Molekularbiologische Analyse von Dornröschen und Dornröschen-like

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Bianca Jacobs

aus Duisburg

Berichterstatter:

(Gutachter)

Prof. Dr. Wolfgang Werr Prof. Dr. Siegfried Roth

Tag der mündlichen Prüfung: 30.06.2011

Inhaltsverzeichnis

InhaltsverzeichnisI		
1 E	inleitung	1
1.1	Das sprossapikale Meristem	1
1.1.1	Aufbau des Sprossapikalmeristems	1
1.1.2	Spezifizierung und Aufrechterhaltung des SAM	3
1.1.3	Phyllotaxis	5
1.1.4	Aufbau und Entwicklung der Arabidopsis Blüte	7
1.2	Die AP2-Familie	9
1.3	Dornröschen und Dornröschen-like	12
1.4	Zielsetzung der Arbeit	14
2 N	Iaterial und Methoden	15
2.1	Material	15
2.1.1	Bakterienstämme	15
2.1.2	Klonierungs- und Expressionsvektoren	15
2.1.3	Verwendete Desoxyoligonukleotide	15
2.2	Methoden	17
2.2.1	Nicht-radioaktive RNA In situ Hybridisierung (ISH)	17
2.2.2	Klonierung der Chimären	17
2.2.3	Proteinsynthese und Aufreinigung	18
2.2.4	EMSA und CASTing	18
2.3	Erzeugte Klone und transgene Pflanzenlinien	19
2.3.1	DRNL Reportergen-Linien in pGPTV	19
2.3.2	Konstrukte zur <i>in vitro</i> Proteinexpression in pIVEX 2.5d/2.6d	19
3 E	rgebnisse	21
3.1	Expression von Dornröschen-like in Arabidopsis thaliana	21
3.1.1	DRNL wird während der gesamten Embryogenese exprimiert	21
3.1.2	DRNL wird während der Organogenese von Blättern exprimiert	24
3.1.3	DRNL markiert alle Organanlagen in der Blüte	25
3.1.4	DRNL und DRN besitzen teilweise überlappende Expressionsdomänen	31
3.1.5	Lokalen Auxin-Maxima erscheinen in floralen Organanlagen zeitlich versetzt im Vergleich zur <i>DRNL</i> -Expression	34
3.2	DNA-Bindestudien mit DRN und DRNL	37
3.2.1	DRN und DRNL zeigten im <i>EMSA</i> keine spezifische Bindung an die GCC- Box	28
3.2.2	Interaktion von DRN und DRNL mit alternative Motiven	43

3.2.3	DNA-Bindestudien von DRN/DRNL-DREB1A-Chimären	. 44
3.3	Die Identifizierung DRNL regulierter Gene via microarray	. 46
4 D	Diskussion	. 56
4.1	DRNL markiert die Gründerzellen lateraler Organe	. 56
4.1.1	Die Bildung lateraler Organanlagen aus dem embryonalen und vegetativen SAM erfolgt nach dem selben Muster	. 57
4.1.2	Die Entstehung floraler Organe unterliegt verschiedenen Musterbildungsprozessen	. 57
4.2	Die partielle Redundanz von DRN und DRNL ist hauptsächlich begründet in funktionaler Equivalenz und überlappenden Expressionsdomänen	. 62
4.3	Die frühe Regulation von DRNL erfolgt unabhängig von Auxin	. 65
4.4	Die Funktion von DRN und DRNL als mögliche Transkriptionsfaktoren	. 68
4.5	Die transkriptionelle Kontrolle durch DRNL und DRN	. 72
Zusa	mmenfassung	. 76
Abst	ract	. 77
Liter	aturverzeichnis	. 85

Abkürzungen

AS	Aminosäure
At	Arabidopsis thaliana
AuxREs	,Auxin-Responsive Elements'
bp	Basenpaare
c-terminal	Carboxy-terminal
CASTing	,Cyclic Amplification and Selection of Targets'
CFP	,Cyan Fluorescent Protein'
ChIP	, Chromatin Immunoprecipitation'
cМ	centi Morgan
DNA	Desoxyribonuleinsäure
E. coli	Escherichia coli
EMSA	Electrophoresis Mobility Shift Assay
GFP	,Green Fluorescent Protein'
FM	Florales Meristem
h	Stunde
IAA	indole-3-acetic acid (Indol-3-essigsäure)
IM	Infloreszenzmeristem
IP	Immunoprezipitation
ISH	,in situ Hybridisierung'
kb	Kilobasen
n-terminal	Amino-terminal
Nt	Nicotiana tabacum
ORF	,Open Reading frame' (offenes Leseraster)
PCR	,Polymerase Chain Reaction'
RNA	Ribonukleinsäure
RT	Raumtemperatur
SAM	Sproßapikalmeristem
t	Tag
TAE	Tris/Actat/EDTA Puffer
TAIR	The Arabidopsis Information Resource
TBE	Puffer Tris/Borat/EDTA
TF	Transkriptionsfaktor
WT	Wildtyp

1 Einleitung

1.1 Das sprossapikale Meristem

Im Verlauf ihrer gesamten post-embryonalen Entwicklung bilden Pflanzen kontinuierlich laterale Organe, die in der Peripherie der Stammzellzone entstehen. Das Sprossapikalmeristem (SAM) besteht aus einer Population pluripotenter Stammzellen, die neben der Produktion lateraler Pflanzenorgane außerdem zur Formation der Sprossachse beitragen (Steeves T.A. and Sussex, 1989).

1.1.1 Aufbau des Sprossapikalmeristems

Das SAM besteht aus einer kleinen Gruppe undifferenzierter Zellen an der apikalen Spitze des Sprosses, wo es zentral zwischen den beiden Keimblättern lokalisiert ist (Cutter, 1965). Aus dem SAM entsteht der gesamte oberirdische Teil der Pflanze, abgesehen von Hypokotyl und Keimblättern (Sussex, 1989). Das SAM erfüllt eine Reihe von verschiedenen Funktionen, wie die Bildung von Gewebe und die Initiierung von Organen, aber auch die Kommunikation mit anderen Teilen der Pflanze. Nicht zuletzt muss die eigene Aufrechterhaltung als funktionale Region reguliert werden (Sachs, 1991; Medford, 1992).

Bereits während der Embryogenese zwischen Herz- und Torpedostadium, ist eine Region in der apikalen Hemisphäre des sich entwickelden Embryos, bestehend aus drei separaten Zellschichten, erkennbar. Diese Zellschichten sind die Vorläufer der beiden Tunikaschichten (L1 und L2) und des Korpus (L3) (Barton and Poethig, 1993). Das vegetative SAM von Arabidopsis besitzt, den für zweikeimblättrige Pflanzen typischen dreischichtigen Aufbau (Satina, 1940; Vaughan, 1952, 1955). Die L1 Schicht bildet die äußere Zellschicht an der Spitze des Apex und teilt sich nur antiklin, wobei sie die Epidermis bildet (Vaughan, 1955). Zusammen mit der darunterliegenden L2 Schicht bildet sie die Tunika. Die L2 teilt sich zunächst antiklin, dadurch werden Tochterzellen in der selber Schicht wie ihre Mutterzelle gehalten und die Tunika bleibt separiert vom Korpus. Zu einem späteren Stadium, während der Initiierung von Organprimordien, zeigt die L2 Schicht, neben antikliner, auch perikline Zellteilung (Vaughan, 1955). Die darunterliegenden Zellen der L3 Schicht bilden den sogenannten Korpus, aus welchem das Grundgewebe und vaskuläre System entsteht (Brand et al., 2001). Dabei teilen sich diese ungerichtet (antiklin und periklin). Alle Schichten sind beteiligt an der Entstehung von Blüten und Blättern, so dass die Epidermis adulter Organe aus Zellen der L1 hervorgeht, subepidermale Zellen von der L2 abstammen, und zentrale Zellen von der L3 (Lenhard and Laux, 1999; Weigel and Jurgens, 2002). Nach dem Eintritt in die vegetative Phase wird das SAM außerdem in verschiedene Zonen unterteilt, die sich bezüglich Zellgröße und Teilungsrate unterscheiden (Vaughan, 1955; Miksche, 1965). Die zentrale Mutterzellzone wird von einer kleinen Population aus pluripotenten Zellen mit geringer Zellteilungsrate gebildet, die als Stammzellreservoir dienen. Umgeben wird sie von der peripheren Zone, die aus kleinen, sich schnell teilenden und differenzierenden Zellen besteht. Die Differenz der Zellteilungsrate beider Zonen variiert zwischen verschiedenen Spezies. In *Rudbeckia* ist die Generationszeit von Zellen in der Peripherie, im Vergleich zu der zentralen Zone, um das 1,6 fache erhöht, in *Oryza* um den Faktor 7,8 (Lyndon, 1998). In der Peripherie werden regelmäßig Primordien initiiert, die zu lateralen Organen differenzieren, oder im Laufe der weiteren Entwicklung sekundäre Meristeme bilden. Darunter liegen die Markzellen, die sich ebenfalls häufig teilen, und den Spross bilden (Steeves T.A. and Sussex, 1989).

Während der vegetativen Wachstumsphase werden vom SAM regelmäßig neue Blätter initiiert, in deren Achseln sekundäre Meristeme entstehen, welche in Verhalten und Struktur denen des primären SAM entsprechen, und die zu Seitentrieben auswachsen (Meyerowitz, 1997). Zu Beginn der reproduktiven Phase verändert sich die Form des SAM von leicht konvex in der vegetativen Wachstumsphase, zu einer deutlich hügelförmigen Struktur des IMs, wobei die Organisation in verschiedene Schichten und Zonen bestehen bleibt (Vaughan, 1955; Miksche, 1965). Nach der Blühinduktion stoppt das SAM die Produktion von Blättern und beginnt stattdessen als Infloreszenzmeristem Blütenprimordien oder florale Meristeme zu initiieren. Bereits angelegte Blattprimordien werden zu Hochblättern, in deren Achseln sich weitere Infloreszenzen bilden (Hempel and Feldman, 1995). Blüten hingegen besitzen rudimentäre Tragblätter, welche in der Peripherie des IM initiert werden, bevor in ihren Achseln neue FMs entstehen (Long and Barton, 2000; Hepworth et al., 2006; Kwiatkowska, 2006). Unmittelbar nach der Initialisierung eines FMs beginnen sich die Zellen schnell und koordiniert in alle Richtungen zu teilen und auszubreiten, wobei im Zentrum eine Gruppe von Zellen generiert wird, aus denen alle Blütenorgane gebildet werden (Bossinger and Smyth, 1996; Reddy et al., 2004; Kwiatkowska, 2006).

Die Regulation der Zellteilung beruht anscheinend in frühen und späten Stadien der Blütenentwicklung auf verschiedenen Mechanismen (Jenik and Irish, 2000). Zu Beginn der Entwicklung teilt sich das FM in vier konzentrische Ringe, und Zellteilungsmuster sind abhängig von der radialen Position der Zelle innerhalb des FMs, nicht von den einzelnen Organen, die in dem jeweiligen Ring entstehen. Ab Stadium 6 der Organogenese wird die Zellteilung und -differenzierung dann weitestgehend durch die homöotischen ABC-Gene kontrolliert. Dadurch wird die Ringstruktur aufgebrochen und es entwickeln sich individuelle Organprimordien innerhalb jeden Wirtels. Gleichzeitig kommt es zur Subdifferenzierung der Zellen, die innerhalb der entstehenden Organe unterschiedliche Identitäten einnehmen (Jenik and Irish, 2000). Jedes Organprimordium entsteht aus einer Gruppe von Zellen, die durch eine Grenzregion von einander separiert sind, in der sich die Zellen nur selten teilen (Breuil-Broyer et al., 2004). Zum Ende der Blütenentwicklung, nachdem alle Organe herangereift sind, ist das Stammzellreservoir des FMs völlig aufgebraucht (Takeda et al., 2004; Krizek and Fletcher, 2005).

Die Bildung lateraler Organe lässt sich in drei Phasen unterteilen. Zunächst werden Gründerzellen aus dem IM rekrutiert, die durch kontrollierte Zellteilung eine Organanlage bilden, welche letztlich im Verlauf der Organogenese zu einem histologisch erkennbarem Primordium auswachsen (Beveridge et al., 2007). Durch eine Kombination von histologischer und klonaler Analyse konnte das SAM und die Bildung von Organprimordien bereits detailliert charakterisiert werden (Irish, 1992). Durch klonale Sektoranalyse konnte die Anzahl von Zellen der L2-Schicht bestimmt werden, die zur Entstehung eines Blattprimordiums benötigt werden. Es wurde nachgewiesen, dass die ersten beiden echten Blätter aus jeweils 8-9 Zellen entstehen, Blatt 3-6 aus 3-4 und die folgenden, sowie die Infloreszenz aus 1-2 Zellen (Irish, 1992). FMs werden aus einem Block von vier Gründerzellen initialisiert, Sepalen und Karpelle aus acht, Stamen aus vier und die Petalen aus zwei Zellen (Bossinger and Smyth, 1996).

1.1.2 Spezifizierung und Aufrechterhaltung des SAM

Entscheidend für die Etablierung und Aufrechterhaltung eines aktiven Meristems ist die Balance, zwischen einer gleichbleibenden Stammzellpopulation im Zentrum und Zellen mit einer hohen Zellteilungsrate und Differenzierung in der Peripherie, die abhängig ist von einem durch *WUSCHEL (WUS)* regulierten Mechanismus (Laux et al., 1996; Sablowski, 2007). Das Homeobox-Protein WUS kontrolliert die Stammzellidentität in der zentralen Zone des SAM, der *wus* Mutante fehlen Stammzellen im SAM (Mayer et al., 1998). *WUS* wird in einer kleinen Zellpopulation direkt unterhalb der Stammzellzone exprimiert, aber nicht in den Stammzellen selbst. Die Regulation erfolgt über ein Rezeptor-Kinase-Signalsystem, in das *CLAVATA1, 2* und *3* (*CLV1,2,3*) involviert sind (Mayer et al., 1998; Brand et al., 2000; Schoof et al., 2000).

Ein weiterer wichtiger Faktor für die positive Regulation des SAM ist der KNOX Faktor (KNOTTED1 like HOMÖOBOX) SHOOTMERISTEMLESS (STM) (Barton and Poethig, 1993). STM wird im gesamten SAM exprimiert, in Zellen, die zur Blatt- oder Blütenbildung rekrutiert wurden lässt sich kein Transkript mehr nachweisen, sobald diese mit der Differenzierung begonnen haben (Long et al., 1996). Die stm Verlustmutante bildet während der Embryogenese kein funktionales SAM. Postembryonal bilden sich Meristeme aus denen allerdings nur einzelne Rosettenblätter auswachsen, was vermuten lässt, dass STM notwendig ist, nicht nur für die Entstehung, sondern auch für die Aufrechterhaltung eines intakten Meristems, indem es die Proliferation von Stammzellen fördert (Clark et al., 1996; Endrizzi et al., 1996; Long et al., 1996). Des Weiteren inhibiert STM die Expression von *ASYMETRIC LEAVES 1* und *2 (AS1,2)* im SAM, wodurch eine vorzeitige Differenzierung der Stammzellen verhindert wird (Byrne et al., 2000; Byrne et al., 2002).

Beim Übergang von der vegetativen zur reproduktiven Entwicklungsphase ändern sich Wachstum, Geometrie und zelluläre Charakteristika des Infloreszenzmeristems (Kwiatkowska, 2006). Das *Arabidopsis* IM bildet rudimentäre Tragblätter, in deren Axeln florale Meristeme (FM) entstehen. Die Expressionsmuster von *LEAFY (LFY)* und *AINTEGUMENTA (ANT)* korrelieren mit der Bildung dieses Tragblattes (Long and Barton, 2000). Die Kontrolle der Stammzellpopulation in IM und FM wird weiterhin von *WUS* und *STM* gewährleistet (Laux et al., 1996; Long et al., 1996), in die Entstehung von FMs sind weiterhin eine Reihe von Genen involviert, wie *LEAFY (LFY), APETALA 1, 2* und *3 (AP1,2,3)* und *AINTEGUMENTA (ANT)* (Weigel et al., 1992; Gustafson-Brown et al., 1994; Blazquez et al., 1997). *ANT* ist schon früh in Zellen exprimiert, die zu einem Blütenprimordium differenzieren und das FM bilden (Grandjean et al., 2004). Die ersten Zellen, in densen *LFY* exprimiert wird, differenzieren vermutlich zu einem rudimentären Tragblatt, in dessen Achsel das FM entsteht, wobei *LFY* zu einem späteren Zeitpunkt auch in Zellen exprimiert, die zur Bildung des FMs rekrutiert werden (Kwiatkowska, 2006).

Nach dem klassischen ABC-Model wird die frühe Musterbildung des FM durch die homöotischen Gene AP1, AP2, AP3, PISTILLATA (PI) und AGAMOUS (AG reguliert, wodurch es zur Vormusterung von vier separierten Regionen kommt (Bowman et al., 1989, 1991; Coen and Meyerowitz, 1991; Wagner et al., 1999; Ng and Yanofsky, 2001; Lamb et al., 2002). Die Expression des A-Klasse-Gens AP1 wird von LFY und FLO-WERING LOCUC T/FLOWERING LOCUS D (FT/FD) positiv reguliert. LFY bindet direkt an die CArG-Box und aktiviert die Transkription von AP1 (Koornneef et al., 1991; Kardailsky et al., 1999; Wagner et al., 1999; Wagner et al., 2004; William et al., 2004; Abe et al., 2005), wodurch die Entstehung von Sepalen und Petalen reguliert wird (Parcy et al., 1998; Wagner et al., 1999). Zusammen mit UNUSUAL ORGAN FLO-WERS (UFO) bindet LFY direkt an die Promotorregion von AP3 und PISTILATA (PI) und aktiviert die Expression der B-Klasse-Gene (Chae et al., 2008), welche in die Spezifizierung von Petalen und Stamen involviert sind. Außerdem binden LFY und WUS ein Promotorelement im zweiten Intron von AGAMOUS (AG), und aktivieren die Transkription im Zentrum des Meristems (Lenhard et al., 2001; Lohmann et al., 2001). AG, ein MADS-Box-TF ist das einzige bekannte C-Klasse-Gen, und reguliert die Entwicklung von Stamen und Karpellen (Bowman et al., 1989). Die Aufrechterhaltung des FMs endet mit der Expression von AG. Unmittelbar nach der Aktivierung durch WUS unterdrückt AG die weitere Expression des MADS-Box-Gens, wodurch das florale Stammzellreservoir aufgebraucht bzw. nicht weiter aufrecht erhalten wird. WUS aktiviert damit im FM den eigenen Repressor, und etabliert eine negative Rückkopplungsschleife, was letztlich die Regulation der Stammzellpopulation direkt in die floraler Musterbildung einbindet (Fletcher, 2002).

1.1.3 Phyllotaxis

Die Anordnung lateraler Organe entlang der Sprossachse, bezeichnet als Phyllotaxis, ist ein wichtiger Faktor bezüglich der Architektur einer Pflanze. Bei der Initiierung von Blättern oder Blüten durch das SAM kann zwischen drei verschiedenen Grundtypen unterschieden werden, der wechselständigen, gegenständigen oder spiraligen Phyllotaxis. Bei der spiraligen Anordnung, die am häufigsten vertreten ist, sind die Organe in einem Winkel von 137,5° zueinander angeordnet (Snow, 1934; Richards, 1951; Reinhardt, 2002). Die beiden ersten Blätter treten in *Arabidopsis* zweizeilig (distich) auf (Woodrick et al., 2000), nachfolgende Blätter werden spiralig (dispers) angelegt. Die Richtung der Spirale (im oder gegen den Uhrzeigersinn) ist variabel, aber konstant innerhalb einer Pflanze (Williams, 1975; Smyth et al., 1990; Medford et al., 1992; Callos and Medford, 1994). In Arabidopsis wird jedes Blatt von zwei Stipulen, auch Nebenblätter genannt begleitet (Medford, 1992), die an den beiden Seiten der Blattbasis auswachsen.

Bisher wurde eine Vielzahl von Modellen erstellt, um die Kontrolle der Phyllotaxis zu erklären. Dabei wurde der Einfluss physikalischer Faktoren vermutet, wie die Verfügbarkeit von Platz innerhalb des Meristems (Snow, 1931, 1933), oder Scherspannungen, verursacht durch die Ausdehnung des Apex oder der bereits existierenden Primordien und Blätter (Selker et al., 1992; Hernandez and Green, 1993). Außerdem wurde vermutet, dass Morphogene für die Initiierung von Blättern verantwortlich sind (Wardlaw, 1949; Turing, 1952). Phytohormone, vor allem Auxin und Gibberellin standen schon früh unter Verdacht, die Initiierung und Positionierung von Organen zu beeinflussen, obwohl der genau Einfluss dieser Hormone zunächst unklar blieb (Snow, 1937; Gorter, 1949; Gorter, 1951; Kiermayer, 1960; Schwabe, 1971).

Das Phytohormon Auxin stellte sich, als in eine Vielzahl von Prozessen in Pflanzen involviert, wie z.B. Embryogenese (Liu et al., 1993; Aida et al., 2002; Friml et al., 2004) und der Entwicklung von Wurzeln (Sabatini et al., 1999; Friml et al., 2002) und der Vaskulatur (Mattsson et al., 2003) heraus. Des Weiteren konnte gezeigt werden, dass Auxin die Entstehung von Blättern und Blüten induziert (Okada et al., 1991; Reinhardt et al., 2000) und als Auslöser für die Bildung lateraler Organe auch für die Positionierung der Primordien, also die Phyllotaxis verantwortlich ist (Kuhlemeier and Reinhardt, 2001).

Eine Reihe von Beobachtungen lieferten bisweilen Indizien für die Beteiligung von Auxin bezüglich der Organpositionierung. Durch die Behandlung der Apices von Tomaten mit Auxin-Transportinhibitoren, konnte die Produktion von Blättern völlig unterdrückt werden, wobei die Meristeme eine herkömmliche Morphologie zeigten. Lokales Aufbringen von Auxin führte zur Produktion einzelner Blätter an der behandelten Position der peripheren Zone (Reinhardt et al., 2000). Die Behandlung der Verlustmutante von PINFORMED1 (PIN1), einem Auxin-Efflux-Transporter (Galweiler et al., 1998) mit Auxin zeigte vergleichbare Ergebnisse. Die Verlustmutante besitzt ein funktionales Meristem, und zeigt keinerlei Defekte bezüglich der Stammzellproduktion und Aufrechterhaltung des SAM. Organprimordien, abgesehen von einigen missgebildeten Rosettenblättern, werden allerdings nicht gebildet. Durch lokales Aufbringen von exogenem Auxin auf die Apices von *pin1* Verlustmutanten kann die Bildung von Blütenprimordien jedoch induziert werden (Reinhardt et al., 2000), und junge pinl Pflanzen, welche mit IAA behandelt werden, bilden wildtypische Rosettenblätter (Reinhardt et al., 2003). Diese Beobachtung führt weiterhin zu der Vermutung, dass Auxin Organogenese induziert, die Organidentität jedoch von anderen Faktoren innerhalb des Meristems determiniert wird (Reinhardt et al., 2000). Das Arabidopsis Genom kodiert weiterhin vier putative Auxin-Influx-Transporter, AUXIN RESISTANT 1 (AUX1) und drei LIKE AUX 1 (LAX), die als Quadrupel-Mutante ebenfalls eine Störung der Phyllotaxis aufweisen. Blütenprimordien werden nicht in einem Winkel von 137°, sondern unregelmäßig angelegt. Zwischenzeitlich kommt es auch zum Arrest der Blüteninitiierung, bis hin zur völligen Abwesenheit von Blütenprimordien, wie bei der pin1 Mutante (Bainbridge et al., 2008). Als Konsequenz eines defekten polaren Auxintransports ergibt sich der Verlust einer klaren Grenzziehung innerhalb der peripheren Zone, deren Zellen sowohl Organcharakter, als auch die Identität von Grenzbereichen besitzen, wodurch es zur Blockierung der Organinitiierung kommt (Kuhlemeier and Reinhardt, 2001). Mit Hilfe von DR5rev, einem synthetischen Promotor, der mehrere kanonische Auxin-Responsive Elements (AuxREs) beinhaltet, konnten außerdem lokale Auxinmaxima nachgewiesen werden, dort wo neue Blütenprimordien initiiert wurden (Heisler et al., 2005). Die Auxinverteilung in den Apices der aux1 lax Quadrupelmutanten hingegen ist eher diffus. In Pflanzen mit mildem Phänotyp lassen sich schwache Maxima in der entstehenden Blütenprimordien nachweisen. In Pflanzen, die keine Blüten bilden wurde Auxin in der gesamten peripheren Zone, teilweise sogar im kompletten SAM nachgewiesen (Bainbridge et al., 2008).

Zusammen betrachtet demonstrieren die verschiedenen Daten eine wichtige Rolle für Auxin bezüglich der Phyllotaxis in *Arabidopsis*. Auxin wird zunächst akropetal Richtung Meristem transportiert, wo es von den Primordien absorbiert wird, was dazu führt, dass es aus den Zellen in der Peripherie entfernt wird (Reinhardt et al., 2003; Smith et al., 2006). An der Stelle, die am weitesten entfernt von den beiden jüngsten Primordien entfernt liegt, kann ein neues Maximum akkumulieren, aus dem ein weiteres Primordium entsteht. Dieser Mechanismus wird zum einem durch eine positive Rückkopplungsschleife, der Auxin Akkumulation in den Primordien, als auch durch laterale Inhibition, durch das Entfernen von Auxin aus dem umliegenden Gewebe, reguliert.

1.1.4 Aufbau und Entwicklung der Arabidopsis Blüte

Arabidopsis besitzt eine für Brassicaceae typische Anatomie, mit vier Sepale, vier Petalen, sechs Stamen und einen aus zwei Karpellen bestehenden Gynoeceum. Trotz dieses sehr simplen Aufbaus ist die Frage des Ursprungs der einzelnen Organe immer noch unklar. Vor morphologischen und systematischen Hintergrund wird ein Wirtel klassischer Weise als ein Kreis von Organen definiert (Endress, 1992). Molekulargenetisch betrachtet bezeichnet ein Wirtel heutzutage eine Region der Blüte, aus der ein einzelner Organtyp entsteht (Bowman et al., 1989; Bowman and Meyerowitz, 1991).

Dies bezüglich sind heute drei verschiedene Theorien in Umlauf (Arber, 1931; Lawrence, 1951; Endress, 1992), wobei die Vier-Blütenwirtel-Theorie momentan die gebräuchlichste ist. Laut dieser Theorie belegen die verschiedenen Organtypen jeweils einen separaten Wirtel. Die drei äußeren Wirtel bestehen aus jeweils vier Organen, wobei es im dritten Wirtel zu Duplikation der medialen Stamen kam, woraus die lateralen Stamen entsprungen sind (De Candolle, 1821). Der innerste Wirtel besteht aus nur zwei Karpellen, die das Gynoeceum bilden. In einer anderen Theorie besteht die Blüte aus fünf Wirteln mit je vier Organen, wobei die lateralen und medialen Stamen getrennte Wirtel belegen, und es im dritten Wirtel evolutionär zum Verlust zweier lateralen Stamen kam. Der fünfte, innere Wirtel besteht ebenfalls aus vier Organen, zwei sterilen Karpellen, die die äußere Hülle des Fruchtknoten bilden und zwei fertilen Karpellen, aus denen die Plazenta geformt wird (Lestiboudois, 1826; Merxmuller, 1967). Alternativ dazu bestehen die einzelnen Wirtel nach der Sechs-Blütenwirtel-Theorie aus jeweils zwei Organen (Steinheil, 1839; Alexander, 1952). Die lateralen und medialen Sepalen belegen jeweils einen separaten Wirtel, wobei unklar ist, welche der Organe dem äußersten Wirtel entstammen (Arber, 1931). Die vier Petalen stammen aus einem einzigen Wirtel, wobei sie durch Duplikation aus ursprünglich zwei Organen entstanden sind (Endress, 1992). Mutmaßliche Vorfahren besäßen somit zwei Petalen, die Petalenprimordien teilten sich in zwei Subdomänen, aus denen dann komplette Organen entsprungen sind. Die sechs Stamen sind ebenfalls auf zwei Wirtel verteilt, mit den beiden lateralen im vierten, den medialen, ebenfalls duplizierten Stamen im fünften Wirtel. Den sechsten Wirtel bilden die beiden Karpelle.

Die Entwicklung individueller *Arabidopsis* Blüten ist von der Entstehung der Blütenprimordien bis zur Dehiszenz der Schote ausführlich beschrieben (Vaughan, 1955; Müller, 1963; Bowman et al., 1989). Anhand morphologischer Kriterien wurde die Blütenentwicklung in verschiedene Stadien eingeteilt (Tab.1) (Smyth et al., 1990).

Blütenprimordien entstehen in der Peripherie des Infloreszenzmeristems (IM) in einer phyllotaktischen Spirale (Stadium 1), und werden kurz darauf durch eine Furche vom IM getrennt (Stadium 2) (Smyth et al., 1990). Die Blütenorganprimordien entwickeln sich nach einem streng geordneten Muster sequentiell aus dem floralen Meristem (FM). Die vier Sepalenprimordien sind die ersten, morphologisch sichtbaren Strukturen. Sie entstehen kreuzförmig, wobei das abaxiale Sepalenprimordium früher elaboriert, als die lateralen und das adaxiale (Stadium 3,4). Die vier Petalenprimordien und sechs Stamenprimordien werden annähernd simultan initiiert (Stadium 5). Im Zentrum des Blütenprimordiums wird das Gynoeceum bestehend aus zwei Karpellen gebildet. Blüten in Stadium 5-6 bestehen aus vier bereits differenzierenden Sepalen, die restlichen Organprimordien sind zu diesem Zeitpunkt bereits angelegt, aber noch völlig undifferenziert und nicht irreversibel determiniert (Bowman et al., 1989; Bowman and Meyerowitz, 1991). Während die Zellidentität für die inneren Organe noch teilweise oder vollständig unspezifiziert ist, ist die Identität von Zellen der äußersten Organprimordien schon festgelegt, und deutliche Charakteristika der Sepalenentwicklung können beobachtet werden (Stadium 5). Die Zellidentität der einzelnen Organe scheint abhängig von ihrer Position innerhalb des Blütenprimordiums. Die Identität der Stamenprimordien wird ab Stadium 6 determiniert, und es kommt zu irreversiblen Entwicklungsschritten. Die Spezifizierung von Zellen der Petalen scheint bis zu einem relativ späten Zeitpunkt der Blütenentwicklung reversibel (Bowman et al., 1989; Bowman and Meyerowitz, 1991). Während der Spezifizierung der Identität einzelner Blütenorgane unterläuft jedes Organprimordium einen organspezifisches Entwicklungsprogramm. Im Laufe der Differenzierung entstehen sowohl organspezifische, als auch allgemeine Zelltypen. Morphologische Anzeichen für Differenzierung lassen sich für Stamen und Karpelle ab Stadium 7 beobachten, in Petalen ab Stadium 9.

Stadium	Orientierungspunkt zu Beginn des Sta- diums	Dauer in Stun- den (h)	Alter der Blüte zum Ende des Sta- diums in Tagen (t)
1	Auswölbung an der Peripherie des IM	24	1
2	Furche separiert BP von IM	30	2,25
3	Sepalenprimordien erheben sich	18	3
4	Sepalenprimordien überwachsen FM	18	3,75
5	Petalen- und Stamenprimordien erhe- ben sich	6	4
6	Sepalen umschließen das BP	30	5,25
7	Mediale Stamenprimordien bilden stielförmige Basis	24	6,25
8	Antheren der medialen Stamen diffe- renzieren	24	7,25
9	Petalenprimordien bilden stielförmige Basis	60	9,75

Tabelle 1: Zusammenfassung der einzelnen Stadien der Blütenentwicklung in *Arabidopsis thaliana*. Die wichtigsten Merkmale, die ein Stadium definieren wurden aufgelistet und die Dauer der einzelnen Stadien bzw. das Alter der Blüte eines Stadiums bestimmt (Smyth et al., 1990).

1.2 Die AP2-Familie

In Arabidopsis kodieren etwa 5,9% der geschätzten Anzahl von Genen Transkriptionsfaktoren. Eine der größten Familien ist die AP2/ERF-Familie, die in Arabidopsis aus 147 Mitgliedern besteht (Feng et al., 2005). Diese TF-Familie ist pflanzenspezifisch, und alle Mitglieder besitzen eine hoch konservierte, etwa 60 Aminosäuren lange DNA-Bindedomäne, die APETALA2 (AP2)/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR (ERF) Domäne (Riechmann and Meyerowitz, 1998; Riechmann et al., 2000). AP2-Transkriptionsfaktoren sind in viele Prozesse von Pflanzen Wachstum und Entwicklung involviert, wie z.B. Organidentität der Blüte, Hormonsignaltransduktion oder Differenzierung von Zellen, und in Antwort auf biotischen und abiotischen Stress (Riechmann and Meyerowitz, 1998; Riechmann et al., 2000). Die Familie kann, basierend auf der Aminosäuresequenz in fünf Subfamilien unterteilt werden in APETALA2 (AP2), DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN (DREB, A1– A6), ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR (ERF B1–B6), RELA-TED TO ABI3/VP1 (RAV) und Andere (Sakuma et al., 2002).

Mitglieder der AP2-Subfamilie enthalten zwei AP2-Domänen (Jofuku et al., 1994; Weigel, 1995; Okamuro et al., 1997). Für AINTEGUMENTA (ANT) konnte direkte DNA-Bindung des Proteins nachgewiesen werden. Der TF bindet an das Motiv gCAC(A/G)N(A/T)TcCC(a/g)ANG(c/t), wobei die Länge dieser Sequenz vermuten lässt, dass ANT mit beiden AP2-Domänen parallel an die Sequenz bindet (Krizek et al., 2000). WRINKLED (WRI1), ebenfalls ein Mitglied der AP2-Subfamilie erkennt eine konservierte Sequenz, die als AW(ASL1/WRI1)-Box bezeichnet wird, und aus der Basenfolge CnTnG(n)7CG besteht (Maeo et al., 2009). Mitglieder der RAV-Subfamilie besitzen neben der AP2-Domäne noch eine zweite DNA-bindende Region. Für RAV1 konnte bereits gezeigt werden, dass eine zweiteilige Sequenz erkannt wird, wobei die AP2-Domäne an ein CAACA Motiv bindet, die B3-Domäne interagiert mit der Sequenz CACCTG. Beide Domänen binden unabhängig von einander die spezifische DNA-Sequenz, der Komplex ist allerdings deutlich stabiler, wenn beide Domänen vorhanden sind (Kagaya et al., 1999). Die Mitglieder der ERF- und DREB-Subfamilien besitzen nur eine AP2-Domäne. Diese beiden Subfamilien sind die größten, und werden in jeweils sechs Gruppen aufgeteilt (DREB A1-6; ERF B1-6). Für verschiedene DREBs, wie z.B. CBF1-3 und DREB1A, DREB2A konnte direkte Bindung an die Sequenz A/GCCGAC, das sogenannte Dehydration-Responsive-Element (DRE)/C-repeat nachgewiesen werden (Liu et al., 1998; Sakuma et al., 2002; Zhao et al., 2006). Mitglieder der DREB-Subfamilie sind vor allem an Reaktionen der Pflanze auf abiotischen Stress, wie extreme Temperaturen, hohe Salinität oder Trockenheit (Stockinger et al., 1997; Liu et al., 1998) beteiligt. Die ERFs besitzen in Pflanzen eine bedeutende Funktion für die Reaktion auf biotischen Stress. Für einige Mitglieder (EBP, ERF1-5 und ORA59) konnte spezifische DNA-Interaktion mit der 11Bp langen Sequenz TAAGAGCCGCC, mit dem Kernmotiv GCCGCC nachgewiesen werden (Ohme-Takagi and Shinshi, 1995; Hao et al., 1998; Fujimoto et al., 2000; Zarei et al., 2011). Diese GCC-Box, oder auch Ethylene-Response-Element (ERE) findet sich in einigen Promotoren Ethyleninduzierbarer Gene, die in Pathogenese oder Wundstress involviert sind (Ohme-Takagi and Shinshi, 1995; Buttner and Singh, 1997; Ohme-Takagi et al., 2000; Zarei et al., 2011).

Die Einteilung innerhalb der AP2/ERF-Familie in verschiedene Subgruppen basierend auf Homologie, lässt jedoch nicht immer Rückschlüsse bezüglich ihrer Sequenzspezifität zu. Bisher wurde nur für wenige, der 147 Mitglieder dieser Transkriptionsfaktor-Familie spezifische DNA-Bindung nachgewiesen, und es wurden mittlerweile verschiedene DREB/ERFs charakterisiert, die dieser strikten Einteilung widersprechen. Das DREB TINY bindet mit gleicher Affinität an die DRE-, als auch an die GCC-Box, wodurch es zur Verknüpfung der verschiedenen biologischen Funktionen von DREBs und ERFs kommt. Entscheidend für die Erkennung der GCC-Box durch TINY ist Ser15 der AP2-Domäne (Sun et al., 2008). ABA-INSENSITIVE 4, das ebenfalls der DREB-Subfamilie angehört zeigt spezifische DNA-Bindung an die Sequenz CCAC und ist involviert in die Koordinierung nukleärer Expression von chloroplastenspezifischen Genen (Koussevitzky et al., 2007). *Sakuma et al* mutierten einzelne Basen der DRE- Sequenz, und konnten zeigen, dass bei einem Basentausch an der 2. $(A \rightarrow C/T)$ oder 3. Position $(C \rightarrow T)$ DREB1A trotzdem interagieren konnte, DREB2A hingegen keine spezifische Bindung mehr zeigte (Sakuma et al., 2002). Damit wurde gezeigt, dass diese beiden, nahe verwandten Proteine, obwohl Beide die selbe Sequenz präferieren, doch qualitativ unterschiedlich bezüglich ihrer Bindeeigenschaften sind. Des Weiteren wurde in *Nicotiana tabacum* zwei ERFs, *wound-responsive AP2/ERF-like factor 1 (WRAF1)* and WRAF2 gefunden, die spezifisch an das vascular-system-specific and woundresponsive-cis-element (VWRE) mit der Sequenz GAAAAGAAAATTTC binden (Sasaki et al., 2006).

Die Struktur der AP2-Domäne und des Protein-DNA-Komplexes konnte für AtERF1 mittels Kernspinresonanzspektroskopie aufgeklärt werden (Allen et al., 1998). Die AP2-Domäne kann in zwei strukturell und funktionell verschiedene Bereiche unterteilt werden. Drei anti-parallele
ß-Faltblätter bilden die DNA-Bindedomäne. Diese sind gegen eine α-Helix gepackt, die selber nicht direkt an DNA bindet, sondern das Rückgrat darstellt. Bei AtERF1 wird das dreisträngige β-Faltblatt von den AS Val149 bis Phe176 gebildet, die α-Helix besteht aus den AS Thr178 bis Arg194. Die Struktur wird stabilisiert durch eine Vielzahl hydrophober Bindungen, sowohl innerhalb, als auch zwischen den beiden Teildomänen. In der α-Helix befinden sich eine Vielzahl von Ala-Resten, die mit großen, hydrophoben AS-Resten aus den β-Faltblättern interagieren (Phe157, Phe176, Val171 und Ile161). β -Faltblatt 2 verläuft parallel zur α -Helix, 1 und 3 liegen antiparallel dazu. Die Konfirmation der Domäne wird durch die Bindung an ihre Zielsequenz kaum beeinflusst. Sie bindet an die große Furche der GCC-Box, wobei die N \rightarrow C Richtung von Strang 2 des β -Faltblatts parallel zur 5' \rightarrow 3' Richtung der DNA läuft. Verantwortlich für die spezifische Bindung an die GCC-Box sind vor allem die Guanidyl-Gruppen vierer Argininreste, Arg150, Arg152, Arg162 und Arg170, die hydrophobe Wechselwirkungen (Van-der-Waals-Kräfte) mit fünf Guanin-Basen. Des Weiteren bilden Arg150, Arg162 und Arg170 hydrophobe Interaktionen zu Pyrimidinbasen. Der aromatische Ring von Trp154 und Trp172 interagiert über hydrophobe Wechselwirkungen mit vier verschiedenen Basen. Diese Interaktionen werden als die spezifische Bindung an das konservierte Erkennungsmotiv beschrieben. Stabilisiert wird der Komplex durch eine Reihe von unspezifischen Bindungen, die teilweise zwischen den bereits erwähnten AS über hydrophobe Interaktionen mit der Desoxyribose oder ionische Bindungen mit dem Phosphatrest des Rückgrats bestehen, aber auch zwischen anderen AS mit dem Rückgrat. Die AS Gly148, Lys156 und Thr186 interagieren ebenfalls mit verschiedenen Zucker- und Phosphat-Resten, wobei Thr186 als einzige DNA-bindende AS zum α-helikalen Teil der Domäne gehört. Die unspezifischen Bindungen sorgen nicht nur für eine erhöhte Stabilität des Komplexes, sondern auch für die Bildung der spezifischen Bindungen, indem die DNA in die richtige Position relativ zur AP2-Domäne gebracht wird, bevor die spezifischen Basen erkannt werden (Allen et al., 1998).

Die an der Protein-DNA-Interaktion beteiligten AS sind, abgesehen von Lys156 innerhalb der kompletten AP2/ERF-Familie hoch konserviert. Unklar dabei ist, wie die verschiedenen Proteine trotzdem eine unterschiedliche Sequenzspezifität aufweisen können, und Genexpression in von einander unabhängigen Signaltransduktionswegen regulieren. Da für ERF1 gezeigt wurde, dass der Rest des Proteins keine Auswirkung auf die Konfirmation der AP2-Domäne und ihre Bindeeigenschaften hat (Allen et al., 1998), müssen andere AS innerhalb der Domäne Einfluss darauf haben. Neben den direkt interagierenden AS konnten in der DREB-Subfamilie bereits nicht direkt interagierende AS als essentiell für die Komplexbildung identifiziert werden. In der DREB-Subfamilie sind die AS Val14 und Glu19 der AP2-Domäne hoch konserviert, wohin gegen man bei den meisten ERFs an dieser Position Ala14 und Asp19 findet. DREB1A mit einer AS-Substitution von Val14 nach Ala14 bindet nicht mehr an das spezifische DRE-Motiv. DREB2A beide AS-Reste ausgetauscht (Val14→Ala14 Werden bei und Glu19→Aps19) wird neben der DRE-Sequenz auch die GCC-Box als spezifische Bindestellen erkannt (Sakuma et al., 2002). Außerdem konnte gezeigt werden, dass Ala37, ebenfalls eine hoch konservierte AS in der α-Helix, eine entscheidende Rolle bei der Protein-DNA-Interaktion beider Subfamilien spielt (Liu et al., 2006).

1.3 Dornröschen und Dornröschen-like

Interessanterweise konnte bereits für einige ERFs gezeigt werden, dass sie in verschiedene Entwicklungsprozesse, und nicht in die Reaktion auf biotischen Stress involviert sind. Die Überexpression von *TINY* führt z.B. zur Verringerung der Zellelongation und damit zu Pflanzen mit reduzierter Organgröße (Wilson et al., 1996). Bei der Funktionsgewinnmutante von *LEAFY PETIOLE (LEP)* wurden Blätter mit fehlenden Petiolen, verkürzten Schoten und eine allgemein verzögerte Entwicklung der Pflanzen beobachtet (van der Graaff et al., 2000). Auch für die beiden Mitglieder der *AP2*-Familie *DORN-RÖSCHEN (DRN)* und *DORNRÖSCHEN-LIKE (DRNL)* konnte die Beteiligung an verschiedenen Entwicklungsprozessen gezeigt werden.

DRN wurde auf der Suche nach bislang unbekannten Genen, die die Funktion des SAMs beeinflussen, entdeckt. Mit Hilfe eines Transposon-vermittelten Aktivierungsmutagenesesystems (<u>Transposon mediated Activation tagging Mutagenesis in ARAbidopsis</u>, TAMARA), welches in Arabidopsis thaliana etabliert werden konnte, wurde die Dornröschen-1D Mutation, in der DRN ektopisch exprimiert wird, identifiziert (Kirch et

al., 2003). Als Konsequenz dieser Fehlexpression kommt es zum Verlust der Meristemaktivität im vegetativen Meristem, Infloreszenzmeristem und in floralen Meristemen. Das SAM stellt seine Aktivität nach der Bildung von 6 bis 7 Rosettenblättern ein, vergrößert sich und bildet in unregelmäßigen Abständen nadelförmige Filamente. Diese Pflanzen bilden erst nach vielen Wochen sekundäre Infloreszenzen, die meist ebenso arretieren, teilweise aber Blüten bilden und schließlich Samen produzieren (Kirch et al., 2003). *Banno et al.* (2001) beobachteten die Cytokinin-unabhängige Regeneration von Sprossen aus Wurzelgewebe durch konstitutive Überexpression von *DRN*, benannt als *ENHANCER OF SHOOT REGENERATION 1 (ESR1)*, woraus geschlossen wurde, dass *DRN* synergistisch zu Cytokinin agiert.

DRNL ist interessanterweise ebenfalls in Aktivierungsmutagenese-Experimenten in *Arabidopsis* aufgefallen (Ward et al., 2006). In *sob2-D phyB-4* (*suppressor of phytochrome B-4 [phyB-4]#2 dominant*) wurde, durch Überexpression von *SOB2/DRNL* in der *phyB-4* Mutante der Hypokotyl-Phänotyp der Mutante unterdrückt. Ein direkter Beitrag von *DRNL* zur Hypokotylentwicklung im Rahmen des normalen Pflanzenwachstums ist jedoch eher unwahrscheinlich, da bisher keine Transkription in wildtypischen Keimlingen und adulten Geweben nachgewiesen werden konnte (Ward et al., 2006). In einem unabhängigen Screen von überexprimierenden Pflanzen fiel die *bolita-D (bol-D)* Mutante durch starken Zwergphänotyp auf (Marsch-Martinez et al., 2006). Die ektopische Expression von *BOL/DRNL* führt zu einer allgemeinen Verzögerung der Entwicklung, die Pflanzen weisen eine deutlich reduzierte Fertilität auf, und Blätter, Knospen, Blüten und Schoten sind missgebildet. Konstitutive Überexpression von *DRNL* durch den 35S-Promotor führte zu einem vergleichbaren Phänotyp, wobei die stärksten Phänotypen sogar sowohl männlich als auch weiblich steril sind (Kirch et al., 2003; Nag et al., 2007).

Die *drn-1* und *drnl-1* Einzelmutanten zeigen beide pleiotrope Defekte in der Entwicklung der Keimblätter mit geringer Penetranz, wobei das SAM stets voll funktional ist (Chandler et al., 2007). Die *drn drnl* Doppelmutante weist diese Defekte mit einer erhöhten Penetranz auf, was auf Redundanz der beiden Gene bezüglich der Kotyledonenentwicklung schließen lässt. Die *drn* Mutante zeigt außerdem während der Embryogenese einen Zellteilungsdefekt in der Hypophyse, der in der *drnl* Mutante nicht zu finden ist. Auch dieser Phänotyp ist in der Doppelmutante mit stark erhöhter Frequenz vertreten und zeigt sich mit annähernd voller Penetranz (94%). Des Weiteren lässt sich eine Varianz bezüglich der Anzahl verschiedener Blütenorgane, hauptsächlich der Stamen, in der *drnl* Mutante beobachten, die in *drn* nicht auftritt (Chandler, nicht veröffentlicht).

Durch Mutagenese von *pistillata-5 (pi-5)* Pflanzen mit Ethylmethansulfonat (EMS) wurde nach Mutanten gesucht, die den *pi-5* Phänotyp verstärken oder abmildern. Dabei wurde ein starkes Allel von *drnl* als *b-class-modifier (bcm)/drnl-2* Funktionsverlustmut-

ante entdeckt, welches den Blütenphänotyp von *pi-5*, bei dem die Organe des zweiten Wirtels Sepalen statt Petalen entsprechen, verstärkt. In der Doppelmutante bilden sich meist filamentöse Strukturen statt Stamen, teilweise auch keine Organe im dritten Wirtel, was dazu führt, dass die Doppelmutante grundsätzlich männlich steril ist. Dieser Phänotyp wurde ähnlich auch in der *bcm/drnl-2* Einzelmutante festgestellt, die in Vergleich zur Doppelmutante, wenn auch nur selten, fertile Stamen besitzt (Nag et al., 2007).

DRN wird der Gruppe B1 der ERF-Subfamilie zugeteilt, unter anderem zusammen mit ERF3, ERF4, LEP und dem nächst verwandten Protein DRNL (Sakuma et al., 2002). Für DRN konnte bereits spezifische Interaktion mit der GCC-Box beobachtet werden (Banno H., 2006). DRN und DRNL sind im Abstand von etwa 24cM auf Chromosom 1 lokalisiert. Beide Proteine besitzen im Vergleich zur AP2-Subfamilie nur ein DNA bindendes Motiv und werden stets nur von einem Exon kodiert (Riechmann et al., 1998). Die Homologie von DRN und DRNL lässt vermuten, dass sie aus einer intrachromosomalen Genduplikation entstanden sind. Die beiden Proteine besitzen eine Ähnlichkeit von 57% bei einer Identität von 31%, die AP2-Domänen beinhalten allerdings nur sechs unterschiedliche AS-Reste, und besitzen damit eine Ähnlichkeit von 94% mit 90% Identität. Abgesehen von der AP2-Domäne konnten keine bekannten funktionellen Domänen oder Strukturmotive identifiziert werden. Auch fehlt es an klassischen Kernlokalisierungs-Signalen (Hicks et al., 1995). Die transiente Expression der isolierten AP2-Domäne von DRN fusioniert mit GFP, zeigte jedoch ein Zellkern-spezifisches Signal, was eine Kernlokalisierungs-Sequenz innerhalb der AP2-Domäne vermuten lässt (Matsuo and Banno, 2008).

1.4 Zielsetzung der Arbeit

Im Rahmen dieser Doktorarbeit sollten die Expression der beiden Mitglieder der AP2-Familie *DRN* und *DRNL* während verschiedener Entwicklungsphasen genauer analysiert und verglichen werden.

Des Weiteren sollten mögliche Zielgene von *DRN* und *DRNL* identifiziert werden, um die biologische Funktion der beiden putativen AP2-Transkriptionsfaktoren zu evaluieren. Dabei wurde einerseits die direkte Interaktion von DRN und DRNL mit einer spezifischen DNA-Sequenz untersucht, um mögliche Zielsequenzen zu identifizieren. Außerdem wurde nach allgemeinen Zielgenen gesucht, die von *DRN* und *DRNL* reguliert werden.

2 Material und Methoden

2.1 Material

2.1.1 Bakterienstämme

Zur Klonierung und Amplifikation von Plasmid-DNA wurde der Bakterienstamm *E.coli* DH5α (Hanahan, 1983) verwendet. Für die Expression rekombinanter Proteine wurden die Stämme *E.coli* BL21DE3 (Phillips et al., 1984) und *E.coli* M15(pREP4) (*Qiagen*, Mannheim) eingesetzt. Zur Transformation von *Arabidopsis Col-0* wurde der *Agrobakterium tumefaciens*-Stamm GV3101(Koncz et al., 1986) benutzt.

2.1.2 Klonierungs- und Expressionsvektoren

Es wurden folgende Vektoren verwendet:

- pCR II TOPO (Invitrogen, Karlsruhe): Subklonierung von PCR-Fragmenten
- pGPTV/BaR/AscI oder pGPTV/Kan/AscI (Uberlacker et al., 1996): Die binären T-DNA Vektoren enthalten innerhalb der T-DNA Grenzen neben einem BASTA oder Kanamycin Resistenzgen das GUS Markergen uidA.
- pIVEX 2.5d und pIVEX 2.6d (*Roche*, Mannheim): Expressionsvektoren f
 ür zellfreie Proteinsynthese mit n-terminalen (2.6d) oder c-terminalem (2.5d) HA-Epitop
- pQE-30 UA (*Qiagen*, Mannheim): Expressionsvektor für das *Qiaexpress*-System. Synthetisierte Proteine erhalten ein n-terminales His-Epitop (6xHis).

2.1.3 Verwendete Desoxyoligonukleotide

Für die durchgeführten Polymerasekettenreaktionen wurden folgende Oligonukleotide (Sequenz 5' zu 3') bei der Firma *Sigma* (Darmstadt) bezogen:

Oligonukleotide zur Klonierung der DRNL Reportergene

XmaCl-GFP_F	CCCGGGATGAAGACTAATCTTTTTCTC
XmaCl-GFP_R	CCCGGGTTAAAGCTCATCATGTTTGTA
BamHI-CFP_F	GGATCCATGGTGAGCAAGGGCGA
SacI-CFP_R	GAGCTCCCCGGGCTACTTGTACAGCT
XmaCl-DRNL_F	CCCGGGATGGAAGAAGCAATC
BamHI-DRNL R	GGATCCATAATCATCATGAAAG

Oligonukleotide zur Klonierung der Konstrukte für die Proteinsynthese

1. Klonierung in pIVEX2.5d/2.6d

DRN-RTS-F	TATCCATGGAAAAAGCCTTGAGAAA
DRN-RTS-R	TATCCCGGGTCCCCACGATCTTCGGCAAGT
DAP2-RTS-F	TATTCATGAGGTACCGCGGCGTACGCCGGA
DAP2-RTS-R	TATCCCGGGAGTAAAATTAGTACGAGCCTTTGCT
DRNL-RTS-F	TATCATGAAAGAAGCAATCATGAGAC
DRNL-RTS-R	TATCCCGGGATAATCATCATGAAAGCAATAC
DLAP2-F	CCCGGGATGAGGTACCGAGGCGTGAGGCGTAGG
DLAP2-R	CCCGGGGACGAAGTTGGTTCGAGCTTTAA
DREB1A-RTS-F	TATCCATGGACTCATTTTCTGCTTT
DREB1A-RTS- R	TATCCCGGGCGTCGCATCACACATCTCAT

2. Klonierung der Chimären in pIVEX2.5d/2.6d

DAP2-R-Ad	CCACGGCCTCCGGCGTACGCCGCGGTACCTCGAAGATTTCTTGTTGGA
	AAA
DLAP2-F	
DLAP2-K	
DLAP2-K-Ad	
DKN-K-Ad	AGCCAAC
DREBhelix-F	ACCGCTGAGATGGCAGCTCGAGCTCAC
DRN-F2-Ad	CCCTTCGTGGCCGATCAGCCTGTCTCAATTTCGCTTATCCGACAGCTGT
DREBhelix-R	AGCGAAATTGAGACAGGCTGATCG
DRNL-R-Ad	GCGGCAACGTCGTGAGCTCGAGCTGCCATCTCAGCGGTGTCAAA
	TGTTCCGAGCCATCGTCT
DRNL-F2-Ad	CCCTTCGTGGCCGATCAGCCTGTCTCAATTTCGCTTACCAATGCCTTCT
	CTCGACT
DREB-R2	TTGAAATGTTCCGAGCCAAATCCTT
DREB-F2	GACTCGGCTTGGAGACTCCGAAT
DRNhelix-F-Ad	CCAAACAAGAAAACAAGGATTTGGCTCGGAACATTTCAAACGGCGGA ACAAGCCGCTTGT
DRNhelix-R-Ad	CGCAAGTTGATTCCGGGATTCGGAGTCTCCAAGCCGAGTCAGTAAAAT
	TAGTACGAGCCTTTGCT
DRNLhelix-F-Ad	CCAAACAAGAAAACAAGGATTTGGCTCGGAACATTTCAAACGGCCG
	AGGAAGCAGCTTGCGCA
DRNLhelix-R-Ad	CGCAAGTTGATTCCGGGGATTCGGAGTCTCCAAGCCGAGTCGACGAAG TTGGTTCGAGCTTT
DRNI nAd-R2	GGAGTTTCTCCGACGAACTCCTCTGTATATTATCGTAGAGACACCGGA
	AGC
DREBap2-F	ATATACAGAGGAGTTCGTCGGAGAAA
DRNnAd-R2	GGAGTTTCTCCGACGAACTCCTCTGTATATCGTCGTGCTGCTGCCAG
	CTCCGGC
DREBn-R	TGGGTGACGAGTCTCACGAAACTT
DRNap2Ad-F	CGTAAGAAGTTTCGTGAGACTCGTCACCCAAGGTACCGCGGCGTAC
	GCCGGAGG
DRNLap2Ad-F	CGTAAGAAGTTTCGTGAGACTCGTCACCCAAGGTACCGAGGCGTGA
	GGCGTAGG

3. Klonierung in pU30 zur Expression in E.coli

\CTT
Т
ĩ
Ά

U	υ	0
wGCCs	GATCCAGAGCCGCCACTA	
wGCCas	GATCTAGTGGCGGCTCTG	
mGCCs	GATCCAGATCCTCCACTA	
mGCCas	GATCTAGTGGAGGATCTG	
wDREB1As	GATCCAGATACCGACATACT	TA
wDREB1Aas	GATCTAGTATGTCGGTATCT	G
CAST-R76	CAGGTCAGTTCAGCGATCCT	GTCGNNNNNNNNNNNNNN
	NNNNNNNNNNGAGGCGA	ATTCAGTGCAACTGCAGC
CAST-F	GCTGCAGTTGCACTGAATTC	GCCTC
CAST-R	CAGGTCAGTTCAGCGGATCO	CTGTCG

Oligonukleotide zur Verwendung für EMSA und CASTing

2.2 Methoden

Alle molekularbiologischen Methoden erfolgten nach *Current Protocols in Molecular Biology Volume 2* (Wiley, 1996) oder nach Herstellerangaben und werden nicht näher beschrieben.

2.2.1 Nicht-radioaktive RNA In situ Hybridisierung (ISH)

Die *ISH* wurde nach einem gebräuchlichen Laborprotokoll durchgeführt (ausführliche Beschreibung siehe Dissertation Durantini, 2009).

Als Sonde für *DRNL* wurde ein 562 bp langes DNA-Fragment verwendet, von Position 348-918 *downsteam* des Transkriptionsstarts.

2.2.2 Klonierung der Chimären

Die im Rahmen dieser Arbeit erzeugten Chimären wurden mittels Fusions-PCR (Charlier et al., 2003; Szewczyk et al., 2006) erzeugt. Diese Methode erlaubte den Austausch von einzelnen DNA-Abschnitten der Protein kodierenden Sequenz, indem einzelne Teilbereiche mit anhängenden Adaptersequenzen synthetisiert werden, welche im nächsten Schritt hybridisieren und danach als ein Produkt polymerisiert werden. Vorteil dieser Methode gegenüber der klassischen Klonierung unter Verwendung von Restriktionsendonukleasen ist die völlige Unabhängigkeit von Schnittstellen. Somit kann der gewünschte Teilbereich exakt entfernt bzw. ausgetauscht werden, ohne dass die Sequenz durch die Erzeugung etwaiger neuer Schnittstellen verändert wird.

2.2.3 Proteinsynthese und Aufreinigung

Für die *in vitro* Proteinsynthese wurden drei verschiedene Systeme verwendet, *EasyXpress Protein Synthesis Kit (Qiagen*, Hilden), *Rapid Translation System RTS 100 (Roche*, Mannheim) und *TNT SP6 High-Yield Wheat Germ Protein Expression System* (*Promega*, Mannheim). Dabei wurde sich an die Herstellerprotokolle gehalten. Für die Aufreinigung der *in vitro* translatierten Proteine über ein HA-Epitop wurden *MACS-MicroBeads anti-HA (Miltenyi Biotech*, Bergisch Gladbach) verwendet.

Die Proteinexpression in *E.coli* erfolgte mit einem kompletten Klonierungs-, Expressions- und Aufreinungskit (*Qia*Express, *Qiagen*, Mannheim). Die Aufreinigung der mit His-Epitop versehenen Proteine erfolgte über *Ni-NTA* unter nativen Bedingungen.

2.2.4 EMSA und CASTing

Bei den *EMSA*s wurde sich grundlegend nach *Buratowski und Chodosh* (Buratowski and Chodosh, 2001) oder nach den für DREB1A getesteten Bedingungen (Urao et al., 1993; Liu et al., 1998) gerichtet, wobei die Parameter variierten. Es wurden die Puffersysteme TBE, TAE und Tris-Glycin gestestet, der pH-Wert bewegte sich zwischen 7,0-8,0 und es wurden verschiedene Konzentrationen (6-10%) und Vernetzungen (1:40-1:80) für die Acrylamid/Bis-Acrylamid-Gele verwendet. Außerdem wurden verschiedene Bindebedingungen getestet, wobei die Temperatur (4°C-RT), pH-Wert (7,0-8,0), Salz- (50-200 mM) und BSA-Konzentration (0-300 μ g/ml) variierten. Bei den Kompetitionversuchen wurden je 0,1-5 μ g spezifischer oder unspezifischer Kompetitor eingesetzt.

Die *CASTings* erfolgten grundlegend nach *Pollock* (Pollock, 2001). Es wurde zwei unabhängige Experimente durchgeführt, mit sechs IPs und abschließendem *bandshift* bzw. mit acht IPs ohne *bandshift*. Für die Immunoprezipitation wurden *MACS®MicroBeads anti-HA* (*Miltenyi Biotech*, Bergisch Gladbach) verwendet, die Waschungen erfolgten unter sehr milden und nativen Bedingungen. Die selektierten Oligonukleotide wurden in pCR II TOPO kloniert und sequenziert.

2.3 Erzeugte Klone und transgene Pflanzenlinien

2.3.1 DRNL Reportergen-Linien in pGPTV

2.3.2 Konstrukte zur in vitro Proteinexpression in pIVEX 2.5d/2.6d

DRN, DRNL und DREB1A

Chimäre DRN, DRNL und DREB1A

Austausch der AP2-Domäne

Austausch der α -Helix der AP2-Domäne

3 Ergebnisse

3.1 Expression von Dornröschen-like in Arabidopsis thaliana

Zur Analyse der Promotoraktivität wurden verschiedene transgene Pflanzenlinien in *Arabidopsis* generiert, die unterschiedliche Reportergene unter dem *Dornröschen-like*-Promotor exprimieren. Zum einen wurden translationale Promotorkonstrukte erzeugt, in der die genomische Sequenz von 5,6 KB *upstream* und 3,8 KB *downstream* des *DRNL*-Transkriptionsstarts, jeweils bis zum nächsten bekannten kodierenden Bereich, ein DRNL-CFP Fusionsprotein treibt. In transkriptionalen Linien treibt dieser genomische Bereich, im folgenden als *DRNL*-Promotor (*pDRNL*) bezeichnet, das Reportergen erGFP. Die Analyse von jeweils 10 unabhängigen Linien ergab stets identische Muster.

Des Weiteren wurde die Transkription von DRNL im Embryo und der Infloreszenz durch RNA *in situ Hybridisierung* analysiert. Auch der Vergleich von RNA zu Protein Lokalisierung ergab kaum Divergenz, DRNL wirkt also zell-autonom und wird nicht sekretiert.

3.1.1 DRNL wird während der gesamten Embryogenese exprimiert

Der *DRNL*-Promotor ist bereits zu einem frühen Stadium der Embryogenese aktiv. Ab dem 16/32-Zellstadium wird *DRNL* im Proembryo exprimiert, wohin gegen Hypophyse und Suspensor keine Promotoraktivität zeigen (Abb. 1A,). Im späteren Globulärstadium ist die *DRNL*-Expression auf den apikalen Bereich begrenzt (Abb. 1B) und teilt sich schließlich im Dermatogenstadium in zwei distinkte Signale an den Seiten (Abb. 1C, G). Ab diesem Zeitpunkt ist der Promotor ausschließlich in den Kotyledonenprimordien aktiv. Im Herzstadium ist die Expression noch vergleichsweise weitläufig in drei bis vier Zellschichten in den kompletten auswachsenden Keimblättern zu beobachten (Abb. 1D-F, J). In späteren Stadien beschränkt sich die Expression auf wenige Zellen in den Spitzen der Kotyledonen, jedoch zu keinem Zeitpunkt in der L1-Schicht (Abb. 1G-H). Zum Ende des Torpedostadiums werden die ersten Blattprimordien angelegt, in denen der Promotor auch starke und zunächst weitläufige Expression in allen Zellen, die histologisch der Organanlage zugeordnet werden können (Abb.1J). Die beiden ersten Blätter werden distich angelegt und stehen sich damit direkt gegenüber, allerdings werden sie zeitlich versetzt initiiert (Abb. 1K).

Die Muster der *RNA in situ Hybridisierung* (Abb. 1M-P) stimmen mit den Expressionsmustern der translationalen und transkriptionalen Linien weitestgehend überein. Einzig in Herz- und Torpedostadium ist das Muster aller analysierten, transkriptionalen Linien (Abb. 1D, I) im Vergleich zu den translationalen Linien (Abb. 1E-H) deutlich breiter. Der Ausschluss von DRNL aus der L1-Schicht der entstehenden Kotyledonenprimordien wird in der transkriptionalen Linie nicht beobachtet, was zum einen durch die große Signalstärke des erGFPs zu erklären ist, welches möglicherweise noch in benachbarte Zellen strahlt. Außerdem ist *DRNL*-Expression sehr dynamisch, was vermuten lässt, dass das Protein eine geringe Halbwertszeit besitzt und in der Zelle schnell proteolysiert wird, wodurch auch das Fusionsprotein zügig abgebaut würde, die transkriptionale erGFP Fusion hingegen vergleichsweise langsam proteolysiert wird und das Fluorophor zunächst akkumuliert. Mit Hilfe eines *PESTfind analysis* Programms (Néron et al., 2009) konnten in DRNL tatsächlich fünf Sequenzbereiche lokalisiert werden, die als mögliche PEST-Motive dienen. PEST-Sequenzen bestehen zu einem hohen lokalem Anteil aus Prolin- (P), Glutaminsäure- (E), Serin- (S) und Threoninresten (T) und reduzieren die Halbwertszeit von Proteinen dramatisch, durch die Markierung eines Proteins für den raschen proteolytischen Abbau (Rogers et al., 1986; Rechsteiner and Rogers, 1996).

Abbildung 1: Expression von *DRNL* Transkript und Protein während der Embryogenese. Expressionsmuster von *pDRNL::erGFP* (A-D;I-L) und *pDRNL::DRNL-CFP* (E-H) und *in situ Hybridisierung* (M-P) im frühen Globulär- (A,M), späten Globulär- (B,N), Dermatogen- (C), Herz-(D,O) und Torpedostadium (G-I,P). Auf- und Seitenansicht eines Herzstadium Embryos (E,F). Reifer Embryo mit bereits auswachsenden Primärblättern (J) und Detailaufnahme von Blatt 1 und 2 (1K). Homozygote *pDRNL::erGFP*-Linie in der *mp* Verlustmutante. Der Messbalken entspricht 10µm.

Da die Transkription von *DRN* in der Spitze von Kotyledonen in späten embryonalen Stadien bereits, als direkt durch *AUXIN RESPONSE FACTOR 5 (ARF5)/ MONOPTEROS (MP)* reguliert, identifiziert wurde (Okushima et al., 2005; Cole et al., 2009), sollte auch eine mögliche Verknüpfung von *MP* und *DRNL* analysiert werden. Dazu wurden *pDRNL::erGFP* Linien in die *arf5-1* T-DNA Mutante (Okushima et al., 2005) aus der SALK Kollektion gekreuzt. Die *mp* Mutation ist homozygot letal, weshalb *mp* heterozygote und *pDRNL::erGFP* homozygote Linien ausgewertet wurden. Homozygot mutante Embryonen sind ab dem Torpedostadium morphologisch identifizierbar. Sie entwickeln kein provaskuläres System in der basalen Domäne (Berleth and Jurgens, 1993; Przemeck et al., 1996; Hardtke and Berleth, 1998), wodurch weder Hypokotyl, noch Primärwurzel gebildet werden, die beide im Wildtyp aus diesem Bereich entstehen. In Embryonen mit offensichtlich basalem Defekt wurde keine *DRNL*-Expression detektiert (Abb. 1L). Außerdem weist auch ein Teil der nicht phänotypischen Embryonen in verschiedenen Stadien keine Expression auf (nicht dargestellt). *DRNL* scheint also in der homozygoten *mp* Mutante zu keinen Zeitpunkt exprimiert zu werden. Im Vergleich dazu wurde für DRN nur ein verändertes Muster für phänotypisch mutante Embryonen beobachtet. Pflanzen mit basalem Defekt zeigten keine DRN-Expression in den Kotyledonenspitzen, die Expression im SAM hingegen ist nicht beeinflusst (Cole et al., 2009).

3.1.2 DRNL wird während der Organogenese von Blättern exprimiert

Die bereits in der Ovule angelegten Blattprimordien wachsen nach der Keimung weiter aus, wobei der *DRNL*-Promotor in dem gesamten, histologisch dem Blatt zugehörigen Bereich aktiv ist (Abb. 2A). Während das Blatt elongiert, beschränkt sich die Expression von DRNL immer mehr auf den apikalen Teil des jungen Blattes (Abb. 2B) und die Stipulen (Abb. 2C). Schließlich findet sich Expression nur noch in wenigen Zellen der L2 und L3 Schicht (Abb. 2D), analog zu den sich entwickelnden Kotyledonenprimordien. Auch die Folgeblätter zeigen *DRNL*-Promotoraktivität, vergleichbar zu den Primärblättern (Abb. 2E, F). Diese werden in Gegensatz zu Blatt 1 und 2 nicht distich initiiert, sondern in der für *Arabidopsis* ab dem dritten Blatt typischen spiraligen Anordnung. Außerdem ist ein starkes Signal in den Hydatoden junger Blätter zu beobachten (Abb. E, F).

Sowohl *DRNL*, als auch *DRN* werden in den Stipulen ubiquitär exprimiert (Abb. 2C). Um die Expression der beiden Gene während der Initialisierung und dem Auswachsen lateraler Organe aus dem vegetativen Sam besser verfolgen zu können, wurde die transkriptionale Reportergen-Linie *pDRNL::erGFP* in den *pressed flower1 (prs)* Hintergrund gekreuzt. *PRS1/WOX3* besitzt eine wichtige Funktion bei der Entwicklung lateraler Pflanzenorgane, wie den Stipulen und den lateralen Sepalen (Matsumoto and Okada, 2001; Nardmann et al., 2004). Bezüglich der lateralen Sepalen konnte gezeigt werden, dass die Organe in der Mutante zwar initiiert werden, ein vollständiges Auswachsen jedoch nicht stattfindet. In der *prs* Mutante konnte kein Signal an Stellen, an denen die Stipulen lokalisiert sind, bzw. diese initiiert werden, detektiert werden. Im Gegensatz zu den lateralen Sepalen werden in der Mutante anscheinend keine Zellen für die Bildung von Stipulenanlagen rekrutiert. Konträr zu *DRNL* wird *DRN* nur im Zentrum des Meristems exprimiert (nicht dargestellt).

Abbildung 2: Expression von *DRNL* während der vegetativen Phase. Expressionsmuster von *pDRNL::erGFP* in WT (A-C) und der *prs* Mutante (D-F) 1 (A), 2 (B), 3 (C), 4 (D), 5 (E) und 8 (F) Tage nach Keimung. Ein Kotyledonen wurde entfernt, um direkte Aufsicht auf das SAM und die jungen Blätter zu erhalten. Die Pfeilspitzen in (E,F) markieren die Hydatoden, Abkürzungen: Stipulen (Sp), Blatt (B), erstes (1), zweites (2), drittes (3) und viertes Blatt (4). Der Messbalken entspricht 50μm.

Die Anzahl der *DRNL* exprimierenden Zellen wurde mit den Ergebnissen einer klonalen Sektoranalyse verglichen (Irish, 1992). In dieser Studie ergab sich für Blatt 1-2 eine minimale Anzahl von 8-9 Zellen, die Blätter 3-4 werden aus jeweils 4-5 Gründerzellen gebildet. Der *DRNL*-Promotor ist in den Blattprimordien bereits aktiv, sobald diese histologisch zu erkennen sind. Dabei wird zunächst eine sehr kleine Zellpopulation vormarkiert, pro Primordium maximal 10 Zellen, die in zwei Zellreihen organisiert sind.

3.1.3 DRNL markiert alle Organanlagen in der Blüte

Das Expressionsmuster von *DRNL* während der Blütenentwicklung ist äußerst dynamisch. Um dieses komplexe Muster anschaulich darstellen zu können, wurden mit Hilfe von konfokaler *Laser-Scanning-Mikroskopie (LSM)* komplette Infloreszenzen als *zstacks* aufgenommen, und diese mit Hilfe des Programms *IMARIS* (Bitplane, Zürich) in dreidimensionale Bilder umgewandelt. Dabei wurden neben dem Infloreszenzmeristem Blüten der Stadien 1 bis 8 detailliert analysiert. Die Einteilung in verschiedene Blütenstadien erfolgte nach *Bowman und Smyth* (1990). Dabei wurde sich hauptsächlich nach dem Entwicklungsstadium der Sepalen gerichtet, die in den 3D-Animationen morphologisch deutlich zu erkennen waren. Im IM zeigt der DRNL-Promotor keine Aktivität, analog zum embryonalen und vegetativen Meristem, in denen DRNL auch nicht exprimiert wird. Expression findet sich in den Blütenanlagen bereits zu einem Zeitpunkt, an dem es noch keine morphologischen Anzeichen für ein Primordium gibt, dem P-1 und PO Stadium (Abb. 3A). In Blütenstadium 1, welches sich als Auswölbung in der Peripherie der Apex definiert, ist DRNL in dem kompletten, sich auswölbendem Blütenprimordium exprimiert (Abb. 3A), und begrenzt sich schließlich im frühen Stadium 2 auf die abaxiale Seite des Blütenprimordiums (Abb. 3B), wo die abaxiale Sepale entsteht. Zu diesem Zeitpunkt trennt eine Furche bereits die entstehende Blüte vom IM. Kurz darauf zeigt sich Expression zunächst beidseitig an lateraler Position und schließlich adaxial (Abb. 3C). Gegen Ende des Stadiums 2 findet sich DRNL-Expression an der Position aller vier Sepalen, wobei die adaxiale Sepale näher an den lateralen Sepalen liegt, als die abaxiale (Abb. 3D). Das abaxiale Signal trennt sich während des Blütenstadiums 2 vertikal in zwei distinkte Signale auf (Abb. 3E). Zwischen dem FM und dem Sepalenwirtel sind ab dem späten Stadium 2 lateral außerdem noch zwei sichelförmige Felder zu erkennen, an einer Position, an der zu einem späteren Zeitpunkt die Petalen entstehen (Abb. 3F). Außerdem lässt sich im Zentrum der Stadium 2 Blüte in wenigen Zellen der L1 schwache Promotoraktivität detektieren (Abb. 3F). Diese Zellen wurden möglicherweise bereits zu diesem Zeitpunkt als Vorläuferzellen für die Stamenanlagen rekrutiert. Während die Sepalen ab Stadium 3 beginnen auszuwachsen, und die Expression sich auf die Spitzen der Sepalen begrenzt, zeigt sich zentrumsnah eine ringförmige Expressionsdomäne, die das FM umschließt (Abb. 3G-I). Im späten Stadium 4 teilen sich sowohl dieser Ring, als auch die beiden sichelförmigen Felder in mehrere einzelne Signale auf. Der Ring spaltet sich in vier Signale auf, die positional mit den medialen Staubblättern übereinstimmen. Die sichelförmigen Expressionsdomänen trennen sich in jeweils drei Signale, wobei das mittige Signal mehr apikal positioniert ist, als die beiden äußeren (Abb. 3J, 4M). Die äußeren Domänen markieren die später entstehenden Petalen vor, das mittlere Signal markiert das laterale Staubblatt, das zu diesem Zeitpunkt zwischen den Petalen und den mediale Stamen initiert wird. Im Zentrum, wo auch das FM lokalisiert ist, zeigen sich zu diesem Zeitpunkt zwei, zunächst leicht diffuse Signale (Abb. 3K), die in Stadium 5 deutlich die beiden Karpell-Primordien vormarkieren (Abb. 3L). Gleichzeitig wird DRNL stark in den auswachsenden, medialen und laterale Stamen exprimiert (Abb. 3M). In allen Sepalen ist der Promotor nur noch sehr schwach in den Spitzen aktiv und verschwindet dann endgültig. Die abaxiale Sepale wächst am schnellsten, und zeigt schon ab Stadium 5 kaum mehr DRNL-Expression. Zu diesem Zeitpunkt sind die beiden lateralen Sepalen noch sehr klein. In ihren Spitzen lässt sich noch bis in Stadium 6 Promotoraktivität detektieren. Die Petalen zeigen in Stadium 5 und 6 kaum DRNL-Expression. Erst in Stadium 8 bis 9, wenn die Blütenblätter beginnen auszuwachsen findet sich ein Maximum in den Spitzen. In diesem Stadium findet sich außerdem noch

ein Expressionsmaximum in den Spitzen aller Stamen (Abb. 3P). In den lateralen Sepalenanlagen von Blüten der *prs* Mutante zeigt sich ein deutliches Expressionsmaximum, obwohl diese Mutante keine lateralen Sepalen bildet (Matsumoto and Okada, 2001; Nardmann et al., 2004). Der *DRNL*-Promotor ist, wie in wildtypischen Pflanzen schon ab Blütenstadium 2 an den Positionen, an denen die lateralen Sepalen angelegt werden aktiv (nicht dargestellt). Expression an diesen Positionen lässt sich bis zu Stadium 5 oder 6 detektieren (Abb. 3Q, Blütenstadium 4), ohne dass die lateralen Sepalen deutlich elongieren. *DRNL*-Expression korreliert dabei offensichtlich mit sehr frühen Stadien der Organinitiierung, unabhängig der Organogenese.

Abbildung 3: Expression von DRNL während der floralen Entwicklung.

Expressionsmuster von *pDRNL::erGFP* im IM und FM von Stadium 1-9 (nach *Bowman and Smyth*,1990). Aufsicht auf ein IM mit Blütenprimordien bis Stadium 2 (A) und einzelne Blüten in frühem (B), mittlerem (C,D,E) und spätem (F) Stadium 2, Stadium 3 Blüte (G), frühe (H,I) und späte (J,K) Stadium 4 Blüten, Stadium 5 Blüte (L,M), Stadium 6 Blüte (N,O) und Stadium 8-9 Blüte (P). Stadium 4 Blüte einer *psr* Mutante (Q). Die Blütenprimordien werden als laterale Ansicht (E,G,I,J,M,N,P) und Aufsicht (B,C,D,F,H,K,L,O,Q) gezeigt. Abkürzungen: Infloreszenzmeristem (IM), florale Primordien (P-1,P0,P1), Blütenstadium (B1,B2), abaxiale Sepale (abS), laterale Sepale (IS), adaxiale Sepale (adS), rudimentäres Tragblatt (rT), laterales Stamen (ISt), mediales Stamen (mSt), Karpell (Ka), Petale (P), rudimentäre laterale Sepale (rIS). Die weißen eckigen Umrandungen umschließen die morphogenen Felder, welche die lateralen Sepalen und die Petalen vormustern. Das ringförmige Feld welches die medialen Stamen vormustert, ist durch die weißen runden Umrandungen gekennzeichnet. Der Messbalken entspricht 10µm.

Es wurde weiter beobachtet, dass DRNL in einzelnen Organen zeitweise nicht oder nur äußerst schwach exprimiert wird. Besonders auffällig sind die Petalen, die sehr früh in der Organogenese angelegt werden, und zu dem Zeitpunkt ein deutliches Signal zeigen, dann jedoch über einen längeren Zeitraum bezüglich ihrer Entwicklung arretiert sind bzw. nur sehr langsam wachsen, und *DRNL*-Promotoraktivität in Stadium 6 und 7 kaum detektiert werden kann. Sobald die Petalen in Stadium 9 beginnen zu elongieren, ist wieder ein deutliches Signal zu finden. *DRNL* scheint also in der Blüte an der Regulation eines zweistufigen Prozesses beteiligt zu sein. Zum einen werden alle floralen Organanlagen vormarkiert lange bevor sie morphologisch erkennbar sind, zum anderen besitzt *DRNL* weiterhin eine Funktion bei der Organogenese. Während der frühen Phase, wenn die Primordien initiiert werden, ist die *DRNL*-Expression auf die L1- und L2-Schicht begrenzt. Im weiteren Verlauf des Auswachsens und der Differenzierung der Organe lässt sich auch Expression in tieferen Gewebeschichten, besonders deutlich zu erkennen anhand der Sepalenentwicklung, detektieren.

Der Vergleich von Transkription zu den Promotorkonstrukten zeigt auch in der Infloreszenz keinerlei Abweichungen. Die Interpretation der RNA-Muster ist aufgrund der Komplexität des DRNL-Expressionsmuster deutlich erschwert, verglichen mit den Animationen, weshalb sie hauptsächlich zur Kontrolle dienen, ob der gewählte Promotorbereich, der die Reportergene treibt, ein zur RNA-Verteilung vergleichbares Muster aufweist. Die Analyse der RNA-Muster mittels in situ Hybridisierung zeigte ebenfalls, dass DRNL nicht im IM exprimiert wird, dafür aber in noch nicht morphologisch sichtbaren Primordien der Stadien P-1 und P0 (Abb. 4A). In Stadium 1 lässt sich DRNL-Transkript in dem sich auswölbendem Primordium nachweisen (Abb. 4B) und ab Stadium 2 werden deutlich die beiden medialen Sepalen markiert (Abb. 4B, C). Außerdem kann DRNL-RNA in einer sehr frühen Stadium 3 Blüte apikal in der L1 detektiert werden (Abb.4C). Die Schnittebene ist anscheinend nicht direkt mittig, sondern lateral verschoben, wodurch das morphogene Feld, welches die Petalen und ein laterales Stamen vormustert, zu erkennen ist. In einer Stadium 6 Blüte findet sich Transkript in den Petalen (Abb. 4A), in Stadium 5 in den medialen Stamen (Abb.4 C) und in Stadium 6 lässt sich DRNL Transkript in den Karpellen nachweisen (Abb. 4D).

Abbildung 4: RNA-Verteilung von *DRNL* in verschiedenen Organprimordien. *In situ Hybridisierung* von longitudinalen Schnitten von Infloreszenzen mit einer *DRNL anti-sense* Sonde (A-D). Abkürzungen: Infloreszenzmeristem (IM), florale Primordien (P-1,P0,P1), Blütenstadium (B1,B2,B3,B4,B5), abaxiale Sepale (abS), adaxiale Sepale (adS), mediales Stamen (mSt), Karpell (Ka), Petale (P). Das morphogene Feld, welches die Petalen und lateralen Stamen vormarkiert wurde in dieser Abbildung als morphogenes Feld 1 (mF1) gekennzeichnet. Der Messbalken entspricht 50µm.

Mittels klonarer Sektoranalyse konnte die Mindestanzahl von Gründerzellen, die für die Entstehung einer floralen Organanlage benötigt werden, bestimmt werden (Bossinger and Smyth, 1996). Da *DRNL* in allen inzipienten floralen Organanlagen exprimiert wird, und zwar deutlich bevor diese morphologisch erkennbar sind, wurde vermutet, dass es sich bei den, von *DRNL* vorgemusterten Zellpopulationen um Gründerzellen handelt. Deshalb wurde bestimmt, wie viele Zellen von *DRNL* als jeweilige Organanlage vormarkiert werden, und in welcher Schicht die *DRNL* exprimierenden Zellen lokalisiert sind. Die Zellen wurden zum frühesten Zeitpunkt gezählt, an dem die einzelne Organanlage vormarkiert ist, also für Petale und Stamen auch nachdem sich die morphogenen Felder in einzelne Signale trennen. Die ermittelten Zellzahlen wurden mit den Ergebnissen von Bossinger und Smyth (1996) verglichen. Dabei ergaben sich für alle Organe deutliche Übereinstimmungen mit den Ergebnissen der klonalen Sektoranalysen (Tab 2).

Blütenstadium	Organanlage	Anzahl der <i>DRNL::erGFP-</i> ex- primierenden Zellen	Anzahl Gründer- zellen nach Boss- inger und Smyth (1996)
0	Abaxiale Sepale	8 (L1)	8
2	Laterale Sepale	4-8 (L1)	k.A.
2	Adaxiale Sepale	8-10	8
2	Petalenfeld	6-8	k.A.
3	Mediales Stamenfeld	40-50 (L1)	k.A.
4	Mediale Stamen	4 (L1)	4
4	Petale	2-4	2
4	Laterale Stamen	2-4	k.A.
5	Karpelle	8 L1	8

Tabelle 2: Vergleich der durch *pDRNL::erGFP* markierten Zellen mit Gründerzellen floraler Organe. Abkürzungen: keine Angaben (k.A.)

3.1.4 DRNL und DRN besitzen teilweise überlappende Expressionsdomänen

Um das Expressionsmuster von *DRNL* mit *DRN* unmittelbar vergleichen zu können, wurde die translationale Fusion *pDRNL::DRNL-CFP* mit einer *pDRN::DRN-GFP* Reportergen-Linie gekreuzt. Da die *pDRNL::DRNL-CFP* Linien zu schwach waren, um Expressionsmuster in der Infloreszenz zu beobachten, wurden außerdem doppelt transgene Linien mit *pDRN:H3GFP* und *pDRNL::erGFP* erzeugt.

Die beobachteten Expressionsmuster von *DRN* und *DRNL* decken sich weitestgehend mit bereits bekannten Mustern der beiden Promotoren. Allerdings konnte die Promotoraktivität der beiden Gene mit Hilfe der verwendeten Reportergene in den doppelttransgenen Pflanzenlinien sehr detailliert beobachtet werden, mit dem Ergebnis, dass die beiden Expressionsmuster divergenter sind, als bisher angenommen (Kirch et al., 2003; Ikeda et al., 2006; Marsch-Martinez et al., 2006; Nag et al., 2007)

DRN wird bereits zu einem früheren Zeitpunkt als *DRNL* im Embryo exprimiert. Der Promotor zeigt schon nach der ersten Teilung, in apikale und basale Zelle, Aktivität in der apikalen Zelle (Cole et al., 2009). In den doppelt transgenen Pflanzenlinien lässt sich beobachten, dass der *DRN*-Promotor bereits zu einem früheren Zeitpunkt aktiv ist (Abb. 5A-C). Außerdem ist die *DRN*-Expression schon zu einen Zeitpunkt auf den apikalen Bereich des Embryos beschränkt, an dem der *DRNL*-Promotor noch im kompletten Proembryo aktiv ist (Abb. 5D-F). In Dermatogen- und Herzstadium sind beide Gene in den selben Zellen exprimiert (Abb. 5G-L). Besonders deutlich werden die divergen-
ten Expressionsmuster dann ab dem Torpedostadium, wenn *DRN* in der L1-Schicht der Kotyledonenprimordien und dem SAM exprimiert wird (Abb. 5N-O).

Abbildung 5: Vergleich der *DRNL* und *DRN* Expression während der Embryogenese. Konfokale Serien doppelt transgener *pDRNL::DRNL-CFP*, *pDRN::DRN-GFP* als Einzelaufnahme und Überlagerung, im frühen (A-C) und späten Globulär- (D-F), Dermatogen (G-I), Herz- (J-L) und Torpedostadium (M-O). Der Messbalken entspricht 10µm.

Der *DRN*-Promotor ist im Zentrum der Infloreszenz, wo das IM lokalisiert ist sehr aktiv, in den Blütenprimordien der Stadien 0 und 1 lässt sich jedoch keine Expression detektieren. Das Signal erscheint erst wieder in der Stadium-2-Blüte, wenn das Primordium bereits durch eine Furche vom Apex getrennt ist und ist dort bis zum Ende von Blütenstadium 5 detektierbar (Abb. 6A, B). Im frühen Stadium 2 wird *DRN* abaxial exprimiert und überlappt an dieser Position teilweise mit *DRNL* (Abb. 6B). Die Expressionsdomäne von *DRN* verlagert sich noch während dieses Stadiums ins Zentrum des Blütenprimordiums, wo sie erneut mit *DRNL* überlappt, welches zu diesem Zeitpunkt die adaxiale Sepale markiert (Abb. 6C). In Stadium 4 und 5 kommt es ebenfalls zu Überschneidung mit *DRNL*, erst mit dem morphogenen Feld, welches die Stamenprimordien vormarkiert (Abb. 6D), später bei der Initiierung der Karpellanlagen (Abb. 6E). Ab Stadium 6, wenn bereits alle Organprimordien morphologisch erkennbar sind, lässt sich keine *DRN*-Expression mehr detektieren.

Abbildung 6: Vergleich der *DRN* und *DRNL* Expression während der floralen Entwicklung. Expression von *pDRN::erGFP* in der Infloreszenz (A). Expressionsmuster doppelt transgener *pDRNL::erGFP*, *pDRN::H3-GFP* Reportergen-Linien in der Infloreszenz (B) und Blüten in Stadium 2 (C), 4 (D) und 6 (E). Dabei stammen die kleinen punktförmigen Signale von dem kernlokalisierten H3-GFP (DRN), die größeren, teilweise ringförmigen basieren auf erGFP (DRNL). Abkürzungen: Infloreszenzmeristem (IM), Blütenstadium (B1,B2,B3,B4,B5), abaxiale Sepale (abS), laterale Sepale (IS), adaxiale Sepale (adS) laterales Stamen (ISt), mediales Stamen (mSt), Karpell (Ka). Der Messbalken entspricht 10μm.

Kirch et al. zeigten ein weitestgehend überlappendes RNA-Muster von *DRN* und *DRNL* in Infloreszenzen, mit *DRN* Expression in den Sepalen, Stamen- und Karpellen (Kirch et al., 2003). *Nag et al.* konnten mittels *RNA in situ Hybridisierung* und *pDRNL::GUS* Reporterlinien ähnliche Expressionsmuster für *DRNL* in den Blütenprimordien und in verschiedenen Stadien in allen Organanlagen zeigen. Dabei wurde allerdings auch ein Maximum im gesamten IM durch alle drei Zellschichten beobachtet. Der Vergleich mit

den hier gezeigten Expressionsmustern von *DRNL* und *DRN* legt die Vermutung nahe, dass es bei beiden *in situ Hybridisierungen* zur Kreuzhybridisierung der Sonde mit *DRN* bzw. *DRNL* oder anderen Transkripten kam, da es nach den im Rahmen dieser Arbeit durchgeführten Experimente keinerlei Indiz dafür gibt, dass Promotoraktivität, RNAund Proteinlokalisierung von einander abweichen. Expression von *DRNL* im Gynoeceums während der Ovulenentwicklung (Nag et al., 2007) konnte ebenfalls nicht beobachtet werden, allerdings wird *DRN* in den Ovulenprimordien exprimiert (Kirch et al., 2003), was ebenfalls auch eine Kreuzhybridisierung der Sonde deutet.

3.1.5 Lokalen Auxin-Maxima erscheinen in floralen Organanlagen zeitlich versetzt im Vergleich zur *DRNL*-Expression

Um die Expressionsmuster von *DRN* und *DRNL* in Relation zu Auxinverteilung zu beurteilen, wurde der synthetische *DR5*-Promotor verwendet, und die *DR5:erGFP* Expression analysiert. Dafür, wurden ebenfalls *z-stacks* durch die Infloreszenz aufgenommen und daraus eine 3-D-Animation erstellt.

Die Expressionsdomäne erstreckt sich über alle initiierten Blütenanlagen der Stadien P -1 bis P1 (Abb. 7A), und überlappt so in den entstehenden Blütenanlagen mit DRNL. Während der weiteren Blütenentwicklung finden sich auch in den einzelnen Organanlagen DR5-Maxima, jedoch immer zu einem weit späteren Stadium, als DRNL-Expression detektiert werden kann (Tab. 3). In Stadium 2 erscheint DR5-Signal parallel in allen vier Sepale (Abb. 7B). Kurz darauf beginnen die Sepalenanlagen auszuwachsen. Im Stadium 3 werden als nächstes von DR5 zusätzlich einige Zellen lateral des FMs markiert (Abb. 7C). An dieser Stelle sind etwas später die lateralen Stamenanlagen lokalisiert. In der Stadium 4 Blüte finden sich Auxin-Maxima in den Spitzen der auswachsenden Sepalen, überlappend mit DRNL (Abb. 7D). Des Weiteren zeigen die einzelnen Petalen, die zu diesem Zeitpunkt schon morphologisch erkennbar sind Auxin-Maxima (Abb. 7E). In Stadium 5 markiert DR5 zwei Maxima im Zentrum des Meristems, wo die Karpellprimordien lokalisiert sind (Abb. 7F), kurz bevor sich das Gynoeceum auswölbt. In den medialen Stamen ist der DR5-Promotor erst in Stadium 8 aktiv (Abb. 7I). Während die bereits weitestgehend differenzierten Staubblätter elongieren, zeigt sich ein Signal in den Spitzen, analog zu DRNL. In der L1 Schicht der medialen Sepalen ist der DR5-Promotor sehr lange aktiv, bis Stadium 8 oder 9, allerdings nicht permanent in allen Zellen (Abb. 7G-I).

Abbildung 7: Analyse von Auxin-Maxima während der floralen Entwicklung und die Auswirkung der Mutagenese von vier *AuxREs* im *DRNL*-Promotor (*mut-pDRNL::erGFP*). Expression von *DR5::GFP* in der Infloreszenz (A) und in Blüten der Stadien 2 (B), frühes (C) und spätes Stadium 3 (D), Stadium 4 (E), Stadium 5 (F), Stadium 6 (G,H) und Stadium 8-9 (I). Expression von *mut-pDRNL::erGFP* im Vergleicht mit *pDRNL::erGFP* (L) in Blütenstadium 4. Die Blütenprimordien werden als abaxiale (H) oder adaxiale Ansicht (J), laterale Ansicht (C,D,E,G,I,) und Aufsicht (B,F,) gezeigt. Abkürzungen: Infloreszenzmeristem (IM), florale Primordien (P-1,P0,P1), Blütenstadium (B3), abaxiale Sepale (abS), laterale Sepale (IS), adaxiale Sepale (adS), laterales Stamen (ISt), mediales Stamen (mSt), Karpell (Ka), Petale (P), L1-Schicht (L1). Der Messbalken entspricht 10µm.

Smyth et al. erstelten anhand morphologischer Merkmale der Blüten eine detaillierte zeitliche Einteilung der Stadien und konnten damit die genaue Dauer der einzelnen Blütenstadien bestimmen (1990). Anhand dieser Tabelle wurde die zeitliche Differenz zwischen DRNL-Expression und DR5-Signal während der Blütenentwicklung berechnet (Tab. 3). Teilweise ergaben sich große zeitliche Verzögerungen von bis zu 2-3 Tagen zwischen DRNL- und DR5-Expression, wie z.B. für die abaxiale und die lateralen Sepalen. Die Sepalen werden von DRNL zeitlich versetzt markiert, das DR5-Signal erscheint hingegen in allen vier Sepalen parallel zu dem Zeitpunkt, an dem DRNL in der adaxialen Sepale detektiert werden kann. Kurz darauf sind alle vier Sepalen auch morphologisch identifizierbar. Während von DRNL in Stadium 2 ein morphogenes Feld markiert wird, aus dem später die Petalen und die lateralen Stamen initialisiert werden, zeigt sich die DR5-Expression in diesen Organanlagen zeitlich verzögert und sehr lokal an nur in den Zellen, die für die Bildung eines Organprimordiums rekrutiert wurden. In den Stamen konnte, im Gegensatz zu DRNL, erst sehr spät im Verlauf der Organogenese ein Auxinmaximum mit Hilfe des DR5-Promotors detektiert werden, was vermuten lässt, dass Auxin für die Initialisierung der Staubblätter keinerlei Bedeutung hat, sondern allenfalls für die Differenzierung dieser Organe. Die Zeitliche Verzögerung von DRNL-Expression zu DR5-Signal bezüglich der Karpelle ist gering.

Für *DRNL* ergab sich aus der Analyse der Reportergenkonstrukte die Beteiligung an einem zweistufigen Prozess. Das Gen ist während der floralen Entwicklung zunächst an der Rekrutierung von Gründerzellen beteiligt, zu einem späteren Zeitpunkt an Wachstum und Differenzierung der Organprimordien. Die indirekte Beobachtung von Auxinmaxima in Blütenanlagen durch den *DR5*-Promotor lässt vermuten, dass Auxin, wenn überhaupt in späte Prozesse der Organogenese involviert ist, und keinerlei Bedeutung für die Initialisierung von Organanlagen hat.

Organanlage	DRNL Signal	DR5 Signal	Differenz zwischen <i>DRNL</i> und <i>DR5</i> in h
Abaxiale Sepale	0	2	50
Laterale Sepale	2 (Anfang)	2	10
Adaxiale Sepale	2	2	-
Petalenfeld	2	-	-
Petalen	4	4	-
Laterale Stamen	4	3	18
Mediale Stamenfeld	3	-	-
Mediale Stamen	4	8	60
Karpelle	5 (Anfang)	5 (Ende)	6

Tabelle 3: Vergleich der DRNL-Expression mit dem Auftauchen lokaler Auxin-Maxima. Die Berechnung der zeitlichen Differenz zwischen DR5 und DRNL erfolgte anhand einer Tabelle von Smyth et al. (1990).

In der Promotorsequenz von *DRNL* konnten vier kanonische *Auxin-responsive Elements* (*AuxREs*) identifiziert werden. Es wurde bereits gezeigt, dass DRNL in der *mp* Mutante während der Embryogenese nicht exprimiert wird. Um die Auxin gesteuerte Kontrolle von DRNL weiter zu evaluieren, wurden die *AuxREs* im *DRNL*-Promotor mutiert und von dem *mut-pDRNL*-Promotor *erGFP* getrieben. Das Expressionsmuster zeigte allerdings kaum Unterschiede zu der wildtypischen Expression (nicht dargestellt). Einzig in den Blütenprimordien konnte in Stadium 4 beobachtet werden, dass die Expression in der L1-Schicht der medialen Sepalen reduziert ist bzw. komplett verloren geht (Abb. 7J, K), verglichen zur *pDRNL::erGFP* (Abb. 7L).

3.2 DNA-Bindestudien mit DRN und DRNL

Als Mitglieder der DREB/ERF-Familie besitzen DRN und DRNL eine AP2-Domäne, welche als DNA-bindend charakterisiert wurde. Die Familie wird in fünf Sub-Gruppen aufgeteilt, bezeichnet als AP2, DREB, ERF, RAV und Andere (Sakuma et al., 2002). Mitglieder der DREB-Subfamilie binden an das DRE-Motiv, welches die Sequenz TACCGACAT hat. AP2-Proteine, die der ERF-Subfamilie angehören, binden an eine, als GCC-Box bezeichnete DNA-Sequenz, mit dem Kernmotiv GCCGCC (Sakuma et al., 2002).

3.2.1 DRN und DRNL zeigten im *EMSA* keine spezifische Bindung an die GCC-Box

Die direkte Protein-DNA-Interaktion von DRN und DRNL sollte durch *Elektromobility shift assays (EMSA)*, auch *bandshift* genannt, nachgewiesen werden. Dafür wurde sowohl der komplette ORF *in vitro* translatiert, als auch für DRN die isolierte AP2-Domäne (D-AP2). Alle synthetisierten Proteine wurden vor der weiteren Verwendung mittels *Western* bezüglich ihrer Größe überprüft (Abb. 8). Als Bindestelle wurde zunächst die GCC-Box (AGCCGCC) angeboten, da beide Proteine phylogenetisch in Gruppe B1 eingeteilt werden, zu der auch ERF3 und ERF4 gehören, die nachweißlich an die GCC-Box bindet (Ohme-Takagi, 2000).

Abbildung 8: Kontrolle der *in vitro* translatierten Proteine D-AP2, DL-AP2, DRN, DRNL und DREB1A mittels *Western* mit anti-HA-Antikörper (*Roche*, Klon 3F10)

Zunächst wurden die verwendeten Proteine mit einem *in vitro* Transkriptions-Translations-System auf bakterieller Basis (*E. coli*-Extrakt) synthetisiert. Tatsächlich konnte bei den durchgeführten *EMSA* eine starke Bande detektiert werden, sowohl für DRN, als auch DRN-AP2 in Kombination mit dem wGCC-Motiv. Bei der Durchführung diverser Kontrollen stellte sich jedoch schnell heraus, dass es sich um einen unspezifischen Komplex handelte, der auch bei der Verwendung eines Oligonukleotids mit mutierter Bindestelle (mGCC) mit dem Motiv CCTCCT auftrat (Abb. 9).

Abbildung 9: *EMSA* mit DRN (2,4) und D-AP2 (3,5) und wGCC (2,3) oder mGCC (4,5), als Kontrolle wGCC ohne Protein (1).

Des Weiteren reagierte der beobachtete Komplex auf spezifische Kompetition mit dem nicht radioaktiv-markierten Oligonukleotid gleichwertig zur nicht spezifischen Kompetition mit dem synthetischen Oligonukleotid Poly-dAdT (Abb. 10) oder DNA aus Lachs-Sperma (nicht dargestellt).

Abbildung 10: *EMSA* mit DRN und wGCC. Es wurden ansteigende Konzentrationen an spezifischen (wGCC) (2-6) und unspezifischen Kompetitor (PolydAdT) (7-11) von 50ng (2,7), 100ng (3,8), 200ng (4,9), 500ng (5,10) und 1μ g (6,11) verwendet; als Kontrolle wGCC ohne Protein (1).

Zusätzlich bildete das, als Negative Kontrolle eingesetzte Protein bHLH46 und auch der reine *E.coli* Extrakt, der ohne DNA-Matritze inkubiert wurde einen unspezifischen Komplex auf der gleichen Laufhöhe (Abb. 11; 2-4). Eine weitere Kontrolle ist die Verwendung eines Antikörpers gegen das HA-Epitop, welches c-terminal an den ORF angehängt wurde. Durch die Bildung einer ternären Komplexes, bestehend aus Oligonukleotid, Protein und Antikörper lässt sich ein *supershift* erzeugen (Buratowski

and Chodosh, 2001). Da der ternäre Komplex durch die zusätzliche Bindung des Antikörpes größer, als der reine Oligonukleotid-Protein-Komplex ist, wird das markierte Oligonukleotid im Gel weiter verzögert. Weder mit DRN noch mit DRN-AP2 konnte ein solcher supershift erzeugt werden (Abb. 11, 5-6), was darauf hindeutet, dass der sichtbare Komplex durch Interaktion eines in dem E.coli Extrakt enthaltenen Proteins gebildet wird. Da manche Protein-DNA-Interaktionen äußerst empfindlich sind, in Bezug auf pH, Ionenstärke, Temparatur usw. (Buratowski and Chodosh, 2001), wurden EMSAs unter diversen Bedingungen durchgeführt. Es wurden TBE, TAE und Tris-Glycin Laufpuffer bei verschiedenen pHs verwendet und Tris und HEPES mit diversen pHs als Bindepuffersystem. Dabei wurden jeweils unterschiedliche außerdem unterschiedliche Ionenstärken verwendet und Inkubationsund Lauftemperaturen ausprobiert. Des Weiteren wurden unterschiedlich stark konzentrierte bzw. vernetzte Acrylamid-Gele verwendet. In dem Bindepuffer wurden verschiedene Konzentrationen von BSA und Glycerin getestet, was die Bindung von Proteinen an das Oligonukleotid beeinflussen kann. Unter keiner dieser Bedingungen konnte eine Bande mit DRN oder D-AP2 detektiert werden, die nicht auch in den Kontrollen auftrat (nicht dargestellt).

Abbildung 11: *EMSA* mit DRN (2) und bHLH (3) und *E. coli*-Extrakt (4) als Kontrolle mit wGCC. *EMSA* mit DRN (5) und D-AP2 (6) mit wGCC und anti-HA (*Roche*, Klon 3F10). Als Kontrolle wGCC ohne Protein (1).

Das zunächst verwendete Transkriptions-Translations-System basiert auf einer zweistufigen PCR, wobei zunächst Adapter an die zu translatierende Sequenz angehängt werden, und im nächsten Schritt ein HA-, Strep- oder HIS-Epitop. Die Qualität der Translation bei der Verwendung eines PCR-Produkts als Matrize lässt sich nur bedingt kontrollieren. Zwar können einzelne PCR-Produkte sequenziert werden, die Mehrheit der Population entzieht sich allerdings der Kontrolle. Deshalb lässt sich in diesem Sy-

stem sehr schlecht nachvollziehen, ob das Protein korrekt transkribiert und translatiert wurde.

Um eine bessere Kontrolle bezüglich der Matrize zu erlangen, wurde in weiteren Verlauf ein anderes Transkriptions-Translations-System verwendet. Dabei wird als Matrize für die RNA-Synthese Plasmid-DNA eingesetzt, wodurch eine gleich bleibende Qualität der Matrize für die RNA Synthese gewährleistet wird. Außerdem wurde eine Positiv-Kontrolle eingeführt, um zu überprüfen, ob der Versuchsanordnung an sich funktioniert, oder ob grobe methodische Fehler vorliegen, die mit der DNA-Bindung interferieren. Dazu wurde *AtDREB1A* kloniert, was in *bandshifts* sehr starke Affinität zum DRE-Motiv zeigte (Liu et al., 1998). Bei der Klonierung in die Expressionsvektor pIVEX2.5d und pIVEX2.6d wurden alle exprimierten Proteine n- oder c-terminal mit einem HA-Epitop versehen. Für die weiteren Experimente wurde neben *DRN* auch *DRNL* kloniert.

Abbildung 12: *EMSA* mit DRN (1,5) und DRNL (2,6) und DREB1A (3,7) mit wDREB (1-4) und wGCC (5-8). Als Kontrolle wDRE (4).und wGCC (8) ohne Protein.

Bei den *EMSA*s wurde sich zunächst an die Bedingungen, die für die Positivkontrolle verwendet wurden (Urao et al., 1993) gehalten, im weiteren Versuchsverlauf wurden ebenfalls verschiedene Parameter verändert. Es stellte sich heraus, dass DREB1A eine sehr starke Affinität gegenüber dem DRE-Motiv besitzt, und unter einer großen Bandbreite von Versuchsbedingungen stabile Komplexe mit dem Oligonukleotid bildet, hingegen nicht mit dem wGCC-Motiv. Für DRN und DRNL konnte allerdings weder mit dem wGCC-, noch mit dem DRE-Motiv spezifische Bindung detektiert werden (Abb.12). Unter allen verwendeten Parametern konnten stets deutliche Komplexe von DREB1A mit dem DRE-Motiv detektiert werden, allerdings unter keiner der getesteten

Versuchsbedingungen zwischen DRN oder DRNL mit einem der verwendeten Oligonukleotide (nicht dargestellt).

Im weiteren Versuchsverlauf wurde erneut das Expressionssystem gewechselt um rekombinante Proteine zu erzeugen, die den natives Proteinen in ihrer Struktur möglichst ähnlich sind. Die Verwendung eines auf Weizenkeimextrakt basierendes Transkriptions-Translations-System gewährleistet einerseits pflanzenspezifische posttranslationale Modifikationen, außerdem lässt sich die *in vitro* Translation möglicherweise durch einen pflanzenspezifischen Codon-Gebrauch positiv beeinflusst. In diesem Versuchsteil wurden neben den kompletten Proteinen auch die isolierten AP2-Domänen von DRN und DRNL (DL-AP2) *in vitro* translatiert. Unter keiner der getesteten Bedingungen konnte mit DRN, D-AP2, DRNL oder DL-AP2 spezifische Interaktion gezeigt werden. Die DREB1A Kontrolle bildete auch im diesem System stabile Komplexe mit dem spezifischen Motiv wDREB, nicht aber mit wGCC (Abb. 13).

Abbildung 13: *EMSA* mit DRN (2), D-AP2 (3), DRNL (5), DL-AP2 (6), DREB1A (8), Weizenkeimextrakt (9) mit wGCC und DRN (11), DRNL (12), DREB1A (13), Weizenkeim-Extrakt (14) mit wDRE. Als Kontrolle wGCC (1,4,7) und wDRE (10) ohne Protein.

DRN und DRNL wurde des Weiteren in *E.coli* exprimiert, um ein Experiment, bei dem direkte Bindung zwischen DRN und der GCC-Box nachgewiesen wurde (Banno H., 2006) unter ähnlichen Bedingungen nach zu stellen. Statt MBP-ESR1N wurde DRN-HIS verwendet, das nach dem *QIAexpressionist* Protokoll synthetisiert und aufgereinigt wurde. Zwar konnte DRN über Ni-NTA als lösliches Protein isoliert werden, DNA-Bindung konnte aber auch hier nicht detektiert werden (Abb. 14).

Abbildung 14: *EMSA* mit 0 ng (1), 5 ng (2), 10 ng (3) und 20 ng (4) isoliertem DRN und wGCC.

3.2.2 Interaktion von DRN und DRNL mit alternative Motiven

Für einzelne Mitglieder der AP2/ERF-Familie, wie z. B. ANT (Nole-Wilson and Krizek, 2000) wurde bereits die Bindung an eine alternativen Zielsequenz nachgewiesen. In einer weiteren Versuchsreihe sollte die Interaktion von DRN und DRNL mit alternativen Zielsequenzen, möglicherweise Varianten des DRE- oder GCC-Motiv untersucht werden. Dafür wurde ein *Cyclic Amplification and Selection of Targets (CA-STing)* durchgeführt, wobei doppelsträngige Oligonukleotide mit einer variablen Kernsequenz als Bindestelle angeboten werden, und spezifisch gebundene Oligonukleotide über mehrere Zyklen Immunoprezipitation (IP) oder *bandshift* angereichert werden können (Pollock, 2001). Für dieses Experiment wurden die Volllängenprotein DRN und DRNL (TnT-System, Promega) verwendet, DREB1A als Positivkontrolle und der Weizenkeimextrakt als Negativkontrolle. Das *CASTing* wurde insgesamt zweimal durchgeführt, beim ersten mal mit sechs IPs und abschließendem *bandshift*, in einem zweiten Experiment mit acht IPs ohne *bandshift* (Abb. 15).

Abbildung 15: Kontrolle des radioaktiv markierten Oligonukleotids R76 mit variabler Kernsequenz. *CASTing* mit R76 und DRN (1), DRNL (2), DREB1A (Positv-Kontrolle) (3) und Weizenkeimextrakt (Negativ-Kontrolle) (4), Isolation des PCR-Produkts nach der 1.IP.

Im Anschluss wurden die angereicherten Oligonukleotide kloniert und sequenziert. In der Positivkontrolle DREB1A wurde das DRE-Motiv signifikant angereichert (>70% TACCGACAT). Bei der Verwendung von DRN und DRNL ergab sich keine signifikante Sequenzspezifität. Die Auswertung der Negativkontrolle ergab, dass auch in dem Ansatz ohne Protein mit HA-Epitop Oligonukleotide nach den IPs amplifiziert wurden. Die Säulen interagieren unter den verwendeten Bedingungen anscheinend auch unspezifisch DNA.

3.2.3 DNA-Bindestudien von DRN/DRNL-DREB1A-Chimären

Nachdem es trotz zahlreicher Experimente keinen Hinweis auf direkte Interaktion von DRN oder DRNL mit einer spezifischen DNA-Sequenz gab, wurde verstärkt Augenmerk auf die Proteinsequenzen von DRN, DRNL und DREB1A innerhalb der AP2-Domäne gelegt. Die AP2-Domäne setzt sich aus zwei strukturell unterschiedlichen Einheiten zusammen. N-terminal besteht die AP2-Domäne aus drei β -Faltblattbereichen, die direkt mit der DNA interagieren, die c-terminale α -Helix bildet das Rückgrat und hat somit Auswirkung auf die Konfirmation.

Bei Betrachtung des *Alignments* der gesamten AP2-Domäne aller Mitglieder der AP2/ERF-Familie (Sakuma et al., 2002) fällt auf, dass DRN und DRNL an Position 43 der AP2-Domäne eine nukleophile AS besitzen (Abb. 16). DRN besitzt einen Ser-, DRNL einen Cys-Rest, zwei innerhalb der gesamten Familie äußert selten zu beobachtende AS an dieser Position. Nukleophile AS verfügen über ein freies Elektronenpaar und können damit chemische Bindungen eingehen, was die Konfirmation das Rückgrats und damit einhergehend der DNA-bindenden Domäne verursachen könnte. Um einen negativen Einfluss dieser AS auf die spezifische Bindung von DRN und DRNL an eine Zielsequenz zu beurteilen, wurden chimäre Proteine synthetisiert, indem der helikale Bereich von DRN und DRNL mit dem des DREB1A ausgetauscht wurden. Bindestudi-

en mit diesen Chimären ergaben, dass keines der Proteine unter den untersuchten Bedingungen spezifische DNA-Interaktion zeigte (nicht dargestellt).

	β -sheet1 β -turn1 β -sheet2 β -turn2 β -sheet3	α-helix
DREB1A	IYRGVRRNSGKWVCEVREPNKKTRIWLGTFQTAEMAARAHI	VAALALRGRSACLNFA
DRN	RYRGVRRRPWGRYAAEIRDPMSKERRWLGTFDTAEQAACAYD	SAARAFRGAKARTNFT
DRNL	RYRGVRRPWGRYAAEIRDPLSKERRWLGTFDTAEEAACAYD	CAARAMRGLKARTNFV

Abbildung 16: Vergleich der Proteinsequenz der AP2-Domäne von DREB1A, DRN und DRNL mit Schwerpunkt auf der α -Helix. Die innerhalb der gesamten AP2/ERF-Familie seltene, nukleophile AS an Position 43 der DRNL- und DRN-AP2-Domäne wurde rot markiert.

Um zu testen, ob die umgebenden Domänen von DRN und DRNL einen negativen Einfluss auf die DNA-Bindeeigenschaften ausüben, wurden bereits die isolierten AP2-Domänen von DRN (D-AP2) und DRNL (DL-AP2) bezüglich ihrer Interaktion mit verschiedenen DNA-Sequenzen untersucht. Die Sequenzanalyse ergab, dass alle AS, die direkte Bindungen mit der Zielsequenz eingehen bei DRN und DRNL vorhanden sind. Trotzdem konnte in keinem der durchgeführten Experimente Protein-DNA-Interaktion detektiert werden. Möglicherweise spielt nicht nur die AP2-Domäne eine Rolle bei der Interaktion mit DNA, sondern auch umliegende Bereiche, die DNA-Bindung entweder fördern oder verhindern. Um die Rolle der umliegenden Sequenz auf die Bindeeigenschaft der AP2-Domäne zu untersuchen, wurden chimäre Proteine erzeugt, bei denen die AP2-Domäne von DRN und DRNL mit der des DREB1A ausgetauscht wurden. Durch diesen Austausch war keine der vier Chimären mehr in der Lage unter den getesteten Bedingungen DNA zu binden (nicht dargestellt).

Um eventuelle AS innerhalb der AP2-Domäne zu finden, die für die DNA-Bindung möglicherweise sterisch oder auf Grund ihrer Ladung hinderlich sein könnten, wurden Proteinmodelle erstellt. Das Programm *MacPymol (Schrödinger*, Mannheim) berechnet, anhand der Proteinsequenz und eines homologen Proteins mit bekannter Struktur, ein dreidimensionales Model. Die einzige auffällige AS beim Vergleich von DRN und DRNL mit DREB1A war an Position 10, an der DREB1A einen Ser-Rest besitzt, DRN und DRNL einen sperrigen Trp-Rest (Abb. 17), der möglicherweise DNA-Bindung erschwert. Der Vergleich mit anderen Mitgliedern der AP2/ERF-Familie ergab jedoch, dass die AS an dieser Position weit verbreitet ist, auch bei Proteinen, die nachweislich DNA binden (z.B. ERF1).

Abbildung 17: Vergleich der Proteinsequenz der AP2-Domäne von DREB1A, DRN und DRNL und Proteinmodelle von DRN, DRNL und DREB1A. In die DNA-Bindung involvierte AS sind in dem Sequenzvergleich von DREB1A, DRN und DRNL und derer Modelle hellblau dargestellt.

Letztlich konnte in keiner der Versuchsreihen unter den getesteten Bedingungen spezifische DNA-Bindung von DRN und DRNL nachgewiesen werden. Der Austausch einzelner Domänen (AP2 oder AP2-Helix) führte zum Verlust der DNA-Interaktion für DREB1A (DREB1A-DRN/DRNL-AP2, DREB1A-DRN/DRNL-Helix), was zu der Vermutung führt, dass die AP2 Domäne von DRN und DRNL keine DNA-bindende Eigenschaft besitzt. Andererseits konnte mit der DREB1A-AP2-Domäne, eingebettet in DRN und DRNL (DRN/DRNL-DREB1A-AP2, DRN/DRNL-DREB1A-Helix), ebenfalls keine spezifische Protein-DNA-Interaktion beobachtet werden, was zusätzlich auf einen negativen Einfluss der, die AP2-Domäne umgebenden Proteinsequenz von DRN und DRNL deuten lässt.

3.3 Die Identifizierung DRNL regulierter Gene via *microarray*

Ein weiterer Teil dieser Arbeit bestand darin, Gene zu finden, deren Expression von *DRNL* positiv oder negativ beeinflusst werden. Mit Hilfe von *microarrays* ließen sich Gene identifizieren, die direkt oder indirekt durch *DRNL* reguliert werden, wobei die Transkription von gut 2200 annotierten Genloci analysiert werden kann. Dafür wurden aus transgenen *pDRNL::erGFP* Linien embryonale Kalluskulturen etabliert (Mordhorst et al., 1998) (Abb. 18A), und durch *Fluorescence Activated Cell Sorting (FACS)* GFP-positive (Abb. 18B) und –negative Zellen getrennt, aus denen RNA isoliert werden konnte. Außerdem wurden die beiden Reportergen-Linien in die *primordia timing /altered meristem program1 (pt/amp1)* Mutante gekreuzt. Im Wildtyp entstehen die Ko-tyledonen und das SAM aus dem apikalen Teil des globulären Embryos. In der *pt* Mutante entsteht, durch eine abnormale Zellteilung im basalen Bereich, eine zusätzliche Schicht von Zellen, aus der neben dem Hypokotyl auch die Kotyledonen gebildet wer-

den. Die Anzahlt der Kotyledonen kann erhöht sein, verglichen zum Wildtyp. Der apikale Bereich bildet in der Mutante ein stark vergrößertes Meristem (Vidaurre et al., 2007). Die Mutante ist äußerst effizient, was die Bildung von embryonaler Kalluskultur aus Keimlingen betrifft, und wurde deshalb zusätzlich zu den Reportergen-Linien im wildtypischen Hintergrund verwendet. Somatische Embryogenese im wildtypischen Hintergrund erfolgt hingegen aus unreifen zygotischen Embryonen.

Um bereits in den Kalluskulturen zu hinterfragen, ob *DRN* und *DRNL* in den selben oder in verschiedenen Zellen transkribiert werden, wurde außerdem noch Kulturen aus doppelt-transgenen Linien analysiert, die *pDRN::DRN-GFP* und *pDRNL::DRNL-CFP* exprimierten. Dabei stellte sich heraus, dass die beiden Promotoren hauptsächlich in verschiedenen Zellen aktiv sind (Abb. 18C, D).

Abbildung 18: Transgene, embryonale Kalluskulturen pDRNL::erGFP (A) und pDRN::DRN-GFP pDRNL::DRNL-CFP (C,D) und Kontrolle der GFP-positiven Zellen nach der Sortierung. Messbalken entsprechen 500µm (A,C) und 20µm (B,D).

Beim *FACS* setzte sich bei den beiden verwendeten Linien *pDRNL::erGFP2-1* und *pDRNL::erGFP3-1* deutlich eine GFP-positive Subpopulation von Protoplasten ab. Der Anteil GFP-positiver Zellen lag bei 0,7% (*pDRNL::erGFP2-1*) und 2,1% (*pDRNL::erGFP3-1*) (Abb. 19). Es wurden jeweils 60.000 GFP-positive und -negative Protoplasten gesammelt. Im Vergleich dazu stellte sich das Sortieren im *pt* mutanten Hintergrund als schwierig dar. Bei insgesamt 10 Sortierversuchen wurde ein maximaler Anteil von 0,01 an GFP-positiven Zellen beobachtet (nicht dargestellt). Leider konnte im *pt* mutanten Hintergrund keine zur RNA-Präparation ausreichende Anzahl von GFP-positiven Zellen gesammelt werden.

Abbildung 19: *Fluorescence activated cell sorting (FACS)* von *pDRNL::erGFP3-1*. Die GFP-positiven Protoplasten sind in R2 gerahmt und wurden separat aufgefangen.

Die DRN-Expression zeigte sich in den embryonalen Kalluskulturen mit mutanten Hintergrund deutlich erhöht, was vermutlich auf einem vermehrt meristematischen Charakter der Kultur auf Grund der Mutation, vergleichbar zum Embryo beruht. Ein Vergleich der Expressionsmuster in Embryonen zeigte eine deutliche Missexpression beider Proteine in frühen embryonalen Stadien. DRN wird zunächst im gesamten Embryo inklusive dem Suspensor (Abb. 20A) und später im vergrößerten Meristem exprimiert (Abb. 20B). DRNL ist im Globulärstadium basal lokalisiert (Abb. 20D), die Expressionsmaxima, die die Kotyledonen vormarkieren entstehen nicht apikal, sondern medio-lateral (Abb. 20E). Ab dem Torpedostadium sind die Expressionsmuster von *DRN* und *DRNL* dann wildtypisch. DRN ist im gesamten vergrößerten Meristem lokalisiert (Abb. 20C), DRNL in den Kotyledonenspitzen (Abb. 20F).

Abbildung 19: Expression von pDRN::erGFP (A-C) und pDRNL::erGFP (D-F) in der pt Mutante in Globulär- (A,E), Herz- (B,E) und Torpedostadium (C,F). Messbalken entsprechen 20 μ m.

Insgesamt sind etwa 500 Gene in DRNL-positiven Zellen differentiell transkribiert, wovon die Transkription bei ungefähr 420 negativ und 70 positiv reguliert wird. Als problematisch für die weitere Analyse ergab sich, dass ein Großteil dieser Gene entweder völlig unbekannt und nur als mögliche Protein-kodierende Sequenz deklariert waren, oder die Funktion der Gene nicht bekannt ist. Aus dem Abgleich mit anderen *microarray* Datenbanken, dem sogenanntem *clustering* ergaben sich keine verwertbare Information, weshalb keine interessanten Kandidaten als mögliche Zielgene oder Prozesse, in die *DRNL* möglicherweise involviert sein könnte, identifiziert werden konnten. Somit erfolgte zunächst eine Einteilung der differenziell exprimierten Gene in funktionale Gruppen nach Zellkomponenten, biologischer Prozesse und molekularer und biologischer Funktion (*TAIR*, Abb. 21). Einzig auffällig bei der Auswertung war der leicht erhöhte Anteil von Genen, die in die Antwort auf Stress involviert sind (12% zu 10%) oder durch biotischen/abiotischen Stimulus reguliert werden (12% zu 10%) in DRNL differenziell transkribierten Genen verglichen mit allen getesteten Loci.

Functional Categorization by annotation for : GO Biological Process

other cellular processes: 22.395% (raw value = 1165) other metabolic processes: 19.992% (raw value = 1040) unknown biological processes: 10.246% (raw value = 533) response to stress: 10.208% (raw value = 531) response to abiotic or biotic stimulus: 10.092% (raw value = 525) other biological processes: 7.478% (raw value = 389) developmental processes: 5.69% (raw value = 296) protein metabolism: 5.133% (raw value = 267) transport: 3.518% (raw value = 183) signal transduction: 2.211% (raw value = 115) cell organization and biogenesis: 2.191% (raw value = 114) electron transport or energy pathways: 0.557% (raw value = 29) DNA or RNA metabolism: 0.288% (raw value = 15)

Functional Categorization by annotation for : GO Molecular Function

Abbildung 21A: Einteilung aller in DRNL-positiven Zellen differentiell transkribierten Genloci nach Zellkomponente, biologischem Prozess und molekularer und biologischer Funktion (*The Arabidopsis Information Resource, TAIR*).

Functional Categorization by annotation for : GO Biological Process

other cellular processes: 22.78% (raw value = 372) other metabolic processes: 20.821% (raw value = 340) response to stress: 12.309% (raw value = 201) response to abiotic or biotic stimulus: 11.941% (raw value = 195) other biological processes: 8.206% (raw value = 134) unknown biological processes: 5.45% (raw value = 134) unknown biological processes: 5.45% (raw value = 89) developmental processes: 4.532% (raw value = 74) transport: 4.47% (raw value = 73) protein metabolism: 4.287% (raw value = 70) signal transduction: 2.694% (raw value = 44) cell organization and biogenesis: 1.653% (raw value = 27) electron transport or energy pathways: 0.49% (raw value = 8) DNA or RNA metabolism: 0.367% (raw value = 6)

Functional Categorization by annotation for : GO Molecular Function

Abbildung 21B: Einteilung aller in DRNL positiven Zellen differentiell transkribierten Gene mit bekannter Funktion nach Zellkomponente, biologischem Prozess und molekularer und biologischer Funktion (*The Arabidopsis Information Resource, TAIR*).

Zunächst wurden in den DRNL-Datensets nach Zielgenen gesucht, die bereits charakterisiert wurden. Durch das Aussortieren von Genen, die selber putativ sind, ein putatives Protein oder ein Protein mit unbekannter molekularer Funktion kodieren, reduzierte sich die Anzahl der differentiell exprimierten Gene für DRNL auf etwa 170. Um DRNL nach Möglichkeit im bestimmte biologische Prozesse einzuordnen, wurde schließlich genaues Augenmerk auf die Gene gelegt, die bereits in der Literatur beschrieben wurden (Tab. 4), wodurch sich die Anzahl auf 26 reduzierte.

Lokus	Gen	DRNL:GFP (fV)
AT1G21970	LEC1 (LEAFY COTYLEDON 1)	2,17
AT1G01470	LEA14 (LATE EMBRYOGENESIS ABUNDANT 14)	1,29
AT1G03800	ERF10 (ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 10)	1,28
AT5G55250	ITAM1	1,06
AT3G11260	WOX5 (WUSCHEL RELATED HOMEOBOX5)	1,05
AT3G50870	MNP (MONOPOLE)	0,82
AT1G07640	OBP2	0,79
AT1G78080	RAP2.4	-0,69
AT1G19220	ARF19	-0,71
AT1G77850	ARF17	-0,72
AT5G61600	ERF104	-0,73
AT4G17490	ERF6 (-0,75
AT5G62920	ARR6 (RESPONSE REGULATOR 6)	-0,76
AT4G17500	ERF1	-0,77
AT5G47220	ERF2	-0,78
AT5G57090	EIR1 (ETHYLENE INSENSITIVE ROOT 1)	-0,85
AT1G28130	GH3.9	-0,85
AT2G25490	EBF1 (EIN3-BINDING F BOX PROTEIN 1)	-0,88
AT2G47270	UPB1 (UPBEAT1)	-0,89
AT5G47230	ERF5	-0,89
AT3G02885	GASA5 (GIBBERALIN REGULATED PROTEIN5)	-0,99
AT4G30610	BRS1 (BRI1 SUPPRESSOR 1)	-1,00
AT2G36490	ROS1	-1,04
AT1G74500	TMO7 (TARGET OF MONOPTEROS)	-1,04
AT2G28350	ARF10 (AUXIN RESPONSIVE FACTOR)	-1,15
AT1G67710	ARR11	-1,16
AT3G16770	EBP/RAP2.3 (RELATED TO AP2)	-1,22
AT1G04250	AXR3 (AUXIN RESISTANT 3)	-1,32
AT2G04160	AIR3	-2,12
AT5G42630	KAN4 (KANADI4)	-2,24
AT3G19820	DWF1 (DIMINUTO 1)	-2,47

Tabelle 4: Differenzille Transkription von Genen mit bekannter Funktion in *pDRNL::erGFP*. Abkürzungen: fache Veränderung (fV).

Es fiel auf, dass mehrere *ERF*s differentiell transkribiert werden, *ERF10* wird positiv reguliert, *ERF104*, *ERF6*, *ERF1*, *ERF2* und *ERF5* negativ. ERFs sind allgemein in die Antwort auf biotischen Stress involviert (Ohme-Takagi and Shinshi, 1995; Buttner and Singh, 1997; Ohme-Takagi et al., 2000; Zarei et al., 2011). Auch *RAP2.4* und *EBP/RAP2.3*, ebenfalls Mitglieder der AP2-Familie, werden durch abiotischen Stress reguliert (Blodner et al., 2007; Lin et al., 2008). Gene, deren Transkription durch biotischen oder abiotischen Stimulus reguliert werden, sind bereits im Abgleich aller differenziell transkribierten Gene als verstärkt vertretene Gruppe aufgetaucht (Abb. 20). Auch LEA-Proteine sind Stress-reguliert. Die Transkription von *LEA14* wird als Ant-

wort auf abiotischen Stress aktiviert, vor allem Wassermangel. LEAs fungieren unter anderem als Schutzproteine bei Austrocknung, z.B. bei der Samenreifung (Singh et al., 2005).

Es tauchen mehrere, mit Auxin assoziierte Gene auf, wie der Homeobox-Faktor WOX5, der in die Kontrolle der Stammzellpopulation im Wurzelmeristem involviert ist (Gonzali et al., 2005; Sarkar et al., 2007). Der in DRNL-positiven Zellen negativ regulierte GATA-Faktor MNP/HAN spielt eine entscheidende Rolle für die Festlegung von Grenzen während der Embryogenese (Nawy et al., 2010). In der Mutante sind verschiedene mit Auxin assoziierte Proteine, wie WOX5, PIN1 und PIN7 fehl lokalisiert, und es kommt zu Defekten in der basalen Domäne des Proembryos. Weiterhin werden verschiedene ARFs (ARF10, ARF17 und ARF19) und AXR3/IAA17 (Leyser et al., 1996) in der DRNL-positiven Zellpopulation negativ reguliert. ARF- und AUX/IAA-Proteine können heterodimerisieren und haben eine wichtige Funktion im Auxin-Signalweg Theologis, Das negativ regulierte (Abel and 1996). OBP2. ein DOF-Transkriptionsfaktor, aktiviert die Transkription von CYP83B1, welches wiederum die Auxin-Biosynthese reguliert (Skirycz et al., 2006). Mitglieder der GH3-Familie werden durch Auxin transkriptionell reguliert (Abel and Theologis, 1996) und kodieren IAA-Amido-Synthetasen, die die Konjugation von AS an IAA katalysieren, was zur Inaktivierung und möglicherweise auch zum Abbau führt (Staswick et al., 2005). Die Transkription der meisten GH3s wird durch Auxin induziert und regulieren über eine Rückkopplungsschleife die Konzentration von IAA, die Transkription von GH3.9 jedoch scheint negativ durch IAA reguliert zu sein (Staswick et al., 2005; Khan and Stone, 2007).

Zusätzlich sind verschiedene Gene betroffen, die in andere Hormon-Signalwege involviert sind. *GASA5* wird durch Gibberellinsäure induziert und unterdrückt, durch die Kontrolle von *FLOWERING LOCUS C (FLC)* den Übergang in die reproduktive Phase (Zhang et al., 2009). BRS1 und DWF1 sind beide in den Brassinosteroid (BR)-Signalweg involviert. Die Carboxylpeptidase BRS1 reguliert BRI1, eine Protein-Kinase, die mögliche Weise als BR-Rezeptor fungiert (Li et al., 2001). DWF1 ist anscheinend direkt in den Steroid-Biosynthese-Weg eingebunden, wo es die Umsetzung von 2,4-Methylencholesterol zu Campesterol katalysiert (Choe et al., 1999). EBF1, ein F-Box-Protein ist in den Ethylen-Signalweg eingebunden und Teil eines SCF-Komplexes, der für den Abbau Ethylen-regulierter Proteine verantwortlich ist (Binder et al., 2007).

LEC1 wurde als Schlüsselenzym in der Fettsäure-Biosynthese identifiziert und ist damit in viele Wachstums- und Entwicklungsprozesse, unter anderem der Kotyledonenentwicklung involviert. Fast alle näher betrachteten Gene sind in verschiedene Hormon-Signalwege involviert, allerdings muss beachtet werden, dass die Auswahl der Gene nicht repräsentativ ist, sondern auf der Verfügbarkeit von näheren Informationen bezüglich der putativen Zielgene beruht.

Nachfolgend wurden die verschiedenen Datensets, *pDRN::erGFP*, *pDRN::erGFP* pt und *pDRNL::erGFP* untereinander verglichen, um mögliche Überlappungen und Differenzen zu identifizieren. Dabei stellte sich heraus, dass nur ein sehr kleines Subset von Genen in allen drei *microarrays* überlappt. Es wurden insgesamt 90 Gene identifiziert, die in allen Datensets übereinstimmend reguliert waren, wovon nur 3 transkriptionell aktiviert wurden. Diese Gene kodieren eine ATPase, einen bisher nicht charakterisierten bHLH-Transkriptionsfaktor und die S-Adenosylmethionin-abhängige Methyltransferase ITAM1, die durch die Methylierung von IAA in die Auxin-Homöostase eingreift (Qin et al., 2005). Der bHLH-Faktor ist bisher leider nicht näher charakterisierte worden, könnte aber möglicherweise, neben einem Zielgen auch einen bislang unbekannten Komplex-Partner für DRN und DRNL darstellen. Die direkte Interaktion mit einem bHLH-Faktor, BIM1 konnte für DRN bereits nachgewiesen werden (Chandler et al., 2009). Somit wäre auch die Komplex-Bildung von DRN und DRNL mit anderen Mitgliedern dieser Familie denkbar.

Lokus	Gen	DRN:GFP (fV)	DRNL:GFP (fV)	DRN:GFP, <i>pt</i> (fV)
AT5G55250	ITAM	1,29	1,06	0,88
AT5G57090	EIR1 (ETHYLENE INSENSITIVE ROOT 1)	-0,87	-0,85	-0,64
AT2G47270	UPB1 (UPBEAT1)	-1,01	-0,89	-0,62
AT2G36490	ROS1	-0,68	-1,04	-0,63
AT1G74500 TMO7(TARGET OF MONOPTEROS)		-0,78	-1,04	-1,21
AT5G42630	KAN4 (KANADI4)	-1,23	-2,24	-2,07
AT2G04160	AIR3	-1.37	-2.12	-0.82

Tabelle 5: Vergleich differenzill transkribierter Genen mit bekannter Funktion in *pDRNL::erGFP* und *pDRN::erGFP* im wildtypischen und *pt* mutanten Hintergrund. Abkürzungen: fache Veränderung (fV).

Auch von diesem Datenset wurden Gene, deren Funktion bekannt ist näher analysiert (Tab. 5). In diesem Subset sind ebenfalls einige Gene enthalten, die in dem Auxin-Signalweg eingreifen.

EIR3 reguliert den Auxin-Transport (Luschnig et al., 1998), genau wie KAN4 (Izhaki and Bowman, 2007), welches vermutlich in die Regulation von PIN1 während der Embryogenese involviert ist. Die Protease AIR1 wird vermutlich über den Auxin-Rezeptor TIR1 reguliert (Xie et al., 2000) und TMO7 ist ein bekanntes Zielgen von MONOPTE-ROS (Schlereth et al., 2010).

Bei UPB1 handelt es sich um einen bHLH-Transkriptionsfaktor, dessen Funktion anscheinend in der Balance-Haltung von Zellproliferation und –differenzierung, unabhängig von Hormonsignalen über die Regulation von reaktiver Sauerstoff-Spezies liegt (Tsukagoshi et al., 2010). Die DNA-Glycosylase ROS1 demethyliert aktiv DNA und reguliert die Transkription von durch Methylierungen still gelegter Gene (Agius et al., 2006).

Inwiefern die positive oder negative Regulation dieser Gene direkt mit der Aktivität von DRNL bzw. DRN zusammen hängt ist jedoch fraglich. Die RNA wurde aus Zellen von mehreren Wochen alten Kallus-Kulturen isoliert. Somit könnten die Gene auch nicht direkt als primäre oder auch sekundäre Zielgene reguliert sein, sondern allgemein im Rahmen der zellulären Entwicklung reguliert werden.

4 Diskussion

DRNL kodiert ein AP2/ERF-Protein der ERF-Subfamilie. Die meisten Mitglieder dieser Familie sind in Reaktionen auf biotischen und abiotischen Stress involviert, einige wurden allerdings schon als wichtige Faktoren für verschiedene Entwicklungsprozesse identifiziert, wie *TINY* (Sun et al., 2008) und *LEP* (van der Graaff et al., 2000; Ward et al., 2006), neben *DRN* das nächstverwandten Gen. Verschiedene Mitglieder der AP2-Subfamilie, wie *AP2* und *ANT* haben eine besondere Bedeutung für die Blütenentwicklung (Bowman et al., 1989; Jofuku et al., 1994; Elliott et al., 1996). Die genaue Analyse des Expressionsmusters von *DRNL* über den gesamten Entwicklungszyklus in *Arabidopsis* führt zu der Vermutung, dass *DRNL* ebenfalls nicht an Stressreaktionen, sondern an der Rekrutierung von Gründerzellen, der Bildung von Organanlagen und der Organogenese beteiligt ist.

4.1 DRNL markiert die Gründerzellen lateraler Organe

Die Entstehung lateraler Organe lässt sich grundlegend in drei verschiedene Phasen unterteilen. Kleine Populationen von Gründerzellen werden aus dem Meristem rekrutiert, worauf hin es zunächst zur kontrollierten Zellteilung kommt. Die daraus entstehende Organanlage, bildet ein histologisch erkennbares Primordium und unterläuft Organogenese, was letztlich zur Entstehung eines adulten Organs führt (Beveridge et al., 2007). Mit Hilfe verschiedener histologischer und klonaler Analysen konnte die Anzahl von Gründerzellen, die zur Bildung verschiedener Organe benötigt werden, bestimmt werden (Irish, 1992; Bossinger and Smyth, 1996). Dabei wurde für Blätter eine Anzahl von 1-9 Zellen festgestellt. Die verschiedenen Blütenorgane entstehen jeweils aus 2 Zellen (Petale), 4 Zellen (Stamen) oder 8 Zellen (Sepalen und Karpelle).

Es konnte gezeigt werden, dass *DRNL* inzipiente Organanlagen, sowohl während der vegetativen, als auch der reproduktiven Phase vormarkiert, und zwar zeitlich deutlich bevor diese histologisch identifizierbar sind. Die beobachtete Anzahl der von *DRNL* vorgemusterten Zellen stimmt für alle Organe mit den mittels klonaler Sektoranalyse ermittelten Zellanzahlen genau überein. Es wurde weiter beobachtet, dass sich die Expressionsdomäne, im Rahmen, der zur Entstehung einer Organanlage benötigten kontrollierten Zellteilung, zunächst erweitert und sich über alle Zellen, die morphologisch dem inzipienten Organprimordium zugehörig sind, erstreckt. Während des Auswachsens von Primordien und der Organogenese wird *DRNL* nur in wenigen Zellen der differenzierenden Organe exprimiert. Ein weiterer Hinweis auf die Rekrutierung von Grün-

derzellen durch *DRNL* ergibt sich aus den in der *prs* Verlustmutante beobachteten Mustern. In der Mutante ist das Auswachsen lateraler Sepalen inhibiert, trotzdem werden diese angelegt (Matsumoto and Okada, 2001; Nardmann et al., 2004). *DRNL* mustert deutlich die inzipienten Organanlagen vor, ohne dass diese elaborieren.

DRNL scheint also in alle drei Phasen der Bildung lateraler Organe involviert zu sein, von der Rekrutierung von Gründerzellen aus dem vegetativen, dem reproduktiven oder dem floralen Meristem, über die Bildung von Organanlagen bis hin zum Auswachsen der Organprimordien.

4.1.1 Die Bildung lateraler Organanlagen aus dem embryonalen und vegetativen SAM erfolgt nach dem selben Muster

Expression von DRNL ist schon zu Beginn der Embryogenese detektierbar. Ab dem 16-Zell-Stadium ist der DRNL-Promotor im gesamten Proembryo aktiv. Während der weiteren Entwicklung verlagert sich das Expressionsmaximum in den apikalen Bereich des Embryos, wo es sich gegen Ende des Globulärstadiums in zwei distinkte laterale Signale trennt, die die Kotyledonenanlagen vormustern. Ab diesem Zeitpunkt, bis hin zur Entstehung floraler Meristeme aus dem IM wird DRNL nicht mehr in Zellen mit meristematischem Charakter exprimiert, sondern ausschließlich in primordialen Zellen, wie den Kotyledonenprimordien, oder während der Organogenese, wie letztlich in wenigen Zellen der Kotyledonen. Während des vegetativen Wachstums, bei der Entstehung von Blattprimordien, ist der DRNL-Promotor ist zunächst in sämtlichen Zellen, die morphologisch der neuen Blattanlage zugehörig sind, aktiv. Sobald das Primordium auswächst, beschränkt sich die Expressionsdomäne von DRNL zunächst auf den apikalen Bereich, später ist Expression nur noch in wenigen Zellen der L2-Schicht zu detektieren. Die Expression von DRNL erfolgt also in zwei verschiedenen Organtypen, während der Entwicklung der Kotyledonen und Blätter nach dem gleichen Muster zunächst weitläufig in der inzipienten Organanlage, später in wenigen Zellen der L2 und L3 Schicht der Primordien

4.1.2 Die Entstehung floraler Organe unterliegt verschiedenen Musterbildungsprozessen

Anhand des Expressionsmusters von *DRNL* lässt sich weiterhin die Entstehung der einzelnen floralen Organanlagen verfolgen, welche im Laufe der Blütenentwicklung alle sukzessiv vormarkiert werden (Abb. 20). Dabei fällt auf, dass diese anscheinend durch grundlegend verschiedene Musterbildungsprozesse entstehen. Die Sepalen werden dekussiert, oder die medialen Sepalen eventuell einzeln und die lateralen Sepalen paarweise angelegt. Die Petalen-, genau wie die Stamenanlagen stammen aus jeweils gemeinsamen morphogenen Feldern, die erst während der weiteren Entwicklung zu einzelnen Organanlagen separieren.

Mit Hilfe einer dreidimensionalen Darstellung des *pDRNL::erGFP* Expressionsmusters während der frühen Stadien der Blütenentwicklung konnte veranschaulicht werden, dass *DRNL* sämtliche Organanlagen vormustert. Bereits im P-1 und P0 Stadium wird *DRNL* in inzipienten Blütenprimordien exprimiert, wobei im P-1 Stadium etwa 4-8 Zellen vormarkiert werden. Sobald es durch kontrollierte Zellproliferation zum Auswachsen der Blütenanlage kommt ist der Promotor in dem gesamten Blütenprimordium aktiv.

Abbildung 20: Schematische Darstellung der *DRNL*-Expression im FM. Organanlagen und morphogene Felder sind nummeriert in der Reihenfolge ihres Auftauchens während der Blütenentwicklung. Abaxiale Sepale (1), laterale Sepalen (2), abaxiale Sepale (3), laterale, morphogene Felder (4) und zentrales, morphogenes Feld (5) in Schema 1. Auftrennung des morphogenen Feldes (4) in vier diskrete Signale, die die Petalen (6) und zwei, die die lateralen Stamen (7) vormarkieren, das ringförmige, morphogene Feld (8), welches die medialen Stamen vormustert wird etabliert, die Expression in den auswachsenden Sepalen beschränkt sich auf die Spitzen (Schema 2). Das ringförmige morphogene Feld trennt sich in vier Signale, die die medialen Stamen markieren (9), zentral werden die Karpellanlagen vorgemustert (10) (Schema 3), dabei bilden sich schnell zwei distinkte Signale (11) im Zentrum (Schema 4).

Im weiteren Verlauf der Blütenentwicklung werden zunächst die Sepalen sequenziell in der Reihenfolge abaxiale, laterale und adaxiale Sepale initiiert (Abb. 20; 1-3). Interessanter Weise würden nach dieser Interpretation die beiden medialen Sepalen jeweils einzeln, die beiden lateralen Sepale zeitlich dazwischen und parallel angelegt werden. Die Organisation dieser sequentiellen Initiierung könnte rein morphologisch begründet sein. Dabei könnten die Zellen für die Bildung der abaxialen Sepalenanlage direkt rekrutiert werden, nachdem die Entscheidung zur Entstehung einer neuen Blütenanlage getroffen wurde. Die Initiierung der lateralen Sepalenprimordien würde aber zunächst ein Auswachsen des kompletten Blütenprimordiums voraussetzen, um Platz für die neuen Organanlagen zu schaffen bzw. eine ausreichende Anzahl an Zellen innerhalb des FMs zu bilden. Für die Rekrutierung von Zellen für die adaxiale Sepale könnte die morphologische Abgrenzung durch die Bildung einer Furche zwischen IM und Blütenprimordium erforderlich sein, entweder ebenfalls um ausreichend Platz, oder um eine eventuell nötige Separierung zwischen IM und der neuen Organanlage zu schaffen. Das abaxiale Sepalenprimordium würde nach dieser Interpretation nicht nur zuerst angelegt werden, es ist auch größer, als die der lateralen und adaxiale und elaboriert kurze Zeit bevor sich die restlichen Sepalenprimordien erheben (Hill and Lord, 1989). Die Begründung dafür könnte in dem evolutionären Verlust des floralen Tragblattes liegen, wodurch die abaxiale Sepale deren Position einnimmt und aus einem, in diesem Sektor vergrößert initiiertem Primordium entsteht (Sauders, 1923; Hagemann, 1963).

Alternativ dazu könnte das Expressionsmaximum vom P-1 bis P1 Stadium nicht die abaxiale Sepale bzw. gemeinsame Vorläuferzellen für Tragblatt und abaxiale Sepale markieren, welche während der Entwicklung unterschiedliche Zellschicksale unterlaufen, sondern das rudimentäres Tragblatt vormustern. In Arabidopsis entstehen FMs, genau wie primäre und sekundäre Meristeme wahrscheinlich de novo in den Achseln von Hoch- bzw. Tragblättern, deren Auswachsen in der Blüte unterdrückt wird (Long and Barton, 2000; Kwiatkowska, 2006; Alvarez-Buylla et al., 2010). Der Meristem-Marker STM wird im gesamten IM exprimiert, nicht aber in den Zellen der inzipienten Blütenprimordien, was eher gegen die Theorie sich abspaltender Meristeme spricht (Long and Barton, 2000). Ab dem Blütenstadium 2 wird STM dann im Zentrum des Blütenprimordiums, dem floralen Meristem exprimiert. Vor diesem Hintergrund wäre denkbar, dass die distal markierten Zellen in der Stadium 2 Blüte zunächst ausschließlich das kryptische Tragblatt vormustern, dessen Vorläuferzellen aus dem IM rekrutiert werden. Sämtliche Blütenorgane werden erst nach der Neuorganisation der FMs aus Zellen, die zur Bildung der lateralen Organe aus der Peripherie des floralen Meristems abwandern, initiiert. Nach dieser Interpretation wären die zuerst angelegten Blütenorgane die lateralen Sepalen, deren Vorlauferzellen aus dem floralen Meristem rekrutiert werden. Gegen Ende des 2. Blütenstadiums entstehen die Anlagen der medialen Sepalen relativ zeitgleich, wobei die abaxiale Sepale nicht aus den bereits ab dem P-1 Stadium markierten Zellen entsteht, sondern für beide Blütenorgane Zellen neu aus dem FM abwandern. In Abbildungen 5C und E wird das selbe Blütenprimordium aus verschiedenen Perspektiven dargestellt. In 5C sind bereits einige Zellen adaxial sehr schwach vormarkiert, und auf der abaxialen Seite sind in Abbildung 5E deutlich zwei distinkte Signale erkennbar, welche nach dieser Theorie nicht durch eine Zweiteilung der frühen abaxialen Signals in ein oberes und unteres Maximum entstehen, sondern durch die Rekrutierung meristematischer Zellen aus dem FM zur Bildung der abaxialen Sepale durch DRNL. Somit würden alle vier Sepalen in einem dekussierten Modus entstehen. Die Theorie, dass die medialen und die lateralen Sepalen paarweise zusammengehörig sind, und von einander unabhängig entstehen, lässt sich auch durch die floralen Defekte der prs Verlustmutante untermauern (Matsumoto and Okada, 2001). Die lateralen Sepalen dieser Mutante werden angelegt, elaborieren aber nicht, wobei die medialen Sepalen nur marginal betroffen sind, was für eine gekoppelte Initiierung der beiden einzelnen Paare spricht.

Einen weiteren interessanten Aspekt der frühen Blütenentwicklung umfasst die Entstehung einzelner Organanlagen aus morphogenen Feldern, wie bei der Organisation von Petalen und Stamen. Bereits in Stadium 2 werden von *DRNL* lateral des FMs zwei sichelförmige Felder (Abb. 20; 4), bestehend aus zwei Zellreihen, markiert. Kurz darauf, zu Beginn des dritten Blütenstadiums, lässt sich eine ringförmige Expressionsdomäne detektieren, die das FM umschließt (Abb. 20; 5, 8). Diese morphogenen Felder markieren die Peripherie des floralen Meristems und beinhalten Vorläuferzellen, die zunächst allgemein zur Bildung lateraler Blütenorgane rekrutiert wurden. Im Verlauf der weiteren Blütenentwicklung separieren sich innerhalb dieser Felder die einzelnen inzipienten Organanlagen.

Aus den beiden lateralen Feldern entstehen jeweils zwei Petalen (Abb. 20; 6). Zwischen den beiden Maxima, ein bis zwei Zellreihen Richtung Zentrum verschoben werden die lateralen Stamen von DRNL markiert (Abb. 20; 7). Dabei lässt sich nicht differenzieren, ob die verschiedenen Organe aus den Selben Vorläuferzellen entstehen, oder ob die Rekrutierung der Zellen für Petalen und laterale Stamen zwei getrennte Prozesse darstellen. Das zu Beginn etwa 6-8 Zellen umfassende morphogene Feld könnte zunächst nicht auf einen bestimmten Organtypus festgelegt sein und erst zu einem späteren Zeitpunkt in Petalen- und Stamengründerzellen unterteilt werden. Unter dieser Betrachtung wäre die Rekrutierung von Gründerzellen zur Entstehung dieses Feldes eher positionsals organabhängig. Daraus würde sich eine Art zweistufiger Entwicklungsprozess ergeben, indem zunächst die Entscheidung zur Rekrutierung von Organgründerzellen getroffen wird und erst zu einem späteren Zeitpunkt dann die Aufteilung in Petalen- und Stamengründerzellen. Außerdem wäre die Bildung zweier morphologisch und funktional völlig verschiedener Organtypen damit in gewissem Maße gekoppelt. Alternativ dazu könnten die lateralen Stamen auch zeitlich unmittelbar folgend, jedoch als unabhängiges Ereignis initiiert werden. Das Blütenprimodium ist zu diesem Zeitpunkt noch sehr komprimiert, wodurch die Vorläuferzellen einzelner Wirtel meist direkt an einander angrenzen, oder maximal eine Zellreihe dazwischen liegt. Das ringförmige Feld stößt zu Beginn lateral unmittelbar an das Petalenfeld, und die klare Abgrenzung der Gründerzellen von Petalen, lateralen Stamen und medialen Stamen ist erst erkennbar, wenn das Blütenprimordium weiter auswächst. In Anbetracht von Funktion und Morphologie ist jedoch die Entwicklung von Petalen und lateralen Stamen aus zwei unabhängigen Populationen von Gründerzellen anzunehmen.

Die Entstehung aller Stamen aus gemeinsamen Vorläuferzellen ist jedoch in Anbetracht der Expressionsmuster eher unwahrscheinlich. In Stadium 4 ist deutlich erkennbar, dass die Anlage der lateralen Stamen nicht aus dem ringförmigen morphogenen Feld entspringt, sondern die markierten Zellen außerhalb dieses Feldes, etwas basaler bzw. weiter entfernt von der apikalen Blütenspitze liegen. Außerdem sind die vier Maxima, die die medialen Stamenanlagen vormarkieren (Abb. 20; 9) noch nicht deutlich von einander getrennt, während an der Position der späteren lateralen Stamenanlagen nur wenige Zellen markiert sind, die des Weiteren bereits durch eine Zellreihe von den vorgemusterten medialen Stamen abgegrenzt sind. Ein anderes Indiz für getrennte Entwicklungsprozesse bezüglich medialer und lateraler Stamen liefert auch die unterschiedliche Morphologie über verschiedene Entwicklungsstadien (Smyth et al., 1990). Die medialen Stamen elongieren zu einem etwas früheren Zeitpunkt in Stadium 5 und auch stärker, als die lateralen Stamen, weshalb die medialen auch als lange, die lateralen als kurze Stamen bezeichnet werden. In diesem Zusammenhang liefert auch die Analyse der drnl-1 Verlustmutanten interessante Daten (Chandler, nicht veröffentlicht). Die drnl-1 Mutante weißt mit 4,5, verglichen mit 5,9 im Wildtyp eine deutlich verringerte Anzahl von Stamen auf. Die Einzelmutante bildet durchschnittlich nur 1,5 laterale Stamen, die Anzahl der medialen Stamen dagegen ist nur selten reduziert. Auch im wildtypischen Col, Ler und WS Pflanzen fehlt gelegentlich eins der laterale Stamen, bezüglich der medialen Stamen werden solche Defekte allerdings nicht beobachtet. Des Weiteren sind in drnl-1 Mutanten häufig fusionierte Stamen zu beobachten. Diese Fusionen entstehen mit hoher Präferenz zwischen medialen Stamen (86%) und nur gelegentlich zwischen medialen und lateralen Stamen (16%). Daraus ergibt sich zu einen, dass die medialen und lateralen Sepalen eher aus von einander unabhängigen Prozessen stammen. Des Weiteren scheint DRNL eine entscheidende Funktion für die Initiierung von Organen und die Grenzziehung dazwischen zu besitzen.

Die beiden Karpelle werden als zwei separate Organe entlang der medio-lateralen Achse initiiert und fusionieren entlang der proximal-distalen Achse zu einem Hohlzylinder. Trotz dieser schlauchförmigen Struktur, findet sich hier keine ringförmige Expressionsdomäne an der apikalen Spitze, sondern zwei sehr lokale Maxima lateral des FMs gelegen (Abb. 20; 10, 11). Damit zeigen sich im Falle der Organogenese des Gynoeceums schon sehr früh (Stadium 4-5), deutlich bevor es zum Auswachsen der Organanlage in Stadium 6 kommt, qualitative Unterschiede zwischen den Zellen, die zur Bildung dieses Organs rekrutiert wurden. Konträr zu dieser Beobachtung findet sich für alle anderen Organprimordien zu den Zeitpunkt an dem sie morphologisch erkennbar sind *DRNL* Expression in der kompletten Organanlage, und beschränkt sich erst zu einem späteren Zeitpunkt auf ausgewählte Zellen an apikaler Position.

Die Spezifizierung der Blütenorgane wird derzeit hauptsächlich durch die ABC-Gene begründet. Die räumlich-zeitliche Expression dieser Transkriptionsfaktoren führt im frühen Blütenstadium zur konzentrischen Aufteilung des jungen Blütenprimordiums in einzelne Wirtel (Bowman et al., 1991; Coen and Meyerowitz, 1991). Die Missexpression dieser Gene führt zu homöotischen Mutationen, die wirtel- und nicht organspezifisch sind. Im Gegensatz dazu scheint *DRNL* in die Bildung von Organanlagen in allen Wirteln involviert zu sein. Die Analyse von *ap3/pi drnl* Doppelmutanten ergab, dass *DRNL*

nicht mit dem ABC-Model verknüpft ist, und die Blütenentwicklung über davon unabhängige Mechanismen reguliert (Nag et al., 2007).

Die Expressionsmuster von *DRNL* während der Blütenentwicklung bekräftigen eindrucksvoll die alternative Theorie der sechs Blütenwirtel (Steinheil, 1839; Alexander, 1952). Unter der oben diskutierten Annahme, dass von dem frühen abaxialen Expressionsmaximum im P-1 bis P1 Stadium ein kryptisches Tragblatt vorgemustert wird, markiert *DRNL* zunächst dekussiert die beiden lateralen Sepalen im ersten Wirtel und kurz darauf die medialen Sepalen, die den zweiten Wirtel bilden. Die vier Petalen werden in zwei morphogenen Feldern vormarkiert und trennen sich später auf, was auf die Duplizierung der Organe (De Candolle, 1821) hinweisen könnte. Außerdem konnte anhand des Musters gezeigt werden, dass laterale und mediale Stamen aus verschiedenen Vorläuferzellen stammen, und demnach definitionsgemäß aus verschiedenen Wirteln entspringen. Die Karpelle entstehen paarweise im innersten Wirtel.

Durch die Expression über die verschiedenen Entwicklungsphasen der Organogenese und in allen Organtypen von Blüten eignet sich *DRNL* ausgezeichnet als Marker zur Beobachtung floraler Musterbildungsprozesse. Die Analyse des Marker in Mutanten mit Blütendefekten kann Aufschluss geben, welche Entwicklungsschritte betroffen sind, bzw. in welchen Stadien es zu fehlerhaften Musterbildungen kommt. Für die, in der Bildung lateraler Organe beeinträchtigte *prs* Mutante konnte bereits deutlich gezeigt werden, dass die lateralen Sepalenanlagen zwar initiiert werden, die Elongation der inzipienten Organprimordien allerdings ausbleibt. Weiterhin könnte die Suche nach *DRNL* orthologen Genen in anderen Spezies und die Beobachtung der Expressionsmuster während der floralen Musterbildung Aufschluss geben, bezüglich Gemeinsamkeiten und Abweichungen in der Anlage divergenter Baupläne verschiedener Blüten.

4.2 Die partielle Redundanz von DRN und DRNL ist hauptsächlich begründet in funktionaler Equivalenz und überlappenden Expressionsdomänen

Die Verwandtschaft von *DRN* und *DRNL* erklärt sich durch Entstehung beider Gene aus einer intrachromosomalen Duplikation auf Chromosom 1. Nach einer Duplikation kann es zur Akkumulation von Mutationen in einem der duplizierten Gene kommen. Unter positivem Selektionsdruck können die Proteine dann unterschiedliche Funktionen übernehmen, während die ursprüngliche Funktion nicht völlig verloren geht, wodurch eine partielle Redundanz entsteht (Nowak et al., 1997). Die Unterschiede von *DRN* und *DRNL* sind anscheinend größtenteils regulatorischer Natur. Die Proteine können gegenseitige Funktionen übernehmen, wenn sie vom Promotor des anderen Gens reguliert werden. Somit verhalten sie sich auf Proteinebene weitestgehend equivalent. Vielleicht lässt sich durch diese gewisse Promiskuität der Proteine auch der dramatische Effekt einer konstitutiven Überexpression erklären, und vergleichsweise marginale Effekte in den Verlustmutanten (Kirch et al., 2003; Marsch-Martinez et al., 2006; Ward et al., 2006; Chandler et al., 2007; Nag et al., 2007). *DRN* und *DRNL* sind Mitglieder einer Proteinfamilie mit einer hoch konservierten Domäne, somit wäre es auch denkbar, dass es noch weitere Vertreter mit partiell redundanter Funktion gibt. Da die Proteine außerhalb der AP2-Domäne keine große Ähnlichkeit zeigen, innerhalb dieser jedoch hoch konserviert sind, könnte die Funktion beider Proteine mit dieser Domäne assoziiert sein. Interessant wäre, ob das nächst verwandte Gen *LEP*, oder möglicherweise ein anderer beliebiger ERF, die sich von *DRN* und *DRNL* bezüglich der Proteinsequenz ihrer AP2-Domäne ebenfalls kaum unterscheiden, getrieben vom *DRNL*-Promotor in der Lage ist, den Phänotyp der *drnl-2/bcm-1* Mutante zu retten.

DRN und DRNL werden zu Beginn der Embryogenese koexprimiert, zunächst im gesamten Proembryo, später begrenzt auf den apikalen Bereich und dann ausschließlich auf die Kotyledonenanlage. Das SAM wird schon im frühen Stadium der Embryogenese angelegt. Die beiden Positiv-Regulatoren des SAM WUS und STM sind ab dem Dermatogen- bzw. Globulärstadium in den inneren apikalen Zellen exprimiert (Mayer et al., 1998; Aida et al., 1999). Zu diesem Zeitpunkt ist die Expression von DRN und DRNL bereits auf zwei laterale Maxima überwiegend in der L1-Schicht konzentriert, außerhalb des neu entstehenden SAMs. Ab dem Torpedostadium überlappen die Expressionsmuster der beiden Gene dann kaum noch. Der DRN-Promotor ist über die verschiedenen Entwicklungsstadien der Pflanze hinweg fast ausschließlich in meristematischen Zellen aktiv, während DRNL aus dem Meristem ausgegrenzt ist, und in Zellen mit primordialem Charakter exprimiert wird. In diesem Zusammenhang sind auch die veränderten Expressionsmuster in der pt Mutante, in der ein vergrößertes embryonales SAM angelegt wird (Mordhorst et al., 1998), während der frühen Stadien der Embryogenese interessant. Der DRN-Promotor zeigt im Globulärstadium im gesamten Embryo inklusive Suspensor vermehrte Aktivität. Die DRNL-Expression unterscheidet sich in diesem mutanten Hintergrund schon im Globulärstadium drastisch vom DRN Expressionsmuster obwohl die beiden Gene zu diesem Zeitpunkt im Wildtyp koexprimiert werden. Die Expressionsdomäne ist in den basalen Teil des Proembryos, konträr zum apikalen Maximum im Wildtyp verlagert. Diese divergenten Expressionsmuster lassen sich möglicherweise dadurch begründen, dass es in der pt Mutante nicht nur zur Vergrößerung der meristematischen Zone kommt, sondern die Differenzierung von Zellen, hin zu meristematischer oder primordialer Identität bereits in einem Stadium getroffen wird, in dem im Wildtyp das Zellschicksal noch weitestgehend offen ist. Diese Muster lassen ebenfalls auf eine deutliche Diskrepanz bezüglich der transkriptionellen Regulation der beiden Gene schließen.

Obwohl für DRN und DRNL funktionale Unterschiede bezüglich der genetischen Interaktion mit PIN und PID, oder verschiedener CUC-Gene nachgewiesen werden konnten, lässt sich auch eine partielle Redundanz der beiden verschiedenen Gene beobachten (Chandler et al., 2010). Die Penetranz des embryonalen Kotyledonendefektes der drn Mutante ist in der *drn drnl* Doppelmutante deutlich erhöht (Chandler et al., 2010). Während der Musterbildung im apikalen Embryo scheinen die beiden zu diesem Zeitpunkt koexprimierten Gene also hoch redundant zu sein. Im Gegensatz zu drnl-1 besitzt die *drnl-2/bcm1* Mutante, ein hypermorphes Allel von *drnl-1*, ebenfalls einen Kotyledonenphänotyp (Nag et al., 2007). Im Promotor-swap-Experiment konnte gezeigt werden, dass sowohl DRN exprimiert unter dem DRNL-Promotor, als auch ein pDRN::DRNL-Konstrukt den Phänotyp rettet (Chandler et al., 2010). Für die Rettung des Phänotyps scheint also eine gewisse Konzentration der beiden Proteine insgesamt ausreichend. Auch während der Blütenentwicklung ist eine gewisse Redundanz von DRN und DRNL zu beobachten. In der drnl-1 cuc-1 Doppelmutante fehlen die lateralen Stamen zu 84%, in der drn drnl cuc-1 Tripelmutante ist der Phänotyp voll penetrant. Die CUC Gene besitzen eine wichtige Funktion für die Grenzziehung zwischen Organanlagen, und werden in den Zellen, die die inzipienten Primordien umschließen, exprimiert. Des Weiteren kann die drnl-2/bcm1 Mutante, die einen starken Blütendefekt zeigt, komplett gerettet werden, wenn DRN vom DRNL-Promotor getrieben wird (nicht veröffentlicht). Die Basis der partiellen Redundanz während der Kotyledonenentwicklung und der Entstehung von Blütenorganen liegt also wahrscheinlich hauptsächlich in der zeitweiligen Koexpression und funktionaler Equivalenz der Proteine.

Obwohl DRNL an der Initiierung aller Blütenorgane anscheinend gleichermaßen beteiligt ist, beschränkt sich der Blütendefekt in drnl-1 und drnl-2/bcm-1 erstaunlicher Weise hauptsächlich auf die lateralen und medialen Stamen. In der drnl-2/bcm-1 Mutante tauchen gelegentlich petaloide Sepalen im äußeren Wirtel auf und Sepal-Petal-Mosaike, am drastischsten sind jedoch die Stamen betroffen, deren Anzahl mit 3,1 verglichen zum Wildtyp (5,8) deutlich reduziert ist (Nag et al., 2007). Oft finden sich auch Fusionen zweier Stamen, oder es werden stattdessen filamentöse Organe gebildet, was eventuell ebenfalls durch eine equivalenten Funktionalität der beiden Proteine erklärt werden kann. Zwar konnte in der *drn drnl-1* keine erhöhte Penetranz der Stamendefekte bzw. Defekte von anderen Blütenorganen festgestellt werden, abgesehen von leicht erhöhten Penetranz eines niedrig penetranten Karpelldefektes (drnl-1: 5%; drn drnl-1:15%) (Chandler, nicht veröffentlicht). Weder bei drn noch bei drnl-1 handelt es sich jedoch um Null-Allele, somit ist eine gewisse Restaktivität der Proteine wahrscheinlich. Bei genauer Beobachtung der Expressionsmuster zeigt sich auch während der Blütenentwicklung mehrfach partielle Überlappung der beiden Gene. Während der Rekrutierung der Zellen für die medialen Sepalen überschneiden sich die beiden Expressionsdomänen, und auch die beiden morphogenen Felder, die später zu den Petalen- und Stamenanlagen differenzieren liegen sehr dicht neben, bzw. partiell in der Peripherie des FMs. Die Zellen zur Bildung der Karpelle werden direkt im Zentrum des jungen Blütenprimordiums aus dem FM rekrutiert und damit aus dem Zentrum der DRN Expressionsdomäne. Somit wäre denkbar, dass DRN möglicherweise die drnl-2/bcm-1 Mutante vor weiteren floralen Defekten rettet. Die Musterbildung der Stamenanlagen scheint, verglichen zu den anderen Blütenorganen bei weitem die Komplexeste zu sein. Die lateralen Stamen müssen entweder aus einem gemeinsamen morphogenen Petalen-Stamen-Feld abgegrenzt werden, oder auf engstem Raum zwischen den beiden morphogenen Feldern initiiert werden. Die medialen Stamen entstehen aus einer zunächst ringförmigen Expressionsdomäne, die sich im weiteren Verlauf auftrennen muss, um vier einzelne Organanlagen zu bilden. Vielleicht können diese hoch-komplexen Prozesse, im Gegensatz zur Bildung der anderen Organe nicht von einem funktionell equivalentem Protein mit teilweise überlappender Expressionsdomäne übernommen werden, sondern sind auf eine sehr genau Expression angewiesen. Dadurch ließe sich das Fehlen der lateralen, und die Fusionen der medialen Stamen mit Hilfe der Expressionsmuster zumindest teilweise erklären. Interessant wäre in dem Zusammenhang die Analyse der drn drnl-2 Doppelmutante, um eventuelle weitere Blütendefekte zu entdecken.

Nur an zwei Zeitpunkten während der Entwicklung der Pflanze konnte *DRN* Expression außerhalb des Meristems detektiert werden. Während der Etablierung des embryonalen SAMs, welches bereits im Globulästadium durch WUS und STM vormarkierten wird, ist DRN zunächst lateral des entstehenden SAMs lokalisiert, später kann Expression weiterhin in den Kotyledonenspitzen detektiert werden. Außerdem markieren STM und WUS schon ab Stadium 1 bzw. 2 der Blütenentwicklung das FM im Zentrum des Primordiums vor, während DRN nicht, oder an distaler Position exprimiert wird. *DRN* wird also in neu entstehenden Meristemen deutlich später exprimiert, als die Meristemmarker *WUS* und *STM*, was darauf hindeutet, dass *DRN* keine Rolle für die Etablierung des Meristems spielt, sondern eher eine Funktion bei der Aufrechterhaltung besitzt. *DRNL* hingegen ist schon in früheste Musterbildungsprozesse lateraler Organe involviert.

4.3 Die frühe Regulation von *DRNL* erfolgt unabhängig von Auxin

Im Rahmen dieser Arbeit sollte darüber hinaus eine mögliche Verbindung zwischen dem Phytohormon Auxin und *DRNL* überprüft werden. Obwohl durch konstitutive Überexpression von *DRN* und *DRNL* eine Verknüpfung mit Cytokinin beobachtet werden konnte (Banno et al., 2001; Ikeda et al., 2006), ist eine Einordnung der beiden Paraloge in den Auxin-Signalweg auf Grund verschiedenster Beobachtungen deutlich näher-

liegend. Außerdem ist die Bildung lateraler Organe, in die *DRNL* involviert zu sein scheint, abhängig vom polaren Auxin-Transport in die inzipienten Organanlagen (Reinhardt et al., 2003).

Die Promotoren beider Gene enthalten mehrere kanonische Auxin-Response Elements (AuxREs). Der DRN-Promotor enthält insgesamt fünf AuxREs, davon drei 3' und zwei 5' vom Transkriptionsstart. Im DRNL-Promotor befinden sich ebenfalls drei AuxREs 3' vom Transkriptionsstart gelegen und eins 5'. An diese AuxREs binden Mitglieder einer Familie von Transkriptionsfaktoren, die ARFs und aktivieren oder reprimieren damit die Transkription Auxin-regulierter Gene (Guilfoyle et al., 1998; Guilfoyle, 2007). Die 23 Mitglieder der ARF-Familie sind in eine Reihe von Entwicklungsprozessen involviert. MONOPTEROS (MP)/ARF5 ist essentiell für die Festlegung der basalen Domäne während der Embryogenese (Berleth and Jurgens, 1993; Hardtke and Berleth, 1998). DRN konnte bereits als direktes Zielgen von MP identifiziert werden (Cole et al., 2009). In der mp Mutante ist der DRN-Promotor in den Spitzen der Kotyledonen ab den Torpedostadium in phänotypisch mutanten Embryonen inaktiv. Die Expression von DRN im SAM ist davon nicht betroffen. Durch Punktmutation einzelner AuxREs des Promotors und durch ChIP-Experimente konnte belegt werden, dass MP mit zwei der 5' gelegenen kanonischen AuxREs physisch interagiert. Die Expression des paralogen DRNL ist in der mp-Mutante ebenfalls betroffen. Es konnte kein Signal in den Kotyledonenspitzen phänotypisch mutanter mp Pflanzen im Torpedostadium detektiert werden. Außerdem wurde ein signifikanter Anteil an Embryonen innerhalb der homozygoten *pDRNL::erGFP* Linien beobachtet, die auch in früheren Stadien kein Signal zeigten. DRNL scheint also ebenfalls durch MP reguliert zu werden, und zwar schon in früheren Entwicklungsstadien als DRN. Allerdings zeigten die Reportergen-Linien mit den mutierten AuxREs im DRNL-Promotor kein verändertes Expressionsmuster in Embryonen. Die Kontrolle von DRNL durch MP während der Kotyledonenentwicklung könnte damit entweder indirekt sein, oder über nicht-kanonische AuxREs reguliert werden. Die Interaktion von MP mit nicht-kanonischen AuxREs konnte auf der Suche nach direkten Zielgenen durch ChIP nachgewiesen werden (Schlereth et al., 2010). MP bindet an ein 500 BP großes Fragment des TMO7-Promotors, der keine kanonischen AuxREs (TGTCTC) beinhaltet. Allerdings finden sich zwei TGTC Kernelemente, die für die Interaktion von MP mit dem Promotorbereich verantwortlich sein könnten. Somit wäre denkbar, dass MP auch alternative Motive innerhalb des DRNL-Promotors erkennt, und die Transkription damit direkt reguliert. Für die Spezifizierung von Gründerzellen zur Bildung der Kotyledonen im globulären Embryo durch Auxin gibt es derzeit allerdings keine Beweise. Lokale Auxin-Maxima können in den Kotyledonenprimordien ab dem Herzstadium nachgewiesen werden, und koinzidieren damit mit den Mustern von DRN und DRNL und dem Auswachsen der Organanlage. Die Rekrutierung der Gründerzellen muss allerdings deutlich früher erfolgen. Auxin ist zu Beginn der Embryogenese gleichmäßig über den kompletten Proembryo verteilt, ähnlich wie DRN und DRNL, ab dem späten Globulär- (etwa 32-Zell-Stadium), über das Triangulärstadium hinweg akkumuliert Auxin in der Hypophyse und der obersten Suspensorzelle (Friml et al., 2003). Da die Kotyledonengründerzellen innerhalb dieses Zeitfensters festgelegt werden müssen, erscheint Auxin als Initiator eher unwahrscheinlich.

Die Auxinverteilung in Infloreszenz und Blüten ist im Vergleich zum Embryo relativ spärlich dokumentiert. Lokale Maxima können in der Peripherie des IMs detektiert werden, an den Stellen an denen die Blütenprimordien initiiert werden (Heisler et al., 2005). In jungen Blütenprimodien konnte bislang mit Hilfe des DR5-Promotors kaum Auxin detektiert werden, dafür allerdings durch Antikörperfärbung konjugierte, biologisch inaktive IAA-Derivate nachgewiesen werden (Aloni et al., 2006). Freies Auxin konnte erst ab Stadium 8 in allen Blütenorganen detektiert werden. Die Analyse der pDR5::erGFP Reportergen-Linien in Rahmen dieser Arbeit ergab davon abweichend ein sehr komplexes Muster von lokalen Auxinmaxima in allen Stadien der Blütenentwicklung. Schon in den inzipienten Primordien fast aller Blütenorgane konnte die Akkumulation von Auxin beobachtet werden, allerdings immer deutlich nachdem die Organanlagen von DRNL vorgemustert wurden. Meist kommt es unmittelbar nach der Etablierung eines Auxin-Maximums zu Auswachsen der Organanlage. Im Falle der Petalen kann erst nachdem diese bereits differenzieren ein apikales Maximum beobachtet werden. Während der Blütenentwicklung kann also davon ausgegangen werden, dass Auxin eher die Proliferation der bereits spezifizierten Gründerzellen fördert und damit die Bildung von Organanlagen unterstützt. Außerdem scheint Auxin involviert in Differenzierungsprozesse der Organe.

Einen weiteren Grund zur Annahme einer von Auxin weitestgehend unabhängigen Transkription von DRNL während der floralen Entwicklung liefert die Analyse der mutDRNL::erGFP Linien. Es konnte gezeigt werden, dass die Mutagenisierung der AuxREs im DRNL-Promotor auch in der Infloreszenz kaum Effekt auf die Aktivität des Promotors hat. Lediglich die L1-Schicht der medialen Sepalen ist in einem sehr kurzen Zeitfenster betroffen. In diesem Stadium akkumuliert Auxin stark in der L1 der medialen Sepalen, was auf die transkriptionelle Regulation von DRNL über Auxin-Signalwege in diesen Zellen deuten könnte. Allgemein betrachtet ist der sichtbare Beitrag in der Blütenentwicklung aber marginal, da er sich auf wenige Zellen beschränkt und zu einem Zeitpunkt erfolgt, zu dem es bereits zur Differenzierung der Organanlage kommt. Die Analyse einer *pDRNL::GUS* Reportergenlinie in den Verlustmutanten verschiedener, in Blüten exprimierten ARFs (arf-1, arf-2, arf-6 und arf-8) ergab kein verändertes Muster für DRNL, was eine Auxin-regulierte Kontrolle von DRNL durch diesen Faktoren unwahrscheinlich macht (Nag et al., 2007). Die transkriptionelle Kontrolle von DRNL durch ARFs in Blüten, wie im Embryo durch MP, ist aber dennoch nicht auszuschließen. Möglicherweise sind diese ARFs hoch redundant, was die Analyse der
Muster in Tripel- bzw. Quadrupelmutanten erfordert oder *DRNL* wird durch andere ARFs reguliert. Allerdings ist die Rekrutierung von Gründerzellen für Blütenorgane über Auxin-Signalwege eher unwahrscheinlich. Wie bei der Determination der apikalen Domäne während der Embryogenese scheint Auxin auch für die Entwicklung von reproduktiver Organen höchstens in die Differenzierung selbiger involviert zu sein.

4.4 Die Funktion von DRN und DRNL als mögliche Transkriptionsfaktoren

Einer der Hauptpunkte dieser Arbeit war der Nachweis direkter Protein-DNA-Interaktion der beiden AP2-Proteine mit einem spezifischen Motiv. In der derzeitigen Literatur wird die AP2-Familie als Familie von Transkriptionsfaktoren beschrieben und es erfolgt eine Einteilung in verschiedene Subfamilien, mit untereinander variierender Sequenzspezifität, auf der Basis der AS-Sequenz ihrer AP2-Domänen. Obwohl die AP2-Familie mit 147 Mitgliedern eine der größten TF-Familien in *Arabidopsis* darstellt, ist nur wenig bekannt bezüglich der DNA-bindenden Eigenschaften und eventueller Zielgene ihrer Mitglieder.

Die Einteilung von DRN und DRNL in die B-1 Gruppe der ERF-Subfamilie lässt die spezifische Erkennung der klassischen GCC-Box, mit der Kernsequenz GCCGCC vermuten (Sakuma et al., 2002). Für AtERF1, einem Mitglied dieser Subfamilie, konnte bereits direkte DNA-Bindung der AP2-Domäne an dieses Motiv nachgewiesen werden, und die an der Interaktion beteiligten AS wurden mittels Kernspinresonanzspektroskopie aufgeklärt (Allen et al., 1998). DRN und DRNL unterscheiden sich innerhalb ihrer AP2-Domäne nur an wenigen Positionen von der ERF1 AP2-Domäne. Alle, an der spezifischen DNA-Bindung beteiligten AS stimmen zwischen ERF1, DRN und DRNL überein. Allerdings variieren ERF1 und DRN/DRNL bezüglich einer, an der unspezifischen Bindung beteiligten AS. An Position 12 der AP2-Domäne besitzt ERF-1 einen Lys-Rest, DRN und DRNL hingegen Arg. Die unspezifische Bindung einiger AS dieser Domäne an DNA soll vermutlich die spezifische Interaktion zwischen Protein und Zielsequenz erleichtern, indem der DNA-Strang in die richtige Position zur Protein gebracht wird (Allen et al., 1998). Da es sich sowohl bei Lys, als auch bei Arg um AS-Reste mit einer zusätzlichen positiven Ladung handelt, sollte diese AS-Substitution in DRN bzw. DRNL allerdings keine großen Auswirkungen auf die unspezifische Bindung von DNA haben. Jedoch konnte trotz größter Bemühungen keine spezifische Interaktion von DRN oder DRNL mit der GCC-Box gezeigt werden.

Die Gruppierung basierend auf Proteinsequenzen lässt nicht grundsätzlich Rückschlüsse auf die Interaktion mit dem klassischen Motiv zu. Für verschiedene Mitglieder der AP2Familie konnten bereits die Erkennung alternativer Zielsequenzen belegt werden (Koussevitzky et al., 2007). Die Mitglieder der AP2-Subfamilie erkennen, soweit bekannt, kein einheitliches Motiv, wobei außerdem unklar ist, ob beide AP2-Domänen an die Zielsequenz binden (Krizek et al., 2000). Auf der Suche nach alternativen Zielsequenzen von DRN und DRNL konnte allerdings ebenfalls kein Motiv identifiziert werden, an das DRN oder DRNL spezifisch binden.

Nach den im Rahmen dieser Arbeit durchgeführten Versuchsreihen kann die Interaktion von DRN und DRNL mit einer spezifischen Zielsequenz und damit eine mögliche Funktion als TF bisher nicht bestätigt werden. Auf der anderen Seite lässt sich aber auch nicht ausschließen, dass die beiden Proteine unter nativen Bedingungen mit einer spezifischen DNA-Sequenz interagieren. Denkbar wäre z.B. eine große Dissoziationskonstante des Komplexes bzw. eine niedrige Affinität des Proteins gegenüber der Zielsequenz, was einen Nachweis auf Grund der Instabilität äußerst schwierig machen würde. Für verschiedene ERFs konnte eine Dissoziationskonstante (K_d) für die GCC-Box im pikomolaren Bereich festgelegt werden (Hao et al., 1998), was eine hohe Affinität des Proteins gegenüber der Erkennungssequenz darstellt. Vergleichsweise besitzen bHLH-Faktoren mit einem typischen K_d -Wert im nanomolaren Bereich eine deutlich niedrigere Affinität (Hurst, 1994), der LAC Supressor-Operator-Komplex ist mit einer K_d von 0,1 pM hingegen äußerst stabil (Riggs et al., 1970). Das als Kontrolle verwendete DREB1A zeigte in allen durchgeführten Experimenten erwartungsgemäß eine hohe Affinität gegenüber der Erkennungssequenz. Die Analyse der DNA-Bindeeigenschaft verschiedener HOX-Proteine (HOXA5, HOXA7, HOXB1, HOXB4 und HOXC8) ergab, trotz ihrer nahen Verwandtschaft, eine große Varianz bezüglich der Affinität und Spezifität (Pellerin, 1994). Somit wäre auch für DRN und DRNL eine deutlich niedrigere Affinität, als die anderer Mitglieder der AP2-Familie, trotz der hoch konservierten Sequenz der AP2-Domäne denkbar. Qualitative Unterschiede bezüglich der Protein-DNA-Interaktion konnten auch für verschiedene ERFs festgestellt werden (Ohme-Takagi, 2000). Während ERF1, ERF2 und ERF5 sehr sensitiv auf Punktmutationen innerhalb der GCC-Kernsequenz reagieren, sind ERF3 und ERF4 deutlich toleranter bezüglich einzelner Basenaustausche.

Durch die Interaktion von Transkriptionsfaktoren lässt sich die transkriptionelle Genregulation kontrollieren, indem die Spezifität der Zielsequenz und die Bindungsaffinität des Promotorelements beeinflusst werden (Blackwood and Eisenman, 1991; Sessa et al., 1993). KNOTTED1 (KN1), das Mais-Ortholog des HD-Proteins STM zeigt als Monomer kaum Bindung an die Erkennungssequenz. Erst in Form eines Heterodimers mit KNOTTED-INTERACTING-PROTEIN (KIP), einem weiteren HD-Protein bildet es einen stabilen Komplex mit dem spezifisches Motiv TGACAG(G/C)T (Smith et al., 2002). Homo- und Heterodimerisierungen werden auch für Mitglieder der ERF-Subfamilie angenommen (Riechmann and Meyerowitz, 1998). Tatsächlich wurde für AtEBP Interaktion mit dem bZip-Faktor beobachtet (Buttner and Singh, 1997). Auch für DRN und DRNL konnte gezeigt werden, dass die beiden Proteine Heterodimere mit dem bHLH-Transkriptionsfaktor BIM1 und allen Mitgliedern der Klasse III HD-ZIP-Familie, bestehend aus PHAVOLUTA (PHV), PHABULOSA (PHB), REVOLUTA (REV), CORONA (CNA) und ATHB8 (Chandler et al., 2007; Chandler et al., 2009). Die Interaktion zwischen der c-terminalen Per/Arnt/Sim (PAS)-like-Domäne von HD-ZIP-Faktoren und DRN bzw. DRNL erfolgt über die AP2-Domäne. Allerdings konnte auch durch in vitro Koexpression von DRN mit BIM1 oder PHV keine spezifische DNA-Bindung an die GCC-Box erzeugt werden (nicht dargestellt). Möglicherweise ist aber auch die Multimerisierung mit anderen, bisher nicht identifizierten Transkriptionsfaktoren für die Aktivierung der beiden AP2-Faktoren nötig. Es könnten jedoch auch verschiedene Kofaktoren für die Interaktion mit der Zielsequenz benötigt werden, die die Konfirmation des Proteins beeinflussen und damit eine Protein-DNA-Interaktion ermöglichen. Denkbar wäre hingegen auch, dass es sich bei der AP2-Domäne von DRN und DRNL um eine Domäne mit rudimentär DNA-bindender Funktion handelt, und die beiden Proteine nicht direkt DNA binden, sondern die AP2-Domäne in dem Fall der Protein-Protein-Interaktion dient, und DRN und DRNL als Kofaktoren für z.B. PHV fungieren. Zwar konnte für BIM1 gezeigt werden, dass die Fähigkeit von BES1 zur Bindung an die spezifische Erkennungssequenz, durch die Heterodimerisierung mit BIM1 verstärkt wird, BIM1 interagiert vermutlich aber auch direkt mit einem spezifischen Motiv, der E-Box (Yin et al., 2005). Eventuell bilden DRN oder DRNL als Teilproteine mit BIM1 einen Komplex, der die E-Box erkennt.

Des Weiteren stellt sich die Frage, ob DRN und DRNL durch die in vitro Transkription überhaupt in nativer Form synthetisiert werden konnten. Die Verwendung rekombinanter Proteine für die DNA-Bindestudien könnte problematisch sein, da nicht garantiert werden kann, ob die exprimierten Proteine bezüglich Sekundär-, Tertiär- und Quartärstruktur mit dem nativen Protein übereinstimmen. Zwar stellte sich das Kontrollprotein DREB1A in allen getesteten in vitro Transkriptions-Translations-Systemen als unproblematisch bezüglich der DNA-Protein-Interaktion heraus, für DRN und DRNL lässt sich allerdings keine Vorhersage treffen, ob die rekombinanten Proteine in nativer Form vorliegen. Außerdem werden posttranslationale Modifizierungen des Proteins, wie das Hinzufügen funktioneller Gruppen oder zusätzlicher Bindungen zwischen des AS in diesen in vitro Systemen vernachlässigt. Für OsEREBP1 aus Reis wurde die posttranskriptionale Phosphorylierung durch eine pathogen-induzierte Mitogene Activated Proteine Kinase (MAPK) nachgewiesen. Durch die Phosphorylierung erhöht sich die DNA-Bindeaktivität des AP2-TF deutlich (Cheong et al., 2003). Die Aktivierung von Transkriptionsfaktoren durch Phosphorylierung über den MAPK-Weg ist nicht ungewöhnlich. Der Transkriptionsfaktor PBF1 bindet ausschließlich in phosphorylierter Form an den Promotor von *PR10a* (Despres et al., 1995). Auch für AtERF104 konnte eine signifikant erhöhte Affinität des Protein nach der Phosphorylierung durch eine MAPK beobachtet werden (Bethke et al., 2009). Somit könnte auch die Aktivität von DRN und DRNL über posttranslationale Modifizierung, wie Phosphorylierung kontrolliert sein.

Bei der Analyse verschiedener AP2-TFs zeigte ein wichtiger Betrag, nicht nur der direkt mit der Zielsequenz interagierenden AS, sondern auch einiger anderer AS der AP2-Domäne. Die Position 14 scheint eine entscheidende Rolle für die Sequenzspezifität zu spielen, ohne direkten Kontakt zur Zielsequenz herzustellen (Sakuma et al., 2002). Möglicherweise beeinflusst ein in der ERF-Subgruppe hoch konservierter Ala-Rest die Konfirmation der Domäne durch die Interaktion mit Arg8 und Thr28 und beeinflusst damit die Bindeeigenschaft (Hao et al., 2002). Ala37 ist ebenfalls eine, innerhalb der gesamten Familie hoch konservierte AS, die als Teil der α-Helix die DNA-Bindung nur indirekt beeinflusst. Der Ala-Rest an dieser Position ist allerdings essentiell für die Protein-DNA-Interaktion (Liu et al., 2006). Außerdem wird auch für die AS-Positionen 17, 27 und 42 ein bedeutender Einfluss auf die Konfirmation der AP2-Domäne angenommen (Yang et al., 2009). Innerhalb der β-Faltblatt-Domäne zeigt sich keine große Varianz der AS-Sequenz innerhalb der AP2-Familie, die α-Helix hingegen gestaltet sich deutlich variabler. Somit wäre es denkbar, dass sich in diesem, für die Ausrichtung der DNA-bindenden AS, verantwortlichem Teil, in DRN und DRNL AS fehlen, die eine DNA-bindende Konfirmation unterstützen bzw. AS-Substitutionen vorliegen, die die Interaktion negativ beeinflussen.

Die AP2-Domäne ist jedoch nicht immer als völlig selbständige Struktur unabhängig vom umliegenden Proteinkontext zu definieren. Für EREBP2 aus *Nicotiana* konnte bereits ein entscheidender Beitrag der flankierenden Sequenz der AP2-Domäne festgestellt werden (Hao et al., 1998). Für die spezifische Interaktion mit der GCC-Box ist eine 10 AS lange Sequenz n-terminal der AP2-Domäne erforderlich, deren genaue Funktion bislang unklar ist. Dieser Bereich ist nicht konserviert innerhalb der AP2/ERF-Familie, weshalb eine Beeinflussung der Konfirmation der AP2-Domäne eher vermutet wird, als eine Beteiligung an der spezifischen Interaktion mit der Zielsequenz. Somit wären auch Domänen innerhalb der Proteinsequenz von DRN oder DRNL denkbar, die eine, sich auf die DNA-Bindung negativ auswirkende Konfirmation der AP2-Domäne in den DRN-/DRNL-Chimären mit dem DRE-Motiv erklären könnte.

4.5 Die transkriptionelle Kontrolle durch DRNL und DRN

Die Interpretation der *microarray*-Daten erwies sich als äußerst kompliziert. Im Abgleich mit Datenbanken, dem *clustering* ergaben sich keine großartigen Übereinstimmung mit anderen Sets. Der Grund dafür liegt möglicherweise in der Produktion eines sehr diffizilen Datensets. Die meisten *microarray*-Daten basieren auf der Analyse kompletter Pflanzen bzw. Gewebetypen. Dabei werden die Reaktion auf biotischen oder abiotischen Stimulus erfasst, die Auswirkung von Mutationen auf die Genexpression oder differentielle Expression in verschiedenen Entwicklungsstadien oder Organen untersucht. In diesem Fall wurde durch die Sortierung die Transkription in nur einem, zudem wahrscheinlich höchst spezialisierter Zelltyp in Vergleich zu allen anderen Zellen der Kalluskultur analysiert. Die dabei entstandenen Daten lassen sich demnach nur schwer in die vorhandenen Daten, die durch die Analyse einer weit weniger definierten Population entspringen, einordnen.

Weiterhin ist fraglich in wie fern, die als differenziell transkribierten Gene auftauchen direkt von DRNL beeinflusst sind. Diese Zellen exprimieren schon über einen sehr langen Zeitraum vor der Sortierung GFP, und somit auch DRNL. Da es über diesen Zeitraum auch zur Differenzierung kommt, könnten die differentiell transkribierten Gene auch durch die allgemeine Entwicklung der Zellen beeinflusst sein, und nicht direkt in Abhängigkeit von DRNL reguliert werden. Außerdem ist auch fraglich, wie weit die Expression in der Kalluskultur mit der *in Planta* verglichen werden kann. Möglicherweise sind die DRNL positiven Zellen der Kalluskultur qualitativ nicht den primordialen Zellen, in denen DRNL in der Pflanze exprimiert wird, entsprechend.

Besonders auffällig bei der Analyse der microarray-Daten der DRNL-positiv sortierten Zellen war der stark überwiegende Anteil an negativ regulierten (420) im Vergleich zu positiv regulierten Genen (70). Die DRN basierten Datensets zeigen diesbezüglich mit 280 positiv und 210 negativ regulierten Genen keine große Diskrepanz. Denkbar wäre auf Grund dieser Daten eine Funktion als transkriptioneller Repressor für DRNL. NtERF3, AtERF3 und AtERF4 wurden bereits als aktive, transkriptionelle Repressoren beschrieben (Ohme-Takagi, 2000; Ohta et al., 2000). Für ERF3 wurde die negative Regulation zweier Ethylen regulierter Gene, BCH und BGL demonstriert (Yang et al., 2005). Außerhalb der AP2-Domäne konnte ein Motiv identifiziert werden, welches essenziell für die Funktion als Repressor erscheint, das ERF-associated Amphiphilic Repression (EAR)-Motiv mit der konservierten Sequenz L/FDNLL/F(X)P (Ohta et al., 2001). In Arabidopsis sind mit ERF3, ERF4 und ERF7 bis ERF12 bisweilen acht ERF-Repressoren identifiziert worden, die ein c-terminales EAR-Motiv besitzen (Yang et al., 2005). Eine solche Sequenz ist zwar weder in DRNL noch in DRN zu finden, allerdings sind alle bekannten ERF-Repressoren, genau wie DRN und DRNL Mitglieder der B1-Subgruppe der AP2-Familie (Sakuma et al., 2002). Da diese Einteilung auf Grund der Homologie der AP2-Domäne erfolgt, und alle bekannten Repressoren dieser Subgruppe angehören, wäre auch ein Beitrag der AP2-Domäne, neben dem *EAR*-Motiv zur Funktion als transkriptioneller Repressor vorstellbar.

Der Vergleich mit zwei unabhängigen *microarrays*, basierend auf der Expression von DRNL ergab nur begrenzt Übereinstimmungen, was mit unter an dem verwendeten Geweben liegen könnte. Für ein Experiment wurden transgene 35S::ESR2/DRNL-ER Wurzel-Zellkulturen verwendet, die eine Stunde vor der RNA-Isolation induziert wurden (Ikeda et al., 2006). Die zweite Analyse erfolgte aus RNA aus Blättern von 35S::BOL/DRNL transgenen Pflanzen (Marsch-Martinez et al., 2006). Beide Experimente beruhen damit auf konstitutiver Überexpression des AP2-Proteins, die *in Planta* verheerende Auswirkung auf die Konstitution der Pflanze hat. Außerdem wurden für beide Experimente Gewebetypen verwendet, in denen DRNL *in vivo* nicht exprimiert wird.

Da die konstitutive Überexpression von DRNL zu einer erhöhten Zellteilungsrate führt, vermuten Ikeda et al. eine Aktivierung von Genen durch DRNL, die als positive Regulatoren des Zellzyklus fungieren, z.B. CycD1;1 (Ikeda et al., 2006). In diesem Experiment wurde außerdem CUC1 als direktes Zielgen identifiziert, welches eine synergistische Wirkung mit DRN bezüglich der Kotyledonen- (Chandler, 2010) und Stamenentwicklung zeigt. In dem, im Rahmen dieser Arbeit erstellten Datenset taucht CUC1 jedoch nicht als durch DRNL transkriptionell reguliert auf. Allerdings finden sich in den zwei andere Übereinstimmungen, ein Mitglied UDP-Datensets der Glukuronosyltransferase (UDP-GT)-Familie und einem Mitglied der WD40-Familie. Die in beiden Experimenten positiv regulierte Transferase (AT1g73880) ist leider nicht genauer charakterisiert, die UDP-GT UGT84B1 katalysiert nachweißlich die Glykolysierung von IAA (Jackson et al., 2002). Ein ähnlicher Eingriff in die Auxinhomöostase wäre somit prinzipiell auch für AT1g73880 denkbar. Die WD40-Domäne vermittelt vermutlich Interaktion mit anderen Protein-Domänen (van der Voorn and Ploegh, 1992; Smith et al., 1999; Choi et al., 2008). Proteine mit einer WD40-Domäne sind weit verbreitet in allen Spezies der Eukaryoten, wobei die Funktion der Mitglieder dieser Familie äußerst variabel gestaltet (Smith et al., 1999). Die Funktion des WD40-Proteins At1g48870 ist bisher nicht bekannt.

Die *bol-D* Mutante und die *35S::BOL* überexprimierenden transgenen Pflanzenlinien zeigten eine, verglichen zum Wildtyp bis zu sechsfach reduzierte Zellteilungsrate und -elongation (Marsch-Martinez et al., 2006). Die Expression verschiedener Komponenten des Nukleosomens und der Ribosomen zeigten sich von der DRNL-Überexpression beeinflusst, was einen Eingriff in die Regulation des Zellzyklus vermuten lässt. Weiterhin wurden diverse mit verschiedenen Hormonen assoziierte Gene differentiell transkribiert. Besonders interessant ist dabei *IAA17/AXR3*, welches in der DRNL-positiven

Zellpopulation ebenfalls als negativ reguliert auftaucht. Die Expression von AUX/IAAs wird von Auxin induziert (Abel and Theologis, 1996) und die Proteine können Homound Heterodimere bilden (Kim et al., 1997). Außerdem interagieren sie mit ARFs, die über die Interaktion mit *AuxREs* die Transkription von Auxin-induzierbaren Genen kontrollieren (Ulmasov et al., 1997, 1999). IAA17/AXR3 wird als transkriptionaler Repressor Auxin-induzierbarer Gene beschrieben (Ouellet et al., 2001; Tiwari et al., 2001; Leyser, 2002; Guilfoyle and Hagen, 2007), die Repression von *IAA17/AXR3* durch DRNL würde die Transkription von Auxin-induzierbaren Genen somit positiv beeinflussen.

Die Identifizierung von einzelnen Zielgenen von DRN und DRNL, oder die Einordnung der beiden Proteine in bestimmte biologische Prozesse gestaltet sich schwierig. Die Funktion von DRN und DRNL als Transkriptionsfaktoren bzw. eine direkte Interaktion mit einer spezifischen DNA-Sequenz konnte im Rahmen dieser Arbeit nicht belegt werden, auch wenn für DRN eine Bindung an die GCC-Box beobachtet werden konnte (Banno H., 2006). In den Datensets der microarrays treten eine Vielzahl von Genen auf, die in die Auxin-Homöostase oder -Signaltransduktion eingreifen. Durch die pDRNL::erGFP Reportergen-Linien konnte gezeigt werden, dass die DRNL-Expression teilweise mit Auxin-Maxima korreliert, aber auch in verschiedenen Organanlagen zu einem deutlich früheren Zeitpunkt detektierbar ist. Denkbar wäre unter dieser Vorraussetzung, dass DRNL die Auxin-Verteilung beeinflusst. Die IAA-Amido-Synthetase GH3.9 ist in DRNL positiven Zellen negativ reguliert. IAA-Amido-Synthetasen binden freies Auxin, durch die Konjugation von AS an IAA (Staswick et al., 2005; Khan and Stone, 2007). Eine mögliche Repression von GH3.9 durch DRNL könnte somit zur Etablierung lokaler Maxima in den DRNL-positiven Zellen führen, indem freies Auxin in DRNL-negativen Zellen durch GH3.9 konjugiert wird, in den DRNL-positiven Zellen hingegen nicht. Die Transkription von ITAM1, eine S-Adenosylmethionin-abhängige Methyltransferase, die durch die Methylierung von IAA zu Methyl-IAA-Estern (Me-IIAA) in die Auxin-Homeostase eingreift (Qin et al., 2005), wird in DRN- und DRNLpositiven Zellen positiv reguliert. Im Gegensatz zu AS konjugierten Auxin-Derivaten sind MelIAA nicht biologisch inaktiv, in Applikationsexperimenten mit MelIAA zeigte die modifizierte Form sogar eine höhere biologisch Potenz (Zimmerman, 1937). Die Inaktivierung von freiem Auxin in der Peripherie und einer Steigerung der Aktivität von Auxin in der DRNL-exprimierenden Zellen könnten zur Etablierung stabiler und lokaler Auxin-Maxima in den DRNL-positiven Zellen führen, was sekundär die Expression einiger Auxin regulierter Gene beeinflussen könnte, wie ARF10, ARF17 und ARF19 oder AXR3/IAA17. Eine Verwicklung von DRN und DRNL in die Auxin-Homöostase muss zu diesem Zeitpunkt allerdings als rein spekulativ angesehen werden. Eventuell könnten weitere microarray-Datensets von DRN und DRNL in mutantem Hintergrund, wie DRNL in der pt Mutante, oder DRN und DRNL in drn und drnl weiteren Aufschluss über die biologische Funktion der beiden Proteine geben und die Identifizierung möglicher Zielgene unterstützen. Die Verwendung eines induzierbaren Systems würde zudem eine Beschränkung auf primäre Zielgene ermöglichen.

Zusammenfassung

Mit Hilfe transkriptionaler und translationaler Reportergenkonstrukte wurde das Expressionsmuster von *DRNL* über die verschiedenen Entwicklungsstadien von *Arabidopsis thaliana* hinweg analysiert. Die Verwendung doppelt transgener Reportergen-Linien erlaubte einen detaillierten Vergleich der Muster mit denen des nächstverwandten Protein DRN.

Die beiden homologen Proteine werden im globulären Embryo zunächst koexprimiert, während späterer Stadien der Embryogenese unterscheiden sich die Expressionsmuster deutlich. Im weiteren Verlauf der Pflanzenentwicklung wird *DRN* hauptsächlich in Zellen mit meristematischem Charakter exprimiert. *DRNL* hingegen ist in verschiedene Stadien der Organogenese involviert. Dabei markiert *DRNL* zunächst die aus dem SAM, IM und FM zur Bildung lateraler Organe rekrutierten Gründerzellen, die proliferierenden Zellen inzipienter Organanlagen und schließlich eine Teilpopulation in den Primordien. Die Expressionsmuster während der Blütenentwicklung zeigten, dass die einzelnen floralen Organtypen durch grundlegend verschiedene Musterbildungsprozesse entstehen. Die Sepalen werden dekussiert, oder die medialen Sepalen einzeln und die lateralen Stamen und die medialen Stamen entstehen aus morphogenen Feldern, die sich in distinkte Organanlagen auftrennen. Im Zentrum des Blütenprimordiums kommt es mehrfach zu Überlappung mit *DRN*.

Die Beobachtung der Auxin-Verteilung in der Infloreszenz, gemessen mit dem *DR5*-Promotor, zeigten lokale Maxima in allen Organanlagen, jedoch zu einem deutlich späteren Zeitpunkt als *DRNL*-Expression detektiert werden konnte. Die Mutagenese von vier kanonischen *AuxREs* zeigte ebenfalls keinen sichtbaren Betrag bezüglich der Regulation von *DRNL* während der frühen Organogenese. Die Rekrutierung von Organgründerzellen durch *DRNL* und die Bildung inzipienter Organanlagen scheint somit unabhängig von Auxin zu sein.

DRN und *DRNL* kodieren Transkriptionsfaktoren der AP2/ERF-Familie, in DNA-Bindestudien konnte allerdings keine spezifische Bindung der *in vitro* synthetisierten Proteine an eine Zielsequenz nachgewiesen werden. In *microarray*-Experimenten konnte eine Reihe von, mit Auxin assoziierten Gene als differentiell transkribiert identifiziert werden. Ein Eingriff in die Auxin-Homöostase ist somit denkbar, aber zum jetzigen Zeitpunkt spekulativ.

Abstract

Live imaging in *Arabidopsis thaliana* during plant development revealed *DRNL* and its paralogue *DRN* to be coexpressed during early embryogenesis, whereas expression patterns diverge during later stages of embryogeny. Whilst plant development proceedes, *DRN* expression is mainly restricted to meristematic cells. *DRNL* participates in all phases of lateral organ formation, pre-patterning lateral organ founder cells, incipient organ anlagen and primordial cells. Analysis of *DRNL* expression patterns during floral development revealed floral organ initiation to occure in different modes, from individual or pairs of organ anlagen or decussate for sepals, to morphogenetic fields pre-patterning petals and lateral stamens, or the medial stamens, to pairwise for carpells. *DRNL* function repeatedly overlaps in the central stem cell zone with that of *DRN*.

Measurement of auxin response maxima in inflorescences by the *DR5* reporter revealed auxin distribution in floral organ anlagen following *DRNL* expression. Mutagenesis of four canonical *AuxREs* in the promotor demonstrated regulation of *DRNL* to be uneffected during early organogenesis. Specification of organ founder cells and controlled cell division forming an organ anlage seem independent of auxin signalling.

DRN und *DRNL* encode transcription factors belonging to the AP2/ERF family, however DNA binding of *in vitro* synthesised protein to a specific motif was not demonstrated. *Microarray* experiments revealed differential transcription of several auxin related genes. Function in auxin homeostasis, although not substantiated, appears to be conceivable.

Anhang

PESTfind Analyse

DRNL

PEST-f:	ind: Finds PEST motifs as potential proteolytic cleavage sites.	
5	PEST motifs were identified in NP_173864.1 from positions 1 to 306 and sorted by score.	
Poor Pl 168	EST motif with 15 amino acids between position 168 and 184. HESFTNVNDVCEDLSPK 184 PEST score: -1.74	
Poor Pl 187	EST motif with 33 amino acids between position 187 and 221. RSSTIENESLISNIFEPEPASSGLLQEIVQGFLPK 221 PEST score: -3.34	
Poor Pl 232	EST motif with 21 amino acids between position 232 and 254. KSNQQSVGVFPTMPESGFQTDVR 254 PEST score: -6.05	
Poor Pl 139	EST motif with 28 amino acids between position 139 and 168. RDVLNSQSLSPLTTFAYPPCNLSNVNDVVH 168 PEST score: -9.74	
Poor Pl 110	EST motif with 13 amino acids between position 110 and 124. RTNFVYPMPSLDSYH 124 PEST score: -15.03	
	++++++	
1	$\tt MEEAIMRLEGAEHRETNIHSLKRKPSRTSSTAPGSPGGVTTAKAASGAGASGVSTIRYRG$	50
61	VRRRPWGRYAAEIRDPLSKERRWLGTFDTAEEAACAYDCAARAMRGLKARTNFVYPMPSL 1 0000000000	L20
121	DSYHHRIFSSPPMNMFLLRDVLNSQSLSPLTTFAYPPCNLSNVNDVVHESFTNVNDVCED1000000000000000000000000000000000000	180
181	LSPKAKRSSTIENESLISNIFEPEPASSGLLQEIVQGFLPKPISQHASIPPKSNQQSVGV 2 000 00000000000000000000000000000000	240
241	FPTMPESGFQTDVRLADFHVEGNGFGQVKYHGELGWADHENGFDSAKMQQNGNGGMFYQY	300
301	CFHDDY 306	
	Symbols PEST motifs ++++++ potential 0000000 poor	

DRN

PEST-find: Finds PEST motifs as potential proteolytic cleavage sites. 4 PEST motifs were identified in ESR1_ARATH from positions 1 to 328 and sorted by score. Poor PEST motif with 34 amino acids between position 197 and 232. 197 KTACVSYSENENNESFFPEESSDTGLLQEVVQEFLK 232 PEST score: 0.72 Poor PEST motif with 11 amino acids between position 22 and 34. 22 KFFTEPTASPVSR 34 PEST score: -6.10 Poor PEST motif with 22 amino acids between position 137 and 160. 137 RCPLPSLPLDSSTQNFYGAPAAQR 160 PEST score: -9.08 Poor PEST motif with 14 amino acids between position 109 and 124. 109 RTNFTYPTAVIMPEPR 124 PEST score: -9.77 _____+ 1 MEKALRNFTESTHSPDPNPLTKFFTEPTASPVSRNRKLSSKDTTVTIAGAGSSTTRYRGV 60 0000000000 61 RRRPWGRYAAEIRDPMSKERRWLGTFDTAEQAACAYDSAARAFRGAKARTNFTYPTAVIM 120 0000000000 121 PEPRFSFSNKKSSPSARCPLPSLPLDSSTQNFYGAPAAQRIYNTQSIFLRDASCSSRKTT 180 000 181 PYNNSFNGSSSSYSASKTACVSYSENENNESFFPEESSDTGLLOEVVOEFLKKNRGVPPS 240 241 PPTPPPVTSHHDNSGYFSNLTIYSENMVQETKETLSSKLDRYGNFQANDDGVRAVADGGL 300 301 SLGSNEWGYQEMLMYGTQLGCTCRRSWG 328 Symbols PEST motifs

SYMDOLS	PEST MOULIS
++++++	potential
0000000	poor

microarray-Datensets

In DRNL-positiven Zellen differentiell transkribierte Gene mit bekannter, molekularer Funktion:

		exp1 	exp1 	exp1	exp1	exp2	exp2	exp2	exp2	repet-	repet-	repet-	repet-
		1 run of amplif	1 run of amplit	f 1 run of amplif	1 run of amplif	1 run of amplif	f 1 run of amplit	f 1 run of amplif	1 run of amplif	1 run of amplif	1 run of ampli	f 1 run of amplif	1 run of amplif
		ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4
		DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast	DRNL Protoplast
		DRNL::GFP+_1	DRNL::GFP+_1	DRNL::GFP+_1	DRNL::GFP+_1	DRNL::GFP+_2	DRNL::GFP+_2	DRNL::GFP+_2	DRNL::GFP+_2	DRNL::GFP+	DRNL::GFP+	DRNL::GFP+	DRNL::GFP+
At1	fonction	DRNL::GFP- 1 Rat	DRNL::GFP- 1 Pval	DRNL::GFP- 1 Red	DRNL::GFP- 1 Green	DRNL::GFP- 2 Rat	DRNL::GFP- 2 Pval	DRNL::GFP- 2 Red	DRNL::GFP- 2 Green	DRNL::GFP- Rat	DRNL::GFP-	DRNL::GFP- Red	DRNL::GFP- Green
AT3G19820	DWF1 (DIMINUTO 1); catalytic_cell elongation protein / DWARF1 / DIMINUTO (DIM)	7,33	9,93	-2,60	0'00E+0	7,17	9,64	-2,47	0,00E+0	7,25	9,79	-2,54	0'00E+0
AT4G38620 AT3G05880	MYB4; transcription factor RCI2A (RARE-COLD-INDUCIBLE 2A) hydrophobic protein	7,02 8,58	9,24 10,60	-2,22 -2.02	0,00E+0 0.00E+0	6,69 8,16	8,69 10.76	-2,00	0,00E+0 0.00E+0	6,85 8.37	8,96 10,68	-2,11 -2,31	0,00E+0 0,00E+0
AT1G44900	ATP binding / DNA binding / DNA-dependent ATPase_DNA replication licensing factor, putative	6,77	8,71	-1,94	0,000 +0	6,81	8,73	-1,92	0,00E+0	6,79	8,72	-1,93	0,00E+0
AT5G42630 AT1G33280	DNA binding / transcription factor_myb family transcription factor (KAN4) ANAC015: transcription factor_no anical meristem (NAM) family protein	7,07 6 70	8,97 8.45	-1,89 -1,75	0,00E+0	6,80 6,59	9,39 7.97	-2,59 -1.38	0,00E+0 0.00E+0	6,94 6.64	9,18 8.21	-2,24 -1.57	0,00E+0
AT2G38750	ANNAT4 (ANNEXIN 4); calcium ion binding	7,63	9,36	-1,73	0,00E+0	7,77	9,42	-1,65	0,00E+0	7,70	9,39	-1,69	0,00E+0
AT5G57620	MYB36; DNA binding / transcription factor ATEXPAG (APABIL/OPSIS THAI IANA EXPANSIN 40)	6,72 8 07	8,44 10.68	-1,73	0,00E+0	6,68 0.01	7,75	-1,07	7,67E-8	6,70 8 00	8,10 10.75	-1,40 -1.76	0,00E+0
AT1G09560	ALEXPAG (ARXABIJUCPIS) I HALIANA EXPANSIN A9) GLP5 (GERMIN-LIKE PROTEIN 5); nutrient reservoir	8,97 7,39	90'01	17.1-	0,00E+0 0.00E+0	7.07	8.37	-1,81	0,00E+0 0.00E+0	6,99 7.23	6/'01 8.73	-1./0	0,00E+0 0.00E+0
AT5G63840	RSW3 (RADIAL SWELLING 3); hydrolase	8,47	10,14	-1,67	0,00E+0	8,47	9,82	-1,35	0,00E+0	8,47	9,98	-1,51	0,00E+0
AT3G09390	MT2A (METALLOTHIONEIN 24)metallothionein protein, putative (MT2A)	9,11	9,70 10,72	-1,60	0,00E+0	8,57	3,32 10,62	-2,06	0,00E+0	8,84	3,01 10,67	-1,63	0,00E+0
AT3G59220	PRN (PIRIN); calmodulin binding_ pirin, putative	7,63	9,23	-1,60	0,00E+0	7,56	9,42 11 OE	-1,86	0,00E+0	1,59	9,32	-1,73	0,00E+0
AT1G04250	WRN 100, utanscription tactor AXR3 (AUXIN RESISTANT 3);indoleacetic acid-induced protein 17 (IAA17)	9,46 9,46	10,93	-1,40	0,00E+0	9,37	10,53	-0,00	5,47E-10 6,47E-10	9,42	11,14	-1,14	8,09E+0 0,00E+0
AT2G46950	CYP709B2; heme binding / iron ion binding / monooxygenase/ oxygen binding	7,68	9,13	-1,45	0'00E+0	7,26	8,61	-1,35	0,00E+0	7,47	8,87	-1,40	0,00E+0
AT1G12890	DNA binding / transcription factor_AP2 domain-containing transcription factor, putative	6,73	8,13	-1,42	0,00E+0	6,51	8,09	-1,47	0,00E+0	6,62	8,11	-1,43	0,00E+0
AT4G14630	GLP9 (GERMIN-LIKE PROTEIN 9); nutrient reservoir	9,44	10,81	-1,37	0'00E+0	9,81	10,33	-0,53	1,00E+0	9,62 0.75	10,57	-0,95	7,43E-6
AT2G26250	AKF1U; transcription factor FDH (FIDDLEHEAD): acvitransferase	8,64 8,47	10,01 9.83	-1,3/ -1.36	0,00E+0 0.00E+0	8,87 8,98	9,80 10.11	-0,93 -1.13	3,07E-5 3.93E-9	8,72 8.72	9,90 9,97	-1,15	4,55E-10 0.00E+0
AT3G16770	ATEBP/RAP2.3; DNA binding / transcription factor_AP2 domain-containing protein	9,33	10,68	-1,35	0'00E+0	10,41	11,49	-1,08	3.72E-8	9,87	11,09	-1,22	1,54E-11
AT3G44310	NIT1 (NITRILASE 1)_ nitrilase 1 (NIT1) PR4 /PATHOCENESIS-RFI ATED 4) hevein-like arritein (HFI)	8,95 7.40	10,25 8.69	-1,31	0,00E+0	10,22 7 35	11,44 8 13	-1,22 -0.78	3,08E-11 9.34E-3	9,58 7 37	10,85 8.41	-1,27 -1 03	0,00E+0
AT3G61190	BAP1 (BON ASSOCIATION PROTEIN 1)_BON1-associated protein 1 (BAP1)	7,91	9,19	-1,28	0,00E+0	7,95	88,8	-0,94	a,34E-3 2,39E-5	7,93	9,04	-1,11	3,31E-9
AT3G18000	NMT1 (N-METHYLTRANSFERASE 1); phosphoethanolamine N-methyltransferase	8,60	9,87	-1,27	0'00E+0	8,53	9,74	-1,21	7,71E-11	8,56 0,23	9,80 10 EE	-1,24	7,71E-12
AT3G23810	SAHH2: adenosylhomocysteinase adenosylhomocysteinase, putative	7.21	8,46	-1,25	0,00E+0	9,01 6,98	8,39	-1,42	0,00E+0	27'6 2'09	8,43	-1,33	0,00E+0
AT3G24503	ALDH2C4 (REDUCED EPIDERMAL FLUORESCENCE1); aldehyde dehydrogenase	6,47	7,71	-1,24	0'00E+0	6,72	7,58	-0,85	7,63E-4	6,60	7,64	-1,04	8,95E-8
AT1G64060	DRST (DRTT SUFFRESSOR 1)_ Serine carboxypepricase STU tarning protein ATRBOH F F; NAD(P)H oxidase	6,93 7,03	67'' / 8,22	-1,19	7.70E-12	6,71 6,91	8,16	-0,00	5,42E-3 7,71E-12	0,03 6,97	7,03 8,19	-1,00	8,56E-7 7,71E-12
AT1G28330	DRM1 (DORMANCY-ASSOCIATED PROTEIN 1)_ dormancy-associated protein, putative	8,56	9,74	-1,18	7,70E-12	9,02	10,73	-1,71	0,00E+0	8,79	10,23	-1,44	0,00E+0
AT1G17420	LOX3; iron ion binding / lipoxygenase _ lipoxygenase, putative CVD8642* ovvicen hinding ANTP2* organic anion transporter	7,85 6 72	9,02 7 89	-1,17 -1.16	2,31E-11 2 31E-11	7,03	8,42 8 27	-1,38	0,00E+0 1 54E-11	7,44 6 88	8,72 8.08	-1,28	0,00E+0 2 31E-11
AT1G18450	ATARP4 (ACTIN-RELATED PROTEIN 4); structural constituent of cytoskeleton	9,26	10,42	-1,16	2,31E-11	8,66	9,71	-1,06	1,44E-7	8,96	10,07	-1,11	3,54E-9
AT1G67710	ARR11 (RESPONSE REGULATOR 11); transcription factor/ two-component response regulator	7,05	8,19	-1,14 41,14	6,93E-11	7,21	8,38	-1,18	3,85E-10	7,13	8,29	-1,16	2,70E-10
AT3G20960	CENT///////// or www.evenuide-section 4-deriver geneser rank acid elongase CYP705A33; heme binding / iron ion binding / monooxygenase/ oxygen binding	6,88	7,99	-1,11	2,10E-10 4,16E-10	6,79	27,11	-0,91	2,9/E-7 7,22E-5	6,84	7,85	-1,00	1,40E-5 4,15E-7
AT4G30810	SCPL29; catalytic/ serine carboxypeptidase	7,89	8,99	-1,10	6,55E-10	8,32	8,88	-0,56	1,00E+0	8,10	8,94	-0,83	8,96E-4
AT1G67500	TREV3: DNA binding DNA polymerase family B protein	7,45	8,54	-1,10	1,01E-9	9,99 7.24	8.44	-0,23	1,23E-10	9,73 7,34	8.49	-0,00	5,39E-10
AT5G65020	ANNAT2; calcium ion binding / calcium-dependent phospholipid binding	9,01	10,11	-1,09	1,09E-9	8,62	96'6	-1,35	0,00E+0	8,82	10,04	-1,22	7,71E-12
AT2G19810	PIP IB; water channel_plasma memorane intrinsic protein 15 (PIP IB) nucleic acid binding / transcription factor_zinc finger (CCCH-type) family protein	9,20	7,82	-1,07	3,74E-9 4,18E-9	9,22 7,41	7,83	-1,82	0.00E+0 1.00E+0	9, 24 7, 08	7,83	-1,44 -0,74	0,00E+0 2,27E-2
AT1G01600	CYP86A4; oxygen binding	7,04	8,10	-1,06	6,46E-9	6,76	7,90	-1,14	2,87E-9	6,90	8,00	-1,10	6,34E-9
AT1G20880	RNA binding / nucleic acid binding _RNA recognition motif (RRM)-containing protein	9,17 9,02	10,07	-1,05	1,11E-8 1,21E-8	8,63	10,28	-1,65	0,00E+0	9,83 8,83	10,17	-1,13	1,56E+9 0,00E+0
AT2G40840	DPE2 (DISPROPORTIONATING ENZYME 2); 4-alpha-glucanotransferase	7,80	8,84	-1,05	1,32E-8	7,95	9,24	-1,29	0,00E+0	7,87	9,04	-1,17	1,77E-10
AT2G41430 AT2G40890	ERD15 (EARLY RESPONSIVE TO DEHYDRATION 15)_ dehydration-induced protein CYP98A3: n-commarate 3-hvdrovvlase	11,85 7.63	12,90 8.67	-1-04 -1-04	1,38E-8 1 77E-8	12,25 7 94	12,89 8 90	-0,64 -0 96	8,55E-1 8 one.6	12,05 7 78	12,89 8 79	-0,84	5,44E-4 6.64E-7
AT1G79580	ANAC033_ no apical meristem (NAM) family protein	7,30	8,32	1,02	4,36E-8	6,96	7,85	-0,89	2,00E-4	7,13	8,08	-0,95	5,48E-6
AT1G28130	GH3.17_auxin-responsive GH3 family protein	8,00	9,02	-1,02	4,83E-8	8,96	9,64 11 25	-0,69	2,12E-1	8,48	9,33	-0,85	3,55E-4
AT5G42580	PLOSID/MTB8 (FIGH RESPONSE TO COMPUTE STRESS TU); TIYP TATIMIN VALING TACUT CYP705A12; heme binding / iron ion binding / monooxygenase/ oxygen binding	6,40	7,41	10,1-	6,95E-8 8,95E-8	6,30	دیہ: 6,91	-0,47	1,00E+0 1,00E+0	6,35	7,16	-0,74 -0,81	2,07E-2 2,07E-3
AT3G56170	CAN (CA-2+ DEPENDENT NUCLEASE); nuclease Ca(2+)-dependent nuclease	7,78	8,78	-1,00	1,44E-7	7,80	8,31	-0,51	1,00E+0	7,79	8,55	-0,76	1,39E-2
AT4G23430 AT3G47720	oxidoreductase_ short-chain dehydrogenase/reductase (SDR) family protein SRO4 ATATH1: ATPase, counled to transmembrane movement of substances	8,45 8,46	9,45 9,44	66'0- 0-	1,87E-7 2.34E-7	8,68 9.37	9,52 10.22	-0,84	1,19E-3 8.96E-4	8,57 8.91	9,48 9.83	-0,92	2,80E-5 263E-5
AT5G57800	WAX2; catalytic CER1 protein, putative (WAX2)	10,97	11,96	66'0-	2,42E-7	10,45	11,94	-1,49	0,00E+0	10,71	11,95	-1,24	0,00E+0
AT1G62740	unknown protein GTP binding / translation elongation factor/ translation factor CVD01A2 (CVTTOCHDOME D450 MONODXYGENASE 9142): mononvirunase	7,11 6 90	8,10 7 88	-0,99 80 0-	2,44E-7 3 27E-7	6,94 7 79	7,69	-0,75	2,84E-2 1 00E+0	7,03	7,89	-0,87	1,98E-4 1 00E+0
AT1G79690	hydrolase/ isopentenyl-diphosphate delta-isomerase DNA binding / transcription factor	7,21	8,18	-0,97	5,00E-7	7,07	8,53	-1,46	0,00E+0	7,14	8,36	-1,22	7,71E-12
AT2G38760	ANNAT3 (ANNEXIN 3); calcium ion binding / calcium-dependent phospholipid binding ATERE-stATERER: DNA binding / transcription factor/ transcriptional activator	6,84 9.18	7,81 10.14	-0,96 70,96	5,32E-7 7 11E-7	7,12 8.42	8,21 9.23	-1,09	2,53E-8 3.56E-3	6,98 8,80	8,01 9.69	-1,03	1,61E-7 9.28F-5
710001 200	A LENE-WALENED, DIVERSING & CONSTRUCT DEVOID DEVOID DEVOID DEVENSE	2 5	5	no'n-	1,110-1	110	0,40		0,000-0	20.0	00'0	oo.o.	a'70E-0

8,11 9,13 -1,02 7,146 7,146 7,14 9,13 -1,02 7,146 7,14 7,87 9,88 -0,14 1,108 7,13 5,13 6,88 7,12 1,124 1,128 7,13 5,13 7,87 9,07 -1,24 1,226 7,13 5,15 8,53 9,07 -1,24 1,226 7,12 7,12 7,17 8,88 -1,57 0,066 0,17 7,12 7,102 7,11 8,16 -1,157 0,066 0,17 7,15 7,102 7,11 8,16 -1,157 0,066 7,15 5,15 7,15 5,15 7,15 5,15 7,15 5,15 7,15 5,15 7,16 6,16 10,17 10,17 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,	5/7 7/60 -0.56 -0
2 -0.95 1.28e-6 7 -0.959 1.916-6 5 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 6 -0.933 3.016-6 7 -0.933 3.016-6 8 -0.923 5.016-6 7 -0.933 3.016-6 7 -0.937 5.916-6 8 -0.937 5.916-6 9 -0.938 1.126-6 9 -0.938 1.126-6 9 -0.938 1.226-6 9 -0.938 2.066-6 9 -0.938 2.066-6 9 -0.938 2.066-6 9 -0.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 8. 7. 7. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8.87 8.83 6.94 6.94 10.243 11.243
 GASAS, gibberellin-regulated protein 5 (GASAS) / gibberellin-responsive protein 5 W.O.; anouchin briding, seven transmarkane M.O. family protein M.O.; anouchin briding, seven transmarkane M.O. family protein culeics and manily (Instruction factor. Innovoloxy-actionation phosphatase involved and many (Instruction factor. Innovoloxy-actionation phosphatase of PATSH (15U-ENCENDROUCE-CLEXE); tythorian serine/frhreorine phosphatase involved and protein kinase 21; KTN-kinnor endocease unknown protein ADH (ALCOHOL EDRING); RENA, KTN- endoculease unknown protein ADH (ALCOHOL EDRING); RENA, RTN- endoculease and protein CADI (CADHWA SISTISTIC); ADH (ST) allowing (Innov CLEXES); related in synthase 1 (PCS1) ALCHST: allowing endoculease CADI (CADHOL ELER Z); reprodent (Japase E-Lob CADI (CADHOL EDRING); Protonen (Japase); Protonen (Japase ACDI (Japase); Protonen (Japase); Protonen (Japase); Protonen CADI (CADHOL EDRING); Protonen (Japase); Protonen CADI (CADHOL EDRING); Protonen CADI (CADHOL EDRING); Protonen CADI (CADHOL EDRING); Protonen CADI (Japase); Protonen (Japase); Protonen CADI (CADHOL EDRING); Protonen CADI (Japase); Protonen (Japase); Protonen CADI (Japase); Protonen (Japase); Protonen CADI (Japase); Protonen (Japase); Protonen CADI	 AAXC084: restanciphon factor, no aprican marine, my forginin AAXC084: restanciphon factor, no aprican marine (my kim) protein (array 2) (SPESCENCE-ASSCC)ATED CENE 21) aller embryogenesis abundant 3 family protein AGPT 2 (ARAPIN CALACTERY PROTEIN). ALAFD 24: TAPRICOM ACTED CENE 21) aller embryogenesis abundant 3 family protein activity (PLASMA MERBANE PROTEIN). ALAFD 24: TAPLERE REGULATOR SIL; HARRES, MY FARSE, ATTPRAS, CTOR 1) ARREN 10; TANKORTACPH 21: biolin synthase. biolin synthase (BioB) (BIO2) ALTER-12; TARTEZERZ, TAPLERE REGULAND STATER 20, protein 2 BLO2 BIOTIN AUXOTRCPH 21: biolin synthase. biolin synthase (BioB) (BIO2) ALTER-23, TERF22; ARATES, TAPLERE TRANNO STATOR 9) BLO2 BIOTIN AUXOTRCPH 21: biolin synthase. biolin synthase (BioB) (BIO2) ALTER-24, TERF22; and tass. 2 ALTER-24, CITER 21: a patroser, biolin synthase (BioB) (BIO2) ALTER-24, CITER 21: a patroser, a polar synthase (BiO2) ALTER-24, CITER 21: a patroser, a polar synthase (BiO4) ALTER-24, CITER 22: catalase 2 ALTER 24: STATE ADDROSES K, TAMANSCH NHEI TRANNO REACTOR 9) ALTER 24: STATE ADDROSES K, TRANSORTS NIS B3) CAT2, CIATALASE, catalase 2, catalase 2 ATEXP23; ADMIndir / arreactiption factor, and yone and a protein 7 CAT2, CIATALASE, CATACTOR 700 (ATTARAME TRANIN EXTERDARE 7) XIV.1, indrolase, Indrador, entythene responsive element-binding family protein ALEF, (AREALERS CATALANTER STRNIN B3) XIV.1, indrolase, MARALDOSES K, TRANSORTS K S) XIV.1, indrolase, MARALDONER SK, TRANSORTS S) XIV.1, indrolase, MARALDONER SK, TRANSORTS S) XIV.1, indrolase, MARALDONER SK, TRANSORTS S) XIV.2, indrolase, MARALDONE SK, TRANSORTS S) XIV.2, indradone and transporter – athytene-insensitive 2 (EN2) CAT2 (GUTAAAAAAAAAAAAAAAAAAA
200 200 200 200 200 200 200 200	20002022222222222222222222222222222222

AT3G24503	ALDH2C4 (REDUCED EPIDERMAL FLUORESCENCE1);	6,72	7,43	-0,70	3,45E-2	6,77	7,28	-0,51	1,00E+0	6,75	7,35	-0,61	1,00E+0
AT3G55980	transcription factor_ zinc finger (CCCH-type) family protein	9,33	10,03	-0,70	3,92E-2	8,84	9,54	-0,69	1,79E-1	9,09	9,78	-0,70	1,02E-1
AT1G77850	ARF17; transcription factor	7,00	7,70	-0,70	4,42E-2	7,40	8,12	-0,72	7,18E-2	7,20	7,91	-0,71	6,73E-2
AT1G79180	DNA binding / transcription factor_myb family transcription factor (MYB63)	6,71	7,40	-0,69	5,69E-2	6,94	7,73	-0,79	7,55E-3	6,83	7,57	-0,74	2,46E-2
AT2G47190	MYB2; DNA binding / transcription factor	7,28	7,96	-0,69	6,74E-2	7,03	7,72	-0,70	1,69E-1	7,15	7,84	-0,69	1,28E-1
AT3G48280	CYP71A25; heme binding / iron ion binding / monooxygenase/ oxygen binding	6,29	6,97	-0,68	7,26E-2	6,55	6,60	-0,05	1,00E+0	6,42	6,79	-0,37	1,00E+0
AT3G54820	PIP2:5/PIP2D; water channel_aquaporin, putative	7,16	7,84	-0,67	1,05E-1	7,03	7,98	-0,95	1,77E-5	7,10	7,91	-0,81	2,01E-3
AT4G15760	oxidoreductase _ monooxygenase, putative (MO1)	9,60	9,04	0,56	1,00E+0	10,01	8,68	1,33	0,00E+0	9,81	8,86	0,94	8,32E-6
AT4G29100	transcription factor_ethylene-responsive family protein	10,61	10,05	0,56	1,00E+0	12,07	11,09	0,98	4,44E-6	11,34	10,57	0,77	8,53E-3
AT1G57720	translation elongation factor_elongation factor 1B-gamma, putative	8,97	8,39	0,59	1,00E+0	10,06	8,13	1,94	0,00E+0	9,52	8,26	1,26	0'00E+0
AT2G03800	GEK1 (GEK01)	8,13	7,53	0,59	1,00E+0	9,23	8,02	1,21	6,17E-11	8,68	7,78	06'0	5,12E-5
AT1G02090	FUS5 (FUSCA 5); MAP kinase kinase COP9 signalosome complex subunit 7ii	8,60	7,95	0,65	2,16E-1	9,05	8,27	0,79	8,06E-3	8,83	8,11	0,72	4,99E-2
AT1G54140	TAFII21 (TATA BINDING PROTEIN ASSOCIATED FACTOR 21KDA SUBUNIT);	9,83	9'08	0,75	7,20E-3	06'6	9,13	0,77	1,66E-2	9,86	9,11	0,76	1,34E-2
AT3G50870	MNP (MONOPOLE); transcription factor_zinc finger (GATA type) family protein	8,45	7,63	0,82	4,56E-4	8,76	8,28	0,48	1,00E+0	8,61	7,96	0,65	4,92E-1
AT1G07640	OBP2; DNA binding Dof-type zinc finger domain-containing protein	7,59	6,75	0,84	1,86E-4	7,53	6,78	0,75	3,26E-2	7,56	6,77	0,79	3,63E-3
AT3G11260	WOX5; transcription factor _ homeobox-leucine zipper transcription factor family protein	11,06	10,01	1,05	8,59E-9	10,90	10,38	0,52	1,00E+0	10,98	10,20	0,79	4,77E-3
AT1G01470	LEA14 (LATE EMBRYOGENESIS ABUNDANT 14)	10,36	9,16	1,19	7,70E-12	10,08	8,68	1,40	0,00E+0	10,22	8,92	1,29	0'00E+0
AT1G03800	ATERF10/ERF10	9,30	7,88	1,42	0,00E+0	8,98	7,83	1,14	2,17E-9	9,14	7,86	1,28	0'00E+0
AT1G21970	LEC1 (LEAFY COTYLEDON 1); CCAAT-box binding transcription factor	10,22	7,64	2,58	0,00E+0	9,47	7,70	1,77	0,00E+0	9,84	7,67	2,17	0'00E+0
	Green Fluorescent Protein	10,44	6,86	3,58	0,00E+0	10,25	7,37	2,88	0,00E+0	10,35	7,12	3,23	0'00E+0

		DRN::GFP	DRN::GFP	DRN::GFP	DRN::GFP	DRN::GFP	DRN::GFP	DRNL::GFP	DRNL::GFP [DRNL ::GFP	DRNL::GFP	DRNL::GFP	DRNL::GFP	DRN::GFP(pt/amp1)	DRN::GFP(pt/amp1)
		1 run of amplif	1 run of amplif	1 run of amplit	1 run of ampli	1 run of amplit	1 run of amplif	1 run of amplif	1 run of amplit	I run of amplit	1 run of amplif	I run of amplif	1 run of amplif	2 runs of amplif	2 runs of amplif
		2	2	2	2	2	2	2	2	2	2	2	2	2	2
		ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4 /	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4	ADT5-4
		DRN	DRN	DRN	DRN	DRN	DRN	DRNL	DRNL	JRNL	DRNL	DRNL	DRNL	DRN	DRN
		Protoplast	Protoplast	Protoplast	Protoplast	Protoplast	Protoplast	Protoplast	Protoplast F	Protoplast	Protoplast	Protoplast	Protoplast	Protoplast	Protoplast
		DRN::GFP+_1	DRN::GFP+_1	DRN::GFP+_2	DRN::GFP+_2	DRN::GFP+	DRN::GFP+	DRNL::GFP+_1	DRNL::GFP+_1 [DRNL::GFP+_2	DRNL::GFP+_2	DRNL::GFP+	DRNL::GFP+	DRN::GFP(pt/amp1)+_1	DRN::GFP(pt/amp1)+_1
		DRN::GFP1	DRN::GFP1	DRN::GFP2	DRN::GFP2	DRN::GFP-	DRN::GFP-	DRNL::GFP1	DRNL::GFP1 D	DRNL::GFP2	DRNL::GFP2	DRNL::GFP-	DRNL::GFP-	DRN::GFP(pt/amp1)1	DRN::GFP(pt/amp1)1
At1	fonction	Rat	Pval	Rat	Pval	Rat	Pval	Red	Green	Red	Green	Red	Green	Red	Green
AT2G43610	chitin binding / chitinase_glycoside hydrolase family 19 protein	-2,18	0,00E+0	-2,56	0'00E+0	-2,37	0,00E+0	-4,00	0,00E+0	-3,64	0,00E+0	-3,82	0,00E+0	-1,02	8,48E-11
AI 5648000 At4n22210	CTP/USA2; neme binding / iron ion binding / monooxygenase/ oxygen binding	-1,61	0,0000+0	-2,38	0,00F+0	-1 99	0,00E+0	-2,55	0,00E+0	-3,40	0,0000+0	-2,48	0,00E+0	-1,47	0,00E+0
At5q48010		-1.73	0,00E+0	-2,18	0,00E+0	-1,95	0,00E+0	ŝ	8 8	-3,44	0,00E+0	69	s. s	-1.01	1,62E-10
At5g15970		-1,62	0,00E+0	-2,26	0,00E+0	-1,94	0,00E+0	-1,88	0,00E+0	-1,86	0,00E+0	-1,87	0,00E+0	-1,26	0'00E+0
AT4G37410	CYP81F4; heme binding / iron ion binding / monooxygenase/ oxygen binding	-1,61	0,00E+0	-2,23	0,00E+0	-1,92	0,00E+0	-2,66	0,00E+0	-2,62	0,00E+0	-2,64	0,00E+0	-1,97	0,00E+0
At4g22212		-1,66	0'00E+0	-2,07	0,00E+0	-1,87	0,00E+0	-1,61	0,00E+0	-1,49	0,00E+0	-1,55	0,00E+0	-0,83	4,73E-6
AT1922400	والمتعالية منامعا المنامعان ومرامعا معالمان والمتالية والمعالمة والمعاملة	69'L-	0,000-0	19,1-	0,000-10	18,1-	0,00E+0	11,2-	0,000-0	12,2-	0,00E+0	-2,19	0,000-0	-1,68	0,00E+0
AL 1634000	carooxylic ester riyorolase/ riyorolase, acurig on ester borios	-1.46	0.0000+0	-1,92	0.006+0	-1,71	0.006+0	-2,04	0,006+0	-2,64	0,0000+0	-2,45	0.006+0	-1,04	0.0000+0
AT4G21960	PRXR1: peroxidaseperoxidase 42 (PER42) (P42) (PA2) (PXR1)	-1.64	0.00E+0	-1,41	0.00E+0	-1.52	0,00E+0	-2.38	0,00E+0	-2.55	0,00E+0	-2.46	0,00E+0	-0.97	1.37E-9
AT1G70850	unknown protein_Bet v I allergen family protein	-1,39	0,00E+0	-1,64	0,00E+0	-1,51	0,00E+0	-2,52	0,00E+0	-1,93	0,00E+0	-2,23	0,00E+0	-1,04	2,31E-11
At1g69526		-1,31	0,00E+0	-1,60	0,00E+0	-1,46	0,00E+0	-1,75	0,00E+0	-1,79	0,00E+0	-1,77	0,00E+0	-1,08	0,00E+0
AT2G46950	CYP709B2; heme binding / iron ion binding / monooxygenase/ oxygen binding	-1,12	0,00E+0	-1,66	0,00E+0	-1,39	0,00E+0	-1,45	0,00E+0	-1,35	0,00E+0	-1,40	0,00E+0	-1,61	0,00E+0
AT4G29690	hydrolase_ type I phosphodiesterase/nucleotide pyrophosphatase family protein	-1,14	0,00E+0	-1,61	0,00E+0	-1,37	0,00E+0	-1,92	0,00E+0	-2,10	0,00E+0	-2,01	0,00E+0	-1,04	2,31E-11
AT2G04160	AIR3; subtilase_ subtilisin-like protease (AIR3)	-1,13	0,00E+0	-1,62	0,00E+0	-1,37	0,00E+0	-2,26	0,00E+0	-1,97	0,00E+0	-2,12	0,00E+0	-0,82	8,19E-6
AT1G56680	chitin binding / chitinase_ glycoside hydrolase family 19 protein	-1,14	0'00E+0	-1,53	0,00E+0	-1,33	0,00E+0	-1,24	0'00E+0	-1,02	5,94E-7	-1,13	1,22E-9	-2,01	0,00E+0
AT5G03210	unknown protein	-1,36	0,00E+0	-1,31	0,00E+0	-1,33	0,00E+0	-0,95	1,48E-6	-1,04	3,66E-7	-0'66	1,00E-6	-1,21	0,00E+0
At1g54010		12,1-	0,0005+0	1,43	0,000-0	1.32	0,0001.0	00'7-	0,005:0	79'7-	0,000+0	105	0,000-0	00'n-	1,11E-2 2,00F 2
ALZG29250	oxidoreductase short-chain dehvdronenase/reductase (SDR) family protein	-1.07	7.70E-12	-1.47	0.00E+0	-1.27	0,00E+0	-3.18	0.00F+0	-2.74	0.00E+0	-2.96	0,00E+0	-0.76	3,00E-2 1.10E-4
AT1G17190	ATGSTU26; glutathione transferase	-0,87	4,29E-7	-1,65	0,00E+0	-1,26	0,00E+0	-1,89	0,00E+0	-1,76	0,00E+0	-1,83	0,00E+0	-1,34	0,00E+0
AT4G25260	invertase/pectin methylesterase inhibitor family protein	-0,98	8,70E-10	-1,50	0,00E+0	-1,24	0,00E+0	-1,76	0,00E+0	-1,88	0,00E+0	-1,82	0,00E+0	-1,13	0,00E+0
AT1G73260	endopeptidase inhibitor_trypsin and protease inhibitor family protein	-1,02	6,16E-11	-1,44	0,00E+0	-1,23	0,00E+0	-1,13	1,23E-10	-1,77	0,00E+0	-1,45	0,00E+0	-1,27	0,00E+0
AT5G01870	lipid binding_ lipid transfer protein, putative	-0,84	2,32E-6	-1,62	0,00E+0	-1,23	0,00E+0	-3,40	0,00E+0	-3,81	0,00E+0	-3,61	0,00E+0	-0,77	7,10E-5
AT5G42630	DNA binding / transcription factor_myb family transcription factor (KAN4)	-1,31	0,00E+0	-1,15	0,00E+0	-1,23	0,00E+0	-1,89	0,00E+0	-2,59	0,00E+0	-2,24	0'00E+0	-2,07	0,00E+0
AT5G02260	ATEXPA9 (ARABIDOPSIS THALIANA EXPANSIN A9)	-1,15	0,00E+0	-1,23	0,00E+0	-1,19	0,00E+0	-1,71	0,00E+0	-1,81	0,00E+0	-1,76	0,00E+0	-1,03	5,39E-11
AT5G09980	unknown protein unknown protein 33 kDs secreton protein-related	- 1,00	3,00E-10 1 39E-10	-1,38	0,00E+0	-1,19 -1.16	0,00E+0	-0,89	2,01E-5 0.00E+0	-0,80	4,39E-3 0.00E+0	-0,85	4,50E-4	-2,33	0,00E+0
AT5G42590	CYP71A16; heme binding / iron ion binding / monooxygenase/ oxygen binding	-1,11	0,00E+0	-1,21	0,00E+0	-1,16	0,00E+0	-2,11	0,00E+0	-1,39	0,00E+0	-1,75	0,00E+0	-0,66	1,10E-2
AT4G34970	actin binding_actin-depolymerizing factor, putative	-0,98	9,55E-10	-1,32	0,00E+0	-1,15	0,00E+0	-1,13	1,23E-10	-0,65	7,55E-1	-0,89	8,55E-5	-1,79	0,00E+0
AT3G20370	meprin and TRAF homology domain-containing protein / MATH domain-containing protein	-0,82	8,07E-6	-1,44	0,00E+0	-1,13	0,00E+0	-2,54	0,00E+0	-2,75	0,00E+0	-2,65	0,00E+0	-0,71	1,08E-3
At2g43535		-1,06	7,70E-12	-1,19	0,00E+0	-1,13	0,00E+0	-3,02	0,00E+0	-2,90	0,00E+0	-2,96	0,00E+0	-0,87	4,20E-7
AT5G10300	MLO4; caimoduin binding_ seven transmembrane MLO tamily protein catalytic/ hydrolase _ hydrolase _ aloha/bata fold family protein	-0,94	2 25E-7	-1,20	0,0005+0	1,11	0,0005+0	0-20 0-20	1,09E-0	20'1-	4,40E-5 4 53E-2	10'1-	3,0/E-/	-0,/1	1,39E-3 4 R6E-10
At5n43150		06 0-	8.53E-8	-118	0.005+0	104	2.31E-11	-0.33	1 00E+0	-0.84	1,28E-3	-0.59	1 00E+0	-1.83	0.00E+0
At5a15960		-0.66	0,00E-2	-1.41	0.00E+0	10,1	2.31E-11	-0.53	1.00E+0	-0.83	2.06E-3	-0.68	1.95E-1	-0.91	6.52E-8
AT1G26800	zinc ion binding_zinc finger (C3HC4-type RING finger) family protein	-0,84	3,11E-6	-1,21	0,00E+0	-1,02	6,15E-11	-2,07	0,00E+0	-1,80	0,00E+0	-1,94	0,00E+0	-1,32	0,00E+0
AT3G50740	UDP-glycosyltransferase/ transferase, transferring glycosyl groups	-0,74	3,24E-4	-1,30	0,00E+0	-1,02	6,92E-11	-0,87	5,51E-5	-0,78	9,62E-3	-0,83	1,08E-3	-1,36	0,00E+0
AT2G47270	transcription factor/ transcription regulator	-0,74	3,59E-4	-1,29	0,00E+0	-1,01	9,99E-11	-0,10	1,00E+0	-0,89	1,47E-4	-0,50	1,00E+0	-0,62	4,85E-2
AT1G76790	O-methyltransferase_O-methyltransferase family 2 protein	-0,85	1,45E-6	-1,17	0,00E+0	-1,01	1,08E-10	-1,85	0,00E+0	-1,64	0,00E+0	-1,74	0,00E+0	-0,81	1,04E-5
At1g07610		-0,85	1,66E-6	-1,16	0,00E+0	-1,00	1,84E-10	-1,14	7,70E-11	-1,08	3,81E-8	-1,11	3,07E-9	-1,49	0,00E+0
AT3G16450	unknown protein_jacalin lectin family protein	-0,94	7,93E-9	-0,99	1,54E-10	-0,97	1,63E-9	-2,86	0,00E+0	-3,24	0'00E+0	-3,05	0,00E+0	-0,94	8,81E-9
AT5G24960	CYP/1A14; heme binding / iron ion binding / monooxygenase/ oxygen binding	-0,72	7,19E-4 1 69E 4	-1,08	0,00E+0	06'0-	6,85E-8 7 01E e	-1,70	0,00E+0	-1,22	3,85E-11 6 06C 0	-1,46 1.26	0,00E+0	-1,37	0,00E+0
AT4G17460	urikriowri proteiri homeobov-lericine zinner omtein 1 /HAT1) / HD-ZID omtein 1	-0,73	1,00E-4 7 06E-4	- 1.03	0,00ETU	-0.87	3 00E-7	24'I-	0,00E+0	10,1-	0,90E-0 1 65E-6	-1,25	0,00E+0	-0,03	2,0/E-3
AT5G57090	EIRI (ETHYLENE INSENSITIVE ROOT 1)	-0,69	3,09E-3	-1,05	0,00E+0	-0,87	4,12E-7	-0,71	3,02E-2	-1,00	1,80E-6	-0,85	3,60E-4	-0,64	2,72E-2
_		_													

Anhang

exp1

exp1

repet-

repet-

exp2

exp2

exp1

exp1

repet-

repet-

exp2

exp2

exp1

exp1

At2n47485	_	-0.68	3.68E-3	-1 04	7 69E-12	-0.86	6.37E-7	-1 49	0 00F+0	-154	0.00E+0	-1.52	0 00E+0	-0.98	1 18F-9
		0000									0		0 1000	0010	
AT1G47800	unknown protein_ F-box family protein	-0,63	2,95E-2	-1,06	0,00E+0	-0,85	1,37E-6	-1,59	0,00E+0	-1,13	3,81E-9	-1,36	0,00E+0	-0,93	2,14E-8
AT1G48870	protein phosphatase type 2A regulator/ signal transducer_ WD-40 repeat family protein	-0,69	3,36E-3	-0,97	6,92E-10	-0,83	4,04E-6	-0,76	4,50E-3	-1,14	2,34E-9	-0,95	6,49E-6	-0,94	9,43E-9
At5g48175		-0,70	1,74E-3	-0,90	3,02E-8	-0,80	1,37E-5	-1,14	1,08E-10	-1,01	9,42E-7	-1,07	2,01E-8	-1,68	0,00E+0
At1g22550		-0,65	1,56E-2	-0,92	1,51E-8	-0,78	3,68E-5	-1,92	0,00E+0	-1,64	0,00E+0	-1,78	0,00E+0	-0,70	1,80E-3
AT1G74500	DNA binding / transcription factor_ bHLH family protein	-0,57	3,42E-1	-0,99	2,00E-10	-0,78	4,60E-5	0,06	1,00E+0	-1,04	3,53E-7	-0,49	1,00E+0	-1,21	0'00E+0
AT1G69710	regulator of chromosome condensation (RCC1) family protein	-0'60	9,77E-2	-0,93	7,71E-9	-0,77	8,62E-5	-0,16	1,00E+0	-0,87	3,56E-4	-0,51	1,00E+0	-1,67	0,00E+0
At3g32980		-0,71	1,01E-3	-0,80	7,01E-6	-0,76	1,15E-4	-0,81	5,45E-4	-1,07	6,82E-8	-0,94	9,10E-6	-1,20	0,00E+0
AT1G26760	unknown protein_SET domain-containing protein	-0,91	6,40E-8	-0,60	8,55E-2	-0,75	1,65E-4	-0,72	1,90E-2	-1,48	0,00E+0	-1,10	5,40E-9	-1,04	1,54E-11
Nogene		-0,49	1,00E+0	-0,96	9,76E-10	-0,72	5,88E-4	-0,93	3,02E-6	-1,11	9,83E-9	-1,02	2,43E-7	-0,87	5,79E-7
At1g03230		-0,72	9,35E-4	-0,71	6,35E-4	-0,71	9,28E-4	-1,49	0,00E+0	-1,10	1,54E-8	-1,29	0,00E+0	-0,73	4,44E-4
AT5G11160	adenine phosphoribosyltransferase_adenine phosphoribosyltransferase, putative	-0,67	7,29E-3	-0,76	8,06E-5	-0,71	1,01E-3	-0,93	3,57E-6	-1,34	0,00E+0	-1,14	8,48E-10	-0,67	5,42E-3
AT1G28330	DRM1 (DORMANCY-ASSOCIATED PROTEIN 1)	-0,82	5,30E-6	-0,59	1,13E-1	-0,71	1,28E-3	-1,18	7,70E-12	-1,71	0,00E+0	-1,44	0,00E+0	-1,25	0,00E+0
AT5G48130	protein binding / signal transducer_ phototropic-responsive NPH3 family protein	-0,55	6,38E-1	-0,85	6,01E-7	-0,70	1,63E-3	-0,81	5,40E-4	-0,77	1,44E-2	-0,79	3,76E-3	-0,64	2,75E-2
At4g11360		-0,52	1,00E+0	-0,81	6,06E-6	-0,66	8,33E-3	-0,79	1,48E-3	-0,95	1,76E-5	-0,87	2,08E-4	-0,93	1,74E-8
At3g49810		-0,64	1,96E-2	-0,59	9,28E-2	-0,62	4,92E-2	-0,65	2,20E-1	-0,92	5,07E-5	-0,79	4,84E-3	-0,68	5,11E-3
AT1G31770	ABC transporter family protein	0,53	1,00E+0	0,95	1,59E-9	0,74	2,46E-4	-0,64	2,76E-1	0,85	6,98E-4	0,11	1,00E+0	0,79	2,46E-5
AT5G55250	S-adenosylmethionine-dependent methyltransferase	1,49	0,00E+0	1,09	0,00E+0	1,29	0,00E+0	1,02	5,37E-8	1,11	1,15E-8	1,06	3,55E-8	0,88	2,66E-7
AT1G06080	ADS1 (DELTA 9 DESATURASE 1)	-0,64	2,10E-2	-0,57	2,33E-1	-0,61	8,13E-2	-2,34	0,00E+0	-2,89	0,00E+0	-2,61	0,00E+0	-0,64	2,49E-2
AT3G05880	RCI2A (RARE-COLD-INDUCIBLE 2A)	-0,44	1,00E+0	-0,62	2,82E-2	-0,53	1,00E+0	-2,02	0,00E+0	-2,60	0,00E+0	-2,31	0,00E+0	-1,72	0,00E+0
At1g52827		-0,46	1,00E+0	-0,70	1,06E-3	-0,58	2,11E-1	-2,03	0,00E+0	-2,32	0,00E+0	-2,17	0,00E+0	-0,98	8,32E-10
AT3E01742		-0,25	1,00E+0	-0,98	4,07E-10	-0,61	6,07E-2	-2,00	0,00E+0	-2,32	0,00E+0	-2,16	0,00E+0	-1,49	0,00E+0
AT4G27860	unknown protein_ integral membrane family protein	-0,42	1,00E+0	-0,74	1,66E-4	-0,58	2,25E-1	-1,99	0,00E+0	-2,29	0,00E+0	-2,14	0,00E+0	-1,17	0,00E+0
At2g15220		-0,63	3,07E-2	-0,26	1,00E+0	-0,45	1,00E+0	-2,02	0,00E+0	-1,79	0,00E+0	-1,91	0,00E+0	-1,63	0,00E+0
AT1G70550	unknown protein	-0,26	1,00E+0	-0,85	7,03E-7	-0,55	5,55E-1	-1,40	0,00E+0	-1,35	0,00E+0	-1,37	0,00E+0	-0,70	1,75E-3
AT4G27657	unknown protein	-0,48	1,00E+0	-0,61	3,99E-2	-0,55	7,35E-1	-0,96	1,12E-6	-1,43	0,00E+0	-1,19	4,62E-11	-1,17	0,00E+0
At5g07000		-0,31	1,00E+0	-0,67	4,51E-3	-0,49	1,00E+0	-1,13	1,62E-10	-1,13	3,44E-9	-1,13	1,22E-9	-0,64	2,07E-2
AT3E02448		-0,48	1,00E+0	-0,74	1,81E-4	-0,61	7,21E-2	-0,61	8,58E-1	-1,65	0,00E+0	-1,13	1,40E-9	-1,59	0,00E+0
AT3G45590	ATSEN1 (SPLICING ENDONUCLEASE 1); tRNA-intron endonuclease	-0,08	1,00E+0	-0,70	1,21E-3	-0,39	1,00E+0	-0,93	3,11E-6	-1,24	1,54E-11	-1,09	1,13E-8	-1,20	0,00E+0
AT2G36490	ROS1_ HhH-GPD base excision DNA repair family protein (ROS1)	-0,36	1,00E+0	-0,62	3,42E-2	-0,49	1,00E+0	-0,65	2,12E-1	-1,42	0,00E+0	-1,04	1,32E-7	-0,63	3,95E-2
AT2G43060	transcription factor	-0,39		-0,82	3,03E-6	-0'60	8,97E-2	-0,86	8,15E-5	-1,07	6,11E-8	-0,97	3,17E-6	-0,83	3,54E-6
At5g05890		-0,65	1,34E-2	-0,37	1,00E+0	-0,51	1,00E+0	-0,97	6,97E-7	-0,96	1,01E-5	-0,96	3,82E-6	-0,65	1,30E-2
AT3G23450	unknown protein_ pseudogene, similar to unnamed protein product	-0,38		-0,75	1,30E-4	-0,56	3,87E-1	-0,49	1,00E+0	-1,42	0,00E+0	-0,95	5,57E-6	-1,44	0,00E+0
At5g60950		-0,26		-0,90	2,93E-8	-0,58	2,15E-1	-0,77	2,86E-3	-0,82	3,03E-3	-0,79	3,63E-3	-1,20	0,00E+0

Literaturverzeichnis

- Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
- Abel, S., and Theologis, A. (1996). Early genes and auxin action. Plant Physiol 111, 9-17.
- Agius, F., Kapoor, A., and Zhu, J.K. (2006). Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America 103, 11796-11801.
- Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563-1570.
- Aida, M., Vernoux, X., Furutani, M., Traas, M., and Tasaka, M. (2002). Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo (vol 129, pg 3965, 2002). Development 129, 4877-4877.
- Alexander, I. (1952). Entwicklungsstudien an Blüten von Cruciferen und Paperveraceen. Planta, 125-144.
- Allen, M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17, 5484-5496.
- Aloni, R., Aloni, E., Langhans, M., and Ullrich, C.I. (2006). Role of auxin in regulating Arabidopsis flower development. Planta 223, 315-328.
- Alvarez-Buylla, E.R., Ambrose, B.A., Flores-Sandoval, E., Vergara-Silva, F., Englund, M., Garay-Arroyo, A., Garcia-Ponce, B., de la Torre-Barcena, E., Espinosa-Matias, S., Martinez, E., Pineyro-Nelson, A., Engstrom, P., and Meyerowitz, E.M. (2010). B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22, 3543-3559.
- Arber, A. (1931). Studies in floral morphology. New Phytol 30, 172-203.
- Bainbridge, K., Guyomarc'h, S., Bayer, E., Swarup, R., Bennett, M., Mandel, T., and Kuhlemeier, C. (2008). Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22, 810-823.
- Banno, H., Ikeda, Y., Niu, Q.W., and Chua, N.H. (2001). Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13, 2609-2618.

- **Banno H., M.H., Maekawa K.** (2006). Analysis of functional domains and binding sequences of Arabidopsis transcription factor ESR1. Plant Biotechnology, 303-308.
- **Barton, M.K., and Poethig, R.S.** (1993). Formation of the Shoot Apical Meristem in Arabidopsis-Thaliana an Analysis of Development in the Wild-Type and in the Shoot Meristemless Mutant. Development **119**, 823-831.
- Berleth, T., and Jurgens, G. (1993). The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development **118**, 575.
- Bethke, G., Unthan, T., Uhrig, J.F., Poschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106, 8067-8072.
- Beveridge, C.A., Mathesius, U., Rose, R.J., and Gresshoff, P.M. (2007). Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10, 44-51.
- Binder, B.M., Walker, J.M., Gagne, J.M., Emborg, T.J., Hemmann, G., Bleecker, A.B., and Vierstra, R.D. (2007). The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19, 509-523.
- Blackwood, E.M., and Eisenman, R.N. (1991). Max a Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. Science 251, 1211-1217.
- Blazquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844.
- Blodner, C., Goebel, C., Feussner, I., Gatz, C., and Polle, A. (2007). Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ 30, 165-175.
- Bossinger, G., and Smyth, D.R. (1996). Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122, 1093-1102.
- Bowman, J.L., and Meyerowitz, E.M. (1991). Genetic control of pattern formation during flower development in Arabidopsis. Symp Soc Exp Biol 45, 89-115.
- Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1989). Genes directing flower development in Arabidopsis. Plant Cell 1, 37-52.
- Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1-20.
- Brand, U., Hobe, M., and Simon, R. (2001). Functional domains in plant shoot meristems. Bioessays 23, 134-141.
- Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617-619.
- Breuil-Broyer, S., Morel, P., de Almeida-Engler, J., Coustham, V., Negrutiu, I., and Trehin, C. (2004). High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J **38**, 182-192.

- Buratowski, S., and Chodosh, L.A. (2001). Mobility Shift DNA-Binding Assay Using Gel Electrophoresis. (John Wiley & Sons, Inc.).
- Buttner, M., and Singh, K.B. (1997). Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNAbinding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 94, 5961-5966.
- Byrne, M.E., Simorowski, J., and Martienssen, R.A. (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129, 1957-1965.
- Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967-971.
- Callos, J.D., and Medford, J.I. (1994). Organ Positions and Pattern-Formation in the Shoot Apex. Plant Journal 6, 1-7.
- Chae, E., Tan, Q.K., Hill, T.A., and Irish, V.F. (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235.
- Chandler, J.W., Cole, M., Flier, A., and Werr, W. (2009). BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE. Plant Mol Biol 69, 57-68.
- Chandler, J.W., Cole, M., Flier, A., Grewe, B., and Werr, W. (2007). The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134, 1653-1662.
- **Chandler, J.W., Cole, M., Jacobs, B., Comelli, P., and Werr, W.** (2010). Genetic integration of DORNROSCHEN and DORNROSCHEN-LIKE reveals hierarchical interactions in auxin signalling and patterning of the Arabidopsis apical embryo. Plant Mol Biol.
- Charlier, N., Molenkamp, R., Leyssen, P., Vandamme, A.M., De Clercq, E., Bredenbeek, P., and Neyts, J. (2003). A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses. Journal of Virological Methods 108, 67-74.
- Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., Koo, S.C., Yoon, H.W., Chung, W.S., Lim, C.O., Lee, S.Y., and Cho, M.J. (2003). BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiology 132, 1961-1972.
- Choe, S., Dilkes, B.P., Gregory, B.D., Ross, A.S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F.E., and Feldmann, K.A. (1999). The Arabidopsis dwarf1 mutant is defective in the conversion of 24methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology 119, 897-907.
- Choi, H.K., Choi, K.C., Kang, H.B., Kim, H.C., Lee, Y.H., Haam, S., Park, H.G., and Yoon, H.G. (2008). Function of multiple Lis-Homology domain/WD-40

repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol Endocrinol **22**, 1093-1104.

- Clark, S.E., Jacobsen, S.E., Levin, J.Z., and Meyerowitz, E.M. (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122, 1567-1575.
- Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature **353**, 31-37.
- Cole, M., Chandler, J., Weijers, D., Jacobs, B., Comelli, P., and Werr, W. (2009). DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development **136**, 1643-1651.
- Cutter, E.G. (1965). Recent experimental studies of the shoot apex and shoot morphogenesis. Bot. Rev. **31**, 7-113.
- **De Candolle, A.P.** (1821). Mémoire sur la famille de Crucifères. Mém. Mus. Hist. Nat., 169-252.
- **Despres, C., Subramaniam, R., Matton, D.P., and Brisson, N.** (1995). The Activation of the Potato Pr-Loa Gene Requires the Phosphorylation of the Nuclear Factor Pbf-1. Plant Cell **7**, 589-598.
- Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q., Gerentes, D., Perez, P., and Smyth, D.R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155-168.
- **Endress, P.K.** (1992). Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int.J. Plant Sci., 106-122.
- Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z., and Laux, T. (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10, 967-979.
- Feng, J.X., Liu, D., Pan, Y., Gong, W., Ma, L.G., Luo, J.C., Deng, X.W., and Zhu, Y.X. (2005). An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59, 853-868.
- Fletcher, J.C. (2002). Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. Bioessays 24, 27-37.
- Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147-153.
- Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., and Palme, K. (2002). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661-673.
- Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B., Ljung, K., Sandberg, G., Hooykaas, P.J., Palme, K.,

and Offringa, R. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science **306**, 862-865.

- Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404.
- Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226-2230.
- Gonzali, S., Novi, G., Loreti, E., Paolicchi, F., Poggi, A., Alpi, A., and Perata, P. (2005). A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant J 44, 633-645.
- Gorter, C.J. (1949). The influence of 2,3,5-triiodobenzoic acid on the growing points of tomatoes. Proc. Kon. Ned. Akad. Wet., 1185-1193.
- Gorter, C.J. (1951). The influence of 2,3,5-triiodobenzoic acid on the growing points of tomatoes. II. The initiation of ring fasciations. Proc. Kon. Ned. Akad. Wet., 181-190.
- Grandjean, O., Vernoux, T., Laufs, P., Belcram, K., Mizukami, Y., and Traas, J. (2004). Plant Cell 16, 74.
- Guilfoyle, T. (2007). Plant biology: sticking with auxin. Nature 446, 621-622.
- Guilfoyle, T.J., and Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology 10, 453-460.
- Guilfoyle, T.J., Ulmasov, T., and Hagen, G. (1998). The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54, 619-627.
- Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76, 131-143.
- Hagemann, W. (1963). Die morphologische Sprossdifferenzierung und die Anordnung der Leitgewebes. Ber. Dtsch. Bot. Ges. 76, 131-120.
- Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.
- Hao, D., Ohme-Takagi, M., and Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive elementbinding factor (ERF domain) in plant. J Biol Chem 273, 26857-26861.
- Hao, D., Yamasaki, K., Sarai, A., and Ohme-Takagi, M. (2002). Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41, 4202-4208.
- Hardtke, C.S., and Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17, 1405-1411.
- Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., and Meyerowitz, E.M. (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15, 1899-1911.

- Hempel, F.D., and Feldman, L.J. (1995). Specification of chimeric flowering shoots in wild-type Arabidopsis. Plant J 8, 725-731.
- Hepworth, S.R., Klenz, J.E., and Haughn, G.W. (2006). UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223, 769-778.
- Hernandez, L.F., and Green, P.B. (1993). Transductions for the Expression of Structural Pattern Analysis in Sunflower. Plant Cell 5, 1725-1738.
- Hicks, G.R., Smith, H.M., Shieh, M., and Raikhel, N.V. (1995). Three classes of nuclear import signals bind to plant nuclei. Plant Physiol 107, 1055-1058.
- Hill, J.P., and Lord, E.M. (1989). Floral Development in Arabidopsis-Thaliana a Comparison of the Wild-Type and the Homeotic Pistillata Mutant. Canadian Journal of Botany-Revue Canadienne De Botanique 67, 2922-2936.
- Hurst, H.C. (1994). Protein Profile: Transcription Factors 1: bZip Proteins. London: Academic Press.
- Ikeda, Y., Banno, H., Niu, Q.W., Howell, S.H., and Chua, N.H. (2006). The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47, 1443-1456.
- Irish, V.a.S., I. (1992). A fate map of the Arabidopsis embryonic shoot apical meris. Development 115.
- Izhaki, A., and Bowman, J.L. (2007). KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell **19**, 495-508.
- Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G., and Bowles, D.J. (2002). Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. The Plant Journal **32**, 573-583.
- Jenik, P.D., and Irish, V.F. (2000). Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development 127, 1267-1276.
- Jofuku, K.D., den Boer, B.G., Van Montagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
- Kagaya, Y., Ohmiya, K., and Hattori, T. (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNAbinding domains uniquely found in higher plants. Nucleic Acids Res 27, 470-478.
- Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
- Khan, S., and Stone, J.M. (2007). Arabidopsis thaliana GH3.9 in Auxin and Jasmonate Cross Talk. Plant Signal Behav 2, 483-485.
- **Kiermayer, O.** (1960). Die Formative Wirksamkeit der 2,3,5-Trijodo- benzoesäure (TIBA) in Gegenwart von Gibberellinsäure (GA). Planta, 153-168.

- Kim, J., Harter, K., and Theologis, A. (1997). Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A 94, 11786-11791.
- Kirch, T., Simon, R., Grunewald, M., and Werr, W. (2003). The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. Plant Cell 15, 694-705.
- Koncz, I., Drexler, L., Glancz, J., and Tacsik, I. (1986). [Experience in the management of vascular injuries]. Magy Traumatol Orthop Helyreallito Seb 29, 23-31.
- Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66.
- Koussevitzky, S., Nott, A., Mockler, T.C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, J., Mittler, R., and Chory, J. (2007). Signals from chloroplasts converge to regulate nuclear gene expression. Science 316, 715-719.
- Krizek, B.A., and Fletcher, J.C. (2005). Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6, 688.
- Krizek, B.A., Prost, V., and Macias, A. (2000). AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell 12, 1357-1366.
- Kuhlemeier, C., and Reinhardt, D. (2001). Auxin and phyllotaxis. Trends Plant Sci 6, 187-189.
- Kwiatkowska, D. (2006). Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth. J Exp Bot **57**, 571-580.
- Lamb, R.S., Hill, T.A., Tan, Q.K., and Irish, V.F. (2002). Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129, 2079-2086.
- Laux, T., Mayer, K.F., Berger, J., and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96.
- Lawrence, G.H. (1951). Taxonomy of flowering plants.
- Lenhard, M., and Laux, T. (1999). Shoot meristem formation and maintenance. Curr Opin Plant Biol 2, 44-50.
- Lenhard, M., Bohnert, A., Jurgens, G., and Laux, T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805-814.
- Lestiboudois, T. (1826). Memoire sur l'insertion des étamines des Crucifere. ev.Trav.Soc.Amat.Sci.Lille 1823/1824, 243-247.
- Leyser, H.M., Pickett, F.B., Dharmasiri, S., and Estelle, M. (1996). Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10, 403-413.
- Leyser, O. (2002). Molecular genetics of auxin signaling. Annual Review of Plant Biology 53, 377-398.

- Li, J., Lease, K.A., Tax, F.E., and Walker, J.C. (2001). BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 98, 5916-5921.
- Lin, R.C., Park, H.J., and Wang, H.Y. (2008). Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1, 42-57.
- Liu, C.M., Xu, Z.H., and Chua, N.H. (1993). Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell 5, 621-630.
- Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell **10**, 1391-1406.
- Liu, Y., Zhao, T.-J., Liu, J.-M., Liu, W.-Q., Liu, Q., Yan, Y.-B., and Zhou, H.-M. (2006). The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS letters **580**, 1303-1308.
- Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., and Weigel, D. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793-803.
- Long, J., and Barton, M.K. (2000). Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218, 341-353.
- Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69.
- Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes & Development 12, 2175-2187.
- Lyndon, R.F. (1998). The Shoot Apical Meristem: Its Growth and Development,. Cambridge University Press.
- Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., and Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60, 476-487.
- Marsch-Martinez, N., Greco, R., Becker, J.D., Dixit, S., Bergervoet, J.H., Karaba, A., de Folter, S., and Pereira, A. (2006). BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62, 825-843.
- Matsumoto, N., and Okada, K. (2001). A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes Dev 15, 3355-3364.

- Matsuo, N., and Banno, H. (2008). The Arabidopsis transcription factor ESR1 induces in vitro shoot regeneration through transcriptional activation. Plant Physiol Biochem 46, 1045-1050.
- Mattsson, J., Ckurshumova, W., and Berleth, T. (2003). Auxin signaling in Arabidopsis leaf vascular development. Plant Physiology 131, 1327-1339.
- Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell **95**, 805-815.
- Medford, J.I. (1992). Vegetative Apical Meristems. Plant Cell 4, 1029-1039.
- Medford, J.I., Behringer, F.J., Callos, J.D., and Feldmann, K.A. (1992). Normal and Abnormal Development in the Arabidopsis Vegetative Shoot Apex. Plant Cell 4, 631-643.
- Merxmuller, H., and Leins, P. (1967). Die Verwandtschaftsbeziehungen der Kreuzblutler und Mohngewachse. Bot. Jahrb.Syst. 86, 113-129.
- Meyerowitz, E.M. (1997). Genetic control of cell division patterns in developing plants. Cell 88, 299-308.
- Miksche, J.P., Brown, J.A.M. (1965). Development of vegetative and floral meristems of Arabidopsis thaliana. Am. J. Bot. **52**, 533-537.
- Mordhorst, A.P., Voerman, K.J., Hartog, M.V., Meijer, E.A., van Went, J., Koornneef, M., and de Vries, S.C. (1998). Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149, 549-563.
- Müller, A. (1963). Zur Characterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana. Heynh. Kulturpflanze 9, 364-393.
- Nag, A., Yang, Y., and Jack, T. (2007). DORNROSCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in Arabidopsis. Plant Mol Biol 65, 219-232.
- Nardmann, J., Ji, J., Werr, W., and Scanlon, M.J. (2004). The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827-2839.
- Nawy, T., Bayer, M., Mravec, J., Friml, J., Birnbaum, K.D., and Lukowitz, W. (2010). The GATA Factor HANABA TARANU Is Required to Position the Proembryo Boundary in the Early Arabidopsis Embryo. Developmental Cell 19, 103-113.
- Néron, B., Ménager, H., Maufrais, C., Joly, N., Maupetit, J., Letort, S., Carrere, S., Tuffery, P., and Letondal, C. (2009). Mobyle: a new full web bioinformatics framework. Bioinformatics 25, 3005-3011.
- Ng, M., and Yanofsky, M.F. (2001). Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13, 739-753.
- Nole-Wilson, S., and Krizek, B.A. (2000). DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res 28, 4076-4082.
- Nowak, M.A., Boerlijst, M.C., Cooke, J., and Smith, J.M. (1997). Evolution of genetic redundancy. Nature 388, 167-171.

- **Ohme-Takagi, M., and Shinshi, H.** (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell **7**, 173-182.
- Ohme-Takagi, M., Suzuki, K., and Shinshi, H. (2000). Regulation of ethyleneinduced transcription of defense genes. Plant Cell Physiol 41, 1187-1192.
- Ohme-Takagi, M., Fujimoto S. Y:, Ohta M., Usui, A. and Shinshi H. (2000). Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box–Mediated Gene Expression. plant cell 12, 393-405.
- Ohta, M., Ohme-Takagi, M., and Shinshi, H. (2000). Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22, 29-38.
- Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959-1968.
- Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell **3**, 677-684.
- Okamuro, J.K., Caster, B., Villarroel, R., Van Montagu, M., and Jofuku, K.D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94, 7076-7081.
- Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Lui, A., Nguyen, D., Onodera, C., Quach, H., Smith, A., Yu, G., and Theologis, A. (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444-463.
- Ouellet, F., Overvoorde, P.J., and Theologis, A. (2001). IAA17/AXR3: Biochemical insight into an auxin mutant phenotype. Plant Cell 13, 829-841.
- Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395, 561-566.
- Pellerin, I., Schnabel, C., Catron, K.M., and Abate, C. (1994). Hox Proteins Have Different Affinities for a Consensus DNA Site That Correlate with the Positions of Their
- Genes on the hox Cluster. Molecular and Cellular Biology 14, 4532-4545.
- Phillips, T.A., VanBogelen, R.A., and Neidhardt, F.C. (1984). lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159, 283-287.
- **Pollock, R.M.** (2001). Determination of Protein-DNA Sequence Specificity by PCR-Assisted Binding-Site Selection. (John Wiley & Sons, Inc.).
- Przemeck, G.K., Mattsson, J., Hardtke, C.S., Sung, Z.R., and Berleth, T. (1996). Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta **200**, 229-237.
- Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., Pichersky, E., Chen, H., Liu, M., Chen, Z., and Qu, L.J. (2005). An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17, 2693-2704.

- Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences 21, 267-271.
- Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., and Meyerowitz, E.M. (2004). Realtime lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131, 4225-4237.
- Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507-518.
- Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., and Kuhlemeier, C. (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260.
- Reinhardt, D.K., C. (2002). Meristematic Tissues in Plant Growth and Development.
- **Richards, F.J.** (1951). Phyllotaxis: Its Quantitative Expression and Relation to Growth in the Apex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences **235**, 509-564.
- Riechmann, J.L., and Meyerowitz, E.M. (1998). The AP2/EREBP family of plant transcription factors. Biol Chem 379, 633-646.
- Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110.
- **Riggs, A.D., Suzuki, H., and Bourgeois, S.** (1970). lac repressor-operator interaction : I. Equilibrium studies. Journal of Molecular Biology **48**, 67-83.
- Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364-368.
- Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxindependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463-472.
- Sablowski, R. (2007). Flowering and determinacy in Arabidopsis. J Exp Bot 58, 899-907.
- Sachs, T. (1991). Pattern formation in plant tissues. Cambridge University Press.
- Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and coldinducible gene expression. Biochem Biophys Res Commun 290, 998-1009.
- Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007). Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811-814.
- Sasaki, K., Ito, H., Mitsuhara, I., Hiraga, S., Seo, S., Matsui, H., and Ohashi, Y. (2006). A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxN1. Plant Mol Biol 62, 753-768.

- Satina, S., Blakeslee, A. F., and Avery, A. . (1940). Demonstration of three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot., 895-905.
- Sauders, E.R. (1923). The bractless inflorescence of the Cruciferae. New Phytol. 22, 150-156.
- Schlereth, A., Moller, B., Liu, W., Kientz, M., Flipse, J., Rademacher, E.H., Schmid, M., Jurgens, G., and Weijers, D. (2010). MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913-916.
- Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644.
- Schwabe, W.W. (1971). Chemical modification of phyllotaxis and its implications. Symp. Soc. Exp. Biol., 354-400.
- Selker, J.M.L., Steucek, G.L., and Green, P.B. (1992). Biophysical mechanisms for morphogenetic progressions at the shoot apex. Development Biology 153, 29.
- Sessa, G., Morelli, G., and Ruberti, I. (1993). The Athb-1 and Athb-2 Hd-Zip Domains Homodimerize Forming Complexes of Different DNA-Binding Specificities. Embo Journal 12, 3507-3517.
- Singh, S., Cornilescu, C.C., Tyler, R.C., Cornilescu, G., Tonelli, M., Lee, M.S., and Markley, J.L. (2005). Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14, 2601-2609.
- Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B., and Witt, I. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47, 10-24.
- Smith, H.M.S., Boschke, I., and Hake, S. (2002). Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proceedings of the National Academy of Sciences of the United States of America 99, 9579-9584.
- Smith, R.S., Guyomarc'h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., and Prusinkiewicz, P. (2006). A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America 103, 1301-1306.
- Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences 24, 181-185.
- Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767.
- Snow, M., and Snow, R. (1937). Auxin and leaf formation. . New Phy- tol., 1-18.
- Snow, M.a.S., R. (1934). Experiments on Phyllotaxis Part III- DiagonalSplits through Decussate Apices. Philos
- Trans R Soc Lond **225**, 63-94.

- Snow, M.u.S., R. (1931). Experiments on Phyllotaxis. Philos Trans R Soc Lond B, 1-43.
- Snow, M.u.S., R. (1933). Experiments on phyllotaxis. II. The effect of displacing a primordium. Philos
- Trans R Soc Lond, 354-400.
- Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., and Suza, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616-627.
- Steeves T.A. and Sussex, I.M. (1989). Patterns in Plant Development. Cambridge University Press.
- Steinheil, A. (1839). Considéracions sur l'usage qu'on peut faire des rapports de position qui existent entre la bractée et les parties de chaque verticille floral, dans la détermination du plan normal sur lequel les différentes fleurs sont construites. Ann. Sci. Nat. Sér. 2, 169-361.
- Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035-1040.
- Sun, S., Yu, J.P., Chen, F., Zhao, T.J., Fang, X.H., Li, Y.Q., and Sui, S.F. (2008). TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive elementmediated signaling pathways in Arabidopsis. J Biol Chem 283, 6261-6271.
- Sussex, I.M. (1989). Developmental programming of the shoot meristem. Cell 56, 225-229.
- Szewczyk, E., Nayak, T., Oakley, C.E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S.A., and Oakley, B.R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols 1, 3111-3120.
- Takeda, S., Matsumoto, N., and Okada, K. (2004). RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131, 425.
- Tiwari, S.B., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809-2822.
- Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606-616.
- **Turing, A.M.** (1952). The chemical basis of morphogenesis. Philos Trans R Soc Lond B **237**, 37.
- **Uberlacker, B., Klinge, B., and Werr, W.** (1996). Ectopic expression of the maize homeobox genes ZmHox1a or ZmHox1b causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell **8**, 349-362.
- Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865-1868.

- Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1999). Dimerization and DNA binding of auxin response factors. Plant J 19, 309-319.
- Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529-1539.
- van der Graaff, E., Dulk-Ras, A.D., Hooykaas, P.J., and Keller, B. (2000). Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127, 4971-4980.
- van der Voorn, L., and Ploegh, H.L. (1992). The WD-40 repeat. FEBS Lett 307, 131-134.
- Vaughan, J.G. (1952). Structure of the angiosperm apex. Nature 169, 458.
- Vaughan, J.G. (1955). The morphology and growth of the vegetative and reproductive apices of Arabidopsis thaliana, Capsella bursa-pastoris and Anagallis arvensis. Soc. Lond. Bot. 55, 279-301.
- Vidaurre, D.P., Ploense, S., Krogan, N.T., and Berleth, T. (2007). AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 134, 2561-2567.
- Wagner, D., Sablowski, R.W., and Meyerowitz, E.M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584.
- Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J.L., Greenland, A.J., and Meyerowitz, E.M. (2004). Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J 39, 273-282.
- Ward, J.M., Smith, A.M., Shah, P.K., Galanti, S.E., Yi, H., Demianski, A.J., van der Graaff, E., Keller, B., and Neff, M.M. (2006). A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell 18, 29-39.
- Wardlaw, C.W. (1949). Experiments on organogenesis in ferns. Growth 13, 93-131.
- Weigel, D. (1995). The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7, 388-389.
- Weigel, D., and Jurgens, G. (2002). Stem cells that make stems. Nature 415, 751-754.
- Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843-859.
- William, D.A., Su, Y., Smith, M.R., Lu, M., Baldwin, D.A., and Wagner, D. (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101, 1775-1780.
- Williams, R.F. (1975). Shoot Apex and Leaf Growth London: Cambridge University Press.
- Wilson, K., Long, D., Swinburne, J., and Coupland, G. (1996). A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659-671.

- Woodrick, R., Martin, P.R., Birman, I., and Pickett, F.B. (2000). The Arabidopsis embryonic shoot fate map. Development 127, 813-820.
- Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14, 3024-3036.
- Yang, S., Wang, S., Liu, X., Yu, Y., Yue, L., Wang, X., and Hao, D. (2009). Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. FEBS J 276, 7177-7186.
- Yang, Z., Tian, L.N., Latoszek-Green, M., Brown, D., and Wu, K.Q. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology **58**, 585-596.
- Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249-259.
- Zarei, A., Korbes, A.P., Younessi, P., Montiel, G., Champion, A., and Memelink, J. (2011). Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol.
- Zhang, S., Yang, C., Peng, J., Sun, S., and Wang, X. (2009). GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69, 745-759.
- Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B., and Zhou, H.M. (2006). Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281, 10752-10759.
- Zimmerman, P.W., and Hitchcock, A.E. (1937). Comparative effectiveness of acids, esters, and salts as growth substances and methods of evaluating them. Contrib. Boyce Thompson Inst.

, 321-343.

Die vorliegende Arbeit wurde am Institut für Entwicklungsbiologie der Universität zu Köln unter der Leitung von Prof. Dr. W. Werr angefertigt.

Prof. Dr. W Werr möchte ich für seine Betreuung und Diskussionsbereitschaft danken. Prof Dr. S.Roth für die Erstellung des Zweitgutachtens.

Den Mitarbeitern und Mitarbeiterinnen des Instituts für Entwicklungsbiologie für ihre Hilfsbereitschaft und das angenehme Arbeitsklima.

Lebenslauf

Persönliche Daten

• • • • • • • • • •

Name	Bianca Jacobs
Geburtsdatum	06. Januar 1979
Geburtsort	Duisburg
Familienstand	ledig

Schulausbildung

• • • • • • • • • •

1985-1989	Marienfeld-Grundschule, Duis	sburg
1989-1998	Albert-Einstein-Gymnasium, Abschluss: Abitur	Duisburg,

Studium

• • • • • • • • • •

1998-2006	Studiums Biologie an der Heinrich- Heine Universität, Düsseldorf
	Abschluss als Diplom-Biologin
November 2006	Begin Promotion in Entwicklungsbiolgie an der Universität zu Köln

Bianca Jacobs Subbelratherstraße 271 50825 Köln

Ehrenwörtliche Erklärung zu meiner Dissertation mit dem Titel: "Molekularbiologische Analyse von *Dornröschen* und *Dornröschen-like*"

Sehr geehrte Damen und Herren,

hiermit erkläre ich, dass ich die beigefügte Dissertation selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel genutzt habe. Alle wörtlich oder inhaltlich übernommenen Stellen habe ich als solche gekennzeichnet.

Ich versichere außerdem, dass ich die beigefügte Dissertation nur in diesem und keinem anderen Promotionsverfahren eingereicht habe und, dass diesem Promotionsverfahren keine endgültig gescheiterten Promotionsverfahren vorausgegangen sind.

Ort, Datum

Unterschrift