑ ΑCT GAA CTA TC	ko 570	
<i>Bdp1^{wt}-</i> Allel	fw rev	2093 3789	GTC GAC TTG TAG TTA CTC ATG GCA GTC GG CTC AGT TCC TCA TTC AAC ATC TC	wt 513	58
<i>Bdp1^{ko}-</i> Allel	fw rev	3838 3101	CTC TTA ACC TTG AGT TCA TGA CTC CTT CGT ATA GCA TAC ATT ATA CG	ko 791	58

Tabelle 6: Verwendete Primer und PCR-Bedingungen für die Sondengenerierung

Bezeichnung		Nr.	Sequenz (5'→3')	bp	°C
5'-Sonde	fw	3084	ACG TGT GGG AGG GTG AGA GTG TC	378	62
Southern Blot	rev	3085	AAA AGC TTG TTG CAG GAG AGG TG		
3'-Sonde	fw	2629	GGC CTT GAA CTG CTG ACC AGT C	676	57
Southern Blot	rev	3057	CGC AGG GGC CTT TTG TTC TC	070	37
Neo-Sonde	fw	3220	TGA ATG AAC TGC AAG ACG AGG CA	533	58
Southern Blot	rev	3221	GCC GCC AAG CTC TCA GCA ATA T		
<i>fl</i> -Sonde	fw	2093	GTC GAC TTG TAG TTA CTC ATG GCA GTC GG	573	58
Southern Blot	rev	2645	GTC GAC CCA TGG AGG ATG GAC TGG ACT ACA GTT		

knockout-	£	2271			
Sonde	JW	3271		502	58
Southern Blot	rev	2405	CAC TTT CAG TGT GTC CAA GGC		
U6-Sonde	fw	4101	CAG AGA AGA TTA GCA TGG CC	303	58
Northern Blot	rev	4103	ACT GTG GAA GGC ACA CTT ATA CA	303	50
5S-Sonde	fw	4104	GTC TAC GGC CAT ACC ACC CTG		
Northern Blot	rev	4105	AGC CTA CAG CAC CCG GTA TTC CC	118	58
	_				
18S-Sonde	fw	4194	GGT AGT CGC CGT GCC TAC CAT GGT	100	50
Northern Blot	rev	4195	CCG CGG TCC TAT TCC ATT ATT CC	180	58

Tabelle 7: Verwendete Primer und PCR-Bedingungen für Realtime-Analysen (cDNA)

Bezeichnung		Nr.	Sequenz (5'→3')	bp	°C
0 Aktin	fw	123	AAC GGC TCC GGC ATG TGC AA	109	66
р-Акт	rev	254	TAC CCA CCA TCA CAC CCT GG	108	55
Dala	fw	4009	GGT GCC ATC GCC CCG TGT G	220	F0
кріро	rev	4010	TGG ATG ATC AGC CCG AAG GAG AAG	230	58
Bdp1	fw	3379	TCC CGG GAG CAG TGA TGA AA	151	(2)
	rev	3380	AAC TGT AGA TAA GGG GCG ACT C	151	62
Brf1	fw	4005	CAG CCT GGG CAT CTC CGA CTC C		
	rev	4006	TCC CGC AGG TAC TCA GCA TTC TCC	195	60
Erk	fw	4015	CTC TCC CGC ACA AAA ATA AGG T	215	60
	rev	4016	GTC GTC CAA CTC CAT GTG AAA CT	215	00
Gandh		QT	Mm_Gapdh_3_SG	136	55
Gupun	001	99388	Qiagen, keine weitere Angaben	150	55
Muc	fw	4001	CCT AGT GCT GCA TGA GGA GAC AC	150	60
wyc	rev	4002	GGT TTG CTG TGG CCT CGG GAT GG	155	00
n52	fw	4011	CGC CGA CCT ATC CTT ACC ATC ATC	160	60
μ33	rev	4012	GGG GCA GTT CAG GGC AAA GGA C	100	00
Ph	fw	4013	GAC GAC CCC GCG CAG GAC AGC	222	60
ΝD	rev	4014	AAA GAT GCA GAT GCC CCA GAG TTC	~~~~	00
Thn	fw	4003	CCT CAG GCC AGA CCC CAC AAC	188	58
TOP	rev	4004	ACA GCC AAG ATT CAC GGT AGA TA	100	50
TEIIIC102	fw	4007	AGT GAT TTG GCT CGG TTC C	105	52
Trinc102	rev	4008	GCT GGG GCT TAT TGA CAT T	195	50

Bezeichnung		Nr.	Sequenz (5'→3')	bp	°C
SMN2	fw	2952	AAA TGC TCA AGA GGT AAG GAT ACA AGAA GTT AAA	111	55
	rev	2953	ΤΟΤ ΟΑΑ ΟΑΤ ΤΤΤ ΑΑΑ Τ		
Apo B	fw	158	CAC GTG GGC TCC AGC ATT	55	54
Apo B	rev	159	TCA CCA GTC ATT TCT GCC TTT G		

Tabelle 8: Verwendete Primer und PCR-Bedingungen für Realtime-Analysen (DNA)

3.1.8 Enzyme

Alle Enzyme wurden mit den von den entsprechenden Firmen empfohlenen Puffern verwendet.

3.1.8.1 Restriktionsenzyme

BamH I	100 U/µl	NEB
Hind III	10 U/µl	NEB
Eam1105	20 U/µl	Fermentas
Nde I	20 U/µl	NEB
Nco I	50 U/µl	NEB

3.1.8.2 Sonstige Enzyme

Proteinase K	10 mg/ml	AppliChem
RNase A	10 mg/ml	Sigma-Aldrich
Taq DNA Polymerase <i>recombinant</i> (10342020)	5 U/µl	Invitrogen

3.1.9 Antikörper

Tabelle 9: Primäre Antikörper zur Analyse von Proteinen

Antikörper	Nr.	Herkunft	blocking	Verdünnung	Inkubation	kDa	Firma
α-β-Aktin	A5316	Maus, monoklonal	Milch	1:20,000	1h, 4°C	42	Sigma- Aldrich
α-Bdp1	6619α 215/216	Kaninchen, polyklonal	BSA oder Milch	1:500	ü.N., 4°C	~270	Eurogentec

α-Brf1	A301- 228A	Kaninchen, polyklonal	BSA	1:1,000	ü.N., 4°C	90	Bethyl
α-Erk	sc-153	Kaninchen, polyklonal	Milch	1:40,000	ü.N., 4°C	42	Santa Cruz
α-Μγς	ab32	Maus, monoklonal	Milch	1:1,000	ü.N., 4°C	41	Abcam
α-p53	ab16465	Maus, monoklonal	Milch	1:1,000	ü.N., 4°C	53	Abcam
α-Rb	BS1310	Kaninchen, monoklonal	Milch	1:1,000	ü.N., 4°C	110	Biozol
α-Tbp	Sc-201	Kaninchen, polyklonal	Milch	1:1,000	ü.N., 4°C	38	Santa Cruz
α-TFIIIC102	A301- 238A BS2381	Kaninchen, polyklonal	Milch	1:500/ 1:1,000	ü.N., 4°C	102	Bethyl Biozol

Tabelle 10: Sekundäre Antikörper zur Analyse von Proteinen

Antikörper	Nr.	Herkunft	Blocking	Verdünnung	Inkubation	kDa	Firma
α-mouse IgG	115-35- 000	Ziege	BSA/Milch	1:10,000	1h, 4°C		Dianova
α-rabbit IgG	NA934V S	Esel	BSA/Milch	1:5,000	1h, 4°C		GE Healthcare

Tabelle 11: Primäre Antikörper für die Immunhistochemie

Antikörper	Nr.	Herkunft	Blocking	Verdünnung	Inkubation	kDa	Firma
α-Bdp1	6619α 215	Kaninchen, polyklonal	3.2.4.4	1:500	ü.N., 4°C	-	Eurogentec
α-Caspase3	AF835	Kaninchen, polyklonal	BSA	1:1,000	ü.N., 4°C		R&D System
α-Ki67	ab15580	Kaninchen, polyklonal	BSA	1:1,000	ü.N., 4°C		Abcam

Antikörper	Nr.	Herkunft	Blocking	Verdünnung	Inkubation	kDa	Firma
α-rabbit IgG Alexa 488	11034	Ziege	3.2.4.4	1:2,000	1h, 4°C	-	Invitrogen

Tabelle 12: Sekundäre Antikörper für die Immunhistochemie

3.1.10 Mauslinien und Zellen

Tabelle 13: Zur Verfügung gestellte Mauslinien

Linie	Quelle	Beschreibung
C57BL/6NCrl	Charles River	Inzuchtstamm, H-2 ^b -Haplotyp (schwarze Fellfarbe)
CB20	Erhaltungszucht Institut für Genetik	F1 einer C57BL/6 x BALB/c-Verpaarung, 20 Generationen auf BALB/c zurückgekreuzt (weiße Fellfarbe)
Flp- <i>deleter</i> (Rodriguez et al. 2000)	Erhaltungszucht Institut für Genetik	<i>FLPe</i> -Transgen unter der Kontrolle von hACTB-regulatorischer Sequenzen, C57BL/6NCrl
Cre- <i>deleter</i> (Schwenk et al. 1995)	Erhaltungszucht Institut für Genetik	Ubiquitäre Expression des Cre-Transgens unter der Kontrolle des hCMV Minimalpromotors, X-chromosomal gekoppelt, C57BL/6NCrl
<i>Nestin-</i> Cre (Tronche et al. 1999)	Erhaltungszucht Institut für Genetik	Expression des Cre-Transgens in Vorläuferzellen von Neuronen und Gliazellen ab E11,0 p.c.; unter der Kontrolle des Ratten- <i>Nestin</i> -Promotors und <i>enhancer</i> -Elementen, C57BL/6NCrl
SMA-Hung (Hsieh-Li et al. 2000; Riessland et al. 2010)	Jackson Laboratory Stock #005058	 FVB.Cg-Tg(SMN2)2Hung Smn1_{tm1}Hung/J 1,6 kb Deletion des murinen Smn Exon 7 durch einen 115 kb BAC-Klon, 2 SMN2-Kopien, 7 Generation auf C57BL/6NCrl zurückgekreuzt

Tabelle 14: Generierte Bdp1-Mauslinien

Linie	Beschreibung	Ausgangsvektor
Bdp1 ^{fineo/wt}	Mauslinie mit heterozygot gefloxten <i>Bdp1 flneo</i> -Allel, auf 100 % C57BL/6NCrl-Hintergrund zurückgekreuzt	pRapidflirt (pRF)
<i>Bdp1^{fl/wt}oder</i> <i>Bdp1^{fl/fl}</i>	Mauslinie mit heterozygot oder homozygot gefloxten <i>Bdp1</i> -Allel, auf 100 % C57BL/6NCrl-Hintergrund zurückgekreuzt	pRapidflirt (pRF)
Bdp1 ^{ko/wt}	Mauslinie mit heterozygoten <i>Bdp1-knockout,</i> auf 100 % C57BL/6NCrl-Hintergrund zurückgekreuzt	pRapidflirt (pRF)
Bdp1 ^{fl/wt} ; Nestin ^{tg/wt}	Mauslinie mit gefloxten <i>Bdp1</i> -Allel und <i>Nestin</i> -Transgen, <i>Bdp1</i> -Allel und Transgen heterozygot, auf 100 % C57BL/6NCrl	pRapidflirt (pRF)

Tabelle 15: Verwendete Zellen

Name	Zelltyp	Kreuzung/ Stamm	Hersteller
V6.5	murine embryonale Stammzellen (ES-Zellen), zur Verfügung gestellt von der AG Prof. Dr. Brüning	ి 129/Sv x ♀ BL/6	(Eggan et al. 2002)
pEB.IL:neo	murine embryonale Fibroblasten (MEF), Neomycin-resistent, Wachstumsschicht für ES-Zellen, zur Verfügung gestellt vom Zentrum für Mausgenetik	් IL-4 x ♀ BL/6	(Muller et al. 1991)

3.1.11 Gentechnisch veränderte Organismen (GVO)

Tabelle 16: Zellen und Bakterienstämme

Zellen	Beschreibung/Verwendung	Klone	GVO Nr.
V6.5- <i>Bdp1</i>	Homologe Rekombination mit <i>Bdp1-targeting</i> -Konstrukt, Bestätigung in Southern Blot-Analysen, Keimbahntransmission mit beiden Klonen	#A6, #G8	529
<i>Bdp1^{fl/fl}-</i> Fibroblasten	Murine embryonale Fibroblasten (MEF), Embryonen einer ♂ Bdp1 ^{fi/fi} x ♀ Bdp1 ^{fi/fi} -Verpaarung (E13,5 p.c.) in vitro Bdp1-Deletion mittels HTN-Cre	#1-8	530
Bdp1 ^{wt/wt} , Bdp1 ^{ko/wt} - Fibroblasten	Murine embryonale Fibroblasten (MEF), Embryonen einer ♂ <i>Bdp1^{ko/wt}</i> x ♀ <i>Bdp1^{wt/wt}</i> -Verpaarung (E13,5 p.c.)	#2, #4, #6, #9, #11, #12	532

HTN-Cre	E. Coli Stamm, Expression der HTN-Cre nach IPTG-Induktion,		524
	HTN-Cre: His-TAT-NLS-Cre (Peitz et al. 2002)		524

3.1.12 Sonstiges

3.1.12.1 Verwendete Größenmarker

Tabelle 17: Verwendete Größenmarker für DNA, RNA und Proteinanalysen

Firma	Größenmarker	Anwendung	Einheit	Fragmente
	1001			
AppliChem	100 bp	DNA	bp	1000, 900, 800, 700, 600, 500 (x2),
	A3470			400, 200, 130, 100
AppliChem	1 kb	DNA	bp	10000, 8000, 6000, 4000, 3000, 2500,
	A2667			2000, 1500, 1000, 500
Fermentas	low range	RNA	bp	1000, 800, 600, 400, 300, 200, 100
i cimentao	SM1831 <i>r</i>			
Gibco	0,24-9,5 kb	RNA	kh	9 49 7 46 4 40 2 37 1 35 0 24
	15620-016		K0	5,45,7,40,4,40,2,57,1,55,0,24
In situa and	0,5-10 kb	DNIA	lik	
invitrogen	15623-200	KINA	KD	10; 8; 6; 4; 3; 2; 1,5; 1; 0,5
	PageRuler Plus			
Fermentas	Prestained	Protein	kDa	250, 130, 100, 70, 55, 35, 25, 15, 10
	1811			
Formontos	Spectra High Range	Protein	kDa	
rennentas	1851	FIOLEIII	кDa	300, 230, 180, 130, 100, 70, 30, 40

3.1.12.2 Verwendete *software*

software	Anwendung	Firma
AxioVision Rel.4.7	Fluoreszenzmikroskop	Zeiss
BioEdit	DNA-Analyse	Tom Hall
EndNote9/X2	Literaturverwaltung	Thomson Research
Lasergene Package	Sequenzanalysen	DNAstar Inc.
Mausoleum	Mausverwaltung	H.E. Stöffler
Office 2003/2007	Word, Excel, Power Point	Microsoft
Quantity One 4.5.1	densitometrische Analysen	Biorad

Sequence Detection	qRT-PCR-Analysen	Applied Biosystems
Vektor NTI	Planung Bdp1-targeting Strategie	Invitrogen
XFluor4Safire ²	Plattenlesegerät	Tecan

3.1.12.3 Verwendete Datenbanken

Ensembl	http://www.ensembl.org
HUSAR	http://www.genome.dkfz-heidelberg.de
MGI	http://www.informatics.jax.org
NCBI	http://www.ncbi.nlm.nih.gov

3.2 Methoden

3.2.1 Molekularbiologische Methoden

3.2.1.1 Isolierung genomischer DNA

Im Folgenden werden verschiedene Methoden zur DNA-Isolation beschrieben, wobei die Auswahl der jeweiligen Methode in Abhängigkeit der nachfolgenden Versuche stand. Alle isolierten DNAs wurden bei -20°C gelagert.

3.2.1.1.1 DNA-Isolation aus Mäuseschwanzspitzen

Die hier beschriebene Methode diente der Isolierung genomischer DNA aus Mäuseschwanzspitzen. Die DNA wurde routinemäßig für alle Genotypisierungs-PCRs eingesetzt.

Die Schwanzspitzen wurden direkt nach der Entnahme (oder nach Lagerung bei - 20°C) in 500 µl Lysispuffer überführt und über Nacht bei 55°C im Schüttelheizblock inkubiert. Dabei dient das im Puffer vorhandene SDS der Zelllyse, Tris und Natriumchlorid stabilisieren den pH-Wert bzw. den Salzgehalt der Lösung und EDTA als Chelator zweiwertiger Metallionen schützt die DNA vor dem nukleolytischen Abbau. Die jeweils frisch zugegebene Proteinase K baut zelluläre Proteine ab. Die Lysate wurden am kommenden Tag 20 min bei 13.000 rpm sedimentiert, der Überstand in 500 µl Isopropanol überführt und die DNA für 10-20 min bei Raumtemperatur präzipitiert. Die Proben wurden erneut zentrifugiert, der Überstand vorsichtig verworfen und das Präzipitat mit 70 %igen Ethanol gewaschen.

Abschließend wurde das DNA-Pellet getrocknet und in einem adäquaten Volumen an TE^{4} -Puffer (50-80 µl + RNase A) resuspendiert.

3.2.1.1.2 DNA-Isolation mittels Charge Switch gDNA Mini Tissue Kit

Um die *SMN2*-Kopienanzahl von transgenen Mauslinien zu bestimmen (3.2.1.6), musste die aus den Mäuseschwanzspitzen isolierte DNA einen hohen Reinheitsgrad aufweisen. Zu diesem Zweck wurde das *Charge Switch gDNA Mini Tissue Kit* angewandt. Die Isolation wurde nach Herstellerangaben durchgeführt.

3.2.1.1.3 DNA-Isolation aus Geweben (Phenol-Chloroform-Extraktion)

Die Methode der Phenol-Chloroform-Extraktion wurde bei der Isolation von genomischer DNA aus Organen angewandt und und fand in Southern Blot-Analysen Verwendung.

Der Überstand des Zelllysats (3.2.1.1.1) wurde mit einem 1:2-Gemisch aus Phenol und Chloroform (Chloroform 1:24 mit Isoamylakohol) versetzt und in ein *Phase Lock Gel* überführt - diese enthalten eine separierende Gelphase, so dass die obere DNA-haltige Phase leicht von der unteren organischen Phase getrennt werden kann. Die Lösung wurde 5 min auf einem Rotator ausgeschüttelt und anschließend für 5 min bei 13.000 rpm zentrifugiert. Die DNA-haltige Phase wurde zum Auswaschen verbliebener Phenolreste in ein neues *Phase Lock Gel*-Gefäß überführt, mit Chloroform vermischt, ausgeschüttelt und zentrifugiert.

Die Präzipitation der DNA erfolgte durch Zugabe von Isopropanol. Alle weiteren Schritte sind unter 3.2.1.1.1 beschrieben. Das DNA-Pellet wurde je nach Größe in 100-500 μ l TE⁻⁴-Puffer (+ RNase A) aufgenommen.

3.2.1.1.4 DNA-Isolation aus murinen embryonalen Fibroblasten

Die hier beschriebene Methode diente der DNA-Isolierung aus murinen embryonalen Fibroblasten (MEF) nach einer vorrangegangenen *in vitro*-Deletion mittels HTN-Cre (3.2.2.4). Dafür wurde das Medium abgenommen, die Zellen mit PBS gewaschen und trypsinisiert (3.2.3.4). Anschließend wurden die Zellen für 5 min bei 13.000 rpm sedimentiert und erneut mit PBS gewaschen. Abschließend wurde das Zellpellet in einem adäquaten Volumen an Lysispuffer resuspendiert (200 µl). Der weitere Ablauf ist 3.2.1.1.1 zu entnehmen.

3.2.1.2 Die Polymerase Kettenreation

Die Polymerase Kettenreaktion (*polymerase chain reaction*, PCR) wurde Mitte der achtziger Jahre von Kary B. Mullis entwickelt (Mullis and Faloona 1987; Saiki et al. 1988) und beschreibt eine *in vitro* Amplifikation von DNA-Fragmenten mit Hilfe der DNA-Polymerase. Diese benötigt zur Replikationsinitiation freie Hydroxygruppen, die durch die Zugabe von sequenzspezifischen *Primern* vorliegen.

Die PCR diente in der vorliegenden Arbeit der Genotypisierung von Mäusen und Zelllinien, der Synthese von cDNAs sowie der Generierung von Northern Blot- und Southern Blot-Sonden.

Der Ablauf einer PCR verläuft zyklisch und kann in drei Schritte unterteilt werden:

0	Denaturierung der Matrizen-DNA (95°C)	Denaturierung
0	Primer-Hybridisierung	Annealing

• Synthese der Komplementärstränge (72°C) Elongation

Das folgende Schema zeigt einen allgemeinen PCR-Ansatz sowie allgemeine PCR-Bedingungen, wie sie in dieser Arbeit verwendet wurden:

Allgemeiner PCR-Ansatz

0	template	DNA 20-200 ng	1 µl
0	Primer fw	10 pmol	1 µl (100 pmol)
0	Primer rev	10 pmol	1 ml (100 pmol)
0	PCR-Puffer (10 x)	1 x	2,5 μl
0	dNTPs	200 μM	4 μl (dNTPs je 1,25 mM)
0	Taq Polymerase	1 U	0,4 μl (5 U/μl)

 \circ ad 25 µl mit ddH₂O

Allgemeine PCR-Bedingungen

0	Initiale Denaturierung	10 min	95°C	
0	Denaturierung	30 sek	95°C	
0	Hybridisierung	30 sek	54-62°C	32-38 Zyklen
0	Elongation	30-70 sek	72°C	J
0	Finale Elongation	10 min	72°C	

3.2.1.2.1 Aufreinigung von PCR-Produkten

PCR-Produkte, die als Sonden in Northern Blot- und Southern Blot-Analysen dienten, wurden mit Hilfe des *QIAquick PCR Purification-Kit* aufgereinigt. Die Methode dient der Entfernung von PCR-Rückständen, die auf nachfolgende Anwendungen inhibierend wirken können. Das *kit* wurde nach Angaben des Herstellers verwendet. Die Elution der Sonden erfolgte in einem adäquaten Volumen an TE⁻⁴-Puffer (ca. 20-40 μl).

3.2.1.3 Amplifikation genomischer DNA (Blastozysten)

Für die Genotypisierung von isolierten Blastozysten (E3.5 p.c.) wurde die genomische DNA einer Blastozyste vorab mittels *Repli-g whole genome amplification-Kit* amplifiziert. Die Anwendung erfolgte nach Herstellerangaben. Somit stand nach der Amplifikation genügend Ausgangsmaterial für eine Genotypisierungs-PCR zur Verfügung (3.2.1.2). Für die PCR wurden 2,5 µl genomische DNA als *template* eingesetzt und eine Zyklenzahl von 45 verwendet.

3.2.1.4 Spektrophotometrische Quantifizierung von DNA

Bei der Konzentrationsbestimmung von DNA wird die Eigenschaft der Basen, im ultravioletten Licht zu absorbieren, ausgenutzt. (Kaiser and Hogness 1960). Dabei absorbiert DNA zwischen einer Wellenlänge von 258 und 260 nm, Proteine hingegen bei 280 nm. Mit der Ermittlung des Quotienten der Messungen bei 260 und 280 nm (OD_{260/280}, optische Dichte) kann der Verunreinigungsgrad einer Lösung bestimmt werden. Eine nahezu proteinfreie DNA-Lösung zeigt einen Quotienten zwischen 1,8 und 2,0. Der Wert ist kleiner, wenn Verunreinigungen mit Proteinen vorliegen. Ein Quotient größer 2,0 deutet auf RNA-Rückstände hin. Je nach Abhängigkeit des Versuchsvorhabens wurden verschiedene Methoden der DNA-Quantifizierung in dieser Arbeit eingesetzt.

3.2.1.4.1 Quantifizierung mittels NanoDrop-Gerät

Die Konzentration einer DNA-haltigen Lösung konnte spektrophotometrisch am *NanoDrop*-Gerät bestimmt werden. Dabei wurden 1,5 µl der DNA-haltigen Lösung eingesetzt. Als Leerwert diente der Elutionspuffer.

Diese Methode eignet sich nur für eine weitere Anwendung im nicht-quantitativen Bereich, z.B. für die einzusetzenden Mengen an DNA für Southern Blot-Analysen (3.2.1.7). Bei nachfolgenden quantitativen Bestimmungen wurde die Konzentration der DNA mittels *PicoGreen*-Methode (3.2.1.4.2) gemessen (z.B. Bestimmung der *SMN2*-Kopienanzahl, 3.2.1.6).

3.2.1.4.2 Quantifizierung mittels *PicoGreen*-Methode

Um die *SMN2*-Kopienanzahl von transgenen Mauslinien zu bestimmen (3.2.1.6), wurde die DNA mit Hilfe des *ChargeSwitch* gDNA *Mini Tissue Kit* (3.2.1.1.2) isoliert. Für die anschließenden *Realtime*-Analysen musste die Konzentration der DNA exakt bestimmt werden. Dazu wurde das *Quant-iT PicoGreen dsDNA Assay Kit* nach Herstellerangaben angewandt. Dabei bindet der Fluoreszenzfarbstoff *PicoGreen* spezifisch an doppelsträngige DNA.

Zu Beginn wurde mit Hilfe einer λ DNA eine Standardreihe erstellt. Dabei wurden folgende Verdünnungen angesetzt:

Konzentration	λ DNA bzw. Verdünnung		TE ⁻⁴ -Puffer
40 ng/µl	16 μl (100 mg/μl)	+	24 µl
20 ng/µl	20 μl (40 ng/μl)	+	20 µl
10 ng/µl	20 μl (20 ng/μl)	+	20 µl
5 ng/μl	20 μl (10 ng/μl)	+	20 µl
2,5 ng/µl	20 μl (5 ng/μl)	+	20 µl

Für eine Konzentrationsbestimmung wurden sowohl vom Standard als auch von den zu messenden Proben je 5 μ l in Triplikaten eingesetzt. Das *PicoGreen*-Reagenz wurde 1:200 in TE-Puffer (20 x) verdünnt und je 95 μ l/*well* eingesetzt. Die Detektion des DNA-*PicoGreen*-Komplexes wurde an einem Mikrotiterplattengerät bei einer Emission von 520 nm gemessen.

3.2.1.5 Gelelektrophoretische Separierung von DNA-Fragmenten

Bei einer Elektrophorese wandern geladene Moleküle im elektrischen Feld. Als Matrix dient Agarose, welche aufgrund ihrer Porenstruktur einen Siebeffekt ausübt und so die Wanderungseigenschaften der Moleküle beeinflusst. DNA-Fragmente bewegen sich mit einer Geschwindigkeit, die umgekehrt proportional zu dem Logarithmus ihres Molekulargewichtes ist. Durch die Zugabe von Ethidiumbromid, dessen Ringsystem zwischen den Basen der DNA interkaliert, werden diese unter dem UV-Licht sichtbar gemacht. Die Konzentration der Agarosegele wurde in Abhängigkeit der nachzuweisenden Fragmentgrößen (0,7-3 %) gewählt. Das Agarosepulver wurde in TBE-Puffer (1 x) in der Mikrowelle zu einer klaren Lösung aufgekocht und - vor Zugabe von Ethidiumbromid (1 µg/ml) - auf dem Magnetrührer abgekühlt. Anschließend wurde die Agarose in einen Gelträger mit Kämmen gegossen, welche die späteren *slots* für die DNA-Proben bildeten, und nach Erstarrung vollständig mit TBE-Puffer (1 x) bedeckt. Die DNA-Proben wurden vor der Autrennung mit 1/10 Volumen Ladepuffer versehen. Das im Ladepuffer vorhandene Glycerin dient zum Absinken der Proben und das Bromphenolblau zur Visualisierung der Lauffront. Die Stärke der Spannung sowie die Laufzeit standen in Abhängigkeit der Fragmentgrößen (25-140 V, 1-16 h). Abschließend wurden die Ethidiumbromid-DNA-Komplexe an einem UV-Licht-Transluminator sichtbar gemacht.

Die Elektrophorese diente z.B. der Auftrennung amplifizierter Fragmente (siehe 3.2.1.2, PCR) im Rahmen der Genotypisierungen verschiedener Mauslinien.

3.2.1.6 *Realtime*-Analysen zur Bestimmung der *SMN2*-Kopienanzahl

Die Echtzeit-PCR (*Realtime*) basiert auf dem Prinzip einer PCR (3.2.1.2), die der quantitativen Bestimmung der eingesetzten Matrize dient. Der Vorteil besteht in der Messung der Amplifikatmenge nach jedem Zyklus während des Laufs (in Echtzeit).

Die Quantifizierung erfolgte durch den speziellen Reporterfarbstoff *SYBR Green*. Dabei handelt es sich um einen Cyanin-Fluoreszenzfarbstoff, der in doppelsträngige DNA sequenzunabhängig interkaliert. Der so entstehende DNA-Farbstoff-Komplex absorbiert bei 498 nm und emittiert bei 522 nm. Die Lichtemissionen werden am Ende eines jeden PCR-Zyklus gemessen, wobei die Intensität proportional zur vorhandenen Menge an doppelsträngiger DNA ist (gültig während der exponentiellen Phase). Da der Farbstoff sequenzunabhängig bindet, muss am Ende der PCR eine Schmelzkurvenanalyse durchgeführt werden. Die entstehende Schmelzkurve gibt Aufschluss über die Spezifität der PCR.

Um die *SMN2*-Kopienanzahl transgener Mäuse zu bestimmen, wurde die DNA mit dem *ChargeSwitch gDNA Mini Tissue-Kit* isoliert (3.2.1.1.2) und die Konzentration anschließend mit Hilfe der *PicoGreen*-Methode (3.2.1.4.2) bestimmt. Die DNA-Lösungen wurden auf 5 ng/µl in TE⁻⁴-Puffer verdünnt, wobei 10 ng DNA als *template* eingesetzt wurden. Die Messung der Fluoreszenzintensität erfolgte im dritten Schritt eines jeden PCR- Zyklus. Die Analysen wurden in einem *thermocycler* durchgeführt. Für alle Proben wurde folgender Ansatz verwendet:

Allgemeiner Ansatz einer Realtime-PCR

0	template	DNA	2 μl (10 ng/μl)
0	SYBR Green (2 x)	1 x	25 μl
0	Primer fw	10 pmol	1 μl (100 pmol)
0	Primer rev	10 pmol	1 μl (100 pmol)

 \circ ad 50 µl mit ddH₂O

Verwendete *Primer*: *ApoB fw* (158), *ApoB rev* (159), *SMN2 fw* (2713), *SMN2 rev* (2953), alle weiteren Angaben sind Kapitel 3.1.7, Kapitel 8 zu entnehmen.

Die Proben wurden auf eine *96-well* Mikrotiterplatte (B70501) pipettiert, anschließend mit einer Klebefolie verschlossen und herunter zentrifugiert. Für die PCR wurden folgenden Bedingungen gewählt:

stage 1	stage 2	stage 3
95°C	95°C 54°C 68°C	95°C 60°C 95°C
10 min	30 sek 30 sek 45 sek	15 sek 1 min 15 sek
	40 Zyklen	

Alle Messungen erfolgten in Triplikaten und die Quantifizierung der Messdaten erfolgte mit Hilfe der entsprechenden *software*. Die relative Bestimmung der Kopienanzahl erfolgte nach der $\Delta\Delta C_T$ -Methode: der C_T-Wert (*cycle threshold*) gibt denjenigen PCR-Zyklus an, an dem die Fluoreszenz erstmalig signifikant über die Hintergrund-Fluoreszenz ansteigt. Der von der Software berechnete C_T-Wert wurde mit Hilfe des Tabellenkalkulations-Programmes *Excel* weiter verarbeitet. Aus den Mittelwerten der C_T-Werte von Referenz- und Zielgen wurde zunächst der ΔC_T -Wert berechnet. Dieser beschreibt die Differenz aus dem C_T-Wert des Zielgens und dem C_T-Wert des Referengens einer Probe. Zur Bestimmung der *SMN2*-Kopienanzahl wurde stets *ApoB* als Referenzgen eingesetzt, da es sich um ein *single copy gene* handelt. Die Differenz aus dem ΔC_T -Werten zweier Proben bezeichnet man als $\Delta\Delta C_T$ - der entsprechenden Probe. Ein $\Delta\Delta C_T$ -Wert von -1 entspricht einer halbierten Amplikonmenge des Zielgens in der Probe relativ zum Referenzgen.

3.2.1.7 Southern Blot-Analysen (Southern 1975)

Als Southern Blot-Analysen bezeichnet man ein Verfahren, bei dem DNA fragmentiert, elektrophoretisch aufgetrennt und anschließend auf eine Membran transferiert wird. Mittels Hybridisierung spezifischer Sonden und abschließendem Autoradiogramm lassen sich bestimmte Fragmente visualisieren. Die Methode wurde zur Detektion positiv transfizierter embryonaler Stammzellklone (ES-Zellklone) und zur Genotypisierung von Mauslinien verwendet.

3.2.1.7.1 Restriktionspaltung und gelelektrophoretische Auftrennung von DNA

Für eine Southern Blot-Analyse wurden genomische DNA (3.2.1.1.1. und 3.2.1.4.1) mittels Restriktionsendonukleasen fragmentiert. Diese erkennen spezifische Nukleotidsequenzen in der DNA und spalten zwei Basen mittels Hydrolyse der Phosphodiesterbindungen (Nathans and Smith 1975).

Genomische DNA (5-20 μ g) wurde über Nacht bei der dem Enzym entsprechenden adäquaten Temperatur im Wasserbad inkubiert. Im Folgenden ist ein Restriktionsansatz aufgelistet, wie er in dieser Arbeit angewandt wurde:

Allgemeiner Restriktionsansatz

0	template	5-20 μg DNA	x μl
0	Enzym	10 U/μg DNA	x μl
0	Puffer	1 x	5 μl Puffer (10 x)
0	DTT	1 mM	0,05 μl DTT (1 M)
0	Spermidin	1 mM	0,05 μl Spermidin 1 M)
0	BSA	1 x	0,5 μl 100 x BSA

 \circ ad 50 µl mit ddH₂O

Das gesamte Volumen des Restriktionsansatzes wurde mit 1/10 Volumen Ladepuffer versetzt und auf ein 0,7 %iges Agarosegel aufgetragen (3.2.1.5). Die Proben wurden zu Einlaufen in die Matrix für 15 min bei einer Spannung von 70 V belassen. Die Auftrennung der Fragmente erfolgte über Nacht bei 28-32 V.

3.2.1.7.2 Transfer von DNA-Fragmenten auf eine Trägermembran

Die aufgetrennten Fragmente wurden am nächsten Tag unter dem UV-Licht visualisiert und der Größenstandard mit einer Pipettenspitze im Gel markiert. Im Folgenden wurde das Gel für 10 min in 0,125 M HCl depuriniert und anschließend mindestens 20 min im Transferpuffer (0,5 M NaOH/1,5 M NaCl) denaturiert.

Die fragmentierte DNA wurde mittels Kapillartransfers auf eine Nylonmembran übertragen. Die Membran wurde mit ddH₂O angefeuchtet und sowohl Membran als auch Blottingpapier vor Gebrauch im Transferpuffer äquilibriert. Der Transfer erfolgte über Nacht. Die Position der einzelnen *slots* wurde auf der Membran markiert und diese anschließend in SSC-Puffer (2 x) geschwenkt. Die transferierte DNA wurde abschließend durch eine zweistündige Inkubation bei 80°C auf der Membran fixiert.

3.2.1.7.3 Radioaktive Markierung von DNA-Fragmenten

Zur Detektion spezifischer DNA-Fragmente wurden DNA-Sonden mittels PCR amplifiziert (3.2.1.2) und anschließend aufgereinigt (3.2.1.2.1). Die Spezifität der Sonden musste vor Anwendung evaluiert werden.

Die Markierung der Sonden erfolgte radioaktiv nach Angaben des Herstellers (*Rediprime II Random Labeling-Kit*), als Radioisotop wurde $[\alpha^{-32}P]dCTP$ verwendet (pro Sonde 50 µCi). Das Prinzip beruht auf dem sogenannten *Random-primed Oligolabeling* (Feinberg and Vogelstein 1984). Um nicht markierte Oligonukleotide und überschüssige $[\alpha^{-32}P]dCTPs$ zu entfernen, wurde ein Reinigungsschritt der Sonden über eine Sephadex-Säule (*Probe Quant G50 micro columns*) vorgenommen (3 min, 3.000 rpm). Abschließend wurde die Sonde für 5 min bei 95°C denaturiert und auf Eis abgekühlt. Die radioaktiv markierte Sonde konnte anschließend dem Prähybridisierungsmix beigefügt werden.

3.2.1.7.4 Prähybridisierung, Hybridisierung und Autoradiographie

Vor Beginn der radioaktiven Hybridisierung wurden freie Bindungsstellen abgesättigt. Zu diesem Zweck wurde die Membran mit SSC-Puffer (2 x) angefeuchtet, in eine Glasröhre transferiert und mindestens 2 h mit der Prähybridisierungslösung bei 64°C inkubiert. Zur Denaturierung der in der Prähybridisierungslösung enthaltenen *salm sperm*-DNA wurde diese vorab für 10 min bei 95°C erhitzt und anschließend für 5 min auf Eis abgekühlt. Die Prähybridisierungslösung diente gleichzeitig als Hybridisierungslösung (3.2.1.7.3). Die Hybridisierung erfolgte über Nacht bei 64°C im Hybridisierungsofen.
Nach Ablauf der Inkubationszeit wurde die Sonde abgenommen und unspezifisch an die Membran gebundene Radioaktivität durch einen einmaligen kurzen und mehrmalige längere (10-20 Minuten) Waschschritte (Waschpuffer auf 64°C vorgewärmt) entfernt. Zwischen den einzelnen Waschschritten wurde die Signalstärke der Membran mit einem Geigerzähler kontrolliert. Die gemessene Radioaktivität war abhängig von der Größe der Membran bzw. von der Anzahl der Proben. Bei Erreichen der gewünschten Signalstärke wurde die Membran in Folie eingeschweißt, in eine Röntgenkassette eingeklebt und ein Röntgenfilm aufgelegt. Die Autoradiographie erfolgte für 2 bis 7 Tage bei -80°C.

Sollte die gleiche Membran mit einer anderen Sonde markiert werden, wurde die bereits hybridisierte Sonde durch zweimaliges Erhitzen auf 100°C für jeweils 30 min in einer Southern Blot-*strip*-Lösung entfernt. Nach erneuter Prähybridisierung konnte die Membran mit einer neuen, radioaktiv markierten Sonde hybridisiert werden.

3.2.1.8 Isolierung von RNA

Bei der Arbeit mit RNA wurden stets RNase-freie Materialien und Geräte verwendet (gestopfte Pipettenspitzen, RNase-freies Wasser).

3.2.1.8.1 Isolierung von RNA aus Geweben

Gewebe, die der RNA-Isolation dienten, wurden unmittelbar nach der Entnahme in flüssigen Stickstoff schockgefroren und bis zur Verwendung bei -80°C gelagert.

Für die RNA-Isolation wurde das *RNeasy Mini-Kit* nach Herstellernangaben verwendet. Dazu wurden bis maximal 20 mg eines Gewebestückes in RLT-Lysispuffer mit einem Gewebehomogenisator homogenisiert. Zwischen den einzelnen Proben musste das Gerät gespült werden (1 % SDS, 70 % EtOH, ddH₂O). Die weitere Homogenisierung und die Entfernung von DNA-Rückständen wurden mit *QlAshredder*-Säulen durchgeführt. Um die vollständige Entfernung von DNA zu gewährleisten, wurde nach dem ersten Waschschritt ein DNase I-Verdau nach Angaben des Herstellers durchgeführt (*RNase-free DNase I Set*). Die Elution der RNA erfolgte in einem adäquaten Volumen an *RNase*-freiem Wasser (50-300 μl).

Für die RNA-Isolation aus fetthaltigen Geweben (z.B. *Cerebrum, Cerebellum*) erfolgte die Homogenisierung in 1 ml *QlAzol*. Dieses Verfahren basiert auf der Methode nach Chomcynski und Sacchi (Chomczynski and Sacchi 1987). Durch Zugabe von einem Gemisch aus Chloroform und Isoamylalkohol (24:1-Gemisch) und anschließender Zentrifugation

erfolgte die Phasentrennung (3.2.1.1.3). Die RNA in der wässrigen Phase wurde anschließend mit 70 %igen EtOH präzipitiert. Der weitere Verlauf erfolgte nach Angaben des Herstellers.

3.2.1.8.2 Isolierung von RNA aus murinen embryonalen Fibroblasten

Die RNA-Isolierung aus murinen embryonalen Fibroblasten (MEF) fand nach vorangegangener *in vitro*-Deletion mittels HTN-Cre (3.2.2.5) statt. Dafür wurde das Medium abgenommen und die Zellen ohne Waschschritt direkt trypsinisiert (3.2.3.4). Anschließend wurden die Zellen für 5 min bei 13.000 rpm sedimentiert und das Zellpellet in Lysispuffer resuspendiert. Der Puffer wurde vorab mit β -ME versetzt. Für den weiteren Verlauf wurde das *RNeasy Mini-Kit* nach Herstellerangaben angewandt. Weiterhin wurde für die RNA-Isolation aus Zellen *QIAshredder* und das *RNase-free DNase I Set* verwendet (3.2.1.8.1).

3.2.1.9 Spektrophotometrische Quantifizierung von RNA

Wie schon unter 3.2.1.4 beschrieben, nutzt man auch für die Konzentrationsbestimmung von RNA die Absorptionseigenschaft der Basen im ultravioletten Bereich aus. Die Reinheit einer RNA-haltigen Lösung ergibt sich aus dem Verhältnis der Extinktionswerte bei 260 und 280 nm. Reine RNA zeigt dabei einen Quotienten zwischen 1,8 und 2,0. Niedrigere Werte deuten auf Proteinkontaminationen, höhere auf RNA-Degradierung oder freie Nukleotide hin.

3.2.1.9.1 Quantifizierung mittels NanoDrop-Gerät

Die Konzentration von RNA für nicht-quantitative Anwendungen wurde, wie schon für die DNA beschrieben (3.2.1.4.1), spektrophotometrisch am *NanoDrop*-Gerät bestimmt. Dabei wurden 1,5 µl der RNA-haltigen Lösung eingesetzt. Um RNA im quantitativen Bereich einzusetzen, wurde die Konzentration mit Hilfe der *RiboGreen*-Methode gemessen.

3.2.1.9.2 Quantifizierung mittels *RiboGreen*-Methode

Die fluorimetrische Bestimmung der RNA-Konzentration machte diese für quantitative Bestimmungen einsetzbar (z.B. *Realtime*-Analysen). Dabei wurde die Quantifizierung mit dem *Quant-iT RiboGreen RNA Quantification-Kit* nach Herstellerangaben durchgeführt. Der Fluoreszenzfarbstoff *RiboGreen* bindet selektiv an Nukleinsäuren und fluoresziert im grünwelligen Bereich. Die Detektion des RNA-*RiboGreen*-Komplexes wurde an einem Mikrotiterplattengerät bei einer Emission von 673 nm gemessen.

3.2.1.10 Reverse Transkription (RT)

Bei der reversen Transkription wird einzelsträngige mRNA mit Hilfe einer RNA-abhängigen DNA-Polymerase in einzelsträngige cDNA umgeschrieben. Diese kann in weiteren Analysen - z.B. zur Quantifizierung von Transkripten - genutzt werden.

Für die cDNA-Synthese wurde das *QuantiTect Reverse Transcription-Kit* nach Herstellerangaben angewandt. Dabei wurden 150 ng RNA in einem Gesamtvolumen von 10 μl umgeschrieben.

3.2.1.11 *Realtime*-Analysen zur Bestimmung von Transkriptmengen

Die Methode der Echtzeit-PCR (*Realtime*-PCR) wurde bereits unter 3.2.1.6 beschrieben. Als Matrize wurde cDNA eingesetzt.

Um die Expressionsrate verschiedener Gene zu bestimmen, wurde aus unterschiedlichen Geweben RNA isoliert (3.2.1.8.1) und die Konzentration mit Hilfe der *RiboGreen*-Methode bestimmt (3.2.1.9.2). Anschließend wurden je Probe 150 ng RNA in einem Gesamtvolumen von 10 μ l in cDNA umgeschrieben (3.2.1.10). Abschließend wurden je 4 μ l cDNA in 56 μ l TE⁻⁴-Puffer verdünnt (Vorverdünnung) und in *Realtime*-Analysen eingesetzt. Für alle Proben wurde folgender Ansatz verwendet:

Allgemeiner Ansatz einer Realtime-PCR

0	template	cDNA	4 μl (der Vorverdünnung
0	SYBR Green (2 x)	1 x	12,5 μl
0	Primer fw	10 pmol	1 μl (100 pmol)
0	Primer rev	10 pmol	1 μl (100 pmol)

 \circ ad 25 µl mit ddH₂O

Alle verwendeten *Primer* und deren Bedingungen sind in Kapitel 3.1.7, Tabelle 7 aufgelistet. Für den Lauf wurden folgenden PCR-Bedingungen gewählt:

stage 1		stage 2	2		stage 3	3
95°C	95°C	xx°C	72°C	95°C	60°C	95°C
10 min	_15 sek	30 sek	35 sek	15 sek	1 min	15 sek
	4	0 Zykler	า			

3.2.1.12 Northern Blot-Analysen (Alwine et al. 1977)

Mit der Northern Blot-Methode wird gelelektrophoretisch aufgetrennte RNA auf eine Membran transferiert. Durch die Hybridisierung mit spezifischen Sonden und abschließender Autoradiographie lassen sich spezifische RNA-Sequenzen nachweisen. In der hier vorliegenden Arbeit diente die Northern Blot-Analyse der Detektion von RNA Polymerase IIIabhängigen Transkripten.

3.2.1.12.1 Gelelektrophoretische Auftrennung und Transfer von RNA

Jeweils 2 µg der zu analysierenden RNA (3.2.1.9.1) und eine adäquate Menge des RNA-Größenstandards (siehe Kapitel 3.1.12, Tabelle 17) wurden mit RNA-Ladepuffer (2 x) versehen, für 10 min bei 70°C erhitzt und kurz auf Eis abgekühlt. Anschließend wurde die RNA mittels Gelelektrophorese aufgetrennt (3.2.1.5). Die Auftrennung erfolgte in MOPS-Puffer (1 x) bei 80 V über 4 h. Das Gel wurde anschließend unter UV-Licht visualisiert und die Lage des Größenstandards mit einer Pipettenspitze im Gel markiert. Eine ausreichende Auftrennung der RNA war durch das Bandenmuster ribosomaler RNA (18S: 1,8 kb; 28S: 4,8 kb) erkennbar. Das Gel wurde anschließend zweimal für je 15 min in Transferpuffer (10 x SSC-Puffer) geschwenkt und die RNA anschließend mittels Kapillartransfers auf eine Nylonmembran übertragen. Der Transfer sowie die nachfolgenden Schritte gleichen denen einer Southern Blot-Analyse und sind unter 3.2.1.7.2 beschrieben.

3.2.1.12.2 Radioaktive Markierung von RNA-Fragmenten und Hybridisierung

Für Northern Blot-Analysen wurden DNA-Sonden verwendet. Die Generierung der Sonden sowie die Prähybridisierung und Hybridisierung der Membran mit abschließender Autoradiographie sind mit denen der Southern Blot-Analysen identisch und bereits unter 3.2.1.7.3.und 3.2.1.7.4 beschrieben.

3.2.2 Methoden zur Proteinanalysen

3.2.2.1 Isolierung von Proteinen

In der hier vorliegenden Arbeit wurde RIPA-Puffer (*radioimmuo precipitation assay buffer*) zur Extraktion von membranassoziierten, zytosolischen oder nukleären Proteinen verwendet. RIPA-Puffer ermöglicht die effiziente Zelllyse und Solubilisierung von Proteinen bei gleichzeitiger Vermeidung von Proteindegradierung.

3.2.2.1.1 Isolierung von Proteinen aus Geweben

Für die Proteingewinnung aus Geweben wurden diese in RIPA-Puffer aufgenommen und homogenisiert. Der Puffer wurde vorab mit Protease Inhibitoren versetzt. Das Homogenat wurde für 20 min auf Eis inkubiert und Zelltrümmer für 20 min bei 13.000 rpm und 4°C sedimentiert. Der proteinhaltige Überstand konnte anschließend spektrophotometrisch quantifiziert (3.2.2.2) oder bei -80°C gelagert werden.

3.2.2.1.2 Isolierung von Proteinen aus murinen embryonalen Fibroblasten

Die Proteinisolierung aus murinen embryonalen Fibroblasten (MEF) fand nach vorangegangener *in vitro*-Deletion mittels HTN-Cre (3.2.2.5) statt. Dafür wurde das Medium abgenommen, die Zellen mit PBS gewaschen und trypsinisiert (3.2.3.4). Anschließend wurden die Zellen für 5 min bei 13.000 rpm sedimentiert und der Überstand abgenommen. Das Zellpellet wurde in RIPA-Puffer resuspendiert und für 40 min auf Eis inkubiert. Abschließend wurden verbleibende Zelltrümmer für 20 min bei 13.000 rpm und 4°C abzentrifugiert. Der proteinhaltige Überstand konnte anschließend spektrophotometrisch quantifiziert (siehe 3.2.2.2) oder bei -80°C gelagert werden.

3.2.2.2 Spektrophotometrische Quantifizierung von Proteinen (BCA-kit)

Die Proteinquantifizierung mittels Bicinchoninsäure (*bicinchoninic acid*, BCA) ist eine Kombination aus einer Biuret- und einer Komplexbildungsreaktion mit BCA. Dabei wird im ersten Reaktionsschritt, der Biuret-Reaktion, Cu²⁺ in alkalischer Lösung zu Cu⁺ reduziert. Bestimmte Aminosäuren sowie Peptidbindungen führen diese Reaktion aus, so dass die Proteinmenge proportional zur Reduktionsreaktion ist. Im zweiten Schritt bilden zwei BCA-Moleküle mit einem Cu⁺-Ion einen Chelatkomplex. Dieser ist wasserunlöslich, zeigt bei 562 nm eine starke Absorption und kann spektrophotometrisch analysiert werden.

Das BCA-*kit* wurde in dieser Arbeit nach Herstellerangaben verwendet. Die photometrische Messung wurde einem Mikrotiterplattengerät durchgeführt.

3.2.2.3 Western Blot-Analysen

Als Western Blot-Analysen bezeichnet man den Transfer von Proteinen auf eine Trägermembran. Die Übertragung kann auf unterschiedliche Weise durchgeführt werden, z.B. mittels Elektrophorese. Der Nachweis der transferierten Proteine findet mit Hilfe einer Immundetektion, also mit der Anwendung spezifischer Antikörper gegen ein Antigen, statt.

3.2.2.3.1 Diskontinuierliche SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Eine SDS-PAGE ist eine denaturierende Gelelektrophorese von Proteinen zur Separation nach ihrem Molekulargewicht (Laemmli 1970). Aufgrund der Aminosäurenzusammensetzung und des umgebenden pH-Wertes ist die Ladung von Proteinen unterschiedlich. Durch die Zugabe des anionischen Detergenz SDS werden sie denaturiert, wobei jedes Protein eine zu seiner Größe proportionale negative Ladung erhält, die nicht mehr von Tertiärstrukturen beeinflusst wird.

Weiterhin ist eine SDS-PAGE eine diskontinuierliche Gelelektrophorese, das aus einem Zweiphasensystem besteht: das Sammelgel enthält eine geringe Konzentration an Polyacrylamid und demzufolge einen geringen Vernetzungsgrad – somit wandern alle Proteine nahezu gleich schnell. Der pH-Wert im Sammelgel von 6,8 verhindert eine Nettoladung der Aminosäure Glycin und die Proteinfront bewegt sich zwischen Glycin und den negativ geladenen Chloridionen (Sammeleffekt). Beim Übergang zum Trenngel wird dieser Sammeleffekt aufgehoben: das Trenngel enthält eine höhere Konzentration an Acrylamid, was zu einer stärkeren Vernetzung führt. Bei einem pH-Wert von 8,8 liegt Glycin negativ geladen vor und wandert im elektrischen Feld entsprechend. Das Wanderungsverhalten von Proteinen ist dabei umgekehrt proportional zum Logarithmus ihres Molekulargewichtes.

Die Gele (siehe Kapitel 3.1.5.2, Tabelle 3) wurden direkt in den dafür vorgesehenen Glasplatten präpariert. Zuerst wurde das Trenngel, dann das Sammelgel präpariert. Das Trenngel wurde bis zur Polymerisierung mit 70 %igen Ethanol überschichtet. Nach Entfernung des Alkohols wurde das Sammelgel, unter Aussparung von *slots*, gegossen. Pro *slot* wurden 15 µg Protein aufgetragen, welche mit je 5 µl Laemmli-Puffer (2 x) versehen wurden. Das Gemisch wurde vorab für 5 min bei 95°C denaturiert und anschließend 5 min auf Eis abgekühlt, wobei β-ME zur Reduktion der Disulfidbrücken beitrug.

Die Elektrophoresekammer wurde mit den Gelen und dem Elektrophoreselaufpuffer (1 x) gefüllt und die Proben zusammen mit einem Größenmarker aufgetragen. Zunächst wurde bis zum Einlaufen in das Trenngel eine Spannung von 50 V angelegt, die dann auf 80-100 V erhöht wurde. Der Lauf wurde beendet, wenn die zu detektierende Fragmentgröße des Größenmarkers den unteren Teil des Trenngels erreicht hatte.

3.2.2.3.2 Transfer von Proteinen auf eine Trägermembran (Western Blot)

Die durch die SDS-PAGE (3.2.2.3.1) gelelektrophoretisch aufgetrennten Proteine wurden mittels *wet blot*-Technik auf eine Nitrozellulosemembran transferiert (Towbin et al. 1979). Der Transfer erfolgte über Nacht bei 30 V und 4°C unter Rühren.

3.2.2.3.3 Immunhistologischer Nachweis von Proteinen

Der immunologische Nachweis von Proteinen erfolgte mit Hilfe von primären Antikörpern, die spezifisch ihr Zielprotein/-epitop erkennen. Die Bindung wurde anschließend mit Hilfe eines sekundären Antikörpers in einer Chemilumineszenzreaktion nachgewiesen. Dabei regt die an den sekundären Antikörper gekoppelte Peroxidase (*horse radish peroxidase*, HRP) das in der Lösung enthaltene Luminol durch Spaltung von Wasserstoffperoxid zur Lumineszenz an.

Unspezifische Bindestellen auf der Membran wurden für 2 h bei 4°C durch Inkubation mit 6 %igen Milchpulver oder BSA in TBST-Puffer auf einen Schüttelinkubator geblockt. Darauf folgte eine 1-16stündige Inkubation mit dem primären Antikörper (siehe Kapitel 3.1.9, Tabelle 9) auf dem Rollinkubator in 2 %igen Milchpulver oder BSA in TBST-Puffer. Anschließend wurde die Membran fünfmal für 5 Minuten mit TBST-Puffer auf einem Schüttelinkubator gewaschen, um nichtgebundene Antikörper zu entfernen. Die Inkubation des sekundären Antikörpers (siehe Kapitel 3.1.9, Tabelle 10) in 2 %igen Milchpulver oder BSA in TBST-Puffer erfolgte für 1 h bei 4°C auf dem Rollinkubator. Nach weiteren Waschschritten (fünfmal 5 min in TBST-Puffer) wurde die Membran mit der Chemilumineszenzlösung versetzt. Die Proteinbanden der Autoradiographie wurden an einem Geldokumentationssystem densitometrisch quantifiziert und mit Hilfe des Tabellenkalkulations-Programmes Excel bearbeitet. Dabei wurde das Zielprotein mit einem konstant gleich stark exprimierten Haushaltsgen verglichen.

Für eine Rehybridisierung wurde die Membran für 10-15 min im Western Blotstripping buffer unter Schütteln inkubiert. Durch erneute Anwendung der

Chemilumineszenzlösung wurde die vollständige Entfernung des Antikörpers mit Hilfe einer Autoradiographie kontrolliert.

3.2.2.4 HTN-Cre-Expression

Mit Hilfe des rekombinanten, zellpermeablen Proteins HTN-Cre (His-TAT-NLS-Cre), welches in einem modifizierten *E. Coli* nach IPTG-Induktion exprimiert wird, lassen sich *in vitro*-Deletionen eines gefloxten Allels generieren (Peitz et al. 2002).

Für die Vorkultur wurden 250 ml LB-Medium (+ Glukose [1 %], + Carbenecillin [50 μ g/ml], + Chloramphenicol [34 μ g/ml]) mit der Bakterienkolonie angeimpft und über Nacht bei 37°C unter Schütteln inkubiert. Für die Expressionskultur wurden am kommenden Tag insgesamt 12 l LB-Medium (+ Glukose [1 %], + Ampicillin [100 μ g/ml], + Chloramphenicol [34 μ g/ml]) zu je 2 l abgefüllt und mit jeweils 40 ml der Übernachtkultur versehen. Das Wachstum der Zellen erfolgte bei 37°C unter Schütteln, dabei wurde in regelmäßigen Abständen eine Probe zur Bestimmung der optischen Dichte (OD₆₀₀) genommen. Bei einer OD₆₀₀ = 0,8 (nach ca. 2½-3½ h) befand sich die Kultur im exponentiellen Stadium und die Proteinexpression wurde mittels IPTG (0,5 mM) induziert. Etwa 3-4 Stunden nach erfolgter Induktion wurde die Expressionkultur (6 x 2 l) für 20 min bei 6.000 G und 4°C sedimentiert. Für die Resuspension des Pellets wurde der Überstand bis auf 50 ml verworfen. Abschließend wurden die Zellsuspensionen gemischt und für 10 min bei 6.000 G und 4°C sedimentiert. Der Überstand wurde nun vollständig entfernt, das zellhaltige Pellet im flüssigen Stickstoff schockgefroren und zur weitern Verarbeitung bei -20°C gelagert.

Um das exprimierte HTN-Cre-Protein zu isolieren, wurde das gefrorene Zellpellet in 120 ml PTB-Puffer (10 ml pro 1 l Kultur) resuspendiert, der Suspension je 1 mg/ml Lysozym (Zellaufschluss) für 20 min hinzugefügt, gefolgt von 120 µl Benzonase für 15 min. Die Inkubationen fanden bei Raumtemperatur unter Rühren der Zellsuspension statt. Danach wurde das proteinhaltige Lysat für 2 min sonifiziert und im Anschluss mit 120 ml eiskaltem TSB-Puffer (je 1 ml pro ml Suspension) für 5 min unter Rühren vermischt. Bei der nachfolgenden Zentrifugation für 30 min bei 35.000 G und 4°C wurden Zelltrümmer sedimentiert und der proteinhaltige Überstand vorsichtig abgenommen.

Die Aufreinigung des HTN-Cre-Proteins wurde mittels Nickel-NTA-Agarose durchgeführt. Je 2 ml 50 %iger Nickel-NTA-Agarose wurden pro Liter Expressionskultur dem isolierten Überstand beigefügt und für 1 h bei 4°C unter Rühren inkubiert. Die anschließende

Aufreinigung erfolgte über Chromatographiesäulen. Dabei wurde der Nickel-NTA-Agarosehaltige Überstand auf drei Säulen verteilt und der Durchfluss verworfen. Jede Säule wurde zweimal mit je 20 ml Waschpuffer gewaschen und das HTN-Cre-Protein mit je 12 ml Elutionspuffer von der Säule gelöst.

Zur weiteren Aufreinigung wurden die Eluate von je 12 ml gemischt und erst für ein paar Stunden, dann über Nacht, gegen einen *high salt*-Puffer dialysiert (12400 MWCO) Der Dialyseschlauch wurde vorab in 2 %igen Natriumbicarbonat und 1 mM EDTA für 3-4 h aufgekocht und anschließend in ddH₂O gespült. So vorbereitet, konnte der Schlauch in 20 %igen EtOH bei 4°C gelagert werden.

Die HTN-Cre-Proteinkonzentration wurde mit der Warburg-Formel bestimmt (mg Protein/ml: 1,55 x A₂₈₀^{1 cm}-0,76 x A₂₆₀^{1 cm}). Dazu wurde die proteinhaltige Lösung 1:100 in PBS verdünnt. Der Proteinstock kann ohne Aktivitätsverlust der HTN-Cre bei -20 bis -70°C gelagert werden. Die effektiv einzusetzende Konzentration für eine *in vitro*-Deletion ist von der Zelllinie abhängig und musste vorab in Zellkultur getestet werden (3.2.2.5). Während der gesamten HTN-Cre-Expression und Aufreinigung wurden regelmäßig Stichproben entnommen und diese auf einer SDS-PAGE in Bezug auf das HTN-Cre-Protein kontrolliert.

3.2.2.5 HTN-Cre-vermittelte *in vitro*-Deletion

Zur Anwendung dieser Technik wurden MEF generiert (3.2.3.4.1), welche das *Bdp1*-Allel homozygot gefloxt trugen (*Bdp1*^{*fi*/*fi*}) (siehe Kapitel 3.1.11, Tabelle 16 und 3.2.5.2). Die so generierten Zellen wurden vier Stunden vor der HTN-Cre-Behandlung in 6-*well*-Mikrotiterplatten plattiert ($2x10^5$ Zellen/*well*). Dabei wurde jeder Ansatz in Triplikaten gemessen. Unmittelbar vor der Behandlung wurden die Zellen zweimal mit PBS gewaschen und mit der zuvor steril filtrierten HTN-Cre in D-MEM 41966/PBS (1:1) (bzw. die Kontrollzellen [*Mock*] nur mit D-MEM 41966/PBS [1:1]) inkubiert. Die effiziente HTN-Cre-Konzentration zur vollständigen Deletion des *Bdp1*-Allels wurde zuvor titriert. Nach 16-18 h Inkubationszeit wurden die Zellen dreimal gewaschen und für weitere Analysen nach unterschiedlichen Zeitpunkten (7d, 14d) für die Isolierung von DNA (3.2.1.1.4), RNA (3.2.1.8.2) und Proteinen (3.2.2.1.2) geerntet.

3.2.2.6 MTT-Analysen

Mit Hilfe von MTT-Analysen lassen sich Zytotoxizitäts-Tests durchführen. Dafür werden Zellen *in vitro* mit dem namensgebenden Farbstoff, einem gelben Tetrazoliumsalz,

behandelt, um ihre Lebensfähigkeit beziehungsweise den Anteil lebender Zellen im Vergleich zu einer Kontrollprobe von Zellen zu messen.

Der Nachweis der Zellvitalität beruht dabei auf der Reduktion des wasserlöslichen Farbstoffes 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) in ein blauviolettes, wasserunlösliches Formazan, welches als Kristalle sichtbar und photospektrometrisch nachweisbar ist. MTT-Analysen wurden nach einer vorangegangenen HTN-Cre Behandlung durchgeführt, um Auswirkungen der Gendeletion auf die Zellvitalität verschiedener Zelllinien zu überprüfen.

Für eine MTT-Analyse wurden MEF für 16-17 h mittels HTN-Cre *in vitro*-deletiert (3.2.2.5). Nach der Inkubation wurde das Cre-haltige Medium abgenommen, die Zellen dreimal mit PBS gewaschen und für weitere 3 h nach Zugabe von MEF-Medium in Kultur gehalten. Im weiteren Verlauf wurde das Medium erneut abgenommen, die Zellen gewaschen und das Medium mit der MTT-Lösung versetzt (pro 1 ml Medium 100 μl MTT-Lösung). Die Zellen wurden im Anschluss für 2-3 h im Brutschrank inkubiert. Lebende Zellen metabolisierten in dieser Zeit das MTT zu Formazan-Kristallen.

Zum Abstoppen der Reaktion wurden pro Vertiefung 1,1 ml Solubilisierungslösung zugefügt und die Zellen für 30 min unter Schütteln inkubiert. Die abschließende Absorptionsmessung erfolgte bei einer Wellenlänge von λ 550 nm. Die Daten wurden anschließend mit dem Tabellenkalkulations-Programm *Excel* ausgewertet.

3.2.3 Zellbiologische Methoden

3.2.3.1 Allgemeine zellbiologische Arbeiten

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen durchgeführt. Die hier beschriebenen Techniken wurden nach Torres und Kühn modifiziert (Torres 1997).

3.2.3.2 Einfrieren und Auftauen von Zellen

Als Einfriermedium wurde FKS mit 10 % Dimethylsuloxid (murine embryonale Fibroblasten, MEF) (embryonale Stammzellen, ES-Zellen: 20 % DMSO) verwendet. DMSO wirkt als Kryoprotektionsmittel und verhindert die Ausbildung von Eiskristallen innerhalb der Zellen. Da DMSO zelltoxisch wirkt, werden sowohl MEF als auch ES-Zellen langsam eingefroren, jedoch schnell aufgetaut.

Zum Einfrieren wurden die Zellen trypsinisiert, pelletiert (3.2.3.4) und das Zellpellet in Einfriermedium resuspendiert. Anschließend wurden die Zellen 1-2 Wochen bei -80°C gelagert, bevor sie zur Langzeitaufbewahrung in flüssigen Stickstoff überführt wurden (Ure et al. 1992).

Das Auftauen von Zellen erfolgte bei 37°C im Wasserbad. Nachdem die Zellen leicht angetaut waren, wurden diese in einem großzügigen Volumen an Medium (mind. 10 ml) aufgenommen und direkt auf vorbereitete Kulturschalen ausplattiert.

3.2.3.3 Bestimmung der Zellzahl

Die Zellzahl wurde mit Hilfe einer Zellzählkammer (Neubauer) bestimmt. Dabei wurden je vier Großquadrate, die aus jeweils 16 Kleinquadraten bestanden, ausgezählt. Die Zellzahl ergab sich aus der durchschnittlichen Zellzahl pro Quadrant (x10⁴). Die Gesamtzellzahl ergab sich aus dem Verdünnungsfaktor und dem Gesamtvolumen der Zellsuspension.

3.2.3.4 Kultivierung von murinen embryonalen Fibroblasten

Die Kultivierung von murinen embryonalen Fibroblasten (MEF) in MEF-Medium erfolgte bei 37°C in einer feuchten Atmosphäre bei einer konstanten CO₂-Konzentration (5 %) auf gelatinebeschichteten Petrischalen. Dazu wurden die Platten mit einer 0,1 %igen Gelatinelösung bedeckt und für 5 min bei 37°C inkubiert. Der Überstand wurde anschließend abgenommen, so dass die Zellen auf den behandelten Platten ausplattiert werden konnten.

Bei Erreichen der Vollkonfluenz wurden die Zellen *gesplittet*. Dafür wurden die Zellen einmalig mit PBS gewaschen und für 3-4 min bei 37°C trypsinisiert. Trypsin ermöglicht durch die Spaltung von Arginin und Lysin das Ablösen der Zellen vom Boden. Die Reaktion wurde mit demselben Volumen an MEF-Medium abgestoppt. Die Zellsuspension wurde anschließend mit einer Pipette von der Petrischale gespült, in ein Reaktionsgefäß überführt und für 5 min bei 1.200 rpm zentrifugiert. Der Überstand wurde mit einer Glaspipette entfernt, das Zellpellet in MEF-Medium resuspendiert und die Suspension auf neue Kulturschalen ausplattiert.

3.2.3.4.1 Präparation von MEF

MEF werden am Tag E13,5 p.c. gewonnen. Zu diesem Zweck wurden Mäuse entsprechender Genotypen verpaart und die Begattung am kommenden Morgen anhand von Vaginalpfröpfen (3.2.5.4) überprüft. Weibchen mit einem vorhanden Pfropf (sogenannte *plug*-positive Weibchen) wurden nach 13 Tagen mittels zervikaler Dislokation getötet, die Embryonen unter sterilen Bedingungen dem Uterus entnommen (3.2.5.5.2) und in PBS gewaschen. Im weiteren Verlauf wurden den Embryonen Leber, Herz und Kopf entfernt, wobei der Kopf zur Gewinnung von DNA zur Genotypisierung diente (3.2.1.1.1). Das verbliebene Gewebe wurde in ein Zellsieb transferiert und mit Hilfe der Kolbenstange einer sterilen Einwegspritze homogenisiert. Das Sieb wurde mit 20 ml MEF-Medium gespült und der Durchfluss in einem 50 ml Reaktionsröhrchen aufgefangen. Dieser Vorgang wurde mehrmals wiederholt. Abschließend wurde das homogenisierte Gewebe 5 min bei 1.200 rpm sedimentiert, das zellhaltige Pellet in 6 ml MEF-Medium resuspendiert und auf gelatinisierte 6 cm Petrischalen plattiert (3.2.3.4). Am kommenden Tag wurden die Platten dreimal mit PBS gewaschen, um Zelltrümmer zu entfernen. Die Zellen wurden bei täglichem Mediumwechsel expandiert, bis eine adäquate Anzahl eingefroren werden konnte (3.2.3.2). In der hier vorliegenden Arbeit wurden folgende Zelllinien generiert: *Bdp1^{wt/wt}*, *Bdp1^{fl/fl}* und *Bdp1^{ko/wt}* (siehe Kapitel 3.1.11, Tabelle 16 und 3.2.5.2).

MEF (pEB.IL:neo), die für die Kultivierung von ES-Zellen (3.2.3.5) eingesetzt wurden, wurden freundlicherweise vom Zentrum für Mausgenetik des Instituts für Genetik, Universität zu Köln, zur Verfügung gestellt.

3.2.3.4.2 Mitomycin C (MMC)-Behandlung

Um die Differenzierung von ES-Zellen zu vermeiden, werden diese auf einer Schicht von mitotisch inaktivierten MEF kultiviert (Doetschman et al. 1985). Die MEF wurden zu diesem Zweck mit Mitomycin C (MMC) behandelt, welches zwischen den Strängen der DNA interkaliert. Somit ist eine Dissoziation, wie sie zur Replikation benötigt wird, nicht mehr möglich.

Da eine Positivselektion der ES-Zellklone mit Geneticin (3.2.3.6.2) stattfand, wurden für die ES-Zellkultur MEF (3.2.3.4.1) aus transgenen Mäusen verwendet (pEB.IL:neo; siehe Kapitel 3.1.10, Tabelle 15) (Muller et al. 1991). Für Transfektionsexperimente wurden MEF höchstens bis zur dritten Passage verwendet und entsprechend MMC behandelt. Dafür wurde der Mitoseinhibitor in MEF-Medium vorvedünnt und steril filtiert (1 mg/ml). Die Zellen wurden für 3 h mit MMC-haltigen MEF-Medium (10 µg/ml) behandelt und abschließend dreimal mit PBS gewaschen, um sämtliche Rückstände zu entfernen. Anschließend wurden die Zellen trypsinisiert, pelletiert, in ES-Medium resuspendiert und auf

gelatinisierte Petrischalen ausplattiert. Nach ca 2-4 Stunden hatten sich die MMCbehandelten MEF abgesetzt und die ES-Zellen konnten ausplattiert werden.

3.2.3.5 Kultivierung von ES-Zellen

ES-Zellen werden aus der inneren Zellmasse einer Blastozyste (E3,5 p.c.) gewonnen und *in vitro* kultiviert (Evans and Kaufman 1981; Martin 1981). Dabei handelt es sich um pluripotente Zellen, die sich potentiell zu allen Zelltypen entwickeln können.

ES-Zellen wurden bei 37°C und 10 % CO₂-Sättigung in ES-Medium kultiviert. Da eine zu große Zelldichte zur Differenzierung führen kann, wurden die Zellen nur bis zur Subkonfluenz kultiviert. Das *splitten* ist unter 3.2.3.4 beschrieben und das ES-Medium wurde täglich gewechselt.

Um den undifferenzierten Zustand von ES-Zellen zu gewährleisten, wurden diese auf mitotisch arretierten MEF kultiviert (pEB.IL:neo-MEF, 3.2.3.4.2) (Evans and Kaufman 1981), die zuvor auf gelatinebeschichteten Petrischalen (3.2.3.4) ausplattiert wurden. Zusätzlich wurde dem Medium das Cytokin LIF (*leukemia inhibitory factor*) beigefügt, welches gleichzeitig von den Zellen sekretiert wurde (Evans and Kaufman 1981; Smith et al. 1988).

In der hier vorliegenden Arbeit wurden hybride V6.5 ES-Zellen (C57BL/6 und 129/Sv) (Eggan et al. 2002) verwendet (siehe Kapitel 3.1.10, Tabelle 15).

3.2.3.6 Genetische Manipulation von embryonalen Stammzellen (ES-Zellen)

ES-Zellen können mit Hilfe molekularbiologischer Methoden *in vitro* genetisch manipuliert (Gossler et al. 1986; Robertson et al. 1986) und in Blastozysten reinjiziert werden. Die innere Zellmasse der Blastozyste besteht danach sowohl aus zelleigenen als auch aus manipulierten Zellen. Die Blastozyste wird anschließend in den Eileiter einer scheinträchtigen Maus implantiert. Die manipulierten ES-Zellen können an der Bildung des Embryos beitragen, wodurch chimäre Mäuse generiert (Bradley et al. 1984; Gossler et al. 1986; Robertson et al. 1986). Diese Tiere bestehen sowohl aus wildtypischen als auch aus manipulierten ES-Zellen. Ziel einer genetischen Manipulation ist das Erreichen einer Keimbahntransmission der rekombinanten Zellen, die an die folgenden Generationen vererbt werden kann (Schwartzberg et al. 1989; Zijlstra et al. 1989).

Im Folgenden werden einzelne Schritte der genetischen Manipulation von ES-Zellen beschrieben.

3.2.3.6.1 Transfektion von ES-Zellen

ES-Zellen wurden bei einer Konfluenz von 50-70 % mittels Elektroporation transfiziert (Neumann et al. 1982; Potter et al. 1984). Das *Bdp1-targeting*-Konstrukt (4.1.2) wurde über Nacht mit Hilfe der Restriktionsendonuklease Eam1105 linearisiert (3.2.1.7.1), mit einem Gemisch aus drei Volumina eiskaltem 100 %igen EtOH und 1/10 Volumen 3 M Natriumacetat präzipitiert und bei -20°C gelagert. Am Tag der Transfektion wurde das DNA-Pellet mit 70 %igen EtOH gewaschen und unter einer Sterilbank getrocknet. Das Pellet wurde abschließend in PBS resuspendiert. Je 30 µg des linearisierten *Bdp1-targeting*-Konstruktes wurden für die Tranfektion von ES-Zellen (1,25x10⁷ Zellen pro Tranfektion) eingesetzt.

Etwa zwei bis vier Stunden vor der Transfektion wurde das ES-Medium gewechselt. Für die Transfektion wurden die ES-Zellen zweimal mit PBS gewaschen, trypsinisiert und anschließend pelletiert. Das Zellpellet wurde in 10 ml PBS pro 10 cm Kulturschale resuspendiert und die Zellzahl bestimmt (3.2.3.3). Abschließend wurden die Zellen erneut sedimentiert und in einer finalen Konzentration von 1,25x10⁷ Zellen pro Transfektionsansatz in PBS resuspendiert.

Die Elektroporation wurde mit dem *GenePulserXcell* bei 230 V und 500 µF durchgeführt. Nach 5minütiger Inkubation bei Raumtemperatur wurden die transfizierten ES-Zellen in ES-Medium aufgenommen und auf gelatinisierte, MMC-behandelte MEF-Kulturplatten überführt (3.2.3.4.2).

3.2.3.6.2 Selektion transfizierter ES-Zellklone

Etwa 24 h nach erfolgter Transfektion wurden diejenigen ES-Zellklone, die das linearisierte *Bdp1-targeting*-Konstrukt stabil in ihr Genom integriert hatten, zunächst mittels Positivselektion angereichert. Dafür diente das im *targeting*-Konstrukt vorhandene Neomycin-Resistenzgen. Für die Selektion wurde das Neomycin-Analogon G418-Sulfat (Geneticin) eingesetzt. G418 gehört zu der Familie der Aminoglykoside und hemmt die Proteinbiosynthese. Dabei wurde dem ES-Medium eine finale Konzentration von 250 µg/ml beigefügt. Dieser Selektionsschritt wurde bis zur Isolierung der ES-Zellklone (3.2.3.6.3) beibehalten.

Fünf Tage nach der Transfektion erfolgte zusätzlich eine Negativselektion mit Hilfe des Selektionsmarkers für das Thymidinkinase-Gen des *Herpes simplex*-Virus. Bei einer korrekten homologen Rekombination des *targeting*-Konstruktes mit dem genomischen

Lokus geht dieser Marker verloren, bleibt jedoch bei zufälligen Integrationen meist erhalten (Folger et al. 1982). Für die Negativselektion wurde dem ES-Medium Ganciclovir (2 μ M) zugesetzt. Wird die Thymidinkinase exprimiert, führt dies zur Triphosphorylierung von Ganciclovir und inhibiert letztendlich als Nukleosid-Analagon die zelluläre Replikation. Wie auch für die Positivselektion wurde die Negativselektion bis zur Isolierung der ES-Zellklone durchgeführt.

3.2.3.6.3 Isolierung von ES-Zellklonen

Etwa acht Tage nach der Transfektion waren die nach den Selektionsschritten überlebenden Klone als runde Kolonien sichtbar, so dass sie isoliert und anschließend expandiert werden konnten.

Die Isolierung wurde unter sterilen Bedingungen am Stereomikroskop durchgeführt. Die Klone wurden vor der Isolation zweimal mit PBS gewaschen und schließlich mit PBS bedeckt. Jede einzelne Kolonie wurde mit einer Pipette gelöst, in einem Volumen von 20 µl aufgenommen und anschließend in eine Vertiefung auf einer 96-*well*-Mikrotiterplatte (Rundboden) mit je 25 µl Trypsin überführt. Während der Isolation standen die Platten auf Eis. Nach etwa 20-30 min wurden die Mikrotiterplatten für 3-4 min bei 37°C inkubiert, die Trypsinisierung mit je 100 µl ES-Medium (+G418) abgestoppt und die Klone zu Einzelzellsuspensionen vereinzelt. Die Zellen wurden anschließend auf 96-*well*-Mikrotiterplatten (Flachboden) überführt, die am Tag zuvor mit 0,1 %iger Gelatine und MMC-behandelten MEF (pEB.IL:neo-MEF) beschichtet wurden.

Die Zellklone wurden für zwei bis drei Tage auf den Mikrotiterplatten expandiert. Dabei wurde das Medium täglich gewechselt. Bei Erreichen der Subkonfluenz wurden die Zellkolonien trypsinisiert (50 µl), die Reaktion mit ES-Medium (+G418) abgestoppt, die Zellen vereinzelt und anschließend auf je drei weitere vorbereitete 96-*well*-Mikrotiterplatten (Flachboden) überführt. Das Medium wurde abschließend auf 150 µl aufgefüllt und die Klone für weitere zwei bis drei Tage expandiert.

Von diesen Platten wurden zwei in einem Abstand von 24 Stunden als *back up*-Platten eingefroren (3.2.3.2). Dazu wurden die Klone auf jedem *well* für 3-4 min bei 37°C trypsinisiert und anschließend in je 50 µl Einfriermedium resuspendiert. Zusätzlich wurde jedes *well* mit 100 µl Mineralöl überschichtet, die Platten mit Parafilm dicht verschlossen und zur Archivierung in einer Styroporbox bei -80°C gelagert.

Die Klone der dritten Platte wurden erneut auf drei weitere, nur mit Gelatine beschichteten 96-*well*-Mikrotiterplatten (Flachboden) passagiert, die der späteren DNA-Isolation dienten (3.2.3.6.4). Dafür wurden die Klone bis zur Vollkonfluenz gehalten. Zum Einfrieren dieser Platten wurden die Klone zweimal mit PBS gewaschen und ohne Einfriermedium bei -20°C (bzw. bei -80°C für längere Lagerzeiten) eingefroren. Dabei wurden die Platten mit Parafilm versiegelt.

3.2.3.6.4 Analyse von ES-Zellen auf 96-*well*-Mikrotiterplatten

Die korrekte Integration des transfizierten *Bdp1-targeting*-Konstruktes wurde mittels Southern Blot-Analysen bestimmt (3.2.1.7). Zu diesem Zweck wurden die Klone auf den 96*well*-Mikrotiterplatten (Flachboden) bei Raumtemperatur aufgetaut und mit je 50 μ l/*well* Lysispuffer versehen. Die Platten wurden mit Parafilm abgedichtet, mit feuchten Tüchern umwickelt und in einer verschließbaren Dose (=feuchte Kammer) bei 55°C über Nacht im Wasserbad inkubiert. Nach einstündiger Abkühlung der Platten auf Raumtemperatur wurde zur Präzipitation der DNA jedes *well* mit 100 %igem Ethanol versehen und für eine Stunde inkubiert. Daraufhin wurde der Überstand durch vorsichtiges Invertieren der Mikrotiterplatten entfernt, das DNA-Pellet dreimal mit 70 %igen Ethanol gewaschen und 20-30 min bei 37°C im Inkubator getrocknet. Die anschließende Restriktionsfragmentierung ist unter 3.2.1.7.1 zu entnehmen. Pro *well* wurden 35 μ l Gesamtvolumen verwendet. Im Anschluss wurde die fragemtierte DNA von jedem Klon in Southern Blot-Analysen untersucht (3.2.1.7).

3.2.3.6.5 Auftauen und Expandieren von Klonen auf 96-*well*-Mikrotiterplatten

Nachdem die ES-Zellklone in Southern Blot-Analysen als positiv im Hinblick auf die homologe Rekombination mit dem *Bdp1-targeting*-Konstrukt getestet worden waren, wurden diese von den archivierten 96-*well*-Mikrotiterplatten (3.2.3.6.3) aufgetaut. Um Verwechslungen zu vermeiden, wurden parallel die den homolog rekombinanten Klonen benachbarte Klone aufgetaut. Dazu wurden die archivierten Mikrotiterplatten im Wasserbad bei 37°C aufgetaut und der gesamte Inhalt eines *wells* (=resuspendierte Zellen in Einfriermedium und Mineralöl) für 5 min bei 1.200 rpm sedimentiert. Das Öl konnte anschließend vorsichtig mit einer Glaskapillare abgenommen werden. Da das Zellpellet aufgrund der geringen Zelldichte nicht zu erkennen war, wurden die Zellen im Überstand resuspendiert und auf am Tag zuvor beschichtete 24-*well*-Mikrotiterplatten überführt. Bei Erreichen der Subkonfluenz wurden die Zellen auf beschichtete 6-*well*-Mikrotiterplatten passagiert. Von dort aus wurden die Zellen auf je 2x10 cm-Kulturschalen (Gelatine+MMC-behandelte pEB.IL:neo-MEF) transferiert sowie auf je zwei *well* einer gelatinisierten 24-*well*-Mikrotiterplatte. Die Zellen auf den 10 cm-Kulturschalen wurden bei Subkonfluenz zu je ¼ Volumen eingefroren (3.2.3.2). Die Zellen auf den 24-*well*-Mikrotiterplatten wurden bis zur Vollkonfluenz belassen und dienten der DNA-Isolation (3.2.3.6.4), um die Ergebnisse der Southern Blot-Analysen zu verifizieren.

3.2.3.6.6 Blastozysteninjektion und -transfer

Die Vorbereitung der ES-Zellen für die Reinjektion in Blastozysten und letztendlich die Implantation dieser in Ammentiere wurde im Zentrum für Mausgenetik des Instituts für Genetik der Universität zu Köln durchgeführt.

3.2.4 Immunhistologische Methoden

3.2.4.1 Fixieren, Einbetten und Schneiden von Gewebe und Embryonen

Um verschiedene Gewebe (3.2.5.6) oder isolierte Embryonen (3.2.5.5.2) vor der Autolyse zu schützen, wurde das Gewebe bzw. wurden die Embryonen in 4 % PFA fixiert. Dies geschah für 1-7 Tage bei 4°C. Um eine optimale Fixierung von Embryonen ab dem Embryonaltag E17.5 p.c. zu gewährleisten, musste die Haut der Tiere vorsichtig mit einer Pinzette entfernt werden, da ansonsten das Fixiermittel nicht komplett eindringen konnte.

Um das fixierte Gewebe im Anschluß mikrometerdünn schneiden zu können, wurde es mit Hilfe eines Gewebeinfiltrationsautomaten vollautomatisch dehydriert und anschließend in Paraffin infiltriert.

Abschließend wurde das Gewebe eingebettet und die Paraffinblöcke am Rotationsmikrotom geschnitten. Die Schnittdicke betrug 7 μm. Um die Schnittqualität zu erhöhen, wurden die Blöcke vorgekühlt. Die Paraffinschnitte wurden nach dem Schneiden in einem auf 37°C erwärmtes Wasserbad gestreckt und anschließend auf einen Objektträger aufgezogen. Nachdem die Schnitte am Wasserbadrand angetrocknet waren, fand die vollständige Trocknung über Nacht bei 37°C statt.

3.2.4.2 HE-Färbung von Paraffinschnitten

Die HE-Färbung (Hämatoxylin, Eosin) ist eine Übersichtsfärbung, bei der Zellkerne und basophile Substanzen blau, andere Zellbestandteile in verschiedenen Abstufungen rot angefärbt werden.

Zu Beginn der Färbung wurden die Schnitte in Xylol entparaffiniert und mit Hilfe einer absteigenden Alkoholreihe hydriert (Xylol 2 x 15 min, 100 % EtOH 2 min, 96 % EtOH 2 min, 70 % EtOH 2 min, kurz in PBS waschen, Leitungswasser 1 min). Für die Färbung wurde das Hämatoxylin vorab filtriert und das Eosin (200 ml) mit 1 ml konzentierter Essigsäure aktiviert.

Kernfärbung

0	Hämatoxylin	3-6 min
---	-------------	---------

- kurz in Leitungswasser waschen
- Leitungswasser
 15 min
- kurz in ddH₂O waschen (bläuen)

Plasmafärbung

- o Eosin 30 sek-1 min
- o kurz in Leitungswasser

Abschließend wurden die gefärbten Schnitte mit Hilfe einer aufsteigenden Alkoholreihe dehydriert, in Xylol geklärt und eingedeckt (70 % EtOH 1 min, 96 % EtOH 1 min, 100 % EtOH 1 min, Xylol 2 x 30 sek, eindecken mit Eukitt).

3.2.4.3 Immunhistologischer Nachweis von Proteinen

Zu Beginn einer immunhistologischen Färbung wurden die Paraffinschnitte in Xylol entparaffiniert und anschließend mit Hilfe einer absteigenden Alkoholreihe hydriert (Xylol 2 x 1 h, 100 % EtOH 2 x 2 min, 96 % EtOH 1 min, 70 % EtOH 1 min, ddH₂O 10 min).

Um Antikörperbindestellen besser zugänglich zu machen, wurden die Schnitte dreimal für je 5 min in Zitrat-Puffer bei 600 W in der Mikrowelle aufgekocht (thermische Antigen-Demaskierung) und für weitere 45 min bei Raumtemperatur abgekühlt. Nach einmaligem 5minütigen Waschen in TBS-Puffer wurden die Präparate zum Absättigen unspezifischer Bindestellen für 45 min bei Raumtemperatur mit der Blocklösung (20 % Ziegenserum, 1 % BSA in TBS-Puffer) in einer feuchten Kammer inkubiert. Die Blocklösung wurde direkt auf die einzelnen Schnitte pipettiert. Nach dreimaligem Waschen über je 5 min mit TBS-Puffer wurden die Schnitte mit dem primären Antikörper über Nacht bei 4°C in einer feuchten Kammer inkubiert (siehe Kapitel 3.1.9, Tabelle 11). Der Antikörper wurde in 3 %igen Milchpulver/TBS-Puffer verdünnt. Als Negativkontrolle diente stets ein Präparat, bei dem die Schnitte nur mit der Hybridisierungslösung inkubiert wurden.

Am nächsten Tag wurden die Schnitte dreimal mit TBS-Puffer gewaschen und für 30 min mit einem biotinylierten sekundären Antikörper (3 % Milchpulver/TBS-Puffer) in einer feuchten Kammer inkubiert. Nach erneutem dreimaligem Waschen in TBS-Puffer wurden die Präparate für 30 min bei Raumtemperatur mit einem Avidin-biotinylierten Peroxidase Komplex inkubiert. Dabei wurde das *ABC-kit* nach Herstellerangaben verwendet.

Anschließend wurden die Objektträger dreimal je 5 min mit TBS-Puffer gewaschen, bei jeweils individueller Inkubationszeit mit einer DAB-Färbelösung inkubiert (Anwendung nach Herstellerangaben) und schließlich in TBS-Puffer abgestoppt. Das Prinzip der Färbung beruht auf der spezifischen Bindung von Streptavidin an den biotinmarkierten sekundären Antikörper. Das Streptavidin ist mit einer Peroxidase gekoppelt, welche das in der DAB-Färbelösung enthaltene H₂O₂ spaltet und Protonen freisetzt. Diese reduzieren das DAB-Reagenz, was durch eine bräunliche Färbung sichtbar wird. Abschließend wurden die Schnitte rehydriert, in Xylol geklärt und eingedeckt (3.2.4.2).

3.2.4.4 Immunfluoreszenz Färbungen von murinen embryonalen Fibroblasten

Die Methode der Immunfluoreszenzfärbung ermöglicht die Untersuchung der interzellulären Verteilung eines Proteins. Sie beruht auf der Kopplung der sekundären Antikörper mit Fluorophoren, die unter Verwendung von UV-Licht angeregt und mit entsprechenden Filtern am Mikroskop sichtbar gemacht werden können.

Für die Fluoreszenzmikroskopie wurden murine embryonale Fibroblasten (MEF) auf gelatinebeschichtete Deckgläschen (rund) in 12-*well*-Mikrotiterplatten ausplattiert (3x10⁴ Zellen/*well*) und über Nacht kultiviert (3.2.3.4). Am nächsten Tag wurde das Medium abgenommen, die Zellen mit PBS gewaschen und für 15 min in 4 % PFA fixiert. Nach einem einmaligen Waschschritt von 5 min wurden die Zellen für weitere 5 min permeabilisiert (PBS+0,2 % Tween) und zum Absättigen unspezifischer Bindestellen für 45 min mit der Blocklösung bedeckt (PBS+0,2 % Tween+5 % BSA+5 % FKS). Die Inkubation mit dem primären

Antikörper fand (Verdünnung in Blocklösung) in einer feuchten Kammer über Nacht bei 4°C statt.

Am nächsten Tag wurden die Zellen dreimal für je 15 min in PBS gewaschen und mit dem sekundären Antikörper (Verdünnung in Blocklösung) in einer feuchten Kammer für 1 h bei 4°C im Dunkeln inkubiert. Zum Abschluss wurden die Präparate dreimal für je 15 min in PBS gewaschen, kurz in Leitungswasser geschwenkt und mit *mounting*-Medium eingedeckt.

3.2.5 Arbeiten mit Mäusen

3.2.5.1 Mausexperimente

Sämtliche Arbeiten mit Mäusen wurden nach dem Tierschutzgesetz entsprechend durchgeführt. Für die Tierversuche lag eine Genehmigung und eine Anzeige der Bezirksregierung Köln vor (Aktenzeichen Tierversuchsgenehmigung: 50.203.2-K 38, 13/05, Aktenzeichen Anzeige: 20.10.105).

Die in dieser Arbeit generierten Mauslinien wurden in der SPF-Tierhaltung des Instituts für Genetik der Universität zu Köln gehalten. Die Mäuse wurden mit 3-5 Tieren in einem Mikroisolationskäfig bei Temperaturen zwischen 22-24°C sowie einen Tag/Nacht-Zyklus von 12 h untergebracht. Für Verpaarungen wurden die Tiere stets 1:1 gehalten, für Verpaarungen mit *plug*-Checks 1:2 (ein Männchen, zwei Weibchen), wobei *plug*-positive Weibchen am kommenden Tag einzeln gesetzt wurden.

3.2.5.2 Generierung verschiedener *Bdp1*-Mauslinien

Als Ausgangslinie für alle in dieser Arbeit generierten *Bdp1*-Linien diente die Linie *Bdp1*^{f/neo/wt}. Diese waren Nachkommen der chimären Mäuse, die durch die Transfektion des *Bdp1-targeting*-Konstruktes (*pRF-Bdp1*; siehe Kapitel 4.2) in V6.5 ES-Zellen (3.2.3.6.1) und anschließender Injektion von homolog rekombinanten ES-Zellen in Blastozysten (3.2.3.6.2-3.2.3.6.6) generiert wurden.

Durch eine Verpaarung der $Bdp1^{flneo/wt}$ -Linie mit einer transgenen Cre-*deleter*-Maus (Schwenk et al. 1995) wurde Exon 2 des Bdp1-Gens deletiert und somit die $Bdp1^{ko/wt}$ -Linie generiert. Da in dieser Cre-Linie das Transgen ubiquitär unter der Kontrolle des hCMV-Minimalpromotors exprimiert wird, erfolgte eine ubiquitäre Deletion des gefloxten Bdp1-Exon 2. Durch die Verpaarung von heterozygot deletierten Bdp1-knockout-Tieren ($Bdp1^{ko/wt} \times Bdp1^{ko/wt}$) wurde die homozygote Deletion des Bdp1-Gens erreicht ($Bdp1^{ko/ko}$). Die $Bdp1^{ko/wt}$ -Linie war außerdem Startpunkt für die Untersuchung der Bdp1-Expressionen in Abhängigkeit von *Smn*-Deletionen. Zu diesem Zweck wurden heterozygote Bdp1-Tiere ($Bdp1^{ko/wt}$) mit einer SMA-Linie verpaart (SMA-Hung, $Smn^{ko/ko}$; $SMN2^{tg/tg}$, siehe Kapitel 3.1.10, Tabelle 13) (Hsieh-Li et al. 2000; Riessland et al. 2010). So generierte Nachkommen ($Bdp1^{ko/wt}$; $Smn^{ko/wt}$; $SMN2^{tg/wt}$) wurden - im Hinblick auf die Homozygotie des *Smn*-Gens und *SMN2*-Transgens - untereinander oder erneut mit $Bdp1^{ko/wt}$ -Tieren verpaart.

Um die homozygot gefloxte *Bdp1*-Linie zu generieren (*Bdp1*^{fl/fl}), wurde zu Beginn das Neomycin-Resistenzgen, welches der Positivselektion transfizierter ES-Zellklonen diente (3.2.3.6.2) und mit FRT-Stellen flankiert war, mit Hilfe einer Flp-*deleter*-Linie (Rodriguez et al. 2000) deletiert. Das Neomycin-Resistenzgen wurde deletiert, da der starke Promotor die Funktion des *Bdp1*-Gens und die benachbarter Gene hätte beeinflussen können. Zudem inserierte das Gen mitten im *Bdp1*-Lokus und hätte so auch *per se* die Genfunktion stören können. Um eine verringerte Keimbahntransmission zu vermeiden, wurde das Neomycin-Resistenzgen erst *in vivo*-deletiert. Die so generierte *Bdp1*^{fl/wt}-Linie wurde anschließend auf Homozygotie des gefloxten Allels verpaart (*Bdp1*^{fl/fl}).

Die *Bdp1^{fl/fl}*-Linie war Ausgangspunkt für die Generierung verschiedener *Bdp1-knockout*-Linien in spezifischen Geweben. So wurde z.B. durch die Verpaarung mit einer transgenen *Nestin*-Cre-exprimierenden Maus eine Deletion des *Bdp1*-Allels im zentralen Nervensystem (ZNS) erreicht (siehe Kapitel 3.1.10, Tabelle 13) (Tronche et al. 1999). Die *Nestin*-Cre-Linie deletiert spezifisch die Vorläuferzellen von Neuronen und Gliazellen (Mignone et al. 2004).

Alle transgenen Linien (Cre-*deleter*, Flp-*deleter*, *Nestin*-Cre) (siehe Kapitel 3.1.10, Tabelle 13) befanden sich auf C57BL/6NCrl-Hintergrund und wurden im heterozygoten Zustand belassen, um falsch-positive Phänotypen im Hinblick auf die Homozygotie dieser Transgene zu vermeiden. Die Cre-Rekombinase und Flp-Rekombinase wurden nach der Deletion des *Bdp1*-Allels bzw. des Neomycin-Resistenzgens über weitere Verpaarungen herausgekreuzt.

Alle generierten *Bdp1*-Linien wurden auf C57BL/6NCrl zurückgekreuzt, da die verwendeten ES-Zellen einen hybriden Hintergrund trugen (V6.5: 50 % C57BL/6, 50 % 129/Sv). Eine Übersicht aller generierten *Bdp1*-Mauslinien sowie verwendeter transgener Linien ist unter Kapitel 3.1.10, Tabelle 14 zusammengefaßt. Abbildung 8 zeigt ein Ablaufschaubild zur Generierung der verschiedenen *Bdp1*-Mauslinien.

Abbildung 8: Vom Bdp1-targeting-Konstrukt zu den verschiedenen Bdp1-Mauslinien

(A.) Nach der Transfektion von V6.5-ES-Zellen mit dem Bdp1-targeting-Konstrukt wurden mittels Positiv- und Negativselektion homolog rekombinante ES-Zellen angereichert und diese in Southern Blot-Analysen verifiziert. (B.) Durch die Injektion von positiven ES-Zellen in eine CB20-Blastozyste und anschließender Implantation in eine Ammenmutter wurde chimäre Nachkommen generiert. Wenn rekombinante ES-Zellen zur Bildung der Keimbahnzellen beitrugen (Keimbahntransmission), entstanden bei einer Verpaarung der entsprechenden Chimäre mit einem wildtypischen Tier (C57BL/6NCrl) Nachkommen, die heterozygot das rekombinante Bdp1-Allel (*Bdp1^{fineo/wt}*) trugen. (**C.I**) Mäuse dieser Ausgangslinie wurden mit einer Flp-*deleter*-Maus (Rodriguez et al. 2000) verpaart, so daß das Neomycin-Resistenzgen deletiert und das gefloxte Bdp1-Allel heterozygot vorlag $(Bdp1^{fl/wt})$. Durch Kreuzung der Tiere untereinander wurden homozygot gefloxte Tiere generiert $(Bdp1^{fl/fl})$. (C.II) Die *Bdp1^{fineo/wt}*-Linie wurde mit einer ubiquitären Cre-*deleter*-Maus (Schwenk et al. 1995) verpaart, so dass ein heterozygoter *knockout* des *Bdp1*-Gens induziert wurde (*Bdp1*^{ko/wt}). Die Interkreuzung dieser Tiere diente der Generierung des homozygoten Bdp1-knockouts. Da dieser zur embryonalen Letalität führte, sind die Tiere entsprechend nicht aufgelistet. **(C.III)** Tiere der *Bdp1*^{*fi/fi*}-Linie dienten durch Verpaarung mit entsprechenden spezifischen Cre-Mäusen der Generierung gewebespezfischer Bdp1-knockouts. Durch Einkreuzen einer transgenen Nestin-Cre-exprimierenden Maus (Tronche et al. 1999) wurde ein Bdp1-knockout in den Vorläuferzellen der Neuronen und Gliazellen im gesamten Zentralnervensystem (ZNS) induziert (Mignone et al. 2004). Diese Deletion lag zunächst in heterozygoter Form vor und wurde durch Verpaarung mit Bdp1^{fl/fl}-Mäusen auf Homozygotie gekreuzt. (C.IV) Die Bdp1^{ko/wt}-Linie war Ausgangslinie, um Bdp1-Expressionen in Abhängigkeit von Smn-Deletionen zu untersuchen. Bdp1^{ko/wt}-Tiere wurden mit SMA-Tieren (Hsieh-Li et al. 2000; Riessland et al. 2010) verpaart, um Bdp1^{ko/wt}, Smn^{ko/wt}, SMN2^{tg/wt}-Nachkommen zu generieren. Diese wurden entweder - im Hinblick auf Homozygotie des Smn-Gens und SMN2-Transgens - untereinander oder erneut mit Bdp1^{ko/wt}-Tieren verpaart. Wt: wildtypisch, rk: rekombinant, flneo: gefloxtes Bdp1-Allel mit Neomycin-Resistenzgen, fl: gefloxtes *Bdp1*-Allel, ko: *knockout*, tg: Transgen, ES-Zellen: embryonale Stammzellen.

3.2.5.3 Markierung und Genotypisierung von Mäusen

Die Nachkommen einer Verpaarung wurden drei Wochen nach der Geburt von der Mutter nach Geschlecht separiert. Um jede Maus eindeutig zuordnen zu können, wurde jedes Tier mit einer Ohrmarke markiert und parallel eine Schwanzspitzenbiopsie (0,3-0,5 cm) entnommen, welches der Genotypisierung diente (3.2.1.1.1 und 3.2.1.2). Die dafür verwendeten *Primer* sind Kapitel 3.1.7, Tabelle 13 zu entnehmen. Bei erstmaliger Genotypisierung einer Mauslinie wurden die jeweiligen Genotypen zusätzlich mittels Southern Blot-Analysen verifiziert (siehe Kapitel 3.1.7, Tabelle 6 und 3.2.1.7).

3.2.5.4 Altersbestimmung pränataler Mausembryonen

Um das spezifische embryonale Entwicklungsstadium zu bestimmen, wurden zeitlich kontrollierte Verpaarungen angesetzt. Aufgrund der Nachtaktivität der Mäuse und einem

Tag/Nacht-Zyklus von 12 h geht man davon aus, dass sich die Tiere in der zweiten Nachthälfte verpaaren. Am nächsten Morgen wird das Stattfinden der Begattung anhand des Vorhandenseins von Vaginalpfröpfen festgestellt. Vaginalpfröpfe sind koagulierte Proteine des männlichen Ejakulats, die nach der Kopulation bis zu 24 h lang vorhanden sein können. Weibchen mit vorhandenen Pfröpfen wurden als *plug*-positiv bewertet. Das Embryonalstadium wird an diesem Tag als 0,5 p.c. (E0,5 p.c.) angenommen.

3.2.5.5 Isolation pränataler Mausembryonen

Für die Isolation pränataler Mausembryonen wurden zeitlich kontrollierte Verpaarungen (1:2) angesetzt und am kommenden Morgen ein *plug*-Check durchgeführt (3.2.5.4). *Plug*-positive Weibchen wurden von den Männchen separiert und die Embryonen dann entsprechend dem Embryonaltag präpariert.

3.2.5.5.1 Isolierung von Morulae (E2,5 p.c.) und Blastozysten (E3,5 p.c.)

Zur Isolation von Morulae und Blastozysten wurden Weibchen an den entsprechenden Tagen nach Vorhandensein des *plug* getötet und die Embryonen dem Eileiter entnommen.

Zur Gewinnung von Morulae wurde der Eileiter zusammen mit einem Stück des Uterus abgetrennt, in PBS gesäubert und in M2-Medium überführt. Anschließend wurde eine spitze Kanüle in das *Infundibulum* eingeführt und der Eileiter mit M2-Medium gespült.

Für die Isolation von Blastozysten wurde der gesamte Uterus entnommen und in PBS gelegt. Mit einer Pinzette wurden das Gewebe von Blut und Fett gesäubert und in M2-Medium überführt. Mit dem Medium wurden beide Uterushörner mit Hilfe einer scharfkantigen Kanüle durchgespült. Das Medium wurde tropfenförmig auf eine Petrischale gebracht und unter einem Stereomikroskop auf Morulae bzw. Blastozysten abgesucht. Diese wurden schließlich mit einer feinen Kanüle angesaugt, dreimal in M2-Medium gewaschen und auf gelatinisierte 24-*well*-Mikrotiterplatten mit M16-Medium überführt. Zur weiteren Analyse wurden Morulae und Blastozysten über ein bis mehrere Tage bei 37°C (5 % CO₂) kultiviert.

3.2.5.5.2 Isolierung älterer Embryonen (E14,5 p.c.-E18,5 p.c.)

Zur Präparation von Embryonen zwischen E14,5 p.c. und E18,5 p.c. wurden trächtige Weibchen an den entsprechenden Tagen getötet, der Uterus entnommen und die Embryonen in PBS überführt. Dabei wurde eine Schwanzspitzenbiopsie für die Genotypisierung verwendet (3.2.1.1.1). Die Embryonen wurden für Paraffinschnitte fixiert und entsprechend behandelt (3.2.4.1).

3.2.5.6 Präparation von adulten Mäusen und Organentnahme

Nach der Tötung der Tiere wurde die Bauchhöhle geöffnet und die zu analysierenden Organe entnommen. Diese wurden sofort in flüssigem Stickstoff schockgefroren und für die längere Aufbewahrung bei -80°C gelagert. Alternativ konnten die Organe auch direkt weiteraufbereitet werden (z.B. DNA/RNA oder Isolation von Proteinen.)

3.2.6 Statistische Auswertungen

Die Signifikanz von RNA- und Proteinexpressionsdaten unabhängiger Proben wurde mit Hilfe des Studentschen-t-Test (Excel) ermittelt. Dabei wurden folgende Klassen an Signifikanz unterschieden: P>0,05: nicht signifikant (n.s.), P<0,05 (*), P<0,01 (**), P<0,001 (***).

Um die prozentuale Verhältnismäßigkeit der beobachteten Genotypen in den Nachkommen von $Bdp1^{ko/wt}$ -Interkreuzungen und $Bdp1^{fl/fl}$ x $Bdp1^{fl/wt}$; Nestin^{tg/wt}-Verpaarungen mit der der zu erwartenden Genotypen zu vergleichen, wurde ein Chi-Quadrat-Test (χ 2-Test) angewandt.

4. Vorarbeiten

Als Untereinheit des Transkriptionsfaktors TFIIIB nimmt das BDP1-Protein (Protein ID: NP_060899.2) eine wichtige Funktion in der Initiation der Transkription von RNA Polymerase III-abhängigen Genen ein (Paule and White 2000). Dabei wird die Regulation des TFIIIB-Komplexes sowohl von Onko- als auch von Tumorsuppressorproteinen beeinflusst (Marshall and White 2008).

Das humane *BDP1*-Gen liegt auf dem chromosomalen Abschnitt 5q13 (Kelter et al. 2000) und flankiert die duplizierte SMA-Region telomerisch. Bei Proben von zwei SMA-Patienten (Nr. 353, Nr. 6432) wurden neben der klassischen SMA atypische Symptome diagnostiziert, wobei beide Patienten große Deletionen innerhalb der SMA-Region zeigten. Bei Patient Nr. 353 konnte weiterhin eine *de novo* Deletion nachgewiesen werden, wodurch eine hemizygote Deletion eines *BDP1*-Allels vorlag. Um eine eventuelle Korrelation des deletierten *BDP1*-Gens und dem Auftreten atypischer SMA Symptome klären zu können, sollte ein Mausmodell generiert werden. In vorangegangenen *knockdown* Experimenten konnte bereits die essentielle Bedeutung des BDP1-Proteins gezeigt werden - entsprechend RNAi behandelte Zellen waren apoptotisch (Dissertation Kelter, 2006).

4.1 Vorarbeiten anderer Arbeitskollegen

Die ersten Arbeitsschritte wurden in der AG Wirth von Frank Schönen durchgeführt. In Kooperation mit Dr. Thorsten Buch (Institut für Genetik, Universität zu Köln) wurde eine Strategie für einen konditionalen *knockout* des *Bdp1*-Gens in der Maus konzipiert (Gene ID: 544971). Diese Strategie beruht auf der Deletion von Exon 2 (*knockout*-Region), was eine Leserasterverschiebung (*frameshift*) im nachfolgenden Exon 3 zur Folge hat. Dadurch bedingt wird ein vorzeitiges Stoppkodon gebildet, was zu einem frühzeitigen Kettenabbruch bei der Proteinsynthese führt und somit zum Funktionsverlust des Bdp1-Proteins. Diese Theorie ist in der nachfolgenden Abbildung 9 schematisch dargestellt.

Abbildung 9: Konzept der Bdp1-targeting-Strategie

(A.) Genomische Situation des *Bdp1*-Allels von Exon 1 bis Exon 8. Alternativ gespleißte murine Varianten in diesem Bereich sind bisher nicht bekannt. (B.) Konsequenzen eines *knockout* von Exon 2: innerhalb von Exon 3 kommt es zur Bildung eines vorzeitiges Stoppkodons, was zum frühzeitigen Kettenabbruch bei der Translation führt. Somit kann kein funktionelles Bdp1-Protein generiert werden. Wt: wildtypisch, ko: *knockout*, Ex: Exon.

Um die konditionale Deletion des *Bdp1* Exon 2 zu gewährleisten, wurde dieses durch die Klonierung in einen *targeting*-Vektor an den 5'- und 3'-Enden mit loxP-Stellen modifiziert, welche eine Deletion durch die Cre-Rekombinase erlauben. Die benachbarten genomischen Bereiche der zu deletierenden Region (langer Homologiearm: 5'-Box, kurzer Homologiearm: 3'-Box) dienten der homologen Rekombination.

Als Ausgangsvektor für den konditionalen *Bdp1-knockout* wurde der schon mehrfach mit Erfolg verwendete pRapidflirt-Vektor (pRF, Anja Brühl und Ari Waisman, unveröffentlicht) verwendet. Dieser trug neben den loxP-Stellen ein Ampicillin-Resistenzgen, welches der Selektion transformierter Bakterien bei den einzelnen Klonierungsschritten diente. Eine FRT-flankiertes Neomycin-Resistenzgen und ein Thymidinkinase-Gen wurden für die Selektion und Anreicherung positiv homolog rekombinanter ES-Zellklone benötigt. Die FRT-Stellen ermöglichten eine spätere *in vivo*-Deletion des Neomycin-Resistenzgens mittels Flp-Rekombinase. In Abbildung 10 ist die gesamte *Bdp1-targeting*-Strategie schematisch dargestellt.

Abbildung 10: Bdp1-targeting-Strategie

(A.) Wildtypisches *Bdp1*-Allel von Exon 1 bis Exon 8. (B.) *Bdp1-targeting*-Konstrukt. Die einzelnen Boxen (5'-Box, *knockout*-Box, 3'-Box) sind markiert. Das zu deletierende Exon 2 ist von loxP-Stellen flankiert. Weiterhin befinden sich im Konstrukt das von FRT-Stellen flankierte Neomycin-Resistenzgen für die Positivselektion sowie das Thymidinkinase-Gen für die Negativselektion in ES-Zellen. (C.) Nach erfolgreicher homologer Rekombination und anschließender Kreuzung mit Flp-*deleter*-Mäusen (D.) kommt es zur Deletion des Neomycin-Resistenzgens. Die so entstehende gefloxte Linie dient als Ausgangslinie für einen gewebespezifischen *Bdp1-knockout*. (E.) Die Verpaarung mit Cre-*deleter*-Mäusen führt zur Deletion des gefloxten Exon 2, was zu einer Leserasterverschiebung in Exon 3 und somit zu einem vorzeitigen Stoppkodon führt. Wt: wildtypisch, ko: *knockout*, flneo: gefloxtes Allel mit Neomycin-Resistenzgen, fl: gefloxtes Allel, Ex: Exon, Neo^R: Neomycin-Resistenzgen, TK: Thymidinkinase-Gen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen.

Die Homologiearme als auch der zu deletierende Bereich um die *knockout*-Region wurden in Vorarbeiten anderer Kollegen mittels PCR amplifiziert und in TOPO-Vektoren (TOPO XL, TOPO 2.1) zwischenkloniert, wobei ein bereits sequenzierter BAC-Klon (149m19) (Endrizzi et al. 1999) als Matrize diente. Dieser enthielt den genomischen Bereich des *Bdp1*-Gens von Exon 1 bis Exon 11. Als ursprüngliche Matrize für diesen Klon diente isolierte DNA aus der Milz des Mausstammes 129/Sv. Gleichzeitig wurden den Homologiearmen und der *knockout*- Region mit Hilfe von spezifischen *Primern* entsprechende Schnittstellen für Restriktionsenzyme zur Klonierung in den Zielvektor angefügt. Tabelle 18 zeigt eine Übersicht der amplifizierten und in TOPO-Vektoren klonierten Elemente.

Tabelle 18: Amplifizierte und in TOPO-Vektoren klonierte Elemente zur Generierung des *Bdp1-targeting*-Konstruktes

Dargestellt sind die einzelnen Elemente zur Generierung des *Bdp1-targeting-*Konstruktes. Alle Boxen wurden in Vorarbeiten anderer Kollegen mittels PCR amplifiziert und in Zwischenvektoren (TOPOs) eingebracht. Angegeben sind die genomische Lagen und Größen der entsprechenden Boxen, die Zahl der Exons und Introns sowie die *Primer* für die Amplifikation der einzelnen Regionen. Weiterhin sind die entsprechenden Restriktionsenzyme für die Klonierung angegeben sowie die Spender- und Empfängerorganismen. Die so generierten GVOs sind nummeriert.

Element	Genomische Lage (bp) */ Größe (bp)	Exon(s)/ Intron(s)	Primer	Enzym	Spender	Empfänger	GVO# TOPO
5'-Box	544-4593/ 4049	-/ Intron 1	fw 2091 rev 2092	Cla I	PCR- Produkt BAC 149	TOP10-Zellen	TOPO XL # 351 (Klon 29)
<i>knockout-</i> Box	4594-5148/ 549	Exon 2/ Intron 1 und 2	fw 2093 rev 2645	Sal I	PCR- Produkt BAC 149	TOP10-Zellen	TOPO 2.1 # 352 (Klon 32)
3'-Вох	5149-9733/ 4584	Exon 3 und 4/ Intron 2, 3 und 4	fw 2095 rev 2096	Xho I	PCR- Produkt BAC 149	TOP10-Zellen	TOPO XL # 353 (Klon 7)

* Die Angaben liegen der genomischen *Bdp1*-Sequenz (NCBI Gene ID: NC_000079) zugrunde.

4.2 Eigene Vorarbeiten

Während meiner Diplomarbeit wurden die weiteren Schritte zur Generierung einer konditionalen *Bdp1-knockout*-Maus durchgeführt. Dazu zählte die Klonierung des entsprechenden *Bdp1-targeting*-Konstruktes (*pRF-Bdp1*), wobei die einzelnen Boxen mit den adäquaten Restriktionsenzymen aus den TOPO-Vektoren isoliert und mit dem entsprechend linearisierten pRF-Vektor ligiert wurden (Tabelle 19 und Abbildung 11). Eine detaillierte Beschreibung dieser Arbeiten sind meiner Diplomarbeit zu entnehmen.

Tabelle 19: In pRF-klonierte Elemente zur Generierung des Bdp1-targeting-Konstruktes

Die in Zwischenvektoren klonierten Boxen wurden mittels spezifischer Restriktionsenzyme aus den TOPO-Vektoren ausgeschnitten und in den Zielvektor (pRF) eingebracht. Der kurze Homologiearm (3'-Box) lag bereits im pRF vor. Die so generierten GVOs sind nummeriert.

Element	Genomische Lage (bp) */ Größe (bp)	Exon(s)/ Intron(s)	Enzym	Spender	Empfänger	GVO# pRF
3'-Вох	5149-9733/ 4584	Exon 3 und 4/ Intron 2, 3 und 4	Xho I	Xho I, 3'-Box aus TOPO XL-Vektor	<i>DH5α-</i> Zellen	pRF # 354 (Klon 19)
knockout- Box+3'- Box	4594-9733/ 5134	Exon 2, 3 und 4/ Intron 1, 2, 3 und 4	Sal I	Sal I, <i>knockout</i> -Box aus TOPO 2.1-Vektor	<i>DH5α-</i> Zellen	pRF # 355 (Klone 1,7 und 16)
5'-Box+ <i>knockout-</i> Box+3'- Box	544-9733/ 9189	Exon 2, 3 und 4/ Intron 1, 2, 3 und 4	Cla I	Cla I, 5'-Box aus TOPO XL-Vektor	<i>NEB5α-</i> Zellen	pRF # 356 (Klone 4, 5, 6[1], 9 und 12)

* Die Angaben liegen der genomischen *Bdp1*-Sequenz (NCBI Gene ID: NC_000079) zugrunde.

Abbildung 11: *Bdp1targeting-*Konstrukt

Komplett kloniertes *Bdp1targeting*-Konstrukt (16051 bp): pRF-Vektor (6869 bp); 5'-Box: orange (4049 bp), *knockout*-Box: blau (549 bp) mit Exon 2, flankiert von loxP-Stellen; 3'-Box: braun (4584 bp), mit Exon 4 und Exon 5; Neomycin-Resistenzgen: grün, flankiert von FRT-Stellen; Thymidikinase-

Gen: grau, Ampicillin-Resistenzgen: rot. Desweiteren sind die Schnittstellen der Restriktionsenzyme für die Klonierung (5'-Box: Cla I, *knockout*-Box: Sal I, 3'-Box: Xho I) sowie die Schnittstelle für die Linearisierung des Vektors (Eam1105 I) dargestellt. Die Abbildung (VNTI) stammt aus meiner Diplomarbeit.

Das *Bdp1-targeting*-Konstrukt (*pRF-Bdp1*) wurde nach verschiedenen Verfizierungsschritten in murine embryonale Stammzellen (ES-Zellen) transfiziert. Für die Verifizierung wurde eine Strategie zur Detektion positiv rekombinanter ES-Zellklone entwickelt. Dazu zählte die methodische Etablierung geeigneter Sonden, durch die eine homologe Rekombination in Southern Blot-Analysen detektiert werden konnte (Abbildung 12).

Abbildung 12: Strategie zur Detektion homolog rekombinanter *Bdp1*-ES-Zellklone mittels Southern Blot-Analysen

(A.) Für die Verwendung der 5'-Sonde (grün) wurde die ES-Zell-DNA mit BamH I, im Fall der (B.) 3'-Sonde (rot) mit Nco I, inkubiert. Die Schnittstellen sind sowohl vor als auch nach der Rekombination angegeben. Anschließend wurde die fragmentierte DNA auf einem Agarosegel separiert, auf eine Nylonmembran transferiert und mit den spezifischen Sonden hybridisiert. Positive Klone zeigen jeweils zwei Fragmentbanden (BamH I: rk 5,0 kb, wt 7,3 kb; Nco I: rk 6,7, wt 8,0 kb) und sind somit heterozygot für das gefloxte *Bdp1*-Allel. Für die Hybridisierung mit der (C.) Neo-Sonde (braun) konnte der Nco I-*blot* mit der Neo-Sonde rehybridisiert werden. Wt: wildtypisch, rk: rekombinant, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.

Im Rahmen meiner Diplomarbeit wurden drei ES-Zellklone als positiv im Hinblick auf eine homologe Rekombination mit dem *Bdp1-targeting*-Konstrukt identifiziert (*Bdp1^{flneo/wt}*-ES-Zellen, V6.5). Anschließend wurde einer dieser Klone expandiert und Blastozysten der Mauslinie CB20 injiziert. Diese wurden in Anschluss in die Uteri scheinträchtiger Mäuse transferiert. Insgesamt wurden 24 Jungtiere geboren, von denen sieben am Ende meiner Diplomarbeit als chimär identifiziert wurden. An diesem Punkt beginnt die hier vorliegende Doktorarbeit.

5. Ergebnisse

5.1 *Screening* von chimären Nachkommen

Zu Beginn meiner Doktorarbeit standen sieben chimäre Mäuse zur Verfügung, die durch die Injektion homolog rekombinanter embryonaler Stammzellen in CB20-Blastozysten generiert wurden (*Bdp1*^{fineo/wt}-ES-Zellen, V6.5). Eine Vererbung des rekombinanten *Bdp1*-Allels war nur möglich, wenn die rekombinanten ES-Zellen zur Ausbildung von Keimzellen beitrugen (Keimbahntransmission). Um dies zu überprüfen, wurden die Tiere mit wildtypischen C57BL/6NCrl-Tieren verpaart. Die Genotypen der Nachkommen wurden mit einer spezifischen PCR für das rekombinante *Bdp1*-Allel überprüft (3.2.1.2) (siehe Kapitel 3.1.7, Tabelle 4). Dabei diente ein Schwanzspitzenbiopsat der DNA-Isolation (3.2.1.1.1). Bei acht Würfen einer jeden Verpaarung konnte keine Keimbahntransmission nachgewiesen werden. Somit wurde davon ausgegangen, dass die rekombinanten ES-Zellen nicht zur Ausbildung der Keimzellen beigetragen hatten. Aus diesem Grund wurde eine erneute Transfektion des *Bdp1-targeting*-Konstruktes in V6.5 ES-Zellen vorgenommen.

Wie unter 4.2 beschrieben, wurde das *Bdp1-targeting*-Konstrukt mittels Sequenzierung und Testrestriktionen verifiziert. Für eine erneute Transfektion wurden pro Ansatz je 40-50 µg des *targeting*-Vektors mit dem Restriktionsenzym Eam1105 linearisiert, das Plasmid aufgereinigt und V6.5 ES-Zellen damit transfiziert (3.2.3.6.1). Nach den verschiedenen Selektionsschritten (Positivselektion: G418, Negativselektion: Ganciclovir) (3.2.3.6.2) wurden verbleibende ES-Zellklone isoliert, expandiert (3.2.3.6.3) und homolog rekombinante Klone mittels Southern Blot-Analysen detektiert (3.2.3.6.4) (siehe Kapitel 3.1.7, Tabelle 6).

Insgesamt wurden 480 Klone mittels Southern Blot-Analysen untersucht. Dazu wurde zu Beginn von allen Klonen die ES-Zell-DNA isoliert, mit Nco I fragmentiert und nach gelelektrophoretischer Auftrennung auf eine Membran transferiert. Anschließend erfolgte die Detektion homolog rekombinanter Klone mit Hilfe der 3'-Sonde. Dabei wurden drei Klone als positiv identifiziert (#A6, #B3, #G8,). Um Verwechselungen auszuschließen, wurden diese zusammen mit den jeweils direkt benachbarten Klonen expandiert (3.2.3.6.5). Alle expandierten Klone wurden erneut in Southern Blot-Analysen mit der 5'-, 3'- und der Neo-Sonde verifiziert (Abbildung 13). Dabei wurden die zuvor genannten ES-Zellklone als eindeutig positiv im Hinblick auf eine homologe Rekombination identizifiert. Diese zeigten sowohl das wildtypische (5'-Sonde: 7,3 kb; 3'-Sonde: 8,0 kb) als auch das rekombinante Signal (5'-Sonde: 5,0 kb; 3'-Sonde: 6,4 kb). Negative Klone hingegen zeigten nur eine wildtypische Bande. Gleichzeitig konnte eine nicht-homologe Rekombination bzw. eine Mehrfachinsertion ausgeschlossen werden, da diese Klone nach der Hybridisierung mit der Neo-Sonde die exakten Fragmentgrößen aufwiesen (2,2 kb; 1,1 kb).

Abbildung 13: Identifizierung und Verifizierung homolog rekombinanter ES-Zellklone

(A.I) Mit BamH I-fragmentierte und transferierte ES-Zell-DNA, die Membran wurde mit der 5'-Sonde hybridisiert. Positiv identifizierte Klone zeigen ein wildtypisches (7,3 kb) und ein rekombinantes Signal (5,0 kb). (A.II) Southern Blot-Strategie und *Primer* (3084/3085) der 5'-Sonde. Die Fragmentgrößen sind mit grünen Linien dargestellt. (B.I) Mit Nco I-fragmentierte und transferierte ES-Zell-DNA, die Hybridisierung erfolgte mit der 3'-Sonde. Positiv identifizierte Klone zeigen ein wildtypisches (8,0 kb) und ein rekombinantes Signal (6,4 kb). (B.II) Southern Blot-Strategie und *Primer* (2629/3057) der 3'-Sonde. Die Fragmentgrößen sind mit roten Linien dargestellt. (C.I) Die Membran mit Nco I-fragmentierter ES-Zell-DNA wurde mit der Neo-Sonde rehybridisiert. Korrekt homolog rekombinante Zellen zeigen ein 2,2 kb- und ein 1,1 kb-Fragment. (C.II) Southern Blot-Strategie und *Primer* (3220/3221) der Neo-Sonde. Die Fragmentgrößen sind mit braunen Linien dargestellt. Wt: wildtypisch, rk: rekombinant, pos.: positiver Klon, neg.: negativer Klon, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: IoxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.

5.2 Injektion homolog rekombinanter ES-Zellen in Blastozysten und Generierung chimärer Mäuse

Die unter 5.1. positiv identifizierten ES-Zellklone #A6 und #G8 wurden expandiert (3.2.3.6.5) und in CB20-Blastozysten injiziert (3.2.3.6.6). Dabei wurden die homolog rekombinanten ES-Zellen in 87 CB20-Blastozysten injiziert und abschließend in scheinträchtige Weibchen transplantiert. Von insgesamt 12 Jungtieren wurden zehn als chimär identifiziert. Dabei wurde der Grad des Chimärismus anhand der Fellfarbe bestimmt. Dies war möglich, da die verwendeten ES-Zellen von dunkelfarbigen, die Blastozysten für die Injektion jedoch von weißfarbigen Mäusen abstammten. Alle dunklen Farbanteile im Fell der chimären Tiere stammten somit von den rekombinanten ES-Zellen. Anhand dieser Kriterien wurde der Grad des Chimärismus der 12 Nachkommen zwischen 25 % und 85 % abgeschätzt (siehe Kapitel 5.3, Abbildung 14A).

5.3 Identifizierung einer Keimbahntransmission und Verifizierung des rekombinanten *Bdp1*-Allels

Um eine Keimbahntransmission in den chimären Nachkommen nachzuweisen, wurden diese - unabhängig vom Geschlecht oder vom Grad des Chimärismus - mit wildtypischen C57BL/6NCrl-Tieren verpaart. Von allen Nachkommen dieser Verpaarungen wurde im Absatzalter DNA aus den Schwanzspitzen isoliert und mit einer für das rekombinante *Bdp1*-Allel spezifischen PCR überprüft (siehe Kapitel 3.1.7, Tabelle 4). Bei der DNA von Tieren mit rekombinantem *Bdp1*-Allel wurde ein Fragment von 659 bp amplifiziert (Abbildung 14B). Da die beschriebene PCR nur das rekombinante Allel amplifizierte, wurde die Qualität der DNA mit Hilfe einer Kontroll-PCR überprüft, welche die *knockout*-Region des *Bdp1*-Allels von 567 bp amplifizierte (siehe Kapitel 3.1.7, Tabelle 4 und Kapitel 11, Abbildung 40). Als Positivkontrolle diente isolierte DNA der homolog rekombinanten ES-Zellen. Da chimäre Tiere sowohl wildtypische als auch rekombinante Keimzellen bilden können, müssen für eine sichere Aussage mehrere Generationen an Nachkommen in Hinblick auf das rekombinante Allel genotypisiert werden. Eine Fellfarbenselektion war aufgrund des genetischen Hintergrundes der V6.5 ES-Zellen (C57BL/6, 129/Sv) nicht möglich.

Bei insgesamt vier chimären Nachkommen (♂594 [45 %], ♂597 [70%], ♂598 [65%], ♂599 [65%]) konnte mittels PCR eine Keimbahntransmission des rekombinanten *Bdp1*-Allels nachgewiesen werden. Zusätzlich wurden der Genotyp dieser Tiere in Southern Blot-Analysen verifiziert. Nach der Hybridisierung mit der 5'- und 3'-Sonde wurde sowohl das wildtypische (5'-Sonde: 7,3 kb, 3'-Sonde: 8,0 kb) als auch das rekombinante Allel (5'-Sonde: 5,0 kb, 3'-Sonde: 6,4 kb) detektiert (siehe Kapitel 3.1.7, Tabelle 6) (Abbildung 14C und 14D).

Abbildung 14: Identifizierung und Verifizierung einer Keimbahntransmission

(A.) Beispiele zwei chimärer Nachkommen mit einem unterschiedlichen Grad an Chimärismus (#598: 65 %, #594: 45 %). (B.I) Auf einem Agarosegel separierte PCR-Produkte zur Identifizierung einer Keimbahntransmission des rekombinanten *Bdp1*-Allels. Dabei wurden die *Primer* 2158/2645 verwendet, welche ein Produkt von 659 bp amplifizieren. (B.II) PCR-Strategie zur Detektion einer Keimbahntransmission. (C.I+D.I) Ausschnitte von Autoradiographien verschiedener Southern Blot-Analysen zur Verifizierung des Genotyps. Die DNA der Tiere wurde entweder mit (C.I) BamH I oder (D.I) Nco I fragmentiert und nach Transfer auf eine Membran mit der (C.II) 5'-Sonde (*Primer* 3084/3085) bzw. mit der (D.II) 3'-Sonde (*Primer* 2629/3057) hybridisiert. Tiere mit einer Keimbahntransmission zeigen sowohl das wildtypische (BamH I: 7,3 kb, Nco I: 8,0 kb) als auch das rekombinante Signal (BamH I: 5,0 kb, Nco I: 6,4 kb). Wt: wildtypisch, rk: rekombinant, pos.: positiv im Hinblick auf eine Keimbahntransmission, neg.: negativ im Hinblick auf eine Keimbahntransmission, M: Marker. Wt: wildtypisch, rk: rekombinant, pos.: positiver Klon, neg.: negativer Klon, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.
Diese Tiere mit dem Genotyp *Bdp1^{flneo/wt}* dienten als Ausgangslinie für alle in dieser Arbeit generierten *Bdp1*-Linien. Aufgrund der verwendeten konditionalen *targeting*-Strategie konnte sowohl ein ubiquitärer als auch ein gewebespezifischer *knockout* des *Bdp1*-Gens induziert werden (siehe Kapitel 4.1, Abbildung 10).

5.4. Generierung eines ubiquitären heterozygoten *Bdp1*-

knockouts

Ein Mausmodell mit einer ubiquitären Deletion des *Bdp1*-Allels sollte den möglichen Zusammenhang zwischen dem *BDP1*-Gen und der atypischen Form der spinalen Muskelatrophie (SMA) aufklären. Die unter 5.3 beschriebene *Bdp1*^{fineo/wt}-Linie diente als Ausgangslinie für die Generierung des ubiquitären *Bdp1-knockouts*.

Aufgrund des verwendeten *targeting*-Vektors pRapidflirt (pRF) wurde die zu deletierende Region (Neomycin-Resistenzgen und Exon 2) von loxP-Stellen flankiert, wobei eine Deletion über die Cre-Rekombinase induziert werden konnte. Aus diesem Grund wurden *Bdp1^{flneo/wt}*-Tiere mit transgenen Cre-*deleter*-Mäusen verpaart, welche die Cre-Rekombinase unter der Kontrolle eines hCMV-Minimalpromotors ubiquitär exprimieren (siehe Kapitel 3.1.10, Tabelle 14) (Schwenk et al. 1995).

Mittels PCR wurde die DNA der Nachkommen der beschriebenen Verpaarung untersucht (Abbildung 15A) (siehe Kapitel 3.1.7, Tabelle 4). Dabei wurde sowohl die *knockout*-Region amplifiziert als auch das Vorhandensein der Cre-Rekombinase untersucht. Tiere, welche das Cre-Transgen trugen, waren heterozygot in Hinblick auf den *Bdp1-knockout* (*Bdp1^{ko/wt}*) und zeigten sowohl eine *knockout*- (570 bp) als auch eine wildtypische (1031 bp) Bande. Bei diesen Tieren wurde der gesamte loxP-flankierte Bereich deletiert.

Im weiteren Verlauf wurde der Genotyp dieser heterozygoten *knockout*-Mäuse in Southern Blot-Analysen verifiziert (siehe Kapitel 3.1.7, Tabelle 6) (Abbildung 15B). Dafür wurde die DNA dieser Tiere mit dem Restriktionsenzym Nde I fragmentiert, separiert und nach dem Transfer auf eine Membran mit einer spezifischen *knockout*-Sonde hybridisiert. Tiere mit einem heterozygot deletierten *Bdp1*-Allel zeigten sowohl das wildtypische (4,7 kb) als auch das *knockout*-Signal (4,3 kb). Wurde die Region nicht deletiert, d.h. wenn keine Cre-Rekombinase vorhanden war, konnte sowohl das gefloxte Allel mit dem Neomycin-Resistenzgen (6,9 kb) als auch das wildtypische Signal (4,7 kb) detektiert werden. So generierte heterozygote *Bdp1-knockout*-Tiere wurden im weiteren Verlauf mit wildtypischen Mäusen (C57BL/6NCrl) verpaart, um heterozygot deletierte Mäuse ohne Cre-Transgen zu generieren.

Abbildung 15: Identifizierung und Verifizierung von ubiquitären *Bdp1^{ko/wt}*-Tieren

(A.I) Auf einem Agarosegel aufgetrennte PCR-Produkte zur Identifizierung des deletierten *Bdp1*-Allels mit Hilfe der *Primer* 3719/3707. Bei heterozygoten Tieren wird sowohl das wildtypische (1031 bp) als auch ein *knockout*-Fragment (570 bp) amplifiziert. (A.II) PCR-Strategie zur Identifizierung eines heterotzygoten *Bdp1*-*knockouts*. (B.I) Autoradiographie von Southern Blot-Analysen zur Verifizierung des deletierten *Bdp1*-Allels mit Hilfe einer spezifischen *knockout*-Sonde (*Primer* 3271/2405). Dabei wird die DNA mit Nde I fragmentiert und auf eine Membran transferiert. (B.II) Southern Blot-Strategie für die *knockout*-Sonde. Wt: wildtypisch, ko: *knockout*, flneo: gefloxtes Allel mit Neomycin-Resistenzgen, M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.

5.4.1 Analysen heterozygoter *Bdp1-knockouts*

In unserem Patientenkollektiv befinden sich Proben von zwei Patienten, die zusätzlich zur SMA eine Gehirnatrophie entwickelt hatten. Eine Haploinsuffizienz des *BDP1*-Gens könnte ursächlich für die atypischen Symptome gewesen sein. Tiere mit einem heterozygot deletierten *Bdp1*-Allel (*Bdp1*^{ko/wt}) hingegen zeigten keine phänotypischen Auffälligkeiten. Bei insgesamt 180 heterozygoten Nachkommen wurde weder eine verminderte Lebenserwartung noch eine Fertilitätsreduktion festgestellt.

5.4.1.1 Genexpressionsanalysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

Obwohl der Phänotyp von *Bdp1^{ko/wt}*-Tieren nicht dem Phänotyp der zwei beschriebenen SMA-Patienten entsprach und somit die Hypothese, dass eine Haploinsuffizienz des *BDP1*-Gens ursächlich für die Ausbildung einer Gehirnatrophie gewesen war, widerlegt wurde, bot das Mausmodell Möglichkeiten, die Funktionen des *Bdp1*-Gens *in vivo* zu untersuchen.

Das BDP1-Protein nimmt als eine von drei Untereinheiten des Transkriptionsfaktor TFIIIB-Komplexes (BDP1, TBP, BRF1/BRF2) eine wichtige Funktion in der Rekrutierung der RNA Polymerase III (RNA Pol III) an den Initiationskomplex ein. TFIIIB selbst wird von dem Faktor TFIIIC102, einer Untereinheit des Transkriptionsfaktors TFIIIC, an die Promotorregion rekrutiert (Paule and White 2000). Weiterhin wird der gesamte TFIIIB-Komplex sowohl von Onko- als auch von Tumorsuppressorproteinen beeinflusst (Marshall and White 2008). Proteine wie ERK und MYC wirken stimulierend auf den TFIIIB-Komplex und somit positiv auf die Transkription RNA Pol III-abhängiger Gene. Repressoren wie RB und p53 hingegen haben auf den gesamten Komplex eine inhibierende Wirkung (siehe Kapitel 1.1.4, Abbildung 3).

Um die Auswirkungen einer heterozygoten *Bdp1*-Deletion näher zu untersuchen, wurde RNA aus *Cerebrum* und *Cerebellum* (3.2.1.8.1) sowohl von zwei wildtypischen (*Bdp1*^{wt/wt}) als auch von fünf heterozygot deletierten *Bdp1*-Mäusen (*Bdp1*^{ko/wt}) isoliert. Der Genotyp der Tiere wurde vorab mittels PCR bestimmt (siehe Kapitel 3.1.7, Tabelle 4). Mit Hilfe von quantitativen *Realtime*-Analysen (3.2.1.11) wurden die Transkriptmengen aller Proteine des TFIIIB Komplexes (*Tbp*, *Brf1*, *Bdp1*), die ausgewählter Interaktionspartner (*TFIIIC102*, *Erk*, *Myc*, *p53*, *Rb*) und von zwei Kontrollgenen (β-*Aktin*, *Gapdh*) bestimmt und zu *Rplp0* (*ribosomal protein large P0*) relativiert (siehe Kapitel 3.1.7, Tabelle 7) (Abbildung 16).

Die Ergebnisse der quantitativen *Realtime*-Analysen für den TFIIIB-Komplex zeigten eine signifikante Reduktion der Expression von *Bdp1* sowohl im *Cerebrum* als auch im *Cerebellum* (50 %) von heterozygoten *Bdp1-knockout*-Tieren (*Bdp1^{ko/wt}*) (Abbildung 16A und 16B). Die Transkriptmengen der weiteren TFIIIB-Untereinheiten *Brf1* und *Tbp* waren im *Cerebrum* von heterozygoten Tieren im Vergleich zu Wildtypen unverändert (Abbildung 16A). Im Gegensatz dazu wurde im *Cerebellum* eine verminderte Genexpression der TFIIIB-Untereinheit *Tbp* von 40 % gemessen (Abbildung 16B).

Bei den Analysen der Interaktionspartner wurden teilweise quantitative Unterschiede an Transkriptmengen sowohl im *Cerebrum* als auch im *Cerebellum* festgestellt (Abbildung 16C und 16D). Der Faktor *TFIIIC102* zeigte im *Cerebrum* eine schwache Reduktion der Expression auf 80 %. Im Gegensatz dazu wurde im *Cerebellum* eine Transkriptmenge von 40 % detektiert. Bei den Onkogenen *Erk* und *Myc* wurden unterschiedliche Transkriptmengen in den untersuchten Geweben gemessen. Im *Cerebrum* von heterozygot deletierten *Bdp1*-Tieren wurde eine *Erk*-Expression von 70 %, im *Cerebellum* von 40 % detektiert. Im Gegensatz dazu wurde im *Cerebrum* heterozygoter *knockout*-Tiere eine um 20 %-erhöhte Expression von *Myc* gemessen, im *Cerebellum* hingegen wurde eine Abnahme auf 80 % detektiert. Die Tumorsuppressorgene *p53* und *Rb* zeigten sowohl im *Cerebrum* als auch im *Cerebellum* von *Bdp1^{ko/wt}*-Tieren eine Abnahme der Expression auf 70 % bzw. 40 %. Als Kontrollgene wurden β-*Aktin* und *Gapdh* verwendet, deren Trankskriptmengen bei beiden Genotypen unverändert waren (Abbildung 16E und 16F).

Abbildung 16: Quantitative *Realtime*-Analysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

Ergebnisse quantitativer *Realtime*-Analysen von *Cerebrum* (A.+C.+E.) und *Cerebellum* (B.+D.+F.) wildtypischer (*Bdp1*^{wt/wt}, n=2) und heterozygoter (*Bdp1*^{ko/wt}, n=5) Mäuse. Die Messungen erfolgten in Triplikaten und die Transkriptmengen wurden zu *Rplp0* relativiert. (A.+B.) Gemessene Transkriptmengen der TFIIIB-Untereinheiten (*Bdp1*, *Brf1 Tbp*) im *Cerebrum* und *Cerebellum*. Dabei ist in *Bdp1*^{ko/wt}-Tieren eine signifikante Abnahme der *Bdp1*-Transkriptmenge von 50 % zu erkennen. *Tbp* zeigt im *Cerebellum* eine Abnahme der Expression auf 40 %. (C.+D.) Gemessene Transkriptmengen der TFIIIB-Interkationpartner (*TFIIIC102*, *Erk*, *Myc*, *p53*, *Rb*) im *Cerebrum* und *Cerebellum*. Mit Ausnahme von *Myc* sind bei *Bdp1*^{ko/wt}-Tieren Herunterregulationen der Transkriptmengen zwischen 40 % und 80 % zu erkennen. (E.+F.) Gemessene Transkriptmengen der Kontrollgene β-*Aktin* und *Gapdh* im *Cerebrum* und *Cerebellum*. Die Säulenfarben markieren die unterschiedlichen Genotypen. Wt: wildtypisch, ko: *knockout*, Signifikanzklassen: * = P<0,05, ** = P<0,01, *** = P<0,001.

5.4.1.2 Genexpressionsanalysen muriner embryonaler Fibroblasten (MEF)

Um die Ergebnisse aus 5.4.1.1 in einem homogenen Zellsystem zu verifizieren, wurden MEF von $Bdp1^{wt/wt}$ - (n=2) und $Bdp1^{ko/wt}$ -Mäusen (n=4) generiert, kultiviert (3.2.3.4) und die Genotypen mittels PCR bestimmt (siehe Kapitel 3.1.7, Tabelle 4). Für die Expressionsanalysen wurde RNA aus Zellen isoliert (3.2.1.8.2) und mit Hilfe quantitativer *Realtime*-Analysen die Transkriptmengen der Proteine des TFIIIB Komplexes, die ausgewählter Interaktionspartner und von zwei Kontrollgenen bestimmt und zu *RplpO* relativiert (siehe Kapitel 3.1.7, Tabelle 7) (Abbildung 17).

Abbildung 17: Quantitative *Realtime*-Analysen von *Bdp1^{wt/wt}*- und *Bdp1^{ko/wt}*-MEF

Ergebnisse quantitativer *Realtime*-Analysen von wildtypischen (n=2) und heterozygot deletierten MEF (n=4) für die Untereinheiten des TFIIIB-Komplexes (*Bdp1, Brf1 Tbp*), die der Interaktionspartner (*TFIIIC102, Erk, Myc, p53, Rb*) und der Kontrollgene (β -*Aktin, Gapdh*) (**A.–C.**). Die Messungen erfolgten in Triplikaten und die Transkriptmengen wurden zu *Rplp0* relativiert. (**A.**) Für die TFIIIB-Untereinheit *Bdp1* ist eine signifikante Abnahme der Expression auf 70 %, für *Tbp* eine um 70 %-erhöhte Transkriptmenge zu erkennen. (**B.**) Mit Ausnahme von *p53* und *Rb* zeigen die Interaktionspartner einen Anstieg der Expression um 30 % bis 90 %, welche für *Erk* und *Myc* signifikant sind. (**C.**) Gemessene Transkriptmengen der Kontrollgene β -*Aktin* und *Gapdh*. Die Säulenfarben markieren die unterschiedlichen Genotypen. MEF: murine embryonale Fibroblasten, wt: wildtypisch, ko: *knockout*, Signifikanzklassen: * = P<0,05, ** = P<0,01, *** = P<0,001. Die Ergebnisse der quantitativen *Realtime*-Analysen für den TFIIIB-Komplex in MEF zeigten eine signifikant verminderte *Bdp1*-Expression von 70 % in *Bdp1^{ko/wt}*- im Vergleich zu *Bdp1^{wt/wt}*-Zellen. Für *Brf1* wurden keine Veränderungen in den verschiedenen Genotypen festgestellt, wohingegen für *Tbp* eine um 70 %-erhöhte Expression in *Bdp1^{ko/wt}*-MEF detektiert wurde (Abbildung 17A).

Die Analysen der Interkationspartner *TFIIIC102* sowie die der Onkogene *Erk* und *Myc* zeigten eine um 30 % sowie eine signifikante Erhöhung der Expression um 60 % bzw. 90 % in $Bdp1^{ko/wt}$ -MEF verglichen zu $Bdp1^{wt/wt}$ -MEF (Abbildung 17B). Bei den Tumorsuppressorgenen p53 und *Rb* hingegen wurden keine maßgeblichen Unterschiede an Transkriptmengen festgestellt. Als Kontrollgene wurden β -*Aktin* und *Gapdh* verwendet (Abbildung 17C).

5.4.1.3 Northern Blot-Analysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

Die nukleoplasmatische RNA Pol III transkribiert niedermolekulare, nicht-proteinkodierende Gene (Geiduschek and Tocchini-Valentini 1988; Willis 1993). Dazu zählen verschiedene Typen an Transfer-RNAs (tRNAs), die 5S ribosomale RNA (5S rRNA) und die U6-Untereinheit der *small nuclear ribonucleoproteins* (snRNA). Für eine präzise Initiation der Transkription benötigt die RNA Pol III den Transkriptionsfaktor IIIB (BDP1, BRF1/2, TBP), der die Polymerase zum Initiationskomplex rekrutiert (Schramm and Hernandez 2002).

Um die Auswirkungen einer heterozygoten Deletion des *Bdp1*-Gens auf RNA Pol IIItranskribierende Gene zu untersuchen, wurde RNA isoliert (5.4.1.1) und jeweils 2 µg dieser in Northern Blot-Analysen (3.2.1.12) für die Hybridisierung mit spezifischen Sonden (5S rRNA, U6 snRNA und 18S rRNA) verwendet (siehe Kapitel 3.1.7, Tabelle 6). In Abbildung 18 sind die Ergebnisse verschiedener Northern Blot-Autoradiographien von 5S rRNA und U6 snRNA in *Cerebrum* und *Cerebellum* von *Bdp1*^{wt/wt} und *Bdp1*^{ko/wt}-Tieren sowie die quantitative Auswertung relativ zu 18S rRNA gezeigt.

Mittels quantitativer Auswertungen der Northern Blot-Analysen von wildtypischen und heterozygoten *Bdp1-knockout*-Mäusen konnte gezeigt werden, dass eine Deletion des *Bdp1*-Gens im *Cerebrum* keine Auswirkungen auf die Expression der 5S und U6 snRNA hatte. Gleiches wurde für die 5S-Expression im *Cerebellum* festgestellt. In diesem Gewebe wurde jedoch eine dreimal stärkere Expression der U6 snRNA detektiert.

Abbildung 18: Northern Blot-Analysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

(A.) Autoradiographien verschiedener Northern Blot-Analysen von 5S rRNA (*Primer* 4104/4105, 121 bp), U6 snRNA (*Primer* 4101/4103, 105 bp) und 18S rRNA (*Primer* 4194/4195, 1,8 kb) in *Cerebrum* und *Cerebellum* von wildtypischen (*Bdp1^{wt/wt}*, n=3) und heterozygoten (*Bdp1^{ko/wt}*, n=5) *Bdp1*-Tieren. (B.) Quantitative Auswertungen der in (A.) gezeigten Autoradiographien von 5S rRNA und U6 snRNA relativ zu 18S rRNA. Dabei zeigt sich eine um 200 %-erhöhte Expression der U6 snRNA im *Cerebellum* von heterozygot deletierten *Bdp1*-Tieren. Die Säulenfarben markieren die unterschiedlichen Genotypen. Wt: wildtypisch, ko: *knockout*.

5.4.1.4 Proteinexpressionsanalysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

Um die Proteinexpressionen wildtypischer und heterozygoter *Bdp1*-Tiere zu untersuchen, wurden Western Blot-Analysen (3.2.2.3) durchgeführt. Dafür wurden Proteine aus den bereits für die Genexpressionsanalysen verwendeten Geweben (*Cerebrum* und *Cerebellum*) von zwei wildtypischen und fünf heterozygoten adulten *Bdp1^{ko/wt}*-Tieren gewonnen (3.2.2.1.1). Die Proteinmengen des TFIIIB-Komplexes und die der Interaktionspartner wurden zu β-Aktin relativiert und abschließend quantifiziert (siehe Kapitel 3.1.9, Tabelle 9 und 10) (Abbildung 19). Analysen des Bdp1-Proteins waren nicht möglich, da kein adäquater Antikörper zur Verfügung stand (5.8).

Abbildung 19: Western Blot-Analysen von Bdp1^{wt/wt} und Bdp1^{ko/wt}-Tieren

Quantitative Auswertung der Western Blot-Analysen von **(A.I)** *Cerebrum* und **(B.I)** *Cerebellum* der Proteine des TFIIIB-Komplexes (Brf1, Tbp) sowie interagierender Proteine (TFIIIC102, Erk_P [phosphoriliert], Myc, p53, Rb) in wildtypischen ($Bdp1^{wt/wt}$, n=2) und heterozygoten ($Bdp1^{ko/wt}$, n=5) Bdp1-Tieren. $Bdp1^{ko/wt}$ -Tiere zeigen verringerte Proteinmengen aller untersuchten Proteine sowohl im *Cerebrum* (zwischen 70 % und 85 %) als auch im *Cerebellum* (zwischen 50 % und 80 %, mit Ausnahme von TFIIIC102). **(A.II+B.II)** Autoradiographien der Western Blot-Analysen von *Cerebrum* und *Cerebellum* relativ zu β -Aktin. Die Säulenfarben markieren die unterschiedlichen Genotypen. Es wurden 12 %ige SDS-Gele verwendet. Wt: wildtypisch, ko: *knockout*.

Die Quantifizierungen der Western Blot-Analysen ergaben verringerte Proteinmengen im *Cerebrum* von *Bdp1^{ko/wt}*- im Vergleich zu *Bdp1^{wt/wt}*-Tieren in den untersuchten TFIIIB-Komplexpartnern sowie - mit Ausnahme von p53 - interagierender Proteine. Dabei schwankten die Expressionen zwischen 70 % und 85 %. Ähnliche Beobachtungen wurden im *Cerebellum* von *Bdp1^{ko/wt}*-Tieren gemacht: mit Ausnahme von TFIIIC102, wo ein Anstieg der Expression um etwa 50 % gemessen wurde, wurden verringerte Proteinmengen zwischen 50 % und 80 % detektiert.

Zusammenfassend lässt sich an dieser Stelle festhalten, dass eine heterozygote *Bdp1*-Deletion Auswirkungen auf die Komponenten des TFIIIB-Komplexes und auf interagierende Proteine hatte - diese Beobachtungen wurden sowohl auf RNA- als auch auf Proteinebene gemacht. Weiterhin wurde eine Heraufregulation der RNA Pol III-abhängigen Transkription für die U6 snRNA im *Cerebellum* heterozygot deletierter *Bdp1*-Tiere beobachtet Die Ergebnisse der *Realtime*-Analysen von *Bdp1^{ko/wt}*-Tieren konnten in MEF entsprechender Genotypen nicht bestätigt werden.

5.5 Generierung eines ubiquitären homozygoten *Bdp1knockouts*

Die unter 5.4 beschriebenen heterozygoten *Bdp1-knockout*-Tiere (*Bdp1^{ko/wt}*) wurden zur Generierung eines homozygoten *Bdp1-knockouts* (*Bdp1^{ko/ko}*) untereinander verpaart. Unter 95 Nachkommen konnten mittels PCR keine homozygot deletierten *Bdp1-* Tiere nachgewiesen werden (siehe Kapitel 3.1.7, Tabelle 4). Dies führte zu der Annahme, dass eine homozygote Deletion des *Bdp1-*Gens zur embryonalen Letalität führte (Tabelle 20).

	් Bdp1 ^{ko/wt}	x ♀ <i>Bdp1^{ko/wt}</i>
Genotyp (erwartet)	Anzahl	P-Wert (χ2-Test)
<i>Bdp1^{wt/wt}</i> (25 %)	43 (45,2 %)	P<0,001
<i>Bdp1^{ko/wt}</i> (50 %)	52 (54,8 %)	n.s.
<i>Bdp1^{ko/ko}</i> (25 %)	0 (0 %)	P<0,001

Tabelle 20: Genotypen und Anzahl postnataler Nachkomme	n <i>Bdp1^{ko/\}</i>	^{wt} -Interkreuzungen
--	------------------------------	--------------------------------

5.5.1 Analysen homozygoter *Bdp1-knockouts*

5.5.1.1 Isolierung und Genotypisierung verschiedener Embryonalstadien

Um homozygot deletierte *Bdp1*-Embryonen in verschiedenen Embryonalstadien zu detektieren, wurden zeitlich kontrollierte Verpaarungen von *Bdp1^{ko/wt}*-Tieren durchgeführt (3.2.5.4). Um möglichst frühe Stadien zu untersuchen, wurden sowohl Morula- (E2,5 p.c.) als auch Blastula-Stadien (E3,5 p.c.) präpariert (3.2.5.5.1). Zusätzlich wurden Embryonen eines späteren Stadiums (E10,5 p.c.) isoliert.

Anschließend wurden die Embryonen genotypisiert. Zu diesem Zweck wurde zuvor das gesamte Genom amplifiziert, um genügend Ausgangsmaterial zu erhalten (3.2.1.3). Für die Genotypisierung wurden drei verschiedene PCR-Ansätze verwendet, wobei ein Ansatz sowohl das Wildtyp- (1031 bp) als auch das *knockout*-Fragment (570 bp) amplifizierte. Um sicherzustellen, dass nicht das kleinere Fragment bevorzugt amplifiziert wurde, wurden weitere PCRs angewandt, die entweder spezifisch für das Wildtyp-Allel (513 bp) oder für das *knockout*-Fragment (791 bp) waren. Mittels der Kombinationen der Ergebnisse dieser PCRs konnten die Genotypen der Embryonen eindeutig bestimmt werden (siehe Kapitel 3.1.7, Tabelle 5). Die gleiche PCR-Strategie wurde auch für die Genotypisierung älterer Embryonalstadien (E10.5 p.c.) angewandt, wobei eine Schwanzspitzenbiopsie der DNA-Isolation diente. Mit Hilfe dieser PCR-Strategien wurden homozygot deletierte *Bdp1^{ko/ko}*-Embryonen sowohl im Morula- (E2,5 p.c.) als auch im Blastulastadium (E3,5 p.c.) nachgewiesen (Tabelle 21 und Abbildung 20).

	<i>े Bdp1^{ko/wt}</i> x ♀ <i>Bdp1^{ko/wt}</i>		
Embryonalstadium	Bdp1 ^{wt/wt} (25 %)	<i>Bdp1^{ko/wt}</i> (50 %)	Bdp1 ^{ko/ko} (25 %)
E2,5 p.c. (Morulae)	1 (50 %)	0 (0 %)	1 (50 %)
E3,5 p.c. (Blastozysten)	11 (23 %)	29 (60 %)	8 (17 %)
E10,5 p.c.	5 (55 %)	4 (45 %)	0 (0 %)

Tabelle 21: Übersicht der präparierten Embryonalstadien von *Bdp1^{ko/wt}-*Interkreuzungen

Abbildung 20: Genotypisierungs-PCRs verschiedener Embryonalstadien von *Bdp1^{ko/wt}* Interkreuzungen

(A.I-III) Auf einem Agarosegel separierte PCR-Produkte verschiedener Genotypisierungsstrategien. Die entsprechenden Entwicklungsstadien sind angegeben und die Embryonen nummeriert (E1–E16). Drei *Bdp1^{ko/ko}-*Embryonen (E1, E5 und E7) sind rot markiert. (A.I) PCR zur Amplifikation des wildtypischen (1031 bp) und des *knockout*-Fragments (570 bp) sowie der (B.I) PCR-Strategie (*Primer* 3719/3707). (A.II) PCR zur ausschließlichen Amplifikation des wildtypischen Fragments (513 bp) sowie der (B.II) PCR-Strategie (*Primer* 3838/3101). (A.III) PCR zur ausschließlichen Amplifikation des *knockout*-Fragments (791 bp) sowie der (B.III) PCR-Strategie (*Primer* 2093/3789). Die *Bdp1^{ko/ko}*-Embryonen zeigen in allen drei PCRs eindeutig nur ein Signal für das *knockout*-Fragment und tragen den *Bdp1-knockout* somit homozygot. Wt: wildtypisch, ko: *knockout*, E: Embryonalstadium, p.c.: *post coitum*, M: Marker, Ex: Exon, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen.

5.5.1.2 *In vitro*-Kultivierung und makroskopische Untersuchung von *Bdp1^{ko/ko}*-Embryonen: Bestimmung des Zeitpunktes der Letalität

Um den Zeitpunkt der Letalität von *Bdp1^{ko/ko}-*Embryonen zu bestimmen und um die *in vitro*-Differenzierung bzw. die phänotypischen Veränderungen isolierter Embryonen näher zu untersuchen, wurden diese am Embryonaltag E3,5 p.c. isoliert, für zwei Tage kultiviert und anschließend genotypisiert (Abbildung 21).

Embryonen mit dem Genotyp *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}* hatten an E3,5 p.c. das Blastozystenstadium erreicht. In diesem Stadium besteht ein Embryo aus einer inneren Zellmasse (Embryoblast, IZM), und die äußere Zellmasse bildet das Trophoektoderm aus. Letzteres ist später für die Ausbildung der Plazenta verantwortlich. Weiterhin entsteht durch die Aufnahme von Flüssigkeit das Blastozoel (Blastozystenhöhle) und die Blastozyste wird von der *Zona pellucida* (Glashaut) umhüllt (Beddington and Robertson 1999) (Abbildung 22A).

Homozygot deletierte *Bdp1*-Embryonen (*Bdp1^{ko/ko}*) waren zum Isolationszeitpunkt E3,5 p.c. noch im Morulastadium. Während der Kultivierung wurden keine Furchungsvorgänge der Blastomeren beobachtet, so dass weder eine innere, kompaktere Zellmasse noch eine äußere Zellschicht für die Ausbildung des Trophoektoderms angelegt wurde. Weiterhin erschienen die Zellen disorganisiert und es wurde eine Volumenabnahme der einzelnen Blastomeren beobachtet (Abbildung 22B). Homozygot deletierte *Bdp1*-Embryonen starben nach zwei Tagen in Kultur. Demnach läge der Zeitpunkt der Letalität im Präimplantationsstadium (um E2,5 p.c.).

Abbildung 21: *In vitro-*Kultivierung von isolierten Embryonen am Tag E3,5 p.c.

Isolierte Blastozysten am Embryonaltag 3,5 p.c. und anschließender Kultivierung. Die entsprechenden Genotypen und Tage in Kultur sind angegeben. *Bdp1^{ko/ko}-*Embryonen haben zum Zeitpunkt der Isolation noch nicht das Blastozystenstadium erreicht. Die innere Zellmasse erscheint disorganisiert und zerfällt nach zwei Tagen in Kultur.

Abbildung 22: Übersicht der Strukturen von isolierten Embryonen

(A.) *Bdp1^{wt/wt}* bzw. *Bdp1^{ko/wt}-*Embryonen nach zwei Tagen in Kultur. Zum Zeitpunkt der Isolation liegen die Embryonen als Blastozyste mit innerer Zellmasse (IZM), Trophoektoderm und Blastozoel vor. (B.) *Bdp1^{ko/ko}-*Embryonen befinden sich zum Isolationszeitpunkt im Morulastadium und entwickeln sich *in vitro* nicht zur Blastozyste. Wt: wildtypisch, ko: *knockout*, IZM: innere Zellmasse.

5.5.1.3 Generierung und Analysen von *Bdp1^{fl/fl}*-MEF

Wie unter 5.5.1.1 und 5.5.1.2 gezeigt wurde, führte ein homozygoter *knockout* des *Bdp1*-Gens zur embryonalen Letalität im des Präimplantationsstadiums (um E2,5 p.c.). Da dieser frühe Zeitpunkt aufgrund des geringen zur Verfügung stehenden Zellmaterials weitere Analysen ausschloß, wurden für nachfolgende Untersuchungen $Bdp1^{fl/fl}$ -MEF generiert. Diese stammten von $Bdp1^{fl/fl}$ -Tieren (5.6.1), die zu diesem Zweck zeitlich miteinander verpaart wurden (siehe Kapitel 3.1.10, Tabelle 16). Von jedem individuellen Embryo wurde eine Zelllinie generiert und die Genotypen aller Embryonen ($Bdp1^{fl/fl}$) mit Hilfe von spezifischen PCRs verifiziert (siehe Kapitel 3.1.7, Tabelle 4).

5.5.1.3.1 In vitro-Deletion und Analysen des Bdp1-Gens

Für eine *in vitro*-Deletion wurden *Bdp1^{fl/fl}*-MEF mit rekombinanten HTN-Cre-Protein (Peitz et al. 2002) behandelt und für zwei Wochen kultiviert (3.2.2.5). Die adäquate HTN-Cre-Konzentration des aktuellen Stocks von 5 μM zur effektiven Deletion des gefloxten *Bdp1*-Allels wurde in Vorversuchen titriert (siehe Kapitel 11, Abbildung 41). Dabei dienten *Mock*-behandelte Zellen als Kontrolle. Während der Versuchsreihe wurden die Zellen sowohl sieben als auch 14 Tage nach der HTN-Cre-Behandlung fotografiert und die Zellzahl bestimmt (3.2.3.3). Um die *Bdp1*-Deletion auf DNA-Ebene zu bestätigen, wurden die Zellen an den entsprechenden Tagen genotypisiert (siehe Kapitel 3.1.7, Tabelle 4). Gleichzeitig wurde die *Bdp1*-Genexpression nach 14 Tagen mit Hilfe von quantitativen *Realtime*-Analysen

bestimmt und die Transkriptmenge zu *Rplp0* relativiert (siehe Kapitel 3.1.7, Tabelle 7) (Abbildung 23).

Abbildung 23: HTN-Cre-Behandlung von *Bdp1^{fl/fl}-MEF*

(A.) *Mock*- und HTN-Cre-behandelte MEF nach einem, sieben und 14 Tage nach der HTN-Cre Behandlung. (B.) Proliferationskurven von *Mock*- und HTN-Cre-behandelten Zellen über einen Zeitraum von zwei Wochen. Dabei sinkt die Zellzahl homozygot deletierter *Bdp1*-MEF bereits nach sieben Tagen. (C.I) Auf einem Agarosegel separierte PCR-Produkte zur Genotypisierung von *Mock*- bzw. HTN-Cre-behandelten *Bdp1^{fl/fl}*-MEF (*Primer* 3719/3707). Dabei wird ein Wildtypfragment von 1265 bp, ein gefloxtes Fragment von 1031 bp und ein *knockout*-Fragment von 570 bp amplifiziert. Abbildung C.II zeigt die entsprechenden PCR-Strategien. (D.) Quantitative *Realtime*-Analyse zur Bestimmung der *Bdp1*-Transkriptmenge relativ zu *Rplp0* 14 Tage nach erfolgter HTN-Cre-Behandlung. Die Säulenfarben markieren die unterschiedlichen Genotypen. Wt: wildtypisch, ko: *knockout*, fl: gefloxtes Allel, M1-3: *Mock* 1-3, H1-3: HTN-Cre 1-3, M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Signifikanzklassen: * = P<0,05, ** = P<0,01, *** = P<0,001.

Anhand der visuellen Betrachtungen von *Mock*- bzw. HTN-Cre-behandelten Zellen wurde bereits sieben Tage nach erfolgter Behandlung eine Abnahme der Zelldichte von homozygot deletierten *Bdp1*-MEF im Vergleich zu *Mock*-behandelten Zellen beobachtet. Diese Beobachtungen wurden auch durch das Auszählen der Zellen bestätigt (Abbildung 23A und 23B). Für weitere Aufschlüsse bezüglich der Zellviabilität wurden MTT-Analysen durchgeführt (5.5.1.3.2).

Mit der Genotypisierungs-PCR von *Mock-* und HTN-Cre-behandelten MEF konnte sieben Tage nach der Deletion ausschließlich das *knockout*-Signal von 570 bp amplifiziert werden (Abbildung 23C). In *Mock*-Zellen hingegen konnte nur das homozygot gefloxte Allel (1265 bp) nachgewiesen werden. Zwei Wochen nach der Behandlung wurden in den deletierten MEF sowohl das *knockout-* als auch das gefloxte Signal für das *Bdp1*-Allel detektiert, was auf eine Proliferation von nicht HTN-Cre-deletierten Zellen hinwies.

Zwei Wochen nach erfolgter HTN-Cre-Behandlung wurde mit Hilfe quantitativer *Realtime*-Analysen eine *Bdp1*-Expression des Wildtypallels von etwa 20 % in homozygot deletierten *Bdp1*-MEF detektiert (Abbildung 23 D). Die Restepxression ist auf die nicht 100 %ige Penetranz der HTN-Cre zurückzuführen.

5.5.1.3.2 MTT-Analysen von HTN-Cre-behandelten *Bdp1^{fl/fl}*-MEF

Um die Zellviabilität von HTN-Cre-behandelten *Bdp1^{fl/fl}*-MEF zu untersuchen, wurden MTT-Analysen durchgeführt. Dabei findet die Umwandlung des MTT-Reagenz zu Formazan nur in lebenden, stoffwechselaktiven Zellen statt (3.2.2.6) und ist damit ein Indiz für die Zellviabilität. Dafür wurden *Bdp1^{fl/fl}*-MEF *Mock*- bzw. HTN-Cre-behandelt und täglich über einen Zeitraum von vier Tagen MTT-Analysen durchgeführt (Abbildung 24).

Abbildung 24: MTT-Analysen von *Mock*- und HTN-Cre-behandelten *Bdp1^{fl/fl}-*MEF

Graphische Darstellung der MTT-Analysen über einen Zeitraum von vier Tagen. Die Zellviabilität ist mit dem Absorptionsspektrum des Formazans gleichgestellt. Etwa zwei Tage nach erfolgter Behandlung zeigen *Mock-*Zellen einen Anstieg, HTN-Cre-behandelte Zellen eine Abnahme der Zellviabilität und somit der Proliferation. Dunkelgrau: *Mock-*Zellen, hellgrau: HTN-Cre-Zellen.

Sowohl in *Mock*- als auch in HTN-Cre-behandelten *Bdp1^{fl/fl}*-MEF stagnierte die Stoffwechselaktivität bis zu zwei Tage nach erfolgter Behandlung. Diese Beobachtungen waren auf die Verwendung des Mediums während der Behandlung zurückzuführen. Ab dem dritten Tag wurde bei *Mock*-Zellen eine Zunahme des Stoffwechels und somit ein Anstieg der Proliferation detektiert. Diese Beobachtungen wurden nicht in HTN-Cre-deletierten MEF gemacht und vier Tage nach erfolgter HTN-Cre-Behandlung wurde eine stark reduzierte Zellvitälität detektiert. Diese Ergebnisse wiesen darauf hin, dass der homozygote *Bdp1-knockout* zum Zelltod führte.

Zusammenfassend lässt sich festhalten, dass eine homozygote Deletion des *Bdp1*-Gens zu einem letalen Phänotyp im Präimplantationsstadium führte (um E2,5 p.c.). Aufgrund fehlender Entwicklungsprozesse erreichten *Bdp1^{ko/ko}*-Embryonen nicht das Blastozystenstadium. Diese Beobachtungen wurden anhand von *in vitro*-Deletionen in MEF bestätigt.

5.6 Generierung eines konditionalen *Bdp1-knockouts*

5.6.1 Generierung und Verifizierung der homozygot gefloxten *Bdp1*-Linie

Wie unter 5.5 beschrieben, führte die homozygote Deletion des *Bdp1*-Gens zu einem letalen Phänotyp im Präimplantationsstadium (um E2,5 p.c.). Da weitergehende funktionelle Analysen aufgrunddessen nicht möglich waren, wurde eine gewebespezifische Deletion des *Bdp1*-Gens durch die Verpaarung mit entsprechenden gewebespezifischen Cre-Linien induziert.

Als Ausgangslinie diente die unter 5.3 beschriebene *Bdp1^{fineo/wt}-*Linie. Aufgrund des verwendeten *targeting-*Vektors (pRF) trug diese Linie noch das Neomycin-Resistenzgen, welches der Selektion von transfizierten ES-Zellen diente. Für die Generierung eines gewebespezifischen *Bdp1-knockouts* musste der Selektionsmarker deletiert werden, da dieser im *Bdp1-*Lokus vorlag und somit die Genfunktion hätte beeinflussen können. Durch die flankierenden FRT-Stellen wurde eine Flp-Rekombinase induzierte Deletion des Neomycin-Resistenzgens ermöglicht. Eine *in vitro-*Deletion des Selektionsmarkers in homolog rekombinanten ES-Zellen wurde nach der Transfektion dieser nicht durchgeführt,

108

um durch erneute Modifikationen die Wahrscheinlichkeit einer Keimbahntransmission nicht zu vermindern. Die Deletion des Neomycin-Resistenzgens erfolgte somit *in vivo* durch Kreuzungen der $Bdp1^{fineo/wt}$ -Linie mit einer transgenen Flp-Rekombinase-Linie (siehe Kapitel 3.1.10, Tabelle 13) (Rodriguez et al. 2000). Mit Hilfe von spezifischen PCRs wurde die DNA der Nachkommen untersucht, wobei sowohl das gefloxte Bdp1-Allel als auch das Flp-Rekombinase-Transgen kontrolliert wurden (siehe Kapitel 3.1.7, Tabelle 4). Das Neomycin-Resistenzgen wurde bei Tieren mit Flp-Rekombinase-Transgen deletiert. Somit lag das Bdp1-Gen heterozygot gefloxt vor ($Bdp1^{fi/wt}$) und sowohl das gefloxte (893 bp) als auch das wildtypische Fragment (733 bp) konnten nachgewiesen werden (Abbildung 25A). Bei Nachkommen ohne Flp-Rekombinase-Transgen wurde nur das Wildtypfragment amplifiziert. Die Genotypen heterozygot gefloxter Mäuse wurden zusätzlich in Southern Blot-Analysen verifiziert, wobei bei $Bdp1^{fi/wt}$ -Tieren das wildtypische (1,4 kb) und das gefloxtes Allel (1,1 kb) detektiert werden konnte. Tiere, bei denen das Neomycin-Resistenzgen nicht deletiert wurde, zeigten anstelle des gefloxten Allels ein Signal von 1,8 kb (flneo) (siehe Kapitel 3.1.7, Tabelle 6) (Abbildung 25B).

Im weiteren Verlauf wurden heterozygot gefloxte Nachkommen untereinander verpaart, so dass schließlich die homozygot gefloxte Linie ($Bdp1^{fl/fl}$) generiert wurde, bei denen das Flp-Rekombinase-Transgen nicht mehr vorhanden war. Diese Linie diente als Ausgangslinie für gewebespezifische *Bdp1-knockouts* und für die Generation von *Bdp1*^{fl/fl}-MEF (5.5.1.3.1).

109

Abbildung 25: Identifizierung und Verifizierung des gefloxten Bdp1-Allels

(A.I) Auf einem Agarosegel aufgetrennte PCR-Produkte zur Identifizierung des wildtypischen (733 bp) und des gefloxten *Bdp1*-Allels (893 bp) mit Hilfe von spezifischen *Primern* (3718/2645). Abbildung A.II verdeutlicht die PCR-Strategie. (B.I) Ausschnitt einer Autoradiographie von Southern Blot-Analysen zur Verifizierung des gefloxten *Bdp1*-Allels. Die DNA der Tiere wurde mit dem Restriktionsenzym Hind III fragmentiert, separiert und nach dem Transfer auf eine Membran mit einer spezifischen *fl*-Sonde (*Primer* 2093/2645) hybridisiert. Dabei wird ein Wildtypsignal (1,4 kb), ein gefloxtes Signal (1,1 kb) und ein flneo-Signal (1,8 kb) detektiert. Abbildung B.II verdeutlicht die Southern Blot-Strategie. Wt: wildtypisch, fl: gefloxtes Allel, flneo: gefloxtes Allel mit Neomycin-Resistenzgen, M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.

5.6.2 Generierung eines ZNS-spezifischen *Bdp1-knockouts*

Die Analysen des ubiquitären *Bdp1-knockouts* hatten bereits gezeigt, dass das Gen eine wichtige Funktion in der Embryonalentwicklung einnimmt. Aufgrund des frühen embryonalen letalen Phänotyps homozygoter *Bdp1-knockout*-Embryonen (um E2,5 p.c.) konnten keine Rückschlüsse auf die atypische Form der SMA gezogen werden, wie sie bei zwei Patienten beschrieben wurde – diese zeigten zusätzlich zur SMA eine Gehirnatrophie. Daher sollte ein konditionaler *Bdp1-knockout* im Zentralnervensystem (ZNS) - dem bei der atypischen SMA primär betroffenen Gewebe - weitere Erkenntnisse über eventuelle Zusammenhänge liefern.

Um Deletionen des *Bdp1*-Gens im ZNS zu induzieren, wurde eine transgene Mauslinie verwendet, welche die Cre-Rekombinase spezifisch in neuronalen Vorläuferzellen exprimiert (Mignone et al. 2004). Diese *Nestin*-Cre-Mäuse exprimieren die Rekombinase unter der Kontrolle des Ratten-*Nestin*-Promotors sowie weiteren *enhancer*-Elementen ab dem Embryonaltag 11,0 p.c. (siehe Kapitel 3.1.10, Tabelle 13) (Tronche et al. 1999). *Nestin* gehört als Neurofilament der Familie der Intermediärfilamente an und ist in sogenannten neuroepithelialen Stammzellen lokalisiert (Michalczyk and Ziman 2005).

Zur Generierung des ZNS-spezifischen *Bdp1-knockout*-Mausmodelles wurden $Bdp1^{fl/fl}$ -Tiere mit transgenen *Nestin*-Cre-Mäusen (*Nestin^{tg/wt}*) verpaart. Von den resultierenden Nachkommen dieser Verpaarung wurden sowohl für das gefloxte *Bdp1*-Allel als auch für das Transgen heterozygote Tiere selektiert ($Bdp1^{fl/wt}$; *Nestin^{tg/wt}*) (siehe Kapitel 3.1.7, Tabelle 4). So generierte Tiere zeigten keine phänotypischen Auffälligkeiten und über weitere Verpaarungen mit $Bdp1^{fl/fl}$ -Mäusen wurden schließlich Mäuse generiert, die einen spezifischen homozygoten *knockout* des *Bdp1*-Gens im ZNS trugen.

Unter 28 Nachkommen der *Bdp1^{fl/wt}; Nestin^{tg/wt}* x *Bdp1^{fl/fl}*-Verpaarung konnte kein homozygoter *knockout* des *Bdp1*-Gens nachgewiesen werden. Somit wurde davon ausgegangen, dass eine homozygote Deletion des *Bdp1*-Gens im sich entwickelnden ZNS zur embryonalen Letalität führte (Tabelle 22).

Tabelle 22: Genotypen und Anzahl postnataler Nachkommen von *Bdp1^{fl/wt}; Nestin^{tg/wt}* x *Bdp1^{fl/fl}* Verpaarungen

	Bdp1 ^{fl/fl} x Bdp1 ^{fl/wt} ; Nestin ^{tg/wt}		
Genotyp (erwartet %)	Anzahl	P-Wert (χ2-Test)	
Bdp1 ^{fi/wt} (25 %)	8 (28,6 %)	n.s.	
Bdp1 ^{fi/fi} (25 %)	9 (32,1 %)	n.s.	
Bdp1 ^{fi/wt} ; Nestin ^{tg/wt} (25 %)	11 (39,3 %)	P<0,05	
Bdp1 ^{fl/fl} ; Nestin ^{tg/wt} (25 %)	0 (0 %)	P<0,001	

5.6.3 Analysen des ZNS-spezifischen *Bdp1-knockouts*

5.6.3.1 Makroskopische Untersuchungen des ZNS-spezifischen *Bdp1-knockouts*

Um den genauen Zeitpunkt der embryonalen Letalität von *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen zu bestimmen, wurden zeitlich kontrollierte Verpaarungen von *Bdp1^{fl/fl}*-Tieren mit *Bdp1^{fl/wt}; Nestin^{tg/wt}*-Mäusen durchgeführt. Da die Cre-Rekombinase unter dem *Nestin*-Promotor ab dem Embryonaltag 11,0 p.c. exprimiert und somit erst in diesen Stadium die ZNS-spezifische Deletion des gefloxten *Bdp1*-Allels induziert, wurden Embryonen von E14,5 p.c. bis E18,5 p.c. präpariert (Tabelle 23) (Abbildung 26).

Tabelle 23: Präparierte Embryonen von <i>Bdp1^{17/wi}; Nestin^{19/wi} x Bdp1^{17/1}</i> Verpaaru
--

Embryonalstadium	Bdp1 ^{fl/wt} (25 %)	Bdp1 ^{fl/fl} (25 %)	Bdp1 ^{fl/wt} ; Nestin ^{tg/wt} (25 %)	Bdp1 ^{fl/fl} ; Nestin ^{tg/wt} (25 %)
E14,5 p.c.	3 (17 %)	3 (17 %)	1 (5 %)	11 (61 %)
E15,5 p.c.	5 (28 %)	4 (22 %)	5 (28 %)	4 (22 %)
E16,5 p.c.	3 (14 %)	5 (24 %)	7 (33 %)	6 (29%)
E17,5 p.c.	7 (32 %)	5 (23 %)	4 (18 %)	6 (27 %)
E18,5 p.c.	10 (32 %)	4 (13,5 %)	12 (39 %)	5 (16 %)

Abbildung 26: Isolierte Embryonen verschiedener Embryonalstadien von $Bdp1^{fl/fl}$ x $Bdp1^{fl/wt}$; Nestin^{tg/wt}-Verpaarungen

Präparierte Embryonen von E14,5 bis E18,5 p.c. Homozygote *Bdp1-knockout*-Tiere wurden in allen Stadien detektiert (rot umrandet) und zeigen ab E16,5 p.c. eine Wachstumsverzögerung. Die weiteren Embryonen sind entweder heterozygot für das gefloxte Allel und für das Transgen (*Bdp1^{fi/wt}*; *Nestin^{tg/wt}*) oder negativ für das Transgen und tragen das *Bdp1*-Allel hetero- oder homozygot gefloxt (*Bdp1^{fi/wt}*, *Bdp1^{fi/wt}*). E: Embryonalstadium, p.c.: *post coitum*.

In allen untersuchten Embryonalstadien wurden *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen nachgewiesen. Die aus den Schwanzspitzen isolierte DNA diente der Genotypisierung der Embryonen und anschließend der Verifizierung mittels Southern Blot-Analysen (siehe Kapitel 3.1.7, Tabelle 4 und 6) (Abbildung 27). Eine spezifische *fl*-Sonde detektierte, nach Fragmentierung der DNA mit Hind III und anschließender gelelektrophoretischer Auftrennung sowie Transfer auf eine Nylonmembran, bei homozygot gefloxten Tieren ein Signal von 1,1 kb, heterozygote Mäuse zeigten ein zusätzliches wildtypisches Fragment von 1,4 kb (Abbildung 27A). Die deletierte Region hingegen wurde mit einer spezifischen *knockout*-Sonde nach Restriktion mit Nde I nachgewiesen. Dabei wurde bei der *Bdp1*-

Deletion ein Fragment von 4,3 kb detektiert, wohingegen das wildtypische Allel ein Signal bei 4,7 kb und das gefloxtes Allel bei 4,9 kb detektiert wurde (Abbildung 27B).

Abbildung 27: Verifizierung von ZNS-spezifischen Bdp1-knockout-Embryonen

Autoradiographien von Southern Blot-Analysen zur Verifizierung von ZNS-spezifischen *Bdp1-knockout*-Embryonen. Die DNA der Tiere wurde mit dem Restriktionsenzym (A.I) Hind III oder (B.I) Nde I fragmentiert, separiert und nach dem Transfer auf eine Membran mit einer spezifischen *fl*-Sonde (*Primer* 2093/2645) bzw. *knockout*-Sonde (*Primer* 3271/2405) hybridisiert. (A.II) Die *fl*-Sonde detektiert sowohl ein Wildtypsignal (1,1 kb) als auch ein Signal für das gefloxte *Bdp1*-Allel (1,1 kb). (B.II) Die *knockout*-Sonde zeigt ein wildtypisches Signal von 4,7 kb, ein gefloxtes Signal von 4,9 kb und ein *knockout*-Signal von 4,3 kb. Wt: wildtypisch, fl: gefloxtes Allel, ko: *knockout*, tg: Transgen, E: Embryo, M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen, Restriktionsschnittstellen: gestrichelte Linien.

Ab dem Embryonaltag 16,5 p.c. wurde bei $Bdp1^{fi/f!}$; $Nestin^{tg/wt}$ -Embryonen eine Wachstumsverzögerung im Vergleich zu Embryonen der gleichen Präparation beobachtet werden. Letztere waren entweder heterozygot gefloxt sowohl für das Bdp1-Allel als auch für das Transgen ($Bdp1^{fi/wt}$; $Nestin^{tg/wt}$) oder trugen das Bdp1-Allel hetero- oder homozygot ($Bdp1^{fi/wt}$ oder $Bdp1^{fi/f!}$).

Da keine lebenden *Bdp1^{fl/fl}*; *Nestin^{tg/wt}*-Tiere geboren, aber homozygot *Bdp1*deletierte Embryonen bis E18,5 p.c. detektiert wurden, musste der Zeitpunkt der embryonalen Letalität zwischen E18,5 p.c. und P1 liegen. Makroskopisch zeigten *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen zwar eine Verzögerung in Ihrem Wachstum, es wurden jedoch keine Anzeichen einer Autolyse festgestellt. Aus diesem Grund wurde angenommen, dass Tiere mit den entsprechenden Gentoypen zwar geboren, aber die Enwicklungsretardierung so weit vorangeschritten sein musste, dass die Mäuse tot geboren bzw. kurz nach Geburt starben und direkt vom Muttertier gefressen wurden. Versuche, *Bdp1^{fl/fl}; Nestin^{tg/wt}-*Nachkommen direkt nach der Geburt zu identifizieren, hatten nicht funktionert.

5.6.3.2 Immunhistologische Untersuchungen

5.6.3.2.1 Übersichtsfärbungen

Um die genauen Umstände der embryonalen Letalität von *Bdp1^{fl/fl}; Nestin^{tg/wt}-*Embryonen in späten Embryonalstadien näher zu untersuchen, wurden immunhistologische Färbungen durchgeführt. Um einen Überblick der Entwicklung und eventueller progressiver Entwicklungsstörungen zu gewinnen, wurden Embryonen verschiedener Genotypen (*Bdp1^{wt/wt}, Bdp1^{fl/wt}; Nestin^{tg/wt}, Bdp1^{fl/fl}; Nestin^{tg/wt}*) und Stadien (E15,5 p.c. bis E18,5 p.c.) präpariert und eingebettet. Anschließend wurden Präparate von zwei unterschiedlichen Schnittebenen (sagittal, koronar) angefertigt und jeweils eine Übersichtsfärbung mit HE von vergleichbaren Präparaten durchgeführt (3.2.4.1 und 3.2.4.2) (Abbildung 28 sagittal, Abbildung 29 koronar). An dieser Stelle soll darauf hingewiesen werden, dass aufgrund technisch begrenzter Möglichkeiten nicht alle Präparate exakt in der gleichen Schnittebene lagen. Indem jeder Embryo eingebettet, komplett geschnitten, jedes zweite bis dritte Präparat gefärbt und fotographiert wurde, wurde der bestmöglichste Vergleich zwischen den verschiedenen Tieren aufgestellt. Jede Aufnahme wurde ausgewertet, um entwicklungsspezfische Vorgänge nicht mit phänotypischen Merkmalen zu verwechseln.

Anhand der HE-gefärbten sagittalen und koronaren Schnitte konnte eine progressive Fehlentwicklung des ZNS von *Bdp1^{fl/fl}*, *Nestin^{tg/wt}*-Embryonen im Vergleich zu Embryonen anderen Genotyps (*Bdp1^{wt/wt}*, *Bdp1^{fl/wt}*; *Nestin^{tg/wt}*) beobachtet werden. Ab dem Embryonaltag 15,5 p.c. wurden stark erweiterte laterale Ventrikel beobachtet, die ein gemeinsames Ventrikelsystem ausbildeten. Desweiteren wurde ein komprimierter *Cortex* sowie rudimentär angelegte Regionen von *Cerebellum*, *Diencephalon* und *Mesencephalon* beobachtet.

Abbildung 28: HE-Übersichtsfärbungen von sagittalen Schnitten

HE-gefärbte Sagittalschnitte von E15,5 p.c. bis E18,5 p.c. Die Legende beschreibt die wichtigsten Gehirnregionen. *Bdp1^{fl/fl}; Nestin^{tg/wt}-*Embryonen zeigen im Verlauf der Entwicklung ein stark erweitertes Ventrikelsystem sowie rudimentär angelegte Regionen von *Cerebellum, Diencephalon* und *Mesencephalon*. Wt: wildtypisch, fl: gefloxtes Allel, tg: Transgen, E: Embryonalstadium, p.c.: *post coitum*.

Abbildung 29: HE-Übersichtsfärbungen von koronaren Schnitten

HE-gefärbte Koronarschnitte von E15,5 p.c. bis E18,5 p.c. Die Legende beschreibt die wichtigsten Gehirnregionen. Die Ventrikel von *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen haben sich zu einem gemeinsamen Ventrikelsystem zusammengeschlossen, so dass einzelne Gehirnregionen kaum noch zu erkennen sind. Wt: wildtypisch, fl: gefloxtes Allel, tg: Transgen, E: Embryonalstadium, p.c.: *post coitum*.

5.6.3.2.2 Spezifische immunhistologische Färbungen

Um die makroskopischen Befunde von *Bdp1^{fi/fl}; Nestin^{tg/wt}-*Embryonen (5.6.3.2.1) auf histologischer Ebene näher zu analysieren, wurden spezifische immunhistologische Färbungen koronarer Präparate der Embryonalstadien 15,5, 16,5 und 18,5 p.c. angefertigt (3.2.4.3). Aufgrund der Beobachtungen, dass *Bdp1^{fi/fl}; Nestin^{tg/wt}-*Embryonen einen Zusammenschluss der Ventrikel zeigten, fiel der Fokus auf den linken und rechten Lateralventrikel. Der Schwerpunkt lag dabei in der Untersuchung der Zellproliferaton sowie im Nachweis apoptotischer Zellen.

Das Ki67-Antigen wird ausschließlich in proliferierenden Zellen (G1, S, G2 und M-Phase) exprimiert und ist somit ein Marker für die Zellteilung. Ruhende Zellen, die sich in der G0-Phase befinden, exprimieren das Antigen nicht (Scholzen and Gerdes 2000). Proliferativ aktive Zellen befinden sich in der ventrikulären Zone (Abbildung 30).

Abbildung 30: Übersichtsvergrößerung des lateralen linken Ventrikels

Verschiedene Zellschichten in den Lateralventrikeln (Cortex, intermediäre Zone, ventrikuläre Zone).

Mit Hilfe eines spezifischen Antikörpers gegen Ki67 wurden bei Schnitten vergleichbarer Ebene proliferativ aktive Zellen gefärbt und die Präparate verglichen (siehe Kapitel 3.1.9, Tabelle 11 und 12) (Abbildung 31). Anhand dieser Färbungen wurde gezeigt, dass sich in allen untersuchten Entwicklungsstadien von *Bdp1^{wt/wt}* und *Bdp1^{fl/wt}*; *Nestin^{tg/wt}*-Tieren

proliferativ aktive Zellen in der ventrikulären Zone der Lateralventrikel befanden. Allerdings zeigten *Bdp1^{fl/fl}; Nestin^{tg/wt}-*Embryonen bereits ab dem Emryonaltag 15,5 p.c. eine nur schwach ausgeprägte Zone an teilungsaktiven Zellen, die im weiteren Verlauf der Entwicklung (E16,5 und E18,5 p.c.) augenscheinlich dünner wurde. Desweiteren erschien das Ventrikelgewebe am Embryonaltag 18,5 p.c. komplett zerstört, so dass kaum Ki67-positive Zellen nachgewiesen werden konnten.

Abbildung 31: Ki67-Färbung koronarer Schnitte zur Visualisierung proliferativ aktiver Zellen

Ki-67-gefärbte Koronarschnitte der Stadien E15,5 p.c., E16,5 p.c. und E18,5 p.c.. Die Ausschnittvergrößerung ist angedeutet. Die weißen Balken markieren jeweils 100 μ m. In *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen ist nur eine geringe Anzahl an proliferativ aktiven Zellen detektierbar. Die einzelnen Zellschichten in den Lateralventrikeln sind nicht mehr zu erkennen und das Gewebe erscheint zerstört. Wt: wildtypisch, fl: gefloxtes Allel, tg: Transgen, E: Embryonalstadium, p.c.: *post coitum*. Die ausgeprägte Dilatation der Ventrikel von *Bdp1^{fl/fl}*, *Nestin^{tg/wt}-*Embryonen ließ vermuten, dass die in dieser Region befindlichen Zellen apoptotisch waren. Um diese Hypothese zu bestätigen, wurde eine spezifische Färbung für die aktivierte Caspase-3 durchgeführt. Diese zählt zu den sogenannten Effektorcaspasen und liegt in ihrer inaktiven Form als Procaspase-3 vor. In apoptotischen Zellen wird das Protein durch Spaltung aktiviert und ist mit anderen Proteinen in der Induktion Apoptose beteiligt (Slee et al. 1999). Mit Hilfe eines spezifischen Antikörpers wurden apoptotische Zellen in koronaren Präparaten vergleichbarer Schnittebenen nachgewiesen und verglichen (siehe Kapitel 3.1.9, Tabelle 11 und 12) (Abbildung 32). Dabei wurde ab dem untersuchten Embryonaltag 15,5 p.c. eine erhöhte Anzahl an apoptotischen Zellen in den Lateralventrikeln von *Bdp1^{fl/fl}; Nestin^{tg/wt}-*Embryonen nachgewiesen und die Anzahl an apoptose-positiven Zellen schritt progressiv in der Entwicklung voran.

Abbildung 32: Aktivierte Caspase-3-Färbung koronarer Schnitte zur Visualisierung apoptose-positiver Zellen

Aktivierte Caspase-3-gefärbte Koronarschnitte der Stadien E15,5 p.c., E16,5 p.c. und E18,5 p.c. Die Ausschnittvergrößerung ist angedeutet. Die weißen Balken markieren jeweils 100 μ m. In *Bdp1*^{*fl/fl*}; *Nestin*^{*tg/wt*}-Embryonen ist eine erhöhte Anzahl an Caspase-3-positive Zellen in der proliferativ aktiven Zone der Ventrikel zu erkennen. Die positive Färbung gibt Hinweise auf eine Induktion der Apoptose. Wt: wildtypisch, fl: gefloxtes Allel, tg: Transgen, E: Embryonalstadium, p.c.: *post coitum*.

Die Ergebnisse einer ZNS-spezifischen Deletion des *Bdp1*-Gens spiegelten wichtige Funktionen des *Bdp1*-Gens während der Embryonalentwicklung des Gehirns wider. Der Verlust des *Bdp1*-Gens im ZNS führte zu Wachstumsverzögerungen, die mit schweren morphologischen Veränderungen in der gesamten Gehirnregion einhergingen und schließlich zur Letalität von *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen zwischen E18,5 p.c. und P1 führte. Der Verlust der entsprechenden Gewebe durch Apoptose wurde mittels spezifischer immunhistologischer Färbungen bestätigt.

5.7 Der Einfluss von *Smn*-Deletionen auf *Bdp1*-

Expressionen

Die Generierung eines *Bdp1-knockout*-Mausmodelles sollte weitere Erkenntnisse über einen eventuellen Zusammenhang zwischen *BDP1* und der atypischen Form der SMA liefern. Um *Bdp1*-Expressionen in Abhängikeit von verschiedenen *Smn*-Deletionen zu untersuchen, wurde das *Bdp1^{ko/wt}*-Mausmodell (5.4) mit einem SMA-Mausmodell gekreuzt. Somit konnten die Auswirkungen einer hetero- oder homozygoten Deletion des *Smn*-Gens auf die *Bdp1*-Expression näher analysiert werden. Ein Genotyp, welcher die genomische Situation der Patienten Nr. 353 und Nr. 6432 hätte widerspiegeln können (*SMN1^{ko/ko}; BDP1^{ko/wt}*), konnte aufgrund der chromosomalen Anordnung des *Smn*- und des *Bdp1*-Gens nicht generiert werden (siehe Kapitel 1.2.4, Abbildung 5).

Das Genom der Maus weist nur ein Äquivalent zum humanen *SMN1* – das *Smn*-Genauf, nicht aber eines zu *SMN2* (DiDonato et al. 1999; DiDonato et al. 1997; Viollet et al. 1997). Für die hier beschriebenen Analysen wurde ein auf FVB/NCrl-basierendes transgenes SMA-Mausmodell verwendet, bei dem Tiere mit einem homozygoten *knockout* für das *Smn* und vier *SMN2*-Kopien überlebensfähig sind (*Smn*^{ko/ko}; *SMN2*^{tg/tg}) (Hsieh-Li et al. 2000; Riessland et al. 2010). Die Tiere wurden in unserer Arbeitsgruppe sieben Generationen auf C57BL/6NCrl zurückgekreuzt (Ackermann, unveröffentlicht).

Für die Analysen wurden heterozygote *Bdp1-knockout*-Mäuse (*Bdp1^{ko/wt}*) mit SMA-Mäusen (*Smn^{ko/ko}; SMN2^{tg/tg}*) verpaart und resultierende Nachkommen (*Bdp1^{ko/wt}; Smn^{ko/wt}; SMN2^{tg/wt}*) mit Hilfe spezifischer PCRs genotypisiert (siehe Kapitel 3.1.7, Tabelle 4 und Kapitel 11, Abbildung 42). Um Tiere mit verschiedenen Allelkombinationen bezüglich des *Bdp1-* und *Smn-*Gens bzw. des *SMN2-*Transgens zu generieren, wurden einerseits die oben beschrieben Nachkommen untereinander verpaart, um das *Smn-knockout*-Allel und das *SMN2-*Transgen auf Homozygotie zu züchten. Andererseits wurden *Bdp1^{ko/wt}; Smn^{ko/wt}; SMN2^{tg/wt}-*Nachkommen erneut mit *Bdp1^{ko/wt}-*Tieren verpaart, um Tiere ohne Transgen zu generieren. Um die *SMN2-*Kopienanzahl aller Nachkommen zu bestimmen, deren Eltern heterozygot für das Transgen waren, wurde die DNA dieser mit Hilfe des *Charge Switch gDNA Mini Tissue Kit* isoliert (3.2.1.1.2) und die Konzentration der DNA mit der *PicoGreen-*Methode bestimmt (3.2.1.4.2). Mittels quantitativer *Realtime*-Analysen konnte anschließend die *SMN2-*Kopienanzahl bestimmt werden (siehe Kapitel 3.1.7, Tabelle 8).

Um die *Bdp1*-Transkriptmenge zu untersuchen, wurde RNA aus *Cerebrum* und *Cerebellum* von adulten Tieren verschiedener Genotypen isoliert (*Bdp1^{wt/wt}; Smn^{ko/wt}, Sdp1^{wt/wt}; Smn^{ko/wt}; Smn^{ko/wt}; Smn^{ko/wt}; Smn^{ko/wt}; Smn^{ko/wt}; SMN2^{tg/wt}, Bdp1^{ko/wt}; Smn^{ko/wt}; SMN2^{tg/wt}, Bdp1^{ko/wt}; Smn^{ko/wt}; SMN2^{tg/tg}) und die <i>Bdp1*-Expression zu *Rplp0* relativiert (siehe Kapitel 3.1.7, Tabelle 7) (Abbildung 33).

Abbildung 33: Quantitative *Realtime*-Analysen der *Bdp1*-Expressionen in hetero- und homozygot deletierten *Smn*-Tieren

Ergebnisse quantitativer *Realtime*-Analysen der *Bdp1*-Trankriptmenge von verschiedenen Genotypen (*Bdp1^{wt/wt}; Smn^{ko/wt}* (n=3), *Bdp1^{wt/wt}; Smn^{ko/wt}*; *Smn^{ko/wt}* (n=2), *Bdp1^{ko/wt}; Smn^{ko/wt}*; *Smn^{ko/wt}*; *Smn^{ko/wt}*, *SMN2^{tg/tg}* (n=2)) in verschiedenen Geweben (*Cerebrum, Cerebellum*). Die Messungen erfolgten in Triplikaten und die Transkriptmengen wurden zu *Rplp0* relativiert. Bei allen Genotypen mit heterozygotem *Bdp1*-Allel wird in beiden Geweben eine Abnahme der *Bdp1*-Expression auf etwa 50 % gemessen. Ebenso zeigen Tiere, die wildtypisch für das *Bdp1*-Gen sind und einen homozygoten *knockout* für das *Smn*-Gen tragen (*Bdp1^{wt/wt}*; *Smn^{ko/ko}*; *SMN2^{tg/tg}*), eine Herunterregulation der *Bdp1*-Transkription in *Cerebrum* und *Cerebellum* auf 65 % bzw. 50 %. Wt: wildtypisch, ko: *knockout*, tg: Transgen. Die Säulenfarben markieren die unterschiedlichen Genotypen. Signifikanzklassen: * = P<0,05, ** = P<0,01, *** = P<0,001.

Die Ergebnisse quantitativer *Realtime*-Analysen der *Bdp1*-Expressionen ergaben bei allen untersuchten Genotypen mit einer heterozygoten Deletion für das *Bdp1*-Gen eine Herunterregulation der Transkription auf etwa 50 %. Diese Beobachtungen wurden sowohl im *Cerebrum* als auch im *Cerebellum* von heterozygot deletierten *Bdp1*-Tieren gemacht und entsprachen den Beobachtungen von 5.4.1.1. Tiere, die wildtypisch für das *Bdp1*-Gen, aber homozygot deletiert für das *Smn*-Gen waren, zeigten ebenfalls eine verringerte *Bdp1*-Transkriptmenge im *Cerebrum* und *Cerebellum* (65 % bzw. 50 %). Diese Ergebnisse wiesen darauf hin, dass der homozygote *knockout* des *Smn*-Gens einen regulativen Einfluss auf die *Bdp1*-Expression hatte.

5.8 Generierung eines Bdp1-spezifischen Antikörpers

Analysen des *Bdp1*-Gens auf Proteinebene waren aufgrund eines fehlenden Antikörpers nicht möglich. Versuche vorangegangener Arbeitskollegen, die Spezifität eines generierten Bdp1-Antikörpers zu bestätigen, hatten nicht funktioniert. Gegen Ende dieser Arbeit wurde die Generierung eines weiteren polyklonalen Bdp1-Antikörpers bei der Firma EUROGENTEC in Auftrag gegeben. Dazu zählten Epitopanalysen des Bdp1-Proteins und die Synthese entsprechender Peptide (α 215, α 216, siehe Kapitel 11, Abbildung 43). Die Epitope wurden so gewählt, dass die resultierenden Antikörper sowohl das murine als auch das humane Protein detektieren können. Jeweils zwei Kaninchen (Nr. 6620 und Nr. 6621) wurden dreimal in einem Abstand von je vier Wochen mit den Peptiden immunisiert. Zum Abschluss des Immunisierungsprogrammes (87 Tage) wurden die Tiere getötet, ausgeblutet und das Serum gewonnen. Die Bdp1-spezifischen Antikörper wurden abschließend von EUROGENTEC mittels Affinitätschromatographie isoliert und die Qualität durch ELISA und SDS-PAGE bestimmt. Abschließend standen vier verschiedene Antikörper zur Verfügung (6619α215, 6619α216, 6620α215, 6620α216), die im Folgenden in Western Blot-Analysen und immunhistologischen Färbungen getestet wurden.

5.8.1 Proteinbiochemischer Nachweis des Bdp1-Proteins

Um die Spezifität der verschiedenen Antikörper zu testen, wurden Western Blot-Analysen durchgeführt. Dabei wurden sowohl verschiedene Blockingmethoden (BSA bzw. Milchpulver in TBST-Puffer) als auch unterschiedliche Membrantypen (Nitrocellulose- oder PVDF-Membran) ausgetestet (siehe Kapitel 11, Abbildung 44). Der Antikörper 6619α215 detektierte bei der Verwendung einer Nitrozellulosemembran und BSA zahlreiche Signale, die nicht spezifisch zugeordnet werden konnten. Da der Antikörper jedoch auch ein Signal auf Höhe des murinen Volllängeproteins von 270 kDa detektierte, wurde es für weitere Analysen verwendet.

Um die Spezifität des Antikörpers 6619α215 anhand muriner Proteinexpressionen von Tieren verschiedener Genotypen zu untersuchen, wurden erneut Western Blot-Analysen durchgeführt. Dafür wurden Proteine aus *Cerebrum* und *Cerebellum* von adulten *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Mäusen isoliert und abschließend das Bandenmuster der Autoradiographie miteinander verglichen (Abbildung 34).

Abbildung 34: Bdp1-Antikörper 6619α215

Autoradiongraphie des Bdp1-Antikörpers 6619α215. Es wurde ein 8 %iges SDS-Gel verwendet. Die Gewebe sowie die Genotypen der getesteten Tiere sind angegeben. Für die Absättigung der Membran bzw. für die Verdünnung des Antiserums (1:500, ü.N.) wurde 6 % bzw. 2 % BSA in TBST verwendet. Sowohl innerhalb der Gewebe als auch zwischen den verschiedenen Genotypen ist ein identisches Bandenmuster zu erkennen. Wt: wildtypisch, ko: *knockout*, M: Marker Anhand der Autoradiographie wurde sowohl ein identisches Bandenmuster zwischen den untersuchten Geweben als auch innerhalb der verschiedenen Genotypen festgestellt. Die Banden konnten keinen spezifischen murinen Isoformen zugeordnet werden, da diese in der Maus noch nicht beschrieben sind. Auf Höhe des Volllängeproteins wurde in den untersuchten Geweben kein Signal detektiert. Weiterhin wurde kein Expressionsunterschied zwischen Tieren mit verschiedenen Genotypen festgestellt.

Die Epitopanalysen wurden so konzipiert, dass sowohl das murine als auch das humane Protein detektiert werden konnte. Da von Analysen humaner Fibroblasten bereits Proteinisoformen beschrieben wurden (Kelter et al. 2000), wurden Proteinlysate von humanen und murinen Zelllinien erneut mittels Western Blot-Analysen analysiert und das Bandenmuster der Autoradiographie miteinander verglichen (die Proteinlysate der humanen Fibroblasten-Zelllinien wurden von Arbeitskollegen zur Verfügung gestellt) (Abbildung 35). Dabei wurde sowohl in humanen und als auch in murinen Zellen ein Signal entsprechend des BDP1/Bdp1-Volllängeproteins (293 kDa bzw. 270 kDa) detektiert (siehe Pfeil). Die bereits beschriebene humane Isoform von 75 kDa - die mit einem humanspezifischen BDP1-Antikörper nachgewiesen wurde - konnte nicht detektiert werden (Kelter et al. 2000).

Abbildung 35: Vergleich humaner und muriner Bdp1-Proteine in Western Blot-Analysen

(A.) Bekannte BDP1-Isoformen in humanen
Fibroblasten. Die Detektion erfolgte mit einem humanspezifischen Antikörper (Kelter et al. 2000).
(B.) Autoradiographie detektierter BDP1/Bdp1-Signale in humanen Fibroblasten und MEF mit Hilfe des Bdp1-Antikörpers 6619α215. In humanen und in murinen Zelllinien wurde ein Signal auf Höhe der Volllängeproteine detektiert (293 kDa bzw. 270 kDa)

(Pfeil).Die humane Isoform von 75 kDa konnte mit dem Antikörper 6619α215 nicht nachgewiesen werden. Für die Analysen wurde ein 8 % SDS-Gel verwendet. Die Zelllinien und Genotypen sind angegeben. Für die Absättigung der Membran bzw. für die Verdünnung des Antiserums (1:500, ü.N.) wurde 6 % bzw. 2 % BSA in TBST verwendet. Wt: wildtypisch, ko: *knockout*, h1: Fibroblasten-Zelllinie ML60, h2: Fibroblasten-Zelllinie ML67, MEF: murine embryonale Fibroblasten, M: Marker (kDa).

Um zwischen unspezifischen und spezifischen Signalen unterscheiden zu können, wurden *Bdp1^{fl/fl}*-MEF mittels HTN-Cre-Protein *in vitro*-deletiert und für zwei Wochen kultiviert. *Mock*-behandelte Zellen dienten dabei der Kontrolle. Mit Hilfe von Western Blot-Analysen wurde erneut die Spezifität des Bdp1-Antikörpers 6619α215 getestet (Abbildung 36). Obwohl alle detektierten Banden in HTN-Cre-behandelten MEF schwächer erschienen als im Vergleich zu *Mock*-Zellen, wurden auf einer Höhe von 270 kDa und 80-90 kDa keine Signale mehr detektiert. Diese Größen könnten somit dem Volllängeprotein als auch einer murinen Isoform des Bdp1-Proteins entsprechen.

Abbildung 36: Nachweis des Bdp1-Proteins in HTN-Cre-behandelten Bdp1^{fl/fl}-MEF

(A.) Autoradiographie von *Mock*- bzw. HTN-Cre-behandelten *Bdp1*^{*fi/fi*}-MEF. Es wurde ein 8 %iges SDS-Gel verwendet. Für die Absättigung der Membran bzw. für die Verdünnung des Antikörpers (6619 α 215, 1:500, ü.N.) wurde 6 bzw. 2 % BSA in TBST verwendet. (B.I+B.II) Ausschnittsvergrößerungen aus der in A. gezeigten Autoradiographie. Im Gegensatz zu *Mock*-behandelten Zellen wird bei HTN-Cre- behandelten Zellen auf einer Höhe von 270 kDa und 85-90 kDa kein Signal detektiert. M: Marker (kDa).

5.8.2 Immunhistologischer Nachweis des Bdp1-Proteins

Bdp1 ist eine Untereinheit des Transkriptionsfaktors TFIIIB und somit als Komplex im Kern lokalisiert. Um immunhistologisch die Spezifität des Antikörpers $6619\alpha 215$ zu untersuchen, wurden $Bdp1^{wt/wt}$ und $Bdp1^{ko/wt}$ -MEF fixiert. Anschließend wurden die Zellen mit dem Bdp1-Antikörper inkubiert (Verdünnung 1:50) und das Protein mit Hilfe eines fluoreszierenden

sekundären Antikörpers (Alexa Fluor 488, grün) visualisiert. Parallel erfolgte eine Kernfärbung mit DAPI (blau) (3.2.4.4). Aufgrund der Lokalisation des TFIIIB-Komplexes wurde eine Färbung der Zellkerne erwartet (Abbildung 37).

Abbildung 37: Fluoreszenzfärbungen von Bdp1^{wt/wt} und Bdp1^{ko/wt}-MEF

Immunhistologischer Nachweis des Bdp1-Proteins in MEF mit Hilfe des Antikörpers 6619α215. Gezeigt sind die Einzelfärbungen der Kerne (DAPI, blau), die Bdp1-Färbung (grün) sowie eine Überlagerung der einzelnen Aufnahmen (*merge*). Die Pfeile deuten Bdp1-gefärbte und ungefärbte Zellkerne an, die sowohl in *Bdp1^{wt/wt}* als auch in *Bdp1^{ko/wt}*-MEF zu finden sind. Die weißen Balken markieren jeweils 20 µm. Wt: wildtypisch, ko: *knockout*.

Die Fluoreszenzfärbungen zeigten eine deutliche Färbung der Zellkerne sowohl in *Bdp1^{wt/wt}* als auch in *Bdp1^{ko/wt}-*Zellen. Es wurde jedoch kein Unterschied zwischen den verschiedenen Genotypen festgestellt. Bei Zellen beider Genotypen wurden zusätzlich nicht-gefärbte Kerne detektiert (Pfeile *merge*-Bilder).

Anhand von Analysen im humanen *Cerebellum* ist bekannt, dass das *BDP1*-Gen verstärkt in der Körnerzellschicht exprimiert wird (Kelter et al. 2000). Da das murine Bdp1 auf Proteinebene eine 98%-99 %ige Homolgie zum humanen BDP1-Protein aufweist (siehe Kapitel 1.2.4, Tabelle 1), ist auch in der Maus von einer erhöhten Expression im *Cerebellum* auszugehen. Diese könnte somit zum Austesten der Spezifität des Bdp1-Antikörpers herangezogen werden. Zu diesem Zweck wurde das gesamte Gehirn von *Bdp1^{wt/wt}*- und *Bdp1^{ko/wt}*-Tieren isoliert, fixiert und in Paraffin eingebettet. Anschließend wurden Sagittalpräparate vom *Cerebellum* angefertigt und spezifisch mit dem Antikörper 6619 α 215 inkubiert (Verdünnung 1:50) (3.2.4.1 und 3.2.4.3) (Abbildung 38).

Abbildung 38: Bdp1-Färbung sagittaler Präparate des *Cerebellums* von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren

Immunhistologischer Nachweis des Bdp1-Proteins im murinen *Cerebellum* mit Hilfe des Antikörpers 6619α215 (A.) Sagittalschnitt des *Cerebellums* mit den einzelnen *Laminae albae*. Die weiße Umrandung deutet die in B. gezeigten Ausschnittsvergrößerungen an. (B.) Ausschnittvergrößerung des in A. markierten Bereiches von $Bdp1^{wt/wt}$ und $Bdp1^{ko/wt}$ -Mäusen. Die Bdp1-Färbung ist bei beiden Genotypen verstärkt in der Körnerzellschicht zu erkennen. Schwarzen Balken markieren jeweils 50 µm. Wt: wildtypisch, ko: *knockout*, Str.: *stratum*.

Die mit dem Bdp1-Antikörper 6619α215 gefärbten Präparate des *Cerebellums* von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren zeigten eine erhöhte Expression des Bdp1-Proteins in der Körnerzellschicht. Zusätzlich wurden Purkinjezellen angefärbt, wohingegen in der Molekularschicht nur einzelne Zellkerne angefärbt wurden.

Zusammenfassend lässt sich festhalten, dass mit Hilfe von Western Blot-Analysen die Spezifität des Bdp1-Antikörpers 6619α215 nicht bestätigt werden konnte. Immunhistologische Färbungen zeigten erste Hinweise darauf, dass der Antikörper mit hoher Wahrscheinlichkeit das Bdp1-Protein detektierte.

6. Diskussion

Grundlage dieser Arbeit waren zwei Patienten (Nr. 353, Nr. 6432), bei denen neben der SMA atypische Symptome in Form einer Gehirnatrophie diagnostiziert wurden. Beide Patienten zeigten große Deletionen innerhalb der SMA-Region, jedoch wurden benachbarte Gene wie *SERF1, BIRC* und *GTF2H2* als Kandidatengene ausgeschlossen (Burglen et al. 1997; Carter et al. 1997; Roy et al. 1995; Scharf et al. 1998). Bei Patientin Nr. 353 konnte zusätzlich eine *de novo*-aufgetretene Mutation nachgewiesen werden, die auch Marker für das *BDP1*-Gen einschlossen (Wirth et al. 1997) - dieses flankiert die SMA-Region auf der telomerischen Seite (siehe Kapitel 1.2.4, Abbildung 5). Somit lag die Vermutung nah, dass eine Deletion des *BDP1*-Gens bei beiden SMA-Patienten ursächlich für die Ausbildung einer Gehirnatrophie gewesen sein könnte. Im Zuge dieser Arbeit sollten die kausalen Zusammenhänge zwischen einer Haploinsuffizienz des *BDP1*-Gens und der Ausbildung atypischer Formen der SMA

6.1 Die Auswirkungen einer Haploinsuffizienz und die Umlagerung von chromosomalen Abschnitten

Der Einfluss einer Genhaploinsuffizienz auf die Pathogenese ist für eine Reihe an Erkrankungen bzw. Genen beschrieben. So trägt z.B. die Haploinsuffizienz des *Fibrillin-1*-Gens (*FBN1*) zur komplexen Pathogenese des Marfan-Syndroms - einer Erkrankung des Bindegewebes - bei (Belsing et al. 2011; Judge et al. 2004). Mutationen im murinen *Shank3*-Gen eröffnen neue Möglichkeiten, die Haploinsuffizienz des Autismus assoziierten *SHANK3*-Gens im Menschen besser zu untersuchen (Bozdagi et al. 2010). Eine *FAS*-Haploinsuffizienz ist ursächlich bei Patienten mit autoimmunen lymphoproliferativen Syndrom (ALPS) (Kuehn et al. 2011) - hierbei handelt es sich um einen Defekt der Apoptose in Lymphozyten (Madkaikar et al. 2011). Die Haploinsuffizienz des murinen *Col3a1*-Gens bietet erstmals Möglichkeiten, die Pathogenese des Ehlers-Danlos Syndrom - einer Gruppe genetischer Bindegewebserkrankungen - genauer zu untersuchen (Callewaert et al. 2008; Smith et al. 2011). Weiterhin wird vermutet, dass die Haploinsuffizienz des *Jagged1*-Gens (*JAG1*) primär für die Entwicklung des Alagille Syndroms - einer Erkrankung, die vorwiegend die Gallengänge in der Leber betrifft - verantwortlich ist (McCright et al. 2002; Wen and Song 2010). Das Williams-Beuren Syndrom ist ein sehr gutes Beispiel dafür, dass auch größere

Deletionen auf einem chromosmalen Abschnitt eine Haploinsuffizienz zur Folge haben können (Sakurai et al. 2011) – hier liegt eine große Deletion auf dem chromosomalen Abschnitt 7q11.23 vor. Anhand dieser verschiedenen Beispiele wird deutlich, dass eine Haploinsuffizienz des *BDP1*-Gens durchaus ursächlich für die Bildung einer Gehirnatrophie, wie sie bei zwei SMA-Patienten beschrieben wurde, sein kann.

Bei Patientin Nr. 353 wurde zusätzlich eine de novo-Mutation beschrieben, die auf ein rearrangement - also auf eine Neuanordnung chromosomaler Abschnitte zurückzuführen war. Diese Neuanordnung hatte letzlich wahrscheinlich die Deletion des BDP1-Gens zur Folge. Verschiedene Literaturbeispiele zeigen, das sowohl de novo-Mutationen als auch genomic rearrangements kein ungewöhnliches Ereignis darstellen (Berkovic et al. 2006; Gauthier et al. 2010; Northup et al. 2011; Pellestor et al. 2011; Salahshourifar et al. 2011; Wieser et al. 2005). Genomic rearrangements - zu ihnen zählen Deletionen, Duplikationen, Inversionen, Translokationen und andere Umlagerungen (Emanuel and Shaikh 2001; Stankiewicz and Lupski 2002) - haben oft Veränderungen in der Kopienanzahl von Genen zur Folge, was als copy number variation (CNV) bezeichnet wird. Diese sind in der Regel nicht pathogen und etwa 12 % des humanen Genoms gehören CNV-Regionen an (Hastings et al. 2009). Manchmal stehen genomic rearrangements und CNVs im Zusammenhang mit einer Reihe von neurologischen Entwicklungsstörungen (z.B. Williams-Beuren Syndrom, Angelman und Prader-Willi Syndrom, Miller-Dieker Syndrom) sowie neurodegenerativen Erkrankungen (SMA, Parkinson, Alzheimer) (Lee and Lupski 2006). CNVs treten an bestimmten Stellen im Genom auf, sogenannten low copy repeats (LCR) (Hastings et al. 2009). Größe, Orientierung und die Distanz zwischen den Kopien sind verantwortlich für die Häufigkeit eines rearrangements an den LCRs. Auch bei der humanen SMA-Region handelt es sich um eine invertierte und duplizierte Region, welche die Gene SMN, SERF, BIRC, GTF2H2 und OCLN beinhaltet (siehe Kapitel 1.2.4, Abbildung 5A) (Lefebvre et al. 1995). Umlagerungen von chromosomalen Abschnitten wären in dieser Region durchaus möglich. Die chromosomale Anordnung der SMA-Region könnte somit ursächlich für den Verlust des BDP1-Gens bei beiden SMA-Patienten mit zusätzlicher Gehirnatrophie gewesen sein.

Ob eine Haploinsuffizienz des *BDP1*-Gens letztlich für die Ausbildung einer Gehirnatrophie verantwortlich war, sollte im Rahmen dieser Arbeit mit Hilfe von verschiedenen Mausmodellen geklärt werden. Im Folgenden Abschnitt soll kurz auf einige Problematiken während der Generierung dieser Tiere eingegangen werden.

128
6.2 Die Generierung eines *Bdp1*-Mausmodelles

Nach aktuellen Angaben konnten 15.187 Orthologe im humanen und murinen Genom nachgewiesen werden, die etwa 80 % des humanen und 75 % des murinen Genoms repräsentieren (Church et al. 2009). Das *Bdp1*-Gen repräsentiert das Ortholog zum humanen *BDP1*-Gen und ist im murinen Genom auf Chromosom 13 lokalisiert. Die Proteine zeigen eine 98 %-99 %ige Identität auf Aminosäurenebene. Somit bestanden gute Voraussetzungen, um mit Hilfe eines Mausmodelles die phänotypischen Auswirkungen einer *Bdp1*-Deletion zu untersuchen (siehe Kapitel 1.2.4, Tabelle 1).

In Vorarbeiten wurde eine Strategie für einen konditionalen *knockout* des *Bdp1*-Gens in der Maus konzipiert. Das *Bdp1-targeting*-Konstrukt wurde weitestgehend in eigenen Vorarbeiten kloniert, verifiziert und in embryonale Stammzellen (ES-Zellen, V6.5) (Eggan et al. 2002) transfiziert. Nach Verpaarung chimärer Nachkommen mit wildtypischen C57BL/6NCrl-Tieren konnte keine Keimbahntransmission des rekombinanten *Bdp1*-Allels bestätigt werden. Daraufhin wurde das Transfektionsexperiment wiederholt - dabei lag die Rekombinationseffizienz mit 0,625 % relativ hoch im Vergleich mit Literaturangaben (1:10⁶ bis 1:10⁹, Schenkel 2006). Nach der Verpaarung neu generierter Chimären mit wildtypischen C57BL/6NCrl-Mäusen konnte schließlich eine Keimbahntransmission des rekombinanten *Bdp1*-Allels nachgewiesen werden. So generierte Tiere mit dem Genotyp *Bdp1*^{fineo/wt} dienten als Ausgangslinie für alle in dieser Arbeit generierten *Bdp1*-Linien. Das *Bdp1-targeting*-Konstrukt erlaubte es, das Gen sowohl ubiquitär als auch konditional auszuschalten.

Trotz des ersten Fehlversuches wurde unter der Verwendung der genetisch hybriden V6.5 ES-Zellen (C57BL/6, 129/Sv) (Eggan et al. 2002) eine Keimbahntransmission des rekombinanten *Bdp1*-Allels erreicht, welche stabil an die nächsten Generationen vererbt wurde. Der Erfolg einer Keimbahntransmission hängt mitunter von den verwendeten ES-Zellen ab. Genetisch hybride Zellen besitzen oft eine höhere Transfektionseffizienz als jene mit einem genetisch reinen Hintergrund. Desweiteren haben hybride ES-Zellen häufig ein größeres Potential bei der Generierung von chimären Nachkommen, da sich die Zellen im Vergleich zu den ES-Zellen der Akzeptor-Blastozyste mindestens gleich schnell teilen. Bei hybriden Zellen erhöht sich die Anzahl an rekombinanten ES-Zellen innerhalb der Blastozyste und umso größer wird die Wahrscheinlichkeit, dass auch rekombinante Keimbahnzellen generiert werden. Die Unterschiede im Grad des Chimärismus der Tiere sind somit auf die

jeweilige Teilungsgeschwindigkeit der Donorzellen in der Akzeptorblastozyste zurückzuführen (Torres 1997).

Weiterhin ist der Erfolg einer Keimbahntransmission von der Anzahl der Passagen der ES-Zellen (Fedorov et al. 1997) und von der Qualität der expandierten ES-Zellklone am Injektionstag abhängig. Ebenso spielen die Anzahl und die Qualität der injizierten Blastozysten und der erfolgreiche Transfer der manipulierten Blastozysten in eine Ammenmutter eine wichtige Rolle (Carwright 2009). Letztlich könnten die hier aufgeführten Punkte den geschilderten ersten Fehlversuch mit V6.5 ES-Zellen erklären.

6.3 Der Phänotyp von *Bdp1^{ko/wt}*-Tieren

Mit der Generierung von heterozygot deletierten *Bdp1*-Mäusen (*Bdp1^{ko/wt}*) sollte der Zusammenhang zwischen einer Haploinsuffizienz des *BDP1*-Gens und der Ausbildung einer Gehirnatrophie, wie sie bei zwei SMA-Patienten beobachtet wurde, geklärt werden. Entgegen der Erwartungen zeigten *Bdp1^{ko/wt}*-Tiere keine phänotypischen Auffälligkeiten. Die Tiere waren lebensfähig und fertil, womit sich der Phänotyp erheblich von dem Phänotyp der SMA-Patienten mit atypischen Symptomen unterschied.

Es ist nicht ungewöhnlich, dass ein generiertes Mausmodell nicht den vergleichbaren Phänotyp zeigt, wie er beim Menschen beobachtet wurde (Elsea and Lucas 2002). Bei Patienten mit Alagille Syndrom wurden entweder Mutationen im Jagged1- oder Notch2-Gen nachgewiesen. Die Patienten leiden neben Gallenstauungen auch an Erkrankungen des Auges bzw. des Sehnerven (Samejima et al. 2007). Heterozygot deletierte Mäuse für das Jagged1-Gen (Jag1^{ko/wt}) entwickeln zwar Augendefekte, zeigen jedoch keine weiteren charakteristischen Symptome der Erkrankung (McCright et al. 2002; Xue et al. 1999). Nicht immer repräsentiert das Mausmodell das gesamte Spektrum einer Erkrankung, wie im Fall der Chorea Huntington. Huntington zählt zu den Trinukleotiderkrankungen, bei denen das Basentriplett CAG bis zu 250mal wiederholt vorliegt (Walker 2007). Es existieren eine Reihe von Mausmodellen (Transgene Tiere, knockin-Mäuse), die alle ihren eigenen Phänotyp entwickeln und nicht die humane Pathogenese widerspiegeln (Crook and Housman 2011). Der homozygote Verlust des PALB2-Gens führt zu der Ausbildung der Fanconi Anämie - einer Erkrankung mit angeborenen Fehlbildungen (Daumen, Unterarme, Niere, Herz, Speiseröhre), Rückbildung des Knochenmarks, Pigmentanomalien und erhöhtem Leukämierisiko (Valeri et al. 2011). Im Gegensatz dazu führt eine homozygote Deletion des murinen Orthologs Palb2

zur embryonalen Letalität (Bouwman et al. 2011). Diese Beispiele verdeutlichen, dass die komplexe humane Pathogenese nicht immer mit Hilfe eines Mausmodelles reflektiert werden kann. Allerdings sollte dabei beachtet werden, dass der Phänotyp eines Mausmodelles von verschiedenen Faktoren, wie z.B. dem genetischen Hintergrund des verwendeten Mausstammes oder der *targeting*-Strategie, abhängt (Barthold 2004; Crusio 2002; Wolfer et al. 2002) - die verschiedenen SMA-Mausmodelle repäsentieren diesen Einfluss beispielhaft (siehe Kapitel 1.3.6) (Hsieh-Li et al. 2000; Michaud et al. 2010; Schrank et al. 1997).

Letztlich konnte der Zusammenhang zwischen einer Haploinsuffizienz des BDP1-Gens und der Ausbildung einer Gehirnatrophie nicht bestätigt werden. Diese Ergebnisse könnten einerseits darauf hinweisen, dass die großen Deletionen innerhalb der SMA-Region bei beiden Patienten mit atypischer Gehirnatrophie eine wichtige Rolle bei der Pathogenese gespielt haben könnten und es sich um ein contigous gene syndrom gehandelt hat. Andererseits wäre es auch möglich, dass weitere Gene in der SMA-Region für die Ausbildung atypischer Symptome verantwortlich gewesen waren. Im Jahr 2010 wurden verschiedene Mutationen im Occludin-Gen (OCLN) mit der Ausbildung des Pseudo-TORCH-Syndroms beschrieben (O'Driscoll et al. 2010). Das Syndrom beschreibt eine kalzifizierende Enzephalopathie mit interkranialer Verkalkung. MRT-Aufnahmen von Patienten zeigen eine progressiv zunehmende Gehirnatrophie mit einhergehender Kalzifizierung der Basalganglien. OCLN selbst ist ein Plasmamembranprotein, gehört zur Gruppe der Claudine und ist somit eine der Hauptkomponenten von tight junctions (Ando-Akatsuka et al. 1996; Furuse et al. 1993). Das OCLN-Gen ist auf dem chromosomalen Abschnitt 5q13, distal zum SMN1-Gen und in direkter Nachbarschaft zum BDP1-Gen lokalisiert (siehe Kapitel 1.2.4, Abbildung 5A). Aufgrund der Lokalisation zum SMN1-Gen und der Ausbildung einer Gehirnatrophie bei neun Pseudo-TORCH Patienten mit Mutationen im OCLN-Gen, könnte auch OCLN ein Kandidatengen für die Ausbildung einer SMA mit Gehirnatrophie gewesen sein. Weiterführende Analysen hierzu werden zurzeit in unserer Arbeitsgruppe durchgeführt.

6.4 Analysen des TFIIIB-Komplexes und Interaktionspartner von *Bdp1^{ko/wt}*-Tieren und murinen embryonalen Fibroblasten (MEF)

Zwar konnte mit Hilfe von heterozygot deletierten *Bdp1*-Tieren (*Bdp1^{ko/wt}*) der Zusammenhang zwischen einer *BDP1*-Haploinsuffizienz und der Ausbildung einer Gehirnatrophie nicht bestätigt werden, dennoch bot das Modell zahlreiche Möglichkeiten, die Funktionen des *Bdp1*-Gens *in vivo* zu untersuchen.

Das *BDP1*-Gen ist eine Untereinheit des Transkriptionsfaktor IIIB-Komplexes (TFIIIB; BDP1, BRF1/2, TBP) und zusammen mit anderen Transkriptionsfaktoren (TFIIIA, TFIIIC) für den Aufbau des Initiationskomplexes der RNA Polymerase III (RNA Pol III) verantwortlich (Geiduschek and Kassavetis 2001). Diese transkribiert niedermolekulare, nichtproteinkodierende Gene (Geiduschek and Tocchini-Valentini 1988), wie z.B. tRNAs, 5S rRNAs und U6 snRNAs (Weinmann and Roeder 1974). Die Bindung von TFIIIB an den Initiationskomplex trägt zur Beugung der DNA bei und fördert somit die Zugänglichkeit für die RNA Pol III (Braun et al. 1992). Desweiteren stabilisiert die SANT-Domäne des BDP1-Proteins den TFIIIB-Komplex und trägt zum Öffnen des Promotors bei (Kassavetis et al. 1990; Kassavetis et al. 1998; Shah et al. 1999).

Tumorsuppressorgene und Onkogene übernehmen wichtige regulatorische Funktionen der RNA Pol III-abhängigen Transkription – dies geschieht meistens über die Regulation des TFIIIB-Komplexes (siehe Kapitel 1.1.4, Abbildung 3) (Marshall and White 2008). Die Tumorsuppressoren p53 und RB binden an TFIIIB und wirken inhibierend auf den gesamten Komplex (Crighton et al. 2003; Sutcliffe et al. 2000). Die Onkogene ERK und MYC hingegen wirken aktivierend auf TFIIIB und somit auf die gesamte Transkription der RNA Pol III (Felton-Edkins et al. 2003; Gomez-Roman et al. 2003).

Mit Hilfe von *Bdp1^{ko/wt}*-Tieren wurden die Auswirkungen einer heterozygoten *Bdp1*-Deletion auf den TFIIIB-Komplex und auf interagierende Tumorsuppressoren und Onkogene näher untersucht. Zu diesem Zweck wurden die Transkript- und Proteinmengen aller Faktoren des TFIIIB-Komplexes (*Tbp, Brf1, Bdp1*) und die ausgewählter Interaktionspartner (*TFIIIC102, Erk, Myc, p53, Rb*) im *Cerebrum* und *Cerebellum* von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren mittels *Realtime*- und Western Blot-Analysen bestimmt.

In heterozygot deletierten *Bdp1*-Tieren wurde eine Herunterregulation der *Bdp1*-Transkriptmenge auf etwa 50 % detektiert. Somit war kein Dosiskompensationseffekt für die Aufrechterhaltung der Proteinfunktion verantwortlich (Chow and Heard 2010) und der Verlust eines *Bdp1*-Allels schien keine weiteren Auswirkungen auf die Funktion des Proteins *per se* zu haben. Diese Beobachtungen sprachen zusätzlich gegen eine pathologische Haploinsuffizienz des *BDP1*-Gens.

Weiterhin wurde eine Herunterregulation der TFIIIB-Untereinheit *Tbp* auf Transkriptund Proteinebene im *Cerebellum* heterozygot deletierter *Bdp1*-Tiere beobachtet. So könnte z.B. durch den heterozygoten Verlust des *Bdp1*-Gens die stabilisierende Wirkung des Bdp1-Proteins auf den TFIIIB-Komplex aufgehoben sein und die *Tbp*-Expression beeinflussen. Da eine Herunterregulation von *Tbp* jedoch nur im *Cerebellum*, und nicht im *Cerebrum* von *Bdp1^{ko/wt}*-Tieren beobachtet wurde, müsste man dem Bdp1-Protein eine gewebespezifische Funktion zuweisen. Unterstützt wird dieser Gedanke durch die Tatsache, dass im humanen *Cerebellum* eine erhöhte *BDP1*-Expression in der Körnerzellschicht vorliegt (Kelter et al. 2000) - somit könnte der heterozygote Verlust eines *Bdp1*-Allels im *Cerebellum* stärkere Auswirkungen als in anderen Geweben haben. Ebenso könnte die erst kürzlich für die RNA Pol III beschriebene gewebespezifische Regulation der Transkription einen Einfluss auf die *Tbp*-Expression haben (Nikitina et al. 2011).

Bei den Analysen ausgewählter Interaktionspartner (Erk, Myc, p53, Rb) des TFIIIB-Komplexes im *Cerebrum* und *Cerebellum* heterozygot deletierter *Bdp1*-Tiere wurde weitestgehend von allen untersuchten Kandidaten eine Herunterregulation auf RNA- und Proteinebene beobachtet. Besonders auffällig war die starke Abnahme der Tumorsuppressoren p53 und Rb im *Cerebellum* von *Bdp1^{ko/wt}*-Tieren. Beide Proteine inhibieren die RNA Pol III-abhängige Transkription über den TFIIIB-Komplex, indem z.B. p53 an die TFIIIB-Untereinheit TBP bindet (Crighton et al. 2003). Die genauen Interaktionen von RB zu TFIIIB sind bislang nicht beschrieben, jedoch unterbindet die Bindung von RB die Interaktionen zu TFIIIC102 (Sutcliffe et al. 2000). Desweiteren ist bekannt, dass RB mit zwei Untereinheiten von SNAP_c wechselwirkt und so den TFIIIB-Komplex reguliert (Hirsch et al. 2000).

Eine Herunterregulation der Tumorsuppressoren p53 und Rb hätte eine erhöhte Aktivität der RNA Pol III-Transkription zur Folge - und diese korreliert mit der Entstehung von Krebs (Wang et al. 2003; White 2004). In einer Reihe von Krebserkrankungen sind *p53* und *RB* mutiert. So liegen z.B. beim weißen Hautkrebs über 90 % Mutationen im *p53*-Gen vor (Gervin et al. 2003). Mäuse mit einem heterozygot deletierten *p53*-Allel zeigen ein erhöhtes Risiko, an Hautkrebs zu erkranken (Jiang et al. 1999). Weiterhin finden sich *p53*-Mutationen bei verschiedenen Typen von Darmkrebs und anderen Tumoren (Levine et al. 1991). Mutationen im *RB*-Gen sind ursächlich für die Ausbildung eines Retinoblastom - einem bösartigen Tumor der Netzhaut (Friend et al. 1986; Fung et al. 1987). Eine Überexpression von *RB* kann die Transkription der RNA Pol III komplett inhibieren (Chu et al. 1997), wohingegen murine embryonale Fibroblasten (MEF) mit einem homozygoten *knockout* für das *Rb*-Gen (*Rb*^{*ko/ko*}) eine erhöhte Transkription der RNA Pol III aufweisen (Larminie et al. 1997; White et al. 1996).

Zusammenfassend lässt sich festhalten, dass die Herunterregulation von *p53* und *Rb* in heterozygot deletierten *Bdp1*-Tieren ein Indiz für eine erhöhte RNA Pol III-Aktivität sein könnte - auf diesen Aspekt soll im nächsten Abschnitt näher eingegangen werden. Außerdem könnte bei diesen Tieren ein erhöhtes Krebsrisiko vorliegen. Untersuchungen in diese Richtung wurden bislang nicht gemacht, stellen jedoch einen interessanten Aspekt für zukünftige Arbeiten dar.

Im Gegensatz zu den Ergebnissen heterozygot deletierter *Bdp1*-Tiere zeigten Untersuchungen an *Bdp1^{ko/wt}*-MEF eine Heraufregulation der TFIIIB-Untereinheit *Tbp* auf Transkriptebene und größtenteils der untersuchten Interkationspartner. Diese Ergebnisse standen im Gegensatz zu den Beobachtungen, die im *Cerebrum* und *Cerebellum* von *Bdp1^{ko/wt}*-Tieren gemacht wurden. Hier muss allerdings beachtet werden, dass die Gewebetypen nicht direkt vergleichbar sind. Da MEF aus Embryonen am Tag E13,5 p.c. gewonnen werden, könnten Unterschiede im Expressionsniveau entwicklungs- und gewebespezifische Ursachen haben, wie es bereits für eine Anzahl an Genen in der Maus gezeigt wurde (Yang et al. 2006). Um jedoch eine genaue Aussage treffen zu können, müssten Messungen der Transkriptmengen in verschiedenen Geweben von *Bdp1^{wt/wt}*- und *Bdp1^{ko/wt}*-Embryonen verschiedener Entwicklungsstadien durchgeführt werden.

6.5 U6 snRNA-Expression im *Cerebellum* von *Bdp1^{ko/wt}*-Tieren

Aufgrund der verringerten Proteinmengen von p53 und Rb in *Bdp1^{ko/wt}-*Tieren lag die Vermutung nah, dass bei Tieren dieses Genotyps eine erhöhte Aktivität der RNA Pol III vorliegen könnte. Tatsächlich konnte mittels Northern Blot-Analysen eine dreimal stärkere Expression der U6 snRNA im *Cerebellum* heterozygot deletierter *Bdp1*-Tiere im Vergleich zu wildtypischen Tieren nachgewiesen werden.

Die U6 snRNA ist eine von insgesamt fünf *small nuclear* RNAs, die zusammen im Zellkern mit spezifischen Proteinen assoziiert und einen snRNP-Komplex (*small nuclear ribonucleoprotein particle*) ausbilden. Dieser wiederum ist für die Ausbildung des Spleißosoms verantwortlich (Dunn and Rader 2010; Valadkhan and Jaladat 2010). Erkrankungen, die auf eine Überexpression von U6 snRNA-Transkripten zurückzuführen sind, wurden bislang nicht beschrieben (Marshall and White 2008). In verschiedenen Krebszelllinien konnte jedoch eine erniedrigte U6 snRNA-Expression nachgewiesen werden (Cabarcas et al. 2010). Mutationen in U4 snRNA-Transkripten wurden im Zusammenhang mit MOPD I (*microcephalic osteodysplastic primordial dwarfism type I*) beschrieben (Edery et al. 2011; He et al. 2011). Die Krankheit zeichnet sich unter anderem durch eine postnatale Wachstumsverzögerung, Fehlbildungen des Skeletts sowie einer Mikrozephalie und weiteren Gehirnfehlbildungen aus.

Interessanterweise wurde ein Anstieg an U6 snRNA-Transkripten nur im *Cerebellum* von heterozygot deletierten *Bdp1*-Tieren detektiert - ähnlich den Beobachtungen, die unter 6.4 beschrieben wurden. Aufgrund dieser Tatsache wird die Hypothese verstärkt, dass dem Bdp1-Protein eine gewebespezifische Funktion zugeschrieben werden kann. Weiterhin könnte dem Protein auch eine promotorspezifische Regulation zugewiesen werden, da die U6 snRNA einen Promotor der Klasse 3 besitzt (Dieci et al. 2007). Aber auch hier sei nochmal erwähnt, dass die Transkription der RNA Pol III nicht nur gewebespezifisch reguliert, sondern auch von den Transkripten der Klasse 3-Promotoren bestimmt wird (Nikitina et al. 2011).

Fasst man nun die Beobachtungen aus 6.4 - Abnahme der Tbp-Proteinmenge durch eine eventuelle Destabilisierung des TFIIIB-Komplexes und verringerte Proteinmengen der Tumorsuppressoren p53 und Rb in *Bdp1^{ko/wt}*-Tieren - mit den Ergebnissen diesen Kapitels -Zunahme an U6 snRNA-Transkripten in heterozygot deletierten *Bdp1*-Tieren - zusammen, ließe sich folgendes Modell postulieren (Abbildung 39):

Abbildung 39: Auswirkung einer *Bdp1*-Deletion auf die U6 snRNA-Expression im *Cerebellum* heterozygot deletierter *Bdp1*-Tiere (hypothetisch)

(A.) Wildtypisches *Bdp1*-Allel. SNAPc bindet an PSE und rekrutiert den TFIIIB-Komplex mit seinen einzelnen Untereinheiten (Bdp1, Brf, Tbp; TFIIIB-Komplex ist umrandet). Tbp bindet an die TATA-Box (Protein-DNA-Interaktionen sind durch weiße Pfeile dargestellt). Der Tumorsuppressor Rb bindet an SNAPc und inhibiert den TFIIIB-Komplex, p53 bindet an Tbp und wirkt ebenfalls inhibierend auf die RNA Pol III-abhängige Transkription.
(B.) Situation bei einem heterozygoten *Bdp1*-Allel. Aufgrund der Expressionsminderung liegt Bdp1 nicht im TFIIIB-Komplex vor, der Komplex ist a.) instabil und b.) Tbp ist herunterreguliert (instabiler TFIIIB-Komplex mit gestrichelter Linie umrandet). SNAP_c bindet an PSE (weißer Pfeil) - möglicherweise ist die Rekrutierung von TFIIIB an den Initiationskomplex nicht mehr möglich. Rb bindet an SNAPc, ist jedoch herunterreguliert (kleiner gezeichnet), so dass der TFIIIB-Komplex nicht inhibiert wird. Ebenso ist p53 herunterreguliert (kleiner gezeichnet), so dass eine p53-vermittelte Inhibition über Tbp aufgehoben ist. Folglich könnte eine erhöhte U6 snRNA-Transkription die Folge einer *Bdp1*-Deletion sein. Die Positionen der einzelnen Elemente sind relativ zum Transkriptionsstartpunkt und zur Richtung angegeben (Pfeil). DSE: distales Sequenzelement, PSE: proximales Sequenzelement, TATA: TATA-Box oder TATA-Elemente. Proteine, Sequenzelemente und Relationen sind nicht massstabsgetreu gezeichnet.

6.6 Der Einfluss von *Smn*-Deletionen auf *Bdp1*-Expressionen

Bei zwei Patienten (Nr. 353, Nr. 6432), die neben der SMA atypische Merkmale in Form einer Gehirnatrophie entwickelten, lagen große Deletionen innerhalb der SMA-Region vor. Zwar konnte die Größe der Deletionen nicht im Mausmodell wiedergegeben werden, dennoch wurden heterozygot deletierte *Bdp1*-Tiere (*Bdp1^{ko/wt}*) mit SMA-Mäusen verpaart (*Smn^{ko/ko}*; *SMN2^{tg/tg}*) (Hsieh-Li et al. 2000; Riessland et al. 2010), um den Einfluss von *Smn*-Deletionen auf *Bdp1*-Expressionen zu untersuchen. Ein Genotyp, welcher die genomische Situation der Patienten hätte widerspiegeln können (*SMN1^{ko/ko}*; *BDP1^{ko/wt}*), konnte aufgrund der chromosomalen Anordnung des *Smn*- und *Bdp1*-Gens nicht generiert werden (siehe Kapitel 1.2.4, Abbildung 5A).

Sowohl im *Cerebrum* als auch im *Cerebellum* aller getesteten Genotypen, in denen das *Bdp1*- und *Smn*-Allel heterozygot deletiert vorlag, wurde - unabhängig von der Kopienanzahl des *SMN2*-Transgens - eine Reduktion der *Bdp1*-Transkriptmenge um etwa 50 % detektiert. Aufgrund der Expressionsanalysen von *Bdp1^{ko/wt}*-Tieren (6.4) waren diese Ergebnisse nicht unerwartet. Interessanterweise wurde jedoch auch im *Cerebrum* und *Cerebellum* von Tieren, die wildtypisch für das *Bdp1*-Gen und homozygot deletiert für das *Smn*-Gen waren und das *SMN2*-Transgen trugen (*Bdp1^{wt/wt}; Smn^{ko/ko}; SMN2^{tg/tg}*), eine Herunterregulation der *Bdp1*-Transkriptmenge auf etwa 50 % detektiert. Demnach hatte die Deletion des *Smn*-Gens Einfluss auf die *Bdp1*-Expression.

Das die Deletion eines Gens Einfluss auf die Expression benachbarter, wildtypischer Gene haben kann, soll anhand des Williams-Beuren Syndrom verdeutlicht werden. Zu den Merkmalen der Erkrankung zählen kognitive Behinderungen und die Patienten leiden unter anderem an Minderwuchs, Fehlsichtigkeit, Skoliose und Nierenfehlbildungen (Burn 1986). Die Erkrankung wird durch eine heterozygote, etwa 1,6 Mb große Deletion auf dem chromosomalen Abschnitt 7q11.23 verursacht, die ein *contigous gene syndrome* zur Folge hat (Bayes et al. 2003; Lee and Lupski 2006). In diesem deletierten Abschnitt sind etwa 25-30 Gene lokalisiert (DeSilva et al. 2002; Merla et al. 2002). Interessanterweise konnte von Genen, welche die deletierte Region flankieren, eine Herunterregulation der Genexpression gezeigt werden. Vermutlich wurden durch die Deletionen weitreichende, *cis*-regulatorische Elemente zerstört (Kleinjan and van Heyningen 2005; Merla et al. 2006).

Dieses Beispiel verdeutlicht, dass auch bei Mäusen, die homozygot deletiert für das *Smn*-Gen sind, *cis*-regulatorische Sequenzen zerstört sein könnten, welche die wildtypische *Bdp1*-Expression beeinflussen. Mittels Proteomanalysen konnte bei dem von Monani generierten SMA-Mausmodell gezeigt werden, dass bei einer homozygoten Deletion des *Smn*-Gens 26 von insgesamt 144 untersuchten Proteinen des *Hippocampus* eine verringerte Expression vorlag (Monani et al. 2000; Wishart et al. 2010). Aufgrund der Nähe des *Smn*-

Gens zu dem *Bdp1*-Gen auf dem Chromosom 13 (siehe Kapitel 1.2.4, Abbildung 5B) könnte weiterhin die Möglichkeit bestehen, dass durch eine *Smn*-Deletion die Promotorregion des *Bdp1*-Gens verändert wurde. Weiterführende Analysen werden zurzeit in unserer Arbeitsgruppe durchgeführt.

6.7 Analysen des homozygoten *Bdp1-knockouts*

Bei allen untersuchten Nachkommen heterozygoter Verpaarungen (*Bdp1^{ko/wt}* x *Bdp^{ko/wt}*) wurden keine homozygot deletierten *Bdp1*-Nachkommen detektiert. Daraus schlussfolgernd führte der homozygote *knockout* des *Bdp1*-Gens zur Letalität im Embryonalstadium.

Homozygot deletierte *Bdp1*-Embryonen (*Bdp1^{ko/ko}*) wurden im Morula- (E2,5 p.c.) und im Blastozystenstadium (E3,5 p.c.) detektiert. Isolierte *Bdp1^{ko/ko}*-Embryonen hatten sich am Tag E3,5 p.c. noch nicht zur Blastozyste ausgebildet. Nach zwei bis drei Tagen in Kultur wurden bei Embryonen dieses Genotyps keine Furchungsvorgänge beobachtet und die einzelnen Blastomeren erschienen disorganisiert. Durch die beschriebene fehlende *in vitro*-Differenzierung wurden bestimmte Zellgruppen (innere Zellmasse [IZM], Trophoektoderm) nicht ausgebildet. Der Zeitpunkt der Letalität von *Bdp1^{ko/ko}*-Embryonen lag somit im Präimplantationsstadium (um E2,5 p.c.).

In der Literatur sind verschiedene Beispiele von Transkriptionsfaktoren beschrieben, deren homozygoter *knockout* zur embryonalen Letalität im Präimplantationsstadium führt. Der Transkriptionsfaktor *Tead4* übernimmt wichtige Funktionen in der *Cdx2*-Regulation. Homozygot deletierte *Tead4*-Embryonen (*Tead4^{ko/ko}*) sterben an E2,5 p.c., da *Cdx2* für die Differenzierung von Trophoblastenzellen in der sich entwickelnden Morula verantwortlich ist (Strumpf et al. 2005; Yagi et al. 2007). Ein homozygoter *knockout* für den Transkriptionsfaktor *Rfx1* führt zur embryonalen Letalität vor E2,5 p.c (Feng et al. 2009a) - das Gen spielt eine wichtige Funktion in der Regulation des Glutamat-3- und des Interleukin-5-Rezeptors (Ma et al. 2006). Der Trankriptionsfaktor *Klf4* (Li et al. 2005) ist zusammen mit anderen Faktoren - unter anderem *Oct3/4* (Niwa et al. 2000), *Nanog* (Mitsui et al. 2003), *Sox2* (Avilion et al. 2003) und *Myc* (Cartwright et al. 2005) - für die Aufrechterhaltung der Pluripotenz embryonaler Stammzellen (ES-Zellen) verantwortlich. Embryonen, die homozygot für *Klf4* deletiert sind, sterben vor der Implantation (vor E4,5 p.c.) (Ema et al. 2008).

Die oben aufgeführten Beispiele verdeutlichen, dass die Gründe einer embryonalen Letalität nach einem homozygoten Verlust eines bestimmten Gens vielseitig sein können. Im Fall einer sehr frühen Letalität bis E4,5 p.c. - wie bei *Bdp1^{ko/ko}*-Embryonen beobachtet liegen oft generelle molekulare Defekte im Energiehaushalt und im RNA-Metabolismus vor oder es kommt zu Problemen während der Mitose (Copp 1995). Die Störungen können zu verschiedenen Zeitpunkten auftreten, wie z.B. während der Furchungsprozesse im Morulabzw. Blastozystenstadium. Meistens weisen solche Embryonen Chromosomenanomalien auf (Magnuson et al. 1985). Diese Anomalien stellen auch beim Menschen einen der Hauptgründe eines Aborts im Präimplantationsstadium dar (Alberman and Creasy 1977).

Betrachtet man die Funktionen des Bdp1-Proteins - Untereinheit des Trankriptionsfaktor IIIB-Komplexes und essentiell für die RNA Pol III-abhängige Transkription sowie deren Regulation – und die phänotypischen Auswirkungen homozygoter Deletionen der weiteren TFIIIB-Untereinheiten (*Brf1, Tbp*), war die embryonale Letalität abzusehen. Embryonen mit einem homozygoten *Tbp-knockout (Tbp^{ko/ko})* sterben im 30 bis 40-Zellstadium (Martianov et al. 2002). Heterozygot deletierte *Tbp*-Tiere (*Tbp^{ko/wt}*) hingegen entwickeln keine phänotypischen Auffälligkeiten – ähnlich den Beobachtungen von *Bdp1^{ko/wt}*-Tieren. Allerdings wurde eine Haploinsuffizienz des humanen *TBP*-Gens mit Enwicklungsstörungen in Verbindung gebracht (Rooms et al. 2006). Embryonen mit einem homozygoten *knockout* für die TFIIIB-Untereinheit *Brf1* sterben aufgrund der fehlenden Fusion von *Chorion* und *Allantois* um E10,5 p.c. (Stumpo et al. 2004). Somit scheint *Brf1* in der sehr frühen Embryonalentwicklung (vor Nidation) eine weniger wichtige Rolle wie *Bdp1* und *Tbp* einzunehmen. Jedoch reflektieren die phänotypischen Auswirkungen der einzelnen *knockouts* der TFIIIB-Untereinheiten die essentielle Bedeutung während der Entwicklung.

Die genauen Ursachen für die frühe embryonale Letalität von *Bdp1^{ko/ko}*-Embryonen konnten nicht abschließend geklärt werden. Analysen weiterführender Versuche (6.8) ließen jedoch vermuten, dass eine homozygote *Bdp1*-Deletion die Induktion einer Apoptose zur Folge hatte.

6.8 Analysen eines konditionalen *Bdp1-knockouts*

Eine homozygote Deletion des *Bdp1*-Gens führte zu einem letalen Phänotyp im Präimplantationsstadium (um E2,5 p.c.). Somit waren weiterführende funktionelle Analysen des *Bdp1*-Gens nicht möglich. Aufgrund des verwendeten *targeting*-Konstruktes (siehe

Kapitel 4.2, Abbildung 10) konnte jedoch eine konditionale Deletion des *Bdp1*-Gens induziert werden.

Um die Funktion des Bdp1-Proteins im Gehirn - dem bei SMA-Patienten mit atypischen Verlauf primär betroffenen Gewebe - näher zu untersuchen, wurde ein homozygoter *knockout* des *Bdp1*-Gens im sich entwickelnden Zentralnervensystem (ZNS) (ab E11,0 p.c.) (Tronche et al. 1999) induziert. Dieser führte zur embryonalen Letalität zwischen E18,5 p.c. und P1. Ab dem Embryonaltag 16,5 p.c. wurde bei *Bdp1^{fl/fl}*; *Nestin^{tg/wt}*-Embryonen eine Wachstumsverzögerung beobachtet. Anhand von Übersichtsfärbungen verschiedener Embryonalstadien konnte bei *Bdp1^{fl/fl}*; *Nestin^{tg/wt}*-Embryonen eine massiv gestörte Gehirnentwicklung gezeigt werden, die bis zum Embryonaltag 18,5 p.c. progressiv zunahm. Gehirnregionen wie *Cerebellum, Diencephalon* und *Mesencephalon* waren nur noch rudimentär zu erkennen. Somit lagen Fehlentwicklungen in allen Bereichen vor, die als Vorstufen der Gehirnentwicklung angesehen werden (siehe Kapitel 1.3.2, Abbildung 7).

Das Diencephalon entwickelt sich zusammen mit dem Telencephalon aus dem Prosencephalon (Yazici et al. 2011). Sowohl Thalamus als auch Hypothalamus sind Abkömmlinge des Diencephalons. Der Hypothalamus steuert die Hormonausschüttung der Hypophyse, zu denen verschiedene Wachstumshormone zählen (Epelbaum 1992). Aufgrund des rudimentär angelegten Diencephalons war davon auszugehen, dass sowohl Hypothalamus als auch Hypophyse in Bdp1^{fl/fl}; Nestin^{tg/wt}-Embryonen nicht angelegt wurden und die Wachstumsverzögerung auf die fehlende Hormonausschüttung zurückzuführen war.

Zusätzlich zu den rudimentär angelegten Gehirnarealen wurden bei *Bdp1*^{1/J/1}; *Nestin^{tg/wt}*-Embryonen stark erweiterte Lateralventrikel beobachtet, die sich - zusammen mit den anderen Ventrikeln - zu einem gemeinsamen Ventrikelsystem zusammenschlossen. Die pathologischen Ursachen für die Erweiterung von Ventrikeln gehen oft auf die Entwicklung eines *Hydrocephalus* zurück (Ulfig et al. 2004). Ein *Hydrocephalus* ist eine multifaktorielle Gehirnerkrankung, die entweder durch eine Überproduktion, gestörte Zirkulation oder fehlerhafte Absorption der Gehirnrückenmarksflüssigkeit (*Liquor, cerebrospinal fluid*, CSF) verursacht wird (Rekate 2008, 2009). Die Ursachen dafür sind sehr variabel und können genetischen Ursprungs sein. So führen z.B. Duplikationen im *L1CAM*-Gen zur Ausbildung eines X-Chromosomal-gekoppelten *Hydrocephalus* (Van Camp et al. 1993; Weller and Gartner 2001). Weiterhin kann die Pathophysiologie eines *Hydrocephalus* von Mutationen in den *Aquaporinen* abhängen (Filippidis et al. 2010) - *Aquaporine* sind Wasserkanäle, die den

Transport von verschiedenen Molekülen des CSF in das umliegende Gewebe gewährleisten (Tait et al. 2008; Verkman 2009). Mehrere Studien belegen den Zusammenhang zwischen Mutationen in den *Aquaporinen* und der Ausbildung eines *Hydrocephalus* (Bloch et al. 2006; Feng et al. 2009b; Oshio et al. 2005). Abgesehen von genetisch bedingten Ursachen kann ein *Hydrocephalus* auch die Folge einer Gehirnblutung sein, durch Erkrankungen wie Meningitis oder Tumorbildung und durch Kopfverletzungen verursacht werden (Crews et al. 2004).

Ob die Ausbildung eines Hydrocephalus bei Bdp1^{fl/fl}; Nestin^{tg/wt}-Embryonen primär oder sekundär auf eine Bdp1-Deletion im ZNS zurückzuführen war, konnte nicht geklärt werden. Oft hat die homozygote Deletion eines spezifischen Gens im Gehirn die Ausbildung eines Hydrocephalus als sekundären Effekt zur Folge, wie z.B. die Nestin-Cre-vermittelte Deletion von Pak4 (Tian et al. 2011). Pak4 gehört zu der Familie B der Serin/Threonin-Kinasen und ist für die Organisation des Zytoskeletts mitverantwortlich (Jaffer and Chernoff 2002). Der homozygote Verlust des Pak4-Gens führt zu einer Abnahme der Proliferation in den neuronalen Vorläuferzellen des ZNS und hat sekundär die Ausbildung eines Hydrocephalus zur Folge. Allgemein wurden eine Reihe von Gen-knockouts beschrieben, die Defekte in der Proliferation oder die Induktion einer Apoptose zur Folge haben und mit Gehirnfehlbildungen einhergehen (Camarero et al. 2006; Cappello et al. 2006; Ke et al. 2007; McFarland et al. 2006). Anhand von spezifischen Färbungen wurde gezeigt, dass bei Bdp1^{1//1}; Nestin^{tg/wt}-Embryonen keine proliferativen Defekte im Ventrikelgewebe vorlagen. Parallel wurde bei diesen Embryonen eine erhöhte Anzahl an apoptotischen Zellen nachgewiesen. Obwohl Apoptose auch während der normalen Entwicklung eine wichtige Rolle bei der Differenzierung von Geweben spielt (Meier et al. 2000), war die Anzahl an Caspase-positiven Zellen in *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen im Vergleich zu Kontrollgenotypen stark erhöht. Interpretiert man die hier beschriebenen Beobachtungen im Zusammenhang mit Literaturangaben, wiesen die Ergebnisse darauf hin, dass die ZNS-spezifische Deletion des Bdp1-Gens primär den Untergang des ventrikulären Gewebes und sekundär die Ausbildung eines Hydrocephalus zur Folge hatte. An dieser Stelle sei darauf hingewiesen, dass das hier verwendete Nestin-Cre-Transgen (Tronche et al. 1999) stets im heterozygoten Zustand gehalten wurde, da die Homozygotie des Transgens selbst zur Ausbildung eines Hydrocephalus führt (Forni et al. 2006).

Zusammenfassend lässt sich festhalten, dass das *Bdp1*-Gen eine wichtige Funktion in der Embryonalentwicklung des Gehirns einnimmt. Der homozygote Verlust des Gens im ZNS

führte zu Wachstumsverzögerungen, die mit schweren morphologischen Veränderungen in der gesamten Gehirnregion einhergingen und schließlich zur Letalität der Embryonen zwischen E18,5 p.c. und P1 führte. Mit Hilfe von spezifischen Färbungen wurde eine erhöhte Anzahl an apoptosichen Zellen in der proliferativ aktiven Zone der Ventrikel nachgewiesen, was mit hoher Wahrscheinlichkeit die Ausbildung eines *Hydrocephalus* zur Folge hatte.

6.9 Verifizierung eines Bdp1-spezifischen Antikörpers

Im Jahr 2000 wurden in unserer Arbeitsgruppe neben dem *BDP1*-Volllängetranskript verschiedene humane Spleißvarianten identifiziert, die teilweise gewebespezifisch exprimiert werden (Kelter et al. 2000). Außerdem wurde eine erhöhte Expression in der Körnerzellschicht des humanen *Cerebellums* detektiert (Kelter et al. 2000). Die unterschiedlichen Transkriptgrößen waren auf alternative Spleißprozesse zurückzuführen, welche für die *BDP1*-prä-mRNA beschrieben wurden (BDP1Δ15: alternatives Spleißen von Exon 15 (Kelter et al. 2000), BDP1Δ18-39: alternatives Spleißen von Exon 18 bis Exon 39 (Schramm et al. 2000), BDP1Δ33-39: alternatives Spleißen von Exon 33 bis Exon 39 (Kelter et al. 2000)). Die identifizierten Spleißvarianten spiegelten sich auch auf Proteinebene wider und mit Hilfe von Western Blot-Analysen konnte das Volllängeprotein bei 283 kDa nachgewiesen werden (neueste Angaben NCBI: 293 kDa; siehe Kapitel 1.2.4, Tabelle 1,). Weitere Signale wurden bei 150 kDa, 100 kDa, 90 kDa, 75 kDa und 70 kDa detektiert und entsprachen anderen Isoformen (Kelter 2000).

In der Literatur ist für das murine Bdp1-Protein bislang nur das Volllängeprotein beschrieben (270 kDa; siehe Kapitel 1.2.4, Tabelle 1). Spleißvarianten des Bdp1-Gens und Proteinisoformen sind nicht bekannt, jedoch aufgrund der großen Homologie beider Proteine (98 %-99 % auf Aminosäurenebene) sehr wahrscheinlich. Ein entsprechender Antikörper, der das murine Bdp1-Protein detektiert, ist nicht verfügbar. Somit konnten proteinbiochemische Analysen nicht durchgeführt werden. Versuche früherer Arbeitskollegen, einen bei einer Firma generierten Bdp1-Antikörper zu etablieren, hatten nicht funktionert. Aus diesem Grund wurde bei der Firma EUROGENTEC ein weiterer, polyklonaler Antikörper generiert und die Spezifität im Rahmen dieser Arbeit ermittelt. Die Epitopanalysen wurden so ausgelegt, dass der Antikörper sowohl das humane als auch das murine Protein detektieren kann (siehe Kapitel 11, Abbildung 43).

Zu Beginn standen vier verschiedene Antikörper zur Verfügung, deren Spezifität mittels Western Blot-Analysen getestet wurde. Da der Antikörper 6619α215 ein Signal auf der Höhe des vermuteten Volllängeproteins detektierte, wurde er für weitere Analysen verwendet. Diese Versuche umfassten Western Blot-Analysen, bei denen Proteinlysate verschiedener Spezies (human, murin), aus verschiedenen murinen Geweben (*Cerebrum*, *Cerebellum*) und von verschiedenen murinen Genotypen (*Bdp1^{wt/wt}*, *Bdp1^{ko/wt}*) verwendet wurden. Da zusätzliche Banden nicht zugeordnet werden konnten, konnte die Spezifität des Antikörpers nicht bestätigt werden. Lediglich bei der Verwendung von Proteinlysaten HTN-Cre-behandelter *Bdp1^{fi/fl}*-MEF zeigten sich erste Hinweise, dass der Antikörper ein Signal auf Höhe des Volllängeproteins (270 kDa) und einer murinen Isoform (80-90 kDa) detektierte. Somit konnte mit Hilfe von Western Blot-Analysen die Spezifität des Antikörpers 6619α215 nicht bestätigt werden.

Das Bdp1-Protein ist eine Untereinheit des Transkriptionsfaktor IIIB-Komplexes und im Kern lokalisiert (Schramm et al. 2000). Weiterhin ist bekannt, dass das humane *BDP1* verstärkt in der Körnerzellschicht des *Cerebellums* exprimiert wird (Kelter et al. 2000). Trotz fehlgeschlagener Western Blot-Analysen sollten immunhistologische Färbungen von MEF und Präparate des murinen *Cerebellums* die Spezifität des Antikörpers bestätigen. Bei der Verwendung von MEF wurden gefärbte und ungefärbte Zellkerne detektiert und auch gefärbte Präparate des *Cerebellums* zeigten eine stärkere Expression des *Bdp1*-Gens in der Körnerzellschicht.

Das Ausbleiben der Kernfärbung in *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-MEF ist auf die Aktivität der RNA Pol III zurückzuführen. Die Polymerase ist hauptsächlich während der S- und G2-Phase des Zellzyklus aktiv, wohingegen die Transkription während der M-Phase inhibiert wird (Gottesfeld et al. 1994; Leresche et al. 1996; Paule and White 2000; White et al. 1995). Die Inhibition wird unter anderem durch die Hyperphosphorylierung von BDP1 vermittelt, wodurch das Protein von der Promotorregion dissoziiert (Fairley et al. 2003). Aus diesem Grund wurde angenommen, dass es sich bei den gefärbten Kernen in MEF wahrscheinlich um Zellen handelte, die sich in der Interphase befanden, wohingegen die Bdp1-Färbung bei in der M-Phase-befindlichen Zellen ausblieb. Weiterführende Analysen bezüglich der Bdp1-Färbung in Abhängigkeit des Zellzyklus sind zukünftig geplant.

Fasst man die Ergebnisse zusammen, konnte mit Hilfe von Western Blot-Analysen die Spezifität des Bdp1-Antikörpers 6619α215 nicht bestätigt werden. Aufgrund fehlender Literaturangaben war eine Zuordnung detektierter Banden nicht möglich. Immunhistologische Färbungen von MEF und Präparate des murinen *Cerebellums* unterstrichen jedoch die Spezifität des Antikörpers. Letztendlich wird nur eine Massenspektrometrie (MS) Aufschluss über Bdp1-Proteinisoformen in der Maus liefern können. Entsprechende Analysen sind in unserer Arbeitsgruppe bereits in Planung.

Die MS hat in der Proteomik eine essentielle Bedeutung. Mit dieser Technik ist es möglich, Proteine oder Makromoleküle zu identifizieren und zu charakterisieren. Weiterhin können das molekulare Gewicht sowie posttranslationale Modifikationen ermittelt werden (Mann et al. 2001). Die Ionisierung mittels *matrix-assisted laser desorption ionization* (MALDI) (Hillenkamp et al. 1991; Karas and Hillenkamp 1988) oder *electrospray mass spectrometry* (ESMS) (Fenn et al. 1989; Mann and Wilm 1995) erlaubt die Detektion von Peptiden im attomol-Bereich (amol) (Emmett et al. 1995; Mortz et al. 1994). So konnten z.B. durch den Einsatz der MS neue Isoformen des APP-Proteins (*amyloid-precursor-protein*) – ein Membranprotein, dass in Form des β -Amyloid neurotoxisch wirkt und in *Plaques* vorliegen kann (Matsui et al. 2007) - im *Liquor* von Alzheimer-Patienten nachgewiesen werden (Portelius et al. 2009).

7. Ausblick

Im Rahmen dieser Arbeit konnte der Zusammenhang zwischen einer *BDP1*-Haploinsuffizienz und der Ausbildung einer SMA mit atypischen Symptomen nicht bestätigt werden. Das generierte *Bdp1*-Mausmodell bietet jedoch zahlreiche Möglichkeiten, die Funktionen des *Bdp1*-Gens *in vivo* zu untersuchen.

Die Ergebnisse der *Realtime*- und Western Blot-Analysen von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren, die den Einfluss einer heterozygoten Bdp1-Deletion in Bezug auf a.) die Stabilität des TFIIIB-Komplexes und b.) die Inhibition interagierender Proteine gezeigt haben, müssen mit einer größeren Anzahl an Tieren bestätigt werden. Mit Hilfe der coimmunoprecipitation (CoIP) könnte der TFIIIB-Komplex in Bdp1^{ko/wt}-Tieren näher untersucht werden. Sollte sich weiterhin die Herunterregulation der Tumorsuppressoren p53 und Rb bestätigen, müsste einerseits bei heterozygot deletierten Bdp1-Tieren ein erhöhtes Krebsrisiko vorliegen - hier könnten immunhistologische Untersuchungen von Tieren verschiedener Altersklassen hilfreich sein. Andererseits könnte ein kompensatorischer Effekt auftreten, wenn Tiere mit einem heterozygoten Bdp1-Allel mit Mäusen verpaart würden, die eine Überexpression der Tumorsuppressoren p53 und Rb zeigen. So könnte z.B. bei p53-überexprimierenden Mäusen die erhöhte Tumorbildung (Lungenkarzinom, Osteosarkom) reduziert werden (Lavigueur et al. 1989). Rb-überexprimierende Mäuse haben kein gesteigertes Krebsrisiko, sind jedoch aufgrund von Proliferationsstörungen kleinwüchsig - ein kompensatorischer Effekt des heterozygoten Bdp1-Allels könnte in diesem Mausmodel sehr gut analysiert werden (Bignon et al. 1993).

Die Ergebnisse der *Realtime*-Analysen von *Bdp1^{ko/wt}*-MEF, die widersprüchlich zu den Beobachtungen von *Bdp1^{ko/wt}*-Tieren waren, müssen auf Proteinebene bestätigt werden. Um entwicklungs- und gewebespezifische Effekte miteinzuschließen, sind Analysen der *Bdp1*-Expression während der Embryonalentwicklung von Interesse.

Mit Hilfe der Massenspektrometrie (MS) könnte einerseits die Spezifität der Bdp1-Antiseren verifiziert, andererseits potentielle Proteinisoformen identifiziert werden - um einen Eindruck verschiedener *Bdp1*-Spleißvarianten zu erhalten, werden zurzeit in unserer Arbeitsgruppe geeignete Sonden für Northern Blot-Analysen etabliert. Mit der Identifizierung von Isoformen und der Verfizierung der Antikörper könnten proteinbiochemische und immunhistologische Analysen durchgeführt werden – diese Ergebnisse würden die Daten des Bdp1-Wirkungsspektrums erweitern.

Die Ergebnisse der Northern Blot-Analysen für die 5S rRNA und U6 snRNA müssen mit einem größeren Pool an Tieren bestätigt werden. Weiterhin wäre es von großem Interesse, die Auswirkungen einer heterozygoten *Bdp1*-Deletion auf andere, Promotorklasse 3abhängige Transkripte (z.B. 7SK RNA) zu untersuchen. Hier sollte jedoch prinzipiell überlegt werden, ob anstatt von Northern Blot-Analysen die quantitativ sensiblere *Realtime*-PCR die bessere Methode der Wahl darstellt.

Der Einfluss einer homozygoten *Smn*-Deletion auf die wildtypische *Bdp1*-Expression stellt eine sehr interessante Fragestellung dar. Zurzeit werden Analysen weiterer Tiere entsprechender Genotypen durchgeführt, um die Ergebnisse zu bestätigen. Sollte dies der Fall sein, sind nachfolgende Untersuchungen, z.B. im Hinblick auf die Deletion regulatorischer Sequenzen, geplant.

Obwohl der Genotyp von SMA-Patienten mit atypischen Symptomen nicht mit Hilfe des hier vorliegenden Mausmodelles simuliert werden konnte, wäre es dennoch von großem Interesse, die Auswirkungen einer homozygoten *Smn*-Deletion auf die Expression des heterozygoten *Bdp1*-Allels zu untersuchen. Mit Hilfe der RNAi-Technologie (RNA *interference*) wird der *knockdown* spezifischer Gene ermöglicht (Acehan et al. 2011; Jordan et al. 2011; Premsrirut et al. 2011). Somit könnte zum Beispiel in *Bdp1^{ko/wt}*-Tieren *in vivo* ein *knockdown* des *Smn*-Gens induziert werden. Nach Angaben der Firma TACONIC ist seit kurzem auch ein *knockdown* von zwei Genen parallel möglich. Mit Hilfe dieser Technologie könnten große Deletionen innerhalb der murinen SMA-Region simuliert und die Auswirkungen auf umliegende Gene analysiert werden.

Die Analysen des letalen Phänotyps von *Bdp1^{ko/ko}-*Embryonen sollen mit Hilfe von immunhistologischen Untersuchungen fortgeführt werden. Spezifische Färbungen im Hinblick auf Zelladhäsionsmoleküle, Zellproliferation bzw. Apoptose sollen die Ursachen der Letalität näher eingrenzen (Hara et al. 2006; Wang et al. 2006). Eine ähnliche Strategie ist auch für die weiterführende Analysen der *Bdp1^{fl/fl}*; *Nestin^{tg/wt}-*Embryonen geplant. Mit Hilfe von Färbungen spezifischer Marker für die verschiedenen Zellschichten der Ventrikel oder die Darstellung des Zellzyklus in den unterschiedlichen Gehirnregionen (Tian et al. 2011) sollen weitere Erkenntnisse über die Ausbildung eines *Hydrocephalus* und letztlich über die Funktionen des Bdp1-Proteins im Zentralnervensystem (ZNS) liefern.

8. Zusammenfassungen

8.1 Zusammenfassung

B double prime 1 (BDP1, TFNR) ist eine Untereinheit des Transkriptionsfaktor IIIB-Komplexes und wird für die Transkription aller RNA Pol III-abhängigen Gene benötigt. *BDP1* wird ubiquitär, jedoch verstärkt im *Cerebellum* exprimiert. Das Gen liegt auf dem chromosomalen Abschnitt 5q13 und distal zum *survival motor neuron gene 1 (SMN1)* - dem krankheitsverursachenden Gen der spinalen Muskelatrophie (SMA). Die SMA ist eine autosomal rezessive, neurodegenerative Erkrankung, die durch eine Muskelschwäche mit nachfolgender Muskelatrophie gekennzeichnet ist. In seltenen Fällen entwickeln SMA-Patienten ein atypisches Symptom in Form einer Gehirnatrophie. Dieser Phänotyp korreliert mit großen Deletionen innerhalb der SMA-Region. Markeranalysen deuteten auf weitere deletierte, distal zum *SMN1* gelegene Gene hin, zu denen auch ein Marker in der Nähe des *BDP1*-Gens zählte. Aus diesem Grund wurde eine Haploinsuffizienz des *BDP1*-Gens mit der Ausbildung einer Gehirnatrophie hypothetisch in Verbindung gebracht.

Zur Klärung dieser Fragestellung wurde ein konditionales *Bdp1*-Mausmodell mit Hilfe des Cre/loxP-Systems generiert. Tiere mit einer ubiquitären, heterozygoten *Bdp1*-Deletion (Bdp1^{ko/wt}) zeigten keine besonderen Auffälligkeiten. Um das Ausmaß einer Deletion in heterozygot deletierten Bdp1-Mäusen näher zu untersuchen, wurden die Transkript- und Proteinmengen aller Faktoren des TFIIIB-Komplexes (Bdp1, Tbp, Brf1) und die ausgesuchter Interaktionspartner (TFIIIC102, Erk, Myc, p53, Rb) mittels Realtime- und Western Blot-Analysen im *Cerebrum* und *Cerebellum* von *Bdp1^{wt/wt}* und *Bdp1^{ko/wt}*-Tieren bestimmt. Dabei wurde in *Bdp1^{ko/wt}*-Tieren eine Herunterregulation der *Bdp1*-Expression auf 50 % detektiert. Ebenso wurde von der TFIIIB-Untereinheit Tbp auf RNA und Proteinebene im Cerebellum heterozygot deletierter *Bdp1*-Tiere eine starke Herabregulation beobachtet, wodurch dem Bdp1-Protein eine gewebespezifische Funktion zugewiesen werden könnte. Weiterhin wurde bei fast allen Interaktionspartnern eine Herunterregulation der Transkript- bzw. der Proteinmengen detektiert. Somit hatte eine heterozygote Bdp1-Deletion Einfluss auf interagierende, den TFIIIB-Komplex regulierende Proteine. Mittels Northern Blot-Analysen wurden zusätzlich erhöhte Transkriptmengen der U6 snRNA im Cerebellum von Bdp1^{ko/wt}-Tieren nachgewiesen.

Die Ergebnisse der *Realtime*-Analysen wurden in murinen embryonalen Fibroblasten (MEF, *Bdp1^{ko/wt}*) nicht bestätigt. Hier wurden weitestgehend erhöhte Transkriptmengen der Untereinheiten des TFIIIB-Komplexes und die der Interaktionspartner detektiert. Die abweichenden Genexpressionen haben wahrscheinlich entwicklungs- oder gewebespezifische Ursachen.

Der homozygote Verlust des *Bdp1*-Gens führte zur embryonalen Letalität im Präimplantationsstadium (um E2.5 p.c.). *In vitro*-kultivierte *Bdp1^{ko/ko}*-Embryonen (E3.5 p.c.) zeigten eine fragmentierte innere Zellmasse mit massiver Volumenabnahme. Somit scheint das Bdp1-Protein eine wichtige Funktion während der frühen Embryogenese einzunehmen. Über die Behandlung von *Bdp1^{fl/fl}*-MEF mit rekombinanter HTN-Cre wurde eine *in vitro*-Deletion des *Bdp1*-Gens induziert, welche zum Zelltod führte. Mittels MTT-Analysen wurde eine verringerte Zellvitalität in homozygot deletierten *Bdp1*-MEF nachgewiesen - diese Daten bestätigten die Ergebnisse homozygot deletierter *Bdp1*-Embryonen.

Da zwei Patienten zusätzlich zur SMA eine Gehirnatrophie entwickelten, sollte ein *Bdp1-knockout* im Zentralnervensystem (ZNS) generiert werden. Dieser wurde mit Hilfe einer transgenen *Nestin*-Cre-Linie induziert und führte bei *Bdp1^{fl/fl}; Nestin^{tg/wt}*-Embryonen erst zu einer Wachstumsverzögerung und anschließend zu einer embryonalen Letalität zwischen E18.5 p.c. und P1. HE-gefärbte Übersichtspräparate von Embryonen entsprechender Genotypen zeigten ein stark erweitertes Ventrikelsystem mit rudimentär angelegten Bereichen von *Cerebellum, Diencephalon* und *Mesencephalon*. Mittels immunhistologischer Färbungen wurde eine erhöhte Anzahl an apoptotischen Zellen in den Lateralventrikeln nachgewiesen. Der homozygote Verlust des *Bdp1*-Gens führte wahrscheinlich sekundär zur Ausbildung eines *Hydrocephalus*. Somit nahm das Bdp1-Protein eine wichtige Funktion innerhalb der frühen Gehirnentwicklung ein.

Schließlich wurden *Bdp1^{ko/wt}*-Tiere mit SMA-Tieren (*Smn^{ko/ko}; SMN2^{tg/tg}*) verpaart, um den Einfluss von *Smn*-Deletionen auf *Bdp1*-Expressionen näher zu untersuchen.

Zusammenfassend konnte der Zusammenhang zwischen einer BPD1-Haploinsuffizienz und dem Auftreten einer Gehirnatrophie nicht gezeigt werden. Jedoch nimmt die TFIIIB-Untereinheit Bdp1 selbst eine wichtige Rolle während der Embryonalentwicklung und speziell während der Entwicklung des ZNS ein. Das konditionale Bdp1-Mausmodell bietet weitere Möglichkeiten, die Funktionen des Bdp1-Gens in vivo zu untersuchen.

8.2 Summary

B double prime 1 (BDP1, TFNR) is a subunit of the transcription factor IIIB complex which is essential in transcription initiation of small RNAs transcribed by RNA pol III. The *BDP1* gene is ubiquitously expressed with notable abundance in the cerebellum. It maps on 5q13, distal to the duplicated region including the spinal muscular atrophy (SMA) determining gene "survival motor neuron gene 1" (SMN1). SMA is an autosomal recessive, neurodegenerative disorder characterized by muscle weakness and atrophy of proximal voluntary muscles. In rare cases SMA patients exhibit additional atypical features such as brain atrophy. These phenotypes have been shown to correlate with large deletions in the SMA region and marker analyses revealed deletions in genes distally to the SMA region including the *BDP1*. Therefore, we hypothesized that haploinsufficiency of *BDP1* may cause brain atrophy.

To test this hypothesis we generated conditional *Bdp1* knockout mice using the Cre/loxP system. Ubiquitous heterozygous deletion of the *Bdp1* allel (*Bdp1^{ko/wt}*) led to no obvious phenotype. To analyze the potential effect of heterozygous *Bdp1* deletion in those animals we isolated RNA and protein from cerebrum and cerebellum of $Bdp1^{wt/wt}$ and $Bdp1^{ko/wt}$ animals and measured the transcript and protein amount of different TFIIIB subunits (Bdp1, Brf1 and Tbp) and of known interaction partners (TFIIIC102, Erk, Myc, p53, Rb) via quantitative realtime-PCR and western blot analysis. $Bdp1^{ko/wt}$ animals indicating an important role of *Bdp1* in this brain area. Furthermore, transcript and protein amount of all TFIIIB subunits and interaction partners were decreased indicating that Bdp1 influences proteins interacting with TFIIIB. Via northern blot analysis increased expression of the RNA pol III-dependent gene U6 snRNA were measured in cerebellum of *Bdp1^{ko/wt}* animals.

In contrast, the results of the realtime-PCR and western blot analysis of $Bdp1^{wt/wt}$ and $Bdp1^{ko/wt}$ animals were not confirmed with mouse embryonic fibroblasts (MEF) heterozygously deleted for Bdp1, in which most of the interaction partners showed a transcriptional upregulation. These results indicate a possible development- or tissue-specific gene regulation.

The ubiquitous homozygous deletion of *Bdp1* resulted in embryonic lethality before nidation (E2,5 p.c.). *In vitro* cultured $Bdp1^{ko/ko}$ embryos (E3,5 p.c.) presented fragmented inner cell mass and massive shrinkage, indicating an important role for *Bdp1* during very

early development. To analyze the effect of *Bdp1* deficiency in an *in vitro* model we generated homozygously floxed MEF (*Bdp1*^{fi/fi}) and deleted *Bdp1* using recombinant Cre (HTN-Cre). One week after treatment most of the cells died. A decreased cell viability of homozygously deleted MEF was shown via MTT assay which confirmed the data of homozygous *Bdp1* knockout embryos.

Since two patients with atypical SMA exhibited brain atrophy, the effect of a *Bdp1* deficiency in the central nervous system (CNS) was of particular interest. Neuronal specific knockout of *Bdp1* using *Nestin*-Cre transgenic mice caused growth retardation and embryonic lethality of *Bdp1*^{fl/fl}; *Nestin*^{tg/wt} embryos between E18,5 p.c. and postnatal day 1 (P1). HE staining of *Bdp1*^{fl/fl}; *Nestin*^{tg/wt} embryos revealed vastly dilated lateral ventricles. Furthermore cerebellum, diencephalon and mesencephalon could be detected only rudimentarily. Immunohistological analysis of the embryos revealed an increased number of apoptotic cells within the ventricular zone of the lateral ventricles. Taken together these results suggest that homozygous loss of *Bdp1* led secondary to development of a hydrocephalus and point towards an essential role of *Bdp1* during brain development.

Finally, we crossbred *Bdp1^{ko/wt}*-animals to an SMA mouse model to find out whether *Smn* knockouts influence *Bdp1* expression.

Taken together the hypothesis that *BDP1* haploinsufficiency caused brain atrophy could not be confirmed. Nevertheless the results of this work indicate an essential role of the TFIIIB subunit *Bdp1* during embryonic development per se and in CNS development in particular. The conditional *Bdp1* knockout mouse provides further possibilities to analyze *Bdp1* function *in vivo*.

9. Veröffentlichungen

9.1 Publikationen

Mende Y, **Jakubik M**, Riessland M, Schoenen F, Rossbach K, Kleinridders A, Köhler C, Buch T, Wirth B. Hum Mol Genet. 2010 Jun 1;19(11):2154-67. Epub 2010 Feb 27 Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing

Riessland M, Ackermann B, Förster A, **Jakubik M**, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, Wirth B. Hum Mol Genet. 2010 Apr 15;19(8): 1492-506. Epub 2010 Jan 22

SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy

9.2 Poster

Jakubik M, Mende Y, Rossbach K, Wirth B: Deficiency of the transcription factor IIIB subunit *Bdp1* leads to early embryonic lethality in mice

9th Transgenic Technologie Meeting; Transgenic Research, Volume 19, Number 2; Poster 65, Berlin, 2010

Jakubik M, Mende Y, Wirth B: Deficiency of the splicing factor *Sfrs10* results in early embryonic lethality in mice and in upregulation of *Smn*∆7 in vitro 13th Annual International Spinal Muscular Atrophy Research Group Meeting, Cincinnati, Ohio, USA, 2009

Mende Y, Jakubik M, Wirth B: *Knockout* of the splicing factor *Sfrs10* results in early embryonic lethality in mice and in upregulation of Smn∆7 in vitro Medgen Band 21, abstract P217; GfH-Tagung, Aachen, 2009

Jakubik M, Mende Y, Wirth B: *Bdp1* – a candidate gene causing atypical spinal muscular atrophy (SMA) with brain atrophy? Medgen Band 21, abstract P221; GfH-Tagung, Aachen, 2009 Jakubik M, Mende Y, Schoenen F, Wirth B: Functional analysis of the transcription factor-like nuclear regulator (TFNR) protein by generating conditional *knock-out* mice Medgen Band 19, abstract P280; GfH-Tagung, Bonn, 2007

Mende Y, **Jakubik M**, Anadol E, Wirth B: *SFRS10* – a splicing regulator of *SMN2* transcripts: functional studies in transgenic and *knock-out* mice Medgen Band 19, abstract P232; GfH-Tagung, Bonn, 2007

Mende Y, **Jakubik M**, Anadol E, Wirth B: SFRS10 – a splicing modulator of *SMN2* transcripts: Generation of a conditional *knock-out* mouse

11th Annual International Spinal Muscular Atrophy Research Group Meeting, Schaumburg, Illinois, USA 2007

10. Literaturverzeichnis

- Abremski K, Hoess R, Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301-11
- Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C, Kulik W, Wansapura J, Toth MJ, Strauss A, Khuchua Z (2011) Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 286: 899-908
- Alberman ED, Creasy MR (1977) Frequency of chromosomal abnormalities in miscarriages and perinatal deaths. J Med Genet 14: 313-5
- Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74: 5350-4
- Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and ratkangaroo homologues. J Cell Biol 133: 43-7
- Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40: 795-803
- Araujo Ade Q, Araujo M, Swoboda KJ (2009) Vascular perfusion abnormalities in infants with spinal muscular atrophy. J Pediatr 155: 292-4
- Arkblad E, Tulinius M, Kroksmark AK, Henricsson M, Darin N (2009) A population-based study of genotypic and phenotypic variability in children with spinal muscular atrophy. Acta Paediatr 98: 865-72
- Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126-40
- Barthold SW (2004) Genetically altered mice: phenotypes, no phenotypes, and Faux phenotypes. Genetica 122: 75-88
- Bartholomew B, Durkovich D, Kassavetis GA, Geiduschek EP (1993) Orientation and topography of RNA polymerase III in transcription complexes. Mol Cell Biol 13: 942-52
- Bayes M, Magano LF, Rivera N, Flores R, Perez Jurado LA (2003) Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet 73: 131-51
- Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96: 195-209
- Belsing TZ, Lund AM, Sondergaard L, Friis-Hansen L, Abildstrom SZ (2011) [Clinical aspects of Marfan syndrome]. Ugeskr Laeger 173: 337-42
- Berkovic SF, Harkin L, McMahon JM, Pelekanos JT, Zuberi SM, Wirrell EC, Gill DS, Iona X, Mulley JC, Scheffer IE (2006) De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurol 5: 488-92
- Bignon YJ, Chen Y, Chang CY, Riley DJ, Windle JJ, Mellon PL, Lee WH (1993) Expression of a retinoblastoma transgene results in dwarf mice. Genes Dev 7: 1654-62
- Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26: 1527-37

- Bouwman P, Drost R, Klijn C, Pieterse M, Gulden H, Song JY, Szuhai K, Jonkers J (2011) Loss of p53 partially rescues embryonic development of Palb2 knockout mice but does not foster haploinsufficiency of Palb2 in tumour suppression. J Pathol 224: 10-21
- Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, Kajiwara Y, Yang M, Katz AM, Scattoni ML, Harris MJ, Saxena R, Silverman JL, Crawley JN, Zhou Q, Hof PR, Buxbaum JD (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1: 15
- Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255-6
- Braun BR, Kassavetis GA, Geiduschek EP (1992) Bending of the Saccharomyces cerevisiae 5S rRNA gene in transcription factor complexes. J Biol Chem 267: 22562-9
- Brun I, Sentenac A, Werner M (1997) Dual role of the C34 subunit of RNA polymerase III in transcription initiation. Embo J 16: 5730-41
- Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D, et al. (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 344: 540-1
- Buratowski S, Zhou H (1992) A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71: 221-30
- Burglen L, Lefebvre S, Clermont O, Burlet P, Viollet L, Cruaud C, Munnich A, Melki J (1996) Structure and organization of the human survival motor neurone (SMN) gene. Genomics 32: 479-82
- Burglen L, Seroz T, Miniou P, Lefebvre S, Burlet P, Munnich A, Pequignot EV, Egly JM, Melki J (1997) The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease. Am J Hum Genet 60: 72-9
- Burn J (1986) Williams syndrome. J Med Genet 23: 389-95
- Cabarcas S, Watabe K, Schramm L (2010) Inhibition of U6 snRNA Transcription by PTEN. Online J Biol Sci 10: 114-125
- Callewaert B, Malfait F, Loeys B, De Paepe A (2008) Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol 22: 165-89
- Camarero G, Tyrsin OY, Xiang C, Pfeiffer V, Pleiser S, Wiese S, Gotz R, Rapp UR (2006) Cortical migration defects in mice expressing A-RAF from the B-RAF locus. Mol Cell Biol 26: 7103-15
- Capon F, Lo Cicero S, Levato C, Novelli G, Dallapiccola B (1995) De novo deletions of the 5q13 region and prenatal diagnosis of spinal muscular atrophy. Prenat Diagn 15: 93-4
- Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Brauninger M, Eilken HM, Rieger MA, Schroeder TT, Huttner WB, Brakebusch C, Gotz M (2006) The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9: 1099-107
- Carter TA, Bonnemann CG, Wang CH, Obici S, Parano E, De Fatima Bonaldo M, Ross BM, Penchaszadeh GK, Mackenzie A, Soares MB, Kunkel LM, Gilliam TC (1997) A multicopy transcription-repair gene, BTF2p44, maps to the SMA region and demonstrates SMA associated deletions. Hum Mol Genet 6: 229-36
- Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132: 885-96

Carwright E.J. (2009), Transgenesis Techniques: Principles and Protocols

Chambon P (1975) Eukaryotic nuclear RNA polymerases. Annu Rev Biochem 44: 613-38

- Chen W, Bocker W, Brosius J, Tiedge H (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183: 345-51
- Chesnokov I, Chu WM, Botchan MR, Schmid CW (1996) p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 16: 7084-8
- Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162: 156-9
- Chow JC, Heard E (2010) Nuclear organization and dosage compensation. Cold Spring Harb Perspect Biol 2: a000604
- Chu WM, Wang Z, Roeder RG, Schmid CW (1997) RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 272: 14755-61
- Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7: e1000112
- Cifuentes-Diaz C, Frugier T, Tiziano FD, Lacene E, Roblot N, Joshi V, Moreau MH, Melki J (2001) Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152: 1107-14

Copp AJ (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11: 87-93

Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3: 97-110

- Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14: 312-6
- Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, Milner J, White RJ, Johnson DL (2003) p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. Embo J 22: 2810-20

Crook ZR, Housman D (2011) Huntington's disease: can mice lead the way to treatment? Neuron 69: 423-35

Crusio WE (2002) 'My mouse has no phenotype'. Genes Brain Behav 1: 71

- Daly NL, Arvanitis DA, Fairley JA, Gomez-Roman N, Morton JP, Graham SV, Spandidos DA, White RJ (2005) Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene 24: 880-8
- Dean N, Berk AJ (1987) Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography. Nucleic Acids Res 15: 9895-907
- DeSilva U, Elnitski L, Idol JR, Doyle JL, Gan W, Thomas JW, Schwartz S, Dietrich NL, Beckstrom-Sternberg SM, McDowell JC, Blakesley RW, Bouffard GG, Thomas PJ, Touchman JW, Miller W, Green ED (2002) Generation and comparative analysis of approximately 3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome. Genome Res 12: 3-15

- DiDonato CJ, Brun T, Simard LR (1999) Complete nucleotide sequence, genomic organization, and promoter analysis of the murine survival motor neuron gene (Smn). Mamm Genome 10: 638-41
- DiDonato CJ, Chen XN, Noya D, Korenberg JR, Nadeau JH, Simard LR (1997) Cloning, characterization, and copy number of the murine survival motor neuron gene: homolog of the spinal muscular atrophydetermining gene. Genome Res 7: 339-52
- Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23: 614-22
- Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocystderived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87: 27-45
- Dunn EA, Rader SD (2010) Secondary structure of U6 small nuclear RNA: implications for spliceosome assembly. Biochem Soc Trans 38: 1099-104
- Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93: 6191-6
- Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober MB, Nampoothiri S, Jouk PS, Steichen E, Berland S, Toutain A, Wise CA, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger AL (2011) Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science 332: 240-3
- Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L, Speicher MR, Kuehn R, Jaenisch R (2002) Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol 20: 455-9
- Elsea SH, Lucas RE (2002) The mousetrap: what we can learn when the mouse model does not mimic the human disease. Ilar J 43: 66-79
- Ema M, Mori D, Niwa H, Hasegawa Y, Yamanaka Y, Hitoshi S, Mimura J, Kawabe Y, Hosoya T, Morita M, Shimosato D, Uchida K, Suzuki N, Yanagisawa J, Sogawa K, Rossant J, Yamamoto M, Takahashi S, Fujii-Kuriyama Y (2008) Kruppel-like factor 5 is essential for blastocyst development and the normal selfrenewal of mouse ESCs. Cell Stem Cell 3: 555-67
- Emanuel BS, Shaikh TH (2001) Segmental duplications: an 'expanding' role in genomic instability and disease. Nat Rev Genet 2: 791-800
- Emmett MR, Andren PE, Caprioli RM (1995) Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry. J Neurosci Methods 62: 141-7
- Endrizzi M, Huang S, Scharf JM, Kelter AR, Wirth B, Kunkel LM, Miller W, Dietrich WF (1999) Comparative sequence analysis of the mouse and human Lgn1/SMA interval. Genomics 60: 137-51
- Endrizzi MG, Hadinoto V, Growney JD, Miller W, Dietrich WF (2000) Genomic sequence analysis of the mouse Naip gene array. Genome Res 10: 1095-102
- Epelbaum J (1992) Intrahypothalamic neurohormonal interactions in the control of growth hormone secretion. Ciba Found Symp 168: 54-64; discussion 64-8
- Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-6
- Fairley JA, Scott PH, White RJ (2003) TFIIIB is phosphorylated, disrupted and selectively released from tRNA promoters during mitosis in vivo. Embo J 22: 5841-50

Faller A., Schünke M. (1995), Der Körper des Menschen

- Farley FW, Soriano P, Steffen LS, Dymecki SM (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28: 106-10
- Fedorov LM, Haegel-Kronenberger H, Hirchenhain J (1997) A comparison of the germline potential of differently aged ES cell lines and their transfected descendants. Transgenic Res 6: 223-31
- Feinberg AP, Vogelstein B (1984) "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem 137: 266-7
- Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70: 358-68
- Felton-Edkins ZA, Fairley JA, Graham EL, Johnston IM, White RJ, Scott PH (2003) The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. Embo J 22: 2422-32
- Felton-Edkins ZA, Kondrashov A, Karali D, Fairley JA, Dawson CW, Arrand JR, Young LS, White RJ (2006) Epstein-Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III. J Biol Chem 281: 33871-80
- Felton-Edkins ZA, White RJ (2002) Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J Biol Chem 277: 48182-91
- Feng C, Xu W, Zuo Z (2009a) Knockout of the regulatory factor X1 gene leads to early embryonic lethality. Biochem Biophys Res Commun 386: 715-7
- Feng X, Papadopoulos MC, Liu J, Li L, Zhang D, Zhang H, Verkman AS, Ma T (2009b) Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 87: 1150-5
- Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64-71
- Filippidis AS, Kalani MY, Rekate HL (2010) Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 27: 27-33
- Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2: 1372-87
- Forni PE, Scuoppo C, Imayoshi I, Taulli R, Dastru W, Sala V, Betz UA, Muzzi P, Martinuzzi D, Vercelli AE, Kageyama R, Ponzetto C (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci 26: 9593-602
- Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-6
- Frugier T, Tiziano FD, Cifuentes-Diaz C, Miniou P, Roblot N, Dierich A, Le Meur M, Melki J (2000) Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 9: 849-58
- Fung YK, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657-61
- Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777-88

- Gardner RL (1983) Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol 24: 63-133
- Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Cote M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Neri C, Dube MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 107: 7863-8
- Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310: 1-26
- Geiduschek EP, Tocchini-Valentini GP (1988) Transcription by RNA polymerase III. Annu Rev Biochem 57: 873-914
- Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C, Novelli G, Dallapiccola B (1995) Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun 213: 342-8
- Gervin CM, McCulla A, Williams M, Ouhtit A (2003) Dysfunction of p53 in photocarcinogenesis. Front Biosci 8: s715-7
- Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421: 290-4
- Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77: 7380-4
- Gossler A, Doetschman T, Korn R, Serfling E, Kemler R (1986) Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci U S A 83: 9065-9
- Gottesfeld JM, Wolf VJ, Dang T, Forbes DJ, Hartl P (1994) Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 263: 81-4
- Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73: 1155-64
- Hamilton DL, Abremski K (1984) Site-specific recombination by the bacteriophage P1 lox-Cre system. Cremediated synapsis of two lox sites. J Mol Biol 178: 481-6
- Hannon GJ, Rivas FV, Murchison EP, Steitz JA (2006) The expanding universe of noncoding RNAs. Cold Spring Harb Symp Quant Biol 71: 551-64
- Hara K, Nakayama KI, Nakayama K (2006) Geminin is essential for the development of preimplantation mouse embryos. Genes Cells 11: 1281-93
- Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10: 551-64
- He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich RC, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman JA, Padgett RA, Symer DE, de la Chapelle A (2011) Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332: 238-40
- Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63: 1193A-1203A
- Hirsch HA, Gu L, Henry RW (2000) The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol Cell Biol 20: 9182-91

- Hoess RH, Abremski K (1985) Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol 181: 351-62
- Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24: 66-70
- Hu P, Samudre K, Wu S, Sun Y, Hernandez N (2004) CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression. Mol Cell 16: 81-92
- Huang LC, Wood EA, Cox MM (1991) A bacterial model system for chromosomal targeting. Nucleic Acids Res 19: 443-8
- Jaffer ZM, Chernoff J (2002) p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34: 713-7
- Jedrzejowska M, Milewski M, Zimowski J, Borkowska J, Kostera-Pruszczyk A, Sielska D, Jurek M, Hausmanowa-Petrusewicz I (2009) Phenotype modifiers of spinal muscular atrophy: the number of SMN2 gene copies, deletion in the NAIP gene and probably gender influence the course of the disease. Acta Biochim Pol 56: 103-8
- Jiang W, Ananthaswamy HN, Muller HK, Kripke ML (1999) p53 protects against skin cancer induction by UV-B radiation. Oncogene 18: 4247-53
- Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24: 71-80
- Johnson SA, Dubeau L, Kawalek M, Dervan A, Schonthal AH, Dang CV, Johnson DL (2003) Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. Mol Cell Biol 23: 3043-51
- Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, Bronneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Bottger T, Braun T, Seibler J, Bruning JC (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13: 434-46
- Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114: 172-81
- Kaiser AD, Hogness DS (1960) The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol 2: 392-415
- Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299-301
- Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34: 460-3
- Kassavetis GA, Braun BR, Nguyen LH, Geiduschek EP (1990) S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60: 235-45
- Kassavetis GA, Joazeiro CA, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA (1992) The role of the TATAbinding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71: 1055-64
- Kassavetis GA, Kumar A, Letts GA, Geiduschek EP (1998) A post-recruitment function for the RNA polymerase III transcription-initiation factor IIIB. Proc Natl Acad Sci U S A 95: 9196-201

Kassavetis GA, Nguyen ST, Kobayashi R, Kumar A, Geiduschek EP, Pisano M (1995) Cloning, expression, and function of TFC5, the gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc Natl Acad Sci U S A 92: 9786-90

Kaufman M.H., Bard J.B.L. (1999), The anatomical basis of mouse development

- Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, Curran T, Ranscht B, Feng GS (2007) Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 27: 6706-17
- Kelter AR, Herchenbach J, Wirth B (2000) The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Genomics 70: 315-26
- Kilby NJ, Snaith MR, Murray JA (1993) Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413-21
- Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76: 8-32
- Korinthenberg R, Sauer M, Ketelsen UP, Hanemann CO, Stoll G, Graf M, Baborie A, Volk B, Wirth B, Rudnik-Schoneborn S, Zerres K (1997) Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region. Ann Neurol 42: 364-8
- Kuehn HS, Caminha I, Niemela JE, Rao VK, Davis J, Fleisher TA, Oliveira JB (2011) FAS Haploinsufficiency Is a Common Disease Mechanism in the Human Autoimmune Lymphoproliferative Syndrome. J Immunol
- Kumar A, Kassavetis GA, Geiduschek EP, Hambalko M, Brent CJ (1997) Functional dissection of the B" component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription. Mol Cell Biol 17: 1868-80
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-5
- Lakso M, Sauer B, Mosinger B, Jr., Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89: 6232-6
- Larminie CG, Cairns CA, Mital R, Martin K, Kouzarides T, Jackson SP, White RJ (1997) Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. Embo J 16: 2061-71
- Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9: 3982-91
- Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14: 845-57
- Lee JA, Lupski JR (2006) Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52: 103-21
- Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-65
- Leresche A, Wolf VJ, Gottesfeld JM (1996) Repression of RNA polymerase II and III transcription during M phase of the cell cycle. Exp Cell Res 229: 282-8

Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351: 453-6

- Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ (2005) Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105: 635-7
- Liang YH, Chen XL, Yu ZS, Chen CY, Bi S, Mao LG, Zhou BL, Zhang XN (2009) Deletion analysis of SMN1 and NAIP genes in Southern Chinese children with spinal muscular atrophy. J Zhejiang Univ Sci B 10: 29-34
- Lobo SM, Hernandez N (1989) A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Cell 58: 55-67
- Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMAdetermining gene SMN. Hum Mol Genet 9: 259-65
- Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96: 6307-11
- Ma K, Zheng S, Zuo Z (2006) The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3. J Biol Chem 281: 21250-5
- Madkaikar M, Mhatre S, Gupta M, Ghosh K (2011) Advances in Autoimmune Lymphoproliferative Syndromes (ALPS). Eur J Haematol
- Magnuson T, Debrot S, Dimpfl J, Zweig A, Zamora T, Epstein CJ (1985) The early lethality of autosomal monosomy in the mouse. J Exp Zool 236: 353-60
- Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437-73
- Mann M, Wilm M (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sci 20: 219-24
- Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348-52
- Marshall L, White RJ (2008) Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer 8: 911-4
- Marth JD (1996) Recent advances in gene mutagenesis by site-directed recombination. J Clin Invest 97: 1999-2002
- Martianov I, Viville S, Davidson I (2002) RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 298: 1036-9
- Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78: 7634-8
- Matsui T, Ingelsson M, Fukumoto H, Ramasamy K, Kowa H, Frosch MP, Irizarry MC, Hyman BT (2007) Expression of APP pathway mRNAs and proteins in Alzheimer's disease. Brain Res 1161: 116-23
- Mattaj IW, Dathan NA, Parry HD, Carbon P, Krol A (1988) Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 55: 435-42

McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129: 1075-82

Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1: R17-29

- McFarland KN, Wilkes SR, Koss SE, Ravichandran KS, Mandell JW (2006) Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J Neurosci 26: 7885-97
- Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407: 796-801
- Melki J, Abdelhak S, Sheth P, Bachelot MF, Burlet P, Marcadet A, Aicardi J, Barois A, Carriere JP, Fardeau M, et al. (1990) Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 344: 767-8
- Melki J, Lefebvre S, Burglen L, Burlet P, Clermont O, Millasseau P, Reboullet S, Benichou B, Zeviani M, Le Paslier D, et al. (1994) De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264: 1474-7
- Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot MT, Antonarakis SE, Reymond A (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79: 332-41
- Merla G, Ucla C, Guipponi M, Reymond A (2002) Identification of additional transcripts in the Williams-Beuren syndrome critical region. Hum Genet 110: 429-38
- Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20: 665-71
- Michaud M, Arnoux T, Bielli S, Durand E, Rotrou Y, Jablonka S, Robert F, Giraudon-Paoli M, Riessland M, Mattei MG, Andriambeloson E, Wirth B, Sendtner M, Gallego J, Pruss RM, Bordet T (2010) Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38: 125-35
- Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469: 311-24
- Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631-42
- Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8: 1177-83
- Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C, DiCocco JM, Lorson C, Androphy EJ, Sendtner M, Podell M, Burghes AH (2003) A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160: 41-52
- Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE, Burghes AH (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9: 333-9
- Mortz E, Vorm O, Mann M, Roepstorff P (1994) Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. Biol Mass Spectrom 23: 249-61
- Muller W, Kuhn R, Rajewsky K (1991) Major histocompatibility complex class II hyperexpression on B cells in interleukin 4-transgenic mice does not lead to B cell proliferation and hypergammaglobulinemia. Eur J Immunol 21: 921-5

- Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335-50
- Nathans D, Smith HO (1975) Restriction endonucleases in the analysis and restructuring of dna molecules. Annu Rev Biochem 44: 273-93
- Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1: 841-5
- Nikitina TV, Tischenko LI, Schulz WA (2011) Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts. Biol Chem 392: 395-404
- Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372-6
- Northup JK, Matalon R, Lockhart LH, Hawkins JC, Velagaleti GV (2011) A Complex Chromosome Rearrangement, Der(6)Ins(6)(P21.1q25.3q27)Inv(6)(P25.3q27), In A Child With Cleidocranial Dysplasia. Eur J Med Genet
- O'Driscoll MC, Daly SB, Urquhart JE, Black GC, Pilz DT, Brockmann K, McEntagart M, Abdel-Salam G, Zaki M, Wolf NI, Ladda RL, Sell S, D'Arrigo S, Squier W, Dobyns WB, Livingston JH, Crow YJ (2010) Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet 87: 354-64
- Omran H, Ketelsen UP, Heinen F, Sauer M, Rudnik-Schoneborn S, Wirth B, Zerres K, Kratzer W, Korinthenberg R (1998) Axonal neuropathy and predominance of type II myofibers in infantile spinal muscular atrophy. J Child Neurol 13: 327-31
- Omrani O, Bonyadi M, Barzgar M (2009) Molecular analysis of the SMN and NAIP genes in Iranian spinal muscular atrophy patients. Pediatr Int 51: 193-6
- Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89: 6861-5
- Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. Faseb J 19: 76-8
- Pagano A, Castelnuovo M, Tortelli F, Ferrari R, Dieci G, Cancedda R (2007) New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. PLoS Genet 3: e1
- Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-5
- Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28: 1283-98
- Pearn J (1978) Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 15: 409-13
- Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99: 4489-94
- Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hedon B, Sarda P (2011) Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update
- Portelius E, Brinkmalm G, Tran AJ, Zetterberg H, Westman-Brinkmalm A, Blennow K (2009) Identification of novel APP/Abeta isoforms in human cerebrospinal fluid. Neurodegener Dis 6: 87-94

- Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A 81: 7161-5
- Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, Dickins RA, Kogan SC, Shroyer KR, Sordella R, Hannon GJ, Lowe SW (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145: 145-58
- Pruunsild P, Timmusk T (2005) Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 86: 581-93
- Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98: 600-3
- Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267-71
- Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5: 2
- Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16: 9-15
- Riessland M, Ackermann B, Forster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, Wirth B (2010) SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19: 1492-506
- Roberts DF, Chavez J, Court SD (1970) The genetic component in child mortality. Arch Dis Child 45: 33-8
- Roberts S, Miller SJ, Lane WS, Lee S, Hahn S (1996) Cloning and functional characterization of the gene encoding the TFIIIB90 subunit of RNA polymerase III transcription factor TFIIIB. J Biol Chem 271: 14903-9
- Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323: 445-8
- Rodrigues NR, Owen N, Talbot K, Ignatius J, Dubowitz V, Davies KE (1995) Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Hum Mol Genet 4: 631-4
- Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) Highefficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25: 139-40
- Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224: 234-7
- Rooms L, Reyniers E, Scheers S, van Luijk R, Wauters J, Van Aerschot L, Callaerts-Vegh Z, D'Hooge R, Mengus G, Davidson I, Courtens W, Kooy RF (2006) TBP as a candidate gene for mental retardation in patients with subtelomeric 6q deletions. Eur J Hum Genet 14: 1090-6
- Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, et al. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167-78
- Rudnik-Schoneborn S, Forkert R, Hahnen E, Wirth B, Zerres K (1996) Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of SMN gene deletion findings. Neuropediatrics 27: 8-15
- Rudnik-Schoneborn S, Wirth B, Rohrig D, Saule H, Zerres K (1995) Exclusion of the gene locus for spinal muscular atrophy on chromosome 5q in a family with infantile olivopontocerebellar atrophy (OPCA) and anterior horn cell degeneration. Neuromuscul Disord 5: 19-23
- Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-91
- Sakurai T, Dorr NP, Takahashi N, McInnes LA, Elder GA, Buxbaum JD (2011) Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions. Autism Res 4: 28-39
- Salahshourifar I, Halim AS, Sulaiman WA, Ariffin R, Naili Muhamad Nor N, Zilfalil BA (2011) De Novo Interstitial Deletion of 1q32.2-q32.3 Including the Entire IRF6 Gene in a Patient with Oral Cleft and Other Dysmorphic Features. Cytogenet Genome Res
- Samejima H, Torii C, Kosaki R, Kurosawa K, Yoshihashi H, Muroya K, Okamoto N, Watanabe Y, Kosho T, Kubota M, Matsuda O, Goto M, Izumi K, Takahashi T, Kosaki K (2007) Screening for Alagille syndrome mutations in the JAG1 and NOTCH2 genes using denaturing high-performance liquid chromatography. Genet Test 11: 216-27
- Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85: 5166-70
- Schaft J, Ashery-Padan R, van der Hoeven F, Gruss P, Stewart AF (2001) Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31: 6-10
- Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM (1998) Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 20: 83-6
- Schenkel J (2006) Transgene Tiere, 2. Auflage
- Schoenen F, Wirth B (2006) The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB. Biol Chem 387: 277-84
- Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311-22
- Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16: 2593-620
- Schramm L, Pendergrast PS, Sun Y, Hernandez N (2000) Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev 14: 2650-63
- Schrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, Sendtner M (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94: 9920-5
- Schwartz LB, Roeder RG (1974) Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase I from the mouse myeloma, MOPC 315. J Biol Chem 249: 5898-906
- Schwartz LB, Sklar VE, Jaehning JA, Weinmann R, Roeder RG (1974) Isolation and partial characterization of the multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in the mouse myeloma, MOPC 315. J Biol Chem 249: 5889-97
- Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246: 799-803
- Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxPflanked gene segments including deletion in germ cells. Nucleic Acids Res 23: 5080-1

Scott MR, Westphal KH, Rigby PW (1983) Activation of mouse genes in transformed cells. Cell 34: 557-67

- Scott PH, Cairns CA, Sutcliffe JE, Alzuherri HM, McLees A, Winter AG, White RJ (2001) Regulation of RNA polymerase III transcription during cell cycle entry. J Biol Chem 276: 1005-14
- Shah SM, Kumar A, Geiduschek EP, Kassavetis GA (1999) Alignment of the B" subunit of RNA polymerase III transcription factor IIIB in its promoter complex. J Biol Chem 274: 28736-44
- Sharp SJ, Schaack J, Cooley L, Burke DJ, Soll D (1985) Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem 19: 107-44
- Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144: 281-92
- Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688-90
- Smith LB, Hadoke PW, Dyer E, Denvir MA, Brownstein D, Miller E, Nelson N, Wells S, Cheeseman M, Greenfield A (2011) Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 90: 182-90
- Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-17
- Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74-82
- Stein T, Crighton D, Boyle JM, Varley JM, White RJ (2002) RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome. Oncogene 21: 2961-70
- Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150: 467-86
- Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132: 2093-102
- Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T, Meyers EN, Mishina Y, Blackshear PJ (2004) Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24: 6445-55
- Sutcliffe JE, Brown TR, Allison SJ, Scott PH, White RJ (2000) Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol Cell Biol 20: 9192-202
- Sutcliffe JE, Cairns CA, McLees A, Allison SJ, Tosh K, White RJ (1999) RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol Cell Biol 19: 4255-61
- Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31: 37-43
- Teichmann M, Seifart KH (1995) Physical separation of two different forms of human TFIIIB active in the transcription of the U6 or the VAI gene in vitro. Embo J 14: 5974-83
- Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503-12

Tian Y, Lei L, Minden A (2011) A key role for Pak4 in proliferation and differentiation of neural progenitor cells. Dev Biol

Torres R.M., Kühn R. (1997), Laboratory Protocols for Conditional Gene Targeting

- Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4
- Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23: 99-103
- Ulfig N, Bohl J, Neudorfer F, Rezaie P (2004) Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev 26: 307-15
- Ure JM, Fiering S, Smith AG (1992) A rapid and efficient method for freezing and recovering clones of embryonic stem cells. Trends Genet 8: 6
- Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17: 1091-6
- Valadkhan S, Jaladat Y (2010) The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 10: 4128-41
- Valeri A, Martinez S, Casado JA, Bueren JA (2011) Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin Transl Oncol 13: 215-21
- Van Camp G, Vits L, Coucke P, Lyonnet S, Schrander-Stumpel C, Darby J, Holden J, Munnich A, Willems PJ (1993) A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat Genet 4: 421-5
- Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212: 1707-15
- Viollet L, Bertrandy S, Bueno Brunialti AL, Lefebvre S, Burlet P, Clermont O, Cruaud C, Guenet JL, Munnich A, Melki J (1997) cDNA isolation, expression, and chromosomal localization of the mouse survival motor neuron gene (Smn). Genomics 40: 185-8
- Vitte JM, Davoult B, Roblot N, Mayer M, Joshi V, Courageot S, Tronche F, Vadrot J, Moreau MH, Kemeny F, Melki J (2004) Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload. Am J Pathol 165: 1731-41
- Walker FO (2007) Huntington's disease. Lancet 369: 218-28
- Wang C, Politz JC, Pederson T, Huang S (2003) RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 14: 2425-35
- Wang HD, Yuh CH, Dang CV, Johnson DL (1995) The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol Cell Biol 15: 6720-8
- Wang X, Chang Y, Li Y, Zhang X, Goodrich DW (2006) Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol 26: 4362-7
- Wang Z, Roeder RG (1996) TFIIIC1 acts through a downstream region to stabilize TFIIIC2 binding to RNA polymerase III promoters. Mol Cell Biol 16: 6841-50
- Wang Z, Roeder RG (1997) Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 11: 1315-26

- Wang Z, Roeder RG (1998) DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1: 749-57
- Weinmann R, Roeder RG (1974) Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci U S A 71: 1790-4
- Weller S, Gartner J (2001) Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Hum Mutat 18: 1-12
- Wen F, Song YZ (2010) [A case report of Alagille syndrome.]. Zhongguo Dang Dai Er Ke Za Zhi 12: 1005-1007
- Weser S, Bachmann M, Seifart KH, Meissner W (2000) Transcription efficiency of human polymerase III genes in vitro does not depend on the RNP-forming autoantigen La. Nucleic Acids Res 28: 3935-42
- Weser S, Gruber C, Hafner HM, Teichmann M, Roeder RG, Seifart KH, Meissner W (2004) Transcription factor (TF)-like nuclear regulator, the 250-kDa form of Homo sapiens TFIIIB", is an essential component of human TFIIIC1 activity. J Biol Chem 279: 27022-9
- White RJ (2004) RNA polymerase III transcription and cancer. Oncogene 23: 3208-16
- White RJ, Gottlieb TM, Downes CS, Jackson SP (1995) Cell cycle regulation of RNA polymerase III transcription. Mol Cell Biol 15: 6653-62
- White RJ, Stott D, Rigby PW (1990) Regulation of RNA polymerase III transcription in response to Simian virus 40 transformation. Embo J 9: 3713-21
- White RJ, Trouche D, Martin K, Jackson SP, Kouzarides T (1996) Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382: 88-90
- Wieser R, Fritz B, Ullmann R, Muller I, Galhuber M, Storlazzi CT, Ramaswamy A, Christiansen H, Shimizu N, Rehder H (2005) Novel rearrangement of chromosome band 22q11.2 causing 22q11 microdeletion syndrome-like phenotype and rhabdoid tumor of the kidney. Hum Mutat 26: 78-83
- Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336: 684-7
- Willis IM (1993) RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem 212: 1-11
- Willis IM, Moir RD (2007) Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem Sci 32: 51-3
- Winter AG, Sourvinos G, Allison SJ, Tosh K, Scott PH, Spandidos DA, White RJ (2000) RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc Natl Acad Sci U S A 97: 12619-24
- Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15: 228-37
- Wirth B, Brichta L, Hahnen E (2006) Spinal muscular atrophy and therapeutic prospects. Prog Mol Subcell Biol 44: 109-32
- Wirth B, Hahnen E, Morgan K, DiDonato CJ, Dadze A, Rudnik-Schoneborn S, Simard LR, Zerres K, Burghes AH (1995) Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Hum Mol Genet 4: 1273-84

- Wirth B, Schmidt T, Hahnen E, Rudnik-Schoneborn S, Krawczak M, Muller-Myhsok B, Schonling J, Zerres K (1997) De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am J Hum Genet 61: 1102-11
- Wishart TM, Huang JP, Murray LM, Lamont DJ, Mutsaers CA, Ross J, Geldsetzer P, Ansorge O, Talbot K, Parson SH, Gillingwater TH (2010) SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 19: 4216-28
- Woiwode A, Johnson SA, Zhong S, Zhang C, Roeder RG, Teichmann M, Johnson DL (2008) PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex. Mol Cell Biol 28: 4204-14
- Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25: 336-40
- Wolpert L (1999), Entwicklungsbiologie
- Workman E, Saieva L, Carrel TL, Crawford TO, Liu D, Lutz C, Beattie CE, Pellizzoni L, Burghes AH (2009) A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Hum Mol Genet 18: 2215-29
- Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8: 723-30
- Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134: 3827-36
- Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16: 995-1004
- Yazici N, Varan A, Akalan N, Soylemezoglu F, Zorlu F, Kutluk T, Akyuz C, Buyukpamukcu M (2011) Diencephalic tumors in children: a 30-year experience of a single institution. Childs Nerv Syst
- Yoshinaga SK, Boulanger PA, Berk AJ (1987) Resolution of human transcription factor TFIIIC into two functional components. Proc Natl Acad Sci U S A 84: 3585-9
- Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342: 435-8

11. Anhang

11.1 Abbildungen

Abbildung 40: Kontroll-PCR zur Überprüfung der DNA-Integrität von Nachkommen chimärer Mäuse

(A) Auf einem Agarosegel separierte PCR-Produkte. Dabei wurden die *Primer* 2093/2645 verwendet, die bei allen Tieren – auch bei Nachkommen ohne Keimbahntransmission - ein Produkt von 570 bp amplifizieren. (B.) PCR-Strategie zur Detektion von *Bdp1* Exon 2. M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen.

Abbildung 41: HTN-Cre-Titration von *Bdp1^{fl/fl}-*MEF

(A.I) Auf einem Agarosegel separierte PCR-Produkte, die nach Titration zur Ermittlung der adäquaten HTN-Cre-Konzentration von isolierter DNA amplifiziert wurden. Es wurden unterschiedliche Konzentrationen an rekominanten HTN-Cre-Protein getestet. Dafür wurden *Bdp1^{fi/fl}*-Zellen entweder *Mock* oder HNT-Cre-behandelt und für sieben Tage kultiviert (*Primer* 3719/3707; wt: 1265 bp, fl: 1031 bp, ko: 570 bp. (A.II) PCR-Strategie zur Detektion des *knockout*-Fragments. (B) Quantitative *Realtime*-PCR zur Bestimmung der *Bdp1*-Transkriptmenge nach erfolgter Behandlung mit unterschiedlichen HTN-Cre-Konzentrationen relativ zu *Rplp0*. Wt: wildtypisch, fl: gefloxtes Allel, ko: *knockout*, M: Marker, Ex: Exon, Neo^R: Neomycin-Resistenzgen, rote Dreiecke: loxP-Stellen, blaue Ovale: FRT-Stellen.

Abbildung 42: PCR von Bdp1-SMA-Tiere

Auf einem Agarosegel separierte PCR-Produkte zur Genotypisierung des **(A)** *Bdp1*-Genotyps (*Primer* 3719/3707). Dabei wird ein Wildtypfragment von 1031 bp und ein *Bdp1-knockout*-Fragment von 570 bp amplifiziert. **(B)** PCR zur Genotypisierung des *Smn*-Gens (*Primer* 3370, 3371, 3372), wobei ein Wildtypfragment von 1150 bp und ein *Smn-knockout*-Fragment von 950 bp amplifiziert wird. **(C)** PCR zur Genotypisierung des *SMN2*-Transgens (*Primer* 3375/3376), wobei ein Fragment von 476 bp detektiert wird. Das Transgen kann mittels PCR nicht auf Homozygotie getestet werden. Wt: wildtypisch, ko: *knockout*, Tg: Transgen, M: Marker

Epitop α2	15				
1 mfrrarlsvi	t pnvrpgvgtr	gsaapnpqrg	peaprppepa	tesapkpaep	tdvpavdsgg
61 aepgegapg:	sdektgdknn	aaesstlssa	ssqrrkrvss	tsslvqpsgs	apsqsrplst
121 vdhdapqpn	tpakekqpcs	dryriykark	lremlkeelr	kekkqwknkf	stnesgrppd
181 rskmtmrdf:	i yylpdnnpmt	ssveqekkpe	kslaptptrd	rqenqstqda	ndnedveeev
241 ddgpllvpr	/ kvaedgsiil	deesltvevl	rtkgpcvvee	ndpifergst	ttyssfrkny
301 yskpwsnket	dmfflaismv	gtdfsmigql	fphrarieik	nkfkreektn	gwridkafge
361 krpfdfdff	a hllq kvla ee	ekrkqkstkc	qslkekaskp	rknlkaktvt	seevnddpde
421 svnsnisdp	rsqndaetvn	eeespsssgq	hleqamleqd	qnqekkrrrn	qgeankqeat
				•	
				Epitop	α216

Abbildung 43: Epitope zur Generierung eines Bdp1-Antikörpers

Ausschnitt der Aminosäurenabfolge des murinen Bdp1-Proteins. Die Epitope für die Generierung eines spezifischen Antikörpers wurden so gewählt, dass sowohl das murine als auch das humane Protein detektiert wird. Das Epitop α 215 liegt sowohl in der humanen als auch in der murinen Sequenz zu Beginn von Exon 1; Epitop α 216 liegt innerhalb des murinen Exon 8 bzw. innerhalb des humanen Exon 9. Die Epitope sind im murinen Protein rot umrandet.

Abbildung 44: Austesten verschiedener Bdp1-Antikörper

Die Antikörper 6619 α 215, 6619 α 216, 6620 α 215, 6620 α 216 wurden mit verschiedenen Blockingmethoden (BSA bzw. Mich in TBST-Puffer) und auf unterschiedlichen Membrantypen (Nitrozellulose bzw. PVDF) getestet. Dabei wurde ein 8 % SDS-Gel verwendet und alle Antikörper 1:500 über Nacht inkubiert. 1: Proteinlysate *Bdp1^{wt/wt}*-MEF, 2: Proteinlysate *Cerebrum Bdp1^{wt/wt}*, M: Marker.

11.2 Sequenz des rekombinanten *Bdp1-Allels* (*Bdp1^{flneo}*) nach

homologer Rekombination (bis Exon 6)

Gekennzeichnet sind: Exons (rot), loxP-Stellen (grün), FRT-Stellen (blau), *Primer* (Genotypisierung, Sonden; mit internen Nummern markiert), Neomycin-Resistenzgen (viollett), Restriktionsschnittstellen (BamH I, Hind III, Nco I, Nde I), Sequenz: VNTI

1	TTATTTCTCA AATAAAGAGT	AATACTTATT TTATGAATAA	TATTAATGAA ATAATTACTT	GTCTTGATCT CAGAACTAGA	GTAACTTTAG CATTGAAATC	CTGGCTTGGA GACCGAACCT	ACTAGCTATT TGATCGATAA	TAGAACAGGC ATCTTGTCCG	TGTTTTCAAA ACAAAAGTTT	CTCATGTAGT GAGTACATCA	
101	TCCCCTGTCT AGGGGACAGA	CAGCCTTGGC GTCGGAACCG	CTCTGGAGTG GAGACCTCAC	ATGAAATTAC TACTTTAATG	AAGCATGTGC TTCGTACACG	TATTATTACT ATAATAATGA	CCTGGCATTT GGACCGTAAA	TGAGATGTCG ACTCTACAGC	TGAGCATCTA ACTCGTAGAT	CATCTATTTG GTAGATAAAC	
201	ATGCTCAGTA TACGAGTCAT	CTAAACTGCA GATTTGACGT	CTCCCACCTT GAGGGTGGAA	CTTCAGGTTT GAAGTCCAAA	CCTGTGTTTG GGACACAAAC	TTCTCTCTCT AAGAGAGAGA	CTCTCTCTCT GAGAGAGAGA	CTCTCTTCTG GAGAGAAGAC	AAAAGGTTTC TTTTCCAAAG	ATGTAGCAGA TACATCGTCT	
301	GGCTGGTTTG	CAATCTGATA GTTAGACTAT	CCTATTTTCC GGATAAAAGG	TTGTCAAGTT AACAGTTCAA	GCCCTACTGC CGGGATGACG	CAGTACCGCA GTCATGGCGT	GACTCTTCCA CTGAGAAGGT	TCACCCTTGA AGTGGGAACT	AATCTCATCA TTAGAGTAGT	TATTTAATAT ATAAATTATA	
401	ATTCTTGTTG TAAGAACAAC	ATCTTGTTCA TAGAACAAGT	TTTATTTTGT AAATAAAACA	ATTTTCTCCT TAAAAGAGGA	CTGTAACATA GACATTGTAT	CAATGTCTTA GTTACAGAAT	TTTATTGCTC AAATAACGAG	CGTTGATATC GCAACTATAG	TCTGGAAGCA AGACCTTCGT	ATAAATTTTG TATTTAAAAC	
501	CAACATTCGT GTTGTAAGCA	GTGCAAAATG CACGTTTTAC	TGGAGTATAA ACCTCATATT	TCATTTTTGA AGTAAAAACT	CAGTTTTTAT GTCAAAAATA	TTTAAAGTGT AAATTTCACA	ACAAAAGCCC TGTTTTCGGG	ATATAGTGGA TATATCACCT	TGTCCTGTGA ACAGGACACT	AGTGTTTCAT TCACAAAGTA	
601	GGCTTCTCTT CCGAAGAGAA	TGCGATTTCC ACGCTAAAGG	TCACACAGAA AGTGTGTCTT	TTTCAACCTT AAAGTTGGAA	TTTTTTTACT AAAAAAATGA	CAATTAAAAA GTTAATTTTT	TTTCTTGGCG AAAGAACCGC	GAGGTTGGGG CTCCAACCCC	GTTGGACAGA CAACCTGTCT	TGGCTCAGTA ACCGAGTCAT	
701	GATCCATTTC CTAGGTAAAG	CTGCTCTTCC GACGAGAAGG	AGTAGGTCCT TCATCCAGGA	AGTTTTGGTT TCAAAACCAA	CCCAGCACCA GGGTCGTGGT	GCATCAGGAG CGTAGTCCTC	TCTGATAACT AGACTATTGA	ACCTGTAACT TGGACATTGA	TTTCAGTCTC AAAGTCAGAG	CCGCAAACTC GGCGTTTGAG	
801	GCTCTCTCCA CGAGAGAGGGT	TACTCATAGT ATGAGTATCA	TAAAACTTTT ATTTTGAAAA	TTTTTTCCTA AAAAAAGGAT	GCAGGGTATG CGTCCCATAC	GTAGCCTATA CATCGGATAT	CATACCTGTA GTATGGACAT	ATCTCAACAT TAGAGTTGTA	TGAGCCCGTG ACTCGGGCAC	CAGGCAGGAG GTCCGTCCTC	
901	GATCAAGAGT CTAGTTCTCA	TGAAGGGCAG	CCTTAGCTAT GGAATCGATA	AAGAGGCCCT	GTCTCAAAAA CAGAGTTTTT	CCCTAAAACA GGGATTTTGT	AACAGGTTCT TTGTCCAAGA	ATGCTCTGGG TACGAGACCC	GATGCACTGG CTACGTGACC	TGCTAAGGCA ACGATTCCGT	
1001	CTACTCTCAT	ACTATTTTAT	CTTATTGTAA GAATAACATT	TTTTGAGGTA	AGTCTTGTCA	GATAGTCCAG CTATCAGGTC	GGCTCGGAAC	TTGTGACCTC	TTTATTTCGG	TTTCTCCAGT	
1101	GCTGGGATTG	CAGGCACGCA	CCACCATGCT	CTGCATTCTT	GCACACTTTG	ACTCTTCTCG	AAAACTCCTT	AATAGTTCAT	AAAAGATTCA	GTTAAGTAGG	
	TRACAL	Neol		GACGIAAGAA	COLORATION	BamH	TITIOROGAN		Lamagadada		
1201	AACCCCTACC	TGCAAGGTAC	CGTCACACGT	ACGGCTCTTA	CGTCCCAAAC	ACTCCCTAGG	ACCCAAGTTT	GGGATCGTGG	TGACCGCTCT	TTAATTTTCA	
1301	TTGAGCCGGG AACTCGGCCC	GTCCGTCCCC	TGGCGCACGC ACCGCGTGCG	TTTTAATCCC AAAATTAGGG	AGCACTTGGG TCGTGAACCC	AGGCAGAGGT TCCGTCTCCA	AGGCAGATTT TCCGTCTAAA	CTGAGTTCGA GACTCAAGCT	GGCCAGCCTG CCGGTCGGAC	GTCGACAGAG CAGCTGTCTC	
1401	TGAGTTCCAG ACTCAAGGTC	GACAGCCAGG CTGTCGGTCC	GCTACACAGA CGATGTGTCT	GAAACCCTGT CTTTGGGACA	CTCGAAACGG GAGCTTTGCC	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AAAAAAAAAA TTTTTTTTTT	AAAAAAAAGT TTTTTTTTCA	TTGACCTGGA AACTGGACCT	GGATTCAGCT CCTAAGTCGA	
1501	GCTTCCGCTC	TCTCTTTTCA AGAGAAAAGT	ACAACTCCCA TGTTGAGGGT	AGGTCTTACA TCCAGAATGT	AAGGAAAGAA TTCCTTTCTT	TATCTGTCTT ATAGACAGAA	CGAATCAAAA GCTTAGTTTT	AAAAAAAAAAA TTTTTTTTTTT	AAAAAAAAAA TTTTTTTTTA	CTCTGGTTTA GAGACCAAAT	
1601	CAGGTAACCG GTCCATTGGC	AAGCTACAGA TTCGATGTCT	GCGTTGCAGT CGCAACGTCA	TGCTATGGCT ACGATACCGA	CCCGGCGCCC GGGCCGCGGG	GGGGTCTGAC CCCCAGACTG	GTCATCGTCG CAGTAGCAGC	GCGCCGAATG CGCGGCTTAC	ATTACGCATT TAATGCGTAA	GCTTCCGGCG CGAAGGCCGC	Exon 1
1701	CCTTTCGCGA GGAAAGCGCT	GCCGGGACGC CGGCCCTGCG	GGGGAGGAGA CCCCTCCTCT	AACTTAGCTT TTGAATCGAA	TTAGTGTGGC AATCACACCG	AGGGTCATGA TCCCAGTACT	AGAGGAGGCG TCTCCTCCGC	GTGGCGGGAG CACCGCCCTC	AGCGGAGGAG TCGCCTCCTC	GCGGAGGGGG CGCCTCCCCC	
1801	CGCAAAACTG GCGTTTTGAC	CGGTAGCCAG GCCATCGGTC	CGCTGGACTG GCGACCTGAC	GTGGTTGTGG CACCAACACC	ACGTGTGGGA TGCACACCCT	GGGTGAGAGT CCCACTCTCA	GTCAGCCTGC CAGTCGGACG	GGGCAGCGGC CCCGTCGCCG	CGGGGGCTCTG GCCCCGAGAC	GGCTGAGCGC CCGACTCGCG	<u>3084</u>
1901	GGCCGCGGAG	CCGCCGCTCT GGCGGCGAGA	CGGCCCCCTG GCCGGGGGGAC	GCTCCGCCAT CGAGGCGGTA	GTTCCGCAGG CAAGGCGTCC	GCACGCCTTA CGTGCGGAAT	GCGTGAAGCC CGCACTTCGG	AAATGTCAGG TTTACAGTCC	CCTGGTGTAG GGACCACATC	GGACCAGGGG CCTGGTCCCC	
2001	CTCCGCCGC1 GAGGCGGCG3	CCCAATCCCC GGGTTAGGGG	AGCGTGGACC TCGCACCTGG	AGAGGCTCCC TCTCCGAGGG	AGGCCTCCGG TCCGGAGGCC	AGCCTGCCAC TCGGACGGTG	CGAGTCAGCT GCTCAGTCGA	CCGAAGCCAG GGCTTCGGTC	CGGAGCCCAC GCCTCGGGTG	AGATGTGCCT TCTACACGGA	
2101	GCAGTGGATT CGTCACCTAA	CCGGGGGGAGC GGCCCCCTCG	AGAACCCCAG TCTTGGGGTC	GAACAGGCTC CTTGTCCGAG	CCGGGAGCAG GGCCCTCGTC	GTAAGGTCTT CATTCCAGAA	CTATCAAGCT GATAGTTCGA	GAGCTGTTGG CTCGACAACC	ATTTTTACCA TAAAAATGGT	CGGAG <u>CACCT</u> GCCTC <u>GTGGA</u>	<u>3085</u>
2201	CTCCTGCAAC	Hindll AAGCTTTTGA	TTTGAGCTGG	ATGAAACCAC	TTCTAGTTGT	AGTTTTATTC	CGTGATCTGA	GGGTGCGACT	actatgactc	TGTCACGATC	
2301	GAGGACGTTG TTAAGATTCC	CGAGGAGACA	ARACTCGACC GTGTCTTGCC	TACTTTGGTG TTATCTTACA	AAGATCAACA GAGATGGGAA	TCAAAATAAG TCCAGGCTTA	GCACTAGACT AGGATTTTGA	CCCACGCTGA AGTCAAGAAT	TGATACTGAG GTAGACGCAC	ACAGTGCTAG CATCACTTGG	
2401	AATTCTAAGG AAATTTAATT	AATTGTCCTGT	CACAGAACGG GAGTACTTTA	AATAGAATGT CACTGAAAGC	ACTTTGGGAT	AGGTCCGAAT TTTCATTTTG	TCCTAAAACT TGGATATTTA	TCAGTTCTTA TTTTTGAAAG	CATCTGCGTG GAGAGCACCA	GTAGTGAACC GTGCTGATTT	
2501	TTTAAATTAA TTTTTTCCTCC	TTAACAGGAC	CTCATGAAAT TGATGCGGTT	GTGACTTTCG GAACCCAAGG	TGAAACCCTA CCTCATGGAG	AAAGTAAAAC TGTTAGGTAA	ACCTATAAAT ACGCCCTGCC	AAAAACTTTC CCTGAGTCAA	CTCTCGTGGT AGGGAAGAGG	CACGACTAAA CTTAGGTTAC	
2601	AAAAAGGAGG TTATTTTGGI	GAGGTGCGCC TCGAGTGCAT	ACTACGCCAA	CTTGGGTTCC	GGAGTACCTC	ACAATCCATT	TGCGGGACGG	GGACTCAGTT	TCCCTTCTCC	GAATCCAATG	
2701	AATAAAACCA			TGTAACTACG	TTTCCTGAAT	CAAGACGCCT	GGCTTTAGTG	ACAAATACCA	CATTTGAATT	TAGGACGCTC	
2801	CTACTTAGCT	AGCTCACGTA TAGCAAGTTT	TGAAGAAATA	TGTAACTACG ACATTGATGC TTCTCAGAGA	TTTCCTGAAT AAAGGACTTA AAATTTGTTC	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA	GGCTTTAGTG CCGAAATCAC GTTAGTACCT	ACAAATACCA TGTTTATGGT CCTTTAGGAC	CATTTGAATT GTAAACTTAA AATATTGTGA	TAGGACGCTC ATCCTGCGAG GATCAGATAG	
	CTACTTAGCT GATGAATCGA GATTACATAA	AGCTCACGTA TAGCAAGTTT ATCGTTCAAA ACTGCCTTAC	TGAAGAAATA AAGTAGGTTG TTCATCCAAC ATGCCACATG	TGTAACTACG ACATTGATGC TTCTCAGAGA AAGAGTCTCT GTAGAATAGT	TTTCCTGAAT AAAGGACTTA AAATTTGTTC TTTAAACAAG TCCCCCAAAT	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA	GGCTTTAGTG CCGAAATCAC GTTAGTACCT CAATCATGGA AAAAAATTTG	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTTCA	CATTTGAATT GTAAACTTAA AATATTGTGA TTATAACACT AAAAAAGGTG	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA	
2901	CTACTTAGCT GATGAATCGA GATTACATAA CTAATGTATT GTATGGTGTC	AGCTCACGTA TAGCAAGTTT ATCGTTCAAA ACTGCCTTAC TGACGGAATG ACAACTTTAG	TGAAGAAATA AAGTAGGTTG TTCATCCAAC ATGCCACATG TACGGTGTAC TCCTAGCAAT	TGTAACTACG ACATTGATGC TTCTCAGAGA AAGAGTCTCT GTAGAATAGT CATCTTATCA AGGGAGGCAG	TTTCCTGAAT AAAGGACTTA AAATTTGTTC TTTAAACAAG TCCCCCAAAT AGGGGGTTTA AGGCCACCCT	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA AATGATTTTT GCTTTAGGAC	GGCTTTAGTG CCGAAATCAC GTTAGTACCT CAATCATGGA AAAAAATTTG TTTTTTAAAC AGTCAGCCCC	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTTCA TAATGAAAAGT ATAGTGAGAA	CATTTGAATT GTAAACTTAA AATATTGTGA TTATAACACT AAAAAAGGTG TTTTTTCCAC CCCGTCTCAA	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	
2901 3001	CTACTTAGCT GATGAATCGA GATTACATAA CTAATGTATT GTATGGTGTC CATACCACAC AGTGGAGAAA	AGCTCACGTA TAGCAAGTTT ATCGTTCAAA ACTGCCTTAC TGACGGAATG ACAACTTTAG GTTGAAATC GGTGATGGTA	TGAAGAAATA AAGTAGGTTG TTCATCCAAC ATGCCACATG TACGGTGTAC TCCTAGCAAT AGGATCGTTA CAAATTAAAT	TGTAACTACG ACATTGATGC TTCTCAGAGA AAGAGTCTCT GTAGAATAGT CATCTTATCA AGGGAGGCAG TCCCTCCGTC ATGTGACGGG	TTTCCTGAAT AAAGGACTTA AAATTTGTTC TTTAAACAAG TCCCCCAAAT AGGGGGTTTA AGGCCACCCT TCCGGTGGGA TTAATATGGT	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA AATGATTTTT GCTTTAGGAC CGAAATCCTG GACTGTAGTG	GGCTTTAGTG CCGAAATCAC GTTAGTACCT CAATCATGGA AAAAAATTTG TTTTTTAAAAC AGTCAGCCCC TCAGTCGGGG TTTTATAATA	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTTCA TAATGAAAAGT ATAGTGAGAA TATCACTCTT TACAGAGGAA	CATTTGAATT GTAAACTTAA AATATTGTGA TTATAACACT AAAAAAGGTG TTTTTTCCAC CCCGTCTCAA GGGCAGAGTT AAAGCCAGTA	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGGT AAAACAAAAC	
2901 3001 3101	CTACTTAGCT GATGAATGGA GATTACATAA CTAATGTATT GTATGGTGTC CATACCACAC AGTGGAGAAA TCACCTCTT TTAAGTGACA	AGCTCACGTA TAGCAAGTTT ATCGTTCAAA ACTGCCTTAC TGACGGAATG ACAACTTAG GTGTGAAATC GGTGATGGTA CCACTACCAT GGGAGATGGT	TGAAGAAATA AAGTAGGTTG TTCATCCAAC ATGCCACATG TACGGTGTAC TCCTAGCAAT AGGATCGTTA CAAATTAAAT GTTTAATTTA ACAATTTATG	TGTAACTACG ACATTGATGC TTCTCAGAGA AAGAGTCTCT GTAGAATAGT CATCTTATCA AGGGAGGGCAG TCCCTCCGTC ATGTGACGGG TACACTGCCC TTTGCATAGT	TTTCCTGAAT AAAGACTTA AAATTTGTCC TTTTAAACAAG TCCCCCAAAT AGGGGGTTTA AGGCCACCCT TCCGGTGGGA TTAATATGGT TTAATATGGC AACTACAATTT	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA AATGATTTTT GCTTTAGGAC CGAAATCCTG GACTGTAGTG CTGACATCAC CTGCTGTTAA	GGCTTTAGTG CCGAAATCAC GTTAGTACCT CAATCATGGA AAAAAATTTG TTTTTAAAC AGTCAGCCCC TCAGTCGGGG TTTTATAATA AAAATATTAT TCAGAGGTTTG	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTCA TAATGAAAGT ATAGTAGAAAGT TATCACTGTT TACAGAGGAA ATGTCTCCTT TGCTGTGTGT	CATTTGAATT GTAAACTTAA AATATTGTGA TTATAACACT AAAAAAGGTG TTTTTTCCAC CCCGTCTCAA GGGCAGAGTT TTTCCGGTCAT TATTTTGGCA	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	
2901 3001 3101 3201	CTACTTAGCT GATGAATCGA GATTACATAA CTAATGTATT GTATGGTGTG CATACCACAG AGTGGAGAAA TCACCTCTT TTAAGTGACA AATTCACTGG	AGGTCACGTA TAGCAAGTTT ATCGTTCAAA ACTGCCTTAC TGACGGAATG ACAACTTTAG GGTGATGGTA GGGAGATGGT GGGAGATGGT CCCTTAACA TTCAACATTT	ТGAAGAAATA AAGTAGGTGG TTCATCCAAC ATGCCCACATG TACGGTGGTAC TCCTAGGGTAC CAAATTAAAT GTTTAATTTA ACAATTAATG TTTTAAATAC TTTTTTTAA	TGTAACTACG ACATTGATGA TTCTCAGAGA AAGAGTCTCT GTAGAATAGT CATCTTATCA AGGGAGGCAG TCCCTCCGTC ATGTGACGGG TACACTGCCC TTTGCATAGT AAACCTATCA	ΤΤΤΟΟΤΑΑΤ ΑΑΑGGΑCTΤΑ ΑΑΑΤΤΤGΤΤΟ ΤΤΤΑΑΑΑΔΑG ΤΟΟΟΟΛΑΑΤ ΑGGGGGTTΤΑ ΑGGCCACCT ΤΤΟΟΤΑΤΑΤΑΤΟ ΑΤΤΑΑΤΑΤGGT ΑΑΤΤΑΤΑΓΟΓΑΑΑ GTTTGAAAAT	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA AATGATTTTT GCTTTAGGAC GGAAATCCTG GACTGTAGTG CTGACATCAC CTTCTGTTAA GAAGACAATT TTTCTGCTTA	GGCTTTAGTG CCGAATCAC GTTAGTACCT CAATCATGGA AAAAATTTG TTTTTTAAAC AGTCAGGCCC TTTTATAATA AAAATATTAT TCAGGGGG TTTTATAATA AAAATATTAT TCAGAGTTTG AGTCTCAAAC GAATAGAAAT	ΑCΑΑΑΤΑCCΑ ΤGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTCA TAATGAAAGT ATAGTGAGAA ATGCTCCTT TACAGAGGAA ATGCTCCTT TGCTGTGTGT ACGACACACA ACCAGTATTG	CATTIGAATI GTAAACTTAA AATATIGIGA TTATAACACT AAAAAAGGTG TTTTITCCAC CCCGTCTCAA GGGCAGAGTT AAAGCCAGTA TTICGGTCAT TATTITGGCA GTCACTGCTC	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	
2901 3001 3101 3201 3301	СТАСТТАСТ GATGAATCGA GATTACATAR CTAATOTATT GTATGGTGTC CATACCACAG ACTGGAGAAA TCACCTCTTT TTAAGTGACA AATTCACTG GCACCATGAT AAATTTGTT	AGCTCACGTA TAGCAAGTTT ATCGTTCAAA ACCGCCTTAC TGACGGAATG ACCACCTTAG GGTGATGGTA CCACTACCAT GGGAGATGGT CCCCTCACCA TTCAACATTT AAGTTGTAAA AACTATATAG	ТБААБАААТА ААБТАБСТСААС АТБССАСАТБ ТАСБСТБАС ТССТАБСААТ АББАТСБТТА СБААТТААТТАТ ТСТТАААТТАТ ТТТТТТТА АЛААЛААТТАТ	ΤΟΤΑΛΟΤΑCΘ ΑCΑΤΤΘΑΤΟΟ ΤΤΟΤΟΑGΑΘΑ ΑΜΑΟΤΟΤΟΤ GTACGAATAGT CATCTTATCA AGGGAGGCAG TCCCTCCGTC ATGTCACGGG TACACTGCCCT AMACGTATCA ACTTGGATCT TGGACCTAGT TGACTGATAT	ТТТССТGААТ АААGGACTA АААТТТGTТС ТТТАААСААG ТСССССААТ АGGCGCCT АGGCGGGGGG ТТААТАТGG ААСАGCACTTT TTGTCGTAAA GTTTGAAAATT САААСТТТА	СААGАССССТ GTTCTGCGGA CTGGTGTCAA GACCACAGTT TTACTAAAAA AATGATTTTT GCTTTAGGAC CGAAATCCTG GACTGTAGGG CTGACATCAC CTTCTGTTAA GAAGACAATT TTTCTGGTTA AAAGACGAAT	GGCTTTAGTG CCGAAATCAC GTTAGTACCT CAATCATGGA AAAAAATTTG TTTTTTAAAC AGTCAGCCCC TCAGTCGGGG TTTTATAATA AAAATATTAT TCAGAGTTTG AGTCTCAAAC GAATAGAAAT CTTATCTTA ATACTCCTGA	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTCA TAATGAAAGT ATAGTGAGAA TATCACTCTT TACCAGAGAA ATGCTCCTT TGCTGTGTGT ACGACACACA ACCAGTATTG GGACATGCTTG	CATTTGAATT GTAAACATTA AATATTGTGA TATAAACACT AAAAAAGGTG TTTTTCCAC CCCGTCTCAA GGCAGAGATT AAAGCCAGTA ATTTTGGCA TTTTGGGTCAT TATTTTGGCA ATAAAACCGT GTCACTCGTC CAGTGACGAG AGAATATTTT	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	
2901 3001 3101 3201 3301 3401	СТАСТТАСТ GATGAATCGA GATTACATAA CTAATGTAT CTAATGTAT CTATGCTCT CATACCACAC AGTGGAGAAA TCACCTCTT TTAAGTGACA AATTCACTG GCACCATGAT CGTGGTACA TAGAGTACA	Α ΑGCTCACGTA TAGCAAGTTT ATCGTCAAA ACTGCCTTAC TGACGGAATG ACAACTTTAG GGTGATGTAA CCACTACCAT GGGAGATGGTA CCCCTCACCA TTCAACATTT AAGTTGTAAA AACTATATAG TTCAACATTT	ΤGΑλGAAATA ΑΑGTAGGTG ΤΤCΑΤCCAAC ΑΤGCCACATG ΤΑCGGTGTAC ΤCCTAGCAAT ΑGGATCGTTA ΑCAATTTAAT ΑCAATTTAAT ΤΤΤΤΤΤΤΑΑΑΤΑC ΤΤΤΤΤΤΤΑΑΑΤΑC ΤΤΤΤΤΤΤΑΑΑΤΑ CAAGCGATAA CTCCCGTAT	ΤΟΤΑΛΟΤΑCΘ ΑCΑΤΤΘΑΤΟΟ ΤΤΟΤΟCΑGAGA ΑΑGΑGTCΤΟΤ GTAGAATAGT CATCTTATCA AGGGAGGCAG TCCCTCCGTC ATGTGACGGG TACACTGCCC TTTGCATAGT TTGCACAGTATCA ACTGGATCT TGAACCTAGA TGATTGATAT TTATATGTGTG	ΤΤΤΟΤΑΛΑΤ ΑλΑGGACTAΑ ΑΑΑΤΤΤGTΤΟ ΤΤΤΑΑΑΑΔΑG ΤΟΟΟΟΛΑΑΤ ΑGGGGGTTΤΑ ΑGGCCACCT ΤΤΑΑΤΑΤΑΓGT ΑΑΤΤΑΤΑΓΑΤΑ GTTGAAAAT CAAACTTTA ΑΛΑΤΑΤΤΤΑΑΑΤΤ ΑΑΤΤΑΤΑΤΑΤ	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA AATGATTTTT TTACTAAAAA AATGATTTTT GCTTTAGGAC GGAATCCTG GACGCATCAC CTTCTGTTAA GAAGACAATT TTTCTGCTTA AAAGACGAAT CCCATAGGCC GGGTATCCCG TACATACACA	GGCTTTAGTG CCGAATCAC GTTAGTACCT GTTAGTACTTGA AAAAATTTG TTTTTTAAAC AGTCAGGCCCC TTTTATAATA AAAATATTAT TCAGTCGGGG TTTTATAATA AAAATATTAT CCGAGGTTTG GGCTCAAAC GAATAGAAAT CTTATCTTA ATACTCCGGA TATCAGGACT	ΑCΑΑΑΤΑCCΑ ΤGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTCA TAATGAAAGT ATAATGAAAGT TACCACTCTT TACAGAGGAA ATGTCTCCTT TGCTGTGTGT ACGACACCA ACCACTATTG TGGTCATAAC GACATGCTTG GACATGCTTG GACATGCTTG GACATGCTTG	САТТТGААТТ GTAAACTTAA AATATTGTGA TTATAACACT AAAAAAGGTG TTTTTCCAC CCCGTCTCAA GGGCAGAGAGT AAACCGACAGTA TTATGGTCAT TATTTGGCA ATAAAACCGT CAGTGACGAG AGAATATTT TCTTATAAAA	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	
2901 3001 3101 3201 3301 3401 3501	ΟΤΑCΤΤΑGΤ GATGAATCGA GATTACATAA GATTACATAA GTATGGTGTC CATACCACA ACTGGGGAAA AATTCACTGT TTAAGTGACA AATTTGTT TTTAAAACAA TAGAGTACTA GTAGCTTTGA GTAGCTTTGA GTAGCTTTGA	AGGTCACGTA TAGCAGGTT ATCGTCAAA ACTGCCTTAC TGACGGAATG ACAACTTTAG GGTGATGGTA CCACTACAT GGGAGATGGT CCCTCTACCA TTCAACATT AAGTTGTAAA AACTATATAG TTGATATATC CATATACTAT	ΤGAAGAAATA ΑΑGTAGGTG ΤΤCATCCAAC ΑΤGCCACATG ΤΑCGATGTAC ΤCCTAGCAAT ΑGGATCGTTA CGAATCAATTAAT ΑCAATTATAT ΤΤΤΤΤΤΤΑΑ ΑΑΑΑΑΑΑΤΑC ΤΤΤΤΤΤΤΤΑΑ CAAGCCATAA CTCCGTATT GCAAGCCATAA CTTCCGTATT	ΤΟΤΑΛΟΤΑCΕ ΑCΑΤΤΘΑΤΟΟ ΤΤΟΤCΑGAGA ΑΛΑΔΟΤΟΤΟΤ GTACAATAGT CATCTTATCA AGGGAGGCAG TCCCTCCGTCC ATGTCACGGC TACACTGCCC TACACTGCCC ACTTGGATCT AAACGTATCA ACTTGGATCT TGAACCAATA TATATGCTGG ATATACACAC	ΤΤΤΟΤΟΚΑΑΤ ΑΛΑΓΤΥΤΤΑ ΑΛΑΓΤΥΤΟΓΤΟ ΤΤΤΑΑΑCAAG ΤΟΟΟΟΛΑΑΤ ΑGGOGOTTA ΑGGOGOTTA ΑGGOCACCCT ΤΟCOGTGGGA ΤΤΑΑΤΑΤΟΓΟ ΑΛΟΑΘΟΑΤΤΤ ΤΤΤΟΓΑΑΑΑΤ ΟΤΤΓΟΑΛΑΑΤ ΤΤΑΑΤΑΑΑΤΤ ΑΛΑΤΟΓΓΑΤΑ ΑΛΤΑΤΟΓΟΛΑΑΤ ΑΛΑΤΟΓΟΛΑΑΤ ΑΛΑΤΟΓΟΛΑΑΤ ΑΛΑΤΟΓΟΛΑΑΤ	CAAGACGCCT GTTCTGCGGA CTGGTGTCAA AATGATTITT GCTTAGGAC GACACCAGT GACATCCTG GACATCCTG GACATCATG CTGCGTAAGGG CTGCGTAAGGAATT TTTCTGCTTA AAAGACAATT TTCTGCCTA AAAGCGAAT CCCATAGGCC GGGTATCCGG TACATACACA ATGTATGACC	GGCTTTAGTG CCGAAATCAC GTTAGTACCT GTTAGTACCT CAATCATTGA AAAAAATTTG TTTTTTAAAC AGTCAGCCCC TTTTATAATA AAAATATTAT TCAGAGTTCAAAC GAATAGAAAT CTTATCATAA ATAGTCCTGA TATCAGGACT CATATAGTTT GTATATCATA ACCAGGCCCA	ACAAATACCA TGTTTATGGT CCTTTAGGAC GGAAATCCTG ATTACTTCA TAATGAAAGT ATACTGACACA TATCACTGACAA ATGCTCCTT TGCTGTGTGT ACGACACACA ACCAGTATG CGGCATAAC GACATGCTTG CTGTACGACA CCAGATATG CTGGTCATAC CCAGACAAACC CCAGATATG	CATTTGAATT GTAAACATTA AATATTGTGA TATAACACT AAAAAGGTG TTTTTCCAC CCCGTCTCAA GGCAGAGATT TTTTCGGCA ATAAACCGT GTCACTGCTC CAGTGACGAG AGAATATTTT TCTTATAAAA GGGGGACAAG GTGGTGTTCTT	TAGGACGCTC ATCCTGCGAG GATCAGATAG CTAGTCTATC ATGAGACCGA TACTCTGGCT AAAACAAAAC	

3601	AGTTTCATCT	AGCTCAGGTT	GACCTAGAAC	TCTCCATGCA	TGAAAAGACA	CCTTTAAGTT	TCTCATCCAC	CTGCTTTACC	TTCTGAATGC	TGAGATTACA		
3701	GATATGTGCC CTATACACGG	ATCATGCCTG TAGTACGGAC	GTGTATGTAG CACATACATC	TGCTGAGTAT ACGACTCATA	GAAAGCCAGG CTTTCGGTCC	GCTCTGCGTG CGAGACGCAC	CCATTCAGGC GGTAAGTCCG	TCTGTGCCAG AGACACGGTC	CTTAACTACA GAATTGATGT	TCCCTGGTCC AGGGACCAGG		
3801	TTGTTCCTTA AACAAGGAAT	TTTGATGAGA AAACTACTCT	GCATTCATTC CGTAAGTAAG	GTTTTGCTAG CAAAACGATC	TTGTAGAAAC AACATCTTTG	CAACGGAGTA GTTGCCTCAT	TACATTTAAC ATGTAAATTG	ATATAAGATG TATATTCTAC	CCAGTGATTG GGTCACTAAC	ATGTGTTACA TACACAATGT		
3901	TTCTAAGAGC AAGATTCTCG	TACACTAGAG ATGTGATCTC	TTCTAGGGAC AAGATCCCTG	CGAACCTCAG GCTTGGAGTC	GGCCTCGAGC CCGGAGCTCG	ATGTCAGCCT TACAGTCGGA	GAGTTTTATC CTCAAAATAG	TATCTTCAGC ATAGAAGTCG	TTTAAGGAGA AAATTCCTCT	GAGTTTAAAA CTCAAATTTT		
4001	GAGATAATGT CTCTATTACA	TATATGTTAA ATATACAATT	AGCAGCTTCT TCGTCGAAGA	СТТТТТАТАТ САААААТАТА	GGAACTAATA CCTTGATTAT	AAATATGATA TTTATACTAT	AAAGTACACT TTTCATGTGA	TAAATTATTC ATTTAATAAG	ATTCTGTTTC TAAGACAAAG	СТТТТААААТ БААААТТТТА		
4101	TATCTATTAT ATAGATAATA	TGTTGTTATT ACAACAATAA	TTATGTGCAT AATACACGTA	TGGTGTTTTT ACCACAAAAA	CCCATATTTA GGGTATAAAT	TGTCTGTGTG ACAGACACAC	AGGGTATTGG TCCCATAACC	TTACCCTGGA AATGGGACCT	ACTGGAATTA TGACCTTAAT	CAAACAGCTG GTTTGTCGAC		
4201	CTCTGCTGGT GAGACGACCA	TTTAGGAATT AAATCCTTAA	GAACCTGGGC CTTGGACCCG	CCCTCTGGAA GGGAGACCTT	GAACAGCCTT CTTGTCGGAA	GCTCTTAACC CGAGAATTGG	ACTGAATCAT TGACTTAGTA	CTCTCCAGCC GAGAGGTCGG	CCTATACTTC GGATATGAAG	CTTTTTAACA GAAAAATTGT		
4301	TTTTAAATTT AAAATTTAAA	CAACTAATAC GTTGATTATG	AAAGTAATTG TTTCATTAAC	TACATGTTAT ATGTACAATA	GGAGTACAAT CCTCATGTTA	GTGTACAATG CACATGTTAC	TGTTATTTCA ACAATAAAGT	ATATGTATTT TATACATAAA	ACAATGTGTC TGTTACACAG	ATGTTAATGG TACAATTACC		
4401	TATCACTTTA ATAGTGAAAT	AAAGTTTATT TTTCAAATAA	ATTTCTTTGT TAAAGAAACA	GTAAAGAGCA CATTTCTCGT	TTTTAGATCA AAAATCTAGT	TTATTATTAT AATAATAATA	ATATTTTGTT TATAAAACAA	AAGGTTTTTT TTCCAAAAAA	TTTTTTTAA AAAAAAAATT	ATTTTATGTA TAAAATACAT		
4501	TATGAGTACA ATACTCATGT	CTGTTGCTGT GACAACGACA	CTTCAGACAC GAAGTCTGTG	TCCAGAAGAG AGGTCTTCTC	GGCATCAGAT CCGTAGTCTA	CTCATTACAG GAGTAATGTC	ATGCCTGTGA TACGGACACT	GCCACCATGT CGGTGGTACA	GGTTGCTGGG CCAACGACCC	AATTGAACTC TTAACTTGAG		
4601	AGGACCTCTG TCCTGGAGAC	GAAGAACAGT CTTCTTGTCA	GCTCTTAACC CGAGAATTGG	ACTGAGTCAT TGACTCAGTA	CTCTCCAGCT GAGAGGTCGA	CATTCTAGAC GTAAGATCTG	TTTTTTAAAA AAAAAATTTT	TAAAGATTTA ATTTCTAAAT	TTTATTTGCT AAATAAACGA	TTACATGTGT AATGTACACA		
4701	GAGCACACTG CTCGTGTGAC	TAGCTGTACA ATCGACATGT	GATGGTTGTG CTACCAACAC	AGCCTTCATG TCGGAAGTAC	TGGTTGTTGG ACCAACAACC	GAATTGCTCT CTTAACGAGA	GCTTGCTCTG CGAACGAGAC	GACCCCACTT CTGGGGTGAA	GGCCCCTCTT CCGGGGGAGAA	GCTCTGGTCA CGAGACCAGT		
4801	ACCCCGCTCT TGGGGCGAGA	CTCAGTCCCC GAGTCAGGGG	GCTTGTTCTG CGAACAAGAC	GCCCAAAGAT CGGGTTTCTA	TGATTGATTG ACTAACTAAC	ATTGATTTTT TAACTAAAAA	GGTTTTTCAA CCAAAAAGTT	GATAGGGTTT CTATCCCAAA	CTCTGTGTAG GAGACACATC	CCTTGGCTGT GGAACCGACA		
4901	CTTGGAACTC GAACCTTGAG	ACTCTGTAGA TGAGACATCT	CCAGGCTGGC GGTCCGACCG	CTCAAACTCA GAGTTTGAGT	GAAATCCCCC CTTTAGGGGG	TGCCTCTGCC ACGGAGACGG	TCCCGAGTGC AGGGCTCACG	TGGGATTAAA ACCCTAATTT	GGCGTGCGCC CCGCACGCGG	ACCACTGCCC TGGTGACGGG		
5001	AGTGATTTAT TCACTAAATA	TATACATAAG ATATGTATTC	TACATTGTAG ATGTAACATC	CTGACTTTAA GACTGAAATT	ATGCACCAGA TACGTGGTCT	AGAAGGAGTC TCTTCCTCAG	AGATCTCATT TCTAGAGTAA	ACGGGTTGTC TGCCCAACAG	GTGAGCCACC CACTCGGTGG	ACGTGGTTGC TGCACCAACG		
5101	TGGGATTTGA ACCCTAAACT	ACTCAGGACT TGAGTCCTGA	TTCGGATGAG AAGCCTACTC	CAGTCAGTGC GTCAGTCACG	TCTTAACCAC AGAATTGGTG	TGAGCCATCT ACTCGGTAGA	TGCCAGCCCC ACGGTCGGGG	TAGATCTTTT ATCTAGAAAA	TAATAACTCT ATTATTGAGA	CTTGTGTTAA GAACACAATT		
5201	AAAATGTTGT TTTTACAACA	CAACCAAGTT GTTGGTTCAA	ATCCTACCAC TAGGATGGTG	AATATAGTGC TTATATCACG	ATTATTAGAA TAATAATCTT	ATAAATGTTA TATTTACAAT	ACTCTAGTCA TGAGATCAGT	GCTATATTCC CGATATAAGG	TGTTCTCTTT ACAAGAGAAA	CTTTTCCTTT GAAAAGGAAA		
5301	TCTTGTCTGT AGAACAGACA	TTGTTTCCTT AACAAAGGAA	TTCTATTTTG AAGATAAAAC	AGACAGGGTT TCTGTCCCAA	TCACTGTGTA AGTGACACAT	ACTTTGGTGG TGAAACCACC	CTCTGGAACT GAGACCTTGA	CTCTTTGTAG GAGAAACATC	AGCAGCTGGG TCGTCGACCC	CTCAGTCCTG GAGTCAGGAC		
5401	TATCTGCCTC ATAGACGGAG	CCCAGTGCTG GGGTCACGAC	TGACTAGAGG ACTGATCTCC	AGTGCGTCAC TCACGCAGTG	CGTGCTGGGC GCACGACCCG	TTTTTCTTAC AAAAAGAATG	ACTTTCTAAA TGAAAGATTT	TGTTTTATGT ACAAAATACA	ATATGGGTGT TATACCCACA	TTTGCCTTTG AAACGGAAAC		
5501	TGTGTGTCAG	Ndel TGCACCATAT	бсстветесс	Ncol CATGGTAACT	AGAAGACTTT	GGATCTCCTG	GAACTAGAGT	TATAGACAGT	TGTGAGCGGC	TATCTGGGTA		
5601	ACACACAGTC CTGGAAATTG	ACGTGGTATA AACCCAAGTT	CGGACCACGG TTATGGTAGA	GTACCATTGA GCAGCCAGTG	TCTTCTGAAA CTCTTAACCT	CCTAGAGGAC TGAGTTCATG	CTTGATCTCA ACTCCAGCTC	ATATCTGTCA CATTTCTGAG	CGATTTATAT	CTAATCTGTA	3838	
5701	GACCTTTAAC CTATAGCCAA	TTGGGTTCAA TATTTGATTT	AATACCATCT AAAGTGATTA	CGTCGGTCAC GATGCTTTGT	GAGAATTGGA TTGTTTGAGC	ACTCAAGTAC TAGGGTCTCA	TGAGGTCGAG TGTAGCTTAA	GTAAAGACTC GTTAGCTTCA	GCTAAATATA GACTCACTGT	GATTAGACAT GTTGCTGAGG	<u></u>	
5801	GATATCGGTT ACAGTCTTGA	ATAAACTAAA ACTTCCAATC	TTTCACTAAT CTTCTGCCTC	CTACGAAACA CACTTCTGAG	AACAAACTCG TATTGAGGTT	ATCCCAGAGT ACAGACACTT	ACATCGAATT AGCAAAACAA	CAATCGAAGT AATCCAATTT	CTGAGTGACA TCTATCTAGT	CAACGACTCC TATTAAAAAT		
	TGTCAGAACT	Hindll	GAAGACGGAG	GIGAAGACTC	ATAACTCCAA	TGTCTGTGAA	TCGTTTTGTT	TTAGGTTAAA	AGATAGATCA	ATAATTITTA		
5901	ACCGAATGAT	AGCTTTGTTC TCGAAACAAG	ACACTGAATT	AAAACACAAA	CCCCCCAAAA	ACCAAAAAAA	ACCATGAAGT	AAGAATTCAG TTCTTAAGTC	GTATAACAAT	TACAAAAGAT		
6001	AACACGAATC	CTTGATTCAA	ACTTTTTCTT	ATTGTTAAAA	GGAATCTTAA	ATGTATATGA	CATAACTATT	AAACAAATGG	AGAAAATTTT	TGTCCTAAGT	2740	2740
6101	ACACACAAAC	ACTTATEGTE	TACACACGTC	CTCGGTCTTT	CAC AGTCTAG	AAACCTCAGT	CTCAATGTCC	ACAAACACTC	GGTGGACTAC	AGTCTCGACC	3/19	3718
6201	CTTCAGACTT	TTCATCTGCA	CGTGGATTCG	GGTCTTGGTC	GAGAGATCAG	AGACAAGCAA	ACAAAACTCT	GTCAGAATGG	ATCATCCATC	GAGTTCGACC		
6301	GGATCCATCG CCTAGGTAGC	ATGGCCATAG TACCGGTATC	CGGCCGCGGA GCCGGCGCCT	TCCATAACTT AGGTATTGAA	<u>CGTATAATGT</u> GCATATTACA	ATGCTATACG TACGATATGC	AAGTTATGAA TTCAATACTT	TTGGCCGCTC AACCGGCGAG	GACGAAGTTC CTGCTTCAAG	CTATTCCGAA GATAAGGCTT	5' loxP	<u>3101</u>
6401	GTTCCTATTC CAAGGATAAG	TCTAGAAAGT AGATCTTTCA	ATAGGAACTT TATCCTTGAA	CTACCGGGTA GATGGCCCAT	GGGGAGGCGC CCCCTCCGCG	TTTTCCCAAG AAAAGGGTTC	GCAGTCTGGA CGTCAGACCT	GCATGCGCTT CGTACGCGAA	TAGCAGCCCC ATCGTCGGGG	GCTGGCACTT CGACCGTGAA	5' FRT	
6501	GGCGCTACAC CCGCGATGTG	AAGTGGCCTC TTCACCGGAG	TGGCCTCGCA ACCGGAGCGT	CACATTCCAC GTGTAAGGTG	ATCCACCGGT TAGGTGGCCA	AGCGCCAACC TCGCGGTTGG	GGCTCCGTTC CCGAGGCAAG	TTTGGTGGCC AAACCACCGG	CCTTCGCGCC GGAAGCGCGG	ACTTCTACTC TGAAGATGAG		
6601	CTCCCCTAGT GAGGGGATCA	CAGGAAGTTT GTCCTTCAAA	CCCCCCCGCC GGGGGGGGCGG	CCGCAGCTCG GGCGTCGAGC	CGTCGTGCAG GCAGCACGTC	GACGTGACAA CTGCACTGTT	ATGGAAGTAG TACCTTCATC	CACGTCTCAC GTGCAGAGTG	TAGTCTCGTG ATCAGAGCAC	CAGATGGACA GTCTACCTGT		
6701	GCACCGCTGA CGTGGCGACT	GCAATGGAAG CGTTACCTTC	CGGGTAGGCC GCCCATCCGG	TTTGGGGCAG AAACCCCGTC	CGGCCAATAG GCCGGTTATC	CAGCTTTGCT GTCGAAACGA	CCTTCGCTTT GGAAGCGAAA	CTGGGCTCAG GACCCGAGTC	AGGCTGGGAA TCCGACCCTT	GGGGTGGGTC CCCCACCCAG	Noomu	cin
6801	CGGGGGGGGGG GCCCCCGCCC	CTCAGGGGGCG GAGTCCCCGC	GGCTCAGGGG CCGAGTCCCC	CGGGGGGGGG GCCCCGCCCG	GCCCGAAGGT CGGGCTTCCA	CCTCCGGAGG GGAGGCCTCC	CCCGGCATTC GGGCCGTAAG	TGCACGCTTC ACGTGCGAAG	AAAAGCGCAC TTTTCGCGTG	GTCTGCCGCG CAGACGGCGC	Resiste	nzgen
6901	CTGTTCTCCT GACAAGAGGA	CTTCCTCATC GAAGGAGTAG	TCCGGGCCTT AGGCCCGGAA	TCGACCAATT AGCTGGTTAA	CGCTGTCTGC GCGACAGACG	GAGGGCCAGC CTCCCGGTCG	TGTTGGGGTG ACAACCCCAC	AGTACTCCCT TCATGAGGGA	CTCAAAAGCG GAGTTTTCGC	GGCATGACTT CCGTACTGAA	Resiste	nzgen
7001	CTGCGCTAAG GACGCGATTC	ATTGTCAGTT TAACAGTCAA	TCCAAAAACG AGGTTTTTGC	AGGAGGATTT TCCTCCTAAA	GATATTCACC CTATAAGTGG	TGGCCCGCGG ACCGGGCGCC	TGATGCCTTT ACTACGGAAA	GAGGGTGGCC CTCCCACCGG	GCGTCCATCT CGCAGGTAGA	GGTCAGAAAA CCAGTCTTTT		
7101	GACAATCTTT	TTGTTGTCAA	HindIII GCTTGAGGTG	TGGCAGGCTT	GAGATCTGGC	CATACACTTG	AGTGACAATG	ACATCCACTT	тесстттстс	TCCACAGGTG		
7201	CTGTTAGAAA TCCACTCCCA	AACAACAGTT GGTCCAACTG	CGAACTCCAC CAGCCACCAT	ACCGTCCGAA GATTGAACAA	CTCTAGACCG GATGGATTGC	GTATGTGAAC ACGCAGGTTC	TCACTGTTAC TCCGGCCGCT	TGTAGGTGAA	ACGGAAAGAG GGCTATTCGG	AGGTGTCCAC CTATGACTGG		
7301	AGGTGAGGGT GCACAACAGA	CCAGGTTGAC CAATCGGCTG	GTCGGTGGTA CTCTGATGCC	CTAACTTGTT GCCGTGTTCC	CTACCTAACG GGCTGTCAGC	TGCGTCCAAG GCAGGGGGCGC	AGGCCGGCGA CCGGTTCTTT	ACCCACCTCT TTGTCAAGAC	CCGATAAGCC CGACCTGTCC	GATACTGACC GGTGCCC <u>TGA</u>		
7401	CGTGTTGTCT ATGAACTGCA	GTTAGCCGAC AGACGAGGCA	GAGACTACGG GCGCGGCTAT	CGGCACAAGG CGTGGCTGGC	CCGACAGTCG CACGACGGGC	CGTCCCCGCG GTTCCTTGCG	GGCCAAGAAA CAGCTGTGCT	AACAGTTCTG CGACGTTGTC	GCTGGACAGG	CCACGGGACT GAAGGGACTG	3220	
7501	TACTTGACGT GCTGCTATTG	TCTGCTCCGT GGCGAAGTGC	CGCGCCGATA CGGGGGCAGGA	GCACCGACCG TCTCCTGTCA	GTGCTGCCCG TCTCACCTTG	CAAGGAACGC CTCCTGCCGA	GTCGACACGA GAAAGTATCC	GCTGCAACAG ATCATGGCTG	TGACTTCGCC ATGCAATGCG	CTTCCCTGAC GCGGCTGCAT		
7601	CGACGATAAC ACGCTTGATC	CCGCTTCACG CGGCTACCTG	GCCCCGTCCT CCCATTCGAC	AGAGGACAGT CACCAAGCGA	AGAGTGGAAC AACATCGCAT	GAGGACGGCT CGAGCGAGCA	CTTTCATAGG CGTACTCGGA	TAGTACCGAC TGGAAGCCGG	TACGTTACGC TCTTGTCGAT	CGCCGACGTA CAGGATGATC		
	TGCGAACTAG	GCCGATGGAC	GGGTAAGCTG	GTGGTTCGCT	TTGTAGCGTA	GCTCGCTCGT	GCATGAGCCT	ACCTTCGGCC	AGAACAGCTA	GTCCTACTAG		

7701 TGGACGAAGA GCATCAGGGG CTCGCGCCAG CCGAACTGTT CGCCAGGCTC AAGGCGAGCA TGCCCGACGG CGAGGATCTC GTCGTGACCC ATGGCGATGC ACCTGCTTCT CGTAGTCCCC GAGCGCGGGTC GGCTTGACAA GCGGTCCGAG TTCCGCTCGT ACGGGCTGCC GCTCCTAGAG CAGCACTGGG TACCGCTACG

7801	CTGCTTGCCG GACGAACGGC	AATATCATGG TTATAGTACC	TGGAAAATGG ACCTTTTACC	CCGCTTTTCT GGCGAAAAGA	GGATTCATCG CCTAAGTAGC	ACTGTGGCCG TGACACCGGC	GCTGGGTGTG CGACCCACAC	GCGGACCGCT CGCCTGGCGA	ATCAGGACAT TAGTCCTGTA	AGCGTTGGCT TCGCAACCGA	
7901	ACCCGTG <mark>ATA</mark> TGGGCAC <u>TAT</u>	TTGCTGAAGA AACGACTTCT	GCTTGGCGGC CGAACCGCCG	GAATGGGCTG CTTACCCGAC	ACCGCTTCCT TGGCGAAGGA	CGTGCTTTAC GCACGAAATG	GGTATCGCCG CCATAGCGGC	CTCCCGATTC GAGGGCTAAG	GCAGCGCATC CGTCGCGTAG	GCCTTCTATC CGGAAGATAG	<u>3221</u>
8001	GCCTTCTTGA CGGAAGAACT	CGAGTTCTTC GCTCAAGAAG	TGAGCTCTAG ACTCGAGATC	AGCTCGCTGA TCGAGCGACT	TCAGCCTCGA AGTCGGAGCT	CTGTGCCTTC GACACGGAAG	TAGTTGCCAG ATCAACGGTC	CCATCTGTTG GGTAGACAAC	TTTGCCCCTC AAACGGGGGAG	CCCCGTGCCT GGGGCACGGA	
8101	TCCTTGACCC AGGAACTGGG	TGGAAGGTGC ACCTTCCACG	CACTCCCACT GTGAGGGTGA	GTCCTTTCCT CAGGAAAGGA	AATAAAATGA TTATTTTACT	GGAAATTGCA CCTTTAACGT	TCGCATTGTC AGCGTAACAG	TGAGTAGGTG ACTCATCCAC	TCATTCTATT AGTAAGATAA	CTGGGGGGGTG GACCCCCCAC	
8201	GGGTGGGGCA CCCACCCCGT	GGACAGCAAG CCTGTCGTTC	GGGGAGGATT CCCCTCCTAA	GGGAAGACAA CCCTTCTGTT	TAGCAGGCAT ATCGTCCGTA	GCTGGGGATG CGACCCCTAC	CGGTGGGCTC GCCACCCGAG	TATGGCTTCT ATACCGAAGA	GA ggcggaaa CT <u>CCGCCTTT</u>	GAACCAGCTG CTTGGTCGAC	<u>2158</u>
8301	GGGGAAGTTC CCCCTTCAAG	CTATTCCGAA GATAAGGCTT	GTTCCTATTC CAAGGATAAG	TCTAGAAAGT AGATCTTTCA	ATAGGAACTT TATCCTTGAA	CCTCGACCTG GGAGCTGGAC	CAGGCGGCCC GTCCGCCGGG	TAGA <mark>GTCGAC</mark> ATCT <u>CAGCTG</u>	TTGTAGTTAC AACATCAATG	TCATGGCAGT AGTACCGTCA	3' FRT 2093
8401	CGG CCCAGAGGGA	TAGCCCCAGT ATCGGGGTCA	GCTAGGAATG CGATCCTTAC	GAAGTATGAG CTTCATACTC	CTATCATTTA GATAGTAAAT	AAGCTGAGAA TTCGACTCTT	GGTTTTAAAG CCAAAATTTC	AAATGTTTAT TTTACAAATA	TGCAACTCTG ACGTTGAGAC	TTATAATCAA AATATTAGTT	
8501	CATAACTCTG GTATTGAGAC	AAAAGTTACT TTTTCAATGA	GTTTCTTATG CAAAGAATAC	TTTGTTTTTC AAACAAAAAG	TTTTTGTTCA AAAAACAAGT	GTGAGACCTT CACTCTGGAA	GCTATCTTAA CGATAGAATT	AACTAATATA TTGATTATAT	TAAAAGAGAT ATTTTCTCTA	GAGTCATGAT CTCAGTACTA	Even 2
8601	GTCTCTTTTC CAGAGAAAAG	TTTTTAATTC AAAAATTAAG	CAATAG <mark>TGAT</mark> GTTATC <mark>ACTA</mark>	GAAAAGACTG CTTTTCTGAC	GTGACAAAAA CACTGTTTTT	TAATGCTGCA ATTACGACGT	GAGTCCAGCA CTCAGGTCGT	CATTGTCCTC GTAACAGGAG	TGCTTCTTCA ACGAAGAAGT	CAGAGAAGAA GTCTCTTCTT	EXON 2
8701	AGCGAGTGTC TCGCTCACAG	AAGCACATCC TTCGTGTAGG	AGTCTTGTTC TCAGAACAAG	AGCCTTCTGC TCGGAAGACG	AGTGCCCCCT TCACGGGGGA	CACAGAGTCG GTGTCTCAGC	CCCCTTATCT GGGGAATAGA	ACAGTTGATC TGTCAACTAG	ACGATGCACC TGCTACGTGG	ACAGCCAAAC TGTCGGTTTG	
8801	CCTACTCCAG GGATGAGGTC	CTACAAGAGA GATGTTCTCT	AGCAGCCGTG TCGTCGGCAC	TTCAGACAGA AAGTCTGTCT	TACCGAATCT ATGGCTTAGA	ATAAGGCCCG TATTCCGGGC	AAAACTGAGG TTTTGACTCC	GAGATGTTGA CTCTACAACT	AAGAGGAACT TTCTCCTTGA	GAGAAAGGAG CTCTTTCCTC	<u>3789</u>
8901	AAGGTAAGTG	адтс <u>аастет</u>	AGTCCAGTCC	ATCCTCCATG	GGTCGACATA	acttcgtata	ATGTATGCTA	TACGAAGTTA	HindIII	GCCGGCCGCC	2645 24 Jave
9001	TTCCATTCAC ACCTCGAGCC	TCAC <u>TTGACA</u> TGACCCAGCC	TCAGGTCAGG TTGCTATGTA	TAGGAGGTAC CAGTTCAAGC	CATCCTGACC	TGAAGCATAT CAGCCTTGCT	TACATACGAT ATATACAATC	ATGCTTCAAT CAAGCCATCC	ATTCGAACGC TCCTGACCCA	GCCTTCCTAT	<u>2645</u> 3 IOXP
9101	TGGAGCTCGG GTACAATCCA	ACTGGGTCGG AGCCATCCTC	AACGATACAT CTGACCAGCC	GTCAAGTTCG TTGCTATGTA	GTAGGACTGG CAATCCAAGC	GTCGGAACGA CATCCTCCTG	TATATGTTAG ACCCAGCCTT	GTTCGGTAGG GCTATGTACA	AGGACTGGGT ATCCAAGCCA	CGGAAGGATA TCCTCCTGAC	
9201	CATGTTAGGT CCAGCCTTGC	TCGGTAGGAG TATGTACAAT	GACTGGTCGG CCAAGCCATC	AACGATACAT CTCCTGACCC	GTTAGGTTCG AGCCTTCCTA	GTAGGAGGAC TAGTCCAGCC	tgggtcggaa ttct gatagt	CGATACATGT TCAGTTGTAT	TAGGTTCGGT ATTTGAGTTT	AGGAGGACTG AGTGCATCTG	3707
9301	GGTCGGAACG AAGTTAATCT	ATACATGTTA GTTTATAAAA	GGTTCGGTAG TCTCTGTATA	GAGGACTGGG TAGAAACAAT	TCGGAAGGAT GGAAAAACAA	ATCAGGTCGG ATTTTCTACA	AAGA <u>CTATCA</u> AATGAAAGCC	AGTCAACATA AGAGGCCACC	AGATCGTTCA	TCACGTAGAC	<u>5707</u>
9401	TTCAATTAGA TGAGAGACTT	CAAATATTTT CATATATTAC	AGAGACATAT CTTCCAGATA	ATCTTTGTTA ACAATCCAAT	CCTTTTTGTT GACGTAAGTA	TAAAAGATGT AAATTCATTT	TTACTTTCGG ATGCTTTGTT	TCTCCGGTGG TCATTGGGTA	TCTAGCAAGT TGTAATGACA	TTTTACTGAT TGCCACTTTT	EXUIT 3
	ACTCTCTGAA	GTATATAATG	GAAGGTCTAT	TGTTAGGTTA	CTGCATTCAT	TTTAAGTAAA	TACGAAACAA	AGTAACCCAT	ACATTACTGT	ACGGTGAAAA	
9501	AGAGTACAGT TCTCATGTCA	TTCATGTTCA AAGTACAAGT	GAAGCTTGTT CTTCGAACAA	GAATAATTTA CTTATTAAAT	TAACATTTGT ATTGTAAACA	ATTATCTCTT TAATAGAGAA	AAAGATAAAG TTTCTATTTC	TTTCTAACAA AAAGATTGTT	AATAAGTATG TTATTCATAC	GATACATTTG CTATGTAAAC	
9601	GGTCTAAGCC CCAGATTCGG	TATGCAAGTA ATACGTTCAT	ACTGCTCTCT TGACGAGAGA	AGGATGATAA TCCTACTATT	TGGTGTCCCT ACCACAGGGA	CTTTATCTCC GAAATAGAGG	TAGAGCTAAA ATCTCGATTT	GAGGCTTCTT CTCCGAAGAA	GTTTTAGTTA CAAAATCAAT	TTGGGCAGTA AACCCGTCAT	
9701	GTGTAATTTC CACATTAAAG	TATTTCTTAT ATAAAGAATA	САСААТАТТА САСААТАТТА	GTGATATAAA CACTATATTT	GGAATATAGT CCTTATATCA	TTTTATGCCC AAAATACGGG	TATTTCATTG ATAAAGTAAC	GTAATGGTGT CATTACCACA	AGTTTGGATC TCAAACCTAG	ACAAGTGCTT TGTTCACGAA	
9801	CATGAACAAA	GCTTTAATTC	TTTAATGTTA	GCCTGAGGTG	GAAGGCAGAC	ATCATAAATC	TGTTTTTGGT	GGTGTCGTAG	GTGGCCTTAG	CATAGTCTTC	
9901	AGGATAGGCC	TCTTTTGCAT	TCGCCAGGTC	TTTGGCCATG	TTGAAGAAGG	TCTGGAGATG	AGCCACCTAG	CTTGCTTCAT	TTCCCAAGGC	TGCCAATCTC	2271
10001	TCTTCACTAA	GGAGTTAGTG	GGGGAAAAGT	ATTTCTTATT	TAGGGCCCAG	CAGGTTATTO	GTTCTTGATG	AGTTTTTAAC	TAAAAAATTC	TTCCTATTGT	32/1
10101	TTGTTTTTGG	CTGGTGTGTG	CTGGGAATCA	ATCCGTTCTC	AGCCTTCACG	GATCTAATTO	TCACTGGCTA	GGCATGACTG		AAAAGATTGT	
10201	TGAACATTCC	TAATGAAGTG	CTGTAGTATA	TTGTATGAAA	AATGGAGGCT	AAGAGAATTI	TTTTCTGGCT	ATAAAGAAAA	TTGCTARAAT	ATTAATTTGT	
10301	TAAAAAGTAT	GCTTTTATTT	GTACTTAACA	GTTCTTCAGT	GGAACAAGAA	AAGAAACCTG	AGAAATCCTT	GGCTCCCACC	CCAACGAGAG	AGTGAGCATC	Exon 4
10401	TTATCGTTCT	GTTTAGTGTA	TGCTTCCTGT	TGCTGTGCAC	CGCAGGTGCC	CACCACTGAC	TTAGCCCAGC	CTTGGACACA	CTGAAAGTGA	AATCTAAGGC	2405
10501	TTCTTTGATT	TTCCTTTTCT	TTCTGTTCTG	GCCTGTGCTT	TGTGCATGTG	TTTGGTGTGC	ATGTGTTTGG	TGTGCATGTG	TTTGGTGTGC	ATGTGTGTCT	
10601	TATATGGGCG	TGTGTTGTGT	TCTTTAGTTG	TGCTTCACTT	TATGTAGTAA	TGCAAGGTTT	CTTGTTGATT	TTGTCTAGTC	AGCTTGCTTC	TGAAATCCCT	
10701	TETETOTOT	TTTTGAGTCC	TOCCTOCTA	GCCTLCCTLC	CTTTTTTT	GGTTTTING	BamH	CATTORTON	ACTTGGTGG	TGAGTACTTT	
10901	ACAGATACGA	AAAACTCACG	ACCGACGATT	CGGATGGATC	GAAAATATAC	CCAAAATTCC	TAGGTTTGAG	GTAAGCAGTG	TGAACCACCC	ACTCATGAAA	
10001	TAGGTGACTT	GTGGGAGGAT	GGCGGTTGGA	CGTTTACCTC	GAAGACATGT	AAACTAACGA	AGAATTTTTA	TCTTGGTGAA	TCGGCCCGTC	CCCACCGCGT	
11001	ACGGAAATTC	GTGAACCCTC	CGTCTCCGTC	CACCTAAAGA	CTCAAGCTCC	GGTCGGACCA	GATGTCTCAT	TCAAGGTCCT	GTCGGTCCCG	ATGTGTCTTT	
11101	GGCACAGAAC	TTTTTGGCTT	TTTTTTTTTT	TGGTTTGGTT	TGGTTTTGTT	TTTGTCAGCO	CCGATGTATT	TTTTGGGTGT	TGGTACACAA	GATTTTCCTT	
11201	CTCTTCGGGG	CCGACCCGCA	CCATCGAGTA	CGCAGATTCG	AGCCGCGGAC	TCTTCGACTO	AGAAATGATG	ACTCCACATC	GTAGTAAGAA	CCTCTCTCTA TT&TTTTTTA	
11301	CTTATTTAGA GTTTTATGGC	TGAGTGGGGT	CTCTCCCCTG	ACCACTGTCT	AGTGGTCCTT	TCTATGGTGG	TTTCAGGTTG	AACCTGGAAA	ATCCCAAAAA	AATAAAAAAT	
11501	CAAAATACCG	TCCCAAAAAG	ACAGACCGAG	ACCAACAGGA	CCGAGAACGA	TCCTGATCCG	ATCGTAACTC	GAGAATCCTA	ACTGGACGGA	GACGGAGGAC	
11401	ATTACTGGGA TAATGACCCT	TTAAAGGCAT AATTTCCGTA	GTGCCACCAC CACGGTGGTG	TATCCAGTGA ATAGGTCACT	AGCAGTGAGT TCGTCACTCA	TTTAATTATC AAATTAATAG	ATCAATATGA TAGTTATACT	GAGAAGGGTT CTCTTCCCAA	Г АСТТАТААДА ТДААТАТТСТ	TCATAAATTA AGTATTTAAT	
11501	TCTCAAAGAC AGAGTTTCTG	AGCTGTATCA TCGACATAGT	TCAAAGCCTA AGTTTCGGAT	CCCAGCATGG GGGTCGTACC	ACAATGGCTC	ATGAAAGCTG TACTTTCGAC	GGAACCTAAC CCTTGGATTG	АТТСТТТААА 7 ТААСАААТТТ	CATAGAAGCA GTATCTTCGI	ATTCGGCAGG TAAGCCGTCC	
11601	CTGGAGAGTG GACCTCTCAC	TCTTTCAGTA AGAAAGTCAT	GTCTTTACTG CAGAAATGAC	CGTGGGGTGG GCACCCCACC	GAAGATTTCA CTTCTAAAGT	TTTATCTGGI	CAGTTTCCGG GTCAAAGGCC	GACTTCCTGA CTGAAGGACI	AGCCTTTGAG TCGGAAACTC	TTGTTGGCTG AACAACCGAC	
11701	AGCTTTGCAG	ATTTCTCTGT	AGGAATATCC	AATATCTTAA	GCTTCTCATT	CAGAGAGGTI	ATATTTTGAG	GAAACTGCCA	CACAAAAGCT	ATATAGGGAG	
11801	TCGAAACGTC AATCTGTCTC	TAAAGAGACA AGAAACACAC	ACACACACAT	TTATAGAATT GTATGCATGT	CGAAGAGTAA ATACACAGAC	ACACACACACA	AGTTAGATCT	TTTCAGAATG	GTGTTTTCGA AGAGGTCTAT	AATATCCCTC	
11901	TTAGACAGAG TAATATATGT	TCTTTGTGTG AATTGACTAA	TACTATGCCT	CATACGTACA	TATGTGTCTG	TGTGTGTGTGTG	CTGGGAGTAC	AAAGTCTTAC	CATAGCTTGT	GGGGTGGTCA	
12001	ATTATATACA TAGGACACAC	AGCCTGAGAG	AIGATACGGA TCAGTTCTCT	AGGTAAATGT TCCAACATGT	GGGTTCCATG	ATAAGGTACG TATTGAACAC	AGGTATCAGG	CCTTTCTCACA	CCCGCTGAGC	CATCTCACTG	

12101	GCCTCATGAG CGGAGTACTC	ТТТТАААТТА ААААТТТААТ	AAGATGTTCA TTCTACAAGT	TATTGAGGTT ATAACTCCAA	ТТСТТТСАТТ ААСАААСТАА	ТТБАБАСААТ ААСТСТБТТА	CCTTGGCTAG GGAACCGATC	TCTAGGACTT AGATCCTGAA	GCCATGTAGC CGGTACATCG	TCATTCTGGG AGTAAGACCC	
12201	CCTTGAGCTT GGAACTCGAA	ACAGAGATCA TGTCTCTAGT	GTCTCCTCTG CAGAGGAGAC	GCTCTTAGGG CGAGAATCCC	TTAGGAGTAA AATCCTCATT	AAGCTTGCAC TTCGAACGTG	TTCTAATTTA AAGATTAAAT	GGAGGCGTTT CCTCCGCAAA	GTTGTCAAAA CAACAGTTTT	ACAGTAGCTT TGTCATCGAA	
12301	TGAGTGGTTA ACTCACCAAT	AAAAAAATTA TTTTTTTAAT	AAAGGAACAA TTTCCTTGTT	AGGGAATATT TCCCTTATAA	GAAAAAAGTC CTTTTTTCAG	TTTCCACCTT AAAGGTGGAA	TGTTTCTTTG ACAAAGAAAC	TGGTTTAAAA ACCAAATTTT	GTCTGTGGTT CAGACACCAA	TCTACCCCCC AGATGGGGGGG	
12401	CCCCCAAAAA GGGGGTTTTT	AAAACAAATG TTTTGTTTAC	TTACCAGTTA AATGGTCAAT	АААСААТТТТ ТТТСТТАААА	TAAGTTACAT ATTCAATGTA	Ndel TGTGCATATG ACACGTATAC	CAGTGTGTAT GTCACACATA	TTGTGTGGGC AACACACCCG	ACATGCATGC TGTACGTACG	CATGATGAGA GTACTACTCT	
12501	GTATGGAGGT CATACCTCCA	TGTCTTAGTC ACAGAATCAG	AAGGTTTCTG TTCCAAAGAC	TTCCTACACA AAGGATGTGT	AACATCATGA TTGTAGTACT	CCAAGAAGCA GGTTCTTCGT	AGTTGGGGAG TCAACCCCTC	GAAAGGGTTT CTTTCCCAAA	ATTCAGCTTA TAAGTCGAAT	CACTTCCACA GTGAAGGTGT	
12601	CTGCTGTTCT GACGACAAGA	TCACCAAAGG AGTGGTTTCC	AAGTCAGGAC TTCAGTCCTG	TGGAACTCAA ACCTTGAGTT	GCAGGTCAGG CGTCCAGTCC	AAGCAGGAGC TTCGTCCTCG	TGAGCAGAGG ACTCGTCTCC	CAATGGAGGG GTTACCTCCC	ATGTTCTTTA TACAAGAAAT	TTGGCTTGCT AACCGAACGA	
12701	TCCCCTGGCT AGGGGACCGA	TGCTCAGCCT ACGAGTCGGA	GCTCTCTTAT CGAGAGAATA	TTTGGTTTTT AAACCAAAAA	GTTTTGTTTT CAAAACAAAA	TAGATACAGG ATCTATGTCC	ATTTTCTCTG TAAAAGAGAGAC	TATAGCCCTG ATATCGGGAC	GCTGTCCTGG CGACAGGACC	AACTCACTCT TTGAGTGAGA	
12801	GTAGACCAGG CATCTGGTCC	CTGGCCTCGA GACCGGAGCT	ACTTAGAAAT TGAATCTTTA	TCGCCTGCCT AGCGGACGGA	CTGCCTCCCA GACGGAGGGT	AAGGTGTTAA TTCCACAATT	AGGCGTACGC TCCGCATGCG	CACCACACCT GTGGTGTGGA	AGCCTGTTCT TCGGACAAGA	CTTATAGAAC GAATATCTTG	
12901	CCAAGACTAC GGTTCTGATG	CAGCCCAGAG GTCGGGTCTC	AAAGCCCCTT TTTCGGGGGAA	GATCACTAAT CTAGTGATTA	TGAGAAAATG ACTCTTTTAC	CCGTACAGTT GGCATGTCAA	GGATCTCATG CCTAGAGTAC	GAGGCATTTC CTCCGTAAAG	CTCAACTGAA GAGTTGACTT	GCTCCTTTTT CGAGGAAAAA	
13001	CTGTGATAAC GACACTATTG	TCCAGCTGTT AGGTCGACAA	TCAAGTTGAT AGTTCAACTA	ACAAAACTAG TGTTTTGATC	CCAGTACAGA GGTCATGTCT	GGTGAAGAGA CCACTTCTCT	CAGTTTGTGG GTCAAACACC	CAGTCAGTGT GTCAGTCACA	GCATTCTGGA CGTAAGACCT	GGTTGCACAC CCAACGTGTG	
13101	TGCTACTGCT	GTGCATTCAG	CTTGTTAGAC GAACAATCTG	TTTGTGGCAA	GAGCCATCTC	ACCTGCTCAC TGGACGAGTG	CAATTTTTAG GTTAAAAATC	ATATAGCATT TATATCGTAA	TCAGATTTAT AGTCTAAATA	AATGTATGTG TTACATACAC	
13201	TGCTTCAATA	AGATATTAAC TCTATAATTG	AGCCAGTATA	GTAGAAAGAA	AGATTTGGAA	TATTTTTTA ATAAAAAAAT	ATAGTTATAA TATCAATATT	TTGGATGGGA	GCAAGAGGTT	CTGATGGACT GACTACCTGA	
13301	TTTGCACAGT AAACGTGTCA	TGGCTGACTA	CCTGAGGGCT GGACTCCCGA	GGACGTAGGT CCTGCATCCA	GTGCATCTGT CACGTAGACA	GTAATCCCAG CATTAGGGTC	CAATTGAAAG GTTAACTTTC	GCTGAATTTG CGACTTAAAC	AGGCTAGCAT	GAGCCTACAG CTCGGATGTC	
13401	AATGAGCACC	CAACTATTTT	GAGCTTCATA	GCAAGAGCCT	GCCTCATAGA	TCTAAGAAAA	TAAAACCAAA	CTAAAAAAAAG	ATATACTAGT	ATACATATTT	
13501	CAGAAAGCTA	GAAAAAGTAG	GTACCAGAAG	TGGGGTAAAA	AGGTAACATT	TGTTTATTTA	TTTATTTATT	TTTATTATTG	GCCTCAAACC	TAAAGTATAC	
13601	TGTAAACCAC	TGAGTTACTT	GGCTGGTACC	ACTGGTTTAT TGACCABATA	TTTAAAAGAG AAATTTTCTC	AGTAAACATT TCATTTGTAA	TCTTATTGTT	TTCTAATTTT AAGATTAAAA	TTTTAAGATT AAAATTCTAA	TACTTATTAT ATGAATAATA	
13701	TATATGTAAG	TACACTGTAG	TTGTCTTTAG	ACATATCAGA	AGAGAGTGTC	AGATCTCATT	ATGGATGGAT	ATGAGCCACC	ATGTGGTTGC	TGGGTTTTTG	
13801	AACTCAGGAC	CTTTAGAGCA	GTCAGTGCTC	TTAACTACTG	AGCCCTCTCA	CTAGCTGCTC	TTATTGTTAT	GTCTAAAGAT	TCCTTATTAT	ATGTTACCAA	
13901	ATTAGCCAGG TAATCGGTCC	TGGTGGTAGT ACCACCATCA	GCATTCCTTT CGTAAGGAAA	AATCTCAGCA TTAGAGTCGT	CCCAAGATGC GGGTTCTACG	AGAGACAGGA TCTCTGTCCT	GGAAGGCAGG CCTTCCGTCC	AAGGTCTCTG TTCCAGAGAC	TGAGTTTGAG ACTCAAACTC	GCCAGCCTGG CGGTCGGACC	
14001	TTTACAGAAA AAATGTCTTT	GAGTTCCAGG CTCAAGGTCC	ACAGCCAGGG TGTCGGTCCC	CTACAATAGT GATGTTATCA	GAATTCCTGT CTTAAGGACA	СТАААААААА GATTTTTTTT	AGTTACCAAA TCAATGGTTT	TAATATCTTA ATTATAGAAT	TCCTCTTCAC AGGAGAAGTG	CTCTCCAATG GAGAGGTTAC	
14101	TATCCATCCA ATAGGTAGGT	TCCATCCATT AGGTAGGTAA	TATTTATTTT ATAAATAAAA	GAGTCAGAGT CTCAGTCTCA	CTTAAGGTAA GAATTCCATT	AGTTCATAGT TCAAGTATCA	GACCTAGAAC CTGGATCTTG	TCTTGGTTCT AGAACCAAGA	TTGCTTCATT AACGAAGTAA	GGTCTCCTTA CCAGAGGAAT	
14201	GAGCCAAGAT CTCGGTTCTA	TACCTTGTAT ATGGAACATA	TTCATTATGC AAGTAATACG	CTGGCAGGGT GACCGTCCCA	AACTGTGTCA TTGACACAGT	TGTGGTATTT ACACCATAAA	TTAGTTGAGT AATCAACTCA	TATAGAGAAA ATATCTCTTT	GTTTAAAATG CAAATTTTAC	GCTGCATGTT CGACGTACAA	
14301	GGTTTTCTTT CCAAAAGAAA	AGTAACTTGT TCATTGAACA	TTTGAGTTCA AAACTCAAGT	TACTATTCAG ATGATAAGTC	GAAATACTGT CTTTATGACA	TTTGTTGCTA AAACAACGAT	AGGTAACAAT TCCATTGTTA	GTTTCCATTT CAAAGGTAAA	TAGTAGGCAA ATCATCCGTT	GAAAATCAGA CTTTTAGTCT	Exon 5
14401	GCACTCAAGA CGTGAGTTCT	TGCTAATGAT ACGATTACTA	AATGAAGACG TTACTTCTGC	TGGAAGAGGA ACCTTCTCCT	GGTGGATGAT CCACCTACTA	GGGCCACTTC CCCGGTGAAG	TGGTTCCTCG ACCAAGGAGC	AGTAAAAGTG TCATTTTCAC	GCAGAAGATG CGTCTTCTAC	GTTCTATTAT CAAGATAATA	
14501	TTTAGATGAA AAATCTACTT	GAAAGGTGAG CTTTCCACTC	TTAAGGAGAT AATTCCTCTA	GGTGCAGGAA CCACGTCCTT	GGAGGGAGGA CCTCCCTCCT	GGTAGGGGTA CCATCCCCAT	AAGAACAGAG TTCTTGTCTC	AGATGCTATT TCTACGATAA	TCTCCATCTG AGAGGTAGAC	TCAACAGAAC AGTTGTCTTG	1
14601	GTTTAACTAA CAAATTGATT	CCGCCACTGG GGCGGTGACC	ATAGATGGAC TATCTACCTG	AGCATGACTA TCGTACTGAT	TTTTAAGCAG AAAATTCGTC	GTAAATGGAC CATTTACCTG	TAAATTAATG ATTTAATTAC	TGCAATTTTA ACGTTAAAAT	GCATGTTTGG CGTACAAACC	ATGAGATGCT TACTCTACGA	
14701	ATCGCTCTCC TAGCGAGAGG	TCTTGTCTGT AGAACAGACA	CAACCCAACT GTTGGGTTGA	TTGTTTACTC AACAAATGAG	ATCACCCTGC TAGTGGGACG	TGCTAAGCCA ACGATTCGGT	GGCCAGCTGC CCGGTCGACG	TGAGCAGCTG ACTCGTCGAC	TGTGCTGTTA ACACGACAAT	CCCACTGAGG GGGTGACTCC	
14801	ATCGATTTCT TAGCTAAAGA	AGGATTGATT TCCTAACTAA	CAGTTTGAAG GTCAAACTTC	TTGGTATTTA AACCATAAAT	AACTTTTCGT TTGAAAAGCA	ATTATTCATT TAATAAGTAA	AATTTTACCT TTAAAATGGA	TGTTTGATTT ACAAACTAAA	TTCTTTGTTT AAGAAACAAA	TTATTATTTT AATAATAAAA	
14901	TGTTTTTTGA ACAAAAAACT	GACTCTCACT CTGAGAGTGA	GTGTAGCCTT CACATCGGAA	GGCTGGCCTG CCGACCGGAC	AGACTTGCTT TCTGAACGAA	TGTAGACAGG ACATCTGTCC	TT <mark>GGCCTTGA</mark> AA <u>CCGGAACT</u>	ACTGCTGACC TGACGACTGG	AGTC TCAGAAAGGT	GCTCTAAAGT CGAGATTTCA	<u>2629</u>
15001	GTGTATTTTA CACATAAAAT	TACGGGATCA ATGCCCTAGT	GGTAACAAAG CCATTGTTTC	AGAAATGAAA TCTTTACTTT	GGCTTTTGCC CCGAAAACGG	GTTTAGTTAG CAAATCAATC	TAACAATGTA ATTGTTACAT	TATAAGTATA ATATTCATAT	AATTTGACTA TTAAACTGAT	ТААТАТАААТ АТТАТАТТТА	
15101	GCAATACTGA CGTTATGACT	TAAGTATTTC ATTCATAAAG	TATGTGATGG ATACACTACC	TGATTTTATA ACTAAAATAT	TGTCAATAAT ACAGTTATTA	AGTTAAAGAG TCAATTTCTC	ATATTGGCTC TATAACCGAG	AGGAGCCATT TCCTCGGTAA	TAGAAATCCA ATCTTTAGGT	CAAACCAAAA GTTTGGTTTT	
15201	CCAGGTGTGA GGTCCACACT	Ndel CGACATATGC GCTGTATACG	CTGCAGTCTT GACGTCAGAA	AGCACTTGGG TCGTGAACCC	AAGTGGAGAT TTCACCTCTA	AGTAATTCAA TCATTAAGTT	AACTGTTCTC TTGACAAGAG	AGCTAGACAG TCGATCTGTC	CAAGTTCCAG GTTCAAGGTC	GCGAGCCTGG CGCTCGGACC	
15301	ACAACACAAA TGTTGTGTTT	GCCTGGTCTG CGGACCAGAC	AAAGACAGAC TTTCTGTCTG	AGACAAAAAG TCTGTTTTTC	GACAATAGAG CTGTTATCTC	САСТТТАТТТ СТСАААТААА	ACCTTTAGTC TGGAAATCAG	CAAAGGTATT GTTTCCATAA	TTGAAAATGC AACTTTTACG	TGTAACCGGA ACATTGGCCT	
15401	AAACAGGTTG TTTGTCCAAC	GCATTTATTT CGTAAATAAA	CTGTACCTTA GACATGGAAT	AAATCACATT TTTAGTGTAA	TGGAAAAATA ACCTTTTTAT	TATATTTCAA ATATAAAGTT	ATTTATTATC TAAATAATAG	CTTTTTCAAA GAAAAAGTTT	TATATTTTAT ATATAAAATA	ATTTTCTGTA TAAAAGACAT	
15501	CTAAGTGCTG GATTCACGAC	TGTAAATCTT ACATTTAGAA	AGAAAGCAGT TCTTTCGTCA	AATTAAATCT TTAATTTAGA	CATCTACTGT GTAGATGACA	TTTTCATACT AAAAGTATGA	TGGGTTTTTA ACCCAAAAAT	GTGTGACTGT CACACTGACA	ATTGAGAATG TAACTCTTAC	TCTTCTTTCA AGAAGAAAGT	
15601	GTTTAACTGT CAAATTGACA	AGAAGTTTT <u>G</u> TCTTCAAAAC	AGAACAAAAG TCTTGTTTTC	GCCCCTGCGT CGGGGGACGCA	CGTTGAAGAG GCAACTTCTC	AATGATCCTA TTACTAGGAT	TATTTGAGCG ATAAACTCGC	CGGCTCCACT GCCGAGGTGA	ACTACTTACT TGATGAATGA	CCAGCTTCAG GGTCGAAGTC	3057
		~~~~	Ncol						HindIII	v	Exon 6

15701 GAAGAACTAC ТАСТСАЛАСС САТЕСТССАА ТААЛОСТААТ ТАКАТСТСАТ САЛАССТСТ ТТОСАЛТАЛА АТСЛАСТТТ АТТТАЛОСТТ СТДАСТТСТ СТТСТТСАТС АТСЛАСТТСС СПССАСТСАТ АТТТССАТТС АТТАСАЛСТА СТАТСТСАСА АЛАССТТАТТТ ТАСТТСАЛАЛА ТАЛАТТССАЛ GACTGAAGAA

# **11.3** *Bdp1*: Transkript und Aminosäurensequenz

Die Angaben liegen den NCBI ID-Nummern zugrunde (Transkript NM_001081061, Protein: NP_001074530). Start- und Stoppkodon sowie das Polyadenylierungssignal sind hervorgehoben. Exons: grün (ungerade Zahlen) und rot (gerade Zahlen) (modifiziert nach Kelter, Dissertation 2006).

ATG	TTC	CGC	AGG	GCA	CGC	CTT	AGC	GTG	AAG	CCA	AAT	GTC	AGG	CCT	GGT	GTA	GGG	ACC	AGG	60
M	F	R	R	A	R	L	S	V	K	P	N	V	R	P	G	V	G	T	R	20
GGC	TCC	GCC	GCT	CCC	AAT	CCC	CAG	CGT	GGA	CCA	GAG	GCT	CCC	AGG	CCT	CCG	GAG	CCT	GCC	120
G	S	A	A	P	N	P	Q	R	G	P	E	A	P	R	P	P	E	P	A	40
ACC T	GAG E	TCA S	GCT A	CCG P	AAG K	CCA P	GCG A	GAG E	CCC P	ACA T	GAT D	GTG V 2	CCT P	GCA A	GTG V	GAT D	TCC S	GGG G	GGA G	180 60
gca	GAA	CCC	CAG	GAA	CAG	GCT	CCC	GGG	AGC	AG <mark>T</mark>	GAT	GAA	AAG	ACT	<mark>GGT</mark>	<mark>GAC</mark>	AAA	AAT	AAT	240
A	E	P	Q	E	Q	A	P	G	S	S	D	E	K	T	G	D	K	N	N	80
GCT	GCA	GAG	TCC	AGC	ACA	TTG	TCC	TCT	GCT	TCT	TCA	CAG	AGA	AGA	AAG	CGA	GTG	TCA	AGC	300
A	A	E	S	S	T	L	S	S	A	S	S	Q	R	R	K	R	V	S	S	100
ACA	TCC	AGT	CTT	GTT	CAG	CCT	TCT	GGC	AGT	GCC	P	TCA	CAG	AGT	CGC	P	TTA	TCT	ACA	360
T	S	S	L	V	Q	P	S	G	S	A	P	S	Q	S	R	P	L	S	T	120
GTT	GAT	CAC	GAT	GCA	CCA	CAG	CCA	AAC	CCT	ACT	CCA	GCT	AAA	GAG	AAG	CAG	CCG	TGT	TCA	420
V	D	H	D	A	P	Q	P	N	P	T	P	A	K	E	K	Q	P	C	S	140
GAC D	AGA R Exc	TAC Y on 2,	CGA R /Exoi	ATC I 1 3	TAT Y	AAG K	GCC A	CGA R	AAA K	CTG L	AGG R	GAG E	ATG M	TTG L	AAA K	GAG E	GAA E	CTG L	AGA R	480 160
AAG K	GAG E	AAG K	AAA K	CAA Q	TGG W	AAA K	AAC N	AAA K	TTT F	TCT S	ACA T	AAT N	GAA E	AGC S	CAG Q	AGG R	CCA P	CCA P Exor	GAT D 3/E	540 180 xon 4
CGT R	TCA S	AAA K	ATG M	ACT T	ATG M	AGA R	GAC D	TTC F	ATA I	TAT Y	TAC Y	CTT L	CCA P	GAT D	AAC N	AAT N	CCA P	ATG M Exor	ACT T 4/E	600 200 xon 5
TCT	_TCA	GTG	GAA	CAA	GAA	AAG	AAA	CCT	GAG	AAA	TCC	TTG	GCT	CCC	ACC	CCA	ACG	AGA	GAT	660
S	S	V	E	Q	E	K	K	P	E	K	S	L	A	P	T	P	T	R	D	220
AGG	CAA	GAA	AAT	CAG	AGC	ACT	CAA	GAT	GCT	AAT	GAT	AAT	GAA	GAC	GTG	GAA	GAG	GAG	GTG	720
R	Q	E	N	Q	S	T	Q	D	A	N	D	N	E	D	V	E	E	E	V	240
GAT D	GAT D	GGG G Exoi	CCA P n 5/I	CTT L Exon	CTG L 6	GTT V	CCT P	CGA R	GTA V	AAA K	GTG V	GCA A	GAA E	GAT D	GGT G	TCT S	ATT I	ATT I	TTA L	780 260
GAT	GAA	GAA	AG <mark>T</mark>	TTA	ACT	GTA	GAA	GTT	TTG	AGA	ACA	AAA	<mark>GGC</mark>	CCC	TGC	GTC	GTT	GAA	GAG	840
D	E	E	S	L	T	V	E	V	L	R	T	K	G	P	C	V	V	E	E	280
AAT N	GAT D	CCT P	ATA I	TTT F	GAG E	CGC R E	GGC G Xon	TCC S 6/Ex	ACT T	ACT T	ACT T	TAC Y	TCC S	AGC S	TTC F	AGG R	AAG K	AAC N	TAC Y	900 300
TAC Y	TCA S	AAG K	CCA P	TGG W	TCC S	AAT N	AAA K	GAA E	ACC T	GAT D	ATG M	TTT F	TTT F	TTA L	GCC A	ATC I	AGC S	ATG M Exc	GTA V n 7/	960 320 Exon 8
GGA G	ACT T	GAC D	TTT F	TCT S	ATG M	ATT I	GGA G	CAA Q	CTT L	TTT F	CCT P	CAC H	AGA R	GCA A	AGG R	ATA I B	GAA E Exon	ATT I 8/E>	AAG K on 9	1020 340
AAT	AAA	TTT	AAA	CGT	GAA	GAA	AAA	ACA	AAT	<mark>GGA</mark>	TGG	<mark>AGA</mark>	ATA	GAC	AAA	GCA	TTC	CAG	GAA	1080
N	K	F	K	R	E	E	K	T	N	G	W	R	I	D	K	A	F	Q	E	360
AAA	CGC	CCT	TTT	GAC	TTC	GAT	TTT	TTT	GCT	CAT	TTG	CTT	CAG	AAA	GTT	CTT	GCT	GAA	GAA	1140
K	R	P	F	D	F	D	F	F	A	H	L	L	Q	K	V	L	A	E	E	380
GAA E	AAA K	AGA R	AAA K	CAA Q	AAA K 9/Ex	TCT S	ACT T	AAA K	TGT C	CAG Q	AGT S	TTA L	AAG K	GAA E	AAG K	GCC A	TCC S	AAA K	CCA P	1200 400
CGG	AAA	AAC	TTA	AAA	G <mark>CA</mark>	AAA	ACA	GTA	ACC	AGT	GAA	GAA	GTT	AAT	GAC	<mark>GAT</mark>	CCA	<mark>GAT</mark>	GAG	1260
R	K	N	L	K	A	K	T	V	T	S	E	E	V	N	D	D	P	D	E	420

TCT S	GTA V	AAT N	AGT S	AAC N	ATT I	TCA S	<mark>GAT</mark> D	CCA P	GAA E	AGA R	TCT S	CAA Q	AAT N	<mark>GAT</mark> D	GCT A	GAG E	ACA T	GTC V	AAT N	1320 440
GAA E	GAG E	GAA E	TCA S	CCG P	AGT S	TCA S	TCA S	<mark>GGA</mark> G	<mark>CAG</mark> Q	CAC H	TTA L	GAA E	CAA Q	GCT A	ATG M	TTA L	GAG E	CAA Q	GAC D	1380 460
CAA Q	AAT N	CAA Q	GAG E	AAA K	AAG K	AGG R	<mark>AGG</mark> R	AGG R	AAC N	CAA Q	<mark>GGT</mark> G	GAA E	GCT A	AAT N	AAA K	CAG Q	GAA E	GCA A	ACA T	1440 480
AAT N	CTT L	TTA L	<mark>GAG</mark> E	AGG R	GTT V	CTT L	GTT V	CAT H	TCG S	AGC S	<mark>ССТ</mark> Р	CCT P	GCA A	GCA A	GAA E	ATA I	CAC H	AAG K	AAT N	ion 11 1500 500
ACA T	TGT C	CCT P	TCT S	GAG E	GAA E	AAT N	GAA E	AGT S	GAA E	TGC C	AAT N	AAA K	GAA E	CAG Q	ATA I	CCA P	TCC S	TTG L	ACA T	1560 520
CAG Q	AAC N	ATA I	GAT D	GAC D	ATT I	GCA A	GGT G	TTA L	GCA A	CCC P	AGT S	GAA E	GAG E	ACC T	GAG E	ATG M	AGA R	ATG M	GAC D	1620 540
CCC P	ATC I	CCT P	E TCC S	xon ACA T	11/E TGT C	xon AAT N	12 CAA Q	CAA Q	GAC D	ATC I	ATG M	CCA P	CTA L	GCA A	AGG R	GAG E	TCC S	TCA S	GAG E	1680 560
TCG S	TGT C	GCT A	GTG V	GCT A	TTA L	CCT P	GTG V	TGG W	GAA E	CCC P	<mark>GGT</mark> G	AAT N	ACT T	GCC A	TCT S	GCT A	GAC D	ATG M	GCT A	1740 580
CAT H	GCT A	GAG E	AGC S	TCC S	T <mark>GC</mark> C	TCA S	GAA E	<mark>GGA</mark> G	<mark>AGA</mark> R	<mark>GGT</mark> G	GCT A	<mark>GAC</mark> D	CTG L	AAG K	ACT T	E GCG A	Ixon GCA A	12/E CCA P	Exon GAG E	13 1800 600
ACT T	GAA E	CAG Q	ACA T	GAA E	AAT N	GTC V	AAA K	CCA P	AAA K	TCA S	AGA R	AGT S	CGA R	CTA L	CAG Q	AGA R	CCT P	AAG K	CCT P	1860 620
AAT N	CTG L	GCA A	AGG R	GCA A	GTT V	GGG G	AAG K	AAA K	TCA S	GCT A	GTT V	TCA S	CAA Q	GAC D	AGA R	caa Q	GAT D	GAA E	AGG R	1920 640
AAC N	AAG K	AAC N	TCA S	CCT P	TCA S	GAA E	ACT T	GCA A	GCT A	Exo: GAG E	n 13, AAG K	/Exo: AAT N	n 14 CAC H	ATG M	GAA E	AAA K	GAG E	ACC T	ATG M	1980 660
AAT N	GAA E	TCT S	GAA E	ACA T	TCT S	GTA V	GCA A	AAG K	AAT N	ACA T	GAC D	GGA G	GAG E	AGC S	CCA P	<mark>GGT</mark> G	GCC A	AAA K	ACT T	2040 680
-		1 4 / 1	_																	
GTG V	TCT S	GAT D	±xon TTG L	15 AGT S	GAG E	AAA K	TCC S	TGT C	GTA V	CAG Q	CAG Q	GAT D	AGT S	CAG Q	GCA A	AAG K	GTT V	TTA L	AGA R	2100 700
GTG V CCT P	TCT S ACC T	GAT D AGA R	Exon TTG L CTA L	15 AGT S ATG M	GAG E AGG R	AAA K AGT S	TCC S CGA R	TGT C ATG M	GTA V CAA Q	CAG Q AGA R	CAG Q CCA P	GAT D AAG K	AGT S CCA P	CAG Q AAT N	GCA A GTA V	AAG K GTG V	GTT V AAA K	TTA L GCT A	AGA R GCA A	2100 700 2160 720
GTG V CCT P GAA E	ACC T ACC T AGG R	GAT D AGA R AAA K	Zxon TTG L CTA L GAA E	15 AGT S ATG M ATT I	GAG E AGG R CTC L	AAA K AGT S ACC T	TCC S CGA R TCA S	TGT C ATG M CAG Q	GTA V CAA Q GAA E	CAG Q AGA R AAA K	CAG Q CCA P TTT F	GAT D AAG K GGG G	AGT S CCA P GCC A	CAG Q AAT N CAT H	GCA A GTA V GTA V	AAG K GTG V GAG E	GTT V AAA K AAA K	TTA L GCT A AGT S	AGA R GCA A GAA E	2100 700 2160 720 2220 740
GTG V CCT P GAA E GAT D	TCT S ACC T AGG R GAA E	GAT D AGA R AAA K TCC S	Exon TTG L CTA L GAA E TGT C	15 AGT S ATG M ATT I Exon GTT V	GAG E AGG R CTC L 15, GTG V	AAA K AGT S ACC T (Exor ATT I	TCC S CGA R TCA S 16 CCT P	TGT C ATG M CAG Q CCA P	GTA V CAA Q GAA E CAA Q	CAG Q AGA R AAA K AAA K ACG T	CAG Q CCA P TTT F GAA E	GAT D AAG K GGG G AAT N	AGT S CCA P GCC A GAG E	CAG Q AAT N CAT H TCA S	GCA A GTA V GTA V CAT H	AAG K GTG V GAG E AAA K	GTT V AAA K AAA K AAA K AAC N	TTA L GCT A AGT S TTG L	AGA R GCA A GAA E CAA Q	2100 700 2160 720 2220 740 2280 760
GTG V CCT P GAA E GAT D TGT C	ACC T ACC T AGG R GAA E GAA E	GAT D AGA R AAA K TCC S GAT D	CTA L CTA L GAA E TGT C ACT T	15 AGT S ATG M ATT I Exor GTT V GTG V	GAG E AGG R CTC L 15, GTG V <b>TCA</b> S	AAA K AGT S ACC T (Exor ATT I GAG E	TCC S CGA R TCA S 16 CCT P CCT P	TGT CAG Q CAG Q CCA P GGA G	GTA V CAA Q GAA E CAA Q AGA R	CAG Q AGA R AAA K ACG T AAG K	CAG Q CCA P TTT F GAA E GAC D	GAT D AAG K GGG G AAT N CCT P	AGT S CCA P GCC A GAG E TTT F	CAG Q AAT N CAT H <b>TCA</b> S GAG E	GCA A GTA V GTA V CAT H AAT N	AAG K GTG V GAG E AAA K ATT I	GTT V AAA K AAA K AAC N CAG Q	TTA L GCT A AGT S TTG L CCT P	AGA R GCA GAA E CAA Q GAT D	2100 700 2160 720 2220 740 2280 760 2340 780
GTG V CCT P GAA E GAT D TGT C CAG Q	ACC T AGG R GAA E GAA E CCC P	GAT D AGA R AAA K TCC S GAT D CAG Q	CTA L CTA L GAA E TGT C ACT T V	15 AGT S ATG M ATT I Exon GTT V GTG V CTT L	GAG E AGG R CTC L 15, GTG V <b>TCA</b> S <b>AGT</b> S	AAA K AGT S ACC T (Exor ATT I GAG E GAC D	ICC S CGA R ICA S 16 CCT P CCT P E IGC C	TGT C ATG M CAG Q CCA P GGA G CCA P CCA P	GTA V CAA Q GAA E CAA Q AGA R 16/E AGT S	CAG Q AGA R AAA K AAG T AAG K XON ATT I	CAG Q CCA P TTT F GAA E GAC D 17 CAT H	GAT D AAG K GGG G AAT N CCT P GAA E	AGT S CCA P GCC A GAG E TTT F GGT G	CAG Q AAT N CAT H <b>TCA</b> S <b>GAG</b> E AAT N	GCA A GTA V GTA V CAT H AAA N AAA K	AAG K GTG V GAG E AAA K ATT I GAA E	GTT V AAA K AAA K AAC N CAG Q AAC N	TTA L GCT A GCT S TTG L CCT P AAA K	AGA R GCA GAA E CAA Q GAT D CGG R	2100 700 2160 720 2220 740 2280 760 2340 780 2340 780 2400 800
GTG V CCT P GAA E GAT D TGT C CAG Q AAA K	In the second se	GAT D AGA R AAA K TCC S GAT D CAG Q GTC V	LXON TTG L CTA L GAA E TGT C ACT T GTT V V CCA P	15 AGT S ATG M ATT I Exon GTT V CTT L GTT V	GAG E AGG R CTC L S GTG V V TCA S AGT S CTA L	AAA K AGT S ACC T Exor ATT I GAG GAC D AGG R	TCC S CGA R TCA S 16 CCT P CCT P CCT C C C C TGC C C T C C T C C T C C T C C C C	TGT C ATG M CAG Q CCA P GGA GGA GGA CCA P AGA R	GTA V CAA Q GAA E CAA Q AGA R 16/E S TTC F	CAG Q AGA R AAA K AAA K AAG T AAG K XON ATT I CAG Q	CAG Q CCA P TTT F GAA E GAC D 17 CAT H AAA K	GAT D AAG K GGG G AAT N CCT P GAA E CCA P	AGT S CCA P GCC A GAG E TTT F GGT G AAA K	CAG Q AAT N CAT H TCA S GAG E AAT N CCA P	GCA GTA V GTA V CAT H AAAT N AAA X	AAG K GTG V GAG E AAA K ATT I GAA E ACA T	GTT V AAAA K AAAA K AAAC N CAGG Q AAAC N GGGA GGA	TTA GCT A AGT S TTG CCT P AAAA K AGA R	AGA R GCA GAA CAA Q GAT D CGG R CGG R AGA R	2100 700 2160 720 2220 740 2280 760 2340 780 2400 800 2460 820
GTG V CCT P GAA E GAT D TGT C CAG Q AAA K AGA R	In the second se	GAT D AGA R AAA K TCC S GAT D CAG Q GTC V AGA R	Exon TTG L CTA L GAA E TGT C ACT T V CCA P ATA I	15 AGT S ATG M ATT I Exon GTT V CTT L GTT V CTT L GTT V CTC S	GAG E AGG R CTC L 5 GTG V TCA S AGT S CTA L TCC S	AAA K AGT S ACC T (ExOT ATT I GAG E GAC D AGG R AAG K	TCC S CGA R TCA S 16 CCT P CCT T C C TGC C C ACT T GAA E	TGT C ATG M CAG Q CCA P GGA G GGA R AGA R GGG G	GTA V CAA Q GAA E CAA Q AGA R I 6/E AGT S TTC F ATA I	CAG Q AGA R AAA K AAG T AAG K Xoon ATT I CAG Q CCA P	CAG Q CCA P TTT F GAA C D 17 CAT H AAA K GAG E	GAT D AAG K GGG G AAT N CCT P GAA E CCA P GAG E	AGT S CCA P GCC A GAG C GAG G G G G G G C AAA K ACA T	CAG Q AAT N CAT H TCA S GAG E AAT N CCA P CCT P	GCA GTA V GTA V CAT H AAT N AAA K AAT N AAT I	AAG GTG V GAG E AAA K ATT I GAA E ACA T TCT S	GTT V AAA K AAA K AAAC N CAG Q AAAC N GGA GGA GGA GGA	TTA GCT A GGT S TTG CCT P AAA K AGA R GAA E	AGA R GCA A GAA E CAA Q GAT D CGG R AGA R AGA R	2100 700 2160 720 2220 740 2280 760 2340 780 2400 800 2460 820 2520 840
GTG V CCT P GAA E GAT D TGT C CAG Q AAA K AGA R CCA P	ICT S ACC T AGG R GAA E GAA E CCC P CAA Q AGA R CAA Q AGA R GCA A	I 4 / F GAT D AGA R AAA K TCCC S GAT D CAG Q GTC V AGA R ACT T	Sxon TTG L CTA L GAA E TGT C ACT T V CCA P ATA I I TGG W	15 AGT S ATG M ATT I EXOI GTT V GTG CTT L GTT V CTT L GTT V CTC S GAA E	GAG E AGG R CTC L 15, GTG V V TCA S CTA L TCC S GAA E	AAA K AGT S ACC T (ExOI ATT I GAG C C C C C C C C C C C C C C C C C C	TCC S CGA R TCA S 16 CCT P CCT P CCT T GCC C ACT T GAA E CCG P	TGT C ATG M CAG Q CCA P GGA G GGA R AGA R GGG G G G G G G G G G	GTA V CAA Q GAA E CAA Q AGA R 16/E AGT S TTC F ATA I CTG L	CAG Q AGA R AAA K ACG T AAG K XXON ATT I CAG Q CCA P GAC D	CAG Q CCA P TTT F GAA CAT H AAA K GAG GAG E ACT T	GAT D AAG GGG G AAT N CCT P GAA E CCA P GAG GAG E TCT S	AGT S CCA P GCC A GAG C GAG G G G G G G G C G G C C A C A	CAG Q AAT N CAT H <b>TCA</b> S <b>GAG</b> CAT N CCA P CCT P AGG R	GCA GTA V GTA V CAT H AAT N AAA K AAT N AAT I GAG E	AAG K GTG V GAG E AAA K ATT I GAA E ACA T TCT S GAG E	GTT V AAA K AAA K AAAC N CAG Q AAAC N GGA GGA GGA GGA V	TTA L GCT A AGT S TTG CT P AAA K AGA R GAA E CTG L	AGA R GCA A CAA Q GAT D CGG R AGA R AGA R ATA I S	2100 700 2160 720 2220 740 2280 760 2340 780 2340 800 2460 820 2460 820 2520 840 2580 860
GTG V CCT P GAA E GAT D TGT C C CAG Q AAA K AGA R CCA R CCA Q GTA V	ICT S ACC T AGG R GAA E GAA E CCC P CAA Q AGA R GCA R GCA R CCT P	I 4 / f GAT D AGA R AAAA K TCC S GAT D CAG Q GTC V AGA R ACT T T L	LXON TTG L CTA L GAA E TGT C C ACT T V CCA P ATA I I TGG W GCC A	15 AGT S ATG M ATT I Exoin GTT V GTG V CTT L GTT V CTT S GAA E CCT P	GAG E AGG R CTC L S GTG V V TCA S CTA L TCC S GAA E CTT L	AAA K AGT S ACC T C Exor I GAG E GAC D AGG R AAG K AAAG K AAT I I AAA T I I	TCC S CGA R TCA S 16 CCT P E TGC C C TGC C ACT T GAA E CCG P GCA A	TGT C ATG M CAG Q CCA P GGA G G CCA P AGA R GGG G G G G G G G G G CCA T	GTA V CAA Q GAA E CAA Q AGA R 16/E AGT S TTC F ATA I CTG L GCT A	CAG Q AGA R AAA K ACG T AAG K XON ATT I CAG Q CCA P GAC D TCC S	CAG Q CCA P TTT F GAA CAT H AAA K GAG E ACT T CAT	GAT D AAG GGG G AAT N CCT P GAA E CCA P GAA E CCA P GAA E CCA P GAA C CA C CA C C C C C C C C C C C C C	AGT S CCA P GCC A GGC TTT F GGT G AAA K ACA T CTG L GAC D	CAG Q AAT N CAT H TCA S CA P CCT P CCT P AGG R TCA S	GCA GTA V GTA V CAT H AAT AAT AAT I GAG E GAG E	AAG K GTG V GAG E AAA K ATT I GAA CA T TCT S GAG E CA S	GTT V AAA K AAAC N CAG Q AAC Q AAC N GGA G G G G G G C C G G TA V C GAT D	TTA L GCT A AGT S CCT P AAAA K AGA R GAA E CTG L GTG V	AGA R GCA A CAA Q GAT D CGG R AGA R AGA R ATA I S AAA K	2100 700 2160 720 2220 740 2280 760 2340 780 2400 800 2400 800 2460 820 2520 840 2580 860 2580 860
GTG V CCT P GAA E GAT D TGT C CAG Q AAA K AGA R CCA P GTA V GAC D	In the second se	I 4 / F GAT D AGA R AAA K TCCC S GAT D CAG Q GTCC V AGA R ACT T CTT L GGCC G	AXON TTG L CTA L GAA E TGT C ACT T C C ACT T V CCA P ATA I TGG W GCC A R	15 AGT S ATG M ATT I EXOID GTT V CTT L GTT V CTT L GTT V CTT S GAA E CCT P AAT N	GAG E AGG R CTC L 5 GTG V TCA S CTA L CCTA CTA E CTT L GAA E CTT L GAT D	AAA K AGT S ACC T CEXOI ATT I GAG E GAC D AGG R AAG K AATT I ACA T	TCC S CGA R TCA S 16 CCT P E TGC C C ACT T GAA E CCG P GCT A GCT A	TGT C ATG M CAG Q CCA P GGA G G GGA R AGA R GGG G G G G G G G G	GTA V CAA Q GAA E CAA Q AGA R 16/E AGT S TTC F ATA I CTG L GCT A AAT N	CAG Q AGA R AAA K AAG T AAG K XXON ATT I CAG Q CCA P GAC D TCCC S GCG A	CAG Q CCA F GAA E GAA D 17 CAT H AAA K GAG E ACT T CAT GAG E	GAT D AAG K GGG G AAT P GAA E CCA P GAA E CCA P GAG E TCT S AAG K AAG	AGT S CCA P GCC A GAG C GAC AAA K ACA T CTG CTG C C C C C C C C C C C C C C C	CAG Q AAT N CAT H TCA S GAG CCA P CCA P CCA P CCA P CCA CA TCA S GAA CCA CA TCA S CAA T CA CA T CA CA T CA CA CA T CA CA CA CA CA CA CA CA CA CA CA CA CA	GCA GTA V GTA V CAT H AAT N AAA K AAT N AAT I GAG E GAG E ATG M	AAG GTG V GAG E AAA K ATT I GAA E ACA T CTCS GAG E TCA S ACA T	GTT V AAA K AAA K AAC N CAG Q AAC N GGA GGA GGA GGAT D GAT D	TTA GCT A AGT S TTG L CCT P AAA K AGA R GAA CTG CTG CTG V GTC V	AGA R GCA A CAA Q GAT D CGG R AGA R AGA R AGA I AGT S AAA K CT T	2100 700 2160 720 2220 740 2280 760 2340 780 2400 800 2460 820 2520 840 2520 840 2580 860 2640 880 2640 880
GTG V CCT P GAA E GAT D TGT C C CAG Q AAA K AGA R CCA R GTA V GAC D ATG M	In the second se	I 4 / f GAT D AGA R AAAA K TCC S GAT D CAG Q GTC V AGA R ACT T CTT L GGCC G ATG M	Axon TTG L CTA L GAA E TGT C ACT T V CCA P ATA I TGG W GCC A R GAG R GAG E	15 AGT S ATG M ATT I Exoin GTT V CTT L GTT V CTT L GTT V CTT L GTT V CTT L GTT V CTT L CCC S GAA E CCT P AAT C ATG ATG ATG ATG ATG ATG ATG ATG ATG ATG	GAG E AGG R CTC L 5 GTG V V TCA S CTA L TCC S GAA E CTT L GAT D GGT G GGT G	AAA K AGT S ACC T CEXOT ATT I GAG E GAC D AGG R AAG R AAG K AAT I I ACA T T C C C T T T G C C C T T T C C C C T C C C C	TCC S CGA R TCA S 16 CCT P E CCT T C C C A CT T GAA E GCT A GAA E	TGT C ATG M CAG Q CCA P GGA G GGA CCA P AGA R GGG G G G G G G G G G CCA T T CCA T CCA CCA D CCA CCA CCA C CCA CCA C CCA C CCA C CCA C CCA C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C CCA C C C C C C C C C C C C C C C C C C C C	GTA V CAA Q GAA E CAA Q AGA R 16/E AGT S TTC F ATA I CTG L GCT A AAT N N ATT I	CAG Q AGA R AAA K ACG T AAG K XXON ATT I CAG Q CCA P GAC D TCC S GCG A GGA G	CAG Q CCA P TTT F GAA C D 17 CAT H AAA K GAG C T CAT T CAT H AAA K GAG C C CA P CA P CA P CA P CA P CA P C	GAT D AAG GGG AAT N CCT P GAA E CCA P GAA E CCA P GAG E TCT S AAG K ATG M GAT D	AGT S CCA P GCC A GAG C GAG C C G G C C G G C C G C C C C	CAG Q AAT N CAT H TCA S GAG CCA P CCT P CCT P AGG R TCA S GAA E TCC S GAA E	GCA GTA V GTA V CAT H AAT N AAA K AAT SAA SAA SAA SAA SAA SAA SAA SAA SAA	AAG K GTG V GAG E AAA K ATT I GAA E ACA T CTS S GAG E TCA S ACA T C CA S GGG G	GTT V AAA K AAA K AAC V CAG Q AAC CAG Q GAA GGA GGA C GAT D GAT D GAA C C GAA C C GAA C C C C C C C C C C	TTA L GCT A AGT S TTG CT P AAA K AGA R GAA R CTG L GTG V GTC V ATG M	AGA R GCA A GAA C A CAA D CGG R AGA R AGA R ATA I AGT S AAA K C C GGA G GGA G	2100 700 2160 720 2220 740 2280 760 2340 780 2400 800 2460 820 2520 840 2520 840 2520 840 2580 860 2580 860 2640 880 2700 900

Х

ACT	TCT	TGT	ATG	GAG	AAG	GTA	CCA	GAG	CTT	ATT	GAT	ACC	ACT	GGG	GAA	ATT	TGC	ACA	AAT	2880
T	S	C	M	E	K	V	P	E	L	I	D	T	T	G	E	I	C	T	N	960
TTG	GGA	GAA	ACT	GGA	AGA	AAA	GAA	GTA	TTT	TTA	CAG	GAA	AAT	GGC	CCG	AAG	GAG	GTC	GGT	2940
L	G	E	T	G	R	K	E	V	F	L	Q	E	N	G	P	K	E	V	G	980
CCA	GTT	AGT	GAA	CCA	GAG	ACA	GGT	TTG	caa	GAA	ACT	GGA	AAA	GAT	TTG	GCC	ATG	AAA	GAG	3000
P	V	S	E	P	E	T	G	L	Q	E	T	G	K	D	L	A	M	K	E	1000
AGC	ACA	CCA	GAC	ACG	ACA	GAT	AGC	ACT	GAA	GAA	AGG	GAG	GCA	TAT	TCA	GAA	GAA	ACT	GAA	3060
S	T	P	D	T	T	D	S	T	E	E	R	E	A	Y	S	E	E	T	E	1020
AGA	CAA	GAA	AAA	ATA	TCT	GCA	CTG	ATA	AAG	GAT	GCA	GAG	GAG	GCC	AAA	GCC	AGG	GGT	GAA	3120
R	Q	E	K	I	S	A	L	I	K	D	A	E	E	A	K	A	R	G	E	1040
ATG	GAA	ACC	CCC	CTG	GAA	GAG	ATT	GGA	GGA	GGA	ACT	TCC	CAG	AGA	GGA	AAG	GCA	GCA	GGC	3180
M	E	T	P	L	E	E	I	G	G	G	T	S	Q	R	G	K	A	A	G	1060
GCT	CCT	GTG	GAG	CAG	TCT	GCC	AGC	GAG	GAG	GAG	CCA	CAG	GGC	AGC	GCA	TGC	AGA	GAG	GAG	3240
A	P	V	E	Q	S	A	S	E	E	E	P	Q	G	S	A	C	R	E	E	1080
GTG	GCA	GTG	GAG	TCG	AGC	ACT	GCA	GAA	GGA	AAG	GAG	CTG	AAC	CTG	AGG	GAA	ACT	GGA	GAA	3300
V	A	V	E	S	S	T	A	E	G	K	E	L	N	L	R	E	T	G	E	1100
GAT	GAC	GTC	TCC	TCG	ATG	GTT	GTG	GTC	TTA	GGA	GAA	AAG	ACT	GAC	ATT	GAG	GAA	ACG	AAT	3360
D	D	V	S	S	M	V	V	V	L	G	E	K	T	D	I	E	E	T	N	1120
GGA	GAT	CCG	AAA	GAA	ACA	GAA	AGA	GAG	AGT	TCT	GTC	TCT	TGG	GAG	AGA	GGG	TCT	GGA	GAG	3420
G	D	P	K	E	T	E	R	E	S	S	V	S	W	E	R	G	S	G	E	1140
ATC	CAG	GTC	GGG	GAG	GAA	ATG	GTG	GAA	GAC	TTA	GGA	AAA	CCA	GAA	AAA	ATA	GAT	GTT	GCT	3480
I	Q	V	G	E	E	M	V	E	D	L	G	K	P	E	K	I	D	V	A	1160
CCA	AGA	GAA	CGT	GAA	CCA	GAG	GAA	CAT	TCC	TCA	GGG	cag	CCT	GAG	GCA	GAT	GTA	ATT	CTG	3540
P	R	E	R	E	P	E	E	H	S	S	G	Q	P	E	A	D	V	I	L	1180
AGC S	AGT S	AGT S	GAC D	GGC G	AGC S	ACT T	GGC G	TCT S	CCA P	CAG	GAT D	Exon AAA K	17/ GTG V	Exon AAT N	I 18 ATT I	AGC S	AGT S	AAA K	ATA I	3600 1200
							-	0	-	z.										
TCA	GTG	ATG	CCT	ACA	CTT	GTG	GAA	GAA	AAA	GAA	ACT	ACT	GAC	AAG	GAC	ATA	TCC	AGC	CAC	3660
S	V	M	P	T	L	V	E	E	K	E	T	T	D	K	D	I	S	S	H	1220
TCA	GTG	ATG	CCT	ACA	CTT	GTG	GAA	GAA	AAA	GAA	ACT	ACT	GAC	AAG	GAC	ATA	TCC	AGC	CAC	3660
S	V	M	P	T	L	V	E	E	K	E	T	T	D	K	D	I	S	S	H	1220
TTA	GGT	CAT	GTG	GAG	TCT	TGC	TCA	CAG	AAT	TTG	GGA	CGC	CAT	GAA	ACA	GAC	CAA	GGG	ATG	3720
L	G	H	V	E	S	C	S	Q	N	L	G	R	H	E	T	D	Q	G	M	1240
TCA S TTA L CCG P	GTG V GGT G CTT L	ATG M CAT H CCA P	CCT P GTG V GAT D	ACA T GAG E GCT A	CTT L TCT S CTA L	GTG V TGC C GAG E	GAA E TCA S CGG R	GAA E CAG Q TTT F	AAA K AAT N TCA S	GAA E TTG L GAT D	ACT T GGA G ACT T	ACT T CGC R E AAC N	GAC D CAT H Xon TTA L	AAG K GAA E 18/E AGC S	GAC D ACA T Xon AAA K	ATA I GAC D 19 CCT P	TCC S CAA Q CTT L	AGC S GGG G CCT P	CAC H ATG M CAA Q	3660 1220 3720 1240 3780 1260
TCA S TTA L CCG P GAA E	GTG V GGT G CTT L CAG Q	ATG M CAT H CCA P CAG Q	CCT P GTG V GAT D CCA P	ACA T GAG E GCT A CTT L	CTT L TCT S CTA L CAA Q	GTG V TGC C GAG E GTT V	GAA E TCA S CGG R AAA K	GAA E CAG Q TTT F CCA P	AAA K AAT N TCA S GCT A	GAA E TTG L GAT D CCC P	ACT T GGA G ACT T TTT F	ACT T CGC R E AAC N CTG L	GAC D CAT H Exon TTA L AGA R	AAG K GAA E 18/E AGC S AGT S	GAC D ACA T Xon AAA K CGA R	ATA I GAC D 19 CCT P TTC F	TCC S CAA Q CTT L AAA K	AGC S GGG G CCT P AAA K	CAC H ATG M CAA Q CCA P	3660 1220 3720 1240 3780 1260 3840 1280
TCA S TTA L CCG P GAA E AAA K	GTG V GGT CTT L CAG Q CCA P	ATG M CAT H CCA P CAG Q AAC N	CCT P GTG V GAT D CCA P CTG L	ACA T GAG E GCT A CTT L TCA S	CTT L TCT S CTA L CAA Q AGA R	GTG V TGC C GAG E GTT V GCA A	GAA E TCA S CGG R AAA K GCT A	GAA E CAG Q TTT F CCA P TTA L	AAA K AAT N TCA S GCT A AAG K	GAA E TTG L GAT D CCCC P AGA R	ACT T GGA G ACT T T T T F GCA A	ACT T CGC R E AAC N CTG L ACC T	GAC D CAT H XON TTA L AGA R ATA I	AAG K GAA E 18/E AGC S AGT S GAA E	GAC D ACA T Xon AAA K CGA R GCA A	ATA I GAC D 19 CCT P TTC F GAG E	ICC S Q CTT L AAA K CAC H	AGC S GGG CCT P AAA K TGT C	CAC H ATG M CAA Q CCA P GTG V	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300
TCA S TTA L CCG P GAA E AAA K CCT P	GTG GGT CTT L CAG Q CCA P GGG G	ATG M CAT H CCA P CAG Q AAC N AAG K	CCT P GTG V GAT D CCA P CTG L AAA K	ACA T GAG E GCT A CTT L TCA S TCC S	CTT L TCT S CTA L CAA Q AGA R GAA E	GTG C GAG E GTT V GCA A GCC A	GAA E TCA S CGG R AAA K GCT A IGC C	GAA E CAG Q TTT F CCA P TTA L AAA K	AAA K AAT N TCA S GCT A AAG K GTG V	GAA E TTG L GAT D CCC P AGA R GAG E	ACT T GGA ACT T T GCA A GCC A	ACT T CGC R AAC N CTG L ACC T GCC A	GAC D CAT H XON TTA L AGA R ATA I ATG M	AAG K GAA E 18/E AGC S AGT S GAA E CTA L	GAC D ACA T XON AAA K CGA R GCA A CAG Q	ATA I GAC D 19 CCT P TTC F GAG E CAG Q	TCC S Q CTT L AAA K CAC H GAC D	AGC S GGG CCT P AAA K IGT C AGT S	CAC H ATG M CAA Q CCA P GTG V GTG V GAC D	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320
TCA S TTA L CCG P GAA E GAA K CCT P CAA Q	GTG V GGT CTT L CAG Q CCA P GGG G GCT A	ATG M CAT H CCA P CAG Q AAC N AAG K GCT A	CCT P GIG V GAT D CCA P CTG L AAA K CTC L	ACA T GAG E GCT A CTT L TCA S TCC S	CTT L TCT S CTA L CAA Q AGA R GAA E CCT P	GTG V TGC C GAG E GTT V GCA A GCC A Exor CAA Q	GAA E TCA S CGG R AAA K GCT A TGC C C n 19, CAT H	GAA E CAG Q TTT F CCA P TTA L AAA K (Exor AAT N	AAA K AAT N TCA S GCT A AAG GTG V 20 GTA V	GAA E TTG L GAT D CCC P AGA R GAG E CCT P	ACT T GGA G ACT T T T F GCA A GCC A C C S	ACT T CGC R E AAC N CTG L ACC T GCC A CTG L	GAC D CAT H Xon TTA L AGA R ATA I ATG M	AAG K GAA E 18/E AGC S AGT S GAA E CTA L GCA A	GAC D ACA T Xxon AAA K CGA R GCA A CAG Q TCA S	ATA I GAC D 19 CCT F TTC F GAG CAG Q AGA R	CAA Q CTT L AAA K CAC H GAC D GAA E	AGC S GGG G CCT P AAA K TGT C C AGT S AAT N	CAC H ATG M CAA Q CCA P GTG V GAC D GAT D	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340
TCA S TTA L CCG P GAA CAA K CCT P CAA Q AAA K	GGT G G CTT L CAG Q CCA P GGG G G CTA A TCC S	ATG M CAT H CCA P CAG Q AAC X N AAG K GCT A GGT G	CCT P GTG V GAT D CCA P CTG L AAA K CTC L CAT	ACA T GAG E GCT A CTT L TCA S TCC S CCT S GAG E	CTT L TCT S CTA L CAA Q AGA R GAA E CCT P GAG E	GTG V TGC C GAG E GTT V GCA A GCC A E XOIO CAA Q GAG E	GAA E TCA S CGG R AAA K GCT A TGC C C T I GAG E	GAA E CAG Q TTT F CCA P TTA L AAA K K SAA K SAA S CCA P CCA P CCA S CCA S CAG Q CAG C Q CAG C Q C TTT F C CAG Q C CAG Q C CAG Q C CAG Q C CAG Q C CAG Q C CAG Q C CAG C C C C C C C C C C C C C C C C C	AAA K AAT N TCA S GCT A AAG K GTG V V 20 GTA V S GCT A	GAA E TTG L GAT D CCCC P AGA R GAG E CCT P GCG A	ACT T GGA G ACT T T T T F GCA A GCC A C S ATA I	ACT T CGC R AAC N CTG L ACC T GCC A CTG L CTA L	GAC D CAT H Xon TTA L AGA R ATA I ATG M ATG M CCA P	AAG K GAA E 18/F AGC S AGT S GAA E CTA L GCA A TGT C	GAC D ACA T XXON AAA K CGA R GCA A CAG Q CAG Q TCA S ACA T	ATA I GAC D 19 CCT P TTC F GAG CAG Q AGA R CAG Q	TCC S CAA Q CTT L AAA K CAC H GAC D GAA E ACT T	AGC S GGG G CCT P AAA K TGT C AGT S AAT N SAA E	CAC H ATG M CAA Q CCA P GTG V GAC D GAT D AAG K	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340 4080 1360
TCA S TTA L CCG P GAA C CAA Q CAA Q AAA K CAA Q AAA K CAA D	GGT G CTT L CAG Q CCA P GGG G G CT A CCA S GCT A	ATG M CAT P CAG Q AAC N AAG K GCT A GGT G TCA S	CCT P GTG V GAT D CCA P CTG L AAA K CTC L CAT H CCG P	ACA T GAG E GCT A CTT L TCA S TCC S CCA P	CTT L TCT S CTA L CAA Q AGA R GAG E CCT P GAG E AAT N	GTG V TGC C GAG E GTT V GCA A Exor CAA Q GAG E TCA S	GAA E TCA S CGG R AAA K GCT A TGC C C 19 CAT H GAG E AGT S	GAA E CAG Q TTT F CCA P TTA L AAA K (Exor AAT N GAG E GAA E	AAA K AAT N TCA S GCT A AAG K GTG C C C C P	GAA E TTG L GAT D CCC P AGA R GAG E CCT P GCG A AAA K	ACT T GGA G ACT T T T T G CA G CC A C C S ATA I C GAG E	ACT T CGCC R E AACC N CTG L ACC T CTG L CTG L CTA L CTA L GGT G	GAC D CAT H XXON XTA L AGA R ATA I ATG M ATG M CCA P TCT S	AAG K GAA E 18/E AGC S AGT S GAA E CTA L GCA A TGT C C CAG Q	GAC D T XCN AAA K CGA R GCA A CAG Q TCA S ACA T TTA L	ATA I GAC D 19 CCT P TTC F GAG Q AGA R CAG Q ACC T	TCC S CAA Q CTT L AAA K CAC H GAC CAC D GAA E ACT T CCA P	AGC S GGG CCT P AAA K TGT C AGT S AAT N GAA E AAC N	CAC H ATG M CAA Q CCA P GTG V GTG D GAC D GAC D GAT D AAG K CAG Q	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340 4080 1360 4140 1380
TCA S TTA L CCG P GAA E CAA Q CCT P CAA Q AAA K GAT D GAA E	GGG GGT CTT L CAG Q CCA P GGG GCT A TCC S GCT A AAT N	ATG M CAT P CAG Q AAC N AAC M AAG G G C T CA S GGC G G G G G G G G G G G G G G	CCT P GTG V GAT D CCA P CTG L AAA K CTC L CAT H CCG P TTA L	ACA T GAG CTT L TCA S TCC S TCT S GAG E CCA P CTT L	CTT L TCT S CTA L CAA Q AGA R GAA R GAA E CCT P GAG E AAT N S T V	GTG V GAG E GTT V GCA A GCC A Exor CAA Q GAG E TCA S E CCT P	GAA E TCA S CGG R AAA K GCT A TGC C C n 19, CAT H GAG E AGT S Xon ATT I	GAA E CAG Q TTT F CCA P TTA L AAA K (Exor AAT N GAG E GAA E 20/E GGG G	AAA K AAT N TCA S GCT A AAG GTG V 20 GTA V CCT A CCT P X000 ACT T	GAA E TTG L GAT D CCCC P AGA R GAG E CCT P GCG A AAA K 21 CCC P	ACT T GGA ACT T T GCA A GCC A C C S ATA I GAG E ATG M	ACT T CGCC R AAC T ACC T GCC A CTG L CTA L GGT G ATG M	GAC D CAT H Xon TLA AGA R ATA I ATG M ATG M CCA P TCT S AAT N	AAG K GAA E 18/F AGC S GAA E CTA L GCA A TGT C CAG Q ACG T	GAC D ACA T XXON AAA K CGA R GCA A CAG Q CAG Q TCA S ACA T TTA L GTC V	ATA I GAC D 19 CCT F GAG CAG Q AGA R CAG Q ACA T ACA T	TCC S CAA Q CTT L AAA K CAC CAC D GAA E ACT T CCA P CAA Q	AGC S GGG CCT P AAA K TGT C AGT S AAT N GAA E AAC N GAA E	CAC H ATG M CAA Q CCA P GTG V GAC D GAC D GAC D AAG K CAG Q ACA T	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340 4080 1360 4140 1380 4200 1400
TCA S TTA L CCG P GAA CAA CCT P CAA CCAA Q CAA CAA C CAA C CAA C CAA C CAA C CAA C CAA C C C C C C C C C C C C C C C C C C C C	GGT G CTT L CAG Q CCA P GGG G G CT A TCC S GCT A AAT N CAA Q	ATG M CAT P CAG Q AAC N AAG K GGT G GGT G GGC G C AAT N	CCT P GTG V GAT D CCA P CTG L AAA K CTC L CAT H CCG P TTA L CTT V	ACA T GAG E GCT A CTT L TCA S TCC S TCT S GAG E CCA P CTT L GTC V	CTT L TCT S CTA L CAA Q AGA R GAG CCT P GAG E AAT N GTT V CAG Q	GTG V TGC C GAG E GTT V GCA A GCC A CAA Q GAG E CCT P ACA T	GAA E TCA S CGG R AAA K GCT A TGC C C 19 CAT H GAG E AGT S XON ATT I I ACT T	GAA E CAG Q TTT F CCA P TTA L AAA K (Exoro AAT N GAG E GGA E GGA G GCTC L	AAA K AAT N TCA S GCT A AAG GTG V 20 GTA V GCT A CCT P XON ACT T CCA P	GAA E TTG L GAT D CCCC P AGA R GAG E CCT P GCG A AAA K 21 CCCC P GTG V	ACT T GGA G ACT T T T T G G C A C C A C C S ATA I GAG C A C C S ATA I C C S A C C C S A C C C C C C C C C C C	ACT T CGCC R AACC N CTG L ACC T GCC A CTG L CTA L GGT G M GGT G	GAC D CAT H Xon TTA L AGA R ATA I ATG M CCA P TCT S AAT N CGA R	AAG K GAA E 18/E AGC S GAA E CTA L GCA A CAG C CAG Q ACG T C CTT L	GAC D ACA T Xon AAA K CGA R GCA A CAG Q TCA S ACA T TTA L GTC V CAG Q CAG Q	ATA I GAC D 19 CCT F GAG CAG Q AGA R CAG Q ACC T ACA T ACA R	TCC S CAA Q CTT L AAA K CAC H GAC D GAA E ACT T CCA P CAA Q CCA P	AGC S GGG CCT P AAA K TGT C AGT S AAT N GAA E AAC N GAA R	CAC H ATG Q CAA Q CCA P GTG V GTG V GAC D GAC D AAG K CAG Q ACA T CCA P	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340 4020 1340 4080 1360 4140 1380 4200 1400 4260 1420
TCA S TTA L CCG P GAA C CAA C CT P CAA C CAA Q AAA K GAA C CAA Q AAA K CAA C C C C C C C C C C C C C C C	GGT G CTT L CAG Q CCA P GGC G G CT A CCA S GCT A CAA Q CAA Q GTG V	ATG M CAT P CAG Q AAC N AAG K GGT G GGT G GGT S GGC G G C AAT N N CAA Q	CCT P GTG V GAT D CCA P CTG L AAA K CTC L CAT H CCG P TTA L GTT V AAG K	ACA T GAG E GCT A CTT L TCA S TCC S TCC S CCA P CTT L GTC V GCC A	CTT L TCT S CTA L CAA Q AGA R GAG E CCT P GAG E AAT N CAG Q Q AGA R	GTG V TGC C GAG E GTT V GCA A GCC A E S C CT P ACA T CAG Q	GAA E TCA S CGG R AAA K GCT A TGC C C 19 CAT H H GAG E S XON ATT I AGG R	GAA E CAG Q TTT F CCA P TTA L AAA K (Exor AAT N GAG E QAA E 20/E GGG G CTC L CAA Q	AAA K AAT N TCA S GCT A AAAG K GTG C C A CCT P XON ACT T CCA P ATA I	GAA E TTG L GAT D CCC P AGA R GAG E CCT P GCG A AAA K 21 CCC P GTG V GTA V	ACT T GGA G ACT T T T T G G C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C C A C C C C C C C C C C C C C C C C C C C C	ACT T CGCC R AAC N CTG L ACC T GCC A CTG L CTA L GGT G AAA K	GAC D CAT H Xon TA AGA R ATA I ATG M ATG M CCA P TCT S AAT N CGA R GGC G	AAG K GAA E 18/E AGC S GAA E CTA L GCA A CTA C CAG Q ACG T CTT L GAA E	GAC D ACA T XXON AAA K CGA R GCA A CAG Q TCA S ACA T TTA L GTC V CAG Q GCG A	ATA I GAC D 19 CCT F GAG CAG Q AGA R CAG Q ACC T ACA T AGA R CAG Q CAG Q CAG Q CAG Q CAG C CAG C C C C C C C C C C C C C C C	TCC S CAA Q CTT L AAA K CAC H GAC D GAA E ACT T CCA P CAA Q CCA P CCA P CCA C CCA C D	AGC S GGG CCT P AAA K TGT C AGT S AAT N GAA E AGA R AGA R AGA R AGA	CAC H ATG M CAA Q CCA P GTG V GTG V GAC D GAT D AAG K CAG Q ACA T CCA P	3660 1220 3720 1240 3780 1260 3840 1280 3900 1300 3960 1320 4020 1340 4020 1340 4080 1360 4140 1380 4200 1400 4260 1420

TCT	TCT	CAC	ATT	GAA	AGT	GGA	GTT	GCA	GTT	GAC	ATG	TCC	TCC	AGA	GTG	TCA	GAG	T <mark>GC</mark>	CAA	4440
S	S	H	I	E	S	G	V	A	V	D	M	S	S	R	V	S	E	C	Q	1480
GTG	AGT	GAA	AGT	CAA	GGC	CAC	GCA	GAT	CCT	GTA	GAA	AAC	TTA	AGT	GTT	AAT	AAA	GCC	AGT	4500
V	S	E	S	Q	G	H	A	D	P	V	E	N	L	S	V	N	K	A	S	1500
GTT	GTT	CAT	GAA	CAG	ATG	AGG	CAT	GAA	AAT	AAA	CCG	TAT	GTT	CCT	AGT	CCA	GCA	CTG	CTG	4560
V	V	H	E	Q	M	R	H	E	N	K	P	Y	V	P	S	P	A	L	L	1520
ATA	AGA	AGG	CGG	TTC	CAA	AAG	GCT	AAA	CCA	AAT	TTA	GGA	GGA	GCA	CGC	CGT	AAG	GAT	GAG	4620
I	R	R	R	F	Q	K	A	K	P	N	L	G	G	A	R	R	K	D	E	1540
CAA	CCA	GGT	GTG	GAG	AAA	GGC	CGG	ACA	GAC	GAG	AGC	ACA	GCA	CTA	ACA	GCA	GAA	GAT	CAC	4680
Q	P	G	V	E	K	G	R	T	D	E	S	T	A	L	T	A	E	D	H	1560
CTG L	CTG L	CAG Q	AAG K	GAA E	GAC D	TGT C	GAC D	ACC T	CAG Q	CTT L	TCT S	CTG L	CAA Q	Exo: GCA A	n 23 AGG R	/Exo GAA E	n 24 AAG K	GCA A	GAT D	4740 1580
ATG	CCT	CTG	GAG	GTT	TCA	GTG	AGA	AAA	GAG	TGT	ATA	CAT	TCT	GAA	GAG	TCG	<mark>GGT</mark>	TCT	GAC	4800
M	P	L	E	V	S	V	R	K	E	C	I	H	S	E	E	S	G	S	D	1600
AGA	AAC	GAT	GCT	CAG	CCG	AAC	GCT	GGA	CCA	TCA	GAA	GGT	TCC	AGG	GAT	GAG	ACT	GCG	AAA	4860
R	N	D	A		P	N	A	G	P	S	E	G	S	R	D	E	T	A	K	1620
GAG	CAG	CCT P	ACA	TCT	TTG	GGG	CTT	GAA E	GAG	CAG	AGT	CTT	AGT	AAA	CAA	Exon ATT T	24/1 AGA R	Exon TCC S	25 AGC	4920
TGT	CCA	CAA	CTA	TGG	AAA	GAA	TCA	AGC	TAT	CCC	AAG	ACT	GTT	TCG	AGT	CGA	AGA	ACC	CCT	4980
стс	TCT	TCT	GCC	TCT	GAG	TGT	GAA	ATA	GAG	CAC	AGT	TGG	AAA	AGA	ACA	CAG	AGG	AAG	ACG	5040
L	S	S	A	S	e	C	E	I	E	H	S	W	K	R	T	Q	R	K	T	1680
AAA	CCA	AAT	CTG	ACC	Aaa	GGG	CGT	GGA	TCA	AAA	CGA	ATT	CGA	GGT	AAG	ACT	GCT	AAG	AAG	5100
K	P	N	L	T	K	G	R	G	S	K	R	I	R	G	K	T	A	K	K	1700
GAA	CCT	AGA	GCT	TCC	AAG	TCC	GTG	TTG	GTG	ACT	CTT	CGG	GCT	TCT	CAG	AAA	GAG	GAT	GAA	5160
Е	P	R	A	S	K	S	V	L	V	Т	L	R	A	S	Q	K	Ε	D	Ε	1720
GAT	GAT	GCT	GAG	GAT	TTT	GAT	TCT	GAC	TAT	GAG	GAA	GAA	ACC	TAT	CAT	CTT	GCC	CCA	GAA	5220
D	D	A	E	D	F	D	S	D	Y	E	E	E	T	Y	H	L	A	P	E	1740
GAA E	TTA L	AGC S	AAA K	GCA A	CCA P	GTG V	TTT F Exc	GTA V n 25	CCT P	GTT V n 26	GGT G	CTC L	AGA R	TCC S	CCT P	GAA E	CCA P	GTT V	TCT S	5280 1760
GCT	CAG	ATC	GAG	GAA	ACA	ATG	GAA	GAG	CTT	GAG	ATA	ACC	ATG	<mark>GAC</mark>	GTT	GCA	<mark>GAC</mark>	ATG	ACT	5340
A	Q	I	E	E	T	M	E	E	L	E	I	T	M	D	V	A	D	M	T	1780
GTT	GTT	GAA	CAT	CAG	CTT	TCA	CAT	ATG	GAC	ACA	ACA	GCT	CAG	GCT	GTG	CAA	GCA	GAG	AAA	5400
V	V	E	H	Q	L	S	H	M	D	T	T	A	Q	A	V	Q	A	E	K	1800
GCT	GTG	TAT	CCG	CCA	TCA	TTT	GAA	ATG	GAC	GTA	GGT	GAA	CAG	ACC	CAA	GAA	GAG	CCA	G <mark>GT</mark>	5460
A	V	Y	P	P	S	F	E	M	D	V	G	E	Q	T	Q	E	E	P	G	1820
CCC	AGT	<mark>GAT</mark>	<mark>GGA</mark>	AGC	ACG	GAA	GCC	GCC	ATA	ACT	TTA	CTT	ACA	ATG	<mark>GGA</mark>	<mark>GAT</mark>	ATA	GTA	TTG	5520
P	S	D	G	S	T	E	A	A	I	T	L	L	T	M	G	D	I	V	L	1840
CAG	TCA	GAG	ATC	ATT	CCT	GGA	CAG	Ex GGG	on 2 GAT	8/Ex GTA	on 2 GGA	9 GTA	TGT	GTA	TTC	CCT	GAT	GTT	CAT	5580
Q	S	E	I	I	P	G	Q	G	D	V	G	V	С	V	F	P	D	V	Н	1860
TCA	GAG	GAT	AAA	AGT	CAT	GCT	CCT	TTT	AGC	CCA	GAT	AAT	GTA	AAT	CAA	AAA	GTT	GTC	CAT	5640
S	E	D	K	S	H	A	P	F	S	P	D	N	V	N	Q	K	V	V	H	1880
GAC	TAT	CCG	GAG	GTT	TGT	TCA	CCT	GTC	ATT	AGT	ACA	TCG	CAT	GCA	TCA	TTT	GAA	GAA	AAC	5700
D	Y	P	E	V	C	S	P	V	I	S	T	S	H	A	S	F	E	E	N	1900
AGG R	ATT I	GTA V	TCA S	AAG K	GAA E 29/F	CAA Q	AGC S	AAT N	AGA R	GAC D	GCT A	GCT A	GTG V	GAG E	GAA E	GAA E	GCA A	GTG V	GAG E	5760 1920
GAG	ACC	TTG	CCA	ACC	AG <mark>G</mark>	AAT	ACA	ACT	TCT	ACG	ATG	AGC	ACA	CAT	TTA	<mark>AGA</mark>	ATG	<mark>GAG</mark>	AGT	5820
E	T	L	P	T	R	N	T	T	S	T	M	S	T	H	L	R	M	E	S	1940
ATG	GTT	GTT	ACA	<mark>ССТ</mark>	GAA	CTA	AAT	TCT	<mark>GAG</mark>	AAG	ACT	TTA	GAG	ATC	AGT	GAG	TCT	CAT	GGT_	5880
M	V	V	T	Р	E	L	N	S	E	K	T	L	E	I	S	E	S	H	G	1960
CAT	CAG	GAA	GTT	GCC	AGT	TTC	TGC	ATA	ACT	AAA	GAG	ACA	GAA	GTG	GAA	ATT	CAA	AGA	GAA F	5940
T1	$\cap$	Let 1	\ <i>'</i>								_		-		_					

ACT	GAA	GGA	GAT	GAT	TCC	AAA	GCA	GTA	GAA	TTA	GAA	GAT	AAA	AGC	CAT	GCA	CCA	GTC	ACA	6000
T	E	G	D	D	S	K	A	V	E	L	E	D	K	S	H	A	P	V	T	2000
GCA	GCA	GAA	ACT	AAG	GAA	GAG	GAG	CAG	TCG	CAG	TGT	GTG	GGT	GAT	GTT	GAA	GGG	GCC	AGT	6060
A	A	E	T	K	E	E	E	Q	S	Q	C	V	G	D	V	E	G	A	S	2020
GTT	TCT	CAA	GAA	GCA	ATC	CTA	CCT	GCG	AG <mark>A</mark>	ATT	GAA	<mark>GAT</mark>	CAT	GAG	GAG	ACC	TTG	CAA	GAG	6120
V	S	Q	E	A	I	L	P	A	R	I	E	D	H	E	E	T	L	Q	E	2040
GTT	CAA	GAG	TCG	<mark>GGT</mark>	ACT	GCA	GTT	GCT	TCT	TCT	GAG	ATA	<mark>GGG</mark>	CAG	CAG	ACA	CTC	<mark>GAT</mark>	TCG	6180
V	Q	E	S	G	T	A	V	A	S	S	E	I	G	Q	Q	T	L	D	S	2060
<mark>GGT</mark>	CAG	AGT	TTT	<mark>GGT</mark>	GAG	AGT	GCT	GCT	AAA	GAA	GCC	CTC	AAA	GAA	ACC	CCT	AAA	<mark>GGC</mark>	AGC	6240
G	Q	S	F	G	E	S	A	A	K	E	A	L	K	E	T	P	K	G	S	2080
GAC	GTG	CCC	GTG	CTT	CAT	<mark>GGG</mark>	CCA	GAG	AGT	GTA	CCA	TCT	CAT	ATT	CCA	GAA	GCC	CAA	CAA	6300
D	V	P	V	L	H	G	P	E	S	V	P	S	H	I	P	E	A	Q	Q	2100
GAA	AAC	ACC	GGT	CCT	CAA	GCT	GTT	ACA	GTG	AAT	CCA	TTT	GCT	<mark>GAT</mark>	<mark>GGA</mark>	CAG	CAA	<mark>GAT</mark>	<mark>GGA</mark>	6360
E	N	T	G	P	Q	A	V	T	V	N	P	F	A	D	G	Q	Q	D	G	2120
GAA	GAT	GAA	CAA	GCC	TTC	ATT	TTA	ACT	CTG	GTG	GAA	ATC	CCA	ACC	CAT	GCA	ACA	GAA	<mark>GGA</mark>	6420
E	D	E	Q	A	F	I	L	T	L	V	E	I	P	T	H	A	T	E	G	2140
TTC	ACT	<mark>GAC</mark>	GCT	GCC	ATG	CAG	TTA	ATG	CCG	AGC	TCT	CTG	CTG	CCA	GCA	CCT	ATA	TTG	GTC	6480
F	T	D	A	A	M	Q	L	M	P	S	S	L	L	P	A	P	I	L	V	2160
<mark>AGG</mark>	TCT	<mark>GGG</mark>	AAT	GCA	GCA	GAA	CGA	<mark>GGT</mark>	GAC	CTG	AGT	GGG	AGT	TTA	CAA	ACC	TCT	TTG	GTT	6540
R	S	G	N	A	A	E	R	G	D	L	S	GGG	S	L	Q	T	S	L	V	2180
GTT	CAA	GAT	GCT	CCA	TCC	TTA	TCT	CCT	TCT	AGA	AGT	GGC	AGT	TCT	GAA	AAG	CCT	CCT	GCT	6600
V	Q	D	A	P	S	L	S	P	S	R	S	G	S	S	E	K	P	P	A	2200
AAT	TTG	GAT	CTT	ACA	TCT	AGG	AAG	AGA	TTT	TGT	TGC	AGT	CCT	GAT	GAA	AGT	ATT	CAT	GTT	6660
N	L	D	L	T	S	R	K	R	F	C	C	S	P	D	E	S	I	H	V	2220
CCT	CCT	GCC	AAA	AAG	TCC	TCA	CTT	GTT	CCA	GGA	ATT	GAT	TAT	CAA	GAA	TGT	ACC	TCT	GAG	6720
P	P	A	K	K	S	S	L	V	P	G	I	D	Y	Q	E	C	T	S	E	2240
GTA	TGT	TCA	GAG	GAA	TTA	AAT	GTT	TTT	GAG	AAA	ACA	GCA	GAG	TCT	TGC	ATG	GGA	CAA	GGC	6780
V	C	S	E	E	L	N	V	F	E	K	T	A	E	S	C	M	G	Q	G	2260
ATT	TTC	CCT	ACC	TCA	GAG	AGC	ACA	CAT	GCA	ACC	TCA	AAA	CCT	CAG	AAG	GAA	CAC	AGT	GAG	6840
I	F	P	T	S	E	S	T	H	A	T	S	K	P	Q	K	E	H	S	E	2280
CCA	ACT	GAT	ACA	GGA	TCA	TCT	GGA	TCT	CTT	GAT	GAA	ATC	AAA	GAT	GCG	TGT	GTA	GAA	AAC	6900
P	T	D	T	G	S	S	G	S	L	D	E	I	K	D	A	C	V	E	N	2300
ATG	GCT	CAA	TTG	CCT	CAG	AGT	GAG	ATA	GTA	TCT	GAT	AAA	GAA	GAG	AAA	ACT	GAA	CCT	GCT	6960
M	A	Q	L	P	Q	S	E	I	V	S	D	K	E	E	K	T	E	P	A	2320
TCC	AAT	TCT	GAA	CAG	AGA	GAC	ATC	GTG	ACA	TCC	TCT	TCA	AAA	CCC	CCT	CTG	ACC	AG <mark>A</mark>	CCT	7020
S	N	S	E	Q	R	D	I	V	T	S	S	S	K	P	P	L	T	R	P	2340
<mark>GGC</mark>	AGA	<mark>AGG</mark>	CCT	TTG	<mark>GGA</mark>	TTT	TTA	TCA	TTA	CTG	TGT	CCA	AAA	AAT	AGT	TTG	GAA	TCT	<mark>GAT</mark>	7080
G	R	R	P	L	G	F	L	S	L	L	C	P	K	N	S	L	E	S	D	2360
GAA	GTG	ACT	CAA	ACC	CAT	AGT	AAG	AAG	CGC	CTA	AAA	CCT	CAG	ATA	CCT	GTA	TCA	CGG	CGA	7140
E	V	T	Q	T	H	S	K	K	R	L	K	P	Q	I	P	V	S	R	R	2380
AAT	TTG	<mark>AGA</mark>	AAA	CCT	AAT	CTG	CAT	AAT	ACA	AGC	CAG	AAA	AAA	AAT	CAA	GAC	TCT	TCA	GCC	7200
N	L	R	K	P	N	L	H	N	T	S	Q	K	K	N	Q	D	S	S	A	2400
CCA	CCC	CCA	TCA	CCC	AGC	GTT	ACT	GCG	CCT	CTG	TCT	GGC	ACT	GCT	<mark>GGG</mark>	AGT	CCT	GAG	AGT	7260
P	P	P	S	P	S	V	T	A	P	L	S	G	T	A	G	S	P	E	S	2420
TCA	GCA	GCT	CAG	GTT	TCT	TCT	GAT	CAG	CCC	TTG	CTA	AAA	GAA	GAG	TGT	AAA	AAT	GGG	CCC	7320
S	A	A	Q	V	S	S	D	Q	P	L	L	K	E	E	C	K	N	G	P	2440
AAA	GGA	GCA	CCT	GAG	GAA	GAG	GTG	ACC	CCA	GTC	TCA	GAG	TTT	GTC	TTC	AGT	GAC	ATC	TTC	7380
K	G	A	P	E	E	E	V	T	P	V	S	E	F	V	F	S	D	I	F	2460
ATT I	GAA E	GTG V	GAT D	GAG E	ACA T	CTA L	<u>TAA</u> *	AGC	TCT	CTC	CTG	GGG	CCC	CTT	CTT	TTT	ACT	TTC	TAC	7440
TTT	TGT	AAT	GAG	TTT	GAG	ATT	TCC	AGC	GAC	CCT	GAC	TTT	CAC	CAA	GCA	GAA	AAG	CAC	CAC	7500
TGT	CTG	TTT	TGA	TTT	AGG	TCA	ATT	TTG	AAT	ATT	TAT	TGA	GCT	TCA	TTT	GAA	GCT	TTT	ATA	7560
ATC	AGT	GGG	AAA	CAT	TTC	TTT	CTG	ATT	GAC	CCT	GCA	TTT	GGA	AAT	ATC	AAG	CAA	TTA	AGA	7620
CTG	GTC	TCA	CTG	ACA	GGC	ATT	GTA	GCT	TGT	TTA	CAT	TTG	ATG	TCC	TCT	GTG	CTG	AGC	GCA	7680

CCT	GGA	CTT	GAG	AAC	TGT	GTG	CAC	GCA	CAT	CTG	TAT	AAA	TCG	TAG	TGC	TGG	CAC	ACT	GGG	7740
AGC	TTG	ATT	GTG	CTT	AAC	ATT	TGC	TGC	CCT	TCT	TTT	CTA	AAG	GTG	GCT	GTG	TTT	TGT	TTC	7800
TGT	ATT	TTG	TTT	TGT	TTT	TTA	TTT	TGT	TTT	TTT	CTT	TCT	TTC	ATT	TTT	CTT	TTT	CTT	GAG	7860
GGT	GAT	CAG	TTG	CCT	GTA	ACA	ATA	TGA	AAG	CAA	AGT	GTG	AAA	CTC	CAC	TTT	GGT	ATG	GTA	7920
AAG	TTA	AAA	CTT	TTC	TAT	CAT	CAT	CTA	TTT	GAC	TGA	AAA	AAA	AAA	TGT	ATA	TTT	TTC	TAA	7980
TTC	ATG	GTG	ATG	TAA	CAT	TAG	TCC	TGA	TTG	AAG	ATC	TAG	TAT	TTA	AAC	TTG	CTA	TTT	ATA	8040
AAG	TCG	GCA	CAT	CAA	AGA	GAT	TTA	TTT	TTA	AAT	TTT	TTA	TTT	AAA	ATA	TAT	CCC	AAT	TTA	8100
ATT	ATT	TTC	ACT	CAT	CAA	ATT	TGG	GTA	AAG	AAA	GCA	TTA	ACA	AAT	AAT	TTG	TCT	CCT	TTT	8160
CCT	CTT	TAC	TTT	AAA	AGC	TAT	TTT	AAA	ATG	TCA	TAA	TTA	AAA	ATG	TTT	AGT	GTT	CAT	ATT	8220
TTG	AAT	ACT	TTT	CTC	ACA	CTT	TAA	TAT	ACT	GAA	TTT	GTA	CTG	TGA	ATA	TTT	TTT	GCT	TTT	8280
CTT	ATT	CTA	ATC	TCA	GGA	TTT	TCA	TTG	GAA	GAA	AAA	AAT	TAA	CAT	AAA	GGA	CAA	ATT	GTC	8340
TTG	TAT	AAT	TGA	TCT	TTT	TTA	CAC	ACA	CAC	ACA	CCC	TTA	AAA	AAA	GGT	TTA	GTG	ATA	GCT	8400
ATT	TTC	CCT	ACT	AAA	TTC	TGT	TCA	CAG	GAC	ATG	TGG	GCT	TTC	AGC	CAC	AGA	ACA	TGA	ATC	8460
TGA	TGT	TAA	AGC	AGA	AAA	TAA	GGC	AGC	CAG	TGA	GGT	CCT	CAT	TAT	GAA	CTT	GGG	TGT	TTT	8520
TAA	TTT	TGA	GTC	TTT	ATG	ATT	TAT	GTG	TCT	TGT	TTT	CCC	TAA	CAG	TTT	TTC	CCC	TGG	TTC	8580
AAA	TTA	AAT	GCT	TCC	AAG	AGC	AAA	TGT	ATT	CAA	CTT	TAT	TAT	AAA	ACC	TTA	TAG	ATT	GAT	8640
ACA	TAG	AAG	TTT	TTC	CAT	AAA	AGA	TTC	TTT	TTG	AAC	TGT	GTA	GCC	CAA	GTG	GTC	CTG	GTA	8700
GCA	GCT	GCT	TAG	GCA	GGA	TGT	GCC	TAA	GAT	TCA	AAA	ACT	GTT	CAG	TGT	ATT	AGG	AAA	TGA	8760
GCA	ATA	CTT	CAG	TTG	GAA	AAT	ATT	TTT	ACA	TCT	AGG	TAA	TTT	TTG	TTT	TTC	ATA	TTG	ATA	8820
AAA	TGG	TGA	CCA	CTT	TTC	AAG	TTT	CTA	AGC	AAA	CAA	GGG	TCG	AAC	TCA	ATG	AGT	CTA	GAG	8880
TGC	TGA	TTC	ATT	GAA	CTT	ACT	GTG	AGC	CTG	TTT	CCT	GTT	CTG	TGG	CTT	AGA	GTC	AAA	TGT	8940
ATA	GTT	TAA	TGT	CTG	CTA	TAA	AGG	GAG	ATC	TAT	AAG	TTA	GAT	GGA	AAT	TCT	CAA	AAG	TAT	9000
GCA	TCT	ATT	TCA	TGT	GAC	TAA	TGT	CAC	AAA	ATC	ATG	GAG	GTA	ATT	CAC	ATT	GCT	ATA	TAA	9060
ATG	CCT	TTT	TGT	TAG	TTT	TTA	AAA	TGT	CAT	GTT	CTG	TAA	AGT	TTG	TTT	GTT	TGT	TTT	TGT	9120
AAA	TGT	TAC	TTG	GGT	TAG	ATC	ACC	GAG	ACT	AAA	CTA	TTA	TTT	ATC	CCT	GTA	TAA	TAT	TTA	9180
TTT	TTT	TAA	CCT	CTG	TCT	CAT	TTA	TCT	GTA	ATA	AAC	TGA	TTT	TAT	GGA	AGA	TGT	AAT	TTA	9240
TTG	TAT	AAA	GAC	TAC	AGG	GGC	ATT	TGT	TGT	ATA	GAG	AAT	CAT	GTC	GGT	CAA	CAA	ATT	GTC	9300
CTG	CTG	CCA	CTG	GAC	AAA	CCG	GTG	CTA	GGA	AGA	GAA	ATA	CAA	TCA	GTG	TGC	TTA	GCT	TTA	9360
AGG	TGG	GAA	GAT	TTG	TGA	TGG	TGG	AAA	GAT	GTT	GCA	AGG	AAT	TTG	TTA	TAG	AAA	TCT	TCA	9420
AGG	AGA	TGT	ATG	AAA	GGG	CTT	TAC	CTT	CTC	TTG	ACT	GTT	TTC	CTC	TGA	TCA	ATT	ACA	TCT	9480
TAG	CAG	GTG	GCC	CAG	GCA	AGA	CAT	AGA	TGC	AAA	TAT	TAA	TAC	CCA	GTG	TTT	ACC	ACC	ATT	9540
ATT	CAA	ATG	CAA	GTG	ACC	ATG	TTT	AAT	ATC	TTG	CTT	GAA	GTT	TTT	GAC	AAA	GAA	GCA	ATA	9600
TCT	TGT	CAT	TTG	TAA	ATT	TTC	TTG	TTC	TAA	AGA	AAG	CAG	TAA	TGT	TCT	GTA	GAT	AAA	AAT	9660
TAT	GTA	AAT	AAA	AGT	TAT	TTT	ΑT													9683

Polyadenylierungssignal

### 11.4 Danksagung

Die vorliegende Arbeit wurde am Institut für Humangenetik der Universität zu Köln in der Arbeitsgruppe von Frau Prof. Dr. Brunhilde Wirth angefertigt. Ich möchte mich herzlich bei ihr für die Bereitsstellung des Themas bedanken. Ihre Ratschläge, ihre Diskussions- und Hilfsbereitschaft haben maßgeblich zum Gelingen dieser Arbeit beigetragen.

Ich bedanke mich bei Frau Prof. Dr. Sigrun Korsching für die Übernahme des Koreferats und bei Herrn Prof. Dr. Ansgar Büschges für die Übernahme des Vorsitzes der Prüfungskomission.

Ich bedanke mich bei allen Mitarbeitern des Instituts für Humangenetik für die schöne Zusammenarbeit. Dabei gilt mein besonderer Dank der SMA-Gruppe: ihr habt stets ein offenes Ohr für die vielen kleinen "Laborproblemchen" gehabt, seit keiner Diskussion entwichen und auch die Lachmuskulatur wurde bestens gestärkt. Kristina möchte ich recht herzlich für die tatkräftige Unterstützung und Hilfe der letzten Monate danken. Mein ganz besonderer Dank gilt meiner ehemaligen "Maus-Mitstreiterin" Ylva für ihre fantastische Zusammenarbeit und Unterstützung in so manchen beruflichen und privaten Situationen ich vermisse unsere gemeinsame Zeit im Labor.

Mein Dank gilt außerdem Herrn Prof. Dr. Jens Brüning für die Bereitstellung der Zellkuluturbiologischen Labore sowie Materialien. Herrn Prof. Dr. Manolis Pasparakis danke ich für die Bereitstellung der histologischen Geräte.

Ebenso möchte ich Frau Prof. Dr. Anja Sterner-Kock für ihre rege Diskussions- und Hilfsbereitsschaft danken. Ebenso danke ich Herrn Dr. Christoph Köhler für die unkomplizierte Zusammenarbeit.

An dieser Stelle möchte ich mich auch bei Frau Morr bedanken: "wachsen" ist für mich nun mehr, als nur ein Wort.

Mein größter Dank gilt allerdings meinen Eltern, meiner Schwester Katja und Joachim: ihr seid einfach wunderbar.

# 12. Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist, sowie dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Frau Prof. Dr. B. Wirth und Frau Prof. Dr. S. Korsching betreut und in der Arbeitsgruppe von Frau Prof. Dr. B. Wirth angefertigt worden.

Teilpublikationen liegen in Form von gedruckten Posterbeiträgen (siehe Kapitel 9.2) vor.

Köln, den 02.05.2011

Miriam Jakubik

# 13. Lebenslauf

## Persönliche Daten

Name	Jakubik
Vorname	Miriam
Geburtsdatum	03. Juni 1979
Geburtsort	Wipperfürth
Adresse	Weinsbergstrasse 180
	50823 Köln
Familienstand	ledig
Staatsangehörigkeit	deutsch

# Schulbildung

08/1985 - 06/1989	Grundschule St. Antonius Wipperfürth
08/1989 - 06/1995	Städt. Realschule Wipperfürth
08/1995 - 06/1998	StAngela-Gymnasium Wipperfürth, Abitur

#### Ausbildung

09/1998 - 07/2001	Biologielaborantin, Universität zu Bonn, Institut für Tierhygiene
07/2001	Abschluß IHK Bonn/Rhein-Sieg

#### Hochschulstudium

ab 10/2001	Studium der Biologie auf Diplom an der Universität zu Köln
12/2003	Abschluß des Grundstudiums mit dem Vordiplom
03/2006	Diplomprüfung
	Hauptfach: Genetik
	Nebenfächer: Entwicklungsbiologie
	Biochemie

04/2006 - 03/2007	Diplomarbeit, Institut für Humangenetik, Universität zu Köln
	Arbeitsgruppe Frau Prof. Dr. Brunhilde Wirth
	"Funktionelle Analysen des Bdp1 Proteins mit Hilfe von
	konditionalen knockout Mäusen"
04/2007 - 06/2011	Dissertation, Institut für Humangenetik, Universität zu Köln
	Arbeitsgruppe Frau Prof. Dr. Brunhilde Wirth
	"Generierung und Charakterisierung von konditionalen Bdp1-
	knockout-Mausmodellen - Analysen des Transkriptionsfaktor
	IIIB-Komplexes"

Köln, den 02.05.2011

Miriam Jakubik