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Abstrat

Walking requires the �exible o-ordination of many degrees of freedom. Biomehanial

and nervous systems have to interat with the environment to ful�ll this hallenging

task. Due to the omplexity of interations, important questions, espeially regarding

the neural ontrol of walking, remain unanswered. Biologial models are promising tools

to integrate available data and to generate testable hypotheses, but they fae the problem

of a huge parameter spae. Therefore, this thesis ombines (neuro-)biologial models of

stik inset walking with the omplementary approah of evolutionary robotis.

On the one hand, extremely simple single-leg ontrollers are developed by arti�ial

evolution that exploit properties of the body and the environment. General priniples

of sensori-motor ouplings are disovered and the importane of hysteresis in neural

walking ontrol is demonstrated. On the other hand, neuro-biologial models of single-

leg stepping ontrol in stik insets are thoroughly tested under multiple perturbing

onditions in stik inset as well as in roboti models. Their robustness and behavioral

adaptability is demonstrated, suggesting that they are suitable to work as modules of

hexapod ontrollers. Subsequently, the impat of musles on a set of neural ontrol

strutures and behavior in roboti as well as in stik inset models is investigated using

a musle model derived from the stik inset extensor musle. Employing evolutionary

parameter optimization of neural ontrollers it is shown that musle properties redue

the requirement for neural intra-joint feedbak and that behaviors beome more robust

under perturbing onditions. Furthermore, it is demonstrated that diverse and simple

neural mehanisms may be used to ompensate for the slowness of musles observed in

stik insets. Finally, a modular approah to hexapod ontroller development is taken,

integrating the evolved and neuro-biologially inspired single-leg ontroller strutures

with additional sensori-motor ouplings. Coupling strutures are either derived from

behavioral based biologial data or by arti�ial evolution. Robust hexapod walking is

demonstrated for roboti and stik inset models with and without musle properties.

The results show that the integrative approah presented in this thesis allows to

develop robust ontrol mehanisms for walking mahines and to provide testable hy-

potheses about the neural basis of inter-leg oupling mehanisms.

Parts of this thesis have been published (s. page 161 for a list): von Twikel and

Pasemann (2007); von Twikel et al. (2011, 2012); von Twikel and Pasemann (2005,

2006); von Twikel et al. (2008a,b, 2011); Hülse et al. (2007); von Twikel et al. (2006);

Zahedi et al. (2008); von Twikel (2004).
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Zusammenfassung

Laufen erfordert die �exible Koordination zahlreiher Freiheitsgrade. Biomeha-

nishe Systeme und Nervensysteme müssen mit der Umgebung interagieren, um diese

anspruhsvolle Aufgabe zu erfüllen. Aufgrund der Komplexität der Interaktionen

bleiben wihtige Fragen unbeantwortet, insbesondere bezüglih der neuronalen Kon-

trolle des Laufens. Biologishe Modelle sind vielversprehende Werkzeuge, um verfüg-

bare Daten zu integrieren und überprüfbare Hypothesen zu generieren. Jedoh haben

sie das Problem eines riesigen Parameterraumes. Daher kombiniert diese Arbeit neuro-

biologishe Modelle des Laufens der Stabheushreke mit dem komplementären Ansatz

der evolutionären Robotik.

Einerseits werden mit Hilfe künstliher Evolution sehr einfahe Einbeinkontroller

entwikelt, die Eigenshaften des Körpers und der Umgebung ausnutzen. Allge-

meine Prinzipien der sensomotorishen Kopplung werden herausgearbeitet und die Be-

deutung von Hysteresee�ekten bei neuronaler Laufkontrolle wird demonstriert. An-

dererseits werden neurobiologishe Modelle von Einzelbein-Laufkontrollern bei Stab-

heushreken sowie bei Robotermodellen unter vershiedenartigen Störbedingungen

gründlih getestet. Ihre Robustheit und Verhaltensanpassungsfähigkeit wird demon-

striert, was ihre Eignung als Module von Sehsbeinkontrollern nahelegt. Anshlieÿend

wird die Auswirkung von Muskeln auf einen Satz neuronaler Kontrollerstrukturen und

auf das Verhalten, sowohl in der Robotik als auh bei Stabheushrekenmodellen, er-

forsht. Dies geshieht mit Hilfe eines Muskelmodells, das vom Extensor tibia Muskel

der Stabheushreke abgeleitet wurde. Unter Verwendung von evolutionärer Para-

meteroptimierung von neuronalen Kontrollern wird gezeigt, dass Muskeleigenshaften

die Anforderungen für eine neuronale Intra-Gelenk-Rükkopplung reduzieren und dass

das Verhalten unter Störbedingungen robuster wird. Weiterhin wird dargelegt, dass

diverse einfahe neuronale Mehanismen genutzt werden können, um die Tiefpass�l-

tereigenshaften der Muskeln, die bei Stabheushreken beobahtet werden, zu kompen-

sieren. Shlieÿlih wird ein modularer Ansatz zur Entwiklung von Sehsbeinkontrollern

genutzt, der evolvierte und neurobiologish inspirierte Einzelbeinkontrollerstrukturen

um weitere sensomotorishe Kopplungen ergänzt. Kopplungsstrukturen werden ent-

weder von verhaltensbasierten biologishen Daten oder mit Hilfe von künstliher Evolu-

tion abgeleitet. Robustes Sehsbeinlaufen wird für Robotermodelle und Stabheushrek-

enmodelle mit und ohne Muskeleigenshaften demonstriert.

Die Ergebnisse zeigen, dass der integrative Ansatz, der in dieser Arbeit dargelegt wird,

die Entwiklung robuster Kontrollmehanismen für Laufmashinen und die Generierung

überprüfbarer Hypothesen zur neuronalen Basis von Beinkopplungsmehanismen er-

laubt.
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Part I.Bakground and Approahes





1. Introdution

�The results [. . . ] suggest a di�erent metaphor: the nervous system is

one of a group of players engaged in jazz improvization, and the �nal

result emerges from the ontinued give and take between them. [. . . ]
As a onsequene, one annot assign redit for adaptive behavior to

any one piee of this oupled system.�

(Chiel and Beer (1997))

How does the brain work? How is robust behavior generated? Both questions are

intimately onneted with one another: The notion that nervous systems ontrol mo-

tor behaviors (p. Fig. 1.1A) suh as posture, loomotion and manipulation has been

replaed by a more omplex view. Aording to the view of embodiment and situat-

edness (p. Fig. 1.1B, Beer (2009); Nishikawa et al. (2007)) the nervous system may

only in�uene the operation of the body's atuators against its skeletal system, possibly

modifying its in�uene by sensory information. Motor behaviors are then sequenes

of e�ort (fore) and �ow (movement) ombinations between body and environment.

On moleular, morphologial and (neural) ontrol levels biologial motor systems are

highly modular, distributed and hierarhially organized (Büshges, 2005; Dassow and

Munro, 1999; d'Avella and Tresh, 2002; Flash and Hohner, 2005; He and Deem, 2010;

MGowan et al., 2010; Orlovsky et al., 1999; Redies and Puelles, 2001; Shmitz et al.,

2001). Ultimately motor behaviors emerge from a multitude of interations (or feedbak

loops) between multiple modules (Chiel et al., 2009; Hatsopoulos, 1996; Maturana and

Varela, 1992; Pfeifer and Bongard, 2006). To understand the system's performane,

a redutionist approah is thus not su�ient. This irreduibility neessitates a whole

systems approah, integrating knowledge of brain, body and environment. Suh an in-

tegrative approah poses non-trivial hallenges: Experimentally reording more than a

very limited subset of the system's omponents ativities under arti�ial � not to speak

of natural � onditions is extremely di�ult (Ritzmann and Büshges, 2007). Further-

more a formal analysis is ompliated by the numerous non-linear feedbak-loops within

the motor system.

Loomotion Loomotion is a behavior whih is very well suited for an integrative

approah: First of all it is a hallenging behavior to investigate in basi researh and

has important areas of appliation, namely robotis (Siiliano and Khatib, 2008) and

prosthetis (Herr and Kornbluh, 2004). For animals, loomotion primarily serves the

orientation �tness and, therefore, to approah resoures and avoid soures of stress

(Jander, 1975). Terrestrial animals have to move aross three dimensional and often

omplex strutured surfaes (Franklin, 1985; Grillner, 1981). In order to ful�ll this task,

3
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Figure 1.1.: A Nervous system entered view of motor behavior. B Motor behaviors are the result
of an (mehanial) energy exhange between an organism (or robot) and its environment. The energy
exhange is de�ned by the two onjugate variables �ow (movement) and e�ort (fore, torque). Body and
environment on the one hand and nervous system and body on the other hand are mutually oupled and
the interations between them determine the motor behaviors. The body may sense motor behaviors
via sensors and in�uene them via its atuators (�low level ontrol�). Atuators at either via a rigid
skeleton or via a soft skeleton whih is again (partly) on�gured by the atuators. The nervous system
annot diretly determine motor behaviors but rather in�uenes (ideally extends the apabilities of)
the body to modify the motor behavior (�high level ontrol�). Depending on the situation body and
environment onstrain or failitate the task of the nervous system. Figure modi�ed from Chiel and
Beer (1997). C Pragmati view of motor ontrol for omparability of nervous systems in simulated and
roboti models vs. biologial organisms: All properties of body and environment are represented by
a transfer funtion whih provides an interfae for the nervous system that may in�uene the ative
part but not the passive part. It outputs the motor behavior and feeds bak sensory information.
Cp. hapter 2 for a detailed disussion

the ontrol of loomotion in animals and robots has to be extremely �exible and adaptive,

in addition to the �basi� task of o-ordinating many degrees of freedom (DOFs).

Furthermore, loomotion is a behavior that is well aessible to the experimenter

(Alexander, 2002), whih is espeially important to orrelate neural and behavioral data

(Orlovsky et al., 1999). A huge number of studies on neural as well as on behavioral lo-

omotion ontrol exists for many speies. Over the last deades substantial progress has

been made in researh on walking mahine ontrol (Bekey, 2005) and neuro-biologial

ontrol mehanisms of walking in animals (Büshges et al., 2008; Orlovsky et al., 1999).

Current knowledge leads to the hypothesis that the organization of loomotion ontrol

systems is a key to understand the �exibility and adaptivity observed in animals. As de-

pited in Fig. 1.2 for the stik inset, loomotor systems have a modular and hierarhial

organization, on the neural as well as on the mehanial level (Orlovsky et al., 1999).

Nevertheless only two animal speies exist for whih the neural ontrol of single-leg

stepping was extensively investigated: the at (Büshges, 2005; Ekeberg and Pearson,

2005) and the stik inset (Büshges, 2005; Ekeberg et al., 2004). In both speies the

operational priniples underlying single-leg stepping ontrol show important similarities,

inluding the major importane of sensory signals for the transition between di�erent

walking phases (Pearson et al., 2006). In omparison with the at, knowledge about the

organization of the neural ontrol system in stik insets is advaned (Büshges et al.,

4
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Figure 1.2.: Loomotor systems, suh as walking stik insets, have a modular and hierarhial orga-
nization on neural and mehanial levels. A large number of feedbak loops onnets mehanial and
neural modules. Here the stik inset is depited as onsisting of six leg modules (L1�L3, R1�R3) whih
again onsist of three joint modules eah (α�γ). Partly adapted from Orlovsky et al. (1999)

2008). Therefore, the stik inset was hosen here as the biologial target organism.

Simulations Despite of this enormous progress in loomotion ontrol researh, knowl-

edge about the interation of sensori-motor loops in walking ontrol (on the neural level)

remains limited due to the system's omplexity ombined with limited experimental

tehniques and a lak of formal tools (see above). This beomes inreasingly obvious

when going from intra-joint to intra-leg to inter-leg oordination of movement. Already

in 1836 the brothers Wilhelm and Eduard Weber demonstrated the power of ombin-

ing detailed biologial data and numerial simulations by visualizing human walking

sequenes (Weber and Weber, 1836)1. This was even before experimental methods were

available to visualize human walking in this detail. Muybridge and Marey presented

their famous photographies of walking sequenes in humans and other animals in the

1870s (see e.g. Muybridge, 1967). Today, numerial simulations and roboti models have

beome invaluable tools in motor ontrol researh (Azevedo et al., 2007; Pearson et al.,

1Furthermore, the Weber brothers stated that it would be possible to derive general ontrol priniples
of human walking from simulation (Weber and Weber, 1836)

5



1. Introdution

Figure 1.3.: One of the �rst simulations and visualizations of human walking by the two brothers Wil-
helm and Eduard Weber. Table XV from Weber and Weber (1836)

2006; Srivens et al., 2008; Webb, 2009). Models of biologial loomotion ontrol exist

of e.g. stik insets (single legs: Cruse 1980; Shumm and Cruse 2006, and hexapods:

Beer et al. 1997; Cruse et al. 2007), okroahes (Beer et al., 1997; Pearson and Iles,

1973) and ats (Frigon and Rossignol, 2006; Maufroy et al., 2008; Pearson et al., 2006;

Yakovenko et al., 2004, usually restrited to two legs), lampreys (Grillner, 2006) and

salamanders (Ijspeert et al., 2007). Simulation studies allow to: 1. Test if the olleted

data is su�ient to generate the behavior under study. 2. Systematially �play� with

parameters and alternative ontrol mehanisms to generate new hypotheses about meh-

anisms of sensori-motor ouplings. This will guide subsequent experimental researh. 3.

Derive new ontrol tehniques for walking mahines.

Evolutionary Robotis, Animats and Robots In ontrast to �wet� experiments, sim-

ulations allow to aess all parameters during an experiment (or simulation run). But

even seemingly simple walking simulators have a huge parameter spae, onsidering neu-

ral, mehanial and environmental subsystems. Tuning parameters by hand, possibly

aording to available biologial data, is time onsuming. Furthermore, it introdues a

subjetive bias in form of the experimenter. In this ontext a promising approah to

e�iently explore parameter spae and to redue the experimenters bias2 is the arti�ial

life approah to evolutionary robotis (Beer, 2009; Bongard, 2011; Nol� and Floreano,

2000; von Twikel and Pasemann, 2007). Often extremely simpli�ed arti�ial agents,

termed animats, are employed to investigate general ontrol problems like loomotion

(Beer, 1990; Dean, 1998; Meyer, 1995; Webb, 2009). Arti�ial evolution studies, ranging

2Preoneptions may of ourse only be redued but not ompletely eliminated, beause in one form or
another the experimenter seletively puts knowledge into the simulation (p. Wishmann, 2008, for
a detailed disussion).

6



from very abstrat (p. e.g. Beer, 2003) to biologial grounded ones (p. e.g. Izquierdo

and Lokery, 2010) have provided testable hypotheses to biology. Furthermore, they

have shown how omplex behavioral tasks may be solved by rather simple neural net-

works when taking into aount properties of body and environment. To verify that

simulation results are not due to simulation artifats, a transfer of the results to an

atual robot were suggested:

�[...℄ the experiments with an atual robot ensure that an essene of reality

is maintained and that no ritial disabling problems have been ignored�

(Brooks, 1989, p. 1)

Thus, many of the above mentioned bio-inspired ontrollers were developed to be de-

ployed on a physial walking mahine (e.g. Beer et al., 1997; Ijspeert et al., 2007; Maufroy

et al., 2008), using the biorobotis approah (Beer et al., 1998; Webb, 2002).

Funtional and Morphologial Modeling Approahes to Stik inset Loomotion

Control Two basi approahes are used to derive walking ontrollers from biologial

data aording to Cruse et al. (2007), the �funtional� and the �morphologial� approah:

The �funtional�, or behavior-based, approah builds up ontrollers with the primary

goal to math behavioral data, not fousing on diret orrelations with the neural and

bio-mehanial substrate of the stik inset. The latter approah builds up on long

history of researh (p. e.g. Bässler, 1983; Buddenbrok, 1921; Wendler, 1966) and has

been pursued by Cruse and oworkers over the last two deades resulting in multiple

iterations of the WALKNET ontroller (see e.g. Cruse et al., 2004, 2007; Dürr, 2001;

Kindermann, 2002; Shumm and Cruse, 2006). WALKNET desribes, to an extent un-

mathed by other approahes, the behavioral repertoire of the six-legged stik inset.

Espeially the inter-leg oordination rules derived from behavioral data (�Cruse rules�,

see Cruse (1990)) have been very in�uential. These rules were quanti�ed in di�erent

behavioral ontexts (Dürr, 2005) and intensively tested in simulations and on robots

(e.g. Calvitti and Beer, 2000; Dürr et al., 2004). As a priniple problem of the fun-

tional approah the orrelation of model ontroller struture with biologial ontroller

struture is di�ult. From a theoretial point of view (Negrello et al., 2008) one and the

same funtionality may be produed by an arbitrary number of ontrol strutures and

therefore WALKNET is only one of many possible ontroller strutures able to produe

the stik inset behavior.

The �morphologial�, or neuro-biologially based approah, as e.g. taken in Ekeberg

et al. (2004) for the single-leg of a stik inset, inrementally builds up a ontroller from

available neuro-biologial data and information about the bio-mehanial system. Sub-

sequently it ompares its behavior with that of the natural ounterpart. This approah

naturally allows to orrelate biologial and model ontroller struture. Additionally, re-

ent data on neural inter-leg oordination from walking stik insets (Borgmann et al.,

2007, 2009; Ludwar et al., 2005) is available. It does neither diretly support nor rejet

the Cruse rules.

Thus, a ombination of both, funtional and morphologial, approahes is employed

here to advane the understanding of neural inter-leg oupling. In this ontext, the single
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Figure 1.4.: Summary of rules given in Ekeberg et al. (2004) for eah of the three main joints (joint axes
are shown as solid blak lines) of forward walking middle-legs: 1. State transition (timing) rules in joint
ontrollers (boxes with solid outline), 2. Two types of magnitude ontrol rules exist a. rules applying to
one joint state (ellipse with solid outline) and b. rules that always apply (boxes with dashed outline).
In brakets sensor signals used are given. Multiple onditions are onneted via Boolean AND and OR.
In ase of on�iting state transition rules those marked with a * have priority. Optional onditions are
shown with a gray bakground. Abbreviations: Protration (Pro), Retration (Ret), Levation (Lev),
Depression (Dep), Flexion (Flx) and Extension (Ext). The name of eah joint angle is given in Greek
letters in brakets after the joint name

leg stik inset ontroller model based on neural data (�Ekeberg ontroller�, see Ekeberg

et al., 2004) is promising to serve as a link between behavioral based hexapod ontrollers

(�funtional� approah) and neuro-biologial �ndings of single leg ontrol mehanisms

and inter-leg oupling in�uenes (�morphologial� approah).

Neuro-Biologially Derived Single-Leg Controller The Ekeberg ontroller model (see

Fig. 1.4) is based on the following hypotheses: 1. Eah of the three main leg joints

Thorax-Coxa (ThC), Coxa-Trohanter (CTr) and Femur-Tibia (FTi) possesses its own

autonomous ontrol module, generating alternating ativity in the antagonisti motor

neuron pools via a bistable element (Bässler and Büshges, 1998). 2. Central on-

netions are not su�ient to generate stable phase to phase inter-joint oupling, rather

sensory signals an in�uene the generation of motor ativity in two ways: a. by diretly

induing transitions in the bistable elements (�timing in�uene�) and b. by modifying

the magnitude of the motor outputs (�magnitude in�uene�) (Bässler and Büshges,

1998).

As an example the CTr joint ontroller will be explained hereafter, for the remaining

two joints ThC and FTi please see Fig. 1.4. An in depth explanation, inluding event

sequene diagrams not shown here, and detailed referenes are given in Ekeberg et al.

(2004). The CTr joint ontroller may be in either of two states (levation or depression)

and sensory signals determine whih of the states is ative (�timing in�uene�). If on the
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one hand the femoral hordotonal organ (fCO) signal FTi-joint (γ) extension below 70◦,

depressor state is ativated. If on the other hand fCOs signal γ �exion above 120◦or if

TC-joint position (α) sensors signal advaned retration below -25◦or leg load sensors

signal dereased load, levation state is ativated. In ase of on�iting state transitions

the one from depression to levation is given priority (not expliitly mentioned in the

original publiation, personal ommuniation with authors). During depression phase

sensory signals have an additional magnitude in�uene on the motor outputs, resulting

in funtional body height ontrol: 1. CTr-joint position (β) is under negative feedbak

ontrol and 2. FTi-joint position (γ) has an in�uene on CTr-joint motor ativities suh

that body height hanges due to FTi movement are redued.

This neuro-biologially based model of single-leg ontrol was suessful in analyzing

the (neural) mehanisms that result in the generation of a step yle. However, some

issues ould not be resolved. E.g. the high movement veloities found in real stik insets

during the step yle ould not be reprodued. This was attributed to the simpli�ed

musle model employed (Ekeberg et al., 2004). Mehanisms of magnitude ontrol, suh

as the ontrol of walking veloity, or the ontroller's suitability as part of a hexapod

ontroller were expliitly not addressed.

Objetives and Outline of This Thesis As laid out above, already a large body of lit-

erature exists on the interplay of neural ontrol, body and environment in the generation

of walking behaviors, in biology as well as in robotis. This thesis spei�ally fouses

on the integration of (neuro-)biologially inspired models of stik inset loomotion and

the arti�ial life approah to evolutionary robotis � it has four main objetives:

• To investigate general priniples of sensori-motor ouplings in single-leg stepping

by employing the arti�ial life approah to evolutionary robotis.

• To investigate the mehanisms of magnitude ontrol in the neuro-biologially in-

spired single-leg ontroller presented by Ekeberg et al. (2004) (see above) in the

ontext of the ontroller's suitability to work as a module of a hexapod ontroller.

• To investigate the in�uene of a model of the stik inset extensor musle (Blümel

et al., 2011b; Gushlbauer et al., 2007) on the neural ontrol of stepping.

• To establish a framework in whih morphologial and funtional approahes to

stik inset loomotion modeling and the omplementary arti�ial life approah to

evolutionary robotis may be merged and ompared (p. Fig. 1.5) and to demon-

strate the framework's performane using the example of hexapod walking.

In hapter 2 the onstraints and opportunities imposed by body and environment

on (neural-)ontrol and motor behavior, in biology as well as in robotis, are disussed

in detail. This is a basi requirement to establish omparability and transferability of

neuro-ontrollers between (simulated) stik insets and robots.

Chapter 3 and 4 introdue the basi simulation tools and tehniques and estab-

lishes standardized interfaes for a ontroller transfer between simulated roboti and
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Figure 1.5.: A diret exhange of neural walking ontrollers between stik inset and robot is di�ult
beause of their di�erent onstraints. To alleviate this e�et, ontroller transfer and omparison was
done in 3 steps via two simulations with standardized ontrol interfaes

stik inset models: in hapter 3 the neural network model employed for all ontrollers

throughout this thesis is presented, examples of the modular implementation of neuro-

biologially inspired models are given and �nally arti�ial evolution is explained as a

tool to develop and optimize neural network ontrollers. Chapter 4 gives details of the

physial simulator, the implementation of the biologial and roboti models as well as

of the environmental senarios and, last but not least, the implementation of the stik

inset extensor musle model as a modular neural network.

In hapter 5 extremely simple evolved single-leg neuro-ontrollers, whih mainly rely

on re�ex-osillators formed by sensori-motor ouplings are presented. Their robust be-

havior under hanging environmental onditions is demonstrated. The ontrollers are

analyzed to derive elementary mehanisms of sensor-driven walking ontrol and the

results are disussed in detail in the ontext of biology.

Chapter 6 gives the results of a simulation study of the neuro-biologially inspired

single-leg stik inset ontroller initially presented by Ekeberg et al. (2004). It analyzes

the ontrollers performane under perturbing onditions, either driving a stik inset or a

roboti model, in omparison to available biologial data and shows possible mehanisms

of veloity ontrol. Finally, using support fore measurements, the single-leg ontroller's

suitability as a module of a hexapod ontroller is disussed.

In hapter 7 the onstraints and opportunities imposed by a stik inset extensor

musle model (Blümel et al., 2011b; Gushlbauer et al., 2007) on neural ontrol and

single-leg stepping behavior in roboti and stik inset models are investigated. On the

one hand, it is shown that the appliation of pairs of the musle model to all joints may

simplify neural ontrol, spei�ally by reduing the need for neural intra-joint feedbak,
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and make stepping behaviors more robust. On the other hand, multiple hypotheses on

neural ontrol mehanism that ompensate for the strong low-pass harateristis of the

musle's ativation funtion are tested.

Chapter 8 demonstrates the performane of the framework that was established in

the previous hapters by presenting evolved as well as bio-inspired hexapod ontrollers.

For the �rst time it is demonstrated, that the neuro-biologially inspired single-leg stik

inset ontroller, initially presented by Ekeberg et al. (2004), may be suessfully de-

ployed for hexapod walking. This is done by integrating it with the �Cruse� oupling

rules derived from behavioral experiments (Cruse, 1990). Furthermore the roles of leg

speialization and loal vs. global o-ordination are shown.

Finally in hapter 9 a general onlusion is presented and an outlook on future researh

in the ontext of this thesis is given.
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2. Constraints of Walking Control in

Biology and Robotis

�We have now to onsider the parts whih are useful to animals for

movement in plae (loomotion); �rst, why eah part is suh as it is

and to what end they possess them; and seond, the di�erenes

between these parts both in one and the same reature, and again by

omparison of the parts of reatures of di�erent speies with one

another. First then let us lay down how many questions we have to

onsider. �

(Aristotle: On the Gait of Animals, written 350 B.C.E, ited after

Aristotle (2007))

In order to ahieve omparability of (neural) ontrol systems in biologial systems and in

tehnial systems, as required by an integrated biorobotis approah, the input-output

behavior of the body-environment subsystems should in the ideal ase be statially and

dynamially equal. Sine this is di�ult to put into pratie it is ruial to reognize the

funtional onstraints and opportunities (Chiel and Beer, 1997) imposed by the body

and the environment on the ontrol system (p. Fig. 1.1C). As the smallest ommon

motor ontrol modules in biology and robotis, artiulated joints with only one degree

of freedom (DOF) already show all features of a motor system as depited in Fig. 1.1B.

Hereafter examples of onstraints and opportunities, ontrasting biology and robotis,

are disussed in the ontext of 1DOF artiulated joints.

2.1. Passive Properties

The passive mehanial system has self-stabilizing e�ets, reduing neessary ontrol

e�orts and providing stabilization with zero time delay (Blikhan et al., 2007; Kubow

and Full, 1999; Sponberg and Full, 2008). These e�ets are alled �pre�exes� (Loeb

et al., 1999) or �self-stability�(Blikhan et al., 2007).

Joint Geometry A single DOF rotatory joint will onstrain movements to rotations

around a ommon axis. The geometry of the joint, i.e. its axis orientation may have

signi�ant e�ets on the motor behavior and its ontrol omplexity. E.g. stik insets

possess a slanted rotation axis in the Thorax-Coxa joint (Cruse and Bartling, 1995) that

simpli�es stane ontrol by automatially performing a loading and unloading behavior

during a single retration of the joint, not requiring the ontrol of other joints. This

priniple has been transferred to walking mahines, e.g. the hexapod MAX (Pfei�er,
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2. Constraints of Walking Control in Biology and Robotis

2007). Similar priniples have been found in okroahes and transferred to robots

(Quinn et al., 2003). Soft bodied animals (see Benny's ontribution) and robots (Trivedi

et al., 2008) may use similar ontrol simpli�ations by on�guring appropriate joints.

Rotatory movements around a joint axis are usually further onstrained by stops at

either end that may have stabilizing e�ets and redue ontrol e�orts, e.g. in passive

(MGeer, 1990b) and ative walkers (Pratt and Pratt, 1999) (�knee loking�) and in

�apping-wing miro air vehiles (Wood, 2007).

Elastiity and Damping The viso-elasti properties of muso-skeletal systems in an-

imals (Ghatak et al., 2009) have a large in�uene on movement ontrol, depending on

the sale of the system: In small limbs like okroahes, rabs and stik insets they

produe su�ient fores relative to determine gravity independent resting posture in

the absene of neural ativations (Hooper et al., 2009; Yox et al., 1982) and to rejet

perturbations (Jindrih and Full, 2002). As another example passive fore allow a single

musle to ontrol a joint, as e.g. in the stik inset tarsus (Radnikow and Bässler, 1991).

Series elasti elements transmitting fore from the atuators to the skeleton extend the

funtional range of the atuators: They provide an overload protetion for the atuators

as well as a means to store mehanial energy (Roberts and Azizi, 2010), inrease power

output and inrease energy e�ieny (Biewener, 2003; Lihtwark and Barlay, 2010).

The relative importane of energy e�ieny vs. stability is disussed in the ontext of

limb size, suggesting a higher importane for elasti energy storage during yli loo-

motion in larger animals (Dudek and Full, 2006). On the other hand in small animals

like loust and mantis shrimp elasti energy storage in tendons and skeletal strutures

is exploited for jumping behaviors (Burrows, 2010; Heitler, 1974; Zak et al., 2009) and

similar mehanism have been implemented into robots (Kova et al., 2010). Elasti en-

ergy storage in larger limbs does play a less important role (Bobbert, 2001). Passive

damping seems to be also sale dependent, inreasing with dereasing limb size (Garia

et al., 2000). E.g. in okroahes it is hypothesized that legs have substantial damp-

ing properties that rejet perturbations and simplify ontrol (Dudek and Full, 2006).

E.g. in Zakotnik et al. (2006) it was demonstrated in an inset simulation how passive

joint damping allows for a (unloaded) feed-forward joint position ontrol as previously

observed in okroahes (Watson and Ritzmann, 1998). In larger limbs passive joint

damping was found to have a muh less important or even negligible role, as e.g. in

studies of human posture ontrol (Peterka, 2002) and hopping (Rapoport et al., 2003).

Passive Properties in Robotis In robotis passive joint properties are used to e.g.

suppress vibrations of feet during swing phase of bipedal walking (Seyfarth et al., 2009)

or to absorb perturbations in small hexapod robots (Koditshek et al., 2004; Sang-

bae Kim and Cutkosky, 2004). In larger robots (Raibert et al., 2008) the strategy

of �proximal atuation and distal ompliane and energy dissipation�, as found in goats

(Lee et al., 2008), is used to soften interations with irregular environments. An extreme

example of the exploitation of passive (joint) properties are passive walkers that produe

walking behaviors without any ontrol and by only using gravitational energy (MGeer,
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2.2. Ative Properties

1990a). Gravitational energy may be replaed by low-power atuators and simple on-

trol shemes, resulting in minimal energy walking devies on level ground (Collins et al.,

2005). One passive property that is exploited in suh systems is the resonane frequeny

resulting from the systems natural frequeny and its damping. Controllers may entrain

(or tune) to the mehanial resonane frequeny via feedbak strutures (Futakata and

Iwasaki, 2008; Hatsopoulos, 1996; Iwasaki and Zheng, 2006; Taga, 1995). In ontrast

robots using traditional ontrol shemes like joint angle ontrol are assumed to be muh

less energy e�ient, e.g. with saling e�ets removed the Honda humanoid Asimo (Hi-

rose and Ogawa, 2007) is estimated to use at least 10 times the energy of a human

(Collins et al., 2005). Williams and DeWeerth (2007) found a greater resonane tuning

range for less damped systems, suggesting a sale dependeny of resonane tuning.

Saling As already indiated above sale dependeny of passive properties imposes

severe onstraints on motor behaviors and its (neural) ontrol (Biewener, 2005; Ritzmann

et al., 2004), some argue that limb size has a larger e�et on the (neural) ontrol strategy

than the organisms evolutionary history, giving the following example (Hooper et al.,

2009): In small animals the in�uene of gravitational fores due to limb inertia is small

ompared to elasti and fritional joint fores whereas in larger animals the opposite

is true. Therefore in larger animals, and robots like passive walkers, ballisti limb

movements are possible and motor neuron ativity is only required during aeleration

and deeleration phases. This e�et of saling on passive fores is espeially important

to keep in mind when building roboti models to investigate motor ontrol in animals:

E.g. roboti models of small insets like stik insets and okroahes are often, due to

tehnial and �nanial reasons, saled up by fators of 1000 or larger (Dillmann et al.,

2007; Pfei�er, 2007; Quinn et al., 2003; Spenneberg and Kirhner, 2007). To some extent

the appliation of a non-dimensional analysis using riteria of geometri and dynami

similarities (Alexander, 1989) may improve omparability despite di�erenes in sale.

2.2. Ative Properties

Despite the opportunities o�ered by passive mehanial properties in motor systems

they do not su�e to explain many motor behaviors in animals and to equip robots with

desired apabilities, e.g. ative fores in human postural ontrol were found to be 10

times larger than passive fores (Peterka, 2002), variable-damping knee prostheses were

found to o�er advantages over mehanially passive designs (Johansson et al., 2005) and

behavioral apabilities of passive walkers are too limited as to be of pratial use (Pratt

and Pratt, 1999; Vanderborght, 2011). What is added to the robustness and versatility

of motor systems by ative omponents? What an be ontrolled by ative systems and

how? As depited in Fig. 1.1B motor behaviors at a joint may be desribed by a power

exhange between body and environment (plus heat dissipation) and are determined

by the two onjugate variables �ow (movement) and e�ort (fore). Neither body nor

environment may determine both variables at the same time (Hogan, 1985; Pons, 2005)

and this is the basis of the notion of situatedness. Therefore an ative motor system may
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2. Constraints of Walking Control in Biology and Robotis

ontrol either the �ow (position, veloity, ...), the e�ort (fore, fore hange, ...) or a

relation between the two. The latter takes into aount the dynami interation between

body and environment and is therefore essential in motor ontrol (Hogan, 1985). Suh

relations are either admittanes (ratio of �ow to e�ort) or impedanes (ratio of e�ort to

�ow). Partiular impedanes are e.g. sti�ness (spei� ratio of fore to deviation from

an equilibrium position) or damping (e.g. spei� ratio of fore to veloity) (Levine,

1996). How is impedane ontrol realized in biologial and roboti systems and how is

it onstrained?

Atuators Fore produing elements or atuators in the ontext of motor behavior are

transduers whih transform energy from one form of energy to mehanial energy or the

other way around (Pons, 2005). In biology musles use hemial input energy whereas

roboti atuators mostly, but not exlusively, use eletri energy as input. Atuators

impose strong onstraints on motor ontrol beause of their non-linear stati and dy-

nami properties under passive and ative onditions. Biologial atuators do onstrain

motor behavior (Brezina and Weiss, 2000) but are shown to simplify the ontrol de-

mands on the neural ontrol system (Buehrmann and Paolo, 2006; Hof, 2003) and make

motor behaviors more robust (Gerritsen et al., 1998). Atuators are a�eted by external

load showing a dynami damping, in musles this is the expressed by the fore-veloity

relationship (Hill, 1938). Low-pass �lter properties due to the load dependene may

even be enhaned by the atuators ativation dynamis: E.g. in the extensor tibiae

musle of the stik inset middle leg ontration time onstants are extremely slow in

a range from 200-700ms and asymmetri to the relaxation time onstants in the range

from 20-150ms (Hooper et al., 2007). The relaxation time onstants in arthropods may

be further redued by an inhibitory input. In an antagonisti on�guration the low-pass

properties may lead to o-ontrations without o-ativations (Zakotnik et al., 2006).

On the other hand extremely fast musles with weaker low-pass properties have been

found in animals, in sound-prodution of insets up to 550Hz and in weight bearing lo-

omotion up to 110Hz (Wu et al., 2010). Together the low pass �lter properties result in

a limited bandwidth, i.e. limited maximum osillation frequeny, and redued frequeny

for optimal power output (Neptune and Kautz, 2001) of the atuators. At the same time

they smoothen swithed and noisy ontrol input signals as e.g. the summation of single

spikes in biologial systems (Hooper et al., 2007). More generally musles may at as

�lters expressing only spei� patterns from their inputs (Morris et al., 2000). Addi-

tionally to the stabilizing non-linear veloity damping (Haeu�e et al., 2010) biologial

musle have a non-linear fore-length dependene (Rassier et al., 1999) whih on the one

hand limits maximum fore prodution in ertain length ranges but on the other hand

stabilizes the musles working range during osillatory movements. Depending on the

behavioral ontext and their ativation musles may at as motors, brakes, springs and

struts (Dikinson et al., 2000): Whereas the roles as motors and struts (p. also soft-

bodied animals, Benny) are rather obvious the roles as adaptive brakes and as springs

are less intuitive: Ative musles have the property of produing greater fores during

lengthening than during shortening. Hereby they absorb mehanial energy whih is
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2.2. Ative Properties

either diretly dissipated as heat or stored in elasti strutures of musle and tendon

and may be reovered in a ontext dependent time interval (Lindstedt et al., 2001). A-

tive ontrol of damping, despite the loss of energy, is a very important feature of motor

systems (Blikhan et al., 2007; Dudek and Full, 2006; Wakeling et al., 2003).

In traditional engineering atuators with a high impedane, i.e. ahieving maximal

power output at high speeds, like eletromagneti DC-motors are employed and non-

linearities are often undesired and (partly) ompensated for by integrated ontrollers

(Siiliano and Khatib, 2008). �Emerging atuator tehnologies� (Pons, 2005) whih

have properties more similar to biologial systems like a low impedane (Pratt, 2002)

and desired non-linearities have beome important researh targets with the inrease

in bio-mimeti and espeially humanoid robots. Two examples will be given hereafter:

Hydrauli and pneumati atuators have a high power to weight ratio and may display

stati properties like the fore-length relation similar to musles but dynami properties

(e.g. fore-veloity urve) di�er substantially (Klute et al., 2002). By adding serial and

parallel strutures biologial properties may be approximated muh better but disad-

vantages suh as a noisy operation and the required hydrauli pump remain (Herr and

Kornbluh, 2004; Klute et al., 2002). Multiple robots employ this tehnology (Raibert

et al., 2008; Vanderborght, 2011) but autonomous operation is restrited to larger ma-

hines, e.g. being equipped with a ombustion engine to power the pump (Raibert et al.,

2008). Arti�ial musles that are polymer-based like biologial musles have features

most similar to the natural ounterpart (details overing the di�erent types may be

found in Bar-Cohen, 2004; Herr and Kornbluh, 2004; Pons, 2005): They may have a low

impedane like natural musles, they an absorb (reusable) energy, they an exeed the

power of musles and they may be manufatured in dimensions similar to natural mus-

les. As a disadvantage they are di�usion limited making saled up versions tehnially

di�ult. So far they have only been employed in experimental roboti prototypes.

Fore Transmission Atuator fores have to be transmitted to the skeleton to in�u-

ene motor behaviors. Usually fore transmission involves impedane mathing between

atuator and plant, i.e. body and environment, via varying transmission ratios (Bennet-

Clark, 1995; Farahat and Herr, 2010; Hogan, 1985; Pons, 2005; Pratt, 2002). In biology

this is predominantly done via series elasti tendons that attah at the skeleton with

spei� lever arms but additional serial and parallel tissue linkages suggest that musles

annot be viewed as independent atuators (Maas and Sanderok, 2010). A ontribut-

ing fator to impedane mathing in some biologial musles is their funtion as an

automatially varying gear (Azizi et al., 2008). Furthermore fore transmission by ten-

dons allows variations in atuator plaement relative to the joint, e.g. to plae atuators

more proximal to the body. In robots using eletromagneti DC-motors gearboxes with

high transmission ratios are usually required to ahieve impedane mathing (Campolo,

2010; Pons, 2005). Compared to the biologial ounterpart these tehnial transmission

devies may have, depending on the gear type, quality and transmission ratio, several

disadvantages suh as lower e�ieny, high sti�ness, high-re�eted inertia, poor bak-

drivability and baklash. Partly these e�ets are ompensated for by ative ontrol
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2. Constraints of Walking Control in Biology and Robotis

(Albu-Shä�er et al., 2007; Mei et al., 2004; Nef and Lum, 2009). It is argued that for

robots to mimi their biologial ounterparts performane they require low impedane

atuators (Pratt, 2002) and if possible with ontrollable impedane (Herr and Kornbluh,

2004). Furthermore an optimized joint sti�ness has favorable e�ets on energy onsump-

tion (Sheint et al., 2008). Many bio-inspired robots employ fore transmission strategies

similar to biology, e.g. tendon-like strutures or other series-elasti elements (Nakanishi

et al., 2007; Pratt and Krupp, 2004; Seyfarth et al., 2009; Suzuki and Ihikawa, 2004).

Atuator Con�guration and Impedane Control Atuator on�guration of single

joints vary depending on the organism/robot and its funtionality: From zero (pas-

sive) to a high number of atuators (over-atuated) with diverse properties are found.

Traditionally and most ommon in robotis is one reversible (double-ating) atuator

per joint (Siiliano and Khatib, 2008). In ontrast animals employ musles whih may

only develop fore in one diretion (single-ating) and ahieve reversible atuation via

an antagonisti arrangement of atuators. In ontrast to a single reversible atuator an-

tagonisti shemes allow o-ontration of atuators and therefore feed-forward sti�ness

ontrol with zero time delay (Loeb et al., 1999) independent of position and generally

for an inreased joint sti�ness (Lee et al., 2006). Sti�ness ontrol is e.g. important to

allow for a similar loomotion on di�erent surfaes (Farley et al., 1998). Further ad-

vantages of o-ontrations inlude an inrease of the joints dynami range (Zakotnik

et al., 2006), a failitation of rapid torque rise (Yeadon et al., 2010), inreased bandwidth

(Verdaasdonk et al., 2007), inreased robustness to perturbations (Gribble and Ostry,

1999) and inreased movement auray (Gribble et al., 2003; Missenard et al., 2008).

Co-ontration has the disadvantage of inreased energy onsumption (Winter, 2009),

therefore it is argued that it should be avoided (Cruse, 2002), but others (Koditshek

et al., 2004) argue that energy management with respet to perturbations may be as im-

portant as with respet to energy minimization. Even more than a pair of antagonisti

musles at a joint might have funtional advantages, e.g. two extensors at the oxa-

femur joint of okroahes were found to serve di�erent roles during the same movement

yle, namely that of motor and brake (Ahn and Full, 2002).

In robotis sti�ness ontrol is traditionally ahieved via proportional feedbak on-

trol of reversible atuators (Espenshied et al., 1996). A major disadvantages usually

is the low bandwidth due to ontroller delays, mehanial time onstants of the atu-

ators and baklash e�ets of the gears, leading, amongst others, to delayed reations

to unexpeted disturbanes. These disadvantages may be partly overome by high-

frequeny ontrollers in ombination with preise (and ostly) sensors and atuators

(Albu-Shä�er et al., 2007). Together with new atuator tehnologies (Klute et al., 2002;

Pons, 2005) antagonisti joint atuation shemes in robotis reently reeived inreased

attention (Grebenstein and van der Smagt, 2008; Martinez-Villalpando and Herr, 2009;

Siiliano and Khatib, 2008; Vanderborght, 2011). These shemes only work well with

bak-drivable atuators (Siiliano and Khatib, 2008) and require a nonlinear (quadrati)

transmission sti�ness to allow for an independent ontrol of sti�ness and equilibrium po-

sition (Bihi and Tonietti, 2002; English and Russell, 1999; Thorson et al., 2007). Due
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to reversibility of robotis atuators alternative atuator arrangements are employed,

e.g. separating atuators that ontrol position and sti�ness (English and Russell, 1999;

Ham et al., 2007; Siiliano and Khatib, 2008) or separating �ne-positioning and fast and

strong atuators (Klug et al., 2005). These alternative atuator arrangements may be

advantageous with respet to energy onsumption (La�ranhi et al., 2009; Vanderborght

et al., 2009).

2.3. Control Interfae

(Neural) motor ontrol systems are onstrained by the ontrol interfae to biomehanis

parts of the motor systems: 1. By how di�erent atuators and features thereof may

be independently ontrolled. 2. By whih sensory information is available. The �rst

question should be: How is the interfae of the ontroller de�ned? E.g. in robotis a

very ommonly used atuator module is a servo-motor. A servo motor inludes an angle

sensor and possible further sensors but often only has one input hannel, the desired

position, and no output hannel. Internally a ontroller generates motor ommands from

the externally supplied desired position and the internal sensor input. So the ontroller

interfae ould be the desired position input or as the internal sensor outputs and motor

ommands.

Control interfaes of artiulated joints in biology and robotis espeially di�er in the

sheer number of in- and output hannels (Ritzmann et al., 2000): In extreme ases
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2. Constraints of Walking Control in Biology and Robotis

artiulated joints in robots only possess one motor input hannel and no sensor output

hannels as desribed above. In ontrast in biology the number of sensor output and

motor input hannels per joint is usually high resulting in redundant sensor information.

In many ases the spei� role of eah sensor output and motor input remains unlear

as is e.g. the ase for the joint angle sense in hands of humans (Johnson, 2004).

The high number of hannels in biologial motor ontrol systems is illustrated by

human tibialis anterior musle, as one of multiple musles driving the foot ankle joint,

whih was approximated to have 200 (exitatory) motor units (Xiong et al., 2008). In

the same joint musular- and tendon-sensors ode for fores and position as well as their

derivatives (Duysens et al., 2000; Kavounoudias et al., 2001). In the Femur-Tibia joint of

the stik inset the extensor tibiae musle is innervated by only three motor neurons, two

exitatory and one inhibitory one (Bässler, 1993), and its antagonist �exor tibiae musle

by at least 14 (Bässler, 1993) and up to 27 (Goldammer et al., 2007) exitatory motor

neurons and 2 inhibitory motor neurons (Debrodt and Bässler, 1990). These numbers

do not take into aount extra atuator ontrol hannels that are provided by neuro-

modulation in arthropods (Belanger, 2005; Hooper et al., 2007; Mentel et al., 2008).

Multiple sensor outputs exists for the same joint oding for the �ow and its derivatives,

i.e. position, veloity and aeleration and ombinations thereof, as well as for the

e�ort and its derivative (Bässler, 1993), i.e. fores and in some units spei�ally their

on- or o�sets (Zill et al., 2004). Biologial sensors are generally very speialized (Blitz

and Nusbaum, 2007). Derivatives of �ow and e�ort are often �alulated� mehanially.

Frequently sensors measuring the e�ets of a joints motor behavior are plaed more

proximal than the joint itself whih an be seen as an adaptation to limited transmission

speeds from sensors to ontrol modules. Transmission speeds are generally not an issue

in roboti systems.

In robotis on the other hand the sensory (and motor) equipment is generally muh

more restrited and muh less redundant. Mostly at least one (angular) position sensor

is used as part of a servo-motor unit, often an additional fore (or torque) sensor or

temperature sensors to signal overheating atuators. Often ommerially available sen-

sor modules are used whih are not spei�ally designed for the task. Derivatives of the

basi sensory qualities are usually derived omputationally, mostly in a entral ontrol

unit, sometimes loally as part of a sensor unit. E.g. one of the most advaned walking

mahines to date, the quadruped BigDog, has 50 sensors for 16 ative and 4 passive

DOFs, inluding not only joint proprioeptors but also internal state and exteroeptive

sensors (Raibert et al., 2008). On average this is just two and a half sensors per DOF.

Seondly the type of ontrol inputs di�er: In robotis reversible motor inputs are

ommon, i.e. with a single input signal the joint may be ommanded to move in ei-

ther diretion or to produe positive or negative torques (Siiliano and Khatib, 2008).

In biology motor inputs are single-ating but partly inhibitory ontrol inputs exist in

addition to exitatory ones.

The large di�erenes might be attenuated with the advane of emerging atuator

and sensor tehnologies. E.g. polymer based arti�ial musles are di�usion limited

like natural musles (Bar-Cohen, 2004). Therefore future developments might inlude a

high number of parallel arranged arti�ial musles per joint with a orresponding high
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number of input hannels.

2.4. Conlusion

Conentrating on 1DOF artiulated joints the importane of a whole systems view of

motor systems has been demonstrated. Constraints and opportunities of passive and

ative motor ontrol and ontrol interfaes have been demonstrated giving ontrasting

examples in biology and robotis. The examples ould only provide a glimpse of the

systems omplexity and perspetives thereon (Turvey and Fonsea, 2009), i.e. many

properties suh as fatigue e�ets, redundany, segmentation, inter-joint interations via

multiple re�exes, whole body movements and others have been left out. Nevertheless

they underline the importane of taking into aount the onstraints and opportuni-

ties provided by the motor systems, espeially when omparing biologial and roboti

systems, as done in the remainder of this thesis.

Last but not least motor behaviors and their ontrol are not only studied from the

perspetive of funtionality (how is behavior generated?) but also from the perspetive

how and why they have evolved (Clayton and Hen, 2005; Dumont and Robertson, 1986;

Katz and Harris-Warrik, 1999; Kavanau, 1990; Newomb and Katz, 2009; Rose, 2004;

Tierney, 1996). This view may give additional insight into the nature of onstraints and

opportunities in motor systems.
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3. Arti�ial Neural Networks as Walking

Controllers

�[. . . ] it involves the reiproation or vibration of the limb. Con�ning

ourselves to one leg, we an see that this swings bak and fore like a

pendulum, implying that there is a nervous arrangement, suh that

the ompleted movement forward sets on the ommening movement

bakward, and onversely.�

(Alexander Bain: The senses and the intellet, ited after Bain

(1855), p. 263)

Purely mehanial driven walkers like passive walkers (MGeer, 1990a; Wisse, 2004),

mehanial moving toys or art robots suh as the �strandbeast� (Jansen and Niemei-

jer, 2007) already show impressively robust loomotion behaviors, yet their behavioral

repertoire is limited when ompared to animals. Therefore, tehnial and biologial

walkers usually possess ontrol systems. These ontrol systems are operational losed

but beause they are struturally oupled with the (arti�ial) organism's body they

may extend its behavioral apabilities (p. Fig. 3.1 and Maturana and Varela, 1992).

Whereas animals usually employ neural ontrol systems, simulated and roboti walkers

may use a multitude of di�erent ontrol systems (see e.g. Levine, 1996; Siiliano and

Khatib, 2008, for an overview). These range from purely tehnial systems, like �nite-

state mahines, to arti�ial neural ontrol systems, whih mimi ertain properties of

the biologial ounterpart. Throughout this thesis exlusively simple arti�ial neural

networks were employed. This had several reasons: First of all arti�ial neural networks

fous on the onnetivity struture rather than on omplex properties of single elements

(Haykin, 1999). Arti�ial neural networks are well suited for evolutionary algorithms

(p. Nol� and Floreano, 2000, for details), as used in this thesis. Powerful omputational

tools to develop and analyze the arti�ial neural networks were available (Ghazi-Zahedi,

2008; Hülse et al., 2004).

This hapter gives an overview of the neural network's onstituting elements and its

onnetivity struture and modular arhiteture. Furthermore, examples of how neural

networks and neural modules were derived from neuro-biologial and behavioral data

are given that serve as a basis for the simulation experiments presented in part II.

Subsequently, the method of arti�ial evolution is introdued, whih allows to optimize

either the parameters of a given neural network struture or to develop novel network

strutures. Finally approahes to analyze suh networks are shortly explained.
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3. Arti�ial Neural Networks as Walking Controllers

Figure 3.1.: Nervous systems allow to extend the behavioral apabilities of an (arti�ial) organism.
Adapted from Maturana and Varela (1992)

3.1. Reurrent Neural Networks

3.1.1. Neuron Model

As depited in Fig. 3.2, all neurons of the neuro-ontrollers were of the simple additive

type with either the standard sigmoidal transfer funtion:

�1( x) = sigm( x) =
1

1 + e� x
; x 2 R : (3.1)

or the tanh sigmoidal transfer funtion

�2( x) = tanh( x) =
ex � e� x

ex + e� x
=

2

1 + e� 2x
� 1 ; x 2 R : (3.2)

Both transfer funtions are interhangeable by using the following formula (see Pase-

mann, 2002, for details):

sigm( x) =
tanh( x

2
) + 1

2
; x 2 R : (3.3)

Furthermore, both transfer funtions show an almost linear behavior around zero input

and both are stritly monotone and di�erentiable, whih is important for e.g. the

appliation of optimization algorithms.

Sensor neurons were an exeption beause they used the unbounded identity funtion

as transfer funtion. The disrete time dynamis of a reurrent neural network with m

neurons was given by

ok( t + 1 ) = �( �k +
m∑

i=1

w ki oi( t) ) ; k = 1 ;:::;m (3.4)

where ok is the output of neuron k, �k denotes a bias term, w ki is the synapse from i to

k and � is either tanh or sigm. Note that the disrete time dynamis inurred a �xed

sequene of updates whih here was an update of all neuron ativations (the weighted

sum of all inputs plus the bias) followed by an update of all neuron outputs. In turn

this meant for neural pathways that eah additional synapse entailed a time delay of

one time step. Network update was done either with 2 5 Hz or with 1 0 0 Hz, depending
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Figure 3.2.: Shema of the time disrete neuron model with a sigmoidal transfer funtion

on the simulation platform (p. hapter 4 for details).

Whih of the two presented transfer funtions is used is, to a large extend, up to the

experimenter. On the one hand, the tanh funtion has an output range of ] � 1;1[ and
this might e.g. be oneptually simpler to use for the motor neurons of wheel driven

robots where a negative output ould orrespond to bakward drive, a positive output

to forward drive and an output of zero to a stop. For further possible advantages of

the tanh funtion, suh as hardware implementation details, p. Hild (2008). On the

other hand, the standard sigmoid is oneptually simpler to ompare with biologially

neurons, beause its outputs are in the range of ]0;1[ and, therefore, never negative.

As a result, the output of a neuron with a standard sigmoid may be simply suppressed

by a large negative input, whereas for the tanh a more omplex neural struture is

neessary to ahieve the same. Alternatively, outputs of the tanh funtion may simply

be reinterpreted as ranging from minimum to maximum �ring rate, irrespetive of their

sign, or the other way around for the standard sigmoid. Here, tanh was used for the

simple roboti simulator AMOS (p. setion 4.2.1), beause the hardware target platform

supported it. On the other platforms the standard sigmoid was used due to its better

omparability with biology (see above).

The standard additive time disrete neuron with a sigmoid transfer funtion is far from

a realisti, or biophysial, model of biologial neurons (p. Feng, 2004; Haykin, 1999;

Izhikevih, 2007, for details), but they share some interesting properties: the bounds of

the nonlinear transfer funtions an be interpreted as an analog of the bounded �ring rate

of biologial neurons and the ativation funtion an be interpreted as the summation

of synapti input at the dendrites and soma level in biologial neurons. Additionally,

the simple neuron model was employed here beause of its omputationally e�ieny,

its rih dynamis when oupled with other simple neurons (see below), and its good

analyzability.

The Integrated Struture Evolution Environment (ISEE) software pakage (Ghazi-

Zahedi, 2008) was used to simulate neural networks (NN). It allowed to perform online

struture and parameter manipulation, plotting and logging to relate struture and

parameter hanges to hanges in behavior.
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3.1.2. Modular Reurrent and Feed-Forward Networks

Multiple simple neural units may be oupled to form a neural network (p. Fig. 3.3).

Usually suh a network possesses an input layer with sensor neurons, a hidden layer

with hidden neurons and an output layer with motor neurons. If all neurons are stritly

ordered in layers and onnetions only our uni-diretional from input layer to output

via the hidden layers, the network has a feed-forward arhiteture. If loops are found

within a neural network it is alled reurrent. But note that even feed-forward networks

may have feedbak loops, i.e. sensori-motor ouplings through body and environment.

Neurons may be grouped into modules, whereby a module is e.g. de�ned with respet

to onnetivity or funtion. Neural modules may possess dediated interfaed through

whih they interat with other neurons and neural modules.

Already small reurrent networks of this type may generate omplex dynamis (Pase-

mann, 2002), e.g. two-neuron networks may show �xed-point, periodi, quasi-periodi

and haoti behaviors. No restritions were imposed on the struture of the network,

therefore arbitrary reurrent onnetions and an arbitrary number of inter-neurons were

allowed. The neuro-ontrollers were developed either by hand-design or by arti�ial

evolution (see below).

3.1.3. Simulator Net Coupling

The network output have to be oupled to the bodies motor system, i.e. DC-motors

or musles, and the network inputs to the bodies sensor system, e.g. joint angle and

foot ontat sensors (p. Fig. 3.4). To map the output spae of the bodies sensors to

the input spae of the sensor neurons and the output spae of the motor neurons to the

input spae of the motor or musles, a linear mapping funtion was applied. Also note

that network frequeny and sensor and motor update frequenies ould di�er, e.g. in the

stik inset simulator only every fourth step of the sensor and motor update data was
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Figure 3.4.: Shematis depiting the oupling between the sensor and motor neurons of the neural
network on the one side and sensors and motors of the body on the other side. The sensori-motor
equipment, and therefore the number of in- and outputs of the neural network ontroller, depended
on the simulator platform and the experiment, please see hapter 4 for details. To develop network
strutures that result in an e�ient overall behavior of neural network and body when interating with
the environment is a major goal of this thesis

exhanged with the neural network. For details of the mapping intervals and update

frequenies for the di�erent platforms, please see hapter 4.

3.2. Deriving Neural Networks from Neuro-Biologial Data

Based on Ekeberg et al. (2004) the rule based ontroller (see Fig. 1.4) was implemented

as a modular neural network, using the standard sigmoid as transfer funtion. The

network update frequeny was �xed to 100Hz. Required neuro-modules are desribed

in detail hereafter together with the implementation proess that resulted in the �nal

neuro-ontrollers.

3.2.1. Neuro-Modules as Funtional Units

Boolean AND and OR Approximators Neural approximations of Boolean AND and

OR funtions were required to map the rule dependenies for state transitions derived

from neuro-biologial data. As an e.g. be seen in Fig.1.4 the transition from Extensor

to Flexor state in the FTi joint required two onditions (inrease in load and FTi joint

extension) to be true at the same time, i.e. they were AND onneted. The simplest

neural implementation onsisted of one neuron with two inputs. The underlying meh-

anism was the same as that of the threshold module variant 1 (see above), exept that

the threshold was applied to the sum of the two inputs. Varying the ratio of the bias

to the input weights shifted the separation plane. Varying the absolute weights and the

bias modi�ed the sharpness of separation. Those two parameter sets that were used in
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this paper and that resulted in AND and OR behavior are given in Fig. 3.5. Note that

synapti input weights of both modules were not equal - this was due to the synapti

weight and bias value range limitations of the robot platform.

Position and Veloity Servo Module (Comparator) In the original model a servo-

mehanism was found in the CTr joint as height ontroller and in the FTi joint as veloity

ontroller. Throughout this work servo-mehanisms (see Fig. 3.6) were also employed for

all forward walking ontrollers in the ThC joint and to �xate the ThC joint during the

sidewards walking experiments. A simple servo-ontroller ould be realized with a single

neuron ating as a omparator omparing a referene (angular) position α as input and

the desired position as bias. By saling input weight and bias and/or the output weight

the loop ampli�ation ould be adjusted. Due to time-delays and noise on sensors and

atuators higher ampli�ation fators led to instabilities. Instead of PID-ontrollers the

angular veloity ! of angle α ould be used as an additional input to the omparator for
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Figure 3.7.: Neuro-module to alternatingly ativate antagonisti motor-neurons and to adjust relative
ativation strength

enlarging stable loop ampli�ation ranges (MMahon, 1984). Veloity ould stabilize

the re�ex loop by prediting future positions at time t + x:

α( t + x) = α( t) + x!( t) (3.5)

The predition time interval x should be saled to aount for the total time-delay due

to sensors, atuators and neural proessing.

Antagonist Ativation Module As already mentioned above (�Bistable Module�) an-

tagonisti motor-neurons should be ativated in an alternating way. Bistable elements

were perfetly suited as premotor neurons projeting to both antagonist motor-neurons

with opposite signs Cruse (2002). By tuning the strength of the synapses and the bias

terms the relative ativation of the antagonist motor-neurons ould be adjusted (see

Fig. 3.7).

Bistable Module Bistable elements were needed as modules for the neural equivalent

of the biologial ontroller serving two funtions: 1. as threshold elements deteting

if sensor values ful�ll given onditions, i.e. joint angle � 9 0◦, and 2. as premotor

elements ensuring alternating ativation of antagonist motor neurons. In this ase a

simple approah was taken by using only one neuron. There are two variants (see

Fig. 3.8):

1. The simplest solution was to take one neuron with a large input weight resulting

in a fast saturation of the sigmoidal transfer funtion relative to a hange in input

size. Inreasing input weight made the e�etive threshold funtion more steep.

The bias value was used to adjust the desired threshold (dereasing bias shifts

the threshold to larger input values and vie versa). There were two drawbaks

to this solution: 1. The approximation quality of the step funtion is positively

orrelated with the size of the input weights and bias values, but depending on

the platform the neural network is running on their maximum absolute values are

limited. E.g. on the 16bit miroproessor driving Otavio the maximum weight

range was limited to [� 3 2 ; 3 2 [ (6bit inluding the sign) to maximize frational digit

preision (whih was a trade o� with the absolute weight range and in this ase
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would be 10bit, i.e. � 0:001) and omputing speed. 2. It was very sensitive to

noisy input values around the desired threshold.

2. Extending the above solution by a positive self-oupling of the neuron required

smaller input weights, e�etively inreased the steepness of the threshold fun-

tion and redued noise sensitivity beause it ated as a simple low-pass �lter. If

self-oupling weights surpassed the ritial value (whih was 4.0 for the standard

sigmoid), the neuron showed hysteresis, further reduing noise sensitivity. Inreas-

ing self-oupling weight resulted in a wider hysteresis and stronger low pass �lter

behavior. Depending on the frequeny of the input signal a hysteresis e�et was

observed with sub-ritial self-ouplings due to the time-disrete dynamis of the

neuro-module. A disadvantage of the extended solution was that the time-delay

before swithing ourred inreased with inreasing self-oupling weights.

The extended hysteresis version was hosen (parameters as given in Fig. 3.8b) as thresh-

old element for sensor values as well as bistable premotor module ensuring antagonisti

ativation of the motor neurons. This was mainly due to its superior tolerane to noisy

sensor values as seen in most robotis systems (see e.g. von Twikel and Pasemann,

2007). When alulating threshold parameters (bias values, p. Table 3.1) the "delay"

e�et of the self-oupling had to be taken into aount.

Swith Module with Separate and Prioritized On and O� Triggers Bistable elements

(see above) as premotor elements ensured alternating ativation of antagonist motor

neurons. In the biologial model two separate modules were used (at least in the CTr

and FTi joints) for on and o� swithing of the respetive bistable element. Depending on

the parameters hosen and the sensory input, the two modules ould have ontraditory

outputs, e.g. one ommanding to swith from levation to depression and the other vie

versa. In this ase the inputs were prioritized (see Fig. 3.9). The original implementation

(Ekeberg et al., 2004) ahieved the same with if-else-expressions, where the if ase had

highest priority.
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Figure 3.10.: a Body height depends on CTr (� ) and FTi (γ) joint angles as well as on the CTr joint
angle o�set ( , whih was 0 for the robot and varies for the di�erent legs of the stik inset). b Proposed
neuro-module to ontrol the body height of the walking mahine using the sum of the height in�uenes
of both joints as referene input and the desired height as ontrol input to a omparator. Its output
was used to ontrol CTr motor neurons (parameters are given for the roboti model with  = 0). 
CTr height in�uene was linearly approximated (shown here for  = 0), d FTi height in�uene with a
two neuron sine approximator (shown here for �eff = 0)

Two-Joint Height Control Module As summarized in Ekeberg et al. (2004) (see also

Fig. 1.4) two sensory in�uenes a�et the magnitude of the CTr motor neuron output

but not diretly the timing :

1. Intra-joint CTr negative position feedbak is assumed to be a major omponent

of height ontrol in standing and walking animals (Cruse et al., 1993).

2. Inter-joint FTi ! CTr in�uenes exist that a�et the Levator to Depressor ati-

vation ratio suh that it is inreased upon inreased �exion and dereased upon

inreased extension (Buher et al., 2003).

As depited in Fig. 3.10, these magnitude in�uenes were abstrated and ombined

in a height ontrol servo module (p. position servo above) for the CTr joint. We

assumed that the oronal plane was parallel to the ground and that the leg segments

Trohanterofemur (Femur) and Tibia had onstant lengths. Then the height of the body

above the ground was determined by the angular position of the two joints CTr (β plus

o�set  whih is 0 for the robot) and FTi (γ) in ombination with the segment lengths

of Trohanterofemur (lF emur) and Tibia (lT ibia):

dtotal = d�eff
� deff (3.6)

= sin( β �  ) � lF emur � sin( γ � β +  ) � lT i (3.7)
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3.2. Deriving Neural Networks from Neuro-Biologial Data

The height in�uene of the CTr joint was linearly approximated whereas the height

in�uene of the FTi joint was given by a simple sine approximator; both were su�iently

aurate within the �normal� movement ranges (for omparison see Cruse and Bartling,

1995). CTr and FTi height in�uenes were summed in a omparator neuron as ontrolled

variable and subtrated from the desired height referene input. This resulted in a

proportional height ontrol servo. By multiplying all inputs to the omparator by the

same fator and/or by multiplying the output synapse strength by a fator, the gain of

the servo ould be adjusted. Note that the ThC joint angle α and the axis o�set � had

an in�uene if the axis o�set  was non-zero as in the stik inset model. This in�uene

was not taken into aount here, and no neuro-biologial evidene for suh an in�uene

exists. In ontrast, the WALKNET implementation of a CTr height ontroller (Dürr

et al., 2004) uses all three leg joint angles.

Parameters of the height ontrol module in Fig. 3.10 were initially tuned for the

roboti model and needed to be modi�ed for the stik inset model beause of di�erent

fators: The ratio of trohantero-femur length to tibia length in the stik inset (FL:

1.073, ML: 1.065, HL: 1.042) di�er from the roboti model (1.065) (see Table D.1) but

to suh a small extent that this fator was negleted. Leg plane rotations by � and  

as well as a β range and mapping o�set of 30◦(see Table 4.5) ompared to the roboti

model resulted in an e�etive β o�set. Negleting the in�uene of � in ombination

with the ThC joint angle α the o�set is βmapOffset �  . Multiplying this o�set with the

synapti weights (s. Fig. 3.10) from the CTr (β) angle sensor to the omparator and the

sine approximator neurons S1 and S2 resulted in additive bias orretion terms for the

respetive neurons.

3.2.2. Bio-Inspired Single-Leg Controller

Assembling the above desribed neuro-modules to map the rules shown in Fig. 1.4 to a

neural network and setting threshold parameters onverted from those given in Ekeberg

et al. (2004), we obtained the middle leg forward walking ontroller depited in Fig. 3.11:

For all joints (proximal to distal from left to right) from top to bottom proprioeptive

intra- or inter-joint sensory signals were proessed by threshold elements, ombined with

other sensor signals via Boolean elements and fed to bistable modules that funtioned as

premotor elements. Per joint one bistable premotor element antagonistially ativated

two motor neurons. In the CTr joint a parallel pathway from sensor to motor neurons

existed that funtioned as a height ontrol module.

Neural threshold parameters were determined to meet two on�iting requirements:

Noise tolerane and fast swithing. A broader hysteresis, i.e., a larger self-onnetion

w self , results in better noise tolerane but delays swithing, and vie versa. Parameters

w in = 3 2 : 0 and wself = 5 : 0 (p. Fig. 3.8) provided an optimal trade-o� for both ri-

teria within the synapti weight limits of the network (see setion 3.1.1). The desired

threshold was given as sensor neuron output value (S N thres ) whih was mapped from

the original sensor range (see Table. 4.3). The bias value was then determined as

b i a s = � ( win S N thres + 0 : 5 wself ) (3.8)
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3. Arti�ial Neural Networks as Walking Controllers

Figure 3.11.: a Complete Controller transferred from Ekeberg et al. (2004) without modi�ations. Con-
troller struture is appliable for middle- and front-legs. Abbreviations: Sensor or Input layer (S),
Hidden layer (H), Motor or Output layer (M), Joint Angle (JA), Joint Veloity (JV) and Foot Contat
(FC). Motor Neuron abbreviations are given in Fig. 1.4. Neurons are numbered for easier referene
from text. For a detailed desription of the modules employed see setion 3.2.1. b Alternative ThC
joint ontrol module extended by a neural servo to stabilize the joints working range. Restrited (side-
wards) walking is ahieved by setting the onnetion strength 17 ! 14 to zero and by instead supplying
the ThC neural servo with a �xed referene input via the bias of neuron 14 (not shown).  Hind-leg
ontroller transferred from Ekeberg et al. (2004) with the same modi�ed ThC joint ontrol module as
in middle- and front-leg ontrollers. CTr and FTi joint ontrol modules have a di�erent struture and
partly di�erent synapse signs. d Alternatively a FTi ontrol module with the same struture as in
middle- and front-legs but two inverted synapse signs is used in the hind-leg
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Table 3.1.: Transition rule swith parameters (joint angles) onverted into neural parameters of sensor neuron (SN) and threshold neuron (TN).

Parameters are given for front-leg (FL), middle-leg (ML) and hind-leg (HL) as well as for forward walking (FW) and sidewards walking (S). For

onversion formula see equation 3.9 and text. Entries marked with * were orreted from Ekeberg et al. (2004)

Joint Transition Signal Leg Dir Op Thres [◦℄ Thres [SN Out℄ SN�TN TN�TN Bias adj. TN Bias

FTi Flx ! Ext γ angle ML FW,S > 105.0 0.667 32 5 3.2 -20.63

FL FW > 95.0 0.611 32 5 3.2 -18.86

HL FW - - - - - - -

Ext ! Flx γ angle ML FW,S � 105.0 0.667 -32 5 3.2 22.03

FL FW � 95.0 0.611 -32 5 3.2 20.26

HL FW - - - - - - -

CTr Dep ! Lev α angle ML FW < -25.0 0.361 -32 5 3.2 12.26

ML S - - - - - - -

FL FW < *10.0 0.556 -32 5 3.2 18.48

HL FW < -45.0 0.250 -32 5 3.2 8.70

γ angle ML FW > 120.0 0.750 32 5 3.2 -23.30

ML S > 105.0 0.667 32 5 3.2 -20.63

FL FW > 98.5 0.631 32 5 3.2 -19.48

HL FW < *55.0 0.389 -32 5 3.2 13.148

Lev ! Dep α angle ML,FL FW,S - - - - - - -

HL FW � 5.0 0.528 32 5 3.2 -16.19

γ angle ML,FL FW,S < 70.0 0.472 -32 5 3.2 15,81

HL FW > *90.0 0.583 32 5 3.2 -17.96
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3. Arti�ial Neural Networks as Walking Controllers

Additionally, the nonlinear threshold module behavior had to be taken into aount, e.g.

hysteresis e�ets introdued a shift of the swith threshold, depending on input signal

frequeny (p. Fig. 3.8). A bias adjust fator (b i a sadj ust) was experimentally determined

as the di�erene of the bias alulated above and the bias at whih the threshold unit

output rossed 0.5 in the desired diretion (p. vertial lines in Fig. 3.8) at a step yle

frequeny of 0.75 Hz. This frequeny was assumed to be the �standard� step frequeny.

An extended bias value alulation resulted:

b i a s = � ( win S N thres+ 0 : 5 wself) + b i a sadj ust (3.9)

For example using w in = 3 2 and wself= 5 the orretion fator would be approximately

3 : 2 . Resulting neural parameters are given in Table 3.1 for angle thresholds. Foot

ontat threshold was set to half of the maximal ativation of the foot ontat sensor.

Parameters are given for all leg types (front-, middle- and hind-legs).

Parameters not presribed by the neural rules nor expliitly given in the module

desriptions are here alled �free� parameters. They were tuned by hand (with the ex-

eption of the body support fore simulations, see setion 6.2.4) while observing the

resulting behavior. As subjetive riteria stable and fast walking on �at ground were

used. �Free� parameters were the premotor and height ontrol to motor neuron synap-

ti weights, the motor neuron bias values and the referene inputs to the CTr height

ontroller and the ThC servo ontroller.

3.2.3. Extended Bio-Inspired Single-Leg Controller

See Fig. 3.12 for an extended version of the bio-inspired ontroller from Figs. 3.11a+.

The same ontroller struture is used for front-, middle- and hind-legs and only param-

eters are individually modi�ed for eah leg. The sensor interfae was extended by joint

angle aeleration (3, 8, 14) and joint torque and torque derivative (4-5,9-10,15-16) sen-

sor neurons. The motor interfae was extended by a tarsus attahment motor neuron

(27, p. Fig. 4.8).

Furthermore, modules were added or extended, i.e. ThC and FTi joints were equipped

with swithable positive and negative veloity servos, whih were suppressible (44,76)

during swing (Bartling and Shmitz, 2000; Shmitz et al., 1995; Shneider et al., 2006).

Their set-point was swithable between �exion and extension veloities (74,75), respe-

tively pro- and retration veloities (42,43). The CTr height ontrol in�uene was made

suppressible (93,62) during swing. Grayed out neurons 91, 92 and 94 supplied balaning

inputs to the motor neurons, that beame neessary to anel bias o�sets of the veloity

servos during their suppression. To allow stable biphasi �exion-extension movements

during stane, a �exion suppression mehanism was introdued (95) that was ativated

after a swith from �exion to extension during stane and inativated upon stane to

swing transition. To support a swithable inative state, position ontrol servos were

added for ThC and FTi joints. To aount for a deployment on the roboti model with-

out musle model, range limiters in ThC and FTi joints (49-50,81-82) were added to

supply stabilizing passive fores towards the joint angle limits. Finally, a positive and
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Figure 3.12.: An extended version of the neuro-biologially inspired ontroller from Figs. 3.11a+. For details see text
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3. Arti�ial Neural Networks as Walking Controllers

negative CTr torque threshold module was introdued to support ongoing stane or trig-

ger stane-swing transitions (51,52) (Akay et al. (2001, 2004, 2007), also p. (Shilling

et al., 2007)).

The leg external interfae was on�gured to inlude all sensor neurons as output

neurons and multiple extra interfae neurons as leg inputs. These inluded: inter-leg

oupling inputs to shorten or prolong the stane phase by shifting the PEP (Cruse,

1990), an ative state swith, a walking diretion swith, a desired walking veloity and

a desired body height.

3.2.4. Bio-Inspired Hexapod Leg-Coupling Modules

Sine neural data on inter-leg oupling mehanisms in stik insets is still sparse

(Borgmann et al. (2007, 2009); Ludwar et al. (2005), but see Daun-Gruhn (2010) for

model hypothesis), the well tested �Cruse-Rules� (see Cruse, 1990, for a summary),

whih were derived from behavioral studies, were neurally implemented to serve as ou-

pling in�uenes for the neuro-biologially inspired single-leg ontrollers presented above.

In Fig. 3.13 the �ndings of Cruse (1990) are summarized and the neural implementation

and their performanes presented:

• Rule 1 is a rostrally1 direted in�uene whih inhibits the start of swing in the

rostral leg if the audal2 leg is in swing and for a time period of � 100ms after

touhdown. If the swing phase is prolonged also the negative oupling in�uene

is prolonged. This oupling in�uene is exlusively ative ipsi-laterally. Neurally

this is realized as follows: foot ontat information from the audal leg is send to

the rostral leg where it is post proessed by a ombination of a threshold element

and a di�erentiation, leading to the desired oupling in�uene signal.

• Rule 2 is also rostrally direted and additionally ative in the ontra-lateral dire-

tion. This in�uene exites the start of the swing phase in the rostral leg shortly

after touhdown of the audal leg. The neural implementation is analog to Rule

1.

• Rule 3 is audally direted, but also ats between ontra-lateral front- and hind-

legs. It exites the start of swing in the audal leg with inreasing strength while

1towards the head
2towards the tail

Figure 3.13. (faing page): a� From left to right: The behavioral e�ets of the �rst three stik inset
inter-leg oupling rules derived from behavioral data (�Cruse-Rules�, see Cruse (1990) for details), a
summary of the leg pairs they apply to, the neural implementations that were used here and their
respetive performane are shown. Anterior-posterior foot movements during stane phase are given as
a solid blak line, during swing phase as a dashed line. A gray bakground denotes when the negative
oupling in�uene is ative. Note that only the relevant neural strutures are shown and that the
oupling in�uenes are derived in the reeiving leg based on sensory information from the sender leg.
In the performane plots, a gray bakground denotes stane phase. See text for details
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Figure 3.14.: Arti�ial evolution as an evaluation�seletion�variation loop

the rostral leg is retrating. The neural implementation simply exploits the saled

and shifted sigmoidal transfer funtion together with a suppression of the in�uene

during swing.

3.3. Arti�ial Evolution as a Tool to Generate and

Optimize Neural Controllers

Arti�ial evolution was employed as a tool to develop neural ontrol strutures for the

loomotion of simulated roboti or stik inset walkers with single legs as well as with

six legs. An overview of the evolutionary proess is given in Fig. 3.14 and is shortly

desribed hereafter: Neural networks generated by the evolutionary algorithm were su-

essively send to the brain simulator. The brain simulator proessed one net at a time

and ommuniated with the physial simulator to exhange sensor and motor data.

The simulator proessed a ertain number of steps (this depended on the simulator, see

hapter 4 for details) without ommuniating with the brain simulator. Then ommuni-

ation took plae and the net was updated aording to the sensory data reeived from

the simulator and the internal state of the net. Subsequently a new motor output was

generated whih in turn was send to the simulator. This net-update-simulation-loop

was ontinued for a spei�ed number of yles and if desired, the loop itself was run

through several times, eah time with a di�erent environment. In the ourse of the

simulation a �tness value was alulated onstantly. After the simulator/net-update

proess had ompleted the spei�ed number of yles, the �nal �tness value was send

bak to the evolutionary algorithm. It ontinued to send nets to the brain simulator for

evaluation until all nets of one generation were evaluated. The evolutionary algorithm

then seleted a ertain number of nets (seletion proess) aording to their �tness val-

ues generated during evaluation. The seleted nets were reprodued and the �o�spring�

underwent a variation proess. A new generation was then ready to be evaluated. This
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variation-evaluation-seletion loop Hülse et al. (2004) was run through repeatedly until

the evolutionary proess was stopped by the user. During evolution the user had the pos-

sibility to hange several parameters to in�uene the variation-evaluation-seletion loop,

e.g. population size, weighting of �tness terms, number of evaluation yles, mutation

probabilities, the type of evolution (strutural/parameter evolution), et.

3.3.1. Evolutionary algorithm

The ENS3-algorithm was used as the evolutionary strategy (Hülse et al., 2004): ENS3

is an implementation of a variation-evaluation-seletion loop operating on a population

of n neuro-modules. The algorithm works on a population whih is divided into parents

and o�spring. Several operators were put to work on the neuro-modules:

• The evaluation operator whih onsists of a �tness funtion that measures the per-

formane of eah neuro-module. The desired number of neurons and onnetions

an be negatively added to the �tness funtion by means of a ost funtion to keep

the size of the evolved networks within limits.

• The seletion operator is of stohasti nature. It determines the number of o�-

spring for eah neuro-module by means of a rank proess, based on the results

of the evaluation operator, and by means of a Poisson distribution. Eah neuro-

module with a number of o�spring greater than zero is passed on to the next

generation. User de�nable parameters determine the mean size of the new popu-

lation as well as the seletion pressure (e.g. elitism an be fored).

• The reprodution operator reates a ertain number of opies (o�spring) of eah

individual neuro- module, whereby the number of opies is determined by the

seletion operator.

• The variation (or mutation) operator realizes both a ombinatorial and a real-

valued variation in a stohasti manner. On one hand the ombinatorial variation

aounts for insertions and deletions of hidden neurons and onnetions whih

are determined by per-neuron and per-onnetion probabilities (random variable

[0; 1]). On the other hand the real-valued variation is responsible for the variation

of the weight and bias terms. The probability of variation is determined by another

random variable [0; 1], its magnitude by a Gaussian distributed random variable.

The algorithm has no formal stop riterion � it is rather assumed that the user determines

the �right� time to end the evolutionary proess by monitoring relevant parameters.

3.3.2. General Tehniques Used During Evolution

Numerous parameters had to be set before/during evolution. On the one hand, there

exists no standard ommon proedure but on the other hand, the setting of parameters

was not performed arbitrarily. Rather, some general strategies exist whih ould serve

as a guideline. Some of the strategies employed during this work are summarized here:
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3. Arti�ial Neural Networks as Walking Controllers

• The weightings of di�erent terms of the �tness funtions were adapted to the state

of evolution: E.g. during the evolution of loomotion ontrollers �rst a high reward

was given for smooth and slow osillatory movements and only a low or no reward

for forward movement. Then, as some individuals arose in the evolutionary proess

that made smooth forward movements an inreasingly higher reward was given for

the forward movement while at the same time the weighting of the osillatory term

was dereased.

• It was tried to keep the evolved networks small to avoid a large parameter spae

beause the larger the parameter spae the less likely new/better solutions were

found by the evolutionary algorithm. Additionally it was easier to analyze smaller

nets later on. The small size was ahieved by �rst allowing arbitrary growth of

the neuronal struture to just introdue osts for neurons and synapses when the

behavior met the demands de�ned prior to the experiment.

• If a funtional priniple was disovered in a net (e.g. a speial onnetion stru-

ture) the neuro-module was manually edited aording to the priniple disovered,

deleting neurons and onnetions not required, and then re-subjeted to parameter

evolution.

• Environments were (randomly) hanged in the physial simulation in every gen-

eration to obtain maximal robust ontrollers. To even arry this idea further a

de�ned set of environmental senarios (p. setion 4.3) ould be suessively put

in plae during eah generation to make sure the nets had at least an average

performane in eah of these environments.

• The evolution was started several times with varied seed nets, to obtain di�erent

start-points in the parameter spae.

• Mutation probabilities and amplitudes were adapted to the state of evolution,

e.g. evolution was started with high mutation probabilities and amplitudes, whih

orresponded to large leaps on the weight-spae-landsape, and these high am-

plitudes and probabilities were dereased as soon as funtional ontrollers arose

(�ne-tuning by suessively smaller steps on the weight-spae-landsape).

• Struture evolution was followed by parameter evolution: One a network per-

formed su�iently good, its struture was �xed and the parameters were opti-

mized.

Single Leg Evolution

During the evolution of single legs, some of the following assumptions were made, de-

pending on the experiment:

• Slow and large amplitude osillatory movements are a prerequisite for the devel-

opment of robust walking.
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• Minimized swing-stane ratios inrease stability, espeially for later use in hexapod

ontrollers (p. setion 3.3.3 below).

• Foot sliding should be minimized for maximum e�ieny and stability.

• Body heights in a ertain range should be reahed to ensure that ontrollers are

able to support the body weight.

• Strong lateral movements (p. single-leg rail experimental setup in setion 4.1.1)

are ine�ient and might ause instabilities upon deployment in hexapod on-

trollers.

These assumptions were implemented either in the respetive �tness funtion or as

terminate try signals (see below).

3.3.3. Modular Evolution of Hexapod Controllers

The goal of using arti�ial evolution as a tool during the ourse of this work was to �nd

alternative ontrol strutures to those known from robotis and biology or to extend or

ombine known ontrol strutures. For single-legs it is relatively simple to evolve neural

ontroller, even from srath, and to analyze the resulting ontrollers. The searh-

spae for single-legs is omparatively small, due to the small number of sensor and

motor neurons and the limited kinematis of a single 3DOF leg. For more omplex

behaviors and the oordinated ontrol of multiple legs the searh spae was massively

inreased. Therefore, multiple approahes were followed to redue the searh spae

without reduing the possible solutions so far that only trivial solutions would result

Rempis et al. (2008):

Assumptions were made about the ontroller arhiteture in stik insets and this was

in turn assumed to be of a general advantage for loomotion ontrol arhitetures:

• Every leg possesses its own ontrol module.

• Controller for front-, middle- and hind-legs di�er but ontra-lateral leg ontrollers

are symmetri.

• The onnetivity between legs is smaller than inside of a leg ontroller.

• Several sensory in�uene important for inter-leg oupling are known from behav-

ioral experiments in biology suh as foot ontat and load information or ThC

angle as a measure for retration (p. Cruse, 1990).

Therefore, the evolution software ISEE was extended to support arbitrary modular

neural ontrollers with inter-module oupling strutures and enforeable symmetry on-

straints (p. Fig. 3.15). For inter-module ouplings interfae neurons were introdued

to whih inter-module onnetivity was restrited. Single-leg modules ould either be

seeded with empty networks or e.g. with known strutures from biology (p. neuro-

biologially inspired ontrollers above). Evaluations always took plae for omplete

ontrollers and the same �tness was applied to all modules.

Furthermore, assumptions were made about the desired behavior:
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Figure 3.15.: Modular evolution onept: Single leg modules and oupling modules are seleted, repro-
dued and varied separately but only module ensembles, i.e. omplete hexapod ontroller, are evaluated
and the resulting �tness is assigned to all modules. Depending on module network size the �tness value
used for seletion may be varied afterwards. To minimize the searh spae additional onstraints may
be imposed, as e.g. the lateral symmetry depited

• During walking joints have a limited working range.

• Fore/Torques above a ertain threshold are detrimental.

• Rhythmi movement inside a ertain frequeny and amplitude range have to our

to ahieve e�ient loomotion.

• Controllers should be robust to be able to ope with varying environments or

inreased noise levels without dramati performane results.

• For multi-legged walking ertain footfall patterns lead to instability, e.g. if multiple

neighboring legs enter swing phase at the same time.

• Segments other than the feet (tarsi) or lower legs (tibiae) should not have ontat

with the environment to ensure exlusive body support by the legs. As an exep-

tion it is known from stik insets that they may use their abdomen to support

the body (Bässler, 1983).

These assumptions were either implemented as terminate-try signals, whih ould stop

evaluations or in the �tness funtion. Additionally it was assumed that the initial

onditions (posture, torques) are ruial to ahieve a stable walking rhythm. Therefore,

initially mehanial support ould be given for the body and terminate try signals and

�tness terms were disabled during a �warm-up� evaluation phase. A ombination of
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multiple of these strategies allowed to suessfully develop more omplex ontrollers,

e.g. for hexapods (p. hapter 8).

3.3.4. Evaluation of Performane

Terminate Try Signals

Thresholds ould be applied to sensory signals or a ombination of multiple sensory

signals to terminate ongoing evaluations. If a behavior was so faulty, that it did not

promise to improve, further evaluation was onsidered unneessary. Cp. the above

paragraphs for a justi�ation. Terminate try signals were, depending on the simulation

experiment, triggered as follows:

• Joint angles that exeeded an angular range observed during stik inset walking

(Cruse and Bartling, 1995) by more than 10◦.

• Segments other than feet (tarsi) and lower legs (tibiae) that touhed the environ-

ment.

• A minimum walking distane was not reahed in a spei�ed time.

• A foot was not lifted for a ertain amount of time, usually the time of a typial

step yle plus a tolerane period.

• A ertain body height was surpassed, indiating e.g. undesired jumping move-

ments.

• An unrealistially high �tness, indiating simulation errors like unnatural explosive

movements.

• An average amount of foot sliding, de�ned as the sum of all feet movements in the

horizontal plane during stane.

These terminate try signals were either implemented as part of the physial simulator

or as part of the �tness funtion and ould be disabled during �warm-up� phases. Thresh-

olds ould be modi�ed during experiments to e.g. beome more strit with inreasing

�tness. Employing these signals was found to be very e�ient and even neessary for

suessful evolution of hexapod ontrollers: on the one hand, they redued the overall

number or evaluations steps and therefore allowed more evaluations in the same amount

of time. On the other hand, they were extremely e�ient in removing undesired behav-

ioral features.

Fitness Funtions

The �tness was �rst alulated for eah try individually as the sum over all single step

�tness values. Hereby the total number of steps ould di�er if terminate try onditions

were used (s.a.). If multiple tries were evaluated the total �tness for was subsequently

alulated.
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3. Arti�ial Neural Networks as Walking Controllers

Single-Leg Experiments The total �tness for n time steps was alulated by taking

into aount multiple terms:

fitnesssingleT ry =
n∑

i=0

wayTerm � bodySupportTerm � footContactTerm

+ α � swingStanceTerm

+ β � footSlidingTerm

+ γ � frequencyAmplitudeTerm

+ � � lateralMovementTerm

(3.10)

The individual �tness terms had the following meaning:

• The wayTerm simply was the total forward displaement.

• The bodySupportTerm ould take values between 0 (no support by the leg, i.e. full

body support by the rail) and 1 (full support by the leg). The term was derived

from a fore sensor in the single-leg rail setup (p. setion 4.1.1). The relative

in�uene of the term ould be hanged by parameter � as follows: If � was set to

1 the height term was fully weighted, i.e. if there was full support of body weight

the way term was multiplied with 0 (or more with derease of weight support), if �

was set to 0 the height term was e�etively disabled and the way term was always

multiplied with 1.

• The footContatTerm ould take values between 0 (no ontat) and 1 (maximal

ontat. Forward displaement was therefore only rewarded during foot ontat.

• The swingStaneTerm was derived by division of two ounters for swing duration

and stane duration. As a ondition for stane a ombination of a foot ontat

threshold and a load threshold were taken, otherwise swing was assumed.

• The footSlidingTerm was used to ounterat behavior where the foot was not

really lifted during walking and to ounterat arti�ial behaviors resulting from the

footContatTerm (see above): sometimes agents evolve that performed explosive

pushes, let the foot slide on the ground and took all the resulting �tness. Foot

sliding was de�ned as the sum of foot movements in the horizontal plane when the

foot was lose to the ground. In ase of perturbation senarios where foot frition

was minimized, this term was disabled.

• The frequenyAmplitudeTerm was used to overome the bootstrap problem. This

term rewards frequenies and amplitudes in prede�ned regions whih eah have

wide plateaus to not favor any spei� frequenies and/or amplitudes.

• The lateralMovementTerm punished lateral body movements above a ertain

threshold.

The individual �tness terms ould be saled or disabled during experiments by modifying

parameters α � �.
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Hexapod Experiments The total �tness for n time steps was alulated by taking into

aount multiple terms:

fitnesssingleT ry =
n∑

i=0

wayTerm � footContactConstraintsTerm

+ α � footSlidingTerm

(3.11)

Note that several �tness terms from the single-leg �tness funtion are now impliitly

inluded in the global stability riterion: e.g. if the body is not supported by the legs or

lateral fore beome to high, the walker stumbles or falls down. These instabilities result

in a dereased �tness and might even trigger the terminate try mehanism. The new

binary (0,1) term footContatConstraintsTerm is the produt of a ontralateralFootCon-

tatConstraintTerm and an ipsilateralFootContatConstraintTerm. The former beomes

0 if at any time two ontra-lateral legs are not in ontat with the ground simultaneously

and is 1 otherwise whereas the latter is alulated analogous for ipsi-lateral leg pairs.

Multi-Try Evaluation Fitness values of n single tries were alulated from the individ-

ual try �tness values as follows:

fitnesstotal=
n

vuut
nY

i=1

fitnessi (3.12)

Multipliation was used opposed to addition beause all tries had to perform well in

order to ahieve a good �tness instead of one exeptionally well performing try that

ould balane bad performing tries. I.e. robust generalized behaviors and not speialized

behaviors were desired.

3.3.5. Analysis

After several evolution runs had been onduted the performanes of the best nets of

all evolution runs were ompared with eah other and, if available, with some referene

ontrollers. The overall best performing nets or nets having a partiular interesting

struture were afterwards subjeted to further analysis. As a �rst step in the analysis of

the struture-funtion-relations of a ontroller, its behavior was desribed qualitatively

as well as quantitatively (p. setion 3.3.4 above). A tool showing the ativities of the

neurons and the strengths and signs of the synapses during the robot-environment in-

teration (simulation) in form of an animated neural net gave �rst visual lues. Using

the tool in single step mode together with its plotting apabilities (all neuron outputs

ould be plotted) allowed further inspetion. Also, the ativities of all neurons ould

be arbitrarily set (stimulation/lesion experiments) during the simulation to examine the

in�uene of ertain onnetions and sensor inputs. Finally, the neuro-modules were an-

alyzed as dynamial systems to identify loops, hysteresis e�ets, CPGs et. (Pasemann,

2002).
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4. Embodiment in Dynami Simulations

of Stik Insets and Robots

� [I]n proportion as a body is more apable than others of doing many

things at one, or being ated on in many ways at one, so its mind

is more apable than others of pereiving many things at one. [...℄

And from these [truths] we know the exellene of one mind over the

others.�

(Benedit de Spinoza: Ethis, IIP13S, �rst published posthumously in

1677, ited after de Spinoza (1994))

Without a body no behavior may take plae and the properties of a spei� body

have a major in�uene on possible behaviors and their ontrol through the nervous

system (Chiel and Beer, 1997; Hatsopoulos et al., 1995; Pfeifer and Bongard, 2006, also

p. hapter 2). Therefore, a body is needed to investigate loomotion ontrol. Depending

on the objetives, this may either be a biologial organism, a robot, a simulation of one

of the former two or even an abstrat animat (Beer, 1990; Dean, 1998; Meyer, 1995;

Webb, 2009). Throughout this thesis, experiments have exlusively been performed in

simulations beause of: 1. their aessibility, i.e. the ease to hange and to aess

all simulation parameters, neessary for a thorough analysis and for generating novel

hypotheses by �playing around�, 2. their speed, whih is essential for performing a high

number of evaluations as required by evolutionary robotis, 3. their power to desribe

available data from biology and robotis in a uni�ed way, 4. their suitability to test the

explanatory power of existing hypotheses (p. e.g. Ekeberg et al., 2004) and to visualize

them, and �nally 5. their low ost, when ompared to real robots.

Overall three walker models were simulated (p. Fig. 4.1): One stik inset model

and two roboti models, whereby the �rst losely modeled a omplex walking mahine

(Otavio) and the seond only loosely orresponded to a more simple walking mahine

(AMOS-WD06). The rationale for employing multiple simulations was that the more

detailed, or data-driven, models allowed to build a bridge to transfer and ompare on-

trollers between biology and robotis, whereas the simple, more theory-driven, model

allowed to explore more general ideas without spending too muh time on implementa-

tion details (Beer and Williams, 2009). Due to standardized interfaes between neural

ontrollers and simulations, spei� ontrollers ould be transferred between and tested

aross all simulations, as long as their sensori-motor equipment used by the ontroller

mathed. The two more omplex simulations (stik inset and Otavio) were equipped

with more sensors, e.g. load, veloity and aeleration sensors, and ould be driven

via three di�erent motor interfaes, ranging from simple servo ontrol to more omplex

antagonisti ontrol with and without musle models. All simulated walkers ould be
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b ca

length: 740 mm

mass: 21970 g

length: 160 mm

mass: 1676 g

length: 28.4 mm

mass: 0.9 g

Figure 4.1.: One simulation of a biologial organism (a Stik Inset) and two simulations of walking
mahines (b Amos WD06 and  Otavio) were employed in the experiments desribed in this thesis.
The bars below the images give an impression of the relative body lengths (FL to HL oxae) and body
masses. Note for the stik inset mass that the smallest point that may be printed here orresponds to
a mass that is still ≈ 100 times larger than that of a stik inset. The absolute lengths and masses are
additionally given below the respetive bars

tested in di�erent environments and under multiple perturbing onditions.

Hereafter the physial simulator used for all three simulations is desribed, together

with the implementation of sensor- and motor-systems, inluding musle models. Sub-

sequently spei� details of the three simulators are given and �nally the environments

and perturbing senarios used for performane evaluation are presented.

4.1. Physial Simulator

A physial simulator in the ontext of this thesis mainly had to ful�ll four riteria: 1.

it had to be fast to allow a large number of evaluations, 2. it had to be stable to allow

unattended operation, 3. it had to be su�iently preise to a) allow transferability

of ontrollers from robot simulations to robots with at least qualitatively omparable

behaviors or b) the biologial simulation had to show a good behavioral performane

math with the target organism, and 4. it had to have ompatible interfaes with the

hardware to allow an easy transfer of ontrollers between simulator and hardware.

Based on these riteria, physial simulations of the walking mahines Otavio and

AMOS-WD06 and of the stik inset Carausius Morosus were built on top of the Open-

DynamisEngine (ODE Smith, 2009) based simulator alled Yet Another Robot Simu-

lator (YARS, Zahedi et al., 2008). The ODE library is a game physis engine geared

towards speed, a prerequisite for performing a large number of evaluations as required

by the evolutionary robotis approah. Suessful transfers of omplex ontrollers from

simulations to real robots, as well as behavioral mathes between stik inset simulation

and real stik inset were used as the riterion of su�ient preision. Previous studies

with the same simulation environment but di�erent roboti platforms (Fisher et al.,

2004; Markeli and Zahedi, 2007; Wishmann et al., 2005) have shown that the transfer-

ability riterion was met with a simulator where morphology, motors and sensors were

only roughly approximated but where available parameters were arefully tuned and

noise levels on sensors and motors slightly exaggerated.

50



4.1. Physial Simulator

Figure 4.2.: a Single leg simulator setup with a three degrees of freedom (DOF) rail setup. For- and
bakward movements were only slightly damped, optional sidewards movements were restrited by a
sti� spring-damper system and up- and downward movement was damped, unrestrited in upwards
diretion and limited in downwards diretion by a support platform. No rotational movements were
allowed. Additionally segment names of the walking mahine are given. For joint names see Fig. 1.4.
b Shemati �gure of joint angle onventions (zero point and sign) and joint axes (�leg plane�) o�sets
� and  (whih are both zero for the roboti models). For details see Cruse and Bartling (1995).
Abbreviations: anterior (a) and posterior (p)

All relevant sensor and motor properties, musles, skeleton, joints, ontat surfaes,

frition properties and moments of inertia were implemented in YARS and eah sim-

ulation, inluding walking mahine and environment, was given in Extensible Markup

Language (XML). The XML �le ould be automatially reloaded and, therefore, allowed

to easily hange parameters or modify the simulator struture during experiments. E.g.

multiple randomized perturbation senarios ould be used, inreasing their di�ulty

during an experiment. YARS onneted to the ISEE pakage (p. previous hapter 3),

whih simulated the neural network (NN), via User Datagram Protool (UDP) ommu-

niation. The physial simulation update frequenies varied between 100 Hz and 400 Hz
(see desription of spei� simulations below) and every seond or fourth step (again de-

pending on the spei� simulation) the NN update was triggered, sending sensor values

and reeiving new motor ativations. A 3D-Visualization and parameter plotters al-

lowed to losely monitor the simulation experiments. Additionally all parameters ould

be logged for a subsequent analysis.

4.1.1. Single Leg Simulator Setup

Following the modular approah, single leg walking experiments were supported for

all three simulations: the torso of the single legged walking mahine was mounted on

a rail system. It allowed for for- and bakward movements, whih were damped to

stop movements during stane in a reasonable time interval, and slightly damped up-
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and downward movements with a ventral hard stop, simulating the remaining legs.

Optionally, it had a lateral spring-damper system to simulate lateral fore in�uenes of

other legs (see Fig. 4.2). This allowed for small lateral movements similar to hexapod

walking in stik insets (p. Kindermann (2002)). As an exeption, the spring-damper

system was replaed by a simple damper in sidewards walking simulations. Up-down

and sidewards rails optionally inluded fore sensors to measure fores exerted by the

leg.

The joint setup was similar to the one desribed in Ekeberg et al. (2004): Eah leg

had three ative hinge joints, namely Thorax-Coxa (ThC), Coxa-Trohanter (CTr) and

Femur-Tibia (FTi). CTr and FTi joint axes were parallel to eah other but in the roboti

models, and di�erent from the biologial model, the ThC joint axis was parallel to the

dorso-ventral axis and orthogonal to the other two joint axes. Contrary to this and the

biologial model in Ekeberg et al. (2004), real stik insets have a ball and soket ThC

joint. This may be viewed as a funtional hinge joint where the axis of rotation hanges

during walking (Cruse and Bartling, 1995). The lak of slanted rotation axes of the ThC

joint potentially had impliations for the ontrol omplexity and a signi�ant e�et on

the ground reation fores during stane.

4.1.2. Sensory System

Two lasses of sensor were used: on the one hand, sensors were employed that mim-

iked real sensors of the robots or biologial organism and these were used as inputs

to the neural network ontroller, additionally to evaluation and analysis purposes. All

simulated walkers possessed angle sensors for the three main leg joints and foot on-

tat sensors whih were realized as very low range distane sensors. Depending on the

simulator and experiment, additional sensors were used, inluding angular veloity, an-

gular aeleration, joint torque and its derivative of all main leg joints. Angular veloity

and torque values were diretly supplied by the physis engine, angular aeleration and

torque derivative had to be manually derived from the previous two: Derivatives at time

step t were approximated by the �nite di�erene method and division by the number of

di�erene time steps a, resulting in a di�erene quotient:

derivativet =
inputt � inputt� a

a
; a > 0 (4.1)

Hereby a number of di�erene time steps a of either two or three was hosen, depending

on the simulator and sensor signal. Due to the disrete nature of the physis engine and

its rather low preision the manually derived sensor signals showed undesired osillations

and therefore have to be post-proessed to obtain signals omparable to those supplied

by real roboti and biologial walkers. For post-proessing either moving average �lters

with �lter size n

movAverageOut t =

P
n� 1

i=0
inputt� i

n
; n > 1 (4.2)

whereby n was usually hosen to be four time steps. Alternatively in�nite impulse
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response (IIR), i.e. reursive, �lters with fator k

iirOutputt = k � inputt + ( 1 � k) � inputt� 1; 0 < k < 1 (4.3)

were applied, whereby k was usually hosen between 0.07 and 0.15. Note that the

appliation of the above �lters inurred a time delay of the respetive sensor signal.

Sine the physis engine was updated two to four times more often than the neural

network this e�et was redued. Overall time delays between one and three time steps

relative to the neural network resulted.

On the other hand, sensors were employed that were solely used for evaluation and

analysis purposes. All simulators were equipped with body oordinate (xyz) sensors to

trak body position and veloity. This was e.g. utilized in the �tness funtion during

evolution to reward fast walkers. Optionally oordinate sensors (xyz) for eah foot

were employed, giving absolute and relative (to torso) positions. They were e.g. used

to visualize foot trajetories. During single-leg experiments fore sensors in the rail

struture ould be used to register the 3 fore omponents that orresponded to the

fores that a leg exerts on the ground.

To enfore the development of robust ontrollers, gaussian noise of 1-2% (or more in

perturbing experiments, p. setion 4.3 further below) was added to all neural network

sensor inputs.

4.1.3. Motor System

Whereas biologial walkers employ multiple antagonistially ating musles to produe

motor behaviors (for stik insets see e.g. Bässler (1983)), in roboti walkers the most

abundant atuation employs single ating rotatory eletrial diret urrent (DC) motors

together with a position servo ontroller (Siiliano and Khatib, 2008). To ease trans-

ferability and omparability of ontrollers between robotis and biology, both atuation

mehanisms were implemented together with di�erent ontrol interfaes. Fig. 4.3 gives

an overview of all atuation and motor ontrol implementations used. The two in-

termediate implementations (Fig. 4.3 b+) approximated antagonisti ontrol without

requiring omputationally ostly ontrollers. To exploit the full motor dynamis the

following general approah was hosen: The neural network gave antagonisti motor

ativations via two motor neurons (MNs). These were mapped on the four states (for-

ward, bakward, brake, relax) of the motor H-Bridge1 and the pulse width (PW) of the

pulse width modulation (PWM)2 ontrol signal. The mapping was performed as follows

(p. also Fig. 4.3 e):

1. Low ativations (� 0 :1 ) in both antagonisti MNs resulted in a relaxed motor

(onsuming no energy, produing no ative torque).

1H-Bridges are eletroni iruits with four operational modes allowing 1. to disonnet both motor
terminals resulting in a free run or relaxed mode with minimal frition and no ative torque, 2a+b.
voltage to be applied in either diretion to reverse motor polarity, 3. to shorten the motor terminals
resulting in brake mode and e�etively inreasing rotational frition.

2PWM ontrol allows to supply intermediate amounts of power by varying the ratio of disretely
swithing on and o� the power supply.
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Figure 4.3.: Di�erent types of motor ontrol implemented inlude: a A position servo ontrol where the
neural network ontroller ommanded a desired position. The servo ontroller tried to reah or maintain
the desired position by applying torque via the DC-motor in relation to the di�erene of desired and
atual position. Optionally derivative and integrative terms were taken into aount. b A virtual
antagonisti ontrol, where the low level properties of DC-motors ould be diretly exploited by the
neural network, e.g. by using the brake or free-run modes of the DC-motor. Antagonisti input mapping
is shematially explained in e, for details see text.  Two musle models, eah implementing torque-
angle, torque-veloity, torque-ativation and passive torque-angle harateristis similar to biologial
musles, were employed as a layer in between the neural network and the virtual antagonisti ontrol
(see text for details). d A biologial model of a pair of antagonistially ating musles. The sum of
their fore outputs was diretly applied to the joint. As in , the musles had diret aess to sensory
information
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2. A strong absolute ratio in favor of one MN

����
M N 1 �M N 2

M N 1 + M N 2

���� � 0: 15

resulted in a forward (positive ratio) respetively bakward (negative ratio) move-

ment. The larger the absolute di�erene (jM N 1 �M N 2j) the higher the power

output of the motor (resulting in higher torques and/or veloities, depending on

the environment).

3. Otherwise approximately equal MN ativations resulted in the motor brake mode

and therefore inreased e�etive joint frition without onsuming energy. The ef-

fetive brake strength was set proportional to the sum of motor neuron ativations

((M N 1 + M N 2)= 2).

The motor ativation and environmental onditions (external torques) determined the

joint movement. This was registered by sensors and fed bak into the neural network,

together with other sensory information. Note that the virtual antagonisti ontrol in-

terfae o�ered a larger motor ontrol spae (p. Patel, 2008, for examples). Furthermore,

a position servo ould still be realized inside of the neural network, additionally to a

possible parallel diret ontrol of the motors.

Gaussian noise of 2% (or more in perturbing experiments, p. setion 4.3 further

below) was added to all motor neuron outputs to inrease the robustness of developed

ontrollers.

4.1.4. Musle Model

In biologial organisms motor neuron ativity is often insu�ient to predit the motor

response (Brezina and Weiss, 2000; Hooper and Weaver, 2000). Therefore, in order to

understand the performane of the neural ontrol system, one needs to onsider musles

and to di�erentiate between neural and musular ontrol ontributions. Furthermore,

musle like properties promise to o�er simpli�ations to the neural ontrol system, whih

might be exploited in walking mahine ontrol (p. hapter 2). Here musle models based

on data from the stik inset were applied to stik inset and robot simulations.

Ekeberg et al. (2004) employed musle models with linear fore-length and fore-

veloity harateristis, based on sparse data from Storrer (1976) and noted:

�[...℄ the simulation based on these data was not able to generate fast mus-

le ontration veloities that would have been neessary to generate appro-

priately fast swing movements [...℄ This is beause the linear fore�veloity

relationship used here underestimates the musle fore at high ontration

veloities. Future studies will address the trajetories during swing and

stane and the fore regulation to maintain body posture. At that stage, a

more aurate model of the non-linear nature of the musles will have to be

taken into aount [...℄�

(Ekeberg et al., 2004, p. 297-298)
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Here a more aurate Hill-type musle model is employed, based on a model by Blümel

et al. (2011a,b) and on more reent and detailed data of the extensor tibia musle in

the stik inset (Gushlbauer, 2009; Gushlbauer et al., 2007; Hooper et al., 2007).

To onform with the general requirement of the simulators used in the ontext of

this thesis, namely low omputational osts with su�ient auray, and to allow for an

easy transfer to robot hardware, the Hill-type musle model of Blümel et al. (2011b) was

�translated� into a neural network with equivalent input-output harateristis. Hereby

lever arm properties at the joint were taken into aount. Therefore, musle ativation,

joint angle and angular veloity were used as inputs and a single output orresponded

to the resulting joint torque. A modular neural network was hand-designed to repro-

due the input-output harateristis of the Hill model, onsisting of the following three

modules (p. Fig. 4.4):

• Two positively self-oupled neurons in series e�etively formed a seond order

in�nite impulse response (IIR) low-pass �lter (Hild, 2008), that, with appropriate

parameters, repliated the musle ativation funtion (Gushlbauer et al., 2007;

Hooper et al., 2007). Cp. Fig. 4.4 b for the �lters response to a square wave input.

• The sigmoidal transfer funtion of a single neuron was exploited, together with

appropriate input- and output-saling via weights and a shift via the bias, to

repliate the passive torque-angle properties of the musle. Cp. Fig. 4.4  for the

modules harateristis.

• A feed-forward neural network struture was hand-designed to approximate the

torque-angle, torque-veloity and torque-ativation harateristis of the musle

model. Its parameters were optimized by standard bakpropagation of error3

using the Java Neural Network Simulator (JavaNNS, Fisher et al., 2002). The

training and test set sizes were 3366 eah (6 ativation levels x 11 angles x 51

veloities). The �nal network displayed a quadrati error for the test set of 1:88 �
10� 4. Cp. Fig. 4.4 d for the module's input-output harateristis for four disrete

musle ativations.

To adapt the extensor tibia musle model to the other musle harateristis and to

investigate the roles of the di�erent musle model omponents in- and outputs of the

neural modules ould be shifted and saled. If e.g. the input veloity was set to a

onstant value of zero, the fore-veloity in�uene was disabled. In a similar manner all

sub-omponents ould be disabled or their harateristis hanged.

In ontrast to the above mentioned musle harateristis, the series elastiity om-

ponent was not onsidered here. On the one hand, this was due to the omputational

ost and possible resulting instabilities during simulation (Pearson et al., 2006). On the

other hand, the in�uene of the series elastiity on walking behavior is assumed to be

relatively small when ompared to the other musle model omponents beause it is sti�,

i.e. has a short length, when ompared to the ative musle fore (Gushlbauer et al.,

3Standard bakpropagation of error is a widely used method to train neural networks with a feed-
forward arhiteture, see e.g. Haykin (1999) for details.
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Figure 4.4.: a Struture of the modular neural network that approximated the input-output funtionality
of the extensor tibia musle of the stik inset (as found in e.g. Blümel et al., 2011b; Gushlbauer et al.,
2007) together with the lever arm properties at the femur-tibia joint. Despite the three inputs (I)
and one output (O) the network onsisted of three modules, approximating the ativation funtion, the
passive torque-angle and the ombined ativation-angle-veloity-torque harateristis. By adjusting the
in- and output synapti weights and bias values of these modules, harateristis ould be individually
shifted and saled. b-d Input-output harateristis of the three modules: b ativation dynamis,
 passive fore and d ombined ativation-angle-veloity-torque (shown for four disrete ativation
levels A). Note that musle output torques were given relative to maximum musle torques in the
positive veloity range, i.e. relative musle torques may exeed 1.0 (maximal relative torques in the
negative range reah ≈ 1:6)
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2007). Generally, the role of series elastiity in walking is smaller in smaller animals

(p. hapter 1) and smaller in slower walkers (Cruse et al., 2007).

Conerning the appliation to robotis, the use of the musle model presented above

together with a DC-motor raised several problems, whereby one was found to be fun-

damental: torque-angle and torque-veloity harateristis limited the maximum motor

torque outside of the angle and veloity optima, as shematially depited in Fig. 4.5 a.

Furthermore, in the stik inset extensor musle, for negative veloities the torque may

reah � 1:6 times the maximum torque at zero veloity. If this property shall be ap-

tured by the DC-motor it has to be saled up aordingly to allow normal maximum

torque prodution at zero veloity. Sine inreased motor torques inur other trade-o�s,

suh as an inreased mass, this is often not desired. In the ontext of this thesis the �rst

problem was simply aepted and for the seond problem the maximum torque was set

to that at zero veloity. This ut o� all higher torques at negative veloities but still

allowed higher torques for negative veloities at sub-maximal musle ativations or at

length ranges outside of the fore-length maximum. Further minor problems onern the

inherent torque-ativation and torque-veloity harateristis of the DC-motor. When

using the musle model, these have simply been disabled in simulation beause for a

transfer to hardware they ould be merged with the respetive musle harateristis.

Apart from the extensor tibia musle of the middle leg, detailed, yet more limited, data

is only available for its antagonist, the �exor tibia musle (Gushlbauer, 2009): It is muh

stronger than the extensor but has a slightly lower maximum veloity (p. table D.1).

Multiple open questions remained:

• How do maximum e�etive joint torques and joint angular veloities sale for the

other musles of the same leg and of other legs? It is e.g. known that the hind-leg

femur-tibia joint mainly performs extension movements during stane phase � are

the relative maximum joint torques and joint angular veloities reversed for this

joint in the hind-leg?
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4.1. Physial Simulator

Table 4.1.: Relative maximum joint torques that may be produed by the respetive musle (models).
Joint torque ontributions of antagonists are asymmetri and stronger for the stane musles (rows
olored in light-gray). Values other than those for the ML FTi joint are based on assumptions. Sine
HL FTi mostly performs extension movements during stane it is not lear if the antagonists relative
strengths should be reversed (olored in dark-gray)

Max. Rel. Torque

FL ML HL

ThC Pro 0.4 0.4 0.4

Ret 1.0 1.0 1.0

CTr Lev 0.4 0.4 0.4

Dep 1.0 1.0 1.0

FTi Flx 1.0 1.0 1.0 (0.4)

Ext 0.4 0.4 0.4 (1.0)

Max. Rel. Angular Veloity

FL ML HL

ThC Pro 1.0 1.0 1.0

Ret 0.7 0.7 0.7

CTr Lev 1.0 1.0 1.0

Dep 0.7 0.7 0.7

FTi Flx 0.7 0.7 0.7 (1.0)

Ext 1.0 1.0 1.0 (0.7)

• How do e�etive passive musle torques sale for the other musles?

• How are the ative and passive fore-length harateristis of antagonisti musles

shifted relative to one another (p. shematis of Fig. 4.5 b).

• How do multiple inhibitory and exitatory motor neurons interat in the ativation

of antagonisti musles?

• How do slow and fast musles �bers interat during loomotion?

• Whih role do neuro-modulators play during loomotion in any joint (p. hapter 1,

Belanger, 2005; Hooper et al., 2007; Mentel et al., 2008)?

Due to the many open questions the following assumptions were made: All antago-

nisti musle pairs had idential properties as the �exor-extensor pair of the middle-leg.

Stane phase musles, i.e. retrators, depressors and �exors, were always hosen to

have a maximum e�etive joint torque 2.5 times that of the swing phase musles and

a maximum e�etive joint angular veloity 0.7 times that of the swing phase musles

(p. table 4.1). An exeption was the hind leg femur-tibia joint where both possibilities

were tested.
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Figure 4.6.: Dimensions, joint working ranges and mappings of all legs of the robot AMOS-WD06 in a
dorsal and b posterior view. ThC joint ranges are in the horizontal plane, relative to the longitudinal
body axis and inreasing with retration. CTr joint ranges are relative to the horizontal plane, inreasing
with levation. FTi joint ranges are relative to the plane that inludes CTr and FTi joint axes, inreasing
with extension. Masses were as follows: thorax 0.8kg, oxa 0.065kg, trohanter and femur 0.065 kg and
tibia and tarsus 0.016kg. All joints were powered by servo motors of one type (max. fore = 0.3 [N],
max. veloity = 1.2 [ms])

4.2. Simulation of Biologial and Roboti Walkers

The three simulated walkers depited in Fig. 4.1 were employed in the simulation exper-

iments presented in this thesis. They did not only di�er in their sensori-motor equip-

ment, but e.g. also in their joint arrangement and even more in their relative saling as

shematially depited for body length and mass by the length of the bars in Fig. 4.1

below the simulator images. In the following, an overview and omparison of the spei�

implementations of the three simulators is given.

4.2.1. Simple Walking Mahine AMOS-WD06

The morphology of this simple simulated robot (see Fig. 4.6) was onstrained by the

physial properties of a rather simple physial walking mahine: Only two types of

sensors were employed (three angle position sensors and one foot ontat sensor per

leg). The robot was onstruted by assuming that di�erent legs (fore-, middle- and

hind-leg) have to ful�ll di�erent tasks and therefore need to have a distint morphology.
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Limited by the onstraints of the physial walking mahine (e.g. dimensions of the

motors), the only morphologial di�erenes were the attahment points on the body

and the initial orientations at the body as well as the angle ranges of the joints: The

fore-legs had a working range in front of the shoulder joint, the middle-legs around the

shoulder joint and the hind-legs behind the shoulder joint. These working ranges and

the joint arrangement (from proximal to distal: forward-bakward, upward-downward

and outward-inward) were similar to those of the stik inset (Cruse and Bartling, 1995).

It has to be noted however that the ThC joint was modeled as a hinge joint with its

axis parallel to the dorso-ventral axis and not as a ball and soket joint as it is realized

in the stik inset. Other details of the model, e.g. the type of motors (only one servo

motor per joint, no o ontration) and the length and masses of the segments di�ered

from those of the stik inset (see Fig. 4.6).

To allow for neural networks with tanh as transfer funtion (p. hapter 3) to ontrol

the robot, motor and sensor signals had to be mapped onto the interval [� 1;1]: They

were mapped in suh a way that the minimum angle possible orresponded to a value

of � 1 and the maximum angle to +1. For the ontat sensor this was di�erent: A

value of zero indiated �no ontat� and a value of � 0:5 �maximal ontat�, beause it

was realized by means of a very short ranged (0.8 [cm], 125 [ ◦] opening angle) infrared

distane sensor. Fore sensors were not used in ontrast to the two more omplex

simulators. Mapping onventions, i.e. whih sign orresponded to whih movement

diretion, and working ranges of the joints are indiated in Fig. 4.6. To aount for later

use on the hardware robot, arti�ial noise of 2% (gaussian distribution) was added to

all sensor- and motor-signals. Sine all simulated legs ontained three motors and four

sensors, all single leg ontrollers had four input- and three output-neurons.

In ontrast to the more omplex roboti model (p. setion below), the rail setup did

not allow sidewards movements. Additionally it di�ered in the update frequeny: this

simulator was updated with 100Hz and eah fourth step sensor and motor data was

exhanged with the neural net, resulting in a neural network update frequeny of 25Hz.

4.2.2. Modular Walking Mahine Otavio

Details of the robot hardware are given in von Twikel et al. (2006, 2012)4. Additionally,

in table D.1 detailed tehnial data of robot and stik inset are given side by side,

together with saling ratios: E.g. the total body mass was � 24000 times that of the

stik inset, whih is in the same order of magnitude as the ube of ratio of front- to

hind-leg oxa distane (� 18000, the robot does not have an abdomen like the stik

inset, therefore omparing total body length is not helpful), the ratio of maximum

stane phase joint torques (� 40000) and ratio of tibiae lengths (� 18000). This roughly
mathes the geometri similarity riterion and equal Froude numbers as a prerequisite

for dynami similarity (Alexander, 1989), e.g. when using maximum walking veloities

from restrited single leg stik inset preparations for omparison (Gabriel et al., 2003).

A summary of the sensor and motor equipment of the simulated robot is given in

4see also http://www.ikw.uos.de/� neurokybernetik (last visited: 02/28/2011)
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Table 4.2.: Sensor and Motor Equipment of the walking mahine Otavio. Sensors marked with * were
not used as ontroller inputs but only for analysis

Segment/Joint Sensors Motors

Body (x,y,z) oordinate sensor*

Lateral Torque to rail*

Dorso-Ventral Torque to rail*

Joints (3x) Angle DC motor

Angular Veloity (Antagonist-

Torque* ially

Torque Change* ontrolled)

Foot Contat

Table 4.3.: Mapping of sensor values to sensor neuron outputs in the walking mahine Otavio

Sensor in min in max out min out max

γ (angle) -15◦ 165◦ 0.0 1.0

β (angle) -90◦ 90◦ 0.0 1.0

α (angle) -90◦ 90◦ 0.0 1.0

FC (foot ontat) no ontat ontat 0.0 1.6

α0;β0;γ0 (veloity) -300◦/s 300◦/s 0.0 1.0

Joint Torques -10N 10N 0.0 1.0

(Joint Torque)' -200N/s 200N/s 0.0 1.0

Table 4.2. Other sensors were exlusively used for analysis and as inputs for �tness

funtions during evolutionary parameter optimization (see below). Sensor-outputs were

mapped onto sensor neuron (SN) inputs as spei�ed in Table 4.3. For motor neurons

no mapping was needed. To aount for a use on the hardware robot, arti�ial noise

of 1% (gaussian distribution) was added to all sensor- and 2% to all motor-signals used

as inputs to, respetively outputs from, the neural ontroller. All noise levels are given

relative to the respetive mapping ranges.

This roboti model allowed sidewards movements of the single-leg rail setup whih

ould be either solely damped for sidewards stepping experiments or equipped with a

spring-damper system for forward stepping experiments. This latter setup was used

to simulate lateral fore in�uenes of other legs (see Fig. 4.2). This allowed for small

lateral movements similar to hexapod walking in stik insets (p. Kindermann (2002)).

Up-down and sidewards rails inluded fore sensors to measure fores exerted by the leg.

Applying the strategy of inreasing sensor- and motor-noise levels to obtain ontrollers

that ould easily be transferred to the hardware platform was not su�ient, i.e. on-

troller parameters had to be substantially modi�ed during transfer to reprodue a similar

behavior in hardware (Patel, 2008; von Twikel et al., 2012; Zahedi et al., 2008). Itera-
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Figure 4.7.: Complex joint setup in the Otavio simulation. Note that the pre-stressed spring is only
present in the seond joint (CTr). Joint properties shown in red are not simulated due to stability
and/or speed reasons

tive testing revealed that the ative joint models (p. Fig. 4.7), had to be additionally

improved. Using single joint pendulum test setups, passive and ative joint properties

like passive and ative damping, spring properties, baklash and ativation to torque

and veloity harateristis were investigated and the results inorporated into the a-

tive joint model. Subsequently parameters were optimized. Further model properties

like spring oupling and rotational inertia were disarded due to improve simulation

stability. Instabilities arose due to a ombination of the disrete time simulation, the

desired high simulation speed and the multiple interating joints in the hexapod robot.

Employing this more sophistiated simulator during ontroller development showed

an improved transferability of ontrollers, i.e. only few parameters had to be tuned

during the transfer from simulator to hardware. At the same time neither speed (10-70x

real-time on a Pentium M 1.7Ghz Notebook) nor stability had to be sari�ed. For an

example of a ontroller transfer see Patel (2008); von Twikel et al. (2012).

This simulator was updated with 200Hz and every other simulation step sensori-motor

data was exhanged with the neural network ontroller, resulting in a neural network

update frequeny of 100Hz. Aounting for a later transfer to hardware, the optional

musle models were updated synhronously with the neural network, i.e. only with

100Hz.

4.2.3. Stik Inset Carausius Morosus

Detailed data of the simulated stik inset is given in table D.1, where it is diretly

ompared with that of the robot Otavio (p. also setion 4.2.2 above). In the follow-

ing, di�erenes to the Otavio simulator, not given in the tehnial data overview, are

presented.

If the stik inset model was driven without the optional musle model, a 2-mode

motor ativation (forward and bakward) was used, ompared to the 4-mode motor

ativation mirroring the DC-motor properties as used by the Otavio robot simulator

(p. Fig. 4.3 e). The resulting joint torque was simply the sum of the antagonisti

ativations. Like the roboti model, symmetri maximum veloities and torques were
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4. Embodiment in Dynami Simulations of Stik Insets and Robots

Table 4.4.: Leg plane rotation o�set angles in the stik inset simulation

Angle / Leg Fore-leg Middle-leg Hind-leg

 34◦ 37◦ 29◦

� 84◦ 92◦ 114◦

Table 4.5.: Mapping of sensor values to sensor neuron outputs in the stik inset model. Values are only
shown if the di�er from the roboti model Otavio

Sensor in min in max out min out max

β (angle) -60◦ 120◦ 0.0 1.0

α0; β0; γ0 (veloity) -900◦/s 900◦/s 0.0 1.0

Joint Torques -0.2mN 0.2mN 0.0 1.0

(Joint Torque)' -4N/s 4N/s 0.0 1.0

assumed for agonists and antagonists and both were set to the orresponding maximum

of both measured in the stik inset. By employing the optional musle models, this

symmetry ould be broken. To ompensate for a potentially missing stabilization by

a musle model, joint damping was introdued analogous to the robot damping. Pa-

rameters were hosen to stabilize the movement, i.e. to suppress unwanted osillations,

and to be as low as possible. Stati joint damping was set to 0.001m N m and quadrati

dynami joint damping to 0.001mNm

rad
).

As indiated in Fig. 4.2 b and explained in detail in Cruse and Bartling (1995) the

leg-plane (plane ontaining all leg segments due to parallel CTr and FTi joints) was

rotated by angles � and  resulting in a non-orthogonal ThC joint axis with a di�erent

orientation towards the thorax for fore-, middle- and hind-legs. Values taken from Cruse

and Bartling (1995) are summarized in Table 4.4.

Due to modi�ed joint axes orientations and resulting joint angle o�sets, when om-

pared to the roboti models, sensor ranges and mappings had to be hanged for the CTr

joint. Due to atuator saling di�erenes, joint veloity and joint torque ranges and

mappings had to be modi�ed as well. Values are supplied in Table 4.5.

The enter of mass of stik insets is approximately loated between or even behind the

hind leg oxae (p. table D.1). This potentially leads to stability problems in hexapod

walking. Real stik insets solve this problem by a tarsus attahment mehanism. This

system onsists of, on the one hand, the retrator unguis musle whih, upon ativation,

�exes the tarsal law Radnikow and Bässler (1991) and, on the other hand, adhesive

pads on the ventral side of the tarsi, whih work by ontat maximization due to their

miro-mehanis and a �uid seretion mehanism (Gorb et al., 2002; Sholz et al., 2008).

Espeially due to the �ne-tuned tarsal seretion, adhesion works well on slippery as

well as on rough surfaes (Dirks et al., 2010; Drehsler and Federle, 2006) and is very

eonomi from a metaboli point of view (Dirks and Federle, 2011). This tarsal adhesion

mehanism was funtionally repliated here by a serial ombination of a slider joint at
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4.2. Simulation of Biologial and Roboti Walkers

Figure 4.8.: Shematis of the implementation of the attahable tarsus of the simulated stik inset:
The tarsus was attahed to the tibia via a slider joint with spring damper properties. The tarsus ould,
upon ontat and motor neuron ativation, be attahed to the environment with a 3DOF damped ball
joint. Detahment ourred upon motor neuron deativation or a surpassed fore threshold

the tarsus and a ball and soket joint whih ould be attahed to the environment. The

slider joint had a spring onstant of 0.0001 N=m and a damping onstant of 0.01 Ns=m.

The ball joint had a damping onstant of 0.01 Ns=m for all 3DOFs.

In the real stik inset it is known that the retrator unguis of the foreleg is ativated

and deativated together with the �exor tibia. This is asribed to two mehanisms

(Bässler and Büshges, 1998): an exitation by load signaled via ampaniform sensillae

and an inhibition by a protrated leg position, signaled via ThC proprioeptors. The

question is if this mehanism is the same for middle- and hind-legs, beause there bipha-

si �exion-extension movements our during stane. Due to the simpli�ed mehanis

employed in simulation retrator unguis was simply ativated together with the depres-

sor musle whih allowed attahment throughout stane phase but timely detahment

for a smooth stane-swing transition. In further studies the modular approah should

be followed to ativate and deativate the retrator unguis depending on sensory sig-

nals. Foot attahment took plae if a physial ontat existed in simulation and the

orresponding attahment motor neuron (orresponding to the retrator unguis motor

neuron in stik insets) was ative above threshold. Detahment took plae if the motor

neuron was below threshold or a fore threshold was reahed. The latter was not relevant

for the simulations performed here, beause the attahment was very strong ompared

to the fores ourring during the simulation experiments. This mehanism is similar

to the one presented in Shilling et al. (2007). Additional to the tarsus attahment

mehanism, stik insets may stabilize their posture by using their �exible abdomen as

a �arrying wheel�. Therefore the stik inset simulator allowed ontats of abdomen
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4. Embodiment in Dynami Simulations of Stik Insets and Robots

Table 4.6.: Physial unit resaling fators that were applied to the stik inset simulator to obtain a
stable simulation

Unit Sale Fator

length 102

mass 105

fore 107

torque 109

veloity 102

aeleration 104

and environment, i.e. no terminate try signal was used in this ase (p. setion 3.3.4).

Due to the extremely small masses of the stik inset together with relative high

torques, simulations were initially very unstable. Stable simulations were ahieved by

two measures: on the one hand, all units were onsistently resaled (p. table 4.6) to

exploit the double preision numerial range of the physis engine5 (Smith, 2009) and, on

the other hand, the simulation update frequeny was doubled ompared to the Otavio

simulation. This meant that the simulator was updated with 400Hz and every fourth

step sensori-motor data was exhanged with the neural network ontroller, resulting in

a 100Hz ontroller update frequeny. The optional musle models were also updated

with 400Hz, di�ering from the Otavio simulation.

4.3. Simulation of Environments and Perturbing Conditions

Neural networks were developed and evaluated under �at terrain (E1) and multiple other

environmental onditions as depited in Fig. 4.9. Four types of perturbing onditions

were used in the ontext of this work: 1. The ground was fragmented into bloks that

varied in height relative to body suspension height (E2�E3). 2. External fores were

applied to the torso simulating up- and downhill walking (E4) as well as sidewards kiks

(E8). 3. Foot ontat (E5) and joint frition (E6) were inreased. 4. Noise levels on

motors and/or sensors were varied (E7). All environment parameters, suh as average

step height or distane, ould be randomized during evaluations and evolution. Details

are given alongside with the experimental data.

5Resaling was allowed beause size dependent fators, suh as e.g. aerodynamis resistane, were not
present in the simulation.
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reference:

simple plane

simple plane

+ ditches

external force

simulates uphill /

increased mass

simple plane

+ bumps

frictionless

periods

F

Figure 4.9.: Example environments and perturbing onditions E1�E8 used during evaluation of the
behavioral performane of robot and stik inset simulations driven by neural networks
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5. Evolved Single-Leg Neuro-Controllers

As a prerequisite for developing neural ontrol for walking mahines that are able to

autonomously navigate through rough terrain, arti�ial struture evolution is used to

generate various single leg ontrollers. The struture and dynamial properties of the

evolved (reurrent) neural networks are then analyzed to identify elementary mehanisms

of sensor-driven walking behavior. Based on the biologial understanding that legged

loomotion implies a highly deentralized and modular ontrol, neuro-modules for single,

morphologial distint legs of a hexapod walking mahine were developed by using a

physial simulation. Eah of the legs has three degrees of freedom. The presented

results demonstrate how extremely small re�ex-osillators, whih inherently rely on the

sensori-motor loop and e.g. hysteresis e�ets, generate e�etive loomotion. Varying the

�tness funtion by randomly hanging the environmental onditions during evolution,

neural ontrol mehanisms are identi�ed whih allow for robust and adaptive loomotion.

Relations to biologial �ndings are disussed.

5.1. Approah

The prime intention of the experiments desribed in the following was to �nd examples

of neural mehanisms whih allow physial, biologially-inspired mahines to show har-

ateristis of biologial loomotion. Using arti�ial evolution it turns out that there are

many di�erent mehanisms realizable with larger as well as smaller networks, and only a

few of them, those whih were ompletely analyzable, are presented here. This inludes

that it was not tried to identify the �globally optimal� solution for the task, believing

that there is no onvining argument for benhmarking single leg ontrol. Thus, a sta-

tistial evaluation over a large number of evolution runs, as for instane done in (Psujek

et al., 2006), was not onsidered here. Instead, it was intended to ompile a atalog of

possible robust ontrol mehanisms, the performane of whih should be judged when

in ooperative ation for driving a multi-legged walking mahine.

Inspired by work reported for instane in (Ekeberg et al., 2004), loomotion ontrollers

were developed and evaluated for single three Degree Of Freedom (DOF) legs of the phys-

ial walking mahine AMOS-WD06 (p. setion 4.2.1) to later develop ontrollers for

the whole walking mahine by oupling the single leg ontrollers (p. hapter 8). This

approah has already been employed before (Beer and Gallagher, 1992; Brooks, 1989;

Jaob et al., 2005; Shmitz et al., 2001). Here various tools and tehniques have been ap-

plied, inluding physial simulation (p. setion 4.2.1), struture evolution of (reurrent)

neural networks (p. setion 3.3), and analysis of the resulting neuro-dynamis.

During struture evolution both the number of inter-neurons and synapses was varied,

only the number of input- (4) and output-neurons (3), orresponding to the available
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5. Evolved Single-Leg Neuro-Controllers

sensors and motors, was kept onstant. Seletion of ontrollers was with respet to

walking distane in a given time (p. setion 3.3.4), and robustness in the sense that equal

performane should be ahieved under di�erent environmental onditions (obstales,

holes, et., p. Fig. 4.9 E1-E3 for examples). Controllers were evaluated in seven di�erent

environmental senarios with the �tness obtained in eah environment being added

to the total �tness. Therefore, the total �tness value was a good measure for the

general performane of the ontroller. Poor or espeially high �tness values for single

environmental senarios were good indiations for speialized ontrol. Unontrolled

vertial movement of the body was not observed during evolution, therefore body height

was not diretly inluded in the �tness funtion. Attention was paid to ontrol the size

of the evolved networks by means of ost terms, punishing large networks and high

onnetivities. Most of the e�etive neuro-ontrollers turned out to be quite small and

larger ones did not perform better.

After several evolution runs (eah about 250 generations) the performanes of the

best networks were ompared with eah other and, if available, with some referene on-

trollers. Referene ontrollers were either onstruted Central Pattern Generator (CPG)

ontrollers (see Fig. 5.2 b) or a network being an equivalent of the neuro-biologially

based �nite state model found in (Ekeberg et al., 2004) (see Fig. 5.2 a). The overall best

performing networks (generalists in the sense that they showed robust behavior under

hanging environmental onditions) or those having a partiular interesting struture

(e.g. speialists in overoming high obstales) were subjeted to further analysis af-

terwards. The analysis inluded behavioral as well as neural aspets, e.g. lesion- and

stimulation-methods. Analysis of the ontrollers showed that sensory inputs and dy-

namial e�ets, like hysteresis, play a major role for walking pattern generation and for

a robust behavior under hanging environmental onditions. In partiular most of the

ontrollers worked without a CPG and instead made use of the physial properties of

the body and the environment via the sensori-motor loop (Beer and Gallagher, 1992;

Brooks, 1991; Chiel and Beer, 1997).

5.2. Mehanisms of Forward Walking

A multitude of single leg ontrollers performing equally well in propelling the body

forward were developed. In the following the di�erent motor patterns generated by

prototypial fore-, middle- and hind-leg-ontrollers are shortly desribed to point to

divergent requirements in terms of motor ontrol for the di�erent leg types. Subsequently

two referene ontrollers and two rather omplex ontrollers developed in the arti�ial

evolution experiments are introdued. Finally two extremely small (in terms of neurons

and synapses) example ontrollers are presented and analyzed in detail to demonstrate

the mehanisms disovered.

A fore-leg movement on even terrain generated by a typial fore-leg ontroller an be

desribed as follows (ompare Fig. 5.1 a): At the Anterior Extreme Position AEP the

fore-leg ontroller has just ompleted its swing phase and made foot ontat with the

ground. The CTr joint (see Fig. 4.6 for joint terminology) has already started moving
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Figure 5.1.: Di�erenes in motor-neuron output between prototypial forward walking (a) Fore- (FL),
(b) Middle- (ML) and () Hind-legs (HL). Motor-neuron output (centre = � 1 , outside = + 1 ) is plotted
against the phase of a swing-stane step yle (0◦ is de�ned as the time of �rst maximum in ThC motor
neuron output after transition from minimum output, angles are thus within the yle and not joint
angles). FL and ML motor-neuron outputs are similar, beause they both perform a pulling movement
to propel the body forwards. The HL instead employs a pushing movement. For mapping onventions
p. setion 4.2.1. Posterior Extreme Position (PEP), Anterior Extreme Position (AEP)
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5. Evolved Single-Leg Neuro-Controllers

downwards (negative motor output) to support the body whereas the FTi and the ThC

joint only now start moving inwards (negative motor output) respetively bakwards

(positive motor output) and exert fore on the ground to pull the body forwards. After

the leg has aelerated and almost reahed the Posterior Extreme Position PEP the

CTr joint is ativated to move the leg up when it has reahed the PEP. One the leg

is in the air, the ThC and FTi joints are moved forwards respetively outwards. The

CTr joint is then ativated to move downwards so that the foot reahes the ground

at AEP. At this point the yle starts anew. The phase relations between the three

joints of the middle-leg are almost idential to those of the fore-leg (ompare Fig. 5.1 b).

The middle-leg exerts its fore to the ground more parallel to the body than the fore-

leg whih rather pulls the body forward with its foot being in front of the body. On

the other hand the hind-leg movement di�ers signi�antly from those of the fore- and

middle-leg beause it moves the body forward rather by pushing than by pulling it

(ompare Fig. 5.1 ). During the stane phase the CTr joint moves downward (negative

motor output) and the FTi joint outwards (positive motor output). The ThC joint

supports this bakward movement but starts with the retration (positive motor output)

only when the other two joints already started exerting a bakwards direted fore.

Consistent with this observation the hind-leg ontrollers di�ered stronger from the fore-

and middle-leg ontrollers than those two in between.

Apart from the di�erenes between the ontrollers of fore-, middle- and hind-legs,

similarities ould be noted, e.g. the motor neurons of all ontrollers approximately

ated as toggle swithes, either being ativated maximal positive or maximal negative.

Sine the motor output only represents the target value (referene angle value for the

servo motor), the atual movements di�ered, due to the inertia of the body, the frition

of the ground, et., signi�antly from the motor output rather resembling a sine or

zig zag urve (see Figs 5.3 � 5.6). In addition to some parameter optimized referene

ontrollers (see Fig. 5.2 a+b) a large quantity of ontrollers with diverse strutures for

fore-, middle- and hind-legs was developed by arti�ial evolution. Some of the ontrollers

were rather omplex (see Fig. 5.2 +d) and sine their performane was not superior

to that of muh smaller ontrollers, only small ontrollers were subjeted to a detailed

analysis. Results for the analysis of two small ontrollers is presented hereafter.

Two key mehanisms in nets without inherent neural osillators were found responsible

for the osillatory motor output during walking. The �rst mehanism involves hystere-

sis through neural elements whih is demonstrated on one of the simplest ontrollers

that was found in the ourse of the evolution experiments. This fore-leg ontroller is

depited in Fig. 5.3 and it onsists of one sensory input from the ThC angle sensor, one

self onnetion (larger than one) and all motor neurons onneted in series with one

onnetion being inhibitory. That makes a total of four neurons (inluding the sensor

neuron) and four synapses being involved in the ontrol of the leg. The performane

of this ontroller is omparable to that of more omplex ontrollers (see e.g. Fig. 5.2).

Important is the fat that no neural osillator an be found in this struture only leaving

the possibility of an osillation via the environmental loop (1-6-7-5-1). The motor signal

analysis showed that some kind of bistable element exists in the ontroller. One possible

realization is a neuron with a self onnetion that displays a hysteresis e�et. For a hys-
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Figure 5.2.: (a)+(b) Two parameter optimized referene ontrollers: (a) A simple neural interpretation
of the �nite state mehanism found in (Ekeberg et al., 2004), optimized for a hind-leg. (b) SO(2)-
osillator (Pasemann et al., 2003) as CPG with evolutionary optimized parameters and onnetions to
the motor neurons of a fore-leg. ()+(d) Two examples of struturally evolved () hind- and (d) middle-
leg ontrollers that were not onsidered for further analysis beause of their omplexity. They were
not able to produe stable walking without sensory inputs. Neither their nor the performane of the
referene ontrollers was superior to the small ontrollers presented in this hapter. Open triangles
denote exitatory synapses, small �lled irles inhibitory synapses
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Figure 5.3.: Single Leg ontroller (fore-leg) with a neural hysteresis element (self-onnetion larger than
one) and a feedbak loop via the environment: (a+b) neuron-outputs during walking on even terrain.
The blak bars below sub-�gure a denote stane phase. () Struture of the network. Note that only
one sensor gives input to the net. The dashed line denotes feedbak via the body and the environment.
(d) Hysteresis as obtained in bifuration studies for a single neuron with self-onnetion w = 1 : 4 2

(iterations n = 1 000, inner urve) and hysteresis under loomotion (transient ondition, outer urve) of
neuron six. Shown is the output of the neuron against its input

teresis e�et to take plae the self-onnetion has to be larger than plus one (Pasemann,

1993). Suh single neuron hysteresis elements are found in many of the leg ontrollers,

irrespetive of their funtion as fore-, middle- or hind-leg ontrollers. Its possible role in

loomotion ontrol is as follows: In this partiular net (see Fig. 5.3) the entral neural

element is neuron six whih reeives the only sensory input, has a self onnetion greater

one and therefore is a hysteresis element. It is also the �rst element in the hain of all

motor neurons. The other motor neurons have the same phase or a phase shifted by

180◦ ompared to neuron six.1 Neuron seven is in phase with neuron six, neuron �ve

in para-phase. This suggests to take a loser look at the role of the hysteresis element.

Therefore the output of neuron six was plotted against its input (see Fig. 5.3 d), one

for input sequenes during normal loomotion and one for a sine-funtion with a high

number of iteration steps as the input. The �rst thing that may be noted is that the

hysteresis element may aount for the observation of a bistable element. This is due

to the fat that basially two stable �xed points exist in the hysteresis domain either

pulling the output of the neuron towards � 1 or � � 1 depending on the history of

the system. As an be seen in Fig. 5.3 d an important di�erene exists between the

hysteresis urve obtained during a bifuration study and the one under experimental

onditions. This is aused by the former hysteresis ating as an attrator whih is never

1Of ourse they are additionally shifted by either one or two time-steps.
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Figure 5.4.: Single Leg ontroller (hind-leg) without any neural feedbak and two environmental feed-
bak loops: (a+b) neuron outputs during walking on even terrain. The blak bars below sub-�gure
a denote stane phase. () Struture of the network. The dashed lines denote feedbak via the body
and the environment. (d, e + f) Osillations our without neural feedbak. The e�et results from
the time-delay of the motor-sensor interation, from the nonlinear transfer-funtion of the neurons and
from the large magnitude synapses

reahed under real onditions beause the input values hange too fast. One an there-

fore regard the frequeny of the input signal as an additional parameter determining the

transient behavior of the system. If e.g. the walking movement is slower (faster), the

swith from the negative to the positive stable �xed point and vie versa is ompleted

earlier (later) relative to the phase of the input signal. All motor neurons at as bistable

elements, neurons seven and �ve even stronger than neuron six. This an be explained

by the strong onnetion (w = 4 : 7 6 ) from neuron six to neuron seven whih ampli�es

the signal from neuron six therefore pushing it faster to the maximum/minimum of the

nonlinear transfer-funtion t a n h . Note that, unlike in most of the biologial systems,

the ThC-joint bakwards movement starts at the end of the swing phase (see Fig. 5.3 a),

shortly before the foot touhes the ground. See the �Disussion� setion for a omment

on this.

The seond mehanism found in the evolved single leg ontrollers also involves osilla-

tions indued by the sensori-motor loop but without any neural feedbak being involved.

A single leg ontroller, in this ase a hind-leg ontroller, in whih no neural feedbak

ours is depited in Fig. 5.4 . Although only four synapses exist, mapping three of

the four sensors, inluding the foot ontat sensor, to the three motor neurons, this

simple feed-forward struture makes up the funtional ontroller. In a simpli�ed view

two loops exist: The �rst passes through the environment twie (1-6-2-5-1), the seond

only one (7-4-7). In reality both loops are oupled through the environment, e.g. the

foot ontat is not only dependent on the FTi-motor, but also on the CTr-motor and

the environment. The motor outputs of the net (see Fig. 5.4 b) suggest that bistable
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5. Evolved Single-Leg Neuro-Controllers

elements exist in the ontroller and therefore not only in ontrollers with neural hystere-

sis elements but also for ontrollers without any self onnetions, as for example shown

in Fig. 5.4. Here, a ombination of the motor-environment-sensor interation, strong

weights and the nonlinear sigmoid transfer funtion have been found to generate the un-

derlying mehanisms. In Fig. 5.4 d�f the loop 5-1-6-2-5 is looked at in detail. Subplots

d+e show (inverse-)t a n h -like urves whih are steeper than the normal t a n h beause

of the strong onnetions (w 61 = 4 : 6 9 and w52 = � 9 : 6 7 ). These steep t a n h -like urves

push the majority of the inputs to values lose to plus and minus one, respetively. This

explains the bistability, but not the slow osillations. To understand the indued slow

osillations depited in subplot f, the properties of the motor-environment-sensor loop

have to be onsidered. In a simpli�ed point of view, the loop through the environment

ontains a time delay element whih, together with the steep t a n h -like transfer signal,

aounts for the slow osillations observed.

It has to be noted that the two mehanisms desribed above were not unique to the

ontrollers belonging to one of the leg types and no predominant expression of one of

the mehanisms (sensori-motor loop with or without neural feedbak) in ontrollers for

one of the leg types was observed.

5.3. Mehanisms of Adaptivity

In the previous setion hanging environmental onditions have been negleted in the

study of single leg ontrollers, although all of the ontrollers were developed under

randomized environmental onditions (obstales and irregular footholds, see above). To

larify if and how the ontrollers adapt to a hanging environment, their performane

in environments with obstales and gaps has been studied. Note that pure speialists

were not onsidered here, meaning that all analyzed ontrollers are robust in the sense

that they are able to navigate in all seven environmental senarios studied (see above).

Nevertheless they an be speialists in the sense of having a partiular good performane

in a subset of the senarios. First of all, it was found that the ontrollers ontaining

a sensori-motor loop somehow reat on the environment, e.g. on steps or gaps. The

ontrollers e.g. prolong their swing phase when enountering an obstale or inrease their

frequeny when the leg looses ground ontat. To further investigate if any �meaningful�

reations ourred in the environment interation the ontrollers were subjeted to a

detailed analysis. Two examples, one for an obstale and another for a gap situation,

are given below.

In Fig. 5.5, it is shown (for a middle-leg) how the dynami interation with the

environment an enable a ontroller to overome an obstale. Note that similar obstales

were part of the environments during evolution and therefore an impliit part of the

�tness funtion. Nevertheless the obstale height is novel beause all obstales presented

during evolution were less high than the one shown here. First, the behavior under

normal onditions (no obstales in the way) is explained to subsequently depit the

hanges that our during an obstale ontat. Under normal onditions, the walking

pattern is generated by the 5-1-6-2-5 loop whih passes the environment twie and has
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two hysteresis elements: During the stane phase motor neuron �ve is ativated (� +1)
and with a dead time (and a nonlinear transformation), aused by the properties of

the motor and the environment, the ativation is transferred into an atual bakward

movement. This bakward movement is in turn registered by the angle sensor one,

whih then ativates (positive weight) motor neuron six. The dead time aused by the

environment and the hysteresis element ensures that the CTr joint is only moved upwards

at the end of the stane phase. This movement in turn is registered by angle sensor two

and results in a negative ativation of motor neuron �ve (negative weight) ausing the

joint to move forward. Additionally, motor neuron seven is ativated (negative weight).

It is important to note that a dead time auses the FTi only to be moved outwards

with a delay relative to the forward and upward movements of the ThC and CTr joints.

The result is that the foot is not lifted high enough to overome the obstale disussed

below. Finally, the forward movement negatively ativates neuron six, resulting in a

downward movement, in turn ausing a positive ativation of neuron �ve and the yle

starts anew.

During ontat with an obstale, the leg hits the obstale in late swing phase when

the CTr joint is about to move down and the FTi joint is not bend far outwards yet.

Then the foot annot overome the obstale but rather is positioned right in front of the

obstale. In the following stane phase the body is pushed forward but the movement

is restrited beause of the obstale being in the way (ThC joint does not reah its

hindmost position). The hysteresis of neuron six ensures that the CTr and FTi joints

are ativated with the normal amplitude. Swithing bak to swing phase the foot hits

the obstale again and the hysteresis of neuron �ve keeps up the forward movement

(positive feedbak). Following from this the ThC and the CTr joint are ative longer

than usual. But sine the dead time of the swith from negative (downward) to positive

(upward) motor ativation of the FTi joint is roughly onstant, its positive ativation

now overlaps with that of the two other joints (see arrows in Fig. 5.5 a+b for atual

movement and motor ativation). In total this overlap auses the foot to be lifted

higher and in a further bakwards ThC position than under normal onditions and the

leg suessfully overomes the obstale. One has to note that the reation is phase

dependent, i.e. the foot is only lifted up and the swing phase prolonged if the leg hits

an obstale during early swing phase, otherwise it terminates the swing phase as under

normal onditions without lifting the leg any higher than usual. This is beause in late

swing phase the ThC joint has moved forward far enough to result in a negative output

of its angle sensor and therefore it auses the CTr joint to move downwards.

In the ase displayed in Fig. 5.6, the dynami environment interation auses the

ontroller (hind-leg) to reposition the leg to �nd support for foot ontat. Neuron six

takes a entral role in this behavior: Under normal onditions its ativation is determined

by a ombination of the ThC motor neuron, the ThC sensor neuron and the foot ontat

sensor outputs and by its own exitatory self-onnetion (hysteresis element). The ThC

joint an in�uene neuron six via its motor- and sensor-neurons in both a negative and

a positive way whereas the foot ontat sensor an either have a negative in�uene

(negative weight) or no in�uene at all. Note that the synapse from the foot ontat

sensor weighs stronger than both synapses from the ThC joint together. That means if
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Figure 5.5.: A dynami environment interation enables a foreleg-ontroller to raise its leg higher then
usual when enountering a step. One sequene where a step is overome is shown here: (a+b) Time-plot
of Sensor- and Motor-neurons. The arrows point to the overlap in motor neuron output of neurons 6 and
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a when overoming the obstale (point 3 in time) ompared to situations where it is not (point 1+2
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80



5.3. Mehanisms of Adaptivity

-1

 0

 1

N
e
u

ro
n
-O

u
tp

u
t

-1

0

1

0 50 100 150

N
e
u

ro
n
-O

u
tp

u
t

time [steps]

Sensor1 2 3

1

2

4

3

7

5

6

Motor

1

3

2

a

b

c d

1.53

S

M

H

ThC Joint (1) CTr Joint (2) FootFTi Joint (3)

1.14

-1.61

-1
.9
6

0
.6
9

0.76

-2
.8
9

1 2 3 �

� � �

Figure 5.6.: A dynami environment interation enables this hind-leg-ontroller to �nd supportive
ground when enountering a gap. One sequene where a gap is rossed is shown here: (a+b) Time-plot
of Sensor- and motor neurons. The blak bars below sub-�gure a denote stane phase. () Hind-leg-
ontroller. (d) Shemati drawing of the leg-gap interation. The numbers orrespond to the points in
time in a + b. For details see text

81



5. Evolved Single-Leg Neuro-Controllers

there is no foot ontat the movement of the CTr joint roughly follows that of the ThC

joint (with a time delay). If there is no foot ontat at all the CTr joint lifts the foot of

the ground too early during the stane phase. This is ounterated by the foot ontat

whih negatively ativates neuron six and subsequently keeps the joint down. Only when

the foot ontat is lost, the joint may move upwards. If no foot ontat is made in the

beginning of the stane phase, the leg quikly enters the swing phase, again resulting in

a higher frequeny swing-stane yle. If the foot makes a ontat with the ground while

it is being pulled bak (note that the CTr and FTi joints at synergetially by moving

together either downward and outward or upward and inward) positive feedbak puts it

bak on the ground. This an result in a searhing-like movement (see points 1, 2 and

3 in time, Fig. 5.6 a,b+d). One su�ient ground ontat is made the swing phase is

�nished.

Network Size Versus Redundany Many of the evolved ontrollers were very small

and often had very few sensory inputs. Beause their performane was omparable

to more omplex ontrollers, the question arose what partiular advantage ould result

from a higher omplexity. One experiment was done to test the hypothesis that a higher

omplexity and more sensory inputs make the ontrollers more robust and less prone

to failures due to sensor outages. In Fig. 5.7, the movement of the joints is shown for

two di�erent ontrollers under loomotion onditions. During the experiment all sensors

giving input to the net were stimulated one after another and �xed to prede�ned values

to see if the loomotory movements would stop. The top four plots show the movements

resulting from a more omplex ontroller like that desribed in Fig. 5.2a. It an be seen

that the ontroller tolerates sensor values to be �xed over a wide range (note that a

negative input via the foot-sensor does not our under simulation onditions) without

terminating loomotory movements. In ontrast, the stimulation of the only sensory in-

put to the net from Fig. 5.3 results in an immediate breakdown of osillatory movement.

Altogether, this underlines the hypothesis of advantages through redundany.

5.4. Transfer of Results and Approah to a Robot With an

Antagonist Motor Interfae

Fig. 5.8 demonstrates that the approah presented in this hapter ould also be applied

to the more omplex roboti model Otavio (p. setion 4.2.2), using e.g. antagonisti

motor interfaes (p. setion 4.1.3). When transferring results from the experiments

presented above, bistable elements as premotor elements were found to be essential to

ensure antagonisti ativation of the motor-neurons of one joint (p. Fig. 3.7). For some

ontrollers additional intra-joint feedbak was neessary during the ontroller transfer

to ompensate for the missing servo-ontroller. The resulting leg ontrollers ould also

be simply be transferred to hardware with only minor parameter tuning, preserving

qualitatively the same behavior (p. Chakraborty, 2007; Patel, 2008, for more examples

and details).
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5.5. Disussion

Though in reent years the information available on the neural ontrol of walking has

inreased rapidly, important parts in the �puzzle� onerning the struture and meha-

nisms of neural walking ontrollers still remain unlear (Orlovsky et al., 1999). Researh

on the stomatogastri system for example has shown the omplexity of a neuro-biologial

system (see e.g. Heinzel et al. (1993)) that, in omparison to the ontrol of walking, is

onsidered to be �simple�. For this reason several researhers have reently begun to take

a syntheti approah (Dean, 1998) by means of simulations, mainly to test hypotheses

from biology (Dean et al., 1999). Additional to the test of hypotheses the approah taken

here onsiders simulation as a tool to �nd new hypotheses and therefore alternative per-

spetives to a problem: Arti�ial evolution was not only used to perform a parameter

optimization on a given struture, e.g. on a biologial inspired ontroller, but mainly

to develop ontroller strutures from srath. The only prior knowledge given was the

morphology of the simulated robot inluding its sensors and motors, the type of neural

elements allowed for the ontroller, the initial sensor- and motor neurons orresponding

to the sensors and motors of the robot and the optimization goal (�move forward as

fast as you an�). Nevertheless one has to note that the ontext was wider than in

many other studies beause of the randomized environment. The evolved strutures are

distint to biologial systems in that ontrol strutures are not optimized for a whole

bunh of tasks but only for one spei� task (Dumont and Robertson, 1986). The anal-

ysis of evolved strutures therefore allows to �nd out about the very priniples of a well

de�ned ontrol problem. Further on, arti�ial evolution does not narrow the possible

outome, beause it does not build upon strutures originating in evolutionary history

and possibly developed for totally di�erent tasks. Finally, arti�ial evolution inherently
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makes use of the sensori-motor loop therefore taking into aount the properties of the

body and the environment.

Controllers were developed for three legs, eah with a distint morphology whih was

aused by di�erent operating ranges of the ThC joint relative to the longitudinal body

axis. Consistent with the results of (Ekeberg et al., 2004) the di�erenes between the

movements of the hind-leg and the two other legs (middle- and fore-leg) were muh

more pronouned than that between the middle- and the fore-leg. This is due to the

hind-leg performing a �pushing� movement, albeit the other two legs rather perform a

�pulling� movement. Consequently the ontrollers for the hind-leg on the one side and

for the fore- and middle-leg on the other side are not ompatible. One suggestion is

that this di�erent funtionality an be ahieved by simply hanging the signs of spei�

onnetions in the ontrollers. This will be investigated in a forthoming publiation.

Conerning the movement trajetories of the simulated legs, a di�erene ould be

found when ompared to biology: The ontroller depited in Fig. 5.3 aused the leg to

start retration at the end of swing phase, shortly before touhdown. To the authors

knowledge this has not been observed in biologial systems, e.g. in stik insets the

legs always exert a forward direted fore during touhdown (Cruse and Bartling, 1995).

Hene here the funtion may either be to redue the breaking fore during touhdown

or simply to derease the operating range of the ThC joint during stane to � 38◦ � 95◦

(ompare Fig. 5.3 a) whih is lose to the one observed in freely walking stik insets

(� 36◦ � 100◦, Cruse and Bartling (1995)).

The diversity of evolved ontroller strutures, both in terms of number of inter-neurons

and number and topology of synapses, ranged from strutures that were too omplex

to be analyzed to extremely small and simple strutures. Note that there was an evolu-

tionary pressure (ost term in the �tness funtion) that favored smaller ontrollers. But

the speed term was by far the most important term in the �tness funtion. Therefore

only small nets were favored that performed equally well as larger ones. Common to all

ontrollers was the existene of a sensori-motor loop passing through the environment.

Interestingly, none of the evolved larger strutures (see e.g. Fig. 5.2) showed a superior

performane (in terms of the task onsidered) when ompared to the best performing

smaller strutures. Some of the smallest ontrollers (see e.g. Fig. 5.3) were also some of

the best performing ontrollers.

Two mehanisms have been found to be important in the evolved loomotion on-

trollers: 1. The exploitation of body and environment properties, like the physial

inertia of the body, by inluding sensori-motor loops, and 2. the non-linearity of the

neural elements, generating in partiular hysteresis e�ets. These mehanisms aused

the slow osillations neessary for smooth walking. Furthermore, they aused the motor

outputs to at roughly like bistable elements, either being fully ativated to move to one

side or to the other. This e�et is also termed �relaxation osillator� or �bistable sys-

tem� and agrees with the literature on stik inset motor ativation, i.e. the stane-swing

transition (Bässler and Büshges, 1998).

The hysteresis e�et was aused by a neural element having an overritial positive

(> 1) self-onnetion (see e.g. Fig. 5.3 and Pasemann (1993)). In biology hysteresis is

observed in sensory neurons (Zill and Jepson-Innes, 1988), entral neurons (Kononenko
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and Dudek, 2006), motor neurons (Lee and Hekman, 1998) and basially all viso-

elasti systems, e.g. in musles (Kostyukov, 1998). In biologial neurons hysteresis

is explained by a ombination of the kinetis and dendriti distribution of ion hannels

(Lee and Hekman, 1998) and usually ours in ombination with bistability (Toth et al.,

1998). In some ases hysteresis is onsidered as a problem to the nervous system that

has to be ompensated for (Hatsopoulos et al., 1995), in others as a useful mehanism

that e.g. supports the swith between di�erent behaviors (Toth et al., 1998) or that

ompensates for undesired musle properties (Zill and Jepson-Innes, 1988). In the neural

ontrollers presented here, hysteresis serves to produe robust bistable systems that show

a short term memory e�et, noise redution and a time delayed swithing. Therefore

the hysteresis supports an e�ient swithing between two movement diretions and

e�etively adds to the �time delay� arising from the sensori-motor loop (see below).

The ontribution of the sensori-motor loop was as follows: Strong weights in on-

netion with the bounded tanh funtion aused bistability by leading to a very steep

overall �transfer funtion�. A time delay in the loop through the environment due to

the physial inertia of the body, for example the delay between motor ommand and

atual movement, aused the slow osillations. Theoretial onsiderations support the

importane of the sensori-motor loop, the nonlinear neural elements and the time delay

and suggest that the total feedbak loop has to be positive to allow bistability to our

(Cruse, 2002; Prohazka et al., 1997).

In all of the presented ontrollers a sensori-motor loop was needed to drive the osilla-

tion, therefore representing Re�ex-Osillators. None of the evolved networks ontained

a Central Pattern Generator (CPG). Our results are therefore onsistent with those of

(Beer and Gallagher, 1992): They showed that the struture of single leg loomotion

ontrollers developed by arti�ial evolution depends on the availability and reliability of

sensory feedbak during evolution. When reliable sensory information was available (like

it was always the ase in this study), re�ex-osillators were developed, otherwise either

CPG's or a mixture of both. At least two explanations are oneivable: 1. A re�ex

osillator represents the superior solution to the problem. 2. The boundary onditions

(evolution parameters, �tness funtion et.) either favored the development of re�ex

osillators or they interfered with the formation of a CPG. It is argued, that CPGs pro-

duing the quasi-rhythmi walking patterns �are not only unneessary but ould even

ause the behavior to deteriorate in unpreditable situations� (Cruse, 2002, p. 278).

Surprisingly the omparison of the re�ex ontrollers with some onstruted, param-

eter optimized, CPG ontrollers (not disussed in this paper, but see Fig. 5.2 b for

an example) demonstrated an approximately equally good performane when averaged

over di�erent environmental senarios. CPG solutions showed a �brute fore� approah

where walking movements were only driven with onstant veloity, independent of the

environment (as per de�nition of the CPG). In ontrast, the re�ex osillators displayed

adaptivity under hanging environmental onditions (see below). Assuming that both

are equally well suited for solving the task, the re�ex ontroller would have had the

advantage of less onnetions and less internal neurons, as was shown by (Beer and Gal-

lagher, 1992). In that ase the ost funtion would have favored the re�ex ontrollers.

But in some runs there was no ost funtion restriting the size and the onnetivity
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of the neuro-ontrollers and still no neural osillators emerged. Therefore under the

given simulated physial boundary onditions the re�ex ontrollers might have the ad-

vantages of a simpler struture, resulting in a better evolvability, and of adaptivity in

ertain environmental situations.

For several biologial systems it has been established that a CPG an, without any

sensory input, generate the rhythm responsible for loomotion (e.g. in lampreys, see

Grillner et al. (1998)) or for the stomatogastri system of rustaea (Selverston et al.,

1999). In other animals, suh as the stik inset, CPGs have been found but their overall

ontribution to loomotion is still unlear (Büshges, 2005). It is believed that very

fast running animals rather rely on CPGs, with sensory inputs ating only modulatory,

whereas animals, that walk slowly and possibly on rough terrain, to a stronger extent rely

on sensory inputs to generate the loomotion motor pattern (Delomyn, 1999). For very

fast movements the sensory feedbak in biologial organisms is too slow (Cruse, 2002)

and therefore CPGs beome neessary. In this ase neural ompensation of �mismathes�

between environment and motor ommands is not su�ient and has to be augmented

by intrinsi properties of the muso-skeletal system (Jindrih and Full, 2002). This

problem does not hold for arti�ial systems, suh as the one employed here, where

signal transmission is generally fast enough.

�How do the neural mehanisms of the demonstrated ontrollers ompare with those

known in the stik inset?� �What is the reason that we do not �nd three entral rhythm

generating networks ontrolling the three main leg joints?� In answering these questions

we argue that 1. The role of the joint CPGs ould so far not be demonstrated under real

(in ontrast to the so-alled �tive) walking onditions (Büshges et al., 1995) leaving

the questions unanswered of how big their ontribution is to overall pattern generation.

2. A possible role of the CPGs is to prevent o-ontration of the antagonisti musles

by means of alternation of ativity (Büshges et al., 1995). In our simulation the use

of a single motor per joint exludes the possibility of o-ontration and the bistability

of the motor neurons supports a sharp transition from one movement diretion to the

other. Eah of our motor neurons an therefore be seen as a module ontrolling one

joint. These �modules� do not have the intrinsi apability to osillate, rather three of

them are oordinated by sensory information (see e.g. Fig. 5.4), resulting in a funtional

single leg ontroller. This organization, where sensory input determines the timing of

behavioral transitions, was also found in stik insets (Büshges, 2005).

Other simulations, e.g. with osillators that inorporate sensory inputs, should be

helpful to determine the advantage or disadvantage of ertain ombinations of CPG and

re�ex (-osillator) in�uenes. The additional evaluation of the ontrollers in terms of

energy e�ieny would be bene�ial in revealing the biologial relevant advantages and

disadvantages, possibly underlining the advantages of re�ex ontrol.

Further examples also demonstrated bene�ts from expliitly taking into aount the

dynami interation with the environment. Very simple evolved leg ontrollers showed

a �meaningful� reation to the environment: 1. If a leg hits an obstale in early swing

phase the foot was lifted higher up, enabling the leg to limb over the obstale, whih

would be impossible during a normal swing phase (see Fig. 5.5). 2. If the foot did not

make ontat with the ground at the end of the swing phase then it was lifted up and
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down faster than during normal swing and stane yles until a ground ontat was

made, and the normal swing phase was �nished (see Fig. 5.6). These two behaviors are

similar to the �searhing movements� and the �elevator re�ex� desribed for lousts in

(Pearson and Franklin, 1984). It is however not stated here that the behaviors observed

during the simulation are idential to those in animals. They are only intended to show

examples of how �simple� the underlying neural mehanisms of suh a behavior an be.

Starting with the development of single leg ontrollers the question is, how they an

ooperate to generate loomotion of a multi-legged mahine, beause then every leg

somehow a�ets every other leg: 1. mehanially and possibly 2. neurally. Therefore a

o-development might be neessary to develop a funtional ontroller for multileg walk-

ing ontrol. Currently single leg ontrollers, similar to the ones presented in this paper,

are used to evaluate di�erent oupling mehanisms for driving a simulated hexapod robot

under rough terrain onditions. First results indiate that the modular approah is able

to endow the physial walking mahine with the desired adaptive behavior. Although

a modular onept to onstrut a loomotion ontroller was suessfully employed by

other researh groups before (see e.g. Ferrell (1995), Shmitz et al. (2001) and Quinn

et al. (2003)), they did not fous on struture evolution of neuro-ontrollers.

The simulation experiments demonstrated also that if the physial properties of the

body and the environment are taken into aount then ontrollers for omplex tasks,

in this ase walking of a 3DOF leg, an itself be quite simple and realized by a small

network. On the other hand these simple ontrollers annot be understood without

knowledge about the body, the environment and the task, sine their main funtion

(osillation) does not our without an environmental interation. It seems promising

to ontinue and expand the arti�ial evolution experiments to systematially analyze

the possibilities of multifuntionality in single leg ontrollers (e.g. forward-, bakward-

and urve-walking), of inter-leg oupling and oupling with other, non-loomotory sen-

sory/motor systems. The �nal goal of this endeavor is to generate sensor-driven behav-

iors of walking mahines ating autonomously in rough terrain.
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Neuro-Controllers

This hapter presents modular reurrent neural network ontrollers for single legs of a

bio-mimeti six-legged robot equipped with standard DC motors. Following arguments

of Ekeberg et al. (2004), ompletely deentralized and sensori-driven neuro-ontrollers

were derived from neuro-biologial data of stik-insets. Parameters of the ontrollers

were either hand-tuned or optimized by an evolutionary algorithm. Employing idential

ontroller strutures, qualitatively similar behaviors were ahieved for robot and for stik

inset simulations. For a wide range of perturbing onditions, as for instane hanging

ground height or up- and downhill walking, swing as well as stane ontrol were shown

to be robust. Behavioral adaptations, like varying loomotion speeds, ould be ahieved

by hanges in neural parameters as well as by a mehanial oupling to the environment.

To a large extent the simulated walking behavior mathed biologial data. For example

this was the ase for body support fore pro�les and swing trajetories under varying

ground heights. The results suggest that the single leg ontrollers are suitable as modules

for hexapod ontrollers, and they might therefore bridge morphologial and behavioral

based approahes to stik inset loomotion ontrol.

6.1. Approah

To disuss sensori-motor ontrol mehanisms in a more general setting here, the Eke-

berg ontrollers for front-, middle- and hind-legs were implemented as modular neural

networks (p. setion 3.2). This simpli�es their omparison with a variety of other

neuro-ontrollers, their usage as initial modules in modular arti�ial evolution (see e.g.

Hülse et al., 2007; von Twikel and Pasemann, 2007) and their deployment on physi-

al robots. The translated single leg ontrollers were tested on a physial simulation

of the modular walking mahine Otavio (p. setion 4.2.2) and validated on a simu-

lated stik inset (p. setion 4.2.3). Both models were equipped with an antagonisti

motor interfae (p. setion 4.1.3) but not with musle models. Tests were performed

under di�erent perturbations, espeially onsidering multiple environmental onditions

(p. setion 4.3). Some aspets of the ontrollers performane, like veloity ontrol by

parameter variation and swing trajetory dependene on initial swing onditions, were

analyzed in detail.

Evolutionary Parameter Optimization In some simulation experiments parameters of

front-, middle- and hind-leg ontrollers were separately optimized with an evolutionary

algorithm (p. setion 3.3). Here, resulting ontrollers were ompared with respet to
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their ability to support the body weight during stane phase of forward walking. This

was assumed to be indispensable for realizing hexapod walking behavior. Therefore a

�tness funtion with two multipliative terms was used (p. setion 3.3.4): the wayTerm

and the bodySupportTerm. Individuals with good body support properties and fast

walking reeived a good �tness whereas individuals whih speialized for on or the other

task reeived a worse �tness. Additionally terminate try signals (p. setion 3.3.4) for

all joint angles were used and, therefore, desired joint angular ranges (but not expliit

trajetories!) presribed.

All struture evolution parameters were disabled, allowing only synapse strength and

bias strength hanges during evolution. Evolution was seeded with the front-, middle-

and hind-leg ontrollers desribed in the results setion. Parameters of the height ontrol

module were �xed beause of its fragile parameter set. In the �restrited� ase only

motor and premotor neuron bias values as well as synapses to motor neurons were

allowed to hange. In the �unrestrited� ase all input and output synapses of the

height ontrol module were allowed to hange, as well as all other parameters of the

networks. Maximum evaluation time was set to 2000 steps (orresponding to 20 s),

population size to 100 and evolution was run for 1000 generations. For eah leg type

evolution was repeated 5 times, and the best performing network of the last generation

of eah evolution was taken as a basis for analysis.

6.2. Roboti Model

6.2.1. Middle-Leg Walking

Restrited (Sidewards) Middle-Leg Walking

In biologial experiments the term �restrited preparation� denotes a �xated ThC joint

resulting in solely CTr and FTi joints moving the leg in a vertial plane. This was

the only experiment where su�ient neural data was available to fully desribe a fun-

tional walking ontroller and therefore we performed a orresponding simulation �rst.

In the simulation onduted here the ThC joint was not mehanially �xated but rather

neurally by means of a sti� neural servo ontroller with onstant referene input. The

restrited middle-leg ontroller shown in Fig. 3.11b is a modi�ed version of the ontroller

shown in Fig. 3.11a that, additionally to the neural ThC servo, has all sensori-motor

in�uenes between ThC and other joints removed. Neural network parameters were

translated from the Ekeberg ontroller as desribed above and remaining parameters,

espeially synapse strengths between the bistable elements and the motor neurons, were

tuned by hand. Simulation results for parameters given in appendix E are depited in

Fig. 6.1a (foot trajetory) and Fig. 6.3a (time plot of important simulation parameters

like sensor and motor ativations). Peak sidewards torso veloity during a step was

vmax = 0 :4 7 m=s.

A simple swing-stane yle is depited in Fig. 6.2: During swing phase the FTi joint

was in extensor state and the CTr joint in levator state. A progressed extension of the

FTi joint aused the CTr joint to swith from levation to depression state at the swing
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extreme position (SEP). Subsequent ground ontat at AEP resulted in the FTi joint

to hange extension to �exion state, resulting in the stane phase where FTi was in

�exion and CTr in depression state. During stane phase the CTr joint displayed its

height ontrol mehanism. Progressed �exion in FTi aused FTi and CTr to hange

states at the PEP resulting in the swing phase, and the swing-stane yle started over

again. Overall, restrited middle-leg ontroller translation to a neural network and test

on the simulated robot worked well. One has to keep in mind that by hanging synapse

strengths to the motor neurons behavior ould be easily modi�ed. Additional to the

example given above (trajetory height) e.g. a slow down of stepping ould be ahieved

via a derease in �exor synapse strength.

Kinematis of restrited stepping was similar to that found in von Ukermann and

Büshges (2009) and Fisher et al. (2001) but di�ered in details. In von Ukermann

and Büshges (2009) 1. the absolute movement of the CTr joint is more limited and 2.

the CTr joint angle shows two depression maxima during stane phase. Two adapta-

tions allowed to reprodue results of the biologial experiments: 1. Tuning the neural

parameters, espeially levator synapse and bias values, the initially �at trajetory ould

be reprodued (see Fig. 6.1a) and 2. raising the body height in the simulator setup,

suh that it mathed that of the experiment in von Ukermann and Büshges (2009)

(trohantero-femur parallel to ground and tibia at an right angle to the ground allow for

ground ontat), the two depression peaks during stane ould be reprodued beause

CTr then had to depress during end of stane to ontinue ground ontat (data not

shown).

Forward Middle-Leg Walking

Without the restrition of �xating the ThC joint, the leg was expeted to be able to

walk forward by employing all three DOFs. The ontroller struture shown in Fig. 3.11a

orresponds to the original Ekeberg ontroller and parameters were alulated as ex-

plained above. As an exeption, premotor- to motor neuron synapse strengths were

tuned by hand (p. setion 3.2.2). Using this approah, no robust parameter set ould

be found that resulted in stable trajetories in the desired range. As shown in Fig. 6.1b

for the parameter set given in appendix E it was di�ult to stabilize the working range

of the ThC joint � slight parameter hanges resulted in ThC trajetories either drifting

anterior or posterior. In anterior and posterior positions �nally stable trajetories would

result but not in the desired working range for middle-legs. By performing very preise

parameter tuning, trajetories in the desired range ould be ahieved for a short time

but upon minor external disturbanes they again drifted away.

Extension of Middle-Leg Forward Controller The ontroller in Fig. 3.11 a was ex-

tended by a neural servo ontroller of the ThC joint to stabilize its working range, and

the resulting ontroller struture is shown in Fig. 3.11 b. Parameters not determined

by the rules given above were tuned by hand to ahieve stable forward walking. Simu-

lation results for the parameter set given in appendix E are depited in Fig. 6.1d (foot

trajetory) and Fig. 6.3b (time plot of important simulation parameters). Peak forward
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torso veloity during a step was vmax = 1 :0 3 m=s. Again tuning parameters resulted

in modi�ed behaviors, e.g. dereasing retrator and/or �exor synapse strength resulted

in slower walking (see setion 6.2.1 for details), ThC omparator bias ould shift AEP

and PEP, and all parameter in�uenes given for the restrited middle-leg ontroller also

held for this one.

Alternative extensions to the original ThC joint ontroller module of the middle leg,

all based on intra-joint sensori-motor feedbak, have been tested, e.g. position depen-

dent agonist and antagonist output limitation, orresponding to simple linear musle

models. These solutions, although not shown here, also worked �ne in stabilizing the

ThC working range.

Kinematis of forward stepping was found to be similar to the stik inset (p. e.g.

Fig. 3 in Cruse and Bartling 1995) with one exeption: Fig. 6.3b shows that with

the parameters hosen the FTi joint was in �exion state throughout the stane yle.

A biphasi �exion-extension movement during stane, as frequently seen in the stik

inset (Cruse and Bartling, 1995), ould be ahieved by modifying parameters for two

threshold units (data not shown): First, the threshold for FTi �exion leading to a

transition from depression to levation (neuron 19) needed to be set so low that it was

pratially disabled and the ThC retration threshold (neuron 18) led to the transition

to levation. Seond, the threshold for FTi �exion leading to a transition from �exion to

extension (neuron 25) needed to be set so high that extension was triggered by �exion

movements normally ahieved during mid stane and not only later by the loss of foot

ontat (neuron 26). Sine smooth movements only resulted if the �exion-extension

transition took plae while ThC(α)-joint angle was � 9 0◦ resulting ontrollers showed

to be very sensitive to hanges in environmental onditions. Adding a neural ThC

angle in�uene on �exion-extension transitions allowed robust stepping under di�erent

environmental onditions, together with the biphasi FTi movement during stane.

Veloity Control

In Fig. 6.5 details of the veloity ontrol are given: Loomotor speed (due to the single leg

simulations it was measured as average veloity during stane) ould be varied between

0.26m/s and 0.75m/s by exlusively hanging retrator and �exor bias parameters. 11

sets of both parameters were manually hosen to over the range between the slow and

fast loomotor speeds (for parameter sets with orresponding veloities see appendix E).

Up to a loomotor speed of � 0 :6 m=s veloity inrease was mainly ahieved by a derease

in step yle duration. While swing phase duration was approximately onstant aross

all veloities a derease in stane duration was responsible for the derease in total

step duration. The inrease in stane veloity in turn was aused by an inrease in

�exion and retration veloity (data not shown). With the parameters hosen the �exion

veloity inrease had a larger in�uene than the retrator veloity inrease resulting in

the side e�et of a slightly dereased step length: Sine levation was triggered above a

�exion threshold (neuron 19) inreased �exion veloity led to a slightly earlier levation

during stane. For veloity inreases above � 0 :6 m=s an inrease in support length

(distane body travels during ontat phase, Halbertsma (1983)) was observed while
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Figure 6.5.: Relative hanges in the duration of swing and stane phases of the step yle as well as
hanges in the support length at di�erent speeds of forward loomotion in the middle leg. Loomotion
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swing and stane phase duration relative to the total step yle duration is given. Loomotor speed
was alulated by averaging torso veloity during stane phases. See text for details

both stane and swing phase duration slightly dereased. For the parameter sets hosen

stane veloity inrease was predominantly due to an inrease in retration veloity. In

this situation the swith from depressor to levator ativity was �rst triggered by the

retration signal (neuron 18) and not the �exion signal (neuron 19). This resulted in an

extended, i.e. more retrated, step. Therefore, the FTi angle at PEP was not as �exed

as during slower movements, and the angular range to reah the extension induing

depression was smaller. This led to shorter swing phases. The bistability of the ThC

omparator input (17 ! 14), together with the extended retration, led to a larger

error signal in the ThC servo (neuron 14) during early swing and therefore to a higher

protration veloity.

Test of Controllers Under Di�erent Perturbing Conditions

Leg ontrollers were tested with regard to their robustness under perturbing ondi-

tions. In Fig. 6.6 results are shown for the middle-leg, using the same neural struture

(Fig. 3.11b) and neural parameter set (appendix E) as above. The ontroller proved to

be robust against substantial hanges in all tested onditions:

Ground Height Variations In Fig. 6.6a ground height was varied, alternating every

0.8m between low steps and high steps. Heights were randomly hosen in the ranges

[0: 05;0: 27]m and [0: 15;0: 37]m below torso support height. Ground height variations

were tolerated without disrupting the walking behavior. During stane phase the foot

was more medial for low steps and more distal for high steps (s. Fig. 6.6f). During some

steps the swing trajetory appeared to be espeially �at, during others espeially high.

Therefore swing data of the same simulation but for an extended number of swings (40)

was plotted in di�erent formats in Fig. 6.7: First of all in the overlaid swing trajetories

(Fig. 6.7a) a orrelation of low and anterior PEPs on the one hand and high and posterior

PEPs on the other hand was noted. In ontrast, x and z omponents of AEPs were
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gray line). Total time period was ≈20 s. b Sidewards fores of 80 N were applied to torso whenever
arrows are shown with diretion of the arrows (note that torso was �xed to a lateral spring-damper
system so it had an equilibrium position shown by thin line, see Materials and Methods setion for
details). Periods of fore appliation were randomly hosen between 0.9 and 1.1 s. Total time period
was ≈15 s.  Fores with magnitudes 8, 16 and 24 N were applied at an angle of 45◦from anterior-dorsal
and posterior-ventral to simulate up- and downhill walking. Arrows show when fores were ative, in
whih diretion and with whih strength. Periods of fore appliation were randomly hosen between
0.9 and 1.1 s for all fores. Total time period was ≈14 s. d Gaussian noise on motor neuron output.
Magnitudes of noise appliation are indiated in the �gure. Periods of noise appliation were randomly
hosen between 1.4 and 1.6 s. Total time period was ≈19 s. e Gaussian noise on sensor neuron input.
Magnitudes of noise appliation are indiated in the �gure. Periods of noise appliation were randomly
hosen between 1.4 and 1.6 s. Total time period was ≈20 s. f For all perturbing onditions above
(a�f) and the referene �at ground ondition the dorsal view of the foot stane trajetories relative to
the middle-leg oxa is given. For details see text. g For the simulated up- and downhill perturbing
ondition () average stane veloity and other important step yle parameters (s.a. Fig. 6.5) are given
for the external fore levels listed above (eah data point was averaged from 7 onseutive steps)
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Figure 6.7.: Detailed swing trajetory data from 40 onseutive steps, taken in an environment with
varying ground to torso suspension height (see Fig. 6.6a): a Lateral view of swing trajetories (gray)
with markers for posterior-, swing- and anterior-extreme positions (PEP, SEP and AEP). b Swing
height (S E P z � P E P z ) vs. PEP height.  FTi angle (γ) at PEP and PEP to SEP duration vs. PEP
height. d Average CTr (� ) angular veloity in PEP�SEP interval vs. PEP height. Note that 4 swings
from low and 4 swings from high ground deviated from the general pattern. See text for details

less orrelated beause the x omponent was, espeially for low AEPs, less variable.

Therefore, also the anterior-posterior swing length was positively orrelated with the

PEP height, i.e. high PEPs resulted in longer swings than lower PEPs. With some

exeptions (see below) PEP�SEP slopes ontinuously dereased with inreasing PEP

height resulting in a negative orrelation of dorsal-ventral swing amplitude (S E P z �

P E P z) and PEP height, i.e. swing amplitude dereased with inreasing PEP height

(Fig. 6.7b).

As mentioned above, two types of deviations ourred from the average swing behav-

ior: For very high PEPs dorsal-ventral swing amplitudes ould be muh larger than for

slightly lower PEPs, and for very low PEPs dorsal-ventral swing amplitudes ould be

muh lower than for slightly higher PEPs. Dorsal-ventral swing amplitude depended

on mainly two omponents: tarsus levation time and levation veloity. Levation time

was dependent on the state of the CTr and FTi premotor neurons whih were in turn

dependent on the antagonistially ating state transition modules. Levation veloity

was mainly dependent on the CTr height ontrol module. In the �normal� ases, where

the negative swing height to P E P z orrelation held, levation time moderately inreased

with PEP height (0.24s with P E P z of -0.29m and 0.29s with P E P z of -0.06m, see

Fig. 6.7 ). As shown in the same sub-�gure, this levation time inrease was due to

the FTi angle at PEP beause the further the FTi joint was �exed, the longer it took

for it to reah the extension threshold during swing triggering depression (neuron 21 in

Fig. 3.11). Therefore, a higher levation veloity for lower PEPs had to ompensate for

the shorter levation times and additionally had to ause the di�erenes in swing height
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6.2. Roboti Model

amplitude. In Fig. 6.7d a strongly dereasing average CTr angular veloity between

PEP and SEP is shown for inreasing PEP heights supporting this hypothesis. For one

extreme outlier the very low average angular veloity of CTr (18◦=s at -0.29m PEP z)

was responsible for the low swing height. It was aused by a swing phase where the

CTr joint was not swithed to swing phase but rather its height ontroller was initiat-

ing a levation in response to FTi �exion. This led to ground ontat loss and in turn

to a swith from �exion to extension in the FTi joint and a swith from retration to

protration in the TC joint. The extension quikly triggered a depression via the height

ontroller. For the remaining outliers the time from PEP to SEP and therefore the

FTi-angle at PEP was identi�ed as the ause: For very low PEPs FTi was less �exed in

three ases (depression-levation swith aused by TC angle retration threshold) leading

to a shorter extension period and therefore a faster swith from levation to depression.

For very high PEPs FTi was �exed stronger in four ases leading to a longer extension

and therefore to a longer levation time.

Lateral �Kiks� In Fig. 6.6b lateral fores with a magnitude (80N) larger than a third

of the robots weight (� 216N=3, orresponding to the weight that one leg had to sup-

port in tripod gait) were applied alternatingly from both sides with pauses in between.

Due to the lateral spring-damper suspension system perturbation fores would lead to

movements during fore on- and o�set. During stane lateral torso movements were om-

pensated by the leg joints (espeially the FTI joint) and not by a sliding foot. Fores

did not disrupt the walking behavior and only had a minor in�uene on swing trajeto-

ries despite the obvious lateral shifts during lateral fore appliation. In Fig. 6.6f it is

shown that during stane phase lateral direted fores dereased the torso-foot distane

whereas medial direted fores inreased it. Larger perturbation fores (data not shown)

ould lead to instability in the sense that beyond FTi extension the foot was dragged

aross the ground, or that beyond FTi �exion the foot was tilted inwards.

Simulated Up- and Downhill Walking In Fig. 6.6 up- and downhill walking was

simulated by an appliation of varying fores at angles of 45◦ from either anterior-dorsal

(�uphill�) or posterior-ventral (�downhill�). Fores orresponded to approx. 4%, 8% and

12% of body weight and, if assuming other assisting legs as during tripod or wave gait

in a hexapod, the per leg fores were proportionally higher (3�5 times, i.e. 12%�36% in

tripod and 20%�60% in wave gait). Under these perturbing onditions the leg ontroller

showed robust walking behavior and, together with the bio-mehanial system, a veloity

adaptation. In Fig. 6.6g data of separate simulation runs for eah external fore level

are shown: �uphill� loomotion speed was redued and �downhill� loomotion speed

inreased. The veloity adaptation was mainly due to a step duration variation, whih

was in turn due to a stane duration variation, and to a small extent due to support

length variations. Note that fores were applied independently of stane or swing phase

and therefore the variation in global swing amplitude did not orrespond to the step

length relative to the torso (s. Fig. 6.6f).
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Noise on Sensor and Motor Neurons In Fig. 6.6d and e noise of varying levels was

applied to all motor neuron outputs (d) respetively all sensor-neuron inputs (e) at the

same time. On the one hand noise levels on motor neuron outputs ould be inreased to

� 4 0 % without disrupting basi stepping. With inreasing noise levels swing trajetories

beame smaller in height and length as well as slightly more jittery and showed inreasing

lateral deviations (p. Fig. 6.6f). Beyond � 4 0 � 4 5 % noise level no regular walking

behavior ould be observed any more. On the other hand noise levels on sensor-neuron

inputs ould only be inreased to � 1 5 % before beoming disruptive. Both inreased

sensor and motor noise additionally shifted the foot position during stane further distal

(s. Fig. 6.6f).

6.2.2. Test of Controllers in Front- and Hind-Legs

In Ekeberg et al. (2004) the middle-leg ontroller struture was also tested on front-

and hind-legs. For the front-leg only parameters of the original middle leg ontroller

had to be hanged beause kinematis does hange little ompared to the middle-legs:

ThC joints of front-legs are on average more protrated during stepping. Here the pa-

rameters given in Ekeberg et al. (2004) were diretly translated into neural parameters

and applied to the original middle-leg ontroller struture shown in Fig. 3.11. The same

problem of stabilizing the ThC working range appeared as initially in the middle-leg, so

a neural ThC servo was inluded. This resulted in the same ontroller struture as �nally

used for the middle-leg (see Fig. 3.11 b). Employing this struture and tuning the �free�

parameters resulted in stable forward walking in the desired working range. Simulation

results for neural network parameters given in appendix E are shown in Fig. 6.1e (foot

trajetory) and Fig. 6.4a (time plot of important simulation parameters). Peak forward

torso veloity during a step was vmax = 0 :7 9 m=s. By hanging parameters, front-leg

walking kinematis ould be hanged in several ways. In addition to the behavioral

�exibility listed for the middle-leg e.g. �anterior sidewards� stepping (i.e. forward walk-

ing largely without ThC joint ontribution) ould be ahieved by either hanging ThC

omparator referene input or protrator and retrator synapse strength.

In ontrast to the front-leg ontroller the struture of the middle-leg ontroller had

to be modi�ed in Ekeberg et al. (2004) in order to make it work as a hind-leg on-

troller. The kinematis of the hind-leg di�ers signi�antly, espeially the phase relation

of the FTi joint relative to the other two joints, with the extensor being ative during

stane phase and the �exor during swing phase. Additionally to the modi�ations by

Ekeberg et al. (2004) we had to introdue the neural ThC servo to stabilize the ThC

working range, analogous to front- and middle-legs. The resulting struture is shown in

Fig. 3.11 . Parameter tuning by hand proved to be more di�ult than for front- and

middle-legs. Therefore a prioritizing swith module (see Fig. 3.9) was inluded in the

CTr joint ontroller and resulted in robust walking behavior under standard onditions.

Simulation results for the parameter set given in appendix E are shown in Fig. 6.1 (foot

trajetory) and Fig. 6.4b (time plot of important simulation parameters). Peak forward

torso veloity during a step was vmax = 1 :0 5 m=s. As in the other leg ontrollers behav-

ior ould be modi�ed by hanging neural parameters but due to the di�erent kinematis
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6.2. Roboti Model

of the hind-leg (s.a.) di�erenes in behavior ontrol existed: For instane a ombination

of depressor and extensor synapse strength determined veloity during stane phase (and

therefore step period), a ombination of �exor and levator synapse strength determined

swing veloity and duration (data not shown).

Under perturbing onditions, like hanging ground height (data not shown, p. se-

tion 6.2.1 for middle-legs), the performane of the hind-leg ontroller was not robust in

all situations despite new parameter tuning. This was beause the FTi joint was prone

to �ex too far, and subsequently the ontroller was "stuk" beause the FTi joint would

only swith to extension upon ground ontat, but ground ontat without extension

was not possible any more. To obtain a more robust hind-leg ontroller two alternatives

were tested (data not shown): 1. using a neural servo ontroller in the FTi joint analo-

gous to the ThC joint, 2. using the FTi joint ontroller struture found in the front- and

middle-legs (see Fig. 3.11 d and appendix E for ontroller parameters). Both solutions

led to an inreased stability in the FTi joint.

6.2.3. Test of Controllers on a Stik-Inset Simulation

As a proof of priniple the front-, middle- and hind-leg ontrollers tested on the simulated

roboti model were also tested on a simulated stik inset model. By only modifying

�free� parameters (p. setion 6.1), qualitatively omparable stepping behavior ould

be produed. Neither the struture of the ontroller nor those parameters presribed

by neuro-biologial data were modi�ed. Detailed data and parameters are given in

appendix E. Major di�erenes that ould be observed were, despite of the obvious dif-

ferenes due to saling like loomotor speed, shorter step yles and di�erently shaped

foot trajetories.

6.2.4. Support Fores

Dorso-ventral Fores Are the single leg ontrollers shown above suitable as ontrol

modules in hexapod ontrollers? To answer this question their ability to support the

body together with the mehanial system was investigated. Testing front-, middle- and

hind-legs with the ontrollers given above and neural parameter sets given in appendix E

showed that hind-legs and respetive ontrollers ould support body weight muh more

than middle-and front-legs, and that middle-legs would slightly outperform front-legs

(see Fig. 6.8a, G0). This order was similar to the one found for stik insets walking

on �at terrain by Cruse (1976) (see Fig. 6.8b). To verify that this �nding was not due

to hand-tuned parameters, parameter optimization was performed: The goal was to

reah maximum walking speed with maximum body support fore (details are given in

setion 6.1):

1. First, a restrited parameter set, onsisting of motor neuron bias values, all synapse

weights with motor neurons as targets, and all premotor neuron bias values, was

optimized. Maximum support fores by front- and middle-legs inreased with

progressing parameter optimization, but leveled o� in the same order as the hand
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Figure 6.8.: Dorso-ventral and medio-lateral torso support fores (diretions orrespond to y- and z-axes
in Fig. 4.2) by single legs: a in simulation (measured were fores between torso and rail suspension during
forward walking) for hand tuned (G0) and parameter optimized ontrollers (G100 after 100 generations,
G1000 after 1000 generations, restrited means optimization was only performed on a limited parameter
set, p. setion 6.1) driving front-, middle- and hind-legs. For eah situation 6 independent parameter
optimizations were run and for eah best ontroller fores of 5 onseutive step yles were averaged
(gray lines). Fore pro�les of all 6 ontrollers were again averaged to give the mean fores whih are
shown as blak solid lines. See text for details. b in in vivo stik inset hexapod walking on a plane
(ground reation fores of the feet, data taken from Fig. 7 in Cruse 1976). Note that time between fore
pro�les of di�erent legs has no meaning in single leg experiments ompared to the hexapod experiments
by Cruse (1976)
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tuned ontroller fores. Kinematis of optimized ontrollers (not shown) did not

hange muh exept that foot trajetories beame more �at.

2. Seond, almost all parameters (exept internal parameters of the two-joint height

ontrol module) were made aessible to parameter optimization to hek if ex-

tended parameter hanges would allow front- and middle-leg ontrollers to develop

similar support fores as the hind-leg ontrollers. As shown in Fig. 6.8 this is the

ase. Kinematis of optimized ontrollers (not shown) did hange in suh a way

that not only the foot trajetories beame more �at, but also the movement range

of the FTi joint was dereased, and the mean tibia position beame more vertial

with respet to the ground.

Medio-lateral Fores Fig. 6.8 shows that ontrollers with initially hand tuned param-

eters sequentially displayed fores in medial and in lateral diretions, unlike in the single

legs in in vivo hexapod walking that almost exlusively displayed medial direted fores.

Maximum fores were slightly larger in middle- and hind-legs but also front-legs showed

non-negligible lateral fores, again di�erent from the in vivo hexapod data. In both

parameter optimization ases (restrited and unrestrited, see above for details) lateral

fores vanished with progressing optimization, beoming more similar to the in vivo ex-

ample. The front-leg medio-lateral fores, though smaller in magnitude than in middle-

and hind-legs, persisted.

6.3. Stik Inset Model

Standard and extended (inluding ThC servo) ontrollers for front-, middle- and hind-

legs tested on the roboti model above (p. Fig. 3.11) were tested on the stik inset

model. Modi�ations of �free� parameters (p. setion 3.2) were su�ient, i.e. param-

eters for the height ontrol module (s. above) and premotor to motor ouplings, to

qualitatively reprodue the behavior found for the roboti model. Modi�ed parameters

are given in setion 9.2. Data is shown in the same format as for the roboti model:

Foot trajetories are given in Fig. 6.9 and time-plots in Figs. 6.10.and 6.11. Note that

the tempts show a time range of only 2s ompared to 3s for the roboti model. This is

due to the higher frequeny movements respetively shorter step durations. With the

parameters given peak veloities vmax during stane were found to be 54:9mm=s for

restrited middle-leg stepping, 155:0mm=s for middle-leg forward stepping, 170:0mm=s
for front-leg forward stepping and 144:1mm=s for hind-leg forward stepping. With the

same parameters step yle periods ranged from 390ms to 620m, swing durations from

170ms to 340ms and stane durations from 180ms to 360ms. Analogous to the roboti

model the standard ontroller, i.e. without a ThC servo, was not able to produe robust

stepping in the middle leg (see Fig. 6.9b).
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Figure 6.9.: Foot trajetories of stepping in the stik inset model (in brakets �gures with the respetive
ontroller struture, see appendix E for neural parameters): a restrited (sidewards) in middle-leg
(Fig. 3.11b), b forward in middle-leg (Fig. 3.11a),  forward in hind-leg (Fig. 3.11), d forward in
middle-leg (Fig. 3.11b) and e forward in front-leg (Fig. 3.11b). Medio-lateral distanes are relative to
the midline of the torso, anterior-posterior distanes to the oxa position of the respetive leg. Eah
trajetory shows a 10 s run and for exatly one step yle individual data points for every simulation
time step are shown as blak markers on a blak line, the rest in gray. This is slightly di�erent in
sub-�gure b where one 10 s trajetory is shown as a blak line and the other as a gray line to allow
distintion between both in overlapping regions. For both trajetories the last step yle of the 10 s
periods has individual markers for eah time step. Arrows indiate diretion of foot movement and
anterior (AEP) and posterior extreme positions are labeled. In eah of a and b two trajetories are
plotted to show the in�uene of hanging a single parameter (indiated in inset legend): Changing the
strength of the levator synapse (15 ! 10) in the restrited middle-leg ontroller resulted in hanging
trajetory height (a). Changing the protrator weight (14 ! 8) in the unrestrited and unmodi�ed
middle-leg ontroller resulted in the trajetory either drifting anterior or posterior. For details see text
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6.4. Disussion

6.4.1. Deriving Modular Neural Controllers

Feasibility of Modular Neural Network Implementation Ekeberg et al. (2004) showed

in simulation how simple modules oupled in the sensori-motor loop may onstitute a

learly strutured ontroller (p. Fig. 1.4) produing robust behavior. Thus, using the

modular approah to neural networks (Hülse and Pasemann, 2006; Manoonpong et al.,

2008; Pasemann, 1995; Pasemann et al., 2001), it was a feasible task to translate the

�nite state ontroller model into an equivalent neural network ontroller onsisting of

simple neuro-modules (see Fig. 3.11). Most of the network parameters were derived

from parameters of the �nite state ontroller by simple rules. Nevertheless some details

had to be addressed: 1. In the original paper timing ontrol was done by the �nite

state ontroller, magnitude ontrol (e.g. CTr height ontrol) integrated into musle

ativation funtions. Here, both features are integrated into a single neuro-ontroller

using orresponding neuro-modules, thus leading to a more transparent struture. 2. No

absolute torques and joint veloities, orresponding to spei� musle ativations, were

given, therefore musle ativations (here orresponding to premotor to motor synapse

weights) had to be determined experimentally. 3. Multiple rules ating on a single joint

ould show ontraditory outputs (and atually did so in behaviorally relevant situations,

see results setion), but the original publiation does not state how these on�its are

resolved. Experiments showed that prioritizing the rules as indiated in setion 1 and

Fig. 1.4 was a suessful strategy and the authors of Ekeberg et al. (2004) on�rmed

that they used the same strategy.

Bene�ts and Limitations Additionally to the advantages mentioned in the introdu-

tion (e.g. easy deployment on hardware and usage as modules in arti�ial evolution)

the neural implementation had some limitations: 1. Without proper doumentation of

the modular struture, the funtionality of the modules and the meaning of parameters

(e.g. thresholds represented by dimensionless bias values) was not as lear as in the �nite

state ontroller. Therefore, a detailed desription of the modules, inluding a learly

strutured neural network layout and onversion tables for important parameters, was

indispensable. 2. As usually done in reurrent networks without distint layers, the neu-

ral network was updated in the order ativations! outputs with a frequeny feasible for

robot ontrol. As a onsequene signi�ant time-delays ould result. With the update

frequeny of 100Hz that was used throughout all experiments the maximum time delay

was 40 ms with 4 synapses between sensor and motor neuron (p. e.g. pathway 7 ! 12
in Fig. 3.11). To derease this time-delay either the update rule had to be modi�ed

adding omplexity to the system or the global update frequeny had to be inreased

whih was not desired on the roboti system Otavio. 3. Using single neurons as thresh-

old approximators together with preision limits given by the hardware did not allow the

same sharpness in transition as if � else statements. Yet the neuro-threshold-modules

employed in this ontext showed to have, in terms of behavior ontrol, su�iently sharp

transitions and an inreased bene�t of noise robustness due to a hysteresis e�et (s.
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Figure 6.10.: Various data of a restrited (sidewards) and b forward walking in a single middle-leg of the
stik inset model. Grey areas indiate stane phase. Veloities, torques and fores are shown together
with a base line indiating zero veloity, torque or fore. For abbreviations see Fig. 6.3
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Figure 6.11.: Various data of forward walking in single a front- and b hind-legs of the stik inset model.
For abbreviations and further explanations see Fig. 6.10 and text
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Fig. 3.8).

6.4.2. Testing Controllers on a Roboti and a Stik Inset Model

Suessful tests of modular single-leg neuro-ontrollers with idential struture on a

simulated model of the physial robot Otavio as well as on a simulated stik inset model

demonstrated the ontrollers robust performane despite large di�erenes in saling and

biomehanis:

Di�erenes in Mehanial Plant and Saling In omparison with stik insets (or

simulated models thereof) basi morphologial features of the simulated walking mahine

Otavio, like number of legs, number of main leg joints, joint axes and main sensory

qualities, were similar. One exeption was the ThC joint axis whih only had one DOF

in the robot and was parallel to the dorsal-ventral body axis. In the stik inset it has

two DOF but one main funtional DOF and this axis has an o�set to the dorsal-ventral

body axis (Cruse and Bartling, 1995). It is argued that the medio-ventral to lateral-

dorsal joint axis simpli�es stane ontrol: In the stik inset, by only performing a

retration movement, the leg is automatially loaded and unloaded during stane phase,

not requiring the ontrol of other joints.

Despite of di�erenes in sale (p. table D.1) geometri similarity and pre-onditions

for dynami similarity (Alexander, 1989) were roughly given (p. setion 4.2.2). Ad-

ditionally inreased stress, whih is thought to ause larger animals to hold their legs

straighter during walking (Biewener, 2005), was not a problem in the simulation of the

saled up roboti model used here. So this would have to be tested in the physial robot,

taking into aount di�erenes between musle-tendon and tehnial motor-gear-spring

systems. Comparatively slow walking of stik insets, resulting in duty fators being

muh larger than in running animals, redued the stress problem to some extent. Fur-

thermore, limb size in�uene on unloaded limb motor ontrol strategy as disussed in

Hooper et al. (2009) did not qualitatively hange the behavior of the saled up model.

This was attributed to the diretion of the ontroller transfer: In small animals like

stik insets persistent swing motor neuron ativations are neessary to omplete swing

phase. But the same ontrol strategy also worked for the robot Otavio where inertia

was large ompared to joint frition. The alternative ontrol strategy of larger animals

requires motor neuron ativity only during aeleration and deeleration phases due to

their ballisti limb movements. This would not be appliable to small animals where an-

tagonist musle passive fores and utiular passive fores are larger than gravitational

fores.

Motor vs. Musle Systems Using virtual antagonists to drive one single motor-gear

ombination per joint in the robot (see setion 4.2.2 and Fig. 4.3 for details) seemed

overly ompliated but had several advantages: It inreased omparability with biolog-

ial ontrollers, it was better prepared for migration to a mahine with real antagonists

and some ontrol onepts were realized in a simpler way when using the antagonist

motor interfae. This was e.g. demonstrated for veloity ontrol in the middle-leg (see
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setion 6.2.1). As a result of only having virtual antagonists real sti�ness ontrol by

antagonist o-ativation was not possible and musle properties like fore-length har-

ateristis present in the stik inset (Gushlbauer et al., 2007) were missing in the real

robot. Therefore a di�erent walking behavior was expeted when using the ontroller

transferred diretly from biology. For all ontrollers transferred, exept the restrited

middle-leg one, modi�ations were neessary in the ThC joint ontrol (and for the hind-

leg also in the FTi joint ontrol) to ahieve robust walking behavior, adding intra-joint

position feedbak leading to a stabilization of the joints working range. This may be

thought of as a possible replaement for intra-musular joint position feedbak (or in

other words position dependent atuation limiting feedbak) due to the fore-length

harateristis. Ekeberg et al. (2004) used a simple linear musle model and did not

have to add this kind of intra-joint feedbak in the ThC joint nor in the FTI joint for the

hind-leg ontroller. As in the hind-leg FTi joint the environment ould also � at least to

some extend � ontribute to joint working range stabilization by imposing onstraints

on joint movement. This ould have been due to e.g. ground ontat or gravitation.

Rutter et al. (2007) ompared the performane of ontrollers with a pieewise onstant

musle model, a linear musle model, and without a musle model in the FTi joint.

They found a more reliable ground ontat detetion when using any of the two musle

models. They attributed this to a redued tibia extension at swing-stane transition

improving performane of restrited and forward walking. In ontrast, the swing-stane

transitions were unproblemati in the model presented here. Probably this was due to

using a ground ontat sensor instead of a motor urrent (�load�) sensor. An exeption

was the hind-leg ontroller where no intra-joint feedbak in the FTi joint ontrol module

existed and this led to a fragile walking behavior (p. setion 6.2.2). Adding FTi intra-

joint feedbak stabilized the system. Lewinger et al. (2006) also found a drift of the ThC

movement towards extreme joint positions without musle models and suggested that

the underlying plant must exhibit saturation in order to show robust behavior. A forth-

oming publiation will spei�ally address the question of how requirements hange for

neural ontrollers due to the presene or absene of musles or musle models.

Performane of Controllers

Kinematis As for the restrited middle-leg (p. setion 6.2.1), kinematis of forward

stepping was found to be similar to that in the stik inset, espeially onsidering the

di�erenes between front-, middle- and hind-legs (p. e.g. Fig. 3 in Cruse and Bartling

1995 with Fig. 6.1 in this thesis). With one exeption di�erenes to observations in

biology ould be, as in the restrited preparation, explained by di�erenes in parameter

tuning and experimental setups: Robust biphasi FTi movements during stane (Cruse

and Bartling, 1995) ould only be ahieved by strutural hanges in the neural ontroller

(p. setion 6.2.1). A ThC in�uene on �exion-extension transition resulted in robust

walking with biphasi FTi movements during stane but has not been found in the stik

inset nervous system. As an alternative a two-phase positive/negative FTi intra-joint

veloity feedbak termed the �ative reation� (Bässler, 1988) is observed in stik insets

and would lead to a stabilized �exion-extension transition during stane. Additionally
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musle properties might play a stabilizing role.

Cyle Periods Regarding minimum step yle periods the roboti model ame muh

loser to real stik insets when ompared with Ekeberg et al. (2004). This was despite

the saling issues disussed above. Depending on parameters step yle periods of 700ms

to several seonds resulted (see Figs. 6.3 and 6.4) ompared to 600ms to 2.5s for the

stik inset (Fisher et al., 2001). In ontrast, Ekeberg et al. (2004) found yle periods

between 6s and 10s. The muh lower step frequenies in Ekeberg et al. (2004) were

attributed to a slow swing movement aused by the linear musle model. Unfortunately

no exat simulation parameters were given to allow for a better omparison. The shorter

yle periods in the stik inset model presented here (400ms to several seonds, see

Figs. 6.10 and 6.11) were, in addition to parameter tuning, due to the lak of fore

attenuation with length and veloity hanges as aused by musles in the real stik

inset. Minimal swing durations were still longer in the robot (350-600 ms) and stik

inset (170-340ms) simulations presented here than in the real stik inset (� 100ms,
Graham, 1985; Wendler, 1964). In the roboti model this was partly attributed to the

slower atuators and in both models it was attributed to the swing ontrol: Musle

properties limiting FTi extension were laking and therefore led to prolonged swing

phases (p. disussion above).

Magnitude Control Di�ering from biologial data (Buher et al., 2003; Cruse et al.,

1993; Hess and Büshges, 1997), the height ontrol module was not only ative dur-

ing stane but also during swing phase. Sine it did not have exlusive aess to the

CTr motor neurons reasonable walking behavior was generated nevertheless, inluding

kinematis similar to stik inset data (see above). Additionally a gating mehanism

may be introdued, disabling the height ontrol module during swing or dynamially

hanging the height ontrols referene input via the CTr premotor neuron. Positive and

negative veloity ontrol during stane in the FTi joint (Bartling and Shmitz, 2000;

Bässler, 1993) has not been taken into aount, beause it was not neessary for gen-

erating stable walking behavior and made the ontroller and resulting behavior more

ompliated to explain. In priniple two additional modules are required to add the

veloity feedbak: 1. an additional omparator module with FTi veloity as input and

its output projeting to FTi motor neurons, and 2. an additional threshold element

with FTi veloity as input and the omparator as target. The omparator then has to

be gated by the FTi premotor neuron, only ativating it during �exion (stane) phase.

Changing Behavior by Changing Parameters As an example of behavior ontrol by

neural parameters veloity ontrol in the middle-leg was investigated in greater detail.

Two di�erent mehanisms in�uening walking speed were found (p. setion 6.2.1): The

inrease in veloity due to a derease in stane phase duration with nearly onstant swing

duration and support length was also found in stik insets (Gabriel and Büshges, 2007;

Graham, 1972; Graham and Cruse, 1981; Wendler, 1964). This is in ontrast to the sup-

port length inrease found for higher veloities in this study. In ats the same mehanism
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was found (Goslow et al., 1973; Halbertsma, 1983), but ontrary to the stik inset ab-

solute stane duration ould beome lower than absolute swing duration. In addition,

support length hanges ontributing to veloity hanges were found (Halbertsma, 1983).

As an underlying mehanism gain modulated sensory pathways and not purely entral

toni in�uenes are suggested in stik insets (Gabriel and Büshges, 2007) as well as

in ats (Yakovenko et al., 2005). Funtionally this mehanism agrees with the one pre-

sented here beause stane phase motor neurons were ompletely deativated during

swing phase due to the bistable premotor elements. Therefore the bias parameters of

the stane motor neurons e�etively modulated the gain of the sensory in�uenes during

stane. With a slightly more ompliated struture a parallel gain modulated pathway

from sensors to motor neurons ould be easily implemented.

The urrent model failed to ontrol slow veloities below � 0:25m=s in a robust way

beause small di�erenes in joint torque would deide between slow movements or no

movements. Under noisy onditions or hanging environments some kind of an extra

veloity feedbak mehanism, e.g. a mehanism similar to the ative reation found

in stik insets (Bässler, 1993) and/or musular properties (Gushlbauer et al., 2007),

would be required.

For animals or walking mahines veloity ontrol annot be restrited to single legs

only, but rather multiple legs have to be oordinated. In stik insets neural oupling

of leg veloities have only been found under some irumstanes, e.g. in aelerating

animals, and mehanial oupling between legs together with musular properties are

disussed as main fators (Gruhn et al., 2009). In Fig. 6.6 (simulated up- and downhill

walking) it is shown that the urrent model ould � without any neural parameter

hanges or entral neural in�uenes � adapt its veloity to hanging environmental

onditions, mainly due to stane phase duration hanges. This is bene�ial for an

e�ient mehanial oupling of multiple legs and leg ontrollers as modules of a hexapod

ontroller.

Controller Robustness In setion 6.2.1 the middle-leg ontrollers were demonstrated

to be robust under multiple experimental perturbing onditions (Revzen et al., 2009;

von Twikel and Pasemann, 2007) without mathing the extreme �exibility exhibited

by stik insets (see e.g. Blaesing and Cruse, 2004; Cruse et al., 2004). The latter would

only have been possible if hypothetial extensions were made to the ontroller struture,

e.g. to deal with spei� re�exes, as is the ase with funtional modeling approahes

(see below for a detailed disussion). Hereafter di�erenes in behavior between the

stik inset and roboti model, driven by the presented ontrollers, are disussed for the

various perturbing onditions. On the single leg level one has to di�erentiate between

disturbanes ourring during swing and stane phases. In swing phase the leg is me-

hanially unoupled from other legs. In stane phase the leg is mehanially oupled to

the ground and all legs that are in stane phase at the same time (Bartling and Shmitz,

2000).

In a �rst simulation (see Fig. 6.6a) ground height was randomly varied relative to

body suspension height without disrupting walking behavior. On the one hand this was
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onsistent with �ndings by Lewinger et al. (2006) who demonstrated their implemen-

tation of the Ekeberg ontroller to be robust against body height hanges and against

initial onditions. On the other hand the observed behavior was only partly onsistent

with behavioral data from the stik inset as shown for the swing phase dependene on

take o� position in Fig. 6.7. Simulation results were ompared with data from Shumm

and Cruse (2006) where swing trajetories were examined under varying PEP start posi-

tions: Small variations in anterior-posterior AEP positions and a negative orrelation of

dorsal-ventral swing amplitude and PEP height were onsistent although swing height

dependene on anterior-posterior and dorsal-ventral PEP positions ould not be di�er-

entiated. A predominant swing height dependene on PEP height and not on anterior

posterior PEP position made sense from the mehanisti point of view: Levation ve-

loity (p. Fig. 6.7d) mainly determined swing height and was dependent on the CTr

height ontrol module. The height ontrol module produed larger levation ativations

for larger dorsal-ventral torso-tarsus distanes but independent of the anterior posterior

tarsus position. Nevertheless, a larger in�uene of FTi(γ)-angle at PEP on swing height

for varying anterior-posterior PEPs has to be disproved experimentally. Its potential

in�uene beame obvious when investigating the �outliers� regarding swing height for

extreme low and high PEPs in Figs. 6.6a and 6.7: Depending on the environmental

onditions the FTi(γ)-angle at the beginning of swing ould vary quite substantially

leading to a variation in the duration of the initial swing phase (PEP�SEP). Two basi

strategies ould be applied to stabilize swing movements over a larger PEP height range

and to ahieve a loser math with biologial data: First, FTi-movement ould be sta-

bilized via e.g. a veloity and/or position servo mehanism or a musle model to result

in less varying FTi-angles at the beginning of stane. Seond, swing height ould be

ontrolled independently of FTi-angle at PEP via ontrolling e.g. the extension veloity

during swing.

In a seond simulation (see Fig. 6.6b) the regular walking pattern was not interrupted

and swing trajetories were almost una�eted by lateral fore appliations (�kiks�).

Exeptions were ompliant lateral torso and tarsus movements during fore appliation.

Sine no ontrol module dealing expliitly with disturbanes during stane (exept the

height ontroller) was ontained in the leg ontroller, this result showed the impliit

robustness of the bio-mehanial system together with the sensori-motor ontrol, whih

does not expliitly ontrol trajetories. More sophistiated reations resisting or assisting

perturbations and maintaining stability despite larger perturbation amplitudes would

require extensions to the urrent ontroller, like e.g. negative and positive veloity

feedbak mehanisms found in stik insets (Bartling and Shmitz, 2000) and/or musle

like atuator properties. The observed lateral ompliane seems favorable for oupling

multiple legs in ontrast to a very sti� ontrolled trajetory.

As shown in Fig. 6.6 robust walking behavior was maintained and loomotion veloity

was adapted to di�erent loading onditions, simulating �uphill� and �downhill� walking.

This was mainly due to stane duration variations and to a minor extend due to a slightly

inreased support length (together with a posteriorly shifted PEP) during �downhill�

walking. The derease in veloity with inreasing resistane fores was also found in

single leg treadmill experiments in stik insets with di�erent levels of belt frition
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(� 15 � 75% of body weight) by Gabriel et al. (2003): Together with an inrease in

slow and fast motor neuron �ring rates fores applied to the treadmill inreased while

peak veloities dereased with inreasing levels of belt frition. In Cruse (1976) stik

insets limbing up a vertial path (orresponding to 100% fore of body weight against

walking diretion) AEP and PEP shifted rostrally, in addition to a general inrease

in stride amplitude. Both were disussed in the ontext of mehanial and musular

advantages in terms of upwards fore prodution. Rostrally shifted PEPs during uphill

walking are onsistent with the results presented here as opposed to the AEPs and the

support length inrease whih was observed in the simulation for �downhill� walking. In

Foth and Graham (1983) stati and veloity dependent loads were applied to the two

sides of a split treadwheel separately with load amplitudes between 12.5% and 100% of

body weight. In addition to the �ndings of Cruse (1976) it was found that fores up to

� 40% of body weight per side (orresponding to 20% in wave gait and 40% in tripod

gait) were ompensated by raises in musle fores. Above � 40% fore of body weight,

protration duration was redued to a minimum and beame independent of step period,

and retration duration inreased with inreases in load. Dean (1991) applied di�erent

levels of stati fore (0.5�4 time body weight) assisting or resisting forward walking. In

addition to the above mentioned studies he found swing duration inreases for larger

resisting loads. Furthermore he put forth the hypothesis that the retrator relaxation

after strong stanes is slower and therefore leads to slower and longer swing movements.

When omparing the presented experiments with stik inset data it is important to

onsider that most experiments have been performed with multiple legs and at non-

maximal loomotion speed. Here walking speed was lose to maximum and only a single

leg was ative. For a more detailed omparison with biologial data, our model should

�rst be extended by musular properties and/or load and veloity feedbak ontrol

mehanisms, and then load adaptations under di�erent veloities should be tested.

Robust stepping up to noise levels of � 40% on all motor neuron outputs or up to

� 15% on all sensor-neuron inputs (p. Figs. 6.6d and e) is qualitatively omparable to

the experiments by Ekeberg et al. (2004): They showed that the original ontroller is

robust (in the sense of qualitatively preserved behavior) against single random variations

of threshold angles in a range of +/- 5◦ and of musle ativation values of +/- 50%.
Kindermann (2002) obtained similar sensor noise toleranes (7 � 17%, depending on

onditions) for a simulated hexapod but did not test motor noise tolerane. These noise

tolerane tests an be seen as a rough sensitivity analysis. Motor- and bio-mehanial

systems show to have a higher tolerane against noise than the neural system deriving

the joint ativation states from sensor inputs. We attribute this to the low pass �lter

harateristis of the mehanial system being muh stronger than those of the joint

state swithing elements of the neural system. These are, in the neural implementation,

realized as hysteresis elements. Inluding realisti musle models, whih have ativation

funtions with strong low pass �lter harateristis as in the stik inset (Hooper et al.,

2007), should even inrease the noise tolerane of the bio-mehanial system.
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Body Support Fores For both vertial and medio-lateral body support fores (p. se-

tion 6.2.4) it was found that fore pro�les ould be altered by tuning �free� neural pa-

rameters, i.e. parameters not presribed by the neural rules. By additionally tuning

e.g. threshold parameters fore pro�les ould be altered even more, also hanging kine-

matis. This demonstrated the ontrollers �exibility to adapt to di�erent body support

requirements.

For vertial fores it was shown that fore pro�les of optimized ontrollers, with kine-

matis similar to the one found in biology, resulted in similar fore pro�les (Bartling and

Shmitz, 2000; Cruse, 1976). Body support fores ould be muh higher for hind-legs

than for middle- and front-legs. This is onsistent with the requirement in the stik

inset that hind-legs have to arry most of the body weight beause their enter of mass

is loated between them (Cruse, 1976). In Bartling and Shmitz (2000) vertial front-

leg fores were found to be so weak that they ould not be reliably used as a trigger

signal. In ontrast to the results shown here and in Cruse (1976) the same study found

vertial fores of the middle-leg to be slightly larger than in hind-legs. In ontrast to

stik insets, front-legs of okroahes have omparable vertial ground-reation fores

as middle- and hind-legs (Full et al., 1991). This in turn means that walking mahines

and animals with a di�erent mass distribution might require di�erent fore pro�les and

possibly also di�erent leg kinematis. Additionally the di�erenes in joint axes setup

when ompared to the stik inset, espeially slanted ThC joint axes in the ThC joint

of the stik inset (Cruse and Bartling, 1995), might have a signi�ant in�uene on the

ground reation fores during stane.

A lak of lateral direted body fores in parameter optimized ontrollers is again

omparable to biologial data, with the exeption of the front-leg where lateral fores

are negligible (Bartling and Shmitz, 2000; Cruse, 1976). In animals and robots it has

been shown that medial direted fores from legs to the body are important to laterally

stabilize posture and walking behavior (Dikinson et al., 2000; Komsuoglu et al., 2009).

In general di�erent fore pro�les by the three leg types re�et their speialization,

e.g. for pushing, pulling and generating brake fores (see e.g. Full et al., 1991; Graham,

1983). Further issues like fore oordination between legs have to be investigated in the

ontext of hexapod walking, e.g. the fore oordination problem between legs (Lévy and

Cruse, 2008).

Comparison with Existing Controllers First of all it has to be noted that the pre-

sented ontrollers share many strutural and funtional similarities with other walking

ontroller models of stik insets, ats and humans. Similarities inlude the modular

organization and the strong role of sensory feedbak in timing (e.g. swing-stane and

stane-swing transitions) and in magnitude ontrol (e.g. negative feedbak ontrol of

body height). These aspets have been disussed at length before (s. e.g. Büshges,

2005; Dürr et al., 2004; Ekeberg et al., 2004; Pearson et al., 2006). In the following, we

will therefore fous our disussion on a di�erent aspet. Two basi approahes appear to

be used to derive walking ontrollers from biologial data (Cruse et al., 2007): The �mor-

phologial� approah, as taken in Ekeberg et al. (2004) and in the study presented here,
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inrementally builds up a ontroller from available neuro-biologial data and informa-

tion about the bio-mehanial system. Subsequently it ompares its behavior with that

of the natural ounterpart. In ontrast, the �funtional� approah builds up ontrollers

with the primary goal to math behavioral data, not fousing on diret orrelations with

the neural substrate of the stik inset.

The latter approah has been pursued by Cruse and oworkers over the last two

deades resulting in multiple iterations of the WALKNET ontroller (see e.g. Cruse et al.,

2004, 2007; Dürr, 2001; Kindermann, 2002; Shumm and Cruse, 2006). WALKNET on-

stitutes a distributed ontroller whih heavily depends on sensory feedbak, whereby the

(partly positive) feedbak is mainly of proprioeptive nature. WALKNET desribes,

to an extent unmathed by other approahes, the behavioral repertoire of the six-

legged stik inset. In addition to its advantages, three main problems of the urrent

WALKNET implementation were identi�ed: 1. As a priniple problem of the funtional

approah the orrelation of model ontroller struture with biologial ontroller stru-

ture is di�ult. From a theoretial point of view (Negrello et al., 2008) one and the

same funtionality may be produed by an arbitrary number of ontrol strutures and

therefore WALKNET is only one of many possible ontroller strutures able to produe

the stik inset behavior. 2. WALKNET was developed in a kinemati simulation and

therefore does not inorporate load information (but see Shilling et al. (2007) for suh

an extension) or detailed musle properties. 3. In ontrast to its mostly distributed

struture it uses a leg global swing-stane seletor net. By now no neuro-biologial evi-

dene has been presented that di�erent neural ontrollers for stane and swing exist. All

neuronal elements analyzed so far a�et the motor output during both stane and swing

phase (Büshges et al., 1994; von Ukermann and Büshges, 2009; Wolf and Büshges,

1995).

The �morphologial� approah taken here addresses these three problems whereby

the possibility of ontroller struture orrelation is self-evident. Load information and

musle properties have already been implemented in the dynami simulation presented

here (see also setion 6.2.4) and their in�uene on ontroller performane will be subjet

of a forthoming publiation. Conerning the �swing-stane seletor net� a ompletely

deentralized solution was employed: Only one struture existed for the ontrol of both

swing and stane and eah joint loally deided about its movement phase. Eah joint

possessed a bistable premotor element with hysteresis properties that held the desired

movement diretion, e.g. levation or depression for the CTr joint. The desired diretion

ould be overridden by parallel inputs to the motor neurons as was e.g. the ase for the

height ontroller in the CTr joint. Although this solution appears to be more elegant, it

has yet to be demonstrated how more omplex behaviors like di�erent disturbane re-

�exes may work without a entral seletor network. We argue that the deision between

swing and stane is an emergent property of the neuro-mehanial system, and loally

this deision is dedued from multiple sensor- and neural-inputs.

When ompared to the WALKNET ontroller the �morphologial� ontroller presented

here had some shortomings: First of all disrepanies existed between the behavior pro-

dued by the single-leg ontroller on the one hand and that produed by the stik inset

on the other hand (see disussion and results above). Then the neural data available
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6. Bio-Inspired Single-Leg Neuro-Controllers

is not yet su�ient to build up a hexapod walking ontroller or ontrollers produing

similarly omplex behaviors as WALKNET. First steps have been taken on the neuro-

biologial side (Borgmann et al., 2009) and on the modeling side (Daun-Gruhn, 2010)

towards a hexapod ontroller based on neuro-biologial data. Further experiments will

have to show if the urrent single leg ontroller struture is su�ient to at as a leg

ontrol module of a hexapod ontroller or if non-trivial extensions are neessary. Fur-

thermore, the approah taken here employed di�erent ontroller strutures for front- and

middle-legs on the one hand and hind-legs on the other hand. In ontrast, WALKNET is

able to produe the di�erent behaviors by the same ontroller struture but using di�er-

ent parameter sets. The latter approah simpli�es a modular implementation on robots

but its neuro-biologial relevane has yet to be shown. Theoretially even ontrollers

with idential strutures and parameters ould ahieve a similar funtional diversity by

just di�ering in biomehanis, sensory inputs or oupling in�uenes.

In a omplementary approah to the two basi biologial modeling approahes the ar-

ti�ial life approah to evolutionary robotis is employed to derive minimal ontrollers,

produing walking behaviors similar to that of the stik insets (see e.g. Linder, 2005;

von Twikel and Pasemann, 2007). Comparing the ontroller struture presented here

with the ones found in von Twikel and Pasemann (2007), ontaining e.g. only four

synapses, the question arises of why a larger ontroller struture is needed at all. To one

part this is due to the latter study working with single neuron servo interfaes, already

inluding intra-joint sensory feedbak and not requiring premotor neurons for antago-

nisti ativations. To another part the advantage might be inreased redundany and

therefore inreased robustness against failures. Otherwise the advantage of a more om-

pliated struture is not obvious and one will have to ompare these di�erent ontroller

types in detail on single legs and as modules for hexapod ontrollers.

Bio-Inspired Single Leg Control A step-by-step method for deriving a neural network

model from neuro-biologial data via an intermediate �nite state model was presented.

Properties of single front-, middle- and hind-leg ontrollers were demonstrated inluding

their robustness under multiple experimental perturbations, their �exibility in terms of

body support fores, and feasible behavior modi�ations by parameter tuning. The

modular struture of the ontroller allows for easy extendability, and its neural network

implementation will simplify their transfer to walking mahines. Taken together, the

robustness and �exibility of the desribed ontrollers make them promising bootstrap

modules for future evolutionary oupling experiments. Therefore this study is seen as a

step towards the integration of behavioral and neural based approahes to loomotion

ontrol, and � on the other hand � as a �rst step towards the derivation of robust

hexapod ontrollers for walking mahines.
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7. Impliations of Musle-Model

Properties for the Neural Control of

Single-Leg Stepping

The notions of morphologial omputation, embodiment and situatedness (Chiel and

Beer, 1997; Paul, 2006; Pfeifer and Gómez, 2009, , p. also hapter 1) imply two impor-

tant hypotheses: on the one hand, nervous system may not be viewed independently

from body and environment and, on the other hand, biologial organisms and robots

may pro�t from omputations external to the nervous system, e.g. by a redution of the

required neural ontrol omplexity. In biologial motor systems, musles play a major

role in movement generation and many studies have demonstrated their bene�ial ef-

fets in robust behavior ontrol. The widely used terms �pre�ex� (Loeb et al., 1999) and

�self-stability� (Blikhan et al., 2007) illustrate that musles may perform tasks similar

to those traditionally asribed to the nervous system, namely re�exes and stabilizing

ontrol mehanisms.

Whereas detailed experimental data is available for the performane of single isolated

musles in many speies (p. e.g., Gushlbauer et al., 2007, for the stik inset), data

on the performane of single and multiple interating musles in natural movements,

suh as loomotion, and their interplay with the neural ontrol system is more sparse,

due to the omplexity of the bio-mehanial systems and the required experimental

approahes (Alexander, 1992; Anderson et al., 2006). Therefore, omputer simulations,

investigating the role of musles in loomotion, have a long standing tradition, espeially

for humans (see e.g. Anderson et al., 2006; Audu and Davy, 1985; Chow and Jaobson,

1971; Taga, 1995; Zaja, 1993), but also for other speies like ats (Ekeberg and Pearson,

2005; Yakovenko et al., 2004) and insets (Ekeberg et al., 2004; Jindrih and Full, 2002;

Zakotnik et al., 2006).

In robotis and prosthetis the potential bene�t of musle properties in motor ontrol

has been reognized (Buehrmann and Paolo, 2006; Herr and Kornbluh, 2004; Siiliano

and Khatib, 2008), espeially in bio-robotis (Ritzmann et al., 2000). On the one hand,

real biologial tissue is seldom employed as roboti atuator (Dennis and Herr, 2005)

and arti�ial musles with harateristis of biologial musles are still not ommer-

ially available (also ompare hapter 1). On the other hand, standard DC-motors are

ombined with alternative transmission devies (Iida et al., 2009; Marques et al., 2010;

Shneider et al., 2006; Suzuki, 2007) or alternative ontrol interfaes (Serhan et al., 2010;

Seyfarth et al., 2007) to emulate properties of biologial musles.

In this hapter a musle model derived from the stik inset extensor tibiae musle

(Blümel et al., 2011b; Gushlbauer et al., 2007, , p. also hapter 4) was applied to the
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Figure 7.1.: Shematis of middle-leg musle ativations relative to swing-stane and stane-swing tran-
sitions during stik inset walking on a slippery surfae. Swing-phase musles, i.e. protrator and
extensor, beome ative before the foot looses ground ontat. Stane-phase musles, i.e. retrator and
�exor, beome ative only after ground ontat is established. Adapted from Fig. 11 from Rosenbaum
et al. (2010)

Otavio robot and stik inset simulations (p. hapter 4) to answer the following ques-

tion: How do onstraints and opportunities hange for the neural ontrol of single-leg

stepping if a musle model layer, or a subset of its omponents, is employed antagonisti-

ally for all joints when ompared to a pure antagonisti ontrol without musle model

layer? In hapter 6 it was found that both robot and stik inset single leg ontrollers

required additional intra-joint feedbak to ahieve robust stepping without musle mod-

els. May this be replaed by musle models? A previous study using a roboti model

of a single stik inset leg, investigating the e�ets of a simple linear musle model, by

Rutter et al. (2007) suggests this. In ontrast, in a prior simulation study by Ekeberg

et al. (2004) a simple linear musle model was found do be insu�ient to repliate the

short swing and stane durations found in real stik insets. Furthermore, in Hooper

et al. (2007) it is suggested that stik inset musles at as very slow �lters with time

onstants between 200-700ms. How does this �t with the fat that stik insets are able

to perform very short swing movements (� 100ms Graham, 1985; Wendler, 1964) with

robust stane-swing and swing-stane transitions? Data presented by Rosenbaum et al.

(2010) suggests a possible solution (p. Fig. 7.1): musles are ativated and deativated

in advane to stane-swing transitions. But how are the musle ativations oordinated

by entral ontrol mehanisms or sensory signals?

7.1. Approah

To answer the above questions, the parameters of a set of di�erent neural ontroller

strutures (p. Fig. 7.2) were tuned to ontrol single-leg walking (p. setion 4.1.1) of

roboti (p. setion 4.2.2), and stik inset walkers (p. setion 4.2.3) with and without

an intermediate musle model layer. Subsequently their performane was ompared un-

der �at terrain and di�erent perturbing onditions (p. Fig. 4.9 for an overview). As

musle model a neural network was tuned to repliate the input-output harateristis

of the stik inset extensor tibia musle and two di�erently saled versions were used

for eah joint (p. setion 4.1.4 for details). To eluidate the role of the individual

sub-omponents of the musle model, namely its passive and ative torque-angle har-

ateristis, its torque-veloity harateristis, its torque ativation harateristis and its

ativation funtion, any ombination of musle model omponents ould be deativated.
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inhibitory bias

excitatory synapse

inhibitory synapse

excitatory bias

Figure 7.2.: Neural networks that were used to ompare the behavioral performane of agents with and
without musle models. On the left side ontrollers are depited that do not possess any expliit joint
servo mehanism, whereas ontrollers on the right side are extended by neural joint servo ontrollers.
The neuro-ontrollers omprise multiple hand-onstruted ontrollers whereby ontrollers C1-2 were
derived from biology (p. von Twikel et al., 2011), C3-5 were derived from evolved neuro-ontrollers
(p. setion 5, von Twikel and Pasemann (2007)) and ontrollers C6-7 employ simple 2-neuron osilla-
tors (Pasemann et al., 2003)
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Figure 7.3.: Shematis of robustness omparison test for single leg walkers with and without musle
model. For eah walker, with and without musle model, seven distint ontroller strutures (C1-C7,
p. Fig. 7.2) are repeatedly optimized in a standard environment (E1). Afterwards the performanes
of the walkers with and without musle model driven by the optimized ontrollers in eight di�erent
environmental and perturbation senarios (E1�E8, p. Fig. 4.9), inluding the standard environment,
are ompared

The ontroller test set (C1-C7) is depited in Fig. 7.2: biologially inspired on-

trollers (C1-C2, p. hapter 6 and Ekeberg et al. (2004)), simple re�ex-osillators (C3-

C5, p. hapter 5 and Shumaher (2008)) and entral osillators without any sensory

feedbak (C6-C7, p. hapter 5 and Benner (2008)) were used. Eah of these ontrollers

was tested with and without simple neural joint position servo-ontrollers, e.g. with and

without expliit neural intra-joint sensory feedbak. The re�ex osillator ontroller was

additionally tested with and without self-ouplings of the motor neurons whih ould

potentially adjust time-delays and, therefore, inter-joint phase shifts (p. hapter 5 for

details).

On the one hand, neural ontroller parameters were tuned by hand to ahieve a

maximal performane with the given ombination of simulator and musle model under

�at terrain onditions. To remove the subjetive bias of hand tuning, the di�erent

ontrollers were also optimized by parameter evolution (p. setion 3.3) under standard
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Figure 7.4.: Foot trajetories for di�erent ontroller-body on�gurations: a Without a neural servo for
the ThC joint the neuro-biologially inspired ontroller C1 is not able to maintain a stable walking
trajetory when driving a single roboti leg without an intermediate musle layer. To ahieve a stable
walking trajetory, either b additional ThC intra-joint feedbak (here realized as a neural servo, C2,
p. hapter 6) or  an intermediate musle layer is su�ient

environmental onditions (simple plane, p. Fig. 4.9), one with musle model and one

without. The �tness funtion that was used is given in setion 3.3.4. No synapses and/or

neurons ould be added or deleted. After 150 generations (population size 40), whereby

eah evaluation had a duration of 2000 time steps, the best individual of eah evolution

was tested under all 8 environmental onditions given in Fig. 4.9. This test was repeated

for n=20 times and all single try �tness values were reorded. Afterwards mean values

and standard deviations for all tests of spei� individual-environment ombinations

were alulated to answer the question if a musle model would make walking behaviors

with given body-ontrol ombinations more robust. An overview of the method is given

in Fig. 7.3.

Finally, for the stik inset model, the extended version of the biologially inspired

ontroller (p. Fig. 3.12) was parameter tuned. With and without using an intermediate

musle layer, or sub-omponents thereof, the goal was to math biologially realisti

swing- and stane durations, as well as biologially realisti foot trajetories. If this

was not possible by solely tuning parameters, extensions of the ontroller model were

tested as well to hypothesize what kind of neural mehanisms ould deal well with the

onstraints imposed by the musle properties.

7.2. Roboti Model

7.2.1. Working Range Stabilization

In hapter 6 it was demonstrated that the neuro-biologially inspired ontroller C1 was

not able to ontrol robust forward stepping in a roboti model without musle model.
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Figure 7.5.: The e�et of using a musle model, or di�erent subsets of its omponents, on the forward
walking foot trajetory ontrolled by a simple entral osillator (C6, C7) is depited. As a ruial musle
model omponent the torque-angle harateristis was identi�ed. Other musle model omponents
in�uene the trajetories stability and shape, but do not disrupt it. Foot trajetories for a 10s time
period are displayed in gray and single step trajetories are given in blak with additional markers for
eah time step

Only depending on subtle neural parameter hanges, foot trajetories would diverge

either to the anterior or posterior extreme positions of the ThC joint. E�etively either

the anterior or posterior joint stops onstrained this shift and stable anterior or posterior

stepping resulted. To ahieve stable walking trajetories without hitting the joint stops,

additional ThC intra-joint feedbak was required, resulting in ontroller C2. Here it is

shown in omparison (Fig. 7.4) that stable forward walking may be ahieved without

any neural ThC intra-joint feedbak, i.e. with the original ontroller C1, when an

intermediate musle model layer is employed. Therefore, the musle model stabilizes

the working range of the ThC joint despite a redued ontroller omplexity.

To investigate the e�et of a working range stabilization via the musle model in

more detail, further experiments were arried out with a muh simpler ontroller: a

single entral pattern generator (CPG) with a frequeny of � 0.8 Hz was used to drive all

three joints without employing any sensory feedbak, e�etively resulting in a pure feed-

forward ontroller. The ontrollers ability to robustly drive single roboti legs with and
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Figure 7.6.: The simplest ontroller tested (C3, re�ex osillator without any neural feedbak, p. hap-
ter 5) an produe larger movement amplitudes and slower osillations while driving b a simulated single
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without musle models, or subsets thereof, was tested without (C6) and with additional

intra-joint sensory feedbak (C7). In Fig. 7.5 resulting foot trajetories are depited:

without a musle model, foot trajetories diverge from the desired trajetory. In ontrast

to the neuro-biologially inspired ontroller (p. Fig. 7.4), divergene takes plae not only

for the ThC joint but also for the CTr joint, resulting in very high swings and short stane

phases as well as in either anterior or posterior stepping at the respetive joint stops.

As demonstrated in the same �gure, additional neural servos or musle model pairs for

all joints allow a stable walking trajetory to be ontrolled by the simple osillator.

To determine whih feature of the musle model was responsible for the working range

stabilization, subsets of the musle model omponents were deativated. Whereas the

deativation of the ativation �lter, the passive torque or the torque-veloity omponents

had non-disruptive e�ets, a removal of the torque-angle omponent led to disturbed

walking trajetories, whih ould be restored by the introdution of additional neural

servo ontrol for eah joint. Removal of the passive torque omponent led to slightly more

jittery and enlarged trajetories, removal of the ativation �lter to a slightly hanged

foot trajetory shape (but not total size) and a removal of the torque-veloity in�uene

to enlarged foot trajetories.

7.2.2. E�et on Step Amplitude and Frequeny

In the example above the step frequeny was given by the neural osillator. To deter-

mine the e�et of the musle model on the step frequeny of a single leg, an extremely

simple ontroller based on a re�ex osillator without any neural feedbak was used (C3,

p. hapter 5). As depited in Fig. 7.6, the ontroller produed larger movement ampli-

tudes together with a musle model and this was found to be due to the low pass �lter

harateristis of the musles ativation funtion. Without the low pass �lter properties

the movement amplitude was smaller and omparable to that without any musle model.

Step frequenies averaged aross 10s were 0.85Hz without musles, 0.87Hz with musles

but minimized ativation �lter and 0.56 Hz with omplete musles, i.e. the musles with

low pass �lter properties dereased the step frequeny and inreased the step amplitude.
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7.2.3. Robustness Against Neural Noise

In hapter 6 it was hypothesized that the noise robustness of the neuro-biologially

inspired ontroller C2, using a neural ThC servo, ould also be ahieved or even surpassed

when employing the same ontroller without a neural ThC servo on top of a simulated leg

with musle models. In the following, results with di�erent musle model on�gurations,

that were tested under 2%, 48% and 64% gaussian noise on all motor neuron outputs,

are presented. First results for the simpli�ed restrited stepping ase are presented

beause it was found (p. hapter 6) that no extra intra-joint feedbak was needed for

stable stepping. It only employed the two DOFs of CTr and FTi joints. Subsequently

the results for forward stepping, using all 3DOFs, are given.

Restrited (Sidewards) Stepping With only 2% gaussian noise on the motor neuron

outputs, the restrited ontroller C2 with a neurally �xated ThC joint (p. Fig. 3.11 b)

produed stable stepping with any musle model on�guration, inluding the null musle

model. Without musle model or with a minimized low pass �lter ativation property,

trajetories beame smaller, as found for the simple re�ex ontroller above (p. Fig. 7.6).

With inreasing noise levels (48% and 64%) the movement trajetories strongly de-

reased in amplitude for the null musle model and for the musle model with minimized

low pass properties, up to the point where no e�etive lateral body movement results.

All other musle model on�guration produed stable stepping with an amplitude om-

parable to the situation with only 2% noise. Therefore, the low pass �lter properties

of the musle model's ativation funtion seemed to play a prime role in inreasing the

noise robustness of the neuro-mehanial system.

The e�et of the low pass �lter properties of the ativation funtion is underlined in

Fig. 7.8 where the FTi motor neuron outputs of the ontroller network and the resulting

FTi joint torques are ompared for the ases with and without musle model. At a

noise level of 64% on all motor neuron outputs, the system with musle model displayed

muh smaller noise levels on the joint torque output level. The noise redution took

plae at the musle level beause the outputs of the antagonist musle showed a low-

noise output, resulting in a relatively smooth ativation of the DC-motor (p. Fig. 4.3

for a detailed desription of the DC-motor ativation mehanism). The motor basially

swithed between �exion (mode 1) during stane and extension (mode 2) during swing.

Due to the remaining noise during swing the motor additionally swithed into brake

mode from time to time but not to a reversal of movement diretion. This was di�erent

in the ase without musle model layer: during eah swing and stane phase the motor

ould be swithed to any of the four possible modes. Together with the very noisy

motor ativation, this lead to the jittery joint torques. Using the musle model with a

minimized low pass �lter lead to omparable results as using no musle model (data not

shown).

Forward Stepping To verify that the musle model's stabilizing e�et under high mo-

tor neuron noise also holds for the interation of all three leg joints, the experiment

from above was repeated for standard forward stepping. The results are depited in
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Figure 7.7.: Foot trajetories produed by the restrited neuro-biologially inspired ontroller
(p. Fig. 3.11 b) together with di�erent musle model on�gurations are shown under three motor
neuron noise levels. The role of the low pass �lter property of the musle model's ativation funtion
in inreasing the systems noise tolerane is demonstrated. Foot trajetories for a 10s time period are
displayed in gray and single step trajetories are given in blak with additional markers for eah time
step
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Figure 7.8.: Data on the neuro-motor-output transform is shown for motor neuron noise levels of 64%
(gaussian noise), fousing on the FTi joint. Controller C2 was on�gured to ontrol restrited sidewards
stepping a without and b with musle models. It is obvious that the musle model signi�antly redued
noise levels during this transform and led to regular stepping ompared to the irregular stepping without
musle model

Fig. 7.9: As for the sidewards stepping ase, all on�gurations produed robust step-

ping movements for noise levels up to 64%, exept those without musle models or with

minimized low pass �lter properties. E.g. for a motor neuron noise level of 48% the

standard musle on�guration led to a step period of 1.7s whereas the null musle on-

�guration led to a step period of 2.8s. At the same time the working rang stabilization

disussed in detail in setion 7.2.1 ould be observed. The mehanism of noise redution

was idential to the one shown in Fig. 7.8 (data not shown). In ontrast to the restrited

stepping ase the impat of inreased noise on the di�erent musle model on�gurations

beomes more pronouned: movement amplitudes are redued and trajetories beome

more jittery. When the torque-veloity harateristis was disabled, movement traje-

tories were slightly larger. Furthermore, minimized low pass �lter properties already led

to smaller and more irregular movement trajetories with only 2% motor neuron noise.

7.2.4. Robustness Against Perturbations

To remove the possible bias of the experimenter when hand tuning parameters for the

networks before omparison, a omputational parameter optimization method was ap-

plied. The basi idea was to parameter optimize all ontroller strutures from Fig. 7.2

(C1-C7) to walk as fast as possible, while minimizing foot sliding and the swing-stane

ratio in a �at terrain environment without additional perturbations. Subsequently the

best ontroller for eah ontroller-musle ombination was evaluated in 7 perturbing

onditions. Finally the performane between those trials with and without musle mod-

els was ompared. This method followed the evolutionary robotis approah, please see

setion 7.1 and Fig. 7.3 for details. In Fig. 7.10 results of this experiment are given

for every ontroller-musle-environment ombination. Sine the perturbing experiments

were partly randomized the ontrollers �tness ould �utuate. Therefore, for eah om-

bination the evaluation was repeated 20 times and in the �gure the averages and the
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7. Impliations of Musle-Model Properties for the Neural Control of Single-Leg Stepping

respetive standard deviations are given. Immediately visible is the performane domi-

nane of at least one for the simple re�ex osillators (C3-C5) without musle (C3) and

with musle (C5), followed by the neuro-biologially inspired ontrollers (C1-C2) and

the CPG-ontrollers (C6-C7). On average the ombinations with musle models seem to

perform better, with the exeption of ombinations with environment E7. Also a rela-

tive performane advantage of musle model ombinations vs. non-musle ombinations

seemed to exist for ontrollers without additional intra-joint feedbak, see espeially C4

and C6.

To quantify the previous hypotheses, three ontroller groups were formed, namely all

ontrollers, all ontrollers with and all ontrollers without additional intra-joint sensory

feedbak. For these groups the data was averaged, one for eah perturbing ondition

separately (p. 7.11 a) and then for all perturbing onditions together (p. 7.11 b). This

alternative visualization supports the above hypotheses: the overall performane with

musle model was slightly better, the relative performane advantage for ombinations

with musle models was better for ontrollers without intra-joint sensory feedbak than

for those with intra-joint feedbak and �nally environment 6 generally resulted in a bad

performane for ombinations with musles.

7.3. Stik Inset Model

All of the bene�ial e�ets of the musle model that were demonstrated on a single leg of

the simulated robot Otavio also apply for the stik inset simulation. Instead of present-

ing the qualitatively omparable data on working range stabilization, noise robustness

et., novel aspets onerning the stik inset are presented hereafter. As ontroller only

the extended neuro-biologially inspired ontroller is employed (p. setion 3.2.3).

7.3.1. In�uene of the Torque-Veloity Charateristis

In ontrast to the roboti model, the maximum musle torque was not apped at the

maximum torque at zero joint veloity and the musle model update frequeny was

four times higher, i.e. 400Hz instead of 100Hz for the roboti model. Corresponding

details are given in setion 4.1.4. Therefore, a stronger e�et of the musle models

torque-veloity harateristi on behavior was expeted for the stik inset simulation.

In Fig. 7.12 the in�uene of the fore veloity harateristis on the walking performane

in a single middle leg is depited, fousing on the FTi joint. Foot trajetories as well

as time-plots of joint sensors learly show that the walking movement was more regular

and smooth for the musle model with torque-veloity harateristis. In detail this

means e.g. that the working range of the joints were more restrited (they did not hit

the mehanial joint limits), overshoots at AEP and PEP were less pronouned, leading

to redued negative torso veloities at AEP and the neural ThC and FTi veloity servos

were more e�etive in produing nearly onstant retration and �exion veloities. The

dereased AEP overshoot was due to a strong inrease in �exor fore shortly after AEP,

despite of a similar or even weaker and shorter �exor motor neuron peak ativity when
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Figure 7.12.: In�uene of the fore-veloity harateristis of the musle model. a and b depit the
foot trajetories in lateral and dorsal view. 10s are given in gray and one omplete step in blak with
individual markers for eah time step. Trajetories for the a standard musle model were regular and
stable whereas those for the b musle model without disabled torque-veloity in�uene were irregular
and substantial �overshoots� at AEP (anterior direted movements after foot touhdown) ourred.
 and d show the orresponding time-plots of important parameters like joint sensors and musle
ativations. They demonstrate the regularization of movement due to the torque-veloity harateristis.
Two examples are given: 1. The �exor torque peaks in  shortly after touhdown led to a sharper swing-
stane transition and therefore to a redued AEP �overshoot�. 2. FTi joint veloity as well as torso
veloity in d �utuate muh stronger despite the neural veloity servos employed in ThC and FTi when
ompared to 
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7. Impliations of Musle-Model Properties for the Neural Control of Single-Leg Stepping

ompared to the musle model with disabled torque-veloity properties. This again

orrelated with a strong negative FTi veloity at the beginning of stane.

7.3.2. Dealing With Time-Delays at Transitions

At the beginning of this hapter it was asked how short swing durations and stable

swing-stane and stane-swing transition �t together with the extremely slow musles

of the stik inset? What kind of neural ontrol is needed to ahieve these fast transitions

and short swing phases? To at least partially answer this question the extended neuro-

biologially inspired ontroller (p. setion 3.2.3) was tested, driving a single simulated

stik inset leg, one with the full featured musle model, one with a minimized delay

(� 20ms) of the ativation funtion (p. Fig. 7.13 a). As depited in Fig. 7.13 d, swing

times were redued from � 300ms to � 150ms when deativating the low pass properties.

Fig. 7.13 e additionally shows how the ativation delay leads to overshoots at PEP

and AEP. These overshoots are movements diretly after transitions that take plae in

the opposite diretion of the expeted movement. Time-plots of the same movements

are given in Fig. 7.14 a with a minimized ativation delay and in Fig. 7.14 b with the

standard ativation funtion: although motor neuron ativations displayed a similar

timing and magnitude at swing-stane and stane swing transitions, resulting musle

torque hanges were more rapid and pronouned for the minimized ativation delay.

Subsequently two ontroller extensions were tested for their ability to ahieve shorter

swing times and sharper swing-stane and stane-swing transitions for all joints. In

Fig. 7.13 b a ontroller that additionally used sensor information from CTr joint torque

and its derivative to initiate stane-swing transitions in all joint is shown. It ahieved a

redution of the retration overshoots at PEP (p. Fig. 7.13 e) by an advaned ativation

of the protrator (p. Fig. 7.14 ). Note that the extensor was already ativated prior

to the protrator ativation due to its standard biphasi movement during stane. In

Fig. 7.13  a ontroller that additionally employed �AEP-servos� in ThC and FTi joints,

i.e. position servos that were only ativated at the end of swing (p. Fig. 7.14 d), led to

redued protration overshoots at AEP despite the musle ativation dynamis leading

to delayed torque buildup.

Figure 7.13. (faing page): a The low pass �lter properties of the musle model ativation funtion, as
derived from biologial data, lead to onsiderable delays in musle torque buildup after motor neuron
ativation. This in turn poses a onsiderable hallenge regarding the timely o-ordination of joint
torques at swing-stane (AEP) and stane-swing (PEP) transitions. b A ontroller extension using
load and load derivative information to ontribute to swing-stane transitions in all three major leg
joints in addition to foot ontat information.  A seond ontroller extension using position servos
in ThC and FTi joints at the end of swing phase. These �AEP-servos� are swithed o� during stane
musle ativity (�exor or retrator) and during early swing phase, determined by joint angle and angular
veloity information. d+e The performane of four di�erent ontroller - musle-model ombinations,
driving a single-leg on the rail struture, are shown. For time-plots of relevant sensor and musle
ativations see Fig. 7.14. In d swing vs stane durations are plotted for all four ombinations for all
steps of a 40s time period. In e foot trajetories for all four ombination are shown. A 10s period is
shown in gray, one step is additionally shown in blak with individual markers for eah time step
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Figure 7.14.: Time-plots of neural and musular ativations of four di�erent ontroller - musle-model
ombinations during single leg stepping on a single-leg on the rail struture (p. Fig. 7.13). Musle
models use either a minimum musle model ativation delay (a) or a musle model ativation delay as
retrieved from stik inset data (b-d). Controllers use either foot ontat information only for stane-
swing and swing-stane transitions (a+b), additional load information () or additionally both load
information and �AEP servos� (d)
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Figure 7.15.: a If sub-maximal musle torques are desired the dynami range of the musle ativation
may be exploited via an additional phasi ativation at transitions to e�etively redue time-delay
e�ets. b A possible neural implementation of suh an extra phasi ativation: when the joints bistable
premotor element swithes its state, either a large positive or large negative impulse is added to the
individual motor neurons.  The phasi motor neuron and musle ativation led to a redued AEP
overshoot

Finally a more general approah was tested (p. Fig. 7.15) whih made use of dynami

musle ativation range when a sub-maximal musle torque was desired. An e�etive

redution of the musle ativation time-delay ould be ahieved by a phasi toni motor

neuron ativation. Initial experiments sueeded in reduing AEP overshoots but not

PEP overshoots. Additionally the swing height beame more variable.

7.4. Disussion

Employing musle(-model)s with properties as found in the stik inset extensor mus-

le (Blümel et al., 2011b; Gushlbauer et al., 2007) was demonstrated to have several

advantages for neural loomotion ontrol of simulated stik insets and robots: a sta-

bilization of the joints working range while reduing the need for intra-joint position

feedbak, support for rather slow and large amplitude re�ex-osillations, an inreased

robustness against (neural) noise and other perturbing onditions without a prior opti-

mization, an inreased robustness for swing-stane transitions and an improved veloity

ontrol. Problems due to the low-pass �lter properties, e.g. delayed movement re-

versals at stane-swing transitions, ould be largely attenuated by various and rather

simple neural ontrol strategies. The onstraints and opportunities o�ered by the mus-
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7. Impliations of Musle-Model Properties for the Neural Control of Single-Leg Stepping

le properties have impliations for robotis and stik inset neurobiology, whih will be

disussed hereafter.

7.4.1. Impliations for Robotis

Despite its output power limiting e�et outside of the optimal joint angle and joint

angular veloity range (p. setion 4.1.4), the appliation of pairs of saled stik in-

set extensor musle models as a layer between neural ontrol and DC-motors of the

simulated roboti leg led to desirable system properties summarized above. This was es-

peially true for minimal network strutures with redued intra-joint sensory feedbak,

where the systems with musle models showed a superior performane under diverse

perturbing onditions (p. Fig. 7.11). To some extent this was expeted, beause the

musle models inherently supply an intra-joint feedbak for at least position and velo-

ity, omparable to tehnial servo ontrollers that use sensory information in addition to

ontroller ommands to generate motor ommands. Furthermore, the regularization and

noise tolerane of stepping movements with musle models are in line with previous stud-

ies of more simpli�ed musle models on roboti systems (Rutter et al., 2007) and more

theoretial studies (Buehrmann and Paolo, 2006). When adding intra-joint feedbak

to the ontrol strutures, the relative performane advantage of systems with musle

models almost dereased to the performane of the systems without musle models. For

the perturbing senario with randomly inreased joint frition (E6), the performane of

systems without musle models was on average superior (p. Fig. 7.11), whih ould be

asribed to the redued motor output power with musle models at non-optimal joint

angles due to the musles torque-angle harateristis.

As demonstrated in hapter 5, neural hysteresis in re�ex loops leads to delayed swith-

ing of movement diretions and, therefore, to osillation frequenies and amplitudes fa-

vorable for the walking task. This is analogous to the �ndings of inreased amplitude

and dereased frequeny of stepping due to the low pass �lter harateristis of the mus-

le's ativation funtion presented in Fig. 7.6. Similar to e.g. the mehanial properties

of a pendulum this leads to a modi�ed bandwidth of osillation frequenies (p. e.g.

Hatsopoulos, 1996; Neptune and Kautz, 2001; Shumaher, 2008). Sine the musle's

ativation funtion is not a pure time-delay, its dynami bandwidth may be exploited

to redue e�etive time-delays, or alternative ontrol strategies may be employed to re-

due the e�ets of the ativation funtion (p. Fig. 7.15 and 7.13 and the orresponding

disussion further below).

In ontrast to a simulation study of aimed limb movements in lousts by Zakotnik

et al. (2006) the role of the passive torque omponent of the musle model was not found

to have a prime importane. In Fig. 7.5 a slightly less regular stepping pattern is shown

for a musle model without the passive omponent and a neural ontroller without any

sensory feedbak. Beause the torque-angle harateristis had a (far) greater in�uene

on performane in all experiments, musle model performane without torque-angle and

without passive in�uene was otherwise shown together. The minor role of passive

musle fores shown here is probably due to their relatively small magnitude when

ompared to ative fores in the stik inset extensor (Gushlbauer et al., 2007, p.). In
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non-loomotion task, suh as posture ontrol, their relative role was shown to be muh

higher (Hooper et al., 2009). Zakotnik et al. (2006) further found the passive damping

properties to be of high importane for motor performane, whereas here this property

was not asribed to the musles and, therefore, not systematially investigated as the

other musle model omponents. Future studies should address this issue.

For more omplex ontrol strutures it has yet to be investigated whether systems

without musle models may o�er a performane advantage beause of their ability to

produe more power throughout their whole working range. Also an appliation of

di�erent perturbing onditions, �tness funtions or optimization methods may lead to

di�erent results. Due to the ombinatorial omplexity this annot be exluded here.

For the ontroller-environment ombinations optimized here, the systems with musle

models showed a walking performane en par or better when ompared with the systems

without musle models and they ould even replae neural intra-joint feedbak. The im-

plementation of the musle model as a simple modular neural network (p. setion 4.1.4)

allows an e�ient deployment on standard robot hardware with DC-motors, neither re-

quiring ostly and experimental arti�ial musles (Bar-Cohen, 2004; Herr and Kornbluh,

2004; Pons, 2005; Siiliano and Khatib, 2008), as well as a omputationally e�ient use

in evolutionary robotis experiments with e.g. hexapod robots (p. following hapter 8).

The simulations of the single roboti legs with and without musle models further

demonstrated the roles of (mehanial) embodiment and situatedness: additional to the

neural ontrol system and the musles, joint stops and onstraints of the environment

had stabilizing e�ets on walking movements. Neural ontroller without intra-joint

feedbak (p. e.g. Figs. 7.4 and 7.5) ould stabilize their walking movements without

musle models by using the joint stops as range limiters. Even without using any

joint stop neural ontrollers without any diret intra-joint feedbak ould, without using

musle models, generate stable walking trajetories by employing a ombination of inter-

joint re�ex loops and movement limiting e�ets of the environment, usually the foot

ontat (see Fig. 7.6 for an example).

7.4.2. Impliations for Stik Inset Neurobiology

Contribution of veloity harateristis to robust stane-swing transitions The in-

�uene of torque-veloity part of the musle model on the performane of the roboti

model was limited: in Fig. 7.5 the movement amplitude is inreased for a neural CPG

ontroller without sensory feedbak when the veloity in�uene is disabled. This was

asribed to the omission of the torque-veloity's damping in�uene. Similar in Figs. 7.7

and 7.9 movement amplitudes dereased less and beame slightly more jittery during

strong motor neuron noise appliations with disabled torque-veloity properties. Possi-

ble explanations for the limited in�uene of the torque-veloity in�uene are: on the one

hand, due to the onstraints of the robots DC-motors, torques higher than the maxi-

mum torque at zero veloity ould not be produed for negative veloities. On the other

hand, the joints mehanis already produed non-negligible damping fores.

In ontrast in the stik inset simulator, torques for negative veloities ould reah

160% of those maximally reahed at zero veloity. Fig. 7.12 demonstrated the high

137



7. Impliations of Musle-Model Properties for the Neural Control of Single-Leg Stepping

negative impat of disabling the torque-veloity harateristis in the stik inset model:

stepping patterns beame irregular, AEP overshoots, i.e. protrations movements after

touhdown, beame muh larger and veloity ontrol muh less e�etive, espeially for

slow veloities. Analysis of the AEP overshoots revealed that, despite omparable motor

neuron ativations, �exor torques with musles with torque-veloity harateristis were

muh higher than without. Obviously the �exor musle ats as a very strong brake, i.e.

ative damper, at touhdown (p. Blikhan et al., 2007; Dikinson et al., 2000; Haeu�e

et al., 2010). Using the non-linear torque-veloity harateristis (p. hapter 4.1.4),

therefore, allows to reprodue behaviors of the real stik inset whih ould not be

reprodued by previous studies: Ekeberg et al. (2004) were, probably due to a linear

fore-veloity relationship, not able to produe fast swing movements in their stik

inset model whereas Rutter et al. (2007) had di�ulties repliating robust swing-stane

transitions in their roboti model of a stik inset leg. Relatively high touhdown fores

at AEP orrelate with biologial data of stik insets (Cruse and Bartling, 1995).

Future studies will have to show how the musle's torque-veloity property e�ets leg

oordination (p. also Shneider, 2006). As an analogy, multiple trains, with di�erent

engines and together pulling a load, will eah ontribute a fore automatially adapted

to the engines power due to their engine's fore-veloity relationship.

Dealing With Delayed Musle Ativations at Swing-Stane and Stane-Swing Tran-

sitions Previous simulation studies of stik inset walking did not onsider the low-pass

�lter harateristis of the musle's ativation funtion (Cruse et al., 2007; Ekeberg et al.,

2004; Shilling et al., 2007) and therefore parts of the suggested ontroller mehanisms

might not be able to reprodue the behavior of the real stik inset when ating on

top of a realisti musle model layer. Espeially transitions between stane and swing

and vie-versa are problemati: loading and ontat signals at the beginning of stane

are probably too late to aount for �exor and retrator ativation (Gruhn et al., 2006;

Rosenbaum et al., 2010) and loss of ontat signals are de�nitely too late for a timely ex-

tensor and protrator ativation (Rosenbaum et al., 2010). For the latter transitions the

use of unloading information rather than loss of ontat signals was suggested (Rosen-

baum et al., 2010), based on data by (Akay et al., 2001, 2004, 2007). For the transition

from swing to stane only speulations are available:

�[...℄ at present we an only speulate about whether only sensory signals

from proximal ampaniform sensillae play a role as in the loust or whether

other information unrelated to a touhdown signals also ontributes, as it

seems to be the ase in fast walking okroahes (Tryba and Ritzmann,

2000a,b).�

(Gruhn et al., 2006, p. 205)

For both transitions multiple alternative ontroller extensions were tested here.

First of all the unloading hypothesis for extensor and protrator ativation was su-

essfully tested, i.e. a rapid and smooth transition from stane to swing without over-

shoots ould be produed with musle ativation sequenes similar to biologial data
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(p. Figs 7.13b,d+e and 7.14b+). The unloading information was derived using a

threshold ombination of CTr torque and torque derivative (p. Fig. 7.14). The ques-

tion remains if and how this unloading signal an be reliably derived in hexapod ou-

pling or under perturbing onditions. During single leg walking, as investigated here,

load is inreasing at the beginning of stane, reahes is maximum around the middle of

stane and then dereases steadily Duysens et al. (2000). In unonstrained stik insets

walking on a �at surfae a strong step-to-step variation of support fores was observed

Cruse (1976). This step-to-step variation is not surprising if one onsiders the high

variability in musle ativation patterns (Hooper et al., 2006) and the high impat of

subtle phase shifts in inter-leg oordination on loal leg load. Future studies employing

torque perturbations will have to larify if fore or torque signals are su�ient or if a

more omplex sensor-integration is neessary to reliably trigger stane-swing transitions.

Suitable tehnial load sensors in priniple allow an appliation of the unloading signal

for stane-swing transitions (Kaliyamoorthy et al., 2005).

Subsequently another hypothesis was tested with respet to appropriate swing-stane

transitions: from behavioral observations it is known (Cruse, 1979; Dean and Wendler,

1983) that stik inset middle- and hind-legs may display a so-alled �targeting� behavior

whereby their touhdown position at the end of swing is lose to the position of the

anterior tarsus. No neuro-biologial data for this behavior during loomotion exists to

date, but see Brunn and Dean (1994) for neural data on targeting information transfer

in standing and resting animals. In the WALKNET simulation (Cruse et al., 2007)

information about the position of the anterior leg is translated into the legs loal joint

angle spae and fed into position servos for ThC and FTi joints. Suh a position servo

mehanism, that was only ative at the end of swing with a �xed referene input, was

tested here (p. Figs. 7.13-e and 7.14d). Employing this ontroller extension, AEP

overshoots ould be redued by reduing swing phase musle ativity and inreasing

stane phase musle ativity slightly before touhdown. Alternative mehanisms are

feasible, e.g. upon ativation of the depressor swing musle ativation ould be dereased

(p. e.g. Figs. 5b and 6 in (Gabriel and Büshges, 2007) for a derease in extensor ativity

during swing) and stane musle ativation inreased. Experiments where the ground

height is unexpetedly varied before touhdown ould shed light on this question.

Finally a more general approah to ompensate for musle ativation delays was tested,

exploiting the low-pass properties of the musle's ativation funtion. If a sub-maximal

musle torque is desired a phasi-toni ativation of the musle leads to a redued delay

in torque buildup yet the same �nal torque (p. 7.15). Despite only using foot ontat

information for swing-stane transitions a ontroller extended by phasi ativations of

all musles ould redue the AEP overshoot. At the same time swing height beame

more variable, suggesting that phasi musle ativations should be applied more se-

letively and graded in future studies. Biologial data, e.g. Fig. 6 from Gabriel and

Büshges (2007) (p. also von Ukermann and Büshges, 2009), suggests that �exor-

extensor transitions have a strong phasi omponent whereas extensor-�exor transitions

are more gradual. Data from Rosenbaum et al. (2010) (p. also Büshges et al., 1994)

supports phasi-toni protrator ativations at the end of stane and also slightly phasi

retrator ativations at the beginning of stane. Additionally data from Fish (2007)
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shows phasi-toni ativities in sensor- and motor neurons and, therefore, it may be

speulated that already sensor-neurons supply the phasi ativity that lead to a om-

pensation of musle ativation delays. Similar sensor-motor neuron orrelations are

known for the hysteresis e�et in sensor neurons that ounterats musle ath Zill and

Jepson-Innes (1988). In a di�erent ontext, hanges in phasi musle ativations were

found as a ompensation for musle fatigue e�ets Coros et al. (2002).

An alternative mehanism to ompensate for musle ativation delays is a o-

ontration of antagonists beause it allows to trigger large hanges in joint torque

by only small neural ativation hanges Zakotnik et al. (2006).

7.5. Conlusion

Taken together, it ould be demonstrated that the onstraints and opportunities im-

posed by the musle model have an important in�uene on neural motor ontrol, in

line with previous studies (p. e.g. Buehrmann and Paolo, 2006; Gerritsen et al., 1998;

Haeu�e et al., 2010; Hof, 2003). On the one hand, parts of ontroller strutures, de-

veloped for stik inset or roboti simulators without musle models (e.g. Cruse et al.,

2007; Rosano and Webb, 2007), may be replaed by musles (Shneider, 2006, s. above,

p.), whih display stabilizing and re�ex-like properties. On the other hand, additional

ontroller strutures might beome neessary to ope with ompliating e�ets of the

musles, suh as time-delayed ativations due to the musle's low pass properties. In

extreme ases, even ontrol priniples ould di�er between models with and without

musles. Beause the musle models major impat on behavior ontrol, together with

the possibility of a omputationally e�ient implementation as presented here, future

simulation studies and bio-inspired robots should onsider to use suh musle models.

Hereby the omparability and transferability of (neural) ontrollers between, on the one

hand, roboti and biologial results and, on the other hand, funtional and morpholog-

ial approahes to stik inset loomotion ould be improved. Furthermore, due to a

potential improvement in searh spae for the neural ontroller (Buehrmann and Paolo,

2006), musle models may prove advantageous during arti�ial evolution experiments.
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In this hapter the results from the previous hapters were merged: modular neural

hexapod ontrollers, embedded into the sensori-motor loop of roboti and stik inset

simulators, were developed either by modular evolution or by hand onstrution. It is

demonstrated that the modular approah to hexapod ontroller development worked

well for all simulation platforms presented in this thesis, with and without an intermedi-

ate musle layer. The results from the arti�ial evolution experiments, where single-leg

ontrollers and sensori-motor oupling strutures were o-evolved, indiate, that inter-

leg oordination may replae intra-leg oordination, further simplifying already min-

imalisti single-leg ontrollers. Finally, for the �rst time it is demonstrated that six

neuro-biologially inspired ontrollers, as presented in hapter 6, are apable to robustly

drive a realistially simulated stik inset hexapod, when oupled by the biologially

inspired �Cruse�-oupling rules. Hereby, all joints of the hexapod were fully equipped

with musle models, as presented in hapter 7.

8.1. Simple Hexapod

Sets of three simple single leg ontrollers (p. Fig. 5.3) were oupled by struture evo-

lution (p. setion 3.3) to drive the hexapod robot AMOS-WD06 (p. setion 4.2.1).

The single-leg ontrollers and the oupling struture were o-evolved (p. setion 3.3.3).

To onstrain the searh spae, a lateral symmetry (p. setion 3.3.3 and Beer and Gal-

lagher (1992)) onstraint was introdued, therefore parameters for only three single-leg

networks and one (parameter halved) oupling network had to be evolved. During evo-

lution, oupling was done by allowing synapses from sensor neurons (ThC angle and

foot ontat sensors were hosen due to their importane in the �Cruse-rules� (Cruse,

1990) for stik inset walking) to spread not only to loal (in the sense of a single leg

ontroller) neurons but also to neurons of other legs. The experiment was onduted for

a six legged robot and its performane in even terrain and rough terrain was analyzed in

form of a swing stane plot. The struture of the best performing ontroller is depited

in Fig. 8.1a. For the even terrain ondition, the ontroller showed a typial tripod gait

(see Fig. 8.1b) whereas rough terrain aused the oupling of the single leg movements to

beome more irregular (see Fig. 8.1). It has to be noted that this modular struture

onsisting of extremely simple single leg ontrollers managed to navigate in a very rough

environment showing its ability to ope with obstales.

When looking at the resulting ontroller struture, it is striking to see how simple the

omplete ontroller (36 neurons and 36 synapses) is. The single-leg's ontroller om-

plexity is even further redued when ompared with single-leg experiments in hapter 5.

If the inter-leg in�uenes are removed, neither all fore- (FTi), nor all middle-leg joints
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Figure 8.1.: a Hexapod ontroller derived by modular evolution of three single-leg ontroller (FL, ML
and HL) and a oupling struture with a bilateral symmetry onstraint. Furthermore, only ouplings
from sensor neurons to interfae neurons were allowed. b Swing- and Stane Phases of all 6 legs walking
on �at ground. The blak boxes denote the feet having ground ontat whereas the white spaes show
the leg having no ground ontat. The ontroller onsisted of six single leg-ontrollers similar to the
ones in the setion above and of onnetions between these single-leg ontrollers.  Swing- and Stane
Phases of all 6 legs in rough terrain. When omparing with plot b please note the di�erent timesale
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(ThC+FTi) reeive synapti input any more. Therefore, global inter-leg ontrol has

replaed loal intra-leg ontrol during the proess of evolution. Furthermore, only using

sensori-motor ouplings and no entral ontrol struture is su�ient to generate robust

walking.

8.2. Otavio

8.2.1. CPG Driven Hexapod

Similar to earlier approahes (Fisher et al., 2004; Manoonpong et al., 2005), a single

entral SO(2) (Pasemann et al., 2003) osillator was employed to drive all 18 DOFs of

the hexapod robot Otavio (see Fig. 8.2). The two outputs of the SO(2) osillator, whih

are shifted by 90◦, are �mixed� by parameter evolution for eah motor neuron. Thereby,

any phase may be expressed by any joint, depending on the parameter ombination.

A nie sinusoidal osillation leads to small output amplitudes (Pasemann et al., 2003)

and, therefore, two ampli�er neurons are additionally used. Note that in order to ahieve

regular walking patterns, the standard motor equipment was not su�ient. Therefore,

motor strengths were doubled during this experiment. The resulting movement was

not very smooth, showing strong body veloity osillations with a frequeny twie the

individual step frequeny (orresponding to one period per eah tripod touhdown) and

nearly falling to zero in every period. Interestingly eah leg shows a speialized behavior

(p. Fig. 8.2b), whereby the hind-legs do not use their ThC joint at all. This means

that the hind-legs only perform pushing movements by using their CTr and FTi joints.

8.2.2. Mixed CPG- and Re�ex-Driven 6x2DOF Hexapod Controller

In Fig. 8.3 an example of a simple hexapod ontroller for the simpli�ed 2DOF leg

version, i.e. with a �xated FTi joint, is shown that was suessfully transferred to

hardware without any parameter adaptations (von Twikel et al., 2012). The loomotor

rhythm is generated by a ombination of loal re�exive elements and an inter-leg oupling

struture: Eah leg has a sensori-motor oupling from the foot sensor to the α (ThC)

joint that simply swithes to leg protration upon foot ontat and to retration upon

loss of ground ontat. Two loal neurons form a ring module that ouples with two

other legs to result in a 12-ring osillator for the omplete hexapod. In the on�guration

shown a wave gait pattern is produed. The ring module swithed the β (CTr) joint state

between levation and depression and, therefore, determined swing and stane phases.

Together with the loal re�ex mehanism this resulted in stable wave-gait walking of

Otavio (see Fig. 8.3  for the simulation performane). Not the osillating body veloity

with a frequeny twie that of the ring-osillator and the drops to zero veloity.

8.2.3. Evolved Sensori-Motor Coupled 6x2DOF Hexapod Controller

In Fig. 8.4 an example of a hexapod ontroller with an evolved inter-leg oupling stru-

ture and its performane in simulation is shown. The ontroller shown was developed for
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Figure 8.3.: Example of a a single-2DOF-leg neuro-ontroller (the FTi joint was �xated) and b its
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transfered to hardware without any parameter hanges.  Performane of the ontroller in simulation.
Foot ontat phases are shown as gray boxes. For further explanations see Fig. 5.8 and text

the restrited leg with 2 ative DOFs, the �xation angle of the γ joint was determined

by evolution.

Single leg ontrollers were initialized (aording to previous evolution experiene) with

neural servo ontrollers for eah joint with a stabilizing joint veloity input and a sensori-

motor oupling that produes re�ex osillations resulting in stable stepping patterns:

The foot ontat in�uenes the α (ThC) joint premotor neuron (5-12-10) resulting in

α hanges (10-6, 10-7), the α angle sensor in�uenes the β premotor neuron (1-13-

11) whih results in β hanges (11-8, 11-9) and eventually in foot sensor hanges. An

interfae neuron (14) projeting to the β premotor neuron 13 was added to reeive inter-

leg oupling in�uenes. During evolution single leg ontroller struture and parameters

were allowed to hange inluding the �xation angle of the γ (FTi) joint and inter-leg

onnetions from sensors onto the interfae neurons of other legs allowed.

The oupling struture and leg ontrollers were only developed using the lateral sym-

metry onstraint, i.e. only left body side ontrollers were developed but right body

side ontroller mirrored and oupling synapses only developed with soure neurons on

the left body side but mirrored to those on the right body side. Despite initialization

with funtional single leg ontrollers, restrition to 2DOF legs and the lateral symme-
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8.2. Otavio

try onstraint the task for evolution is non-trivial beause many loal minima exist,

e.g. non-desirable loomotion patterns like �forward trembling� or middle legs being

used as �arrying wheels�. Therefore additional onstraints have been employed: The

environment was randomly equipped with small obstales to enfore leg lift up and

neighboring legs were not allowed to be without ground ontat simultaneously. Finally

osts for synapses were introdued to redue the struture omplexity while preserving

the performane.

Co-evolution of single leg ontrollers and the oupling struture resulted in speialized

front-, middle- and hind-leg-ontrollers (see Fig. 8.4 a and b): 1. front- and middle-legs

operate in more anterior positions and hind-legs in more posterior positions. 2. Front-

legs are further lifted up during swing phase to allow obstales to be overome and

middle-legs have a smaller movement range ating as stabilizers. This an also be seen

in the evolved �xation angles of the γ joint (front-leg: 125◦, middle-leg: 122◦, hind-leg:
110◦) and the di�erentiated single leg ontroller strutures.

Despite the lak of a entral rhythm generating network the resulting ontroller shows

a robust tripod walking pattern on the walking mahine with smooth forward progression

(see Fig. 8.4 ). Interestingly oupling between front-, middle- and hind-legs is non

symmetrial: Front-legs projet to ontra-lateral front- and middle-legs, middle-legs

only to ontra-lateral middle-legs and hind-legs to ontra-lateral hind- and middle-legs

and ipsi-lateral middle- and front-legs. Partly the oupling struture explains the tripod

pattern, e.g. the hind-leg foot-ontat sensor exites the ontra-lateral hind-leg to lift

o�, but its projetions to middle- and front-legs seem to have the opposite e�et. One

has to take into aount the ombination of multiple inter-leg oupling in�uenes as well

as mehanial oupling in�uenes not visible in the neural onnetivity struture.

8.2.4. Evolved Sensori-Motor Coupled 6x3DOF Hexapod Controller

Taking the previous experiment a step further, the FTi joint was released and put

under ontrol of the neural network. Again, evolution was bootstrapped with funtional

front-, middle- and hind-leg ontrollers. It was found to be neessary to apply many

strategies to onstrain the searh spae (p. setion 3.3.3). In Fig. 8.5 an example of a

resulting ontroller struture for a simulator version with servo motor interfae is given.

Compared to the ontrollers presented above this one is very ompliated and annot be

analyzed in a simple manner. Therefore, only its performane is disussed (p. Fig. 8.6):

A tripod gait pattern is observed with an asymmetry between middle-legs on the one

hand, and front- and hind-legs on the other hand. Beause of their smaller anterior-

posterior movement range, middle-legs at more like struts and front- and hind-legs

provide the forward movement. The footfall patterns show that middle-legs additionally

have a prolonged stane phase when ompared to the front- and hindlegs, suggesting a

stabilizing role. Body veloity osillates with twie the step frequeny, but veloities do

not fall to zero.

Additional to the presented ontroller multiple other hexapod ontrollers were evolved,

not only for the servo motor interfae but also for the antagonist and musle motor

interfaes. Those ontrollers possessed an even more ompliated struture and are
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8. Hexapod Neuro-Controllers

8.3. Stik Inset

The stik inset simulator (p. setion 4.2.3) was extended to six legs and initially six

standard neuro-biologially inspired ontrollers were used (p. Fig. 3.11) in experiment

on a rail struture. First of all it was found that stik inset models using the musle

model were found to be ontrolled muh easier. Without a detailed investigation this

was assigned to an inreased damping due to the torque-veloity urve (but p. setion 7

for alternative possibilities). Despite the inlusion of a musle model it was found that

this setup did not provide a simple means to ontrol walking speed in a smooth way

beause interation fore between legs would rapidly hange walking speeds due to an

irregular stepping. Therefore the ontroller was extended by ThC and FTi veloity

ontrollers (p. Fig. 3.6), resulting in the extended neuro-biologially inspired ontroller

(p. setion setion 3.2.3). This setup allowed a su�iently smooth veloity ontrol.

The next problem appeared when the rail struture was removed: it was extremely

di�ult to on�gure a ontroller that would result in stable postures. This was due to

the audal enter of mass, whih lies behind the hind-leg oxae (p. table D.1). Stik

insets use a tarsus attahment (p. setion 4.2.3) and their abdomen as extra stabilizing

measures. Therefore, an attahable tarsus was implemented in simulation (p. Fig. 4.8).

The performane of the extended ontroller with musle models and tarsus attahments

via the retrator unguis (Run) motor neuron are given in Fig. 8.7a+b for a middle- and

a hind-leg. As a next step the single-leg ontroller's parameters were tuned in suh a

way that the single leg would reat with a good entrainment behavior (p. Fig. 8.8)

8.3.1. Hexapod Performane

Subsequently the morphologial single-leg approah was merged with the funtional

approah by adding the �Cruse-Coupling-Rules� (Cruse, 1990, p. Fig. 3.13). See Fig. 8.9

for the resulting hexapod ontroller. Using lateral symmetry onstraints parameters had

then to be tuned for three leg ontrollers and the oupling in�uenes. As a result stable

hexapod walking was ahieved. Resulting data is given in Figs. 8.10 (time plots) and

8.11 (foot trajetories).

8.4. Disussion

For all simulators used throughout this thesis (AMOS-WD06, Otavio and Stik Inset)

as well as for simulators with and without musle models, a modular approah to the

development of hexapod ontrollers was suessfully applied. Modular ontroller devel-

opment either was done by hand-tuning (stik inset) or by evolutionary robotis. This

approah promises to lead to insights about the neural organization of inter-leg oupling

in stik insets. It may ombine the morphologial and funtional approahes (Cruse

et al., 2007) to stik inset loomotion ontrol modeling with evolutionary robotis Beer

and Gallagher (1992); Nol� and Floreano (2000) to explore the oupling parameter

spae. Hereby the searh spae may be onstrained by reent neuro-biologial data on

inter-leg oupling (Borgmann et al., 2007, 2009; Ludwar et al., 2005) on the one hand
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Figure 8.7.: Single leg performane with the extended neuro-biologially inspired ontroller, with tarsus
attahment and musle models for a middle- and b hind-leg

and desired behaviors on the other hand, suh as those displayed by the WALKNET

ontroller (Dürr et al., 2004).

In the ontext of arti�ial evolution of walking behaviors Bongard (2011); Filliat et al.

(1999); Floreano et al. (2008); Gallagher et al. (1996); Lewis et al. (1992); Lipson et al.

(2006); Mazzapioda and Nol� (2006) most of the studies used legs with only 2 DOFs,

and onsidered omplete 4- or 6-legged robots, whih often existed in simulations only.

Furthermore, the strutures of the evolved neural ontrollers were mostly designed by

hand, like, e.g., oupled osillators. Therefore, evolution was used only as an optimiza-

tion tehnique. The approah presented here promises to lead to new insights about

interesting hexapod ontrol strutures that may be analyzed to derive general ontrol

priniples and that may be deployed on real robots.
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Figure 8.9. (faing page): Merged funtional and morphologial ontroller for hexapod stik inset walk-
ing. Note that single-leg ontroller are simpli�ed due to spae onstraints. Cp. Fig. 3.12 for the omplete
single leg ontroller

152



8
.4
.
D
is

u
ssio

n

α

FC

ISin

ISin

ISin

C

1 α

7 FC

34 ISin

35 ISin

36 ISin

C
α

FC

ISin

ISin

ISin

ISin

C

8 α

14 FC

38 ISin

39 ISin

40 ISin

41 ISin

C

C C
α

FC

ISin

ISin

ISin

ISin

C

15 α

21 FC

42 ISin

43 ISin

44 ISin

45 ISin

C

C
1
,C

2

35 36

Cruse Rule 1

C
1
,C

2

C
1
,C

2

C
1
,C

2

C2,C3

C2

C2,C3

37 38

Cruse Rule 2 ipsi

39 40

Cruse Rule 2 contra

3536

Cruse Rule 1

3738

Cruse Rule 2 ipsi

3940

Cruse Rule 2 contra

35 36

Cruse Rule 1

37 38

Cruse Rule 2 ipsi

39 40

Cruse Rule 2 contra

3536

Cruse Rule 1

3738

Cruse Rule 2 ipsi

3940

Cruse Rule 2 contra

37 38

Cruse Rule 2 contra

3738

Cruse Rule 2 contra

C
3

C
3

C
3

C
3

C
3

C
3

C
3

C
3

41 42

Cruse Rule 3 contra

4142

Cruse Rule 3 contra

41 42

Cruse Rule 3 ipsi

4142

Cruse Rule 3 ipsi

1

39 40

Cruse Rule 3 ipsi

41 42

Cruse Rule 3 contra

3940

Cruse Rule 3 ipsi

4142

Cruse Rule 3 contra

C3

7

14

15

16

1

7

14

15

16

17

1

7

14

15

16

17

1
5
3



8. Hexapod Neuro-Controllers

Figure 8.10.: Time plot of important parameters of all six legs during stik inset hexapod walking
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9. General Conlusions

�Man darf daher mit Gewissheit erwarten, dass man, wenn man den

Mehanismus des Gehens reht erkannt haben wird, daraus grossen

Vortheil für die Er�ndung neuer auf das Fortkommen berehneter

Mashinen werde ziehen können, welhe auh in unwegsamen

Gegenden, wo das Fuhrwerk niht zu gebrauhen ist, und wo sih der

Mensh auf die Dienste der Kameele und andrer Thiere beshränken

muss, ihren Zwek erfüllen werden.�

(Wilhelm Weber and Eduard Weber: Mehanik der menshlihen

Gehwerkzeuge, Weber and Weber (1836), p. 3)

�Happily, attention to biologial detail has lead to a number of

striking and unexpeted similarities between neural and behavioral

harateristis of the arti�ial inset and those of natural animals.�

(Randall Beer: Intelligene as Adaptive Behavior, Beer (1990), p. 19)

9.1. Summary of Findings

Chapters 2�4: Approahes In hapter 2 the funtional onstraints and opportuni-

ties provided by the body and the environment, in robotis as well as in biology, were

disussed in detail. This provided the basis for establishing transferability and ompa-

rability between natural and arti�ial systems.

Chapter 3 and 4 shaped the framework for integrative biologial and roboti simu-

lations of loomotion, by providing ommon sensor and motor interfaes to the neural

ontrollers, inluding antagonisti motor interfaes with and without musle models.

Modular (neuro-)biologially inspired single-leg ontrol strutures and musle models

were implemented as neural networks. Finally, the method of modular evolution of

hexapod ontrollers was introdued, together with a set of onstraints, inluding per-

turbing senarios, symmetry and struture ost funtions.

Chapter 5: Evolved Single-Leg Neuro-Controllers By applying the evolutionary

robotis approah to the ontrol of walking in single roboti (AMOS-WD06) legs, ex-

tremely simple, yet very robust and e�etive, neuro-ontrollers were derived. As basi

ontrol mehanisms they exploited properties of body and environment by integrating

multiple sensori-motor feedbak (or re�ex) loops and they made extensive use of hys-

teresis e�ets, i.e. bistability.
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9. General Conlusions

Chapter 6: Bio-Inspired Single-Leg Neuro-Controllers By applying multiple pertur-

bation senarios to the roboti model Otavio, the behavioral robustness of ompletely

deentralized and modular neuro-biologially inspired single-leg ontrollers ould be

demonstrated. Furthermore the same ontrollers ould easily be transferred to the stik

inset simulator whih di�ered tremendously in sale. Data from swing ontrol, veloity

ontrol and support fore experiments mathed, to a large extent, biologial data. The

results suggested that the single leg ontrollers are well suited as modules of a hexapod

ontroller. Therefore it was suggested, that the neuro-biologially inspired single-leg

ontroller ould serve as a bridge between morphologial and funtional approahes to

stik inset loomotion ontrol.

Chapter 7: Impliations of Musle-Model Properties for the Neural Control of

Single-Leg Stepping Applying a musle model derived from stik inset extensor data

to roboti and stik inset models, advantages and onstraints of the musle model ould

be determined. On the one hand, an appliation of pairs of musle models to all joints

had the following advantages: musle models ould stabilize the joints working range,

they supported slow and large amplitude step patterns, they showed an inreased ro-

bustness under perturbing and noisy onditions and they ould stabilize swing-stane

transitions by their torque-veloity harateristis. On the other hand, several hypothe-

ses were tested of how the nervous system ould ompensate for the slowness of stik

inset musle, inluding the usage of unloading information to trigger swing phase mus-

le ativities, the usage of a servo mehanism that was ative at the end of swing phase

to stabilize swing-stane transitions and �nally the general approah of phasi musle

ativation to ompensate for ativation delays. All three hypotheses led to an improved

behavioral performane.

Chapter 8: Hexapod Neuro-Controllers By ombining the results on single-leg on-

trollers of the previous hapters and by adding either bio-inspired or evolved sensori-

motor oupling strutures, robust hexapod ontrollers were developed. Hereby the fea-

sibility of the modular approah, starting by the development of single-legs, was demon-

strated for all simulated walkers presented in this thesis � from the stik inset-modeling

point of view as well as from the evolutionary robotis point of view. For the �rst time

it ould be shown that the neuro-biologially inspired ontroller introdued by Ekeberg

et al. (2004) is appliable to the ontrol of a hexapod that is fully equipped with musle

models. Coupling was done by integrating it with the �Cruse� oupling rules derived

from behavioral experiments (Cruse, 1990). Furthermore the role of leg speialization

and examples of loal vs. global o-ordination were shown.

9.2. Conlusion

Overall the four main objetives of this thesis were met: 1. General priniples of sensori-

motor ouplings were disovered, 2. mehanisms of magnitude ontrol of the neuro-

biologially inspired ontroller (Ekeberg et al., 2004) were demonstrated in addition
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to its suitability as a module in hexapod ontrol, 3. the in�uene of a model of the

stik inset extensor musle on neural ontrol of stepping was thoroughly haraterized

and 4. the introdued simulation framework was suessfully used to develop hexapod

ontrollers by evolution and by merging morphologial and funtional approahes of

stik inset modeling.

The framework presented here o�ers an extensive approah to investigate neural and

bio-mehanial ontrol mehanisms of walking in stik insets and robots. It is seen as

a step towards a more general integration of funtional and morphologial approahes

to stik inset loomotion (Cruse et al., 2007). Sine the �Cruse-rules� are only one

possible oupling struture that produes the observed inter-leg o-ordination, it would

be bene�ial to develop alternative oupling shemes on top of the neuro-biologially

inspired single-leg ontrollers. Hereby the evolutionary robotis approah will be em-

ployed, whereby reent data and modeling studies on neural inter-leg o-ordination

(Borgmann et al., 2007, 2009; Daun-Gruhn, 2010; Ludwar et al., 2005) will be used to

onstrain the searh spae for the evolutionary algorithm.

Finally the standardized implementation of ontrollers and musle models simpli�es

their transfer to hardware. Some evolved and bio-inspired single leg ontrollers, as

well as simple hexapod ontrollers (p. e.g. Fig. 8.3), have already been suessfully

transferred to the robot Otavio (Patel, 2008; von Twikel et al., 2012).
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D Tehnial Data of Robot Otavio and Stik Inset

D Tehnial Data of Robot Otavio and Stik Inset

Table D.1 on the following page gives detailed tehnial data of the simulated robot O-

tavio together with orresponding data from the stik inset (where available). Unless

otherwise noted single leg data is only shown for middle-legs. Remarks for supersript

indies: 1 Note that the modular robot Otavio has detahable legs whih inlude the

part orresponding to the thorax parts of the stik inset where the oxae attah, inlud-

ing the motor (musles). For better omparison this part is here added to the thorax

and not to the legs. 2 ThC joint setup in stik insets and Otavio di�er, see text for

details. 3 In brakets angle ranges for in vivo walking on �at terrain are given. 4 v

is joint rotational veloity in rad/s. 5 Joint frition in stik insets is more di�ult to

express in numbers due to omplex musle properties. Details are given in the ited

literature.
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Table D.1.: Tehnial data of stik inset and roboti model Otavio. See text for details

Quantity Stik Inset Data Soure Otavio Ratio

Body length [mm℄ 75.0 Cruse (1976); Gushlbauer et al. (2007) 850.0 11.33
! FL-HL oxae [mm℄ 28.4 Cruse (1976) 740.0 26.06

Total body mass [g℄ 0.9 Cruse (1976); Gushlbauer et al. (2007) 21970.0 24411.11

Distane head to [mm℄
! Fl oxae 7.1 Cruse (1976) 55.0 7.75
! Ml oxae 24.6 Cruse (1976) 495.0 20.12
! Hl oxae 35.5 Cruse (1976) 795.0 22.39
! COM 35.8 Cruse (1976) 447.0 12.49

Segment length [mm℄
a) ML 23.6 Cruse (1976) 562.5 23.83
! Coxa 1.5 Cruse (1976) 51.0 34.00
! Trohanterofemur 11.4 Cruse (1976) 232.5 20.39
! Tibia+Tarsus 10.7 Cruse (1976) 279.0 26.07

Segment mass [g℄1

Head-thorax-abdomen 0.77 Ekeberg et al. (2004) 5890.0 7649.35
a) ML 0.0108 Ekeberg et al. (2004) 2680.0 2.48 * 105

! Coxa 0.0010 Ekeberg et al. (2004) 1200.0 1.20*106

! Trohanterofemur 0.0081 Ekeberg et al. (2004) 1210.0 1.49*105

! Tibia+Tarsus 0.0017 Ekeberg et al. (2004) 270.0 1.58*105

Joint Max Torques [mNm℄
a) ML
! ThC Pro NA 9310.00 NA
! ThC Ret NA 9310.00 NA
! CTr Lev NA 9310.00 NA
! CTr Dep NA 9310.00 NA
! FTi Flx 0.234 Gushlbauer (2009) 9310.00 39786.32
! FTi Ext 0.043 Gushlbauer (2009) 9310.00 2.17 * 105

Joint Max Veloities [◦/s℄
a) ML
! ThC Pro NA 151.00 NA
! ThC Ret NA 151.00 NA
! CTr Lev NA 151.00 NA
! CTr Dep NA 151.00 NA
! FTi Flx 616.0 Gushlbauer (2009) 151.00 0.25
! FTi Ext 895.0 Gushlbauer (2009) 151.00 0.17

Joint Max Angles [◦℄2;3

a) ML
! ThC Min NA(-48.0) (Cruse and Bartling (1995)) -90.0 NA
! ThC Max NA(33.0) (Cruse and Bartling (1995)) 90.0 NA
! CTr Min -80.0(-8.0) Cruse (1976)(Cruse and Bartling (1995)) -90.0 1.12
! CTr Max 80.0(29.0) Cruse (1976)(Cruse and Bartling (1995)) 90.0 1.12
! FTi Min NA(42.0) (Cruse and Bartling (1995)) -15.0 NA
! FTi Max NA(99.0) (Cruse and Bartling (1995)) 165.0 NA

Joint Frition [mNm℄4

a) ML
! ThC stati 5 Gushlbauer (2009) 1200 5

! ThC dynami 5 Gushlbauer (2009) 400 + 80v
2 5

! CTr stati 5 Gushlbauer (2009) 1200 5

! CTr dynami 5 Gushlbauer (2009) 400 + 80v
2 5

! FTi stati 5 Gushlbauer (2009); Hooper et al. (2009) 1200 5

! FTi dynami 5 Gushlbauer (2009); Hooper et al. (2009) 0:4 + 80v
2 5
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E Neural Network Parameters

Non listed parameters are assumed to have the value 0.0. Parameters are given �rst for the roboti
model Otavio and then di�ering parameters for the stik inset model are listed.

Middle-Leg Sidewards

Synapse Strengths Otavio 1! 14: - 4.0, 2! 14: - 1.0, 3! 22: - 4.0, 3! 23: 4.0, 3! 24: - 4.2,
5! 19: 32.0, 5! 21: - 32.0, 5! 22: 4.0, 5! 23: - 4.0, 5! 25: 32.0, 5! 28: - 32.0, 7! 26: - 20.0, 7! 29:
20.0, 14! 8: 32.0, 14! 9: - 32.0, 15! 10: 8.0, 15! 11: - 2.0, 15! 15: 16.0, 16! 12: 32.0, 16! 13:
- 32.0, 16! 16: 16.0, 19! 19: 5.0, 19! 20: 32.0, 20! 15: 32.0, 21! 15: - 24.0, 21! 21: 5.0, 22! 24:
23.4, 23! 24: 23.4, 24! 10: 20.0, 24! 11: - 20.0, 25! 25: 5.0, 25! 27: 32.0, 26! 26: 5.0, 26! 27: 32.0,
27! 16: - 24.0, 28! 28: 5.0, 28! 30: 20.0, 29! 29: 5.0, 29! 30: 20.0, 30! 16: 32.0

Bias Strengths 8: - 16.0, 9: 16.0, 10: - 14.0, 11: 11.0, 12: - 16.0, 13: 16.0, 14: 2.5, 15: - 8.0, 16:
- 8.0, 17: - 17.5, 18: 0.0, 19: - 20.63, 20: - 26.0, 21: 15.81, 22: 0.18, 23: 0.82, 24: - 25.56, 25: - 20.63,
26: 12.5, 27: - 26.0, 28: 22.03, 29: - 17.5, 30: - 32.0

Di�ering Synapse Strengths Stik Inset 14! 8: 8.0, 14! 9: - 8.0, 15! 10: 2.0, 16! 12: 2.0,
16! 13: - 2.0, 21! 15: - 24.0, 24! 10: 5.0, 24! 11: - 5.0, 27! 16: - 24.0

Di�ering Bias Strengths Stik Inset 8: - 4.0, 9: 4.0, 10: - 3.5, 11: 3.5, 12: - 1.0, 13: 1.0, 22:
0.336, 23: 0.664, 24: - 25.397

Middle-Leg Forward (Standard)

Synapse Strengths 1! 18: - 32.0, 3! 22: - 4.0, 3! 23: 4.0, 3! 24: - 4.2, 5! 19: 32.0, 5! 21: - 32.0,
5! 22: 4.0, 5! 23: - 4.0, 5! 25: 32.0, 5! 28: - 32.0, 7! 17: 20.0, 7! 26: - 20.0, 7! 29: 20.0, 14! 8:
4.0, 14! 9: - 4.0, 14! 14: 4.0, 15! 10: 8.0, 15! 11: - 2.0, 15! 15: 16.0, 16! 12: 32.0, 16! 13: - 32.0,
16! 16: 16.0, 17! 14: - 1.0, 17! 17: 5.0, 18! 18: 5.0, 18! 20: 32.0, 19! 19: 5.0, 19! 20: 32.0, 20! 15:
32.0, 21! 15: - 24.0, 21! 21: 5.0, 22! 24: 23.4, 23! 24: 23.4, 24! 10: 20.0, 24! 11: - 20.0, 25! 25: 5.0,
25! 27: 32.0, 26! 26: 5.0, 26! 27: 32.0, 27! 16: - 24.0, 28! 28: 5.0, 28! 30: 20.0, 29! 29: 5.0, 29! 30:
20.0, 30! 16: 32.0

Bias Strengths 8: - 2.0, 9: 1.8, 10: - 14.0, 11: 11.0, 12: - 16.0, 13: 16.0, 14: - 1.65, 15: - 8.0, 16:
- 8.0, 17: - 17.5, 18: 12.26, 19: - 23.3, 20: - 26.0, 21: 15.81, 22: 0.18, 23: 0.82, 24: - 25.56, 25: - 20.63,
26: 12.5, 27: - 26.0, 28: 22.03, 29: - 17.5, 30: - 32.0

Di�ering Synapse Strengths Stik Inset 14! 8: 3.0, 14! 9: - 8.0, 15! 10: 2.0, 16! 12: 2.5,
16! 13: - 2.0

Di�ering Bias Strengths Stik Inset 8: - 4.0, 9: 1.0, 10: - 3.5, 11: 3.5, 12: - 1.0, 13: 0.0, 22:
0.336, 23: 0.664, 24: - 25.397

Middle-Leg Forward (Plus ThC Servo)

Synapse Strengths 1! 14: - 4.0, 1! 18: - 32.0, 2! 14: - 2.0, 3! 22: - 4.0, 3! 23: 4.0, 3! 24: - 4.2,
5! 19: 32.0, 5! 21: - 32.0, 5! 22: 4.0, 5! 23: - 4.0, 5! 25: 32.0, 5! 28: - 32.0, 7! 17: 20.0, 7! 26:
- 20.0, 7! 29: 20.0, 14! 8: 32.0, 14! 9: - 32.0, 15! 10: 16.0, 15! 11: - 2.0, 15! 15: 16.0, 16! 12: 32.0,
16! 13: - 2.0, 16! 16: 16.0, 17! 14: - 2.0, 17! 17: 5.0, 18! 18: 5.0, 18! 20: 32.0, 19! 19: 5.0, 19! 20:
32.0, 20! 15: 32.0, 21! 15: - 24.0, 21! 21: 5.0, 22! 24: 23.4, 23! 24: 23.4, 24! 10: 10.0, 24! 11:
- 10.0, 25! 25: 5.0, 25! 27: 32.0, 26! 26: 5.0, 26! 27: 32.0, 27! 16: - 24.0, 28! 28: 5.0, 28! 30: 20.0,
29! 29: 5.0, 29! 30: 20.0, 30! 16: 32.0
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E Neural Network Parameters

Bias Strengths 8: - 16.0, 9: 16.0, 10: - 18.0, 11: 6.0, 12: - 16.0, 13: 1.0, 14: 3.25, 15: - 8.0, 16:
- 8.0, 17: - 17.5, 18: 12.26, 19: - 23.3, 20: - 26.0, 21: 15.81, 22: 0.18, 23: 0.82, 24: - 25.56, 25: - 20.63,
26: 12.5, 27: - 26.0, 28: 22.03, 29: - 17.5, 30: - 32.0

Di�ering Synapse Strengths Stik Inset 14! 8: 8.0, 14! 9: - 8.0, 15! 10: 2.0, 16! 12: 2.0,
24! 10: 5.0, 24! 11: - 5.0

Di�ering Bias Strengths Stik Inset 8: - 4.0, 9: 4.0, 10: - 3.5, 11: 3.5, 12: - 1.0, 13: 0.25, 22:
0.336, 23: 0.664, 24: - 25.397

Veloity Control Parameters Average stane loomotion speed is given with orresponding re-
trator (neuron 9) and �exor (neuron 12) bias values in the format speed (neuron 9 bias, neuron 12
bias):

0,26 m/s (5.3, -31.3), 0,38 m/s (5.3, -31.0), 0,46 m/s (5.5, -30.5), 0,51 m/s (6.0, -30.0), 0,52 m/s (6.0,
-29.5), 0,57 m/s (7.0, -28.5), 0,59 m/s (8.0, -27.5), 0,60 m/s (9.0, -26.0), 0,62 m/s (11.0, -24.0), 0,66
m/s (13.0, -20.0), 0,75 m/s (16.0, -16.0)

Front-Leg Forward (Plus ThC Servo)

Synapse Strengths 1! 14: - 4.0, 1! 18: - 32.0, 2! 14: - 0.5, 3! 22: - 4.0, 3! 23: 4.0, 3! 24: - 4.2,
5! 19: 32.0, 5! 21: - 32.0, 5! 22: 4.0, 5! 23: - 4.0, 5! 25: 32.0, 5! 28: - 32.0, 7! 17: 20.0, 7! 26:
- 20.0, 7! 29: 20.0, 14! 8: 32.0, 14! 9: - 32.0, 15! 10: 8.0, 15! 11: - 8.0, 15! 15: 16.0, 16! 12: 32.0,
16! 13: - 4.0, 16! 16: 16.0, 17! 14: - 4.0, 17! 17: 5.0, 18! 18: 5.0, 18! 20: 32.0, 19! 19: 5.0, 19! 20:
32.0, 20! 15: 32.0, 21! 15: - 24.0, 21! 21: 5.0, 22! 24: 23.4, 23! 24: 23.4, 24! 10: 20.0, 24! 11:
- 20.0, 25! 25: 5.0, 25! 27: 32.0, 26! 26: 5.0, 26! 27: 32.0, 27! 16: - 24.0, 28! 28: 5.0, 28! 30: 20.0,
29! 29: 5.0, 29! 30: 20.0, 30! 16: 32.0

Bias Strengths 8: - 16.0, 9: 16.0, 10: - 14.0, 11: 11.0, 12: - 16.0, 13: 2.0, 14: 3.7, 15: - 8.0, 16:
- 8.0, 17: - 17.5, 18: 18.48, 19: - 19.48 20: - 26.0, 21: 15.81, 22: 0.18, 23: 0.82, 24: - 25.56, 25: - 18.86,
26: 12.5, 27: - 26.0, 28: 20.26, 29: - 17.5, 30: - 32.0

Di�ering Synapse Strengths Stik Inset 14! 8: 8.0, 14! 9: - 8.0, 15! 10: 2.0, 15! 11:
- 2.0, 16! 12: 2.0, 16! 13: - 2.0, 24! 10: 5.0, 24! 11: - 5.0

Di�ering Bias Strengths Stik Inset 8: - 4.0, 9: 4.0, 10: - 3.5, 11: 3.5, 12: - 1.0, 13: 1.0, 22:
0.269, 23: 0.731, 24: - 25.467

Hind-Leg Forward (Plus ThC Servo)

Synapse Strengths 1! 14: - 4.0, 1! 18: - 32.0, 1! 21: 32.0, 2! 14: - 0.5, 3! 24: - 4.0, 3! 25: 4.0,
3! 26: - 4.2, 5! 19: - 32.0, 5! 22: 32.0, 5! 24: 4.0, 5! 25: - 4.0, 7! 17: 20.0, 7! 27: 20.0, 14! 8: 32.0,
14! 9: - 32.0, 15! 10: 8.0, 15! 11: - 16.0, 15! 15: 16.0, 16! 12: 32.0, 16! 13: - 16.0, 16! 16: 16.0,
17! 14: - 2.0, 17! 17: 5.0, 18! 18: 5.0, 18! 20: 32.0, 19! 19: 5.0, 19! 20: 32.0, 20! 15: 24.0, 21! 21:
5.0, 21! 23: 32.0, 22! 22: 5.0, 22! 23: 32.0, 23! 15: - 32.0, 24! 26: 23.4, 25! 26: 23.4, 26! 10: 20.0,
26! 11: - 20.0, 27! 16: - 32.0, 27! 27: 5.0

Bias Strengths 8: - 16.0, 9: 16.0, 10: - 14.0, 11: 18.0, 12: - 16.0, 13: 8.0, 14: 2.45, 15: - 8.0, 16:
8.0, 17: - 17.5, 18: 8.7, 19: 13.15 20: - 26.0, 21: - 16.19, 22: - 17.96, 23: - 26.00, 24: 0.18, 25: 0.82, 26:
- 25.56 27: - 12.5

Di�ering Synapse Strengths Stik Inset 14! 8: 8.0, 14! 9: - 8.0, 15! 10: 5.0, 15! 11:
- 2.0, 16! 12: 10.0, 16! 13: - 4.0, 26! 10: 3.0, 26! 11: - 3.0
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Di�ering Bias Strengths Stik Inset 8: - 4.0, 9: 4.0, 10: - 3.5, 11: 2.5, 12: - 3.0, 13: 0.0, 14:
3.25, 24: 0.158, 25: 0.842, 26: - 25.54 27: - 12.5

Hind-Leg Forward (Plus ThC Servo Plus FTi Middle-Leg Struture)

Synapse Strengths 1! 14: - 4.0, 1! 18: - 32.0, 1! 21: 32.0, 2! 14: - 0.5, 3! 24: - 4.0, 3! 25: 4.0,
3! 26: - 4.2, 5! 19: - 32.0, 5! 22: 32.0, 5! 24: 4.0, 5! 25: - 4.0, 5! 27: 32.0, 5! 30: - 32.0, 7! 17:
20.0, 7! 28: 20.0, 7! 31: - 20.0, 14! 8: 32.0, 14! 9: - 32.0, 15! 10: 8.0, 15! 11: - 16.0, 15! 15:
16.0, 16! 12: 32.0, 16! 13: - 16.0, 16! 16: 16.0, 17! 14: - 2.0, 17! 17: 5.0, 18! 18: 5.0, 18! 20: 32.0,
19! 19: 5.0, 19! 20: 32.0, 20! 15: 24.0, 21! 21: 5.0, 21! 23: 32.0, 22! 22: 5.0, 22! 23: 32.0, 23! 15:
- 32.0, 24! 26: 23.4, 25! 26: 23.4, 26! 10: 20.0, 26! 11: - 20.0, 27! 27: 5.0, 27! 29: 32.0, 28! 28: 5.0,
28! 29: 32.0, 29! 16: - 24.0, 30! 30: 5.0, 30! 32: 20.0, 31! 31: 5.0, 31! 32: 20.0, 32! 16: 32.0

Bias Strengths 8: - 16.0, 9: 16.0, 10: - 14.0, 11: 18.0, 12: - 16.0, 13: 8.0, 14: 2.45, 15: - 8.0, 16:
- 8.0, 17: - 17.5, 18: 8.7, 19: 13.15 20: - 26.0, 21: - 16.19, 22: - 17.96, 23: - 26.00, 24: 0.18, 25: 0.82,
26: - 25.56, 27: - 20.63, 28: - 12.5, 29: - 26.0, 30: - 22.03, 31: 7.5, 32: - 32.0

Di�ering Synapse Strengths Stik Inset 14! 8: 16.0, 14! 9: - 8.0, 15! 10: 4.0, 15! 11:
- 2.0, 16! 12: 10.0, 16! 13: - 4.0, 26! 10: 3.0, 26! 11: - 3.0

Di�ering Bias Strengths Stik Inset 8: - 8.0, 9: 4.0, 10: - 3.5, 11: 2.5, 12: - 2.0, 13: 0.0, 14:

3.25, 16: 8.0, 24: 0.158, 25: 0.842, 26: - 25.54
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