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IV Abstract 

Repetitive transcranial magnetic stimulation (rTMS), particularly theta-burst stimulation 

(TBS), can be applied to modulate cortical excitability beyond the period of stimulation 

(Huang et al., 2005). Consequently, rTMS is regarded to have high therapeutic potential for 

treatment of various psychiatric and neurological diseases related to cortical hypo- or 

hyperexcitability such as stroke (Ridding & Rothwell, 2007). Whether rTMS induced effects 

are sufficiently robust to be useful in clinical settings is currently under intense investigation. 

The most challenging problem appears to be considerably high variability in rTMS induced 

effects both, across studies (Hoogendam et al., 2010) and individual patients (Ameli et al., 

2009). Hence, the major goal of the present thesis was to improve rTMS intervention 

strategies in stroke patients suffering from chronic motor hand deficits by multimodal uses of 

(repetitive) TMS with state-of-the-art neuroimaging techniques.  

Sources of variance across studies are likely to be methodological in origin. They might result 

from different strategies to identify the cortical rTMS target position. Individual functional 

magnetic resonance (fMRI) data have been demonstrated to yield best spatial approximations 

of the most excitable TMS position compared to other techniques (Sparing et al., 2008). 

However, there is still a considerably large spatial mismatch between the cortical position 

showing highest movement-related fMRI signal and the cortical position yielding highest 

muscle responses when stimulated with TMS of up to 14 mm (Bastings et al., 1998; 

Boroojerdi et al., 1999; Herwig et al., 2002; Krings et al., 1997; Lotze et al., 2003; Sparing et 

al., 2008; Terao et al., 1998). The underlying cause of this spatial mismatch is unknown. 

Hence, the aim of the first study (Study I) of the present thesis was to test the hypothesis that 

the spatial mismatch between positions with highest fMRI signal change and positions with 

highest TMS excitability might be caused by the widely-used Gradient-Echo blood 

oxygenation level dependent (GRE-BOLD) fMRI technique. GRE-BOLD signal has been 

demonstrated to occur further downstream from the site of neural activity in large veins 

running on the cerebral surface (Uludag et al., 2009). Consequently, we tested the hypothesis 

that alternative fMRI sequences may localize neural activity (i) closer to the anatomical motor 

hand area, i.e. Brodmann Area 4 (BA4), and (ii) closer to the optimal TMS position than 

GRE-BOLD. The following alternative fMRI techniques were tested: (i) Spin-Echo (SE-

BOLD) assessing blood oxygenation level dependent signal changes with decreased 

sensitivity for the macrovasculature at high magnetic fields (≥ 3 Tesla, Uludag et al., 2009) 
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and (ii) arterial spin labelling (ASL), assessing local changes in cerebral blood flow (ASL-

CBF) which have been shown to occur in close proximity to synaptic activity (Duong et al., 

2000). GRE-BOLD, SE-BOLD, and ASL-CBF signal changes during right thumb abductions 

were obtained from 15 healthy young subjects at 3 Tesla. In 12 subjects, brain tissue at fMRI 

peak voxel coordinates was stimulated with neuronavigated TMS to investigate whether 

spatial differences between fMRI techniques are functionally relevant, i.e. impact on motor-

evoked potentials (MEPs) recorded from a contralateral target muscle, which is involved in 

thumb abductions. A systematic TMS motor mapping was performed to identify the most 

excitable TMS position (i.e. the TMS hotspot) and the centre-of-gravity (i.e. the TMS CoG), 

which considers the spatial distribution of excitability in the pericentral region. Euclidean 

distances between TMS and fMRI positions were calculated for each fMRI technique. Results 

indicated that highest SE-BOLD and ASL-CBF signal changes occurred in the anterior wall 

of the central sulcus (BA4), whereas highest GRE-BOLD signal changes occurred 

significantly closer to the gyral surface where most large draining veins are located. fMRI 

techniques were not significantly different from each other in Euclidean distances to optimal 

TMS positions since optimal TMS positions were located considerably more anterior (and 

slightly surprisingly in premotor cortex (BA6) and not BA4). Stimulation of brain tissue at 

GRE-BOLD peak voxel coordinates with TMS resulted in significantly higher MEPs 

(compared to SE-BOLD and ASL-CBF coordinates). This was probably the case because 

GRE-BOLD positions tended to be located at the gyral crown, which was slightly (but not 

significantly) closer to the TMS hotspot position. Taken together, findings of Study I suggest 

that spatial differences between fMRI and TMS positions are not caused by spatial 

unspecificity of the widely-used GRE-BOLD fMRI technique. Hnece, other factors such as 

complex interactions between brain tissue and the TMS induced electric field (Opitz et al., 

2011), could be the underlying cause. 

Identification of the cortical rTMS target position is particularly challenging in stroke patients 

since reorganization processes after stroke may shift both, fMRI and TMS positions in 

unknown direction and extend (Rossini et al., 1998). In the second study (Study II) of the 

present thesis, we therefore tested whether findings obtained from healthy young subjects in 

Study I do also apply to chronic stroke patients and older (i.e. age-matched) healthy control 

subjects. In this study, arterial spin labelling (ASL) was used to assess CBF and BOLD signal 

changes simultaneously during thumb abductions with the affected/non-dominant and the 

unaffected/dominant hand in 15 chronic stroke patients and 13 age-matched healthy control 
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subjects at 3 Tesla. Brain tissue at fMRI peak voxel coordinates was stimulated with 

neuronavigated TMS to test whether spatial differences are functionally relevant and impact 

on MEPs. Systematic TMS motor mappings were performed for both hemispheres in overall 

12 subjects (6 stroke patients and 6 healthy subjects). Euclidean distances between fMRI and 

TMS positions were calculated for each hemisphere and fMRI technique. In line with results 

of Study I, highest ASL-CBF signal changes were located in the anterior wall of the central 

sulcus (BA4), whereas highest ASL-BOLD signal changes occurred significantly closer to the 

gyral surface. In contrast to Study I, there were no significant differences between ASL-CBF 

and ASL-BOLD positions in MEPs when stimulated with neuronavigated TMS, which 

suggests that spatial differences (in depth) were not functionally relevant for TMS 

applications. In line with Study I, there were no significant differences between fMRI 

techniques in Euclidean distances to optimal TMS positions, since optimal TMS positions 

were located considerably more anterior than fMRI positions (in premotor cortex, i.e. BA6). 

Stroke patients showed overall larger displacements (between fMRI and TMS positions) on 

the ipsilesional (but not the contralesional) hemisphere compared to healthy subjects. 

However, none of the fMRI techniques yielded positions significantly closer to the optimal 

TMS position. Hence, functional reorganization may impact on spatial congruence between 

fMRI and TMS, but the effect is similar for ASL-CBF and ASL-BOLD.  

Pathomechanisms underlying stroke induced motor deficits are still poorly understood but a 

simplified model of hemispheric competition has been suggested, which proposes relative 

hypoexcitability of the ipsilesional hemisphere and hyperexcitability of the contralesional 

hemisphere leading to pathologically increased interhemispheric inhibition from the 

contralesional onto the ipsilesional hemisphere during movements of the paretic hand (Duque 

et al., 2005; Grefkes et al., 2008b, 2010; Murase et al., 2004). In line with the model of 

hemispheric competition, both increasing excitability of the ipsilesional hemisphere (Khedr et 

al., 2005; Talelli et al., 2007) as well as decreasing excitability of the contralesional 

hemisphere (Fregni et al., 2006; Di Lazzaro et al., 2008a) have been demonstrated to 

normalize cortical excitability towards physiological levels and/or ameliorate motor 

performance of the stroke affected hand. However, there is considerably high inter-individual 

variance and some patients may even show deteriorations of motor performance after rTMS 

(Ameli et al., 2009). Therefore, the aim of the third study (Study III) was to identify reliable 

predictors for TBS effects on motor performance of the affected hand in stroke patients, 

which appears essential for successful implementation of TBS in neurorehabilitation. Overall, 
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13 chronic stroke patients with unilateral motor hand deficit and 12 age-matched healthy 

control subjects were included in the study. All patients received 3 different TBS 

interventions on 3 different days: (i) intermittent TBS (iTBS, facilitatory) over the primary 

motor cortex (M1) of the ipsilesional hemisphere, (ii) continuous TBS (cTBS, inhibitory) over 

M1 of the contralesional hemisphere, and (iii) either iTBS or cTBS over a control stimulation 

site (to control for placebo effects). Motor performance was measured before and after each 

TBS session with 3 different motor tasks and an overall motor improvement score was 

calculated. All subjects participated in an fMRI experiment, in which they performed 

rhythmic fist closures with their affected/non-dominant and unaffected/dominant hand. A 

laterality index (LI), reflecting laterality of fMRI signal in cortical motor areas was calculated. 

Effective connectivity, i.e. the direct or indirect causal influence that activity in one area 

exerts on activity of another area (Friston et al., 1993a), was inferred from fMRI data by 

means of dynamic causal modelling (DCM). Due to relatively high inter-individual variance, 

neither iTBS nor cTBS was significantly different from control TBS in terms of average 

behavioural (or electrophysiological) changes over the group of patients. However, beneficial 

effects of iTBS over the ipsilesional hemisphere were predicted by a unilateral fMRI 

activation pattern during movements of the affected hand and by the integrity of the cortical 

motor network. The more pronounced the promoting influence from the ipsilesional 

supplementary motor area (SMA) onto ipsilesional M1 and the more pronounced the 

inhibitory effect originating from ipsilesional M1 onto contralesional M1, the better was the 

behavioural response to facilitatory iTBS applied to the ipsilesional hemisphere. No 

significant correlations were found for behavioural improvements following cTBS or 

behavioural changes of the unaffected hand. Taken together, Study III yielded promising 

results indicating that laterality of fMRI signal and integrity of the motor network architecture 

constitute promising predictors for response to iTBS. In patients in whom the connectivity 

pattern of the ipsilesional motor network resembled physiological network connectivity 

patterns (i.e. preserved inhibition of the contralesional hemisphere and supportive role of the 

SMA of the ipsilesional hemisphere), beneficial effects of iTBS over the ipsilesional 

hemisphere could be observed. In contrast, patients with severely disturbed motor networks 

did not respond to iTBS or even deteriorated. 
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V Kurzzusammenfassung 

Die repetitive transkranielle Magnetstimulation (rTMS), insbesondere die Theta-Burst 

Stimulation (TBS), kann dazu verwendet werden, kortikale Erregbarkeit über den 

Stimulationszeitraum hinaus zu modulieren (Huang et al., 2005). Daher wird der rTMS ein 

hohes therapeutisches Potenzial für die Behandlung diverser psychiatrischer und 

neurologischer Erkrankungen zugeschrieben, die mit einer kortikalen Hypo- oder 

Hyperexzitabilität einhergehen, wie es beispielsweise nach einem Schlaganfall der Fall ist 

(Ridding & Rothwell, 2007). Ob die durch die rTMS induzierten Effekte ausreichend robust 

sind, um sich im klinischen Alltag durchzusetzen, wird momentan intensiv untersucht. Die 

größte Herausforderung besteht möglicherweise darin, die hohe Varianz in rTMS vermittelten 

Effekten sowohl zwischen Studien (Hoogendam et al., 2010) als auch zwischen einzelnen 

Patienten (Ameli et al., 2009) zu reduzieren. Daher war das Hauptziel der vorliegenden 

Doktorarbeit, die Verbesserung von rTMS-Interventionsstrategien für Schlaganfallpatienten 

mit chronifiziertem motorischem Defizit der Hand durch die multimodale Anwendung der 

(repetitiven) TMS mit modernsten bildgebenden Verfahren. 

Die Quelle hoher Varianz über Studien hinweg ist höchstwahrscheinlich methodischen 

Ursprungs und könnte daraus resultieren, dass verschiedenen Strategien zur Identifizierung 

der kortikalen rTMS Zielposition verwendet werden. Individuelle funktionelle 

Magnetresonanz Tomographie (fMRT) liefert die beste räumliche Annäherung an die Position 

mit höchster TMS-Erregbarkeit im Vergleich zu anderen Methoden (Sparing et al., 2008). 

Dennoch gibt es immer noch eine relativ große räumliche Diskrepanz zwischen der kortikalen 

Position höchster bewegungsabhängiger fMRT-Aktivität und der kortikalen Position, die zu 

höchsten Muskelantworten führt wenn sie mit TMS stimuliert wird, von bis zu 14 mm 

(Bastings et al., 1998; Boroojerdi et al., 1999; Herwig et al., 2002; Krings et al., 1997; Lotze 

et al., 2003; Sparing et al., 2008; Terao et al., 1998). Die Ursache dieser räumlichen 

Diskrepanz ist unbekannt. Daher war das Ziel der ersten Studie (Study I) die Hypothese zu 

testen, dass die räumliche Diskrepanz zwischen Positionen mit höchster fMRT-Aktivität und 

Positionen mit höchster TMS-Erregbarkeit durch die Verwendung der weitverbreiteten 

Gradienten-Echo blood oxygenation level dependent (GRE-BOLD) fMRT-Methode zustande 

kommt. Das GRE-BOLD-Signal entsteht „stromabwärts“ von neuraler Aktivität in großen 

Venen, die auf der Hirnoberfläche verlaufen (Uludag et al., 2009). Daher testeten wir die 

Hypothese, dass alternative fMRT-Sequenzen neurale Aktivität (i) näher zum anatomischen 
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motorischen Handareal, Brodmann Area 4 (BA4) und (ii) näher zur optimalen TMS-Position 

lokalisieren als GRE-BOLD. Die folgenden fMRT-Sequenzen wurden als Alternativen zu 

GRE-BOLD getestet: (i) Spin-Echo das den blood oxygenation level dependent Effekt (SE-

BOLD) bei höheren magnetischen Feldstärken (≥ 3 Tesla) mit verringerter Sensitivität für 

große Gefäße misst und (ii) die arterielle Spinmarkierung (arterial spin labelling, ASL), die 

lokale Veränderungen im zerebralen Blutfluss (cerebral blood flow, CBF) misst, die in 

unmittelbarer Nähe synaptischer Aktivität entstehen (Duong et al., 2000). GRE-BOLD-, SE-

BOLD- und ASL-CBF-Signalveränderungen während Abduktionsbewegungen des rechten 

Daumens wurden von 15 jungen gesunden Probanden bei einer Feldstärke von 3 Tesla 

erhoben. Bei 12 Probanden wurde außerdem Hirngewebe an der Position des fMRT-

Maximums mittels neuronavigierter TMS stimuliert, um zu testen ob räumliche Unterschiede 

zwischen fMRT-Methoden funktionell relevant sind, das heißt einen messbaren Einfluss auf 

motorisch evozierte Potentiale (MEPs) haben, die vom einem kontralateralen Zielmuskel 

abgeleitet wurden, der an der Daumenabduktion maßgeblich beteiligt ist. Mittels TMS wurde 

eine systematische Kartierung des motorischen Kortex vorgenommen, anhand derer die 

Position höchster kortikaler Erregbarkeit (TMS hotspot) und ein sogenanntes centre-of-

gravity (TMS CoG) bestimmt wurde, welches die Verteilung kortikaler Erregbarkeit des 

benachbarten Gewebes mitberücksichtigt. Euklidische Abstände zwischen TMS- und fMRT-

Positionen wurden für jede fMRT-Methode berechnet. Die Ergebnisse deuten darauf hin, dass 

die höchsten SE-BOLD- und ASL-CBF-Signalveränderungen in der Vorderwand des Sulcus 

centralis auftreten (BA4), während höchste GRE-BOLD-Signalveränderungen signifikant 

näher zur Hirnoberfläche auftraten, wo die meisten großen Venen verlaufen. Die fMRT-

Methoden unterschieden sich nicht signifikant bezüglich ihrer Distanz zur optimalen TMS-

Position voneinander, da optimale TMS-Positionen deutlich weiter anterior (und etwas 

überraschend im prämotorischen Kortex (BA6) und nicht in BA4 lagen). Stimulation des 

Hirngewebes (das höchste GRE-BOLD-Signalveränderungen zeigte) mittels TMS resultierte 

in signifikant höheren MEPs im Vergleich zu den anderen beiden fMRT-Methoden. Dies war 

vermutlich der Fall weil GRE-BOLD-Positionen dazu tendierten auf der Gyruskuppe zu 

liegen und somit leicht (aber nicht signifikant) näher an der TMS hotspot position lagen. 

Insgesamt konnte also durch die erste Studie gezeigt werden, dass die räumliche Diskrepanz 

zwischen fMRT- und TMS-Positionen nicht durch die räumliche Unspezifität der 

weitverbreiten GRE-BOLD-Methode zustande kommt. Andere Faktoren, wie komplexe 
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Interaktionen zwischen Hirngewebe und dem durch die TMS induzierten elektrischen Feld 

(Opitz et al., 2011) könnten stattdessen die Ursache darstellen. 

Die Identifizierung der kortikalen Zielregion für die rTMS ist bei Patienten erschwert, da nach 

einem Schlaganfall Reorganisationsprozesse im Gehirn stattfinden, die dazu führen können, 

dass sich sowohl fMRT- als auch TMS-Positionen in unbekanntem Ausmaß und in 

unbekannte Richtung räumlich verschieben (Rossini et al., 1998). In der zweiten Studie 

(Study II) der vorliegenden Doktorarbeit testeten wir daher, ob die Ergebnisse von Study I, 

die von jungen gesunden Probanden erhoben wurden, auf Schlaganfallpatienten und ältere 

(d.h. gleichaltrige) gesunde Kontrollprobanden ebenfalls zutreffen. In dieser Studie wurde die 

arterielle Spinmarkierung (arterial spin labelling, ASL) dazu verwendet, Veränderungen im 

blood oxygenation level dependent effect (BOLD) und im zerebralen Blutfluss (cerebral blood 

flow, CBF) simultan während Daumenabduktionsbewegungen der betroffenen/nicht-

dominanten und der nicht-betroffenen/dominanten Hand zu erheben. Die Studie wurde an 15 

Patienten im chronischen Stadium und 13 gleichaltrigen gesunden Kontrollprobanden bei 

einer Feldstärke von 3 Tesla durchgeführt. Hirngewebe an fMRT-Maximums-Positionen 

wurde mittels neuronavigierter TMS stimuliert, um zu testen ob räumliche Unterschiede 

funktionell relevant sind und sich auf MEPs auswirken. Eine systematische Kartierung beider 

motorischer Kortizes wurde bei insgesamt 12 Probanden (6 Schlaganfallpatienten und 6 

Kontrollprobanden) mittels TMS erstellt. Euklidische Abstände zwischen fMRT- und TMS-

Positionen wurden berechnet. Wie auch in Studie I, traten höchste ASL-CBF-

Signalveränderungen in der Vorderwand des Sulcus centralis (BA4) auf, wohingegen höchste 

ASL-BOLD-Signalveränderungen signifikant näher zur Hirnoberfläche auftraten. Im 

Gegensatz zur ersten Studie gab es in dieser Studie keinen signifikanten Unterschied 

zwischen ASL-CBF- und ASL-BOLD-Positionen in durch die direkte TMS-Stimulation 

resultierenden MEPs, was darauf hinweist, dass signifikante räumliche Unterschiede (in 

Tiefe) keine funktionelle Relevanz für die TMS besaßen. Wie auch in der ersten Studie, gab 

es keine signifikanten Unterschiede zwischen den fMRT-Methoden in Euklidischen 

Abständen zur optimalen TMS-Position, die sich deutlich weiter anterior im prämotorischen 

Kortex (BA6) befand. Obwohl Patienten auf der ipsiläsionellen Hemisphäre insgesamt 

größere Distanzen (zwischen fMRT- und TMS-Positionen) im Vergleich zu den gesunden 

Kontrollprobanden aufwiesen, lieferte keine der fMRT-Methoden Positionen die signifikant 

näher zur optimalen TMS-Position lagen. Daher scheinen Reorganisationsprozesse einen 
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Einfluss auf die räumliche Kongruenz von fMRT und TMS zu haben, betreffen aber ASL-

CBF ebenso wie ASL-BOLD. 

Der Pathomechanismus, der Schlaganfall-induzierten motorischen Defiziten zugrunde liegt, 

ist größtenteils noch unverstanden. Das stark vereinfachte Modell der 

Hemisphärenkonkurrenz postuliert eine relative Hypoexzitabiliät der ipsiläsionellen und 

Hyperexzitabilität der kontraläsionellen Hemisphäre, was zu einer pathologisch verstärkten 

Inhibition von der kontraläsionellen Hemisphäre auf die ipsiläsionelle Hemisphäre während 

Bewegung der betroffenen Hand führt (Duque et al., 2005; Grefkes et al., 2008b, 2010; 

Murase et al., 2004). Dem Modell der Hemisphärenkonkurrenz entsprechend, kann sowohl 

durch Erhöhung der Exzitabilität der ipsiläsionellen Hemisphäre (Khedr et al., 2005; Talelli et 

al., 2007) als auch durch Verringerung der Exzitabilität der kontraläsionellen Hemisphäre 

(Fregni et al., 2006; Di Lazzaro et al., 2008a) eine Normalisierung der kortikalen Exzitabilität 

hin zu einem physiologischen Gleichgewicht und/oder eine Verbesserung der motorischen 

Leistung der betroffenen Hand erzielt werden. Es gibt jedoch eine relativ hohe 

interindividuelle Varianz und einige Patienten können sogar eine verschlechterte motorische 

Leistung der betroffenen Hand nach rTMS aufweisen (Ameli et al., 2009). Daher war das Ziel 

der dritten Studie (Study III) die Identifizierung zuverlässiger Prädiktoren für die Effekte 

der TBS auf die motorische Leistung der betroffenen Hand von Schlaganfallpatienten, da dies 

ein essentieller Schritt für die Implementierung der rTMS in die Neurorehabilitation zu sein 

scheint. 13 Schlaganfallpatienten mit chronifiziertem motorischem Defizit der Hand und 12 

gleichaltrige gesunde Kontrollprobanden nahmen an der Studie teil. Alle Patienten erhielten 3 

verschiedene TBS-Interventionen an 3 verschiedenen Tagen: (i) intermittierende TBS (iTBS, 

fazilitierend) über dem primärmotorischen Kortex (M1) der ipsiläsionellen Hemisphäre, (ii) 

kontinuierliche (continuous) TBS (cTBS, inhibitorisch) über dem M1 der kontraläsionellen 

Hemisphäre und (iii) entweder iTBS oder cTBS über einer Kontrollstimulationsposition. Die 

motorische Leistung wurde vor und nach jeder TBS-Intervention mit 3 unterschiedlichen 

motorischen Skalen gemessen, auf denen basierend ein allgemeiner Verbesserungswert 

errechnet wurde. Alle Probanden nahmen an einem fMRT-Experiment teil, in dem sie 

rhythmische Faustschlussbewegungen mit ihrer betroffenen/nicht-dominanten und ihrer nicht-

betroffenen/dominanten Hand durchführten. Ein Lateralitätsindex, der die Lateralität des 

fMRT-Signals in kortikalen motorischen Arealen widerspiegelt wurde berechnet. Die 

effektive Konnektivität, also der direkte oder indirekte kausale Einfluss, den Aktivität eines 

Areals auf die Aktivität eines anderen Areals ausübt (Firston et al., 1993a), wurde mittels 
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dynamic causal modelling (DCM) aus den fMRT-Zeitreihen geschätzt. Aufgrund einer relativ 

hohen inter-individuellen Varianz unterschied sich weder die iTBS noch die cTBS signifikant 

von der Kontrollstimulation bezüglich induzierter Veränderungen in der Leistungsfähigkeit 

der betroffenen Hand oder Veränderungen in der Exzitabilität der ipsiläsionellen Hemisphäre 

über die gesamte Gruppe der Patienten hinweg. Positive Effekte der iTBS über der 

ipsiläsionellen Hemisphäre wurden jedoch signifikant durch ein unilaterales fMRT-

Aktivierungsmuster während Bewegung der betroffenen Hand und die Integrität des 

motorischen Netzwerks prädiziert. Je ausgeprägter der fördernde Einfluss vom ipsiläsionellen 

supplementär motorischen Areal (SMA) auf den ipsiläsionellen M1 und je ausgeprägter der 

inhibitorische Einfluss ausgehend vom ipsiläsionellen M1 auf den kontraläsionellen M1, desto 

höher war die Wahrscheinlichkeit, dass ein Patient von der fazilitierenden iTBS über dem 

ipsiläsionellen M1 profitierte. Für Verhaltenseffekte nach cTBS und Verhaltenseffekte der 

nicht-betroffenen Hand wurden keine signifikanten Korrelationen gefunden. 

Zusammenfassend weisen die Ergebnisse der dritten Studie darauf hin, dass die Lateralität des 

fMRT-Signals und die Integrität des motorischen Netzwerks vielversprechende Prädiktoren 

für Verhaltenseffekte nach iTBS darstellen. Bei Patienten bei denen ipsiläsionelle motorische 

Netzwerkinteraktionen physiologisch auftretenden Netzwerkinteraktionen glichen (erhaltene 

Inhibition der kontraläsionellen Hemisphäre und unterstützende Rolle des ipsiläsionellen 

SMA), stellte sich eine Verbesserung der vom Schlaganfall betroffenen Hand ein, 

wohingegen Patienten mit schwer geschädigtem motorischen Netzwerk keine Veränderungen 

oder gar eine Verschlechterung nach iTBS zeigten.  
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1 General introduction 

1.1 Stroke 

Stroke is caused by an interruption of blood supply to the brain either due to blood vessel 

blockage (ischaemic stroke, approx. 82%) or blood vessel rupture (haemorrhagic stroke, 

approx. 14%; Feigin et al., 2009). Both leads to a sudden breakdown in oxygen- and nutrition 

supply and may cause permanent brain tissue damage. The following World Health 

Organization (WHO) standard criterion is frequently used to define stroke: “rapidly 

developing clinical signs of focal (at times global) disturbance of cerebral function, lasting 

more than 24 hours (if not leading to death) with no apparent cause other than that of vascular 

origin” (Hatano, 1976). Stroke incidence rates in the years 2000-2008 varied between 

countries in the range of 74 to 223 (per 100 000 persons per year; Feigin et al., 2009). 

Spontaneous recovery occurs within three months after stroke until a plateau with relatively 

stable motor performance is reached after three to six months (Kwakkel et al., 2004). 

However, clinical outcome after stroke is highly variable across individuals. Data of the 

German Stroke Database (including 1754 patients) suggest that three months after stroke, 

9.5% of patients had died, 58.4% had completely recovered, and 32.1% retained permanent 

deficits (Weimar et al., 2002). Hemiparesis is the most frequent neurological deficit 

(occurring in more than 80% of patients), followed by sensory deficits (approx. 45%) and 

speech deficits (approx. 24%; Rathore et al., 2002). Hemiparesis occurs most often in upper 

(76%) but also in lower limbs (69%) and the face (55%; Rathore et al., 2002). The ability to 

live independently after stroke largely depends on reconstitution of motor control. Currently, 

physical and occupational therapy and at times constraint-induced movement therapy (CI) are 

used for treatment of stroke-induced hand motor deficits. CI involves immobilization of the 

unaffected limb to induce “forced use” of the affected limb combined with intense training of 

the affected limb (Taub et al., 1993). However, additional therapeutic strategies are needed 

since stroke is the most common cause for permanent disability in adults (Kolominsky-Rabas 

et al., 2006; Nelles, 2007) and one of the most expensive diseases in industrialised countries 

(Kolominsky-Rabas et al., 2006).  
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1.2 The human motor system 

The human motor system is composed of cortical and subcortical structures interacting in 

complex subsystems, which are organized either hierarchically or in parallel (Amunts & 

Zilles, 2007). Important part of the cortical human motor system is the primary motor cortex 

(M1; also Brodmann Area (BA) 4; Brodmann, 1909), which is located in the anterior wall of 

the central sulcus. BA4 is somatotopically organized: foot and leg representations are located 

in the mesial wall of the precentral gyrus followed by trunk, arm, hand, fingers (from little 

finger to thumb), face, lips, and tongue representations (from dorsomedial to ventrolateral; 

Penfield & Rasmussen, 1950). A reliable anatomical landmark for the motor hand 

representation is the hand knob structure, which is shaped like an omega or epsilon in axial 

slices and hook shaped in sagittal slices (Yousry et al., 1997; Figure 1.1). 

 

 

 

Figure 1.1: Introduction: The hand knob formation. The central sulcus at the hand knob formation is 

highlighted in red colour on a high-resolution anatomical magnetic resonance image of a healthy 

volunteer. In the axial slice (image on the left) the hand knob is omega-shaped in the left hemisphere 

and epsilon-shaped in the right hemisphere. In the sagittal slice (image on the right) the hand knob is 

shaped like a posteriorly directed hook. (A: anterior; I: inferior; L: left; P: posterior; R: right; S: 

superior) 

 

The anterior margin of BA4 is the posterior margin of the premotor cortex (PMC; also BA6). 

Brodmann initially assumed that BA4 extents over the entire surface area of the precentral 

gyrus (Brodmann, 1909). However, recent histological studies demonstrated that BA4 

occupies only a limited part of the exposed surface of the precentral gyrus. The transition 
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between BA4 and BA6 depends on the lateral position along the central sulcus (Geyer et al., 

2000; Rademacher et al., 2001; White et al., 1997). In its dorsomedial part, BA4 covers 

posterior aspects of the crown of the precentral gyrus, more laterally BA4 tends to submerge 

inside the central sulcus (Geyer et al., 2000; Figure 1.2).  

 

Gerloff et al. (2006) 

 

Figure 1.2: Introduction: The transition between BA4 and BA6. As a rule, the primary motor cortex 

(BA4) occupies only a limited part of the exposed surface of the precentral gyrus, mainly in its 

dorsomedial part. More laterally, BA4 tends to be buried in the depth of the central sulcus. This latter 

aspect is depicted in the figure on the right. (BA: Brodmann Area; BA3: primary somatosensory 

cortex; BA4: primary motor cortex; BA6: premotor cortex; CS: central sulcus) 

 

Cytoarchitectonically, BA4 is characterized by absence of lamina IV and presence of giant 

Betz cells in lamina V whose axons bend down in the precentral gyrus and form the cortico-

spinal tract (CST). The CST passes through the posterior limb of the internal capsule and the 

cerebral peduncle before 80-85% of the fibres cross at the decussation of pyramids in the 

medulla oblongata to the contralateral side (referred to as lateral CST). Fibres not crossing in 

the brain stem (referred to as ventral CST) cross in the spinal cord segment of their target 

cells. Pyramidal cells enervate motoneurons in the anterior horn of the spinal cord either 

directly or indirectly via interneurons (Amunts & Zilles, 2007). Finally, spinal cord 

motoneurons terminate onto skeletal muscles. The human extra-pyramidal motor system is 

composed of the basal ganglia, cerebellum, and extra-pyramidal fibre tracts connecting the 

motor cortex with motor brain stem nuclei and the spinal cord respectively. These fibre tracts 

may act as alternative pathways in the case of severe CST damage after stroke. 
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The PMC (BA6) is an important cortical motor area engaged in both movement preparation 

and movement execution. BA6 can be subdivided into at least three distinctive functional 

areas: (i) the supplementary motor area (SMA), (ii) the dorsal premotor cortex (dPMC), and 

(iii) the ventral premotor cortex (vPMC). The anterior limit of BA6 is at an individually 

variable distance anterior to the precentral sulcus and does not correspond to a specific 

anatomical landmark (Geyer et al., 2004). However, the extent of BA6 is greater in 

dorsomedial parts of the hemispheres and recedes caudally in ventrolateral parts merging with 

the precentral sulcus close to the Sylvian fissure (Amunts et al., 1999; Figure 1.3). 

 

 

 

Figure 1.3: Introduction: The human premotor cortex. The lateral view on the left cerebral hemisphere 

shows the extent of the premotor cortex (in dark purple) and representative areas (in light blue) 

corresponding to the dorsal premotor cortex (dPMC), ventral premotor cortex (vPMC), and the 

supplementary motor area (SMA). (A: anterior; CS: central sulcus; I: inferior; iFS: inferior frontal 

sulcus; P: posterior; PCS: precentral sulcus; S: superior; SF: Sylvian fissure; sFS: superior frontal 

sulcus) 

 

The SMA is mainly situated in the mesial wall of the hemisphere. Its boundaries are usually 

located at the Mantelkante of the hemisphere (Grafton et al., 1996) but may extend slightly in 

dorsolateral direction (Mayka et al., 2006; Tanji & Hoshi, 2009). The ventrolateral limit of the 

SMA is the dorsomedial border of the dPMC. Although SMA and dPMC constitute two 

functionally distinct regions (Penfield & Welch, 1951), data allowing differentiation of those 
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two regions based on anatomical grounds are scarce (Matelli et al., 1985). The border between 

dPMC and vPMC has traditionally been assigned to the intersection of the precentral sulcus 

and the inferior frontal sulcus (Grezes & Decety, 2001; Picard & Strick, 2001). However, 

more recent studies based on structural imaging suggest that it is much more dorsal, namely 

between superior and inferior frontal sulcus (average Z coordinate: 48; Tomassini et al., 

2007). Similar to BA4, premotor areas are somatotopically organized and have direct 

projections to spinal cord motoneurons (He at al., 1993). Additionally, premotor areas send 

efferent connections to functionally related representations in BA4 (Dum & Strick, 2002). 

Homotopic transcallosal connections between M1, SMA, vPMC, and dPMC as well as 

heterotopic transcallosal connections between M1, SMA, and lateral premotor cortex (dPMC 

and vPMC) have been demonstrated in anatomical tracer studies in macaque monkeys 

(McGuire et al., 1991; Rouiller et al., 1994).  

 

1.3 Definition of terms 

1.3.1 Clinical stages 

Based on a recent review article summarizing mechanisms of spontaneous recovery after 

stroke, the following definitions for clinical stages of the disease are used throughout the 

manuscript (Cramer, 2008; Table 1.1). 

 

Table 1.1: Introduction: Designation of clinical stages 

Acute stage ≤ 3 days after stroke 

Subacute stage 4 days to 3 months after stroke 

Early chronic stage 3 to 6 months after stroke 

Chronic stage ≥ 6 months after stroke 

 

1.3.2 Cerebral hemispheres 

Throughout the manuscript, the term ipsilesional will be used to refer to the side of the stroke 

lesion and the term contralesional will be used to refer to the side opposite to the stroke 

lesion. Hence, the ipsilesional hemisphere is ipsilateral to the stroke lesion and the 

contralesional hemisphere is contralateral to the stroke lesion. Although, in principle, the 

ipsilesional hemisphere corresponds to the affected hemisphere and the contralesional 
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hemisphere corresponds to the unaffected hemisphere these terms may be misleading, since 

stroke lesions may also impact on the “unaffected” hemisphere (Grefkes et al., 2008b; 

Loubinoux et al., 2003; Ward et al., 2003a, 2003b), and hence these terms will not be used. 

The terms ipsilesional hemisphere and contralesional hemisphere should not be confused with 

the terms ipsilateral hemisphere and contralateral hemisphere which are used to refer to 

the hemisphere which is ipsi- or contralateral to an event such as hand movements or an 

intervention. During movements of the affected hand (sometimes referred to as the paretic 

hand) the ipsilateral hemisphere refers to the contralesional hemisphere and the contralateral 

hemisphere refers to the ipsilesional hemisphere (Figure 1.4). 

 

 

 
Figure 1.4: Introduction: Designation of cerebral hemispheres. The ipsilesional hemisphere is on the 

same side as the stroke lesion, whereas the contralesional hemisphere is the hemisphere opposite to the 

stroke lesion. During movements of the paretic (i.e. affected) hand, the contralateral hemisphere 

corresponds to the ipsilesional hemisphere and the ipsilateral hemisphere corresponds to the 

contralesional hemisphere. 

 

1.3.3 Cortico-cortical connectivity 

Two important concepts of current brain research are the concept of functional segregation 

and the concept of functional integration (Friston, 2002; Friston, 1994). Functional 

segregation refers to the finding that in the human brain, particularly in the cerebral cortex, 

different areas take over different specific tasks, whereas functional integration relies on 

observations that brain functions are not localized in a specific brain region but rely on 

coordinated exchange of information between different areas with distinct functions (Friston, 
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2002). Hence, functional segregation and functional integration are not competing concepts 

since functional integration is based on the concept of functional segregation, which 

postulates interactions between areas with distinct functions.  

 

Connectivity describes structural and functional properties of brain networks. Three different 

subtypes can be distinguished: (i) anatomical connectivity, (ii) functional connectivity, and 

(iii) effective connectivity. Anatomical connectivity refers to anatomical fibre tracts 

connecting brain regions and providing the neuronal basis for cortico-cortical connectivity. 

By contrast, functional connectivity refers to temporal coherence between remote 

neurophysiological events (Friston et al., 1993b) whereas effective connectivity refers to 

either direct or indirect causal influences that activity in one neuronal system exerts on 

activity of another neuronal system (Friston et al., 1993a). Effective connectivity can be 

inferred from functional magnetic resonance imaging (fMRI) data by means of dynamic 

causal modelling (DCM). Although not considered a measure of effective connectivity per se, 

transcranial magnetic stimulation (TMS) can be employed to probe intra- and intercortical 

physiology and causal changes in functional circuits of the brain (Reis et al., 2008; Westlake 

& Nagarajan, 2011). 

 

1.4 Transcranial magnetic stimulation (TMS) 

TMS was introduced in 1985 by Barker et al. and has since then gained recognition as safe 

technique to stimulate the human cerebral cortex non-invasively and pain-free (Barker et al., 

1985). TMS makes use of Faraday‟s principle of electromagnetic induction, which states that 

electrical energy can be converted into magnetic fields and vice versa (Faraday, 1832). During 

TMS, a copper stimulation coil is held tangentially to the subject‟s scalp. The electric current 

in the stimulation coil produces a strong magnetic pulse of short duration (~2 Tesla, ~50-100 

µs) which passes the skull nearly unhindered and induces an electric field (EF) in the 

underlying brain tissue (Figure 1.5A). The induced EF causes depolarization of fast 

conducting large pyramidal cells, which have excitatory monosynaptic connections to spinal 

cord motoneurons. Hence, TMS pulses may finally result in motor-evoked potentials (MEPs) 

in contralateral peripheral muscles which can be recorded by means of electromyography 

(EMG). There is evidence that TMS excites pyramidal cells either directly at the axon 

membrane or indirectly via transsynaptic input from interneurons (Di Lazzaro et al., 1998a). 
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Evidence for this suggestion comes from so-called descending waves or descending volleys 

recorded from a bipolar electrode inserted into the cervical epidural space of conscious human 

subjects (Di Lazzaro et al., 1998a). Descending waves are rapidly transmitted (60-70 m/s) 

synchronized action potentials in fast conducting axons of pyramidal cells, which innervate 

motoneurons in the spinal cord (Amassian et al., 1987). The first of these descending waves is 

referred to as direct wave or D-wave, which is thought to reflect direct excitation of axons in 

white matter due to its short latency (Amassian et al., 1987). The early D-wave is followed by 

several later indirect waves or I-waves which follow in constant intervals of ~1.5 ms and 

correlate with excitatory postsynaptic potentials (EPSP) of fast conducting pyramidal cells 

(Amassian et al., 1987) and hence are thought to reflect indirect excitation of pyramidal cells 

by transsynaptic input from excitatory interneurons. TMS may induce both, D-waves and I-

waves indicating that the induced EF may excite motoneurons either directly at the axon 

membrane or indirectly via transsynaptic input (Di Lazzaro et al., 1998a). Axons are 

preferentially excited if the induced EF changes relative to their trajectory (Figure 1.5B). 

Since the EF in the brain tissue is horizontal, particularly axons which bend downwards will 

be locally depolarised at the axon membrane (Basser, 1994; Ilmoniemi et al., 1999; Roth & 

Basser, 1990; Figure 1.5C). 

 

 

 

Modified from: http://www.biomag.hus.fi/tms/Thesis/Fig1.jpg (19.10.2011) 

 
Figure 1.5: Introduction: Principles of transcranial magnetic stimulation (TMS). A: The electric 

current in the TMS coil (solid black line; flowing in posterior-anterior direction) generates a transient 

magnetic field (solid grey line), which induces an electric field (EF) in the brain (dashed white line; in 

posterior-anterior direction). B: Motor cortex stimulation and trajectory of pyramidal axons. The 

induced EF runs in posterior-anterior direction and approximately parallel to the gyral surface. C: 

Direct axonal excitation at the microscopic level. The induced EF causes local depolarisation of the 

axon membrane at the position where the pyramidal axon bends downwards.  
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Excitation of motoneurons has been demonstrated to be maximal if the induced EF is 

approximately perpendicular to the central sulcus and in posterior-anterior (PA) direction 

(Mills et al., 1992). Traditional circular-shaped TMS coils induce strong electric fields 

whereas figure-of-eight TMS coils offer the advantage of increased focality since maximal 

current is induced in a relatively small area at the intersection of the two round components 

(Lontis et al., 2006). A recent study of Thielscher and colleagues suggests that TMS has a 

spatial resolution of at least 7.7 mm (Thielscher & Wichmann, 2009). Since the EF strength 

decreases exponentially as a function of distance from the TMS coil (Eaton, 1992), TMS is 

restricted to stimulation of more superficial cortical areas (1-6 cm distant from the TMS coil; 

Weyh & Siebner, 2007).  

 

Two major approaches can be pursued with TMS: 

1) Investigation of physiological properties of neuronal tissue by means of several pulses 

applied at low frequencies (< 1 Hz): 

Two different subtypes are: 

a) Single-pulse TMS (to assess e.g. corticospinal excitability; cf. 1.4.2) 

b) Paired-pulse TMS (to assess intra- or intercortical neuronal pathways; cf. 1.4.3) 

2) Modulating corticospinal excitability beyond the period of stimulation by means of 

repetitive transcranial magnetic stimulation (rTMS), i.e. many pulses (usually > 500) 

applied at higher stimulation frequencies (≥ 1 Hz) 

The following paragraph gives an overview of TMS techniques with emphasis on the methods 

applied in the present thesis. 

 

1.4.1 Stereotaxic frameless neuronavigation 

Although exact coil positioning is crucial for correct interpretation of TMS effects, accurate 

positioning of the TMS coil over the cortical target area represents one of the most 

challenging aspects of the experimental procedure (Sparing et al., 2010). Two conventional 

strategies have been used before the introduction of stereotaxic frameless neuronavigation for 

TMS: (i) the international 10-20 electroencephalography (EEG) electrode system and (ii) 

standardized function guided procedures (Sparing et al., 2008). The former strategy assumes 

consistent correlation between scalp positions and underlying brain structures and may lead to 

spatial variations of up to 20 mm with some electrode positions showing larger variability 
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than others (Herwig et al., 2003). The latter strategy assumes that brain areas are subsequently 

located in a certain spatial relation to a reference point (e.g. M1 leading to MEPs when 

stimulated). Accuracy of this procedure falls off with increasing distance from the reference 

point (Herwig et al., 2001). Since the early 1990s, image-guided frameless stereotaxic 

neuronavigation systems (SNS) have been used for presurgery evaluation as well as online 

navigation during neurosurgery (Herwig & Schonfeldt-Lecuona, 2007). Since 1997, SNS is 

also available for coil guidance during TMS and three different strategies have been 

suggested, which make use of: (i) the subject‟s individual structural (anatomical) magnetic 

resonance imaging (MRI) scan allowing navigation after subject-image coregistration based 

on facial and/or cranial landmarks, (ii) individual fMRI data, and (iii) probabilistic (group) 

fMRI data. Highest precision can be achieved with the latter two strategies in which task-

related fMRI signal is used as functional landmark for coil positioning (Sparing et al., 2008; 

Figure 1.6). The probabilistic approach might be particularly useful if reliable fMRI 

activations cannot be obtained on the single-subject level. Nonetheless, a spatial mismatch of 

up to 14 mm between the individual position yielding highest MEPs when stimulated with 

TMS and the position with highest individual fMRI signal has consistently been reported for 

the human motor cortex (Bastings et al., 1998; Boroojerdi et al., 1999; Herwig et al., 2002; 

Krings et al., 1997; Lotze et al., 2003; Sparing et al., 2008; Terao et al., 1998). The underlying 

cause of this spatial mismatch between fMRI and TMS is unknown and will be matter of 

investigation in the present thesis (Study I & II). 

 

 

Figure 1.6: Introduction: Stereotaxic frameless 

neuronavigation for transcranial magnetic 

stimulation (TMS). The screenshot of the eXimia 

software (Nexstim, Helsinki) shows a 3D head 

reconstruction model based on a volunteer‟s 

individual high-resolution anatomical magnetic 

resonance imaging (MRI) scan. The position of the 

TMS coil and the position of the subject‟s head are 

tracked via an infrared camera which allows online 

navigation. The anatomical MRI scan is overlaid 

with the subject‟s individual functional magnetic 

resonance imaging (fMRI) data during index finger 

tapping (red/yellow activation cluster in the motor 

hand area). The electric field (EF) is colour coded 

(highest EF strength depicted in red). 
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1.4.2 Single-pulse TMS 

1.4.2.1 Motor-evoked potentials (MEPs) and motor thresholds (MTs) 

When investigating the human motor system, TMS effects are usually probed by inducing 

MEPs measured at contralateral peripheral target muscles by means of EMG recordings. Two 

small hand muscles served as target muscles in the present thesis: (i) the first dorsal 

interosseous (FDI) muscle involved in index finger abduction, and (ii) the abductor pollicis 

brevis (APB) muscle involved in thumb abduction. Both muscles, particularly the FDI 

muscle, have the advantage of relatively large representation areas in M1 and are well suitable 

for EMG recordings due to their superficial anatomical position. Motor thresholds (MTs) and 

peak-to-peak amplitudes of MEPs are measures of corticospinal excitability involving both, 

excitation of cortical neurons (either directly or transsynaptically) and synaptic mechanisms at 

the level of the spinal cord (Hallett, 2007). The MT is defined as the minimum TMS 

stimulator output intensity needed to generate MEPs in the target muscle and can be obtained 

either at rest (resting motor threshold = RMT) or during permanent low-level contraction of 

the target muscle (active motor threshold = AMT). The RMT depends on at least three 

different independent factors: (i) excitability of corticospinal axons, (ii) excitability of 

intracortical synapses, and (iii) excitability of synapses in the spinal cord. The AMT is usually 

lower than the RMT of the same subject since tonic muscle contraction pre-activates synapses 

in the spinal cord which lowers their threshold to generate an MEP if a TMS pulse is 

simultaneously applied (Hess et al., 1987; Rosler et al., 2008). Since synapses in the spinal 

cord are pre-activated, AMT is assumed to depend mostly on the excitability of cortical axons 

and intracortical synapses. Hence, AMT is thought to be a measure of cortical rather than 

corticospinal excitability (Talelli et al., 2006). 

 

1.4.2.1.1 MEPs and MTs early after stroke 

In some stroke patients, single-pulse TMS applied to the ipsilesional hemisphere fails to elicit 

any MEPs in the acute phase (Foltys et al., 2003; Manganotti et al., 2002; Trompetto et al., 

2000). According to a systematic review, absence of MEPs in the affected limb in the acute 

phase is a strong predictor for poor motor recovery (Hendricks et al., 1997). In patients in 

whom MEPs can be elicited, the RMT of the ipsilesional hemisphere is usually increased (i.e. 

corticospinal excitability is decreased) compared to healthy subjects and compared to the 

contralesional hemisphere both in the acute (Manganotti et al., 2002) and sub-acute phase 
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(Cicinelli et al., 1997). Likewise, AMT which has been suggested to be less sensitive to 

changes in spinal cord excitability was found to be increased in the sub-acute phase (Cicinelli 

et al., 2003) indicating reduced cortical excitability. Excitability increases (i.e. MEPs increase 

and MTs decrease) gradually over time concomitant to motor recovery (Manganotti et al., 

2002; Thickbroom et al., 2002; Traversa et al., 2000). MTs of the contralesional hemisphere 

are usually within normal limits even in the acute phase (Foltys et al., 2003; Manganotti et al., 

2002; Shimizu et al., 2002). 

 

1.4.2.2 TMS motor mapping 

TMS motor mappings are used to define the position and extend of the cortical representation 

of a particular peripheral muscle. During this procedure, a focal figure-of-eight TMS coil is 

systematically moved (usually in 5-10 mm increments) to scalp positions. As a result, a 

cortical excitability map is generated based on muscle responses (i.e. MEPs) recorded from 

the target muscle (Figure 1.7). The most important parameters which can be obtained by TMS 

motor mappings are: (i) the geometric centre-of-gravity (CoG; i.e. the MEP amplitude 

weighted centre of the map) and (ii) the size of the cortical representation (i.e. the number of 

excitable scalp positions). The area of tissue which can be excited by means of TMS is 

considerably larger than the actual representation in M1. This might be due to several reasons 

including geometry of the EF causing excitation of neurons not only exclusively directly 

underneath the TMS coil and excitation of axons running horizontally and terminating onto 

distant neurons. The size of the map area is highly dependent on the stimulation intensity 

used. By contrast, the CoG is relatively insensitive to stimulation intensity and coil shape 

(Brasil-Neto et al., 1992; Wassermann et al., 1992). 
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Figure 1.7: Introduction: Example TMS motor map 

of a healthy volunteer generated with transcranial 

magnetic stimulation (TMS). Single-pulse 

suprathreshold TMS (120% resting motor threshold) 

pulses were applied at different scalp positions 

spaced at intervals of 5 mm (7 pulses per position). 

Resulting motor-evoked potentials (MEPs) of the 

abductor pollicis brevis (APB) muscle were used to 

generate a colour coded excitability map (purple: 

lowest MEP; red: highest MEP) and calculate the 

MEP amplitude weighted centre of the map (i.e. the 

centre-of-gravity; CoG) which is marked with a 

white cross.  

 

 

1.4.2.2.1 TMS motor maps early after stroke 

In the acute phase, cortical representations of paretic hand muscles in the ipsilesional 

hemisphere are significantly smaller than cortical representations of homologue muscles in 

the contralesional hemisphere (Foltys et al., 2003). The map area increases concomitant with 

motor recovery (Cicinelli et al., 1997; Traversa et al., 1997). However, stimulation intensities 

were not adjusted in these studies, and therefore, the results might be confounded by 

decreases in MT while patients recovered. Analyses on map area would anyway only allow 

conclusions on a general increase of corticospinal excitability whereas a spatial shift of the 

CoG suggests changes in somatotopy of motor cortical projections. In the acute phase, the 

CoG is within the normal range but spatial shifts may occur later during recovery either in the 

anterior-posterior or medial-lateral direction (Bastings et al., 2002; Thickbroom et al., 2002). 

Such spatial shifts may range from several millimetres (Byrnes et al., 2001; Thickbroom et 

al., 2002) up to few centimetres (Bastings et al., 2002; Delvaux et al., 2003), which is well 

beyond the normal variation range of 2-3 mm in healthy subjects (Wassermann et al., 1996). 

Motor maps of the contralesional hemisphere usually remain unchanged (Bastings et al., 

2002; Liepert et al., 1998). 

 

1.4.3 Paired-pulse TMS 

Paired-pulse TMS paradigms can be used to investigate inhibitory and excitatory neuronal 

circuits either within or between hemispheres with high temporal resolution. What all paired-
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pulse TMS paradigms share is the concept of a conditioning TMS pulse (conditioning 

stimulus = CS) preceding a second test TMS pulse (test stimulus = TS) applied to M1. 

Although the CS is usually applied to M1, it might also be delivered to other cortical brain 

areas, for example dPMC (Koch et al., 2006). The intensity of the TS is usually adjusted to 

generate MEPs of 0.5-1.5 mV in the contralateral target muscle. Trials with paired pulses 

(CS+TS) and single pulses (TS) are applied in randomized or alternating order within one 

session and inhibitory or facilitatory effects are inferred from MEP amplitudes resulting from 

single- compared to paired-pulse trials. Two main protocol types can be distinguished: (i) 

both stimuli are applied via the same TMS coil at the same position or (ii) stimuli are applied 

via two different coils at two different positions. The first approach allows investigation of 

inhibitory and excitatory neuronal circuits within one hemisphere whereas the second 

approach allows investigation of neuronal circuits between hemispheres, for example between 

both primary motor cortices. 

 

1.4.3.1 Paired-pulse TMS applied to one hemisphere 

Three different types of protocols allow investigation of excitatory and inhibitory neuronal 

circuits within one hemisphere: (i) protocols with two suprathreshold stimuli of similar 

intensity separated by long interstimulus intervals (ISIs) of 10-200 ms, (ii) protocols with a 

subthreshold CS and a suprathreshold TS and short ISIs of 1-15 ms, and (iii) protocols with a 

suprathreshold CS and a subthreshold TS and very short ISIs of 0.5-5 ms (Table 1.2). 

 

Table 1.2: Introduction: Paired-pulse TMS parameters applied to one hemisphere 

CS 

intensity 

TS 

intensity 

ISI Paired-pulse TMS parameter First description 

Supra- 

threshold 

 

Supra-

threshold 

 

10-40 

ms 

LICF Long-interval intracortical 

facilitation 

Claus et al. 

(1992) 

 60-200 

ms 

LICI Long-interval intracortical 

inhibition 

Sub- 

threshold 

 

Supra- 

threshold 

 

1-5  

ms 

SICI Short-interval intracortical 

inhibition 

Kujirai et al. 

(1993) 

 10-15 

ms 

ICF Intracortical facilitation 

Supra- 

threshold 

 

Sub-

threshold 

 

0.5-5 

ms 

SICF Short-interval intracortical 

facilitation 

Ziemann et al. 

(1998b) 
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CS: Conditioning stimulus; ISI: Inter-stimulus interval; TMS: Transcranial magnetic stimulation; TS: 

Test stimulus 

 

1.4.3.1.1 Short-interval intracortical inhibition (SICI) 

SICI refers to the phenomenon that a suprathreshold TS applied to the motor hand area is 

suppressed by a subthreshold CS applied at the same position 1 to 5 ms before the TS (Figure 

1.8). Maximum inhibition is seen if the TS intensity is adjusted to generate MEPs of 1 mV 

and the CS intensity is around 80% AMT (Talelli et al., 2006).  

 

 

Figure 1.8: Introduction: Paired-pulse transcranial magnetic stimulation (TMS) applied to one 

hemisphere. During assessment of short-interval intracortical inhibition (SICI) a subthreshold 

conditioning stimulus (CS; 80% of the active motor threshold) is applied 1-5 ms before a 

suprathreshold test stimulus (TS) via the same TMS coil positioned over the motor hand area. 

Stimulation intensity of the TS is adjusted to generate motor-evoked potentials (MEPs) of 1 mV in the 

contralateral target muscle if applied alone. If the CS precedes the TS, MEPs of the target muscle 

(contralateral to the TS) are significantly reduced compared to MEPs resulting from single-pulse trials 

(i.e. application of the TS alone). 

 

Compared to other paired-pulse parameters, relatively much is known about the 

neurophysiological mechanisms underlying SICI. For instance, there is evidence that SICI is a 

measure of intracortical inhibition, i.e. suppression is likely to occur at the cortical level 

rather than at the level of the spinal cord. This conclusion was mainly drawn from two 
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experiments: (i) cortical CS pulses (suppressing cortical TS pulses during SICI) have no effect 

on Hoffmann reflexes (H-reflexes) generated in spinal cord segments (Kujirai et al., 1993; 

Ziemann et al., 1996b) and (ii) electrical recordings of descending volleys produced by 

paired-pulse TMS by means of high cervical epidural electrodes implanted in patients for pain 

relief demonstrated a significant reduction of later I-waves which suggests involvement of 

local cortical inhibitory circuits (Di Lazzaro et al., 1998b). If a longer ISI is applied, ICF 

instead of SICI is induced (cf. Table 1.2). Presumably different neuronal circuits are involved 

in the generation of SICI and ICF, since SICI can be induced with lower CS intensities than 

ICF (Kujirai et al., 1993; Ziemann et al., 1996b) and SICI and ICF are differentially affected 

by neuropharmacological agents. ICF is likely to act on glutaminergic N-methyl-D-aspartate 

(NMDA) receptors since administration of NMDA-receptor antagonists decreases ICF 

(Schwenkreis et al., 1999; Ziemann et al., 1998a). By contrast, SICI is mediated by gamma-

aminobutyric acid A (GABAA) receptors since GABAA agonists have been demonstrated to 

enhance SICI (Di Lazzaro et al., 2000; Ilic et al., 2002; Ziemann et al., 1996a). SICI is 

modulated by muscle contraction, i.e. SICI is reduced during contraction of the target muscle 

(Ridding et al., 1995) and increased during contraction of nearby muscles (Stinear & Byblow, 

2003). Therefore, SICI has been suggested to play an important role in selecting the most 

appropriate muscles for a specific movement. SICI at very short ISI (~ 1 ms) is probably 

mediated by a different mechanism than SICI at longer ISI (2-5 ms) since it requires much 

lower CS intensities and is insensitive to voluntary contraction (Fisher et al., 2002). It has 

been suggested that SICI at very short ISI (~ 1 ms) is most likely caused by relative 

refractoriness of cortical neural elements activated by the CS whereas SICI at longer ISI 

reflects GABAA-mediated intracortical inhibition (Fisher at al., 2002; Hanajima et al., 2003). 

The present thesis focuses on SICI to assess intrahemispheric inhibition because (i) it is a 

very robust paradigm, (ii) its neurophysiological mechanisms are better understood than those 

of any other paired-pulse TMS parameter, (iii) it is well characterized in healthy subjects, and 

(iv) it is of particular relevance for stroke since stroke patients may show abnormal SICI 

compared to healthy subjects. 

 

1.4.3.1.1.1 SICI early after stroke 

In the first days (Di Lazzaro et al., 2010) and weeks after stroke, SICI on the ipsilesional 

hemisphere tends to be reduced (Cicinelli et al., 2003; Liepert et al., 2000; Manganotti et al., 

2002). Although ICF is generally unchanged (Cicinelli et al., 2003; Liepert et al., 2000; 
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Manganotti et al., 2002) there is a tendency for ICF to occur at shorter ISIs (Liepert et al., 

2000; Shimizu et al., 2002) and lower CS intensities (Butefisch et al., 2003), which induce 

SICI in healthy subjects. These findings suggest that intracortical excitability of the 

ipsilesional hemisphere is shifted towards facilitation. Interestingly, also excitability of the 

contralesional hemisphere was found to be changed towards facilitation, i.e. SICI was reduced 

in the first weeks after stroke in the majority of studies (Butefisch et al., 2003; Liepert et al., 

2000; Manganotti et al., 2002; Shimizu et al., 2002). Hence, stroke lesions appear to have 

differential effects on corticospinal excitability (MEPs, MTs) and intracortical excitability 

(SICI, ICF) of the contralesional hemisphere (since MTs of the contralesional hemisphere 

were found to be unchanged in the majority of studies). 

 

1.4.3.2 Paired-pulse TMS applied to both hemispheres 

Two different types of protocols allow investigation of inhibitory and facilitatory neuronal 

circuits between hemispheres: (i) protocols with two suprathreshold stimuli of similar 

intensity separated by ISIs of 7-50 ms, (ii) protocols with a subthreshold CS and a 

suprathreshold TS (applied with anterior-posterior (AP) instead of the standard posterior-

anterior (PA) induced current in the brain) and an ISI of 8 ms (Table 1.3). 

 

Table 1.3: Introduction: Paired-pulse TMS parameters assessed over both hemispheres 

CS 

intensity 

TS 

intensity 

ISI Paired-pulse TMS parameter First description 

Supra-

threshold 

 

Supra- 

threshold 

 

7-50 

ms 

IHI Interhemispheric inhibition Ferbert et al. 

(1992) 

 

Sub-

threshold 

 

Supra- 

threshold 

(AP 

induced 

current) 

8 ms IHF Interhemispheric facilitation Baumer et al. 

(2006) 

 

 

AP: Anterior-posterior; CS: Conditioning stimulus; ISI: Inter-stimulus interval; TMS: Transcranial 

magnetic stimulation; TS: Test stimulus 
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1.4.3.2.1 Interhemispheric inhibition (IHI) 

IHI refers to the phenomenon that a suprathreshold TS (yielding MEPs of 0.5-1 mV when 

applied alone) applied to the motor hand area is suppressed by a suprathreshold CS (0.5-1 

mV) applied to the homologue motor hand area of the contralateral hemisphere resulting in a 

decrease of the MEP recorded from a target muscle contralateral to the TS and ipsilateral to 

the CS (Figure 1.9).  

 

 

 

Figure 1.9: Introduction: Paired-pulse transcranial magnetic stimulation (TMS) applied to both 

hemispheres. During assessment of interhemispheric inhibition (IHI) a suprathreshold conditioning 

stimulus (CS) is applied to the motor hand area 7-50 ms before a suprathreshold test stimulus (TS) is 

applied to the homologue motor hand area of the contralateral hemisphere. Stimulation intensities of 

both CS and TS are adjusted to generate motor-evoked potentials (MEPs) of 1 mV in contralateral 

target muscle if applied alone. If the CS precedes the TS, MEPs of the target muscle (contralateral to 

the TS and ipsilateral to the CS) are significantly reduced compared to MEPs resulting from single-

pulse trials (i.e. application of the TS alone). 

 

Although the exact mechanisms underlying IHI are still under investigation, involvement of 

transcallosal glutamatergic pathways linking with CST neurons through inhibitory GABA-

ergic interneurons has been suggested (Reis et al., 2008). IHI can be induced in relaxed and 

voluntary contracted hand muscles (Chen et al., 2003; Ferbert et al., 1992). The higher the 

intensity of the CS, the more pronounced is IHI. By contrast, high TS amplitudes (~ 2mV) 
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decrease IHI compared to standard amplitudes of 0.5 to 1mV. Higher stimulation intensities 

are needed to generate IHI compared to single-pulse MEPs from the same hemisphere, 

suggesting involvement of different neuronal populations. Under certain constraints IHF 

could be demonstrated in the healthy brain at rest. However, ICF is considerably less robust 

than IHI (Ferbert et al., 1992; Hanajima et al., 2001; Baumer et al., 2006) and occurs only at 

an ISI of 8 ms when the TS is applied with AP instead of standard PA induced current in the 

brain. IHI is thought to consist of two phases: an early phase with ISIs of 7-10 ms and a later 

phase with intervals > 15 ms (Talelli et al., 2006). The early but not the late phase of IHI is 

influenced by voluntary muscle contraction. Already the original work by Ferbert et al. 

(1992), who first described IHI, demonstrated that IHI was increased if the target muscle 

contralateral to the CS and ipsilateral to the TS was tonically contracted compared to IHI at 

rest. This finding indicates that voluntary activation of M1 leads to increased inhibition of the 

contralateral M1. In line with these suggestions, contraction of the hand contralateral to the 

TS and ipsilateral to the CS has been demonstrated to reduce IHI (Chen et al., 2003). The 

present thesis focuses on IHI (measured at rest) to assess interhemispheric inhibition because 

it is (i) a very robust paradigm, (ii) well characterized in healthy subjects, and (iii) of 

particular relevance for stroke since stroke patients may show abnormal IHI compared to 

healthy subjects. 

 

1.4.3.2.1.1 IHI (measured at rest) early after stroke 

In the subacute stage, IHI from the contralesional onto the ipsilesional hemisphere (CS: 

contralesional hemisphere; TS: ipsilesional hemisphere) is unchanged (Butefisch et al., 2008). 

In contrast, IHI from the ipsilesional onto the contralesional hemisphere (CS: ipsilesional 

hemisphere; TS: contralesional hemisphere) has been shown to be significantly reduced in 

stroke patients in the subacute stage (Butefisch et al., 2008). IHI targeting the contralesional 

hemisphere was found to be decreased independent of the lesion site (i.e. cortical-subcortical 

or purely subcortical) in the study of Butefisch et al. (2008). However, two studies suggest 

that IHI targeting the contralesional hemisphere might be unchanged if the lesion is purely 

subcortical and below the centrum semiovale containing transcallosal fibres (Boroojerdi et al., 

1996; Shimizu et al., 2002). Hence, IHI targeting the contralesional hemisphere might be only 

reduced if transcallosal fibres are injured. 
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1.4.4 Repetitive transcranial magnetic stimulation (rTMS) 

Repetitive transcranial magnetic stimulation (rTMS) can be used to modulate corticospinal 

excitability beyond the stimulation period. Stimulation intensities used for rTMS are usually 

defined as a percentage of the individual MT and are subthreshold in the majority of studies 

(Hoogendam et al., 2010).  

 

1.4.4.1 rTMS protocols 

During rTMS, stimuli are repetitively applied in a specific temporal pattern. Conventional, so 

called simple rTMS protocols are characterized by many (usually > 500) stimuli applied at 

constant ISIs. By contrast, patterned rTMS protocols are characterized by varying ISIs. 

Effects of simple rTMS protocols are bidirectional, depending on the frequency applied: low-

frequency rTMS (most frequently used: 1 Hz) produces inhibition whereas high-frequency 

rTMS (≥ 3 Hz, most frequently used: 5 Hz) produces facilitation of cortical excitability (Chen 

et al., 1997; Houdayer et al., 2008; Pascual-Leone et al., 1994). Numerous studies 

demonstrated effects of simple rTMS protocols on motor cortex excitability, that is on MEP 

size (Hoogendam et al., 2010), but durations of after-effects are highly variable across studies 

and rarely last longer than 30 min despite of relatively long stimulation periods (~ 10–25 

min). Theta-burst stimulation (TBS) is a patterned rTMS protocol resembling the naturally 

occurring firing pattern of neurons in the hippocampus (i.e. 5 Hz = theta rhythm; Albensi et 

al., 2007; Larson et al., 1986). It was developed following the example of the theta-burst 

protocol used to induce phenomena of synaptic plasticity such as long-term potentiation 

(LTP) and long-term depression (LTD) in animal studies by means of repetitive electrical 

stimulation (Hess et al., 1996; Huemmeke et al., 2002; Larson & Lynch, 1986; Vickery et al., 

1997). Huang et al. (2005) were the first who used rTMS with a theta-burst stimulation 

pattern to modulate motor cortex excitability non-invasively in humans. The basic element of 

TBS patterns are bursts (3 pulses given at 50 Hz), which are applied at 5 Hz. Huang et al. 

(2005) demonstrated that 40 s of continuous TBS (cTBS) significantly suppressed motor 

cortex excitability for nearly 60 min, whereas intermittent TBS (iTBS), in which a 2s-train of 

stimulation (10 bursts) is followed by 8 s pause, significantly increased motor cortex 

excitability for about 15 min (Figure 1.10).  
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Hoogendam et al. (2010) 

 

Figure 1.10: Introduction: Repetitive transcranial magnetic stimulation protocols. Several repetitive 

transcranial magnetic stimulation (rTMS) protocols are available to modulate cortical excitability 

beyond the period of stimulation. Simple rTMS protocols are characterized by constant inter-stimulus 

intervals (ISIs). Low-frequency rTMS (most frequently used: 1 Hz) induces inhibition, whereas high-

frequency rTMS (≥ 3 Hz; most frequently used: 5 Hz) induces facilitation. Modern patterned rTMS 

protocols are characterized by varying ISIs. The basic elements of theta-burst stimulation (TBS) 

patterns are bursts (i.e. 3 pulses given at 50 Hz or an ISI of 20 ms respectively). Bursts are repeated at 

5 Hz (i.e. with an ISI of 200 ms). Continuous TBS (cTBS) for 40 s induces inhibition, whereas 

intermittent TBS (iTBS), in which 2 s of stimulation are followed by 8 s pause, induces facilitation. 

Overall 600 pulses are usually applied during both cTBS and iTBS. 

 

iTBS has facilitatory and cTBS inhibitory effects on cortical excitability, although both 

protocols contain equivalent number of pulses, namely 600 pulses in total. To explain this 

finding, Huang et al. (2005) suggested a theoretical model which is based on the following 

assumptions: (i) TBS induces both facilitatory and inhibitory effects simultaneously in the 

human brain, (ii) inhibitory effects build up slower than facilitatory effects, and (iii) inhibitory 

effects dominate over facilitatory effects when both have reached saturation. According to this 

model, short trains of stimulation (as during iTBS) would favour facilitatory effects which 

built up faster than inhibitory effects. However, during longer stimulation periods (as during 

cTBS) inhibitory effects build up and dominate over facilitatory effects on the long run since 

facilitatory effects saturate at lower levels. However, this is still a hypothetical model. An 

alternative would be that iTBS and cTBS act on different neuronal circuits. This hypothesis is 

supported by findings of differential effects on corticospinal activity probed by recordings 

from patients with electrodes implanted in the epidural space of the spinal cord (Di Lazzaro et 

al., 2005, 2008b). Huang et al., (2005) did not only probe motor cortex excitability by means 
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of MEP sizes but additionally demonstrated that TBS may have significant impact on motor 

performance. Interestingly, behavioural TBS effects were not restricted to the hand 

contralateral to the stimulated hemisphere but were also found in the hand ipsilateral to the 

stimulated hemisphere. Reaction times of the contralateral hand were prolonged 10 min after 

cTBS, whereas reaction times of the ipsilateral hand were significantly shorter 30 min after 

cTBS. TBS has several advantages over simple rTMS protocols, among them low stimulation 

intensities (reducing the risk to induce seizures; Bezard et al., 1999), robust and long-lasting 

effects which are more consistent across studies (Hoogendam et al., 2010), and short 

stimulation duration of only 1-3 min.  

 

1.4.4.2 The neurophysiological basis of rTMS effects 

The neurophysiological mechanisms underlying rTMS effects are incompletely understood 

but there are several lines of evidence supporting the hypothesis that rTMS acts on the level 

of individual synapses by mechanisms such as LTP and LTD. For instance, there are various 

characteristics of rTMS induced effects which follow key features of synaptic plasticity: (i) 

effects outlast the period of stimulation, (ii) direction and duration of effects depend on 

temporal patterns of the stimuli applied, (iii) induced changes depend on physiologic activity 

and the history of activation, and (iv) effects interact with skill learning (Hoogendam et al., 

2010). Apart from these indirect lines of evidence based on observed similarities, 

pharmacological and genetical studies suggest a more direct link between rTMS effects and 

synaptic plasticity such as LTP and LTD. For instance, Aydin-Abidin and colleagues (2008) 

demonstrated that iTBS increases the expression of Zif268 in the rat brain. Zif268 is a 

mammalian transcription factor, which is essential for the induction and persistence of LTP 

(Jones et al., 2001). There is also some evidence that the NMDA receptor, which plays a key 

role in synaptic plasticity (Cooke & Bliss, 2006), is involved in rTMS mediated effects, since 

the NMDA receptor antagonist memantine blocks both, the facilitatory effect of iTBS and the 

inhibitory effect of cTBS in humans (Huang et al., 2007). However, although several lines of 

evidence suggest that rTMS effects are mediated by synaptic plasticity, a direct proof for the 

involvement of LTP and LTD in rTMS effectiveness has not yet been demonstrated.  
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1.4.4.3 Therapeutic potential of rTMS 

Since rTMS induces long-lasting changes in cortical excitability or activity, it has therapeutic 

potential for treatment of various neurological and psychiatric diseases in which the 

pathomechanism is related to either decreased or increased cortical excitability. Examples for 

diseases in which inhibitory rTMS is used to suppress abnormal hyperexcitability are 

epilepsy, hyperkinetic movement disorders, chronic pain, tinnitus, and hallucinations whereas 

facilitatory rTMS is used to enhance abnormally low excitability in depression and 

hypokinetic movement disorders (Karim et al., 2007). The therapeutic potential of rTMS for 

treatment of stroke induced motor deficits seems to be particularly high (Talelli & Rothwell, 

2006; Ziemann, 2005). In most cases, rTMS causes no pain and is well tolerated. Although 

there is a residual risk to cause seizures with rTMS, this is considered low if safety-guidelines 

are met (Oberman et al., 2011; Wassermann, 1998).  

 

1.4.4.4 The model of hemispheric competition 

Although the pathomechanism underlying stroke induced motor deficits is incompletely 

understood, some studies suggest disturbed hemispheric balance which led to the suggestion 

of a simplified model of hemispheric competition (Figure 1.11).  

 

 

 
Figure 1.11: Introduction: The model of hemispheric competition. A: There is balanced reciprocal 

interhemispheric inhibition (IHI) between both primary motor cortices via transcallosal fibre tracts in 

the healthy human brain at rest. B: In healthy subjects, reciprocal IHI is modulated by the state of 

activation. During unilateral hand movements, the “active” primary motor cortex (M1) contralateral to 

hand movements exerts increased IHI onto the M1 ipsilateral to hand movements. C: Modulation of 

IHI is abnormal in stroke patients. During movements of the paretic hand, the contralesional 
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hemisphere (ipsilateral to paretic hand movements) exerts pathologically increased IHI onto the 

“active” ipsilesional M1 (contralateral to paretic hand movements). 

 

In line with the model of hemispheric competition, two rTMS intervention strategies have 

been demonstrated to yield significant transient improvements in motor performance of the 

affected hand in stroke patients: (i) increasing cortical excitability of the ipsilesional 

hemisphere by means of high-frequency simple rTMS protocols (Khedr et al., 2005; Kim et 

al., 2006) and (ii) decreasing cortical excitability of the contralesional hemisphere by means 

of low-frequency simple rTMS protocols (Fregni et al., 2006; Mansur et al., 2005; Takeuchi 

et al., 2005). Both stimulation strategies seem to be equally effective and induce 

improvements of approximately 10-20%. Effects of a single rTMS session rarely last longer 

than 30-60 min (Hoogendam et al., 2010), whereas effects of multiple sessions have been 

demonstrated to last for hours and up to 2 weeks (Fregni et al., 2006). This implies that non-

invasive brain stimulation techniques could in future be used to promote neural plasticity and 

to improve clinical outcome of stroke patients in combination with physical training currently 

used in neurorehabilitation. Whether effects are sufficiently robust in clinical settings is 

currently under intensive investigation as are questions regarding the optimal stimulation site 

and protocol. The most important problem that needs to be solved is the considerably high 

inter-individual variability in rTMS mediated effects, which is seen in healthy subjects 

(Daskalakis et al., 2006; Van Der Werf & Paus, 2006; Muller-Dahlhaus et al., 2008) as well 

as stroke patients (Ameli et al., 2009). The latter study by Ameli and colleagues (2009) 

demonstrated that some stroke patients may even show transient deteriorations of motor 

performance after rTMS. Hence, for the implementation of rTMS in stroke therapy it seems 

essential to identify reliable predictors for the therapeutic success of a specific rTMS 

intervention. Factors which are likely to impact on rTMS induced effects are: (i) time since 

stroke, (ii) lesion location, and (iii) underlying pathology. Study III of the present thesis 

focusses on identification of reliable neuroimaging predictors for behavioural response to 

facilitatory and inhibitory TBS in chronic stroke patients.  
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1.5 Functional magnetic resonance imaging (fMRI) 

1.5.1 Fundamentals of magnetic resonance imaging (MRI) physics 

MRI is based on the absorption and emission of radio waves by tissue placed in magnetic 

fields and was independently developed by different authors in 1973 (Lauterbur 1973; 

Mansfield & Grannell, 1973). MRI pictures tissue by hydrogen atoms which have a single 

proton as atomic nucleus and a single electron as atomic shell. Like all elementary particles 

the proton has a basic property called “spin”, i.e. it rotates along its own axis (Weishaupt et 

al., 2006). Since the proton is positively charged, it also has a magnetic moment (B). In other 

words, protons act as small magnets. They are therefore influenced by magnetic fields and 

electromagnetic waves and induce voltage in the receiving magnetic resonance (MR) coil if 

the rotation axis of their spin moves. If human tissue is brought into the high magnetic field of 

the MR scanner (B0), spins realign with B0. Spins show a weak preference for parallel 

compared to antiparallel realignment with B0 and hence there is a measureable longitudinal 

magnetization Mz (Weishaupt et al., 2006). Now radio frequency (RF), also called high 

frequency (HF) pulses, can be used to deflect spins into the transversal plane (transversal 

magnetization Mxy). After this excitation, the spins start to realign again with B0 and this 

induces an electrical voltage in the receiving coil of the MR scanner. This process requires 

both longitudinal relaxation and transverse relaxation, which are independent processes 

running in parallel. The longitudinal relaxation time T1 (0.5-5 s) is the time needed for full 

longitudinal relaxation, i.e. the transformation of Mxy back to Mz. T1-weighted images are 

frequently used for high-resolution anatomical images (Weishaupt et al., 2006). The 

transverse relaxation time T2 (100-300ms) is the time needed until transversal magnetization 

has disappeared because spins started to rotate with different velocities (also referred to as 

dephasing). Dephasing occurs due to spin-spin interactions (T2) as well as field 

inhomogenities (T2*; Weishaupt et al., 2006). Generally speaking, small changes in field 

inhomogenities are utilized to measure changes in neural activity by means of fMRI. 

 

1.5.2 MRI signal types 

fMRI measures neural activity indirectly by imaging vascular signals driven by neurovascular 

coupling. Two different types of neurovascular fMRI signals can be assessed non-invasively: 

(i) the blood oxygenation level dependent (BOLD) effect and (ii) cerebral blood flow (CBF). 
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Both fMRI signal types were used in the present thesis and will be introduced in the following 

sections. 

 

1.5.2.1 The blood oxygenation level dependent (BOLD) effect 

It was discovered in 1935 that oxyhaemoglobin is diamagnetic whereas deoxyhaemoglobin is 

paramagnetic since the ion atom is not shielded by oxygen atoms (Pauling, 1935). Hence, 

deoxyhaemoglobin causes local field inhomogenities which formed the basis for fMRI based 

on T2*. The BOLD effect measures neuronal activity indirectly by measuring changes in 

blood oxygenation but also relies on changes in CBF and cerebral blood volume (CBV) and 

hence is a rather heterogeneous signal and not a pure measure of one parameter. The temporal 

time course of the BOLD signal is described by the haemodynamic response function (HRF) 

which has been validated experimentally for many human brain regions and can be 

subdivided into three stages (Figure 1.12). Due to increased metabolic demands of firing 

neurons, deoxyhaemoglobin initially increases slightly, which causes the “initial dip” of the 

HRF. Following this initial decrease, vasodilatation occurs after a short period of time, which 

results in local increases in CBF, CBV and an oversupply of oxyhaemoglobin relative to 

deoxyhaemoglobin. Since oxyhaemoglobin is diamagnetic, the relative increase of 

oxyhaemoglobin is associated with an increase in MR signal. Finally, the blood oxygenation 

level returns to normal and the BOLD signal decays to levels slightly below baseline 

(undershoot) before returning to its initial baseline level (Heeger & Ress, 2002). This 

neurovascular response is regionally variable and has been demonstrated to relate to local 

field potentials (which result from various synaptic and cellular mechanisms) with a delay of 

3-6 s (Logothetis et al., 2001). BOLD is the by far most widely-used fMRI technique and 

offers high sensitivity: the BOLD response typically consists of a 0.5-5% increase in regional 

image intensity which increases further with higher magnetic field strength of the MR scanner 

(Detre & Wang, 2002). While BOLD fMRI has become a widely accepted brain mapping 

tool, it is subject to the fact that activation signals come from larger vessels further 

downstream from the actual site of neuronal activity. The underlying cause is local field 

inhomogenity around large draining veins. And hence spatial specificity of BOLD fMRI 

signal is low compared to CBF techniques (Duong et al., 2000; Luh et al., 2000; Silva et al., 

1997; Tjandra et al., 2005). 
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            http://openwetware.org/wiki/Beauchamp:NIRS (12.08.2011) 

 
Figure 1.12: Introduction: The haemodynamic response function. The haemodynamic response 

function (HRF) has been validated experimentally and describes the temporal time course of the 

BOLD (blood oxygenation level dependent) magnetic resonance imaging (MRI) signal. (T2*: 

transverse relaxation time) 

 

1.5.2.1.1 BOLD fMRI sequences 

There are numerous different MRI pulse sequences available among which Gradient-Echo 

(GRE) and Spin-Echo (SE) are the most important pulse sequences for measuring the BOLD 

effect. GRE uses a single slice-sensitive RF excitation pulse (deflecting spins by usually 90° = 

flip angle). Due to static field inhomogenities spins are dephasing, i.e. some spins run faster 

than others. In SE, the 90° excitation pulse is therefore followed by a 180° pulse after half 

echo time (TE). This additional pulse reverses all spins. Now all spins have to travel the same 

distance to reach their original position which they had already been travelled. Fast moving 

spins that had already travelled long distances now have to travel long distances to reach their 

original position whereas slowly moving spins that had travelled only short distances have to 

travel only short distances to reach their original position. Since the field inhomogenities that 

caused differences in travel velocities are still present, all spins are again in-phase after 

another half TE. This difference makes SE pulse sequences less sensitive to field 

inhomogenities around large draining veins than GRE pulse sequences and consequently SE 

signal has been demonstrated to have higher spatial specificity compared to GRE signal 

(Goense & Logothetis, 2006; Harel et al., 2006).  
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1.5.2.2 Perfusion fMRI measuring cerebral blood flow (CBF) 

An alternative to fMRI techniques assessing the BOLD effect are perfusion fMRI techniques 

which are a nearly pure measure of local increases in CBF. Perfusion fMRI has been 

demonstrated to show excellent co-localization with neuronal activity at the expense of lower 

sensitivity (~ 1% change in regional image intensity; Wintermark et al., 2005). CBF can be 

assessed by means of arterial spin labelling (ASL) pulse sequences in which arterial blood 

water is magnetically labelled (most frequently by inversion of longitudinal magnetization) in 

an imaging slice proximal to the tissue of interest. This labelling procedure is non-invasive 

and is achieved by means HF pulses. Control images without blood labelling are additionally 

acquired to yield images with identical tissue signal but without the signal arising from 

inflowing blood. Signal from inflowing blood can be inferred from pair-wise subtraction of 

images acquired with and without blood tagging. Labelled arterial spins flowing into the brain 

tissue elicit local signal changes (either an increase or decrease depending on the specific 

technique applied), which are proportional to CBF (i.e. magnetically labelled blood acts as 

internal diffusible tracer during perfusion MRI). 

 

1.5.2.2.1 CBF fMRI sequences 

Numerous different ASL techniques are available, which can be broadly divided into 

continuous ASL (CASL) and pulsed ASL (PASL). In CASL inversion of blood magnetization 

is achieved by a continuous RF pulse (lasting a few seconds) delivered at the level of the 

internal carotid artery (Williams et al., 1992) whereas in PASL inversion of blood 

magnetization is performed in tissue located next to the slices of interest using a short RF 

pulse (lasting only a few milliseconds). PASL has several advantages over CASL and is the 

most frequently used technique (Monet et al., 2009). Numerous different PASL techniques 

have been developed to minimize artefacts such as magnetization transfer effects (transfer of 

longitudinal magnetization between free hydrogen atoms and hydrogen atoms bound to 

macromolecules) by optimising blood water labelling and control image acquisition 

techniques. In the PICORE (Proximal Inversion with a Control for Off-Resonance Effects) 

method the inversion pulse, which is used for blood labelling is selectively applied to a region 

beneath the slices of interest. In the control condition, a non-selective inversion pulse over the 

entire brain is utilized, which generates the same magnetization transfer effect in the imaging 

slice as during the tag condition. Hence, magnetization transfer effects cancel each other out 

when tagged and control images are subtracted. Additionally, saturation pulses can be applied 
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on both tagged and control images to better define the tail of the inverted blood bolus which is 

achieved by the QUIPSS II (Quantitative Imaging of Perfusion using a Single Subtraction; 

Wong et al., 1998) saturation module for PASL. Numerous pulse sequences have been 

developed based on QUIPSS II. In the present thesis we used PICORE-Q2TIPS, that is the 

PICORE labelling scheme with Q2TIPS (QUIPSS-II with thin-slice TI1 periodic saturation), 

which is a modified version of QUIPSS II eliminating residual errors remaining due to 

incomplete saturation of spins and minimizing the spatial mismatch of saturation and 

inversion slice profiles (Luh et al., 1999). 

 

1.5.3 fMRI data analysis 

fMRI data analysis usually comprises two main steps, i.e. data preprocessing and subsequent 

statistical analysis. fMRI data consist of time series of 3D volumes, whereas one volume 

refers to one image of the brain at a given time point. One volume consists of several 

subsequently acquired brain slices and each slice consists of rows of voxels. Most frequently 

applied steps in fMRI data preprocessing are: (i) spatial realignment (of volumes to a mean 

image by translation and rotation along the three spatial axes to correct for spatial 

displacements induced by head movements during scanning), (ii) slice timing correction 

(interpolation of intensity at a specific time point to correct for different acquisition time of 

slices), (iii) anatomical co-registration (spatial alignment of echo-planar imaging (EPI) 

volumes with high-resolution anatomical T1-weighted images), (iv) spatial normalization 

(changing orientation and shape of EPI volumes to match a standard brain template allowing 

voxel-wise comparison between subjects in group-analyses), and (v) spatial smoothing (to 

increase statistical power and correct for residual inter-individual differences (Smith, 2001; 

Wohlschlager et al., 2007). For statistical analysis of fMRI data, an univariate General Linear 

Model (GLM) is used which models the variation of fMRI signal in each voxel as a linear 

combination of weighted regressors (i.e. experimental conditions) and an error term (Kiebel & 

Holmes, 2007). Regressors consist of onsets of experimental conditions convolved with the 

HRF to account for the temporal delay of the haemodynamic response. Regression weights 

are parameters that are separately estimated for each voxel and experimental condition. 

Statistical analyses on estimated parameters are performed based on T- or F-contrasts. The 

result is a statistical map showing significantly activated voxels given a certain linear 

combination of regressors.  
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1.6 Dynamic causal modelling (DCM) 

Dynamic causal modelling (DCM) was introduced in 2003 to investigate effective 

connectivity by means of fMRI (Friston et al., 2003). DCM is a systems theory oriented 

approach (Stephan, 2004). Elements of the modelled system correspond to different brain 

areas. The direct effect of experimental conditions on activity in brain areas and causal 

interactions between areas (modulated by experimental conditions) are investigated within the 

framework of a bilinear model. Dynamic changes within the system are given by measured 

fMRI data and the thereof estimated parameters θ are interpreted as effective connectivity, i.e. 

as the causal influence that activity in one area exerts on activity in another area (Friston et 

al., 2003). DCM is a simplified model for interregional coupling of n interacting brain regions 

of which each is described by a “neuronal state” (reflecting changes in neuronal activity over 

time). A particular advantage of DCM over other techniques, which are available to 

investigate effective connectivity (such as structural equation modelling (SEM), Buchel & 

Friston, 1997; psychophysiological interactions (PPI), Friston et al., 1997, and Granger 

causality, Roebroeck et al., 2005) is that effective connectivity is estimated on the neuronal 

level. Neuronal states are “translated” into BOLD signal by means of a haemodynamic 

forward model (Friston et al., 2003). Within the same combined model, neuronal interactions 

between areas as well as parameters of neurovascular coupling of each brain area are 

estimated (within experimentally validated physiological ranges) to fit the measured data as 

well as possible. Although neuronal state vectors do not have a direct neurophysiological 

correlate they follow concepts of local field potentials and neuronal firing rates (Eickhoff & 

Grefkes, 2011). Neuronal dynamics within the system are approximated by the following 

bilinear differential neuronal state equation which was proposed based on a general state 

equation for non-autonomous deterministic systems (non-autonomous systems are systems 

which exchange energy or matter with their environment; deterministic indicates that external 

inputs change neuronal activity within the system; Friston et al., 2003; Stephan et al., 2007): 

 

j

j

j
CuzBuAz

dt

dz

 

where dz/dt is the change in neuronal activity in one area over time, z is the neuronal state, u 

is the experimental input, and j refers to the jth input. A, B, and C are matrices of unknown 

coupling parameters θn reflecting effective connectivity between areas. The parameter 

matrices describe different components of effective connectivity. The DCM-A matrix refers 

to endogenous connectivity that describes network interactions independent of experimental 



General introduction 

47 

 

conditions. Experimental conditions can impact on the system in two ways, either by 

modulating coupling strength between areas (which is referred to as task-dependent 

connectivity described by the DCM-B matrix) or by increasing activity in one or more areas 

directly, which is referred to as “driving inputs” and is described by the DCM-C matrix (for 

example visual stimulus presentation increases activity in early visual cortex). Please note that 

endogenous connectivity may not be mistaken as baseline connectivity. It rather reflects the 

task-independent component of effective connectivity across the entire time course of the 

experiment onto which task-modulated changes may add during presence of a certain 

experimental condition (as can be inferred from the neuronal state equation). Coupling 

parameters are expressed in the unit Hertz (influence per time). Positive coupling parameters 

indicate that activity in the source region increases activity in the target region and can be 

interpreted as facilitation. By contrast, negative coupling parameters indicate that activity in 

the source region decreases activity in the target region which can be interpreted as inhibition 

(Friston et al., 2003; Stephan et al., 2010). Please note that coupling parameters also implicitly 

capture the influence of possible relay regions such as e.g. the basal ganglia or the cerebellum 

and do not necessarily reflect direct axonal projections between areas. Since task-dependent 

modulations do not necessarily impact on all endogenous connections, different connectivity 

models reflecting biologically plausible hypotheses on interregional coupling are usually 

tested against each other in a Bayesian model selection (BMS) procedure which determines 

the most likely model given the measured data. This model is characterized by providing the 

best trade-off between accuracy (in explaining the data) and complexity (in terms of network 

architecture; Penny et al., 2004). 
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2 Objectives and structure of the thesis 

2.1 Summary of the medical problem 

As outlined in section 1 (General introduction), stroke is the most common cause for 

permanent disability in adults despite physical and occupational therapy (Kolominsky-Rabas 

et al., 2006). Hence, there is great need for new therapeutic strategies supplementing physical 

therapy in stroke rehabilitation. Interestingly, physical training is associated with an increase 

in cortical excitability (Adkins et al., 2006; Butefisch et al., 2000; Perez et al., 2004; 

Rosenkranz et al. 2007). However, an increase in cortical excitability can also be induced by 

repetitive transcranial magnetic stimulation (rTMS), and particularly theta-burst stimulation 

(TBS; Huang et al., 2005). Consequently, TBS is regarded to have high therapeutic potential 

for treatment of stroke-induced motor deficits if applied alone (Di Lazzaro et al., 2008a, 2010; 

Talelli et al., 2007) or in combination with physical therapy (Ackerley et al., 2010).  

In line with the so-called model of hemispheric competition, increasing excitability of the 

ipsilesional hemisphere (Khedr et al., 2005; Kim et al., 2006; Talelli et al., 2007) as well as 

decreasing excitability of the contralesional hemisphere (Fregni et al., 2006; Mansur et al., 

2005; Takeuchi et al., 2005), has been shown to improve motor performance of the stroke-

affected hand. The underlying mechanism for the latter stimulation strategy appears to be 

reduced interhemispheric inhibition from the contralesional hemisphere onto the ipsilesional 

hemisphere after inhibitory rTMS applied to the contralesional hemisphere (Grefkes et al., 

2010). However, there is considerably high variability in rTMS effects both, across studies 

(Hoogendam et al., 2010) and across individual patients (Ameli et al., 2009), which puts in 

question whether rTMS effects are sufficiently robust to be useful in clinical settings. Hence, 

the major goal of the present thesis was to develop novel strategies to reduce variability in 

rTMS induced effects in stroke patients with motor deficits. For this purpose, overall three 

studies, combining (repetitive) TMS with state-of-the-art neuroimaging techniques (such as 

ASL and DCM), were designed to (i) reduce variance of rTMS effects across studies and (ii) 

reduce variance of rTMS effects across patients. 

 



Objectives and structure 

49 

 

2.2 Study I & II: Reducing variance across studies 

Sources of variance across studies are likely to be methodological in origin. They might result 

from differences in rTMS protocols and different strategies to identify the cortical rTMS 

target position. It is becoming increasingly apparent that effects are more consistent across 

studies when TBS is used instead of simple rTMS protocols and that more and more studies 

will use TBS in the future (Hoogendam et al., 2010). Therefore, the present thesis focusses on 

the problem of identifying the most suitable cortical rTMS target position. 

Studies which aim to improve motor function after stroke predominantly use the primary 

motor cortex (BA4) as target area. However, numerous different strategies exist to identify 

BA4 (Sparing et al., 2008). Compared to other techniques, individual fMRI data yield best 

approximations of the most excitable TMS position (Sparing et al., 2008). Nevertheless, a 

considerably large spatial mismatch between the cortical position showing highest movement-

related fMRI signal and the cortical position yielding highest muscle responses when 

stimulated with TMS (of up to 14 mm) has frequently been reported (Bastings et al., 1998; 

Boroojerdi et al., 1999; Herwig et al., 2002; Krings et al., 1997; Lotze et al., 2003; Sparing et 

al., 2008; Terao et al., 1998).  

The cause for this spatial mismatch is only poorly understood. Hence, the first study (Study I) 

was designed to increase knowledge of the underlying cause for the spatial mismatch between 

fMRI and TMS. We tested the hypothesis that high sensitivity of the widely-used Gradient-

Echo blood oxygenation level dependent (GRE-BOLD) fMRI technique for large draining 

veins is responsible for low spatial congruence between fMRI and TMS. For this purpose, 

positions obtained by the “standard” GRE-BOLD technique were compared to positions 

obtained by two alternative fMRI techniques, which have been suggested to yield activations 

closer to the actual site of neuronal activity, i.e. Spin-Echo (SE-BOLD) and arterial spin 

labelling (ASL-CBF). TMS motor mappings were performed to identify the optimal TMS 

position and Euclidean distances between the individual optimal TMS position and individual 

GRE-BOLD, SE-BOLD, and ASL-CBF positions were compared. Our hypothesis was that 

SE-BOLD and ASL-CBF may localize neural activity significantly closer to both BA4 and 

the optimal TMS position (since it is assumed that the position with highest TMS excitability 

corresponds to the position with highest density of motoneurons in BA4 (Talelli et al., 2006). 

Hence, SE-BOLD and ASL-CBF could in future be used to achieve more reliable estimates of 

the most excitable TMS position and lead to more consistant results across studies. Study I 
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was performed in healthy young subjects and results were recently accepted for publication 

(Diekhoff et al., 2011).  

Identification of the cortical target position for TMS appears particularly challenging in stroke 

patients because reorganization processes may shift highest movement-related fMRI signal 

and most excitable TMS positions in unknown extend and direction (Bastings et al., 2002; 

Rossini et al., 1998; Thickbroom et al., 2002). Whether such shifts increase or decrease spatial 

congruence between fMRI and TMS is unknown and was matter of investigation in Study II. 

Results could also be different from healthy subjects because stroke patients may show 

vascular abnormalities (such as stenoses) and it is unknown differentially impact on 

conventional BOLD and perfusion MRI techniques (i.e. ASL-CBF). Therefore, similar 

measurements as in Study I were performed in chronic stroke patients in Study II to 

investigate whether findings obtained from healthy young subjects do also apply to stroke 

patients despite spatial shifts induced by functional reorganization and vascular abnormalities. 

fMRI and TMS positions were obtained from both hemispheres (to investigate differences 

between the ipsilesional and the contralesional hemisphere in stroke patients) and results of 

stroke patients were compared to results of a group of age-matched healthy control subjects.  

 

2.3 Study III: Reducing variance across patients 

Variance in rTMS effectiveness across patients is likely to result from patient characteristics 

such as lesion location, time since stroke, severity of deficit, and underlying pathomechanism 

causing motor hand deficits. The model of hemispheric competition is certainly useful as a 

model but is unlikely to apply uniformly to all stroke patients. It seems more likely that 

different stroke lesions (affecting different neuronal substrates) produce different subtypes of 

pathomechanisms. Hence, different patients may benefit from different rTMS intervention 

strategies. For example, patients with reduced effective connectivity within the ipsilesional 

hemisphere (Grefkes et al., 2008b; Grefkes & Fink, 2011; Mintzopoulos et al., 2009; Sharma 

et al., 2009) might benefit from facilitation of the ipsilesional hemisphere whereas patients 

with pathologically increased inhibition from the contralesional M1 onto the ipsilesional M1 

(Grefkes et al., 2008b, 2010; Duque et al., 2005; Murase et al. 2004) might benefit from 

inhibition of the contralesional hemisphere. The aim of Study III was to identify reliable 

predictors for behavioural effects of facilitatory iTBS applied to the ipsilesional hemisphere 

and inhibitory cTBS applied to the contralesional hemisphere (compared to control 
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stimulation). In a multimodal approach, single-pulse and paired-pulse TMS parameters, 

movement-related fMRI signal, laterality of fMRI signal, and effective connectivity within the 

cortical motor network (assessed by means of DCM) were used to identify potential predictors 

for effects of TBS on motor performance.  
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3 Study I: Spatial congruence of fMRI and 

TMS in healthy subjects 

3.1 Introduction Study I 

As stated above, Gradient-Echo (GRE) is by far the most widely used technique for fMRI due 

to high data acquisition efficiency and high sensitivity to T2
*
 effects (Liu & Brown, 2007). 

The underlying blood oxygenation level dependent (BOLD) contrast relies on alterations of 

local magnetic susceptibility mainly caused by changes in deoxyhaemoglobin level reflecting 

the increased metabolic demands due to enhanced neural activity (Logothetis, 2008). 

However, such changes do not only occur in small blood vessels in brain parenchyma (i.e. 

grey matter) but also in large draining veins (Buxton et al., 1998). GRE-BOLD signal has 

been shown to be sensitive to both T2
* 

changes in parenchyma as well as in and around large 

draining veins (Boxerman et al., 1995; Frahm et al., 1994; Uludag et al., 2009) and hence 

GRE-BOLD signal changes may show a spatial displacement from actual neuronal activities, 

reducing the specificity for functional localization. SE EPI is an alternative BOLD sequence 

which is sensitive to T2 and has been suggested to be more accurate in functional localization 

at higher field strengths, i.e. from 3 Tesla upwards (Duong et al., 2002; Lee et al., 2002; 

Norris, 2003; Thulborn et al., 1997; Uludag et al., 2009). Along with SE-BOLD, ASL is an 

attractive alternative to GRE-BOLD. ASL allows measuring both, CBF as well as BOLD 

signal simultaneously. The signal type depends on the contrast calculated in the subsequent 

analysis, i.e. the BOLD contrast is the standard “movement vs. rest” contrast, whereas the 

ASL-CBF contrast is the interaction between ASL-CBF time series (created by calculating 

control - tag differences) and the “movement vs. rest” contrast. The ASL signal related to 

CBF (ASL-CBF) arises from magnetically labelled (i.e. tagged) arterial blood that has passed 

through the capillary walls into the tissue or is still located within capillaries (Silva et al., 

1997). A number of studies demonstrated that ASL-CBF is well co-localized with neuronal 

activity (Duong et al., 2000; Liu & Brown, 2007; Luh et al., 2000; Silva, 2005; Tjandra et al., 

2005; Zappe et al., 2008). 

Spatial accuracy of fMRI is especially important for fMRI informed (i.e. stereotaxically 

neuronavigated) TMS. TMS is a well established tool in neurosciences allowing non-invasive 

focal brain stimulation via externally applied magnetic fields (Barker et al., 1985). Within the 

last decade, neuronavigation systems emerged allowing precise online monitoring of coil 
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positions with reference to underlying brain structures and their functional properties assessed 

with anatomical or functional MRI, respectively. The potential of TMS in combination with 

fMRI is regarded to be high, especially for identification of TMS targets in the virtual lesion 

approach or in therapeutic intervention studies (Walsh & Cowey, 2000).  

Several studies have already investigated the spatial congruence between positions yielding 

highest TMS effects, i.e. MEPs, and positions with highest neural activity, i.e. highest 

statistical t-values, during hand movements measured by neuroimaging techniques such as 

positron emission tomography (PET, Classen et al. 1998; Wassermann et al., 1996) or fMRI 

(Bastings et al., 1998; Boroojerdi et al., 1999; Herwig et al., 2002; Krings et al., 1997; Lotze 

et al., 2003; Sparing et al., 2008; Terao et al., 1998). All studies reported good gross spatial 

correspondence between TMS and neuroimaging techniques since both techniques localized 

neural activity during hand movements within the precentral gyrus. However, if mean 

Euclidean distances between optimal TMS positions and highest neuroimaging signal were 

reported, they were often relatively large, i.e. 13 (± 8.8) mm for 
15

O (oxygen) PET (4 

subjects; Wassermann et al., 1998), 9.8 mm (8 subjects; Herwig et al., 2002) and 13.9 mm (5 

subjects; Lotze et al. 2003) for fMRI. Only one study reported relatively short mean 3D 

distances, i.e. 3.3 ± 0.8 mm (5 subjects; Terao et al., 1998) between TMS and fMRI. Hence, 

although all studies reported fairly good correspondence between TMS and fMRI, a 

considerably large residual mismatch has consistently been demonstrated rising the question 

whether these differences can be solely attributed to technical issues (e.g. coregistration 

inaccuracy or spatial low specificity of fMRI signal) or if both techniques probe different 

underlying (neuronal) processes. Although technical limitations due to unavailability of 

neuronavigated stimulation systems (Lotze et al., 2003; Terao et al., 1998; Wassermann et al., 

1998) might have influenced spatial accuracy, the exact cause of the spatial mismatch remains 

unknown.  

In the present study, we aimed to investigate whether displacements between TMS and fMRI 

might rely on the fMRI sequence used. All studies mentioned above used GRE-BOLD at 1.5 

Tesla (except for Krings et al. (1997) who used SE-BOLD at 1.5 Tesla). Thus, all studies 

employed fMRI sequences that are susceptible to shifts towards large vessels at the field 

strength used. Hence, the observed mismatch between fMRI and TMS might, at least 

partially, be explained by inaccurate localization of the motor hand area by the fMRI 

sequences applied.  
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We, therefore, hypothesized that at 3 Tesla, SE-BOLD and ASL-CBF may provide more 

accurate information in terms of functional localization of the motor hand area than GRE-

BOLD. In particular, we aimed to test the hypothesis that spatial differences are functionally 

relevant by stimulating brain tissue at fMRI peak voxel coordinates with single-pulse 

neuronavigated TMS. Finally, we aimed to answer the question whether the spatially more 

accurate fMRI sequences better match with optimal TMS sites for evoking highest motor 

responses. 

 

3.2 Methods Study I 

3.2.1 Subjects 

MRI measurements were performed on 15 healthy subjects (8 males; 21-31 years old; mean 

age 24.9 ± 2.7). 14 subjects were right-handed and one subject was left-handed according to 

the Edinburgh Handedness Inventory (Oldfield, 1971). We did not exclude left-handers as we 

did not expect that handedness impacts on spatial localization accuracy of fMRI sequences. 

12 subjects participated in a subsequent TMS session (7 males; 23-31 years old; mean age 

25.1 ± 2.7; all right-handed). None of the subjects had any history of medical or psychiatric 

disease or contraindication to TMS (Wassermann, 1998). All subjects gave informed written 

consent to participate in this study, which was approved by the ethics committee of the 

Medical Faculty, University of Cologne, Germany (file-no 08-062). All experiments 

conformed to the Declaration of Helsinki, sixth revision 2008. 

 

3.2.2 fMRI motor paradigm 

Subjects were asked to perform visually paced rhythmic right thumb abductions at a 

frequency of 1.55 Hz. The movement frequency was paced by a red blinking circle on white 

background presented on a shielded thin film transistor (TFT) screen at the rear end of the 

MR scanner visible via a mirror mounted on the MR head coil. Blocks of thumb movements 

(20 s) were separated by resting baselines (40 s plus 0-6 s jitter) in which a black screen 

instructed the subjects to rest still until the next block of movements commenced. One fMRI 

session consisted of 10 cycles of baseline and movement blocks and lasted approximately 11 

min. Each subject underwent three fMRI sessions, i.e. one for each fMRI sequence. The order 
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of fMRI sequences was counterbalanced across subjects. Prior to scanning, subjects were 

trained until a stable performance was reached, which was monitored by visual inspection. 

 

3.2.3 fMRI data acquisition 

MR images were acquired on a 3 Tesla Siemens MAGNETOM TimTrio scanner (Siemens, 

Erlangen, Germany). High-resolution anatomical T1-weighted images were acquired using a 

3D MP-RAGE (magnetization-prepared, rapid acquisition gradient echo) sequence with the 

following imaging parameters: TR = 2000 ms, TE = 3.25 ms, FOV = 256 mm, 176 sagittal 

slices, slice thickness = 1 mm, in-plane resolution = 1 x 1 mm
2
, flip angle = 9°. Although 

CBF and BOLD signal changes can be measured simultaneously using ASL, this approach 

has been shown to result in a reduction of the BOLD signal in the order of 15 % compared to 

conventional BOLD measurements (Luh et al., 2000). Hence, a separate GRE-BOLD session 

was conducted in the present study to ensure that each fMRI measurement was conducted 

under optimal conditions. Altogether, we employed three different fMRI sequences: (i) 

Gradient-Echo (GRE-BOLD) echo planar imaging (EPI) sequence with the following 

parameters: TR = 2200 ms, TE = 30 ms, FOV = 192 mm, 15 axial slices, slice thickness = 3 

mm, in-plane resolution = 3 x 3 mm
2
, distance factor = 10 %, flip angle = 90°, (ii) Spin-Echo 

(SE-BOLD) EPI sequence with identical imaging parameters except for a longer TE of 80 ms, 

and (iii) PICORE-Q2TIPS (quantitative imaging of perfusion using a single subtraction with 

thin slice TI1 periodic saturation – proximal inversion with a control for off-resonance effects) 

ASL-CBF sequence (Luh et al., 1999) using a FOCI pulse for inversion with the following 

parameters: TI1= 700 ms, TI1s = 900 ms, and TI2 = 1400 ms, TR = 2200 ms, TE = 30 ms, FOV 

= 192 mm, 15 axial slices, slice thickness = 3 mm, in-plane resolution = 3 x 3 mm², distance 

factor = 10 %, flip angle = 90°. The tag was 10 cm in width positioned at a 1 cm gap inferior 

to the imaging slices. Two presaturation pulses were applied in the imaging planes 

immediately before the inversion tag to minimize the impact of the static tissue. A 20 mm 

thick saturation slab was repeatedly applied for the bolus cut-off (Cavusoglu et al., 2009). 

Images were acquired sequentially in ascending direction using a single-shot EPI technique. 

Slices covered a region extending from the body of the corpus callosum to the top of the 

parietofrontal vertex, thereby ensuring full coverage of the primary motor cortex along the 

central sulcus. Each fMRI session consisted of 310 EPI volumes including four “dummy” 

scans ensuring a steady-state in tissue contrast. 10 whole brain EPI volumes (35 slices) were 
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additionally acquired to improve the co-registration with the anatomical T1 volume in data 

preprocessing (see below). 

 

3.2.4 Analysis of individual fMRI data 

For ASL sessions, ASL-CBF time series were created by calculating control-tag difference 

images (resulting in a total of 153 subtraction images) using surround subtraction (i.e. 

computing the difference between each image and the average of its two nearest neighbours), 

thereby reducing BOLD signal contamination of the ASL-CBF time course (see Cavusoglu et 

al., 2009). For image preprocessing and statistical analysis of GRE-BOLD, SE-BOLD and 

ASL-CBF data, we used FEAT (FMRI Expert Analysis Tool) version 5.98, part of FSL 

(FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following prestatistics processing 

was applied: motion correction using MCFLIRT (Jenkinson et al., 2002), non-brain removal 

using the brain extraction tool (BET; Smith, 2002), and spatial smoothing using a Gaussian 

kernel of 4 mm full width half maximum (FWHM). Time-series statistical analysis was 

carried out using FILM (FMRIB's Improved Linear Model) with local autocorrelation 

correction (Woolrich et al., 2001) and a high pass filter of 1/60 Hz to remove low frequency 

drifts. Head motion parameters were included as covariates into the model. Z (Gaussianised 

T/F) statistic images were thresholded using a voxel-wise corrected significance threshold of 

P < 0.001 (Forman et al., 1995; Friston et al., 1994; Worsley et al., 1992). ASL-CBF provided 

much weaker signal intensities than BOLD signal and thus, no correction for multiple 

comparisons was applied for the identification of peak voxel coordinates (P < 0.001, 

uncorrected). Coregistration to high resolution images was carried out using FLIRT 

(Jenkinson et al., 2001, 2002). 

 

3.2.5 Identification of fMRI peak voxel 

The voxel with the highest statistical t-value located within the precentral gyrus near or at the 

hand knob was identified for each of the three fMRI sessions per subject. The hand knob is 

shaped like an omega or epsilon in the axial plane and hook-shaped in the sagittal plane, and 

has been shown to constitute a reliable anatomical landmark for the motor hand area (Yousry 

et al., 1997). In two subjects no significant voxel could be observed in the precentral gyrus for 

the SE-BOLD session after correcting for multiple comparisons, and thus no correction was 

applied for identification of the peak voxel in these subjects (P < 0.001, uncorrected).  
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3.2.6 Identification of fMRI CoGs 

While the peak voxel represents the site of maximal regional activity, the centre-of-gravity 

(CoG) of an fMRI activation cluster considers the spatial distribution of activity in the 

pericentral region and hence might be less prone to a spatial shift towards large veins which 

usually produce high levels of activation (Luh et al., 2000). Therefore, CoGs were computed 

for each of the three fMRI sessions per subject. In contrast to peak voxel coordinates, CoG 

coordinates are influenced by the threshold applied and hence a uniform threshold of P < 

0.001 (uncorrected) was applied to all fMRI data (lower thresholds were found to yield very 

large activation cluster for BOLD sessions, whereas higher statistical thresholds could not be 

passed by ASL-CBF activation clusters). After thresholding, the fMRI activation cluster 

comprising the peak voxel was identified and the CoG was calculated as t-value weighted 

position. 

 

3.2.7 Group analysis of fMRI data 

EPI volumes were normalized to the standard template (MNI152 at 2 mm resolution) of the 

Montreal Neurological Institute (MNI, Canada) using FNIRT (FMRIB's Non-linear Image 

Registration Tool). A Gaussian kernel of 4 mm FWHM was used for spatial smoothing. For 

statistical analysis we applied FLAME 1 (FMRIB's Local Analysis of Mixed Effects). Z 

(Gaussianised T/F) statistic images were thresholded using clusters determined by Z > 2.3 and 

a corrected cluster significance threshold of P < 0.001. For anatomical assignment, statistics 

for the contrast “movement versus baseline” were overlaid with cytoarchitectonic probability 

maps of the Juelich Histological Atlas (Eickhoff et al., 2005, 2007). 

 

3.2.8 Neuronavigated TMS apparatus 

Stereotaxic frameless neuronavigation was performed with the eXimia navigated brain 

stimulation (NBS) system version 2.1.1 (Nexstim, Helsinki, Finland). Since subjects 

performed a thumb abduction task during the fMRI experiment, the right abductor pollicis 

brevis (APB) muscle, involved in thumb abduction movements served as target muscle. 

Simultaneous electromyography (EMG) recordings were additionally obtained from the right 

first dorsal interosseous (FDI) muscle. EMG signals were recorded by Ag/AgCl surface 

electrodes (Tyco Healthcare, Neustadt, Germany) placed in a belly-tendon montage. The 
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EMG signal was amplified, filtered with a 0.5 Hz high pass filter and digitized using a 

PowerLab 26 T Myograph and the “Scope” software package version 3 (ADInstruments Ltd, 

Dunedin, New Zealand). Prior to the study, TMS coils were x-rayed. Displacements between 

central positions of the outer plastic case and the inner copper wings occurred solely in 

anterior-posterior direction and did not exceed 1 mm for any of the TMS coils used. 

 

3.2.9 Motor hotspot and resting motor threshold 

Subjects were comfortably seated in an adjustable armchair with head-rest. The head of the 

subject was co-registered with the individual high-resolution anatomical MR image via 

anatomical landmarks (e.g., nasion and crus helicis). Prior to the study, the accuracy of the 

coregistration procedure was verified by small vitamin E capsules (providing a good MRI T1 

contrast) attached to a volunteer‟s head at different anatomical positions. The software-

depicted and true positions of the capsules did not show mismatches larger than 1 mm for any 

position. Furthermore, the root mean square difference between positions of landmarks in the 

MRI volume and at the subjects head was reported to be less than 2 mm for any TMS session 

of this study (reported by the neuronavigation software). After anatomical coregistration, the 

motor “hotspot”, i.e. the coil position providing highest MEPs of the APB muscle with 

shortest latencies during single pulse supra-threshold TMS, was identified. Hotspot coil 

orientations were (nearly) perpendicular (90 ± 10°) to the central sulcus and tangential to the 

scalp in all investigated subjects (information provided by the neuronavigation software). The 

resting motor threshold (RMT) was assessed by means of the TMS Motor Threshold 

Assessment Tool (MTAT) 2.0 (http://www.clinicalresearcher.org/software.htm) suggested by 

Awiszus (2003). The software starts with 45 % as stimulator output intensity. After being 

informed via button press whether a TMS effect (in the present study: a MEP with a peak-to-

peak amplitude of at least 50 µV) was induced by the applied stimulus or not, the software 

suggests a new threshold intensity based on maximum likelihood calculations. In the present 

study, the procedure was repeated 12 times ensuring a reliable estimation of the motor 

threshold.  

 

3.2.10 TMS motor mapping 

TMS mapping of the dominant, i.e. left motor cortex and the surrounding tissue was obtained 

by stimulation of an area determined by 8 (anterior-posterior) x 7 (medial-lateral) positions 
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spaced at intervals of 10 mm. The hand knob structure (Yousry et al., 1997) was located 

approximately in the centre of the grid, and the anterior-posterior axis was oriented in parallel 

to the interhemispheric fissure. Classen et al. (1998) showed that increasing the grid size 

considerably improves the motor mapping accuracy. Hence, we used a relatively large grid 

resulting in an area of 7 x 6 cm in size being stimulated. With such a large area stimulated we 

expected that stimulation of several positions at the margins of the grid would not result in 

MEPs. Classen et al. (1998) demonstrated that 5-6 stimuli per position are sufficient to 

achieve stable mapping results. Hence, positions not resulting in a MEP after 5 trials (peak-to-

peak amplitude > 50 µV) were stimulated with 5 stimuli, whereas positions resulting in at 

least one MEP after 5 trials were stimulated with 10 stimuli to achieve a good trade-off 

between mapping time and accuracy. The order of stimulation was randomized across the 56 

positions (120 % RMT; ISI = 1500 ms). During the mapping procedure coil tilting was 

tangentially to the scalp and the TMS coil orientation was identical to coil orientation during 

RMT identification and stimulation at fMRI maxima coordinates. Both parameters were 

maintained throughout the mapping procedure.  

The mean peak-to-peak MEP amplitude of the APB was calculated for each grid position 

using all EMG recordings obtained from this position (i.e. either 5 or 10) and divided by the 

largest amplitude obtained within the stimulation area. Based on these data, the centre-of-

gravity (CoG) of the APB was calculated using the following formula:  
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with ai being the mean amplitude at position xi or yi (Classen et al., 1998). While the TMS 

motor hotspot represents the site of maximal neuronal excitability, the CoG takes into account 

the spatial distribution of excitability in the pericentral region. Spatial differences between 

hotspot and CoG locations occur if there is an asymmetrical distribution of excitability around 

the hotspot. Therefore, the information provided by a CoG is not the location of highest 

excitability, but the weighted average of excitability of the region of interest. Hence, CoG 

coordinates might be less prone to artefacts. Since it is unknown at which position, superficial 

or deep, TMS-induced neuronal excitation occurs, we projected TMS identified positions (i.e. 

hotspot and CoG positions) onto the cerebral surface. This was done by identifying the 

individual depth of the cerebral surface by surface peeling of the software generated 3D head 

model (mean distance from the scalp: 24.5 ± 2.7 mm). Positions with highest EF strength at 

the cerebral surface were recorded during hotspot identification and TMS mapping and used 
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for later analyses. EFmax positions were also marked on the individual structural T1 image and 

transferred into MNI space by applying the respective nonlinear normalization transform that 

was also used to transfer individual fMRI activation maps into MNI space. 

 

3.2.11 TMS of peak voxel coordinates at 120 % RMT 

Brain tissue at fMRI peak voxel coordinates was stimulated with 120 % RMT (15 stimuli; 

interstimulus interval (ISI) = 3000 ms). The order of peak voxels obtained by the three 

different fMRI sequences was counterbalanced across subjects. The experimenter was blinded 

to the fMRI sequence. The target entry point for stimulation was identified by bringing the 

TMS coil in a position in which the distance between fMRI target and EFmax value position 

was found to be minimal (0-2 mm, computed by the software). Then, tilting of the coil was 

adjusted until the coil was tangential to the scalp (computation and visual feedback provided 

by the software). TMS coil orientation coincided with TMS coil orientation during RMT 

identification. In this final position, one stimulus was applied. The coil positioning parameters 

of this stimulus were used as reference for all subsequent stimuli at this particular target (by 

means of the “aiming tool” implemented in the neuronavigation software).  

 

3.3 Results Study I 

3.3.1 fMRI group analysis 

The fMRI group analysis of the contrast “right thumb movement versus baseline” revealed a 

left-lateralized network of cortical areas in left sensorimotor cortex located on the precentral 

and postcentral gyrus (Figure 3.1, P < 0.001, cluster-level corrected). SE-BOLD and GRE-

BOLD sequences showed additional bilateral activation of the supplementary motor area 

(SMA), pre-SMA, cingulate motor area, dorsal and superior ventral premotor cortex, and 

anterior intraparietal cortex. More voxels were activated in the GRE-BOLD cluster as 

compared to the SE-BOLD cluster, and more for SE-BOLD than for ASL-CBF. The voxel 

with highest t-value at the precentral gyrus assessed in the voxel-wise group analysis of the 

spatially normalised GRE-BOLD session was close to the crown of the precentral gyrus 

(Figure 3.1, top right) and assigned to Brodmann Area (BA) 6 by the Juelich Histological 

Atlas (MNI coordinates: -38, -22, 62). In contrast, the peak voxel of the SE-BOLD group 

analysis was 6 mm deeper within the central sulcus and assigned to area BA4a, i.e. the 
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anterior primary motor cortex (MNI coordinates: -38, -22, 56; Geyer et al., 1996). The peak 

voxel of the ASL-CBF group analysis was located even deeper in the central sulcus (14 mm 

deeper than GRE-BOLD, 8 mm deeper than SE-BOLD group fMRI peak voxels) and 

assigned to area BA4p, i.e. the posterior part of the primary motor cortex (MNI coordinates: -

40, -18, 48).  

 

 

 
Figure 3.1: Study I: Results of the fMRI group analysis. Functional magnetic resonance imaging 

(fMRI) was performed in 15 healthy subjects during right thumb abductions with three different fMRI 

techniques, i.e. Gradient-Echo (GRE-BOLD, green), Spin-Echo (SE-BOLD, red), and arterial spin 

labelling (ASL-CBF, blue). GRE-BOLD and SE-BOLD rely on blood oxygenation level dependent 

(BOLD) contrast, whereas ASL-CBF measures changes in cerebral blood flow (CBF). “Movement 

versus rest” contrasts were superimposed onto the MNI standard template (P < 0.001, cluster-level 

corrected; only voxels exceeding a t-threshold of 3.0 are shown). The detail of the sagittal view (top 

right) shows the voxel with highest statistical t-value located within the precentral gyrus for each of 

the three different fMRI techniques (voxels were projected into plane X = -38). In line with our 

hypotheses, SE-BOLD and ASL-CBF yielded more focussed activation with higher specificity than 

GRE-BOLD. The voxel with highest GRE-BOLD signal change was closest to the gyral surface and 

was assigned to the premotor cortex (Juelich Histological Atlas). Highest SE-BOLD and ASL-CBF 
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signal changes occurred 6 and 14 mm deeper within the central sulcus, respectively and were assigned 

to the primary motor cortex (Juelich Histological Atlas). (A: anterior; CS: central sulcus; L: left; P: 

posterior; R: right) 

 

3.3.2 Individual fMRI peak voxel coordinates 

The differences found for the fMRI sequences in the fMRI group analysis were confirmed by 

analyses based on individual activation maps. Movement related neural activity could be 

observed with all three fMRI sequences in all subjects. However, sensitivity in terms of t-

values of local maxima at the hand knob was significantly different across fMRI sequences 

(repeated measures ANOVA (n = 15) with the factor APPROACH (levels: GRE-BOLD, SE-

BOLD, ASL-CBF; F (2, 28) = 64.003; P < 0.001). GRE-BOLD peak voxels had significantly 

higher t-values (11.4 ± 3.8) than SE-BOLD (5.7 ± 2.3) and ASL-CBF (1.6 ± 0.9) peak voxels. 

SE-BOLD peak voxels had significantly higher t-values than ASL-CBF peak voxels (post-hoc 

paired sample t-test, P < 0.001, each comparison). However, also the position of the peak 

voxel coordinates was significantly different across sequences: A repeated measures ANOVA 

(n = 15) with the factor APPROACH (levels: GRE-BOLD, SE-BOLD, ASL-CBF) showed 

significant differences between fMRI peak voxel coordinates in MNI coordinate Z (F (2, 28) 

= 3.542, P < 0.05; Figure 3.2; Table 3.1), i.e. in inferior-superior direction. Post-hoc t-tests 

revealed that GRE-BOLD coordinates (mean MNI coordinate Z: 60.7 ± 6.3) were 

significantly more superficial than SE-BOLD coordinates (56.4 ± 5.0) and ASL-CBF 

coordinates (55.5 ± 6.6), which were on average 4.3 mm and 5.2 mm deeper within the central 

sulcus, respectively (P < 0.05, each comparison). SE-BOLD and ASL-CBF peak voxel 

coordinates were not statistically different in MNI coordinate Z (P > 0.05). There were no 

significant differences between sequences in the other two dimensions, i.e. in the medial-

lateral (MNI coordinate X; ANOVA, F (2, 28) = 1.053; P > 0.05) or posterior-anterior 

direction (MNI coordinate Y; ANOVA, F (2, 28) = 0.829; P > 0.05). 
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Figure 3.2: Study I: Localization of the primary motor cortex with fMRI and TMS. Coloured 

ellipsoids indicate mean MNI coordinates (± SD) of fMRI peak voxels and optimal TMS positions 

located within the precentral gyrus of the left hemisphere (n = 12 subjects). fMRI peak voxels were 

defined as voxel with highest statistical t-value during right thumb abductions measured with GRE-

BOLD (green), SE-BOLD (red), and ASL-CBF (blue). Hotspot coordinates refer to stimulation sites 

resulting in highest abductor pollicis brevis (APB) muscle responses with shortest latencies (orange). 

CoG coordinates were calculated from a systematic TMS motor mapping, and reflect the motor 

evoked potential weighted maximum electric field coordinate (yellow). All coordinates were projected 

into sagittal plane X = -38 for the figure on the left showing the sagittal view and plane Z = 58 for the 

right figure on the right showing the axial view. GRE-BOLD coordinates were significantly more 

superficial than SE-BOLD and ASL-CBF coordinates (paired-sample t-test, P < 0.05, each 

comparison). Hotspot and CoG coordinates were significantly more anterior than fMRI maxima 

(paired-sample t-test, P < 0.05, each comparison). Euclidian distances to hotspot or CoG coordinates 

were not statistically different for GRE-BOLD, SE-BOLD, and ASL-CBF coordinates (paired-sample 

t-test, P > 0.05, each comparison). (A: anterior; ASL: arterial spin labelling; BOLD: blood 

oxygenation level dependent; CBF: cerebral blood flow; CoG: Centre-of-gravity; CS: central sulcus; 

fMRI: functional magnetic resonance imaging; GRE: Gradient-Echo; L: left; P: posterior; SD: 

standard deviation; SE: Spin-Echo; TMS: transcranial magnetic stimulation) 
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Table 3.1: Study I: Positions of highest fMRI signals and highest TMS effects individually 

identified in 12 subjects and transferred into MNI space using nonlinear normalization 

 

 X Y Z 

GRE-BOLD -38.4 ± 3.2 -20.6 ± 4.2 60.7 ± 6.3 

SE-BOLD -37.9 ± 3.9 -21.5 ± 5.6 56.4 ± 5.0 

ASL-CBF -37.6 ± 2.6 -22.9 ± 4.5 55.5 ± 6.6 

TMS hotspot -40.7 ± 4.3 -15.7 ± 3.8 59.7 ± 3.7 

TMS CoGAPB -33.4 ± 2.7 -10.9 ± 5.0 60.0 ± 2.6 

 

APB: Abductot pollicis brevis; ASL: arterial spin labelling; BOLD: blood oxygenation level 

dependent; CBF: cerebral blood flow; CoG: Centre-of-gravity; GRE: Gradient-Echo; SE: Spin-Echo; 

TMS: transcranial magnetic stimulation; X: lateral-medial; Y: anterior-posterior; Z: inferior-superior 

 

3.3.3 Individual fMRI CoG coordinates 

Significant spatial differences in depth (i.e. in MNI coordinate Z) were preserved when 

similar analyses (repeated measures ANOVA with the factor APPROACH) were performed 

on fMRI CoGs instead of fMRI peak voxels (F (2, 28) = 4.662, P < 0.05). Post-hoc t-tests 

revealed that GRE-BOLD CoG coordinates (mean MNI coordinate Z: 56.5 ± 2.5) were 

significantly more superficial than SE-BOLD (50.9 ± 5.5) and ASL-CBF (52.2 ± 6.9) CoG 

coordinates (P < 0.05, each comparison), whereas SE-BOLD and ASL-CBF CoG coordinates 

were not statistically different (paired sample t-test; P > 0.05). In addition, there was a 

significant difference in medial-lateral direction (i.e. in MNI coordinate X; F (2, 28) = 5.948, 

P < 0.05) since GRE-BOLD CoGs were significantly more medial than SE-BOLD and ASL-

CBF CoG coordinates (paired sample t-tests; P < 0.05, each comparison). SE-BOLD and 

ASL-CBF CoG coordinates were not statistically different in medial-lateral direction (paired 

sample test; P > 0.05). There were no statistically significant differences between sequences 

in anterior-posterior localization (i.e. MNI coordinate Y) of CoGs (F (2, 28) = 0.572; P > 

0.05). 

 

3.3.4 Differences in fMRI and TMS positions 

For each subject, the TMS coordinate of the motor “hotspot” (i.e. the coil position and tilt for 

evoking a MEP of 50 µV peak-to-peak amplitude with lowest stimulator output intensity) and 

the centre-of-gravity (CoG) of a systematic TMS mapping of the motor cortex were projected 
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into MNI space by applying the individual FNIRT registration transform. MNI coordinates 

were then compared with the fMRI peak voxel coordinates by computing a repeated measures 

ANOVA (n = 12) with the factor APPROACH (levels: CoGAPB, hotspot, GRE-BOLD, SE-

BOLD, ASL-CBF). The analyses revealed significant differences in medial-lateral direction, 

i.e. in MNI coordinate X (F (4, 44) = 8.705; P < 0.001) and in anterior-posterior direction, i.e. 

in MNI coordinate Y (F (4, 44) = 14.168; P < 0.001). Differences in inferior-superior 

direction, i.e. MNI coordinate Z showed a statistical trend (F (4, 44) = 2.353; P = 0.069; Table 

3.1). Bonferroni-corrected post-hoc t-tests revealed that the motor hotspot was significantly 

anterior to GRE-BOLD, SE-BOLD, and ASL-CBF coordinates (P < 0.05, each comparison; 

Figure 3.2). Displacements between fMRI maxima and the hotspot in medial-lateral direction 

were less pronounced but there was a statistical trend for hotspot coordinates to be laterally of 

fMRI maxima (P < 0.100, each comparison). Hotspot coordinates were assigned to BA6 in all 

12 subjects (Juelich Histological Atlas). The CoGAPB was significantly anterior to hotspot, 

GRE-BOLD, SE-BOLD, and ASL-CBF coordinates (P < 0.05, each comparison). In addition, 

CoGAPB coordinates were significantly more medial than ASL-CBF, GRE-BOLD, and hotspot 

coordinates (P < 0.05, each comparison) whereas the comparison to SE-BOLD coordinates 

failed the corrected P-threshold of P < 0.007 only marginally (P = 0.011, uncorrected). In all 

12 subjects the CoGAPB was assigned to BA6.  

 

3.3.5 Euclidian distances between fMRI and TMS positions 

Although we found spatial differences between fMRI maxima obtained by different fMRI 

sequences, Euclidean distances between these maxima and the TMS hotspot were not 

statistically different across sequences (GRE-BOLD: 10.5 ± 3.0 mm; SE-BOLD: 11.2 ± 4.1 

mm; ASL-CBF: 12.8 ± 3.7 mm; F (2, 22) = 1.360; P > 0.05, repeated measures ANOVA; see 

also Table 3.2). The same was true for Euclidean distances between fMRI maxima and the 

TMS mapping CoGAPB,, which were also not significantly different across sequences (GRE-

BOLD: 13.4 ± 5.5 mm; SE-BOLD: 15.3 ± 5.7 mm; ASL-CBF 15.3 ± 7.0 mm; F(2, 22) = 

1.115; P > 0.05, repeated measures ANOVA). In other words, none of the fMRI sequences 

localized neural activity systematically closer to the TMS hotspot or the TMS CoGAPB. If 

identical analyses were conducted with fMRI CoGs instead of fMRI peak voxels, results were 

similar, i.e. none of the fMRI sequences yielded CoG positions systematically closer to the 
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TMS hotspot (F (2, 22) = 1.151; P > 0.05) or CoGAPB (F (2, 22) = 0.191; P > 0.05; see also 

Table 3.2). 

 

Table 3.2: Study I: Euclidean distances between fMRI and TMS sites in single subject space 

 fMRI peak voxel vs. TMS hotspot fMRI CoG vs. TMS CoG 

Subject GRE SE ASL GRE SE ASL 

1 11.49 15.10 13.75 42.89 17.80 21.29 

2 12.81 4.90 13.56 8.50 14.73 21.00 

3 14.59 14.59 13.00 14.18 14.56 15.98 

4 13.75 13.75 9.43 14.49 18.60 8.95 

5 7.48 7.48 17.80 17.68 24.49 19.78 

6 11.00 6.32 11.49 23.86 12.66 3.84 

7 8.72 14.70 13.75 25.54 12.22 11.17 

8 5.48 17.15 18.47 22.22 25.30 24.58 

9 13.19 13.19 16.67 19.25 25.87 23.75 

10 11.45 10.77 10.05 5.20 5.85 17.56 

11 6.40 6.32 8.94 5.75 11.77 8.89 

12 9.38 10.20 6.32 17.93 22.11 20.53 

Mean 10.5 11.2 12.8 18.1 17.2 16.4 

SD 3.0 4.1 3.7 10.3 6.3 6.7 

 
ASL: arterial spin labelling; CoG: Centre-of-gravity; fMRI: functional magnetic resonance imaging; 

GRE: Gradient-Echo; SD: Standard deviation; SE: Spin-Echo; TMS: transcranial magnetic 

stimulation; vs: versus 

 

3.3.6 TMS of fMRI peak voxel with 120 % RMT 

We stimulated brain tissue at the fMRI peak voxel coordinate with single-pulse 

neuronavigated TMS to investigate whether the spatial differences found for the three 

different fMRI sequences are functionally relevant, i.e. impact on MEP size of the respective 

peripheral target muscle (APB) and an adjacent small hand muscle not involved in thumb 

abductions (FDI). A repeated measures ANOVA (n = 12) with the factors APPROACH and 

MUSCLE (levels: APB, FDI) yielded a significant main effect of APPROACH (F (22, 2) = 

4.797; P < 0.05) and MUSCLE (F (11, 1) = 8.506; P < 0.05) but no significant interaction (F 

(22, 2) = 0.131; P > 0.05). Post-hoc t-tests revealed that mean peak-to-peak MEP amplitudes 

of the APB and the FDI were higher for GRE-BOLD coordinates compared to both SE-
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BOLD coordinates and ASL-CBF coordinates (P < 0.05, each comparison; Figure 3.3A). 

Muscle responses during TMS of SE-BOLD and ASL-CBF coordinates were not statistically 

different (P > 0.05). MEPs of the APB were statistically higher than MEPs of the FDI during 

stimulation of SE-BOLD and ASL-CBF coordinates (P < 0.05, each comparison) but not 

during stimulation of GRE-BOLD coordinates (P > 0.05). In summary, spatial differences of 

local maxima were matched by functional differences in MEP amplitudes. TMS at GRE-

BOLD coordinates was probably more effective than TMS at SE-BOLD or ASL-CBF 

coordinates because GRE-BOLD coordinates were more superficial and anterior, and hence 

closer to optimal TMS positions than SE-BOLD and ASL-CBF sites. We correlated 

individual differences in mean MEPs obtained by stimulation of GRE-BOLD vs. SE-BOLD 

positions with individual spatial differences of GRE-BOLD vs. SE-BOLD positions in 

anterior-posterior direction. The result suggests that TMS over the GRE-BOLD site evoked 

larger MEPs the more anterior the GRE-BOLD coordinate was (APB: Pearson‟s r = 0.67, P < 

0.05; FDI: Pearson‟s r = 0.63, P < 0.05). However, correlations for differences of GRE-BOLD 

vs. ASL-CBF positions and SE-BOLD vs. ASL-CBF positions were not statistically 

significant (P > 0.05, each correlation). Differences in medial-lateral or inferior-superior 

direction were also not significantly correlated with differences in MEP amplitudes between 

the three different fMRI sites (P > 0.05, each correlation). However, a significant main effect 

of sequence in the repeated measures ANOVA on mean EFmax values at the target position 

during TMS (F(22, 2) = 5.779; P < 0.05) indicates that due to the physical constraints of 

TMS, superficial GRE-BOLD coordinates were stimulated with significantly higher mean 

EFmax values (77.4 ± 23.2 V/m) compared to deeper SE-BOLD (61.7 ± 26.5 V/m) and ASL-

CBF coordinates (59.2 ± 25.9 V/m; paired sample t-tests, P < 0.05, each comparison; Figure 

3.3B). Differences between SE-BOLD and ASL-CBF coordinates in EFmax values were not 

statistically significant (paired sample t-test, P > 0.05).  
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Figure 3.3: Study I: Stimulation of brain tissue at fMRI peak voxel coordinates with TMS. 

Neuronavigated TMS (120% resting motor threshold) was used to stimulate brain tissue at fMRI peak 

voxel coordinates to investigate whether localization differences between fMRI sequences are 

functionally relevant, i.e. impact on muscle responses (n = 12 subjects). A: Muscle responses. Peak-to-

peak motor-evoked potentials (MEPs) of the abductor pollicis brevis (APB) and the first dorsal 

interosseous (FDI) hand muscle are shown. MEPs resulting of stimulation at GRE-BOLD coordinates 

were significantly higher than MEPs resulting of stimulation at SE-BOLD and ASL-CBF coordinates. 

B: Electric field strength at target position. Maximum electric field values (EFmax) reaching the fMRI 

target position during stimulation are shown. GRE-BOLD coordinates were stimulated with 

significantly higher EFmax values than SE-BOLD and ASL-CBF coordinates which were significantly 

deeper in the central sulcus and hence further away from the TMS coil. Mean EFmax values during 

stimulation at SE-BOLD and ASL-CBF coordinates were not statistically different (paired-samples t-

test, P > 0.05) Error bars indicate standard errors. Asterisks indicate significant differences in paired 

sample t-tests (paired-sample t-test, P < 0.05, each comparison). (ASL: arterial spin labelling; BOLD: 

blood oxygenation level dependent; CBF: cerebral blood flow; fMRI: functional magnetic resonance 

imaging; GRE: Gradient-Echo; SE: Spin-Echo; TMS: transcranial magnetic stimulation) 

 

3.3.7 Tests to exclude spatial errors of the TMS equipment 

Coregistration quality was verified prior to the study and after each session (to verify that the 

head tracker depicting the subject‟s head position had not changed its position during the 

TMS session). Furthermore, for one subject with pronounced anterior shift of the optimal 

TMS position (Subject 1; Figure 3.4), the complete motor mapping was repeated with the 

induced current direction as applied before (i.e. posterior-anterior (PA), perpendicular to the 

central sulcus) and additionally with inverted induced current direction (i.e. anterior-posterior 

(AP), perpendicular to the central sulcus). If systematic anterior EF distortions due to coil 

failure or inaccurate computerized modelling accounted for the anterior shift of the optimal 
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TMS position, then the CoG of the mapping with inverted coil orientation (AP induced 

current direction) should be located considerably more posterior (i.e. to the amount of the 

displacement) than with standard coil orientation. The results showed that except for a drop in 

maximum MEP size, we basically replicated the map recorded with PA induced current 

direction with almost identical location of peak excitability and CoG (Figure 3.5). Therefore, 

technical confounds cannot explain the systematic anterior shift of optimal TMS positions 

when compared to fMRI peak voxels. 
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Figure 3.4: Study I: Results of TMS motor mappings. 8 (anterior-posterior) x 7 (medial-lateral) 

positions spaced at intervals of 10 mm were stimulated with neuronavigated TMS in randomized order 

(10 stimuli if at least one motor-evoked potential (MEP) > 50 µV were recorded after 5 stimuli; 

otherwise 5 stimuli; 120% RMT (resting motor threshold); ISI (interstimulus interval) = 1500 ms). 

The hand knob was located approximately in the centre of the grid, and the anterior-posterior axis was 

oriented in parallel to the interhemispheric fissure. Positions refer to electric field maximum (EFmax) 

positions within the cerebral cortex calculated by computerized modelling. Contours represent 10 

percentiles of the averaged maximal response of the abductor pollicis brevis (APB) muscle viewed 

from above. Background images refer to individual structural images showing the corresponding 

underlying cerebral anatomy. All fMRI and TMS positions (depicted as white symbols) were projected 

into the slice corresponding to the mean axial depth of all five individual sites (i.e. GRE-BOLD, SE-

BOLD, ASL-CBF, TMS hotspot, and TMS CoG). (ASL: arterial spin labelling; BOLD: blood 

oxygenation level dependent; CBF: cerebral blood flow; CoG: Centre-of-gravity; fMRI: functional 

magnetic resonance imaging; GRE: Gradient-Echo; SE: Spin-Echo; TMS: transcranial magnetic 

stimulation) 

 

 

 

Figure 3.5: Study I: TMS motor mapping with inverted induced current direction. Upper Figures show 

results of the TMS motor mapping of one subject (Subject 1) with posterior-anterior (PA) induced 

current direction (perpendicular to the central sulcus). The upper left contour map is the initial 

mapping result; the upper right map is the result of the repeated mapping. Cortical excitability maps 

are very similar and demonstrate high reproducibility. The lower left figure shows the result of the 

mapping with reversed induced current direction pointing in anterior-posterior (AP) direction 

(perpendicular to the central sulcus). The map recorded with AP current direction replicated results of 

the mapping with PA current direction with almost identical location of peak excitability and CoG. 
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(ASL: arterial spin labelling; BOLD: blood oxygenation level dependent; CBF: cerebral blood flow; 

CoG: Centre-of-gravity; fMRI: functional magnetic resonance imaging; GRE: Gradient-Echo; MEP: 

Motor-evoked potential; SE: Spin-Echo; TMS: transcranial magnetic stimulation) 

 

3.4 Discussion Study I 

3.4.1 Localization differences between fMRI sequences 

3.4.1.1 Localization of the motor hand area 

The primary motor cortex constitutes a key area for the execution of voluntary movements 

(Dum & Strick, 2002; Grefkes et al., 2008a; Sanes & Donoghue, 2000). This region is 

structurally well defined: Human post-mortem studies showed that the primary motor cortex 

(Brodmann area 4, BA4) is a distinct cytoarchitectonic area characterized by the absence of 

layer IV and presence of giant Betz cells in layer V (Brodmann, 1909). At the hand 

representation area, BA4 is buried within the central sulcus and rarely extends to the gyral 

surface (cf. 1.2 and Figure 1.2), where it forms a boundary with the premotor cortex. Since 

ASL-CBF and SE-BOLD showed highest signal increase during isolated thumb abductions in 

the rostral wall of the central sulcus, i.e. the location where BA4 has to be expected (Eickhoff 

et al., 2005, 2007), our data suggest that at 3 Tesla these fMRI sequences may correctly locate 

the primary motor hand area. By contrast, signal increases for the GRE-BOLD sequence were 

shifted towards the crown of the precentral gyrus, and thus, towards BA6.  

 

3.4.1.2 Systematic superior shift of GRE-BOLD 

Both, fMRI group analysis as well as single subject fMRI analyses, demonstrated that highest 

GRE-BOLD signal changes showed a systematic shift in superior direction. These findings 

suggest that the underlying cause is, at least partially, subject-independent. High susceptibility 

of GRE-BOLD for large draining veins (Boxerman et al., 1995; Uludag et al., 2009), which 

mainly run on the cerebral surface (Duong et al., 2000), seems to be the most likely 

explanation for this finding.  

 

3.4.1.3 Spatial localization of ASL-CBF (vs. GRE-BOLD) signal 

ASL sequences measure cerebral blood flow (CBF) by means of magnetically labeled arterial 

water that has either passed the capillary wall into tissue or is still located within capillaries 
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(Silva et al. 1997). Due to the tight neurovascular coupling, CBF changes have been shown to 

occur in close proximity to neuronal activity (Duong et al. 2000; Luh et al. 2000; Tjandra et 

al. 2005). Duong et al. (2000) compared BOLD and CBF signal changes during forepaw 

stimulation in anesthetized rats at 9.4 Tesla. Additionally, calcium-dependent synaptic activity 

was measured by means of manganese ion (Mn
2+

) acting as calcium analogue and MRI 

contrast agent. Results were comparable to our findings, i.e. clusters assessed with GRE 

signal were more expanded and diffuse compared to CBF. Importantly, voxels with highest 

BOLD percent signal change were located at the cortical surface, whereas voxels with highest 

CBF percent signal change showed excellent spatial co-localization with synaptic activity 

within deeper cortical layers, i.e. within layer IV, where neuronal activity was expected 

during sensory stimulation.  

Our findings are also in line with the study of Luh et al. (2000) who identified tissue types by 

means of T1 maps, which were correlated on a voxelwise basis with BOLD and CBF signal 

changes during bilateral finger tapping in 5 healthy subjects at 3 Tesla. This study 

demonstrated that GRE-BOLD voxels with highest t-values predominantly contained 

cerebrospinal fluid (CSF) and/or blood. In contrast, highest relative CBF signal changes were 

located in voxels with T1-values similar to voxels containing predominantly grey matter 

independent of t-score thresholds applied. Hence, CBF activation maps were better localized 

than BOLD maps, which is compatible with our data. In addition, Luh and colleagues (2000) 

calculated the fractional overlap of BOLD and CBF activation maps. As a result, the overlap 

was only in the order of 40%, which indicates that different signals were captured by BOLD 

and CBF. Tjandra et al. (2005) found no statistical spatial displacement between GRE and 

CBF statistical t-maps at 3 Tesla during visually cued finger tapping in 5 healthy subjects. 

However, Tjandra et al. (2005) used center-of-gravities (CoGs) instead of peak voxel 

coordinates for their comparison. A venous shift might have been evident when using peak 

voxel instead of CoGs, based on the findings reported by Luh et al. (2000) that especially 

voxels with high statistical values may contain signal from large veins and CSF. However, 

Tjandra et al. (2005) provided additional evidence for a shift of GRE signal towards veins. 

They defined the nearest draining vein by MR venograms and found that the group mean 

Euclidean distance to the nearest draining vein for GRE was significantly smaller compared to 

CBF. Thus, our data are supported by growing body of evidence that CBF is better co-

localized to neural activity, whereas GRE is susceptible to shifts towards large veins or CSF. 
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3.4.1.4 Spatial localization of SE-BOLD (vs. GRE-BOLD) signal 

SE and GRE fMRI sequences are both sensitive to the BOLD effect - a joint combination of 

changes in cerebral blood volume, CBF, and de-oxygenation level of blood (Buxton et al. 

1998). Several studies demonstrated that both sequences have high susceptibility for large 

vessels at low magnetic fields, but in contrast to GRE signal, SE signal becomes selectively 

sensitive to microvasculature with increasing field strength (Kennan et al. 1994; Boxerman et 

al. 1995; Oja et al. 1999; Uludağ et al. 2009). Recently, Uludağ et al. (2009) proposed a 

model for assessing the amount of intra- and extravascular contributions to SE and GRE 

signal for magnetic field strengths ranging from 1.5 to 16.4 Tesla based on Monte-Carlo 

simulations. At 1.5 and 3 Tesla, intravascular contributions are higher than extravascular 

contributions for both sequences. Intravascular contributions mainly arise from veins to which 

GRE is more sensitive than SE. From 3 Tesla upwards, intravascular signal from veins 

vanishes for SE, but not GRE. Intra- and extravascular contributions to SE signal changes are 

equal at 3 Tesla (Norris et al. 2002) but intravascular signals mainly arise from the 

microvasculature (i.e., capillaries, arterioles, and venules), shifting towards blood vessels with 

high blood oxygenation (i.e., arterioles, capillaries) at higher field strengths. Although 

intravascular signal also decreases with increasing field strength for GRE, there is no field 

strength at which the BOLD signal from the microvasculature is larger than from the 

macrovasculature (Uludağ et al. 2009).  

Recent experimental data from high magnetic field studies in animals (Lee et al. 2002) and 

humans (Duong et al. 2002) support these findings. Lee et al. (2002) compared neural activity 

during forepaw stimulation measured by SE and CBF in 10 anesthetized rats at 9.4 Tesla and 

found that both signal types were well correlated and localized in the middle of the cortex. 

Duong et al. (2002) compared SE and CBF signal changes during visual stimulation and 

voluntary movements at 4 and 7 Tesla in human subjects and found that both located neural 

activity within grey matter with good spatial correspondence. Hence, there is good evidence 

that at high field strengths, SE signal changes have comparable high spatial specificity as CBF 

signal changes. For example, several studies investigated the laminar specificity of high-

resolution SE and GRE fMRI in primary visual cortex of macaque monkeys (Goense & 

Logothetis, 2006) or cats (Harel et al. 2006) at high magnetic fields, i.e. at 4.7 or 9.4 Tesla, 

respectively and found that laminar specific activation could be clearly demonstrated for SE 

yielding highest signal changes in cortical layer IV whereas highest GRE signal changes 

occurred at the cerebral surface. However, studies in humans at 3 Tesla are scarce (Thulborn 
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et al. 1997). Thulborn et al. (1997) measured neural activity during stimulation with different 

visual stimuli in human subjects at 3 Tesla with two different in-plane resolutions (3.1 x 3.1 

mm² and 0.8 x 1.6 mm²; slice thickness: 3.0 mm). The authors found that the 10 most 

significant voxels obtained with SE and GRE overlapped by only 30% (low resolution) and 

40% (high resolution) respectively. This result suggests that SE signal is not just a subset of 

the more sensitive GRE activation, but that both are detecting spatially different effects. This 

finding is in good agreement with our data suggesting that already from 3 Tesla on, SE signal 

changes are well localized with primary motor cortex activity. Uludağ et al. (2009) showed 

that reduced macro-vasculature weighting is achieved if large vessels predominantly run 

parallel to the main magnetic field as the susceptibility effect equals to zero for this condition. 

This is for example true for the central sulcus and hence for parts of the motor cortex but not, 

e.g., for the calcarine sulcus where the large vessels are mainly oriented perpendicular to the 

magnetic field. Therefore, in our study, SE might be more sensitive to gray matter than large 

vessels. 

Taken together our findings strongly encourage considering alternative fMRI sequences such 

as ASL and (under certain conditions) SE when spatial localization is of high priority. 

However, decisions may depend on multiple aspects and not only on localization (Table 3.3). 

For example, CBF is superior to GRE in spatial accuracy, provides lower inter-session and 

inter-subject variation (Tjandra et al. 2005). However, GRE offers highest sensitivity (in 

terms of contrast-to-noise ratio), temporal resolution (due to faster data acquisition) and 

finally, a larger number of slices can readily measured with GRE, whereas ASL is limited to 

fewer slices (Liu and Brown, 2007).  
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Table 3.3: Study I: Qualitative comparison of different motor mapping approaches 

 

 fMRI TMS 

Aim Identification of position with highest task-

related neural activity 

Identification of position with 

lowest electrophysiological 

threshold to elicit MEPs of the 

respective peripheral muscle 

Assessed via Neurovascular coupling Cortico-spinal excitability 

 GRE-BOLD SE-BOLD ASL-CBF  

Measured 

variable(s) 

BOLD (Deoxy-

Hb, CBF, CBV) 

BOLD 

(Deoxy-Hb, 

CBF, CBV) 

CBF Peripheral EMG signals 

Main 

advantages 

High CNR High spatial 

specificity 

High spatial 

specificity 

Independent of vascular effects 

Main 

disadvantages 

Low spatial 

specificity 

Low CNR Low CNR Restricted to superficial areas 

(limited penetration depth) 

Main source 

of signal 

Macrovasculature 

(mainly veins) 

Arterioles 

and 

capillaries 

(≥ 3 Tesla) 

Capillaries 

and brain 

parechyma 

Indirect transsynaptic 

excitation of cell bodies and 

direct excitation of axons 

Localized 

structure 

BA6 BA4a BA4p BA6 

Distance to 

surface 

+ ++ +++ n/a 

 
ASL: arterial spin labelling; BA: Brodmann area; BA4a: anterior primary motor cortex; BA4p: 

posterior primary motor cortex; BA6: premotor cortex; BOLD: blood oxygenation level dependent; 

CBF: cerebral blood flow; CBV: cerebral blood volume; CNR: contrast-to-noise ratio; Deoxy-Hb: 

deoxyhaemoglobin; EMG: electromyography; fMRI: functional magnetic resonance imaging; GRE: 

Gradient-Echo; SE: Spin-Echo; n/a: information is not available; TMS: transcranial magnetic 

stimulation 

 

3.4.2 Localization differences between fMRI and TMS 

Surprisingly, although SE-BOLD and ASL-CBF were more accurate in anatomical 

localization of the primary motor hand area, they provided significantly lower muscle 

responses than GRE-BOLD when stimulated with TMS. One explanation may be found in the 

properties of the EF induced by the magnetic pulse which declines exponentially with 

increasing distance from the TMS coil (Eaton, 1992). As GRE-BOLD peak voxel coordinates 

were significantly more superior (i.e. closer to the TMS coil), they were stimulated with 
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significantly higher EF strengths than SE-BOLD and ASL-CBF peak voxels. In this case, 

stimulation under equal conditions seems impossible to achieve with TMS, since stimulation 

of maxima with similar EF values would require stimulation with highly different stimulator 

output intensities, thereby enlarging the stimulated area. However, since it is unknown at 

which position, superficial or deep, excitation occurs, which accounts for highest TMS effects 

(Fox et al., 2004; Salinas et al., 2009; Thielscher et al. 2009), the most likely explanation for 

our findings is that the GRE-BOLD site was located more anterior (i.e. closer to the TMS 

hotspot) and thus TMS at the GRE-BOLD site was more effective. However, spatial distances 

between fMRI peak voxels and optimal TMS positions, i.e. hotspots and mapping CoGs, were 

not statistically different across fMRI sequences. This finding demonstrates that the mismatch 

between TMS and fMRI persists even if fMRI sequences with high anatomical accuracy such 

as ASL-CBF or SE-BOLD are used. Hence, a potential shift of GRE-BOLD towards 

superficial veins cannot explain the spatial mismatch observed between TMS and fMRI. 

Although fMRI and TMS were not expected to yield exactly identical positions due to 

apparent technical differences underlying these two brain mapping approaches, spatial 

mismatches were considerably large, i.e. 11.9 mm and optimal TMS positions were located 

within premotor areas in all 12 subjects (Eickhoff et al., 2005, 2007). These differences are 

not likely to be caused by technical issues, such as systematic coregistration errors or 

systematic EF distortions in posterior direction, since the magnitude of displacements were 

highly different across subjects (e.g. low in Subject 6, and high in Subject 8; Figure 3.4). 

Furthermore, similar anterior displacements were also reported in previous studies 

investigating spatial congruency of TMS and neuroimaging data such as PET (Classen et al., 

1998) and fMRI (Herwig et al., 2002; Lotze et al., 2003). Even if no precise specifications 

were made, published figures often suggested anterior displacements of optimal TMS 

positions relative to PET (Wassermann et al., 1996; Figure 2) or fMRI (Bastings et al., 1998; 

Figure 2 and 3) activations.  

 

3.4.3 Possible explanations for the anterior shift of optimal TMS positions 

Muscle responses evoked by TMS typically have up to 3 ms longer latencies than muscle 

responses evoked by electrical stimulation, which led to the assumption that TMS activates 

cortical cells predominantly transsynaptically, whereas electrical stimuli excite cortical cell 

bodies or axons directly (Day et al., 1989; Hess et al., 1987; Mills et al., 1992; Rothwell et al., 
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1991). However, it is unknown whether the entire synaptic chain (from optimal stimulation 

position to descending motoneurons) is located within the primary motor cortex or whether it 

includes (inter-) neurons in other regions, e.g. premotor cortex projecting onto BA4 neurons. 

Hence, it cannot be ruled out that indirect stimulation of BA4 neurons via transsynaptic input 

from BA6 accounts for anterior positions of optimal TMS sites.  

Although fMRI and TMS sessions were performed under different functional motor states, 

(“active” during fMRI sessions, “passive” during TMS sessions) this difference seems 

unlikely to account for the spatial mismatch observed since previous studies demonstrated 

that TMS mappings under low-level voluntary contraction (10-20 % of maximum contraction) 

yield CoGs significantly anterior (and non-significantly medial) of CoGs obtained at rest 

(Lewko et al., 1996; Wilson et al., 1995). This anterior-medial shift (in the range of 6.6 to 20 

mm) could be caused by decreased thresholds for surrounding premotor and supplementary 

motor areas during muscle pre-activation (Lewko et al., 1996). However, this anterior-medial 

shift would have more likely enlarged than shortened the distance between fMRI and TMS 

positions in the present study, since TMS mapping CoGs showed already (predominantly) 

anterior displacements.  

We rather assume that EF effects are likely to account for the anterior shift of optimal TMS 

positions. Like the neuronavigation system used in the present study, most systems compute 

EF strength based on spherical head models which assume that EF is maximal directly under 

the junction of the wings and declines exponentially with distance from the coil (Eaton, 

1992). However, there is growing evidence that this simplified model is insufficient, since 

different tissue types of the head have different conductivities which change the EF 

considerably. Realistic head models such as tissue-segmented MR images with realistic 

anatomical features like gyri and sulci demonstrated that the EF forms a complex pattern onto 

the folded cerebral cortex (Salinas et al., 2009). For instance, secondary EFs with either 

decreasing or increasing effects of varying magnitude (20-35 % of primary EF) and direction 

(often opposing the primary EF) occur especially near tissue boundaries (Salinas et al., 2009). 

These data show that stimulation with highest EF intensities does not necessarily occur 

directly under the junction of the coil as proposed by spherical head models. Therefore, it 

might be that stimulation with highest EF strength did not necessarily occur directly at the 

CoG position.  

The neurophysiology of TMS is still incompletely understood but there is some evidence that 

lateral-medial (LM) induced current directions activate cortical motor neurons predominantly 
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directly leading to D-waves whereas posterior-anterior (PA) induced current directions, as 

used in the present study, activate cortical motor neurons predominantly indirectly via 

interneurons leading to I-waves (Di Lazzaro et al., 1998a). However, at stimulus intensities 

above the motor threshold (MT), as applied in the present study, induced PA current direction 

can also excite neurons directly generating D-waves (Di Lazzaro et al. 1998a). Hence, for the 

coil orientation and stimulus intensity used in the present study both types of neuronal 

excitation (direct and indirect) should be considered. I-wave generation relies on short 

distance (inter)neuron or even microscopic (dendrite, cell body) geometry (Herbsman et al., 

2009), and there is some evidence that especially these short distance neuronal structures are 

subject to orientation-specific effects (Amassian et al., 1998). For instance, Fox et al. (2004) 

demonstrated that the orientation of the EF relative to cortical columns outweighs highest 

absolute EF strengths, i.e. TMS excitation was optimal within sulci where cortical columns 

run parallel to EF direction, although the absolute EF was higher at gyral crowns (where 

orientation to cortical columns is less optimal). Direct excitation on the other hand is mediated 

by longer neuronal structures, i.e. axons. Here, inhomogenities of the applied electric field 

caused by changes of the axonal trajectory relative to the EF are the most dominant factor in 

TMS-induced neuronal excitability (Abdeen & Stuchly, 1994; Amassian et al., 1992; 

Maccabee et al., 1993). Axons originating from BA4 first run perpendicular and anterior to 

the sulcal wall, and then turn approximately 90° downwards to form the cord fibres and the 

subcortical bundle in the centre of the precentral gyrus (Schmahmann & Pandya, 2006). 

Therefore, if for some subjects axonal thresholds were lower due to more abrupt white matter 

bendings (Fox et al., 2004), these subjects would show an anterior shift of optimal TMS 

excitation spots. In line with this suggestion are also the results of a very recent study by 

Herbsman et al. (2009) who investigated the relation between TMS excitability (i.e. motor 

threshold = MT) and several anatomical parameters in 17 subjects. Approximately 50-60 % of 

the inter-subject variability in MT can be explained by the subjects‟ individual skull-to-cortex 

distance (Kozel et al., 2000) but there is also strong evidence that the anterior component of 

the corticospinal tract is an additional important predictor for MT accounting for ~ 48 % of 

the variance observed (Herbsman et al., 2009). Pronounced anterior components of the 

corticospinal tract were associated with low MT (Herbsman et al., 2009) suggesting that TMS 

with PA induced current direction may act directly on axons running anterior of BA4 and 

changing their trajectory relative to the EF. 

  



Study I: Conguence of fMRI and TMS in healthy subjects 

80 

 

3.4.4 Implications and limitations 

In summary, we conclude from the findings of the current study that the spatial mismatch 

between fMRI and TMS is not caused by the venous shift of GRE-BOLD signal. Spatial 

differences between fMRI and TMS are likely to result from different underlying 

physiological processes, i.e. (perfusion) fMRI predominantly reflects the position with highest 

task-related synaptic activity (Duong et al., 2000) at cell bodies, i.e. within grey matter, 

whereas TMS mappings yield optimal positions for neuronal excitation with applied EFs. 

These two positions might be different for several reasons including (i) EF distortion (caused 

by tissue boundaries etc.), and (ii) direct excitation of axons (Di Lazzaro et al., 1998a) which 

might be distant from cell bodies in white matter. One limitation of the present study might be 

the fact that effects are EF orientation (and hence coil orientation) specific. Our finding that 

optimal TMS were more anterior might not apply to TMS mappings with other coil 

orientations. EFs in the coronal plane are more likely to act on medial-lateral fibre tract 

components, and hence might show displacements in medial-lateral direction in contrast to 

EFs in PA (or AP) directions which predominantly act on anterior-posterior fibre tract 

components (Herbsman et al., 2009). Another limitation of the present study might be that 

fMRI and TMS sessions were not matched in functional state although fMRI informed TMS 

lesion studies usually use the same task for the MRI localizer and the TMS experiment. 

Although this limitation is unlikely to account for the mismatch between fMRI and TMS sites 

observed in the present study, it might limit the significance of our findings with respect to 

previous fMRI-informed (r)TMS studies. Nevertheless, our findings also have implications 

for studies in which optimal TMS positions cannot be identified as easily as for the motor or 

visual cortex. Although fMRI-informed TMS might not reflect the optimal position to 

generate TMS effects, our data indicate that it provides at least a position resulting in 

measurable TMS effects, and hence fMRI informed TMS should be preferred to the use of 

structural landmarks solely. Furthermore, our data imply that when behavioural effects are 

absent after rTMS over fMRI-based coordinates (e.g., in attention or language experiments), 

missing effects might also result from ineffective stimulation of the target region due to the 

spatial mismatch of fMRI coordinates and maximal TMS effects as demonstrated for the 

motor system in the present study. 
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4 Study II: Spatial Congruence of fMRI and 

TMS in stroke patients 

4.1 Introduction Study II 

Results of Study I indicate that in healthy young subjects, movement-related changes in CBF 

signal occur close to the anatomical motor hand area, i.e. Brodmann Area 4 (BA4), whereas 

movement-related changes in BOLD signal occur closer to the gyral surface. However, spatial 

differences between neuroimaging techniques did not impact on Euclidean distances to 

optimal TMS positions, since optimal TMS positions were considerably more anterior 

compared to fMRI positions (and differences between CBF and BOLD signal occurred 

mainly in cortical depth). Hence, in healthy young subjects, the use of CBF (instead of 

BOLD) did not improve spatial congruence between fMRI and TMS. 

However, the main goal of the present thesis was to improve rTMS invervention strategies in 

stroke patients and stroke patients in the chronic phase may show several abnormalities 

compared to healthy subjects. First of all, reorganization processes which take place during 

the first weeks and months after stroke (Cramer et al., 1997) may shift task-related fMRI 

signal as well as optimal TMS positions in unknown extend and direction (Bastings et al., 

2002; Rossini et al., 1998; Thickbroom et al., 2002). Which influence such shifts may have on 

congruence between fMRI and TMS is however unknown. Additionally, stroke patients may 

show vascular abnormalities (e.g. stenoses), but it is unknown whether these abnormalities 

have stronger effects on BOLD signal (araising from the macrovasculature) compared to CBF 

(arising from capillaries and smaller vessels). Therefore, we tested whether results obtained 

from healthy young subjects in Study I do also apply to chronic stroke patients despite of 

spatial shifts of fMRI and TMS positions caused by reorganization and vascular 

abnormalities. 

Hypoperfusion is the most proximate cause of ischemic stroke. Therefore, CBF measurements 

have been suggested to have high potential for clinical neuroimaging (Detre et al., 1998). 

Initially, presence of stenoses and the resulting prolonged transit times in stroke patients were 

thought to be potential sources of error or artefact in perfusion imaging using ASL. However, 

in 1998, Detre and colleagues were able to demonstrate that good-quality CBF images can be 

obtained from patients with chronic cerebrovascular disease at rest (Detre et al., 1998). 

Nowadays, ASL is predominantly used to assess global perfusion deficits in acute stroke 
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patients in clinical settings. These measurements are performed in absence of a specific task 

(“resting state”) and allow identification of the ischemic penumbra (tissue potentially destined 

for infarction but not yet irreversibly injured; Fisher, 1997), if combined with diffusion 

weighted imaging (DWI). According to the diffusion-perfusion mismatch model, the ischemic 

penumbra represents the area which shows perfusion deficits assessed by ASL but normal 

diffusion measured by DWI (Chalela et al., 2004). However, until now, no study has been 

published using ASL to assess task-related changes in CBF in stroke patients. Therefore, an 

additional aim of the present study was, to demonstrate that meaningful task-related CBF 

signal changes can be obtained from chronic stroke patients.  

Numerous studies used BOLD fMRI to assess movement-related activity in stroke patients 

and many of these studies reported bilaterally enhanced BOLD signal during movements of 

the affected hand in stroke patients compared to healthy subjects (Binkofski & Seitz, 2004; 

Cao et al., 1998; Chollet et al., 1991; Cramer et al., 1997; Grefkes et al., 2008b; Jaillard et al., 

2005; Loubinoux et al., 2003; Seitz et al., 1998; Weiller et al., 1992; Ward et al., 2003b). The 

functional role of enhanced neural activity in the contralesional hemisphere (e.g. supportive, 

compensatory or detrimental) is currently under intensive debate (cf. sections 4.4, 5.4.3 and 

5.4.4). The second aim of the present study was to exclude the possibility that bilaterally 

organized BOLD signal is simply caused by vascular artefacts (such as local magnetic 

susceptibility around large draining veins). We hypothesized that bilaterally organized neural 

activity during movements of the affected hand is also indicated by CBF (and not only by 

BOLD). Since CBF signal changes exclusively occur in capillaries and brain parenchyma 

(Duong et al., 2000; Luh et al., 2000; Silva et al., 1997; Tjandra et al., 2005), this finding 

would strongly argue against artefacts from veins (and for neuronal processes) as underlying 

cause of bilaterally enhanced BOLD signal in the contralesional hemisphere ipsilateral to 

movements of the affected hand. 

Hence, in the present study we tested on both hemispheres of chronic stroke patients and age-

matched healthy controls: (i) whether meaningful movement-related changes in CBF can be 

obtained from chronic stroke patients, (ii) whether bilaterally enhanced neural activity can be 

obtained by BOLD as well as CBF, (iii) whether highest task-related CBF signal changes 

occur closer to the anatomical motor hand area (BA4) than highest task-related BOLD signal 

changes, (iv) whether spatial differences between neuroimaging techniques are functionally 

relevant (i.e. impact on MEPs) if brain tissue is stimulated with TMS, and (v) whether 
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movement-related CBF signal changes occur significantly closer to optimal TMS positions 

than movement-related BOLD signal changes. 

 

4.2 Methods Study II 

4.2.1 Subjects 

MRI measurements were performed on 15 chronic stroke patients (61.4 ± 10.2 years old; 12 

males) and 13 healthy control subjects (60.1 ± 8.0 years old; 6 males; Table 4.1). There were 

no significant differences between groups in age (two-sample t-test, P > 0.05) or gender 

(Pearson‟s chi-square test, P > 0.05). Patients had right-sided (n = 10) or left-sided (n = 5) 

lesions due to first-ever cerebral ischemia. Patients were included in the study based on the 

following criteria: (i) stable unilateral hand motor deficit, (ii) insult at least 12 months ago 

(chronic stage), (iii) absence of aphasia, neglect, and apraxia, and (iv) no mirror movements 

of the unaffected hand during movements of the affected hand. Three different scales were 

used to assess clinical impairment: (i) the modified Rankin scale (mRS), (ii) the National 

Institutes of Health Stroke Scale (NIHSS), and (iii) the Action Research Arm Test (ARAT). 

Additionally, maximum index finger tapping frequencies (in Hz) and maximum grip force (in 

kPa) was obtained (the latter with a vigorimeter: Martin, Tuttlingen, Germany). CST damage 

was assessed by calculating the overlapping volume between the individual MNI-normalized 

lesion mask and the probabilistic CST map implemented in the SPM “Anatomy” toolbox 

(Eickhoff et al., 2005, 2007; http://www.fz-juelich.de/inm/inm-1/spm_anatomy_toolbox) in 

relation to total CST volume. Healthy control subjects were free of any history of medical or 

psychiatric disease. One subject in each group was left-handed according to the Edinburgh 

Handedness Inventory (EHI; Oldfield, 1971). Remaining subjects were right-handed (EHI 

was assessed for the time before stroke in patients). Overall 12 subjects (6 patients and 6 

healthy subjects) agreed to participate in a subsequent TMS session in which a systematic 

TMS motor mapping was performed. None of the subjects had any contraindication to TMS 

(Wassermann, 1998) and all subjects gave informed consent to participate in the study, which 

was approved by the ethics committee of the Medical Faculty, University of Cologne, 

Germany (file-no 09-108). All experiments conform to the Declaration of Helsinki, sixth 

revision 2008. 
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Table 4.1: Study II: Demographical, clinical, and behavioural data 

Subject Age Sex Han-

ded-

ness 

Lesion 

side 

Lesion 

size 

[cm³] 

 

Lesion 

age 

[m] 

mRS NIH

SS 

ARAT Affected/non-dominant hand Unaffected/dominant hand 

FT 

[Hz] 

GF 

[kPa] 

TA 

max. 

[Hz] 

TA 

eff. 

[Hz] 

FT 

[Hz] 

GF 

[kPa] 

TA 

max. 

[Hz] 

TA 

eff. 

[Hz] 

P 01* 56 M R R 0.1 33 1 1 57 4.8 111.0 2.8 1.9 5.4 119.0 2.9 1.9 

P 02 48 M R R 251.7 156 2 6 30 2.3 105.0 1.4 0.9 6.7 150.0 2.6 1.7 

P 03* 65 M R R 0.1 28 1 1 46 3.3 76.7 1.5 1.0 5.5 96.3 3.7 2.5 

P 04 70 M R R 3.0 100 3 7 24 1.5 16.0 1.9 1.3 5.6 90.0 2.9 1.9 

P 05* 68 M R R 40.2 32 3 5 32 1.7 43.7 1.0 0.7 5.4 113.7 2.5 1.7 

P 06 65 M R R 1.3 22 2 3 50 3.5 42.7 1.5 1.0 4.5 70.7 2.3 1.5 

P 07* 73 M L R 0.2 35 1 4 41 3.9 64.7 2.3 1.5 5.3 76.7 2.7 1.8 

P 08 75 M R L 0.4 43 1 2 57 5.1 64.7 3.1 2.1 5.3 63.3 3.1 2.1 

P 09 43 F R R 42.1 18 2 3 32 3.0 7.3 1.0 0.7 5.4 60.7 3.7 2.5 

P 10 67 M R L 1.6 253 1 3 56 4.2 64.7 2.0 1.3 5.1 77.3 2.0 1.3 

P 11 60 M R R 2.3 16 1 2 54 2.9 71.7 1.6 1.1 5.7 81.0 2.5 1.7 

P 12* 52 F R R 26.7 12 1 1 57 3.7 49.3 2.1 1.4 4.6 46.7 2.8 1.9 

P 13* 74 F R L 0.2 50 1 4 54 3.1 21.3 2.7 1.8 3.3 48.0 2.8 1.9 

P 14 51 M R L 2.7 38 2 3 21 1.6 10.0 1.0 0.7 6.5 106.7 4.4 2.9 

P 15 54 M R L 10.5 78 2 4 48 2.0 12.7 1.1 0.7 4.5 86.0 2.2 1.5 

Mean 61.4    25.5 60.9 1.6 3.3 43.9 3.1 50.8 1.8 1.2 5.3 85.7 2.9 1.9 

SD 10.2    64.3 65.4 0.7 1.8 12.9 1.1 33.2 0.7 0.5 0.8 28.1 0.6 0.4 

H 01 50 M R - - - - - - 5.9 95.0 2.6 1.7 6.4 101.7 3.3 2.2 

H 02* 66 M R - - - - - - 5.5 92.0 2.3 1.5 5.8 104.3 2.4 1.6 

H 03 56 F R - - - - - - 5.3 40.0 2.4 1.6 6.3 48.3 3.2 2.1 

H 04 66 M L - - - - - - 5.9 90.0 2.5 1.7 5.5 82.3 2.7 1.8 

H 05* 61 F R - - - - - - 5.1 59.7 3.4 2.3 5.6 55.3 3.1 2.1 

H 06* 64 M R - - - - - - 5.5 119.7 2.7 1.8 5.0 102.3 2.7 1.8 

H 07* 63 F R - - - - - - 6.0 74.0 2.5 1.7 5.7 78.0 2.6 1.7 

H 08* 56 M R - - - - - - 5.7 102.0 2.4 1.6 6.4 97.3 2.6 1.7 

H 09* 50 F R - - - - - - 5.9 66.7 2.7 1.8 6.7 62.7 2.9 1.9 

H 10 53 F R - - - - - - 4.9 99.7 2.3 1.5 5.5 102.7 2.4 1.6 

H 11 55 F R - - - - - - 5.1 49.7 1.8 1.2 5.5 49.3 2.0 1.3 

H 12 62 M R - - - - - - 5.7 112.7 3.3 2.2 6.1 107.7 3.8 2.5 

H 13 79 F R - - - - - - 3.7 60 1.3 0.9 4.4 63 1.2 0.8 

Mean 60.1         5.4 77.5 2.5 1.7 5.8 76.8 2.7 1.8 

SD 8.0         0.6 32.3 0.5 0.4 0.6 30.7 0.6 0.4 

ARAT = Action Research Arm Test; F = female; FT = maximum index finger tapping frequency; GF = maximum grip force; H = healthy control subject; L = left; M = male; m = months; mRS = 

modified Rankin Scale; NIHSS= National Institutes of Health stroke scale; P = stroke patient; R = right; SD = standard deviation; TA eff. = thumb abduction frequency performed during the 

functional magnetic resonance imaging experiment (66% of TA max. = maximum thumb abduction frequency) * Subjects participated in TMS experiments 
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4.2.2 fMRI motor paradigm 

A block design was implemented, in which subjects were asked to perform visually paced 

rhythmic thumb abductions with their affected hand (corresponding to the non-dominant hand 

of healthy subjects) and their unaffected hand (corresponding to the dominant hand of healthy 

subjects). The volunteer‟s hands were fixated on a flat board with elastic velco straps to 

ensure a flat hand position throughout the experiment. A vertical cylinder, mounted onto the 

board, served as lateral margin restricting thumb abductions. The position of the cylinder was 

adjusted to allow thumb abductions of approximately 45°. This experimental setup 

specifically facilitated movements of the abductor pollicis brevis (APB) muscle, which was 

later used as target muscle for TMS. Thumb abductions were performed at two different 

movement frequencies: (i) a fixed frequency of 1 Hz and (ii) a frequency individually 

adjusted to motor performance (66% of the maximum frequency). The fixed frequency 

condition was implemented to compare neural activity (between groups or hands) with similar 

absolute number of thumb abductions in one movement block resulting in, for example 

similar amount of re-afferent signal, whereas the adjusted frequency condition was 

implemented to compare neural activity (between groups or hands) during movements with 

similar degree of difficulty (but different absolute number of movements). The maximum 

thumb abduction frequency of each hand was determined immediately before fMRI scanning 

when subjects resided in their final position for the experiment. For assessment of the 

maximum thumb abduction frequency, subjects were instructed to move their thumb to the 

cylinder and back as fast as possible as soon as a “go” signal appeared on a shielded thin-film 

transistor (TFT) screen at the rear end of the MR scanner. Thumb abductions were counted by 

visual inspection until a “stop” signal was presented after 10s. The procedure was repeated 

consecutively 3 times for each hand and the mean across 3 blocks was used as maximum 

thumb abduction frequency (see Table 4.1). During the fMRI experiment, the movement 

frequency was paced by a red blinking circle on white background presented on the TFT 

screen, which was visible via a mirror mounted on the MR head coil. Blocks of hand 

movements (15 s) were separated by resting baselines (30 s plus 0-1.5 s jitter), in which a 

black screen instructed subjects to rest still until instructions were displayed for 1.5 s 

indicating which hand to move in the subsequent movement block. The software 

„„Presentation‟‟ (Version 9.9, Neurobehavioral Systems, Inc., CA, 

www.neurobehavioralsystems.com) was used for visual stimulus presentation. One fMRI 
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experiment consisted of 6 cycles of baseline and movement blocks for each of the 4 

conditions which were pseudo-randomized and counterbalanced across the experiment. 

Overall, the experiment lasted about 19 min. Subjects were trained outside and again inside 

the scanner until they had reached stable performances (monitored by visual inspection). 

During the experiment, motor performance was monitored by an MR compatible camera in 

the scanner room. 

 

4.2.3 fMRI data acquisition 

MR images were acquired on a 3 Tesla Siemens MAGNETOM TimTrio scanner (Siemens, 

Erlangen, Germany). High-resolution anatomical T1-weighted images were acquired using a 

3D MP-RAGE (magnetization prepared, rapid acquisition gradient echo) sequence with the 

following imaging parameters: TR = 2000 ms, TE = 3.25 ms, FOV = 256 mm, 176 sagittal 

slices, slice thickness = 1 mm, in-plane resolution = 1 x 1 mm², flip angle = 9°. To avoid 

discomfort for patients induced by long scanning durations, CBF and BOLD signal changes 

were simultaneously acquired by means of the PICORE-Q2TIPS (quantitative imaging of 

perfusion using a single subtraction with thin slice TI1 periodic saturation – proximal 

inversion with a control for off-resonance effects) pulse sequence using a FOCI pulse for 

inversion (Luh et al., 1999) with the following parameters: TI1= 1000 ms, TI1s = 1200 ms, and 

TI2 = 1700 ms, TR = 2500 ms, TE = 22 ms, FOV = 256 mm, 8 axial slices, slice thickness = 5 

mm, in-plane resolution = 4 x 4 mm², distance factor = 0%, flip angle = 90°, and a flow limit 

of 100 cm/s. The tagging region was 10 cm in width positioned at a gap of 1 cm inferior to the 

imaging slices. Two presaturation pulses were applied in the imaging planes immediately 

before the inversion tag to minimize the impact of the static tissue. A 20 mm thick saturation 

slab was repeatedly applied for the bolus cut-off (Cavusoglu et al., 2009). Images were 

acquired sequentially in ascending direction using a single-shot EPI technique. Slices covered 

a region extending from the fundus of the central sulcus to the top of the parietofrontal vertex, 

thereby ensuring full coverage of the primary motor cortex. Each fMRI session consisted of 

471 EPI volumes, including three “dummy” scans, ensuring a steady-state in tissue contrast. 

Seven whole brain EPI volumes (30 axial slices) with identical imaging parameters (except 

for a longer TR of 4000 ms) were additionally acquired to improve the co-registration with 

the anatomical T1-weighted volume during data pre-processing (see below). 
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4.2.4 fMRI data analysis 

For image preprocessing and statistical analysis of BOLD and CBF data, we used FEAT 

(FMRI Expert Analysis Tool) version 5.98, part of FSL (FMRIB's Software Library version 

4.1.7, www.fmrib.ox.ac.uk/fsl). Dummy scans were discarded from further analyses. EPIs 

from patients with left-sided lesions (n = 5) were mirrored at the midsagittal plane. To 

account for possible confounds arising from laterality effects, EPIs of 5 healthy subjects were 

similarly processed. ASL-CBF time series were created by calculating control-tag difference 

images (resulting in a total of 234 subtraction images) using surround subtraction (i.e. 

computing the difference between each image and the average of its two nearest neighbours), 

thereby reducing BOLD signal contamination of the ASL-CBF time course (Cavusoglu et al., 

2009). The following prestatistics processing was applied: motion correction using MCFLIRT 

(Jenkinson et al., 2002), non-brain removal using the brain extraction tool (BET; Smith, 

2002), and spatial smoothing using a Gaussian kernel of 5 mm full width half maximum 

(FWHM). A highpass filter of 1/290 s (i.e. slightly longer than the maximum interval between 

two blocks of the same condition) to remove low frequency drifts in MR signal. To ensure 

good spatial co-registration with the high resolution anatomical T1 image, EPI volumes 

(covering the brain only partially) were first co-registered with the whole brain EPI before 

applying the transformation matrix from whole brain EPI to the brain-extracted T1 image. For 

statistical analysis on the single-subject level, box-car vectors of the following four conditions 

were applied to both CBF and BOLD time series in the framework of a general linear model 

using FILM (FMRIB's Improved Linear Model) with local autocorrelation correction 

(Woolrich et al., 2001):  

1) Movements of the affected (non-dominant) hand at 66% of the maximum frequency 

2) Movements of the affected (non-dominant) hand at 1 Hz 

3) Movements of the unaffected (dominant) hand at 66% of the maximum frequency  

4) Movements of the unaffected (dominant) hand at 1 Hz 

Head motion parameters were included as covariates into the model.  

 

4.2.5 Identification of fMRI peak voxel and fMRI CoGs 

The voxel with the highest statistical Z-value located within the precentral gyrus near or at the 

hand knob formation (Yousry et al., 1997) was identified for movements of the affected (non-

dominant) and the unaffected (dominant) hand (in the adjusted movement frequency 
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condition) for both BOLD and CBF using a statistical threshold of P < 0.001 (uncorrected). In 

contrast to peak voxel coordinates, CoG coordinates are influenced by the threshold applied. 

A uniform threshold of P < 0.001 (uncorrected) was applied to all fMRI data (lower 

thresholds were found to yield very large activation cluster for BOLD sessions, whereas 

higher statistical thresholds could not be passed by CBF activation clusters). After 

thresholding, the fMRI activation cluster comprising the peak voxel was identified and the 

CoG was calculated as Z-value weighted position. 

 

4.2.6 Group analysis of fMRI data 

Lesion masks were created based on anatomical T1 images using MRIcron 

(http://www.cabiatl.com/mricro/mricron/). EPIs volumes were spatially normalized to the 

standard template of the Montreal Neurological Institute (MNI152_T1_2mm) with masked 

lesions using FLIRT (Jenkinson et al., 2001, 2002). For the fMRI group analysis we used 

FLAME 1 (FMRIB's Local Analysis of Mixed Effects) to compare the parameter estimates of 

each condition between subjects in a full-factorial ANOVA with the factor GROUP (levels: 

patients, controls). Z (Gaussianised T/F) statistic images were thresholded using a voxel-wise 

corrected significance threshold of Z > 3.0 and a cluster-wise corrected significance threshold 

of P < 0.05 (Forman et al., 1995; Friston et al., 1994; Worsley et al., 1992). For anatomical 

assignment, statistical contrasts were overlaid with cytoarchitectonic probability maps of the 

Juelich Histological Atlas (Eickhoff et al., 2005, 2007). 

 

4.2.7 Neuronavigated TMS apparatus 

Stereotaxic frameless neuronavigation was performed with the eXimia navigated brain 

stimulation (NBS) system version 3.2.1 (Nexstim, Helsinki, Finland). Since subjects 

performed a thumb abduction task during the fMRI experiment, the left and right abductor 

pollicis brevis (APB) muscle served as target muscles for TMS. EMG signals were recorded 

by Ag/AgCl surface electrodes (Tyco Healthcare, Neustadt, Germany) placed in a belly-

tendon montage. The EMG signal was amplified, filtered with a 0.5 Hz high pass filter and 

digitized using a ML856 PowerLab 26T Myograph and the “LabChart” software package 

version 6.0 (ADInstruments Ltd, Dunedin, New Zealand).  
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4.2.8 Motor hotspot and resting motor threshold 

Subjects were comfortably seated in an adjustable armchair with head-rest. The head of the 

subject was co-registered with the individual high-resolution anatomical MR image via 

anatomical landmarks (e.g., nasion and crus helicis). The root mean square difference 

between positions of landmarks at the subjects head and landmarks in the MRI volume did 

not exceed 3 mm for any TMS session of the present study (calculated by the neuronavigation 

software). After anatomical coregistration, the motor “hotspot”, i.e. the coil position providing 

highest MEPs of the contralateral APB muscle with shortest latencies during single pulse 

supra-threshold TMS, was identified. Hotspot coil orientations were (nearly) perpendicular 

(90 ± 10°) to the central sulcus and tangential to the scalp in all subjects investigated 

(information provided by the neuronavigation software). The RMT was defined as the 

minimum TMS stimulator output intensity required to produce an MEP (peak-to-peak 

amplitude ≥ 50 µV) in at least 5 out of 10 consecutive trials in the contralateral APB muscle 

at rest (Rossini et al., 1994). 

 

4.2.9 TMS Motor Mapping 

TMS motor maps of the ipsilesional (non-dominant) and contralesional (dominant) motor 

cortex and surrounding tissue were obtained from 12 patients (6 stroke patients and 6 healthy 

subjects). The TMS coil was navigated to grid positions spaced at intervals of 5 mm. The 

anterior-posterior axis of the grid was oriented in parallel to the interhemispheric fissure. The 

mapping procedure started at the hotspot position. Subsequent positions followed a helix 

around the hotspot position until no MEP (peak-to-peak amplitude ≥ 50 µV) could be elicited 

at any outside margin of the map. This mapping procedure included the hand knob formation 

(Yousry et al., 1997) in all subjects. Classen et al. (1998) demonstrated that 5-6 stimuli per 

position are sufficient to achieve stable mapping results. In the present study, 7 stimuli (at 

120% RMT; ISI = 1500 ms) were delivered to each position. Coil tilting was tangentially to 

the scalp and the TMS coil orientation was identical to coil orientation during RMT 

identification and stimulation at fMRI maxima coordinates, i.e. approximately perpendicular 

to the central sulcus. The mean peak-to-peak MEP amplitude of the APB was calculated for 

each grid position and divided by the largest amplitude obtained within the stimulation area. 

Based on these data, the centre-of-gravity (CoG) of the cortical APB representation was 

calculated (Classen et al., 1998). Since it is unknown at which position, superficial or deep, 
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TMS-induced neuronal excitation occurs, we projected TMS identified positions (i.e. hotspot 

and CoG positions) onto the cerebral surface. This was done by identifying the individual 

depth of the cerebral surface by surface peeling of the software generated 3D head model. 

Positions with highest EF strength at the cerebral surface (EFmax) were recorded during 

hotspot identification and TMS mapping and used for later analyses. To compare anatomical 

positions derived by fMRI and TMS, EFmax positions were marked on the individual structural 

T1 image and transferred into MNI space by applying the respective nonlinear normalization 

transform (which was also used to transfer individual fMRI activation maps into MNI space). 

 

4.2.10 TMS of peak voxel coordinates at 120 % RMT 

Brain tissue at fMRI peak voxel coordinates was stimulated with 120 % RMT (15 stimuli; ISI 

= 3000 ms) in all subjects (n = 28). The order of stimulation of BOLD and CBF peak voxels 

was counterbalanced across subjects. The experimenter was blinded to the fMRI sequence. 

The target entry point for stimulation was identified by bringing the TMS coil in a position in 

which the distance between fMRI target and EFmax value position was found to be minimal (0-

2 mm, computed by the neuronavigation software). Then, tilting of the TMS coil was adjusted 

until the coil was tangential to the scalp (computation and visual feedback provided by the 

neuronavigation software). TMS coil orientation coincided with TMS coil orientation during 

RMT identification. In this final position, one stimulus was applied. The coil positioning 

parameters of this stimulus were used as reference for all subsequent stimuli at this particular 

target (by means of the “aiming tool” implemented in the neuronavigation software).  

 

4.3 Results Study II 

4.3.1 fMRI group analysis 

4.3.1.1 BOLD signal 

Figure 4.1 shows regions significantly activated by visually-paced thumb abductions at a 

movement frequency of 1 Hz in stroke patients (n = 15; all normalized as having right sided 

lesions) and healthy subjects (n = 13) relative to the low-level baseline (Z > 3.0, P < 0.05 

cluster-level corrected). Healthy subjects showed increased BOLD signal in a network 

comprising contralateral primary motor cortex (M1), contralateral primary somatosensory 
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cortex (S1), bilateral supplementary motor area (SMA), bilateral ventral and dorsal premotor 

cortex (vPMC, dPMC), and bilateral superior parietal lobule (SPL) during movements of the 

dominant (Figure 4.1F) and non-dominant (Figure 4.1B) hand. In stroke patients, movements 

of the unaffected hand yielded comparable results as movements of the dominant or non-

dominant hand in healthy subjects (Figure 4.1E). In contrast, movements of the stroke 

affected hand were associated with significant neural activity in contralesional M1 ipsilateral 

to movements of the affected hand (Figure 4.1A). Although healthy subjects also showed 

significant activation in the dominant hemisphere, ipsilateral to movements of the non-

dominant hand, this activation was situated in ipsilateral dPMC (Figure 4.1B) and did not 

extend into ipsilateral M1 as in stroke patients (Figure 4.1A). Results were comparable if the 

thumb abduction frequency in the fMRI experiment was adjusted to motor performance (66% 

of maximum frequency; Figure 4.2). 

 

4.3.1.2 CBF signal 

The fMRI group analysis of the contrast “thumb abductions versus baseline” on CBF (instead 

of BOLD) signal revealed lateralized activation clusters in contralateral sensorimotor cortex 

(M1/S1) in healthy subjects during movements of the dominant (Figure 4.1H) and non-

dominant hand (Figure 4.1D). In stroke patients, movements of the unaffected hand yielded 

similar results as movements of the dominant or non-dominant hand in healthy subjects 

(Figure 4.1G). In contrast, movements of the stroke affected hand were associated with 

additional activation clusters in contralesional M1 ipsilateral to hand movements (Figure 

4.1C, highlighted by green circles). This activation was located at the lateral margin of the 

hand knob formation (Yousry et al., 1997) and was not seen in healthy subjects (Figure 4.1D, 

Figure 4.1H) or stroke patients moving their unaffected hand (Figure 4.1G). Results were 

comparable if the thumb abduction frequency in the fMRI experiment was adjusted to motor 

performance (66% of maximum frequency; Figure 4.2).  

 

4.3.1.3 Peak activation clusters 

Characteristics of peak activation clusters are given in Table 4.2. CBF peak activation clusters 

were significantly smaller (i.e. contained significantly fewer voxels) than BOLD peak 

activation clusters (P < 0.001) and had significantly lower statistical Z-values at the peak 

voxel coordinate (P < 0.001). There were no significant differences between stroke patients 
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and healthy subjects in voxel size or statistical Z-value of peak activation clusters (P > 0.3). 

All peak activation clusters obtained by CBF were located either in the primary motor cortex 

(M1) or the central sulcus (CS) both in healthy subjects and stroke patients. In contrast, peak 

activation clusters obtained by BOLD were located in other brain areas (predominantly 

supplementary motor area, SMA). Only for one of the eight conditions, the BOLD peak 

activation cluster was located in the CS.  

 

4.3.1.4 Summary fMRI group analysis 

In summary, our results demonstrate that meaningful task-related changes (in contralateral 

M1) can be obtained from chronic stroke patients using ASL-CBF. Additionally to activity in 

contralateral M1, stroke patients showed enhanced fMRI signal in contralesional (i.e. 

ipsilateral) M1 during movements of the affected hand (but not during movements of the 

unaffected hand) compared to healthy subjects. This was the case in both movement 

conditions. Interestingly, both fMRI signal types, i.e. BOLD and CBF, suggested enhanced 

neural activity in contralesional M1 during movements of the affected hand. CBF peak 

activation clusters were smaller and had lower statistical Z-values than BOLD peak activation 

clusters but there were no significant differences between patients and healthy subjects in 

cluster size or Z-values of peak activation clusters. Highest movement-related CBF signal 

changes in stroke patients and control subjects were located in M1 or the central sulcus. By 

contrast, highest movement-related BOLD signal changes were located in other brain areas 

(such as SMA). There were no differences between stroke patients and healthy subjects in 

location of peak activation clusters. 
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Figure 4.1: Study II: Results of the fMRI group analysis (fixed movement condition). Functional 

magnetic resonance imaging (fMRI) was performed in 15 chronic stroke patients and 13 healthy 

subjects during visually paced rhythmic thumb abductions of the affected (non-dominant) and 

unaffected (dominant) hand at a fixed movement frequency of 1 Hz. Arterial spin labelling (ASL) was 

used as fMRI pulse sequence and blood oxygenation level dependent (BOLD) as well as cerebral 

blood flow (CBF) fMRI signal was assessed. “Movement versus rest” contrasts were superimposed 

onto the MNI standard template (Z > 3.0; P < 0.05, cluster level corrected). Stroke patients showed 

enhanced BOLD and CBF signal in contralesional M1 (ipsilateral to hand movements) during 

movements of the affected hand but not during movements of the unaffected hand compared to 

healthy controls. 
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Figure 4.2: Study II: Results of the fMRI group analysis (adjusted movement condition). Functional 

magnetic resonance imaging (fMRI) was performed in 15 chronic stroke patients and 13 healthy 

subjects during visually paced rhythmic thumb abductions of the affected (non-dominant) and 

unaffected (dominant) hand at a movement frequency adjusted to motor performance (66% of 

maximum thumb abduction frequency). Arterial spin labelling (ASL) was used as fMRI pulse 

sequence and blood oxygenation level dependent (BOLD) as well as cerebral blood flow (CBF) fMRI 

signal was assessed. “Movement versus rest” contrasts were superimposed onto the MNI standard 

template (Z > 3.0; P < 0.05, cluster level corrected). Results were comparable to the fixed movement 

condition, i.e. stroke patients showed enhanced BOLD and CBF signal in contralesional M1 

(ipsilateral to hand movements) during movements of the affected hand (but not during movements of 

the unaffected hand compared to healthy controls. 
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Table 4.2: Study II: Peak activation cluster of the fMRI group analysis 

 

Contrast Voxels P Z 
Peak 

X 

Peak 

Y 

Peak 

Z 
Area 

CoG 

X 

CoG 

Y 

CoG 

Z 
Area 

BOLD 

Patients 

Affected 

hand 

adjusted 14826 0.000 6.66 4 -8 52 SMA -0.4 -12.7 55.9 SMA 

fixed 10318 0.000 6.67 2 -6 52 SMA 3.7 -9.4 56.0 SMA 

Unaffected 

hand 

adjusted 8675 0.000 5.90 -40 -20 50 CS -13.8 -10.8 55.7 SMA/WM 

fixed 16379 0.000 6.09 -52 -26 44 S2 -10.1 -7.23 53.9 SMA/WM 

Controls 

Non-dom 

hand 

adjusted 12449 0.000 6.16 2 -4 60 SMA 12.2 -6.23 54.5 SMA/WM 

fixed 10378 0.000 5.90 2 -4 58 SMA 12.0 -8.45 55.3 SMA/WM 

Dominant 

hand 

adjusted 10521 0.000 5.91 -44 -12 56 PMC/M1 -17.8 -12.4 56.2 dPMC 

fixed 11172 0.000 6.24 2 -2 56 SMA -8.21 -6.56 55.2 SMA 

CBF 

Patients 

Affected 

hand 

adjusted 842 0.000 4.15 36 -12 52 M1 37.2 -15.2 54.6 M1 

fixed 305 0.000 5.54 36 -22 54 M1 34.5 -15.6 50.1 M1 

Unaffected 

hand 

adjusted 507 0.000 4.49 -36 -28 50 CS -37.0 -24.0 51.7 CS 

fixed 844 0.000 4.52 -40 -20 56 M1 -38.7 -22.3 52.6 M1 

Controls 

Non-dom 

hand 

adjusted 368 0.000 4.01 42 -20 52 CS 38.4 -20.0 52.7 M1 

fixed 274 0.000 4.24 40 -18 52 M1 39.1 -18.7 53.5 M1 

Dominant 

hand 

adjusted 643 0.000 4.29 -40 -16 58 M1 -36.3 -20.4 53.5 M1 

fixed 515 0.000 4.08 -40 -14 56 M1 -36.1 -15.8 52.4 M1 

 
adjusted: thumb abduction frequency in the fMRI experiment was adjusted to motor performance (66% of maximum frequency); BOLD: blood-oxygenation level 

dependent; C: control subjects; CBF: cerebral blood flow; CoG: centre-of-gravity coordinate; CS: central sulcus; dPMC: dorsal premotor cortex; fixed: thumb 

abduction frequency in the fMRI experiment was 1 Hz; fMRI: functional magnetic resonance imaging; M1: primary motor cortex; Non-dom: non-dominant; P: 

stroke patients; Peak: peak voxel coordinate; S2: secondary somatosensory cortex; PMC: premotor cortex; SMA: supplementary motor area; WM: white matter; 

X: lateral-medial coordinate; Y: anterior-posterior coordinate; Z: inferior-superior coordinate. Coordinates refer to the standard space of the Montreal 

Neurological Institute (MNI) 
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4.3.2 Statistical Z-values at individual fMRI peak voxels 

Movement-related neural activity was observed with both ASL-BOLD as well as ASL-CBF 

in all subjects. However, sensitivity in terms of statistical Z-values of individual local maxima 

at the hand knob formation was significantly different across fMRI techniques. A repeated 

measures ANOVA (n = 28) with the factors APPROACH (levels: ASL-BOLD, ASL-CBF), 

HEMISPHERE (levels: ipsilesional/non-dominant, contralesional/dominant), and GROUP 

(levels: patients, controls) revealed a highly significant main effect of APPROACH (F (1, 26) 

= 173.969; P < 0.001). ASL-BOLD peak voxels had significantly higher statistical Z-values 

(11.8 ± 3.3) than ASL-CBF (4.2 ± 1.0) peak voxels. There was no significant main effect of 

HEMISPHERE or GROUP and no significant interaction (P > 0.05) indicating that statistical 

Z-values at individual ASL-CBF peak voxels were generally decreased, independent of the 

hemisphere or group investigated.  

 

4.3.3 Differences in fMRI and TMS positions 

Individual TMS hotspot positions were obtained from 15 stroke patients and 13 control 

subjects (n = 28). They were projected into MNI space by applying the individual nonlinear 

FNIRT registration transform. MNI coordinates of TMS hotspot positions were then 

compared with MNI coordinates of fMRI peak voxel coordinates by computing a repeated 

measures ANOVA (n = 28) with the factor APPROACH (levels: ASL-BOLD, ASL-CBF, 

TMS-hotspot) and GROUP (levels: patients, controls) for each hemisphere and dimension 

(MNI-coordinate X, Y, and Z).  

 

4.3.3.1 Analyses on differences in fMRI and TMS hotspot positions (n = 28) 

Mean MNI coordinates of ASL-CBF, ASL-BOLD, and TMS hotspots are given in Table 4.3 

and depicted in Figure 4.3. In lateral-medial direction (i.e. in MNI coordinate X), there was a 

significant main effect of APPROACH for both hemispheres (ipsilesional/non-dominant 

(IL/ND): F (2, 52) = 7.149, P = 0.002; contralesional/dominant (CL/D): F (2, 52) = 4.630, P = 

0.014). Post-hoc t-test revealed that TMS hotspot positions were significantly more lateral 

than ASL-CBF positions (IL/ND: P = 0.001, FDR-corrected; CL/D: P = 0.042, uncorrected) 

and ASL-BOLD positions (IL/ND: P = 0.007, FDR-corrected; CL/D: P = 0.005, FDR-

corrected). In anterior-posterior direction (i.e. in MNI coordinate Y), there was a highly 
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significant main effect of APPROACH for both hemispheres (IL/ND: F (2, 52) = 31.511, P < 

0.001; CL/D: F (2, 52) = 9.661, P < 0.001). Post-hoc t-test revealed that TMS hotspot 

positions were significantly more anterior than ASL-CBF positions (IL/ND and CL/D: P < 

0.001, FDR-corrected) and ASL-BOLD positions (IL/ND: P < 0.001, FDR-corrected; CL/D: 

P = 0.007, FDR-corrected). As TMS cannot differentiate between superficial and deep targets 

(due to the physical nature of the magnetic field induced by the TMS coil), analyses in 

inferior-superior direction (i.e. in MNI coordinate Z) were performed for fMRI approaches 

without TMS hotspot positions. There was a significant main effect of APPROACH for both 

hemispheres indicating that ASL-BOLD positions were significantly more superficial than 

ASL-CBF positions (IL/ND: F (1, 26) = 4.560, P = 0.042; CL/D: F (1, 26) = 4.302, P = 

0.048). There was no significant main effect of GROUP or significant APPROCH x GROUP 

interaction for any of the ANOVAs (P > 0.05). 

In summary, analyses on differences in ASL-BOLD, ASL-CBF, and TMS-hotspot positions 

in all 28 subjects indicated that TMS hotspot positions were significantly lateral and anterior 

of fMRI positions. ASL-BOLD positions were significantly more superficial than ASL-CBF 

positions. Findings were similar for both hemispheres and there were no significant 

differences between stroke patients and healthy subjects in ASL-BOLD, ASL-CBF, and 

TMS-hotspot positions. Results were comparable to results of Study I. 

 

Table 4.3: Study II: Mean fMRI and TMS positions in MNI space 

 

Hemisphere Approach Sample size X Y Z 

Contralesional/ 

dominant 

fMRI 
BOLD N = 28 -35.9 ± 6.0 -18.3 ± 8.0 58.9 ± 7.2 

CBF N = 28 -37.3 ± 5.1 -20.1 ± 6.3 55.7 ± 4.3 

TMS 
hotspot N = 28 -39.9 ± 4.1 -12.3 ± 8.9 57.8 ± 4.1* 

CoG N = 12 -35.8 ± 4.8 -5.3 ± 8.6 57.3 ± 4.4* 

Ipsilesional/ 

non-dom. 

fMRI 
BOLD N = 28 38.9 ± 5.1 -19.0 ± 5.9 58.6 ± 8.9 

CBF N = 28 38.0 ± 4.0 -17.8 ± 5.3 55.0 ± 6.8 

TMS 
hotspot N = 28 42.3 ± 4.5 -8.0 ± 7.7 57.2 ± 5.5* 

CoG N = 12 41.2 ± 3.9 -5.8 ± 7.3 57.2 ± 4.0* 

 

BOLD: blood oxygenation level dependent (fMRI signal type); CBF: cerebral blood flow (fMRI 

signal type); CoG: TMS centre-of-gravity; fMRI: functional magnetic resonance imaging; MNI: 

standard space of the Montreal Neurological Institute; non-dom.: non-dominant; TMS: transcranial 

magnetic stimulation; X: lateral-medial coordinate; Y: anterior-posterior coordinate; Z: inferior-

superior coordinate; * Position was projected onto the gyral surface (because TMS has no selectivity 

for a particular stimulation depth)  



 

100 

 

Study III: Prediction of TBS effects 

 



 

101 

 

Study III: Prediction of TBS effects 

Figure 4.3: Study II: Localization of the primary motor cortex with fMRI and TMS. Coloured 

ellipsoids indicate mean MNI coordinates (± SD) of functional magnetic resonance (fMRI) peak 

voxels and optimal transcranial magnetic stimulation (TMS) positions located within the precentral 

gyrus of the contralesional/dominant and ipsilesional/non-dominant hemisphere of stroke patients (n = 

15) and healthy controls (n = 13). Results of stroke patients and healthy controls were pooled since 

there were no significant differences between groups (ANOVA, P > 0.05). fMRI peak voxels were 

defined as voxel with highest statistical t-value during contralateral thumb abductions measured with 

ASL-BOLD (green) and ASL-CBF (blue). Hotspot coordinates refer to stimulation sites resulting in 

highest abductor pollicis brevis (APB) muscle responses when stimulated with TMS (orange). CoG 

coordinates were calculated from a TMS motor mapping, and reflect the motor evoked potential 

weighted maximum electric field coordinate (yellow). All coordinates were projected into the sagittal 

and axial plane corresponding to the mean coordinate acoss all positions. ASL-BOLD coordinates 

were significantly more superficial than ASL-CBF coordinates (repeated measures ANOVA, P < 

0.05). Hotspot and CoG coordinates were significantly more anterior and lateral than fMRI maxima 

(post-hoc t-tests, P < 0.05, FDR-corrected). The white arrow marks the central sulcus (CS). 

 

4.3.3.2 Analyses on differences in fMRI and TMS positions (n = 12) 

Overall 12 subjects (6 stroke patients and 6 control subjects) agreed to participate in a 

separate TMS session in which systematic motor mappings of the ipsilesional/non-dominant 

and contralesional/dominant motor cortex and surrounding tissue was performed. Individual 

TMS mapping derived CoG positions were projected into MNI space by applying the 

individual nonlinear FNIRT registration transform. MNI coordinates of TMS CoG positions 

were then compared with MNI coordinates of fMRI peak voxel coordinates and TMS hotspot 

positions by computing a repeated measures ANOVA (n = 12) with the factor APPROACH 

(levels: ASL-BOLD, ASL-CBF, TMS-hotspot, TMS-CoG) and GROUP (levels: patients, 

controls) for each hemisphere and dimension (MNI-coordinate X, Y, and Z).  

Mean MNI coordinates of TMS CoG positions are given in Table 4.3 and are depicted in 

Figure 4.3. In lateral-medial direction (i.e. in MNI coordinate X), there was no significant 

main effect or interaction (P > 0.05). In anterior-posterior direction (i.e. in MNI coordinate 

Y), there was a highly significant main effect of APPROACH for both hemispheres (IL/ND: 

F (3, 30) = 21.798, P < 0.001; CL/D: F (3, 30) = 24.604, P < 0.001). Post-hoc t-test revealed 

that both, TMS hotspots and TMS CoGs were significantly more anterior than ASL-BOLD 

and ASL-CBF positions (IL/ND and CL/D: P < 0.002, FDR-corrected). Analyses in inferior-

superior direction (i.e. in MNI coordinate Z) were not performed as TMS has no selectivity 

for a particular stimulation depth. No significant main effect of GROUP or significant 

APPROCH x GROUP interaction was found for any of the ANOVAs (P > 0.05). 

In summary, analyses on differences in ASL-BOLD, ASL-CBF, TMS-hotspot, and TMS- 

CoG positions in all 12 subjects, in whom a systematic TMS motor mapping was performed, 
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indicated that both TMS-hotspot and TMS-CoG positions are significantly more anterior than 

fMRI positions. Findings were similar for both hemispheres and there were no significant 

differences between stroke patients and healthy subjects in TMS-CoG positions. Results were 

similar to results of Study I. 

 

4.3.4 Euclidian distances between fMRI and TMS positions 

To test whether one of the fMRI techniques localizes neural activity significantly closer to the 

optimal TMS position, Euclidean distances between individual fMRI and TMS positions were 

calculated (Table 4.4). Two different approaches were pursued: (i) Euclidean distances 

between fMRI peak voxel positions and the TMS hotspot position (n = 28) and (ii) Euclidean 

distances between the centre-of-gravities (CoGs) of the fMRI activation clusters and the TMS 

mapping CoG (n = 12) were calculated. The CoG approach considers the spatial distribution 

of fMRI activity (and TMS excitability respectively) in the pericentral region. Hence, the 

CoG approach has been suggested to be less prone to artefacts (Classen et al., 1998). 

However, as a drawback, the CoG approach highly depends on the fMRI cluster size and 

hence on the statistical threshold applied (Duong et al., 2000). 

Euclidean distances were entered in repeated measures ANOVAs with the factors 

APPROACH (levels: ASL-BOLD, ASL-CBF) and GROUP (levels: patients, controls) for 

each hemisphere. There was no significant main effect or interaction for displacements 

between fMRI peak voxels and the TMS hotspot indicating that none of the fMRI techniques 

yielded peak activations significantly closer to the TMS hotspot (P > 0.05). 

For displacements between fMRI-CoGs and the TMS-CoG, there was a significant main 

effect of APPROACH for both hemispheres indicating that displacements were significantly 

larger for ASL-BOLD compared to ASL-CBF if the CoG approach was used (IL/ND: F (1, 

10) = 32.185, P < 0.001; CL/D: F (1, 10) = 18.294, P = 0.002). For the ipsilesional/non-

dominant hemisphere (but not for the contralesional/dominant) hemisphere there was a 

significant main effect of GROUP for displacements between fMRI-CoGs and the TMS-CoG 

(F (1, 10) = 8.432, P = 0.016). This finding indicates that stroke patients show significantly 

larger displacements between fMRI and TMS positions on the ipsilesional hemisphere (25.3 ± 

11.8 mm) compared to the non-dominant hemisphere of healthy subjects (18.0 ± 11.8 mm). 

However, there was no significant GROUP x APPROACH interaction, neither on the 

ipsilesional/non-dominant (IL/ND) nor on the contralesional/dominant (CL/D) hemisphere (P 

> 0.05).  
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In summary, if Euclidean distances between fMRI peak voxel positions and the TMS hotspot 

position (n = 28) were calculated, there was no statistical difference between fMRI 

techniques, suggesting that none of the fMRI techniques yielded peak activations significantly 

closer to the TMS hotspot. Findings were similar for both hemispheres and groups. If 

however, the CoG approach was used, displacements were overall larger for ASL-BOLD 

compared to ASL-CBF, but this was the case for both groups. Moreover, displacements were 

overall larger on the ipsilesional hemisphere of stroke patients (compared to the non-dominant 

hemisphere of healthy subjects), but this was the case for both fMRI techniques.  

 

Table 4.4: Study II: Euclidean distances between fMRI and TMS positions (single-subject space) 

Hemisphere Approach 
Sample size Euclidean distance 

[mm] 

Contralesional/ 

dominant 

fMRI peak voxel vs. 

TMS hotspot 

BOLD N = 28 13.2 ± 6.0 

CBF N = 28 12.6 ± 5.6 

fMRI CoG vs.           

TMS CoG 

BOLD N = 12 33.1 ± 13.8 

CBF N = 12 19.1 ± 8.4 

Ipsilesional/ 

non-dom. 

fMRI peak voxel vs. 

TMS hotspot 

BOLD N = 28 15.7 ± 5.8 

CBF N = 28 13.7 ± 5.8 

fMRI CoG vs.           

TMS CoG 

BOLD N = 12 29.2 ± 8.8 

CBF N = 12 14.2 ± 6.0 

 

BOLD: blood oxygenation level dependent (fMRI signal type); CBF: cerebral blood flow (fMRI 

signal type); CoG: TMS centre-of-gravity; fMRI: functional magnetic resonance imaging; MNI: 

standard space of the Montreal Neurological Institute; TMS: transcranial magnetic stimulation; X: 

lateral-medial coordinate; Y: anterior-posterior coordinate; Z: inferior-superior coordinate 

 

4.3.5 TMS of fMRI peak voxel with 120 % RMT 

Brain tissue at individual peak voxel coordinates was stimulated with neuronavigated single-

pulse suprathreshold TMS to investigate whether spatial differences between ASL-BOLD and 

ASL-CBF positions (in MNI coordinate Z, i.e. in depth) are functionally relevant, i.e. impact 

on MEP size of the respective peripheral target muscle (APB). A repeated measures ANOVA 

(n = 28) with the factors APPROACH (levels: ASL-BOLD, ASL-CBF) and GROUP (levels: 

patients, controls) was performed for each hemisphere. There was no significant main effect 

or interaction (P > 0.05) indicating that there was no significant difference between fMRI 

techniques in MEPs when stimulated with TMS. Hence, significant differences between fMRI 
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techniques in depth (i.e. in MNI coordinate Z) were not functionally relevant for TMS 

applications. 

 

4.3.6 Results of TMS motor mappings 

Results of TMS motor mappings can be seen in Figure 4.4 (healthy subjects) and Figure 4.5 

(stroke patients). There was considerably high inter-individual difference in cortical 

excitability maps in healthy subjects as well as stroke patients. As expected, most subjects 

showed highest excitability in the precentral gyrus (albeit not necessarily at the hand knob 

formation). In some subjects, highest excitability was found considerably more anterior than 

the precentral gyrus. However, this finding was not restricted to stroke patients (e.g. see 

stroke patient 04) but did also occur in healthy subjects (e.g. see healthy subject 06). 

Interestingly, some subjects showed unusual sites of highest excitability. For example stroke 

patient 01, showed highest muscle responses when the TMS coil was navigated to an anterior-

medial area, which might correspond to the pre-SMA. However, unusual sites of highest 

excitability were also found among healthy subjects. For instance, highest excitability was 

found on the postcentral gyrus of the dominant hemisphere in healthy subject 02. Futhermore, 

in healthy subject 03, highest excitability was likewise found over an anterior-medial area, 

which might correspond to the pre-SMA. 
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Figure 4.4: Study II: Results of TMS motor mappings of the non-dominant and the dominant motor 

cortex of six healthy subjects. The TMS coil was navigated to grid positions spaced at intervals of 5 

mm starting at the TMS motor hotspot position. Subsequent positions followed a helix around the 

hotspot position until no MEPs (peak-to-peak amplitude ≥ 50 µV) could be elicited at any outside 

margin of the map. This mapping procedure included the hand knob formation (Yousry et al., 1997) in 

all subjects. Seven stimuli (at 120% RMT; ISI = 1500 ms) were applied at each position. The TMS 

coil orientation was approximately perpendicular to the central sulcus (cf. white arrows in the lower 

corners). MEPs were recorded from the APB and a centre-of-gravity (CoG, the weighted average of 

excitability of the TMS motor map) was calculated. Positions refer to electric field maximum (EFmax) 

positions within the cerebral cortex calculated by computerized modelling. TMS identified positions 

(i.e. hotspot and CoG positions) were projected onto the cerebral surface. Coloured contours represent 

10 percentiles of the averaged maximal response of the APB muscle viewed from above. The 

background image is the subject‟s individual structural MRI scan showing the corresponding 

underlying cerebral anatomy. All fMRI and TMS positions (depicted as white symbols) were projected 

into the slice corresponding to the mean axial depth of all individual sites. (CS: central sulcus; HK: 

hand knob; PCS: precentral sulcus; SFS: superior frontal sulcus). 
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Figure 4.5: Study II: Results of TMS motor mappings of the ipsilesional and the contralesional motor 

cortex of six chronic stroke patients.  

 

4.4 Discussion Study II 

4.4.1 fMRI group analysis 

4.4.1.1 fMRI BOLD signal 

The fMRI group analysis on BOLD signal change demonstrated that stroke patients show 

enhanced BOLD signal in contralesional primary motor cortex (M1) during movements of the 

affected hand (but not during movements of the unaffected hand) compared to healthy 

controls. This finding is in line with previous studies reporting bilaterally enhanced fMRI 

BOLD signal in contralesional M1/S1, PMC, ipsilesional cerebellum, bilateral SMA and 

parietal cortex in stroke patients moving their affected hand compared to control subjects 

(Chollet et al., 1991; Cramer et al., 1997; Seitz et al., 1998, Ward et al., 2003b; Weiller et al., 

1992). The functional role of bilaterally enhanced fMRI signal is still not fully understood but 

some studies suggest that there is an inverse relationship between enhanced activation and 
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motor performance, i.e. patients with poorer outcome recruit more regions of the brain (often 

bilaterally) during movements of the affected hand than less severely affected patients (Ward 

et al., 2003b). Since SMA and PMC have projections to motoneurons in the spinal cord 

(Maier et al., 2002), it has been suggested that in patients in whom the cortico-motoneuronal 

input originating from M1 is lost or severely impaired, there is greater reliance on other 

parallel motor circuits to generate an alternative input to motoneurons of the spinal cord. This 

may result in increased task-related activation, however, since alternative projections are less 

numerous and exert a weaker excitatory effect than those from M1 (Maier et al., 2002), 

functional recovery is incomplete (Ward et al., 2003b). 

Previous studies discussed the possibility that bilaterally enhanced BOLD signal during 

movements of the affected hand might not exclusively be attributable to neuronal 

reorganization but may also relate to higher effort in stroke patients (Ward et al., 2003b). The 

fixed movement condition, in which patients (with impaired motor performance) were asked 

to perform the motor task with identical parameters (i.e. thumb abduction frequency) as 

healthy controls, was more effortful and cognitively complex for patients compared to 

controls. More effortful motor tasks are known to recruit a wider network of motor regions 

than simple motor tasks (Catalan et al., 1998). In order to control for the degree of effort 

involved in the thumb abduction task as much as possible, performance levels in the present 

study were maintained across all subjects (patients and controls) by asking subjects to 

perform at a percentage (66%) of their individual maximum thumb abduction frequency. 

Interestingly, stroke patients showed bilaterally enhanced BOLD signal during both, the fixed 

and the adjusted movement frequency condition compared to control subjects. These findings 

suggest that bilaterally enhanced BOLD signal during movements of the affected hand is not 

exclusively caused by increased effort in stroke patients.  

 

4.4.1.2 fMRI CBF signal 

Several studies demonstrated that ASL can be successfully used to assess task-related changes 

in CBF in healthy subjects (Diekhoff et al., 2010; Edelman et al., 1994; Talagala & Noll, 

1998; Ye et al., 1997; Yongbi et al., 2002). Although it has been demonstrated that good-

quality CBF images can be obtained from stroke patients at rest (Chalela, 2004; Detre at al., 

1998), so far no study has been published using ASL to assess task-related changes in CBF in 

stroke patients. Hence, the present study is the first study to demonstrate that meaningful 

movement-related changes in CBF can be obtained from chronic stroke patients by means of 
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ASL. By using perfusion MRI, we were able to narrow down the source of fMRI signal to 

small vessels and capillaries. Vascular abnormalities in stroke patients may result in reduced 

blood flow (due to artery occlusion or stenoses), which would result in reduced CBF signal 

(or even absence of CBF signal) due to prolonged transit times which might prevent that 

blood reaches the imaging slice in due time. However, we were able to find significant CBF 

signal changes in stroke patients. Additionally, significant CBF signal changes were 

exclusively located in primary motor cortex and premotor cortex (and nowhere else in the 

brain; Table 4.2, Figure 4.1), which make artefacts an unlikely cause. 

Interestingly, we were able to detect bilaterally organized fMRI activation in chronic stroke 

patients not only with BOLD but also with perfusion fMRI. The functional role of enhanced 

BOLD signal in the contralesional hemisphere has been discussed controversially (Butefisch 

et al., 2005; Fregni et al., 2006; Grefkes et al., 2008b, 2010; Johansen-Berg et al., 2002; Lotze 

et al., 2006; Murase et al., 2004; Ward et al., 2003b; for a detailed discussion see section 5.4.3 

and 5.4.4) and the opportunity that the increased signal might at least in part be attributable to 

vascular abnormalities (instead of altered neuronal activity) of in the contralesional 

hemisphere could not entirely be excluded. Our experiments imply that enhanced BOLD 

signal in the contralesional hemisphere does not exclusively originate from vascular artefacts 

around large vessels, since bilateral organization of neural activity was suggested by CBF 

(originating from brain parenchyma and capillaries) as well. Hence, our data support the view 

that increased fMRI signal in contralesional M1 reflects increased neuronal activity and is not 

simply caused by vascular artefacts. 

All peak activation clusters obtained by ASL-CBF were located either in the primary motor 

cortex (M1) or the central sulcus (CS). This finding is in agreement with previous studies 

demonstrating that CBF signal is well co-localized with neural activity (Duong et al., 2000; 

Luh et al., 2000; Silva et al., 1997; Tjandra et al., 2005). Interestingly, global peak activation 

obtained by BOLD was located in other brain areas (such as SMA); whereas local BOLD 

maxima in M1 featured lower statistical Z-values. Hence, CBF suggested highest movement-

related neuronal activity in M1, whereas BOLD suggested highest movement-related neural 

activity in SMA. However, it is difficult to make a clear statement about which fMRI 

techniques gives a more realistic image of neuronal processes, since it is not precisely known 

whether neuronal activity in M1 exceeds neuronal activity in SMA (or vice versa) during 

movement execution in humans.  
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4.4.2 Statistical Z-values at individual fMRI peak voxels 

BOLD activation clusters were larger due to considerably higher sensitivity of BOLD fMRI 

compared to perfusion fMRI. Statistical Z-values at ASL-BOLD peak voxels were 

significantly higher compared to statistical Z-values at ASL-CBF peak voxels. This finding is 

in line with previous reports of reduced sensitivity in perfusion fMRI (~ 1% signal change; 

Wintermark et al., 2005) compared to BOLD fMRI (up to 5% signal change; Detre & Wang, 

2002). 

 

4.4.3 Differences in fMRI and TMS positions 

Individual TMS hotspot positions were available for 15 stroke patients and 13 control subjects 

(n = 28). They were projected into MNI space by applying the individual nonlinear FNIRT 

registration transform. Analyses on differences in ASL-BOLD, ASL-CBF, and TMS-hotspot 

positions in all 28 subjects indicated that TMS hotspot positions are more lateral and anterior 

compared to fMRI positions and that ASL-BOLD positions are significantly closer to the 

gyral surface than ASL-CBF positions. Individual TMS CoG positions (derived from a 

systematic TMS motor mapping) were available from 12 subjects (6 stroke patients and 6 

control subjects). They were projected into MNI space by applying the individual nonlinear 

FNIRT registration transform. Analyses on differences in ASL-BOLD, ASL-CBF, TMS-

hotspot, and TMS-CoG positions in all 12 subjects, in whom a systematic TMS motor 

mapping was performed, indicated that TMS-hotspot and TMS-CoG positions were 

significantly anterior of fMRI positions. Similar findings were found in healthy young 

subjects in Study I. There were no significant differences between hemispheres or groups 

regarding ASL-BOLD, ASL-CBF, TMS-hotspot, and TMS-CoG positions in the present 

study. Hence, results suggest that functional reorganization in stroke patients did not lead to a 

systematic shift of fMRI or TMS positions in stroke patients compared to control subjects.  

In the acute phase after stroke, the TMS CoG (i.e. the amplitude weighted centre of the TMS 

excitability map) is usually within the normal range (Talelli et al., 2006). However, spatial 

shifts may occur later during recovery. They may range from several millimetres (Byrnes et 

al., 2001; Thickbroom et al., 2002) up to few centimetres (Bastings et al., 2002; Delvaux et 

al., 2003), which is well beyond the normal variation range of 2-3 mm in healthy subjects 

(Wassermann et al., 1996). However, in line with our findings, such spatial shifts may occur 

in different directions (Bastings et al., 2002; Byrnes et al., 2001; Delvaux et al., 2003; 
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Thickbroom et al., 2002), which might explain why we were not able to find a systematic 

shift over the group of patients. It has been suggested that the underlying cause of a spatial 

shift in CoG might be: (a) that the corticospinal projection of the muscle has been damaged 

more in one location than the other, and/or (b) unmasking of additional synaptic inputs to 

remaining corticospinal output regions (Talelli et al., 2006). Spatial shifts in TMS CoG occur 

in well-recovered patients (Byrnes et al., 2001), but do not necessarily relate to clinical 

recovery (Bastings et al., 2002). In the study of Thickbroom et al. (2004) greater map 

displacement was associated with better motor outcome (i.e. grip strength), but only in a 

subgroup of patients which showed normal corticospinal conduction in the subacute stage.  

 

4.4.4 Euclidian distances between fMRI and TMS positions 

To test whether one of the fMRI techniques localized neural activity significantly closer to 

optimal TMS positions, Euclidean distances between fMRI maxima and the TMS hotspot (n = 

28) as well as between fMRI-CoGs and the TMS-CoG (n = 12) were calculated. If fMRI 

maxima and the TMS hotspot were used for analysis, there was no significant difference 

between fMRI techniques, which suggests that none of the fMRI techniques yielded peak 

activations significantly closer to the TMS hotspot. This finding is in line with findings of 

Study I obtained in healthy young subjects. There were no significant differences between 

hemispheres or groups in the present study, suggesting that functional reorganization after 

stroke had no significant impact on the spatial congruence between fMRI and TMS. 

If however, fMRI-CoGs and the TMS-CoG (instead of peak coordinates) were used for 

analysis, ASL-CBF showed significantly shorter distances to the TMS-CoG than ASL-BOLD. 

This was not the case in Study I, which showed no significant difference between BOLD and 

CBF even if CoGs (instead of peak activations) were used. However, in the present study 

BOLD activation clusters were larger than BOLD activation clusters of healthy young 

subjects in Study I (although the same statistical threshold was used). Why BOLD activation 

clusters in the present study were larger than BOLD activation clusters in Study I is unclear 

but might be due to increased task difficulty due to the fixation device attached to the subjects 

hands (cf. 4.2.2). Although the device was useful to standardize movements across subjects, it 

might have induced additional effort (in order to perform the task “properly”). More 

demanding tasks have hoever been demonstrated to induce more widespread fMRI activations 

(Catalan et al., 1998). However, since BOLD activation clusters were so large, the CoG of 
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BOLD activation clusters showed a pronounced shift away from the local maximum at the 

hand knob formation in medial direction (i.e. towards the SMA where highest task-related 

BOLD signal changes were found in the majority of subjects). CBF activation clusters were 

much smaller than BOLD activation clusters (due to lower sensitivity) and hence CBF-CoGs 

showed only small spatial shifts away from the local maximum at the hand knob formation. 

However, more conservative statistical thresholds, which led to smaller BOLD activation 

clusters, could not be passed by CBF activation clusters. Hence, although analyses using the 

CoG approach suggested that ASL-CBF positions were significantly closer to the TMS-CoG 

than ASL-BOLD positions, this finding can be attributed to enlarged BOLD activation 

clusters. Due to independence from the statistical threshold applied, we have more confidence 

in analyses on peak activations (instead of CoGs), which unfortunately suggested no 

significant difference between fMRI signal types in distance to the TMS hotspot (neither in 

healthy subjects nor in stroke patients). 

Interestingly, stroke patients showed overall larger displacements on the ipsilesional (but not 

the contralesional) hemisphere compared to healthy controls. Reorganization processes after 

stroke may cause both, a spatial shift of highest fMRI signal and highest TMS excitability 

(Rossini et al., 1998). Our data seem to suggest that these processes might further decrease 

spatial congruence between fMRI and TMS in the ipsilesional hemisphere.  

  

4.4.5 TMS of fMRI peak voxel with 120 % RMT 

Although we found significant differences between BOLD and CBF positions, there were no 

significant differences in MEPs when tissue at fMRI positions was stimulated with 

neuronavigated single-pulse TMS. This finding indicates that spatial differences between 

fMRI signal types were not functionally relevant for TMS applications. This might be because 

CBF and BOLD positions differed from each other only in MNI coordinate Z (i.e. in depth) 

and TMS cannot differentiate between superficial and deep targets. There were no significant 

differences between hemispheres or groups and no significant interactions. 

 

4.4.6 Results of TMS motor mappings 

Mapping results were highly variable across individuals. However, high inter-individual 

variability and unusual sites of highest excitability were not restricted to stroke patients but 

did also occur in healthy subjects. This finding is in line with previous studies demonstrating 
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high inter-individual variance in TMS motor mapping results in healthy subjects (Classen et 

al., 1998; Diekhoff et al., 2011; Sparing et al., 2008; Wassermann et al., 1996) and stroke 

patients (Bastings et al., 2002; Byrnes et al., 2001; Delvaux et al., 2003; Thickbroom et al., 

2002). These resuts strongly suggest that unusual sites of highest TMS excitability (distant 

from the hand knob formation) are not necessarily caused by reorganization processes in 

stroke patients but may also be subject to technical issues such as distribution of the TMS 

induced electric field (EF). For instance a recent study of Opitz and colleagues (2011) 

demonstrated that EF strength is highest on gyral crowns and lips due to conductivity changes 

at tissue boundaries. Individual differences in grey matter and white matter anatomy may 

hence cause considerable differences in TMS mapping results (Opitz et al., 2011). 

 

4.4.7 Conclusions Study II 

The present study is the first study to demonstrate that meaningful movement-related changes 

in CBF signal (located in the primary motor cortex) can be obtained from chronic stroke 

patients. Enhanced fMRI signal in contralesional primary motor cortex (M1) during 

movements of the affected hand in stroke patients (compared to healthy subjects) was 

suggested by both, BOLD and CBF signal, which strongly suggests increased neuronal 

activity (and not vascular artefacts) as underlying cause. Highest movement-related CBF 

signal changes were located close to the anatomical motor hand area (Brodmann area 4) 

indicating high spatial specificity of CBF signal. In contrast, highest BOLD signal changes 

occurred close to the SMA. Similar to findings of Study I, obtained in healthy young subjects, 

highest BOLD signal changes occurred significantly closer to the cerebral surface than 

highest CBF signal changes. However, also in line with findings from Study I, this difference 

between fMRI techniques (in depth) did unfortunately not impact on distances to optimal 

TMS positions, which were considerably more anterior than fMRI positions. In line with this 

finding, muscle responses resulting from stimulation of brain tissue at peak voxel positions 

with TMS was not significantly different for CBF and BOLD positions, indicating that 

differences in cortical depth are not functionally relevant for TMS applications. Regarding 

Euclidean distances between fMRI and TMS positions, results of the present study (Study II) 

were comparable to results of Study I. Hence, findings suggest that neither in healthy young 

subjects nor in chronic stroke patients (or age-matched healthy controls), ASL-CBF localizes 

the motor hand area significantly closer to the TMS hotspot than ASL-BOLD. The only 
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significant group difference, which was found in the present study, suggested significantly 

larger displacements between fMRI and TMS positions on the ipsilesional hemisphere of 

stroke patients compared to the non-dominant hemisphere of healthy subjects. This finding 

might point towards decreased congruence between fMRI and TMS on the ipsilesional 

hemisphere. However, underlying mechanisms apparently affected both, CBF and BOLD 

signals to similar extend. 
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5 Study III: Prediction of TBS effects 

5.1 Introduction Study III 

The major aim of Study I & II was reduction of variability across studies by improving 

current strategies to identify the cortical target position for rTMS. The major aim of the 

present study (Study III) is to identify reliable predictors for effects of rTMS on motor 

performance of stroke patients to reduce variability across individual patients. 

Theta-burst stimulation (TBS) was recently introduced as new rTMS protocol, allowing 

modulation of cortical excitability outlasting the period of stimulation (Huang et al., 2005). 

TBS has several advantages over conventional so-called simple rTMS protocols: low 

stimulation intensities, robust and long-lasting effects, which appear to be more consistent 

across studies (Hoogendam et al., 2010), and short stimulation durations of only a 1-3 

minutes. TBS is thought to induce phenomena of synaptic plasticity such as LTP and LTD 

(Hoogendam et al., 2010), which renders TBS an interesting tool for neurorehabilitation. The 

pathomechanisms underlying stroke-induced motor deficits do not only depend on direct 

tissue damage due to ischemia, but may also comprise network disturbances remote from the 

primary stroke lesion (Feney & Baron, 1986; Grefkes & Fink, 2011; Honey & Sporns, 2008). 

The simplified model of hemispheric competition proposes relative hypoexcitability of the 

ipsilesional hemisphere and hyperexcitability of the contralesional hemisphere leading to 

pathologically increased inhibition from the contralesional hemisphere onto the ipsilesional 

hemisphere (Duque et al., 2005; Grefkes et al., 2008b, 2010; Murase et al., 2004). In line with 

the model of hemispheric competition, both increasing excitability of the ipsilesional 

hemisphere (Khedr et al., 2005; Talelli et al., 2007) as well as decreasing excitability of the 

contralesional hemisphere (Fregni et al., 2006; Di Lazzaro et al., 2008) by means of rTMS has 

been demonstrated to normalize cortical excitability towards levels observed in healthy 

subjects and/or to ameliorate motor performance of the paretic hand. Interestingly, and in line 

with the model of hemispheric competition, inhibitory 1 Hz rTMS applied to the 

contralesional hemisphere has been demonstrated to decrease pathologically enhanced 

interhemispheric inhibition targeting the ipsilesional hemisphere (Grefkes et al., 2010). 

Effects of a single rTMS session may last several minutes up to one hour, depending on the 

protocol applied (Huang et al. 2005; Hoogendam et al., 2010). Whether effects are 

sufficiently robust to be useful in clinical settings is currently under investigation. One of the 
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most challenging problems that need to be solved is considerably high inter-individual 

variance in rTMS induced effects, which has been reported for healthy subjects (Daskalakis et 

al., 2006; Van Der Werf & Paus, 2006; Müller-Dahlhaus et al., 2008) as well as stroke 

patients (Ameli et al., 2009). Furthermore, stroke patients may even show transient 

deteriorations of motor performance after rTMS interventions depending on the lesion 

location (Ameli et al., 2009). Hence, for the implementation of rTMS in stroke rehabilitation, 

it seems essential to identify reliable predictors for the therapeutic success of a specific rTMS 

intervention in a specific stroke patient. Factors which are likely to impact on rTMS induced 

effects are patient characteristics such as time since stroke, lesion location, clinical deficit, 

and the pathomechanism underlying stroke induced motor hand deficits. The pathomechanism 

underlying stroke induced motor hand deficits might be best reflected when taking a network 

perspective (Grefkes & Fink, 2011). It appears likely that the slightly oversimplified model of 

hemispheric competition does not uniformly apply to all stroke patients with motor deficits. It 

appears conceivable that the variety of lesions in stroke causes a variety of different 

functional pathologies impacting on the processes of movement planning, execution and 

feedback control. For example, patients with decreased effective connectivity among cortical 

motor areas of the ipsilesional hemisphere (Grefkes et al., 2008; Grefkes & Fink, 2009; 

Mintzopoulos et al., 2009; Sharma et al., 2009) might benefit more likely from facilitation of 

the ipsilesional hemisphere, whereas patients with pathologically enhanced inhibition from 

the contralesional primary motor cortex (M1) onto the ipsilesional M1 (Duque et al., 2005; 

Grefkes et al., 2008b, 2010; Murase et al. 2004) might benefit more likely from inhibition of 

the contralesional hemisphere. Reducing inter-individual variance and avoiding adverse 

effects appears crucial to for the implementation of rTMS in stroke rehabilitation. Hence, the 

aim of the present study was to identify reliable predictors for behavioural effects following 

facilitatory intermittent TBS (iTBS) applied to ipsilesional M1 and inhibitory continuous TBS 

(cTBS) applied to contralesional M1 (compared to control stimulation) in chronic stroke 

patients. We used a multimodal approach consisting of single-pulse and paired-pulse TMS 

parameters, movement-related fMRI signal in cortical motor areas, laterality of fMRI signal, 

and effective connectivity within the cortical motor network (assessed by means of dynamic 

causal modelling, DCM) to identify potential predictors for TBS effects.  
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5.2 Methods Study III 

5.2.1 Subjects 

13 stroke patients (62.8 ± 10.3 years old; 10 males) and 12 healthy control subjects (58.5 ± 

5.9 years old; 6 males) were investigated (Table 5.1). There were no significant differences 

between groups in age (two-sample t-test, P > 0.1) or gender (Pearson‟s chi-square test, P > 

0.1). Patients had right-sided (n = 10) or left-sided (n = 3) lesions due to first-ever cerebral 

ischemia. Lesions did not affect the M1 hand representation on the precentral gyrus nor any of 

the other cortical motor areas used for the DCM analysis (Figure 5.1). Patients were included 

in the study based on the following criteria: (i) stable unilateral hand motor deficit, (ii) insult 

at least 12 months ago (chronic stage), (iii) absence of aphasia, neglect, and apraxia, and (iv) 

absence of mirror movements of the unaffected hand during movements of the affected hand. 

Healthy control subjects were free of any history of medical or psychiatric disease. One 

subject in each group was left-handed according to the Edinburgh Handedness Inventory 

(EHI; Oldfield, 1971). Remaining subjects were right-handed (EHI was assessed for the time 

before stroke in patients). None of the subjects had any contraindication to TMS 

(Wassermann, 1998) and all subjects gave informed consent to participate in the study, which 

was approved by the ethics committee of the Medical Faculty, University of Cologne, 

Germany (file-no 09-108). All experiments conformed to the Declaration of Helsinki, sixth 

revision 2008. 
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Figure 5.1: Study III: Lesion locations. Individual high-resolution T1-weighted anatomical magnetic 

resonance (MR) images of 13 chronic stroke patients are shown at the axial depth of the ischaemic 

lesion (depicted in red colour). MR images of patients with left-sided lesions (Patient 08, 10, and 13) 

were flipped at the midsagittal plane (see methods section for details). Lesions were spatially 

normalized to the standard template of the Montreal Neurological Institute (MNI). The colour coded 

spatial overlap between lesions in MNI standard space can be seen in the lower right corner of the 

figure. 
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Table 5.1: Study III Demographical, clinical, and behavioural data 
Subject Age Sex Han-

ded-

ness 

Lesion 

side 

% 

CST  

Lesion 

size 

[cm³] 

 

Lesion 

age 

[m] 

mRS NIH

SS 

ARAT CIS Affected / non-dominant hand Unaffected / dominant hand Order of 

TBS 

protocols JTT 

[s] 

FT 

[Hz] 

GF 

[kPa] 

MIS 

cTBS 

MIS 

iTBS 

JTT 

[s] 

FT 

[Hz] 

GF 

[kPa] 

MIS 

cTBS 

MIS 

iTBS 

P 01 56 M R R 0.0 0.1 33 1 1 57 -1.01 30.7 4.8 111.0  0.51  0.61 27.5 5.4 119.0  1.37  0.85 I – C – Xi 

P 02 48 M R R 47.7 251.7 156 2 6 30 1.19 120.5 2.3 105.0 -0.46 -0.03 35.9 6.7 150.0  0.76 -0.19 C – Xc – I 

P 03 65 M R R 0.4 0.1 28 1 1 46 -0.68 64.8 3.3 76.7 -0.13  0.34 36.4 5.5 96.3 -1.18 -0.60 Xc – I – C 

P 04 70 M R R 2.9 3.0 100 3 7 24 2.01 158.2 1.5 16.0  0.11 -2.42 47.2 5.6 90.0 -0.72  0.04 C – Xc – I 

P 05 68 M R R 17.9 40.2 32 3 5 32 1.40 165.2 1.7 43.7 -0.50  0.02 39.5 5.4 113.7  0.64 -0.45 I – Xc – C 

P 06 65 M R R 0.0 1.3 22 2 3 50 0.03 68.5 3.5 42.7 -1.47 -0.98 47.3 4.5 70.7 -0.53 -1.71 Xi – I – C 

P 07 73 M L R 0.0 0.2 35 1 4 41 0.03 69.4 3.9 64.7  0.14  0.67 37.6 5.3 76.7  0.80  0.89 Xi – C – I 

P 08 75 M R L 0.0 0.4 43 1 2 57 -0.83 27.7 5.1 64.7  0.13  0.80 26.7 5.3 63.3 -0.83  0.16 Xi – C – I 

P 09 43 F R R 17.5 42.1 18 2 3 32 0.58 144.8 3.0 7.3  2.89  1.24 33.0 5.4 60.7  0.04 -0.14 C – Xi – I 

P 10 67 M R L 6.4 1.6 253 1 3 56 -0.61 34.0 4.2 64.7 -0.43 -0.45 32.9 5.1 77.3 -0.52 -1.35 I – Xi – C 

P 11 60 M R R 7.5 2.3 16 1 2 54 -0.74 46.5 2.9 71.7  0.08 -0.18 43.0 5.7 81.0 -0.21 -0.27 C – Xc – I 

P 12 52 F R R 7.6 26.7 12 1 1 57 -1.01 38.7 3.7 49.3 -0.70 -0.75 28.6 4.6 46.7 -1.42  0.63 I – Xi – C 

P 13 74 F R L 0.0 0.2 50 1 4 54 -0.37 41.1 3.1 21.3 -0.15  1.14 33.1 3.3 48.0  1.81  2.15 I – C – Xc 

Mean 62.8    8.3 28.4 61.4 1.5 3.2 45.4 0.0 77.7 3.3 56.8 0.0 0.0 36.1 5.2 84.1 0.0 0.0  

SD 10.3    13.4 68.9 70.1 0.8 1.9 12.1 1.0 51.0 1.1 31.4 1.0 1.0 6.8 0.8 29.7 1.0 1.0  

H 01 50 M R - - - - - - - - 22.2 5.9 95.0 - - 23.7 6.4 101.7 - - - 

H 02 66 M R - - - - - - - - 28.5 5.5 92.0 - - 28.6 5.8 104.3 - - - 

H 03 56 F R - - - - - - - - 26.9 5.3 40.0 - - 25.9 6.3 48.3 - - - 

H 04 66 M L - - - - - - - - 31.4 5.9 90.0 - - 27.2 5.5 82.3 - - - 

H 05 61 F R - - - - - - - - 33.7 5.1 59.7 - - 32.0 5.6 55.3 - - - 

H 06 64 M R - - - - - - - - 28.3 5.5 119.7 - - 32.5 5.0 102.3 - - - 

H 07 63 F R - - - - - - - - 25.2 6.0 74.0 - - 25.7 5.7 78.0 - - - 

H 08 56 M R - - - - - - - - 26.4 5.7 102.0 - - 26.7 6.4 97.3 - - - 

H 09 50 F R - - - - - - - - 27.2 5.9 66.7 - - 28.6 6.7 62.7 - - - 

H 10 53 F R - - - - - - - - 30.0 4.9 99.7 - - 27.5 5.5 102.7 - - - 

H 11 55 F R - - - - - - - - 29.1 5.1 49.7 - - 25.4 5.5 49.3 - - - 

H 12 62 M R - - - - - - - - 29.8 5.7 112.7 - - 28.6 6.1 107.7 - - - 

Mean 58.5           28.2 5.5 83.4   27.7 5.9 82.7    

SD 5.9           3.0 0.4 25.2   2.6 0.5 23.2    

% CST = percentage of the corticospinal tract (CST) which is affected by the lesion; ARAT = Action Research Arm Test; C = cTBS (inhibitory) applied to contralesional primary motor cortex; CIS 

= composite clinical impairment score; cTBS = continuous theta-burst stimulation; F = female; FT = maximum index finger tapping frequency; GF = maximum grip force; H = healthy control 

subject; I = iTBS (facilitatory) applied to ipsilesional primary motor cortex; iTBS = intermittent theta-burst stimulation; JTT = Jebsen Taylor hand function test; L = left; M = male; m = months; 

MIS = composite motor improvement score; mRS = modified Rankin Scale; NIHSS= National Institutes of Health stroke scale; P = stroke patient; R = right; SD = standard deviation; TBS = Theta-

burst stimulation; Xi = iTBS (facilitatory) applied to control stimulation site; Xc = cTBS (inhibitory) applied to control stimulation site 
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5.2.2 Clinical impairment score (CIS) 

We used three different scales to assess clinical impairment: (i) the modified Rankin scale 

(mRS), (ii) the National Institutes of Health Stroke Scale (NIHSS), and (iii) the Action 

Research Arm Test (ARAT). To compute a composite clinical impairment score, individual 

clinical scores were z-standardized using the following standard equation: 



xx
z

i

i


  

where 
i

x  is the patient‟s individual value, x the mean and  the standard deviation across the 

group of patients. Z-standardized values were entered as input variables into a factor analysis 

with principal component extraction (principal component analysis, PCA). The PCA yielded a 

one-factor solution explaining 86% of the variance of mRS, NIHSS, and ARAT scores. All 

variables loaded highly on this factor (mRS = 93%; NIHSS = 91%; ARAT = -95%). Factor 

values of were calculated for each patient and defined as clinical impairment score (CIS) 

reflecting stroke-induced clinical deficits. Negative CIS values reflect less impairment than 

the average across the group of patients (Table 5.1). 

 

5.2.3 Experimental design 

In this study, we implemented a blinded sham-controlled within-subject design in which all 

patients received three different theta-burst stimulation (TBS) interventions on three different 

days separated by at least one day (to avoid carry-over effects). Electrophysiological and 

behavioural parameters were probed for each hemisphere/hand before and after each TBS 

session. Functional magnetic resonance imaging (fMRI) experiments were conducted in 

patients as well as healthy control subjects on a separate day before TBS sessions. Motor 

performance and electrophysiological TMS parameters at baseline were assessed once in 

healthy controls and overall five times in stroke patients to ensure stable baseline values. 

Clinical scales were obtained from patients (the time course of experimental procedures is 

given in Figure 5.2). 
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Figure 5.2: Study III: Experimental design of Study III. We implemented a blinded sham-controlled 

within-subject design in which 13 chronic stroke patients received three different theta-burst 

stimulation (TBS) interventions on three different days separated by at least one day: (i) inhibitory 

continuous TBS over the contralesional hemisphere, (ii) facilitatory iTBS over the ipsilesional 

hemisphere, and (iii) either cTBS or iTBS over the midsagittal parietooccipital control stimulation site 

(to control for placebo effects). Electrophysiological and behavioural parameters were probed before 

and after each TBS session for each hemisphere/hand. Baseline measurements including a functional 

magnetic resonance imaging (fMRI) experiment were conducted in patients as well as 12 age-matched 

healthy control subjects on a separate day. (AMT: active motor threshold; ARAT: Action Research 

Arm Test; FT: maximum index finger tapping frequency; GF: maximum grip force; IHI: 

interhemispheric inhibition; JTT: Jebsen-Taylor Hand Function Test; M1: primary motor cortex; 
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MEPs: motor-evoked potentials; mRS: modified Rankin scale; NIHSS: National Institutes of Health 

Stroke Scale; RMT: resting motor threshold; SICI: short-interval intracortical inhibition) 

 

5.2.4 Theta-burst stimulation (TBS) interventions 

The following TBS paradigms were applied in stroke patients: (i) facilitatory intermittent 

theta-burst stimulation (iTBS) applied to the ipsilesional M1, (ii) inhibitory continuous theta-

burst stimulation (cTBS) applied to the contralesional M1, and (iii) control TBS applied to the 

midsagittal line half-way between vertex and protuberantia occipitalis externa (control TBS, 

Figure 5.2). Each TBS protocol comprised a total of 600 TMS pulses. The cTBS protocol 

consisted of 200 bursts (one burst refers to 3 pulses given at a frequency of 50 Hz) which 

were applied continuously at 5 Hz for 40 s. The iTBS protocol consisted of 10 bursts at 5 Hz 

applied every 10 s. Huang et al. (2005) demonstrated that iTBS may significantly increase 

motor cortex excitability for about 15 min, whereas cTBS may significantly suppress motor 

cortex excitability for nearly 60 min. The control stimulation was implemented to control for 

placebo effects and was either cTBS (n = 7 patients) or iTBS (n = 6 patients). Patients were 

randomly assigned to the cTBS or iTBS control stimulation group and the order of the three 

TBS interventions was pseudo-randomized across patients (Table 5.1). TBS was performed 

using a Magstim Super Rapid² stimulator connected to a standard 70 mm figure-of-eight TMS 

coil (Magstim, Whitland, U.K.) which was held tangentially to the scalp. The handle of the 

TMS coil was pointing posterior and approximately 45° away from the midsagittal line during 

iTBS and cTBS applied to M1 (i.e. verum TBS). Hence, the TMS-induced electric current in 

the brain was approximately perpendicular to the central sulcus which has been demonstrated 

to be optimal for excitation of motor neurons (Mills et al., 1992). During control stimulation, 

the handle of the TMS coil was pointing anterior and parallel to the midsagittal line. The 

stimulation intensity was defined in relation to the active motor threshold (AMT) and was 

identical for verum and control stimulation (i.e. 80% AMT). Hence, the control stimulation 

yielded similar tactile and auditory stimulation as the verum stimulation without stimulating 

motor areas. The AMT was determined at the motor hotspot position of the hemisphere to be 

stimulated. For control TBS, the AMT of the ipsilesional hemisphere was used (which is 

usually higher than the AMT of the contralesional hemisphere; Traversa et al., 2000). Since it 

has been suggested that muscle contraction before stimulation may reverse TBS effects 

(Gentner at al., 2008; Iezzi et al., 2008), the AMT was identified at least 10 min before TBS. 

Moreover, subjects were instructed to avoid any muscle contraction during TBS, which has 
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been suggested to abolish TBS effects (Huang et al., 2008), and until 5 min after TBS, which 

has been shown to increase facilitatory after-effects of iTBS but reverses after-effects of cTBS 

into facilitation (Huang et al., 2008). Muscle relaxation was monitored by online 

electromyography (EMG) recordings from the peripheral target muscle (i.e. the first dorsal 

interosseous (FDI) muscle). 

 

5.2.5 TBS effects 

TBS-induced effects outlasting the application period were probed on two different levels, i.e. 

on the behavioural level and on the electrophysiological level. Electrophysiological changes 

were assessed 5-25 min, and behavioural measurements 25-35 min after application of TBS. 

Note that in the study of Huang and colleagues (2005) reaction times were found to be 

significantly decreased 30 min after TBS. 

 

5.2.5.1 Behavioural TBS effects 

5.2.5.1.1 Motor tasks 

Motor performances of the affected and the unaffected hand of stroke patients were assessed 

five times at baseline and after each of the three TBS sessions. Motor performance of healthy 

control subjects was obtained once at baseline. We implemented three different motor tasks to 

assess different aspects of motor performance: (i) grip force (GF) measurements, (ii) 

maximum index finger tapping (FT) frequency, and (iii) the Jebsen-Taylor Hand Function 

Test (JTT). Grip force (in kPa) was measured with a vigorimeter (Martin, Tuttlingen, 

Germany) in three consecutive trials. The mean across trials was calculated and used for 

further analyses. Subjects were asked to perform index finger tappings with maximum 

frequency on a computer keyboard. Mean index finger tapping frequencies (in Hz) across five 

consecutive blocks of 10 s were calculated and used for further analyses. The Jebsen Taylor 

Hand Function Test (JTT), mimicking object manipulations of everyday life, was 

implemented with the following six subtests: (1) turning cards, (2) picking up small objects, 

(3) spooning kidney beans, (4) stacking checkers, (5) picking up large light objects, and (6) 

picking up large heavy objects. The time needed to accomplish each subtest was taken with a 

millisecond precise stopwatch. A time frame of 30 s was given to accomplish each subtest 

(Jebsen et al., 1969). Some of the more severely impaired patients were not able to perform 
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all of the six subtests: Patient 04 was not able to perform subtest 2 and 3, Patient 05 was not 

able to perform subtest 3, and Patient 09 was not able to perform subtest 4. We performed 

outlier analyses on the five baseline measurements of stroke patients to ensure stable baseline 

values. Subtests were considered to contain severe outliers if the statistical variance exceeded 

the statistical mean value, i.e. if σ²/x > 1 (where σ² is the variance and x is the subject‟s mean 

across baselines). Subtests with such high variance were regarded as unstable and were 

discarded from further analyses in the respective patient. This criterion was only exceeded for 

the affected hand and only in Patient 02 in subtests 2 and 4, in Patient 04 and Patient 07 in 

subtest 4, and in Patient 09 in subtest 2. Overall, a total of not more than 4.3% of JTT subtests 

was unavailable (1.9% due to inability to perform and 2.4% due to unstable performances). 

The time needed to accomplish all subtests with stable baselines was added up and used for 

further analyses. 

 

5.2.5.1.2 Motor improvement score (MIS)  

To investigate improvements in motor performance after verum compared to control TBS, a 

composite motor improvement score was calculated based on improvements in JTT, FT, and 

GF. Overall, four motor improvement scores were calculated for each patient: one for each 

hand (affected, unaffected) and verum TBS protocol (iTBS applied to ipsilesional M1, cTBS 

applied to contralesional M1). As a first step, improvements after each TBS session were 

expressed in percentage terms for each patient, hand, and motor task using the following 

formula:  

%100
)(





pre

postpre
x  

where pre is the measured value before and post the measured value after TBS. Secondly, 

behavioural changes after verum TBS in relation to control TBS were calculated by 

subtracting the behavioural changes following control TBS (in percent) from behavioural 

changes following verum TBS (in percent). This was again performed for each patient, hand, 

and motor task. Finally, improvements after verum versus control TBS were z-standardized 

(cf. 5.2.2). Z-standardized values were entered as variables into factor analyses with principal 

component extraction (principal component analysis, PCA). Each PCA yielded a one-factor 

solution explaining 65-67% of the variance of changes in JTT, FT, and GF. All variables 

loaded positively on this factor (59-97%). Factor values were calculated for each patient and 

defined as motor improvement score (MIS) reflecting changes in general motor performance 
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following verum TBS compared to control TBS. Negative values reflect less improvement 

than the average across the group of patients (Table 5.1). 

 

5.2.5.2 Electrophysiological TBS effects 

Electrophysiological TBS effects were investigated using single-pulse and paired-pulse 

transcranial magnetic stimulation (TMS). Two parameters were obtained from both 

hemispheres before and after each TBS session: (i) motor-evoked potentials (MEPs) elicited 

by single-pulse supra-threshold TMS (reflecting excitability of the corticospinal motor 

system) and (ii) interhemispheric inhibition (IHI) between both motor hand representations 

probed by paired-pulse supra-threshold TMS. Additional TMS protocols were used to obtain 

electrophysiological parameters at baseline (as potential predictors for therapeutic TBS 

effects; see section 5.2.6 below).  

 

5.2.6 Investigation of electrophysiological TMS parameters at baseline 

Several electrophysiological (TMS) parameters were obtained at baseline and correlated with 

motor improvement scores (MIS) to investigate their predictive potential regarding 

therapeutic TBS effects in chronic stroke patients. The following electrophysiological TMS 

parameters were obtained from both hemispheres at baseline: (i) the resting motor threshold 

(RMT), (ii) the active motor threshold (AMT), (iii) the 1 mV motor threshold (1mV-MT), (iv) 

short-interval intracortical inhibition (SICI), and (v) interhemispheric inhibition (IHI). 

 

5.2.6.1 TMS Apparatus 

All electrophysiological TMS parameters were assessed with stereotaxic frameless 

neuronavigation by means of the eXimia NBS system version 3.2.1 (Nexstim, Helsinki, 

Finland). As the TMS stimulator of the eXimia NBS system cannot be used to apply TBS, the 

SuperRapid TMS stimulator (Magstim, Whitland, United Kingdom) was used for this 

purpose. Since assessment of IHI requires the simultaneous use of two TMS coils, and only 

one TMS coil at a time can be connected to the neuronavigated system, both TMS devices 

(Nexstim and Magstim) were used for assessment of IHI. A standard monophasic figure-of-

eight coil (allowing application of paired-pulses via a single TMS coil) was used to measure 

SICI, whereas a standard biphasic figure-of-eight coil (allowing higher stimulation intensities) 
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was used for all other measurements (both TMS coils: Nexstim, Helsinki, Finland). A 

standard figure-of-eight TMS coil (Magstim, Whitland, United Kingdom) was connected to 

the Magstim stimulator. Prior to the study, all TMS coils were x-rayed. Displacements 

between central positions of the outer plastic case and the inner copper wings occurred solely 

in anterior-posterior direction and did not exceed 1 mm for any of the TMS coils. The 

neuronavigation software allows tracking of one TMS coil at a time. However, it can 

additionally track a digitization pen which is usually used for anatomical co-registration. We 

attached the digitization pen to the handle of the Magstim TMS coil by an in-house built 

fixation device which allowed maintaining tilting of the coil precisely during assessment of 

IHI. The correct anterior-posterior and lateral-medial positioning of the Magstim coil was 

maintained by a mark on the subjects head.  

 

5.2.6.2 Electromyography (EMG) apparatus 

Electromyography (EMG) signals were recorded by Ag/AgCl surface electrodes (Tyco 

Healthcare, Neustadt, Germany) placed in a belly-tendon montage over the left and right first 

dorsal interosseous (FDI) muscle. The EMG signal was amplified, filtered with a 0.5 Hz high 

pass filter and digitized using a ML856 PowerLab 26T Myograph and the “LabChart” 

software package version 6.0 (ADInstruments Ltd, Dunedin, New Zealand). 

 

5.2.6.3 Anatomical co-registration 

Subjects were comfortably seated in an adjustable armchair with head-rest. The head of the 

subject was spatially co-registered with the individual high-resolution anatomical MR image 

via anatomical landmarks (i.e. nasion and crus helicis of the ears). The root mean square 

difference between positions of landmarks in the MRI volume and at the subjects head was 

not more than 3 mm for any TMS session of the present study (information provided by the 

neuronavigation software).  

 

5.2.6.4 TMS parameters at baseline 

5.2.6.4.1 Motor hotspot and motor thresholds 

After anatomical co-registration, the motor hotspot, i.e. the coil position providing highest 

MEPs of the contralateral FDI muscle during single-pulse supra-threshold TMS was 
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identified for each hemisphere. All electrophysiological TMS parameters were assessed at this 

hotspot position by means of an “aiming tool” implemented in the neuronavigation software 

which allows maintaining a certain coil position precisely. Overall, three motor thresholds 

were assessed: (i) RMT, (ii) AMT, and (iii) 1mV-MT. The RMT was defined as the minimum 

TMS stimulator output intensity required to produce an MEP (peak-to-peak amplitude ≥ 50 

µV) in at least 5 out of 10 consecutive trials in the contralateral FDI muscle at rest (Rossini et 

al., 1994). The AMT was defined as the minimum TMS stimulator output intensity required 

to produce an MEP (peak-to-peak amplitude ≥ 200 µV) in at least 5 out of 10 consecutive 

trials from the contralateral FDI muscle while the subject was maintaining tonic voluntary 

contraction of 20 ± 5 % of maximum (Rossini et al., 1994). For this purpose, a hand 

dynamometer (ADInstruments, Ltd, Dunedin, New Zealand; Product Code: MLT003) was 

placed between the subject‟s thumb and index finger and the subject‟s individual maximum 

force was used to calibrate the signal allowing online visual feedback of the force applied on a 

screen in front of the subject. The 1mV-MT was defined as the TMS stimulator output 

intensity best suited to produce MEPs with peak-to-peak amplitudes close to 1 mV in the 

contralateral FDI muscle at rest.  

 

5.2.6.4.2 Motor-evoked potentials (MEP) 

Fifteen MEPs elicited by single-pulse TMS (inter-stimulus interval (ISI) = 7s) were recorded 

from the contralateral FDI at rest (i) at baseline and (ii) 5-15 min after TBS with similar 

stimulator output intensities determined at baseline (i.e. 100% 1mV-MT at baseline).  

 

5.2.6.4.3 Short-interval intracortical inhibition (SICI)  

SICI is a robust paired-pulse paradigm reflecting GABAA-mediated intracortical inhibition 

within the primary motor cortex of one hemisphere (Kujirai et al., 1993; Ziemann 2004; cf. 

1.4.3.1.1). In this protocol, a supra-threshold test stimulus (TS) is suppressed if a sub-

threshold conditioning stimulus (CS) is applied 1-5 ms before the TS via the same TMS coil. 

The following parameters were applied: CS intensity: 80% AMT, TS intensity: 100% 1mV-

MT, 2 ms interval between CS and TS, 7s interval between trials. Ten trials with single (TS) 

pulses and ten trials with paired (CS+TS) pulses were recorded in alternating order.  
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5.2.6.4.4 Interhemispheric inhibition (IHI) 

IHI is a robust paired-pulse paradigm reflecting the primarily transcallosally mediated 

interhemispheric inhibition between the primary motor cortex of one hemisphere and the 

primary motor cortex of the contralateral hemisphere (Ferbert et al., 1992; cf. 1.4.3.2.1). In 

this protocol, the supra-threshold TS is suppressed if a supra-threshold CS is applied 7-50 ms 

before the TS on the contralateral hemisphere. Due to spatial restrictions resulting from the 

size of the two TMS coils we decided to apply TMS with the handle of the TMS coils 

pointing laterally (i.e. 90° away from the midline) which resulted in an electric field in medial 

direction induced in the brain tissue. The motor hotspot position and 1mV-MT was re-

evaluated for each hemisphere with lateral-medial coil position. Chen et al. (2003) 

demonstrated that induced current direction of the CS does not impact on IHI if supra-

threshold intensities are applied as in the present study. The following parameters were 

applied for IHI: CS and TS intensity: 1mV-MT of the respective hemisphere, interval between 

CS and TS: 10 ms, interval between trials: 7s. Ten trials with single (TS) pulses and ten trials 

with paired (CS+TS) pulses were recorded in alternating order for each direction (i.e. IHI 

from the ipsilesional onto the contralesional hemisphere and IHI from the contralesional onto 

the ipsilesional hemisphere).  

 

5.2.6.4.5 Data analysis SICI and IHI 

SICI and IHI were expressed as mean peak-to-peak amplitude in conditioned double pulse 

trials (CS+TS = 100%) relative to mean peak-to-peak amplitude of unconditioned single pulse 

trials (TS) recorded from the contralateral FDI at rest(CS: conditioning stimulus; TS: Test 

stimulus):  

SICI / IHI = ((TS – (CS+TS))/TS) *100% 

 

 

5.2.7 Functional magnetic resonance imaging (fMRI) at baseline 

5.2.7.1 fMRI motor paradigm 

We implemented a block design in which subjects were asked to perform visually paced 

rhythmic fist closures with their affected hand (corresponding to the non-dominant hand of 

healthy subjects) and their unaffected hand (corresponding to the dominant hand of healthy 
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subjects). Subjects were instructed to press MR compatible response grips positioned between 

proximal parts of the thumb and index finger. This experimental setup specifically facilitated 

movements of the FDI, which was used as target muscle for TMS. The software 

„„Presentation‟‟ (Version 9.9, Neurobehavioral Systems, Inc., CA, 

www.neurobehavioralsystems.com) was used for visual stimulus presentation and movement 

recordings. Fist closures were performed at two different movement frequencies: (i) a fixed 

frequency of 0.8 Hz and (ii) a frequency individually adjusted to performance of the hand 

(40% of the maximum frequency). The fixed frequency condition was implemented to 

compare neural activity (between groups or hands) with similar absolute number of fist 

closures in one movement block resulting in, e.g., similar amount of re-afferent signal 

whereas the adjusted frequency condition was implemented to compare neural activity 

(between groups or hands) during movements with similar degree of difficulty (but different 

absolute number of fist closures). The maximum fist closure frequency of each hand was 

determined immediately before scanning when subjects resided in their final position for the 

experiment. Subjects were instructed to open and close their hand as fast as possible as soon 

as a “go” signal appeared until a “stop” signal was presented (after 10s) on a shielded thin-

film transistor (TFT) screen at the rear end of the MR scanner. The procedure was repeated 

consecutively three times for each hand and the mean across three blocks was used as 

maximum movement frequency. The movement frequency was paced by a red blinking circle 

on white background presented on the same TFT screen which was visible via a mirror 

mounted on the MR head coil. Blocks of hand movements (15 s) were separated by resting 

baselines (13 s plus 0-1.5 s jitter) in which a black screen instructed the subjects to rest still 

until instructions were displayed for 1.5 s indicating which hand to move in the subsequent 

movement block. The order of conditions was pseudo-randomized and counterbalanced 

across the experiment which overall lasted about 18 min. Subjects were trained outside and 

again inside the scanner until they had reached stable performances (monitored by visual 

inspection). During the experiment, motor performance was monitored by an MR compatible 

camera in the scanner room. 

 

5.2.7.2 fMRI data acquisition 

MR images were acquired on a 3 Tesla Siemens MAGNETOM TimTrio scanner (Siemens, 

Erlangen, Germany). High-resolution anatomical T1-weighted images were acquired using 

the following imaging parameters: TR = 2000 ms, TE = 3.25 ms, FOV = 256 mm, 176 sagittal 
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slices, slice thickness = 1 mm, distance factor = 50%, in-plane resolution = 1 x 1 mm
2
, flip 

angle = 9°. In order to screen for brain lesions not visible on T1-weighted images and for 

precise anatomical co-registration in further analysis, high-resolution anatomical T2-weighted 

images were acquired using the following imaging parameters: TR = 5500 ms, TE = 113 ms, 

FOV = 220 mm, 48 axial slices, slice thickness = 2 mm, DF = 30%, in-plane resolution = 0.7 

x 0.7 mm
2
, flip angle = 90°. For functional imaging a Gradient-Echo blood oxygenation level 

dependent (GRE-BOLD) EPI sequence with the following parameters was implemented: TR 

= 2070 ms, TE = 30 ms, FOV = 200 mm, 31 axial slices, slice thickness = 3.1 mm, in-plane 

resolution = 3.1 x 3.1 mm
2
, distance factor = 20 %, flip angle = 90°. Slices covered the brain 

from the vertex to lower parts of the cerebellum. Each fMRI session consisted of 537 EPI 

volumes preceded by three dummy scans ensuring a steady-state in tissue contrast.  

 

5.2.7.3 fMRI data analysis 

5.2.7.3.1 Preprocessing 

Functional MRI data were analyzed using statistical parametric mapping (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/). Dummy scans were discarded from further analyses. EPIs 

from patients with left-sided lesions (n = 3) were mirrored at the midsagittal plane. To 

account for possible confounds araising from laterality effects, EPIs of three healthy subjects 

were likewise mirrored at the midsagittal plane. The “art_slice” tool, part of the SPM Artefact 

Repair toolbox (ArtRepair, http://cibsr.stanford.edu/tools/ArtRepair/ ArtRepair.htm), was 

used to detect and repair outlier slices (the default threshold was applied to all subjects and 

resulted in well-tolerable 6.1% of slices being repaired). After spatial realignment of EPI 

volumes “art_global” was used to detect outlier volumes which either differed considerably in 

global intensity (i.e. variation in global intensity > 1.3%) or exhibited high scan-to-scan 

motion (i.e. scan-to-scan motion > 0.5 mm/TR) due to head movements. Outlier volumes 

were repaired by interpolation between the nearest non-repaired scans. In two patients and 

one healthy subject the default threshold had to be slightly increased (to 1.0 mm/TR) to 

prevent excessive data loss (resulting in well-tolerable 5.7% of volumes being repaired). To 

ensure good spatial co-registration with the anatomical T1 image, EPI volumes were first co-

registered with the brain-extracted anatomical T2 image (which resembles EPI volumes in 

MR contrast) before applying the transformation matrix from brain-extracted T2 images to the 

brain-extracted T1 images. Lesion masks were created based on anatomical T1 images using 
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MRIcron (http://www.cabiatl.com/mricro/mricron/). EPIs were spatially normalized to the 

standard template of the Montreal Neurological Institute (MNI152_T1_2mm) with masked 

lesions and spatially smoothed with an isotropic Gaussian kernel of 8 mm full-width at half-

maximum to compensate for residual variability across subjects after spatial normalization. 

 

5.2.7.3.2 Statistical analysis 

For first-level analyses, box-car vectors for each of the four conditions (two for each 

movement frequency and hand) were convolved with the canonical hemodynamic response 

function in the framework of a general linear model (GLM). A high-pass filter of 1/300 s (i.e. 

slightly longer than the maximum interval between two blocks of the same condition) was 

applied to remove low-frequency drifts in MR signal.  

 

5.2.7.4 Region-of-interest (ROI) analysis 

We conducted region-of-interest (ROI) analyses to investigate whether fMRI BOLD signal in 

motor areas predicted behavioural TBS effects. For this purpose, the first eigenvariate from 

the time series of voxels surrounding the individual local maximum (in an 8 mm diameter 

sphere) was extracted from the first-level GLM analysis using the SPM toolbox “MarsBaR” 

(http://marsbar.sourceforge.net/). This procedure was performed for all four conditions and 

three motor areas per hemisphere, i.e. the primary motor cortex (M1), the ventral premotor 

cortex (vPMC), and the supplementary motor area (SMA).  

 

5.2.7.5 Laterality index (LI) 

To investigate whether laterality of fMRI BOLD signal predicted behavioural response to 

TBS, we calculated an laterality index (LI) which was first introduced by Cramer et al. (1997) 

and later used by several stroke fMRI studies as a measure of lateralization of fMRI signal 

(Carey et al., 2002; Johansen-Berg et al. 2002; Marshall et al., 2000). LI was calculated using 

the following formula: 

ILCL

ILCL
LI




  
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where CL (contralesional) is the number of significantly activated voxels in Brodmann Area 

(BA) 4 and BA6 of the contralesional/dominant hemisphere and IL (ipsilesional) is the 

number of voxels in BA4 and BA6 of the ipsilesional/non-dominant hemisphere passing a 

threshold of P < 0.001 (uncorrected). BA4 and BA6 were defined by means of the human 

post-mortem cytoarchitectonic probability atlas provided by the SPM “Anatomy” toolbox 

(Eickhoff et al., 2005, 2007; http://www.fz-juelich.de/inm/inm-1/spm_anatomy_toolbox). 

Positive LI values indicate that the fMRI activation pattern is lateralized towards the 

contralesional/dominant hemisphere, whereas negative LI values indicate an fMRI activation 

pattern lateralized towards the ipsilesional/non-dominant hemisphere, and LI values close to 

zero indicates absence of lateralization. LIs were calculated for each subject and condition 

based on individual first-level analyses. 

 

5.2.7.6 Dynamic Causal Modelling (DCM) 

DCM is a hypotheses-driven approach to model effective connectivity between distinct brain 

regions, and relies on neurobiologically plausible a priori assumptions regarding hypotheses 

on relevant brain regions, connections, and context dependent modulations thereof (Friston et 

al., 2003; cf. 1.6). We performed analyses on core regions of the motor system activated by 

the fist closure task, namely the primary motor cortex (M1), the ventral premotor cortex 

(vPMC), and the supplementary motor area (SMA) as well as the striatal and extrastriatal 

primary visual cortex (V1, as major input region since fist closures were paced by visual cues) 

bilaterally. BOLD time series were extracted for each of these eight ROIs in first-level fMRI 

analyses (sphere 8 mm in diameter around the individual activation maximum; see section 

Region-of-interest (ROI) analysis and Table 5.2). ROIs did not overlap with each other nor 

did they overlap with stroke lesions. Stroke lesions did also not directly interrupt connections 

between ROIs as inferred from T1-weighted images. We first used the fMRI group analysis to 

define group coordinates (separately for patients and controls) for each region in MNI space. 

These group coordinates were then used as starting positions for the search of the closest local 

maximum in the individual SPM map meeting the a priori defined anatomical constraints. The 

following anatomical landmarks were used: (i) M1: in the rostral wall of the central sulcus at 

the “hand knob” formation (Yousry et al., 1997), (ii) SMA: in the medial wall of the 

interhemispheric fissure between the paracentral lobule (posterior margin), the coronal plane 

cutting the anterior commissure (y-coordinates < 0, anterior margin), and the cingulate sulcus 

(inferior margin, Picard & Strick 2001), (iii) vPMC: close to the inferior precentral gyrus and 
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pars opercularis (Rizzolatti et al., 2002). Invasive tracer studies in macaque monkeys 

demonstrated that homotopic as well as heterotopic connections between M1, SMA, and PMC 

exist (McGuire et al., 1991; Rouiller at al., 1994). As we assumed that these connections exist 

in humans as well, they represent the most likely anatomical (i.e. endogenous) connectivity 

model (Figure 5.3, upper left corner). Aside from endogenous (i.e. task-independent) 

coupling, we also investigated how effective connectivity within the network was modulated 

by fist closures with different movement frequencies. These “task-dependent” modulations do 

not necessarily impact on all endogenous connections. We therefore constructed 36 different 

connectivity models (Figure 5.3–5.5) reflecting biologically plausible hypotheses on 

interregional coupling.  
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Table 5.2: Study III: Peak voxel coordinates used for region-of-interest (ROI) analyses and dynamic causal modelling (DCM) 

Subject 
V1 left V1 right SMA left SMA right vPMC left vPMC right M1 left M1 right 

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z 

P 01 -14 -100 2 16 -98 -8 -4 -4 74 4 -6 66 -56 0 42 60 0 42 -48 -22 58 36 -24 58 

P 02 -16 -100 -10 16 -98 -14 -4 -2 62 6 -8 68 -52 -4 32 52 2 40 -30 -32 60 38 -32 58 

P 03 -16 -100 -8 14 -96 -12 -4 2 56 4 -2 60 -52 -8 50 54 -2 46 -38 -22 60 34 -30 70 

P 04 -22 -96 4 14 -84 -14 -6 -18 50 10 -6 68 -58 -10 38 58 -6 44 -44 -30 58 36 -28 48 

P 05 -30 -92 2 34 -82 0 -6 -12 56 4 -2 74 -54 4 42 62 6 24 -36 -20 66 32 -22 72 

P 06 -10 -96 -16 10 -90 -14 -4 -4 62 6 -14 62 -52 -2 34 56 0 34 -42 -32 56 36 -30 58 

P 07 -24 -98 2 34 -90 2 -10 -4 66 4 0 68 -62 8 42 58 2 40 -46 -22 60 44 -20 70 

P 08 -20 -96 10 28 -92 0 -12 -2 58 4 -10 62 -48 -2 36 58 4 44 -42 -32 58 36 -26 62 

P 09 -12 -102 -2 22 -84 -8 -8 -12 58 4 -8 60 -56 0 38 40 20 36 -44 -28 66 36 -18 68 

P 10 -22 -94 -2 20 -96 6 -4 -18 70 6 -16 58 -52 -12 46 56 2 40 -36 -34 58 34 -36 50 

P 11 -22 -102 4 28 -94 0 -4 -12 64 6 -10 58 -60 6 32 58 6 34 -42 -34 64 40 -34 64 

P 12 -18 -98 4 10 -96 2 -8 -8 64 4 -6 66 -44 8 34 60 2 36 -36 -32 74 40 -26 70 

P 13 -18 -92 0 30 -88 -8 -4 -10 60 8 -10 62 -58 14 30 54 -10 44 -34 -34 70 40 -30 58 

Mean -18.8 -97.4 -0.8 21.2 -91.4 -5.2 -6.0 -8.0 61.5 5.4 -7.5 64.0 -54.2 0.2 38.2 55.8 2.0 38.8 -39.8 -28.8 62.2 37.1 -27.4 62.0 

SD 5.4 3.4 7.0 8.7 5.6 7.1 2.7 6.3 6.3 1.9 4.6 4.8 4.9 7.7 6.0 5.5 7.0 6.0 5.3 5.3 5.4 3.2 5.4 7.8 

H 01 -16 -102 -6 20 -96 2 -4 -10 62 8 -8 70 -52 0 32 56 14 40 -42 -34 66 42 -28 58 

H 02 -26 -90 -12 20 -100 -2 -6 -4 74 6 -4 62 -48 10 40 56 2 42 -42 -28 62 52 -16 60 

H 03 -20 -92 -8 16 -94 -2 -8 -12 68 6 -14 70 -62 10 36 56 8 40 -54 -26 64 40 -28 60 

H 04 -24 -96 4 28 -94 -2 -4 -8 66 6 -12 60 -52 0 36 56 0 46 -40 -24 66 44 -26 58 

H 05 -24 -96 -4 22 -92 -2 -6 -10 62 4 -8 68 -52 10 44 54 6 44 -42 -26 70 36 -28 58 

H 06 -22 -90 2 30 -90 0 -8 -12 66 12 -12 66 -58 6 40 56 0 44 -36 -26 56 46 -28 60 

H 07 -16 -96 2 24 -94 2 -10 -6 74 6 -8 66 -54 -4 48 56 -2 48 -42 -22 66 46 -20 62 

H 08 -28 -92 -2 26 -94 2 -6 -18 70 4 -2 68 -62 -2 38 58 6 46 -42 -30 54 40 -28 58 

H 09 -16 -102 6 18 -92 0 -8 -12 64 6 -6 72 -56 2 38 64 6 34 -40 -26 64 38 -26 64 

H 10 -26 -98 2 32 -92 4 -6 -6 66 4 -2 72 -56 6 42 54 14 42 -38 -26 56 36 -24 70 

H 11 -20 -96 -2 28 -92 6 -10 -14 68 6 -12 62 -54 -2 44 54 0 46 -42 -32 58 38 -28 56 

H 12 -24 -98 4 24 -94 -2 -6 2 62 6 -6 74 -54 0 42 56 -2 48 -38 -28 66 48 -14 62 

Mean -22.3 -96.5 -0.3 23.8 -92.8 0.0 -6.7 -9.5 65.2 6.3 -7.7 69.3 -55.3 2.2 39.7 56.0 5.7 43.0 -43.0 -27.0 62.0 40.2 -25.3 60.5 

SD 4.1 3.6 4.2 4.8 1.8 4.1 2.0 5.3 2.8 2.2 4.1 4.8 3.4 4.2 3.7 3.5 5.4 4.1 4.6 3.7 4.8 3.7 4.0 3.8 

H = healthy control subject; M1 = primary motor cortex; P = stroke patient; SD = standard deviation; SMA = supplementary motor area; V1: primary visual cortex; vPMC = ventral premotor cortex; X = lateral-medial, Y = 
anterior-posterior, Z = inferior-superior coordinate in MNI (Montreal Neurological Institute) standard space 
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Figure 5.3 - Figure 5.5: Study III: Hypothetical models on interregional coupling. Dynamic causal 

modelling (DCM) is a hypotheses-driven approach to model effective connectivity between distinct 

brain regions, and relies on neurobiologically plausible a priori assumptions regarding hypotheses on 

relevant brain regions, connections, and context dependent modulations thereof (Friston et al., 2003). 

We performed analyses on core regions of the motor system activated by the fist closure task, namely 

the primary motor cortex (M1), the ventral premotor cortex (vPMC), and the supplementary motor 

area (SMA). The primary visual cortex (V1) was used as major input region (not shown). Based on 

anatomical studies in macaque monkeys (McGuire et al., 1991; Rouiller at al., 1994), reciprocal 

connections between all six cortical motor areas (M1, SMA, and vPMC bilaterally), can be assumed 

and hence represent the most likely anatomical (i.e. endogenous) connectivity model (depicted in the 

upper left corner). “Task-dependent” modulations do not necessarily impact on all endogenous 

connections. Therefore, we constructed 36 different connectivity models reflecting biologically 

plausible hypotheses on interregional coupling. We then used random effects Bayesian model 

selection (BMS) to identify the model with highest evidence given the measured data (Stephan et al., 

2009).  

 

Figure 5.3: Study III: Hypothetical models on interregional coupling (Models 1-16). The first model 

(Model 1) assumed all possible connections between all six cortical motor areas (i.e. 30 connections; 

upper right corner). Based on this model, connections were systematically varied by subsequently 

omitting one (Figure 5.3A), two (Figure 5.3B), three (Figure 5.3C) or four (Figure 5.3D) 

interhemispheric connections. Blue arrows indicate omitted connections. Black arrows indicate 

remaining connections. 
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Figure 5.4: Study III: Hypothetical models on interregional coupling (Models 17-28). The first model 

(Model 1) assumed all possible connections between all six cortical motor areas (i.e. 30 connections; 

upper right corner). Based on this model, connections were systematically varied by subsequently 

omitting interhemispheric connections (Models 1-16 in Figure 5.3). All models which assumed 

asymmetric interregional coupling were mirrored on the midsagittal line (Model 17-28 in the present 

figure) if the mirrored counterpart was not already included in Figure 5.3. Blue arrows indicate 

omitted connections. Black arrows indicate remaining connections. 
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Figure 5.5: Study III: Hypothetical models on interregional coupling (Models 29-36). A less complex 

model with reciprocal intrahemispheric connections between all three regions and interhemispheric 

connections between homologous regions was constructed (Model 29; Figure 5.5, upper right corner) 

and modified by omitting one (Figure 5.5A), two (Figure 5.5B) or all three (Figure 5.5C) 

interhemispheric connections. Blue arrows indicate omitted connections. Black arrows indicate 

remaining connections. 
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The first model (Model 1) assumed all possible connections between all six cortical motor 

areas (i.e. 30 connections; Figure 5.3 & 5.4, upper right corner). Based on this model, 

connections were systematically varied by subsequently omitting one (Figure 5.3A), two 

(Figure 5.3B), three (Figure 5.3C) or four (Figure 5.3D) interhemispheric connections. All 

models assuming asymmetric interregional coupling were mirrored on the midsagittal line 

(Figure 5.4) if the mirrored counterpart was not already tested (Figure 5.3). Finally, a less 

complex model assuming only reciprocal intrahemispheric connections between all three 

regions and interhemispheric connections between homologous regions was tested (Model 29; 

Figure 5.5, upper right corner) and modified by omitting one (Figure 5.5A), two (Figure 5.5B) 

or all three (Figure 5.5C) interhemispheric connections. For all models we assumed that V1 

exerts a driving influence onto all premotor areas (i.e. SMA and vPMC bilaterally) as hand 

movements were paced by a visual cue during fMRI experiments. We then used random 

effects Bayesian model selection (BMS) to identify the model with highest evidence given the 

measured data (Stephan et al., 2009).  

 

5.2.8 Effects of lesion location, lesion size, and lesion age 

We performed voxel-based lesion symptom mapping (VLSM) analyses by means of MRIcron 

(http://www.cabiatl.com/mricro/mricron/install.html) to investigate the relationship between 

lesion locations and behavioural TBS effects (Bates et al., 2003; Rorden et al., 2007). Binary 

lesion masks were constructed based on the high-resolution anatomical T1-weighted image of 

each patient and normalized to MNI space by applying the deformation parameters derived 

from normalization of the respective T1-weighted image into MNI space by means of SPM8. 

Patients were classified into two groups based on a median split of TBS improvement scores 

(n = 7 patients with scores equal to or less than the median were assigned to the TBS non-

responder group; MISaff, iTBS ≤ 0.017, MISaff,cTBS ≤ -0.128, MISunaff,iTBS ≤ -0.141, and 

MISunaff,cTBS ≤ -0.214). Behavioural improvements were entered as binary behaviour 

(responder = 1; non-responder = 0) in separate analyses. Liebermeister analysis was 

performed (which is a more sensitive binomial test than Chi-Squared or Fisher's Exact test; 

http://www.cabiatl.com/mricro/mricron/stats.html). Additionally, behavioural TBS effects 

were correlated with lesion characteristics such as lesion size, lesion age, and CST damage. 

CST damage was defined as overlapping volume between the individual MNI-normalized 

lesion mask and the probabilistic CST map implemented in the SPM “Anatomy” toolbox 
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(Eickhoff et al., 2005, 2007; http://www.fz-juelich.de/inm/inm-1/spm_anatomy_toolbox) in 

relation to total CST volume (Table 5.1). 

 

5.2.9 Statistical analyses 

All statistical analyses were performed using the “PASW” software version 18 

(http://www.spss.com). If not stated otherwise, effects in ANOVAs were considered 

statistically significant if they passed a threshold of P < 0.05. Results from post-hoc t-tests 

and bivariate Spearman‟s p correlation analyses were considered statistically significant if 

they passed a threshold of P < 0.05, false discovery rate (FDR)-corrected for multiple 

comparisons (Benjamini & Hochberg, 1995). Independent-sample t-tests for group 

comparisons were considered statistically significant if they passed a threshold of P < 0.05, 

corrected with Dunn‟s Multiple Comparison Procedure (Dunn, 1961). 

 

5.3 Results Study III 

5.3.1 Motor impairment in stroke patients 

We performed repeated measures ANOVAs with the factors GROUP (levels: patients, healthy 

controls) and HAND (levels: affected/non-dominant, unaffected/dominant) for all three motor 

tasks. There was a significant HAND x GROUP interaction for each task: (i) the Jebsen 

Taylor Hand Function Test (JTT): F (1, 23) = 8.751; P = 0.007, (ii) maximum index finger 

tapping (FT) frequency: F (1, 23) = 12.714; P = 0.002, and (iii) grip force (GF) 

measurements: F (1, 23) = 13.055; P = 0.001). Post-hoc t-tests revealed that stroke patients 

performed significantly worse with their affected hand compared to healthy subjects 

performing with their non-dominant hand (JTT: T (23) = 3.490; FT: T (23) = -7.054, GF: T 

(23) = -2.321; P < 0.05, Dunn-corrected). Hence, stroke patients had significant motor hand 

deficits which were apparent in all three motor tasks that were used as behavioural outcome 

measures for TBS effects.  
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5.3.2 TBS effects 

5.3.2.1 Behavioural TBS effects 

TBS was well tolerated by all patients. There were no adverse events. We performed repeated 

measures ANOVAs with the factor INTERVENTION (levels: iTBS, cTBS, control TBS) on 

percentaged improvements of each hand (affected, unaffected) and task (JTT, FT, GF). None 

of the ANOVAs yielded a significant main effect of INTERVENTION (P > 0.05). This 

finding indicates that neither facilitatory iTBS applied to the ipsilesional hemisphere nor 

inhibitory cTBS applied to the contralesional hemisphere was significantly different from 

control TBS (over the midsagittal parieto-occipital cortex) in terms of average changes in 

motor performance of the affected hand across the whole group of patients (Figure 5.6). 

However, there was a statistical trend for finger tapping of the unaffected hand (F (2, 24) = 

3.354; P = 0.052). Post-hoc t-tests suggested that this trend resulted from decreased 

performance of the unaffected hand after inhibitory cTBS applied to the contralesional 

hemisphere (T (12) = 2.416, P = 0.033, uncorrected) as well as facilitatory iTBS applied to the 

ipsilesional hemisphere (T (12) = 2.134; P = 0.054, uncorrected) compared to control 

stimulation. Analyses performed on absolute improvements (instead of improvements in 

percentage terms) yielded similar results. These findings suggest that the unaffected hand 

responded to verum TBS as proposed by the model of interhemispheric competition (i.e. with 

deterioration) whereas the affected hand did not show consistent improvements over the 

group of patients. However, there was considerable inter-individual variance in behavioural 

changes following TBS. For example, changes of the affected hand in the JTT raged between 

-18.7 and +15.4 % (mean: -0.9 ± 11.2 %) after iTBS and between -23.3 and +19.9 % (mean: -

0.8 ± 10.1 %) after cTBS.  
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Figure 5.6: Study III: Changes in motor performance following theta-burst stimulation (TBS). Motor 

performance of the affected hand (left column) and the unaffected hand (right column) was measured 

before (Pre TBS) and approximately 25 min after (Post TBS) three different TBS interventions in 13 

chronic stroke patients: (i) control stimulation, (ii) inhibitory continuous TBS over the contralesional 

hemisphere, and (iii) facilitatory iTBS over the ipsilesional hemisphere. The following parameters 

were used to assess motor performance: (i) the time needed to accomplish the Jebsen-Taylor Hand 

Function Test [s], (ii) the maximum index finger tapping frequency [Hz], and (iii) the maximum grip 

force [kPa]. Vertical bars reflect the group mean and error bars indicate the standard error of the mean. 
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Neither facilitatory iTBS applied to the ipsilesional hemisphere nor inhibitory cTBS applied to the 

contralesional hemisphere was significantly different from control TBS in terms of average changes in 

motor performance of the affected hand. There was a statistical trend for reduced index finger tapping 

frequency of the unaffected hand after both inhibitory cTBS applied to the contralesional hemisphere 

as well as facilitatory iTBS applied to the ipsilesional hemisphere compared to control stimulation. 

Hence, the unaffected hand responded to verum TBS as hypothesized (i.e. with deterioration) whereas 

the affected hand did not show consistent improvements over the group of patients. 

 

5.3.2.2 Electrophysiological TBS effects 

In line with behavioural TBS effects, there were no significant differences between TBS 

interventions in terms of average electrophysiological changes across the group of patients. 

Repeated measures ANOVAs with the factor INTERVENTION (levels: iTBS, cTBS, control 

TBS) were separately performed on percentaged changes in each TMS parameter (MEP size 

on each hemisphere and reciprocal IHI). None of the ANOVAs yielded a significant effect of 

INTERVENTION (P > 0.05). In other words, verum TBS was not significantly different from 

control TBS in terms of average changes in IHI or MEP size of the ipsilesional hemisphere 

over the group of patients. However, there was a statistical trend for MEPs of the 

contralesional hemisphere (F (2, 24) = 3.399; P = 0.052). Post-hoc t-tests suggested that this 

trend resulted from decreased MEP sizes elicited from the contralesional hemisphere after 

inhibitory cTBS applied to the contralesional hemisphere (T (12) = 1.986; P = 0.070, 

uncorrected) as well as facilitatory iTBS applied to the ipsilesional hemisphere (T (12) = 

2.675, P = 0.022, uncorrected) compared to control stimulation. Analyses performed on 

absolute changes (instead of changes in percentage terms) yielded similar results. Hence, 

electrophysiological TBS effects are in line with behavioural TBS effects and suggest that the 

contralesional hemisphere responded to verum TBS as expected (i.e. with decreased 

excitability) whereas the ipsilesional hemisphere did not show consistent increases in MEP 

size over the group of patients. Similar to analyses on behavioural effects, there was 

considerable inter-individual variance in electrophysiological changes following TBS. For 

example, changes in MEP size of the ipsilesional hemisphere raged between -91.8 and +56.5 

% (mean: 15.8 ± 65.8 %) after iTBS and between -30.1 and +90.5 % (mean: 16.8 ± 39.2 %) 

after cTBS.  
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5.3.2.3 Correlation between behavioural and electrophysiological TBS effects  

To investigate whether behavioural TBS effects were related to electrophysiological TBS 

effects, we correlated improvement scores of cTBS and iTBS with changes in MEP size of 

both hemispheres and reciprocal IHI. None of the correlations suggested a significant 

interaction (P > 0.05). Hence, although there was a tendency for decreased motor performance 

of the unaffected hand and decreased MEP size of the contralesional hemisphere after verum 

TBS, there was no tight relationship between behavioural and electrophysiological TBS 

effects. This finding suggests that changes observed on the electrophysiological level and 

changes observed on the behavioural level were not driven by the same subjects. 

 

5.3.2.4 Summary behavioural and electrophysiological TBS effects  

In summary, stroke patients had significant motor hand deficits which were evident in all 

three motor tasks used as outcome measures for behavioural TBS effects. Neither facilitatory 

iTBS applied to the ipsilesional hemisphere nor inhibitory cTBS applied to the contralesional 

hemisphere was significantly different from control TBS in terms of average behavioural or 

electrophysiological changes across the whole group of patients. However, there was a 

statistical trend for decreased motor performance of the unaffected hand and decreased MEP 

size of the contralesional hemisphere after cTBS and iTBS compared to control TBS. Hence, 

the unaffected hand and contralesional hemisphere responded to verum TBS as expected 

whereas the affected hand and ipsilesional hemisphere did not show consistent changes which 

was probably due to high inter-individual variability. There was no tight relationship between 

behavioural and electrophysiological TBS effects suggesting that changes on the behavioural 

level originated from different patients than changes on the electrophysiological level. 

 

5.3.3 Electrophysiological TMS parameters 

5.3.3.1 TMS parameters - differences between groups 

To investigate whether stroke patients differed significantly from healthy subjects in terms of 

TMS electrophysiology at baseline, we computed repeated measures ANOVAs with the 

factors HEMISPHERE (levels: ipsilesional/non-dominant, contralesional/dominant) and 

GROUP (levels: patients, healthy subjects) separately for each TMS parameter (AMT, RMT, 

SICI, IHI). To investigate whether TMS parameters at baseline relate to clinical deficit and 
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lesion characteristics we correlated TMS parameters with clinical scores (mRS, NIHSS, 

ARAT), clinical impairment score (CIS), lesion size, lesion age, and CST damage. 

 

5.3.3.1.1 Active and resting motor threshold (AMT & RMT) 

ANOVAs on AMT and RMT yielded no significant main effect or interaction (P > 0.05) 

indicating that cortical excitability was not significantly different across the whole group of 

patients compared to healthy controls. There was a statistical trend for a correlation between 

AMT assessed over the ipsilesional hemisphere and ARAT scores (r = -0.543; P = 0.055, 

uncorrected) indicating that patients with reduced ipsilesional M1 excitability featured more 

impairment of upper-limb function. To investigate whether motor thresholds differed between 

mildly and more severely impaired patients we assigned patients to two groups based on a 

median split of ARAT scores (median of ARAT scores = 50; n = 7 patients with ARAT 

scores ≤ 50 were assigned to the group of more severely impaired patients). Independent-

sample t-tests revealed that motor thresholds of the ipsilesional hemisphere were significantly 

higher in more severely affected patients compared to mildly impaired patients (AMT: T (11) 

= 2.515; RMT: T (11) = 2.801; P > 0.05, FDR-corrected) whereas motor thresholds assessed 

over the contralesional hemisphere were not significantly different between groups (P > 0.2). 

 

5.3.3.1.2 Short-interval intracortical inhibition (SICI) 

There was a statistical trend for a main effect for the factor GROUP for SICI (F (20, 1) = 

3.887; P = 0.063) indicating that patients had decreased SICI compared to healthy controls. 

Post-hoc t-tests revealed that patients had significantly decreased SICI (i.e. less intracortical 

inhibition) assessed over the ipsilesional hemisphere (T (20) = 2.695; P < 0.05, Dunn-

corrected) but not over the contralesional hemisphere (P > 0.05, Dunn-corrected) compared to 

healthy controls. SICI was not significantly different between hemispheres, neither in stroke 

patients nor in healthy subjects (P > 0.05). SICI was not significantly associated with lesion 

characteristics such as lesion size, lesion age, and integrity of the CST (P > 0.05). Although 

correlations between SICI and clinical scores or lesion characteristics were not statistically 

significant, reduced SICI in the ipsilesional hemisphere was rather associated with better than 

worse motor performance as indicated by an association with higher ARAT scores (r = 0.481; 

P = 0.134) and lower mRS scores (r = -0.454; P = 0.161). SICI in the contralesional 

hemisphere was not associated with clinical scores (P > 0.3).  
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5.3.3.1.3 Interhemispheric inhibition (IHI) 

There was no significant main effect or interaction in the ANOVA on IHI (P > 0.05) 

indicating that there was no significant difference between groups or hemispheres in IHI. 

Interhemispheric inhibition was not significantly associated with lesion characteristics (P > 

0.05). However, clinical scores were associated with the IHI strength targeting the 

contralesional hemisphere. Patients showing low inhibition from the ipsilesional onto the 

contralesional hemisphere tended to be more severely affected than patients with preserved 

IHI (r = 0.670; P = 0.017, uncorrected). 

 

5.3.3.2 TMS parameters as predictors for TBS effects 

To investigate whether motor thresholds (AMT and RMT), short-interval intracortical 

inhibition (SICI) or interhemispheric inhibition (IHI) predicted behavioural TBS effects, we 

correlated behavioural improvements following iTBS and cTBS (i.e. overall improvement 

scores) with electrophysiological TMS parameters obtained at baseline. None of the 

correlations yielded a significant effect (P > 0.05) suggesting that corticospinal excitability 

and intra- and interhemispheric inhibition probed by TMS have poor predictive value for 

behavioural improvements following TBS. 

 

5.3.4 Functional magnetic resonance imaging (fMRI) 

5.3.4.1 Motor paradigm (maximum fist closure frequencies) 

Subjects performed visually-paced fist closures at two different movement frequencies: (i) at 

a fixed frequency of 0.8 Hz and (ii) at a frequency individually adjusted to 40% of the 

maximum movement frequency of the respective hand. We computed a repeated measures 

ANOVA on maximum movement frequencies with the factors HAND (levels: affected/non-

dominant, unaffected/dominant) and GROUP (levels: patients, healthy subjects). There was a 

significant main effect of HAND (F (23, 1) = 11.457; P = 0.003) which was due to 

significantly lower movement frequencies for the affected/non-dominant hand compared to 

the unaffected/dominant hand across groups. The main effect of GROUP (F (23, 1) = 0.535; P 

= 0.472) was not significant but there was a significant HAND x GROUP interaction (F (23, 

1) = 9.223; P = 0.006). Post-hoc t-tests revealed that this was due to highly significantly lower 

movement frequencies of the affected hand compared to the unaffected hand in stroke patients 
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(T (12) = -3.374; P < 0.05, Dunn-corrected). Taken together these results suggest that also in 

the fMRI task, patients showed a clear unilateral hand motor deficit. 

 

5.3.4.2 fMRI group analysis 

For the fMRI group analysis the parameter estimates of all four conditions were compared in 

a full-factorial GLM random effects analysis with the within-subject factors HAND (levels: 

affected/non-dominant, unaffected/dominant) and FREQUENCY (levels: fixed, adjusted). 

Figure 5.7 shows regions significantly activated by visually-paced fist closures of the affected 

and the unaffected hand in stroke patients (all normalized as having right sided lesions) as 

well as movements of the non-dominant and dominant hand in healthy control subjects 

relative to the low-level baseline. In healthy subjects, dominant and non-dominant hand 

movements increased neural activity in a network comprising contralateral primary motor 

cortex (M1), contralateral primary somatosensory cortex (S1), bilateral supplementary motor 

area (SMA), bilateral ventral and dorsal premotor cortex (vPMC, dPMC), bilateral 

dorsolateral prefrontal cortex (DLPFC), and bilateral visual cortex (P < 0.05, FDR-corrected, 

Figure 5.7B and 5.7D). In stroke patients, movements of the unaffected hand yielded 

comparable results as movements of the dominant or non-dominant hand in healthy subjects 

(Figure 5.7C). However, movements of the stroke affected hand were associated with 

bilaterally enhanced fMRI signal in a number of cortical regions. Activation clusters in the 

ipsilesional hemisphere were less focused and extended into frontal and parietal areas (Figure 

5.7D). Patients furthermore showed increased activation in the ipsilesional DLPFC, cingulate 

motor area, and contralateral posterior parietal cortex during movements of the affected hand. 

Importantly, and in contrast to the healthy control group, movements of the stroke-affected 

hand were associated with significant neural activity in the contralesional hemisphere 

(ipsilateral to the performing hand) including activation clusters around the central sulcus, i.e. 

in M1/S1 (primary sensorimotor cortex). Similar results were found for both fixed and 

adjusted movement frequencies (Figure 5.7). 
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Figure 5.7: Study III: Movement-related neural signal in cortical motor areas.  Functional magnetic 

resonance imaging (fMRI) was used to measure blood oxygenation level dependent (BOLD) signal in 

13 chronic stroke patients and 12 age-matched healthy control subjects. Subjects performed visually-

paced rhythmic fist closures at two different movement frequencies: (i) a fixed movement frequency 

of 0.8 Hz (upper figure), and (ii) a movement frequency individually adjusted to 40% of the maximum 

movement frequency of the respective hand (lower figure). Regions significantly activated by 

movements of the affected/non-dominant and the unaffected/dominant hand relative to the low-level 

baseline are shown (P < 0.05, FDR-corrected). In stroke patients, movements of the unaffected hand 

(Figure 5.7C) yielded comparable results as movements of the dominant (Figure 5.7D) or non-

dominant hand (Figure 5.7B) in healthy subjects. However, movements of the stroke affected hand 

were associated with bilaterally enhanced fMRI signal in a number of cortical regions including 

contralesional M1/S1 (primary sensorimotor cortex; Figure 5.7A). Similar results were found for fixed 

and adjusted movement frequencies. 

 

5.3.4.3 Region-of-interest (ROI) analyses 

5.3.4.3.1 ROI analysis – differences between groups 

To investigate whether neural activity in key motor areas differed significantly between 

patients and healthy subjects we computed repeated measures ANOVAs with the factor 

REGION (levels: M1, SMA, vPMC) and GROUP (levels: patients, healthy controls) for each 

condition and hemisphere on parameter estimates extracted from ROIs. All ANOVAs yielded 

a significant main effect of REGION (P < 0.001) but no main effect of GROUP (P > 0.05). A 

significant REGION x GROUP interaction was found only for neural activity in the ipsilateral 

(i.e. contralesional/dominant) hemisphere during movements of the affected/non-dominant 

hand. This effect was evident for both movement frequencies (fixed: F (46, 2) = 5.931; P = 

0.005; adjusted: F (46, 2) = 4.589; P = 0.015). Post-hoc t-tests revealed that this effect was 

due to stroke patients having higher levels of neural activity in M1 of the contralesional 

hemisphere during movements of the affected hand compared to activity in M1 of the non-

dominant hemisphere during movements of the dominant hand in healthy controls (fixed: T 

(23) = 3.049; P < 0.05; adjusted: T (23) = 2.608; P < 0.05; Dunn-corrected). In other words 

stroke patients had significantly enhanced neural activity in contralesional M1 (but not in 

contralesional SMA or vPMC) during affected hand movements.  

To investigate whether neural activity cortical motor areas relates to clinical deficits and 

lesion characteristics we correlated parameter estimates extracted from ROIs with the clinical 

impairment score (CIS), lesion size, lesion age, and CST damage. There were no significant 

correlations (P > 0.05) suggesting that enhanced activity in contralesional M1 was not 

significantly associated with clinical impairment. 
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5.3.4.3.2 fMRI signal in ROIs as predictors for TBS effects 

To investigate whether behavioural improvements after TBS were predicted by neural activity 

in key motor areas, we correlated fMRI parameter estimates extracted from ROIs during hand 

movements with TBS improvement scores of the respective hand. There were no significant 

correlations between fMRI parameter estimates and improvement scores after cTBS or iTBS 

indicating that movement-related fMRI signal in distinct motor areas are poor predictors for 

behavioural improvements after TBS. 

 

5.3.4.4 Lateralization of fMRI signal 

5.3.4.4.1 Laterality index (LI) – differences between groups 

We calculated laterality indices (LI) based on the number of significantly activated voxels (P 

< 0.001, uncorrected) in both BA4 and BA6 (LIBA4+BA6) as well as separately for BA4 and 

BA6 (LIBA4 and LIBA6). Since the ROI analysis revealed that stroke patients had significantly 

higher activity in contralesional M1 during affected hand movements we had a strong 

hypothesis that patients would show decreased laterality of fMRI BOLD signal compared to 

healthy controls. Indeed, LIBA4 was significantly different between groups for affected/non-

dominant hand movements at both the fixed and adjusted movement frequency. This was due 

to patients having significantly reduced laterality of fMRI signal due to higher activity in 

contralesional M1 (fixed: T = 2.179; P < 0.05; adjusted: T = 2.345; P < 0.05, Dunn-

corrected). However, there were no significant differences between groups in LIBA6 or 

LIBA4+BA6which is in line with results of the ROI analysis that activity was abnormally 

enhanced only in contralesional M1 but not in SMA or vPMC. Taken together these results 

suggest that stroke patients showed significantly enhanced neural activity in the contralesional 

hemisphere during affected hand movements (resulting in significantly reduced laterality) 

specifically in M1 and not in cortical motor areas in general. To investigate whether reduced 

laterality relates to clinical deficit or lesion characteristics, we correlated LIBA4+BA6, LIBA6, and 

LIBA4 with CIS, lesion size, lesion age and CST damage. No significant correlations were 

found (P > 0.05) suggesting that reduced laterality was not significantly associated with 

clinical impairment. 
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5.3.4.4.2 Laterality index (LI) as predictor for TBS effects 

To test whether behavioural improvements after TBS were predicted by lateralization of fMRI 

signal we correlated LIBA4+BA6, LIBA4, and LIBA6 with improvement after cTBS and iTBS. 

Interestingly, improvements of the stroke affected hand after iTBS were significantly 

predicted by LIBA4+BA6 and LIBA6. Especially patients with less enhanced neural activity in the 

contralesional hemisphere during movements of the affected hand (i.e. with reduced laterality 

as indicated by negative LI values) experienced beneficial effects of facilitatory iTBS applied 

to the ipsilesional hemisphere. Correlations were highly significant for the fixed movement 

frequency of 0.8 Hz (LIBA4+BA6: r = -0.735; LIBA6: r = -0.714; P < 0.05, FDR-corrected) as 

well as for the movement frequency adjusted to performance of the affected hand (LIBA4+BA6: 

r = -0.762; LIBA6: r = - 0.732; P < 0.05, FDR-corrected; Figure 5.8). This finding indicates 

that patients with severely reduced lateralisation of fMRI signal were less likely to improve 

after iTBS applied to the ipsilesional hemisphere. An LI of approximately -0.05 (fixed 

frequency) and -0.10 (adjusted frequency) respectively was necessarily to generate 

improvements of the affected hand after iTBS. Interestingly, improvements of the affected 

hand after iTBS were predicted by preserved laterality of fMRI signal in BA4 and BA6 

(LIBA4+BA6) and in BA6 alone (LIBA6) but not in BA4 alone (LIBA4). Hence, although patients 

differed significantly from healthy controls only in laterality within BA4 (but not in overall 

laterality in BA4 and BA6) this was a poorer predictor for behavioural improvements than 

overall laterality. No correlations were found between laterality indices and improvements of 

the unaffected hand or between laterality indices and improvements after cTBS. 
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Figure 5.8: Study III: Correlation between laterality and TBS effects. Movement-related functional 

magnetic resonance imaging (fMRI) signal during visually-paced rhythmic fist closures was obtained 

from 13 stroke patients. Laterality indices were calculated based on fMRI signal in cortical motor 

areas (Brodmann area 4 and 6) and correlated with individual changes in motor performance following 

TBS (motor improvement score). The more negative the LI value of a patient (i.e. the less pronounced 

neural activity in the contralesional hemisphere) during movements of the affected hand was, the more 

likely a patient experienced beneficial effects of facilitatory iTBS applied to the ipsilesional 

hemisphere. No significant correlations were found for changes in motor performance of the 

unaffected hand or improvements of the affected hand following inhibitory continuous TBS (cTBS) 

over the contralesional hemisphere. (CL: contralesional; FDR: false-discovery rate; IL: ipsilesional; 

iTBS: intermittent theta-burst stimulation (iTBS); LI: laterality index) 

 

5.3.4.5 Summary fMRI data 

In the fMRI experiment, stroke patients and healthy control subjects performed visually-paced 

fist closures at 0.8 Hz and 40% of the individual maximum movement frequency. For stroke 

patients the maximum movement frequencies were significantly different between hands 

(which was not the case for healthy subjects). The fMRI group analysis revealed that stroke 

patients had increased fMRI signal in contralesional M1/S1 during movements of the stroke-

affected hand but not during movements of the unaffected hand. This finding was supported 

by ROI analyses demonstrating significantly higher fMRI signal in contralesional M1 during 

movements of the affected hand. Neural activity in distinct motor areas however did not 
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predict behavioural TBS effects. Hence, we calculated laterality indices to investigate whether 

laterality of fMRI signal would predict TBS effects. Patients had decreased laterality of fMRI 

signal only in BA4, whereas overall laterality in BA4 and BA6 was not significantly different 

between groups. Interestingly, overall laterality (but not laterality in BA4 alone) was a strong 

predictor for improvements of the affected after facilitatory iTBS applied to the ipsilesional 

hemisphere. Patients with more lateralized fMRI signal were more to show improvements of 

the affected hand after iTBS.  

 

5.3.5 Dynamic causal modelling (DCM) 

5.3.5.1 Bayesian Model Selection (BMS) 

We performed random effects Bayesian model selection (BMS) analyses to identify the best 

model, i.e. the model providing the best trade-off between accuracy (in terms of explaining 

variance in measured data) and simplicity (allowing generalization). Model 1, i.e. the “fully 

connected” model for interregional coupling during movements of the affected/non-dominant 

and the unaffected/dominant hand, showed the best model fit in healthy subjects as well as 

stroke patients given the data. Expected posterior model probabilities (reflecting the 

likelihood that a specific model generates the data of a randomly chosen subject) as well as 

model exceedance probabilities (referring to the probability that one model is more likely than 

any other model) are displayed in Figure 5.9. There was a probability of 99.55 % in healthy 

subjects and 99.64 % in stroke patients for Model 1 being the most likely model given the 

data observed. 
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Figure 5.9: Study III: Results of the Bayesian model selection (BMS) procedure. Since “task-

dependent” modulations do not necessarily impact on all endogenous connections, we constructed 36 

different connectivity models reflecting biologically plausible hypotheses on interregional coupling. 

We then used random effects BMS to identify the best model, providing the best trade-off between 

accuracy (in terms of explaining variance in measured data) and simplicity (allowing generalization). 

Model 1 (the “fully connected” model for interregional coupling during movements of the 

affected/non-dominant and the unaffected/dominant hand) showed the best model fit in healthy 

subjects as well as stroke patients given the data. Expected posterior model probabilities (reflecting the 

likelihood that a specific model generates the data of a randomly chosen subject, upper figure) as well 

as model exceedance probabilities (referring to the probability that one model is more likely than any 

other model, lower figure) are displayed. There was a probability of 99.55 % in healthy subjects (left 

column) and 99.64 % in stroke patients (right column) for Model 1 being the most likely model given 

the data observed. 
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5.3.5.2 Significant connections in healthy subjects and patients 

5.3.5.2.1 Task-independent (endogenous) connectivity 

We first investigated endogenous connectivity in healthy subjects and stroke patients 

separately. Endogenous connectivity reflects the causal influence one area exerts on neural 

activity of another area independent of a specific experimental condition (Friston et al., 2003). 

However, endogenous connectivity (DCM A matrix) should not be mistaken as baseline 

connectivity since it reflects the task-independent component of effective connectivity across 

the entire time course of the experiment. Figure 5.10 shows significant endogenous 

connections in patients and healthy controls (one-sample t-tests; P < 0.05, FDR-corrected). 

Green arrows indicate that activity in the source region increased activity in the target region 

(positive coupling parameter) which can be interpreted as facilitation whereas red arrows 

indicate that activity in the source region decreased activity in the target region (negative 

coupling parameter) which can be interpreted as inhibition. Please note that coupling 

parameters (in Hz) also implicitly capture the influence of possible (subcortical) relay regions 

such as, e.g., the basal ganglia or the cerebellum. In healthy subjects, endogenous coupling of 

neural activity among cortical motor areas was almost perfectly symmetrically organized. 

Almost all influences between motor areas were facilitatory. The most pronounced promoting 

influence was exerted from the SMA onto the ipsilateral M1. Solely interhemispheric 

interactions between the two primary motor cortices were inhibitory. Endogenous coupling in 

stroke patients followed a similar pattern although coupling strength tended to be decreased 

compared to healthy subjects. Hence, fewer connections passed the statistical threshold 

(Figure 5.10; P < 0.05, FDR-corrected).  
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Figure 5.10: Study III: Significant interregional couplings in healthy subjects and stroke patients. 

Dynamic causal modelling (DCM) was used to infer task-independent (i.e. endogenous) effective 

connectivity as well as task-dependent modulations from functional magnetic resonance imaging 

(fMRI) data of 13 chronic stroke patients (left column) and 12 age-matched healthy subjects (right 

column). Significant endogenous connections in patients and healthy subjects are shown (one-sample 

t-tests; P < 0.05, FDR-corrected). Numbers refer to coupling strength (in Hz). Green arrows indicate 

that activity in the source region increased activity in the target region (positive coupling parameter, 

facilitation) whereas red arrows indicate that activity in the source region decreased activity in the 

target region (negative coupling parameter, inhibition). Endogenous coupling in stroke patients 

followed a similar pattern as in healthy subjects although fewer connections passed the statistical 

threshold. The connectivity pattern of stroke patients moving their unaffected hand (Figure 5.10C) was 

comparable to motor network connectivity of healthy subjects moving their dominant (Figure 5.10D) 

or non-dominant hand (Figure 5.10B). By contrast, when patients moved their paretic hand, there was 

a weak but significant additional positive influence the contralesional M1 exerted onto the ipsilesional 

M1 which was not found in healthy subjects (Figure 5.10A). Results were similar for the fixed and the 

adjusted movement frequency. (M1: primary motor cortex; PMC: premotor cortex; SMA: 

supplementary motor area) 

 

5.3.5.2.1 Task-modulated connectivity  

Task-modulated connectivity reflects the influence a specific experimental condition has on 

interregional coupling. If a certain task (e.g. movements of the affected hand) is performed, 

task-induced changes in effective connectivity (DCM B matrix) add onto task-independent 

(endogenous) effective connectivity (DCM A matrix). We first investigated the specific effect 

of moving the non-dominant or the dominant hand on M1 connections in healthy subjects 

(Figure 5.10B and 5.10D). In healthy subjects, hand movements were associated with 

increased promoting influences from all four premotor regions (i.e. SMA and vPMC 

bilaterally) onto M1 contralateral to the moving hand as well as negative influences from 

SMA and vPMC bilaterally onto M1 ipsilateral to the moving hand (P < 0.05, FDR-

corrected). In addition, there was a significant inhibitory influence from the contralateral M1 

onto the ipsilateral M1. This connectivity pattern was comparable to motor network 

connectivity of stroke patients moving their unaffected hand (Figure 5.10C). By contrast, 

when patients moved their paretic hand, there was a weak but significant additional positive 

influence the contralesional M1 exerted onto the ipsilesional M1 which was not found in 

healthy subjects. Results were similar for the fixed and the adjusted movement frequency 

(Figure 5.10).  
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5.3.5.3 Effective connectivity – differences between groups 

5.3.5.3.1 Task-independent (endogenous) connectivity 

In the next step, we investigated differences in effective connectivity between groups by 

computing repeated measures ANOVAs with the factor CONNECTION (30 connections for 

endogenous connectivity, 10 connections comprising M1 for task-modulated connectivity) 

and GROUP (levels: patients, healthy controls). A significant main effect of CONNECTION 

(P < 0.001) but no significant main effect of GROUP (P > 0.05) was found in all ANOVAs. 

Significant CONNECTION x GROUP interactions were found for endogenous connectivity 

(F (667, 29) = 1.508; P < 0.05) and affected/non-dominant hand movements at fixed (F (667, 

29) = 2.235; P < 0.001) and adjusted (F (667, 29) = 2.668; P < 0.001) movement frequencies 

but not for movements of the unaffected/non-dominant hand (P > 0.05). This finding indicates 

that stroke patients differed significantly from healthy control subjects (i) in the task-

independent component of effective connectivity and (ii) in modulations induced by affected 

hand movements (but not by modulations induced by unaffected hand movements). Post-hoc 

t-tests revealed that stroke patients had decreased endogenous connectivity originating from 

premotor areas of the ipsilesional hemisphere onto areas of the contralesional hemisphere 

when compared to control subjects (Figure 5.11A; P < 0.05, Dunn-corrected). More 

specifically, patients had reduced positive coupling between the SMA of the ipsilesional 

hemisphere and SMA as well as vPMC of the contralesional hemisphere. Moreover, there was 

decreased coupling strength between vPMC of the ipsilesional hemisphere and M1 of the 

contralesional hemisphere (Figure 5.11A).  
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Figure 5.11: Study III: Significant differences between chronic stroke patients (n = 13) and age-

matched healthy subjects (n = 12) in effective connectivity assessed by dynamic causal modelling 

(DCM) are shown (P < 0.05, corrected). Numbers indicate the difference in mean coupling strength (in 

Hz) between groups. Green arrows indicate that activity in the source region increased activity in the 

target region (positive coupling parameter, facilitation) whereas red arrows indicate that activity in the 

source region decreased activity in the target region (negative coupling parameter, inhibition). Stroke 

patients showed significantly reduced promoting influences originating from premotor areas of the 

ipsilesional hemisphere onto areas of the contralesional hemisphere in absence of a specific task 

(Figure 5.11A). Movements of the stroke affected hand were associated with significantly reduced 

negative coupling, i.e. disinhibition of the contralesional primary motor cortex (M1) ipsilateral to the 

moving hand. Disinhibition of the contralesional hemisphere was significantly associated with more 

severe clinical impairment (P < 0.05, FDR-corrected). Results were similar for the fixed and the 

adjusted movement frequency condition (Figure 5.11B and 5.11C). 
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5.3.5.3.2 Task-modulated connectivity 

However, there were also differences between groups in modulations of effective connectivity 

induced by affected/non-dominant hand movements. Movements of the stroke affected hand 

were associated with reduced negative coupling, i.e. disinhibition of the contralesional M1 

ipsilateral to the moving hand. More specifically, inhibition originating from ipsilesional M1, 

ipsilesional SMA, and contralesional SMA onto contralesional M1 was significantly reduced 

compared to healthy controls (Figure 5.11B; P < 0.05, Dunn-corrected). Results were similar 

for the fixed and the adjusted movement frequency condition (Figure 5.11B and 5.11C).  

To investigate whether reduced endogenous connectivity or disinhibition of the contralesional 

M1 during affected hand movements related to clinical deficit or lesion characteristics, we 

correlated coupling parameters with CIS, lesion size, lesion age, and CST damage. No 

significant correlations were found for endogenous connectivity suggesting that decreased 

promoting influences originating from premotor areas of the ipsilesional hemisphere were not 

associated with clinical deficit. In contrast, coupling parameters modulated by movements of 

the affected hand were significantly correlated with clinical impairment. All coupling 

parameters modulated by adjusted hand movements which showed a significant difference 

between groups (Figure 5.11B) correlated significantly with CIS (P < 0.05, FDR-corrected). 

For the fixed movement frequency condition, only the connection from the ipsilesional M1 

onto the contralesional M1 correlated significantly with CIS (P < 0.05, FDR-corrected) 

whereas correlations for the other two connections did not pass correction for multiple 

comparisons (P < 0.05, uncorrected). These findings suggest that disinhibition of the 

contralesional hemisphere during affected hand movements is associated with more severe 

clinical impairment.  

 

5.3.5.4 Effective connectivity as predictor for TBS effects 

To investigate whether motor network interactions predict behavioural improvements after 

TBS, we correlated coupling parameters of M1 connections with TBS improvement scores. 

There were no significant correlations for movement-related modulations of effective 

connectivity. Hence, although patients showed reduced inhibition of the contralesional 

hemisphere during movements of the affected hand, movement-related disinhibition of the 

contralesional hemisphere did not predict behavioural TBS effects. Interestingly, behavioural 

improvements of the affected hand after iTBS were predicted by endogenous effective 
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connectivity. The stronger the promoting influence from ipsilesional SMA onto ipsilesional 

M1 and the stronger the inhibition originating from ipsilesional M1 onto contralesional M1, 

the more likely a patient showed improvements of the affected hand after facilitatory iTBS 

applied to the ipsilesional hemisphere. Both correlations were highly significant (SMA-M1: r 

= 0.709; P < 0.05, FDR-corrected; M1-M1: r = -0.764; P < 0.05, FDR-corrected; Figure 5.12) 

and suggest that both, preserved supportive role of the ipsilesional SMA and preserved 

inhibition of contralesional M1 might constitute essential pre-conditions which are needed to 

produce beneficial effects of iTBS over the ipsilesional hemisphere. A coupling strength of 

approximately +0.24 (SMA-M1 connection) and -0.16 (M1-M1 connection) respectively was 

necessarily to generate improvements of the affected hand after iTBS. No significant 

correlations were found for behavioural changes of the unaffected hand or improvements of 

the affected hand following cTBS. 
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Figure 5.12: Study III: Correlation between endogenous connectivity and theta-burst stimulation 

(TBS) effects. Task-independent (endogenous) effective connectivity was obtained from 13 chronic 

stroke patients by means of dynamic causal modelling (DCM). Individual coupling parameters (in Hz) 

were correlated with individual changes in motor performance following TBS (motor improvement 

score). The stronger the promoting influence from the ipsilesional supplementary motor area (SMA) 

onto the ipsilesional primary motor cortex (M1) was, and the stronger the inhibition originating from 

the ipsilesional M1 onto the contralesional M1 was, the more likely a patient showed improvements of 

the affected hand after facilitatory iTBS applied to the ipsilesional hemisphere. No significant 

correlations were found for changes in motor performance of the unaffected hand or improvements of 

the affected hand following inhibitory continuous TBS (cTBS) over the contralesional hemisphere. 

(FDR: false-discovery rate; L: left; PMC: premotor cortex; R: right) 

 

5.3.6 Correlation between IHI probed by DCM and paired-pulse TMS 

The relationship between effective connectivity probed by DCM and TMS is unknown but 

one might expect that task-independent (i.e. endogenous) effective connectivity between 

primary motor cortices probed by DCM (Friston et al., 2003) resembles IHI probed by paired-

pulse TMS at rest (Ferbert et al., 1992). We found that TBS effects were significantly 

predicted by IHI from ipsilesional M1 to contralesional M1 probed by DCM but not by IHI 

probed by paired-pulse TMS. To investigate the relationship between IHI obtained by these 

two different approaches we performed correlation analyses in healthy subjects and stroke 

patients separately. None of the correlations was statistically significant (P > 0.05) indicating 

that DCM and TMS yielded different measures of IHI in healthy subjects and stroke patients. 

 

5.3.7 Clinical impairment as predictor for TBS effects 

To investigate whether clinical impairment predicted behavioural TBS effects, we correlated 

behavioural improvements after TBS with mRS, NIHSS, ARAT, and the overall clinical 

impairment score (CIS). No relationship was found between clinical scales and behavioural 

effects in the affected hand after cTBS or for behavioural effects in the unaffected hand. 

There was a statistical trend for a correlation between improvements of the affected hand after 

iTBS and mRS (r = -0.490; P = 0.089) indicating that less impaired patients were more likely 

to show improvements of the affected hand after iTBS over the ipsilesional hemisphere than 

more severely affected patients.  
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5.3.8 Lesion characteristics as predictors for TBS effects 

The voxel-based lesion symptom mapping (VLSM) analysis suggested a relationship between 

lesions in CST and behavioural improvements of the affected hand after iTBS. Patients with 

lesions comprising a region within the right CST (MNI coordinates: 28, -15, 26; probability 

for right CST: 81% according to human post-mortem cytoarchitectonic probability maps of 

the Juelich Histological Atlas; Eickhoff et al., 2005, 2007) were less likely to benefit from 

facilitatory iTBS applied to the ipsilesional hemisphere (Z > 2.5, uncorrected; Figure 5.13). 

This finding suggests that facilitatory iTBS applied to the ipsilesional hemisphere is less 

effective in patients in whom descending fibres from ipsilesional M1 are dissected at the level 

of the CST. No relationship was found between lesion locations and behavioural effects in the 

unaffected hand or for behavioural effects induced by cTBS. However, the amount of 

damaged CST volume in relation to the entire CST volume was not significantly correlated 

with behavioural improvements indicating that not CST damage in general but damage to the 

CST at this position might predict poor behavioural response to iTBS. No significant 

correlations were found between behavioural TBS effects and lesion size or lesion age (P > 

0.05). 

 

 

 
Figure 5.13: Study III: Results of the voxel-based lesion symptom mapping (VLSM). VLSM was 

performed to assess whether lesion location predicts theta-burst stimulation (TBS) effects on motor 

performance of the affected hand. Binary lesion masks were constructed based on the high-resolution 

anatomical T1-weighted image of each patient and normalized to MNI space. Patients were classified 

into two groups based on a median split of motor improvement scores. Behavioural improvements 

were entered as binary behaviour (responder = 1; non-responder = 0) using Liebermeister analysis. 

Patients with lesions comprising a region within the right (ipsilesional) cortico-spinal tract (CST), 

were less likely to benefit from facilitatory intermittent TBS (iTBS) applied to the ipsilesional 

hemisphere (MNI coordinates: 28, -15, 26; Z > 2.5, uncorrected). This finding suggests that iTBS is 

less effective in patients in whom descending fibres from ipsilesional primary motor cortex are 

dissected at the level of the CST. No relationship was found between lesion locations and behavioural 

effects in the unaffected hand or for behavioural effects induced by inhibitory continuous TBS (cTBS) 

applied to the contralesional hemisphere. 
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5.3.9 Summary results Study III 

The major goal of the present study was to identify reliable predictors for behavioural 

improvements of the affected hand induced by facilitatory iTBS applied to the ipsilesional 

hemisphere and inhibitory cTBS applied to the contralesional hemisphere of chronic stroke 

patients. Neither iTBS nor cTBS was significantly different from control TBS in terms of 

average behavioural (or electrophysiological) changes over the group of patients. This was 

due to relatively high inter-individual variability, i.e. some patients showed improvements 

whereas others showed no improvements or even deterioration. Interestingly, behavioural 

improvements of the affected hand following iTBS were predicted by lateralization of the 

fMRI BOLD signal and motor network connectivity. Patients with lateralized fMRI activation 

patterns during affected hand movements were more likely to benefit from iTBS than patients 

with enhanced fMRI signal in both hemispheres, i.e. patients with bilateral fMRI activation 

patterns. Additionally, we found that patients who had a pronounced promoting influence 

originating from ipsilesional SMA onto ipsilesional M1 and patients who had pronounced 

inhibition originating from ipsilesional M1 onto contralesional M1 were more likely to benefit 

from iTBS over the ipsilesional hemisphere. Hence, patients showing improvements after 

iTBS had fMRI activation patterns and network interactions which can be regarded more 

physiological. These findings suggest that both intact motor network interactions in the 

ipsilesional hemisphere (such as supportive role of the ipsilesional SMA) and preserved 

inhibition of the contralesional hemisphere are crucial for improvements after iTBS. 

Furthermore we found some evidence that patients with CST lesions were less likely to 

benefit from iTBS over the ipsilesional hemisphere presumably because integrity of motor 

neurons descending from ipsilesional M1 is crucial to generate iTBS effects. In line with 

these suggestions, there was a tendency that more severely affected patients were less likely 

to experience beneficial effects of iTBS over the ipsilesional hemisphere. 

Electrophysiological TMS parameters and fMRI signal in discrete brain regions were poor 

predictors for behavioural TBS effects. No significant correlations were found for behavioural 

improvements following cTBS or behavioural changes of the unaffected hand. 
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5.4 Discussion Study III 

The major goal of Study III was to identify reliable predictors for therapeutic TBS effects in 

chronic stroke patients. The main finding of the study was that behavioural improvements of 

the affected hand after facilitatory iTBS applied to the ipsilesional hemisphere were predicted 

by a more lateralized (i.e. physiological) fMRI activation pattern (towards the ipsilesional 

hemisphere during movements of the affected hand) and by motor network interactions such 

as: (i) pronounced promoting influence from the ipsilesional SMA onto the ipsilesional M1, 

and (ii) pronounced inhibition from ipsilesional M1 to contralesional M1. In the following, 

TBS effects on motor performance of the affected hand and motor cortex excitability are 

discussed first (cf. 5.4.1), followed by differences between stroke patients and healthy 

subjects in parameters obtained at baseline (cf. 5.4.2). Finally, parameters predicting rTMS 

effects are discussed (cf. 5.4.3). 

 

5.4.1 TBS effects in stroke patients 

According to the model of hemispheric competition, we expected that both facilitatory iTBS 

applied to the ipsilesional hemisphere and inhibitory cTBS applied to the contralesional 

hemisphere would result in significantly increased excitability of the ipsilesional hemisphere 

and behavioural improvements of the paretic hand (Khedr & Fetoh, 2010; Nowak et al., 

2010). The latter approach relies on observations that in some stroke patients the 

contralesional hemisphere exerts pathologically increased IHI onto the ipsilesional 

hemisphere (Grefkes et al., 2008b, 2010; Murase et al., 2004) and that decreasing excitability 

of one motor cortex increases excitability of the contralateral motor cortex presumably due to 

a reduction in IHI (Gilio et al., 2003; Schambra et al., 2003; Heide et al., 2006).  

However, in the present study we found no significant difference between iTBS, cTBS, and 

control TBS (over the parieto-occipital midsagittal line) in average behavioural or 

electrophysiological changes over the group of patients. Also several other studies did not 

find significant increases in MEP size following low-frequency (Bagnato et al., 2005; 

Daskalakis et al., 2006; Modugno et al., 2003; Pal et al., 2005) or high-frequency rTMS 

(Fitzgerald et al. 2007; Suppa et al., 2008) in healthy subjects or in chronic stroke patients 

(low frequency: Carey et al., 2008; high-frequency: Malcom et al., 2007). In the present 

study, there was no average improvement over the group of patients due to considerably high 
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inter-individual variance which was also found in several other rTMS studies (e.g. Daskalakis 

et al., 2006; Van Der Werf & Paus, 2006; Muller-Dahlhaus et al., 2008).  

Until now, studies using TBS to reconstitute hemispheric balance and improve motor 

performance of the paretic hand are scarce (Table 5.3). Di Lazzaro and colleagues (2010) 

found that excitability of the ipsilesional hemisphere was significantly increased, whereas 

excitability of the contralesional hemisphere was significantly decreased following 

facilitatory iTBS over the ipsilesional hemisphere in 16 acute to subacute stroke patients (< 

10 days after stroke; with cortical and subcortical lesions). Interestingly, this study also 

demonstrated that favourable clinical outcome (as indicated by mRS after 6 months) was 

associated with relatively low initial excitability of the contralesional hemisphere and 

pronounced LTP-like effects in the ipsilesional and LTD-like effects in the contralesional 

hemisphere following iTBS. This finding strongly suggests that spontaneous recovery of 

function relies on the capability to induce cortical plasticity which seems to be the 

neurophysiological basis for functional reorganization. Hence, these findings strongly support 

the use of non-invasive stimulation techniques (which have been demonstrated to enhance 

cortical plasticity) to promote recovery of function after stroke.  

In an earlier study, Di Lazzaro and colleagues (2008a) investigated both facilitatory and 

inhibitory TBS effects in 12 acute to subacute stroke patients (≤ 10 days after stroke; with 

cortical and subcortical lesions) and 12 age-matched healthy control subjects. As suggested 

by the model of interhemispheric competition, both iTBS over the ipsilesional hemisphere and 

cTBS over the contralesional hemisphere increased excitability of the ipsilesional hemisphere 

and decreased excitability of the contralesional hemisphere in acute to subacute stroke 

patients. The effect was slightly stronger for iTBS than for cTBS (increase in MEP size after 

iTBS: 20%, after cTBS: 16%) although this difference between TBS protocols was not 

statistically significant. Interestingly, TBS effects were comparable in healthy subjects and 

stroke patients. Unfortunately, behavioural effects were not investigated in neither of the 

studies published by Di Lazzaro et al. (2008a, 2010). In the present study, excitability of the 

ipsilesional hemisphere was not significantly increased over the group of patients, but in line 

with the model of interhemispheric competition and results of Di Lazzaro et al. (2008a, 2010) 

excitability of the contralesional hemisphere tended to be decreased after both iTBS and 

cTBS. The decrease in corticospinal excitability was mirrored by a tendency for deteriorated 

motor performance of the unaffected hand after both iTBS and cTBS. This finding indicates 

that iTBS and cTBS impacted on excitability of the contralesional hemisphere and motor 
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performance of the unaffected hand, whereas changes in the ipsilesional hemisphere and 

affected hand were more variable across subjects and hence did not result in a net increase 

over the group of patients. Why our results differ from findings of Di Lazzaro et al. (2008a, 

2010) is unclear but might be due to methodological differences. In studies of Di Lazzaro et 

al. results were not compared with control stimulation, patients were more severely affected, 

had exclusively subcortical lesions and were in the acute to subacute stage (< 10 days after 

stroke). 
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Table 5.3: Study III: Summary of previous studies using theta-burst stimulation (TBS) to modulate cortical excitability in stroke patients 
Study Subjects Lesion 

locations 

Clinical phase TBS protocols Outcome measures Results 

Ackerley et al. (2010) 10 patients Subcortical Chronic phase (> 6 

months) 

1) iTBS (90% AMT; 600 stimuli) 

applied to IL 

2) cTBS (90% AMT; 600 stimuli) 

applied to CL 

3) Sham TBS (sham coil, applied to 

IL or CL) 

 

Each followed by motor training 

- MEP size of AH  

- Grip-lift kinematics of 

AH 

 

1) iTBS + training:  

- MEP AH ↑ 

- Movement kinematics 

AH ↑  

2) cTBS + training: 

- MEP AH ↔ (strong 

trend for ↓) 

- Movement kinematics 

AH ↑ 

- ARAT AH ↓ 

3) Sham + training: 

- MEP AH ↔ 

Movement kinematics 

AH ↓ 

Di Lazzaro et al. 

(2008a) 

12 patients & 12 age-

matched healthy 

controls 

Cortical & 

subcortical 

Acute phase (≤ 10 

days) 

1) iTBS (80% AMT; 600 stimuli) 

applied to IL 

2) cTBS (80% AMT; 600 stimuli) 

applied to CL 

 

- MEP size of AH & 

UH 

 

iTBS:  

- MEP AH ↑ 

- MEP UH ↓ 

cTBS: 

- MEP AH ↑ 

- MEP UH ↓ 

Di Lazzaro et al. (2010) 16 patients Cortical & 

subcortical 

Acute phase (< 10 

days) 

1) iTBS (80% AMT; 600 stimuli) 

applied to IL 

 

- MEP size of AH & 

UH 

 

iTBS:  

- MEP AH ↑ 

- MEP UH ↓ 

Talelli et al. (2007) 6 patients Cortical & 

subcortical 

Chronic phase              

(> 12 months) 

1) iTBS (80% AMT; 600 stimuli) 

applied to IL 

2) cTBS (80% AMT; 300 stimuli) 

applied to CL 

3) Control TBS (50% max. output; 

angulated coil; cTBS or iTBS 

applied to IL or CL) 

 

- MEP size of AH 

(cTBS: AH & UH) 

- Simple reaction time 

(SRT) of AH 

- Choice reaction time 

(CRT) of AH (cTBS: 

AH & UH)  

iTBS:  

- MEP AH ↑ 

- SRT AH ↓ 

- CRT AH ↔ 

cTBS: 

- MEP AH ↔ 

- MEP UH ↓ 

- SRT AH ↔ 

- CRT AH ↔ 

- CRT UH ↔ 
AH = affected hand; AMT = active motor threshold; ARAT = action research arm test; CL = contralesional hemisphere; CRT = choice reaction time; cTBS = continuous theta-burst stimulation; IL = 

ipsilesional hemisphere; iTBS = intermittent theta-burst stimulation; MEP = motor-evoked potential; SRT = simple reaction time; TBS = theta-burst stimulation; UH = unaffected hand 
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However, TBS effects have also been demonstrated for chronic stroke patients although more 

convincing for iTBS than for cTBS (Ackerley et al., 2010; Talelli et al., 2007). Talelli and 

colleagues (2007) investigated TBS effects in six chronic stroke patients (> 1 year and up to 9 

years after stroke) with motor hand deficits and cortical or subcortical lesions and found that 

iTBS applied to the ipsilesional hemisphere (but not cTBS or sham stimulation) resulted in 

significantly increased excitability of the ipsilesional hemisphere and shorter simple reaction 

times (but not choice reaction times) of the affected hand for up to 30 minutes. This finding 

suggests that iTBS might be more effective than cTBS in chronic stroke patients, but is more 

likely to impact on simple rather than complex motor behaviour. In line with our results, 

cTBS applied to the contralesional hemisphere was successful in decreasing excitability of the 

contralesional hemisphere in the study of Talelli et al. (2007), but did not increase excitability 

of the ipsilesional hemisphere or result in significant improvements of the affected hand. The 

authors suggested that this finding might indicate that the effect of stimulation was not 

transmitted to the contralateral (i.e. ipsilesional) hemisphere because transcallosal fibres have 

been suggested to require higher stimulation intensities for excitation than usually used for 

TBS (Talelli et al., 2007). However, this suggestion is not supported by results in the present 

study, since we found decreased excitability of the contralesional hemisphere after both cTBS 

and iTBS (and the latter approach requires interhemispheric transmission to generate this 

effect). Since we found decreased excitability of the contralesional hemisphere but unchanged 

excitability of the ipsilesional hemisphere after TBS, our results imply that the contralesional 

hemisphere responds to TBS as proposed by the model of hemispheric competition whereas 

the ipsilesional hemisphere shows no consistent change. It might be more difficult to induce 

consistent effects in the less intact ipsilesional hemisphere due to stroke induced changes such 

as altered synaptic plasticity which might interfere with induction of beneficial TBS effects in 

some of the patients. 

Also in the study of Ackerley and colleagues (2010) iTBS resulted in more convincing results 

than cTBS when combined with upper-limb training (and compared to sham stimulation 

combined with training) in 10 chronic stroke patients (> 6 months since stroke; with 

subcortical lesions). As hypothesized, excitability of the ipsilesional hemisphere was 

increased after iTBS over the ipsilesional hemisphere, but surprisingly, it was decreased after 

cTBS over the contralesional hemisphere. Behavioural effects of cTBS were controversial. 

Although, grip-lift kinematics of the paretic hand improved after training combined with real 

iTBS or real cTBS (but deteriorated after training combined with sham stimulation), cTBS 
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combined with training deteriorated overall upper-limb function (as probed by the ARAT). 

This deterioration was significantly correlated with decreased excitability of the ipsilesional 

hemisphere. The authors suggested that inhibitory cTBS applied to the contralesional 

hemisphere might deteriorate motor performance of the affected hand because the 

contralesional hemisphere might play a pivotal role in stroke recovery. Also we did not find 

decreased excitability of the ipsilesional hemisphere after TBS in the present study, our 

results likewise indicate that (at least some) patients might deteriorate after TBS. This finding 

is also in line with a study of Ameli and colleagues (2009) who found that 7 out of 13 patients 

with cortico-subcortical lesions (but only one patient with a purely subcortical lesion) 

deteriorated after facilitatory 10 Hz rTMS applied to the ipsilesional hemisphere. 

 

Taken together, our results suggest high inter-individual variance in TBS induced changes in 

corticospinal excitability and motor performance, especially in the ipsilesional hemisphere 

and the paretic hand. 

 

5.4.2 Baseline parameters – differences between patients and controls 

Compared to healthy subjects, stroke patients in the chronic stage showed several 

abnormalities in TMS and fMRI parameters at baseline (Table 5.4) such as:  

1) Decreased SICI (i.e. less intracortical inhibition) in the ipsilesional hemisphere 

2) Increased fMRI signal in contralesional M1 (ipsilateral to hand movements) during 

movements of the affected hand (as suggested by the ROI analysis) 

3) Decreased laterality (i.e. more bilateral activation) of fMRI signal in M1 during 

movements of the affected hand (LIBA4) 

4) Decreased inhibitory influence from bilateral SMA and ipsilesional M1 to 

contralesional M1 during movements of the affected hand (modulatory effective 

connectivity) 

5) Decreased promoting influence from ipsilesional SMA and vPMC onto motor areas of 

the contralesional hemisphere (endogenous effective connectivity) 

 

Differences between stroke patients in the chronic stage compared to healthy subjects in TMS 

and fMRI parameters at baseline are discussed in front of the literature in the following 
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section. Additionally, to elucidate the functional role of stroke induced changes further, the 

relationship between baseline parameters and clinical deficit is discussed. 

 

Table 5.4: Study III: Summary of results 

  

Mean (SD) for 

healthy subjects 

Mean (SD) for 

stroke patients 

Differences 

between 

patients and 

controls 

Correlation with 

clinical 

impairment 

score (CIS) 

Correlation with 

motor 

improvement 

score (MIS) 

RMT 

IL 

 

39.273 

(5.101) 

40.846 

(11.929) 
n.s. n.s. n.s. 

CL 

 

38.909 

(6.685) 

36.615 

(4.032) 
n.s. n.s. n.s. 

AMT 

IL 

 

32.545 

(3.882) 

33.092 

(10.220) 
n.s. n.s. n.s. 

CL 

 

32.000 

(4.472) 

27.277 

(4.317) 
n.s. n.s. n.s. 

SICI 

IL 

 

46.024 

(26.887) 

 

 

75.630 

(24.589) 

T = 2.695 

P = 0.014 
n.s. n.s. 

CL 

 

44.761 

(23.046) 

 

46.526 

(12.904) 
n.s. n.s. n.s. 

IHI 

IL to CL 

 

55.964 

(35.693) 

 

45.773 

(25.379) 
n.s. 

r = 0.670 * 

P = 0.017 
n.s. 

CL to IL 

 

51.708 

(33.804) 

 

57.932 

(36.746) 
n.s. n.s. n.s. 

ROI-CL 

Fixed 

M1 
-0.011 

(0.313) 

0.581 

(0.600) 

T = 2.608 

P = 0.016 
n.s. n.s. 

SMA 
1.160 

(0.436) 

1.259 

(0.596) 
n.s. n.s. n.s. 

vPMC 
0.930 

(0.477) 

0.885 

(0.486) 
n.s. n.s. n.s. 

ROI-CL 

Adjusted 

M1 
-0.061 

(0.377) 

0.420 

(0.526) 

T = 3.049 

P = 0.006 
n.s. n.s. 

SMA 
1.161 

(0.470) 

1.104 

(0.674) 
n.s. n.s. n.s. 

vPMC 
0.936 

(0.640) 

0.822 

(0.462) 

 

 

 

n.s. n.s. n.s. 

LI 

Fixed 

LIBA4 
-0.835 

(0.240) 

-0.299 

(0.780) 

T = 2.345 

P = 0.029 
n.s. n.s. 

LIBA6 
-0.305 

(0.257) 

-0.175 

(0.289) 
n.s. n.s. 

r = -0.714 

P = 0.006 

LIBA4+BA6 
-0.360 

(0.249) 

-0.200 

(0.272) 
n.s. n.s. 

r = -0.735 

P = 0.004 

LI 

Adjusted 

LIBA4 
-0.811 

(0.292) 

-0.302 

(0.689) 

T = 2.179 

P = 0.041 
n.s. n.s. 

LIBA6 
-0.311 

(0.190) 

-0.237 

(0.373) 
n.s. n.s. 

r = -0.732 

P = 0.004 

LIBA4+BA6 
-0.385 

(0.222) 

-0.285 

(0.336) 
n.s. n.s. 

r = -0.762 

P = 0.002 

DCM-B 

Fixed 

SMA CL – 

M1 CL 

-0.080 

(0.049) 

-0.040 

(0.044) 

T = -2.170 

P = 0.041 

r = 0.555 * 

P = 0.049 
n.s. 

SMA IL – 

M1 CL 

-0.101 

(0.416) 

-0.056 

(-0.051) 

T = -2.383 

P = 0.026 

r = 0.571 * 

P = 0.042 
n.s. 

M1 IL – 

M1 CL 

-0.066 

(0.031) 

-0.028 

(0.035) 

T = -2.873 

P = 0.009 

r = 0.631 

P = 0.021 
n.s. 

DCM-B 

Adjusted 

SMA CL – 

M1 CL 

-0.091 

(0.042) 

-0.042 

(0.032) 

T = -3.255 

P = 0.003 

r = 0.741 

P = 0.004 
n.s. 

SMA IL – 

M1 CL 

-0.118 

(0.034) 

-0.068 

(0.037) 

T = -3.529 

P = 0.002 

r = 0.740 

P = 0.004 
n.s. 

M1 IL – 

M1 CL 

-0.070 

(0.023) 

-0.036 

(0.024) 

T = -3.710 

P = 0.001 

r = 0.717 

P = 0.006 
n.s. 
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DCM-A 

 

SMA IL –

SMA CL 

0.166 

(0.060) 

 

0.089 

(0.104) 

T = 2.234 

P = 0.036 
n.s. n.s. 

SMA IL – 

vPMC CL 

0.120 

(0.063) 

0.052 

(0.089) 

T = 2.216 

P = 0.037 
n.s. n.s. 

vPMC IL – 

M1 CL 

0.113 

(0.046) 

0.036 

(0.097) 

T = 2.497 

P = 0.020 
n.s. n.s. 

SMA IL – 

M1 IL 

0.235 

(0.099) 

0.250 

(0.106) 
n.s. n.s. 

r = 0.709 

P = 0.007 

M1 IL – 

M1 CL 

-0.169 

(0.084) 

-0.163 

(0.087) 
n.s. n.s. 

r = 0.764 

P = 0.002 

 

* Correlation did not reach significance after correction for multiple comparisons 

Adjusted = the movement frequency during the fMRI experiment was adjusted to motor performance (40% of 

the maximum frequency)  

AMT = Active motor threshold (higher value indicate lower excitability) 

BA4 = Brodmann area 4 (primary motor cortex) 

BA6 = Brodmann area 6 (premotor cortex) 

CL = Contralesional hemisphere (dominant hemisphere in healthy subjects) 

DCM-A = Endogenous effective connectivity (positive values indicate promoting influences, negative values 

indicate inhibitory influences) 

DCM-B = modulatory effects of movements of the affected/non-dominant hand on effective connectivity 

(positive values indicate promoting influences, negative values indicate inhibitory influences) 

Fixed = the movement frequency during the fMRI experiment was fixed (0.8 Hz) 

fMRI = Functional magnetic resonance imaging 

IHI = Interhemispheric inhibition (higher value indicates less inhibition)  

IL = Ipsilesional hemisphere (non-dominant hemisphere in healthy subjects)  

LI = Laterality index during movements of the affected/non-dominant hand  

 -1 = complete lateralization to the ipsilesional/non-dominant hemisphere 

   1 = complete lateralization to the contralesional/dominant hemisphere 

   0 = no lateralization 

M1 = Primary motor cortex  

n.s. = Not significant (P > 0.05, FDR-corrected for multiple comparisons) 

RMT = Resting motor threshold (higher values indicate lower excitability) 

ROI-CL = fMRI signal in the contralesional/dominant hemisphere during movements of the affected/non-

dominant hand (higher values indicate higher signal change) 

SD = Standard deviation 

SICI = Short-interval intracortical inhibition (higher values indicate less inhibition) 

SMA = Supplementary motor area 

vPMC = Ventral premotor cortex  
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5.4.2.1 Electrophysiological TMS parameters 

5.4.2.1.1 MEP and MT in chronic stroke patients 

Corticospinal excitability of the ipsilesional hemisphere is often decreased (i.e. MT is 

increased) early after stroke, i.e. in acute to subacute stages (cf. 1.4.2.1.1). However, 

excitability of the ipsilesional hemisphere increases gradually over time (Catano et al., 1996; 

Heald et al., 1993; Manganotti et al., 2002; Thickbroom et al., 2002; Traversa et al., 2000; 

Turton et al., 1996). In the present study, we found no statistically significant difference 

between chronic stroke patients and healthy control subjects in motor thresholds (i.e. RMT or 

AMT). This finding is in line with other studies suggesting that motor thresholds of stroke 

patients tend to normalize in chronic stages (Floel et al., 2008; Murase et al., 2004; Nair et al., 

2007). However, motor thresholds have been demonstrated to be higher in patients with more 

severe deficits (Catano et al., 1996; Heald et al., 1993; Manganotti et al., 2002; Pennisi et al., 

2002; Thickbroom et al., 2002; Traversa et al., 2000; Turton et al., 1996; Werhahn et al., 

2003). In line with these studies, we found an association between AMT and upper-limb 

dysfunction as indicated by ARAT scores, i.e. patients with high AMT on the ipsilesional 

hemisphere were more severely impaired than patients with lower AMT on the ipsilesional 

hemisphere. When patients were separated in more severely and mildly impaired patients 

according to a median split on ARAT scores, patients with more severe upper-limb 

dysfunction had significantly increased motor thresholds assessed for the ipsilesional (but not 

the contralesional) hemisphere compared to mildly impaired patients. In line with our results, 

Werhahn and colleagues (2003) found that excitability thresholds were significantly increased 

only in patients with poor recovery. Also in line with these findings, Byrnes and colleagues 

(2001) found increased AMT in only 3 of 10 mildly impaired chronic stroke patients. 

Previous studies suggest that MTs of the contralesional hemisphere are usually within normal 

limits in the chronic phase (Cicinelli et al., 2003; Pennisi et al., 2002; Traversa et al., 2000) 

which is in agreement with results of the present study.  
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5.4.2.1.2 SICI in chronic stroke patients 

Early after stroke (i.e. in acute to subacute stages), SICI is decreased not only in the 

ipsilesional, but also in the contralesional hemisphere (cf. 1.4.3.1.1.1). Data on SICI in 

chronic patients are scarce but there is some evidence that SICI tends to normalize in chronic 

stages (Wittenberg et al., 2003). In the present study, we found evidence for reduced SICI in 

the ipsilesional, but not the contralesional hemisphere, in chronic stroke patients. Our findings 

are in line with a recent study of Berweck et al. (2008) who found reduced SICI on the 

ipsilesional hemisphere in patients with congenital cortico-subcortical stroke. Shimizu and 

colleagues (2002) found that SICI was decreased in 12 patients with cortical lesions but was 

unchanged in patients with subcortical lesions, whereas, others found that SICI was 

independent of lesion site (Cicinelli et al., 2003; Manganotti et al., 2002). The functional role 

or consequences of reduced SICI are still unclear. Neural circuits involved in SICI are thought 

to focus excitatory motor input onto appropriate outputs, and hence reduced SICI may lead to 

problems in selecting appropriate combinations of muscles in a particular movement (Talelli 

et al., 2006). Alternatively, reduced SICI has also been suggested to increase excitability of 

remaining output immediately after the injury, which might allow functional reorganization in 

the long run by unmasking alternative pathways. Correlations between SICI and clinical 

recovery are conflicting. Manganotti et al. (2002) found that normalisation of SICI on the 

contralesional hemisphere was associated with recovery. However, Butefisch et al. (2003) 

found that especially patients with good clinical progress showed a shift of intracortical 

excitability towards facilitation in the contralesional hemisphere and Liepert and colleagues 

did not find any relation (Liepert et al., 2000; Shimizu et al., 2002). In the present study, 

reduced SICI in the ipsilesional hemisphere tended to be associated with better performance 

of the affected hand which supports the hypothesis that decreased SICI might be supportive. 

 

5.4.2.1.3 IHI in chronic stroke patients 

In the subacute stage, IHI from the ipsilesional to the contralesional hemisphere was 

demonstrated to be reduced whereas IHI in the opposite direction remained unchanged (cf. 

1.4.3.2.1.1). In the present study, we found no significant difference between chronic stroke 

patients and healthy control subjects in IHI. In line with this finding, Shimizu and colleagues 

(2002) found a significant relationship between IHI and duration of the disease, which 

indicates that IHI targeting the contralesional hemisphere is reduced in patients early after 
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stroke (< 4 months), but tends to normalize with time. Our finding is also in line with results 

of Murase and colleagues (2004) who found that IHI was not significantly different between 

patients in the chronic phase and healthy controls if assessed in resting conditions. 

Interestingly, Murase et al. (2004) and Duque et al., (2005) also investigated the time-

dependent modulation of IHI during movement preparation. Both studies reported significant 

disturbances in chronic stroke patients with subcortical lesions compared to healthy controls 

(Duque et al., 2005; Murase et al., 2004). Whereas healthy subjects showed a reversal from 

IHI into IHF (from the “resting” onto the “active” hemisphere) shortly before movement 

initiation, IHI targeting the ipsilesional hemisphere persisted uninfluenced from movement 

preparation of the affected hand in chronic stroke patients (Duque et al., 2005; Murase et al., 

2004). This finding was specific for movements of the paretic hand, since IHI targeting the 

contralesional hemisphere during movement preparation of the unaffected hand was 

unchanged in stroke patients compared to controls (Duque et al., 2005). Interestingly, 

persistence of IHI targeting the ipsilesional hemisphere was significantly associated with 

severity of motor deficits (Murase et al., 2004) suggesting a detrimental role of the 

contralesional hemisphere during paretic hand movements. The relationship between IHI 

measured at rest and clinical impairment is unknown but results of the present study suggest 

that chronic patients with preserved inhibition of the contralesional hemisphere at rest are less 

severely affected. This finding is in line with growing body evidence suggesting hemispheric 

imbalance and a detrimental role of the contralesional hemisphere in chronic stroke patients. 

 

In summary, our data suggest that MTs and reciprocal IHI at rest tend to normalize in the 

chronic phase. However, more severely affected stroke patients may still show decreased 

excitability (i.e. increased MTs) on the ipsilesional hemisphere and reduced IHI from the 

ipsilesional to the contralesional hemisphere. Patients had significantly reduced SICI on the 

ipsilesional hemisphere which was associated with better motor performance of the affected 

hand suggesting a supportive role of reduced SICI resulting in maximum possible 

corticospinal output of the ipsilesional hemisphere by unmasking of alternative neuronal 

pathways. 
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5.4.3 Movement related fMRI signal 

5.4.3.1 Movement related fMRI signal in healthy subjects 

In line with previous reports, healthy subjects showed increased fMRI BOLD signal in 

contralateral primary motor cortex (M1), contralateral primary somatosensory cortex (S1), 

bilateral supplementary motor area (SMA), and bilateral ventral and dorsal premotor cortex 

(vPMC, dPMC) during movement execution (Richter et al., 1997). Although neural activity 

during movement execution might be bilaterally organised in healthy subjects, activity in 

cortical motor areas is more lateralized to the hemisphere contralateral to the movement 

(Mattay & Weinberger, 1999; Richter et al., 1997). Activity in M1 is particularly lateralized 

to the contralateral hemisphere and activity in ipsilateral M1 occurs only at high levels of task 

complexity (Mattay et al., 1998).  

 

5.4.3.2 Movement related fMRI signal early after stroke 

In a very recent study, Rehme and colleagues (2011b) investigated movement-related fMRI 

BOLD signal in 11 stroke patients from the acute to the subacute phase (starting within 3 days 

and up to 2 weeks after stroke). Initially mildly impaired patients showed relatively constant 

motor network activity, and hence did not differ significantly from healthy control subjects at 

any time point. In contrast, severely affected patients showed a global reduction in 

movement-related fMRI BOLD signal, followed by a gradual increase, predominantly in 

motor areas of the contralesional hemisphere. Increases of activity in M1 and PMC of the 

contralesional hemisphere were significantly associated with recovery of function in severely 

affected patients, suggesting a supportive role of the contralesional hemisphere in the early 

phase after stroke. Ward and colleagues (2003a) investigated movement-related fMRI BOLD 

signal in 8 stroke patients from 9-14 days up to one year after stroke (i.e. from the subacute to 

the chronic phase). This study can be seen as continuation of the study of Rehme et al. 

(2011b) since stroke patients had comparable clinical deficits after two weeks (i.e. at the last 

time point in the study of Rehme et al. and the first time point in the study of Ward et al.). 

Interestingly, Ward et al. (2003a) found that from two weeks post-stroke on, task-related 

fMRI BOLD signal showed a decrease over time in similar motor regions that showed an 

increase in the early phase after stroke, i.e. bilateral M1, dPMC, vPMC, and SMA. This later 

decrease of activity was significantly associated with recovery of function (Ward et al., 
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2003a) which strongly suggests a detrimental role of activity in the contralesional hemisphere 

in later stages of the disease.  

 

5.4.3.3 Movement related fMRI signal in chronic stroke patients 

The fMRI group analysis of the present study indicates that chronic stroke patients with 

persistent motor hand deficits maintain bilaterally enhanced fMRI BOLD signal in cortical 

motor areas during movements of the affected hand (but not the unaffected hand) compared to 

healthy controls. This enhancement led to wide-spread activity in the ipsilesional hemisphere 

and activity in homologue areas of the contralesional hemisphere (ipsilateral to hand 

movements) including contralesional M1/S1. This finding is in line with previous reports of 

bilaterally enhanced fMRI BOLD signal during movements of the affected hand in stroke 

patients (Binkofski & Seitz, 2004; Cao et al., 1998; Chollet et al., 1991; Cramer et al., 1997; 

Grefkes et al., 2008b; Jaillard et al., 2005; Loubinoux et al., 2003; Seitz et al., 1998; Weiller 

et al., 1992; Ward et al., 2003b). Several studies indicate that more bilaterally enhanced fMRI 

signal is associated with poor motor performance (Calautti et al., 2001; Loubinoux et al., 

2003; Ward et al., 2003b; Weder et al., 1994) and more pronounced CST damage (Newton et 

al., 2006; Schaechter et al., 2008; Stinear et al., 2007; Ward et al., 2006, 2007).  

In line with findings from the fMRI group analysis, we found significant differences between 

healthy subjects and stroke patients in LI depicting lateralization of fMRI signal in BA4 (M1). 

Stroke patients showed significantly reduced lateralization of fMRI signal during movements 

of the paretic hand, particularly in M1, due to overactivity in contralesional M1. Presumably, 

laterality of fMRI signal in stroke patients was particularly decreased in M1 (but did not reach 

significance in PMC or over both areas) because healthy subjects show neural activity nearly 

exclusively in (contralateral) M1/S1 during unilateral hand movements (Mattay et al., 1998; 

Rao et al., 1993), whereas neural activity in PMC tends to be more bilaterally organized, even 

in healthy subjects (Deiber at al., 1991; Kim et al., 1993; Rao et al., 1993; Shibasaki et al., 

1993). In line with these findings, Cramer et al. (1997) found that the region which most 

frequently showed an increase in stroke patients compared to healthy controls during finger 

tapping was contralesional M1/S1. Interestingly, there is evidence that reduced lateralization 

in M1/S1 (depicted by LI) is associated with poor motor performance (Marshall et al., 2000).  
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5.4.4 The functional role of the contralesional hemisphere 

It must be mentioned, however, that the functional role of enhanced neural activity in the 

contralesional hemisphere is still controversial (Butefisch et al., 2005; Fregni et al., 2006; 

Grefkes et al., 2008b, 2010; Johansen-Berg et al., 2002; Lotze et al., 2006; Murase et al., 

2004; Ward et al., 2003b). It is to a large extent unclear whether stroke induced changes 

reflect adaptive or maladaptive brain organization, motor performance compensation or 

merely epiphenomena, such as the release of the contralesional hemisphere from suppression 

of the ipsilesional hemisphere. Findings which strongly suggest enhanced neural activity in 

the contralesional hemisphere is detrimental for motor performance of the paretic hand are: (i) 

the finding that bilateral enhancement of fMRI signal decreases (i.e. LI increases) 

concomitant to motor recovery (Ward et al., 2003a; Marshall et al., 2000), (ii) findings of 

pathologically increased IHI from the contralesional M1 onto the ipsilesional M1 suggested 

by both paired-pulse TMS during movement preparation and DCM (Duque et al., 2005; 

Grefkes et al., 2008b, 2010; Murase et al., 2004), and (iii) the finding that behavioural 

improvements of the affected hand have been observed after inhibitory rTMS applied to the 

contralesional hemisphere (Fregni et al., 2006; Mansur et al., 2005; Takeuchi et al., 2005). 

However, there are also few studies which suggest that enhanced neural activity in the 

contralesional hemisphere may be supportive for motor performance of the affected hand. For 

instance enhanced neural activity was also found in patients with excellent motor recovery in 

the subacute (Butefisch et al., 2005) or subacute to chronic phase (Weiller et al., 1992). 

Additionally, several TMS studies suggest a beneficial role of the contralesional hemisphere 

(Bestmann et al., 2010; Johansen-Berg et al., 2002; Lotze et al., 2006). For instance, TMS 

pulses (disrupting information processing of the target area; Cohen et al., 1997) deteriorated 

motor performance of the paretic hand if applied to contralesional dPMC (Johansen-Berg et 

al., 2002; Lotze et al., 2006), contralesional M1 (Lotze et al., 2006) or contralesional SPL 

(Lotze et al., 2006) in chronic stroke patients. Interestingly, deteriorations after stimulation 

over ipsilateral dPMC were not seen in healthy subjects and were more pronounced in more 

severely affected patients (Johansen-Berg et al., 2002) which suggests that activity in 

contralesional dPMC might compensate for damaged or disconnected regions particularly in 

severely affected patients. This suggestion is further supported by a very recent study of 

Bestmann et al. (2010) who measured the interhemispheric influence between contralesional 

dPMC and ipsilesional M1 with TMS concurrently with a grip-force task during fMRI 

examination in chronic stroke patients. The authors observed that severely impaired patients 
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exerted less inhibitory (i.e. more facilitatory) influences from contralesional dPMC to 

ipsilesional M1. The level of BOLD response in ipsilesional M1 was depending on the 

magnitude of this facilitatory TMS influence from contralesional dPMC (Bestmann et al., 

2010).  

 

5.4.5 Dynamic Causal Modelling (DCM) 

5.4.5.1 Effective connectivity in healthy subjects 

5.4.5.1.1 Endogenous (task-independent) effective connectivity 

Endogenous effective connectivity reflects interregional coupling in absence of a specific 

task. It is influenced by the experimental design of the study and hence cannot be directly 

compared between studies but only between groups within the same study. Nonetheless, there 

are several features of endogenous effective connectivity in healthy subjects, which are 

remarkably constant across studies using blocks of unilateral hand movements such as 

rhythmic fist closures (Rehme et al., 2011a) or index finger tappings (Wang et al., 2011). In 

line with findings of the present study, previous studies reported a pattern of interregional 

coupling between cortical motor areas (M1, SMA, vPMC bilaterally) which was 

symmetrically organized in healthy subjects (Rehme et al., 2011a; Wang et al., 2011). Also in 

line with data of the present study, the majority of intra- and interhemispheric connections 

was facilitatory and the promoting influence from the SMA onto the ipsilateral M1 was 

particularly pronounced (Rehme et al., 2011; Wang et al., 2011). Like in the present study, 

only reciprocal interhemispheric connections between both primary motor cortices were 

inhibitory (Rehme et al., 2011; Wang et al., 2011). 

 

5.4.5.1.2 Modulatory effects of hand movements on effective connectivity 

Modulatory effects of hand movements on effective connectivity within the cortical motor 

network depend on the specific task which is performed. However, blocks of unilateral hand 

movements, such as rhythmic fist closures (Grefkes et al., 2008a) or index finger tappings 

(Wang et al., 2011) are associated with increased promoting influences from premotor areas 

(SMA and vPMC) of both hemispheres onto the M1 contralateral to the moving hand. 

Additionally, there are inhibitory influences from premotor areas (SMA and vPMC) of both 

hemispheres onto the M1 ipsilateral to the moving hand (Grefkes et al., 2008a; Wang et al., 
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2011). Effective connectivity from the ipsilateral M1 onto the contralateral M1 is usually near 

zero, and hence nonexistent in healthy subjects. In contrast, there is usually significant 

inhibition from the contralateral M1 onto the ipsilateral M1 during unilateral hand movements 

(Grefkes et al., 2008a; Wang et al., 2011). 

 

5.4.5.2 Effective connectivity early after stroke 

A very recent study investigated changes in effective connectivity from the acute to the early 

chronic stage in 12 stroke patients and 12 healthy control subjects by means of DCM (Rehme 

et al., 2011a). In the following, results are separately summarized for endogenous effective 

connectivity and modulatory effects of hand movements. 

 

5.4.5.2.1 Endogenous (task-independent) effective connectivity 

Analyses on endogenous (i.e. task-independent) connectivity suggest that two connections are 

particularly relevant for stroke recovery: (i) the promoting influence from ipsilesional SMA 

onto ipsilesional M1, and (ii) the inhibitory influence from ipsilesional M1 onto 

contralesional M1. Endogenous effective connectivity was significantly reduced in both 

connections in stroke patients in the acute and the subacute phase compared to healthy 

controls. More pronounced reductions were seen in patients with more severe initial deficits. 

Coupling strength in both connections gradually increased from the acute to the early chronic 

stage concomitant to motor recovery and was not significantly different from healthy subjects 

in the early chronic stage (3 to 6 months after stroke). These findings strongly suggest motor 

recovery depends on normalization of effective connectivity in these motor network 

connections (Rehme et al., 2011a). 

 

5.4.5.2.2 Modulatory effect of hand movements on effective connectivity 

Modulations of effective connectivity induced by movements of the non-paretic hand were 

not significantly different between healthy subjects and stroke patients in the acute or the 

subacute phase (Rehme et al., 2011a). However, there were significant differences between 

healthy subjects and stroke patients in modulations of effective connectivity induced by 

movements of the affected hand. Three connections were particularly relevant: (i) the 

promoting influence from ipsilesional SMA onto ipsilesional M1, (ii) the inhibitory influence 
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from ipsilesional M1 onto contralesional M1, and (iii) the inhibitory influence from 

contralesional M1 onto ipsilesional M1. Results for the first two connections were similar to 

results of analyses on endogenous connectivity. The inhibitory influence from contralesional 

M1 to ipsilesional M1, however, showed different time dependent modulations. This 

connection showed no significant difference to healthy controls in the acute stage. In the 

subacute phase, there was an additional positive influence from contralesional M1 onto 

ipsilesional M1 (not seen in healthy subjects), especially in more severely affected patients. 

This finding suggests a supportive role of the contralesional hemisphere in early stages of the 

disease. The positive coupling between contralesional M1 and ipsilesional M1 vanished in the 

early chronic stage, and hence resembled levels observed in healthy subjects. However, 

patients who developed strong inhibitory influences from the contralesional M1 onto the 

ipsilesional M1 during transition from the subacute to the early chronic phase had 

considerably poorer outcome in the early chronic phase. Hence, this finding suggests a 

detrimental role of the contralesional hemisphere in later stages of the disease. 

 

5.4.5.3 Endogenous connectivity in chronic stroke patients 

Stroke patients may show various alterations in motor network interactions, not only within 

the ipsilesional hemisphere, but also between hemispheres, which demonstrates that stroke 

lesions have system-wide impact on functional motor network architecture (Grefkes & Fink, 

2011; Westlake & Nagarajan, 2011). Connectivity studies in stroke patients with motor 

deficits seem to reach highest consensus on two findings: (i) effective connectivity within the 

ipsilesional hemisphere is decreased (particularly from ipsilesional SMA to ipsilesional M1) 

and (ii) interhemispheric inhibition between primary motor cortices is altered (reduced from 

ipsilesional M1 to contralesional M1; increased from contralesional M1 to ipsilesional M1; 

Grefkes & Fink, 2011; Westlake & Nagarajan, 2011). In the present study, chronic stroke 

patients showed significantly reduced endogenous (i.e. task-independent) effective 

connectivity originating from ipsilesional premotor areas (ipsilesional SMA and vPMC) when 

compared to healthy control subjects (Figure 5.11A). Interestingly, this finding is in 

agreement with a recent study demonstrating decreased endogenous coupling originating from 

ipsilesional SMA and vPMC in 11 stroke patients (9 in the chronic stage; 2 in the subacute 

stage) compared to 11 healthy control subjects (Wang et al., 2011). In summary, these 

findings suggest “hypoconnectivity” of ipsilesional SMA and vPMC in chronic stroke 

patients in absence of a specific task. 
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During movements of the paretic hand, patients showed significantly reduced inhibition of the 

contralesional (i.e. ipsilateral) M1 exerted by contralesional and ipsilesional SMA, and 

ipsilesional M1 compared to healthy controls (Figure 5.11B, Figure 5.11C). This 

“disinhibition” of the contralesional hemisphere during movements of the affected hand was 

found for both movement conditions and correlated inversely with clinical impairment, 

suggesting that inhibition of the contralesional M1 was particularly reduced in more severely 

affected patients. Also in the study of Wang et al. (2011), patients in the subacute to chronic 

stage showed decreased inhibition from ipsilesional M1 and contralesional vPMC to 

contralesional M1 during index finger tapping with the affected hand compared to healthy 

controls. Longitudinal observations of effective connectivity from the acute to the early 

chronic phase indicate that inhibition from ipsilesional M1 to contralesional M1 gradually 

increases over time and that regains of inhibition are associated with motor recovery (Rehme 

et al., 2011). This finding strongly suggests that “disinhibition” of the contralesional M1 is 

associated with poor motor performance. In summary, these findings suggest “disinhibition” 

of contralesional M1, particularly by ipsilesional M1, during movements of the affected hand, 

particularly in more severely affected stroke patients.  

Two studies strongly suggest that interhemispheric inhibition from contralesional M1 to 

ipsilesional M1 may be pathologically increased in stroke patients (Grefkes et al. 2008b, 

2010). In the first study, Grefkes et al. (2008b) investigated effective connectivity in 12 stroke 

patients with subcortical lesions in the subacute phase (≥ 5 months after stroke) and 12 

healthy control subjects by means of DCM and demonstrated that patients showed significant 

inhibition from contralesional M1 onto the “active” ipsilesional (i.e. contralateral) M1 during 

movements of the affected hand which was not present in healthy subjects or stroke patients 

moving their unaffected hand (Grefkes et al., 2008b). Interestingly, the extent of this 

inhibition was significantly correlated with the motor deficit, i.e. the more pronounced 

inhibition from contralesional M1 to ipsilesional M1 was, the stronger the motor hand deficit. 

This finding suggests a detrimental role of the contralesional hemisphere during movements 

of the paretic hand as proposed by the model of interhemispheric competition. These findings 

are further supported by a later study investigating the effect of 1 Hz rTMS on motor network 

interactions by means of DCM (Grefkes et al., 2010). Interestingly, 1 Hz rTMS applied to the 

contralesional hemisphere (but not control stimulation over vertex) significantly decreased 

inhibition originating from contralesional M1 onto ipsilesional M1 during paretic hand 

movements. Furthermore, 1 Hz rTMS was associated with increased endogenous positive 
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coupling between ipsilesional SMA and ipsilesional M1 suggesting that 1 Hz rTMS acts by 

reconstituting physiological network interactions in stroke patients (Grefkes et al., 2010). 

However, in contrast to Grefkes et al. (2008b, 2010), we did not find pathologically increased 

interhemispheric inhibition from contralesional M1 to ipsilesional M1 in our group of chronic 

patients compared to controls. This might be because in studies of Grefkes et al. (2008b, 

2010), movement frequencies in the motor task were not matched to decreased motor 

performance of stroke patients, and hence stroke patients were overstrained by the task. In 

contrast, in the present study, the adjusted movement condition (40% of max.) as well as the 

fixed movement condition (0.8 Hz) could be readily performed by all patients. In other words, 

excessive demands could lead to pathologically increased interhemispheric inhibition 

observed in studies of Grefkes et al. (2008b, 2010). Another possible explanation might be 

that the functional role of the contralesional hemisphere depends on the clinical state of the 

patient. Although activation of the contralesional hemisphere appears to be maladaptive in 

relatively mildly affected patients it could be beneficial in more severely affected patients. 

Patients in the study of Grefkes et al. (2008b) were less severely impaired than patients in the 

present study as indicated by mRS scores (Table 5.1). There was a statistical trend for a 

correlation between mRS score and inhibition from the contralesional M1 to the ipsilesional 

M1 (r = 0.491; P = 0.088) indicating that more severely affected patients showed reduced 

rather than increased inhibition from contralesional to ipsilesional M1. In fact, the most 

severely affected patient (Patient 04) even showed a promoting influence from contralesional 

M1 to ipsilesional M1. Interestingly, patients in the study of Rehme et al. (2011a) showed 

significant promoting influence from contralesional M1 to ipsilesional M1 compared to 

healthy controls. However, this was only the case at the time point at which patients had 

similar deficits as patients in the present study (mean ARAT score: 45 ± 12; Rehme et al.: 45 

± 19). The degree of this promoting influence from contralesional M1 to ipsilesional M1 was 

significantly correlated with clinical impairment and occurred particularly in more severely 

affected patients. Also in the present study, patients showed a promoting influence from 

contralesional M1 to ipsilesional M1 (Figure 5.10A). The difference between patients and 

controls (no such influence) was significant (P < 0.05) but did not pass correction for 

comparisons in the present study. In the study of Rehme et al. (2011a), the promoting 

influence disappeared in the early chronic phase in which patients had nearly fully recovered 

(mean ARAT 55 ± 3; highest possible score: 57). Taken together these findings suggest that 

fully recovered patients show interhemispheric balance comparable to healthy subjects, 
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whereas the impairment of mildly affected patients might be caused by pathologically 

increased IHI onto the ipsilesional hemisphere. In contrast, more severely affected patients 

seem to rely on recruitment of the contralesional hemisphere. This suggestion is further 

strengthened by studies disrupting or inhibiting dPMC by means of TMS (Fridman et al. 

2004; Johansen-Berg et al., 2002). Inhibition of contralesional dPMC by means of TMS 

caused deterioration of motor performance in the affected hand of stroke patients suggesting a 

supportive role of the contralesional dPMC (Johansen-Berg et al., 2002). However, less 

affected patients have been demonstrated to preferentially recruit the ipsilesional dPMC if this 

is spared by the lesion (Fridman et al., 2004). 

 

5.4.6 Prediction of TBS effects 

5.4.6.1 Electrophysiological TMS parameters 

This is the very first study which investigated the relationship between TMS parameters at 

baseline and behavioural improvements following TBS in stroke patients. Stroke patients may 

show decreased corticospinal excitability (i.e. increased MTs) assessed over the ipsilesional 

hemisphere and there is evidence that higher MTs are associated with poor motor 

performance (Manganotti et al., 2002; Thickbroom et al., 2002; Traversa et al., 2000). Two 

causes might account for increased MTs: (i) changes in membrane properties (which are 

thought to play a major role in primarily cortical stroke) and (ii) severe reductions in number 

of corticospinal axons (which is thought to play a major role in subcortical stroke; Talelli et 

al., 2006). AMT is thought to be less influenced by spinal cord activity than RMT. Our results 

indicate that, both AMT and RMT at baseline are not significantly associated with 

behavioural improvements after TBS. Hence, our results indicate that motor cortex 

excitability is a poor predictor for behavioural improvements following TBS. It has been 

demonstrated that rTMS impacts on areas far beyond the stimulated region and involve 

various subcortical and cortical regions functionally related to the targeted area (Bestmann et 

al., 2003; Paus et al., 1997) which makes it likely that excitability of the primary motor cortex 

alone is not sufficient for improvements after TBS, which might rather rely on motor network 

interactions within and between hemispheres.  

 

SICI is thought to reflect intracortical inhibition mediated by GABAA receptors (Di Lazzaro 

et al., 2000; Ilic et al., 2002; Ziemann et al., 1996) and tends to be decreased both on the 
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ipsilesional as well as the contralesional hemisphere (Liepert et al., 2000; Manganotti et al., 

2002). No consensus has been reached across studies whether decreased SICI is beneficial or 

detrimental (Talelli et al., 2006). Our results indicate that, SICI at baseline is not significantly 

associated with behavioural improvements after TBS. This finding indicates that intracortical 

inhibition within the primary motor cortex constitutes a poor predictor for TBS effects. 

Hence, generation of TBS effects might rely on the interplay of M1 with other motor areas.  

 

IHI is thought to reflect interhemispheric cortical inhibition mediated by transcallosal 

glutamatergic pathways linking with pyramidal tract neurons through GABAergic 

interneurons (Reis et al., 2008). IHI from the ipsilesional to the contralesional hemisphere 

measured at rest tends to be reduced (especially early after stroke and in patients with 

damaged transcallosal fibre tracts; Boroojerdi et al., 1996; Butefisch et al., 2008; Shimizu et 

al., 2002) whereas IHI from the contralesional to the ipsilesional hemisphere is unchanged if 

measured at rest (Butefisch et al., 2008). Whether disinhibition of the contralesional 

hemisphere has a supportive or detrimental role has been controversially discussed but we 

found evidence for the hypothesis that reduced inhibition of the contralesional hemisphere is 

associated with more severe motor impairment. Or results indicate that, there is no significant 

association between IHI and behavioural improvements after TBS which indicates that 

disinhibition of the contralesional hemisphere at rest measured by paired-pulse TMS is a poor 

predictor for TBS effects. Interestingly, we found that disinhibition of the contralesional 

hemisphere probed by DCM was a strong predictor for TBS effects. Possible explanations for 

divergent results will be discussed in paragraph 4.4.6.3. 

 

In summary, TMS studies demonstrated that stroke patients may show increased MTs on the 

ipsilesional hemisphere, decreased SICI on both hemispheres, and decreased IHI from the 

ipsilesional onto the contralesional hemisphere (at rest) as well as increased IHI from the 

contralesional to the ipsilesional hemisphere (during movement preparation). Particularly, 

increases in MT and imbalance in IHI are associated with poor motor performance. However, 

none of these TMS parameters could predict behavioural TBS effects in a satisfactory 

manner. 
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5.4.6.2 fMRI activation pattern and DCM parameters 

The main finding of the present study was that behavioural improvements of the affected hand 

induced by facilitatory iTBS applied to the ipsilesional hemisphere were predicted by several 

fMRI parameters at baseline (Table 5.4) indicating more intact functional motor network 

architecture: 

 

1) An fMRI activation pattern which was more lateralized towards the ipsilesional 

hemisphere during movements of the affected hand (LIBA4+BA6 & LIBA6) 

2) More pronounced promoting influence from ipsilesional SMA to ipsilesional M1 in 

absence of a specific task (endogenous effective connectivity) 

3) More pronounced inhibitory influence from ipsilesional M1 to contralesional M1 in 

absence of a specific task (endogenous effective connectivity) 

 

None of the parameters that predicted TBS effects was significantly different between healthy 

subjects and stroke patients or was significantly correlated with clinical impairment. Or in 

other words, none of the parameters which were altered in stroke patients compared to 

controls or which correlated with clinical deficits predicted TBS effects (Table 5.4). Hence, in 

parameters with relatively low variance we were able to find significant group differences 

(but variations were too low to explain variations in TBS effects) in contrast parameters with 

relatively high variance did not result in a group difference but were much more successful in 

explaining variance in TBS effects since they reflected a broader spectrum from more 

physiological to more pathological across the group of patients.  

There is strong evidence from longitudinal studies that bilaterally enhanced fMRI signal 

(Ward et al., 2003a) and reduced laterality (Marshall et al., 2000) are associated with poor 

motor performance. Additionally, reduced promoting influence from ipsilesional SMA to 

ipsilesional M1 and reduced inhibitory influence from ipsilesional M1 to contralesional M1 

are associated with poor motor performance (Rehme et al., 2011a). 

Hence, our findings strongly suggest that particularly patients with more physiological motor 

network interactions experienced beneficial effects of iTBS applied to the ipsilesional 

hemisphere. Hence, these network interactions might constitute crucial preconditions for the 

generation of positive TBS effects. This finding appears highly plausible. Nonetheless it is a 

true gain of knowledge since the alternative could also have turned out, i.e. that particularly 

patients with severely disturbed motor network interactions improve after TBS, which has 
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been demonstrated to normalize motor network disturbances (Grefkes et al., 2010). Hence, it 

could have been that the “network shaping effect” of TBS would have been lower in patients 

which have already relatively efficient motor network architecture which would correspond to 

some kind of “ceiling effect”. This suggestion is however contradicted by the finding that 

TBS may improve motor performance even in healthy subjects (Huang et al., 2005). Taken 

together, results of the present study strongly suggest that improvements after facilitatory 

iTBS applied to the ipsilesional hemisphere relies on integrity of the cortical motor network, 

i.e. preserved supportive role of the ipsilesional SMA and preserved inhibition of the 

contralesional hemisphere. 

 

Until now, studies investigating predictors for rTMS effects by means of neuroimaging are 

scarce (Ameli et al., 2009; Grefkes at al., 2010; Nowak et al., 2008). Nowak and colleagues 

(2008) investigated the effect of inhibitory 1 Hz rTMS applied to the contralesional 

hemisphere in 15 patients with subcortical lesions in the subacute to early chronic stage (4 

weeks to 4 months after stroke) and found that 1 Hz rTMS significantly reduced neural 

overactivity in the contralesional hemisphere, focussed activity in the ipsilesional hemisphere, 

and increased the maximum index finger tapping frequency of the affected hand. However, 

reduction of fMRI BOLD signal in the contralesional hemisphere was not significantly 

associated with behavioural improvements of the affected hand. This finding appears to be in 

line with our finding that reduced corticospinal output from the contralesional hemisphere 

was not significantly associated with behavioural improvements of the affected hand. In line 

with our findings, there was no significant correlation between fMRI BOLD signal in 

contralesional M1 and behavioural improvements of the affected hand after rTMS in the study 

of Nowak et al. (2008). However, overactivity of the adjacent contralesional dPMC, as well as 

contralesional parietal operculum, and ipsilesional mesial frontal cortex at baseline predicted 

improvement of the affected hand after rTMS applied to contralesional M1 in the study of 

Nowak et al. (2008). Ameli and co-workers (2009) investigated the effect of facilitatory 10 

Hz rTMS applied to the ipsilesional hemisphere in 16 patients with subcortical and 13 patients 

with cortico-subcortical stroke lesions. Patients were in the subacute to chronic stage of their 

disease (1-88 weeks after stroke). Interestingly, the majority of patients with subcortical 

stroke, but none of the patients with cortico-subcortical stroke, showed improvements of the 

paretic hand after 10 Hz rTMS applied to the ipsilesional hemisphere. Approximately half of 

the patients with cortico-subcortical lesions showed deterioration of motor performance of the 
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affected hand after rTMS applied to the ipsilesional hemisphere. Interestingly, stroke patients, 

showing no change or even deterioration after facilitatory 10 Hz rTMS applied over 

ipsilesional M1, had reduced ipsilesional M1 activation levels prior to rTMS and 

pathologically enhanced activation levels in the contralesional hemisphere after rTMS. The 

authors argued that stimulation of a dysfunctional M1 may have unexpected or even opposite 

effects compared to what is observed in healthy subjects or in patients with rather normal M1 

activity (Ameli et al., 2009). This conclusion is strongly supported by the findings of the 

current study, and also explains that only stimulation of the contralesional, i.e. “unaffected”, 

hemisphere yielded TBS effects which can be observed in healthy subjects (Huang et al., 

2005). 

 

5.4.6.3 Correlation between IHI probed by DCM and paired-pulse TMS 

Endogenous DCM coupling parameters and paired-pulse TMS at rest yielded measures of IHI 

which were not significantly related to each other, neither in healthy subjects nor in stroke 

patients. Behavioural TBS effects were significantly predicted by inhibition from the 

ipsilesional M1 to the contralesional M1 if probed by DCM but not if probed by paired-pulse 

TMS. Taken together, these findings underpin methodological differences between 

approaches. Differences between IHI measured by DCM and TMS might result from several 

methodological differences such as (i) signal types used as outcome measures, (ii) anatomical 

structures involved, and (iii) activation state. At first glance, the most striking difference 

between measures of DCM and TMS seems to be the signal type used as outcome measure. 

Whereas DCM relies on fMRI data which is a neurovascular signal, TMS uses an EMG 

response, i.e. a signal from a muscle as outcome measure. Hence, differences between 

approaches might arise from involvement of haemodynamic mechanisms (in DCM) or spinal 

cord excitability (in TMS). However, DCM explicitly acts on the neuronal level thereby 

avoiding confounds arising from neurovascular influences (Friston et al., 2003) and IHI has 

been demonstrated to act predominantly on the cortical level which reduces confounds arising 

from spinal cord excitability (Ferbert et al., 1992). Two experiments by Ferbert et al. (1992) 

indicate that IHI measured with paired-pulse TMS acts on the cortical level. These 

experiments tested whether application of a normal cortical CS applied by TMS impacts on 

test signals generated more downstream of the cortical level. In the first experiment, the 

authors found that a CS had no effect on H-reflexes (generated at the level of the spinal cord), 

which indicates that inhibition (during normal assessment of IHI) is not mediated by activity 
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in a direct ipsilateral inhibitory pathway to motoneurons of the spinal cord. In a second 

experiment, Ferbert et al. (1992) demonstrated that a CS had no effect on a cortical TS 

applied by electric (instead of magnetic) stimulation. The rationale for this second experiment 

was that TMS excites neurons either directly or transsynaptically, whereas transcranial 

electric stimulation (TES) excites axons directly in the white matter (Di Lazzaro et al., 

1998a). Hence, test responses applied by TMS are much more influenced by cortical 

excitability (Datta et al., 1989; Day et al., 1991; Ugawa et al., 1991) and the absence of an 

inhibitory effect on a TS generated by TES suggests that IHI primarily occurs at the cortical 

level (Ferbert et al., 1992).  

Another explanation why TMS and DCM yielded different results for IHI might be that 

slightly different positions were used. For TMS we used the hotspot position, i.e. the position 

yielding highest EMG responses when stimulated with TMS. This is the most commonly used 

procedure and ensures stimulation of the most excitable cortex position (which was 

necessarily to generate MEPs with peak-to-peak amplitude of 1mV in stroke patients). For 

DCM however, we used the fMRI activation peak within an anatomically defined landmark 

for the motor hand region (i.e. the “hand knob” formation; Yousry et al., 1997). This is also 

the most common procedure and ensures inclusion of the cortical position with highest fMRI 

BOLD signal. Hence, we optimised procedures for each technical approach but results of 

Study I & II of the present thesis demonstrate that the hotspot position is not necessarily 

within M1 but might be more anterior within the PMC. Hence, a functional role of the PMC 

in generation of IHI measured by TMS cannot be entirely excluded. Since the PMC has 

anatomical connections to contralateral PMC as well as contralateral M1 (McGuire et al., 

1991; Rouiller at al., 1994), transcallosally mediated inhibition could also (at least partially) 

take place between PMC and the contralateral PMC or contralateral M1. Hence, DCM might 

reflect a more valid measure of the M1-M1 connection than stimulation of the hotspot 

position by means of TMS.  

The third, and probably most likely, cause for differences observed between IHI measured by 

DCM and TMS might arise from state of activation. During assessment of IHI by means of 

TMS subjects were at rest. However, as stated earlier, endogenous effective connectivity may 

not be mistaken as effective connectivity during the baseline condition. It reflects the effective 

connectivity over the entire time course of the experiment independent of which experimental 

condition is currently performed. Hence, endogenous connectivity is always present and task-

specific modulations add onto it. However, although it is independent of presence or absence 
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of a specific task that is (or is not) currently performed, endogenous connectivity is not 

independent of tasks implemented in the experiment. In other words, endogenous connectivity 

is always specific to a certain experiment, i.e. the result would be different if different 

experimental conditions would be implemented (Friston et al., 2003). Hence, it appears 

reasonable that IHI measured by paired-pulse TMS in the resting condition yielded divergent 

results compared to endogenous effective connectivity which does not reflect “baseline 

connectivity”. 

 

5.4.6.4 Clinical impairment as predictor for TBS effects 

There was a statistical trend for a negative correlation between mRS-score and improvements 

of the affected hand after iTBS applied to the ipsilesional hemisphere. This result provides 

some evidence that patients with less severe general disability were more likely to improve 

after iTBS than more severely affected patients. Hence, this finding points in a similar 

direction as results from fMRI and DCM analyses suggesting that patients with physiological 

motor network interactions are more likely to improve. Note however, that the modified 

Rankin-Scale (mRS) is a very rough estimate of clinical impairment. Clinical scales which are 

more specific for motor impairment such as the ARAT did not show correlations with TBS 

effects. 

 

5.4.6.5 Lesion characteristics as predictors for TBS effects 

The VBSM analyses suggested an association between lesions comprising a specific region 

within the CST (MNI coordinates XYZ: 28, -15, 26) and improvements of the affected hand 

after iTBS. Note, that only positions which are affected by a lesion can show a correlation in 

VBSM analyses. The reason why particularly this position showed a correlation might be that 

it showed highest lesion overlap between patients (Figure 5.1). However, this position is also 

likely to comprise descending motoneurons in high density. Hence, this finding suggests that 

facilitatory iTBS applied to the ipsilesional hemisphere is less effective in patients in whom 

descending fibres from ipsilesional M1 are dissected at the level of the CST. Hence, integrity 

of the CST may be one factor influencing the effectiveness of rTMS applied over ipsilesional 

M1. Previous studies demonstrated that both, functional integrity of the CST probed by 

single-pulse TMS (Rapisarda et al., 1996; Stinear et al., 2007) and structural integrity of the 

CST probed by DTI (Stinear et al., 2007), constitute reliable indicators of motor recovery of 
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the affected upper limb after stroke. Presence of MEPs in the affected upper limb is a 

predictor for relevant motor recovery (Stinear et al., 2007). If MEPs are absent in the affected 

upper extremity, the possibility for relevant motor recovery declines with increasing CST 

damage assessed by means of DTI (Stinear et al., 2007). Impaired integrity of the CST after 

stroke has also been demonstrated to be associated with increases in neural activity within the 

ipsilesional hemisphere (Stinear et al., 2007; Ward et al., 2006) and enhanced recruitment of 

M1 and premotor areas in the contralesional hemisphere (Rehme et al., 2011b; Schaechter et 

al., 2008; Ward et al., 2006) during movements of the affected hand.  

In summary, our findings that both integrity of the CST and bilaterally enhanced fMRI signal 

were predictors for motor improvements of the affected hand after iTBS applied to the 

ipsilesional hemisphere, are supported by previous studies demonstrating a relation between 

integrity of the CST and motor recovery (Rapisarda et al., 1996; Stinear et al., 2007) and 

between integrity of the CST and enhanced neural activity in the contralesional hemisphere 

(Rehme et al., 2011b; Schaechter et al., 2008; Ward et al., 2006). 

 

5.4.6.6 Absence of predictors for effects of cTBS 

In the present study we found several reliable predictors for improvements of the affected 

hand after facilitatory iTBS applied to the ipsilesional hemisphere. In contrast, there were no 

reliable predictors for improvements of the affected hand after inhibitory cTBS applied to the 

contralesional hemisphere. At a first glance, one might expect that the reason for this was that 

iTBS was more effective than cTBS in patients of the present study. Previous studies 

demonstrated stronger and more consistent effects for iTBS compared to cTBS in stroke 

patients (cf. 5.4.1). However, we found no support for this hypothesis since iTBS and cTBS 

were not significantly different from each other in behavioural improvements over the group 

of patients (mean improvement iTBS: -0.8 ± 10.1%; cTBS: -0.9 ± 11.2%). In other words, 

both stimulation strategies resulted in highly variable responses and none of them was more 

or less effective than the other. Only effects of iTBS were highly-significantly predicted by 

laterality of fMRI signal and DCM coupling parameters, whereas effects of cTBS were not. 

This indicates that there was a tighter relationship between iTBS effects and TMS and fMRI 

parameters at baseline, whereas cTBS effects were unrelated to these parameters. One 

possible explanation for this finding might be that iTBS takes effect in a more consistent way 

than cTBS. It could be that iTBS initiates mechanisms which ultimately result in more 

effective corticospinal output of the ipsilesional M1, whereas cTBS is a more indirect 
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stimulation strategy which is more likely than iTBS to act in different ways in different 

patients. Interestingly, Grefkes et al. (2010) demonstrated that inhibitory 1 Hz rTMS over the 

contralesional hemisphere modulates motor network connectivity within and between 

hemispheres in two ways. That is, 1 Hz rTMS increased the promoting influence from 

ipsilesional SMA to ipsilesional M1 and reduced the inhibitory influence from contralesional 

M1 to ipsilesional M1, which was significantly associated with motor improvement of the 

affected hand. Hence, it is conceivable that beneficial cTBS effects are mediated primarily by 

reducing pathologically increased IHI from contralesional M1 to ipsilesional M1 in some 

patients, whereas in other patients cTBS might also increasing effectiveness of information 

processing within the ipsilesional hemisphere (i.e. increase SMA-M1 coupling) indirectly. If 

this would be the case, iTBS would show more consistent associations with motor network 

preconditions (since it acts more consistent across subjects) than cTBS (which might act in 

more different ways). This however, cannot be inferred from our data and hence remains 

speculative. Future studies, are needed to investigate the effect of cTBS and iTBS on effective 

connectivity within the cortical motor network in stroke patients. 
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6 Conclusions and outlook 

Although rTMS in general and TBS in particular, have been suggested to have high 

therapeutic potential for treatment of motor deficits induced by stroke (Ridding & Rothwell, 

2007), several problems need to be solved before rTMS can be successfully implemented in 

neurorehabilitation. One of the most urgent problems appears to be high variance in rTMS 

induced effects both across studies (Hoogendam et al., 2010) and patients (Ameli et al., 

2009). Hence, the major goal of the present thesis was to make a contribution to improve 

rTMS intervention strategies by means of state-of-the-art neuroimaging techniques. More 

precisely, the aim was to (i) reduce variance across studies by improving strategies to identify 

the cortical rTMS target position (by means of perfusion MRI assessed with ASL) and (ii) 

reduce variance across patients by identifying reliable predictors for TBS effects in stroke 

patients (by means of fMRI and effective connectivity assessed with DCM). 

 

6.1 Study I & II: Reducing variance across studies 

The majority of rTMS intervention studies, which aim to improve motor performance in 

stroke patients, use the primary motor cortex (BA4) as target region (Hoogendam et al., 

2010). However, considerably large spatial displacements between fMRI and TMS positions 

have consistently been reported for the human motor system (cf. Study I). This is surprising 

because the position with highest TMS excitability might be expected to correspond to the 

position with highest density of motoneurons, i.e. BA4 (Talelli et al., 2006). We suspected 

that the spatial mismatch between fMRI and TMS is caused by imperfect functional 

localization of BA4 by the conventional GRE-BOLD fMRI technique. State-of-the-art 

perfusion fMRI techniques indeed localized neural activity closer to BA4, but unfortunately 

not closer to the optimal TMS position, because optimal TMS positions were located further 

anterior in premotor cortex (BA6). Hence, the spatial mismatch between fMRI and TMS 

could not be reduced by the use of perfusion fMRI signal (ASL-CBF), i.e. was not caused by 

vascular artefacts in GRE-BOLD signal. Close examination of previous studies revealed that, 

in line with our findings, the majority of studies found an anterior shift of optimal TMS 

positions compared to fMRI positions. Findings might be explained by inhomogenity of the 
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TMS-induced electric field and its distinct effects on different tissue types or components 

(such as axons) depending on their orientation in space.  

Future studies are needed to elucidate the spatial mismatch between fMRI and TMS positions 

further and investigate why TMS positions are appear to be located consistently further 

anterior. Additionally, more research is needed to increase our understanding of the 

physiological mechanisms leading to rTMS induced effects. Furthermore, it would be 

interesting to investigate whether stimulation of the anatomical motor hand area or 

stimulation of the most excitable TMS position (further anterior) is more effective in terms of 

behavioural improvements following rTMS. However, since mean 3D distances between 

individual fMRI and TMS positions was found to be between 10-12 mm (cf. Table 3.2) and 

TMS has a spatial resolution of approximately 7.7 mm (Thielscher & Wichmann, 2009), it 

might be that TMS cannot sufficiently differentiate between these two positions to result in 

significant differences on the behavioural level. 

Results of Study II in stroke patients were comparable to results of Study I: Although 

perfusion fMRI signal (ASL-CBF) yielded activations closer to BA4, these were not 

significantly closer to optimal TMS positions which were located in BA6. Hence, increased 

spatial specificity of perfusion fMRI did not result in improved spatial congruence between 

fMRI and TMS, neither in healthy subjects nor in stroke patients. Nevertheless, Study II 

yielded promising novel insights which demonstrate that (i) meaningful task-related perfusion 

MRI signal can be obtained from patients with cerebrovascular disease by means of ASL-

CBF, (ii) task-related perfusion fMRI signal during movements of the affected hand is also 

bilaterally organized (similar to BOLD fMRI signal), which strongly suggests neuronal 

processes as underlying cause, and (iii) reorganization processes might further decrease 

congruence between fMRI and TMS.  

More studies are needed to explore task-related perfusion MRI signal in stroke patients. For 

instance, it would be interesting to investigate how (bilateral) movement-related perfusion 

MRI signal evolves from the acute to the subacute and chronic phase and whether (and how) 

task-related perfusion MRI signal is changed by rTMS. However, there are also numerous 

interesting applications conceivable assessing perfusion MRI signal in absence of a specific 

task (“resting-state”) in stroke patients. This approach might be particularly promising for 

studies on stroke patients in the acute phase (which might not be able to perform any motor 

task in the scanner), and could for example be used to identify predictors for spontaneous 

Forthcoming results are likely to have high implications for clinical settings.  
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6.2 Study III: Reducing variance across patients 

Inter-individual differences in rTMS effects between stroke patients are likely to result from 

distinct pathomechanisms causing motor impairments. The aim of Study III was to identify 

reliable predictors for rTMS mediated effects on motor performance of the affected hand by 

means of fMRI and DCM assessing effective connectivity. Study III yielded promising results 

suggesting that integrity of the cortical motor network is an essential requisite to improve 

motor performance of the affected hand by means of facilitatory iTBS applied to the 

ipsilesional hemisphere. Patients with severely disturbed motor networks did not respond to 

iTBS or even deteriorated. It is conceivable that, neuroimaging derived parameters such as the 

laterality index (LI) or coupling strength (in Hz) between key motor areas assessed by means 

of dynamic causal modelling (DCM) could in future be used to predict rTMS effects in stroke 

patients. However, future studies with larger sample sizes are needed to identify reliable cut-

off values, which allow making a clear statement on whether or not a patient will improve 

after rTMS based on the patients‟ individual measured value. Larger sample sizes might also 

allow investigation of differential effects of e.g. lesion location, time since stroke or other 

factors on rTMS responsiveness. Future studies are also needed to investigate the functional 

role of neural activity in the contralesional hemisphere further. It also needs to be clarified 

whether multiple sessions of rTMS can be used to yield more robust effects, which might last 

for a longer period of time. Finally, future studies need to elucidate the most appropriate time 

point for rTMS with regard to stage of the disease (acute, subacute or chronic phase) and with 

regard to combination with physical therapy (before, during or after physical training). 
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