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Zusammenfassung

Fitnesslandschaften sind verallgemeinerte Energielandschaften, die eine wichtige konzeptionelle

Rolle in der Evolutionsbiologie spielen. Diese Landschaften stellen eine Beziehung her zwischen

der genetischen Konfiguration eines Organismus und seinen adaptiven Eigenschaften.

In dieser Arbeit werden globale topographische Eigenschaften dieser Fitnesslandschaften an

theoretischen Modellen untersucht und die daraus resultierenden Ergebnisse mit empirischen

Landschaften verglichen. Dabei wird gezeigt, daß diese Landschaften zumindest mit Hinblick

auf die betrachteten Eigenschaften grob in zwei Klassen eingeteilt werden können, deren Ver-

halten sich im biologisch Relevanten Grenzfall stark unterscheidet. Obwohl für empirische

Landschaften nicht allgemein gezeigt werden kann, in welche dieser Klassen sie fallen, werden

einige der bekannten empirischen Datensätze im Rahmen dieser Arbeit von Fall zu Fall klassi-

fiziert.

Theoretische Modellstudien führen zur Betrachtung von Sequenzen von Rekordereig-

nissen unabhängiger, nicht identisch verteilter Zufallsvariablen und der Korrelationen dieser

Rekordereignisse untereinander. Diese Untersuchungen stehen zunächst zum Großteil außer-

halb der Hauptrichtung dieser Arbeit, führen jedoch zu einer rekordbasierten Methode der

Datenauswertung, die auf einen der hier betrachteten Datensätze angewandt wird.

Abstract

Fitness landscapes are generalized energy landscapes that play an important conceptual role in

evolutionary biology. These landscapes provide a relation between the genetic configuration of

an organism and that organism’s adaptive properties.

In this work, global topographical features of these fitness landscapes are investigated using

theoretical models. The resulting predictions are compared to empirical landscapes. It is shown

that these landscapes allow, at least with respect to the properties considered, for a rough clas-

sification into two types. In the biologically relevant limit, these two types of landscapes show

very different behavior. While empirical landscapes cannot be classified on purely theoretical

grounds, some of the known landscapes are classified here on a case-by-case basis.

The study of theoretical models leads to consider sequences of record events of independent

but non-identically distributed random variables and correlations between these record events.

While these considerations appear at first to be outside the main direction of this thesis, they

lead to a record-base tool of data analysis that is applied to one of the data sets considered

here.
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1. Evolutionary Biology and Population

Genetics

In this chapter, the basics ideas and some key results of evolutionary biology and

population genetics necessary for the remainder of this thesis are introduced. Some

basic elements of the biochemical mechanisms of heredity are recalled and finally

the basic questions to be adressed within this work are stated.

1.1. Evolutionary Biology

In his famous book ‘On the Origin of Species by Means of Natural Selection’ [28], Charles

Darwin in 1859 proposed an explanation for the diversity and the spacial distribution of species

he had observed during his voyage on the ‘Beagle’ from 1831 through 1836. These explanations,

which laid the foundations of the Theory of Evolution, rely on three separate principles:

Heredity: Each individual in a given generation carries hereditary material, the individ-

uals ‘genotype’, which is passed down to its offspring in the next generation (In the case

of sexual reproduction, the individual’s genotype is ‘mixed’ with that of its mate, thus

only part of the hereditary material of each parent gets passed onto the offspring).

Mutation: In the reproductive process, ‘copying errors’ called ‘mutations’ occur at a

very low rate. Thus the parental genotype is not passed down in a perfectly conserved

manner. This way, genetic diversity occurs.

Natural Selection: The individuals carrying these mutant genotypes may have different

properties (reproduction rate, fertility, metabolism, resistance to environmental influences

such as heat, cold or radiation, etc.) than their parents or other individuals present in the

same generation. If these properties are better suited to the environmental conditions, the

organism has an advantage. Thus it is expected to have more offspring than an organism

without this advantage, leading to a higher percentage of organisms with this advantage in

the next generation. This selection mechanism is termed ‘Natural Selection’1. In allusion

to Herbert Spencer calling this principle of natural selection ’survival of the fittest’ [138],

it is said that such a better adapted mutant is ‘fitter’ than the others, with ‘fitness’

generically referring to the degree of adaptation to the environment.

If these three principles act repeatedly on a population for many generations, the resulting

population is expected to be better adapted to the surroundings. Darwin proposed that over

1As opposed to ‘Artificial Selection’ in e.g. animal or plant breeding, where humans select those
individuals of the population that most strongly possess a desired property as the only one to have
offspring.
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long (comparable to geological) time scales and with sub-populations of the same species oc-

cupying different habitats, this mechanism shapes the form and diversity of life observed.

Darwin’s idea was quite controversial at the time for several reasons. Most of the scientific crit-

icism founded to a large extend on the work of Gregor Mendel [98], who found that hereditary

information is transmitted through the generations in ‘blocks’. This seemed to contradict the

Darwinian picture, within which the population adapted to the environmental surroundings

gradually and in small steps. An account of this controversy can for example be found in the

book by Ewens [45].

This controversy was only resolved in the 1930’s by the works of Fisher, Haldane and Wright

who described what is today known as the ‘Modern Synthesis’ [72], thereby founding the field

of Theoretical Population Genetics.

1.2. Theoretical Population Genetics

In his seminal work of 1866 [98], Mendel systematically studied the result of mating between

plants of the same species, but different appearance (or different ‘phenotypic traits’), e.g. color

or shape of the seed. Denoting one variant or ‘allele’ of a given trait by A and another by a

(if only two alleles are present), he observed that besides the two variants A and a, the next

generation contained also a certain proportion of intermediate phenotypes that Mendel denoted

Aa. The fact that such mixed states Aa exist but no higher degree of mixing such as Aaa or

even a continuum of states between A and a implies that each individual carries two copies of

the ‘block of genetic information’2 considered, one from the mother and one from the father.

Such organisms are called ‘diploid’ as opposed to ‘haploid’ organisms which only carry one

copy. Both types of organisms exist in nature. An assumption consistent3 with the findings of

Mendel is that each parent in sexual reproduction contributes one of its copies to the offspring.

The ‘pure’ individuals carry two identical copies of the genetic information A and a respectively

(denoted by AA or aa) and are called ‘homozygotes’ , while the intermediate type Aa is called

‘heterozygote’.

If X individuals in the population are in the AA-state, 2Y individuals in the Aa state (where

the Aa and aA are counted as equivalent and denoted as Aa) and Z in the state aa, one can

define the ‘frequencies’ of each state by dividing each of these numbers by the total population

size N ,

x ≡ X

N
, 2y ≡ 2Y

N
and z ≡ Z

N
.

Evidently, if one organism is randomly picked without replacement from the population, the

probability that it is in, say, the AA state is equal to that state’s frequency. If in a given

population, the allele frequency for a given trait is not unity, i.e. there are two or more alleles

coexisting, the population is said to be genetically diverse.

Every population observed in nature shows some degree of genetic diversity [45,58]. One of the

central purposes of the field of population genetics is to quantitatively describe these variations.

Population genetics can be formulated independently of the idea of evolution in the Darwinian

sense, yet it is intimately connected to the study of evolution. This can be seen by considering

2later identified as chromosomes
3and later directly verified
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one of the early landmark results of population genetics, the Hardy-Weinberg law ( [66, 142],

see also [45]). This law describes how a population of sexually reproducing diploid organisms

can maintain a steady level of genetic diversity simply by the combinatorics of randomly mat-

ing two of its individuals. Furthermore, by the same combinatorics, the Hardy-Weinberg law

makes predictions about these steady-state frequencies which are observed in large classes of

organisms ranging from model systems like Drosophila melanogaster to humans, see [45, 58]

and references therein.

The fact that diversity is maintained in a population is important for that population’s evolu-

tion. It is only on this diversity that selection in the Darwinian sense can act, showing that the

Mendelian mechanism of inheritance and the gradual picture of Darwinian evolution are not

mutually exclusive but strongly related to the point where they are complementary [45, 108],

thus resolving this apparent contradiction.

However, the Hardy-Weinberg law only applies to sexually reproducing haploid populations

while for the remainder of this thesis, focus will be on asexually reproducing haploid organisms.

1.2.1. A Master equation for frequencies

In stating the Hardy-Weinberg law, the notion of allele frequencies was introduced along with

their interpretations as the probability that a randomly selected individual has this allele. This

law was formulated solely on the basis of heredity, the first of the three principles on which

the Darwinian theory of evolution relies. The others can be included using the probabilistic

interpretation of allele frequencies.

To include selection, assume that with a small probability, the offspring carries genetic infor-

mation different from that of its parent. Now if the copying step in reproduction goes wrong

and the genetic information A is not perfectly transmitted to the offspring and instead, the

offspring receives information a, say4, the frequency of a will be 1/N , assuming that it is the

first time that this mutation a has come about. In principle, if the a mutant is fitter than

the original variety A - also referred to as the ‘wild type’ (WT) since it is the variety without

any mutation ‘as found in the wild’ - the a frequency should increase and approach unity with

each generation. However, if an accident happens, e.g. the new mutant is eaten by a predator

or similar events which cannot possibly be taken into account theoretically, the possibly very

advantageous mutation a is lost to the population.

Both the process by which mutations arise and the process by which single individuals die

are very complicated and even if understanding in one single instance were possible, this un-

derstanding would in general not carry over to another instance. Thus a major theoretical

step towards understanding the change in frequencies in a typical population is to introduce

a stochastic equation for the time development of trait frequencies. This endeavor, pioneered

by Fisher in in 1922 [47] and later extended by him [48], Haldane [64] and Wright [153] (see

also [80] for a review) led to the formulation of what is now called ‘the modern synthesis’ of

evolutionary biology. One of its core messages is that for one single individual, its ultimate

fate cannot be determined with certainty: Only probabilities for a given outcome can be com-

puted. In what follows, a short overview over the mathematical formalism necessary for such

4Note that there are many of these errors possible such that the next copying error will most likely
not yield an offspring a but yet another with information a′
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an approach will be given.

A recursive integral equation Assume a population homogeneously carrying information A

within which a mutation a has just arisen. Of course, it now has frequency xa = 1/N and,

since for the moment the possibility that another mutation arises is ignored, one can drop the

index on the frequency and only deal with the frequency of the mutant x and the frequency

of the wild type 1− x. One assumption that will turn out to make computations considerably

more easy is that the population size N is so large that the minimal change in frequency,

δx = 1/N ≪ 1. This will allow to treat difference equations like differential equations but does

not yet constitute the assumption of infinite population size. Let φ(x, t|x0, t0 = 0) denote the

probability density that the mutation has reached frequency x at time t after it first arose with

frequency x0 at time t0 = 0. Another reasonable assumption is that changes in the frequency

in the time step t→ t+ δt only depend on the frequency at time t. The probability density for

taking a step of size δx in time δt is expressed by g(δx, δt|x− δx, t). This property, known as

Markov property [140], allows immediately to set up a recursion equation for φ in t,

φ(x, t+ δt|x0, t0) =
∫

φ(x− δx, t|x0, t0)g(δx, δt|x− δx, t)d(δx). (1.1)

This equation, known as Chapman-Kolmogorov equation - in simple forms used as early as

1900 by Bachelier [8] and later by Einstein in 1905 [41] but only developed to full theory by

Kolmogorov and Chapman, see e.g. [140] and references therein - can be paraphrased as follows:

The probability φ(x, t+ δt|x0, t0 = 0) of going from frequency x0 to frequency x in time t+ δt

can be expressed as the probability φ(x− δx, t|x0, t0 = 0) of going from x0 to some state x in

time t and subsequently taking the remaining step δx in time δt and then summing (integrating)

over all possible intermediate states x.

Deriving the corresponding differential equation Now under very general mathe-

matical conditions, the function φ(x, t|x0, t0)g(δx, δt|x − δx, t) can be expressed as a Taylor

series around x in δx using the short notation y ≡ x − δx to emphasize that the derivative is

with respect to the spacial argument

φ(y, t|x0, t0)g(δx, δt|y, t) =
∞
∑

n=0

(−δx)n
n!

dn

dyn
[φ(y, t|x0, t0)g(δx, δ|y, t)]

∣

∣

∣

∣

y=x

(1.2)

Now subtracting the zeroth order term on both sides, dividing by the time step δt and letting

the time step δt go to zero, the left hand side of eq (1.1) becomes the time derivative of φ.

On the right hand side, more care is needed because dividing by something that subsequently

goes to zero might pose some problems. However if it can be assumed that the frequency x

is a continuous stochastic process in time, the frequency change δx in time δt also tends to

zero with the time step. This allows not only to divide by δt but also to ignore terms in (δx)3

and smaller on the right hand side. Thus, if integration, summation and differentiation can be

interchanged and with the definition
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M(x, t) ≡ lim
δt→0

1

δt

∫

δxg(δx, δt|x, t)d(δx) (1.3)

V (x, t) ≡ lim
δt→0

1

δt

∫

(δx)2g(δx, δt|x, t)d(δx), (1.4)

φ(x, t|x0, t0) obeys the differential equation

∂

∂t
φ(x, t|x0, t0) = − ∂

∂x
{M(x, t)φ(x, t|x0, t0)}+

1

2

∂2

∂x2
{V (x, t)φ(x, t|x0, t0)} . (1.5)

In the physics literature, eq (1.5) is known as Fokker-Planck equation and the method by which

it was obtained from the Chapman-Kolmogorov equation is also called Kramers-Moyal expan-

sion [140].

To find the first and second moment, consider the microscopical behavior of growth of a

population of Na(t) individuals,

d

dt
Na(t) = FaNa(t) + µA→a(N −Na(t))− µa→ANA(t) + ηa(t), (1.6)

where Fa is the growth rate of mutant a, µa→A and µA→a the mutation rates from a to A

and A to a respectively and ηa(t) is a symmetric random variable encoding any influences that

cannot be accounted for. From eq (1.6), a Langevin equation for the change of frequency x(t)

of the new mutant a can be derived which in turn gives the first and second moments from eq

(1.3) to finally yield the Kimura equation ( [78–80, 82] and [103] for this presentation)

∂

∂t
φ(x, t|x0, t0) =

1

2N

∂2

∂x2
[x(1 − x)φ(x, t|x0, t0)]− s

∂

∂x
[x(1− x)φ(x, t|x0, t0)]

+ µA→a
∂

∂x
[(1− x)φ(x, t|x0, t0)]− µa→A

∂

∂x
[xφ(x, t|x0, t0)] (1.7)

where s = Fa − FA is the difference in growth speed between the WT A and the mutant a.

This difference is also called ‘fitness’. Note that it is only defined with respect to the WT (or

in general to some reference type).

1.2.2. Fixation probability

One would clearly expect that a mutation that has newly arisen will fix in the population if it is

fitter than the WT, i.e. if s > 0. This can be computed from the solution φ(x, t|x0 = 1/N, t0)

by sending x → 1, as this represents the scenario of fixation. This fixation probability u(N, s)

was found by Kimura as [79]

u(N, s) =
1− e−2s

1− e−4Ns
≈ 2s

1− e−4Ns
(1.8)
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where the approximation is only valid for small |s|. The associated time, called ‘fixation time’

depends on the population size.

In the Kimura equation (1.7), the mutation rates appear as constants µa→A and µA→a.

However, in order to understand their meaning, basic notions of the biochemical form in which

the hereditary information is stored are needed.

1.3. Elements of molecular biology

At the time when Darwin formulated his ideas on evolution and Mendel discovered the laws

of genetics, the form in which the hereditary material is passed on from parent to offspring

was unknown. When these two idea were reconciled in the modern synthesis in the 1920s and

1930s, this was still the case. Nonetheless it was possible to formulate the ideas present this

far only by using abstract notions of genetic information5. However in connection with the

stochastic master equation (1.7) for the fate of a single mutation, the Kimura equation, it was

shown that in order to take mutations into account properly, further knowledge of the mutation

mechanism is in order. The mutations are essentially errors in copying the genetic information,

and to understand them better, some basic notions of the structure of the hereditary material

are needed and will be provided in this section. The presentation here follows the standard

textbook [5] and is only intended as a very basic summary of the principal mechanism.

1.3.1. The double helix

The genetic information of almost any living organism is stored in the same form, as a double-

stranded molecule called Desoxyribonucleic Acid (DNA). The molecule is made up of two

parallel backbones consisting of sugar-phosphate connected by hydrogen bonded base pairs.

There are four of these bases, adenine (A), guanine (G), cytosine (C) and thymine (T ). T

preferably binds to A and and C to G. In thermal equilibrium, the double stranded DNA

molecule is twisted, thus forming the famous double helix structure.

Each cell contains the complete genetic information for the whole organism, sometimes dis-

tributed across units called ‘chromosomes’. The chromosomes contain many ‘genes’, which are

stretches of DNA that code for one protein. Primitive organisms such as bacteria or Archeae

have about 1000 genes, while higher organisms like mammals have many more [5].

When a cell reproduces, the double-stranded DNA splits up to form two single-stranded

molecules which act as templates for the synthesis of two new double-stranded DNA molecules.

Thus the information is copied during cell reproduction. In order to synthesize the comple-

mentary strand, it is not sufficient for the single stranded DNA to be in a medium with an

excess of G,A, T and C. The hydrogen bonds between the bases are not strong enough for

spontaneous synthesis, thus a helper enzyme is needed, the polymerase. Working its ways

along the sugar-phosphate backbone, it ‘captures’ the complementary base for each site and

catalyzes the binding reaction [5], see fig 1.1. However, the polymerase does not spontaneously

attach to the single-stranded DNA molecule. Rather, it needs part of the double-stranded DNA

5It is quite a remarkable success of the stochastic approach that it allows to make such important
quantitative predictions as the Hardy-Weinberg laws purely based on very general assumptions.
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Figure 1.1.: A polymerase catalyzing the DNA synthesis, leaving a double-stranded DNA

molecule. The left panel shows a primer spontaneously attaching to single stranded

DNA. For purposes of illustration, the primer depicted here is only five bases long,

while in reality it is usually of the length of several dozen bases. Then the poly-

merase attaches at the primer and starts catalyzing the synthesis of the comple-

mentary strand, using the excess G,A, T, C present in the medium as shown in the

right panel.

to already be in place. This starting point is provided by ‘primers’, i.e. short (on the order

of several dozens of bases in length) pieces of DNA that freely float around in the medium6.

Unlike single nucleotides, these primers can spontaneously bind to the DNA when they find

a segment that matches the entire primer, thus forming a starting point for the polymerase.

After synthesis of the complementary DNA strand is completed, the polymerase detaches from

the double-stranded DNA molecule.

In order to use the information stored in form of DNA, this information must be read out.

This is done by an enzyme called RNA-polymerase (of the same class as the enzyme which

catalyzed the synthesis of the complementary DNA strand in the reproduction process) which

attaches under certain conditions to the double stranded DNA and locally opens the hydrogen

bonds holding the two strand together. Then the RNA-polymerase synthesizes a molecule called

ribonucleic acid (RNA) complementary to the part of the DNA that is being read. The RNA

has essentially the same structure as a single strand DNA molecule but instead of thymine (T ),

uracil (U) is used. Then the information stored in form of DNA and now present as RNA can

be transported out of the nucleus7. This process is called ‘transcription’.

The transcript RNA is then ‘translated’ into a protein, i. e. a string of amino acids, by an

organel called ribosome. The ribosome considers three bases of the RNA at the same time and

synthesizes the amino acid corresponding to that triplet. This way the information stored and

multiplied in the DNA is ultimately turned into proteins which then can be used by the cell in

a large variety of ways, see fig 1.2 for a very simplified sketch of this process.

The protein thus produced can then fulfill its function. The universality of mechanisms ends

on this level, as the type and amount of protein produced vary from organism to organism and

6The discussion here actually only applies to the situation in vitro: In vivo, primers are pieces
of RNA synthesized by a type of RNA-polymerase called ‘primase’ to be complementary to the
single-stranded DNA [91]. In vitro, however, the DNA primer is added ‘by hand’.

7This only applies in vivo.



8 Chapter 1. Evolutionary Biology and Population Genetics

C

G

T
C A

A
T

G
GTA

T C

A

T
T

A C

G

A

ACUC
G

UA

...

...

...

...

...

UC
G

UA

AC

Ribosome

Protein

...

...

Figure 1.2.: A double stranded DNA is at a certain position opened and transcribed to RNA

(left panel) by a polymerase. The dark lines represent the sugar backbone of the

DNA polymer, the light lines between bases represent the double (A-T ) or triple

(G-C) hydrogen bonds. Note that in the RNA, uracil (U) has taken the place of

thymine (T ). The RNA is then translated into amino acids by a ribosome. Here,

the hexagon stands for the amino acid serine, which is coded for by any triple of

bases beginning with UC (right panel).

even from cell to cell within one multi-cellular organism. One of the many functions of some

proteins is to regulate transcription of genes.

Since there are a total of 43 = 64 different triplets but only 21 amino acids, there is a certain

amount of redundancy, i.e. different triplets of DNA sequence corresponding to the same amino

acid. Thus a mutation on the DNA level does not necessarily mean a change on the amino acid

level. Such mutations are called ‘silent’ or ‘synonymous’ mutations and are in fitness assays

sometimes used as control since such mutations are not expected to have any fitness effect.

However these mutations, as well as those parts of the DNA that is never transcribed, can have

a strong effect on the process of transcription and translation by changing the shape or the

(thermal) stability of the DNA and RNA molecule [20, 133] and thus affect fitness [71, 117].

1.3.2. DNA synthesis and the Polymerase Chain Reaction

The two strands of DNA are complementary to each other. Thus when the double stranded

form breaks apart into two single strands of DNA, each strand can serve as ‘template’ for syn-

thesis of the other strand as long as there is enough G,A, T and C present. This mechanism can

be utilized to amplify the amount of DNA present in a sample (see e.g. [67]): If double-stranded

DNA in a sample is heated to the point where it takes the single-strand form, then is allowed

to cool in a medium containing polymerase, primers and an excess amount of G, A, T, C, one

will very likely end up with twice the amount of double-stranded DNA. If this procedure is

repeated several (usually on the order of 10) times, one has amplified the amount of DNA by

an exponentially large factor. This process is called polymerase chain reaction (PCR) and a

central tool in biology with applications randing from fundamental research (an example will

be presented in the next chapter) to criminology [54].

Except for chapter 2 where the data sets are described, this level of detail is not needed in

this thesis. Important is the key idea that the complete information about the whole organism

is stored as a sequence

~σ = {σ1, . . . , σL} (1.9)
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of length L. In the case of DNA, each σi is drawn from the alphabet {G,A, T, C}. However for
theoretical purposes, the essential behavior can be captured by considering the more restricted

alphabet {0, 1}.

1.4. Fitness landscapes

Since an organism is uniquely defined by its genome represented by the DNA sequence ~σ =

{σ1, . . . , σL}, i.e. by a sequence of length L, the fitness that was introduced in the context of

the Kimura-equation (1.7) is ultimately a function of this sequence. Many empirical data sets,

however, do not record the base at a given position, but only record whether or not a given

mutation was present or absent. Thus it suffices to consider binary sequences, i.e. σi ∈ {0, 1}
where 0 denotes absence and 1 presence of a mutation at site i. Thus the configuration space

is CL = {0, 1}L, the L dimensional Boolean hypercube. This configuration space consists of

2L different sequences. Since labels can be set without changing the system, the wild type

introduced in sec 1.2.1 will for the remainder of this thesis be labeled as ~σ0 = {0, . . . , 0}.
Fitness is a mapping from this configuration space CL into the real numbers

W : CL → R, (1.10)

meaning that each possible sequence ~σ has a fitness W (~σ). Then the collection of all 2L fitness

values gives the complete Fitness Landscape (FL). FLs are a central paradigm of evolutionary

biology since their introduction (more as a metaphor than an actual concept) by Sewall Wright

in the 1930’s [152]. Evolution can be thought of as a hill climbing process happening in such a

landscape, where each population ‘tries to get as high a possible’.

While FLs have theoretically been studied every since the modern synthesis, empirical FLs

have only become available in recent years, with the earlier works in the late 1990s [30] and an

increasing number of FLs having been published since, see e.g. [21, 77, 146] and [120, 127] and

references in these reviews. Thus comparing the theoretical work to empirical FLs has only

recently become possible and the work done for this thesis is part of this effort.

1.4.1. Epistasis

One typical feature of empirical fitness landscapes seems to be a certain degree of ruggedness,

(see e.g. [30, 146] for examples with a large amount of ruggedness, [21, 77] for examples with

moderate amounts of ruggedness). The presence of this ruggedness is a sign of ‘epistasis’. This

term is used to indicate that the effect two mutations, if jointly present in one organism, differs

from the individual effects of these mutations, see [33, 147] and references therein. The muta-

tions then interact in some non-trivial way. Five of the possible motifs of interaction are shown

in fig 1.3.

If epistasis is present, the effect of any given mutation depends crucially on the genetic back-

ground in which it occurs: If it has a beneficial effect in one background, it might have no or

even a deleterious effect in another. While epistasis does not necessarily lead to local max-

ima (or optima), i.e. configurations that are surrounded8 by states of lower fitness on a FL,

observing such optima is a sign that epistasis plays an important role.

8in a suitably defined sense, see next subsection.
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Figure 1.3.: An illustration of some of the possible consequences of epistasis on fitness land-

scapes on a landscape with L = 2. The top row shows a non-epistatic landscape

(left), where the combined effect is just the sum of the two individual effects and a

landscape with magnitude epistasis (right), on which the combined effect is more

beneficial than the sum of the two individual effects. The bottom row shows sign

epistasis (left) inverse sign epistasis (middle) and reciprocal sign epistasis (right).

All fitness values are shown in arbitrary units and on arbitrary scales. Schematic

plots and naming of epistasis according to [120].

1.4.2. Regimes of evolutionary adaptation

With the selection coefficients s, selection strength has been put in a quantitative form. Simi-

larly, the mutation rate µ controls the rate at which a single member of the population mutates.

Thus the rate at which new alleles enter the population is given by Nµ, since every single in-

dividual can mutate. These are two of the three forces of evolution. The third, called drift9, is

associated with the second derivative in the Kimura equation (1.7) . This ‘drift’ term encodes

the random loss of alleles regardless of their fitness by frequency fluctuations. Note, however,

that the term is proportional to N−1. Thus for small populations, this is more important [116]

than for large ones and can even give a certain advantage to small populations since they es-

sentially can explore more options [74] (in a sense that will be specified later).

The mutation rate clearly plays a crucial role for the adaptation of the population. One effect

that needs to be mentioned in this context is that of ‘clonal interference’. If Nµ is so low that

the fixation time of each beneficial mutation is short compared to the expected time for a new

mutation to arise, the process of adaptation will consist of mutation arising and, if they are

beneficial and survive drift, subsequently fixating. If, however, Nµ is large, then it is possible

that two beneficial mutations are present at the same time and compete for fixation [114].

Within this thesis, two different regimes of adaptation will be discussed.

9Within the standard nomenclature of stochastic processes, the term ‘drift’ is used for ballistic
motion and associated with the first derivative in a Fokker-Planck equation. In the biological
context, ‘drift’ refers to the diffusive term, see also the discussion of this point in [80].
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Strong selection/weak mutation

If selection is strong and the rate at which mutations are supplied Nµ is small, the population is

genetically homogeneous, since any deleterious mutation will be strongly selected against while

a beneficial mutation will strongly be favored. Since the Nµ is small, a beneficial mutation

will have time to fixate in the population before a new mutation arises. This means that the

population can only move by point-mutations, i.e. only adapt in steps of Hamming distance 1,

where the Hamming distance between two binary sequences ~σ1, ~σ2 of length L is defined by

d(~σ1, ~σ2) =

L
∑

l=1

(

1− δσ1,l,σ2,l

)

(1.11)

where δa,b is the Kronecker δ. This adaptive regime is the ‘strong selection/weak mutation’

(SS/WM) regime [58].

Greedy regime

If Nµ ≫ 1 but Nµ2 ≪ 1 and selection is strong, the population sees all neighbors at Hamming

distance one at each time, but never any neighbor further away. Thus in each step, that

mutation which offers the greatest increase in fitness fixates in a population. Adaptation by

this process can be likened to an optimization by steepest descent10 and is called the ‘greedy’

regime of adaptation.

1.4.3. Adaptation as record driven process

Under strong selection, only mutations with higher fitness than that of the current state fixate

in the population. Thus each fitness that fixates is the highest encountered so far by the

population, in other words it is a fitness record in the sense of the famous ‘Guinness book

of records’ [1]. This makes evolutionary adaptation in the SS/WM regime an example of a

record driven process. There are many other examples of such processes from areas as diverse

as dirty superconductors [109,136], sand pile models [36], stock prices [149] and of course from

many areas of biology such as species extinction [9, 135] and related aspects of evolutionary

biology [87, 88, 104] and many others. Thus it can be expected that record statistics will also

play a central role in the study of properties of fitness landscapes.

1.4.4. Fitness landscapes as spin glasses

Spin glasses (see e.g. [100] and references therein) are, together with percolation models [139],

one the most important models in the study of disordered systems [17, 61] and were originally

introduced as models for disordered magnets. The configuration space of spin glasses is usually

the same configuration space CL as for fitness landscapes defined above (or straightforward

generalizations, see e.g. the Potts model [61]). In spin glasses, each point of CL is given a

real-valued ‘energy’ similar to the fitness. The state with the lowest energy is then called

‘ground state’. In the FL-picture, the stable state is the one with the highest fitness, but this

difference is trivial and can be compensated by a change in sign. Another similarity between

10with the trivial difference that in this context, the population searches to increase fitness.
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fitness landscapes and spin glasses is that they both show epistasis (or ‘frustration’ in the spin

glass context [100]).

These similarities in configuration space and empirical observation of ruggedness have led to

similar parallel developments of models, most prominently Derrida’s famous ‘Random Energy

Model’ (REM) of spin glass [34, 35] and the ‘House of Cards’ (HoC) model by Kingman [83],

see next chapter.

The list of similarities also includes certain schemes for the dynamics on spin glasses and

FLs [68] and there is quite a bit of knowledge transfer between the communities studying the

two subjects, having e.g. given rise to ‘genetic algorithms’ that mimic a population adapting on

a FL to solve certain optimization problems that can be formulated in terms of a spin glass [68].

While spin glasses are a natural frame of mind when thinking about such problems, the prop-

erties of interest in the study of spin glasses are different from those considered here, thus none

of the methods used in the study of spin glasses will be applied here.

1.5. The central questions of this thesis

As was mentioned above, aim of this thesis is to study properties of FLs both theoretically and

on empirical data. In this section, these properties will be introduced.

1.5.1. Accessible paths

A concept proposed to be central to adaptation on FLs in the context of development of

antibiotic resistance in bacteria by Weinreich et al. [146] are accessible paths, that is sequences

of point mutations joining the global maximum (GM) and its antipodal sequence (AS), i.e. the

sequence with maximum Hamming Distance from the GM. This property is believed to be most

important for the adaptation of a population in the SS/WM regime. Such a path crosses the

entire state space by going from one state to another, always taking steps covering Hamming

distance 1 (see fig 1.4 for two example landscapes on which such steps are indicated) and is

called accessible, if and only if fitness increases in each step.

On each given fitness landscape, there is a certain number n of such paths, which can be

determined by counting them (for large sequence lengths L using a computer). Counting

this number of accessible paths on many FLs, one obtains a distribution of accessible paths

where πL(n) stands for the probability of having n accessible paths. Since πL(n) is typically a

nontrivial object to compute, one can consider the expected number of accessible paths

〈nL〉 ≡
L!
∑

l=0

lπL(l). (1.12)

Here the upper limit of the sum ends at L! which is the total number of paths when only those

without loops are considered, called ‘direct paths’. This is a justifiable approximation since in

the SS/WM regime, mutations occur only at rate µN ≪ 1 and thus even the smallest detour

(taking two extra steps) is suppressed by a factor of (µN)2 compared to paths without loops.

Only direct (or shortest) paths are considered here.

Another feature to study on the distribution of accessible paths, introduced by Carneiro and

Hartl [19], is the probability of having no accessible path at all on a given FL, πL(0). These
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Figure 1.4.: Two excerpts of the empirical Aspergillus niger fitness landscape (see next chapter

for details on this landscape) to illustrate the notion of accessibility. The arrows

indicate direction of increasing fitness. Left: The subgraph containing the four

mutations arg, pyr, leu ald oli with nine accessible paths as defined below. Right:

Subgraph consisting of the mutations fwn, pyr, phe and oli with only one accessible

path. Under greedy dynamics, a state of a given color leads to the maximum of

the same color. Those edges which will be taken in a greedy adaptation are also

given the corresponding color, the others are left gray.

two objects, 〈nL〉 and πL(0), will be studied here.

1.5.2. Basin of attraction

In the regime of greedy adaptation, the population chooses in each step the neighboring state

which offers the largest increase in fitness, until a local maximum is reached. Thus it performs

a ‘greedy adaptive walk’

Under such a dynamics, the state space CL falls apart into disjoint11 subsets, each leading to a

different local fitness maximum, see fig 1.4. The statistics of these ‘basins of attraction’ of the

local maxima and specially of the global maximum will be discussed in this thesis.

1.5.3. Sub-graphs

In natural populations, mutations can occur anywhere on the genome. Fitness landscapes in

empirical studies, however, are subject to the constraint that only very few (on the order of a

dozen at most) mutations can be considered, as even for L = 10 different mutations, 210 = 1024

different mutant strains must be created and measured to obtain a complete landscape (and

even numerical simulations cannot reach realistic sequence lengths of L ∼ O(106) [5] and

greater). Thus theoretical predictions on a given property of the FL can only be compared to

empirical data obtained for a subset of all possible mutations.

Furthermore theoretical results obtained in this thesis will make statements about the behavior

of the objects considered as a function of sequence length L while empirical FLs of a given

number L of mutations only correspond to one data point for that value of L without error

11provided that no two fitness values are equal, which will be the case with probability one in the
models considered here, see next chapter.
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Figure 1.5.: The three possible m = 2 sub-graphs (squares) of the L = 3 state space (cube).

Note that the choice of m sites to mutate on only fixes the sub-graph with the

additional condition that the WT should be part of the SG. Otherwise, there is an

ambiguity on the state, in which the remaining L −m state should be in, leaving

2L−m choices. In the example here, this corresponds to the two opposite faces of

the cube.

bars. Thus comparison to predictions is not straightforwardly possible.

One way to circumvent these problems is to systematically pick a subset of m < L mutations

and consider the FL consisting of the 2m fitness values of the possible states with mutations

only at those m sites. If one chooses these sub-graphs (SG) of the full state space such that the

wild type is part of the SG, there are
(

L
m

)

such SGs, see fig 1.5. Thus under the condition that

FLs on two different SGs are reasonably uncorrelated, one obtains one data point for each value

of m and, due to the
(

L
m

)

sub-graphs, also an estimate for the error bars, allowing a comparison

between theoretical predictions as function of L and the m-SGs of an empirical data set and

ultimately to extrapolate to large sequence lengths.

SGs have been analyzed before (see e.g. [30, 31, 115] where they were referred to as ‘complete

subgraphs’) but in order to use them systematically, it must be established that the condition

of ‘reasonable uncorrelatedness’ mentioned above is actually met. This is shown in appendix

C.
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2. Models for fitness landscapes and the

data sets used

Of the many models proposed for fitness landscapes, those considered in this thesis

are introduced. The data sets used for comparison of the models to experiment are

presented.

2.1. Theoretical models for fitness landscapes

Fitness landscapes are a central paradigm of theoretical studies of evolution, see e.g. [56,76,81],

thus a lot of theoretical work has been devoted to them. In particular, different (and often

contradictory) intuitions about the biological effects determining fitness were used to develop

model landscapes capturing these effects. Since all of the underlying intuitions of the models

introduced [3, 56, 76, 81] are believed to capture some aspect of the biochemical interactions

underlying fitness landscapes, none can be rejected or accepted on theoretical grounds alone.

One goal of this thesis is to investigate how strongly the properties mentioned in section 1.5

depend on the choice of model. Recently, it has been recognized that universality might be as

pervasive a feature of evolutionary biology and genomics as it is in statistical physics [85]. In

the light of this fact, such an approach probing fitness landscapes across different models for

universality seems promising.

2.1.1. The House Of Cards model

The biochemical machinery responsible for reading and transcribing DNA as presented in sec-

tion 1.3 consists of a large number of reactions happening in a precise timing. Thus one

intuition, first introduced by J. F. C. Kingman [83], is that any random change such as a muta-

tion destroys the biochemical ‘house of cards’ built up by evolution, as Kingman puts it. Thus

the House of Cards (HoC) models asserts that the fitness of every mutant has to be ‘rebuilt

from scratch’ and is therefore independent of the wild type.

A formal definition of the HoC model assigns to each possible state ~σ of the genome a fitness

x~σ where the family of fitness values {x~σ} for all ~σ ∈ {0, 1}L is a family of iid RVs. Using

the mapping between the configuration space {0, 1}L and the integer numbers provided by

interpreting each sequence ~σ as binary representation of an integer, this can be put as

W (~σn) = xn, xn ∼ f(x). (2.1)

The only choice left to be made is the probability density for the fitness values f(·).
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i1 ... ...h j L

Figure 2.1.: A neighborhood consisting of sites h and j assigned to site i. Here, the K = 2

states are scattered all over the genome, emphasizing the fact that the expression

‘neighborhood’ does not necessarily imply local adjacency.

2.1.2. Kauffman’s LK model

As was stated in section 1.4, mutations interact in a non-trivial way. To model these epistatic

interactions, the LK model (originally called NK model) was introduced by S. A. Kauffman

[76]. It starts out from the same intuitions about the finely tuned machinery of biochemical

interactions, but attempts to model them in more detail: The fitness of a sequence ~σ is the

sum over the contributions wl(~σ) of each site l,

W (~σ) =

L
∑

l=1

wl(~σ) (2.2)

which in turn depend on the sequence ~σ.

To determine the site contributions wl(·), to each site l a set of indices νl = {l, l1, . . . , lK}
called ‘neighborhood’ is assigned, see fig 2.1. Note that the neighborhood contains the site l

as well, thus it contains a total of K + 1 indices. For each possible state of the sub-sequence

~νl = {σl, σl1 , . . . , σlK}, the fitness contribution is independently drawn from a probability den-

sity f(·), thus wl(·) is actually just a (random) function of this sub-sequence ~νl of length K +1

instead of the whole sequence ~σ. One can say that each site l ‘interacts’ with K other sites

in determining that sites fitness contribution. Since no index can appear more than once in a

neighborhood, the value of K is constrained to the range of 0 < K < L− 1.

The LK model, much like the HoC model, is defined by a family of iid RVs. However the

numbers of RVs needed to fully characterize the model differ: One set of 2K+1 iid RVs for each

neighborhood, making a total of L2K+1 iid RVs as opposed 2L RVs in the HoC case. In numer-

ical simulations performed for this thesis, the 2K+1 RVs for each state of each neighborhood

are stored in look-up tables.

The parameter K which governs the number of interaction partners for each site is the most

important tuning parameter in the model. It enables the model to cover a wide range of fitness

landscapes: For K = 0, each site l has only two fitness contributions corresponding to the two

states σl = 0 and σl = 1 independently drawn from the probability density f(·). Since f(·) is
assumed to be continuous, one of these two fitness values will be greater than the other with

probability one. Thus each site can optimize its fitness independently of the others and there

is one unique global maximum with all sites in their ‘good’ position and one unique global

minimum with all sites in their ‘bad’ position. In between, the landscape is smooth in the
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sense that one can always flip one spin from the bad to the good position, corresponding to a

mutation that allows further adaptation on the landscape. This type of landscape where all

pathways are accessible and, due to a lack of maxima other than the global one, all states lead

to the GM under greedy adaptive dynamics, is called the ‘Mount Fuji’ type landscape, since it

resembles the famous Mt Fuji of Japan [76].

The other extreme is the case of K = L− 1, where each site interacts with all others (provided

that no site can appear twice in a given neighborhood). Here, any mutation will cause all L

single-site contributions to be replaced with another set of iid RVs, thus as far as order statistics

considerations are concerned, this case is equivalent to the HoC model. Note however that the

iid RVs will not be drawn from the original distribution f(·) but from its L-fold convolution [46]

f∗L(·), since the fitness of each state is still the sum over L single site contributions.

For values of 0 < K < L− 1, the FL will display an intermediate degree of ruggedness. Since

the value of L is usually set by the system under consideration, the value of K is the most

important parameter for fitting the LK model to empirical data.

The neighborhood and specially the way in which it is assigned constitutes another important

degree of freedom when defining the model. For a given site l, does one simply choose the

next K sites as neighborhood, νl = {l, l + 1, . . . , l + K} with periodic boundary conditions if

necessary? Does one divide the K sites evenly and distribute them to both sides of l, or is the

neighborhood simply assigned by uniformly picking K sites at random without replacement

from the L sites? It appears that the way in which the neighborhood is chosen has implications

for the computational complexity of the problem [145], but the properties considered here did

not seem to be influenced by the choice of neighborhood [84]. Thus throughout this thesis, for

numerical simulations the LK model was considered for randomly chosen neighborhoods.

2.1.3. Rough Mt Fuji model

In many empirical fitness landscapes, see e.g. [30,31,51], the states at small Hamming distance

from the global maximum tend to be higher in fitness than those further away, thus there is

some sort of effective trend in fitness toward the GM. To systematically study the effect of this

overall trend, the ‘Rough Mt Fuji’ (RMF) model introduced by Aita and coworkers [3] was

used. In this model, the fitness values of each state are assigned independently, but not all

fitness values have the same distribution anymore. Rather, the distribution keeps its shape but

has its mean value moving linearly with distance from the GM. If the GM is at state ~σ0, i.e.

the WT, then a state ~σn has fitness

W (~σn) = xn − cd(~σ0, ~σn) (2.3)

where the {xn} are iid RVS and d(~σ1, ~σ2) is the Hamming distance between the two sequences

in the argument as defined in eq (1.11). Thus states in the shell of Hamming distance 1 from

the GM are typically c units of fitness lower than the GM but c units of fitness higher than those

states in the Hamming distance 2 shell. For the numerical simulations, only those realizations of

a RMF landscape were considered where the state ~σ0 towards which the FL is oriented actually

was the global optimum.

For c ≡ 0, this model is again the HoC case, while in the limit c→ ∞, all paths are accessible
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again and, due to a lack of maxima of other than the GM, all states are in the BoA of the

GM. It is thus equivalent to the Mt Fuji model. Much like the LK model defined above,

this model has a tunable degree of ruggedness controlled by the parameter c in this case, by

which it can be fitted to empirical data. From a theoretical perspective, however, this model

is a prototype for landscapes with some underlying trend that is asymptotically amenable to

analytic computations. It will mostly be used to perturbatively examine the influence of a very

small average slope c on the HoC model.

2.1.4. The Neutral model

Yet a different intuition about fitness starts from the assumption that the fitness value is not

the important feature but only whether or not a given mutant is viable at all because if a

mutation hits a non-coding part of the DNA or produces a silent mutation, this will have no

effect1 while a non-synonymous mutation on a coding part of DNA will be lethal. Based on

this idea, Kimura and Ohta [81] developed the Neutral Theory of Evolution, here referred to

as ‘Neutral Model’. They imagined fitness landscapes as vast stretches of a plateau of validity

with valleys of lethality.

In the simplest case, each state ~σ is randomly and independently of the others either viable

(fitness W (~σ) = 1) with probability p or lethal (thus W (~σ) = 0) with probability 1 − p. This

model of FLs is equivalent to the problem of site percolation [139] defined on the L-dimensional

hypercube [57]. Within this model, there is a natural reformulation of accessibility: A muta-

tional pathway is called accessible if none of the intermediate states is lethal. Thus asking

whether two given states are joined by an accessible path becomes in some sense equivalent to

asking whether both states are part of the ‘percolating cluster’ [139], an object that has been

studied in the percolation context from the very beginning [49].

A more complicated version of this model where lethality is not uniformly distributed across

sequence space but rather depends on the identity of mutations present will be discussed in the

context of one of the empirical landscape used during this thesis.

2.2. Empirical fitness landscapes

Empirical fitness landscapes were the driving force behind this work as they inspired many

of the questions asked. While theoretical work, ongoing since the works by Wright [152], has

given rise to the models introduced above (among others), empirical fitness landscapes have

only become available in the last decade, starting with the Aspergillus niger landscape by J.

A. G. M. de Visser and coworkers in 1997 [30]. These empirical data sets have proven to be

very provocative, leading for example to questions about the distribution of accessible paths,

first asked in the context of the Escherichia coli landscape by D. Weinreich et al. [146] and

treated theoretically in [19, 51]. While the questions asked of these fitness landscapes (and

the methods used here to answer them) are in principle applicable to any of these landscapes

( [21, 69, 77, 93, 94], see also [120, 127] and references therein), in this section, only those data

1This is actually not correct since synonymous mutations are known to influence the expression levels
of certain genes as well as the folding stability of the resulting RNA, see the references given in
the previous chapter on that point.
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name abbrev. effect

fwnA1 fwn color mutation (fawn-colored conidiospores)

argH1 arg arginine deficiency

pyrA5 pyr pyrimidine deficiency

leuA1 leu leucine deficiency

pheA1 phe phenyl-alanine deficiency

lysD25 lys lysine deficiency

oliC2 oli oligomycin resistance

crnB12 crn chlorate resistance

Table 2.1.: The eight mutations present in the strain N890 in order of increasing chromosome

number and their effects as stated in [30]. The abbreviations given will be employed

throughout this thesis.

sets primarily considered in this thesis will be presented, namely the A. niger data set [30] and

a very recent E. coli data set by M. Schenk and coworkers [134].

2.2.1. The Aspergillus niger landscape

The data set most important for this thesis was obtained from the filamentous fungusAspergillus

niger and first described in [30].

Creating the data set

Aspergillus niger usually has a haploid life cycle but nuclei can spontaneously merge to form

diploid organisms. This process happens at a very low rate and the resulting diploid organism is

unstable: The diploid nucleus can spontaneously separate again to form haploid nuclei [30]. As

this happens, the chromosomes are randomly redistributed among the two emerging nuclei, see

fig 2.2 for a caricature sketch of this process also called ‘para-sexual cycle’. This chromosome

redistribution was used to create the mutant strains that make up the data set. Initially, only

two strains were present: One, called N411, carried only a color mutation conferring olivine-

color spores, while the other, called N890, contained - in addition to the color mutation also

present in N411 - exactly one mutation of each of eight chromosomes. These mutations, induced

by low doses of UV light (see [30] and references therein for details), consisted of two resistance

mutations, five deficiencies and one marker mutation that changed spore color, see table 2.1.

The two strains had a sufficiently recent common ancestor to assure that they only differed by

these mutations.

Now if these two strains N411 and N890 are left to merge and the combined diploid is

then haplodized again under random chromosome redistribution, the resulting nuclei will each

contain a random number of mutations, see fig 2.2. Thus a possible number of 28 = 256 different

mutants could be produced, corresponding to the 28 different states of a binary sequence of

length L = 8. In the total of about S = 2500 segregants, however, only 186 of these 256

possible mutant were found. On those that were present, fitness was measured in terms of

the mycelial growth rate, which turned out to be highly correlated to spore count and thus

fecundity. The full data set of all mutations found and their respective fitness values is given in
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Figure 2.2.: A sketch of the process of spontaneous diploidization and subsequent re-

haploidization under random distribution of chromosomes for a hypothetical or-

ganism with two chromosomes (circle and hexagon). Chromosomes carrying a mu-

tation are shaded while those without mutation are left open. In this illustration

with two chromosomes, only two outcomes are possible: Either the two mutations

are in one organism after re-haploidization or they are split up between the two

segregants. With three chromosomes, already 23/2 = 4 outcomes are possible,

corresponding to 23 = 8 different mutants.

appendix A. Note, however, that the eight-mutant N890 is not on the list as it was not found

among the segregants. Even though this strains is available, its fitness was not measured as,

for consistency, the data set was only made up of segregants found after haploidization [32].

Discussion of the data set

As mentioned above, not all 256 possible states were found. Assuming that all mutants were

equally likely to be found2, the chance of any single one mutant having been missed by chance is

p = (1−1/256)S ≈ 5.6×10−5. The probability pn for at most n genotypes to have been missed

is then given by a Poisson distribution with mean 256×p ≈ 0.014 [51]. Thus the probability of

having missed none or at most one of the mutants can be estimated as p0 = 1−256×p ≈ 0.986

and p1 ≈ 1 − (256× p)2 ≈ 0.9998 respectively. A more conservative estimate can be obtained

by taking into account that finding a mutant can depend on its fitness. Assuming that each

mutant has a different likelihood to be found, which is uniformly distributed on the interval

[r, 1] with r = 0.274 corresponding to the lowest fitness measured among the 186 mutants found

(see appendix A), numerical simulations yielded an estimate of p0 ≈ 0.74 for the probability of

finding each mutant, and for the probability of missing at most one p1 ≈ 0.956. Under both

assumptions it is very unlikely to have missed more than, say, 3 states, let alone all 70 missing

mutants. Thus they were assigned a fitness value of 0. It was assumed that those combinations

of mutations were lethal for the organism.

2A nontrivial assumption, as even though each combination of mutations is equally likely to arise by
segregation, detecting them depends on growth of that mutant.
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These missing genotypes were, however, not uniformly distributed across all mutations [51]: 62

out of 70 lethal strains contained the lysine deficiency mutation lys. This could be explained

as outcome of a model where each mutation can independently induce lethality if present in a

given mutant. In the simplest version of this model, all mutations have the same probability q

of inducing lethality, thus a mutant with n mutations is viable with probability Prob[viable] =

(1 − q)n. Then, taking into account that
(

L
n

)

different combinations of n mutations with

sequence length L are possible, the average number of viable states is given by

Nviable =

L
∑

n=0

(

L

n

)

(1− q)n = (1 + (1− q))L = (2− q)L (2.4)

where the binomial formula was used. The almost two-fold over representation of one mutation

among lethal genotypes, however, does not seem to be compatible with this single-parameter

model.

A similar picture is obtained by analyzing the distribution of lethal states across sub-graphs

of this data set as defined in section 1.5.3, where one observes that many SGs contain lethals.

One approach to circumvent this problem, used for example in [31], was to only analyze sub-

graphs without lethal states, called ‘viable sub-graphs’ (VSGs). In [51] it was found that none

of the VSGs of the A. niger data set contained the lys mutation, while the other mutations

were approximately evenly distributed across VSGs, which also points to a more complicated

situation. The next simplest thing is to assume one lethality probability qlys for the lys mutation

and another q0 for all others. Under this model, the average number of viable states is given

by

Nviable = (2− qlys)(2− q0)
7 (2.5)

for all mutations and

Ñviable = (2− q0)
7 (2.6)

for mutants that did not contain the lys mutation. Equating the expected value Nviable

with the number of states found, Nviable = 186, and Ñviable with the number of these that

did not contain the lys mutation, Ñviable = 120, one obtains the estimates qlys ≈ 0.45 and

q0 ≈ 0.018. Computing the expected number of VSGs for each SG-size m for this model with

these two parameters and comparing to the numbers of VSGs actually observed in the data set

supports the model of two lethality probabilities with these two values, see table 2.2. Thus it

was concluded that the missing states can be assumed to be lethal and that lethality of a given

state is strongly influenced by the number and identity of mutations present in that state. It

would be very interesting to understand the strong influence of the lysine deficiency mutation

lysD25 on the lethality of a state on a biochemical or biological basis.

2.2.2. TEM 1 β-lactamase resistance data set

β-lactam antibiotics are one of the most important classes of antibiotics, containing for example

the penicillins and cephalosporins [4]. The TEM 1 β-lactamase enzyme is one of the most

prominent antibiotic resistance enzymes and much effort has been devoted to understanding
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m No. of SG No of VSG Expected from model

2 28 20 19.5

3 56 29 28.1

4 70 19 19.5

5 56 4 4.9

6 28 0 0.2

Table 2.2.: From [51]. The first column shows the sub-graph size m, the second column the

possible number
(

L
m

)

of sub-graphs of each value of m. The third column shows

the number of VSGs observed in the empirical A. niger data set and the fourth

column the expected number of VSGs from the model with two different lethality

probabilities above with qlys ≈ 0.45 and q0 ≈ 0.018. Note the good agreement with

model predictions and empirical fitness data.

the mechanisms underlying this enzymes’ function, see e.g. [131] and references therein. Study of

this resistance enzyme has also given rise to the Escherichia coli fitness landscapes by Weinreich

et al., [146], which however will not be discussed here. One approach to investigating this

enzyme was to turn the gene that codes for it into a plasmid, i.e. a closed loop of double-

stranded DNA that can be brought (‘transformed’ [5]) into the bacterium, where it is then

expressed and copied just like the ‘native’ DNA of the bacterium. Comparing ‘regular’ E. coli

and those that have the plasmid then allows to probe the effect of the TEM 1 gene on antibiotic

resistance.

Creating the mutants

The advantage of having the TEM 1 gene on a plasmid is that one can induce mutations on the

plasmid, bring it into the bacterium and then observe the effect of that mutation on antibiotic

resistance [65]. Unlike in the A. niger data set, now it is possible to control the precise position

at which the mutation hits. In the A. niger data set, mutations were induced by UV radiation

and the only way to be sure that only those mutations detected were present was to use very

low doses of light. For the TEM 1-plasmid, mutants can be controlled on a base-pair level by a

process called ‘site directed mutagenesis’ (SDM) which underlies the E. coli data set by Schenk

et al [134] that will be presented here.

SDM by the QuickChangeTMprotocol uses the principle of Polymerase Chain Reaction (PCR),

not only to amplify the amount of DNA present but also to induce an error at one precise loca-

tion. As was stated in section 1.3, the individual hydrogen bonds between bases are quite weak.

As a consequence, single-stranded DNA does not spontaneously synthesize its complementary

strand even when in an excess of G,A, T, C but needs a polymerase to do so. First, however,

a primer needs to attach to the single stranded DNA, thus giving the polymerase someplace

to start, as explained in section 1.3. However, because the individual hydrogen bonds are so

weak, single errors (‘mismatches’) in the primer are allowed. If the primer contains one mis-

match3, it can still spontaneously bind and thus the mismatched primer is incorporated into

the complementary strand, see fig 2.3.

If the resulting double stranded DNA is then submitted to further cycles of PCR, by far the

3provided it is sufficiently far away from the ends of the primer



2.2. Empirical fitness landscapes 23

GAGC T

G C C

T A C

A

G

A

T

A A

C
T

G

Mismatch

C T ...
A... A

GAGC T T A C

G

Mutation

T G C C A A
T G G A

C T...
...

...
...

Figure 2.3.: Left: A mismatched primer can still spontaneously attach and serve as starting

point for the polymerase. If the resulting double-stranded DNA is then heated and

thus turned into two single DNA strand for another cycle of PCR, the DNA with

the mutation will be amplified.

majority of DNA will have the mutation imposed by the mismatch primer. Then any residual

plasmid without mutation is removed and the plasmid containing the mutant is, by transfor-

mation, put into E. coli organisms which are left to multiply in a nutrient-rich environment for

about one day. Since the plasmid is copied together with the ‘native’ DNA of the bacterium, the

amount of plasmid is strongly amplified and subsequently harvested by destroying the bacteria

and extracting the plasmid, which is then prepared for long time storage.

Now primers can be synthesized industrially at reasonable cost, thus introducing a single mu-

tation at a given site of a known gene is (at least in principle) quite straightforward. Once a

mutation has been introduced into the plasmid, one can proceed in creating double mutants

and so forth. The process described above, however, is subject to the constraint that only one

mutation at a time can be introduced into the plasmid, thus creating a large set of mutations

if rather laborious and costly.

Measuring antibiotic resistance of the mutants

In the data set obtained by Martijn Schenk [134], three landscapes of L = 4 mutations each

were constructed using the scheme presented above. One landscape consisted of mutations

known to have a large effect on the antibiotic resistance, one of mutations which were known

to have a small effect and one landscape consisted of synonymous mutations. For each of these

3 × 24 mutants, its resistance to Cefotaxime was measured. In order to do so, the mutant

plasmid created as described above were, by transformation, put into a reference strain of E.

coli. Then the minimal inhibitory concentration (MIC) of the antibiotic Cefotaxime needed

to kill a precisely defined fraction of the bacteria was measured. Even though this antibiotic

is a cephalosporin [4], the TEM1 β-lactamase does not infer a high resistance to it [131, 132].

However only very few mutations on the TEM1 gene are necessary to increase Cefotaxime re-

sistance by about five orders of magnitude [146]. The aim [134] was to investigate the fitness

increase induced by each combination of mutations on TEM 1 in E. coli.

Furthermore, one data set was obtained which only consisted of a number of individual muta-

tions induced on the WT. The purpose of this data set was to obtain information about the

distribution of the resulting fitness effects.
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3. Record statistics of non-identically

distributed random variables

Analytic results on record statistics beyond the standard setting of independent,

identically distributed random variables are presented. Some of these results have

direct implications in the context of fitness landscapes, but the material presented

here is also of interest in the general context of record statistcs and will be applied

to study the effects of mutations.

To the extent that evolution can be seen as a process of perpetual improvement of a population,

it consists of a large sequence of record values (in the sense of e.g. ‘fastest growth’) of the trait

under selection. Thus part of the work on the present thesis was concerned with the statistics

of records. The precise way in which records are related to fitness landscapes is omitted here

and the results obtained will be presented without reference to fitness. The implications for

fitness landscapes will become apparent in the next chapter.

Only section 3.2 below will be needed in the context of fitness landscapes. The results presented

in sections 3.3 and 3.4, even though they are new in the sense that they were derived in the

context of this thesis [53, 150], do not have immediate applications in the context of fitness

landscapes. However, based on these results, a new tool of data analysis was derived, which, as

proof of principle, will be used to extract information from the data set of antibiotic resistance

of the bacterium Escherichia coli introduced in section 3.4. Thus the quite sizable digression

into the realm of record statistics presented in this chapter will tie back into the main theme

of this work in a surprising yet useful way.

3.1. Record and Extreme Value statistics

Consider a family {xn} ≡ {xi}i=1,2,...,n of n real-valued random variables. Then an entry xn
is called a record whenever xn > x̂n−1, with x̂n−1 ≡ maxi≤n−1{xi}, i.e. whenever it is greater

than all previous entries in the sequence. Because only previous entries in the family of RVs

are considered, {xn} can be interpreted and will sometimes be referred to as a time series. Now

record statistics is concerned with the study of record events by, for example, considering the

probability pn that the nth entry is a record,

pn ≡ Prob[xn is record] = Prob

[

xn > max
i≤n−1

{xi}
]

. (3.1)

Since xn must be greater than any previous entry in the time series, pn is the probability for

an upper record. The probability for a lower record, i.e.

Prob[xn < min
i≤n

{xi}] (3.2)
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can be considered along the same lines as upper records. In the following, only upper records

will be considered.

For many practical applications, it is only of secondary importance, when a record will occur,

and of much greater interest how large the record value x̂n will be. Perhaps the oldest of these

applications is the problem of building a dike large enough to resist the highest flood to be

expected in a given number of years to come [29,63] while on the other hand obeying economic

constraints on the size. If flood heights can be modeled as RVs, one needs a precise estimate of

the distribution of the RV x̂n, i.e. the maximal value of the time series {xn} of flood heights.

This estimate is provided by Extreme Value Theory (EVT) [29, 55, 63].

In the simplest case, the RVs {xn} are independent and identically distributed with a common

density x ∼ f(x) such that Prob[x ≤ y] =
∫ y

dxf(x) = F (y) where F (y) is called the cumula-

tive distribution function1 called ‘parental distribution’. By independence, the distributions of

the individual entries of the time series factorize and thus

Fmax(y) = Prob

[

max
i≤n

{xi} ≤ y

]

=

n
∏

i=1

Fi(y) = F n(y), (3.3)

where in the last step the fact was used that all RVs are iid, which allowed to drop the index i.

Above, the convention was employed that an omitted lower (upper) limit of integration stands

for the lower (upper) boundary of the support of f(·). This convention will be used throughout

this thesis.

For some choices of f(·), eq (3.3) can explicitly be evaluated. For example setting f(x) =

exp[−x] for x > 0, one has F (y) = 1− exp[−y] and thus for n→ ∞ and y → ∞

F n(y) =
(

1− e−y
)n ≈ exp(−ne−y) = exp

(

−e−(y−ln(n))
)

. (3.4)

One observes that as n → ∞, the probability that all RVs are below any given finite y tends

to zero, reflecting the fact that the maximum of a time series tends to the upper bound of the

support of f(·), which is in this case infinite. Under the rescaling ỹ = y− ln(n), the distribution

function for the maximum of the time series takes the form

Fmax(ỹ) = exp
(

−e−ỹ
)

. (3.5)

This function does not depend on n anymore and thus one has found the limit distribution,

which in this case is known as Gumbel distribution. A more detailed study (see for example the

review [63], the textbooks [29,55] or for a more recent derivation [14]) shows that any parental

distribution f(·) falls with respect to the distribution of the maximal value into one of three

universality classes, each of which associated with a limit distribution for the maximum value x̂.

For each distribution f(·) there is a sequence of parameters an, bn such that x̂ has distribution

Prob

(

x̂n − an
bn

≤ y

)

= exp
{

−(1 + ξy)−ξ−1
}

as n→ ∞ (3.6)

for all y such that 1+ ξy > 0. The shape parameter ξ is determined by the tail behavior of the

parental distribution. There are three different regimes of this shape parameter ξ, each with a

1For the remainder of this thesis, it will be assumed that f has no contributions in the form of a
Dirac-δ and that thus F is a continuous function.
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different form of limiting distribution associated with it. These regimes are

Gumbel class (ξ = 0): If f(x) decays faster than any power law as x → ∞, eq (3.6)

takes the form

lim
n→∞

Prob

(

x̂n − an
bn

≤ y

)

= exp
(

−e−y
)

(3.7)

Fréchet class (ξ > 0): If f(x) decays like a power law as x → ∞, eq (3.6) takes the

form

lim
n→∞

Prob

(

x̂n − an
bn

≤ y

)

=

{

0 y ≤ 0

e(−y)−ξ−1

y > 0
(3.8)

Weibull class (ξ < 0): If the upper limit of the support of f(x) is finite, eq (3.6) takes

the form

lim
n→∞

Prob

(

x̂n − an
bn

≤ y

)

=

{

e−(−y)ξ
−1

y < 0

1 y ≥ 1
(3.9)

The result that any parental distribution f(·) falls in one of these three universality classes and

the connection between these universality classes and the form of f(·) is called Fisher-Tippet-

Gnedenko theorem [29]. It is quite a remarkable results, since the parental distributions can

have very diverse structures. It is similar to the famous Central Limit Theorem explaining the

‘omnipresence’ of the Gaussian distribution, see e.g. [16] and references therein. The above

statement of universality in EVT was not only given here for completeness but also because in

the remainder of this chapter, traces of these universality classes will be recovered.

3.2. Records and sequences of records from random

variables with a linear trend

As one-dimensional version of the RMF-model presented in section 2.1.3, consider a family of

RVs

xn = yn + cn, (3.10)

where the {yn} are a family of iid RVs with density f(·) and c is a real positive constant.

This model was introduced in [10, 11]. Here, it will be referred to as the ’Linear Drift Model’

(LDM). Since this model’s initial formulation, record events from the LDM have not received

much attention. Only in a recent surge of interest in record and extreme value statistics

beyond the iid case (see e.g. [96, 149] for random walk correlated RVs with or without drift

or [52,89,150,151] for records from the LDM), which was partially triggered by problems from

biological contexts [87, 115], this question has been treated again.

The {xn} are a family of independent, but not identically distributed RVs. Rather, the entries

of the time series have a distribution that keeps its overall shape but is shifted (or ‘drifted’2,

hence the name of the model) by a factor cn with respect to the zeroth entry of the time series,

see fig 3.1.

2Here, the word ‘drift’ is used in the sense of standard physics terminology, meaning ballistic motion,
as opposed to the use of this word in the biological context.



28 Chapter 3. Record statistics of non-identically distributed random variables

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4

f n
(x

)

x

f0(x)
f1(x)
f2(x)

Figure 3.1.: Parental probability density f0(x) and the probability densities f1(x) and f2(x) of

the first two entries x1 and x3 of the time series {xn} for f0(x) a standard Gaussian

density and c = 1. The overall shape remains the same, but f is shifted by a factor

cn. Thus the probability density of the nth RV can be mapped onto that of the

zeroth entry by the substitution x→ x− cn.

In other words, if the shape of the probability density centered around zero, say, is given by

the function f(·), then the probability density of the nth entry fn(·) is related to f(·) via

fn(x) = f(x− cn) ⇐⇒ fn(x+ cn) = f(x), (3.11)

see also fig 3.1.

3.2.1. Records from the LDM

The random variables are still independent, thus their joint probability factorizes (cf. eq (3.3))

and the probability that the nth RV is a record is given by

pn(c) ≡ Prob

[

xn = max
i≤n

{xn}
]

=

∫

dxfn(x)

n−1
∏

i=1

Fi(x). (3.12)

For c ≡ 0, one recovers the iid case, where the indices can be removed. In that case pn(c = 0)

can explicitly be computed as

pn(c = 0) =

∫

dxf(x)F n−1(x) =

∫ 1

0

duun−1 =
1

n
, (3.13)

where the substitution u ≡ F (x) was used. This result can directly be verified, since in the iid

case, each of the n RVs has equal probability of being the largest.

In the case of c > 0, eq (3.11) can be used to remove the indices in eq (3.12) and express pn in

terms of the parental probability density f(·),

pn(c) =

∫

dxf(x− cn)

n−1
∏

i=1

F (x− (n− i)c) =

∫

dxf(x)

n−1
∏

i=1

F (x+ ic). (3.14)

This probability was the central object of study in [10], where it was noticed that it is in
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general very difficult to compute. However for the Gumbel distribution with probability density

f(x) = exp
[

−e−x − x
]

and cumulative distribution function F (x) = exp
[

−e−x
]

, Ballerini and

Resnick showed that pn can exactly be computed: Using the fact that

F (x+ c) = exp(−e−x−c) = exp(−e−xe−c) = exp(−e−x)e
−c

= F (x)α (3.15)

with α ≡ e−c and substituting this into eq (3.14), one obtains

pn(c) =

∫

dxf(x)

n−1
∏

i=1

F (x)α
i

=

∫

dxf(x)F (x)
∑n−1

i=1
αi

=

(

n−1
∑

i=0

αi

)−1

=
1− e−c

1− e−nc
(3.16)

by use of the same substitution as above and the incomplete geometric series [60].

3.2.2. Sequences of Records from the LDM

So far, as in [52], the effect of a small drift c on the record rate pn(c) was studied. Of immediate

importance to the study of fitness landscapes however is the probability Pn that all n RVs are

ordered. This probability can be expressed as

Pn(c) =

∫

dxnf(xn)

∫

dxn−1f(xn−1) . . .

∫

dx1f(x1)1x1<x2<···<xn

=

∫

dxnf(xn)

∫ xn

dxn−1f(xn−1)

∫ xn−1

. . .

∫ x2

dx1f(x1)

=

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

∫ xn−1+c

. . .

∫ x2+c

dx1f(x1), (3.17)

where the indicator function 1x1<x2<...xn was absorbed in the integral boundaries and eq (3.11)

was used in the last step.

Explicitly solvable examples

This chain of integrals is, just like the integral expression for pn(c) in eq (3.14) above, usually

hard to evaluate, but in the iid case c ≡ 0 and for the Gumbel distribution, it can be computed

explicitly. In the iid case, this yields
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Pn(c = 0) =

∫

dxnf(xn)

∫ xn

dxn−1 . . .

∫ x2

dx1f(x1)

=

∫

dxnf(xn)

∫ xn

dxn−1 . . .

∫ x3

dx2f(x2)F (x2)

=

∫

dxnf(xn)

∫ xn

dxn−1 . . .

∫ F (x3)

duu

=
1

2

∫

dxnf(xn)

∫ xn

dxn−1 . . .

∫ F (x4)

duu2 = · · · = 1

n!
. (3.18)

As in the case of record rates pn(c = 0), this has an intuitive interpretation since all n!

orderings or n iid RVs are equally likely and the one that increases in magnitude occurs in 1/n!

of the times. The two quantities pn(c = 0) and Pn(c = 0) are related via

Pn(c = 0) =
1

n!
=

n
∏

i=1

1

i
=

n
∏

i=1

pi(c = 0). (3.19)

For the Gumbel case F (x) = exp(−e−x), eq (3.17) can also be evaluated explicitly using the

Gumbel formula eq (3.15):

Pn(c) =

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

∫

xn−1 + c . . .

∫ x3+c

dx2f(x2)F (x2 + c)

=

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

∫ xn−1+c

. . .

∫ F (x3+c)

duuα

=
1

α + 1

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

∫ xn−1+c

. . .

∫ F (x4+c)

duuα(α+1)

= · · · =
n−1
∏

l=1

1
∑l

i=0 α
i
. (3.20)

With the expression for incomplete geometric series used above, one obtains

Pn(c) = (1− e−c)n
1

∏n
i=1(1− e−ic)

= (1− e−c)nZn, (3.21)

where Zn is the grand canonical partition sum of bosonic particles with energy levels i = 1, . . . , n

at inverse temperate c, which also occurs as one limit in the integer partition problem (cf. [26,27]

and references therein).

The product
∏n

i=1(1 − exp(−ic)) in the denominator is also known as the q−Pochhammer

symbol (q : q)n with q = e−c, which in the limit N → ∞ for fixed c has the asymptotics [148]

lim
n→∞

n
∏

i=1

(

1− e−ic
)

≡
(

e−c
)

∞
≈
√

2π

c
exp
(

− π

6c
+

c

24

)

. (3.22)

Inserting this expression into eq (3.21) gives the approximation
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Figure 3.2.: The left panel shows a comparison of the asymptotic expression (3.24) and the exact

expression (3.21) to numerical simulations of the problem. Note that the exact

expression matches the data, while the asymptotic expression is slightly off. The

right panel shows that for larger n, the asymptotic expression is indistinguishable

from the data (inset). The main plot on the right confirms the scaling behavior

Pn(c) found above.

Pn(c) ≈
√

c

2π
exp
[

n ln
(

1− e−c
)

+
π

6c
− c

24

]

for n≫ 1. (3.23)

The asymptotic for large c and fixed n is easier to obtain. Since then α = e−c ≪ 1, each

of the sums in the denominator can be expanded to first order in α to yield
(

∑l
i=1 α

i
)−1

≈
1− α +O(α2) and thus

Pn(c) ≈ exp [−(n− 1)α] = exp
[

−(n− 1)e−c
]

. (3.24)

This asymptotic expression is distinguishable from the exact expression (3.21) only in the region

c ∼ O(1) as can be seen in fig 3.2, where also the scaling behavior Pn(c) = P (ne−c) is shown.

Comparing eqs (3.16) and (3.21), one observes the same connection between pn(c) and Pn(c)

as for the iid case in eq (3.19). This is a consequence of the fact that in both cases, record

events are stochastically independent [105]. This is not generally true for the LDM, as will

become evident in section 3.3. First however, the effect of small3, positive drift on the ordering

probability Pn(c) for arbitrary probability density f(·) will be studied.

General expansion for small drift

The effect of positive a drift on Pn(c) for arbitrary f can be studied by a first order series

expansion of eq (3.17) in c around c = 0,

Pn(c) = Pn(0) + c
d

dc
Pn(c)

∣

∣

∣

∣

c=0

+O(c2). (3.25)

3Clearly c has to be measured in units of the standard deviation σ of the parental distribution f(·)
or, if σ does not exist, in units of some other scale set by f(·), otherwise ‘small c’ has no meaning.
Throughout this thesis, c will be measured in units of the scale set by f(·) and any statement such
as c ≪ 1 or c ≫ 1 will be subject to an interpretation according to this.
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The zeroth order term is simply the iid result Pn(0) = (n!)−1. The coefficient of the first

order term can be computed by noting that the differentiation with respect to c interchanges

with the first integral over xn as that integral is independent of c, cf. eq (3.17). Defining

P (n− 1, xn, c) ≡
∫ xn+c

dxn−1fn−1(xn−1)

∫ xn−1+c

dxn−2 . . .

∫ x2+c

dx1f(x1)

=

∫

dxn−1f(xn−1)P (n− 2, xn−1, c), (3.26)

and, omitting terms in c2 and smaller, the expansion eq (3.25) becomes

Pn(c) ≈
1

n!
+ c

∫

dxnf(xn)
d

dc
P (n− 1, xn, c)

∣

∣

∣

∣

c=0

. (3.27)

Now the derivative of P (n− 1, xn, c) clearly obeys the recursion relation

d

dc
P (n− 1, xn, c)

∣

∣

∣

∣

c=0

=f(xn)P (n− 2, xn, 0)

+

∫ xn

dxn−1f(xn−1)
d

dc
P (n− 2, xn−1, c)

∣

∣

∣

∣

c=0

. (3.28)

P (n− 2, xn, c = 0) can be evaluated by the same means as the ordering probability for the iid

case in eq (3.18) to yield

P (n− 1, xn, c = 0) =
1

(n− 2)!
F n−2(xn) (3.29)

and therefore

d

dc
Pn(n− 1, xn, c)

∣

∣

∣

∣

c=0

=
f(xn)

(n− 2)!
F n−2(xn)

+

∫ xn+c

dxn−1f(xn−1)
d

dc
P (n− 2, xn−1, c)

∣

∣

∣

∣

c=0

. (3.30)

Applying eq (3.28) n − 1 times, the first order coefficient can be expanded into a sum of

n− 1 terms, each of which is a chain of integrals of lengths varying between 1 and n− 1 and,

noting that P (1, x2, c) =
∫ x2+c

dx1f(x1) = F (x2 + c) and thus d
dcP (1, x2, c)

∣

∣

c=0
= f(x2), this

coefficient reads
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Figure 3.3.: Simulations comparing the ordering probability Pn(c) to the asymptotic expansion

eq(3.32) with If =
∫

dxf2(x): For f(·) a Gaussian density with σ2 = 1 (left) and

for a uniform density on (0, 1) (right).

d

dc
Pn(c)

∣

∣

∣

∣

c=0

=
1

(n− 2)!

∫

df2(xn)F
n−2(xn)

+
1

(n− 3)!

∫

dxnf(xn)

∫ xn

dxn−1f
2(xn−1)F

n−3(xn−1) + . . .

+
1

0!

∫

dxnf(xn)

∫ xn

dxn−1f(xn−1) . . .

∫ x2

dx1f
2(x1). (3.31)

Interestingly, this sum can be performed in closed form to give the simple result (see [52] or

Appendix B for details) d
dcPn(c)

∣

∣

c=0
= 1

(n−2)!

∫

dxf2(x).

With this expression, one finally obtains for the expansion eq (3.25)

Pn(c) ≈
1

n!
+

c

(n− 2)!

∫

dxf2(x). (3.32)

As will be shown later, this result has important consequences for the study of fitness landscapes.

Note that the probability density of the iid part of the RVs only enters as a non-universal

constant4
∫

dxf2(x) > 0, but the scaling of Pn(c) with c remains universal. Thus the complete

universality observed in the iid case eq (3.18) remains up to a multiplicative constant and is

thus only broken in a very weak sense.

As a check, this expression is compared to numerical simulations in fig 3.3.

Ordering probability for large drift

In the case of infinitely large drift, trivially Pn(c) → 1 with probability one. For large but finite

drift, however, an asymptotic expression for Pn(c) can be derived. Ballerini and Resnick showed

that the record rate pn(c) approaches a (f(·)-dependent) constant p(c) > 0 as n→ ∞, [10,11].

Numerical studies [52] showed that this limit is attained faster for larger c, thus in the case

4For some choices of f , this integral might not exist. In that case the expansion is of course not
valid, see e.g. the discussion in [150] or [130].
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c ≫ 1, one can assume that it is to good accuracy attained from the very beginning. Since

c ≫ 1, the probability densities of any two RVs xn−k and xn with k ≥ 2 have next to no

overlap. Thus only the RV xn−1 has an appreciable chance of being greater than its successor

xn and the probability that xn is not a record can be approximated by the probability that

xn−1 > xn,

Prob[xn not record] ≈ Prob(xn−1 > xn) =

∫ ∞

c

dxf∗2(x) ≡ ǫ(c) (3.33)

where f∗2(x) denotes the twofold convolution of the probability density f(x) of the iid part of

the RVs. Note that in the last two steps of eq (3.33), the absolute position n within the time

series did not appear any more, reflecting the fact that the large-n regime of pn(c) is attained

to good accuracy.

To obtain an expression for the ordering probability Pn(c), one can make the assumption that

in the limit considered here, record events are stochastically independent (a detailed study of

the correlations between record events presented in the next section justifies this assumption,

but for the moment it is just an ansatz). Then the ordering probability factorizes into the

individual record probabilities,

Pn(c) ≈ p(c)n = (1− ǫ(c))n ≈ exp[−nǫ(c)], (3.34)

where ǫ(c) is the probability that xn is not a record defined in eq (3.33). Now the form of Pn(c)

depends on ǫ(c). To quote a few examples,

f(x) =
1√
2π
e−x2/2 ⇒ ǫ(c) =

1

2
erfc(c/2) ≈ 1

c
√
π
e−c2/4 (3.35)

f(x) =
1

2
e−|x| ⇒ ǫ(c) =

(

1

2
+
c

4

)

e−c (3.36)

f(x) =
1

2π

∫ ∞

−∞

dke−ikx−|k|µ ⇒ ǫ(c) =
1

2π

∫ ∞

c

dx

∫ ∞

−∞

dke−ikx−2|k|µ ≈ γµc
−µ (3.37)

with

γµ ≡ 2Γ(1 + µ) sin (πµ/2)

πµ
, (3.38)

where Γ(·) is the standard Gamma function. The expressions quoted above are either readily

available ( [2] for eq (3.35)) or straightforward to compute, see appendix B. These expressions

compare well with numerical simulations as can be seen in figs 3.4 and 3.5.

The first two examples are from the Gumbel class of extreme value statistics while the

third example, the Lévy stable distribution, is from the Fréchet class. To some extent these

universality classes, which were defined with respect to the extreme values of iid RVs seem

to apply here as well: Putting the corresponding expressions for ǫ(c) back into eq (3.34), one

observes that for the two representatives of the Gumbel class, Pn(c) ∼ exp
(

−ne−c2/4/(c
√
π)
)

or Pn(c) ∼ exp
(

−nce−c/4
)

while for the example from the Fréchet class, Pn(c) ∼ exp (−ncµ)
similar to eqs (3.7) and (3.8).

The fact that the parameter c plays a role vaguely similar to the rescaled extreme value in
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Figure 3.4.: The main plot in both figures shows a scaling collapses of the numerically obtained

data (points) to the asymptotic expressions of Pn(c) as function of nǫ(c) for two-

sided exponential (also called Laplace) density on the left and Lévy density with

parameter µ = 1.3 on the right. The expression ǫ(c) used are the ones obtained in

eqs (3.36) and (3.37) respectively. The fact that the simulations collapse for differ-

ent values of n shows that the approximations were justified and the asymptotic

expressions for Pn(c) check to good accuracy. The inset shows Pn(c) as function of

c to show how the different scaling in c leads to different shapes of Pn(c).
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the EVT context is consistent with the fact that c sets a scale for the values that are to become

records. This also allows for a heuristic explanation why the complete universality observed in

the iid case, where Pn(c = 0) = 1/n! as shown in eq (3.18), breaks down: In the iid case, there

is no scale to compare to, while in the LDM case considered here, a scale is set by the value of

c.

Nonetheless, this is just the interpretation of particular examples and more rigorous studies are

needed to understand this breakdown of universality observed throughout this section.

3.3. Correlations between record events in the linear drift

model

In deriving the asymptotic expressions for the ordering probability Pn(c) in eq (3.34), it was

assumed that record events are independent in the limit considered there. To explore the va-

lidity of this assumption, correlations between record events were studied. These correlations,

however, are also of general interest and can be motivated with the same application that mo-

tivated the study of record values as stated in section 3.1, namely the problem of containing

floods: Given that a record flood just occurred, one would intuitively believe that it will be a

while before the next record flood. But is this intuition true? This question can be answered

by studying correlations between record events.

As was stated in the last section, in the iid case c = 0 and for the Gumbel-case and arbitrary

c, record events are known to be statistically independent [105]. In general, however, no such

result is known and, except for one special case studied by Ballerini and Resnick [10], the

problem had not received systematic attention before the work to be presented here. In the

different, but related problem of records from random-walk correlated RVs [96], it is obvious

that record events are not independent: For a symmetric random walk, the probability of a

record in the nth step, given that a record occurred in the (n − 1)th step is simply 1/2, since

the random walk either goes beyond the current value, or does not, with equal probability. On

the other hand, the unconditioned probability of a record event in the nth step was found to

be pn ≈ 1/
√
nπ [96] for large n.

To investigate the correlations between record events from the LDM defined in eq (3.10), con-

sider the joint probability of two record events at a given distance k

pn,n−k(c) ≡ Prob[xn and xn−k records]. (3.39)

Then to compare this probability to the unconditioned record rate pn(c) as defined in eq

(3.12), pn,n−k(c) is normalized by pn(c)pn−k(c). Hence the object used to quantify these corre-

lations is

ln,n−k(c) ≡
pn,n−k(c)

pn(c)pn−k(c)
. (3.40)

By the definition of the conditional probability (see e.g. [128])

ln,n−k(c) =
Prob[xn record |xn−k record]

Prob[xn record ]
. (3.41)

Thus if record events are stochastically independent, ln,n−k(c) = 1. If on the other hand
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case, record events are independent. For the symmetric Lévy-stable distribution,

record events attract.

ln,n−k(c) 6= 1, then record events cannot be independent. In particular, if ln,n−k(c) < 1, it is less

likely to have a record in the nth position if a record occurred k positions earlier than without

knowledge of previous records, while if ln,n−k(c) > 1, it is more likely to have a record in the nth

position if a record occurred in position n−k. In the former case, record events are said to repel

each other, in the latter, they attract. To illustrate this, consider the numerical simulations

presented in fig 3.6, where for k = 1, ln,n−k(c) was observed for different distributions of the

iid part. There are several notable features: First of all, the curves all meet at unity for c = 0,

which corresponds to the fact that in the iid case, record events are independent. Furthermore,

as c → ∞, the curves asymptotically approach unity again5, which was expected because in

this limit, pn,n−k(c), pn(c) and pn−k(c) trivially approach unity. However between these two

limiting values of c, the curves of ln,n−k(c) show quite different features: While for the uniform

distribution, record events seem to repel each other quite strongly, for the Lévy-distribution,

they attract. The fact that the curves deviate significantly from unity indicates that record

events in the LDM are in general not independent.

The differences between the curves and in particular the attraction between record events

observed in the Lévy case seem surprising. Explaining how this difference comes about and

characterizing it in terms of the universality classes of EVT introduced in section 3.1 is the

main goal of this section.

5This explains why the assumption about stochastically independent record events yielded such
precise estimates for the ordering probability Pn(c) in the last section.
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3.3.1. General theory

Similar to the expressions for pn(c) and Pn(c) derived in eqs (3.14) and (3.17) respectively, an

integral equation for pn,n−k(c) can formally be set up. For k = 1, it reads

pn,n−1(c) =

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

n−2
∏

l=1

F (x+ cl). (3.42)

This equation, together with eq (3.14), gives an expression for ln,n−1(c) which can be exam-

ined perturbatively for small c to determine the direction with which ln,n−1(c) departs from

unity. Before doing so, however, stochastic independence for the iid and the Gumbel case will

explicitly be checked.

Stochastic independence for two cases

For the iid case, one can again use the substitution u = F (x) with du = f(x)dx to solve eq

(3.42) to

pn,n−1(c = 0) =

∫ 1

0

du

∫ u

0

du′u′n−2 =
1

n− 1

1

n
= pn(0)pn−1(0). (3.43)

Clearly this factorization also holds under insertion of spacings between the record events,

thus pn,n−k(c = 0) = pn(c = 0)pn−k(c = 0). It is also possible to consider more than two record

events. This factorization property implies the known [7, 105] result on the independence of

record events in the iid case.

For the Gumbel case, one can again use the Gumbel formula eq (3.15) to compute pn,n−1(c).

With α = e−c and the same substitution as above, it reads

pn,n−1(c) =

∫

dxnf(xn)

∫ xn+c

dxn−1f(xn−1)

n−2
∏

l=1

F (x)α
l

=

∫ 1

0

du

∫ uα

0

du′u′
∑n−2

l=1
αl

=
1

∑n−2
l=0 α

l

∫ 1

0

duu
∑n−1

l=1
αl

=
1

∑n−2
l=0 α

l

1
∑n−1

l=0 α
l

= pn−1(c)pn(c). (3.44)

This factorization again holds under insertion of an arbitrary number of arbitrarily spaced

record events, thus one recovers the known stochastic independence of record events. Of course,

this was expected in the light of eq (3.20).

Expansion for small drift

For the iid case, ln,n−1(c = 0) = 1, thus allowing a perturbative study for small c around c = 0

by the same approach used in the previous section for Pn(c). Assuming that pn(c) is analytic

in c, a first-order Taylor expansion can be set up as in eq (3.25).

A straightforward computation, ignoring terms in c2 or higher then yields (see appendix B for
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this and all other computations omitted in the section)

pn(c) ≈
1

n
+ c

n(n− 1)

2
I(n− 2) (3.45)

with the definition6

I(n) ≡
∫

dxf2(x)F n(x). (3.46)

For c = 0, the expression given in eq (3.13) is recovered from eq (3.45). An analogous expansion

of pn,n−1(c) around c = 0 yields

pn,n−1(c) ≈
1

n(n− 1)
− c

(n− 1)(n− 2)− 2

2
I(n− 2) + c

(n− 1)(n− 2)

2
I(n− 3) (3.47)

with the expression for the term independent of c taken from eq (3.43). One sees that there

are terms of the same order in c and n but with different signs. Which one dominates will now

depend on I(n) and hence on the underlying distribution f(·) as numerically observed in fig

3.6. For ln,n−1(c), the expansion reads

ln,n−1(c) ≈ 1 + cJ(n) (3.48)

with

J(n) =n(n− 1)I(n− 2) +
n(n− 1)2(n− 2)

2
[I(n− 3)− I(n− 2)]

− n2(n− 1)

2
I(n− 2)− (n− 1)2(n− 2)

2
I(n− 3). (3.49)

Again there are terms of both positive and negative sign.

Because of the complicated structure of these expansions and in particular of the integral

I(n), an analysis of these expansions is most convenient in the limit of large n, which will be

considered for the rest of this section. For large n and given c ≪ 1, one has to compare the

leading order terms in n of the coefficient eq (3.49) to predict the sign with which ln,n−1(c)

departs from unity. One notes that the term in n4 has a positive sign but depends on the

difference I(n− 3)− I(n− 2), while the terms in n3 have negative sign and coefficients I(n). It

is still not obvious how the attractive correlations and the strong dependence on the underlying

distribution f(·) arise. Rather, one needs a detailed study of the properties of I(n) and its

‘derivative’ I(n− 3)− I(n− 2) for large n as functional of f(·), which will be provided in the

next subsection. Before entering in such a discussion, however, heuristic derivations of known

results on the asymptotics of ln,n−k(c) for large n and large k will be provided.

6This integral also appeared in a seemingly unrelated context [130]. For certain choices of f(·), this
integral does not exist. The consequences is this context are clear since then the leading order
term is not linear in c.
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Figure 3.7.: ln,n−1(c) for Gaussian (standard deviation σ = 1) and symmetric Lévy stable (tail

parameter µ = 1.3) distributions of the iid part. As n increases, the attractive

correlations in the Lévy case become more pronounced. In the Gaussian case, on

the other hand, the correlations eventually saturate to a non-trivial limiting curve

which so far has eluded a detailed description.

Asymptotics for large n and k

Fig 3.7 shows ln,n−1(c) for increasing values of n and two different distribution. These numer-

ical simulations, similar to those shown in fig 3.6 show that the deviations from unity of the

correlations are not a finite size effect. For the Gaussian distribution, the correlations saturate

to a non-trivial limit curve for intermediate c, while for the Lévy-distribution, they increase in

the regime numerically explored so far.

However it can be shown that for any f(·) with finite first moment, a limiting function ex-

ists. The existence of this limiting function l(c) ≡ limn→∞ ln,n−1(c) greater than zero is a

direct consequence of the proof for the existence of 0 < p(c) ≡ limn→∞ pn(c) as given by Bal-

lerini and Resnick [10]: By inspection of eqs (3.14) and (3.42) it is clear that both p(c) and

limn→∞ pn,n−1(c) exist and are greater than zero if

Gc(x) ≡ lim
n→∞

n
∏

j=1

F (x+ cj) (3.50)

exists and is greater than zero, which was proven in [10]. For completeness, heuristic arguments

that Gc(x) and thus limn→∞ ln,n−1(c) are positive will be provided here [150]. Taking the

logarithm of eq (3.50), the question Gc(x) > 0 becomes equivalent to the convergence of the

sum
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Figure 3.8.: Illustration of the behavior of the correlations as given by l32,32−k(c) as k increases.

The left figure shows, analogous to fig 3.7, standard Gaussian (σ = 1) and symmet-

ric Lévy stable distributions (µ = 1.3) for increasing k. The right figure explores

the behavior of the correlations at the value of the drift velocity c∗ chosen such that

deviation from unity is maximal. The values are c∗ = 0.1 for the Gaussian case

and the uniform distribution on (0, 1), c∗ = 0.2 for the Lévy-stable distribution

µ = 1.3 and c∗ = 0.4 for the Pareto distribution with tail parameter µ = 2.0. All

curves approach unity as k grows.

ln [Gc(x)] =

∞
∑

j=0

ln [F (x+ cj)] . (3.51)

Since F (·) is the cumulative probability distribution of the RV X ,

F (x+ cj) = Prob [X ≤ x+ cj]) = 1− Prob [X > x+ cj] (3.52)

and thus for any finite x and any c > 0 there is a j̃ large enough such that Prob [X > x+ cj] ≪
1. With the common expansion of the logarithm ln(1− y) ≈ −y for sufficiently small |y|,

ln [Gc(x)] ≈
j̃−1
∑

j=1

ln [F (x+ cj)]−
∞
∑

j=j̃

Prob [X > x+ cj] . (3.53)

The first sum is a finite sum over finite summands and thus converges. The second, infinite

sum converges whenever Prob[X > x] decays faster than 1/x, which is also the condition for

the first moment of the underlying probability density f(·) to exists. This confirms the criterion

for existence of a limiting function p(c) > 0 as stated by Ballerini and Resnick, namely that

the distribution of the iid part of the RVs from the LDM must have finite first moment. Note,

however, that such a limit function only exists for c strictly greater than zero.

Finally consider the effect of large distance k between record events. So far, only the case

k = 1 was considered. Numerical simulations presented in fig 3.8 show that correlations decrease

in magnitude with k, thus in focusing on k = 1, the case of most pronounced correlations was
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considered. This also matches with a rigorous result [10] on the joint probability pn,n−k(c) of

the two records in the event n and n− k which states that

lim
k→∞

lim
n→∞

pn,n−k(c) =
[

lim
n→∞

pn(c)
]2

= p(c)2. (3.54)

3.3.2. Explicit examples

While the properties of ln,n−1(c) for a wide range of distributions has been discussed (see [52,150]

and also implicitly [130], since the integral I(n) considered in eqs (3.45), (3.47) and (3.48) also

appears in the seemingly unrelated context considered there), here only a small selection of

these results will be presented. The aim is to motivate a unified picture given at the end of this

subsection that will allow a rough (and non-rigorous) classification of the sign of correlations

according to the three universality classes of extreme value theory discussed in section 3.1.

The Weibull class

As a first example, consider the case of f(x) = 1
2a1(−a,a)(x). A straightforward computation

yields I(n) = (2a(n+ 1))−1 and thus

ln,n−1(c) ≈ 1 +
c

2a

(

n+
n(n− 1)

2
− n2

2
− (n− 1)2

2

)

≈ 1− c

4a
n2 (3.55)

for n≫ 1.

As a more general representative of the Weibull class, consider the Kumaraswamy distribution

with probability density

fζ = ζ(1− x)ζ−1 (3.56)

for ζ > 0 and x ∈ [0, 1] with cumulative distribution function Fζ(x) = 1 − (1 − x)ζ , which

contains the case of the uniform distribution discussed above for ζ = 1. With the substitution

(1− x) = z1/ζ , for ζ > 1/2 the integral Iζ(n) is given by

Iζ(n) = ζB

(

2− 1

ζ
, n+ 1

)

= ζ
Γ
(

2− 1
ζ

)

Γ(n+ 1)

Γ
(

n+ 3− 1
ζ

) (3.57)

with B(·, ·) and Γ(·) the standard Beta and Gamma functions, respectively [2]. Note that the

condition ζ > 1/2 is necessary because it ensures that the first argument of the Beta function

is larger than zero. Otherwise the integral I(n) does not exist.

Then, since for any z ∈ C, Γ(z + 1) = zΓ(z), the second term on the right hand side of eq

(3.49) is proportional to
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Iζ(n− 3)− Iζ(n− 2) = ζΓ

(

2− 1

ζ

)





Γ(n− 2)

Γ
(

n− 1
ζ

) − Γ(n− 1)

Γ
(

n + 1− 1
ζ

)





= ζΓ

(

2− 1

ζ

)





Γ(n− 2)

Γ
(

n− 1
ζ

) − (n− 2)Γ(n− 2)
(

n− 1
ζ

)

Γ
(

n− 1
ζ

)





= Iζ(n− 2)
2− ζ−1

n− ζ−1
. (3.58)

Thus for n large enough that n ≈ n− 1 ≈ n− 2 and B(·, n+ 1) ≈ B(·, n) ≈ B(·, n− 1) and

ζ such that ζ−1 ∼ O(1) or smaller (which is guaranteed by the requirement ζ > 1/2), the first

order coefficient of eq (3.48) becomes

Jζ(n) ≈ n2Iζ(n) +

(

2− 1

ζ

)

n3

2
Iζ(n)− 2

n3

2
Iζ(n) ≈ −n

3

2
B

(

2− 1

ζ
, n

)

≈ −
Γ
(

2− 1
ζ

)

2
n1+ζ−1

(3.59)

to leading order in n, where the expression for Iζ(n) in eq (3.57) and the asymptotic expression

B(z, n) ∼ Γ(z)n−z for fixed z and large n were used [2].

3.3.3. The Gumbel class

In this context the simplest representative of the Gumbel class is the one-sided exponential

distribution with density f(x) = a−1 exp
(

−x
a

)

and cumulative distribution function F (x) =

1− exp(−x/a) for x ≥ 0. With the substitution t = e−x, the integral from eq (3.46) is given by

Ia(n) =
1

a
B(2, n+ 1) =

1

a(n+ 1)(n+ 2)
(3.60)

and the leading order coefficient from eq (3.49) is straightforward to compute as J(n) = 1
2a and

thus eq (3.48) reads

ln.n−1(c) ≈ 1 +
c

2a
(3.61)

for all n. Note that the sign of the leading order term is positive, indicating attractive record

events.

For the Gaussian distribution (with second moment σ), another important member of the

Gumbel class, computations are a bit more complicated and were performed in [52,150]. There,

asymptotic expressions for the integral I(n) for large n were derived by means of a saddle point

approximation. This way, the integral (3.46) can be computed as
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I(n) ≈ 1

n2σ

4
√
π

e2

√

ln

(

n2

8π

)

(3.62)

giving a leading order expansion of ln,n−1(c) of the form

(ln,n−1(c)− 1) ∝ −n c
σ

√

ln

(

n2

8π

)

(3.63)

valid for nσ ≪ c. In contrast to the exponential case discussed above, here the sign is negative.

For a more general example of the Gumbel class, consider the generalized Gaussian distribution

f(x) = Aβ exp[−|x|β ] (3.64)

with normalization constant Aβ and β > 0. In [52] it was shown that

I(n) ∝ n−2 ln(n)1−β−1

(3.65)

and [150]

J(n) ∝ −d1
(

1− 1

β

)

n ln(n)1−β−1

+ d2 ln(n)
1−β−1

(3.66)

with d1, d2 real positive constants independent of n. From eq (3.66) it is clear that for β 6= 1,

the negative term dominates for n ≫ 1 while for β = 1, corresponding to the exponential dis-

tribution, the positive term dominates since the negative term vanishes. Also, since in this case

ln(n) is raised to the power 0, the correlations become in this case to leading order independent

of n. For β ≤ 1, i.e. for a probability density decaying like a stretched exponential, β−1 > 1

and the correlations are positive.

Thus in the Gumbel class of distributions, both signs were observed, with the stretched expo-

nential distribution showing attractive correlations.

3.3.4. The Fréchet class

Perhaps the easiest member of the Fréchet class to consider is the Pareto distribution with

density fµ(x) = µx−µ−1 for µ > 1 and x ≥ 1 and distribution function Fµ(x) = 1− x−µ. Then

the integral Iµ(n) from eq (3.46) can be computed as

Iµ = µB

(

2 +
1

µ
, n+ 1

)

= µ
Γ
(

2 + 1
µ

)

Γ(n+ 1)

Γ
(

3 + 1
µ + n

) . (3.67)

Analogous to the computation in eq (3.58), the difference term is then given by
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Iµ(n− 3)− Iµ(n− 2) = µΓ

(

2 +
1

µ

)

Γ(n− 2)

Γ
(

1 + 1
µ + n

)

[

1− n− 2

n + µ−1

]

= Iµ(n− 2)
2 + µ−1

n+ µ−1
. (3.68)

Then for sufficiently large n, the leading order coefficient Jµ(n) can be approximated by

Jµ(n) ≈ n2Iµ(n) +
n3

2µ
Iµ(n) ≈

Γ
(

2− 1
µ

)

2
n1−µ−1

, (3.69)

again using the asymptotics for the Beta function quoted above. Note however that in contrast

to eq (3.59), the equation above has positive sign.

3.3.5. Unified picture

The results for specific examples for the three universality classes of EVT can be summarized

in a rather simple scaling picture [150] by expressing these universality classes in terms of the

generalized Pareto distribution [118] with probability density

f(x) = (1 + κx)−
κ+1

κ . (3.70)

For κ > 0, this distribution is of the Pareto type with µ = 1/κ, for κ < 0 it is a Weibull-class

distribution similar to the Kumaraswamy distribution given in eq (3.56), with ζ = −1/κ. The

Gumbel class is represented in the limit κ→ 0, where the exponential distribution is recovered.

Using the expressions for I(n) derived for the cases considered above in eqs (3.65), (3.67) and

(3.57), one observes that they can be expressed as

I(n) ∼ n−(2+κ). (3.71)

This can be related to the behavior of correlations by noting that in the limit of large n, the

difference term I(n− 3)− I(n− 2) in eq (3.49) can be approximated by a derivative. Then

J(n) ≈ −1

2
n4

d

dn
I(n)− n3I(n) +O(n2I(n)). (3.72)

The derivative of I(n) is negative, since the integral is obviously monotonically decreasing in

n, and thus, with eq (3.71), the sign of the correlations is asymptotically given by the sign of

κ,

J(n) ∼ κ

2
n3I(n). (3.73)

Thus for large n, record events are expected to attract each other in the Fréchet class and repel

each other in the Weibull class. For the Gumbel class, a refined analysis like the one given in eq

(3.66) is necessary. There, correlations are expected to be negative for distributions decaying

faster than exponential and positive for stretched exponentials, with the pure exponential as
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a marginal case with positive correlations. This classification, albeit just based on specific

examples and not shown in general, is consistent with numerical simulations.

Furthermore, for the heavy-tailed distributions considered, the correlations grow with n.

3.4. A test for heavy-tailed distributions

Since one can roughly classify the type of correlations (attractive or repulsive) by the type of

probability densities f(·) from which the iid part of the RVs is drawn (Weibull class or heavier-

than-exponential tails), some information about the parental distribution is still contained in

the statistics of record events from the LDM. In this section, it will be shown that by artificially

imposing a linear drift on any set of iid RVs, this information can partially be recovered.

3.4.1. Record based tests

Imagine a data set of N entries. Now there exist various tests to check that these data points

can be treated as iid RVs. One possibility [50, 59] is to take sub-sequences of n < N entries,

keep these entries in the same order they have in the original data set and note if the last entry

is a record. If the data set is composed of iid RVs, then the fraction of times that the last entry

was a record should approach p̂n ∼ pn = 1/n. If this is not the case, the data set cannot be

treated as iid7. This constitutes perhaps the simplest record based test.

Note that there was no need to formulate a hypothesis about the distribution of the RVs (to

assume say, a Gaussian shape). Thus this method is said to be ‘non-parametric’ or ‘distribution

free’, which is a general feature of record-based test (see [50,59] or [62] and references therein).

Another advantage is that even for a data set of moderate size N on the order of a few dozen

entries, the number N of ordered subsets of size n < N is given by

N =

(

N

n

)

=
N !

n!(N − n)!
, (3.74)

which can be quite large for n ∼ N/2, thus one can use this combinatorial proliferation to

obtain a reasonable statistics. However, record based tests usually do not allow to estimate the

shape of the distribution. Here, the results obtained throughout this chapter will be used to

devise a record based test that allows to tell whether or not a given data set is drawn from a

distribution with heavy tails.

3.4.2. The test for heavy tails

Assume that a given data set {ηi}i∈{1,...N} of N data points consists of iid RVs. Then one

can pick a subset of size n < N and artificially superimpose a drift with velocity c to obtain a

modified time series8

7It is still possible that a data set is not composed of iid entries and yet passes this test. Thus the
example discussed here only works in one way, in that it can be used to reject the hypothesis of
iid entries, but not to confirm it.

8Note that the range of numerical values of c should be chosen according to the mean spacing of the
entries of the data set {xi}i∈{1,...,N}.



3.4. A test for heavy-tailed distributions 47

xn = ηn + cn. (3.75)

If one keeps the original data set, one can sample a large number of subsets like the one above,

see eq (3.74). Note that now, since one added n units of drift to the nth RV, a weak ordering has

been imposed. In fact, the family of RVs in eq (3.75) now obeys LDM statistics. In particular,

if one again records the relative number of times that the nth RV is a record, p̂n(c) and also

the relative number that both entries n and n − 1 are records, p̂n,n−1(c) (see appendix D for

details), one can probe the correlations between record events from the modified times series

(3.75) in analogy to eq (3.40) by considering

l̂n,n−1(c) =
p̂n,n−1(c)

p̂n(c)p̂n−1(c)
. (3.76)

The hat ·̂ stands as a reminder that as opposed to the numerical studies in section 3.3, here

only subsets of one large data set are discussed. An application of this test, known as ‘heavy

tail indicator’ (HTI) [53], is illustrated in fig 3.9. There, two ‘data sets’ were created using

the gsl random number generators for two different distributions. Was was drawn from the

symmetric Lévy stable distribution with tail parameter µ = 1.3, the other from a Gaussian

distribution with standard deviation σ = 1. Then l̂n,n−1(c) was computed for the HTI. The

number s of subsets used, called ‘internal statistics’, was s = 105. The inset of fig 3.9 shows

comparison of the cumulative distributions (symbols for the cumulative distribution from the

data, lines for the exact expressions) allows to tell that one distributions has heavier tails than

the other, but the signal is not as clear as the one presented in the main plot. Also there is no

way of rejecting the hypothesis of a Gaussian with a larger σ being responsible for the wider

curve. However under the HTI, increasing the standard deviation of the Gaussian produces a

signal rather different from the one observed for the heavy tailed distribution. Thus using the

HTI, the hypothesis that a Gaussian with a larger standard deviation is responsible for the first

data set can be rejected.

In fig 3.9, the curves obtained for the HTI follow the exact numerics, but also show some degree

of fluctuations. To systematically investigate the effect of these fluctuations, simulations of the

HTI for a large number S of independent data sets (called ‘external statistics’) were performed.

One notes that while for correlations greater than unity (attractive), the fluctuations can be

quite substantial, for the repulsive case, they are quite small, see fig 3.10.

In the left panel of fig 3.10, two different sizes of data sets are compared (N = 64 versus

N = 128) while n = 16 is kept fix. The fluctuations are greater for the smaller value of N . The

way in which the ratio of subset size to data set size n/N affects the amount of fluctuations is

investigated in the inset of fig 3.11. In particular it is shown for three different distributions

that the effect of increasing internal statistics s saturates (main plot). How this saturation

depends on the ratio n/N is investigated in the inset: The smaller n/N , i.e. the smaller n

for N fixed, the smaller the fluctuations. Thus to minimize fluctuations, one should choose n

small.

However, since in the last section, it was shown that the correlations only show their limiting

behavior (attractive for heavy tails, see section 3.3) for large n, there are two contradictory

constraints on n. Which values are to be chosen for a given application must be judged in each

case, but for the examples presented in the next subsection, the ratio of n/N = 1/4 was used.
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Figure 3.9.: Main plot show the application of the HTI for two data sets, one drawn from a

symmetric Lévy-stable distribution with µ = 1.3, the other from Gaussian distri-

butions σ = 1 and σ = 3. The curves obtained from the HTI (symbols) closely

follow the exact numerics obtained from arbitrarily many RVs (lines). The inset

shows a comparison of cumulative distributions.
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Figure 3.10.: Sample-to-sample fluctuations of l̂n,n−1(c) obtained for different distributions.

The left figure compares symmetric Lévy-stable distribution (µ = 1.3) and uniform

distribution on (0, 1). The main plot shows that the fluctuations for the heavy

tailed case are quite substantial while those for the uniform distribution hardly

show. The right figure compares a Pareto-distribution (µ = 2.0) to a standard

Gaussian. For the Gaussian, the fluctuations are also quite small, albeit larger

than for the uniform case. The insets of both figures compare the n-behavior

of signal and fluctuations for the respective distributions at fixed drift velocity

c∗ chosen such that the deviations of the HTI from unity were maximal. In the

heavy-tailed case, the signal increases with n while remaining constant in the

other examples.
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deviates maximal from unity. Eventually however, fluctuations saturate. The

value to which they saturate is given in the inset as function of n/N . The fact

that in particular the two curves for the Lévy case have different slopes indicates

that this is not the correct scaling combination, but here it suffices to show that

in order to reduce fluctuations, n should be small.

Note however than there are still quite sizable sample-to-sample fluctuations to be expected, see

fig 3.10. These fluctuations were numerically observed to be particularly strong if the underlying

distribution f(·) had heavy tails. This means that the test presented here cannot be used to

reject the hypothesis of heavy tails: If the HTI yields a signal below unity, this might very

well be due to a fluctuation. On the other hand, the fact that fluctuations from underlying

distributions without heavy tails were comparably small implies that a HTI signal strongly

above unity is unlikely to be due to a fluctuation ‘from below’ and is therefore indicative of

heavy tails underlying the data set. In this sense, the test only works in one way.

3.4.3. Examples

Identifying heavy tails underlying a time series is important because they imply a drastic

increase in the probability of extreme events [22, 137]. In particular, if these heavy tails are

of the power-law type (f(x) ∝ x−µ for large x) with exponent µ ≤ 3, the presence of heavy

tails leads to unusual behavior of the system under consideration, e.g. super-diffusive behavior

[16] or small-world effects in real-world networks [12, 107]. Other applications range from

paleontology [106] to animal foraging behavior [40,125,141], where in particular the last example

is regarded as quite controversial [124] due to a possible bias in the methods used for parameter

estimation [39, 119] toward the tail exponent corresponding to a search strategy that has been
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Figure 3.12.: . In this double-logarithmic plot, the citation distribution decays linearly in the

number of citations. The line indicates decay like x−3. Redrawn from [123], data

supplied by S. Redner, [122].

proposed to be optimal [92,121], underlining the need for distribution-free tests for heavy tails.

In the light of all these examples, it is clear that there is a host of empirical data sets that

are well established to possess heavy tails. To show that the test presented in this section

recovers these heavy tails, the famous ISI data set on citation distributions [123] is considered:

It consists of citations for each of the 783339 papers published in 1981 and cited between 1981

and June 1997 that are part of the ISI data base. Due to its size, it was possible to establish

the existence of a power law tail by a conventional test, where it was found that the tail has

a parameter of µ ≈ 3 for large numbers of citations. The existence of such a tail can also

be verified by inspection, see fig 3.12. However only about 500 paper were in the regime of

power-law tails, whereas most of the entries of the data set could best be fitted to a stretched-

exponential decay, see [123] and references therein. Nonetheless, using the test presented here,

it is possible to recover these heavy tails. As can be seen in fig 3.13, the test indeed does show

attractive correlations increasing in n, thus recovering these heavy tails. However to do so, the

test only required a subset of N = 64 entries of the original ISI data set. To show that this

is not a coincidental result, three independently chosen subsets are picked from the data and

evaluated, with the corresponding curves of the HTI presented in the left of fig 3.13.

Robustness under removal of outliers

One major shortcoming of conventional tests, in particular of maximum-likelihood methods,

is that they are not very robust to removal of outliers [23]. If one believes such an outlier to

be spurious and wishes to perform a maximum likelihood test without it, the results quickly

loose statistical significance. The test presented here, however, only uses a subset of the data

from the start, thus one expects that it will be more robust with respect to removal of outliers.

This robustness is illustrated on the right of fig 3.13, where the HTI test was performed for

data sets with the highest and second-highest entry removed. The resulting curves still show

attractive correlations indicative of heavy tails, but in one case the growth-signal expected

was lost. Upon closer examination of that particular data set, it turned out that the removed

data point was more than a factor 10 greater than the next largest, making this data set
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Figure 3.13.: Results of the HTI test applied to three different subsets of size N = 64 of the ISI

data set. These sample subsets were picked uniformly at random picking 64 entries

out of the 783339 of the full ISI data set. The left panel shows that the heavy

tails underlying the data set can be recovered even from these small sub-samples

in all three examples. The panel on the right shows that the test presented here

is robust with respect to removal of outliers. The insets show the growth signal

at fixed values of c = c∗ chosen for maximum deviation ofthe signal from unity.

These values can be read off of the main plots.

somewhat pathological. The other data sets considered on the right of fig 3.13 still show

positive correlations growing with n even when both the largest and second largest data point

are removed. Closer examination of the data set showed that the largest entry was still about

a factor of 8 greater than the second largest.

Application to the E. coli data set

As was just shown, this test is particularly useful when the data set considered is small. This

is the case whenever each data point is quite costly or hard to obtain, which is true in studying

the fitness effects of mutations, where each mutation corresponding to one entry of the data

set must be created (see e.g. the E. coli data set introduced in section 2.2.2). Nonetheless

in these cases, it is of particular interest to test the distribution of fitness effects for heavy

tails, for if improvements in fitness were drawn from a heavy tailed distribution, this would

clearly have strong implications for the adaptive dynamics, as fitness would improve in jumps

of considerable magnitude, see e.g. [101].

The distribution of fitness effects [110] has been subject of intensive study [97, 111]. Based on

EVT arguments, it has been theoretically predicted that the distribution (at least for Fisher’s

geometric model) should be an exponential [75, 97, 111, 112]. This, however, is contradicted by

empirical studies [126], where it is found that ‘Beneficial Fitness Effects Are Not Exponentially

Distributed’. Thus to some extent the question of the shape of the distribution of fitness effects

remains open.

Fig 3.14 shows an application of the test derived in this chapter to the last of E. coli data sets

introduced in section 2.2.2, the one that consists of resistance measurements for a number of

organisms that are exactly one mutation away from the WT. Even though in this data set,
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Figure 3.14.: The data set of 45 data points shows large attractive correlations indicative of

heavy tails. These correlations grow (measured at c∗ = 0.1) with the length

of the sub-sequence n, showing that the positive correlations are not due to an

exponential distribution. Removal of the largest entry of the data set, which

is about three times larger than the next, results in a diminished signal which,

however still clearly indicates heavy tails in the distribution.

not fitness but antibiotic resistance is measured, there is clearly a strong relation between the

two. Furthermore the arguments predicting an exponential distribution for the fitness effects of

mutations remain valid. At any rate, in the light of the growing number of multiply resistant

bacteria in clinical isolates, finding heavy tails in the resistance distribution of mutations is of

an interest of its own.

These heavy tails are found by the test, see fig 3.14. Even when the largest of the data points

are removed, the heavy tails are still observed.

3.5. Conclusion

In this section, the statistics of records from random variables beyond the standard case of iid

RVs was considered. While only the results presented in section 3.2.2 will later have direct

implications for fitness landscapes, the field of record statistics has recently seen a surge of

interest across many different models [86, 89, 96, 129, 130, 149, 151]. The counter-intuitive be-

havior observed numerically, i.e. that in some cases, record events attract, led to study the

correlations between record events. These correlations were shown to have quite a non-trivial

behavior that could roughly be described in terms of the universality classes of EVT in section

3.3.

These results on the correlations were used to set up a test for heavy tails presented in sec-

tion 3.4, which works particularly well for small data sets on the order of a few dozen entries

and is potentially more robust with respect to removal of outliers than conventional methods
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used for detection of heavy tails9. Thus it was well suited for application to the data set from

Cefotaxime resistance of the bacterium E. coli discussed above, where the data set was small

since generating each point required generating one novel mutant and measuring its antibiotic

resistance. Robustness with respect to removal of outliers was required to support the conclu-

sion that the resistance effects were drawn from a heavy tailed distribution, since this is a very

strong claim. So the side track of record statistics could be merged into the general subject of

this thesis, in an unexpected, nonetheless interesting way.

The sequence {xn} was at times referred to as a time series. If this term is taken seriously, i.e.

if the length of the time series n is indeed interpreted as a time point, the record rate pn can be

interpreted as ‘the probability of a record occurring at time n’. Then, since the record process

is Markovian, it is straightforward to extend it to a setting where the entries xn and xn+1 of

the time series are separated by waiting times τn, with {τn} a family of iid RVs and waiting

times density ψ(τ) by standard arguments of renewal theory [102]. In particular when ψ(τ)

is such that the mean waiting time 〈τ〉 diverges, this leads to modifications in the behavior

of the quantities considered in this chapter. These results are relegated to appendix B, since

even though the resulting expressions seem to be new, they are obtained by a straightforward

application of standard methods.

The results most important for the remainder of this thesis are those concerning the ordering

probability Pn(c) presented in section 3.2.2, as will be seen in the next chapter, which will

return to the main theme of this thesis, i.e. the study of fitness landscapes.

9Note however that it only allows to confirm the hypothesis that heavy tails are present, not to reject

this hypothesis, see discussion in section 3.4.
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4. Accessible paths

In this chapter, the question of accessible paths traversing the whole fitness land-

scape is discussed for theoretical models of fitness landscapes as well as the empirical

data.

4.1. Introduction

On any given fitness landscape, there is a fixed number n of paths of length L that start in the

antipodal sequence, traverse the whole state space, end up in the global maximum and never

encounter a step of declining fitness. This number varies from realization to realization.

As was pointed out in the introduction, such paths, called accessible [146], can play a decisive

role in the adaptive fate of a population in the strong selection/weak mutation regime of

adaptive dynamics, see section 1.4.2. Furthermore, they can be used as a measure of the

global effects of epistasis, which is a feature only defined locally, see section 1.4.1. This second

aspect of studying accessible paths is useful because accessible paths are a topographic feature

independent of any adaptive dynamics taking place and can thus be used to classify an empirical

fitness landscape. As will be shown in this section, accessible paths give some hints to the

importance of epistasis in the FL studied, independent of the regime of evolutionary adaptation.

If on many realizations of FLs the number of accessible paths is counted, this histogram,

suitably normalized, can be interpreted as the probability πL(n) of finding a given number nL
of accessible paths in a given FL of dimension L, provided, of course, that the FL considered

is drawn from the same model as those that entered the histogram. Fig 4.1 shows the result of

numerical simulations for the House of Cards model as introduced in section 2.1.1. The shape

of πL(n) is typically found also for FLs derived from other models. This shape shows that in

order to describe the distribution, the mean number of accessible paths

〈nL〉 =
L!
∑

n=0

nπL(n) (4.1)

does not suffice. In the examples shown in fig 4.1, one sees that many realizations have no

accessible paths at all: In the main plot of fig 4.1, πL(n) decays roughly like an exponential for

n ≥ 1 but πL(0) is actually higher than what would be obtained by simply extrapolating the

exponential to zero. Thus the probability πL(0) of finding no accessible paths at all needs to

be considered as well. The inset shows πL(0) as function of L for two different conditions on

the FL: The lower curve only considers those realizations, where the antipodal sequences was

also the global minimum, the upper curve considers all realizations.

With the numerical methods used to count nL on each instance of a FL (see appendix D for

details on the numerical procedures used), each path is considered. The length of each path

is just the sequence length and thus grows linearly in L, but the number of paths is given by
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Figure 4.1.: Numerical simulations of the full distribution πL(n) of accessible paths (main plot)

and the probability πL(0) of finding no accessible path (inset) for the HoC model.

The inset shows the fraction of realizations without any accessible paths as function

of L. The curves were averaged over 105 realizations.

L! and thus grows faster than exponential. This means that sequence lengths on the order of

magnitude relevant for biological systems cannot be explored numerically. Thus for numerical

simulations, one faces a problem similar to that with empirical data: Only small sequence

lengths are accessible to explicit explorations and the large-L behavior must be inferred. The

difficulty in extrapolating the large L-behavior from curves for finite L is illustrated by an error

made by Carneiro and Hartl [19]. In their publication, which introduced the use of πL(0) as

additional measure to characterize πL(n), they traced the curves for πL(0) in the inset of fig

4.1 up to L = 13 and conjectured that without condition on the antipodal sequence (upper

curve), limL→∞ πL(0) = 1 and with condition (lower curve) limL→∞ πL(0) ∼ 1/3. The latter

conjecture can be falsified by continuing the simulations to larger L, see the inset of fig 4.1 where

in the lower curve, πL(0) shows non-monotonic behavior, reaching a maximum and declining

eventually, see also [51]. The conjecture on the limit of πL(0) without condition on the AS, on

the other hand, seems to be correct and is backed by several points that will be made in this

chapter.

4.2. General arguments

Before entering into a detailed study of the models and empirical data, it is useful to consider

the influence of the topology of the state space on 〈nL〉 and πL(0).
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4.2.1. Expected number of accessible paths

The expected number of accessible paths, 〈nL〉, is perhaps the easiest property to study on

high-dimensional fitness landscapes because it is essentially a one-dimensional object. This is

due to the linearity of the expectation: Since there are L! direct paths connecting any two

points at Hamming distance L (like the AS and the GM), these paths can somehow be labeled

1 through L!. Then nL can be written as

nL =

L!
∑

l=1

1path l accessible, (4.2)

where again the indicator function is 1 whenever the condition is met and zero otherwise. Taking

the expectation on both sides of this equation, noting that by linearity of the expectation, it

interchanges with the sum and using the standard identity that for any event X , 〈1X〉 =

Prob[X ], one obtains

nL = L!Prob[One arbitrarily chosen path is accessible] ≡ L!PL. (4.3)

Note however that this is no longer true for higher moments of nL, which is why these have not

been studied so far. The probability PL that any one given path is open1 in eq (4.3) is the only

object that will have to be computed separately for each model. It is equal to the probability

that the L fitness values encountered along this path are ordered. Thus in order to compute the

expected number of accessible paths, only a one-dimensional chain of L fitness values must be

considered, in stark contrast to the higher-dimensional problem of even computing the second

moment of nL.

4.2.2. Probability of no accessible paths

The probability that no paths at all are accessible is harder to obtain, since all paths have to

be considered. Furthermore, paths are not independent. Rather, the larger the dimension L of

the hypercube is, the larger is also the number of combinations in which the paths can interact

with each other, see fig 4.2. One way to avoid this problem is turning to another state space

topology that yields results similar to those on the hypercube [15] but is easier to treat, see

e.g. [13, 139]: The Cayley tree or Bethe lattice. From a starting node labeled 0 extend λ + 1

edges, each leading to another node. These λ + 1 ‘nodes’, corresponding to the states of the

binary sequence, form a shell of distance 1 ‘around’2 the starting node, and each of them is

again the origin of λ edges, leading to the λ(λ+1) states in the shell of distance 2 and so forth

up to a given finite depth δ, see fig 4.3. Then, if each node on this axillary state space is given

a fitness value, the same questions asked on the Boolean hypercube can also be treated on the

Cayley tree. Note that in the last shell at depth δ, there are (λ + 1)λδ−1 states and thus the

same number of distinct paths, each leading to one of these states.

1This can be understood by the symmetries of state space: By averaging over all realizations of the
FL with the appropriate weights, all paths are equivalent again, thus for the expected value, it
suffices to consider an arbitrary path.

2One way to graphically represent this state space is to draw these states concentrically around the
starting node.
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Figure 4.3.: Cayley tree of coordination number λ = 2 and maximum depth δ = 2. Note

that since the state space is a tree, no two paths share any edges once they have

separated. Since the three (or in general λ + 1) subbranches originating at site 0

are independent, the states in a given shell k are not labeled k1 through kλ but

just by the shell to which they belong.
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In this state space, paths can still share edges but they will never merge once they have

separated, as opposed to the original state space, see the right panel of fig 4.2. Paths then

originate at the starting node and move along edges from one shell to another. The equivalent

of an accessible path reaching the global optimum is then a path reaching the final depth δ with

the choice δ = L. The other parameter of the Cayley tree, the coordination number λ, still has

to be fixed. There are two reasonable choices possible. One is to set λ = L− 1 such that there

are L possible paths originating in the starting node 0. This however has the drawback that at

final depth δ = L, for L ≫ 1 there will be approximately LL ≫ L! paths leading to the final

shell, much more than on the hypercube. Furthermore along each path crossing the hypercube,

the number of edges leading towards the GM decreases with each step. Thus it seems more

appropriate to set λ such that the total number of possible paths is L!,

(λ+ 1)λL−1 ≈ λL ≡ L! or λ = ⌊(L!)1/(L)⌋ (4.4)

since λ grows with L such that for L large enough, the term in λL−1 can be ignored. Because

λ is necessarily an integer number, only the integer part of the asymptotic solution is taken, as

indicated by the ⌊·⌋ parentheses. Using Stirling’s approximation for large L, L! ≈
√
2πLLLe−L,

the coordination number λ from eq (4.4) becomes asymptotically

λ ∼
⌊

L

e

⌋

. (4.5)

Thus the coordination number λ behaves approximately linear in L with a slope of e−1 =

0.367879 . . . , see also fig 4.4.

The reasoning leading to eq (4.3) for the expected number of accessible paths remains valid.

Since in both cases, L steps have to be taken until the goal is reached, the probability for

the corresponding fitness values to occur in order of increasing value, PL, remains unchanged3.

Thus by setting λ such that the total number of paths are equal in both cases, the expected

number of accessible paths matches automatically as well.

Now it is possible to set up a recursion equation for πL(0) on this configuration space. One

can adapt the arguments in [139], there in the context of percolation theory, and generalize

them suitably. The probability of not getting to shell L factorizes into a product over the

probabilities π̃L(0 via i) of not reaching shell L via edge i

πL(0) =

λ+1
∏

i=1

π̃L(0 via i) = π̃L(0 via 1)λ+1 (4.6)

by symmetry of the graph. If the first step is possible, the question remains whether shell L

can be reached or if all paths are blocked further down in the tree. This gives rise to a fix point

equation the precise form of which depends on the model to be considered, see later sections of

this chapter.

With these general tools, one can analyze the behavior of 〈nL〉 and πL(0) for fitness landscapes
drawn from the different models.

3Provided, of course, that fitness values on both configuration spaces are drawn from the same model.
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Figure 4.4.: The left panel shows the coordination number λ as given by eq (4.4) as function

of L (blue). Note that λ appears to be linear in L with a slope of 0.367879 . . .

as indicated by the parallel line (red). A closer inspection of λ shown in the right

panel reveals a slightly more complex structure, which is due to the fact that only

the integer part of L1/L is considered. The plots were obtained using Mathematica.

4.3. HoC and RMF models

In the House of Cards and Rough Mt Fuji models, the fitness values of each of the 2L states are

a combination of a contribution deterministically increasing towards the GM (or the initial node

0 on the Cayley tree) with slope c ≥ 0 (c = 0 in the HoC model) and iid random contributions

with common probability density f(·). To compute the expected number of accessible paths,

the results on the ordering probability of sequences of RVs given in section 3.2.2 can be used to

obtain a fairly general picture of the behavior of 〈nL〉 (c). πL(0) on the other hand could not be

studied analytically for the original configuration space {0, 1}L. However, extensive numerical

studies together with heuristic arguments based on the analytically obtained scaling behavior

of 〈nL〉 (c) and a recursion relation for πL(0) on the auxiliary configuration space defined above

(the Cayley tree of depth L and with coordination number λ = ⌊(L!)1/(L−1)⌋) will allow to

make a conjecture about the general behavior of this probability for large L for arbitrary c and

any underlying probability density f(·).

4.3.1. Expected number of accessible paths

To compute 〈nL〉 for these two models, one first observes that any direct path between the AS

and the GM has exactly one fitness value from each shell of given Hamming distance l from

the GM. Then the probability that one given path is accessible is simply the probability that

L RVs drawn according to

yl = lc+ xl, c ≥ 0 with {xl}iid RVs (4.7)

occur in order of increasing magnitude. Thus PL is in this case given by

PL(c) = Prob[y1 < y2 < · · · < yL] (4.8)

as studied in chapter 3, where the length of the sequence of RVs was denoted by n rather than

L.
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For c ≡ 0, PL(c) was computed exactly in eq (3.18) as 1/L!. Thus in the HoC model, the

expected number of paths is

〈nL〉 =
L!

L!
= 1, (4.9)

see [84] and [51]. Thus for HoC landscapes, on average one of the L! paths will be accessible

for any sequence length L. Comparing this finding to the full distribution of accessible paths

obtained numerically for the HoC model, see fig 4.1, it becomes clear that a landscape with the

expected number of accessible paths is not a typical landscape as such a landscape typically has

no accessible path at all. This was the initial reason for considering the probability of having

no paths, πL(0), as additional object.

If the distribution f(·) underlying the iid RVs {xn} is the Gumbel distribution, PL(c) could be

obtained exactly for arbitrary c, see eq (3.21)4. For large L and finite c, an exact asymptotic

expression for PL(c) was obtained in eq (3.24), where it was found that PL(c) ∝ exp(−L ln(1−
e−c)). Since the range of c for which PL(c) shows non-trivial behavior scales like ln(L) and is

thus large for large L, one can use the approximation ln(1− e−c) ≈ −e−c and has

PL(c) ∝ exp(−Le−c). (4.10)

Thus PL(c) essentially decays exponentially in L. Inserting this into eq (4.3), one sees that

for large L, the combinatorial proliferation of the total number of paths will out-compete the

exponential decline in probability that one given path is accessible. Thus for the exactly solvable

case of the Gumbel distribution in the RMF model, the expected number of accessible paths

will grow without bounds.

While a general expression for arbitrary c could not be obtained, a perturbative approach for

0 < c≪ 1 gave the expression

PL(c) ≈
1

L!
+

1

(L− 2)!
If (4.11)

with If =
∫

dxf2(x) a positive constant depending on the underlying probability density f(·),
see eq (3.32). Plugging this asymptotic form into eq (4.3), one sees that the expected number

of accessible paths behaves for small c like

〈nL〉 (c) ≈ 1 + L(L− 1)cIf . (4.12)

For c ≡ 0, one finds the result for the HoC model derived above, while for positive c, 〈nL〉
grows with L without bounds. Thus in the large L-limit, any small positive drift will have a

very pronounced effect.

For large L and large c, PL(c) behaves like

PL(c) ≈ exp[−Lǫ(c)] with ǫ(c) > 0 (4.13)

4Like in chapter 3 the important parameter is actually θ ≡ c/σ where σ is the standard deviation of
the parental distribution f(·) (if it exists) or some other means of estimating the scale on which
RVs drawn from f(·) vary (if it does not). However, as all simulations performed use RVs with a
standard Gaussian distribution σ = 1, thus this distinction is not necessary since θ = c.
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Figure 4.5.: The figure shows that behavior of πL(0) from the RMF model for different values
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sequence length followed by a decline. The inset suggests that this non-monotonic

behavior is universal for positive c: All curves for c ≥ 0.05 are plotted as function
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which indicates that as c decreases, the sequence length for which the curves heave

a maximum increases but remains finite for any positive c. For the iid part of the

fitness values, a Normal distribution with mean σ = 1 was used. The curves were

averaged over 105 simulations.

as shown in section 3.2. Again, substituting this asymptotic expression into eq (4.3), one sees

that for large enough L, the combinatorial proliferation of the total number of paths outweighs

the exponential decline of the probability that one given path is accessible, meaning that in the

limit of large c, 〈nL〉 (c) grows with L.
While it is still possible that the expected number of accessible paths decreases with L for a

value of c between the ranges of validity of the asymptotic expressions given by eq (3.32) or

(3.34) for small and large c respectively, this would come as a great surprise and contradict

numerical simulations, specially in the light of the results for the Gumbel case which are valid

for all c, see [52]. Thus one can conclude that the behavior of the HoC model for large L differs

fundamentally from that of the RMF model even for arbitrarily small drift c, at least with

respect to 〈nL〉.

4.3.2. Probability of no accessible paths

For the original configuration space CL = {0, 1}L, due to the complicated inter-dependencies of

paths mentioned in section 4.2 only numerical simulations of these two models were possible.

Fig 4.5 shows numerical simulations of πL(0) for various values of c.

The inset of fig 4.5 shows the curves, divided by their respective maximum value, plotted as

function of cL(L−1). In this scaling variable, the same as for 〈nL〉 (c), see eq (4.12), the curves

attain their maximum at the same point, cL(L − 1) ∼ 4. This scaling could not be proven to

hold for πL(0) in general, but as seen in the inset of fig 4.5, it clearly holds at least for those
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Figure 4.6.: This plot shows numerical simulations of 1−πL(0) as function of 1/L for the HoC

model (c = 0). While it is not possible to infer from this curve that πL(0) tends

to unity for this model, it clearly has a limiting value above 0.9. The iid part of

the fitness values were drawn from a standard Normal distribution, the curves were

averaged over 105 realizations.

examples presented there. Assuming that it holds generally, one can make predictions about

the limiting value of πL(0) for large L for arbitrary c based on simulations for values of c for

which a limiting regime appears to be attained already for moderate values of L. If cL(L− 1)

is the indeed the relevant scaling parameter, then the limit of large L at fixed c is equivalent

to that of large c at fixed L. In the latter limit, clearly πL(0) → 0. For the HoC model,

extrapolation to large L is more difficult. However, assuming that πL(0) obeys for this model

the same scaling as for the RMF model, one can obtain a lower bound for the limiting value of

πL(0). If the same scaling as for the RMF model applies, πL(0) will continue to increase for all

finite L, since the condition cL(L− 1) ∼ 4 with c = 0 is not met by any finite L. Thus for the

HoC model, πL(0) is monotonic for all finite L. Fig 4.6 shows

1− πL(0) ≡ Prob[nL ≥ 1] (4.14)

as function of 1/L. While it is not clear that limL−1→0(1 − πL(0)) = 0, one already sees that

limL→∞ πL(0) ≥ 0.90.

On the auxiliary configuration space defined in section 4.2 above, the Cayley tree of depth

L and coordination number λ = ⌊L!1/(L−1)⌋, the question of πL(0) seems more amenable to

analytic computation. The method presented in [139] for the percolation problem, which led

to eq (4.6), can here be used to set up a recursion equation for πL(0). If one denotes the

conditional probability that there are no accessible paths to depth L given that the starting

node 0 has fitness x0 by πL(0|x0) and the probability density of x0 by f0(·), one can rewrite

πL(0) as

πL(0) =

∫

dx0f(x0)πL(0|x0). (4.15)

With a condition on the fitness x0 of initial site, the branches of the Cayley tree become

stochastically independent and πL(0|x0) factorizes into the probabilities that depth L cannot
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be reached through any of these branches. Denoting the probability that depth L cannot be

reached via branch i given the fitness x0 of the starting site by π̃L−1(0 via i|x0) and using the

fact that this probability is the same for all branches i by symmetry, eq (4.15) becomes

πL(0) =

∫

dx0f0(x0)π̃L−1(0 via i|x0)λ+1. (4.16)

With this condition, the event that no accessible paths lead from the starting site 0 to depth

L via branch i can be given by two disjoint events: Either state 1, the first state in branch i, has

lower fitness x1 than state 0 or state 1 has higher fitness but none of the paths starting there

lead to depth L. The latter event then has probability πL−1(0|x1) since with the condition on

x1, the previous history of the process, i.e. the number of steps taken so far, has no influence on

the probability of reaching depth L. πL−1(0|x1) again factorizes with respect to the λ different

branches originating in state 1 and eq (4.6) finally takes the form

πL(0) =

∫

dx0f0(x0)

{
∫ x0

dx1f1(x1) +

∫

x0

dx1f1(x1)π̃L−1(0 via i|x1)λ
}λ+1

. (4.17)

Expressing the left hand side of eq (4.17) by the right hand side of eq (4.16) yields

∫

dx0f0(x0)π̃L(0 via i|x0)λ+1 =

∫

dx0f0(x0)

{
∫ x0

dx1f1(x1)

+

∫

x0

dx1f1(x1)π̃L−1(0 via i|x1)λ
}λ+1

. (4.18)

This can be interpreted as an implicit5 fixed-point equation. Clearly one solution of this is

π̃l(0 via i|y) = 1 for all l, y, which corresponds to πL(0) = 1. For λ → ∞, another solution

of eq (4.18) is π̃l(0 via i|y) = 0 for all l, y. This solution corresponds to πL(0) = 0. For

large L, these two seem to be the only possible solutions, since if L is so large that for any

π̃L(0 via i|x0) < 1, π̃L(0 via i|x0)L ≈ 0, the term in integrand on the right hand side of eq

(4.17). It was not possible to compute a critical value of drift c dividing these two solutions,

but comparison to the behavior of 〈nL〉 (c) suggests that this critical value might be c = 0.

Numerical simulations performed on this state space, show a behavior similar to that for the

original problem on the Boolean hypercube, see fig 4.7.

4.4. Neutral model

In the neutral model as represented by site percolation (see section 2.1.4), both properties

〈nL〉 (p) and πL(0) are well studied, see e.g. [139] and references therein and [57]. Thus mostly

known results will be restated here, for the largest part closely following [139].

5implicit because the object of interest, π̃L(0 via i|x0) only appears under the integrals
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Figure 4.7.: Simulations of πL(0) as function of L on the Cayley tree with coordination number

λ = ⌊L!1/(L−1)⌋. Because λ has jumps, the curves have a characteristic structure

(cf. fig 4.4) but follow the overall behavior observed for the RMF model on the

original state space. Simulations were obtained from a Gumbel distribution with

drift c measured in units of that distribution’s standard deviation

4.4.1. Expected number of accessible paths

The reasoning leading to eq (4.3) remains valid for the neutral model, where PL is simple to

compute. Since the states are independently of each other either viable with probability p or

not viable with probability 1−p, the probability that one given path is accessible is simply the

probability that L consecutive states are viable and thus

〈nL〉 = L!pL. (4.19)

Note that even though for any p < 1, PL(p) decays exponentially in L, the combinatorial

proliferation of possible paths always wins and thus 〈nL〉 grows without bounds in L for fixed

p. A closer examination reveals that if p = pc(L) ≡ L!−1/L, 〈nL〉 = 1, thus if p remains constant

or decays more slowly than pc(L), the expected number of accessible paths diverges. On the

Boolean Hypercube {0, 1}L, the critical value for p is therefore L-dependent and given by this

pc(L).

On the Cayley tree, this model has been discussed in detail in the literature. The mean number

of accessible paths was originally computed in [49]. Each node of the tree is either occupied

(with probability p) or empty (with probability 1−p). This means that in each new shell (with

the exception of the first), there will be on average pλ viable states leading forward to the next

shell, from each of which there will be again an average number of pλ paths emanating towards

higher shells. Then the mean number of paths reaching depth L for given p and λ is simply

〈nL〉 = p(λ+ 1)(pλ)L−1 ≈ (pλ)L. In the limit of L→ ∞, three different cases are possible:
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L. For all values of p simulated here, πL(0) eventually decays to zero as can be

seen in the left panel. The right panel shows a collapse of the data as function of

the product of sequence length L and probability p.

〈nL〉 =











0 for p < 1
λ

1 for p = 1
λ

∞ for p > 1
λ

(4.20)

which allows to infer that pc = λ−1 is the critical value of p for a given coordination number.

Since λ = ⌊L!1/L⌋ as discussed above, this critical pc(λ) has essentially the same L-dependence

as pc(L) found for the original state space.

4.4.2. Probability of no accessible paths

Like for the RMF model, πL(0) could on the original state space only be studied numerically.

The picture is qualitatively similar to that obtained in the RMF case with the exception that

none of the curves corresponds to that for the HoC model: for all values of p tested, the curves

eventually decline, see fig 4.8.

On the Cayley tree, computing πL(0) is a classical problem first treated by Flory [49]. Here,

the presentation given in [139] will be extended to the problem at hand. The event that the

starting site 0 is not connected to the starting site is given by the two mutually exclusive sub-

events that either site 0 is not occupied (with probability 1 − p) or site 0 is occupied but not

connected to depth L through any of the λ + 1 branches originating there. The probability

that a given branch is not connected to infinity is called Q. Thus πL(0) = 1 − p + pQλ+1. If

however, as was done in the simulations shown here, the starting site 0 is conditioned to be

occupied, one has

πL(0) = Qλ+1. (4.21)

In the limit L → ∞, the graph becomes translationally invariant and the probability that a

given site does not lead to depth L = ∞ is the same for all sites. Then, by essentially the same

reasoning as above, Q obeys the fix point equation
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Figure 4.9.: Left hand side (solid line) and right hand side (dashed line) of eq (4.22) for λ = 3

(main plots) and λ = 30 (inset). On the top left (p < 1/λ), there is only one

solution at Q = 1, while on the top right (p > 1/λ), there are two solutions. In the

middle at the bottom (p = 1/λ), there is also just on solution, but the two curves

have the same slope at Q = 1.

Q = 1− p+ pQλ. (4.22)

This has obviously the solution Q = 1, which, substituted into eq (4.21) means πL(0) = 1. This

solution belongs to the regime below some critical value pc(λ). For sufficiently large values of p,

however, another solution appears, as can be seen in fig 4.9 where the left hand side and right

hand side of eq (4.22) are plotted independently of each other for the three different regimes

of p (p < pc, p = pc, and p > pc) and two values of λ. From fig 4.9, one sees that for one

(λ-dependent) critical value of pc of the parameter p, the two solutions must coincide. For that

value of p, both curves must have the same slope at Q = 1. This condition yields

d

dQ
Q

∣

∣

∣

∣

Q=1

= 1 =
d

dQ
(1− pc + pcQ

λ)

∣

∣

∣

∣

Q=1

≡ λpc(λ) (4.23)

and thus pc(λ) = 1/λ as for the mean number of accessible paths, see eq (4.20).
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This regime of p < pc(λ) = 1/λ, however, will vanish for large sequence lengths L, as

limL→∞ pc(λ(L)) = 0. Since L → ∞ implies λ → ∞ and Q ≤ 1 as it is a probability, the

other solution of eq (4.22) becomes Q→ 1−p for L≫ 1. Substituting this back into eq (4.21),

one sees that any solution Q < 1 will for L → ∞ lead to vanishing πL(0) and thus for any

0 < p ≤ 1 the probability of no accessible path is given by πL(0) = 0. One obtains again

the same statements as for the RMF case, that for almost all parameter values, there will be

accessible paths on this FL.

4.5. The LK model

In the HoC model, the computation of local properties like the probability that a given state

is a maximum (Prob [state i is max] = 1/(L + 1) since any one of the L + 1 states has equal

probability of being the highest, see [76]) and thus the expected number of maxima (2L/(L+1)

by the same reasoning that led to eq (4.3)) are more than easy to compute. In the RMF model,

computations are harder but essentially straightforward extensions of the same ideas.

In the LK model, due to its complicated statement, even local properties can be fairly difficult

to compute, see the works by Weinberger [144], Durrett and Limic [38] and others [44, 90] in

contrast to the simple argument for the HoC model presented above. Choosing an alternative

state space like the Cayley tree is also not as straightforward as in the other models since,

following classical approaches to spin glasses on the Cayley tree or Bethe lattice [13], the

coordination number would be set by the interaction parameter K and one would not have

the freedom to match the coordination number λ such that the expected number of accessible

paths coincides with that on the Boolean hypercube. Thus for both
〈

nL,K
〉

and πL,K(0), only

numerical simulations were possible.

4.5.1. Expected number of accessible paths

The simulations in fig 4.10 show the expected number of accessible paths as function of K for

different values of L. For K = 0, all L! paths are accessible, while for K = L − 1 (the last

point of each curve), there is on average one accessible paths consistent with the HoC model

indicated by the dashed line. For large K, the lines in the semi-logarithmic scales used in fig

4.10 become parallel, which implies that for fixed K and large L, 〈nL〉 decays exponentially in

K. This is corroborated by the inset which shows a detail of the main plot for L = 7, 8 and

L = 9 (symbols) compared to exponential decay (lines). On the other hand, for fixed K ≥ 4,

the curves for different L appear equi-distant, which would imply exponential growth with L.

If one connects the dots corresponding to K = L/2 (as done by the line labeled ‘exponential

growth’ which follows the curve 0.3ex), one sees that in this particular scaling of K with L,

〈nL〉 also grows approximately exponentially. The fact that both the K = 1 and K = 8-points

are above the exponential growth curve might suggest that 〈nL〉 for K = L/2 is slightly curved,

meaning super-exponential growth.

For L−K fixed, e.g. by connecting the last (corresponding to L−K = 1) or second to last (for

L −K = 2) points of the curves, one sees that 〈nL〉 is in this regime approximately constant,

just like in the HoC (K = L− 1) case only at a higher value.
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Figure 4.10.: The expected number of accessible paths as function of K for various values

of L. The inset shows a detail of the main plot. One sees that the curves are

approximately parallel and decay exponentially for large K (indicated by the

lines in the inset). In the main plots, on recovers the HoC result (dashed line)

for K = L− 1 and an exponentially growing curve can be fitted through the four

points that correspond to K = L/2. In parts, this behavior has already been

observed in [84].

4.5.2. Probability of no accessible path

The behavior of πL,K(0) depends strongly on the way in which the interaction parameter K

depends on the sequence length L. This behavior was discussed in [51] in the context of the

A. niger landscape. See also [113] for an investigation of the influence of K on the outcome of

populations adapting in dynamical regimes different from those discussed here.

If the difference L−K is fixed, πL,k(0) increases for all values of L considered, as can be seen

in fig 4.11. This phenomenon can heuristically be explained by noting that as L grows, the

fraction of non-interacting sites L − K of the whole sequence length L decreases such that

eventually the difference between L−K > 1 fixed and L−K = 1 will become negligible. Thus

for large L all LK models with fixed number of non-interacting sites resemble the K = L − 1

case (which is equivalent to the HoC model, see section 2.1.2).

This reasoning can also be inverted. If K is set to a fixed number, then, as L grows, πL,K(0)

should asymptotically show the behavior as the model for K = 0. The simulations in fig 4.12

show precisely this behavior with an interesting and unexpected deviation for K ≤ 2 (a regime

that is not believed to be of biological relevance, see [51]). When keeping the ratio of interacting

sites K/L fixed, heuristic explanations cannot be applied. Numerical simulations show that

πL,K(0) in this case behaves much like for the models considered in the previous sections. After

an initial increase, it finally peaks and eventually a clear decline sets in.

For fixed value of K, the landscapes appear to become smooth for large values of L, as can be

seen in the inset of fig 4.12, where πL,K(0) declines monotonically with L. This is however only

true for values of K ≥ 3. On the right of fig 4.12, where the inset on the left is shown with
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Figure 4.11.: Simulation results for πL,K(0) for different values of L−K. Simulations were av-

eraged over 105 realizations with RVs drawn from a standard Normal distribution.

more values of K, it is seen that for K = 2, πL,K(0) ∼ 0.55 and does not appear to change

much, while for K = 1, it actually increases. This numerically observed behavior is fairly

surprising since for K ≥ 3, i.e. in cases with more interactions and thus more epistasis than for

K ≤ 2, πL,K(0) is actually much lower. One possible interpretation of this is that for K = 1,

the landscapes arranges itself such that the path to the GM is blocked. This non-monotonic

behavior in K was a surprise specially in the light of the well-ordered K-behavior observed for

〈nL〉 in fig 4.10.

The fact that this sudden and drastic change of behavior occurs at K = 2 has been tentatively

conjectured to be a sign of a transition similar to the P − NP transition in computational

complexity in related spin glass problems [99] which is also present in the LK model [145].

Note however that in [145] it was found that the transition in computation complexity only

occurs for the LK model with randomly chosen neighborhoods (the case considered here) while

for adjacent neighborhoods, this is not the case, see also [6].

4.5.3. Full distribution of accessible paths

To better understand the behavior of πL(0) observed on the LK model for fixed value ofK in the

last section and in particular the counter-intuitive behavior for K ≤ 2, here the full distribution

πL(n) for K = 1, 2 and K = 3 is studied by numerical simulations. The simulations presented

in figs 4.13 - 4.15 show that for K = 1, the distribution of accessible paths is dominated by

peaks corresponding to substantial fractions of the number of paths being accessible (note the

peak at 1 in fig 4.13 indicating that all paths are accessible). While the position of the peaks

can be explained by observing that the peak closest to that corresponding to all paths being

accessible corresponds to one ‘broken link’ in the middle of the graph with all other links present

and so on, the reason for their magnitude remains unknown.

As K increases, the distribution becomes more and more similar to those observed for the RMF

and HoC models (see e.g. fig 4.1). This behavior was originally observed in the Diploma thesis

of Alexander Klözer [84].
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Figure 4.12.: The left panel shows the results of numerical simulations for various values of

L/K (main plot) and for fixed K (inset). In both cases, πL(0) ultimately declines

as L grows. For the case of L/K fixed, where none of the heuristic explanations

given for the behavior of the other two cases applies, one observes a behavior very

similar to that of πL(0) in the RMF model. The right panel shows an extension

of the inset of the left panel. Smaller values of K are considered. For K ≥ 3, all

curves essentially show the same behavior. For K = 2 (no lines), however, πL(0)

is almost constant for most of the L values considered and has a values around

0.5. Most surprising is the curve for K = 1. In this case πL(0) actually increases.
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Figure 4.13.: Full distribution of the number of accessible paths in the LK model for K = 1,

shown as function of the fraction of the total number of paths x ≡ n/L!. Note

the peaks at x = 1 and x = 0.5.
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Figure 4.14.: Full distribution of the number of accessible paths in the LK model for K = 2,

shown as function of the fraction of the total number of paths x ≡ n/L!. While

the peaks are still discernible, their importance seems to have diminished.
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shown as function of the fraction of the total number of paths x ≡ n/L!. The
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looks smooth like those for the RMF or HoC model, see fig 4.1.
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A. niger data set (symbols) compared to the curves from the LK (main plot)

and RMF model (inset). Error bars on the empirical data were obtained by a

resampling.

4.6. Comparison to empirical fitness landscapes

One of the main questions to be answered in this thesis is to what extent the behavior of these

models can be found in empirical landscapes. The answer to this question is at first sight

disappointing because even when using the subgraph method introduced in section 1.5.3 and

validated in appendix C, the error bars on the expected number of accessible paths are such

that both RMF (with c > 0) and LK model (and neutral model, even though this is not shown

here as it will become clear that the dominant mechanism for blocking paths works via by the

fitness values) can be fitted to the data6, see figs 4.16 and 4.17. Thus none of the models

considered here can be singled out as describing the empirical FLs best. Consequently, none

of the models could be identified as the new standard model from which predictions about the

features of empirical FLs are to be derived.

Upon closer examination, however, one sees that interestingly one model can be clearly rejected:

The HoC model clearly does not adequately describe the expected number of accessible paths,

see fig 4.16 and 4.17. In fig 4.16, the cumulative distribution of the number of accessible paths

on subgraphs of size m = 4 is shown. They match (surprisingly, given simplicity of the models)

well with both the LK and RMF models for parameter values corresponding to intermediate

ruggedness. The same is true for the expected value of the number of accessible paths as

function of sequence length (or subgraph size for the data) shown in fig 4.17.

This is a strong result, since the HoC model was the only one studied here that predicted

πL(0) to monotonically grow as L → ∞, while all other models predicted that with probability

(close to) 1, there will be paths accessible in the limit of adaptation acting genome wide. In the

light of eqs (4.3), (4.10) and (4.13), one can conjecture that the reason for the similar behavior

across all models is caused by the fact that the probability PL that one given path is accessible

decays exponentially while the total number of possible paths grows as L! with sequence length.

6because of the resolution of the data set
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m 〈n〉leth 〈nm〉
2 1.61 (1.72) 0.82

3 4.05 (4.22) 1.34

4 12.53 (13.19) 2.01

5 55.32 (48.81) 3.16

6 246.0 (201.16) 6.07

Table 4.1.: Table of the mean number of accessible paths as function of subgraph size m if only

lethals states can block a path (middle column) and if both lethal states and fitness

values can block a path (right column).

If this were the reason, this would also apply to genome wide evolution as the topology of the

state space is largely independent of the evolutionary dynamics7 and the findings of this study

would universally apply.

As was mentioned in section 2.2.1, the A. niger data set also contains some lethal states. To

check the influence of these lethal states on accessibility, table 4.1 lists the number of accessible

paths 〈nm〉leth expected if only lethal states can block a path and compares them to the expected

number of accessible paths computed from the data set if both fitness value and lethality can

block a path. The values shown for 〈nm〉leth are those found in the data set and (shown in

parenthesis) those expected under the model for lethality presented in section 2.2.1, where one

mutation was singled out as conferring a much higher chance of lethality if present in a given

state. The values in parenthesis follow those found in the data set quite closely, indicating

that the model does capture an essential part of the mechanism by which these lethals arise,

consistent with table 2.1. However an explanation in terms of the biochemical function of that

mutation has not been found so far.

From table 4.1, it is obvious that path accessibility is most strongly influenced by fitness values,

since for example at m = 4, of the 4! = 24 possible paths, about 12 are accessible if only lethals

are considered as blocking a path (corresponding to a reduction by about one half), whereas if

in addition to lethality also fitness values are allowed to block a path, the number of accessible

paths reduces from 12 to 2 by about a factor 1/6, a much greater influence than that of lethals

alone, see also [51].

However none of the empirical data sets offered a size or resolution sufficient to also verify

the prediction that πL(0) eventually decreases. This would be very interesting to observe, as

πL(0) is at least as important for the adaptation of a population on the FL as is the expected

number of accessible paths.

4.7. Conclusions

In this chapter, the distribution of accessible paths on FLs was studied. It was in particular

found that all models - except for the HoC model - considered, the GM of the FLs was found to

be highly accessible in the sense that the FLs show both increasing 〈nL〉 as well as (eventually)
7and for µN > 1 or with recombination, when the constraint that the population can only move
between nearest neighbors is uplifted by e.g. allowing double mutants , even fewer constraint
apply. The same is true when the selection strength decreases, such that also slightly deleterious
steps are possible for the population.
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in section 2.2.2 on antibiotic resistance levels. Note that while no resampling

procedure was possible since there was only one measurement for each point and

hence no way of estimating a variance, the data set still clearly rejects the HoC

hypothesis.

decreasing πL(0). The HoC model could be rejected by comparison to the empirical fitness

landscapes of the model organisms A. niger and E. coli. In the RMF model, it was shown that

even with an arbitrarily small positive c, the mean number of accessible paths grows with n

while for the HoC c = 0, 〈nL〉 = 1 for all L. Thus a transition in the behavior of 〈nL〉 occurs
at c = 0. For πL(0), a similar transition in behavior was observed. While the value of c that

separates these two regimes in the RMF models for the probability of finding no accessible

paths could not be computed directly, comparison to the neutral model (see eqs (4.23) and

(4.20)) suggests that also for the RMF model, this might be the same critical value c = 0 as

found for the mean number of accessible paths. Thus it was found that for the vast majority

of parameter values (in particular those that match the empirical data, see figs 4.16 and 4.17),

the GM is accessible.

Supposing that the state space topology based explanation for this offered at the end of the

last section is true, this would have important consequences for populations adapting on any

fitness landscape and also beyond the strong selection/weak mutation regime considered here.

For the LK-model, the results presented in this chapter indicate that for L − K fixed, the

resulting landscape will behave HoC-like (〈nL〉 constant, πL(0) increasing), while for K/L fixed

and K fixed, it the FL will become similar to a smooth landscape for large L. This extends

the range in which FLs from the LK model are known to ‘essentially behave smooth’ from the

K-fixed regime (where this was known, see [76,143] and references therein) to the case of L/K

fixed.

The studies presented here and in particular the behavior of 〈nL〉 also present a method of

analyzing empirical FLs (or more generally energy landscapes such as spin glasses) independent

of the adaptive dynamics. In considering how the expected number of accessible paths changes
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with subgraph size m, one can tell whether a given empirical landscape is maximally epistatic

or only displays an intermediate amount of epistasis, where the latter finding possibly implies

that in the limit of genome wide adaptation, the landscape will essentially behave like a Mt

Fuji landscape. With that respect, the distribution of accessible paths is just one more tool

to quantify epistasis, see e.g. [19] for other measures of epistasis, but both 〈nL〉 and πL(0)

show a clear distinction between ‘maximally’ and ‘less-then-maximally’ epistatic landscapes,

thus giving a direct interpretation of numerical values observed on empirical fitness landscapes,

specially if the subgraph-method is used to obtain with the m-dependence of these objects an

approximation of their respective L-behavior.
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5. Basin of attraction of the global

maximum

The statistics of the basin of attraction of the global maximum of the fitness

landscape under greedy evolutionary dynamics (steepest ascent) is discussed.

Under greedy dynamics and with fitness values drawn from a continuous distribution as dis-

cussed in section 1.5.2, the fitness landscape separates into basins of attraction (BoA), each

belonging to one (local or global) maximum. Clearly the size of the basin of attraction gives

a hint at the importance of that maximum for the landscape. In particular if the basin of

attraction of the global maximum comprises a substantial part of the FL (and is thus much

larger than that of the local optima), this would imply that the FL is essentially dominated by

its GM. In this section, results on the distribution of the GM for the different landscape models

and the empirical FLs (from Aspergillus niger and Escherichia coli) are presented.

5.1. Model studies

The distribution of the BoA of the GM is studied relative to the whole state space for different

models in this section. Analytically, this question has only been addressed in low-dimensional

cases [18] and no attempt at a thorough analytic description is made here. Rather, the results

of numerical studies are presented for different models. Both the full distribution and the

expected size of the BoA of the GM are presented.

5.1.1. HoC and RMF models

Since the fitness of the global optimum is larger than that of any other maximum, the BoA of

the GM consists at least of all L surrounding states. This bias imposed by the condition of

considering the global maximum is still present even in the HoC model, as can be seen by the

following consideration: The probability that a given state is a local maximum is 1/(L + 1),

since in the HoC model each of the L+1 states (the state considered plus L neighbors) has equal

chances of being a maximum. Thus the expected number of local maxima is 2L/(L + 1), see

e.g. [76]. Then the average size 〈b〉HoC of the basin of attraction of an arbitrary local optimum

is simply given by dividing the total number of states by the expected number of local optima,

〈b〉HoC =
2L

2L/(L+ 1)
= L+ 1. (5.1)

A given local optimum has to ‘compete’ for each of its L immediate neighbors with other local

optimum and ‘wins’ only in a fraction of cases. On the other hand, as stated above, the BoA of

the GM necessarily contains all L immediate neighbors and thus has a minimal size of L+ 1,
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Figure 5.1.: Full distribution of the size of the BoA for L = 5 (left) and L = 9 (right) from

numerical simulations of the HoC and RMF models. Note that the minimum size

of the BoA is L + 1, thus the cutoff in this representation is at (L + 1)/2L. In

the semi-logarithmic scale used in the inset of the right panel, one sees the typical

shape of the distribution for large values of c.

as can be seen by the sharp cutoff of the HoC curves in fig 5.1. Thus the expected size of the

BoA of a local maximum is a lower bound for the size of the BoA of the GM,

〈bGM 〉HoC ≥ 〈b〉HoC = L+ 1. (5.2)

On the other hand, as can be seen in fig 5.1, the distribution of the BoA becomes in the HoC

case very much concentrated around its lower cutoff at L + 1 as L increases. Thus it is not

surprising that in numerical simulations, 〈bGM 〉HoC seems to stay close to the linear behavior

found for the BoA of a local maximum in eq (5.1), see fig 5.2.

A similar reasoning for higher moments of the distribution was not possible for the same

reasons that analytic considerations in chapter 4 were restricted to the mean number of acces-

sible paths. The full distribution of the size of the BoA for the GM was obtained numerically

in fig 5.1, where it is presented as function of the fraction of the size 2L of the state space to

allow for comparison between different values of L. In the two panels of fig 5.1, it is also seen

that increasing the drift velocity c moves the distribution to the right. This can be explained,

since for c → ∞, the distributions are a sharp peak at 1, since with probablility one, in such

landscapes there is only one maximum with the entire state space in its BoA.

5.1.2. LK model

For the LK model, analytic estimates for the number of local optima are available for the regime

1 ≪ K ≪ L. [38, 44, 90] which rely on methods from [144]. For the LK model it is known

that for fixed K and large L, the landscape is essentially dominated by the global optimum,

see [76,143] and references therein. Thus simply dividing the number of states by the expected

number of local optima does yield the expected size of BoA of an arbitrarily chosen maximum.

But since if the FL is dominated by the GM, one expects that the BoA of the GM will be

much greater than that of an arbitrarily chosen local optimum, this does not contain much

information about the BoA of the global optimum. However, the average size of BoA of an
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arbitrary optimum can still be used as a lower bound on the size of BoA of the GM by dividing

the number of states by the expected number of local optima. In [143], it was found that for

fixed K and L → ∞ and the neighborhood consisting of the adjacent states, the probability

Popt that a given states is a local optimum is given by

Popt ≈
[

1 + 2
K + 2

K + 1
ln(K + 1)

]1/2 [
(

1

K + 1

)1/(K+1)

erf(
√

2 ln(K + 1))

]L

(5.3)

with erf(·) the standard error function. For K so large that erf
(

√

2 ln(K + 1)
)

≈ 1, the

expected number of local maxima 〈NLM 〉is given by

〈NLM 〉 ≈ 2L
√

2 ln(K)
(

1

K + 1

)L/(K+1)

. (5.4)

Then, a lower bound for the size of the BoA of a local maximum is given by dividing the 2L

states by 〈NLM 〉 to yield

〈bGM 〉 > (K + 1)L/(K+1) (2 ln(K + 1))−1/2 . (5.5)

For fixed K, this implies exponential growth of 〈bGM 〉 with L, which means that for large

L, the LK model for fixed K behaves like a smooth landscape. Fig 5.3 shows a comparison

of numerical simulations to the bound given by the equation above for the LK model. The

numerical curves indicate that 〈bGM 〉 for fixed K grows exponentially with sequence length L

(and thus in a similar way as the number of states 2L in the configuration space). One observes

that the bound is indeed much lower than the numerical curves, which means that the GM

behaves differently from an arbitrarily chosen local maximum (supposing that the approximate

bound, which was derived for the LK model with adjacent neighborhoods makes any statement

at all about the model considered here numerically).

For all regimes other than that of fixed K, no analytic results for the LK model are available

and all results presented for this model rely on numerical simulations alone.

Fig 5.4 shows the full distribution of the GM’s BoA (again as function of the fraction of state

space) for two different values of L and K = 1. There is a pronounced peak structure with much

of the weight on configurations in which 75% or 100% of the state space belong to the BoA of

the GM. The peak indicating that the entire state space belongs to the BoA corresponds to

realizations where the GM is the only maximum of the landscape. The peak at 75% however,

although it seems to belong to realizations with exactly one further local maximum, has thus

far eluded explanation, as have the other peaks.

While the peak at 100% persists as the number of interacting sites is increased to K = 2,

it carries very little weight and the curves change appearance, see fig 5.5. The structure is

no longer dominated by individual peaks (which however remain visible as a feature of the

distribution) but rather seems to approach the form observed for the HoC and RMF models.

For K = 3, the peak corresponding to realizations in which the entire landscape is in the

BoA of the GM vanishes and qualitatively the structure of the distribution of the BoA seems

more similar to that observed for the RMF model, see fig 5.6. For K = 4, the shape of the

distribution is very close to those obtained from the RMF model, see fig 5.7. In this case the
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distribution of the size of the BoA from LK can be described by a RMF model with suitably

chosen ‘effective drift’ c.

This change in behavior occurs in the same range of values of K for which πL,K(0) as

considered in chapter 4 changed behavior strongly, see fig 4.12. Again one can speculate that

this change in behavior is a sign of the transition in computational complexity of finding the

height of the global maximum, which is further corroborated by the fact that for K = 1 and to

some extent also for K = 2, in a non-vanishing number of realizations, the entire state space is

the BoA of the GM, thus finding the GM just requires a greedy search (see figs 5.4 and 5.5).

These speculations, however only apply to the regime of small K which appears to be of limited

biological relevance.

The expected size of the BoA is shown in fig 5.8. For fixed difference L−K, the curves appear

to be roughly linear in L and thus similar to the HoC-like case, see the inset on the left of

fig 5.8. In the double-logarithmic scales in the main plot, however, one sees that the curves

are not quite parallel. Nonetheless they seem linear in the double-log plot, which means that

〈bGM 〉 grows like a power law for L−K fixed. In contrast, if K is scaled as fraction of L, the

BoA clearly increases faster than linear with L. The main plot on the right of fig 5.8, again to

double logarithmic scales, seems to show that the curves are not linear in the scale used there,

which implies that 〈bGM 〉 grows faster than a power law, see also fig 5.3.

Thus the curves of 〈bGM 〉 behave in a way similar to the HoC case for L−K fixed, while they

behave quite differently for fixed ratio K/L. The contrast in behavior found here corresponds

to the conjectured behavior change of the probability of finding no accessible path πL(0) found

between HoC-type and less-than-maximally rugged FLs for the LK model discussed in chapter

4. There it was found that for the LK-model, any fixed difference L−K behaves asymptotically

like the HoC model where a fixed fraction L/K corresponds in the large L limit to a FL of
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intermediate ruggedness.

5.2. Study of the empirical fitness landscapes

Since in appendix C it is shown that the subgraph method can be used to obtain an estimate

for the behavior of 〈bGM 〉, the behavior observed for the two models in figs 5.2 and 5.8 can

be compared to empirical data. Fig 5.9 shows the expected size of the BoA as function of

subgraph size m for the A. niger landscapes introduced in section 2.2.1. Even though the error

bars allow in principle for a linear fit to the data (left panel), the curves to double-logarithmic

scales presented in the right panel show that 〈bGM 〉 grows faster than linear, which implies

that the empirical data are not of the HoC type but rather more strongly correlated. While it

cannot be concluded that the mean size of the BoA grows faster than a power law (the error

bars do not allow to say that 〈bGM 〉 is curved in the double logarthmic plot), at least it seems

to grows with an exponent af about 1.5, which is faster than the behavior observed for the HoC

curves (where it was closer to 1, see figs 5.2 and 5.8).

The curve for the E. coli data set shown in fig 5.10. on the other hand, shows a form compatible

with a HoC hypothesis (for 〈bGM 〉, not so for the expected number of accessible paths, where

the empirical findings are incompatible with the HoC hypothesis, see fig 4.17).

5.3. Conclusions

In this chapter it was found that the behavior of the size of the basin of attraction of the global

optimum differs between fitness landscapes of maximal ruggedness (HoC type) and those with

intermediate ruggedness. This distinction is very similar to that for the behavior of accessible

paths discussed in chapter 4. However, due to a lack of analytical understanding of the behavior

of 〈bGM 〉 even in the HoC case, this distinction cannot be made as strongly as that in chapter 4
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and only relies on numerical observations. Strictly speaking it is found here that 〈bGM 〉 seems

to grow like a power law for HoC type models (see fig 5.8) and possibly faster than a power law

for less-than-maximally rugged models of FLs. This pattern is consistent across the numerical

simulations presented here, see fig 5.2.

In the LK model, the full distribution of the basin of attraction shown in figs 5.4 - 5.6 was

shown to be dominated by peaks corresponding to realizations in which a substantial part of

the landscape is part of the BoA of the GM. These peaks have eluded a full explanation this

far. While the peak at 100% corresponds to realizations with only one maximum and the peak

at 75% apparently to those with one additional local maximum, it is not easy to see why the

presence of one further maximum should reduce the BoA of the GM by exactly 25% regardless

of sequence length L. However this peak structure looses importance as K increases beyond

K = 2 and for larger values of K, the distribution of the BoA has essentially the same shape

as that from the RMF model for a suitably chosen value of c, see fig 5.7.

The analysis of the empirical A. niger landscape, see fig 5.9 seems to show a power-law increase

of BoA size with an exponent larger than that observed for HoC-like models. This, much like

the analysis of the expected number of accessible paths shown in the left panel of fig 4.17, is

inconsistent with the hypothesis that the empirical landscape is of the HoC type. In contrast,

the behavior of 〈bGM 〉 on subgraphs of the E. coli data set provided by Martijn Schenk showed

a clear linear behavior in subgraph size, which implies that the HoC hypothesis cannot be

rejected on these grounds, see fig 5.10.

The statements made about the behavior of 〈bGM 〉 in this chapter however are not as strong as

those in chapter 4 because no analytical results on the behavior of 〈bGM 〉HoC for HoC landscapes

were available beyond the lower bound presented in eq (5.1). A perturbative analysis within

the RMF model around the HoC case c = 0 seems however feasible and is a very interesting

open problem.
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6. Conclusions

The main results of this thesis concern three different areas of science. The connection between

these three at a first glance quite separate areas arose naturally in the course of investigations.

6.1. Record statistics

As was mentioned in chapter 3, the evolutionary adaptation in the weak mutation/strong

selection regime of a population can be treated by considering it as a sequence of record values

of the trait under selection. This connection has been observed many times before (see [87,111]

and references therein, also [73,75,104] and references therein for the applications of the related

field of extreme value theory to evolutionary biology). Here it led to study the record statistics

of independent random variables with a linear trend.

The results presented in chapter 3 and separately published in [52,53,150] are part of a recent

surge of interest in record and extreme value statistics (see e.g. [86, 89, 96, 151] and references

therein) beyond the standard setting of independent, identically distributed random variables

[105]. The key results of chapter 3 can be summarized as follows:

• The complete universality of the ordering probability Pn(c) with respect to the parental

distribution f(·) of the entries observed in the iid case [105] (c = 0) breaks down for

c > 0. For c small compared to the scale set by the parental distribution, f(·) only enters

via a non-universal constant with no effect on the scaling with c, while for large c, the

scaling of Pn(c) with c depends strongly on f(·). The way in which the properties of the

parental distribution determine the c scaling of Pn(c) appear remotely similar to the way

in which f(·) determines the universal distributions of extreme value statistics in the iid

case [29]. This observation might be explained by the fact that the c-scaling of Pn(c) for

large c is, like the EVT behavior, determined by the tails of (the twofold convolution of)

f(·). However, this observation might also just be an effect of the example distributions

considered.

• Record events, which are statistically independent in the iid case, show non-trivial and

quite counter-intuitive correlations for c > 0. The probability of observing a record event

at a given time n was shown to depend on knowledge of previous record events. This

dependency was surprisingly strong: The probability of a record given the occurrence of

a record in the previous time step was in some cases observed to be well over twice the

unconditioned record probability. Whether these correlations are such that record events

attract or repel each other could asymptotically be classified depending on whether the

parental distribution f(·) has heavy tails or bounded support respectively.

• It was shown that the relationship between heavy tails of the underlying probability den-

sity f(·) and attractive correlations between record events can be inverted: By randomly
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choosing subsets of a given data set, artificially superimposing a linear trend and ob-

serving correlations between record events of the resulting ‘time series’, one has a record

based distribution free test for heavy tails that works particularly well for small data

sets. As proof of principle, this test was used to recover the well-known heavy tails of the

distribution of paper citations [123]. Furthermore, it was used to show that the antibiotic

resistance effects of mutations measured in the E. coli data set presented in section 2.2.2

are most likely drawn from a distribution with heavy tails.

This test only considers a subset of the data in each iteration and thus is potentially more

robust to removal of outliers than existing methods such as maximum-likelihood estima-

tors [23]. Furthermore, the test is distribution-free (or non-parametric), a property which

allows to avoid controversies like the one that arose in context of animal foraging behav-

ior [40,141] because of possible biases in the estimator used [39]. With a non-parametric

test, such a bias is not present.

6.2. Energy landscapes

The problems treated in chapter 4 and 5 arose naturally in the context of evolutionary biology

but can be formulated independently of that specific context. If the fitness landscape is consid-

ered as a mapping from the Boolean hypercube {0, 1}L of dimension L into the real numbers,

it can be interpreted as a generalized energy landscape. In the context of spin glasses [100],

topological properties of energy landscapes have been studied but, for the most part, these

studies have been concerned with locally defined properties such as the question whether a

given state is an extremum or a saddle point. While the size of the expected basin of attraction

of the global maximum treated in chapter 5 has been considered before [18], it has not been in

the center of attention thus far. The same is true for the distribution of accessible paths cross-

ing the whole state space introduced in [19, 146], which arose quite naturally in the context of

evolutionary biology. The latter question can be interpreted as an extension of the percolation

problem [139] to a setting where the probability for a given step to be accessible depends on

the energies associated with the two configurations to be connected.

Unlike the topological properties of spin glasses usually considered, the objects under investiga-

tion here are global in the sense that they are concerned with the GM rather than an arbitrarily

chosen local maximum. For both the expected value of accessible paths and the mean size of

the basin of attraction, it was shown or at least implied by numerical simulations that their

behavior shows a marked difference depending on whether the landscape is of the HoC-type

(including LK models with fixed value of L−K) or has an (effective) global trend towards the

global optimum, regardless on whether this trend is put in explicitly as in the RMF model or

arises implicitly like in the LK model with fixed value of L/K (for brevity these landscapes

are referred to as ‘with trend’ even for those from the RMF model with infinitesimally small

underlying trend). These changes can be summarized as follows:

• The expected number of accessible paths is independent of L if the landscape is of the

HoC type. If on the other hand the landscape has a trend, the expected number of

accessible paths grows with L.

• The probability πL(0) that none of the paths on the landscape is accessible increases
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monotonically with L for HoC type landscapes, while for landscapes with an underlying

trend, there is a sequence length beyond which πL(0) decreases with L and subsequently

tends to zero.

• For HoC type landscapes, the expected size of the global optimum’s basin of attraction

grows with sequence length L slower (like a power law, numerical observations point to a

power not much greater than 1) than for fitness landscapes with trend (where numerical

simulations seem to indicate growth with a larger power or possibly even faster than any

power law).

• On LK landscapes for fixed K ≤ 2, the distributions considered (that of the basins of

attraction and the number of accessible paths, see figs 4.13 through 4.15 and 5.4 through

5.6) show interesting peak structures. These structures vanish as K increases beyond 3

and for higher values, the distributions are very similar to those obtained from the RMF

model. At the value of K = 2, the probability of having no accessible path in a given

landscape shows a very interesting, counter-intuitive behavior as well, see fig 4.12.

The coherence between the two properties considered in this thesis allows to suppose that

other properties will also show this division into two regimes.

It has been known for some time that there are non-trivial regimes of tunably rugged fitness

landscapes like the LK model [76] or related models [143] where the global optimum dominates

the landscape. These studies however only considered special cases of the models (such as LK-

model with fixed value of K). In this thesis it could be shown that the global optimum of the

landscape is of pronounced importance1 even for fixed ratio L/K or landscapes with even an

infinitesimally small underlying trend (RMF model for c≪ 1). On the one hand, this extends

the parameter range for which this behavior has been observed (namely to the regime of K/L

fixed) while on the other hand the findings for the RMF model allow to hope that similar results

will hold for much more general energy landscapes, in particular when they implicitly give rise

to an effective underlying trend with superimposed random contributions.

6.3. Evolutionary biology

The topological structures of the fitness landscapes considered in this thesis play a role for the

adaptive fate of the population if and only if this adaptation takes place in the corresponding

adaptive regime, i.e. if population size N , mutation rate µ and selection strength s have the

appropriate values (see section 1.4.2). The statements that can be made on these grounds,

although evident, will be listed in the following subsection.

Furthermore, it was established in this thesis that at least with respect to the topological

features and models discussed in here2, fitness landscapes can be classified as either HoC type

or of the correlated type. These two classes were shown to behave very differently in the

relevant limit of large L. Using the subgraph method established in appendix C, in this section

it will be shown that most empirical fitness landscapes know to date can be classified as ‘with

trend’. If this were true in general, this could be an explanation for apparent inconsistencies

1even though saying that it ‘dominates’ the landscape appears to be a bit too strong a statement
2but quite possibly also for other properties of interest
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between theoretical results and observations of the outcome of natural evolution, as will be

pointed out at the end of this section.

6.3.1. Determining the evolutionary fate of a population under a given

adaptive regime

Accessible paths in the sense used in this thesis and studied in chapter 4 only play a role in the

adaptation of a population if the adaptation takes place in the strong selection/weak mutation

regime.

Greedy dynamics are restricted to situations where selection is strong and the product µN of

mutation rate (per individual genome) and population size is such that all one-mutants are

present at all times but essentially no two mutations are (i.e. µN ≫ 1 and µ2N ≪ 1). Then

the basin of attraction of the GM studied in chapter 5 becomes important for the adaptation

of the populations.

If an organism’s fitness landscape can be classified as HoC type, genome wide (L ≫ 1)

adaptation will

• In the SS/WM regime have on average one accessible path regardless of the sequence

length L, while a typical configuration will only with very small probability have accessible

paths at all and

• In the greedy regime have a basin of attraction growing linearly with sequence length.

If adaptation takes place on a landscape of the type with trend, it will

• In the SS/WM regime always (with probability close to 1) have accessible paths and on

average very large number of them and

• In the greedy regime have on average a basin of attraction of the global optimum that

includes a much larger portion of state space than one would obtain by evenly distributing

all states on the expected number of optima.

6.3.2. Classification of empirical fitness landscapes

No current technology and none that will be available in the near future is able to assess the full

fitness landscape for all possible mutations of any natural organism. However with the method

of analyzing subgraphs as established in appendix C, empirical fitness landscapes consisting

of very few mutations can systematically be classified as either HoC type or ‘with trend’ by

observing the behavior of the expected number of accessible paths and the expected size of

the global optimum basin of attraction. For the A. niger landscape introduced in section 2.2.1

and the E. coli landscape from [134] introduced in section 2.2.2, this has already been done in

chapters 4 and 5, see figs 4.17 and 5.9 respectively. Here the same analysis was performed for

two different E. coli landscapes, Weinreich’s famous β-lactamase antibiotic resistance data [146]

and a recently published E. coli landscape [77] by Khan et al. which consisted of direct compe-

tition measurements (like the fitness values of the A. niger landscape [51] introduced in section



6.3. Evolutionary biology 91

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4

<
n

m
>

m

Weinreich E. coli
HoC expectation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1  2  3  4

<
n

m
>

m

Khan E. coli
HoC expectation

Figure 6.1.: Subgraph analysis of the empirical landscapes by Weinreich et al. (left) and Khan

et al. (right). The expected number of accessible paths was observed on both land-

scapes to be incompatible with a HoC hypothesis. Error bars were obtained by the

resampling method for the Weinreich landscape when estimates for a measurement

error were available.

2.2.1 and in contrast to the other E. coli landscapes considered in this thesis, which consisted

of antibiotic resistance measurements). It was found these two landscapes can be classified as

‘with trend’ with respect to both accessible paths and basin of attraction, see fig 6.1. In that

figure, however, only the plots for the mean number of accessible paths are shown, as both

landscapes only had one maximum (even under resampling for the Weinreich data) and thus

the entire landscape was in the basin of attraction of the global optimum. Thus the basin of

attraction grew like 2m with m the subgraph size in both cases.

Together with the results in appendix C and the subgraph analysis presented in chapters 4

and 5 of the A. niger and E. coli landscapes introduced in chapter 2, this serves as proof of

principle that empirical fitness landscapes can be classified in the ways presented in this thesis.

The only requirement is sufficient size: While on data sets consisting of 5 mutations or more

as used here, the analysis was possible, it proved inconclusive when applied to data sets of 4

mutations, like the malaria data set [93] or the E. coli competition data set [21].

Thus systematic subgraph analysis can be used as preliminary check on any fitness landscape,

since it does not make any inherent assumptions about an adaptive regime.

6.3.3. Possible consequences for adaptation on arbitrary fitness

landscapes

The HoC model was originally introduced not because it was believed to be particularly realistic

but simply because in this framework, computations become significantly easier or even possible

at all. It remains poplar because it is widely believed that results derived within this model

will at least present a first-order approximation to naturally occurring fitness landscapes. With

respect to the two objects considered in this thesis and quite possibly also with respect to

other quantities of interest, this similarity was shown to hold only for small sequence lengths L.

However, since natural genomes are on the order of millions to billions of base-pairs in length
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and mutations with subsequent adaptation can essentially appear anywhere on these genomes,

the case of relevance for natural adaptation is the limit of large L, where extrapolations from

HoC based computations are questionable at best.

Intergenic epistasis was observed to be less pronounced than intragenic epistasis [101], which

might imply that not all mutations have equal influence on fitness and is thus at odds with

the HoC hypothesis. However, epistasis between mutations even on different chromosomes was

observed to be far from vanishingly small [51], thus a priori no-one can legitimately argue that

any fitness landscape should be in either class (HoC type or with trend). Nonetheless it was

not altogether surprising to find that the empirical fitness landscapes considered here showed

less ruggedness than the HoC type and were thus classified as ‘with trend’ in the sense defined

above. If this were true in general, it would allow to resolve some apparent contradictions

between predictions based on numerical simulations considering a limited number of mutations

and observations on the outcome of genome-wide natural evolution.Two of these apparent

contradictions are:

• Digital organisms of genome length L = 100 when given the freedom to evolve their own

mutation rate were observed to have small mutation rates when adapting on a rugged fit-

ness landscape [24]. They evaded deleterious mutations at the cost of long term evolvabil-

ity. Only on very smooth landscapes could the digital organisms evolve to the mutation

rate optimizing long-term adaptability.

• Simulations of population dynamics on the empirical A. niger landscape showed that re-

combination between different genotypes (sexual reproduction) can ‘trap’ the population

at a local optimum, thus inhibiting adaptation towards the global optimum and giving

populations without sexual reproduction a higher mean fitness [31]. This is at odds with

the ubiquity of sexual reproduction.

As was pointed out by J. Arjan G. M. de Visser3, the results on fitness landscapes with trend

shown here can be interpreted that to genome wide evolution, any less-than-maximally rugged

fitness landscape tends to look like a smooth landscape with, for example, many accessible

paths leading to the global optimum and much of the landscape in the basin of attraction of

the global optimum.

If this were true, it would mean that the two observations made above are finite size effects:

Due to the technical limitations present in the studies, only fixed values of L were considered in

both cases. In the limit of genome-wide adaptation, these problems would vanish for all fitness

landscapes with trend such as those considered within this thesis4.

6.4. Open problems

6.4.1. Technical problems

The most obvious open problems are technical in nature. These have proven very challenging.

3during a talk given at the Institute of Genetics at the university of Cologne in 2011
4For the E. coli landscape by Schenk et al., this is only valid with the limitation that the HoC type
could only be rejected with respect to 〈nL〉 and not for 〈bGM 〉.
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• Computing the probability that no accessible path is present in a given fitness landscape

for models from the HoC and RMF models has thus far defied all efforts. Even in the

auxiliary state space considered in chapter 4, only an implicit fix point equation could be

set up but not solved. A more thorough treatment would be most interesting.

• The basin of attraction of the global optimum has so far only been treated numerically.

Any analytical approach to the large L-behavior of this quantity would be most welcome.

• The underlying trend found to arise implicitly in LK landscapes where L/K was kept fix

might only be a feature of the LK model. It would be very interesting to find out if any

model such as p-spin models or other variants of the LK model fall into one of the two

categories HoC or correlated with an effective linear trend.

• Explain the transition in behavior of the LK model atK = 2. Is this related to transitions

in other spin glasses?

6.4.2. Biological problems

On the biological side, the open problems are harder to define and at the same time potentially

of higher relevance.

• Are empirical fitness landscapes generally in the class with trend? While all those con-

sidered here are (as well as [101]) were, no arguments could be found why this should

generally be the case. In all cases where a new empirical fitness landscape is presented, the

subgraph method could be employed to check the class to which this landscape belongs.

• Does the classification of FLs as either ‘HoC-type’ or ‘with trend’ presented here play

a role for the adaptation of populations? In particular, is it true that the contradictory

results of adaptive processes vanish as the sequence length grows? To decide this question,

one could simulate adaptive processes for populations with genomes of varying sequence

length and observe if the contradictions with empirical observations mentioned above

(suboptimal mutation rates for populations or disadvantage of sexual reproduction on

rugged fitness landscapes) diminish as the sequence length increases. However, given

that the properties discussed here do not always behave monotonically with sequence

length (see e.g. the behavior of πL(0) in chapter 4), one might have to go to extremely

large systems to see such a limiting behavior. This program might therefore meet severe

computational challenges.
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A. Tables and figures of the Fitness

landcscapes

The table of fitness values of the Aspergillus niger data set is provided. Some

instances m = 4 subgraphs of the full empirical landscape are shown as examples

for the wide range of behavior they display.

A.1. Fitness values

For each combination of mutations, two replicate measurements of the mycelial growth rate

were performed. The mean value is given, the variance around this mean was used to estimate

error bars by the resampling method, see Appendix D. The effects of the mutations and the

abbreviations are introduced in table 2.1. Zero fitness indicates that the corresponding state was

not observed among the segregants and was thus assumed to be not viable, see the discussion

in section 2.2.1.
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

0 0 0 0 0 0 0 0 16.9 16.28 17.52

1 0 0 0 0 0 0 0 12.69 12.79 12.59

0 1 0 0 0 0 0 0 13.06 14.21 11.91

0 0 1 0 0 0 0 0 11.79 12.71 10.87

0 0 0 1 0 0 0 0 12.79 12.38 13.2

0 0 0 0 1 0 0 0 13.97 13.03 14.9

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 10.11 9.03 11.19

0 0 0 0 0 0 0 1 10.62 10.46 10.78

1 1 0 0 0 0 0 0 14.04 13.89 14.18

1 0 1 0 0 0 0 0 12.93 12.75 13.11

1 0 0 1 0 0 0 0 14.03 14.03 14.03

1 0 0 0 1 0 0 0 16.45 16.85 16.04

1 0 0 0 0 1 0 0 12.62 12.27 12.97

1 0 0 0 0 0 1 0 12.13 11.9 12.35

1 0 0 0 0 0 0 1 15.15 14.34 15.95

0 1 1 0 0 0 0 0 12.64 13.02 12.25

0 1 0 1 0 0 0 0 12.34 13 11.68

0 1 0 0 1 0 0 0 14.42 15.09 13.74

0 1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 10.11 10.65 9.56

0 1 0 0 0 0 0 1 12.87 13.11 12.63

0 0 1 1 0 0 0 0 11.25 10.85 11.65

0 0 1 0 1 0 0 0 12.28 12.64 11.91

0 0 1 0 0 1 0 0 12.21 12.7 11.71

0 0 1 0 0 0 1 0 8.65 8.46 8.84

0 0 1 0 0 0 0 1 12.15 12.17 12.13

0 0 0 1 1 0 0 0 12.35 12.45 12.25

0 0 0 1 0 1 0 0 12.27 12.27 12.27

0 0 0 1 0 0 1 0 10.22 9.94 10.49

0 0 0 1 0 0 0 1 11.36 11.6 11.12

0 0 0 0 1 1 0 0 10.98 10.22 11.73

0 0 0 0 1 0 1 0 10.41 10.77 10.05

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1 14.01 14.47 13.55

0 0 0 0 0 0 1 1 15.97 16.72 15.22

1 1 1 0 0 0 0 0 13.23 13.45 13

1 1 0 1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 12.68 12.96 12.39

1 1 0 0 0 1 0 0 12.24 11.99 12.48
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

1 1 0 0 0 0 1 0 9.19 8.38 9.99

1 1 0 0 0 0 0 1 13.77 13.72 13.81

1 0 1 1 0 0 0 0 9.74 10.33 9.14

1 0 1 0 1 0 0 0 10.75 11.52 9.97

1 0 1 0 0 1 0 0 12.99 13.12 12.85

1 0 1 0 0 0 1 0 8.72 8.14 9.29

1 0 1 0 0 0 0 1 13.95 13.35 14.54

1 0 0 1 1 0 0 0 12.42 13.02 11.81

1 0 0 1 0 1 0 0 0 0 0

1 0 0 1 0 0 1 0 8.83 7.28 10.38

1 0 0 1 0 0 0 1 11.94 12.9 10.97

1 0 0 0 1 1 0 0 11.93 12.02 11.84

1 0 0 0 1 0 1 0 7.92 8.51 7.32

1 0 0 0 1 0 0 1 14.28 14.32 14.23

1 0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 1 12.64 12.64 12.64

1 0 0 0 0 0 1 1 12.47 12.81 12.13

0 1 1 1 0 0 0 0 11.27 10.54 11.99

0 1 1 0 1 0 0 0 13.04 12.86 13.22

0 1 1 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 9.45 9.76 9.13

0 1 1 0 0 0 0 1 11.69 11.6 11.78

0 1 0 1 1 0 0 0 14.99 14.5 15.47

0 1 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 1 0 9.49 10.34 8.64

0 1 0 1 0 0 0 1 10.6 10.68 10.51

0 1 0 0 1 1 0 0 0 0 0

0 1 0 0 1 0 1 0 10.7 9.77 11.63

0 1 0 0 1 0 0 1 13.13 13.72 12.54

0 1 0 0 0 1 1 0 7.73 6.41 9.04

0 1 0 0 0 1 0 1 13.93 13.83 14.03

0 1 0 0 0 0 1 1 9.58 9.49 9.67

0 0 1 1 1 0 0 0 12.44 12.26 12.62

0 0 1 1 0 1 0 0 12.48 13.07 11.88

0 0 1 1 0 0 1 0 6.44 6.33 6.54

0 0 1 1 0 0 0 1 11.1 11.48 10.71

0 0 1 0 1 1 0 0 0 0 0

0 0 1 0 1 0 1 0 8.86 9.08 8.63

0 0 1 0 1 0 0 1 13.61 14.32 12.9

0 0 1 0 0 1 1 0 0 0 0

0 0 1 0 0 1 0 1 14.64 14.33 14.94
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

0 0 1 0 0 0 1 1 7 7.18 6.81

0 0 0 1 1 1 0 0 0 0 0

0 0 0 1 1 0 1 0 9.39 9.89 8.88

0 0 0 1 1 0 0 1 11.07 10.95 11.19

0 0 0 1 0 1 1 0 0 0 0

0 0 0 1 0 1 0 1 13.44 12.71 14.16

0 0 0 1 0 0 1 1 7.62 7.51 7.72

0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 1 1 0 1 15.69 16.34 15.04

0 0 0 0 1 0 1 1 0 0 0

0 0 0 0 0 1 1 1 10.23 10.87 9.59

1 1 1 1 0 0 0 0 10.52 11.04 9.99

1 1 1 0 1 0 0 0 12.42 12.42 12.42

1 1 1 0 0 1 0 0 0 0 0

1 1 1 0 0 0 1 0 8.85 8.93 8.76

1 1 1 0 0 0 0 1 13.24 13.85 12.63

1 1 0 1 1 0 0 0 14.37 14.88 13.86

1 1 0 1 0 1 0 0 0 0 0

1 1 0 1 0 0 1 0 8.31 8.88 7.73

1 1 0 1 0 0 0 1 11.84 11.73 11.94

1 1 0 0 1 1 0 0 13.01 14.52 11.49

1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 1 0 0 1 14.15 13.99 14.31

1 1 0 0 0 1 1 0 0 0 0

1 1 0 0 0 1 0 1 14.22 13.55 14.88

1 1 0 0 0 0 1 1 12.21 11.72 12.69

1 0 1 1 1 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0

1 0 1 1 0 0 1 0 4.63 4.84 4.42

1 0 1 1 0 0 0 1 11.15 11.41 10.88

1 0 1 0 1 1 0 0 11.4 11.75 11.05

1 0 1 0 1 0 1 0 9.11 9.24 8.98

1 0 1 0 1 0 0 1 13.81 14.03 13.59

1 0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 1 0 1 12.56 12.73 12.38

1 0 1 0 0 0 1 1 10.81 11.61 10.01

1 0 0 1 1 1 0 0 0 0 0

1 0 0 1 1 0 1 0 10.88 9.22 12.53

1 0 0 1 1 0 0 1 12.23 11.94 12.51

1 0 0 1 0 1 1 0 0 0 0

1 0 0 1 0 1 0 1 13.48 13.33 13.63
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

1 0 0 1 0 0 1 1 8.44 8.36 8.51

1 0 0 0 1 1 1 0 0 0 0

1 0 0 0 1 1 0 1 12.66 13.2 12.11

1 0 0 0 1 0 1 1 10.19 10 10.38

1 0 0 0 0 1 1 1 11 11.24 10.75

0 1 1 1 1 0 0 0 11.51 11.82 11.2

0 1 1 1 0 1 0 0 0 0 0

0 1 1 1 0 0 1 0 8.13 6.36 9.9

0 1 1 1 0 0 0 1 12.35 11.77 12.92

0 1 1 0 1 1 0 0 0 0 0

0 1 1 0 1 0 1 0 7.47 7.46 7.48

0 1 1 0 1 0 0 1 13 14 12

0 1 1 0 0 1 1 0 0 0 0

0 1 1 0 0 1 0 1 13.72 14.11 13.32

0 1 1 0 0 0 1 1 7.14 7.93 6.35

0 1 0 1 1 1 0 0 0 0 0

0 1 0 1 1 0 1 0 7.97 8.44 7.49

0 1 0 1 1 0 0 1 0 0 0

0 1 0 1 0 1 1 0 0 0 0

0 1 0 1 0 1 0 1 12.68 12.71 12.65

0 1 0 1 0 0 1 1 8.09 8.49 7.68

0 1 0 0 1 1 1 0 0 0 0

0 1 0 0 1 1 0 1 14.64 14.83 14.45

0 1 0 0 1 0 1 1 0 0 0

0 1 0 0 0 1 1 1 0 0 0

0 0 1 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 0 6.94 6.47 7.4

0 0 1 1 1 0 0 1 11.87 12.07 11.66

0 0 1 1 0 1 1 0 0 0 0

0 0 1 1 0 1 0 1 13.41 14.03 12.79

0 0 1 1 0 0 1 1 7 6.99 7

0 0 1 0 1 1 1 0 0 0 0

0 0 1 0 1 1 0 1 14.31 14.71 13.91

0 0 1 0 1 0 1 1 8.88 9.08 8.67

0 0 1 0 0 1 1 1 11.14 10.94 11.34

0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 1 1 0 1 12.97 12.85 13.09

0 0 0 1 1 0 1 1 7.66 7.66 7.66

0 0 0 1 0 1 1 1 7.82 7.51 8.12

0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 10.22 9.97 10.47



100 Appendix A. Tables and figures of the Fitness landcscapes

fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

1 1 1 1 0 1 0 0 0 0 0

1 1 1 1 0 0 1 0 7.27 7.27 7.27

1 1 1 1 0 0 0 1 11.59 12.17 11

1 1 1 0 1 1 0 0 10.8 10.43 11.16

1 1 1 0 1 0 1 0 9.47 8.66 10.28

1 1 1 0 1 0 0 1 11.94 11.48 12.4

1 1 1 0 0 1 1 0 0 0 0

1 1 1 0 0 1 0 1 13.43 13.74 13.11

1 1 1 0 0 0 1 1 10.76 10.76 10.76

1 1 0 1 1 1 0 0 12.28 12.21 12.35

1 1 0 1 1 0 1 0 10.21 10.44 9.98

1 1 0 1 1 0 0 1 12.21 12.04 12.38

1 1 0 1 0 1 1 0 0 0 0

1 1 0 1 0 1 0 1 10.33 10.02 10.63

1 1 0 1 0 0 1 1 10.43 10.77 10.08

1 1 0 0 1 1 1 0 0 0 0

1 1 0 0 1 1 0 1 13.92 13.77 14.07

1 1 0 0 1 0 1 1 10.79 10.69 10.88

1 1 0 0 0 1 1 1 0 0 0

1 0 1 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1 0 5.7 5.87 5.53

1 0 1 1 1 0 0 1 10.93 11.8 10.06

1 0 1 1 0 1 1 0 0 0 0

1 0 1 1 0 1 0 1 11.84 12.56 11.12

1 0 1 1 0 0 1 1 6.91 8.29 5.53

1 0 1 0 1 1 1 0 0 0 0

1 0 1 0 1 1 0 1 15.69 16.04 15.34

1 0 1 0 1 0 1 1 7.54 8.84 6.24

1 0 1 0 0 1 1 1 10.46 11.28 9.63

1 0 0 1 1 1 1 0 0 0 0

1 0 0 1 1 1 0 1 12.16 11.76 12.56

1 0 0 1 1 0 1 1 9.07 8.23 9.91

1 0 0 1 0 1 1 1 0 0 0

1 0 0 0 1 1 1 1 10.39 10.34 10.44

0 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 1 0 6.54 6.57 6.51

0 1 1 1 1 0 0 1 11.31 11.84 10.77

0 1 1 1 0 1 1 0 0 0 0

0 1 1 1 0 1 0 1 13.17 12.89 13.45

0 1 1 1 0 0 1 1 7.04 7.44 6.63

0 1 1 0 1 1 1 0 0 0 0
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

0 1 1 0 1 1 0 1 13.98 14.44 13.51

0 1 1 0 1 0 1 1 9.5 10.35 8.65

0 1 1 0 0 1 1 1 10.45 10.77 10.12

0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 1 1 0 1 12.51 13.74 11.27

0 1 0 1 1 0 1 1 7.93 7.93 7.39

0 1 0 1 0 1 1 1 9.1 8.72 9.47

0 1 0 0 1 1 1 1 10.39 9.91 10.86

0 0 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 1 10.46 10.73 10.18

0 0 1 1 1 0 1 1 7.01 7.24 6.77

0 0 1 1 0 1 1 1 8.74 8.79 8.69

0 0 1 0 1 1 1 1 10.91 11.77 10.04

0 0 0 1 1 1 1 1 7.68 8.05 7.3

1 1 1 1 1 1 0 0 11.84 11.76 11.91

1 1 1 1 1 0 1 0 5.82 5.92 5.72

1 1 1 1 1 0 0 1 11.67 11.94 11.4

1 1 1 1 0 1 1 0 0 0 0

1 1 1 1 0 1 0 1 11.19 11.04 11.33

1 1 1 1 0 0 1 1 7.49 7.72 7.25

1 1 1 0 1 1 1 0 0 0 0

1 1 1 0 1 1 0 1 12.34 12.81 11.86

1 1 1 0 1 0 1 1 10.35 10.14 10.55

1 1 1 0 0 1 1 1 10.63 11.1 10.16

1 1 0 1 1 1 1 0 5.38 4.95 5.81

1 1 0 1 1 1 0 1 14.22 14.03 14.4

1 1 0 1 1 0 1 1 0 0 0

1 1 0 1 0 1 1 1 0 0 0

1 1 0 0 1 1 1 1 10.3 9.44 11.16

1 0 1 1 1 1 1 0 0 0 0

1 0 1 1 1 1 0 1 11.32 11.38 11.25

1 0 1 1 1 0 1 1 9.22 8.57 9.86

1 0 1 1 0 1 1 1 0 0 0

1 0 1 0 1 1 1 1 8.09 7.93 8.25

1 0 0 1 1 1 1 1 8.03 7.66 8.4

0 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 0 1 13.36 13.69 13.02

0 1 1 1 1 0 1 1 7.94 9.32 6.55

0 1 1 1 0 1 1 1 0 0 0

0 1 1 0 1 1 1 1 0 0 0

0 1 0 1 1 1 1 1 8.68 7.75 9.61
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fwn arg pyr leu phe lys oli crn mean rep 1 rep 2

0 0 1 1 1 1 1 1 0 0 0

0 1 1 1 1 1 1 1 0 0 0

1 0 1 1 1 1 1 1 0 0 0

1 1 0 1 1 1 1 1 7.7 7.41 7.99

1 1 1 0 1 1 1 1 10.87 9.96 11.78

1 1 1 1 0 1 1 1 7.55 8.11 6.98

1 1 1 1 1 0 1 1 7.57 7.87 7.27

1 1 1 1 1 1 0 1 0 0 0

1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0
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Figure A.1.: Subgraphs consisting of the mutations (from left to right in each row)

arg, leu, oli, crn, arg, leu, phe, oli (top row), arg, pyr, leu, crn and arg, pyr, leu, oli

(bottom row).

A.2. Examples of subgraphs

In this section, some examples of m = 4 subgraphs are presented. Again, the arrows point to

states of higher fitness and color indicate that a state belongs to the basin of attraction of the

corresponding maximum (underlined states).

The purpose of this presentation is to emphasize the wide range of behavior found in these

landscapes, ranging from those with only one maximum (and consequently all states that max-

imum’s BoA) and many accessible paths to those with several local maxima and no accessible

paths.

Only complete subgraphs were considered, i.e. those containing no lethal states. Note that

none of the subgraphs presented here contains the lysD25 mutation.

Missing arrows between two states at Hamming distance 1 indicate that those two states had

equal fitness. This possibility had been out-ruled in analytical studies by considering only con-

tinuous distributions. However, since the empirical fitness values are only given to two decimal

places, such a situation can arise.
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Figure A.2.: Subgraphs consisting of the mutations (from left to right in each

row) arg, pyr, phe, oli, fwn, arg, oli, crn (first row), fwn, arg, pyr, crn,

fwn, arg, pyr, oli (second row), fwn, arg, pyr, phe, fwn, leu, oli, crn (third

row), fwn, leu, phe, oli and fwn, pyr, leu, crn (last row).
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Figure A.3.: Subgraphs consisting of the mutations (from left to right in each row)

arg, pyr, leu, phe, arg, pyr, oli, crn (first row) fwn, pyr, leu, oli, fwn, pyr, oli, crn

(second row), fwn, pyr, phe, oli, pyr, leu, oli, crn (third row) and last but not least

pyr, leu, phe, oli.
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B. Record statistics

Computational steps omitted in studying the record statistics of random variables

with a linear trend are presented.

B.1. Details on the expansion of Pn(c)

Details on the collapse of the sum of chains of integrals in eq (3.31) to the simple form leading

to eq (3.32) will be given. The presentation here follows quite closely that given in the appendix

III of [52].

The relation

F l(x)

∫ x

dyf2(y) =l

∫ x

dyf(y)F l−1(y)

∫ y

dxf2(z)

+

∫ x

df2(z)F l(z) (B.1)

is valid for any probability density f(·) and the corresponding cumulative probability function

F (·), as can be seen by applying integration by parts to the first term on the right hand side.

With upper and lower bound of the support of f(·) denoted by s+ and s− respectively, one has

the identities F l(s+) = 1 and F l(s−) = 0 for all l. Thus

1

l!

∫

df2(x) =

[

F l(x)

n!

∫ x

dxf2(x)

]∣

∣

∣

∣

x=s+

x=s
−

=
1

l!

∫

dxf2(x)F l(x) +
1

(l − 1)!

∫

dxf(x)F l−1(x)

∫ x

dyf2(y). (B.2)

For l ≡ n − 2, the first term on the right hand side of the equation above already matches

with the first term on the right hand side of eq (3.31). Using eq (B.1) on F l−1(x)
∫ x

dyf2(y)

inside the integral of the second summand on the right hand side above, one obtains

∫

dxf(x)F l−1(x)

∫ x

dyf2(y) =

∫

dxf(x)

∫ x

dyf2(y)F l−1(y)

= (l − 1)

∫

dxf(x)

∫ x

dyf(y)F n−2(y)

∫ y

dzf2(z). (B.3)

Substituting the right hand side of the equation above for the integral in the second term of the
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right hand side of eq (B.2), one sees that now the first two terms match eq (3.31). Since one

can iterate this procedure with those terms that do not yet match, one has, with the identity

F 0(x) = 1, finally expanded 1
l!

∫

dxf2(x) into the right hand side of eq (3.31) and thus arrives

at the expression given in eq (3.32).

B.2. Examples of ǫ(c)

The computations of the example expressions for ǫ(c) quoted in eqs (3.36) and (3.35) are

provided.

Recall the definition given in eq (3.34),

ǫ(c) =

∫

c

dyf∗2(y) =

∫

c

dy

∫

dxf(x)f(y − x) (B.4)

where the convolution f∗2(·) is an expression for the probability density of two RVs with with

common density f(·) [46].
For f(x) = exp(−|x|)/2, noting that since c > 0,only y > 0 need to be considered in computing

the integral in eq (3.36), the two-fold convolution can be written as

f∗2(y) =
1

4

∫ 0

dxexex−y +
1

4

∫ y

0

dxe−xex−y +
1

4

∫

y

e−xey−x

=
1

4
e−y +

1

4
ye−y. (B.5)

Thus

∫

c

dyf∗2(y) =
1

4
e−c +

∫

c

dyye−y =
(

1

2
+
c

4

)

e−c (B.6)

as stated in eq (3.36).

To obtain the expression eq (3.37) for the Lévy-stable distribution, first note that fµ(x) is

defined as inverse Fourier transformation of the corresponding f̂(k) = exp(−|k|µ) and that

thus the convolution f∗2(x) is the inverse Fourier transform of f̂(k)2. Then

ǫ(c) =
1

2π

∫

c

dx

∫

dk exp (−ikx− 2|k|µ)

=
1

2π

∫

c

dx

∫

dk exp
(

−ikx −
∣

∣

∣
21/µk

∣

∣

∣

µ)

. (B.7)

With the substitution y ≡ 21/µk and subsequently z ≡ 2−1/µx, this becomes

ǫ(c) =
1

21+1/µπ

∫

c

dx

∫

dy exp
(

−iy2−1/µx− |y|µ
)

=
1

2π

∫

21/µc

dz

∫

dy exp (−iyz − |y|µ) . (B.8)
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Since y > c and c is assumed to be large for the expansion at hand, the inner integral (the

inverse Fourier transformation) of the last line of the equation above can be approximated by

the asymptotic expression for large y as given by [16] (see eq B.20 of Appendix B and references

given there),

∫

dy exp (−iyz − |y|µ) ≈ 2z−µ−1Γ(1 + µ) sin(πµ/2). (B.9)

With this expression, the remaining integration in z can be performed to finally yield the

expression for ǫ(c) stated in eq (3.37).

B.3. Leading order coefficients

The record rate pn(c), the joint probability pn,n−1(c) of two consecutive record events and the

record correlator ln,n−1(c) were studied by series expansion in c around c = 0. The leading

order coefficients given by eqs (3.45), (3.47) and (3.48) will be computed here.

Starting with the explicit expression of the record rate in eq (3.14), one has

d

dc
pn(c) =

d

dc

[

∫

dxf(x)

∫ x+c

dyf(y)

n−1
∏

i=1

F (y + ic)

]

=

∫

dxf(x)

n−1
∑

i=1

if(x+ ic)

n−1
∏

j=1,j 6=i

F (y + jc). (B.10)

Thus
d

dc
pn(c)

∣

∣

∣

∣

c=0

=
n(n− 1)

2

∫

df2(x)F n−2(x), (B.11)

as stated in eq (3.45). In the last step, the Gaussian sum formula was used.

For pn,n−1(c), with the explicit expression given by eq (3.42) one has

d

d
pn,n−1(c) =

d

dc

∫

dxf(x)

∫ x+c

dyf(y)

n−2
∏

i=1

F (y + ic)

=

∫

dxf(x)f(x+ c)

n−2
∏

i=1

F (x+ c+ ic)

+

∫

dxf(x)

∫ x+c

dyf(y)

n−2
∑

i=1

if(x+ ic)

n−2
∏

j=1,j 6=i

F (y + jc) (B.12)

and therefor
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d

dc
pn,n−1(c)

∣

∣

∣

∣

c=0

=

∫

dxf2(x)F n−2(x)

+
(n− 1)(n− 2)

2

∫

dxf(x)

∫ x

dyf2(y)F n−3(y) (B.13)

as stated in eq (3.47) (again with use of the Gaussian sum formula).

With the definition of ln,n−1(c) given by eq (3.40) for k = 1, one has

d

dc
ln,n−1(c) =

d

dc

pn,n−1(c)

pn(c)pn−1(c)

=
1

pn(c)pn−1(c)

d

dc
pn,n−1

− pn,n−1(c)

p2n(c)pn−1(c)

d

dc
pn(c)−

pn,n−1(c)

pn(c)p2n−1(c)

d

dc
pn−1(c). (B.14)

Setting c ≡ 0, one obtains

d

dc
ln,n−1(c)

∣

∣

∣

∣

c=0

=n(n− 1)
d

dc
pn,n−1(c)

∣

∣

∣

∣

c=0

− n
d

dc
pn(c)

∣

∣

∣

∣

c=0

− (n− 1)
d

dc
pn−1(c)

∣

∣

∣

∣

c=0

. (B.15)

Substituting the expressions given in eqs (B.11) and (B.13) finally yields the leading order

coefficient of eq (3.49).

B.4. Records from processes with waiting times

A RV xn is a record if it exceeds all previous RVs, i.e. if xn > maxj=1,...,n−1{xj}. Thus the

family {xn} of RVs can be called a time series and the size n of this family can be interpreted

as the number of ‘time steps’ the process has taken. If the process is such that the RVs are

sampled at fixed intervals (each day at noon when {xn} is a time series of daily temperatures,

for example), the index n of a given RV allows to locate it in continuous time (at least relative

to the first entry x1). It is, however, straightforward to extend these considerations to a process

in which the entries of the times series are sampled at time points t1, . . . , tn separated by iid

waiting times tn − tn−1 = τn, where the τi have a common probability density ψ(τ), called

‘waiting time density (WTD)’. Of particular interest is the case where

ψ(τ) → τ−α (B.16)

for large τ . For this type of waiting time density, asymptotic expressions of the Laplace trans-

form are readily available [43],
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ψ̃(u) →
{

1− 〈τ〉u α > 1

1− A|Γ(−α)|uα α ≤ 1
(B.17)

The case α ≤ 1 is of special interest, because then the mean waiting time

〈τ〉 =
∫ ∞

0

dττψ(τ) (B.18)

diverges and the scaling behavior changes strongly (note that in the context of waiting times,

the lower bound of the support of ψ(τ) is zero). The methods used to extend discrete time

results like pn(c) to continuous time are in principle known [102] and use standard method of

renewal theory (see e.g. [70] and references therein) but have to the authors knowledge not

been applied to extract the results presented here yet.

General considerations Consider a quantity an that depends on discrete time, for example

the expected value of the maximum attained during the random walk of length n [25,95] or the

probability that the nth entry in a time series of independent RVs is a record. Then for any

real z ∈ [0, 1), the generating function (or z-transform) [140] of an is defined by

â(z) =

∞
∑

n=0

znan. (B.19)

Typically, at least for properties of a random walk, under this transform, the recursion relation

for an, which usually is quite simple to set up but hard to solve, becomes an algebraic equation

in z which is simpler to solve. One is however confronted with the problem of inverting this

transform to obtain the desired object an, which is in general a difficult problem but will largely

be circumvented in this presentation.

In order to embed the object an into real time, i.e. obtaining the corresponding object as a

function of time t rather than the number n of steps taken, one has to compute the sum

a(t) =

∞
∑

n=0

an × Prob[n steps taken in time t]. (B.20)

An expression for the probability of having exactly n events in time t is an elementary result

from renewal theory (see e.g. [70]): The probability that the nth event has happened at time

t1 < t is simply ψ∗n(t1), the n-fold convolution of the waiting time density. The probability of

not having any further event in the remaining time t−t1 is given by φ(t−t1) ≡ 1−
∫ t−t1
0

dτψ(τ)

and since the instant t1 can be anywhere in [0, t], one has

Prob[n steps taken in time t] =

∫ t

0

dt1ψ
∗n(t1)φ(t− t1) = {ψ∗n ∗ φ} (t) (B.21)

by the definition of the convolution.

Taking the Laplace transform of (B.20) and noting that the Laplace transform of convolutions

is the product of the Laplace transformed functions, one gets
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∫ ∞

0

dta(t)e−ut = ã(u) =

∞
∑

n=0

anψ̃(u)
nφ̃(u) (B.22)

where k̃(u) denotes the Laplace transform of a function k(t). The Laplace transform of φ(t) is

given by

φ̃(u) =

∫ ∞

0

dtφ(t)e−ut =

∫ ∞

0

dt

(

1−
∫ t

0

dτψ(τ)

)

e−ut =
1− ψ̃(u)

u
(B.23)

and hence the Laplace transform of the object a(t) under consideration is given by

ã(u) =
1− ψ̃(u)

u

∞
∑

n=0

ψ̃n(u)an. (B.24)

It is quite simple to check that ψ̃(u) ∈ [0, 1] and hence the sum on the right hand side of (B.24)

can be interpreted as the generating function â(z) with z ≡ ψ̃(u),

ã(u) =
1− ψ̃(u)

u
â
(

ψ̃(u)
)

. (B.25)

Equation (B.25) is an exact relation between the generating function of a functional of a dis-

crete time variable and the Laplace transform of the corresponding functional in continuous

time. Hence whenever one has an expression for the generating function â(z) of an quantity

that depends on a random walk (or more generally on any process in discrete time), by (B.25)

one also has directly an expression for the Laplace transform of the continuous time quantity

a(t). Inverting this Laplace transform is, of course, a nontrivial task that is yet to be done, but

as will be seen here, it usually suffices to insert a waiting time density with a sufficiently heavy

tail to get an estimate of the long-time behavior of a(t).

Eq (B.25) can be used to extract the scaling of record rates as follows: Consider a sequence

{Yi}i∈{1,...,n} of RVs such that

Yi = ci+Xi, (B.26)

where c ≥ 0 is a constant and the Xi are iid RVs with common density f(x). Thus for c ≡ 0,

one simply has a family of iid RVs, whereas for positive c the Yi are independent RVs with a

linear trend c, see [10,11,52], where the record statistics of this model is considered (see [151] for

applications to weather data in the context of global warming). Note that one can equivalently

consider independent RVs drawn from a family of probability densities {fi} which have the

same shape but non-zero mean value ci for the ith of these probability densities.

Here, we will consider the generalization of this model to continuous time, assuming that while

the ith RV Yi, once drawn, will obey equation (B.26), the time ti at which it is drawn is again

random. One can thus introduce a waiting time density ψ(t), from which the times between Yi
and Yi+1 are independently drawn. For definiteness again consider a WTD with heavy tails,

ψ(τ) → Aτ−1−α, α > 0 with asymptotic Laplace transform given by (B.17). Then the expected

number of record events up to time t, denoted N(t), can be computed from known results on

the expected number of record events out of n RVs.
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Linear drift model For strictly positive linear trend c > 0, it was shown in [10, 11] that the

probability pn(c) that the nth RV is a record tends for n ≫ 1 to a finite value p(c) > 0, see

also the discussion at the end of section 3.3. Thus the expected number of records, given that

n RVs were drawn is for large n linear in n,

Nn =

n
∑

i=1

pn(c) ≈ np(c) for n≫ 1. (B.27)

Actually, Nn ≈ (n − ñ)p(c) +
∑ñ

i=1 pi(c), where ñ is chosen such that pn(c) ≈ p(c), that is

to say that the limit regime of large n is to a good approximation attained. The value of ñ

depends strongly on the underlying distribution f(·) of the iid part Xi of the Yi and on the

value of c, but for n≫ ñ, equation (B.27) provides a good estimate of the expected number of

records. For the generating function N(z) of Nn follows

N̂(z) =

∞
∑

n=1

znNn ≈
∞
∑

n=1

znnp(c) = p(c)z
d

dz

∞
∑

n=0

zn = p(c)
z

(1− z)2
. (B.28)

Using (B.25) and inverting the resulting Laplace transform by Tauberian theorem [70] yields

N(t) →
{

p(c)t/〈τ〉 α > 1

tαp(c)/ [καΓ(α+ 1)] α ≤ 1
(B.29)

iid RVs If the drift is switched off, i.e. c is set to 0, all RVs are independent and identically

distributed. Thus the probability pn that of the n RVs drawn up to a given point, the last one

happens to be the largest (and hence a record) is simply given by

pn =
1

n
, (B.30)

which goes to zero as n→ ∞ in contrast the case for strictly positive c.

The expected number of records that occurred up to time n is given by the sum over these

record rates,

Nn =

n
∑

j=1

pj =

n
∑

j=1

1

j
≈ ln(n) + γ +O(1/n), (B.31)

where γ = 0.577216 . . . is the Euler-Mascheroni constant (see e.g. [86]). To extend this to

continuous time, first one has to compute the generating function N̂(z), before (B.25) can be

applied. By use of the known series expansion of the logarithm ln(1− z) = −
∑∞

n=1 z
n/n, one

obtains

N̂(z) =
∑∞

n=1 z
nNn =

∑∞
n=1 z

n
∑n

j=1
1
j =

∑∞
n=1 z

(

zn−1
∑n−1

j=1
1
j +

zn−1

n

)

= z
∑∞

n=1 z
n−1
∑n−1

j=1
1
j +
∑∞

n=1
zn

n = zN̂ (z)− ln(1− z) (B.32)

where in the last step the fact that when moving the index from n−1 to n in the first sum, the

inner sum of the n = 0-term is empty was used. Bringing zN̂(z) to the other side and dividing
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by 1/(z − 1) yields N̂(z) = ln(1− z)/(z − 1) and thus by (B.25)

Ñ(u) = −
ln
(

1− ψ̃(u)
)

u
. (B.33)

Substituting again the two different forms for ψ̃(u) from (B.17) followed by some elementary

manipulations yields

Ñ(u) =

{

[ln(1/u)− ln(〈τ〉)]u−1 α > 1

[α ln(1/u)− ln (κα)] u
−1 α ≤ 1

(B.34)

which can again be asymptotically inverted using the Tauberian theorems to yield

N(t) →
{

ln (t/〈τ〉) α > 1

[α ln(t)− ln(κα)] α ≤ 1
(B.35)

Note that in comparison to (B.31), the case of α > 1 misses the Euler-Mascheroni constant

γ. This constant can be recovered by use of the inverse Laplace transform ln(t) + γ for the

Laplace transform − ln(u)/u from [42]. Using this inverse rather than the asymptotics provided

by the Tauberian theorem recovers also the sub-leading order of N(t), matching (B.31).

Even though by use of the method presented here it was straightforward to extract asymptotic

expressions for the expected number of records from random variables drawn at random inter-

vals, apparently only special cases of the waiting time density have been considered so far (see

e.g. [114], where drawing of random variables was modeled as a Poisson process). Specifically

the result for diverging mean waiting times between events seems to be new.



115

C. Subgraphs

The method of subgraphs used subsequently to compare the findings on model

studies to the empirical data ist presented here. The validity of this method is

discussed.

C.1. Introduction

Any empirical fitness landscape necessarily considers a fixed number L (typically L ∼ O(10)) of

mutations, while biological evolution acts genome wide and the number of possible mutations

available to it is far beyond anything that can be considered in a laboratory. In order to

extrapolate to large L, model studies are used. To check which of these models (if any) show

behavior similar to that of empirical FLs, subgraphs of the full data set as introduced in section

1.5.3 can be used. As was mentioned there, any two subgraphs of size m < L share a certain

number of fitness values, which implies that they cannot be treated as independent data sets.

However, as will be shown in this section, as far as the expected number of accessible paths

and the average size of the global optimum’s basin of attraction under greedy dynamics are

concerned, correlations between subgraphs are sufficiently weak to allow the use of subgraphs

instead of truly independent data sets. The general considerations about subgraphs presented

in this section as well as the results on correlations of the expected number of accessible paths

〈nL〉 for the ‘House of Cards’ and ‘Rough Mt. Fuji’ models presented in the next section were

originally obtained in the Bachelor thesis of Tim Dressler [37] while the results on the LK

model as well as those on the correlations of the basin of attraction presented in section C.3

have not been published so far.

C.1.1. Subgraph distance

To create a subgraph of size m, choose m of the L > m sites of the whole sequence. When

the state of the L−m sites not present in the subgraphs is fixed, for example by the condition

that the global maximum must be present in all subgraphs, there are a total of
(

L
m

)

subgraphs

possible (without such a condition there are
(

L
m

)

different subgraphs for each of the 2L−m states

of the remaining sites, see fig C.1).

The SG then consists of the 2m configurations obtained by creating all possible states of the

sub-sequence consisting of those m sites chosen to be in the SG while keeping those L − m

states not involved in the SG in the state they have on the GM. Together with the state of

the GM on the remaining sites, these m sites completely define the SG. Hence a SG g can be

denoted as g = {j1, . . . , jm}, where it is understood that the sequence of the GM is yet to be

specified. In simulations presented in this section, the GM was always at 000 . . . 0.

The distance between two SGs g1 = {j1, . . . , jm} and g2 = {j′1, . . . , j′m} of equal size m is given

by counting the number of sites which are present in one but not in the other subgraph. For
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111

110

100 000 (GM)

010

Figure C.1.: In the L = 3 Boolean hypercube shown here, the GM is at position 000. For

the subgraphs consisting of the first and second site (the top and bottom face of

the cube, marked by darker lines), the condition that the GM be included in the

subgraphs implies that the sites not present in the SG must be set to 0. This

singles out the top face as the SG to be considered here.

example the SGs made up of mutations {1, 2, 3} and {1, 2, 4} have SG-distance 1.

Clearly the maximum SG-distance is

dSG(g1, g2) ≤
{

m if m ≤ L
2

L−m if m > L
2 .

(C.1)

The upper bound on SG-distance arises because once the two SGs are completely disjoint sets

(i.e. they do not share any sites), the distance between them cannot be increased any further.

This situation can only arise if m ≤ L/2.

There are

NSG(L,m, δ) =
1

2

(

L

m

)(

m

δ

)(

L−m

δ

)

, (C.2)

pairs of SGs at SG-distance δ since for a given sequence length L there are
(

L
m

)

SGs of size

m, and any δ of these m sites can be replaced by any of the L−m remaining sites, where the

factor 1/2 compensates for the over-counting that occurs because each pair of SGs at a given

distance is otherwise counted twice. For m ∼ L/2, this number can be quite large, allowing for

reasonable statistics even on one single FL.

C.1.2. Correlator

To quantify correlations of a random variable x (e.g. the number of accessible paths nm) across

SGs as function of SG-distance δ, one can use the correlator defined as follows: For a given

FL, for each pair of SGs {g1, g2} at given distance dsg(g1, g2) = δ, first evaluated x1 and x2
on g1 and g2 respectively, then form their product x1x2. If this is done for all NSG(L,m, δ)
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure C.2.: The left panel shows a possible way in which spin glass interactions might in-

duce correlations between subgraphs, even when these subgraphs are at maximum

distance m. The right panel shows a very special instance of a spin glass where

the interactions are such that a pair of subgraphs at maximum distance m can

be chosen such that there are no correlations. If these interactions are uniformly

distributed across the sequence L, such realizations are clearly a minority. On

the other hand, if interactions are only present between neighboring sites, such a

scenario is much more likely.

SGs at distance δ, one can form the average 〈x1〉SG , 〈x2〉SG and 〈x1x2〉SG, where the subscript
SG on 〈·〉SG indicates the arithmetic mean with respect to the number NSG(L,m, δ) rather

than an arithmetic mean with respect to a large number of independent (numerically obtained)

realizations as used this far in this thesis. Then, in analogy to the covariance, the subgraphs

correlator of the RV x can be defined as

CL,m(δ) = 〈x1x2〉SG − 〈x1〉SG 〈x2〉SG . (C.3)

The correlator for SG-distance δ = 0 simply measures the standard deviation
〈

x2
〉

SG
−〈x〉2SG of

the RV x. To study the typical behavior of the correlator, it was averaged over a large number

(typically 104) of independent landscapes. This average is denoted by regular brackets 〈·〉.

C.1.3. General behavior

The properties to be considered here are defined globally in the sense that they concern a large

part of the FL (if a given state is a local optimum, to give an example of a locally defined object,

can be decided by looking at the L immediate neighbors). A priori one expects the correlations

across subgraphs to be more important for global objects than for local ones, making them more

interesting.

Clearly, if the RVs x1 and x2 are uncorrelated, the correlator
〈

CL,m(δ)
〉

averaged over many

independent landscapes must vanish. This is for example the case when the FL is drawn

from the HoC or RMF model and the SGs have maximum distance δ = m. For FLs drawn

from the LK or other spin glass like models, this is not necessarily the case, as there may be

interdependencies due to interactions across SGs, see e.g. fig C.2. This figure also shows that

among those spin glass like models, those with local (e.g. next-neighbor) interactions arguably

have lower correlations than those models where the interaction partners are scattered across

the whole sequence, see the discussion on the choice of neighborhood in the LK model in section

2.1.2. Thus the results on the correlations within the LK model with random neighborhoods

can heuristically be argued to present an upper bound to the correlations of the adjacent

neighborhood LK model.

On a totally smooth landscape such as the RMF model in the c→ ∞ limit, two given subgraphs
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Figure C.3.: The average correlator 〈CSG(L,m, δ)〉 of nm for the HoC model shown as function

of subgraph distance δ for different values of m and L = 10 (and on the right also

for L = 8). The correlator is normalized by the value at δ = 0 to allow for

comparison of different values of m. The inset in the left figure shows a detail

of the main plot. The right figure is a semi-log-plot to show exponential decay

indicated by the straight line. Note that the curves are independent of L. If

δ = m, the average correlator vanishes, thus the corresponding points are zero up

to numerical precision.

will be identical and thus highly correlated. The fluctuations on the other hand (the correlator

at δ = 0) will vanish. Thus one expects that the correlator will become trivially independent of

δ as the landscape becomes smoother. To avoid this trivial regime, the simulations presented

in the next two sections for the correlator CL,m(δ) defined in eq (C.3) will only treat the regime

of high ruggedness (small c or large K in the RMF or LK model respectively).

C.2. Number of accessible paths

This section presents numerical results on the correlations of the number of accessible paths

across subgraphs. For the numerical studies, the correlator CL,m(δ) was, after averaging over

all possible subgraphs, also averaged over a large number of independent FLs. Most results

presented here were originally obtained in the Bachelor’s thesis of Tim Dressler [37].

C.2.1. HoC and RMF models

As was mentioned above, in these two models the only interdependence between SGs arises

from shared fitness values. Hence, if m ≤ L/2, at SG-distance dSG = m the averaged correlator

〈CSG(L,m, δ)〉 vanishes for all values of c. This can be seen on the left of fig C.3, where the

averaged correlations as function of subgraphs distance are shown for the HoC model. Clearly

(under the condition that m < L of course), for these models the total sequence length L

does not play any role, see fig C.3. This figure shows that for δ ≥ 1, 〈CSG(L,m, δ)〉 decays

exponentially, see right panel of fig C.3. Extrapolating this exponential decay to δ = 0 does

not yield the observed fluctuations, which means that relative to the fluctuations at δ = 0,

correlations drop fast going from δ = 0 to δ = 1. This initial drop increases as the subgraph
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Figure C.4.: The average correlator of nm for the RMF model with c = 0.1 on landscapes

with L = 8. One observes the same behavior as for the HoC case: Initially a

super-exponentially sharp drop followed by an exponential decay in δ. As shown

in the inset, the initial drop in the correlator becomes steeper as m grows.

size m grows, see inset of the left panel of fig C.3.

For the RMF model, the situation is slightly more complicated, as can be seen in fig C.4.

Note the similarity to the behavior observed in the HoC model. For moderate values of c, the

behavior of the curves is essentially the same as in the HoC case, while for larger c, it changes

slightly, see fig C.5.

Fig C.5 shows the effect of increasing the underlying drift velocity c. For sufficiently large

c, the correlations do not drop monotonically with SG-size m but rather seem to increase.

However, as m is increased further, eventually the correlations drop again in m, which leads to

suppose that for any value of c, correlations between SGs eventually decay.

Thus under both HoC and RMF model, the correlations relative to the standard deviation

(at δ = 0) are found to be very small even at δ = 1 and decline exponentially from there on.

C.2.2. The LK model

The LK model as introduced in section 2.1.2 explicitly takes interactions between mutations

into account and models them in the spirit of a diluted spin glass. As stated in the introduction

of this section, here only the version with interactions ranging across the entire sequence will

be discussed.

As for the RMF and HoC models discussed above, one sees an exponential decline with SG-

distance. However the δ = 0 point fits in with the points for δ ≥ 1 without the jump observed

for the models discussed above, see fig C.6.

Thus also in this case, correlations decay exponentially as function of SG-distance. Even

though the marked jump going from δ = 0 to δ = 1 is not present here, correlations decay quite

strongly.
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Figure C.5.: Simulations showing the c-behavior of the value of 〈CSG〉 (L,m, δ = 1) relative to

the fluctuations (δ = 0) normalized by 〈C〉 (L,m = 3, δ = 1) for nm.
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Figure C.6.: Correlations of nm as derived from the LK model for different values of m as

function of SG-distance δ. The left panel shows simulations for fixed value of

K = 4, the right for fixed K/L = 1/2. In this semi logarithmic plot, the decay

follows approximately the exponential indicated by the lines with slopes (from top

to bottom) −1.4, −1.65 and −1.5 in the left and −1.4, −1.4 and −1.6 in the right

panel.
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Figure C.7.: Correlator for the basin of attraction as function of subgraph distance δ for the

HoC model and different values of L and m. Clearly, the curves do not depend on

L and show an exponential decrease. The linear decline in the semi-logarithmic

plot with slopes of −0.55 (top) and −1.2 (bottom) indicates exponential decay.

C.3. Basin of attraction of the global maximum

If one considers the expected size of the basin of attraction of the global optimum instead of

the mean number of accessible paths, the correlator defined in eq (C.3) can be used in the same

way as above to determine the degree to which subgraphs are correlated with respect to the

mean size of the basin of attraction. Again numerical simulations will be used for the three

models also treated above.

C.3.1. HoC and RMF

For the HoC model, numerical simulations are presented in fig C.7. Even though the decline is

not as steep as for the number of accessible paths, nonetheless it seems exponential in subgraph

distance δ. Furthermore, it is clearly seen that the correlations do not depend on sequence

length but only on subgraph size.

For the RMF model, i.e. for c > 0, the exponential decay is still present, as can be seen in

fig C.8. There, numerical simulations for two different values of c are presented. Just like for

the HoC model, the exponential decay in the correlations is not as marked as for the expected

number of accessible paths, yet shows in the simulations.

One observes that for increasing value of c, the slope in the semi-log plots in fig C.8, in

particular in the right panel, decreases with subgraph size m. This slope, however, does not

seem do depend on c but only on subgraph size m. Whether this is just a coincidence or can

be explained remains an open question up to this point.
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Figure C.8.: Correlations between the sizes of the basin of attraction as function of subgraph

distance for the RMF model with c = 0.1 (left panel) and c = 0.5 (right panel).

The lines are shown to emphasize the linear decline in the semi-log plot. They

have slopes of −0.5,−0.75 and −1.2 (from top to bottom) in both panels.

C.3.2. LK model

In the LK model, exponential decay of correlations was observed both for fixed number K of

interacting sites and fixed ration K/L. Examples are shown in fig C.9.

C.4. Conclusions

The simulations presented in this chapter show that the correlations of both the number of

accessible paths nm and the size of the basin of attraction of the global maximum bm across

subgraphs decay at least exponentially with subgraph distance δ. In models where correlations

between different subgraphs are only induced by shared states (HoC and RMF) this is not

surprising, while for the LK model this was not a priori obvious. It was also not obvious that

in the LK model, correlations should only depend on L as weakly as observed in fig C.9, while

in the other models, this was expected.

The exponential decay observed throughout all models shows that analyzing the m-behavior

of either object (nm and bm) on a given empirical fitness landscape of fixed sequence length L

allows to estimate the L-behavior of the corresponding object on the FL. This will prove to be

an important tool in comparing empirical fitness landscapes to theoretical results in chapters

4 and 5.
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Figure C.9.: Correlations of the basins of attraction for the LK model. The left panel shows
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125

D. Notes on the numerical procedures

Details on the numerical procedures employed throughout this thesis are pre-

sented. This includes the resampling procedure by which the error bars on empir-

ical data points were obtained, search routine employed to count the number of

accessible paths on a given FL and the routine to compute the HTI.

D.1. The resampling procedure

Whenever error bars to empirical data points were presented in this thesis, they were obtained

using the resampling method [31]. This method was originally intended to test the robustness

of certain features of the fitness landscapes w.r.t. the measurement error. Whenever a data set

has m replicate measurements f1[n], f2[n], . . . fm[n] of the fitness for each state1 n, one has a

mean fitness

µ[n] =
1

m

m
∑

j=1

fj [n] (D.1)

and a standard deviation

σ[n] =

√

√

√

√

1

m

m
∑

j=1

(fj [n]− µ[n])2 (D.2)

fr each state.

Then, assuming that the measurement error is Gaussian, one can created (or ‘resample’) a large

number S of artificial data sets according to

f [n] = µ[n] + ηn, ηn ∼ N (0, σ[n]) (D.3)

with N (0, x) the normal distribution with standard deviation x. On each of these S resampled

FLs, one can the compute the property of interest, e.g. count the number of accessible paths

and record mean and standard deviation of this object. The standard deviation then gives an

estimate for the error bars.

It is not a priori obvious that because the error on each fitness value is small compared to

the mean fitness values, all topological features should be robust against this errors. This can

occur for example if in some states, adjacent fitness (or resistance levels) are close enough for

the measurement errors to become important when determining the number of accessible paths

while all states (except for the GM) have at least on neighbor with a fitness so great that under

1labeling these states by n = 1 through 2L
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resampling, none of them became a local maximum (and thus the entire FL was in the BoA of

the GM).

D.2. Details on the search routines used

A large part of the numerical work presented in this thesis consisted of searching entire state

spaces, e.g. the L-dimensional Boolean hypercube {−0, 1}L, for the property of interest. Since

one aim was to reach high dimension L, depth-first routines were used throughout this thesis.

Such routines follow for example one particular path2 until they determine whether this path

leads to the global maximum or is broken because it encounters a fitness valley. Since many of

the L! paths share edges of the graph, such a procedure considers the same edge several times.

This redundancy however was necessary because the alternative, i.e. considering all possible

paths at the same time, would have been too demanding on memory.

For the accessible paths, the routine used can be sketched as follows:

find-path(int n, double fit[], int GM)

• start in state n

• if(n==GM) return(‘found the global maximum’)

• else: for(all neighbors i=1 through L): if(fit[i]>fit[n])

– find-path(i, fit[])

• end

If this routine is called for some starting state s, it finds all paths in connecting s to GM .

If in the third line only such states are considered that are closer to the GM that the starting

state n, only shortest paths are considered.

To compute πL(0), the routine aborts the search as soon as the first state is found because then

the realization considered contains at least one state.

D.3. Computing the HTI for a given data set

To compute the HTI, assume that a data set is given as entries x1, x2, . . . xN . Then for given

drift velocity c (chosen to match the mean spacing between entries of the data set) and some

value n < N the HTI can be computed as follows

2For definiteness, only the example of counting the number of accessible paths on a given FL is dis-
cussed here. The procedures for the other objects considered here are straightforward adaptations.
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for(S iterations)

• for(j<n)

– signal-n=0

– signal-(n-1)=0

– pick one entry x[j] of the data set

– y[j]=x[j]+cj

– if(j==(n-1) and y[j] record):signal-(n-1)=1

– if(j==(n) and y[j] record):signal-n=1

• p-(n, n-1)+=signal-n*signal-(n-1)/S

• p-(n-1)+=signal-(n-1)/S

• p-n+=signal-n/S

At the end of this procedure, one has an estimate for the probabilities p̂n(c), p̂n−1(c) and

p̂n,n−1(c) on that data set and can compute the fraction

l̂n,n−1(c) =
p̂n,n−1(c)

p̂n(c)p̂n−1(c)
. (D.4)
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Frequently used abbreviations

Abbreviation Meaning

LDM Linear drift model

RMF Rough Mt. Fuji

HoC House of cards

BoA Basin of attraction

AS Antipodal sequence

GM Global maximum

SDM Site directed mutagenesis

DNA Desoxyribonucleic acid

RNA Ribonucleic acid

PCR Polymerase chain reaction

SG Sub-graph

EVT Extreme value theory

iid Independently, identically distributed

RV Random variable

WT Wild type

HTI Heavy tail indicator

SS/WM Strong selection /weak mutation

WTD Waiting time density
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tern Barbara und Wolfgang, meiner Schwester Nora und insbesondere meiner Verlobten Mareike
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