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The mammalian forkhead box O transcription factor (FoxO) family contains 4 members, 

FoxO1, FoxO3a, FoxO4 and FoxO6. (Clark et al., 1993). FoxOs present a conserved DNA 

binding domain, the forkhead domain (FKHR) (Clark et al., 1993; Furayama et al., 2000) 

FoxOs play a role in metabolism, cell cycle control and stress resistance. FoxO mediated 

transcription is amongst others regulated via phosphorylation. Phosphorylation which 

negatively regulates FoxO action, leads to association of FoxO with 14-3-3 and transport out 

of the nucleus.  

Phosphorylation of FoxOs is induced by the C-June-N-terminal kinase (JNK) pathway upon 

oxidative stress to regulate transcription of target genes (Esser et al., 2004). This pathway 

antagonizes the Insulin and Insulin-like growth factor 1 (IGF-1) signaling pathways which 

negatively regulates FoxOs. In vitro activation of JNK leads to phosphorylation of 14-3-3ξ. 

This mediates dissociation of FoxO3a from 14-3-3 and in turn results in nuclear retention of 

FoxO3a and therefore it is active and promotes transcription of its target genes (Sunayama 

et al., 2005). 

Furthermore phosphorylation of FoxOs occurs via the glucocorticoid-inducible kinases 

(SGKs) and AKT which are serine threonine kinase (Lin et al., 1997; Ogg et al., 1997; Brunet 

et al., 2001). Both kinases are regulated via the Phosphatidylinositide(PI)3 kinase (PI3K) 

pathway. These kinases are activated, translocate into the nucleus and phosphorylate FoxO 

which leads to inactivation of FoxO mediated transcription (Brunet et al., 2001).  

Thus, FoxO are regulated via different pathways and FoxO mediated transcription is involved 

in several cellular functions. One of the main pathways involved in the pathogenesis if 

neurodegenerative diseases, is the insulin/insulin-like growth factor-1 (IGF-1) signal 

transduction. The present thesis focuses on the role of FoxO1, a downstream target of the 

insulin/IGF-1 signaling cascade in neurodegeneration. 

 

 

1. 1. The Insulin and Insulin-like growth factor-1 signaling pathway 

The Insulin and Insulin-like growth factor 1 (IGF-1) signaling pathways has several functions 

lincluding growth, metabolic homeostasis, development and stress resistance. In addition, 

the Insulin and IGF-1 signaling pathway is involved in determination of lifespan (review in 

Broughton and Patridge, 2009). 

 

 

1.1.1. Insulin- and Insulin-like growth factor-1 receptors 

The Insulin- and Insulin-like growth factor-1 receptors (IR and IGF-1R) belong to the family of 

receptor tyrosine kinases. These receptors consist of a domain with tyrosine kinase activity 

bound to the membrane which phosphorylates tyrosine-residues of downstream signaling 
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proteins of the IR and IGF-1R signaling pathway. The IR was discovered in 1974 and its 

tyrosine kinase activity was found in 1982 (Megyesi et al., 1974; Kasuga et al., 1982; Kasuga 

et al., 1982). Later the IGF-1 receptor was discovered and classified as a receptor tyrosine 

kinase receptor as well (Megyesi et al., 1974; Jacobs et al., 1983; Rubinet al.,  1983). Both 

IR and IGF-1R show a heterotetrameric structure. The α-subunits with a size of 135kDa are 

localized extracellular (Van Obberghen et al., 1981; Ullrich et al., 1986). The β-subunits 

which are about 95kDa are composed of a short extracellular, a transmembrane and an 

intracellular domain. The intracellular part contains ATP-binding motifs, autophosphorylation 

sites and tyrosine-specific protein kinase activity. Autophosphorylation sites of the IR are 

tyrosine 1146, 1150 and 1151 as well as 1131, 1135 and 1136 of the IGF-1R. The subunits 

of the receptor are linked via disulfide bonds. (Kahn et al., 1978; Kasuga et al., 1982; Chou 

et al., 1987; White, 1998).  

The gene which encodes the insulin receptor contains 22 exons and 21 introns (Seino et al., 

1989). Two different isoforms of the insulin receptor occur due to alternative splicing of exon 

11 that codes for 12 amino acids. Isoform A of the IR lacks these 12 while isoform B contains 

these amino acids. The IGF-1R gene posesses no equivalent to exon 11, hence no isoforms 

exists. Both isoforms A and B of the IR bind to insulin with similar affinity (McClain, 1991). 

Isoform A shows an increased affinity to IGF-2 compared to isoform B (Yamaguchi et al., 

1991; Frasca et al., 1999). The expression of the A-isoform of the IR mainly occurs in fetal 

tissue, hematopoietic cells and adult nervous system. Isoform B is predominantly expressed 

in adipose tissue, muscle and liver (Seino and Bell, 1989; Moller et al., 1989; Goldstein and 

Kahn, 1989; Mosthaf et al., 1990). In addition, different binding affinities to insulin or IGF-1 is 

dependent on the assembly of IR or IGF-1R (Pandini et al. 2002). IGF-1, IGF-2 and insulin 

are bound to the hybrid of IGF-1R and isoform A of the IR with similar affinity. However, IGF-

1 is bound to the hybrid of IGF-1R and isoform B of the IR (Louvi et al., 1997) (Fig. 1). 
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Figure 1: Receptor isoforms and hybrids. 
Isoforms A and B of the IR bind to insulin with similar affinity. Isoform A shows an increased affinity to IGF-2 
compared to isoform B. The IGF-1R and the receptor hybrid of IGF-1R and isoform A of the IR bind to insulin and 
both IGFs. The IGF-1R and isoform B of the IR receptor hybrid predominantly binds to IGF-1(modified, Freude 
and Schubert, 2010). 
 

 

1.1.2. Insulin receptor substrates 

Binding of insulin or IGF-1 to the IR or IGF-1R induces a conformational change of the 

receptor. This causes autophosphorylation of the β-subunits. The autophosphorylated 

receptors tyrosine kinase then recruit insulin receptor substrates (IRS) which become 

tyrosine phosphorylated (Fig. 2). The family of IRS proteins includes IRS-1 to IRS-4 (Sun et 

al. 1991; Lavan et al. 1997; Lavan, Lane, and Lienhard 1997). IRS was first described in 

1985 and called pp185 because of its size of 185kDa and it was phosphorylated after 

exposure to insulin. Inactivated insulin was not able to induce phosphorylation of pp185.  

pp185 was first cloned in 1991 and the protein was named IRS-1 (White, Maron, and Kahn 

1985; Sun et al. 1991). IRS-2 (160kDa) was discovered in 1995 and IRS-3 (60kDa) as well 

as IRS-4 (160kDa) were found in 1997 (Sun et. al 1995; Lavan et al. 1997; Lavan, Lane, and 

Lienhard, 1997). 

IRS proteins show distinct expression patterns. IRS-1 and -2 are ubiquitously expressed 

while IRS-3 mainly occurs in murine adipose tissue and IRS-4 is epressed in kidney, heart, 

thymus as well as hypothalamus. All these IRS proteins present similar functions and 

structure (Giovannone et al., 2000; Schubert et al., 2003). Their structure is subdivided into 

an N-terminal pleckstrin homology (PH) domain, a phosphotyrosine-binding (PTB) domain 

and a C-terminal tail with multiple tyrosine phosphorylation sites. Lipids and especially 

phosphoinositides bind the the PH domain of IRS proteins (Fruman, Rameh, and Cantley 

1999) facilitating binding of IRS proteins to the membrane. The PTB domain of the IRS 
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proteins associate with the tyrosine phosphorylated juxtamembrane domain of the IR or IGF-

1R  after binding of the receptor to insulin or IGF-1. Upon recruitment of IRS to this motif of 

the receptor, the IRS proteins get phosphorylated at the tyrosine residues (Cheatham and 

Kahn, 1995; White, 2002). Then Src homology(SH)2 domain containing proteins bind to the 

phosphotyrosine motifes of the IRS (Yenush and White, 1997).  

Unique for IRS-2 is the KLRB domain which attaches to the phosphorylated kinase 

regulatory loop of the β-subunit of the IR (Sawka-Verhelle et al., 1997; Sawka-Verhelle et al., 

1996).  

Binding of insulin to the IR causes tyrosine and serine phosphorylation of IRS-1 (Gual, Le 

Marchand-Brustel, and Tanti 2005). The phosphorylation pattern of IRS-1 induces differential 

regulation of the downstream signaling proteins because the phosphorylation of the serine 

residues leads to activation or inactivation of IRS-1 (Weigert et al. 2005; Weigert et al. 2008). 

The regulation of IRS-1 action is dependent on phosphorylated serine sites (Herschkovitz et 

al. 2007) and specific timing of phosphorylation (Weigert et al. 2005; Weigert et al. 2008). 

The most favoured model of the role of phosphorylation timing is that serine residues 

positively regulating IRS-1 function are phosphorylated first. This supports IRS-1 action and 

protect it from negative regulation via phosphorylation of inhibitory serine residues (Weigert 

et al. 2005; Weigert et al. 2008; Gual, Le Marchand-Brustel, and Tanti 2005; Luo et al. 2007). 

Additionally, serine phosphorylation of IRS-1 might probably entrance or hamper the 

association with tyrosine phosphatases. Phosphorylation of Ser1223 might alter the 

recruitment of IRS-1 to the protein tyrosine phosphatase Src homology domain 2 (SH2)-

containing phosphatase-2 (SHP-2). The mutation of Ser1223 to alanine caused prevention of 

phosphorylation and increased association with SHP-2. Furthermore tyrosine 

phosphorylation of IRS-1 upon stimulation with insulin was decreased as well as the 

association of IRS-1 with the p85 regulatory subunit of the phosphatidylinositol-3-kinase (Luo 

et al. 2005).  

This model of IRS-1 phosphorylation is also supported by the localization of serine residues 

with positive and negative effect. Serine sites with inhibitory effect are located near to the 

PTB domain, therefore these sites are phosphorylated later than the residues with positive 

effect after induction of the insulin signaling pathway. In detail, the phosphorylation of the 

serine residues near the PTB domain causes disruption of the association of IRS-1 to IR 

leading to degradation of IRS-1. Phosphorylated inhibitory serine residues at the C-terminus 

of IRS-1 induces its disassociation and inactivation of the  phoshatidylinositide (PI)3-kinase 

(Gual, Le Marchand-Brustel, and Tanti 2005; Boura-Halfon and Zick 2009). These serine 

sites are phosphorylated by different serine kinases such as p70S6 (S6K) kinase, target of 

rapamycin (mTor) and PKCzeta (Boura-Halfon and Zick 2009; Herschkovitz et al. 2007; Gual 

et al. 2003). 
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Inhibitory serine sites of IRS proteins are phosphorylated by c-Jun N-terminal kinase (JNK), 

SIK-2, mTor/S6K, extracellular signal regulated kinase (ERK) and κB kinase β (IKKβ) which 

might result in insulin and IGF-1 resistance (Boura-Halfon and Zick 2009; Herschkovitz et al. 

2007). The serine phosphorylation residues of IRS-2 are not fully understood. JNK 

phosphorylates Thr348 located near the PTB domain of IRS-2 which might cause 

disassociation of IRS-2 from the IR or IGF-1R (Solinas et al. 2006). Additionally JNK 

phosphorylates Ser488 which supports the phosphorylation of Ser484 via glycogen synthase 

kinase (GSK)-3β. This disturbs the insulin or IGF-1 signaling pathway (Sharfi and Eldar-

Finkelmann, 2008). 

 
Figure 2: Insulin and insulin-like growth factor-1 signaling pathway.  
Binding of insulin or insulin-like growth factor-1 (IGF-1) to the insulin-or IGF-1 receptor (IR or IGF-1R) induces a 
conformational change of the receptor leading to autophosphorylation. This is followed by recruitment and 
activation of insulin receptor substrates 1 to 4 (IRS-1 to -4). Then the MAP kinase (MAPK) and the 
Phosphatidylinositide(PI)3 kinase (PI3K) signaling are activated leading to inhibition of FoxO1 mediated 
transcription (modified, Moll et al., 2011). 
 

 

1.1.3. Phosphatidylinositide(PI)3 kinase signaling 

The mammalian PI3 kinase family is subclassified into classes I to III. Class I is additionally 

subdivided into Ia and Ib (Vanhaesbroeck et al., 2005). These kinases phosphorylate the 

3´hydroxyl position of phosphatidyl-myo-inositol lipids. The PI3K activated after insulin or 

IGF-1 stimulus belongs to the class Ia kinases (Fruman et al., 1998). This kinase shows a 
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heterodimer structure with a catalytic subunit of 110 kDa which is noncovalently associated 

with a 50-, 55- or 85 kDa regulatory subunit. After binding of insulin or IGF-1 to the IR or IGF-

1R and association of IRS to the receptor, the PI3K is recruited to the membrane by the p85 

regulatory subunit. In addition, growth factor binding protein (GRB)-2 and the SH2-

Phosphatase(SHP)2 are recruited. After activation of PI3 kinase phosphatidylinositide-

diphosphate (PI4,5P) is phosphorylated to generate phosphatidylinositide-triphosphate 

(PI3,4,5P). This phosphorylation is reversible via phosphatase and tensin homolog deleted on 

chromosome ten (PTEN) (Fig. 1). The production of PI3,4,5P induces activation of the 

downstream signaling targets phosphoinositide-dependent protein kinase (PDK) and protein 

kinase B (PKB, AKT). PDK has two isoforms called PDK-1 and PDK-2. PDK-1 

phosphorylates AKT at the residue Thr308 leading to a partial activation of AKT. To entirely 

activate AKT it has to be phosphorylated at Ser473 (Stokoe et al., 1997; Alessi et al., 1996; 

Lawlor and Alessi, 2001).  

AKT is a serine/threonine kinase which is about 57 kDa. Three isoforms of AKT, AKT1 to 

AKT3 exist which show a conserved structure, a PH domain at the N-terminus, a kinase 

domain and a regulatory subunit at the C-terminus (Hreasko et al., 2003). After AKT is 

activated, it phosphorylates tuberin 2 (TSC-2) which can form a heterodimer with TSC-2 and 

contains GTPase activity that inhibits the GTPase RAS homolog enriched in the brain 

(RHEB). The consequence of phosphorylation by AKT is the accumulation of the RHEB-GTP 

complex which activates mTOR (Astrinidis and Henske, 2005; Hay et al., 2004). mTor and 

PDK-1 phosphorylate and activate S6K.  

IGF-1 controls protein synthesis via regulation of intrinsic activity and binding properties of 

the translation initiation and elogantion factors eIFs and eEFs. Phosphorylation of 4E binding 

protein (4E-BP) via mTor results in the release of eukaryotic initiation factor 4E (eIF4E). 

These factors form a complex which activates S6K and facilitates translation initiation. S6K 

phosphorylates and activates the eukaryotic elongation factor 2 (eEF2) leading to release of 

eEF2 and initiation of elongation (Nojima et al., 2003; Oshiro et al., 2004). 

The glycogen synthase kinase(GSK)-3β and Bcl-2/Bcl-X-associated death promoter (BAD) 

are also regulated by the IR and IGF-1R signaling pathway. GSK-3β is a major tau kinase 

and BAD, a proapoptotic factor, which both become inactivated upon insulin or IGF-1 

stimulus (Song et al., 2005).  

BAD mainly interacts with the apoptose suppressor Bcl-XL via its BH3 homology domain but 

also with Bcl-2 (Yang et al., 1995; Zha et al., 1997). The phosphorylation of BAD regulates 

this interaction. After phosphorylation BAD associates with 14-3-3 and releases its binding 

partner Bcl-XL or Bcl2 to prevent apoptosis. The main phosphorylation sites of BAD to 

regulate apoptosis are Ser112 (Zha et al., 1996), Ser136 (Zha et al., 1996), Ser155 (Licano 

et al., 2000; Tan et al., 2000) and Ser170 (Dramsi et al., 2002). Several kinases are able to 
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phosphorylate BAD such as AKT (Datta et al., 1997), PI3K (Pastorino et al., 1999), PKA 

(Harada et al., 1999), PKC (Bertolotto et al., 2000) and Rsk also known as MAPK-activated 

protein 1 (MAPKAP-K1) (Bertolotto et al., 2000). The phosphorylation sites Ser112 and 

Ser136 of BAD regulate the binding to 14-3-3 (Zha et al., 1996) and phosphorylation of 

Ser155 leads to dissociation of BAD from Bcl-XL (Licano et al., 2000). Thus IR/IGF-1R 

signaling pathway inhibits apoptosis via BAD phosphorylation and the release of 

antiapoptotic factors (Schubert et al., 2003). 

 

 

1.1.4. Forkhead box O transcription factors 

After insulin or IGF-1 stimulus AKT becomes activated and phosphorylates the forkhead box 

O transcription factor (FoxO). This event causes the binding of FoxO to 14-3-3 followed by 

export out of the nucleus and FoxO mediated transcription is inhibited. So far known FoxOs 

regulate transcription of genes involved in metabolism, growth, development, ageing and 

apoptosis (Patridge and Bruning, 2008). In Caenorhabditis elegans and Drosophila 

melanogaster a single FoxO transcription factor was identified, abnormal dauer formation 

protein 16 (DAF-16), and dFOXO in D. melanogaster. The mammalian FoxO protein family 

contains 4 members, FoxO1, FoxO3a, FoxO4 and FoxO6. (Clark et al., 1993).  

The FoxO1 gene was discovered during studies of the t(2,13)(q35;q14) and t(1.13)(p36;q14) 

chromosomal translocations which occur in alveolar rhabdomyosarcoma. Meanwhile FoxO1 

was called forkhead in rhabdomyosarcomas (FKHR) (Galili et al., 1993). FoxO3a, originally 

termed as forkhead in rhabdomyosarcomas-like protein 1 (FKHRL1) was found during the 

analysis of the chromosomal translocation t(6;11)(q21;q23) in leukaemia (Hillion et al., 1997) 

and cDNA library screening (Anderson et al., 1998). FoxO4 which was first called acute 

leukemia fusion gene located in chromosome X (AFX) was identified during the analysis of 

the chromosomal translocation t(X;11)(q12;q23) was analyzed (Borkhardt et al., 1997; Corral 

et al., 1993; Parry et al., 1994). FoxO6 was characterized by Jacobs and coworkers in 2003 

(Jacobs et al., 2003). 
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Figure 3: Structure of forkhead box O transcription factor DNA binding domain. 
Amino acids of the conserved DNA binding domain of the FoxO family are showen. Displayed are FoxO1, 
FoxO3a, FoxO4, FoxO6, DAF-16, the orthologue of FoxO in C.elegans, and FoxA1 also known as hepatocyte 
nuclear factor 3-alpha which is liver-specific and a member of the forkhead family (Van der Vos and Coffer; 2011). 
 

FoxOs contain a nuclear localization signal, a nuclear export signal and a transactivation 

domain. Additionally, FoxOs share the same conserved DNA binding domain, the forkhead 

domain (FKHR) and recognize the core binding motif sequence: TTGTTTAC (Clark et al., 

1993; Furayama et al., 2000). The DNA binding domain is composed of three α-helices H1 to 

H3, three β-strands S1 to S3 as well as two wing-like loops W1 and W2 (Fig. 3) (Boura et 

al., 2007). The consensus FoxO-recognized element (FRE) was identified during high-affinity 

DNA-binding studies and contains the sequence (G/C)(T/A)AA(C/T)AA (Biggs et al., 1999; 

Furayama et al., 2000; Gilley et al., 2003). This FRE sequence exists in the promoter region 

of e.g. Fas ligand (FasL) (Brunet et al., 1999), insulin-like growth factor binding protein 1 

(IGFBP1) (Barthel et al., 2005; Cichy eta l., 1998), Bim (Dijikers, Medema, Lammers et al., 

2000), p27KIP1 (Dijikers, Medema, Pals et al., 2000; Medema et al., 2000) and manganese 

dependent superoxide dismutase (MnSOD) (Kops et al., 2002). 

FoxO1, FoxO3a and FoxO4 are ubiquitously expressed but FoxO6 is only present in the 

brain (Furayama et al., 2000; Jacob et al., 2003). The FoxO transcription factors show 

distinct expression patterns in the murine brain. FoxO1 is mainly expressed in the striatum, 

dentate gyrus and ventral hippocampus. FoxO3a compared to FoxO1 is more diffusely 

expressed e.g. in cortex, cerebellum and hippocampus. FoxO6 is highly expressed in 

nucleus accumbens, claustrum, amygdale-hippocampal area and hippocampus. (Hoekman 

et al., 2006). 
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1.1.4.1. Regulation of FoxO mediated transcription 

Post-translational modifications of FoxO transcription factors regulate their activity. 

Phosphorylation of FoxOs mainly controls FoxO mediated transcription. AKT phosphorylates 

FoxO1 at Thr24, Ser256 and Ser319 (Biggs et al., 1999; Brunet et al., 1999; Kops et al., 

1999; Rena et al., 1999; Tang et al., 1999) and FoxO3a becomes phosphorylated at Thr32, 

Ser253 and Ser315 (Brunet et al., 1997). After insulin or IGF-1 stimulation these sites get 

phosphorylated via AKT and FoxO interacts with 14-3-3 and translocates out of the nucleus 

which inactivates FoxO mediated transcription (Brunet et al., 1999). FoxOs are also 

phosphorylated by other kinases which are dependent on certain stimuli (review in Huang 

and Tindall, 2007). E.g. FoxO1 can additionally be phosphorylated by dual-specificity 

tyrosine-phosphorylated and regulated kinase (DYRK). DYRK phosphorylates FoxO1 at 

Ser329 (Woods et al., 2001). This phosphorylation inhibits FoxO1 activity (Rena et al., 2002).  

Furthermore FoxOs are phosphorylated via glucocorticoid-inducible kinases (SGKs) (Brunet 

et al., 2001). Similar to AKT these kinases are serine/threonine kinases which are regulated 

by the PI3K pathway the same way AKT is regulated. Upon activation SGKs translocate into 

the nucleus and phosphoylates FoxO3a which in turn inactivates FoxO3a. SGK1 

predominantly phosphorylates Ser319 while AKT prefers Ser256 of FoxO3a (Brunet et al., 

2001). 

In addition activation of the C-Jun-N-Terminal kinase (JNK) upon oxidative stress leads to 

nuclear localization of FoxO3a (Lehtinen et al., 2006) (Fig. 4). 

Another post-translational modification of FoxOs is ubiquitylation after phosphorylation by 

AKT, ERK-1/2 and IκB kinase (IKK). FoxO1 is polyubiquitylated by Skp2, the substrate-

binding component of the Skp1/culin 1/F-box protein (SCFSkp2) E3 ligase complex upon 

phosphorylation of Ser256 via AKT or it is ubiquitylated by murine double minute (MDM2) 

after phosphorylation by ERK-1/2 (Huang et al., 2005, Yang, Zong et al., 2008; Yang, Dolloff 

et al., 2008; Fu et al., 2009). 

FoxO1 and FoxO3a have to be polyubiquitylated for degradation in contrast to FoxO4 which 

gets monoubiquitylated for degradation (van der Horst et al., 2006).  

Furthermore FoxO transcription factors are methylated. FoxO1 is methylated at Arg248 and 

Arg250 located in the AKT phosphorylation motif. This methylation is mediated by the protein 

arginine N-terminal methyltransferase 1 (PRMT1) and protects FoxO1 from being 

phosphorylated by AKT and nuclear exclusion (Yamaga et al., 2008). 

Finally FoxO transcription factors are acetylated. CBP and p300 with their interacting 

proteins like CBP- and p300-associated factor (PCAF) have intrinsic histone acetyl-

transferase activity. Hence CBP and p300 can promote transcription through histone 

acetylation or immediately regulate transcription by acetylation of the transcription factor itself 

(Li et al., 2002). Acetylation of FoxO decreases DNA binding and promotes phosphorylation 
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of FoxO at Ser256 via AKT which inactivates FoxO. However the recruitment of CBP and 

p300 to the promoter by FoxO in addition mediates the acetylation of histones and might 

facilitate initiation of transcription (Daitoku et al., 2004; Matsuzaki et al., 2005). Deacetylation 

of FoxO is performed by silent information regulator 1 (SIRT1) which is a nicotinamide 

adenine dinucleotide(NAD)-dependent histone deacetylase. It has been shown that FoxOs 

are deacetylated by SIRT2 and -3. These deacetylases bind to acetylated FoxOs upon stress 

stimuli and induce deacetylation to control FoxO mediated transcription (Brunet et al., 2004; 

Kitamura et al., 2005). 

 

Figure 4: Phosphorylation sites of the FoxO transcription factors. 
The structure of FoxOs consists of a forkhead domain (FKH), a nuclear localization signal (NLS), a nuclear export 
signal (NES) and a transactivation domain (TA). Kinases which phosphorylate FoxOs are shown above. The 
exact phosphorylation sites are presented beneath the FoxO structure (modified, van der Horst and Burgering, 
2007) 
 

 

1.1.5. Function of FoxOs 

FoxOs are involved in metabolism, cell cycle control and stress resistance. Besides 

triggering glucose uptake insulin controls FoxO mediated transcription of 

phosphoenolypyruvate carboxykinase (PEPCK) and glucose-6-phosphatase which are part 

of the gluconeogenesis machinery. In general FoxO1 suppresses transcription of the genes 

which are involved in glycolysis and gluconeogenesis (Barthel at al., 2001; Nakae et al., 

2001; Zhang et al., 2006).  

FoxOs additionally induce cell cycle arrest. These transcription factors regulate the G1-S and 

G2-M phase of the cell cycle. Cell cycle is adjusted by several cyclins and cyclin-dependent 

kinases (CDKs). CDKs phosphorylate and thereby regulate different targets which play a role 

in cell cycle progression. An important inhibitor of CDKs is p27, a member of the Cip/Kip 

protein family. p27, p21 and p57 bind to cyclins and CDKs complexes and inhibit their action. 

Targets of p27 are cyclin A-, cyclin D- and cyclin E-CDK complexes (review in Besson et al., 

2008). The expression of p27 is regulated by FoxOs. Other cell cycle inhibitors regulated by 

FoxOs are p130Rb2, cyclin D1 and cyclin G2 (Medema et al., 2000; Kops et al., 2002; 

Martinez-Gac et al., 2004; Schmidt et al., 2002) as well as p15 and p19 which are also CDK 

inhibitors (Besson et al., 2008). Under fasting conditions the insulin signaling cascade is 

inactive but FoxOs are still active and can promote cell cycle arrest and quiescence (Kops et 

al., 2002). Therefore FoxOs promote survival under fasting conditions. This is comparable to 
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C.elegans dauer formation which is induced by DAF-16. Furthermore FoxOs regulate 

transcription of the insulin receptor and IRS2 to guarantee a fast adaptation to higher glucose 

levels (Puig and Tjian, 2005; review in van der Horst and Burgering, 2007).   

Another function of FoxOs is the regulation of oxidative stress response. In response to 

oxidative stress which occurs under fasting conditions when ATP production has to be 

promoted via fatty-acid oxidation. FoxOs counteract the oxidative stress induced reactive 

oxygen species (ROS) via increasing expression of antioxidant enzymes. Such enzymes are 

catalases (Nemoto and Finkel, 2002) and manganese superoxide dismutase (MnSOD) (Kops 

et al., 2002). In addition FoxOs promote the upregulate the fatty acyl-CoA carriers, sterol 

carrier protein-x (SCPx) and sterol carrier protein-2 (SCP2) (Dansen et al., 2004). 

 

 

1.1.5. MAPK signaling 

In addition to the PI3 kinase signaling pathway insulin or IGF-1 can induce the activation of 

the mitogen activated protein kinase (MAPK) cascade. Insulin or IGF-1 bind to the IR or IGF-

1R leading to authophosphorylation of the receptor, recruitment and phosphorylation of IRS 

followed by the binding of IRS to the SH2 domain of downstream signaling proteins like 

GRB-2 (White, 2000). Next GRB-2 binds to son of sevenless (SOS) which is a GDP/GTP 

exchange factor. Then the small G-protein rat sarcoma (RAS) is activated and recruits c-raf 

leukemia viral oncogene (CRAF) to the membrane which activates MAP-ERK kinases (MEK) 

and finally the extracellular signal-regulated kinase (ERK)-1/-2 (Kolch, 2000). Furthermore 

ERK-1/-2 controls phosphorylation of FBJ osteosarcoma oncogene (FOS) by p90RSK (RSK: 

ribosomal protein S6 kinase) as well as phosphorylation of ETS oncogene family (ELK-1). 

The activity of ERK-1/-2 is involved in long-term potentiation and memory consolidation 

within the CNS (review in Sweatt, 2001). 

 

 

1.2. Alzheimer’s disease  

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and the 

most common form of dementia and to loss of cognitive abilities and finally to death (Citron, 

2002; Cole et al., 2007). AD was first discovered by Alois Alzheimer in 1906 (Alzheimer, 

1907). 

Characteristic for AD is the accumulation of intracellular neurofibrillar tangles (NFT) and 

extracellular amyloid plaques. The NFTs are composed of hyperphosphorylated tau proteins 

(Ross et al., 2005). Amyloid plaques mainly consist of aggregated amyloid-β (Aβ) peptides 

(Masters et al., 1985). The aggregation of Aβ might be the most important cause for 

neurodegeneration in the pathology of AD (Masters et al., 1985). 
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1.2.1. Pathology of Alzheimer´s disease 

Patients with AD show cognitive dysfunctions which are categorized into three subgroups: 

The first group of cognitive dysfunctions includes language disabilities, loss of memory and 

loss of executive functions like the ability to plan or to coordinate. The second group, the 

non-cognitive symptoms, include psychiatric symptoms and disturbances of behavior such as 

hallucinations and depression. The last group of cognitive dysfunctions are disturbed 

performing activities which are subdivided into instrumental and basic performing activities. 

Alzheimer’s disease progresses from mild cognitive impairment to severe dementia (Burns et 

al., 1990). 

AD is subdivided by the age of onset and the form of inheritance. Up to 6% of all AD patients 

develop the disease before the age of 65, so called early onset. Nearly 60% of these patients 

display the familial form of AD and from these cases about 13% inherited an autosomal 

dominant form of AD (Rocca et al., 1991; Campion et al., 1999). This form of AD is called 

familial Alzheimer´s disease (FAD) and starting at the age of 30 to 40 years. The late onset 

AD is developed by patients of 65 years or older. 

 

 

1.2.2. Hyperphosphorylation of tau 

In the human brain six isoforms of tau have been investigated. These isoforms result from 

alternative splicing of exons 2, 3 and 10. Both exons 2 and 3 partially encode the N-terminus 

of tau. In contrast exon 10 encodes the additional MTB (microtubule binding) domain. 

Consequently tau can consist of three or four MTB repeats (reviewed in Ballatore et al., 

2007; Goeders et al., 2006). The exact funtion of tau is not clearly understood yet. A possible 

function is the stabilization of microtubules and the regulation of transports along the axons 

(Götz et al., 2006). Tau is mainly found in axons of neurons (Hirokawa et al., 1996) but it 

might also be located in dendites of neuron (Ittner et al., 2010). 

Tau is phosphorylated at several sites by different kinases including cyclin-dependent kinase 

5 (Cdk5), c-Jun N-terminal kinase (JNK), protein kinase A (PKA), ERK1/2 and glycogen 

synthase kinase 3 (GSK3β). Abnormal high phosphorylation by these kinases is called 

“hyperphosphorylation” (Robertson et al., 1993; Hanger et al., 1992; Flaherty et al., 2000; 

Cho et al., 2004; Stoothoff et al., 2005). A major tau kinase is GSK3β. GSK3β is inactivated 

after phosphorylation of Akt at Ser9 and is dephosphorylated by PP2A the predominant tau 

phosphatase in the human brain. Tau is dephosphorylated by PP2A at Thr205, Thr212, 

Ser214, and Ser262 in vitro (Qian et al., 2010). This complex regulation might indicate the 

importance of the equilibrium of phosphorylation and dephosphorylation (Sontag et al., 1996; 

Liu et al., 2008; review in Milliward et al., 1999). The phosphorylation of tau particularly at 

Ser422 rescues tau from degradation (Guillozet-Bongaarts et al., 2006).  
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1.2.3. Generation of amyloid-β 

Amyloid-β is produced by endoproteolytic cleavage of the amyloid precursor protein (APP). 

APP is a type-1 integral membrane protein and was discovered in 1987 (Kang et al., 1987; 

Tanzi et al., 1987; Goldgaber et al., 1987, Robakis et al., 1987). APP consists of an N-

terminal extracellular domain and a smaller C-terminal domain located in the cytoplasma. 

Different APP splicing variants are distinguishable by length of the resulting protein, APP with 

a size of 751 or 770 amino acids (APP751 and APP770) are basically expressed in non-

neuronal tissue. APP with a size of 695 amino acids (APP695) mainly occurs in neurons 

(Kang and Muller-Hill, 1990). The function of APP and APP-like protein (APLP) are not well 

understood. These proteins might be involved in apoptosis, axonal transport and cell 

adhesion. APP and APLP are expressed in nearly all vertebrates and invertebrates (Zheng 

and Koo, 2006; Anliker and Muller, 2006; Cao and Sudhof, 2001). 

Maturation of APP includes N-glycosylation in the endoplasmatic reticulum and early Golgi 

network. N-glycosylated APP cannot be cleaved via secretases (Tomita et al., 1998). 

Trafficking within the Golgi network causes a change from N-glycosylation to O-glycosylation. 

Thereafter APP enters the sectretory pathway (Small and Gandy, 2006). 

APP is cleaved via the α-secretase ADAM9, ADAM10 (a disintegrin and metalloproteinase-

like 9 or 10) or TACE (tumour necrosis factor-alpha convertase) (also known as ADAM17) 

represents the “non-amyloidogenic pathway”. Additionally APP is processed by the β-

secretase BACE1 (β-site APP-cleaving enzyme) resulting in the “amyloidogenic pathway”.  

α-secretase cleaveage of APP leads to a C-terminal fragment C83 and soluble sAPPα. The 

γ-secretase, a complex formed by presenilin, nicastrin, Aph-1 and Pen-2 cleaves C83 and 

thereby generates p3 (~3 kDa) and APP-intracellular domain (AICD, ∼6kDa).  

Cleavage of APP by the β-secretase BACE1, a type 1 membrane protease, is the rate 

limiting step in the production of Aβ. This secretase cleaves APP at Asp+1 at the N-terminus 

which results in generation of soluble sAPPβ and the C-terminal fragment C99. Following this 

event C99 is cleaved via the γ-secretase releasing Aβ (4 kDa) and AICD. Aβ occurs mainly in 

two variants; Aβ40 ending at residue 40 and Aβ42 which ends at residue 42. The decision 

whether the α- or β-secretase cleaves APP is dependent on the competition between these 

enzymes. It has been shown that an increase of β-secretase cleavage of APP leads to a 

decreased α-secretase cleavage and vice versa (Vassar et al., 1999; Skovronsky et al., 

2007) (Fig. 5). 

In a healthy brain Aβ40 represents about ~90% of all Aβ peptides. The production of Aβ42 is 

less with ~5-10% (Walsh et al., 2007). The accumulation and aggregation of these Aβ42 

peptides is a major step in the formation of amyloid plaques (Iwatsubo et al., 1994). The ratio 

of Aβ42 to Aβ40 is used for diagnosis of AD (Haass et al., 2007). 



1. Introduction   

 15 

The aggregation of Aβ leads to the generation of several intermediates like Aβ monomers. 

These monomers are soluble and amphipathic with α-helical conformation mixture (Coles et 

al., 1998; Crescenzi et al., 2002). Aβ dimers have an hydrophobic core and are located 

intracellular in vivo (Roher et al., 1996). The small Aβ oligomers are thought to be cytotoxic 

compared to inert Aβ fibrils (Dahlgren et al., 2002; McLean et al., 1999; Cleary et al., 2005; 

Lesne et al., 2006). Furthermore Aβ-peptides form Aβ-derived diffusible ligands (ADDLs) 

without fibrillar structure. These ADDLs are neurotoxic at a size of about 17 to 42 kDa 

(Chromy et al., 2003; Klein, Stine, and Teplow, 2004; Lambert et al., 1998). Especially the 

levels of ADDLs are linked to cognitive impairments of patients suffering from AD 

(Georganopoulou et al., 2005). Aβ protofibrils which have a rod-like and flexible structure 

display the precursors of Aβ fibrils (Harper et al., 1999; Arimon et al., 2005; Harper et al., 

1997; Kheterpal et al., 2003; Walsh et al., 1997; Williams et al., 2005). These Aβ fibrils are 

insoluble and thermodynamically stable aggregates with a high content of β-sheets sheets 

(Ross and Poirier, 2005). The characteristic amyloid plaques are formed by extracellular 

aggregated Aβ fibrils (Muller-Hill and Beyreuther, 1989). As a defence mechanism plaques 

are beset with astrocytes, microglia and dystrophic dendrites (Selkoe, 2004).  

 

             
Figure 5: Processing of the amyloid precursor protein (APP). 
APP is a type 1 membrane protein and is cleaved by α- or β-secretase. In case of cleavage by the α-secretase  
sAPPα and C-terminal fragment C83 are generated. The γ-secretase cleaves C83 and P3 is produced. β-
secretase cleaves APP releasing the sAPPβ and C99 is produced. γ-secretase degrades C99 leading to 
generation of Aβ40 and Aβ42 (modified Moll et al., 2011). 
 

 

1.2.4. Degradation and clearance of amyloid-β 

Aβ is transported and degraded out of the brain via a receptor-mediated process or by 

phagocytosis via macroglia. Insulin degrading enzyme (IDE), Neprilysin (NEP), endothelin 

converting enzyme (ECE) and angiotensin converting enzyme (ACE) are involved in 

degradation of Aβ. IDE is a mainly cytosolic, a 110kDa zinc metallo-endopeptidase which 
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plays a role in degradation of different peptides like insulin, transforming growth factor α 

(TGFα), glucagon, Aβ and AICD (Duckworth et al., 1998).  

It has been shown that IDE knockout mice display increased levels of endogenous Aβ and 

AICD in the brain which suggests a role of IDE in Aβ clearance (Selkoe, 2001; Farris et al., 

2003). Consistently the overexpression of IDE in APPsw expressing mice showed a up to 

50% reduction of Aβ plaques as well as reduction of Aβ40 and Aβ42 monomer levels. 

Furthermore it has been shown that a polymorphism of IDE might be involved in late onset 

AD (Leissring et al., 2003; Bertram and Tanzi, 2004). The second enzyme facilitating Aβ 

degradation is NEP, a type 2 membrane protein with extracellular catalytic domain. The 

function of NEP is similar to the function of IDE. It degrades peptides like neuropeptide Y and 

ekephalin (Turner et al., 2001). Further studies showed that the intracerebral injection of a 

lentiviral vector transducing the human NEP gene in a transgenic mouse model of cerebral 

amyloidosis leads to an up to 50% reduction of cortical amyloid deposits (Marr et al., 2003).  

The other pathway of Aβ clearance is the receptor-mediated transport across the blood brain 

barrier (BBB). This transport is promoted by low-density lipoprotein receptor-related protein 

(LRP) (Zlokovic, 2004). This transport requires the association of LRP to the LRP ligands 

apoE and α2Macroglobulin (α2M). After crossing the BBB Aβ is transported to peripheral 

tissue e.g. liver for degradation (Tanzi, Moir and Wagner, 2004). 

The exact toxic effect of Aβ is still under investigation but might be promoted by the 

generation of membrane disruption, ion channel, induction of apoptosis, inflammation and 

oxidative stress (Hardy and Selkoe, 2002; Nakagawa et al., 2000; Soto, 2003; Roberson and 

Mucke, 2006). 

 

 

1.2.5. Genetic risk factors of Alzheimer´s disease 

The APP gene is located on chromosome 21 and patients suffering from trisomy 21 carrying 

an additional APP allel have an increased risk to develop Alzheimer´s disease. The 

duplication of the APP gene can cause Alzheimer-like pathologies, cerebral amyloid and 

angiopathy (Rovelet-Lecrux et al., 2006; Sleegers et al., 2006). Furthermore certain 

mutations (e.g. APPsw) in the APP gene are risk factors for developing Alzheimer´s disease. 

Patients with these mutations suffer from so called early onset familial Alzheimer´s disease 

(Vassar, 2004; Bertram and Tanzi, 2005). In addition to alterations in the APP gene, 

mutations in presenilin 1 and presenilin 2 may result in familial early-onset AD as well 

(Tabaton et al., 2007; Sherrington et al., 1996; Tanzi et al., 1992; Schnellenberg et al., 1992; 

Van Broeckhoven et al., 1992, St George-Hyslop et al., 1992; Rogaev et al., 1995). Early-

onset AD usually starts to be symptomatic at the age of 43 to 62 years (Tanzi et al., 1987; 

Campion et al., 1996; Goate, 1997). Mutations in the APP gene can cause changes in 
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processing of APP leading to higher Aβ generation. The presenilin 1 gene is located on 

chromosome 14 and it is part of the γ-secretase complex (1.2.3.). The detailed funtion of the 

transmembrane protein presenilin 1 is not completely understood. The homologue of 

presenilin 1 in C. elegans is SEL-12 (Van Broekhoven, 1995; Levitanand Greenwald, 1995). 

SEL-12 plays a role during the development of C.elegans. The knockout of presenilin 1 gene 

in mice leads to impaired neurogenesis, neuronal cell death and developmental defects in 

skeletal formation. These mice die soon after birth (Wong et al., 1997; Shen et al., 1997). 

Mutation of the presenilin 1 gene, a gain of function mutation causes up to 80% of familial 

AD. The presenilin 2 gene is located on chromosome 1 (Levy-Lahad et al., 1995). Mutations 

in this gene result in AD at the age of 40 to 88 years of age (Goate, 1997). Presenilin 1 and 2 

present 67% homologeous sequence and might have similar functions but they are not able 

to compensate for each other. The mutations of these three genes cause an increased 

generation of the toxic Aβ42 (Jarrett et al., 1993; Duff et al., 1996; Scheuner et al., 1996; 

Citron et al., 1997).  

Furthermore certain variants of Apolipoprotein E (ApoE) increase the risk for AD. ApoE 

consists of three allelic forms ε2, ε3 and ε4. Allelic form ε2 is associated with the lowest risk 

for late onset Alzheimer´s disease (LOAD). In contrast ε4 increases the risk to develop LOAD 

up to 15-fold (Farrer et al., 1997). ApoE is involved in regulation of Aβ peptide levels in the 

brain and the allelic form ε4 might promote aggregation of Aβ by increasing the amount of 

Aβ40 and reducing Aβ clearance (Holtzman, 2001; Cedazo-Minguez, 2007). 

 

 

1.2.6. IR/IGF-1R signaling in Alzheimer’s disease 

Several clinical studies showed a link between AD and type 2 diabetes (Janson et al. 2004; 

Ott et al. 1999; Stewart and Liolitsa 1999; Lovestone 1999). The association of impaired 

insulin secretion, glucose intolerance and the risk to develop AD was analysed in several 

studies (Ott et al. 1996; Luchsinger et al. 2004; Ronnemaa et al. 2008). In addition patients 

with AD have a higher probability to develop impaired glucose tolerance and type 2 diabetes 

(Janson et al. 2004).  

The IR/IGF-1R signaling pathway is disprupted in the central nervous system of patients 

suffering from AD (Frolich et al. 1998; Frolich et al. 1999; Moloney et al. 2010). The 

measurement of mRNA levels of insulin and IR in the CNS of AD patients shows a reduction 

of 80% compared to healthy patients (Moloney et al. 2010; Rivera et al. 2005). Furthermore 

the IGF-1R expression is reduced in brains of patients with AD compared to controls 

(Moloney et al. 2010; Rivera et al. 2005). In contrast levels of IGF-1 in the serum of AD 

patients are increased which might indicate IGF-1 resistance in AD (Rivera et al. 2005; Vardy 

et al. 2007). Additionally the expression of IRS-1 and IRS-2 is lower in brains of AD patients 
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compared to healthy brains. The phosphorylation level of IRS-1 at Ser312 and Ser616 is 

increased as well. This inhibits the action of IRS-1 leading to an inactive IR/IGF-1R signaling 

pathway (1.1.2.). Because of these observations AD is also called “brain type” diabetes 

(Pilcher 2006). Until now it is not known whether this brain specific insulin and IGF-1 

resistance is a cause or consequence of AD.  

The knockout of IGF-1 in mice shows an increase of tau phosphorylation at Ser202 and 

Ser396 in the presence of unaltered tau expression (Cheng et al. 2005). The brain-specific 

knockout of the IR, called NIRKO mice, presents hyperphosphorylation of tau at Thr231 

(Schubert et al. 2004). In contrast knockout of IRS-2 displays hyperphosphorylation at 

Ser202 (Schubert et al. 2003). These differences in phosphorylation of tau might indicate the 

requirement of other factors than insulin actively influencing tau phosphorylation e.g. 

hyperglycemia or hyperinsulinemia (Freude et al., 2009).  

Tg2576 mice are well established mice models of AD. These mice express the Swedish 

mutation of APP (APPsw) (Vassaret et al. 1999; De Strooper 2003; Holsinger et al. 2002; 

Sinha et al. 1999; Harada et al. 2006). The knockout of IRS-2 (IRS-2-/-) or the neuron specific 

IGF-1R knockout (nIGF-1R-/-) in Tg2576 mice reduces or dealys Aβ accumulation and 

rescues these animals from premature death (Freude et al. 2009). 

The clearance of Aβ is affected by the IR/IGF-1R signaling pathway. It has been shown that 

the IR/IGF-1R signaling pathway induces the expression of IDE, one of the major enzymes 

involved in Aβ degradation (Zhao et al. 2004).  

 

 

1.2.7. FoxO action in Alzheimer’s disease 

AD is linked to oxidative stress inducing activation of different signaling pathways and 

oxidative damage (Markesbery and Carney 1999; Beal 2002). Studies in a D. melanogaster 

AD model indicate that oxidative stress might be the main cause for neurodegeneration 

(Dias-Santagata et al. 2007). Oxidative stress is associated with increased JNK signaling 

which leads to insulin resistance (Ozcan et al. 2004). Activated JNK induces activation of the 

γ-secretase which in turn increases Aβ-peptide generation (Shen et al. 2008) and Aβ 

accumulation is linked to the formation of hydrogen peroxide (Tabner et al. 2005). The brains 

of patients with AD show an increased expression of nitric oxide synthase 1-3 and NADPH 

oxidase 1 and 3. These play a role in generation of reactive nitrogen and oxygen species (de 

la Monte and Wands 2006). Consistingly, AD brains display and increased lipid peroxidation 

(Montine et al. 2002). 

Oxidative stress induces FoxO-mediated transcription of target genes like manganese 

superoxide dismutase (MnSOD) and MnSOD is involved in protection of the brain against 

oxidative stress in several tissues and cell types. 
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In C. elegans it has been shown that the knockdown of DAF-2, the orthologue of the 

mammalian IR and IGF-1R, decreases toxicity of Aβ42 (Cohen et al. 2006). DAF-16 and heat 

shock transcription factor 1 (HSF-1) both act downstream of the signaling pathway and are 

involved in the reduction of Aβ42 induced damage (Hsu, Murphy, and Kenyon 2003; 

Birkenkamp and Coffer 2003; Cohen et al. 2006). A model of detoxification of Aβ42 contains 

two mechanisms: The first mechanism describes the function HSF-1 in disaggregation of 

neurotoxic Aβ-oligomers and degradation. The second mechanism predicts DAF-16 to 

regulate Aβ hyperaggregation because aggregates with high molecular weight are less toxic 

compared to low molecular mass aggregates with high toxicity (Fig. 6) (Cohen et al. 2006).  

Further studied have shown Aβ hyperaggregation as a mechanism of Aβ detoxification in an 

IGF-1 resistant mouse model of AD (Cohen et al. 2009). 

 

 
 
Figure 6: Aβ detoxification mechanism via HSF-1 and DAF-16 
Aβ peptides form toxic aggregates with low molecular mass (5-I). Then aggregates are identified and 
disaggregated (5-II). The products become rapidly degraded (5-V). This mechanism is preferred and promoted by 
HSF-1 (5-A) and inhibited by DAF-2 (5-C). Whether this mechanism is overloaded a second mechanism promotes 
hyperaggregation to form high molecular mass aggregates with low toxicity (5-III). This mechanism is advanced 
by DAF-16 (5-B) and inhibited by DAF-2 (5-D). These high molecular mass aggregates can be disaggregated and 
degraded via the HSF-1 controlled mechanism (5-IV and 5-V) or are secreted to the extracellular matrix (5-Vi) 
(Cohen et al., 2006). 
 

 

1.3. Mouse models 

The current study analyses the role of FoxO1 in the neurodegenerative Alzheimer´s disease, 

because FoxO1 is strongly expressed in the hippocampus which is mainly affected by AD. 
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Therefore, influence of a constitutively active and the dominant negative form of FoxO1 in a 

mouse model of AD, Tg2576, was investigated. In order to achieve nerve specifity the 

Cre/loxP system under the neuron specific synapsin 1 promoter was used in the present 

study.  

 

 

1.3.1. Constitutive active and dominant negative forms of FoxO1  

The constitutive active form of FoxO1 displays mutations within the three AKT 

phosphorylation sites Thr24, Ser256 and Ser319 (Biggs et al., 1999; Brunet et al., 1999; 

Kops et al., 1999; Rena et al., 1999; Tang et al., 1999). Thr24 is substituted by Ala24, 

Ser256 is replaced by Asp256 and Ser319 by Ala319. This form of FoxO1 is called 

FoxO1ADA and cannot be phosphorylated by AKT resulting in constitutively nuclear 

expression. The other form is a dominant negative variant of FoxO1 harbouring a deletion of 

the nuclear export signal and the transactivation domain. This form still binds to the traget 

promoter region, but cannot mediate transcription of its target genes and is called 

FoxO1∆256 or FoxO1DN.  

To induce site specific DNA recombination the Cre/loxP system was used. This system was 

first described in the bacteriophage P1. Necessary for this system is the 34 bp DNA 

sequence with two 13 bp inverted repeats and the asymmetric 8 bp space region called locus 

of X-over in P1 (loxP). This sequence targets the site of recombination. In addition the Cre 

recombinase, a 343 amino acid monomeric protein, is required for this system. For the in 

vivo study mouse lines carrying the loxP site flanked stop cassette followed by the FoxO1 

gene (FoxO1ADA or FoxO1DN) in the Rosa26 locus were used (Fig. 7). The other mouse 

lines encode the tissue or celltype specific Cre recombinase. In this study the Synapsin 1 

promoter driven Cre recombinase was used. 
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Figure 7: Cre/loxP targeting strategy for the FoxO1ADA and FoxO1DN expression in neurons. 
The upper panel presents the ROSA FoxO1mutant targeting vector which contains the splice acceptor (SA), the 
pCMV promoter region (CAG), the loxP sites (tringles) flanked neomycin resistance gene (NeoR) and westphale 
stop cassette (WSS), the FoxO1 gene (FoxO1∆256 or FoxO1ADA) which are followed by the FRT site flanked 
internal ribosomal entry site (IRES) and enhanced green fluorescent protein (eGFP). After homologous 
recombination this region is inserted into the Rosa26 locus of the mouse model (lower panel). 
 

 

1.3.2. Synapsin 1 promoter driven expression of the Cre recombinase 

Synapsin is a neuronal phosphoprotein linked to the membrane of synaptic vesicles. It binds 

to the cytosceleton and is involved in the release of neurotransmitters. The protein family of 

synapsin is subdivided into four proteins. These result from alternative splicing of two genes 

(Sudhof et al., 1989). In contrast to other vesicle bound proteins synapsins are first 

peripheral proteins rather than integral membrane proteins and in non-neuronal tissue no 

homologoues proteins occur. This indicates that synapsin proteins are neuron specific. In a 

previous study it has been shown that the injection of synapsin 1 into Xenopus blastomeres 

promotes the development of neuromuscular synapses (Lu et al., 1992; Valtorta et al., 1995). 

Another study concerning the function of synapsin 1 showed that embryonic hippocampal 

neurons of synapsin 1-deficient mice present an outgrowth of predendritic neurites and 

retarded axons. In addition the formation of synapses was delayed. These results show 

evidence for the role of synapsin I in axogenesis and synaptogenesis (Chin et al., 1995). The 

previous use of synapsin 1 promoter driven Cre recombinase (SynCre) in mouse models 

revealed an expression pattern of the Cre recombinase in cortical and spinal cord neurons as 

well as  high expression in the hippocampus (Zhu et al., 2001). Because of this predominant 

expression in the hippocampus the synapsin 1 promoter driven Cre recombinase is a useful 

model to generate neuronal specific expression of the gene of interest.  
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1.3.3. Tg2576, a model for Alzheimer´s disease 

Different mutations cause AD (1.2.5.). The mouse model Tg2576 overexpresses the human 

APP (695 amino acids) with the Swedish mutation which consists of a substitution of Lys670 

to Asn and Met671 to Leu. This mutation was first discovered in a Swedish family suffering 

from FAD (sw). For this reason this mutation was named the Swedish mutation (APPsw). 

This mouse model displays age-dependent memory impairements which start at the age of 

40 weeks. Additionally, these mice present histopathological characteristics of AD like 

neurotic dystrophy, astrogliosis, reactive microgliosis, formation of amyloid plaques and to 

less extend abnormal tau phosphorylation formation of amyloid plaques (Hsiao et al., 1996; 

Irizarry et al., 1997; Frautschy et al., 1998).  

The human APPsw gene was cloned into the open reading frame of the hamster prion 

protein cosmid vector where the expression of APPsw is driven by the hamster prion protein 

gene promoter. This vector was then used to generate the Tg2576 mice. The genetic 

background of these mice affects mortality. Tg2576 mice in a clear C57BL/6 background die 

within the first months of life which complicates the anaylsis of amyloid accumulation 

(Carlosn et al., 1997). Hence, Tg2576 mice were bred into a B6/SJL hybrid background. 

Progenies were then used to analyse the APP processing, amyloid accumulation, APPsw 

induced mortality and the effect of FoxO1 mediated transcription on Alzheimer´s disease 

(Bothe Gerald, 2005). 

 

 

1.4. Aims of the present thesis  

In previous studies the neuronal knockout of the IGF-1R (nIGF-1R-/-) in Tg2576 mice 

displayed a rescue of premature death and decreased Aβ accumulation. Furthermore 

haploinsufficiency of the IGF-1R increases Aβ hyperaggregation which indicates to be a 

rescue mechanism (1.2.7.) (Cohen et al., 2009; Freude et al., 2009). To elucidate whether 

the orthologue of the C.elegans transcription factor DAF-16 the mammalian FoxO induces 

these effects FoxO1 was chosen because this is the predominantly expressed FoxO in the 

hippocampus (Hoekman et al., 2006). Two mouse lines each expressing FoxO1ADA or 

FoxO1DN in Tg2576 mice were analysed.  

The analysis contains Kaplan-Meier investigations up to 60 weeks of age, investigation of 

glucose metabolism and analysis of APP processing as well as amyloid accumulation. These 

studies were performed using WT, SynCre/FoxO1ADA, SynCre/FoxO1DN, Tg2576, 

Tg2576/FoxO1ADA and Tg2576/FoxO1DN mice.  
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2.1. Chemicals 

Acetic acid    Merck, Darmstadt, Germany 

Acrylamide / Bis-acrylamide 30%  Rotiphorese® Gel 30 (37.5/1) 

Carl Roth GmbH + Co. KG, Karlsruhe, German 

Acrylamide Solution (40%) Mix 29:1 AppliChem GmbH, Darmstadt, Germany 

Agarose     Invitrogen Corporation, Carlsbad CA, USA 

Ammonium‐persulfate (APS)  AppliChem GmbH, Darmstadt, Germany 

Avertin     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Benzamidine Sigma‐Aldrich   Chemie GmbH, Steinheim, Germany 

β‐mercaptoethanol    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Bradford reagent    Bio‐Rad Laboratories GmbH; Germany 

Bromophenol blue    AppliChem GmbH, Darmstadt, Germany 

96 % Bovine serum albumin (BSA) Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Chloroform    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Cresyl violet acetate   Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

DMSO Dimethyl sulfoxide  Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

DTT      Dithiothreitol  

AppliChem GmbH, Darmstadt, Germany 

EDTA     Ethylenediaminetetraacetic acid  

AppliChem GmbH, Darmstadt, Germany 

Ethanol     AppliChem GmbH, Darmstadt, Germany 

Ethidium bromide    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Geniticin (G418)   Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Glycerol     Glycerin, AppliChem GmbH, Darmstadt, Germany 

Glycine     AppliChem GmbH, Darmstadt, Germany 

HEPES     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Hydrogen peroxide   Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

IGF-1      Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Insulin     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Isopropanol     AppliChem GmbH, Darmstadt, Germany 

Kanamycin    AppliChem GmbH, Darmstadt, Germany 

LB-Agar    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

LB-Medium    AppliChem GmbH, Darmstadt, Germany 

Methanol 99%    Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Magnesium chloride    Merck, Darmstadt, Germany 

NP‐40      Polyglycol ether (Nonidet® P40 Substitute) FLUKA 
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Chemika/Biochemika Chemie AG, Buchs, Switzerlan 

PIPES     AppliChem GmbH, Darmstadt, Germany 

PMSF      Phenylmethylsulphonylfluoride  

Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Paraformaldehyde (PFA)  AppliChem GmbH, Darmstadt, Germany 

Potassium chloride   Merck, Darmstadt, Germany 

Sucrose    AppliChem GmbH, Darmstadt, Germany 

SDS      Sodium dodecyl sulfate 

AppliChem GmbH, Darmstadt, Germany 

Sodium fluoride   Merck, Darmstadt, Germany 

Sodium bicarbonate    Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Sodium chloride    Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Sodium orthovanadate   Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

TAE     AppliChem GmbH, Darmstadt, Germany 

TEMED     N,N,N',N'‐Tetramethylethylenediamine 

Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

Tris      AppliChem GmbH, Darmstadt, Germany 

TritonX-100     AppliChem GmbH, Darmstadt, Germany 

Trizol     Invitrogen Corporation, Carlsbad CA, USA 

Trypsin     Roche, Mannheim, Germany 

TWEEN 20®     Polyoxyethylene (20) sorbitan monolaurate,  

Caesar and Lorentz GmbH, Bonn, Germany 

Xylol      AppliChem GmbH, Darmstadt, Germany 

 

 

2.2. Enzymes 

DNase      Invitrogen Corporation, Carlsbad CA, USA 

Proteinase K    Fermentas GmbH, St. Leon-Rot, Germany 

RNase Out Ribonuclease Inhibitor Invitrogen Corporation, Carlsbad CA, USA 

Rnase A    Invitrogen Corporation, Carlsbad CA, USA 

SuperScript II RT   Invitrogen Corporation, Carlsbad CA, USA 

Rnase  H    Invitrogen Corporation, Carlsbad CA, USA 

Phusion    Finnzymes Oy, Vantaa, Finland 

T4 DNA Ligase   Fermentas GmbH, St. Leon-Rot, Germany 

XhoI     Fermentas GmbH, St. Leon-Rot, Germany 

BamHI     Fermentas GmbH, St. Leon-Rot, Germany 

SspI     Fermentas GmbH, St. Leon-Rot, Germany 
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GoTaq® Hot Start Polymerase Promega Corporation, Madison, USA 

Shrimp alkaline phosphates (SAP) Fermentas GmbH, St. Leon-Rot, Germany 

 

 

2.3. Vectors, Primer and supplies 

Desoxy-Ribonucleotid-Triphosphate  

dNTPs     Fermentas GmbH, St. Leon-Rot, Germany 

Random Primer   Invitrogen Corporation, Carlsbad CA, USA 

pCMV-Tag 2C    Agilent Technologies, Santa Clara CA, USA 

 

 

2.4. Buffer and solution 

SDS‐PAGE running buffer   194mM Glycine 
25mM Tris 
0.1% SDS 

 
4 x SDS sample buffer   250mM Tris‐HCl (pH 6.8) 

200mM DTT 
40% Glycerol 
8% SDS 
0.01% Bromophenol blue 

 
Stripping solution    62.5mM Tris‐HCL pH 6.8 

100mM β‐mercaptoethanol 
2%SDS 

 
TBS buffer (pH 7.6)    137mM NaCl 

20mM Tris 
 

TBS‐T buffer (pH 7.6)   137mM NaCl 
20mM Tris 
0.1% Tween 20® 

 
Western Blot antibody solution  137mM NaCl 

20mM Tris 
5% Western Blocking Reagent (Roche) 

 
Western Blot blocking solution  137mM NaCl 

20mM Tris 
10% Western Blocking Reagent (Roche) 

 
Western Blot transfer buffer   194mM Glycin 

25mM Tris  
20% Methanol (99%) 
0.05% SDS 

 
DNA loading dye   50% Glycerin 
     5XTAE 
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CaCl2 buffer    60mM CaCl2 

     15% Glycerin 
     10mM PIPES pH 7 
 
 
Tail biopsies lysis buffer  100 mM Tris HCl (pH 8.5),  

5 mMEDTA,  
0.2% (w/v) SDS,  
0.2M NaCl,      
500 mg/ml proteinase K) 

 

Cell lysis buffer    50 mM NaCl 
50 mM Tris‐HCl (pH 7.4) 
5 mM EDTA 
1 % Nonidet® P40 Substitute 

 
Organ lysis buffer    50 mM HEPES (pH 7.4) 

50 mM NaCl 
1 % Triton X-100 
10 mM EDTA 
0.1 M NaF 
17 µg/ml Aprotinine 
2 mM Benzanidine 
0.1 % SDS 
1 mM Phenylmethylsulfonyl fluoride (PMSF) 
10 mM Na3VO4 

Nuclear cell lysis buffer  420mM KCl 
     20mMHEPES 
     1mM EDTA 
     0,1mM Na3VO4 

     20% Glycerin 
 

Cytolsolic cell lysis buffer  10mM KCl 
     20mM HEPES 
     1mM EDTA 
     0,1mM Na3VO4 

     10% Glycerin 
     0,2% NP 40 
 
Tricine gel buffer   3M TrisHcl pH8.45 
     0.3% SDS 
 
10x Cathode buffer   1M Tris 
     1M Tricine 
     1% SDS 
     pH 8.25 
 
10x Anode buffer   2.1M Tris 
     pH8.9 
     

ECL, Amersham ECLTM Western  
Blotting Detection Reagents   GE Healthcare UK Ltd; England 
 
Fetal bovine serum (FBS)  Invitrogen GmbH; Germany 
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Phosphate buffered saline 10 fold  
(pH 7.2)     Invitrogen GmbH; Germany 
 
PageRulerTM Prestained Protein  
Ladder     Fermentas GmbH, St. Leon-Rot, Germany 

 
Trypsin, 0.25% (1x) with EDTA Roche, Mannheim, Germany 
 

Western Blocking Reagent    Roche Diagnostics GmbH; Germany 

 

DMEM High Glucose with  
GlutamaxTM, 4500mg/L Glucose, 
Soduim Pyruvate   PAA Laboratories GmbH, Cölbe; Germany  
 

 

2.5. Cells and bacteria 

OmniMax    Invitrogen Corporation, Carlsbad CA, USA 

SHSY5Y    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 

 

 

 

2.6. Kits  

RNeasy MiniKit    Qiagen GmbH, Hilden, Germany 

RNeasy Lipid Tissue Mini Kit  Qiagen GmbH, Hilden, Germany 

Qiaprep Spin Maxiprep Kit  Qiagen GmbH, Hilden, Germany 

QiAquick Gel Extraction Kit  Qiagen GmbH, Hilden, Germany 

Qiaprep Spin Miniprep Kit  Qiagen GmbH, Hilden, Germany 

DeadEndTM Fluorometric TUNEL  Promega Corporation, Madison, USA 

System 

ELISA Aβ1-40     Invitrogen Corporation, Carlsbad CA, USA  

ELISA Aβ1-42     Invitrogen Corporation, Carlsbad CA, USA 

Effectene Transfection Reagent Qiagen GmbH, Hilden, Germany 

BrdU assay    Millipore, Billerica, MA, USA 

 

 

2.7. Primary Antibodies 

-Actin Antibody; Monoclonal mouse antibody detects an epitope conserved in human actin; 
MP Biomedicals, USA; Item # 69100; Western Blotting Dilution 1:5000 
 
-ADAM 10 Antibody; Polyclonal rabbit antibody detects human ADAM10 (H‐300); Santa Cruz 
Biotechnology, Inc., USA; Item # sc‐25578; Western Blotting Dilution 1:1000 
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-ADAM 17/TACE Antibody; Polyclonal rabbit antibody detects human ADAM17/TACE; Assay 
Designs, Inc., USA; Item # 905249; Western Blotting Dilution 1:1000 
 
-AKT Antibody; Polyclonal rabbit antibody detects endogenous levels of total AKT1, AKT2 
and AKT3 proteins; Cell Signaling Technology, Inc., USA; Item # 9272; Western Blotting 
Dilution 1:1000. 
 
 -ApoE Antibody; Polyclonal goat antibody detects a peptide mapping the C-terminus of apoE 
of mouse origin; Santa Cruz Biotechnology, Inc., USA; Item # sc‐6384; Western 
Blotting Dilution 1:1000 
 
-APP C‐Term (Amyloid Precursor Protein, C‐Term) Antibody; Synthetic peptide developed in 
rabbit detects the C‐terminal of human APP 695 (amino acids 676‐695); Sigma‐Aldrich, USA; 
Item # A8717; Western Blotting Dilution 1:1000 
 
-α2M Antibody Polyclonal goat antibody detects epitope mapping near the N-terminus of α-
2M of human origin Santa Cruz Biotechnology, Inc., USA; Item # sc‐8513; Western Blotting 
Dilution 1:1000 
 
-BACE‐1 (Beta Site APP Cleaving Enzyme 1) Antibody; Polyclonal rabbit antibody raised 
against amino acids 458 to 501 of human BACE; Chemicon (Millipore), USA; Item # AB 
5832; Western Blotting Dilution 1:1000 
 
-Beta Amyloid Antibody; Polyclonal rabbit antibody detects several isoforms of β‐amyloid 
peptide (Aβ), such as Aβ1‐40, Aβ1‐42 etc, regardless of phosphorylation state; Cell Signaling 
Technology, Inc., USA; Item # 2454; Western Blotting Dilution 1:1000 
 
-Caspase-3 Antibody; Polyclonal rabbit antibody detects endogenous levels of full length 
caspase-3 (35 kDa) and the large fragment of caspase-3 resulting from cleavage (17 kDa); ; 
Cell Signaling Technology, Inc., USA; Item # 9662; Western Blotting Dilution 1:1000 
 
-Erk Antibody; Polyclonal rabbit antibody detects endogenous levels of total p44/42 MAP 
kinase (Erk1/Erk2) protein; Cell Signaling Technology, Inc., USA; Item # 9102; Western 
Blotting Dilution 1:1000 
 
-Anti-Flag Affinity Gel; Anti-FLAG M2 binds FLAG at the N-terminal, Met-N-terminal, C-
terminal and internal locations of fusion proteins; Sigma‐Aldrich Chemie GmbH, Steinheim, 
Germany Item # A2220 
 
-FoxO1 (C29H4) Antibody, Monoclonal rabbit antibody detects the C-terminus of 
endogenous FoxO1; Cell Signaling Technology, Inc., USA; Item # 2880; Western Blotting 
Dilution 1:1000 
 
-FoxO1 (L27) Antibody; Polyclonal rabbit antibody detects the N-terminus of endogeous 
FoxO1; Cell Signaling Technology, Inc., USA; Item # 9454; Western Blotting Dilution 1:1000 
 
-FoxO3a (75D8) Antibody; Monoclonal rabbit antibody detects exogenous and endogenous 
levels of FoxO3a; Cell Signaling Technology, Inc., USA; Item # 2497; Western Blotting 
Dilution 1:1000 
 
-GFP (D5.1) Antibidy; Monclonal rabbit antibody detects exogenous GFP; Cell Signaling 
Technology, Inc., USA; Item # 2959; Western Blotting Dilution 1:1000 
-GSK‐3‐β Antibody; Monoclonal rabbit antibody detects endogenous levels of total GSK‐3β 
protein; Cell Signaling Technology, Inc., USA; Item # 9315; Western Blotting Dilution 1:1000 
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-Holo APP Antibody; Polyclonal rabbit antibody detects endogenous levels of several 
isoforms of both mature and immature amyloid β (A4) precursor protein, including APP695, 
APP770 and APP751; Cell Signaling Technology, Inc., USA; Item # 2452; Western Blotting 
Dilution 1:1000 
 
-HSF1 Antibody; Polyclonal rabbit antibody detects endogenous levels of total HSF1 protein; 
Cell Signaling Technology, Inc., USA; Item # 4356; Western Blotting Dilution 1:1000 
 
-IDE Antibody; Polyclonal rabbit; Millipore Corporation 290 Concord Road, Billerica, MA 
01821, USA; Item # AB9210; Western Blotting Dilution 1:1000 
 
-IGF‐1 Receptor β Antibody; Polyclonal rabbit antibody detects endogenous levels of IGF‐IR 
β. Does not cross‐react with insulin receptor; Cell Signaling Technology, Inc., USA; Item # 
3027; Western Blotting Dilution 1:1000 
 
-IR‐β Antibody; Polyclonal rabbit antibody detects a peptide mapping at the C-terminus of 
insulin Rβ (C19) of human origin; Santa Cruz Biotechnology, Inc., USA; Item # sc‐711; 
Western Blotting Dilution 1:1000 
 
-IRS‐1 Antibody; Monoclonal rabbit antibody detects C‐terminal 14 amino acid peptide 
([C]YASINFQKQPEDRQ) of rat liver IRS‐1. Rat, mouse and human crossreactivity; Upstate 
Cell Signaling Solutions, USA; Catalog # 06‐248; Western Blotting Dilution 1:1000 
 
-IRS‐2 Antibody; Polyclonal rabbit antibody detects endogenous levels of total IRS‐2 protein; 
Cell Signaling Technology, Inc., USA; Item # 4502; Western Blotting Dilution 1:1000 
 
-MnSOD Antibody; Polyclonal rabbit antibody detects MnSOD; Upstate Cell Signaling 
Solutions, USA; Catalog # 06-984; Western Blotting Dilution 1:1000 
 
-Nepriliysin Antibody; Polyclonal rabbit antibody; Millipore Corporation 290 Concord Road, 
Billerica, MA 01821, USA; Item # AB5458; Western Blotting Dilution 1:1000 
 
-Anti-Oligomer (A11); Polyclonal rabbit antibody recognizes amino acid sequence-
independent oligomers of proteins or peptides; Invitrogen Corporation, Carlsbad CA, USA, 
Catalog #AHB0052; Western Blotting Dilution 1:1000 
 
-p27 (C-19) Antibody; Polyclonal rabbit antibody detects the C-terminus of p27; Santa Cruz 
Biotechnology, Inc., USA; Item #sc-528; Western Blotting Dilution 1:1000 
 
-Phospho‐AKT Antibody; Polyclonal rabbit antibody detects endogenous levels of AKT1 only 
when phosphorylated at Ser473. Also recognizes AKT2 and AKT3 when phosphorylated at 
the corresponding residues; Cell Signaling Technology, Inc., USA; Item # 9271; Western 
Blotting Dilution 1:1000 
 
-Phospho‐p44/42 MAP Kinase (Thr202/Tyr204) Antibody; Polyclonal rabbit antibody raised 
against endogenous levels of p44 and p42 MAP Kinase (Erk1 and Erk2) when 
phosphorylated either individually or dually at Thr202 and Tyr204 of Erk1 (Thr185 and 
Tyr187 of Erk2); Cell Signaling Technology, Inc., USA; Item # 9101; Western Blotting Dilution 
1:1000 
 
-Phospho‐GSK‐3β (Ser9) Antibody; Polyclonal rabbit antibody detects endogenous levels of 
GSK‐3β only when phosphorylated at serine 9; Cell Signaling Technology, Inc., USA; Item # 
9336; Western Blotting Dilution 1:1000 
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-Phospho‐GSK‐3α/β (Ser21)/(Ser9) Antibody; Polyclonal rabbit antibody detectsendogenous 
levels of GSK‐3α/β only when phosphorylated at serine 21 or 9; Cell Signaling Technology, 
Inc., USA; Item # 9327; Western Blotting Dilution 1:1000 
 
-Phospho-FKHR (Ser319) Antibody; Polyclonal rabbit antibody detects a short amino acid 
sequence containing phosphorylated Ser319 of FKHR of human origin; Santa Cruz 
Biotechnology, Inc., USA; Item #sc‐19807; Western Blotting Dilution 1:1000 
 
-Phospho-FoxO3a (Ser253) Antibody; Polyclonal rabbit antibody detects endogenous levels 
of FoxO3a only when phosphorylated at serine 253; Cell Signaling Technology, Inc., USA; 
Item # 9466; Western Blotting Dilution 1:1000 
 
-Presenelin 1 (C20) Antibody; Polyclonal goat antibody detects a peptide mapping at the 
C‐terminus of Presenilin 1 of human origin; Santa Cruz Biotechnology, Inc., USA; Item # 
sc‐1244; Western Blotting Dilution 1:1000 
 
-PTEN Polyclonal Rabbit mAb detects endogenous levels of total PTEN protein; Cell 
Signaling Technology, Inc., USA; Item # 138G6; Western Blotting Dilution 1:1000 
 

 

2.8. Secondary Antibodies 

-Anti Goat IgG (whole molecule), peroxidase conjugated; Affinity isolated antigen specific 
antibody obtained from rabbit anti‐goat antiserum by immunospecific purification; 
Sigma‐Aldrich, USA; Item # A5420; Western Blotting Dilution 1:1000 
 
-Anti Mouse IgG (Fab specific), peroxidase conjugated; Developed in goat using purified 
mouse IgG Fab fragment as immunogen, the antibody is isolated from goat anti‐mouse IgG 
antiserum by immunospecific purification; Sigma‐Aldrich, USA; Item # A9917; Western 
Blotting Dilution 1:15000 
 
-Anti Rabbit IgG, peroxidase conjugated; Developed in goat using purified rabbit IgG as 
immunogen, the antibody is isolated from goat anti‐rabbit IgG antiserum by immunospecific 
purification; Sigma‐Aldrich, USA; Item # A6154; Western Blotting Dilution 1:1000 
 

 

2.9. Material 

-Blotting chamber Trans‐Blot® Semi‐Dry Transfer Cell 
Bio‐Rad Laboratories, USA 
 
-Blotting membrane Immun‐BlotTM PVDF Membrane for Protein Blotting 
Bio‐Rad Laboratories, USA 
 
-Blotting paper Whatman® Gel Blotting Paper 
Schleicher & Schuell, Germany 
 
-Cover‐slips Cover glasses 24 x 50 mm   
VWR International GmbH, Germany 
 
Cover‐slips Cover glasses 12 mm   
Medishop, Möglingen, Germany 
 
-Culture culture dishes 145cm 
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Greiner Bio-One GmbH, Frickenhausen, Germany 
 
-Culture culture dishes 10cm 
Greiner Bio-One GmbH, Frickenhausen, Germany 
 
-iCycler Thermocycler 
Bio‐Rad Laboratories, USA 
 
-Gewebe-Homogenisator 
VWR International GmbH, Germany 
 
-Microplate reader Mithras LB 940 multimode microplate reader 
Berthold Technologies GmbH & Co. KG, Germany 
 
-Fluorescence Microscope Olympus IX81 
Olympus Deutschland GmbH, Hamburg, Germany 
 
-Micro-Radiography Faxitron x-Ray System 
Faxitron BiopticsLincolnshire, USA 
 
-Micro-Radiography films Agfa Structurix,D4 DW ETE, NDT Systems (18 x 24 cm) 
Agfa-Gevaert, Sepestraat, Belgium 
 
-Microscope slides Microscope slides 76x26 mm 
Menzel GmbH &Co KG, Braunschweig, Germany 
 
-Minigel‐Twin Gel Electrophoresis Apparatus, Minigel‐Twin 
Biometra GmbH, Germany 
 
-NanoDrop NanoDropTM Spectrophotometer ND 1000 
ThermoFisher Scientific, USA 
 
-NMR Analyzer minispec mq7.5 
Burker Optik, Ettlingen, Germany 
 
-Photo‐paper Amersham HyperfilmTM ECL 
GE Healthcare UK Ltd, England; 
 
-Powerpac Biometra Standard Power Pack P25 
Biometra GmbH, Germany 
 
-Research Miroscope Olympus BX51 
Olympus Deutschland GmbH, Hamburg, Germany 
 
-Thermomixer 
Eppendorf, Hamburg, Germany 
 
Tube Rotator, STUART® 
Bibby Scientific Limited, Staffordshire, UK 
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2.10. Methods 

 

2.10.1. Mice breeding 

FoxO1ADA and FoxO1DN expressing mice were crossed with Synapsin 1 promoter driven 

Cre recombinase expressing mice (SynCre) to ensure neuron-specific protein synthesis. 

Mice without APPsw or SynCre were used as controls. These mice were kept in a 12 hour 

light and dark cycle from 7a.m. to 7p.m. They were fed with standard rodent diet. Tg2576 

mice which express APPsw were were purchased from Taconic Corporate, Hudson, NY, 

USA and present a B6/SJL background. Experiments with the mice were performed in 

agreement with the German Laws for Animal Protection and were approved by the local 

animal care committee and the Bezirksregierung Köln. 

 

 

2.10.2. Isolation of genomic DNA 

Mouse tail biopsies were incubated over night in lysis buffer (tail biopsie lysis buffer and 

500mg/ml proteinase K) in a thermomixer at 55°C. The DNA was then precipitated via 

addition of the equivalent volume of isopropanole. After mixing the lysates were centrifuged 

at 13.000rpm at room temperature for 15 minutes. Supernant was discarded and 150µl 70% 

Ethanol was added. The samples were mixed and centrifuged at 13.000rpm at room 

temperature for 15 minutes. Supernant was discarded, the pellet was dried and resuspended 

in 100mM TrisHCl pH8.  

 

 

2.10.3. Polymerase chain reaction (PCR) for genotyping 

DNA concentrations of tail biopsies lysis were measured with NanoDrop® ND-100 UV 

Spectrophotometer at 260nm. After that the DNA was used to genotype mice for expression 

of synapsin driven Cre recombinase, APPsw, and FoxO1ADA or -DN expression in the 

ROSA 26 locus. Reactions were performed in a Thermocycler PCR machine. All reactions 

contained not less than 100ng DNA, 25pmol of each primer (Table 1), 25µM dNTP Mix, 4mM 

MgCl2, 10% DMSO, 1xgoTaq reaction buffer and 1 unit of goTaq DNA polymerase. 
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Table 1: Primer sequences of SynCre, Tg2576 and FoxO1 in ROSa26 locus. 

 

PCR programms are presented in table 2. Resulting DNA fragments were used for 

Gelelectrophoresis on 2% (w/v) agarose gels (1 x TAE, 0.5 µg/ml ethidium bromide) and 

separated at 120V.  

 

 
Table 2: PCR Programms for SynCre, Tg2576 (APP) and FoxO1 in the ROSA26 locus. 

 

To distinguish mice with FoxO1ADA or FoxO1DN located in the ROSA26 locus another PCR 

was established. Contents of the PCR reaction are presented above. The primers used for 

this PCR are presented in table 3.  

 

antisense GATATGAAGTACTGGGCTCTT FoxO1 3´ 
antisense TGTCGCAAATTAACTGTGAATC FoxO1 3´ 

sense AAAGTCGCTCTGAGTTGTTATC FoxO1 5´ 
antisense GTGGATAACCCCTCCCCCAGCCTAGACCA Tg2576 3´ 

sense CTGACCACTCGACCAGGTTCTGGG Tg2576 5´ 
antisense ACCGTCAGTACGTGAGATATCTT SynCre 3´ 

sense ACCTGAAGATGTTCGCGATTATCT SynCre 5´ 
Orientation Sequence Primer 

∞ 4°C     
10min 72°C single   
1.5min 72°C     
45sec 56°C     
30sec 94°C 45 repeats   
3min 94°C single FoxO1 
∞ 4°C     

7min 72°C single   
45sec 72°C     
45sec 66°C     
30sec 94°C 35 repeats   
5min 94°C single Tg2576 
∞ 4°C     

10min 72°C single   
45sec 72oC     
45sec 55°C     
30sec 95°C 45 repeats   
5min 95°C single SynCre 
Time Degree Cycles Programm 
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Table 3: Primer used for the PCR to distinguish FoxO1ADA and –DN. 

 

PCR Programm to distinguish FoxO1ADA and –DN mice is shown in table 4: 

 

 
Table 4: PCR Program to distinguish FoxO1ADA and –DN. 

 

 

2.10.4. Metabolic characterization  

Mice were weaned at the age of 4 weeks. After that body weight and blood glucose via blood 

glucose meter (GlucoMen, A. Menarini diagnostics, Berlin-Chemie, Neuss, Germany) were 

measured every week until the age of 12 weeks. Then body weight and blood glucose were 

checked every 4 weeks. Blood was collected from the tail tip. At the age of 10 and 11 weeks 

insulin and glucose tolerance tests were performed. For insulin tolerance tests mice were 

starved overnight for 16 hours. Afterwards 0.75U per kg body weight of human insulin (Novo 

Nordisk, Copenhagen, Denmark) was injected into the peritoneal cavity. During this test 

blood glucose was measured before and 15, 30 and 60 minutes after the injection of insulin. 

Results are presented in % of initial blood glucose level. For glucose tolerance tests mice 

were also starved overnight. Then the mice were injected with 2g per kg body weight of 

glucose solution into the peritoneal cavity. Blood glucose was measured before and 15, 30, 

60 as well as 120 minutes after the injection of glucose solution via glucose meter. Results 

are shown in mg/dl. 

 

 

2.10.5. Investigation of body composition 

To measure body composition of mice nuclear magnetic resonance (NMR) was used. (NMR 

Analyzer minispec mq7.5). Radiofrequency (RF) pulse sequences are transmitted into the 

tissue via minispec. After that hydrogen produces RF signals were measured by the 

antisense AGAGAATAGGAACTTCGGAAT AG FoxO1ADA and DN 
 

sense GACATGGTAAGTAAGCTTATA AC FoxO1ADA and DN 
 

Orientation Sequence Primer 

∞  4°C single   
10min 72°C single   
6min 72°C     
45sec 50°C     
30sec 98°C 32 repeats   
2min 98°C single FoxO1ADA and -DN 
Time Degree Cycle Programm 
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minispec. The character of the analysed tissue is identified by the amplitude and duration of 

the responding signal.  

 

 

2.10.6. Brain lysates 

The different brain regions were lysed in organ lysis buffer via a hand homogenizer. Lysates 

were then rotated on a tube rotator at 4°C for 45 minutes. Afterwards lysates were 

centrifuged at 13.000rpm at 4°C. The supernant was added into a new tube and the pellet 

was discarded.  

Protein levels were measured using the Bradford method. Bradford reagent was diluted 1:5 

and 99µl were added to 1µl of each sample in a 96well plate. Standard curve was generated 

with 0, 1, 2.5, 5 and 10µg of BSA. Detection of protein levels were performed at 600nm via a 

microplate reader. Protein expression levels were analysed with 100µg protein of lysates in 

Laemmli buffer. The samples were denatured at 95°C for 5 minutes and then resolved on 

SDS-PAGE. 

 

 

2.10.7. SDS-PAGE 

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) also called SDS-

PAGE is used to separate proteins with regard to their molecular mass. Proteins are 

denatured and linearized by heat and anionic detergent SDS. Such samples are negatively 

charged in proportion to its molecular mass. Samples are supplied to the polyacrylamide gel 

in a gel apparatus (Minigel-Twin) filled with 1xSDS-PAGE running buffer. An electric current 

is applied and the negatively charged proteins migrate through the gel with different speed 

depending on the molecular size of the proteins. Small proteins migrate more easily through 

the gel while larger proteins migrate more slowly. The stacking gel collects the proteins and 

the resolving gel seperates the proteins according to their molecular size. The resolving gel 

shows a contcentration from 8, 10 or 15% acrylamide (Table 5). The different concentrations 

are dependent on the molecular size of the proteins of interest. 8% resolving gels are used 

for proteins with high molecular weight and 15% resolving gels are used for small molecular 

weight proteins. 
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Table 5: SDS-PAGE Gels (2 mini gels). 

 
Polyacrylamide gels contain the catalyst of polymerization Ammonium-persulfate (APS). 

N,N,N´,N´-tetramethylethylenediamine (TEMED) is added at last to initiate polymerization. 

Samples and 10µl PageRulerTM Prestained Protein Ladder is added on the gel. 

Electrophoresis of samples in the stacking gel is promoted at 120V and in the resolving gel at 

150V. 

 

 

2.10.8. Western Blot 

Western blot were performed to transfer the seperated proteins on the polyacrylamidegel to a 

polyvinylidene difluoride (PVDF) membrane via electrophoresis using semidry-blotting. An 

electric current transfers the negative charged proteins from the polyacrylamid gel onto the 

PVDF membrane (7x9cm). First three transferbuffer soaked whatman papers (7x9cm) were 

placed on a horizontally localized cathode plate. Then the PVDF membrane was incubated in 

99% methanol for 30sec and put onto the whatman papers. After cutting off the stacking gel, 

the resolving gel is placed on the membrane and covered by three additional transferbuffer 

soaked whatman papers. Air bubbles were removed by carefully rolling over the stack with a 

pipette. Then the anode plate is placed on top of the stack. These two electric plates are 

close to each other because only seperated by the stack to provide a high field strength 

(V/cm) for the protein transfer. 

The transfer was performed with an electric current of about 200 milli-ampere (mA). The time 

of transfer was dependent on the molecular mass of the proteins of interest. Proteins with a 

size up to 100kDa were transferred for 1 hour, proteins with a higher molecular mass  for 1.5 

hours. Afterwards the gel and whatman papers were discarded and the membrane was 

incubated in blocking solution (10% western blocking solution in 1xTBS) for 1 hour at room 

temperature to saturate vacant membrane protein binding sites. Then the membrane was 

incubated with the primary antibody to detect the protein of interest (antibody in 5% western 

blocking solution in 1xTBS) over night at 4°C. Subsequently the membrane was washed four 

times every 15 minutes with 1xTBS consisting of 0.1 % TWEEN 20® (TBS‐T). These 

10.5µl 12µl 12µl 4µl TEMED 
140µl 160µl 160µl 80µl 10% APS 
5.25ml 4ml 3.2ml 680µl 30% Acrylamid  
105µl 120µl 120µl 40µl 10% SDS 
1.3ml 1.5ml 1.5ml   3M TrisHCl 

 

      0.5ml 1M TrisHCl 
 

3.5ml 6.34ml 7.14ml 2.74ml ddH2O 

Resolving Gel 
[15%] 

Resolving Gel 
[10%] 

Resolving Gel 
[8%] 

Stacking Gel Chemicals 
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processes were performed on a rocker at room temperature and removed unbound 

antibodies. After that the membrane was added to the secondary antibody solution (antibody 

in 5% western blocking solution in 1xTBS) for 1 hour. The secondary antibody was 

conjugated to horseradish peroxidase (HRP) via protein cross‐linking. Afterwards the 

membrane was washed four times for each 15 minutes with TBS-T. Enhanced 

chemiluminescence (ECL) assay was used to detect proteins of interest with photographic 

film. β-actin served as loading control. For phosphorylated proteins the unsphosphorylated 

form of the protein served as loading control. 

ECL displays a light-emitting system. The HRP conjugated to the secondary antibody 

catalyzes the oxidation of luminol which causes light emitting. This light can be detected on a 

photograph film and further analysed by densitometry. For this detection membrane is 

incubated in two detecting reagents (Amersham ECL™ Western Blotting Detection 

Reagent),.which are mixed together with the same volume of each substance for 1 minute. 

Afterwards the membrane was covered with plastic foil and placed into a metal cassette. In a 

darkroom the membrane was exposed to a photosensitive film (AmershamTM Hyperfilm 

ECL). The time of exposure depended on the intensity of emitted light and lasted from 10 

seconds to 30 minutes. Then the film was developed (CURIX60, Agfa-Gevaert, Sepestraat, 

Belgium). 

The PVDF membrane was cleared from antibodies, called stripping to be incubated with an 

antibody detecting another protein. This was performed once for each blot to obtain proper 

protein detection. The membrane was incubated in stripping solution at 60°C for 20 minutes in 

a shaking water-bath. Then the membrane was washed for four times in TBS-T followed by 

blocking (10% western blocking reagent in 1xTBS) for 1 hour at room temperature.  

Afterwards another primary antibody could be added to the membrane.  

 

 

 2.10.9. Urea Tricine gel 

Proteins with small molecular mass like Aβ with a size of 4kDa were separated with a Urea 

Tricine gel (table 6) following the same principle like in 2.9.8. 200µg of proteins denatured in 

Laemmli-buffer were addeded to gel located in a gel apparatus with 1x cathode and 1x 

anode buffer. The transfer of the proteins was also done with the cathode and anode buffer. 

The transfer was performed with 100mA for 30 minutes. After that the procedure was the 

same as for western blot.  
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Tabel 6: Tricine Gel (2 mini gels). Addition of 7.2 g Urea to resolving gel was used for protein expression analysis 
with small molecular size of 4 kDa. 
 

 

2.10.10. Dot Blot 

Dot Blots detect the level of oligomeric Aβ in lysates of hippocampi from Tg2576, 

FoxO1ADA/Tg2576 and FoxO1DN/Tg2567 mice. 5, 10 and 25 µg of proteins from lysates 

produced as described in 2.9.6. were spotted on a PVDF membrane at 4°C. After the 

membrane dried it was incubated for 30sec in 9% methanol and then blocked in 10 western 

blocking reagent in 1xTBS overnight at 4°C on a rocker. Afterwards the membrane was 

incubated in Oligomer A11 antibody (antibody dilution 1:1000 in 5% western blocking reagent 

in 1xTBS) for 1 hour at room temperature. After that the membrane was washed three times 

every 5 minutes. Then the secondary antibody was added which was also used for western 

blots. This incubation step needed 1 hour at room temperature. Another washing step for 

three times every 5 minutes was performed before ECL was added and results were 

detected with a photograph film.  

 

 

2.10.11. ELISA β-Amyloid40/42 

β-amyloid from hippocampi of Tg2576, FoxO1ADA/Tg2576 and FoxO1DN/Tg2567 mice was 

extracted with 5M guanidine HCl in 50mM Tris HCl pH8.0. Afterwards ELISAs were 

performed to detect the level of Aβ40 and Aβ42 according to the protocol of the manufacturer 

(Cat# KHB3482/ 3442; Invitrogen Corporation, Carlsbad, CA, USA).  

 

 

2.10.12. Statistical analysis 

The software AIDA (Version 4.00.027, Raytest, Straubenhardt, Germany) was used to 

quantify changes in optical densitiy of western blot signals. Statistical analysis of different 

study groups was performed by Student´s t-test. Statistical significance was reached when 

the p-value was p<0.05.  

6.6µl 8µl TEMED 
66µl 80µl 10% APS 
3.1ml 6.7ml H2O 
2ml   70% Glycerol 
5ml 2.5ml Tricine Gel buffer 
5ml 1.05ml 40% Acrylamid 

Resolving Gel Stacking Gel Chemicals 
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For Kaplan-Meier analysis XLSTAT-Life software was used (Microsoft Excel add-in; 

www.xlstat.com). To compare the different mouse study groups Wilcoxon rank tests were 

used. In addition statistical significance was reached at a p-value of p≤0.05.  

 

 

2.10.13. Histology  

SynCre mice were crossed with FoxO1ADA or FoxO1DN mice in Tg2576 background. Mice 

were anesthetized and transcardially perfused with physiological saline solution and then 

with 4% paraformaldehyde (PFA) in 0.1M phosphate-buffered saline (PBS pH7.4). Brains 

were incubated in 4% PFA over night and then for three days in 20% sucrose in PBS pH7.4 

at 4°C. Then brains were frozen in tissue-freezing medium (Jung Tissue Freezing Medium; 

Leica Microsystems, Wetzlar, Germany). These samples were axially sectioned via Research 

Cryostat Leica CM3050 S (Leica, Wetzlar, Germany) harvest on slides and stored at -80 °C. 

 

 

Nissl staining 

Frozen sections were dried at room temperature and then washed with distilled water for 30 

seconds. Afterwards sections were stained in Nissl staining solution (0.1% Cresyl violet in 

distilled water) for 20 minutes followed by an additional washing step in distilled water for 30 

seconds. The length of the next steps was dependent on the speed of destaining of sections. 

Sections were incubated in 40%, then 70%, 95% and at last in 100% ethanol for up to 10 

minutes for each step. Afterwards slides were incubated in Xylol for 5 minutes and additional 

in fresh Xylol for 2 minutes. Slides were dried and mounted in Entellan (Merck, Catalog # 

1079610100, Darmstadt, Germany). Pictures were taken with a Research Miroscope 

Olympus BX51. 

 

 

2.10.14. RNA Isolation 

RNA isolation of hippocampi for microarray studies was performed with RNeasy Lipid Tissue 

Mini Kit according to the protocol of the manufacturer (Qiagen GmbH, Catalo # 74804, 

Hilden, Germany) 

RNA of liver, hypothalamus and pituitary for cDNA synthesis and realTime analysis was first 

precipitated with Trizol and then use of the RNeasy Mini kit (Qiagen GmbH, Hilden, 

Germany) to cleanup the isolated RNA.  

The tissue was first homogenized at 4°C and then incubated in 1ml Trizol at room 

temperature. Afterwards the tissue was “needeled” using a needle and the syringe to draw 

out the lysates. After that 200µl chloroform were added to the tissue lysates and incubated 
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for three minutes at room temperature. Then the samples were centrifuged at 13.000rpm and 

4°C for 15 minutes. RNA was localized in the aqueous phase and supplied to a new tube. 

500µl Isopropanol were added to the RNA and incubated at room temperature for 10 

minutes. Then the samples were centrifuged at 13.000rpm and 4°C for 10 minutes. After this 

the supernant was discarded and the pellet washed with 70% ethanol. The samples were 

additionally centrifuged at 10.000rpm 4°C for 5 minutes. Then the supernant was discarded 

and the pellets were dried at room temperature. After the pellets were dry they were 

resuspended in 30µl DEPC water. Then RNA concentration was measured via NanoDrop at 

260nm. 

 

 

2.10.15. cDNA synthesis 

cDNA synthesis was performed to analyse mRNA level of the target gene via realTime PCR 

or Microarrays. 

For all steps of cDNA synthesis an iCycler was used. First 3µg RNA in a total volume of 8µl 

was used as well as 1xDnase buffer and 1Unit Dnase. This reaction was incubated at 37°C 

for 15 minutes. Then 2.5mM EDTA was added to the reaction and incubated at 68°C for 15 

minutes to inactivate the Dnase. For the next step the cDNA synthesis started with the 

addition of 200ng random primer and 770µM dNTPs and incubation at 65°C for 5 minutes 

followed by 4°C for 5 minutes. Next 1xFirst-strand buffer, 5µM DTT and 40Units Rnase Out 

Ribonuclease inhibitor were added, gently mixed and incubated at 42°C for 5 minutes. 

Afterwards 200Units of SuperScript II reverse transcriptase were added and following 

incubation steps were performed: 25°C for 10 minutes, 42°C for 50 minutes, 70°C for 15 

minutes to inactivate the enzymes and 4°C for 2 minutes. Then 2Units of Rnase H were 

added and incubated at 37°C for 20 minutes. The cDNA concentration was measured at 

260nm with NanoDrop. 

 

 

2.10.16.realTime PCR 

cDNA amplification was performed using TaqMan Gene Expression Master Mix  and 

TaqMan Gene Expressing Assays (Mm01303638_m1 for GHR, Mm01250745_m1 for 

GHRH, Mm01326479_m1 for GHRHR and Mm00439560_m1 for IGF-1; Applied 

Biosystems). HPRT1, GUSB and β-Actin (Mm00446968_m1 for HPRT1, Mm00446953_m1 

for GUSB and Mm00607939_s1 for β-Actin; Applied biosystems) served as endogenous 

control. Quantitative PCR was performed via the Applied Biosystems 7900 HT (Darmstadt, 

Germany). Analysis was performed via comparative method (∆∆CT).  
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2.10.17. Behavioral studies and caloriemetry 

Behavioural studies and caloriemetry were performed to test whether neuronal specific 

expression of FoxO1ADA and –DN cause any changes in behaviour, memory or 

caloriemetry. For the following tests only SynCre/FoxO1ADA and –DN male mice were used. 

Morris Water Maze, Elevated O-Maze, Open Field and coloriemetry were performed by Dr. 

Hella Brönneke, Mouse Facility, University of Cologne. 

 

 

RotaRod 

The RotaRod is an analysis of motion. Mice were placed on a rotating wheel with different 

speeds and the time was measured until the mice fell off the wheels. First the mice had to 

learn to run on the wheels. After this period the measurements were performed at 4, 8, 

16rpm and accelerated speed.  

 

 

Morris Water Maze Test 

The Morris Water Maze test is to check regional learning and memory. Each mouse was 

tested for 5 days. During this period the mice have to learn the position of the platform which 

is located 1cm under the surface of the water which is coloured so that the mouse could not 

see the platform. For orientation outside of the water basin different signs were located on 

each wall like a square or a circle. The last day of the analysis the platform was removed and 

the time each mouse swam in the quadrant the platform was before was measured. 

Documentation was performed via video system. 

 

 

Elevated O-Maze Test 

The Elevated O-Maze test is an established method to analyse fear and explorative 

behaviour. Each mouse was placed on a ring-shaped runway which contains two open and 

two closed sections. The closed sections are bordered by walls with a hight of 10cm. 

Analysis was performed via video system.  

 

 

Open Field Test 

The Open Field Test analyses fear and explorative behaviour. Each mouse was placed into a 

50 x 50cm box with 40cm high walls. Light was adjusted to the middle of the box and the 

surrounding was shadowy. Documentation was performed via video system. 
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Indirect Caloriemetry 

Mice were kept in specific cages for 3 days. During that time activity of the animals, food and 

water intake, energy expediture and the respiratory quotient were measured. 

Computertomography (CT) was used to measure lean body mass and fat content.  

 

 

2.10.18. False-couloure imaging 

X-ray images of of mice were performed via the Faxitron x-Ray System. Images were taken 

with Agfa Structurix film and parameters were 55 kv for 30 sec. False-coloure images were 

done with the computer program Morphomet v1.1.3 (Dipl.-Ing. Zenon Wrzosek) by Jutta 

Knifka (Anatomie, Universitiy of Cologne). 

 

 

2.10.19. Cloning strategy  

Template for amplification of FoxO1ADA and –DN were pCAGS-FoxO1ADA and DN. Wild 

type FoxO1 was amplified from cDNA from wild type mouse brains. PCR reactions contained 

20µM dNTPs, 1 Unit of Phusion Polymerase with proof reading, 25pmol of each primer (table 

7), 10% DMSO, 1xHF buffer and 100ng of template DNA. The primers inserted specific 

digestion enzyme sites into the sequence in front of the start codon and after the stop codon 

of the target gene. The inserted site in front of the start codon of the gene is digested by 

BamHI and the site after the stop codon is digested by XhoI. 

 

 
Table 7: Primer for cloning of FoxO1WT, FoxO1ADA and FoxO1DN. 
 

To amplify the FoxO1ADA, -DN and the wild type form of FoxO1 (FoxO1WT) a gradient PCR 

(iCycler) was used. PCR program is shown in table 8. The temperature gradient was 

between 50 and 75°C. The elongation time was dependent on the amplified gene. FoxO1ADA 

and FoxO1WT were amplified for 3 minutes; FoxO1DN was amplified for one minute.  

antisense AAACTCGAGGTCCATGGACGCAGCTCTTCTCCG FoxO1DNXhoI 
 

antisense AAACTCGAGTTAGCCTGACACCCAGCTGTGTG  FoxO1XhoI 3´ 
sense AAACGGATCCGTATGGCCGAAGCGCCCCAG FoxO1BamHI 5´ 

Orientation Sequence Primer 
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Table 8: PCR program to amplify FoxO1ADA, -DN and FoxO1 wild-type (FoxO1WT).  

Amplified fragments were separated on a 1% Agarose gel (in TAE). Fragments were cut out 

of the gel and were extracted via the QiAquick Gel Extraction Kit (Qiagen GmbH, Hilden, 

Germany) according to the protocol of the manufacturer.  

 

 

Digestion and Ligation 

Fragments and the vector pCMV-Tag2C were then double digested by BamHI and XhoI 

(10Units enzyme per 1kb DNA). The restriction reaction was incubated for 2 hours at 37°C. 

In case of the vector during the last 45 minutes of incubation 4Units of shrimp alkaline 

phosphatase were added. This phosphatase was then inactivated at 60°C for 10 minutes. 

The digested vector was separated via a 1% Agarose gel and cut out. Then the vector and 

digested fragments were cleaned up with the QiAquick Gel Extraction Kit (Qiagen GmbH, 

Hilden, Germany) according to the protocol of the manufacturer.  

For Ligation 5Units of T4 DNA Ligase (Fermentas GmbH, St. Leon-Rot, Germany), 20ng 

vector, 40ng of the fragment and 1xT4 DNA Ligase buffer were used. The ligation was 

incubated at room temperature overnight.  

 

 

Transformation and Plasmid isolation 

Transformation of Cacl2-competent Escherichia coli (Omnimax) is performed to amplify a 

specific vector in shaking culture of 100ml LB-medium followed by isolation of the Plasmid 

(Qiaprep Spin Maxiprep Kit, Qiagen GmbH, Hilden, Germany) or to separate single bacteria 

colonies on a agar plate. Both medium and agar plate contain the specific antibiotic to 

guarantee bacteria growth which include the vector with the specific antibiotic resistance 

gene.  

For transformation of Cacl2-competent E. coli bacteria were incubated at 4°C with 7µl of the 

ligation reaction added for 25 minutes. After that a heat shock is performed at 42°C for 1.5 

minutes. Then bacteria were harvested at 4°C for 5 minutes followed by addition of 400µl of 

LB-medium and shaking at 37°C for one hour. Afterwards  the bacteria were plated on an 

∞ 4°C single   
10min 72°C single   
1-3min 72°C   
45sec 50-65°C   
30sec 98°C 32 repeats 
2min 98°C single Amplification of 

FoxO1, FoxO1ADA 
and -DN 

Time Degree Cycle Programm 
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agar plate (kanamycin 25µg/ml) which had to dry and th was then incubated at 37°C 

overnight in a bacteria incubator (BINDER GmbH, Tuttlingen, Germany).  

The next day single bacteria colonies were grown. These colonies were picked and each 

added to single tubes with LB-medium (kanamycin 25µg/ml) and shaken in a bacteria shaker 

(INFORS AG, Bottmingen, Switzerland) at 37°C overnight.  

Plasmids were isolated using the Qiaprep Spin Miniprep Kit (Qiagen GmbH, Hilden, 

Germany) according to the protocol of the manufacturer. The plasmids of the single bacteria 

clones were digested with BamHI and XhoI as described above to identify plasmids which 

contain the target gene. These plasmids were sequenced via T3 and T7 sequencing primers 

(Eurofins MWG Operon, Ebersberg, Germany). Plasmids which showed disruptions of the 

target gene like frame shifts were again transformed into Cacl2-competent E. coli, grown in 

100ml shaking LB-medium culture followed by isolation of the plasmid (Qiaprep Spin 

Maxiprep Kit, Qiagen GmbH, Hilden, Germany) to obtain an increased amount of it for further 

transfection.  

 

 

Generation of Cacl2-competent E. coli 

Cacl2-competent E. coli were grown in 100ml LB-medium at 37oC overnight in a bacteria 

shaker (INFORS AG, Bottmingen, Switzerland). Then 2ml of this culture was added to new 

200ml LB-medium and shaken at 37°C until the culture reached an OD600 of 0.4. 

Measurements were performed with NanoDrop. The bacteria culture was incubated at 4°C 

for 10 minutes to stop growth. Then the culture was centrifuged at 3000rpm at 4°C for 5 

minutes. The supernant was discarded and bacteria were resuspended in 100ml CaCl2-

buffer. Afterwards this suspension was incubated at 4°C for 25 minutes and then centrifuged 

at 3000rpm and 4°C for 4 minutes. The supernant was discarded and the pellet was 

resuspended in 5ml CaCl2-buffer. Bacteria were separated in 100µl aliquots and harvested at 

-80°C. 

 

 

2.10.20. Generation of stably expressing cells 

The pCMV-Tag 2C vector containing FoxO1ADA, -DN or WT (2µg), were linearized with 

4Units SspI for 2 hours at 37°C. Transgection of SHSY5Y cells was performed via Effectene 

(Quiagen GmbH, Hilden, Germany) according to the protocol of the manufacturer. SHSY5Y 

cell transfected with the empty vector were used as controles (EV). Cells were treated with 

selection medium containing 1mg/ml G418 (Sigma‐Aldrich Chemie GmbH, Steinheim, 

Germany) two days after transfection. Single cells were separated on 96-well plates after 3 

weeks of selection with G418. Cell clones were tested for expression of FoxO1ADA, -DN or –
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WT and positive clones were used for further experiments. After that cells were grown 

without G418. 

 

 

2.10.21. Cell lysates 

For whole cell lysates, cells were twice washed with PBS and then incubated at -80°C for 30 

minutes. After that cell lysis buffer was added to the cells (100µl for 10cm plates and 150µl 

for 15cm plates). Then cells were scraped up from the culture dishes via cell scraper 

(Greiner Bio-One GmbH, Frickenhausen, Germany), incubated at 4°C for 30 minutes and 

needeled. Afterwards cell lysates were centrigufed at 13.000rpm and 4°C for 30minutes. 

Supernant was added into a new tube and the pellet was discarded.  

 

 

Cytosolic and nuclear lysates 

For cytosolic and nuclear lysates the cells were washed twice with PBS and then cytosolic 

lysis buffer was added (100µl for 10cm plates and 150µl for 15cm plates). Then cells were 

scraped off the culture dishes and incubated at 4°C for 30 minutes. Afterwards the lysates 

were centrifuged at 1.600rpm and 4°C for 20 seconds. Supernant was again centrifuged at 

1.600rpm and 4°C for 5 minutes. Then the supernant was needeled and centrifuged at 

13.00rpm and 4°C for 30 minutes. The supernant was added to a new tube and used as a 

cytosolic fraction. The pellet of the first centrifugation step was used to generate the nuclear 

fraction. To the pellet nuclear lysis buffer was added (100µl for 10cm plates and 150µl for 

15cm plates), incubated at 4°C for 30 minutes and needeled. After that lysates were 

centrifuged at 13.000rpm and 4°C for 30 minutes. The supernant was added to a new tube 

and used gain as a nuclear fraction. The protein concentration was measured using the 

Bradford method.  

 

 

2.10.22. Stimulation of cells with IGF-1 

Cells were starved overnight (14h) in medium without FBS. Then they were stimulated with 

medium containing 0, 1, 10 and 100nM IGF-1 for 5 minutes. After that the cells were 

immediately washed twice with PBS and harvested at -80°C. Subsequently cell lysates are 

produced (2.9.21). 
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2.10.23. Proliferation assay 

Proliferation assay was performed with 1000 cells per well of each cell line. For FoxO1ADA, -

DN and –WT stably expressing cells 3 clones were analyzed. First cells were counted using 

the Neubauer Zählkammer and 1000 cells were put into a well of a 96-well plate. The next 

day cells were starved in a medium without FBS overnight (14h) to stop cell proliferation. 

After that a medium with 10% FBS was added  for 8 hours. Subsequently the proliferation 

assay (BrdU assay, Millipore, Billerica, MA, USA, item #HCS201) was performed according 

to the protocol of the manufacturer. 

 

 

2.10.24. Apoptosis in cells 

Analysis of apoptosis was performed with the induction of oxidative stress via hydrogen 

peroxide. First circled single cover slips were added into each well of a 24 well plate. These 

cover slips were coated with 30µg/ml of collagen (Biochrom AG, Berlin, Germany) in PBS at 

4°C overnight. Subsequently 1.5x105 cells per well were added. The next day these cells 

were starved for 4 hours followed by addition of 500µM hydrogen peroxide overnight (14h). 

The next steps were performed according to the protocol of the manufacturer (DeadEndTM 

Fluorometric TUNEL System; Catalog #G7130; Corporation, Madison, USA). After that the 

cells were mounted with Vectashield mounting medium (Vector Laboratories INC.Catalog # 

H-1200, Burlingame, USA). 
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Clinical studies have shown that Alzheimer´s disease and type 2 diabtes are linked to each 

other (Janson et al. 2004; Ott et al. 1999; Stewart and Liolitsa 1999; Lovestone 1999). 

Results from these studies demonstrated that the IR/IGF-1R signaling pathway is disturbed 

in patients suffering from AD (Frolich et al. 1998; Frolich et al. 1999; Moloney et al. 2010). 

Therefore AD is described as a “brain type diabetes“ (Pilcher, 2006). The knockout of IRS-2 

(IRS-2-/-) or the neuron-specific IGF-1R knockout (nIGF-1R-/-) in Tg2576 mice, a well 

established mouse model of AD expressing the Swedish mutation of APP (APPsw) (Vassaret 

et al. 1999; De Strooper 2003; Holsinger et al. 2002; Sinha et al. 1999; Harada et al. 2006) 

causes decreased accumulation of Aβ and rescues Tg2576 mice from their premature death 

(Freude et al., 2009). 

The clearance of Aβ is affected by the IR/IGF-1R signaling pathway. In earlier studies it has 

been shown that the IR/IGF-1R signaling pathway might induce the expression of IDE (Zhao 

et al. 2004) indicating a potential role of the IR/IGF-1R signaling pathway in the pathogenesis 

of AD.  

Furthermore C. elegans in has been demonstrated that DAF-16, the orthologue of 

mammalian FoxO transcription factors regulated via the IR/IGF-1R signaling cascade, is 

involved in detoxification of Aβ (Cohen et al., 2006). FoxO1 is mainly expressed in the 

striatum, dentate gyrus and ventral hippocampus (Hoekman et al., 2006) regions which are 

highly affected in AD. Therefore the present study analyses the role of FoxO1 for amyloid 

pathology. Two different mouse lines were used FoxO1ADA as well as FoxO1DN were 

inserted into the Rosa26 locus and neuron-specifically expressed. An activated IR/IGF-1R 

signaling pathway stimulates AKT which in turn inactivates FoxO1 mediated transcription. 

AKT phosphorylates FoxO1 at Thr24, Ser256 and Ser319 (Biggs et al., 1999; Brunet et al., 

1999; Kops et al., 1999; Rena et al., 1999; Tang et al., 1999) and promotes binding to 14-3-3 

and nuclear export followed by degradation. In case of inactivated IR/IGF-1R signaling 

FoxO1 stays in the nucleus and promotes transcription of its target genes (Brunet et al., 

1999). FoxO1DN is the dominant negative form of FoxO1 and displays a deletion of the 

nuclear export signal and the transactivation domain. This form remains in the nucleus and 

binds to the target promoter region but cannot mediate transcription. FoxO1ADA harbours 

amino acid replacements of the phosphorylation sites recognized by AKT. Therefore 

FoxO1ADA is not phosphorylated by AKT and constitutive active (Fig. 8). 
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Figure 8: Structure of FoxO1, FoxO1ADA and FoxO1DN. FoxO1 contains a conserved forkhead domain (FKHR), 
the DNA binding domain. Furthermore it contains a nuclear localisation signal (NLS), a nuclear export signal 
(NES), a transactivation domain (TA) and the three phosphorylation sites of AKT (T24, S256 and S319). 
FoxO1ADA harbours amino acid substitutions leading to a constitutive active FoxO1 form. FoxO1DN is dominant 
negative and displays a transactivation domain and NES deletion.   
 

Male mice with FoxO1ADA or FoxO1DN inserted into the Rosa26 locus were crossed with 

female mice expressing the synapsin 1 promoter driven Cre recombinase (SynCre) to 

guarantee a neuron-specific expression of the two FoxO1 forms. The female 

SynCre/FoxO1ADA or SynCre/FoxO1DN mice were then crossed with Tg2576 mice to 

generate those with neuron-specific expression of FoxO1ADA or FoxO1DN in Tg2576 

background (Fig. 9).   

 

 
Figure 9: Breeding strategy of neuon-specific expressing FoxO1ADA and FoxO1DN mice in Tg2576 background. 
Mice with FoxO1ADA or FoxO1DN inserted in the Rosa26 locus were crossed with synapsin 1 promoter driven 
Cre recombinase expressing mice. Female mice were then crossed with Tg2576 mice to generate neuronal 
expressing FoxO1ADA or FoxO1DN mice in Tg2576 background.  
 

For the following results “FoxO1DN” and “FoxO1ADA” represent mice expressing the 

synapsin 1 promoter driven Cre recombinase and FoxO1DN or FoxO1ADA inserted into the 

Rosa26 locus. Thus FoxO1ADA and FoxO1DN mice express the particular FoxO1 form in a 

neuron-specific manner. 
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3.1. Verification of FoxO1DN expression in mice 

The FoxO1DN insert in the Rosa26 locus was detected via the FoxO1DN and –ADA specific 

PCR (2.9.3.). The primers bind to the sequence which flanks the inserted gene. The size of 

the amplyfied DNA fragment shows whether each animal is FoxO1ADA or FoxO1DN 

positive. The amplified fragment of FoxO1DN shows a size of about 750bp (Fig. 10A).  

 
Figure 10: Detection of FoxO1DN. 
(A) FoxO1ADA and FoxO1DN specific PCR (2.9.3.). The FoxO1DN fragment shows a size of about 750bp. (B) 
FoxO1DN and eGFP expression in the hippocampus and frontal cortex of FoxO1DN female and male mice. 100 
µg total proteins were separated via 10% SDS-PAGE.  
 

The expression of FoxO1DN in the hippocampus and frontal cortex is shown in Fig. 7B. No 

expression of FoxO1DN and GFP is detected in hippocampus and cortex of wild-type female 

and male mice. Hence, FoxO1DN and GFP are expressed in hippocampus and cortex of 

female and male FoxO1DN mice. Additionally FoxO1 expression is shown in figure 10B. 

There are no changes in FoxO1 expression in the wild-type animals compared to the 

FoxO1DN mice.  

The immunohistochemical staining of GFP shows an expression of GFP mainly in the 

hippocampus of FoxO1DN mice not in the wild-type mice (Fig. 11).  

 

 
Figure 11: Immunohistological staining of eGFP. 
The FoxO1DN mice crossed with the synapsin 1 promoter driven Cre recombinase expressing mice additionally 
express eGFP (enhanced green fluorescent protein). The GFP staining of FoxO1DN mice displays the expression 
of GFP mainly in the hippocampus. The brown coloured staining of GFP is not observed in the control mice (Stöhr 
et al., 2011). 
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3.2. Characterisation of FoxO1DN mice 

Changes in glucose homeostasis and growth might affect survival and the pathology of 

Alzheimer´s disease. Previous studies showed that the deletion of the IGF-1R in neurons 

and glia cells of the CNS result in growth retardation and abnormal behaviour (Kappeler et 

al., 2008). The neuron-specific knockout of the IR displays an increased body weight in 

females compared to wild-type animals on a normal chow diet and both genders show an 

increase in adipose tissue (Brüning et al., 2000). IRS-1 knockout mice display normal 

glucose tolerance beside insulin resistance and hyperinsulinemia (Terauchi et al., 1997). The 

deletion of brain derived IRS-2 leads to increased food intake and body weight (Masaki et al., 

2004, Lin et al., 2004). Therefore the metabolism of FoxO1DN and FoxO1ADA mice was 

analysed in detail. 

 

 

3.2.1. Glucose homeostasis of FoxO1DN mice 

Glucose homeostasis of FoxO1DN mice was analysed via measurement of blood glucose 

every week after weaning until 12 weeks of age and then every 4 weeks up to the age of 60 

weeks. In addition at the age of 10 and 11 weeks glucose and insulin tolerance tests were 

performed. 

The measurement of blood glucose over a time period of 60 weeks showed a slightly 

increased glucose concentration of FoxO1DN in females between 16 to 24 weeks of age 

compared to wild-type (p≤0.04) (Fig. 12A). FoxO1DN male mice displayed no changes in 

blood glucose. At 60 weeks of age there was a slight increased blood glucose concentration 

in FoxO1DN males (Fig. 12B). 

 
Figure 12: Blood glucose of FoxO1DN female and male mice untill 60 weeks of age. 
(A) Blood glucose of FoxO1DN (n=35, red) and wild-type (n=71, black) mice up to 60 weeks (B) Blood glucose of 
FoxO1DN (n=29, red) and wild-type (n=67, black) mice untill 60 weeks of age (*p≤0.04, Student´s t-test) 
 

For glucose tolerance tests 2g glucose per kg body weight was injected into the peritoneal 

cavity. Blood glucose measurements were performed 15, 30, 60 and 120 minutes after 
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injection. Glucose tolerance tests of FoxO1DN female mice compared to wild-type animals 

revealed no changes. 32 FoxO1DN female and 38 female wild-type mice as well as 21 

FoxO1DN male and 38 control male mice were used (Fig. 13). FoxO1DN male mice showed 

slight decreased glucose concentrations which reached significance 60 minutes (p≤0.03) 

after the injection of glucose (Fig. 13B). 

 
Figure 13: Glucose tolerance tests of FoxO1DN and wild-type mice. 
(A) Glucose tolerance tests of FoxO1DN female (n=32; red) compared to control animals (n=38; black). (B) 
Glucose tolerance test of FoxO1DN male (n=21; red) and wild-type mice (n=38; black) (*p≤0.03, Student´s t-test) 
 

For insulin tolerance tests 0.75 U of insulin per kg body weight was injected into the 

peritoneal cavity of animals starved for 16 hours. Insulin tolerance tests of the same set of 

animals used for the glucose tolerance test revealed no changes of blood glucose of 

FoxO1DN and wild-type animals. Additionally similar results were observed for female and 

male mice (Fig. 14A and B). 
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Figure 14: Insulin tolerance test of FoxO1DN mice. 
(A) Insulin tolerance tests of FoxO1DN female (n=32) (red) mice compared to wild-type mice (n=38) (black). (B) 
Insulin tolerance test of FoxO1DN male (22) (red) mice compared to controls (n=38) (black). 
 

3.2.2. Analysis of IR/IGF-1R signaling in 28 weeks old FoxO1DN mice 

To analyse whether neuronal-specific expression of FoxO1DN affects the IR or IGF-1R 

signaling pathway, protein expression of the IR and IGF-1R was performed via western blots 

of hippocampus and frontal cortex from wild-type and FoxO1DN female and male mice at 28 

weeks of age. Figure 15 shows no changes in respect to the different genotypes of IR and 

IGF-1R protein levels.  

 
Figure 15: IR/IGF1R protein expression of 28 weeks old FoxO1DN mice. 
Expression level of the IR and IGF-1R with actin as control is shown. Protein levels of hippocampus and frontal 
cortex from female and male wild-type (control) and FoxO1DN mice. Actin was served as loading control. 100 µg 
of total proteins were used and separated via 10% SDS-PAGE. 
 

Furthermore the activation of the kinases AKT, ERK1/2 and GSK3β which are regulated via 

the IR and IGF-1R signaling pathway were analysed. Phosporylated AKT, ERK1/2 and 

GSK3β show no alterations in female and male wild-type compared to FoxO1DN female and 

male mice (Fig. 16).  
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Figure 16: IR/IGF1R signaling pathway of 28 weeks old FoxO1DN mice. 
Phosphorylation level of AKT (pAKT, Ser473), ERK1/2 (pERK1/2, Thr202/Tyr204) and GSK3β (pGSK3β, Ser9) 
are shown. As control served unphosphorylate protein level of AKT, ERK1/2 and GSK3β. Female and male wild-
type mice (control) are compared to FoxO1DN female and male mice at the age of 28 weeks. Protein 
phosphorylation in hippocampus and frontal cortex are shown. 100 µg of total proteins were used and separated 
via 10% SDS-PAGE. 
 

 

3.2.3. Growth of FoxO1DN mice 

FoxO1 mediated transcription might be involved in somatic growth (Patridge and Bruning, 

2008). Therefore body weight of FoxO1DN female and male mice was measured over 60 

weeks and compared to female and male wild-type mice. No changes of body weight from 

FoxO1DN female and male mice compared to wild-type female and male mice were 

observed from weaning until 60 weeks of age (Fig. 17A and B). For illustration body weight of 

FoxO1DN mice at 28 weeks of age are showen in Fig. 17C and D. 26 female FoxO1DN mice 

were compared to 65 wild-type mice and 17 FoxO1DN male mice were compared to 59 wild-

type mice. No alterations of body weight have been observed.  
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Figure 17: Body weight of FoxO1DN mice over 60 weeks. 
(A) Body weight of FoxO1DN female mice (n=35, red) compared to wild-type female mice (n=71, black). (B) Body 
weight of FoxO1DN male mice (n=29, red) compared to wild-type male mice (n=67, black). (C) Body weight of 
FoxO1DN female (n=26) and wild-type mice (n=65) at the age of 28 weeks. (D) Body weight of FoxO1DN male 
(n=17) compared to wild-type animals (n=59). 
 

Furthermore the body composition of FoxO1DN male mice was investigated via CT and 

NMR (2. Material and Methods). Results are presented for both methods as confirmation. For 

NMR 6 FoxO1DN and 5 wild-type male mice were analysed (Fig. 18 B and D). In addition 6 

FoxO1DN and 6 male wild-type mice were used for CT (Fig. 18A and C). No changes of 

body fat ratio and lean body mass were detected. The same mice analysed via CT were 

used for further investigation of food and water intake, locomotion, activity and energy 

expenditure. These mice were 60 weeks old. 
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Figure 18: Body composition of FoxO1DN male mice. 
(A and C) Body fat and lean body mass of FoxO1DN male mice (n=6) compared to wild-type mice (n=6) via CT. 
(B and D) Body fat and lean body mass of FoxO1DN male mice (n=6) and wild-type mice (n=5) via NMR. The 
mice used for analysis of body composition were 60 weeks old. 
 
X-ray and false-colour imaging of FoxO1DN male revealed no alterations of bone density or 

skeletal structures compared to wild-type mice at 60 weeks of age (Fig. 18). 
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Figure 19: Analysis of bone density. 
(A) X-ray of FoxO1DN male compared to wild-type mice at 60 weeks of age. (B) False-coloured imaging of 
FoxO1DN male compared to wild-type mice at 60 weeks of age. 
 

Furthermore body length of 60 weeks old animals was measured and no differences were 

observed (Fig. 19). 

 

Figure 20: Body length of 60 weeks FoxO1DN male mice. 
Body length of FoxO1DN (n=4) compared to wild-type (n=4) male mice at 60 weeks of age. 
 

To complete the analysis, food and water intake were measured. FoxO1DN male mice 

showed no difference in food or water intake compared to wild-type male mice at 60 weeks 

of age (Fig. 21A and B).  
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Figure 21: Food and water intake of 60 weeks old FoxO1DN male mice.  
(A and B) Food and water intake of FoxO1DN male mice (n=6) compared to wild-type male mice (n=6). 
 

 

3.2.4. Indirect calorimetric analysis of FoxO1DN mice 

Before analysis of locomotion, activity and energy expenditure motion coordination was 

investigated via RotaRod. Mice were put on a rotating wheel with different speed and time 

was measured untill the mouse falls down. For this test adult mice from 14 to 20 weeks of 

age were used. No difference has been observed for FoxO1DN mice compared to wild-type 

mice (Fig. 22).  

 
Figure 22: RotaRod for FoxO1DN male mice. 
The RotaRod test analyses the motion coordination of male FoxO1DN (n=6) compared to wild-type animals (n=6). 
Animals were between 14 and 20 weeks old. 
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For analysis of locomotion activity 6 FoxO1DN and 6 wild-type male mice were used. Mice 

are more active during the night and rest during the day. Measurements for FoxO1DN mice 

were performed for 2 days and activity was measured via times crossing a light barrier 

(counts) (Fig. 23A) using the TSE system. 

The activity of FoxO1DN male mice was less compared wild-type mice during the light phase 

(p≤0.03). Furthermore the FoxO1DN mice display a slight but statistically significant increase 

of activity compared to wild-type mice (p≤0.002) during the dark phase as expected. The 

activity of FoxO1DN and wild-type mice was less during the light and increased during the 

dark phase (p≤0.001) (Fig. 23B). 

 
Figure 23: Locomotion activity of 60 weeks old FoxO1DN male mice. 
(A) Activity of FoxO1DN male mice (n=6, red) compared to wild-type mice (n=6, black). Measurements were 
performed for 2 days. Light and dark phase were seperated from 7 to 19 o´clock. (B) Mean value of activity from 
FoxO1DN male mice (n=6) and wild-type mice (n=6) (*p≤0.03, Student´s t-test). 
 

In addition to activity, the energy expenditure was measured. Figure 24 displays energy 

expenditure normalized to lean body mass investigated via CT (see Fig. 18). FoxO1DN mice 

show no difference in the level of energy expenditure compared to wild-type mice during the 

light phase. At dark phase the energy expenditure of FoxO1DN mice was statistically 

significant increased (p≤0.001) compared to wild-type mice (Fig. 24). 
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Figure 24: Energy expenditure normalized to lean body mass of 60 weeks old FoxO1DN mice. 
(A) Energy expenditure of FoxO1DN male mice (n=6, red) compared to wild-type mice (n=6, black). Analysis was 
performed for 2 days. Day and night were seperated from 7 to 19 o´clock. (B) Mean value of energy expenditure 
from FoxO1DN male mice (n=6) and wild-type mice (n=6). Statistically significance was reached during the dark 
phase (*p≤0.001, Student´s t-test). 
 

The respiratory quotient (RQ) is calculated from eliminated CO2 and consumed O2. It 

indicates the substrate metabolized by the particular organism. The respiratory quotient of 

FoxO1DN mice is not different compared to wild-type mice. But, as expected it is reduced 

during the light phase compared to the dark phase for FoxO1DN and wild-type animals 

(p≤0.001). The RQ of both FoxO1DN and wild-type is 0.9 during the light phase. This shows 

proteins to be the major metabolized source during the day which is the resting phase of 

mice. At night the RQ is nearly 1. This indentifies carbohydrates to be predominantly 

metabolized (Fig. 25). 

 

Figure 25: Respiratory quotient of 60 weeks old FoxO1DN mice. 
Respiratory quotient of FoxO1DN male mice (n=6) compared to wild-type mice (n=6). Analysis was performed for 
2 days. Dark and light phase were seperated from 7 to 19 o´clock. Comparison of light and dark phase was 
significant (*p≤0.001, Student´s t-test). 
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3.2.5. Behaviour of FoxO1DN mice 

FoxO1DN is expressed in neurons. To investigate whether this neuron-specific expression of 

FoxO1DN alters brain structures or behaviour of the mice Nissl stainings and behavioural 

testings were performed. The tests used particularly analysed explorative and fear behaviour 

of mice. Furthermore the spatial learning potential was investigated. Only male mice were 

analysed because less hormonal fluctuations affect their behaviour.  

Nissl staining of serial sections of brains from wild-type and FoxO1DN mice at 28 weeks of 

age displayed no structural differences e.g. of hippocampal formation (Fig. 26). 

 

Figure 26: Nissl staining of the hippocampus of 28 weeks old FoxO1DN mice. 
Nissl staining of the hippocampal formation of 28 weeks old FoxO1DN male mice compared to wild-type mice.  
 

During the Open field test the time how long the mice stood in the center or border of the box 

was measured. For FoxO1DN mice no difference was detected compared to wild-type mice 

was detected (Fig. 27A). The O-Maze additionally analyses fear behaviour of mice. This test 

showed that FoxO1DN mice stayed slightly longer in the open than in the closed sections 

compared to wild-type mice. However, this difference was not significant (Fig. 27B). 

 

 

Figure 27: Open field and O-Maze test of FoxO1DN. 
(A) Open field test of FoxO1DN male mice (n=6) compared to wild-type mice (n=6). (B) O-Maze test of FoxO1DN 
male mice (n=6) compared to wild-type mice (n=6). Animals were 60 weeks old.  
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Furthermore spatial learning abilities of FoxO1DN mice were analysed. Therefore the Morris 

Water Maze test was used. The test was performed for 5 days. The time was measured till 

the mouse reached the platform which was hidden under the water surface. Each test was 

performed for 1 minute. At day 5 the platform was removed and the time the mouse spends 

in the quadrant where the platform originally stood was measured. The Water Maze test 

revealed no difference between FoxO1DN and wild-type mice (Fig. 28A and B). 

 

 

Figure 28: Water Maze test of FoxO1DN mice. 
(A) Morris Water Maze test was performed over 5 days to compare FoxO1DN (n=4, red) and wild-type (n=6, 
black) spatial learning abilities. Time was measured to find the platform, maximum time was 1 minute. (B) After 5 
days the platform was removed and the time was measured while the mouse was swimming in the quadrant 
where the platform originally was. 
 

 

3.3. Role of FoxO1 in Alzheimer´s disease 

Previous studies showed that the IR/IGF-1R signaling pathway is disturbed in the central 

nervous system of patients suffering from AD (Frolich et al. 1998; Frolich et al. 1999; 

Moloney et al. 2010). Neuron-specific deletion of the IGF-1R rescues premature mortality 

and a drecreased processing of APP compared to Tg2576 mice (Freude et al., 2009). To 

analyse whether this effect is mediated through FoxO1 the dominant negative (FoxO1DN) 

and constitutive active form of FoxO1 (FoxO1ADA) were analysed in Tg2576 background. 

 

 

3.3.1. Glucose homeostasis of Tg2576/FoxO1DN mice 

Glucose homeostasis of FoxO1DN mice in Tg2576 background was investigated. Blood 

glucose was measured until 60 weeks of age, and glucose and insulin tolerance tests were 

performed as well. Blood glucose of Tg2576/FoxO1DN female mice was similar to that of 

Tg2576 mice. Tg2576/FoxO1DN females show much the same blood glucose concentration 

compared to FoxO1DN mice (Fig. 29A). Tg2576/FoxO1DN male mice exhibit no differences 
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in blood glucose compared to Tg2576 mice, except of the 6 weeks time point (p≤0.02). 

Furthermore Tg2576/FoxO1DN male mice presented a decrease of blood glucose compared 

to Tg2576 which reached significance at 6, 12, 20, 24, 28, 52 and 56 weeks of age (p≤0.05) 

(Fig. 29B). 

 

 

Figure 29: Blood glucose of FoxO1DN mice in Tg2576 background. 
(A) Blood glucose of female Tg2576/FoxO1DN (n=14, light red), FoxO1DN (n=35, red), Tg2576 (n=48, grey) and 
wild-type mice (n=71, black) until 60 weeks of age. (B) Blood glucose of male Tg2576/FoxO1DN (n=12, light red), 
FoxO1DN (n=29, red), Tg2576 (n=35, grey) and wild-type mice (n=67, black) until 60 weeks of age (comparison 
of Tg2576/FoxO1DN and Tg2576, *p≤0.05, Student´s t-test). 
 

Glucose tolerance tests were performed using 11 Tg2576/FoxO1DN, 32 FoxO1DN, 37, 

Tg2576 and 38 wild-type female and 9 Tg2576/FoxO1DN, 21 FoxO1DN, 29 Tg2576 and38 

wild-type male mice. 

Glucose tolerance tests of Tg2576/FoxO1DN female mice showed no changes in blood 

glucose concentrations during GTT (Fig 30A). Tg2576/FoxO1DN male mice presented a 

slight decrease of glucose levels reaching significance at 15 minutes (p≤0.03) compared to 

Tg2576 animals. In addition Tg2576/FoxO1DN male mice showed increased glucose levels 

compared to FoxO1DN mice at 60 minutes after injection of glucose (p≤0.05) (Fig. 30B). 
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Figure 30: Glucose tolerance tests of Tg2576/FoxO1DN mice. 
(A) Glucose tolerance tests of female FoxO1DN/Tg2576 (n= 11, light red), FoxO1DN (n=32, red), Tg2576 (n=37, 
grey) and wild-type mice (n=38, black). (B) Glucose tolerance tests of male FoxO1DN/Tg2576 (n=9, light red), 
FoxO1DN (n=21, red), Tg2576 (n=29, grey) and wild-type mice (n=38, black) (*comparison of Tg2576/FoxO1DN 
and Tg2576; # comparison of Tg2576/FoxO1DN and FoxO1DN, p≤0.05, Student´s t-test)  
 

Insulin tolerance tests exhibit an increased, but statistically not significant, insulin sensitivity 

of Tg2576/FoxO1DN female mice compared to Tg2576 mice. No changes could be observed 

in Tg2576/FoxO1DN female mice compared to FoxO1DN mice (Fig. 31A). Tg2576/FoxO1DN 

male mice show no alterations in insulin sensitivity (Fig. 31B). 

 

Figure 31: Insulin tolerance test of Tg2576/FoxO1DN mice.  
(A) Insulin tolerance tests of female FoxO1DN/Tg2576 (n= 11, light red), FoxO1DN (n=32, red), Tg2576 (n=37, 
grey) and wild-type mice (n=38, black). (B) Insulin tolerance tests of male FoxO1DN/Tg2576 (n=9, light red), 
FoxO1DN (n=21, red), Tg2576 (n=29, grey) and wild-type mice (n=38, black).  
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3.3.2. Body weight of Tg2576/FoxO1DN mice 

Body weight of Tg2576/FoxO1DN mice was measured until 60 weeks of age. No changes of 

body weight have been observed for Tg2576/FoxO1DN female mice compared to Tg2576 

mice. However, Tg2576/FoxO1DN female mice displayed a decreased body weight 

compared to FoxO1DN mice reaching significance from 5 till 40 weeks of age (p≤0.05) (Fig. 

32A). Tg2576/FoxO1DN male mice showed a slight decrease in body weight compared to 

Tg2576 reaching statistical significance at 6, 7, 16, 56 and 60 weeks of age (p≤0.02). 

Additionally Tg2576/FoxO1DN male mice weighed less compared to FoxO1DN male mice 

between 5 and 60 weeks of age (Fig. 32B).  

 

Figure 32: Body weight of Tg2576/FoxO1DN mice until 60 weeks of age. 
(A) Body weight of female FoxO1DN/Tg2576 (n=14, light red), FoxO1DN (n=35, red), Tg2576 (n=48, grey) and 
wild-type mice (n=71, black) until 60 weeks of age. (B) Body weight of male FoxO1DN/Tg2576 (n=12, light red), 
FoxO1DN (n=29, red), Tg2576 (n=35, grey) and wild-type mice (n=67, black) until 60 weeks of age (* comparison 
of Tg2576/FoxO1DN and Tg2576; # comparison of Tg2576/FoxO1DN and FoxO1DN, p≤0.05, Student´s t-test). 
 

Brain body ratio was similar in FoxO1DN female mice compared to wild-type mice as well as 

Tg2576 (Fig. 33A). Statistically significant differences in brain body ratio were found in wild-

type compared to Tg2576/FoxO1DN mice, FoxO1DN compared to Tg2576/FoxO1DN and 

wild-type compared to Tg2576 (p≤0.04) (Fig. 33B). 
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Figure 33: Brain body ratio of Tg2576/FoxO1DN mice at 60 weeks of age.  
(A) Body brain ratio of wild-type (n=26), FoxO1DN (n=7), Tg2576/FoxO1DN (n=3) and Tg2576 (n=19) female 
mice at 60 weeks of age. (B) Body brain ratio of 60 weeks old wild-type (n=28, black), FoxO1DN (n=6), 
Tg2576/FoxO1DN (n=3) and Tg2576 (n=20) male mice at 60 weeks of age (*p≤0.04, Student´s t-test). 
 

 

3.3.3. Kaplan-Meier analysis of FoxO1DN mice in Tg2576 background 

Survival of Tg2576/FoxO1DN mice was analysed via Kaplan-Meier analysis. Figure 34A 

shows survival of female and male Tg2576/FoxO1DN mice. No significant differences were 

recognized between the survival of FoxO1DN mice compared to wild-type mice and 

Tg2576/FoxO1DN to Tg2576 mice. At 60 weeks of age nearly 70% of Tg2576/FoxO1DN and 

Tg2576 as well as 90% of FoxO1DN and wild-type mice were still alive. FoxO1DN mice 

showed increased survival compared to Tg2576/FoxO1DN mice (p≤0.05, Wilcox-rank). For 

female mice 80% of Tg2576/FoxO1DN and Tg2576 were alive at 60 weeks of age. 

Furthermore 90% of FoxO1DN and wild-type mice still lived at 60 weeks of age (Fig. 34B). 

Tg2576/FoxO1DN male survived no longer than Tg2576 mice. 40% of Tg2576/FoxO1DN 

and Tg2576 mice were dead at 60 weeks of age and 10% of FoxO1DN and wild-type male 

mice died until 60 weeks of age (Fig. 34C). 
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Figure 34: Kaplan-Meier kurves of FoxO1DN mice in Tg2576 background until 60 weeks of age.  
(A) Survival of Tg2576/FoxO1DN (n=26, light red), Tg2576 (n=83, grey), FoxO1DN (n=64, red) and wild-type 
(n=138, black) female and male mice. (B) Survival of female Tg2576/FoxO1DN (n=14, light red), Tg2576 (n=48, 
grey), FoxO1DN (n=35, red) and wild-type (n=71, black). (C) Survival of male Tg2576/FoxO1DN (n=12, light red), 
Tg2576 (n=35, grey), FoxO1DN (n=29, red) and wild-type (n=67, black) (*p≤0.05, Wilcoxon rank). 
 

 

3.3.4. IR/IGF-1R signaling in Tg2576/FoxO1DN mice 

The IR/IGF-1R signaling of Tg2576/FoxO1DN was analysed via SDS-PAGE and western 

blot. Protein levels were analysed in the hippocampus and frontal cortex. Comparison of 

Tg2576/FoxO1DN, Tg2576, FoxO1 and wild-type female and male mice presents no 

changes in IR and IGF-1R expression (Fig. 35). 

 

Figure 35: IR and IGF-1R protein expression of 60 weeks old Tg2576/FoxO1DN mice. 
Expression level of the IR, IGF-1R and actin as loading control is shown. Protein levels of hippocampus and 
frontal cortex from female and male wild-type (control), FoxO1DN, Tg2576/FoxO1DN and Tg2576 micel. 100 µg 
of total proteins were used and separated via 10% SDS-PAGE. 
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The activation of the PI3 kinase and the MAP kinase pathway was analysed via antibodies 

against the specific phosphorylation sites (Ser473 for pAKT; Thr202/Tyr204 for pERK1/2 and 

Ser9 for pGSK3β). No changes of AKT phosphorylation has been observed in 

Tg2576/FoxO1DN, Tg2576, FoxO1DN and wild-type female and male mice. Additionally 

phosphorylation of ERK1/2 showed a slight increase in the hippocampus and frontal cortex of 

the FoxO1DN male mice and was increased in mice with AD background. Phosphorylation of 

GSK3β was not changed (Fig. 36). 

 

 
Figure 36: IR/IGF1R signaling pathway of 60 weeks old Tg2576/FoxO1DN mice. 
Phosphorylation level of AKT (pAKT, Ser473), ERK1/2 (pERK1/2, Thr202/Tyr204) and GSK3β (pGSK3β, Ser9) 
are shown. As control served unphosphorylate protein level of AKT, ERK1/2 and GSK3β. Female and male wild-
type mice (control) are compared to FoxO1DN female and male mice at the age of 60 weeks. 100 µg of total 
proteins were used and separated via 10% SDS-PAGE. 
 

Furthermore expression of FoxO1 and FoxO3a was analysed via western blots. No changes 

in FoxO1 and FoxO3a expressed have been detected in Tg2576/FoxO1DN, Tg2576, 

FoxO1DN and wild-type female and male mice. As expected, FoxO1DN is shown in 

FoxO1DN and Tg2576/FoxO1DN mice. Possible target genes of FoxO1 were p27 and 

MnSOD. Both awere not altered in FoxO1DN mice compared to wild-type mice (Fig. 37). 
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Figure 37: Expression of FoxO1 and FoxO3a in Tg2576/FoxO1DN mice. 
FoxO1 and FoxO3a expression as well as p27 and MnSOD of 60 weeks old Tg2576/FoxO1DN female and male 
mice. Hippocampus and frontal cortex were analysed and actin served as control. 100 µg of total proteins were 
used and separated via 10% SDS-PAGE. 
 

 

3.3.5. APP Processing in Tg2576/FoxO1DN mice 

To analyse whether FoxO1 affects processing of APP and generation of Aβ SDS-PAGE and 

western blots, Aβ-ELISA and Dot blots were used. Expression of APP in Tg2576/FoxO1DN 

mice is not changed compared to Tg2576 and there are no differences in female and male 

mice. The generation of α/βCTFs is not altered. Furthermore the production of Aβ shows no 

differences in Tg2576/FoxO1DN compared to Tg2576 female and male mice (Fig. 38). 

 

Figure 38: APP-Processing of FoxO1DN mice in Tg2576 background. 
APP expression and generation of α/βCTFs are shown for FoxO1DN mice compared to wild-type female and 
male mice as well as female and male FoxO1DN in the Tg2576 background and Tg2576 mice. 100 µg of total 
proteins were used and separated via 10% or 15%SDS-PAGE. For Aβ quantification 200 µg of total proteins were 
separated via a urea tricine SDS-PAGE.  
 

The generation of Aβ in female mice was further analysed via ELISA. The production of Aβ40 

was slightly increased in Tg2576/FoxO1DN mice but not statistically significant. The Aβ42 

level was not changed in Tg2576/FoxO1DN mice compared Tg2576 mice (Fig. 39). 
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Figure 39: Quantification of Aβ40 and Aβ42 in hippocampi of Tg2576 and Tg2576/FoxO1DN female mice.  
Aβ40 and Aβ42 generation in hippocampi of Tg2576/FoxO1DN (n=3) mice compared to Tg2576 mice (n=3). 
 
Dot blot analysis was performed to detect oligomeric structures of Aβ which are thought to be 

the major neurotoxic Aβ species in AD. Figure 40 shows the dot blot of Tg2576/FoxO1DN 

compared to Tg2576. No changes of Aβ oligomers could be observed in Tg2576/FoxO1DN 

compared to Tg2576 mice. Additionally no differences between female and male were 

detected (Fig. 40).  

 
Figure 40: Dot Blot for analysis of Aβ oligomers of Tg2576/FoxO1DN hippocampus. 
Dot Blot analysis of Aβ oligomers in FoxO1ADA/Tg2576 female and male mice compared to Tg2576. Different 
protein concentrations were used for Dot Blots (5, 10 and 25 µg).  
 
Cleavage of APP by α- or β-secretases promotes the generation of α- or β-CTFs. As 

indicated in figure 38 the expression of the β-secretase BACE-1 and the α-secretase 

ADAM10 or ADAM17 (TACE) were not changed in 60 weeks old Tg2576/FoxO1DN female 

and male mice compared to Tg2576 mice. Furthermore no altered protein expression of 

Presenilin-1, the catalytic active part of the γ-secretase complex, was detected (Fig. 41). 
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Figure 41: Expression of α-, β- and γ-secretases 60 weeks old Tg2576/FoxO1DN mice. 
BACE-1, ADAM10, TACE/ADAM17 and Presenilin-1 expression in hippocampus and frontal cortex of 60 weeks 
old Tg2576/FoxO1DN female and male mice compared to Tg2576 mice. Actin serves as control. 100 µg of total 
proteins were used and separated via 10% SDS-PAGE. 
 
Expression of proteins involved in Aβ clearance is shown in figure 42. HSF1 is thought to 

play a role in the degradation of Aβ. The expression of HSF1 is not changed in 

Tg2576/FoxO1DN female and male mice compared to Tg2576 mice. Furthermore the 

expression level of α-2Macroglobulin and ApoE are not altered in Tg2576/FoxO1DN female 

and male mice compared to Tg2576 mice (Fig. 42). 

 
Figure 42: Proteins involved in Aβ clearance in 60 weeks old Tg2576/FoxO1DN mice. 
Expression of HSF1, α-2Macroglobulin and ApoE in hippocampus and frontal cortex of 60 weeks 
Tg2576/FoxO1DN female and male mice compared to Tg2576 mice. Actin serves as control. 100 µg of total 
proteins were used and separated via 10% SDS-PAGE. 
 

 

3.4. Verification of FoxO1ADA expressing mice 

Homologous recombination of the FoxO1ADA gene was controled via FoxO1ADA and –DN 

specific PCR. The primers bind in the sequence of the Rosa26 locus which flanks the 

inserted gene (2.9.3.). To distinguish FoxO1ADA and -DN the size of the amplyfied DNA 

fragment is important. The fragment size of about 2000bp displays the FoxO1ADA gene (Fig. 

43A). The expression of FoxO1 in the hippocampus and frontal cortex is shown in figure 40B.  



3. Results   

 73 

 

Figure 43: Detection of FoxO1ADA. 
(A) FoxO1ADA and specific PCR (2.9.3.). (B) FoxO1ADA and eGFP expression in the hippocampus and frontal 
cortex of SynCre/FoxO1ADA mice and wild-type mice as controls. 100 µg total proteins were separated via 10% 
SDS-PAGE. 
 

 

3.5. Characterisation of FoxO1ADA mice 

Changes in glucose homeostasis and growth might affect survival and the pathology of 

Alzheimer´s disease. Previous studies showed that the deletion of the IGF-1R in neurons 

and glia cells of the CNS result in growth retardation and abnormal behaviour (Kappeler et 

al., 2008). The deletion of brain derived IRS-2 or IR leads to increased food intake and 

body weight (Brüning et al., 2000; Masaki et al., 2004, Lin et al., 2004). Therefore the 

metabolism of FoxO1DN and FoxO1ADA mice was analysed. 

 

 

3.5.1. Glucose homeostasis of FoxO1ADA mice 

Analysis of glucose homeostasis of FoxO1ADA was performed. Blood glucose was 

measured beginning at 5 weeks until 60 weeks of age. No alterations of blood glucose 

concentration in the FoxO1ADA female mice have been detected (Fig. 4A). FoxO1ADA male 

mice showed a slight decreased blood glucose concentration from 5 to 7 weeks of age 

compared to wild-type mice (p≤0.002). An increase of blood glucose from FoxO1ADA male 

mice occurred at 36 until 52 weeks. However, this did not reach significant (Fig. 44B). 
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Figure 44: Blood glucose of FoxO1ADA female and male untill 60 weeks of age. 
(A) Blood glucose of FoxO1ADA (n=22, blue) and wild-type (n=51, black) female mice up to 60 weeks. (B) Blood 
glucose of FoxO1ADA (n=33, blue) and wild-type (n=61, black) male mice untill 60 weeks of age (*p≤0.002, 
Student´s t-test). 
 
Glucose tolerance tests and insulin tolerance tests were performed at 10 and 11 weeks of 

age. In total 21 female FoxO1ADA, 20 female wild-type, 23 male FoxO1ADA and 23 male 

wild-type mice were analysed. Glucose tolerance tests of FoxO1ADA female revealed no 

changes compared to wild-type mice (Fig. 45A). In contrast FoxO1ADA male mice show 

decreased but not statistically significant glucose tolerance in comparison to wild-type mice 

(Fig. 45B). 

 
Figure 45: Glucose tolerance tests of FoxO1ADA and wild-type mice. 
(A) Glucose tolerance tests of FoxO1ADA female (n=21; blue) compared to control animals (n=20; black). (B) 
Glucose tolerance test of FoxO1ADA male (n=23; blue) and wild-type mice (n=23; black). 
 
Insulin tolerance tests of FoxO1ADA female revealed no alteration in insulin sensitivity 

compared to wild-type animals (Fig. 46A). In contrast FoxO1ADA male mice display a 

statistical significant (p≤0.01) increased insulin sensitivity compared to wild-type mice (Fig. 

46B). 
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Figure 46: Insulin tolerance tests of FoxO1ADA and wild-type mice. 
(A) Insulin tolerance tests of FoxO1ADA female (n=21; blue) compared to control animals (n=20; black). (B) 
Insulin tolerance test of FoxO1ADA male (n=23; blue) and wild-type mice (n=23; black) (*p≤0.01, Student´s t-test). 
 

 

3.5.2. Analysis of IR/IGF-1R signaling in 28 weeks old FoxO1ADA mice 

Alterations of protein expression and phophorylation level were analysed via western blots. 

28 weeks old FoxO1ADA female and male mice present no changes in IR and IGF-1R 

expression compared to female and male wild-type animals. The analysed brain regions 

were hippocampus and the frontal cortex (Fig. 47). 

 

 
Figure 47: Expression level of IR and IGF-1R from 28 weeks old FoxO1ADA mice. 
Expression level of the IR, IGF-1R and actin as loading control are shown. Protein levels of hippocampus and 
frontal cortex from female and male wild-type (control) and FoxO1ADA mice. 100 µg of total proteins were 
separated via 10% SDS-PAGE. 
 

Phosphorylation status of AKT, ERK1/2 and GSK3β were analysed to estimate activation of 

the PI3 kinase and MAP kinase signaling pathways which are both regulated via the IR and 

IGF-1R. Phosphorylation of AKT and ERK1/2 are not changed in both female and male mice. 

Phosphorylation of GSK3β was increased in hippocampus lysates of female wild-type and 

female FoxO1ADA mice. Howeverthis was due different levels of GSK3β (Fig. 48).   
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Figure 48: IR/IGF1R signaling pathway of 28 weeks old FoxO1ADA mice. 
Phosphorylation level of AKT (pAKT, Ser473), ERK1/2 (pERK1/2, Thr202/Tyr204) and GSK3β (pGSK3β, Ser9) 
are shown. As control served unphosphorylate protein level of AKT, ERK1/2 and GSK3β. Female and male wild-
type mice (control) are compared to FoxO1ADA female and male mice at the age of 28 weeks. 100 µg of total 
proteins were separated via 10% SDS-PAGE. 
 

 

3.5.3. Growth of FoxO1ADA mice 

Body growth of FoxO1ADA mice was analysed because FoxO1 mediated transcription is 

amongst others involved in regulating somatic somatic growth. Therefore body weight was 

measured from 5 till 60 weeks of age. Furthermore CT and NMR analysis were performed to 

detect body fat and lean body mass. Additionally X-rays as well as measurements of body 

length, food and water intake were performed.  

FoxO1ADA female mice weight significantly less than wild-type mice up to 60 weeks of age 

(Fig. 49A). The difference of body weight at 28 weeks was about 1.7 g (Fi. 49C). At this time 

point 14 female FoxO1ADA and 46 wild-type mice were measured (p≤0.03). In addition 

FoxO1ADA male mice showed lower body from 5 to 56 weeks of age (Fig. 49B) with a more 

pronounced difference than in female mice. The difference at 28 weeks was about 2.5 g 

(p≤0.01) for FoxO1ADA males compared to wild-type male mice (Fig. 49D). 
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Figure 49: Body weight of FoxO1ADA mice over 60 weeks. 
(A) Body weight of FoxO1ADA female mice (n=22, blue) compared to wild-type female mice (n=51, black). (B) 
Body weight of FoxO1ADA male mice (n=33, blue) in comparison to wild-type male mice (n=61, black). (C) Body 
weight of female FoxO1ADA (n=14, Blue) and wild-type mice (n=46, black) at the age of 28 weeks (p≤0.03, 
Student´s t-test). (D) Body weight of male FoxO1ADA (n=23, blue) and wild-type mice (n=46, black) at 28 weeks 
(p≤0.01, Student´s t-test). 
 

To analyse body composition CT and NMR of 60 weeks old FoxO1ADA and wild-type male 

mice were performed. 6 animals of each genotype were studied. Body fat was not changed 

in FoxO1ADA male mice compared to wild-type mice using both methods, CT and NMR (Fig. 

50A and B). However lean body mass of FoxO1ADA male mice was statistically significant 

reduced compared to wild-type mice (CT p≤0.02, NMR p≤0.002). The difference in lean body 

mass was nearly about 5 gram (Fig. 50C and D). 
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Figure 50: Body composition of FoxO1ADA male mice. 
(A and C) Body fat ratio and lean body mass of FoxO1ADA male mice (n=6) compared to wild-type mice (n=6) via 
CT. (B and D) Body fat ratio and lean body mass of FoxO1ADA male mice (n=6) and wild-type mice (n=5) via 
NMR. The mice used for analysis of body composition were 60 weeks old (CT* p≤0.02, NMR* p≤0.002, Student´s 
t-test). 
 

X-ray and false-coloured imaging of FoxO1ADA 60 weeks old male mice showed similar 

bone densities and no skeletal deformation. What becomes obvious is that FoxO1ADA 

presented a thinner body (Fig. 51 A and B). 
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Figure 51: Analysis of bone density. 
(A) X-ray of FoxO1ADA male compared to wild-type mice at 60 weeks of age. (B) False-coloured imaging of 
FoxO1ADA male compared to wild-type mice at 60 weeks of age. 
 

Body length of 60 weeks old FoxO1ADA mice and wild-type showed no significant changes. 

For this analysis 3 FoxO1ADA and 6 wild-type animals at the age of 60 weeks were used 

(Fig. 52). 

 
Figure 52: Body length of 60 weeks old FoxO1ADA male mice. 
Body length of FoxO1ADA male mice (n=3) compared to wild-type mice (n=6).  
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For estimated food and water intake 6 FoxO1ADA and 6 wild-type male mice were used. 

Food intake of FoxO1ADA male mice was slightly but not significantly increased compared to 

wild-type mice (Fig. 53A). Water intake was not altered in FoxO1ADA mice (Fig. 53B). 

 
Figure 53: Food and water intake of 60 weeks old FoxO1ADA male mice.  
(A and B) Food and water intake of FoxO1ADA male mice (n=6) compared to wild-type male mice (n=6). 
 

To exclude changes of key mediators of growth FoxO1ADA mice were studied via realTime 

PCR analysis of the growth hormone axis. The RNA levels of growth hormone releasing 

hormone (GHRH) in hypothalamus, growth hormone releasing hormone receptor (GHRHR) 

and growth hormone (GH) in pituitary as well as growth hormone receptor (GHR) and IGF-1 

in liver were detected in 4 weeks old FoxO1ADA male mice. Only male FoxO1ADA mice 

were analysed because these mice presented a more prominent difference in body weight 

than female FoxO1ADA mice (Fig. 46). The animals were dissected at the same time of day 

to exclude hormonal changes during the day. A silght but not significant reduction of GHRH 

in the hypothalamus could be observed. Furthermore no changes of GHRHR and GH in 

pituitary as well as of GHR in liver were detected (Fig. 54). 
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Figure 54: realTime PCR analysis of growth axis in 4 weeks old FoxO1ADA male mice. 
Analysis of mRNA levels of growth hormone releasing hormone (GHRH) in hypothalamus (HT), growth hormone 
releasing hormone receptor (GHRHR) and growth hormone (GH) in pituitary (PT) as well as growth hormone 
receptor (GHR) and IGF-1 in liver (LI) of 4 weeks old FoxO1ADA mice (n=4) compared to wild-type (n=6). mRNA 
levels of wild-type mice were set as 1.0. 
 

 

3.5.4. Indirect calorimetric analysis of FoxO1ADA mice 

FoxO1ADA mice showed a lower body weight compared to wild-type mice. These 

differences were observed in female and to a larger extend in male mice. To further analyse 

metabolism of these mice indirect calorimetry was performed. First the motor abilities of 

FoxO1ADA mice was tested via RotaRod which presented no affected motor coordination of 

FoxO1ADA male mice compared to wild-type mice (Fig. 55). 
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Figure 55: RotaRod test of FoxO1ADA male mice. 
RotaRod test in FoxO1ADA (n=6) compared to wild-type animals (n=6). Animals were between 14 and 20 weeks 
old. 
 
Furthermore locomotive activity of FoxO1ADA mice was analysed. FoxO1ADA male mice 

show an increased activity compared to wild-type mice at 60 weeks of age. This difference in 

activity was statistically significant (p≤0.001) and was about 500 counts during the dark 

phase (Fig. 56).  

 

 
Figure 56: Locomotion activity of 60 weeks old FoxO1ADA male mice. 
(A) Activity of FoxO1ADA male mice (n=6, blue) compared to wild-type mice (n=6, black). Measurements were 
performed for 3 days. (B) Mean value of activity from FoxO1ADA male mice (n=6) and wild-type mice (n=6) 
(*p<0.001, Student´s t-test). 
 

Interestingly energy expenditure normalized to lean body mass of these animals displayed 

no changes during the dark phase while activity is increased in FoxO1ADA male mice (Fig. 

56). In addition energy expenditure of FoxO1ADA mice is slightly increased during the light 

phase (p≤0.001) (Fig. 57). 
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Figure 57: Energy expenditure of 60 weeks old FoxO1ADA mice. 
(A) Energy expenditure normalized to lean body mass of FoxO1ADA male mice (n=6, blue) compared to wild-type 
mice (n=6, black). Analysis was performed for 3 days. (B) Mean value of energy expenditure from FoxO1ADA 
male mice (n=6) and wild-type mice (n=6) (*p≤0.001, Student´s t-test). 
 
 
The respiratory quotient (RQ) is calculated from eliminated CO2 and consumed O2. The RQ 

is significantly decreased in wild-type mice compared to FoxO1ADA male mice at the dark 

phase (p≤0.001). The RQ of FoxO1ADA during the dark phase was about 0.9 which 

indicates carbohydrates to be predominantly metabolized. During the light phase FoxO1ADA 

displayed a significant decrease of the RQ (p≤0.002). Hence, for wild-type and FoxO1ADA 

mice proteins are the major metabolized sources at day (Fig. 58). 

 

 
Figure 58: Respiratory quotient of 60 weeks old FoxO1DN mice. 
Respiratory quotient of FoxO1ADA male mice (n=6) compared to wild-type mice (n=6). Analysis was performed 
for 2 days (*p≤0.002, Student´s t-test). 
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3.5. Behaviour of FoxO1ADA mice 

To analyse whether the neuron-specific FoxO1ADA expression affects brain structure or 

behaviour of the FoxO1ADA mice Nissl stainings of serial sections of the brain and 

behavioural tests (exploration, fear behaviour) were performed. Furthermore the spatial 

learning potential of the mice was investigated. Only male mice were analysed because less 

hormonal fluctuations affect the behaviour.  

Nissl staining of brains from wild-type and FoxO1ADA male mice which were 28 weeks old 

displayed unaltered brain structures e.g. hippocampal formation (Fig. 59).  

 

 
Figure 59: Nissl staining of the hippocampus of 28 weeks old FoxO1ADA mice. 
Nissl staining of the hippocampal formation of 28 weeks old FoxO1ADA male mice compared to wild-type mice.  
 

The Open field test analyses explorative and fear behaviour of mice. Time how long the mice 

stood in the center or border of the box was measured. FoxO1ADA mice showed no 

difference in time spend in the center or at the border of the test box compared to wild-type 

mice (Fig. 60A). Furthermore fear behaviour of these mice was investigated via O-Maze. 

This test showed that FoxO1ADA male mice present similar fear behaviour as wild-type mice 

at 60 weeks of age (Fig. 60). 
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Figure 60: Open field and O-Maze test of FoxO1ADA. 
(A) Open field test of FoxO1ADA male mice (n=6) compared to wild-type mice (n=6). (B) O-Maze test of 
FoxO1ADA male mice (n=6) compared to wild-type mice (n=6). Animals were 60 weeks old.  
 

Moreover, spatial learning behaviour of FoxO1ADA male mice was analysed. For that reason 

the Morris Water Maze test was used. The test took 5 days and the time was measured till 

the mouse reaches the platform which was hidden under the water surface (escape latency). 

Each test was performed for 1 minute. At day 5 the platform was removed and the time the 

mouse swam in the quadrant where the platform originally was located was analysed. 

Interestingly FoxO1ADA mice found the platform faster than wild-type in this task. At day 1 

the difference in time was statistically significant (p≤0.02). During the 5th day wild-type mice 

showed a learning ability and from day 3 to day 5 there were no differences in time needed 

to reach the platform between (Fig. 61A). On the last day of the tests the platform was 

removed and the time was measured while each mouse swims in the target quadrant. 

FoxO1ADA spend longer time in the quadrant the platform originally was located compared 

to wild-type mice but this difference was not significant (Fig.61B).  
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Figure 61: Water Maze test of FoxO1ADA mice. 
(A) Water Maze test was performed over 5 days to compare FoxO1ADA (n=4, red) and wild-type (n=6, black) 
spatial learning behaviour. The time was measured until they found the platform, maximum time was 1 minute. (B) 
After 5 days the platform was removed and the time was measured while the mouse was swimming in the 
quadrant where the platform originally was (*p≤0.02, Student´s t-test). 
 

 

3.6. Role of FoxO1 in Alzheimer´s disease 

Previous studies might suggest that the IR/IGF-1R signaling pathway is disturbed in the 

central nervous system of patients suffering from AD (Frolich et al. 1998; Frolich et al. 1999; 

Moloney et al. 2010). Neuron-specific deletion of the IGF-1R rescues premature mortality 

and a drecreased processing of APP in Tg2576 mice (Freude et al., 2009). To analyse 

whether this effect is mediated through FoxO1 the dominant negative (FoxO1DN) and 

constitutive active form of FoxO1 (FoxO1ADA) were analysed in a Tg2576 background. 

 

 

3.6.1. Glucose homestasis of Tg2576/FoxO1ADA mice 

Blood glucose was measured from 5 till 60 weeks of age. Blood glucose concentrations of 

FoxO1ADA, wild-type, Tg2576/FoxO1ADA and Tg2576 female mice were similar during the 

whole study period. Significant changes have been observed at 5 (p≤0.04) and 44 weeks 

(p≤0.05). At 5 weeks blood glucose levels were decreased in Tg2576/FoxO1ADA mice and 

at 44 weeks higher than in Tg2576. From 36 to 52 weeks blood glucose concentration of 

Tg2576 female mice was decreased compared to Tg2576/FoxO1ADA mice (Fig. 62A). 

Tg2576/FoxO1ADA male mice had a lower blood glucose concentration compared to the 

other genotypes (Fig. 62B). The measurement ended at at 12 weeks of age because all 

Tg2576/FoxO1ADA male died (see Fig. 67).  
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Figure 62: Blood glucose levels of FoxO1ADA mice in Tg2576 background. 
(A) Blood glucose concentration of female Tg2576/FoxO1ADA (n=14, light blue), FoxO1ADA (n=22, blue), 
Tg2576 (n=29, grey) and wild-type mice (n=51, black) until 60 weeks of age. (B) Blood glucose of male 
Tg2576/FoxO1ADA (n=3, light blue), FoxO1ADA (n=33, blue), Tg2576 (n=31, grey) and wild-type mice (n=61, 
black) until 60 weeks of age (*Tg2576/FoxO1ADA compared to Tg2576, p≤0.05, Student´s t-test). 
 

Glucose tolerance tests of Tg2576/FoxO1ADA female mice revealed an initially higher blood 

glucose level in Tg2576/FoxO1ADA compared to Tg2576 female mice (p<0.05). Glucose 

tolerance of Tg2576/FoxO1ADA was similar compared to Tg2576 female mice (Fig. 63A). 

Additionally Tg2576/FoxO1ADA male mice displayed a slightly decreased glucose 

concentration during GTT compared to FoxO1ADA mice which reaches significance at 15 

minutes after glucose injection (p≤0.05). Tg2576/FoxO1ADA male mice also showed slight 

increased glucose levels during GTT compared to Tg2576 mice at 30 and 60 minutes after 

injection which did not reach significance (Fig. 63). 

 
Figure 63: Glucose tolerance tests of Tg2576/FoxO1ADA and wild-type mice. 
(A) Glucose tolerance tests of Tg2576/FoxO1ADA (n=13, light blue), Tg2576 (n=24, grey), FoxO1ADA female 
(n=21; blue) and control animals (n=20; black). (B) Glucose tolerance test ofTg2576/FoxO1ADA (n=3; light blue), 
Tg2576 (n=13, grey) FoxO1ADA male (n=23; blue) and wild-type mice (n=23; black) (*comparison of 
Tg2576/FoxO1ADA and Tg2576, p≤0.05; # comparison of Tg2576/FoxO1ADA and FoxO1ADA, p≤0.05, Student´s 
t-test) 
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Insulin tolerance tests revealed nearly unaltered insulin sensitivity from Tg2576/FoxO1ADA 

female mice compared to Tg2576 mice. However, glucose concentrations at 15 minutes 

were significantly higher in Tg2576/FoxO1ADA compared to Tg2576 mice (p≤0.04) (Fig. 

64A). Insulin sensitivity of Tg2576/FoxO1ADA male mice compared to Tg2576 mice shows 

no changes. (Fig. 64B). 

 
Figure 64: Insulin tolerance tests of Tg2576/FoxO1ADA and wild-type mice. 
(A) Insulin tolerance tests of Tg2576/FoxO1ADA (n=13, light blue), Tg2576 (n=24, grey), FoxO1ADA female 
(n=21; blue) and control animals (n=20; black). (B) Insulin tolerance test ofTg2576/FoxO1ADA (n=2; light blue), 
Tg2576 (n=13, grey) FoxO1ADA male (n=23; blue) and wild-type mice (n=23; black) (*comparison of 
Tg2576/FoxO1ADA and Tg2576 p≤0.04). 
 

 

3.7. Growth of Tg2576/FoxO1ADA mice 

Body weight of Tg2576/FoxO1ADA mice was measured from 5 till 60 weeks of age. 

Comparison of Tg2576/FoxO1ADA to Tg2576 female mice revealed that Tg2576/FoxO1ADA 

mice weight less from 5 till 20 weeks of age. This difference reached significance at 5 and 6 

weeks (p≤0.05). Furthermore Tg2576/FoxO1ADA female mice had a lower body weight 

compared to FoxO1ADA mice from 5 till 20 weeks of age. Statistically significant differences 

were found at 5 to 9 weeks and at 16 weeks (p≤0.03) (Fig. 65A). Tg2576/FoxO1ADA male 

mice had a lower body weight compared to Tg2576 animals. This difference was significant 

at week 5 and 7 (p≤0.03). In addition Tg2576/FoxO1ADA male mice present a decreased 

body weight in comparison to FoxO1ADA mice reaching significance at week 5 till 7 (p≤0.02). 

Measurements of Tg2576/FoxO1ADA male ended at 9 weeks of age because animals died 

(Fig. 65B). Interestingly FoxO1ADA female and male mice had nearly the same body weight 

compared to Tg2576 mice.  
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Figure 65: Body weight of Tg2576/FoxO1ADA until 60 weeks of age. 
(A) Body weight of female Tg2576/FoxO1ADA (n=14, light blue), FoxO1ADA (n=22, blue), Tg2576 (n=29, grey) 
and wild-type mice (n=51, black) until 60 weeks of age (* comparison of Tg2576/FoxO1ADA and Tg2576 p≤0.05, 
#comparison of Tg2576/FoxO1ADA and FoxO1ADA p≤0.03, Student´s t-test). (B) Body weight of male 
Tg2576/FoxO1ADA (n=3, light blue), FoxO1ADA (n=33, blue), Tg2576 (n=31, grey) and wild-type mice (n=61, 
black) until 60 weeks of age. Significances are shown for comparisons of FoxO1DN and Tg2576/FoxO1ADA as 
well as Tg2576/FoxO1ADA and Tg2576 mice (*comparison of Tg2576/FoxO1ADA and Tg2576 p≤0.03, # 
comparison of Tg2576/FoxO1ADA and FoxO1ADA p≤0.02, Student´s t-test). 
 

Brain body ratio of 60 weeks old Tg2576/FoxO1ADA female mice showed no differences 

between wild-type and FoxO1ADA as well as Tg2576/FoxO1ADA and Tg2576 mice (Fig. 

66A). In contrast body brain ratio of 60 weeks old wild-type and FoxO1ADA male mice 

presented a significant increase in FoxO1ADA mice (p≤0.02). Tg2576/FoxO1ADA male could 

not be analysed because this genotype died between 12 and 16 weeks of age (Fig. 66B and 

see Fig. 67). 

 
Figure 66: Brain body ratio of Tg2576/FoxO1ADA mica at 60 weeks of age.  
(A) Body brain ratio of wild-type (n=26), FoxO1ADA (n=4), Tg2576/FoxO1ADA (n=3) and Tg2576 (n=19) female 
mice at 60 weeks of age. (B) Body brain ratio of 60 weeks old wild-type (n=28) and FoxO1ADA (n=6) male mice 
at 60 weeks of age (*p≤0.02, Student´s t-test). 
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3.8. Survival of FoxO1ADA mice 

Survival of the different genotypes was analysed via Kaplan-Meier kurves. Significances 

were shown for the comparisons of wild-type and Tg2576, wild-type and Tg2576/FoxO1ADA, 

FoxO1ADA and Tg2576 as well as FoxO1ADA and Tg2576/FoxO1ADA mice (p≤0.05, 

Wilcox-rank) (Fig. 67A). Kaplan-Meier analysis of female mice shows that none of the 

FoxO1ADA mice were dead 60 weeks of age but nearly 10% of wild-type female mice are 

dead. 50% of the Tg2576/FoxO1ADA and 30% of Tg2576 female mice were dead at the age 

of 60 weeks (Fig. 67B) and about 95% of FoxO1ADA and 85% of wild-type mice were alive 

at the end of the study. Furthermore nearly 70 % of Tg2576 male mice still lived at 60 weeks 

of age. Tg2576/FoxO1ADA male mice all died between 12 and 16 weeks (p≤0.05, Wilcox-

rank). As in females Tg2576 male mice showed significant decreased survival compared to 

wild-type and FoxO1ADA mice (p≤0.05, Wilcox-rank) (Fig. 67C). 

 
Figure 67: Survival of FoxO1ADA mice in Tg2576 background until 60 weeks of age.  
(A) Survival of Tg2576/FoxO1ADA (n=14, light blue), Tg2576 (n=29, grey), FoxO1ADA (n=22, blue) and wild-type 
(n=51, black) female and male mice. (B) Survival of female Tg2576/FoxO1ADA (n=3, light blue), Tg2576 (n=31, 
grey), FoxO1ADA (n=33, blue) and wild-type (n=61, black). (C) Survival of male Tg2576/FoxO1DN (light blue), 
Tg2576 (grey), FoxO1ADA (blue) and wild-type (black) (*p≤0.05, Wilcox-rank). 
 

 

3.9. IR/IGF-1R signaling pathway in Tg2576/FoxO1ADA 

The IR/IGF-1R signaling pathway was analysed via western blots. The expression levels of 

the IR and IGF-1R were the same in 60 weeks old wild-type, FoxO1ADA as well as 
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Tg2576/FoxO1 and Tg2576 mice. In addition expression levels were similar in female and 

male mice (Fig. 68). 

 

Figure 68: IR and IGF-1R protein expression of 60 weeks old Tg2576/FoxO1ADA mice. 
Expression level of the IR and IGF-1R with actin as control is shown. Protein levels of hippocampus and frontal 
cortex from female and male wild-type (control), FoxO1ADA, Tg2576/FoxO1ADA and Tg2576 mice. Actin was 
served as loading control. 100 µg of total proteins were used and separated via 10% SDS-PAGE. 
 
Activation of the PI3 kinase and MAP kinase pathway was analysed via phosphorylation of 

AKT and ERK1/2. Phosphorylation levels were similar in all genotypes and gender at 60 

weeks of age. Only female Tg2576/FoxO1ADA mice were analysed because 

Tg2576/FoxO1ADA male mice died before 60 weeks of age (Fig. 69). 

 

 

Figure 69: IR/IGF1R signaling pathway of 60 weeks old Tg2576/FoxO1ADA mice. 
Phosphorylation level of AKT (pAKT, Ser473) and ERK1/2 (pERK1/2, Thr202/Tyr204) are shown. As control 
served unphosphorylate protein level of AKT and ERK1/2. Female and male wild-type mice (control) are 
compared to FoxO1ADA female and male mice at the age of 60 weeks. Protein phosphorylation in hippocampus 
and frontal cortex are shown. 100 µg of total proteins were used and separated via 10% SDS-PAGE gels. 
 

Furthermore the expression level of the FoxO1 target gene p27 was analysed via wetsern 

blots. Expression level of p27 which is a regulator of cell cycle shows no differences in 60 

weeks old FoxO1ADA and wild-type mice (Fig. 70). 



3. Results   

 92 

 

Figure 70: Expression of FoxO1 and p27 in 60 weeks old animals 
FoxO1 expression as well as target gene expression from p27 of 60 weeks old FoxO1ADA female and male mice. 
Hippocampus and frontal cortex were analysed and actin served as control. 100 µg of total proteins were used 
and separated via 10% SDS-PAGE. 
 

 

3.10. APP Processing in Tg2576/FoxO1ADA mice 

To analyse APP processing in Tg2576/FoxO1ADA mice western blots, ELISA and dot blots 

were performed. Figure 71 shows a similar expression of APP in the different genotypes. 

Unaltered levels of α/βCTFs suggested no changes in APP processing in 

Tg2576/FoxO1ADA mice. Furthermore the amount of Aβ is similar in Tg2576/FoxO1ADA 

compared to Tg2576 female mice (Fig. 71). 

 
Figure 71: APP Processing of FoxO1ADA mice in Tg2576 background. 
APP expression and generation of α/βCTFs are shown. As control wild-type, FoxO1ADA mice female and male 
mice are shown. Only female FoxO1ADA in Tg2576 background were generated. Therefore female Tg2576 mice 
are presented in this figure. 100 µg of total proteins were used and separated via 10% or 15% SDS-PAGE. For 
Aβ amount 200 µg of total proteins were separated via a urea tricine gel.  
 

To further analyse the concentration of Aβ40 and Aβ42 ELISAs were performed. Aβ40 is 

increased in Tg2576/FoxO1ADA female mice compared to Tg2576 mice. However, this 
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difference did not reach significance. Aβ42 levels were not changed in both genotypes (Fig. 

72). 

 
Figure 72: Level of Aβ40 and Aβ42 in hippocampi of Tg2576 and FoxO1ADA/Tg2576 female mice.  
Aβ40 and Aβ42 generation is not altered in Hippocampi of FoxO1ADA/Tg2576 mice (n=3) compared to Tg2576 
mice (n=3). 
 
To investigate the level of neurotoxic oligomers formed by Aβ dot blots were used. The 

amount of oligomers was similar in Tg2576/FoxO1ADA compared to Tg2576 female mice 

(Fig. 73). 

 
Figure 73: Dot Blot for analysis of Aβ oligomers of FoxO1ADA/Tg2576 hippocampus. 
Dot Blot analysis of Aβ oligomer formation in FoxO1ADA/Tg2576 female mice compared to Tg2576 mice. 
Different amounts of total ptoteins were used for Dot Blots (5, 10 and 25µg).  
 

 

3.11. In vitro analysis of stably expressing FoxO1DN, FoxO1ADA and FoxO1 

neuroblastoma cells  

For in vitro studies SH-SY5Y human neuroblastoma cells were stably transfected with 

pCMV-Tag-2C which includes mouse derived FoxO1DN, FoxO1ADA or wild-type FoxO1. 

Vectors were linearized and then transfected into the neuroblastoma cells. 2 days after 

transfection cells were selected with Geneticin. Single cell clones were grown and tested for 
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target expression. For all experiments 3 clones of each FoxO1 cell line were used. Wild-type 

cells and cells transfected with the empty vector served as controls. Cell lines were analysed 

in respect to proliferation, cell cycle and apoptosis after oxidative stress.  

 

 

3.11.1. Characterisation of stably expressing FoxO1DN, FoxO1ADA and FoxO1 

neuroblastoma cells  

The proof of FoxO1DN, FoxO1ADA and FoxO1 expression was performed via western blot. 

FoxO1DN present a size of about 30kDa and its expression was quite strong in stably 

transfected neuroblastoma cells (Fig. 74, left, lowest panel). Interestingly FoxO1DN cells 

indicate a downregulation of wild-type FoxO1 expression (Fig. 74, left, upper panel). 

Expression of FoxO1ADA is shown within the same western blot as FoxO1DN expression is 

shown. In addition neuroblastoma cells which overexpress wild-type mouse derived FoxO1 

were generated. The verification of expression in these cell linesis presented in figure 74.  

 

Figure 74: Verification of overexpression of FoxO1DN, FoxO1ADA and wild-type FoxO1 (FoxO1↑). 
Human SH-SYS5 neuroblastoma cells stably overexpressing mouse derived FoxO1DN, FoxO1ADA and wild-type 
FoxO1 (FoxO1↑). 100 µg total proteins were seperated via 10% SDS-PAGE. 
 

The IR/IGF-1R signaling pathway of the different FoxO1 cell lines was analysed. Activation of 

the PI3 kinase signaling was estimated via phosphorylation of AKT (Ser473) and activation of 

the MAP kinase pathway was shown via the phosphorylation of ERK1/2 (Thr202/Tyr204). 

Expression level of AKT and ERK1/2 serve as control. FoxO1DN expressing cells showed no 

differences in phosphorylation of AKT and ERK1/2. FoxO1ADA cell presented no changes in 

phosphorylation of ERK1/2. Interestingly phosphorylation of AKT in FoxO1ADA and FoxO1 

overexpressing neuroblastoma cells was decreased compared to wild-type and empty vector 

control cells (Fig. 75 upper panels). Furthermore phosphorylation of GSK3β (Ser9) was 

analysed via western blot. Again GSK3β levels were used as controls. All FoxO1 cell lines 

presented similar amount of phosphorylation from GSK3β as wild-type and empty vector 

control cells. Additionally expression of the FoxO1 target p27 was detected. FoxO1DN and 

FoxO1 overexpressing neuroblastoma cells show no differences compared to control cell 

lines. However, FoxO1ADA cells which express the constitutive active form of FoxO1, 

displayed an increased expression of p27 compared to wild-type and empty vector control 

cells (Fig. 75). 
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Figure 75: IR/IGF1R signaling pathway in stably FoxO1DN, FoxO1ADA and FoxO1 (↑) expressing SHSY5Y cells. 
Phosphorylation level of AKT (pAKT, Ser473), ERK1/2 (pERK1/2, Thr202/Tyr204) and GSK3β (pGSK3β, Ser9) 
are shown. As control served unphosphorylated protein level of AKT, ERK1/2 and GSK3β. Wild-type cells (SY), 
empty vector control (EV) are used as control cell lines. Expression of FoxO1 target gene p27 is displayed. Actin 
served as control. 100 µg of total proteins were used and separated via 10% and 15% SDS-PAGE. 
 
To investigate whether the localization of FoxO1 in FoxO1 overexpressing cells is 

predominantly in the nucleus which suggests an increased activation of FoxO1 western blot 

of nuclear and cytosolic fractions of these cells were performed. As shown in figure 76 the 

empty vector controll cell line presented an increased level of FoxO1 in the nucleus 

compared to the cyosolic fraction. Furthermore one of the 3 FoxO1 overexpressing clones 

present a similar amount of FoxO1 in the nucleus and in the cytosol. The other two clones 

present a higher amount of FoxO1 in the cytosol (Fig. 76). 

 
Figure 76: Nuclear and cytosolic localisation of FoxO1 in overexpressing neuroblastoma cells. 
FoxO1 levels in nuclear and cytosolic factions of empty vector control cells (EV) and FoxO1 overexpressing 
neuroblastoma cells. Actin served as control. 100 µg of total proteins were used and seperated via 10% SDS-
PAGE.  
 
To further analyse whether FoxO1 changes expression level of upstream signaling proteins 

of the IR/IGF-1R signaling pathway expression level of IRS-2 was analysed. In FoxO1DN 

and FoxO1 overexpressing cells no differences of IRS-2 expression were observed. In 

contrast IRS-2 level in FoxO1ADA cells was slightly decreased compared to wild-type cell 

and empty vector control cells (Fig. 77, upper panel). In addition expression of p85, the 

regulatory subunit of the PI3K, was analyses. The expression levels of p85 in all FoxO1 

neuroblastoma cell lines were not different. Furthermore the levels of phosphatase and 
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tensin homolog deleted on chromosome ten (PTEN) was analysed. PTEN reverses the 

phosphorylation of PI4,5P to generate PI3,4,5P via the PI3K. The expression levels of PTEN 

were similar to those in wild-type and empty vector control cell lines (Fig. 77). 

 

 

Figure 77: Analysis of IR/IGF1R signaling pathway in stably expressing FoxO1DN, FoxO1ADA and FoxO1 
neuroblastoma cells. 
Expression level of IRS-2, p85 and PTEN in stably expressing FoxO1DN, FoxO1ADA and FoxO1 neuroblastoma 
cells analysed via western blot. Wild-type cells (SY), empty vector control (EV) are used as control cell lines. Actin 
served as loading control. 100 µg of total proteins were used and separated via 8% and 10% SDS-PAGE. 
 

 

3.11.2. Proliferation of FoxO1DN, FoxO1ADA and FoxO1 expressing neuroblastoma 

cells 

FoxO1 control proliferation and cell cycle (review in Besson et al., 2008). The increased 

expression level of p27 in FoxO1ADA neuroblastoma cells indicated the regulation via 

FoxO1 (Fig. 78). For analysis of proliferation cells were starved over night (16h) to stop 

proliferation. Then proliferation was initiated with 10% FCS. This synchronized proliferation of 

the different cell lines. For further analysis empty vector control cells were used. Proliferation 

was measured via BrdU incorporation. No significant difference in proliferation of FoxO1DN 

and FoxO1ADA cells compared to control cells were detected (Fig. 78). 
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Figure 78: Proliferation of stably expressing FoxO1DN and FoxO1ADA.  
Poliferation analysis of stably expressing FoxO1DN (red) and FoxO1ADA (blue) neuroblastoma cells performed 
via BrdU incorporation assay. Empty vector controls (EV) (grey) were used as control cell lines. Cells were 
starved overnight (16h) and proliferation was induced by adding 10%FCS. 
 
Additional proliferation analysis was performed using IGF-1 to induce proliferation. 

Proliferation initiation via 100 nM IGF-1 for 5 hours presents no differences of FoxO1 

overexpressing neuroblastoma cells proliferation compared to control neuroblastoma cells 

(Fig. 79). 

 
Figure 79: Proliferation of stably expressing FoxO1 neuroblastoma cells.  
Proliferation analysis of stably expressing FoxO1↑ compared to empty vector (EV) neuroblastoma cells via BrdU 
assay. Cells were starved overnight (16h) and proliferation was induced with 10%FCS or 100nM IGF-1. As control 
cells were not starved and stimulated (ns). 
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3.11.3. FoxO1 and oxidative stress 

FoxO1 counteracts oxidative stress via detoxification of reactive oxygen species (ROS) 

increasing expression of antioxidant enzymes. Such enzymes are catalases (Nemoto and 

Finkel, 2002) and manganese superoxide dismutase (MnSOD) (Kops et al., 2002). For 

analysis of apoptosis upon oxidative stress FoxO1DN and FoxO1ADA cell were used. The 

expression of MnSOD was detected via western blots. The expression level of MnSOD in 

FoxO1DN and FoxO1ADA cell lines were not altered in comparison to empty vector control 

cells (Fig. 80). 

 
Figure 88: Expression level of MnSOD in stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells. 
Expression level of MnSOD in FoxO1DN and FoxO1ADA expressing neuroblastoma cells was analysed via 
western blot. Wild-type cells (SY), empty vector control (EV) are used as control cell lines. Actin served as control. 
100 µg of total proteins were used and separated via 10% SDS-PAGE. 
 
To induce oxidative stress cells were starved for 4 hours and then 500µM H2O2 were added 

for 16h. To investigate whether apoptosis was induced cleavage of Caspase 3 was detected 

with western blots. As shown in figure 82 treatment of the cells with 500µM H2O2 induces 

cleavage and therefore activation of Caspase 3. FoxO1DN and FoxO1ADA expressing 

neuroblastoma cells showed a slight decrease of activated Caspase 3 compared to empty 

vector control cells (Fig. 81, left panel). Control cells were starved but not treated with H2O2 

and no cleavage of Caspase 3 was detected (Fig. 81, right panel). 

 
Figure 81: Oxidative stress in stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells.  
Expression level of Caspase 3 in stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells was analysed 
via western blots. Wild-type cells (SY), empty vector control (EV) are used as control cell lines. Actin served as 
loading control. 100 µg of total proteins were used and separated via 15% SDS-PAGE. 
 

During apoptosis double-strand breaks are induced. These breaks were labeled with 

Fluorescin-12-UTP in the TUNEL assay (Fig. 83 lowest panel). To stain the nuclei of the cells 

DAPI was used which shows a blue fluorescence (Fig. 82 middle panel). Representative 
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pictures of the TUNEL assay of stably expressing FoxO1DN and FoxO1ADA neuroblastoma 

cells compared to empty vector controls are shown in figure 82. Additional to fluorescent 

pictures also bright field pictures of the same localization were performed (Fig. 82 upper 

panel).  

 
Figure 82: TUNEL assay of stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells. 
Apoptosis was analysed via TUNEL assay of stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells. 
Empty vector controls (EV) are used as control cell lines. Apoptosis was induced with 500µM H2O2. Upper lane: 
Bright field (Bf) pictures of the different cell lines. Middle panel: Staining of cell nuclei with DAPI (blue). Lower 
panel: Fluorescin-12d-UTP (green) staining of apoptotic cells.  
 

After performing the TUNEL assay total amount of cells and apoptotic cells were counted. 

The proportion of apoptotic FoxO1DN, FoxO1ADA and empty vector control cells was 

calculated. FoxO1DN cells presented slightly less apoptotic cells and FoxO1ADA cells 

display a slight decrease in apoptotic cells in comparison to empty vector control cells as well 

(Fig. 83). However, this tendency did not reach statistical significance. 
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Figure 83: Analysis of TUNEL assay with stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells. 
Level of apoptotic empty vector control, FoxO1DN and FoxO1ADA neuroblastoma cell lines was measured via 
TUNEL assay after treatment with H2O2.  
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Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disease 

characterized by accumulation of intracellular neurofibrillar tangles (NFT) and extracellular 

amyloid plaques. Amyloid plaques mainly consist of aggregated amyloid-β (Aβ) peptides 

(Masters et al., 1985). The aggregation of Aβ is thought to be the putative cause for 

neurodegeneration in AD (Masters et al., 1985). Previous studies have shown that AD is 

linked to type 2 diabetes (Janson et al. 2004; Ott et al. 1999; Stewart and Liolitsa 1999; 

Lovestone 1999). Interestingly the IR/IGF-1R signaling pathway is disrupted in the central 

nervous system of patients suffering from AD (Frolich et al. 1998; Frolich et al. 1999; 

Moloney et al. 2010). Therefore AD is described as “brain type” diabetes (Pilcher 2006). In C. 

elegans it has been shown that DAF-16, the orthologue of mammalian FoxOs both act 

downstream of the signaling pathway and are involved in the reduction of Aβ42 toxicity (Hsu, 

Murphy, and Kenyon 2003; Birkenkamp and Coffer 2003; Cohen et al. 2006). FoxO1 is 

predominantly expressed in the hippocampus formation which is mainly affected by AD 

(Hoekman et al., 2006). For the present study mice with neuron-specific expression of the 

dominant negative (FoxO1DN) and the constitutive active from (FoxO1ADA) of FoxO1 were 

used. These animals were crossed with Tg2576 mice, a well established mouse model of AD 

and express the Swedish mutation of APP (APPsw) (Vassaret et al. 1999; De Strooper 2003; 

Holsinger et al., 2002; Sinha et al., 1999; Harada et al., 2006).  

 

 

4.1. Neuron-specific expression of FoxO1DN and FoxO1ADA 

For neuron-specific expression of FoxO1DN and FoxO1ADA the Synapsin 1 promoter driven 

Cre recombinase (SynCre) expressing mice was used. Only female mice expressing Cre 

recombinase under the control of the Synapsin 1 promoter were used for breedings because 

its expression has been detected within the testes after being bred into a floxed transgenic 

mouse line. These mice then displayed a germline recombined floxed allele. This was not 

observed in progeny from female mice carrying the SynCre allele (Rampe et al., 2006). 

Crossing of lacZ reporter and SynCre mice followed by β-galactosidase staining revealed 

SynCre activity in hippocampus and to a lesser extend in the frontal cortex (Freude et al., 

2009). In the present experiments mice expressing the dominant negative (FoxO1DN) and 

the constitutive active form (FoxO1ADA) of FoxO1 in a neuron-specific manner. As expected 

expression of FoxO1DN and FoxO1ADA was detected in the hippocampus and to less 

extend in the cortex. 
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4.1.2. Metablic characterization 

Previous studies showed that the whole body knockout of IRS-2 leads to hyperglyemia in 

male mice (Whiters et al., 1998). In addition up to 80% of pure C57BL/6 mice present a 

spontanous hyperglyemia during the first 6 month of life. This hyperglyemia might influence 

lifespan in Tg2576 mice (Freude et al., 2009; Selman et al., 2008; Doria et al., 2008). 

Therefore investigations glucose homeostasis was analysed in all genotypes. Furthermore 

blood glucose and insulin sensitivity as well as glucose tolerance tests of FoxO1DN and 

FoxO1ADA mice were performed. 

Expression of FoxO1 in insulin responsive tissue plays an important role in glucose 

metabolism and the pathogenesis diabetes. Previous studies showed that heterozygous 

deletion of FoxO1 restored insulin sensitivity and rescued diabetes in insulin receptor mutant 

mice (Nakae et al., 2002). In the liver active FoxO1 increases gluconeogenesis and in the 

pancreas FoxO1 regulates proliferation and function of beta cells (Kitamura et al., 2002).  

Neuron-specific expression of FoxO1DN revealed no changes of blood glucose from 5 till 60 

weeks of age as well as a similar glucose tolerance and insulin sensitivity. Furthermore 

FoxO1ADA mice displayed no differences in blood glucose and a slight increased glucose 

tolerance, but significant increased insulin sensitivity revealed by ITTs, via a so far unknown 

mechanism. 

Glucose production is regulated via gluconeogenesis and glycolysis in the liver and insulin 

strongly inhibits glucose generation. Important enzymes involved in these processes are the 

phosphoenol-pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P). FoxO1 

confers insulin sensitivity and promotes glucose generation by the liver (Kanazawa et al., 

2009). FoxO1 binds to PPARγ which promotes the expression of PEPCK and G6P (Saleem 

et al., 2010). Insulin inhibits glucose production via activation of the PI3k pathway and 

inactivation of FoxO1 in the liver (Nakae et al., 2002).  

The brain-specific knockout of IRS-2 in male mice developed hyperglycemia and impaired 

glucose tolerance (Leissring et al., 2003; Freude et al., 2009). 

Furthermore the IGF-1-deficient (LID) mice crossed with GH (growth hormone) antagonistic 

(GHa) mice displayed increased insulin sensitivity (Yakar et al., 2004). GH deficiency has 

been shown to increase the expression of IR without directly regulating its transcription 

(Dominici et al., 2000). GH and insulin share some of the downstream signaling targets like 

IRS. GH promotes tyrosine phosphorylation of IRS-1 and IRS-2 via activation of JAK2 (Janus 

kinase 2) (Argetsinger et al., 1995; Argetsinger et al., 1996). Additionally GH promotes 

phosphorylation of Shc, the adaptor protein that activates MAPK signaling pathway (Thirone 

et al., 1999; Vanderkuur et al., 1995; Vanderkuur et al., 1997). Through induction of MAPK 

signaling cascade GH activates the S6K (Kilogour et al., 1996). GH increases expression of 

suppressors of cytokine signaling (SOCS). Previous studies have been shown that SOCS-1, 
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-3 and -6 affect the insulin promoted interaction of p85 and IRS-1 and IRS-2 which leads to 

degradation of IRS (Adams et al., 1998; Peraldi et al., 2001; Dey et al., 2000; Rui et al., 

2002). Furthermore SOCS-1 deficient mice display increased insulin sensitivity (Kawazoe et 

al., 2001).  

The mechanism of neuronal FoxO1 regulating glucose metabolism is yet unknown, but an 

association of insulin sensitivity and neuron-specific expression of the constitutive active 

FoxO1 has been observed in the present study. Several questions concerning this 

phenotype remain open, most likely the effect is mediated via a neuroendocrine mechanism 

or the autonomous nervous system.  

 

 

4.1.3. Insulin/IGF-1R signaling in 28 weeks old animals 

Both FoxO1DN and FoxO1ADA mice presented no changes in the insulin and IGF-1R 

signaling pathway in the CNS. Expressions of the IR and IGF-1R as well as activation of the 

PI3K and MAPK pathway were analysed. In hepatocytes adenoviral-mediated expression of 

FoxO1ADA activated PI3K and MAPK pathway but FoxO1DN was not able to induce any 

changes of the PI3K and MAPK pathways (Naimi et al., 2007). This effect was not mediated 

via FoxO1 promoted transcription of IRS-1 or -2 but FoxO1 increased p38 expression. p38 

might play a role in activation of the AKT and inhibition of FoxO1 (Naimi et al., 2007). In 

neuron-specific expressing FoxO1DN and FoxO1ADA mice no differences in expression of 

components of the IR/IGF-1R signaling pathway compared to wild-type animals were 

observed. In addition no alterations between both genders were detectable. This indicates 

that FoxO1 does not influence the upstream IR/IGF-1R signaling pathway in neurons in vivo.  

 

 

4.1.4. Growth of FoxO1DN and FoxO1ADA mice 

FoxO1DN mice displayed no differences in growth compared to wild-type mice. Interestingly 

FoxO1ADA mice showed a significantly decreased body weight in both female and male 

mice in comparison to wild-type from 5 till 60 weeks old animals. The difference was about 

1.7 g for female mice and 2.5 g for male mice at 28 weeks of age. Food and water intake of 

FoxO1ADA male mice showed a similar consumed amount compared to wild-type mice.  

Analysis of body composition revealed no difference of body fat ratio but a decrease of lean 

body mass. This result was in contrast to previous findings in IR and IGF-1R knockout mice, 

even though these mice could have overactive FoxO1 like the FoxO1ADA mice. The brain-

specific knockout of the IR (NIRKO) displayed no differences in body weight of male mice 

untill 6 months of age. Female NIRKO presented an up to 15% increased body weight on a 

normal chow diet. But both presented an increase of body fat mass. Female NIRKO mice 
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displayed a 2-fold increase of perigonadal white adipose tissue (WAT) and male mice 

showed a 1.5-fold increase (Brüning et al., 2000). It needs to be mentioned that the brain-

specific knockout of the IR was generated using the Nestin-promoter driven Cre 

recombinase. Nestin is an intermediate filament protein which is predominantly expressed in 

neuroepithelial stem cells (Lendahl et al., 1990; Tronche et al., 1999). This Nestin-promoter 

driven Cre recombinase leads to deletion of the IR during early development and naturally in 

neurons as well as in astrocytes and oligodendrocytes (Brüning et al., 2000). 

IRS-2 knockout mice display similar changes in body weight and body composition like the 

NIRKO mice. IRS-2 mice showed an increased body weight with an increase in body fat 

(Withers et al., 1999; Burks et al., 2000).  

Interestingly liver IGF-1-deficient (LID) mice crossed with GH antagonistic (GHa) mice to 

counteract increased GH secretion in LID mice, had a decreased body weight in comparison 

to wild-type mice and additionally showed an increased insulin sensitivity but an increased fat 

content as well (Yakar et al., 2004).  

To further analyse this difference in growth of FoxO1ADA, realTime analyses of important 

regulators of the growth hormone axis (GH) were performed. The GH is produced in the 

pituitary and regulated via the hypothalamus. This regulation is controled by the growth 

hormone releasing hormone (GHRH) and the growth hormone inhibiting hormone (GHIH, 

somatostatin) (Jansson et al., 1985; Sato et al., 1989; Carlsson et al., 1990). In the pituitary 

binding of GHRH to the growth hormone releasing hormone receptor (GHRHR) results in the 

release of GH. GH binds to the growth hormone receptor of the liver where it induces the 

production of IGF-1. No significant changes have been observed in the growth hormone axis 

of 4 weeks FoxO1ADA male compared to wild-type mice. This result indicates a growth 

hormone independent mechanism in balancing growth in FoxO1ADA mice. Possibly these 

mice display a reduced body weight during early postnatal development indicating a role of 

neuronal FoxO1 in early development of mice. 

 

 

4.1.5. Indirect caloricimetry and locomotor coordination 

Analyses of FoxO1DN and FoxO1ADA male mice displayed no changes in motor 

coordination during the RotaRod. Both genotypes presented an elevated locomotor activity 

compared to wild-type mice. FoxO1DN mice showed an increase of about 250 and 

FoxO1ADA about 500 counts during dark phase. Furthermore FoxO1DN male mice 

demonstrated a higher energy expenditure of 5kcal/kg lean body mass. In contrast 

FoxO1ADA mice showed no increased energy expenditure during dark phase despite an 

increased activitity.  
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Energy homeostasis is tightly regulated via adipose tissue. Adipocytes store energy in form 

of triglycerides. These triglycerides get oxidized during time periods of energy deprivation 

(Large et al., 2004). Adipocytes secrete adipokines which regulate energy homeostasis of 

adipocytes themselves, the brain and other target tissues. FoxO1 is able to suppress 

adipogenesis, the differentiation of preadipocytes to adipocytes. Previous studies have been 

shown that FoxO1ADA inhibits the differentiation of preadipocytes. Conversely FoxO1DN 

promotes adipogenesis in embryonic fibroblasts of IR knockout mice in vitro (Nakae et al., 

2003).  

The respiratory quotient (RQ) is calculated from eliminated CO2 and consumed O2. It 

indicates which substances are metabolized by a specific organism. Respiratory quotient 

(RQ) of FoxO1DN mice was similar to the RQ of wild-type animals. The RQ of both 

FoxO1DN and wild-type was 0.9 during the light phase, indicating proteins to be the major 

metabolized substrate and during dark phase it is close to 1. This indentifies carbohydrates 

to be predominantly metabolized. FoxO1ADA displayed the similar RQs during light and dark 

phase compared FoxO1DN and wild-type, but the wild-type animals used for comparisons to 

FoxO1ADA mice showed a decreased RQ during dark phase which might be a methodical 

problem because wild-type animals of the FoxO1DN comparison did not show such a 

decrease in RQ.  

The neuronal alteration of FoxO1 mediated transcription affects activity of mice without 

causing larger changes in energy expenditure. However, the exact mechanisms are 

unknown yet.  

 

 

4.1.6. Behaviour of FoxO1DN and FoxO1ADA mice 

To investigate whether the neuron-specific expression of FoxO1DN or FoxO1ADA changes 

fear and explorative behaviour or memory formation Open field, O-Maze and Morris Water 

Maze tests were performed. FoxO1DN and FoxO1ADA male mice display similar fear 

behaviour compared to wild-type animals.  Analysis of spatial memory using the Morris 

Water Maze testing revealed no changes in memory formation of FoxO1DN mice but a slight 

increased performance of FoxO1ADA mice. This might be due to a higher increase in 

activity, because FoxO1ADA displayed no better learning performance at the 5th day of 

testing when the platform was removed. Nissl staining of each genotype did not show any 

differences in brain structure of the different genotypes.   

Thus FoxO1 mediated transcription in mature neurons does not affect brain structure as well 

as behaviour and spatial memory. 
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4.2. Alzheimer´s disease 

Alzheimer´s disease (AD) is characterized by accumulation of intracellular neurofibrillar 

tangles (NFT) and extracellular amyloid plaques. NFTs contain hyperphosphorylated tau 

proteins (Ross et al., 2005) and amyloid plaques mainly consist of aggregated amyloid-β 

(Aβ) peptides (Masters et al., 1985). This aggregation of Aβ is hypothesized to be the cause 

of neurodegeneration in AD (Masters et al., 1985). Tg2576 mice are a well established 

mouse model for the analysis of AD pathology. Tg2576 mice overexpress the human derived 

APP form consisting of 695 amino acids. The APP gene harbours an amino acid substitution 

of Lys670 to Asn and Met671 to Leu, the swedish mutation (APPsw). This causes an 

increased cleaveage via the β-secretase which in turn leads to a 5-fold increase of Aβ40 and 

an up to 14-fold increase of Aβ42. Additionally these mice present an age dependent deficit 

in learning bahaviour (Lewis et al., 2001). Tg2576 mice nearly do not form intracellular 

neurofibrillar tangles and therefore are not suitable to analyse tau pathology. The present 

thesis concentrates on the processing of APP as well as generation of Aβ and therefore 

Tg2576 is a useful mouse model for this investigation. However, the role of FoxO1 mediated 

transcription in Tau pathology needs to be achieved in a different model.  

 

 

4.2.1. Metabolic characterization of Tg2576/FoxO1DN and Tg2576/FoxO1ADA mice 

Previous studies of APP overexpressing mice have been shown that lethality of these mouse 

models is affected by the genetic background (Meilandt et al., 2009). Nearly all Tg2576 mice 

in a pure C57BL/6 background died during the first months of age. Therefore Alzheimer´s 

pathology cannot be analysed in this particular genetic background. One contributing factor 

might be the hyperglycaemia developing in C57BL/6 mice during aging (Freude et al., 2009). 

Therefore blood glucose, glucose and insulin tolerance tests as well as survival and APP 

processing were analysed in hybrid background.  

Blood glucose concentrations as well as insulin sensitivity and glucose tolerance were not 

changed of the different genotypes in Tg2576 background. Tg2576/FoxO1ADA mice in the 

hybrid background had similar basal blood glucose concentration and glucose tolerance as 

neuron-specific knockout of the IR (nIR-/-) or the IGF-1R (nIGF-1R-/-) (Freude et al., 2009, 

Stöhr et al., 2011). Thus, altered glucose metabolism is excluded as influencing factor in the 

present study. 

 

 

4.2.2. Body weight of Tg2576/FoxO1DN and Tg2576/FoxO1ADA mice 

Body weight was measured from 5 till 60 weeks of age to analyse whether changes in body 

weight might be an influencing factor in these mice. A reduction in body weight of Tg2576 
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and APP23 mice compared to wild-type mice was analysed in previous studies (Toyama et 

al., 2005; Vloeberghs et al., 2008). Food intake was unaltered in these mice (Lalonde et al., 

2009). But food intake of APP23 mice was actually slightly increased (Vloeberghs et al., 

2008). This APP23 transgenic mouse model expresses the neuron-specific murine Thy1 

promoter driven human APP751 protein which includes the swedish mutation (Sturchler-

Pierrat et al., 1997). 

Tg2576/FoxO1DN and Tg2576/FoxO1ADA female mice displayed no differences in body 

weight compared to Tg2576 mice. In contrast Tg2576/FoxO1DN showed a slight decrease 

and Tg2576/FoxO1ADA male mice displayed a decrease in body weight in comparison to 

Tg2576 male mice. This reduction of body weight from Tg2576/FoxO1ADA male mice could 

not bee observed in nIGF-1R-/- male mice which might demonstrate a similar activation of 

FoxO1 (Hettich, PhD thesis). In, IRS-2 knockout mice crossed with Tg2576 mice displayed 

no changes of body weight until 48 weeks of age (Freude et al., 2009).  

Brain body ratio revealed no severe alterations in the different genotypes which indicate that 

FoxO1 does not influence the development and size of the brain. The analysis of body 

weight largely excludes body weight in as major factor possibly influencing the data on 

metabolic APP processing of the different FoxO mutants. 

 

 

4.2.3. Kaplan-Meier analysis of Tg2576/FoxO1DN and Tg2576/FoxO1ADA mice 

Kaplan-Meier analysis of Tg2576/FoxO1DN female and male mice demonstrated no 

changes in survival. In addition FoxO1DN female and male mice presented a similar survival 

as wild-type animals. Furthermore 50% of Tg2576/FoxO1ADA female mice were alive at 60 

weeks of age whereas 70% of Tg2576 mice still lived. 100% of FoxO1ADA female mice 

survived and 90% of wild-type mice over 60 weeks. In contrast Tg2576/FoxO1ADA male 

mice died between 12 and 16 weeks and no one reached 60 weeks of age. FoxO1ADA and 

wild-type male mice displayed a similar survival with about 90% survivals at 60 weeks of age.  

In C. elegans lifespan investigations were performed using the knockdown technique to 

manipulate the IR/IGF-1R signaling pathway (IIS). These studies identified neuronal DAF-2, 

the orthologue of the mammalian IR/IGF-1R, to regulate in longevity (Wolkow et al., 2000). 

The IIS in C. elegans is highly conserved to the mamalian IR/IGF-1R signaling pathway. An 

insulin-like ligand binds to DAF-2 followed by recruitment of the insulin receptor substrate 1 

orthologue (IST-1) and AGE-1, the PI3K of C. elegans (Kenyon et al., 1993; Morris et al., 

1996; Kimura et al., 1997). This leads to the generation of PI3,4,5P followed by activation of 

AKT (Kops et al., 1999; Paradis and Ruvkun, 1998). DAF-18, the orthologue of PTEN, is the 

negative regulator of this signaling cascade (Oggs and Ruvkun, 1998). Activated AKT 

phosphorylates and negatively regulates DAF-16, the orthologue of the mammalian FoxO 
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familiy (Henderson and Johnson, 2001; Lee et al., 2001). Targets of DAF-16 are such as 

small heat-shock protein (HSP) chaperones (Murphy et al., 2003). Previous studies in C. 

elegans have been shown that activated DAF-16 extends lifespan and elevates stress 

resistance (Kenyon, 2005). Accordingly to heterozygous deletion of the IGF-1R in mice leads 

to extended lifespan and increased stress resistance (Holzenberger et al., 2003).  

Drosophila melanogaster expresses a single FoxO transcription factor called dFOXO. 

Different studies have been shown that overexpression of dFOXO prolongs lifespan via 

affecting general mortality without decreasing age associated mortality of flies specifically 

(Pletcher et al., 2002). In addition dFOXO deficient flies were shown to be short lived 

(Giannakou et al., 2007; Min et al., 2008). 

In addition the homozygous deletion of neuronal IGF-1R (nIGF-1R-/-) in Tg2576 background 

rescues premature mortality of Tg2576 mice nearly completely. This effect was observed in 

female and male mice (Freude et al., 2009). In contrast mice with the neuronal deletion of the 

IR (nIR-/-) crossed Tg2576 mice presented no survival rescue in both gender as 

demonstrated for Tg2576/nIGF-1R-/- mice (Stöhr et al., 2011). Both mouse models mimic the 

situation of activated FoxO1. Furthermore brain-specific IRS-2 deficiency and heterozygous 

whole body IRS-2 knockout were shown to prolong lifespan in a hybrid and pure C57BL/6 

background (Tagouchi et al., 2007; Selman et al., 2008). In contrast whole body knockout of 

the IR causes death of newborns within the first few hours because of severe hyperglycemia 

and ketoacidosis (Accili et al., 1996) without causing growth retardation. 

IRS-2 deficiency reduces premature mortality of female mice in Tg2576 background (El 

Khoury et al., 2007, Leissring et al., 2007; Freude et al., 2009). This rescue could not be 

observed for Tg2576/IRS-2-/- male mice. A possible reason is that male IRS-2-/- mice develop 

hyperglycemia (Burks et al., 2000, Freude et al., 2009). Furthermore the whole body 

knockout of FoxO1 leads to embryonal lethality on embryo day 10.5 because of incomplete 

vascular development (Hosaka et al., 2004; Furuyama et al., 2004). 

Tg2576/FoxO1ADA female mice mimic the situation of Tg2576/nIR-/- mice but FoxO1ADA 

male mice in Tg2576 background male died from 12 till 16 weeks of age. However, only 2 

Tg2576/FoxO1ADA male mice could be generated in a period of 4 years. The results for 

these FoxO1ADA crossed with Tg2576 mice are surprisingly since previous investigations in 

Tg2576/nIGF-1R-/- and Tg2576/nIR-/- mice did not show increased mortality compared to 

Tg2576 mice. Thus IR and IGF-1R mediate different genes involved in survival and stress 

resistance independent of FoxO1 mediated transcription. However FoxO1 is not the only 

FoxO protein in mammalian. FoxO3a is regulated via the IR/IGF-1R signaling cascade as 

well and might at least partially compensate in case of FoxO1DN and FoxO1ADA 

expression. Previous studies have been shown that FoxO3a promotes the expression of pro-

apoptotic genes like Fas ligand and Bim, a member of the Bcl-2 protein family (Brunet et al., 
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1999; Reif et al., 1997; stahl et al., 2002). Possibly the constitutive active form of FoxO1 also 

results in overexpression of such pro-apoptotic factors and in turn leads to neuronal 

apoptosis which might be the case in Tg2576/FoxO1ADA mice.  

Tg2576/FoxO1DN mice showed no changes in survival compared to Tg2576 mice which 

might be explained by compensation via neuronal FoxO3a. 

 

 

4.2.4. IR/IGF-1R signaling in 60 weeks old Tg2576/FoxO1DN and Tg2576/FoxO1ADA 

mice  

Insulin resistance was described in patients suffering from AD by Watson and Craft in 2003 

(Watson and Craft, 2003). This resistance was associated with high insulin levels in 

cerebrospinal fluid (Craft et al., 1998). In addition mRNA levels of IGF-1 in brains of patients 

with late stages of AD are reduced. But IGF-1 concentrations in serum of patients with AD 

exhibit an increased level. These findings indicate a role of IGF-1 resistance in the 

pathogenesis of AD (Rivera et al., 2005; Vardy et al., 2007). 

Therefore possible changes in the signaling cascade were investigated. This analysis of the 

IR/IGF-1R signaling pathway revealed no differences in 60 weeks old Tg2576/FoxO1DN and 

Tg2576/FoxO1ADA mice compared to Tg2576.  

IRS-2 deficient mice in Tg2576 background showed unaltered phosphorylation patterns 

compared to Tg2576 mice as well as no changes in IR and IGF-1R expression in the brain. 

Similar results were obtained in nIGF-1R-/- mice crossed with Tg2576 (Freude et al., 2009). 

Furthermore Tg2576/nIR-/- showed no changes of basal PI3K and MAPK cascade activation 

(Stöhr et al., 2011).  

Furthermore target genes of FoxO1 like MnSOD or p27 were not changed indicating a 

different target gene pattern of FoxO1 in neurons than in other tissues. Furthermore FoxO-

mediated transcription is not exclusively regulated via phosphorylation but also via 

acetylation which inhibits FoxOs because it might decrease DNA binding and promotes 

phosphorylation of FoxO at Ser256 via AKT which inactivates FoxO. In contrast the 

recruitment of CBP and p300 to the promoter by FoxO mediated the acetylation of histones 

and induces initiation of transcription (Daitoku et al., 2004; Matsuzaki et al., 2005). These 

regulatory mechanisms were not investigated in the present study and might provide an 

explanation for unchanged expression levels of the FoxO targets MnSOD and p27. 

However, the IR/IGF-1R signaling pathway and target genes like p27 and MnSOD were not 

changed in FoxO1DN and FoxO1ADA mice in Tg2576 background indicating a minor 

neuronal regulatory function of FoxO1 or compensation via other factors. 
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4.2.5. APP processing in Tg2576/FoxO1DN and Tg2576/FoxO1ADA mice 

Analysis of APP processing revealed no differences in generation of α- and β-CTFs in 

Tg2576/FoxO1DN compared to Tg2576 female and male mice as well as 

Tg2576/FoxO1ADA in comparison with Tg2576 female mice. Only Tg2576/FoxO1ADA mice 

were analysed because male mice died too early (4.2.3.). These investigations indicate no 

changes in activity of α- or β-secretase cleavage of APP. Furthermore no changes of 

expression level from ADAM10, BACE and TACE have been observed in the different 

genotypes. Additionally no significant differences in Aβ40 and Aβ42 burden has been 

demonstrated in Tg2576/FoxO1DN and Tg2576/FoxO1ADA compared to Tg2576 mice.  

These results suggest that the reduced Aβ-accumulation in Tg2576/nIGF-1R-/- and 

Tg2576/nIR-/- is not mediated via FoxO1. In contrast to Tg2576/nIGF-1R+/-, Tg2576/nIR-/- 

mice displayed a reduction in α- and β-CTFs as well as a strongly decrease of Aβ40 and 

Aβ42 without influencing mortality induced by APPsw expression (Stöhr et al., 2011). 

Consistent with these observations Tg2576/nIRS-2-/- mice showed a reduction of α- and β-

CTF generation as well and decreased Aβ accumulation (Freude et al., 2009). These results 

might indicate different functions of the IR or IGF-1R signaling pathway in the regulation of 

Aβ toxicity. 

A previous study using heterozygous knockout of the IGF-1R (IGF-1R+/-) crossed with an AD 

mouse model overexpressing APPsw and human presenilin-1 ∆E9 (the deletion of exon 9 

which causes familial AD) both under the regulation of the prion promoter (Jankowsky et al., 

2001,) show bebeficial effects of IGF-1 resistance in AD pathology. This mouse model is 

characterized by the generation of Aβ, formation of plaques and a slow progressive onset of 

AD like pathology (Jankowsky et al., 2004). Furthermore this model exhibits age dependent 

behaviour impairments like Tg2576 mice (Reiserer et al., 2007). The APPswe and human 

presenilin-1 ∆E9 mouse model is a less aggressive model of AD than other mouse models 

because the formation of Aβ plaques occurs at 6 to 7 months of age (Jankowsky et al., 

2004). These APPsw and presenilin-1 ∆E9/Igf1r+/− mice presented an identical expression 

level of BACE-1 and ADAM17 compared to APPsw and presenilin-1 ∆E9 mice (Cohen et al., 

2009).  

 

In C. elegans it has been shown that the knockdown of DAF-2, the orthologue of the 

mammalian IR and IGF-1R, decreases toxicity of Aβ42 (Cohen et al. 2006). This effect was 

mediated through DAF-16 and the heat shock transcription factor 1 (HSF-1) both regulated 

via the IIS signaling pathway (Hsu, Murphy, and Kenyon 2003; Birkenkamp and Coffer 2003; 

Cohen et al. 2006). The detoxification mechanism mediated by HSF-1 induces 

disaggregation and degradation of Aβ aggregates. The second mechanism is facilitated 

through DAF-16 which promotes hyperaggregation of Aβ to form less toxic high molecular 
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mass aggregates (Cohen et al., 2006). The APPsw and presenilin-1 ∆E9/Igf1r+/− mouse 

model was protected from Aβ induced toxicity. A possible reason for that is the observation of 

an increased assembly of Aβ into densely packed, fibrillar structures during disease 

progression (Cohen et al., 2009). This hyperaggregation of Aβ was hypothesized to be 

induced via an active mechanism that converts highly neurotoxic Aβ oligomers into densely 

packed aggregates with lower toxicity. Thus, IGF-1 resistance protects APPsw and 

presenilin-1 ∆E9/Igf1r+/− mouse model from Aβ toxicity (Cohen et al., 2009).  

Investigation of the formation of neurotoxic Aβ oligomers via dot blot revealed no differences 

in Tg2576/FoxO1DN compared to Tg2576 female and male mice as well as 

Tg2576/FoxO1ADA in comparison with Tg2576 female mice.  

Thus the current results might indicate that neuronal FoxO1 does not mediate the decreased 

APP processing and hyperaggregation of Aβ observed in IGF-1 resistance in APPsw 

expressing mice. In contrast, Tg2576/FoxO1ADA male mice died at 12 till 16 weeks of age 

via a yet unknown mechanism. 

 

In contrast to C. elegans the mammalian FoxO protein family consists of 4 members, FoxO1, 

FoxO3a, FoxO4 and FoxO6 (Clark et al., 1993). Another FoxO candidate possibly mediating 

the protective effect observed in IGF-1 resistant mice against Alzheimer´s disease is 

FoxO3a. A previous study has been shown that inactivation of FoxO3a is associated with 

attenuation of AD pathology (Qin et al., 2008). Caloric restriction activates the IR signaling 

pathway which leads to phosphorylation of FoxO3a and transport out of the nucleus. The 

inactivation of FoxO3a mediates attenuation of AD pathology and preservation of spatial 

memory in Tg2576 mice. In vitro studies of primary cortico-hippocampal Tg2567 neuron 

cultures expressing constitutive active FoxO3a, showed an increase of Aβ40 and Aβ42 and 

reduced sAPPα levels. This indicates an inhibition of the non-amyloidogenic APP cleavage 

pathway which might be due to decreased α-secretase activity. This event promoted the 

generation of Aβ (Qin et al., 2008). Furthermore FoxO3a becomes deacetylated via SIRT1 

which might inactivates FoxO3a in response to caloric restriction. This causes the repression 

of Rho-associated protein kinase-1 (ROCK1) gene expression followed by activation of the 

nonamyloidogenic processing of APP via the α-secretase. This activation of 

nonamyloidogenic processing of APP leads to a reduction of Aβ levels (Qin et al., 2008).  

 

4.3. In vitro studies of FoxO1 in human neuroblastoma cells 

FoxOs regulate transcription of genes involved in cell metabolism, proliferation and apoptosis 

(Patridge and Bruning, 2008). To investigate the role of FoxO1 in neuronal proliferation and 

apoptosis upon oxidative stress was induced in stably overexpressing FoxO1DN, FoxO1ADA 

and wild-type FoxO1 neuroblastoma cells.  
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4.3.1. Characterization of FoxO1DN, FoxO1ADA and FoxO1 stably expressing 

neuroblastoma cells 

The characterization of stably expressing FoxO1DN and FoxO1ADA neuroblastoma cells 

revealed slight changes of IR/IGF-1R signaling pathwayfor FoxO1ADA cells. Interestingly 

stably expressing FoxO1 and foxO1ADA cells presented a decreased basal phosphorylation 

of AKT in 3 different cell clones. No changes of the upstream signaling cascade and PTEN, a 

negative regulator of the PI3K signaling pathway has been observed. These results might 

indicate a regulatory feedback loop to the IR/IGF-1R signaling pathway at least in these cell 

types. 

 

 

4.3.2. FoxO1 and proliferation 

FoxOs were shown to regulate the G1-S and G2-M phase transition mediated by 

transcription of cell cycle regulators e.g. p27 (review in Ho et al., 2008). Regulation of cell 

cycle occurs via several cyclin/CDKs which in turn phosphorylate and therefore regulate 

different downstream proteins involved in cell cycle control. The cell cycle inhibitor p27 is a 

member of the Cip/Kip family of CDK inhibitors. This inhibitor associates with p57 and p21 to 

cyclin D as well as A- and E-CDK (review in Besson et al., 2008).  

Analysis of p27 which causes a cell cycle arrest showed an increase expression in 

FoxO1ADA neuroblastoma cells. Further analysis revealed no changes of proliferation via 

measurement of BrdU incorporation.  

In hematopoetic cells it was shown that deprivation of cytokines which regulate proliferation 

and survival resulted in arrest in the G1 phase of the cell cycle (Dijikers et al., 2000; 

Hideshima et al., 2001; Stahl et al., 2002). Transcription of p21 was shown to be regulated 

via Smad transcription factors. Inhibition of proliferation of immune, epithelial and neuronal 

cells was demonstrated to be promoted via transforming growth factor β which activates 

Smad. In epithelial cells it was shown that p21 expression is enhanced by association of 

FoxO1, FoxO3a and FoxO4 and Smad. Furthermore activation of the PI3K pathway leads to 

inactivation of FoxOs and therefore inhibition of p21 (Seoane et al., 2004). In addition FoxOs 

regulate transcription of p15 and p19 which are CDK inhibitors of the INK4 family. Their 

action inhibits the cyclin D/CDK complex which blocks the binding of cyclin D (Besson et al., 

2008). Increased expression of p15 and p19 is mediated by FoxO1 and FoxO3a. Mouse 

embryo fibroblasts of p15 or p19 deficient mice were shown to fail to arrest in G1 phase after 

incubation with the PI3K inhibitor LY294002 indicating an essential role of p15 and p19 for 

cell cycle arrest (Katayama et al., 2008). In contrast previous studies have been shown that 

FoxO mediated expression of p27 is involved in cell cycle arrest (Dijkers et al., 2000). This 

might indicate that p27 action requires p15 and p19 expression to inhibit the cyclin D (CDK 
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complex (van der Vos and Coffer, 2011). This might explain why no differences in 

proliferation were observed in case of FoxO1ADA, FoxO1DN and FoxO1 neuroblastoma 

cells. The expression of p15 and p19 might not be high enough or is even decreased in the 

neuroblastoma cell used in this study. In addition, FoxO3a might be involved and 

compensate the dominant negative or constitutive active form of FoxO1. 

 

 

4.3.3. FoxO1 and oxidative stress 

Oxidative stress and damage in the brain has been shown to be associated with AD 

(Markesbery and Camey, 1999; Beal, 2002). Oxidative stress activates c-Jun N-terminal 

kinases (JNK) which might link oxidative stress to neurodegenration (Ozcan et al., 2004). 

Activation of JNK through hydrogen peroxide results in activation of the γ-secretase which is 

an important step in the formation of Aβ plaques and AD pathology (Shen et al., 2008). 

Furthermore, generation of hydrogen peroxide is correlated to Aβ production indicating a 

vicious circle (Tabner et al., 2005). Furthermore increased lipid oxidation as possible 

indication of oxidative stress was found in patients of AD (Montine et al., 2002).  

Investigation of oxidative stress induced apoptosis in FoxO1DN and FoxO1ADA 

neuroblastoma cells revealed a slight decrease in FoxO1DN cells but no differences in 

FoxO1ADA cells compared to empty vector control cells. Additionally a similar expression 

level of the antioxidant enzyme MnSOD was detected in FoxO1DN, FoxO1ADA and control 

cells. Previous studies have been shown that FoxOs play a role in increased MnSOD and 

catalase expression upon oxidative stress (Kops et al., 2002; Nemoto and Finkel et al., 

2002). Upregulation of FoxO regulated gene expression upon oxidative stress is controlled 

via wingless (Wnt) proteins and β-catenin. Wnt proteins inactivate GSK3β after association to 

lipoprotein receptor-related protein 5/6 and frizzled. This binding occurs in the cytoplasma 

(Bejsovec, 2005). The inactivation of GSK3β causes the interruption of β-catenin. This event 

is followed by accumulation and transport of β-catenin into the nucleus and regulates 

expression of e.g. the T-cell factor family transcription factors. This pathway is called 

canonical Wnt pathway which counteracts FoxO mediated transcription (Manolagas SC, 

Almeida, 2007). Reactive oxygen species (ROS) inhibits the canonical Wnt pathway 

promoting FoxO action (Almeida et al., 2009). This in turn leads to an increase of FoxO 

mediated transcription in the nucleus (Essers et al., Hoogeboom et al., 2008). Furthermore in 

pancreatic β-cells it has been shown that FoxO1 protects from oxidative stress (Martinez et 

al., 2008; Bellinger et al., 2008). 

FoxO1ADA cells did not show any alterations in apoptotic cell upon oxidative stress 

indicating that other FoxOs might be involved in the induction of apoptosis. FoxO1DN 

displayed a decrease of apoptotic cells which might be due to inhibited expression of targets 
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like Fas ligand and Bim (Brunet et al., 1999; Reif et al., 1997; Stahl et al., 2002). However, 

the current results might indicate a minor effect of FoxO1 in regulation of oxidative stress 

response in neurons. 
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Clinical studies have shown that insulin receptor (IR) and the insulin-like growth factor(IGF)-

1-receptor (IGF-1R) signaling are largely reduced in the brains of patients suffering from 

Alzheimer's disease (AD) and other neurodegenerative diseases. Whether the impaired 

IR/IGF-1R signaling is cause, consequence or even counterregulation to neurodegeneration 

and whether the accompanying changes in IR/IGF-1R mediated transcription are involved in 

the pathogenesis of AD is currently a matter of debate. Recent studies have shown that IGF-

1 resistance induces Aβ hyperaggregation leading to Aβ-detoxification and rescues the 

increased mortality of APP (amyloid precursor protein) overexpressing mice. Since FoxO 

transcription factors are highly likely candidates to mediate these effects, two mouse strains 

have been established, one expressing a constitutively active FoxO1 mutant (FoxO1ADA), 

the other a dominant negative mutant FoxO1 (FoxO1DN). To analyse the role of FoxO1 

mediated transcription for AD pathology Tg2576 mice overexpressing the human derived 

mutant APP form (APPsw) with a size of 695 amino acids were used. This APP variant 

harbours an amino acid substitution of Lys670 to Asn and Met671 to Leu, so called “swedish 

mutation” (APPsw) leading to an increased generation of Aβ. Mice expressing neuron-

specifically the dominant negative (FoxO1DN) or the constitutive active form of FoxO1 

(FoxO1ADA) were crossed with Tg2576 mice. The different genotypes (wild-type, FoxO1DN, 

Tg2576/FoxO1DN, FoxO1ADA, Tg2576/FoxO1ADA and Tg2576 mice) were used to analyse 

glucose metabolism, insulin and IGF-1 signaling, survival (Kaplan-Meier) and APP 

processing up to 60 weeks of age. Mice in Tg2576 background displayed unaltered glucose 

homeostasis. Furthermore, Kaplan-Meier analysis revealed no differences in survival of 

Tg2576/FoxO1DN female and male mice compared to Tg2576 mice. Surprisingly, 

Tg2576/FoxO1ADA female mice showed an increase of premature death in comparison with 

Tg2576 female mice without reaching statistical significance. Interestingly 

Tg2576/FoxO1ADA male mice did not live longer than 16 weeks. Additionally, western blot 

analysis from brain lysates of the different genotypes did not reveal alteration of the IR/IGF-

1R signaling pathway. Processing of APP in Tg2576/FoxO1DN and Tg2576/FoxO1ADA mice 

was unchanged compared to Tg2576 mice. The level of α/βCTFs as well as Aβ40 and Aβ42 

burden revealed no differences in the genotypes with AD background. Furthermore, 

accumulation of Aβ oligomers was not influenced by FoxO1 mediated transcription. The 

results of the current study exclude FoxO1 mediated transcription as the underlying 

mechanism of the beneficial effects of IGF-1 resistance on AD pathology in Tg2576 mice.  
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Klinische Studien zeigen, dass der Insulin Rezeptor (IR) und Insulin-like growth factor(IGF)-

1-Rezeptor Signalweg in Gehirnen von Patienten, die an Alzheimer oder anderen 

neurodegenerativen Erkrankungen leiden, stark verringert ist. Ob diese Veränderung im 

Signalweg Ursache, Konsequenz oder eine Gegenregulation zur Neurodegeneration ist und 

ob die begleitenden Unterschiede von IR/IGF-1R vermittelter Transkription in der 

Pathogenese von Alzheimer involviert sind, wird zurzeit diskutiert. Neueste Studien zeigen, 

dass IGF-1 Resistenz eine Hyperaggregation von Aβ induziert, die zur Entgiftung von Aβ 

führt und den vorzeitigen Tod von APP (amyloid precursor protein) überexpremierenden 

Mäusen verhindert. Da FoxO Transkriptionsfaktoren favorisierte Kandidaten darstellen, die 

diesen Effekt vermitteln könnten, wurden 2 verschiedene Mauslinien generiert, eine 

exprimiert die konstitutiv aktive FoxO1 Mutation (FoxO1ADA) und die andere die dominant 

negative Mutation von FoxO1 (FoxO1DN). Um die Rolle von FoxO1 vermittelter Transkription 

für die Pathogenese von Alzheimer zu analysieren, wurden Tg2576 Mäuse, welche eine 

humane APP Mutante (APPsw) mit der Göße von 695 Aminosäuren exprimieren, verwendet. 

Diese APP Variante trägt einen Aminosäureaustausch von Lys670 zu Asn und Met671 zu 

Leu, welcher die schwedische Mutation (APPsw) genannt wird und zu einer erhöhten Aβ 

Akkumulation führt. Mäuse, welche Neuronen-spezifisch die dominant negative (FoxO1DN) 

oder die konstitutiv aktive Form (FoxO1ADA) exprimieren, wurden mit Tg2576 Mäusen 

verpaart. Die entstehenden Genotypen (Wildtyp, FoxO1DN, Tg2576/FoxO1DN, FoxO1ADA, 

Tg2576/FoxO1ADA und Tg2576) wurden bezüglich des Glukose Metabolismus, des Insulin 

und IGF-1 Signalwegs, des Überlebens (Kaplan-Meier) und der APP Prozessierung bis zu 

einem Alter von 60 Wochen analysiert. Mäuse im Tg2576 Hintergrund zeigten eine 

unveränderte Glukose-Homeostase. Des Weiteren zeigten Kaplan-Meier Analysen keinen 

Unterschied im Überleben von weiblichen und männlichen Tg2576/FoxO1DN Mäusen im 

Vergleich zu Tg2576 Mäusen. Überraschend zeigten Tg2576/FoxO1ADA Weibchen eine 

erhöhte Mortalität im Vergleich zu Tg2576 Weibchen ohne statistisch signifikant zu sein. 

Interessanterweise lebten Tg2576/FoxO1ADA Männchen nicht länger als 16 Wochen. 

Western blot Analysen von Gehirnlysaten der verschiedenen Genotypen zeigten keine 

Änderungen des IR/IGF-1R Signalwegs. Die Prozessierung von APP in Tg2576/FoxO1DN 

und Tg2576/FoxO1ADA Mäusen zeigte keine Änderungen im Vergleich zu Tg2576 Mäusen. 

Das Auftreten von α/βCTF sowie Aβ40 und Aβ42 zeigte keine Unterschiede in den 

verschiedenen Genotypen mit Alzheimer-Pathologie. Des Weiteren wurde die Akkumulierung 

zu Aβ Oligomeren nicht durch FoxO1 vermittelte Transkription beeinflusst. Die Ergebnisse 

der vorliegenden Studie schließen FoxO1 vermittelte Transkription als zugrundeliegenden 

Mechanismus der günstigen Effekte einer IGF-1 Resistenz auf die Alzheimer Pathologie in 

Tg2576 Mäusen weitestgehend aus. 
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