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Daniel Lüsebrink

aus Köln

Köln
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Abstract

A temperature gradient applied to a fluid system produces not only a trans-

port of energy but also a transport of mass. This mass transport is known as

thermodiffusion or Soret effect. This effect was first found more than 150 years

ago in salt water solutions, where it was observed that the salt concentration

was higher towards the cold side of the system, which was realized as a diffusive

effect. This non-equilibrium effect is commonly described by the Soret coeffi-

cient, which is phenomenologically defined as the ratio of the mass transport

due to the temperature and to the concentration gradients. Different substances

may drift to the cold or to the warm areas, and mixtures may display a relative

accumulation in any of the two areas. These reverse behaviors translate into

positive or negative signs of the Soret coefficient.

Nowadays this effect is being studied actively in a wide range of systems,

including binary liquids, colloidal and polymer solutions, and emulsions with

droplet formation. Nonetheless, a general theoretical explanation of the quan-

titative values of the Soret coefficient does not yet exist for liquid systems, nor

for complex fluids, and it is a matter of strong debate. Industrial applications of

thermodiffusion range from crude oil refinement to microfluidic devices for DNA

sequencing.

In this work, we investigate the thermodiffusion of colloidal suspensions. The

term ’colloid’ embraces a large class of systems in which the constituent elements

are small enough to diffuse in the solvent, but still large enough to experience

the fluid as a continuous medium. Examples of colloidal particles are spherical

particles, polymers, proteins, or vesicles. The behavior of colloidal suspensions

in temperature gradients is especially challenging due to the large number of

biological and technological applications, and also due to a very rich spectrum

of interactions with other colloids or with the solvent, that dramatically change

the thermophoretic properties of the suspensions.

Our investigations are based on a state-of-the-art mesoscopic simulation tech-

nique known as multi-particle collision dynamics (MPC). This method gives a
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description of the solvent in which by construction mass, momentum, and energy

are conserved quantities, including as well the effect of thermal fluctuations. Hy-

drodynamic interactions, diffusive behavior, and temperature inhomogeneities

can therefore be properly taken into account in a straightforward manner.

The properties of the MPC solvent in the presence of a temperature gradient

are first analyzed in detail. We study different implementations regarding mainly

bulk suspensions and systems in confinement. The MPC solvent adapts linearly

to the temperatures imposed at the boundaries, in case the employed parameters

belong to the liquid-like regime of MPC solvent. The transport of energy can

also be properly quantified and compared with existing analytical predictions.

The thermophoretic behavior of colloidal suspensions has been explained as

the sum of two main contributions. These are given by collective and single par-

ticle effects. First, collective effects are investigated in concentrated solutions,

where the influence of different inter-colloidal interactions is analyzed. The con-

centration dependence found in our simulations agrees qualitatively with exper-

imental results. With increasing concentration, colloids are found to accumulate

more effectively than the solvent in the warm areas. Moreover, the accumulation

of colloids in the cold areas is more effective the more attractive the interactions

are. This is for stronger or longer ranged attractions.

Single particle effects to the thermodiffusion of colloidal particles are studied

for dilute colloidal suspensions, varying the interactions between the colloid

and the surrounding solvent. Simulation results for repulsive interactions show

that the colloids diffuse to the warm area, and that this tendency is weakened

with increasing temperature. Conversely, colloids with attractive interactions

diffuse to the cold areas. Increasing temperatures also weaken the trend and,

in this case, they can revert the trend. We present a thermodynamic argument

that is able to qualitatively explain these results. Some of the trends observed

in our results are in agreement with experimental findings, although we also

observe some other trends that are different or even opposite. The origin of

these deviations still needs to be elucidated.
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1 Introduction

Thermodiffusion is a phenomenon which is found in multi-component systems

with inhomogeneous temperature. It is a non equilibrium phenomenon, in which

a temperature gradient induces a mass flux. This temperature gradient is exter-

nally imposed to the system and drives the components in the system appart.

The resulting concentration gradients again produce a mass flux leading to a fi-

nal stationary state. This demixing of the components is a cross effect of a mass

flux which is induced by the heat flux driven by the temperature gradient and is

an interference of two irreversible transport processes. The nonequilibrium phe-

nomenon of thermally inhomogeneous diffusion is described in the framework of

irreversible thermodynamics. However, the transport coefficients describing the

mass fluxes are, up to now, not generally understood and difficult to determine.

They are determined by all microscopic mutual interactions of the components.

In systems of macromolecular particles suspended in a fluid, the diffusion un-

der influence of an inhomogeneous temperature is referred to as thermophore-

sis. In this case it is phenomenologically similar to sedimentation of particles

in a suspension which are small enough to be subjected to Brownian motion.

The gravitational field acts as an external field and drives the particles to the

lower region of the system. This leads to an inhomogeneous distribution of the

particles and builds up a concentration gradient. The concentration gradient

internally induces a diffusion flux which counteracts the flux of particles due to

the external force. In the case of thermophoresis the temperature gradient has

the same effect as an external force, driving the particles to one region of the

system. The difference to sedimention is that the driving force due to the tem-

perature gradient is internally induced by particle interactions. The interactions

among the suspended particles and between the fluid and the dissolved particles

are decisive for the response of the particles to the temperature gradient. Very

different responses are observed which are dependent on a variety of parameters

and it can be found that the particles build up a concentration gradient up- or

downhill the temperature gradient. It is therefore very interesting to study such

9



1 Introduction

systems and it is still not clear how in general the microscopic properties of the

suspension influence its response to a temperature gradient.

1.1 Historical background

The effect of thermodiffusion has been found by the physiologist Ludwig [65] in

1856. Ludwig observed the effect of diffusion under influence of a temperature

gradient with a solution of sodium-sulfate (also known as Glauber salt) and

water. He found that after several days of heating the system from one side

and cooling it on the other side, that there was a higher salt concentration on

the cold side, than on the warm side. He also realized that this phenomenon

is related to diffusion. The first systematic study of this effect was done by

physicist and chemist Soret in 1879 and the following years [108, 109, 110]. He

performed experiments with electrolyte solutions in which he found that the

salt ions are found with higher concentrations on the cold side. Nowadays the

measure to quantify the separation of different components in solutions under

influence of temperature gradients is generally called Soret coefficient. A large

Soret coefficient indicates a strong separation of the components. The sign of the

Soret coefficient for one of the components denotes if its mass fraction increases

towards the cold (thermophobic) or warm region of the system (thermophilic).

A first theoretical understanding of thermodiffusion arose from the work of

Enskog [28] and Chapman [13] in the 1910s, which was developed for mixtures

of gases. It was found that the Soret coefficient depends on the mass and size of

the respective species and the composition of the mixture. Their results could

be confirmed experimentally by Chapman and Dootson [15].

Later Enskog extended this kinetic theory to describe dense hard sphere liquid

mixtures [14]. The theory is able to describe some general trends. A general

trend is that for example in binary mixtures the species with heavier mass and

larger size moves towards the cold. This theory however, is no longer valid if soft

interactions are present [129]. In the 1930’s Onsager proposed his famous phe-

nomenological linear equations in the framework of irreversible thermodynamics

that relate the generalized thermodynamic forces with their conjugated fluxes.

In the case of inhomogeneous systems the forces are the gradients in temperature

and density or concentration. The equations contain the complementary cross

relations of mass muss flux induced by a temperature gradient (Soret effect) and

of heat flux induced by a concentration gradient (Dufour effect), which can be
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1.1 Historical background

described by the same transport coefficient.

First experimental studies of liquid mixtures (cyclohexanol-cyclohexane) have

been carried out by Prigogine et al. in 1950 [90]. They explained their results

with a free energy/entropy concept that accounts for orientational arrangements

of the molecules within the fluid (formation of complexes with the loss of free

energy upon disruption).

One important experimental improvement has been the use of thermograv-

itational columns introduced by Clusius and Dickel [16], which enhances the

thermodiffusive effect due to gravitationally induced convection. Due to the im-

provements in experimental techniques and especially the use of optical methods,

a large variety of systems has been investigated experimentally and various ef-

fects have been studied up to now. Studies range from isotope separation, liquid

and gaseous mixtures to complex fluids, such as colloidal or polymeric mixtures.

Despite the wide range of interesting observations, it was until recently that

mutually consistent results for applying different measurement techniques for

the same substance were achieved (benchmark test on organic binary mixtures

dodecane, isobutyl benzene and tetralin [123]).

1.1.1 Simulation studies

The first simulation of dense Lennard-Jones mixture in a liquid state was per-

formed in 1986 by MacGowan and Evans [67, 32]. Simulations have been mainly

focused on the study of binary fluid mixtures by means of Molecular Dynam-

ics [38, 55, 40, 96], where they are applied to Lennard-Jones mixtures or to

molecules with a more precise microscopic structure modelled with the help of

force field simulations [75, 76, 130, 88, 87]. Simulations of binary Lennard-Jones

fluids [96, 6, 35, 3, 62] have found that, as in the case of hard spheres, the heav-

ier species prefers the cold side of the system. Upon changing the interaction

strength, they observed that the species with stronger attractions prefers the

cold side. Regarding the size ratio, the larger component tends to accumulate

in the hot region.

Recently Galliero and Volz [34] have applied MD to a system with nano-

particles. This simulation study has been performed with LJ fluids and macro-

scopic particles composed of atoms with the same molecular parameters as the

solvent, which are arranged in a fcc crystal and are connected through a finite

extensible nonlinear elastic (FENE) bonding potential. Similar model was em-
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1 Introduction

ployed by Vladkov and Barrat [114] to study thermal conduction. Colloidal

systems however, have not been studied in simulations, apart from the men-

tioned works. MD simulations of colloidal systems with explicit solvent are

very demanding due to the larger separation of length and time scales and so

far no mesoscopic hydrodynamic simulations have been performed. Simulations

on polymers have been performed by Luettmer-Strathmann [66] with a coarse

grained two chamber model, and with MD simulations by Zhang and Müller-

Plathe [131].

1.1.2 Thermodiffusion in colloidal systems

One aspect of studying dilute colloidal suspension is the dependence of the Soret

effect on the size of the colloidal particles, which was studied by Braibanti et

al. [7] and by Duhr and Braun [22]. It was found that there is a characteristic

dependence on the temperature in the case of dilute dispersions which was also

found for micellar solutions by Piazza and Guarino [86]. There the surfactant

concentration, which forms the interface between the micelles and solvent, also

plays an important role. Würger studies theoretically the size dependence and

the effects of the boundary conditions on the colloid surface [71]. In general, it is

observed that the interactions of colloids and solvent molecules are decisive for

the thermodiffusive behavior of macromolecular suspensions. A comprehensive

overview of thermodiffusion in colloidal systems is given Ref. [125]. Theoretical

and experimental aspects of colloidal suspensions are discussed by Piazza and

Parola [84].

The effect of intercolloid interactions is studied by Ning et al. [77] in ex-

periments with concentrated colloidal solutions. A theoretical description of

concentration effects is given by Dhont in Refs. [19, 20].

1.1.3 Main influences on the Soret coefficient

A summary of the influences that affect the thermodiffusive behavior of liquids

is shown in Fig. 1.1. The first three contributions regard ”mechanic” properties

of the particles or molecules. One influence on the Soret coefficient arises from

different masses of the components. In gases this can be understood from an

entropic argument. Since the heat conductivity is more effective for substances

with a lower mass, the lighter component will tend to have a larger concentra-

tion on the warm side. In this way the flux of heat is minimized, which also
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1.1 Historical background

lowers the entropy production rate which is proportional to the flux of heat and

the temperature difference. The particle size has the influence that in binary

mixtures, the larger particles will be found with a higher concentration on the

cold side. The moment of inertia is studied with mixtures in which the shape of

the suspended molecules can not be regarded as spherical, which is the case in

many organic mixtures, for example benzene rings.

The other three contributions regard chemical effects. An important influence

in macromolecular suspensions is the chemical interaction between the surface

of the suspended particles and solvent. Similar to this are contributions due

to charges on the surface of the macromolecules and the ions in the solvent.

A further contribution comes from the mutual interactions between the macro-

molecular particles and collective contributions.

Figure 1.1: Different properties that influence thermodiffusion. Fig. from the

topical review of Ref. [118].

1.1.4 Thermodiffusion applications

Thermodiffusion plays a role or is used in the following context: crude oil re-

finement, isotope separation [51] , technical instruments like thermal flow field

characterization of colloids [106, 107] and for polymers [104, 92, 17], origin of

life [22], magic dust (dirty walls close to heater), salt concentration in different

layers of oceans and in convective processes in the earth mantle [10].

Other interesting systems are solutions of biological macromolecules which

have been studied by Duhr and Braun where they constructed a trap for DNA

13



1 Introduction

in a microchannel with ambient flow [21]. This device can be used to obtain

highly concentrated spots of biological molecules and it is speculated that this

could be responsible for the origin of life enabled in mineral pores close to oceanic

heat sources. In their experiments they could also use thermodiffusive effects to

modify DNA solutions with a laser and write the letters DNA in a bio-organic

solution [23].

1.2 Irreversible thermodynamics

Phenomenologically thermodiffusion of a multi-component mixture is described

by two opposing mass fluxes that cancel each other in a stationary state. One

flux stems from the temperature gradient and the other flux from the resulting

concentration gradient. The coefficients that relate the fluxes to their driving

forces are the thermal diffusion coefficient and the mass diffusion coefficient.

The ratio between them is called Soret coefficient and characterizes the demix-

ing response of the system to the temperature gradient. How the coefficients

are derived will be explained in the following derivation of a phenomenological

expression for the Soret coefficient. The derivation follows and summarizes the

route of the book by de Groot and Mazur [18]. A similar summary can also be

found in [67, 129].

Thermodiffusion is a non equilibrium phenomenon and is described in the

framework of irreversible thermodynamics. Systems out of equilibrium are char-

acterized by their entropy production rate. The local formulation of the second

law of thermodynamics has the form of a balance equation for the entropy

ρm

ds

dt
= ∇js + σs, (1.1)

where

σs ≥ 0. (1.2)

Here ρm is the mass density, s is the entropy per mass unit in a small volume

element and ds
dt

the change of entropy with time. js is the entropy flux through

the volume element and corresponds to the external entropy exchange of the vol-

ume element. σs is the internally rate of entropy production within the volume

element. In mechanical equilibrium and for vanishing total net flux the Gibbs

fundamental relation for the entropy is Tds = du + pdv −∑k µkdwk, where p

the pressure, v ≡ ρ−1 is the specific volume, T is the local temperature and u
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1.2 Irreversible thermodynamics

is the specific internal energy. µk the chemical potential of component k and

wk = ρm,k/ρm the mass fraction of component k; with the mass density ρm,k of

component k. Under the assumption of local equilibrium the time-dependent

form for a small volume element is

T
ds

dt
=

du

dt
+ p

dv

dt
−
∑

k

µk

dwk

dt
. (1.3)

If one regards isotropic liquids and neglects viscous effects, the rate of change of

the specific internal energy can be expressed as

du

dt
=

dq

dt
− p

dv

dt
, (1.4)

where q is the specific heat which changes according to

ρm

dq

dt
= −divjq. (1.5)

The change of mass fraction of component k with time is

ρm

dwk

dt
= −divjk. (1.6)

With Eq. (1.1) one obtains for the rate of entropy production

σs = − 1

T 2
jq∇T −

n∑

k=1

jk∇
(µk

T

)
, (1.7)

where n is the number of components in the system. With the heat flux jq = js+
n∑

k=1

µkjk and j ′
q = jq −

n∑
k=1

hkjk, where hk is the specific enthalpy of component

k, and by use of the thermodynamic relation T d
(

µk

T

)
= (dµk)T − hk

T
dT this can

be reformulated (for details see [18], chapter 3) in

σs = − 1

T 2
j ′

q∇T − 1

T

n−1∑

k=1

jk∇ (µk − µn)T,p , (1.8)

where the index T, p denotes that the gradient of the chemical potential has to

be taken at constant temperature and pressure. This equation is the basis for

the phenomenological equations that describe thermodiffusion. From the equa-

tion for the entropy production one can obtain the generalized thermodynamic

forces and their conjugated fluxes. Between the fluxes and their respective forces

exist linear relations in the form of ji =
∑

i LikXk, where Xk are the gener-

alized forces and Lik the related coefficients. The fluxes and forces appear in
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1 Introduction

the entropy production as σs =
∑

i jiX i =
∑

ik LikX iXk. It was shown by

Onsager [80] that there exist reciprocal relations between the coefficients Lik,

which follows from time reversal invariance , see e.g. [105]. The reciprocal re-

lations describe cross effects of coupled irreversible processes, such as appear in

thermodiffusion, where diffusive mass flux is coupled to heat flux and vice versa.

Furthermore, by Onsager’s variational principle [80, 81] it follows that the rate

of entropy is minimal if the fluxes are stationary.

In the case of thermodiffusion the linear Onsager relations for a two component

system are

j1 = L11X1 + L1qXq

jq = Lq1X1 + LqqXq, (1.9)

where as consequence of the reciprocal relations L1q = Lq1, describing the phys-

ically complementary cross effect of heat and diffusive mass flux. In the case of

a temperature gradient L1q describes the Soret effect, which is that a tempera-

ture gradient induces mass transport; and Lq1 the Dufour effect, which is that

a concentration gradient induces a heat transport.

From Eq. (1.8) follow the generalized thermodynamic forces for a two compo-

nent system

Xq = − 1

T 2
∇T (1.10)

X1 = − 1

T
∇(µ1 − µ2). (1.11)

By use of the Gibbs-Duhem relation with the mass fraction wi

∑

i

wiµi = 0 (p and T constant), (1.12)

it follows that,

∇(µ1 − µ2) =
1

1 − w1

∂µ1

∂w1

∇w1 (1.13)

Then the fluxes in Eq. (1.9) are

j1 = −L11

T

1

1 − w1

∂µ1

∂w1

∇w1 − L1q

1

T 2
∇T

jq = −Lq1

1

T 2
∇T − Lqq

T

1

1 − w1

∂µ1

∂w1

∇w1. (1.14)
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1.3 Hydrodynamics and diffusion of a colloidal particle

With Dm, the mutual diffusion coefficient, which is given by

Dm =
1

ρm

L11

T

1

1 − w1

∂µ1

∂w1

(1.15)

and DT , the thermal diffusion coefficient or ”thermophoretic mobility”, defined

as

DT =
1

ρmT 2

1

w1(1 − w1)
L1q, (1.16)

the mass flux is given in the typical form

j1 = −ρmDm∇w1 − DT ρmw1(1 − w1)∇T . (1.17)

Here, ρm is the mass density. Eq. (1.17) can be rewritten as

j1 = −ρmDm [∇w1 + ST w1(1 − w1)∇T ] , (1.18)

where the definition of the Soret coefficient ST as

ST =
DT

Dm

(1.19)

has been employed.

In the stationary state total mass flux vanishes, i. e. j1 = 0. In this case

the Soret coefficient (with the temperature gradient along the z-direction) can

be expressed with the gradients of the mass fraction and the temperature as

ST = − 1

w1(1 − w1)

∇zw1

∇zT
. (1.20)

Here ∇z corresponds to ∂/∂z. The Soret coefficient is a quantity that depends

on the constance of the transport coefficients in Eq. (1.15) and Eq. (1.16). On

the basis of the phenomenological Eq. (1.9) it is therefore defined in a volume

in which these quantities have small changes. This implies small temperature

and density gradients in the regarded volume. Also the mass fraction w1 in

Eq. (1.20) can be regarded as the constant average mass fraction in the volume.

1.3 Hydrodynamics and diffusion of a colloidal

particle

Colloidal particles are macroscopic particles in the range of several nm up to 20

µ m. The lower limit is determined by the fact that colloids can be very small
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1 Introduction

particles, but are still large compared to the fluid molecules. In this range the

fluid can be regarded as a continuous medium so that the flow fields around

the colloid can be described by hydrodynamics and the discreteness of the fluid

molecules does not play a role. The upper limit is the size at which particles still

perform Brownian motion arising from thermal ”kicks” of the fluid particles.

A spherical particle propagating with a velocity v in a liquid experiences an

opposing frictional force, which is given by the Stokes law

F = 6πηRcollv, (1.21)

where η is the (dynamic) viscosity and Rcoll the radius of the particle. The

prefactor is altered from 6π to 4π when the surface of the particle obeys slip

instead of stick boundary conditions.

The diffusion coefficient is given by the Einstein relation [25]

Ds =
kBT

ξS

, (1.22)

where ξS is the friction coefficient. For a colloidal particle it can be obtained

from the Stokes equation for slip boundary conditions as

ξS = 4πηR. (1.23)

and for stick boundary conditions as

ξS = 6πηRcoll. (1.24)

Here η is the viscosity of the solvent and Rcoll the radius of the colloid.

The description of single colloid diffusion in inhomogeneous systems is dis-

cussed in section 5.1.2.
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2 Simulation method

The main objective of this work is to study the behavior of colloidal suspen-

sions in the presence of a temperature gradient by computer simulations. The

simulation model has three main components. These are the method to simu-

late the colloids and their interactions, the model to simulate the solvent, and

the technique to implement the interactions between solvent and colloids. The

employed solvent should include hydrodynamic interactions, thermal fluctua-

tions, and be able to sustain temperature gradients. Hydrodynamics have a

macroscopic character and determine viscous forces on the colloids as well as

transmitting interactions through the flow fields generated by them. Thermal

fluctuations become apparent in the diffusive character of the colloid motions,

namely the Brownian motion. In order to simulate hydrodynamic interactions,

the solvent needs to have local conservation of linear momentum, while the

inclusion of temperature inhomogeneities requires local conservation of energy.

2.1 Molecular Dynamics

The simulation of colloids allows the use of standard molecular dynamics models,

where interaction between colloids can be modified. Molecular dynamics (MD)

considers a set of N particles described by their masses mi, positions ri, velocities

vi, and applied forces F i. The particle dynamics is determined by solving the

corresponding Newton’s equations of motion

mir̈i = −∂U

∂ri

= F i. (2.1)

For solving the discretized equations of motion and updating the positions and

velocities we have used the velocity Verlet algorithm

ri(t + ∆tMD) = ri(t) + ∆tMDvi(t) +
∆t2MD

2mi

F i(ri(t)), (2.2)

vi(t + ∆tMD) = vi(t) +
∆tMD

2mi

[F i(ri(t)) + Fi(ri(t + ∆tMD))] . (2.3)
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2 Simulation method

An important aspect is the choice of the discrete time step ∆tMD which is used

for updating positions and velocities. How to evaluate sensible choices for the

time step in the case of colloids is described for example in a recent publication

of Padding and Louis [82]. The choice of parameter for our simulations is de-

pends on the particular studied aspect and it will discussed in the corresponding

chapters.

The system under study is determined by specifying the applied forces. To

reproduce the properties of a colloidal system with repulsive and eventually

also attractive interactions, pair non-bonded potentials are considered. Colloids

with purely repulsive interactions are simulated by considering a shifted Lennard

Jones potential [116, 61]

U(rij) = 4ǫ

[(
σ

rij

)2n

−
(

σ

rij

)n
]

+ ǫ, rij < rc, (2.4)

where rij = |ri − rj | is the distance between the interacting particles, ǫ the

strength of the potential, σ the size of the colloid and n determines the steepness.

The potential is cut of at a distance rc = 2
1

n at the minimum of the full potential.

For additional attractive interactions we have used the full Lennard Jones [61]

potential

U(rij) = 4ǫ

[(
σ

rij

)2n

−
(

σ

rij

)n
]

, rij < rc, (2.5)

where the cut off radius for a rLJ 12-6 potential is rc = 2.5σ. The cut of radius

is chosen at a distance where the interaction strength is very small for numerical

reasons to have less interaction partners. Other potentials are cut off at a radius

so that

U(rc) = U12−6

ǫ=1
(2.5σ). (2.6)

Then the resulting cut off radius is

rc = 2
1

n



 1

1 −
√

1 +
U12−6

ǫ=1

ǫ





1

n

σcs. (2.7)

Another option would be to choose a smooth truncation, such as for example in

[60].

In the following we use the notation LJ 2n-n for the full potential and rLJ 2n-n

for the repulsive one, where n denotes the exponent. Throughout this work we

have used Lennard-Jones potentials of type 2n-n.
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2.2 Mesoscopic methods

Since the computational cost for MD of colloidal particles with explicit solvent

is large, effective ways for computation of the mutual forces and updates of the

particle positions are required. In our case we have calculated the forces using

cell lists for the macroscopic particles and Verlet lists for fluid-solute interactions.

These procedure are described in detail literature, for example the book of Allen

and Tildesley [2].

2.2 Mesoscopic methods

2.2.1 Mesoscopic length and time scales

Colloidal suspensions are subjected to effects that span the large range of length

and time scales dictated by their components. The size of a colloidal particle

is in the range of ca. 10 nm to 1 µm, whereas a solvent molecule is usually

smaller than 1 nm. The size ratio is then of 102 to 105. In order to estimate

the related time scale, we use the Stokes formula given by Eq. (1.24) and the

Einstein relation in Eq. (1.22). The characteristic time for a colloid to diffuse a

length of its own diameter can be calculated as

t = a2/2D = a33πη/kBT ≈ 2 s ,

with a = 0.1 µm, ηH2O = 1 Pas and T = 20◦ C. The diffusive timescale for a

colloidal particle is therefore in the order of seconds. The timescale for the move-

ment of the solvent molecules, without considering internal degrees of freedom,

is in the order of 10−12 s [128].

Furthermore, the timescale for observing macroscopic phenomena like a parti-

cle drift or establishment of a stationary concentration gradient are much larger

than the diffusive timescale. Hydrodynamic interactions are of long ranged char-

acter since they decay as 1/r, where r is the distance from the source, and require

simulation systems much larger than the regarded particles.

Therefore, a hypothetical full simulation that would intend to cover timescales

from atomistic movement to long time behavior of macroscopic objects would be

computationally gigantically costly. Moreover, most of the computational effort

would be devoted to the simulation of the solvent, which detailed motion is the

less interesting part of the system dynamics.

In a different approach, a continuum description of the hydrodynamic flow

fields can be achieved by solving the Navier Stokes equations. However, this
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2 Simulation method

has proven to be at least equally demanding due to the complex nature of the

boundary conditions at the liquid-solid interfaces in the system given by the

moving colloids.

Mesoscopic methods arise then as a necessary tool for the simulation of com-

plex systems like colloidal suspensions. Most of these methods start conceptually

from a microscopic description of the solvent in which the molecules degrees of

freedom are considered in an averaged manner.

2.2.2 Previous mesoscopic methods

The development of techniques to coarse grain the solvent effects have been

in constant development from a very early stage of the history of computer

simulations. Brownian Dynamics (BD) takes the solvent effect into account by

including a dissipative and a stochastic contributions to the movement of the

particles. Mass is then a conserved quantity, but not the momentum, what

describes a diffusive macroscopic behavior in which hydrodynamic interactions

are not included. Now we introduce two of the major and still widely employed

methods.

Lattice Boltzmann

The Lattice Boltzmann method (LB) uses particle density distribution func-

tions instead of particle coordinates and velocities. LB has been used successfully

for flows in complex geometries, like porous media, colloidal suspensions, or mul-

ticomponent systems. A restriction of LB is the absence of thermal fluctuations,

which can be accounted for by additionally including a noise term on the basis

of fluctuating hydrodynamics [57]. Another intrinsic problem is that energy con-

servation is not fulfilled, so that LB is restricted to isothermal applications, but

which has been recently accounted for in an energy conserving generalization of

the model.

Dissipative particle dynamics

Dissipative particle dynamics (DPD) was introduced by Hoogerbrugge and

Koelman in 1992 [42] and refined by Español and Warren in 1995 [29]. This

method enables effective hydrodynamic simulations in complex geometries on

large spatial and temporal scales, which can also be applied to out or equilib-

rium systems. Essentially DPD is a MD simulation with particles interacting

by conservative forces, friction forces and thermal noise [30]. The fluid is repre-

sented by particles which are not regarded as molecules but rather as clusters of
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2.2 Mesoscopic methods

fluid particles, which enables a hydrodynamic description with a much smaller

number of particles than in MD. Interactions among the particles consist of: (i)

frictional forces proportional to the velocities, (ii) a random force which corre-

sponds to the rapid, microscopic forces that are eliminated in this coarse grained

model and (iii) a weak repulsive conservative force. DPD conserves momentum

and has a hydrodynamic macroscopic behavior. Nevertheless, DPD does not

conserve energy and lacks a thermal transport equation. A subsequent exten-

sion of the technique has been developed in which energy is global and locally

conserved [4, 31, 97].

2.2.3 Multiparticle Collision Dynamics

Multiparticle collision dynamics (MPC) is one the most recent mesoscopic model

in order to describe solvent dynamics. It was introduced by Malevanents and

Kapral in 1999 [68] and since then has received several alternative names, like

stochastic rotation dynamics (SRD). Comprehensive reviews about the method

are given by Gompper et al. in [36] and by Kapral in [53]. It uses a synchronous

discrete time-dynamics with continuous velocities and stochastic local multipar-

ticle collisions. This procedure is related to an earlier method called Direct

Simulation Monte Carlo (DSMC) which only considers two-particle collisions.

In MPC the fluid is represented by point particles, which do not correspond

to the molecules of the fluid, but describe the spatial time evolution of mass,

momentum and energy of the fluid medium. This fluid particle have positions

and velocities given by ri and vi, that are updated with a discrete time step.

In the streaming step, particle evolve freely and the particle positions are

updated by

ri(t + h) = ri(t) + hvi(t), (2.8)

with h the collision time. The simulation box is decomposed into Wigner-Spitz

cells, which are mostly chosen to be cubic cells with a length a. In the collision

step, the particles are sorted into the cells, in which the respective center of

mass velocities are calculated

vcm(t) =
1

n

∑

j|rj∈Cell

vj(t), (2.9)

where n is the number of particles in the cell. For simplicity, no extra notation

for distinguishing the different center of mass velocities in each cell is employed.
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The relative velocity ∆vi(t) is then

∆vi(t) = vi(t) − vcm(t). (2.10)

The subsequent collision operation consists of choosing a random rotation axis

and rotating the relative velocity of each particle by an angle α. In the collision

step, the particle velocities are updated by

vi(t + h) = vcm(t) + R(α)∆vi(t), (2.11)

where R(α) is a rotation matrix around the random rotation axis. The rotation

axis is the same for each particle in the cell, but for each cell a different rotation

axis is chosen a each simulation step. The construction of R(α) for rotation axes

with arbitrary direction can be found in [1]. An alternative model, in which

only the axes of a Cartesian coordinate system are employed is introduced in

Ref. [112], where the effects of this rotation in the transport coefficients is also

studied. The angle α is the same for all particles and is a simulation parameter

which determines the amount of momentum and energy exchange in a collision

event. For small α the individual particles are less affected by the collision than

for large α.

The mean free path of the fluid particles between subsequent collision events

is determined by the collision time h and the system temperature T

λ

a
= h

√
kBT

m
. (2.12)

Here kB is the Boltzmann constant which is set to kB = 1 when dimensionless

units are used.

The streaming and collision operations fulfill the conservation laws for mass,

momentum and energy. For the streaming operation this is trivial and for the

collisions it can be understood from a simple argument. The sum of the relative

velocities in one cell with respect to its center of mass is zero per construction.

A rotation of all relative velocities by the same angle does not change this, which

24
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means that the momentum is conserved.

∑

i|ri∈Cell

vi(t + h) =
∑

i|ri∈Cell

[vcm(t) + R(α)∆vi(t)]

=
∑

i|ri∈Cell

vcm(t) +
∑

i|ri∈Cell

R(α)∆vi(t)

=
∑

i|ri∈Cell

vcm(t) + R(α)
∑

i|ri∈Cell

∆vi(t)

with
∑

i|ri∈Cell

∆vi(t) = 0, =
∑

i|ri∈Cell

vcm(t)

=
∑

i|ri∈Cell

vi(t) (2.13)

Separating the total kinetic energy into the contribution from the center of mass

and one from the relative velocities, it is clear that the first part does not change

if the total momentum in the cell is conserved. The second contribution, which

can be regarded as a cell thermal energy does not change, because the magnitude

of the relative velocities is not affected upon rotation.

Local energy conservation (norm conservation upon rotations of the relative

velocities):

∑

i|ri∈Cell

v2

i (t + h) =
∑

i|ri∈Cell

[vcm(t) + R(α)∆vi(t)]
2

=
∑

i|ri∈Cell

v2

cm(t) +
∑

i|ri∈Cell

[R(α)∆vi(t)]
2

=
∑

i|ri∈Cell

v2

cm(t) +
∑

i|ri∈Cell

[∆vi(t)]
2

=
∑

i|ri∈Cell

v2

i (t) (2.14)

By comparing the second and third line it can be seen that the center of

mass energy ∝
∑

i|ri∈Cell

v2
cm(t) and thermal energy ∝

∑
i|ri∈Cell

(R(α)∆vi(t))
2 =

∑
i|ri∈Cell

(∆vi(t))
2 are respectively not altered by the collision operation.

Conservation of momentum shown in Eq. (2.13) ensures hydrodynamic in-

teraction between particles, while conservation of energy at the collision box

level in Eq. (2.14) ensures the proper description of energy transport such that

temperature gradients can be sustained.
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Random shift

Ihle and Kroll [46] found that for small mean free paths the fixed collision grid

originally employed by Malevanents and Kapral [68, 69] introduces artificial

correlations and breaks Galilean invariance. In cases where the mean free path

λ is significantly smaller than the cell size, particles will stay in the same cell

for many subsequent simulation steps, so that correlations between them will

arise and the assumption of molecular chaos is not valid, which is essential

for the validity of the Boltzmann equation. A situation where this becomes

apparent is the presence of an external flow field. It was shown that the self-

diffusion coefficient of the fluid particles is not longer isotropic anymore since the

component parallel to the flow field is significantly larger than the perpendicular

component. This meant first that MPC with fix collision grid does not fulfill

the Galilean invariance requirement. Moreover, the unwanted correlations can

lead to anomalies in the shear viscosity measured from vorticity correlations.

To avoid these problems a random shift operation of the collision grid has been

introduced to ensure Galilean invariance and avoid correlations. The idea is to

shift the grid for the collision boxes in each simulation step by a random vector

with its components in the interval [−a/2, a/2]. In this way neighboring particles

will more likely have different collision partners in subsequent simulation steps

and artificial correlations are avoided.

Furthermore, this procedure does not only restore Galilean invariance, but

also accelerates momentum transfer between the cells, leading to an additional

contribution to the collisional transport coefficients what enhances the fluid like

behavior of the MPC solvent.

Transport coefficients

When Malevanets and Kapral introduced this method, they showed that from

the streaming and collision rules, the particle distributions and their time evo-

lution can be described. The stationary particle distribution is Maxwellian as

a consequence of the semi-detailed balance in the collision operation. It can

also be shown that the time evolution is described by the Boltzmann equation.

From the Boltzmann equation, using an expansion of the reduced probability

distribution for slowly varying density fields, (Chapman-Enskog procedure) the

hydrodynamic equations can be derived as a consequence of mass, momentum

and energy conservation. Furthermore, it was shown that an H-theorem exists
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for this algorithm.

The transport coefficients for mass, momentum, and energy of the solvent have

been analytically calculated for the MPC algorithm. These are the self-diffusion

coefficient for the fluid molecules, the shear viscosity for momentum transport,

and the thermal conductivity for energy transport. Malevanets and Kapral

derived the first approximations for the viscosity and thermal conductivity [68,

69] with a fixed collision grid. In following work Tüzel, Ihle and Kroll have

derived Green-Kubo relations for the transport coefficients using a projection

operator technique, which have been proven to agree very well with simulation

results [45, 46, 47, 48, 49, 112]. A summary of the results is given in Ref. [111].

Yeomans et al. [54, 89] employ alternatively a non-equilibrium kinetic approach

to derive similar results. More recently Winkler and Huang obtain the shear

viscosity from an analytical calculation of the stress tensor [120]. The transport

coefficients have a kinetic contribution which in MPC arises from the streaming

of particles to other cells. Additionally, there is a collisional contribution which

in MPC is due to the random shift of the lattice, as first explained in Ref. [45].

The shear viscosity is then

ν = νkin + νcol. (2.15)

In three dimensions the kinetic contribution is

νkin =
kBTh

2m

5ρ

(ρ − 1 + exp(−ρ)) (2 − cos(α) − cos(2α))
− 1. (2.16)

The collisional contribution is

νcol =
a2

h

1

6dρ
(ρ − 1 + exp(−ρ)) (1 − cos(α)) , (2.17)

where d the dimension.

The transport of mass is characterized by the self-diffusion coefficient of the

fluid particles and has only a kinetic contribution which is given by

Dfluid =
dρ

(1 − cos(α)) (ρ − 1 + exp(−ρ))
− 1. (2.18)

For the transport of energy the reader is referred to Chapt. 3 where the analytical

expression for the thermal conductivity is compared to simulation results.

2.3 Boundary conditions

The choice of the boundary conditions is determined by the characteristics of

the problem under study. The boundary conditions for the simulation box can
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be periodic and/or include solid walls. For the effect of periodic boundary

conditions on MPC system properties the reader is refereed to a recent work

of Winkler and Huang [120]. Also the embedded macroscopic objects, like for

example colloids, may work as boundaries for the fluid and can have similar

implementations and effects on the fluid.

The different procedures to implement impenetrable walls can be classified in

those resulting in slip and stick boundary conditions. If the particles next to the

wall are imposed or allowed to have a different velocity than the wall, we refer to

slip boundary conditions. Conversely, if particles are enforced to have the same

velocity as the neighbouring walls, we refer to stick boundary conditions. Stick

boundary conditions describe rough surfaces at which the fluid velocity, parallel

as well as perpendicular, vanishes. This is a good estimation in most cases for

real systems. In turn, slip conditions would correspond to (super) hydrophobic

surfaces (for water).

Slip boundary conditions are for instance obtained with specular reflection of

the particles at the wall, this is when just the normal component of the velocity

is inverted and the parallel component remains unchanged. Stick boundary

conditions can be implemented by applying the bounce-back rule upon which

the relative velocity to the wall is reversed, i.e. vi − vwall = − (vi − vwall). In

MPC this has also been achieved by using a stochastic reflection method, used

by Inoue et al. [50] and Hecht et al. [41], in which the velocity after a wall

collision is generated stochasticly from a Maxwell-Boltzmann distribution.

Furthermore, one can use any type of potential for wall interactions and treat

the dynamics of the particles with standard MD, which can be easily incorpo-

rated into the MPC algorithm. Also interactions of the fluid with embedded

particles and interactions among these particles with each other can be treated

in this way.

2.3.1 Stick boundary conditions in MPC

The implementation of bounce back conditions in MPC simulations has shown

a mismatch between the wall and the fluid velocity at the wall. A constant

force applied parallel to two confining walls normally leads to a parabolic flow

profile; this is the so-called Poisseuille flow. In the MPC simulation the parabolic

velocity profile does not reach zero directly at the wall surface, but rather at

a distance inside the wall, b =
∣∣(1
/

dv
dz

)
v
∣∣
z=0

, which is referred to as slip-length
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(Fig. 2.1).

b

z

x

v(z)

Solid

Fluid

Figure 2.1: Definition of the slip length [74]. The relative velocity of the fluid to

the surface at z = 0 is called the slip velocity. The imaginary distance

below the surface at which the extrapolated relative velocity of the

fluid is zero, denoted by b, is called the slip length.

It has been found that slip at the wall arises from partially filled boxes due to

the random shift, given that the shifted grid overlaps with solid surfaces and the

collision boxes at boundaries will contain less particles on average than boxes in

the bulk region.

A method to remove, or at least reduce, such spurious slip at the liquid-solid

interfaces has been introduced by Lamura et al. [59]. The idea is to couple the

solvent particles close to the wall to a bath of virtual particles that compensate

for the lower number of fluid particles in the boundary boxes. These virtual

particles have velocities generated from a Maxwell-Boltzmann distribution with

zero average velocity and variance determined by the bulk temperature. The

number of virtual particles in each collision box necessary to match the bulk

density ρ is (n−ρ), where n is the number of particles in the respective cell. Since

the sum of normal distributed numbers (i.e. Maxwell-Boltzmann distributed) are

again normal distributed numbers with a variance corresponding to the sum of

the individual variances, it is enough if one effective virtual particle is considered

in each collision box. The coupling with the virtual particles is done in the

collision step in Eq. (2.11). The velocity of the center of mass in the partially

filled collision boxes is then

vcm =

∑n

i=1
vi + a

ρ
, (2.19)

where a is a vector whose components are chosen from a Maxwell-Boltzmann
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distribution with zero average and variance 〈a2〉 = (n − ρ)kBT .

2.4 Hydrodynamic numbers

The effect of different MPC parameters for the macroscopic behavior of the fluid

in concrete applications can be evaluated by hydrodynamic numbers. A detailed

description of hydrodynamic numbers for colloidal suspensions and comparisons

between real systems and MPC simulations is given in the work of Padding and

Louis [82]. Following we discuss three of them.

Schmidt number

The Schmidt number characterizes the ratio of momentum and mass transport,

namely the kinematic viscosity ν and self-diffusion coefficient Dfluid, and it is

defined as Sc = ν/Dfluid. The Schmidt number of liquids like water is usually

in the range of 102 to 103. As discussed by Ripoll et al. in [100], Sc measures if

the solvent is in the ”particle regime” with a gas-like behavior corresponding to

Sc ≃ 1, or in ”collective regime” with a liquid-like behavior with values of Sc

two or three orders of magnitude larger.

In the case of the MPC fluid, both quantities, ν and Dfluid, can be analytically

calculated, and are given in Eqs. (2.15)-(2.18). Fig. 2.2 displays the theoretical

values of Sc as a function the collision time for different parameters. In contrast

with other mesoscopic models as LB or DPD where Sc ≃ 1, for MPC Sc becomes

considerably larger than 1 for large values of the collision angle and small values

of the collision time. Since hydrodynamic interactions are present in fluid-like

solvent a typical choice of the MPC parameters will be α = 1300 for the rotation

angle and h = 0.1 for the collision time.

Reynolds number

If a flow of the fluid with a velocity u encounters a geometric restriction with a

characteristic length scale b or an objected of the length scale is moving with the

velocity u against the fluid, this is characterized by the Reynolds number Re.

The Reynolds number measures the importance of inertial forces over viscous

forces and is given by Re = ub/ν. For example the Reynolds number of a

colloidal with a diameter of 1 µm particle moving with a velocity of 1= µm/s

in water at room temperature (with a viscosity of ν = 106µm2/s) is Re = 10−6.
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Figure 2.2: Schmidt number in the MPC solvent as a function of the collision

time h for different parameter sets. Lines are analytically obtained

from Eqs. (2.15)-(2.18).

Peclet number

The Peclet number Pe can be used to determine if convective or diffusive trans-

port is dominant and is given by Pe = ub/D, where D is the diffusion constant of

a macroscopic object of size b and velocity u. In our case this is Dcolloid given by

Eq. (1.22) with the friction term given by Eq. (1.23) (in the case of slip boundary

conditions). The diffusive transport is determined by the thermal fluctuations of

the macroscopic object and the convective transport by its mobility in response

to an external force which results in advection with a characteristic velocity

u. For example in thermodiffusion experiments with polystyrene particles of

0.2µm diameter it was found by Duhr and Braun [22] that the particles have a

thermophoretic mobility DT = 1.4µm2/(sK). They had applied a temperature

gradient in the order of ∇T ≈ 0.08K/µm which leads to a thermophoretic ve-

locity of u = DT∇T ≈ 0.1µm/s. They also measured the diffusion constant of

the beads as D = 2.1µm2/s. Hence the corresponding Peclet number is 10−2,

which indicates that diffusion is the dominant transport mechanism.
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3 Solvent with inhomogeneous

temperature

Existing computational studies on thermodiffusion have been performed so far

with the atomistic approach of Molecular Dynamics [37, 96, 35]. The mesoscopic

method MPC is used here essentially for the first time for an inhomogeneous

temperature distribution. The validation and characterization of the method in

the presence of a temperature gradient is therefore performed in detail. Some

general aspects about the implementation of a temperature gradient are first

discussed, like the resulting position dependent density profile and the particle

velocity distribution along the temperature gradient. Then we discuss three

different methods to impose the temperature gradient. Two methods include

the interaction of the system with confining walls. The third method considers

open boundary conditions by imposing energy fluxes. The three methods are

compared and characterized in the parameter space. At last, we investigate the

transport of energy characterizing the thermal diffusivity. The dependence of

this transport coefficient on the method parameters and the validity of existing

analytical theories is discussed.

3.1 General considerations

3.1.1 Temperature profile establishment

The idea is to impose a temperature difference to the system at the boundaries

such that the in-between solvent can have the freedom to adapt to the imposed

conditions. Effects induced by the solvent, like hydrodynamic interactions, or

non-linear temperature profiles, will then be minimally disturbed.

We use a three dimensional simulation system with boundaries fixed at two

different temperatures. The cold bath is held at a temperature Tc, and the hot

bath at Th (with Tc < Th). The temperature gradient direction is referred as
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z. In the perpendicular x, and y directions, we use standard periodic boundary

conditions [2]. Initially the system is at uniform temperature, T0. For conve-

nience, the initial temperature is generally chosen to be T0 = (Th + Tc)/2. In

the case of a linear temperature profile, the average system temperature T will

then be very close to the initial temperature. When the system gets in contact

with the boundaries, the temperature becomes position dependent. This spatial

dependence is, after some equilibration time, invariant with time.

In order to measure the temperature profile, the temperature is computed in

each slab of the system. The slab thickness is in principle arbitrary, but we

normally chose the length of one collision cell a. Since there is no superimposed

velocity field, the temperature Tj can be calculated from the kinetic energy of

the Nj particles in the j slab,

3

2
NjkBTj =

∑

i∈ slab j

1

2
mv2

i , (3.1)

with j = 1, ..., Lz.

For the simple solvent, with small temperature differences, and in the absence

of any other external field, the temperature profile will be linear,

T (z) = Tc +
Th − Tc

Lz

z, (3.2)

with Lz the distance between the two baths. An example of the simulated

temperature profile can be seen in Fig. 3.1. Standard values chosen for the

boundary temperatures are Tc = 0.9 and Th = 1.1. These values result in a

relative temperature difference (Th − Tc)/T = 0.2. Considering as a reference

value the room temperature T = 300K, this relative difference would correspond

to a temperature difference of 60◦C.
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Figure 3.1: Example of a temperature profile (left) and the corresponding parti-

cle number density profile (right). The symbols report the simulated

values and the lines correspond to Eq. (3.2) and Eq. (3.4) respec-

tively.
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3 Solvent with inhomogeneous temperature

3.1.2 Density profile

After the equilibration time not only the temperature, but also the density

profile is stationary. This is the result of a constant pressure throughout the

system and gives control over both, temperature and pressure. The fluctuations

of the pressure are constant after this time and can be used as a convergence

criterion. The fluctuations of the pressure can be obtained from the mean square

deviations of the pressure profile

〈
∆p
〉

=

〈√√√√ 1

lz

Lz∑

j=1

(pj − pav)2

〉
, (3.3)

where pj is the pressure in each slab, the bar refers to the spatial mean deviation,

and the brackets to an average over the number of simulation steps.

The solvent density profile can be determined by the equation of state. The

pressure p of the MPC fluid is known to behave with ideal gas equation of

state, pV = NkBT , where V is the volume, N the number of particles, T the

temperature, and kB the Boltzmann constant. The particle number density

ρ(z) = N(z)/V is then,

ρ(z) =
p

kBT (z)
. (3.4)

If the temperature profile in Eq. (3.2) is considered, the pressure can be calcu-

lated taking into account that the total number of particles in the simulation

box is constant i.e.
∫ Lx

0

∫ Ly

0

∫ Lz

0
d3rρ(z) = N . Solving the integral yields to

p = ρ
kB(Th − Tc)

ln (Th/Tc)
. (3.5)

Using a Taylor expansion for the logarithm in the case Th/Tc ≈ 1, this expres-

sion simplifies to p = ρ kBT0, where ρ is the average density. The resulting

density profiles for a given temperature profile can be seen in Fig. 3.1. Note

that, although strictly speaking Eq. (3.4) corresponds to a inversely linear de-

pendence with the position, in the limit of small temperature differences, the

approximation of a linear density profile can be considered, as can be seen in

Fig. 3.1.

3.1.3 Velocity distribution

The velocity vector distribution of the MPC solvent particles in equilibrium

conditions has been demonstrated to have correct thermodynamic behavior by
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3.1 General considerations

following Maxwell-Boltzmann distribution function [69],

P (v) =

(
m

2πkBT

) d
2

exp

(
− mv2

2kBT

)
, (3.6)

where d is the considered dimension number.
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Figure 3.2: Velocity distribution in a direction perpendicular to the tempera-

ture gradient at three different positions: close to the cold boundary

(z = 3), in the center of the simulation box (z = Lz/2), and close to

the hot boundary (z = Lz − 3), in a system with Lz = 40. Symbols

correspond to simulation results and lines to the Maxwell-Boltzmann

distribution in Eq. (3.6) at the corresponding temperatures and den-

sities.

In the presence of a temperature gradient, the velocity distribution will in

general deviate from the equilibrium distribution. Nevertheless, when the tem-

perature gradient is small enough, local thermal equilibrium is generally as-

sumed. Here we analyze the velocity distribution as a function of the position.

In Fig. 3.2, the velocity distribution in one of the directions perpendicular to the

temperature gradient is displayed for slabs at three different positions together
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3 Solvent with inhomogeneous temperature

with the Maxwell-Boltzmann distribution in Eq. (3.6), where the different tem-

peratures have been taken into account. The simulation results are calculated

considering the particles in just one configuration. The deviations between the

data and the equilibrium distribution are minimal, what confirms that local

thermal equilibrium is a very reasonable approximation.

3.2 Boundary conditions

3.2.1 Walls with virtual particles

The implementation of walls within the MPC solvent has been studied in homo-

geneous temperature conditions [59, 58], and already introduced in Sect. 2.3.1.

In order to obtain stick boundary conditions, (particles close to the walls should

have the wall velocity, zero in our case), two variations are included in the algo-

rithm. In the streaming step, particles reaching the wall revert their velocities

with bounce-back. In the collision step, collision boxes partially filled due to the

presence of the walls, include the effect of virtual particles with an averaged fixed

temperature that match the density in this boxes to the bulk density. If there

are nw particles in the partially full box at the wall with nw < ρ, ρ− nw virtual

particle will be considered. These particles are chosen with momenta drawn

from a Maxwell-Boltzmann distribution with zero mean velocity and variance

(ρ − n)
√

kBT/m. Note that although the MPC algorithm conserves energy,

the interaction with the virtual particles at the walls does not, such that the

total energy fluctuates now around an average value determined by the system

averaged temperature T .

The idea that allows to implement a temperature gradient consist in consider-

ing the temperature and reference density of such virtual particles with different

values in both walls, such that they behave as thermal cold and hot bath re-

spectively. Virtual particles at the cold wall will have temperature Tc and at the

hot wall Th with densities ρc and ρh respectively, given by Eq. (3.4). Therefore,

the interaction with the virtual particles in the hot wall will provide energy to

the system, while the interaction with the virtual particles in the cold wall will

absorb an equivalent energy.

As described in Sect. 3.1.1, we put the solvent in contact with the walls,

equilibrate the system, and compute the resulting temperature profiles. Fig. 3.3

shows simulation results with different solvent parameters. It can be observed
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Figure 3.3: Temperature profiles of the MPC in contact with walls with virtual

particles. The black dots are simulation results. The solid horizontal

lines are the temperatures of the virtual particles, Tc and Th, and

the dashed lines correspond to the solvent temperatures at the walls,

T (z = 0) and T (z = Lz) respectively. Simulations are performed

with ρ = 5 and α = 120◦. Left figure corresponds to h = 0.1 and

right to h = 0.5.
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3 Solvent with inhomogeneous temperature

that linear temperature profiles are nicely reached. Nevertheless, the solvent

in contact with the walls shows to have different temperatures than the walls.

This effect reminds the slip velocity of particles close to a wall in the presence

of solvent flow. The solvent temperatures at the walls, T (0) and T (Lz), are

characterized from a linear fit, as can be seen in Fig. 3.3. The temperature

mismatch varies with the solvent parameters and is characterized in Fig. 3.4.
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Figure 3.4: Deviation of the temperature at the walls as a function of the solvent

parameters α and h. The employed average number of particles per

box is ρ = 5.

In order to characterize this mismatch, we define the dimensionless quantity
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3.2 Boundary conditions

Ts,

Ts = (T (0) − Tc)/(T − Tc). (3.7)

Ts quantifies the temperature deviation at the cold wall. In case of perfect

match T (0) = Tc, Ts vanishes by construction. Meanwhile, in the limiting case

of maximum mismatch, there would be no temperature variation upon contact

with the heat bath, this is is T (0) = T , and Ts = 1. Note that by symmetry,

a similar definition could have been done with the deviation at the hot wall,

without any variation of the results.

Fig. 3.4 shows Ts as a function of the solvent parameters. It can be seen, that

for weaker collisional momentum exchange and large mean free paths, i.e. low α

and large h, the temperature deviation becomes stronger. This seems to indicate

that only a certain amount of heat can be transmitted by the virtual particles.

Nonetheless, starting the simulation with initial linear temperature and density

profiles with the wall temperatures does not change the final stationary state. In

an attempt to reduce the values of Ts, we have performed some trial simulations

in which the transfer of energy is increased by using much larger densities for

the virtual particles than the bulk density, assigning higher masses to them, or

increasing the number of layers in which they are present. These routes slightly

change the solvent temperature at the walls, but the trend remains essentially

the same.
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3 Solvent with inhomogeneous temperature

3.2.2 Walls with thermostats

To investigate other routes that more accurately accommodate the temperature

of the solvent particles close to the walls, we disregard the virtual particles at

the walls, and implement thermostats in the boundary slabs next to the walls.

The limiting temperatures Tc and Th are now enforced by rescaling the kinetic

energies of such solvent particles in each simulation step. From Eq. (3.1) the

rescaling relations can be obtained,

v′
i =

3Nc,hkBTc,h

2E
vi. (3.8)

Here, Nc and Nh are the number of particles in the cold and hot slabs.

If external flow fields are applied one must rescale the velocities with respect

to the center of mass velocity in order to locally conserve momentum, which is

necessary to obtain a correct hydrodynamic behavior. The thermal energy of

the particles is

E =

N∑

i=1

1

2
m(v′

i − vcm)2,

where vcm is the center of mass velocity in the respective slab. This energy

is rescaled to the new thermal energy E ′ = 3

2
(Nc,h − 1)kBTc,h with the desired

temperature. The rescaling relation becomes

v′
i = vcm + (vi − vcm)

√
E ′/E.

Since we are using a solvent without any external fields or embedded particles

that could result in a flow field, we have used the rescaling relation in Eq. (3.8).

The averaged temperature of the solvent in contact with the boundaries and

in the stationary state is presented in Fig. 3.5. Linear sufficiently far away

from the walls, the temperature profile attains a shoulder-like behavior at the

boundaries. This is reflects that the particles can not adapt efficiently enough to

the thermostat temperatures in the adjacent slabs. To account for this behavior,

we fit the temperature profile by excluding the first three slabs at the boundaries.

In this way the effective solvent temperature at the boundary layers is quantified,

showing a mismatch with the wall thermostat temperatures Tc and Th. We

characterize this mismatch with Ts in Eq. (3.7). Ts is, similarly to the heat bath

implemented with virtual particles, dependent on the method parameters, and

it is shown in Fig. 3.6. It also becomes more significant for large mean free

paths λ = ah
√

kBT
m

or smaller α, i.e. less collisional momentum exchange. The
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Figure 3.5: Temperature profile with a temperature gradient maintained by ther-

mostats in front of two planar walls at the boundaries. Left side uses

α = 30◦ and right side α = 120◦. The collision time is h = 0.1 in

both cases.
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3 Solvent with inhomogeneous temperature

deviation of the wall temperature is though much less pronounced than for the

virtual particles (Fig. 3.4), but it is still significant for large mean free paths

and small rotation angles α.
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Figure 3.6: Deviation of the boundary slab temperature T (0) from the imposed

temperature Tc for different MPC parameters α and h. The average

number of particles per box is ρ = 5 in both cases.

We can conclude that, in spite of the temperature mismatch at the boundaries,

both these methods produce satisfactory linear profiles away from the walls.

Therefore they can be employed to study the effects of temperature gradients
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3.2 Boundary conditions

in the presence of confining walls. Furthermore, the parameters for which the

temperature mismatch are smallest, namely small collision times h, and large

α values, are the parameters for which the MPC algorithm has been mostly

employed [99, 100, 73], since they are also the values for which the Schmidt

number is larger (see Chapt. 2).

Previous simulations with MPC and a temperature gradient have been very

briefly reported by Pooley and Yeomans [89]. They employ periodic boundary

conditions in which they thermostat two broad layers as the cold and hot baths.

They employ a system size with Lz = 100, and thermostats the layer between

z = 0 and z = 20 as the cold bath, and between z = 50 and z = 70 as the

hot bath. They do not report any temperature mismatch at the boundaries

although with the employed parameters we would expect them to be present.

In order to compare the two methods for implementing walls at different tem-

peratures, several issues have to be considered. First, we have characterized

that the temperature mismatch is considerably more pronounced for the walls

with virtual particles than for the thermostat ones. In practice, the effective

temperature gradient will be calculated with the actual boundary temperatures,

and given that in both cases the profiles are nicely linear, not further conse-

quences are expected. From the computational point of view, it should be noted

that virtual particles at the walls constitute an additional, but not really signif-

icant, effort since just three stochastic velocities per collision box are required.

This computational cost is approximately the same as the thermalisation of the

layers in the proximity of the wall. With both techniques the boundary layers

have to be disregarded. In the case of the virtual particles one layer will be

sufficient, while for the thermostated walls it will be necessary to not account

for at least two layers. Consequently, the walls with virtual particles will be in

general better suited to study temperature gradients in the presence of confining

walls, although a more precise consideration should be performed in a particular

application of the methods.

3.2.3 Velocity exchange algorithm

This method for imposing the temperature gradient considers periodic bound-

ary conditions by imposing an energy flux. In contrast to the previous methods,

where temperatures at the boundaries were imposed, here the temperature dif-

ference will be a consequence of the energy flux. In principle the idea could be
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3 Solvent with inhomogeneous temperature

combined with the presence of hard walls, but since we are also interested in

studying the effect of temperature gradients in the absence of confinement, here

we restrict ourselves to the case with periodic boundary conditions.

The original method was introduced by Hafskjold et. al [37] and employed

in the first simulations with Molecular Dynamics and temperature gradients

[56, 40, 39]. They proposed to transfer fixed amounts of energy between a “cold”

layer, placed at the system boundary, and a “hot” layer, placed at the center

of the system. This unphysical energy transfer plays the role of the interaction

with two thermal baths in the cold and hot slabs, and allows to establish the

temperature gradient. As can be seen in Fig. 3.7, the simulation box is now

divided in two half simulation boxes with increasing temperatures towards the

center.
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Figure 3.7: Illustration of the periodic simulation box for velocity exchange al-

gorithm.

Here we employ the modification of this algorithm proposed by Müller-Plathe

[72] and since then mostly employed with Molecular Dynamics. It consists in

determining the hottest particles in the cold slab and the coldest particles in the

hot slab, and then exchange their velocities (see Fig. 3.7). This method has the

advantage that the total energy E and momentum P of the system are exactly

conserved.

The distribution of particle velocity modulus f(v) is derived from the distribu-

tion of vector velocities in Eq. (3.6) as f(v)dv =
∫
Ω

v2P (v)dv, where Ω denotes
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3.2 Boundary conditions

the integration over the polar and azimuthal angles. It reads,

f(v) = 4π

(
m

2πkBT

) 3

2

v2 exp

(
− mv2

2kBT

)
. (3.9)

In Fig. 3.8, f(v) is displayed for the two temperatures typically used as cold and

hot baths. It can be observed that the difference between the two distributions

is not so large, such that the exchange of velocity is easily absorbed by the new

distribution. Additionally, the number of particles in each layer is large enough,

such that the Maxwell-Boltzmann velocity distribution is not significantly per-

turbed. Although the energy flux is locally applied in each exchange, on average

the exchange is distributed over the whole slab.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

P
(v

)

v

cold
hot

Figure 3.8: Velocity modulus distribution in Eq. (3.9) for the temperatures Tc =

0.9 and Th = 1.1, typically used for the cold and hot baths.

The magnitude of the temperature gradient is controlled by tuning the fre-

quency fex and the number of particles nex of the velocity exchanges. The

frequency fex determines the number of simulation steps after which the ex-

change operation is performed. The more steps in between the exchanges, the

lower is the resulting heat flux and temperature gradient. The determination

of the temperatures in the cold and hot slabs given certain values for fex and

nex will also depend on the systems density ρ and on the system size. We want
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3 Solvent with inhomogeneous temperature

now to obtain a rough estimation of the temperature gradient in terms of the

simulation parameters.

The temperature gradient ∇T is proportional to the heat flux jq,

jq = κT∇T, (3.10)

with κT the thermal conductivity, whose analytical expression is known and

will be discussed in the following section. By definition the heat flux can be

calculated as

jq =
∆E

A∆t
. (3.11)

Here, the area A = LxLy is given by the simulation box, the time interval ∆t

is here the time between exchanges τex = 1/fex, inversely proportional to the

frequency of exchanges, and the energy increment ∆E = 1

2
nex∆Eex is given

by the energy increment in each velocity exchange ∆Eex, times the number of

exchanges nex, and divided by 2 since the energy flux is distributed in the two

half boxes. The energy increment in each velocity exchange is

∆Eex =
1

2
m
(
v2

max − v2

min

)
, (3.12)

vmin corresponds to the coldest particle in the hot slab. In general we can

approximate vmin ≃ 0, as can be seen in Fig. 3.8. vmax corresponds to the

hottest particle in the cold slab. In order to get a rough estimation of such

velocity in terms of the input parameters, we first approximate the temperature

TC ≃ T in Eq. (3.9). Second, since we are in the tail of the distribution, we

neglect the correction given by the factor v2
max in Eq. (3.9), such that

f(vmax) ≃ c exp

(
−mv2

max

2kBT

)
, (3.13)

with the numerical constant c = 4π(m/2πkBT )
3

2 . And third we assume that in

such cold layer the density is the same as the average density ρc ≃ ρ, and that

there will always be one, and only one, particle with the temperature at the tail

of the distribution,

f(vmax) ≃
1

Aρ
. (3.14)

From Eq. (3.13) and Eq. (3.14), we obtain our rough estimation of vmax,

vmax ≃
√

2kBT

m
ln(cρA). (3.15)
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3.2 Boundary conditions

Therefore, comparing the heat flux jq in Eq. (3.10) and Eq. (3.11), and substi-

tuting Eq. (3.15) in Eq. (3.12), we get,

∇T =
1

2

nexfex

κT h
kBT

ln(cρA)

A
(3.16)

The temperature profile obtained with the velocity exchange algorithm in

Fig. 3.9 shows to display a nice linear profile between the cold and hot slabs.

Furthermore, it can be seen that Eq. (3.16) gives a reasonable estimation of the

temperature gradient. This has been found true generally in other simulations.

The various approximations, including the employed analytical value of the heat

conductivity, are the origin of the deviations.

In practice, when a simulation is designed with certain values for the tem-

perature gradient, mean temperature, system size, and solvent parameters, the

exchange value τex/nex is calculated. This value needs to be an integer, and τex

will be chosen as small a possible. The temperature gradient relaxes in between

the velocity exchanges and the stationary temperature profile has to be kept.

This means that it would not be reasonable to perform 100 exchanges every
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Figure 3.9: Temperature profile obtained from the velocity exchange algorithm.

Symbols correspond to the measured temperatures. Solid line is a

fit to the data, dashed-line is the estimated temperature profile from

Eq. (3.16).
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100 steps instead of one exchange in every step, even given the computational

advantages.

To conclude, we can say that the application of the velocity exchange algo-

rithm employed until now in Molecular Dynamics, provides a useful tool to study

the effect of temperature gradients with open boundary conditions in combina-

tion with the MPC solvent. It should be noted, that given the artificial exchange

of energy between the hot and cold slabs, these are usually disregarded from the

analysis, similarly as it is done with the two previous boundary conditions. The

velocity exchange is also responsible of perturbing the propagation of hydrody-

namic interactions between the two half boxes and subsequent periodic images.

The disruption is though not complete. In each velocity exchange, only a very

small percentage of particles are affected, such that a big part of the hydrody-

namic interaction will normally propagate. It will therefore be of interest to

discuss the effect of the boundary layers in each particular application of the

method.

3.3 Thermal diffusivity

In a series of papers Ihle, Tüzel, and Kroll have studied in great detail the trans-

port properties of the MPC solvent [45, 46, 47, 48, 49, 112, 111]. By using a

discrete-time projector operator technique, they calculate Green-Kubo relations

to characterize the MPC transport coefficients. The shear viscosity has been

measured by them and several other groups [47, 48, 54, 99, 120] showing in

all cases very good agreement between analytical theory and simulation results

for the whole range of MPC parameters. On the other hand, the simulation

measurements of the self-diffusion coefficient shows a noticeable discrepancy for

the MPC parameter region where the Schmidt number is larger (small colli-

sion times h, and large rotation angle α) [99, 100]. This was attributed to the

breakdown of the validity of the molecular chaos approximation employed in the

theory. Molecular chaos assumes the absence of particle correlations, which are

the origin of the building up of the hydrodynamic interactions.

Thermal diffusivity kT has been measured in equilibrium simulations by two

types of measurements [47, 48, 49, 111]. One is performed by characterizing the

dynamic structure factor, where information about thermal diffusivity and the
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3.3 Thermal diffusivity

sound attenuation is obtained. Independent measurements of kT are obtained

by the quantification of the correlation of the entropy density. Most of the

measurements have calculated the collisional contribution, kcoll
T , where very good

agreement has been obtained. Simulations in the presence of a temperature

gradient have been reported by Pooley and Yeomans [89] in which measurements

of kT agree well with the analytical for large values of the rotation angle α,

although only the kinetic contribution is taken into account.

The analytical expression for the thermal diffusivity has two contributions,

kT = kkin
T + kcol

T that read,

kkin
T =

kBTh

2m

[
d

1 − cos(α)
− 1 +

2d

ρ

(
7 − d

5
− 1

4
csc2(α/2)

)]
(3.17)

kcol
T =

A2
0

h

[
1

3(d + 2)ρ

(
1 − 1

ρ

)
[1 − cos(α)]

]
(3.18)

where kkin
T and kkin

T are respectively the kinetic and the collisional contributions.

The expressions are valid for d = 2 or d = 3 dimensions.

We report simulation results in the whole range of parameters, which are per-

formed with temperature gradients induced with the three types of boundary

conditions discussed in the previous section. We verify the validity of the analyt-

ical expressions where both contributions are taken into account, and compare

the performance of the different boundary conditions employed in this work.

In the simulations, we impose a temperature gradient and the flux of energy

jq is calculated with Eq. (3.11) similar to the previous section. The thermal con-

ductivity κT is obtained with with Eq. (3.10) and related to thermal diffusivity

kT as

κT = ρcpkT , (3.19)

where cp = (d + 2)kB/2 is the specific heat per particle at constant pressure.

The energy exchanges ∆E in Eq. (3.11) are now exactly calculated as the kinetic

energies of the solvent before and after the contact with each heat bath. The

exchange in the hot and the cold bath are exactly the same by construction

in the case of the velocity exchange periodic boundary conditions. When the

temperature gradient is simulated in combination with the walls, both quantities

are not exactly the same, but very similar on average.

Simulations with the different types of temperature gradient implementations

described in the previous sections have been performed. The agreement among

the different implementations is in general quite good. The simulations have
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3 Solvent with inhomogeneous temperature

been run with 105 steps for equilibration and 105 steps to collect the data for

∆E. The system size is Lx = Ly = Lz = 40 for the simulations using virtual

particles and thermostat. In simulations with the velocity exchange algorithm

we have used Lz = 80.

Fig. 3.10 displays the dependence of the thermal diffusivity kT as a function

of the rotation angle α. kT shows to be almost constant for high values of α

and the agreement with the theoretical approach seems reasonable. Fig. 3.11

shows the dependence of kT on the collision time h, which is related to the mean

free path λ/a = h
√

kBT/m. The zoom-in for small h values indicates a certain

trend in the data deviation.

In order to precisely quantify the quality of the agreement, we present in

Fig. 3.12 the relative deviation of the simulated thermal diffusivity kT,sim with

respect to the analytical approach kT in Eq. (3.18). The analytical approach

shows to underestimate the simulated values in about 10%, but up to 20% in

some cases. Interestingly, the deviation shows to significantly decrease with
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Figure 3.10: Dimensionless thermal diffusivity as a function of α, with h = 0.1.

Lines correspond to the analytical approach in Eq. (3.18) and sym-

bols to simulation results. Red symbols relate simulation with ve-

locity exchange algorithm, green symbols to walls with virtual par-

ticles, and blue symbols to walls with thermostats.
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Figure 3.11: Dimensionless thermal diffusivity as a function of h, with α = 120◦.
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3 Solvent with inhomogeneous temperature

increasing density. Furthermore, the deviation shows to have a maximum for

rotation angles between 60◦ and 120◦, and for collision times between h = 0.1

and h = 0.2.

The expressions for the heat diffusivity in Eq. (3.18) are of O(1/ρ) for large

values of ρ as reported by Ihle et al. in Ref.[49]. This is in contrast to the

calculations for viscosity. Higher order terms can be calculated for kT [49]. This

are,

kcol
T =

A2
0

h

[
1

3(d + 2)ρ

(
1 + e−ρ(ln ρ − 1)

− 1

ρ
− 1

ρ2
+ O

(
1

ρ3

))
[1 − cos(α)]

]
. (3.20)

In Fig. 3.13, the relative deviation between simulated thermal diffusivity and

the expression in Eq. (3.20) is displayed. The additional terms do not really

improve the agreement and the differences with the comparison with Eq. (3.20)

are quite minimal.

Similarly to the transport of mass characterized by the self-diffusion, it seems

that the molecular chaos approximations performed to characterize the transport

of energy produce significant errors in the estimation of the heat diffusivity in the

region of small α, ρ, and h values. In spite of the deviations, the analytical values

are reasonable, and the energy transport can be easily characterized within the

MPC solvent. This puts the method forward as an attractive tool to study mass

and energy transport of soft matter systems in the presence of a temperature

gradient.
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Figure 3.12: Relative deviation ∆kT = (kT,sim − kT )/kT of the simulated ther-

mal diffusivity kT,sim with respect to the analytical approach kT in
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Fig. 3.11. Red lines are guides to the eye and the zero line corre-

sponds to a perfect agreement.
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4 Concentrated colloidal

suspensions

4.1 Introduction

Most of the existing work on thermodiffusion is performed in the regime of very

dilute systems, where the interactions between macromolecules are not impor-

tant. Only a small number of theoretical and experimental investigations focus

on strongly interacting systems and these studies conclude that there is a pro-

nounced concentration dependence of the thermodiffusive behavior. Three of

these studies are following mentioned. Experiments with micellar systems [86]

display a linear dependence of the Soret coefficient on concentration, this depen-

dence is reversed with the addition of surfactant. Measurements on polystyrene

solutions [94] show a strong dependence of the thermodiffusive properties. The

approach of this system to the glass transition leads to sharp decay of both Dc

and DT , while the Soret coefficient decreases slowly with the concentration, in-

sensitive to the glass transition. More recently, the contribution of inter-colloidal

interactions to the thermal diffusion coefficient has been studied theoretically

[19, 20] using a microscopic approach. The temperature dependence of the po-

tential of the mean-force was shown to give rise to sign changes of the Soret co-

efficient on changing temperature and/or concentration under appropriate con-

ditions. Experiments with colloidal suspensions of varying interactions [77] have

shown a reasonable agreement with the theory at low concentrations. Neverthe-

less, the contribution of the inter-colloidal interactions or collective contribution

is found to be much less important than the contribution of the colloid-solvent

interaction or single particle contribution. Furthermore, the theory is devel-

oped for a regime of low volume fractions. A detailed study of the collective

contribution to the thermodiffusion of colloidal systems by means of computer

simulations is therefore essential to understand these systems.

In this work, simulations of concentrated systems are performed with different

57



4 Concentrated colloidal suspensions

inter-particle interaction potentials. The employed model disregards single par-

ticle effects becoming an ideal candidate to study the importance of collective

interactions in the thermodiffusion phenomena. In this chapter we first care-

fully discuss and reanalyze the experimental data that we can compare with.

Second, the simulation model and the procedure to perform the measurements

is introduced, and third the simulation results are presented. The effects of the

different characteristics of the interaction potentials are separately analyzed, like

the effect of the hardness of the repulsion potential, the range or the strength

of the attractive interaction.

4.2 Experiments on colloidal suspensions with

different volume fractions

In the experimental investigation of Ning et al. [77], the thermal diffusion behav-

ior of coated colloids in toluene (a solvent commonly used to dissolve paints) as

a function of the volume fraction has been analyzed at different temperatures.

The coating consists of octadecyl chains with a length of 18 carbon groups,

what can be thought of as a brush covering the colloid. The length of the brush

hairs corresponds to roughly 1 % of the colloid size. The coating has a tem-

perature dependent behavior and can change the properties of the colloids. At

low temperatures, the attached brushes are in a collapsed state and the colloid

core determines the interactions among the colloidal particles. At high tem-

peratures, the brushes tend to be extended and screen interactions which arise

from the core. The core interactions are essentially attractive and the coating

of the colloids is typically employed to stabilize the suspension. Therefore, at

high temperature the colloid-colloid interactions are close to a hard sphere like

behavior, whereas at low temperatures they are attractive at short distances.

Then the range of the attractive potential, is in the order of the thickness of

the brush, 0.3 nm, while the range of the repulsion corresponds to the particle

radius, 27 nm.

The theory of Dhont [19, 20] predicts that colloids with hard sphere inter-

particle interactions, at low concentrations, display an approximately linear de-

cay of the Soret coefficient with the volume fraction φ that can be described by
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4.2 Experiments on colloidal suspensions with different volume fractions

the expression,

Slow
T =

1

T

1 − 0.35φ

(1 − φ)(1 + 1.45φ)
+

DT,sing

D0(1 + 1.45φ)
(4.1)

≃ 1

T
(1 − 0.80φ) + ST,sing(1 − 1.45φ), (4.2)

where D0 is the translational diffusion coefficient in the limit infinite dilution.

Here DT,sing and ST,sing refer to the single particle contribution of the thermal

diffusion and the Soret coefficients respectively. These are the coefficients that

one would measure at infinite dilution where the colloid-colloid interactions are

absent. The single particle contribution relates to specific interaction of the

colloidal interface and the solvent, which are in general temperature dependent.

Experiments at different temperatures and volume fractions of colloids are

performed by Ning et al. [77]. The experimental results of the Soret coefficient

are summarized in Fig. 4.1 a. The range of concentrations goes from the very

dilute solutions with about 1 % volume fraction of colloids up to 30 % volume

fraction. In the range below 10 % the magnitude of the Soret coefficient de-

creases slightly in all cases. In this regime the experimental data is compared to

the theoretical results in Eq. (4.1) shown as solid lines. This comparison allows

to determine the values of the single particle contribution ST,sing in Eq. (4.2),

and extrapolation of zero concentration ST (φ = 0) can also be straightforward

obtained from Eq. (4.2). Both values are presented in Fig. 4.1 b, where the

strong temperature dependence can be observed. Similar behavior is experi-

mentally observed in colloids in aqueous solutions [7] in the limit of very low

concentrations. The difference between ST,sing and ST (φ = 0) corresponds to

the ideal gas contribution [8].

For larger volume fractions, the theory of Dhont to describe the Soret coef-

ficient does not apply. In Fig. 4.1 a, it can be seen that for volume fractions

larger than 10 % ST becomes a decreasing function in all cases, eventually even

displaying a sign change. Furthermore, the functional form of all these decays

can be universally described by a logarithmic decay

Shigh
T = −0.01 ln φ + Shigh

T,0 . (4.3)

The extrapolated value at zero concentration Shigh
T,0 includes all the temperature

dependence of Shigh
T and is displayed in Fig. 4.1 c.
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Figure 4.1: a) Soret coefficient for octadecyl coated silica particles in tolune as a

function of the volume fraction φ for different values of the average

temperature. Solid lines are a fit to Eq. (4.1) for low φ, and dashed

lines a fit to Eq. (4.3) for high φ. b) Values of the Soret coefficient at

the limit of zero volume fraction, and the single particle contribution

as a function of the temperature, obtained from the fit of the data

to Eq. (4.1). c) Temperature dependence contribution of ST at high

φ values are obtained from a fit of the data to Eq. (4.3). (Data by

courtesy of S. Wiegand).
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4.2 Experiments on colloidal suspensions with different volume fractions

As shown in Fig. 4.1, single particle effects have a very strong contribution to

the Soret coefficient in all the range of volume fractions. It is though interesting

to find a representation in which these effects are disregarded such that the

behavior of the purely collective effects can be investigated. With this purpose,

Fig. 4.2 compares the different sets of data displacing them all to the same

vanishing value at limiting zero concentration.
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Figure 4.2: Soret coefficients in Fig. 4.1 as a function of the volume fraction

φ displaced to the vanishing value at limiting zero concentration.

Lines correspond to those in Fig. 4.1. Inset: differences of the Soret

coefficients extrapolated to zero concentration for low concentrations

in Eq. (4.2) and high concentrations in Eq. (4.3). (Data by courtesy

of S. Wiegand)

At low volume fractions, the collective contribution to the Soret coefficient in

Fig. 4.2 shows to increase in magnitude with increasing temperature, which is

only due to the displacement and consequent sign change. This trend is observed

from the analytical curves from Eq. (4.1) in Fig. 4.2 since the relative error of

experimental data in this representation is magnified in the low concentration

regime. Apart from the differences directly inferred by the different average

temperatures, the employed octadecyl coated silica particles are characterized

by having temperature dependent inter-colloidal interactions. Ning et al. have

characterized in Ref.[77] that suspensions at low temperatures (15 0C) have high
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4 Concentrated colloidal suspensions

attractive interactions, while suspensions at higher temperatures (50 0C) display

a typical hard sphere behavior. With this consideration two main conclusions

can be drawn from the data at low concentrations in Fig. 4.2. The first one is

that increasing the strength of the attraction increases the value of the Soret

coefficient, or equivalently, with increasing attraction the colloids accumulate

more effectively in the cold areas. The second conclusion is consequence of the

first one, and it is that the collective contribution to the Soret coefficient is

typically negative for purely repulsive colloids and positive for colloids with a

short range attraction.

More puzzling is the observed behavior of the collective contribution to the

Soret coefficient in the regime of large colloidal volume fractions. The loga-

rithm decay described in Eq. (4.3) does trivially remain, but the dependence

is non-monotonous with changing temperature. This non-monotonous depen-

dence can be observed directly in the data in Fig. 4.2, and in the differences of

the Soret coefficients extrapolated to zero concentration for low concentrations

in Eq. (4.2) and high concentrations in Eq. (4.3), as displayed in the inset of

Fig. 4.2. The origin of this non-monotonicity is not known, but seems to be

more an artifact than a real physical effect. A possible explanation is the poor

experimental precision in determining the contribution to the Soret coefficient

in the limit of zero concentration, which was in the not the main goal of these

experiments. More precise experimental data, and/or simulation results, can

contribute to clarify whether the behavior at high concentrations depends on

the interaction, and in that case if it has the same, or opposite trend as in the

low concentration regime. Namely, that increasing attractive interaction helps

the colloids to accumulate more effectively in the cold areas. Another possible

explanation is that the performed separation of the single particle contribution

to the Soret coefficient is not completely accurate. For example, this contribu-

tion is determined at the limit of vanishing concentration and is assumed not

to change with increasing concentration. The well known strong dependence

with temperature invites to consider that the interactions between the colloidal

interface and the surrounding solvent may change with concentration, although

we do not have any related information.
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4.3 Simulation model

4.3 Simulation model

Concentrated colloidal suspensions are simulated by a hybrid model that con-

siders interactions between colloids by explicit potentials, and the interactions

among solvent particles and between solvent and colloids by means of the meso-

scopic technique of MPC.

4.3.1 Colloid-solvent interactions

The MPC interaction of the colloids with the surrounding solvent is performed

together with the MPC solvent-solvent interactions. The interchange of energy

and momentum occurs in the collision step (see chapter 2), in which the colloids

are considered as point particles of different mass than the fluid particles. Hence

the calculation of the center of mass velocity by means of Eq. (2.9) has to be

replaced by

vcm =

∑
i|ri∈Cell

mivi(t)

∑
i|ri∈Cell

mi

. (4.4)

The fact that colloid-solvent interactions do not have any exclude volume po-

tential implies that the solvent particles can penetrate the colloids since they

perceive them only as heavy point particles. A consequence is that local effects

are not taken into account. One example of such local effects are lubrication

forces, which arise from the confinement of a fluid between solid surfaces. An-

other example are the specific interactions of the colloidal interface and the

surrounding solvent, that determine the single particle contribution to the Soret

coefficient.

In spite of its clear drawbacks, this coupling has shown to capture the dy-

namics of solute particles [100] and has been used in similar fashion to correctly

describe some aspects of concentrated colloidal solutions [100, 122]. One of the

most successful characteristics of the method and this coupling is that hydro-

dynamic interactions are properly taken into account. This has been verified in

dilute polymer solutions [99, 73] simulated with this coupling, and it has been

frequently employed in systems like rod-colloids [121, 98, 103, 63], star polymers

[101, 102], or self-propelled structures [127, 26, 27], among others.

The main advantage of this coupling between colloid and solvent is that is com-

putationally very efficient, since solvent-colloid explicit forces are not present.

For each colloid there are normally many solvent particles and the calculation
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4 Concentrated colloidal suspensions

of interaction forces can be, in CPU terms, the most demanding part of the

simulation.

On the other hand, we have to consider that in this chapter we study the effects

of the temperature gradients in concentrated colloid solutions. This coupling can

be understood as a way of decoupling the collective effects in thermodiffusion,

from the purely single particle effects, providing useful information.

4.3.2 Colloid-colloid interactions

The colloids interact among themselves with an explicit potential and their mu-

tual forces are calculated with MD which is incorporated into the MPC algorithm

as explained in chapter 2. The colloid-colloid interactions are given by a pair

potential Ucc(ri, rj) which is varied to analyze the influence of the differences be-

tween potential, like the softness or the strength of the attraction. In this way,

we have used both purely repulsive potentials, and repulsive in combination

with attractive potentials. We employ basically two types of functional forms

for the potentials. One is the Lennard-Jones type potentials given in chapter 2

in Eq. (2.4) and the other in Eq. (2.5).

In order to more accurately match the experimental interactions in Ref. [77],

we have used another type of potential which can eventually become very short

ranged. To this potential we refer as sticky potential, Usticky(rij), in correspon-

dence to the sticky spheres in experiments. The hydrodynamic radius of the

colloids in the experiments is 27 nm and the range of the attractive interactions

is estimated to be around 0.3 nm, which corresponds to a ratio of approximately

1% of the particle radius.

Similarly to the Lennard-Jones potential, the sticky potential is composed by

two terms, a repulsive core and an attractive tail. The repulsive core is given by

Usticky
r (rij) = λr

(
σ

rij

)48

(4.5)

and the attractive part that is chosen to reproduce the functional form of de-

pletion interactions [70],

Usticky
a (rij) = −λa

[
1 − 3

4

(rij

a

)
+

1

2

(rij

2a

)3
]

. (4.6)

The coefficients λr and λa determine the relative strength of the two contribu-

tions. The colloid diameter is estimated by σ, and the range of the attractive
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part of the potential is determined by a. The attraction range will be varied

in the simulations from values comparable to the experimental conditions, to

values similar to the simulation standard Lennard-Jones. The total potential is

given by

Usticky
cc (rij) = ǫ

[
Usticky

r (rij) + Usticky
a (rij) − Usticky

r (rc)
]
, (4.7)

where ǫ is the strength of the potential and rc the cutoff radius.

We have used the parameters in Table 4.1 for the simulations in Sect. 4.4.

rc/σ λr λa a/σ

1.0365 4. 1940. 0.522

1.1 1.3 185. 0.55

1.2 1.0 43. 0.6

Table 4.1: Parameters to construct sticky potentials.

4.3.3 Simulation setup

Simulations are started by arranging the colloidal particles on a grid in order

to make sure there is no potential overlap. Thus the initial total energy of the

system is only kinetic and corresponds to a temperature T0. The maximum

volume fraction which can be achieved in this way is the one of simple cubic

packing of 52%, which is not a constraint for our purposes. Similar to the

experimental values we have varied the volume fraction of colloids from φc =

0.1% to φc = 30%.

In order to implement the temperature gradient, the velocity exchange algo-

rithm has been used along the z-direction. This method is described in chapter 3,

and has shown to be the most appropriate for our purposes. The employed tem-

perature differences are small enough to ensure that the temperature and density

profiles of the individual components are linear. In this setup, the simulation

box is divided in two halves as illustrated for a colloidal suspension in Fig. 4.3.

The MPC parameters for the solvent are: time step h = 0.1, number of

fluid particles per cell ρ = 5 and the collision angle is α = 120◦. The initial

temperature is T0 = 2 in all simulations unless stated different. The initial and

average temperature are not the same but almost.
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4 Concentrated colloidal suspensions

Colloids

Figure 4.3: Simulation box for concentrated colloidal suspension. Example dis-

tribution of colloids with an excess on the cold side.

The simulation box size is Lx = 30, Ly = 30 and Lz = 40 for the purely

repulsive potentials and Lx = 10, Ly = 10, Lz = 40 for the attractive potentials.

The system size for the attractive potentials have been chosen smaller because

the computational effort for the colloid-colloid forces is greater due to the larger

cut off radii. The employed diameter of the colloids is σcc = 1.0 a and the mass

is mc = 5.0; this is the value that matches the mass of the fluid in one collision

box and has been shown to be an appropriate value to enhance the effect of

hydrodynamic interactions [100].

4.3.4 Determination of the Soret coefficient

In order to determine the Soret coefficient we measure the temperature profile

and the mass distribution of colloids and solvent within the simulation box. The

procedure is very similar to the one described in chapter 3. The simulation box

is subdivided in slabs, that for convenience are chosen to have thickness a, this is

the length of MPC collision box. In each slab, we calculate the number of colloids

Nc(z) and of fluid particles Nf (z). The densities are then given by the number

of particles per cell of each component k, i.e. ρk(z) = Nk(z)/Lxly, where Lxly

is the is the volume of the slab, determined by the two directions perpendicular

to the temperature gradient. The temperature profile is determined from the

kinetic energy of the fluid particles. The profiles are averaged over simulation

steps such that local fluctuations in temperature and density are averaged out.

For further analysis, the first two boundary slabs in all cases, where the velocity

exchange is performed, are disregarded.

The average density ρ0

k, is the density that the system would have in the

absence of a temperature gradient. It is instructive to show in which percent-
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4.3 Simulation model

age each component varies its density with respect to the average value. The

normalized relative density is then defined as

∆ρk(z) =
ρk(z) − ρ0

k

ρ0

k

. (4.8)

Fig. 4.4a shows a typical temperature profile. Fig. 4.4b and Fig. 4.4c are two

examples of relative density profiles of the solvent and colloids. The profiles

are only shown for the left side of the bi-periodic simulation box, although the

averages consider both boxes. The density profile of the fluid is determined by

the ideal gas equation of state, as already reported in chapter 3, which essentially

does not change due to the presence of the colloids.

In order to characterize the strength of the response to the temperature gra-

dient, we determine the Soret coefficient which is determined from the gradients

of the mass fraction and temperature

ST = − 1

w0
c (1 − w0

c )

∇zwc

∇zT
, (4.9)

where wc is the mass fraction of colloids, defined as,

wc(z) =
ρc(z)mc

ρc(z)mc + ρf(z)mf

. (4.10)

The average colloid weight function is then w0
c = ρ0

cmc/[ρ0
cmc + ρ0

fmf ]. It is

straightforward to prove that,

∆ρc(z) > ∆ρs(z) ⇔ wc(z) > w0

c (z). (4.11)

The resulting normalized relative mass fractions are shown in Fig. 4.4d and

Fig. 4.4e. If the colloids have a relative density variation larger than the solvent

in the cold part of the system, the weight fraction decreases with increasing

temperature, or similarly that ST > 0. This is the case displayed in Fig. 4.4b and

Fig. 4.4d, while the reciprocal situation can be seen in Fig. 4.4c) and Fig. 4.4e).
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Figure 4.4: Profiles for concentrated colloids suspensions interacting with the

LJ 12-6 potential. a) Temperature profile. b), c) Normalized rel-

ative density profiles of solvent and colloids. d), e) Corresponding

normalized weight fraction profiles. b) and d) φ0
c = 0.2, example for

an excess of colloids on the warm side. c) and e) φ0
c = 0.3, excess on

the cold side.

68



4.3 Simulation model

4.3.5 Condensation effects

We report now an effect that can arise in simulations with attractive colloid

interactions due to the non-homogeneous distribution of temperature. In sim-

ulations at lower temperatures and the same interaction strength ǫ a phase

separating behavior was observed for large volume fractions. This is because

the temperature and volume fraction can be below the critical point in the low

temperature region of the system which leads to a condensation of the colloids.

MD simulations of Vliegenthart et al. [115] of Lennard-Jones fluids have shown

that the critical point of a LJ 12-6 fluid is at Tc = 1.316 and φc = 0.165. In

dimensionless units used in MD this corresponds to T ∗
c = Tc/ǫ = 1.316 and

ρ∗
c = φc/φsc = 0.361, where φsc ≈ 0.52 is the simple cubic packing fraction.

Below the critical point the system is in the liquid-gas coexistence regime and

a phase separation due to the temperature gradient is observed as can be seen

in Fig. 4.5. In this example where the average temperature is below the critical

temperature the volume fraction profile of the colloids is not linearly changing,

but drops abruptly indicating a liquid phase of colloids on the cold side and a

gas phase on the warm side.

0.0

0.1

0.2

0.3

0.4

5 10 15
0.90

0.95

1.00

1.05

1.10

1.15

φ c
(z

)

T
(z

)

z

Figure 4.5: Phase separation of colloids in liquid-gas coexistence regime below

critical point with LJ 12-6, ǫ = 1.0, φc = 0.1 and T0 = 1.0. The

volume fraction on the cold side of the system is φc ≈ 37% corre-

sponding to a reduced density of ρ∗ ≈ 0.75, which indicates a liquid

state. On the hot side we have φc ≈ 3% corresponding to a density

of ρ∗ ≈ 0.06 indicating a gas phase.
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4 Concentrated colloidal suspensions

In principle it is also possible that the colloids form clusters or droplets, a

fact which might not be easily observed in density profiles. For critical sim-

ulation parameters (i.e. high attraction strengths and low temperatures) we

have checked that there are no unusual accumulations of colloids in 3D plots of

the final particle positions after the simulations. We assume that this check is

sufficient although a more exhaustive analysis would require the study of pair

correlation functions.

4.4 Simulation results

To study collective effects in the thermodiffusion of colloidal suspensions, we

perform simulations in a large range of colloidal volume fractions for various

colloid-colloid interactions. We following discuss the different characteristics of

the interactions and their effects on the Soret coefficient. These characteristics

are the purely repulsive or attractive nature of the interaction, the steepness of

the repulsion, the range, and the strength of the attractive interaction.

4.4.1 Attractive vs. repulsive colloid-colloid interactions

The first feature that we discuss is the difference between a purely repulsive

interaction and an accompanying a short-range attraction. For this purpose,

we employ the different types of Lennard-Jones potentials given in chapter 2 in

Eqs. (2.4) and (2.5).

Fig. 4.6 a displays the employed repulsive rLJ 12-6 and attractive LJ 12-6

potentials. The potential strength is fixed to ǫ = 1. Fig. 4.6 b shows the

measured Soret coefficient with these potentials. The most remarkable feature

is that repulsive interactions always lead to a larger mass fraction of colloids on

the hot side and therefore a negative Soret coefficient. This is with the exception

of very low average volume fractions of colloids that will be discussed in the next

section. Attractive interactions favour the colloids to accumulate more efficiently

in the cold side leading to positive and significantly larger values of the Soret

coefficient.

For repulsive interactions, the Soret coefficient decreases with increasing vol-

ume fraction. Since the values are always negative, this means that the magni-

tude increases, indicating a stronger separation of the colloids and solvent for

larger colloid concentration. For the attractive interactions checked in this sec-
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Figure 4.6: a) Repulsive and attractive Lennard-Jones potentials employed for

the inter-colloidal interactions. b) Simulated Soret coefficients as a

function of the colloidal volume fractions φc for colloids with the

interactions in a).

tion, there is a regime of volume fractions, i.e. 5% < φc < 20% in which ST

does not vary significantly. If this volume fraction is exceeded, the colloids are

slowly driven away from their preferential region on the cold temperatures, and

in this case the Soret coefficient changes its sign.

The main trend of the results agrees with the experimental findings as shown

in Fig. 4.2, and can be explained by the following phenomenological argument.

The excluded volume interactions do not facilitate an inhomogeneous distribu-

tion of the colloids with the temperature gradient. Colloids interacting with

purely repulsive interactions have a density gradient smaller than the solvent,

such that the Soret coefficient is negative. Increasing concentration translates

in smaller density gradients which differentiate stronger from the solvent and

therefore have more negative Soret coefficients. On the other hand, the attrac-

tive interactions favor that colloids eventually can get closer. The cold area

in then more favorable since they can approach to each other decreasing their

potential energy. This explains that the relative density of colloids in the cold

area is higher than the solvent, what translates into a positive Soret coefficient.

Increasing colloid concentration makes that the repulsive part of the potential

becomes progressively more relevant, what produces a decrease of the Soret

coefficient even to negative values.
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4 Concentrated colloidal suspensions

4.4.2 Limiting cases

MPC binary mixture

As already discussed, the model employed in this chapter essentially disregards

the single particle effects, apart for the remaining mass contribution. In order to

gain some insight on this contribution, simulations without potential interaction

among colloids are performed. In this case, the colloids are reduced to be heavy

particles, this is MPC particles of larger mass than the solvent particles.

Simulation results of ST for such MPC binary mixture, and various concen-

trations are shown in Fig. 4.7. The concentrations are expressed in terms of the

heavy particle mass fraction. For comparison, the upper axis displays the vol-

ume fraction that the same number of particles would have had with a potential

interaction with an excluded volume interaction at distances σ = 1. The con-

centration dependence show to be practically negligible, and more importantly,

the absolute numbers are one order of magnitude smaller than the ones in which

potential interaction between particles are included like those in Fig. 4.6 b. It

is furthermore noticeable that the values of ST are always positive. This agrees

with the well described mass effect for Lennard-Jones mixtures [96, 35, 33], that

describes that for a binary mixture of particles of different mass, the heavier

particle will accumulate more effectively in the cold areas.
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Figure 4.7: Soret coefficient for an MPC binary mixture, as a function of the

mass weight of heavy MPC particles w0. Values in the upper index

indicate the corresponding volume fraction for colloids with diameter

σ = 1.
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We can conclude that in the simulations with potential interactions shown in

the rest of this chapter, the mass effect is always present, although it is weak

and does not dependent on the volume fraction, such that is not responsible of

the main effects discussed in the chapter.

Low volume fraction limit

We come back now to discuss colloidal suspension with potential inter-particle

interactions. In the limit of very low volume fractions, there are no interactions

among colloids, such that the values of ST should be independent of the interac-

tion potential. This is the single particle limit in which ST is determined by the

colloid-solvent interactions. In general, these are interactions of fundamental

importance in thermodiffusion, although in the model discussed in this chapter

they are essentially disregarded allowing us to study the influence of collective

effects.

In order to have a reference value for the low volume fraction limit, simu-

lations with φc = 0.001 have been performed with two potentials rLJ 12-6 and

LJ 12-6. The obtained values are compared in Table 4.2 together with the result

at lowest density of the MPC binary mixture presented in the previous subsec-

tion. Values in Table 4.2 show, as expected, to be very similar in spite of the

very different interaction among colloids. The ST values are positive and one

order of magnitude smaller than those at higher volume fractions.

interaction ST

rLJ 12-6 0.037

LJ 12-6 0.036

MPC binary mixture 0.033

Table 4.2: Values of the Soret coefficient for various interactions at very low

concentrations.

High volume fraction limit

In the limit of very high volume fraction of colloids the system will crystallize.

In that case, the density of the colloids will be practically constant along the

temperature gradient, and the separation will come only from how the solvent

adapts to the temperature gradient. The experiments performed by Ning et al.
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4 Concentrated colloidal suspensions

[77] stay far away from that limit. Experimental results of concentrated solutions

of polymers [95, 93], present always positive values of the Soret coefficient, which

shows a clear decrease close to the gelation density.
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Figure 4.8: Distribution of normalized relative densities and weight fraction of

colloids interacting with rLJ 12-6 at φc = 0.3.

With the simulation model employed in this work, the separation between

solvent and colloids will remain also in the case of colloid concentration at the

close packing value. The corresponding value is Sh
T,cp = −0.35. In Fig. 4.8 it is

displayed an example of colloids interacting with repulsive interactions, with the

potential rLJ 12-6 at φc = 0.3, the highest volume fraction that we have simu-

lated. The resulting Soret coefficient is clearly negative, and the colloid density

profile still accumulates in the cold area, although is already close to constant.

In all the simulations performed with this model, the colloids accumulate in the

cold area. Given the fact, that there is no mechanism that brings the colloids to

accumulate in the warm area, we do not expect accumulation in the warm area

and therefore any ST < Sh
T,cp.

4.4.3 Effect of the repulsion softness

The repulsive interaction between colloids in experiments, and in their coun-

terpart simulated models, can range from a completely hard to very soft inter-

actions. In the hard limit interaction, there is an abrupt transition from no

interaction to an infinite repulsion potential. Soft interactions consist in a very

weak repulsion at large distances, that becomes progressively stronger, and only

diverge when the overlap between colloids is complete.

We investigate the effect of the repulsion softness by repulsive Lennard-Jones
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type potentials in Eq. (2.4). An increase of the exponent n is equivalent to an

increase of the steepness of repulsion, or decrease of softness, as illustrated in

Fig. 4.9 a.
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Figure 4.9: a) Repulsive Lennard-Jones potentials with different exponents n.

b) Soret coefficient ST for different mean volume fractions φc for

colloids with rLJ 2n-n potentials with different steepness.

Measurements of the Soret coefficient for various repulsion potentials as a

function of the volume fraction are displayed in Fig. 4.9 b. The main conclusion

of these results is that the change from the already discussed soft repulsive

colloid-colloid interaction potential rLJ 12-6, to increasingly steeper repulsion

rLJ 24-12 and rLJ 48-24 hardly affects the Soret coefficient. Although, the softer

rLJ 12-6 potential shows magnitudes of ST slightly larger for all mean volume

fractions than for the other two potentials, the differences are very small.

4.4.4 Effect of the attraction range

In order to investigate the effect of different attraction ranges in the thermod-

iffusion properties of concentrated colloidal suspension, two types of attractive

potentials are used, Lennard-Jones and sticky. First we compare two different

Lennard-Jones potentials LJ 12-6 and LJ 24-12. As displayed in Fig. 4.10 a, the

difference between these two potentials is the steepness of the repulsion, and the

range of the attractive interaction. These are then good candidates to test the

attraction range effect since our results in the previous section indicate that the

difference in steepness does not significantly affect the Soret effect.

The shape of the ST (φc) dependence is similar in both cases, namely there is

a volume fraction interval where ST does not appreciably change, and decreases
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Figure 4.10: a) Lennard-Jones potentials LJ 2n-n. b) Soret coefficients ST as a

function of the volume fraction φc for the potentials in a).

for larger volume fractions. Nevertheless, whereas the long-ranged potential fea-

tures positive Soret coefficients, ST is always negative for the shorter ranged po-

tential. This behavior is consistent with the picture that for shorter attractions

the excluded volume interaction becomes more important, what contributes to

decrease the ST values.

We analyzed the attraction range importance also with a set of sticky po-

tentials shown in Fig. 4.11 a. The functional dependence in the case of these

potentials is, independently of the precise potential parameters, monotonously

decaying with increasing colloidal volume fraction. In Fig. 4.11 b, results with

three attraction ranges are presented for ǫ = 2, which is a high interaction

strength. These data show a clear agreement with the results obtained with the

Lennard-Jones potential, this is that decreasing the interaction range translates

into smaller Soret coefficients. Fig. 4.11 c and Fig. 4.11 d show similar results

for smaller interaction strengths, ǫ = 1 and ǫ = 0.5. In this case, the Soret

coefficient seems to be dominated by the repulsive interactions, not showing a

significant distinction for varying interaction range.
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Figure 4.11: a) Sticky potential in Eq. (4.7) with fixed attraction strength ǫ and

various attraction ranges rc. b), c), d) Soret coefficients ST as a

function of the volume fraction φc for different interaction strengths

ǫ/kBT . Arrows indicate increasing attraction ranges.
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4.4.5 Effect of the attraction strength

The relevance of the attraction strength is analyzed with a set of sticky poten-

tials shown in Fig. 4.12 a. Results for various attraction ranges and strengths

are shown in Figs. 4.12 b,c,d. The data are the same that those presented in

Fig. 4.11, although sorted now in different plots for fixed attraction range. In

all cases, it is observed that an increase of the interaction strength increases the

Soret coefficient, or equivalently, the preference of the colloids to accumulate

more effectively on the cold areas. Although the effect is more significant the

larger the attraction range, it is present in all analyzed cases. This result is

in consistency with the discussed argument. Attractive interactions favor the

accumulation of colloids that tend more easily to accumulate in the cold with

less kinetic energy. Note that due to condensation effects, the values of ǫ have a

maximum threshold.
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Figure 4.12: a) Sticky potential in Eq. (4.7) with fixed attraction range rc and

various attraction strengths ǫ. b), c), d) Soret coefficients ST as

a function of the volume fraction φc. Arrows indicate increasing

attraction strengths.
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From all the discussed effects, the attraction is the one that we can really

compare with the experimental data of Ning et. al [78] since the employed

octadecyl coated silica particles are characterized by having difference attractive

inter-colloidal interactions as a function of the average temperature. The trend

found in simulations agree with the experimental trend at low volume fractions,

as explained in Sect. 4.2. The experimental trend at high volume fractions

shows a non-monotonous behavior with varying the intensity of the interaction

which origin is not understood, and which differs to the one we observe in the

simulations.

4.4.6 Effect of the potential shape

Finally we comment on the influence of the shape of the potential on the volume

fraction dependence of the Soret coefficient which can be seen in Fig. 4.13 a. It

can be observed that the values for the Soret coefficient are quantitatively in the

same order although the functional dependence of ST (φc) is slightly different.

We therefore infer that the exact shape of the potential is not very important

when the strength and range of attraction are comparable.
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Figure 4.13: a) Interaction potential LJ 24-12 in Eq. (2.5) and a sticky potential

with range rc = 1.2 in Eq. (4.7), both with ǫ = 1. b) ST for the two

interactions.
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4.5 Analytical estimation of the collective

contribution to the Soret coefficient

The definition of the Soret coefficient in stationary state in Eq. (1.20) can be

formulated in terms the densities of each component as,

ST = − 1

∇zT

(∇zρc

ρc

− ∇zρs

ρs

)
, (4.12)

The density gradients of the colloids ∇zρc and of the fluid ∇zρs refer in this

definition to their values in the presence of both components. In a first approx-

imation though, the contribution due to the presence of the other component

can be neglected, such that each density gradient can be approximated by their

individual equation of state. The standard definition of the thermal expansion

βT can be rewritten as

βT =
1

V

∂V

∂T
= −1

ρ

∂ρ

∂T
= −1

ρ

∇zρ

∇zT
. (4.13)

The idea then is to approximate the Soret coefficient in Eq. (4.12) by

ST ≃ βT,c − βT,s (4.14)

Here βT,s is the thermal expansion coefficient of the fluid is βT,s = 1/T . The

thermal expansion coefficient of the colloids βT,c, can be estimated by considering

the Carnahan-Starling expression for hard spheres [11, 12, 119],

βT,c =
1

kBT

(
1 − 2φ3 + φ4

1 + 4φ + 4φ2 − 4φ3 + φ4

)
, (4.15)

where φ is the average volume fraction of the colloids. This approximation

neglects the softness of the potentials employed in the simulations, what should

not be a problem as discussed in Sect. 4.4.3. Furthermore, the change of the

effective diameter is not taken into account. This should also not have a big effect

on the result, since the estimation of the effective diameter with an expression

like Barker-Henderson [5] has shown to increase the diameter only by 1 % with

our choice of parameters [100]. The comparison of Eq. (4.14) and the simulation

results in Fig. 4.14 show a very reasonably agreement. This shows that the

approximation above is reasonable in the case of our model where the colloids

to not ”expell” the solvent. Besides the considered approximation, the mass

effect discussed in Sect. 4.4.2 will constitute an additional contribution to the
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Figure 4.14: Soret coefficient ST as a function of the volume fraction φ. Symbols

are simulation results with repulsive LJ 12-6 colloid-colloid interac-

tions with ǫ = 1.0 at temperatures T0 = 1 and T0 = 2. Dashed lines

correspond to Eq. (4.14) with βT,c in Eq. (4.15). Solid lines include

the additional contribution Sm
T = 0.02.

two components in Eq. (4.14). The value estimated in Fig. 4.7 as Sm
T ≃ 0.02

shows not to change the agreement of the prediction shown in Fig. 4.14 for what

more precise simulation data would be required.

This analysis and previous findings leads to the conclusion that the collective

contribution to the Soret coefficient in our system is mainly determined by the

equations of state of each of the components. In a further analysis, the argument

needs to be validated for colloids with attractive interactions, and how this

situation changes when single particle effects are included in a more precise

manner.

4.6 Conclusions

In this chapter we have presented a simulation study of the thermodiffusion

properties of concentrated colloidal suspensions. The employed model disregards

the specific interactions of the colloids surface with the surrounding solvent.

These interactions are responsible of the single particle effects which are the main

contribution to the Soret coefficient. This simulation model therefore allows us

to separately investigate the effect of the much less understood contribution of
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collective interactions to the Soret coefficient.

We first discuss and reanalyze the experimental data of Ning et al. [77] by

subtracting the single particle contribution. This enables us to perform compar-

ison of our simulation data with experiments. Our simulation study considers

different inter-particle interactions. These are purely repulsive, or repulsive com-

bined with an attraction range. With the repulsive potentials we consider several

softness at short distances, while with the attraction we study the effect of the

range and strength of the attraction with two different potential shapes.

The main trends found in our study can be summarized as follows. Excluded

volume interactions among colloids disfavor an inhomogeneous distribution of

the colloids with the temperature gradient. In our simulation model this trans-

lates to negative values of the Soret coefficient of increasing magnitude with

increasing concentration. In contrast, attractive interactions favor an inhomoge-

neous distribution of the colloids with the temperature gradient, what translates

into a more effective accumulation of the colloids in the cold areas and therefore

higher values of the Soret coefficient. In this way, increasing the concentration,

always increases the importance of the repulsive interaction, such that the ST

values always decreases. On the other hand, increasing the range or strength of

the attraction leads to larger values of ST , while changing details in the interac-

tion like potential shape or repulsion steepness has small consequences. These

trends nicely explain all our simulation results qualitatively. Experimental re-

sults also follow this behavior but only in the low volume fraction regime, since

conclusions are not very easy to draw from the data at high volume fractions.

A theoretical estimation of our simulation results with repulsive interactions

is obtained by assuming that colloids and fluid distribute along the temperature

gradient following their respective equations of state, this is disregarding the

mutual interactions.

In order to better understand the interplay between the single and collective

contributions to the Soret coefficient further research is required. Complemen-

tary simulations need to include also the single particle contribution to the Soret

coefficient and the colloid-solvent interactions in a more realistic way, such that

the overall behavior of the Soret coefficient can be determined.
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5.1 Introduction

In the previous section we have studied the collective contribution to the Soret

coefficient in a model system with a simplified and computationally effective

coupling of the colloids to the solvent. In the highly diluted regime this cou-

pling results in a very small single particle contribution to the Soret coefficient,

which is related to the mass effect in thermodiffusion. In this way, the Soret

coefficient for concentrated systems was dominated by the collective contribu-

tion. However, experiments show that the Soret coefficient has a large single

particle contribution that originates from colloid-solvent interactions, showing

for example strong dependences on the particle size, temperature or specific

interactions.

In this chapter, we use a more realistic coupling of solvent and colloids and

focus on the single particle Soret coefficient.

5.1.1 Experiments on dilute colloidal suspensions

Temperature dependence

Experimental results show a strong dependence of the Soret coefficient on the

average system temperature. This is true for concentrated and dilute suspen-

sions. In the experiments by H. Ning et al. [77] of colloid suspensions in toluene

with varying concentration it was found that there is a strong temperature de-

pendence for all observed concentrations (see also chapter. 4). The strong tem-

perature dependence of the Soret coefficient is already present at small volume

fractions of colloids (see Fig. 4.1). This indicates that the Soret effect exists if

the presence inter-colloidal interactions is negligible, i. e. that the average dis-

tance between the colloids is much larger than their size or range of interparticle

interactions. For low temperatures the colloids have negative Soret coefficient

and accumulate in the warm side of the system. By increasing the temperature
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the situation reverses and the Soret coefficient is positive, except at very high

concentrations.

In dilute suspensions, this behavior has been analyzed in more detail by Piazza

et al. [44, 85] in aqueous colloid suspensions. Fig. 5.1 shows the temperature

dependence of the Soret coefficient for dilute colloid suspension with different

particle sizes.

Figure 5.1: Experimental results for dilute colloidal suspensions for the depen-

dence of the Soret coefficient on the temperature for different particle

sizes. The results have been obtained with polystyrene particles in

aqueous solutions. Figure from [7].

The temperature dependence can be described by the following empirical ex-

ponential relation which has been first proposed in [44], given by

ST (T ) = S∞
T

[
1 − exp

(
T ∗ − T

T0

)]
. (5.1)

This expression assumes the frequent observation that the Soret coefficient

is negative for small enough temperatures and that there is a temperature T ∗

for which the Soret coefficient changes its sign. The equation also reflects that

ST saturates at large temperatures given by S∞
T . T0 takes into account that for

some substances the temperature dependence is stronger than in others.

Size dependence

Several experimental groups have analyzed the variation of the Soret coefficient

with colloids of different sizes. Braibanti et al. [7] found that the magnitude of
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the Soret coefficient increases linearly with the colloid size at all observed solu-

tion temperatures. A linear size dependence is also found in other experiments

by Vigolo et al [113] and Putnam et al. [91]. Controversially, in experiments

of Duhr and Braun [22] the size dependence of the Soret coefficient is found

to be quadratic. A summary of all these results is shown in Fig. 5.2. So far

there is is no clear explanation why these experiments lead to different results.

Both experiments have been performed with polystyrene colloids in water and

the different scaling of the Soret coefficient with size is still a matter of debate.

Nevertheless, it can be concluded that the Soret coefficient strongly varies with

the size of the colloidal particles (in experiments with highly diluted solutions),

which is another indication of the relevance of the single colloid properties.

Figure 5.2: Particle size dependence of ST , linear/quadratic power law. Contra-

dictory experimental results for dilute colloidal suspensions. Figure

origin: Piazza and Parola [84]. Data origin: full squares: Duhr and

Braun [22], full circles: Braibanti et al. [7], open circles: Vigolo et

al. [113] and open squares: et al. [91].

5.1.2 Thermophoretic force and drift velocity

The description of the dynamic behavior of colloids in a solvent should take into

account that the relevant size and time scales of solvent and colloidal particles

are separated by several orders of magnitude. Furthermore, in the presence of

temperature gradients the non-homogeneous character of the system should be
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5 Dilute colloidal suspensions

considered. We therefore start from the extended Fokker-Planck equation pro-

posed by van Kampen [52] to characterize the particle flow j in dilute systems,

j(r) = ρc(r)µ(r)f − µ(r)∇[ρc(r)kBT (r)]. (5.2)

Here µ(r) is the colloid mobility that we assumed to be related to the self-

diffusion coefficient by the Einstein relation Ds(r) = kBT (r)µ(r). The force f

accounts for the external force fields acting on the particle, which in the presence

of a temperature gradient will be the thermophoretic force F T exerted on the

colloid by the surrounding solvent. It should be emphasized that the external

force f is different from the frictional forces that might be also present in the

system. This equation can be rewritten by adding and subtracting the term

kBT (r)∇µ(r) as

j(r) = ρc(r)vd −∇ [ρc(r)Ds(r)] , (5.3)

where the drift velocity vd is not directly proportional to the driving force,

but has an additional contribution due to the inhomogeneity of the mobility or

equivalently of the self-diffusion coefficient,

vd = µ(r)f + kBT (r)∇µ(r). (5.4)

The validity of this framework in the presence of a temperature gradient has

been proven by means of computer simulations by Yang and Ripoll [126]. In

the case of dilute suspensions that we are concerned with, the comparison of

Eq. (5.3) with the thermodiffusion phenomenological equation for the particle

flux in Eq. (1.17) with ρm = mcρc + mfρ leads to,

vd = −DT∇T − DsβT∇T + ∇Ds, (5.5)

where βT is the thermal expansion coefficient at constant pressure of the solvent.

This expression was also previously proposed by Bringuier in Ref. [9]. It shows

that, against the widely believed opinion [23, 125, 84],

vd ≃ −DT∇T (5.6)

is only an approximation. This approximation will be acceptable when |dDs/dT−
Dsβ| ≪ |DT |, which is the case in most complex fluids. Nevertheless, for com-

plex fluids with low DT /Ds, or for molecular mixtures, the two first terms in

Eq. (5.5) need to be considered. When dealing with colloidal systems, Eq. (5.6)

can be considered, and with vd = µF T , such that

F T = −ST kBT∇T. (5.7)
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5.2 Simulation model

In this chapter, we employ both the expression of the thermophoretic force

and the drift velocity to measure the Soret coefficient. Moreover, we will check

in one case the values of the three terms in Eq. (5.5) what will ensure the validity

of the performed approximations.

5.2 Simulation model

In our simulations we address three of the relevant properties that influence the

single particle Soret coefficient: the influence of the nature of the colloid-solvent

interactions by using different potentials, the effect of the size of the colloids and

the temperature dependence of the Soret coefficient.

5.2.1 Soft colloid-solvent interactions

In contrast to the model system in chapter 4 the colloid-solvent interactions

are taken into account by a potential. The main difference is that the poten-

tial ensures that the solvent particles are excluded from the colloid volume. In

this way the repulsive core determines the size of the colloid. We use soft re-

pulsive and attractive colloid-solvent interactions. For repulsive colloid-solvent

interactions we use the Lennard-Jones potential given by Eq. (2.4). We denote

the parameters of the potentials that refer to colloid-solvent interactions by the

index cs. Then the radius of the colloid is given by σcs. To include possible at-

tractive colloid-solvent interactions we use attractive Lennard-Jones potentials

given by Eq. (2.5). The implementation the colloid-solvent interactions with a

potential concerns the solvent particles in the neighborhood of a colloid. These

solvent particles update their positions considering MD instead of the streaming

step. Besides the MD interaction all solvent particles are included in the colli-

sion step, while the colloids are excluded. Furthermore, since the colloid-solvent

interactions are determined by central forces, the solvent particles do not expe-

rience any forces tangential to the colloid surface. This leads to slip boundary

conditions and creates a friction coefficient, which is given by Eq. (1.23).

Attractive colloid-solvent interactions consider the experimental situation where

the solvent molecules are attracted by the colloid surface. This can be due to

chemical reasons in which the molecules on the colloid surface interact with the

solvent molecules. One example are van der Waals forces. In other cases, the

colloid surface is more complex and can have other materials attached (like poly-
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5 Dilute colloidal suspensions

mers) which may effectively induce soft repulsive or attractive interactions with

the surrounding solvent. The attached substances can also screen interactions of

the solvent with the colloid core. Generally, if we regard the colloid suspension

as a model system for macromolecular solutions, there can be many more types

of interactions that are attractive or repulsive for the solvent. So far we have

not explicitly taken into account the ionic charges that are naturally present or

intentionally added in experiments. These charges together with the charged

surface of the colloid (which can not be avoided in many cases) can also lead

to effective colloid-solvent interactions that might be comparable to the inter-

actions that we have in our model system. In general the actual shape of the

potential that describes the interaction might not be important, but rather the

range and strength of the potential as has been already seen in simulations of

concentrated systems. The potentials used in our simulations study the effects

of repulsion or attraction with different ranges and strengths which mimic ef-

fective colloid-solvent interactions. In chemical terms this is often referred to as

”good” or ”bad” solvent.

5.2.2 Hard colloid-solvent interactions

In contrast with previous soft colloid-solvent interactions other MPC models

[83, 82] describe the colloids as hard spheres with different ways to reflect the

fluid particles at the surface.

A simple way is to apply specular reflection. In this model the velocity com-

ponents of colloid and fluid particle at the time of impact are changed as in

an elastic collision. In this collision the velocity components tangential to the

surface remain unchanged, which leads to slip boundary conditions. The total

momentum and energy are not altered. The momentum transfer during the

collision time can be regarded as a force that acts between colloid and fluid par-

ticle. In this sense the model is similar to the one of a steep repulsive potential

in which the trajectories are computed by MD. However, there is a difference

between these two models that arises from the softness of the potential. In the

picture of a mean force acting on the fluid with a continuous density there are

additional repulsive interactions which are not present in a hard sphere model

that only considers the momentum transfer between fluid and colloid.

In a more commonly used model, the reflection at the surface is considered

with a ”bounce back” operation [59]. This results in no-slip boundary con-
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ditions. This method can be used in combination with virtual particles (see

chapter. 2) in order to fully remove slip at the surface. Virtual particles are

drawn from a Maxwell-Boltzmann distribution with a certain temperature. In

systems with homogeneous temperature this is the average temperature. In our

case, where the temperature is inhomogeneous, the temperature of the virtual

particles would have to be the local temperature. This temperature can be ei-

ther computed from the imposed temperature profile or measured from the local

kinetic energy. Both methods are not optimal. The local temperatures have to

be determined for the collision cells adjacent to the surface of the colloid, which

introduces a discreteness of the temperature profile. Additionally the use of the

imposed temperature neglects spatial and temperoral temperature fluctuations

which are important in thermal diffusion processes. In the case of measurements

of the local temperature, additional computational effort is required. For the

above mentioned reasons we dispense with using this method. Another way

to apply no-slip boundary conditions uses stochastic reflections from the sur-

face, which also requires the local temperature since this method also uses of

Maxwell-Boltzmann distributed velocities. A recent work on fluid-solid bound-

ary conditions, that discusses the implementation of slip, partial slip and stick

boundary conditions is found in [117].

5.2.3 Single Particle Thermodiffusion Algorithm

In a recent study of thermodiffusion of nano-particles by G. Galliero and S.

Volz [34] a method has been introduced to study Soret coefficients for dilute

suspensions, named single particle thermodiffusion algorithm (SPTA). In this

study molecular dynamics simulations have been performed with suspensions

of nano-particles to investigate effects of particle size and solvent properties on

the Soret coefficient. The use of the standard definition of the Soret coefficient

Eq. (1.20) which depends on the mass fraction profile is not of use in this case,

since to obtain a concentration profile with a single particle is difficult due to bad

statistics. A different way of computing the Soret coefficient makes use of the

thermophoretic force. The thermophoretic force is the effective force that the

colloids experience due to the presence of the temperature gradient. The ther-

mophoretic force is related to the temperature gradient by F T = −ST kBT∇T

as is derived in section (5.1.2).

The idea of the SPTA is to measure the thermophoretic force by confining
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Figure 5.3: Thermophoretic force measured with the SPTA, as a function of the

harmonic constant k. Line is a guide to the eye.

the colloid with a harmonic potential acting in all three spatial dimensions (also

referred to as harmonic spring). The average deviation from the neutral position

can then be used to obtain the force exerted by the solvent on the colloid. In

this case the thermophoretic force is counterbalanced by the harmonic force

F T = k(r − r0), where k is the harmonic constant and r − r0 the deviation

of the colloid from the neutral position. We implemented this method with the

colloid in the MPC solvent and checked if the confinement of the colloid with the

harmonic potential affects the thermophoretic force by using different harmonic

constants. This is shown in Fig. 5.3 and it can be seen that the thermophoretic

force is constant within the tested range of k.

We also checked the relation of the force and the temperature gradient as

shown in Fig. 5.4. The results prove that the system is within the linear re-

sponse regime in all employed temperature gradients. This is in contrast with

simulations of polymers in a Lennard-Jones fluid [131] where the measured Soret

coefficient was dependent on the temperature difference.

5.2.4 Simulation setup

For studying the thermophoretic force as described in Sect. 5.2.3 we use a simula-

tion box with periodic boundary conditions as shown in chapter 4 which consists

of two half boxes. In each of the half boxes one colloid is placed in the center and

attached to a spring with a spring constant k. We use the same simulation box

for studying the drift velocity which has been described in Sect. 5.1.2. In this

case the colloids are not attached to a harmonic spring, but can move freely. In
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Figure 5.5: Simulation setup for measuring thermophoretic force in harmonic

potential with velocity exchange algorithm.

both cases, the system it is made sure that the solvent surrounding the colloid

is in its stationary state, before starting to measure the thermophoretic force or

drift velocity.

The effective size of the colloids is determined by the parameters of the colloid-

solvent interaction potential. The solvent particles interact with the colloid

within the cut-off radius of the potential.

We use a method to reduce the computational effort required for the colloid-

solvent interactions that is described in the appendix 7.1. Due to this method

only solvent particles in a shell around the colloid have to be considered for

computing the force in the MD part of the program, similar to a Verlet list.

The solvent-solvent interactions are described by standard MPC dynamics to

obtain the hydrodynamics of the colloid and include its thermal fluctuations.

We use random shift of the collision grid which is performed in every MPC step.

All collision cells within the system are considered equally in the MPC part,

including the partially filled ones next to the colloid.

The solvent is implemented with the MPC parameters h = 0.1, α = 120◦,

ρ = 10 and mf = 1.0. The mass density of the colloid is the same as the mass
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density of the solvent, namely ρm,coll = ρ mf . Then the mass of the colloid is

given by mcoll = ρm,coll Vcoll. The colloid volume for a colloid with diameter d

is Vcoll = 4/3π(d/2)3. With the above number density ρ = 10 of the solvent,

mass values for range from mcoll = 42 for d/2 = σcs = 1 up to mcoll = 5236 for

d/2 = σcs = 5. The timestep of the MD is ∆tMD = 10−3, which corresponds to

a ratio with the MPC collision time of h/∆tMD = 100.

We express the Soret coefficient ST obtained from Eq. (5.7) in units of 1/K

by dividing the value obtained from Eq. (5.7) in our simulation units by a factor

120 K. This refers to taking the potential strength of Argon, which is ǫAr = 999

J/mol corresponding to ǫAr/R = 120 K, with R = 8.314 J/(K mol) the ideal gas

constant.

5.2.5 Determination of the Soret coefficient

Example measurement of FT

We measure the force parallel and perpendicular to the temperature gradi-

ent. The forces in the two directions perpendicular to the temperature gra-

dient should be equal to zero on average, since there is no driving mechanism.

This can be observed in Fig. 5.6 for the x- and y-direction. In the z-direction

parallel to the temperature gradient a non-zero force is measured, which is the

thermophoretic force. The data for the forces in Fig. 5.6 are the averaged over

different individual simulations (runs) and over the number of timesteps of the

simulation. The evolution of the averaged force over simulation time, denoted

as 〈 〈F 〉t〉r (t), fluctuates around an average value. Averages over the number

of runs are denoted by 〈〉r and averages over simulation time steps by 〈〉t. It

should be noted that the data for the force has a large noise amplitude. In the

case of the example measurement with a colloidal particle of diameter d = 6a

(where a is the length of one MPC box) the forces have a maximum amplitude

of about ± 20. The value of the average force in this case is F = 0.74. This is

a signal to noise ratio of about factor 30, such that a large amount of statistics

is required. Fig. 5.7 a) shows that the time average 〈F 〉t of the individual runs

fluctuates strongly. These fluctuations can be decreased by using larger number

of simulation time steps, which implies longer run times. The better choice is

the use of more simultaneous independent runs. The convergence to a final force

value can be seen in Fig. 5.7 b) in which the dependence of the force average

on the number of runs is 〈 〈F 〉t〉r (Nr) is plotted. The dashed lines in Fig. 5.7
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Figure 5.6: Example measurement of the thermophoretic force as a function of

time. Repulsive LJ 12-6 potential with strength ǫ = 1 and colloid

diameter d = 6. System size Lx = Ly = Lz/2 = 42.

a) show the asymptotic standard error. The scattering of the individual runs is

relatively large. The standart error (corresponding to the variance of a normal

distribution of very large numbers of runs) is still very large and not shown here.

The data does not include the error from the averaging over the simulation time

steps, which has not been measured.
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Figure 5.7: a) measurement of the thermophoretic force in different independent

runs. b) convergence of the average force with number of runs.

Fig. 5.7 b) shows that the final value fluctuates only little after 4 runs, which is

supposed to be sufficient to study effects where the Soret coefficients are clearly

separated for different simulation parameters, like for expample the colloid size

or the average temperature. Therefore, we typically use 4 to 8 runs to obtain
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reliable values of the Soret coefficient. But, for example the study of finite size

effects requires a high precision of the individual measurements, since there are

large fluctuations of measurements for a fixed particle size in different system

sizes (can be seen in section 5.2.6 in Fig. 5.9).

Example measurement of the drift velocity

Note that the drift velocity in Eq. (5.4) and Eq. (5.6) refers to the average of

a diffusive motion. In order to measure this drift velocity consider one free

colloid in each of the two halves of the simulation box, and observe the average

displacement from the original positions and their averaged velocities. Initially

the colloids are placed in the center of the two half boxes. The number of

simulation steps is chosen small enough that the displacement of the colloid is

still far away from the boundaries of the simulation box. Because of the short

observation times of the colloid trajectories, a large number of individual runs

is required in order to obtain the average displacement and drift velocity. For

the smallest colloids with a radius of σcs = 1 the number of runs is in the order

of at least 50000 and for the largest colloid with σcs = 4 ca. 1000 have been

performed.

The average displacement of the colloid is shown in Fig. 5.8 a), in which

a simulation time of t has been used. In principle the drift velocity can be

determined from the slope of the displacement. But since the colloid is at rest

at the beginning and is accelerated, it is not known a priori after which time it

moves with a constant drift velocity. Alternatively we measure the drift velocity

from the average of the instantaneous colloid velocities that are know during the

simulation. These are shown in Fig. 5.8 b). The typical exponential increase

towards the asymptotic drift velocity can be seen.

5.2.6 Finite-size effects

Finite size effects for the thermal diffusion factor αT = T0ST can arise from

interaction of the colloid with its periodic images perpendicular to the tempera-

ture gradient and from interactions with the colloid in the other half box of the

simulation system. In order to determine the finite size effect for αT we mea-

sured the thermophoretic force for a fixed particle size and different simulation

box sizes L = Lx = Ly = Lz/2. Fig. 5.9 shows the dependence of αT on the
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Figure 5.8: Example measurement of colloid displacement and drift velocity as

a function of time. The particle radius is σcs = 3 and the colloid-

solvent interaction is a repulsive rLJ 12-6 potential and the mean

temperature is T0 = 1.0. Average of ca. 2000 runs. Dashed line

shows an exponential asymptotic fit v(t) = v∞(1−exp (−t/τ)), with

the relaxation time τ .

ratio of particle size to system size σcs/L characterized by the scaling relation

αT = α∞
T

(
1 + λfs

σcs

L

)
, (5.8)

where α∞
T is the thermal diffusion factor for an infinitely large system and λfs

the scaling factor. The datapoints for each system size have been obtained from

at least 16 independent runs except for the two largest systems which have been

performed with 8 runs. The smallest system is 4 times larger than the diameter

of the colloid and the largest system is 10 times larger. The scaling factor for

the finite size effect λfs = 4.5 ± 1.1.

We use this scaling factor for other simulations with different colloid-solvent
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Figure 5.9: Finite size effect of the thermal diffusion coefficient, which is plot-

ted against the ratio of particle over system size. The value α∞
T

corresponds to an extrapolation for an infinitely large system. The

simulations have been performed with a rLJ 12-6 interaction poten-

tial with strength ǫcs = 1.0, particle size parameter σcs = 3.0 at

temperature T0 = 1.0 with a temperature gradient ∇T = 0.007.

interactions and particle sizes for quantitative comparisons to analytical expres-

sion of the Soret coefficient in sections 5.3.6 and 5.3.7. This might not be fully

correct, but at this point we have no precise data for other colloid-solvent inter-

actions. The trend of a decrease of the thermophoretic force with system size

is found in simulations with repulsive colloid solvent interactions as well. How-

ever, we did not study finite size effects in systems with attractive colloid-solvent

interactions.

A higher precision of the scaling factor can be achieved by more precise mea-

surements for the different system sizes. But since the asymptotic standard

error with decreases with 1/
√

Nr the precision of the measurement increases

only slowly in spite the large amount of computational effort.

The origin of the finite-size effect for the thermophoretic force has not been

studied in detail. The thermophoretic force can be affected by interactions with

the periodic images of the simulation box or by direct interactions between the

two colloids in the their half boxes. It was found that changes of the system size

in the z-dimension (along the temperature gradient) affect the thermophoretic
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Figure 5.10: Diagram of a colloid with its surrounding MPC solvent density in

the presence of a temperature gradient.

force similar as changes of the whole system size, which indicates a direct interac-

tion between the two colloids. However, it has not been analyzed how changes of

Lx and Ly by keeping Lz constant influence the thermophoretic force. One rea-

son for interactions between the colloids might stem from an induced stationary

flow field around the colloids.

5.3 Simulation results

The main objective of this chapter is the characterization of the size and temper-

ature dependence of a single colloidal particle with regard to different colloid-

solvent interactions. These are the most important factors that influence the

single-particle thermophoretic force and the resulting thermal diffusion factor.

5.3.1 Attractive vs. repulsive colloid-solvent interactions

As a first observation it is found that colloids with repulsive colloid-solvent

interactions respond differently to the temperature gradient than colloids with

attractive interactions. It is observed that colloids with repulsive colloid-solvent

interactions are generally driven to the hot side of the system, this is they display

a negative single particle Soret coefficient. In contrast, the Soret coefficient can

be positive or negative for attractive colloid-solvent interactions, depending on

the system temperature.

The thermophoretic force on a colloid in a MPC fluid is governed by an in-

terplay of the temperature and density gradient of the solvent as sketched in

Fig. 5.10. Particles with higher temperatures penetrate further into the repul-

sive part of the potential, such that in a temperature gradient particles in the
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hot side will push the colloid to the cold side. On the other hand, due to the

thermal expansion of the solvent there are more particles interacting with the

colloid on its cold side. This will imply that for attractive interactions the colloid

is pulled to the cold side and for repulsive interaction ones the colloid is pushed to

the hot side. This effect can explain that colloids with repulsive colloid-solvent

interactions display negative Soret coefficient, while colloids with attractive in-

teractions a positive one. With increasing temperature, the repulsive part of the

attractive LJ potential becomes more important what can explain a sign change

of ST .

5.3.2 Size dependence of the Soret coefficient

We investigate the size dependence of the Soret coefficient for colloids with

diameters ranging from d = 2a to d = 10a, where a is the length of one MPC

collision cell. Diameters which are in the order of one collision cell size or less are

not suitable for MPC simulations since hydrodynamic interactions and energy

conservation are not ensured for scales smaller than the collision cell size. Larger

diameters have not been investigated because of the large computational effort,

arising mainly from the large number of colloid-solvent interaction pairs. The

size of the colloid is determined by its repulsive core potential, given by σcs in

Eq. (2.4) and Eq. (2.5). Then the diameter of the colloid is d = 2σcs.

It is expected that the thermal diffusion coefficient of a single colloid which

is mainly determined by colloid-solvent interactions depends on the form of the

potential that we apply. We have used purely repulsive and attractive potentials

in which we vary the strength and range. We compare our results for the size

dependence of the Soret coefficient with those found in the experiments (see

Fig. 5.2) in which the controversial results of a linear and quadratic power law

have been observed. Therefore a special interest regards the exponent of the

power law that we use to fit our data.

The functional form of the thermal diffusion factor αT = T0ST is

αT = α0

T (ǫ, n, kBT, Σ)

(
d

a

)b

, (5.9)

where Σ is a set of parameters that refer to the solvent on which the thermal

diffusion factor can possibly depend. This can be for example the density ρ of

the fluid or the shear viscosity ν.
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Repulsive potentials

First we analyze the size dependence for a purely repulsive potential. The col-

loids modeled in this way can be regarded as colloids with a soft repulsive core.

The steepness of the core is varied by changing the exponent and the strength

parameter ǫ of the repulsive Lennard-Jones potential (given by Eq. (2.4)) that

we apply.

Fig. 5.11 a) and Fig. 5.11 b) show the results for different colloid-solvent inter-

actions defined by different repulsive Lennard-Jones potentials. The exponents
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Figure 5.11: a) dependence of the single particle Soret coefficient on the particle

size for different repulsive Lennard-Jones potential. The average

temperature is T0 = 1.0. b) double logarithmic plot of the data,

cubic power law dependence c) steepness of the different potentials.

Simulations with fixed σcs/L = 1/12 ratio.

b of the power law and its prefactors α0

T are summarized in Table 5.1. It can

observed that the power law is almost cubic in all cases. This observation is in

contradiction to what has been observed in experiments. However, this can be

explained by the nature of the colloid-solvent interaction potential that we use.
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5 Dilute colloidal suspensions

b α0

T

rLJ 12-6, ǫ = 1.0 3.0 -0.0036

rLJ 12-6, ǫ = 4.0 3.1 -0.0022

rLJ 24-12, ǫ = 1.0 3.1 -0.0015

rLJ 24-12, ǫ = 4.0 2.8 -0.0016

Table 5.1: Size dependence of the thermal diffusion factor for different repulsive

potentials. Fits to the simulation data with the powerlaw in Eq. (5.9).

Due to the form of the potential an increase of the particle size does not only

increase the surface of the colloid but also the range of the interaction. To be

more precise the width of the layer in which the solvent particles interact with

the colloid. That means in total an increase of the colloid diameter increases the

”interaction volume” in which the number of interacting fluid particles scales as

σ3
cs (see also end of Section 5.3.7 Fig. 5.23).

The steepness of the potential (which corresponds to the slope, i.e. force)

is proportional to ǫn and thus changes in the strength ǫ and exponent n have

similar effects as can be seen in Fig. 5.11 c). It is observed that with an increase

of ǫ and n the thermal diffusion factor αT = T0ST decreases. That means that for

a softer repulsive core potential the colloid experiences a larger thermophoretic

force. A possible explanation is that for softer potentials the solvent particles

can penetrate the interaction region more deeply, resulting in a larger number

of particles in the interaction region and a larger total force between colloid and

solvent.

Attractive potentials

The size dependence of the Soret coefficient is studied for different types of

attractive Lennard-Jones potentials. For attractive colloid-solvent interactions

the Soret coefficient is positive if the temperature to strength ratio is T0/ǫ . 10

and negative otherwise. This clearly indicates that the thermophoretic force

is strongly influenced by the nature of the colloid-solvent interactions, as one

has a very different behavior when the interactions are purely repulsive. It also

supports the aforementioned explanation that the total force of the colloid results

from the larger number of particles on the cold side which pull it to the cold

side in the case of attractive interactions. In the case of repulsive interactions

100



5.3 Simulation results

-2

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

S
S

P
T
   

 [1
/K

]

d

a)
LJ 24-12, ε = 0.1
LJ 96-48, ε = 1.0

 0.01

 1

 2  4  8

| S
S

P
T
  |

   
 [1

/K
]

d

b)

neg.

pos.

LJ 24-12, ε = 0.1
LJ 96-48, ε = 1.0

Figure 5.12: Dependence of the Soret coefficient on the particle size for different

attractive Lennard-Jones potentials. The average temperature is

T = 1.0. Simulations with fixed σcs/L = 1/12 ratio. a) data

with power laws fits b) double logarithmic plot, cubic power law

dependence

the colloid is pushed towards the hot side. However, in the case of attractive

potentials the effect consists of a temperature-dependent interplay between the

forces of the attractive region and the repulsive core. This will be discussed

again in more detail in section 5.3.3.

Similar to the case of repulsive interactions the size dependence of the Soret

coefficient is cubic. The reason is again that an increase of the particle size with

the LJ parameter σcs increases the ”interaction volume” around the colloid. The

interaction volume increases similar to the case of a repulsive potential as σ3
cs,

since the width of the interaction volume increases with σcs and the surface

area with σ2
cs. Thus the number of particles interacting with the colloid and

the resulting thermophoretic force increases as σ3
cs. This will be discussed in

more detail at the end of this chapter in section 5.3.6 and 5.3.7. The results

b α0
T

LJ 24-12, ǫ = 0.1 3.2 -0.00044

LJ 96-48, ǫ = 1.0 2.9 0.0087

Table 5.2: Size dependence of the Soret coefficient for different attractive poten-

tials. Fits to the simulation data with the powerlaw in Eq. (5.9).

presented in Fig. 5.12 and Table 5.2 have been obtained with an attractive
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Figure 5.13: Dependence of the Soret coefficient on the particle size for different

attractive Lennard-Jones potential. The average temperature is

T = 1.0. Simulations with fixed σcs/L = 1/12 ratio.

LJ 24-12 potential with a strength of ǫ = 0.1 and a LJ 96-48 potential with a

strength of ǫ = 1.0. The strength of the LJ 24-12 potential has been chosen

very low because it is observed that due to the compressibility of the solvent

and attraction of the colloid, there is an increased density of solvent around the

colloid. The size dependence of the Soret coefficient is cubic in both cases. A

quantitative description of the density close to the colloid surface is discussed in

Sect. 5.3.6.

Further results with large potential strengths are shown in Fig. 5.13 and Ta-

ble 5.3. The exponent of the powerlaw is quadratic in this case. The prefactor

of the powerlaw of the thermophoretic diffusion factor α0

T (ǫ, n, kBT, Σ) increases

as ǫ decreases, which is again similar to the case of repulsive interactions, but

might be of different origin here.

These results might not be representative for the size dependence of the Soret

coefficient due to the increased density, which is up to 20 times the bulk value. It

is not clear at the moment how the increased density affects the size dependence.

But it can be noted that theoretical considerations show that the exponent of the

power law is smaller when the colloid surface has stick instead of slip boundary

conditions [71, 124]. It could be that due to the large density next to the solvent,

the solvent particles that arrive from the bulk are somehow immobilized, leading

to an effectively sticky surface. Whether this is true or other mechanisms are at

work is not known presently.
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b α0

T

LJ 24-12, ǫ = 1.0 2.2 0.087

LJ 24-12, ǫ = 4.0 1.8 0.066

Table 5.3: Size dependence of the Soret coefficient for different attractive poten-

tials. Fits to the simulation data with the powerlaw in Eq. (5.9).
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Figure 5.14: Dependence of the Soret coefficient on the temperature for repulsive

LJ 12-6 with a strength ǫ = 1 and particle radius σcs = 3.

5.3.3 Temperature dependence

The temperature dependence of the Soret coefficient in one case of repulsive

colloid-solvent interactions can be seen in Fig. 5.14. The exponential behavior

with an increase of the Soret coefficient with temperature towards a saturation

value can be observed in simulation. This is shown by the exponential fit to the

simulation data by means of Eq. (5.1). In contrast to experiments there is no sign

change of the Soret coefficient with increasing temperature. In our simulations

with repulsive LJ potentials the colloid always experiences a thermophoretic

force towards the warm side of the system. The force and the corresponding

Soret coefficient converge towards zero for large temperatures.

In Fig. 5.15, we show the temperature dependence of the Soret coefficient for

one example of attractive colloid-solvent interactions. Here we find that at low

temperatures the thermophoretic force drives the colloid towards the cold side.

By increasing the temperature the Soret coefficient decreases and eventually

changes its sign, so that the colloid is driven towards the warm side of the
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Figure 5.15: Dependence of the Soret coefficient on the temperature for attrac-

tive LJ 24-12 with ǫ = 0.1 and σcs = 3.

system.

At low temperatures the thermophoretic force is dominated by the attractive

forces, which drive the colloid downwards the temperature gradient, since there

is a larger number of particles on the cold side of the colloid surface, than on

its warm side. Forces that arise from the repulsive core dominate the ther-

mophoretic force at high temperatures. In this case the solvent particles are

distributed more closely to the repulsive core due to their larger kinetic energies

and drive the colloid to the hot side.

5.3.4 Diffusion coefficient in a homogeneous fluid

The Soret coefficient of a single colloid is related to the thermophoretic mobility

DT and the self diffusion coefficient Ds by ST = DT /Ds. ST can be determined

by measurements of the thermophoretic force of a single colloid and DT can be

obtained from measuring the drift velocity of the colloid. These two independent

measurements of thermophoretic quantities in temperature gradient systems can

be compared when the self diffusion coefficient Ds is known.

The diffusion coefficient of a single colloidal particle is related to its friction

coefficient by the Einstein relation Eq. (1.22). Together with the Stokes expres-

sion for the hydrodynamic friction coefficient this relation can be used to verify

the correct hydrodynamic behavior for our model of the colloid and fluid. For

a spherical particle with slip-boundary conditions the Stokes friction coefficient

is given by Eq. (1.23)
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5.3 Simulation results

The diffusion coefficient is determined from the mean square displacement of

the colloid in a system with homogeneous temperature and density.

Ds =
1

6t

〈
(r(t) − r(t0))

2
〉
. (5.10)

The self diffusion can be measured in equilibrium, since the employed temper-

ature gradients are small enough to have linear response. Measurements of the
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Figure 5.16: Self-diffusion coefficient vs. particle size for repulsive LJ colloid-

solvent interactions. Symbols are simulation results, circles with

fixed system size L = 30, and triangles with fixed ratio σ/L = 1/12.

Lines correspond to the Einstein-relation in Eq. (5.14). The blue

dashed line is the first term with Stokes friction (Eq. (1.23)) and the

solid line corresponds to both terms in Eq. (5.14), including Enskog

friction and the finite-size correction of the Stokes friction. The red

dashed line is a fit to Eq. (5.14) with a colloid radius R+∆R, with

∆R = 0.35.

self-diffusion coefficient for different colloid sizes are shown in Fig. 5.16. We

have measured the self diffusion coefficient in a cubic system with fixed length

L = 30 and with a fixed ratio σcs/L = 1/12. Both results differ only marginally.

We compare the data to the theoretical Einstein relation Eq. (1.22), where the

friction coefficient is given by the Stokes relation for slip boundary conditions

Eq. (1.23).

The deviation of results from the Stokes-Einstein expression can be partially

explained by Enskog friction and finite size effects. For the finite-size correction
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5 Dilute colloidal suspensions

of the Stokes friction ξS = 4πησcs we have used the relation

ξ′S = ξS(1 − 2.837
σ

L
), (5.11)

as given in [24, 64] and with the Stokes friction ξS given in Eq. (1.23). The

finite-size correction results from long-ranged hydrodynamic interactions and

decreases with increasing system size (i. e. small simulation boxes enhance the

Stokes friction).

Furthermore, one has to take into account the additional Enskog contribution

to the friction, arising from for local kinetic Brownian collisions. The Enskog

friction is given by

ξE =
8

3

√
2πkBTmcmf

mc + mf

ρσ2

csg(ρ), (5.12)

as in ref. [43], where ”the pair distribution at contact” g(ρ) can be set to 1 as

in [82]. The total friction is then obtained by

1

ξt

=
1

ξ′S
+

1

ξE

, (5.13)

so that the one particle self diffusion coefficient is

Ds =
kBT

ξt

=
kBT

ξ′S
+

kBT

ξE

. (5.14)

The Enskog friction is a local effect and is not affected by the finite size of

the system [82]. Enskog friction is important when the granular nature of the

solvent becomes important and can not be described as a continuous medium

which is the case for small colloidal particles. In Fig. 5.16 the simulation results

are compared to the Einstein relation in Eq. (5.14), where in one case only

the Stokes friction is taken into account and in the other case the total friction

including the finite size correction for the Stokes friction. It can be seen, that the

simulation data lies in between both theoretical curves. The data in Fig. 5.16 can

be fitted by using a free parameter for the colloid radius R + ∆R in Eq. (1.22).

The fit result is then ∆R = 0.35, which corresponds to an increased colloid

radius.

5.3.5 Thermal diffusion coefficient from the drift velocity

In colloidal systems, the Soret coefficient can be determined from the drift ve-

locity by rewriting Eq. (5.6) as

ST = −Ds

vD

∇zT
. (5.15)
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5.3 Simulation results

This allows to compare the simulation results of ST obtained from the drift

velocity vD with the previous results obtained from the thermophoretic force

FT .
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Figure 5.17: Size dependence of the Soret coefficient ST . Comparison of results

from ”force measurement” and ”drift velocity measurement”. Re-

pulsive 12-6 potential with strength ǫ = 1 at temperature T0 = 1

at constant ratio σcs/L = 1/12.

We use the case of repulsive colloid-solvent interactions with a repulsive Lennard-

Jones 12-6 potential and a potential strength of ǫ = 1.0. Fig. 5.17 shows that the

results for the Soret coefficient determined from measurements of the drift veloc-

ity are in agreement with the results of the measurements of the thermophoretic

FT . Moreover, these results prove that confining the colloid with a harmonic

potential is not relevant for the thermal diffusion coefficient.

In a complementary analysis, we want to check that the validity of the different

expressions for the relation of the drift velocity and the thermophoretic mobility

in Eq. (5.5) and Eq. (5.6). Reformulating Eq. (5.5) and using ST = DT /Ds leads

to

ST =
1

Ds

∂Ds

∂T
− βT − 1

Ds

vD

dT/dz
. (5.16)

The thermal expansion coefficient for the MPC solvent is known to be βT =

1/kBT . Since the simulations have been performed at temperature T0 = 1, we

have βT = 1. The term ∂Ds/∂T is obtained from equilibrium measurements

of Ds at different temperatures. From these measurements, which are shown

in Fig. 5.18 it follows that ∂Ds/∂T = 0.0059. The diffusion coefficient at T0

is Ds = 0.0065. That means that the first two terms Eq. (5.16) are in the
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Figure 5.18: Temperature dependence of the self diffusion coefficient Ds from

equilibrium measurements at different system temperatures T0.

order of 1. The last term is can be estimated to be about 25, which is much

larger than the first two terms. This quantitative analysis confirms that in the

case of macroscopic colloids with Lennard-Jones colloid-solvent interactions the

additional terms in Eq. (5.5) compared to Eq. (5.6) can indeed be neglected.

5.3.6 Analytical determination of the thermophoretic force

The total force of all fluid particles interacting with the colloid can be calcu-

lated analytically, by integrating over all interactions between colloid and solvent

particles. The total force is

F total =

∫

R3

d3rρ(r)f cs(r), (5.17)

where the center of the coordinate system is in the center of the colloid. Here

f cs(r) is the force density given by the colloid-solvent interaction potential

f cs(r) = −∇Ucs(r). (5.18)

The discrete solvent particles can be described by a continuous stationary

density ρ(r) which is understood as the average local density neglecting spatial

and temporal fluctuations. Thus resulting total force F total is the average force

due to an average continuous density of solvent particles. On the basis of local

equilibrium the density within the colloid-solvent interaction potential is given

by

ρ(r) = ρbulk(r) exp [−Ucs(r)/kBT (r)], (5.19)
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5.3 Simulation results

where ρbulk(r) is the bulk density of the solvent, which is given by the equation

of state of the solvent (see chapter 3) and T (r) is the temperature as given in

Eq. (3.2). For small temperature gradients the bulk density can be approximated

linearly by

ρbulk(r) = ρ

(
1 − βT

∆T

Lz

z

)
, (5.20)

where βT is the thermal expansion coefficient of the solvent and ∆T = Th − Tc

the difference between the boundary temperatures.

A comparison of the density computed from Eq. (5.19) with simulation data

can be seen in Fig. 5.19, for an attractive LJ 12-6 potential. In the region of the

attractive part of the potential the solvent density increases with respect to the

bulk value. The maximum value of the density is proportional to exp (ǫ/kBT ),

which can be inferred from Eq. (5.19). This means that for strong attractive

potentials and low temperatures there is an largely enhanced surface density at

the colloid. Within the repulsive part the density decays quickly. The decay is

slower for higher temperatures and there is an asymmetry of the decay on the

cold and hot side of the colloid which contributes to the total force Ftotal. For

purely repulsive potentials the surface density of the solvent is similar except

for the peak. Previous simulations of polymers that included attractive colloid-

solvent interactions in a hybrid model of MPC and MD in polymer simulations

have not reported a density increase [60].

Solving Eq. (5.17) shows (see appendix 7.2), that the only non-vanishing con-

tribution is parallel to the temperature gradient whereas the perpendicular terms

are zero. In the appendix 7.2 it is shown that Eq. (5.17) can be reduced to

Ftotal =
4

3
π

ρ

T0

∆T

Lz

∫ rc

0

dr r3
∂Ucs(r)

∂r

[
Ucs(r)

T0

− T0βT

]
exp

[
−Ucs(r)

T0

]
, (5.21)

which can be solved numerically. This expression for the thermophoretic force

can be used to calculate the Soret coefficient by means of Eq. (5.7). A com-

parison of the analytical and simulation results of the Soret coefficient is shown

in Figs. 5.20 and 5.21, where we have obtained the simulation data of mea-

surements of the thermophoretic force with the colloid confined in a harmonic

potential. The simulation data have been rescaled by the finite size relation in

described in section 5.2.6. Note that the finite size relation can be different for

different potentials. We have not analyzed this with sufficiently precise data in

simulations and assume here that the relation of section 5.2.6 can be used.
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Figure 5.19: Local fluid density as a function of the distance from the center

of the colloid. Symbols are the simulation data, the solid line is

the analytical expression obtained with Eq. (5.19) and the dashed

line is the employed potential. Average density ρ = 10. a) LJ 12-6

potential, strength ǫ = 1.0, colloidal particle radius σcs = 3.0 and

solvent temperature is T = 2.0. b) rLJ 12-6 potential, strength

ǫ = 1.0, colloidal particle radius σcs = 1.0 and solvent temperature

is T = 1.0.
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Figure 5.20: Dependence of the Soret coefficient on the particle size and com-

parison to analytical expression for a) repulsive LJ 12-6 with ǫ = 1

and T0 = 1 and b) LJ 24-12, ǫ = 0.1 and T0 = 1. Simulation

data rescaled with finite size correction Eq. (5.8) (constant ratio

σcs/L = 1/12) and theoretical values divided by factor 2.
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Figure 5.21: Dependence of the Soret coefficient on the temperature for a) re-

pulsive LJ 12-6 with ǫ = 1 and σcs = 3 and b) LJ 24-12 ǫ = 0.1

and σcs = 3. Comparison to analytical expression. Simulation data

rescaled with finite size correction Eq. (5.8) with (σ/L = 1/12) and

theoretical values divided by factor 2.

It can be shown that the total force Ftotal which qualitatively agrees with the

simulated thermophoretic forces, apart from a systematic deviation of the results

by a factor of about 2 (theory is larger than simulations by a factor 2). The

analytical data in Figs. 5.20 and 5.21 is already rescaled by this factor. At the

moment it is not clear where this deviation originates from. It is conspicuous that

the deviation is systematic in all cases and is also not depending on the direction

of the thermophoretic force. One reason might be that there is an additional

contribution to the thermophoretic force which is related to momentum exchange

between solvent and colloid. Independently of these findings, it is observed

that FT is proportional to the number of particles within the cut-off radius

of the potential. The volume in which the solvent particles interact with the

colloid is proportional to the thickness of the interaction shell and the surface of

the colloid. In the case of a normal Lennard-Jones potential the cut-off radius

increases with the particle size, which means that the number of particles within

the interaction shell increases proportional to σ3
cs, which results in a cubic size

dependence of the thermophoretic force and Soret coefficient.

5.3.7 Displaced Lennard Jones potential

With a LJ potential, in which the interaction shell thickness is kept constant,

a quadratic behavior for the Soret coefficient can be expected since then the
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5 Dilute colloidal suspensions

number of solvent particles in the interaction shell is proportional to the surface

of the colloid. This can be achieved with a Lennard-Jones potential by increasing

the colloid size not by increasing σ, but instead by displacing the potential by

the desired particle size and keeping σ constant. The displacement in r-direction

of the potential is ad. Then the diameter of the colloid is the given by

d = 2(ad + σcs) (5.22)

and σcs can be used to modify the range of the potential. The displaced Lennard-

Jones potential (see for example Ref. [79]) for repulsive interactions is given by

U rdLJ (rij) = 4ǫ

[(
σcs

rij − ad

)2n

−
(

σcs

rij − ad

)n
]

+ ǫ, rij < rc , (5.23)

where the cut-off radius is

rc = ad + 2
1

n σcs. (5.24)

The displaced Lennard-Jones potential for attractive interactions is given by

UdLJ (rij) = 4ǫ

[(
σcs

rij − ad

)2n

−
(

σcs

rij − ad

)n
]

, rij < rc . (5.25)

Here the cut-off radius is chosen with the reference of the value of the standard

Lennard-Jones potential at r̃c = 2.5σcs, denoted as U12−6

ǫ=1 = U12−6

ǫ=1 (r̃c), such that

it can be estimated as

rc = ad + 2
1

n



 1

1 −
√

1 +
U12−6

ǫ=1

ǫ





1

n

σcs . (5.26)

The actual shape of the potential in case of attractive interactions is shown in

Fig. 5.22 for different values of the diameter.

The number of solvent particles that interact with the colloid Nint can be

calculated from

Nint =

∫

{r| r∈R3,r≤rc}

d3rρbulk(r) exp [−Ucs(r)/kBT (r)]. (5.27)

In Fig. 5.23 it is shown that the number of solvent particles that interact with

the colloid scales with the colloid diameter with a quadratic power law in the

case of a displaced repulsive LJ potential and with a cubic power law in the case

of a standard repulsive LJ potential. This is the same scaling that holds for the
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Figure 5.22: Attractive diplaced LJ potential in Eq. (5.25) for different colloid

diameters. The range of interaction remains constant for all particle

sizes.

thermophoretic force and thus the single particle Soret coefficient in our model.

For attractive interactions the situation is similar. Note that the numbers of

interacting particles are not rescaled by a factor two, as in the case of the Soret

coefficients.

It can be observed in simulations that the size dependence of the Soret coeffi-

cient with a potential in which the range does not change with the particle size,

is indeed quadratic. This is shown in Fig. 5.24 a) for a simulation with a repul-

sive displaced Lennard-Jones 12-6 potential with a strength of ǫ = 1.0 at a mean

temperature of T0 = 1.0. Fig. 5.24 b) shows the numerical solutions of Eq. (5.21)

for a displaced LJ 12-6 potential with strength ǫ = 1 and range σcs = 0.25 at

temperature T0 = 1.0. The simulation data have been rescaled by the finite size

relation described in section 5.2.6 for comparisons to the theoretical values.

Fig. 5.25 shows the a double logarithmic plot, to demonstrate the different

power laws for the scaling of the Soret coefficient with particle size for the

standard LJ potential and the displaced LJ potential.

Note that the displacement of the LJ potential must be considered in the

integration range in Eq. (5.17) and Eq. (5.21) by integrating from ad to rc.

Furthermore, it has been observed in the numerical solutions of Eq. (5.21), that

eventually larger reference cut-off radii of the standart LJ potential in Eq. (5.26)

are needed, like for example r̃c = 5.5σcs instead of r̃c = 2.5σcs. Otherwise the

potential is cut-off too early and the size scaling of the Soret coefficient deviates

from a quadratic dependence (smaller exponent). This is more important when
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Figure 5.23: Number of interacting solvent particles with the colloid depending

on the colloid size. Simulation results and theoretical analysis from

Eq. (5.27). a) displaced repulsive LJ 12-6 potential with ǫ = 1.0,

σcs = 1.0, and T0 = 1.0. Particle size changed displacing the LJ

potential by ad in Eq. (5.23) b) standard repulsive LJ 12-6 potential

with ǫ = 1.0 and T0 = 1.0. Particle size changed by varying σcs

Eq. (2.4).
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Figure 5.24: Dependence of the Soret coefficient on the particle size. Simu-

lation results and theoretical analysis. a) displaced repulsive LJ

12-6 potential with ǫ = 1.0, σcs = 1.0 and T0 = 1.0. Simulation

data rescaled with finite size correction Eq. (5.8) (constant ratio

σcs/L = 1/12) and theoretical values from numerical evaluation of

Eq. (5.21) divided by factor 2. b) displaced attractive LJ 12-6 po-

tential, ǫ = 0.25, σcs = 1.0 and T0 = 1.0. Theoretical values from

numerical evaluation of Eq. (5.21), Reference cut of in Eq. (5.26)

r̃c = 5.5σcs.
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Figure 5.25: Dependence of the Soret coefficient on the particle size. Simulation
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dard repulsive LJ 12-6 potential with varying σcs.

small potential strengths ǫ are used. The resulting cut of radii for the displaced

LJ potential are still not much larger or even smaller than applying LJ potentials

from Eq. (2.5). The computational effort should therefore be not larger. This

has however, not been confirmed through simulations and tests (analytic and

simulations) for appropriate cut-off radii in Eq. (5.25) would be needed.

5.4 Conclusions and outlook

Numerous experimental investigations have shown that the thermophoretic prop-

erties of a colloidal suspension in the limit of dilute solutions depend strongly

on the particle size and on the average system temperature. These properties

are determined by the specific interactions of the colloid with the surrounding

solvent, which might depend on the nature of the system under study.

In this chapter a simulation study of the thermodiffusion properties of a col-

loidal system in the dilute regime is presented. The employed simulation model

considers explicit potential interactions between the solvent particles and the col-

loid, allowing to investigate how different interactions vary the thermodiffusion

properties of the solution. We study the influence of different factors, namely

the attractive or repulsive character of the interaction, the average temperature

of the system, the size of the colloidal particle, the softness of the repulsive

interaction, and the strength, and the range of the attractive interactions.

Two different approaches to measure the Soret coefficient have been employed.
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The first one consists in attaching the colloid to a harmonic spring. The average

deformation of the spring can then be related with the thermophoretic force

what quantifies the Soret coefficient. The second approach consists in measur-

ing the drift velocity of the free colloid. Both methods can be compared by

employing the corresponding self-diffusion coefficient. The good agreement of

the measurements confirms the validity of the performed approximations. Fur-

thermore, we propose an analytical determination of the Soret coefficient that

explains quite satisfactory the obtained simulation results.

The thermophoretic behavior of one colloid in a solvent can be understood

as the interplay of various effects. We consider first the variations of tempera-

ture and density around the colloid surface. Particles with higher temperatures

penetrate further into the repulsive part of the potential than those with lower

temperature. In a temperature gradient then, particles in the hot side will push

the colloid to the cold side. Simultaneously though, the solvent equation of state

translates into a larger number of particles interacting with the colloid on its

cold side than on the warm side. This implies that when the interactions are

attractive, the colloid is pulled to the cold side, while for repulsive interactions

the colloid is pushed to the hot side. This effect can explain our results that

show that colloids with repulsive colloid-solvent interactions display negative

Soret coefficient (colloid goes to warm), while colloids with attractive interac-

tions show a positive one (colloid goes to cold). With increasing temperature,

the repulsive part of the employed potential becomes more important, what can

explain a sign change of ST from positive to negative.

Colloids with potentials with a softer repulsive core show to experience larger

thermophoretic forces. The softer the repulsion, the higher the penetration

of the solvent particles, what results on a higher number of particles in the

interaction region and therefore larger forces. We investigate the dependence

of the Soret coefficient as a function of the average temperature. Here the

qualitative behavior is very different for colloids that have a certain attraction

interaction range, or for those that are purely repulsive. Attractive interactions

show a crossover from positive to negative ST values, what can be justified

with the above argument, as the increasing importance of the repulsive core.

Purely repulsive interactions remain being negative, but with increasing value.

Experimental observations report though a sign change from negative at low

temperatures to positive at high ones, with a saturation value at very high

temperature values. Our simulation with attractive interactions are therefore in
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disagreement with this behavior, but not the simulations with purely repulsive

interactions.

We further analyze the dependence of the Soret coefficient as a function of

the colloid diameter, and we observe that in most of our results this dependence

is cubic. This can be explained by the nature of the colloid-solvent interaction

potential that we use, in which an increase of the colloid size increases also the

interaction range. An increase of the colloid diameter increases then the ”in-

teraction volume” in which the number of interacting solvent particles scales

with the cube of the colloid size. In order to check this argument, we employ

a different type of potential in which the interaction range is constant with in-

creasing colloid diameter what implies a quadratic increase of the ”interaction

volume”. The resulting Soret coefficient shows, to a good approximation, to in-

crease quadratically with the diameter. Note though that experimental results

exhibit mostly a linear dependence with the exception of one group that observes

a quadratic dependence. Another factor that has been reported to influence the

thermophoretic properties of colloids is the coupling at the interface. The dif-

ference is if the solvent adapts to colloid by having the same velocity field at the

surface (stick boundary conditions), or if there is a velocity difference between

them (slip boundary conditions). The employed potential interactions in this

work are central and therefore display slip boundary conditions. Additional sim-

ulations with a model that includes stick boundary conditions would clarify the

influence of this contribution and if it will lead to a different size dependence.

Finally, it would also be interesting to extend the present study to understand

the importance of the characteristics of the employed solvent. This could be

done by modifying the MPC solvent such that its compressibility and thermal

expansion would not be those of an ideal gas.
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Thermodiffusion in colloidal suspensions includes hydrodynamic, diffusive and

chemical effects. These are in general strongly influenced by interactions between

colloids and the solvent and additionally by mutual colloid interactions.

We have used a mesoscopic simulation method to study suspensions of colloids

with a temperature gradient. The method is known as multi-particle collision

dynamics and has been used in many complex systems simulations, such as

for example star polymers in shear flow or blood cells in capillary flow. The

method bridges the time and length scale gap that arises from the suspended

colloids and the fluid particles. The method locally conserves momentum and

thus includes hydrodynamic interactions. Also, the method locally conserves

energy and enables the transport of heat. Furthermore, thermal fluctuations are

naturally included and diffuse behaviors are properly taken into account.

First we analyzed the properties of the MPC solvent in the presence of a

temperature gradient in detail. We investigate different implementations re-

garding systems in confinement or in bulk. In confinement, hard walls are used

as boundary conditions and the temperature gradients are imposed in two ways.

Thermostats are applied in the boundary layers in which the kinetic energies

of the solvent particles are rescaled. Second we consider the effect of virtual

particles placed at the walls, what means that the walls act as thermal baths

that we can fix at different temperatures. A third model accounts for the solvent

with open boundaries and does not impose boundary temperatures, but a heat

flux which leads to a temperature gradient. For all of the investigated methods

the temperature profile is linear in the bulk region for the range of temperature

gradients that we used. All of the above methods can be applied as long as the

solvent parameters are chosen such that the mean free path of the fluid parti-

cles corresponds to the liquid like regime. For larger mean free bath boundary

effects occur and the temperature profile does not adapt well to the boundary

temperatures. In simulations of the heat conductivity we obtain a reasonable

agreement with existing analytic predictions. The solvent parameters determine
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the viscosity and other hydrodynamic properties. With this mesoscopic imple-

mentation, we have investigated colloidal suspensions with different simulation

models.

The thermophoretic properties of colloidal suspensions are determined by two

types of effects. The collective effects due to the simultaneous presence of many

colloids and their interactions; and single particle effects due to the interaction

of the colloid surface and the surrounding solvent.

The first method that we used, included colloid-colloid interactions and has

been used to study collective effects in concentrated systems. The coupling

to the solvent has been included in the MPC collision step, where momentum

between the particles is exchanged. This coupling has resulted in a small contri-

bution to the Soret coefficient that was attributed to the thermodiffusive mass

effect. This contribution was independent on the concentration within the inves-

tigated range. We studied the collective contribution with repulsive and attrac-

tive interaction potentials. Repulsive interactions disfavor an inhomogeneous

distribution which results in increasing negative Soret coefficients with increas-

ing volume fraction of colloids. Experiments, when analyzed with respect to the

collective contribution, show a similar trend. Colloidal particles with attractive

interactions facilitate an inhomogeneous distribution in the temperature gra-

dient. They accumulate in the cold region with respect to the solvent at low

average volume fractions of the suspension. Eventually, when repulsive overlap

of the interaction potential dominates, they are driven more to the warm side.

This results in positive Soret coefficients at low volume fractions and negative

Soret coefficients a high volume fractions. This behavior is enhanced for longer

attraction ranges and larger potential strengths.

The second simulation model focuses on the investigation of single particle

effects and includes excluded volume colloid-solvent interactions in dilute sus-

pensions. Dilute suspension are investigated with this model and the Soret

coefficient is determined with two types of measurements. In the first the ther-

mophoretic force is measured by confining the colloid with a harmonic potential.

And in the second the drift velocity is calculated from the average displacement

of free colloids. The agreement of both methods confirms their validity and

shows that the confinement does affect the single colloid Soret coefficient. In

order to study the effect of the coupling to the solvent, we applied different types

of colloid-solvent interaction potentials. We used repulsive and attractive inter-

actions, implemented with Lennard-Jones type potentials. From experiments it
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is known that the single colloid properties have a large influence on the overall

thermodiffusive properties of the suspension and that they strongly depend on

the average suspension temperature and the size of the colloids.

The temperature dependence of the Soret coefficient of dilute colloidal systems

is described by an empirical exponential law with an asymptotically saturating

increase. At low average suspension temperatures (e. g. 5 ◦ C for polystyrene

particles) the colloids have small or even negative Soret coefficient, which means

that they experience a small driving force towards the cold side or they are even

driven to the warm side of the system. At high temperatures (e. g. larger than

20 ◦ C for polystyrene particles) the colloids are driven to the cold side of the

system. In our simulations we find that colloids with repulsive colloid-solvent

interaction potentials are driven to the hot side of the system at all tempera-

tures. We have attributed this effect to a counterplay between the density and

temperature gradient in the MPC fluid, which is also related to the fact that

we use soft potentials. Due to the density gradient of solvent particles, the re-

pulsive forces on the cold side of the colloid are larger than on hot side, which

effectively drives the colloid towards the hot side of the system. On the other

hand, the temperature gradient has the reverse effect due to the non-uniform

distribution of kinetic energies, which results in different penetration depths in

the colloid-solvent interaction potential on either side of the colloid. In total,

the force due to the density gradient is stronger and the colloid is effectively

driven towards the hot side of the system. With increasing temperature the

opposing forces compensate each other and the effective force, i. e. the resulting

Soret coefficient, converges to zero. The overall behavior can be described by an

exponential increase which saturates asymptotically as in the experiments, but a

sign change with increasing temperature is not observed. If we apply attractive

potentials the mechanism that determines the thermophoretic force is similar,

but due to the attractive interactions there is an additional contribution to the

thermophoretic force from the density gradient driving the colloid towards the

cold side. Effectively the colloid is driven to the cold side of the system at low

temperatures and to the hot side at high temperatures, when the contribution

from the repulsive core dominates.

The size dependence of the Soret coefficient has been measured to be linear by

various experimental groups and to be quadratic by one group. In our simula-

tions we obtain a cubic size dependence with normal Lennard-Jones potentials,

apart from two cases that might have been chosen with too large attraction
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strengths for the compressible MPC solvent. Otherwise, the cubic size depen-

dence is found for both, attractive and repulsive interactions. This has been

attributed to the fact that the number of interacting solvent particles depends

cubic on the colloid size. This number is proportional to the surface area and

proportional to the layer thickness in which the solvent interacts with the colloid.

In the case of standard LJ potentials this thickness increases linear with particle

size, which leads to an overall cubic behavior. LJ potentials that increase the

particle size not by the range, but by a radial displacement keep the interac-

tion layer thickness constant. With these displaced LJ potentials we observed a

quadratic size dependence.

We can describe our simulation results qualitatively from theoretical analy-

sis, which considers local equilibrium. It was observed that local equilibrium

is fullfilled by showing that the solvent particle velocities are locally Maxwell-

Boltzmann distributed. The theory does not consider hydrodynamic effects,

which can become especially important, when colloids with stick surface bound-

ary conditions are considered. Stick boundary conditions can be an impor-

tant factor that influences thermodiffusion of single colloids, because they exert

tangential forces on the colloid, which can contribute to the thermophoretic

force. The interactions that we applied, act with central forces which results

in slip boundary conditions. Preliminary results with a model that includes

stick boundary conditions seem to indicate that the Soret coefficient scales with

a power law with an exponent 1.5 with the particle size. Further simulations

would still be necessary to resolve the experimentally debated linear or quadratic

exponent. Furthermore, an MPC solvent with a different thermal expansion co-

efficient would be an interesting subject of study. And finally, concentrated

colloidal suspension with a combination of both of our model systems are the

next goal, so that colloid-solvent and mutual colloid interactions are considered.

In this respect one could elucidate, if the contributions to the Soret coefficient

can be expressed as the sum of the contribution given by the limiting cases of the

two models that we have studied or if additional effects appear. For example,

the single particle contribution or equivalently the interaction of the solvent at

the colloid surface can modify its value with increasing concentration due to the

inter-colloidal interaction. Additionally, the presence of lubrication forces or an

enhanced effect of hydrodynamic interactions may affect the Soret coefficient.
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7 Appendix

7.1 Colloid-solvent interaction

The colloid-solvent (cs) interactions are computed by using a list in which the

solvent particles close to the colloids are stored. More precisely these are par-

ticles which are within a certain distance rlist from the center of the respective

colloid. This distance is chosen larger than the cut off radius of the colloid-

solvent interaction potential rc. The list is updated each MPC step and is kept

for one whole MD cycle. Therefore it has to be ensured that no that no inter-

actions are missed out and the radius rlist has to be chosen large enough. The

additional distance ∆r = rlist − rc has to be larger than hvmax, where vmax is

the maximum relative velocity between colloid and solvent. From experience it

was found that vmax ≈ 8 to be on the safe side. So with a typical value for the

collision time h = 0.1, one has to choose ∆r ≥ 0.8.

The list is constructed in the following way. In the MPC step all solvent

particles are streamed by the distance hvi. Then it is checked which particles are

closer the rlist to the respective colloids and for each colloid the list is updated.

Then before the following MD steps the particles within rlist are set back to their

original positions and from there their positions are updated with MD. This

procedure corresponds to Verlet lists which commonly used in MD simulations.

7.2 Thermophoretic force

The thermophoretic force can be calculated by summing all individual forces of

each solvent particle with the colloid

F T =

Nat coll∑

i

F i, (7.1)

where Nat coll is the number of particles that interact with the colloid. Taking

the averages over the simulation time and different runs, the discrete particle
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positions can be described by a continuous density

<

Nat coll∑

i

δ(r − ri) >=̂ ρ(r). (7.2)

Which means that the individual forces transform into an integral over the local

force and density

F T =<

Nat coll∑

i

F i >=̂

∫

R3

d3rf(r)ρ(r). (7.3)

Since the forces perpendicular to the temperature gradient are zero, we can

only consider the direction of the temperature gradient, which we apply in the

z-direction.

On the basis of local equilibrium the fluid density in the presence of the

interaction potential Ucs(r) of the colloid is given by

ρ(r) = ρbulk(r) exp [−Ucs(r)/kBT (r)],

where ρbulk(r) is the bulk density of the solvent, which is given by the equation of

state of the solvent (see chapter 3) and the temperature is T (r) = T0+
∆T
Lz

z. Here

we have applied a coordinate system with the origin placed in the center of the

colloid. For small temperature gradients the bulk density can be approximated

linearly by

ρbulk(r) = ρ0

(
1 − βT

∆T

Lz

z

)
,

where βT is the thermal expansion coefficient of the solvent. Then the fluid

density in spherical coordinates is

ρ(r, θ) = ρ0

[
1 − βT

∆T

Lz

r cos(θ)

]
exp

[
− U(r)

T0 + ∆T
Lz

r cos(θ)

]
, (7.4)

with the thermal expansion coefficient

βT = −1

ρ

(
∂ρ

∂T

)

p

.

Then the the force is

FT =

∫
F (r)ezρ(r, θ) d3r

=

∫
2π

0

∫ π

0

∫ rc

0

r2 sin(θ)
∂U(r)

∂r
cos(θ)ρ0

[
1 − βT

∆T

Lz

r cos(θ)

]
exp

[
− U(r)

T0 − ∆T
Lz

r cos(θ)

]
dφ dθ dr.
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7.2 Thermophoretic force

The exponential term contains the θ and r dependence of the temperature,

which is difficult to handle in the following calculation of the thermophoretic

force from the integral. Since the temperature difference ∆T is much smaller

than the average temperature T0, we can perform a Taylor expansion for small

∆T/T0. From the Taylor expansion one can obtain

exp

[

− U(r)

T0(1 + ∆T
T0

r
Lz

cos(θ))

]

=

[
1 +

∆T

T0

U(r)

T0

r

Lz

cos(θ)

]
exp

[
−U(r)

T0

]
+ O

[(
∆T

T0

)2
]

. (7.5)

After solving the angular integrals, the final expression for the thermophoretic

force is

FT =
4

3
π

ρ0

T0

∆T

Lz

∫ rc

0

r3

(
U(r)

T0

− βT T0

)
∂U(r)

∂r
exp

(
−U(r)

T0

)
dr.

In the case of a solvent with an ideal gas equation of state (like standart

MPC) the thermal expansion coefficient is βT = 1/T0. Partial integration for

rc ≫ σ so that U(rc) ≈ 0 leads to

FT =
4

3
π

ρ0

T0

∆T

Lz

∫ rc

0

3r2U(r) exp

(
−U(r)

T0

)
dr. (7.6)
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Kurzzusammenfassung

Ein Temperaturgradient in einem fluiden System erzeugt nicht nur einen

Wärme- sondern auch einen Massenstrom. Dieser induzierte Massentrans-

port ist bekannt als Thermodiffusion bzw. Soret-Effekt. Der Effekt wurde

vor etwas mehr als 150 Jahren in Natriumsulfatlösungen entdeckt. Dabei

wurde bei ungleichmässiger Erwärmung eine Erhöhung der Salzkonzentration

auf der kalten Seite beobachtet und es wurde erkannt, dass dieser Vorgang

durch Diffusion verursacht wird. Dieser Nicht-Gleichgewichtseffekt wird durch

den Soret-Koeffizienten beschrieben, welcher phänomenologisch definiert ist als

das Verhältnis der durch Temperaturgradienten und Konzentrationsgradienten

verursachten Massenströme. Unterschiedliche Substanzen können zur kalten

oder warmen Seite driften und Gemische können höhere Konzentrationen auf

einer der beiden Seiten aufweisen. Eine allgemeine theoretische Beschrei-

bung mit quantitativen Vorhersagen des Soret-Koeffizienten in flüssigen Sys-

temen oder komplexen Fluiden war bisher noch nicht möglich und wird derzeit

stark diskutiert. Industrielle Anwendungen der Thermodiffusion reichen von

Rohölraffinierung bis hin zu Mikrofluidanwendungen wie DNA-Sequenzierung.

In dieser Arbeit untersuchen wir Thermodiffusion in Kolloidlösungen, auch

als Thermophorese bekannt. Kolloide umfassen eine große Klasse von Partikeln

oder Makromolekülen, welche klein genug sind, um im Lösungsmittel zu dif-

fundieren und andererseits groß genug sind, um die Trägerflüssigkeit als kon-

tinuierliches Medium zu erfahren. Beispiele für Kolloide sind sphärische Par-

tikel, Polymere, Proteine oder Vesikel, wie sie in einer Vielzahl biologischer

und technischer Anwendungen vorkommen. Das Verhalten von Kolloidlösungen

in einem Temperaturgradienten ist eine besondere Herausforderung auf Grund

des reichen Spektrums an möglichen Wechselwirkungen zwischen Kolloidteilchen

bzw. Kolloiden und dem Lösungsmittel, welche einen großen Einfluss auf die

thermophoretischen Eigenschaften haben.

Unsere Forschungsarbeit basiert auf einer mesoskopischen, state-of-the-art

Simulationsmethode, bekannt als Multi-Particle Collision dynamics (MPC). Bei
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dieser Methode sind die Masse, der Impuls und die Energie lokal erhalten. Zu-

dem beinhaltet die Methode thermische Fluktuationen. Daher werden hydrody-

namische Wechselwirkungen, Temperaturinhomogenitäten und Diffusion korrekt

beschrieben.

Wir haben zunächst die Eigenschaften des MPC-Fluids unter Einbeziehung

von Temperaturgradienten untersucht. Dabei wurden sowohl periodische

Randbedinungen, als auch Systeme mit harten Wände untersucht. Liegen die

Simulationsparameter in einem zur Beschreibung von Flüssigkeiten geeignetem

Bereich, stellt sich zwischen den an den Systemgrenzen vorgegebenen Temper-

aturen ein lineares Temperaturprofil ein. Die dabei gemessene Wärmeleitung

stimmt mit analytischen Ausdrücken überein.

Das thermophoretische Verhalten von Kolloidlösungen hat zwei

hauptsächliche Beiträge: dies sind kollektive Einflüsse und Beiträge die

von den Eigenschaften der einzelnen Kolloide abhängen. Die kollektiven

Einflüsse haben wir in konzentrierten Lösungen im Hinblick auf unterschiedliche

Wechselwirkungen zwischen den Kolloiden untersucht. Die Konzentrations-

abhängigkeit des Soret-Koeffizienten in unseren Simulationen stimmt qualitativ

mit experimentellen Ergebissen überein. Mit zunehmender Konzentration der

Lösung sind die Kolloide effektiv höher auf der warmen Seite des Systems

konzentriert. Zudem zeigt sich, dass sich die Kolloide mit zunehmender

attraktiver Wechselwirkung zwischen den Kolloiden effektiver auf der kalten

Seite akkumulieren. Dies gilt sowohl für stärkere, als auch für langreichweitigere

attraktive Wechselwirkungen.

Effekte, die durch die Eigenschaften der einzelnen Kolloide beeinflusst werden,

haben wir in verdünnten Lösungen untersucht. Dabei haben wir die Wechsel-

wirkungen zwischen Kolloiden und Lösungsmittel variiert. Bei repulsiven Wech-

selwirkungen diffundieren die Kolloide zur warmen Seite, wobei dieser Effekt mit

zunehmender Temperatur der Lösung schwächer wird. Bei attraktiven Wechsel-

wirkungen diffundieren die Kolloide bei niedriger Lösungstemperatur zur kalten

Seite. Überschreitet die Temperatur einen gewissen Wert, ändert sich die Dif-

fusionsrichtung und die Kolloide bewegen sich zur warmen Seite. Unsere Simu-

lationsbefunde stimmen qualitativ mit denen durch eine theoretische Beschrei-

bung gewonnenen Ergebnisse überein. Vergleiche mit Experimenten zeigen z.T.

tendenzielle Übereinstimmungen, jedoch sind die Ursachen für die auftretenden

Abweichungen zwischen Simulationen und Experimenten noch zu klären.
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