
Algorithmic Symplectic Packing

Inaugural-Dissertation
zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Greta Fischer
aus Lendersdorf

Köln 2021

Berichterstatter (Gutachter):
Prof. Dr. Michael Jünger, Universität zu Köln
Prof. Dr. Hansjörg Geiges, Universität zu Köln

Tag der mündlichen Prüfung: 12.04.2021

Abstract

In this thesis we explore a symplectic packing problem where the targets and do-

mains are 2n-dimensional symplectic manifolds. We work in the context where the

manifolds have first homology group equal to Zn and we require the embeddings to

induce isomorphisms between first homology groups. In this case, the problem can

be related to a combinatorial optimization problem, namely packing certain allow-

able simplices into a given standard simplex. We design a computational approach

to determine the corresponding k-simplex packing widths for up to k = 13 simplices

in dimension four and k = 8 simplices in dimension six.

i

ii

Acknowledgements

First and foremost, I thank Michael Jünger for giving me the best mixture of free-

dom, support and encouragement I could have asked for. His eagerness and en-

thusiasm for computer science will always be an inspiration for me. Many thanks

also go to the other two principal investigators of the project: Frank Vallentin and

Hansjörg Geiges. Both have always been there for any open questions. I am also

indebted to the Deutsche Forschungsgemeinschaft for providing financial support for

this project.

To my coworker Jean Gutt I am very thankful for giving me private lectures on

differential geometry, for the active exchange of ideas and for the countless table

soccer matches he let me win. I feel lucky to have met him and to call him my

friend today. I thank Thomas Lange for always having an immediate solution for

any technical problems. I also thank my other colleagues Göntje Teuchert, Michael

Belling and former colleagues Sven Mallach, Daniel Schmidt and Martin Gronemann

for sharing thoughts and for diverting lunch and coffee breaks.

I thank Franz Rendl and Angelika Wiegele for inviting me to Klagenfurt and for

the fruitful discussions. Likewise, I am thankful to Felix Schlenk for his encouraging

ideas. For proofreading this thesis I want to thank Silvia Gruner, Sven Mallach,

Elena Kohlwey, Stefan Krupp, Christian Lange, Anke Paulus and Christian Weiss.

Two years after starting this project I became part of a packing problem myself.

I was pregnant with triplets and we had to spend a long time at the hospital. The

first months at home also were very exhausting. Overcoming this time and finishing

this thesis would have been impossible without the support of my family. I want

iii

to thank my parents, my sister and my family in law for their great backup. Last

but by no means least, I want to thank Jörg Fischer for being the best husband and

loving father to our wonderful kids Emmi, Lotta and Pepe I could imagine.

iv

Contents

Introduction 1

1 Foundations of Symplectic Geometry 3

1.1 Symplectic Manifolds . 3

1.2 Symplectic Maps . 6

1.3 Symplectic Capacities . 8

2 Foundations of Combinatorial Optimization 25

2.1 Linear Optimization . 25

2.2 Mixed Integer Linear Optimization 28

2.3 Quadratically Constrained Quadratic Optimization 32

2.4 Semidefinite Optimization . 35

2.5 Mixed Integer Bilinear Optimization 38

3 Algorithmic Approach for sk (P 4(r), ω0) 43

3.1 Outer Optimization Problem . 43

3.2 Inner Optimization Problem . 50

3.3 Implementation . 57

3.4 Experimental Results . 64

4 Improvements to the Algorithmic Approach 71

4.1 Symmetry Breaking . 71

4.2 Time Limit . 74

v

4.3 Semidefinite Relaxation . 77

4.3.1 First Approach . 78

4.3.2 Second Approach . 87

4.3.3 Third Approach . 90

4.3.4 Comparison of the Approaches 93

4.4 McCormick Relaxation . 95

4.4.1 First Approach . 95

4.4.2 Second Approach . 98

5 Algorithmic Approach for sk (P 6(r), ω0) 103

5.1 Outer Optimization Problem . 103

5.2 Inner Optimization Problem . 111

5.3 Experimental Results . 115

Appendix 121

Bibliography 124

vi

List of Figures

1.1 (M,ω) is locally symplectomorphic to (R2n, ω0). 7

1.2 One cannot squeeze the ball into the cylinder. 8

1.3 Prismification of the ball . 10

1.4 The map σε sends the disc B2(r − ε) to the slightly larger slit disc

A2(r). 14

2.1 Geometric interpretation of a linear program 26

2.2 Geometric interpretation of an integer linear program 29

2.3 Cutting plane for an integer linear program 30

2.4 Branch-and-bound search tree for an integer linear program 32

2.5 Geometric interpretation of McCormick envelopes 40

3.1 Optimal triangle packings for square numbers 45

3.2 Branch-and-bound search tree for the 3-triangle packing 50

3.3 Visualization of the Minkowski difference Ti 	 Tj 54

3.4 Initial queue for the 3-triangle packing 58

3.5 Extended queue for the 3-triangle packing 58

3.6 Workflow of our algorithm . 63

3.7 Optimal k-triangle packings for k = 1, . . . , 7 64

3.8 Optimal k-triangle packings for k = 8, . . . , 13 65

3.9 Equivalent 8-triangle packings under isometries of the outer triangle . 67

3.10 Equivalent 8-triangle packings under affine transformations 67

3.11 Shearing an 8-triangle packing along the y-axis 68

vii

4.1 Symmetric solutions for the multisubset {T1, T1, T1, T4} 71

4.2 The hyperplane
{
x ∈ Rn | aT x = b

}
separates the convex sets C and

D. 88

5.1 Optimal 8-tetrahedron packing in front view 104

5.2 Optimal 8-tetrahedron packing in side view 105

5.3 Branch-and-bound search tree for the 3-tetrahedron packing 110

5.4 Optimal k-tetrahedron packings for k = 1, . . . , 6 116

5.5 Optimal k-tetrahedron packings for k = 7, 8 117

viii

List of Tables

3.1 Triangle shapes 1 - 16 . 46

3.2 Triangle shapes 17 - 32 . 47

3.3 Number of k-cardinality multisubsets of the shapelists 49

3.4 Assignment of a prime number to each shape 60

3.5 Number of bounds contained in the bounds file after computing the

k-triangle packing for k = 1, . . . , 13 61

3.6 Number of multisubsets that allow for an optimal k-triangle packing

for k = 1, . . . , 13 . 66

3.7 Timing statistics for the k-triangle packing given in the format “hh:mm:ss”

for k = 1, . . . , 13 . 69

4.1 Computation time of the k-triangle packing involving symmetry break-

ing constraints given in the format “hh:mm:ss” for k = 1, . . . , 12 . . . 73

4.2 Timing statistics for the 13-triangle packing under different time lim-

its to the inner optimization procedure given in the format “hh:mm:ss” 74

4.3 Modified GUROBI parameter setting 75

4.4 Timing statistics for different inner optimization instances under mod-

ified GUROBI parameter setting given in the format “hh:mm:ss” . . 76

4.5 Timing statistics for the 13-triangle packing under time limit to the

inner optimization procedure combined with modified GUROBI pa-

rameter setting given in the format “hh:mm:ss” 77

ix

4.6 Optimal values of the mixed integer linear program, the semidefinite

program and the semidefinite program combined with the first three

improvement strategies for different inner optimization instances . . . 87

4.7 Optimal values of the mixed integer linear program and the three

semidefinite programs for different inner optimization instances . . . 93

4.8 Computation time of the mixed integer linear program and the three

semidefinite programs for different inner optimization instances given

in the format “hh:mm:ss”. The instances are in the same order as in

Table 4.7. 94

5.1 Tetrahedron shapes 1 - 20 . 106

5.2 Tetrahedron shapes 21 - 40 . 107

5.3 Tetrahedron shapes 41 - 60 . 108

5.4 Tetrahedron shapes 61 - 73 . 109

5.5 Number of k-cardinality multisubsets of the shapelists for k = 1, . . . , 8 110

5.6 Number of multisubsets that allow for an optimal k-tetrahedron pack-

ing for k = 1, . . . , 8 . 117

5.7 Timing statistics for the k-tetrahedron packing given in the format

“hh:mm:ss” for k = 1, . . . , 8 . 118

x

Introduction

Symplectic geometry arose as the geometry of classical mechanics two centuries

ago and nowadays is a central branch of differential topology. It has connections

with quantum mechanics, representation theory, equivariant cohomology, algebraic

geometry and partial differential equations, just to name a few.

Symplectic packings lie at the heart of symplectic geometry. Finding explicit

symplectic packings is a huge challenge, both theoretically and computationally. In

this thesis we will present a computational approach to explore a symplectic packing

problem. More precisely, the targets and domains are 2n-dimensional symplectic

manifolds that have first homology group equal to Zn and the embeddings induce

isomorphisms on first homology.

As this thesis is a symbiosis of symplectic geometry and combinatorial optimiza-

tion, we will give a short introduction to both in Chapter 1 and Chapter 2. We

then shall have the necessary knowledge to design an algorithmic approach for a

certain symplectic packing problem, namely the computation of the k-simplex pack-

ing width of the four-dimensional prism sk (P
4(r), ω0). The core of this algorithmic

approach is a mixed integer linear program embedded in a branch-and-bound frame-

work. We will describe the algorithm and results in Chapter 3. The algorithmic

approach builds up on work of Maley, Mastrangeli and Traynor [MMT00].

Instead of using a mixed integer linear program to model the problem, we can

also set up a quadratically constrained quadratic program that can then be relaxed

to a semidefinite program. We will describe this approach and further improvement

strategies to the algorithm in Chapter 4.

1

In Chapter 5 we will extend the algorithm to the next higher dimension and

compute the k-simplex packing width of the six-dimensional prism sk (P
6(r), ω0).

The appendix is accompanied by a compact disc that contains the source code

of all described computer programs and the corresponding output files.

2

Chapter 1

Foundations of Symplectic

Geometry

In this chapter we will give a short introduction to symplectic geometry. It is mainly

based on the books of McDuff and Salamon [MS17] and Cannas da Silva [Sil04].

1.1 Symplectic Manifolds

Symplectic manifolds are the central object in symplectic geometry. Formally, they

are defined as follows.

Definition 1.1. A symplectic manifold (M,ω) is a pair consisting of a manifold M

and a symplectic form ω on M . A symplectic form ω on a manifold M is a closed

non-degenerate 2-form on M .

A 2-form ω on a manifold M is a bilinear skew-symmetric map on the tangent

space TpM at every point p ∈M . It is called closed if the exterior derivative vanishes,

that is dω = 0. It is called non-degenerate if for all p ∈M and for all nonzero vectors

u ∈ TpM there exists some other vector v ∈ TpM such that ω(u, v) 6= 0.

The non-degeneracy condition enforces a symplectic manifold to be even dimen-

sional. To see this, we write the bilinear skew-symmetric map ω : TpM × TpM → R

3

as

ω(u, v) = uTAv

for each p ∈ M . Here, A is a skew-symmetric matrix of size n × n with n =

dim(TpM) = dim(M). If n is odd, then

det (A) = det
(
AT
)

= det (−A)

= (−1)n det (A)

implies det (A) = 0 and therefore the existence of a nonzero vector u ∈ TpM such

that Au = 0. This in turn leads to the identity

ω(u, v) = −ω(v, u)

= −vTAu

= −vT0

= 0

for all v ∈ TpM , which contradicts the non-degeneracy condition.

As already mentioned in the introduction, symplectic geometry has its historical

origin in classical mechanics. The easiest example of a symplectic manifold is the

phase space M = R2 endowed with the symplectic form

ω0 = dx ∧ dy.

Here, x and y describe a particle moving in one dimension with position x and

momentum y. The symplectic form ω0 measures the area of each open region S in

the plane by integration:

area(S) =

∫
S

ω0.

4

This area is an important quantity because it is preserved under time evolution.

The symplectic form ω0 is referred to as the canonical symplectic form. It naturally

extends to

ω0 =
n∑

i=1

dxi ∧ dyi

in dimension 2n. Let J ∈ R2n×2n be the matrix given by

J =

(
0 I

−I 0

)
,

where I ∈ Rn×n denotes the identity matrix. Then the canonical symplectic form

also has the following representation.

Lemma 1.2. Let u, v ∈ R2n. Then ω0(u, v) = uTJv.

Proof. Let u = (a
b) , v = (c

d) with a, b, c, d ∈ Rn. Then

ω0(u, v) =
n∑

i=1

dxi ∧ dyi(u, v)

=
n∑

i=1

det

((
ai bi

ci di

))

=
n∑

i=1

aidi − cibi

=

(
a

b

)T (
d

−c

)

=

(
a

b

)T (
0 I

−I 0

)(
c

d

)

= uTJv.

Given a symplectic manifold (M,ω) and a point p ∈M , the dual to the tangent

space TpM is called the cotangent space T ?
pM . The disjoint union of all cotangent

spaces is called the cotangent bundle T ?M . Local coordinates on T ?M are of the

5

form (x, y) = (x1, . . . , xn, y1, . . . , yn), where x = (x1, . . . , xn) are the local coordi-

nates on M and y = (y1, . . . , yn) are the coefficients that determine a 1-form on

TxM . In these local coordinates one can define a canonical 1-form on T ?M by

λ0 =
n∑

i=1

yidxi.

This gives rise to a well-defined global 1-form. Since

−dλ0 = −
n∑

i=1

dyi ∧ dxi

=
n∑

i=1

dxi ∧ dyi

= ω0,

the cotangent bundle carries a canonical symplectic structure and thus can be re-

garded as a symplectic manifold in its own right. In this thesis, we will pay spe-

cial attention to submanifolds of the cotangent bundle of the n-dimensional torus

Tn = Rn/Zn. In this case, the cotangent bundle is a Cartesian product of the form

T ?Tn = Tn × Rn.

1.2 Symplectic Maps

Next, we are going to study maps between two symplectic manifolds.

Definition 1.3. A symplectic map ϕ : (M1, ω1) → (M2, ω2) is a smooth map that

satisfies ϕ?ω2 = ω1. If ϕ is injective and if ϕ (M1) is a submanifold of M2, then

ϕ is called a symplectic embedding. If ϕ is a diffeomorphism, then ϕ is called a

symplectomorphism.

Recall, that the pullback of ω2 by ϕ is defined as

(ϕ?ω2)(u, v) = ω2(dϕ(u), dϕ(v)).

6

As Riemannian geometry is the study of transformations preserving the inner

product, symplectic geometry is the study of transformations preserving the sym-

plectic form. The first important theorem in symplectic geometry, which goes back

to Darboux in 1882, is that locally all symplectic forms are the same.

Theorem 1.4 (Darboux’s Theorem [Dar82]).

For any point p on a 2n-dimensional symplectic manifold (M,ω) there exist an open

neighbourhood U ⊆ M of p, an open neighbourhood V ⊆ R2n of the origin and a

symplectomorphism ϕ : (U, ω) → (V, ω0) such that ϕ(p) = 0.

p

(M,ω)

U
ϕ

0

(R2n, ω0)

V

Figure 1.1: (M,ω) is locally symplectomorphic to (R2n, ω0).

This result implies that there are no local invariants in symplectic geometry.

This is in great contrast to Riemannian geometry where curvature is an invariant

that can be determined locally. So the natural question that arises is: Can we

find globally defined symplectic invariants? One of the first striking results in this

direction, which lies at the root of symplectic geometry, is due to Gromov. He asked

for the biggest radius of a ball that can be symplectically embedded into a given

symplectic manifold. To illustrate the nontriviality of this question, he stated the

famous Non-squeezing Theorem in 1985. Let

B2n(r) =
{
(x, y) ∈ R2n

∣∣∣ ‖x‖2 + ‖y‖2 < r

π

}
,

Z2n(s) =
{
(x, y) ∈ R2n

∣∣∣ x21 + y21 <
s

π

}

denote the 2n-dimensional open ball of radius
√

r
π

and the 2n-dimensional open

cylinder of radius
√

s
π
, respectively. Gromov’s Non-squeezing theorem states that

7

one cannot symplectically embed B2n(r) into Z2n(s) unless the radius r of the ball

is less than or equal to the radius s of the cylinder.

Theorem 1.5 (Gromov’s Non-squeezing Theorem [Gro85]).

There exsists a symplectic embedding ϕ : (B2n(r), ω0) → (Z2n(s), ω0) if and only if

r ≤ s.

B2n

ϕ

Z2n

Figure 1.2: One cannot squeeze the ball into the cylinder.

The Non-squeezing Theorem indicates the rigidity of symplectic embeddings

as compared to the flexibility of volume preserving diffeomorphisms. Just picture

squeezing the ball into the cylinder by a volume-preserving transformation.

In dimension two, symplectomorphisms are precisely area-preserving diffeomor-

phisms but in dimension greater than two, it is much more restrictive for a map to be

symplectic than to be volume-preserving. Physically speaking, the Non-squeezing

Theorem says that if a collection of particles initially spread out all over the unit

ball, then one cannot squeeze the collection into a statistical state in which the

momentum and position in the x1-y1-direction spread out less than initially.

1.3 Symplectic Capacities

The invariant found by Gromov is called the ball packing width. Let the expression

ϕ : (M1, ω1)
s
↪−→ (M2, ω2) denote that the map ϕ is a symplectic embedding. Then

the ball packing width is formally defined as follows.

8

Definition 1.6. The ball packing width of a 2n-dimensional symplectic manifold

(M,ω) is

g(M,ω) = sup
{
r
∣∣∣ ∃ϕ :

(
B2n(r), ω0

) s
↪−→ (M,ω)

}
.

Instead of studying only one symplectic embedding of a ball of maximum radius,

one can also study k symplectic embeddings of a ball with maximum radius such

that the embeddings have pairwise disjoint images. The corresponding invariant is

called the k-ball packing width.

Definition 1.7. The k-ball packing width of a 2n-dimensional symplectic manifold

(M,ω) is

gk(M,ω) = sup

{
r

∣∣∣∣∣ ∃ϕ1, . . . , ϕk : (B
2n(r), ω0)

s
↪−→ (M,ω) with

ϕi (B
2n(r)) ∩ ϕj (B

2n(r)) = ∅ ∀1 ≤ i < j ≤ k

}
.

The ball packing width and the k-ball packing width are symplectic invariants.

They give information that can be used to distinguish symplectic manifolds. This

led to the search for other symplectic invariants. The properties of these invariants

were first axiomatized in 1994 by Ekeland and Hofer who introduced the notion of

symplectic capacity [HZ12].

Definition 1.8. A symplectic capacity is a map

c : {(M,ω) | (M,ω) symplectic manifold} → [0,∞]

that satisfies the following properties:

1. Monotonicity: (M1, ω1)
s
↪−→ (M2, ω2) ⇒ c(M,ω1) ≤ c(M2, ω2).

2. Conformality: ∀α ∈ R \ {0} : c(M,αω) = |α|c(M,ω).

3. Nontriviality: c (B2n(1), ω0) > 0 and c (Z2n(1), ω0) <∞.

The nontriviality condition guarantees that, in dimension greater than two, vol-

ume is not a capacity. The search for symplectic capacities and techniques to cal-

culate them are major areas of research in symplectic geometry. Although these

9

invariants are quite easy to define, they are extremely difficult to calculate. For a

computational approach, we will replace the ball by its prismification. By

P 2n(r) = Tn × n(r)

we denote the 2n-dimensional open prism, which is the Cartesian product of the

n-dimensional torus Tn = Rn/Zn and the n-dimensional open standard simplex of

side length r

n(r) =

{
x ∈ Rn

∣∣∣∣∣ xi > 0 ∀i ∈ [n] and
n∑

i=1

xi < r

}
.

The following theorem shows the relation between the ball B2n and the prism P 2n.

Theorem 1.9 (Prismification [MMT00]).

For every ε > 0, there exist symplectic embeddings

(
B2n(r − ε), ω0

) s
↪−→
(
P 2n(r), ω0

) s
↪−→
(
B2n(r), ω0

)
.

B2n P 2n

Figure 1.3: Prismification of the ball

Proof. We will start the proof by showing that (P 2n(r), ω0) symplectically embeds

into (B2n(r), ω0). To see this, we consider the map ϕ : (P 2n(r), ω0) → (B2n(r), ω0)

10

given by

ϕ(x1, . . . , xn, y1, . . . , yn) =

(√
y1
π
sin(2πx1) , · · · ,

√
yn
π

sin(2πxn),√
y1
π
cos(2πx1), , · · · ,

√
yn
π

cos(2πxn)

)
.

It is clear, that ϕ is injective. First, we will show that the image of P 2n(r) under ϕ is

contained in B2n(r). For every point (x1, . . . , xn, y1, . . . , yn) ∈ P 2n(r) = Tn × n(r)

we have

‖ϕ(x)‖2 + ‖ϕ(y)‖2 =
n∑

i=1

(√
yi
π
sin(2πxi)

)2

+

(√
yi
π
cos(2πxi)

)2

=
n∑

i=1

yi
π

(
sin2(2πxi) + cos2(2πxi)

)
=

1

π

n∑
i=1

yi

<
r

π
.

Hence, ϕ (P 2n(r)) ⊆ B2n(r). Next, we will show that ϕ is symplectic, that is

ϕ?ω0 = ω0. We have

ϕ?ω0 =
n∑

i=1

ϕ?dxi ∧ ϕ?dyi

=
n∑

i=1

(
2π

√
yi
π
cos(2πxi)dxi +

1

2
√
πyi

sin(2πxi)dyi

)
∧
(
−2π

√
yi
π
sin(2πxi)dxi +

1

2
√
πyi

cos(2πxi)dyi

)
=

n∑
i=1

cos2(2πxi)dxi ∧ dyi − sin2(2πxi)dyi ∧ dxi

=
n∑

i=1

dxi ∧ dyi

= ω0.

11

We finish the proof by showing that (B2n(r − ε), ω0) symplectically embeds into

(P 2n(r), ω0) for arbitrary small ε > 0. For this purpose, we will construct two maps

such that their composition will result in the desired symplectic embedding. The

construction is shown in the following diagram:

(B2n(r − ε), ω0)

(B2n(r) ∩ A2n(r), ω0)

(P 2n(r), ω0)

σ̃ε ψ

σ̃ε ◦ ψ

We will now specify the maps and show that both are symplectic. Let us define

the set

A2(r) = B2(r) \
{
(x, y) ∈ R2 | x ≥ 0 and y = 0

}
.

Geometrically, A2(r) represents a slit disc. Now consider an area preserving embed-

ding σε : B2(r − ε) → A2(r) such that x2 + y2 ≤ α implies (σε(x, y))
2 ≤ α + ε for

every α ≥ 0. A visualization of this map is shown in Figure 1.4.

Let A2n(r) denote the n-times Cartesian product of the set A2(r). Then the map

σ̃ε : B
2(r − ε)× · · · ×B2(r − ε)︸ ︷︷ ︸

n times

→ A2n(r)

given by

σ̃ε(x1, y1, . . . , xn, yn) = (σδ(x1, y1), . . . , σδ(xn, yn))

with δ = ε
nπ

symplectically embeds B2n(r− ε) into B2n(r)∩A2n(r). To see that the

image of B2n(r − ε) under σ̃ε is contained in B2n(r), note that (x, y) ∈ B2n(r − ε)

implies
n∑

i=1

x2i + y2i <
r − ε

π
.

12

Hence, there exist α1, . . . , αn ≥ 0 such that x2i + y2i ≤ αi for every i ∈ [n] and

n∑
i=1

αi <
r − ε

π
.

By definition of σδ, we have

n∑
i=1

(σδ(xi, yi))
2 ≤

n∑
i=1

(αi + δ)

= nδ +
n∑

i=1

αi

< n
ε

nπ
+
r − ε

π

=
r

π
.

Hence, σ̃ε (B2n(r − ε)) ⊆ B2n(r). Now we will show that (B2n(r) ∩ A2n(r), ω0)

symplectically embeds into (P 2n(r), ω0). For this purpose, we consider the map

ψ : (B2n(r) ∩ A2n(r), ω0) → (P 2n(r), ω0) given by

ψ(x1, . . . , xn, y1, . . . , yn) =

(
1

2π
cot−1

(
−x1
y1

)
, · · · , 1

2π
cot−1

(
−xn
yn

)
,

π
(
x21 + y21

)
, · · · , π

(
x2n + y2n

))
.

Again, it is easy to see, that this map is injective. First, we will show that the

image of B2n(r) ∩ A2n(r) under ψ is contained in P 2n(r). On the one hand, for

(x, y) ∈ B2n(r) ∩ A2n(r) the inequality

0 <
n∑

i=1

π(x2i + y2i) = π
(
‖x‖2 + ‖y‖2

)
< π

r

π
= r

holds. Therefore, ψ (B2n(r) ∩ A2n(r)) ⊆ Rn × n(r). On the other hand, for

every z ∈ R, the function cot−1(z) is bounded by 0 < cot−1(z) < π. Thus,

ψ (B2n(r) ∩ A2n(r)) ⊆ Tn × n(r). It remains to show that ψ is symplectic. We

13

have

ψ?ω0 = ψ?

(
n∑

i=1

dxi ∧ dyi

)

=
n∑

i=1

ψ?dxi ∧ ψ?dyi

=
n∑

i=1

 1

2πyi

1

1 +
(

xi

yi

)2dxi − xi
2πy2i

1

1 +
(

xi

yi

)2dyi
 ∧ (2πxidxi + 2πyidyi)

=
n∑

i=1

1

1 +
(

xi

yi

)2dxi ∧ dyi −
(

xi

yi

)2
1 +

(
xi

yi

)2dyi ∧ dxi
=

n∑
i=1

dxi ∧ dyi

= ω0.

Finally, the function composition σ̃ε ◦ψ symplectically embeds (B2n(r − ε), ω0) into

(P 2n(r), ω0), which completes the proof.

B2(r − ε)

σε

A2(r)

Figure 1.4: The map σε sends the disc B2(r−ε) to the slightly larger slit disc A2(r).

By Theorem 1.9, embeddings of B2n into a symplectic manifold give rise to

embeddings of P 2n and vice versa. For this reason, there is no quantitative difference

between looking at symplectic packings of B2n or P 2n. The advantage of looking

at packings of P 2n is, that when we restrict to symplectic manifolds that have

first homology equal to Zn, it is possible to add the condition that the symplectic

embeddings induce isomorphisms on the level of first homology. We call those maps

14

1-isomorphic. With this additional property we can define a slight modification of

the k-ball packing width that allows for a computational approach.

Definition 1.10. A continuous map ϕ : (M1, ω1) → (M2, ω2) is called 1-isomorphic

if it induces an isomorphism ϕ? : H1(M1,Z) → H1(M2,Z) on the level of first

homology.

Definition 1.11. The k-simplex packing width of a 2n-dimensional symplectic ma-

nifold (M,ω) is

sk(M,ω) = sup

r
∣∣∣∣∣∣

∃ϕ1, . . . , ϕk : (P
2n(r), ω0)

s
↪−−−−−−−→
1−isomorphic

(M,ω) with

ϕi (P
2n(r)) ∩ ϕj (P

2n(r)) = ∅ ∀1 ≤ i < j ≤ k

 .

The k-simplex packing width has been introduced by Maley, Mastrangeli and

Traynor [MMT00]. It is a symplectic invariant and satisfies a set of axioms analogous

to the capacity axioms. Since we reduce the set of symplectic embeddings to those

that are 1-isomorphic, the k-simplex packing width gives a lower bound on the k-

ball packing width: sk ≤ gk. Theorem 1.12 shows the values of gk (P 4(1), ω0) and

sk (P
4(1), ω0) for k ∈ [20].

Theorem 1.12 (gk (P 4(1), ω0) versus sk (P 4(1), ω0) [MMT00]).

k 1 2 3 4 5 6 7 8 9 10

gk 1 1
2

1
2

1
2

2
5

2
5

3
8

6
17

1
3

1√
10

sk 1 1
2

1
2

1
2

2
5

6
17

1
3

1
3

1
3

3
10

k 11 12 13 14 15 16 17 18 19 20

gk
1√
11

1√
12

1√
13

1√
14

1√
15

1
4

1√
17

1√
18

1√
19

1√
20

sk
2
7

15
56

≥ 6
23

≥ 20
79

≥ 1
4

1
4

≥ 4
17

≥ 3
13

≥ 2
9

≥ 21
97

Biran proved in 1996 that gk(P 4(1), ω) = 1√
k

for all k ≥ 9 [Bir96]. For smaller

values of k, the k-ball packing width can be computed using pseudoholomorphic

curves [MP94]. Maley et. al obtained the simplex packing widths by using a com-

puter program [MMT00]. The values of the k-simplex packing widths are always

rational as we will see later.

15

For k > 12 the values of sk (P 4(1), ω0) are known lower bounds that are conjec-

tured to be optimal. Our goal is to compute the exact values of sk (P 4(1), ω0) and

sk (P
6(1), ω0) and also to find out what the corresponding explicit packings look like.

Whereas algebraic geometry is a crucial tool to calculate the ball packing widths,

the main tool to calculate the simplex packing widths is the following theorem.

Theorem 1.13 (Packing Theorem [MMT00]).

Let V be an open, connected subset of Rn with H1(V,Z) = 0. Then

sk (Tn × V, ω0) = sup

r
∣∣∣∣∣∣∣∣∣∣

∃A1, . . . , Ak ∈ GLn(Z) ∃t1, . . . , tk ∈ Rn :

Ai (
n(r)) + ti ⊆ V ∀i ∈ [k]

(Ai (
n(r)) + ti) ∩ (Aj (

n(r)) + tj) = ∅
∀1 ≤ i < j ≤ k

 .

Here, GLn(Z) denotes the set of all matrices in Zn×n that are invertible over Z,

together with matrix multiplication as the group operation.

The remainder of this chapter is devoted to proving Theorem 1.13. Along the

proof of Theorem 1.13 we will construct a matrix Ai ∈ GLn(Z) and a vector ti ∈ Rn

that corresponds to the symplectic embedding ϕi : (P
2n(r), ω0) → (Tn × V, ω0) for

every i ∈ [k]. For these matrices A1, . . . , An and vectors t1, . . . , tn we will then have

to verify the containment condition

Ai (
n(r)) + ti ⊆ V

for all i ∈ [k] and the disjointness condition

(Ai (
n(r)) + ti) ∩ (Aj (

n(r)) + tj) = ∅

for all 1 ≤ i < j ≤ k.

The ingredients for verifying the containment condition are the notion of strongly

exact symplectic embeddings and the subsequent Theorem 1.15. Both were intro-

duced by Sikorav in 1989 [Sik89].

16

Definition 1.14. Let U be an open subset of Rn. A symplectic embedding ϕ :

(Tn ×U, ω0) → (Tn ×Rn, ω0) is called strongly exact if the following two conditions

hold:

1. The 1-form ϕ?λ0 − λ0 is exact on Tn × U , that is there exists a function

f : Tn × U → R such that ϕ?λ0 − λ0 = df .

2. The map ϕ? : H1(Tn × Rn,R) → H1(Tn × U,R) is equal to i?, where i :

Tn × U → Tn × Rn is the inclusion map.

Theorem 1.15 (Sikorav [Sik89]).

Let U, V be open subsets of Rn. If there exist a strongly exact symplectic embedding

ϕ : (Tn × U, ω0) → (Tn × V, ω0), then U is a subset of V .

The ingredients for verifying the disjointness condition are the notion of ex-

act Lagrangian submanifolds and the subsequent Theorem 1.17, Lemma 1.18 and

Lemma 1.19.

Definition 1.16. An n-dimensional submanifold L of a 2n-dimensional symplectic

manifold (M,ω) is called Lagrangian if ω(u, v) = 0 for all u, v ∈ TpL at every

point p ∈ L. The Lagrangian submanifold is called exact if there exists a function

f : L→ R such that λ0
∣∣
L
= df .

Theorem 1.17 (Lalonde-Sikorav [LS91]).

If L,L′ are two closed exact Lagrangian submanifolds of Tn × Rn, then L ∩ L′ 6= ∅.

The connection between strongly exact symplectic embeddings and strongly ex-

act Lagrangian submanifolds is that the latter are preserved under the former.

Lemma 1.18. If L is an exact Lagrangian submanifold and if ϕ is a strongly exact

symplectomorphism, then ϕ(L) is an exact Lagrangian submanifold.

Proof. Let L be an exact Lagrangian submanifold of M and let ϕ : (M,dλ0) →

(M,dλ0) be a strongly exact symplectomorphism. Since L is exact, there exists a

17

function f : L → R such that λ0
∣∣
L
= df . Since ϕ is strongly exact, there exists

a function g : L → R such that ϕ?λ0 − λ0 = dg. By combination of these two

equations we obtain

ϕ?λ0 = dg + λ0

= dg + df

= d(g + f).

Therefore, the function h := (g + f) ◦ ϕ−1 satisfies λ0
∣∣
ϕ(L)

= dh, which shows that

ϕ(L) is an exact Lagrangian submanifold.

Another useful fact about strongly exact symplectic embeddings is that they are

preserved under conjugation. In the proof of Theorem 1.13 we will consider the

conjugation by a translation in the fiber of T ?Tn = Tn × Rn.

Lemma 1.19. Let ϕ : Tn × U → Tn × Rn be a strongly exact embedding and let

τu : Tn × U → Tn × Rn given by

τu(x, y) = (x, y + u)

be the translation by u in the fiber for some u ∈ Rn. Then τ−1
u ◦ ϕ ◦ τu is a strongly

exact symplectic embedding.

Proof. Let ϕ : Tn × U → Tn × Rn be a strongly exact embedding. By definition

there exists a function f : Tn × U → R such that ϕ?λ0 − λ0 = df . Furthermore,

ϕ? : H1(Tn × Rn,R) → H1(Tn × U,R) is equal to i?. The second property implies

(
τ−1
u ◦ ϕ ◦ τu

)?
= τ ?u ◦ ϕ? ◦

(
τ−1
u

)?
= τ ?u ◦ i? ◦

(
τ−1
u

)?
= τ ?u ◦

(
τ−1
u

)?
= i?.

18

Together with the first property, we deduce

(
τ−1
u ◦ ϕ ◦ τu

)?
λ0 − λ0 = i?λ0 − λ0

= ϕ?λ0 − λ0

= df.

Thus, τ−1
u ◦ ϕ ◦ τu is a strongly exact symplectic embedding.

Now we have the necessary preliminaries to prove Theorem 1.13.

Proof of Theorem 1.13. Let V be an open, connected subset of Rn with H1(V,Z) =

0. Let

s? := sk (Tn × V, ω0)

denote the left hand side in the equation from Theorem 1.13 and let

r? := sup

r
∣∣∣∣∣∣∣∣∣∣

∃A1, . . . , Ak ∈ GLn(Z) ∃t1, . . . , tk ∈ Rn :

Ai (
n(r)) + ti ⊆ V ∀i ∈ [k]

(Ai (
n(r)) + ti) ∩ (Aj (

n(r)) + tj) = ∅
∀1 ≤ i < j ≤ k


denote the right hand side in the equation from Theorem 1.13.

In the first part of the proof, we show that r? is less than or equal to s?. Suppose

that A1, . . . , Ak ∈ GLn(Z) and t1, . . . , tk ∈ Rn are the corresponding matrices and

vectors satisfying

Ai (
n(r?)) + ti ⊆ V

for all i ∈ [k] and

(Ai (
n(r?)) + ti) ∩ (Aj (

n(r?)) + tj) = ∅

for all 1 ≤ i < j ≤ k. Let us define the map ϕAi,ti : (P
2n(r?), ω0) → (Tn × V, ω0)

19

given by

ϕAi,ti(x, y) =
((
A−1

i

)T
x,Aiy + ti

)
for every i ∈ [k]. Clearly, these maps are 1-isomorphic, injective and have pairwise

disjoint images. If we show that these maps are also symplectic, they satisfy all

conditions from the definition of the simplex-packing width and thus give the lower

bound r? on s?.

The Jacobian matrix of ϕAi,ti is given by

dϕAi,ti =

((
A−1

i

)T
0

0 Ai

)
.

Hence, we have the identity

(dϕAi,ti)
T JdϕAi,ti =

(
A−1

i 0

0 AT
i

)(
0 I

−I 0

)((
A−1

i

)T
0

0 Ai

)
= J.

Together with Lemma 1.2 we deduce that

ϕ?
Ai,ti

ω0(u, v) = ω0 (dϕAi,tiu, dϕAi,tiv)

= (dϕAi,tiu)
T JdϕAi,tiv

= uTdϕT
Ai,ti

JdϕAi,tiv

= uTJv

= ω0(u, v)

for all u, v ∈ R2n.

In the second part of the proof, we will show that s? is less than or equal to r?.

Suppose that ϕ1, . . . , ϕk are the corresponding 1-isomorphic symplectic embeddings

from (P 2n(s?), ω0) into (Tn × V, ω0) having pairwise disjoint images. For each map

ϕi we will now construct an associating matrix Ai ∈ GLn(Z) and an associating

vector ti ∈ Rn that satisfy the conditions of Theorem 1.13.

20

First, we will construct the matrices A1, . . . , Ak ∈ GLn(Z). Since the map ϕi is

1-isomorphic, it induces an isomorphism

ϕi? : H1(P
2n(s?),Z) → H1(Tn × V,Z)

on the level of first homology. By combining the universal coefficient theorem for

cohomology and the five lemma one can show that the induced map on the level of

first cohomology

ϕ?
i : H

1(Tn × V,Z) → H1(P 2n(s?),Z)

is also an isomorphism. Since H1(
n(s?),Z) = 0 and H1(V,Z) = 0, the Künneth

theorem implies H1(P
2n(s?),Z) = H1(Tn × n(s?),Z) = H1(Tn,Z) and H1(Tn ×

V,Z) = H1(Tn,Z), respectively. By the universal coefficient theorem of cohomology

we have

H1(Tn,Z) = Hom(H1(Tn),Z),

which shows ϕ?
i ∈ Aut(H1(Tn,Z)). We choose a fixed identification of the auto-

morphism group Aut(H1(Tn,Z)) with the general linear group GLn(Z). Under this

identification we define the matrix Ai ∈ GLn(Z) as ϕ?
i ∈ Aut(H1(Tn,Z)) for every

i ∈ [k].

Next, we construct the vectors t1, . . . , tk ∈ Rn. Consider the 1-form ϕ?
iλ0 − λ0.

This 1-form is closed, because

d(ϕ?
iλ0 − λ0) = ϕ?

i dλ0 − dλ0

= ϕ?
iω0 − ω0

= 0,

where the last equality holds due to ϕi being symplectic. Thus, ϕ?
iλ0−λ0 represents

a cohomology class in H1(P 2n(s?),R) and can be written in its standard basis:

21

ϕ?
iλ0 − λ0 =

n∑
j=1

ajdxj.

We define the vector ti as the coefficient vector ti = (a1 · · · an)T ∈ Rn for every

i ∈ [k]. Now we will show that these matrices A1, . . . , Ak and vectors t1, . . . , tk

indeed satisfy the containment condition and disjointness condition of Theorem

1.13. We start with the former.

Consider the map

ψi = ϕi ◦ ϕ−1
Ai,ti

: Tn × Ai(
n(s?)) + ti → Im(ϕi) ⊆ Tn × V,

where the map ϕAi,ti is defined as in the first part of the proof. If we show that this

map is strongly exact, then Theorem 1.15 implies that Ai(
n(s?)) + ti is contained

in V .

On the one hand, we have

φ?
iλ0 − λ0 =

n∑
j=1

ajdxj = tidx.

Thus, there exists a function f : P 2n(s?) → R such that φ?
iλ0 − λ0 − tidx = df . By

rearranging this equation to ϕ?λ0 = λ0 + tidx + df we can perform the following

calculation:

ψ?
i λ0 =

(
ϕi ◦ ϕ−1

Ai,ti

)?
λ0

=
(
ϕ−1
Ai,ti

)? ◦ ϕ?
iλ0

=
(
ϕ−1
Ai,ti

)?
(λ0 + tidx+ df)

=
(
ϕ−1
Ai,ti

)?
λ0 +

(
ϕ−1
Ai,ti

)?
tidx+

(
ϕ−1
Ai,ti

)?
df

= λ0 + d
((
ϕ−1
Ai,ti

)?
tix+

(
ϕ−1
Ai,ti

)?
f
)
.

Hence, the function g : P 2n(s?) → R given by g :=
(
ϕ−1
Ai,ti

)?
tix+

(
ϕ−1
Ai,ti

)?
f satisfies

22

ψ?
i λ0 − λ0 = dg. On the other hand, we have

ψ?
i =

(
ϕ−1
Ai,ti

)? ◦ ϕ?
i = i?.

Hence, ψi satisfies both properties of a strongly exact symplectic embedding. In

consequence of Theorem 1.15, the matrices A1, . . . , Ak and vectors t1, . . . , tk satisfy

the containment condition.

We finish this proof by showing that the matricesA1, . . . , Ak and vectors t1, . . . , tk

also satisfy the disjointness condition. Suppose there exists indices 1 ≤ i < j ≤ k

such that the sets Ai (
n(s?))+ ti and Aj (

n(s?))+ tj are not disjoint. Hence, there

exists an element c ∈ (Ai (
n(s?)) + ti)∩(Aj (

n(s?)) + tj). Consider the translation

by c in the fiber τc : Tn × Rn → Tn × Rn given by

τc(x, y) = (x, y + c).

Then the sets

Li := τ−1
c ◦ ψi ◦ τc (Tn × {0}) ,

Lj := τ−1
c ◦ ψj ◦ τc (Tn × {0})

are exact Lagrangian submanifolds in Tn×Rn as a consequence of Lemma 1.18 and

Lemma 1.19. Theorem 1.17 implies that the intersection of Li and Lj is nonempty.

Hence, the intersection of τc(Li) and τc(Lj) is also nonempty. However, since

τc(Li) = ψi ◦ τc (Tn × {0}) = ψi (Tn × {c}) ⊆ Im(ϕi),

τc(Lj) = ψj ◦ τc (Tn × {0}) = ψj (Tn × {c}) ⊆ Im(ϕj)

this is a contradiction to ϕi and ϕj having disjoint images. Therefore, the matri-

ces A1, . . . , Ak ∈ GLn(Z) and vectors t1, . . . , tk ∈ Rn satisfy both the containment

condition and the disjointness condition and thus give the lower bound s? on r?.

23

The meaning of Theorem 1.13 is, that for symplectic manifolds of the form

Tn × V , where V is an open connected subset of Rn with first homology equal to

zero, we can compute the k-simplex packing width sk (Tn × V, ω0) by computing an

optimal packing of V by copies of n(r) under integral affine transformations while

maximizing the sidelength r. This not only reduces the dimension of the problem

space from 2n to n but also converts the calculation of the k-simplex packing width

into a classical combinatoral packing problem. In the next chapter we will build up

the necessary background knowledge in combinatoral optimization for being able to

solve this problem.

24

Chapter 2

Foundations of Combinatorial

Optimization

In this chapter we will give a short introduction to combinatorial optimization. It

is mainly based on the books of Alexander Schrijver [Sch98] and Vandenberghe and

Boyd [VB96].

2.1 Linear Optimization

Linear optimization is a major field in operations research and concerns the problem

of maximizing a linear function over a polyhedron.

Definition 2.1. A linear program is of the form

max cTx

Ax ≤ b

x ∈ Rn

where A ∈ Rm×n is a matrix and b ∈ Rm and c ∈ Rn are vectors.

25

Geometrically, the set of feasible solutions describes a polyhedron

P = {x ∈ Rn : Ax ≤ b}.

Every row aTi x ≤ bi for i ∈ [m] of the system of linear inequalities Ax ≤ b represents

a half-space and P is formed by the intersection of all those half-spaces. Maxi-

mizing the objective function cTx over P corresponds to shifting the hyperplane{
x ∈ Rn

∣∣ cTx = 0
}

along the direction of the vector c as long as it contains points

in P . The optimal solution x? is then given by an intersection point as visualized

in Figure 2.1.

P

c
x?

Figure 2.1: Geometric interpretation of a linear program

Of course, there could also happen to be several optimal solutions (in case c is

parallel to a vector ai for some i ∈ [m]), no solution at all (in case P is empty), or

the optimum value might be infinity (in case c points into a direction in which P is

unbounded).

Solving a linear problem to arbitrary precision can be done in polynomial time

using the ellipsoid method or the interior point method. However, for many real

world problems the simplex algorithm is the method of choice, even though its run-

time is exponential in theory. The simplex algorithm was designed by Dantzig in

1951 and has a strong geometric intuition [Dan51]. It starts at one vertex of the

26

polytope and runs along its edges until it finds a vertex that is optimal for the

problem. The simplex algorithm also solves another linear problem that is given by

min yT b

yTA = cT

y ≥ 0

y ∈ Rm.

The problems are called primal and dual pair. The dual problem of the dual

problem results in the primal problem again. For any feasible solution x to the

primal problem and any feasible solution y to the dual problem, the inequality

cTx =
(
yTA

)
x = yT (Ax) ≤ yT b

holds. This means, each feasible solution of the dual problem gives an upper bound

on the optimal value of the primal problem and each feasible solution of the primal

problem gives a lower bound on the optimal value of the dual problem. This property

is referred to as weak duality. It can even be sharpened: If one of the problems has

an optimal solution, then so has the other and both values coincide. This property

is referred to as strong duality.

Theorem 2.2 (Strong Duality Theorem [Neu47]).

Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then

max cTx

Ax ≤ b

x ∈ Rn

= min yT b

yTA = cT

y ≥ 0

y ∈ Rm

provided that both problems have feasible solutions.

27

There is a simple criterion to check whether two given feasible solutions are

optimal. If x is feasible for the primal problem and if y is feasible for the dual

problem, then both solutions are optimal if and only if yT (b− Ax) = 0. This

criterion is called complementary slackness condition. The name becomes clear by

writing the primal problem in a different way using a slack variable s.

max cTx

Ax ≤ b

x ∈ Rn

=
max cTx

Ax+ s = b

s ≥ 0

x ∈ Rn, s ∈ Rm

The complementary slackness condition now becomes yT s = 0. So, if the ith com-

ponent of the dual variable y is not zero, then the ith component of the primal slack

variable s must be equal to zero and vice versa.

2.2 Mixed Integer Linear Optimization

Many real world problems cannot be modeled using continuous variables only but

require some of the variables to be integer.

Definition 2.3. An integer linear program is of the form

max cTx

Ax ≤ b

x ∈ Zn

where A ∈ Rm×n is a matrix and b ∈ Rm and c ∈ Rn are vectors. If only some of

the variables are integer, we speak of a mixed integer linear program.

28

For convenience, we will consider the purely integer case from now on but the

subsequent results also apply to the mixed integer case.

Restricting the variables to integers has a huge impact on the tractability of the

problem. In contrast to linear programs, polynomial time algorithms for integer

linear programs are neither known nor believed to exist, since the problem is NP-

complete [GJ79].

P

c
x?

Figure 2.2: Geometric interpretation of an integer linear program

By comparison of Figure 2.1 and Figure 2.2 one can see that the optimal values

of the two problems can differ quite a lot, even though the underlying polyhedron

P = {x ∈ Rn : Ax ≤ b} is the same. There are two main solution strategies

for solving integer linear programs: the cutting plane method and the branch-and-

bound method. We will briefly explain the two, since they are part of our computer

algorithm for calculating the simplex packing widths.

The cutting plane method was first utilized in 1954 by Dantzig, Fulkerson and

Johnson to solve a large instance of the Traveling Salesman Problem [DFJ54]. With-

out knowledge of this result, Gomory developed the first general cutting plane ap-

proach [Gom58] in 1958. The idea is to first solve the linear relaxation of the integer

linear program, which is the problem that arises by removing the integrality con-

straint of each variable. In general, the corresponding solution is not integer but

delivers an upper bound on the solution of the integer linear program. The goal

29

is to gradually improve this upper bound by adding further inequalities to the sys-

tem. These inequalities must be valid for all feasible solutions of the integer linear

program but not valid for the current optimal solution of the linear relaxation. Ge-

ometrically, they cut off the optimal solution of the linear relaxation, which is the

reason they are called cutting planes. One possible cutting plane for the previous

integer linear problem is shown in Figure 2.3.

P

c
x?

Figure 2.3: Cutting plane for an integer linear program

In most cases cutting planes on their own do not yield promising results. In-

stead, they are combined with the branch-and-bound method. The branch-and-

bound method for solving integer linear programs was first proposed by Land and

Doig in 1960 [LD60]. Just like the cutting plane approach, the branch-and-bound

method starts by calculating the optimal solution x̂ of the linear relaxation. The

corresponding optimal value gets stored as the global upper bound. If x̂ is integer,

the problem is solved, otherwise there exists a non-integer component x̂i. In this

case a branching on xi is performed by creating two subproblems

max cTx

Ax ≤ b

xi ≤ bx̂ic

x ∈ Zn

and

max cTx

Ax ≤ b

xi ≥ dx̂ie

x ∈ Zn.

30

In the next step, the linear relaxation of both subproblems is solved. Now for

each subproblem, one of three things can happen:

1. There exist no feasible solutions.

2. The optimal solution is integer.

3. The optimal solution is not integer.

In the first case the problem is discarded. In the second case the optimal value

gets stored as the new global lower bound. In the third case the optimal value gets

stored as the local upper bound and two new subproblems are created by branching

on one of the non-integer variables. The branch-and-bound algorithm terminates

prematurely if an integer solution with optimal value equal to the global upper bound

has been detected. Otherwise, it terminates when there are no open subproblems

left. The optimal solution is then given by the global lower bound. If no global

lower bound exists, the problem is infeasible.

For example, consider the integer linear program from Figure 2.2:

max

(
0

1

)T

x
−8 6

8 2

0 2

x ≤


−1

37

−1


x ∈ Z2.

The corresponding branch-and-bound search tree is shown in Figure 2.4. The

optimal solution of the linear relaxation P0 is given by
(

7
2
9
2

)
with optimal value 9

2
.

Branching on the variable x1 yields two new subproblems P1 and P2. Subproblem

P1 has optimal solution
(

3
23
6

)
with optimal value and new local upper bound 23

6
.

Subproblem P2 has optimal solution
(

4
5
2

)
with optimal value and new local upper

bound 5
2
. Branching on the variable x2 in P1 yields the subproblems P3 and P4.

Subproblem P3 has an integer optimal solution (3
3) with optimal value 3 that is

31

stored as the new global lower bound. Subproblem P4 is infeasible. The only open

problem left is P2 that is fathomed due to the global lower bound exceeding the

local upper bound.

P0

P1

P3

x2 ≤ 3

P4

x2 ≥ 4

x1 ≤ 3

P2

x1 ≥ 4

Figure 2.4: Branch-and-bound search tree for an integer linear program

2.3 Quadratically Constrained Quadratic Optimiza-

tion

If we replace the linear objective function by a quadratic objective function, we

speak about a quadratic program. If we additionally allow quadratic functions in

the constraints, we call this a quadratically constrained quadratic program.

Definition 2.4. A quadratically constrained quadratic program is of the form

min xTCx+ 2cTx

xTAix+ 2aTi x = bi ∀i ∈ [m]

x ∈ Rn

where C,A1, . . . , Am ∈ Sn, c, a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R.

Here, Sn denotes the set of symmetric matrices in Rn×n. Quadratically con-

strained quadratic programs include linear programs as a special case by taking

32

C = 0 and Ai = 0 for i ∈ [m]. Furthermore, they include mixed binary linear

programs. This can be seen by modeling the condition xi ∈ {0, 1} by using the

quadratic expression xi(xi − 1) = 0. Since mixed binary linear optimization is

NP-hard in general, so is quadratically constrained quadratic programming.

If the matrices C,A1, . . . , Am are positive semidefinite, the problem can be solved

in polynomial time with the ellipsoid method [KTK80]. In this case, the problem is

convex and the feasible region is an intersection of m ellipsoids. Sahni proved that

the problem is NP-hard if one of the matrices is negative definite [Sah74]. Pardalos

and Vavasis sharpened the result and showed that even one negative eigenvalue

makes the problem NP-hard [PV90].

So in general, quadratically constrained quadratic optimization problems are

non-convex. The difficulty of non-convex optimization problems consists in the

possibility of having several local minima that a solver may interpret as a global

minimum. One main strategy to solve non-convex problems is to find a tight con-

vex relaxation that provides a lower bound for the optimal solution of the original

problem. One approach to relax non-convex quadratically constrained quadratic

problems uses semidefinite programming. First, note that every inhomogeneous

quadratically constrained quadratic program can be homogenized to

min

(
x

t

)T (
C c

cT 0

)(
x

t

)
(
x

t

)T (
Ai ai

aTi 0

)(
x

t

)
= bi ∀i ∈ [m]

(
x

t

)T (
0 0

0 1

)(
x

t

)
= 1(

x

t

)
∈ Rn+1

by introducing a new variable t ∈ R.

Both the number of variables and the number of constraints, increase by one.

33

The last constraint ensures that t2 = 1. If in the optimal solution t takes the

value t = 1, then the optimal solution to the original problem is x. If in the optimal

solution t takes the value t = −1, then the optimal solution to the original problem is

−x. Hence, without loss of generality, we can assume the quadratically constrained

quadratic program to be of the form

min xTCx

xTAix = bi ∀i ∈ [m]

x ∈ Rn.

To derive the semidefinite relaxation of this program, we observe that

xTCx =
n∑

i=1

n∑
j=1

xiCijxj

=
n∑

i=1

n∑
j=1

Cijxixj

= tr
(
CxxT

)
= 〈C, xxT 〉.

Here, 〈A,B〉 = tr
(
ATB

)
=
∑n

i=1

∑m
j=1AijBij denotes the Frobenius inner product

of the two matrices A,B ∈ Rm×n. The same equation holds true when replacing the

matrix C by any of the constraint matrices Ai for i ∈ [m]. So both the objective

function and the constraints are linear in the matrix xxT . This procedure is often

referred to as “lifting” the variable x ∈ Rn into the space Sn. We introduce a new

variable X ∈ Sn and note that the identity X = xxT is equivalent to rank (X) = 1

and X � 0. By X � 0 we denote the matrix X to be positive semidefinite, that is

vTXv ≥ 0 for all v ∈ Rn. Now we get the following equivalent formulation of the

homogeneous quadratically constrained quadratic program:

34

min 〈C,X〉

〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ Sn

X � 0

rank (X) = 1.

By dropping the non-convex rank-one constraint, we obtain the desired semidefinite

relaxation. Since the minimum is now taken over a possibly larger set, the optimal

value of this semidefinite relaxation does not necessarily coincide with the original

solution but yields a lower bound. In the next section we will give more insight into

semidefinite optimization.

2.4 Semidefinite Optimization

Definition 2.5. A semidefinite program is of the form

min 〈C,X〉

〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ Sn

X � 0,

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R.

As seen in the previous section, every quadratically constrained quadratic pro-

gram can be relaxed to a semidefinite program.

35

Furthermore, every linear program

min cTx

Ax = b

x ≥ 0

x ∈ Rn

can be written as a semidefinite program by choosing C = diag(c) and Ai = diag(ai),

where ai is the ith row of the matrix A. Note that we consider the dual form of the

linear program with renamed variables in order to be conform to the notation of

the semidefinite program. The association X = diag(x) can be modeled by the

additional equations 〈Eij, X〉 = 0 for 1 ≤ i < j ≤ n. Here, the matrices Eij for

1 ≤ i ≤ j ≤ n are the standard basis of Sn. They are defined as

Eij =
1

2

(
eie

T
j + eje

T
i

)
,

where e1 = (1 0 · · · 0)T , . . . , en = (0 · · · 0 1)T denote the standard basis of Rn.

Analogously to linear optimization, one can define a dual semidefinite program

as

max yT b

m∑
i=1

yiAi � C

y ∈ Rm,

where for any two matrices A,B ∈ Sn, the expression A � B means B − A � 0.

The dual problem of the dual problem results in the primal problem again. Also,

weak duality holds: If X is feasible for the primal problem and y is feasible for the

36

dual problem, then

〈C,X〉 − yT b = 〈C,X〉 −
m∑
i=1

yibi

= 〈C,X〉 −
m∑
i=1

yi〈Ai, X〉

= 〈C,X〉 − 〈
m∑
i=1

yiAi, X〉

= 〈C −
m∑
i=1

yiAi, X〉

≥ 0.

Here, the last inequality holds true because the inner product of two positive semidef-

inite matrices is always greater or equal to zero, which can be seen using spectral

decomposition.

In contrast to linear programs, however, not every semidefinite problem satisfies

strong duality. For this, one requires one problem to have a strictly feasible solution

and to be bounded, which is referred to as Slater’s condition. A feasible solution X

of the primal problem is called strictly feasible if X � 0 and a feasible solution y of

the dual problem is called strictly feasible if
∑m

i=1 yiAi ≺ C. By X � 0 we denote

the matrix X to be positive definite, that is vTXv > 0 for all v ∈ Rn with v 6= 0.

Theorem 2.6 (Slater’s Condition [Sla59]).

Let C,A1, . . . , Am ∈ Sn and let b1, . . . , bm ∈ R. Consider the primal semidefinite

program

p? = min 〈C,X〉

〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ Sn

X � 0

37

and the dual semidefinite program

d? = max yT b

m∑
i=1

yiAi � C

y ∈ Rm.

If the primal semidefinite program has a strictly feasible solution and if it is bounded

from below, then strong duality holds: p? = d?. Likewise, if the dual semidefinite

program has a strictly feasible solution and if it is bounded from above, then also

strong duality holds.

Although semidefinite programs are much more general than linear programs,

they are not much harder to solve. Most interior-point methods for linear program-

ming have been generalized to semidefinite programs [Van+05].

2.5 Mixed Integer Bilinear Optimization

Bilinear optimization is a special case of quadratically constrained quadratic opti-

mization. The distinctive feature is, that the variables can be partitioned into two

sets such that in the objective function and in the constraints, there only appear

products of variables coming from different partitions.

Definition 2.7. A bilinear program is of the form

min xTCy + cT (x
y)

xTAiy + aTi (x
y) ≤ bi ∀i ∈ [m]

x ∈ Rnx , y ∈ Rny ,

where C,A1, . . . , Am ∈ Rnx×ny , c, a1, . . . , am ∈ Rnx+ny and b1, . . . , bm ∈ R.

38

While semidefinite relaxation is a powerful tool to provide lower bounds for the

class of non-convex quadratically constrained quadratic programs, there is another

type of convex relaxation for the class of non-convex bilinear programs. This relax-

ation consists in the application of McCormick envelopes [McC76].

Given a bilinear term w = xy with lower bounds xL, yL and upper bounds xU , yU

on the variables x and y, one has the following four inequalities:

x− xL ≥ 0,

y − yL ≥ 0,

xU − x ≥ 0,

yU − y ≥ 0.

By multiplying the first two inequalities and the last two inequalities, respectively,

we obtain

0 ≤
(
x− xL

) (
y − yL

)
= w − yLx− xLy + xLyL,

0 ≤
(
xU − x

) (
yU − y

)
= w − yUx− xUy + xUyU ,

which is equivalent to

w ≥ yLx+ xLy − xLyL,

w ≥ yUx+ xUy − xUyU .

These are the two convex underestimators of the function w. Likewise, by taking

the product of inequalities one and four and two and three, respectively, we obtain

0 ≤
(
x− xL

) (
yU − y

)
= −w + yUx+ xLy − xLyU ,

0 ≤
(
xU − x

) (
y − yL

)
= −w + yLx+ xUy − xUyL,

39

which is equivalent to

w ≤ yUx+ xLy − xLyU ,

w ≤ yLx+ xUy − xUyL.

These are the two convex overestimators of the function w. A graphical representa-

tion of both is shown in Figure 2.5.

x

y

xU xL

yL

yU

xy

convex underestimators
convex overestimators

Figure 2.5: Geometric interpretation of McCormick envelopes

The advantage of McCormick envelopes is that they retain convexity while min-

imizing the size of the new feasible region. This allows the lower bound solutions

obtained from the McCormick relaxation to be closer to the original solution than

if other convex relaxations were used.

Unlike quadratically constrained quadratic programs, bilinear programs do not

include mixed integer linear programs as a special case. If one set of the variables

is required to by integer, we speak of a mixed integer bilinear program.

Definition 2.8. A mixed integer bilinear program is of the form

min xTCy + cT (x
y)

xTAiy + aTi (x
y) ≤ bi ∀i ∈ [m]

x ∈ Rnx , y ∈ Zny

40

where C,A1, . . . , Am ∈ Rnx×ny , c, a1, . . . , am ∈ Rnx+ny and b1, . . . , bm ∈ R.

If we apply the McCormick relaxation to a mixed integer bilinear problem, we

obtain a mixed integer linear problem that can than be approached by the solution

techniques described in Section 2.2.

41

42

Chapter 3

Algorithmic Approach for

sk
(
P 4(r), ω0

)
We now have both the appropriate background in symplectic geometry and in com-

binatorial optimization to set up an algorithm for calculating the simplex packing

widths sk (P 4(r), ω0). We call this the outer optimization problem. The reason why

we call this the outer optimization problem is because we will also define an inner

optimization problem later on. Since we are dealing with simplices in dimension

two, we will use the terms triangle and simplex interchangeably.

3.1 Outer Optimization Problem

Problem 3.1 (Outer Optimization Problem).

Given k ∈ N, determine sk (P 4(1), ω0).

As already mentioned in Chapter 1, the key to convert Problem 3.1 into a com-

binatorial optimization problem is Theorem 1.13. We recall the statement:

43

Let V be an open, connected subset of Rn with H1(V) = 0. Then

sk (V × Tn, ω0) = sup

r
∣∣∣∣∣∣∣∣∣∣

∃A1, . . . , Ak ∈ GLn(Z) ∃t1, . . . , tk ∈ Rn :

Ai (
n(r)) + ti ⊆ V ∀i ∈ [k]

(Ai (
n(r)) + ti) ∩ (Aj (

n(r)) + tj) = ∅
∀1 ≤ i < j ≤ k

 .

By applying this theorem to P 4(1) = T2 × 2(1), we get the following equivalent

formulation of Problem 3.1.

Problem 3.2 (Outer Optimization Problem - Combinatorial Formulation).

Given k ∈ N, determine the minimum side length s such that there exist matrices

A1, . . . , Ak ∈ GL2(Z) and vectors t1, . . . , tk ∈ R2 satisfying

Ai

(
2(1)

)
+ ti ⊆ 2(s) ∀i ∈ [k] (containment condition),(

Ai

(
2(1)

)
+ ti

)
∩
(
Aj

(
2(1)

)
+ tj

)
= ∅ ∀1 ≤ i < j ≤ k (disjointness condition).

Note that previously we were maximizing the size of the packing objects but now

we are minimizing the size of the packing container. The reason for this is that the

latter is easier to model. We denote the minimum side length s from Problem 3.2

by sk . Then we have the relation

sk
(
P 4(1), ω0

)
=

1

sk
.

The complexity of computing sk is unknown. The problem is conjectured to

be NP-hard in general. In contrast, the calculation of sk is trivial if k is a square

number. In this case we can create a packing with side length
√
k that is dense and

therefore optimal. The corresponding packings for the first four square numbers

k = 1, 4, 9, 16 are visualized in Figure 3.1.

44

s1 = 1 s4 = 2 s9 = 3 s16 = 4

Figure 3.1: Optimal triangle packings for square numbers

If we can fit sixteen triangles into the standard simplex with side length four,

then we can also fit less then sixteen triangles into it. Therefore, we obtain an upper

bound on sk by rounding up
√
k.

Theorem 3.3 (Trivial Upper Bound on sk).

sk ≤
⌈√

k
⌉

By taking the reciprocal value of sk (P 4(1), ω0) in Theorem 1.12, we obtain a

stronger upper bound on sk for k = 1, . . . , 20. We denote the values by sk . For

k ≤ 12 and k = 16 we even have equality sk = sk .

Theorem 3.4 (Upper Bound on sk [MMT00]).

k 1 2 3 4 5 6 7 8 9 10

sk 1 2 2 2 5
2

17
6

3 3 3 10
3

k 11 12 13 14 15 16 17 18 19 20

sk
7
2

56
15

23
6

79
20

4 4 17
4

13
3

9
2

97
21

We only need to consider triangles whose shapes are admissible for that upper

bound. For a given k, we call the list of admissible triangles the shapelist Sk .

Definition 3.5. For k = 1, . . . , 20 we define the shapelist

Sk =
{
T
∣∣∣ ∃A ∈ GL2(Z) ∃t ∈ R2 : T = A

(
2(1)

)
and T + t ⊆ 2

(
sk

)}
.

The admissible shapes for k = 1, . . . , 20 are shown in Table 3.1 and Table 3.2.

The value smin in the last column denotes the minimum side length of the enclosing

standard simplex.

45

Shape Image smin

T1 = int (conv ({(0
0) , (

0
1) , (

1
0)})) 1

T2 = int (conv ({(0
0) , (

0
1) , (

1
1)})) 2

T3 = int (conv ({(0
0) , (

1
0) , (

1
1)})) 2

T4 = int (conv ({(0
0) , (

1
−1) , (

1
0)})) 2

T5 = int (conv ({(0
0) , (

0
1) , (

1
−1)})) 2

T6 = int (conv ({(0
0) , (

1
−2) , (

1
−1)})) 2

T7 = int (conv ({(0
0) , (

1
−1) , (

2
−1)})) 2

T8 = int (conv ({(0
0) , (

1
0) , (

2
−1)})) 2

T9 = int (conv ({(0
0) , (

0
1) , (

1
2)})) 3

T10 = int (conv ({(0
0) , (

1
1) , (

1
2)})) 3

T11 = int (conv ({(0
0) , (

1
0) , (

2
1)})) 3

T12 = int (conv ({(0
0) , (

1
1) , (

2
1)})) 3

T13 = int (conv ({(0
0) , (

0
1) , (

1
−2)})) 3

T14 = int (conv ({(0
0) , (

1
−3) , (

1
−2)})) 3

T15 = int (conv ({(0
0) , (

1
−2) , (

2
−3)})) 3

T16 = int (conv ({(0
0) , (

1
−1) , (

2
−3)})) 3

Table 3.1: Triangle shapes 1 - 16

46

Shape Image smin

T17 = int (conv ({(0
0) , (

1
0) , (

3
−1)})) 3

T18 = int (conv ({(0
0) , (

1
−1) , (

3
−2)})) 3

T19 = int (conv ({(0
0) , (

2
−1) , (

3
−1)})) 3

T20 = int (conv ({(0
0) , (

2
−1) , (

3
−2)})) 3

T21 = int (conv ({(0
0) , (

0
1) , (

1
3)})) 4

T22 = int (conv ({(0
0) , (

1
2) , (

1
3)})) 4

T23 = int (conv ({(0
0) , (

1
0) , (

3
1)})) 4

T24 = int (conv ({(0
0) , (

2
1) , (

3
1)})) 4

T25 = int (conv ({(0
0) , (

0
1) , (

1
−3)})) 4

T26 = int (conv ({(0
0) , (

1
−4) , (

1
−3)})) 4

T27 = int (conv ({(0
0) , (

1
−1) , (

3
−4)})) 4

T28 = int (conv ({(0
0) , (

1
0) , (

4
−1)})) 4

T29 = int (conv ({(0
0) , (

1
−1) , (

4
−3)})) 4

T30 = int (conv ({(0
0) , (

2
−3) , (

3
−4)})) 4

T31 = int (conv ({(0
0) , (

3
−1) , (

4
−1)})) 4

T32 = int (conv ({(0
0) , (

3
−2) , (

4
−3)})) 4

Table 3.2: Triangle shapes 17 - 32

47

The image of the two-dimensional standard simplex under an integral transfor-

mation is the interior of a triangle with integer vertices and volume 1
2
. For a triangle

T = int (conv ({a, b, c})) with a, b, c ∈ Z2, the volume is given by

vol (T) =
1

2

∣∣∣∣∣ det([a− c b− c
]) ∣∣∣∣∣.

To establish the shapelists, we consider all triangles with integer vertices in the

interval [0, 4] × [0, 4] that satisfy the volume condition. We then sort them by

ascending x-coordinates. In case of equality between two x-coordinates, we sort

them by ascending y-coordinates. Next, we shift the triangles, such that the first

vertex becomes the origin and remove all copies.

For k = 21, . . . , 25 the interval to be examined becomes [0, 5] × [0, 5] and the

corresponding number of shapes increases to 44. Since computing sk for k > 14

seems out of reach at the moment, we do not have to consider those shapes. By

looking at smin we can immediately create the shapelist Sk . For k = 1, . . . , 20 the

shapelists are given by

Sk = {T1} for k = 1,

Sk = {T1, . . . , T8} for k = 2, . . . , 6,

Sk = {T1, . . . , T20} for k = 7, . . . , 14,

Sk = {T1, . . . , T32} for k = 15, . . . , 20.

Now we can determine sk by computing an optimal packing for every k-cardinality

multisubset of the shapelist. The number of multisubsets of length k on |Sk | symbols

is termed |Sk | multichoose k and given by the formula

((
|Sk |
k

))
=

(
|Sk |+ k − 1

k

)
=

(
|Sk |+ k − 1

)
!(

|Sk | − 1
)
!k!

.

48

k |Sk |
((

|Sk |
k

))
1 1 1

2 8 36

3 8 120

4 8 330

5 8 792

6 8 1 716

7 20 657 800

8 20 2 220 075

9 20 6 906 900

10 20 20 030 010

11 20 54 627 300

12 20 141 120 525

13 20 347 373 600

14 20 818 809 200

15 32 511 738 760 544

16 32 1 503 232 609 098

17 32 4 244 421 484 512

18 32 11 554 258 485 616

19 32 30 405 943 383 200

20 32 77 535 155 627 160

Table 3.3: Number of k-cardinality multisubsets of the shapelists

The value of
((

|Sk |
k

))
according to k is shown in Table 3.3. For k = 10 one

already needs to solve more than twenty million subproblems. This clearly indicates

that complete enumeration is out of the question, especially in view of the fact that

only exponential algorithms for the computation of the optimal packings are known.

Rather, we implement a branch-and-bound approach. Each node of the branch-and-

bound search tree represents a multisubset. The level of the node equates to the

cardinality of the multisubset. For example, the root on level zero corresponds to

the empty multisubset and the children on level one correspond to all subsets of

cardinality one.

49

The (incomplete) search tree for k = 3 is shown in Figure 3.2. We start the

search with the global upper bound from Theorem 3.4. Whenever the computation

for a node produces an optimum packing that exceeds the global upper bound, we

can fathom the subtree rooted at this node. Whenever the computation for a node

at level k produces an optimum packing that improves the global upper bound,

we update the global upper bound and memorize the packing as the incumbent

solution. At termination the incumbent solution is an optimum packing with value

of the upper bound. We will explain the procedure in more detail in Section 3.3.

∅

· · ·

· · · ...

Figure 3.2: Branch-and-bound search tree for the 3-triangle packing

The next question we will address is how to actually compute an optimal packing

at each node. We call this the inner optimization problem.

3.2 Inner Optimization Problem

Problem 3.6 (Inner Optimization Problem).

Given T1, . . . , Tm ∈ Sk , determine the minimum side length s such that there exist

vectors t1, . . . , tm ∈ R2 satisfying

Ti + ti ⊆ 2(s) ∀i ∈ [m] (containment condition),

(Ti + ti) ∩ (Tj + tj) = ∅ ∀1 ≤ i < j ≤ m (disjointness condition).

We will formulate Problem 3.6 as a mixed integer linear program. For this we

have to model the two conditions. First, we will model the containment condition.

50

The triangles Ti are given in the form

Ti = int (conv ({(0
0) , (

ai
bi) , (

ci
di)})) .

The packing container 2(s) is given by

2(s) =
{
(x
y) ∈ R2

∣∣ x > 0, y > 0, x+ y < s
}
.

Instead of working with the open sets Ti and 2(s), we will consider their closures.

This does not make any difference for the containment condition but is easier to

model. Let ti = (xi
yi) denote the translation vector, then the closure of the translated

triangle Ti + ti is given by

Ti + ti = conv
({

(xi
yi) ,

(
xi+ai
yi+bi

)
,
(
xi+ci
yi+di

)})
and the closed standard simplex of side length s is given by

2(s) =
{
(x
y) ∈ R2

∣∣ x ≥ 0, y ≥ 0, x+ y ≤ s
}
.

Because of convexity, it suffices to check the containment condition for the three

vertices only. Thus, we obtain a total of nine inequalities for every i ∈ [m]:

xi ≥ 0, yi ≥ 0, xi + yi ≤ s,

xi + ai ≥ 0, yi + bi ≥ 0, (xi + ai) + (yi + bi) ≤ s,

xi + ci ≥ 0, yi + di ≥ 0, (xi + ci) + (yi + di) ≤ s.

By putting the constants to the right hand sides and taking extrema in every column,

we can reduce these nine inequalities to three inequalities for every i ∈ [m]:

51

xi ≥ max {0,−ai,−ci} =: Ki,

yi ≥ max {0,−bi,−di} =: K ′
i,

xi + yi − s ≤ min {0,−ai − bi,−ci − di} =: K ′′
i .

Thus, we get a total of 3m inequalities that we call the containment constraints.

Next, we model the disjointness condition. The equation (Ti + ti)∩ (Tj + tj) = ∅

is equivalent to tj − ti /∈ (Ti 	 Tj). Here, Ti 	 Tj denotes the Minkowski difference

of Ti and Tj that is defined as

Ti 	 Tj = {vi − vj | v i ∈ Ti, vj ∈ Tj} .

The equivalence between the two formulations can be easily derived as follows:

(Ti + ti) ∩ (Tj + tj) 6= ∅

⇔ ∃vi ∈ Ti ∃vj ∈ Tj : vi + ti = vj + tj

⇔ ∃vi ∈ Ti ∃vj ∈ Tj : tj − ti = vi − vj

⇔ tj − ti ∈ (Ti 	 Tj) .

To understand what the Minkowski difference of two polytopes looks like, we

need the following lemma.

Lemma 3.7. Let A,B ⊆ Rn be two sets. Then conv (A	B) = conv (A)	conv (B).

Proof. Let A,B ⊆ Rn be two sets. First, we will show that conv (A	B) is contained

in conv (A) 	 conv (B). For every point p ∈ conv (A	B) there exist N ∈ N,

p1, . . . , pN ∈ A 	 B and λ1, . . . , λN ≥ 0 with
∑N

i=1 λi = 1 such that p =
∑N

i=1 λipi.

By definition of the Minkowski difference, pi is of the form pi = ai − bi with ai ∈ A

52

and bi ∈ B for every i ∈ [N]. Hence,

p =
N∑
i=1

λipi

=
N∑
i=1

λi(ai − bi)

=
N∑
i

λiai︸ ︷︷ ︸
∈conv(A)

−
N∑
i

λibi︸ ︷︷ ︸
∈conv(B)

∈ conv (A)	 conv (B) .

Next, we show that conv (A) 	 conv (B) is contained in conv (A	B). Every

point p ∈ conv (A) 	 conv (B) is of the form p = a − b with a ∈ conv (A) and

b ∈ conv (B). Since a ∈ conv (A), there exist a1, . . . , aN ∈ A and λ1, . . . , λN ≥ 0

with
∑N

i=1 λi = 1 such that a =
∑N

i=1 λiai. Thus,

p = a− b

=
N∑
i=1

λiai − b

=
N∑
i=1

λiai −
N∑
i=1

λib

=
N∑
i=1

λi(ai − b︸ ︷︷ ︸
∈A	B

) ∈ conv (A	B) .

If we apply Lemma 3.7 to

Ti = int (conv ({(0
0) , (

ai
bi) , (

ci
di)})) ,

Tj = int
(
conv

({
(0
0) ,
(aj
bj

)
,
(cj
dj

)}))
,

we immediately get a description of Ti 	 Tj as

53

Ti 	 Tj = int
(
conv

({
(0
0) , (

ai
bi) , (

ci
di) ,

(
−aj
−bj

)
,
(

ai−aj
bi−bj

)
,(

ci−aj
di−bj

)
,
(

−cj
−dj

)
,
(

ai−cj
bi−dj

)
,
(

ci−cj
di−dj

)}))
.

T1

−T2

T1 	 T2

T1
−T3

T1 	 T3

T1−T4

T1 	 T4

T1
−T5

T1 	 T5

Figure 3.3: Visualization of the Minkowski difference Ti 	 Tj

Figure 3.3 shows what the Minkowski difference for some triangles of our shapelist

looks like. For our algorithmic approach, we need a description of Ti 	 Tj as an in-

tersection of finitely many halfspaces. In this two dimensional setup, the halfspaces

of Ti 	 Tj are among the set of halfspaces of Ti translated by a vertex of −Tj and

the set of halfspaces of −Tj translated by a vertex of Ti. Let

H =
{
(x
y) ∈ R2

∣∣ αx+ βy < γ
}

be a halfspace of Ti and let

γ′ = max {0, α(−aj) + β(−bj), α(−cj) + β(−dj)}

be the maximum value of the three vertices of −Tj inserted into the halfspace de-

scription. Then

H ′ =
{
(x
y) ∈ R2

∣∣ αx+ βy < γ′
}

is a halfspace of Ti 	 Tj. By applying this procedure to all pairs of halfspaces and

54

vertices, we end up with a description of Ti 	 Tj as

Ti 	 Tj =
{
(x
y) ∈ R2

∣∣ αij
f x+ βij

f y < γijf ∀f ∈ [6]
}

Here, αij
f , β

ij
f γ

ij
f ∈ Z are integer constants. Working with this representation, the

difference vector tj − ti is not contained in the Minkowski difference Ti 	 Tj if and

only if at least one of the six inequalities αij
f x + βij

f y < γijf is violated. To model

this condition, we introduce a binary variable zijf ∈ {0, 1} for every f ∈ [6] with the

following meaning:

zijf = 1 ⇒ αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf .

Now one could by brute force enumerate all O
(
6(

m
2
)
)

possible 0/1-assignments of the

binary variables zijf and solve a linear program for each. This strategy was pursued

by Maley, Mastrangeli and Traynor [MMT00]. Instead, we model the implication

using a Big-M -formulation, where the parameter M has to be chosen sufficiently

large:

αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf −M
(
1− zijf

)
.

If we plug in zijf = 1 into the Big-M -formulation, we obtain

αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf

as desired. Let ŝ be the current global upper bound on s in the branch-and-bound

algorithm when encountering the inner optimization problem. To find an appropri-

ate value for M , we can make the following estimation on the left hand side of the

Big-M -formulation:

55

αij
f (xj − xi) + βij

f (yj − yi)

≥ − |αij
f ||xj − xi| − |βij

f ||yj − yi|

≥ − |αij
f |ŝ− |βij

f |ŝ

= −
(
|αij

f |+ |βij
f |
)
ŝ.

Thus, we can choose M as

M =
(
|αij

f |+ |βij
f |
)
ŝ+ γijf .

We want at least one of the six binary variables zijf to take the value one. Equi-

valently we can say that their sum should be greater or equal to one. Altogether,

the disjointness condition is equivalent to

zijf ∈ {0, 1} ,

zij1 + · · ·+ zij6 ≥ 1,

αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf −M
(
1− zijf

)
for all f ∈ [6]. For every pair of triangles Ti, Tj with 1 ≤ i < j ≤ m, we have these

seven inequalities, so in total there are 7
(
m
2

)
inequalities that we call the disjointness

constraints.

We consider the binary variables zijf as components of the vector z ∈ {0, 1}6(
m
2
)

that is indexed by

z =
(
z121 · · · z126 z131 · · · z136 · · · zm−1 m

1 · · · zm−1 m
6

)T
.

By merging the containment constraints and the disjointness constraints, we obtain

a mixed integer linear program with 1 + 2m continuous variables, 6
(
m
2

)
(binary)

56

integer variables and 3m+ 7
(
m
2

)
constraints.

Problem 3.8 (Inner Optimization Problem - Mixed Integer Linear Formulation).

min s

xi ≥ Ki ∀i ∈ [m]

yi ≥ K ′
i ∀i ∈ [m]

xi + yi − s ≤ K ′′
i ∀i ∈ [m]

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf −M
(
1− zijf

)
∀1 ≤ i < j ≤ m

∀f ∈ [6]

s ∈ R, x, y ∈ Rm, z ∈ {0, 1}6(
m
2
)

In the next section we will give a brief summary of the implementation.

3.3 Implementation

The computer code is written in the programming language C. The backbone of the

program is a queue of branch-and-bound nodes. Each of these nodes represents an

inner optimization instance and has the following attributes:

structure bbnode

• nsimplices: the number of simplices,

• nshapes: the number of different shapes,

• *shape: the different shapes,

• *multi: the multiplicity of each shape,

• lowerbound: he local lower bound,

• *next: the pointer to the next bbnode element.

For example, the multisubset {T1, T1, T1, T3, T3, T4, T5, T8} has the assignments

57

• nsimplices = 8;

• nshapes = 5;

• *shape = [1, 3, 4, 5, 8];

• *multi = [3, 2, 1, 1, 1].

The assignments of lowerbound and *next depend on the point of time the multi-

subset is generated. At the beginning, the queue is initialized by all feasible mul-

tisubsets of cardinality one that corresponds to all shapes from the corresponding

shapelist. An example for k = 3 is shown in Figure 3.4. Each element has the value

lowerbound = 0, since no packing has been computed yet.

T1 T2 T3 T4 T5 T6 T7 T8

front rear

Figure 3.4: Initial queue for the 3-triangle packing

After the inner optimization problem at a node is solved, we extend the queue

by adding all feasible extensions of the shapes from the inner optimization instance.

Figure 3.5 shows what the extended queue looks like after treating the first node from

the initial queue. We use a breadth-first search strategy in our branch-and-bound

algorithm since it yields slightly better results than a depth-first search strategy.

T2 T3 T4 T5 T6 T7 T8

T1, T1T1, T2T1, T3T1, T4T1, T5T1, T6T1, T7T1, T8

front

rear

Figure 3.5: Extended queue for the 3-triangle packing

We use another structure with the same attributes as bbnode (except the at-

tribute lowerbound) to record all packings that yield solutions that exceed the

global upper bound. Because these packings serve as blocking configurations in our

algorithm, the corresponding structure is called config and is given by:

58

structure config

• nsimplices: the number of simplices,

• nshapes: the number of different shapes,

• *shape: the different shapes,

• *multi: the multiplicity of each shape,

• *next: the pointer to the next config element.

To avoid unnecessary repeated computations, we store the values of all solved

inner optimization problems in a file that we call the bounds file. To establish the

bounds file, we use the following structure:

structure bound

• fipri: the unique fingerprint of the inner optimization instance,

• nsimplices: the number of simplices,

• lowerbound: the local lower bound,

• optimal: the indicator whether lowerbound is equal to the optimal value,

• *next: the pointer to the next bound structure.

We obtain the unique fingerprint for each inner optimization instance by assign-

ing a prime number to each shape as shown in Table 3.4. We then take the product

over all prime numbers of the corresponding shapes from the inner optimization

instance. For example, the multisubset {T1, T1, T1, T3, T3, T4, T5, T8} has fingerprint

23 · 52 · 7 · 11 · 19 = 292 600.

59

Shape Prime Number
T1 2

T2 3

T3 5

T4 7

T5 11

T6 13

T7 17

T8 19

T9 23

T10 29

T11 31

T12 37

T13 41

T14 43

T15 47

T16 53

T17 59

T18 61

T19 67

T20 71

Table 3.4: Assignment of a prime number to each shape

Since we encounter each inner optimization problem with a global upper bound,

some instances might be infeasible. In this case we set optimal = 0 and store the

global upper bound in the attribute lowerbound. If the inner optimization problem

is solved to optimality, we set optimal = 1 and store the optimal solution in the

attribute lowerbound.

Each line of the bounds file contains the four attributes fipri, nsimplices,

lowerbound and optimal. Table 3.5 gives an impression of the evolution of the

bounds file. It shows the number of bounds contained in the bounds file after

computing the k-triangle packing for k = 1, . . . , 13.

60

k #Bounds
1 1

2 44

3 55

4 66

5 467

6 585

7 255 526

8 255 789

9 255 836

10 273 136

11 311 057

12 429 705

13 603 174

Table 3.5: Number of bounds contained in the bounds file after computing the

k-triangle packing for k = 1, . . . , 13

Now as long as the queue is not empty, we extract its front element. If the value

of lowerbound exceeds the global upper bound, the node is fathomed. Otherwise

we check the inner optimization instance for blocking subsets by searching the list of

config structures. If we detect a blocking subset, the node is fathomed. Otherwise,

we compute the fingerprint of the inner optimization instance and check the bounds

file for previously known bounds. If a lower bound is found that exceeds the global

upper bound, the inner optimization instance is recorded as a new blocking structure

and the node is fathomed. In any other case, we run the inner optimization solver.

If the solution computed by the inner optimization solver exceeds the global

upper bound, the inner optimization instance is recorded as a new blocking structure

and the node is fathomed. If the optimal value of the solution is smaller or equal to

the global upper bound, we distinguish between two cases.

In the first case, the number of simplices in the inner optimization instance is

equal to the number k of simplices in the outer optimization problem, which means

the node is a leaf of the branch-and-bound tree. If the optimal value of the solution

61

is equal to the current global upper bound, we draw a picture of the solution and

append it to a TEX-file. This TEX-file already contains pictures of all previous

solutions with the same optimal value. If the optimal value of the solution is strictly

smaller than the global upper bound, we update the latter and replace the old

TEX-file by a new TEX-file containing a picture of the solution.

In the second case, the number of simplices in the inner optimization instance

is smaller than the number k of simplices in the outer optimization problem, which

means the node is not a leaf. If so, we add all feasible extensions of the inner

optimization instance to the queue.

All described steps are summarized in Figure 3.6. The whole program code en-

compasses 1841 lines. The branch-and-bound framework comprises 406 lines thereof

(≈ 22%). The code for the inner optimization procedure uses 471 lines (≈ 26%).

For reading and rewriting the bounds file and the TEXfile it takes 204 lines (≈ 11%)

and 162 lines (≈ 9%), respectively.

62

Extract the front
element of the queue.

Record new
blocking

configuration.

Fathom.
Check for
blocking

configurations.

Check for
known

lower bounds.

negative

positive

Run the inner
optimization solver

and append the result
to the bounds file.

negative

Does the lower
bound exceed the

global upper bound ?positive yes

no

Is the problem
feasible?

Does the solution
exceed the global
upper bound ?

yes

no

Is the current
number of simplices

equal to k?

no

yes

Add all feasible
extensions

to the queue.

no

Update the global
upper bound and

write a picture of the
solution to a TEX-file.

yes

Figure 3.6: Workflow of our algorithm

63

3.4 Experimental Results

The computational experiments were carried out under the Debian 10 operating

system on two Intel Xeon E5-2690v2 CPUs with 3.00GHz and 10 cores each. For

solving the inner optimization problem, we call the GUROBI Optimization Software

Version 9.0.3. We also implemented a version using the CPLEX Optimizer for

solving the inner optimization problem but the performance was almost the same.

Before we discuss the timing statistics of the algorithm, we take a look at some

of the computed packings. Figure 3.7 and Figure 3.8 show one exemplary optimal

packing for k = 1, . . . , 13.

1

k = 1

1 2

k = 2

1 2

3

k = 3

1

2 3
4

k = 4

1

2
3

4

5

k = 5

1

2

3

4
5

6

k = 6

1

2

3 4

5
6 7

k = 7

Figure 3.7: Optimal k-triangle packings for k = 1, . . . , 7

64

1 2

3

4

5
6

7 8

k = 8

1

2

3

4

5

6

78
9

k = 9

1 2

3
4

5

6
7

8
9 10

k = 10

1

2

3

4
5

6

7
8
9

10
11

k = 11

1

2

3
4

5

6

7
8

9 10

11

12

k = 12

1

2

3

45 6

7

8 9
10

1112
13

k = 13

Figure 3.8: Optimal k-triangle packings for k = 8, . . . , 13

65

For k = 1, . . . , 11 we confirm the values of sk found by Traynor et. al that were

presented in Theorem 1.12. For k = 12 and k = 13 we can verify their conjecture

that the upper bounds they found are indeed optimal.

Our program does not only compute one optimal packing for a given k but detects

all multisubsets that allow for an optimal packing. We denote such multisubsets as

optimal. Table 3.6 shows the number of optimal multisubsets for k = 1, . . . , 13.

k #Optimal Multisubsets
1 1

2 11

3 11

4 4

5 18

6 21

7 668

8 261

9 47

10 198

11 142

12 78

13 166

Table 3.6: Number of multisubsets that allow for an optimal k-triangle packing for

k = 1, . . . , 13

For some multisubsets there exist even more than one optimal packing but finding

them all would blow up the computing time of our algorithm. We consider packings

of the same multisubset whose optimal packing widths coincide as equivalent. This

choice of equivalence relation is of pure combinatorial nature. From a symplectic

point of view all packings for a given number k are equivalent. This is due to the

following result of McDuff.

66

Theorem 3.9 (Symplectic Equivalence [McD91]).

All isometric embeddings

ϕ :
k⊔

i=1

(
B4(r), ω0

)
↪→
(
B4(1), ω0

)
are isotopic through symplectic embeddings.

Here, the word isometric refers to the standard Euclidean metric on R4. One

could also consider other equivalence relations such as calling two packings equivalent

if we can map one to the other one (up to renumbering) by an isometry of the outer

triangle. The isometries of the outer triangle are the identity and the reflection at

the axis x = y. Figure 3.9 shows two optimal 8-packings that are equivalent under

this relation.

1

2

3

4

5

6
7

8
1

2

3

4
5

6

7

8

Figure 3.9: Equivalent 8-triangle packings under isometries of the outer triangle

One could also call two packings equivalent if we can map one to the other one

by an affine transformation that preserves the outer triangle. Figure 3.10 shows two

optimal 8-packings that are equivalent under this relation.

1

2

3

45
6

7 8

1 2

3 4

5

6

7
8

Figure 3.10: Equivalent 8-triangle packings under affine transformations

67

The triangle on the right hand side is obtained from the triangle on the left hand

side by a function composition of shearing along the y-axis and reflecting along the

x-axis. Shearing along the y-axis corresponds to the affine map

(
x

y

)
7→

(
x

x+ y

)
,

which leads to the configuration in Figure 3.11 and changes the form of the outer

triangle. Reflecting along the x-axis corresponds to the affine map

(
x

y

)
7→

(
x

−y

)
,

which maps the outer triangle back to its original shape.

1 2

3 4

5

6

7
8

Figure 3.11: Shearing an 8-triangle packing along the y-axis

After this short digression about symplectic equivalence relations, we come back

to the computational results of our algorithm. Table 3.7 shows the timing statistics

of our algorithm for k = 1, . . . , 13. The column labels are:

• k: the number of triangles to be packed,

•
((

|Sk |
k

))
: the number of k-cardinality multisubsets of the shapelist,

• #I-Calls: the number of calls to the inner optimization procedure,

• Avg I-Time: the average cpu time spent in an inner optimization procedure,

• Max I-Time: the maximum cpu time spent in an inner optimization procedure,

• Total Time: the total cpu time.

68

The number of calls to the inner optimization procedure is significantly smaller

than the number of k-cardinality multisubsets of the shapelist that would have been

considered using complete enumeration. Due to the data base we built up from

previous runs for smaller k, many calls of the inner optimization procedure have

been replaced by simple data base queries.

k
((

|Sk |
k

))
#I-Calls Avg I-Time Max I-Time Total Time

1 1 1 0 : 00 : 00.00 0 : 00 : 00.00 0 : 00 : 00.00

2 36 43 0 : 00 : 00.00 0 : 00 : 00.01 0 : 00 : 00.02

3 120 11 0 : 00 : 00.00 0 : 00 : 00.02 0 : 00 : 00.03

4 330 11 0 : 00 : 00.01 0 : 00 : 00.09 0 : 00 : 00.14

5 792 433 0 : 00 : 00.01 0 : 00 : 00.27 0 : 00 : 03.11

6 1 716 185 0 : 00 : 00.04 0 : 00 : 00.33 0 : 00 : 06.72

7 657 800 255 158 0 : 00 : 00.00 0 : 00 : 13.30 0 : 18 : 56.90

8 2 220 075 263 0 : 00 : 00.14 0 : 00 : 04.46 0 : 12 : 29.10

9 6 906 900 47 0 : 00 : 00.09 0 : 00 : 01.64 0 : 11 : 59.33

10 20 030 010 34 029 0 : 00 : 00.52 0 : 02 : 27.23 4 : 56 : 28.02

11 54 627 300 43 187 0 : 00 : 07.67 0 : 46 : 18.30 92 : 05 : 28.83

12 141 120 525 129 630 0 : 00 : 09.39 3 : 26 : 34.38 338 : 19 : 31.65

13 347 373 600 196 735 0 : 00 : 37.88 46 : 59 : 29.37 2070 : 08 : 23.43

Table 3.7: Timing statistics for the k-triangle packing given in the format

“hh:mm:ss” for k = 1, . . . , 13

One can see that the inner optimization procedure is quite fast on average but

a few instances with larger values of k can take very long, especially for k = 13.

Most of these hard instances are problems that are infeasible. The hope is that

semidefinite relaxation of the inner optimization problem will allow for a much

faster computation of bounds in the branch-and-bound tree. Thereby, the mixed

integer linear formulation must only be employed if the semidefinite bounds are not

strong enough.

We will discuss this approach in Chapter 4. Moreover, we will present further

improvement strategies. They involve strengthening the mixed integer linear for-

69

mulation by adding symmetry breaking inequalities, applying a time limit to the

inner optimization procedure and computing the McCormick relaxation of a mixed

integer binary version of the problem.

70

Chapter 4

Improvements to the Algorithmic

Approach

4.1 Symmetry Breaking

Considering the outer optimization problem, there are no symmetries involved, since

we are disregarding the order of the shapes in the multisubsets, which makes ev-

ery multisubset unique. Considering the inner optimization problem, we encounter

symmetric solutions whenever a shape occurs more than once in the respective mul-

tisubset. For example, consider the inner optimization instance {T1, T1, T1, T4}. As

can be seen in Figure 4.1, we obtain six symmetric optimal solutions for this multi-

subset.

1

2

3
4

1

3

2
4

2

1

3
4

2

3

1
4

3

1

2
4

3

2

1
4

Figure 4.1: Symmetric solutions for the multisubset {T1, T1, T1, T4}

In general, for each shape with multiplicity m we obtain m! symmetric solutions.

Our approach to reduce the occurrence of symmetric solutions is to add artificial

symmetry breaking inequalities to the mixed integer linear version of the inner

71

optimization problem. We have examined three different types of symmetry breaking

inequalities. All of them try to put an order on the displacement variables (xi, yi)

belonging to triangles of the same shape. The first type puts a lexicographic order

on the x-coordinates by adding the inequality

xi ≤ xi+1

for each duplicate of a shape. In the example above, we would add the inequalities

x1 ≤ x2 and x2 ≤ x3, which eliminates all solutions except the first and third one.

The second type sorts the displacement variables (xi, yi) by their sum xi + yi by

adding the inequality

xi + yi ≤ xi+1 + yi+1

for each duplicate of a shape. In the example above, we would add the inequalities

x1 + y1 ≤ x2 + y2 and x2 + y2 ≤ x3 + y3, which eliminates all solutions except the

first and second one. The third type is an extension of the first type in terms of

putting a total lexicographical order on the displacement variables. Like the first

type, we add the inequality xi ≤ xi+1 but additionally we also add the inequality

yi ≤ yi+1 in the case the two variables xi and xi+1 coincide. To model the implication

xi = xi+1 ⇒ yi ≤ yi+1, we use the Big-M -formulation

M(xi − xi+1) + yi ≤ yi+1.

Applied to the example above, we would add the inequalities x1 ≤ x2, x2 ≤ x3,

M(x1 − x2) + y1 ≤ y2 and M(x2 − x3) + y2 ≤ y3, which eliminates all solutions but

the first one. In our computations we choose M = 50. This does not model the

implication perfectly, since the difference between the variables xi and xi+1 can be

arbitrarily small. However, it suffices to disregard most symmetries.

To compare the three symmetry breaking inequality types, we calculated all

optimal k-triangle packings for k = 1, . . . , 12. Table 4.1 shows the computation time

72

of our algorithm combined with the corresponding symmetry breaking constraint.

The inequality type numbers are given in the following order:

• Type 0: No symmetry breaking inequality applied.

• Type 1: xi ≤ xi+1.

• Type 2: xi + yi ≤ xi+1 + yi+1.

• Type 3: (xi ≤ xi+1) ∧ (xi = xi+1 ⇒ yi ≤ yi+1).

k Type 0 Type 1 Type 2 Type 3
1 0 : 00 : 00.00 0 : 00 : 00.00 0 : 00 : 00.00 0 : 00 : 00.00

2 0 : 00 : 00.04 0 : 00 : 00.04 0 : 00 : 00.02 0 : 00 : 00.03

3 0 : 00 : 00.05 0 : 00 : 00.03 0 : 00 : 00.03 0 : 00 : 00.01

4 0 : 00 : 00.36 0 : 00 : 00.14 0 : 00 : 00.14 0 : 00 : 00.02

5 0 : 00 : 05.67 0 : 00 : 03.16 0 : 00 : 03.11 0 : 00 : 02.88

6 0 : 00 : 12.71 0 : 00 : 09.37 0 : 00 : 06.72 0 : 00 : 08.62

7 0 : 28 : 47.35 0 : 17 : 42.80 0 : 18 : 56.90 0 : 14 : 33.28

8 0 : 12 : 47.89 0 : 12 : 25.75 0 : 12 : 29.10 0 : 12 : 30.34

9 0 : 11 : 57.62 0 : 11 : 57.32 0 : 11 : 59.33 0 : 11 : 59.01

10 16 : 04 : 10.11 5 : 33 : 28.68 4 : 56 : 28.02 5 : 29 : 36.59

11 1103 : 05 : 34.83 116 : 21 : 41.18 92 : 05 : 28.83 93 : 30 : 54.37

12 4006 : 41 : 10.15 506 : 53 : 59.92 338 : 19 : 31.56 530 : 56 : 44.44

Table 4.1: Computation time of the k-triangle packing involving symmetry breaking

constraints given in the format “hh:mm:ss” for k = 1, . . . , 12

For k ≥ 10, one can see that applying symmetry breaking constraints is an

enormous improvement to the run-time of the algorithm. For small values of k,

there is no significant difference between the three symmetry breaking constraints,

but for k = 12 the clear winner is the second symmetry breaking type of the form

xi + yi ≤ xi+1 + yi+1. For the run producing the computational results presented in

Table 3.7, we also chose this symmetry breaking type.

We also tested a generalization of the second symmetry breaking type of the

form

axi + byi ≤ axi+1 + byi+1,

73

where the parameters a, b ∈ Z can be chosen arbitrarily. However, none of the

tested combinations of the two parameters could achieve better results than choosing

a = b = 1.

4.2 Time Limit

As discussed in Section 3.4, the inner optimization procedure is quite fast on average,

but a few instances for larger values of k can take very long. Therefore, we tried

out to use a time limit for the inner optimization procedure. Interestingly, applying

a time limit of 30s did not change the number of found optimal multisubsets for

k = 1, . . . , 12. This was not the case for k = 13. Table 4.2 shows the impact of

applying different time limits to the 13-triangle packing problem.

Time Limit Avg I-Time Total Time
Multisubsets

#Optimal

Problems

#Open

∞ 0 : 00 : 37.88 2069 : 57 : 15.91 166 0

30s 0 : 00 : 18.49 1001 : 34 : 32.45 160 1 650

20s 0 : 00 : 16.61 896 : 31 : 09.62 157 2 256

10s 0 : 00 : 13.82 738 : 34 : 51.60 155 4 253

Table 4.2: Timing statistics for the 13-triangle packing under different time limits

to the inner optimization procedure given in the format “hh:mm:ss”

The first column shows the different time limits that we applied to the inner

optimization procedure. The second and third column show the average cpu time

spent in an inner optimization procedure and the total cpu time, respectively. The

last two columns show the number of found multisubsets that allow for an optimal

packing and those that exceeded the respective time limit. We collected all instances

that exceeded the time limit in a file. For a random selection of those hard instances,

we then tried different GUROBI parameter settings. The GUROBI Optimizer pro-

vides a wide variety of parameters that allow one to control the operation of the

optimization engines. To find parameter values that improve the performance on

74

our model, we both manually tested different parameter settings and used the built-

in automated parameter tuning tool. We found that there are four parameters that

speed up the computation time for most instances. Table 4.3 gives an overview of

the four parameters together with their default value and the modified value.

Parameter Description
Value

Default

Value

Modified

Presolve Controls the presolve level −1 2

PreDual Controls presolve model dualization −1 1

MIPFocus MIP solver focus 0 2

Heuristics Time spent in feasibility heuristics 0.05 0

Table 4.3: Modified GUROBI parameter setting

The parameter Presolve controls the process whereby the mixed integer linear

program is examined for logical reduction opportunities. The default value of −1

corresponds to an automatic setting whereas the modified value of 2 corresponds to

an aggressive setting. Other options are off (0) and conservative (1). The parameter

PreDual controls whether the dual of the linear relaxation is formed in the presolve

process. The default setting of −1 uses a heuristic to decide while the modified

setting of 1 forces it to take the dual. The parameter MIPFocus defines the solution

strategy of the mixed integer linear programming solver. The default value of 0 asks

the solver to strike a balance between finding new feasible solutions and proving that

the current solution is optimal. The modified value of 2 focuses more attention on

proving optimality. The parameter Heuristics determines the amount of time spent

in heuristics. The value can be chosen as a decimal number between 0 and 1 and

represents the desired fraction of total run-time devoted to heuristic. Therefore, the

modified value of 0 prohibits the solver to use heuristics. In Table 4.4 we compare the

run-times using the default values and modified values of the described parameters

for fifteen different inner optimization instances.

75

Instance
Values

Default

Values

Modified
Relation

6× T1, T2, T4, T7, T20 0 : 05 : 35.1 0 : 07 : 05.9 +27%

6× T1, 2× T2, T3, T5, T7 1 : 09 : 27.9 1 : 18 : 41.9 +13%

6× T1, T6, 2× T7, T13 0 : 07 : 04.0 0 : 06 : 40.9 −5%

6× T1, T2, T4, T7, T8, T19 0 : 08 : 53.7 0 : 07 : 05.0 −20%

4× T1, 2× T2, 2× T3, T5, 2× T6, T7 0 : 23 : 38.4 0 : 18 : 37.8 −21%

4× T1, 3× T2, 2× T3, T4, T7, 2× T8 0 : 19 : 10.8 0 : 12 : 48.9 −33%

5× T1, T2, T3, T4, 3× T5 0 : 09 : 18.2 0 : 06 : 10.6 −34%

4× T1, 2× T2, 3× T3, T11, 2× T12 1 : 18 : 47.5 0 : 50 : 11.0 −36%

5× T1, 3× T2, T6, T7, T8 0 : 51 : 31.6 0 : 30 : 46.2 −40%

5× T1, T2, T3, T5, 3× T6 0 : 47 : 18.8 0 : 28 : 37.3 −40%

6× T1, 2× T4, T5, 2× T8 0 : 15 : 42.6 0 : 09 : 32.4 −42%

7× T1, 2× T3, T10 0 : 13 : 22.1 0 : 07 : 29.5 −44%

6× T1, 2× T2, 2× T4, T5 0 : 57 : 16.6 0 : 31 : 22.7 −45%

6× T1, 3× T4, T5, 2× T7 0 : 45 : 13.3 0 : 17 : 18.8 −62%

8× T1, T4, T6, T7 1 : 11 : 40.1 0 : 24 : 28.9 −66%

Table 4.4: Timing statistics for different inner optimization instances under modified

GUROBI parameter setting given in the format “hh:mm:ss”

The instances shown in the first column were randomly chosen from the collec-

tion of instances of the 13-triangle packing problem that exceeded the time limit of

30 seconds. Column two and column three show the run-time of the inner optimiza-

tion solver using the default values of the parameters Presolve, PreDual, MIPFocus

and Heuristics and the modified values from Table 4.3, respectively. The last col-

umn highlights the relative change in run-time where negative numbers mean time

reduction and positive numbers mean time increase. The instances have been sorted

accordingly.

As can be seen, the modified parameter setting improves the run-time on most

instances. On average, the run-time decreases by 36%. Therefore, we apply the fol-

lowing strategy for solving the outer optimization problem: Whenever an instance

of the inner optimization problem exceeds the given time limit, we change the pa-

76

rameter values according to Table 4.3 and solve the problem again. The results are

summarized in Table 4.5.

Limit

Time

Setting

Parameter
Avg I-Time Total Time

Multisubsets

#Optimal

Problems

#Open

∞ default 0 : 00 : 37.88 2069 : 57 : 15.91 166 0

∞ modified 0 : 00 : 47.74 2608 : 06 : 35.65 166 0

30s default 0 : 00 : 18.49 1001 : 34 : 32.45 160 1 650

30s modified 0 : 00 : 23.31 1274 : 41 : 01.53 165 1 486

Table 4.5: Timing statistics for the 13-triangle packing under time limit to the inner

optimization procedure combined with modified GUROBI parameter setting given

in the format “hh:mm:ss”

By reapplying the inner optimization procedure under the modified parameter

setting on the instances that exceeded the time limit of 30 seconds, we were able

to find all optimal multisubsets but one. Because we kept the given time limit for

the second iteration, there are still 1486 problems that are left unsolved. Instead of

increasing the time limit or solving those instances offline, we decided to just ignore

those problems as the effort seems to exceed to benefit.

This decreased the computation time by approximately 38% compared to ap-

plying no time limit and using the default parameter setting. In contrast, when

applying the modified parameter setting to all inner optimization instances, the

computation time increases by approximately 26%. Unfortunately even after apply-

ing this strategy, we were still not able to compute an optimal 14-triangle packing.

4.3 Semidefinite Relaxation

We are going to reformulate the inner optimization problem as a quadratically con-

strained quadratic program. Once this formulation is achieved, we can consider the

semidefinite relaxation of this program. The hope is that the semidefinite relaxation

gives us strong lower bounds on s such that the mixed integer linear exact formu-

77

lation only needs to be applied if the bounds are not strong enough. This could in

turn speed up the branch-and-bound process of the outer optimization problem. We

recall the definition of the inner optimization problem.

Problem 4.1 (Inner Optimization Problem).

Given T1, . . . , Tm ∈ Sk , determine the minimum side length s such that there exist

vectors t1, . . . , tm ∈ R2 satisfying

Ti + ti ⊆ 2(s) ∀i ∈ [m] (containment condition),

(Ti + ti) ∩ (Tj + tj) = ∅ ∀1 ≤ i < j ≤ m (disjointness condition).

We have three different approaches to model the inner optimization problem as

a quadratically constrained quadratic program. We will successively describe each

approach and conclude this section with a comparison of the results.

4.3.1 First Approach

In this approach we will model the containment condition just like we did in the

mixed integer linear formulation. As derived in Section 3.2, the containment condi-

tion is equivalent to

xi ≥ max {0,−ai,−ci} =: Ki,

yi ≥ max {0,−bi,−di} =: K ′
i,

xi + yi − s ≤ min {0,−ai − bi,−ci − di} =: K ′′
i

for all i ∈ [m]. Now we will model the disjointness constraint. In Section 3.2 we

showed that (Ti + ti) ∩ (Tj + tj) = ∅ is equivalent to tj − ti /∈ (Ti 	 Tj) where the

Minkowski difference is given by

Ti 	 Tj =
{
(x
y) ∈ R2

∣∣ αij
f x+ βij

f y < γijl ∀f ∈ [6]
}
.

78

Hence, the difference vector tj − ti is not contained in the Minkowski difference

Ti 	Tj if and only if at least one of the six inequalities αij
f x+ βij

f y < γijf is violated.

As before, we introduce the binary variable zijf ∈ {0, 1} for every f ∈ [6] with the

following meaning:

zijf = 1 ⇒ αij
f (xj − xi) + βij

f (yj − yi) ≥ γijf .

Now instead of expressing this implication by a Big-M -inequality, we will use the

quadratic inequality

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− γijf
)
≥ 0.

We formulate the binary constraint zijf ∈ {0, 1} by the equation zijf (1 − zijf) = 0.

Since we want at least one of the variables zijf to take the value one, we require

zij1 + . . .+ zij6 ≥ 1.

We desire the quadratically constrained quadratic program to be in homogeneous

form. To eliminate the linear terms, we introduce a variable t ∈ R with t2 = 1 and

multiply all linear terms by it. In the optimal solution of this modified problem, the

variable t can either take the value t = 1 or t = −1. In the first case the solution

to the original problem is (s, x, y, z) and in the second case the solution to the

original problem is (−s,−x,−y,−z). Thus, we obtain the following quadratically

constrained quadratic formulation of the inner optimization problem.

79

Problem 4.2 (Inner Optimization Problem - Quadratically Constrained Quadratic

Formulation 1).

min ts

txi ≥ Ki ∀i ∈ [m]

tyi ≥ K ′
i ∀i ∈ [m]

txi + tyi − ts ≤ K ′′
i ∀i ∈ [m]

tzij1 + · · ·+ tzij6 ≥ 1 ∀1 ≤ i < j ≤ m

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− tγijf
)
≥ 0 ∀1 ≤ i < j ≤ m ∀f ∈ [6]

zijf
(
t− zijf

)
= 0 ∀1 ≤ i < j ≤ m ∀f ∈ [6]

t2 = 1

s ∈ R, x, y ∈ Rm, z ∈ R6(m
2
), t ∈ R.

Note, that in the standard form of a quadratically constrained quadratic program

as defined in Section 2.3, we did not allow inequalities within the constraints. Even

though the inequalities can be easily resolved by introducing slack variables, we will

refrain from doing so, since the solver we are using to compute the semidefinite

relaxation of this program is capable of handling inequality constraints.

All constraints apart from

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− tγijf
)
≥ 0

are convex. To see that this constraint is not convex, we compute the Hessian matrix

of the function

f(xi, xj, yi, yj, z, t) = z (α(xj − xi) + β(yj − yi)− tγ)

and check whether it is positive semidefinite. The partial derivatives of first order

80

are given by

∂f

∂xi
= −αz,

∂f

∂xj
= αz,

∂f

∂yi
= −βz,

∂f

∂yj
= βz,

∂f

∂z
= α(xj − xi) + β(yj − yi)− tγ,

∂f

∂t
= −γz.

Therefore, the Hessian matrix Hf is of the form

Hf =



0 0 0 0 −α 0

0 0 0 0 α 0

0 0 0 0 −β 0

0 0 0 0 β 0

−α α −β β 0 −γ
0 0 0 0 −γ 0


.

The characteristic polynomial of Hf is given by

det (Hf − λI) = det





−λ 0 0 0 −α 0

0 −λ 0 0 α 0

0 0 −λ 0 −β 0

0 0 0 −λ β 0

−α α −β β −λ −γ
0 0 0 0 −γ −λ




= −λ4

(
λ2 − 2α2 − 2β2 − γ2

)
.

Hence, the eigenvalues of Hf are 0 with multiplicity four,
√

2α2 + 2β2 + γ2 and

−
√

2α2 + 2β2 + γ2. This implies that Hf is not positive semidefinite - unless α =

β = γ = 0, which is not the case in our setting. Because of the non-convexity of

81

Problem 4.2, it cannot be solved directly. Instead, we will apply the semidefinite

relaxation technique described in Section 2.3. Let us define the vector of variables

v =
(
s x1 · · ·xm y1 · · · ym z121 · · · zm−1m

6 t
)T ∈ RN ,

where N = 2 + 2m + 6
(
m
2

)
. We lift this vector v into the space SN by introducing

the matrix V = vvT of rank (V) = 1 given by

V =



s2 sx1 · · · sxm sy1 · · · sym sz126 · · · szm−1m
6 st

x1s x21 · · · x1xm x1y1 · · · x1ym x1z
12
6 · · · x1z

m−1m
6 x1t

... ...
xms xmx1

y1s y1x1
...

yms ymx1

z121 s z121 x1
...

zm−1m
6 s zm−1m

6 x1

ts tx1



.

Dropping the rank-one constraint yields a semidefinite program whose optimal

value is a lower bound on the optimal value of the inner optimization problem. Let

the matrices

Eij =
1

2

(
eie

T
j + eje

T
i

)
for 1 ≤ i ≤ j ≤ N denote standard basis of SN . We define the index hijf by the

formula

hijf = 2m+ 1 + 6

((
i−1∑
l=1

m− l

)
+ j − i− 1

)
+ f.

The semidefinite program is then given by

82

min 〈E1N , V 〉

〈E1+iN , V 〉 ≥ Ki ∀i ∈ [m]

〈Em+1+i N , V 〉 ≥ K ′
i ∀i ∈ [m]

〈E1+i N + Em+1+i N − E1N , V 〉 ≤ K ′′
i ∀i ∈ [m]

〈EiN + · · ·+ Ei+6 N , V 〉 ≥ 1 ∀i = 2m+ 2, . . . , N − 6

〈−αij
f E1+i hijf

+ αij
f E1+j hijf

− βij
f Em+1+i hijf

+ βij
f Em+1+j hijf

− γijf Ehijf N , V 〉 ≥ 0 ∀1 ≤ i < j ≤ m∀f ∈ [6]

〈Ehijf N − Ehijf hijf
, V 〉 = 0 ∀1 ≤ i < j ≤ m∀f ∈ [6]

〈ENN , V 〉 = 1

V ∈ SN

V � 0.

To solve this semidefinite program, we call the MOSEK Optimization Software

Version 8.1. Unfortunately, the lower bounds obtained from the semidefinite relax-

ation are too weak to be applied successfully in our branch-and-bound framework.

In order to strengthen the formulation, we propose four different strategies. We

describe them using the original variables s, x, y, z, t instead of the matrix variable

V for the sake of clarity.

1. Strategy: Add all possible products of the four linear inequalities xi ≥ Ki,

yi ≥ K ′
i, xi + yi − s ≤ K ′′

i and zij1 + · · ·+ zij6 ≥ 1.

2. Strategy: Add all possible products of the four linear inequalities with each

binary variable zijf and
(
t− zijf

)
.

3. Strategy: Add all possible products of the four linear inequalities with xi ≥

xi+1 for each duplicate of a shape Ti = Ti+1.

4. Strategy: Add violated triangle inequalities.

83

The first strategy consists of adding all possible products of the four linear in-

equalities

xi ≥ Ki ∀i ∈ [m] ,

yi ≥ K ′
i ∀i ∈ [m] ,

xi + yi − s ≤ K ′′
i ∀i ∈ [m] ,

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

from the mixed integer binary formulation. Taking products within these inequalities

gives new valid constraints, since the constants Ki, K
′
i,−K ′′

i and 1 are all non-

negative. The resulting 3m2 + 3m
(
m
2

)
+
(
m
2

)2 new constraints are given by

xixj ≥ KiKj ∀1 ≤ i ≤ j ≤ m,

xiyj ≥ KiK
′
j ∀1 ≤ i ≤ j ≤ m,

xi(xj + yj − s) ≤ KiK
′′
j ∀1 ≤ i ≤ j ≤ m,

xl(z
ij
1 + · · ·+ zij6) ≥ Kl ∀1 ≤ i < j ≤ m ∀l ∈ [m] ,

yiyj ≥ K ′
iK

′
j ∀1 ≤ i ≤ j ≤ m,

yi(xj + yj − s) ≤ K ′
iK

′′
j ∀1 ≤ i ≤ j ≤ m,

yl(z
ij
1 + · · ·+ zij6) ≥ K ′

l ∀1 ≤ i < j ≤ m ∀l ∈ [m] ,

(xi + yi − s)(xj + yj − s) ≥ K ′′
i K

′′
j ∀1 ≤ i ≤ j ≤ m,

(xl + yl − s)(zij1 + · · ·+ zij6) ≤ K ′′
l ∀1 ≤ i < j ≤ m ∀l ∈ [m] ,

(zij1 + · · ·+ zij6)(z
ln
1 + · · ·+ zln6) ≥ 1 ∀1 ≤ i < j ≤ m ∀1 ≤ l < n ≤ m.

The second strategy is to add all possible products of the four linear inequalities

with the binary variables zijf and
(
t− zijf

)
for all 1 ≤ i < j ≤ m and all f ∈ [6].

This results in the following 48
(
m
2

)
new constraints:

84

xlz
ij
f ≥ Ki ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,

ylz
ij
f ≥ K ′

i ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,

(xi + yi − s) zijf ≤ K ′′
i ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,(

zln1 + · · ·+ zln6
)
zijf ≥ 1 ∀1 ≤ l < n ≤ m ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,

xl
(
t− zijf

)
≥ Ki ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,

yl
(
t− zijf

)
≥ K ′

i ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] ,

(xi + yi − s)
(
t− zijf

)
≤ K ′′

i ∀l ∈ [m] ∀1 ≤ i < j ≤ m ∀f ∈ [6] .

Because the lower bounds obtained from the semidefinite relaxation are partic-

ularly bad when there are several copies of one shape, the third strategy is to add

all possible products of the four linear inequalities with the symmetry breaking con-

straint xi ≥ xi+1 whenever Ti and Ti+1 are of the same shape. The upcoming linear

terms are multiplied by the parameter t just like we did to obtain the homogeneous

version of the quadratically constrained quadratic program. Whenever Tl = Tl+1,

we add the following new constraints:

(xi − tKi) (xl − xl+1) ≥ 0 ∀i ∈ [m] ,

(yi − tK ′
i) (xl − xl+1) ≥ 0 ∀i ∈ [m] ,

(tK ′′
i xi + yi − s) (xl − xl+1) ≥ 0 ∀i ∈ [m] ,(

zij1 + · · ·+ zij6 − t
)
(xl − xl+1) ≥ 0 ≥ 1 ∀1 ≤ i < j ≤ m.

The fourth strategy is to separate all violated triangle inequalities concerning

the binary variables and add them to the program. This is a promising strategy

applied for example in [HRW95] and [RRW10]. For the sake of convenience, let Zl

for l = 1, . . . , 6
(
m
2

)
be the collection of all binary variables zijf for 1 ≤ i < j ≤ m and

f ∈ [6]. By Zij we denote the product ZiZj of two binary variables. The triangle

85

inequalities are given by

1. Zij ≥ 0,

2. Zij ≤ Zii,

3. Zii + Zjj ≤ 1 + Zij,

4. Zij + Zil + Zjl + 1 ≥ Zii + Zjj + Zll,

5. Zil + Zjl ≤ Zll + Zij.

They hold for all distinct triplets (i, j, l) with i, j, l ∈
[
6
(
m
2

)]
. Instead of adding all

triangle inequalities to the system, we compute the optimal solution of the semidef-

inite program and check which triangle inequalities are violated by this solution.

Subsequently, all violated triangle inequalities are added to the semidefinite program

and the procedure is repeated until all triangle inequalities are satisfied. Contrary to

our expectations, we only found few violated triangle inequalities and adding them

to the program did not change the optimal value. Therefore, we will concentrate on

the previous three strategies. The effects of the three strategies applied either solely

or in combination are shown in Table 4.6.

The first column shows the different instances for the inner optimization prob-

lem. The second column gives the solution of the mixed integer linear formulation

(Problem 3.8). This is the exact value of the inner optimization problem, that is the

minimum side length s such that the respective multisubset is contained in 2(s).

The third column gives the value of the semidefinite relaxation without any addi-

tional constraints (Problem 4.2). This is a lower bound on the minimum side length

s. The fourth column gives the value of the semidefinite program combined with all

possible products of the four linear inequalities xi ≥ Ki, yi ≥ K ′
i, xi + yi − s ≤ K ′′

i

and zij1 + · · ·+ zij6 ≥ 1 as additional constraints (strategy 1). The fifth column gives

the value of the semidefinite program combined with all possible products of the

four linear inequalities with each binary variable zijf and
(
t− zijf

)
as additional con-

straints (strategy 2). The sixth column gives the value of the semidefinite program

combined with all possible products of the four linear inequalities with xi ≥ xi+1 for

86

each duplicate of a shape Ti = Ti+1 as additional constraints (strategy 3). The last

four columns give the value of the semidefinite program together with combinations

of the three strategies.

Instance MILP SDP 1 2 3 1&2 1&3 2&3 1 - 3
2× T1 2.0 1.0 1.0 1.6 1.0 1.6 1.0 1.6 1.6

3× T1 2.0 1.0 1.0 1.6 1.0 1.6 1.0 1.6 1.6

4× T1 2.5 1.0 1.0 1.6 1.0 1.6 1.0 1.6 1.6

2× T2 2.5 2.0 2.0 2.5 2.0 2.5 1.0 2.5 2.5

3× T2 3.0 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.5

4× T2 3.5 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.5

2× {T1, T2} 2.5 2.0 2.0 2.5 2.0 2.5 2.0 2.5 2.5

T1, T2, T3, T4 3.0 2.0 2.0 2.54 2.0 2.54 2.0 2.54 2.54

2× {T1, T2, T3, T4} 3.5 2.0 2.0 2.6 2.0 2.6 2.0 2.59 2.6

Table 4.6: Optimal values of the mixed integer linear program, the semidefinite

program and the semidefinite program combined with the first three improvement

strategies for different inner optimization instances

We can see that the second strategy generates the best improvement in all cases.

However, the gap between the exact value coming from the mixed integer linear

program and the lower bound coming from the semidefinite relaxation is quite large

and even increases for instances of larger cardinality. Apart from the bounds being

too weak, the computation time of the semidefinite program is also higher than the

computation time of the mixed integer linear program. We will circumstantiate the

last two statements when comparing the three approaches in the last subsection.

We continue with the description of the second approach to model the inner

optimization problem as a quadratically constrained quadratic program.

4.3.2 Second Approach

This approach uses the separating hyperplane theorem.

87

Theorem 4.3 (Separating Hyperplane Theorem [VB96]).

Let C,D ⊆ Rn be nonempty disjoint convex sets. Then there exist a nonzero vector

a ∈ Rn and a real number b such that aTx ≤ b for all x ∈ C and aTx ≥ b for all

x ∈ D.

D

C

a

aTx ≤ baTx ≥ b

Figure 4.2: The hyperplane
{
x ∈ Rn | aT x = b

}
separates the convex sets C and

D.

The hyperplane
{
x ∈ Rn | aT x = b

}
visualized in Figure 4.2 is called separat-

ing hyperplane for the sets C and D. We can directly apply Theorem 4.3 to the

disjointness condition

Ti + ti ∩ Tj + tj = ∅.

Recall, that the triangles Ti are defined as open sets and we are working with their

closures instead. Each triangle Ti + ti is given as the convex hull of its vertices

Ti + ti = conv
({

(xi
yi) ,

(
xi+ai
yi+bi

)
,
(
xi+ci
yi+di

)})
.

By Theorem 4.3, the two sets are disjoint if there exist a nonzero vector
(

αij

βij

)
and

a real number γij such that

αijxi + βijyi ≤ γij, αijxj + βijyj ≥ γij,

αij(xi + ai) + βij(yi + bi) ≤ γij, αij(xj + aj) + βij(yj + bj) ≥ γij,

αij(xi + ci) + βij(yi + di) ≤ γij, αij(xj + cj) + βij(yj + dj) ≥ γij.

88

Because of convexity, the inequalities hold for the entire set ti + Ti and tj + Tj

if they are satisfied by their vertices. To ensure that
(

αij

βij

)
is nonzero, we impose

the additional constraint (αij)
2
+ (βij)

2
= 1. Together with the three containment

constraints we obtain the following quadratically constrained quadratic program.

Problem 4.4 (Inner Optimization Problem - Quadratically Constrained Quadratic

Formulation 2).

min s

txi ≥ Ki ∀i ∈ [m]

tyi ≥ K ′
i ∀i ∈ [m]

txi + tyi − ts ≤ K ′′
i ∀i ∈ [m](

αij
)2

+
(
βij
)2

= 1 ∀1 ≤ i < j ≤ m

αijxi + βijyi ≤ tγij ∀1 ≤ i < j ≤ m

αij(xi + tai) + βij(yi + tbi) ≤ tγij ∀1 ≤ i < j ≤ m

αij(xi + tci) + βij(yi + tdi) ≤ tγij ∀1 ≤ i < j ≤ m

αijxj + βijyj ≥ tγij ∀1 ≤ i < j ≤ m

αij(xj + taj) + βij(yj + tbj) ≥ tγij ∀1 ≤ i < j ≤ m

αij(xj + tcj) + βij(yj + tdj) ≥ tγij ∀1 ≤ i < j ≤ m

t2 = 1

s ∈ R, x, y ∈ Rm, α, β, γ ∈ R(
m
2
), t ∈ R

89

As before, we introduced an additional variable t ∈ R with t2 = 1 to homogenize

the program. Compared to the first quadratically constrained quadratic problem

(Problem 4.2), we have 2 + 2m + 3
(
m
2

)
variables instead of 2 + 2m + 6

(
m
2

)
and

1 + 3m+ 7
(
m
2

)
constraints instead of 1 + 3m+ 13

(
m
2

)
.

We replace the vector of variables

v =
(
s x y α β γ t

)T
∈ RN ,

where N = 2 + 2m + 3
(
m
2

)
, by the matrix V = vvT ∈ SN with rank (V) = 1,

and rewrite the objective function and constraints by using the identity vTAv =

〈A, vvT 〉 = 〈A, V 〉. Dropping the rank-one constraint yields a semidefinite program

whose optimal value is a lower bound on the value of the inner optimization problem.

For the inner optimization instances that were investigated in Table 4.6 the optimal

values of the semidefinite relaxation of Problem 4.4 coincided with the optimal values

of the semidefinite relaxation of Problem 4.2. We will extend the results to further

inner optimization instances in the last subsection.

We continue with the description of the third approach to model the inner opti-

mization problem as a quadratically constrained quadratic program.

4.3.3 Third Approach

This approach utilizes Farkas Lemma.

Theorem 4.5 (Farkas Lemma [Far02]).

Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector. There exists a vector x ∈ Rn

such that x ≥ 0 and Ax = b if and only if there does not exist a vector y ∈ Rm such

that yTA ≥ 0 and yT b = −1.

denote the 2n-dimensional open ball of radius
√

r
π

and the 2n-dimensional open

cylinder of radius
√

s
π
, respectively. Gromov’s Non-squeezing theorem states that

one cannot symplectically embed B2n(r) into Z2n(s) unless the radius r of the ball

90

is less than or equal to the radius s of the cylinder.

Ti 	 Tj = int
(
conv

({
(0
0) , (

ai
bi) , (

ci
di) ,

(
−aj
−bj

)
,
(

ai−aj
bi−bj

)
,(

ci−aj
di−bj

)
,
(

−cj
−dj

)
,
(

ai−cj
bi−dj

)
,
(

ci−cj
di−dj

)}))
.

The difference tj − ti is not an element of the Minkowski difference Ti 	 Tj if and

only if it cannot be written as a convex combination of its vertices. More formally,

there do not exist λij1 , . . . , λ
ij
9 ≥ 0 with λij1 + · · ·+ λij9 = 1 such that

(
xj−xi

yj−yi

)
=λij1 (0

0) + λij2 (
ai
bi) + λij3 (

ci
di) + λij4

(
−aj
−bj

)
+ λij5

(
ai−aj
bi−bj

)
+ λij6

(
ci−aj
di−bj

)
+ λij7

(
−cj
−dj

)
+ λij8

(
ai−cj
bi−dj

)
+ λij9

(
ci−cj
di−dj

)
.

Written in matrix form, this means that there does not exist a vector λij ∈ R9

such that λij ≥ 0 and


0 ai ci −aj ai − aj ci − aj −cj ai − cj ci − cj

0 bi di −bj bi − bj di − bj −dj bi − dj di − dj

1 1 1 1 1 1 1 1 1

λij =

xj − xi

yj − yi

1

 .

Then, by Farkas Lemma, there must exist a vector µij ∈ R3 such that

(
µij
)T

0 ai ci −aj ai − aj ci − aj −cj ai − cj ci − cj

0 bi di −bj bi − bj di − bj −dj bi − dj di − dj

1 1 1 1 1 1 1 1 1

 ≥ 0

and

(
µij
)T

xj − xi

yj − yi

1

 = −1.

From the second constraint we can derive µij
3 = −1−µij

1 (xj − xi)−µij
2 (yj − yi).

By plugging this expression into the first constraint and renaming µij
1 to αij and µij

2

to βij, we obtain the following quadratically constrained quadratic program.

91

Problem 4.6 (Inner Optimization Problem - Quadratically Constrained Quadratic

Formulation 3).

min s

txi ≥ Ki ∀i ∈ [m]

tyi ≥ K ′
i ∀i ∈ [m]

txi + tyi − ts ≤ K ′′
i ∀i ∈ [m]

− αij (xj − xi)− βij (yj − yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (tai − xj + xi) + βij (tbi − yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (tci − xj + xi) + βij (tdi − yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (−taj − xj + xi) + βij (−tbj − yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (t(ai − aj)− xj + xi) + βij (t(bi − bj)− yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (t(ci − aj)− xj + xi) + βij (t(di − bj)− yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (−tcj − xj + xi) + βij (−tdj − yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (t(ai − cj)− xj + xi) + βij (t(bi − dj)− yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

αij (t(ci − cj)− xj + xi) + βij (t(di − dj)− yj + yi) ≥ 1 ∀1 ≤ i < j ≤ m

t2 = 1

s ∈ R, x, y ∈ Rm, α, β ∈ R(
m
2
), t ∈ R

Again, we introduced an additional variable t ∈ R with t2 = 1 to homogenize the

program. Compared to Problem 4.2 and Problem 4.4 this quadratically constrained

quadratic problem has 2 + 2m + 2
(
m
2

)
variables instead of 2 + 2m + 6

(
m
2

)
and 2 +

2m + 3
(
m
2

)
, respectively. Furthermore, it has 1 + 3m + 9

(
m
2

)
constraints instead of

1+3m+13
(
m
2

)
and 1+3m+7

(
m
2

)
, respectively. As before, we relax Problem 4.6 to

a semidefinite program. For the inner optimization instances that were investigated

in Table 4.6 the optimal values of the semidefinite relaxation of Problem 4.6 also

coincided with the optimal values of the semidefinite relaxations of Problem 4.2 and

Problem 4.4. We will now have a look at some other inner optimization instances

92

and also compare the computation times of the three approaches.

4.3.4 Comparison of the Approaches

Although the origin of the three quadratic formulations is quite different, the values

of the corresponding semidefinite relaxations are exactly the same for the inner

optimization instances that we have investigated so far. We will now compare the

optimal values for some of the hard inner optimization instances that we have already

encountered in Section 4.2.

Table 4.7 shows the optimal value of the mixed integer linear program (MILP)

and the three semidefinite programs (SDP 1-3). Supplementary, Table 4.8 shows

the corresponding computation times of the four optimization problems.

Instance
Optimal Value

MILP SDP 1 SDP 2 SDP 3
7× T1, 2× T3, T10 3.89 3.00 1.00 1.00

6× T1, T6, 2× T7, T13 3.92 3.00 2.00 2.00

8× T1, T4, T6, T7 3.94 2.00 2.00 2.00

6× T1, 2× T2, T3, T5, T7 3.83 2.00 2.00 2.00

6× T1, 2× T2, 2× T4, T5 3.81 2.00 2.00 2.00

5× T1, 2× T2, T3, T7, 2× T8 3.80 2.00 2.00 2.00

5× T1, 2× T2, T3, T7, 2× T8 3.80 2.00 2.00 2.00

5× T1, T2, T3, T4, 3× T5 3.83 2.00 2.00 2.00

4× T1, 2× T2, 3× T3, T11, T12 4.00 3.00 3.00 3.00

4× T1, 3× T2, 2× T3, T4, T7, 2× T8 3.92 3.00 2.00 2.00

Table 4.7: Optimal values of the mixed integer linear program and the three semidef-

inite programs for different inner optimization instances

93

Computation Time
MILP SDP 1 SDP 2 SDP 3

0 : 13 : 26.6 0 : 00 : 03.7 0 : 00 : 00.4 0 : 00 : 00.3

0 : 07 : 06.2 0 : 00 : 04.2 0 : 00 : 00.3 0 : 00 : 00.3

1 : 13 : 16.2 0 : 00 : 08.0 0 : 00 : 00.7 0 : 00 : 00.4

1 : 08 : 18.9 0 : 00 : 07.1 0 : 00 : 00.7 0 : 00 : 00.5

0 : 56 : 57.6 0 : 00 : 06.1 0 : 00 : 00.6 0 : 00 : 00.6

0 : 46 : 36.9 0 : 00 : 06.5 0 : 00 : 00.6 0 : 00 : 00.4

0 : 45 : 26.9 0 : 00 : 06.8 0 : 00 : 00.7 0 : 00 : 00.5

0 : 09 : 21.5 0 : 00 : 07.5 0 : 00 : 00.9 0 : 00 : 00.4

1 : 17 : 29.6 0 : 00 : 12.4 0 : 00 : 00.9 0 : 00 : 00.6

0 : 19 : 24.2 0 : 00 : 17.3 0 : 00 : 01.2 0 : 00 : 00.8

Table 4.8: Computation time of the mixed integer linear program and the three

semidefinite programs for different inner optimization instances given in the format

“hh:mm:ss”. The instances are in the same order as in Table 4.7.

For the first two and the last inner optimization instances, the optimal values of

the three semidefinite relaxations differ. For the remaining inner optimization in-

stances the optimal values coincide. The computation time of the first semidefinite

relaxation is slightly larger than the computation time of the other two relaxations

but much faster than the computation time of the mixed integer linear program.

However, the gap between the exact value of the inner optimization problem ob-

tained by the mixed integer linear program and the best lower bound obtained by

the semidefinite relaxations is too large for a successful application in our branch

and bound framework.

We also tried to compute the strengthened formulation of the first semidefinite

relaxation as described in Subsection 4.3.1. For the first and the second inner op-

timization instance the optimal value of the strengthened semidefinite program did

not change compared to the original semidefinite program but the computation time

increased to more than six hours and more than seven hours, respectively. Conse-

quently, it also exceeds the computation time of the mixed integer linear program

94

by far. For the other inner optimization instances we were not able to compute the

strengthened semidefinite relaxation due to the increased complexity of the problem.

Albeit semidefinite relaxation is a powerful tool to obtain strong bounds for

many optimization problems, it has turned out to be little promising for computing

satisfying bounds for our setup.

4.4 McCormick Relaxation

We want to apply the McCormick relaxation technique described in Section 2.5

to the inner optimization problem. For this purpose, we need to model the inner

optimization problem as a mixed integer bilinear program. We have two approaches

for obtaining such a formulation.

4.4.1 First Approach

Consider the following mixed integer bilinear formulation of the inner optimization

problem.

Problem 4.7 (Inner Optimization Problem - Mixed Integer Bilinear Formulation

1).

min s

xi ≥ Ki ∀i ∈ [m]

yi ≥ K ′
i ∀i ∈ [m]

xi + yi − s ≤ K ′′
i ∀i ∈ [m]

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− γijf
)
≥ 0 ∀1 ≤ i < j ≤ m ∀f ∈ [6]

s ∈ R, x, y ∈ Rm, z ∈ {0, 1}6(
m
2
)

This is the mixed integer linear formulation of the inner optimization problem

95

(Problem 3.8) with the difference that we replaced the linear Big-M -inequality

(
αij
f (xj − xi) + βij

f (yj − yi)
)
≥ γijf −M

(
1− zijf

)
by the quadratic inequality

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− γijf
)
≥ 0.

By expanding the quadratic inequality we obtain

αij
f xjz

ij
f − αij

f xiz
ij
f + βij

f yjz
ij
f − βij

f yiz
ij
f − γijf z

ij
f ≥ 0.

This inequality consists of the four bilinear terms

XI ijf := xiz
ij
f , XJ ij

f := xjz
ij
f , Y I ijf := yiz

ij
f , Y J ij

f := yjz
ij
f .

We will construct McCormick envelopes for each of these four products. From

the containment constraints we know that a lower bound on xi and yi is given by Ki

and K ′
i, respectively, for all i ∈ [m]. Each inner optimization problem corresponds

to a node in the branch-and-bound tree that is equipped with a global upper bound

ŝ on the variable s. Since xi ≤ s and yi ≤ s, this is also an upper bound on xi and

yi for all i ∈ [m]. The variables zijf are of binary nature and consequently have a

lower bound equal to zero and an upper bound equal to one for all 1 ≤ i < j ≤ m

and f ∈ [6]. Summarized, the variables are bounded by

Ki ≤ xi ≤ ŝ ∀i ∈ [m] ,

K ′
i ≤ yi ≤ ŝ ∀i ∈ [m] ,

0 ≤ zijf ≤ 1 ∀1 ≤ i < j ≤ m ∀f ∈ [6] .

96

Hence, the McCormick relaxation of Problem 4.7 is given by

min s

xi ≥ Ki ∀i ∈ [m]

yi ≥ K ′
i ∀i ∈ [m]

xi + yi − s ≤ K ′′
i ∀i ∈ [m]

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

αij
f

(
XJ ij

f −XI ijf
)

+ βij
f

(
Y J ij

f − Y I ijf
)
− γijf z

ij
f ≥ 0 ∀1 ≤ i < j ≤ m ∀f ∈ [6]

(MC 1) ∀1 ≤ i < j ≤ m ∀f ∈ [6]

s ∈ R, x, y ∈ Rm, z ∈ {0, 1}6(
m
2
) ,

XI,XJ, Y I, Y J ∈ R6(m
2
),

where the McCormick constraints are of the form

XI ijf ≥ Kiz
ij
f , XI ijf ≤ xi +Kiz

ij
f −Ki,

XI ijf ≥ xi + ŝzijf − ŝ, XI ijf ≤ ŝzijf ,

XJ ij
f ≥ Kjz

ij
f , XJ ij

f ≤ xj +Kjz
ij
f −Kj,

XJ ij
f ≥ xj + ŝzijf − ŝ, XJ ij

f ≤ ŝzijf ,

Y I ijf ≥ K ′
iz

ij
f , Y I ijf ≤ yi +K ′

iz
ij
f −K ′

i,

Y I ijf ≥ yi + ŝzijf − ŝ, Y I ijf ≤ ŝzijf ,

Y J ij
f ≥ K ′

jz
ij
f , Y J ij

f ≤ yj +K ′
jz

ij
f −K ′

j,

Y J ij
f ≥ yj + ŝzijf − ŝ, Y J ij

f ≤ ŝzijf .

(MC 1)

In general, the McCormick relaxation just gives a lower bound on the optimal

solution of the original problem. In our case, the McCormick relaxation gives the ex-

act value of the inner optimization problem due to the binary nature of the variables

97

zijf . To see this, consider the binary term XI ijf = zijf xi with the four McCormick

envelopes

XI ijf ≥ Kiz
ij
f ,

XI ijf ≥ xi + ŝzijf − ŝ,

XI ijf ≤ xi +Kiz
ij
f −Ki,

XI ijf ≤ ŝzijf .

On the one hand, the first inequality and the third inequality ensure that XI ijf = 0

if zijf = 0. On the other hand, the second and last inequality ensure that XI ijf = xi

if zijf = 1. So in both cases, the identity XI ijf = zijf xi is correct. The same holds

true for the other binary terms XJ ij
f = zijf xj, Y I

ij
f = zijf yi and Y J ij

f = zijf yj.

Compared to the mixed integer linear formulation of Problem 3.8, this Mc-

Cormick relaxation uses 24
(
m
2

)
additional variables and 96

(
m
2

)
additional constraints.

Hence, it is unsurprising that the computation time of the McCormick relaxation is

greater than the computation time of Problem 3.8. But we have another approach

that uses less variables and less constraints than the first McCormick relaxation.

4.4.2 Second Approach

Let us consider the quadratic constraint

zijf
(
αij
f (xj − xi) + βij

f (yj − yi)− γijf
)
≥ 0 ∀f ∈ [6]

for any pair i and j with 1 ≤ i < j ≤ m. We can replace this constraint by summing

up over all indices f ∈ [6]. It then becomes

(
6∑

f=1

αij
f z

ij
f

)
(xj − xi) +

(
6∑

f=1

βij
f z

ij
f

)
(yj − yi)−

(
6∑

f=1

γijf z
ij
f

)
≥ 0.

98

These two constraints are equivalent for our problem. It is easy to see that the

first constraint implies the second one. To see the other direction, suppose that the

second constraint is satisfied. The inequality

zij1 + · · ·+ zij6 ≥ 1

ensures that there exists an index f ? ∈ [6] with zijf? = 1. Therefore, the correspond-

ing summand satisfies

zijf?

(
αij
f?(xj − xi) + βij

f (yj − yi)− γijf?

)
≥ 0.

By setting the binary variables zijf to 0 for all f 6= f ? the first constraint is also

satisfied. For every 1 ≤ i < j ≤ m we define two new variables aij and bij by

aij :=
6∑

f=1

αij
f z

ij
f ,

bij :=
6∑

f=1

βij
f z

ij
f .

The new constraint then simplifies to

aij(xj − xi) + bij(yj − yi)−

(
6∑

f=1

γijf z
ij
f

)
≥ 0

for all 1 ≤ i < j ≤ m. Hence, we obtain the second mixed integer bilinear formula-

tion of the inner optimization problem.

99

Problem 4.8 (Inner Optimization Problem - Mixed Integer Bilinear Formulation

2).

min s

xi ≥ Ki ∀i ∈ [m]

yi ≥ K ′
i ∀i ∈ [m]

xi + yi − s ≤ K ′′
i ∀i ∈ [m]

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

aij(xj − xi) + bij(yj − yi)−

(
6∑

f=1

γijf z
ij
f

)
≥ 0 ∀1 ≤ i < j ≤ m

aij −
6∑

f=1

αij
f z

ij
f = 0 ∀1 ≤ i < j ≤ m

bij −
6∑

f=1

βij
f z

ij
f = 0 ∀1 ≤ i < j ≤ m

s ∈ R, x, y ∈ Rm, z ∈ {0, 1}6(
m
2
) , a, b ∈ R(

m
2
)

Now we can derive the McCormick envelopes for the four bilinear terms

aij1 := aijxi, aij2 := aijxj, bij1 := bijyi, bij2 := bijyj.

Let

αij
L =

∑
f :αij

f <0

αij
f and αij

U =
∑

f :αij
f >0

αij
f

denote the sum over all indices f ∈ [6] for which the value of αij
f is negative or

positive, respectively. Likewise, let

βij
L =

∑
f :βij

f <0

βij
f and βij

U =
∑

f :βij
f >0

βij
f

denote the sum over all indices f ∈ [6] for which the value of βij
f is negative or

100

positive, respectively. The bounds on the variables from the bilinear terms are

given by

Ki ≤ xi ≤ ŝ ∀i ∈ [m] ,

K ′
i ≤ yi ≤ ŝ ∀i ∈ [m] ,

αij
L ≤ αij ≤ αij

U ∀1 ≤ i < j ≤ m,

βij
L ≤ βij ≤ βij

U ∀1 ≤ i < j ≤ m,

where ŝ is the global upper bound on s as described in the previous McCormick

relaxation. Hence, the second McCormick relaxation of Problem 4.7 is given by

min s

xi ≥ Ki ∀i ∈ [m]

yi ≥ K ′
i ∀i ∈ [m]

xi + yi − s ≤ K ′′
i ∀i ∈ [m]

zij1 + · · ·+ zij6 ≥ 1 ∀1 ≤ i < j ≤ m

aij (xj − xi) + bij (yj − yi)−
6∑

f=1

γijf z
ij
f ≥ 0 ∀1 ≤ i < j ≤ m

aij =
6∑

f=1

αij
f z

ij
f ∀1 ≤ i < j ≤ m

bij =
6∑

f=1

βij
f z

ij
f ∀1 ≤ i < j ≤ m

(MC 2) ∀1 ≤ i < j ≤ m ∀f ∈ [6]

s ∈ R, x, y ∈ Rm, z ∈ {0, 1}6(
m
2
)

a, a1, a2, b, b1, b2 ∈ R(
m
2
),

101

where the McCormick constraints are of the form

aij1 ≥ αij
Lxi +Kia

ij −Kiα
ij
L , aij1 ≤ αij

Uxi +Kia
ij −Kiα

ij
U ,

aij1 ≥ αij
Uxi + ŝaij − ŝαij

U , aij1 ≤ αij
Lxi + ŝaij − ŝαij

L ,

aij2 ≥ αij
Lxj +Kja

ij −Kjα
ij
L , aij2 ≤ αij

Uxj +Kja
ij −Kjα

ij
U ,

aij2 ≥ αij
Uxj + ŝaij − ŝαij

U , aij2 ≤ αij
Lxj + ŝaij − ŝαij

L ,

bij1 ≥ βij
L yi +K ′

ib
ij −K ′

iβ
ij
L , bij1 ≤ βij

U yi +K ′
ib

ij −K ′
iβ

ij
U ,

bij1 ≥ βij
U yi + ŝbij − ŝβij

U , bij1 ≤ βij
L yi + ŝbij − ŝβij

L ,

bij2 ≥ βij
L yj +K ′

jb
ij −K ′

jβ
ij
L , bij2 ≤ βij

U yj +K ′
jb

ij −K ′
jβ

ij
U ,

bij2 ≥ βij
U yj + ŝbij − ŝβij

U , bij2 ≤ βij
L yj + ŝbij − ŝβij

L .

(MC 2)

The optimal value of this mixed integer linear program gives a lower bound on the

optimal value of the inner optimization problem. For all investigated instances the

optimal values are exactly the same as the optimal values of the three semidefinite

programs described in the previous section. Consequently, this McCormick relax-

ation is also unsuitable for our branch-and-bound framework.

102

Chapter 5

Algorithmic Approach for

sk
(
P 6(r), ω0

)
In this chapter we are going to extend the algorithmic approach for the computation

of sk (P 4(r), ω0) to the next higher dimension and compute the k-simplex packing

width of the six-dimensional open prism P 6(r) = 3(r) × T3. Since we are dealing

with simplices of dimension three, we will use the terms tetrahedron and simplex

interchangeably.

5.1 Outer Optimization Problem

In dimension six the outer optimization problem becomes

Problem 5.1 (Outer Optimization Problem).

Given k ∈ N, determine sk (P 6(1), ω0).

Analogously to Chapter 3, we apply Theorem 1.13 to obtain the following equiv-

alent formulation of Problem 5.1.

103

Problem 5.2 (Outer Optimization Problem - Combinatoral Formulation).

Given k ∈ N, determine the minimum side length s such that there exist matrices

A1, . . . , Ak ∈ GL3(Z) and vectors t1, . . . , tk ∈ R3 satisfying

Ai

(
3(1)

)
+ ti ⊆ 3(s) ∀i ∈ [k] (containment condition),(

Ai

(
3(1)

)
+ ti

)
∩
(
Aj

(
3(1)

)
+ tj

)
= ∅ ∀1 ≤ i < j ≤ k (disjointness condition).

We denote the minimum side length s from Problem 5.2 by sk . Then we have

the relation

sk
(
P 6(1), ω0

)
=

1

sk

.

As visualized in Figure 5.1 and Figure 5.2, we can create an 8-tetrahedron pack-

ing with side length two that is dense and therefore optimal. This packing consists

of four different shapes each represented by a different colour.

x

y

z

Figure 5.1: Optimal 8-tetrahedron packing in front view

104

y

z

y

x

Figure 5.2: Optimal 8-tetrahedron packing in side view

Hence, an upper bound on sk is given by two for k = 1, . . . , 8. This reduces

the number of possible integral affine images of 3(1) to those that fit into the

three-dimensional standard simplex with side length two.

The image of the three-dimensional standard simplex under an integral trans-

formation is the interior of a tetrahedron with integer vertices and volume 1
6
. For a

tetrahedron T = int (conv ({a, b, c, d})) with a, b, c, d ∈ Z3 the volume is given by

vol (T) =
1

6
|det

([
a− d b− d c− d

])
|.

To establish the shapelists, we consider all tetrahedra with integer vertices in the

interval [0, 2] × [0, 2] × [0, 2] that satisfy the volume condition. We then sort the

coordinates, shift them to the origin and remove duplicates as in the two-dimensional

case described in Chapter 3. This results in a list of 73 different shapes that are

shown in Tables 5.1, 5.2, 5.3 and 5.4.

105

Shape Image

T1 = int
(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)}))
T2 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
1

)}))
T3 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

1
0
0

)}))
T4 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

1
0
1

)}))
T5 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
−1

)
,
(

1
0
−1

)}))
T6 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
−1

)
,
(

1
0
0

)}))
T7 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
0
−1

)}))
T8 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
1
0

)}))
T9 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
1

)
,
(

1
1
0

)}))
T10 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
−1

)
,
(

1
1
−1

)}))
T11 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
1
−1

)}))
T12 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)}))
T13 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
0
1

)}))
T14 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
1
0

)
,
(

1
0
−1

)}))
T15 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
1
0

)
,
(

1
0
0

)}))
T16 = int

(
conv

({(
0
0
0

)
,
(

0
1
−2

)
,
(

0
1
−1

)
,
(

1
0
−2

)}))
T17 = int

(
conv

({(
0
0
0

)
,
(

0
1
−2

)
,
(

0
1
−1

)
,
(

1
0
−1

)}))
T18 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
1
0

)}))
T19 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
1
0

)
,
(

1
1
−1

)}))
T20 = int

(
conv

({(
0
0
0

)
,
(

0
1
−2

)
,
(

0
1
−1

)
,
(

1
1
−2

)}))
Table 5.1: Tetrahedron shapes 1 - 20

106

Shape Image

T21 = int
(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
2
−1

)
,
(

1
0
−1

)}))
T22 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
2
−1

)
,
(

1
0
0

)}))
T23 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
2
−1

)
,
(

1
0
−1

)}))
T24 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
2
−1

)
,
(

1
0
0

)}))
T25 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

0
2
−1

)
,
(

1
1
−1

)}))
T26 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

0
2
−1

)
,
(

1
1
−1

)}))
T27 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
−1
0

)}))
T28 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

1
−1
1

)}))
T29 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
0
0

)
,
(

1
1
0

)}))
T30 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
0
1

)
,
(

1
1
0

)}))
T31 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
0
−1

)
,
(

1
1
−1

)}))
T32 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
0
0

)
,
(

1
1
−1

)}))
T33 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
0
1

)}))
T34 = int

(
conv

({(
0
0
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)}))
T35 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
−1

)
,
(

1
0
0

)}))
T36 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
−1

)
,
(

1
0
0

)}))
T37 = int

(
conv

({(
0
0
0

)
,
(

0
1
−2

)
,
(

1
0
−2

)
,
(

1
0
−1

)}))
T38 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
−2

)
,
(

1
0
−1

)}))
T39 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
1

)
,
(

1
1
0

)}))
T40 = int

(
conv

({(
0
0
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
1
0

)}))
Table 5.2: Tetrahedron shapes 21 - 40

107

Shape Image

T41 = int
(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
−1

)
,
(

1
1
−1

)}))
T42 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
1
−1

)}))
T43 = int

(
conv

({(
0
0
0

)
,
(

0
1
−2

)
,
(

1
0
−1

)
,
(

1
1
−2

)}))
T44 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
−2

)
,
(

1
1
−2

)}))
T45 = int

(
conv

({(
0
0
0

)
,
(

0
2
−1

)
,
(

1
0
−1

)
,
(

1
1
−1

)}))
T46 = int

(
conv

({(
0
0
0

)
,
(

0
2
−1

)
,
(

1
0
0

)
,
(

1
1
−1

)}))
T47 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
−1
0

)
,
(

1
0
0

)}))
T48 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
−1
1

)
,
(

1
0
0

)}))
T49 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
−1
0

)
,
(

1
−1
1

)}))
T50 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
−1
−1

)
,
(

1
−1
0

)}))
T51 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
−1
1

)
,
(

1
0
0

)}))
T52 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
−1
−1

)
,
(

1
0
−1

)}))
T53 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
−1

)
,
(

2
0
−1

)}))
T54 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
0
0

)
,
(

2
0
−1

)}))
T55 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
−1

)
,
(

2
0
−1

)}))
T56 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

2
0
−1

)}))
T57 = int

(
conv

({(
0
0
0

)
,
(

0
1
−1

)
,
(

1
1
−1

)
,
(

2
0
−1

)}))
T58 = int

(
conv

({(
0
0
0

)
,
(

0
1
0

)
,
(

1
1
−1

)
,
(

2
0
−1

)}))
T59 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
−1
0

)
,
(

2
−1
0

)}))
T60 = int

(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
−1
1

)
,
(

2
−1
0

)}))
Table 5.3: Tetrahedron shapes 41 - 60

108

Shape Image

T61 = int
(
conv

({(
0
0
0

)
,
(

0
0
1

)
,
(

1
0
0

)
,
(

2
−1
0

)}))
T62 = int

(
conv

({(
0
0
0

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)}))
T63 = int

(
conv

({(
0
0
0

)
,
(

1
0
−1

)
,
(

1
0
0

)
,
(

1
1
−1

)}))
T64 = int

(
conv

({(
0
0
0

)
,
(

1
0
−2

)
,
(

1
0
−1

)
,
(

1
1
−2

)}))
T65 = int

(
conv

({(
0
0
0

)
,
(

1
−1
0

)
,
(

1
−1
1

)
,
(

1
0
0

)}))
T66 = int

(
conv

({(
0
0
0

)
,
(

1
−1
−1

)
,
(

1
−1
0

)
,
(

1
0
−1

)}))
T67 = int

(
conv

({(
0
0
0

)
,
(

1
−2
0

)
,
(

1
−2
1

)
,
(

1
−1
0

)}))
T68 = int

(
conv

({(
0
0
0

)
,
(

1
0
−1

)
,
(

1
1
−1

)
,
(

2
0
−1

)}))
T69 = int

(
conv

({(
0
0
0

)
,
(

1
0
0

)
,
(

1
1
−1

)
,
(

2
0
−1

)}))
T70 = int

(
conv

({(
0
0
0

)
,
(

1
−1
0

)
,
(

1
−1
1

)
,
(

2
−1
0

)}))
T71 = int

(
conv

({(
0
0
0

)
,
(

1
−1
−1

)
,
(

1
−1
0

)
,
(

2
−1
−1

)}))
T72 = int

(
conv

({(
0
0
0

)
,
(

1
−1
1

)
,
(

1
0
0

)
,
(

2
−1
0

)}))
T73 = int

(
conv

({(
0
0
0

)
,
(

1
−1
−1

)
,
(

1
0
−1

)
,
(

2
−1
−1

)}))
Table 5.4: Tetrahedron shapes 61 - 73

109

Now we can determine sk by computing an optimal packing for every k-cardinality

multisubset of the shapelist. The number of k-cardinality multisubsets for k =

1, . . . , 8 is shown in Table 5.5.

k |Sk |
((

|Sk |
k

))
1 1 1

2 73 2 701

3 73 67 525

4 73 1 282 975

5 73 19 757 815

6 73 256 851 595

7 73 2 898 753 715

8 73 28 987 537 150

Table 5.5: Number of k-cardinality multisubsets of the shapelists for k = 1, . . . , 8

The first column shows the value of k. The second column shows the cardinality

of the corresponding shapelist. The third column shows the number of k-cardinality

multisubsets of this shapelist. Due to the cardinality of the shapelist, the number

of multisubsets is quite large even for small numbers of k. However, we were able

to compute k-tetrahedron packings for k = 1, . . . , 8 by employing the same branch-

and-bound strategy as in the two-dimensional setting. The (incomplete) search tree

for k = 3 is shown in Figure 5.3.

∅

· · ·

· · ·

· · ·

...

Figure 5.3: Branch-and-bound search tree for the 3-tetrahedron packing

We start the search with the global upper bound of two. Whenever the computa-

tion for a node produces an optimum packing that exceeds the global upper bound,

110

we can fathom the subtree rooted at this node. Whenever the computation for a

node at level k produces an optimum packing that improves the global upper bound,

we update it and memorize the packing as the incumbent solution. At termination,

the incumbent solution is an optimum packing with value of the upper bound. In

the next section we will explain how to compute an optimal packing at each node.

Again, we refer to this as the inner optimization problem.

5.2 Inner Optimization Problem

Problem 5.3 (Inner Optimization Problem).

Given T1, . . . , Tm ∈ Sk , determine the minimum side length s such that there exist

vectors t1, . . . , tm ∈ R3 satisfying

Ti + ti ⊆ 3(s) ∀i ∈ [m] (containment condition),

(Ti + ti) ∩ (Tj + tj) = ∅ ∀1 ≤ i < j ≤ m (disjointness condition).

We will formulate Problem 5.3 as a mixed integer linear program. For this, we

have to model the two conditions. To model the containment condition Ti + ti ⊆
3(s), we first replace the open sets by their closures as this does not alter the

containment condition. Each tetrahedron from the shapelist is given in the form

Ti = conv
({(

0
0
0

)
,
(ai1

bi1
ci1

)
,
(ai2

bi2
ci2

)
,
(ai3

bi3
ci3

)})
.

For the packing target 3(s) we use the polyhedral description

3(s) =
{(

x
y
z

)
∈ R3

∣∣∣ x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ s
}
.

Let the translation vector be given by ti =
(

xi
yi
zi

)
. Because of convexity, we only

need to check that the four translated vertices are contained in 3(s), which leads

111

to the following sixteen inequalities for every i ∈ [m]:

xi ≥ 0, yi ≥ 0, zi ≥ 0, xi + yi + zi ≤ s,

xi + ai1 ≥ 0, yi + bi1 ≥ 0, zi + ci1 ≥ 0, (xi + ai1) + (yi + bi1) + (zi + ci1) ≤ s,

xi + ai2 ≥ 0, yi + bi2 ≥ 0, zi + ci2 ≥ 0, (xi + ai2) + (yi + bi2) + (zi + ci2) ≤ s,

xi + ai3 ≥ 0, yi + bi3 ≥ 0, zi + ci3 ≥ 0, (xi + ai3) + (yi + bi3) + (zi + ci3) ≤ s.

By putting the constants to the right hand sides and taking minima/maxima in

every column, we can reduce these sixteen inequalities to four inequalities for every

i ∈ [m]:

xi ≥ max {0,−ai1,−ai2,−ai3} =:K1
i ,

yi ≥ max {0,−bi1,−bi2,−bi3} =:K2
i ,

zi ≥ max {0,−ci1,−ci2,−ci3} =:K3
i ,

xi + yi + zi − s ≤ min {0,−ai1 − bi1 − ci1,−ai2 − bi2 − ci2,−ai3 − bi3 − ci3} =:K4
i .

Thus, we get a total of 4m inequalities that we call the containment constraints.

Next, we model the disjointness constraint. As derived in Chapter 3, we know

that (Ti + ti) ∩ (Tj + tj) = ∅ if and only if tj − ti /∈ Ti 	 Tj.

By applying Lemma 3.7 to

Ti = int
(
conv

({(
0
0
0

)
,
(ai1

bi1
ci1

)
,
(ai2

bi2
ci2

)
,
(ai3

bi3
ci3

)}))
,

Tj = int
(
conv

({(
0
0
0

)
,
(aj1

bj1
cj1

)
,
(aj2

bj2
cj2

)
,
(aj3

bj3
cj3

)}))
,

we get a description of Ti 	 Tj as

112

Ti 	 Tj = int
(
conv

({(
0
0
0

)
,
(ai1

bi1
ci1

)
,
(ai2

bi2
ci2

)
,
(ai3

bi3
ci3

)
,(

−aj1
−bj1
−cj1

)
,

(
ai1−aj1
bi1−bj1
ci1−cj1

)
,

(
ai2−aj1
bi2−bj1
ci2−cj1

)
,

(
ai3−aj1
bi3−bj1
ci3−cj1

)
,(

−aj2
−bj2
−cj2

)
,

(
ai1−aj2
bi1−bj2
ci1−cj2

)
,

(
ai2−aj2
bi2−bj2
ci2−cj2

)
,

(
ai3−aj2
bi3−bj2
ci3−cj2

)
,(

−aj3
−bj3
−cj3

)
,

(
ai1−aj3
bi1−bj3
ci1−cj3

)
,

(
ai2−aj3
bi2−bj3
ci2−cj3

)
,

(
ai3−aj3
bi3−bj3
ci3−cj3

)}))
.

For each triplet of these sixteen possible vertices, we compute the hyperplane spanned

by those and check whether it is a facet of the Minkowski difference Ti 	 Tj. In this

manner, for each pair of tetrahedra we obtain the following description

Ti 	 Tj =
{(

x
y
z

)
∈ R3

∣∣∣ αij
f x+ βij

f y + γijf z < δijf ∀f ∈ [16]
}
.

In our computations the number of halfspaces was at most sixteen. If the number

was strictly smaller than sixteen, we inserted copies of the last halfspace to fill the

gap to simplify the implementation.

We now proceed analogously to the two-dimensional setting. The difference

vector tj − ti is not contained in the Minkowski difference if and only if at least

one of the sixteen inequalities is violated. To model this condition, we introduce a

binary variable wij
f that is equal to one if inequality f is violated. To express this

implication, we use a Big-M -formulation, where the parameter M has to be chosen

sufficiently large:

αij
f (xj − xi) + βij

f (yj − yi) + γijf (zj − zi) ≥ δijf −M
(
1− wij

f

)
.

Let ŝ be the current global upper bound on s. To find an appropriate value for M , we

can make the following estimation on the left hand side of the Big-M -formulation:

113

αij
f (xj − xi) + βij

f (yj − yi) + γijf (zj − zi)

≥ − |αij
f ||xj − xi| − |βij

f ||yj − yi| − |γijf ||zj − zi|

≥ − |αij
f |ŝ− |βij

f |ŝ− |γijf |ŝ

= −
(
|αij

f |+ |βij
f |+ |γijf |

)
ŝ

Thus, we can choose M as

M =
(
|αij

f |+ |βij
f |+ |γijf |

)
ŝ+ δijf .

We want at least one of the six binary variables wij
f to take the value one Equiva-

lently, we can say that their sum should be greater or equal to one. Altogether, the

disjointness condition is equivalent to

wij
f ∈ {0, 1} ,

wij
1 + · · ·+ wij

16 ≥ 1,

αij
f (xj − xi) + βij

f (yj − yi) + γijf (zj − zi) ≥ δijf −M
(
1− wij

f

)
for all f ∈ [16]. For every pair of triangles Ti, Tj with 1 ≤ i < j ≤ m, we have

these seventeen inequalities, so in total there are 17
(
m
2

)
inequalities that we call the

disjointness constraints.

114

Problem 5.4 (Inner Optimization Problem - Mixed Integer Linear Formulation).

min s

xi ≥ K1
i ∀i ∈ [m]

yi ≥ K2
i ∀i ∈ [m]

zi ≥ K3
i ∀i ∈ [m]

xi + yi + zi − s ≤ K4
i ∀i ∈ [m]

wij
1 + · · ·+ wij

16 ≥ 1 ∀1 ≤ i < j ≤ m

αij
f (xj − xi) + βij

f (yj − yi) + γijf (zj − zi) ≥

δijf −M
(
1− wij

f

)
∀1 ≤ i < j ≤ m

∀f ∈ [16]

s ∈ R, x, y, z ∈ Rm, w ∈ {0, 1}16(
m
2
)

Since the implementation of the outer optimization problem is equivalent to the

implementation in the two-dimensional setting described in Section 3.3, we will skip

the details and continue with the experimental results.

5.3 Experimental Results

As in the two-dimensional setting, the computational experiments were carried out

under the Debian 10 operating system on two Intel Xeon E5-2690v2 CPUs with

3.00GHz and 10 cores each. For solving the inner optimization problem we call the

GUROBI Optimization Software Version 9.0.3.

We found that sk = 1 for k = 1 and sk = 2 for k = 2, . . . , 8. Figure 5.4 and

Figure 5.5 show one exemplary optimal packing for k = 1, . . . , 8.

115

x

y

z

1

k = 1

x

y

z

1
2

k = 2

x

y

z

1 2
3

k = 3

x

y

z

12 3

4

k = 4

x

y

z

1

2

3

4
5

k = 5

x

y

z

1

2
3

4
5
6

k = 6

Figure 5.4: Optimal k-tetrahedron packings for k = 1, . . . , 6

116

x

y

z

1

2
3

4
5 6

7

k = 7

x

y

z

1
23

45
6

7

8

k = 8

Figure 5.5: Optimal k-tetrahedron packings for k = 7, 8

As in the two-dimensional setting, our program detects all multisubsets that

allow for an optimal packing for a given k. Table 5.6 shows the number of optimal

multisubsets for k = 1, . . . , 8.

k #Optimal Multisubsets
1 1

2 1 123

3 4 871

4 9 914

5 11 709

6 8 075

7 2 899

8 408

Table 5.6: Number of multisubsets that allow for an optimal k-tetrahedron packing

for k = 1, . . . , 8

There are far more optimal multisubsets than in the two-dimensional setting due

to the greater number of feasible multisubsets. Unlike the four-dimensional case, it

is not yet known whether all these computed packings are equivalent.

Table 5.7 shows the timing statistics of our algorithm for k = 1, . . . , 8. The

column labels are

117

• k: the number of tetrahedra to be packed,

•
((

|Sk |
k

))
: the number of k-cardinality multisubsets of the shapelist,

• #I-Calls: the number of calls to the inner optimization procedure,

• Avg I-Time: the average cpu time spent in an inner optimization procedure,

• Max I-Time: the maximum cpu time spent in an inner optimization procedure,

• Total Time: the total cpu time.

k
((

|Sk |
k

))
#I-Calls Avg I-Time Max I-Time Total Time

1 1 1 0 : 00 : 00.00 0 : 00 : 00.00 0 : 00 : 00.00

2 2 701 2 773 0 : 00 : 00.00 0 : 00 : 00.07 0 : 00 : 01.90

3 67 525 4 871 0 : 00 : 00.00 0 : 00 : 00.04 0 : 00 : 06.59

4 1 282 975 9 914 0 : 00 : 00.00 0 : 00 : 00.14 0 : 00 : 25.83

5 19 757 815 13 118 0 : 00 : 00.00 0 : 00 : 10.15 0 : 06 : 04.31

6 256 851 595 8 075 0 : 00 : 00.01 0 : 00 : 00.09 0 : 01 : 01.06

7 2 898 753 715 2 899 0 : 00 : 00.01 0 : 00 : 00.35 0 : 00 : 39.66

8 28 987 537 150 408 0 : 00 : 00.01 0 : 00 : 00.08 0 : 00 : 12.77

Table 5.7: Timing statistics for the k-tetrahedron packing given in the format

“hh:mm:ss” for k = 1, . . . , 8

The inner optimization procedure is very fast on all instances. For computing

k-tetrahedron packings for k ≥ 9, the difficulty rather consists in the high number

of feasible multisubsets. For k = 9 the cardinality of the shapelist increases to 854

and the number of multisubsets thereof increases to 694 392 240 786 929 755 070 ≈

7 × 1020. Therefore, computing s9 seems out of reach. Albeit, instead of working

with the shapelist S9 , we can consider the smaller shapelist S8 to compute upper

bounds on s9 . This work is in progress at the moment.

118

Appendix

In this appendix we provide the source code of the algorithms described in the main

part of the thesis. The code is stored on a compact disc that contains seven different

directories

• solveinner/,

• solveinner3D/,

• packing/,

• packing3D/,

• sdp/,

• mccormick/,

• output/.

The directory solveinner/ contains the source code solveinner_gurobi.c for

solving the inner optimization problem (Problem 3.8). There is also a version called

solveinner_cplex.c that uses the CPLEX Optimizer instead of the GUROBI Op-

timizer for solving the mixed integer linear program. Besides, the directory contains

the source codes shapes.c and minkowski.c that are used to establish the input

files shapelist.txt and minkowski.txt, respectively. The structure of those two

input files is explained in the corresponding establishing files. To solve the inner

optimization problem for a specific multisubset, one gives the indices of the corre-

sponding triangles to the executable file solveinner_gurobi. For example, to solve

the inner optimization problem for the multisubset {T1, T1, T3, T7} the command is

“solveinner_gurobi 1 1 3 7”.

119

The directory packing/ contains the source code packing_gurobi.c for solving

the outer optimization problem (Problem 3.2). The input files shapelist.txt and

minkowski.txt are the same as in the directory solveinner/. The bounds file

described in Chapter 3 is called bounds-triangle.txt. The first line of the bounds

file has the two entries

#bounds, k,

which represent the number of bounds and the value of k that stem from the last

run of the program. The subsequent lines have four entries

fipri, nsimplices, lowerbound, optimal

as described in Chapter 3. The executable file initbounds resets the bounds-

file. To solve the outer optimization problem for k ∈ {1, . . . , 13}, the command

is “packing_gurobi k”.

The directories solveinner3D/ and packing3D are the three-dimensional coun-

terparts of the previous two directories and are constructed analogously to the for-

mer.

The directory sdp/ contains the semidefinite relaxations of the three different

quadratically constrained quadratic programs described in Chapter 4. The pro-

gram for the semidefinite relaxation of Problem 4.2 is called sdp.c. The pro-

grams for the semidefinite relaxation of Problem 4.4 and Problem 4.6 are called

sdp_hyperplane.c and sdp_convexcombination.c, respectively. All three pro-

grams also require the two input files shapelist.txt and minkowski.txt.

The directory mccormick/ contains the two McCormick relaxations of the mixed

integer binary program (Problem 4.7). They are called mccormick_1.c and mccormick_2.c.

Again, both programs require the two input files shapelist.txt and minkowski.txt.

The last directory output/ contains the log files corresponding to the experi-

mental results presented in this thesis.

120

Bibliography

[Dar82] Gaston Darboux. “Sur le problème de Pfaff”. fr. In: Bulletin des Sciences

Mathématiques et Astronomiques 2e série, 6.1 (1882), pp. 49–68. url:

http://www.numdam.org/item/BSMA_1882_2_6_1_49_1.

[Far02] Julius Farkas. “Theorie der einfachen Ungleichungen.” In: Journal für

die reine und angewandte Mathematik 124 (1902), pp. 1–27. url: http:

//eudml.org/doc/149129.

[Neu47] John von Neumann. “Discussion of a maximum problem”. In: Manuscript

(1947).

[Dan51] George B. Dantzig. Maximization of a Linear Function of Variables

Subject to Linear Inequalities. Ed. by Tjalling C. Koopmans. New York:

Wiley, 1951, pp. 339–347.

[DFJ54] George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson. “So-

lution of a large-scale traveling-salesman problem”. In: Operations Re-

search 2 (1954), pp. 393–410.

[Gom58] Ralph E. Gomory. “Outline of an algorithm for integer solutions to linear

programs”. In: Bull. Amer. Math. Soc. 64.5 (Sept. 1958), pp. 275–278.

url: https://projecteuclid.org:443/euclid.bams/1183522679.

[Sla59] Morton Slater. “Lagrange Multipliers Revisited”. In: 80 (1959). url:

https://EconPapers.repec.org/RePEc:cwl:cwldpp:80.

121

[LD60] Alisa H. Land and Alison G. Doig. “An Automatic Method of Solv-

ing Discrete Programming Problems”. In: Econometrica 28.3 (1960),

pp. 497–520. issn: 00129682, 14680262. url: http://www.jstor.org/

stable/1910129.

[Sah74] Sartaj Sahni. “Computationally Related Problems”. In: SIAM Journal

on Computing 3.4 (1974), pp. 262–279. doi: 10.1137/0203021.

[McC76] Garth P. McCormick. “Computability of Global Solutions to Factorable

Nonconvex Programs: Part I – Convex Underestimating Problems”. In:

Math. Program. 10.1 (Dec. 1976), pp. 147–175. issn: 0025-5610. doi:

10.1007/BF01580665.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. USA: W. H. Freeman &

Co., 1979. isbn: 0716710447.

[KTK80] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. “The polynomial solv-

ability of convex quadratic programming”. In: USSR Computational Math-

ematics and Mathematical Physics 20.5 (1980), pp. 223–228. issn: 0041-

5553. doi: https://doi.org/10.1016/0041-5553(80)90098-1.

[Gro85] Michail Gromov. “Pseudo holomorphic curves in symplectic manifolds.”

In: Inventiones mathematicae 82 (1985), pp. 307–348. url: http://

eudml.org/doc/143289.

[Sik89] Jean-Claude Sikorav. “Rigidité symplectique dans le cotangent de T n”.

In: Duke Math. J. 59.3 (Dec. 1989), pp. 759–763. doi: 10.1215/S0012-

7094-89-05935-8.

[PV90] Panos M. Pardalos and Stephen A. Vavasis. “Quadratic Programming

with One Negative Eigenvalue is NP-hard”. In: Journal of Global Opti-

mization 1 (1990), pp. 15–22.

122

[LS91] Francois Lalonde and Jean-Claude Sikorav. “Sous-variétés lagrangiennes

et lagrangiennes exactes des fibrés cotangents.” fre. In: Commentarii

mathematici Helvetici 66.1 (1991), pp. 18–33. url: http://eudml.org/

doc/140221.

[McD91] Dusa McDuff. “Blow ups and symplectic embeddings in dimension 4”.

In: Topology 30.3 (1991), pp. 409–421. issn: 0040-9383. doi: https:

//doi.org/10.1016/0040-9383(91)90021-U.

[MP94] Dusa McDuff and Leonid Polterovich. “Symplectic packings and alge-

braic geometry”. In: Inventiones mathematicae 115.3 (1994), pp. 405–

430. url: http://eudml.org/doc/144175.

[HRW95] Christoph Helmberg, Franz Rendl, and Robert Weismantel. Quadratic

Knapsack Relaxations Using Cutting Planes and Semidefinite Program-

ming. eng. Tech. rep. SC-95-37. Takustr. 7, 14195 Berlin: ZIB, 1995.

[Bir96] Paul Biran. “Symplectic Packing in Dimension 4”. In: Geometric & Func-

tional Analysis GAFA 7 (1996), pp. 420–437.

[VB96] Lieven Vandenberghe and Stephen Boyd. Semidefinite Programming.

Vol. 38. 1. 1996, pp. 49–95. doi: 10.1137/1038003.

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. New

York: Wiley, 1998. isbn: 978-0-471-98232-6.

[MMT00] F. Miller Maley, Jean Beth Mastrangeli, and Lisa Traynor. “Symplectic

packings in cotangent bundles of tori”. In: Experimental Mathematics 9.3

(2000), pp. 435–455. url: https://projecteuclid.org:443/euclid.

em/1045604678.

[Sil04] Ana Cannas da Silva. Lectures on Symplectic Geometry. Berlin, Heidel-

berg: Springer, 2004. isbn: 978-3-540-45330-7.

123

[Van+05] Lieven Vandenberghe et al. Interior-Point Algorithms for Semidefinite

Programming Problems Derived from the KYP Lemma. Vol. 312. May

2005, pp. 579–579. isbn: 978-3-540-23948-2. doi: 10.1007/10997703_

12.

[RRW10] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. “Solving Max-Cut

to Optimality by Intersecting Semidefinite and Polyhedral Relaxations”.

In: Math. Programming 121.2 (2010), pp. 307–335.

[HZ12] Helmut Hofer and Eduard Zehnder. Symplectic Invariants and Hamilto-

nian Dynamics -. Basel: Birkhäuser, 2012. isbn: 978-3-034-88540-9.

[MS17] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topol-

ogy. New York: Oxford University Press, 2017. isbn: 978-0-198-79489-9.

124

Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation selbst-

ständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel und Liter-

atur angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten

und nicht veröffentlichten Werken dem Wortlaut oder dem Sinn nach entnommen

wurden, sind als solche kenntlich gemacht. Ich versichere an Eides statt, dass diese

Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen

hat; dass sie - abgesehen von unten angegebenen Teilpublikationen und eingebun-

denen Artikeln und Manuskripten - noch nicht veröffentlicht worden ist sowie, dass

ich eine Veröffentlichung der Dissertation vor Abschluss der Promotion nicht ohne

Genehmigung des Promotionsausschusses vornehmen werde. Die Bestimmungen

dieser Ordnung sind mir bekannt. Darüber hinaus erkläre ich hiermit, dass ich

die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit

wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen und sie bei der

Durchführung der Dissertation zugrundeliegenden Arbeiten und der schriftlich ver-

fassten Dissertation beachtet habe und verpflichte mich hiermit, die dort genannten

Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen. Ich

versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfas-

sung vollständig entspricht.

Kreuzau, den 15.02.2021

