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Zusammenfassung

Trichommusterbildung in Arabidopsis thaliana ist ein gutes Modellsystem, um
zweidimensionale Musterbildung in Pflanzen zu untersuchen. Laterale Inhibition
während der Trichommusterbildung kann theoretisch entweder durch aktive In-
hibition oder durch Entfernung von Trichom fördernder Aktivität (z.B. Depletion)
erreicht werden. Vor kurzem publizierte Daten haben eine Rolle des Aktivator-
Depletionsmechanismus in der Trichommusterbildung vorgeschlagen. Es wurde
gezeigt, dass das TTG1 Protein in den Trichom umgebenden Epidermiszellen de-
pletiert und in den Trichominitialen akkumuliert wird. In der hier vorliegenden
Studie habe ich mich auf die Charakterisierung des molekularen Mechanismus
und der Rolle des Festhaltens von TTG1 während der Trichommusterbildung kon-
zentriert.
Ich zeigte, dass die Entfernung des bHLH Faktors GL3 in dem Verlust der TTG1
Depletion resultiert, was deutlich suggeriert, dass die TTG1 Depletion GL3 abhän-
gig ist. Zellen, die ein hohes Level von GL3 exprimieren, zeigen einen positiven
Effekt auf die Kernlokalisation des TTG1 Proteins. Ebenso wirkt GL3 der TTG1
Mobilität sowohl innerhalb als auch zwischen Gewebeschichten entgegen. Koex-
pression von GL3 und TTG1 in der Subepidermis blockiert die Mobilität von TTG1
von der Subepidermis in die Epidermis. Innerhalb der Epidermis ist das TTG1 Pro-
tein in Trichominitialen im Vergleich zu anderen Epidermis zellen weniger frei sich
zu bewegen. Ähnlich wird TTG1, das in eine Trichominitiale diffundiert ist, effizi-
enter zurückgehalten als TTG1, das in eine andere epidermale Zellen diffundiert
ist. Dies korreliert sehr gut mit dem Expressions- und Lokalisationsmuster von
GL3, welches bevorzugt in Trichominitialen exprimiert wird. Diese Beobachtung
wird weiter durch die Tatsache bestärkt, dass in 35S:GL3 Linien die Depletion
aufgrund des Festhaltens von TTG1 in allen epidermalen Zellen verloren gegan-
gen ist. Zusammenfassend zeigen diese Daten klar, dass GL3 TTG1 im Kern der
Trichominitialen festhält.
Schwache Allele von ttg1, die Trichomcluster produzieren, wurden benutzt, um
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Zusammenfassung

die biologische Relevanz der Depletion zu testen. Interessanter Weise zeigten die
schwachen Allele von TTG1 im Hefesystem entweder eine schwache oder keine In-
teraktion mit GL3 und waren nicht in der Lage im Kern festgehalten zu werden.
Dies führte zu dem Postulat, dass die Interaktion von schwachen TTG1 Allelen
mit GL3 zwar ausreichend ist Trichome zu initiieren, aber nicht ausreicht TTG1
in den Kern zu ziehen/ festzuhalten, was zum Verlust der TTG1 Depletion in den
Trichomnachbarzellen und damit zur Clusterbildung führt.
Eine Grenzkonzentration von TTG1 im Kern scheint kritisch für die korrekte Ver-
zweigung von Trichomen zu sein. Diese Vermutung korreliert sehr gut mit dem
Unterverzweigungsphänotyp von schwachen ttg1 Allelen, in denen das im Kern
lokalisierte TTG1 aufgrund der schwachen/ fehlenden Interaktion mit GL3 als ge-
ringer erwartet wird.
Die Mobilitätsdomäne in TTG1, die nicht alleine, aber teilweise verantwortlich für
die TTG1 Beweglichkeit zwischen den Gewebeschichten ist, wurde auf wenige Ami-
nosäuren im N-Terminus von TTG1 eingeschränkt.
Eine mögliche TTG1 Transportinhibitor-Mutante (tti), die spezifisch den Trans-
port von TTG1 aus der Subepidermis in die Epidermis von Blättern und Samen
inhibiert, wurde in einem EMS-Mutagenese-Screen von ttg1pRBC:TTG1 Pflanzen
isoliert.
Die Anwendung des photokonvertierbaren Markers KikGR1 in Pflanzen wurde
zum ersten Mal gezeigt. Dieser wurde dann erfolgreich benutzt, um die Mobilität
von TTG1 in der Blattepidermis zu studieren.
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Abstract

Trichome patterning in Arabidopsis thaliana is a potential model system to study
two dimensional patterning. Theoretically, lateral inhibition during trichome
patterning can be achieved either by active inhibition or by removal of trichome
promoting activity (e.g. depletion). Recent data have suggested a role of
this activator depletion mechanism in trichome patterning. It was shown that
the TTG1 protein is depleted in the trichome surrounding epidermal cells and
accumulates in the trichome initials. In this study I focused on the characterization
of the molecular mechanism and the role of TTG1 trapping during trichome
patterning.
I showed that the removal of the bHLH factor GL3 results in the abolition of the
TTG1 depletion strongly suggesting that TTG1 depletion is GL3 dependent. Cells
expressing high levels of GL3 show a strong positive effect on nuclear localization
of the TTG1 protein. GL3 also counteracts the TTG1 mobility both within as well
as between the tissue layers. Co-expression of GL3 and TTG1 in the subepidermis
blocked the mobility of TTG1 from the subepidermis to the epidermis. Within the
epidermis the TTG1 protein in the trichome initials is less free to move compared
to TTG1 in the other epidermal cells. Similarly the TTG1 entering into the
trichome initial is retained more efficiently than the TTG1 entering into other
epidermal cells. This correlates with the expression and localization pattern of
GL3 which is predominantly expressed in trichome initials. This observation was
further strengthened by p35S::GL3 lines where the depletion was lost because
of the trapping of TTG1 in all epidermal cells. Taken together these data are
clearly pointing towards a GL3 mediated nuclear trapping of TTG1 in the trichome
initials.
Weak alleles of ttg1, which produce trichome clusters, were used to test the
biological relevance of the depletion. Interestingly the weak allelic forms of TTG1
showed either a weak or no interaction with GL3 and failed to be trapped in the
nucleus in the yeast system. This led to the postulation that in these weak alleles
the TTG1 interaction with GL3 might be sufficient enough to initiate trichomes but
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Abstract

not strong enough to attract/trap TTG1 in the nucleus resulting in no depletion of
the activator TTG1 in the trichome adjacent cells and thereby leading to cluster
formation.
A threshold level of TTG1 concentration in the nucleus appears to be crucial for the
correct branching of the trichome. This assumption also correlates nicely with the
underbranched phenotype in the weak ttg1 alleles where also nuclear TTG1 would
be expected to be less because of weak/no interaction with GL3.
The mobility domain in TTG1, which is not solely but partially responsible for the
TTG1 mobility between the tissue layers was mapped to few amino acids in the
N-terminus of TTG1.
A potential TTG1 transport inhibitor (tti) mutant was isolated in the EMS
mutagenesis screening of the ttg1pRBC::TTG1 plants that specifically inhibited the
transport of TTG1 from the subepidermis to the epidermis in leaf and the seeds.
The application of the photoconvertible marker KikGR1 in plants was shown for
the first time. This was then successfully used to study the mobility of TTG1 in the
leaf epidermis.
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1 Introduction

1.1 Pattern formation in biological system-Role of
intercellular communication

The development and maintenance of multicellular organisms largely depend on

intercellular communication as a major requirement. Several mechanisms have

been established during the evolution for the exchange of signal molecules between

the cells. These mechanisms include the intercellular membrane channels called

plasmodesmata (PD) which make symplasmic connections between the plant cells

(Lucas et al., 1995; Olsen, 1979; Ding et al., 1992; Turner et al., 1994; Bayer et al.,

2004) and proteinaceous channels called gap junctions in animal cells (White and

Paul, 1999; Willecke et al., 2002).

Unlike in animals where cell lineage is the main means of specific cell and

tissue type development, the cell fate in plants largely depends on the positional

informations. The process of intercellular communication is achieved by secreted

signal molecules such as polypeptides, RNAs and ribonucleoproteins (RNPs) (

Gallagher and Benfey 2005, 2009; Matsubayashi et al., 2001). However, the precise

mechanism for cell-to-cell trafficking of molecules is largely unknown. Whereas in

some cases the transport may be non selective (Wu et al., 2002, 2003), in others the

developmental regulation of protein or mRNA movement hints at a selective and

regulated process (Kim et al., 2005a).

The mobility of signal molecules across the PD is tightly regulated by size exclusion
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Introduction

limit (SEL) of PD that varies during the development creating symplastic domains

(Gisel et al., 1999). By means of regulating the SEL cells maintain a qualitative

as well as quantitative control over intercellular communication. All cells of

the embryo of higher plants are initially connected as a single symplasmic unit

mainly with simple PDs. As a result they have high SEL and increased cell-to-

cell transport (Oparka and Turgeon, 1999; Crowford and Zambryski, 2000, 2001;

Kim et al., 2005b, 2005c). With the advancement of embryogenesis the cell-to-

cell transport of macromolecules is downregulated as a result of formation of

symplsmic domains. The trafficking of certain proteins is restricted only within

this domain (Kim et al., 2005; Crowford and Zambryski, 2000). These observations

suggest that plants have evolved certain mechanism to restrict the mobility of

signalling molecules both spatially and temporally to give correct size and shape

to the plant body during growth and development.

Protein movement has been implicated in several pattern formation processes in

plants, including radial and epidermal patterning in the root of Arabidopsis by

SHORTROOT (SHR) mobility from stele into the endodermis, Arabidopsis root hair

pattern formation by the mobility of the transcription factors CAPRICE (CPC) and

GLABRA 3 (GL3) (Berger et al., 1998; Nakajima et al., 2001; Wada et al., 2002).

Other examples to support the importance of intercellular transport of proteins

include the control of leaf morphology modification by long distance transport of

the transcription factor Mouse ears (Me) mRNA and/or protein in tomato, altered

plant development due to the silencing or expression of dominant negative form

of non-cell autonomous pathway protein 1 (NCAPP1) (Lee et al., 2003) and the

regulation of flower development by the the cell-to-cell transport of regulatory

proteins (Sessions et al., 2000; Kim et al., 2003; Wu et al., 2003).

While the protein mobility is important for proper pattern formation restricting

the protein mobility to certain cell types is equally important. One classical

example for this is the restriction of SHR mobility in the endodermis thereby
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defining a single layer of endodermis (Gallagher et al., 2004; Cui et al., 2007).

Trichome patterning in Arabidopsis serves as a potential model system to study

the regulated control of intercellular communication during biological pattern

formation as it invloves lot of intercellular communication through cell-cell protein

trafficking (Schnittger et al., 1999; Schellmann et al., 2002; Bouyer et al., 2008;

Wester et al., 2008; Zhao et al., 2008).

1.2 Models of biological pattern formation

The fundamental question how an organism, which starts as a single cell develops

into a finely carved shape and structure has long held the curiosity of the scientific

world. Development of pattern in a biological system is a very complex process con-

sisting of numerous interconnected mechanisms operating simultaneously and in a

highly ordered fashion. Interaction of complex processes such as spatiotemporal co-

ordination of growth, cell-cell signalling, gene expression, cell differentiation and

tissue movement are generally nonlinear and difficult to analyse. But mathemati-

cal models have the ability to generate a framework, which facilitates to compute

the outcome based on different hypotheses on modes of interactions and also to

make predictions that are experimentally testable. Meinhardt and Gierer (1974,

2000) modelled stable pattern formation and morphogenesis in biological systems

and was referred to as Activator-Inhibitor mechanism/model (Figure 1.1A) (Koch

and Meinhardt, 1994). According to this model the homogenity of a system can

be broken to create a pattern. For this the system has to fulfill certain conditions.

First local self enhancement of the activators is necessary for the continuous sup-

ply of activators themselves that in turn lead to local increase in the concentration

of the inhibitors, which depend on the activators for their production. Second,

the inhibitors need to diffuse into the surrounding cells and have a long range in-

hibitory effect. This means the inhibitors have to be mobile but the activators have
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Figure 1.1: Mechanisms of biological pattern formation. (A) Activator-Inhibitor
model. (B) Computer simulation using the equations of the activator-inhibitor model
for the concentration of the activator (green) and the inhibitor (pink), (Figure from
Scholarpedia). (C) Computer simulation for the activator depletion mechanism, green
peaks indicate the activator concentration. (Figure modified from Scholarpedia) .

to function locally or at least be less mobile compared to the inhibitors. Computer

simulations of the activator-inhibitor process shows that a small increase in the

concentration of the activators results in local self-enhancement of the activators.

Increase in activators further results in an increase in inhibitors concentration.

But due to the high diffusion property of the inhibitors compared to the activators

their concentration is increasing throughout the tissue, while the activators which

are less mobile are restricted to their production spot. As a result of interaction be-

tween two types of components with different diffusion rates complemented with

local self enhancement of activators a spatial concentration pattern is generated

starting from nearly uniform distributions (Figure 1.1B) (Turing, 1952). The an-

tagonistic effect could be caused by the long range inhibitory signal molecules in
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activator-inhibitor mechanism or alternatively inhibitory effect can be caused by

the removal of the activator or material required for the self enhancement result-

ing in a specific pattern by activator depletion mechanism (Figure 1.1C).

1.3 Epidermal pattern formation in Arabidopsis
thaliana

Trichome formation on leaves, stomata development on the hypocotyl and root

hair formation are determined by a common set of genes or corresponding

homologues. Development of these three cell types serves as a model to study

epidermal patterning in plants (Schellmann et al., 2007). Current genetic,

biochemical and yeast interaction data suggest that these patterning systems

consists of a transcriptionally active complex comprising of R2R3 type MYB related

transcription factors, basic helix-loop-helix (bHLH) transcription factors and a

WD40 repeat protein. The MYB-bHLH-WD40 trimeric complex forms a positive

regulatory unit of trichome fate on leaf, atrichoblast fate in root and non stomata

fate in the hypocotyl epidermis (Bernhardt et al., 2003; Payne et al., 2000; Berger

et al., 1998; Schellmann et al., 2007). Single repeat MYB transcription factors,

the expression of which depends on the activator complex lack a transactivation

domain. These single repeat MYBs compete with the R2R3 MYBs in the activator

complex resulting in formation of transcriptionally inactive complex (Payne et al.,

2000; Esch et al., 2003; Bernhardt et al., 2003). Despite very high similarities

in gene regulatory networks (GRNs), these three systems differ from each other

from the developmental context (Benitez et al., 2008). Patterning in the roots

and hypocotyl epidermis is predictable based on their position with respect to the

underlying cortex cells. Epidermal cells overlying a cortex cell develops into a non

root hair while the ones lying on the cleft between two cortex cells develps into

a root hair (Berger et al., 1998; Dolan et al., 1994). Similarly in the hypocotyl
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the cells overlying a cleft between two cortex cells are small and can develop into

stomata, while large protruding cells present directly above the cortex cell bear no

stomata forming ability. On the other hand trichome patterning is considered as a

de novo pattern formation as trichome position has no correlation with any other

landmarks and a cell lineage scenario was excluded by clonal analysis (Pesch and

Hülskamp, 2004; Larkin et al., 1994; Schnittger et al., 1999).

1.4 Trichome patterning in Arabidopsis thaliana

Arabidopsis trichomes are single enlarged epidermal cells that have undergone

four rounds of endoreduplication without a cytokinesis. As a result a wild type

trichome has a DNA content of 32C. Wild type trichomes have three to four

branches. Trichome development on the adaxial surface of the leaf starts at

the distal end of the leaf and progresses basipetally (Hung et al.,1998). The

First trichome appears at the tip of the leaf when the leaf size is about 100µm.

Trichomes are distributed in a highly ordered fashion indicating a tight mechanism

controlling their spacing (Hülskamp et al., 1994). Trichome patterning occurs at

the base of the young leaves and incipient trichomes are separated by epidermal

cell divisions during leaf expansion (Hülskamp et al., 1994). Genetic screening

studies led to isolation of different mutants, which helped in identification and

cloning of over 40 genes controlling the trichome development and patterning

(Figure 1.2) (Hülskamp et al., 1994; Marks et al., 2009). The genes of the core

activator and inhibitor complex are broadly grouped into two classes.

1.4.1 Positive regulators or activators

This group includes those genes in the absence of which there are either fewer

or no trichomes on the leaf surface. This group includes the R2R3 MYB related

transcription factors GLABRA1 (GL1) and its homolog MYB23 (Openheimer et al.,

6



Introduction

1991; Kirik et al., 2001). Mutations at the GL1 locus results in the complete loss

of trichomes on the leaf surface but does not affect edge trichomes (Figure 1.2K)

(Oppenheimer et al., 1991; Kirik et al., 2001). On the other hand the myb23 mu-

tant plants show no obvious effect on the trichome initiation but is affected in

branching and production of marginal trichomes and in combintation with gl1 mu-

tant (gl1 myb23 double mutant) resulted in complete loss of trichomes including

the edge trichomes (Kirik et al., 2001, 2005). GL1 and MYB23 show similar ex-

pression pattern but have spatial and temporal differences at the transcriptional

regulation level (Kirik et al., 2001, 2005). MYB23 when expressed under the GL1

cis-regulatory elements complimented gl1 mutant phenotype but GL1 expression

under the MYB23 regulatory elements did not rescue the gl1 phenotype suggesting

that MYB23 is expressed relatively late compared to GL1 (Kirik et al., 2005).

The second member of the activator group belongs to the basic Helix-Loop-Helix

(bHLH) proteins GLABRA3 (GL3) and its homologue ENHANCER OF GLABRA3

(EGL3) (Payne et al., 2000; Zhang et al., 2003; Bernhardt et al., 2003). Mutation

at the GL3 locus results in a moderate effect on trichome number but has a severe

negative effect on trichome branching and size (Figure 1.2M) (Hülskamp et al.,

1994; Payne et al., 2000). DNA content in gl3 trichomes is mostly 16C compared

to 32C in wild type trichomes (Hülskamp et al., 1994). Mutation in EGL3 does not

lead to an obvious trichome phenotype but gl3 egl3 double mutant is completely

glabrous (Figure 1.2N) (Zhang et al., 2003). Because of the presence of the GL3

homologue EGL3 that functions redundantly with GL3, gl3 mutants are not com-

pletely devoid of trichomes. Apart from their role in trichome patterning both GL3

and EGL3 participate in root hair differentiation and patterning and anthocyanin

biosynthesis. EGL3 is also required for the seed coat epidermal cells development

(Zhang et al., 2003; Gonzalez et al., 2009).

The third component in this group is a WD40 repeat containing protein TRANS-

PARENT TESTA GLABRA1 (TTG1) (Koornneef M., 1981; Galway et al.,1994; Walker
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Figure 1.2: Trichome development in Arabidopsis thaliana. (A-H) Stages of
a trichome development. (A) Undifferentiated epidermal cells, double headed arrow
indicates intercellular communication. (B) One epidermal cell enters trichome fate,
(arrow). (C) Trichome initial bulging out. (D) New trichomes emerge out from the
epidermal cells at certain distance from each other. (E) Outgrowth of a trichome. (F)
Primary branch point is indicated by arrow. (G) Primary (yellow arrow) and secondary
(red arrow) branch point are indicated. (H) Matured trichome with three branches. (I)
Trichome distribution pattern on a leaf, white box indicates patterning zone; scale = 50
µm. (J-O) Trichome phenotype in wild type (J), activator mutants (K-N), inhibitor mutant
(O). (A-I) confocal images taken after staining with propidium iodide to mark the cell wall
(false colored); (O) taken from Wester K., (2009).

et al., 1999; Larkin et al., 1999). Mutation at this locus results in a glabrous phe-

notype (Figure 1.2L). Apart from the trichome specification, TTG1 also controls

several other phenotypes such as root hair patterning, seed coat proanthocyani-

din (PA) biosynthesis, seed coat mucilage production and anthocyanin biosynthesis

(Koornneef M., 1981). The trichome phenotype of ttg1 can be partially rescued by

overexpressing GL3 (Payne et al., 2000). Over expression of both GL3 and GL1 to-

gether can rescue the ttg1 trichome phenotype to wild type suggesting that TTG1

is not absolutely necessary but is rather playing a regulatory function probably by

modulating the GL3-GL1 interaction (Payne et al., 2000).

Apart from these three there are at least two other genes that regulate trichome de-

velopment. GLABRA2 (GL2) encodes a homeodomain leucine zipper transcription
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factor of the class HD-Zip IV and TRANSPARENT TESTA GLABRA 2 (TTG2) that

encodes a WRKY transcription factor (Rerie et al., 1994; Johnson et al., 2002). Al-

though gl2 mutants appear glabrous, they do have underdeveloped trichomes. On

the leaves of gl2 mutant plants epidermal cells that enter into trichome fate exit

from the differentiation pathway at various stages of their development and ap-

pear as enlarged flat epidermal cells (Hülskamp et al., 1994; Srinivas B.P., 2004).

Various genetic analysis revealed that GL2 is required not just for the trichome

differentiation but is needed for trichome initiation and patterning (Ohashi et al.,

2002; Srinivas BP., 2004). GL2 is also required to specify hairless cell fate in roots

(Rerie et al.,1994; Di Cristina et al., 1996; Masucci et al., 1996). ttg2 mutants

have reduced trichome number, are underbranched and range in structure from

rudimentary outgrowth to well developed stage (although underbranched). TTG2

shares some activity with GL2 in trichome development as was evident from the

more severe trichome phenotype in ttg2 gl2 double mutant than in either of the

single mutants (Johnson et al., 2002).

1.4.2 Negative regulators or inhibitors

This group includes the genes whose product inhibits trichome cell fate hence

absence of these gene products results in increase in trichome number/density

and/or cluster frequency. Single repeat R3 MYB transcription factors including

TRIPTYCHON (TRY), CAPRICE (CPC), ENHANCER OF TRIPTYCHON AND

CAPRICE1, 2, 3 (ETC1, 2, 3) are the five homologues that make up the negative

regulator group (Schnittger et al., 1999; Schellmann et al., 2002; Wada et al., 1997;

Kirik et al., 2004a, 2004b; Simon et al., 2007; Tominaga et al., 2008; Wester et al.,

2008). Members of this group lack the transactivation domain thus likely forming

a transcriptionally inactive complex. try mutant plants show clusters of trichome

where more than one trichome appears from the same trichome initiation site. try
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mutants also show an overbranching phenotype (Hülskamp et al., 1994). Mutation

in the CPC gene results in increased trichome number/density (Wada et al., 1997;

Schellmann et al., 2002). The cpc try double mutants exhibit big clusters consisting

of upto 30 trichomes per cluster (Figure 1.2O) (Schellmann et al., 2002). The

different phenotypes of try and cpc suggests that TRY and CPC proteins might

have different diffusion rates with CPC being more diffusible compared to TRY

hence TRY is important for short range inhibition while CPC is required for the

long range inhibiton (Schellmann et al., 2002). Further three homologues, ETC1-

3 were also reported to act as inhibitors redundant with TRY and CPC during

trichome patterning (Kirik et al., 2004a, 2004b; Simon et al., 2007; Wester et al.,

2008; Tominaga et al., 2008). Triple and quadruple mutants show very severe

phenotypes. Triple mutant cpc try etc1 and cpc try etc3 show incresed cluster

size compared to try cpc double mutant. The quadruple mutant cpc try etc1 etc3

shows the entire leaf surface covered with trichomes (Kirik et al., 2004a, 2004b;

Tominaga et al., 2008; Wester et al., 2008). These observations further highlights

the fact that evey epidermal cell is equally potent to develop into a trichome though

not every epidermal cell becomes a trichome, even in the quadrupel-mutant. Apart

from inhibition of trichome fate on the leaf epidermis these inhibitors also inhibit

atrichoblast cell fate and promote trichoblast formation in the root (Wada et al.,

1997, 2002; Schellmann et al., 2002; Kirik et al., 2004a, 2004b; Simon et al., 2007;

Tominaga et al., 2008).

1.5 Expression, interaction and transcriptional reg-
ulation of trichome regulators

Binding of GL1 and TTG1 simultaneously to GL3/EGL3 at different binding

sites but not interacting with each other was shown by yeast two-hybrid and co-

precipitation experiments (Kirik et al., 2005; Zhang et al., 2003; Payne et al., 2000;
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Zimmermann et al., 2004; Wang et al., 2008; Digiuni et al., 2008; Zhao et al.,

2008; Gao et al., 2008). The existance of the GL1-GL3-TTG1 trimeric complex was

shown by co-precipitation assay by Zhao et al., (2008). The fact that these three

proteins share several of the trichome regulators as their common targets supports

the existance of the trimeric complex (Zhao et al., 2008) (Figure 1.3). Positive

action of this complex is counteracted by inhibitors which compete with GL1 for

the binding site in GL3 thereby rendering the complex inactive. Competition

between the inhibitors and GL1 for the binding site in GL3 was demonstrated

by yeast three-hybrid analysis (Payne et al., 2000; Wester et al., 2008; Esch et

al., 2003; Bernhardt et al., 2003). Physical interaction between TRY and GL1

was surprising but authors clearly showed that this interaction is not relevant

for patterning (Digiuni et al., 2008). TRICHOMELESS1 (TCL1), which is single-

repeat MYB type transcription factor that negatively regulates trichome formation

in the inflorescence epidermis was shown to bind to GL1 promoter by ChIP assay

(Wang et al., 2007). This hinted at direct regulation of activators at the expression

level by the inhibitors .

Apart from TTG1 all the other patterning genes exhibit a similar expression

pattern. They are ubiquitously expressed in all the epidermal cells in the

trichome patterning zone of the leaf and show increased expression in the incipient

trichomes (Larkin et al., 1996; Payne et al., 2000; Schellmann et al., 2002; Zhang et

al., 2003; Kirik et al., 2004a, 2004b; Tominaga et al., 2008; Wester et al., 2008;

Zhao et al., 2008; Bouyer et al., 2008). As the leaf matures the expression of

both activators and the inhibitors is limited to the trichome. This paradoxical

phenomenon fits perfectly with the dynamic nature of the inhibitors expected in

the theoratical model by Meinhardt and Gierer (1974). Accordingly the expression

of inhibitors must be under the tight control of the activators. Hence highest

expression of inhibitors is also at the place where activators are highly expressed

(Figure 1.1A, B). Several studies showed that expression of inhibitors is indeed
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Figure 1.3: Interaction and expression regulatory networks of trichome regu-
lators. (A) Protein-protein interaction network based on yeast two hybrid, GAL4::GUS
reporter in co-transformed protoplasts, pull down experiments and BiFC results. (B) Cross
regulatory interactions between trichome patterning genes. Arrow, positive regulation;
blunted lines, negative regulation; solid lines, evidence based on expression in mutants or
overexpression lines; dashed lines, based on indirect evidences such as CHIP experiment.
Picture taken from Pesch and Hülskamp, (2009).

controled by activators. Expression of TRY was completely absent in gl3 and

gl1 mutants as shown by GUS analysis (Digiuni et al., 2008). GL3 regulates

the expression of CPC and ETC1 by directly binding to their promoters in a GL1

dependent manner while it binds to TRY promoter independent of GL1 (Morohashi

et al., 2007; Zhao et al., 2008). Apart from binding to the regulatory sequences

of inhibitors GL3 was also shown to bind to and activate the expression of GL2

and TTG2 in co-operation with GL1 (Morohashi et al., 2007; Zhao et al., 2008).

Similarly GL1 and TTG1 were shown to share the same target genes as GL3

thus supporting the existance of GL1-GL3-TTG1 trimeric complex controlling the

expression of other regulators of trichome cell fate and patterning (Zhao et al.,

2008; Morohashi et al., 2007; Morohashi and Grotewold, 2009). Furthermore, the

other requirement of the activator-inhibitor model that the inhibitors are highly

mobile compared to activators, was shown by transient expression in leaf epidermis
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as well as by expressing them under tissue specific promoters in plants (Digiuni et

al., 2008; Wester et al., 2009; Zhao et al., 2008).

1.6 The role of TTG1 in trichome patterning: new
findings

Genetic studies have shown that strong ttg1 alleles (ttg1-1 and ttg1-13) are

glabrous whereas weak alleles (ttg1-9, ttg1-10, ttg1-11 and ttg1-12) show clusters

and an underbranched trichome phenotype (Koornneef M. 1981; Koornneef et al.,

1982; Larkin et al., 1999; Walker et al., 1999). These paradoxical observations

points to a role of TTG1 in both positive and negative regulation of trichome

development.

Figure 1.4: TTG1 expression and distribution pattern. (A) pTTG1::GUS expressing
line showing the expression pattern of TTG1 promoter, taken from Bouyer D., (2004). (B)
ttg1pTTG1::TTG1:YFP line showing cellular distribution pattern of TTG1:YFP protein. (C)
Close look at the marked region in (B) showing distribution of TTG1:YFP in and around a
trichome initial (arrow). (D) Graph showing YFP fluorescence intensity along the green
line in (C), arrow indicates trichome initial. Yellow, YFP fluorescence; blue, cell wall
marked with propidium iodide (false colored); (B-D) taken from Bouyer et al., (2008).

TTG1 is needed in the trimeric transcriptional activator complex for proper

activation of downstream targets genes. Moreover, Recent findings clearly hinted

how TTG1 could fulfill its function as a negative regulator of trichome fate.

Bouyer et.al., (2008) discovered that during trichome patterning TTG1 protein

is accumulated in trichome initials while being depleted from the surrounding

cells. Analysis of YFP fluorescence in lines expressing the fusion protein TTG:YFP
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driven by the TTG1 promoter showed an elevated signal in the trichome cell while

the signal was 39%, 76% and 93% in the 1st, 2nd and 3rd tiers respectively around

the trichome initial (Figure 1.4) (Bouyer et.al., 2008).

1.7 Aim of the research

The observation of the TTG1 depletion in the trichome neighboring cells led to

the postulation that apart from the widely applied activator inhibitor mechanism,

an activator depletion mechanism might play a role in trichome patterning in

Arabidopsis thaliana. While in an activator inhibitor mechanism TTG1 functions

as an activator of a trichome fate, its removal from the trichome neighboring cells

in the activator depletion mechanism renders a negative effect on these cells, which

is equivalent to the active inhibition by the inhibitors. Hence my Ph.D thesis was

aimed to investigate the molecular mechanism involved in TTG1 depeletion and to

analyse the role of depletion in trichome pattern formation. The other objectives

were to characterize the mobilty domain in TTG1 and to isolate TTG1 transport

inhibitor mutants by EMS mutagenesis of the ttg1pRBC::TTG1 plants.
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2 Results

2.1 Analysis of TTG1:YFP depletion in gl3 mutant

Although TTG1 is expressed ubiquitously at all stages of leaf and trichome

development the cellular distribution pattern of TTG1 protein is not consistent

with the expression pattern. It was shown that TTG1 protein is accumulated in

the nucleus of the developing trichome and is depleted from the cells surrounding

it (Bouyer et al., 2008). TTG1 is a mobile protein, however, it is not specifically

transported into the trichome. These observations raised the question what

makes TTG1 to accumulate in the trichome nucleus while being depleted from the

surrounding cells. The GL3 expression pattern, GL3 protein localization and its

strong interaction with TTG1 as shown in yeast two-hybrid and co-precipitation

experiments hints at possible role of the GL3 protein in regulating the cellular

distribution of TTG1 (Payne et al., 2000; Zhang et al., 2003; Zhao et al., 2008;

Bouyer D., 2004). These properties of the GL3 led to the hypothesis that TTG1

might be trapped by GL3 in the trichome initials where GL3 is highly expressed.

In order to test the hypothesis of GL3 mediated TTG1 trapping, TTG1:YFP fusion

protein was expressed under the TTG1 promoter in gl3 mutant background.

TTG1:YFP fusion protein is uniformly distributed in all cells in the young leaf

epidermis in the gl3 mutant background (Figure 2.1). Using confocal laser

scanning microscopy (CLSM) the cellular distribution of TTG1:YFP was analysed

in the trichome patterning zone. YFP signal along the green line in (Figure 2.1A)
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starting from trichome initial (marked by red arrow) was measured. Quantification

revealed a slightly elevated level of YFP specific fluorescence in the trichome

initials and the fluorescence was at similar levels in the surrounding cells. The

relative intensity of YFP fluorescence corresponding to TTG1:YFP specific signal

was 79% in the first tier of trichome surrounding cells, 77% in the second tier and

was 79% in the third tier showing the loss of the depletion in trichome neighboring

cells (Figure 2.1B, compare with Figure 1.4). These values were obtained using 40

samples.

Figure 2.1: Analysis of TTG1:YFP depletion in gl3 mutant background. (A)
pTTG1::TTG1:YFP in gl3 mutant shows clear nuclear and cytoplasmic YFP signal in the
epidermal cells of the patterning zone. (B) Quantification of fluorescence intensity along
the green line in (A). Yellow, YFP fluorescence; arrow, points to incipient trichome; 1, 2 and
3 in (B) indicates the YFP fluorescence intensity in first, second and third tier cells around
the incipient trichome.

2.2 Effect of trichome patterning related bHLH pro-
teins on the subcellular distribution of TTG1:YFP

Loss of depletion and qualitative observation that more TTG:YFP shifts to cyto-

plasm in the absence of GL3 hinted at a GL3 mediated trapping of TTG1 in the

nucleus. One straight forward experiment for this would be to quantify the sub-
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cellular localization of TTG1:YFP expressed under the TTG1 promoter in the gl3

mutant and in the GL3 overexpression background.

2.2.1 GL3 is the main modulator of TTG1 intracellular local-
ization

In gl3 mutants the TTG1:YFP distribution is more diffuse compared to TTG1:YFP

in the wild type background indicating a shift of the protein from the nucleus

to the cytoplasm resulting in a more or less equal distribution of TTG1:YFP

between cytoplasm and the nucleus. Detailed analysis at the cellular level in

the patterning zone revealed clear differences in the intracellular distribution of

TTG1:YFP in wild type and gl3 (Figure 2.2A and 2.2B). I further looked at the

intracellular localization of TTG:YFP when GL3 is overexpressed under a strong

promoter. To test this, I observed the distribution of TTG1:YFP in lines expressing

GL3 under the constitutively active CaMV 35S promoter. Expectedly TTG:YFP

fluorescence was more or less restricted to nuclei in p35S::GL3 background (Figure

2.2C) compared to wild type (Figure 2.2A) and gl3 mutant nuclei (Figure 2.2B).

Interestingly in the GL3 overexpressing lines TTG1:YFP depletion is lost. Three

dimensional (3D) analysis of TTG1:YFP in all the three backgrounds further

confirmed our observation (Figure 2.2D-F). In 3D pictures intensity of YFP

fluorescence is indicated by height of the peaks. In wild type background YFP

specific peaks of different heights indicate different amount of TTG1:YFP protein

in cells. Clearly the immediate neighbors of the trichome shows the smallest peaks

and with distance from the trichome initial the height of the YFP specific peak also

increases (Figure 2.2D). In gl3 mutant all the peaks appears to have fused at the

base compared to discrete peaks with valleys in the wild type. This is due to equal

distribution of TTG1:YFP in the cytoplasm and the nucleus (Figure 2.2E). Finally

in p35S::GL3 lines each epidermal cell shows a very clear, bright and individual

peak of almost the same height confirming the loss of TTG1 depletion (Figure 2.2F).
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Figure 2.2: Cellular distribution of TTG1:YFP in different background.TTG1:YFP
distribution in the epidermal cells of the trichome patterning zone was analyzed. (A)
ttg1pTTG1::TTG1:YFP, YFP fluorescence is found in the nucleus and the cytoplasm. (B)
ttg1 gl3pTTG1::TTG1:YFP, YFP fluorescence in the cytoplasm appears to be increased at
the expense of nuclear intensity. (C) p35S::GL3pTTG1::TTG1:YFP, YFP fluorescence is
predominantly found in the nucleus. (D-F) Three-dimensional illustration of YFP signals
strength in (A-C) respectively. The fluorescence intensity is indicated by size of the peaks.
White arrow, points to incipient trichome; red arrow, points to the nucleus of trichome
initials; yellow, YFP specific fluorescence; Blue, cell wall stained with propidium iodide
(false colored). Scale=10 µm.

Furthermore, using the CLSM quantification tool nuclear YFP fluorescence in the

epidermal cells within the trichome patterning zone was quantified as percentage

of the total fluorescence in the analyzed cell (Figure 2.3D). Quantitative analysis

confirmed the observed impression. In wild type 72% of the TTG1:YFP fluorescence

was found in the nucleus. In gl3 mutants TTG1:YFP nuclear fraction is reduced to

49% and in p35S::GL3 lines the nuclear localized TTG1:YFP is increased to 93%

(Figure 2.3D). Comparing intracellular localization of TTG1:YFP in wild type, gl3
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mutant and p35S::GL3 expressing leaves clearly indicated a strong influence of the

amount of GL3 on the intracellular localization of TTG1:YFP.

Figure 2.3: Quantification of nuclear TTG1:YFP in epidermal cells of the tri-
chome patterning zone when expressed under TTG1 promoter in different mu-
tant background. (A) Wild type. (B) gl3 mutant background. (C) p35S::GL3 background.
(D) Percentage of nuclear YFP fluorescence. All values are based on at least 188 single cell
measurements. * the values are statistically highly significantly different from wild type,
t-test, p < 0.0001; yellow, YFP-specific fluorescence; blue, cell wall marked with propidium
iodide (false colored); ROIs are used to quantify YFP intensity; ROI1 (green), region of
interest that marks the entire cell; ROI2 (red), region of interest that marks the nucleus.

2.2.2 Additive effect of GL3 homologues on the subcellular
localization of TTG1:YFP

In the absence of a functional GL3 protein nuclear TTG1 was reduced but was

not exclusively cytoplasmic. This could be explained by the redundancy of bHLH

genes regulating trichome fate in Arabidopsis thaliana. Indeed apart from GL3

at least another two bHLH proteins namely EGL3 and TT8 have been reported to
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play a role in trichome development (Zhang et al., 2003; Maes et al., 2008). These

proteins interact with TTG1 and MYBs and can form MYB-bHLH-WD40 trimeric

complexes similar to that of GL3 (Zhang et al., 2003; Baudry et al., 2004; Maes et

al., 2008). Hence it is likely that EGL3 and TT8 also contribute to the retention of

TTG1 in the nucleus.

To test this I quantified the subcellular localization of TTG1:YFP in the trichome

patterning zone of the leaf epidermis in single (gl3) double (gl3 egl3) and triple (gl3

egl3 tt8) mutants. Like I observed previously TTG1:YFP is partially delocalized to

cytoplasm in gl3 (Figure 2.4E-H) mutant compared to wild type situation (Figure

2.4A-D). Removal of more trichome regulating bHLH factors further enhanced the

cytoplasmic fraction of TTG1. Quantification of nuclear fractions in these mutants

revealed that nuclear TTG1:YFP was 48% in gl3 egl3 double mutant (Figure 2.4I-

L) compared to 56% in gl3 (p < 0.0001). There was no significant effect on the

subcellular distribution of TTG1:YFP upon additional removal of TT8, the third

member of the bHLH family in trichome development (Figure 2.4M-P). In gl3 egl3

tt8 triple mutant 49% of TTG1:YFP fusion protein was accounted in the nucleus,

which was not significantly different from that of nuclear TTG1:YFP amount in gl3

egl3 (p > 0.05). TTG1:YFP in the control line ttg1pTTG1::TTG1:YFP was mainly in

the nucleus (Figure 2.4A-D). It showed 68% nuclear TTG1:YFP protein which was

significantly higher than the nuclear fraction observed in gl3, gl3 egl3 and gl3 egl3

tt8 (p < 0.0001) (Figure 2.4Q).

2.2.3 TTG1:YFP subcellular localization analysis in the roots
of gl3 and gl3 egl3 mutants

Similar to the observation in the leaf epidermis an influence of bHLH proteins

on the TTG1 localization would be expected in the root cells as well due to

their involvement in root hair patterning. Qualitative analysis indeed revealed

that TTG1:YFP fluorescence was clearly shifted to cytoplasm in gl3 and gl3 egl3
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Figure 2.4: Analysis of TTG1 localization in different bHLH mutants. (A-D)
ttg1pTTG1::TTG1:YFP. (E-H) gl3pTTG1::TTG1:YFP. (I-L) gl3 egl3pTTG1::TTG1:YFP. (M-
P) gl3 egl3 tt8pTTG1::TTG1:YFP. (A, E, I, M) Cell wall stained with propidium iodide. (B,
F, J, N) YFP specific fluorescence. (C, G, K, O) Overlay of propidium iodide channel and
YFP channel. (D, H, L, P) Close up look at the localization of TTG1:YFP in the epidermal
cells of the patterning zone. (Q) Graph showing the nuclear TTG1:YFP presented as
a percentage of total YFP fluorescence in the cell, * the values are statistically highly
significantly different from wild type, (t-test, p< 0.0001); ** the values are statistically
highly significantly different from wild type and gl3, (t-test, p< 0.0001); yellow, YFP
fluorescence; blue, cell wall stained with propidium iodide (false colored). Scale=50µm.
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mutants (Figure 2.5). Triple mutant gl3 egl3 tt8 was not included in this analysis

as TT8 is not expressed in roots (Baudry et al., 2006). However, in future detailed

CLSM based quantitative analysis would be more convincing whether GL3 and

EGL3 have additive effect on the subcellular localization of TTG1:YFP in roots as

well similar to the observations in the leaves.

Figure 2.5: Localization analysis of TTG1:YFP in the roots of wild type
(wt), gl3 and gl3 egl3. (A) wtpTTG1::TTG1:YFP. (B) gl3pTTG1::TTG1:YFP. (C) gl3
egl3pTTG1::TTG1:YFP. (D-F) higher magnification of the marked region in (A-C) respec-
tively.

2.3 Influence of GL3 on the nuclear trapping/ trans-
port of TTG1

TTG1 is predominantly localized in the nucleus in spite of not having any

predictable nuclear localization sequences (Bouyer et al., 2008; Zhao et al., 2008).

On the other hand analysis of the cellular localization of AN11, an orthologue of

TTG1 from Petunia hybrida, had revealed a cytoplasmic targeting of the AN11

protein in cell fractionation experiments (de Vetten et al., 1997). Moreover, the
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TTG1 subcellular localization shows that in the epidermal cells of the young

region of the leaf TTG1:YFP fusion showed strong nuclear localization in all cells

including trichomes, whereas in the older leaf tissue/region it was predominantly

cytoplasmic in epidermal cells and nuclear in trichomes (Bouyer D., 2004). These

observations raised a question as to what is modulating the TTG1 subcellular

localization changes in the cells. In the previous experiment I could show that

nuclear amount of TTG1 is strongly influenced by bHLH factors with GL3 being

the most important. Moreover, the TTG1 orthologue PFWD from Perilla frutescens

when co-expressed with the GL3 homologue from the same species in onion

epidermal cells by biolistic transformation showed a clear localization to nucleus,

which otherwise is present both in cytoplasm and the nucleus when expressed

alone (Sompornpailin et al., 2002). From the previous experiment it is likely that

GL3 and TTG1 also share a similar relationship (Figure 2.3). Hence I wanted to

check the specificity of GL3 and TTG1 interaction for TTG1 trapping in the nucleus.

2.3.1 Mapping mutual interaction domains in TTG1 and GL3

To demonstrate that the specific interaction between TTG1 and GL3 is responsible

for TTG1 nuclear targeting it was planned to use the respective variants lacking

the mutual interaction as control. For this I created TTG1 and GL3 variants that

disturb their interaction. A TTG1 variant lacking the C terminal 26 aa (here after

referred to as TTG1△C26) was earlier shown not to interact with GL3 in yeast two-

hybrid (Figure 2.17A) (Payne et al., 2000). For GL3, I mapped the TTG1 interaction

domain to an internal 78 amino acid spanning region between 360-437 amino acids

in GL3. This region was mapped based on the corresponding domain in EGL3,

which was previously shown to interact with TTG1 in yeast two-hybrid screens

(Zimmermann, 2004). This 78 amino acid region from GL3 was deleted to create

a GL3 deleted version (here after referred to as GL3△78) that does not interact

with TTG1 as I could show in yeast two-hybrid assays (Figure 2.6A). To test the
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specificity of the deleted 78 amino acid region from GL3 for interaction with TTG1,

I fused the 78 amino acid GL3 fragment N-terminally to GUS in order to ensure

the stability of the small fragment (here after referred as 78GL3:GUS) and found a

strong interaction with TTG1 that was comparable to full length GL3 in yeast two-

hybrid (Figure 2.6A). Furthermore, based on the previous report that N-terminal

Figure 2.6: Yeast two-hybrid analysis of GL3 variants and GL3 fragments (41GL3
and 78GL3 aptamers). (A, B) Shows yeast growth on two amino acid drop medium for
selection (SD-LW) and three amino acid drop out medium for interaction (SD-LWH). (A’, B’)
Schematic presentations showing the positions of different interactions tested in yeast two-
hybrid analysis in (A, B) respectively. Proteins were fused to either GAL4 transactivation
domain (AD); or fused to GAL4 DNA binding domain (BD); yeast growth indicates positive
interactions; no growth indicates lack of interaction; the interaction on interaction medium
contained 5mM 3-aminotriazole (3-AT).

region (1- 400 amino acids) but not the C-terminal (400-637 amino acids) fragment

of GL3 showed interaction with TTG1 (Payne et al., 2000) I further reduced the

TTG1 interaction domain to a 41amino acid region between 360 to 400 amino acid.

This 41 amino acid fragment of GL3 was fused N-terminally to GUS (41GL3:GUS)

to stabilize the small peptide. Yeast two-hybrid analysis showed that 41amino

acid fragment of GL3 is sufficient to show interaction with TTG1 as strong as the
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78 amino acid fragment and the full length GL3 (Figure 2.6A). For the further

in planta studies it was necessary that these fragments were specific for TTG1

interaction and they did interact with the endogenous GL3. It was indeed observed

that these fragments showed no interaction with GL3 in yeast two-hybrid analysis

(Figure 2.6B). For further studies I used the GL3△78 variant and the aptamer

78GL3 fused N-terminally to GUS (78GL3:GUS). The aptamers are small protein

fragment that compete with the binding of two proteins under consideration and

the method is referred as an aptamer approach.

2.3.2 TTG1 lacks any functional nuclear localization signals
(NLS)

The regulation of nuclear targeting of GL3 and TTG1 was analyzed using a yeast

based nuclear transportation trap (NTT) assay, a selection system for nuclear

targeted proteins (Ueki et al., 1998). Here the protein of interest is expressed

as a fusion to an artificial transactivator LexAD fused to a nuclear export signal

(NES) at its N-terminal (NES:LexAD). Due to the presence of the NES non-

nuclear targeted proteins that lack a functional NLS remain in the cytoplasm

or are exported out of the nucleus. On the other hand nuclear targeted proteins

can overcome the NES mediated nuclear export and enter the nucleus thereby

activating the reporter gene (Ueki et al., 1998). I used this method first to test

if TTG1 has any functional NLS. In this assay TTG1 and GL3 were fused to

create NES:LexAD:TTG1 and NES:LexAD:GL3 respectively. This assay clearly

demonstrated that TTG1 did not enter the nucleus suggesting that it is not

actively transported into the nucleus (Figure 2.7A). By contrast, GL3 behaved

as a nuclear protein in this assay (Figure 2.7A). In the second experiment, the

NTT assay was slightly modified where NES:LexAD:TTG1 fusion protein was co-

expressed with GL3 protein. Upon co-expression of NES:LexAD:TTG1 and GL3,

TTG1 was clearly targeted to the nucleus suggesting GL3 mediated transport
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Figure 2.7: Yeast based Nuclear Transportation Trap (NTT) assay to test GL3
influence on TTG1 nuclear transport. (A) NES based nuclear transportation trap
(NTT) assay demonstrating that GL3 and GL3△78 but not TTG1 and TTG1△C26 can
enter into the nucleus. X (NES:LexAD) was used as a negative control and X:NLS where
SV40 viral NLS was fused to NES:LexAD was used as positive control. (B) NTT assay
showing TTG1 is transported into nucleus in the presence of GL3. (A’ and B’) Schematic
presentation of the positions of fusion proteins tested for nuclear transport in (A and B)
respectively. Yeast growth, fusion protein is in the nucleus; no growth, fusion protein
is exported out of the nucleus; SD-H and SD-HU, amino acid drop out medium for the
selection of yeast cells transformed with one and two constructs respectively; SD-LH and
SD-LHU, amino acid drop out medium for the selection of nuclear transport of a protein
fused to NES:LexAD when expressed alone (A) and in the presence of GL3 (B) respectively.

of TTG1 into the nucleus (Figure 2.7B). I further confirmed the specificity of

the interaction between GL3 and TTG1 for the nuclear transport of TTG1 by

using GL3△78 and TTG1△C26 in various combinations in the NTT assay (Figure

2.7B). First NES:LexAD:GL3△78 and NES:LexAD:TTG1△C26 were tested for

their localization by NTT assay in yeast. As expected NES:LexAD:GL3△78

was clearly in the nucleus while NES:LexAD:TTG1△C26 was not (Figure 2.7A).

Though GL3△78 is localized in the nucleus (Figure 2.7A), it failed to trap TTG1 in

the nucleus when co-expressed in NTT assay (Figure 2.7B). Similarly TTG1△C26
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that lacks interaction with GL3 also failed to be transported into the nucleus upon

co-expression with GL3 in this assay (Figure 2.7B).

2.3.3 In planta analysis of the GL3 and TTG1 interaction
specificity for TTG1 nuclear trapping

A. Transient expression in onion epidermal cells

In micropojectile bombardment experiments in onion epidermal cells all used fu-

sion proteins were expressed under control of the CaMV 35S promoter. In one set

of experiment I co-expressed TTG1:YFP and CFP:GL3. While TTG1:YFP alone

is localized in the nucleus and the cytoplasm (Figure 2.8B), co-expression with

CFP:GL3, which is in the nucleus (Figure 2.8C) causes a predominantly nuclear

localization of TTG1:YFP (Figure 2.8E). Next CFP:GL3△78, which is in the nu-

cleus (Figure 2.8H) but lacks TTG1 interaction (Figure 2.8A) was used in a sim-

ilar co-expression analysis. Co-expression of CFP:GL3△78 (Figure 2.8H) had no

effect on the localization of TTG1:YFP (Figure 2.8G). To test the localization of

TTG1:YFP when GL3 is targeted to the cytoplasm the NLSs from GL3 were deleted

to create CFP:GL3△NLS. Deletion of NLS in GL3 did not affect its interaction

with TTG1 in yeast two-hybrid (Figure 2.8A) but its localization in the cell is

completely shifted to the cytoplasm (Figure 2.8D). Co-expression of TTG1:YFP

(Figure 2.8I) and CFP:GL3△NLS (Figure 2.8J) revealed that significant amount

of TTG1:YFP is still in the cytoplasm (Figure 2.8I) unlike in the co-expression

of CFP:GL3 and TTG1:YFP where TTG1:YFP was predominantly in the nucleus

(Figure 2.8E). TTG1:YFP is not targeted to the nucleus anymore instead it is dis-

tributed in nucleus and cytoplasm (Figure 2.8I) much like TTG1:YFP expressed

alone (Figure 2.8B). Nevertheless, I cannot rule out the quantitative differences

in the cytoplasmic concentration of TTG1:YFP when TTG1:YFP is expressed alone

and when it is expressed together with CFP:GL3△NLS.

As deletions may cause aberrant protein functions I tested the functionality of the
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Figure 2.8: Transient expressions studies to show nuclear trapping of TTG1 as
influenced by the interaction with GL3. (A) Yeast two-hybrid analysis to test the
TTG1 interaction with CFP fused GL3 variants. (A’) Schematic presentation showing the
positions of different interactions tested. TTG1 was fused to GAL4 DNA binding domain;
CFP fused GL3 variants were fused to GAL4 transactivation domain. (B-I) Transient
expression using microprojectile bombardment in onion epidermal cells. (B) TTG1:YFP,
fluorescence is found in the nucleus and the cytoplasm. (C) CFP:GL3, fluorescnece is found
only in the nucleus. (D) GL3△NLS, fluorescence is found only in the cytoplasm. Inset
showing the magnification of nucleus. (E) Co-expression of TTG1:YFP and CFP:GL3, bulk
of the TTG1:YFP fluorescence is restricted to nucleus. (F) Same cell as in (E) showing
the CFP:GL3 localization. (G) Co-expression of TTG1:YFP and CFP:GL3△78, TTG1:YFP
is localized in the cytoplasm and the nucleus. (H) Same cell as in (G) showing the
CFP:GL3△78 localization. (I) Co-expression of TTG1:YFP and CFP:GL3△NLS, TTG1:YFP
is localized in cytoplasm and nucleus. (J) Same cell as in (I) showing CFP:GL3△NLS
localization. All the constructs in the bombardment experiment were expressed under
p35S promoter.
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GL3 variants (GL3△NLS and GL3△78) with two experimental approaches. First

I could show that GL3△78 and GL3△NLS as well as their N-terminal CFP fused

versions (CFP:GL3△78 and CFP:GL3△NLS) interact with other trichome regula-

tors such as GL1, CPC and TRY (Table 2.1) which have been shown to interact

with GL3 (Payne et al., 2000; Zhang et al., 2003; Zhao et al., 2008). The second

Table 2.1: Yeast two-hybrid analysis of GL3 variants with trichome regulators.

BD:TRY BD:CPC BD:GL1 BD:TTG1

AD:GL3 +++ +++ +++ ++++

AD:GL3△78 +++ +++ +++ -

AD:GL3△NLS +++ +++ +++ ++++

AD:CFP:GL3 +++ +++ ++ ++++

AD:CFP:GL3△78 ++ +++ ++ -

AD:CFP:GL3△NLS ++ +++ ++ ++++

+, indicates the strength of the interaction; -, is no interaction; AD, is the
transactivation domain; BD, is the DNA binding domain.

Figure 2.9: Aptamer 78GL3:GUS is localized exclusively in the cytoplasm. Local-
ization of the 78GL3:GUS was studied by expressing transiently in onion epidermal cells.
(A) RFP:78GL3:GUS. (B) CFP:GL3. (C) Overlay of (A) and (B). Inset in (A-C) shows mag-
nification of the nucleus.

approach was aimed to demonstrate the relevance of TTG1 and GL3 interaction

by an aptamer approach. Here I used 78GL3:GUS as an aptamer to disturb the

interaction between TTG1 and GL3. First I tested the localization of 78GL3:GUS
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by fusing red fluorescent protein (RFP) at its N-terminus and co-expressed it with

CFP:GL3 in onion epidermal cells. Here I could show that RFP:78GL3:GUS is

localized in the cytoplasm and did not alter the localization of CFP:GL3 (Fig-

ure 2.9). RFP:78GL3:GUS was then co-expressed with CFP:GL3 and TTG1:YFP.

Here RFP:78GL3:GUS fluorescence was observed in the cytoplasm (Figure 2.10B)

and efficiently interfered with the ability of CFP:GL3 (Figure 2.10A) to recruit

TTG1:YFP (Figure 2.10C) to the nucleus. On the contrary in the control experi-

ment where RFP:GUS (Figure 2.10E) instead of RFP:78GL3:GUS was co-expressed

with CFP:GL3 (Figure 2.10D) and TTG1:YFP (Figure 2.10F) the nuclear targeting

of TTG1:YFP by CFP:GL3 was not affected (Figure 2.10D-F). This clearly demon-

strates that TTG1 localization to the nucleus is triggered by GL3 through direct

binding.

Figure 2.10: Aptamer 78GL3:GUS competes with GL3 for binding to TTG1
in aptamer experiment. (A-C) Co-expression of CFP:GL3, RFP:78GL3:GUS and
TTG1:YFP, showing the localization of CFP:GL3 in the nucleus (A), RFP:78GL3:GUS in the
cytoplasm (B) and TTG1:YFP in the cytoplasm and the nucleus (C). (D-F) Co-expression of
CFP:GL3, RFP:GUS and TTG1:YFP, showing the localization of CFP:GL3 in the nucleus
(D), RFP:GUS in the cytoplasm (E) and TTG1:YFP predominantly in the nucleus (F). Insets
in (B, E) shows the magnification of the nucleus; all the constructs were expressed under
the p35S promoter.
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B. TTG1△C26:YFP is exclusively cytoplasmic

TTG1△C26 was shown not to interact with GL3 in yeast two-hybrid assay (Figure

2.17A) (Payne et al., 2000). I further tested the interaction of TTG1△C26 with

the other bHLH factors EGL3 and TT8 whose role was also implicated in trichome

development (Zhang et al., 2003; Maes et al., 2008). TTG1△C26 did not inter-

act with GL3, EGL3 and TT8 in yeast two-hybrid assay (Figure 2.17). Further

the localization of TTG1△C26 was analysed in plants. Transgenic plants express-

ing pTTG1::TTG1△C26:YFP variant showed exclusively cytoplasmic localization

while lines expressing pTTG1::TTG1:YFP showed predominantly nuclear YFP flu-

orescence indicating that for the nuclear localization of TTG1 interaction with the

bHLH proteins is necessary (Figure 2.11A).

Figure 2.11: Localization of TTG1△C26 in the leaf epidermis. (A)
pTTG1::TTG1△C26:YFP in ttg1-12 showing exclusively cytoplasmic localization of
TTG1△C26:YFP fusion protein in the young leaf epidermis. Inset picture of a trichome
showing absence of YFP fluorescence in the nucleus marked by arrow. Note, TTG1△C26 is
a ttg1-1 allelic form of TTG1 hence shows no rescue. trichomes observed in (A) are the tri-
chomes present in the ttg1-12 allele used for the localization study. (B) pTTG1::TTG1:YFP
in ttg1-12 TTG1:YFP is mainly localized in the nucleus in young leaf epidermal cells and
the trichomes; trichome nucleus marked with arrow.

31



Results

2.4 GL3 counteracts TTG1 mobility between the
tissue layers

The previous finding that the TTG1 protein depletion is not found in gl3 mutants

led to the hypothesis that TTG1 binding to GL3 leads to a trapping of TTG1 in

trichome cells due to elevated GL3 levels. One prediction of this hypothesis is

that the mobility of TTG1 should depend on the presence of GL3. It was shown

previously that TTG1 can rescue ttg1-1 mutant phenotype when expressed in the

subepidermis using the pPCAL promoter (Bouyer et al., 2008). If the hypothesis of

TTG1 trapping/ attracting by GL3 is correct one would expect that tissue specific

GL3 expression modulates the rescue ability of ttg1-1 mutant phenotype by TTG1

expressed in the subepidermis. Experiments were designed to test this in two di-

rections.

First does epidermal GL3 promote the rescue by trapping TTG1 in the epidermis.

In order to address this question, I tested the rescue ability of subepidermal TTG1

in the absence or abundance of epidermal GL3. As shown before with the pP-

CAL promoter (Bouyer et al., 2008), also subepidermal TTG1 expression driven

by the RUBISCO small sub unit promoter (pRbcS2b/pRBC) completely rescued

ttg1-1 mutant trichome phenotype (Figure 2.12D). Expression of pRBC::TTG1:YFP

in ttg1 and gl3 resulted in TTG1:YFP localization in both, subepidermis as well

as the epidermis demonstrating that the TTG1:YFP protein movement between

cell layers is independent of GL3 (Figure 2.12E, G). The effect of the absence of

GL3 in the epidermis was assayed by studying the rescue ability of subepider-

mal TTG1 in ttg1 gl3 double mutant. If the presence of GL3 in the epidermis

is not relevant, a moderate rescue equivalent to gl3 mutant phenotype would be

expected in ttg1 gl3pRBC::TTG1:YFP expressing line. However, the rescue effi-

ciency of pRBC::TTG1:YFP in ttg1 gl3 double mutant (Figure 2.12F) was much

less effective than pRBC::TTG1:YFP in ttg1 single mutant (Figure 2.12D). While
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Figure 2.12: Tissue specific expression of GL3 controls subepidermal TTG1
movement. (A) ttg1, no trichomes are found. (B) gl3, trichomes are small in size
and underbranched. (C) ttg1 gl3, no trichomes are found. (D) ttg1pRBC::TTG1:YFP,
wild type trichome phenotype is restored. (E) ttg1pRBC::TTG1:YFP, YFP signal is found
in the subepidermis and the epidermis. (F) ttg1 gl3pRBC::TTG1:YFP, weak rescue
of the trichome phenotype, arrow depicts a trichome. (G) ttg1 gl3pRBC::TTG1:YFP,
YFP fluorescence is found in the subepidermis as well as in the epidermis. (H) ttg1
gl3pRBC::GFP:GL3, no trichomes are found. (I) ttg1 gl3pRBC::GFP:GL3, GFP fluorescence
is found exclusively in the subepidermis. (J) ttg1 gl3pAtML1::GFP:GL3, moderate trichome
rescue. (K) ttg1 gl3pAtML1::GFP:GL3, GFP fluorescence is found exclusively in the
epidermis. (L) ttg1 gl3pAtML1::GFP:GL3pRBC::TTG1:YFP, strong overproduction of
trichomes. (M) ttg1 gl3pRBC::GFP:GL3pRBC::TTG1:YFP, no trichomes are found. (N)
ttg1 gl3pRBC::GFP:GL3pRBC::TTG1:YFP, both YFP and GFP signals co-localize and are
restricted to the subepidermis. (O) Ler wild type
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ttg1pRBC::TTG1:YFP could rescue to wild type situation (compare FigureD and O),

ttg1 gl3pRBC::TTG1:YFP did not show a rescue upto gl3 situation (compare Fig-

ure 2.12B and F). This indicates that epidermal GL3 strongly promotes the rescue

efficiency of subepidermal TTG1. In order to exclude that GL3 promotes the rescue

through co-movement from the subepidermis or by modification of TTG1 function I

analyzed the rescuing ability of subepidermal TTG1:YFP by expressing GFP:GL3

specifically either in the subepidermis or in the epidermis. GFP:GL3 was found

specifically in the respective layers indicating that it cannot move between the lay-

ers in either direction (Figure 2.12I, K). In the first approach I tested the lines in

which epidermal GL3 level was increased by providing GFP:GL3 under the epider-

mal specific Arabidopsis thaliana MERISTEM LAYER 1 (pAtML1) promoter. This

promoter was previously reported to show tissue specific expression (Takada and

Juergens, 2007; Bai et al., 2009). GFP:GL3 was found specifically in the epider-

mis in ttg1 gl3 double mutant (Figure 2.12K). This epidermal specific expression

of GFP:GL3 resulted in a moderate rescue of trichomes in ttg1 gl3 (Figure 2.12J)

but led to a drastic increase in trichome number in ttg1 gl3pRBC::TTG1:YFP back-

ground (Figure 2.12L) suggesting that GL3 promotes rescue efficiency of subepi-

dermal TTG1 by trapping /attracting it in the epidermis.

In a second experiment I tested whether exogenous supply of subepidermal GL3 in-

hibits/ reduces the rescue ability of TTG1 from the subepidermis. First I could show

that the GFP:GL3 expressed under the pRBC promoter is restricted to subepider-

mis (Figure 2.12I). Then I compared the phenotypes of ttg1 gl3pRBC::TTG1:YFP

and ttg1 gl3pRBC::TTG1:YFPpRBC::GFP:GL3 lines (Figure 2.12F, M). Rescuing

ability of subepidermal TTG1 seems to be further reduced by addition of subepider-

mal GL3 in ttg1 gl3pRBC::TTG1:YFPpRBC::GFP:GL3 line. Occasional trichome

formation in ttg1 gl3pRBC::TTG1:YFP (marked by arrow in Figure 2.12F) was at

a much higher frequency than in ttg1 gl3pRBC::GFP:GL3pRBC::TTG1:YFP.
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2.5 Analysis of TTG1 transport rates in different
epidermal cell types using the photoconvert-
ible marker KikGR1

The GL3 expression level is elevated in the trichome cells compared to the

pavement cells as soon as the trichome fate of a cell is determined resulting in

accumulation of the GL3 protein in the trichome cells (Zhang et al., 2003; Zhao

et al., 2008; Yoshida et al., 2009). If GL3 restricts the mobility of TTG1 by

sequestering it in a complex in the nucleus, the TTG1 protein in the trichome

nucleus should be less mobile compared to the mobility in the surrounding cells. To

determine this I used the photoconvertible marker KikGR1 (Kikume Green to Red

1) as a translational fusion at the C-terminal end of TTG1 to get the TTG1:KikGR1

fusion protein (Tsutsui et al., 2005). This fusion protein was expressed under the

TTG1 promoter that was previously reported to be sufficient for the full rescue of

the ttg1 phenotype (Bouyer et al., 2008). The pTTG1::TTG1:KikGR1 construct was

transformed into the ttg1-13 null allele and it completely rescued trichome, seed

coat color and seed coat mucilage phenotype of the ttg1-13 mutant (Figure 2.13).

Root hair phenotype and anthocyanin synthesis that are also regulated by TTG1

were not analysed.

2.5.1 Standardization of the conditions for the photoconver-
sion of TTG1:KikGR1

KikGR1 is a photoconvertible marker which irreversibly changes from green to

bright red by a process known as 𝛽-elimination reaction upon irradiation with UV

or violet light (360-420nm) (Tsutsui et al., 2005). It was shown that Escherichia

coli (E. coli) cells expressing KikGR1 showed green to red conversion when

exposed to natural light for one hour following a 12 hours of dark incubation

after transformation (Tsutsui et al., 2005). This posed a big hindrance for using
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Figure 2.13: Rescue analysis of ttg1-13pTTG1::TTG1:KikGR1. (A, D) Trichome
phenotype in ttg1-13pTTG1::TTG1:KikGR1 (A) and ttg1-13 (D). (B, E) Seed coat color in
ttg1-13pTTG1::TTG1:KikGR1 (B) and ttg1-13 (E). (C, F) Seed coat mucilage production in
ttg1-13pTTG1::TTG1:KikGR1 (C) and ttg1-13 (F) seen by ruthenium red staining. Arrow
in (C) points to mucilage layer seen as a diffused red stained zone and it is absent in (F).

KikGR1 marker in plants as plants need light for their growth and development.

It was indeed found that significant amount of green protein was converted into

red in the plants expressing TTG1:KikGR1 thereby making it impossible to make

quantitative analysis. To avoid this problem, seedlings grown under the normal

long day conditions were shifted to dark when the first pair of rosette leaves has

emerged out. After about 24 hours exposure to dark, leaf number 3 and 4 that are

approximately about 300µm in length were used for the photoconversion in specific

cell types using the pulse of diode laser.

2.5.2 Analysis of TTG1:KikGR1(red) transport rate in differ-
ent epidermal cell types

To compare the different mobility rates of TTG1 in different epidermal cell types

TTG1:KikGR1 was converted from green to red in three different types of epider-

mal cells namely, trichome initial (Figure 2.14A) trichome neighboring epidermal

cell (Figure 2.14B) and an epidermal cell away from the trichome initial (Figure
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2.14C) using same set of conditions in the CLSM. Hereafter the photoconverted

form of TTG1:KikGR1 is referred to as TTG1:KikGR1(red) and unconverted form

as TTG:KikGR1(green). Pictures were taken at 0 and 2 minutes after photoconver-

sion using the CLSM. I chose to make the observation at 2 minutes after photocon-

version based on the previous studies using the microinjection in mesophyll cells

of Nicotiana benthamiana (Bouyer et al., 2008) ( Daniel Bouyer and Fritz Kragler,

personal communication). Because TTG1:KikGR1 is converted into red only in a

single cell, appearance of any red signal in the surrounding cells should be from

the cell where it was converted. Therefore the red signal was quantified at 0 and 2

minutes after photoconversion in the converted cell and the cells that are immedi-

ate neighbors to it. Difference in the red signal intensity in a cell at these two time

points is the gain or loss of TTG:KikGR1(red) fusion protein.

In general due to very small amounts of the TTG1:KikGR1(red) protein in the cells

neighboring to photoconverted cells it was not possible to observe the red signal

in the images. Nevertheless, quantifications with the quantification tool in CLSM

using same pictures clearly showed differences in the red fluorescence at 0 and 2

minutes time points after photoconversion. It was interesting to note that loss of

TTG1:KikGR1(red) was only 2.38% of the total in the trichome cells compared to

22.27% and 16.9% in the trichome neighboring cell and epidermal cell away from

the trichome, respectively (Table 2.2). Gain of TTG:KikGR1(red) in the immediate

neighboring cells was analyzed in all three situations. The lost TTG:KikGR1(red)

in the photoconverted cells was set to 100. Interestingly total gain of red signal

in all the immediate neighboring cells under all three different situations was rel-

atively similar and accounted for 32.8%, 32.48% and 28.14% of the total loss in

trichome, trichome neighboring cell and epidermal cell away from the trichome

respectively (Table 2.2). The transport of TTG1:KikGR1(red) far away than only

one neighboring cell could be the reason why 100% of the lost TTG1:KikGR1(red)

was not accounted in the immediate neighboring cells. This is supported by the
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Figure 2.14: Analysis of transport rates of TTG1:KikGR1 in different epidermal
cell types. (A-C) Schematic presentation of a field of epidermal cell nuclei (circles) where
red represents photoconverted nuclei in trichome cell (A), trichome neighboring cell (B)
and epidermal cell away from trichome initial (C). Other surrounding cells nuclei are
shown in green. Values in the circles indicate the percentage gain of the red fluorescence
2 minutes after photoconversion; arrows indicate the directionality of TTG1:KikGR1(red)
transport; trichome nucleus is depicted with letter T. (D-F) Field of epidermal cells before
photoconversion. (G-I) field of epidermal cells 0 minutes after photoconversion in trichome
initial (G), trichome neighboring cell (H) and epidermal cell away from trichome (I). (J-L)
field of epidermal cells 2 minutes after photoconversion in trichome initial (J), trichome
neighboring cell (K) and epidermal cell away from trichome (L). Red, photoconverted
TTG1:KikGR1 referred as TTG1:KikGR1(red); green, unconverted TTG1:KikGR1 referred
as TTG1:KiKGR1(green); yellow arrows, points to the nucleus selected for photoconversion;
star, denotes nuclei of the immediate neighbors of the photoconverted cell. Scale= 10µm.
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Table 2.2: Quantification of TTG1:KikGR1(red) movement in different epidermal
cell types

Photoconverted
cell type

Loss of red signal 2 min-
utes after photoconver-
tion, expressed as a per-
centage of the red signal
at 0 minutes

Gain of red signal in
all immediate neighbors
2 minutes after photocon-
vertion, expressed as a
percentage of loss in pho-
toconverted cell (Number
of neighboring cells)

n

Trichome 2.38 32.80 ( 8 ) 57

Trichome
neighbor

22.27 32.48 ( 5 ) 53

Epidermal cell 16.9 28.14 ( 6 ) 24

observation that TTG1 moves several cells distance in microinjection experiments

within 2 minutes. All the immediate neighboring cells of the trichome initials are of

the same type. Similarly the immediate neighboring cells of the epidermal cell that

are away from the trichome initial also are of same type. Hence under these two

situations the gain in all the immediate neighbors is comparable (Figure 2.14A, C).

On the other hand the trichome neighboring cell has three different cells types as

its immediate neighbors including the trichome initial, neighboring cells that are

also immediate neighbors of trichome initial and the cells that are in the second

row from the trichome initial (Figure 2.14B). Therefore I further analysed the gain

of red fluorescence in these cell types separately to see if there is a difference in

the gain of TTG1:KikGR1(red). Measuring the gain of TTG1:KikGR1(red) in these

cells showed that of the 32.48% (sum of gains in all the immediate neighbors),

17.58% was accounted only in the trichome cell whereas two neighboring cells that

are also immediate neighbors to trichome accounted for 3.74% each and the two
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cells which are in the second tier of cells from trichome accounted for 3.68% each

(Figure 2.14B). Due to the relatively higher amount of TTG1:KikGR1(red) in the

trichome initial from the photoconverted neighboring cell it was occasionally pos-

sible to see the red fluorescence in them (Figure 2.15).

Figure 2.15: Analysis of TTG1:KikGR1(red) transport from trichome neighboring
cell. (A) TTG1:KikGR1(red) in the photoconverted cell nucleus (ROI 1) at 0 minutes after
photoconversion. (B) Distribution of TTG1:KikGR1(red) 2 minutes after photoconvertion
in trichome neighboring cell (ROI1), note that red fluorescence in ROI1 is reduced
while it is increased in ROI7. Red, is the photoconverted TTG1:KikGR1 referred to as
TTG1:KikGR1(red); ROI 1, photoconverted cell nucleus; ROI 2-7, nuclei of the immediate
neighboring cells of the photoconverted cell; ROI7, nuclei of the trichome initial, which is
one of the immediate neighboring cells to the photoconverted cell. Note that red signal
in ROI7 in (B) is higher than in (A) due to the gain from ROI1. (C) Shows comparison
of contact lengths (in µm) of photoconverted cell (marked with star) with its neighbors,
trichome cell is marked with letter T.

In order to exclude the possibility that the observed differences were due to dif-

ferences in the contact length/area of the different types of neighboring cells with

the photoconverted cell, contact lengths of the photoconverted cell with the neigh-

boring cells were compared. The contact length of photoconverted trichome neigh-

boring cell with trichome initial, trichome neighbor and epidermal cell in the sec-

ond tier of cells from the trichome was 6.86, 7.21 and 7.6 µm respectively (Figure

2.15C). Considering this information and no specific directional transport as was

reported earlier (Bouyer et al., 2008), the total TTG1:KikGR1(red) protein that

is lost from the photoconverted trichome neighboring cell should be transported
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into its five neighbors as 18.78% into the trichome initial, 19.73% into each of the

two trichome neighboring cells and 20.81% into each of the neighboring cells in

the second tier from the trichome initial. But in contrast to this my observations

after two minutes clearly suggests that almost everything that entered into the tri-

chome initial is trapped in the nucleus while from the other neighboring cells the

TTG1:KikGR1(red) moved further away into the other cells (Figure 2.14B). I want

to point out that this is consistant with the high GL3 expression in the trichome

initial and drastically reduced expression of GL3 in the pavement cells. (Zhang et

al., 2003; Zhao et al., 2008).

2.6 Nuclear targeted TTG1:YFP is able to move

It was reported that pTTG1::NLS:TTG1 leads to formation of trichome clusters

comparable to pTTG1::TTG1:YFP expressing plants while pTTG1::TTG1 alone does

not result in any cluster formation (Bouyer D., 2004). This suggested that nuclear

targeted TTG1 might be reduced in its mobility similar to the decrease in the mo-

bility rate of TTG1:YFP fusion protein that makes the fusion protein size bigger

than the TTG1 alone. To look into more details whether nuclear targeted TTG1 is

impaired in its mobility, rescue efficiency and the pattern formation, I compared

pTTG1::TTG1:YFP with pTTG1::NLS:TTG1:YFP and pRBC::NLS:TTG1:YFP ex-

pressed in ttg1-13 (Table 2.3). I used the SV40 NLS to target TTG1:YFP to the

nucleus. It was shown previously that the SV40 NLS fused to GFP was exclusively

in the nucleus (Bouyer et al., 2008). Also a GFP:GUS construct fused to an NLS

was shown to target the protein exclusively to the nucleus (Chytilova et al., 1999).

Trichome rescue efficiency experiments clearly showed that NLS:TTG:YFP fusion

protein is as efficient as TTG1:YFP when expressed under the endogenous pro-

moter as well as under control of the subepidermal specific pRBC promoter. Ex-

pression of the pTTG1::NLS:TTG1:YFP showed 128 ± 18 trichomes compared to
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Figure 2.16: Seed coat phenotype analysis of the TTG1:YFP nuclear targeted and
non-nuclear targeted lines. (A-F) Seed coat color phenotype. (G-L) Ruthenium red
staining for seed coat mucilage phenotype. Mucilage is visualized by ruthenium red stain
as a diffusely stained zone around the seed indicated by arrow. (A, G) ttg1-13. (B, H)
RLD wild type. (C, I) ttg1-13pTTG1::TTG1:YFP. (D, J) ttg1-13pRBC::TTG1:YFP. (E, K)
ttg1-13pTTG1::NLS:TTG1:YFP. (F, L) ttg1-13pRBC::NLS:TTG1:YFP. Scale=100µm.
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127 ± 20 in the lines expressing pTTG1::TTG1:YFP. The lines carrying the con-

struct pRBC::NLS:TTG1:YFP produced 124 ± 30 trichomes suggesting that the

subepidermal NLS:TTG1:YFP is as efficient as NLS:TTG1:YFP and TTG1:YFP ex-

pressed under the endogenous promoter. Analysis of the cluster frequency further

revealed that the mobility of NLS:TTG1:YFP is comparable to TTG1:YFP. The lines

carrying pTTG1::TTG1:YFP resulted in formation of 3.68% ± 2.40 trichome clus-

ters, which is marginally less but not significantly different from the lines express-

ing pTTG1::NLS:TTG1:YFP and pRBC:: NLS:TTG1:YFP that produces 4.69% ±

1.84 and 5.37% ± 2.04 clusters respectively (p= 0.095 and 0.197 respectively) (Ta-

ble 2.3).

Table 2.3: Genetic analysis of trichome phenotypes in the nuclear targeted
TTG1:YFP expressing lines

Background Trichome
number±SD

Cluster
frequency
(%)±SD

n

ttg1-13pTTG1::NLS:TTG1:YFP 128 ±18 4.69 ± 1.84 26

ttg1-13pRBC::NLS:TTG1:YFP 124 ± 30 5.37 ± 2.04 26

ttg1-13pTTG1::TTG1:YFP 127 ± 20 3.68 ± 2.40 26

ttg1-13pRBC::TTG1:YFP 98 4.59 1

SD, standard deviation; trichome phenotypes were scored on the adaxial surface
of the third and fourth true leaves of the seedlings from the T1 generation
and the control lines; cluster frequency was mean percentage of the trichomes
adjacent to another trichome.

Surprisingly pRBC::TTG1:YFP and pRBC::NLS:TTG1:YFP when expressed in ttg1-

13 exhibited different effects on seed coat color (Figure 2.16A-F). The proantho-

cyanidin (condensed tannin synthesis) pathway seems to be affected when nuclear
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targeted TTG1:YFP (NLS:TTG1:YFP) was expressed under the pRBC promoter

hence this construct failed to rescue the seed coat color phenotype in ttg1-13 mu-

tant. To test whether nuclear targeted TTG1:YFP is functional in seeds I tested

for the seed coat mucilage synthesis, which is another seed property controlled by

TTG1. Here I found that seed coat mucilage synthesis is not affected confirming

that NLS:TTG1:YFP fusion protein is functional in seeds (Figure 2.16G-L).

2.7 Genetic analysis of the ttg1 alleles

We recently explained the paradoxical phenotype of ttg1 alleles where strong al-

leles show glabrous and weak alleles have underbranched and clustered trichome

phenotype by a theoretical model based on the GL3 dependent TTG1 depletion

(Bouyer et al., 2008). Hence in this study I looked into more details on the relation

of TTG1 and its allelic forms with GL3 during trichome patterning. The ttg1 alleles

used in this study are listed in (Table 2.4). Physical interaction studies using yeast

Table 2.4: ttg1 alleles used in this study (Koornneef, 1981; Larkin et al., 1994, 1999)

ttg1
allele

ttg1-1 ttg1-9 ttg1-10 ttg1-11 ttg1-12 ttg1-13

Type of
mutan-
tion

TTG1
△C26

TTG1
(S282F)

TTG1
(g-49a)

TTG1
(G149R)

TTG1
(G43R)

deletion

Note, in ttg1-10 mutation indicated is base change in the 5’UTR at -49 position.

two-hybrid analysis showed that except TTG1(S282F) (ttg1-9 allele), which showed

weak physical interaction, no other allelic form of TTG1 interacted with GL3 (Fig-

ure 2.17A). None of the alleles interacted with EGL3 and TT8 (Figure 2.17B, C).

Further, using NTT assay I tested how these allelic forms of TTG1 compared to

wild type TTG1 behave with respect to their nuclear transport. NTT assay showed

44



Results

Figure 2.17: Yeast two-hybrid analysis of allelic forms of TTG1 with GL3, EGL3
and TT8. (A-C) Yeast two-hybrid to test physical interaction of TTG1 allelic forms with
GL3 (A), with EGL3 (B) and TT8 (C). (A’-C’) Schematic presentation of the positions of
different interaction partners in (A-C) respectively. BD, GAL4 DNA binding domain; AD,
GAL4 transactivation domain; SD-LW, SD-LWH in (A-C) are two and three amino acid drop
out medium for the selection of transformation and interactions respectively; interaction
plates were supplied with 5mM 3AT; yeast growth, positive interactions; no growth, lack
of interaction.

that like TTG1 all the allelic forms of TTG1 also failed to enter into the nucleus

(Figure 2.18A). Interestingly none of the allelic forms of TTG1 was trapped in the

nucleus by GL3 (Figure 2.18B). Subcellular localization studies by stable trans-

formation in plants revealed that TTG1△C26:YFP expressed under the TTG1 pro-

moter is exclusively in the cytoplasm (Figure 2.11A). Transgenic plants express-

ing TTG1(S282F):YFP, TTG1(G149R):YFP and TTG1(G43R):YFP under the TTG1

promoter in Columbia plants showed that the cellular localization is consistant

with the interaction data in yeast. TTG1(S282F):YFP, which interacted weakly
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Figure 2.18: Nuclear transportation trap (NTT) assay for the allelic forms of
TTG1. (A) NTT assay shows neither TTG1 nor any of the TTG1 allelic forms can enter
into the nucleus. (B) NTT assay shows only TTG1 but none of the TTG1 allelic forms is
trapped by GL3 in the nucleus. TTG1, TTG1 allelic forms, GL3 and GL3△78 were provided
as a translational fusion C-terminal to NES:LexAD in (A). In co-expression assays (B)
GL3 protein was provided without any fusion. X, NES:LexAD; LexAD, LexA DNA binding
domain + GAL4A transactivation domain; SD-H and SD-HU are one and two amino acid
drop out media for the selection of single (A) and double transformations (B) respectively;
SD-LH and SD-LHU, amino acid drop out media for the selection of nuclear transport of
a protein fused to NES:LexAD when expressed alone (A) and in the presence of GL3 (B)
respectively.

with GL3 in yeast showed a weak nuclear localization while TTG1(G43R):YFP and

TTG1(G149R):YFP, which did not interact with GL3 in yeast are in the cytoplasm

(Figure 2.19 ). However, their nuclear localization below the detection levels under

the CLSM settings used in this study can not be completely excluded. Expression

under the constitutively active p35S promoter in wild type Columbia plants showed

that all the allelic forms of TTG1 tested had a dominant negative effect with vary-

ing degree (Figure 2.20). Trichome frequency in TTG1:YFP expressing lines was

comparable to wild type. The lines expressing TTG1(S282F):YFP had about 83%
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Figure 2.19: Localization of TTG1 allelic forms in the leaf epidermal cells of
Columbia wild type plants. (A) pTTG1::TTG1:YFP. (B) pTTG1::TTG1(S282F):YFP. (C)
pTTG1::TTG1(G43R):YFP. (D) pTTG1::TTG1(G149R):YFP. Yellow, YFP fluorescence

± 28 trichomes rescue while TTG1(G43R):YFP and TTG1(G149R):YFP expressing

lines showed 65% ± 17 and 65% ± 16 rescue of trichome number compared to wild

type Columbia (Figure 2.20A). Cluster frequency was 6.81% ± 3.04, 4.84% ± 2.52,

2.65% ± 2.51 and 2.98% ± 2.40 in Columbia plants expressing p35S::TTG1:YFP,

p35S::TTG1(S282F):YFP, p35S::TTG1(G43R):YFP and p35S::TTG1(G149R):YFP re-

spectively as against 0.05% ± 0.10 in wild type (Figure 2.20B). A reciprocal ex-

periment was also conducted where p35S::TTG1 and p35S::TTG1:YFP constructs

were transformed into all the ttg1 alleles and analyzed for the rescuing ability and

allelic interaction (Table 2.5). Both TTG1 and TTG1:YFP fusion proteins could res-

cue the trichome number almost to wild type (Table 2.5). But TTG1:YFP fusion

protein expressing lines form an irregular distribution of trichome on the leaf sur-

face. Therefore I analysed the cluster frequency in detail to see if this difference

is due to the fusion that makes the protein size larger and there by hindering its

mobility or whether it is due to allelic interaction. TTG1 and TTG1:YFP in the

null allele ttg1-13 was taken as a control since the complete genomic region of the

TTG1 locus is deleted in this allele. The Landsberg erecta allele ttg1-1 was con-

sidered as second control as this is also a strong allele. Therefore any phenotype

in these two backgrounds would be solely due to the introduced transgene. In-

terestingly in both backgrounds (ttg1-1 and ttg1-13) introduction of p35S::TTG1

resulted in a very small frequency of trichome clusters that was not significantly
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Figure 2.20: Genetic analysis of overexpression of allelic forms of TTG1 in
Columbia wild type. (A) Trichome frequency presented as the percentage of trichome
number compared to wild type. (B) Cluster frequency presented as the percentage of
trichome number in the respective background. Note, mean values of first four rosette
leaves in T1 generation plants compared to wild type were used for the analysis; error
bars, standard deviations; t-test, ** p < 0.01, *** p < 0.001.
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Table 2.5: Comparsion of trichome phenotypes when TTG1 / TTG1:YFP is
overexpressed in different ttg1 alleles

background Construct transformed Trichome
frequency
± SD

Cluster frequency ± SD

Ler - 100 ± 15 0.08 ± 0.35

Col - 100 ± 16 0.00 ± 0.00

RLD - 100 ± 14 0.00 ± 0.00

ttg1-1 p35S::TTG1 93 ± 26 0.39 ± 0.90

p35S::TTG1:YFP 89 ± 37 5.33 ± 5.10

ttg1-9 p35S::TTG1 96 ± 23 0.30 ± 0.61

p35S::TTG1:YFP 89 ± 42 3.87 ± 2.58

ttg1-10 p35S::TTG1 111 ± 18 1.51 ± 2.36

p35S::TTG1:YFP 89 ± 26 5.77 ±2.77

ttg1-11 p35S::TTG1 96 ± 21 1.21 ± 1.46

p35S::TTG1:YFP 100 ±30 6.54 ±4.51

ttg1-12 p35S::TTG1 109 ± 18 1.90 ± 1.64

p35S::TTG1:YFP 89 ± 24 8.11 ±4.01

ttg1-13 p35S::TTG1 89 ± 18 0.04 ± 0.16

p35S::TTG1:YFP 87 ± 23 1.20 ±1.28

SD, standard deviation; trichome frequency is the mean of the trichome number
expressed as a percentage of the trichome number in the corresponding wild
type control; cluster frequency is the mean percentage of the trichomes found
adjacent to another trichome; trichomes were counted on the adaxial surface
of the first four true leaves; atleast 22 T1 generation lines were used in each
background for the analysis.
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different from the cluster formation in the corresponding wild type backgrounds

(p= 0.1550 and p= 0.2225 for ttg1-1 and ttg1-13 respectively) (Table 2.5). On the

other hand introduction of p35S::TTG1:YFP resulted in a significantly higher clus-

ter frequency in both backgrounds compared to the corresponding wild type (p <

0.0001 for ttg1-1 and p< 0.001 for ttg1-13). Among ttg1-1p35S::TTG1:YFP and ttg1-

13p35S::TTG1:YFP, ttg1-1p35S::TTG1:YFP showed much higher cluster frequency

compared to ttg1-13p35S::TTG1:YFP (Table 2.5). Similar analysis in other alleles

of ttg1 revealed that TTG1 and TTG1:YFP both showed significantly higher cluster

frequency compared to wild type. In these alleles as well p35S::TTG1:YFP resulted

in much higher cluster frequency than p35S::TTG1(Table 2.5). These data suggest

that allelic forms of TTG1 with various mutations are functional, not fully though.

2.8 Effect of altering nuclear TTG1 concentration
on trichome patterning and morphogenesis

2.8.1 Analysis of overexpression of CFP:GL3, CFP:GL3△78
and CFP:GL3△NLS in ttg1pTTG1::TTG1:YFP line

Being a part of transcription regulating complex it is evident that TTG1 protein

is required in the nucleus, but I could show that TTG1 lacks any functional NLS.

Hence as observed in different experimental approaches described before it seems

that plants have adapted a mechanism where GL3 traps and retains TTG1 in the

nucleus. Therefore I studied the effect of altering the nuclear concentration of

TTG1 on the trichome development and pattern formation in Arabidopsis.

In the first approach TTG1:YFP was trapped either in the nucleus or in the

cytoplasm using p35S::CFP:GL3 and p35S::CFP:GL3△NLS respectively to alter

the nuclear to cytoplasmic ratio of TTG1:YFP. p35S::CFP:GL3△78 was also used

to study how the GL3 variant not interacting with TTG1 hence having no effect on

the subcellular distribution of TTG1 can influence trichome patterning compared
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to GL3 form that does interact. These constructs were transformed in ttg1-

13pTTG1::TTG1:YFP that was described before (Bouyer et al., 2008). In all the

genetic and molecular analysis ttg1-13pTTG1::TTG1:YFP was used as control.

Nuclear TTG1:YFP was quantified using CLSM in the epidermal cells of the

trichome patterning zone on the adaxial surface of leaf 3 and 4 of the T1 generation

plants carrying the transformed GL3 variants (Table 2.6). Nuclear TTG1:YFP

Table 2.6: Subcellular distribution of TTG1:YFP in ttg1pTTG1::TTG1:YFP lines
overexpressing CFP fused GL3 variants.

Background Nuclear
TTG:YFP±SD
(%)

ttg1pTTG1::TTG1:YFP 60.20 ± 10.74

ttg1pTTG1::TTG1:YFPp35S::CFP:GL3 74.73 ± 7.74

ttg1pTTG1::TTG1:YFPp35S::CFP:GL3△78 61.63 ± 9.83

ttg1pTTG1::TTG1:YFPp35S::CFP:GL3△NLS 50.32 ± 8.17

SD, is the standard deviation; seedlings from the transformation of CFP
fused GL3 variants in ttg1pTTG1::TTG1:YFP bacground and the control
ttg1pTTG1::TTG1:YFP were used for the quantification; atleast 140 cells were
measured in each case.

amount was 74.73% ± 7.74 in lines with p35S::CFP:GL3 whereas it was reduced

to 50.32 % ± 8.17 in the lines carrying p35S::CFP:GL3△NLS. As expected there

was no significant difference in the control plants (ttg1-13pTTG1::TTG1:YFP) and

the lines carrying p35S::CFP:GL3△78, which had 60.20% ± 10.74 and 61.63%

± 9.83 nuclear TTG1:YFP respectively. The nuclear concentration of TTG1:YFP

in this experiment is much less than the one which was observed before (Figure

2.3). This could possibly be due to different growing conditions as here I used

the plants selected on Murashige and Skoog (MS) medium while soil grown

plants were used in the previous experiment. The heterozygous situation of
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the CFP:GL3 could be the other reason as T1 generation plants were used for

this experiment. Nevertheless, this result also clearly showed that nuclear

concentration of TTG1:YFP is GL3 dependent and showed a similar trend as before

in different backgrounds. Furthermore the effect of GL3 variants on the trichome

phenotype was determined. Parameters such as trichome number, trichome cluster

frequency and over/underbranched trichome frequency were considered for the

analysis. In all three GL3 variants expressing lines there was a significant increase

in trichome number and cluster frequency (Table 2.7) (Figure 2.21)

Table 2.7: Analysis of leaf trichome phenotypes in the lines expressing GL3
variants under p35S promoter

ttg1pTTG1::TTG1:YFP
transformed with

n Trichome num-
ber ± SD

Cluster frequency
± SD (%)

Overbranching
± SD (%)

- 25 103 ± 15 1.08 ± 0.71 0.65 ± 0.88

p35S::CFP:GL3 26 175 ± 34 3.01 ± 3.11 4.18 ± 4.13

p35S::CFP:GL3 △78 27 183 ± 37 3.76± 2.01 5.36 ± 4.87

p35S::CFP:GL3△NLS 27 124 ± 24 3.20 ± 1.73 0.20 ± 0.29

SD, is the standard deviation; trichome phenotypes were scored on the adaxial
surface of the third and fourth true leaves of the seedlings from the T1
generation plants; cluster frequency is the mean percentage of the trichomes
adjacent to another trichome; overbranching was expressed as the mean
percentage of the trichomes with more than four branches.

This observation was consistent with earlier reports showing overexpression

of GL3 leads to increase in trichome number and that GL3 overexpression can

bypass the need of TTG1 for trichome formation (Payne et al., 2000; Digiuni et

al., 2008). As expected the increase in trichome number was much higher in

p35S::CFP:GL3 and p35S::CFP:GL3△78 lines compared to p35S::CFP:GL3△NLS.

However, significant increase in trichome number in the lines expressing the GL3
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Figure 2.21: Genetic analysis of overexpression of GL3, GL3△78 and GL3△NLS
under p35S promoter in ttg1-13pTTG1::TTG1:YFP. (A-C) ttg1-13pTTG1::TTG1:YFP,
most of the leaf trichomes are four branched (B) and stem trichomes are unbranched (C).
(D-F) ttg1-13pTTG1::TTG1:YFPp35S::CFP:GL3, overbranched trichomes with more than
four branches on leaves (E) and occasional two or more branched trichomes on stem (F). (G-
I) ttg1-13pTTG1::TTG1:YFPp35S::CFP:GL3△78, overbranched trichomes with more than
four branches on leaves (H) and occasional two or more branched trichomes on stem (I). (J-
L) ttg1-13pTTG1::TTG1:YFPp35S:CFP:GL3△NLS, trichomes are underbranched on leaves
(K) and are unbranched on the stem (L). (A, D, G, J) Overview of trichome distribution
on leaf three and four. (B, E, H, K) Higher magnification of the leaf showing trichome
morphology. (C, F, I, L) Trichome distribution and morphology on the stem. Insets in A, D
and J shows the localization of CFP:GL3, CFP:GL3△78 and CFP:GL3△NLS respectively in
tobacco epidermal cell nucleus; white arrow, points to overbranched trichomes; red arrow,
points to underbranched trichome.
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variant targeted to cytoplasm was unexpected. Surprisingly the cluster frequency

was comparable in all three cases suggesting that all three variants of GL3 share a

common mechanism that has a slightly negative effect on the trichome patterning

(Table 2.7).

Interestingly the trichome branching phenotype seems to be affected by decreasing

the nuclear TTG1. There was a small but significant decrease in overbranched

(>4branches) trichome frequency from 0.65% ± 0.88 in control to 0.20 %± 0.29

in p35S::CFP:GL3△NLS expressing lines (p= 0.016). On the other hand 4.18%

± 4.13 and 5.36% ± 4.87 overbranched trichome frequency was observed in

p35S::CFP:GL3 and p35S::CFP:GL3△78 expressing lines that were significantly

higher than the overbranching in the control line (ttg1-13pTTG1::TTG1:YFP) and

p35S::CFP:GL3△NLS expressing line (Table 2.7). Stem trichome phenotype was

also affected in lines expressing the GL3 variants. Over expression of CFP:GL3

and CFP:GL3△78 led to increase in trichome branching (Figure 2.21).

2.8.2 Effect of expression of 78GL3:GUS aptamer in ttg1-
13pTTG1::TTG1:YFP plants

Reduction in the trichome branching in p35::CFP:GL3△NLS expressing lines

could well be due to reasons other than altering the nuclear TTG1 concentration.

Indeed CFP:GL3△NLS is exclusively cytoplasmic but can still interact with GL1,

TRY and CPC (Table 2.1) and possibly also with endogenous GL3 as it retains the

bHLH interaction/dimerization domain (Feller et al., 2006; Payne et al., 1999). To

exclude the possibility that the underbranched phenotype in p35::CFP:GL3△NLS

is due to interaction with any other regulators of trichome development than the

interaction with TTG1 I used the 78aa domain of GL3 that I mapped for the

specific interaction with TTG1 (Figure 2.6A). 78GL3:GUS was expressed under

the p35S promoter in ttg1-13pTTG1::TTG1:YFP line and for comparisions ttg1-

13pTTG1::TTG1:YFP was used as a control.
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Figure 2.22: Effect of p35S::78GL3:GUS aptamer on trichome branching. (A-
C) Control line ttg1-13pTTG1::TTG1:YFP where the majority of the trichomes are four
branched (C) and nuclear TTG1:YFP is seen clearly as bright yellow dots (A). (D-I) ttg1-
13pTTG1::TTG1:YFPp35S::78GL3:GUS, overexpression of the aptamer resulted in weak
(D-F) and strong (G-I) phenotypes. (D-F) TTG1:YFP localization and trichome distribution
in ttg1-13pTTG1::TTG1:YFPp35S::78GL3:GUS line showing weak phenotype has clear
nuclear TTG1:YFP dots (D) and four branched trichomes (F). (G-I) TTG1:YFP localization
and trichome phenotype in ttg1-13pTTG1::TTG1:YFPp35S::78GL3:GUS line showing a
strong effect on trichome branching shows mostly cytoplasmic YFP as overall leaf appears
bright yellow with no clear bright nuclear TTG1:YFP dots (G), Here most of the trichomes
are three branched (I). (A, D, G) Epifluorescence images. (B, E, H) White light images of
(A, D, G) respectively. (C, F, I) White light images with higher magnification to visualize
trichome morphology.
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Plants expressing the aptamer 78GL3:GUS resulted in trichome branching phe-

notypes ranging from wild type (Figure 2.22F) to a strong reduction in branch-

ing (Figure 2.22I). Plants with wild type trichomes were four branched (Figure

2.22F). Aptamer expressing plants with a strong phenotype had most trichomes

with three branches (Figure2.22I). Observation under the epifluorescence micro-

scope showed that control lines had clear YFP specific dots representing the nuclei

(Figure 2.22A). The plants transformed with 78GL3:GUS aptamer also showed a

clear specific YFP dots in the lines that showed no underbranching phenotype sim-

ilar to the control (Figure 2.22D). On the other hand the aptamer expressing lines

with a strong trichome branching phenotype showed diffuse YFP specific fluores-

cence with no specific nuclear dots (Figure 2.22G). Closer look on the subcellular

TTG1:YFP by qualitative analysis revealed that TTG1:YFP was partially shifted

to the cytoplasm (Figure 2.23A, A’ marked by red arrows) compared to the control

(Figure 2.23B, B’).

Interestingly TTG1:YFP depletion is not affected (compare Figure 2.23 A’ and B’)

though there may be quantitative differences in the depletion between the control

and the aptamer expressing lines. I could not observe severe changes in the tri-

chome clustering phenotype in these backgrounds. Detailed quantitative genetic

analysis as well as the comparison of degree of depletion will give more insight

into the relationship between the subcellular distribution of TTG1 and trichome

patterning and morphogenesis.

2.9 Mapping the mobility domain in TTG1

TTG1 is able to act in a non-cell autonomous manner in Arabidopsis both

within and across the cell layers (Bouyer et al., 2008). AN11 an orthologue of

TTG1 from Petunia hybrida functions in anthocyanin production together with
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Figure 2.23: Influence of overexpression of 78GL3:GUS aptamer on the cellular
distribution of TTG1. (A)ttg1-13pTTG1::TTG1:YFPp35S::78GL3:GUS, note that the
YFP fluorescence is clearly visible in the cytoplasm of trichome and the epidermal cells
(red arrows). (B) ttg1-13pTTG1::TTG1:YFP, note that unlike in (A) cytoplasmic YFP
fluorescence is too weak to be seen. (A’, B’) Magnification of a region marked with
discontinous square box in (A, B) respectively showing TTG1:YFP depletion around
the trichome initial. Yellow, YFP fluorescence; red arrow, points to cytoplasmic YFP
fluorescence; solid purple arrow, points to trichome initials around which TTG1:YFP is
depleted. Scale= 50µm.
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MYB and MYC like transcription factors AN2 and JAF13 respectively (de Vetten

et al., 1997; Quattrocchio et al., 1998; Walker et al., 1999). TTG1 and AN11

share 78.1% identity and 89.8% similarity at the amino acid level. Preliminary

results suggested that AN11 functions in a cell autonomous manner (A.Walker,

unpublished results) in contrast to TTG1 (Bouyer et al., 2008). I used this

fundamental difference between AN11 and TTG1 to map the mobility domain in

TTG1 protein.

2.9.1 Analysis of AN11 mobility between the tissue layers

AN11 interacts with GL3 in yeast two-hybrid (Figure 2.24A). Loss of interac-

tion between AN11 and GL3△78 showed that AN11 also binds to GL3 at the same

site as TTG1 (Figure 2.24B). Analysis of nuclear transport behaviour of AN11 by

NTT assay showed that like TTG1, AN11 is also not actively transported into the

nucleus on its own (Figure 2.24C). This observation was consistent with the previ-

ous report by cell fractionation assay that AN11 is predominantly in the cytoplasm

(de Vetten et a., 1997). Furthermore, AN11 is also trapped in the nucleus by GL3

similar to TTG1 in NTT system (Figure 2.24D). Therefore due to these similari-

ties between AN11 and TTG1 with respect to their relation with GL3 in the yeast

system it was expected that AN11 also behaves similar to TTG1 in Arabidopsis.

To test this I analysed the trichome rescue ability of AN11 when expressed under

different promoters. AN11 expressed under the TTG1 promoter showed either no

rescue or a very weak rescue of trichome density in ttg1-1 plants. On the other

hand under the p35S promoter AN11 could fully rescue ttg1-1 trichome number

(106%) that was comparable to the rescue efficiency of p35S::TTG1 (93%) (Table

2.8).

Fusion of YFP to TTG1 in either orientation does not drastically affect its

function (Bouyer et al, 2008; Zhao et al., 2008; Bouyer D., 2004). Therefore

I tested the YFP fusion to AN11 also in both orientations. p35S::AN11:YFP
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Figure 2.24: Yeast two-hybrid and NTT assay of AN11. (A, B) Yeast two-hybrid
analysis of AN11 and TTG1 with GL3 (A) and GL3△78 (B). (C) NTT assay of AN11 shows
that AN11 cannot enter into the nucleus. (D) NTT assay showing AN11 is in the nucleus
in the presence of GL3 but not when co-expressed with GL3△78. Yeast growth in SD-LWH
plates, positive interaction; no yeast growth in SD-LWH, no interaction; yeast growth in
SD-HL/SD-HUL plates, X:AN11 fusion protein enters the nucleus; no yeast growth in SD-
HL/SD-HUL, X:AN11 fusion protein does not enter the nucleus; AD, GAL4 transactivation
domain; BD, GAL4 DNA binding domain; X, NES:LexAD; plates on the left are amino
acid drop out medium for the selection of yeast transformed with one (SD-H) or two (SD-
LW/SD-HU) vectors; plates on the right side are the amino acid drop out medium for the
selection of positive interaction (SD-LWH) or for the proteins entering into the nucleus
(SD-HL/SD-HUL); 5mM 3-AT was used for the selection of positive interactions in (A, B);
(A’-D’), schematic presentation of the various combinations of the interactions tested in
(A-D) respectively.
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Table 2.8: Comparison of trichome rescue efficiency of TTG1 and AN11 and their
mutual swapped versions expressed under 35S and pRBC promoters

p35S pRBC

Construct mutant Trichome
no±SD .

Trichome
frequency
%of
WT±SD

Trichome
no.±SD

Trichome
frequency
%of
WT±SD

TTG1 ttg1-1 44 ± 7.19 93 ±15.36 40 ±15.38 85 ±32.68

AN11 ttg1-1 50 ± 8.45 106 ±17.91 13 ±8.62 28 ±18.33

TTG1:YFP ttg1-1 41 ± 10.25 87 ±21.75 42 ±5.15 89 ±10.91

AN11:YFP ttg1-11 165 ±40 93 ±22.30 17 ±5.5 10 ±3.08

YFP:AN11 ttg1-1 43 ±6.77 92 ±14.48 8 ±14.83 17 ±31.51

TTG1:YFP
(swap)

ttg1-1 48 ±8.94 102 ±18.99 20 ±11.07 43 ±23.55

YFP:AN11
(swap)

ttg1-1 45 ±19.5 96 ±41.6 17 ±23 36 ±48.70

- Ler 47 ±4.03 100 ±8.57 47 ±4.03 100 ±8.57

- col 178 ±22 100 ±12.36 178 ±22 100 ±12.36

SD, standard deviation; trichome phenotypes were scored on the adaxial surface
of the third and fourth true leaves of the seedlings from the T1 generation and
the untransformed control lines; trichome frequency is the mean percentage of
the trichomes expressed as a percentage of the corresponding wild type control;
25 plants were used for the analysis; ttg1-1 is in Ler ecotype; ttg1-11 is in Col
ecotype.

rescued the trichome number to a wild type situation when expressed in ttg1-11

(93%) and this rescue efficiency was comparable to p35S::YFP:AN11 expressed

in ttg1-1 (92%) (Table 2.8). Next, expression under the subepidermal specific

promoter pRBC clearly showed a difference in the rescue ability of TTG1 and

AN11. While pRBC::TTG1 could completely rescue the trichome number in ttg1-

1 (85%), pRBC::AN11 failed to do so and could only rescue about 28% trichomes

compared to wild type Ler. Furthermore, pRBC::AN11:YFP and pRBC::YFP:AN11

expreesed in ttg1-11 and ttg1-1 respectively showed a very low rescue efficiency
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(10% and 17% respectively) (Table 2.8). These observations clearly suggested that

the AN11 protein mobility was inefficient to move from the subepidermis to the

epidermis.

2.9.2 Swapping non homologous regions in TTG1 and AN11.

The major difference between TTG1 and AN11 protein is observed in the

N-terminal region (Figure 2.25). These non homologous regions were swapped

between the coding sequences of TTG1 and AN11 genes to create TTG1:YFP(Swap)

and AN11:YFP(swap) (Figure 2.25). Swapped versions of TTG1 and AN11 were

then expressed under p35S and pRBC promoters in ttg1-1 mutants. Both the

swapped proteins could rescue trichome numbers as efficient as the corresponding

non swapped versions when expressed under the p35S promoter. However, the

effect was reversed when they were provided in the subepidermis under pRBC

promoter. pRBC::TTG1:YFP(swap) could rescue about 43% of the trichome number

compared to 89% in pRBC::TTG1:YFP compared to wild type, which means a

domain swapping resulted in a decrease of 46% rescue efficiency. On the contrary

pRBC::AN11:YFP(swap) showed a rescue of 36% trichome number while pRBC::

AN11:YFP and pRBC::YFP:AN11 had resulted in 10- 17% rescue, which means

the TTG1 domains swapped into AN11 helped to increase the rescue efficiency of

subepidermal AN:YFP by 19-26% (Table 2.8).

2.10 Generation of mutants affecting the transport
of TTG1 from the subepidermis to the epider-
mis

Arabidopsis plants expressing pRBC::TTG1 completely rescues the ttg1 trichome

phenotype (Figure 2.26B). Microinjection studies in Nicotiana benthamiana mes-

ophyll cells suggested that TTG1 can actively open the PD and traffick between

the cells (Bouyer et al., 2008). Hence in ttg1pRBC::TTG1 lines TTG1 transport

from the subepidermis to the epidermis is most likely through active regulation of
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Figure 2.25: TTG1 and AN11 protein sequence alignment showing the non
homologous domains in the N-terminus. Black boxes numbered I, II, III denote
the three domains that were swapped between TTG1 and AN11 for the gain of function
experiments in plants.

PD SEL. Therefore to identify potential candidates that regulate the TTG1 trans-

port in Arabidopsis ttg1pRBC::TTG1 plants were mutagenised with ethyl methyl

sulphonate (EMS). Mutants inhibiting the transport of the TTG1 protein from the

subepidermis to the epidermis should result in a loss of trichomes on the adaxial

surface of the leaves. Hence I isolated eight glabrous plants as putative mutants

for the TTG1 transport regulators. After complementation experiments with the

existing trichome activator mutants (gl1, ttg1 and gl3) to exclude the mutations at

the same loci, I selected one mutant as a putative TTG1 transport inhibitor (here

after referred as tti) mutant.

The tti mutant is affected in the trichome formation showing completely glabrous

leaves (Figure 2.26A) and also shows a defect in seed mucilage synthesis (Fig-

ure 2.26C ). However, proanthocyanidin synthesis is not affected as shown by the
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Figure 2.26: Analysis of the TTG1 transport inhibitor (tti) mutant isolated in
screening of EMS mutagenised pRBC::TTG1 plants. (A, C, E) Phenotypes of tti
mutant, leaf trichomes (A), seed coat mucilage synthesis (C) and seed coat color (E). (B,
D, F) Phenotype of control plant pRBC::TTG1 leaf trichome (B), seed coat mucilage (D) and
seed coat color (F). (G) Comparison of general growth of tti mutant and control plant. (H-J)
Complementation experiment showing the trichome rescue in the F1 from the tti mutant
crossed to gl3 (H), gl1 (I) and ttg1 (J). (K-N) ttg1pRBC::TTG1:YFP, TTG1:YFP moved
from the suepidermis to the epidermis (N, marked by arrow). (O-R) ttipRBC::TTG1:YFP,
TTG1:YFP protein is restricted to the subepidermis and no YFP fluorescence was observed
in the epidermis (R, marked by arrow). (N, R) Magnification of the boxes marked with
dotted lines in M and Q respectively. Yellow, YFP fluorescence; red, cholorophyll; green,
YFP fluorescence in overlay pictures (false colored); arrows in (N, R) points to epidermal
layer. Scale=50µm.
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brown seed coat color similar to seeds from the wild type plant (Figure 2.26E, F).

Genetic complementation experiments were performed by crossing the tti mutant

with gl3, gl1 and ttg1 mutants. It was observed that the F1 plants from the tti

crossed to gl3, gl1 and ttg1 rescued the trichome phenotype. (Figure 2.26H-J). The

F1 from the cross between tti and gl1 resulted in a partial rescue (Figure 2.26I). In

order to verify that the specific transport of the TTG1 from the subepidermis to the

epidermis is affected in the tti mutant TTG1:YFP was expressed specifically in the

subepidermis using the pRBC promoter. This line was created by crossing the tti

mutant with the ttg1pRBC::TTG1:YFP homozygous line. It was observed that the

TTG1:YFP was restricted to the subepidermis in the homozygous F2 plants (Figure

2.26O-R). On the other hand YFP fluorescence was clearly seen in both epidermal

as well as the subepidermal tissues in the control line ttg1pRBC::TTG1:YFP (Fig-

ure 2.26K-N).
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3 Discussion

While the mobility of signalling molecules and transcription factors is important

for proper pattern formation, restricting their mobility to certain cell types is as

important as their active transport. Restricting the mobility of these molecules

could be achieved by targeting the proteins to specific cellular compartments

(Crawford and Zambryski, 2000) or by complexing them with other factors in the

cell. The latter mechanism can be applied to APETALA3 (AP3) and PISTILLATA

(PI), which are known to form complexes between them and with other members of

the MADS box protein group during floral organ identity specification (McGonigle

et al. 1996; Riechmann et al., 1996; Egea-Cortines et al., 1999; Honma and

Goto 2001). The other example for this is the restriction of SHR mobility in the

endodermis as a result of sequestering by SCR thereby defining a single layer of

root endodermis (Gallagher et al., 2004; Cui et al., 2007).

Trichome patterning in Arabidopsis is a de novo pattern formation process and is

explained by the activator-inhibitor model (Pesch and Hülskamp 2004; Meinhardt

and Gierer, 1974). Recent study has shown that apart from the transcrption factors

the WD40 protein TTG1 is able to function in a non-cell autonomous manner

(Bouyer et al., 2008). TTG1 is depleted in the trichome neighboring cells and

is accumulated in the trichome initial hinting at a role of activator depletion

mechanism during trichome pattern formation. Here I show that TTG1 depletion

depends on GL3. Further I characterized the molecular mechanism of the GL3
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dependent TTG1 depletion and highlight on the importance of TTG1 depletion on

the trichome development and patterning.

3.1 GL3 is required for the TTG1:YFP depletion
during trichome pattern formation

The TTG1:YFP fusion protein is able to move within the epidermal tissue as well

as between the cell layers (Bouyer et al., 2008). It was also demonstrated that

TTG1 can move into the trichome cells from the surrounding epidermal cells.

Furthermore, TTG1:YFP is depleted in the trichome neighboring cells in such a

way that the immediate neighboring cells show the least TTG1:YFP amount in

the nuclei and this amount increses in the cells with increasing distance from

the trichome initial (Bouyer et al., 2008). These findings raised the question

whether TTG1:YFP was specifically transported into trichomes in wild type

situation, something similar to the directional transport of auxin through PIN1

transporter during the primordia positioning in the meristematic region (Smith

et al., 2006; Reinhardt D. 2003). However, the possiblity of directional transport

was excluded by Bouyer et al., (2008) where it could be shown that TTG1:YFP

is actively transported not just into the trichomes but is also free to move into

other epidermal cells. Taking all these into account it can be hypothesized

that a trapping/attracting mechanism is responsible for restricting TTG1 in the

trichome nucleus. Similar mechanism was shown to be operating during radial

pattern formation in roots where SHR is sequestered by SCARECROW (SCR) in

the endodermis nuclei. SHR is expressed in stele of the root and moves into

the endodermis where it is required in a positive feedback loop for the local

enhancement of the SCR pool and for the expression of the common targets of

SHR and SCR to define a single layer of endodermis in plants (Cui et al., 2007;

Gallagher et al., 2004).
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Similarly the depletion of TTG1:YFP during trichome pattern formation on the

adaxial surface of the Arabidopsis rosette leaves was thought to be GL3 dependent.

The Gl3 expression, GL3 localization pattern and its strong interaction with TTG1

makes GL3 a potential candidate to cause the TTG1:YFP depletion (Payne et al.,

2000; Zhang et al., 2003; Zhao et al., 2008). Moreover, it is proposed that TTG1

forms a part of the activator complex involving GL3 and GL1 that is required to

trigger a protodermal cell into trichome pathway (Zhang et al., 2003; Zhao et al.,

2008; Yoshida et al., 2009; Payne et al., 2000; Esch et al., 2003; Digiuni et al., 2008;

Gao et al., 2008). To verify this thought, I analysed TTG1:YFP distribution in the

leaf adaxial epidermal cells in the absence of GL3 (Figure 2.1). Mutations in Gl3

have moderate effect on trichome initiation (Hülskamp et al., 1994; Payne et al.,

2000). Taking advantage of this property of gl3 mutant, cellular distirbution of

TTG1:YFP under the TTG1 promoter was analysed in gl3 mutant. Interestingly

TTG1:YFP depletion was completely abolished in the absence of GL3 and was

uniformly distributed in all epidermal cells with slightly higher concentration in

the trichome initials (Figure 2.1) (Bouyer et al., 2008). The slightly higher levels

of nuclear TTG1:YFP in the trichome initials in gl3 mutant could be due to the

presence of the EGL3 protein which also interacts with TTG1. This experiment

clearly suggested that TTG1 depletion depends on the GL3 protein.

3.2 GL3 sequesters TTG1:YFP in the nucleus

TTG1 and GL3 control the expression of the same set of target genes during

trichome cell fate specification and in the anthocyanin biosynthetic pathway (Zhao

et al., 2008; Gonzalez et al., 2008). GL1 is required to recruit GL3 to the promoters

of two major trichome targets GL2 and CPC (Ishida et al., 2007a, 2007b; Wang and

Chen 2008). It is interesting to note that GL3 protein forms subnuclear speckles in

the absence of TTG1 or GL1 suggesting the presence of TTG1 and GL1 is necessary
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for proper distribution of GL3 in the nucleus (Zhao et al., 2008; Yoshida et al.,

2009). These data strongly suggest that TTG1 is required in the nucleus. However,

TTG1 is not a transcription factor and predictions showed no NLS sequences in

TTG1 (Walker et al., 1999). Moreover, cell fractionation studies showed that AN11

an orthologue of TTG1 from Petunia hybrida was cytoplasmic (de Vetten et al.,

1997) hinting that TTG1 could also be cytoplasmic in Arabidopsis. Surprisingly

TTG1:YFP fusion protein is predominantly localized in the nucleus in the young

region of the leaf whereas in the matured region towards the tip of the leaf it seems

to shift to the cytoplasm (Bouyer et al., 2008). Loss of depletion and appearance of

more cytoplasmic TTG1:YFP in the gl3 mutant pointed towards the GL3 influence

on the TTG1:YFP localization in a cell. Here I could show with several methods

that it is indeed GL3 that greatly influence the TTG1:YFP localization in the cell.

First in planta analysis of TTG1:YFP expressed under the TTG1 promoter in wild

type, gl3 mutant and in plants expressing GL3 under the p35S promoter showed

a clear positive influence of GL3 on the nuclear TTG1:YFP amount (Figure 2.2,

2.3). Detailed quantification of subcellular localization of TTG1:YFP using CLSM

in these backgrounds was in complete agreement with the observations (Figure

2.3). Interestingly because of the trapping of TTG1:YFP in all the epidermal cells

by GL3 in p35S::GL3 expressing lines, it resulted in a loss of TTG1 depletion

in these lines (Figure 2.2C). This means there is a TTG1-GL3 activator complex

in all the epidermal cells, which explains the overproduction of trichomes in

wild type plants transformed with p35S::GL3. This quantitative analysis of the

GL3 influence on the nuclear trapping of TTG1 was further supported by co-

expression of CFP:GL3 and TTG1:YFP in onion epidermal cells that resulted in

relocalization of a bulk of the TTG1:YFP into the nucleus (Figure 2.8E) compared

to the nuclear and cytoplasmic localization when TTG1:YFP is expressed alone

(Figure 2.8B). Moreover, the specific interaction between GL3 and TTG1 is needed

because GL3△78 where the TTG1 interaction domain (mapped in this study) was
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deleted resulted in no influence on the TTG1:YFP localization (Figure 2.8G). In a

reciprocal experiment a 78 amino acid aptamer from GL3 corresponding to the

TTG1 interaction effectively competed with GL3 thereby hindering the nuclear

trapping of TTG1 by GL3 when TTG1, GL3 and 78GL3 were co-expressed in onion

epidermal cells (Figure 2.10). This observation further supported the specificty of

TTG1 and GL3 interaction for nuclear trapping of TTG1 by GL3. Also GL3△NLS

where the NLSs are missing failed to relocalize the bulk of the TTG1:YFP into the

nucleus hence TTG1:YFP was in both cytoplasm and the nucleus (Figure 2.8I).

In a yeast based NTT assay I could show that TTG1 has no fucntional NLS. It

is therefore always exported to the cytoplasm in this assay (Figure 2.7A). It is

interesting to note that TTG1 is targeted to the nucleus in the presence of GL3

but not when the interaction between TTG1 and GL3 is inhibited by deleting

the specific interaction domains in either or both proteins (Figure 2.7B). Similar

observation was made by Sompornpailin et al., (2002) where they showed that

nuclear amount of PFWD a TTG1 homologue from Perilla frutescens is much

higher when co-expressed in onion epidermal cells with MYC-RP a bHLH gene

similar to GL3 compared to when it is expressed alone. This kind of co-localization

phenomenon was also described earlier for AP3 and PI during the specification of

floral organ identities. Nuclear localization of these transcription factors depends

on their simultaneous expression which are otherwise localized in the cytoplasm

when expressed alone (McGonigle et al., 2001). It is known that overexpression

of GL3 partially rescues the ttg1 phenotype while overexpression of both GL3

and GL1 leads to complete rescue of the ttg1 mutant phenotype (Payne et al.,

1999). TTG1 seems to be necessary to regulate the stability of the bHLH and

GL1 interaction at the promoters of the target genes by maintaining stable GL3-

GL1 complex (Morohashi et al., 2007; Zhao et al., 2008). This genetic observation

can be explained by the hypothesized stable trichome activator complex formation

rate. Chances of GL3-GL1 complex formation are much higher under their
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overexpression conditions due to increased abundance of both the activator protein

molecules. On the other hand in wild type situations where both GL3 and GL1 are

under control of their respective endogenous promoters there is limited amount

of these molecules and so will be the GL3-GL1 complex formation rate. Although

TTG1 is required for the expression of several trichome regulators that are common

to GL3 and GL1, it has no NLS to enter into the nucleus nor does it has any known

DNA binding or activation domain. Therefore it is conceivable that GL3 traps it in

the nucleus in a complex together with GL1 and form a stable activator complex.

Hence TTG1 transport into the trichome initials might be a mechanism adopted

to maintain the stability of the GL3-GL1 complex thereby together regulating

the expression of other trichome regulators. At the same time removal of the

TTG1 protein from the neighboring cells could result in abolition/reduction of

the expression of trichome regulators in them thereby effectivly inhibiting the

neighboring cell from entering into trichome fate. Unlike in the proanthocyanidin

biosynthesis pathway where the expression of a GL3 homologue TT8 is directly

under the control of TTG1, in the trichome patterning TTG1 seems to have no role

in the positive feed back loop of GL3 as GL3 expression is not influenced by TTG1

(Zhao et al., 2008)

The other possible mechanism where TTG1 might be functioning is through its

interaction with the GLABRA2 EXPRESSION MODIFIER (GEM). In Arabidopsis

roots GEM represses the expression of GL2 and CPC by maintaining the repressor

histone H3K9 methylation status and also modulating cell division (Caro et al.,

2007). Overexpression of GEM led to increased root hair and decreased trichome

number indicating its role not only in root hair but also in trichome cell fate

regulation. It was shown that TTG1 physically interacts with GEM (Caro et al.,

2007). Here I could imagine that the increasing amount of TTG1 in trichome

initials and its decrease in the pavement cells also has a similar opposite effect on

the available GEM amounts to perform its function in these two cell types. TTG1 by
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its interaction with GEM might keep GEM protein away from participating in the

complex responsible for the repression of trichome regulatory genes in the trichome

initials. On the other hand due to less TTG1 in the trichome surrounding cells

more free available GEM keeps these genes repressed in the pavement cells. This

effect could possibly be by spatial separation of GEM protein or by modification

of structural and functional domains of GEM. Therefore GL3 mediated depletion

of TTG1 could be one mechanism to render different effects on the GEM protein

in different cell types thereby differentially regulating the function of the GEM

protein.

3.3 EGL3 contributes to TTG1 nuclear localization

The bHLH factors invloved in TTG1 regulated cell fate determination pathways

have partial functional redundancy. EGL3 and TT8 both interact with TTG1 and

regulate some overlapping (anthocyanin production and development of seed coat

epidermal cells) and some distinct (develoment of non root hair epidermal cells

and trichome development by EGL3 and seed coat proanthocyanidin production by

TT8) TTG1 regulated developmental pathways (Zhang et al., 2003; Baudry et al.,

2006; Gonzalez et al., 2008, 2009; Nesi et al., 2000; Bernhardt et al., 2003, 2005).

A recent study also indicated a role of TT8 in the leaf marginal trichome develop-

ment (Maes et al., 2008). Therefore it is highly likely that not only GL3 but also

EGL3 and TT8 contribute to sequester TTG1 in the nucleus. By analysis of nuclear

TTG1:YFP in wild type, gl3, gl3 egl3, and gl3 egl3 tt8 mutant backgrounds I could

show that GL3 has major influence followed by EGL3 on the nuclear trapping of

TTG1:YFP. TT8 has no effect on retaining the TTG1:YFP in the nucleus (Figure

2.4). It is noteworthy that EGL3 has an additive effect on the retention of TTG1 in

the nucleus in addition to GL3 while TT8 does not have the same effect. This obser-

vation is consistent with the previous genetic observations that among the bHLH
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proteins GL3 and EGL3 are the sole regulators of trichome fate on the leaf lamina

with GL3 playing a major role whereas TT8 mainly regulates the leaf margin/edge

trichomes (Maes et al., 2008). Since egl3 and tt8 single mutants exhibit no obvious

trichome phenotype on the leaf lamina, quantification of subcellular TTG1:YFP

distribution in these mutants was not considered (Zhang et al., 2003; Maes et al.,

2008). Considering the role of TT8 on the trichome development at the leaf mar-

gin its influence on the subcellular distribution of TTG1 in this region cannot be

excluded but was not analysed here. Furthermore, TTG1△C26 does not interact

with any of the bHLH proteins of TTG1 regulated developmental pathway (Figure

2.17) (Payne et al., 2000). Consistent with this TTG1△C26:YFP is cytoplasmic in

contrast to TTG1:YFP in stable transformed plants (Figure 2.11). But these results

are contradictory. While, the TTG1△C26:YFP, which does not interact with GL3,

EGL3 and TT8 is exclusively cytoplasmic, almost 50% of the TTG:YFP is in the

nucleus in gl3 egl3 tt8 triple mutant in contrast to 69% in wild type (Figure 2.4Q).

This is tempting to speculate that apart from GL3, EGL3 and TT8 there could be

other interacting partners that are capable of retaining TTG1 in the nucleus as can

be seen in gl3 egl3 tt8 triple mutant. Hence, if there are no other partners to se-

quester TTG1 in the nucleus, TTG1 might simply keep shuttling in and out of the

nucleus in the absence of GL3/EGL3. The latter scenario further prompts to spec-

ulate that C-terminal 26 amino acid region in TTG1 is necessary to maintain the

ability for passive transport of TTG1 into the nucleus. However, it is not clear yet

how exactly GL3/EGL3 target TTG1 into the nucleus. Whether GL3/EGL3-TTG1

is entering into the nucleus as a complex or TTG1 is passively transported into the

nucleus and is then seqestered by GL3/EGL3 is not known.

Qualitative observation in the root also showed a similar tendency of bHLH pro-

teins effect on the nuclear TTG1:YFP (Figure 2.5). The observation of TTG1:YFP

in the roots of gl3 egl3 tt8 was not included in this assay as TT8 is not expressed in

the roots (Baudry et al., 2006).
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3.4 Is the nuclear import of TTG1 necessary for
cell-to-cell transport ?

There is no general strict rule for the relationship between subcellular localization

and protein mobility. While mutations or modifications in CPC, KN1 and SHR that

reduce their nuclear localization led to decrease in their mobility between cells,

nuclear targeting of GFP partially reduced its passive transport ability (Gallagher

et al., 2004; Kim et al., 2005; Kurata et al., 2005; Lucas et al., 1995; Prochiantz

and Joliat, 2003; Tassetto et al., 2005; Crawford and Zambryski 2000). However,

a balance between nuclear import and export is also suggested to be essential for

the mobility of SHR and LFY transcription factors (Gallagher and Benfey, 2009;

Kim et al., 2002; Wu et al., 2003). Looking at the nuclear and cytoplasmic local-

ization dynamics of TTG1:YFP, it is tempting to speculate that like SHR and LFY,

nuclear and cytoplasmic localization of TTG1 is necessary for the mobility of TTG1

protein. However, expression of pRBC::NLS:TTG1:YFP in ttg1-13 that results in

exclusively nuclear TTG1:YFP fusion protein showed a complete rescue of the tri-

chome phenotype. This observation points to non dependency on cytoplasmic local-

ization of TTG1 for its mobility (Table 2.3). Also pTTG1::NLS:TTG1:YFP rescued

as good as pTTG1::TTG1:YFP when expressed in the ttg1-13 mutant. Recent re-

port suggest that TTG1:YFP produces significantly higher cluster frequency than

TTG1 without fusion due to increased protein size that might partially decrease

its mobility (Bouyer et al., 2008; Bouyer D., 2004). I also confirmed this obser-

vation in this study (Table 2.5). It is known that in general increasing protein

size leads to decrease in its mobility as was shown for different sized GFP fusions

during Arabidopsis embryo development (Kim et al., 2005). Therefore if there is

a difference in the mobility rate of NLS:TTG1:YFP and the TTG1:YFP proteins

there should also be differences in the frequency of the clusters formed in lines

expressing these proteins. However, the cluster frequency in pTTG1::TTG1:YFP,
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pTTG1::NLS:TTG1:YFP and pRBC::NLS:TTG1:YFP was not significantly differ-

ent from each other, which means these nuclear targeted and wild type distributed

(nuclear and cytoplasmic) fusion proteins were not different from each other with

respect to their intercellular transport rates (Table 2.3). Mechanistically how nu-

clear localization and intercellular mobility are related is still unclear. Prochiantz

and Joliot (2003) have speculated that EN2, a homeodomain protein may gain com-

petence to move after some specific modifications in the nucleus. Further they

also suggested that nuclear localization may bring cargo proteins in close proxim-

ity with factors that facilitate their transport or they get access to the secretory

pathway. Gallagher and Benfey, (2009) also considered these factors as possible

explanation for the correlation they observed between SHR subcellular localiza-

tion and its movement between cells. Similar mechanism might be responsible for

the TTG1 mobility as well. However, before speculating similar thoughts for the

TTG1 mobility it would be extremely important to compare how TTG1 targeted

exclusively either to the nucleus or to the cytoplasm behave with respect to mobil-

ity. Detailed quantitative analysis of the TTG1:YFP depletion in lines expressing

pTTG1::NLS:TTG1:YFP in comparison to lines expressing pTTG1::TTG1:YFP will

put more light on the relationship between TTG1 nuclear localization and its de-

pletion. Nevertheless, with the current data it can be postulated that targeting

of TTG1:YFP exclusively to the nucleus has minimum or no negative influence on

its mobility within as well as between the tissue layers in the leaves. It is likely

that TTG1:YFP in the nucleus in wild type is already at a threshold level hence

further increase in the nuclear TTG1:YFP amount is immaterial for its intercellu-

lar transport during the trichome development and pattern formation. Therefore

the observation that the mobility of NLS:TTG1:YFP fusion protein, which is exclu-

sively nuclear is as good as TTG1:YFP hints that nuclear targeting is necessary

for TTG1 mobility during trichome pattern formation. Furthermore, depletion was

not affected when TTG1:YFP was partially trapped in the cytoplasm by 78GL3 ap-
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tamer (Figure 2.23A, A’). Hence, the cytoplasmic TTG1 protein appears to have no

role in cell-to-cell transport of TTG1 protein and thereby does not contribute to the

depletion. However, whether the cytoplasmic TTG1 is able to move or not need to

be verified in future studies either by expressing under the pRBC promoter or by

microinjection technique in the tobacco leaves.

Interestingly NLS:TTG1:YFP expressed under the pRBC promoter did not comple-

ment the seed coat color defect in contrast to TTG1:YFP expressed under the same

promoter in ttg1 mutant (Figure 2.16). To confirm that the NLS:TTG1:YFP fusion

protein is functional in the seeds I tested the seed coat mucilage production, which

is another seed phenotype controlled by TTG1. Seeds from the transgenic plants

ttg1pRBC::NLS:TTG1:YFP, ttg1pRBC::TTG1:YFP, ttg1pTTG1::NLS:TTG1:YFP and

ttg1pTTG1::TTG1:YFP showed no difference in mucilage production compared to

wild type seeds (Figure 2.16). This observation suggested a defect specifically for

proanthocyanadin (PA) biosynthesis in ttg1pRBC::NLS:TTG1:YFP. Furthermore

rescue of seed coat color in ttg1pRBC::TTG1:YFP and ttg1pTTG1::NLS:TTG1:YFP

lines excluded respectively the differences in spatial expression pattern and subcel-

lular localizations as the cause of transparent testa phenotype in ttg1pRBC::NLS-

:TTG1:YFP. It was previously demonstrated using yeast two-hybrid and three-

hybrid analysis that TTG1, TT8 and a MYB protein TT2 encoded by TRANSPAR-

ENT TESTA2 (TT2) can form a ternary complex (Baudry et al., 2004). Further-

more, TT2, TT8 and TTG1 can directly activate the BANYULS (BAN) gene expres-

sion and the activity of TT2-TT8 complex correlated with the expression levels of

TTG1 (Baudry et al., 2004). TTG1 is required for the expression of TT8 promoter

specifically in the inner (regions 1 and 2 defined by Debeaujon et al., 2003) and

outer integument of the seed coat (Baudry et al., 2006). In the outer integument

TTG1 together with EGL3/TT8 and MYB5/TT2 is involved in the differentiation

and maintenance of epidermal cell layer where mucilage is synthesized (Penfield et

al., 2001; Baudry et al., 2006; Gonzalez et al., 2009). Similarly in the inner integu-
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ment TTG1 functions in the endothelial cell layer by controlling the expression

of TT8 which together with TTG1 and TT2/MYB5 regulate the expression of the

BAN promoter that is necessary for the PA biosynthesis (Nesi et al., 2000, 2001;

Baudry et al., 2004, 2006; Gonzalez et al., 2009). In future studies it is important to

determine the differences in the localization of NLS:TTG1:YFP and TTG1:YFP in

different cell types during the seed development when expressed under the pRBC

promoter. Further at the molecular level it will be interesting to know the differ-

ences in the expression pattern of the TTG1 target genes such as TT8, BAN and

TTG2 in pRBC::TTG1:YFP and pRBC::NLS:TTG1:YFP expressing seeds. Under

wild type situation these target genes are expressed in specific cells of the seed in

a TTG1 dependent manner during seed development ( Baudry et al., 2004, 2006;

Gonzalez et al., 2009).

3.5 Mobility of TTG1:YFP is counteracted by GL3

Rescue efficiency of subepidermal expressed TTG1:YFP is reduced drastically from

80% in ttg1 (Figure 2.12D) to 5% in ttg1 gl3 (Figure 2.12F) strongly favoring the

need of GL3 in the epidermis for the full function of subepidermal TTG1 (quan-

tified by Daniel Bouyer). Moreover providing GL3 in the subepidermis together

with TTG1:YFP in ttg1 gl3 led to further loss of rescue efficiency of subepider-

mal TTG1:YFP (Figure 2.12M). This strongly favors the idea of TTG1:YFP being

trapped in the subepidermis when co-expressed with GFP:GL3 consistent with

my observations in quantification of the nuclear TTG1:YFP in the gl3 mutant

and GL3 overexpression lines (Figure 2.3), NTT assay in yeast (Figure 2.7B), and

transient expression assay in onion epidermal cells (Figure 2.8E). Moreover, in

most of the lines tested the TTG1:YFP signal was restricted to the subepidermis

when co-expressed with GFP:GL3 in the subepidermis and was colocalized with the

GFP:GL3 (Figure 2.12N). Nevertheless, in some lines expressing both TTG1:YFP
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and GFP:GL3 under the pRBC promoter, YFP fluorescence was observed in the

epidermis as well. However there could be quantitative differences in amount of

the TTG1 protein moving from the subepidermis to the epidermis when TTG1 is

expressed alone or when it is expressed together with GL3 in the subepidermis.

Drastic overproduction of trichomes was observed when GL3 was provided specif-

ically in the epidermis under the pAtML1 promoter in ttg1 gl3pRBC::TTG1:YFP

line (Figure 2.12L). In this situation subepidermal TTG1:YFP that moves into the

epidermis is trapped by the abundant GL3 present in the epidermis thereby most

of the epidermal cells gain trichome fate, a phenotype reminiscent of p35S::GL3 in

wildtype (Payne et al., 2000). As expected ttg1 gl3 plants expressing GL3 under the

pAtML1 promoter showed a partial rescue of trichomes resulting in a phenotype

similar to p35S::GL3 in ttg1 background (Payne et al., 2000).

Figure 3.1: Schematic presentation of the effect of tissue specific GL3 expression
on the mobility of TTG1 expressed in the subepidermal tissue. (A-D) TTG1:YFP
is provided from subepidermis by expressing under pRBC promoter. (A) ttg1, TTG1:YFP
is free to move into the epidermis. (B) ttg1gl3, there is no GL3 hence TTG1:YFP is not
trapped although it moves into the epidermis resulting in drastic fall in trichome rescue
efficiency. (C) ttg1gl3pRBC::GFP:GL3, even the small percentage of trichomes rescued
in the situation like in (B) is lost as the subepidermal GL3 traps the bulk of the TTG1
protein in the subepidermis. (D) ttg1gl3pAtML1::GFP:GL3, here as a result of strong GL3
expression in all the epidermal cells, the majority of the TTG1:YFP from the subepidermis
is attracted and is trapped in the epidermis resulting in massive overproduction of
trichomes. Yellow, depicts TTG1:YFP; Intensity of green, indicates amount of GL3; L1,
epidermal layer; L2, subepidermal tissue.

I confirmed the observations of the rescue experiment explained above with an-

other set of experiment using KikGR1, a photoconvertible marker. Using the pho-
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toconvertible fluorescent marker KikGR1 as a C-terminal fusion to TTG1 I could

show that the transport ability of TTG1 differs significantly in different epidermal

cell types. TTG1:KikGR1(red) in trichome initials was less free to move compared

to the TTG1:KikGR1(red) from other epidermal cells including the trichome neigh-

boring cells and the epidermal cells away from the trichome initial (Table 2.2).

What is more interesting is the difference in the gain of TTG1:KikGR1(red) in dif-

ferent epidermal cells. For this analysis the scenario where the TTG1:KikGR1(green)

in the trichome neighboring cell is converted into TTG1:KikGR1(red) was used due

to the presence of different types of cells as its neighbors. A Large proportion of the

lost TTG1:KikGR1(red) from trichome neighboring cell was accounted in the tri-

chome initial while gain in other immediate neighbors of the photoconverted cell

was uniform and much less than the gain in the trichome initial (Figure 2.14B)

(Table 2.2). Considering no directional movement of TTG1 into trichomes (Bouyer

et al., 2008), it can be postulated that GL3 in the trichome simply traps/sequesters

all the TTG1 entering in a trichome cell. On the other hand due to a much reduced

level of GL3 in other epidermal cells TTG1:KikGR1(red) is free to move further

into the next cell. These observations are consistent with the GL3 expression and

protein accumulation pattern ( Zhang et al., 2003; Zhao et al., 2008).

3.6 Paradoxical phenotype of the ttg1 weak alleles
- Does depletion has a role to play ?

The weak alleles of ttg1 are not completely glabrous, instead they produce tri-

chomes though reduced in number. Trichomes in these weak alleles are under-

branched and form frequent clusters whereas the strong alleles are completely

glabrous (Koornneef, 1981; Larkin et al., 1994, 1999). This long standing para-

doxical phenotype was recently explained with mathematical modeling of the GL3

dependent TTG1 depletion during pattern formation (Bouyer et al., 2008). I anal-
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ysed these allelic forms of TTG1 with respect to their molecular interaction with

GL3. With several experiments it is confirmed in this study that TTG1 is trapped

in the nucleus of the high GL3 expressing cells. Similarly I asked the question how

do the weak allelic forms of TTG1 behave in their relation with GL3. Interestingly

allelic forms of TTG1 either failed to interact or showed very weak interaction with

known bHLH proteins of the TTG1 regulated pathway (ttg1-10 was not tested) (Fig-

ure 2.17). Moreover GL3 failed to trap these allelic forms of TTG1 in the yeast NTT

assay (Figure 2.18). It was shown in previous studies by RNA gel blot analysis that

TTG1 expression in these alleles is not affected (Larkin et al., 1999; Walker et al.,

1999). Formation of trichomes in these alleles suggests that the function of the mu-

tant TTG1 protein is not completely abolished. Loss of the TRY expression in ttg1

mutant as the cause of cluster formation in weak ttg1 alleles is excluded as cluster

phenotype in try is accompanied with a overbranching phenotype. This is contrary

to the reduced branching in weak ttg1 alleles (Hülskamp et al., 1994; Schellmann

et al., 2002). Therefore with the available results, I hypothesize that loss of strong

and stable interaction with GL3/EGL3 results in a loss of TTG1 depletion from the

epidermal cells surrounding an emerging trichome. Because of the loss of depletion

of TTG1 sufficient amount of the activator (TTG1) in this adjacent cell triggers this

cell also to develop into a trichome thereby resulting in cluster formation in the

ttg1 weak alleles. However, only detailed analysis of the cellular distribution of

different weak allelic forms of TTG1 will bring a clear picture on the relationship

of TTG1 depletion and trichome patterning.

Weak interaction or no interaction of TTG1 with GL3/EGL3 means reduction in the

nuclear TTG1 amount as discussed earlier (Figure 2.3 and 2.4). Hence the obvious

question comes up whether reduction in the nuclear concentration of TTG1 below

certain threshold results in cluster formation. This was tested with two indepen-

dent approaches.

In the first experiment CFP:GL3, CFP:GL3△78 and CFP:GL3△NLS were expressed
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under the p35S promoter in the ttg1pTTG1::TTG1:YFP line. While the nuclear

TTG1:YFP was increased in the lines expressing p35S::CFP:GL3, it was reduced

in the lines expressing p35S::CFP:GL3△NLS (Table 2.6). p35S::CFP:GL3△78 lack-

ing the TTG1 interaction domain had no effect on the TTG1:YFP localization con-

sistent with the transient assay in onion epidermal cells (Table 2.6) (Figure 2.8).

As expected trichome number was significantly increased in the p35S::CFP:GL3

expressing lines consistent with the previous report by Payne et al., (2000) (Ta-

ble 2.7). It is known that GL3 overexpression in ttg1 mutant results in only par-

tial rescue of ttg1 trichome phenotype (Payne et al., 2000). This indicates that

although trichomes are formed in ttg1p35S::GL3 independent of TTG1 it is less

efficient compared to TTG1 dependent trichome formation. Hence CFP:GL3△78

that specifically lacks the TTG1 interaction ability when overexpressed under p35S

promoter in wild type should participate in this TTG1 independent trichome for-

mation pathway. Because of the partial rescue in p35S::GL3 TTG1 independent

pathway the trichome number in wild type plants expressing p35S::CFP:GL3△78

would be expected to be less than the trichome number in the wild type plants ex-

pressing p35S::CFP:GL3. However, this was not the case as p35S::CFP:GL3△78

and p35S::CFP:GL3 had same effect on the trichome number and cluster forma-

tion when expressed in wild type plants (Table 2.7). I could envisage that the dif-

ferences in the rescue ability could be seen when CFP:GL3 and CFP:GL3△78 are

expressed in gl3 egl3 double mutant background lacking the trichome regulating

bHLH factors instead of wild type plants. It was indeed observed in a reciprocal ex-

periment by Martina Pesch where she observed that the overexpression of GL3△78

in gl3 egl3 resulted in a trichome phenotype that was reminiscent of GL3 overex-

pression in the ttg1 mutant (Payne et al., 2000). Here both, trichome number and

morphology was affected. Trichome number was fewer than wild type and were

underbranched with bloated appearance. The possibility of absence of EGL3 as the

cause of the abnormal trichome development in the gl3 egl3p35S::CFP:GL3△78
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was excluded as gl3 egl3p35S::CFP:GL3 resulted in a significantly higher trichome

number with normal morphology. Descrepancy between the behaviour in wild type

and gl3 egl3 can be explained by the fact that GL3△78 only lacks TTG1 interac-

tion domain but can still interact with wild type GL3 (tested by Martina Pesch).

Hence it is conceivable that in wild type plants expressing p35S::CFP:GL3△78,

CFP:GL3△78 can form a dimer with the endogenous GL3 in the trichome activa-

tor complex. Although TTG1 can not interact with GL3△78 it could still bind to

GL3 in the GL3-GL3△78 dimer and render its fucntion of stabilizing the activator

complex.

Surprisingly cluster frequency was found to be similar in CFP:GL3, CFP:GL3△78

and CFP:GL3△NLS (Table 2.7). This phenotype can be explained by the nega-

tive effect of GL3 variants on the mobility of inhibitors. All three GL3 variants

GL3, GL3△78 and GL3△NLS are capable of interacting with the inhibitors (Table

2.1). Recent data have shown that GL3 overexpression indeed has a negative ef-

fect on the mobility of inhibitors (Wester et al., 2008). These authors demonstrated

that inhibitors interfere with the GL3-GL1 dimerization in a hierarchial manner

with CPC being most potent followed by ETC1, TRY, ETC3 and ETC2. Finally

they demonstrate that higher binding affinity of CPC makes it less mobile in GL3

overexpressing line. Similar effect with varying degree is expected for the other

inhibitors too. In an other theoratical possibility, trapping of TTG1 by GL3 in all

the epidermal cells in p35S::GL3 expressing lines drastically reduce the TTG1 mo-

bility should also lead to cluster formation. It could as well be a combination of

both, reduction in the mobility of the inhibitors and TTG1 in the epidermal cells

by overexpressing GL3. But one discrepancy for considering both the reasons as

cause of cluster formation lies in the fact that CFP:GL3△78, which does not in-

teract with TTG1 and the CFP:GL3△NLS which is in the cytoplasm show same

amount of cluster formation as CFP:GL3 overexpressing lines (Table 2.7). There-

fore cluster formation in the lines expressing GL3 variants can be most probably
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explained due to their negative influence on the mobility of the inhibitors. Never-

theless, the cluster phenotype caused by non mobility of inhibitors may simply be

epistatic to the phenotype caused due to the non mobility of TTG1 because of the

severe effect of the former and subtle effect of the latter phenomenon.

In order to test this with another approach an aptamer 78GL3 was used to effec-

tively interfere with the interaction of GL3 and TTG1. 78GL3 is a 78 amino acid

fragment from GL3 that is specific for TTG1 interaction.When p35S::78GL3:GUS

is expressed 78GL3:GUS competitively binds to TTG1 thereby reducing the pool of

available TTG1 for the formation of TTG1-GL3 complex. Since 78GL3:GUS fusion

is cytoplasmic it also partially retains TTG1 in the cytoplasm (Figure 2.10). Quali-

tative analysis of the subcellular localization of TTG:YFP in ttg1pTTG1::TTG1:YFP

lines expressing p35S::78GL3:GUS indeed showed that TTG1:YFP was partially

shifted to cytoplasm compared to the control line ttg1-13pTTG1::TTG1:YFP (Fig-

ure 2.23). Although there was a shift of considerable amount of TTG1:YFP to the

cytoplasm, no obvious trichome patterning defect was observed. This suggested

that partial relocalization of TTG1 to the cytoplasm does not affect the trichome

patterning. However, it was interesting to note that although TTG1:YFP was par-

tially trapped in the cytoplasm in the ttg1pTTG1::TTG1:YFP lines transformed

with p35S::78GL3:GUS TTG1:YFP depletion was not affected suggesting that it is

the nuclear fraction of TTG1 that moves between the cells. Possibly because of the

depletion process that is going on in these lines no trichome clusters were observed

inspite of the fact that nuclear to cytoplasmic ratio of TTG1:YFP is affected due to

the cytoplasmic trapping of TTG1:YFP by 78GL3:GUS aptamer.

The other prominant phenotype observed in p35S::CFP:GL3△NLS expressing lines

is the underbranched trichome phenotype (Table 2.7). CFP:GL3△NLS is not af-

fected in the dimerization domain therefore the chances that it interacts with

GL3 are very high. p35S::CFP:GL3△NLS also interacts with TTG1 (Figure 2.8A).

Hence CFP:GL3△NLS could participate in two possibile mechanisms that may
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results in the observed trichome phenotype in the lines overexpressing it. In

the first possible mechanism CFP:GL3△NLS efficiently or partially retains en-

dogenous GL3 in the cytoplasm. It is known that GL3 controls endoreduplica-

tion and trichome branching (Hülskamp et al., 1994). Hence due to insufficient

nuclear GL3 in the trichome endoreduplication and the branching is affected in

the wild type plants expressing p35S::CFP:GL3△NLS. In the second mechanism

CFP:GL3△NLS traps TTG1 in the cytoplasm which was confirmed by the quan-

tification of subcellular distribution of TTG1:YFP by CLSM. (Table 2.6). The latter

option seems to be true as the aptamer experiment result also support it. The

aptamer overexpressing lines where significant amount of TTG1:YFP was shifted

to cytoplasm compared to the control line ttg1-13pTTG1::TTG1:YFP (Figure 2.23)

resulted in underbranched trichome phenotype suggesting that certain threshold

levels of TTG1 in the nucleus is necessary for the normal development of trichomes

branching.

One possible explanation for the underbranching phenotype is the reduced activity

of MYB23 gene as the myb23 mutant shows an underbranched phenotype (Kirik

et al., 2005). Based on the spatial and temporal expression pattern and genetic

analysis in different trichome mutants it was proposed that similar to the tri-

chome activator complex TTG1-GL3-GL1, TTG1-GL3 may form a complex together

with MYB23 to act as a branch promoting complex (Kirik et al., 2005). Moreover,

MYB23 is not expressed in the undifferentiated epidermal cells but is expressed

in a trichome specific manner and needs TTG1 for the expression (Kirik et al.,

2005). TTG1 might regulate the expression of MYB23 together with GL3/EGL3.

Although MYB23 expression is not affected in gl3 mutant leaves its expression is

completely abolished in roots of gl3 egl3 double mutant (Kirik et al., 2005; Kang

et al., 2009). So the presence of EGL3 may compensate for the loss of GL3 in the

gl3 mutant leaves for the expression of MYB23 together with TTG1. These data

suggested that TTG1-GL3/EGL3 complex formation is necessary for the MYB23
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gene expression, which is not possible or is at a reduced rate in ttg1 weak alleles as

these allelic forms of TTG1 either do not interact or show a very weak interaction

with GL3 and EGL3 (Figure 2.17). Similarly in ttg1pTTG1::TTG1:YFP lines trans-

formed with p35S::CFP:GL3△NLS/p35S::78GL3:GUS a reduction in the nuclear

concentration of TTG1:YFP below a certain threshold level may result in adverse

effect on the TTG1-GL3/EGL3-MYB23 branch promoting complex thereby result-

ing in an underbranched phenotype.

Taken together it is conceivable that TTG1 is required in the trichome cells through-

out the whole trichome development. At the early stage it is important for the

trichome pattern formation by means of GL3 dependent depletion/trapping mech-

anism (Bouyer et al., 2008) and at a later stage it is required for promoting proper

trichome branching by forming a TTG1-GL3/EGL3-MYB23 branch promoting com-

plex (Kirik et al., 2005). Most of these speculations can be tested only with a non

mobile form of TTG1 that does not have severe secondary effects. Attempts to make

it immobile by targeting it to the nucleus failed as the nuclear targeted TTG1 pro-

tein is completely mobile (Table 2.3).

3.7 Mapping the TTG1 mobility domain

Since the discovery of the maize homeodomain protein KNOTTED1 (KN1) as the

first plant protein able to traffic from cell-to-cell several other proteins were re-

ported to function in a non cell-autonomous manner (Kim et al., 2003; Perbal et al.,

1996; Wada et al., 2003; Sessions et al., 2000; Nakajima et al., 2001). Recent stud-

ies have focussed also on the identification of specific signal domains in a protein

that are necessary for the intercellular trafficking of proteins during developmen-

tal processess (Kim et al., 2005).

Interestingly plasmodesmata and nuclear pore complex (NPC) exhibit parallel struc-

tural and functional features in terms of selective and nonselective macromolecular
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trafficking (Lee et al., 2000). However, unlike the mechanism of translocation into

the nucleus which involves the well characterized signal domains NLS on the cargo

proteins, no conserved signal domains in NCAPs has yet been identified (Pember-

ton et al., 1998; Cokol et al., 2000; Macara, 2001; Madrid and Weis, 2006; Lucas

et al., 1995; Aoki et al., 2002; Kurata et al., 2005; Trutnyeva et al., 2005; Sasaki

et al., 2006). TTG1 has no obvious specific domains others than four WD40 repeat

domains that are spread over the entire protein (Walker et al., 1999). AN11 from

Petunia hybrida an orthologue of TTG1 rescued ttg1 trichome phenotype when ex-

pressed under the p35S promoter (Table 2.8) consistent with the previous report

by Payne et al., (2000); the information about the promoter was not given though.

Interestingly expression under the subepidermal specific pRBC promoter hinted

at the differences between TTG1 and AN11 as latter failed to rescue trichomes

when provided in the subepidermis of the ttg1 mutant (Table 2.8). Similar obser-

vation was made in KNOX class of proteins where homeodomain (HD) trafficking

signal is conserved in closely related class I KNOX HD proteins (STM and KNAT1

in Arabidopsis and LeT6 in tomato) but not in less closely related class I KNOX

proteins such as KNAT2 and KNAT6 or class II HD protein KNAT3 (Kim et al.,

2005). Similarly a short motif of 20 amino acids on Cm-Hsc70-1 and Cm-Hsc70-2

made these proteins to function as NCAP but had no such effect on the closely re-

lated Cm-Hsc70-3 (Aoki et al., 2002). Moreover when this motif from Cm-Hsc70-1

was transferred to most closely related human Hsp 70 chaperone, it resulted in

the gain of function of intercellular transport ability. However, the same motif

when fused to the C-terminus of GFP did not result in conferring the movement

ability to GFP. These data suggested that the mobility motifs/domains in certain

protein do not function as a simple targeting signals rather they are specific to

certain class of proteins (Taoka et al., 2007). Therefore in spite of high percentage

of homology between TTG1 and AN11, the difference in their mobility property

was not surprising. Interestingly TTG1 and AN11 had clear differences in their
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N-terminus. Taking advantage of these differences I did a gain of function ex-

periment by swapping non homologous domains within the N-terminus of TTG1

and AN11 and expressing them in the subepidermal tissue (Figure 2.25). AN11

with three small domains swapped from TTG1 could partially rescue trichomes

when provided in the subepidermis. On the other hand rescue efficiency of TTG1

with domains swapped from AN11 was reduced when provided in the subepider-

mis (Table 2.8). Swapping of entire N-terminal 62 amino acids between TTG1 and

AN11 led to efficient rescue of trichomes by N-TTG:C-AN11 fusion protein from

the subepidermis while N-AN11:C-TTG1 lost its ability to rescue from the subepi-

dermis (Daniel Bouyer, personal communication). Comparing both data I could

visualise that TTG1 mobility is partly controlled by the sequences in the swapped

domains while other differences in the N-terminus could contribute to the efficient

transport of TTG1. Infact in an independent study Daniel Bouyer could efficiently

rescue the ttg1 trichomes by expressing pRBC::AN11 where putative phosphory-

lation sites were exchanged from TTG1, while the reciprocal experiment did not

have major effect (Daniel Bouyer, unpublished data). Kim et al., (2005) could show

using similar gain of fucntion approach that the homeodomain of KN1 is neces-

sary and sufficient to retain the mobility of the KN1 protein. In this approach they

fused different fragments of KN1 to the cell autonomous trichome regulator GL1

and provided it in the meshophyll tissue and observed the rescue of trichome in the

gl1 mutant in contrast to the wild type GL1. It is interesting to note that although

AN11 and TTG1 show high degree of similarities they do have fundamnetal dif-

ferences. AN11 controls only anthocyanin in petals and mutations at this locus do

not affect trichomes or anthocyanins in the rest of the plant whereas TTG1 con-

trols multitude of phenotypes in Arabidopsis (Koornneef et al., 1981; de Vetten et

al., 1997; Walker et al., 1999; Zhang et al., 2003; Schiefelbein et al., 2003; Haughn

and Chaudhary 2005; Baudry et al., 2006). Interestingly, AN11 also interacts with

GL3 in yeast two-hybrid assay (Figure 2.24A) and similar to TTG1 it is trapped
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in the nucleus by GL3 in NTT assay (Figure 2.24D). An In planta experiment to

study the patterning defects and depletion similar to TTG1 was not possible for

AN11 as AN11 showed almost no rescue of the ttg1 trichome phenotype under the

TTG1 promoter and the p35S promoter would not be appropriate for this kind of

sensitive experiment. From the evolutionary point of view it is very interesting

to note how highly conserved proteins such as WD40 repeat proteins can undergo

modifications in order to fulfill additional roles adopted by the species during the

course of evolution.

3.8 Isolation of TTG1 transport inhibitor mutants

Microinjection studies in tobacco mesophyll cells suggested that TTG1 in Arabi-

dopsis is most likely transported in a regulated manner through PD (Bouyer et al.,

2008). Based on this it was postulated that TTG1 expressed in mesophyll cells

moves to the epidermis in a regulated manner through PDs and rescues the tri-

chome phenotype of ttg1 mutant. This regulated transport of TTG1 means that

TTG1 is interacting with the PD components to dilate the PD aperture for its

transit between the cells. Any defect in the mobility of TTG1 from the subepi-

dermis to the epidermis should result in the loss of trichome initiation in the

ttg1pRBC::TTG1 background. In the EMS mutagenesis screen the tti mutant was

isolated as a potential candidate for the mutation in the locus regulating the TTG1

mobility via PD.

The putative tti mutant showed defects in differentiation of two types of epidermal

cells that depend on the presence of TTG1. Loss of leaf trichomes as well as the loss

of mucilage production by the seed epidermal cells suggested that the TTG1 trans-

port from the subepidermis to the epidermis is blocked in leaf as well as in seeds of

the tti mutant (Figure 2.26A, C). It can be noted that mutations in TTG1 affects all

phenotypes controlled by TTG1 and so far no ttg1 allele, which shows a defect in
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only one of the TTG1 controlled phenotypes is isolated (Koornneef 1982; Larkin et

al., 1999; Walker et al., 2000). Hence proanthocyanidin synthesis that gives brown

color to seeds in tti mutant indicates that the transgene TTG1 expressed under

the pRBC promoter is fully functional (Figure 2.26E). Further F1 from the cross

between the tti mutant and ttg1 mutant completely rescued the ttg1 trichome phe-

notype and showed a wild type trichome distribution (Figure 2.26J). This shows

that mutation in tti mutant is recessive because the tti mutant phenotype was

masked in the heterozygous condition and also further supports that the TTG1

transgene is fully functional. Complementation experiments with ttg1, gl1 and

gl3 mutants showed that mutation in the tti mutant is at a different locus than the

TTG1, GL1 and GL3 loci (Figure 2.26H-J). Furthermore, restriction of YFP specific

fluorescence to the subepidermal tissue in ttipRBC::TTG1:YFP demonstrates that

specific transport of TTG1 from the subepidermis to the epidermis is affected in the

tti mutant (Figure 2.26O-R). However, it is hard to predict whether this mutation

renders the same effect on the mobility of TTG1 through cytoplasmic connections

within the same tissue layer because symplasmic connections within the same tis-

sue is different from the connections between the two adjacent tissue layers. The

cells within a layer are connected mainly via primary PDs while the two adjacent

layers are connected mostly via secondary PDs (Ding, 1998). The likelihood that

the PD mutants will result in lethality is very high as a result the understand-

ing about the molecular structure and mechanism of transport through PD is very

poor. Indeed several seedling lethal mutants were observed in my screening as well

but were not isolated as they died before opening the rosette leaves where the loss

of trichome formation was the criteria for the selection of mutant.

Protein-protein interactions seems to play an important role in conferring the

specificity in the selective trafficking of NCAPs across the plasmodesmata (Craw-

ford and Zambryski, 2000; Haywood et al., 2002; Lucas and Lee, 2004; Zambryski,

2004). Cell-to-cell transport is controlled by modification of PD structure or oc-
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clusion by callose. Callose deposition at the neck of PD leads to constriction of

PD hence plants deficient in beta-1,3-glucanase enzymes required to degrade cal-

lose shows reduced PD SEL (Iglesias and Meins 2000; Levy et al., 2007). Benitez-

Alfonso et al., (2009) showed that gat1 (GFP arrested trafficking 1) mutants show

induction of callose and structural modification of PD thereby reducing the traffick-

ing of GFP between the cells. But unlike tti mutants the gat1 seedlings arrested

soon after the germination thereby excluding the possibility of mutation at the

same locus in the tti mutant (Benitez-Alfonso et al., 2009).

Recently, a novel family of eight proteins, called PD-located protein 1 (PDLP1),

which span the plasma membrane within PDs have been reported (Thomas et al.,

2008). These proteins have the features of type I membrane receptor-like proteins

and most likely form a part of the signal transduction machinary that perceives ex-

ternal signals to regulate molecular trafficking between cells (Bayer et al., 2008).

The results so far suggest that the specific transport of TTG1 from subepidermis

to epidermis is affected. However, relatively small size of the tti mutant plants

indicate some general defect as well. Using other mobile proteins as markers it

would be nice to know whether the mutant is affected specifically in TTG1 trans-

port or the mobility of proteins in general is affected. Furthermore the question,

is the mobility of TTG1 affected within the same tissue will be addressed in future

as this is more relevant during the trichome patterning. Physical mapping and

cloning of the gene will be done in future and this could be a big step towards the

understanding of the mechanism of protein transport in general and in trichome

patterning in particular across the PD.
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3.9 Model for the GL3 dependent TTG1 depletion
during the trichome pattern formation

The observation of the TTG1 depletion led to looking at the trichome patterning

from a new perspective. The behaviour of the components of trichome patterning

machinary and their corresponding mutant phenotypes could be nicely explained

by the activator-inhibitor mechanism. However, different phenotypes of the strong

and weak alleles of ttg1 mutants was a paradox for a long time. The new findings

where the TTG1 protein was shown to be depleted in the trichome neighboring cells

strongly suggested a role of the activator depletion mechanism during trichome

patterning. This mechanism fits well to support the phenotype of the ttg1 weak

allels. In this study I show how mechanistically the TTG1 depletion is taking

place. I confirm with several experiments that TTG1 is trapped in high GL3

expressing cells. TTG1 depletion is completely abolished in the gl3 mutant strongly

suggesting the role of GL3 dependent nuclear trapping of TTG1 for the depletion.

In the following model (Figure 3.2) I present schematically the mechanism of

GL3 dependent TTG1 depletion during the trichome patterning in Arabidopsis

thaliana.

All epidermal cells are uniform in the beginning and are equally potent to develop

into a trichome. Because GL3 is uniformly expressed in all epidermal cells of

this stage TTG1 protein is also uniformy distributed in these cells. However, a

non directional transport of the TTG1 protein is going on between the epidermal

cells. Due to small fluctuations in the concentration of the activators because of an

postulated (but so far unknown) autocatalytic positive feed back of the activators

some cells transit into the trichome pathway. As soon as a cell enters the trichome

fate the GL3 expression in the surrounding cells goes down significantly and its

expression in the trichome cell is enhanced. At this stage while in the trichome

surrounding cells TTG1 is shuttling in and out of the nucleus, in the trichome
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initial TTG1 is sequesterd in the nucleus as a result of strong binding to the GL3.

This means that less TTG1 is entering into the immediate neighbor of the trichome

as no or very little TTG1 is going out from the trichome initial. On the other hand

the cells being second or third neighbor get TTG1 coming from all their neighbors.

As a result the immediate neighbor to the trichome has the least amount of TTG1.

It is at this stage when the TTG1 depletion is visible.

With the advancement of the trichome development the GL3 expression in the

trichome surrounding cells is almost completely ceased while it continues to be

expressed in the trichome thereby leading to GL3 protein accumulation as a result

also to the accumulation of TTG1 due to the nuclear trapping by GL3.

Accumulation of TTG1 in the trichome initials results in the formation of a higher

concentration of the activator complex and helps in the positive feedback loop of the

activators that in turn leads to the increased production of the inhibitors, which

diffuse into the neighboring cells. On the other hand the neighboring cells are

inhibited from entering into the trichome fate through two processes, the removal

of the activator TTG1 as well as due to the increased influx of the inhibitors from

the trichome cells.

91



Discussion

Figure 3.2: Gl3 dependent TTG1 depletion model during trichome pattern
formation (A) Epidermal cells with equal potential to develop into a trichome. Here both
TTG1 (nuclear and cytoplasmic) and GL3 (nuclear) are uniformly distributed in all cells.
(B) Due to an autocatalytic positive feedback of the activators a slight fluctuation in the
relative concentration of the activators in the epidermal cells results in a cell entering into
trichome pathway (TIS). GL3 expression goes slightly higher in the TIS but is reduced in
the neighboring cells hence TTG1 protein is relatively more free to move in the neighboring
cells compared to TIS where it is sequestered in the nucleus by GL3. (C) GL3 continue
to be expressed in the TIS but expression is completely ceased in the neighboring cells.
Therefore TTG1 shuttles in and out of the nucleus in the neighboring cells and is also
freely transported into the other cells but more and more TTG1 is trapped in the TIS thus
creating a gradient of TTG1 concentration around the TIS.
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4 Materials and Methods

4.1 Chemicals and antibiotics

All chemicals and antibiotics used were of analytical quality and were obtained

from Sigma-Aldrich (Muenchen, Steinheim), Roth (Karlsruhe), Merck (Darmstadt

), and Duchefa (Haarlem, Netherlands ).

4.2 Enzymes, Kits, Primers and Molecular biolog-

ical materials

Restriction enzymes were used from MBI-fermentas (St.Leon-Rot), New England

Biolabs (Frankfurt/Main) and Roche (Mannheim). Taq polymerase was from MBI-

Fermentas (St.Leon-Rot) and Bioline and Phusion high fidelity polymerase was

from Finzymes, T4 ligase Invitrogen (Karlsruhe), Kits were supplied from QIAGEN

(Hilden), Fermentas (St.Leon-Rot), peqlab (Erlangen), Roche (Mannheim) and In-

vitrogen (Karlsruhe). All primers were obtained from either Invitrogen (Karlsruhe)

or Sigma (Muenchen, Steinheim).

4.3 Bacterial strains and Yeast strains

For standard clonings the Escherichia coli (E.coli) strain DH5 𝛼 was used. For

gateway cloning of destination vectors the DB3.1 strains were used which are

93



Materials and Methods

resistant to the ccdB gene. For plant transformation Agrobacterium tumefaciens

strains GV3101 were used. The gateway cloning required the usage of a modified

strained of GV3101-pMP90RK. Yeast strain Saccharomyces serevisiae strain

AH109 was used for yeast two-hybrid experiments. Yeast strain EGY48 was used

for the nuclear transportation trap (NTT).

4.4 Plant lines

In this study Landsberg erecta (Ler), Columbia (Col), Wassilewskaja (WS-O) and

RLD ecotypes were used. The mutant alleles ttg1-1 is in Ler (Koornneef 1981),

ttg1-9, ttg1-10, ttg1-11 and ttg1-12 in Col (Larkinet al.,1994a; 1994b; 1999), ttg1-13

in RLD (Walker et al., 1999). gl1-1, gl3-1 and gl3-1 egl3-1 double and gl3-1 egl3-1

tt8-1 -1tripple mutant are in Ler (Oppenheimer et al., 1991; Hülskamp et al., 1994;

Zhanget al., 2003 ), gl3-1 ttg1-1.

4.5 Vectors, Constructs and Transgenic lines

Table 4.1: List of basic vectors used in this study

Vector Company Application

pBluescript (pBSK) Stratagene Standard clonings and PCR-
product clonings

pENTR1a(pEN1a) Invitrogen Used as a donor in gateway
based clonings.

pAMPAT GenBank
accession
AY027531

Binary gateway target vec-
tor containing a CaMV 35S
promoter cassette and BASTA
resistance
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Table 4.2: List of pENTRY/donor vectors used in gateway cloning

Construct Vector Created by

TTG1 pEN1a Daniel Bouyer

TTG:YFP pEN1a Daniel Bouyer

AN11 pEN1a Rachappa S.B/Daniel Bouyer

AN11:YFP pEN1a Rachappa S.B

78GL3:GUS pEN1a Rachappa S.B

GUS pEN1a Rachappa S.B

TTG1:YFP(Swap) pEN1a Rachappa S.B

AN11:YFP(Swap) pEN1a Rachappa S.B

TTG1△C26:YFP pEN1a Rachappa S.B

TTG1(S282F):YFP pEN1a Rachappa S.B

TTG1(G43R):YFP pEN1a Rachappa S.B

TTG1(G149R):YFP pEN1a Rachappa S.B

CFP:GL3 pEN1a Rachappa S.B

CFP:GL3△78 pEN1a Rachappa S.B

CFP:GL3△NLS pEN1a Rachappa S.B

NLS:TTG1:YFP pEN1a Rachappa S.B

NLS:TTG1:YFP pEN1a Rachappa S.B

Table 4.3: List of yeast vectors/constructs used in this study

Construct Vector Created by
- pc-ACT2 Invitrogen

- pAS2 Invitrogen

AD:GL3 pc-ACT2 Rachappa S.B

AD:GL3△78 pc-ACT2 Rachappa S.B

AD:GL3△NLS pc-ACT2 Rachappa S.B

AD:CFP:GL3 pc-ACT2 Rachappa S.B
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Construct Vector Created by
AD:CFP:GL3△78 pc-ACT2 Rachappa S.B

AD:CFP:GL3△NLS pc-ACT2 Rachappa S.B

AD:EGL3 pc-ACT2 Martina Pesch

AD:TT8 pc-ACT2 Martina Pesch

AD:78GL3:GUS pc-ACT2 Rachappa S.B

AD:41GL3:GUS pc-ACT2 Rachappa S.B

AD:GUS pc-ACT2 Rachappa S.B

BD:78GL3:GUS pAS2 Rachappa S.B

BD:41GL3:GUS pAS2 Rachappa S.B

BD:TTG1 pAS2 Martina Pesch

BD:TTG1△C26 pAS2 Rachappa S.B

BD:TTG1(S282F) pAS2 Rachappa S.B

BD:TTG1(G43R) pAS2 Rachappa S.B

BD:TTG1(G149R) pAS2 Rachappa S.B

BD:AN11 pAS2 Rachappa S.B

NES:LexAD pNH2 Ueki et al., 1998

NES:LexAD:NLS pNH3 Ueki et al., 1998

NES:LexAD with modified MCS modified pNH2 Ueki et al., 1998

NES:LexAD:TTG1 pNS Rachappa S.B

NES:LexAD:TTG1△C26 pNS Rachappa S.B

NES:LexAD:TTG1(S282F) pNS Rachappa S.B

NES:LexAD:TTG1(G43R) pNS Rachappa S.B

NES:LexAD:TTG1(G149R) pNS Rachappa S.B

NES:LexAD:AN11 pNS Rachappa S.B

NES:LexAD:GL3 pNS Rachappa S.B

NES:LexAD:GL3△78 pNS Rachappa S.B

NES:LexAD:AN14 pNS Rachappa S.B
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Construct Vector Created by
NES:LexAD:AN15 pNS Rachappa S.B

pVTU pVTU Joahim Uhrig

GL3 pVTU Rachappa S.B

GL3△78 pVTU Rachappa S.B

Table 4.4: List of destination vectors/constructs used in this study

Construct Vector Created by
p35S::pAMPAT-GW pAMPAT Genebank Accession AY027531

pRBC::pAM PAT-GW pAM PAT Daniel Bouyer

pTTG1::pAM PAT-GW pAM PAT Daniel Bouyer

pTTG1::TTG1:YFP pAMPAT Rachappa S.B/Daniel Bouyer

pRBC::TTG1:YFP pAMPAT Rachappa S.B

p35S::TTG1:YFP pAMPAT Rachappa S.B

pTTG1::TTG1 pAMPAT Rachappa S.B

pRBC::TTG1 pAMPAT Rachappa S.B

p35S::TTG1 pAMPAT Rachappa S.B

pTTG1::AN11:YFP pAMPAT Rachappa S.B

pRBC::AN11:YFP pAMPAT Rachappa S.B

p35S::AN11:YFP pAMPAT Rachappa S.B

pTTG1::AN11 pAMPAT Rachappa S.B

pRBC::AN11 pAMPAT Rachappa S.B

p35S::AN11 pAMPAT Rachappa S.B

p35S::CFP:GL3 pAMPAT Rachappa S.B

p35S::CFP:GL3△78 pAMPAT Rachappa S.B

p35S::CFP:GL3△NLS pAMPAT Rachappa S.B

p35S::CFP:GL3 pMDC32 Rachappa S.B

p35S::CFP:GL3△78 pMDC32 Rachappa S.B
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Construct Vector Created by
p35S::CFP:GL3△NLS pMDC32 Rachappa S.B

pTTG1::TTG1△C26:YFP pAMPAT Rachappa S.B

p35S::TTG1△C26:YFP pAMPAT Rachappa S.B

pTTG1::TTG1(S282F):YFP pAMPAT Rachappa S.B

p35S::TTG1(S282F):YFP pAMPAT Rachappa S.B

pTTG1::TTG1(G43R):YFP pAMPAT Rachappa S.B

p35S::TTG1(G43R):YFP pAMPAT Rachappa S.B

pTTG1::TTG1(G149R):YFP pAMPAT Rachappa S.B

p35S::TTG1(G149R):YFP pAMPAT Rachappa S.B

pTTG1::TTG1:KikGR1 pAMPAT Rachappa S.B

p35S::78GL3:GUS pGWB2 Rachappa S.B

p35S::mRFP pBattL Andrea Schrader

p35S::RFP:78GL3:GUS pBattL Rachappa S.B

p35S::RFP:GUS pBattL Rachappa S.B

pTTG1::NLS:TTG1:YFP pAMPAT Rachappa S.B

pRBC::NLS:TTG1:YFP pAMPAT Rachappa S.B

Table 4.5: List of transgenic plants used in this study

Transgenic line Selection Generated by
ttg1-1p35S::TTG1 BASTA Rachappa S.B

ttg1-1p35S::TTG1:YFP BASTA Rachappa S.B

ttg1-9p35S::TTG1 BASTA Rachappa S.B

ttg1-9p35S::TTG1:YFP BASTA Rachappa S.B

ttg1-10p35S::TTG1 BASTA Rachappa S.B

ttg1-10p35S::TTG1:YFP BASTA Rachappa S.B

ttg1-11p35S::TTG1 BASTA Rachappa S.B

ttg1-11p35S::TTG1:YFP BASTA Rachappa S.B
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Transgenic line Selection Generated by
ttg1-12p35S::TTG1 BASTA Rachappa S.B

ttg1-12p35S::TTG1:YFP BASTA Rachappa S.B

ttg1-13p35S::TTG1 BASTA Rachappa S.B

ttg1-13p35S::TTG1:YFP BASTA Rachappa S.B

ttg1-12pTTG1::TTG1:YFP BASTA Rachappa S.B

ttg1-12pTTG1::TTG1△C26:YFP BASTA Rachappa S.B

Colp35S::TTG1:YFP BASTA Rachappa S.B

Colp35S::TTG1△C26:YFP BASTA Rachappa S.B

Colp35S::TTG1(S282F):YFP BASTA Rachappa S.B

Colp35S::TTG1(G43R):YFP BASTA Rachappa S.B

Colp35S::TTG1(G149R):YFP BASTA Rachappa S.B

gl3 egl3pTTG1::TTG1:YFP BASTA Rachappa S.B

gl3 egl3 tt8pTTG1::TTG1:YFP BASTA Rachappa S.B

ttg1-13pTTG1::TTG1:YFPp35S::CFP:GL3 BASTA+HygR Rachappa S.B

ttg1-13pTTG1::TTG1:YFPp35S::CFP:GL3△78 BASTA+HygR Rachappa S.B

ttg1-13pTTG1::TTG1:YFPp35S::CFP:GL3△NLS BASTA+HygR Rachappa S.B

ttg1-13pTTG1::TTG1:YFPp35S::78GL3:GUS BASTA+KanR Rachappa S.B

ttg1 gl3pRBC::TTG1:YFPpRBC::GFP:GL3 BASTA Rachappa S.B

ttg1 gl3pRBC::TTG1:YFPpAtML1::GFP:GL3 BASTA Rachappa S.B

ttg1-13pTTG1::TTG1:KikGR1 BASTA Rachappa S.B

ttg1-13pTTG1::NLS:TTG1:YFP BASTA Rachappa S.B

ttg1-13pRBC::NLS:TTG1:YFP BASTA Rachappa S.B

ttg1-1pRBC::TTG1:YFP BASTA Daniel Bouyer

ttg1 gl3pRBC::TTG1:YFP BASTA Daniel Bouyer

ttg1 gl3pRBC::GFP:GL3 BASTA Daniel Bouyer

ttg1 gl3pAtML1::GFP:GL3 BASTA Daniel Bouyer

ttg1-13pTTG1::TTG1:YFP BASTA Daniel Bouyer

99



Materials and Methods

Transgenic line Selection Generated by
gl3pTTG1::TTG1:YFP BASTA Daniel Bouyer

p35S::GL3pTTG1::TTG1:YFP BASTA Daniel Bouyer

gl3.2pGL3::GL3:YFP KanR Bernhardt et
al., 2005

4.6 Creation of pENTRY vectors

pEN1a:TTG1:YFP was described in Bouyer et.al., (2008). pEN1a:TTG1△C26:YFP,

pEN1a:TTG1(S282F):YFP, pEN1a:TTG1(G43R):YFP and pEN1a:TTG1(G149R):YFP

were created by inverse PCR using specific primers with mutations or primers

flanking the deletion regions with pEN1a:TTG1:YFP as a template. Similarly,

these TTG1 versions without YFP fusion were created with the same primers us-

ing pEN1a:TTG1 as a template. NLS versions of the pEN1a:TTG1:YFP and TTG1

mutant versions were created using respective pENTRY vectors as PCR template.

Here TTG1 forward primer with NLS attachment on to 5’ of the primer and re-

verse primer within vector backbone at position (-1) with respect to TTG1 start

codon in pEN1a:TTG1:YFP were used. pEN1a:AN11:YFP was created by replac-

ing the TTG1 in pEN1a:TTG1:YFP.

To create pEN1a:TTG1:KikGR1, KikGR1 (Accession No.AB193293) was amplified

from the pKikGR1-MN1 (MBL) with forward and reverse primers attached with

SalI and XhoI restriction sites respectively. This PCR product was cloned in pBSK

and was sequenced. Then SalI/XhoI fragment from pBS:SalI-KikGR1-XhoI was

cloned in pEN1a digested with same enzymes. TTG1 was amplified from pEN1a:TTG1

and was fused 5’to KikGR1 at XmnI site as a blunt end ligation. pEN1a:TTG1:KikGR1

was then used as a template for PCR with KikGR1 forward and TTG1 reverse

primer without STOP codon. TTG1 reverse primer without STOP codon was also
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attached with a linker which was also used in pEN1a:TTG1:YFP.

To create pEN1a:CFP:GL3, full length GL3 cDNA was amplified by PCR using

pGMT:GL3 as a template with forward and reverse primers having SalI as 5’at-

tachment on both the primers. The PCR product was cloned in pBSK vector to get

pBSK:GL3. SalI fragment was then cloned into pEN1a at SalI/XhoI site. CFP

was then cloned at the XmnI site 5’ to GL3 cDNA to create pEN1a:CFP:GL3.

pEN1a:CFP:GL3△78 and pEN1a:CFP:GL3△NLS were created by deletion PCR

using pEN1a:CFP:GL3 as a template and primers flanking the deletion region.

Internal 78 aa fragment (aa360-437) and 41aa fragment (aa360-400) from GL3

were amplified by PCR and cloned as a fusion to 5’GUS at NcoI restriction site in

pEN:GUS (Invitrogen) to get pEN:78GL3:GUS and pEN:41GL3:GUS respectively.

The constructed created by PCR were sequenced.

4.7 Creation destination vectors

All destination vectors for plant expression and yeast studies were created by

gateway LR reaction system as described by the user’s manual (Invitrogen).

4.8 Yeast two-hybrid

Saccharomyces cerevisiae strain AH109 was used for the yeast two-hybrid assay.

Yeast transformation was performed as described before (Gietz and Schiestl,

1995). pCACT2/pACT2 and pAS2/pCD2 plasmids (Clontech) were used for the

fusion with GAL4 activation domain and GAL4 DNA binding domain respectively.

GL3, GL3△78, GL3△NLS, GUS and 78GL3:GUS were fused to activation domain

and TTG1, TTG1△C26, TTG1(S282F), TTG1(G43R), TTG1(G149R), AN11 and

78GL3:GUS were fused to DNA binding domain by the gateway LR reaction system

as described by the user’s manual (Invitrogen). Yeast was grown on synthetic
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media lacking leucine and tryptophan for the selection of transformed yeast. For

the positive interaction analysis the transformed yeast was plated on the synthetic

yeast media lacking leucine, tryptophan and histidine supplemented with 5mM

3-amino-1, 2, 4-triazole (3AT). All the constructs fused to DNA binding domain

were tested for the auto-activation by transforming them in yeast and selecting on

medium lacking tryptophan and histidine supplemented with 5mM 3AT. None of

the constructs showed any auto-activation.

4.9 Nuclear Transportation Trap (NTT) assay (Mod-

ified from Ueki et al., 1998)

Plasmid vectors pNH2, pNH3 that carry the expression cassette NES:LexAD and

NES:LexAD:NLS respectively and plasmid pNS (modified pNH2) have been de-

scribed Ueki et.al., (1998). pNS:NES:LexAD:TTG1 and pNS:NES:LexAD:TTG1△C26

were constructed by cloning the salI/XhoI fragments of TTG1/TTG1 △C26 into the

SalI site within the MCS in pNS. pNS:NES:LexAD:GL3 and pNS:NES:LexAD:GL3

△78were constructed by cloning salI GL3 and GL3△78 inserts into the SalI site in

pNS. SalI/EclI36I and SalI/PvuII fragments of GL3 and GL3 △78 respectively were

cloned at the XhoI/PvuII digested pVTU vector to get pVTU:GL3 and pVTU:GL3△78.

Transformation was performed as described by (Gietz and Schiestl, 1995) using the

yeast strain EGY48 (Clontech). Plasmids vectors carrying the expression cassettes

NES:LexAD [pNH2] as a negative control, NES:LexAD:NLS [pNH3] as a positive

control, NES:LexAD:TTG1 [pNS:TTG1], NES:LexAD:TTG1△C26 [pNS:TTG1△C26],

NES:LexAD:GL3 [pNS:GL3], NES:LexAD:GL3△78 [pNS:GL3△78], NES:LexAD:-

TTG1(S282F) [pNS:TTG1(S282F)], NES:LexAD:TTG1(G43R) [pNS:TTG1(G43R)],

NES:LexAD:TTG1(G149R) [pNS:TTG1(G149R)] and NES:LexAD:AN11 [pNS:AN11]

were transformed individually and were grown on synthetic dropout media lacking
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leucine and histdine for 4-7 days at 30 0C to detect the expression of LEUCINE2

(LEU2) reporter gene expression for the transport of fusion protein into the nu-

cleus. Similarly to study the influence of GL3 on the nuclear transport of protein of

interest the vector carrying the gene of interest in pNS vector was co-transformed

with either GL3 or GL3△78 cloned in pVTU vector. In co-transformation assay

yeast was selected on synthetic dropout media lacking histidine (pNS vector selec-

tion), uracil (pVTU vector selection) and leucine (selection for nuclear transport).

4.10 Microscopy and quantification of YFP Fluo-
rescence

Fluorescent pictures were made using the Leica TCS-SP2 confocal microscope

equipped with the LCS software. Images were made using 40x water immersion

objectives. The Z-stack images were obtained and were then merged to one

plane. Raw images were used for quantifying the YFP fluorescence using the

histogram quantification software of the LCS software. Young rosette leaves were

stained with 5µg/ml of propidium iodide (PI) for 1-2 minutes to mark the cell

walls. Fluorescent pictures in the onion epidermal cells in the transient assay

experiment were captured using the LEICA-DMRE microscope equipped with a

high-resolution KY-F70 3-CCD JVC camera and DISKUS software. Images were

processed with Adobe Photoshop CS2.

4.11 Transient expression

A. Particle bombardment in onion epidermal cells

Biolistic PDS -1000/ He system (Bio- Rad) was used for the transient expression

studies. Gold particles (1.0 µm) were coated with 300ng of each DNA and were co-

bombarded in the onion epidermal cells with 900-psi rupture discs under a vacuum
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of 26 inches of Hg. Fluorescence was analysed 12-15 hours after the bombardment.

B. Agro-infiltration in tobacco leaves

For localization studies of TTG1 allelic forms they were fused N-terminal to

YFP and cloned under p35S promoter in pAMPAT binary vector. The constructs

were infiltrated into Nicotiana benthamiana plants. Agrobacterium tumefaciens

strain GV3101-pMP90RK was grown to mid exponential phase, centrifuged and

resuspended to an OD600 of 0.8 with the infiltration medium (10 mM MES, pH

5.6, 10 mM MgCl2, 200 mM acetosyringone). YFP fluorescence was detectable 3-

5 days after infiltration. Intracellular localization was analyzed using Leica SP2

confocal laser scanning microscope.

4.12 Plant growth conditions

Seeds were sown on humid freshly prepared Arabidopsis culture soil, covered

with a plastic lid and stored for three to seven days at 40C. Plants were grown

at constant 16hours light and 8hours dark condition at constant temperatures of

either 180C or 230C and the lid was removed after three to four days.

4.13 Crossing of plants

Using fine-tweezers the anthers of flowers at a stage when the petals grew out of

the sepals were removed. All remaining older and younger flowers were removed

and the prepared flower was fixed on a wooden stick. After two days the stigma of

the carpels were pollinated.
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4.14 Plant transformation

Plants were transformed according to the "floral dip" method (Clough and Bent

1998). To gain strong plants, these were allowed to grow at 180C and till the

first flowers appeared at stalks of approximately 10 cm in length. Four days

before plant transformation a 5 ml preculture in YEB medium of the Agrobacterial

clone was incubated for two days at 280C and 1 ml of this preculture was used to

inoculate the final 200 ml culture. This culture was incubated again for two days

at 280C and afterwards precipitated at 6800 rpm for 10 minutes. The pellet was

resuspended in a 5% Sucrose solution containing 0.05% silwett L-77. Plants were

dipped for approximately 15-20 seconds and afterwards covered with a lid. The lid

was removed after two days and after that plants were treated as usual.

4.15 Seed sterilisation

Before placing seeds on MS-agar-plates (1% Murashige-Skoog salts, 1% sucrose,

0.7% agaragar, pH5.7, eventually with kanamycin (50 µg/ml) or hygromycin

(25µg/ml)) they were incubated for five minutes in 95% Ethanol (Rotisol) and

afterwards incubated for 15 minutes in a 3% NaOCl solution containing 0.1% triton

X-100. Seeds were then washed two to three times with sterile water

4.16 Seed coat mucilage staining

Mucilage synthesis by seed epidermal cells was studied by staining with ruthenium

red. Seeds were imbibed with water by placing them on wet filter papers for about

10-15 minutes. Then the seeds were immersed in 0.01% ruthenium red solution

directly on the filter paper to see the pink layer around the seeds. (Western et al.,

2000)
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