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Abstract
In a time where data on the genetic make-up of organisms is available in abun-
dance, the theory of evolution is of immediate importance to answer key questions
of biology: How can one explain the variation seen in the DNA of different or-
ganisms and species? What are the effects of changes in the DNA on the function
of cells? What are the driving mechanisms of diseases with a genetic component
such as cancer? Minimal mathematical models of evolution provide a basis for the
interpretation of DNA data. The explanations they offer are concrete and testable,
their assumptions and limitations explicit. The application and further develop-
ment of minimal evolution models is the main theme of this work. In the first
part, the functional effects of mutations found in cancer cells are analyzed from
the perspective of germline evolution. This is the process that produced the DNA
of organisms as we see it today. Mutations have an effect on the fitness of healthy
cells. This impact can be estimated from the variation seen in the sequences of
protein domains. It is found that this evolutionarily informed conservation score
has utility to identify cancer driver genes, especially if they are tumor suppressor
genes. The relevance of this fitness scale for cancer mutations is demonstrated
on a data set of mutations in protein kinase genes. This analysis is followed by
an application of Hidden Markov Models (HMM) to the detection of signals of
positive selection in cancer mutation data. Cancer as an evolutionary process of
cells is markedly different from the process of germline evolution. Cancer-specific
selection can be seen in genes, whose activity or lack thereof is essential for the
progress of cancer. These cancer genes exhibit an increased rate of amino acid
changing mutations, beyond the level expected by chance. The identification of
these genes is a statistical task for which HMM are shown to be most suitable. Fi-
nally, an extended mathematical model of evolution is analyzed which describes
the adaptation of a sexually reproducing population to a global fitness maximum
via compensatory mutations. In a two-locus/two-allele model, the compound ef-
fects of mutation, selection, genetic drift, recombination and sign epistasis lead to
the interesting situation of adaption via the crossing of a fitness valley in genotype
space. This bottleneck can be overcome by rare large fluctuations in the allele fre-
quencies overcoming the effect of recombinatorial reshuffling. The relevant time
scales are derived for a parameter regime that includes large recombination.
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Zusammenfassung
In einer Zeit, in der Daten über den genetischen Aufbau von Organismen im Über-
fluss verfügbar sind, spielt die Evolutionstheorie eine zentrale Rolle in der Beant-
wortung von Schlüsselfragen der Biologie: Wie erklärt sich die Variation, die man
in der DNA von verschiedenen Organismen und Spezies findet? Welche Effekte
haben Veränderungen in der DNA auf die Funktion von Zellen? Was sind die
treibenden Kräfte bei Erkrankungen mit genetischer Komponente, wie etwa bei
Krebs? Mathematische Evolutionsmodelle bilden eine Grundlage zur Interpreta-
tion von DNA Daten. Unter expliziten Voraussetzungen liefern sie konkrete und
prüfbare Vorhersagen. Die Anwendung und Weiterentwicklung minimaler Evo-
lutionsmodelle ist das Leitmotiv dieser Arbeit. Zuerst werden die funktionalen
Effekte von Mutationen in Krebszellen analysiert. Dies geschieht aus der Per-
spektive von Keimzellevolution, die die DNA hervorbrachte, die wir heute in allen
Zellen finden können. Mit Hilfe von öffentlich zugänglichen Sequenz-Daten über
Protein-Domänen kann abgeschätzt werden, wie groß der evolutionäre Fitness-
effekt von Mutationen ist. Mithilfe dieser Möglichkeit Mutationen zu bewerten
können dann Gene identifiziert werden, die für die Krebs-Evolution entscheidend
sind. Die Relevanz dieses Ansatzes wird an einem Datensatz von Krebsmutatio-
nen in Protein-Kinase Genen exemplarisch dargestellt. Darauf folgt eine Anwen-
dung der Methode der Hidden Markov Modelle (HMM) um Signale von positiver
Selektion in Krebs-Daten zu finden. Krebs- und Keimzellevolution sind prinzi-
piell verschiedene Prozesse. Krebs-spezifische Selektion kann aber über eine
erhöhte Rate von nicht-synonymen Mutationen in Genen nachgewiesen werden,
die für das Fortschreiten der Krebsentwicklung aus- oder auch eingeschaltet sein
müssen. Die Identifikation dieser Krebsgene kann mittels HMM effektiv durchge-
führt werden. Im letzten Teil der Arbeit wird ein erweitertes mathematisches Evo-
lutionsmodell analysiert, das Adaption zu einem Zustand maximaler Fitness durch
kompensatorische Mutationen bei sexueller Fortpflanzung beschreibt. Dieses Mo-
dell beschreibt die Evolution von zwei Loci mit jeweils zwei Allelen. Die gemein-
samen Effekte von Mutation, Selektion, Rekombination und Epistase führen hier
zu der Situation, dass ein “Fitness-Tal” durchquert werden muss um den Geno-
typ höchster Fitness zu erreichen. Adaption geschieht durch seltene zufällige
Fluktuationen der Allelfrequenzen, in denen der Effekt des Durchmischens durch
Rekombination überwunden wird. Die relevanten Zeitskalen für diesen Prozess
werden für einen weiten Parameterbereich hergeleitet, der auch starke Rekombi-
nation beinhaltet.
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Chapter 1

Synopsis

“Nothing in biology makes sense,
except in the light of evolution.”

Theodosius Dobzhansky, 1973

The title of Dobzhansky’s 1973 article [1] may be provocative and by now overused.
But nowadays, more than ever before, the theory of evolution has become an es-
sential part of biology. The first complete draft of the human genome1 in 2001 [2]
marked the beginning of a new era. Ten years later, new technological advances
made it possible to sequence thousands of humans across the world2 and to as-
semble the genomes of over 180 more eukaryote species3. This huge amount of
sequence data sheds new light on the genetic factors for common diseases with
the help of so called “genome-wide association studies” [3, 4]. Currently, a large
international sequencing project aims to find the genetic causes of cancer [5].
In order to make sense of this plethora of data, one needs to understand the mecha-
nisms behind the process that produced these DNA sequences and their statistical
characteristics: evolution. Mathematical models of evolution try to capture the
influences of forces such as selection, mutation and genetic drift (chance) on the
distribution of genes in the gene pool. These effects thereby become quantifiable
and ultimately measurable. This provides a starting point to explain genetic vari-
ation.
The broad theme of this work is the application and analysis of minimal models

1Please see page 16 for a glossary of genetics related terms.
2See e.g. the 1000 genomes project: www.1000genomes.org
3See e.g. www.ncbi.nlm.nih.gov or www.ensembl.org. Eukaryotes are organisms with cells that
have a nucleus, in which the DNA is contained. In the other domains of life, the number of
sequenced species is even larger: 1710 for prokaryotes (having cells without a nucleus, e.g.
bacteria) and 2695 for viruses (September 2011).

13



14 Synopsis

of evolution. In this context, models are “minimal” if they are as complex as nec-
essary to have some utility in the interpretation of data, but at the same time as
simple as possible to allow for an analytical treatment. In the three chapters fol-
lowing this synopsis, a straightforward application of well-known predictions for
evolution under mutation, selection and genetic drift to the analysis of cancer mu-
tations is performed. The central quantity in this analysis is evolutionary fitness,
defined as the growth advantage of cells or organisms conveyed by their genes
over other organisms carrying competitor genes. This fitness directly depends on
the proper function of cells and ultimately on the instruction sets encoded in the
DNA. This close link between biological fitness and genotype is reflected in the
distribution of genotypes in the pool of all available variants. Mathematical mod-
els of evolution are able to make predictions for this connection under appropriate
assumptions. One main result of this work is, that the change in fitness that is in-
duced by mutations as predicted by these models is shown to be a useful scale to
identify cancer-driver mutations, i.e. mutations that are causally related to cancer
progression [6].
In chapter two, the well known one-locus/two-allele model of evolution is re-
viewed. In this situation of competition between two rivaling alleles in a finite
population, the model describes how allele frequencies evolve in time. The pre-
diction for observations when taking samples of such a model depend on the
particular combination of the model parameters: population size, selection and
mutation rate. When analyzing real life genetic data, these parameters are never
known. But they can be inferred from the data. This is done in the second part
of chapter two by the mechanisms of Bayesian inference [7]. This method is here
employed to find statistically meaningful estimates of the fitness cost of mutations
from openly available sequence data. Bayesian inference is a general methodol-
ogy to estimate model parameters from experimental data in due consideration of
all prior information. The gain in knowledge about a system through experimental
observation is expressed in the language of probability. The whole process of pa-
rameter estimation is demonstrated on a simple but useful example - multinomial
sampling from an urn - and should be self-consistent. Driven by the need to cope
with scarce data, an important part of the derivation concerns the principles of
maximum entropy (MaxEnt) and minimum discrimination information (MinDI).
With these guiding principles one can consistently incorporate informative prior
information and find meaningful point estimates for the model parameters even
for small sample sizes. The conceptual aspects of this part are very general. The
results are necessary ingredients for the germline fitness estimation scheme. In the
last part of chapter two, it is explicitly shown how to “score” observed missense
mutations (not just in cancer) by their inferred effect on cells’ function and fitness.
As a basis for this inference scheme, representative collections of protein domain
sequences are used [8], which are readily available in the Pfam database [9]. In
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practice, the scoring pipeline - from mutation data and protein domain alignments
to final mutation scores - is carried out by computer programs. The current imple-
mentation is very scalable: many mutations in many genes can be scored within
hours.
Chapter three puts this mutation scoring scheme to a practical use in the analy-
sis of a specific cancer data set: cancer mutations in protein kinase genes [10].
A subset of these genes with known cancer association is shown to harbor more
supposedly harmful mutations in cancer cells than would be expected by chance.
This is of immediate practical importance for the discovery of new cancer genes.
The analysis in this chapter is of statistical nature. By comparing the scores of
the observed cancer mutations with the same characteristics of an ensemble of
“random” mutations, the significance of this germline fitness scale for cancer evo-
lution is clearly demonstrated.
In the fourth chapter Hidden Markov Models (HMM) [11] are employed to find
signals of positive selection in cancer mutation data. Genes that are essential for
the cancer development are under strong selection in the tumor. The selection
pressure is primarily posed by the immune system of the host. The cancer rel-
evant genes will exhibit a significantly higher rate of missense substitutions, i.e.
the take-over of new genetic variants in the cancer cell population. HMM are
probabilistic models to relate observed data (the number of mutations in the dif-
ferent genes) to the potential but unknown state of the system that generated this
data (the selection status of the different genes in cancer). Internally, the HMM
presented in this work uses the very same theoretical predictions for the substitu-
tion rates from a minimal evolution model that are the base of the germline fitness
scoring scheme. The effectiveness of this method to identify cancer driver genes
in the protein kinase mutation set mentioned above is demonstrated as the results
from the original study are reproduced [10]. However, the HMM method has a
larger capacity and flexibility: the analysis can be extended to e.g. selection in
protein domains and in protein kinase sub-domains. The last part of chapter four
shows how such an analysis could be implemented.
The fifth chapter of this work goes back to the theme of minimal evolution models.
It is devoted to the analysis of a more extended model, that - on top of selection
mutation and genetic drift - additionally includes the effects of recombination and
epistatic interaction of alleles at different loci. In a two-locus/two-allele set-up,
this model describes the competition of four genotypes in a sexually reproduc-
ing population. Recombination is the exchange of genetic material by (chro-
mosomal) cross-over in sexually reproducing organisms and epistasis describes
the non-additive effect of mutations at interacting loci. Interestingly, within this
model it is possible to analyze the problem of adaption to a state of maximal fit-
ness by crossing of a fitness valley. This happens, when a mutation at each locus
of the wild type genotype is strongly deleterious but more than compensated by
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a secondary mutation at the other locus. Such a specific fitness assignment (sign
epistasis [12]) leads to the situation that there are two genotypes with high fitness
separated by intermediate states of low fitness. Of central importance is the time
needed to cross this valley for a population that starts in one of the the local max-
ima. As a function of recombination strength, there is a cross-over to a regime
where valley-crossing is impeded by recombinatorial reshuffling of genotypes. In
infinite populations, fixation of the super-fit double mutant is impossible if recom-
bination is too strong [13, 14]. Only rare large fluctuations in finite populations
can lead to adaption. The valley crossing rate is then very small. i.e. exponentially
suppressed. This process can be described as stochastic tunneling [15]. Similarly
to quantum mechanical tunneling, the allele frequencies of the intermediate evo-
lutionary states - the deleterious single mutants - never reach macroscopic sizes
in the population during the adaption process. In this stochastic tunneling regime,
the relevant time scale for fixation is derived for a wide parameter range that goes
well beyond the point where recombination dominates. Also the critical size,
that a double mutant subpopulation needs to reach in order to successfully fix-
ate is calculated explicitly. The analytical predictions are derived with the Moran
formulation of evolution. They are validated by numerical simulations using a
Wright-Fisher variant of the process. In the appendix, the connection between
those two complementary formulations is worked out.

1.1 Glossary of genetics related terms
At this point, it is in order to set some nomenclature used throughout this work.
All terms explained in this glossary appear in italics.

alignment: A graphical way to compare related homologous sequences is to align
them, i.e stack them on top of each other with corresponding loci (nucleotides or
amino acids) in the same column. If the sequences are very similar, this alignment
can be done almost “by eye”. If there is a certain degree of divergence between
the sequences, the alignment procedure is not at all straightforward and elaborate
programs - such as the widely used BLAST [16] - are used for that task. An ex-
ample of an amino acid alignment can be found on page 54.

allele: If a genetic unit can appear in different variants in a population, each of
those rivals is called an allele of the specific locus. The unit can be one single
nucleotide or even a whole gene sequence.

amino acid: Amino acids are the building blocks of proteins. In most life forms,
20 different amino acids are used to build proteins. Each one is denoted by a cap-
ital roman letter, from (A) for alanine to (W) for tryptophan.
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base pair: The two polymers of DNA molecules are connected by pairs of nu-
cleotides. There are only the two pairings A:T (or T:A) and C:G (or G:C).

cancer: A disease where the DNA of cells is changed in such a way that it leads to
their uncontrolled growth. Ultimately, this will lead to an unsustainable situation,
where the growth of the cancer cells impairs the function of organs. The DNA of
cancer cells is markedly different from those of the germline. [17, 18].

cancer gene: There are essentially two ways in which genetic changes can lead
to the cancer state of a cell: either genes that control and suppress cell division
are “switched off” - so called tumor suppressor genes - or genes that enhance the
cell proliferation are “switched on” - so called oncogenes.

codon: The genetic information is encoded in the DNA using the four-letter al-
phabet of nucleotides. However, the protein products are chains of symbols from
the twenty-letter set of amino acids. So there is a mapping from the nucleotide to
the amino acid sequence: the genetic code. Three nucleotides are grouped to form
a codon, a short three letter sequence, which is translated into one of the twenty
amino acids. This mapping is realized in the process of translation. Since three
letter sequences could potentially code for 43 = 64 meta-letters, the genetic code
is inherent with a high degree of redundancy. There is a 21st symbol coded for
by several codons: the stop codon that signals the end point of a coding sequence.
The start position of a coding sequence is always located at the first methionine
(M) with its codon ATG.

clone: A clone describes the perfect copy of a genome. In the context of cancer,
a single tumor cell with a large growth advantage conveyed by a driver muta-
tion will rapidly multiply and produce copies of itself - an event called clonal
expansion. Importantly, all members of a clonal sub-population are genetically
identical.

deletion: This kind of mutation deletes a whole sub-sequence and can have the
same potential effects as an insertion, i.e. a complete loss of the proper protein
function.

diploid: Diploid organisms have two copies of DNA in their cells, one from each
of their parents. This means, that there are also two copies of every locus. If the
two copies are identical, the locus is called homozygous, else heterozygous. Cells
with just one copy of their DNA are called haploid, such as sperm cells or egg
cells.

DNA: Deoxyribonucleic acid is a large molecule present in most cells of all liv-
ing life forms that stores all information necessary for the assembly and function
of an organism. DNA molecules consist of two polymer chains of a sugar and
phosphate backbone, called “strands”, on which the nucleotides are arranged in a
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complementary fashion to form a double helix. The two polymers are connected
by complementary pairs of nucleotides.

driver mutation: A mutation that is causally linked with cancer development.
Standard cancer models assume that a tumor goes through a succession of clonal
expansion stages, where each stage is initiated by one or more driver mutations
[19, 20].

fitness: In evolutionary terms, the fitness of an organisms is its rate of growth
compared to other organisms. In models of evolution, fitness is always defined
relative to that of competitors. The central quantity is often the selection coeffi-
cient, i.e. the difference in fitness between alleles.

fitness landscape: The assignment of fitness values to different alleles in the
space of all possible alleles is called a fitness landscape. Alleles with local fit-
ness maxima (local in the sense of number of mutations as a distance measure)
are sometimes called “fitness peaks”. If there are multiple peaks, they are usually
separated by “fitness valleys”. If the fitness assignments change as a function of
time, one might speak of fitness “seascapes” [21].

gene: Some of the sequence in the DNA is in fact a collection of recipes or pro-
grams for building machinery needed in the cell. Such a single instruction set
sequence is called a gene. In human DNA, there are about 2 ⋅104 genes [22].

genetic drift: This is a term describing the influence of random reproduction suc-
cesses in the evolution of a finite population.

genome: The genome is a term for the total of all hereditary information con-
tained in a DNA molecule. This entails coding sequences for genes, inter-genetic
sequences and sequences that are important for the regulation of gene expression.

germline: In an adult organism, only the genetic material of a certain line of
cells - the germline - could be potentially passed on to the next generation and
is thus relevant for evolution. These are the gametes - sperm and egg - and all
cells from which they derive, up to the cells from which an organism evolved. As
only changes in the germline are passed on to the next generation, they are under
direct evolutionary pressure. Likewise, the DNA sequence of germline cells can
be understood as the result of a billion year long evolutionary process.

homologue: Homologous genes are similar or identical to each other both func-
tionally and sequence wise and they share a common ancestor.

insertion: An insertion is not a point mutation. Instead, a whole sequence bit is
inserted within a gene sequence. If the insertion length is not a multiple of three -
the length of a codon - the reading frame is shifted, which will quickly result in a
premature stop codon. Otherwise, the gene will still be translated but will have a
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longer protein sequence and different folding behavior.

locus: The physical location of a specific genetic unit (i.e. a gene, codon or nu-
cleotide) within a genome is called it’s locus (plural: loci).

missense: A missense mutation (or nsSNP for non-synonymous SNP) changes
the codon in a way that it now codes for a different amino acid, potentially alter-
ing the structure and function of the protein product.

monomorphic: A group or population is said to be monomorphic if all its mem-
bers are of the same (geno-)type. This is the opposite of a polymorphic population.

mutation: The DNA of cells is subject to processes that change the sequence in
different ways, e.g radiation or errors in DNA copy during cell divisions. These
changes are called mutations. Their effect can be the change of a single nucleotide
(point mutation), an insertion or deletion or even a large scale DNA rearrange-
ment.

non-sense: A non-sense mutation changes the codon to be a premature stop
codon. In the translation step, the rest of the gene after the non-sense mutation is
neglected, potentially making the gene product useless.

non-synonymous: See missense mutation.

nucleotide: Nucleotides are the basic building blocks of the genetic material of
all life forms. These are the four molecules adenine (A), guanine (G), cytosine
(C) and thymine (T).

oncogene: In this class of cancer genes, the gene protein products show an en-
hanced activity in the cancer cells. Here, it usually suffices to mutate one of the
parental alleles, hence they are also called dominant cancer genes. Oncogenes are
involved in the regulation of cell growth and differentiation. Most of the cancer
genes discovered up to now are oncogenes [17], but this is mostly due to a bias in
the methods used for their discovery.

orthologue: Orthologous genes are related or identical genes in different species.

paralogue: Paralogous genes are present at different locations in the same genome
which are descendant from a common ancestor gene. They usually stem from a
gene-duplication event in the evolutionary past of the genome, where an initially
single gene is (erroneously) duplicated during cell division in germline cells.

passenger mutation: During cancer evolution, many processes that prevent ran-
dom mutations to accumulate are switched off, such as DNA damage repair or
apoptosis. Thus, cancer cell DNA also harbors a large number of mutations that
are not usually seen in healthy cells, but that are not causally linked to the cancer
progression.
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point mutation: A change of a single nucleotide in the DNA (also called SNP for
single-nucleotide polymorphism), brought about e.g. by biochemical reactions,
radiation or DNA-copying errors. Depending on the genetic context of the muta-
tion location, the effect of a mutation is specified as silent, missense or non-sense.

polymorphic: A group or population is said to be polymorphic if its members
belong to various different (geno-)types. This is the opposite of a monomorphic
population.

protein: Proteins are polymers of amino acids chained together by peptide bonds.
The polymer is not in a linear configuration, but folded in a state of minimum free
energy. Proteins are biological machines and involved in virtually all processes in
the cell, from metabolism to signal processing. They are the manifestations of the
information encoded in the genes.

protein domain: Genes (and their products) are not the smallest or only func-
tional units of the genome. Instead, each gene includes one or more domains,
which are recurring highly conserved strings. Most of the domains can be identi-
fied with a very specific function. Domains can be found in many different genes
within a single genome. The Pfam database [9] is a resource for information about
protein domains.

RNA: Ribonucleic acid is a macromolecule used for the intermediate transcrip-
tion step of a gene’s expression. Compared to DNA, the deoxyribose is substi-
tuted by ribose and one of the four nucleotides - thymine (T) - is changed to the
nucleotide uracil (U).

selection: Selection in evolution manifests itself via differential growth rates (re-
productive success) between different alleles. The most prevalent form of selec-
tion is called “purifying”, i.e. where new variants with comparably low growth
rates quickly disappear from a population. Sometimes, a new allele is actually
better adapted than the prevalent allele. The quick take-over of this new variant is
described with positive selection.

sequence: Main task of the DNA is the storage of information and regulation. The
information is stored in the “sequence” of letters from the four-letter nucleotide
alphabet. The sequences of both DNA strands carry the same information due to
the complementary nature of the base pairs.

silent: Within a coding sequence, a silent mutation changes a nucleotide in a
way that the codon still maps to the same amino acid. The protein product is un-
changed. This kind of point mutation might still have a measurable effect, e.g. in
the efficiency of transcription. A better term for it is therefore synonymous muta-
tion.



1.1 Glossary of genetics related terms 21

somatic: All cells that are not in the germline are called somatic. Mutations in
somatic cells are relevant to the individual organism, but not to the genome’s evo-
lution - unless the somatic change prevents the organism from reproducing. In the
context of cancer, the two terms germline and somatic are used in a somewhat
different way. Here, somatic mutations (not cells) are those only seen in the can-
cer cells, whereas germline mutations are observed in the non-cancer cells. It is
understood that the genetic variation across cells within an organism is so small
that the DNA of any cell is very close to the “germline”.

synonymous: See silent mutation.

transcription: If a specific protein is needed in a cell, the information about that
protein encoded in the corresponding gene is materialized by a two step process:
transcription followed by translation. In transcription, a complementary copy of
the gene’s nucleotide sequence is produced in the form of a mRNA (messenger
RNA) molecule. The mRNA is subsequently translated to produce the final pro-
tein.

translation: The mRNA - a complementary copy of a gene sequence produced in
the transcription step - is converted to the final protein product in the translation
step. This is carried out by a large molecule called ribosome. Beginning from
the start codon, it appends all amino acids according to the mRNA sequence until
it encounters the stop codon. The synthesized protein is released and folds to its
final form.

tumor suppressor:In tumor suppressor genes, both parental alleles have to be
mutated to deactivate the gene product (the “two-hit hypothesis”). That is why
they are also sometimes called recessive cancer genes. These are mostly genes
that are involved in DNA damage repair, coupling of the cell cycle to DNA damage
and apoptosis (the intentional cell death). The most prominent example for a gene
with all those functions is TP53 that codes for the p53 protein.



Chapter 2

Bayesian inference of germline
fitness

“When the facts change,
I change my mind.
What do you do, sir?”

John Maynard Keynes, 1940

2.1 Introduction
How can one quantify the effect of a mutation on a gene’s function? In this first
chapter, it is shown how minimal evolutionary models can help to answer this
question. Ever since the first human genome was sequenced [2, 23], there is an
increasing demand for methods to interpret the observed variation data, especially
in the context of disease. There are various complementary methods to quantify
the functional impact of a mutation [24, 25], e.g. based on indicators of selec-
tion in mutation frequencies [26, 27, 10, 8] or based on bioinformatic methods to
infer the functional or structural effect of individual mutations [28, 29, 30, 24].
As an example, this can mean to find the consequences of changes in the amino
acid sequence of a protein for its biophysical stability or folding characteristics1

[31]. This analysis involves extensive simulations of the molecular dynamics of
the protein polymer chain to find its folding behavior. These simulations impede
the scalability of those methods for very large data sets, as they are typical for
current sequencing studies.
The methods presented here try to exploit the fact that the germline DNA sequence
of each organism is the result of all of its evolutionary past. All possible evolu-

1Please see the glossary on page 16 for an explanation of the most important genetics related terms
used in this thesis.
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tionary “experiments” have been in fact performed countless times. What we can
observe today in each gene’s sequence conservation pattern - seen across many
organisms - is a manifestation of the selection pressures that have been and still
are acting on it. In probabilistic terms, there is a distribution of all possible alleles
at each locus, which strongly depends on the influences posed by natural selec-
tion - favoring some alleles over others. Observing samples from that distribution
would be a direct way to assess the evolutionary “fitness” of each allele. More im-
portantly, for a mutation between two alleles, the statistical information derived
from such a sample of alleles provides an evolutionarily meaningful scale for the
mutation’s functional impact. This scale is called the “germline fitness score” of
a mutation.
In this first chapter, the conceptual steps necessary to set-up this mutation scoring
scheme are laid out. The problem of inferring parameter estimates from samples
of an unknown distribution is a classic task in the natural sciences. It is presented
here in terms of Bayesian inference [7]. The concrete difficulties in realizing these
conceptual ideas for genetic data in practice will be addressed later in the chapter.
Methods based on the analysis of sequence conservation patterns are well known
in the field [8, 32, 33, 34], their application in the context of cancer mutations
however, is a novel approach.

2.2 The one locus two allele model

The whole idea of germline fitness scoring is based on the following observation.
The distribution of alleles at a specific genetic locus mirrors the underlying evolu-
tionary process. Using a minimal model of evolution that includes mutation and
selection and genetic drift2, one can predict how that distribution should look like
as a function of the alleles’ fitnesses. Moreover, it is possible to infer (estimate)
the fitness values from a finite sample of the allele distribution.

2.2.1 Moran model of evolution

This is a short presentation of the most basic evolutionary model capable of cap-
turing the effects of mutation and selection - the one-locus/two-allele model of
evolution. It is well known and studied and even allows for a full analytical de-
scription 3 [35, 36, 37, 38]. The basic ingredients are:

2Genetic drift is a term for the random fluctuations in the evolutionary processes due to finite size
of the population.

3The solution was found by M. Kimura, hence the model will from now on be referred to as the
“Kimura model of evolution”.
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• The evolution of allele frequencies in a population of organisms is modeled
as a stochastic Markov process, i.e. a sequence of random events in time
where the next set of events along with their probabilities depends only on
the current state of the population (and not its entire history).

• The population is supposed to be of constant size N, where usually N ≫ 1.
This population size is fixed for the entire process.

• Each organism of the population carries a genome with a single locus that
allows for one of two alleles, e.g. A and B. We call ni (i=A,B) the number of
individuals with these alleles and xi = ni/N their allele frequency. Because
nA+nB =N, there is really just one degree of freedom, e.g. nA =∶ n.

• The events that take place in every evolutionary turn are births and deaths of
individuals (the events actually take place at random time points themselves,
see appendix C.4). This is the Moran model formulation of evolution 4 [39].

• The probability Di (i = A,B) that an individual with allele i dies in the next
turn is given by the allele’s frequency: Di = xi. The probability Bi for a birth
of allele i is additionally weighted according to its fitness fi with the weight
wi = fi/ f̄ and mean fitness f̄ = fA xA+ fB xB. This means: Bi =wi xi.

• To introduce variation, a newborn mutates to the other allele with the prob-
ability u. The birth and death probabilities above change accordingly.

Mathematically, the evolution of the population is fully described by the prob-
ability distribution P(n,t), which returns the probability that at time t there are
exactly n copies of the A allele present in the population. It is useful to imagine an
ensemble of identical populations - a population swarm - all evolving randomly
according to the same set of rules. The configuration (e.g. depicted in a his-
togram) of that swarm evolves in time as well. For an increasing swarm size, this
histogram approaches the probability distribution P(n,t). The rate of that change
of probability at each state is described by the Master equation, here for the Moran
birth-death model [39]. The Master equation is but a continuity equation: the rate
of probability change at n is equal to the probability inflow from n+1 and n−1
minus the probability outflow to the neighboring states. This flow of probability
from source to target is simply given by the amount of probability present at the
source times the probability per unit time W for a transition to take place to the

4There is an alternative formulation attributed to Wright and Fisher, according to which the whole
population is assembled anew in every turn [39]. The relationship between both formulations is
demonstrated in appendix C.
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target. What was said in words translates to the equation:

∂t P(n,t) = [P(n+1,t)W(n+1→ n)+P(n−1,t)W(n−1→ n)]
− [P(n,t)W(n→ n+1)+P(n,t)W(n→ n−1)] (2.1)

For a birth-death process, a transition from n to n+1 alleles of type A can be only
accomplished if in above protocol an A is born and a B dies. The probabilities for
these events depend on the current number of A alleles present. Hence we have

W(n→ n+1) = BA(n) ⋅DB(n), W(n→ n−1) =DA(n) ⋅BB(n) (2.2)

Altogether, the Master equation above is usually expressed in a more compact
form using the discrete shift operators E± that shift the argument of everything
they act on by plus or minus one:

E± f (n) ∶= f (n±1)

With this we have the birth-death Master equation in its usual form:

∂t P(n,t) = [(E−−1) BA(n)DB(n)+(E+−1) DA(n)BB(n)] P(n,t) (2.3)

x ∶= n
N
, DA(x) ∶= x, BA(x) ∶= fA x(1−µ)

fA x+ fB (1−x) +
fB (1−x)µ

fA x+ fB (1−x)

By definition of the model, in every turn one allele must be born and one must
die. This is reflected in the identities:

BA(x)+BB(x) = 1 and DA(x)+DB(x) = 1 (2.4)

In this model, the evolutionary forces are supposed to be small, i.e. fi = 1+si, with
si ≪ 1. The assumption is made that it suffices to work with the transition rates to
leading order in the parameters {si, µ}.

BA(x) = x+(sA− sB)x(1−x)+u(1−2x)+O(u2,s2
i ) (2.5)

2.2.2 Expansion of the Master equation
A solution to the Master equation in the above form is not known. However, it is
also usually not needed. In biologically meaningful evolution models, one is often
interested in a qualified limit of a large population size N →∞. This limit is to
be realized with the condition that the products N ⋅u =∶ µ and N ⋅(sA− sB) =∶ σ are
held constant. It is these combined parameters that separate between qualitatively
different behaviors of the system [38]. The limit N →∞ leads to a diffusion
approximation of the Master equation, which is called a Fokker-Planck equation



26 Bayesian inference of germline fitness

[40, 41]. The time is then conveniently measured on a different scale. For the
details of the derivation see appendix C.

∂τ P(x, τ) = [−∂x (σ x(1−x)+µ (1−2x))+∂
2
x x(1−x)] P(x, τ) (2.6)

σ ∶=N (sA− sB) , µ ∶=Nu, τ ∶= t
N2 (2.7)

This is a linear second order partial differential equation, which is sometimes
easier to solve than the set of coupled ordinary differential equations that is the
Master equation. Especially for stationary distributions, i.e. ∂tP(x,t) = 0, there are
standard techniques to find them from the so called “drift” and “diffusion” terms
appearing in the Fokker-Planck equation [41]. These are the terms appearing in
the first order and second order parts of the Fokker-Planck operator, respectively.
They are here denoted with F(x) and D(x) (since the drift term can be regarded as
a force and D is the usual notation for a diffusion constant). In the above equation,
we have

drift term ∶ F(x) = σ x(1−x)+µ (1−2x) (2.8)
diffusion term ∶ D(x) = x(1−x) (2.9)

The drift term describes the dynamics of the system if fluctuations can be ne-
glected. Indeed, if the second order derivative term in the Fokker-Planck equation
above is omitted, we arrive at a Liouville equation. Its solution is a delta peak
fixed to the deterministic trajectory φ(τ):

∂τ P(x, τ) = −∂x F(x)P(x, τ), P(x,0) = δ(x−x0) (2.10)

⇒ P(x, τ) = δ (x−φ(τ)) , with
d

dτ
φ(τ) = F(φ(τ)), φ(0) = x0 (2.11)

In our case, this deterministic behavior dominates, if both selection and mutation
are strong: 1 ≪ µ, σ . If there is even mutation-selection balance - µ ≪ σ - the
deterministic trajectory approaches the stationary state φ∗:

d
dτ

φ(τ)∣
φ∗

= 0 ⇒ φ∗ ≈
⎧⎪⎪⎨⎪⎪⎩

1− µ

σ
, σ > 0

µ

σ
, σ < 0

(2.12)

Note: Sadly, there is a very confusing double usage of the word “drift” in the
populations genetics literature. It is used to refer either to genetic drift - the ran-
dom nature of reproductive success - or to the drift appearing in a Fokker-Planck
equation. Both aspects could not be more contradictory: whereas genetic drift em-
phasizes fluctuations, the Fokker-Planck drift describes the dynamics in absence
of fluctuations!
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2.2.3 Allele frequency distribution in equilibrium

The stationary distribution of the Fokker-Planck equation (2.6) can be given ana-
lytically [41, 38] (see figure 2.1)

Ps(x) = Z−1

x(1−x) exp(∫
x

a
dx′

σx′(1−x′)+µ(1−2x′)
x′(1−x′) ) =Z−1 [x(1−x)]µ−1 eσ x

(2.13)

where a ∈ (0,1) is an arbitrary reference value and terms involving it are absorbed
in the constant normalization factor Z , which is given by the following integral.

Z ∶= ∫
1

0
dx [x(1−x)]µ−1 eσ x =

√
π eσ/2

σ
1
2−µ

Γ(µ)I
µ− 1

2
(σ

2
) (2.14)

where Iα(x) is the modified Bessel function of the first kind (see table of mathe-
matical definitions in the preamble). The normalization for the neutral case σ = 0
is given by

Zσ=0 =
Γ(µ)Γ(µ)

Γ(2µ) (2.15)

For low mutation rates µ =Nu≪ 1, most of the probability weight is concentrated
near the boundaries x(1− x) = O( 1

N ) [38]. This means that typical trajectories
spend most of the time at either boundary, where the population is monomorphic,
i.e. all organisms carry the same allele. This can be most easily seen, for the neu-
tral case by integrating the singular parts of the distribution over half the interval
each [38] and leaving out the boundary regions x(1−x) =O( 1

N ):

Z−1
σ=0

⎛
⎜
⎝

1/2

∫
1/N

dx xµ−1+
1−1/N

∫
1/2

dx (1−x)µ−1
⎞
⎟
⎠
= 2 (2−µ −N−µ)Γ(2µ)

µ Γ(µ)Γ(µ) = µ ln
N
2
+O(µ

2)

(2.16)

This means that most of the probability weight for Nu≪ 1 is indeed concentrated
at the monomorphic boundaries x = 0 and x = 1. For a typical trajectory this means
that, infrequently, the majority allele frequency switches to the other extreme,
which is called a “substitution event”. This carries over to non-neutral situations
with σ ≫ 1. Altogether, the result is that in equilibrium the probability distribution
is “U-shaped” (see figures 2.1 to 2.3).
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Figure 2.1: Stationary distribution of the one-locus/two-allele model for σ = 5 and dif-
ferent values of mutation µ = 0.1 (red), µ = 1 (blue) and µ = 10 (black).

2.2.4 Substitution rates in equilibrium
The two substitution events (A→ B and B→ A) take place on characteristic time
scales, i.e. with typical rates. The most straightforward way to calculate these
“substitution rates” is via conditional escape probabilities [41]. Starting in a
monomorphic state, e.g. at x = 0 (all B), a first A allele appears with a rate Nu.
This one A individual will spawn an A-sub-population that might ultimately take
over the whole population - instead of dying out - with an escape probability πesc.
This conditional escape probability can be evaluated at the level of the Fokker-
Planck equation (the boundary at x = 0 is not directly involved in that process)
and more importantly, further mutations during the escape event can be neglected
for a mutation rate that is low enough: Nu ≪ 1. For general one-dimensional
Fokker-Planck equations of the form

∂t P(x,t) = [−∂x F(x)+∂
2
x D(x)] P(x,t) (2.17)

with a drift term F(x) and a diffusion term D(x), the probability πL,R(x0) that a
stochastic trajectory starting at x0 leaves a region bounded by xL < x0 < xR through
either end of the interval can be calculated directly using the auxiliary quantity
ψ(x) [41].

ψ(x) ∶= e
−∫

x
a dx′

F(x′)

D(x′) ⇒ πL(x0) =
∫

xR
x0

dx ψ(x)

∫
xR

xL
dx ψ(x)

, πR(x0) =
∫

x0
xL

dx ψ(x)

∫
xR

xL
dx ψ(x)

(2.18)

As before, the choice for the reference value a is irrelevant, because terms involv-
ing it cancel out in the definitions of πL,R(x0). For the present purpose, we need
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Figure 2.2: Typical trajectory of the one-locus/two-allele model for large mutation Nu≫
1. The black dashed line corresponds to the deterministic trajectory with the same initial
condition. In this limit, it is a good approximation to the stochastic trajectory.

the escape probability for an initial A allele (x0 = 1/N) to spawn an A-allele sub-
population of size x instead of dying out, i.e. xL = 0, xR = x. The drift and diffusion
terms are taken from the Fokker-Planck equation (2.6), but crucially the mutation
rate is set to zero: u = 0. This is because for Nu ≪ 1, the time (in generations)
until the next A allele appears due to a mutations is O( 1

Nu), which is much longer
than the time it would take the current clone to grow to fixation conditional on its
success.

ψ(x) = e−∫
x

a dx′ σ x′(1−x′)
x′(1−x′) ∝ e−σ x (2.19)

πesc(x) ∶= πxR=x(x0 = 1/N) = ∫
1/N

0 dx′ ψ(x′)
∫

x
0 dx′ ψ(x′)

= 1−e−σ/N

1−e−σ x ≈ σ/N
1−e−σ x (2.20)

The total rate ΓB→A for a substitution event from an all-B population to an all-
A one is to a good approximation the rate of first arrival of an A allele times its
probability of escape to x = 1:

ΓB→A ≈Nuπesc(1) = uσ

1−e−σ
(2.21)

If one takes into account that the mutation rates might not be the same in each
direction, one arrives at the following central result:

ΓA→B ≈
uA→B (−σ)

1−eσ
, ΓB→A ≈

uB→A σ

1−e−σ
(2.22)
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Figure 2.3: Typical trajectory of the one-locus/two-allele model for small mutation Nu≪
1. The deterministic trajectory is clearly not a good approximation. Instead, several
substitution events (switches) can be seen. In this simulation, the fitness of the A-allele
(upper boundary) is slightly larger than that of the rival, as is reflected in the different
amounts of time spent at each boundary.

The ratio of these two directed substitution rates is thus proportional to a rather
simple and well known expression, that is central to all derivations in this chapter
[36, 42, 43].

ΓB→A

ΓA→B
= uB→A

uA→B
eσ (2.23)

Note: The main argument for the simplified derivation of the substitution rate
above, was that the time needed for a successful A allele clone to ultimately reach
fixation is shorter than the time scale for further mutations 1

Nu . Then we could ne-
glect the mutation process for the subsequent fixation. If the A allele is preferred
(σ > 0), then the conditional fixation time is approximately given by the determin-
istic time O( lnN

σ
). But even in the case of σ < 0, when deterministically the A

allele would not fix at all, the time needed for fixation by a large fluctuation is still
given by the same deterministic value. This is because the most likely “escape-
by-fluctuation-path” (for one dimensional systems) is exactly the time-reversed
path [44] (also called “anti-deterministic path”).

2.2.5 Sampling distribution in equilibrium for Nu≪ 1

Up to this point we treated the one-locus/two-allele model as if the model param-
eters - N, u and s - were known. For given parameters, we stated the important
quantities and observables, e.g. the stationary distribution Ps(x). Starting with the
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Figure 2.4: The substitution rate Γ(u,σ) as given by equation (2.21) (red line, with u =
10−5) and compared to the three approximations (black dashed) Γ ≈ uσ e−σ (for σ ≪ −1),
Γ ≈ ueσ/2 (for ∣σ ∣≪ 1) and Γ ≈ uσ (for σ ≫ 1).

next section, the task will be actually to infer/estimate those model parameters in
situation when they are unknown. This can be done if “experimental data” for this
model is available. This data could be, for example, the time series for a particular
trajectory of allele frequencies, such as in figure 2.3. If (and that is a big if) the
time span covered by the data was long enough, such that many substitution events
are observed, one could use eq. (2.23) for the inference: the time spent in each
monomorphic state depends on the selection coefficient σ and the mutation rates.
If the mutation rates were known from independent sources, one would thus be
able to estimate the selection coefficient σ directly from such a single trajectory.
The problem of course is that ordinary germline evolution - which formed the
DNA of humans and all other animals - proceeds on time scales which are abso-
lutely inaccessible to contemporary researchers. On this scale, all the DNA data
that was collected in the last decade is virtually from a single point in time. All
that we have is but a snapshot of evolution5. But this shall not be a problem, as
long as there are many independent and identically distributed (i.i.d.) data points
available. Consider again the trajectory in figure 2.3 and imagine there were many
- in fact infinitely many - such trajectories overlaid in the picture. All these tra-
jectories are supposed to follow exactly the same rules, such that they form a sta-
tistical ensemble which represents the stationary distribution Ps(x). If you were
to take a snapshot of that ensemble at any point in time, you would still be able

5Of course, I am not talking about “experimental evolution”, nowadays performed with bacteria,
where tens of thousands of generations can be observed in a matter of years.
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to reconstruct the model parameters. But instead of using time spans spent in the
monomorphic states by one representative, you would use the proportions of the
ensemble at the two boundaries at that single time point.
In reality, the ensemble as a whole is also not available. What is usually available
is just a small number of representatives from the ensemble of all populations. Or
even less: from every populations in the sample just a single individual each. In
the substitution regime (Nu≪ 1), the population is at any given point in time most
likely to be monomorphic, anyway. Sampling more individuals from the same
population would be redundant. For every single population, θA is defined as the
probability that a randomly chosen individual is of allele type A. It is for Nu ≪ 1
given by:

θA ∶= ∫
1

0
dx xPs(x) ≈ ΓB→A

ΓA→B+ΓB→A
+O(Nu) , θB ∶= 1−θA (2.24)

where the stationary distribution was approximated by a sum of two delta peaks
at x = 0 and x = 1 and a “polymorphic part” with weight Nu≪ 1. As we have seen
before, the main contribution comes from the monomorphic state at x = 1. Now
what is the probability to find exactly kA alleles of type A and kB of type B when
taking a randomly chosen individual from each one of K populations? It is just
the binomial distribution:

P(kA,kB ∣ θA,θB) =
(kA+kB)!

kA!kB!
θ

kA
A θ

kB
B (2.25)

Now, the allele counts (kA,kB) constitute the “data”. After what was said before,
it should be clear that the bias seen in such data reflects exactly the evolutionary
bias stemming from the fitness difference and mutation rates:

kA

kB

sample size K→∞ÐÐÐÐÐÐÐÐÐ→ θA

θB
= ΓB→A

ΓA→B
= µB→A

µA→B
eσ (2.26)

If further independent knowledge of the bare mutation rates uA→B, uB→A was avail-
able, one would be able to extract the sought-after fitness effect of a mutation
B→ A directly

ln
kA

kB
− ln

uB→A

uA→B

sample size K→∞ÐÐÐÐÐÐÐÐÐ→ σ (2.27)

The problem is, that one cannot have an infinitely large sample. The true fixed
state probabilities θA,B are unattainable, they can only be approximated from a
finite sample of size K: θi ≈ ki/K. Moreover, if the sample size K is in fact small -
as is often the case - it might well happen that one does not observe an allele (ki =
0). This would lead to immediate problems in equation (2.27). The next sections
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try to address this issue with the method of Bayesian inference. Practically, in
order to estimate selection coefficients from biological DNA sequence data, we
need a method that provides reasonable estimates even for small sample sizes.
Moreover, the bare mutation rates ui→ j must be included as external information.
The Bayesian method is tailor made for such tasks.

2.3 Bayesian inference
The task set in the last section is a stereotypical problem of statistical inference:
how can one deduce the unknown parameters of a mathematical model from a
finite sample of it? The theory to address this problem is known as Bayesian
inference [7, 45]. Before explaining its main concepts, some nomenclature and
notation is needed:

model: A “model” is usually a prediction of measurable events in the form of
a probability distribution. A simple example used throughout this chapter is the
multinomial sampling distribution for drawing colored balls from an urn (with re-
placement).

parameters: The “model” always depends on a set of parameters, which are de-
noted by θθθ = (θ1, . . . ,θn). These parameters characterize the model fully but are
usually unknown. In the urn example, the parameters would be the actual frequen-
cies of the different colors in the urn.

sample: The sample could also be called “measurement”, “experiment” or “ob-
servation”. This is the set of data that is directly accessible to the experimenter
by a measurement etc. The data can in principle be everything, depending on the
specifics of the model. The sample is in general denoted by X . In this work, it
will almost always be a set of integer numbers, denoted by kkk ∈ Nn. The model
attaches a probability P(kkk ∣ θθθ) to all possible samples kkk. The notation is meant to
emphasize that this prediction depends on the value of θθθ .

posterior: The posterior distribution P(θθθ ∣ kkk) expresses the knowledge about the
value of the parameter θθθ after having made the observation kkk. Importantly, it is
a bona fide probability distribution for θθθ . Its spread reflects the amount of un-
certainty left after an experiment. If the sample size is small, this spread can be
significant. The posterior distribution is usually the end result of an inference
problem. It contains everything that is known about the model at that time.

prior: It becomes clear immediately, that the posterior distribution expresses a
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gain of knowledge about the model through the sampling experiment. For logical
consistency, the state of knowledge before the experiment must be stated as well.
All information about the model available before the experiment (denoted by I0)
is encapsulated in the prior distribution P(θθθ ∣ I0). The prior information can be
e.g. some specific values or boundary conditions.

point estimate: In applications of Bayesian inference, a concrete value for the
model parameter is often desired. This current best estimate is denoted by θ̂θθ and
must be derived from the posterior distribution. Although there are sometimes ob-
vious candidates, such as the posterior mean or modal value, the particular choice
is subject to the needs of the user. The derivation of point estimates is not strictly
part of the Bayesian inference scheme. Later in this chapter, a particular method
to find point estimates more systematically will be presented.

The central equation lying at the heart of Bayesian inference is Bayes’ theorem for
conditional probabilities for events A and B (not to confuse with the allele labels
of previous sections).

P(A ∣ B) P(B) = P(B ∣ A) P(A) ⇒ P(A ∣ B) = P(B ∣ A) P(A)
P(B) (2.28)

Applied to the problem of model parameter estimation introduced above, it con-
nects the posterior distribution with the prior knowledge and the measurement.
(The symbol in the last term signifies that the parameter space may be either dis-
crete or continuous.)

P(θθθ ∣ kkk,I0) =
P(kkk ∣ θθθ) P(θθθ ∣ I0)

P(kkk ∣ I0)
, P(kkk ∣ I0) = ⨋

θθθ

P(kkk ∣ θθθ) P(θθθ ∣ I0) (2.29)

The Bayesian methodology is a consequent application of the laws of logic to the
problem of inference [7]. It is related but not equivalent to other approaches for
parameter estimation, such as maximum likelihood.
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INFO The maximum likelihood method provides a point estimate of the un-
known parameter θ by maximizing the sample probability P(X ∣ θ) for
a given measurement X with respect to θ . It is thus looking for the
value that makes the observation at hand most likely. For this task,
it considers the sample probability above as an ordinary function of
θ - also called the likelihood-function L(θ) ∶= P(X ∣ θ). From the
Bayesian perspective, this method is the special case of a uniform prior:
P(θ ∣ I0) = const. In this case, the likelihood-function is proportional to
the posterior distribution and the modal value - where the maximum is
attained - of both coincide. This modal value is but one commonly used
point estimate. For the likelihood-function, it is the only one available.
The uniform prior is also called “uninformed” prior for reasons that
will shortly become clear.

The most attractive feature of the Bayesian ansatz is that it provides a probability
distribution over all possible model parameters that includes all accessible knowl-
edge about the model. It is thus well suited to handle even very small sample
sizes. But this probabilistic nature is also its main weakness. In practice, the esti-
mation of parameters is often just an intermediate step. Usually, one then wants to
continue working with the best parameter estimates available. This step is often
called the “decision step” [7]. But the Bayesian analysis does not provide point
estimates. The Bayesian final output is always a distribution6. If the sample size
is large enough (which needs to be quantified), the posterior distribution will be
peaked and centered around the true parameter value and a reasonable point es-
timate would be the mean or modal value (also called the maximum a posteriori,
MAP). But for small sample sizes, these estimates might not be very represen-
tative of the posterior distribution. This decision problem is addressed by the
principle of minimum discrimination information [46], which will be discussed
later in this chapter.

2.3.1 A simple example: The highest number in the urn

To demonstrate the essential steps of the Bayesian inference protocol, we will now
present a very simple set-up: consider an urn that includes balls which are num-
bered, such as in lottery drawings. The prior information is exactly the following:
there is at least one ball, but not more than Nmax balls in the urn. The exact number
of balls is 1 ≤N ≤Nmax. The balls are numbered successively from 1 to N without
gap. The task is to take a single ball from the urn and infer from that data N, the

6This is in my opinion the main reason, why methods such as maximum likelihood are still widely
used
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highest number in the urn. We will now translate this set-up in the mathematical
quantities introduced in the last section.

• The parameter of the model is the total number of balls in the urn (or
equivalently the highest number printed on any ball), which we will denote
with N, i.e. we have θ ∶=N.

• The model is given by the probability to draw the ball with the number k
from the urn, i.e. we have for the general outcome X ∶= k and

P(X ∣ θ) ∶= P(k ∣ N) =
⎧⎪⎪⎨⎪⎪⎩

1
N , 1 ≤ k ≤N
0, k >N

(2.30)

• The prior distribution must reflect the fact that I0 ∶ 1 ≤ N ≤ Nmax. We can
immediately guess the prior in this case:

P(θ ∣ I0) ∶= P(N ∣ I0) =
⎧⎪⎪⎨⎪⎪⎩

1
Nmax

, 1 ≤N ≤Nmax

0, N >Nmax
(2.31)

• The posterior distribution for a particular draw of the number k must now
be calculated as in equation (2.29).

P(N ∣ k, I0) =
P(k ∣ N) P(N ∣ I0)

P(k ∣ I0)
(2.32)

The only ingredient missing is the normalization factor in the denominator
of the right hand side:

P(k ∣ I0) =
∞
∑
N=1

P(k ∣ N) P(N ∣ I0) =
1

Nmax

Nmax

∑
N=1

P(k ∣ N) (2.33)

= 1
Nmax

Nmax

∑
N=k

1
N
=∶ 1

Nmax
(HNmax −Hk−1) (2.34)

where in the last equation we used the common notation for the harmonic
number Hn ∶=∑n

m=1
1
m . Altogether, we have now the formula for the posterior

distribution:

P(N ∣ k, I0) =
⎧⎪⎪⎨⎪⎪⎩

(HNmax −Hk−1)−1 1
N , k ≤N ≤Nmax

0, N >Nmax
(2.35)
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The set-up and the calculations were admittedly very simple, but they demonstrate
some of the essential characteristics of Bayesian inference. It is especially worth
noting, that the end result - the posterior distribution - is automatically properly
normalized. It is also intuitively the correct result: drawing a ball with a “24”
printed on it rules out the possibility that the highest number in the urn is anything
below 24. The posterior accordingly attaches zero probability to these cases.
The question of which value of N should now be used as a point estimate N̂
is outside the realm of orthodox Bayesian inference. In any case, it should be
noted that the posterior distribution in this example does by no means suggest a
particular choice. The highest (modal) value is achieved at N = k. The posterior
mean value is nowhere close to that.

⟨N⟩ = Nmax−(k−1)
HNmax −Hk−1

(2.36)

For example, with Nmax = 100 and k = 24, we would have ⟨N⟩ ≈ 53 (see figure 2.5).
As a last comment, the maximum likelihood approach would suggest, according
to equation (2.30), to take N̂ = k. It is the one “parameter” value compatible with
the outcome that maximizes the likelihood-function L(N) = 1

N .
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Figure 2.5: The prior and posterior distribution of the example of Bayesian inference
explained in the text for Nmax = 100 and k = 24.

2.3.2 Bayesian inference of multinomial weights: a case study
As a second example of more immediate importance, consider the problem of es-
timating the frequencies θθθ = {θi}i=1...n of balls of n different colors in a given (big)
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urn from a finite sample of its content. This particular example is central to the
estimation of germline fitness effects from samples of biological DNA sequences
later and will be discussed in some detail. The set-up is adapted from the standard
textbook by Durbin et al. [47].
Assume first, that you are given the prior information I0: the presented urn is but
one of many similar urns. All these urns have one thing in common: they originate
from the same “urn factory”. The frequencies ppp = {pi}i=1...n of the colors when
pooling all existing urns of this type is supposed to be known (e.g. by knowl-
edge of the amounts of different dyes used in the urn factory). But the process of
assigning balls to urns that is carried out in the factory is completely unknown.
Practically this means that, if you were forced to make an estimate θ̂i of the fre-
quency of color i for your particular urn before any sample, your answer would
be based on the prior knowledge I0 alone, i.e. your guess would be θ̂i = pi.
To be more precise, if there were only two colors - black and white - and you
were told that p1 = p2 = 0.5, then this could mean any of the following: (a) in
every individual urn - including the one in front of you - there is presumably an
equal number of black and white balls; (b) for every urn that contains only white
balls, there is another urn containing only black balls such that the global balance
is maintained; (c) any configuration in between these two extremes. Before mea-
suring the configuration of the urn presented to you by a sample of its content,
there is no way of telling what the actual frequencies in it are. You only know that
the first ball you draw from the urn is as likely to be black as to be white. This is
exactly how any prior information I0 in this set-up should be understood.

Translated into the language introduced previously, the model is here a multino-
mial distribution, i.e. the probability of drawing kkk = {ki} balls of colors i = 1, . . . ,n
when sampling from the urn7, assuming that the color frequencies θθθ = {θi} are
known:

P(kkk ∣ θθθ) ∶= K!
∏n

i=1 ki!

n
∏
i=1

θ
ki
i , K ∶=

n
∑
i=1

ki (2.37)

The prior distribution should, above all, be a distribution over the space of all
possible frequency configurations. This space is the (n−1)-dimensional simplex
∆n−1 with the general definition

∆
n ∶= {θθθ ∈Rn+1 ∣

n+1
∑
i=1

θi = 1, ∀i = 1, . . . ,n+1 ∶ 0 ≤ θi ≤ 1} (2.38)

7 The urn is assumed to be so large that there is no distinction between drawing with or without
replacement, although the derivation can be modified to take this into account [7].



2.3 Bayesian inference 39

D
1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Θ1

Θ
2

D
2

0.0
0.5

1.0

Θ1

0.0

0.5

1.0

Θ2

0.0

0.5

1.0

Θ3

Figure 2.6: Illustrations of the simplex ∆
1 ⊂R2 (left) and the simplex ∆

2 ⊂R3 (right).

The simplex ∆n−1 is a (n−1)-dimensional object embedded in the n-dimensional
space Rn. There are different ways to model a prior distribution on the simplex,
but the standard approach for a multinomial distribution model is to use a prior
distribution of Dirichlet type to encode any information [47].

Dir(θθθ ∣ ααα) ∶= 1
Beta(ααα)

n
∏
i=1

θ
αi−1
i (2.39)

Beta(ααα) ∶= ∏
n
i=1 Γ(αi)
Γ(A) , ααα ∈Rn

≥0, A ∶=
n
∑
i=1

αi

The prior Dirichlet distribution depends itself on real and positive parameters ααα =
{αi}i=1...n. These parameters must be adjusted according to the prior information:
ααα = ααα [I0]. The normalization of the Dirichlet distribution is expressed in terms
of the n-dimensional beta function Beta(ααα). To repeat, we here choose the prior
distribution to be of Dirichlet type, i.e.

P(θθθ ∣ I0) =Dir(θθθ ∣ααα [I0]) (2.40)
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INFO The Dirichlet distribution: In principle, any probability distribution
on the simplex would qualify as a prior. For example, a “histogram”
of previous measurements from related models could serve as a prior.
But more often than not, the actual prior information I0 is not that spe-
cific. Usually, one only knows about the possible range of the param-
eter (here the simplex) and some background values, which would be
the “best guess” before an experiment.
The class of Dirichlet distributions is compatible with most prior infor-
mation of that kind. Furthermore, this class is flexible in the sense that
it includes distributions that are sharply peaked (∀i ∶ αi ≫ 1), uniform
(∀i ∶ αi = 1) or localized at the edges (∀i ∶ αi ≪ 1). But most impor-
tantly, this prior allows for analytical calculations and it is conjugate
to the multinomial distribution, which means that for any multinomial
sample the posterior distribution will again be of Dirichlet type. The
mean of the i-th component of θθθ follows from the normalization:

⟨θi⟩ = ∫
∆n−1

dn
θ θi Dir(θθθ ∣ ααα) = Beta(ααα +eeei)

Beta(ααα) = αi

A
(2.41)

with the unit vector (eeei) j = δi j. It is a special property of the Dirichlet
distribution, that all the mean values are invariant under a scaling of
the parameters ααα → a ⋅ααα, a ∈R>0. Thus, a Dirichlet distribution is not
unambiguously specified by its mean values alone.
To calculate the entropy of the Dirichlet distribution, we also need
the logarithmic mean ⟨ln(θi)⟩, which can be expressed through the
digamma function ψ(x) = d

dxΓ(x):

⟨ln(θi)⟩ = ∫
∆n−1

dn
θ ln(θi) Dir(θθθ ∣ ααα) =ψ(αi)−ψ(A) (2.42)

The second step of the inference program is the measurement of a sample kkk of
size K ∶=∑n

i=1 ki ≥ 1, and the update of the parameter probability distribution of the
frequencies θθθ to the posterior [47].

P(θθθ ∣ kkk,I0) =
P(kkk ∣ θθθ) P(θθθ ∣ I0)

P(kkk ∣ I0)
(2.43)

As in the previous example, we still need to calculate the normalization factor
P(kkk ∣ I0). Together with the sampling probability eq. (2.37) and the Dirichlet



2.3 Bayesian inference 41

0.0 0.2 0.4 0.6 0.8 1.0

1

5

10

50

100

500

1000

Θ1

D
ir

HΘ 1
,1

-
Θ

1
ÈΑ 1

,Α
2L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Θ1
D

ir
HΘ 1

,1
-

Θ
1

ÈΑ 1
,Α

2L

Figure 2.7: Two Dirichlet distributions on the one-dimensional simplex ∆
1 (two colors)

for ααα = (0.5, 0.5) (left) and ααα = (5, 5) (right). Note that the mean value is identical.

prior eq. (2.40) this yields the posterior.

P(kkk ∣ I0) = ∫
∆n−1

dn
θ P(kkk ∣ θθθ) P(θθθ ∣ I0) (2.44)

= ∫
∆n−1

dn
θ

K! ⋅Γ(A)
∏n

i=1 ki! ⋅Γ(αi)
n
∏
i=1

θ
ki+αi−1
i (2.45)

= Γ(A)K!
Γ(A+K)

n
∏
i=1

Γ(αi+ki)
Γ(αi)ki!

(2.46)

Inserting this factor and the definitions above immediately leads to the result

P(θ ∣ kkk, I0) =Dir(θθθ ∣ ααα +kkk) . (2.47)

This is in principle the end result of the Bayesian inference protocol. It is remark-
ably easy to remember: the prior information acts by adding pseudo-counts ααα [I0]
to the actual measurement kkk, which can be understood as imaginary samples from
a background or null-model distribution reflecting I0. For very large sample sizes,
this regularization becomes ever less important.

Note: The concept of pseudo-counts is well known in the context of sequence
analysis [47, 48] and there has been some debate about an appropriate choice for
them [47]. Suggestions went from αi = pi [49] to αi =

√
K pi [49, 34] and to more

complicated constructs using substitution probabilities [48]. We will see in the
next sections that the Bayesian method suggests a particular choice of pseudo-
counts.
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Figure 2.8: Two Dirichlet distributions on the two-dimensional simplex ∆
2 (three colors)

for ααα = (2.1, 3.1, 0.5) (left) and ααα = (10, 8, 7) (right).

To complete the inference program, there now remain two problems: how should
one choose the prior Dirichlet parameters ααα [I0] for given I0? And what should
one use as a point estimate θ̂θθ for the frequencies θθθ? The posterior mean value is
not necessarily the best choice for all sample sizes:

⟨θi⟩kkk,I0 = αi+ki

A+K
∀i∶ki≫1ÐÐÐÐ→ ki

K
K→∞ÐÐÐ→ θi (2.48)

2.3.3 Choosing the prior I: the principle of maximum entropy
How should one choose the prior parameters αi [I0]? Remember, that I0 states that
the global background frequencies are given by ppp = {pi} (refer to the discussion
in the beginning of the last section). One arguably reasonable choice would be to
have Dirichlet parameters ααα such that the prior mean value is pi, i.e.

choose ααα [I0] , such that ⟨θ ⟩I0 =
αi

A
= pi ⇒ αi = A pi (2.49)

This prescription leaves on quantity undetermined: the sum A =∑i αi
8. There is

nothing more in the prior information I0 to set this value. One ansatz to solve this
problem is to use the principle of maximum entropy (MaxEnt) as suggested by
Jaynes [45, 7, 50]:

8This quantity A is called concentration parameter in the case of uniform {pi}i=1...n.
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Principle of maximum entropy (discrete case): The one distribution which rep-
resents the current state of knowledge I about a system and its constraints best, is
the one which maximizes the entropy H(θ)

H(θ) ∶= −∑
θ

P(θ ∣ I) lnP(θ ∣ I) (2.50)

Principle of maximum entropy (continuous case): The one distribution which
represents the current state of knowledge I about a system and its constraints best,
is the one which maximizes the relative entropy H(θ)

H(θ) ∶= −∫ dθ P(θ ∣ I) ln
P(θ ∣ I)
m(θ) (2.51)

where m(θ) is called the “invariant measure” by Jaynes, proportional to the lim-
iting density of discrete points. In most cases, it is simply proportional to the
uniform distribution on the space in question.

In the two versions of the principle, the “current state of knowledge” I can be ei-
ther the prior information I0 alone or in conjunction with experimental data. Com-
ing back to the problem of the undetermined parameter A of the Dirichlet prior,
the MaxEnt principle suggests to choose the one A (if it exists) which maximizes
the entropy H(A).

AMaxEnt ∶= argmax
A

H(A), with ααα [I0] = A ppp (2.52)

H(A) ∶= −∫
∆n−1

dn
θθθ P(θθθ ∣ I0) lnP(θθθ ∣ I0) (2.53)

= −∫
∆n−1

dn
θθθ Dir(θθθ ∣ ααα [I0]) ln Dir(θθθ ∣ ααα [I0]) (2.54)

= lnBeta(ααα)−
n
∑
i=1

(αi−1)⟨lnθi⟩ (2.55)

= lnBeta(ααα)−
n
∑
i=1

(αi−1) (ψ(αi)−ψ(A)) (2.56)

= lnBeta(ααα)−
n
∑
i=1

(αi−1)ψ(αi)+(A−n)ψ(A) (2.57)

= (A−n)ψ(A)− lnΓ(A)+
n
∑
i=1

[lnΓ(A pi)−(A pi−1)ψ(A pi)] (2.58)

where ψ(x) = d
dx lnΓ(x) is the digamma function and the dependence of the en-

tropy on the parameter A is made explicit in the last line. This entropy must be
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maximized with respect to A. In the special case of unbiased prior weights, i.e.
pi = 1

n , the parameter AMaxEnt can be found analytically:

0 != d
dA

H(A) = (A−n)ψ
′(A)−

n
∑
i=1

pi (pi A−1) ψ
′(pi A) (2.59)

pi=1/n= (A−n) [ψ
′(A)− 1

n
ψ
′(A

n
)] (2.60)

This is trivially fulfilled for A = n. Thus, we have

I0 ∶ ∀i ∶ pi =
1
n

⇒ AMaxEnt = n ⇒ αi = 1 (2.61)

This corresponds to the uniform distribution on the simplex, which is of course
what we expected intuitively. To repeat, if there is no bias in the prior information,
the maximum entropy principle tells us to add one pseudo-count to the sample
for every color in the urn. However, for general prior frequencies ppp, one needs
to solve eq. (2.59) for A, which can only be done numerically. If one insists
on using the mean value of the parameter distribution as a point estimate, then
consistency demands that αi = A pi and the “confidence” parameter A must be
found as described here. But so far, there is no special reason why the mean value
should be used as a point estimate in the first place. The next section will address
this issue more closely.

2.3.4 Choosing a point estimate: the principle of minimum dis-
crimination information (MinDI)

After drawing the sample kkk, we are left with the posterior distribution P(θθθ ∣ kkk, I0).
What are guidelines to decide for a point estimate θ̂θθ of the true (but unknown)
parameter θθθ? One ansatz [7] is to employ loss functions L(θθθ , θ̂θθ) for this pur-
pose. These loss functions are mostly subjective, for they express a quantity to be
minimized in choosing a concrete estimate. In any case, the prescription for the
decision step is to take the one estimate θ̂ (if it exists) that minimizes the mean
loss to be expected under the posterior.

θ̂θθ = argmin
θθθ

⟨L⟩(θθθ) , ⟨L⟩(θθθ) ∶= ∫ dn
θθθ
′ L(θθθ ,θθθ ′)P(θθθ

′ ∣ kkk, I0) (2.62)

A typical loss function is e.g. the square distance to the true parameter [7].

e.g. L2(θθθ , θθθ
′) =

n
∑
i=1

(θi−θ
′
i )

2 (2.63)
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This particular choice leads to the mean value of the posterior distribution as the
point estimate [7]. In any case, all loss functions are - to some degree - subject
to the demands of the experimenter who wants to use the point estimates later on.
One way to introduce a more objective loss function is to use the discrimination
information [51].

LDI(θθθ ,θθθ ′) ∶=DKL (P(kkk ∣ θθθ) ∣P(kkk ∣ θθθ ′)) (2.64)

INFO The Kullback-Leibler divergence DKL (p ∣q) between two distribu-
tions p and q is used to measure their similarity [52]. For discrete or
continuous one-dimensional distributions, it is defined by:

DKL (p ∣q) ∶=∑
i

pi ln
pi

qi
(2.65)

DKL (p ∣q) ∶= ∫
∞

−∞
dx p(x) ln

p(x)
q(x) (2.66)

with a straight-forward generalization to higher dimensions. It is
DKL (p ∣q) = 0, if and only if p = q, else it is DKL (p ∣q) > 0. However
the measure does not qualify as a distance, since it is not symmetric in
p and q (although one could easily construct a symmetric variant) and
does not fulfill the triangle inequality.
The Kullback-Leibler divergence has an information-theoretic mean-
ing in terms of coding efficiency [52]. In this context, q is some kind
of “approximation” to the “true” distribution p. The Kullback-Leibler
divergence - using base-two logarithms - is then the expected number
of extra bits that have to be used when encoding a datum x with a code
that is optimal for the distribution q, instead of using a code for the
“correct” distribution p.
This abstract interpretation becomes more useful, if we assign the prior
and posterior distributions of Bayesian inference to the roles of q and
p, respectively. If a new piece of information I1 is available, then
DKL (P(θ ∣ I1, I0) ∣P(θ ∣ I0)) is the amount of useful information that
is gained by I1 over the prior information I0. The Kullback-Leibler
divergence is therefore a central quantity of Bayesian inference.

The loss function LDI(θθθ , θθθ
′) has a very concrete interpretation: it is the amount

of information that a subsequent sample kkk would yield in order to discriminate
between the two models P(kkk ∣ θθθ ′) and P(kkk ∣ θθθ) (obviously, we have L(θθθ , θθθ) =
0). When choosing a conservative point estimate θ̂θθ , the objective must be to
minimize this potential for discrimination. Of course, if the true parameter θθθ
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were known, one would simply set θ̂θθ = θθθ . In reality, all that is actually known
after the experiment is in the posterior distribution. The quantity to be minimized
is then the expected discrimination information under the posterior, i.e.

θ̂θθ = argmin
θθθ

∫
∆n−1

dn
θθθ
′ LDI(θθθ , θθθ

′) P(θθθ
′ ∣ kkk, I0) (2.67)

This is actually a consequent application of the principle of minimum discrimina-
tion put forward by Kullback [46] (see also the reviews [53, 54, 55] and references
therein) which - for our purposes - can be stated as follows:

Principle of minimum discrimination information (MinDI): Let P(X ∣ I0) be a
distribution over the random variable X depending on some (prior) information I0.
If a new piece of information I1 becomes available, a new distribution P(X ∣ I1, I0)
must be chosen to describe the model for X which is - under the constraints posed
by I1 - as hard to discriminate from the original distribution as possible, i.e. one
that minimizes DKL (P(X ∣ I1, I0) ∣P(X ∣ I0)).

This principle can be seen as a generalization of the maximum entropy principle
in the following sense: in the absence of any information, the least informative
distribution is certainly the uniform distribution on the space in question. In the
light of “prior” information I0 (now meaning prior to an actual subsequent sample)
- whatever I0 is - the MinDI principle suggests to find a new distribution which
complies with I0 but is as “close” to the uniform distribution as possible in the
above sense. But this constrained minimization of the Kullback-Leibler diver-
gence between the two is equivalent to the maximization of their relative entropy
in Jaynes’ MaxEnt principle eq. (2.51).
The application of the MinDI principle to Bayesian parameter estimation is men-
tioned by Soofi [51]. A comprehensive application of these concepts to the prob-
lem of multinomial sampling under Dirichlet priors could however not be found,
although all the central aspects and ingredients are present in the literature, espe-
cially in [55].
Coming now back to the problem of estimating the frequencies of colors by sam-
pling from an urn, the above prescription (2.67) leads to concrete point estimates
for the color frequencies. After the sample kkk, the Bayesian posterior distribution
is P(θθθ ∣ kkk, I0) = Dir(θθθ ∣ ααα [I0]+kkk). We have not yet specified the pseudo-counts
ααα [I0], which will be the topic of the next section. At this point, we are just inter-
ested in the point estimate θ̂θθ that follows from the MinDI principle. Referring to
appendix A.3 for the simple but lengthy calculations, we here give the result that
the principle of minimum discrimination information (MinDI) dictates as point
estimates the values:
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MinDI ∶ θ̂i =
eψ(ki+αi)

n
∑
j=1

eψ(k j+α j)

∀ j∶ k j≫1
ÐÐÐÐÐ→ ki+αi

K +A
, K =

n
∑
j=1

ki, A =
n
∑
j=1

αi (2.68)

where ψ(x) is again the digamma function. The asymptotic expansion of the
digamma function ψ(x) = ln(x)− 1

2x +O(x−2) connects the MinDI estimate above
to the conventional posterior mean value, but only for large counts ki! The esti-
mate above can therefore be seen as a generalization of the more commonly used
posterior mean value estimate for small count numbers ki.

The mean MinDI loss itself, incurred by this particular choice of the parameter is:

MinDI ∶ ⟨LDI⟩ = ψ(K +A)− ln(
n
∑
i=1

eψ(ki+αi)) (2.69)

This mean loss is a scale for the quality of the estimate. The biggest caveat in
using point estimates from Bayesian inference is that we actually sacrifice all the
information in the posterior distribution. In summarizing the posterior by a point
estimate, one needs to quantify the trustworthiness of the estimate separately. This
mean loss is one way to do exactly that.

Finally, we are now in the position to connect the derivations up to this point to the
original evolutionary model. Recall, that sampling one representative individual
from each population in an ensemble of i.i.d. populations amounts to multinomial
sampling in the limit of low mutation rates Nu ≪ 1. The multinomial weights in
this set-up will reflect the selection difference between the different alleles. Such
samples can then be used to infer this selection difference between allele i and j in
our simplified evolutionary set-up (see equation (2.27)), i.e. with mutation rates
ui→ j, u j→i, we would set

∆si, j ∶= si− s j = ln
θ̂i

θ̂ j
− ln

u j→i

ui→ j
(2.70)

If the prior (allele) frequencies ppp where chosen to reflect what one would expect
under neutral evolution, i.e. σ = 0, then they could be used to replace the ratio of
bare mutation rates:

u j→i

ui→ j
= pi

p j
(2.71)
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Inserting this and the point estimates θ̂θθ for the actual allele fixed state probabilities
θθθ suggested by the methods of this section, we get

MinDI ∶ ∆si, j = ψ(ki+αi)−ψ(k j +α j)− ln
pi

p j
(2.72)

The only piece missing in this formula is the form of the Dirichlet priors ααα . This
will be the topic of the next section.

2.3.5 Choosing the prior II: implications of MinDI
How does one encode the prior information I0 in the Dirichlet priors ααα [I0]? Logic
dictates that before we are given any sampling data kkk, our best guess θ̂θθ for the
unknown weights θθθ would be based on the prior information I0 alone, i.e. θ̂θθ = ppp.
If we insist on a Dirichlet prior distribution and be consistent with MinDI guiding
the estimation decision at all times, we must choose the Dirichlet weights ααα [I0]
to ensure

pre−data ∶ θ̂i (ααα) = eψ(αi)

n
∑
j=1

eψ(α j)

!= pi, i = 1, . . . ,n (2.73)

rather than to simply set the prior mean values proportional to the pi, i.e. ααα = A ppp.
Additionally, the one degree of freedom left by the set of equations (2.73) must be
used to ensure the MinDI principle for the prior, i.e. the constrained minimization
of the Kullback-Leibler divergence of the prior w.r.t. the uniform distribution.
Therefore, the task is to solve the following set of equations for the quantities
({αi} , C), where C is a proportionality constant that still needs to be determined.

eψ(αi) !=C pi, i = 1, . . . ,n (2.74)

C != argmin
C′

DKL(C′) (2.75)

with DKL(C) ∶=DKL (P(θθθ ∣ I0) ∣U∆n−1(θθθ)) (2.76)

where in the last equation, DKL(C) is defined as the Kullback-Leibler divergence
of the prior distribution w.r.t. the uniform distribution on the simplex ∆n−1.

U∆n−1 ∶Rn→R ∶ θθθ ↦U∆n−1(θθθ) =
⎧⎪⎪⎨⎪⎪⎩

Γ(n), θθθ ∈ ∆n−1

0, else
(2.77)

It was actually already calculated in eq. (2.58) (save for a minus sign and an
additive constant coming from the normalization of the uniform distribution).

DKL(C) = (n−A)ψ(A)+ ln
Γ(A)
Γ(n) −

n
∑
i=1

[lnΓ(αi)−(αi−1)ψ(αi)] (2.78)
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The dependence of DKL on C is implicit through the dependence of the ααα =ααα(C)
via the first set of equations (2.74). This task can be solved numerically for any
prior I0 = ppp to yield the Dirichlet weights ααα [ppp]. One important analytic result is
that the equations (2.74) and (2.75) imply

∀I0 = ppp ∶ A =
n
∑
i=1

αi [ppp] = n (2.79)

for any prior of that form. This includes our previous finding, that an uninformed
(uniform) prior with pi = 1/n will yield αi [p j = 1/n] = 1. This returns as a prior
distribution the uniform distribution on the simplex, as it should be. Thus, we can
replace the equations (2.74) and (2.75) by the new set of equations

eψ(αi) !=C pi, i = 1, . . . ,n (2.80)

A =
n
∑
i=1

αi
!= n (2.81)

Proof. All we need for the proof of statement (2.79) are the two conditions (2.74)
and (2.75). From the first one we get:

d
dC

(C pi) = pi
!= d

dC
eψ(αi) =Cpi ψ

′(αi)
dαi

dC
⇒ ψ

′(αi)
dαi

dC
= 1

C
(2.82)

This together with the second condition implies

0 != d
dC

DKL(C) = (n−A)ψ
′(A) dA

dC
+

n
∑
i=1

(αi−1)ψ
′(αi)

dαi

dC
(2.83)

= (n−A)ψ
′(A) dA

dC
+ 1

C
(A−n) (2.84)

= (n−A)
C

(
n
∑
i=1

ψ ′(A)
ψ ′(αi)

−1) (2.85)

The function φ(x) ∶= 1
ψ ′(x) is concave on (0,+∞) [56, 57], therefore Jensen’s in-

equality [58] yields immediately

φ (
n
∑
i=1

αi) ≥
n
∑
i=1

φ(αi) ⇒
n
∑
i=1

ψ ′(A)
ψ ′(αi)

≤ 1 (2.86)

where equality in the last line holds only in the particular case of uniform weights
(∀i = 1 . . .n ∶ αi = A

n ). Thus we always have

eψ(αi) =C pi and
d

dC
DKL(C) = 0 ⇒ A =∑

i
αi = n (2.87)



50 Bayesian inference of germline fitness

In summary, for any prior - not just the uniform one - the principle of minimum
discrimination information dictates that in total n (the number of colors) pseudo-
counts must be added to the sample. The individual pseudo-counts αi per color
must be found by solving the coupled equations (2.80) and (2.81) simultaneously
and - in general - numerically. The final point estimate for the color frequencies
in the urn is then given by equation (2.68).

INFO Jensen’s inequality is a statement for convex (and concave) functions.
Let U ⊂V be a subset of a vector space V and φ ∶U →R a real valued
function on U , then φ is called convex, if for any two points x1,x2 ∈U
and for any t ∈ [0,1], it is

φ(t x1+(1− t)x2) ≤ t φ(x1)+(1− t)φ(x2) (2.88)

The function φ is called concave if −φ is convex, i.e. the “≤” is replaced
by a “≥”. Jensen’s inequality for the convex function φ states that for
any set {x1, . . . ,xn} ⊂U and positive weights (a1, . . . ,an) ∈Rn

≥0, it is

φ (∑
n
i=1 ai xi

∑n
i=1 ai

) ≤ ∑
n
i=1 ai φ(xi)
∑n

i=1 ai
(2.89)

where equality holds only if all weights ai are equal. The corresponding
inequality for concave functions is again with the relation in the other
direction.

2.3.6 Example: inference of binomial weights
Consider the problem of estimating the frequencies in a urn with balls of two
colors (n = 2). There is really just one parameter to estimate, i.e. θθθ = (θ1, θ2) =
(θ1, 1−θ1). Without further prior knowledge, MinDI dictates that the prior distri-
bution is U∆1 , the uniform distribution on ∆1.

I0 ∶ p1 = p2 = 0.5
MinDIÐÐÐ→ α1 = α2 = 1 ⇒ P(θθθ ∣ I0) =U∆1(θθθ) (2.90)

On the other hand, the prior information I0 might tell us that there is globally, i.e.
in the set of all urns of that kind, an imbalance in favor of color 1, e.g. p1 = 0.6
and p2 = 0.4. In this case, we get numerically from equations (2.74) and (2.75):

p1 = 0.6, p2 = 0.4 ⇒ α1 ≈ 1.12203, α2 ≈ 0.87797 (2.91)

This will skew the prior distribution to larger values of θ1 in a way to ensure that
the MinDI point estimate is θθθ = (0.6, 0.4) (see figure 2.9).
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To visualize the dependence of the inference on the sample size K, consider an
urn with known frequencies θθθ = (0.9, 0.1). As a prior, assume this time the uni-
form p1 = p2 = 0.5. Now, random samples of increasing size are taken from the
underlying true binomial distribution. For each value of the total sample size K,
103 random sample draws are generated and for each individual sample the MinDI
point estimate θ̂θθ is calculated according to equation (2.68) and the mean loss ⟨LDI⟩
according to equation (2.69). The following plots show the means for both quan-
tities over the 103 samples. For samples of size K > 10, the average point estimate
quickly approaches the true value of θ1. The mean loss incurred by each estimate
drops on the same scale.
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Figure 2.9: Prior distribution (blue) of the binomial weight θ1 for the biased prior infor-
mation I0 = {p1 = 0.6, p2 = 0.4} as given by MinDI (see text).The other curves show the
evolution of the posterior distribution, if the first five draws are all from color one, the
next five from color two and the last five from color two as well.

2.4 Germline fitness from protein domain alignments
Now that we have seen how to estimate frequencies of categories (colors) in a big
population (urn) from finite samples, the aim of this section is to draw the con-
nection to the problem of germline fitness inference. “Germline fitness” means
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Figure 2.10: Visualization of the dependence of the MinDI point estimate (left) and loss
⟨LDI⟩ (right) on sample size K (see text) for a true value of θ = 0.9.

broadly the fitness landscape that shaped (and still shapes) the makeup of an or-
ganism’s genome (in evolutionary relevant germline cells, that is). It was argued
before, that in the limit of small mutation rates, a certain locus will be mostly
monomorphic within a population, such that sampling a single allele at that locus
is as good as sampling many. At any given point in time, one needs an ensem-
ble of i.i.d. populations to make statistical inferences about the fitness landscape.
Table 2.1 points out the analogies and differences between the urn model and the
evolutionary set-up.

The remainder of this section will address the most important problem in this
table: where can one find statistically meaningful samples from a specific evolu-
tionary model? What is meant by that? To use probabilistic inference, a sample of
(statistically) independent genomic loci is needed. In a strict sense, this is impos-
sible! Because any two genes share a common ancestor in the past, all genomes
are to a certain degree correlated. Of course, this correlation decreases with the
time that two homologous loci are separated, e.g. by a gene duplication or spe-
ciation event. Obviously, orthologous loci (e.g. a specific gene) in evolutionary
close species - such as human and chimp - are much more correlated than paralo-
gous loci in different genes that stem from a gene duplication event in the distant
past and which still carry out similar function, i.e. experience similar selection.
There is no clean solution to this conundrum. One good source for evolutionarily
meaningful samples are protein domains. To our knowledge, Moses and Durbin
[8] were the first to put them to use in that context. We will quickly formulate
some arguments in their favor.
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urn model evolution model

● urn ● The set of all loci that experience the
same fitness landscape.

● ball ● A population of identical loci (e.g.
across many organisms).

● ball color spectrum ● The set of all possible alleles of the
locus in question.

● color of a ball ● Frequencies of the alleles. In this
sense, a “ball” is not always uni-color
but can be in between two “colors” dur-
ing substitution events.

● sampling distribution (multinomial) ● Stationary allele frequency distribu-
tion in equilibrium. For Nu ≪ 1, it is
effectively multinomial.

● sample of K balls ● Sample of K homologous and i.i.d.
genomic loci.

Table 2.1: Comparison of the urn model to the set-up of germline fitness inference.

2.4.1 Why protein domains?

One should really start with: what are protein domains? One way to describe them
is that they are the functional atoms of the genome. Protein domains are recurrent
sequence motifs that appear as subsequences in almost all genes [9, 47, 59]. Pro-
tein domain sequences are categorized in “families”. Domains from one family
can often be identified with a certain function, such as posphorylation9 mediated
by the protein kinase domain [9, 60] . Protein domains constitute the most con-
served part of the genome. This is mainly due to the fact, that their importance to
the cell through their correct function is an excellent lever for natural selection. By
the same token, protein domains are also the oldest structures in the genome. For
example, there are protein kinase domains found in all eukaryotes, such as worm
fly and yeast [60]. Because domain families broadly correspond to one specific
function, one can argue that there is a specific fitness landscape for each domain.

9This is the transfer of a phosphate group from one molecule, usually ATP, to an amino acid
resulting in its conformational change.
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Figure 2.11: The seed alignment for the rho binding protein domain family (Pfam-
ID PF08912). Colors correspond to amino acid groups (clustered by their bio-
chemical similarity). The picture is extracted from the Jalview alignment viewer
(http://www.jalview.org).

2.4.2 The Pfam database

The reference resource for information about protein domains is the Pfam (pro-
tein family) database [9]. Since the latest release 25.0 in April 2011, there are
12,273 families in the database. The database provides comprehensive informa-
tion about each domain family: function, structure, phylogeny, interactions and
relevant references, to name only a few. For our purposes, the most valuable data
is an alignment of amino acid sequences for each domain, the so called “seed”.
Internally, the Pfam database uses a probabilistic program called HMMER that
looks for realizations of sequence motifs - called “profiles” - in sequence space
[61, 62, 47, 9]. These profiles are fingerprints describing how a typical sequence
from that protein domain family should look like. The profiles are derived from
an assortment of representative sequences from that family, which are aligned, i.e.
“stacked” on top of each other in a fashion where corresponding loci are in the
same column (see figure 2.11). Although the seed alignments in Pfam were con-
structed for a different purpose, one can still use them for the inference scheme
presented here. Their purpose actually is to be as representative as possible for
the domain (function/fitness landscape/distribution) in question, else they would
be useless in finding new family members. That’s really all one can ask for.
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2.4.3 Assumptions and limitations

Now that a source for statistically meaningful samples of sequences is established,
a number of assumptions and limitations must be addressed before one goes about
the actual germline fitness inference.

• Even with their special purpose, the sequences in the seed alignments of
protein domains will still be correlated and hence not statistically indepen-
dent. One could in principle measure the amount of correlation and - using
more elaborate evolutionary models - correct for it. This direction will not
be pursued here.

• Since the homologous sequences in an alignment have separated, their func-
tion - and with it the selection pressures - might have changed. Although
sequences from the same domain family are associated with the same func-
tion, their particular task might depend on the genomic and cellular envi-
ronment they are in.

• Furthermore, the function of a domain family itself might have changed
over evolutionary time. Altogether, for the purpose of fitness inference this
amounts to assuming a stationary (over time) and homogenous (over do-
main instances) fitness landscape.

• The Kimura model described in the beginning of this chapter describes the
evolution of a single locus with two alleles (of different fitness). If one
wants to use its predictions, one has to neglect all effects which are outside
its realm. In particular:

– One can only treat a single locus at a time. Therefore, inferences about
fitness are made for every locus (column) in a domain motif (align-
ment) separately. Non-local effects, such as epistasis and recombina-
tion are neglected. A different way to express this is that the sequence
probabilities are factorizable, i.e. the probability Q(aaa) of the (amino
acid) sequence aaa = (a1, . . . ,aL) can be written as Q(aaa) =∏L

i=1 q(ai).
This is consistent with the assumption of infinite recombination.

– The domain alignments are given as amino acid sequences. Thus, one
would have to consider a 20-allele model (the size of the amino acid
alphabet used in the genetic code). However, if one assumes that the
system is in equilibrium and detailed balance [41] holds at every locus,
then the pairwise ratio of fixed state probabilities will still be given by
the ratio of corresponding substitution rates (as in equation (2.23)).
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– The neutral mutation process ui→ j are assumed to be shared by all
loci equally. This would mean, that all loci are subject to the same
mutational processes (radiation, biochemical reactions and repair/copy
errors) in the same way.

• An obvious limitation of using protein domains as a source of germline
fitness estimates is that one cannot make statements about loci outside of
protein domains. About 50% of all protein coding sequence is part of a
domain [9]. Thus, about half of the genome is missed.

• With this set-up, only missense (amino acid changing) mutations receive
a non-zero score. Silent mutations have score zero (which is reasonable),
but non-sense mutations (premature stop-codons) cannot be scored with this
ansatz, for they induce a non-local effect.

2.4.4 Background frequencies
One last ingredient missing in the inference protocol is a statement about the bare,
i.e. neutral mutation rates between alleles (amino acids). Biochemically, the 20
amino acids are a quite heterogeneous group [59]. For example, a mutation can-
not simply change the negatively charged, polar aspartic acid (D) into a non-polar,
aromatic phenylalanine (F). On the other hand, it is much simpler to mutate aspar-
tic acid to the very similar glutamic acid (E). The mutation D→F requires at least
two nucleotides in the codon to change independently, whereas two of the three
possible mutations at the third position in the codon of D result into the mutation
D→E. But at this point only effective mutation rates are of importance. Does one
really need the bare neutral mutation rates themselves? No, as we have seen ear-
lier, one needs only the pairwise ratios of the neutral fixed state probabilities (see
equation (2.72)). Under above assumptions, this ratio is exactly equal to the ratio
of neutral mutation rates. For this purpose one can take the allele frequencies in
the entire genome. This effectively averages over all loci and their specific selec-
tion forces, leaving only the neutral mutation biases. Table 2.2 lists the amino acid
frequencies in the human genome [22]. The 20 letter alphabet of amino acids will
be denoted with

A ∶= {A,C,D,E,F,G,H,I,K,L,M,P,Q,R,S,T,V,W} (2.92)

These background or prior frequencies are exactly what one would guess to be
present at a given locus before actually sampling the allele distribution and gaining
locus-specific information. They correspond in all respects to the prior frequen-
cies used in the more conceptual part of the Bayesian inference of multinomial
weights earlier.
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letter amino acid pi αi letter amino acid pi αi.

A alanine 0.076 1.32 R arginine 0.065 1.19
N asparagine 0.032 0.78 D aspartic acid 0.043 0.92
C cysteine 0.025 0.69 Q glutamine 0.045 0.95
E glutamic acid 0.065 1.19 G glycine 0.072 1.28
H histidine 0.026 0.70 I isoleucine 0.040 0.88
L leucine 0.098 1.58 K lysine 0.055 1.07
M methionine 0.022 0.65 F phenylalanine 0.035 0.82
P proline 0.070 1.25 S serine 0.081 1.38
T threonine 0.052 1.03 W tryptophan 0.014 0.53
Y tyrosine 0.025 0.69 V valine 0.057 1.09

Table 2.2: Amino acid frequencies (and associated MDI pseudo-counts) in the
human genome [22].

2.4.5 Instruction set for germline fitness inference
Collecting all the pieces from this chapter, concrete instructions on how to esti-
mate the germline fitness effect of a mutation can be set up. Keeping in mind all
the caveats mentioned in the last section, this quantity is called a (germline fitness)
“score” to express its relation to (but not its equality with) the true fitness cost of
a mutation.

• Every protein domain family defines one scoring environment. The follow-
ing is carried out for every single domain family separately.

• For a family’s “seed” alignment (as provided by the Pfam database [9]),
calculate first for each column a vector of scores {s(ai)}ai∈A, with

∀ai ∈A ∶ s(ai) = ln( θ̂i

pi
) =ψ(ki+αi)− ln

⎛
⎝∑a j∈A

eψ(k j+α j)⎞
⎠
− ln(pi) (2.93)

where ψ(x) is the digamma function, ki is the count number of amino acids
of type i in the column and αi is the pseudo-count (see table 2.2).

• Given a concrete mutation in a given gene (e.g. BRAF V600E, i.e. a muta-
tion V→E at amino acid position 600 in the BRAF gene), find the domain
family that the locus is part of (if it exists). Then align the target sequence
(here the domain instance of the tyrosine kinase family in the gene BRAF)
to the seed profile to find the corresponding locus (column) to be used for
scoring the mutation.
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• Given that you are at the correct locus (column), assign to a point muta-
tion ai → a j (ai,a j ∈A) the score difference ∆s(ai,a j) by taking the score
difference between the two alleles.

∆s(ai,a j) = s(a j)− s(ai) =ψ(k j +α j)−ψ(ki+αi)− ln
p j

pi
(2.94)

∆s(ai,a j)
ki,k j≫1
ÐÐÐÐ→ ln

k j +α j

ki+αi
− ln

p j

pi
(2.95)

What this procedure amounts to is essentially a generalization of a position weight
matrix (PWM, also called position-specific scoring matrix PSSM) for every do-
main family seed alignment. PWMs are well known concepts of sequence analysis
[32, 33, 34, 48, 63, 64, 65] and were used for motif discovery before the advent
of more powerful methods such as profiles and Hidden Markov Models [47]. Ini-
tially, they were mostly understood as information theoretic constructs but their
relation to evolutionary concepts is now clear [8, 42, 43, 66].

2.5 Testing the reliability of inferred fitness values
At this point, it is in order to mention a possibility to test the correlation of the
above fitness score with the true biological fitness cost [8]. Referring to table 2.1,
a piece of data not used in the derivation of the scoring scheme was the actual
internal state of a population of identical loci (a single “ball”). It is explicitly
assumed that the allele found in the target sequence is fixed in the whole popu-
lation, otherwise the predictions from the evolution model based on substitution
rates could not be used. Fortunately, in real-life genetic studies many individuals
(patients) are sequenced. Thus one can afford to ask the following question: What
is the probability Pp(m,σ) to find a polymorphism of fitness effect σ in a sample
of m individuals? The Kimura model makes a concrete analytical prediction for
this probability [67].

Pp(m, σ , u) ∶=
m−1
∑
k=1

P(k; m, σ , u) ∶=
m−1
∑
k=1

(m
k
)∫

1

0
dx xk(1−x)m−k Pfw(x) (2.96)

with Pfw(x) ∶= 2Nu
1−e−σ

1−e−σ(1−x)

x(1−x) (2.97)

Pp(m, σ , u) = 2Nu
m−1
∑
k=1

m
k(m−k)

(1−e−σ F1(k,m,σ))
(1−e−σ) =∶ 2Nu f (m,σ) (2.98)

Pfw is the “forward spectrum” or the limiting density of mutant allele frequencies
[67]. F1(k,m,σ) is the Kummer confluent hypergeometric function. Terms with
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k = 0 and k = m in the sum above are left out, because they would correspond to
monomorphic samples. Here, the integral is not carried out over the stationary
distribution Ps(x) of the process, but rather over the limiting density of newly
introduced mutants, before they have even reached fixation for the first time. To
find this quantity, the original Kimura model is solved with a reflective boundary
at x = 1, such that fixation of the newly segregating variant is prohibited [67].
Importantly, the probability to find a site polymorphic in a population sample of
size m is proportional to the scaled mutation rate Nu and a function f depending
on σ and m only. This allows for the cancellation of the bare (and unknown)
mutation rate altogether by considering the rescaled quantity [8].

Pp(m,σ ,u)
Pp(m,0,u) = f (m,σ)

f (m,0) (2.99)

This quantity can be approximated in the real polymorphism data by dividing the
histogram of polymorphic sites as a function of fitness score ∆s by the correspond-
ing histogram of all possible scorable mutations in the target sequence and scaling
by the value at ∆s = 0. If the score ∆s were completely uncorrelated to germline
fitness, the data points would fall on a horizontal line, whereas the theoretical
prediction is a sigmoidal curve with lower (higher) polymorphism probability for
negative (positive) fitness costs. The comparison of any data to this curve is a
meaningful test for the main task of the germline fitness score: predicting the
germline fitness cost of mutations. Of course, one cannot expect a perfect agree-
ment in the face of the numerous simplifying assumptions that were being made
in the derivation of the scoring scheme (see section 2.4.3).

2.6 Discussion
The focus of this chapter was on the conceptual steps necessary to derive a sta-
tistically and evolutionarily meaningful estimate of the fitness cost of mutations.
This cost was defined as the change in the fitness contribution of a locus that a
mutation induces with respect to a concrete mathematical model of evolution: the
one-locus/two-allele model. Within this minimal model, the expected frequency
distribution of alleles according to their different fitness values can be stated ana-
lytically. This prediction is then used to estimate - with the methods of Bayesian
inference - the allele-frequencies in the entire gene pool from a finite sample of it.

Conceptually, this problem was reduced to the set-up of sampling balls from an
urn and inferring the unknown frequencies θθθ = (θ1, . . . ,θn) of n different colors. A
key element of the Bayesian inference technique is the incorporation of prior in-
formation I0. As guidelines, the principle of maximum entropy (MaxEnt) and the
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Figure 2.12: Rescaled polymorphism density for a sample of m = 100 individuals. The
probability to find a site polymorphic is larger than the neutral expectation for beneficial
mutations (σ > 0) and smaller for deleterious mutations (σ < 0.)

more general principle of minimum discrimination information (MinDI) are em-
ployed to find the most objective (conservative) way to express the prior informa-
tion in terms of a probability distribution over the sought-after model-parameters.
As is customary for multinomial sampling problems, the prior distribution was
modeled as a Dirichlet distribution, which itself depends on a set of parameters,
usually called “pseudo-counts” ααα [I0]. The biggest advantage of this particular
choice is that the posterior distribution - describing the state of knowledge after a
sample of counts kkk = (k1, . . . ,kn) from the model - is again of Dirichlet type, but
with updated Dirichlet-parameters: ααα → ααα +kkk.

The MinDI principle can be shown to yield objective point estimates θ̂θθ for the
desired model parameters θθθ from the posterior distribution. From the Bayesian
perspective, MinDI provides an objective loss function that can be used to find
point estimates. This in turn suggests a particular choice for the prior pseudo-
counts - a choice that is consistent with MinDI. A particularly noteworthy result
of the calculation is that the “confidence” carried by the pseudo-counts, i.e. their
total sum A =∑i αi, is under all priors - uninformative or informed - equal to the
number of colors: A = n.

Both MinDI and its application in Bayesian inference are known concepts in the
literature [53, 51], although their use seems not to be widely spread. This present
work tried to present the application to the important model of Bayesian inference
under multinomial sampling in a comprehensive manner. It is doubtful that the
calculations presented here can not be found somewhere in the literature. This
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exposition might hopefully serve as a practical tutorial of the essential concepts
of Bayesian inference.

The Bayesian inference program was actually only a stepping stone in the greater
scheme of things of this work. Its purpose is to provide estimates for the fitness
difference of different alleles found in samples of DNA sequence data. The Pfam
database [9] was presented as a useful resource for meaningful samples of allele
distributions in the form of protein domain alignments. It was shown, how to
use this extensive and ever-growing data source to construct an evolutionarily in-
formed mutation-scoring scheme. The limiting assumptions under which one can
interpret actual biological sequence data by the predictions of the minimal model
of evolution described in this chapter, are explicitly stated. The mutation-scoring
scheme will be employed in the next chapter in the analysis of somatic cancer
mutations.



Chapter 3

Germline fitness scoring of cancer
mutations

“There are two possible outcomes:
if the result confirms the hypothesis,
then you’ve made a measurement.
If the result is contrary to the hypothesis,
then you’ve made a discovery.”

Enrico Fermi

3.1 Introduction
In the last chapter, the germline fitness scoring scheme was presented as an evo-
lutionarily meaningful way to quantify the functional impact of a mutation. This
method will now be put to use in the analysis of somatic cancer variation. Why is
this important, and why should it work at all?
Cancer is a disease with origin on the genetic level of cells. The genome of ma-
lignant cancer cells is mutated in such a way that they have a fitness advantage
over neighboring normal cells. The tumor, i.e. the population of cancer cells, thus
eventually grows at the expense of the surrounding tissue, damaging organs and
ultimately spreading to the whole body (metastasis). Populations genetic terms
such as “fitness” and “population” are appropriate, since cancer progression is of-
ten discussed in terms of Darwinian evolution [68]. All necessary ingredients are
present: mutational processes (often massively enhanced by loss-of-repair muta-
tions) and selection via competition with the healthy tissue cells and pressure from
the immune system. This cancer-specific evolutionary process is not well under-
stood quantitatively [69, 70] (and it may well be cancer-type specific) and there
are many avenues to formulate minimal mathematical models of cancer evolution
[71, 72, 73, 74, 75, 76].

62
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Most of the recent advances in cancer research were driven by an increasing
amount of large scale cancer sequence data with nucleotide resolution [10, 17,
18, 27, 77]. Although cancer genomics has been successful in identifying so-
matic variants in cancer, it also exposed a serious problem [17]: there are only a
few recurring mutations that appear in many tumor samples and can be robustly
identified as cancer driver mutations, such as e.g. BRAF V600E. Most cancer
samples show a much more heterogeneous mutation pattern. Additionally, since
most cancers become clinically relevant only in their late developmental stages,
their sequence data show an excess of passenger mutations, i.e. mutations that are
not directly responsible for cancer progression but were acquired and maintained
by the tumor. Importantly, passenger mutations are still cancer somatic for they
are not found in healthy cells. Thus, one is faced with the statistical challenge to
extract the relevant driver mutations from a large background of passenger muta-
tions.
One approach to find genes containing cancer driver mutations is to look for sig-
nals of positive selection (beneficial for the tumor that is). Genes under positive
selection will show an increase in the rate of substitutions [10]. However, this
prediction depends sensitively on the neutral model one is comparing to [78]. The
Hidden Markov Model presented in chapter 4 falls into this category of meth-
ods. A second complementary approach to find driver mutations is to quantify the
functional impact of somatic mutations with bioinformatic measures, e.g. based
on conservation, biophysical and structural considerations [28, 29, 30, 79, 80].
These bioinformatic methods are not limited to the analysis of cancer variation.
In fact, most were originally introduced to understand germline and common dis-
ease variation [80, 81, 82]. A recent review of current scoring methods can be
found in [83].
It is important to understand that the germline fitness scoring of cancer mutations
[6] falls in the second category for the following reason. Cancer evolution and
germline evolution are clearly different. There is a priori no reason, why somatic
mutations should should be subject to the same evolutionary pressures that shaped
the conservation pattern of the germline genome. The natural question then is:
Does it help to know the germline fitness effect of somatic mutations in order to
identify cancer driver mutations? This question is addressed by the project pre-
sented here and published in [6].
The next section will describe the examined data set and the methods used. This
is followed by a presentation of the results. Key findings are that it is useful to
introduce integrated observables, i.e. scores for loci in the amino acid sequence
and scores for genes, and that germline fitness is a meaningful scale for mutations
in genes with cancer association, especially for tumor suppressor genes [6].
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3.2 Materials and methods

3.2.1 Data set
A widely studied data set of cancer variation in human protein kinase genes [60]
as given in [10] is analyzed here. In particular, the data set consists of:

• Reference coding sequences of the 518 human protein kinase genes that
were sequenced in the original study [10] (both nucleotide and amino acid
sequences). Protein kinase genes are an ideal set of candidate driver genes,
for kinases are involved in all essential cell processes, especially in sig-
nalling and metabolic pathways. Mutations in kinase genes are known to
cause disease and are implicated in cancer [60, 84]. Mutations were defined
as deviations from this reference sequence.

• A set of somatic mutations found in 210 cancer samples. Because of the
limitations of the scoring method described earlier, only missense mutations
were considered.

• A set of germline mutations from the same set of patients. These are variants
found in healthy tissue samples. This data was used to test the reliability of
the germline scoring method as described in section 2.5. Because some
of the variants are in fact polymorphisms (new segregating variants in the
patient population), the ancestral allele was decided by comparing to the
orthologous chimpanzee reference sequence (and not the human reference,
which is just an arbitrary standard) [85]. Of the 142 germline variants, for
which this “outgroup polarization” did not decide the ancestral allele, it is
estimated that for no more than 10 variants using the human reference leads
to an error. These variants were included nevertheless.

• As an external piece of information, a list of candidate cancer genes from
[86] (suppl. table 4c therein) was included, for which information about
copy number loss and gain in cancer samples is available. This information
is used to assign some genes to one of two categories: candidate tumor
suppressor (if the rate of loss is greater than the rate of gain) and candidate
oncogenes (vice versa). This classification is motivated by figure 3.a in
[86]. The score statistics for both categories of cancer genes is studied.
Also the set of all cancer associated genes, i.e. the union of above subsets,
is considered separately to allow for the possibility that this classification
scheme is not adequate. The list should then still be enriched for cancer
driver genes.



3.2 Materials and methods 65

opportunity [105] somatic germline

all t. supp. onco all t. supp. onco all t. supp. onco

total 29.37 3.63 3.68 620 100 83 2423 277 264
scored 14.26 1.78 1.87 324 56 49 1018 125 102

Table 3.1: Number of (available) missense mutations in the different categories. The
two categories of candidate tumor suppressor genes and candidate oncogenes are shown
separately (for the classification criterion see text).

3.2.2 Formulation of the null model

To assess the relevance of the germline fitness scale for somatic cancer mutations,
the mutation data is compared to the following null-model: all cancer mutations
are random with respect to germline fitness, i.e. their locations and effects are un-
correlated to the evolutionary conservation of the target sequence. To test the data
against this hypothesis, all possible missense mutations away from the reference
sequence are constructed in silico (by a computer program). This pool of po-
tentially available mutations is called “mutational opportunity space”M. Please
note, that the null hypothesis does not make a statement about the actual mutation
processes, such as incidence of UV-light etc. These processes most likely are ig-
norant about the target. The statement is about the variation seen in the evolved
cancer, i.e. which mutations are tolerated by or relevant to cancer progression.

The mutational opportunity space is used to generate a large number of synthetic
replicas of the original mutation set. These replicas are supposed to share all
essential characteristics of the true data set, e.g. the total number of missense
mutations and the biases in the six mutational channels [10, 18] (see figure 3.1)).

channel opportunity somatic germline

A:T>T:A 17% 7% 5%
A:T>C:G 19% 3% 5%
A:T>G:C 16% 10% 21%
C:G>G:C 19% 13% 11%
C:G>A:T 16% 10% 9%
C:G>T:A 13% 57% 49%

Table 3.2: Mutational biases.
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Figure 3.1: Mutation channel biases (in %) in the kinase cancer data: germline variation
(green), somatic variation (red) and mutational opportunity (blue). The distribution of
mutations over the channels varies with cancer type [10].

3.2.3 Levels of integration
The germline fitness score estimates the functional impact of individual point mu-
tations. In order to compare the impact between different loci or genes as seen in
the set of cancer samples, proper genomic observables are needed.

Note: To avoid confusion, the term “locus” means here a specific amino acid posi-
tion in a gene’s translated sequence. Of course, the mutation itself happens in the
DNA, such that only nucleotides are ever mutated. But a non-silent mutation does
have an effect for the resulting amino-acid sequence of a gene’s protein product.
In this sense, one can consider the mutation to “fall” on a certain amino acid locus.

For each of the m = 210 samples (patients), the kinome sequence (set of kinase
genes) of individual k is denoted with aaak ∶= {a1,k, . . . ,aNl ,k}, where Nl is the length
of each kinome, i.e. the total number of loci. Each mutation ai,ref→ ai,k away from
the reference kinome aaaref and at locus i for patient k is assigned the score

∆si(ai,ref,ai,k) ∶= si(ai,k)− si(ai,ref), k = 1, . . . ,m, i = 1, . . . ,Nl (3.1)

according to equation (2.72). The superscript l always designates a genomic ob-
servable on the locus level. The total effect per locus i in the entire set of patients
is then defined as:

∆sl
i ∶=

m
∑
k=1

∆si(ai,ref,ai,k) (3.2)
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The locus score is a projection over samples. An individual-based analysis would
be preferable but is clearly not warranted by the size of the data set. This will
hopefully change in the future [5].
Likewise, one can define gene-level observables by integrating the locus-level
scores and scaling by lg

j , defined as the number of available missense mutation in
gene j (proportional to the gene’s amino acid sequence length).

∆sg
j ∶=

1
lg

j
∑

i∈gene j

∆sl
i, j = 1, . . . ,Ng (3.3)

where Ng is the number of genes that were sequenced in the data set. The rescaling
by the target size allows to compare the scores of genes of different lengths. ∆sg

j is
really the effect per locus in gene j. One could in principle define more genomic
observables by partitioning the kinome differently, e.g. by genetic pathway or by
domain family. We found the locus and gene level to be most informative for this
data set.
Finally, a count score cl

i (cg
j) is also introduced on the locus (gene) level, that

assigns a score of 1 to each mutation, i.e.

c(ai,ref, aik) ∶= 1−δ (ai,ref, aik) (3.4)

All results for projected observables must be contrasted against the performance
of counting mutations (per locus or per gene) alone.

3.2.4 Scoring of target loci

It has been stated several times before, that the germline fitness score for every
missense mutation is derived from a single column in a domain alignment. One
can still try to incorporate information about the neighboring sequence around a
mutation target. By evaluating the mean germline fitness score of the reference
sequence in a window of size lw = 2w+1 (w ≥ 0) centered around the target locus,
one gets a scale for how representative the target really is for that domain.

Sw
i ∶=

1
lw
∑

a j∈wi

s j(a j,ref), wi ∶= {ai−w,ref, . . . ,ai,ref, . . . ,ai+w,ref} (3.5)

This “locus score” is a property of the target (the reference sequence) alone, not
of a specific mutation. In particular, it can be used to weight the mutation scores:
f (Sw

i )∆si(ai,ref, ai,k). An interesting candidate for the weight function is the ex-
ponential function f (S) = eS. This is motivated by the observation, that the score
for a certain amino acid at locus j approximates for the log odds ratio of the
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actual fitness-landscape dependent allele weight θ j and the neutral background
frequency p j (see e.g. equation (2.93)):

s j(a j,ref)
K≫1ÐÐ→ ln(θ j

p j
) (3.6)

f (Sw
i ) ∶= eSw

i = exp
⎛
⎝

1
lw
∑

a j∈wi

s j(a j,ref)
⎞
⎠

K≫1ÐÐ→
⎛
⎝∏a j∈wi

θ j

p j

⎞
⎠

1/lw

(3.7)

This choice of f (S) gives for large enough sample sizes K (seed alignment depth)
the geometric mean of the likelihood ratio between the locus-specific distribution
θθθ and the neutral background distribution ppp. For values larger than one, the sub-
sequence is on average more likely to conform to the domain family model than
to be a random sequence. If one looks at the distribution of this locus score for
w = 10 over all amino acid positions in the kinome (see figure 3.2), we see that
its mean is larger than one (⟨eS10⟩ ≈ 2.67), which means that a typical locus in the
aligned part of the kinome is actually more likely to be in a sequence block which
is well-aligned to the domain model, as it should be when the alignment program
works properly.
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Figure 3.2: Distribution of the locus score exp(S10) in mutational opportunity spaceM.
The mean is at ⟨exp(S10)⟩ ≈ 2.67.

3.2.5 Analysis pipeline
The scoring pipeline is implemented as a suite of Perl routines. As input, it takes
the reference (target) sequence of the data set in both nucleotide and amino acid
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space and separate lists of mutations to be analyzed, here the list of somatic and
germline mutations. Then the following steps are carried out in sequence:

1. The HMMER program [61] is used to find instances of protein domains in
the reference sequence. These domain “hits” are then aligned to the corre-
sponding Pfam seed alignment also with the help of HMMER. This assigns
sites in the reference to loci in the domain models.

2. For all domain families with “hits” in the reference, the position specific
scoring matrices are constructed.

3. The mutational opportunity space is constructed consisting of all possible
missense mutations away from the reference.

4. The opportunity space and the lists of real mutations from the data are then
scored. The locus score is also computed at this stage. Since only a subset
of the kinome sequence is within a protein domain, only mutations in this
subset can be scored. Only this scorable part of opportunity space is used
for the analysis.

5. A large number (105) of synthetic replicas of a prototype mutation set (so-
matic or germline) is drawn randomly, but with correct mutation channel
biases from the opportunity space. All genomic observables are evaluated
and statistics are computed.

Note: In conditioning the analysis on the subset of protein domains within the
kinome, we omit a significant signal: The number of mutations falling onto pro-
tein domains is already larger than expected by chance (p-value 3.1 ⋅10−2). This
observation of mutation clustering in protein domains was made earlier [79, 87].
However, we are at this point not interested in mutation clustering but rather in
the quantification of their functional effect.

The end output of the analysis pipeline are several distributions of synthetic means
for all genomic observables and all scores. Also a list of genes with their score
significance is produced.

3.3 Results: germline mutations

3.3.1 Reliability test
First of all, one needs to make sure that the scoring scheme is fulfilling its alleged
purpose: to be a measure of the germline fitness effect. Thus, the missense muta-
tions found in the germline variation set were compared to the null hypothesis of
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random mutations. A first straightforward way is to compare the score distribu-
tions of point events in the germline and null set (see the cumulative distribution in
figure 3.3). Clearly, germline mutations are not random w.r.t. to the fitness score.
As expected, mutations with a large negative effect (supposedly strongly deleteri-
ous) are suppressed. But please be reminded that the scoring methods regards all
mutations to be fixed (substitutions) and this is clearly not the case for germline
variation. A way to test the reliability of the scoring scheme was described in [8]
and here in section 2.5. The corresponding figure 3.4 shows a correlation between
the data and the theoretical prediction. If the score were uncorrelated to the true
fitness cost, then the data would be on a flat horizontal line. This is clearly not
the case. Obviously, the fitness score underestimates the fitness cost of highly
deleterious mutations: they appear much more infrequently than predicted by the
model. Nevertheless, the degree of agreement is still quite surprising in the light
of all the simplifications and rather strong assumptions that went into the scoring
scheme (see section 2.4.3). This basically confirms the findings of Moses and
Durbin in [8] for this particular data set.
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Figure 3.3: Cumulative distribution of germline (left, green) and somatic (right, red)
mutation scores vs. the random null model (blue). Mutations with negative fitness effect
would be significantly suppressed in the germline, if they were substitutions.
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Figure 3.4: Comparison of the germline (scaled) polymorphism probability
Pp(∆s)/Pp(0) as given by equation (2.98) (red, with m = 210) against the same quan-
tity from the data (blue boxes). Error bars are evaluated with ∆Nbin =

√
Nbin. The dotted

line is an error-weighted fit of the data to the sigmoidal function f (x) ∶= A(1+ arctan(Bx)
π/2 )

to obtain the scale value at zero (the plot shows f (x)/ f (0)). (This is an ad hoc choice for
a stereo-type sigmoidal function without any strong relation to the model.)

3.4 Results: somatic mutations

3.4.1 Most somatic mutations are passengers
The distribution of scores in the set of somatic mutations on the level of point
events (without integrating over genomic units) is not significantly different from
the random null model (see figure 3.3). This leads to two conclusions:

1. Most somatic mutations are indeed random w.r.t. germline fitness. This is
consistent with the picture that most somatic mutations are actually passen-
gers [17, 10, 88]: random mutations that are not essential for the cancer de-
velopment. They were picked up along the way and never repaired/selected
against. This also means that:

2. Cancer cells tolerate a significant mutational load, i.e. mutations that are
usually not tolerated by germline cells. This signifies that selection pres-
sures on cancer cells are fundamentally different from those acting on germline
cells.
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3.4.2 Somatic mutation in cancer genes

The distribution of scores for the genomic units “locus” and “gene” is now consid-
ered. To make more concrete statements about the significance of deviations from
the null model, the distributions themselves are not compared directly1. Rather,
the means of the distributions are compared. For 105 synthetic replicas of the
somatic (and germline) mutation set, the mean scores ⟨∆sl⟩ and ⟨∆sg⟩ are mea-
sured over all kinase genes and conditioned on the subsets of tumor suppressor
and oncogenes. The means are also conditioned on the union of both subsets, i.e.
the set of genes with known cancer association. Then the data mean is compared
with the distribution of synthetic means. This yields two quantities: (i) a p-value
for the deviation of the data mean from the synthetic means and (ii) an effect size
of the data mean, i.e. the data mean divided my the mean of synthetic means. The
p-value is a measure for the significance of a deviation from the null model. This
depends strongly on the size of the data. The effect size, on the other hand, is a
measure for the strength of the deviation and should not depend on data size.

p-value: The probability that under the null-hypothesis an outcome can appear
which is at least as “extreme” as the real data point. Here, this probability is es-
timated from the location of the real data in a histogram of 105 samples from the
null-hypothesis.

effect size: Defined as the ratio of the mean value of above histogram to the real
data value. It is a measure for the size of the deviation, not its significance.

The results of this experiment can be found in table 3.3 (and in table 3.4 for
germline variation) and in figure 3.5. The outcome can be summarized as fol-
lows:

1. Germline variation is with very high significance not random w.r.t. the fit-
ness scoring scale. Especially in tumor suppressor genes, observed muta-
tions have on average a much smaller deleterious effect than random mu-
tations. Again, this is mainly a sensibility test, for the scheme considers
all mutations as substitutions. The more meaningful test compares with the
expected polymorphism spectrum (see previous sections).

2. The mean impact per locus in somatic mutations in all kinase genes is some-
what more deleterious than expected by chance (p-value 0.03, effect size
1.14). However, the significance is not strong and the effect size negligi-

1Although one could employ measures such as Kullback-Leibler divergence or the Kolmogorov-
Smirnov test, which are often too conservative.
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ble. This hints at the fact that the somatic mutation set is enriched for high
scoring mutations but consists mostly of random passengers [17].

3. The conditional means over cancer-associated genes (as taken from [86])
reveal two important observations: (i) cancer-associated genes harbor many
more mutations than expected. This is especially true for tumor suppressor
genes (first two rows in table 3.3); and (ii) these mutations have a much
stronger germline-deleterious effect than expected. The deviation signifi-
cance using ∆s increases by two orders of magnitude compared to the count
score alone.

4. Trying to locate the strong signal in cancer genes, the subsets of (candi-
date) tumor suppressor genes and oncogenes are analyzed. They both show
similar behavior: for both sets, weighting each mutation by its germline fit-
ness score ∆s increases the significance of the data by about one order of
magnitude compared to the count score alone.

5. The locus score eS10
is not clearly relevant for mutations in cancer-genes. If

at all, it is relevant for mutations in tumor suppressor genes, where they are
somewhat more likely to fall onto conserved and thus functionally relevant
targets. The signal is somewhat stronger than the mutation count alone. In
oncogenes, there is no such signal.

6. Using the combined weight eS10
∆s, does not further increase the signifi-

cance of the tumor suppressor data. It seems that there is a large degree of
redundancy in both measures ∆s and eS10

.

7. Somatic mutations in candidate oncogenes have a slightly stronger germline
fitness effect than the null. Using the score ∆s brings the deviation towards
the significant regime (p-values of about 3 ⋅10−2). They do however show
no preference for model-conforming targets.

8. One can evaluate a p-value for each of the 518 protein kinase genes by
comparing the data gene score with the 105 synthetic replica scores. Of
all kinase genes, the gene MAP2K4 stands out with a corrected p-value of
0.025 (after Bonferroni correction2 for multiple testing of 518 genes, the
count score alone is not significant). This method thus predicts MAP2K4
without additional information to be a gene with more germline deleterious

2When testing many different and independent hypotheses with a single experiment, one needs
to correct the significance levels via e.g. the Bonferroni correction, which means simply de-
creasing the p-value thresholds with the number of tests. This is necessary, because some of the
“significant” outliers might be just the ones we expected by chance anyway.
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mutations in cancer than by chance. The role of MAP2K4 as a tumor sup-
pressor in oncogenesis is well recognized [89] and was also noted in [86],
from where we derived the cancer gene classification.

somatic mutations

all genes cancer associated tumor suppressor oncogenes

score level p-val. eff.size p-val. eff.size p-val. eff.size p-val. eff.size

locus N/A N/A 0.005 1.24 0.005 1.37 0.19 1.11c
gene 0.05 0.95 0.02 1.22 0.02 1.34 0.21 1.12

locus 0.03 1.14 0.00007 1.65 0.0008 1.80 0.02 1.51
∆s

gene 0.15 1.09 0.0002 1.67 0.001 1.88 0.03 1.47

locus 0.13 1.03 0.003 1.31 0.002 1.50 0.23 1.12
eS10

gene 0.23 0.97 0.01 1.27 0.006 1.45 0.28 1.09

locus 0.02 1.17 0.0003 1.69 0.0009 1.95 0.05 1.43
eS10

∆s
gene 0.12 1.11 0.0006 1.67 0.0007 2.02 0.10 1.34

Table 3.3: Genomic observables for somatic mutations in all kinase genes, candi-
date tumor suppressor genes and candidate oncogenes.

3.5 Comparison to other scoring schemes

The results of the germline fitness score ∆s are compared to two other widely used
mutation scoring methods: the SIFT score sSIFT [26] and the HMMER3 E-values
and bit scores sHMM [90]. The SIFT program “sorts intolerant from tolerant”
substitutions. Given an alignment it gives a probability score for a substitution,
where SIFT < 0.05 is the cutoff for intolerant, i.e. deleterious mutations. (We
used the latest version SIFT v4.0.3 together with BLIMPS v3.8.) The HMMER
program yields scores for the “goodness-of-fit” of a sequence to a given model
(via its HMM profile, here as given from the domain family seed alignment). The
difference in bit score between the alignment of the reference sequence seqref to
the HMM model and that of the mutated sequence seqmut, i.e.

∆sHMM/ log2 ∶= log2
P(seqmut ∈HMM)
P(seqref ∈HMM) − log2

P(seqmut ∈Null)
P(seqref ∈Null) . (3.8)
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Figure 3.5: Distribution of gene observable means (histograms) against the data mean
for tumor suppressor genes (blue dot). Germline data (A-C): germline mutations are not
enriched (or suppressed) in tumor suppressor genes (A), they are however significantly
less deleterious (B) and are not likely to fall onto highly conserved targets (C). Somatic
data (D-F): There is a surplus of mutations in candidate tumor suppressor genes (D),
weighting them with their germline fitness effect increases the significance by a factor of
20 (E) (the p-value drops from 0.02 to 0.001, the effect size grows from 1.34 to 1.88).
The combined weight increases significance and effect size a bit more (F) (10−3 → 7 ⋅
10−4, 1.88→ 2.02).
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germline mutations

all genes tumor suppressor oncogenes

score level p-val. eff. size p-val. eff. size p-val. eff. size

locus N/A N/A 0.24 1.05 0.002 0.78c
gene 0.00006 0.93 0.18 0.92 0.0001 0.70

locus < 10−5 0.60 0.00003 0.51 0.0001 0.56
∆s

gene < 10−5 0.52 0.00004 0.48 0.00005 0.50

locus < 10−5 0.91 0.25 0.94 0.0001 0.69
eS10

gene < 10−5 0.85 0.04 0.84 < 10−5 0.61

locus < 10−5 0.53 < 10−5 0.43 0.00006 0.52
eS10

∆s
gene < 10−5 0.47 < 10−5 0.42 0.00001 0.47

Table 3.4: Genomic observables for germline mutations in all kinase genes, can-
didate tumor suppressor genes and candidate oncogenes.

is evaluated internally by the HMMER program and not externally reproducible
(“Null” is here a random background model). But conceptually, this is a quan-
tity which is obviously very similar to the germline fitness score. However, it is
derived from a complicated and not very transparent probabilistic model (the un-
derlying HMM), whereas the germline fitness score is closely connected to a very
concrete evolutionary model. This allows to compare findings to definite predic-
tions and thus to better interpret the data.
To better compare results, both alternative scores are based on the same align-
ments as the germline fitness score. It is noted, that one essential part of the SIFT
program is to construct for each query sequence a new alignment from a database
such as UniProt/TrEMBL via the alignment algorithm Psi-BLAST [26]. This will
naturally lead to different alignments and other scores. The limiting assumptions
mentioned earlier in the construction of the germline fitness score still hold.
The results for both quantities are shown in table 3.5. In summary, both HMMER
and SIFT score perform comparably well to the germline fitness score in discrimi-
nating between the germline and the null model. For somatic variation in the class
of candidate tumor suppressor genes, sSIFT gives a lower performance than both
∆s and ∆sHMM.
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germline all somatic tsupp. germline tsupp.

score level p-val. eff. size p-val. eff. size p-val. eff. size

locus < 10−5 0.61 0.02 1.61 0.0001 0.46sSIFT gene < 10−5 0.55 0.02 1.73 0.00008 0.43

locus < 10−5 0.51 0.006 1.75 < 10−5 0.43
∆sHMM gene < 10−5 0.45 0.003 1.91 < 10−5 0.39

Table 3.5: Results for sSIFT and ∆sHMM scores.

3.6 Somatic mutations in TP53

The standard example of a tumor suppressor gene is TP53. Its recessive role in
cancer development was discovered as early as 1989 [91]. The p53 protein, for
which the gene codes, is an important regulator of cell division. It is crucially in-
volved in DNA damage repair or - if need be - apoptosis, i.e. programed cell death.
Not surprisingly, mutations in TP53 are very common in many cancer types. As a
transcription factor, it is especially prone to missense mutations altering its bind-
ing efficiency.
Here the fitness score statistics of mutations in TP53 as reported in the COS-
MIC database [92] are analyzed. Only those mutations are included with con-
firmed somatic status, from actual tumor tissue and - importantly - from “sys-
tematic screens” (as indicated by COSMIC). It is assumed that this label means
that the corresponding samples were systematically sequenced in the entire cod-
ing sequence. With this filtering, there are 341 missense mutations, of which 337
could be scored. The domains found in the TP53 gene are: the p53 DNA-binding
domain (PF00870), the p53 tetramerisation motif (PF07710) and the p53 transac-
tivation motif (PF08563). The statistical analysis is completely analogous to the
previous sections. The data is tested against the null-hypothesis of random muta-
tions. In silico, 105 replicas from the null are simulated and the mean of means
is compared between data and null (since we are considering only one gene, it
suffices to look at the locus level.)
The result is striking: The reported mutations are much more germline deleterious
than expected by chance. The significance is well below 10−5. The effect sizes
are 1.27 for the ∆s score alone and 1.37 for the combined score eS10

∆s (see figure
3.6).
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Figure 3.6: Simulation results for the tumor suppressor gene TP53. The mutations re-
ported in COSMIC are significantly more germline deleterious than expected by chance
(p < 10−5) (A). The combined score increases the signal strength further (B).

3.7 Discussion
In the beginning of this chapter, the following question was asked: how much
does it help to know the germline fitness effect of a mutation to understand can-
cer variation? In particular, does it help to identify cancer driver mutations and
driver genes? Protein domains as functional atoms of the genome yield sensi-
ble evolutionary conserved sequence models. The domain family seed alignments
provided by the Pfam database make it relatively easy to derive conservation based
scores that well correlate with the true fitness cost of variation seen in real data
[8]. Applied to cancer mutations, this germline fitness scale was shown to be of
importance for genes with know cancer association, especially for tumor suppres-
sor genes. These genes are deactivated in cancer cells, which is of course the most
likely effect of a strongly germline deleterious mutation. It is tempting to identify
the mutations with strongest effect with the cancer drivers. More realistically, this
scale will help to prioritize the somatic mutations found in large scale sequencing
studies for follow-up analyses.
The method of scoring cancer mutations presented in this work was recently ap-
plied in two clinical cancer sequencing studies. In a study on renal carcinoma,
mutations in the frequently mutated gene PBRM1 were shown to have a stronger
germline fitness effect than random mutations [93]. This score thus added to the
identification of PBRM1 as a second cancer driver gene for clear cell renal cancer
carcinoma. In a second study on certain blood cancers [94], the gene SF3B1 was
identified to be recurrently mutated in patients. However, the mutations observed
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were significantly less germline deleterious than expected by chance, which lead
the authors to speculate that the protein encoded by SF3B1 retains structural in-
tegrity in cancer cells, albeit with altered function.
For oncogenes, somatic mutations are also more at the germline-deleterious end
of the fitness spectrum. Intuitively, it is much less clear how a mutation confers an
activating effect in oncogenes. The mutation might still be deleterious in the sense
that it is usually not seen in the germline, irrespective of its functional effect. The
weak signal that can be detected in the data pointing in this direction supports this
argument. In [80] it is argued, that some of the activating mutations might actu-
ally have a germline-beneficial effect (a positive score ∆s). In the present data,
however, no enrichment of positive scores in the candidate oncogenes could be
found. Most likely, the nature of mutations in oncogenes is not easily accessible
by the use of germline conservation scales alone. It is also acknowledged, that
the classification scheme used to partition the cancer-associated genes might not
capture the gene status correctly.
Other studies have shown that known putative cancer driver mutations are more
likely to fall onto conserved regions than passengers or neutral polymorphisms
[95, 96, 97, 98]. The presented results are consistent with these findings, but the
main contribution of this analysis lies in the following clarifications:

• The germline fitness score is connected to a concrete and well-established
evolutionary model [8, 42, 43] and thus eligible for comparisons to theoret-
ical predictions. This is important in order to evaluate its performance in its
main task: the prediction of germline fitness effects of mutations.

• The evolutionary model automatically provides a list of necessary assump-
tions for applying it. Its limits are thus well defined.

• It is important to clearly state the null model that any data is compared to.
In testing a null hypothesis, it is crucial to know what could have potentially
been observed. This demand makes a large majority of cancer mutation data
in repositories such as COSMIC [92] not presently applicable for this kind
of analysis, for they lack the explicit statement of the opportunity space.
(This will likely change in the close future, as the COSMIC providers will
include more extensive information about the origin of the uploaded data.)

• The most sensible null model is random w.r.t. the score. Both germline and
somatic mutation data can separately be tested against this hypothesis. In
particular, they should not be tested against each other.

With the efforts of the International Cancer Genome Consortium [5], much larger
data sets will be available for statistical analysis of this kind. In this project, com-
prehensive data from hundreds of samples for 50 cancer tumor types are collected
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and provided to the public. The analysis of these data with the germline fitness
score is an immediate task, once they are available. A new era of data driven
cancer research will be marked by the advent of cancer polymorphism frequency
data (i.e. the frequencies of variants within a single tumor). This will open up
new avenues for population genetics motivated analyses and will allow to put new
evolutionary models of cancer evolution to the test.



Chapter 4

Cancer mutations and Hidden
Markov Models

“Causa latet, vis est notissima.”1

Ovid, Metamorphoses

4.1 Introduction
How can one find mutations that are “driving” the cancer progression in a large
pool of random “passenger” variation? The germline fitness score and similar
conservation-based methods [26, 99] try to answer this question by estimating the
potential damaging effect of a mutation. It was mentioned before that a comple-
mentary ansatz is to look for signals of cancer-beneficial selection in mutation
data [10, 27]. Whatever the true evolutionary model for cancer is, it is certain that
mutations beneficial for the cancer progression will fix with a higher rate in the
tumor cell population than cancer-neutral mutations.

Note: It is important not to confuse the two different fitness perspectives of a
mutation: a cancer-beneficial mutation can be germline-deleterious, as we have
seen earlier. But the same can be true for a cancer-neutral mutation (most random
passenger mutations reduce fitness, see last chapter). And cancer-deleterious mu-
tations might have no meaning for germline fitness at all.

When sampling an ensemble of cancer tumor cell populations from different pa-
tients, the loci under positive selection in cancer will show an increased rate of

1“The cause is hidden. The effect is visible to all.”

81
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missense mutations. The ratio dN/dS of non-synonymous to synonymous (neu-
tral) substitution rates is the quantity that is usually used to measure this signal
[100, 101, 78]. This method of looking for regions and genes with enhanced
missense substitution rates has been applied successfully to cancer mutation data
[27, 10]. In the context of protein kinase genes, it was shown in [29] (and in [102]
for congenital disease SNPs) that driver mutations cluster in functionally relevant
sub-domains of the kinase domain. It is exactly this identification of “cancer driver
mutation hotspots” [98] that is of immediate importance to understand cancer cell
biology.

This chapter will present a new computational method to find signals of selection
in mutation data. The framework uses Hidden Markov Models [11]. These models
are powerful tools to find the optimal set of model parameters for censored or
incomplete data. It is no surprise that the algorithms and inference methods used
by Hidden Markov Models are “Bayesian at heart” and fit well in the general
framework of this thesis. The following sections will introduce Hidden Markov
Models, their basic tasks and how they solve them. Then concrete model adapted
to mutations under selection will be formulated. This program will then be used
to analyze one more time the protein kinase cancer data from Greenman et al.
[10] considered in the last section. The analysis will have the status of a proof
of principle. The findings of [10] are reproduced, which consist of a list of genes
sorted by their probability to be under positive selection in cancer. Moreover, the
mean size of this selection pressure is found. In the conclusive remarks, future
potential uses of this method will be addressed.

4.2 HMM: General formulas and algorithms
Hidden Markov Models (HMM) are a computational method for so called “unsu-
pervised statistical learning”, i.e. finding automatically the optimal set of model
parameters for given data [103, 104, 105, 106]. HMM are routinely used in speech
recognition [11] and in sequence discovery [47, 9]. The main idea of HMM is to
consider a temporal sequence of observations, e.g. the audio signal recorded by a
microphone, as the output from an underlying but inaccessible “hidden” sequence
of system states, e.g. the content of the recorded speech. Both the sequence of
hidden states and the emission of signals are assumed to follow a probabilistic
Markov model with unknown intrinsic parameters. The two main problems that
are solved by the HMM method are [11]:

1. What are the parameters of the model?

2. Which sequence of hidden states is the most probable given the signal?
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In the context of cancer mutations, the genome of cancer cells is regarded as con-
sisting of regions under positive selection and regions under no selection in can-
cer evolution. This cancer-selection status of a given sequence site is a priori
unknown (hidden). But the observation of mutations - both silent and missense -
hint at the true status. Thus, the mutation data can be considered as the“emitted”
signal of the true sequence state. The parameter to be learned would be the selec-
tion strength (equivalent to dN/dS). The location of hidden “selected” sequence
sites (genes, domains etc.) would be a valuable piece of information to find cancer
driving forces.

The following short exposition of HMM starts by introducing the quantities, for-
mulas and algorithms that are the core of the statistical learning procedure. Through-
out this chapter, the following notation of [11] is used:

• S = {S1, S2 . . .SN} is the set of available (hidden) states of the HMM

• V = {v1, v2 . . .vM} is the set of observable symbols. Crucially, there is no
1 ∶ 1 relation between hidden states and emitted symbols, otherwise there
would be nothing to learn.

• Q = q1 q2 . . .qT ∈ ST is a certain state path with T (time) steps.

• O =O1 O2 . . .OT ∈ VT is a certain observed symbol sequence.

• θ = (A,B,π) the parameter set, consisting of:

– transition probabilities A = {ai j}, i.e. the probability that the system
makes a transition from state Si→ S j in a (time) step. (∑ j Ai j = 1)

– emission probabilities B={bk(l)}, i.e. the probability that the (hidden)
system being in state Sk emits the symbol νl .

– and an entry distribution π = {πi}, i.e. the probability to enter a state
sequence into the state Si.

The three fundamental problems solved by HMM are [11]:

1. What is the probability of a given observation, i.e given (O,θ), what is the
path probability P(O ∣ θ)? This is solved by the forward-backward algo-
rithm.

2. Given a concrete observation and a set of parameters θ , what is the most
probable hidden state path Q? This path is found by the Viterbi algorithm.
The Viterbi algorithm is not directly used in this project, but of principal
importance. For completeness, it is described in appendix B.
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3. Given an observation O only, what is the parameter set θ that maximizes
the observation probability P(O ∣ θ)? This is arguably the most difficult
task and it is solved by the Baum-Welch algorithm.

Much of the detail of the HMM method to solve these fundamental problems can
be found in Rabiner’s introductory article [11]. A detailed exposition of the HMM
method would go beyond the scope of this work. After the following pedagogical
example, the elements of the HMM procedure are concisely presented.

4.2.1 Example: hidden coin tosses
The most simple example of the prototypical situation where a HMM is employed
is the following. Consider the situation where you are presented the results of
successive coin tosses. The coin itself and the person tossing it are not directly
visible, e.g. they are behind a screen. Only the results - head (H) or tail (T) - are
offered, e.g. on a display. Now consider that you are told that the person behind
the screen actually has two coins, one of which (C1) is “fair” - with equal proba-
bility of head and tail - and the other coin (C2) is unfair - with a bias in the two
outcomes. Thus we have S = {C1,C2}. Moreover, you are told that in between
two tosses, the hidden person secretly tosses a third coin (C3) - biased or not - to
decide whether to switch coins for the next turn, e.g. H means “keep current coin”
and T means “switch to other coin”.
To the observer, only the sequence of length T (not to confuse with the “tail”
symbol) of results of the coin tosses is visible. In terms of the above notation,
this is the observation sequence O ∈ {H,T}T . The task for the observer is now to
determine (i) the biases of the one unfair coin and the secret “switch” coin and
(ii) the most likely state sequence Q = q1q2 . . .qT of coins that were actually used
to produce the observation sequence O. A typical sequence of events might look
like this:

time t: 1 2 3 T -1 T

state Q: C1
C3=HÐÐÐ→ C1

C3=TÐÐÐ→ C2 . . . C1
C3=TÐÐÐ→ C2

↓ ↓ ↓ ↓ ↓
observation O: H H T H T

A perfect reconstruction of the state sequence Q is impossible. The HMM is
after all a probabilistic method. It will find the most likely coin biases and state
sequence given the data O. It is clear that the quality of this estimate is the better
the longer the observation sequence O is. We will refer to the picture elaborated
here again and again in the subsequent application of the HMM method to the
cancer mutation problem. Everything that is essential is already present in this
minimal set-up.
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4.2.2 The forward-backward algorithm
If the actual state sequence Q would be available, the estimation of the model pa-
rameters - emission and transition probabilities, e.g. the biases of the coins C2 and
C3 in the coin toss set-up - would be simple enough. For example for the prob-
ability of head for C2, one could take all instances of C2 in Q and calculate the
proportion of heads in the corresponding observations. We know already, that this
estimation procedure should be really carried out with the Bayesian techniques
introduced in chapter two, but this is not the focus of this chapter.
The problem is of course that the state sequence Q is not available. What one
can calculate however, is a probability P(qt = Si ∣ O,θ) for a certain state Si (C1
or C2) at a certain time t given the total observation O and a current best estimate
for the parameters θ . As we will see shortly, the parameter estimation procedure
is carried out iteratively, so let us assume here that θ is an (educated) initial guess.
The forward-backward algorithm not only returns the above state sojourn proba-
bility, but also the probability P(O ∣ θ) of the total observation given the current
θ . Crucially, this is the quantity that needs to be maximized to find the most
likely θ and Q. This total observation probability is calculated iteratively using
the “forward variable”.

αt(i) ∶= P(O1 O2 . . .Ot ,qt = Si ∣ θ)

This is the probability that the hidden state at time t is Si in the face of the partial
observation O1 O2 . . .Ot and conditioned on the parameter θ . The forward variable
follows the simple recursion:

1. α1(i) = πi bi(O1), ∀i = 1, . . .N

2. αt+1( j) = [
N
∑
i=1

αt(i)ai j] b j(Ot+1), ∀ j = 1, . . .N, ∀t = 2, . . .T −1

3. P(O ∣ θ) =
N
∑
i=1

αT (i)

The value of the forward variable at the end-point T is exactly the total observation
probability. Analogously, one can introduce a “backward variable”

βt(i) ∶= P(Ot+1 Ot+2 . . .OT ∣ qt = Si, θ) (4.1)

with corresponding recursion

1. βT (i) = 1, ∀i = 1, . . .N

2. βt(i) =
N
∑
j=1

ai j b j(Ot+1)βt+1( j), ∀i = 1, . . .N, ∀t = T −1, . . .1
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Both forward and backward variables will be needed in the solution to the third
problem in the above list - estimating the model parameters θ . From the defini-
tions, it follows directly that

P(qt = Si ∣ O, θ)∝ αt(i)βt(i). (4.2)

4.2.3 The Baum-Welch algorithm
The most difficult problem is the parameter re-estimation: what is the most prob-
able model parameter θ given the observation sequence? As was argued earlier,
if one would know the exact hidden state sequence Q, one could easily estimate
transition and emission parameters, e.g. by the Bayesian techniques described
earlier. The state sequence Q is after all nothing but a finite sample of the under-
lying probability model. The problem is that one cannot observe the hidden states
themselves directly, but only a probability for each state sojourn and each state
transition at each time can be given.

γt(i) ∶= P(qt = Si ∣ O, θ) =N −1
t αt(i)βt(i) (4.3)

ξt(i, j) ∶= P(qt = Si, qt+1 = S j ∣ O, θ) =L−1
t αt(i)ai j b j(Ot+1)βt+1( j) (4.4)

where the normalization factors N ,L are chosen, such that ∑N
i=1 γt(i) = 1 and

∑N
i, j=1 ξt(i, j) = 1. With these probabilities of state sojourn and state transition,

the parameters can be estimated as:

Baum-Welch Update Formulas:

π̄i = γ1(i) (BW 1)

āi j =

T−1
∑
t=1

ξt(i, j)

T−1
∑
t=1

γt(i)
(BW 2)

b̄i(k) =

T
∑
t=1

γt(i)δ (Ot −vk)
T
∑
t=1

γt(i)
(BW 3)

It is important to realize, that the Baum-Welch equations are re-estimations, i.e.
updates of the parameters. One needs to start with a plausible initial value. Fur-
thermore, the above estimations could be endowed with Bayesian pseudo-counts.
Often - and also in the case of this work - the observation length T is so large
that pseudo-counts barely play a role. We neglect them at this point and stay
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with the standard formulation of HMM. Altogether, the usual procedure of HMM
parameter estimation is to start with an initial guess and then:

1. calculate the α’s and β ’s in a forward-backward run

2. calculate the path probability P(O ∣ θ) and test for convergence

3. update the parameters and go to step 1.

After this iteration has converged, one can carry out the Viterbi algorithm to find
the most likely sequence Q∗ of hidden states.

4.2.4 Example: Poisson emission process

It is instructive to derive the Baum-Welch update formulas for an important but
non-standard example of HMM with Poisson emission probabilities:

bk(l) = Pois(l, µk) ∶=
µ l

k e−µk

l!
, l ∈N0 (4.5)

In this example the observed symbols are positive integers. Later, this quantity
will be the number of observed mutations at a certain genetic locus in a collection
of samples. The Baum-Welch update rules are a special case of the more general
EM-algorithm (expectation-maximization) [107]. This powerful algorithm can be
stated in two steps (with the notation of observation sequence O, state sequence S
and parameter set θ ):

E-step: Calculate the function Q(θ ∣ θ (i)) ∶= ∑
all Q

P(Q ∣ O, θ (i)) ln P(Q, O ∣ θ)

M-step: Find the new parameter values as θ (i+1) = argmax
θ

Q(θ ∣ θ (i))

Note: For historical reasons, both the EM-function above and the hidden state
sequence are denoted with Q. It should be clear from the context, which one of
the two is meant.

Under this procedure, the likelihood of the model P(O ∣ θ) is guaranteed to in-
crease [107]. Actually, it suffices to find a new θ with Q(θ ∣ θ (i)) >Q(θ (i) ∣ θ (i))
[11]. This is then called a generalized EM (GEM) algorithm. In our case, the
first step is always straightforward. The second step, finding the maximum w.r.t.
to θ will in general lead to a coupled set of equations that is not always pos-
sible to solve exactly. If the emission probabilities were not Poisson-like but
simple discrete probabilities over a finite set of possible emission symbols, this
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EM-procedure would return the standard update rules (BW 1) - (BW 3).

Now consider the Poisson model above. For a known state sequence Q=q1q2 . . .qT ,
one can calculate the path probability.

P(Q,O ∣ {µi} , A, π) = πq1 bq1(O1)aq1q2 bq2(O2) . . .aqT−1qT bqT (OT ) (4.6)

= πq1 (
T−1
∏
t=1

aqt qt+1) (
T
∏
t=1

bqt(Ot)) = πq1 (
T−1
∏
t=1

aqt qt+1) (
T
∏
t=1

µ
Ot
qt e−µqt

Ot!
) (4.7)

Nothing more is needed to calculate the EM Q-function. Anticipating that only
the update formula for the Poisson emission rate is of interest here, all terms that
do not include the {µi} explicitly are dropped. These terms are irrelevant in the
second maximization step.

Q({µi} ∣ {µ
′
i }) = ∑

all Q
P(Q ∣ O,{µ

′
i }) ln P(Q, O ∣ {µi}) (4.8)

= ∑
all Q

P(Q ∣ O,{µ
′
i })∑

t
[−µqt +Ot logµqt ]+ . . . (4.9)

=∑
i
∑

all Q
P(Q ∣ O,{µ

′
i })∑

t
δ(qt −Si)[−µi+Ot logµi] (4.10)

=∑
i
[−µi∑

t
γt(i)+ logµi∑

t
γt(i)Ot] (4.11)

In the last step, the state sojourn probabilities γt(i) from the forward-backward
step are inserted. These depend implicitly on the old parameter set {µ ′

i }. Dif-
ferentiating Q with respect to the {µi} yields the update formula for the Poisson
emission rates.

µ̄i =
∑t γt(i)Ot

∑t γt(i) (4.12)

4.3 HMM for cancer mutations
After the presentation of the HMM technique in the last section, we will now
connect to the problem of cancer selection signal detection. In the last sections,
a very important ingredient of HMM was left out: the “model” itself, i.e. the
topology of the states, their connectivity and the probabilistic nature of emissions.
Similar to the Bayesian inference technique, there must always be an input into the
machinery, which then readily produces estimates with respect to that input. The
model design depends on the concrete problem at hand. There are few mechanical
rules how to set up a HMM for a given data set [108]. One guiding principle surely
is:
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The amount of data governs the complexity that a model should have.
Simpler models (few parameters) are preferred over complex models
(many parameters) as long as they are able to explain the data.

This principle could be called the “Occam’s razor of HMM” and can be quan-
tified by Bayesian arguments [109]. This principle of optimal model design is
very interesting by itself. However, this work is concerned with the very concrete
problem of mutations “emitted” from loci that are either under selection in cancer
or not. Thus, the HMM design will be fixed in a reasonable manner and estimates
are found accordingly.

Without further delay, the cancer-HMM design will now be formulated:

• Every locus in the genome is in one of two states: cancer-selected or cancer-
neutral (analogously to the two coins C1 and C2 in the earlier HMM exam-
ple). Note that this is a statement about the cancer-evolutionary effects of
mutations at that locus. Here, the locus is considered to be a nucleotide
residue somewhere in the reference sequence for the analyzed (sequenced)
part of the genome (e.g. the kinome). The position of a locus is denoted by
t (it is in this sense equivalent to the time coordinate of standard HMM).

• Mutations appear at each locus with the same rates {µ j} in both states. The
mutation rates vary for the six different base-pair mutation channels. One
could use a single mutation rate µ , but the strong biases are known (see
section 3.2.2 and [10]) and the model is built to account for that.

• The rate with which mutations fix in the tumor and are thus subsequently
observed in a sequencing experiment depends on their cancer-fitness effect
σ . For cancer-neutral loci, there is no modification and the substitution rate
is equal to the bare mutation rate. For cancer-selected loci, the substitution
rate is modified by a factor: µ j → µ j

σ

1−e−σ . This choice is the prediction eq.
(2.22) from the minimal evolutionary model presented in the first chapter.

• Silent mutations have no effect on protein function, so their observation rate
is always the neutral one µ j, depending on mutation channel.

• At each locus, all mutations are projected over all samples (patients). By
doing this the per-sample resolution is lost. But the signal of larger missense
mutation rates in cancer-relevant regions is retained.

• Not all mutations are possible at each locus. For each base-pair, only three
mutations are possible. The set of totally six mutation channels (of which
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always only three are available) is denoted by

C ∶={A ∶ T > T ∶ A, A ∶ T >C ∶G, A ∶ T >G ∶C,

C ∶G >G ∶C, C ∶G > A ∶ T, C ∶G > T ∶ A} (4.13)

The availability of mutation channels depends on the nucleotide sequence.
For this purpose the filter quantities ω

n(s), j
t are defined as

ω
s(n), j
t ∶=

⎧⎪⎪⎨⎪⎪⎩

1, channel j is open at t, mutation is (non)− synonymous
0, else

And the projected quantities are defined as:

∑
j∈C

ω
s(n), j
t =∶ωs(n)

t , ∑
j∈C
∑

k=n,s
ω

k, j
t =∶∑

j∈C
ω

j
t =∶ωt =ω

n
t +ω

s
t (4.14)

At the moment, we have ωt = 3, i.e. only three mutations are possible at
each base pair. The following table shows the ω

j
t for the leucine (L) codon.

The amino acid in the brackets is the result of a mutation in that channel.
Only in the last base are the mutations synonymous.

A:T>T:A A:T>C:G A:T>G:C C:G>G:C C:G>A:T C:G>T:A

L C 0 0 0 1 (V) 1 (I) 1 (F)
T 1 (H) 1 (R) 1 (P) 0 0 0
T 1 (L) 1 (L) 1 (L) 0 0 0

• Likewise, the observations Ot , i.e. the mutation counts, are split into chan-
nels and outcomes: Ot →Os(n), j

t ∈N0.

• The state-dependent emission probabilities are the probabilities of observ-
ing Ot mutations after projecting over all samples. They are modeled as
Poisson distributions, where the Poisson rates are the state-dependent sub-
stitution rates modified by the channel availability.

Table 4.1 summarizes the state-dependent emission properties of the cancer-HMM.

4.3.1 Baum-Welch update formulas for the cancer-HMM
In the general case, one has not one but Ns ≥ 1 i.i.d. observations from the same
HMM. In our context, these could be the individual mutation data per patient or
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Substitution Rate HMM Emission Probability

State silent missense silent missense

Neutral µ j µ j Pois(Os, j
t , ω

s, j
t µ j) Pois(On, j

t , ω
n, j
t µ j)

Selected µ j
µ j σ

1−e−σ Pois(Os, j
t , ω

s, j
t µ j) Pois(On, j

t , ω
n, j
t

µ j σ

1−e−σ )

Table 4.1: Emission properties of the cancer HMM

per individual genes, domains or other partitions of the genome. To carry out the
HMM-procedure and find the optimal parameters for a given set of observations
{Ok}k=1...Ns

, we need to specify the Baum-Welch update formulas. The general
formulas for transition rates and entry probabilities are modified by averaging over
all samples.

Update of transition rates {ai j} and entry probabilities {πi} for a set of sam-
ples {Ok}k=1...Ns

:

āi j =

Ns

∑
k=1

Tk

∑
t=1

ξk,t(i, j)

N
∑
l=1

Ns

∑
k=1

Tk

∑
t=1

ξk,t(i, l)
, π̄i =

Ns

∑
k=1

γk,1(i)

N
∑
j=1

Ns

∑
k=1

γk,1( j)
(4.15)

Baum-Welch update of mutation and selection strengths

For the mutation rates and the selection strength, there is no closed solution for
the maximum of the Q-function. In the implementation used in this work, the µ-
and σ -dependent part of the Q-function is maximized numerically. This partial
function is given by:

Q(µ, σ ∣ µ
′, σ

′) ∶=
Ns

∑
k=1
∑
j∈C
∑

i=1,2
[⟨O j

k⟩i lnµ j + ⟨On, j
k ⟩i lnφi−µ j (⟨ωs, j

k ⟩i+ ⟨ωn, j
k ⟩i φi)]

(4.16)

⟨Os(n), j
k ⟩i ∶=

Tk

∑
t=1

γk,t(i)Os(n), j
k,t , ⟨ωs(n), j

k ⟩i ∶=
Tk

∑
t=1

γk,t(i)ω
s(n), j
k,t (4.17)

O j
k,t ∶=On, j

k,t +Os, j
k,t , φ1 = 1, φ2 =

σ

1−e−σ
(4.18)

This is the function that needs to be maximized with respect to the {µ j} j∈C and σ .
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4.4 Cancer genes in the human kinome
The cancer mutation data studied in Greenman et al. [10] and considered in chap-
ter 3 with respect to the germline fitness cost of mutations will now be subjected
to the cancer-HMM. The method should be able to find regions in the kinome
under positive selection in cancer. This study shall serve as a proof-of-principle
in that it tries to reproduce the findings of [10]: a list of kinase genes ordered
by their probability to be selected for in cancer. The following assumptions and
simplifications are made:

• The cancer status (neutral or selected) does not change within a gene. There
are no transitions between the two states within a gene. For the HMM, this

means ai j = (1 0
0 1)

i j
= const. These transition rates are not updated.

• It follows, that the state sojourn probabilities do not change within a gene:
γk,t(i) = γk(i) = Prob(gene k is in state i). This quantity will be used to order
the genes in the above sense.

• The mutation data for each gene is treated as a sample observation from
the same HMM. This means that mutation and selection parameters are not
found for each gene separately, but rather a mean selection strength σ (av-
eraged over all selected genes) and mean mutation rates.

For this particular purpose, the elaborate HMM procedure might seem like an
“overkill”. Especially because the HMM is not used to its full capacity, namely
spatially resolving the hidden state sequence within genes. This task however is
not easily solvable with the limited size of the available data set. The above set-up
is but a first order analysis and larger data sets will allow higher resolution studies.
Nevertheless, a short outlook at further applications is given in a later section.

4.4.1 Materials and methods
As mentioned before, the same data set as considered earlier is analyzed (see
chapter 3). However, silent and missense mutations in the whole gene (and not
only within the subset of protein domains) are included.

Input: The mutational opportunity space - the set of all possible point mutations
away from the reference kinome sequence - is translated into availability tracks
{ω

s(n), j
k,t } for each gene. The mutation data itself is translated into a separate ob-

servation track {Os(n), j
k,t }. This set of tracks is the input to the HMM program.
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Program: The HMM algorithms - forward-backward and Baum-Welch - are im-
plemented as C++ programs. The GNU scientific library (GSL) version 1.15 [110]
is extensively used in this implementation, especially for the maximization of the
Q-function. After the Baum-Welch iteration converges to a local maximum of the
observation likelihood, the robustness of the parameter estimates is investigated
by MCMC sampling (Markov-Chain-Monte-Carlo sampling) [111, 112, 113]. In
short, this is a stochastic method to approximate the posterior probability distri-
bution for the parameter estimates. It can be thought of as a random walk in
parameter space, where transitions take place according to the “energy function”
- here the Baum-Welch Q-function. A transition to a state of lower “energy” (with
difference ∆Q < 0) is in principle allowed but suppressed by a Boltzmann-factor
exp(∆Q) < 1, whereas transitions with ∆Q ≥ 0 are always accepted. Thus the ran-
dom walk will spend most of the time in regions of high probability and rarely
sample the tails of the equilibrium distribution.

Output: The final output of the HMM program consists of (i) numerical estimates
for the mutation and selection parameters (ii) samples of the posterior probability
distribution of the parameters (iii) the list of kinase genes with their probability to
be in one of the two states - cancer-neutral or cancer-selected.

4.4.2 Results

For completeness, both the germline and the somatic protein kinase cancer muta-
tion data from [10] were separately subjected to a HMM analysis.

Germline mutations: As expected, the germline mutations show a strong signal
for negative selection, i.e. a lower than random rate of missense mutations. The
mean selection pressure over all 518 genes is σg = −1.89±0.05 (subscript g de-
noting the germline, see figure 4.2). A large proportion of the kinase genes (86%)
have a higher probability to be under purifying selection in the germline than to
be neutral (see figure 4.1).

Somatic mutations: The outcome is quite different for the set of somatic muta-
tions in the kinome. Only 15% of the genes are more likely to be under selection
in cancer than to be cancer-neutral (see figure 4.1). The mean selection pressure
for selected genes is positive: σs = 1.77±0.31. Of special importance is the list of
kinase genes sorted by their probability to be cancer-selected. In table 4.2, the top
ten of that list is compared to the corresponding list in [10] (table 3 therein). The
agreement is convincing.
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Rank Gene name Prob(σs > 0) Gene (as in [10])

1. TTN 1.00 TTN
2. BRAF 0.98 BRAF
3. ATM 0.96 ATM
4. TAF1L 0.94 TAF1L
5. ERN1 0.91 ERN1
6. FGFR2 0.88 MAP2K4
7. NTRK3 0.87 CHUK
8. EPHA6 0.84 FGFR2
9. MAP2K4 0.84 NTRK3

10. MGC42105 0.83 MGC42105

Table 4.2: Comparison of the 10 genes most likely to be under positive selection in
cancer as a result of the HMM method. The analogous table in [10] (table 3 therein) was
derived without the use of HMM. This result is mainly a proof of principle for the HMM
method.

The bare mutation rates {µ j} j∈C found by the HMM program for each set are
not very informative by themselves (after several projections). The bias in those
HMM estimates can be compared to the naive channel bias found in the data sets
(without taking the opportunity/availability of mutations into account) depicted in
figure 3.1. The outcomes are nearly identical (see figure 4.3).
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Figure 4.1: Histogram of the 518 protein kinase genes with respect to their probability
to be under selection according to the Hidden Markov Model as explained in the text. For
germline mutations, most genes (86%) show a higher probability to be under purifying
(negative) selection (left). On the other hand, for somatic cancer mutations most genes
show now signal of selection (right). The proportion of genes with P > 0.5 is 15%.
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Figure 4.2: Approximation of the probability distribution of the mean selection pressures
σ discovered by the HMM method in the protein kinases cancer data. Germline mutations
(green) under selection are most compatible with σ = −1.89± 0.05, somatic mutations
under selection (red) with σ = 1.77±0.25. The distributions are approximated by Markov-
Chain Monte-Carlo simulations (105 steps, of which every tenth was used).
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Figure 4.3: Mutation channel bias found by the HMM in both germline (green) and
somatic (red) data sets. Actual mutation rates are normalized to percent.
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4.5 Domain-level analysis

We are finally in a position to reap some rewards from the general and flexible
set-up of the cancer-HMM. The analysis in the last section considered genes as
units with defined cancer-selection status. The same can be repeated for domain
families. However, for the considered kinome data set, this analysis is necessarily
biased, for all genes in the kinome include by definition one of the two protein
kinase domains. Nevertheless, it is worth investigating. Operationally, the only
modification must be made in the input of the HMM: the position coordinate t
now corresponds to an alignment column within a domain family profile. The
observation and availability values (the Ot , ωt) are projected over all kinome sites
that fall onto that specific column. The rest of the program is completely identical
to the gene-level analysis. The results can be seen in table 4.3 and figures 4.4
and 4.5. Reassuringly, the selection strengths found in the germline and somatic
mutation set are similar to the gene-level analysis results (σg = −1.87±0.07 and
σs = 0.64±0.25). In both sets, almost all domains are more consistent with se-
lection (94% in the germline, 100% in the somatic set). As expected, the top ten
domains under selection in cancer are lead by the two protein kinase domains. It
is biologically rather interesting that most of the highly selected domains are in-
volved in cell signaling processes. However, more biologically informative would
be an analysis of cancer mutation sequencing data that is not preconditioned on a
specific family of genes. Thus, not too much weight will be put on an interpreta-
tion of the findings, but rather on the potential of this type of analysis.
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Figure 4.4: Histogram of the 146 protein domains found in the kinome with respect to
their probability to be under selection in cancer. For both germline and cancer somatic
mutations, most domains (94% and 100%, resp.) show a higher probability to be under
selection.
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Rank Pfam ID Domain name Function Prob(σs > 0)

1. PF07714 Tyrosine kinase phosphorylation 1.00
2. PF00069 Protein kinase phosphorylation 1.00
3. PF07697 7TM-HD receptor N/A 0.99
4. PF00041 Fibronectin type III cell adhesion/growth 0.99
5. PF12157 DUF3591 N/A 0.99
5. PF01404 Ephrin receptor cell signaling 0.98
6. PF02259 focal adhesion targeting cell signaling 0.98
7. PF00439 Bromodomain protein binding 0.97
8. PF00169 Pleckstrin homology intracellular signaling 0.97
9. PF00629 MAM domain extracellular receptor 0.96

10. PF00241 Cofilin-ADF actin binding 0.95

Table 4.3: Comparison of the 10 domains most likely to be under positive selection in
cancer as a result of the HMM method. The domain name and function is taken from
Pfam [9]. (DUF = domain of unknown function)
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Figure 4.5: Same figure as 4.2 but for domains. Germline mutations (green) under selec-
tion are most compatible with σg = −1.87±0.07, somatic mutations under selection (red)
with σs = 0.64±0.25.

4.5.1 Outlook: sub-domains under selection?
The gene- and domain-level HMM analysis was carried out with the restriction
that the cancer-selection status is not allowed to change within a unit. If this re-
striction is to be lifted, the HMM needs to find optimal values for the transition
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rates between the states as well. This increases the number of parameters of the
HMM by two. For all genes and almost all domains in the data set, this is too
much flexibility for the HMM to produce meaningful results. Even for the tyro-
sine kinase domain (PF07714), which has both the most domain instances found
in the kinome and the most somatic mutations, the HMM results are at least ques-
tionable (e.g. they strongly depend on the initial guesses for the length scales). So
this should be taken as a demonstration of the capability of the HMM ansatz.
The protein kinase domain consists of twelve sub-domains [60] and it is inter-
esting to compare this annotation with the output of the HMM analysis. In [102],
Torkamani et al. found that these sub-domains were enriched with disease-associated
SNPs. The figure 4.6 shows the result of a HMM-analysis of the tyrosine kinase
domain alone. The solid line shows the probability that a nucleotide at a certain
domain position is in the cancer-selected state, i.e. γt(selected) (with σs ≈ 4.4).
The colored regions are the twelve sub-domains (sub-domains III and IV are taken
as one and have the same color, sub-domains XI and XII are adjacent). Only sub-
domains VII and VIII show a high probability for cancer-selection. Altogether,
the correlation is not strong (The probability to be cancer-selected is on average
about 29% higher within sub-domains than outside).
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Figure 4.6: The cancer-selection probability for each nucleotide in the tyrosine kinase
domain as given by an HMM-analysis of the cancer mutation data [10]. In sub-domains
VII and VIII, there is a high probability for the presence of cancer-selection in the data.
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4.6 Discussion and future directions
This chapter presented the HMM method as an efficient way to find signals of se-
lection in cancer mutation data. The HMM is able to distinguish genes or domains
under selection from neutral units. In the present study this was accomplished by
computing for each unit the probability to be in a selected state. Ideally, one would
like to find selection strengths e.g. for each gene separately. But to do this in a
conclusive way, more extensive data sets are required. At this point, only mean
selection pressures could be detected with confidence.
It is of immense biological interest to identify locations within genes or domains
of immediate importance to cancer-evolution. To achieve this “spatial” resolution
demands not only larger data sets, it also needs further development of the “state-
transition” part of the HMM. In the HMM-analysis it is implicitly assumed that
there is a typical length-scale associated to each cancer-selection state. This might
not be the case in reality. In fact, it is also possible that cancer mutation hot-spots
can only be identified in the folded form of the protein, where residues are close
in real space but far apart in the coding sequence.
Regarding the implementation of the HMM program, one difficulty is that the
Baum-Welch (or EM) algorithm returns only local maxima of observation like-
lihood. Thus, depending on the initial parameter estimates, one might miss the
true global maximum and with it the optimal parameters. This deficiency can be
addressed by Monte-Carlo methods such as simulated annealing [114] for con-
tinuous parameters [115]. This method tries to find the ground state by slowly
“freezing” the system, i.e. allowing ever less random transitions that increase en-
ergy. This attractive idea comes with huge computational costs, especially for
HMM. For every random trial move in parameter space the observation proba-
bility must be calculated anew, which amounts to a forward/backward evaluation.
Further development of the software implementation needs to be done before sim-
ulated annealing is feasible for the present HMM. For other HMM models, it is
already in use [116].
The HMM in its present form takes the non-homogeneous state of the reference
sequence explicitly into account by means of the mutation-availability tracks ωt .
But there is more external information available that can be fed into the HMM:
the germline fitness scoring effect ∆s of mutations, described in the last chapters.
In domains, where ∆s is available, this scale could be used as explicit selection
strength, i.e. σs = −∆st (and a mean σs outside of domains). This set-up assumes
that “cancer-beneficial” is equivalent to “germline-deleterious”. It is interesting
to see whether this model would be able to detect tumor-suppressor genes.





Chapter 5

Stochastic tunneling in a two locus
model with recombination

“Your DNA may be destined to mingle with mine. Salutations!”

Richard Dawkins, River out of Eden, 1995

5.1 Introduction
In the preceding chapters, the understanding of a minimal model of evolution
under the influence of three major evolutionary forces - mutation u, selection s and
drift 1

N was extensively used. This model described the evolution of a population
of size N whose members were either of (geno-)type A or B, the two possible
alleles. Two two alleles carry different fitness values sA and sB, with difference
s ∶= sA−sB. Not only is a complete qualitative understanding of the behavior of this
system and the relevant parameter regimes available, but importantly one can give
analytical expressions for all relevant time scales and fixed state probabilities. It
is known that for a small mutation rate Nu≪ 1, the population will be most of the
time monomorphic, i.e. in a state of either all A-alleles or all B-alleles, and it will
rarely switch to the other monomorphic state (see e.g. Rouzine’s review [38]). In
essence, the derivation of the germline fitness score in earlier chapters is based
on the substitution rate ΓB→A(u,σ), the typical time scale between successive
switching events. This rate depends non-linearly on the scaled fitness difference
σ ∶=N(sA− sB).

ΓB→A(u,σ) = uσ

1−e−σ
(5.1)

Expressions like this are extremely important in order to estimate model parame-
ters from direct observations. This chapter leaves behind the application of cancer

101
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mutation scoring altogether. The primary goal here is to find a corresponding
expression for the substitution rate of a more extended evolutionary model - one
that includes two more forces: recombination and epistasis. Recombination is the
exchange of genetic material of the two parents to form the genome of the child
in sexually reproducing organisms. This exchange takes place in the crossover of
homologous chromosomes during meiosis to produce the haploid gametes: sperm
and egg cells. Epistasis is a term describing the non-additive fitness effect of
mutations at different loci. This happens whenever the alleles at two loci are in-
terdependent: the effect of a mutation at one locus depends on the allele at the
other locus. The fact that sexual reproduction is ubiquitous in nature is a long
standing topic of research [117]. Most explanations include epistatic interactions
between loci.
There are different epistatic scenarios: under the assumption that most mutations
decrease fitness, the combined effect of many such deleterious mutations can be
lower (larger) than the sum of their effects, which is called antagonistic (synergis-
tic) epistasis. Which one of the two forms of epistasis (antagonistic or synergistic)
is more prevalent in nature is still matter of debate. Theoretical studies hint that
in fact antagonistic interactions between deleterious mutations - i.e. a “buffering”
of the effects - might be favored in evolution [118].
The form of epistasis considered here is that of “sign-epistasis” [12]. This term
means that the sign of the fitness effect of a mutation depends on the genetic
background. In a minimal set-up, this describes the process of compensatory mu-
tations, where two fitness peaks are separated by a fitness valley. The first muta-
tion away from one such local fitness maximum genotype always reduces fitness.
But a mutation at the second locus (over-)compensates this effect. If the fitness of
both peaks is equal, one is faced with neutral compensatory mutations [119, 120].
Of interest here is the more general case of an over-compensating effect of the sec-
ond mutation. This is an interesting situation to analyze the process of adaption
(fixation of the globally fittest allele) in the presence of evolutionary bottlenecks.
Models of this kind are known to show the effect of “stochastic tunneling” [15],
where the population shifts between peaks without populating the states in the fit-
ness valley to a macroscopic extent.
The determination of evolutionary relevant time scales for adaption in these mod-
els is a topic of ongoing research. All of the above considerations can be realized
in a model of evolution of genomes with two loci and two alleles each, i.e. the evo-
lution of four competing genotypes. The fitness assignments to these genotypes
are realized in a way to exhibit two local fitness maxima (e.g. wild type genotype
and the genotype two mutations apart from the wild type). This model will be
explained in detail in the next section. For infinite population sizes - when ran-
dom fluctuation can be neglected - there have recently been advances to describe
stationary states [14] and deterministic times until fixation of the double mutant
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genotype [13]. One important observation is that in infinite populations fixation
of the double mutant is impeded for recombination above a critical threshold [13].
This divergence of the fixation time is resolved as soon as finite populations are
taken into account. A full stochastic treatment also exposes the effect of stochas-
tic tunneling and other fixation bottlenecks. Recently, Weissman et al. [121] have
found expressions for the fixation rate in the case of shallow fitness valleys and
for r < rc (and for r ≫ rc). The present work aims to fill an important gap in the
theoretical description of compensatory adaption dynamics: the scaling of the fix-
ation rate for values r =O(rc) and above for deep fitness valleys. It will be shown
how recombinatorial reshuffling of genotypes leads to a phase transition at r = rc
and how the fixation dynamics is influenced by stochastic bottlenecks. The main
ideas and first results of this analysis were published in [122].

5.2 Formulation of the model
The minimal model to realize all these aspects and to include the two new forces
mentioned above is that of a population of constant size N, where the individuals
carry a genome of two loci with two alleles each. This means that there are four
genotypes ab, Ab, aB and AB. Epistasis is the non-additive effect of mutations
depending on the genetic background. For our minimal model, this translates to
a non-linear fitness-landscape (see figure (5.1)). In fact, we study here the more
special case where the global fitness maximum is separated from the wild type by
a deep fitness valley. A first mutation away from the wild type ab - at any locus
- decreases the fitness of an individual significantly. Only the mutation at the
second locus over-compensates this effect and produces an individual of maximal
fitness. A natural question to ask is then the following: what is the time scale of
ultimate fixation of the double mutant starting from a population monomorphic in
the wild type? The answer will be the analog of the substitution rate (5.1). Let us
recapitulate the defining characteristics of the model:

• Minimal model of evolution that includes the five evolutionary forces:

1. mutation u

2. selection s

3. genetic drift 1
N

4. recombination r

5. epistasis

• “Genome size”: two loci, two alleles each. There are four different geno-
types: wild type ab, single mutants aB and Ab and double mutants AB.
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• The fitness assignment to the four genotypes is such that the first mutation
away from the wild type is strongly deleterious and the second mutation
over-compensates this effect.

• The primary quantity of interest is the time scale on which a population
starting in the wild type reaches the state of maximal fitness and fixes in the
double mutant state.

Figure 5.1: The fitness assignment for the four genotypes in the model of compensatory
mutations. For a population starting out in the wild type ab, fixation in the global fitness
maximum at all AB is delayed by the crossing of a deep fitness valley.

5.2.1 The twofold effect of recombination
Recombination means the exchange of genetic material between the two parents
in sexually reproducing organisms to form the genome of the offspring. Qualita-
tively, the effect of recombination is that of a source of variation, quite similar to
mutations. However, it can produce new variants much more rapidly by reshuf-
fling of the present genotypes. As a thought experiment, imagine a population
that is half wild type ab and half double mutant AB evolving sexually under the
influence of recombination. Initially, half of all offspring will have inter-genotype
parents and half of these children will be of mixed type. Thus, within a single
generation a quarter of the population will be of mixed genotype, whereas muta-
tion alone would produce only O(2Nu) of them.
In the present context, this effect of recombination as a source of variation comes
in two flavors: (i) it opens up an additional channel to produce the favorable dou-
ble mutants by combining the genetic material of two (different) single mutant
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parents; (ii) much more strongly, recombination counteracts the fixation of dou-
ble mutants by reshuffling the alleles in reproduction events with the wild type.
We will rediscover these two aspects later in the mathematical formulation.

Figure 5.2: The two opposing effects of recombination described in the text. Left: re-
combination opens a new channel to produce double mutants by breeding two single mu-
tants. Right: recombinatorial reshuffling of alleles makes fixation of the double mutant
difficult.

5.2.2 Mathematical model: Moran birth-death process

In the field of population genetics, there are two well-established models to de-
scribe evolution under constant population size [39]: (i) the Wright-Fisher model
of generation-wise population updates and (ii) the Moran model of individual
birth-death processes with overlapping generations. Whereas the former is clearly
preferable in simulations, the latter is used for the calculations in this part. Since
the Moran model includes only nearest neighbor transitions in the form of birth
and death events, it is much more analytically tractable than the long range Wright-
Fisher model. In the appendix C, we show that in the biologically relevant param-
eter regime both models are in fact equivalent and either can be used for simula-
tions (or calculations if need be).

The Moran model is essentially a protocol of evolution in discrete time steps. In
every “turn” of the process, the following events take place:

1. One of the N individuals dies. Which one is decided randomly. The effect
of selection is incorporated already at this point in the form of biased death
probabilities {Di} for the different genotypes according to their fitness.
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2. Two individuals are chosen at random (unbiased) to serve as parents, to
reproduce and spawn a single offspring that fills the empty spot. Copies of
the parents’ genomes are the raw material to build the child’s genome.

3. With probability r, the two copies exchange their alleles at the second locus.
This approximates recombination by chromosomal crossover.

4. Of the two new genomes, one is chosen at random (unbiased) to be the
actual offspring.

5. At each locus of the offspring, a mutation to the other allele can occur with
probability u. Double mutation events are neglected. The total probability
that the offspring is of genotype i, is denoted with Bi.

Just as was done in chapter two for the Kimura model, the above evolution proto-
col can be cast in the following continuous-time Moran-model Master equation.

∂tP(nnn,t) =
⎡⎢⎢⎢⎢⎣
∑
i≠ j

(E−i E+j −1)Bi(nnn)D j(nnn)
⎤⎥⎥⎥⎥⎦

P(nnn,t) (5.2)

(nnn)i = ni, i, j ∈ {ab,Ab,aB,AB} , E±i f (nnn) = f (nnn±eeei), (eeei) j = δi j (5.3)

where P(nnn,t) is again the probability to find ni copies of genotype i in the popu-
lation at time t. This compact form of the Master equation uses the shift operators
E±i that shift the i-th component of the argument of any function f (nnn) by plus or
minus one. The effective birth and death rates {Bi,Di} incorporate all the evo-
lutionary forces. The index marks the end result of an event, e.g. Bab is the
probability (per unit time) that the born offspring is of the wild type. According
to the protocol above, this probability is given by a composition of sexual and
asexual reproduction steps.

Ai ∶= Prob( offspring of type i in purely asexual reproduction, r = 0) (5.4)
Si ∶= Prob( offspring of type i in purely sexual reproduction, r = 1) (5.5)

Because the sexual reproduction step is only in effect with a probability r, we have
in total for the effective birth and death probabilities:

Bi (xxx) ∶= Ai ((1− r)xxx+ rSSS(xxx)) , Di(xxx) ∶= mi xi

m̄
, with xi ∶=

ni

N
(5.6)

death biases ∶ mab ∶= 1, maB =mAb ∶= 1+ sd, mAB ∶= 1− sb (5.7)
mean fitness ∶ m̄ = 1+ sd (xaB+xAb)− sb xAB (5.8)
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The biases including selection are denoted with mi (“mortalities”). We here list
the purely asexual and sexual birth probabilities explicitly.

Aab = xab(1−2u)+(xaB+xAb)u
AaB = xaB(1−2u)+(xab+xAB)u
AAb = xAb(1−2u)+(xab+xAB)u
AAB = xAB(1−2u)+(xaB+xAb)u

Sab = x2
ab+xab(xaB+xAb)+xaB xAb

SaB = x2
aB+xaB(xab+xAB)+xab xAB

SAb = x2
Ab+xAb(xab+xAB)+xab xAB

SAB = x2
AB+xAB(xaB+xAb)+xaB xAb

This leads to the following effective birth rate e.g. for the wild type.

Bab = [(1− r)xab+ rSab(xxx)](1−2u) + ∑
i=aB,Ab

[(1− r)xi+ rSi(xxx)]u (5.9)

This should be read as a direct translation of the protocol (asexual or sexual re-
production, weighted by recombination r, followed by eventual mutation). Before
proceeding, the following comments are in order.

Note 1: The above set-up explicitly guarantees a constant population size N. It
would be equally valid to let birth and death events happen independently. The
according Master equation would read as

∂tP(nnn,t) =∑
i
[(E−i −1)Bi(nnn)+(E+i −1) Di(nnn)] P(nnn,t) (5.10)

Here, the population size N would be constant on average only. This is ensured
by the normalization of all relevant rates.

∑
i

Ai =∑
i

Si =∑
i

Bi =∑
i

Di = 1 (5.11)

Note 2: It would also be equally valid to include the effect of selection in the birth
rates and use death rates that are "flat", i.e. Di = xi. Also the exact order in the
update protocol could be changed as well. In the limits regarded here, i.e. all rates
small u,sd,sb,r ≪ 1, all of these different implementations are equivalent in the
sense that they yield the same limiting evolution equation for N →∞.

Note 3: The terms Si describing the outcome of sexual reproduction are purely
combinatorial. They can be written more compactly by introducing the coefficient
of linkage disequilibrium LD(xxx)

LD(xxx) ∶= xab xAB−xaB xAb ⇒ Si = xi±LD(xxx) (5.12)
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where the plus sign holds for the single mutants and the minus sign for the other
two genotypes.

Note 4: Although the model is formulated in discrete evolutionary “turns”, it can
be cast into the continuous-time Master equation (5.2) by the following observa-
tion. Let the turns take place not at evenly spaced discrete time points but rather in
a random fashion, where the waiting time between consecutive turns is exponen-
tially distributed. Then the change of the probability distribution is only evaluated
at evenly spaced time points on a time scale, where there is one turn per unit time
on average. In the limit of infinitesimally close sampling points, this will yield the
above Master equation. Similarly, if all processes are decoupled and take place
independently, every single one of the possible transitions has a waiting time that
is exponentially distributed with its own mean (the Bi or Di). This set-up will yield
the alternative Moran Master equation (5.10). It is also at the heart of the Gillespie
algorithm [123] that exploits the exponential distribution of waiting times to speed
up Moran type simulations. In appendix C.4, we show this equivalence explicitly.

5.2.3 Parameter regimes
We now return to the main exposition. It is worth noting that it usually suffices
to consider the evolutionary force parameters only to linear order within the tran-
sition rates. In fact, it will be the scaled parameters Nu, Ns etc. which decide
the qualitatively distinct sectors of the model. In the one-locus/two-allele model,
Nu ≪ 1 or Nu ≫ 1 puts the system in the substitution- or mutation-selection-
balance regime, respectively, and the substitution rate (5.1) is a non-linear function
of Ns [38]. So the interesting limit in the present case will be:

N →∞, with µ ∶=Nu, σb ∶=Nsb, σd ∶=Nsd, ρ ∶=Nr constant (5.13)

Note: Of course, in reality we don’t expect e.g. individual reproduction rates to
scale with population size. Why should they? The above statement is just a pre-
scription for taking a biologically meaningful limit.

In the face of this expansion, it should suffice to keep the transition rates only to
leading order in 1

N . The birth and death rates are then in that sense:

Bab ∶= xab−2uxab+u(xaB+xAb) − r LD(xxx) (5.14)
BaB ∶= xaB+u(xab+xAB−2xaB) + r LD(xxx)
BAb ∶= xAb+u(xab+xAB−2xAb) + r LD(xxx)
BAB ∶= xAB−2uxAB+u(xaB+xAb)− r LD(xxx)
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Dab ∶= xab− sd xab (xaB+xAb) + sb xab xAB (5.15)
DaB ∶= xaB+ sd xaB (xab+xAB) + sb xaB xAB

DAb ∶= xAb+ sd xAb (xab+xAB) + sb xAb xAB

DAB ∶= xAB− sd xAB (xaB+xAb)− sb xAB (1−xAB)
with the linkage disequilibrium LD(xxx) defined in (5.12). Expressing the rates in
terms of the scaled parameters, we have their expansion in 1

N , which is called
canonical form in [40].

Bi(xxx) =∶ xi+ 1
N bi(xxx)+O(N−2) , Di(xxx) =∶ xi+ 1

N di(xxx)+O(N−2) (5.16)

In the above limit, the remaining four parameters span a huge parameter space.
A full cartography of which is not the aim of this thesis. Instead, the focus is on
a specific sector where substitution dynamics and fixation bottlenecks of various
kinds can be found. Consequently, some of the important parameter combinations
and their relative sizes are now fixed:

• Nu= µ ≪1: This is the relevant scale of mutation for all biological evolution
models, except maybe for viral or cancer evolution [38]. In fact, the true
mutation rate at a locus depends on its size. Per nucleotide mutation rates
are small even for the previous examples.

• σb,σd ≫ 1: The effect of the epistatic fitness landscape can only be detected
if selection is sufficiently strong to overcome genetic drift.

• σb ≪ σd: This means that the fitness valley is “deep”. The qualitative be-
havior of the system is quite different for shallow and deep valleys [121]. In
shallow valleys, small recombination can even increase the rate of fixation.
We are here interested in the case of strong selection against single mutants.
This scenario much more clearly exhibits the evolutionary bottlenecks on
the route to fixation.

• µ

σd
≪ 1: Although the first condition rules out a mutation-selection balance

for the deleterious single mutants, we still expect µ

σd
to be the scale of the

average frequency of single mutants.

• It should be clear, that the rate with which the first double mutants AB appear
(denoted by γ) involves the combinations µ

µ

σd
(compensatory mutation of

a single mutant) and ρ
µ

σd

µ

σd
(recombination of two single mutant parents).

The previous conditions make γ ≪ 1 clearly the slowest time scale in the
system.

• The parameter ρ will be used to tune the system through a phase transition
at ρ ∼ σb, as we will see later. At least we demand that ρ ≫ µ .
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5.3 Expansion of the Master equation
At this point, the large N limit is taken and the Master equation (5.2) is expanded
to leading order in 1/N to arrive at the corresponding Fokker-Planck equation.
The usual routine is to start with the van Kampen linear noise approximation [40],
i.e. setting ni =N φi(τ)+

√
N ξi. This is a separation into a macroscopic part φ and

small quadratic fluctuations ξ around it. The macroscopic part evolves according
to the deterministic equation:

∂τ φi(τ) = (ααα1,0)i (φφφ(τ)) , τ = t
N

(5.17)

where ααα1,0 is the vector of first jump moments using the zeroth order term of the
transition rates in their canonical form (5.16), see [40].

(ααα1,0)i (xxx) ∶= (Bi(xxx)−Di(xxx))(0) ≡ 0 (5.18)

The disappearance of the macroscopic law renders the linear noise approximation
invalid, because fluctuations ultimately grow to sizes much greater than

√
N [40].

The correct expansion for Master equations of this diffusion type is in terms of the
intensive frequency xxx = nnn

N which yields the non-linear Fokker-Planck equation.

∂τ P(xxx,τ) = [−∂xi (ααα1,1)i (xxx)+ 1
2 ∂xi∂x j (ααα2,0)i j (xxx)] P(xxx,τ), τ = t

N2 (5.19)

In our case, the first and second jump moments given by the first and zeroth order
terms in (5.16), respectively, are:

(ααα1,1)i (xxx) = (Bi(xxx)−Di(xxx))(1) = bi(xxx)−di(xxx) =∶ Fi(xxx) (5.20)

(ααα2,0)i j (xxx) = [δi j (Bi(xxx)+Di(xxx))−2Bi(xxx)D j(xxx)](0)

= 2 (xi δi j −xix j) =∶Di j(xxx) (5.21)

where we have identified the drift terms Fi and diffusion terms Di j of the Fokker-
Planck equation.

Note: The above moments can be derived explicitly by expanding the shift op-
erators in the Master equation (5.2) to second order and rearranging terms. For
analytical functions f , we have by Taylor expansion:

E± f (n) = f (n±1) = f (n)± f ′(n)11+ 1
2

f ′′(n)12+ ⋅ ⋅ ⋅ =
∞
∑
k=0

f (k)(n)
k!

= e∂n f (n)

E±i = e±∂ni = e±
1
N ∂xi = 1± 1

N
∂xi +

1
2N2 ∂

2
xi
+ . . . (5.22)
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5.3.1 The drift terms of the Fokker-Planck equation
Now that the Fokker-Planck equation (5.19) is established as the leading order in
a systematic expansion in 1

N , it is important to note that there is no macroscopic
law in the sense of equation (5.17). All that one has at this moment is the follow-
ing non-closed evolution equation for the mean frequencies that involves higher
moments due to non-linear drift terms Fi (equation 5.20).

d
dτ

⟨xi⟩ =
d

dτ
∫ d4x xi P(xxx,τ) = ∫ d4x xi

⎛
⎝
−∑

j
∂ j Fj(xxx)+∑

k, j
∂k∂ jDk j(xxx)

⎞
⎠

P(xxx,τ)

⇒ d
dτ

⟨xi⟩ = ⟨Fi(xxx)⟩+boundary terms (5.23)

(In most cases, boundary terms can be neglected.) This equation for the mean
is not really helpful. If however the drift terms themselves involve parameters
that are large, we can carry out a secondary expansion. Remember, that the limit
N →∞ is already carried out. However, one could take the limit e.g. σ →∞. In
a way completely analogous to the first linear noise approximation, one could set
xi = φi(τ)+ 1√

σ
ξi and expand in powers of

√
σ . Within this approximation, one

would recover a new “macroscopic law” that involves the drift terms mentioned
before.

d
dτ

φi(τ) = Fi(φφφ) (5.24)

Note: In the one-locus/two-allele model this secondary linear noise approxima-
tion would only work in the limit Nu = µ ≫ 1, where the macroscopic law would
exhibit a single stable fix point at µ

σ
(mutation-selection balance) and fluctuations

are small of the order 1√
µ

. In the opposite case µ ≪ 1, this expansion would not
work, since the stationary states would be at the boundaries x = 0 and x = 1, where
a continuum approximation is not warranted.

Thus we see that the drift terms do play an important role and the location of
their fixed points will influence the behavior of the system both qualitatively and
quantitatively.

5.4 Stationary distribution of the fast variables
We now return to the problem of finding the fixation rate of double mutants. Ini-
tially, the population starts in the wild type, i.e. xab = 1, xi≠ab = 0. Before even
the very first double mutant appears (on a time scale 1/γ), a quasi-stationary dis-
tribution of single mutants is established on the much shorter time scale of 1/sd
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[38]. For sd ≫ sb, i.e deep fitness valleys, this is in fact the shortest time scale
present and one can expect a true separation of time scales. This would mean
that there is always an instantaneous quasi-stationary distribution for the single
mutants that follows the evolution of the slower modes adiabatically. This adia-
batic elimination is quite technical and performed in detail in appendix D on both
the deterministic and the stochastic level of the model. It is strongly suggested to
first follow the exposition in this main part to gain an intuition for the qualitative
effects involved before verifying the validity of time scale separation in the ap-
pendix. We will here follow a more pragmatic route. The dynamics of the single
mutants are analyzed while regarding the double mutant frequency xAB as effec-
tively constant, i.e. changing on a time scale too slow to notice. The wild type
frequency can be eliminated due to the normalization ∑i xi = 1. If, furthermore,
the frequency of single mutants remains small at all times (this will need to be
checked a posteriori), the following two crucial assumptions can be made:

1. The two single mutant populations are statistically independent and sym-
metric in the sense that ⟨xaB⟩ = ⟨xAb⟩ and ⟨xaB xAb⟩ ≈ ⟨xaB⟩⟨xAb⟩.

2. The Master equation describing their behavior can be linearized in xaB,Ab.

Anticipating, that for µ ≪ 1 boundary effects might be important, we proceed
cautiously and return to the birth-death Moran Master equation for fixed xAB. For
each single mutant species individually it is:

∂t P(ni,t) = [(E+−1) f −i (xxx)+(E−−1) f +i (xxx)] P(ni,t), i = aB,Ab (5.25)
f +i (xxx) ∶= Bi(xxx)(1−Di(xxx)), f −i (xxx) ∶=Di(xxx)(1−Bi(xxx)) (5.26)

The rates are expanded with xab = 1− ∑
i≠ab

xi to first order in xaB,xAb and to lowest

order in u
sd

and u
sb

. Setting xAB→ z, one gets

f −i (ni;z) =∶ R−(z)ni+O(n2
i ) , f +i (ni;z) =∶ ν(z)+R+(z)ni+O(n2

i ) (5.27)

ν(z) = u+ r z(1− z), R± =
1
N

[1+O(u,sb,sd,r)] (5.28)

∆R(z) ∶= R+(z)−R−(z) = − 1
N

[sd + z(sb+ r)−4u] < 0 (5.29)

The effective “mutation” rate ν(z) contains two contributions for the production
of new single mutants: first the mutational channel ∝ u and second the recombi-
natorial reshuffling channel ∝ r z(1− z) (refer to the discussion in section 5.2.1).
We see that its scaled pendant Nν(z) will ultimately exceed values of order one
whenever N r = ρ ≫ 1 and z(1− z)≫ 1

Nr , quite independently from the value of
Nu itself. To repeat, for large recombination Nr ≫ 1, the characteristics of the
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single mutant dynamics will explore quite different qualitative sectors. Owing to
the linearity of the transition rates, we can give the stationary distribution Ps(ni)
analytically [40] in terms of its generating function.

G(ζ ,τ) ∶=
∞
∑
ni=0

ζ
n P(ni,τ) ↔ P(ni,τ) =

1
ni!

∂
(ni)
ζ

∣
ζ=0

G(ζ ,τ) (5.30)

G(ζ ,t) = ( ∣∆R∣
R−−R+ζ −e−∣∆R∣t R+(1−ζ)

)
ν

R+ t≫∣∆R∣−1

ÐÐÐÐÐ→ Gs(ξ) ∶= ( ∣∆R∣
R−−R+ζ

)
ν

R+

(5.31)

In passing, we note that the quasi-stationary distribution is indeed established on
a time scale 1

∣∆R∣ ≈
1
sd

. The mean value is calculated directly as:

⟨ni⟩s = ∂ζ ∣ζ=1 lnGs(ζ) = ν

∣ ∆R ∣ (5.32)

The mean value of each single mutant distribution is thus found to be:

⟨xi⟩s = u+ r z(1− z)
sd + z(sb+ r)−4u

, i = aB,Ab (5.33)

For consistency, it needs to be ensured that ⟨xi⟩s ≪ 1 at all times (or for all values
of z ∈ [0,1]), lest we leave the regime of the linear approximation. This can only
be guaranteed, if r,sb ≪ sd , i.e. for deep fitness valleys:

∂z ⟨xi⟩s != 0 ⇒ zmax =
√

sd√
sd +

√
sd + sb+ r

+O(u
s
) (5.34)

⇒ ⟨xi⟩s
max =

r
(r+ sb)2 (r+ sb+2sd −2

√
sd(sd + sb+ r))+O(u

s
) (5.35)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r
r+sb

(1−2
√

sd
r+sb

)+O( sd
r,sb

)+O(u
s ) shallow valley

r
4sd

(1− r+sb
2sd

)+ u
sd
+O(( r,sb

sd
)

3
) deep valley

It seems that the linear approximation to the Master equation by itself is consis-
tent for deep valleys sd ≫ sb,r, where it is also in accordance with the time scale
separation. (It might be even valid for shallow valleys in the (rather special) case
sd ≪ r ≪ sb. Later, we will see that r =O(sb) is the region of interest.)
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For completeness, let us look at the variance and second moment of the single
mutant distribution

vars(ni) ∶= ⟨n2
i ⟩−(⟨ni⟩)2 = ∂

2
ζ
∣
ζ=1

lnGs(ζ)+ ⟨ni⟩s = ν(z)R−
∆R2

vars(xi) ≈
1
N

u+ r z(1− z)
(sd + z(sb+ r))2 =

⟨xi⟩2

Nu+Nrz(1− z) , i = aB,Ab (5.36)

⟨x2
i ⟩s = ν (ν +R−)

N2 ∆R2 , i = aB,Ab (5.37)

So indeed, fluctuations are strong for Nν(z) = Nu+Nrz(1− z)≪ 1. The quasi-
stationary distribution itself can be given as well (see [40]).

Ps(ni) =
∣∆R∣ν/R+

Rν/R++ni
−

ni−1

∏
j=0

(ν +R+ j
1+ j

) ≈ (N ∣ ∆R ∣)ν/R+ Γ(Nν +ni)
Γ(Nν)Γ(ni+1) (5.38)

5.5 The effective dynamics for double mutants
If the two main assumptions of time scale separation and statistical independence
of the two single mutant species hold, one can set

xi→ ⟨xi⟩(z), xaB xAb→ ⟨xaB xAb⟩(z) = (⟨xi⟩(z))2
, i = aB, Ab, z = xAB (5.39)

The fast fluctuating modes of the system are replaced by their instantaneous mean
value, which depends parametrically on the remaining slow mode: the frequency
of double mutants. This step is essentially an adiabatic decoupling of the dynam-
ics. The result is an effective description of the slow mode. The problem is now a
one dimensional one and subject to further analysis.

5.5.1 The initial linear regime
Proceeding similarly to above, first the effective Master equation for the double
mutants with transition rates to linear order in z = xAB will be derived. Beware, that
this will capture the initial behavior of the double mutant species only. Ultimately,
one needs to go beyond the linear regime to capture the full path to fixation.

∂t P(n,t) = [(E+−1) (Γ−n)+(E−−1) (γ +Γ+n)] P(n,t), n = nAB

where the terms Γ± and γ on the right hand side are defined as the coefficients of
a linear expansion in n = nAB of the original transition rates. This is structurally
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exactly the same linear Master equation from the last section, so the solution and
moments are known. The parameters are given by replacing the xi (i = aB,Ab) by
their mean (see (5.39)) and expanding toO(z). One can then read off the effective
parameters (to leading order in u).

γ ≈ u
2u
sd
+ r

u2

s2
d

!≪ 1
N

(5.40)

N Γ+ ≈ 1− r−2u (1− r(r+2sd)
s2

d
) (5.41)

N Γ− ≈ 1− sb−2u (5.42)

N ∆Γ ≈ (sb− r)+2u
r(r+2sd)

s2
d

(5.43)

We finally recognize γ as the effective production rate of initial double mutants.
As was anticipated in section 5.2.3, its two contributions describe the two channels
of double mutant production: the compensatory mutation of a single mutant and
the recombination of two single mutant parents. If γ is much smaller than one per
generation, we are in a fluctuation dominated regime. The effective initial selec-
tion pressure on the double mutants is ∆Γ. But contrary to the situation with the
permanently diadvantaged single mutants, there is now a critical recombination
value where this quantity changes sign:

Γ+ = Γ− ⇒ r = rc ∶= sb+
2u
sd

sb

sd
(sb+2sd)+O(u2) (5.44)

To see what the immediate qualitative result of that transition is, we look at the
rate on which the number of double mutants in the population reaches an arbitrary
intermediate size n f ≥ 1. Since γ ≪ 1, we can separate the rate for this particular
process into the rate for the first arrival of a double mutant (with rate γ) and the
subsequent growth of that subpopulation to a size n f without going extinct on the
way. For this second stage, we can ignore further production of double mutants
(i.e. set γ = 0). The probability πR(ni = 1) of escape [41] through R = n f (rather
than through the extinction terminal at L = 0) starting at ni = 1 is given by ([40],
eq. XII.2.8, p. 300)

Rate(0→ n f ) ≈ γ πR=n f (ni = 1) (5.45)
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πR(ni) ∶=
⎡⎢⎢⎢⎢⎣
1+

ni−1

∑
k=L+1

k
∏

j=L+1

f −( j)
f +( j)

⎤⎥⎥⎥⎥⎦
/

⎡⎢⎢⎢⎢⎣
1+

R−1
∑

k=L+1

k
∏

j=L+1

f −( j)
f +( j)

⎤⎥⎥⎥⎥⎦
(5.46)

ni = 1, L = 0, R = n f , f +(n) ∶= γ +Γ+n, f −(n) ∶= Γ−n

⇒ πR=n f (ni = 1) = 1−Γ−/Γ+
1−(Γ−/Γ+)n f

= ∆Γ/Γ+
1−(1−∆Γ/Γ+)n f

(5.47)

≈ ∆Γ/Γ+
1−e−n f ∆Γ/Γ+

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n f

n f < Γ+

∣∆Γ∣ ∼
1
∣sb−r∣

∆Γ

Γ+
n f > Γ+

∣∆Γ∣ , ∆Γ > 0
∣∆Γ∣
Γ+

e−n f ∣∆Γ∣/Γ+ n f > Γ+

∣∆Γ∣ , ∆Γ < 0

(5.48)

First, the young double mutant subpopulation grows neutrally (without the influ-
ence of any selection) up to a size of n f ≈ Γ+/∆Γ ∼ ∣sb− r∣−1. The probability of
growth to even larger values of n f is either constant (in the case of a fitness advan-
tage) or exponentially suppressed (see Figure 5.3). This is of course exactly the
same phenomenon and calculation, that applies in the one-locus/two-allele model
and ultimately leads to the all-important substitution rate equation (5.1). The cor-
responding frequency threshold for this initial neutral zone is denoted with zn.

zn ∶=
1

N ∣sb− r∣ (5.49)

5.5.2 Fix points of the effective drift term
The calculation above is strictly limited to the linear regime of the double mutants.
To assess fixation (n→N⇔ z→ 1), we need to look for encounters with non trivial
fix points/saddle points of the full problem, i.e. values of z = xAB with Fz(z) = 0.
Fz(z) is here the drift term of the one-dimensional Fokker-Planck that results from
the full Fokker-Planck equation (5.19) through the replacement (5.39).
Especially for r > rc ∼ sb, we expect the presence of two stable fix points z0 ≈ 0,
z1 ≈ 1 and an unstable fix point zcr in between. However, the last section also
shows that the size zn of the initial “neutral zone” needs to be taken into account.
We have thus the following scales to compare.

zn ≈
1

N ∣sb− r∣ vs. z0 ≈
γ

r− sb
vs. zcr vs. z1 ≈ 1− 2u

sd + sb+ r
(r > rc)

An approximation for the saddle point zcr can be found by realizing that mutational
processes only ensure that the boundaries at z = 0 and z = 1 are not absorbing. For
all other matters, esp. the location of zcr, we can set u = 0. Anticipating that the
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Figure 5.3: The probability of growth of a double mutant subpopulation to a size n f ≥ 1
(before going extinct at n = 0) starting at ni = 1 according to equation (5.48) for sb − r =
+10−2 (blue) and for sb − r = −10−2 (red). Within the “neutral zone” (shaded blue), the
evolution of the subpopulation is effectively neutral. Note that this describes only the
initial growth phase.

fixation dynamics for r > rc will be well captured by a Fokker-Planck equation,
we now turn to the effective drift term for the double mutants therein (refer to
equation (5.19) and following).

∂τ P(z,τ) = {−∂z Fz(z)+∂
2
z z(1− z)} P(z,τ), τ = t

N2 =
gen.
N

(5.50)

Fz(z)∣
µ=0 = z(1− z) [(σb−ρ)+ 2ρ(ρ +σd)z

σd +(σb+ρ)z
+ ρ3 z(1− z)
(σd +(σb+ρ)z)2 ] (5.51)

where we have re-introduced the scaled versions of the parameters (greek letters).
To find zcr, only a quadratic equation must be solved. The positive solution exists
for r > r(0)c = sb and is for deep fitness valleys given by:

zcr ∶=
ρ −σb

2ρ
(1−

ρ2+σ2
b

2σd ρ
)+O((ρ,σb

σd
)

2
) (5.52)
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Figure 5.4: A typical fixation trajectory for the allele frequencies of wild type (dark red)
single mutants (red) and double mutant (blue). The simulation parameters are N = 106, u=
10−5, sb = 10−3, sd = 10−2 and r = 0. The escape of the double mutant is dominated by
escape from the neutral zone at zn = 1

N∣sb−r∣ = 10−3. The single mutant frequencies are close
to the deterministic fix point at u

sd
= 10−3

To capture the essential behavior we simplify the drift term by a simple polyno-
mial with the same zeros, where we need to fix the prefactor α .

Fz

z(1− z)∣zcr

!= 0 ⇒ Fz

z(1− z) ≈ 2α (z− zcr) (5.53)

Fz

z(1− z)∣z=0
= σb−ρ

!= −2α zcr ⇒ α ∶= ρ −σb

2zcr
(5.54)

If recombination is high enough (r > rc ≈ sb), the AB clone that has successfully
reached a size greater than zn ∼ 1

N∣r−sb∣
is (depending on the population size) faced

with climbing a hill with the tip at zcr ∼ r−sb
2r . The probability of success for this

secondary escape can be evaluated using the Fokker-Planck approximation of that
process (with u = 0). However, this is not the standard problem of Kramer’s es-
cape, because the escape does not start in a local potential minimum but rather in
the flank of the potential hill.
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Figure 5.5: A typical fixation trajectory for the allele frequency of double mutants (blue).
The simulation parameters are N = 105, u= 10−5, sb = 10−3, sd = 10−2 and r = 1.4 ⋅10−3 > rc.
The escape of the double mutant is not dominated by escape from the neutral zone at
zn = 1

N∣sb−r∣ ≈ 0.025, but escape over the saddle point at zcr ≈ 0.13. The trajectory leaves the
neutral zone several times before the final fixation succeeds (not shown).

5.5.3 Classification of the fixation dynamics

We are now in a position to classify different fixation scenarios, depending on the
strength of recombination. This list is meant to give an overview over the different
qualitative regimes of the system. We will later concentrate on just a few cases of
interest. (All times are measured in generations.)

1. r < sb: There is only the stable fix point at z1 ≈ 1 (fixation).

(a) For Nγ ≫ 1, the fixation time is determined by the deterministic equa-
tion of motion: Tfix ∝ ∫

1
0

dz
Fz(z) .

(b) For Nγ ≪ 1, we need to wait until one of the double mutants eventually
grows to a clone of size larger than zn ∼ 1

N∣sb−r∣ , i.e. out of the neutral
zone, after which it then quickly fixates. This means Γfix ∼Nγ (sb−r).

2. r > sb : There are three fix points of the drift term: z0 < zcr < z1

(a) Nγ ≫ 1, i.e. zn < z0: The size zn is reached in deterministic time, i.e.
there is no fluctuation barrier. The clone quickly settles in the “local
minimum” z0. The fixation is then dominated by Kramer’s escape
over the saddle point zcr. The effective drift taking the fix points at the



120 Stochastic tunneling in a two locus model with recombination

boundaries into account is:

Fz ∝ (z− z0)(z− zcr)(z− z1) (5.55)

z0 ≈
Nγ

ρ −σb
, zcr ≈

ρ −σb

2ρ
, z1 ≈ 1− Nγ

ρ +σb
− 2µ

ρ +σb+σd
(5.56)

The escape rate is then the standard Kramer’s escape rate [124]:

Γfix ≈
√

F ′
z (z0) ∣ F ′

z (zcr) ∣
2π

¿
ÁÁÀ z0(1− z0)

zcr(1− zcr)
e∫

zcr
z0

dz Fz(z)
z(1−z)

This will not be further elaborated here, for the validity of this formula
requires extremely large population sizes.

(b) Nγ ≪ 1, i.e z0 < zn with zn < zcr: Once the clone is over the fluctua-
tion barrier at zn it finds itself in the uphill flank of the potential hill.
Given the parameter regime that was specified at the beginning of this
chapter, this will be the typical fixation scenario for r > sb

(c) Nγ ≪ 1, i.e. z0 < zn with zcr < zn: Once the clone is over the fluctuation
barrier it would find itself in the downhill flank of the potential hill.
The fixation would be dominated solely by escape over the neutral
barrier zn. However, this situation almost never happens for reasons
we will see shortly.

The remainder of this work will be devoted to the small mutation scenarios (1.b)
and (2.b) above. The presence of an instable fix point at zcr, but also the fact that
zn ∼ 1

N∣r−sb∣
grows large at r ∼ sb forces us to go beyond the linear approximation

to the Master equation to find the fixation rate Γfix.

5.5.4 Estimation of the escape probability Pesc

The strategy to find the fixation rate is essentially similar to the considerations
above. For Nγ ≪ 1, we can split a fixation event into the rare arrival of a first dou-
ble mutant into the population and its subsequent growth and escape to fixation.
This means that we must find the conditional probability of escape Pesc of that first
seed. Here it will be calculated with the use of the Fokker-Planck approximation
to the Master equation immediately for z ≥ 1

N . This can be expected to be a valid
approximation if the important processes take place away from the boundary at
z = 0. Encouraging is the fact that the same strategy leads to the correct substitu-
tion rate (5.1) for the one-locus/two-allele model, as well. The analogous calcu-
lation of the splitting probability for the Fokker-Planck equation can be found in
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Figure 5.6: The effective potential −α (z− zcr)2 (blue) for the dynamics of the double
mutants. Below the critical recombination size (left), the potential outside of the neu-
tral zone (green) allows instant fixation. Above criticality, a successful double mutant
trajectory needs to climb the potential hill, after it has left the neutral zone (right).

[41]. First, we restate the effective one-dimensional Fokker-Planck equation for
the double mutant frequency z = nAB/N, which was derived in the last sections.

∂τ P(z,τ) = {−∂z Fz(z)+∂
2
z z(1− z)} P(z,τ), τ = t

N2 =
gen.
N

(5.57)

Fz(z)∣
γ=0 ≈ 2α z(1− z)(z− zcr) (5.58)

zcr ≈
ρ −σb

2ρ
(1−

ρ2+σ2
b

2ρ σd
) , α ∶= ρ −σb

2zcr
≈ ρ +

σ2
b

σd
(5.59)

Given this particular Fokker-Planck equation with drift term Fz(z) an diffusion
term z(1− z), one can approximate the total rate of double mutant fixation Γfix in
exactly the same way as was done at the beginning of chapter two for the simple
one-locus/two-allele model: as a product of the arrival rate of new double mutants
(Nγ) and their probability of subsequent escape to fixation (Pesc).

Γfix ≈Nγ Pesc, with Pesc ∶= lim
z→1

πesc(z) (5.60)
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πesc(z) ∶= πR=z(1/N) =

1/N
∫
0

dz′ ψ(z′)
z

∫
0

dz′ ψ(z′)
(5.61)

and ψ(z) ∶= exp
⎛
⎜
⎝
−

z

∫
0

dz′
Fz(z′)

z′(1− z′)∣
γ=0

⎞
⎟
⎠
∝ exp(−α (z− zcr)2) (5.62)

The integrals in the fraction for πesc(z) can be expressed in terms of the error-
function:

πesc(z) =
Erf(

√
α ( 1

N − zcr))+Erf(
√

α zcr)
Erf(

√
α (z− zcr))+Erf(

√
α zcr)

(5.63)

Erf(x) ∶= 2√
π
∫

x

0
dt e−t2 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2√
π

x, ∣x∣≪ 1

1− e−x2

√
π x
, x ≫ +1

−1+ e−x2

√
π ∣x∣ , x ≪ −1

(5.64)

For zcr > 0, the denominator of πesc(z) varies significantly only in the neighbor-
hood of z = zcr with a width of 1√

α
. Thus, as long as zcr + 1√

α
< 1, we can safely

set the z-dependent part in πesc(z) to its limiting value, which is unity. Note, that
for r =O(sb) we have α =O(Nr)≫ 1. The remaining quantity to be considered
is the (scaled) distance of zcr to z = 0. This is in fact the parameter that tunes the
system through a sort of phase transition of the fixation dynamics.

By taking the leading order contribution to the numerator of πesc for
√

α/N =
O(

√
r/N)≪ 1, we have in principle the desired result for the escape probability:

Pesc =
Erf(

√
α

N −A)+Erf(A)
1+Erf(A) ≈

2
N

√
α

π
e−A2

1+Erf(A) , with A ∶=
√

α zcr (5.65)

To generate more explicit results involving the original parameters, we can use the
three asymptotic expansions for the error-function to obtain limiting exponential
expressions for the escape probability.

Pesc ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
√

α

N ∣A∣ A≪ −1
2
N

√
α

π
e−

2
√

π
A−(1− 2

π
)A2

∣A∣≪ 1
1
N

√
α

π
e−A2

A≫ +1

(5.66)
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In the intermediate regime (∣A∣≪1) the following logarithmic expansion was used.

ln(1+Erf(A)) = Erf(A)− 1
2

Erf2(A)+ ⋅ ⋅ ⋅ = 2√
π

A− 2
π

A2+O(A3) (5.67)

Altogether and in terms of the original parameters, the central result for the fixa-
tion rate below, at and above critical recombination strength can now be stated.

Γfix ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nγ ∣r− sb∣ A < −1

γ

√
4α

π
e−

2
√

π

√
α zcr−(1− 2

π
)α z2

cr ∣A∣ < 1

γ
√

α

π
e−α z2

cr A > +1

(5.68)

with zcr ≈
r− sb

2r
(1−

r2+ s2
b

2sd r
) , α = N(r− sb)

2zcr
≈N(r+

s2
b

sd
) (5.69)

and A =
√

α zcr ≈
√

N
4r

(r− sb), γ = 2u2

sd
+ r

u2

s2
d

(5.70)

The conditions for the three regimes are also expressed in the original parameters.

A ≶ ∓1 ⇒ Nr ≶ Nsb+2∓2
√

Nsb (5.71)

For small recombination r < sb, the earlier conjecture is confirmed, i.e. that escape
from the “neutral zone” dominates the fixation rate. For recombination well above
criticality, the fixation rate depends exponentially on the combination A =

√
α zcr.

Especially for A ≫ 1, fixation is exponentially suppressed. For recombination
large enough, fixation is - for all practical purposes - blocked and the global fitness
maximum of the system is never achieved.

5.5.5 Estimation of the escape barrier zesc

The last section established the mean rate of fixation of the double mutants for
all relevant sizes of recombination. Another meaningful and measurable quantity
is the critical size that a double mutant clone needs to overcome to be ultimately
successful, i.e. the size of the escape barrier zesc. Previously, we identified zn - the
size of the “neutral zone” - as one such fluctuation dominated barrier.
In simulations, the escape barrier can be evaluated by measuring the largest un-
successful clone for many independent trajectories. Mathematically, this value
can be defined in two ways: (i) as the scale on which πesc(z) (5.63) reaches its
constant limiting value; and (ii) as the value of z, from where conditional escape
to z = 0 is as likely as escape to the other terminal at z = 1. This last condition leads
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to a definite analytical expression for z, which will be denoted in the following by
zsplit. This is expressed again through the conditional probability πL,R(z) of escape
through the left or right end of the interval [L,R] starting from z.

πL=0(z) != πR=1(z) ⇔
1

∫
z

dz′ ψ(z′) !=
z

∫
0

dz′ ψ(z′) (5.72)

⇒ 2Erf(
√

α(z− zcr)) = Erf(
√

α(1− zcr))−Erf(
√

αzcr) (5.73)

zsplit ≈ zcr+
1√
α

Erf−1 [1
2
(1−Erf(

√
α zcr))] (5.74)

The three scales for A =
√

α zcr need to be considered separately to arrive at more
useful expressions for zsplit.

Estimation of zesc well below criticality: A =
√

α zcr ≪ −1

To find the scale, on which πesc(z) becomes constant, we set z =∶ x ∣zcr∣ and expand
the denominator in (5.63) in A≪ −1.

π
−1
esc ∝ Erf((1+x)∣A∣)−Erf(∣A∣) A≪−1∝ e−A2

∣A∣ −
e−(1+x)2A2

(1+x)∣A∣ =
e−A2

∣A∣

⎡⎢⎢⎢⎢⎣
1− e−A2 x(2+x)

(1+x)

⎤⎥⎥⎥⎥⎦
This approaches its limiting value when the size of the x-dependent exponent in
the term in square brackets above is larger than unity.

A2x(2+x) > 1 ⇔ x >
√

1− 1
A2 −1 ⇔ z >

√
α z2

cr+1−
√

α z2
cr√

α
(5.75)

zesc ≈
1

N ∣r− sb∣
(1− r

N(r− sb)2) , A≪ −1 (5.76)

Now this is very close to the initial guess zesc ∼ zn. On the other hand, equation
(5.74) for zsplit gives a slightly different result.

zsplit ≈
ln(2)

N ∣r− sb∣
, A≪ −1 (5.77)

This seeming discrepancy between the two values for the escape barrier can al-
ready be found in the simple one-locus/two-allele model, which shares the essen-
tial characteristics of stochastic tunneling with the present model for low recom-
bination (A ≪ −1). Neglecting mutation for the conditional escape process and
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using the appropriate Fokker-Planck equation for the probability distribution of
the mutant allele frequency x

∂τ P(x,τ) = [−∂x σ x(1−x)+∂
2
x x(1−x)] P(x,τ), σ =Ns≫ 1 (5.78)

we find the equivalent expressions for the escape barrier xesc in this simpler model.

ψ(x) = e−Nsx ⇒ πesc(x) =

1
N

∫
0

dy ψ(y)
x

∫
0

dy ψ(y)
= 1−e−s

1−e−Nsx ⇒ xesc =
1

Ns
(5.79)

For the value xsplit of the frequency, from where conditional escape to the left
terminal at L = 0 is as likely as escape to the right end at R = 1, we get:

1 != πL=0(x)
πR=1(x) =

1

∫
x

dy ψ(y)
x

∫
0

dy ψ(y)
= e−Nsx−e−Ns

1−e−Nsx ⇒ xsplit =
1

Ns
ln( 2

1+e−Ns) (5.80)

In essence, the discrepancy between zesc and zsplit stems from the fact that the
actual escape barrier for a trajectory is itself a random variable with its own dis-
tribution. In the present case, the clones can initially grow neutrally (πesc(z) ∼ 1

Nz )
and fluctuations are strong. It is then not sensible to compare scales such as mean
and median of the underlying escape distribution.

Estimation of zesc well above criticality: A =
√

α zcr ≫ 1

In this limit, the escape dynamics is completely determined by the presence of
the saddle point zcr. We set z =∶ xzcr and show that x = 1 is the point where πesc
establishes its limiting value:

πesc ∝
e−A2

Erf((x−1)A)+Erf(A)
A≫1≈ eA2 (1−x)2 (1−x)

e−A2
√

π A
−eA2(x−1)2eA2 (x−1+ ∣x−1∣)

(5.81)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−A2x(2−x)(1−x)√
π A

x < 1 ⇔ z < zcr

1
2e−A2

x > 1 ⇔ z > zcr

⇒ zesc ≈ zcr (5.82)

This ansatz leads to the approximation of the escape barrier at the critical value
zcr itself, just as we expected. The alternative scale zsplit yields:

zsplit ≈ zcr+
e−α z2

cr

4α zcr
− e−α (1−zcr)2

4α (1− zcr)
(5.83)
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which is indeed very close to zcr. Thus, in this limit the two previously different
values almost coincide, which is consistent with a peaked and symmetric escape
barrier distribution.

Estimation of zesc close to criticality: ∣A∣ =
√

α ∣zcr∣ < 1

In this regime, the saddle point zcr just emerges and the drift term in the Fokker-
Plank equation changes its sign. It is this regime, where the quadratic part of the
drift becomes comparable to the linear part. Of the two estimates of the escape
barrier, zsplit is the easier one to evaluate and expand for ∣A∣≪ 1. The following
approximation is arrived at by expanding the definition of lnzsplit for A≪ 1.

zsplit ≈
κ√
α

exp
⎛
⎝

2−eκ
2

2κ

√
α zcr

⎞
⎠
, with κ ∶= Erf−1 (1

2) ≈ 0.476936 (5.84)

5.5.6 Simulation results
It is now time to put the results of the last sections to the test. Before presenting
the simulation results, let us recapitulate the assumptions that went into the main
result for the fixation rate equations (5.65) and (5.68):

• There is a separation of time scales. The distribution of single mutants is
adiabatically coupled to the slower motion of the double mutants.

• The frequency of double mutants remains small at all times to ensure the
validity of the linear approximation to their Master equation.

• We saw that a deep fitness valley, i.e. sd ≫ sb was necessary to realize the
first two points.

• The frequency of single mutants could thus be set to their instantaneous
mean value. Moreover - due to their low numbers - we could neglect corre-
lations between them.

• Mutation u needs to be small enough to have at least Nγ ≪ 1 (this is in fact
a weak condition). This made it possible to separate the fixation problem to
conditional runs for escape of rarely occurring double mutant “pioneers”.

The following plots show measurements of both the mean time to fixation (the
condition is xAB > 80%) and the mean escape barrier (defined as the largest un-
successful AB clone per run). The simulations were carried out using the full
four-dimensional Wright-Fisher analog to the Moran model described in the text
(see appendix C), i.e. multinomial sampling of the next round generation using
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half the size of the original parameters and counting two Wright-Fisher turns as N
Moran turns. We show here three measurements for Nu ≪ 1, Nu = 1 and Nu ≫ 1
to make clear that only Nγ ≪ 1 is the important condition on mutation size.
The simulations were performed using the computing infrastructure provided by
the regional computing center of the university of Cologne. The cluster archi-
tecture allowed to simulate the stochastic evolution trajectories in parallel (under
openMP [125]), thus massively accelerating the measurements.
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Figure 5.7: Measurement of the mean time to fixation of the AB double mutants species,
starting from an all wild type population. For each value of recombination, 100 fixation
trajectories were measured. The red dotted line shows the full fixation rate according to
(5.65), the black line the exponential approximations in the three regimes (5.68). Param-
eters in this plot: N = 106, u = 10−5, sd = 10−2, sb = 10−3.
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Figure 5.8: Same plot as before, but with the parameters: N = 105, u = 10−5.
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Figure 5.9: Same plot as before, but with the parameters: N = 105, u = 10−6.
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Figure 5.10: This one and the two following plots show the mean escape barrier for the
same measurements. The black dotted line shows in the three recombination regimes the
approximations that are most suitable, equations (5.76), (5.82) and (5.84). The red dotted
line is the size of the neutral zone zn ∼ 1

N∣sb−r∣ , whereas the blue line shows the position of
the saddle point at zcr (found numerically as fix point to the four dimensional drift term).
As before, we have here Nu = 10.
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Figure 5.11: Same plot as before, but with Nu = 1.
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Figure 5.12: Same plot as before, but with Nu = 0.1.
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Figure 5.13: Histogram of the largest unsuccessful AB clone for a specific value of
recombination below criticality (Nu = 1). The distribution is very broad, such that a dis-
crepancy between e.g. mean and median is to be expected (see text).
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Figure 5.14: Same histogram as before, but now for recombination well above criticality
(still with Nu = 1). The distribution is much more symmetric around its mean.
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Figure 5.15: Distribution of the fixation time Tfix below criticality (Nu = 1). The distri-
bution is essentially exponential (solid line), due to fixation being a very rare event.
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Figure 5.16: Same distribution as before, but now for recombination well above critical-
ity (still with Nu = 1). The distribution is still exponential (solid line), fixation even more
rare.
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5.6 Discussion
Precise theoretical predictions for measurable quantities are of immediate impor-
tance for the interpretation of experimental data. Minimal models play a special
role in deriving these predictions. these try to capture the essential influences of
concepts such as evolutionary forces while still being eligible for analytical treat-
ment. In the first few chapters, we have seen how the understanding of a minimal
model of evolution under selection, mutation and drift can help to set up biologi-
cally meaningful scales to quantify the functional impact of mutations in cancer.
In this chapter, an attempt was made to replicate this consequent analysis for a
more extended evolutionary model. Due to the large number of potential qual-
itative regimes of the model, the focus was here put on the particular situation
of adaption via over-compensatory mutations in the presence of recombination.
The derivation of relevant time scales was performed along the standard lines of
the analysis of stochastic processes: the formulation of a microscopic model, the
qualified limit of large population size, the consideration of macroscopic laws and
stationary states, the identification of fast and slow modes of motion and elimina-
tion of the fast to arrive at effective dynamics of the slow. In the end, the deriva-
tion of escape (fixation) rates was conceptually very similar to the treatment of the
more basic Kimura model of evolution of genomes with just one locus with two
alleles.
There are still some open points left for further research. First, the modeling of the
evolution of populations of constant size might not always be the most realistic
one. New qualitative effects are to be expected in expanding or contracting pop-
ulations. It would be interesting to observe, whether recombination maintains its
adaption-blocking effect for varying population sizes. In the context of evolution-
ary cooperation, the effects of non-constant population sizes have recently gained
attraction [126]. Especially for the mathematical modeling of cancer evolution -
which is of course asexual - a constant population size is certainly not maintain-
able.
It was found in this work that the treatment of compensatory evolution via adi-
abatic elimination of fast variables is only consistently possible for deep fitness
valleys. In the intermediate and opposite regime, other approximation schemes
are needed and have successfully been applied [121]. There may be parameter
regimes, where a full high-dimensional treatment of the stochastic fixation dy-
namics is unavoidable.
Ultimately, the predictions from this analysis should find their way to the practice
of interpreting observed genetic data. However, the large number of parameters
and the non-local nature of the model make it necessary to identify measurable
quantities that can be used to estimate recombination sizes or effects of epistasis.





Chapter 6

Summary

The theme of this work is the concept of minimal models of evolution. By ex-
pressing the theory of evolution in a mathematical language, one can find concrete
expressions for measurable quantities - such as fixed state probabilities - in terms
of few model parameters - such as mutation strength u, selection coefficient s etc.
These formulas are of direct utility to explain the variation that is seen in genetic
sequence data. One can in particular find the most likely set of parameters, given
some concrete data. The first part of this thesis demonstrated, how the fitness
effects of mutations with respect to a simple evolutionary model can be inferred
from protein domain sequence alignments. Driven by the need to estimate pa-
rameters also in the light of few data, the methods of Bayesian inference [7] were
consequently applied. Augmented with the guiding principle to choose always
the most conservative model to incorporate all information at any given point in
time - the maximum entropy and minimum discrimination information principles
- this analysis resulted in a definite instruction set for the estimation of germline
fitness effects. This set includes both a prescription for a consistent choice of
pseudo-counts to account for missing data, and for point estimates derived from
the Bayesian posterior distribution. It was demonstrated, that the choice of priors
- at the beginning of the inference program - is actually closely linked to the way
that point estimates are chosen at the end.

This scheme to estimate germline fitness related scores was then applied to mu-
tations found in cancer cells. Conceptually, it is not at all clear, why this scale
should be related to the evolutionary process of cancer at all. Both germline evo-
lution and cancer evolution are clearly distinct biological mechanisms. It was
therefore of principal interest to test the utility of the germline fitness scoring
scheme for the task of finding cancer driver genes. For the studied data set of
cancer mutations in protein kinase genes, the analysis found a strong tendency of
mutations found in genes with cancer implication to be germline deleterious. This
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is especially true for tumor suppressor genes, which are “deactivated” in cancer
cells. This result is of immediate importance to find new cancer genes in present
and future cancer screening studies.

The Hidden Markov Model (HMM) method [11] described in chapter four used
a complementary ansatz to find genes of importance to cancer progression. It is
clearly a change of perspective: from the effect a mutation would (supposedly)
have in germline evolution to the effect it does have in cancer evolution. Since
there is not yet a mathematical theory of general cancer evolution itself, the sig-
nals of selection can be measured only indirectly. Genes, whose altered state is
of relevance to the tumor progression, exhibit an increased rate of missense sub-
stitutions, higher than the level that would be expected by chance alone. This
higher rate can be measured and is a scale for positive selection pressures on
genes in cancer evolution. The probabilistic nature of HMM allows for a statis-
tically meaningful analysis of mutation data that returns not only the genes most
likely to be under cancer-selection, but also provides estimates for the size of se-
lection. Moreover, it was demonstrated how - in the presence of more extended
data sets - the HMM would in principle be able to identify specific sequence sites
(such as protein kinase sub-domains) that are under positive selection. This could
potentially contribute to the understanding of the biological processes that govern
cancer progression in more detail. Internally, the HMM presented in this work
uses the very same predictions from minimal evolution models to connect the ob-
served data with model parameters such as selection strength.

Mutation, selection and genetic drift are not the only forces of evolution, although
these three suffice to set up a first basic evolution model. The last part of this work
considered the next level of generalization in the minimal design of evolution: a
two-locus/two-allele model including additionally the effects of recombination
and epistasis, i.e. the interaction between different loci. This generalization in-
creases not only the degrees of freedom (from two to four competing genotypes)
and the number of model parameters and their combinations, but also the number
of qualitatively different selection scenarios considerably. Depending on the exact
relative scale of all the parameters, the model displays distinct modes of adaption.
Arguably the most interesting situation is that of sign-epistatsis [12], also covered
in this work, where a first mutation away from the wild type at any of the two loci
is strongly deleterious, but is over-compensated by a mutation at the second locus.
By construction, this is an example for a strong non-additive interaction between
the loci, i.e. epistasis. It is easy to visualize that the crossing of such a fitness
valley poses a bottleneck for the adaption of a population to the globally fittest
state. In sexually reproducing finite populations, recombination can increase the
strength of this barrier up to a size where fixation can only be achieved by rare and
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extremely strong fluctuations. This process is often termed as “stochastic tunnel-
ing” [15]. A lot of theoretical work describing the different sectors of the model
has already been contributed by several authors, covering both the deterministic
[14, 13] and the stochastic sector of the theory for neutral [119, 120] and non-
neutral compensatory mutations [121, 122, 127]. This work tried to fill a gap in
that it exposes the importance of time scale separation for the case of deep fitness
valleys. In this regime, it is shown how the high-dimensional dynamics in geno-
type frequency space can be separated into a slow and a fast mode of adaption.
The effective one-dimensional dynamics of super-fit double mutants allows for a
derivation of the typical time scales needed to cross the fitness valley by stochastic
tunneling. Importantly, this can be done even for recombination strengths beyond
the point where deterministic theories predict a divergence of fixation time. More-
over, the critical threshold for the frequency of a growing double mutant subpop-
ulation is derived that needs to be overcome in order to fixate successfully. This
“escape barrier” shows a transition from a regime, where initial demographic fluc-
tuations dominate to a regime, where fixation depends on the crossing of a saddle
point. The predictions are compared to numerical simulations and their validity
within the specified parameter regime is demonstrated. This study will hopefully
contribute to the complete characterization of this important next-order minimal
evolution model and bring it closer to a practical utility for the analysis of real
sequence data.





Appendix A

Bayesian inference: multinomial
sampling

A.1 The Dirichlet prior

In this appendix, some of the calculation in the context of inference of multino-
mial weights are presented. In Bayesian inference, the Dirichlet distribution is
the standard distribution to encode prior information for problems of multinomial
sampling [47].

Dir(θθθ ∣ ααα) ∶= Γ(A)
∏n

i=1 Γ(αi)
n
∏
i=1

θ
αi−1 =∶ 1

Beta(ααα)
n
∏
i=1

θ
αi−1 (A.1)

ααα ∈Rn
≥0, A ∶=

n
∑
i=1

αi > 0,
n
∑
i=1

θi = 1 (A.2)

where in the first line, the beta function Beta(ααα) is defined. The mean and loga-
rithmic mean values are given by

∀ i = 1 . . .n ∶ ⟨θi⟩ =
αi

A
, ⟨lnθi⟩ =ψ(αi)−ψ(A) (A.3)

where ψ(x) ∶= d
dx lnΓ(x) is the digamma function. The reason for this choice of

prior is that the Dirichlet distribution is conjugate to the multinomial in the sense
that the posterior distribution for a sample {ki}i=1...n is again of Dirichlet type.
The region of integration is always the simplex .

∆
n−1 ∶= {θθθ ∈Rn ∣

n
∑
i=1

θi = 1,∀i ∶ θi ≥ 1} (A.4)
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To compute the posterior distribution for a particular sample kkk drawn from the
multinomial model, we set:

P(θ ∣ kkk, I0) =
P(kkk ∣ θ) P(θθθ ∣ I0)

P(kkk ∣ I0)
, P(θθθ ∣ I0) =Dir(θθθ ∣ ααα) ,

n
∑
i=1

ki =∶K (A.5)

The normalization factor P(kkk ∣ I0) is computed using the normalization of the
Dirichlet distribution for arbitrary parameters:

P(kkk ∣ I0) = ∫
∆n−1

dn
θ P(kkk ∣ θθθ) P(θθθ ∣ I0) (A.6)

= ∫
∆n−1

dn
θ

K!Γ(A)
∏n

i=1(ki!Γ(αi))
n
∏
i=1

θ
ki+αi−1
i (A.7)

= Γ(A)K!
Γ(A+K)

n
∏
i=1

Γ(αi+ki)
Γ(αi)ki!

(A.8)

Inserting this factor and the definitions immediately leads to the result

P(θ ∣ kkk, I0) =Dir(θθθ ∣ ααα +kkk) . (A.9)

A.2 Kullback-Leibler divergences
The Kullback-Leibler divergence [52] is a non-symmetric, positive definite mea-
sure for the difference between two probability distributions p(x)dx and q(x)dx.
It is defined as:

DKL (p ∣q) ∶= ∫ dx p(x) ln
p(x)
q(x) ≥ 0, DKL (p ∣q) = 0 ⇔ p = q (A.10)

The Kullback-Leibler divergence between a Dirichlet distribution and a uniform
distribution on the simplex ∆n−1 is given by

DKL (Dir(θθθ ∣ α) ∣χ∆n−1(θθθ)) = ∫
∆n−1

dn
θ Dir(θθθ ∣ ααα) ln

Dir(θθθ ∣ ααα)
Γ(n) (A.11)

= − lnBeta(ααα)− lnΓ(n)+
n
∑
i=1

(αi−1)⟨lnθi⟩ (A.12)

= − lnBeta(ααα)− lnΓ(n)+
n
∑
i=1

(αi−1) (ψ(αi)−ψ(A)) (A.13)

= − lnBeta(ααα)− lnΓ(n)+
n
∑
i=1

(αi−1)ψ(αi)−(A−n)ψ(A) (A.14)

= (n−A)ψ(A)+ ln
Γ(A)
Γ(n) −

n
∑
i=1

[lnΓ(αi)−(αi−1)ψ(αi)] (A.15)
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The Kullback-Leibler divergence between two different Dirichlet distributions is
analogously calculated to be

DKL (Dir(θθθ ∣ ααα) ∣Dir(θθθ ∣ βββ)) = ∫
∆n−1

dn
θ Dir(θθθ ∣ ααα) ln

Dir(θθθ ∣ ααα)
Dir(θθθ ∣ βββ) (A.16)

= ln
Beta(βββ)
Beta(ααα) +

n
∑
i=1

(αi−βi)⟨lnθi⟩ = ln
Beta(βββ)
Beta(ααα) +

n
∑
i=1

(αi−βi)(ψ(αi)−ψ(A))

(A.17)

= ln
Beta(βββ)
Beta(ααα) −(A−B)ψ(A)+

n
∑
i=1

(αi−βi)ψ(αi), A =∑
i

αi, B =∑
i

βi (A.18)

A.3 Loss functions and minimal loss
Loss functions L(θθθ

′,θθθ) are auxiliary and sometimes subjective quantities that
are supposed to provide guidance in the decision step of parameter estimation
problems [7], i.e. which point estimate θ̂θθ to choose for the unknown parameter
θθθ in the face of new information. Given a posterior distribution, the mean loss is
generally defined as (here for multinomial sampling)

⟨L⟩(θθθ) = ∫
∆n−1

dn
θ L(θθθ ,θθθ ′) P(θθθ

′ ∣ kkk, I0) (A.19)

The guidance consists of the prescription to minimize this mean loss in the esti-
mate under the constraints posed by (kkk, I0):

θ̂θθ = argmin
θθθ

⟨L⟩(θθθ) (A.20)

Possible loss functions are square and absolute distance to the true value [7] or
even a delta function.

e.g. L0(θθθ
′,θθθ) = δ(θθθ −θθθ

′) (A.21)

or L1(θθθ ,θθθ ′) =
n
∑
i=1

∣θi−θ
′
i ∣ (A.22)

or L2(θθθ
′,θθθ) =

n
∑
i=1

(θi−θ
′
i )

2 (A.23)

The loss function used in this work is the discrimination information [46, 51]:

LDI(θθθ ,θθθ ′) ∶=DKL (P(kkk ∣ θθθ) ∣P(kkk ∣ θθθ ′)) , P(kkk ∣ θθθ) = K!
∏n

i=1 ki!

n
∏
i=1

θ
ki
i (A.24)



142 Bayesian inference: multinomial sampling

It is easily evaluated by inserting all the definitions:

LDI(θθθ ,θθθ ′) =DKL (P(kkk ∣ θθθ) ∣P(kkk ∣ θθθ ′)) =∑
kkk

P(kkk ∣ θθθ) ln
P(kkk ∣ θθθ)
P(kkk ∣ θθθ ′)

(A.25)

=∑
kkk

P(kkk ∣ θθθ)
n
∑
i=1

ki ln
θi

θ ′i
=

n
∑
i=1

⟨ki⟩θθθ ln
θi

θ ′i
=K

n
∑
i=1

θi ln
θi

θ ′i
(A.26)

The idea of MinDI is to choose the one θ̂θθ for which the sampling distribution
is “closest” to the true one, i.e. for which further sampling would give the least
information gain. Since the size of this putative subsequent sample is irrelevant
for this question (K is a prefactor above), we can set K = 1. Of course we do
not know the true value θθθ and thus the true sampling distribution. Therefore, the
loss function above is averaged over the posterior distribution, which includes all
information we have at this point.

⟨LDI⟩(θθθ) = ∫
∆n−1

dn−1
θ
′

n
∑
i=1

θi ln
θi

θ ′i
P(θθθ

′ ∣ kkk, I0) (A.27)

=
n
∑
i=1

θi (lnθi− ⟨lnθ
′
i ⟩) =

n
∑
i=1

θi (lnθi−ψ(αi+ki)+ψ(A+K)) (A.28)

To find the minimum of ⟨LDI⟩ w.r.t. θθθ on the simplex ∆n−1, we employ Lagrange
multipliers to guarantee the normalization:

0 != ∂θi (⟨LDI⟩(θθθ)+λ (1−
n
∑
i=1

θi)) (A.29)

= lnθi−ψ(αi+ki)+ψ(A+K)+1−λ (A.30)
⇒ θi = exp(ψ(αi+ki)−ψ(A+K)−1+λ) (A.31)

Using the normalization condition, this leads to the final result that

θ̂i =
eψ(αi+ki)

∑n
j=1 eψ(α j+k j)

(A.32)

Reinserting this value in the mean loss gives a scale for the quality of this estimate.

⟨LDI⟩(θ̂θθ) =
n
∑
i=1

eψ(αi+ki)

∑n
j=1 eψ(α j+k j)

⎛
⎝

ψ(αi+ki)− ln
n
∑
j=1

eψ(α j+k j)−ψ(αi+ki)+ψ(A+K)
⎞
⎠

=ψ(A+K)− ln
⎛
⎝

n
∑
j=1

eψ(α j+k j)⎞
⎠

(A.33)



Appendix B

The Viterbi algorithm

For completeness only, we here give a description of the Viterbi algorithm to find
the globally most likely state sequence for a HMM [11].

In section 4.2.2 on the forward/backward algorithm, we found the best current
state sojourn probability P(qt = Si ∣ O, θ). One could be tempted to set the most
likely state sequence Q∗ simply by choosing the local state of maximum proba-
bility, i.e.

∀t = 1 . . .T ∶ q∗t = argmax
i

P(qt = Si ∣ O, θ) (B.1)

But there is a conceptual problem here: consider a set-up where not all transitions
between hidden states are possible. The above locally best path will in general
return a path that is impossible to realize. To actually find the most likely state
sequence in the space of all allowed paths, the following auxiliary quantity is
defined:

δt(i) ∶= max
q1...qt−1

P(q1, q2, . . . ,qt = Si, O1, . . . ,Ot ∣ θ) (B.2)

This is the most likely state sequence ending in the state i at time t and with partial
observation O1 . . .Ot . The following Viterbi algorithm finds iteratively maximum
likelihood state sequences for all end states simultaneously. Once the end point at
t = T is reached, the one global maximum likelihood sequence is singled out by
backtracking. The (internal) variable ψ is used to memorize all the intermediate
best paths.
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Viterbi Algorithm

1. δ1(i) = πi bi(O1), ψ1(i) = 0, ∀i = 1, . . . ,N

2.
δt+1( j) = [max

1≤i≤N
(δt(i)ai j)] b j(Ot+1)

ψt+1( j) = argmax
1≤i≤N

[δt(i)ai j]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀i = 1, . . . ,N, ∀t = 1, . . . ,T −1

3. P∗ ∶= P(Q∗,O ∣ θ) = max
1≤i≤N

δT (i), q∗T = argmax
1≤i≤N

δT (i)

4. q∗t =ψt+1(q∗t+1), ∀t = T −1, . . . ,1

The state sequence q∗ is the most likely path of the system given the observation
and a particular set of parameters. In implementations of this algorithm, one needs
to work with the logarithm of all these very small quantities to avoid underflow
errors.



Appendix C

Wright-Fisher vs. Moran models

C.1 Expansion of the Wright-Fisher Master equa-
tion

One of the standard microscopic evolutionary models under constant population
size N is the generation based Wright-Fisher process. It is a discrete Markov pro-
cess and the transition probabilities (per unit time) for a one dimensional Wright-
Fisher Master equation are binomial.

∂t P(n,t) =∑
n′

W(n ∣ n′)P(n′,t)−W(n′ ∣ n)P(n,t), n = 1 . . .N (C.1)

W(n′ ∣ n) ∶= (N
n′
)(x+ 1

N
f (x))

n′

(1−x− 1
N

f (x))
N−n′

, x ∶= n
N

(C.2)

The function f (x) encapsulates the evolutionary forces present. It is assumed to
be of order 1 (or larger, but not of order N). This form anticipates that only the
scaled versions of the different evolutionary parameters (describing mutation u,
selection s, recombination r etc.) are relevant for the characteristics of the model:
Nu = µ , Ns = σ and Nr = ρ etc. Then f (x) will be the leading order correction
to the neutral evolution process. What we want to achieve here is a controlled
large population size limit. The standard routine is van Kampen’s system size
expansion [40]. But there is no way to express the above rates in the required
canonical form [40] (i.e. an expansion in orders of 1/N, where each order is then
only a function of the initial state - here x - and the jump length - here n′−n). But
we can still employ the Kramers-Moyal expansion [40, 128, 129] and look at it
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order by order to get a controlled expansion.

∂t P(x,t) =
∞
∑
l=1

(−1)l

l!
∂
(l)
x [al(x)P(x,t)], al(x) ∶=∑

∆x
∆xl W(∆x;x), x = n

N
(C.3)

The transition rates W(n′ ∣ n) are here expressed in terms of origin x = n/N and
jump size ∆x = x′−x. To get the scaling of the jump moments al(x) with 1/N, we
look at the moment generating function for the overall transition rate W(∆x; x)
(ε ∶= 1/N)

M(s) ∶ =∑
∆x

es∆x W(∆x; x) = es(1−x) [x+ε f +e−sε (1−x−ε f )]1/ε (C.4)

= es(1−x) exp[1/ε log(x+ε f +e−sε(1−x−ε f ))]

= exp[ε ( f s+ 1
2

x(1−x)s2)+O(ε
2)] (C.5)

a1(x) = ∂
(1)
s ∣

s=0
M(s) = ε f (x)+O(ε

2) (C.6)

a2(x) = ∂
(2)
s ∣

s=0
M(s) = ε x(1−x)+O(ε

2) (C.7)

al≥3(x) = ∂
(l)
s ∣

s=0
M(s) =O(ε

2) (C.8)

With this scaling, the lowest order in ε = 1/N yields the typical diffusion approxi-
mation (note that time is now most appropriately measured in N generations)

N∂t P(x,t) = (−∂x f (x)+ 1
2

∂
2
x x(1−x)) P(x,t) (C.9)

Likewise, for a higher dimensional process with k-nomial sampling we get the
equivalent result (using ∑i xi = 1, ∑i fi = 0 to ensure constant population size):

W(nnn′ ∣ nnn) =N!
k
∏
i=1

(xi+ε fi)n′i

n′i!
(C.10)

M(sss) = 1+ ε

2
⎛
⎝∑i

(s2
i xi+2si fi)−∑

i, j
sis jxix j

⎞
⎠
+O(ε

2) (C.11)

N ∂t P(xxx,t) = [−∂i fi(xxx)+ 1
2

∂i∂ j [xiδi j −xix j]] P(xxx,t) (C.12)

The particular form of the force f (x) is left undetermined. Later, it will be com-
pared to the outcome of the system size expansion of the Moran process. Keep in
mind, that we are interested in the WF process for a very pragmatic reason, i.e. in
order to simulate the evolution process as fast as possible. In a concrete situation,
we will have to choose the force f (x) according to the Moran model at hand. This
connection will be the aim of the next section.
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C.2 Expansion of the Moran Master equation
In this section, the systematic system size expansion for very general Moran pro-
cesses will be derived in arbitrary dimension. Importantly, the relationship to the
WF model above will be found. The macroscopic state variable is denoted by
nnn ∈Nk with ∑i ni = N, and the intensive rescaled variable xxx = nnn/N =∶ ε nnn. From the
state nnn, there are in a single birth-death event k(k−1) possible transitions, whose
rates are denoted by

Wi j(nnn′ ∣ nnn) =Wi j(∆nnn; xxx) =Wi j(xxx)∝ δn′i ,ni+1 δn′j, n j−1 (1−δi j)

The Moran model Master equation for this process on a simplex is given by:

∂t P(xxx,t) =∑
i≠ j

(E−i E+j −1)Wi j(xxx) P(xxx,t) (C.13)

The canonical form [40] of the transition rates assumes the form:

Wi j(xxx) =∶ f (N)[Φ(0)i j (xxx)+ε Φ
(1)
i j (xxx)+O(ε

2)] (C.14)

with a global prefactor f (N). The basic ansatz of the system size expansion is
to set nnn = Nφφφ(t)+

√
Nξξξ t and then to look at the stochastic process ξξξ t with its

distribution Π(ξξξ ,t). The partial derivatives are evaluated as:

∂ Π

∂ ξi
=
√

N
∂ P
∂ ni

(C.15)

∂ 2 Π

∂ ξi ∂ ξ j
= (

√
N)

2 ∂ 2 P
∂ ni ∂ n j

(C.16)

∂ P
∂ t

= ∂ Π

∂ t
−
√

N φ̇i
∂ Π

∂ ξi
(C.17)

Also the shift operators can be expanded in ε:

E±i = exp(±∂ni) = 1±
√

ε
∂

∂ ξi
+ 1

2
ε

∂ 2

∂ ξ 2
i
+O(ε

3/2) (C.18)

And finally the above ansatz must be inserted in the leading order term of the
transition rate in canonical form:

Φ
(0)
i j (xxx) =Φ

(0)
i j (φφφ(t)+

√
ε ξξξ) =Φ

(0)
i j (φφφ(t))+

√
ε ξk

∂ Φ
(0)
i j

∂ ξk
+O(ε) (C.19)



148 Wright-Fisher vs. Moran models

All these bits are now inserted into the original Master equation (C.13) and or-
dered by their order in N (or ε) (∂i = ∂ /∂ξi).

∂t Π−
√

N∑
i

φ̇i(t)∂i Π (C.20)

= f (N)∑
k≠l

[(1− 1√
N

∂k+
1

2N
∂

2
k )(1+ 1√

N
∂l +

1
2N

∂
2
l )−1] (C.21)

[Φ
(0)
kl (φφφ(t))+ 1√

N
ξ j ∂ jΦ

(0)
kl (φφφ(t))+ 1

N
Φ
(1)
kl (φφφ(t))+O(N−3/2)] Π

In the appropriate time scale and to lowest order in
√

N this yields with

τ ∶= f (N)t
N

(C.22)

O(N−1/2) ∶ ∑
i

∂τφi ∂iΠ
!= ∑

i, j
(Φ
(0)
i j (φφφ(τ))−Φ

(0)
ji (φφφ(τ)))∂iΠ (C.23)

This equation is satisfied trivially, if we chose for the macroscopic part φφφ(τ)

d
dτ

φi =∑
j

Φ
(0)
i j (φφφ(τ))−Φ

(0)
ji (φφφ(τ)) = [α1,0(φφφ(τ))]i (C.24)

which is the macroscopic law [40]. Remember that the generalized jump moments
were given by (λ = 0,1,2, . . .)

[α1,λ (xxx)]i ∶=∑
∆nnn

∆ni Φ
(λ)(∆nnn; xxx) =∑

j
Φ
(λ)
i j (xxx)−Φ

(λ)
ji (xxx) (C.25)

[α2,λ (xxx)]i j ∶=∑
∆nnn

∆ni ∆n j Φ
(λ)(∆nnn; xxx) (C.26)

= δi, j∑
k
(Φ
(λ)
ik (xxx)+Φ

(λ)
ki (xxx))−(1−δi j) (Φ

(λ)
i j (xxx)+Φ

(λ)
ji (xxx)) (C.27)

We are ready to look at the next order in N and recover the linear noise approxi-
mation (LNA):

∂τ Π(ξ ,τ) =∑
k≠l

⎧⎪⎪⎨⎪⎪⎩
∑

j
∂ jΦ

(0)
kl (φφφ)(∂l −∂k) ξ j +

1
2

Φ
(0)
kl (φφφ)(∂

2
k +∂

2
l −2∂l∂k)

⎫⎪⎪⎬⎪⎪⎭
Π(ξ ,τ)

=
⎧⎪⎪⎨⎪⎪⎩
−∑

i, j
[∂i (α1,0(φφφ)) j] ∂ j ○ξ j +

1
2
∑
i, j

(α2,0(φφφ))i j ∂i ∂ j

⎫⎪⎪⎬⎪⎪⎭
Π(ξ ,τ) (C.28)
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This is the proper expansion, as long as α1,0 is not exactly zero [40]. In that case,
we are faced with a genuine diffusion process [40]. And in the Moran model of
evolution, this is mostly the limit one is interested in. We now express the tran-
sition rates Wi j in the Master equation (C.13) in terms of birth rates Bi and death
rates Di. The concrete form of the birth and death rates is left unspecified. In any
case, one is interested in a limit N →∞ of the process, where the scaled parame-
ters describing selection Ns =∶ σ and mutation Nu =∶ µ etc. are held constant. The
leading order term of an expansion of the transition rates always describes neutral
evolution (e.g. with u = 0, s = 0) and the next order includes all other forces. This
leads to the following canonical form.

Wi j(xxx) = Bi(xxx)D j(xxx), ∑
i

Bi =∑
i

Di =∑
i

xi = 1 (C.29)

Bi(xxx) =∶ xi+
1
N

bi(xxx)+O( 1
N2) , bi(xxx) =O(µ,σ ,etc.) , di(xxx) ditto (C.30)

This yields for the standard first and second jump moments:

[a1(xxx)]i ∶ =∑
∆nnn

∆niW(∆nnn; xxx) = ∑
j, j≠i

(Bi D j −Di B j) = Bi(xxx)−Di(xxx) (C.31)

= 1
N

(bi(xxx)−di(xxx))+O( 1
N2) (C.32)

!= f (N) [[α1,0(xxx)]i+
1
N

[α1,1(xxx)]i+O( 1
N2)] (C.33)

⇒ α1,0(xxx) ≡ 0, α1,1(xxx) = bbb(xxx)−ddd(xxx) (C.34)

where in the last line the zeroth and first order terms of an expansion of the first
jump moment in 1/N are read off. Likewise for the second moment we get:

[a2(xxx)]i j ∶=∑
∆nnn

∆ni ∆n jW(∆nnn; xxx) (C.35)

= δi j ∑
k,k≠i

(Bi Dk+Bk Di)−(1−δi j)(Bi D j +B j Di)

= δi j (Bi+Di−2Bi Di)−(1−δi j)(Bi D j +B j Di) (C.36)

= δi j 2xi−2xi x j +O( 1
N
) (C.37)

!= f (N) [[α2,0(xxx)]i j +
1
N

[α2,1(xxx)]i j +O( 1
N2)] (C.38)

⇒ [α2,0(xxx)]i j = 2xi (δi j −x j) (C.39)

The global pre-factor can be set as f (N) = 1. What we need to employ in case
of a diffusion process - with vanishing macroscopic law: α1,0 = 0 - is the (now
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controlled) Kramers-Moyal expansion (see equation (C.3)):

∂t P(n,t) = [−∂ni [a1(x)]i+
1
2

∂ni∂n j [a2(x)]i j + . . .] P(n,t) (C.40)

where control of the expansion is achieved by switching from the extensive vari-
able nnn to the intensive xxx = nnn/N and inserting the above expansion of the jump
moments ak(xxx) to lowest order in 1/N (with the short notation ∂i ∶= ∂

∂xi
):

N2
∂t P(xxx,t) = {−∂i [α1,1(xxx)]i+

1
2

∂i∂ j [α2,0(xxx)]i j +O( 1
N
)} P(xxx,t) (C.41)

= {−∂i (bi(xxx)−di(xxx))+∂i∂ j xi (δi j −x j)+O( 1
N
)} P(xxx,t) (C.42)

C.3 Comparison of the Wright-Fisher and Moran
expansions

To see the connection between the two complementary models of evolution under
constant population size we compare the end results of the last two sections, equa-
tions (C.12) and (C.42), i.e. the respective diffusion limit Fokker-Planck equa-
tions.

N ∂t′ P(xxx, t′) = {−∂i fi(xxx)+ 1
2

∂i∂ j xi (δi j −x j)} P(xxx,t′) (Wright-Fisher)

N2
∂t P(xxx, t) = {−∂i (bi(xxx)−di(xxx))+∂i∂ j xi (δi j −x j)} P(xxx,t) (Moran)

We deliberately primed the time scale of the Wright-Fisher process at this point
and left the forces fi undetermined so far, so as to adjust them now at will. The
whole reason for the derivation in this chapter is to be able to work with a single
Fokker-Planck equation, which describes both models. In that sense, they are mi-
croscopically different but mesoscopically equivalent. We finally achieve equality
of the two equations for the particular choice:

fi(xxx) ∶= 1
2
(bi(xxx)−di(xxx)) =∶ 1

2
Fi(xxx), t′ ∶= 2

t
N

(C.43)

This is the correspondence: one Moran generation, i.e. N birth-death events, is
equivalent to two Wright-Fisher multinomial update steps, but importantly at half
the Moran drift force F(xxx) =Birth(xxx)−Death(xxx). This equivalence holds for any
evolutionary stochastic model in the diffusion limit that can be cast in either of the
two formulations.
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C.4 Discrete vs. continuous time Master equations
This small section covers a subtlety in the formulation of e.g. the Moran model
of evolution: the relationship between discrete time and continuous time Master
equations [130]. Essentially, for every stochastic Markov model that is formulated
in “turns”, i.e. events that take place in discrete, evenly spaced points in time,
there is a corresponding continuous time model. Correspondence means here,
that the solutions to both models coincide at all times [130]. To exemplify the
argument, we will consider a simple, one-dimensional one-step process with the
general Master equation

∂tPn(t) = {(E+−1) f−(n)+(E−−1) f+(n)} Pn(t) (C.44)

where f±(n) is the rate for a transition n→ n±1. We show along the lines of [130]
that this continuous time Master equation is connected to a discrete time random
walk.

(PPPt)n ∶= Prob(system in state n after t steps) (C.45)

PPPt+1
!=M PPPt ⇒ PPPt+T =MT PPPt (C.46)

with Mn′n ∶= π+(n)δn′,n+1+π−(n)δn′,n−1+(1−π+(n)−π−(n)) δn′,n (C.47)

where the π±(n) are the probabilities for a transition n→ n±1 in one step. Now
suppose that the time ∆t between consecutive jumps is itself a random variable
with an exponential distribution ψ(∆t) = 1

τ
exp(−∆t/τ). The probability for ex-

actly k transitions in T time steps is then given by φk(T) = (T
τ
)k 1

k! e−T/τ . This
yields the following derivation

PPPt+∆t =
∞
∑
k=0

φk(∆t)Mk PPPt = e
∆t
τ
(M−1)PPPt

∆t→0ÐÐÐ→ ∂t PPP(t) = M−1
τ

PPP(t) (C.48)

where M−1 is understood to be the matrix M minus the identity matrix. This last
equation will be equivalent to the sought-after birth-death Master equation (C.44)
if we choose

π±(n)
τ

!= f±(n) (C.49)

which means that the rates f±(n) appearing in the continuous time Master equa-
tion are in fact the probabilities per unit time for the transitions, where the unit of
time is naturally the mean time τ between consecutive exponentially distributed
transition events. The continuous time Master equation of e.g. the Moran model
implicitly assumes this distribution of jump events.





Appendix D

Elimination of fast variables in the
two-locus model with recombination

In this chapter, the elimination of the fast fluctuating variables - the single mutant
frequencies xaB and xAb - in the two-locus model of chapter 5 is carried out ex-
plicitly. First, the focus will be put on the deterministic level of the system and
the small parameter for the time scale separation will be identified to be the size
of the single mutants itself. The proper expansion of the deterministic equations
of motion goes along the lines of [131]. Guided by these results, the adiabatic
elimination is repeated on the stochastic level of the theory using the projector
method [132], that was originally developed in the field of quantum statistics by
Nakajima [133] and Zwanzig [134]. The main result is that the coupling of the
fast and slow modes is linear and the system falls into the “silent slave” category
[132], i.e. there is no feedback of the fluctuations of the fast modes towards the
dynamics of the slow modes. In this regime, the “naive” deterministic elimination
method is valid even on the stochastic level, which simply solves the fast dynam-
ics first keeping the slow part as a constant parameter and then reinserts the result
in the appropriate equations to arrive at an effective slow dynamics. This is the
justification for the simplifications made in the main text.

D.1 Deterministic elimination

To find evidence for a time scale separation, the starting point is to investigate the
“deterministic level” of the system. To repeat the important steps of the derivation
made in chapter 5: the expansion of the Master equation for N →∞ (with Nu
etc. held constant) revealed that there is no macroscopic law in the sense of the
linear noise approximation (LNA) [40]. The proper expansion leads immediately
to a Fokker-Planck equation (5.19). Only the presence of additional large param-
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eters (such as Nsd and Nsb) allows for a secondary expansion (of LNA type) and
awards the drift terms with the role of macroscopic (or deterministic) laws. For
the very concrete two-locus/two-allele model considered in the main text, these
deterministic equations of motion are:

xab→ x, xaB→ y1, xAb→ y2, xAB→ z, ∑
i

xi = 1 (D.1)

σb ∶=Nsb, σd ∶=Nsd, ρ ∶=Nr, µ ∶=Nu (D.2)

dyi

dt
= ρ (xz−y1 y2)−σd yi (1−y1−y2)−σb yi z+µ (x+ z−2yi), i = 1,2 (D.3)

dz
dt

= σd z(y1+y2)+σb z(1− z)−ρ (xz−y1 y2)−µ (2z−y1−y2) (D.4)

The symmetry of the two single mutant species suggests to introduce the new
variables y ∶= y1+y2 and η ∶= y1−y2. With these, the equations of motion read as

dη

dt
= −σd η (1−y+ σb

σd
z+ 2µ

σd
) (D.5)

dy
dt

= −σd y(1−y)−σb yz+2ρ z− ρ

2
(y+2z)2+ ρ

2
η

2+2µ (1−2y) (D.6)

dz
dt

= σd yz+σb z(1− z)−ρ z+ ρ

4
(y+2z)2− ρ

4
η

2+µ(y−2z) (D.7)

The terms in those equations are ordered by the size of the evolutionary forces
involved according to the parameter regime specified in section 5.2.3. In any case,
from the last equation above it can be seen that the dynamics of the double mutant
frequency (z) takes place on slower time scale than the other two variables only if
y≪ 1 at all times. In fact, we anticipate that y ≤O(σb/σd)≪ 1. Furthermore, we
are most interested in values of recombination strength ρ in the neighborhood of
σb, i.e. in the reach of criticality. These two observations motivate the following
substitutions:

ρ =∶ Rσb, R ≤O(1) , ε ∶= σb

σd
≪ 1, y =∶ ε ỹ, η =∶ ε η̃ ,

d
dt

=∶ σb
d

dτ
= εσd

d
dτ

(D.8)

This leads to the following equations of motion:

ε
dη̃

dτ
= −η̃ (1−ε ỹ+ε z+ 2µ

σb
ε) (D.9)

ε
dỹ
dτ

= −ỹ(1−ε ỹ)−ε ỹ z+2Rz− R
2
(ε ỹ+2z)2+ R

2
ε

2
η̃

2+ 2µ

σb
(1−2ε ỹ) (D.10)

ε
dz
dτ

= ε ỹ z+ε z(1− z)−Rε z+ R
4

ε (ε ỹ+2z)2− R
4

ε
3

η̃
2+ε

µ

σb
(ε ỹ−2z) (D.11)
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The time scale separation between (η̃ , ỹ) on one hand and z on the other is now
explicit (assuming ỹ ≤O(1)). The next step is to expand the fast modes in orders
of ε and look at the resulting equations of motion order by order.

η̃ = η̃
(0)+ε η̃

(1)+ . . . and ỹ = ỹ(0)+ε ỹ(1)+ . . . (D.12)

O(ε
0) ∶ 0 = −η̃

(0) (D.13)

0 = −ỹ(0)+2Rz(1− z)+ 2µ

σb
(D.14)

This order gives ỹ(0) as a function of z and we recover the lowest order expansion
of the single mutant frequency in equation (5.33) on page 113. We also note that
indeed ỹ(0)(z) ≤O(1) for µ ≪ σb. The next order in ε yields:

O(ε
1) ∶ dη̃(0)

dτ
= −η̃

(1)+ η̃
(0) (ỹ(0)− z− 2µ

σb
) ⇒ η̃

(1) = 0 (D.15)

dỹ(0)

dτ
= −ỹ(1)+ ỹ(0)(ỹ(0)− z−2Rz− 4µ

σb
) (D.16)

dz
dτ

= ỹ(0) z+ z(1− z)−Rz(1− z)− 2µ

σb
z (D.17)

It is now apparent that η̃ disappears in all orders of ε . The second equation deter-
mines ỹ(1) as a function of z (after inserting ỹ(0) and the equation of motion for
z). This will not be further pursued here. Importantly, the last equation above is
the effective equation of motion for the slow variable z:

dz
dτ

= 2Rz(1− z) (z− R−1
2R

) (D.18)

Converting back to the original quantities, we thus recover the effective drift term
equation (5.58) used in the main text on page 121, involving the saddle point zcr
(to leading order):

dz
dτ

= Fz(z) = 2ρ z(1− z) (z− ρ −σb

2ρ
) (D.19)

D.2 Stochastic elimination
The results from the last section are now used to guide the adiabatic elimination
of the fast modes in the full stochastic context. The original three dimensional
Fokker-Planck equation (5.19) on page 110 (for y1, y2 and z) is first converted
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to the new variables (η , y, z) introduced in the last section. The resulting three-
dimensional Fokker-Planck equation (FPE) reads as:

∂t P(y,η ,z,t) = {−∂y Fy−∂η Fη −∂z Fz+∂
2
y y(1−y)+∂

2
z z(1− z)+∂

2
η (y−η

2)

+∂y ∂η 2η (1−y)− 1
2

∂y∂z z(3y+η)− 1
2

∂η ∂z z (y+3η)} P(y,η ,z,t) (D.20)

with the drift terms Fy,η ,z given by the right hand sides of equations (D.6) and
(D.7). Now, the substitutions from (D.8) are inserted. Anticipating that we are
interested in an expansion in the small parameter ε =σb/σd , the following Fokker-
Plank operator L̂ is given to sub-leading order in ε .

∂τ P(ỹ, η̃ ,z,τ) =∶ L̂P(ỹ, η̃ ,z,τ) (D.21)

L̂ ∶= 1
ε
{−∂ỹ(−ỹ+2Rz(1− z)+ 2µ

σb
)+∂η̃ η̃ +∂

2
ỹ

ỹ
σb

+∂
2
η̃

ỹ
σb

+∂ỹ∂η̃

2η̃

σb
}

+{−∂ỹ ỹ (ỹ− z(1+2R)− 4µ

σb
)−∂z(z(1− z)(1−R)+ ỹ z− 2µ

σb
z)

−∂η̃ η̃ (−ỹ+ z+ 2µ

σb
)−∂

2
ỹ

ỹ2

σb
−∂

2
η̃

η̃2

σb
+∂

2
z

z(1− z)
σb

−∂ỹ∂z
z(3ỹ+ η̃)

2σb

− ∂η̃∂z
z (y+3η)

2σb
+∂ỹ∂η̃

2 η̃ ỹ
σb

}+O(ε) (D.22)

The contributions to above FPE are already sorted by their order in ε , with a
dominant part describing the evolution of the fast single mutant frequency sum
and difference (ỹ, η̃) (first line). The drift terms of that leading order operator are
linear in ỹ and η̃ . In a linear noise expansion, the leading order macroscopic part
of a stochastic trajectory is fixed to the (z-dependent) size 2β̃ ∶= 2Rz(1− z)+ 2µ

σb
and 0, respectively. But these values are exactly the leading order terms of the
deterministic elimination in the last section. This suggests to shift the sum variable
once more:

(ỹ, η̃ , z)→ (v ∶= ỹ−2β̃(z), η̃ , z) ⇒ (∂ỹ, ∂η̃ , ∂z)→ (∂v, ∂η̃ , −2β̃
′(z)∂v+∂z)

(D.23)

β̃(z) ∶= β(z)
σb

∶= ρ z(1− z)+µ

σb
(D.24)

∂τ P(v, η̃ ,z,τ) = L̂P(v, η̃ ,z,τ), with L̂ = 1
ε

L̂1+ L̂2+ L̂3+O(ε) (D.25)
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L̂1 = −∂v (−v)−∂η̃ (−η̃)+(∂
2
v +∂

2
η̃
) 1

σb
(v+2β̃(z))+∂v∂η̃

2 η̃

σb
(D.26)

L̂2 = −∂z vz−∂v (. . .)−∂η̃ (. . .)+∂
2
v (. . .)+∂

2
η̃
(. . .)−∂v ∂z (. . .)−∂η̃ ∂z (. . .)

(D.27)

L̂3 = −∂z z(1− z)(1−R−2Rz)+∂
2
z

z(1− z)
σb

(D.28)

The ellipses in L̂2 are simple functions of the three variables, whose specific form
is not important for reasons to become clear momentarily. The main idea of the
projector method is to find the stationary solution to L̂1, i.e. L̂1 ps(v, η̃) = 0, and
use that distribution to construct a projector P on the null space of L̂1 [132].

L̂1 ps(v, η̃) = 0 ⇒ P f (v, η̃ ,z) ∶= ps(v, η̃) ∫ dv′dη̃
′ f (v′, η̃

′, z) (D.29)

The present fast operator L̂1 affords for a simple potential solution for its station-
ary distribution [41].

ps(v, η̃) =Z−1 e−φ(v,η̃), φ = σb v+(1−σb β̃) ln((v+2β̃)2− η̃
2) (D.30)

⇒ ps(y,η) =Z−1 e−σd y (y2−η
2)β(z)−1

(D.31)

The normalization constant Z is evaluated as

Z ∶= ∫
1

0
dy ∫

y

−y
dη e−σd y (y2−η

2)β(z)−1
(D.32)

=
√

π
Γ(β)
σ

2β

d

Γ(2β)−Γ(2β , σd)
Γ(β + 1

2)
(D.33)

Γ(a, b) ∶= ∫
∞

b
dt ta−1 e−t , Γ(a) = Γ(a, 0) (D.34)

This is the quasi-stationary distribution of the fast variables (y,η). Most impor-
tantly, we note that re-introducing the original single-mutant frequencies leads to
a distribution that is the product of two identical distributions:

xaB =
1
2
(y+η) , xAb =

1
2
(y−η) (D.35)

ps(y,η)→ ps(xAb, xaB) =∶ qs(xAb) ⋅qs(xaB), qs(x)∝ e−σd x xβ(z)−1 (D.36)
⇒ ⟨xAb xaB⟩s = ⟨xAb⟩s⟨xaB⟩s (D.37)
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This is the rigorous argument for the assumption made in the main text, that under
time scale separation the two single mutant frequencies are uncorrelated to lowest
order. The mean and variance of the fast modes can be readily given:

⟨y⟩s =
Γ(2β +1)−Γ(2β +1, σd)
σd (Γ(2β)−Γ(2β , σd))

= 2β

σd
(1−e−σd)+O(β 2

σ2
d
) (D.38)

vars(y) ∶= ⟨y2⟩s− ⟨y⟩2
s =

2β

σ2
d

[1−Γ(2,σd)]+O(β 2

σ2
d
) (D.39)

⟨η⟩s = 0, vars(η) = vars(y) (D.40)

For completeness, one can also average out the difference of single mutant fre-
quencies η to arrive at the marginal distribution for the total y:

ps(y) ∶= ∫
y

−y
dη ps(y, η) = e−σd yy2β(z)−1 σ

2β

d
Γ(2β)−Γ(2β , σd)

(D.41)

Proceeding with the elimination routine according to [132], we note that the op-
erators L̂i above are organized in a way to guarantee the three central relations

P L̂1 = L̂1P = 0, PL̂2P = 0, P L̂3 = L̂3P (D.42)

The first and third relation holds by definition of P and L̂3 The second relation is
ensured by both ⟨v⟩s = ⟨η̃⟩ = 0.

[PL̂2P] f (v,η ,z) = ps(v,η) ∫ dv′dη
′ L̂2 (ps(v′,η ′) f̂ (z)) (D.43)

[P (∂z vz)P] f (v,η ,z)∝ ⟨v⟩s = 0 (D.44)

Terms in L̂2 that start with ∂v or ∂η̃ vanish upon being acted on by P [41], if
boundary terms can be dropped. The projector P is now used is to find solutions
to the FPE in the null space of L̂1, i.e. where the fast mode is in a quasi-stationary
state and can be averaged out:

P(v, η̃ ,z,τ)→ p(v, η̃ ,z,τ) ∶=PP(v, η̃ ,z,τ)

= ps(v, η̃) ∫ dv′dη̃
′ P(v′, η̃ ′,z,τ) =∶ ps(v, η̃) P̂(z,τ) (D.45)

Without going into too much detail, which can be found in [132], the effective
FPE describing the evolution of the reduced part P̂(z,τ) is in the present case
given by:

∂τ P̂(z,τ) = lim
ε→0

(L̂3−εP L̂2L̂−1
1 L̂2) P̂(z,τ) = L̂3 P̂(z,τ) (D.46)

Since L̂2 does not scale with ε , there is no change in the FPE for the slow mode
due to the fluctuations of the fast mode. This is the “silent slave” limit of [132]. In
this limit, the “naive” adiabatic elimination performed out in the main text is valid,
which completes the argument of the derivation of the double mutant fixation rate.
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