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Abstract The Nakajima test is a well-known mate-
rial test from steel industries to determine the forming
limit of sheet metal. It is demonstrated how FE2TI,
our highly parallel scalable implementation of the com-
putational homogenization method FE2, can be used
for the simulation of the Nakajima test. In this test,
a sample sheet geometry is clamped between a blank
holder and a die. Then, a hemispherical punch is driven
into the specimen until material failure occurs. For the
simulation of the Nakajima test, our software package
FE2TI has been enhanced with a frictionless contact
formulation on the macroscopic level using the penalty
method. The appropriate choice of suitable boundary
conditions as well as the influence of symmetry assump-
tions regarding the symmetric test setup are discussed.
In order to be able to solve larger macroscopic prob-
lems more e�ciently, the balancing domain decomposi-
tion by constraints (BDDC) approach has been imple-
mented on the macroscopic level as an alternative to a
sparse direct solver. To improve the computational e�-
ciency of FE2TI even further, additionally, an adaptive
load step approach has been implemented and di↵erent
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extrapolation strategies are compared. Both strategies
yield a significant reduction of the overall computing
time. Furthermore, a strategy to dynamically increase
the penalty parameter is presented which allows to re-
solve the contact conditions more accurately without
increasing the overall computing time too much. Nu-
merically computed forming limit diagrams based on
virtual Nakajima tests are presented.

Keywords Nakajima test · Computational homoge-
nization · FE2 · Finite elements · Frictionless contact ·
Penalty method · Multiscale · Domain Decomposition ·
Iterative Solvers

1 Introduction

In this article, we consider the numerical simulation of
the Nakajima test on high-performance computers us-
ing our highly scalable software package FE2TI [26],
which combines an implementation of the computa-
tional homogenization approach FE2 [17,38,44,53,55]
with di↵erent domain decomposition approaches such
as BDDC (Balancing Domain Decomposition by Con-
straints) [10,13,40,42,43] and FETI-DP (Finite Ele-
ment Tearing and Interconnecting - Dual Primal) [15,
16,34,35,36,37]. It makes use of software packages such
as BoomerAMG [21] (see [2] for the scalability of Boomer-
AMG for elasticity) from the hypre library [14] and
sparse direct solver packages such as PARDISO [51],
MUMPS [1], and UMFPACK [11].

The Nakajima test is a material test, well-known in
the steel industry, to determine the forming limits of
sheet metal. A sheet metal is clamped between a blank
holder and a die. Subsequently, a hemispherical punch
is driven into the specimen until a crack occurs; see
Figure 1 (middle). The top surface of the sheet metal is
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Fig. 1 Experimental setup of the Nakajima test and derivation of a forming limit diagram (FLD) using the Nakajima test.
Image composed from [59, Fig. 1; Fig. 2.4].

equipped with a grid or a pattern, and the deformation
is recorded by cameras. Friction between the sample
sheet and the rigid punch has to be avoided as much
as possible by introducing a tribological system. For
further details regarding the test setup of the Nakajima
test, we refer to the ISO Norm [46].

In this article, we consider the simulation of the
Nakajima test for a dual-phase (DP) steel. More pre-
cisely, we consider a DP600 grade of steel. DP steels be-
long to the class of advanced high strength steels and
combine strength and ductility. All DP steels have a
ferritic-martensitic microstructure consisting of marten-
sitic inclusions (hard phase) in a ferritic matrix (soft
phase). The favorable macroscopic properties of DP
steels are strength and ductility, resulting from the mi-
croscopic heterogeneities obtained by a complex heat
treatment during the rolling process; see, e.g., [57]. Thus,
the incorporation of information on the microstructure
into the simulation is necessary to obtain accurate sim-
ulation results.

Since the characteristic length scales of the micro-
and the macroscale di↵er by 4 to 6 orders of magnitude,
a brute force approach using a finite element discretiza-
tion down to the microscale, is not feasible, even on
the largest supercomputers available today. Moreover,
a brute force simulation would require full knowledge

of the microscale for the complete macroscopic struc-
ture and would also produce more detailed results than
necessary. This motivates the use of homogenization
methods. Here, the FE2 computational homogeniza-
tion method was chosen; see also our earlier publica-
tions [32,26] on the use of FE2 within the EXASTEEL
project, which was part of the DFG priority program
1648 “Software for Exascale Computing” (SPPEXA,
[12]); see Section 2 and the acknowledgements.

In practice, the Nakajima test is used to generate
forming limit diagrams (FLDs) and corresponding form-
ing limit curves (FLCs); see Figure 1 (top right). An
FLD is a Cartesian coordinate system with the major
true strains on the y-axis and the minor true strains on
the x-axis, and an FLC is a regression curve between
pairs of major and minor strains. It describes the tran-
sition from admissible to impermissible loads and thus
provides information on the extent to which the ma-
terial can be deformed without failure, under certain
deformation conditions. The di↵erent Nakajima sam-
ple geometries (see Figure 1 top left) cover the range
from uniaxial to equi-biaxial tension.

Note that material failure is typically indicated by
local necking in thickness direction before a crack oc-
curs. In physical experiments, to reconstruct the state
immediately before material failure, images of the top
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surface of the sample sheet are recorded by one or more
camera(s). In the algorithmic approach given in the
present paper, we instead use a modified Cockroft-Latham
criterion to predict material failure; see Section 3. Hence,
we do not have to compute the evolvement of a crack.

For a description how the experiment is evaluated
to obtain a point in the FLD, we refer to the normed
evaluation strategy based on cross sections [46] and to
the evaluation strategy based on thinning rates [60]. For
the implementation of both strategies and the resulting
virtual FLDs and FLCs, we refer to [59, Sec. 2.8, Sec.
2.9, Fig. 3.5-3.7].

In this paper, we will describe the software enhance-
ments that were necessary to perform the simulation
of the Nakajima test using our FE2TI software pack-
age [26]. This includes the implementation of a fric-
tionless contact formulation on the macroscopic level
using a penalty method, the incorporation of the blank
holder and the die into the simulation to approximate
the real test setup as good as possible, and the choice
of suitable boundary conditions. Furthermore, we high-
light the e↵ects of improved initial guesses for each load
step using an extrapolation strategy as well as using an
adaptive load step strategy. Our further advances, com-
pared to [26] and [32] include a parallel Newton-Krylov-
BDDC (NK-BDDC) approach (based on [27]) applied
to the macroscopic problem, which replaces Newton-
Krylov-BoomerAMG used earlier.

The incorporation of NK-BDDC as a parallel solver
on the macroscopic level enables us to perform larger
simulations without relying on symmetry. Moreover, it
allows us, for the first time, to perform simulations con-
sidering the full geometries corresponding to the quar-
ter geometries that were used for the derivation of the
virtual FLDs in [32,59]. As a consequence, we are now
able to analyze the e↵ect of mirroring the solution of
a quarter geometry to obtain an approximation of the
overall solution. We obtain the full geometry that corre-
sponds to a specific quarter geometry by vertically and
horizontally mirroring the mesh of a quarter geometry;
see Section 5.

Moreover, we show the e↵ect of second-order extrap-
olation for computing the initial value of each load step.
We also introduce a strategy to increase the penalty
parameter at the end of the macroscopic contact sim-
ulation in order to improve the accuracy without in-
creasing the computing time too much. Note that while
achieving e�ciency and parallel scalability to millions
of MPI ranks was in the focus of our previous works [26,
32]. Here, we report on production computations us-
ing 4 000 to 15 000 cores of the JUWELS supercom-
puter [25]. Since limited computing time was available
on JUWELS for this project, we have used the fol-

lowing computational setup: All our computations are
two-scale finite element simulations where we solve in-
dependent microscopic problems for each macroscopic
integration point. We consider comparably small micro-
scopic problems with 7 191 degrees of freedom resulting
from the discretization of the unit cube with P2 finite
elements. Each microscopic problem is solved indepen-
dently on its own MPI rank and, given its small size, we
use the sparse direct solver PARDISO to solve the re-
sulting system of equations. We also show results using
an identical setup on about 6 000 cores of the magni-
tUDE supercomputer. Note that we use two MPI ranks
for each compute core. Similar to our previous works
(e.g. [32,26]), we mark macroscopic quantities with an
overline to distinguish them from microscopic quanti-
ties. For example, we write u for the macroscopic dis-
placement and u for the microscopic one.

2 The Software Package FE2TI

For all our simulations presented in this article, we have
used our highly scalable software package FE2TI [26].
The core of the FE2TI package is a C/C++ implemen-
tation of the computational homogenization approach
FE2 [17,38,44,53,55] (see Section 2.1), which enables
the incorporation of the microstructure into the simu-
lation without the need for a brute force finite element
discretization. We extensively use the PETSc library [3,
4,5] and distributed memory parallelization based on
message passing (MPI).

The FE2TI package interfaces di↵erent solvers for
the solution of the resulting linear and nonlinear sys-
tems of equations on both scales. For small linear sys-
tems, the direct solver libraries PARDISO [51] (or MKL-
PARDISO), UMFPACK [11], and MUMPS [1] are used.
Here, PARDISO [51] is our preferred sparse direct solver,
which we can also use in shared-memory parallel mode
[30]; see also [61]. Throughout this paper, each micro-
scopic boundary value problem is solved independently
on its own compute core.

In order to handle also larger problem sizes e�-
ciently, the software package also gives the possibility
to use a domain decomposition approach or (algebraic)
multigrid for the parallel iterative solution of the result-
ing problem. Larger microscopic boundary value prob-
lems, i.e., representative volume elements (RVEs) with
a large number of degrees of freedom, can be tackled by
using parallel domain decomposition methods based on
Newton-Krylov-FETI-DP (NK-FETI-DP) [27,39,48] or
the more recent Nonlinear-FETI-DP approaches [27,
31]. Here, each RVE is decomposed into subdomains,
where each subdomain is handled by its own compute



4 A. Klawonn, M. Lanser, O. Rheinbach, and M. Uran

core. Accordingly, each microscopic boundary value prob-
lem is solved on more than one compute core, depending
on the number of subdomains into which the RVE has
been split.

As an alternative to domain decomposition, we can
also use the highly scalable multigrid implementation
BoomerAMG [21] from the hypre package [14] for the
parallel solution of the microscopic problem as well as
of the macroscopic problems. Here, the extensions of
BoomerAMG for elasticity should be used; see [2] for
the scalability of BoomerAMG in this case.

Various simulations of tension tests for a DP600
steel have been performed using di↵erent aspects of the
software package. In 2015, the FE2TI package scaled to
the complete JUQUEEN [24] and became a member of
the High-Q club [29]. The combination of NK-FETI-DP
on the microscale and BoomerAMG on the macroscale
has been considerably successful; see SIAM Review [49,
p. 736].

While using BoomerAMG on the macroscopic level
works very well for the FE2 simulation of di↵erent ten-
sion tests [29,28,26], its performance su↵ered in our
FE2 simulation of the Nakajima test, which seems to
be challenging for AMG methods. Therefore, we have
recently incorporated a second domain decomposition
approach, the NK-BDDC method (see, e.g., [27,39]), in
order to solve comparably large macroscopic problems
e�ciently.

In addition to the NK-BDDC approach, in the sec-
ond phase of the EXASTEEL project, we further ex-
tended our software package to simulate the Nakajima
test. This included frictionless contact (on the macro-
scopic level) using a penalty formulation (see Section 2.4),
an adaptive load step strategy (see Section 2.2) and
first- or second-order extrapolation (see Section 2.3)
to improve initial guesses for Newton’s method. We
have also integrated a Checkpoint/Restart (CR) strat-
egy into our software. Here, we use the CRAFT library
[54], which was developed in the second phase of the
ESSEX project, also part of SPPEXA [12]. We use two
di↵erent checkpoint objects, one for the macroscopic
level and one for the microscopic level including the
history for each microscopic boundary value problem.

Even for small problem sizes, which can be solved
e�ciently by using a sparse direct solver, the finite ele-
ment assembly process may be computationally expen-
sive. Therefore, we have parallelized the assembly pro-
cess of the macroscopic problem using a small number
of cores, even if we use a sparse direct solver.

Using the FE2 two-scale homogenization approach,
we only have to provide a constitutive material law
on the microscopic level. We use a J2 elasto-plasticity
model, which is implemented in FEAP [58] and can be

called via an interface provided by our software pack-
age. The material parameters are fitted to the main
components of a DP steel, namely ferrite and marten-
site; see [8].

2.1 The FE2 Method

The FE2 method [17,38,44,53,55] requires scale sepa-
ration, i.e., the characteristic length L of the macroscale
is much larger than the characteristic length l of the mi-
croscale, commonly denoted by L � l. For a DP steel,
L is a factor of 104 to 106 larger than the microscopic
unit length. Hence, we can assume that scale separation
is given.

In the FE2 method, both scales are discretized in-
dependently of each other by using finite elements. Ac-
cordingly, the macroscopic sample sheet geometry is
discretized using comparably large finite elements with-
out taking the microstructure into account, i.e., we con-
sider a homogeneous material from the macroscopic
point of view. In each macroscopic integration point
(Gauss point), we solve a microscopic boundary value
problem. The microscopic boundary value problem is
defined on a cuboid with a side length of the order of
l, which contains a representative fraction of the over-
all microstructure and is therefore called representa-
tive volume element (RVE). Note, that we use the same
RVE for each macroscopic Gauss point.

The microstructure of a DP steel can be obtained by
using electron backscatter di↵raction (EBSD); see [8].
To reduce the problem size, we make use of the statisti-
cally similar RVE (SSRVE) approach, see [7,52], which
can approximate the true mechanical behavior accu-
rately. In contrast to the small martensitic islands in a
realistic microstructure of a DP steel, the martensitic
volume fraction is distributed to only a few and, there-
fore, larger inclusions with predefined, simple shapes,
e.g., ellipsoids. The number of inclusions is predefined,
and the final shape of the inclusions is obtained after
an optimization process. In this article, we consider an
SSRVE with two ellipsoidal inclusions. We use periodic
boundary conditions.

In the FE2 method, the macroscopic constitutive
law is replaced by a micro-to-macro coupling procedure
(see, e.g., [53,18] for the consistent tangent), making
use of volumetric averages of microscopic stresses; see
[53] for further details regarding the FE2 approach and
[6,26] for the incorporation of the FE2 method into our
software package.
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2.2 Adaptive load step strategy

In our simulations of the Nakajima test, the rigid punch
has to cover a significant distance until a critical value
WC (see Section 3) is reached for at least one finite
element node on the top surface of the sample sheet.
To be able to simulate the corresponding distance, we
use a load step strategy on the macroscopic level.

We have implemented a simple adaptive load step
strategy, which decides, based on microscopic as well as
macroscopic events, whether the load increment may be
increased (by a factor of 2), decreased (by a factor of
1/2), or if it remains constant.

On the microscopic level, if we reach convergence
within 20 Newton iterations, i.e., in a macroscopic New-
ton iteration i of load step k, the volumetric averages
of the stresses as well as the consistent tangent moduli
are transferred to the macroscopic level. Otherwise, we
pass the information that there is stagnation; see Fig-
ure 2. In this case, we have to decrease the load step
size and repeat the current load step. Note that we refer
to stagnation not only if we do not reach convergence
within 20 Newton iterations, but also if the residual
norm does not decrease su�ciently after the sixth mi-
croscopic Newton iteration; see Figure 2. We also use
an upper bound of 20 macroscopic Newton iterations
per load step. If we do not reach convergence within
this range, we decrease the load step size. However, if
the residual norm r at the end of the 20th iteration is
close to the stopping criterion ⌘, i.e., r  tol · ⌘, where
the tolerance tol can be chosen by the user, we spend
five more Newton iterations in the current load step. If
we reach convergence within these five additional iter-
ations, we continue with the next load step, otherwise,
we have to repeat the current load step.

To decide whether the load increment has to be in-
creased or not, we compare the number of Newton iter-
ations of the current load step with the corresponding
number of the previous load step. If it is at most as
large as 50 % of the previous load step, the load incre-
ment for the next load step is doubled. Otherwise, the
load increment remains unchanged.

We increase the load increment whenever we reach
convergence within a single Newton iteration. For a di-
agram similar to Figure 2, we refer to [59, Fig. 4.3] and
[32, Fig. 6].

To highlight the advantages of our adaptive load
step approach, we present a comparison using di↵er-
ent constant load step sizes and the adaptive load step
strategy choosing the same initial load increments. We
consider a sample sheet geometry with a parallel shaft
width of 50 mm; see Table 1 for the results; see Figure 1
and Section 4 for the description of the general shape of

the sample sheet geometries. We apply the same three
initial load increments for both constant load step sizes
and our adaptive load step strategy.

Let us first consider constant loads. For the smallest
load increment of 3.125 · 10�3 mm, the final computa-
tion time is about seven times higher than for a load
increment of 0.1 mm. This can be explained by the in-
creased number of macroscopic Newton iterations. Even
if the load increment is much smaller the time for a sin-
gle Newton iteration only decreases slightly. To demon-
strate the case of a too large load step, which causes
stagnation at some point, we have chosen a load in-
crement of 0.2 mm. Here, the simulation terminates
within the second load step since at least one micro-
scopic boundary value problem does not reach the stop-
ping criterion.

As we learn from Tables 1 and 2, the adaptive load
step strategy is, in our context, also robust with re-
spect to large initial load step sizes, as, e.g., 0.2 mm.
Additionally, the adaptive load step algorithm delivers
small computing times independent of the initial load
step. For instance, for the smallest initial load incre-
ment, the dynamic load step strategy detects several
times that the load step size can be increased. As a
result, the average load step size is about ten times
larger than the initial load increment. Compared to the
constant load, we need only a third of the macroscopic
Newton iterations, and we get the same factor also for
the computing time.

The fastest computing time is achieved using an ini-
tial load increment of 0.2 mm. Even if we have to repeat
the second load step with a reduced load increment, the
load increment is again increased to 0.2 mm later on.
As a result, the average load step size is close to 0.2
mm. This is di↵erent for a sample sheet geometry with
a parallel shaft width of 70 mm. In this case, the load
step strategy never increases the load increment back to
0.2. Consequently, the average load increment is close
to 0.1 mm and the computing time is slightly higher
compared to the case where an initial load step size of
0.1 mm was used, since some load steps are repeated;
see Table 2.

For both sample sheet geometries considered here,
the initial load step size of 0.1 mm seems to be optimal,
since the adaptive load step strategy does not change
the load step size within the first two millimeters. How-
ever, if we push the rigid tool further into the sample
sheet geometry as it is done to obtain an FLD, the load
increment is decreased several times for both geometries
by the adaptive load step strategy; see [32, Tab. 3.1];
note that the average load step size can be computed
from the number of load steps.
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Macroscopic Newton Iteration i of Load Step k

Convergence within 20 (mi-
croscopic) Newton iterations

No reduction of norm in a microscopic New-
ton iteration after the 6th Newton iteration

No Convergence within 20
(microscopic) Newton iterations

Compute stresses and tan-
gent moduli and give them
to the macroscopic level

Give information of no convergence to the
macroscopic level, reduce load increment
loadk by 50%, and restart load step k

Continue with next macroscopic
Newton iteration i + 1 of load step k

Fig. 2 Impact of microscopic events on the load step size. Image from [59, Fig. 4.2].

Table 1 Comparison of some characteristic quantities for the first 2 mm covered by the rigid punch using di↵erent constant
load step sizes as well as the adaptive load step strategy with di↵erent initial load step sizes; computed on the JUWELS
supercomputer [25]; using a quarter geometry of the sample sheet with a shaft width of 50 mm; two finite elements in thickness
direction. We have used first-order extrapolation and 2 MPI ranks per core. We consider the computation time as well as the
number of macroscopic load steps and Newton iterations. Table from [59, Table 4.1]

Sample sheet 50
computed on JUWELS; 2 MPI ranks per core

Constant Load Step Size Adaptive Load Step Strategy

Load Load Load Load Load Load
0.003125 0.1 0.2 0.003125 0.1 0.2

Cov. Dist.
2 2 term. 2 2 2

Punch [mm]
Load Steps 640 20 after 86 20 11
Newton Its. 970 130 one 328 130 91
? Load Step

0.003125 0.1 load 0.0233 0.1 0.18
Size [mm]

? Newton Its.
1.52 6.50 step 3.81 6.50 8.45

per Load Step
Runtime [s] 7 204.58 1 048.61 2 415.89 1 070.00 808.01
? Time per

11.26 52.43 28.09 53.50 73.46
Load Step [s]
? Time per

7.43 8.07 7.37 8.23 8.88
Newton It. [s]

At the onset of material failure, typically small load
steps are needed. We indeed use 10 consecutive load
steps, using a load increment smaller than 10�4 multi-
plied by the initial load increment, as an indicator for
material failure.

Furthermore, we also terminate the simulation if the
load increment has to be reduced seven times within a
single load step.

2.3 Improved Initial Values by First- and
Second-Order Extrapolation

As we have learned from Tables 1 and 2 in the previous
section, the overall computing time strongly depends on
the number of macroscopic Newton iterations. There-
fore, in order to reduce the computing time, we are
interested in reducing the number of macroscopic New-
ton iterations in each load step by using better initial
guesses from extrapolation.
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Table 2 Comparison of some characteristic quantities for
the first 2 mm covered by the rigid punch using di↵erent con-
stant load step sizes as well as the adaptive load step strat-
egy with di↵erent initial load step sizes; computed on mag-
nitUDE; using a quarter geometry of a sample sheet with a
shaft width of 70 mm; two finite elements in thickness di-
rection. We have used first-order extrapolation and 2 MPI
ranks per core. We consider the computation time as well as
the number of macroscopic load steps and Newton iterations.
Table based on [59, Table 4.2]

Sample sheet 70
computed on magnitUDE

2 MPI ranks per core
Constant Load Adaptive Load

Step Size Step Strategy

Load Load Load Load
0.1 0.2 0.1 0.2

Cov. Dist.
2 term. 2 2

Punch [mm]
Load Steps 20 after 20 19
Newton Its. 136 one 136 138
? Load Step

0.1 load 0.1 0.105
Size [mm]
? Newton Its.

6.8 step 6.8 7.26
per Load Step
Runtime [s] 1 175.58 1 186.06 1 200.59
? Time per

58.78 59.30 63.19
Load Step [s]
? Time per

8.64 8.72 8.70
Newton It. [s]

We are thus interested in predicting the macroscopic
displacement at the end of the following load step de-
pending on the accumulated load. For simplicity, we
assume that we have just finished load step k, i.e., the
accumulated loads li =

Pi
j=1 lj , where lj is the load

increment of load step j, as well as the converged solu-
tions ui, i = 1, . . . , k, of the macroscopic displacements
in load step i are known. Furthermore, the load incre-
ment lk+1 has already been determined by the adaptive
load step strategy, i.e., the expected accumulated load
lk+1 =

Pk+1
j=1 lj of the next load step is also known.

In case of stagnation in load step k + 1, the load in-
crement lk+1 changes, which also causes a change in
lk+1. Accordingly, the interpolation polynomial has to
be evaluated at a di↵erent point. As a result, the initial
value of the repeated load step changes.

To derive an interpolation polynomial of the order
n, which can be used to predict the solution of load
step k + 1, we need the macroscopic displacements u
and the accumulated loads l of the current load step k
as well as of the previous load steps k � n, . . . , k � 1.
Of course, this is only applicable if k � n corresponds
to an existing load step, i.e., k � n � 1. Note that the
accumulated loads of di↵erent load steps di↵er, since
each load step makes a small load increment. If we find

a polynomial pn of order n, which satisfies

pn(lj) = pn(
jX

m=1

lm) = uj 8j = k � n, . . . , k, (1)

then the interpolation polynomial is unique.
In case of a first-order interpolation polynomial, which

was already successfully used for the simulation of a
tension test with constant load increments (see [26]),
we only need the accumulated loads and macroscopic
displacements of the load steps k and k� 1. We obtain
the interpolation polynomial

p1(l) = uk�1 +
l � lk�1

lk � lk � 1
· (uk � uk�1) ,

which satisfies Equation (1). As a result, the predicted
solution of load step k + 1, which is subsequently used
as initial value u(0)

k+1 is derived by

u(0)
k+1 = p1(lk+1) = uk�1 +

lk+1 + lk
lk

· (uk � uk�1) ,

which di↵ers from the presentation in [26] due to the
variable load increments.

All in all this is an extrapolation strategy, since we
use the interpolation polynomial to predict the solu-
tion of load step k + 1, where lk+1 is not included in
the interval

⇥
lk�1, lk

⇤
. Since p1 is a polynomial of or-

der 1, the use of p1 for predicting initial values of the
following load step is called first-order extrapolation.
This strategy has been successfully applied to compute
an FLD (see [32,59]) and has also been used to compare
constant and dynamic load increments in Section 2.2.

As we learn from Table 3, first-order extrapolation
reduces the number of macroscopic Newton iterations
significantly, which also causes a reduction in comput-
ing times. Let us remark that, for the test setup with
an initial load step size of 0.1 mm, the adaptive load
step strategy does not change the load step size if used
in combination with the first-order extrapolation ap-
proach. Therefore, the results for the first-order extrap-
olation with and without adaptive load stepping are
identical in Table 3. For similar results using a sample
sheet geometry with a smaller shaft width and using a
quarter geometry, we refer to [59, Tab. 4.3]. We also
consider a second-order interpolation polynomial, i.e.,
we require the accumulated loads and macroscopic dis-
placements of the load steps k � 2, . . . , k. The second-
order polynomial p2 can be formulated in terms of the
Lagrange polynomials

Lj(l) =
kY

m=k�2
m 6=j

�
l � lm

�
�
lj � lm

� .
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Table 3 Comparison of first- and second-order extrapolation for the first 4 mm covered by the rigid punch with and without
using an adaptive load step strategy (see Section 2.2); initial load step size of 0.1 mm; computed on magnitUDE; using a full
geometry of a sample sheet with a shaft width of 90 mm; two MPI ranks per core; one finite element in thickness direction.
Table from [59, Table 4.4] .

Sample sheet 90
computed on magnitUDE; 2 MPI ranks per core

Constant Load Step Size Adaptive Load Step Strategy

No 1st-order. 2nd-order No 1st-order 2nd-order
Extra. Extra. Extra. Extra. Extra. Extra.

Cov. Dist.
4 4 4 4 4 4

Punch [mm]
1. Load Step � 3 4 � 3 4
Using Extra.
Load Steps 40 40 40 40 40 34
Newton Its. 445 332 286 445 332 262
? Load Step

0.1 0.1 0.1 0.1 0.1 0.12
Size [mm]
? Newt. Its.

11.13 8.3 7.15 11.13 8.3 7.71
per Load Step
Runtime [s] 3 623.05 2 684.55 2 326.75 3 623.05 2 672.15 2 157.91
? Time per

90.58 67.11 58.17 90.58 66.80 63.47
Load Step [s]
? Time per

8.14 8.09 8.14 8.14 8.05 8.24
Newt. It. [s]

Finally, p2 writes

p2(l) =
kX

i=k�2

ui · Li(l);

see, e.g., [47]. Obviously, we have

Lk(lk) =
lk � lk�2

lk � lk�2

· lk � lk�1

lk � lk�1

= 1. (2)

Furthermore, we have Lk(lk�1) = Lk(lk�2) = 0, since
the first or second part in Equation (2) becomes zero if
we replace lk in the numerators by lk�1 or lk�2. In gen-
eral, for each three consecutive load steps m, . . . ,m+2,
we have Lj(li) = �ij , i, j 2 {m,m+ 1,m+ 2}. Accord-
ingly, the second-order polynomial p2 satisfies Equa-
tion (1).

If we now use p2 to extrapolate the solution of load
step k + 1 to determine an initial value u(0)

k+1 for load
step k + 1, we obtain

u(0)
k+1 = p2(lk+1) =

(lk+1 + lk)lk+1

lk�1(lk + lk�1)
uk�2

� (lk+1 + lk + lk�1)lk+1

lk�1lk
uk�1

+
(lk+1 + lk + lk�1)(lk+1 + lk)

(lk + lk�1)lk
uk

by replacing li, i = k � 2, . . . , k + 1, by
Pi

j=1 lj and
cancelling out all possible terms.

As we learn from Table 3, second-order extrapola-
tion is useful in our context since it reduces the num-
ber of iterations even more than first-order extrapo-
lation – without significant additional computational
cost; see [59, Tab. 4.3] for comparable results using a
quarter geometry of a sample sheet geometry with a
smaller shaft width. Consequently, second-order extrap-
olation should be preferred to first-order extrapolation,
as long as the available memory allows to store the ad-
ditional macroscopic solution values. This might lead
to some di�culties considering very large macroscopic
problems.

A final remark on the contact constraints: Without
applying an extrapolation strategy, the deformation is
exclusively driven by the contact constraints. However,
if we use the predicted solution of a load step as initial
value, the initial value already contains some deforma-
tions which are not caused by the contact constraints.
In this case, the contact constraints have to check the
predicted deformation and correct it if necessary.

2.4 Frictionless Contact Using a Penalty Formulation

In the Nakajima test, the deformation of the sample
sheet is completely driven by the hemispherical punch.
Moreover, the deformation is restricted by the blank
holder and the die. Consequently, the simulation of the
Nakajima test requires a contact formulation on the
macroscopic level. As mentioned before, friction between
the rigid punch and the sample sheet has to be avoided



Fully-Coupled Micro-Macro FE Simulations of the Nakajima Test Using Parallel Computational Homogenization 9

as much as possible in the experiments by using a lu-
brication system. Accordingly, in an ideal test setup,
which is assumed in our simulations, there will be no
friction between the rigid punch and the sample sheet,
and we can consider frictionless contact.

We have to incorporate the physical condition of
non-penetration into our simulation. Therefore, let us
consider an arbitrary rigid tool T and a deformable
body B, where only the deformable body B is discretized
by finite elements. The contact surface of the rigid tool
is represented by an analytical function. We further as-
sume that exclusively one face �B of the deformable
body may be in contact with the rigid tool. For each
finite element node xB 2 �B we have to compute the
corresponding point xT on the rigid tool surface with
minimum distance, i.e., ||xB�xT || = miny2T ||xB�y||.
Subsequently, we can compute the outward normal nxT
of the rigid tool surface at the minimum distance point
xT . To ensure that no finite element node on the con-
tact surface of the deformable body penetrates into the
rigid tool, we can formulate the condition
⇣
x�B

� xT

⌘
· nxT

� 0 8x�B
2 �B, (3)

which is the mathematical formulation of the non-pe-
netration condition. For a more detailed discussion re-
garding the more general case of contact between two
deformable bodies, we refer to [62].

As it is standard practice in finite element simu-
lations of continuum mechanical problems, we are in-
terested in minimizing an energy functional. Due to the
contact problem and the corresponding non-penetration
condition (see Equation (3)) we have to consider min-
imization with constraints. For this purpose, di↵erent
approaches such as the Lagrange multiplier method [41,
45] or the (quadratic) penalty method [41,45] are known
and both approaches are widely used in the context of
contact problems; see, e.g., [62]. While the Lagrange
multiplier method solves the constrained minimization
problem exactly, the penalty method only approximates
the exact solution depending on a real positive num-
ber "N > 0, which is called penalty parameter. For
"N ! 1, the solution of the penalty method is identical
to that of the Lagrange multiplier method, but the re-
sulting system of equations becomes ill-conditioned for
large penalty parameters. Nonetheless, we choose the
penalty method in our simulations, since this approach
does not change the number of unknowns in our system
and can be easily incorporated into the software. The
idea of the penalty method is to solve an unconstrained
minimization problem, where the violations of the con-
straint(s) are weighted by the penalty term which is
added to the objective function of the originally con-
strained minimization problem. In the context of con-

tact problems, each finite element node that penetrates
the rigid body adds an additional term to the energy
functional. Therefore, we have to compute the amount
of penetration by

gN (x) =

⇢
(x� xT )nxT

, if (x� xT )nxT
< 0

0, otherwise;

see Equation (3).
Let us introduce the set �C as the collection of all

finite element nodes that violate the non-penetration
condition, i.e.,

�C =
�
x 2 �B

�� gN (x) < 0
 
.

Then, the penalty term, which is added to the energy
functional, writes
Z

�C

"N
2

· g2N dA.

Due to the additional penalty term in the energy
functional, we also obtain additional terms in the right-
hand side as well as in the sti↵ness matrix of our re-
sulting system, which are obtained by derivation and
linearization, respectively. Following [22], the contact
part of the sti↵ness matrix can be divided into three
parts, where only the main part is independent of the
amount of penetration. Since we have small load steps
and therefore small penetrations, here, we neglect the
remaining two parts in our implementation; see also
[59].

Let us further explain the numerical realization of
the contact problem using a simple example. We assume
that the deformable body in its reference configuration
is in perfect contact with a rigid tool. In a first step,
the rigid surface moves by a small increment, so that
some finite element nodes of the discretized body pen-
etrate into the rigid body. Accordingly, we build the
corresponding system of equations including the addi-
tional contact terms and compute the update of the
deformation. Afterwards, we check penetration for the
deformed (intermediate) configuration and repeat until
convergence is reached.

As mentioned before, the choice of the penalty pa-
rameter is crucial for the accuracy of the final solu-
tion. As you can see in Figure 3, the number of pen-
etrated finite element nodes at the end of the simu-
lation decreases with an increasing penalty parameter.
Moreover, also the maximum amount of penetration de-
creases as you can see in Table 4. Accordingly, a higher
penalty parameter is desirable to obtain accurate simu-
lation results. On the other hand, we also observe that
a higher penalty parameter leads to significantly larger
computing times; see Table 4; see also [59, Sec. 3.3] for
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Table 4 Computational results using di↵erent penalty parameters (constant and dynamic) for a sample sheet geometry with a
parallel shaft width of 50 mm. If appropriate, e.g., for the computing time, we split the overall collected data into two di↵erent
parts of the simulation, namely using a constant penalty parameter (const. pen.) and increasing the penalty parameter to
50 000 (incr. pen.). If we exclusively use constant penalty parameters (first columns), the lines corresponding to the increase of
the penalty parameter are left blank and, therefore, the rows “overall” and “const. pen.” are identical. In the columns relating
to dynamic penalty parameters, the entries in the rows for constant penalty parameters are identical to the respective entry
in the column with the corresponding initial constant penalty parameter; see also Figures 3 and 5. For all simulations with a
final penalty parameter of 50 000, we highlight in bold the two fastest overall computation times as well as the main reasons
for the fast computation times. Computations carried out on the JUWELS supercomputer [25]; quarter geometry; two finite
elements in thickness direction; two MPI ranks per core.

Computational Information Using Di↵erent Penalty Parameters
Sample sheet with a shaft width of 50 mm; 10 mm tool movement; JUWELS

Penalty Parameter 50 500 5 000 50 000 50 ! 50 000 500 ! 50 000 5 000 ! 50 000

Max. Pen. [mm] 0.2782 0.0610 0.0171 0.0021 0.0029 0.0028 0.0024

Penetr. FE nodes 248 207 166 139 91 87 116

Sum Pen. [mm] 31.7617 3.2960 0.3515 0.0357 0.0359 0.0366 0.0356

? Penetration per
0.1281 0.0159 0.0021 0.0003 0.0004 0.0004 0.0003

Pen. FE node [mm]

Comp.
Time [s]

overall 7 180.31 7 667.99 8 952.56 14 817.06 13 852.77 9 789.38 9 911.47
const. pen. 7 180.31 7 667.99 8 952.56 14 817.06 7 180.31 7 667.99 8 952.56
incr. pen. - - - - 6 672.46 2 121.39 958.91

Newton
Its.

overall 872 983 1 143 1 874 1 698 1 228 1 237
const. pen. 872 983 1 143 1 874 872 983 1 143
incr. pen. - - - - 826 245 94

Load
Steps

overall 101 102 111 241 142 126 121
const. pen. 101 102 111 241 101 102 111
incr. pen. - - - - 41 24 10

? Newt.
Its. per
Load St.

overall 8.63 9.64 10.30 7.78 11.96 9.75 10.22
const. pen. 8.63 9.64 10.30 7.78 8.63 9.64 10.30
incr. pen. - - - - 20.15 10.21 9.40

? Time
per

Newt. It.

overall 8.23 7.80 7.83 7.91 8.16 7.97 8.01
const. pen. 8.23 7.80 7.83 7.91 8.23 7.80 7.83
incr. pen. - - - - 8.08 8.66 10.20

? Time
per

Load St.

overall 71.09 75.18 80.65 61.48 97.55 77.69 81.91
const. pen. 71.09 75.18 80.65 61.48 71.09 75.18 80.65
incr. pen. - - - - 162.74 88.39 95.89

Rep.
Load
Steps

overall 0 1 4 4 7 1 4
const. pen. 0 1 4 4 0 1 4
incr. pen. - - - - 7 0 0

? Load to Reach
0.099 0.098 0.090 0.041 0.099 0.098 0.090

10 mm [mm]

a similar discussion using a sample sheet geometry with
a shaft width of 40 mm.

As a further improvement, we have recently imple-
mented a strategy where a small penalty parameter is
increased up to a user-defined value if a certain tool
movement is reached. Here, significant computing time
can be saved in the beginning of the simulation. To dis-
tinguish between simulation results obtained with con-
stant and increased penalty parameters, we introduce
the notation "%N = n, n 2 N, which indicates that we
have increased the penalty parameter to n.

We show simulation results starting with di↵erent
initial penalty parameters and increasing the penalty
parameter to "%N = 50 000 after reaching a total tool
movement of 10 mm. As we can see in Table 4, the

overall computing time after reaching the final penalty
parameter "%N = 50 000 is always below the comput-
ing time for a constant penalty parameter "N = 50 000.
While we save a significant amount of computing time
for the initial penalty parameters of 500 and 5 000, the
savings for an initial penalty parameter of 50 are neg-
ligible. This is related to a large number of additional
Newton iterations and repeated load steps to reach the
desired penalty parameter "%N = 50 000 in the end.

We have to ensure that we still obtain an accu-
rate solution. Therefore, we compare the final solutions,
i.e., after reaching the desired penalty parameter "%N =
50 000, with the solution obtained when using a con-
stant penalty parameter of 50 000. Here, we focus on
the comparison with an initial penalty parameter of
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Fig. 3 Penetrated finite element nodes after reaching a total
tool movement of 10 mm for the di↵erent penalty parameters
"N = 50 000 (green), "N = 5000 (green + blue), "N = 500
(green + blue + orange), and "N = 50 (green + blue + orange
+ red); two finite elements in thickness direction; quarter
geometry of a sample sheet geometry with a parallel shaft
width of 50 mm (see Figure 1 (top left)); computed on the
JUWELS supercomputer [25]. For further information; see
Table 4.

500, since we obtain qualitatively similar results for the
other penalty parameters; see the apppendix in Sec-
tion 7.

As we can see in Figure 4, the maximum deviation
in the displacement is below 1 % in relation to the max-
imum absolute value of both solutions. Also for the
major strains and the modified Cockcroft & Latham
failure value (see Section 3), we obtain a maximum de-
viation of about 5 %, which is satisfactory. Only for the
von Mises stresses, we obtain a maximum di↵erence of
more than 10 %. Surprisingly, the maximum di↵erence
in the von Mises stresses is lower if we compare the
final solutions obtained with constant penalty param-
eters of 500 and 50 000; see Figure 5 (bottom middle).
This might be explained by the penetrated FE nodes.
Comparing the results obtained from constant penalty
parameters "N = 500 and "N = 50 000 with the result
obtained after increasing the penalty parameter from
500 to 50 000, the maximum di↵erence is located in the
same area, where both solutions have some penetrated
FE nodes that are not penetrated in 500 ! 50 000; see
Figures 5 and 6. Note that this e↵ect is visible also for
other discretizations of the same sample sheet geom-
etry; see Figure 7. Nonetheless, our strategy yields
convincing results with a significantly reduced overall
computing time.

For our simulations of the Najajima test, we increase
the penalty parameter based on the failure criterion

since increasing the penalty parameter leads to addi-
tional deformations - without movement of the rigid
punch. As a consequence, it is possible to reach the
critical value while remaining in the same load step.
To guarantee that the critical value is reached for all
simulations for the first time with the same penalty pa-
rameter, there must be a gap between the critical value
that is associated with material failure and the thresh-
old used for increasing the penalty parameter.

2.5 Newton-Krylov-BDDC on the Macroscopic Level

We have recently incorporated the NK-BDDC approach
into our software package in order to solve large macro-
scopic problems e�ciently.

Of course, good scalability of the overall application
can only be achieved if the NK-BDDC approach scales
well. Therefore, the choice of a suitable coarse space is
essential. A very simple coarse space contains all subdo-
main vertices. Due to the thin sample sheet geometry, it
is expected that we have too few constraints by choos-
ing only the subdomain vertices. Therefore, we choose
an additional finite element node along each edge across
the subdomain interface in which the primal subassem-
bly process is performed. In addition, we also choose
constraints for each face across the subdomain inter-
face following the suggestions in the frugal approach
[20]. For the definition of vertices, edges, and faces in
the context of domain decomposition, we refer to the
literature; see, e.g., [34,35,33].

The incorporation of the NK-BDDC approach al-
lows us to use larger macroscopic problems in our sim-
ulations. As a consequence, we are now able to consider
full geometries corresponding to the quarter geometries
used for the derivation of virtual FLDs in [32,59]. As
mentioned before, the mesh of such a full geometry was
obtained by vertically and horizontally mirroring the
mesh of a quarter geometry and, accordingly, consists
of four times as many finite elements.

We find that the number of Krylov iterations in each
macroscopic Newton iteration is in a reasonable range
(see [59, Fig. 3.15 (left)]) and BDDC is robust with re-
spect to the thin geometries and also irregular METIS
decompositions thereof. In our simulations, we always
use GMRES (Generalized Minimal Residual) [19,50] as
Krylov subspace method. Furthermore, the di↵erence
between minimum and maximum number of Krylov it-
erations is not too large and the average number of
Krylov iterations in each macroscopic Newton iteration
is closer to the minimum. Accordingly, the performance
of the NK-BDDC approach is quite robust and seems
to be independent of the number of macroscopic finite
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Fig. 4 Comparison of final simulation results obtained with a constant penalty parameter of 50 000 and after increasing
the penalty parameter from 500 to 50 000. Top: Di↵erence in relevant data as well as minimum and maximum values of
both configurations; 50 000 (L) and 500 ! 50 000 (S). Bottom: Comparison of penetrated FE nodes as well as amount of
penetration for the final solutions obtained with a constant penalty parameter of 50 000 (bottom) and after increasing the
penalty parameter from 500 to 50 000 (top). Red dots show penetrated FE nodes and black dots represent FE nodes that are
not penetrated but are penetrated in the other solution; sample sheet geometry with a parallel shaft width of 50 mm; quarter
geometry; two finite elements in thickness direction, two MPI ranks per core; computed on the JUWELS supercomputer [25].

elements belonging to the plastic regime, i.e., macro-
scopic finite elements with integration points belonging
to RVEs in the plastic regime.

3 Failure Detection - a Modified Cockcroft &

Latham Criterion

As mentioned earlier, in the physical Nakajima test, the
hemispherical punch is pressed further upwards until a
crack can be observed on the upper surface of the sam-
ple sheet. Once the Nakajima test is completed, the
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Fig. 5 Cross-comparison of penetrated nodes and von Mises stresses for final solutions obtained with constant penalty pa-
rameters 500 and 50 000 as well as after increasing the penalty parameter from 500 to 50 000 for a sample sheet geometry
with a parallel shaft width of 50 mm; quarter geometry; two finite elements in thickness direction, two MPI ranks per core;
computed on the JUWELS supercomputer [25].

Fig. 6 Penetration of FE nodes
that are penetrated in the final
solution obtained with a constant
penalty parameter of 50 000 but
that are not penetrated in the fi-
nal solution after increasing the
penalty parameter from 500 to
50 000 (left) and vice versa (right);
sample sheet geometry with a shaft
width of 50 mm; quarter geoemtry;
two finite elements in thickness di-
rection, two MPI ranks per core;
computed on the JUWELS super-
computer [25].

sample sheet can be evaluated so that the result can
be written into the FLD. In experiments, the evalu-
ation process is based on the last recorded image of
the sample sheet surface before the crack occurred. In
our simulations, we do not end up with a crack since
our software does not include the computation of the
evolvement of a crack. Instead, we have implemented

a phenomenological failure criterion, where exceeding
a prescribed critical value is associated with material
failure.

We use a modified version of the Cockcroft & Latham
criterion, which was originally presented in 1968; see [9].
In its original version, it depends on the macroscopic
equivalent plastic strain "p and the maximum positive
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Fig. 7 Cross-comparison of penetrated nodes and von Mises stresses for final solutions obtained with constant penalty pa-
rameters 500 and 50 000 as well as after increasing the penalty parameter from 500 to 50 000 with a finer mesh for a sample
sheet geometry with a parallel shaft width of 50 mm; quarter geometry; two finite elements in thickness direction, two MPI
ranks per core; computed on the JUWELS supercomputer [25].

principal stress �I at time tk, where the stress depends
on the overall macroscopic strain ✏(tk). It was success-
fully used in [56] for a DP800 grade of steel. Note that
the maximum principle stress is the maximum eigen-
value of the stress tensor, which can be represented by
a symmetric 3⇥ 3 matrix.

Since we use load stepping, the (pseudo-) time tk at
the end of load step k computes as accumulation over
all time increments up to load step k and, therefore, the
evaluation of all quantities at time tk is equivalent to
the evaluation at the end of load step k. Thus, we write
✏k and "pk instead of ✏(tk) and "p(tk), respectively. With
this notation, the original Cockcroft & Latham criterion

is defined as

fWk = fW ("(tk)) = fW ("pk) =

Z "pk

0
max (�I(✏k), 0) d"p;

see [9].
During the simulation, we compute the failure value

fW in each macroscopic integration point at the end
of each load step, i.e., after convergence. Subsequently,
we interpolate the failure values from the integration
points to the finite element nodes. With numerical in-
tegration, we obtain

fWk ⇡
kX

i=1

max (�I(✏i), 0) ·
�
"pi � "pi�1

�

= fWk�1 +max (�I(✏k), 0) · ("k � "k�1) ,
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i.e., the failure value fWk in a single integration point
is simply the accumulated sum over all load steps up
to load step k. The values fW0 as well as "p0 are set
to zero and ("k � "k�1) represents the increment in the
macroscopic equivalent plastic strain from load step k�
1 to load step k.

When the failure value exceeds a prescribed critical
value WC in at least one finite element node on the top
surface of the sample sheet, we assume that failure oc-
curs. Accordingly, the simulation has to continue until
this condition is fulfilled and the load step that is as-
sociated with material failure strongly depends on the
choice of the critical value WC .

Using the FE2 method, we do not have a consti-
tutive material law on the macroscopic level. Conse-
quently, we cannot use the macroscopic equivalent plas-
tic strain "p as suggested in the original Cockcroft &
Latham criterion. Instead, we replace the macroscopic
equivalent plastic strain "p by the volumetric average
"̃p = h"pi of the microscopic equivalent plastic strain "p,
which is denoted as modified Cockcroft & Latham

criterion. Accordingly, the modified failure value W k

computes as

W k = fW ("̃p) = W k�1 +max (�I(✏k), 0) · ("̃k � "̃k�1) .

As in the originally proposed Cockcroft & Latham cri-
terion (see [9]), we prescribe a critical value WC . As
mentioned before, the choice of the critical value is cru-
cial for the time at which failure is detected. Unfortu-
nately, to the best of our knowlege, there is no such
value provided in the literature for a DP600 grade of
steel. Moreover, we do not have experimental data to
calibrate WC by comparing our simulation results with
the experiment. Throughout this article, we have cho-
sen a critical value WC = 450 MPa. This is motivated
by the choice of WC = 590 � 610 MPa in [56], consid-
ering the original criterion, for a DP800 grade of steel
and the fact that a DP600 steel is less robust compared
to a DP800 steel.

4 Sample Sheet Geometries and Appropriate

Boundary Conditions

All necessary information regarding the Nakajima test
are collected in DIN EN ISO 12004-2:2008 [46], includ-
ing the description of the sample sheet geometries as
well as the specification of the rigid tools. The recom-
mended sample sheet geometries all have a central par-
allel shaft and an outer circular shape; see Figure 1 (top
left). On both sides of the central parallel shaft, there
is a circular section with a given radius, which is called
fillet radius; see also Figure 1 (top left). If the circular

section forms a quarter circle without intersecting the
outer circular boundary of the sample sheet, there is a
connection from the end of the quarter of the circle to
the outer circular boundary that is parallel to the shaft;
see Figure 1 (top left).

We consider sample sheet geometries with a length
of the parallel shaft of 25 mm and a fillet radius of
30 mm (see Figure 1 (top left)), which both fit to the
normed range in [46]. Moreover, the chosen specifica-
tions of the rigid tools also fit to the normed range in
[46]; see Figure 1 (middle). In addition to the recom-
mended sample sheet geometries with a central paral-
lel shaft, we also consider a completely circular sample
sheet. We choose Dirichlet boundary conditions for all
material points on the outer circle.

As mentioned before, the incorporation of the blank
holder and the die are necessary to rebuild the real test
conditions as good as possible, since these tools are re-
sponsible for the final shape of the sample sheet.

By integrating the blank holder and the die into
the simulation process, not only the number of contact
points increases, but also the number of possible con-
tact points grows, since, for example, material points
on the top surface of the sample sheet can come into
contact with a rigid tool (the die). Accordingly, the de-
termination of all contact points takes longer and the
problem becomes more complex, since more finite ele-
ment nodes add an additional contact term. In order
to keep the number of contact points as small as possi-
ble, we tested di↵erent strategies to incorporate blank
holder and die by prescribing a zero displacement in
some material points.

For sample sheet geometries with a comparably small
parallel shaft width as well as for the completely circu-
lar sample sheet, we fix all finite element nodes between
blank holder and die. This is associated with a blank
holder force that is high enough that material move-
ment between blank holder and die is prohibited. Of
course, in this case, it is su�cient to exclusively con-
sider the remaining part of the sample sheet and to
choose Dirichlet boundary conditions for all finite ele-
ment nodes on the outer circle of the remaining part.
This strategy works well for all sample sheet geome-
tries with a parallel shaft width of at least 90 mm as
well as for the completely circular specimen. For sample
sheet geometries with a wider parallel shaft and prohib-
ited material movement between blank holder and die,
the failure zone is located at the fillet radius. This phe-
nomenon is also described in [23] and it is related to the
prohibited material movement between blank holder
and die. As a result, we have to adapt the strategy
for all sample sheets with a shaft width of more than
90 mm. Otherwise, the simulation of the Nakajima test
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Fig. 8 Comparison of the distribution of
the value W of the modified Cockcroft &
Latham criterion (see Section 3) for an overall
tool movement of 29.303 mm with prescribed
zero displacement for di↵erent material points.
Computation using a quarter geometry of a
specimen with a width of 90 mm (see also Fig-
ure 1 (left)); two finite elements in thickness di-
rection; two MPI ranks per core. Left: Dirichlet
boundary conditions completely prohibit ma-
terial flow between the blank holder and the
die. Part of the specimen between the blank
holder and the die is in dark grey; computed
on magnitUDE. Right: The usage of adapted
boundary conditions enables material flow be-
tween the blank holder and the die in the cuto↵
area. Here, we have to simulate the part of the
specimen between the blank holder and the die;
computed on the JUWELS supercomputer. Im-
age from [59, Fig. 2.5]

would provide invalid results, since the position of the
failure zone may not deviate by more than 15 % of the
punch diameter from the center of the punch; see [46].

Following [23], material movement is now only pro-
hibited for all material points between blank holder
and die that have a distance of at most 50 mm to the
horizontal center line of the sample sheet. Accordingly,
material movement is allowed next to the fillet radius,
which results in failure zones along or close to the ver-
tical center line; see Figure 8.

Following to the specifications of the rigid tools (see
Figure 1 (middle)), for sample sheets with a parallel
shaft width of at most 90 mm as well as for the fully
circular specimen, we choose Dirichlet boundary con-
ditions for all material points p =

⇥
px, py, pz

⇤
withq

p2x + p2y = 65 mm. For sample sheet geometries with

wider parallel shaft widths, all material points withq
p2x + p2y = 86.5 mm belong to the Dirichlet boundary

and we prescribe a zero displacement for all material

points with
q
p2x + p2y � 65 mm and |py|  50 mm.

5 Symmetry Assumption

From a macroscopic point of view, under ideal condi-
tions, the experimental test setup of the Nakajima test
is perfectly symmetric. Accordingly, to save computing
time, we have decided to make use of the symmetric test
setup, i.e., using the quarter geometry, in most of our
simulations including the computation of a virtual FLD
(see [32,59]). Note that our SSRVE, however, does not
fulfill the same symmetry conditions; see the discussion
below.

For us, exploiting symmetry means to consider only
a quarter of the overall sample sheet and to rebuild the

complete solution by mirroring of the solution using
the quarter geometry. Continuity of the final solution
is guaranteed by additional partial Dirichlet boundary
conditions along the boundaries of the quarter geom-
etry that belong to the horizontal and vertical cen-
ter line of the overall sample sheet. Along the vertical
center line, displacement in x-direction is set to zero
(ux = 0). Similarly, the displacement in y-direction is
set to zero along the horizontal center line (uy = 0). By
mirroring the solution obtained for the quarter geome-
try, we also mirror the considered microstructure (see
Figure 9), which is represented by an SSRVE. In case of
an asymmetric structure of the SSRVE, i.e., the posi-
tion of the martensitic inclusions change by mirroring,
the overall solution violates the condition of a periodic
unit cell, since the martensitic inclusions are positioned
di↵erently for each quadrant. Consequently, the final
solution is only an approximation to the simulation of
the complete sample sheet, where the condition of a
periodic unit cell is satisfied.

For the derivation of a virtual FLD (see [32,59]), we
have simulated the Nakajima test for several di↵erent
sample sheet geometries using quarter geometries. As
expected, we have observed that the failure zone evolves
along the vertical center line for all sample sheet geome-
tries with a parallel shaft width of at least 90 mm. For
a parallel shaft width of 100 mm or more, the failure
zone does not evolve along the vertical center line but
parallel to it. If this happens, rebuilding the solution
by mirroring leads to the occurrence of a second fail-
ure zone (see [32, Fig. 3.5]). This is not consistent with
observations in experiments.

Due to the unexpected position of the failure zone
for sample sheet geometries with a shaft width of at
least 100 mm, we have performed some tests using full
geometries. More precisely, we have used di↵erent meshes
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Fig. 9 Left: Quarter geometry (light grey) of the overall sample sheet that is used for the simulations. Right: Microscopic
orientation change of an asymmetric SSRVE resulting from mirroring the solution using a quarter geometry to rebuild the
overall solution. The light grey quarter is the computational domain. Figure and caption from [59, Fig. 2.6]

of the full geometry of a sample sheet with a shaft width
of 100 mm. In order to not increase the overall number
of macroscopic finite elements compared to the simu-
lation using a quarter geometry, we have first tested a
very coarse mesh for the full geometry with one finite
element in thickness direction. During the simulation,
we observe the evolution of two di↵erent areas with lo-
calized e↵ects, which evolve parallel to the vertical cen-
ter line and are positioned symmetrically to it. After
a while, further localization only takes place in one of
these two areas (see Figure 10), which is in accordance
with reality. As a result, we obtain an o↵-centered fail-
ure zone, which somehow confirms the o↵-centered fail-
ure zone obtained from the simulations using quarter
geometries. However, to provide a better comparison,
we have also tested corresponding meshes obtained for
the full and the quarter geometry. Therefore, we con-
sider the discretization of the quarter geometry that
was used for the derivation of the virtual FLD (see
[32]) with one and two finite elements in thickness di-
rection. Since two finite elements in thickness direction
were used for the derivation of the virtual FLD, we al-
ready know that we obtain an o↵-centered failure zone
for the quarter geometry. This is also true if we con-
sider one finite element in thickness direction. As we
can see in Figure 12, the final results for the quarter
geometry with one and two finite elements in thickness
direction are quite similar. The only di↵erence is that
the punch can move about half a millimeter further for
one finite element in thickness direction. In contrast
to that, considering the full geometry with one finite
element in thickness direction, the critical value of 450
MPa is reached more than one millimeter earlier in com-
parison to both simulations using quarter geometries.
Moreover, as we can see in Figure 12, the final failure
zone evolves along the vertical center line. As we learn
from Figure 11, considering a quarter or a full geom-

etry only has a slight impact on the final evaluation
points defining the FLCs in the FLD. Although there
is a slight di↵erence, the resulting FLCs are nearly the
same.

6 Conclusion

Our software package FE2TI is a highly scalable im-
plementation of the computational homogenization ap-
proach FE2 based on PETSc. In the present work, we
have presented the extension of FE2TI to be able to per-
form simulations of the Nakajima test. It has been our
main goal to demonstrate that these simulations, which
also take into account the microstructure, can now be
used to obtain virtual forming limit diagrams (FLDs).
As an example, we have shown results for a DP600
grade of steel, where we used a J2 elasto-plasticity model
on the microscale. In all our simulations, we used PAR-
DISO as an RVE solver on the microscopic level. On the
macroscopic level, the choice of solver depends on the
size of the macroscopic problem. For small problems,
we also used PARDISO, and for larger problems, we
have implemented and applied an MPI-parallel BDDC
method. The main computational results in this article
were obtained using up to 15 000 cores on the JUWELS
supercomputer at JSC Jülich and 6 000 cores of the
magnitUDE supercomputer at Universität Duisburg-
Essen.

As a goal for future work, the FE2TI software pack-
age should be used to derive virtual FLDs of other types
of steel and the obtained results should be compared to
those obtained from experiments.

Acknowledgements We appreciate for the support by the
German Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Computing”
(SPPEXA,[32]), DFG project 230723766.
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Fig. 10 Evolution of the modified Cockcroft & Latham criterion for a coarse mesh of the full geometry of the complete sample
sheet with a parallel shaft width of 100 mm; one finite element in thickness direction; computed on magnitUDE.

Fig. 11 Impact of quarter (1 and 2 FE in thickness direction) and full geometries (1 FE in thickness direction) for a sample
sheet with a shaft width of 100 mm on the FLD and the FLC. For similar results without the focus on the di↵erent simulations
for a sample sheet with a shaft width of 100 mm; see [32, Fig. 12] and [59, Fig. 3.5]. Major and minor strains are derived with
the cross section method; see [46] and [59, Sec. 2.1 and 2.8].
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Quarter geometry
2 FE in thickness direction
Cov. dist. punch: 30.986 mm
Load step 785

Quarter geometry
1 FE in thickness direction
Cov. dist. punch: 31.382 mm
Load step 822

Full geometry
1 FE in thickness direction
Cov. dist. punch: 29.717 mm
Load step 1 090

Fig. 12 Comparison of the failure values W of the modified Cockcroft & Latham criterion for the simulation results imme-
diately after reaching the critical value W c = 450 MPa in finite element nodes on the top surface of the sample sheet. We
consider quarter geometries with one and two finite elements in thickness direction as well as the corresponding full geometry
of the complete sample sheet with one finite element in thickness direction for a sample sheet with a parallel shaft width of
100 mm. Di↵erent heights of the sample sheets results from di↵erent tool movements. Even if we present the upper left quarter
for the quarter geometry with two finite elements in thickness direction, we have computed the same quarter as mentioned in
Figure 9. All three simulations were performed on JUWELS [25], and we have used the NK-BDDC approach for the parallel
solution of the macroscopic problem for the simulation using the full geometry. Figure and caption from [59, Fig. 3.12].
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7 Appendix

Fig. 13 Comparison of final simulation results obtained with a constant penalty parameter of 50 000 and after increasing
the penalty parameter from 50 to 50 000. Top: Di↵erence in relevant data as well as minimum and maximum values of both
configurations; 50 000 (L) and 50 ! 50 000 (S). Bottom: Comparison of penetrated FE nodes as well as amount of penetration
for the final solutions obtained with a constant penalty parameter of 50 000 (bottom) and after increasing the penalty parameter
from 50 to 50 000 (top). Red dots show penetrated FE nodes and black dots represent FE nodes that are not penetrated but
are penetrated in the other solution; sample sheet geometry with a parallel shaft width of 50 mm; quarter goemetry; two finite
elements in thickness direction; two MPI ranks per core; computed on the JUWELS supercomputer.
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Fig. 14 Cross-comparison of penetrated nodes and von Mises stresses for final solutions obtained with constant penalty
parameters 50 and 50 000 as well as after increasing the penalty parameter from 50 to 50 000 for a sample sheet geometry
with a parallel shaft width of 50 mm; quarter goemetry; two finite elements in thickness direction; two MPI ranks per core;
computed on the JUWELS supercomputer.
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Fig. 15 Comparison of final simulation results obtained with a constant penalty parameter of 50 000 and after increasing
the penalty parameter from 5 000 to 50 000. Top: Di↵erence in relevant data as well as minimum and maximum values of
both configurations; 50 000 (L) and 5 000 ! 50 000 (S). Bottom: Comparison of penetrated FE nodes as well as amount of
penetration for the final solutions obtained with a constant penalty parameter of 50 000 (bottom) and after increasing the
penalty parameter from 5 000 to 50 000 (top). Red dots show penetrated FE nodes and black dots represent FE nodes that are
not penetrated but are penetrated in the other solution; sample sheet geometry with a parallel shaft width of 50 mm; quarter
goemetry; two finite elements in thickness direction; two MPI ranks per core; computed on the JUWELS supercomputer.
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Fig. 16 Cross-comparison of penetrated nodes and von Mises stresses for final solutions obtained with constant penalty
parameters 5 000 and 50 000 as well as after increasing the penalty parameter from 5 000 to 50 000 for a sample sheet geometry
with a parallel shaft width of 50 mm; quarter goemetry; two finite elements in thickness direction; two MPI ranks per core;
computed on the JUWELS supercomputer.
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Fig. 17 Comparison of final simulation results obtained with a constant penalty parameter of 50 000 and after increasing the
penalty parameter from 500 to 50 000 using a finer mesh. Top: Di↵erence in relevant data as well as minimum and maximum
values of both configurations; 50 000 (L) and 500 ! 50 000 (S). Bottom: Comparison of penetrated FE nodes as well as amount
of penetration for the final solutions obtained with a constant penalty parameter of 50 000 (bottom) and after increasing the
penalty parameter from 500 to 50 000 (top). Red dots show penetrated FE nodes and black dots represent FE nodes that are
not penetrated but are penetrated in the other solution; sample sheet geometry with a parallel shaft width of 50 mm; quarter
goemetry; two finite elements in thickness direction; two MPI ranks per core; computed on the JUWELS supercomputer.
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