
User modeling for exploratory search on the
Social Web

Exploiting social bookmarking systems for user model
extraction, evaluation and integration

Dissertation

zur Erlangung des Doktorgrades
der Philosophischen Fakultät

der Universität zu Köln
im Fach Informationsverarbeitung

von
Mirko Gontek

Köln, den 10. Juni 2011

Abstract

Exploratory search is an information seeking strategy that extends be-
yond the query-and-response paradigm of traditional Information Retrieval
models. Users browse through information to discover novel content and to
learn more about the newly discovered things. Social bookmarking systems
integrate well with exploratory search, because they allow one to search,
browse, and filter social bookmarks.

Our contribution is an exploratory tag search engine that merges social
bookmarking with exploratory search. For this purpose, we have applied
collaborative filtering to recommend tags to users. User models are an im-
portant prerequisite for recommender systems. We have produced a method
to algorithmically extract user models from folksonomies, and an evaluation
method to measure the viability of these user models for exploratory search.
According to our evaluation web-scale user modeling, which integrates user
models from various services across the Social Web, can improve exploratory
search. Within this thesis we also provide a method for user model integra-
tion.

Our exploratory tag search engine implements the findings of our user
model extraction, evaluation, and integration methods. It facilitates ex-
ploratory search on social bookmarks from Delicious and Connotea and pub-
lishes extracted user models as Linked Data.

Contents

1 Introduction 3
1.1 The problem . 4
1.2 Scope of this thesis . 15
1.3 Thesis outline . 17
1.4 Summary of contributions . 18

1.4.1 A user model extraction method 18
1.4.2 A user model evaluation method 20
1.4.3 A user model integration method 21
1.4.4 An exploratory tag search engine 22

2 State of the art 25
2.1 Exploratory search . 29

2.1.1 Exploratory search context 34
2.1.2 Exploratory search activities 37
2.1.3 Exploratory search behavior 39
2.1.4 Attributes of exploratory search 45
2.1.5 Challenges . 47

2.2 User Modeling . 51
2.2.1 Personalization process 54
2.2.2 User model content . 74
2.2.3 User model representation 86

2.3 User modeling on the Web . 95
2.3.1 Challenges . 98
2.3.2 Approaches . 104
2.3.3 Conclusion . 139

2.4 The Social Web . 143
2.4.1 Characteristics . 145
2.4.2 Social bookmarking . 151
2.4.3 Potentials for exploratory search 157

2.5 Summary . 167

iii

3 Contribution 1: A user model extraction method 171
3.1 Knowledge representation on the Web 179

3.1.1 Ontologies versus folksonomies 183
3.1.2 Connect ontologies and folksonomies 193

3.2 Ontology modeling methods 195
3.2.1 Ontology engineering 196
3.2.2 Ontology learning . 200
3.2.3 Crowd-sourced ontology engineering 204
3.2.4 Ontology extraction . 211

3.3 An abstract model for semantics extraction from folksonomies 212
3.3.1 A tripartite graph . 214
3.3.2 Affiliation graphs . 215
3.3.3 Similarity . 216
3.3.4 Statistical Analysis . 217
3.3.5 Semantic interpretation 218

3.4 Collaborative Filtering . 219
3.5 Output . 231
3.6 Extraction algorithms . 233

3.6.1 User interest prediction 234
3.6.2 Similar users prediction 236
3.6.3 User knowledge extraction 238

3.7 Conclusion . 244

4 Contribution 2: A user model evaluation method 251
4.1 Evaluation strategies . 258

4.1.1 Predictive Accuracy . 259
4.1.2 Novelty . 263
4.1.3 Coverage . 265
4.1.4 User-perceived quality 266

4.2 Our evaluation method . 268
4.3 Input dataset . 269

4.3.1 Tag popularity . 271
4.4 Recommender algorithms . 273

4.4.1 Algorithm 1: Unbiased 273
4.4.2 Algorithm 2: Biased towards popular tags 274
4.4.3 Algorithm 3: Biased towards unpopular tags 274

4.5 Evaluation datasets . 275
4.5.1 Recommendation networks 277
4.5.2 Query result matrix . 279

4.6 Experiments . 281
4.6.1 Domain discovery . 281

iv

4.6.2 Domain learning . 309
4.7 Conclusion . 326

5 Contribution 3: A user model integration method 335
5.1 A user modeling architecture 339

5.1.1 Activity Providers . 343
5.1.2 Service User Interfaces 345
5.1.3 User Modeling Services 346
5.1.4 Personalization Service 355
5.1.5 User Property Statements 356

5.2 A user model scheme . 360
5.2.1 User interest . 364
5.2.2 User knowledge . 365
5.2.3 User similarity . 366
5.2.4 Metadata . 367

5.3 A user model representation method 372
5.3.1 Representation problems 373
5.3.2 Representation patterns 377
5.3.3 User Property Statements 391
5.3.4 Metadata . 405

5.4 Conclusion . 407

6 Contribution 4: Earlybird – an exploratory tag search engine413
6.1 Functionality . 420
6.2 Software architecture . 427
6.3 Data Maintenance . 431
6.4 Presentation . 436
6.5 Application . 443
6.6 Storage . 458

6.6.1 Bookmark management 465
6.6.2 Account management 474
6.6.3 RDF user model publishing 476
6.6.4 Usage logging . 489

6.7 Conclusion . 492

7 Conclusions 499
7.1 Summary of contributions . 501

7.1.1 User model extraction 501
7.1.2 User model evaluation 503
7.1.3 User model integration 504
7.1.4 An exploratory tag search engine 505

v

1

7.2 Limitations and further research 507
7.2.1 User model extraction 508
7.2.2 User model evaluation 510
7.2.3 User model integration 511
7.2.4 Theory and practice 513

Bibliography 515

List of Figures 583

List of Tables 587

2

Chapter 1

Introduction

The goal of this thesis is to improve information retrieval on the Web. Query-
and-response Web search engines, where users can type in search queries
and get a list of results, have been the predominant strategy to retrieve
information on the Web for the last decade. But the query-and-response
paradigm does not fully cover the strategies involved in finding and accessing
information on the Web. Everyday information retrieval strategies on the
Web are not limited to querying for keywords and selecting the best search
result. In this thesis, we take a broader perspective on information retrieval
on the Web.

1.1 The problem

We will start with an example to illustrate the problem addressed in this
thesis and to sketch our vision of information retrieval on the Web.

Meet Tom, a social media expert who works in social media
marketing and has reasonable knowledge on the topic. Tom keeps
himself updated on what happens in his field of work with a social
search engine: Earlybird. Tom uses Earlybird to keep up-to-date
on the topic social media. Earlybird helps him to regularly check
for new webpages, blog articles, tutorials, and companies, and to

3

4

stay up-to-date with news and recent trends. Earlybird retrieves
webpages that have been recently tagged in social bookmarking
services. Social bookmarking services are Web services that en-
able users to share newly discovered webpages by bookmarking
and annotating webpages with tags – keywords which describe the
webpages. Earlybird helps Tom to stay up-to-date by retrieving
the latest content on social media.

Tom also has a more general interest in the mobile web, a sub-
field of social media. But Tom is not an expert in mobile web,
his knowledge here is rather superficial. For example, Tom has no
specific knowledge of geofencing. He has seen the term on a few
occasions, but he does not know that it describes a technique to
localize mobile web devices commonly used by location-based ser-
vices. Earlybird records the search queries of Tom and all other
users. It assumes that Tom has interest and some knowledge on
social media, because he regularly checks for social media-related
webpages. Earlybird knows that many users that have searched for
social media have also searched for geofencing. Through further
analysis, Earlybird derives that the topic geofencing is a subfield
of social media. Tom has not searched for geofencing yet, although
the topic is related to social media. Therefore, Earlybird informs
Tom that geofencing is a subtopic of social media when he searches
for social media the next time. Earlybird recommends to search
for the topic and Tom follows the recommendation. A quick scan
of the search results for geofencing shows what the term means.
Earlybird also informs Tom that other topics are related to geofenc-
ing : location-based services, gps, maps – some of these topic are
topics in which Tom has some interest and knowledge. Tom gets
an idea of how geofencing is related to topics which he knows more
about. Earlybird helped Tom to discover that geofencing is indeed
a highly relevant topic for his work in social media marketing.

Tom becomes aware that he really should dig deeper into the
geofencing topic. He wants to find out what the important trends

5

in geofencing are. He reads through the search results for the
topic. Over time, Tom acquires a deeper knowledge of geofenc-
ing. He learns about current trends in the topic and gets to know
the important blogs that cover the topic. Earlybird suggests a
subtopic of geofencing : foursquare. Tom scans through the results
for the suggestions and learns that the service is one of the most
popular geofencing applications. After Tom has gained reasonable
knowledge on geofencing, he wonders how geofencing is used in
the context of social media. Earlybird informs Tom, as he searches
for geofencing, that social media and geofencing are related. Tom
adds social media – suggested as a related topic – to his initial
search, thus narrowing down the search results to webpages that
are related to both geofencing and social media. He reads through
the results and gains new insight into geofencing in social media
services. Later, he wants to get even more specific results. He
adds a suggested subtopic of social media – foursquare – to the
search query. The results are now narrowed down to geofencing
and foursquare. Earlybird helped Tom to deepen his knowledge on
geofencing.

The example illustrates common search strategies in the everyday lives
of today‘s Web users. It shows that search is a complex process that goes
far beyond pure fact retrieval to answer well-defined questions. Questions
and answers are often fuzzy and ill-defined – users „submit a tentative query
and take things from there, exploring the retrieved information, selectively
seeking and passively obtaining cues about where the next steps lie“ [222].
Information seeking activity is exploratory in nature and leads to discover-
ing novel topics, learning more about known topics, and ultimately to the
acquisition of more knowledge.

The example shows three strategies that we apply when we search the
Web. First, it shows that we manually filter information for certain criteria
to identify relevant results from irrelevant in a set of webpages. We scan

6

through search results and filter them to identify the best result. This usu-
ally happens intuitively; we may know from our experience that results from
certain Web domains are more useful for our personal goals – results from
the Web domain wikipedia.org often helped to retrieve key facts on an un-
familiar topic, results from acm.org often retrieved scientific articles. The
Social Web enables new forms of information filtering – social filters. Social
Web services allow us to filter information according to social criteria. For
example, social bookmarking services allow us to filter the Web for webpages
that have been bookmarked by certain people we trust. Second, the example
illustrates that we do not always search explicitly, but discover things more
or less accidentally. In many cases, we don‘t know what to search for. We
accidentally discover topics by browsing or by getting hints in some form. For
example, we may scan through popular tags that have been used in a social
bookmarking service to discover new tags we were not aware of. Third, the
example illustrates that we use search to dig deeper into topics that interest
us – we interact with search results and adapt search queries to gain more
insight. As we learn more about a topic, our goals change. Novices may
first want key facts on the topic. After they have gained some insight on
the topic, they may look for more expert results. The combination of these
three search strategies – filtering, discovery, and learning – frame what has
become known as explorative search.

In our introductory example, we defined a vision of how to support ex-
ploratory search in a search engine. Traditional query-response search en-
gines aim at supporting fact-retrieval. Our vision is a search engine that
supports exploratory search. We believe that much information retrieval ac-
tivity on the Social Web is exploratory in nature. Therefore, we think that
exploratory search could greatly improve information retrieval on the Social
Web. Our envisioned search engine – Earlybird – supports the three key
tasks of explorative search: filtering, discovery, and learning.

Earlybird involves two filtering strategies. First, it filters results by time.
Earlybird exploits data from existing social bookmarking services to obtain
search results. One strength of social bookmarks for search is that users
bookmark webpages as soon as they discover them. This allows them to

7

retrieve current information. Earlybird ranks retrieved results by date to
promote the very latest webpages. Second, Earlybird filters through social
similarity of users. Earlybird suggests related topics to users considering
earlier queries of similar users. Earlybird filters through the information of
similar past users. It recommends geofencing to Tom because similar users
interested in social media also expressed interest in geofencing.

The recommendations based on this social filtering strategy enable discov-
ery and learning. The recommendations are contextual to the search queries,
i.e., Earlybird suggests queries that are related to the current search query.
It enables users to explore the context of their current search query. Recom-
mendations act as navigational cues to guide users through an information
space. Recommendations can guide users in two directions. First, they can
support the discovery of related topics. This allows users to discover informa-
tion that they did not actively search for. In this case, the recommendations
act as navigational cues to promote accidental discovery of unknown – novel
– topics. In our example, Earlybird recommends geofencing to Tom. He
discovers the topic, which has been more or less novel to him before. Sec-
ond, the navigational cues can support digging deeper into a topic. They
can guide the user to more specific queries on a topic or provide context
by guiding him to more general queries. In this case, recommendations act
as navigational cues to promote topic learning. In our example, Earlybird
suggested foursquare as a more specific query related to geofencing. This
allows Tom to learn about more specific aspects of the topic domain. In the
opposite direction, Earlybird suggests social media as a more generic query
related to geofencing. This allows Tom to learn about the context in which
geofencing is used.

The recommendations rely on a technique called collaborative filtering –
Earlybird suggests topics to be related because other users consider them as
related. Therefore, Earlybird maintains user models which model the users
interest and background knowledge. Earlybird analyzes which tags users
use to annotate their shared bookmarks. User models are the key prereq-
uisite for collaborative filtering. They allow the prediction of similarities
between queries and make user-specific recommendations. They can bias

8

recommendations towards known or novel topics. In our example, Earlybird
recommended geofencing to Tom because the topic is closely related to social
media, yet was, according to his user model, still a novel topic. In this case,
biasing towards an unknown topic aims at promoting the discovery of a novel
topic.

We illustrated the problem that underlies this thesis – exploratory search
on the Web. We envisioned a search engine that addresses the key challenges
of the problem: filtering, discovery, and learning. We consider the Social Web
– and particularly social bookmarking services – to have great potentials for
user modeling to improve exploratory search. Our envisioned search engine
exploits social bookmarks to extract user models for exploratory search. In
this thesis, we examine how to enable exploratory search on the Social Web.

1.2 Scope of this thesis

This thesis is strongly interdisciplinary. It comprises several research areas of
the information and computer sciences to address the problem of exploratory
search on the Social Web. We think that our perspective, which combines
techniques and models from various research areas, yields new insights into
the problem.

The starting point of our thesis is exploratory search, a sub-discipline
of Information Retrieval. User modeling is an important element of ex-
ploratory search that has been investigated predominantly in the context of
adaptive learning and adaptive Web systems. The techniques for auto-
mated user model extraction on the Web use machine learning. We apply
exploratory search to the Social Web. We bridge the gap to the Semantic
Web with a pragmatic solution that applies Linked Data solutions.

We think that this thesis provides new insights to readers from all of these
research backgrounds. We are aware that extant knowledge on techniques,
tools, and theory may vary greatly between readers. In the introductory
chapter of this thesis we do not extensively introduce all broached areas.
Depending on the background of the reader, some parts of the introduction
may be too dense or too shallow. We decided to compromise: a presentation

9

that is reader-friendly, but that includes references to existing literature in
the respective research domains, should anyone wish to read a more detailed
introduction on the subject.

1.3 Thesis outline

The thesis is structured as follows: Chapter 2 provides background infor-
mation and summarizes the current, state-of-the-art research research in this
field. In Chapter 3, we contribute a method to extract user models from
social bookmarking services. In Chapter 4, we contribute a method to eval-
uate the extracted user models. In Chapter 5, we contribute a method for
user model integration on the Social Web. In Chapter 6, we contribute
Earlybird, a real-world exploratory tag search engine that was implemented
as the ’proof-of-concept’ to our findings. Finally, in Chapter 9, we conclude
with a discussion of our results and how further research on the topic could
be conducted.

1.4 Summary of contributions

The main contributions of this thesis are: (1) a user model extraction method,
(2) a user model evaluation method, (3) a user model integration method,
and (4) an exploratory tag search engine.

1.4.1 A user model extraction method

First, we contribute a user model extraction method. Our method applies col-
laborative filtering to algorithmically extract user models from folksonomies.
The method has the following properties:

(a) it extracts user models that are important to facilitate exploratory
search.

(b) it transfers implicit knowledge inherent in folksonomies into more for-
mal ontologies.

10

(c) it is fully automized, hence does not require manual intervention in the
extraction process.

(d) it applies collaborative filtering algorithms which are content-agnostic.

(e) it is computational cheap, because it considers only the structural fea-
tures of folksonomies.

(f) it extracts user models comprised of user interest, user similarity, and
user knowledge.

(g) it extracts associative and hierarchical semantic relations between tags.

1.4.2 A user model evaluation method

Second, we contribute a user model evaluation method. Our method consists
of a set of experiments to evaluate user model extraction algorithms for
exploratory search. The method has the following properties:

(a) it evaluates how the extracted user models facilitate the key tasks of
exploratory search: domain discovery and domain learning.

(b) it evaluates non-accuracy measures, which are important in the context
of exploratory search: novelty and coverage.

(c) it relies on the structural analysis of networks that result from pre-
compiling recommendations. It measures the navigability of the rec-
ommendation networks.

(d) it considers the impact of the recommendations on the search results.

(e) it does not require user feedback, hence allowing the algorithms to be
evaluated before they have been deployed in a system.

11

1.4.3 A user model integration method

Third, we contribute a method for user model integration on the Social Web.
Our method allows for web-scale user modeling to improve exploratory search
engines. The method has the following properties:

(a) it defines an abstract architecture for web-scale user modeling on the
Social Web.

(b) it defines a user model content scheme for the Social Web.

(c) it defines a user model representation format that uses Semantic Web
ontologies. The representation format ensures semantic integration of
the user models with popular Semantic Web vocabulary.

(d) it provides a strategy to semantically align complex user models with
generic Semantic Web vocabulary.

(e) it provides a practical approach for user model integration, which can
be adopted easily by existing Social Web services.

(f) it is an evolutionary approach that bridges the gap between Social Web
and Semantic Web technologies.

1.4.4 An exploratory tag search engine

Fourth, we contribute a real-world exploratory tag search engine named
Earlybird. Earlybird is the proof-of-concept of our findings. It implements
the key ideas of exploratory search and allows the search of data collected
from two social bookmarking services, Delicious and Connotea. The contri-
bution has the following properties:

(a) it is a real-world exploratory Web search engine that allows the search
for tags.

(b) it has a live connection to two running social bookmarking services,
Delicious and Connotea.

12

(c) it implements exploratory search facilities for domain learning and do-
main discovery.

(d) it implements our user model extraction and integration methods.

(e) it shows that our user model extraction and integration methods work
in the real-world.

(f) it publishes extracted user models as RDF over a SPARQL endpoint.

(g) it acts as a test framework that allows the implementation, testing, and
comparison of various recommender algorithms.

(h) it collects usage logs for future user-centric evaluations.

Chapter 2

State of the art

Exploratory search is a form of information seeking activity that has gained
increasing importance in the context of the Social Web. Exploratory search
focuses on how to support users to explore information on the Web. The idea
of exploratory search is to combine query-and-response search with browsing.
Exploratory search supports users in discovering topics that are still unfa-
miliar and in deepening their knowledge of the topics that they are already
familiar with. For the users, the two key goals of the exploratory search
are to discover unknown – novel – topics and to gain deeper knowledge of
familiar topics.

The process of exploratory search is fuzzy and highly interactive. The
main challenge faced by exploratory search engines is guiding users through
the interactive search process and to the correct information in a huge in-
formation space, the Web. To guide users, exploratory search engines give
navigation cues that help users to adapt their search, thus pointing it into the
right direction. To suggest helpful navigation trails through the information
space, search engines must understand the needs and goals of users.

User-specific information – preferences, opinions, skills, and existing knowl-
edge of users – help exploratory search engines to estimate the needs and
goals of users. This information is usually referred to as user models. Ex-
ploratory search can greatly profit from user models. For exploratory search
engines, user models represent empirical knowledge about users and past

13

14

search activity which can be used to predict the needs and goals of future
users. Additionally, user models allow the search process to be individually
adapted for each user, based on the user attributes. Hence, user modeling –
the creation, maintenance, and exploitation of user models – is an important
element of exploratory search.

The Social Web creates new potential for user modeling. Social book-
marking services allow new strategies for user model extraction to be devel-
oped. Integration of user models across Social Web services enhances the
quality and coverage of user models. Our goal is to leverage the Social Web
for exploratory search through web-scale user modeling.

The remainder of this chapter is organized as follows. In Section 2.1, we
introduce exploratory search and characterize its goals and challenges. In
Section 2.2, we give a brief introduction to the user modeling process. We
describe how user modeling is involved in the personalization process, how
information required for user modeling can be collected on the Web, and
how user models are constructed from this information. Furthermore, we
describe the information contained within user models and how it is repre-
sented. In Section 2.3, we address user modeling on the Web. We discuss the
challenges of distributed user modeling. Our goal is to present user model-
ing on a web-scale in order to enable exploratory Web search. We describe
existing solutions for distributed user modeling and their limitations for our
needs. In Section 2.4, we introduce key concepts of the Social Web and social
bookmarking services. Finally, we summarize this chapter in Section 2.5

2.1 Exploratory search

Exploratory search can be described as a form of interactive information
seeking activity that extends the notion of information seeking beyond the
traditional lookup-based concept of information seeking most predominant in
Information Retrieval. Most successful search engines available on the Web
today have been developed with Information Retrieval models, which re-
searches how to electronically store, manipulate, retrieve and disseminate in-
formation, and how to retrieve these information efficiently [214, 180, 14, 137].

15

Information Retrieval has strongly influenced how we understand information
seeking on the Web [17]. The predominant model for information seeking in
Information Retrieval research is a query-and-response pattern which is ap-
plied to the lookup of information. The lookup-based Information Retrieval
model involves four components (1) a set of documents that are to be searched
– e.g. webpages, (2) a representation of the documents that simplify or speed
up lookup – indexes or keywords, (3) the information need of the user, and
(4) a search query that represents this information need as a text string (cf.
[225]). The model assumes that any search process begins with the user’s
well-defined information needs. Users translate their information needs into
a textual query – a conception of the user’s information need. The search
engine yields results that match the information need with minimal need for
examination (cf. [225]). The lookup model from Information Retrieval has
been successful developing search engines that support lookup search sce-
narios like fact-finding or question-answering. However, real-life Web search
often extends beyond lookup-based information seeking [19, 156]. Usually,
it involves several query iterations, browsing through results, and a closer
examination of results. The lookup-based retrieval model is not capable of
these activities. Due to this shortcoming, new sub-disciplines of Information
Retrieval have emerged to improve our understanding of how users retrieve
information, leading to a new, broader perspective of the information re-
trieval process that focuses on how users are involved in the retrieval process
and how they interact with search engines: Interactive and Cognitive Infor-
mation Retrieval [178, 195], Information Visualization [237, 72, 133], infor-
mation foraging [168, 184, 54], and exploratory search [225]. The user’s role
in the search process is of central importance to the models of the above-
mentioned areas of Information Retrieval. The extended perspective has
resulted in new information retrieval systems that consider the user‘s task,
domain knowledge, experience, and context as determinants for successful
information retrieval [225, 138, 175, 58, 59].

Exploratory search considers information systems from a user-centric
viewpoint. It actively engages the user in the search process. Exploratory
search assumes that information seeking activity involves mental activities

16

that require more than the pure retrieval of information, e.g., learning and
decision-making [146, 222, 224, 225]. Exploratory search aims at fulfilling
the information-seeking requirements necessary for these activities. In this
thesis, we adopt the following definition of exploratory search:

Exploratory search can be used to describe an information-seeking
problem context that is open-ended, persistent, and multi-faceted;
and to describe information-seeking processes that are oppor-
tunistic, iterative, and multi-tactical. In the first sense, exploratory
search is commonly used in scientific discovery, learning, and de-
cision making contexts. In the second sense, exploratory tactics
are used in all manner of information seeking and reflect seeker
preferences and experience as much as the goal. [222]

Our introductory example illustrates the idea of exploratory search. It
involves many aspects that illustrate what makes a search exploratory. Ex-
ploratory search takes a broader perspective on the information retrieval
process – it involves a broader range of search activity than Information
Retrieval traditional does. It emphasizes the idea of exploration within the
search process. Additionally, exploratory search emphasizes the cognitive ac-
tivities of the users involved in the search process and the aspect of knowledge
acquisition during the search process. Exploratory search aims at knowledge
acquisition during the search process by providing the users with helpful in-
formation. The purpose of exploratory search is to deepen the understanding
of a topic, to enhance the user‘s capabilities or skills, to support decision-
making, and ultimately to support developing intellectual capabilities within
a topic domain.

2.1.1 Exploratory search context

Exploratory search differs from lookup-based search by the context in which
users search – the motivating factors that yield the search. The search con-
text of exploratory search is usually more ill-defined than a lookup-based
search. All kinds of information seeking are motivated by some kind of desire

17

for information that motivates the search process. Lookup-based information
retrieval usually assumes that users have an information need that they want
to satisfy. In exploratory search, however, the motivation is not necessarily
a specific need for information. The motivation can also be curiosity or a
desire to increase knowledge of a particular topic. The goals of a search and
the actions necessary to achieve helpful results may be unclear. Hence, the
context in exploratory search is usually ill-structured. Users usually do not
have any existing domain knowledge or systematic routines that lead to a
better understanding of the domain. A viable strategy to address a com-
plex information seeking task is to decompose the task into smaller and less
complex tasks. However, for an ill-defined problem, it is difficult for the user
to identify sub-tasks in advance. Users can only learn about the structure
of a problem during the search process. They construct a solution to the
problem by accumulating information from the information space during the
search process. The search context is also ill-defined because the informa-
tion need often shifts during the search process. As users gain knowledge
of a topic and gain new insight into a topic, they may redefine their mo-
tivation. The information need is in constant flux. An important aspect
of exploratory search is therefore to support ill-defined information seeking.
Exploratory search engines require facilities that can guide users through an
information space, helping them to accumulate the information that will as-
sist them in understanding, formulating, structuring, and ultimately solving
the ill-defined problem that underlies the search (cf. [225]).

Our introductory example illustrates the ill-defined nature of the infor-
mation need that underlies exploratory search. Initially, Tom‘s motivation
was to keep himself up-to-date with the topic social media. This information
need had no clearly defined goals. Tom assumed that new trends were al-
ways emerging in the domain, but he had no clear idea how these trends were
manifested or how to detect them. Out of curiosity, he regularly checks web-
pages on the topic for any information that had recently emerged. During
the search process, his information need changed as he discovered a sub-topic
which is novel to him: geofencing. This caused him to want to gain initial
information on this novel topic. After becoming familiar with the domain,

18

Lookup Learn Investigate

- Fact retrieval
- Question answering
- Known item search
- Verification

- Knowledge acquisition
- Comprehension / Interpretation
- Comparison
- Aggregation / Integration
- Socialize

- Discovery
- Accretion
- Analysis
- Synthesis
- Planning / Forecasting

Exploratory Search

Figure 2.1: Search activities (based on [146])

he decided he wanted to gain deeper insight into geofencing. Throughout the
search process, Tom‘s information need changed several times.

2.1.2 Exploratory search activities

[146] propose three groups of information seeking activities involved in in-
formation retrieval: Lookup, Learn, and Investigate, see Figure 2.1. The
activity groups categorize common search activities, such as fact retrieval,
knowledge acquisition or discovery of novel information. The groups overlap
and are usually interconnected – a search may well involve search activities
from more than one activity group. The categorization frames the scope of
exploratory search: the main elements of exploratory search are Learn and
Investigate activities.

The categorization helps to differentiate exploratory search activities from
Lookup activities. Lookup aims at retrieving facts and answering discrete
questions. It returns well-structured objects that answer or verify well-
defined questions. Learning, in contrast, is more complex and involves mul-
tiple iterations. Users usually spend some time scanning information; they
accumulate and compare resources and make qualitative judgments. The
goal of the Learning is knowledge acquisition; it implies comprehension and
the interpretation of data. In the third category, Investigation, users ana-
lyze, evaluate, and assess results to gain novel information. They integrate
the novel information into existing knowledge. Investigation also involves
multiple iterations and can take place over longer time periods. The goal of

19

Investigation is the discovery of information. Discovery of novel information
usually emanates from the substantial existent knowledge. Besides discov-
ering novel information, Investigation may also aim at discovering gaps in
existing knowledge (cf. [225]).

2.1.3 Exploratory search behavior

The activities involved in the explorative search process – Investigating and
Learning activities – imply two tasks that must be facilitated by exploratory
search engines: exploratory browsing and focused searching.

Domain discovery

Investigation implies domain discovery. Domain discovery describes gain-
ing novel knowledge based on existent knowledge, i.e., broadening existing
knowledge. The central idea of domain discovery is the discovery of knowl-
edge of novel topic domains, i.e., exploration of novel domains that are poten-
tially interesting for a user. Users extend knowledge beyond already known
topic domains – they broaden domain knowledge. For example, users may
want to discover novel topic domains that are related to their current infor-
mation needs and that meet their general interests.

Domain discovery implies exploratory browsing. Exploratory browsing fa-
cilities support users in discovering novel information. They expose users to
information, with the goal to discover novel domains which are relevant and
appropriate to broaden the users’ domain knowledge. An important element
of exploratory browsing is navigation. Exploratory browsing facilities provide
navigation cues through the information space to discover novel information
and relate it to existent knowledge. For example, exploratory browsing facil-
ities could suggest topic domains that are related to the current search query.
These suggestions help users to discover knowledge from novel domains and
relate it to existent domain knowledge. Navigation cues help to mentally re-
late individual domains to each other. It is an important aspect of discovery,
because it allows one to make sense of new knowledge. Navigation between
known and unknown domains can also serve to identify knowledge gaps.

20

Our introductory example illustrates how exploratory browsing can be
implemented. The envisioned exploratory search engine suggests similar tags
for the current search query tag. It suggests that mobile web and geofencing
are related to social media. Tom can follow recommendations to adapt the
search query. Thus, he can browse through the recommendations to discover
novel domains related to his initial search query. The recommendations are
navigation cues that enable exploratory browsing.

Domain learning

Learning allows for domain learning. The central idea of domain learning is
to extend existing knowledge while inside a specific domain, i.e., to deepen
knowledge. Domain learning describes the process of acquiring more knowl-
edge inside a specific topic domain. Users gain new knowledge about an
already known topic – they learn more inside a topic domain. Users dig
deeper into a domain to retrieve newly available information related to a
topic domain and to reach more specific information from general informa-
tion.

Domain discovery is facilitated by focused search. Focused search facili-
ties help users to gain more specific knowledge of an already known topic do-
main. Navigation is an important element for focused search. Focused search
facilities guide users through information inside a domain, as opposed to ex-
ploratory browsing, which supports navigation between domains. Focused
search usually provides the navigation cues, which help one to reach specific
information from more general information. It supports mental analysis of a
domain. In our introductory example, focused searching is facilitated by tag
recommendations, which enable one to navigate to more specific topics. Our
envisioned search engine suggests hierarchical relations between query and
recommendation tags. For example, foursquare is considered a sub-topic of
geofencing. This information guides Tom to more specific information on the
general domain geofencing.

A further aspect of focused search is long-term learning. Users may reg-
ularly search for a known domain to analyze a domain – to stay up-to-date

21

Information Space

Topic
Domain

Topic
Domain

Topic
Domain

Domain Discovery
Investigate

Domain Learning
Learn

Figure 2.2: Exploration dimensions

with a topic, to see how it develops, or to detect emerging trends. Focused
search facilities may expose users to novel information in topic domains that
they are already familiar with. In our introductory example, focused search
for long-term learning is enabled by the ranking of the search results. Our en-
visioned search engine ranks results according to the date that the webpages
have been tagged at. Tom can regularly perform the same query, social me-
dia, to retrieve the latest tagged information on the topic, which we assume
to be up-to-date information.

Exploratory search relies on a balanced combination of exploratory brows-
ing and focused search. Exploratory search engines must provide facilities for
both activity types. Exploratory browsing and focused search allow one to
explore an information space in two dimensions, see Figure 2.2. On the hori-
zontal axis, users investigate – they discover novel domains and contextualize
it with existent domain knowledge. Usually, domain discovery is enabled by
facilities that support navigation between domains. On the vertical axis,
users explore one domain in depth – they analyze a familiar domain deepen
their knowledge of that topic. This is usually enabled by facilities that allow
search queries to be specified in order to retrieve more detailed information;
it may also involve facilities that support long-term learning.

22

2.1.4 Attributes of exploratory search

To conclude the characterization of exploratory search, we have adopted the
summary of attributes of exploratory search by [225]:

(1) Exploratory search involves multiple query iterations and usually mul-
tiple search sessions as well. The search process lasts longer insofar as it can
extend over days or months. Exploratory search engines should support
search activity that extends over long periods of time. User models that log
searches, interests and preferences of users over sessions support long-term
exploratory search activities.

(2) The information needs that motivate exploratory search are ill-defined
as „open-ended, persistent, or multi-faceted“ [222]. Users are usually unclear
as to what information is available. Furthermore, the task that one is to
complete is often still indeterminate. Information needs often change during
the learning and investigation process.

(3) The goal of exploratory search is not simply finding the right infor-
mation in an information space. Instead, the focus is on learning and un-
derstanding. Knowledge about the context of information is important. The
emphasis of exploratory search is on personal development, not on finding
information.

(4) Interaction facilities during the exploratory search process involve ex-
ploratory browsing and focused search. Only a combination of both facilities
produce effective exploratory search.

(5) Exploratory search may involve collaboration between users. Ex-
ploitation of communities of interest, e.g., from Social Web services [146],
can engage other users in a collaborative search process that utilizes commu-
nity knowledge for the exploratory search process.

(6) Evaluation of exploratory systems is complex. It must consider which
insights and knowledge users gained and how well the learning process is sup-
ported by the system. In particular, how well a search engine facilitates the
key activities of exploratory search, namely, domain discovery and domain
learning must be evaluated [223].

23

2.1.5 Challenges

An important feature of exploratory search engines is their ability to facili-
tate and combine exploratory browsing and focused search. Navigation is a
crucial issue for both activities because it guides users through the available
information to help them solve their search problems:

Exploratory searchers utilize a combination of searching and brows-
ing behavior to navigate through (and to) information that helps
them develop powerful cognitive capabilities and leverage their
newly acquired skills to address open-ended, persistent and mul-
tifaceted problems [225].

Hence, navigation facilities are key elements of exploratory search en-
gines. An important challenge when developing exploratory search engines
is to provide users with the appropriate navigation facilities for exploratory
browsing and focused search. Exploratory search engines provide navigation
cues to guide users to appropriate information. The navigation cues sug-
gest browsing trails to guide the user through the information space. The
search engine must suggest browsing trails for both exploratory browsing and
focused search, because exploratory search relies on a combination of both
activities. The system must allow for navigation in both dimensions in the
information space to enable domain discovery and domain learning.

The challenge of navigation facilities for domain discovery is to provide
navigation cues that guide users to information that (1) is relevant for the
current information need, (2) is novel so that it extends the users’ knowledge,
and (3) relates to familiar domains so that users can contextualize the novel
information with existing knowledge.

The challenge of navigation facilities for domain learning is to provide
navigation cues that guide users to information that (1) has an appropriate
level of specificity for the current information need and the users‘ existent
knowledge, and (2) relates to familiar information , allowing users to con-
textualize the information; navigation cues usually guide users from general
information to more specific information on a domain.

24

The challenges imposed by the navigation for domain discovery and do-
main learning suggest browsing trails that are context- and user-specific. De-
ciding which information is novel to a user, which particular information need
a user has, and which existent knowledge is assumed to have already, requires
extensive user-specific knowledge. Therefore, user models are an important
element of exploratory search. The personalization of exploratory search en-
gines enables navigation cues for a given search context and a given user,
based on the user‘s knowledge, interest, and social affiliation. Particularly,
recommendations are a viable technique to guide users through the informa-
tion space by suggesting queries, webpages, or similar users. Recommenders
can make user-specific recommendations, which then enable the personalized
navigation trails that guide users to the appropriate information.

2.2 User Modeling

Adaptive Web systems automatically adapt or personalize webpages andWeb
services to satisfy the needs and preferences of specific users by considering
knowledge gained from the individual user‘s past behavior [40, 43, 42, 69].
Adaptive search engines dynamically deliver customized information through
automated prediction of the user‘s needs [204, 38, 197, 207]. User models
are required if systems are to adapt information based on users‘ knowledge,
interests, preferences, opinions, or past activities. Personalization has been
successfully incorporated into Web search [78, 150, 46, 194, 202, 142, 230]
and is an important strategy to improve navigation facilities for exploratory
browsing and focused search in exploratory search.

The goal of personalization is to customize information for users. There-
fore, a personalized system must have knowledge of the user‘s interests and
preferences. This knowledge can be expressed either explicitly by the user or
acquired by the system automatically or semi-automatically. Implicit user
modeling has proven to be more powerful in practice. The goal of personal-
ized search engines is usually to customize information access without requir-
ing the user to express preferences explicitly, but, rather, to „provide users
with the information they want or need, without expecting from them to

25

user modeling

adaption

data collection

Adaptation effect

Input data

User model

Figure 2.3: Personalization process (based on [39])

ask for it explicitly“ [158]. To provide users with useful information without
being explicitly asked, the system must somehow infer what individual users
might want or need. This inference is based on how the user has interacted
with the system or other systems earlier, e.g., by analyzing earlier queries
and clicks of the user. Thus, personalization is usually based on automati-
cally inferred knowledge about the user, which is acquired by collecting and
analyzing user behavior. The automated learning of knowledge relevant for
personalization is an important component of personalized systems in which
machine learning techniques are usually applied to learn about users from
collected data [150, 46, 194, 202, 142, 230, 171]. The gained knowledge is
user-specific in that it represents the preferences and interests of individual
users. This user-specific information models individual users in the person-
alized system and are referred to as user models. User models are the key
prerequisite for personalized systems.

2.2.1 Personalization process

The user model acquisition process is referred to as user modeling. In the
following sections, we review how user modeling is involved in the personal-

26

ization process and discuss the user modeling in more detail. The personal-
ization process involves three stages: (1) collecting data about the user, (2)
constructing or updating the user model, and (3) applying the user model to
create an adaptation effect (cf. [39, 69]). Figure 2.3 shows how user modeling
relates to the personalization process.

Information collection

The first step of the personalization process is collecting information about
users. In this section, we explain which information is relevant for person-
alization. A prerequisite for the collection of user-specific information is the
identification of individual users. Therefore, techniques for user identification
are described, followed by a description of the two methods for information
collection: explicit and implicit information collection.

Relevant data The input data for the personalization process can be cat-
egorized into usage data, content data, structure data, and user data (cf.
[87]).

(1) Usage data describe the navigation behavior of users on a webpage –
for example querying history [194] or click-through history [118, 171, 120].
Usage data are collected, traditionally, from server access logs. The access
logs record which resources the user accessed and the specific time those
resources were accessed. On the Social Web, the notion of usage data becomes
more complex [46, 150]. Contributions from users at Social Web services
(bookmarks, comments, blog entries, tweets, private messages, etc.) are
all relevant usage data but must be interpreted differently. On the Social
Web, logging usage data is a more complex issue than simply logging HTTP
requests on a server. Logs usually take place at application level to fully
leverage the application‘s personalization potential. For example, to create
usage data at an application-level, a Social Web service may log the webpages
a user bookmarks, and the tags the user attaches to the webpages.

(2) Content data represents the actual content delivered to the user, which
includes unstructured text, images, videos, or structured content such as
query result lists or RSS feeds.

27

(2) Structure data describe how the content delivered to the user is struc-
tured. Markup and hyperlinks have traditionally been a relevant structuring
element on the Web [81]. On the Social Web, relations between users in a
system, e.g., friends and groups in a social network, are important structure
data [114]. User modeling usually requires knowledge of both the content and
structure of a resource to interpret the usage data. For example, to interpret
a user‘s navigation on a webpage, it is necessary to combine the usage data
with the structure of the page, i.e., which navigation options were available
to the user [166].

(3) User data represent information about the user, e.g., demographics,
user knowledge, skills and capabilities, interests and preferences, goals and
plans. They are created either by the user, explicitly through the creation
of a model or implicitly through analysis of usage data. For example, in the
context of the Social Web, explicit and implicit user data can be collected
from social network profiles [46]. Alternatively, usage data, like tagging be-
havior in a social bookmarking service, can be analyzed to derive preferences
implicitly [186]. Explicit models are often subjective and thus problematic –
users tend to bias user profiles intentionally or unintentionally. Implicit mod-
els created by analysis of usage data are usually more reliable and powerful
[203]. However, the border between explicit and implicit modeling is blurry.
Explicit user data can often be enhanced by statistical analysis to reveal
further, underlying, implicit information. For example, explicitly created
user data like ratings or reviews for items are clearly relevant as such. How-
ever, they are highly subjective and possibly more useful when abstracted or
combined with further information. Machine learning applied to a greater
amount of rating data can yield user data that are often more reliable and
meaningful than individual user ratings.

User identification Users must be distinguished in order to collect in-
formation about individual users [69]. Data models of personalized systems
are user-centric [5], i.e., the output of the user modeling process is informa-
tion specific to individual users. Therefore, all information collected must be
attributable to individual users or user groups to create user models. [78]

28

distinguish five methods to identify individual users in Web-based systems:
logins, cookies, session IDs, software agents, and enhanced proxy servers.

(1) Proxy servers require users to connect to a system through a proxy
server that identifies the user.

(2) Software agents are agent-like applications that log information from
several applications on the client computer and send them to a server. En-
hanced proxy servers and software agents have been used mainly for desk-
top applications or other systems that do not run in a Web browser. In
browser-based systems, logins, cookies, and session IDs are more popular
user identification methods.

(3) Logins are the most reliable method for user identification. Users
register to a system once and sign in each time they visit the system. One
drawback of the login method is that it requires intervention of the user.
Users often do not want to register or sign into to a system before using it.

(4) Cookies are not as reliable as the login method, but don’t require
users to actively intervene. A user ID is created when a user visits a system
for the first time. The ID is stored to a cookie in the user‘s browser. When
the user returns, the system can identify the user by the cookie. Cookies are
popular because they are unobtrusive. However, they do have shortcomings:
when multiple users use the system from one computer, their models mingle.
Also, when a single user uses a system from multiple computers, the user will
be given several IDs. Finally, if users delete cookies, their models are lost.

(5) Session IDs can be used to identify users for a short time, usually
during a single browser session. Here, users are assigned a session ID each
time they visit the system. This ID is valid only during the current session.
Thus, session IDs do not allow the building of a long-term user model.

Information collection Once a system has identified users, it can collect
information about them. In the following, we describe various methods for
information collection. We distinguish the explicit information collection
method from the implicit as well as hybrids of both methods. Technically,
information collection occurs either at the server or at the client. In web-
based systems, the collection is mostly at server-side.

29

One strategy to collect information on users is to ask them about their
preferences, interests, demographic information, etc. This is called explicit
modeling. Explicit modeling makes use only of information that has been
explicitly and voluntarily expressed by the user. Users are required to ex-
press interests or preferences and to deliver this information to a system, by
means of registration forms, questionnaires, or other feedback mechanisms
on the system‘s user interface. For example, users may rate items, like arti-
cles or products, or select topics or categories of interest from a predefined
list. Explicit information collection has become more popular in Social Web
services, which often involve a high level of user engagement. A popular
method for explicit feedback collection on the Social Web are ratings, where
users express their opinion on an item by selecting their preference on a pre-
defined scale. In many Social Web applications, i.e., Qype1, or Ciao2, users
contribute and share ratings voluntarily. However, explicit user information
collection has shortcomings:

(1) Explicit collection depends on the user‘s willingness to provide infor-
mation. Users are usually unwilling to provide information because explicit
collection is obtrusive and distracts the user‘s workflow. Explicit informa-
tion collection places an additional burden on the users [78], and they usually
don‘t want to invest extra time when they use a service [171]. For example,
some services require the user to express preferences or answer questions
during the sign up process. Users tend to provide only small amounts of in-
formation here, even though they would probably save time later by getting
better recommendations. This effect becomes even more of an issue with
user information that updates regularly. Depending on the context, interest
for specific items may change fast. For example, users may be interested in
products when they plan to buy them, but this interest usually decreases
after the purchase. Users do not normally update their models regularly be-
cause it is a tedious task. Systems that regularly ask users to update their
profile information are perceived as obtrusive.

(2) Explicitly expressed opinions are often intentionally biased by users.

1http://www.qype.com (last access: 2011-05-17)
2http://www.ciao.com (last access: 2011-05-17)

30

Sometimes, users don‘t want to provide information to services on the Web.
They tend to conceal information about their preferences due to privacy con-
cerns. For example, users may not want to provide demographic information
like their age, gender or address to a service. They may, thus, either refuse
to provide information or provide wrong information.

(3) Explicitly expressed preferences are highly subjective and hard to
compare. Users may obscure information unintentionally, even if they do not
bias their preferences willingly [185, 98]. For example, users may uninten-
tionally use different values to express the same opinion when rating items.
One user might rate an item with four points on a scale of five to express
that she likes it, and another user might rate the item with three or five stars
to express the same preference.

Implicit information collection is an alternative to explicit profiling that
overcomes these shortcomings [190]. Implicit modeling collects information
unobtrusively, without explicit user interaction. This strategy has been
proven to create equally good or better user models than explicit model-
ing [203]. Implicit collection logs the data that has been produced implicitly
by users through their behavior. Depending on the application, a variety
of implicit information may be relevant. For example, implicit collection
may log webpages searched for [194] or bookmarked [124] and click-through
rates [118, 171, 120]. Implicit modeling is generally more powerful because it
produces more data and updates faster than explicit information collection.
This allows for larger and more dynamic user models. Most real-world per-
sonalized systems rely on implicit information collection or a combination of
explicit and implicit collection.

A problem of implicit collection is that data are more noisy than the data
from explicit modeling. For example, clicking on a specific search result in
a search engine does not automatically mean that the result was helpful for
the user [118]. Implicit data collection usually involves data cleansing, pre-
processing and modeling before the collected data can be further analyzed
for personalization [69]. In this additional step data are categorized to fit
a conceptual data model, which is then used in the further personalization
process. Often, machine learning techniques are applied to categorization.

31

For example, it may be necessary to extract the relevant features with natural
language processing techniques from free text collected from webpages. Even
when collecting structured data, like RSS or Atom feeds from various sources,
it may be necessary to extract the relevant elements and aggregate the data
into a single data format.

User model construction

Once the data about the users has been collected, the personalized system
can construct user models. In the model construction step, analysis tech-
niques are applied to the collected information to create relevant knowledge
– user models – for the adaptation step. This step results in the creation of
user models that represent the properties of individual users relevant for the
application [5]. The user model construction step usually involves machine
learning to discover patterns in the data [219, 242].

Machine learning statistically analyzes large data sets to predict future
trends and behaviors based on the past events represented by the input data
[27]. „The goal of machine learning is to program computers to use example
data or experience to solve a given problem“ [4]. Machine learning algorithms
„scour databases for hidden patterns, finding predictive information that ex-
perts may miss because it lies outside their expectations“ 3. In the context
of user model construction, all information collected in the personalization
process is treated as examples that illustrate user behavior. Machine learning
algorithms automatically recognize complex patterns and derive user models
from the observed examples. Three machine learning techniques commonly
used for automated user model construction include: classification, cluster-
ing, and recommenders.

(1) Classification algorithms automatically categorize items based on past
events. They predict the pre-defined category an item belongs to based on
the available examples: the training set. A classification algorithm learns
to make decisions from the training set in a process referred to as training.
The result of the training process is a model – a „function that can then be

3http://www.thearling.com/text/dmwhite/dmwhite.htm (last access 2011-04-22)

32

applied to new examples to produce outputs that emulate the decisions that
were in the original examples. These emulated decisions are the end product
of the classification system“ [162]. The goal of classification algorithms is to
automatically classify items into pre-defined categories: „[c]lassification is a
decision based on specific information (input) that gives a single selection
(output) chosen from a short list of pre-determined potential responses. [...]
The output of a classification system is the assignment of data to one of
a small pre-determined set of categories. The usefulness of classification is
usually determined by how meaningful the pre-chosen categories are“ [162].
For example, a personalized search engine may classify users as expert or
non-expert to predict whether or not they will be interested in webpages
from a certain Web domain.

(2) Clustering algorithms analyze a set of items in order to organize it
into groups of similar items [20, 113]; these groups are referred to as clus-
ters. „[C]lusters could be thought of as a set of items similar to each other in
some ways but dissimilar from the items belonging to other clusters“ [162].
Clustering algorithms differ from classification algorithms in that they do not
require pre-defined categories. Instead, clustering algorithms independently
observe from the example data which attributes of the data may have im-
portant distinctive features, and automatically create categories from these
observations. A crucial issue in clustering is automatically finding attributes
to define the similarity of items. A key potential of clustering is the detec-
tion of unforeseen structures in data. For example, a personalized search
engine may detect that level-of-activity is an important attribute to distin-
guish users. The system may detect three existing clusters of users with
similar activity patterns. The system would then automatically filter out
certain results according to the user‘s cluster affiliation.

(3) Recommender algorithms automatically identify items that are rel-
evant for a specific user. They can recommend interesting items to users,
hence filtering sets of items to choose the items that are relevant to a partic-
ular user. Filtering can be achieved with two strategies. First, content-based
filtering algorithms rely on the attributes of items that are to be filtered
[143, 164]. For example, a personalized search engine may recommend a

33

webpage to a user because the user liked another webpage with similar con-
tent. Second, collaborative filtering algorithms rely on the shared preferences
of users to filter items [182]. For example, a personalized search engine could
recommend a webpage to a user because another user with highly similar
preferences liked the webpage.

User model construction by machine learning algorithms is usually com-
putationally costly. Therefore, the data analysis is usually conducted offline
in a live system, i.e., the user models are pre-computed to be utilized later,
during runtime.

Adaptation

Once the user models have constructed, the personalized system adapts the
information presented to the user according to the information that was taken
from the user models. [131] distinguish three possible levels of adaptation.
(1) Content adaption includes multiple methods to personalize the content
delivered to the user according to the user‘s model. It can take several forms:
a personalized webpage on a particular topic domain may provide optional
explanations to users that do not have knowledge about the presented topic
and omit these explanations for users with extensive domain knowledge. A
personalized search engine may suggest topics that a user may be interested
in based on the current search context. It may also suggest breaking news
about a topic that a user regularly searches. (2) Structure adaption describes
methods to adapt „the link structure of hypermedia documents or its pre-
sentation to users“ [131]. While content adaption changes the information
which is delivered to the user, structure adaption changes how information
is structured or interlinked. In the context of exploratory search, structure
adaption is usually used to deliver personalized navigation structures for ex-
ploratory browsing [24]. For example, a personalized search engine may rank
search results according to their relevance for the user. It may also annotate
results – a rating-like annotation indicates relevant links on the result page.
(3) Presentation adaption describes methods to adapt the format and layout
of the content delivered. For example, a personalized system may adapt the

34

layout of a webpage according to connection speed, hardware device, or the
cognitive abilities of the user. Additionally, the modality of content may be
adapted. For example, audio may be delivered as text if the user‘s device
does not support audio playback (cf. [131]).

We have described the process that underlies personalization systems:
collection of user-specific information, user model construction thereof, and
adaptation of the content and structure of the delivered information based on
the user models. In the following sections, we address the question regarding
what information the user models are to contain, and how this information
can be represented to enable adaptive Web systems.

2.2.2 User model content

The key goal of user modeling in the context of exploratory search is to be
able to predict what information a user needs in the current search context.
The user model of an exploratory search engine should model all information
that could possibly be relevant for the adaptation. In the following sections,
we describe what information is stored in the user models. The content
that is usually represented in user models (cf. [43]) is categorized as follows:
knowledge, interest, goals and tasks, background, individual traits, context
of work, and application-specific content.

Knowledge

Knowledge is the most common content type in personalized systems. Much
research on user modeling originates from the context of adaptive learning
systems [43, 41, 169]. For adaptive learning systems, existing user knowledge
of a domain is required to produce a personalized presentation of the learning
content. Knowledge is also highly relevant for exploratory search engines.
For example, a search engine could filter results for already known webpages,
or it could bias results towards expert content when the user already has
extensive knowledge of a topic domain. Knowledge is a user feature that
usually changes over time: users can gain new knowledge and forget old
knowledge – knowledge of a domain can increase or decrease. Therefore,

35

1. Science

2. Music

3. Politics

4. Sport

Tom Eric Steve

0.8 0.4 0.6

0.5 0.1 0.3

0.7 0.9 1.0

0.0 0.2 0.5

Figure 2.4: Scalar model

user models that model knowledge must be highly dynamic and regularly
updated. [43] distinguish two approaches of how knowledge can be modeled:
scalar models and structural models.

(1) Scalar models provide a simple approach to model user knowledge.
They assess knowledge of a user for pre-defined knowledge domains on a
linear scale, see Figure 2.4. For each knowledge domain, the user‘s knowledge
state is assessed as either quantitative or qualitative. Quantitative scalar
models represent the level of knowledge numerically, e.g., in a range between
0 and 1; qualitative scalar models use predefined values, e.g., poor, average,
good. Because of their simplicity, scalar models are easy to implement into
personalized systems. A number of early systems have used scalar knowledge
models and shown that these models can provide reasonable adaptations
despite their simplicity [31, 30, 18, 71]. However, a key shortcoming of scalar
models is that they provide only a rather coarse granularity of knowledge
domains. They are thus less suitable for fine-grained adaptations.

(2) Structural models are an enhancement of scalar models. They provide
a more fine-grained approach and allow for more precise knowledge modeling.
In the real world, user knowledge of a domain can vary in the different parts
of a domain. For example, a user that has knowledge about social media may
have advanced knowledge of the mobile web, yet know little about geofenc-
ing despite the fact that both topics are subfields of social media. Structural
models take this into consideration. They divide the user’s domain knowledge
into independent fragments. These domain fragments are much more precise
than the overall domains. The most popular type of a structural knowledge
model is the overlay model, which was initially developed in the context of

36

Social media

Mobile Web Geofencing

Foursquare

0.8

0.5 0.2

0.0

expert-level knowledge

user knowledge

Figure 2.5: Overlay model

adaptive tutoring systems 4. Overlay models represent user knowledge as a
weighted subset of expert-level knowledge, see Figure 2.5. The expert-level
domain knowledge is assumed to represent the overall domain knowledge.
User knowledge is modeled as independent fragments of this domain knowl-
edge. A quantitative or qualitative value exists for each domain fragment,
representing whether or not, or to what degree the user has knowledge of
this fragment.

Interest

User interest is a highly relevant content type in the context of exploratory
search. Access to information on the Web is largely interest-driven [43].
As opposed to learning systems which are driven mainly by learning goals,
exploratory search engines, online stores, news coverage, music and video
recommendation services, etc., are driven primarily by user interest. There-
fore, modeling of user interest has gained attention with the development of
these services [26, 165, 11, 10, 107, 226].

Usually, interest is represented as a weighted set of keywords for each
user. The keywords represent interest domains and weight values describe
the level of interest in the domain. This keyword-based interest modeling
approach has been criticized for oversimplifying. Concept-level models that
model interests as concepts allow for a more accurate interest modeling [82].
These models represent interest as concepts which can be further divided into

4http://dspace.mit.edu/handle/1721.1/5772 (last access 2011-04-22)

37

subsets. Additionally, concept-based interest models can overlay the interest
model of a specific user with a domain model. This approach is similar to
the aforementioned overlay model for knowledge modeling described above.
The approach requires a domain model that models all possible interests.
Then, the (weighted) interest of the individual users is projected onto the
domain model. Although overlay interest models can be more powerful user
models, their use is still limited in real-world systems. One reason for this
is their need of a complete domain model, which is problematic to create in
open-world systems where a clear-cut domain can hardly be identified, cf.
Chapter 3. [43] state that two groups of systems have been established. The
first group, closed-corpus systems, usually uses overlay interest models. The
second group, open-corpus systems, like most web-based systems, still uses
keyword-based interest models. As we will show in the remainder of this
thesis, these groups could converge again due to the potential of automated
user model extraction from social bookmarking systems.

Goals and tasks

The goals or tasks of users define the purpose for the interaction with a
personalized system. In the context of exploratory search, user goals are also
referred to as information need [32] or search context [146]. For example,
a goal could be to look-up information to answer a specific question or to
discover a novel webpage on a topic. To know what the user aims at achieving
when interacting with a system can be highly relevant to create adaptations
[177]. Personalized systems usually categorize the current goal of a user
into a pre-defined set of possible goals to select an appropriate adaptation
strategy. Hence, goals are usually modeled with a goal catalog – a predefined
set of possible goals that are supported by a system (cf. [43]). Similar to the
above-mentioned overlay models, the goal catalog approach assumes a global
set of possible user goals. For each individual user, one goal is selected from
the catalog to model the user goals. Alternatively, a system can calculate the
probability that a goal is one of the user‘s goals for each goal in the catalog
[151]. Typically, the goal catalog is a small set of independent goals. In more

38

elaborate systems, relationships between goals can be used to represent a
goal hierarchy that is similar to the fragments of knowledge domain models
described above. In these systems, higher-level goals can be automatically
decomposed into subgoals.

The identification of goals is a challenge for goal modeling. Goals can
change fast – each time the user visits the system, or even during a single
session. Furthermore, the goals underlying exploratory search are ill-defined.
There are two strategies of goal model recognition: manual and automatic
goal recognition. In the manual approach, the user manually selects her
current goal from the catalog manually. Explicit manual intervention is,
however, cumbersome for users and hence problematic, for reasons previ-
ously explained. Algorithmic approaches where examined to identify user
goals automatically [117, 109]; however, automated goal recognition remains
difficult to achieve.

Background

Background is defined as a set of features related to users that are not directly
related to the core domain of a specific system, but that can still be useful
for the adaptation process [43]. Background information can be demographic
information, skills, language abilities, job responsibilities, etc. For example,
a search engine may model the user‘s professional role. From this, it can infer
implicit information from the user‘s level of knowledge in particular domains.
Another relevant background feature is the user’s language abilities – a search
engine can adapt the content according to the languages that a user is able to
understand. Background is usually modeled and handled rather simplisticly.
As opposed to knowledge or interest, background does not normally change
very fast. It is hardly possible to implicitly infer background. Therefore,
background information is typically provided explicitly by users.

Individual traits

Individual traits are a set of features that describe the user as an individual.
They contain features such as like cognitive styles and learning styles that

39

can be assessed through psychological tests. The cognitive style of a user
defines her approach to organizing and representing information [209]. The
learning style defines how users prefer to learn [48]. Although it is obvious
that individual traits can play an important role for personalization, they
have not been used in real-world applications yet.

Context of work

Context of work summarizes the user‘s context – time, location, physical en-
vironment, social context, user platform, etc. It is relevant, predominantly,
from the perspective of mobile or ubiquitous computing [62, 67]. For exam-
ple, context can be used to adapt to the user hardware – screen resolution,
bandwidth, and input devices. Also, the time and location of the user are
important context features to deliver appropriate content.

Application-specific content

The content categories discussed provide a generic view on the user‘s features.
In real-world applications, developers often go a more pragmatic way. Often,
it is not necessary to abstract user models so that it can be shared or re-
used by other applications. Therefore, user models in real-world personalized
systems are often highly specific for a given use case [21]. In practice, user
models are usually tailored to the content that the system provides. For
example, a personalized book store may model application specific content
like purchased books, a user‘s wish list etc. Other systems may model only
content specific to music [3], movies [88], or news [57].

2.2.3 User model representation

User model representation defines how, and in which complexity, users are
modeled. The user model representation is often specific to an application
context. It depends on the techniques applied for user modeling extraction
[5], on the data available, or the required granularity of the models. In
the following sections, we discuss three kinds of user model representations
that have been used successfully in real-world applications: keyword models,

40

semantic network models, and ontology models. Keyword user models model
a simple list of items relevant for a user [5]; semantic network-based models
and ontology models are more complex.

Keyword models

Keyword-based models are the most simple and the most common represen-
tation of users [77]. They consist of a set of keywords that represent the
user‘s preferences. In some systems, keywords are grouped into predefined
categories, so that a profile consists of several keyword sets, one for each cat-
egory. In most applications, keywords are weighted. Weights associated with
keywords represent the degree of interest, so that a user model consist of a
set of keyword-weight pairs. A numerical value between 0 and 1 is usually
used for the keyword weights. The preference for a keyword is higher when
the weight is higher.

In the most simple case, keywords are single words which can be ex-
tracted from content collected from the Web [227]. Important words or word
sequences can be extracted from the text of each webpage a user visits and
stored into the user‘s keyword model. From new webpages, important words
can be extracted the same way and matched against the keywords in the user
model. Social bookmarking systems provide an even more simple way to re-
trieve keywords for modeling, since tags can already be regarded as keywords
[119]. In both examples, keywords are regarded to be identical to concepts.
This can, however, be oversimplifying. There is a distinction between key-
words and concepts. For example, a user interested in internet marketing is
probably not interested in both internet and marketing, but in the concept
internet marketing. In this case, a tuple of words is necessary to model the
concept internet marketing. It may be necessary or more accurate to model
concepts with broader terms, represented by a tuple of words. This prob-
lem must be considered not only when creating keyword profiles from text.
For example, when extracting models from tags in a social tagging system,
tags are usually regarded as keywords. Tags are, however, not necessarily
identical with concepts. Single tags can represent concepts already, but they

41

don‘t have to. A set of tags can have a different meaning than the individual
tags. Users may use the two tags internet and marketing to tag a resource on
internet marketing. The disparity between keywords and concepts is a ma-
jor weakness of keyword based models. The problem is addressed by more
complex representations of user models, like semantic network or ontology
models.

Semantic network models

Semantic network models seek to overcome the disparity of keywords and
preferences inherent in keyword models by expressing broader concepts rather
than keywords. Semantic networks consist of a weighted network of nodes,
where nodes represent keywords and edges represent connections between
terms (cf. Chapter 3). Both nodes, and edges can be weighted. The notion
of edges and weights depends on the application.

[80] use semantic networks as a solution to create concepts, i.e., broader
preferences. Their user models consist of a set of nodes that represent con-
cepts. Additionally, their models can contain keywords that are connected
with concepts. Keywords are connected with concepts by weighted edges.
The edges represent the affiliation of a keyword to a concept for the specific
user. This representation allows to designate keywords to concepts to disam-
biguate different meanings of the keywords. For example, two models may
contain the keyword java. In one model the term is connected to a concept
programming ; in another it is connected with indonesia. Hence, this rep-
resentation of the user model supports disambiguation of the terms by the
connection to concept nodes. Additionally, concept nodes can be connected
to each other by weighted edges when they are semantically associated.

Ontology models

Ontology models are a more complex representation for user models. They
have been introduced independently from the Semantic Web [122, 53] but
gained new attention with its development. Two general approaches for on-
tology models exist. The first models concepts in a shared vocabulary; the

42

second uses ontology languages to structure the user model internally.

(1) The first approach seeks to extend the semantic network approach
with more expressive descriptions of concepts [77, 236, 7, 208, 173]. Ontol-
ogy models consist of a set of weighted concepts. The concepts are related
to each other, so that they form a network. Edges in the network describe
semantic relations between the concepts, e.g., hierarchy. Typically, ontology
models map keywords against existing reference ontologies (cf. [77]). A num-
ber of systems have shown how user models can be mapped onto Semantic
Web ontologies [77, 97]. The idea of this approach is to attribute terms in the
model to concepts in an ontology. This approach of ontology models thus
addresses the above-discussed problems of keyword and semantic network
models; they model semantic, and thus hierarchical, relations between con-
cepts. Therefore, similar to semantic network profiles, synonym terms can
be disambiguated more easily. Additionally, hierarchical structures apparent
in ontologies can be leveraged by the system, e.g., to make generalizations
(cf. [77]): when a user model contains a preference for the concept social
media, a system may infer that the user is also interested in foursquare, if
foursquare is modeled as a sub-concept of social media.

A key restriction of this approach of ontology models is that it often
requires existing ontologies which the user models are mapped to. Ontologies
may not exists for all domains or topics that are covered by a user model.
For many concepts, no appropriate ontological mapping may be available.
Additionally, it is rather restrictive to map terms onto existing ontologies,
because it allows only to map to predefined categories. On the Web, new
concepts emerge constantly which are possibly not covered by the mapping
ontology used.

(2) The second approach for ontology models seeks to share and interlink
user models across applications by using ontologies [235, 100, 25, 7, 101]. The
quality of the adaptation in personalized systems depends on the size and
quality of user models. Thus, aggregation and integration of user models
is desirable. Ontology models have the potential to create re-usable and
sharable user models. Two requirements have to be fulfilled to achieve this.
First, the models must use a shared representation of concepts, like it is done

43

in the first approach. Second, the models must use a shared vocabulary to
describe the structure of the model – users, items, preferences, weight, etc.

Until now, a shared ontology that is used successfully across existing,
real-world, personalized systems on the Web does not exist. In the following
section, we discuss the reasons for this, and further challenges that have to
be overcome for distributed user modeling on the Web.

2.3 User modeling on the Web

Early adaptive Web systems were non-distributed, or closed, self contained,
systems [43, 129]. In such systems, it is well-known which software compo-
nents exist, and which role they have. All steps of the personalization process
are conducted by a closed and usually centralized system. User modeling is
typically conducted on a centralized user modeling server.

More recent systems have a distributed software architecture [66]. They
allow to share user models between loosely coupled system components that
are distributed across the Web and made user modeling more powerful. In
these web-based systems, a variety of heterogenous user models are dis-
tributed over various independent user modeling components. Distribution of
user modeling across the Web yielded new challenges to the software architec-
ture and user model representation. User model integration is a prerequisite
of distributed adaptive Web systems. The concept refers to the syntactic
and semantic integration of user models generated by various independent
software components involved in a distributed user modeling system. Dis-
tributed personalized systems share user models across components. Several
components of such systems can create, modify, and apply user models. User
model integration ensures that all components involved in the system can in-
terpret the shared user models.

With the current establishment of personalized systems on the Social
Web, distributed user modeling enters a next stage [207, 128]. On the So-
cial Web, user modeling systems scale up to a so far unequalled size. User
modeling has the potentials to grow to a web-scale – hundreds of Social
Web services with millions of users can be integrated into distributed user

44

modeling systems. Web-scale user modeling yields new challenges for user
model integration not present in early distributed user modeling systems.
The Social Web is an open world where everybody can contribute anything.
In this world, user model standardization and integration are complicated.
User model integration attempts have to consider the existing architecture
and technical standards of the Web. They also have to take into account its
openness regarding data publishing, which implies the questions of trust, and
(in)completeness, contradiction, and reconciliation of user models. Moreover,
the sheer quantity of data published on the Social Web requires systems that
are extensible and highly scaleable.

In the remainder of this section, we discuss the key challenges of web-
scale user modeling (Section 2.3.1) and important solutions that address the
challenges (Section 2.3.2). We conclude the section with a discussion of the
existing solutions (Section 2.3.3).

2.3.1 Challenges

We highlight three challenges of user model integration on a web-scale: het-
erogenous and incomplete user models, technical unreliability of system com-
ponents distributed across the Web, and privacy considerations (cf. [66]).

User model heterogeneity

An important challenge for user model integration is the heterogeneity of the
user models. The heterogeneity problem exists on two levels, on the content
and on the format level. The two levels refer to two aspects of user model
integration: what is shared, and how is it shared.

Heterogeneity of user model content refers to what is shared. The user
model content heterogeneity results from the diverse internal functionality
of systems that create user models. Most personalized systems tailor user
models to their specific goals and requirements [21]. The requirements of
a system are often defined by the application domain that is served by the
personalized system. Systems from other domains often cannot re-use these
models, because they require different content.

45

Heterogeneity of the user model representation refers to how user models
are shared. The problem here is, that no established, commonly agreed-
on standard representation for user models exists. Most existing systems
internally represent user models in proprietary or unspecified data schemas
and formats [213]. Thus, it is likely that different systems on the Web store
the same information in different representations. The lack of a shared data
format partly results from the fact that it must be defined what should be
modeled before it can be defined how it should be modeled. Components of
a distributed user modeling system have to agree on the content that should
actually be modeled before they can agree on a shared format.

The representation heterogeneity problem comprises two dimensions: syn-
tactic and semantic heterogeneity. Syntactic heterogeneity refers to the data
format in which user models are stored or published, e.g., the markup lan-
guage. Semantic heterogeneity refers to the data model schema, i.e., how the
user models are organized and should be interpreted.

Content and representation integration entails another challenge: incon-
sistency of information [174]. Due to the openness of the Web, it is likely that
systems face conflicting and inconsistent user model data when integrating
user models from various sources. The resolution of conflicting information
from resources is thus an inherent problem in the integration of heterogeneous
resources.

Technical unreliability

Web-scale personalized systems consist of a number of independent systems
of different providers connected over the Web. Many of these systems them-
selves rely on further systems. This raises practical challenges concerning the
performance of user model integration. User model integration requires data
transfer through potentially slow, unreliable, and error-prone software com-
ponents [21]. Integration of user models faces the same technical challenges
as all other distributed systems on the Web: systems may be unavailable due
to connectivity problems, workload, or other reasons [65, 201]. The architec-
ture of personalized systems on the Web must thus be fault-tolerant for all

46

components involved; e.g., fall-back strategies must exist if a component does
not react (in time) [201]. Scalability and extensibility are another relevant
aspect of practical implementation of user model integration [37]: open-world
systems can grow very large in an uncontrollable manner; moreover, addi-
tional, unpredicted requirements can emerge after a system has been setup.
User model integration has to comply with these technical requirements of
web-scale distributed systems.

Privacy

Privacy has always been a critical issue for user modeling and is a key chal-
lenge for user model integration on the Web. User models inherently contain
private and sensitive user-specific information. Privacy becomes even more
relevant in systems that are distributed on the Web [205, 130, 52, 179]. In
self-contained systems, the user usually gives sensitive information to a sin-
gle provider of a personalization system. In web-scale systems, user infor-
mation is potentially shared with third parties. Third parties can aggregate
information from further data providers and re-publish newly created user-
specific information. Nobody wants their private information to be shared
in-transparently and uncontrollably with other, unknown, parties. Users
must be given control about their user model information. Many reputable
systems therefore affirm in their privacy policies that user information is not
shared with third parties – an exclusion criterion for data sharing. How-
ever, privacy protection does not go along with data enclosure. Users can
be given control over their data to enable sharing of user model information
with other systems. However, this requires transparency and controllability
for user modeling. Creation of trust in systems trough transparency and user
control is the key to face information enclosure by users [52]. In trustwor-
thy systems, users are more like to actively consent to data sharing [179].
Users must be allowed to actively decide whether and which data they share
with which parties. Technical solutions for privacy-preserving user model
integration are thus essential for web-scale personalized systems.

47

Evidence
Producer

Evidence
Producer

Broker

Filter

Modeller

Modeller

Modeller

observe user

observe user

reason
about

publish

publish

subscribe /
route

pubslish /
route

query /
response

query /
response

reason
about

Figure 2.6: MUMS architecture (based on [37])

2.3.2 Approaches

In the following section, we discuss important approaches that address the
challenges of user model integration on the Web from different perspectives.

MUMS

MUMS (Massive User Modeling System) is a framework to collect and dis-
seminate user models on the Web [37]. It provides a generic architecture
which addresses the architectural challenges of interoperability, scalability
and extensibility of web-scale user modeling. MUMS has been developed for
user modeling in web-based learning systems and can be generalized to user
modeling on the Web.

MUMS contributes an architecture which logically decouples system com-
ponents on the Web. The architecture defines four components involved in
user modeling: Evidence Producers, Brokers, Modellers, and Filters, see Fig-
ure 2.6.

(1) Evidence Producers generate statements about a user. These state-
ments do not represent user models, but user opinions – brief contextualized
statements that describe user interaction that took place, or statements about
user knowledge, goals, interest, etc. – in a certain context. Evidence Pro-
ducers are typically applications or services that create user opinion through
usage data logging. For example, a social bookmarking service could cre-
ate an interest statement for a user and a topic when the user bookmarks a
webpage on that topic.

48

(2) Modellers create a user model from the user opinions, usually by
applying data analysis on the user opinions. Modellers may syndicate opinion
statements from one or more Evidence Producers. Furthermore, they may
be restricted to specific users or to specific purposes for which they create
user models. For example, a Modeller may be specialized on modeling user
interest in webpages for a recommender service. For this purpose, it may
only consider certain types of user opinions.

(3) Brokers act as intermediaries between Evidence Producers and Mod-
ellers. They route user opinions between Evidence Producers and Modellers,
or between various Modellers. The communication between Brokers and
other components is either based on a query/response model, e.g., HTTP, or
by a publish/subscribe model, e.g., XMPP.

(4) Filters serve for three purposes. First, they can act as Modellers. In
this function, they apply data analysis on user opinions to generate higher-
level knowledge. However, instead of generating complete user models, they
enhance user opinions by newly created user opinions. For example, a Fil-
ter could receive user opinions of a specific user, which the Broker received
from several Evidence Producers. The Filter applies data analysis on the
aggregated user opinions and publishes derivate higher-level opinions to the
Broker. Second, Filters can inject domain-specific rules into the user mod-
eling process. For example, a Filter could filter user opinions according to
specific domain knowledge. Modellers connected to this Filter only receive
user opinions relevant or correct for the specific domain. Third, Filters can be
chained together to add new value or filter out irrelevant value for a specific
application.

The MUMS architecture addresses three problems of distributed user
modeling: (1) interoperability, (2) extensibility and (3) scalability.

(1) MUMS ensures syntactical interoperability by using SOAP 5 for com-
munication between decoupled components. The user opinions are expressed
in RDF to ensure semantical interoperability. The components involved must
agree on a set of ontologies that are used by the system. MUMS provides a
database with agreed-on ontologies as a decision guide for developers of new

5http://www.w3.org/TR/soap12-part1/ (last access 2011-04-22)

49

components.
(2) Extensibility can be achieved through decoupling of components. In

a decoupled system, individual components can be flexibly inserted into the
system or removed. In MUMS semantic extensibility is ensured by the use
of RDF. New ontologies can easily be integrated when required by future
components.

(3) Scalability is addressed by MUMS mainly by leaving data storage
and query methods unspecified. For example, the framework does not spec-
ify the transport mechanisms to be used. Thus, components may use any
appropriate mechanisms, e.g., compressed formats. Furthermore, individual
architectural components do not correlate with physical components. For
example, a Modellers may physically be a cluster of computers.

MUMS contributes a viable generic architecture design for distributed
user modeling on the Web. However, it leaves important issues open that
are beyond architecture decisions. For example, the semantic heterogeneity
of user models requires a shared ontology between components, which is
problematic on a web-scale. MUMS does not provide further user model
specifications that complete the generic architectural considerations.

APML

APML 6 is an attempt to overcome the issue of heterogeneity of user models
on content and format level. It is an XML specification that allows users and
services to create and share portable user model files that describe a user‘s
attention (interest) for topics on the Web.

Listing 2.1: APML example

...
"implicitData ": {
"sources ": { "http :// feeds.delicious.com/v2/rss /": {

"name": "Delicious.com",
"value": 0.7,
"type": "application/rss+xml"
"authors ": {

6http://apml.areyoupayingattention.com/ (last access 2011-04-22)

50

"Sample ":{
"value": 0.5,
"from": "GatheringTool.com",
"updated ": "2010 -10 -10 T12 :30:00Z"

...

The idea of APML is to create a standardized structured format that
enables users of news feeds, blogs, etc. to exchange information about which
topics they pay attention for. The format allows to describe attention for
a topic, and to specify a degree of attention. Listing 2.1 shows an example
APML snippet.

APML contributes two gains for web-scale user modeling. First, it ex-
plicitly addresses privacy issues by following a centralized approach: user
models are stored and managed transparently and are fully user-controllable
on client-side. Second, APML is a light-weight format that bases on simple
and widely adopted technologies. Therefore, it could be easily adopted and
implemented by existing services on the Web.

To ensure privacy, APML follows a centralized approach for user model-
ing: Web services create APML profiles that users can download and store
locally. Users can then manually share their APML file with other services
on the Web that support APML-based personalization. The centralized ap-
proach is one major shortcoming of APML. It requires users to actively cre-
ate, manage, and share their own profile files – a tedious work which often
does not provide obvious benefits for the users in the short term. A further
shortcoming of APML is its limitation to attention. As discussed above,
personalized systems often require more information like knowledge or back-
ground to make powerful adaptions. APML could not establish in the real-
world. However, it has been one of the very few hands-on attempts for a
standardized exchange format for user models that focuses on requirements
of the Web.

51

IMS LIP

IMS LIP 7 is a specification that provides a more powerful standardized user
model representation format for distributed user modeling. IMS LIP has
been developed for distributed learning systems. The specification defines
characteristics of a learner: learning activity, progress, goals, awards, prefer-
ences, etc. The IMS LIP specification categorizes user attributes into data
objects. For example, the Identification data object describes individual in-
formation such as biographic or demographic data relevant for learning; the
Goal data object models the learning objectives of the learner; the Activity
data object models learning-related activity, containing formal and informal
activity – work experience, training, civic service, etc. The main contribution
of IMS LIP is that it allows to split user models into smaller data objects.
Components of a distributed system may not require all user model informa-
tion. To reduce complexity, such system components may only implement
support for selected data objects of the IMS LIP specification and leave out
the unnecessary parts. This approach reduces the obstacles of syntactic and
semantic integration on a web-scale.

[173] show how IMS LIP can be applied for distributed user modeling in
a distributed knowledge management system. An RDF binding of IMS LIP
has been applied on a user modeling server, OntobUM. The user modeling
server stores and manages IMS LIP user models as RDF/RDFS. However,
OntobUM remains one of the rare implementations of IMS LIP. The standard
could not establish in real-world applications. A key drawback of IMS LIP
is that it needs to be extended by external vocabulary that describes the
actual content of the specified data objects. For example, while IMS LIP
defines that a system may model interest of a learner in a topic, it does not
specify how interest should be modeled, i.e., how the data object is structured
internally. Furthermore, the standard is very complex, hence too complicated
to implement for many light-weight applications 8.

7http://www.imsglobal.org/profiles/ (last access 2011-04-22)
8http://standards-catalogue.ukoln.ac.uk/index/IMS_LIP (last access 2011-04-22)

52

Subject Object

Temporal
restrictions

Spatial
restrictions

Ownership /
Privacy

Evidences /
Confidence

Predicate
(Ontology)

Figure 2.7: Situational statement (based on [99])

UserML and GUMO

UserML and GUMO are two complementary approaches for distributed user
modeling from the context of ubiquitous computing research. The approaches
contribute a more generic syntactic and semantic user model standard for
web-scale user modeling.

UserML is a XML-based user model exchange language [99]. The ap-
proach for user model exchange in UserML bases on the notion of situational
statements. Situational statements are RDF triples that are extended by ad-
ditional information to enhance the expressivity statement. RDF triples are
extended by temporal and spatial restrictions and metadata, e.g., ownership,
confidence, or privacy information. The resulting situational statement is a
7-tuple, see Figure 2.7.

Listing 2.2: UserML Situational statement example

<SituationalStatement
subject = “UbisWorld:Tom“
predicate = „UserOL:CognitiveLoad“
object = „High“
start = „20030517 .140334“
duration = „600s“
owner = „UbisWorld:Tom“

/>

The representation of extended triples is not possible straightforward in-
side the RDF data model. Therefore, [99] propose an XML syntax to model
situational statements, i.e., RDF statements together with their restrictions
and metadata. Listing 2.2 shows a situational statement that describes the

53

auxiliary, predicate, range

Subject Object

Subject Object

UserModelDimension

Figure 2.8: GUMO User Model Dimension (based on [101])

fact that the subject Tom has high cognitive load. The statement also con-
tains metadata: start time, duration, and owner.

With the situational statements, UserML contributes a separation of the
representation format of user models from the user modeling ontologies used,
so that each system can use its own ontologies along with the shared rep-
resentation syntax. However, the semantic extensibility of UserML is also
its main shortcoming: UserML does not define any agreed on ontologies that
should be used. For example, the situational statement in the example above
has the predicate CognitiveLoad from an external ontology UserOL which is not
defined by the UserML standard. Thus, while the approach provides a com-
mon syntactical model representation, it does not address the necessity of a
shared vocabulary for semantic integration.

GUMO addresses the issue of semantic heterogeneity that was omitted
by UserML [101]. GUMO is based on the situational statements that were
introduced by the UserML approach. It extends this approach with a shared
and modularized ontology which defines the semantics of the predicates used
in situational statements.

Similar to UserML, GUMO extends RDF triples to situational state-
ments. In GUMO, the predicate of each triple is replaced by a user model
dimension. Each user model dimension consists of auxiliary, predicate, and
range, see Figure 2.8

The semantics of user model dimensions are defined in the GUMO on-
tology. Thus, GUMO provides a shared syntax and semantics to describe
users. A problem when designing an ontology to describe user model di-
mensions is, that a wide variety of user model dimensions must be modeled
to cover all possibly relevant dimensions of a user. For example, users may

54

have interest in virtually anything. Theoretically, the GUMO ontology must
model all possible user model dimensions for interest: interest in social me-
dia, interest in music, interest in programming, etc. To address this problem,
GUMO follows a modularized approach, similar to the data objects in IMS
LIP. Distinct ontologies for user model dimensions can be used or extended
as needed by specific application contexts. For simple applications, a basic
set of dimensions defined by a UserModelDimensions ontology may suffice.
For example, GUMO provides a BasicUserModelDimensions ontology, which
defines only basic user dimensions, like example emotional state, character-
istics, demographics, abilities and proficiencies.

GUMO is an early attempt to apply Semantic Web technologies for user
modeling. It has been used in academic systems for ubiquitous computing
[35, 34, 135] but could not establish in real-world systems. One limitation of
GUMO is the technical representation of situational statements. While tech-
nological infrastructure exists for RDF-based data models, extended state-
ments – 7-tuples – require implementation of specialized solutions for storage,
reasoning, and querying. Thus, the implementation of the extended state-
ment approach is relatively complex. Furthermore, despite the modularized
GUMO ontology, the problem remains, that a large number of user model
dimensions exist, which makes the GUMO ontology large and complex.

Generic ontologies

With the growth of real-world Semantic Web services and the Linked Data
Web 9, a number of generic RDF vocabularies became popular on the Web.
These vocabularies are not devoted to user modeling explicitly, but still con-
tribute to web-scale user modeling. Particularly three of the most often de-
ployed RDF vocabularies on the Web are interesting in this context: SKOS,
FOAF, and Dublin Core (cf. 10)

9http://linkeddata.org/ (last access 2011-04-22)
10http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (last access 2011-04-22)

55

SKOS The Simple Knowledge Organization System 11 (SKOS) is a data
model for representation of structures – relations between things – on the
Semantic Web. It is formally defined as an OWL ontology. SKOS is a bridg-
ing technology between structures with limited semantics, e.g., folksonomies,
and highly expressive OWL ontologies. Ontologies are capable to organize
knowledge that is highly formal. On the Social Web, however, many systems
contain less formal classification schemes, e.g., folksonomies, that are not suf-
ficiently formal to model classifications with the standard ontology languages
RDFS and OWL, cf. Chapter 3. SKOS provides a means to express both,
these less discrete structures and fully-fledged ontologies [154].

Listing 2.3: SKOS relations example

ex:Geofencing a skos:Concept;
skos:narrower ex:Foursquare;
skos:related ex:Mobile_Web.

SKOS contributes to user modeling in that it provides a widely agreed-
on semantic and syntactic standard to model and interrelate knowledge of
users. SKOS allows to model concepts and semantic relations. Concepts
are defined as „units of thought, ideas, meanings, or (categories of) objects
and events – which underlie many knowledge organization systems“ 12. For
example, a concept may represent a topic of interest of a user. Semantic
relations are links between two SKOS concepts. Generally, they model a
related meaning of two concepts. SKOS distinguishes two categories of se-
mantic relations: hierarchical and associative relations. Hierarchical relations
model the assumption that one concept is more generic – broader – than an-
other narrower concept. Associative relations model that two concepts are
semantically related but do not state that one of the concepts is broader or
narrower. Associative semantic relations are modeled by the skos:related

property. Hierarchical relations are defined by the skos:narrower and skos:

broader properties. Listing 2.3 shows hierarchical and associative relations
modeled with SKOS.

11http://www.w3.org/TR/2009/REC-skos-reference-20090818/ (last access 2011-04-22)
12http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/ (last access 2011-04-22)

56

FOAF FOAF 13 is a vocabulary that allows to model people and their
social relations on the Web. The initial focus of FOAF has been on machine-
readable descriptions of people on the Social Web. Besides characteristics
of people, FOAF provides vocabulary to model projects, organizations and
groups as other kinds of agents on the Web [89].

FOAF contributes to user modeling in two regards. First, FOAF provides
vocabulary for community membership modeling – for describing people and
their basic characteristics such as name, gender, age, etc. Hence, FOAF can
be used to model background information and interest of users. The foaf:

interest property can be used to model interest of a user in a topic. Second,
FOAF can model relations between persons. The foaf:knows property can
be used to model a social link between two people. The intended meaning
of the skos:knows relation is roughly a personal acquaintance. Listing 2.4
shows basic user characteristics, user interest, and a social relation modeled
in FOAF.

Listing 2.4: FOAF example

ex:Tom a foaf:Person;
foaf:age 30;
foaf:gender „male“
foaf:name „Tom“
foaf:interest ex:Social_media;
foaf:knows ex:Eric.

Dublin Core The Dublin Core metadata element set defines core metadata
for simple and generic resource descriptions 14. It provides shared term defi-
nitions for metadata on the Web. The Qualified Dublin Core, an extension of
the original Dublin Core, defines three additional elements – audience, prove-
nance, and rights holder. Additionally, it refines the semantic specification
of all elements, thus ensures semantic interoperability.

Listing 2.5: Dublin Core example

ex:AUserModel dct:created 2010 -12 -12;

13http://www.foaf-project.org/ (last access 2011-04-22)
14http://dublincore.org/ (last access 2011-04-22)

57

dct:provenance ex:AService.

Dublin Core can be used to enhance RDF user models with metadata de-
scriptions. For example a user model can be specified with creation time and
provenance information expressed with Dublin Core elements. Listing 2.5
shows metadata of a user model modeled with Dublin Core.

The described RDF vocabularies, SKOS, FOAF, and Dublin Core, are
interesting for user modeling for three reasons. First, they are widely adopted
on the Web, so that they ensure syntactic and semantic integration with
existing data and systems. Second, they can be implemented into existing
Web infrastructure with low effort. Third, they can be combined with each
other and further vocabularies, hence they are easily extensible. However, all
three vocabularies have serious limitations for user modeling, because they
do not per se allow the representation of more complex relations required for
user modeling, as we discuss in more detail in Chapter 5.

Cognitive Characteristics Ontology

Besides the described generic vocabularies, also light-weight RDF vocabular-
ies dedicated for user modeling have been developed, which allow hands-on
implementation of user models on the Web. The Cognitive Characteristics
Ontology 15 (CCO) is an OWL ontology to model cognitive patterns of users
on the Semantic Web. Besides the cognitive patterns, the ontology allows to
model additional features of the patterns, e.g., context and temporal dynam-
ics.

CCO defines a number of RDF properties that can be attributed to
users to model their cognitive characteristics: cco:interest, cco:belief, cco:
expertise, and cco:skill. All of these properties are sub-properties of cco:

cognitive_characteristic. The property cco:interest aims at modeling pref-
erence of a user for an item. The properties cco:belief, cco:skill, and cco:

expertise model a user‘s competences: cco:belief models beliefs, which can
also be misconceptions; cco:skill models the user‘s ability to do something,

15http://smiy.sourceforge.net/cco/spec/cognitivecharacteristics.html (last access 2011-
04-22)

58

e.g., play the piano; cco:expertise models the knowledge or expertise in a
domain or topic, e.g., a programming language.

Listing 2.6: Property-centric representation of interest

ex:Tom cco:interest ex:Social_media .

CCO provides two alternative ways to model cognitive characteristics:
property-centric and class-centric modeling. The first way uses the described
RDF properties – cco:cognitive_characteristic and its sub-properties – to
model cognitive characteristics by using single RDF statements. The strategy
associates topics to users. Listing 2.6 shows a simple RDF statement that
uses the property-centric vocabulary to model interest of a user Tom in the
topic social media.

A limitation of this property-centric approach is, that it is not possi-
ble to model more detailed cognitive characteristics. For example, cco:

cognitive_characteristic and its sub-properties do not allow to model weighted
interest (see Chapter 5 for a more detailed discussion). To overcome this lim-
itation, the ontology provides a RDF class to model detailed cognitive pat-
terns: cco:CognitiveCharacteristic. Cognitive characteristics can be modeled
as instances of this class instead of using properties. This class-centric ap-
proach allows to add further details of the pattern as properties to the class.
For example, interest of a user for a topic can be enhanced by properties
like cco:appear_time, or cco:attention_duration to describe the features of the
interest property.

Listing 2.7: CCO interest characteristic

ex:ACharacteristic a cco:CognitiveCharacteristic ;
cco:agent ex:Tom ;
cco:topic ex:Social_media ;
cco:characteristic cco:interest ;
wo:weight [

a wo:Weight ;
wo:weight value 0.8 ;
wo:scale ex:AScale
] .

59

CCO contributes to user modeling, because it provides a class-centric
approach for RDF modeling and hence allows to model more complex user
attributes than generic vocabularies (e.g., SKOS, FOAF, and Dublin Core).
Class-centric modeling enables further properties from external ontologies to
be easily be integrated into the vocabulary – it renders the ontology exten-
sible. Listing 2.7 shows a class-centric cognitive pattern that is enhanced by
a weight property from an external ontology. The example models the fact
that Tom has interest in social media with a weight of 0.8 on a scale that is
defined elsewhere. We discuss the issue of class-centric modeling with RDF
in more detail in Chapter 5

Generic User model Component

The described light-weight RDF ontologies address semantic and syntactic
integration of user models on the Web. They do, however, not specify how the
should be applied by web-scale systems, i.e., they do not specify the system
architecture. [213] present a user model server for semantic integration of
user models on the Semantic Web. They contribute a real-world system
that shows how several RDF ontologies can be combined and applied in a
distributed system on the Semantic Web.

The key contribution of [213] is a server – GUC (Generic User model
Component) – that stores user models from different user modeling services
involved in a web-based personalization system. GUC applies Semantic Web
technologies, RDF, OWL, and the OWL-based rule language SWRL 16, for
user model integration. The server integrates semantically heterogeneous
user models by semantic translation based on manually created mapping
rules.

Several applications that use heterogeneous user model formats can sub-
scribe to the GUC server to retrieve remote user models and store their own
user models on the server. All subscribing applications must use RDF-based
user models, i.e., the server requires a shared syntax for user models. The ap-
plications can use arbitrary RDF vocabularies, i.e., proprietary schemas that

16http://www.w3.org/Submission/SWRL/ (last access 2011-04-22)

60

define the semantics of the user model. The assumption underlying GUC is,
that different user models modeled with different vocabularies usually contain
overlapping information, i.e., they contain similar information represented
differently. The GUC contains a user model schema translation component
to semantically integrate these information. This translation component al-
lows to exchange data between different heterogeneous user models on the
server. To enable translation, all applications must provide OWL descrip-
tions of their specific user model schema to the server. Based on these OWL
schema descriptions of the user models, mappings between user models are
created. Each class of a proprietary schema is mapped to a corresponding
class of another schema, if possible. This translation must be configured
manually by a mapping engineer once.

The translation process relies on SWRL. SWRL rules describe the map-
pings of OWL classes between different vocabularies. One of two strategies
can be used for SWRL-based schema translation: (1) direct mapping, and
(2) shared vocabulary mapping.

(1) To translate between the user model schemas of two applications, a
direct mapping can be created. Here, elements of one schema are directly
mapped to a fitting element of another schema with an SWRL rule. The
problem with this approach is, however, that many mappings become neces-
sary if more than two applications are involved.

(2) To reduce the complexity of mappings in scenarios with many ap-
plications, GUC offers another mapping strategy – a shared user model vo-
cabulary. Here, a mediating user model vocabulary is created which models
the most commonly used concepts of all applications. Then, all applications
create mappings to this shared vocabulary. The advantage of this approach
is that less mappings are required. The key limitation is, however, possible
loss of information during the translation process. Some applications may
model information that are not present in the mediating vocabulary. These
information would get lost in the shared user model strategy.

While GUC shows how a distributed system can integrate heterogeneous
user models represented with RDF ontologies, it has serious limitations on a
web-scale. Scalability is a key limitation of GUC. GUC assumes a centralized

61

User Interface Syndication
Service

Personalization
Service

User Modeling
Service

Connector /
Service Matching

RDF RDF

User Interface Syndication
ServiceRDF

User Interface Syndication
ServiceRDF

RDF

RDF

RDF

RDF

Personalization
ServiceRDF

Personalization
ServiceRDF

RDF

Figure 2.9: Generic personalization architecture (based on [38])

architecture – it requires a centralized server. For an open, web-scale system
that potentially grows extensively this is not viable. Moreover, the transla-
tion strategies are not suitable on a web-scale. The first strategy requires to
map each user modeling component to all other components, which is ob-
viously only feasible for a very limited number of components. The second
strategy assumes a shared minimal vocabulary for all involved components,
which is highly problematic in an open-world system.

A personalization architecture for the Semantic Web

[38] present a generic architecture for personalized systems that contributes a
highly scalable architecture and explicitly addresses user modeling on a web-
scale, see Figure 2.9. Like GUC, the architecture fully relies on Semantic Web
technologies. The architecture involves four loosely coupled components that
communicate over Semantic Web standards.

Personalization services Personalization Services provide personalized
content for a specific domain. Therefore, the service needs access to a user
model. For example, a Personalization Service could filter information pro-
vided by some service according to a user model, transform the personalized
output to RDF, and provide it to the user.

62

Syndication services Syndication Services create user models through
analysis of data retrieved from other services and output them as RDF. For
example, a Syndication Service may apply machine learning to usage log
data to enhance a user model. The user model is then provided to the User
Modeling Service in an RDF vocabulary.

User Modeling Service A User Modeling Service stores the user models
and manages access to the user model. The User Modeling Service manages
aggregation, alignment, and updating of user models from different services.
Additionally the User Modeling Service controls access and therewith ensures
privacy; e.g., it decides which services may or may not add, use, or remove
which data in the user model [1].

Connector The Connector integrates Syndication Services, Personaliza-
tion Services, and the User Modeling Services. Therefore, the connector
decides which services are combinable. This matching can be done for ex-
ample by describing the functionality – input and output – of all services in
a common RDF language.

User interface User interfaces deliver personalized content to the user.
The idea here is to detach content from presentation through Semantic Web
technologies, so that generic user interfaces are suitable for different kinds of
information encoded in RDF provided by various Syndication Services.

The described personalization architecture contributes an architecture
design that allows for user modeling on a web-scale with Semantic Web tech-
nologies. It has, however, an important shortcoming: the architecture re-
quires that all involved components fully rely on Semantic Web technologies.
In the real-world, however, many Web services have only limited support for
semantic Web technologies. The architecture requires radical technological
changes from a large number of existing services. This imposes serious limi-
tations in practice, because technological changes are costly and not possible
to implement in all services.

63

2.3.3 Conclusion

We discussed important approaches for user modeling on the Web. We de-
scribed MUMS – a generic architecture for distributed user modeling sys-
tems which addresses the architectural challenges of interoperability, scal-
ability and extensibility of web-scale user modeling. Then, we described
important attempts to develop shared user model languages: APML, a light-
weight XML-based user model format; IMS LIP, a user model specification
that splits user models into smaller modules; UserML and GUMO, two com-
plementary formats from the context of ubiquitous computing that provide
semantic integration but are problematic because they are complex and diffi-
cult to implement. Subsequently, we described more light-weight approaches:
SKOS, FOAF, and Dublin Core, popular, generic RDF vocabularies which
are limited to simplistic user models; and CCO, a hands-on ontology that
allows for more complex modeling. Finally, we discussed two solutions that
address an architectural level how user model integration can be implemented
on the Semantic Web. GUC illustrates how semantic integration can be
achieved in a heterogenous environment with a translation server; its cen-
tralized architecture does, however, not scale well. The generic personal-
ization architecture by [38] shows how a Semantic Web architecture enables
web-scale user modeling; however, the solution completely relies on Semantic
Web technologies, which are not fully supported by many existing services
on the Web today.

The state of the art of distributed user modeling suggests the following
essential characteristics of viable user modeling on a web-scale:

(1) Semantic Web standards should be applied. Semantic Web technolo-
gies are a viable platform to achieve syntactic and semantic integration of
user models. The ontology languages RDF, RDFS and OWL are important
standards for knowledge representation on the Web (cf. Chapter 3). Widely
deployed ontologies like FOAF, SKOS, and Dublin Core exist and can be ap-
plied for user modeling. Moreover, the openness of Semantic Web standards,
established software, and wide acceptance on the Web suggest Semantic Web
technologies for a web-scale user model integration effort.

64

(2) The most feasible architecture for web-scale user model integration is
an intermediate solution that bridges the gap between the existing service-
oriented Web architecture and a future fully-fledged Semantic Web. Integra-
tion of existing technology and services is important, because user modeling
requires existing systems that create, share, and consume user models. A
large number of candidate systems for user model extraction exist on the So-
cial Web and extraction strategies are being developed (cf. Section 2.4). For
a viable web-scale user modeling architecture, these Web services should be
able to engage with minimal effort. Therefore, technological changes should
be made in small steps and established standards should be applied where-
ever possible.

(3) A proper level of specificity of the user models is an important factor
for adoption on the Web. The user model representation should be powerful
enough but not overly complex. The language should orient towards success-
ful existing languages and possibly re-use them. SKOS, FOAF, and Dublin
Core have proven successful for a variety of applications on the Web. They
are a good starting point for user model representation attempts.

(4) The architecture of the system should be decentralized to be scalable
and flexible. The system should grow effortless when further components
engage in the system. Furthermore, the architecture should be independent
from implementation details, so that the components can be adapted when
new demands emerge.

2.4 The Social Web

In this thesis, we address user modeling and exploratory search inside the
ecosystem of the Web, and particularly the Social Web. The Social Web
is valuable for user model extraction. It opens up new possibilities for user
modeling that have not existed before. Users are becoming increasingly inter-
connected; they create and share information, resources, opinions over Web
services; they communicate and interact over messaging, social networking,
and collaboration services. The information they create and share yields
new opportunities to harvest knowledge about users. Users create and main-

65

tain user models in many Social Web services; additionally, they interact
with services, thus creating implicit information about their interests, pref-
erences, knowledge, and opinions. Automated, manual, or semi-automated
extraction methods can harvest knowledge from the structure of data gener-
ated by Social Web services. User models derived from information of Social
Web services can greatly improve exploratory search. Our goal is to exploit
the data inherent in social bookmarking services for user models to enable
collaborative filtering and recommendations in exploratory search engines.

2.4.1 Characteristics

The Social Web 17 describes a combination of cultural aspects and technical
developments that lead to a new form of how we use the Web.

From a cultural perspective, the Social Web can be seen as the habit
of users to interact, communicate, socialize, and collaborate over the Web.
The two important ideas of the Social Web are user generated content and
collaboration. Social Web services focus on supporting these ideas – popular
classes of Social Web services are social networking services, social messaging
services, social tagging services, and wikis. The idea of user engagement and
collaboration also flows into many other services on the Web. As a result,
the conception of how we use the Web has changed with the emergence of
Social Web services.

Technically, the Social Web is promoted by a set of technologies which
enable a Web of services [36]. An increasingly service-oriented Web is about
to establish, which enables or simplifies development of Social Web services.
On this service-oriented Web, content is created and consumed not only by
human users, but also by machines. An ecosystem of Web services retrieves
and processes data and produces new content. Web services are implemented
through Web APIs (Application Programming Interfaces) which provide pro-
grammatic access to data and application logic over the Web. Software-as-a-
service on the Web allows to shift data storage as well as application logic to

17The Social Web has been also referred to as „Web2.0“, cf.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
(last access 2011-04-22)

66

the Web. Most of today’s Web services not only use their own data and logic,
but also connect and integrate with further services. These data mashups ag-
gregate data from multiple other services, process them for any purpose and
possibly supply new data for further use. The focus of service-oriented Web
applications is not anymore to provide and interlink relatively coarsely struc-
tured documents – webpages designed for human consumption – but services
that provide data for machine consumption. The service-oriented Web tech-
nically relies on a set of protocols and standards, that allow to build a data
and service-oriented web of services atop of the existing Web infrastructure.
XML provides a common meta format for a variety of data formats relevant
for the Social Web. Additionally, Web service APIs implement a set of design
principles called REST [73]. REST specifies a set of architectural principles
for designing server-client systems. RESTful Web services make use of the
architectural features of the Web. RESTful APIs this make use of the exist-
ing HTTP architecture of the Web for Web services. They are more scalable
and flexible than SOAP/WDSL 18 based Web services. The two predom-
inant formats for data exchange on the Social Web are RSS 19 and Atom
20. RSS and Atom are XML-based syndication formats that structure Web
content in a common format and thus enable Web content to be exchanged
on a finer-grained level than documents. They allow services to publish in-
formation by providing a common format and were initially developed for
weblogs and news content. Content published in a syndication format is re-
ferred to as feed. Feeds are published under a URL by a service and can be
subscribed to by multiple consumers. Feeds are designed to improve machine
consumption of web content and are typically consumed by feed aggregators.
Aggregators are applications that may run on client side or on another server
and regularly poll feeds from a URL to process the retrieved data. The data
provided by feeds are XML-based documents. They describe the content of
the feed resource with a set of common entities like title, author, abstract,
and eventually the payload of the resource.

18http://www.w3.org/TR/wsdl (last access 2011-04-22)
19http://www.rssboard.org/rss-specification/ (last access 2011-04-22)
20http://www.atomenabled.org/ (last access 2011-04-22)

67

The potentials of the Social Web for user modeling are twofold:

(1) User generated content and user engagement creates user-specific data
which we can exploit for user models [153]. The information provided by
Social Web services differ between different classes of services. Which data
can be collected and how the extraction of user models can be achieved
depends on the kind of the information the service provides, but generally
more and more data become available promoted by user engagement. Users
create content and communicate through Web services „leaving a virtual
trail of information strewn across the web revealing their tastes, interests,
and activities“ [199]. More data are available for user modeling through
more active participation of users: „the active participation of a user [...]
can provide a lot of information that can be used by an adaptive system to
define more precise user models“ [44]. Much of the generated data is available
publicly on the Web, for example social bookmarks.

(2) The service architecture of the Social Web enables new methods for
data gathering [153, 36]. APIs and syndication formats allow to retrieve
and process data from the Web with relatively low effort. The technologi-
cal ecosystem of the Social Web make automated gathering and processing
of information easier compared to the document-oriented Web. Instead of
crawling and mining HTML documents, the Social Web allows to gather and
aggregate information through feeds and APIs, which requires less computa-
tional effort. Usage data can be collected directly from the services, no data
collection on the client side is necessary. Additionally, Social Web services
often require user accounts. Thus, users are easier to identify over longer
time periods, which improves user modeling because it allows to maintain
long-term user models. Links between several accounts of a single user even
allow to combine data from various services. Combination of user model data
across Web services can greatly improve the user modeling process.

2.4.2 Social bookmarking

In this thesis, we extract user models from social bookmarking services. So-
cial bookmarking services are a class of Social Web services which apply social

68

tagging to allow users to store, organize and share bookmarks on the Web.
In this section, we introduce key concepts related to social bookmarking.

Tagging is a method applied by many Web services that allows users to
annotate resources, like webpages, photos, or scientific articles [76, 147]. Tag-
ging means that users can annotate a resource by assigning one or more text
labels to it [192]. By tagging a resource, the user describes and categorizes
the resource. Tagging enables the user to later retrieve the resource in an
easy way through its tags. Tagging is an open way to assign keywords to
resources; the number of tags on a resource is usually not limited. Users
can assign as much tags to a resource as they want. Furthermore, tags are
not restricted to a fixed classification schema or vocabulary – „[as] opposed
to a classical taxonomy-based categorization system, they are usually non-
hierarchical, and the vocabulary is open, so it tends to grow indefinitely“
[241]. Tagging systems do not prescribe to the user which tags to use to
annotate a certain resource. As a result, the same resource can be tagged
with different tags by different users.

Social tagging extends the idea of tagging to a community of users [86,
85]. Social tagging allows users to share their tags and tagged resources
with others: „a tagging system becomes social when its tag annotations are
publicly visible, and so profitable for anyone. The fact of a tagging system
being social implies that a user could take advantage of tags defined by others
to retrieve a resource“ [241]. By sharing their tags with others, users of social
tagging systems create a shared, user-generated categorization of resources.
Social tagging is not restricted to resources of any special kind. Social tagging
systems have been used in various application contexts. The social tagging
service Delicious 21 is amongst the most-cited applications of social tagging.
This service uses social tagging to annotate bookmarks. Another popular
example is the photo community Flickr 22, which applies social tagging to
organize photos. An academic reference management service, CiteULike 23,
applies social tagging for annotating links to academic papers. These are

21http://www.delicious.com (last access 2011-04-22)
22http://www.flickr.com (last access 2011-04-22)
23http://www.citeulike.org (last access 2011-04-22)

69

just some popular examples, social tagging can be used to annotate all kinds
of content on the Web – for example emails 24, presentations 25, videos 26, or
books 27.

Social bookmarking services are one popular application of social tagging
[96, 144]. They allow users to save links to webpages and annotate them with
tags. These annotated links are referred to as bookmarks. The goal of social
bookmarking services is to enable the user to save, organize and retrieve web-
pages. Social bookmarking works similar to bookmarking in the user‘s local
browser. However, it extends the functionality of local bookmarking with two
features: users can annotate bookmarks with tags and they can share book-
marks with others. Annotation of bookmarks with tags allows individual
users to organize bookmark collections with relatively low effort in the social
bookmarking services. In addition to their own tags and bookmarks, users
can see and browse the tags and bookmarks added by other users. In the
remainder of this thesis, we refer to data that we collected from two popular
social bookmarking services: Delicious and Connotea 28. Both services are
relatively similar in their functionality and differ mainly in the application
domain focus. Delicious is intended for social bookmarking of any webpages.
In practice, the users of Delicious are largely technically savvy. As a result,
tagged resources are often webpages related to technical topics. Connotea
is intended as a social reference manager for scientific resources and also al-
lows to bookmark any kind of webpages. The bookmarks in Connotea are
to large parts scientific papers, blog articles or other webpages related to
scientific research.

The term folksonomy describes the result of a social tagging process. So-
cial tagging enables a large number of users in a system to organize resources.
Tagging facilities promote user generated categorization because they impose
low effort to the users. Tag-based organizational structures, folksonomies,
emerge from the communal tagging behavior of the users in a system. „A

24http://www.googlemail.com (last access 2011-04-22)
25http://www.slideshare.net (last access 2011-04-22)
26http://www.youtube.com (last access 2011-04-22)
27http://www.librarything.com (last access 2011-04-22)
28http://www.connotea.org (last access 2011-04-22)

70

Users

Tags Resources

Figure 2.10: Folksonomy

folksonomy is also known as a community-based taxonomy, where the clas-
sification scheme is plain, there are no predefined tags, and therefore users
can freely choose new words as tags“ [241]. The term folksonomy combines
the words folk and taxonomy into one word to describe the „user-created
bottom-up categorical structure development with an emergent thesaurus“
[217]. An important aspect of folksonomies is their self-organizational na-
ture. Folksonomies „arise from data about how people associate terms with
content that they generate, share, or consume“ [92].

Folksonomies are a set of users, tags, and resources which are related to
each other, see Figure 2.10. To describe folksonomies formally, we adopt
the usual notation (cf. [111, 136]): U, T,R are finite sets, whose elements
are called users, tags, and resources. A folksonomy is a quadruple F :=

(U, T,R, Y). Y is a ternary relation between these sets: Y ⊆ U × T × R.

The elements of Y are referred to as tag assignments. This structure can
equivalently be described as a tripartite undirected hypergraph G = (V,E),
where V = U∪T∪R denotes the set of nodes and E = {{u, t, r}|(u, t, r) ∈ Y }
denotes the set of hyperedges.

2.4.3 Potentials for exploratory search

In the following section, we discuss the potentials of social bookmarking for
exploratory search. Social bookmarking systems are not only used to tag
webpages, but to organize, share, search, discover webpages. Social book-
marking can have several functions for knowledge organization and retrieval
[86, 85, 192]. Attempts have been made to leverage social bookmarking
for information retrieval. Social bookmarking has proven to be relevant for
search in two ways. (1) Folksonomies allow new methods to rank search

71

results. New search ranking algorithms become possible that leverage the
structure of folksonomies for result ranking. (2) Social bookmarking systems
empower exploratory search with methods that go beyond the query-response
paradigm and apply filtering, browsing, and recommendations.

(1) Social bookmarking systems provide data on the Web that can be
leveraged for new search ranking algorithms. Ranking algorithms of tradi-
tional Web search engines leverage three types of data: webpage content, link
structure, and query or click-through usage logs [105]. Folksonomies open up
a new data source for ranking algorithms. A number of algorithms have been
developed that leverage structural features of folksonomies for result ranking
[16, 231, 134, 239, 105, 172, 112, 230]. Some of the algorithms rely completely
on the folksonomies to compute the ranking [105]. Others use folksonomies
as a complementary datasource to improve traditional Web search [172, 231].
[231] have shown that incorporating data from social bookmarking services
into standard link-based ranking algorithms significantly increases precision
of these algorithms.

(2) Social bookmarking systems enable new methods for information re-
trieval that extend the conventional query-response pattern and direct to-
wards exploratory search. Services that merge social bookmarking and search
into a single application have the potential to provide new interaction pat-
terns, i.e., interactive browsing and filtering, in order to improve the user
experience in exploring information created in social bookmarking systems
[56, 155, 23]. It has been shown that search engines which incorporate social
bookmarking bring up interesting new search methods and have the potential
to improve exploratory search [155, 121, 229].

Exploratory browsing is one of the ties that connect bookmarking and
exploratory search. It is one of the most frequently used features of social
bookmarking services. In social bookmarking systems, exploratory browsing
is also referred to as community browsing [155, 86, 85]. The idea of commu-
nity browsing in social bookmarking is that users explore bookmarks that
have been created by similar users. Bookmarks of similar users thus act as
social navigation cues to explore tags and webpages. Users explore webpages
starting from their social context – bookmarks of similar users. The commu-

72

nity browsing facilities of social bookmarking have been utilized for search
engines to create navigational cues for exploratory browsing [75, 155, 121].
Navigational cues – „signposts from the masses“ [121] – allow for exploration
of the information space through browsing. In exploratory search engines,
navigational cues for browsing supports exploration of the information space
by suggesting related resources to a search query. Navigational cues are thus
recommendations which are specific to a user and a search query. Collabo-
rative filtering-based recommenders have proven to give good recommenda-
tions when applied to folksonomies [229, 163, 116, 106, 29, 238]. Collabora-
tive filtering techniques can be applied to suggest webpages, tags, or users.
User models are a prerequisite to compute recommendations with collabo-
rative filtering algorithms. Thus, by empowering collaborative filtering rec-
ommenders, user models „offer a good basis for exploratory search interfaces,
even for users who are not using social bookmarking sites“ [121].

The key potential of social bookmarking for exploratory search is that
it makes new data structures available for statistical analysis that were not
present on the Web before. Folksonomies provide data for structural analy-
sis. Analysis of the action of tagging of a user community is valuable for
exploratory search. Social bookmarking services allow to extract knowl-
edge through structural analysis of the folksonomies. A key strength of this
content-agnostic approach for knowledge extraction is its computational effi-
ciency. It does not require a qualitative analysis of some kind of content, e.g.,
full text crawling and mining, which is computationally expensive. Analo-
gous to link-based ranking algorithms from traditional Web search, we can
leverage the structural properties of folksonomies to extract knowledge for
exploratory search.

Structural analysis of folksonomies has been successfully applied to infer
knowledge about users – user models [119, 45, 12, 44, 125, 140, 229, 234].
We distinguish three types of user properties that can be extracted from
folksonomies to support exploratory search (cf. [229]): user interest, user
communities, and user-specific tag semantics, i.e., tag similarity and hierar-
chy.

73

Interest extraction

Tagging behavior is a highly reliable evidence to detect user interest. Tradi-
tional methods for interest detection often rely on a user viewing a resource.
However, it is not easy to decide why a user views a resource: „view a re-
source can be out of curiosity, tagging usually not“ [44]. It is unlikely that
users would tag resources in which they are not interested in. Thus, tagging
is a more reliable and accurate data source to infer interest. As a result,
the modeling process can be performed faster. In traditional user modeling
methods, much of the usage logs must be filtered out to reduce noise – false
positives. Social bookmarking data can be used without much filtering, be-
cause bookmarks are unlikely to have posted accidentally.

While the bookmark collection of users inform us about their interest, the
tags assigned to the resources can also indicate user opinions – they indicate
what the users think of resources [238, 215, 141]. A tag can be regarded
as an expression of the user‘s personal opinion. The tagging process can be
regarded as an implicit rating. „Thus, the tagging information implies user’s
important personal interest and preference information, which can be used to
greatly improve personalized searching and recommendation making“ [141].

Community extraction

Tagging behavior can also be used to detect user communities [44, 229, 239].
User communities are groups of users with similar or overlapping interests
or opinions. Social bookmarking allows to derive communities from shared
tags or from shared sets of bookmarked webpages. Usually these user com-
munities are not static but dynamic ad-hoc communities which emerge and
dissolve while users bookmark and tag new resources. The detection of user
communities is important for exploratory search, because similarity of users
is an important indicator to assess how valuable the interest or opinion of
one user is for another user. The value of an opinion can be assessed only
if one knows who provided it [215]. For example, an exploratory search en-
gine could recommend a webpage to a user because another user with highly
similar interest bookmarked it. It would make less sense to recommend a

74

webpage because a user with contrary interests bookmarked it.

Tag semantics extraction

Tagging behavior leads to emergence of implicit semantics. The structure of
folksonomies can be mined to extract some form of more explicit tag seman-
tics – relations between tags. Tag relations describe semantic relatedness
between tags. They define how semantically similar two tags are or of which
type their relation is. For example, concepts described by two tags can have
a hierarchical semantic relation – a concept is semantically a kind of or part
of another concept. A number of algorithms have been developed to extract
semantic structures from folksonomies [104, 111, 229, 183, 232, 186, 233, 49].

Extraction of more explicit tag semantics improves the system interpre-
tation of the annotations. For example, it helps to identify topics in the
contents or the annotations of documents [239]. Tag semantics also allow
for tag meaning disambiguation – synonym detection [49]. Or, they allow
to create concept hierarchies [49]. Ultimately, a richer tag semantics can
greatly improve the quality of search engines, because it enhances recom-
mendations with additional information. They allow to provide users with
more detailed navigation cues to browse the information space. They enable
an exploratory search engine to not only suggest tags related to the search, it
can also inform users about the type of relation, how tags are related, „giving
deeper understanding into the relationships between tags“ [106]. Knowledge
about how tags are related can help users to identify topic domains, to dis-
ambiguate tags, or to deduce the meaning of a tag. Particularly, hierarchical
tag relations are important for navigation through the information space.

2.5 Summary

In this introductory chapter, we provided the background for the goals and
questions of this thesis and summarized the state of the art of the research.

We introduced the concept of exploratory search. We pointed out that ex-
ploratory search relies on personalization and user models. The key challenge

75

of exploratory search is to guide users through information – to suggest trails
trough the information space – to facilitate domain discovery and domain
learning. Recommendations are an important method to implement these
navigation facilities. They rely on user-specific information – user models.

We described how user models are involved in the personalization pro-
cess that underlies adaptive Web systems. User models are central to these
systems. An important decision when designing a personalized system is
what information to store in the user models and how to structure and rep-
resent these information. We described categories of user model content and
strategies for user model representation.

A goal of this thesis is to foster user modeling on a web-scale. Therefore,
we discussed the challenges of distributed user modeling on the Web. We
described existing approaches of distributed user modeling, discussed their
limitations and summarized required characteristics of a viable web-scale user
modeling.

Finally, we introduced key concepts of the Social Web and social book-
marking. In this thesis, we leverage folksonomies for user model extrac-
tion. Therefore, we discussed the potentials of user model extraction from
folksonomies for exploratory search: user interest, user community, and tag
semantics extraction.

In the remainder of this thesis, we address the question how user mod-
eling for exploratory search can be realized on the Social Web. We show
how user models can be extracted from folksonomies and present a strategy
to evaluate the quality of extracted models for exploratory search. Subse-
quently, we show how user modeling can be distributed across the Web to
yield better exploratory search engines. Finally, we implement our findings
in an exploratory search engine.

76

Chapter 3

Contribution 1: A user model
extraction method

In the following chapter, we contribute a method for algorithmic user model
extraction from social bookmarking systems. Our user model extraction
method applies collaborative filtering algorithms to construct user models
for exploratory search from folksonomies.

Folksonomies implicitly contain much information relevant for user model-
ing: user tagging behavior, webpages preferred or known by individual users,
user similarities, popularity of webpages, etc. The challenge faced by this
thesis is to understand and exploit the information inherent in folksonomies
for user modeling with the purpose to utilize it for explorative search. Folk-
sonomies don’t contain user models per se. Although much knowledge about
individual users is inherent in folksonomies, it requires some effort to cre-
ate user models from folksonomies. The problem of folksonomies is that
much information relevant for user modeling is present only implicitly. For
example, folksonomies don’t contain similarities between tags, users, or web-
pages explicitly, although all of this information is implicitly available and
can be extracted from folksonomies. To apply and process the knowledge
effectively, it has to be made explicit. The challenge is to transfer the im-
plicit knowledge represented in folksonomies into a more formal representa-
tion. We extract user models with information relevant for exploratory search

77

78

from folksonomies algorithmically and thus transfer the implicit knowledge
of folksonomies to a more formal representation.

A successful form of formal knowledge representation already exists on the
Web: ontologies. Ontologies have gained popularity with the development
of Semantic Web technologies. They enable more automated processing of
knowledge than other forms of knowledge representation, because they rep-
resent information in a highly expressive form. Furthermore, they integrate
well into Semantic Web technologies – Semantic Web standards and tools ex-
ist to represent, process and share ontologies on the Web. Representing user
models as ontologies renders knowledge explicit, thus allowing to process it
algorithmically. Additionally, it integrates user models into the technology
stack of the Semantic Web, which allows for sharing the information over the
Web, applying existing software to reason on it and integrating it with other
information. Ontologies are thus a viable form for user model representation
on the Web.

We aim at transferring folksonomies into ontologies. Our goal is to achieve
the transformation algorithmically, which imposes a number of challenges,
because fundamental differences exist between both representation forms.
Ontologies and folksonomies are contrary in how they model knowledge,
what knowledge they contain, and how they are created and maintained.
Ontologies allow for extensive computational exploitation of modeled knowl-
edge. However, their creation and maintenance is cumbersome, so that today
only a small portion of information on the Web is represented as ontologies,
which besides must be maintained with high effort to keep up with the fast-
changing Web. Folksonomies are far less cumbersome to create – they just
emerge through a collaborative process of annotation. Their drawback is that
they are too implicit to be used for automated computation. Our goal is to
mediate between folksonomies and ontologies – to bridge the gap between
both forms of knowledge representation. Mediation between folksonomies
and ontologies is not straightforward: „[r]ecently the two ideas have been put
into opposition, as if they were right and left poles of a political spectrum.
This is a false dichotomy; they are more like apples and oranges“ [92]. In this
chapter, we address the challenges of mediating between both ideas and work

79

out a method for algorithmic extraction of ontologies from folksonomies.

With our user model extraction method, we contribute a strategy for
knowledge modeling on the Social Web. We demonstrate how data gathered
from folksonomies can be utilized to leverage the inherent user-specific infor-
mation for user modeling. Our user modeling strategy extracts user models
that contain three categories of information: user interest, user similarity,
and user knowledge. User knowledge itself comprises three categories of user-
specific knowledge which is significant not only for exploratory search: asso-
ciative and hierarchical semantic relations between tags. With our knowledge
extraction method, we contribute a strategy for algorithmic ontology mod-
eling from folksonomies. Our method bridges the gap between dynamic user
models, which reflect the dynamic nature of the Social Web, and ontology
modeling which produces formalized knowledge.

Our user modeling method addresses key limitations of knowledge mod-
eling methods on the Web. In particular, it has advantages over tradi-
tional ontology modeling methods in two aspects: First, it relies on im-
plicit usage data, tagging activity, and does not require explicit, manual or
semi-automated, knowledge modeling efforts. This makes our method more
appropriate for knowledge modeling on a large scale. Second, our mod-
eled knowledge evolves dynamically without human intervention. Thus, our
method can keep up with the rapidly changing information on the Social
Web. In our method, extraction is not a singular process; rather, ontologies
are constantly adapted to evolving user characteristics: user interest evolves
as users make new search queries; user-specific knowledge and similarity to
other users constantly adapt to a user‘s search and tagging behavior. Usu-
ally, ontologies that model constantly changing information, as inherent in
social tagging systems, must be maintained, which is a cumbersome pro-
cess and usually involves manual engineering efforts. Our method maintains
ontologies automatically, thus explicitly addressing an important issue for
knowledge modeling on the Web: ontology evolution and maintenance in a
dynamically evolving environment like the Social Web.

We apply collaborative filtering to extract user models. A key feature
of collaborative filtering for our needs is that it is content-agnostic, hence

80

working equally good for all types of content. The ability of collaborative
filtering to avoid content analysis has potentials for leveraging data from
contexts where content plays a minor role or cannot be analyzed easily, e.g.,
social networking services, communication networks, usage log data, and
social bookmarking services. Collaborative filtering relies solely on struc-
tural features of the underlying data. This also keeps the computational
effort relatively low compared to content analysis [6]. In social bookmarking
systems, content is produced constantly on a massive scale and is rapidly
changing. Collaborative filtering has decisive performance advantages over
content-based strategies in this context.

The remainder of this chapter is organized as follows. In Section 3.1, we
discuss forms of knowledge representation on the Web and the differences
between folksonomies and ontologies. In Section 3.2, we discuss ontology
modeling strategies and their limitations for modeling folksonomies. In Sec-
tion 3.3, we introduce an abstract model to mediate between folksonomies
and ontologies. In Section 3.4, we give a brief introduction to collaborative
filtering, which we apply in our user model extraction algorithms. In Sec-
tion 3.5, we describe the output of our extraction method, the user model
content. In Section 3.6, we describe our extraction algorithms. In Section 3.7,
we conclude with a discussion of our extraction method.

3.1 Knowledge representation on the Web

Our goal is to explicate knowledge inherent in folksonomies for exploratory
search. Therefore, we must transfer implicit user-specific information from
folksonomies into an explicit form which allows to use it in an exploratory
search engine. In the following section, we summarize popular forms of
knowledge representation on the Web that vary in complexity, expressivity
and formal explicitness. Figure 3.1 shows forms of knowledge representation
arranged on a scale, ordered by complexity [153]. The scale reaches from
glossaries, which carry little semantics, to semantically highly expressive on-
tologies.

(1) Glossaries are the least complex structures. They are controlled vo-

81

Complexity

Glossary

Semantic network

Thesaurus

Folksonomy

Lightweight ontology

Heavyweight ontology

Figure 3.1: Knowledge representation structures (based on [153])

cabularies that define a shared meaning of a set of terms for a community.
The terms don’t relate to each other in any form. (2) Semantic networks
extend the expressivity of glossaries. They describe graphs of terms that
relate terms to each other [228] . Glossaries and semantic networks carry
only very little semantic meaning. (3) Thesauri allow to model three kinds
of relations between terms: hierarchy, association, and synonymy. Hierar-
chy modeled with thesauri is typically transitive, i.e., a term that belongs
to a narrower category is automatically narrower than all terms that belong
to broader categories. Thesauri carry more semantics than glossaries and
semantic networks and allow to apply logical reasoning to transitive hierar-
chical structures to decide whether a term belongs to a category. Reasoners
can classify terms by implicit knowledge. For example, they can find implicit
sub-terms of a term by reasoning on a transitive classification. (4) Folk-
sonomies don’t contain hierarchical relations and differ fundamentally from
the other structures, as we point out in Section 3.1.1. (5) Lightweight on-
tologies are what is most commonly referred to as ontologies in the Semantic
Web context. They contain classes, instances, and properties, but still con-
tain only minimal descriptions of them [153]. Concepts are typically modeled
by classes. Individual instances of classes are the actual entities that are de-
scribed. Lightweight ontologies extend beyond thesauri in that they allow to
model arbitrary relations between concepts. For example, an instance of a
class user and an instance of a class bookmark can be related by creator of.
Classes as well as properties can be restricted to certain values or cardinal-
ity. For example, an entity of a class bookmark may have only one property
creator. The entity referred to by creator may also be restricted to the class

82

user. (6) Heavyweight ontologies contain more detailed descriptions on how
classes are composed (of other classes), or which properties are applicable
for specific classes. Highly expressive ontologies that support first order logic
allow for even more sophisticated logical reasoning. The boundaries between
lightweight and heavyweight ontologies are fluent. In practice, it is often
the tradeoff between application requirements and modeling costs that de-
cides how expressive an ontology is modeled. Generally, the more expressive
an ontology is, the more costly it is to model and maintain the ontology.
On the other side, more expressive ontologies allow for better computational
processing [93].

Ontologies are a popular explicit knowledge representation form that is
suitable for user modeling. Our goal is to model the knowledge inherent in
folksonomies using ontologies. In the following sections, we discuss the differ-
ences between ontologies and folksonomies and the challenges of mediating
between them.

3.1.1 Ontologies versus folksonomies

Ontologies differ fundamentally from folksonomies. The diversity of both
representation forms results from their different backgrounds – ontologies
and folksonomies are phenomenons of two divergent worlds [92, 221]. As
we discussed in Section 2.4, folksonomies are a phenomenon of the Social
Web, which traditionally relies on non-semantic technologies. Ontologies are
phenomenons of the Semantic Web.

We begin our discussion with a brief introduction to the Semantic Web to
clarify the idea of ontologies. Ontologies are an enabling technology for the
Semantic Web [92, 211, 61, 110]. The Semantic Web is a currently evolving
extension of the current Web [22, 187, 9, 108]. Semantic technologies use,
leverage, and extend the available Web infrastructure, which is can be seen
as a technology stack of URIs used for resource identification, HTTP used
as a transport protocol and XML acting as a common format for structural
description of data exchanged on the Web. The key idea of the Semantic
Web is to represent information in a computer-interpretable form. Resources

83

on the Web that are extended by computer-interpretable information on the
semantics of the resources. On the envisioned Semantic Web, semantics
– meaning – of information resources and services is defined. Computers
can interpret information not only on a structural, but also on a semantic
level. One objective of the Semantic Web is to share and reuse data across
services. Instead of having proprietary data formats for specific services or
applications, the vision of the Semantic Web is to create a global Web of data
based on interchangeable and reusable data in a shared format: ontologies
[63].

To achieve computer-interpretable semantics, semantic technologies add
further layers to the Web technology stack. The Semantic Web is based on
two pillars.

(1) Globally shared data formats make data sharable and reusable for
all components of the Semantic Web. Key formats are RDF 1 and the on-
tology languages RDFS 2 and OWL 3. RDF provides a common format for
semantic description of data on the Web. On top of RDF, RDFS and OWL
formalize knowledge represented by RDF resources as ontologies. Ontologies
describe relations between RDF resources and model generic or domain spe-
cific knowledge that can be shared on the Web. They describe concepts and
their relationships to model shared, formal conceptualizations of a domain
[91], i.e., they are domain models that represent context knowledge using a
computer-interpretable formal language.

(2) Human-like logic can applied to the ontologies to infer implicit knowl-
edge from the data. Reasoners use formal logic to derive further knowledge
from ontologies [210, 95, 191, 70]. SPARQL, a semantic query language en-
ables querying of knowledge in ontologies [170]. Implementations of SPARQL
engines may include reasoners that apply formal logic to the queries.

Semantic Web ontologies differ from folksonomies on many levels – rep-
resentation, expressivity, goals, creation methods, and dynamics [92]. Subse-
quently, we discuss the key differences between ontologies and folksonomies.

1http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (last access 2011-04-22)
2http://www.w3.org/TR/rdf-schema/ (last access 2011-04-22)
3http://www.w3.org/TR/owl2-overview/ (last access 2011-04-22)

84

(1) A major difference between ontologies and folksonomies is their repre-
sentation. As a phenomenon of the Semantic Web, ontologies are expressed
in formal languages with well-defined semantics. Ontology languages are
Semantic Web technologies: RDF, RDFS, and OWL provide syntactical for-
malization and enable logical reasoning which results in semantics. Folk-
sonomies are a phenomenon of the Social Web. They traditionally rely on
non-semantic technologies. They don’t have a defined syntactical structure
and may appear in arbitrary database schemas.

(2) Ontologies and folksonomies differ in expressivity. Ontologies classify
concepts, i.e., they categorize concepts into classes and subclasses. The on-
tology definition does not define the level of expressivity or complexity of a
domain model that is required to form an ontology; in practice, ontologies
greatly differ in complexity [153]. However, all ontologies have in common
that they categorize into classes and create relationships between instances
and classes. Ontologies model formal semantic relations by relating concepts.
A key strength of ontologies is that they can model hierarchy – is kind of or
is part of relations between concepts. In folksonomies, instead, relationships
are merely implicit. They don’t formally express semantic meaning. Tags,
users, and webpages are related somehow in folksonomies, but folksonomies
don’t formally model how they are related. Furthermore, folksonomies don’t
model any hierarchy – in the spirit of folksonomies „everything is miscella-
neous“ [220]. Thus, folksonomies are less expressive compared to ontologies.

(3) Ontologies and folksonomies differ in their objectives. The main pur-
pose of ontologies is to model a shared meaning within a community. This
presumes agreement over concepts and relations of a domain among a com-
munity. A conceptual domain model must be shared by several individuals
to form an ontology – „there is no such thing as a ,personal ontology‘ “ [153].
In folksonomies, knowledge doesn’t have to be agreed on. Instead, it emerges
when several users share interest, preferences, or opinions. Opposed to on-
tologies, folksonomies do therefore not require a shared vocabulary and classi-
fications. The creation of folksonomies is simple, effortless and collaborative,
because no agreement is required across individuals. There is no pre-defined
organizational structure to follow when modeling knowledge in a folksonomy.

85

As a result, the creation and maintenance of knowledge in folksonomies is
achieved with considerably lower effort than that of ontologies.

(4) Ontologies and folksonomies differ in what they model. The range of
the knowledge modeled in ontologies is usually clearly defined. Ontologies
model either generic knowledge on a high-level, or specific knowledge for a
limited and fixed topic domain. Folksonomies, instead, cover a broad vari-
ety of domains without clear-cut limitations. The crowd-sourced approach
of folksonomies produces domain knowledge of much larger range than that
of ontologies. Closely related to this difference is the dynamic of the mod-
eled knowledge. Folksonomies are inherently open-ended and can be easily
extended – they are in a constant flow. Folksonomies dynamically develop
over time; they are much more dynamic than ontologies. In folksonomies,
new tags are used as soon as they are needed – new vocabulary develops as
soon as it is required. The notion of users and time is much more dominant
in folksonomies. Folksonomies are created by a community of users. Users
may enter or leave the community. Commitments of users change as new
resources are tagged. The consensus of shared knowledge in folksonomies
is in constant change. A new consensus may contradict, and thus invali-
date, domain knowledge that users agreed on earlier [152]. In folksonomies,
knowledge is „an emergent effect of the system as opposed to be a fixed,
limited contract of the majority“ [152]. Ontology maintenance, instead, is a
tedious process, which involves definition of new vocabulary, classifications
and relations and consensus on the newly created knowledge [229].

(5) While ontologies focus on knowledge representation, the focus of folk-
sonomies is more on the social knowledge acquisition process. While ontolo-
gies don’t model the process of knowledge creation, folksonomies inherently
address this complex process. [152] highlight the highly dynamic and collab-
orative nature of folksonomies. Their idea of folksonomies „is a community
of self-organizing, autonomous, networked and localized agents co-operating
in dynamic, open environments, each organizing knowledge (e.g. document
instances) according to a self-established ontology, establishing connections
and negotiating meaning only when it becomes necessary for co-operation“
[152]. They suggest the term emergent semantics to emphasize the dynam-

86

ics of semantic structures in folksonomies. In ontologies, instead, knowledge
creation and maintenance is usually detached from ontology usage. This
practice „cuts off valuable feedback and actually makes the social agreement
over ontology elements brittle and vague“ [212]. Folksonomies blend knowl-
edge creation, maintenance, and usage. Therefore, integrating folksonomies
with ontologies has the potential to make ontology creation and agreement
over semantics faster and easier.

3.1.2 Connect ontologies and folksonomies

Attempts to integrate the Social Web and the Semantic Web are gaining
popularity. Recently the divergent worlds of the Semantic Web and the
Social Web begin to merge [90, 28, 36, 111]. Semantic Web technologies
become important for the Social Web, because the predominant technologies
of the Social Web yield limitations for further developments. On the other
side, the Social Web offers new potentials to promote the Semantic Web.
The convergence of the Social Web and the Semantic Web opens up two key
potentials:

(1) The Social Web enables new strategies for ontology creation and main-
tenance in which folksonomies play an important role [193, 229, 212]. We
discussed that a key problem of folksonomies is their lack expressivity: un-
like ontologies, folksonomies don’t explicitly express hierarchy and semantic
meaning of relations. But folksonomies offer huge potentials for ontology
creation. Even if they are less expressive than traditional domain ontologies,
much implicit knowledge is inherent in social tagging systems. Folksonomies
thus have „the potential of becoming a technological infrastructure for har-
vesting social knowledge“ [229]. Integration of folksonomies into the ontology
creation process has the potential to produce more dynamic ontologies and
ontologies that describe also less popular domains – the long tail of domains
that is not (yet) covered by existing ontologies.

(2) The Semantic Web can be an enabler of data integration on the So-
cial Web [36]. Semantic Web technologies are an important step for data
integration. For example, most user models that are currently generated by

87

Social Web services are bound to a single service due to proprietary data for-
mats and schemas. Semantic technologies can integrate user models across
services. Additionally, user models can be combined with other data. In
this context, ontologies are an important technology to organize, link, and
share user models. They provide a powerful conceptual and technical basis
to explicate and formalize user models and benefit user model representation
as well as their linkage and dissemination.

Our goal is to leverage the potentials that arise from convergence of the
Social and the Semantic Web for user modeling. We create semantically
interpretable, ontology-based, user models from folksonomies. Therefore, we
formalize knowledge inherent in folksonomies.

3.2 Ontology modeling methods

In the following section, we discuss four approaches for ontology creation –
ontology engineering, ontology learning, crowd-sourced ontology engineering,
and semantics extraction – and discuss their limitations for creating ontology-
based user models from folksonomies.

3.2.1 Ontology engineering

Ontology engineering describes manual creation of ontologies where ontol-
ogy engineers model a certain knowledge domain in an ontology language
[145, 196, 167]. Ontology engineers are typically domain experts; to model
a domain, they need exhaustive knowledge on the domain. The process of
manual ontology engineering involves three steps (cf. [161]):

In a first step, the ontology engineer decides the range of the domain
that is to be covered and the purpose the ontology should serve. This de-
cision defines the range of the ontology and how expressive the ontology
will be. For example, depending on the purpose, certain classes of proper-
ties may be required, or property restrictions may or may not be necessary.
The purpose and domain defines what concepts and properties are used for
the ontology. For many domains, ontologies may already exist that can be

88

reused or extended. Once the classes and properties for the ontology are
defined, class hierarchies have to be defined. Three approaches of hierarchy
modeling exist: top-down, bottom-up, and a combination of both [211]. The
top-down development starts with defining the most general concepts and
incrementally defines more specialized concepts. The bottom-up approach
starts with the most specific concepts and incrementally groups the concepts
into more general concepts. The combined approach starts with defining
the most important concepts and incrementally defines more generalized and
specific concepts. The result of the class hierarchy development is a hier-
archical taxonomy of classes, where an instance of a specific class is also an
instance of the superclass of its class. In other words, the taxonomy describes
is-a relations between classes. Class hierarchies are typically transitive, i.e.,
a class is not only a subclass of its direct superclass, but also a subclass of
all superclasses of its superclass.

In a second step, the ontology engineer defines the properties of classes.
For each class, properties are defined that may be used to further describe
an item of this class. The properties are also applicable for all subclasses
of this class. The domain of a property defines which classes can use the
property. The range of a property defines which class a property can have
as its value. Properties can be further specified by defining value-type, e.g.,
a property value may be specified only by a string value, and cardinality; in
other words, a class may only have exactly one property of a certain type.

In a third step, instances are created for classes in the ontology. For each
instance, the ontology engineer chooses an appropriate class and defines the
values for the properties.

The benefits of manual ontology engineering are high quality of the mod-
eled knowledge. The method is, however, not appropriate for explicating
knowledge in folksonomies. Ontology engineering relies on extensive domain
knowledge of the engineer. Knowledge in folksonomies, however, covers a
wide range of topic domains. This is an exclusion criterion for manual on-
tology engineering. There is probably no engineer who has knowledge on
all topic domains covered in a folksonomy. Furthermore, manual ontology
engineering is a tedious process which requires much work and is hence ex-

89

pensive, even when engineering tools are applied to support the engineer.
Folksonomies are large and dynamic hence go beyond what can be modeled
manually. Usually, manual engineering is applied to fixed topic domains,
where the focus is on high-quality and static domain models for a relatively
small domain. It is not a feasible strategy to transfer folksonomy knowledge
into ontologies.

3.2.2 Ontology learning

Ontology learning describes a partly automated ontology acquisition process
[145]. Ontology learning seeks to support the cumbersome ontology engi-
neering process by automation. Typically, ontology learning involves natural
language processing or machine learning to extract concepts and relations
from data sets. However, ontology learning is still not a fully automated
process but a semi-automated process that requires human intervention at
several points. The non-automated steps of the ontology learning process are
again carried out by an ontology engineer. [145] refer to this semi-automated
approach as balanced cooperative modeling. Instead of fully automating the
ontology creation process, ontology learning aims at facilitating the modeling
process for a technically trained person. [145] distinguish five steps involved
in the ontology learning process:

In step one, existing ontologies relevant for the given domain context
are identified and prepared for reuse. Existing ontologies may be domain
models, which roughly cover the given purpose. Also cross-domain, top-level
ontologies may be useful as initial structures when creating domain-specific
ontologies. Imported ontologies must be merged or aligned to form a single
ontology as a basis for the next step.

Step two is ontology extraction. This step exploits existing domain-
relevant data sets – free text, semi-structured or structured data sets – to
automatically model large parts of the ontology rather coarsely grained. This
step is usually automated and extracts coarse-grained domain models from
data sets with knowledge extraction algorithms. Typically, this involves also
pre-processing of the collected data. Which algorithms can be applied to the

90

pre-processed data depends on the kind of data. Semi-structured documents,
like webpages, may be reduced to free text, which then can be analyzed with
natural language processing algorithms to extract domain knowledge [159].
Structured data, like data sets from databases, may be mapped to a specific
data model and processed with machine learning algorithms.

In step three, the created ontology is pruned to adjust it to its purpose.
The goal of this step is to produce an ontology which is expressive for the
application context but excludes unnecessary knowledge. Knowledge irrel-
evant for the application context that makes the ontology less manageable
and computationally less efficient may be dropped.

In step four, the ontology is refined. This step completes the modeling
of the extraction step at a more granular level. The ontology is adapted –
fine-tuned – to better serve the application requirements. This step usually
involves similar algorithms than the extraction step. However, in contrast to
the extraction step, refinement can consider existing ontologies.

In step five, the application for which the ontology is created validates
its quality. Since an ontology is usually created to serve a specific purpose,
the application can measure how well the ontology fulfills the requirements.
Optionally, the learning process can be iterated with the resulting ontology
to improve or extend the ontology.

Ontology learning is a more feasible method to model ontologies on a large
scale, hence it overcomes the most serious limitation of manual engineering.
However, it still has drawbacks for knowledge extraction from folksonomies.
Ontology learning aims at extracting knowledge from a data set by identi-
fying instances and mapping them to existing classes. It relies on existing
domain ontologies on which information from the input data can be mapped.
This implies that ontologies exist which model the topic domain covered by
the input data. Furthermore, it implies that it is known in advance which
domains are covered in the input data. Both is not the case in folksonomies
where topic domains may emerge which have not been modeled yet in an ex-
isting ontology and where it is not possible to know what topics will emerge
in the future by user tagging behavior.

91

3.2.3 Crowd-sourced ontology engineering

The crowd-sourced ontology engineering approach extends the traditional
ontology engineering approach in another direction. Instead of a single on-
tology engineer, many users collaboratively model domain knowledge. The
crowd-sourced ontology engineering approach enables a large number of non-
technical users to contribute ontological knowledge. The design of a crowd-
sourced ontology engineering system must be inherently different from on-
tology engineering systems for a single ontology engineer [139, 15].

Crowd-sourced ontology engineering has been successfully applied for
web-scale knowledge modeling, but it still faces three challenges that have
to be overcome for knowledge modeling in the context of social bookmark-
ing systems. First, users have no special technical knowledge on ontology
engineering. Crowd-sourced ontology engineering systems must break down
the modeling process to simple steps that can be carried out without any
knowledge on ontologies. They must also provide easy-to-use user interfaces
to enable users to contribute. Second, users are usually not obliged to fulfill a
task. Crowd-sourced ontology engineering systems must provide a reason or
incentive for users to contribute to the modeling process. The systems should
also make ontological engineering effortless to keep the entrance barrier for
contribution low. Third, users may have different and contradicting opin-
ions on a domain. The system must consider the possibility of contradictory
conceptions of different users – it must be able to deal with contradicting
opinions.

In the context of the Social Web, two forms of crowd-sourced ontology en-
gineering systems have been developed: semantic wikis and Extreme Tagging
systems. Both seek to integrate crowd-sourced ontology engineering with the
ideas of the Social Web.

92

Semantic wikis

Semantic wikis 4 are a form of crowd-sourced ontology engineering systems
commonly used in the Semantic Web context [15, 13]. Semantic wikis allow
for Web-based, distributed knowledge engineering. They provide an easy-
to-use interface that enables non-technically trained users to collaboratively
create and maintain ontologies or to semantically annotate resources on the
Web. They extend the concept of traditional wikis to the Semantic Web, i.e.,
they seek to make semantic knowledge engineering and maintenance easy for
average users and thus to leverage a large number of technically untrained
domain experts as ontology engineers.

Semantic Wikis strongly simplify knowledge creation and representation
for the user. For example, they provide graphical user interfaces like what
you see is what you get ontology editors. They also address the issue of
contradicting opinions. Like traditional wikis, semantic wikis provide tools
for change-tracking, discussion, commenting, and rating to allow consensus
building. This, however, is still problematic, since different parallel opinions
may exist or even be required depending on the use case. Depending on
the ontology purpose, different definitions of a topic may be required to be
reflected in an ontology.

Extreme Tagging

Extreme Tagging is a crowd-sourced ontology engineering approach that spe-
cializes on social tagging systems [176, 200]. It aims at utilizing the popu-
larity of social tagging systems for crowd-sourced ontology engineering. The
approach combines social tagging and manual ontology engineering. Usually,
social tagging systems allow to tag resources, e.g. webpages. Extreme Tag-
ging additionally allows to tag tags themselves, relations between tags, and
relations between tags and resources. Goal of the additional tagging is to
enhance the semantic expressivity of the underlying folksonomy.

An example for the benefit of Extreme Tagging is disambiguation of var-

4http://www.gi.de/no_cache/service/informatiklexikon/informatiklexikon-
detailansicht/meldung/semantic-wiki-174.html (last access 2011-04-22)

93

ious meanings of a tag. Tags may have different meanings in different con-
texts. In Extreme Tagging systems, users can tag existing tags to clarify
the tag meaning. For example, a tag apple that describes a resource may
be tagged with computer to disambiguate its meaning as a company from
another possible meaning, the fruit.

A further benefit of Extreme Tagging is that it can render associations
between tags semantically expressive. Relations between tags in a folksonomy
may carry several semantic meanings, e.g., is kind of, is part of, or singular of.
To explicitly model the semantic association between tags, users can tag the
relations. For example, a user could tag the relation of two tags foursquare
and social media with application of. Tagging of relations between resources
and tags works the same way. Tags can have various functions in a social
tagging system. A tag may describe the content of a resource, e.g. geofencing ;
or it may be functional, e.g., it may express interest – toread or remember.
A user can tag a resource-tag relation with describes to clarify that the tag
is descriptive. Tagging of resource-tag relations thus makes the function of
tags semantically expressive.

Allowing users to tag the tags and relations promotes collaborative en-
hancement of semantic expressiveness of folksonomies. Extreme tagging ad-
dresses two issues of collaborative ontology engineering: it ensures a low
entrance barrier for user contribution, and it shows how to use existing so-
cial tagging services for ontology creation. However, the Extreme Tagging
approach faces an unsolved problem: there are no constraints for how re-
lations can be tagged. Unlike ontology engineering, where engineers stick
to a pre-defined vocabulary, Extreme Tagging allows for free annotation –
users are not encouraged to stick to common classifications or vocabulary.
Extreme tagging thus does indeed add further structure to folksonomies; the
problem is, however, that the added structure does not necessarily provide
more semantic expressivity, because the tags that describe tags or relations
are semantically as arbitrary as the original tags. Extreme tagging does
therefore not yield enhanced formal semantics.

94

3.2.4 Ontology extraction

Ontology extraction is a method that automatically explicates semantics in-
herent in folksonomies. It exploits manually created content from social tag-
ging systems, folksonomies, for knowledge modeling. Semantics extraction
systems use folksonomies as an input for lightweight ontology creation. They
require no explicit knowledge modeling of the users. Instead, social tagging
behavior is regarded as an implicit knowledge modeling process. Semantics
are extracted through machine learning algorithms. Ontology extraction al-
gorithmically explicates semantic relations that are implicit in folksonomies
through analysis of relations between tags, users, and tagged resources. On-
tology extraction is a promising approach, particularly because it allows for
high automation of knowledge modeling.

3.3 An abstract model for semantics extraction

from folksonomies

Algorithmic ontology extraction can be used to extract knowledge relevant
for exploratory search from folksonomies. [152] contribute a generic, abstract
model to describe emergent semantics in folksonomies, the Actor-Concept-
Instance model of ontologies. A problem of ontologies is that they don‘t
cover all aspects relevant for knowledge representation in social bookmark-
ing services. The Actor-Concept-Instance model extends the ontology model
to better address the specific features of folksonomies. The model explic-
itly models the fact that all meaning depends on users that contribute in
a community. It extends the ontology model with a social dimension to
better describe crowd-sourced semantics emergence in folksonomies. The
Actor-Concept-Instance model is a formal basis for the semantics extraction
process from folksonomies.

The formal definition of folksonomies (see Chapter 2) describes folk-
sonomies as a tripartite graph. The Actor-Concept-Instance model is in-
spired by this model. It also models the folksonomy as a tripartite graph
and involves several graph conversions to apply analysis methods on the

95

Actors
(Users)

Concepts
(Tags)

Instances
(Webpages)

Figure 3.2: Actor-Concept-Instance graph

graph. Applying machine learning techniques, like classification, clustering,
or recommenders, on folksonomies is a viable strategy for semantics extrac-
tion. The problem is, however, that these techniques cannot be applied to
folksonomies per se, because they cannot be applied to tripartite graphs
directly. The Actor-Concepts-Instance model formalizes folksonomies and
converts them to formal structures that can be utilized by machine learning
techniques. In the following, we describe the graph modeled by the Actor-
Concept-Instance model and the conversion steps that are necessary to apply
established analysis methods for semantics extraction.

3.3.1 A tripartite graph

The Actor-Concept-Instance model is an extension of the ontology model.
The traditional ontology definition models concepts and instances. The
Actor-Concept-Instance model extends this definition with actors. It mod-
els a folksonomy as a tripartite graph with hyper-edges. Nodes of this
folksonomy graph are partitioned into three disjoint sets: actors (users),
concepts (tags), and instances (tagged resources, e.g. webpages); formally
A = {a1, . . . , ak}, C = {c1, . . . , cl}, I = {i1, . . . , im}. The graph is a hyper-
graph with ternary edges; each edge represents a concept associated with an
instance by an actor, see Figure 3.2.

3.3.2 Affiliation graphs

Goal of the Actor-Concept-Instance model is to provide a formal model of
folksonomies on which analysis methods can be applied for semantics extrac-
tion. Established analysis methods for semantics extraction already exist,

96

e.g., from the field of machine learning. A problem for these analysis meth-
ods is that folksonomies formally take the form of a tripartite graph with
hyper-edges (see Chapter 2). Such graphs, however, are complicated to work
with. To apply established analysis methods, we must convert the folksonomy
into a simpler formal structure. The Actor-Concept-Instance model helps to
formally convert the original tripartite folksonomy graph with hyperedges
into three bipartite graphs with regular edges:

(1) An actor-concept graph models affiliations between users and tags. It
links users to the tags they have used to describe at least one resource. As-
sociations between actors and concepts can be weighted. The weight models
how often a user has used a tag.

(2) A concept-instance graph models affiliations between tags and re-
sources. This graph can also have weighted edges, which model how often a
resource has been tagged by a certain tag.

(3) An actor-instance graph models affiliations between users and re-
sources. Because users usually tag a resource only once, weighting makes
no sense in this graph.

3.3.3 Similarity

These three affiliation graphs allow to extract similarities between nodes in
the graphs, i.e., similarities between actors, concepts, or instances. Similarity
can be derived from overlapping of pairs in the affiliation graphs. Similarity
is weighted; the weight of an edge is higher when more pairs overlap. For
example, the similarity of two users from an actor-concept graph is higher,
when the two users have a larger number of shared tags (tags that both users
have used to tag a resource).

Three similarity graphs can be created from the affiliation graphs: (1) a
user similarity graph (overlapping agents), (2) a tag similarity graph (overlap-
ping concepts), and (3) a resource similarity graph (overlapping instances).

97

3.3.4 Statistical Analysis

Similarity graphs are an appropriate input source for established statisti-
cal analysis methods that can be applied for semantics extraction. These
methods are usually machine learning algorithms. For example, recom-
menders can utilize similarity graphs to recommend tags or webpages to
users [163, 141, 115, 106, 29]. Another potential is hierarchy extraction
[104, 183, 125, 127]. Folksonomies are flat structures, which is a shortcoming
in many regards. Machine learning algorithms can extract hierarchy from
similarity graphs to enhance the expressiveness of folksonomies.

3.3.5 Semantic interpretation

A problem with statistical analysis for semantics extraction is that the ex-
traction methods can extract relations between tags, users, and webpages;
however, they cannot automatically define how to semantically interpret the
extracted relations [49]. For example, the semantic meaning of a tag hierar-
chy relation is different than user hierarchy. Tag hierarchy usually typically
expresses taxonomic classifications – is-a relations. User similarities are ex-
plications of social networks implicit in folksonomies. User hierarchy typi-
cally expresses affiliation of a user to a certain community. Any semantics
created through statistical analysis must be accompanied by interpretation
of its results.

3.4 Collaborative Filtering

Our user modeling algorithms apply collaborative filtering for semantics ex-
traction. Collaborative filtering was first introduced by [84]. It is a ma-
chine learning technique that allows to compute similarities between arbi-
trary things (items, in the terminology of collaborative filtering) or users.
Item and user similarities are then used to predict preferences of particular
users for items [102, 132]. Collaborative filtering techniques have been widely
applied in recommender systems [198]. Recommender systems analyze user

98

models of users in a community to help individual users of that community
identifying relevant information or filtering out irrelevant information [132].

Recommenders are thus an information filtering technique that allows to
identify items which a specific user is likely to have interest in. To make
predictions, recommender algorithms compare user models with some other
characteristics. Recommenders aim at presenting only those information to
a user that the user is interested in. Although preferences of people are
highly individual, they do follow certain patterns. People tend to prefer
things that are similar to other things they like [162]. Because Tom, the
user from our introductory example, is interested in social media and mobile
web, we can guess that he is also interested in geofencing, which is a closely
related topic. Communities of people that express opinions on things provide
valuable data to make recommendations. In a community, people tend to
prefer things that similar people prefer. The idea of recommender systems
to use these preference patterns in communities to predict preferences of
individual people: „people who like mobile web also like geofencing“.

Recommenders predict users’ preferences for items based on a set of rat-
ings of other users. Ratings are opinions – likes and dislikes – that users
have expressed about items. The goal is to predict items that a specific user
has interest in from existing ratings of the user and that of the other users.
How ratings are represented depends on the recommender; ratings may be
votes on a numerical scale, 1-5 to express the level of preference, or just a
binary value, preference or no preference. The prediction process atop of
the preference ratings consist of two steps. First, the recommender estimates
pairwise similarities between all items – it creates item-item similarities based
on the ratings. Alternatively, the recommender can also estimate pairwise
similarities between all users. Both strategies are possible and reflect two
perspectives on the recommendation problem, as we will point out below.
Second, the recommender computes predictions from these similarities. For
each item, the recommender estimates the probability that a particular user
likes it. It suggests a list of items that the user presumably has interest in.
The predictions can also include items that were not yet rated by the user
– novel items. A key strength of recommenders is to predict preference pat-

99

terns, and to use these patterns to discover items that are useful for specific
users but which the users did not already know about [162].

Recommender systems can be categorized into two types: content-based
and collaborative filtering recommenders. Both types differ in the methods
they use to compute similarity between items or users.

Content-based recommendation techniques compute user preferences and
make recommendations considering attributes of the items or users [143, 164].
For example, a content-based recommender could recommend a webpage to
a user because the user has shown interest in other webpages from the same
Web domain, e.g., acm.org. In this case, the recommender leverages at-
tributes of the URL to predict a user interest. The prediction could also
rely on metadata embedded in a webpage, or the actual content of the page.
Content-based recommendations work well in many contexts, however, they
have drawbacks for our needs. A key shortcoming of content-based recom-
mendation techniques is that they require to process the content of resources.
This imposes considerable computational effort, particularly when scaling to
large and dynamic data sets on the Social Web. For example, to predict
webpages to users in a folksonomy based on the page content, we would have
to be retrieve and mine the text and multimedia content of all webpages
included in the folksonomy.

Collaborative filtering computes user preferences and recommendations
based on user and community data: „[c]ollaborative filtering systems use the
item ratings by users to come up with recommendations, and are typically
content agnostic“ [60]. They are a complementary approach to content-based
filtering. Collaborative filtering recommendation techniques don’t require to
process the properties of items to make recommendations. They are solely
based on knowledge of users’ relationships to items. Hence, collaborative
filtering is agnostic to what the items are or which attributes they have
– the same collaborative filtering technique can be applied to recommend
webpages, tags, or something completely different, as long as relationships
between users and items exist. A key advantage over content-based tech-
niques is that collaborative filtering can be easily adapted to other data –
images, music, videos – where it is hard to analyze the underlying content.

100

Furthermore, by avoiding content analyses, which are often computationally
costly, collaborative filtering usually imposes less computational effort.

We adopt the formalization of collaborative filtering provided by [181]:
The goal of collaborative filtering is to recommend an item or to predict
the preference of an item for a particular user. There is usually a list of m
users U = {u1, u2, . . . , um} and a list of n items L = {i1, i2, . . . in}. Each
user has a list of items Iui

, which the user has expressed their opinion about.
Opinions can be gained from explicit ratings, or implicitly from analysis of
usage data, like bookmarks, search query logs, or click-through data. There
exists a particular user ua ∈ U – the active user – for whom the result of
the algorithm is computed. According to [181], the result can be either a
recommendation or a prediction.

A recommendation is a list Ir ⊂ L of N items that the active user ua will
prefer the most. The list must not contain items which the user has already
expressed their opinion about, i.e., Ir∩Iua . This result is referred to as top-N
recommendation.

A prediction is a numerical value which represents the predicted prefer-
ence Pa,j of the active user ua for a particular item ij /∈ Iua . The prediction
values are represented in the same scale than the expressed opinions of ua.

We extend the formalization by another result type, which reflects a fur-
ther possible task of collaborative filtering algorithms: collaborative filtering
can be applied to suggest similar items. Similar items are a list Ir ⊂ L of N
items that have the highest similarity to an active item ia for the active user
ua. We refer to this result as top-N similar items recommendation. Note,
that the result of similar items is specific to the active user. The top-N sim-
ilar items are influenced by existing ratings of the active user. For example,
the similar items can be filtered so that they don’t contain items which the
user has already rated, i.e., ij /∈ Iua .

Preference matrix. The collaborative filtering process relies on prefer-
ences, which represent expressed opinions – ratings – of users about items.
The preferences are a m × n user-item matrix Mp, where each entry mi,j

represents the preference rating of useri on itemj. A rating can be empty

101

indicating that a user has not expressed an opinion about an item.

Similarity matrixes. From the preference matrix, the recommender al-
gorithms computes a similarity matrix. Similarities are computed either
between users or between items. The two approaches reflect two strategies of
collaborative filtering: user-based and item-based recommenders. [162] point
out that „[t]he label ,user- based‘ is somewhat imprecise, as any recommender
algorithm is based on user- and item-related data. The defining character-
istic of a user-based recommender algorithm is that it is based upon some
notion of similarities between users“. User-based collaborative filtering algo-
rithms compute a pairwise user similarity matrix Mu(uk, ul). Accordingly,
item-based algorithms compute a pairwise item similarity matrix Mi(ik, il).
Both similarity matrixes are computed based on the ratings users expressed
for items and certain similarity measures. The similarity matrixes are typi-
cally computed offline. During runtime, only recommendations, predictions,
or similar items are computed from the matrixes.

Similarity measures. An important element of collaborative filtering al-
gorithms is the computation of which users, or items respectively, are similar
to others. Similarity measures are applied to compute pairwise similarities
between users or items based on the preference matrix. Common similarity
measures include the Euclidean distance 5, the Pearson correlation coefficient
6, the cosine similarity 7, and the Tanimoto coefficient (see Equation 3.1 on
page 237). Which similarity measures produce the best results depends on
the application context and the features of the preferences. For example,
some similarity measures, e.g., cosine similarity, are inappropriate for binary
preferences. Other measures don’t consider the actual preference value for
similarity computation, hence are suited only for binary preferences.

Collaborative filtering has proven successful in the context of social book-
marking systems to support users in annotating resources, browsing through

5http://en.wikipedia.org/wiki/Euclidean_distance (last access 2011-04-22)
6http://en.wikipedia.org/wiki/Pearson_correlation (last access 2011-04-22)
7http://en.wikipedia.org/wiki/Cosine_similarity (last access 2011-04-22)

102

resources, and detect new resources [238, 141, 116, 182, 163, 115]. We use
collaborative filtering to extract user models and recommend resources to
users based on the user models. Our user models aim at supporting the
two key tasks of exploratory search – domain discovery and domain learning.
Collaborative filtering recommendations support these tasks in three regards:

(1) Collaborative filtering can suggest novel items to users. A strength
of collaborative filtering is to predict preferences for items that a user does
not know yet. Suggesting novel items enables domain discovery. In an ex-
ploratory search engine that bases on folksonomies, collaborative filtering
recommenders can suggest novel tags or webpages to users to support dis-
covery of novel topic domains.

(2) Collaborative filtering is an appropriate technique for semantics ex-
traction from folksonomies. We apply collaborative filtering to extract hier-
archical associations between tags. Tag hierarchy is valuable for exploratory
search because it supports domain learning: hierarchical relations between
tags can guide users from general to specific information and vice versa.

(3) Collaborative filtering integrates well into personalization. Collab-
orative filtering is inherently user-specific. Exploratory search can greatly
profit from personalized navigation facilities for domain discovery and do-
main learning. Collaborative filtering algorithms support adaptation of rec-
ommendations to personalize navigation cues for exploratory search engines.

3.5 Output

Our user model extraction method extracts three user properties from folk-
sonomies: user interest, user similarity, and user knowledge.

(1) We extract the interest of individual users in a topic. We create a
keyword-based interest model. We consider tags to be keywords that describe
a concept. Interest is represented by tags that a user has used more than
once to bookmark webpages, i.e., whenever a user uses a tag more than once,
the tag is added to the user interest model. The extracted interest is binary
– users have or don’t have interest in a topic.

(2) We extract the similarity between individual users. We assume that

103

two users are more similar if they share more interests. Hence, our user
similarity extraction method relies on common interests of users. Our user
similarity extraction algorithm computes similarity values between all users.
The value is higher, the more tags two users have been used in common.
Hence, user similarity is weighted – users are more or less similar to others.
Our user models store the top-N similar users with a similarity weight value.

(3) We extract knowledge of individual users. User knowledge describes
semantic relations between tags that are valid for a specific user. The knowl-
edge extraction process involves two steps. First, we extract the top-N similar
tags for all tags in which an active user has interest. Second, we extract se-
mantic relations between similar tags individually for each user. Semantic
relations between tags can be either associative or hierarchical. Associative
relations model semantic similarity between two tags. Hierarchical relations
model semantically broader or semantically narrower relations between tags.
Our tag hierarchy algorithm extracts the relations considering tag similarities
and popularity of tags. Our user models store weighted similarity relations
and model their semantic relation type.

3.6 Extraction algorithms

In the following section, we describe our collaborative filtering user model
extraction algorithms. Our extraction method involves three steps. First, we
extract interest properties for individual users with our user interest predic-
tion algorithm. Second, we extract similar users for individual users with our
similar users prediction algorithm. Third, we extract knowledge for individ-
ual users, which involves two algorithms: the similar tag prediction algorithm
and the tag hierarchy prediction algorithm.

3.6.1 User interest prediction

Our user interest prediction algorithm requires a folksonomy as input source.
We assume a preference of a user in a tag when a user tags a webpage with
a tag. We create a binary preference matrix from the input data. This pref-

104

Table 3.1: User interest prediction output

User Item
Tom social media
Tom mobile web
Tom geofencing
Eric web search

erence matrix is a list of users relating to tags. Each entry of the matrix
models a preference of a user for a tag. We construct binary preferences,
i.e., users either do or don’t prefer a tag; we don’t assign preference values.
Note, that it would be possible to create weighted preferences from our input
data, e.g., by considering how often a tag was used by the user. However,
these additional data don’t necessarily improve recommendation results. In
our extraction method, we neglect some of our available input data, namely
the information how often a user used a tag, because an informal evaluation
indicated that numerical preference values don’t produce better results but
complicate preference data collection and similarity computation. It seems
that much of the quantitative preference information in folksonomies results
in noise rather than in valuable information for our extraction method. To
further reduce noise in our models, we exclude tags from the preference ma-
trix that have been used only once. The output of the user interest prediction
algorithm is a binary preference matrix, Mp(u, t), that models unweighted in-
terest of users u in tags t, see Table 3.1.

3.6.2 Similar users prediction

Our similar users prediction algorithm requires the binary preference ma-
trix output by the user interest prediction algorithm, Mp(u, t). We create a
pairwise user similarity matrix for all users in the preference matrix. This
user similarity matrix models how similar any two users of Mp are. It stores
a similarity value for each combination of users. Table 3.2 illustrates the
structure of the similarity matrix.

The user similarity matrix models a similarity value between 0 and 1 for
all users for which some similarity exists. Note, that the similarity between

105

Table 3.2: User similarity matrix

Tom Eric Steve Bill
Tom 0.87 0.71 0.61
Eric 0.87 0.11 0.28
Steve 0.71 0.11 0.04
Bill 0.51 0.38 0.04

Table 3.3: Similar users prediction output

User User Similarity
Tom Eric 0.87
Tom Steve 0.71
Tom Bill 0.51

users may be null if no similarity exists. We compute the similarity values
for the user preference matrix with the Tanimoto coefficient. The Tanimoto
extends the cosine similarity to calculate similarities for binary attributes.
It is thus appropriate for our preference matrix, which models binary pref-
erences. The Tanimoto coefficient is defined as shown in Equation 3.1. It
returns a similarity coefficient between 0 and 1.

T (A,B) =
A×B

‖ A ‖2 + ‖ B ‖2 −A×B
(3.1)

To populate the user models with user similarities, we predict the top-N
similar users for each user based on the user similarity matrix. The output
of the similar user prediction algorithm is a matrix Mu(ua, ub, sim) with all
users ub, their top-N similar users ua, and a similarity value sim between 0
and 1, see Table 3.3.

3.6.3 User knowledge extraction

User knowledge extraction involves two algorithms. First, we predict tag
similarities. For each user, we predict the top-N similar tags for all tags that
the user is predicted to have interest in. Second, we predict semantic relations
between tags. A tag hierarchy prediction algorithm extends the output of
the tag similarity algorithm by semantic relations between tags. Based on

106

the output of the similar tags prediction algorithms and the popularity of
tags, it computes semantic relations between similar tags. Similarity between
tags models a semantic association by default. In some cases, our hierarchy
algorithm can enhance the associative semantic relations with hierarchy, i.e.,
it predicts semantical narrower and broader relations between similar tags.

Similar tags prediction

Our similar tags prediction algorithm requires the binary preference matrix,
Mp(u, t), output by the user interest prediction algorithm. We create a pair-
wise tag similarity matrix for all tags of the preference matrix. This tag
similarity matrix models how similar any two tags of Mp are. It stores a
similarity value for each combination of tags. The result is a tag similarity
matrix that models a similarity value between 0 and 1 for all tags for which
some similarity exists. The similarity may be null if no similarity exists.
Like in the previous algorithm, we compute the similarity values for the tag
preference matrix with the Tanimoto coefficient.

To populate the user model with tag similarities, we recommend the top-N
similar tags for each tag from the tag similarity matrix – we predict the top-N
similar tags for all tags that an active user has interest in. We can re-score
similarities between tags for individual users in this step. This individual re-
scoring allows us to bias the result of the algorithm towards certain features.
For example, we can decrease a tag similarity value for the active user, when
one of the involved tags has already been used by the user in a bookmark
or query. Thus, we can bias similar tag suggestions towards novel tags –
re-scoring allows to personalize the recommendations. Or, we can increase
similarity values for tags which are amongst the most popular tags to bias
recommendations towards popular tags. The baseline version of our tag
similarity extraction algorithm does not re-score the similarities. However, we
present two alternative versions of the algorithm in Chapter 4 which re-score
the similarities to bias recommendations according to tag popularity. The
output of the similar tags prediction algorithm is a matrix, Ms(ta, tb, sim),
of all tags in which the active user has interest in ta, their top-N similar tags

107

Table 3.4: Similar tags prediction output

Tag Tag Similarity
social media marketing 0.87
social media mobile web 0.71
social media geofencing 0.51

tb, and a similarity value sim between 0 and 1, see Table 3.4

Tag hierarchy prediction

Our tag hierarchy prediction algorithm extends the tag similarity algorithm
by a hierarchy prediction step. The algorithm requires two input sources: (1)
the weighted tag similarity matrix, Ms(ta, tb, sim), output by the similar tags
prediction algorithm, and (2) a popularity matrix Mp(t, popt) that stores the
popularity for each tag of the tag similarity matrix. The popularity describes
how often a tag has been used in the underlying folksonomy. Additionally,
the algorithm assumes a threshold value thresh to categorize the results.

The tag hierarchy algorithm computes the semantic relation between tags
in the user model of an active user. Note, that the computed hierarchy is
valid only for the active user, not for all users. By default, any similarity
between two tags is semantically associative – semantically related. The tag
hierarchy extraction algorithm can enhance these associative similarities to
hierarchical relations – semantically broader or semantically narrower, when
certain criteria apply. Our algorithm adapts the algorithm presented by [104].
The algorithm computes semantic relations between two tags, which can be
associative, broader, or narrower.

For each row in Ms, the algorithm computes whether ta and tb have an
associative semantic relation, or if tb is semantically broader or narrower
than ta. By default, ta and tb are categorized as associatively related. tb is
categorized as semantically broader than ta if poptb is larger than popta and
simta,tb is smaller than thresh. tb is categorized as semantically narrower
than ta if poptb is smaller than popta and simta,tb is larger than thresh.

The output of the similar tags prediction algorithm is a matrixMh(ta, tb, sim, rel)

of all tags in which the active user has interest in ta, their top-N similar tags

108

Table 3.5: Tag hierarchy prediction output

Tag Tag Similarity Relation type
social media marketing 0.87 associative
social media mobile web 0.71 narrower
social media geofencing 0.51 narrower

tb, a similarity value between 0 and 1 sim, and a flag indicating whether the
similar tag is associated, narrower or broader rel. Table 3.5 illustrates the
output.

3.7 Conclusion

The gain of this chapter is a user modeling method that creates user models
required for exploratory search. In Chapter 2, we discussed why the Social
Web, and particularly social bookmarking services, have potentials for user
modeling for exploratory search: first, the service-oriented architecture and
user-generated content available over APIs allows to retrieve data appropriate
for user modeling at a large scale; second, the structure of the data underlying
social bookmarking services allows for user model extraction with collabora-
tive filtering algorithms. Collaborative filtering allows to mine knowledge in
folksonomies with relatively low computational effort, hence being a fast and
computationally cheap technique. We presented a method for algorithmic
user model extraction from folksonomies. Our extraction method applies
collaborative filtering to folksonomies to extract and explicate three cate-
gories of user properties – user interest, user similarity, and user knowledge.
The resulting user models are an important enabler for exploratory search.

We discussed why ontologies are a viable form to represent our user mod-
els. Ontologies represent knowledge in a highly formalized, explicit, form.
Therefore, they are more expressive than other forms of knowledge represen-
tation, like folksonomies. The problem of folksonomies is that relationships
between users, tags, and resources in folksonomies are semantically unde-
fined. Folksonomies implicitly define that its elements are related, however,
they don’t define formally how they are related. The formal semantics that

109

ontologies provide are an important step towards more powerful Semantic
Web services. Ontologies integrate well into Semantic Web, because ontol-
ogy modeling languages exist that allow to store and process ontologies with
Semantic Web technologies. A key problem of ontologies is, however, that
they are cumbersome to model and maintain. Our user modeling method is
a strategy to automate the ontology modeling and maintenance process. It
creates user-specific knowledge that is explicit, hence can be formalized in
ontologies as we show in Chapter 5. Our method does not require manual
engineering like other ontology modeling approaches we discussed; it relies
solely on algorithmic extraction. Furthermore, our method is not restricted
to fixed topic domains, because it does not involve mapping of the data set
to existing domain ontologies. It is dynamic, because is develops ontologies
automatically and on-the-fly, while the underlying data, the folksonomy, de-
velops. For these reasons, our method is a viable approach for semantics
extraction from folksonomies.

Our user modeling method creates explicit semantic relations between
users and user-specific semantic relations between tags that are important for
exploratory search. In particular, we extract three user-specific properties:
user similarity, user knowledge, and user interest.

User similarity is important for exploratory search because it facilitates
detection of communities of interest. Communities of interest are valuable
to enable collaboration in exploratory search engines. Similar users can be
presented to users to support domain discovery. They can act as naviga-
tional cues to help users exploring their social context: in a social tag search
engine, users may browse bookmarks of similar users to discover new topics
accidentally. Chances are good that two users which are highly similar share
preferences for topic domains and webpages.

User knowledge is likewise important for exploratory search. In our user
models, user knowledge represents user-specific tag semantics. Tag semantics
are modeled by similarity and hierarchy relationships between tags. These
tag semantics enable exploratory search engines to suggest cues for navigation
through the information space. Similar tags can act as navigation cues for
domain discovery. A tag search engine may present similar tags to a query

110

to foster exploratory browsing. Users can navigate to similar topics from
the initial search context through suggested similar tags and discover other
topics related to their initial search context.

Hierarchical relations model semantically narrower and broader relation-
ships. Lack of hierarchical relations is a major limitation of folksonomies.
Hierarchy is important for many applications. Exploratory search engines
benefit from hierarchical relations between tags, because semantic hierarchy
between tags enables domain learning. A tag search engine may present hier-
archically related tags to a query to foster focused search. Users can navigate
from general tags to more specific tags and vice versa through hierarchically
related suggestions. Thus, hierarchical relations support navigation of users
through an information space to dig deeper into a topic, or to get the whole
picture by learning about the context of the topic. User knowledge is hence
an enabler for navigation cues that guide users through information.

User interest is an important property to create the personalized user
knowledge. User knowledge is inherently user-specific. Semantic relations
between tags are different for each user. For a computer scientist, apple
may be semantically related to computer, whereas for a biologist apple may
be related to fruit. User interest is a prerequisite to personalize semantic
relations for a user‘s knowledge. Furthermore, user interest is important for
exploratory search because it improves domain discovery. A tag search engine
may suggest only semantically related tags that are unknown – novel – to a
user to foster discovery of new topics. To suggest novel topics and resources
to users, a search engine must know which topics and resources the specific
user already knows.

Finally, our method bridges the gap between two technologies: the Social
Web and Semantic Web. Both worlds can profit from this mediation. On the
one hand, we show an automated strategy to model and maintain knowledge
with low effort. Our method creates more formal knowledge available on the
Web – an important prerequisite for semantic Web services. On the other
hand, we show how semantics can be incorporated into social bookmark-
ing systems. Ultimately, we show how exploratory search can profit from
semantics inherent in folksonomies.

Chapter 4

Contribution 2: A user model
evaluation method

In the following chapter, we contribute an evaluation method for user models
in the context of exploratory search. Our evaluation method comprises a set
of experiments to evaluate how user models support domain discovery and
domain learning. We exemplarily apply our evaluation method to the user
models created by our similar tag extraction algorithm.

Evaluation of exploratory search differs greatly from the evaluation of
query-and-response search engines. Traditionally, Information Retrieval fo-
cuses on providing users with all relevant results for a search query. Eval-
uation has concentrated on accuracy, completeness, and ranking of search
results; the key measures for query-and-response search engines are preci-
sion and recall [14, 218]. Exploratory search has another focus and requires
different evaluation measures and strategies. Although exploratory search
involves querying and ranking of results, it is much more interactive than
query-and-response search. Search results must not be evaluated in isolation
from the surrounding context. Evaluation of exploratory search engines must
consider the tasks that users want to fulfill and how users interact with the
search engine [225, 223]. Evaluation aims at assessing how well some intended
goals have been accomplished. The goals of exploratory search process are,
however, ill-defined and dynamic. Exploratory search involves multiple or

111

112

multi-faceted goals which cannot be clearly defined (cf. Chapter 2). Fur-
thermore, exploratory search is a long-term process where goals often change
during the search process. It is difficult to seize clear goals for evaluation.

Our method measures how well an exploratory search engine supports
the two key tasks involved in exploratory search: domain discovery and do-
main learning (cf. Chapter 2). In our experiments, we measure how good
the user models extracted by our algorithms support these tasks in an ex-
ploratory search engine. For the evaluation, we implemented an exploratory
tag search engine similar to that from our introductory example. In this
search engine, we facilitate the domain discovery and domain learning tasks
by recommending related tags for search queries. Our search engine allows
users to query for tags to retrieve webpages for the tags – webpages that
have been tagged with the query tags. Additionally, our search engine rec-
ommends the top-N similar tags for the query tag. Users can click on the
recommendations to expand the search query with the recommended tag.
They can further click on the initial tag to remove it from the query. Thus,
users have two options to interact with the search engine: they can expand a
search query by one or more recommendations, and they can replace a query
tag by a recommendation. The recommendations facilitate domain learning
and domain discovery by enabling navigation through the information space.
The recommendations act as navigation cues that suggest trails through the
information space. They guide users to related information that help them
to (1) discover novel topics, or (2) learn more on an already known topic.

(1) The recommendations facilitate domain discovery by suggesting top-
ics related to the current search query that are novel for the user. Users can
follow recommendations to navigate through information, i.e., recommenda-
tions suggest a navigation trail through the information space. To foster
discovery of topics, the recommended tags should be novel to the user. In
our introductory example, Tom discovers a topic that was novel to him, ge-
ofencing, because the search engine suggested a trail from his initial query
to the topic.

(2) The recommendations facilitate domain learning by suggesting topics
that enable users to get more specific information on a topic or to con-

113

textualize a topic. In our introductory example, the search engine suggests
foursquare as a more specific topic related to geofencing. Tom follows the trail
to gain deeper insight into the topic. In the other direction, recommenda-
tions can guide to more general tags to provide context. A further function of
the recommendations that enables domain learning is result filtering. Adding
recommendations to the initial search query allows to narrow down the initial
search results to a more specific context. In our introductory example, Tom
adds a recommendation, social media, to his initial search query, geofencing,
to narrow down the results to more specific information: webpages on social
media and geofencing.

Our evaluation method measures how appropriate the navigation trails
provided by the recommendations are to support domain discovery and do-
main learning. In other words, we measure how well the recommendations
guide users through the information space to tags that yield domain discov-
ery or domain learning. We do this by analyzing the structural properties
of a set of pre-compiled recommendations. The aggregate of all recommen-
dations in our search engine can be imagined as a directed network of tags
interconnected through edges where recommendations exist. The topology,
i.e., the internal structure, of this network informs us about its navigability.
We measure the network connectivity to evaluate how users can navigate be-
tween tags. For example, we measure how likely a tag is to be recommended
by counting the ingoing edges that refer to this tag from other tags. Our
method extends the network analysis by combining the network properties
with properties of the underlying folksonomy. For example, we complement
the network analysis by relating the recommendations to the popularity of
tags in the folksonomy and to the webpages tagged with these tags to measure
how the recommendations affect the search results in our search engine.

We exemplarily evaluate three recommender algorithms. The baseline
algorithm is identical to the similar tag prediction algorithm described in
Chapter 3. For the evaluation, we implemented two modified versions of the
recommender algorithm that we compare with the baseline algorithm.

The remainder of this chapter is organized as follows. In Section 4.1,
we briefly review existing evaluation strategies for recommender systems and

114

discuss their shortcomings for our needs. In Section 4.2, we describe our
method for evaluation of recommenders applied to user modeling for ex-
ploratory search, which extends the reviewed methods. In Section 4.3, we
describe three recommender algorithms that we evaluate exemplary: our sim-
ilar tag prediction algorithm and two alternative versions. In Section 4.4, we
describe the experiment setup and results. In Section 4.5, we conclude with
a discussion of the evaluation results.

4.1 Evaluation strategies

In the following section, we review existing recommender evaluation strate-
gies and measures. The ultimate goal of any recommender system is to make
recommendations that help a given user in a given context [162]. Evaluation
aims at answering the question how well a recommender achieves this goal.
Several measures and strategies exist that try to answer this question from
different perspectives. They focus on different aspects of the recommender
quality [188].

4.1.1 Predictive Accuracy

The focus of recommenders evaluation has long been on their predictive ac-
curacy [94]. Accuracy evaluation measures describe how accurate the rec-
ommendations are. They seek to assess the quality of recommendations by
evaluating if predicted ratings for items are the same as the actual ratings
that a user would give to the items. The evaluation process for predictive
accuracy involves three steps. First, existing preferences are split into a
training set and a test set. Second, recommendations are generated by the
recommender algorithm considering only the training set. Third, the ratings
of recommended items are compared with the preferences in the test set to
evaluate their predictive accuracy. The predictive accuracy describes how
much the ranking of the predicted items differs from the ranking of these
items in the test set. Important predictive accuracy measures are Mean
Absolute Error, Precision/Recall, and F1.

115

The Mean Absolute Error 1 measures the average deviation between a
rating predicted by a recommender and the user’s actual rating. Other pre-
dictive accuracy measures related to MAE are Mean Square Error 2 and Root
Mean Square Error 3. All of these measures evaluate the deviation between
existing and predicted ratings and differ in how they penalize deviations.
Predictions are considered more accurate when the deviation of their rating
compared to the test set is low. A shortcoming of these measures is that
they make less sense for recommenders where rating values are unimportant.
For example, in our search engine it is only important which tags are recom-
mended, and not in which order. The discussed measures cannot properly
evaluate the prediction quality in this context.

Binary classification measures precision, recall 4 and F1 5, are more useful
in contexts where the ratings don’t affect the quality of recommendations.
The measures classify items into relevant and non-relevant items. Addition-
ally, they classify items into items that are recommended and items that are
not recommended. Precision is then defined as the ratio of relevant items
recommended to number of items recommended. It represents the probabil-
ity that a recommended item is relevant. Recall is defined as the ratio of
relevant items recommended to total number of relevant items available. It
represents the probability that a relevant item will be recommended [103].
Usually, precision and recall are considered together. The F1 score combines
precision and recall into one value. A problem of the binary classification in a
recommender system is the subjectivity of relevance. The notion of objective
relevance makes no sense in recommender systems, which recommend items
based on the likelihood that they will meet a specific user’s taste, and thus
are inherently subjective [103].

A shortcoming of all predictive accuracy measures is that they can assess
the rating or relevance only for those items that users have already rated.
Accuracy measure cannot evaluate recommendations which are not in the

1http://en.wikipedia.org/wiki/Mean_absolute_error (last access 2011-04-22)
2http://en.wikipedia.org/wiki/Mean_squared_error (last access 2011-04-22)
3http://en.wikipedia.org/wiki/Root_mean_square_deviation (last access 2011-04-22)
4http://en.wikipedia.org/wiki/Precision_and_recall (last access 2011-04-22)
5http://en.wikipedia.org/wiki/F1_Score (last access 2011-04-22)

116

test set. This affects the evaluation results when recommenders are applied
in a context where novel items should be suggested to users. Novel items are
necessarily not in the test set, therefore, all accuracy measures by definition
penalize prediction of novel items although these items may be relevant.

The quality of recommenders as quantified by predictive accuracy does
not necessarily match their overall quality in a particular application context
[189, 74, 132, 79]. A proper evaluation strategy should consider criteria that
go beyond predictive accuracy [149]: non-accuracy measures. Novelty and
coverage are two important non-accuracy measures

4.1.2 Novelty

Novelty describes wether a recommended tag is unknown for a user. It aims
at evaluating the nonobviousness of recommendations [103]. Recommending
items that yield discovery of novel, yet interesting items is a key strength of
recommenders. Recommenders are often applied to recommend items that
users would not have discovered without the recommendations. Novelty is
closely related to the notion of serendipity : „[a] serendipitous recommenda-
tion helps the user find a surprisingly interesting item he might not have
otherwise discovered“ [103].

Novelty is an important measure for exploratory search. Novel recommen-
dations yield better exploration, because they foster discovery of unknown
topics. In our introductory example, the search engine suggests a novel tag,
geofencing, to Tom which yields the discovery of a topic that has been un-
known to Tom but is interesting for him. Recommending a tag already known
by Tom would probably not have yielded the discovery of a novel topic. For
example, recommending the tag programming to a user who already knows
the tags java, c++, and python, does probably not yield discovery of much
new, because the recommendations are not serendipitous; we can assume that
the user would have discovered all tags also without the recommendation.

117

4.1.3 Coverage

Coverage has been used to describe two distinct concepts: „(1) the percent-
age of the items for which the system is able to generate a recommendation,
and (2) the percentage of the available items which effectively are ever rec-
ommended to a user“ [79]. We adopt the second definition, also referred to as
catalogue coverage [103]. For example, in our search engine the catalogue cov-
erage describes how many of the tags of the folksonomy are recommended
effectively when assuming a set of queries for all tags in the folksonomy.
Coverage is important in the context of exploratory search, because a search
engine should make suggestions that cover all topics modeled in the data,
i.e., it should not be limited to a subset of available topics. Diversity is a
further measure which is closely related to coverage [148, 240]. It measures
the percentage of available topics covered by the effectively recommended
recommendations [79].

A high coverage of recommendations in an exploratory search engine
yields better exploration, because recommendations are not restricted to a
limited set of topics. For example, a recommender may effectively suggest
only 10 percent of the available items. Although the recommendations may
be accurate, this recommender would inhibit discovery of the remaining 90
percent of the items, hence would be less appropriate for exploratory search.

4.1.4 User-perceived quality

Predictive accuracy, novelty, and coverage allow only to evaluate the quality
of a recommender indirectly. They must be interpreted considering the ap-
plication context in which the recommender is used. User-centric evaluation
measures the recommender quality more directly and is independent from
the context in which the recommender is applied [123, 216]. It measures
the user-perceived quality of the recommendations. User-perceived quality
describes the usefulness of recommendations as perceived by users. User-
centric evaluation strategies collect user feedback on the recommendations
to measure the user-perceived quality [123]. This means that the evaluation
setup explicitly asks users whether they find recommendations useful, or that

118

usage data are collected and analyzed to retrieve implicit user feedback. For
example, a system may log whether users follow a recommendation to decide
whether this recommendation is useful.

A problem of user-centric evaluation is that it requires either user feedback
collection through a survey or through usage logs. Surveys require explicit
user involvement which is not feasible in all systems. Collected usage data
may not be available in some cases. For example, it is not possible to evaluate
the user-perceived quality of a system before it has been deployed and actively
used.

4.2 Our evaluation method

In the following section, we describe our evaluation method. The goal of our
evaluation is to measure how recommender algorithms support exploratory
search. Domain learning and domain discovery are the key tasks that an
exploratory search engine must facilitate. We evaluate the quality of recom-
mender algorithms implemented in an exploratory search engine.

Our method comprises a set of experiments that primarily evaluate the
novelty and coverage of recommender algorithms. Therefore, we evaluate the
navigability of the underlying recommendation networks. Additionally, our
method evaluates how recommendations affect the retrieved search results
when applied in a search engine. Therefore, we relate recommended tags to
their popularity score and to the search results.

We exemplarily apply the evaluation method to our tag similarity extrac-
tion algorithm. For the evaluation, we implemented two alternative algo-
rithms that extract tag similarities from folksonomies. We populated user
models with all three algorithms by recommending the top-N similar tags
for all available tags in the folksonomy. Our baseline algorithm recommends
the top-N similar tags as described in Chapter 3. A second algorithm biases
the recommendations towards popular tags. A third algorithm biases the
recommendations towards unpopular tags. We apply our evaluation method
to compare these three algorithms.

119

Table 4.1: Input dataset features

Bookmarks 209307
Tags 566782
Tags (popularity > 1) 169899
Users 209307
URLs 2790459

0 50000 100000 150000

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Tags

C
um

ul
at

iv
e

po
pu

la
rit

y

Figure 4.1: Cumulative tag popularity distribution

4.3 Input dataset

The input dataset for our experiments are bookmarks that we collected from
two social bookmarking services – Delicious and Connotea – over 30 days.
Each bookmark contains one user (the creator of the bookmark), one URL
(the reference to the bookmarked webpage) and one or more tags. We did
not collect bookmarks without tags, because they cannot be used for recom-
mendations by our algorithms. Furthermore, our dataset excludes tags which
were used only once. We assume that these tags have only little relevance
for recommendations or result from typos. Table 4.1 shows the features of
the collected data.

120

Table 4.2: Quantiles of the popularity curve

Min 1st Quantile Median Mean 3rd Quantile Max
2 3 5 61.84 13 166200

4.3.1 Tag popularity

The popularity of the tags in our input dataset is an important feature for
our evaluation method. We define tag popularity as the number of times a
tag has been used. Our dataset shows a popularity distribution for the tags
that is characteristic for social tagging systems: a small number of tags have
a high popularity and the majority of tags have a relatively small popularity.
In other words, users of social tagging systems tend to use a small number
of tags very often. Popular tags are likely to be tags which are being used
by a large number of users. The majority of tags is used only rarely. These
tags are likely to be tags which are used only by a smaller number of users.
Figure 4.1 shows the cumulative tag popularity distribution of our input
dataset excluding tags with popularity < 2.

In our experiments, we want to evaluate how our algorithms perform for
tags with different popularity scores. Therefore, we model a tag popularity
distribution curve. We divide the distribution curve into a head, center,
and tail part, see Table 4.2. To decide the split points, we calculate the 1st

and 3rd quantile of the curve. We define the head of the curve as all tags
with a popularity > the 3rd quantile, the center of the curve as all tags with
popularity between the 1st quantile and the 3rd quantile, and the tail of the
curve as all tag with a popularity smaller than the 1st quantile.

4.4 Recommender algorithms

In the following section, we describe three collaborative filtering-based rec-
ommender algorithms that we evaluate. All algorithms apply the Tanimoto
coefficient to generate similarities between the tags in our input data.

121

4.4.1 Algorithm 1: Unbiased

The baseline recommender algorithm, T(s), recommends the top-N similar
tags for a tag directly based on a pairwise tag similarity matrix. We use the
Tanimoto coefficient to generate the similarity matrix. T(s) corresponds to
the algorithm described in Chapter 3.

4.4.2 Algorithm 2: Biased towards popular tags

The second algorithm, T(p), biases the recommendations towards popular
tags. It recommends only tags from the head and center of the popularity
distribution curve. Hence, T(p) excludes unpopular tags, tags from the tail
of the curve, from the recommendations.

4.4.3 Algorithm 3: Biased towards unpopular tags

The third algorithm, T(u), biases the recommendations towards unpopular
tags. It recommends only tags from the center and tail of the popularity
distribution curve. Hence, T(u) excludes popular tags from the recommen-
dations.

4.5 Evaluation datasets

For our experiments, we generate a set of recommendations for each algorithm
and correlate the recommendations with the search results. Our evaluation
data consists of two datasets.

(1) We create a pre-compiled set of recommendations for each algorithm.
The recommendation sets relate all tags of our input data to their top-N
similar tags. Formally, each of these recommendation sets can be seen as
a directed network of tags related through edges, see Figure 4.2. In these
recommendation networks, nodes represent tags and directed edges represent
the similarity relations from tags to their top-N similar tags. The formal-
ization of recommendations as networks allows us to apply network analysis
algorithms to evaluate the structural properties of the recommendation sets.

122

Social media

Mobile Web Geofencing

Foursquare
GPS

Marketing

Business

Figure 4.2: Recommendation network

For example, we measure network features to evaluate how well it is possible
to navigate through recommendation networks by following recommended
paths, i.e., we evaluate the navigability of the recommendations.

(2) We combine the recommendation networks with the query results of
our search engine. We create a query result matrix that relates all tags of our
input data to the URLs of the webpages which have been tagged with this
tag and are retrieved by querying this tag. The query result matrix allows us
to evaluate how query modification – expansion or replacement of the query
– by following recommendations affects the results retrieved by our search
engine. For example, we measure how the results change when an initial
search query is replaced by a recommended similar tag.

4.5.1 Recommendation networks

To create the recommendation networks, we pre-compile the top-N similar
tags for all tags in our dataset for each algorithm (see Table 4.3). The
algorithms don’t guarantee that n recommendations are available for each
tag. Therefore, some tags may have less than n recommendations. For
some tags, no recommendations may be available. Hence, for each tag in
the compiled recommendation sets ≤ n recommendations exist. For each of
our three recommender algorithms, we model two recommendation sets with
different number of similar tag recommendations. The first set recommends

123

Table 4.3: Recommendation set

Tag Recommendation
social media marketing
social media mobile web
social media business
social media geofencing
social media social networks
geofencing location-based services
geofencing foursquare
geofencing maps
...

Table 4.4: Query result matrix

Tag Results
internet marketing [urlA, urlB, urlC,...]
social media [urlB, urlF, urlG,...]
twitter [urlA, urlP, urlQ,...]
...

the top-5 similar tags (n=5), the second recommends the top-10 similar tags
(n=10).

In our experiments, we want to compare how the tag popularity affects
the results of our algorithms. Therefore, we split the recommendation sets
of each algorithm into three subsets for the evaluation. The subsets contain
recommendations for tags only from the head, center, or tail parts of the
popularity curve. The head sets contain only recommendations for popular
tags (with a popularity > 13), the center sets contain recommendations for
tags with popularity (with a popularity between 3 and 13), and the tail
sets contain the recommendations for unpopular tags (with a popularity <
3). The result of this partition are eight recommendation networks for each
algorithm: overall, head, center and tail; each for the top-5 and the top-10
recommendation set.

124

4.5.2 Query result matrix

We want to evaluate not only the recommendations as such, but also how they
affect the retrieval results. Therefore, we relate all tags in our recommenda-
tion networks to the URLs retrieved by querying this tag. To compare the
query results of individual tags or combinations of tags, we create a matrix
in which each row contains a tag and its query result vector, see Figure 4.4.
The query result vector is a vector of URLs that are retrieved by querying
the tag.

In some of our experiments, we relate the recommendation networks to
the query result matrix. This allows us to evaluate the results of individual
tags or a combination of tags, e.g., for a combination of a tag and its top
similar tag. The query result matrix provides data for two types of analyses.
First, the length of the result vectors allow for a quantitative analysis of
the result vectors, i.e., we can compare the number of results for individual
queries. For example, we measure how strong the expansion of the initial
search tag by a recommended tag reduces the number of retrieved results.
Second, it allows to compare which results the query result vectors contain for
individual tags or a combination of tags, i.e., we can carry out a qualitative
analysis of the result vectors. For example, we measure how many of the
retrieved results remain the same when the initial query is replaced by a
recommendation.

4.6 Experiments

In the following section, we describe our evaluation experiments. We con-
duct two sets of experiments that evaluate the quality of our recommender
algorithms in two aspects: domain discovery and domain learning.

4.6.1 Domain discovery

In the first experiment set, we evaluate how well the algorithms support
domain discovery. In our search engine, users can query for one or more
tags. The recommender suggests the top-N similar tags for the query. Users

125

can then click on the recommendations to expand the search query with the
recommended tag. They can further click on the initial tag to remove it from
the query. Thus, users can modify the search query, i.e., they can replace a
query tag by a recommended tag. In this way, users can navigate through
the tag space.

We formalize the tag space as a directed network of tags, which corre-
sponds to the recommendation networks of our evaluation dataset. Tags are
connected to their top similar tags with egdes. Edges allow users to navigate
from one tag to another. Thus, we image tag recommendations as navigation
trails through the tag network. The tag recommendations provide navigation
cues for users who navigate through tag networks. Users can follow the trails
to discover novel tags and to retrieve novel search results.

Navigation through the information space is a crucial facility to discover
novel or serendipitous tags and webpages. Tom, the user from our initial
example who queries for social media, discovers a novel topic which he is
interested in, geofencing, through a recommendation. By following the rec-
ommendation, he finds a further novel topic, foursquare. He explores the tag
space by navigating through recommendations. Navigating through recom-
mended tags yields discovery of topics by facilitating exploratory browsing.
The ability to navigate from social media to foursquare yields in the discov-
ery of a new topic for Tom. The recommendations must form a network of
connected tags which users can traverse to get to novel topics. We define
three criteria of the recommendations that affect domain discovery:

(1) Domain discovery relies on the ability to navigate to further tags
through the recommendations. Recommendations should support naviga-
tion through the tag space. Navigation relies on recommendations that lead
to further recommendations, because these recommendations allow to further
explore the tag space. The algorithms should recommend tags for which fur-
ther recommendations are available. For example geofencing leads to another
recommendation, foursquare, which could lead to another recommendation
check-in, and so on. Recommendations that don’t lead to further recom-
mendations or only lead back to already seen recommendations thwart the
navigation through the tag space.

126

(2) Domain discovery relies on a high coverage and diversity of topic do-
mains in the recommendations. Recommenders should be able to recommend
a large portion of tags from the tag space, because domain discovery relies
on the ability to navigate to a large number of topics. At best, recommenda-
tions should be available for all queries. The recommendations should also be
diverse, so that all tags available in the input data can be effectively recom-
mended. A recommender that recommends only a small part of the tags is
not useful to discover novel tags, because it does not provide any navigation
paths that lead to the rest of the tags.

(3) Domain discovery relies on diversity of search results. The ultimate
goal of Tom in our example is to discover not only tags, but also the actual
search results – webpages. This means that users should not only be able
to discover tags, but also webpages. The topic represented by the results
retrieved through recommended tags should therefore shift when the query
is modified: query modification towards a recommended tag should shift
the query results to another topic domain. When Tom navigates from the
tag social media to geofencing, the search engine should reflect this shift by
providing new results.

Experiments

In the experiments we evaluate the navigation facilities between topics by
measuring the structure of the underlying recommendation networks that our
algorithms produce. The internal structure of the recommendation networks
strongly affects the navigation capabilities through the information space
[126, 160, 51]. We measure how good the recommendation networks support
navigation through the tag space and how the recommendation networks
affect the query results.

Popularity-indegree correlation First, we want to measure how good
the recommendation networks allow to transition between different topics.
For domain discovery, it is beneficial if the recommended navigation path
leads to discovery of new topic domains, so that the user can transition
between many different topic domains in few navigation steps.

127

Figure 4.3: Indegree-popularity correlation plot for T(s,10) network (log-log)

Table 4.5: Indegree-popularity correlation coefficients

T(s,5) / T(s,10) 0.85 / 0.94
T(p,5) / T(p,10) 0.89 / 0.92
T(u,5) / T(u,10) 0.87 / 0.89

To evaluate how good recommendations allow to transition between do-
mains, we look at the topology of our recommendation networks. An inter-
esting measure in this context is indegree centrality. The indegree centrality
of a tag informs us about how likely the tag connects distinct domains. Tags
that connect distinct domains allow to transition from one topic domain to
another. Hence, these tags should be favored in the recommendations to
enable discovery of new domains.

Indegree of a node in a network measures the number of edges that have
their endpoint on that node, i.e., the number of ingoing edges [33]. The in-
degree can be used as a measure for centrality of a node. Nodes with a high
indegree centrality are strongly connected with other nodes and often act as
hubs in a network, i.e., they are nodes that connect distinct sets of clustered
nodes in a network. We assume that sets of clustered nodes are topic domains.
Hubs, nodes with a high indegree, facilitate domain discovery, because they
connect different domains. We hypothesize that popular tags have a high

128

indegree. To confirm this hypothesis, we evaluate if the popularity of rec-
ommendations correlates with their indegree in the tag-recommendation net-
work. We test if the popular tags in the recommendation network are likely
to have also high indegree centrality. Therefore, we measure the indegree of
recommendations and correlate it with their popularity. We conducted the
experiment for all recommendation networks.

We found that the popularity and indegree of recommendations show
a high correlation coefficient (>0.87) for all algorithms. Figure 4.3 shows
the correlation plot for the T(s,10) network. Table 4.51 shows the indegree-
popularity correlation coefficients for all networks.

The results show that popular tags in our dataset are also hubs in the
recommendation networks. Popular tags are more likely to connect differ-
ent domains. The findings indicate that algorithms which recommend more
popular tags are better for domain discovery. This implies that our algo-
rithm T(p), which biases recommendations towards popular tags, enhances
domain discovery opposed to T(s) and T(u), because its recommendation
network contains more popular tags.

Clustering coefficient The findings of the popularity-indegree correlation
experiment suggest that we should bias recommendations towards strongly
connected tags to improve transition between sets of clustered tags. This
biasing can, however, also have disadvantages. If a set of tags is strongly
connected, it is possible that recommendations of these tags refer to tags
inside the same cluster. For a cluster of strongly connected tags, it is also
possible that the recommendations connect the tags mutually and don’t refer
to tags outside the cluster. Navigating these recommendation paths would
not lead to a new tag cluster, but to the same tags inside a cluster again and
again. Thus, these recommendations don’t support domain discovery. This
effect occurs particularly if a tag cluster is only weakly connected to other
clusters, or even isolated.

Again, the structure of our recommendation network informs us about
the quality of recommendations in this regard. We measure the global clus-
tering coefficient of our network to evaluate how good new tag clusters can

129

0

0,1

0,2

0,3

All Head Center Tail

T(s,5) T(p,5) T(u,5)

0.
15

0.
15

0.
05

0.
14 0.
15

0.
01

0.
21

0.
01

0.
11

0.
2

0.
02

0.
11

0

0,1

0,2

0,3

All Head Center Tail
T(s,10) T(p,10) T(u,10)

0.
11

0.
020.
03

0.
15

0.
15

0.
11 0.
14

0.
01

0.
08

0.
14

0.
02

0.
08

Figure 4.4: Clustering coefficients

be reached through recommendations. The global clustering coefficient of a
network measures the probability that the adjacent nodes of a node are con-
nected to each other [33]. A higher clustering coefficient indicates a higher
probability to get stuck in unconnected small tag clusters when navigating
through the recommendation network.

We found that the clustering coefficient is significantly lower for the T(u)
networks in the head of the tag popularity curve and for the overall curve,
see Figure 4.4. For the center and tail of tag curve, the clustering coefficient
is significantly lower for T(p).

The results indicate, that the navigability of the network is sensitive to the
popularity of the search query. For popular search tags, it seems beneficial to
bias towards unpopular recommendations to avoid to get stuck inside clus-
ters. For less popular tags, however, biasing towards popular recommenda-
tions improves the navigability between clusters. Without popularity-based
adaption of recommendations, the results suggest that T(p,10) provides the
best navigability, because the algorithm has the lowest clustering coefficient
for the overall popularity curve.

Average path length The clustering coefficient experiment informs us
about the navigability between tag clusters. But for a more complete pic-
ture of the navigability of the network, we have to consider that some tag
clusters are completely isolated from each other. We hypothesize that it is
not possible to navigate from a tag to all other tags in the network through

130

0

5

10

15

20

All Head Center Tail

T(s,5) T(p,5) T(u,5)

14
.5
2

14
.4
2

13
.9
5 17
.0
8

16
.2
9

6.
98

1.
30

1.
121.
39

1.
04

1.
07 1.
09

0

5

10

15

20

All Head Center Tail
T(s,10) T(p,10) T(u,10)

8.
96

8.
258.
48 10

.0
8

9.
0210
.3
0

1.
64

1.
23 1.
77

1.
02

1.
08 1.
09

Figure 4.5: Average path lengths

recommendations, because navigation paths don’t exist between all tags. In-
stead, we assume that a number of unconnected subnetworks of tags exist.

To learn about the size of these subnetworks, we measure the average path
length of the network, see Figure 4.5. The average path length for a network
measures the average path length between all nodes in the graph [33]. In our
context, the average path length indicates how large the subnetworks are. It
indicates how many clicks are required to navigate from one tag to any other
tag inside a subnetwork. We assume that a low average path length is an
indicator for unconnectedness of the network. Unconnectedness of a network
results in a low average path length because missing edges between nodes are
not considered in the calculation of the path length.

We found no significant differences between our algorithms when we look
the overall networks. When we look at the parts of the popularity curve
individually, our results show that T(u,5) provides a significantly lower value
than T(s,5) and T(p,5) for the head of the popularity curve. We also found
that the average path length of the networks are significantly lower for the
center and tail of the curve.

Our results indicate that the center and tail of the popularity curve show
a lower connectivity of the subnetworks. In other words, we suspect that
the tail of the graph consists of many small and unconnected subnetworks of
tags. However, average path length may also indicate a better navigability
of the network: another interpretation of the results could be that tags are
more strongly connected on the average. To confirm our interpretation of

131

0

2000

4000

6000

8000

All Head Center Tail

T(s,5) T(p,5) T(u,5)

31
76

31
63

29
57

90
6

51
4

48
3

48
83

19
61

43
80

75
31

31
74

70
26

0

2000

4000

6000

8000

All Head Center Tail
T(s,10) T(p,10) T(u,10)

27
91

27
38

27
49

36
2

31
5

30
4

23
78

18
38 23
38

42
39

29
52 4
11
2

Figure 4.6: Number of clusters

the average path length, we conduct two further experiments.

Clusters To confirm that the tail of the popularity curve is less connected
than the head, we measure the number of isolated clusters of tags in our
networks. The number of clusters measure the connectivity of a network.
Clusters are subnetworks which are isolated from other subnetworks. A large
number of clusters indicates a poor navigability of the network, because users
cannot transition between clusters through recommendation paths. Many
small and unconnected clusters indicate that it is less likely possible to nav-
igate between tags through recommendations, on the average [33].

We found that the center and tail of the tag curve show a significantly
larger number of unconnected clusters than the head, see Figure 4.6. The
number of clusters is the highest in the tail. We also found that T(p) reduces
the number of clusters opposed to T(s) and T(u) when looking at the head,
center, and tail of the tag-curve individually. The reduction of the number
of clusters for T(p) is particularly significant in the tail area. Also, a higher
n parameter reduces the number of clusters. The T(10) networks are more
connected than the T(5) networks.

The results confirm our interpretation of the short average path length in
the tail. They indicate that the navigability of the recommendation networks
is limited in the tail of tag-curve. Thus, the popularity of the search query
strongly affects the quality of the recommendations in this context. Further-
more, the results indicate that, particularly for the tail, T(p) improves the

132

0

15

30

45

60

All Head Center Tail

T(s,5) T(p,5) T(u,5)

53
60

46

60 60
36

11
6
12

2 4 4

0

15

30

45

60

All Head Center Tail
T(s,10) T(p,10) T(u,10)

32 29 27

38
49

45

15
9
14

2 4 3

Figure 4.7: Diameters

connectivity of the network, because it creates a smaller number of uncon-
nected recommendation networks. Additionally, a higher n seems beneficial
for connectivity of the networks.

Diameter To further back our interpretation of the navigability of our
networks, we measure their diameter. The diameter is the longest geodesic
of a network. A low diameter for a network with many tags indicates that
the network consists of small subnetworks.

We found that the diameter is significantly lower in the tail of the tag
curve for all networks, see Figure 4.7. The results show no clear beneficial
tendencies for any of our algorithms, although differences exist. T(p,5) pro-
vides a larger diameter for the overall network opposed to T(s,5) and T(u,5),
but the beneficial effect cannot be found for the center and tail of the tag
curve. Additionally, we looked at the parts of the popularity curve individ-
ually and found that the networks for the head have a significantly larger
diameter.

The results confirm the above findings that the tail networks consist of
small and unconnected clusters, which negatively affects their navigability.

The combined results of the average path length, cluster, and diameter
experiments indicate that the tail of the tag curve is highly unconnected
and hence provides limited navigability. The unconnectedness of the rec-
ommendation networks for the tail of the tag curve seems to be a major
shortcoming of our recommender algorithms. For unpopular queries, our al-

133

0

0,25

0,5

0,75

1

All Head Center Tail

T(s,5) T(p,5) T(u,5)

0.
92

0.
92 0.
93 0.
94

0.
94 0.
97

0.
72

0.
93

0.
75

0.
58

0.
89

0.
60

0

0,25

0,5

0,75

1

All Head Center Tail
T(s,10) T(p,10) T(u,10)

0.
94

0.
94

0.
94 0.
98

0.
98

0.
98

0.
88 0.
94

0.
89

0.
75
0.
91

0.
76

Figure 4.8: Strong Giant Components

gorithms provide only a small number of recommendations (on the average),
which makes it difficult to navigate between unpopular tags. On the other
side, the algorithms provide good navigability for the head of the popularity
curve.

Strong Giant Component In a further experiment, we evaluate the cov-
erage of the recommendation networks, i.e., how many of the overall tags
are effectively recommended by our algorithm. The topology of our recom-
mendation networks informs us about the coverage of our algorithms. We
assume that our networks have one large component – or cluster – of inter-
connected tags. Our above findings indicate that these are probably popular
tags which are more strongly connected. We measure the Strong Giant Com-
ponent (SGC) of the networks. The SGC measures the percentage of tags in
a network which belong to the largest cluster. In our context, it measures
the percentage of tags in the network that can be reached from a query tag
which belongs to the Strong Giant Component, through recommendations.

We found that T(p) positively affects the SGC opposed to T(s) and T(u)
in the center and tail, see Figure 4.8. We also found that the SGC is sig-
nificantly lower for the tail of the tag curve. In other words, in the tail of
the tag curve, a lower percentage of tags belong to the largest cluster. A
larger number of tags is unconnected from this component. These tags are
not reachable through recommendations from a tag in the SGC.

The results indicate that the coverage of recommendations is strongly

134

affected by the popularity distribution. In the head of the tag curve, the
SGC and hence the coverage of the recommendations is fairly high. In the
tail of the tag curve, the coverage is significantly lower for T(s) and T(u).
T(p) improves the coverage of the recommender in the center and tail. In the
head, we found no significant differences between the algorithms. Hence, it
seems beneficial for the coverage to bias towards popular recommendations
for queries, at least for the tail of the tag curve.

Query result similarity In a further experiment, we evaluate how navi-
gation through the recommendation networks affects the results of the search
query. The ultimate goal of our search engine is to retrieve novel webpages
for the user, so that the user can discover novel domains. Hence, we must
evaluate the quality of the retrieval results. The role of the recommenda-
tions is to provide a navigation path through a network of tags. Users can
modify the search query by navigating through recommendations. The query
modification leads to a modification of the retrieved results.

To evaluate the effects of the recommendations on the query results, we
measure how the results change when a user replaces a query through a rec-
ommendation. Therefore, we calculate the similarity of the result vectors of
the initial query tag and the replaced query – the recommendation. The re-
sult set similarity indicates how strong the results shift when the initial query
tag is replaced by a recommendation, i.e., how many of the results remain
the same for the new query. We assume that a lower similarity between the
results indicates better support for discovery of new webpages, because users
usually replace a query to retrieve new results.

In our experiment, we compare the result vectors of the initial query and
the replaced query. We measure the similarity of both result vectors, i.e., how
strong the results of the initial and the new query overlap. The query result
similarity informs us about how many of the results of the initial query are
retained when the user changes the query to a recommendation. We define
the query result similarity S as number of results r retrieved by the initial
query q1 and the replaced query q2, divided by number of results of the
replaced query, see Equation 4.1.

135

0

0,125

0,25

0,375

0,5

All Head Center Tail

T(s) T(p) T(u)

0.
83

0.
19

0.
41

0.
32

0.
28

0.
38 0.
42

0.
13

1.
39

0.
41

0.
14

0.
41

Figure 4.9: Result similarities

Sq1,q1 =
rq1 ∪ rq2

rq2
(4.1)

We found that T(p) has a lower result similarity than T(s) and T(u),
see Figure 4.9. We looked at the parts of the popularity curve individually
and found that T(u) and T(s) differ mainly in the head of the popularity
curve, where T(u) has a higher similarity. In the center and tail of the curve,
both algorithms have similar result similarity. For T(s) and T(u), we also
found that the similarity is higher in the tail than in the head. For T(p), the
opposite is true – the similarity is lower in the tail party than in the head.

The results indicate that T(p) significantly reduces the result similarity.
This algorithm retrieves the most new results when a query is modified to
a recommendation, which is desirable for domain discovery. Hence, biasing
towards popular recommendations improves the discovery of new webpages.
The positive effect of T(p) is particularly significant for unpopular queries.

Conclusion

To conclude, we discuss our findings regarding the domain discovery capa-
bilities of our search engine.

We found that domain discovery is supported best by biasing recommen-
dations towards popular tags. The results of our above experiments show
that, across the board, T(p) benefits the navigability and coverage of the
recommendation networks. We have shown this by evaluating the average

136

path length, number of clusters, diameter, and strong giant component for
the individual areas of the tag curve. For some measures, however, the popu-
larity of the query tag influences which algorithm supports domain discovery
best. The results of the clustering coefficient experiment show that although
T(p) reduces the possibility to get stuck in small connected clusters of recom-
mendations for query tags with moderate or little popularity, biasing towards
popular recommendations has the opposite effect for popular queries. Hence,
it seems beneficial for domain discovery to adjust the biasing direction of the
algorithm according to the popularity of the search query.

The number of recommendations, i.e., the n parameter of the recommen-
dation networks, also influences their navigability. We compared only two
n values, n = 5 and n = 10, out of which n = 5 performed slightly better.
However, a viable n parameter certainly affects other factors that are beyond
the scope of our evaluation. For example, the user interface of the search en-
gine is certainly an influential factor to decide how many similar tags can be
presented to the user without overtaxing the user‘s perception.

Altogether, the quality of the recommendations of all of our algorithms
is very sensitive to the popularity of the query tag. Regarding domain dis-
covery, we can state that all of our algorithms provide significantly better
recommendation networks for popular tags. We have shown with the eval-
uation of clusters and diameter of the recommendation networks that all of
our algorithms provide only poorly navigable graphs when we isolate the
unpopular tags. A key reason for the low quality of the recommendation
networks in the tail of the tag curve is the low connectivity. The sparsity of
the recommender networks of all of our algorithms in the tail area of the tag
curve is their main weakness. Domain discovery could greatly benefit from
a higher connectivity of the recommendation networks for the tail of the tag
curve. We have shown with the evaluation of clusters, diameter, and strong
giant component that T(p) significantly improves the connectedness of the
recommendation networks in the tail of the tag curve. It is an important fea-
ture of search engines to provide quality results not only for popular queries.
Thus, it seems a major challenge for our system to provide recommender al-
gorithms that further increase the connectivity of recommendation networks

137

for less popular query tags.

The low connectivity for recommendation networks of unpopular query
tags results from the sparsity of the input data set. T(p) can improve con-
nectivity of the graph but the improvements are limited. Sparsity of input
data remains a key problem for our algorithms and for recommenders in the
context of search engines in general. The quality of the recommendation
networks for the tail of the tag curve could benefit from a better input data
set. The quality of the data set for domain discovery depends on two fea-
tures. First, the size of the data set is clearly an important factor. However,
our evaluation results for the head area of the popularity curve show that
our algorithms provide good recommendations already with a medium-sized
input data set. Second, the coverage and diversity of topic domains in the
input data seems crucial for domain discovery. For domain discovery, it is
important that a large number of domains are covered in the input data.

4.6.2 Domain learning

In a second experiment set, we evaluate how well our algorithms support
domain learning. In our exploratory search engine, users can query for tags
and manually expand queries through recommendations, i.e., users can add a
recommended tag to the initial query. The query expansion supports domain
learning, i.e., users that are already familiar with a topic domain can further
explore the domain. We define two criteria for recommendations to support
domain learning.

(1) Recommendations should allow to learn more on a domain by discov-
ering more tags on the domain, which are potentially more expert tags. These
tags are likely to be more specific and less popular. For example, users that
want to learn more on social media could learn more about the topic by get-
ting more specific recommendations like foursquare. Also the other direction
can support learning: more general recommendations can support users in
contextualizing a tag. To support domain learning, our search engine should
provide equally good recommendations for both non-expert and expert users,
i.e., it should recommend both popular and unpopular tags to increase the

138

diversity of recommendations. Additionally, it should allow to navigate from
non-expert to expert tags and vice versa. Thus, domain learning relies on a
good transitivity of the recommendation network throughout the popularity
curve. It should be possible to transition from popular to unpopular tags to
deepen knowledge of a topic. In the opposite direction, it should be possible
to transition from unpopular to popular tags to contextualize a tag.

(2) Recommendations allow to filter the results through query expansion.
In our search engine, query expansion narrows down the results to webpages
which have been tagged with all tags in the query. When a large number
of results is available for a topic, filtering helps to sort out webpages. For
example, users that are experts in a domain can filter out general, non-expert
webpages. Domain learning relies on filtering out irrelevant results. Query
expansion through recommendations should support result filtering, i.e., it
should decrease the number of results at a sensible rate.

Experiments

In the experiment set, we measure the domain learning support of our algo-
rithms.

Popularity correlation First, we want to find out how good our algo-
rithms are capable to make recommendations from popular and unpopular
parts of the popularity curve. We assume that unpopular tags are more
likely to be expert tags and popular tags are more general tags. To support
domain learning, our algorithms should make recommendations that allow
to transition from popular to unpopular tags.

We measure the Pearson Correlation Coefficient for the popularity score
of the tags in the recommendation networks. The Pearson Correlation Coef-
ficient describes the popularity correlation between tags and their recommen-
dations, i.e., how likely it is that a recommendation has the same popularity
than the initial tag. The popularity correlation of tags and their recommen-
dations indicates how likely it is to transition between popular and unpopular
tags. When popularity of tags and their recommendation correlate, it is hard
to transition between popularity levels. For example, a query for a popular

139

Table 4.6: Popularity correlation

T(s,5) / T(s,10) -0.001 / 0.000
T(p,5) / T(p,10) -0.001 / 0.001
T(u,5) / T(u,10) -0.002 / 0.000

tag cannot lead to unpopular tags when all recommendations for the tag have
similar popularity. A low correlation between the popularity of tags and rec-
ommendations indicates that it is possible to transition between parts of
the popularity curve, and thus to navigate to tags with all popularities from
queries of all popularities. The popularity of tags and their recommendations
should not correlate to support transition between popularity levels.

We found no correlation for any of our algorithms, see Table 4.6; the cor-
relation coefficient is ≤ 0, 002 for all recommendation networks. The results
indicate, that all of our algorithms support transition between tags with dif-
ferent popularity scores. Furthermore, all algorithms cover popular as well
as unpopular recommendations, hence are appropriate to make recommen-
dations throughout the head, center, and tail of the tag popularity curve.

Reduction rates In a further experiment, we evaluate how good query ex-
pansion through recommendations supports filtering of query results. When
users expand a query by a recommendation in our search engine, the result
set is narrowed down to webpages which have been tagged with both tags.
For example, a user can expand the query social media by mobile web to
narrow down the results to webpages which are related to the social media
and mobile web. We assume that this is a viable strategy to filter results
for domain learning. An appropriate filtering rate helps to identify different
aspects of a topic, thus improves domain learning.

We measure the reduction rate for query expansion, i.e., the length dif-
ference between the result vectors of the initial and the expanded query. Our
experiment is set up as follows. First, we evaluate the result vector lengths
for all tags in the recommendation networks, i.e., how many results does a
query with a single tag retrieve. Second, we evaluate the result vector lengths
for queries with tags and their top recommendation, i.e., how many results

140

0

25

50

75

100

All Head Center Tail

T(s) T(p) T(u)
87
.4
8

87
.3
1

95
.1
4

88
.2
1

88
.1
4 99
.9
8

59
.5
3

58
.3
4

56
.6
9

24
.3
7

25
.6
4

24
.7
9

Figure 4.10: Result reduction rates (in percent)

does a query for both tags (initial tag and top similar tag) retrieve. We
compare the lengths of both result vectors to get their length difference. The
length difference of the result vectors indicates how good query expansion
through a recommendation filters the result set.

We found that, for the head of the popularity curve, T(u) significantly
increases the result reduction rate opposed to T(p) and T(s), see Figure 4.10.
T(u) reduces the results by almost 100 percent, which means that almost all
results are filtered out. In the center and tail of the popularity curve, the
algorithms don’t significantly differ in the reduction rate. All algorithms
show a reduction rate around 58 percent in the center and 25 percent in the
tail.

The results indicate that biasing the recommendations towards popular
or unpopular tags has no strong effects on the reduction rate. Only T(u)
increases the reduction rate for popular query tags. The reduction rate for
all algorithms seems very high, but it is difficult to interpret the results
without consideration of some absolute values.

Mean result lengths In a next experiment, we look at the absolute num-
bers of the result lengths to interpret the reduction rates, i.e., to decide
whether the reduction rates of our algorithms lead to appropriate filtering.
First, we measure the average absolute numbers of results for the initial,
non-expanded, queries. The absolute number of results for the initial query
indicates if it is necessary to filter the results at all. Filtering is rather irrel-

141

All

Head

Center

Tail

0 250 500

T(s)

Exanded query Initial query

18.45 / 147.15

48.69 / 412.89

6.45 / 48.69

1.80 / 2.38

All

Head

Center

Tail

0 250 500

T(p)

Exanded query Initial query

17.49 / 137.70

48.18 / 406.17

2.70 / 6.48

1.77 / 2.38

All

Head

Center

Tail

0 250 500

T(u)

Exanded query Initial query

2.52 / 51.77

3.40 / 183.35

2.58 / 6.45

1.79 / 2.39

Figure 4.11: Result length for queries and expanded queries (in percent)

Figure 4.12: Result vector length for queries (blue) and expanded queries (red
dotted) for T(s)

evant for queries with very few results. We suppose that the result lengths
differ between queries for popular and unpopular tags, therefore, we split the
evaluation into head, center, and tail parts of the popularity curve. Second,
we measure the average absolute result numbers of expanded queries. This
number indicates if the reduction leads to a result set of sensible size.

We found a dramatic drop of result vector length between head part of
the tag popularity curve and its center and tail, see Figure 4.11. In the center
and tail of the popularity curve, the number of results for the initial query
is so low that filtering is not necessary in most cases. Figure 4.12 illustrates
this phenomenon, the graph shows the result lengths for initial queries and
expanded queries for T(s). 6

6Note, that the number of query results slightly differs between the algorithms, because

142

The results indicate that query expansion is more likely to be required
for popular queries. Here, the number of results for the initial queries are
so high that filtering is required to help users to cope with the large result
number. In the center and tail of the popularity curve this is not the case.
The average result number is so low here, that users can easily look through
all results without further filtering through query expansion. Furthermore,
our results confirm our hypothesis that the reduction rates are too high in
some cases. For popular queries, the reduction leads to a sensible number
of results. In the center and tail the result filtering makes no sense. On the
other side, it is not required here, so that we can neglect the filtering rate
for these parts of the curve.

Our findings of the experiment indicate that, in the tail of the popularity
curve, our dataset is too sparse to support domain learning. We suspect that
the result of this experiment is largely due to the size of our data set and
due to the sparsity of our input data set. With a larger dataset, the query
result length for the tail of the curve would certainly grow to a number where
filtering becomes necessary.

Expansion rate with zero results We conduct a further experiment
to evaluate how query expansion affects the query results. A phenomenon
of our collaborative filtering algorithms that is noticeable here is that two
tags may be highly similar, according to the recommender, but may still
not retrieve any results when combined in a search query. This phenomenon
results from the fact that our recommender algorithms only consider whether
different users have used the same tags. The algorithms don’t in involve the
webpages that have been tagged. For example, two tags programming and
pizza could be similar, because many users that preferred programming also
preferred pizza. This does not necessarily entail that webpages exist that are
tagged with both tags. Hence, query expansion even with a highly similar
recommended tag can reduce the result set to zero results.

we excluded tags from our evaluation, for which no recommendations exist. The algorithms
don’t guarantee that recommendations exist for all tags; T(s) provides recommendations
for more tags than T(p) and T(u), therefore the query result is higher on the average.

143

0

20

40

60

80

All Head Center Tail

T(s) T(p) T(u)

65
.0
9

62
.5
8

69
.4
1

54
.4
5

53
.6
7 6
9.
81

66
.4
0

62
.7
9

66
.6
7

71
.4
1

68
.7
3

71
.5
9

Figure 4.13: Query expansions without results

We measure the rate of query expansions that return zero results. Obvi-
ously, expansions without query results don’t help users. Therefore, a lower
rate of zero result query expansions indicates better domain learning support.

We found a fairly high average rate of query expansions that retrieve zero
results across all of our algorithms, see Figure 4.13. For all algorithms, the
rate is > 53 percent. T(p) reduces the rate of expansions without results.
This is particularly intense in the center of the popularity curve. T(u) sig-
nificantly increases the number of zero result expansions in the head part of
the popularity curve.

The results indicate that T(u) has a significantly negative effect on do-
main learning for popular queries. T(p) improves domain learning, particu-
larly for queries of average popularity. The high zero result expansion rate
for all of the algorithms also indicates that, in our context, algorithms which
involve not only tags and users but also the resources for tag similarity cal-
culation may give better results.

Conclusion

To conclude, we discuss our findings regarding the domain learning support
of our algorithms.

All of our recommender algorithms seem to be appropriate for domain
learning. We have shown that all algorithms make recommendations from
the head, center, and tail of the curve. Furthermore, all algorithms support
transition between different popularity levels. We found this by evaluating

144

the correlation between popularity of query tags and their recommendations.
The ability to transition between tags from the whole range of the tag curve
is crucial for domain learning. It indicates that all domains represented in
the input data set are equally likely to be recommended. All algorithms can
recommend tags from the head, center, and tail of the tag curve, independent
from the popularity of the query tag. The independence of popularity of tags
and recommendations is a key strength of our system for domain learning.

Filtering of results is a strength of recommenders in the context of ex-
ploratory search. It supports domain learning by helping users to find more
specific or more unspecific tags and webpages. In other words, it helps to
transition between expert and non-expert resources. We have shown that bi-
asing towards unpopular tags has negative affects on the filtering. T(p) and
T(u) perform better in this regard. We found this by comparing the lengths
of the result sets between queries for a single tag and expanded queries for a
tag and its recommendation. We found that our algorithms have only poor
filtering results for unpopular tags by looking at the absolute numbers of
results

The size of the dataset and the resulting data sparsity seems to be a prob-
lem for domain learning. Result retrieval and filtering are problematic for
unpopular queries. We have shown that the result length for single tag queries
dramatically drops between popular tags and less popular tags. Queries for
unpopular tags retrieve only very few results. While our system provides
good domain learning for popular queries, the quality is poor for unpopular
queries. The poor query results don’t depend on our algorithms; they result
directly from the low size and sparsity of the input data set. However, the
low result lengths affect the capabilities of our algorithms for domain learn-
ing. They clearly affect the necessity and quality of the result filtering of our
algorithms. Our findings of the mean result lengths experiment indicate that
a larger input dataset could improve domain learning particularly for unpop-
ular tags. The dataset seems good enough for our algorithms for popular
tags. For unpopular tags, our algorithms provide only poor domain learning
support with the current input dataset.

Our collaborative filtering algorithms only include tags and users into the

145

similarity calculation. This can be a problem in the context of a search en-
gine, because the algorithms don’t consider the webpages that are retrieved.
It could be beneficial in our context to consider the webpages from the in-
put data for the tag similarity calculation. We measured the negative effects
in the zero query result rate experiment. The findings suggest further ex-
periments with algorithms that consider the webpages for the tag similarity
calculation.

4.7 Conclusion

We presented an evaluation method for recommender algorithms in exploratory
search engines. The method allows to assess the quality of user models gen-
erated with these algorithms. Our method combines a set of evaluation
experiments that measure the navigability of recommendation networks and
the effects in the search results. It measures the topology of the networks to
evaluate how well recommendations provide navigation trails through the tag
space which facilitate domain discovery and domain learning. Furthermore,
it measures how navigation through the recommendations affect the search
results.

The evaluation method focuses on non-accuracy measures, novelty and
coverage, because these measures are more important than predictive ac-
curacy in the context of exploratory search. Non-accuracy measures are
more fuzzy to evaluate than predictive accuracy measures. They cannot be
measured straightforward and must be seen in the context for which the
recommendations are applied.

A popular strategy to include non-accuracy into the evaluation is to mea-
sure the user-perceived quality. However, this strategy requires user feed-
back and can be obtrusive for users. A major shortcoming of user-centric
evaluation strategies is that they cannot evaluate algorithms before they are
deployed in a running system. Furthermore, it is cumbersome to compare a
larger number of algorithms, because all algorithms must be deployed in a
running system for a certain time to collect user feedback.

A key strength of our method is that is can evaluate non-accuracy mea-

146

sures quick and with low effort – without requiring user feedback data. Our
method solely relies on evaluating the structural features of pre-compiled
recommendation networks and the properties of the underlying folksonomy.
It allows to evaluate recommender algorithms before they are deployed in a
running system. Because it requires no user feedback and is relatively simple,
our method also allows to compare a larger number of algorithms with low
effort.

We exemplarily applied our evaluation method to a portion of the user
models that we generated with our user model extraction method (cf. Chap-
ter 3): we evaluated how well the tag similarity modeled in our user models
supports domain discovery and domain learning. Therefore, we assumed
an exploratory tags search engine that recommends similar tags to a query.
We compared our baseline algorithm with two alternatives which bias the
recommendations towards popular or unpopular tags.

The evaluation results show that biasing recommendations towards pop-
ular tags provides the most advantages for domain learning and domain dis-
covery: the algorithm T(p) is the winner for our context. We have shown
that T(p) creates recommendation networks that a more navigable than T(s)
and T(u). T(p) reduces the low navigability and coverage of the recommen-
dation networks for unpopular tags. Furthermore, it provides the best results
for the query result filtering. Biasing towards unpopular tags, T(u), reduces
the recommendation quality for exploratory search compared to the baseline
algorithm.

The results suggest that the quality of our algorithms is highly sensitive
to the popularity of the search query tag. The results of our evaluation vary
greatly between different parts of the popularity distribution curve. Depend-
ing on the query popularity, we found different or converse performances of
our algorithms. We can state that our user models perform good for popular
queries. Our experiments show that the navigability of the recommendation
network is good for the head of the popularity distribution curve. Also the
result set length and filtering rate is appropriate for popular queries. For the
long tail of unpopular tags, all of our algorithms perform significantly worse.
We found two reasons for this. First, the connectivity of our recommendation

147

networks is low in the tail of the popularity curve. This thwarts navigation
through the network in these areas. We can improve the navigability in the
tail by biasing recommendations towards popular tags, however, this does
not completely avoid the problem. Second, our search engine retrieves too
little results for unpopular queries. This issue is beyond our algorithms, but
depends on our input data set. We clearly need to collect more data to
provide a reasonable number of search results also for less popular queries.
Our evaluation shows that a search engine that works with the current input
set and the current user models is suitable for exploration of popular topic
domains, but shows deficiencies for unpopular domains.

Our findings imply that input data are a crucial factor for the quality of an
exploratory tag search engine. Clearly, a larger input data set could provide
better query results; however, the pure quantity is not the only relevant issue
with the input data. Our results for the head and center of the popularity
curve show that already a medium-sized data set can provide good results.
Another issue of the input data that affects the evaluation results is the
diversity of topic domains covered in the input data. The search activity of
a user is usually not restricted to specific topic domains, but ranges across
numerous domains. To support exploration for search queries from a wide
range of possible domains, user models must cover the whole domain range.
Probably, a folksonomy of a single bookmarking system cannot provide the
range of data necessary for this task. Our findings indicate that data from a
single bookmarking systems are too sparse and too domain-specific for web
search. Other studies confirm these findings [105, 134]. To achieve a better
size and a better coverage of topic domains in the user models, and thus
to overcome the key shortcomings that our evaluation exposed for our user
modeling approach, we suggest to share user models and connect user models
from various services on a web-scale. We believe that this can be achieved by
a web-scale user modeling integration strategy that comprises user models
from larger number of popular Social Web services. In the following chapter,
we contribute a method for web-scale distributed user modeling to make this
possible.

148

Chapter 5

Contribution 3: A user model
integration method

In the following chapter, we contribute a user model integration method that
addresses the challenges of web-scale user modeling. The goal of our method
is to represent and publish user models for exploratory search engines on the
Web. Our contribution comprises three aspects: (1) a generic user modeling
architecture, (2) a user model scheme, and (3) a user model representation
method.

(1) We contribute an architecture for distributed user modeling systems
on a web-scale. The architecture takes into account the requirements of
distributed personalized systems and the existing architecture and charac-
teristics of the Social Web. Thus, it bridges the gap between the existing
service-oriented Web architecture and a fully-fledged Semantic Web.

(2) We contribute a user model scheme that takes into consideration the
characteristics of web-scale user modeling. The user model scheme aims at
providing a reasonable abstraction of user properties. The goal is to make
user models generic enough to be re-used by many services on the Web. At
the same time, they should be specific enough to provide helpful information
for popular analysis techniques. Our user model scheme models user interest,
user knowledge, and user similarities.

(3) We contribute an RDF-based user model representation method that

149

150

allows for syntactic and semantic integration on the Web. The representation
method applies Linked Data standards. It re-uses or maps to the widely
adopted RDF ontologies SKOS, FOAF, and Dublin Core. The representation
method is capable of integrating further vocabularies and is thus extensible.

The overall objective of our user modeling method is viable user modeling
on a web-scale. This goal implies three sub-goals:

(1) User modeling should naturally integrate with the distributed and
open architecture of the existing Web. The Web is an open world – new
services can emerge and engage in a web-scale distributed system at any
time. This entails three design principles: first, open standards to ensure
interoperability; second, an extensible architecture to enable adaptation to
new requirements; third, a highly scalable architecture to scale up when
required.

(2) User models should model information that can be practically used
by real-world services on the Web. This entails user models that are neither
too generic to be used efficiently by existing services nor too specific to be
shared across services. In addition, the user model content should reflect the
requirements and characteristics of the current Web topology. For example,
it should model social relationships between users, which are an important
aspect of the Social Web.

(3) User models must be syntactically and semantically aligned. However,
syntactic and semantic integration is just one prerequisite for shared data.
Data must also be actually published by user modeling services. Although
this not merely a technical issue but depends largely on business models (cf.
[2]), technology can simplify and motivate data publishing and dissemination.

The remainder of this chapter is organized as follows. In Section 5.1 we
describe our architecture for web-scale user modeling. In Section 5.2, we
describe our user model scheme. In Section 5.3, we describe our user model
representation method. We conclude with a discussion of our contribution
in Section 5.4.

151

Personalization Service

User Modeling Service
Activity Provider

Activity Provider

Activity Provider

Activity
Store

Activity
Collector

Service
User

Interface

User Model
Constructor

User
Model
Store

User Property Provider

User Property
Collector

Domain and
Trust Filter

Privacy Filter

Adaptation
Component

User Modeling Service

User Modeling
Service

RSS

Atom

XMPP

SPARQL

SPARQL

SPARQL

Linked Data

User
Property

Statement

User
Property

Statement

User
Property

Statement

SPARQL

Service User
Interface RPC

Figure 5.1: User modeling architecture

5.1 A user modeling architecture

In the following section, we describe our generic architecture for web-scale
user modeling. The architecture provides a framework for flexible, scalable,
extensible distributed user model integration. Furthermore, it incorporates
existing Web services (and the technologies used by these services for data
publishing: Atom, RSS, and XMPP1, cf. [36]) and Semantic Web technolo-
gies. The main components of the architecture are Activity Providers, User
Modeling Services, and User Property Statements, see Figure 5.1. The com-
ponents exist independently from each other and are only loosely coupled.
They are distributed on the Web and communicate over HTTP. All com-
ponents are logical units only; each component may well be distributed on
several physical devices, e.g., on a server cluster or in a cloud-based environ-
ment.

Activity Providers produce Activity Data – usage data and user generated
content. For example, social bookmarking services publish data streams that
represent folksonomies, social networking services publish social relations be-
tween people. Furthermore, also non-social services may provide Activity
Data streams, e.g., logged usage data. Activity Data are collected by User
Modeling Services and serve as the data basis for the user modeling process.

1http://xmpp.org/rfcs/rfc3920.html (last access 2011-04-22)

152

User Modeling Services produce higher-level knowledge of users – User
Property Statements. Therefore, they collect Activity Data as well as exist-
ing User Property Statements and apply analysis techniques on these data
to produce user models. The user models are then published as User Prop-
erty Statements. User Modeling Services may optionally be integrated into
a Personalization Service. Personalization Services are services which not
only create user models, but also apply the models to adapt some informa-
tion presented to users. User Modeling Services are independently working
components. Thus, the number of User Modeling Services in a system is in
principle not limited.

User Property Statements are statements about user characteristics which
are produced by the User Modeling Services. They are the building blocks
for the user models. For example, User Property Statements may describe
a user‘s interest, knowledge, or social relations. Depending on the User
Modeling Service, User Property Statements may vary in the topic domain.
A set of User Property Statements forms the user model. A key feature of
User Property Statements is that they can be interpreted independently from
each other. This characteristic distinguishes User Property Statements from
traditional user models. Technically, all User Property Statements are repre-
sented with RDF. Linked Data standards and existing vocabulary are largely
applied. User Property Statements take the form of a cloud of interlinked
statements on the Web which describe users. The User Property Statements
cloud is published to the Web and is accessible through SPARQL queries.

We introduced the main components of our architecture –Activity Providers,
User Modeling Services, and User Property Statements. Subsequently, we de-
scribe their function and internal structure in more detail.

5.1.1 Activity Providers

Activity Providers produce initial data on which all user modeling and per-
sonalization grounds. Activity Providers are part of the already existing
Web. They are existing Web services, e.g., social bookmarking services, that
produce data streams.

153

Activity Providers and User Modeling Services communicate via HTTP.
User Modeling Services subscribe to Activity Providers to receive their activ-
ity stream. Usually, Activity Providers use the standard exchange formats
for Web services, RSS, Atom or XMPP, for data publishing. In detail, two
data publishing methods exist. In the first method, activity is published by
Activity Providers through feeds. User Modeling Services subscribe to feeds,
i.e., they poll published data in regular intervals, e.g., as Atom feeds. In
the second method, Activity Providers push activity data to User Modeling
Services over a push protocol, e.g., XMPP.

The actual content provided by the data stream varies depending on the
kind of Activity Provider. Content streams relevant for user modeling can
be provided by virtually all kinds of Web services. For example, social book-
marking services produce tagging activity. Their streams describe which
users tag which resources with which tags at which time. Social networking
services produce a variety of activity, for example, community affiliation, sim-
ilarity relations between users, interest groups, or demographic information.
Streams of location-based services may publish activity data that describe
user location. Feed aggregators like Feedburner 2 or Yahoo Pipes 3 can act as
intermediate Activity Providers. They combine and possibly filter streams
of several Web Services and produce aggregated activity streams.

5.1.2 Service User Interfaces

Service User Interfaces are an alternative provider of activity data. They
create traditional usage data that is logged from user interaction. Usage
logging is usually tightly integrated with the application logic. Thus, these
feedback data are not publicly published as a feed. Instead, a user interface of
a service may directly push the data to the service‘s own logging component
via remote procedure calls (RPC) over HTTP.

2http://www.feedburner.com (last access 2011-04-22)
3http://pipes.yahoo.com/ (last access 2011-04-22)

154

User Modeling Service

Activity
Store

Activity
Collector

User Model
Constructor

User
Model
Store

User Property Provider

User Property
Collector

Domain and
Trust Filter

Privacy FilterRSS
Atom

SPARQL

SPARQL

Figure 5.2: User Modeling Service

5.1.3 User Modeling Services

User Modeling Services are the key component of our architecture. They
contain the logic that converts activity data into User Property Statements.
User Modeling Services consume activity data streams as input and produce
User Property Statements as output. Typically, User Modeling Services are
either (1) domain-specific, (2) user-specific, or (3) purpose-specific. This cat-
egorization is non-technical; rather it corresponds to the underlying business
models.

(1) Domain-specific User Modeling Services collect and process activity
data of a specific topic domain. For example, a User Modeling Service may
collect activity from a scientific social reference manager, like CiteULike, to
produce User Properties related to users‘ scientific knowledge.

(1) Purpose-specific User Modeling Services collect and process activity
data to serve a specific purpose. The activity data relevant to serve a certain
purpose may involve various topic domains. For example, the purpose of a
User Modeling Service may be to produce User Property Statements for a
recommender that suggests products to a user in an online shop.

(3) User-specific User Modeling Services collect and process data concern-
ing a specific user or user group, independently from domain and purpose.
For example, a user-specific User Modeling Service may produce User Prop-
erty Statements for a single user based on the overall activity of this user
aggregated from all services used by the user.

The idea of the presented architecture is, that User Modeling Services
on the Web exist independently from each other, similar to existing Web

155

services. In the following, we describe the internals of User Modeling Services,
see Figure 5.2.

Activity Collector

Each User Modeling Service contains zero or more Activity Collectors. Each
Activity Collector subscribes to an Activity Provider. One User Modeling
Service can implement several Activity Collectors to collect activity from
several Providers. It receives and parses data streams from the Activity
Provider to extract relevant information from the input stream and store it
into an Activity Store. Data may be stored in any format, depending on the
requirements of the application. An Activity Collector can also receive usage
data provided by Service User Interfaces.

Activity Store

The Activity Store caches collected Activity Data in a local data store. The
Activity Store makes the data available for the User Model Constructor. The
purpose of local caching of Activity Data in the User Model Service store is
two-fold:

First, data access over feeds is usually slow and limited. Statistical anal-
ysis techniques on the activity data usually require fast and frequent access
on the data. An acceptable access speed is typically not realistic with remote
data querying over the Web. Furthermore, access to data published as feeds
by Activity Providers is usually limited. For example, a feed usually contains
only a small portion of the overall data available. To retrieve more data, the
feed subscriber has to poll the data iteratively in small portions. Feed APIs
usually only allow a limited number of queries per subscriber in a given time
span.

Second, data analysis techniques require data in a special format, depend-
ing on the analysis technique or software that is used. Usually, feeds provide
data in a form that must be cleaned or parsed to comply with that format.
For example, a feed from a social bookmarking service may implicitly express
preferences of users for tags. However, usually, this information has to be

156

converted for the usage in a recommender software, which may require a list
of user-tag pairs.

User Model Constructor

The User Model Constructor is a data analysis component that creates or
enhances user models. The User Model Constructor usually implements ma-
chine learning techniques, e.g., collaborative filtering algorithms. The User
Model Constructor has two possible input sources – existing user models in
the User Model Store or the data in the Activity Store. Depending on the
application context, the User Model Constructor uses one of the two sources,
or both. The output of the user model construction process is a user model.

User Model Store

The User Model Store is a local data store that stores the user models created
by the User Model Constructor. The user models can be modeled and stored
in any arbitrary format and scheme, depending on the requirements of the
application context.

User Property Provider

The User Property Provider publishes the output of the User Modeling Ser-
vice, the user models, as User Property Statements on the Web over a public
interface. Technically, User Property Statements are small groups of RDF
statements that encode user models according to Linked Data standards.
The User Property Provider involves two steps: data mapping and data pub-
lishing. The data mapping step constructs RDF-based User Property State-
ments from the internally used user model. Data elements of the internal
User Model Store are therefore mapped to an appropriate RDF vocabulary.
The data publishing step makes the created RDF statements available and
query-able on the Web. Technically, the User Property Provider is a SPARQL
endpoint that can be queried over the Web.

157

Privacy Filter

The Privacy Filter is part of the User Property Provider. It decides which
information from the internal user model is made available to the User Prop-
erty Provider for publication. The internally used user model may contain
information that should not be made public for some reason. For exam-
ple, a service provider may not want to share sensitive information about a
user that need to be kept private for privacy protection. The privacy filter
applies internal rules to the User Property Provider, so that User Property
Statements are generated for non-private data only.

User Property Collector

The User Property Collector retrieves and caches User Property Statements
that are already available on the Web. It converts the User Property State-
ments to the internal user model format and stores them to the local data
store. The purpose of caching remote User Property Statements is perfor-
mance improvement. Linked Data are distributed across servers on the Web.
Conceptually, it is very convenient to be able to query data independently
from their physical location. Practically, however, this method for querying
raises performance issues. As discussed above, machine learning techniques
often require fast and frequent data access, which is not feasible with dis-
tributed queries. Therefore, relevant data are cached in the local User Model
Store in an appropriate format. Technically, this component is a SPARQL
interface that dereferences URLs of RDF statements.

Domain and Trust Filter

The Domain and Trust Filter is a part of the User Property Collector. Its
purpose is to decide which existing User Property statements to consider for
data analysis and cache in the local User Model Store. This decision can be
made according to two criteria – domain and trust.

(1) The domain of User Properties is defined by the content that is mod-
eled. The content may or may not be relevant for the application, depending

158

Personalization Service
Service

User
Interface

Adaptation
Component User Modeling

Service
SPARQL

Figure 5.3: Personalization Service

on the application domain. For example, location information may not be
relevant for a user modeling service of a book store.

(2) Trust in User Properties is defined by the origin of the data. In
an open environment like the Web, every service can publish User Property
Statements of varying quality. User Modeling Services may want to rely only
on User Property Statements of certain trusted Services.

5.1.4 Personalization Service

Personalization Services are optional components of our architecture that
contain User Model Services, see Figure 5.3. They extend the functionality
of User Modeling Services by an Adaptation Component that personalizes
content based on the user model, and a Service User Interface that delivers
the adapted information to the user. Typically, Personalization Services also
collect usage data from the Service User Interface.

Adaptation Component

The Adaptation Component is part of the Personalization Service. It adapts
content, structure, or form of the information delivered to the Service User
Interface. The adaption component can rely on arbitrary data formats for
input and output. Hence, established methods and software can be retained
by Personalization Services.

5.1.5 User Property Statements

User Property Statements form the user models that are shared on the Web.
The idea of User Property Statements is to decompose user models to in-
dependently interpretable small units of user model information. A User

159

Modeling Service does not publish a complete user model that must be in-
tegrated by another service. Instead, it publishes a model as User Property
Statements. Further services can integrate all of these User Property State-
ments or only portions of them. Individual statements can be modeled in
different schemas. Hence, a user model expressed by User Property State-
ments may be composed of a number of schemas. User Property Statements
address two problems of the traditional user modeling approach:

(1) Traditional user models require a defined schema or vocabulary to
model the user information. This is problematic for two reasons. First,
these schemas must be powerful enough to cover all desired information that
may be required by application. This is hard to achieve when requirements
change in a dynamic context like the Web. Second, schemas must be simple
enough to be implemented by a large number of applications with a reason-
able amount of effort. A compromise of the two requirements for user model
schemas has shortcomings on the one or the other side. Therefore, user model
schemas which completely fulfill the demands of services across very limited
domains seems not feasible at present. User Property Statements overcome
this problem, because an existing simple schema can be extended by other
existing schemas as required.

(2) User Modeling Services are usually specific to a certain application
context. They create specific user models for a certain problem, domain, or
user. Hardly ever do other services re-use models of other services completely.
This is because they usually address distinct problems, although the problems
might overlap in some degree. For example, an educational system may
model a user‘s programming skills as well as official certificates gained at a
university. Another service that personalizes search results according to the
user‘s programming skills does not need information about official certificates
in its user model, neither does it support the vocabulary to describe this
information. With the traditional user modeling approach, developers of the
latter service would have to deal with the complete user model schema of
the first service, even if only small parts of the schema are to be supported.
Independent User Property Statements make it easier to integrate only the
portions of user model schemas required by a service, because services do not

160

have to parse and interpret complete user models. Instead, services consume
only relevant User Property Statements.

To sum up, we presented an abstract architecture for web-scale user mod-
eling. It allows for scalable and extensible user modeling. All components
are only loosely coupled, no centralized service is necessary to mediate be-
tween components; the system can hence scale effortless. The architecture
also considers characteristics of existing services on the Web: it integrates
established standards for data publishing, RSS, Atom and XMPP. At the
same time, the architecture applies Semantic Web technologies for data pub-
lishing. User models are published as RDF statements in the form of User
Property Statements. User Property Statements decompose user models into
small units which can be interpreted independently from each other. Hence,
the architecture acts as a link between Social Web services and a Semantic
Web.

5.2 A user model scheme

In the following section, we describe our lightweight and extensible user model
scheme for the Web. First, we define the overall approach that we follow. In
general, two divergent kinds of user model schemes exist: (1) generic models
and (2) application-specific models.

(1) Generic user model schemes model users at a high abstraction level.
Here, the reference to the domain of the application is rather low. For exam-
ple, user models that represent individual traits or, tasks, goals, or opinions
of users are rather generic and have only weak linkage to the application
domain. The advantage of generic user models is, that they can be re-used
more easily across domains. The downside is, however, that it is difficult to
interpret generic models to obtain concrete directives for adaptation. Ma-
chine learning techniques cannot process highly generic user model content;
at least, elaborate reasoning is required to process generic user models [219].

(2) Application-specific user model schemes model content so that it is
customized for the application‘s purpose or technology. Application-specific
models are typically close to the raw data which are being logged. For exam-

161

ple, a search engine may store queries of users. The advantage of application-
specific user models is that they are pragmatic and usually require no com-
plex user modeling schema. Since application-specific modeling is often opti-
mized on specific analysis software or techniques, it requires no intermediate
interpretation steps and allows for straight-forward statistical analysis. The
downside of application-specific user models is that it is hard to share models
across services, analysis techniques, and domains.

Our method pursues a semi-generic user modeling approach – our user
model scheme has an intermediate abstraction level. The approach is a com-
promise to meet the requirements of user modeling on a web-scale. It seeks to
provide content that is practically useful for established analysis techniques.
At the same time, it seeks to be shareable across domains, purposes, and
techniques. To keep the model on a level that is generic enough to share
it between many services, we exclude temporal information from the con-
tent level. For example, we don’t model duration or time of appearance of
a user characteristic on the content level. Instead, we shift these informa-
tion to a metadata level. Hence, we distinguish between information that is
modeled within the user model and metadata that describe the user model
itself, or parts of it. We define three user properties that are relevant for
web-scale user modeling: user interest, user knowledge, and user similarity.
On the content level, we model these user characteristics. On a metadata
level, we model properties of the user model: creation time and provenance.
A key advantage of separating content and metadata is, that the user model
scheme becomes more generic and thus more easy to re-use across different
application contexts.

In the following sections, we describe the components of our user model
scheme on content and on metadata level. First, we describe the properties
that we model on the content level: user interest (Section 5.2.1), user knowl-
edge (Section 5.2.2), and user similarity (Section 5.2.3). Subsequently, we
describe what we model on the metadata level (Section 5.2.4).

162

Tom Social mediainterest: 0.8

Figure 5.4: User interest example

Tom Social media Foursquarehas narrowerbelieves

Figure 5.5: User knowledge example

5.2.1 User interest

User interest defines topics in which the user is assumed to be interested in.
It relates users with topics of interest. A topic can be a term or a set of
terms, e.g., a tag from a social bookmarking system. The interest relation
has a weighting. The weight factor indicates how strong the assumed interest
of the user in the topic is. For example, a user Tom may be interested in
the topic social media with a weight of 0.8. Figure 5.4 schematically shows
weighted user interest in a topic.

5.2.2 User knowledge

User knowledge models what a user knows. User knowledge is subjective
– it may well contain misconceptions. Therefore, user knowledge could be
equivalently referred to as user belief. We stick, however, to the term knowl-
edge, since is fairly established in related literature. We model knowledge as
a set of believed relations between concepts. These relations can be either
associative or hierarchical. Associative relations are undirected; hierarchi-
cal relations are directed. For example, Tom may believe that foursquare
is a subclass of social media. The sum of believed relations model a user‘s
knowledge. Figure 5.5 schematically shows user knowledge.

163

Tom Ericsimilarity: 0.4

Figure 5.6: User similarity example

Tom Social media Foursquarehas narrowerbelieves

Social media

interest: 0.8

Eric

similarity: 0.4

believes Social media Mobile webrelated to

Figure 5.7: Overall user model content example

5.2.3 User similarity

User similarity models relations of a user to other users on the Web. User
similarity relations are undirected and weighted. The weight factor indicates
how strong the similarity between two users is. Usually, similarity relations
between users base on similarity of interest, knowledge, or behavior. Hence,
they are implicit semantic relations – they represent affiliation of a user to
an (ad-hoc) community of interest. For example, a service may identify a
group of users based on their interest in similar topics or some kind of similar
behavior in the past. Figure 5.6 shows a user similarity relation.

We defined three user characteristics that we model – user interest, user
knowledge, and user similarity. The sum of these three characteristics defines
the scope of the content level of our user model. Figure 5.7 schematically
shows an overall example of our user model scheme on the content level.

5.2.4 Metadata

The described user model content excludes two important dimensions: time
and provenance. We exclude these dimensions from the content level and

164

Tom Socia mediainterest: 0.8

Tom Ericsimilarity: 0.4

Steve believes

created at
created by

created at
created by

created at
created by

Date

Provenance

Date

Provenance

Date

Provenance

CONTENT METADATA

Figure 5.8: User Property Statements with metadata

instead model temporal and provenance information at a metadata level.
The benefit is a more lightweight and generic user model scheme. To describe
individual parts of the user model content with metadata, we decompose the
user model into small units that can individually annotated with metadata,
see Figure 5.8. The individual units are User Property Statements. In the
following, we describe the function and implications of time and provenance
modeling at the metadata level in detail.

Creation time models when a User Property Statement was published.
It does not provide temporal information of cognitive characteristics; for
example, it does not model appearance or duration of interest of a user in
a topic. Instead, our user modeling approach takes a more generic view
on cognitive characteristics. We assume that a user property is valid at the
time when it is published. For example, a service may publish a User Interest
Statement that describes weighted interest. Later, the service may withdraw
the User Property Statement and publish a new User Property Statement
with another interest weight, because new data became available for analysis
meanwhile. Thus, User Property Statements are considered to represent the
currently valid state of a user.

Provenance models who published a User Property Statement. It provides
information about the service that created a User Property Statement. It
helps consuming services to decide how trustworthy the data are. Consuming
services may want to consider only information from certain, trusted, data

165

publishers. Or, they may want to decide how to interpret contradicting
information from two services. Provenance metadata do, however, not model
how to interpret the provenance information. For example, they does not
imply a trust value for the User Property Statement.

Excluding time and provenance from the user model content has impor-
tant implications for the user model scheme. The metadata describe when
User Property Statements were created and who created them, but they
do not give information on how to interpret this information. For exam-
ple, time metadata do not describe how long a User Property Statement is
valid, or when it expires. Accordingly, provenance metadata don’t model
whether a User Property Statement is trustworthy. Services that consume
User Property Statements must implement application logic that decides how
to interpret metadata. We consider this approach more suitable for an open
environment like the Web, because it keeps the user model more generic and
flexible. Services from different domains can interpret the metadata differ-
ently, according to their specific needs. For example, one service may want
to consider all User Property Statements that are younger than one month;
another service may consider all available User Property Statements and only
downgrade the influence of older ones. The approach allows new services that
want to interpret information differently to be integrated in the system more
easily.

To sum up, we presented a semi-generic user model scheme for web-scale
user modeling. We divide the user model scheme into a content level and
a metadata level. On the content level, we model three user properties:
user interest, user knowledge, and user similarity. User interest is a set of
weighted relations between users and topics. User knowledge is a set of
believed associative or hierarchical relations between topics. User similarity
is a set of weighted relations that define a similarity value between two users.
On the metadata level, we model time and provenance of parts of the user
model. Therefore, we decompose the user model into small units, which we
refer to as User Property Statements.

166

5.3 A user model representation method

In the following section, we describe our method to represent the described
user model scheme in RDF. The method overcomes important problems of
user modeling with RDF and existing RDF vocabularies. We re-use or map
to widely deployed vocabularies where possible and introduce a new ontology
to overcome constraints of existing vocabularies. In Section 5.3.1, we discuss
key problems of user model representation with RDF. In Section 5.3.2, we
review patterns to overcome these constraints. In Section 5.3.3, we describe
our method to represent user models as User Property Statements.

5.3.1 Representation problems

Semantic integration of shared user models on the Web calls out for the use
of widely adopted vocabularies like SKOS, FOAF, and Dublin Core for user
model representation. However, these vocabularies have serious limitations
for user modeling. In the following, we illustrate why SKOS, FOAF, and
Dublin Core are not per se powerful enough to serve as vocabulary for user
model representation on the Web.

Generally, user models model complex relations between an arbitrary
number of things. The discussed RDF vocabularies do not provide facilities
to model these complex structures. The basic cause for the problem is the
RDF data model, which is limited in that is allows only to model binary
relations 4 [64]. We demonstrate this problem with two examples. The
examples illustrate two patterns that are problematic to model with RDF,
(1) qualified relations and (2) n-ary relations.

(1) Our user model scheme requires to model the following kind of facts:
„Tom is interested in geofencing with a weight of 0.8“. The fact is a qualified
relation. Figure 5.9 schematically shows the relations that must be expressed
to model the fact. The challenge here is to specify a RDF property instance,
interest, thats link two individuals, Tom and geofencing. Intuitively, FOAF
seems to be a suitable vocabulary to model interest: its foaf:interest prop-

4http://www.w3.org/TR/swbp-n-aryRelations/, http://www.w3.org/TR/2004/REC-
rdf-mt-20040210/ (last access 2011-04-22)

167

Tom Social mediainterest

weight

0.8

Figure 5.9: Qualified relation example

Tom Social media Foursquarehas narrowerbelieves

Figure 5.10: N-ary relation example

erty allows to model an interest relation between Tom and geofencing. The
challenge is to specify the foaf:interest property with a weighting. The
RDF data model does not support annotation of property instances. Hence,
it is not per se possible to qualify the foaf:interest property instance with
a weight value.

(2) Our user model scheme requires to model the following kind of facts:
„Tom beliefs that foursquare is a subclass of social media. This fact is an n-
ary relation. There is a statement that describes the binary relation between
foursquare and social media and there is a property describing a limitation
of the statement. Figure 5.10 schematically shows the relations that must
be expressed to model the fact. Intuitively, two existing vocabularies seem
appropriate to model the relation properties involved in this fact. First, the
hierarchical semantic relation between foursquare and social media can be
described with the skos:narrower property of the SKOS ontology. Second, a
belief relation can be modeled with the cco:belief property of the Cognitive
Characteristics Ontology. The challenge of this example is to represent a
relation between more than two individuals. We want to model a belief rela-
tion between Tom and the statement that foursquare is a subclass of social
media. The RDF data model does not support these n-ary relations. It is
not per se possible to model a relations between statements; RDF statements

168

cannot have another statement as an object to model the intended meaning.
The two given examples illustrate structural patterns that must be rep-

resented in our user model scheme. The challenge is to represent these struc-
tures inside the RDF data model and to apply existing vocabularies.

5.3.2 Representation patterns

In the following section, we describe four representation patterns that address
the challenges of qualified and n-ary relation modeling with RDF: named
graphs, property customization, reification, and class-based relation modeling.

Named graphs

Named graphs are an extension to the RDF data model [47]. The exten-
sion is backwards compatible with the original RDF model to ensure easy
integration of named graphs into existing applications. Named Graphs are
thus a minimal step approach to extend the RDF model with little effort to
encourage quick deployment on the Web. The initial motivation of named
graphs was to add provenance information to RDF statements. Provenance
can act as an indicator to deduce trust. The Web assumes an open world –
everyone can publish anything. Data consumers have to decide which infor-
mation are trustable. Provenance tracking is one approach for a trust layer
on the Semantic Web.

The idea of named graphs bases on quads. Quads extend RDF triples
with a fourth element which carries arbitrary information. The intention
of quads is to add more information to triples. The key problem of quads
is semantic arbitrariness. The semantics of the additional element in the
RDF statement is beyond the RDF data model. Therefore, existing RDF
infrastructure cannot per se semantically interpret quads. Named Graphs
seek to overcome this problem by specifying both syntax and semantics of the
extension. The Named Graph data model defines the formal semantics of the
additional element as context. By defining the context of an RDF statements,
Named Graphs allows to add meta information to RDF statements and to
express relations between sets of RDF statements.

169

Listing 5.1: Named Graph example

ex:TomGraph {
ex:social_media skos:narrower ex:foursquare

}
ex:EricGraph {

ex:social_media skos:narrower ex:facebook
}

In the context of user model representation, Named Graphs can be used
for scoping assertions and logic 5. For example, a statement about a relation
between two concepts can be restricted to individual users. Listing 5.1 shows
individual Named Graphs of two users. Both contain a relation between
concepts. The statements are semantically restricted to the Named Graphs
of the individual users.

Named graphs can only partly overcome the problems of user model rep-
resentation discussed above for two reasons. First, the formal semantics as
defined in [47] are not commonly agreed on in real-world 6. Existing RDF
tools and reasoners do not agree on the formal semantics of Named Graphs.
Although Named Graphs are backwards compatible, they remain outside the
RDF data model with the consequence of not being agreed on by the RDF
infrastructure. Second, Named Graphs do not provide a generic solution for
qualified and n-ary relations. Rather, they are restricted to model prove-
nance information. This does not solve the problems of all cases of n-ary and
qualified relations.

Property customization

Listing 5.2: Property customization example

ex:social_media ex:Tom_narrower ex:foursquare
ex:social_media ex:Eric_narrower ex:facebook

5http://www.ninebynine.org/RDFNotes/UsingContextsWithRDF.html (last access
2011-04-22)

6http://www.semanticoverflow.com/questions/757/which-owl-reasoners-understand-
named-graphs (last access 2011-04-22)

170

Property customization is a hands-on approach to n-ary relations that
does not extend the RDF data model. The idea of property customization
is to define more specific RDF properties as sub-properties of existing vo-
cabulary. Listing 5.2 shows how relations between concepts are semantically
restricted to individual users with property customization. The properties
ex:Tom_narrower and ex:Eric_narrower are sub properties of skos:narrower. In
this example, properties are customized for each user, to restrict the scope
of statements to individual users.

Property customization is easy to implement and has therefore been
adopted by some systems on the Web. The idea of property customiza-
tion is also used by GUMO [101], where predicates of statements, properties,
are replaced by User Model Dimensions (cf. Chapter 2). The approach is,
however, rather naive and does not scale well. Although semantics are for-
mally defined, it is hardly feasible to make reasonable queries over a larger
number of customized properties. For each condition, a new property has to
be defined. Hence, the number of properties grows very fast when properties
are scoped to users, time, and other conditions. This fundamental problem
of property customization has already been stated in [101].

RDF reification

RDF reification defines a mechanism to describe a RDF statement using a
built-in RDF vocabulary. A description of a statement using this vocabulary
is called a reification of the statement 7. The RDF reification vocabulary con-
tains the class rdf:Statement and three properties: rdf:subject, rdf:predicate,
and rdf:object. The vocabulary allows to model a RDF statement with four
reification statements. Therefore, the original statement is assigned a URI
and the statement is then described with the reification properties. The re-
sulting representation of a reified statement is class-centric – the original
statement becomes an instance of the class rdf:Statement. As a result, reifi-
cation allows to add arbitrary additional information to a statement. For
example, RDF reification can record the provenance or creation time infor-

7http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification (last access
2011-04-22)

171

mation of statements. Listing 5.3 shows a statement in its original and its
reified form with additional weight information.

Listing 5.3: RDF reification example

Original statement
ex:Tom foaf:interest ex:social_media .

Reified form
_:stmt a rdf:Statement ;

rdf:subject ex:Tom ;
rdf:predicate foaf:interest ;
rdf:object ex:social_media ;
wo:weight 0.8 .

RDF reification must be used carefully. The semantics of the RDF reifi-
cation mechanism are not as intuitively perceived: RDF reification has no
formally defined semantic relation between the original statement and its
reification form. This implies that „RDF Reification does not assert the orig-
inal triple, therefore one cannot infer the statement form from the reified
form [, hence] asserting the reification is not the same as asserting the origi-
nal statement, and neither implies the other“ 8. For example, a RDF reasoner
that is given the reified form of the statement from the above example cannot
assert its original shortcut form.

In practice, some applications in fact assume a semantic correlation of a
statement and its reified form. However, these semantics are outside the RDF
data model, i.e., it is not what the RDF reification mechanism defines. Other
applications and reasoners possibly do not interpret reification statements as
intended.

Property reification

Property reification addresses the problem of missing semantics on the content-
level of reified statements, which is the key weakness of the RDF reification
mechanism. Property reification is a generic approach to solve the problems
of qualified and n-ary relations in user modeling. Property reification has

8http://esw.w3.org/PropertyReificationVocabulary (last access 2011-04-22)

172

two benefits. First, it allows to model qualified and n-nary relations with
formally clear semantics. Second, it provides a solution to extend existing
vocabulary with capabilities for qualified and n-ary relation modeling. In
the following, we describe the property reification process, which involves
two steps: class-centric vocabulary re-definition, and reification mapping.

Listing 5.4: Property reification example

Shortcut form
ex:Tom foaf:interest ex:social_media .

Reified form
_:stmt a ex:ExtendedInterest ;

ex:relationType foaf:interest ;
ex:user ex:Tom ;
ex:topic ex:social_media ;
wo:weight 0.8 .

In a first step, existing vocabulary is adapted – re-defined – to meet
the requirements of property reification. Most popular RDF vocabularies,
like FOAF, SKOS, and Dublin Core, are property-centric: the vocabularies
use RDF properties to model relations between things. In RDF, the property
instances cannot be further specified. Instances of RDF classes, however, can
be specified easily by adding further properties to the instance. Therefore,
relevant properties are re-defined as classes. RDF classes must be defined
for all properties of an existing vocabulary that are to be reified. Listing 5.4
shows a fact in its shortcut form and in its reified form. The property foaf

:interest is re-defined as a class ex:ExtendedInterest in order to specify the
interest with date information.

Listing 5.5: Property reification mapping example

Re -defininition of foaf:interest property as ex:
ExtendedInterest class

ex:ExtendedInterest a rdfs:Class .
ex:subj a rdf:Property .

173

ex:topic a rdf:Property.
ex:relation_type a rdf:Property .

Reification mapping
_:InterestReification a prv:PropertyReification ;

prv:reification_class ex:ExtendedInterest ;
prv:shortcut foaf:interest ;
prv:shortcut_property ex:relation_type ;
prv:subject_property ex:user ;
prv:object_property ex:topic .

In a second step, the reified statements are semantically mapped to their
shortcut forms with a reification vocabulary. One best-practice on the Se-
mantic Web is to re-use existing vocabulary where possible. A drawback of
the vocabulary re-definition – i.e., the re-definition of a existing RDF prop-
erty as a new RDF class – is, that the result of this process is formally
a new vocabulary. The classes defined during the re-definition are seman-
tically not related to the original properties. A connection between both
has to be created to semantically map the newly-created classes to existing
properties. This can be achieved with a property reification vocabulary for
semantic mapping between shortcut and reified expression 9. A property
reification vocabulary defines at ontology-level (as opposed to instance-level)
how the reified – class-centric – form of a statement semantically relates to
its original form. Listing 5.5 shows a reification mapping between the two
forms of the statement from the example above.

The example applies the Property Reification Vocabulary 10. The key
element of the vocabulary is the class PropertyReification. It allows to de-
scribe the relations of a property reification. Therefore, instances of class
PropertyReification have the properties reification_class, shortcut, shortcut_property
, subject_property, and object_property.

The property reification_class relates to the class which re-defines the
original property as a class, ex:ExtendedInterest in the example above. The
property shortcut relates to the property of the original shortcut statement,

9http://esw.w3.org/PropertyReificationVocabulary (last access 2011-04-22)
10http://smiy.sourceforge.net/prv/spec/propertyreification.html (last access 2011-04-

22)

174

foaf:interest in the example. shortcut_property relates to the property of
the reification class (ex:ExtendedInterest) that defines the shortcut prop-
erty of the relation, ex:relation_type in the example. subject_property and
object_property relate to the subject and object of the original shortcut form,
ex:user and ex:topic in the example above.

We illustrated how property reification allows to extend RDF statements
by defining a class-based – reified – form of RDF properties. Property reifica-
tion ensures semantic coherence between both forms by mapping them with
a property reification vocabulary.

To sum up, we can state that Named Graphs, property re-definition, and
RDF reification do not, or only partly, solve our problems of user model
representation. We explained why property reification is the most viably
approach to overcome the representation problems for RDF-based user model
representation: n-ary and qualified relation modeling. Property reification
allows to extend existing vocabulary with more powerful class-centric form.
Thereby, it applies reification vocabulary to maintain semantic coherence
between the original and the extended vocabulary.

5.3.3 User Property Statements

In the following section, we describe our method for user model represen-
tation. User models are represented as a collection of User Property State-
ments. Conceptually, User Property Statements have two important features:
(1) they can be interpreted independently from each other, and (2) they
use a non-proprietary, syntactically and semantically shared format. Tech-
nically, these conceptual features of User Property Statements are realized
with RDF vocabulary and Linked Data standards. User Property Statements
are small groups of RDF statements that model individual user properties.
The RDF statements use, combine, and extend existing RDF vocabularies
in large parts. All User Property Statements are published on the Web and
can be queried with SPARQL.

One advantage of RDF for content representation is that any number of

175

vocabularies can be combined individually in a single user model. Consuming
services do not necessarily have to be able to interpret all vocabularies used
in a user model to interpret parts of the model. Rather, services can pick
out content required for their needs. For example, a user modeling service
may publish user models with the RDF vocabularies in CCO and FOAF. A
consuming service may only support FOAF. This service can then simply
drop information modeled in CCO and still interpret the parts of the user
model modeled in FOAF. Hence, a user modeling service can provide user
models for various topic domains using an arbitrary number of vocabularies.
Developers of consuming services can decide which parts of the user model
their service must support to retrieve reasonable information. This imposes
little restrictions to service providers and keeps the overall system flexible.

Our user model representation approach aims at fulfilling two goals. First,
existing vocabulary should be possibly re-used to ensure semantic integra-
tion. A key challenge here is that existing vocabularies often do not allow for
modeling of qualified or n-ary relations. Second, newly created vocabularies
should remain extensible for possible later enhancements. The two objectives
can be achieved by property reification, which applies class-centric modeling
and semantically maps classes of newly created vocabulary to existing vo-
cabulary where possible.

According to the user properties defined in the user model scheme – in-
terest, knowledge, and user similarity – we distinguish between three types of
User Property Statements: User Interest Statements, User Knowledge State-
ments, and User Similarity Statements. In the following, we describe how
the three types of User Property Statements are represented in RDF.

User Interest Statements

Listing 5.6: User Interest Statement

ex:AUserPropertyStatement a cco:CognitiveCharacteristic ;
cco:agent ex:Tom ;
cco:topic ex:social_media ;

176

cco:characteristic cco:interest ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.8 ;
wo:scale ex:AScale
] .

A User Interest Statement (Listing 5.6) models weighted interest of a
user in a topic. We apply the CCO ontology and the Weighting Ontology
11. Each User Interest Statement is an instance of the class cco:Cognitive

Characteristics.

Listing 5.7: Weighting scale

ex:AScale a wo:Scale ;
wo:min_weight 0.0 ;
wo:max_weight 1.0 ;
wo:step_size 0.1 .

Each instance has the following properties to describe the cognitive char-
acteristic interest : cco:agent, cco:topic, cco:characteristic, and wo:weight.
The cco:agent property defines the described user, an instance of foaf:Agent.
The cco:topic defines the topic of interest, an instance of owl:Thing. The
cco:characteristics defines the type of cognitive characteristic, cco:interest.
The wo:weight defines the weight of the interest, an instance of wo:Weight, on a
weighting scale used by the service. Each User Modeling Service can publish
an instance of wo:Scale to describe the weighting scale used, see Listing 5.7.
This scale must be published only once for each User Modeling Service. The
classes and properties for the weighting are defined in the external Weighting
Ontology. This vocabulary aims at modeling weightings and their referenced
scales.

Listing 5.8: Property reification

ex:InterestReification a prv:PorpertyReification ;
prv:shortcut foaf:interest ;
prv:reification_class cco:CognitiveCharacteristic ;

11http://smiy.sourceforge.net/wo/spec/weightingontology.html (last access 2011-04-22)

177

prv:shortcut_property cco:interest ;
prv:subject_property cco:agent ;
prv:object_property cco:topic .

An instance of the class prv:PropertyReification from the Property Reifi-
cation Vocabulary maps the cco:interest property used in the User Property
Statement to its shortcut form, the foaf:interest shortcut property, which is
more commonly used on the Web (see Listing 5.8). This enables a larger num-
ber of services to consume the published interest information. This property
reification must be published only once for each User Modeling Service.

User Knowledge Statements

Listing 5.9: User Knowledge Statement

ex:AUserPropertyStatement a cco:CognitiveCharacteristic ;
cco:agent ex:Tom ;
cco:topic [

a cr:ConceptRelation ;
cr:subj ex:social_media ;
cr:relationType skos:narrower;
cr:obj ex:foursquare
];

cco:characteristic cco:belief.

A User Knowledge Statement (see Listing 5.9) models the belief of a
user that two concepts are related in a certain way. Each User Property
Statement is an instance of the class cco:CognitiveCharacteristic from CCO.
The properties are identical to those of the User Interest Statement. The
cco:characteristics defines the type of cognitive characteristic: cco:belief.
The cco:topic defines the believed concept relation. The SKOS vocabulary
allows to model relations. However, we already discussed its constraints in
modeling detailed relations. SKOS does not allow to model more extensive,
weighted, relations. Therefore, we present our Relation Ontology to model
weighted relations between things.

178

Listing 5.10: The Relation Ontology

cr: rdf:type owl:Ontology ;
dc:creator "Mirko Gontek "^^xsd:string ;
dc:date "2010 -10 -18 T12 :30:00+01:00"^^ xsd:dateTime ;
dc:description "A vocabulary for describing semantic

relations between concepts"@en ;
dc:title "Concept Relation Ontology"@en .

cr:ConceptRelation
rdf:type rdfs:Class , owl:Class ;
rdfs:comment "A Class to describe relations between

skos:Concepts"@en ;
rdfs:isDefinedBy cr: ;
rdfs:label "Concept Relation"@en ;
rdfs:subClassOf owl:Thing .

cr:subj
rdf:type owl:ObjectProperty , rdf:Property ;
rdfs:comment "A link from a Semantic relation to the

subject Concept"@en ;
rdfs:domain cr:ConceptRelation ;
rdfs:isDefinedBy cr: ;
rdfs:label "has subject"@en ;
rdfs:range skos:Concept .

cr:obj
rdf:type owl:ObjectProperty , rdf:Property ;
rdfs:comment "A link from a Semantic relation to the

object Concept"@en ;
rdfs:domain cr:ConceptRelation ;
rdfs:isDefinedBy cr: ;
rdfs:label "has object"@en ;
rdfs:range skos:Concept .

cr:relationType
rdf:type owl:ObjectProperty , rdf:Property ;
rdfs:comment "A link from a Concept Relation to the

relation type that relates the concepts"@en ;
rdfs:domain cr:ConceptRelation ;

179

rdfs:isDefinedBy cr: ;
rdfs:label "has relation type"@en ;
rdfs:range skos:semanticRelation .

In the following, we describe our Relation Ontology, see Listing 5.10. The
Relation Ontology aims at modeling relations between things. The key ele-
ment of the ontology is the class cr:ConceptRelation. The Relation Ontology
is an extension of the SKOS vocabulary; it allows to model more detailed
relations between concepts by applying the class-centric modeling pattern.
For example, it allows to qualify relations with a weight factor.

The cr:ConceptRelations class has the properties cr:subj, cr:obj, and cr

:relationType. The cr:subj and cr:obj properties define the two concepts
to be related. Both refer to skos:Concepts. Relations are directed from
the instances referred to by cr:subj to those referred to by cr:obj. The
property cr:relationType defines the type of relation to be modeled, a skos:

semanticRelation or one of its subclasses.

Listing 5.11: Property Reification

ex:RelationReification a prv:PropertyReification ;
prv:shortcut skos:semanticRelation ;
prv:reification_class cr:ConceptRelation ;
prv:shortcut_property cr:relationType ;
prv:subject_property cr:subj ;
prv:object_property cr:obj .

A property reification (see Listing 5.11) maps the cr:relationType property
used in the cr:ConceptRelation instance, a skos:semanticRelation or one of its
subclasses, to its property shortcut form. The property reification must be
published only once for each User Modeling Service. The mapping maps the
relation statements to the corresponding SKOS vocabulary.

User Similarity Statements

180

Listing 5.12: User Similarity Statement

ex:AUserPropertyStatement
a cr:ConceptRelation ;
cr:subj ex:Tom ;
cr:relationType skos:semanticRelation;
cr:obj ex:Eric ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.3 ;
wo:scale ex:AScale
] .

A User Similarity Statement models a relation between two users. FOAF
is intended to model users and their relations on the Web. However, FOAF
has only a very limited possibilities for social relation modeling: the only
property it offers for relation modeling is the foaf:knows property. The se-
mantics of this property differs from that of our user model scheme. The
foaf:knows property aims at modeling an acquaintance of users; our user
model scheme describes user relations that are more implicit: ad hoc relations
that base on user similarities. Additionally, our relations have weightings.
FOAF does not provide an appropriate vocabulary to model these seman-
tics. Therefore, we use our Relation Ontology to model weighted similarity
between users, as shown in Listing 5.12.

Listing 5.13: Property Reification

ex:RelationReification a prv:PropertyReification ;
prv:shortcut skos:semanticRelation ;
prv:reification_class cr:ConceptRelation ;
prv:shortcut_property cr:relationType ;
prv:subject_property cr:subj ;
prv:object_property cr:obj .

Again, a property reification mapping (see Listing 5.13) maps the cr:

relationType property used in the cr:ConceptRelation instance to its property
shortcut form. The property reification must be published only once for each
User Modeling Service.

181

5.3.4 Metadata

Listing 5.14: Metadata example

ex:AUPStmt a prov:DataItem ;
prov:createdBy _:ADataCreation ;
dct:creationTime "2010 -10 -10 T23 :30:00+08:00"^^ xsd:

dateTime ;
dct:provenance ex:AUserModelService .

_:ADataCreation a prov:DataCreation ;
prov:performedAt "2010 -10 -10 T23 :30:00+08:00"^^ xsd:

dateTime ;
prov:performedBy ex:AUserModelService .

ex:AUserModelService a prov:DataProvidingService ;
rdfs:label "An example User Modeling Service" ;
prov:operatedBy ex:AServiceOwner .

Finally, we describe how we model the metadata of the User Property
Statements. We model two metadata properties: creation time and prove-
nance. The metadata can be extended by further information, e.g., licensing
information, when required. We use the Provenance Vocabulary 12 for meta-
data modeling. This vocabulary allows to model more extensive provenance
specifications than Dublin Core. For example, it allows to model further
information on the service that created a User Property Statement, and the
owner of the service. Although the Provenance Vocabulary is more powerful
for provenance modeling, Dublin Core is far more often deployed on the Web
and the de facto standard for metadata modeling on the Web. Therefore, we
publish substantial properties of the metadata with Dublin Core in parallel.
In Dublin Core, we model creation time and provenance with the properties
dct:creationTime and dct:provenance. Listing 5.14 shows metadata of a User

12http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Provenance_Vocabulary
(last access 2011-04-22)

182

Property Statement modeled with the Provenance Vocabulary and Dublin
Core.

5.4 Conclusion

In this chapter, we presented a method for web-scale user model integra-
tion that meets the requirements of the Social Web. Our method enables a
non-revolutionary development of a user modeling architecture atop of the
existing Web. The benefit of our method comprises three features: (1) the
method integrates the existing service architecture of the Web, (2) it provides
a simple, lightweight and intermediary generic user model, and (3) it uses
Semantic Web technologies for user model representation.

(1) Our method provides an architecture that bridges the gap between
Social Web services and the Semantic Web. Technologies intended to be
deployed on a web-scale need to attach great importance on simplicity and on
incremental steps (cf. [47]). Our approach is non-revolutionary. It leverages
the characteristics of the Web architecture for user modeling. Therefore, it re-
uses and extends established standards and technology as much as possible.
Furthermore, it integrates with existing services and content published by
these services. Our method aims at keeping required changes in existing
services low. Hence, the method does not require major changes on existing
services. The result is a user modeling method that is simple, hence feasible
in a real-world scenario, and yet powerful. A key advantage is that it can be
implemented simple and quick on a large scale.

(2) Our method models users on an intermediary generic level to make
the models useful and sharable. User information is abstracted to a non-
application-specific level that makes sharing reasonable but not too generic
to be used efficiently by statistical analysis techniques. The method creates
user models that are shareable across domains, purposes, and techniques.
Our user models are modularized: we introduced User Property Statements
that can be retrieved and processed by other Web services independently
from each other. The result is a lightweight user model that models weighted
interest, knowledge, and social relations.

183

(3) Our method uses Semantic Web technologies for user model integra-
tion. Semantic Web technologies enable a distributed, extensible, and scal-
able architecture for a Web of data. We illustrated the problems of n-ary and
qualified relation modeling in RDF and contributed a representation method
that overcomes these problems of RDF-based user modeling. We envision
our user models as building blocks of a Web of data. A technical infrastruc-
ture and non-proprietary tools for Linked Data publishing already exists. In
addition, shared vocabularies, published data, and real-world services exist,
which can be connected to create synergy effects. Our user models inte-
grate well into this Linked Data ecosystem. They base on independent User
Property Statements: User Interest Statements, User Knowledge Statements,
and User Similarity Statements. We used two specialized vocabularies for
user modeling: CCO, and our Relation Ontology, an ontology that extends
the SKOS vocabulary to model more detailed relations. Our representation
method semantically maps the CCO and the Relation Ontology to the more
widely-deployed vocabularies FOAF and SKOS to obtain semantic integra-
tion with more existing services. We achieved the semantic integration by
property reification. Furthermore, we model metadata of the User Property
Statements with the Provenance Vocabulary and the more widely-adopted
Dublin Core vocabulary in parallel to enable extensible semantics and retain
maximum semantic compatibility.

184

Chapter 6

Contribution 4: Earlybird – an
exploratory tag search engine

In the following chapter, we describe Earlybird, a reference implementation
of an exploratory tag search engine. Earlybird is a web-based tag search
engine that facilitates explorative search on data from social bookmarking
services. Earlybird implements the strategies for user model extraction and
integration that we described in the previous chapters. It is a proof-of-
concept of our findings. The purpose of Earlybird is to enable exploratory
search on folksonomies. We demonstrate that the methods that we developed
are viable to be adopted by services on the Social Web. Therefore, we provide
a software that implements our methods. We show that our algorithms and
strategies work in a real-world application, and that they can be implemented
successfully in a Web-based service. Particularly, we show the following
aspects of our findings on exploratory search:

Earlybird demonstrates the potentials of algorithmic user model extrac-
tion from social bookmarking systems. (1) We show that social bookmarking
services are a valuable data source for exploratory search engines because
they allow for algorithmic user model extraction. Social bookmarking data
can be exploited for exploratory search; we can explicate knowledge inherent
in folksonomies by collaborative filtering-based data analysis. The extracted
knowledge can be applied to populate user models. (2) We show how to ex-

185

186

tract user models on a large scale with low effort. A key potential of our user
model extraction strategy is extraction of user models for a large number of
users from a relatively small input data set with low computational effort.
Our user model extraction relies solely on the structure of folksonomies; it
does not require content analysis. (3) We show that user models are not
only valuable for adaptive Web systems. Our extracted user models contain
three categories of content: user interest, user knowledge and user similari-
ties. We demonstrate that our user models can also improve unpersonalized
exploratory search. In our software, we use the output of our user model
extraction algorithms as common social knowledge which provides cues for
social navigation even in unpersonalized contexts.

Earlybird is an enabler for personalized services on the Web. We ag-
gregate, create, and share user models with other services on the Web in
Semantic Web standards. We show how to lock open user models, which re-
side in proprietary formats in most applications today. We make user models
interchangeable and linkable across services. A further important aspects of
Semantic Web standards is that we make user modeling more transparent and
controllable for the user, because we use open standards and non-proprietary
data formats. We further show how user model integration is feasible with
the existing technological infrastructure of the current Web. Earlybird imple-
ments our user model integration architecture for web-scale user modeling.
We show that our method can be integrated with technologies that are well-
established for web application development today.

A further potential of Earlybird is to identify the strengths and limita-
tions of our studies in a real-world context. Earlybird can act as a technical
framework to enable further research on the presented methods. The findings
of this thesis suggest further research in different directions. Earlybird is a
platform that enables various further experiments; we want to name only two
examples here. First, we discussed the potentials of specialized collaborative
filtering algorithms that better leverage the nature of folksonomies for ex-
ploratory search, e.g., by considering the tagged resources for tag similarity
computation. Further studies in this direction could implement and evalu-
ate alternative algorithms. We implemented the Mahout machine learning

187

Figure 6.1: Screenshot of the Earlybird search result site

framework in our software that provides a technical infrastructure to ex-
periment with different algorithms. Second, we discussed the limitations of
our user model evaluation strategy for measuring user perceived quality. A
real-world application like Earlybird allows for complementary evaluation
strategies that fill the gaps of our studies. For example, usage data analysis
and A/B tests allow to measure the user-perceived quality of the search en-
gine. We equipped Earlybird with usage logging to prepare the ground for
further research in this direction.

The remainder of this chapter is organized as follows. In Section 6.1,
we describe the functionality of Earlybird. In Section 6.2, we describe its
4-tier software architecture and document which technologies we used. In
Section 6.3 through 6.6, we describe the key challenges of the implementa-
tion and document how we solved them in the individual software tiers of
Earlybird.

188

6.1 Functionality

Earlybird 1 is a Web-based social tag search engine, see Figure 6.1. It allows
to search for webpages by tags. Earlybird retrieves webpages that have been
tagged with the query tags in the popular social bookmarking services Deli-
cious and Connotea during the last 30 days. The search results are ranked
by date, most recently tagged webpages are the top results. Additionally,
Earlybird recommends tags that are related to the current query tags. The
search engine recommends the 5 most similar tags for each query tag and
visualizes the recommendations in an interactive tag network. Users can
browse the tag network to discover new tags and webpages. To browse the
tag network, users can click on recommended tags to add them to the search
query. Furthermore, users can add arbitrary tags to the query over an input
field. A click on a tag that is in the current query removes it from the query.
The search results adopt accordingly.

Users can register to Earlybird to receive personalized recommendations.
At registration, users can optionally enter their Delicious or Connotea ac-
count to import their existing bookmarks from the bookmarking services. For
registered users, Earlybird creates persistent user models. The bookmark-
ing accounts of registered users are connected with their Earlybird account,
so that also future bookmarks are added to the user model in real-time.
Additionally, search queries in Earlybird are logged an added to the user
models. Thus, Earlybird personalizes recommendations according to users‘
bookmarks and logged search queries.

Input data Earlybird aggregates and makes searchable the data from two
social bookmarking services, Delicious and Connotea. It allows to retrieve
webpages and recommend tags which have been posted in these services.
To process and analyze the data, we cache them in a local database. Both
bookmarking services provide their bookmarks over Web APIs as RSS feeds
which contain the latest bookmarks. We poll these feeds regularly and cache
the new bookmarks to our local database. To keep the data set of manageable

1available at http://earlybird.uni-koeln.de

189

size for our experiment setup, and to comply the terms and conditions of the
bookmarking services, we store the bookmarks only for 30 days. We delete
cached bookmarks from our database when they exceed the age of 30 days.

Query Results Earlybird retrieves webpages that have been bookmarked
by users of Delicious or Connotea and tagged with all of the query tags during
the last 30 days. When more than 100 results are retrieved, only the latest
100 results are displayed. The user interface displays the results as a list of
URLs along with the webpage title and the date when the webpage was last
bookmarked. The search results are ranked by date, latest tagged webpages
first.

Recommendations Along with the query results, Earlybird recommends
the top-5 similar tags for each of the current query tags. The recommenda-
tions allow to navigate in a tag network – the recommender adds a context of
related tags to the current query. The recommender is a collaborative filtering
tag recommender which suggests similar tags for a given tag. The recom-
mendations are generated from the input data, the cached bookmarks, in
three steps. First, we compute a preference matrix from the folksonomy and
search logs. Second, we compute a tag similarity matrix from the preference
matrix. These two steps are done offline; both matrixes are pre-computed
independently from search requests and are updated every 24 hours. Only
the third step is performed online, i.e., during the search process. Here, we
re-score similarities between tags and deliver the recommendations. When
a user searches for a tag, the recommender retrieves similar tags from the
pre-computed tag similarity matrix, re-scores according to certain criteria,
and delivers the top-5 similar tags. At present, Earlybird implements two
re-scoring policies. First, we down-score unpopular tags, so that we bias rec-
ommendations towards popular tags. Popular tags are those tags that have
been tagged more often in the bookmarking services in the last 30 days. The
popularity re-scoring is performed for all users and all tags. Second, we up-
score tags which are in a user‘s user model, so that we bias recommendations
towards tags which a user has already used to tag a webpage or to search for

190

a webpage. The re-scoring is only performed for registered users, for which
a persistent user model is available.

Tag network Recommendations are visualized in an interactive tag net-
work. Users can extend or replace the search query by navigating through
the tag network visualization. The search results adapt accordingly. To add
a recommendation to a query, users can click on the recommendation in the
visualization. A click on tags which are already in the current query removes
the tag from the query. The size of the tags in the visualization indicates the
their popularity: popular tags are larger than unpopular. The layout of the
network visualization is computed by a physical layout algorithm, i.e., physi-
cal forces are attached to the tags to arrange the tags in the two-dimensional
space.

Personalization Users can register to Earlybird to receive personalized
recommendations. On a registration webpage, users can create an account.
Optionally, they can enter their bookmarking accounts from Delicious and
Connotea to connect them to their Earlybird account. For registered users
with connected bookmarking accounts, all existing and future bookmarks of
the accounts are imported to a persistent user model. Additionally, all search
queries and recommendations are recorded and stored to the user model. For
registered users that did not connect a bookmarking account, we store only
search queries and recommendations. Our recommender algorithm re-scores
tag similarities for registered users according to their user model.

Logging Earlybird logs search queries of unregistered and registered users
to prepare the ground for usage data evaluation. We log three types of
information. First, we record all individual search query tags – the tags that
a user queries. Second, we log the recommendations for each query – the
similar tags that the recommender suggests for the query. Third, we log the
recommendations that the user clicks – the recommendations that the user
finds helpful. For registered users, we link these logs to the user account ID.
This allows for analyzing individual usage behavior in the long-term.

191

Storage

SQL
DB

Data Maintenance

data

schedule

Application Presentation

RDF
Store

SPARQL
interface

RDF mapping

actions

recommender

data

JDBC JDBC HTTP/
JSON

HTTP /
RSS

HTTP/
SPARQL

Delicious

Connotea

User Property
Statements

Figure 6.2: Software architecture

User model integration For registered users, Earlybird is a user model
publishing service. It allows to publish user models on the Web as RDF.
Other services on the Web can use the information in the user models, e.g.,
for personalization. We publish user models as User Property Statements,
which we introduced in Chapter 5, over a SPARQL web interface. Remote
web services can query our SPARQL endpoint to retrieve the User Property
Statements of registered users.

6.2 Software architecture

Earlybird is a web application that consists of loosely coupled components
which form a distributed server-client architecture. Figure 6.2 shows the
overall architecture of our software. We distinguish four software tiers: Data
Maintenance, Presentation, Application, and Storage.

The server-side Data Maintenance and Application tiers of our search en-
gine are implemented in Java and run in a Tomcat 2 servlet container. We
use the Struts2 3 framework to implement the model-view-controller archi-
tecture. For the recommender logic, we implemented the Apache Mahout
4 machine learning and data mining framework. Additionally, we use some

2http://tomcat.apache.org/ (last access 2011-04-22)
3http://struts.apache.org/ (last access 2011-04-22)
4http://mahout.apache.org/ (last access 2011-04-22)

192

smaller APIs, e.g., the ROME API 5 to deserialize RSS streams and the
Quartz Scheduler API 6 to schedule tasks.

For the Presentation tier, the browser-based user interface of our software,
we use JSP, Javascript, and Flash. The Presentation tier communicates with
the Application tier over HTTP. Inside JSP webpages, we use Javascript
for asynchronous client-server communication. For the interactive tag net-
work which visualizes the recommendations, we use Flash. A Flash movie
is embedded in JSP and communicates with Javascript over a Flash library
– the External Interface API 7. The Flash movie implements a further API,
Box2DFlashAS3 8, to simulate physical forces. We use this physics library to
create the dynamic layout and interactive look-and-feel of the tag network.

For the Storage tier, we use the open source edition of the OpenLink
Virtuoso 9 database server. The Data Maintenance and Application tiers
communicate with the Storage tier over JDBC. Here, we store all data which
we collect from the bookmarking services. Furthermore, we use Virtuoso to
publish the user models over a SPARQL endpoint and to store usage logs.

In the following sections, we describe the tasks and challenges of the
individual tiers and document important details of their implementation.

6.3 Data Maintenance

Earlybird bases on data from social bookmarking services, i.e., it makes their
bookmarks searchable. Therefore, we cache and analyze bookmarks from
running social bookmarking services. The current implementation connects
to two services: Connotea and Delicious. The software can be easily extended
to further services. The task of the Data Maintenance tier (see Figure 6.3)
is to cache all bookmarks that are generated in these services.

The bookmarking services are live systems, where new data are being cre-

5http://java.net/projects/rome/ (last access 2011-04-22)
6http://www.quartz-scheduler.org/ (last access 2011-04-22)
7http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/flash/external/ExternalInterface.html

(last access 2011-04-22)
8http://www.box2dflash.org/ (last access 2011-04-22)
9http://virtuoso.openlinksw.com/ (last access 2011-04-22)

193

Storage

SQL
DB

Data Maintenance

data

schedule

Application Presentation

RDF
Store

SPARQL
interface

RDF mapping

actions

recommender

data

JDBC JDBC HTTP/
JSON

HTTP /
RSS

HTTP/
SPARQL

Delicious

Connotea

User Property
Statements

Figure 6.3: Data Maintenance tier

ated by users constantly. Depending on the service, the traffic can be high:
Delicious generates about 60 bookmarks per minute on the average; Con-
notea generates about 5 bookmarks per minute. We retrieve the bookmarks
generated by both applications. Our exploratory search should be able to
explore the live data of both systems. It is important for our application,
that we retrieve the data constantly, as soon as they are available. There-
fore, we cannot simply import a dump of the bookmarks, but we need a live
connection to the bookmarking services which we want to integrate into our
search engine. Our live data caching process caches all bookmarks generated
by the connected services to a local data store in near real-time. To comply
the terms and conditions of the bookmarking services and to keep the data
size manageable, we cache the data only for a limited time: until they exceed
the age of 30 days. The live caching offers three challenges. First, we need to
retrieve the data fast – as soon as they are available – over HTTP. Second,
we need to insert the data to our data store efficiently – we must be able to
retrieve, process and insert more than 65 posts per minute. Third, we need
to identify and delete bookmarks older than 30 days efficiently. Delicious and
Connotea provide Web APIs that allow to poll recently created bookmarks
over HTTP. The bookmarks are delivered as RSS feeds. We use these RSS
feeds to poll the bookmark data and cache them in our local database. To
insert and delete bookmarks, we call stored procedures in the Storage tier
over a JDBC connection. The Data Maintenance tier contains two packages

194

that implement the data caching: schedule and data.

Schedule The schedule package schedules Quartz jobs which regularly poll
RSS feeds with the 100 most recent bookmarks from the Delicious and Con-
notea Web APIs. The API requests require different parameters, and the
RSS feed responses have different structure for each service. Therefore, the
schedule package contains a client for each connected service. Each client
sends a HTTP request to the service‘s API to retrieve the feed data as an
RSS input stream. We deserialize the response stream and store the book-
marks to our local database by calling an insert procedure in the Storage
tier through an SQL query over JDBC. We check whether a bookmark be-
longs to registered users that connected their bookmarking accounts. We
store bookmarks that belong to a registered user under their local account
ID. Other bookmarks are stored under the original bookmarking account
ID. To keep account IDs unique across several services, we attach a service
prefix „con_“ or „del_“, so that user are stored as „con_USERNAME“ and
„del_USERNAME“. A challenge of the scheduler is to poll bookmarks in in-
tervals so that no bookmarks are omitted at traffic peaks. We set the polling
interval of the scheduler to a fixed interval of 30 seconds for Delicious and
10 minutes for Connotea; Connotea requires less polls, because the service
creates less bookmarks. A problem of our polling strategy is that we retrieve
some bookmarks more than once. Therefore, we keep the date of the last
imported bookmark in the client at each poll. In the subsequent poll, we
only import those bookmarks that have been posted after this date.

A further task of the schedule package is to delete bookmarks which are
older than 30 days from the local database. We call a delete procedure in
the Storage tier through a SQL query every hour.

Data The data package connects the Data Maintenance component with
the Storage tier. The package connects the Storage tier as a JDBC data-
source. Furthermore, we define all SQL queries required for data mainte-
nance in the data package. We moved some of the query logic to the Storage
tier. For example, insert and delete requests are performed as procedure

195

Storage

SQL
DB

Data Maintenance

data

schedule

Application Presentation

RDF
Store

SPARQL
interface

RDF mapping

actions

recommender

data

JDBC JDBC HTTP/
JSON

HTTP /
RSS

HTTP/
SPARQL

Delicious

Connotea

User Property
Statements

Figure 6.4: Presentation tier

calls to enclose database schema-related logic from the application logic, and
to speed up the processes. Procedures are scripts at the Storage tier that
are called through SQL queries over the JDBC connection. We describe the
functionality of the used procedures in Section 6.6.

6.4 Presentation

The Presentation tier is the client-side component of our software, see Fig-
ure 6.4. It implements a user interface for explorative search. The Presen-
tation tier is browser-based; it delivers webpages where users can search by
tag, explore related tags through recommendations, and register and login
to Earlybird.

The task of the Presentation tier is to provide an easy-to-use user inter-
face for searching by tag and for exploring the results and recommendations
for the search query. A key feature of Earlybird are recommendations that
suggest similar tags for the query tags. For each query tag, Earlybird sug-
gests 5 similar tags. To support explorative search, our application requires
navigation and filtering functionalities for the tags and recommendations.
We suggest two important interaction functionalities to support exploration.
First, users must be able to replace a search query by a recommendation.
This allows to browse the recommendations – to navigate through the tags.
Second, users must be able to add recommendations to the query to expand

196

Figure 6.5: Tag cloud with scaled tags and hierarchy

the original query by a recommendation. This allows to narrow down the
result set – to filter the results.

In the Presentation tier, we implemented a user interface that meets the
discussed requirements for explorative search. In-depth research on the user
interface is beyond the scope of this thesis; however, we are aware that user
interfaces play an important role for explorative search engines, e.g., they
have a great influence on the perceived quality of a system. With our user
interface implementation, we want to prepare the ground for further research
at this open end of our research. Our user interface is extensible and easily
adaptable to support further experiments.

We implemented the desired exploratory search facilities in an interactive
tag network visualization, which is a central part of the Presentation tier. In
this interactive visualization, we visualize query tags and their recommenda-
tions, see Figure 6.5.

Tags in the network are visualized as circles that surround the actual
tag strings. Edges connect the tags and their recommendations to indicate
to which tag a recommendation belongs. Tag circles have different sizes.
The size of the circles reflect the tag popularity. Larger circles represent
more popular tags. The circle sizes are scaled relative to all other circles in
the currently displayed network. Recommendations can be associatively or
hierarchically related to the search tags. Associative relations mean that two
tags are semantically similar. We visualize recommendations with associative
relations to the query tag as circles with a single line. Hierarchically related
tags are semantically narrower or broader. Hierarchy can provide valuable

197

navigation cues to the user. We visualize recommendations that are narrower
than the query tag as circles with a double line and recommendations that
are broader than the query tag as circles with a single thin line. To further
support navigation in the tag network, we provide buttons to navigate back
and forward in the search history.

An important design decision for the tag network visualization was the
network layout – how are the tags arranged. We implemented a physical lay-
out for the tag network visualization. A physical layout algorithm allows to
easily implement a flexible and dynamic tag network visualization. Physical
graph layouts are better suited for dynamic visualizations than layered graph
layouts, because they allow to insert and remove nodes from the network
without re-calculating the layout. This is particularly important for inter-
active visualizations. Our layout algorithm implements the Box2DFlashAS3
physics library. The physics engine simulates physical objects with mass con-
nected by rigid levers in a world with gravitation. A gravitation force in the
center of our visualization attracts the objects in the simulated world: all
objects – the tag circles – gravitate around the center of the Flash movie.
Objects repulse each other and rigid levers – the edges between tags in the
tag network – connect tags with their recommendations.

Our tag network visualization achieves a good look-and-feel and is easy
to implement and adapt. With the interactive tag network visualization,
users can navigate through recommendations and filter the result set by
adapting the search query. Recommendations and search results adapt when
the search query is modified. It supports exploration of the tag space, hence
meets the discussed requirements for exploratory search interfaces. We also
choose this layout because it allows for further research experiments with
the user interface. Changes, e.g., different numbers of recommendations or
different scaling parameters for tags, can be realized easily with the current
implementation.

The key technologies used in the Presentation tier are JSP, Struts2, Flash,
and Javascript. The tag network visualization is implemented in a Flash
movie, which is embedded into the JSP webpage and communicates with the
Application tier through HTTP requests. To update search results, the Flash

198

Storage

SQL
DB

Data Maintenance

data

schedule

Application Presentation

RDF
Store

SPARQL
interface

RDF mapping

actions

recommender

data

JDBC JDBC HTTP/
JSON

HTTP /
RSS

HTTP/
SPARQL

Delicious

Connotea

User Property
Statements

Figure 6.6: Application tier

movie sends HTTP requests to the Application tier. The movie also calls
Javascript functions embedded in the JSP webpages for client-side updates.
The communication between Flash and Javascript is implemented with the
External Interface API, which allows to call external methods from within a
Flash movie and to call flash methods from external scripts.

6.5 Application

The Application tier implements the server-side application logic of the ex-
ploratory search engine, see Figure 6.6. The main function of the Application
tier is to retrieve search results and recommendations for queries. Addition-
ally, it implements utility tasks of Earlybird: login, registration, and usage
logging. Java servlets connect the Application tier with the Presentation tier.
Communication with the Storage Tier is realized with a JDBC connection.

A key challenge of the Application tier is to provide recommendations
fast – speed of the recommender is a crucial factor for our search engine.
Our application requires to make recommendations in real-time. Therefore,
we must pre-compute at least parts of the recommendation process to boost
the performance and yet keep up-to-date with the constantly changing input
data. We implemented a recommender which retrieves preferences from the
Storage tier in regular intervals and stores them to the filesystem on our

199

server for faster access. From the preference file, we pre-compute a similarity
matrix which resides in the memory. The memory-based similarity matrix is
then used to compute the recommendations online, i.e., at request from the
Presentation tier. A further task of the Application tier is to connect the
user models in the Storage tier with the recommender. We implemented a
re-scorer which biases recommendations according to the user model. The
recommender application logic retrieves the user models from the Storage
tier and injects them into the recommendation process. Additionally, we
pass the results of the recommender to the Storage tier for user modeling.
The Application tier contains three packages: actions, recommender, and
data.

Actions The actions package implements the interfaces for the commu-
nication with the Presentation tier. It contains a number of servlets that
handle HTTP requests from the client-side. The servlets handle three cate-
gories of requests: (1) Login/logout and registration requests, (2) search and
recommendation requests, and (3) usage logging requests.

The Register servlet handles the requests from the registration form of
the Presentation tier. It validates the input, sends a confirmation code for
the double opt-in registration process to the user‘s email address and triggers
the creation of a new user account in the database. A further servlet, Confirm,
handles the input of the confirmation code; the account must be activated
with the confirmation code to validate the user‘s email address. When the
user enters a bookmarking account at registration, the Register servlet trig-
gers an import of the user‘s existing bookmarks after the registration. The
logic for the bookmark import resides in the data package. Login and Logout

servlets handle the requests from the login form and the logout link on the
webpage. The Login servlet validates the login credentials and adds a user
ID to the user‘s session. Logout deletes the session. Additionally, we imple-
mented an Autologin servlet, which allows to persist the user ID in a cookie,
if the user checks this option at login. Autologin checks if a cookie with valid
credentials is available when the start page is requested by the client.

A Search servlet handles search requests from the Presentation tier. The

200

servlet deserializes the search query, which is a parameter in the HTTP
request. It triggers a database query to retrieve the query results. The
results contain the URLs, titles and dates of the result webpages. The servlet
serializes the results to JSON 10 and sends them to the client in a HTTP
response. Listing 6.1 shows a serialized response for a search request.

Listing 6.1: Response of Search servlet

{" identifier ":"id","items ":[{
"id":0,
"timestamp ":"31. Januar 2011 17:52" ,
"title ":" Java",
"uri":" http :\/\/ java.sun.com"

},
...
]}

Listing 6.2: Recommendation type extraction method

1 private int calcRecType(int queryScore , int recommScore ,
float similarity) {

2 float threshold = 0.15f;
3 if (similarity < threshold) {
4 return 0; // associative relation
5 }
6 else if (recommScore < queryScore) {
7 return 1; // recommendation is narrower
8 }
9 return 2; // recommendation is broader

10 }

A Recommendation servlet handles the recommendations for a search query.
The servlet deserializes the search query and triggers a recommendation re-
quest to the recommender package. The servlet also initiates the recom-
mendation re-scoring. It biases the recommendations towards known tags
for logged in users. Therefore, the servlet triggers a query which retrieves
all known tags of the user from the database and creates a class instance
Rescorer for these tags. The logic of the Rescorer is defined in the recom-

10http://www.json.org/ (last access 2011-04-22)

201

mender package. The Rescorer is passed through to the Recommender which
returns recommendations that comply to the re-scoring policy. The results
of the Recommender are processed in a second step to compute the recom-
mendation type: a relation between a tag and its recommendation can be
associative or hierarchical; if a hierarchical relation exists, the recommenda-
tion can be narrower or broader than the query tag. Our hierarchy extraction
algorithm allows for fast and easy hierarchy computation from recommen-
dations. For the hierarchy extraction, we first set a threshold value for the
algorithm; informal experiments indicated that 0.15 is appropriate. We pass
three values to the method: the popularity score of the query tag, the pop-
ularity score of the recommendation, and their similarity value returned by
the recommender. If the similarity value is below the given threshold, the
method returns an associative relation. If the similarity is above the thresh-
old, the method checks whether the recommendation is narrower or broader
than the query tag. The recommendation is considered narrower if the score
of the recommendation is smaller than the score of the query. Otherwise, the
recommendation is considered broader than the query. Listing 6.2 shows the
code for the recommendation type computation.

Listing 6.3: Response of Recommendation servlet

{" identifier ":"id","items ":[{
"id":0," searchTag ":" java",
"recType ":2,
"recTag ":" programming",
"searchTagScore ":16750 ,
"recTagScore ":58861}

},{
"id":1," searchTag ":" java",
"recType ":0,
"recTag ":" opensource",
"searchTagScore ":16750 ,
"recTagScore ":25598

},
...
]}

The recommendations with the hierarchy information are then serialized

202

to JSON and delivered to the client in an HTTP response. The response
contains (1) the query tags and their popularity score and an identifier for
better data handling on the client-side, (2) the top-5 similar recommenda-
tions for each query tag and their popularity score, and (3) a numerical value
for the recommendation type – „0“ for associative, „1“ for narrower or „2“ for
broader – for each recommendation. Listing 6.3 shows a serialized response
for a recommendation request.

The servlet logs all recommendations to the usage logs. Therefore, it
calls a log query which stores the recommendations for the current user to
the database.

Recommender The recommender package contains a collaborative filtering-
based recommender that implements our tag similarity extraction method.
The recommender package implements interfaces from the Apache Mahout
framework: IDMigrator, ItemSimilarity, ItemBasedRecommender, and Rescorer.

The IDMigrator allows to map between String and Long values. The Ma-
hout ItemRecommender internally requires tags and users as 64-bit numeric
values – Long IDs – instead of strings. Our software stores user and tags as
strings. Hence, we must convert all strings to Longs for the recommender.
The mapping from String to Long is deterministically computable; however,
the reverse conversion is not. Therefore, we need to store a mapping between
strings and their Long IDs. We implemented a memory-based IDMigrator

which stores these mappings.

Listing 6.4: Recommender initialization process

1 private void refreshRecommender(File preferenceFile){
2 // ...
3 // CREATE MAHOUT DATAMODEL ON PREFERENCE MATRIX
4 DataModel dm = new FileDataModel(preferenceFile);
5 // CREATE CUSTOM ITEM SIMILARITY MATRIX
6 CachingItemSimilarity itemSim = new CachingItemSimilarity

(new BiasingTanimotoCoefficientSimilarity(dm), dm);
7 // CREATE ITEM RECOMMENDER WITH SIMILARITY MATRIX
8 RecommenderComponent.setItemRecommender(new

GenericItemBasedRecommender(dm , itemSim));

203

9 // ...
10 }

A scheduled Quartz job initializes the tag recommender every 24 hours.
The initialization refreshes the recommender to include newly added input
data. The procedure implies three steps. First, we initialize a new preference
matrix. Therefore, we trigger a database query to retrieve a list of user-tag
relations, which excludes tags with a popularity score < 2. We exclude these
tags to reduce noise and size of our input data set. We convert all strings in
the user-tag matrix to Long IDs with the IDMigrator and store the numerical
preference matrix to the local file system on the server. The file-based prefer-
ence matrix allows for faster access than a JDBC-based solution. Second, we
initialize a tag similarity matrix from the preference matrix. We compute the
similarity for all tags with the a custom implementation of ItemSimilarity.
Our algorithm computes the Tanimoto coefficient but biases towards popular
tags by ignoring tags below a certain popularity score. This similarity algo-
rithm corresponds to the algorithm T(p) presented in Chapter 4. We store
the similarity matrix in memory to achieve adequate performance of the rec-
ommender. Third, we instantiate an ItemBasedRecommender on the similarity
matrix, which allows to recommend similar tags to a query tag. Listing 6.4
shows the instantiation of a new ItemBasedRecommender from a preference file
during the initialization process.

Listing 6.5: NoveltyRescorer implementation

1 public class NoveltyRescorer <LongPair > implements Rescorer <
LongPair >{

2 Set <LongPair > knownSimilarities;
3 // ...
4 public NoveltyRescorer(Set <LongPair > knownSimilarities){
5 this.knownSimilarities = knownSimilarities;
6 }
7

8 @Override
9 public double rescore(LongPair pair , double originalScore

){
10 if (knownSimilarities.contains(pair)){

204

11 return originalScore;
12 }
13 return originalScore /2;
14 }

Listing 6.6: Retrieve top-5 similar tags from recommender

1 Set <LongPair > knownSimilarities = new HashSet <LongPair >();
2 //...
3 Rescorer <LongPair > rescorer = new NoveltyRescorer <LongPair >(

knownSimilarities);
4 List <RecommendedItem > recommendedItems = RecommenderComponent

.getItemRecommender ().mostSimilarItems(
RecommenderComponent.getIdMigrator ().toLongID(queryTag),
5, rescorer);

The recommender package also implements a custom implementation of
Rescorer: the NoveltyRescorer, see Listing 6.5. This NoveltyRescorer biases
recommendations for registered users towards unknown tags. It up-scores
similarity values for tags which are already in the user profile of a certain user
by the factor 2. We up-score known tags to recommend tags that are already
familiar to the user to support domain learning on known topics. In the
Recommendation servlet, where the recommender is called, the NoveltyRescorer

is passed through to the mostSimilarItems() method of the recommender,
which returns the top similar items. Listing 6.6 shows how the top-5 similar
tags for a query tag are retrieved from the recommender in the Recommendation

servlet with a re-scoring policy.

Data The data package connects the Application tier with the Storage tier
over a JDBC connection and defines all SQL queries that are used in the
Application tier. Additionally, the data package implements two importer
classes for bookmark accounts: a DeliciousImporter and a ConnoteaImporter.
The importers import all bookmarks of a user from Delicious and Connotea
at registration, if the user enters their bookmarking account. Both importers
retrieve an RSS feed with the user‘s bookmarks. They deserialize the book-
marks and trigger a database query to add the bookmarks to the user model.

205

Storage

SQL
DB

Data Maintenance

data

schedule

Application Presentation

RDF
Store

SPARQL
interface

RDF mapping

actions

recommender

data

JDBC JDBC HTTP/
JSON

HTTP /
RSS

HTTP/
SPARQL

Delicious

Connotea

User Property
Statements

Figure 6.7: Storage tier

6.6 Storage

The Storage tier, see Figure 6.7 is an OpenLink Virtuoso database server. It
implements our method for user model publishing described in Chapter 5.
We distinguish two tasks of the Storage tier: data storage and data publishing.

(1) The data storage task involves storage of all data required by the
Application tier. It stores the retrieved bookmarks, generated user models,
and usage logs in a local object-relational database. Additionally, the Storage
tier defines the SQL database schema and encloses data insert, update, and
remove procedures from the other tiers. The bookmark caching process,
which is performed by the Data Maintenance tier, requires fast insert and
remove operations on the data. For the Application tier, we need to model
the data so that they can be queried efficiently. The key challenge of the
data storage is to define a database schema which meets the requirements
of both tiers. We use stored procedures and triggers in the Storage tier to
maintain the data efficiently.

(2) The data publishing task involves two steps: user modeling and user
model supply. First, we model RDF-based user models, User Property State-
ments, from the user models stored in our internal data schema. In the
Storage tier, we create User Property Statements from the user model data
generated by the Application tier. The desired output of the user modeling
process are User Property Statements that conform to our RDF user model

206

schema, cf. Chapter 5. Second, we supply the user models on the Web, so
that other services can query and access the user models. The key challenge
of the data publishing is to transform the user models from the database
schema into our RDF user model schema efficiently. The user models in the
database update constantly, namely when users search or bookmark. The
modeling process must update the User Property Statements dynamically
according to the user models created dynamically by the Application tier.
Additionally, we must pass the created User Property Statements to an in-
terface that makes them accessible over the Web. Ideally, the Storage tier
should provide a strategy that performs the user model publishing in real-
time.

We opted for the Virtuoso database server to implement the Storage tier
because it provides three of features that support the described tasks.

(1) Virtuoso provides an object-relational SQL database with a JDBC
driver and other data-access interfaces. It is a fully-fledged database server
that allows to use established frameworks and tools for web application de-
velopment. Additionally, Virtuoso provides a script language, Virtuoso/PL
11, for writing stored procedures and SQL triggers in Virtuoso. Stored pro-
cedures enclose complex data operations to the database server. In a web
application, they reduce traffic between the database server and other com-
ponents of a distributed architecture. Hence, stored procedures can improve
the performance of complex data manipulation operations compared to ap-
plication side solutions. In Earlybird, we use Virtuoso/PL for fast insert,
update and remove operations to speed up the data storage task.

(2) Virtuoso provides an RDF store and supports the SPARQL query lan-
guage. RDF data can be stored in a native quad store. For example, we can
import our created OWL schemas to the Virtuoso quad store as RDF data.
Virtuoso supports SPARQL queries on these data. To simplify the integra-
tion into non-RDF applications, Virtuoso allows to send SPARQL queries
inside SQL queries. Thus, we can query the Virtuoso quad store through
standard JDBC/SQL connections. We can use SPARQL and SPARQL ex-
tensions where we can use SQL. Besides the quad store which allows to

11http://docs.openlinksw.com/virtuoso/sqlprocedures.html (last access 2011-04-22)

207

store and retrieve native RDF data, Virtuoso also provides RDFization fa-
cilities for automated RDF creation from relational data sources. It allows
to map relational data into RDF with so-called RDF Views. RDF Views are
a dynamically created RDF representation of relational data sources. The
mapping is dynamic , i.e., changes to the underlying data are reflected im-
mediately in the RDF representation. Virtuoso provides a declarative Meta
Mapping Language 12 for generating RDF views from SQL. The Meta Map-
ping Language is itself implemented as an extension of SPARQL, hence can
be used inside SQL queries. To access RDF data, Virtuoso comes with a
SPARQL web interface. Clients can pass SPARQL queries as HTTP param-
eters to this interface for querying RDF data.

(3) A key feature of Virtuoso for our application is, that the database
server contains two data stores from two technological camps, an object-
relational SQL database and an RDF quad store. The potential of their
combination in one database server is to bridge the technological gap be-
tween both technologies. With Virtuoso, we can tightly integrate existing
technical infrastructure with Semantic Web technologies. To create RDF
views, no changes are required to the underlying relational database schema.
In Earlybird, we can use efficient standard technologies established for web
application development, JDBC/SQL and related frameworks, and add a
semantic layer with relatively low effort. Thus, we show how to integrate
semantic technologies into the established technology stack of Web services.

In the Storage tier, we use the relational database facilities of Virtuoso
for data storage tasks – bookmark management, user account management,
and usage logging. The bookmark management performs the local caching
of recent bookmarks retrieved from the bookmarking services for 30 days.
Account management includes registration and login of registered users. Us-
age logging records search queries and recommendations for registered users.
For the user model publishing task, we use the RDF facilities. We map the
relational user model schema to our RDF User Property Statements and
make the user models accessible through a SPARQL web interface. In the
following sections, we document how we implemented data storage and data

12http://docs.openlinksw.com/virtuoso/rdfrdfviewgnr.html (last access 2011-04-22)

208

Table 6.1: SQL table EARLYBIRD_ENTRIES

EARLYBIRD_ENTRIES
id (primary key)
post_uid
tag
url
user_uid
provider
post_datetime

Table 6.2: SQL table EARLYBIRD_SCORES

EARLYBIRD_SCORES
tag (foreign key)
score
tag
cur_timestamp

publishing in the Storage tier.

6.6.1 Bookmark management

The data schema contains four SQL tables relevant for bookmark man-
agement: EARLYBIRD_ENTRIES, EARLYBIRD_SCORES, and EARLYBIRD_URLS, see Ta-
bles 6.1, 6.2, and 6.3. The data schema allows for efficient queries for search
and recommendations from the Application tier. In the following section, we
describe how we implemented the bookmark insert and delete process and
the user account management.

Table 6.3: SQL table EARLYBIRD_URLS

EARLYBIRD_URLS
url (foreign key)
title
last_posted

209

Insert bookmarks

We insert bookmarks that are polled continuously by the Data Maintenance
tier or imported nonrecurring for each registered user by the Application tier
into the table EARLYBIRD_ENTRIES. One bookmark (or post, in our database
terminology) consist of one or more rows, one row for each tag. A post is
identified by a random post ID. Each row contains the random post ID, a
tag, the URL of the bookmarked webpage, the account ID of the creator,
and the service where the post was imported from. We assign „delicious“,
„connotea“, or „local“ to distinguish the services; „local“ labels posts of regis-
tered users. Note, that posts may lack the URL in one special case: due to
API restrictions of Connotea, we cannot import the existing bookmarks of
users. Instead, we can only import a list of tags that have been used the user.
For the Application tier, this is not a problem because we neglect URLs for
the user modeling. However, we must consider the special case at the data
storage process.

Listing 6.7: Virtuoso/PL insert bookmark procedure definition

CREATE PROCEDURE DB.DBA.EARLYBIRD_ADD_ENTRY (IN in_post_uid
VARCHAR , IN in_tag VARCHAR , IN in_url VARCHAR , IN
in_user_uid VARCHAR , IN in_provider VARCHAR , IN
in_post_datetime DATETIME , IN in_title VARCHAR){

INSERT INTO DB.DBA.EARLYBIRD_ENTRIES (post_uid , tag , url ,
user_uid , provider , post_datetime)

VALUES (in_post_uid ,in_tag ,in_url ,in_user_uid ,in_provider ,
in_post_datetime);

INSERT SOFT DB.DBA.EARLYBIRD_SCORES (tag , score) VALUES (
in_tag , 0);

UPDATE DB.DBA.EARLYBIRD_SCORES SET score=score +1 WHERE tag=
in_tag;

IF (in_url is null)
RETURN 1;

210

INSERT SOFT DB.DBA.EARLYBIRD_URLS(url , title , last_posted)
VALUES (in_url , in_title , in_post_datetime);

UPDATE DB.DBA.EARLYBIRD_URLS SET title=in_title , last_posted=
in_post_datetime WHERE url=in_url;

RETURN 2;
}

We implement the bookmark insert logic in the Storage tier with the Vir-
tuoso/PL procedure language. Procedures are functions which we can call
and pass parameters to from the Application and Data Maintenance tiers
through SQL queries. We use Virtuoso/PL to enclose the insert process in a
procedure. The bookmark insert is performed a procedure EARLYBIRD_ADD_ENTRY

, see Listing 6.7.
The insert process implies three steps. First, we insert a row for each

bookmark tag into EARLYBIRD_ENTRIES. Second, we increase the popularity
score of the tag by 1 in the table EARLYBIRD_SCORES which is required by the
Application tier for the recommender logic. Therefore, we insert the tag
with score 0 if the tag is not already in the table and increase the value by
1 afterwards. Third, we update the title and the date of the URL and the
date when the URL was last posted in the table EARLYBIRD_URLS. If the URL
is not already in the table, we insert a new row with the date and URL title
of the current bookmark. If no URL parameter is passed to the function,
we skip the URL update step. The table EARLYBIRD_URLS is required by the
Application tier for the search logic.

Listing 6.8: Insert bookmark procedure call

1 // GET JDBC CONNECTION
2 Connection con = dataSource.getConnection ();
3 //...
4 // CLEAN UP TAGS
5 p_subject.replace(’,’, ’ ’);
6 p_subject = p_subject.trim();
7 p_subject = URLEncoder.encode(p_subject , "UTF -8");
8 // CALL ADD ENTRY PROCEDURE IN SQL
9 PreparedStatement entryStmt = con.prepareStatement("SELECT DB

.DBA.EARLYBIRD_ADD_ENTRY (?,?,?,?,?,?,?)");

211

10 // PASS PARAMETERS
11 entryStmt.setString (1, post_uid);
12 entryStmt.setString (2, p_subject);
13 entryStmt.setString (3, p_url);
14 entryStmt.setString (4, URLEncoder.encode(p_username , "UTF -8")

);
15 entryStmt.setString (5, dataProvider);
16 entryStmt.setString (6, p_dateTime);
17 entryStmt.setString (7, p_title_enc);
18 // EXECUTE QUERY AND CLOSE CONNECTION
19 entryStmt.execute ();
20 entryStmt.close ();
21 //...
22 con.close ();

The procedure is called by the data packages of the Data Maintenance
and Application tiers. Listing 6.8 shows how the procedure is called in the
Data Maintenance tier.

Delete bookmarks

Every hour, we delete bookmarks which are older than 30 days and which
don’t belong to registered users. The delete process implies three steps.
First, we delete all post entries from EARLYBIRD_ENTRIES which have been cre-
ated more than 30 days ago and which were not created by registered users.
Posts of registered users are labelled with „local“ in the provider column
of EARLYBIRD_ENTRIES. Second, we clean up our table EARLYBIRD_URLS, which
stores all URLs with their title and date. We delete all URLs which are not
contained in EARLYBIRD_ENTRIES from EARLYBIRD_URLS. Third, we decrease the
popularity score of all tags of the removed posts in EARLYBIRD_SCORE.

Listing 6.9: Delete bookmark procedure definition

create procedure DB.DBA.EARLYBIRD_DELETE_OLD_ENTRIES (){

DELETE FROM DB.DBA.EARLYBIRD_ENTRIES WHERE dateadd(’day ’, 30,
post_datetime) < now() AND provider <> ’local ’;

212

Table 6.4: SQL table EARLYBIRD_USERS

EARLYBIRD_USERS
user_uid (foreign key)
email
pwd
delicious_acc
connotea_acc
conf_code
conf_flag
cur_timestamp

DELETE FROM DB.DBA.EARLYBIRD_URLS WHERE NOT EXISTS (SELECT 1
FROM DB.DBA.EARLYBIRD_ENTRIES WHERE (DB.DBA.
EARLYBIRD_ENTRIES.url = DB.DBA.EARLYBIRD_URLS.url));

}

Listing 6.10: Decrease score trigger definition

create trigger DECREASE_SCORE after delete on DB.DBA.
EARLYBIRD_ENTRIES referencing old as DELETEDROW{

UPDATE DB.DBA.EARLYBIRD_SCORES

SET DB.DBA.EARLYBIRD_SCORES.score = DB.DBA.EARLYBIRD_SCORES.
score - 1 where DB.DBA.EARLYBIRD_SCORES.tag = DELETEDROW.
tag;

}

We enclose the first two steps of the delete process into a Virtuoso/PL
procedure, see Listing 6.9. The second step is implemented in an SQL trigger,
which is triggered when a row in EARLYBIRD_ENTRIES is deleted, see Listing 6.10.

6.6.2 Account management

A further task of the Storage tier is user account management for registration
and login. We store all registered users to the table EARLYBIRD_USERS, see
Table 6.4. Each row in the table contains a user ID, email address, an MD5
hash of the password, the registration code , a flag whether the account has

213

been activated, a flag whether the user subscribed to the newsletter, and the
registration date. Optionally, the row contains the connected Delicious and
Connotea bookmarking account IDs.

The user account data are accessed from the Application tier through
simple SQL queries, no performance issues exist here.

6.6.3 RDF user model publishing

A key functionality of the Storage tier is user model publishing. We publish
the user models that have been created by our algorithms on the Web in
our RDF user model schema. In the following section, we describe how we
implemented creation and publishing of user models in the Storage tier.

The user model publishing process involves three steps. First, we create
user model content in the Application tier and store the created user prop-
erties to an SQL table. Second, we map the content of the SQL table to
our RDF user modeling schema with the Virtuoso Meta Schema Language.
Third, we publish the RDF views along with our ontologies on the Web over
a SPARQL endpoint.

(1) We create persistent user models for registered users through the rec-
ommender logic in the Application tier. We derive user models from the
search queries and related recommendations. At present, our software im-
plements the modeling of two categories of user properties: user interest and
user knowledge. The user interest property models an assumed interest of
a user in a tag. Interest is created from user search queries. We assume
interest in all tags that have been searched by the user in Earlybird. The
user knowledge property models individual users‘ knowledge of how two tags
semantically relate. The input source for knowledge is our tag recommender,
which implements our algorithms for tag similarity and tag hierarchy extrac-
tion (cf. Chapter 3). The recommender suggests related tags for all tags in
the search queries. The recommender result also contains the relation type
between two tags: associative, narrower, or broader. For the user knowledge,
we assume the semantic relation that our recommender suggests.

To persist the user models – the search queries and related recommender

214

Table 6.5: SQL table EARLYBIRD_USERMODELS

EARLYBIRD_USERMODELS
id (primary key)
user_uid
search_tag
rec_tag
type
cur_timestamp

results – for all registered users, we log the output of the Recommendation

servlet of the Earlybird component into the SQL table EARLYBIRD_USERMODELS,
see Table 6.5. Each row of the table contains a unique row ID, the user ID,
the search query tag, the related recommended tag, a numeric flag to indicate
the relation type, and the current timestamp.

As the result of this step, we have the user models for registered users
stored in our proprietary relational database schema.

(2) Now, we convert the user model content that we persisted in the
SQL table EARLYBIRD_USERMODELS to our RDF schema for user modeling (cf.
Chapter 5). This is the crucial step of our user model publishing process.
Virtuoso provides a Meta Schema Language for defining a mapping of SQL
data schemas to RDF ontologies. The declarative language allows to dy-
namically map data in SQL to arbitrary RDF schemas by defining RDF
statements that contain data from SQL table columns in the SQL database
schema.

Listing 6.11: URI class definition

sparql
prefix eb: <http :// localhost :8890/ earlybird/>
create iri class eb:uks_iri "http :// localhost/earlybird/uks#%

d" (in id integer not null) .
create iri class eb:uis_iri "http :// localhost/earlybird/uis#%

s" (in id varchar not null) .
create iri class eb:user_iri "http :// localhost/earlybird/

users#%s" (in user_uid varchar not null) .
create iri class eb:tr_iri "http :// localhost/earlybird/tr#%d"

(in id integer not null) . ;

215

The mapping from the SQL user models to our RDF user model schema
involves two steps. In a first step, we define how URIs are created from
SQL table columns. This step is required because subjects and objects
of RDF statements must be URIs, by definition. The result of the map-
ping process are RDF statements. To map the content of SQL column to
a RDF subject or predicate, we must define how the content of the col-
umn is converted to a URI. For example, when we want to map the col-
umn EARLYBIRD_USERMODELS.user_uid to an RDF subject in an RDF state-
ment, we must convert the varchar content of the column, e.g., „Tom“, to
a URI, http://localhost/earlybird/users#tom. We do this in a URI
class definition script. We define URI patterns for specific column names
in EARLYBIRD_USERMODELS, e.g., http://localhost/earlybird/users# for the
column user_uid. The actual content of the columns is appended to these
URI patterns later, e.g., http://localhost/earlybird/users#tom. List-
ing 6.11 shows the URI class definition script. The scripts defines four URIs
that refer to the knowledge and interest statement, the user, and the topic
relation.

Listing 6.12: RDF mapping

1 sparql
2 prefix qs: <http :// localhost :8890/ rdfv_demo/quad_storage/>
3 prefix cr: <http :// earlybird.hki.uni -koeln.de/ontology/cr#>
4 prefix cco: <http :// purl.org/ontology/cco/core#>
5 prefix dct: <http :// purl.org/dc/terms/>
6 prefix foaf: <http :// xmlns.com/foaf/spec/>
7 prefix eb: <http :// localhost :8890/ earlybird/>
8 prefix skos: <http :// www.w3.org /2008/05/ skos#>
9

10 create quad storage qs:default from DB.DBA.
EARLYBIRD_USERMODELS as um_tbl{

11

12 # User Knowledge Statements
13 create qs:knowledge as graph <http :// localhost/um/knowledge >{
14 eb:uks_iri(um_tbl.id) a cco:CognitiveCharacteristic ;
15 cco:agent eb:user_iri(um_tbl.user_uid) ;
16 cco:topic eb:tr_iri(um_tbl.id) ;

http://localhost/earlybird/users#tom
http://localhost/earlybird/users#
http://localhost/earlybird/users#tom

216

17 cco:cognitiveCharacteristic cco:belief ;
18 dct:created um_tbl.cur_timestamp .
19 eb:tr_iri(um_tbl.id) a cr:ConceptRelation ;
20 cr:subj um_tbl.search_tag ;
21 cr:obj um_tbl.rec_tag ;
22 cr:relationType skos:semanticRelation where (^{ um_tbl .}^.

type = 0) ;
23 cr:relationType skos:narrower where (^{ um_tbl .}^. type =

1) ;
24 cr:relationType skos:broader where (^{ um_tbl .}^. type = 2)

.
25 eb:user_iri(um_tbl.user_uid) a foaf:Person .
26 } .
27

28 # User Interest Statements
29 create qs:interest as graph <http :// localhost/um/interest >{
30 eb:uis_iri(um_tbl.post_uid) a cco:CognitiveCharacteristic

;
31 cco:agent eb:user_iri(um_tbl.user_uid) ;
32 cco:topic um_tbl.search_tag ;
33 cco:cognitiveCharacteristic cco:interest ;
34 dct:created um_tbl.cur_timestamp .
35 eb:user_iri(um_tbl.user_uid) a foaf:Person .
36 }
37 }.;

In a second step, we define the actual RDF statements that we create
from the SQL columns to get our target RDF model. The target RDF model
are User Interest Statements and User Knowledge Statements as described
in Chapter 5. We store the RDF statements in two RDF graphs: http:

//localhost/um/interest and http://localhost/um/knowledge . Both
reside in a quad store named http://localhost:8890/rdfv_demo/quad_

storage/default which contains the mapped information. A mapping script
written in the Meta Schema Language creates the quad store and the RDF
graphs, see Listing 6.12. For each graph, the script defines patterns which
describe the output RDF statements. The content of the SQL table can
be integrated either as URIs which have been defined in the class definition
script, cf. line 17, or as literal values, cf. line 19. The mapping patterns

http://localhost/um/interest
http://localhost/um/interest
http://localhost/um/knowledge
http://localhost:8890/rdfv_demo/quad_storage/default
http://localhost:8890/rdfv_demo/quad_storage/default

217

can contain SQL expressions to restrict the creation of RDF statements to
certain conditions. In lines 22-26, we use SQL expressions to define the
relation type of the cr:ConceptRelation instance that we create. We set the
relation type – associative (skos:semanticRelation), broader (skos:broader),
or narrower (skos:narrower) – according to the value in the SQL column.

The result of the mapping process so far are two categories of User Prop-
erty Statements: User Interest Statements and User Knowledge Statements.
Both are modeled in our RDF user model schema. They are stored as RDF
statements in a quad store on the Virtuoso database server.

(3) The goal of the user model publishing is to supply the data on the Web
so that other services can query them. In a third step, we publish the User
Property Statements on the Web, i.e., we make the data accessible through
SPARQL queries. We implemented this functionality with a public SPARQL
interface which allows to query the user Property Statements and additional
RDF data required for a proper interpretation of the statements. Additional
data contain a cached copy of the ontologies applied in the User Property
Statements – our Concept Relation Ontology, FOAF, DC, SKOS, and CCO
– and metadata, a description of the service that publishes the data. The
SPARQL interface allows to query RDF across both data: the native RDF
data and the mapped RDF views.

Listing 6.13: SPARQL query example

http :// earlybird.uni -koeln.de :8890/ sparql?query=select * from
<http :// localhost/um/interest > where { ?s ?p ?o }

The SPARQL interface of the Storage tier is available on the Web 13)
and handles HTTP requests. The HTTP requests must contain a SPARQL
query in the query parameter. Listing 6.13 shows an example query to the
SPARQL endpoint.

Listing 6.14: SPARQL query example 2

prefix cco: <http :// purl.org/ontology/cco/core#>
select DISTINCT (?user) where {
?uis a cco:CognitiveCharacteristic ;

13http://earlybird.uni-koeln.de:8890/sparql

218

cco:cognitiveCharacteristic cco:interest ;
cco:topic "social_media ";
cco:agent ?user .

}

The interface can be used by Web services to retrieve User Property State-
ments, or to query on the knowledge created by the Application component.
For example, a service could pass a SPARQL query to retrieve all users which
have interest in a specific tag, see Listing 6.14.

Listing 6.15: Query response example

<rdf:RDF xmlns:res="http ://www.w3.org /2005/ sparql -results #"
xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#">

<rdf:Description rdf:nodeID ="rset">
<rdf:type rdf:resource ="http ://www.w3.org /2005/ sparql -results

#ResultSet" />
<res:resultVariable >user </res:resultVariable >
<res:solution rdf:nodeID ="r0">

<res:binding rdf:nodeID ="r0c0"><res:variable >user </res:
variable ><res:value >http :// localhost/earlybird/users
#tom </res:value ></res:binding >

</res:solution >
</rdf:Description >

</rdf:RDF >

The response of the interface is the SPARQL result set. The HTTP re-
quest supports a format parameter to adapt the result format. For example,
services can request RDF/XML to retrieve a result as shown in Listing 6.15

6.6.4 Usage logging

A further task of the database server is usage logging. In the current im-
plementation, we do not use the logged data. However, we wanted to equip
Earlybird for usage-based evaluation in future research experiments. Analysis
of usage data can lead to deeper insights into explorative search. User-centric
analysis can answer questions that are interesting starting points to improve
Earlybird: what do users search, do they tend to search for popular or unpop-
ular tags, where does our recommender fail to make recommendations, how

219

Table 6.6: SQL table EARLYBIRD_LOG_SEARCH

EARLYBIRD_LOG_SEARCH
id (primary key)
query
user_uid
session_id
cur_timestamp

Table 6.7: SQL table EARLYBIRD_LOG_RECOMMENDED

EARLYBIRD_LOG_ RECOMMENDED
id (primary key)
search_tag
rec_tag
score
is_novel
user_uid
cur_timestamp

do people use the navigation facilities. At present, we cannot answer these
questions, because the number of users that actively use Earlybird is still
too low. We hope, that we can record enough usage data over time to gain
insight in the behavior of our users.

We log three types of usage information, which we believe to be appro-
priate for extensive usage data analyses: (1) search queries, (2) the returned
recommendations for the queries, and (3) clicked recommendations. The

Table 6.8: SQL table EARLYBIRD_LOG_LIKED

EARLYBIRD_LOG_LIKED
id (primary key)
search_tag
rec_tag
score
is_novel
user_uid
session_id
cur_timestamp

220

click-through rate describes the effectiveness of the recommendation [79].
Tables 6.6, 6.7, and 6.8 show the logging tables. The storage of the logs does
not raise any special problems and can be done over simple SQL queries from
the data package of the Application tier.

6.7 Conclusion

In this chapter, we described Earlybird, our implementation of an exploratory
tag search engine. Earlybird is similar to that envisioned in the introductory
example. It renders webpages bookmarked in social bookmarking services
searchable and facilitates exploratory browsing and focused search in social
bookmarking data. It implements collaborative filtering algorithms for user
model extraction and publishes created user models on the Web. Further-
more, Earlybird implements usage logging to enable user-centric evaluation
of the exploratory search facilities in the future.

Earlybird shows how a prolific combination of exploratory browsing and
focused search can be realized. It implements the key ideas of exploratory
search, exploratory browsing and focused search, in a real-world applica-
tion. Our vision was an exploratory search engine that integrates with social
bookmarking services. We have shown that combining the ideas of social
bookmarking and exploratory search is a fruitful approach. Earlybird can
be seen either as an extension of social bookmarking with search facilities,
or as an extension of a search engine through social bookmarking. Earlybird
implements two facilities to enable exploratory search: exploratory brows-
ing and focused search. The facilities support domain discovery and domain
learning, realized mainly through adaptable tag recommendations visualized
in an interactive tag network. The tag network enables domain discovery by
presenting similar tags for the search query tags. For example, Tom, the user
from our introductory example, can navigate the tag network starting from
his initial search social media. The network allows to replace the query with
recommendations to adapt the search. While Tom navigates through tags,
new tags – geofencing, foursquare – are added to the networks and webpages
are retrieved for these tags. Interactive browsing through the tag recommen-

221

dation network allows Tom to discover novel topics starting from his initial
search context. The tag network also enables domain learning. Earlybird
biases recommendations towards already known tags, i.e., tags that users
have already used to search or bookmark a webpage. These known recom-
mendations allow one to contextualize novel tags. For example, Tom could
search for a topic which he is largely unfamiliar with: geofencing. Earlybird
would recommend mobile web to Tom, because it is a similar tag and Tom
has already searched for the tag in the past. The recommendation helps
Tom to contextualize the novel tag with his existing knowledge, thus facili-
tates learning on the topic. Tom can also filter and specify results by adding
more recommendations to the search query, e.g., foursquare. And Earlybird
enables domain learning in a further way: the results are websites recently
tagged in social bookmarking services, which update constantly while users
contribute new bookmarks. Tom will find novel webpages on social me-
dia each time he queries for the tag, since users of Delicious and Connotea
constantly contribute bookmarks to newly occurring webpages on the topic.
Thus, Earlybird enables him to stay up-to-date with social media marketing
and to increase his expertise on the topic over time.

Earlybird shows how exploratory search engines can profit from web-
scale user modeling. It shows how user modeling can be implemented on
a web-scale. We apply collaborative filtering to folksonomies to empower
the recommendations for the tag recommendation network. Recommenda-
tions play an important role for exploratory search. We show how to create
recommendations from folksonomies with collaborative filtering techniques.
Hence, we show how social bookmarking services can be exploited for user
modeling and ultimately used for exploratory search. Our collaborative fil-
tering algorithms extract user models from folksonomies that yield successful
recommendations for popular search queries. However, our evaluation results
indicate that the recommendations are relatively sparse for unpopular tags
(cf. Chapter 4). Therefore, we propose to integrate the user modeling with
further Social Web services. We think that user models, recommendations,
and ultimately the exploratory search facilities, can greatly profit from more
and topically broader user data. This can only be realized by integrating user

222

models from multiple services. Earlybird connects with other services on the
Social Web over RSS and Atom interfaces. From this perspective, we show
how exploratory search engines can integrate with Social Web services to
collect user data. Earlybird applies the established Web technologies, feeds
and relational database models, to implement user model collection. From
another perspective, Earlybird enhances the collected data and publishes
newly created user models on the Web. We extract semantically explicit
user models from folksonomies and publish them on the Web with Semantic
Web technologies. Earlybird acts as a content provider for user models on
the Social Web: it publishes information on interest and knowledge of users
on the Web. These information are valuable for other exploratory search
engines. Our vision is a Web where users can allow user modeling services
to create and share user-specific information with other services to improve
adaptation. Earlybird shows how user modeling services can share re-usable
user models semantically explicit and with non-proprietary Semantic Web
standards: ontology-based user models and SPARQL interfaces. From this
perspective, Earlybird is a Semantic Web content provider.

Altogether, the technologies used in Earlybird comprise technologies from
the service-oriented Social Web and from the data-oriented Semantic Web.
With the integration of both technologies into our software, we show how to
connect both technologies for prolific web-scale user modeling.

Chapter 7

Conclusions

Technological innovations have triggered strong cultural developments on the
Web. The way we use the Web has greatly changed over the last five years.
The Web has developed from a digital library to a social place – we not only
retrieve information from the Web, but we also communicate and collaborate
on the Web. The ubiquity of the Social Web and its collaborative character
has greatly changed how we deal with information – and how we search. We
take the Web with us; we retrieve information when we need it; we share
information with others; we playfully explore and discover information –
Web search becomes ambient [157]. The digital library metaphor isn’t really
fit to describe how we search and explore the Web anymore. Information
Retrieval has yet to adopt these changes. One of the grand challenges of
Information Retrieval over the course of the next few years will be to supply
models and pragmatic solutions that suit the needs of the emerging Social
Web. We believe that exploiting the social knowledge that underlies the Web,
i.e., utilizing the communication and collaboration links between users, can
impact Web search as much as the exploitation of the link structure between
documents did 15 years ago.

In our thesis we have shown a strategy to exploit the social knowledge
inherent in social bookmarking systems for exploratory search. In the follow-
ing chapter, we conclude with a discussion of our research contributions. We
summarize the main contributions of this thesis in Section 7.1 and discuss its

223

224

limitations, along with rewarding further research possibilities in Section 7.2.

7.1 Summary of contributions

The gain of this thesis comprises four contributions: a user model extraction
method, a method to evaluate our user models, a method for web-scale user
model integration, and a real-world exploratory tag search engine.

7.1.1 User model extraction

We have shown how to exploit social bookmarking systems to create user
models. We presented a method for algorithmic user model extraction from
folksonomies that applies collaborative filtering algorithms to create user
models that contain user interest, user similarity, and semantic relations
between tags: tag similarity and tag hierarchy. Our user model extraction
method has the following benefits:

(a) it formalizes implicit knowledge and enhances the semantic expressivity
of folksonomies.

(b) it exploits the structure of folksonomies for knowledge extraction, i.e.,
it avoids content analysis.

(c) it shows a completely automatized ontology creation and maintenance
strategy.

(d) it creates ontologies without requiring existing domain knowledge, i.e.,
it is not limited to pre-defined knowledge domains.

(e) it bridges the gap between folksonomies and ontologies, i.e., it mediates
between the Social Web and the Semantic Web.

7.1.2 User model evaluation

We have shown how to evaluate exploratory search engines. We presented a
method to evaluate how well user models facilitate exploratory search. The

225

method measures structural properties of pre-compiled recommendations.
The evaluation method has the following benefits:

(a) it evaluates non-accuracy measures, novelty and coverage, which are
difficult to measure but important for exploratory search.

(b) it considers the impact of user models on the search results in a search
engine.

(c) it allows to compare user modeling algorithms with low effort.

(d) it does not require user feedback data, i.e., algorithms can be evaluated
before being deployed in a running system.

(e) it complements our exploratory tag search engine with a method that
enables experimenting with different user modeling methods.

7.1.3 User model integration

We have shown how to create synergy effects for exploratory search by in-
tegrating user modeling services on the Web. We presented a method to
integrate user models on a web-scale to enable better user modeling. The
method comprises a web-scale user modeling architecture, a user model con-
tent schema, and a user model representation format. The user model inte-
gration method yields the following benefits:

(a) it syntactically and semantically aligns user models.

(b) it overcomes the sparsity problem by integrating user models from var-
ious sources.

(c) it aggregates RSS data from Social Web services and publishes Seman-
tic Web content, i.e., it mediates between Social Web and the Semantic
Web.

(d) it is a pragmatic method that can be implemented without revolution-
ary changes in existing Web services.

226

7.1.4 An exploratory tag search engine

We implemented our findings in a real-world exploratory tag search engine
named Earlybird. Earlybird is a proof-of-concept of our findings. Further-
more, it is a software framework that enables further research on exploratory
search in folksonomies. Our software has the following benefits:

(a) it implements explorative search facilities for folksonomies of two pop-
ular social bookmarking systems, Delicious and Connotea.

(b) it allows to easily implement and compare different algorithms.

(c) it collects usage logs to enable future user-centric evaluations.

(d) it allows to adjust and compare other components involved in ex-
ploratory search process: input data, user modeling algorithms, and
the user interface.

(e) it is a real-world service that publishes user models to the Linked Data
Web.

We believe that an important gain of this thesis results from the sum
of the individual contributions. Our thesis exploits and advances academic
research on the areas of Information Retrieval, user modeling, machine learn-
ing, and Linked Data publishing. We combine these different lines of research
to address the challenges of exploratory search on the Social Web. The
combination of usually disconnected techniques and methods allows for new
perspectives on the problem and yields new insights.

7.2 Limitations and further research

The interdisciplinary perspective applied in this thesis is its key benefit.
However, it makes necessary a certain degree of generality, which implies
limitations. This thesis combines a range of problems, each of which deserves
to be further researched. We covered several topics involved in web-scale

227

user modeling for exploratory search. Our goal was to contribute a real-
world application. Clearly, each problem that was broached – user model
extraction, evaluation, and integration – is complex enough to fill a thesis
alone. However, our goal was to highlight how combining various research
lines normally viewed as separate can produce new insights into the problem
that underlies this thesis. We believe that the result, a real-world exploratory
search engine, exhibits well-conceived paths that can be taken to address
individual problems. This thesis provides a viable starting point for in-depth
research on individual issues, and the software that we contribute provides a
technical framework that promotes further research on this topic.

We propose only some important open endings of the problems covered
in this thesis which suggest further research.

7.2.1 User model extraction

Our collaborative filtering user model extraction method implements algo-
rithms that very much rely on established algorithms. Our evaluation and
related research suggests that new collaborative algorithms can improve the
recommendations in the context of folksonomies. A number of more spe-
cialized collaborative filtering algorithms have been developed recently that
leverage the properties of folksonomies better [238, 163].

An important aspect of our user model extraction method is the seman-
tic enhancement of folksonomies through tag relations. We extract semantics
that are user-specific and formalize these semantics in ontologies. Promising
research on hierarchy extraction from folksonomies and semantic enhance-
ment exists [8, 111, 183, 176]. It would be interesting to evaluate how differ-
ent approaches perform in the context of exploratory search.

A limitation of our knowledge extraction method is that extracted se-
mantics remain user-specific. This reveals a gap between the folksonomy
world and the ontology world that our method does not bridge: our seman-
tics have still limited shared meaning. Our ontologies are personal, going
against the spirit of ontologies and their reliance on shared meaning [153].
A viable further research direction would be to map our personal semantics

228

onto ontologies shared amongst user communities or even amongst all users.
Promising strategies for automated ontology mapping are being developed
which could be integrated into our user model extraction method [68, 55].

7.2.2 User model evaluation

An important benefit of our user model evaluation method is that it can
be applied before any user feedback is available. This allows the evaluation
of algorithms offline, i.e., before they are deployed. Our method applies
network-centric evaluation measures. A limitation of our evaluation is that
it does not cover all possible aspects of quality. The user-perceived quality of
the recommendations is an important aspect for exploratory search [189, 50].
Our method is limited to the navigability of the recommendations and cor-
responding search results. Other aspects of our system are also important to
assess the exploratory search facilities: the user interface, for example, clearly
plays a central role for how users perceive the quality of the recommenda-
tions. Our method does not allow one to measure the user-perceived quality
of exploratory search engines. We suggest using a user-centric analysis to
complement our evaluation method, i.e., an evaluation of user feedback data.
We have provided the ground for further research on user-centric evaluations
by collecting usage logs in Earlybird.

7.2.3 User model integration

User modeling affects the domains of two research communities. First, user
model extraction and processing is largely driven by machine learning. Sec-
ond, web-scale user model integration currently engages the Linked Data
community. The developments originate from different historical backgrounds
and therefore have different requirements in regards to the content and the
representation of user models. User model extraction and processing meth-
ods heavily rely on machine learning techniques which require simple user
models that can be processed efficiently and fast. This line of research focuses
more on the quantity rather than quality of information. User modeling inte-
gration originates, for the most part, from human-centered research focused

229

on the quality of user models. User models are typically more elaborate and
complex. Our user modeling method mediates between both camps. We
believe that it is viable to further connect both lines of research to find more
elaborate user model integration strategies that comply with the needs of
both research areas.

Privacy is an important challenge for web-scale user modeling [130]. As
user modeling becomes more ubiquitous and users become more elaborate on
the Web, they must be given appropriate control to determine who collects
their data and what data is to be collected. In this thesis, we have taken the
route towards openness and transparency. We apply our user model extrac-
tion on bookmarks which have been made available on the Web explicitly
by users. Additionally, we use open standards for user model publishing.
However, a web-scale user modeling effort must go further. For example,
it should require automized control to determine who is allowed to collect
user data and how aggregated user data can be published. Ideas and first
implementations of trust that point in this direction have already emerged
in the Semantic Web community [83, 206].

7.2.4 Theory and practice

Finally, we believe that research on Information Retrieval on the Web can
profit considerably from experimental research. Innovation on the Web is
largely driven by real-world applications. The Web is an open world, where
technological evolution involves convincing many parties to adopt these new
inventions. We think that the impact of academic innovations on the Web
can be increased if they are implemented and demonstrated in real-world
applications that prove and illustrate their surplus value. Our thesis aims at
embracing academic research and pragmatic application.

230

Bibliography

[1] Fabian Abel, Juri De Coi, Nicola Henze, Arne Koesling, Daniel Krause,
and Daniel Olmedilla. Enabling advanced and context-dependent ac-
cess control in rdf stores. In The Semantic Web, Lecture Notes in
Computer Science, chapter 1, pages 1–14. Springer, 2008.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Personalization tech-
nologies: a process-oriented perspective. Commun. ACM, 48(10):83–
90, 2005.

[3] Stefano Aguzzoli, Paolo Avesani, and Paolo Massa. Collaborative case-
based recommender system. In Proceedings of the ECCBR Conference,
pages 460–474, 2002.

[4] Ethem Alpaydin. Introduction to Machine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press, 2004.

[5] Sarabjot Anand and Bamshad Mobasher. Intelligent Techniques for
Web Personalization. Springer, 2005.

[6] Antonio Anaya and Jesús Boticario. Content-free collaborative learn-
ing modeling using data mining. User Modeling and User-Adapted
Interaction, pages 1–36, January 2011.

[7] Anton Andrejko, Michal Barla, and Maria Bielikova. Ontology-based
user modeling for web-based information systems. In Advances in In-
formation Systems Development, chapter 38, pages 457–468. Springer
US, Boston, MA, 2007.

231

232

[8] Sofia Angeletou, Marta Sabou, and Enrico Motta. Semantically en-
riching folksonomies with FLOR. In Proceedings of the 5th ESWC.
workshop: Collective Intelligence and the Semantic Web, 2008.

[9] G. Antoniou and Frank Van Harmelen. A Semantic Web primer. MIT
Press, Cambridge, Mass., 2nd edition, 2008.

[10] Liliana Ardissono, Luca Console, and Ilaria Torre. An adaptive system
for the personalized access to news. AI Commun., 14(3):129–147, 2001.

[11] Liliana Ardissono and Anna Goy. Tailoring the interaction with users
in web stores. User Modeling and User-Adapted Interaction, 10(4):251–
303, 2000.

[12] C. M. Au-Yeung, N. Gibbins, and N. Shadbolt. A study of user profile
generation from folksonomies. In Proceedings of the WWW 2008 Social
Web and Knowledge Management, Social Web Workshop, April 2008.

[13] Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki -
a tool for social, semantic collaboration. In Isabel F. Cruz, Stefan
Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika,
Michael Uschold, and Lora Aroyo, editors, International Semantic Web
Conference, volume 4273 of Lecture Notes in Computer Science, pages
736–749. Springer, 2006.

[14] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information
retrieval. ACM Press books. ACM Press, New York, 1999.

[15] Jie Bao and Vasant Honavar. Collaborative ontology building with
wiki@nt: Multi agent based ontology. Technical report, Iowa State
University, 2004.

[16] Shenghua Bao, Guirong Xue, Xiaoyuan Wu, Yong Yu, Ben Fei, and
Zhong Su. Optimizing web search using social annotations. In Proceed-
ings of the 16th international conference on World Wide Web, WWW
’07, pages 501–510, New York, NY, USA, 2007. ACM.

233

[17] John Battelle. The Search: How Google and Its Rivals Rewrote the
Rules of Business and Transformed Our Culture. Portfolio Hardcover,
September 2005.

[18] Ian H. Beaumont. User modelling in the interactive anatomy tutoring
system anatom-tutor. User Modeling and User-Adapted Interaction,
4(1):21–45–45, March 1994.

[19] Nicholas J. Belkin. Some(what) grand challenges for information re-
trieval. SIGIR Forum, 42(1):47–54, June 2008.

[20] P. Berkhin. A survey of clustering data mining techniques. In Jacob
Kogan, Charles Nicholas, and Marc Teboulle, editors, Grouping Multi-
dimensional Data, chapter 2, pages 25–71. Springer-Verlag, Berlin/Hei-
delberg, 2006.

[21] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Mediation of user
models for enhanced personalization in recommender systems. User
Modeling and User-Adapted Interaction, 18(3):245–286, August 2008.

[22] T. Berners-Lee, J. Hendler, O. Lassila, and Others. The Semantic Web.
Scientific American, 284(5):28–37, 2001.

[23] Bin Bi, Lifeng Shang, and Ben Kao. Collaborative resource discovery
in social tagging systems. In CIKM ’09: Proceeding of the 18th ACM
conference on Information and knowledge management, pages 1919–
1922, New York, NY, USA, 2009. ACM.

[24] Mária Bieliková. M.: Personalized faceted navigation for multimedia
collections. In Proceedings of the 2nd Int. Workshop on Semantic Media
Adaptation and Personalization, 2007.

[25] Mária Bieliková and Jaroslav Kuruc. Sharing user models for adaptive
hypermedia applications. In ISDA ’05: Proceedings of the 5th Inter-
national Conference on Intelligent Systems Design and Applications,
pages 506–513, Washington, DC, USA, 2005. IEEE Computer Society.

234

[26] Daniel Billsus and Michael J. Pazzani. User modeling for adaptive news
access. User Modeling and User-Adapted Interaction, 10(2-3):147–180,
2000.

[27] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1st ed. 2006. corr. 2nd
printing edition, October 2007.

[28] Andreas Blumauer. Social Semantic Web: Web 2.0 - was nun?
X.media.press. Springer, Berlin, 2009.

[29] Toine Bogers. Recommender Systems for Social Bookmarking. PhD
thesis, Tilburg University, December 2009.

[30] Craig Boyle and Antonio O. Encarnacion. Metadoc: An adaptive hy-
pertext reading system. User Modeling and User-Adapted Interaction,
4(1):1–19, March 1994.

[31] T. Brailsford, C. Stewart, M. Zakaria, and A. Moore. Autonavigation,
links and narrative in an adaptive web-based integrated learning envi-
ronment. In Eleventh International World Wide Web Conference, May
2002.

[32] Giorgio Brajnik, Giovanni Guida, and Carlo Tasso. User modeling in
intelligent information retrieval. Inf. Process. Manage., 23(4):305–320,
1987.

[33] Ulrick Brandes and Thomas Erlebach. Network analysis. methodologi-
cal foundations. Network Analysis, Lecture Notes in Computer Science,
3418, 2005.

[34] Boris Brandherm and Michael Schmitz. Presentation of a modular
framework for interpretation of sensor data with dynamic Bayesian
networks on mobile devices. In A. Abecker, S. Bickel, U. Brefeld,
I. Drost, N. Henze, O. Herden, M. Minor, T. Scheffer, L. Stojanovic,
and S. Weibelzahl, editors, LWA 2004, Lernen Wissensentdeckung
Adaptivität, pages 9–10, 2004.

235

[35] Boris Brandherm and Tim Schwartz. Geo referenced dynamic Bayesian
networks for user positioning on mobile systems. In Thomas Strang
and Claudia Linnhoff-Popien, editors, Proceedings of the International
Workshop on Location- and Context-Awareness (LoCA), LNCS 3479,
pages 223–234, Munich, Germany, 2005. Springer-Verlag Berlin Heidel-
berg.

[36] John G. Breslin, Alexandre Passant, and Stefan Decker. The Social
Semantic Web. Springer, 1 edition, 2009.

[37] Christopher Brooks, Mike Winter, Jim Greer, and Gordon Mccalla.
The massive user modelling system (mums). In In: Proceedings of
the Seventh International Conference on Intelligent Tutoring Systems,
pages 635–645, 2004.

[38] Brunkhorst, F. Abel, A. Arnaiz, M. Baldoni, C. Baroglio, N. Henze,
M. Klopotek, and V. Patti. Personal information systems in the seman-
tic web- lesson learnt and best practices. Technical report, University
of Hannover, 2007.

[39] Peter Brusilovsky. Methods and techniques of adaptive hypermedia.
User Modeling and User-Adapted Interaction, 6(2):87–129, July 1996.

[40] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-
Adapted Interaction, 11(1):87–110–110, March 2001.

[41] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The
Adaptive Web: Methods and Strategies of Web Personalization (Lecture
Notes in Computer Science / Information Systems and Applications,
incl. Internet/Web, and HCI). Springer, 1 edition, June 2007.

[42] Peter Brusilovsky and Mark T. Maybury. From adaptive hypermedia
to the adaptive web. Commun. ACM, 45(5):30–33, May 2002.

[43] Peter Brusilovsky and Eva Millán. User models for adaptive hyper-
media and adaptive educational systems. In Peter Brusilovsky, Alfred
Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, volume 4321

236

of Lecture Notes in Computer Science, chapter 1, pages 3–53. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[44] Francesca Carmagnola, Federica Cena, Luca Console, Omar Cortassa,
Cristina Gena, Anna Goy, Ilaria Torre, Andrea Toso, and Fabiana
Vernero. Tag-based user modeling for social multi-device adaptive
guides. User Modeling and User-Adapted Interaction, 18(5):497–538,
November 2008.

[45] Francesca Carmagnola, Federica Cena, Omar Cortassa, Cristina Gena,
and Ilaria Torre. Towards a tag-based user model: How can user model
benefit from tags? In UM2007, User Modeling: Proceedings of the
Eleventh International Conference, volume 4511 of Lecture Notes in
Computer Science, pages 445–449, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[46] David Carmel, Naama Zwerdling, Ido Guy, Shila O. Koifman, Nadav
Har’el, Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov.
Personalized social search based on the user’s social network. In Pro-
ceedings of the 18th ACM conference on Information and knowledge
management, CIKM ’09, pages 1227–1236, New York, NY, USA, 2009.
ACM.

[47] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs. Web
Semantics: Science, Services and Agents on the World Wide Web,
3(4):247–267, December 2005.

[48] C. A. Carver, R. A. Howard, and W. D. Lane. Enhancing student
learning through hypermedia courseware and incorporation of student
learning styles. IEEE Transactions on Education, 42(1):33–38, Feb
1999.

[49] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Semantic analysis of
tag similarity measures in collaborative tagging systems. In Proceedings
of the 3rd Workshop on Ontology Learning and Population (OLP3),
July 2008.

237

[50] O. Celma. Music Recommendation and Discovery in the Long Tail.
PhD thesis, Universitat Pompeu Fabra, Barcelona, 2008.

[51] Òscar Celma and Perfecto Herrera. A new approach to evaluating
novel recommendations. In RecSys ’08: Proceedings of the 2008 ACM
conference on Recommender systems, pages 179–186, New York, NY,
USA, 2008. ACM.

[52] Ramnath K. Chellappa and Raymond G. Sin. Personalization versus
privacy: An empirical examination of the online consumers dilemma.
Information Technology and Management, 6(2):181–202, April 2005.

[53] Weiqin Chen and Riichiro Mizoguchi. Communication content ontology
for learner model agent in multi-agent architecture. In Proceedings of
the 7th International Conference on Computers in Education, pages
95–102, 1999.

[54] Ed Chi, Peter Pirolli, and Shyong Lam. Aspects of augmented social
cognition: Social information foraging and social search. In Proceedings
of the 2nd international conference on Online communities and social
computing, pages 60–69, 2007.

[55] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology
mapping. SIGMOD Rec., 35(3):34–41, September 2006.

[56] Sheung-On Choy and A. K. Lui. Web information retrieval in col-
laborative tagging systems. In WI ’06: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence, pages
352–355, Washington, DC, USA, December 2006. IEEE Computer So-
ciety.

[57] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov,
Dmitry Netes, and Matthew Sartin. Combining content-based and
collaborative filters in an online newspaper. In Proceedings of ACM
SIGIR Workshop on Recommender Systems, 1999.

238

[58] C. Cool. Issues of context in information retrieval (IR): an introduction
to the special issue. Information Processing & Management, 38(5):605–
611, September 2002.

[59] Crestani, Fabio, Ruthven, and Ian. Introduction to special issue
on contextual information retrieval systems. Information Retrieval,
10(2):111–113, April 2007.

[60] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Ra-
jaram. Google news personalization: scalable online collaborative fil-
tering. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 271–280, New York, NY, USA, 2007. ACM.

[61] J. Davies, Dieter Fensel, and Frank Van Harmelen. Towards the seman-
tic web: ontology-driven knowledge management. J. Wiley, Chichester,
England, 2003.

[62] Anind K. Dey. Understanding and using context. Personal and Ubiq-
uitous Computing, 5(1):4–7–7, February 2001.

[63] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. Using
ontologies in the semantic web: A survey. In Raj Sharman, Rajiv
Kishore, and Ram Ramesh, editors, Ontologies, volume 14 of Integrated
Series in Information Systems, pages 79–113. Springer US, 2007.

[64] Leigh Dodds and Ian Davis. Linked data patterns: A pattern catalogue
for modelling, publishing, and consuming linked data. Published online,
2010.

[65] Jean Dollimore, Tim Kindberg, and George Coulouris. Distributed
Systems: Concepts and Design (4th Edition) (International Computer
Science Series). Addison Wesley, May 2005.

[66] P. Dolog and W. Nejdl. Challenges and benefits of the semantic web
for user modelling. In Workshop on Adaptive Hypermedia and Adaptive
Web-Based Systems 2003, 2003.

239

[67] Paul Dourish. What we talk about when we talk about context. Per-
sonal and Ubiquitous Computing, 8(1):19–30, February 2004.

[68] Marc Ehrig. Ontology alignment: bridging the semantic gap, volume 4.
Springer, New York, 2007.

[69] Magdalini Eirinaki and Michalis Vazirgiannis. Web mining for web
personalization. ACM Trans. Inter. Tech., 3(1):1–27, February 2003.

[70] Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Axel
Polleres. Rules and ontologies for the semantic web. In Reasoning Web,
pages 1–53. Springer, 2008.

[71] Miguel Encarnaç. Multi-level user support through adaptive hyper-
media: a highly application-independent help component. In IUI ’97:
Proceedings of the 2nd international conference on Intelligent user in-
terfaces, pages 187–194, New York, NY, USA, 1997. ACM.

[72] Usama M. Fayyad, Georges G. Grinstein, and Andreas Wierse. Infor-
mation visualization in data mining and knowledge discovery. Morgan
Kaufmann Publishers, San Francisco, 2002.

[73] Roy T. Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, 2000.

[74] François Fouss and Marco Saerens. Evaluating performance of rec-
ommender systems: An experimental comparison. In WI-IAT ’08:
Proceedings of the 2008 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology, pages 735–738,
Washington, DC, USA, 2008. IEEE Computer Society.

[75] Wai T. Fu, Thomas G. Kannampallil, and Ruogu Kang. Facilitating
exploratory search by model-based navigational cues. In Proceedings
of the 14th international conference on Intelligent user interfaces, IUI
’10, pages 199–208, New York, NY, USA, 2010. ACM.

240

[76] George W. Furnas, Caterina Fake, Luis von Ahn, Joshua Schachter,
Scott Golder, Kevin Fox, Marc Davis, Cameron Marlow, and Mor Naa-
man. Why do tagging systems work? In CHI ’06 extended abstracts
on Human factors in computing systems, CHI ’06, pages 36–39, New
York, NY, USA, 2006. ACM.

[77] Susan Gauch, Jason Chaffee, and Alexander Pretschner. Ontology-
based personalized search and browsing. Web Intelligence and Agent
Systems, 1:1–3, 2003.

[78] Susan Gauch, Mirco Speretta, Aravind Chandramouli, and Alessandro
Micarelli. User profiles for personalized information access. In Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive
Web, volume 4321 of Lecture Notes in Computer Science, chapter 2,
pages 54–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[79] Mouzhi Ge, Carla D. Battenfeld, and Dietmar Jannach. Beyond accu-
racy: evaluating recommender systems by coverage and serendipity. In
Proceedings of the fourth ACM conference on Recommender systems,
RecSys ’10, pages 257–260, New York, NY, USA, 2010. ACM.

[80] G. Gentili, A. Micarelli, and F. Sciarrone. Infoweb: An adaptive in-
formation filtering system for the cultural heritage domain. Applied
Artificial Intelligence, pages 715–744, 2003.

[81] Eric J. Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M. Pen-
nock, and Gary W. Flake. Using web structure for classifying and
describing web pages. In Proceedings of WWW-02, International Con-
ference on the World Wide Web, 2002.

[82] Daniela Godoy and Analía Amandi. Modeling user interests by con-
ceptual clustering. Inf. Syst., 31(4):247–265, June 2006.

[83] Jennifer Golbeck, Bijan Parsia, and James Hendler. Trust networks
on the semantic web. In Proceedings of Cooperative Intelligent Agents,
pages 238–249, 2003.

241

[84] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Us-
ing collaborative filtering to weave an information tapestry. Commun.
ACM, 35(12):61–70, December 1992.

[85] S. Golder and B. A. Huberman. The Structure of Collaborative Tagging
Systems. Arxiv preprint cs.DL/0508082, 2005.

[86] S. A. Golder and B. A. Huberman. Usage patterns of collaborative
tagging systems. Journal of Information Science, 32(2):198, 2006.

[87] Rafael A. Gonzales, Nong Chen, and Ajantha Dahanayake. Personal-
ized information retrieval and access : concepts, methods and practices.
Information Science Reference, Hershey, 2008.

[88] Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers,
Badrul Sarwar, Jon Herlocker, and John Riedl. Combining collabora-
tive filtering with personal agents for better recommendations. InAAAI
’99/IAAI ’99: Proceedings of the sixteenth national conference on Ar-
tificial intelligence and the eleventh Innovative applications of artificial
intelligence conference innovative applications of artificial intelligence,
pages 439–446, Menlo Park, CA, USA, 1999. American Association for
Artificial Intelligence.

[89] Mike Graves, Adam Constabaris, and Dan Brickley. Foaf: Connect-
ing people on the semantic web. Cataloging & classification quarterly,
43(3):191–202, April 2007.

[90] T. Gruber. Where the Social Web Meets the Semantic Web. Lecture
notes in computer science, 4273:994, 2006.

[91] T. R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5:199, 1993.

[92] Thomas Gruber. Ontology of folksonomy: A mash-up of apples and or-
anges. International Journal on Semantic Web & Information Systems,
3(2):1–11, 2007.

242

[93] N. Guarino. Formal ontology and information systems, 1998.

[94] Asela Gunawardana and Guy Shani. A survey of accuracy evaluation
metrics of recommendation tasks. J. Mach. Learn. Res., 10:2935–2962,
December 2009.

[95] Volker Haarslev and Ralf Möller. Racer: An owl reasoning agent for
the semantic web. In In Proc. of the International Workshop on Ap-
plications, Products and Services of Web-based Support Systems, in
conjunction with 2003 IEEE/WIC International Conference on Web
Intelligence, volume 13, pages 91–95, 2003.

[96] T. Hammond, T. Hannay, B. Lund, and
J. Scott. Social Bookmarking Tools (I).
http://www.dlib.org/dlib/april05/hammond/04hammond.html [last
accessed: november 2008], 2005.

[97] Xiaogang Han, Zhiqi Shen, Chunyan Miao, and Xudong Luo.
Folksonomy-Based ontological user interest profile modeling and its
application in personalized search. In Aijun An, Pawan Lingras, Sheila
Petty, and Runhe Huang, editors, Active Media Technology, volume
6335 of Lecture Notes in Computer Science, chapter 6, pages 34–46–
46. Springer, Berlin, Heidelberg, 2010.

[98] S. P. Harter. Psychological relevance and information science. J. Am.
Soc. Inf. Sci., 43(9):602–615, 1992.

[99] Dominik Heckmann. Introducing situational statements as an integrat-
ing data structure for user modeling, context-awareness and resource-
adaptive computing. In Andreas Hoto and Gerd Stumme, editors,
LLWA Lehren - Lernen - Wissen - Adaptivität (ABIS2003), pages 283–
286, 2003.

[100] Dominik Heckmann, Tim Schwartz, Boris Br, and Er Kröner. Decen-
tralized user modeling with UserML and GUMO. In Proceedings of
the Workshop on Decentralized, Agent Based and Social Approaches to
User Modelling, pages 61–65, 2005.

243

[101] Dominik Heckmann, Tim Schwartz, Boris Brandherm, Michael
Schmitz, and Margeritta von Wilamowitz-Moellendorff. Gumo – the
general user model ontology. In User Modeling 2005, pages 428–432.
Springer, Berlin / Heidelberg, 2005.

[102] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining
collaborative filtering recommendations. In Proceedings of the 2000
ACM conference on Computer supported cooperative work, CSCW ’00,
pages 241–250, New York, NY, USA, 2000. ACM.

[103] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl. Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst., 22(1):5–53, January 2004.

[104] Paul Heymann and Hector Garcia-Molina. Collaborative creation of
communal hierarchical taxonomies in social tagging systems. Technical
Report 2006-10, Stanford University, April 2006.

[105] Paul Heymann, Georgia Koutrika, and Hector G. Molina. Can social
bookmarking improve web search? In WSDM ’08: Proceedings of the
international conference on Web search and web data mining, pages
195–206, New York, NY, USA, 2008. ACM.

[106] Paul Heymann, Daniel Ramage, and Hector G. Molina. Social tag
prediction. In Sung H. Myaeng, Douglas W. Oard, Fabrizio Sebastiani,
Tat S. Chua, Mun K. Leong, Sung H. Myaeng, Douglas W. Oard,
Fabrizio Sebastiani, Tat S. Chua, and Mun K. Leong, editors, SIGIR,
pages 531–538, New York, NY, USA, 2008. ACM.

[107] T. Hirashima, K. Hachiya, A. Kashihara, and J. Toyoda. Information
filtering using user‘s context on browsing in hypertext. User Modeling
and User-Adapted Interaction, 7(4):239–256, 1997.

[108] Pascal Hitzler. Semantic Web: Grundlagen. eXamen.press. Springer,
Heidelberg, 2008.

244

[109] Vera Hollink, Maarte Someren, and Bob J. Wielinga. Discovering stages
in web navigation for problem-oriented navigation support. User Mod-
eling and User-Adapted Interaction, 17(1-2):183–214, March 2007.

[110] Ian Horrocks. Ontologies and the semantic web. Commun. ACM,
51(12):58–67, December 2008.

[111] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Das Entstehen
von Semantik in BibSonomy. Social Software in der Wertschöpfung.
Nomos, 2006.

[112] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Information Re-
trieval in Folksonomies: Search and Ranking. Lecture notes in computer
science, 4011:411, 2006.

[113] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Comput. Surv., 31(3):264–323, 1999.

[114] Mohsen Jamali and Hassan Abolhassani. Different aspects of social net-
work analysis. In Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM
International Conference on, pages 66–72, December 2006.

[115] Robert Jäschke, Leandro Marinho, Andreas Hotho, Lars Schmidt-
Thieme, and Gerd Stumme. Tag recommendations in folksonomies.
In Knowledge Discovery in Databases: PKDD 2007, pages 506–514.
Springer-Verlag, Berlin, Heidelberg, 2007.

[116] Ae-Ttie Ji, Cheol Yeon, Heung-Nam Kim, and Geun-Sik Jo. Collab-
orative tagging in recommender systems. In Proceedings of the 20th
Australian joint conference on Advances in artificial intelligence, pages
377–386, 2007.

[117] Xin Jin, Yanzan Zhou, and Bamshad Mobasher. Task-oriented web
user modeling for recommendation. In User Modeling, volume 3538,
pages 109–118, 2005.

245

[118] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feed-
back. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, SI-
GIR ’05, pages 154–161, New York, NY, USA, 2005. ACM.

[119] Jason Jung and Geun-Sik Jo. Extracting user interests from book-
marks on the web. In Proceedings of the 7th Pacific-Asia conference
on Advances in knowledge discovery and data mining, page 568, 2003.

[120] S. Jung, J. Herlocker, and J. Webster. Click data as implicit rele-
vance feedback in web search. Information Processing & Management,
43(3):791–807, May 2007.

[121] Yvonne Kammerer, Rowan Nairn, Peter Pirolli, and Ed H. Chi. Sign-
post from the masses: learning effects in an exploratory social tag
search browser. In Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages 625–634, New
York, NY, USA, 2009. ACM.

[122] Kay. Ontologies for reusable and scrutable student models. AIED
Workshop W2: Workshop on Ontologies for Intelligent Educational
Systems, pages 72–77, 1999.

[123] Diane Kelly. Methods for evaluating interactive information retrieval
systems with users. Foundations and Trends in Information Retrieval,
3(1—2):1–224, 2009.

[124] Hyoung-rae Kim and Philip Chan. Personalized search results with
user interest hierarchies learnt from bookmarks. In Olfa Nasraoui, Os-
mar Zaïane, Myra Spiliopoulou, Bamshad Mobasher, Brij Masand, and
Philip S. Yu, editors, Advances in Web Mining and Web Usage Anal-
ysis, volume 4198, chapter 9, pages 158–176. Springer, Berlin, Heidel-
berg, 2006.

246

[125] Hyoung-Rae Kim and Philip Chan. Learning implicit user interest hi-
erarchy for context in personalization. Applied Intelligence, 28(2):153–
166, April 2008.

[126] Jon M. Kleinberg. Navigation in a small world. Nature, 406(6798):845,
August 2000.

[127] Jonathan Klinginsmith, Malika Mahoui, Yuqing Wu, and Josette
Jones. Discovering domain specific concepts within user-generated tax-
onomies. In ICDMW ’09: Proceedings of the 2009 IEEE International
Conference on Data Mining Workshops, pages 19–24, Washington, DC,
USA, 2009. IEEE Computer Society.

[128] Evgeny Knutov, Paul De Bra, and Mykola Pechenizkiy. Ah 12 years
later: a comprehensive survey of adaptive hypermedia methods and
techniques. New Review of Hypermedia and Multimedia, 15(1):5–38,
2009.

[129] Alfred Kobsa. Generic user modeling systems. User Modeling and
User-Adapted Interaction, 11(1):49–63, March 2001.

[130] Alfred Kobsa. Privacy-enhanced personalization. Commun. ACM,
50(8):24–33, August 2007.

[131] Alfred Kobsa, Jürgen Koenemann, and Wolfgang Pohl. Personalized
hypermedia presentation techniques for improving online customer re-
lationships. The Knowledge Engineering Review, 16:111–155, 2001.

[132] Joseph A. Konstan. Introduction to recommender systems: Algorithms
and evaluation. ACM Trans. Inf. Syst., 22(1):1–4, January 2004.

[133] S. Koshman. Visualization-based information retrieval on the web.
Library & Information Science Research, 28(2):192–207, FebFeb 2006.

[134] Beate Krause, Andreas Hotho, and Gerd Stumme. A Comparison of
Social Bookmarking with Traditional Search. In Proceedings of the
IR research, 30th European conference on Advances in information re-
trieval, pages 101–113, 2008.

247

[135] Michael Kruppa, Dominik Heckmann, and Antonio Krüger. Adaptive
multimodal presentation of multimedia content in museum scenarios.
KI, 19(1), 2005.

[136] R. Lambiotte and M. Ausloos. Collaborative tagging as a tripartite
network. Lecture notes in computer science, 3993, 2006.

[137] Ray R. Larson. Introduction to information retrieval. Journal of the
American Society for Information Science and Technology, 61(4):852–
853, 2010.

[138] Steve Lawrence. Context in web search. IEEE Data Engineering Bul-
letin, 23(3):25–32, 2000.

[139] Man Li, Dazhi Wang, Xiaoyong Du, and Shan Wang. Ontology con-
struction for semantic web: A Role-Based collaborative development
method. In Web Technologies Research and Development - APWeb
2005, Lecture Notes in Computer Science, pages 609–619. Springer,
2005.

[140] Xin Li, Lei Guo, and Yihong E. Zhao. Tag-based social interest discov-
ery. In Proceeding of the 17th international conference on World Wide
Web, WWW ’08, pages 675–684, New York, NY, USA, 2008. ACM.

[141] Huizhi Liang, Yue Xu, Yuefeng Li, and Richi Nayak. Tag based collab-
orative filtering for recommender systems. In Peng Wen, Yuefeng Li,
Lech Polkowski, Yiyu Yao, Shusaku Tsumoto, and Guoyin Wang, edi-
tors, Rough Sets and Knowledge Technology, volume 5589, chapter 84,
pages 666–673. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[142] Fang Liu, C. Yu, and Weiyi Meng. Personalized web search for im-
proving retrieval effectiveness. Knowledge and Data Engineering, IEEE
Transactions on, 16(1):28–40, 2004.

[143] Pasquale Lops, Marco Gemmis, and Giovanni Semeraro. Content-
based recommender systems: State of the art and trends. In Francesco

248

Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Rec-
ommender Systems Handbook, chapter 3, pages 73–105. Springer US,
Boston, MA, 2011.

[144] B. Lund, T. Hammond, M. Flack, T. Hannay,
and I. NeoReality. Social Bookmarking Tools (II).
http://dlib.org/dlib/april05/lund/04lund.html [last accessed: novem-
ber 2008], 2005.

[145] Alexander Maedche and Steffen Staab. Ontology learning for the se-
mantic web. IEEE Intelligent Systems, 16(2):72–79, March 2001.

[146] Gary Marchionini. Exploratory search: from finding to understanding.
Commun. ACM, 49(4):41–46, April 2006.

[147] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. Ht06,
tagging paper, taxonomy, flickr, academic article, to read. In HYPER-
TEXT ’06: Proceedings of the seventeenth conference on Hypertext and
hypermedia, pages 31–40, New York, NY, USA, 2006. ACM.

[148] Lorraine McGinty and Barry Smyth. On the role of diversity in conver-
sational recommender systems. In Proceedings of the 5th international
conference on Case-based reasoning: Research and Development, IC-
CBR’03, pages 276–290, Berlin, Heidelberg, 2003. Springer-Verlag.

[149] Sean M. Mcnee, John Riedl, and Joseph A. Konstan. Being accurate
is not enough: how accuracy metrics have hurt recommender systems.
In CHI ’06: Extended Abstracts on Human Factors in Computing Sys-
tems, pages 1097–1101, New York, NY, USA, 2006. ACM.

[150] Alessandro Micarelli, Fabio Gasparetti, Filippo Sciarrone, and Su-
san Gauch. Personalized search on the world wide web. In Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive
Web, pages 195–230. Springer-Verlag, 2007.

[151] Alessandro Micarelli and Filippo Sciarrone. A case-based system for
adaptive hypermedia navigation. In EWCBR ’96: Proceedings of

249

the Third European Workshop on Advances in Case-Based Reasoning,
pages 266–279, London, UK, 1996. Springer.

[152] Peter Mika. Ontologies are us: A unified model of social networks and
semantics. Web Semant., 5(1):5–15, March 2007.

[153] Peter Mika. Social Networks and the Semantic Web (Semantic Web
and Beyond). Springer, September 2007.

[154] Alistair Miles and José R. Pérez-Agüera. Skos: Simple knowledge or-
ganisation for the web. Cataloging & Classification Quarterly, 43(3):69–
83, 2007.

[155] David Millen, Meng Yang, Steven Whittaker, and Jonathan Feinberg.
Social bookmarking and exploratory search. In Liam Bannon, Ina
Wagner, Carl Gutwin, Richard Harper, and Kjeld Schmidt, editors,
ECSCW 2007, pages 21–40. Springer London, 2007.

[156] Roberto Mirizzi and Tommaso Di Noia. From exploratory search to
web search and back. In Proceedings of the 3rd workshop on Ph.D.
students in information and knowledge management, PIKM ’10, pages
39–46, New York, NY, USA, 2010. ACM.

[157] Peter Morville. Ambient Findability: What We Find Changes Who We
Become. O’Reilly Media, 1 edition, September 2005.

[158] Maurice D. Mulvenna, Sarabjot S. Anand, and Alex G. Büchner. Per-
sonalization on the net using web mining: introduction. Commun.
ACM, 43(8):122–125, 2000.

[159] Roberto Navigli and Paola Velardi. Learning domain ontologies from
document warehouses and dedicated web sites. Comput. Linguist.,
30(2):151–179, June 2004.

[160] M. E. J. Newman. The structure and function of complex networks.
SIAM REVIEW, 45:167, Mar 2003.

250

[161] N. F. Noy and D. L. McGuinness. Ontology Develop-
ment 101: A Guide to Creating Your First Ontology.
http://www.ksl.stanford.edu/people/dim/papers/ontology-tutorial-
noy-mcguinessabstract.html [last accessed: november 2008], March
2001.

[162] Sean Owen and Robin Anil. Mahout in action (MEAP). Manning,
2010.

[163] Denis Parra and Peter Brusilovsky. Collaborative filtering for social
tagging systems: an experiment with citeulike. In RecSys ’09: Pro-
ceedings of the third ACM conference on Recommender systems, pages
237–240, New York, NY, USA, 2009. ACM.

[164] Michael Pazzani and Daniel Billsus. Content-Based recommendation
systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl,
editors, The Adaptive Web, pages 325–341, 2007.

[165] Daniela Petrelli, Elena Not, Massimo Zancanaro, Carlo Strapparava,
and Oliviero Stock. Modelling and adapting to context. Personal Ubiq-
uitous Comput., 5(1):20–24, 2001.

[166] Dimitrios Pierrakos, Georgios Paliouras, Christos Papatheodorou, and
Constantine D. Spyropoulos. Web usage mining as a tool for per-
sonalization: A survey. User Modeling and User-Adapted Interaction,
13(4):311–372, November 2003.

[167] Helena S. Pinto and J. P. Martins. Ontologies how can they be built.
Knowledge and Information Systems, V6(4):441–464, July 2004.

[168] Peter Pirolli and Stuart Card. Information foraging. Psychological
Review, 106(4):643–675, October 1999.

[169] M. C. Polson and J. J. Richardson, editors. Foundations of intelligent
tutoring systems. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1988.

[170] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language
for RDF. Technical report, W3C, 2008.

251

[171] Feng Qiu and Junghoo Cho. Automatic identification of user interest
for personalized search. In WWW ’06: Proceedings of the 15th interna-
tional conference on World Wide Web, pages 727–736, New York, NY,
USA, 2006. ACM.

[172] Daniel Ramage, Paul Heymann, Christopher D. Manning, and Hec-
tor G. Molina. Clustering the tagged web. In WSDM ’09: Proceedings
of the Second ACM International Conference on Web Search and Data
Mining, pages 54–63, New York, NY, USA, 2009. ACM.

[173] Liana Razmerita, Albert Angehrn, and Alexander Maedche. Ontology-
based user modeling for knowledge management systems. In Peter
Brusilovsky, Albert Corbett, and Fiorella Rosis, editors, User Modeling
2003, volume 2702 of Lecture Notes in Computer Science, chapter 29,
page 148. Springer Berlin Heidelberg, Berlin, Heidelberg, June 2003.

[174] Luis F. Revilla and Frank M. Shipman. Managing conflict in multi-
model adaptive hypertext. In HYPERTEXT ’04: Proceedings of the
fifteenth ACM conference on Hypertext and hypermedia, pages 237–238,
New York, NY, USA, 2004. ACM.

[175] David Robins. Interactive information retrieval: Context and basic
notions. Informing Science Journal, 3:57–62, 2000.

[176] Mike Rohland and Olga Streibel. Algorithmic extraction of tag seman-
tics. Technical report, Networked Information Systems, Free University
Berlin, 2009.

[177] D. Rose and D. Levinson. Understanding user goals in web search. In
Proceedings of the 13th international conference on World Wide Web,
pages 13–19, 2004.

[178] Ian Ruthven. Interactive information retrieval. Annual Review of In-
formation Science and Technology, 42(1):43–91, 2008.

252

[179] Stefan Sackmann, Jens Strüker, and Rafael Accorsi. Personalization in
privacy-aware highly dynamic systems. Commun. ACM, 49(9):32–38,
September 2006.

[180] Gerard Salton and Michael J. McGill. Introduction to modern infor-
mation retrieval. McGraw-Hill, New York, 1983.

[181] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl.
Item-based collaborative filtering recommendation algorithms. In Pro-
ceedings of the 10th international conference on World Wide Web,
WWW ’01, pages 285–295, New York, NY, USA, 2001. ACM.

[182] J. Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collabo-
rative Filtering Recommender Systems. In Peter Brusilovsky, Alfred
Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, volume 4321 of
Lecture Notes in Computer Science, chapter 9, pages 291–324. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[183] Christoph Schmitz, Andreas Hotho, Robert Jäschke, and Gerd
Stumme. Mining Association Rules in Folksonomies, pages 261–270.
Springer, 2006.

[184] Stephen J. Schultze. A collaborative foraging approach to web browsing
enrichment. In CHI ’02: CHI ’02 extended abstracts on Human factors
in computing systems, pages 860–861, New York, NY, USA, 2002. ACM
Press.

[185] Ingo Schwab, Alfred Kobsa, and Ivan Koychev. Learning user inter-
ests through positive examples using content analysis and collaborative
filtering. Technical Report 30 2001, GMD, 2001.

[186] Eric Schwarzkopf, Dominik Heckmann, Dietmar Dengler, and Alexan-
der Kroner. Mining the Structure of Tag Spaces for User Modeling. In
Proceedings of the Workshop on Data Mining for User Modeling at the
11th International Conference on User Modeling, pages 63–75, 2007.

253

[187] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web
revisited. IEEE Intelligent Systems, 21(3):96–101, May 2006.

[188] Guy Shani and Asela Gunawardana. Evaluating recommendation sys-
tems. In Recommender Systems Handbook, pages 257–297. Springer,
2011.

[189] Guy Shani and Asela Gunawardana. Evaluating recommendation sys-
tems. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors, Recommender Systems Handbook, chapter 8, pages
257–297. Springer US, Boston, MA, 2011.

[190] Xuehua Shen, Bin Tan, and Chengxiang Zhai. Implicit user modeling
for personalized search. In CIKM ’05: Proceedings of the 14th ACM
international conference on Information and knowledge management,
pages 824–831, New York, NY, USA, 2005. ACM.

[191] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2):51–53, June 2007.

[192] Gene Smith. Tagging: People-powered Metadata for the Social Web
(Voices That Matter). New Riders Press, December 2007.

[193] Lucia Specia and Enrico Motta. Integrating folksonomies with the
semantic web. In Proceedings of the 4th European conference on The
Semantic Web: Research and Applications, pages 624–639, 2007.

[194] M. Speretta and S. Gauch. Personalized search based on user search
histories. In Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, pages 622–628, 2005.

[195] Amanda Spink and Charles Cole. New directions in cognitive informa-
tion retrieval, volume 19. Springer, Dordrecht, 2005.

[196] Steffen Staab. Handbook on ontologies. International handbooks on
information systems. Springer, Berlin, 2004.

254

[197] A. Stefani and C. Strappavara. Personalizing access to web sites: The
siteif project. Proceedings of the 2nd Workshop on Adaptive Hypertext
and Hypermedia HYPERTEXT’98, June 1998.

[198] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative
filtering techniques. Adv. in Artif. Intell., 2009:2, January 2009.

[199] Martin N. Szomszor, Iván Cantador, and Harith Alani. Correlating
user profiles from multiple folksonomies. In HT ’08: Proceedings of
the nineteenth ACM conference on Hypertext and hypermedia, pages
33–42, New York, NY, USA, 2008. ACM.

[200] V. Tanasescu and O. Streibel. Extreme tagging: Emergent semantics
through the tagging of tags. In Proceedings of the First International
Workshop on Emergent Semantics and Ontology Evolution, pages 84–
94, 2007.

[201] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2001.

[202] F. Tanudjaja and L. Mui. Persona: A contextualized and personalized
web search. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02), page 67, 2003.

[203] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing
search via automated analysis of interests and activities. In SIGIR
’05: Proceedings of the 28th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages
449–456, New York, NY, USA, 2005. ACM.

[204] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Characterizing
the value of personalizing search. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 757–758, New York, NY,
USA, 2007. ACM.

255

[205] Maximilian Teltzrow and Alfred Kobsa. Impacts of user privacy pref-
erences on personalized systems: a comparative study, pages 315–332.
Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[206] Bhavani Thuraisingham. Confidentiality, privacy and trust policy en-
forcement for the semantic web. In POLICY ’07: Proceedings of the
Eighth IEEE International Workshop on Policies for Distributed Sys-
tems and Networks, pages 8–11, Washington, DC, USA, 2007. IEEE
Computer Society.

[207] Ilaria Torre. Adaptive systems in the era of the semantic and social web,
a survey. User Modeling and User-Adapted Interaction, 19(5):433–486,
December 2009.

[208] Joana Trajkova and Susan Gauch. Improving ontology-based user pro-
files. In Proceedings of RIAO, pages 380–389, 2004.

[209] Evangelos Triantafillou, Andreas Pomportsis, and Stavros Demetriadis.
The design and the formative evaluation of an adaptive educational
system based on cognitive styles. Comput. Educ., 41(1):87–103, August
2003.

[210] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: Sys-
tem description. Lecture notes in computer science, 4130:292–297,
2006.

[211] Mike Uschold and Michael Gruninger. Ontologies: principles, methods,
and applications. Knowledge Engineering Review, 11(2):93–155, 1996.

[212] Céline Van Damme, Martin Hepp, and Katharina Siorpaes. Folkson-
tology: An integrated approach for turning folksonomies into ontolo-
gies. In Bridging the Gep between Semantic Web and Web 2.0 (SemNet
2007), pages 57–70, 2007.

[213] Kees van der Sluijs and Geert-Jan Houben. A generic component
for exchanging user models between web-based systems. International

256

Journal of Continuing Engineering Education and Life Long Learning,
16(1):64–76, January 2006.

[214] C. J. Van Rijsbergen. Information retrieval. Butterworths, London,
2nd edition, 1979.

[215] Mark van Setten, Rogier Brussee, Harry van Vliet, Luit Gazendam,
Ynze van Houten, and Mettina Veenstra. On the Importance of "Who
Tagged What". In Workshop on the Social Navigation and Community
based Adaptation Technologies, 2006.

[216] L. van Velsen, T. van der Geest, R. Klaassen, and M. Steehouder. User-
centered evaluation of adaptive and adaptable systems: a literature
review. The Knowledge Engineering Review, 23(03):261–281, 2008.

[217] Thomas Vander Wal. Folksonomy coinage and definition.
http://vanderwal.net/folksonomy.html, February 2007.

[218] Ellen Voorhees. The philosophy of information retrieval evaluation.
In Lecture Notes In Computer Science, volume 2406, pages 355–370.
Springer-Verlag London, UK, 2001.

[219] Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine
learning for user modeling. User Modeling and User-Adapted Interac-
tion, 11(1):19–29, March 2001.

[220] David Weinberger. Everything is Miscellaneous: The Power of the New
Digital Disorder. Henry Holt, May 2008.

[221] Katrin Weller. Folksonomies and Ontologies: Two New Players in In-
dexing and Knowledge Representation. In Applying Web 2.0. Innova-
tion, Impact and Implementation: Online Information 2007 Conference
Proceedings, pages 108–115, 2007.

[222] Ryen W. White, Bill Kules, Steven M. Drucker, and Schraefel. Sup-
porting Exploratory Search, Introduction. Commun. ACM, 49(4):36–
39, April 2006.

257

[223] Ryen W. White, Gary Marchionini, and Gheorghe Muresan. Edito-
rial: Evaluating exploratory search systems. Inf. Process. Manage.,
44(2):433–436, November 2008.

[224] Ryen W. White, Gheorghe Muresan, and Gary Marchionini. Report on
ACM SIGIR 2006 workshop on evaluating exploratory search systems.
SIGIR Forum, 40:52–60, December 2006.

[225] Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the
Query-Response Paradigm. Synthesis Lectures on Information Con-
cepts, Retrieval, and Services, 1(1):1–98, January 2009.

[226] Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen. Learning user
interest dynamics with a three-descriptor representation. J. Am. Soc.
Inf. Sci. Technol., 52(3):212–225, 2000.

[227] Ian H. Witten, Katherine J. Don, Michael Dewsnip, and Valentin
Tablan. Text mining in a digital library. International Journal on
Digital Libraries, 4(1):56–59, 2004.

[228] W. A. Woods. What’s in a link: Foundations for semantic networks.
In D. G. Bobrow and A. Collins, editors, Representation and Under-
standing, pages 35–82. Academic Press, 1975.

[229] Harris Wu, Mohammad Zubair, and Kurt Maly. Harvesting social
knowledge from folksonomies. In HYPERTEXT ’06: Proceedings of
the seventeenth conference on Hypertext and hypermedia, pages 111–
114, New York, NY, USA, 2006. ACM.

[230] Shengliang Xu, Shenghua Bao, Ben Fei, Zhong Su, and Yong Yu. Ex-
ploring folksonomy for personalized search. In Proceedings of the 31st
annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, SIGIR ’08, pages 155–162, New York,
NY, USA, 2008. ACM.

[231] Yusuke Yanbe, Adam Jatowt, Satoshi Nakamura, and Katsumi Tanaka.
Can social bookmarking enhance search in the web? In Proceedings

258

of the 7th ACM/IEEE-CS joint conference on Digital libraries, JCDL
’07, pages 107–116, New York, NY, USA, 2007. ACM.

[232] Junjie Yao, Yuxin Huang, and Bin Cui. Constructing evolutionary
taxonomy of collaborative tagging systems. In Proceeding of the 18th
ACM conference on Information and knowledge management, CIKM
’09, pages 2085–2086, New York, NY, USA, 2009. ACM.

[233] Ching-Man A. Yeung, Nicholas Gibbins, and Nigel Shadbolt. Tag
meaning disambiguation through analysis of tripartite structure of folk-
sonomies. In Web Intelligence and Intelligent Agent Technology Work-
shops, 2007 IEEE/WIC/ACM International Conferences on, pages 3–
6, 2007.

[234] Ching-man A. Yeung, Nicholas Gibbins, and Nigel Shadbolt. A study of
user profile generation from folksonomies. In Proceedings of the WWW
2008 Social Web and Knowledge Management, Social Web Workshop,
2008.

[235] Michael Yudelson, Tatiana Gavrilova, and Peter Brusilovsky. Towards
user modeling meta-ontology. In In Proceedings of the 10th Interna-
tional Conference on User Modeling, pages 448–452, 2005.

[236] Hui Zhang, Yu Song, and Han-Tao Song. Construction of Ontology-
Based user model for web personalization. In User Modeling 2007,
pages 67–76, 2007.

[237] Jin Zhang. Visualization for information retrieval. Springer, Berlin,
2008.

[238] Shiwan Zhao, Nan Du, Andreas Nauerz, Xiatian Zhang, Quan Yuan,
and Rongyao Fu. Improved recommendation based on collaborative
tagging behaviors. In Proceedings of the 13th international conference
on Intelligent user interfaces, IUI ’08, pages 413–416, New York, NY,
USA, 2008. ACM.

259

[239] Ding Zhou, Jiang Bian, Shuyi Zheng, Hongyuan Zha, and C. Lee Giles.
Exploring social annotations for information retrieval. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web,
pages 715–724, New York, NY, USA, 2008. ACM.

[240] Cai N. Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
Improving recommendation lists through topic diversification. In Pro-
ceedings of the 14th international conference on World Wide Web,
WWW ’05, pages 22–32, New York, NY, USA, 2005. ACM.

[241] Arkaitz Zubiaga. Understanding the meaning of tags.
http://blog.zubiaga.org/, 2010.

[242] Ingrid Zukerman and David W. Albrecht. Predictive statistical mod-
els for user modeling. User Modeling and User-Adapted Interaction,
11(1):5–18, March 2001.

260

List of Figures

2.1 Search activities (based on [146]) 37
2.2 Exploration dimensions . 44
2.3 Personalization process (based on [39]) 52
2.4 Scalar model . 77
2.5 Overlay model . 79
2.6 MUMS architecture (based on [37]) 105
2.7 Situational statement (based on [99]) 115
2.8 GUMO User Model Dimension (based on [101]) 118
2.9 Generic personalization architecture (based on [38]) 136
2.10 Folksonomy . 157

3.1 Knowledge representation structures (based on [153]) 180
3.2 Actor-Concept-Instance graph 214

4.1 Cumulative tag popularity distribution 271
4.2 Recommendation network . 276
4.3 Indegree-popularity correlation plot for T(s,10) network (log-log)287
4.4 Clustering coefficients . 291
4.5 Average path lengths . 293
4.6 Number of clusters . 296
4.7 Diameters . 298
4.8 Strong Giant Components . 300
4.9 Result similarities . 304
4.10 Result reduction rates (in percent) 316
4.11 Result length for queries and expanded queries (in percent) . . 318

261

262

4.12 Result vector length for queries (blue) and expanded queries
(red dotted) for T(s) . 318

4.13 Query expansions without results 322

5.1 User modeling architecture . 340
5.2 User Modeling Service . 347
5.3 Personalization Service . 355
5.4 User interest example . 364
5.5 User knowledge example . 365
5.6 User similarity example . 366
5.7 Overall user model content example 367
5.8 User Property Statements with metadata 368
5.9 Qualified relation example . 374
5.10 N-ary relation example . 375

6.1 Screenshot of the Earlybird search result site 419
6.2 Software architecture . 428
6.3 Data Maintenance tier . 431
6.4 Presentation tier . 437
6.5 Tag cloud with scaled tags and hierarchy 439
6.6 Application tier . 443
6.7 Storage tier . 459

List of Tables

3.1 User interest prediction output 235
3.2 User similarity matrix . 236
3.3 Similar users prediction output 238
3.4 Similar tags prediction output 241
3.5 Tag hierarchy prediction output 243

4.1 Input dataset features . 270
4.2 Quantiles of the popularity curve 272
4.3 Recommendation set . 277
4.4 Query result matrix . 279
4.5 Indegree-popularity correlation coefficients 288
4.6 Popularity correlation . 313

6.1 SQL table EARLYBIRD_ENTRIES 465
6.2 SQL table EARLYBIRD_SCORES 466
6.3 SQL table EARLYBIRD_URLS 466
6.4 SQL table EARLYBIRD_USERS 475
6.5 SQL table EARLYBIRD_USERMODELS 478
6.6 SQL table EARLYBIRD_LOG_SEARCH 490
6.7 SQL table EARLYBIRD_LOG_RECOMMENDED 490
6.8 SQL table EARLYBIRD_LOG_LIKED 491

263

264

Listings

2.1 APML example . 110
2.2 UserML Situational statement example 116
2.3 SKOS relations example . 122
2.4 FOAF example . 125
2.5 Dublin Core example . 126
2.6 Property-centric representation of interest 128
2.7 CCO interest characteristic . 129
5.1 Named Graph example . 379
5.2 Property customization example 380
5.3 RDF reification example . 383
5.4 Property reification example 386
5.5 Property reification mapping example 387
5.6 User Interest Statement . 394
5.7 Weighting scale . 395
5.8 Property reification . 396
5.9 User Knowledge Statement . 397
5.10 The Relation Ontology . 398
5.11 Property Reification . 402
5.12 User Similarity Statement . 403
5.13 Property Reification . 404
5.14 Metadata example . 405
6.1 Response of Search servlet . 447
6.2 Recommendation type extraction method 447
6.3 Response of Recommendation servlet 450
6.4 Recommender initialization process 452

265

266

6.5 NoveltyRescorer implementation 455
6.6 Retrieve top-5 similar tags from recommender 456
6.7 Virtuoso/PL insert bookmark procedure definition 468
6.8 Insert bookmark procedure call 470
6.9 Delete bookmark procedure definition 473
6.10 Decrease score trigger definition 473
6.11 URI class definition . 479
6.12 RDF mapping . 481
6.13 SPARQL query example . 486
6.14 SPARQL query example 2 . 486
6.15 Query response example . 487

	Introduction
	The problem
	Scope of this thesis
	Thesis outline
	Summary of contributions
	A user model extraction method
	A user model evaluation method
	A user model integration method
	An exploratory tag search engine

	State of the art
	Exploratory search
	Exploratory search context
	Exploratory search activities
	Exploratory search behavior
	Attributes of exploratory search
	Challenges

	User Modeling
	Personalization process
	User model content
	User model representation

	User modeling on the Web
	Challenges
	Approaches
	Conclusion

	The Social Web
	Characteristics
	Social bookmarking
	Potentials for exploratory search

	Summary

	Contribution 1: A user model extraction method
	Knowledge representation on the Web
	Ontologies versus folksonomies
	Connect ontologies and folksonomies

	Ontology modeling methods
	Ontology engineering
	Ontology learning
	Crowd-sourced ontology engineering
	Ontology extraction

	An abstract model for semantics extraction from folksonomies
	A tripartite graph
	Affiliation graphs
	Similarity
	Statistical Analysis
	Semantic interpretation

	Collaborative Filtering
	Output
	Extraction algorithms
	User interest prediction
	Similar users prediction
	User knowledge extraction

	Conclusion

	Contribution 2: A user model evaluation method
	Evaluation strategies
	Predictive Accuracy
	Novelty
	Coverage
	User-perceived quality

	Our evaluation method
	Input dataset
	Tag popularity

	Recommender algorithms
	Algorithm 1: Unbiased
	Algorithm 2: Biased towards popular tags
	Algorithm 3: Biased towards unpopular tags

	Evaluation datasets
	Recommendation networks
	Query result matrix

	Experiments
	Domain discovery
	Domain learning

	Conclusion

	Contribution 3: A user model integration method
	A user modeling architecture
	Activity Providers
	Service User Interfaces
	User Modeling Services
	Personalization Service
	User Property Statements

	A user model scheme
	User interest
	User knowledge
	User similarity
	Metadata

	A user model representation method
	Representation problems
	Representation patterns
	User Property Statements
	Metadata

	Conclusion

	Contribution 4: Earlybird – an exploratory tag search engine
	Functionality
	Software architecture
	Data Maintenance
	Presentation
	Application
	Storage
	Bookmark management
	Account management
	RDF user model publishing
	Usage logging

	Conclusion

	Conclusions
	Summary of contributions
	User model extraction
	User model evaluation
	User model integration
	An exploratory tag search engine

	Limitations and further research
	User model extraction
	User model evaluation
	User model integration
	Theory and practice

	Bibliography
	List of Figures
	List of Tables

