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Kurzzusammenfassung

In dieser Arbeit untersuchen wir Phänomene der randomisierten Fisher-KPP Gleichung

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

sowie ihrer Linearisierung, dem parabolischen Anderson Modell,

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.
(PAM)

Hierbei ist der Koe�zient ξ = (ξ(x, ω))x∈R, ω ∈ Ω, ein stochastischer Prozess auf einem
Wahrscheinlichkeitsraum (Ω,F ,P), welcher als Modellierung eines nicht einsehbaren und
daher als zufällig angenommenen Mediums fungiert. ξ ist auÿerdem beschränkt, stationär
und mischend und besitzt hinreichend reguläre Pfade. Der nichtlineare Term F wird in der
Literatur üblicherweise als �Fisher-KPP Nichtlinearität� geführt.

Im ersten Kapitel nehmen wir eine Einführung in das Thema durch die Diskussion
klassischer und aktueller Resultate vor und geben eine Übersicht der Arbeit. Im zweiten
Kapitel leiten wir das nötige mathematische Rüstzeug her. Im dritten Kapitel untersuchen
wir dann zunächst die Lösung u zu (PAM), welche aufgrund der Lineariät von (PAM)
eine explizite sogenannte Feynman-Kac Darstellung zulässt. Für diese (zufällige) Lösung
wird ein Invarianzprinzip hergeleitet. Dieses Ergebnis wird dann auf die Front der Lösung
m(t) = sup{x ∈ R : u(t, x) ≥M},M > 0, übertragen, indem wir ausnutzen, dass die Lösung
u stabil bezüglich Störungen in Zeit und Raum ist. Als Hauptresultat zeigen wir dann, dass
die Fronten der Lösung zu (F-KPP) und der Lösung zu (PAM) für groÿe Zeiten t höchstens
C ln t Raumeinheiten voneinander entfernt sind, wobei C > 0 eine deterministische Kon-
stante ist. Dies wird mithilfe einer Darstellung beider Lösungen durch ein Funktional eines
Verzweigungsprozesses erreicht. Als Anwendung des Hauptresultates erhalten wir dann ein
Invarianzprinzip für die Lösung zu (F-KPP). Im vierten Kapitel zeigen wir, dass sich die
Umgebung der Front, in der die Lösung von (F-KPP) den Übergang der Werte 0 und 1
aufweist, die sogenannte Transition front der Lösung, unbeschränkt ausdehnen kann. Als
Anwendung unserer Beweismethoden zeigen wir weiter, dass die Lösung zu (F-KPP) � selbst
für groÿe Zeiten t � nicht monoton im Raum sein muss. Dies steht im Gegensatz zum klas-
sichen Resultat der Lösung zu (F-KPP) mit konstantem Potential ξ ≡ const, nach dem für
groÿes t in der Umgebung der Front die Lösung einen scharfen Übergang der Werte 0 und 1
aufweist und die Lösung monoton ist. Für die Lösung zu (PAM) zeigen wir, dass die Tran-
sition front beschränkt bleibt. Anschlieÿend werden noch die Modellannahmen diskutiert.
Die Arbeit endet mit einem Ausblick und Fragestellungen für zukünftige Forschung.
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Abstract

In this work we investigate phenomena of the randomized Fisher-KPP equation

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

and its linearization, the parabolic Anderson model

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.
(PAM)

The coe�cient ξ = (ξ(x, ω))x∈R, ω ∈ Ω, is a stochastic process on a probability space
(Ω,F ,P), which models an uncertain and therefore as random assumed medium. Further-
more, ξ is bounded, stationary and mixing and has su�ciently regular paths. The nonlinear
term F is usually listed in the literature as �Fisher-KPP nonlinearity�.

The �rst chapter serves as an introduction to the topic through the discussion of classic
and current results and gives an overview of the thesis. In the second chapter we provide
the necessary mathematical tools. In the third chapter we �rst examine the solution u to
(PAM), which allows an explicit so-called Feyman-Kac representation due to the linearity
of (PAM). For this (random) solution we derive an invariance principle. This result is then
transferred to the front of the solution m(t) = sup{x ∈ R : u(t, x) ≥ M}, M > 0, by
exploiting the fact that the solution u is stable with respect to perturbations in time and
space. As the main result we then show that for long times t the fronts of the solution to
(F-KPP) and the solution to (PAM) are at most C ln t spatial units apart, where C > 0
is a deterministic constant. This is achieved by using a representation of both solutions by
a functional of a branching process. As an application of the main result, we then get an
invariance principle for the solution to (F-KPP). In the fourth chapter we show that the
so-called transition front of the solution to (F-KPP), i.e. the area around the front in which
the solution has the transition of the values 0 and 1, can have unbounded expansion. As
an application of our proof methods we further show that the solution to (F-KPP) � even
for large times t � does not have to be monotone in space. This is in contrast to the classic
result of the solution to (F-KPP) with constant potential ξ ≡ const, according to which
for large times t the solution has a sharp, monotone transition of the values 0 and 1 and
the solution is monotone in space. However, for the solution to (PAM) we show that the
transition front remains bounded. Subsequently, the model assumptions are discussed. The
work ends with an outlook and questions for future research.
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�Probability is the most important concept in modern science,
especially as nobody has the slightest notion of what it means.�

� Bertrand Russell
In Lecture (1929), as quoted in E.T. Bell (ed.), Development of Mathematics (1940).
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Chapter One

Introduction

1.1 A classic model in population dynamics

The actual starting point of this thesis � the randomized Fisher-KPP (F-KPP) equation
� is motivated by a classic question from biological population genetics. We consider a
population of diploid individuals (multicellular organisms with two sets of chromosomes)
living in a linear habitat, such as a shore line or a river bank. This population occupies
its habitat with uniform density, see [23, p. 69]. It is assumed that for a given gene in
the population an advantageous gene mutation occurs. One expects this mutant gene to
spread within the population at the expense of the gene variant (allele) which previously
occupied the same locus. This requires the production of o�spring by two randomly meeting
individuals, of whom at least one carries the mutated gene. This is possible as the population
is assumed to be non-static, meaning that every individual moves with the same dynamics,
independently of whether it carries a mutant gene or not. The process of advance of the
mutant gene is �rst completed in the neighborhood of the occurrence of the mutation and
later, after the mutant gene has di�used into the surrounding population, in the adjacent
portions of its range.

One is now interested in the distribution of the mutated gene among the whole pop-
ulation, more precisely, how the proportion w(t, x) of the population carrying the mutant
gene evolves in time t and space x. As time goes by, this proportion changes from the
unstable state w = 0 (in the absence of any individual carrying a mutant gene) to stable

state w = 1 (where the mutant gene is present in the entire surrounding population). As
described above, there are two major in�uences on the change of w in time and space:

� the growth rate caused by reproduction of the individuals and thus propagation of the
mutant gene and

� the �ux or di�usion of the individuals.

To be precise, the proportion of the mutant gene at time t in some domain [x, x+4x] can
be described as w(t, x)4x and its rate of change is equal to

∂

∂t

(
w(t, x)4x

)
=


+ growth rate in [x, x+4x],

+ entry rate at x,

− departure rate at x+4x,

1



2 Introduction Chapter 1

see [45, (15.3)], which can be written as

∂

∂t
w(t, x)4x = f(t, x, w(t, x))4x+ J(t, x)− J(t, x+4x).

Here, f denotes a �suitable� growth rate (see below) and J is the left-to-right �ux (or
di�usion) of the mutant-gene population. Dividing by 4x and passing to the limit 4x→ 0,
we arrive at

∂

∂t
w(t, x) = f(t, x, w(t, x))− ∂

∂x
J(t, x),

which is usually called the conservation law. A common assumption is (see [23]) that the
�ux obeys Fick's law, i.e. it is proportional to the negative gradient of the proportion of the
population carrying the mutant gene,

J(t, x) = −D ∂

∂x
w(t, x)

for some constant D > 0. This leads to the classical reaction-di�usion equation

∂

∂t
w(t, x) = D

∂2

∂x2
w(t, x) + f(t, x, w(t, x)).

The question remains which choices for the growth rate f are �suitable�. In population
dynamics, as in the model for gene spreading above, a usual assumption is that the rate
function f depends on the solution w and, furthermore, follows a logistic law. This results
in Fisher's equation

∂

∂t
w(t, x) = D

∂2

∂x2
w(t, x) + κw(t, x)

(
1− w(t, x)

)
, (1.1.1)

where κ > 0 denotes some constant, representing the intensity of selection in favor of
the mutant gene. The logistic term w(1 − w) is the simplest form of a density-dependent
regulation, which is usually postulated whenever there is a certain growth restriction in terms
of capacity. In the example of a spreading gene, growth is exponential in the beginning,
but the gradual mutation of the genotypes of the surrounding population �nally leads to a
�saturation� and the growth rate tends to zero.

1.1.1 Related PDEs

Although it seems reasonable to make use of the quadratic function w(1−w), there are other
choices possible. In fact, the equation (1.1.1) is only appropriate for a sexually reproducing
species, if there is a certain constellation of phenotypes ([15, p. 1]). If this condition
is not ful�lled, the assumptions on the dynamics result in a (cubic) growth term of the
form w2(1 − w), see [68, 14]. However, equation (1.1.1) remains the model of choice in
many situations. For example, in addition to the population dynamics presented above (see
also [63, (4)]), another �eld of application is biological cellular tissue growth, in which w
represents the cell population density divided by the steady-state tissue density (see e.g. [67,
(20)]). To give an overview of equations with density-dependent growth term, we provide
a short list. This list (see [29, p. 1 �.]) is by no means complete and we put emphasis on
equations which are relevant with respect to results in this thesis. For simplicity, we set
D = 1

2 and κ = 1. This, of course, can be achieved using change of variables t → t/κ and
x →

√
2D/κ · x. The choice of the di�usion constant 1

2 simpli�es some formulas in the



Section 1.1 A classic model in population dynamics 3

thesis.

� Fisher's equation, [23],
∂w

∂t
=

1

2

∂2w

∂x2
+ w(1− w). (1.1.2)

Its motivation is given above. It is the archetypal model to describe the spread of an
advantageous allele in a population with uniform density living in a one-dimensional
habitat.

� The Newell-Whitehead, amplitude- or Ginsburg-Landau equation, [53, 57],

∂w

∂t
=

1

2

∂2w

∂x2
+ w(1− wq),

for some q ∈ N. This equation describes the nonlinear distribution of temperature in
an in�nitely thin and long rod or as the �ow velocity of a �uid in an in�nitely long pipe
with small diameter. It has wide applicability in mechanical and chemical engineering
and bio-engineering, see [57, (1)]. The choice q = 1 yields Fisher's equation.

� The Zeldovich equation, [18, p. 3],

∂w

∂t
=

1

2

∂2w

∂x2
+ w2(1− w).

This question naturally arises in combustion theory, where w represents temperature,
while the shape of the growth term corresponds to the generation of heat by combus-
tion.

� The Kolmogorov-Petrowski-Piskunov equation (or KPP equation), [44],

∂w

∂t
=

1

2

∂2w

∂x2
+ F (w), (1.1.3)

where F is di�erentiable on [0, 1], (0, 1] 3 w 7→ F (w)/w can be continuously extended
to w = 0 and we have

F (0) = F (1) = 0, F (w) > 0 ∀w ∈ (0, 1), F (w) < 0 ∀w > 1,

F ′(0) = lim
w↓0

F (w)/w = sup
w∈(0,1)

F (w)/w = 1 ≥ sup
w∈(0,1)

F ′(w). (1.1.4)

This equation covers the Newell-Whitehead (and thus Fisher's) equation, but not
Zeldovich's equation.

� The Nagumo, or bistable equation, [51],

∂w

∂t
=

1

2

∂2w

∂x2
+ w(1− w)(w − α), (1.1.5)

for some α ∈ (0, 1). This equation is used to model the transmission of electrical pulses
in a nerve axon. The term �bistable� is explained by the fact that the nonlinearity
has three roots. The root α is �repelling� and the two others are �attracting�. This
terminology is described in more detail in the next subsection.
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� The ignition-type equation in combustion theory, [5, 6],

∂w

∂t
=

1

2

∂2w

∂x2
+ F θ(w)

with

F θ(w) =

{
0, w ∈ [0, θ],

g(u), w ∈ (θ, 1].
(1.1.6)

Here, θ ∈ (0, 1) is a threshold or �ignition temperature� parameter and g is a di�er-
entiable function ful�lling g(w) > 0 for all w ∈ (θ, 1], g′(1) < 0 and g(1) = 0. Note
that the in�uence of the growth function vanishes for small values of w. This equation
describes de�agration, e.g. for compressible reacting gases with one reactant in a single
step chemical reaction.

We further mention another very important equation, that is used throughout Chapter 3.
Especially due to the upper unboundedness of its (linear) growth function, we don't put it
in line with the other equations enumerated above, but stress its importance for our later
investigations.

� The linearized KPP-equation, by ecologists usually referred to as KISS (Kierstead,

Slobodkin, Skellam) model, [45, p. 272],

∂w

∂t
=

1

2

∂2w

∂x2
+ w. (1.1.7)

This is a linearization of equation (1.1.2) (for small values of w) and has its own
interpretation. It has been used to describe the propagation of a population into an
unbounded habitat, e.g. red tide outbreaks, see [43].

For more references to the corresponding applications of above equations, we refer to
[29, Section 1].

1.1.2 The solution

Let us now take a look at the KPP equation (1.1.3), of which Fisher's equation (1.1.2) is a
special case. How can we actually solve it? Let us make a few observations. We �rst notice
that w ≡ 0 and w ≡ 1 are stationary solutions to (1.1.3). They are usually called unstable

(w ≡ 0) and stable (w ≡ 1) stationary solutions. In the neighborhood of these solutions, the
growth term F from (1.1.3) ful�lls F (w) ≈ 0. Due to the property of the term F (w) being
positive for 0 < w < 1, a solution w such that 0 < w < 1 is repelled away from zero and
attracted to one. We, thus, expect a solution to evolve (as time goes on, locally in space)
from unstable to stable state. Consequently, regions where the solution is near to one tend
to grow and occupy adjacent sites where the solution is small.

Pioneering work concerning this topic has been published by the Briton Ronald A. Fisher
[23] in 1937, already mentioned above, and also by three Russians, Andrey N. Kolmogorov,
Ivan G. Petrowski and Nikolaj S. Piskunov [44], publishing almost at the same time. Let us
brie�y outline the analysis given in [44]. The ansatz is to write w(t, x) = p(x− vt) for some
real function p and some velocity v and exploit the fact that if w is a solution to (1.1.3), p
solves the ordinary di�erential equation (ODE)

1

2
p′′ = −vp′ − F (p), (1.1.8)
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w(t, x)

0

1

t = 0

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

speed v0
.=
√

2

t = 8

x

Figure 1.1: Illustration of the �traveling wave� phenomenon. Here we have w(x, 0) = 1 for
all x < 0 and w(0, x) = 0 for all x ≥ 0.

where p′ denotes the �rst and p′′ the second derivative of p. Using phase-plane analysis, i.e.
de�ning q := p′ the system of ODEs

p′ = q,

q′ = −2F (p)− 2vq,

gives rise to the critical points (p, q) = (0, 0), which is a saddle point, and (1, 0), which
is a stable node for v ≥

√
2 and a spiral for v ∈ (0,

√
2). It is shown in [44, �2], using

the above ansatz and assuming the initial condition to be of Heaviside type, i.e. w(0, x) =
1(−∞,0](x), that a solution to (1.1.8) for v =

√
2, ful�lling p(−∞) = 1 and p(+∞) = 0

exists. Furthermore, this solution is shown to be unique up to spatial translation, i.e. if p is
a solution then for every y ∈ R the function p̃(·) = p(·+ y) is also a solution. In turns out,
see [44, �3], that

� there exists a function m such that

w(t,m(t) + x) −→
t→∞

p(x) uniformly in x ∈ R, (1.1.9)

where p is a solution to (1.1.8) ful�lling p(−∞) = 1 and p(+∞) = 0, see [44, Theo-
rem 14],

� for all t > 0 and x ∈ R we have ∂
∂xw(t, x) ≤ p′(x), i.e. the shape of the solution

��attens out�, see [44, Theorem 12],

� the function m ful�lls
m(t)

t
−→
t→∞

v0 =
√

2, (1.1.10)

see [44, Theorem 17], but

� for any x > 0 we have w(t, x+
√

2t) −→
t→∞

0, i.e. we only have a �rst asymptotic for m

and the �correct� speed is smaller than v0 =
√

2, see [44, Theorem 10].

Thus, as t → ∞, the part of the solution w(t, x) (as a function of the spatial variable x)
corresponding to the transition front, where the solution drops from one to zero, moves to
the right with the critical speed v0 =

√
2. The shape of the transition front approaches the

graph of the solution to (1.1.8). This behavior of the solution resembles a so-called traveling

wave. An illustration of this phenomenon is given in Figure 1.1.
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1.2 Bramson's result for the classical F-KPP equation

Since the pioneering works [23, 44] the investigation of equations from Section 1.1.1 has
developed considerably. In [40] and [21], more general nonlinearities f than of KPP-type
(1.1.4) are considered and it shown, in the case of Heaviside initial condition, that the
solution converges to a traveling wave. In [2, 3], these results are extended to more general
initial conditions and higher dimensions.

However, especially the question of the �correct� speed of the wave front (or just front)
m apart from (1.1.10) for the KPP equation (1.1.3) had been unanswered for a long time.
In 1978, Maury Bramson published his famous seminal paper [13] in which he improves the
results from Kolmogorov et al. [44] considerably. He shows for the same initial conditions
as used in [44], that for every ε ∈ (0, 1), the function mε : [0,∞)→ R,

mε(t) = sup{x ∈ R : w(t, x) = ε} (1.2.1)

ful�lls the asymptotics

mε(t) =
√

2t− 3

2
√

2
ln t+Oε(1) as t→∞, (1.2.2)

and w(t, x + mε(t)) −→
t→∞

p(x) uniformly in x ∈ R, where p is a solution to (1.1.8) ful�lling

p(−∞) = 1 and p(+∞) = 0 (as above). Bramson takes advantage of two things. On the
one hand, the solution to (1.1.3) can be represented as a functional of a branching Brownian
motion (BBM). Let us give a short probabilistic description of its dynamics:

� We start with one initial particle at the origin.

� This particle moves as a standard Brownian motion in R.

� After a mean 1-exponential time, which is independent of the motion of the particle,
the particle (ancestor) dies and gives birth to a random number of new particles, its
o�spring.

� Each of the o�spring particles is an independent copy of its ancestor, i.e. starts where
the ancestor has died, moves as a standard Brownian motion and dies with exponential
rate 1, independently of all other particles.

Then, if we assume Heaviside initial condition 1(−∞,0] and the nonlinearity F to be generated
by the o�spring distribution of the BBM, the solution to (1.1.3) is the tail of the distribution
function of the right-most particle of the BBM. This is known at least since the papers by
Ikeda, Nagasawa and Watanabe [36, 37, 38], and Bramson cites a result from McKean [52,
Section 2]. The above mentioned representation in terms of a BBM is commonly known as
the McKean representation of the solution to (1.1.3).

On the other hand, Bramson uses that the solution to the linearized equation (1.1.7)
at time t and site x equals the expected number of particles of a BBM which are to the
right of x at time t. This allows one to analyze the solution to the KPP equation (and the
solution to the linearized equation) by probabilistic arguments. For the linearized equation,
which is much easier to handle, we also get precise asymptotics for the corresponding front.
This can be achieved without too much e�ort, using standard Gaussian estimates (this is
explained in Chapter 2). That is, for ε > 0 the front mε : [0,∞)→ R

mε(t) = sup{x ∈ R : u(t, x) = ε}
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of the solution u to (1.1.7) ful�lls

mε(t) =
√

2t− 1

2
√

2
ln t+Oε(1) as t→∞.

This leads to the interesting fact that the di�erence of the fronts mε and mε of the solutions
to (1.1.3) and (1.1.7) is of logarithmic order, i.e.

0 ≤ mε(t)−mε(t) ≤ 1√
2

ln t+Oε(1) as t→∞. (1.2.3)

We call this Log-distance of the fronts. The main theorem of the thesis deals with a similar
result as in (1.2.3).

Later on, in [12] Bramson shows his results for a large class of initial conditions. Heaviside
can be replaced by initial conditions w0 not vanishing as x→ −∞ and having a su�ciently
fast decaying tail as x → ∞. It is shown, see [12, Theorem A], that the �rst order speed
v ≥

√
2 is determined by the (tail-)behavior of the function w0(x) as x → ∞. A lighter

tail results in a larger value of the wave speed v of the traveling wave solution. The initial
condition 1(−∞,0] results in the critical case v0 =

√
2, whereas v >

√
2 is usually referred to

as supercritical speed.

1.3 Results for periodic and random potential

It has already been observed in Fisher's paper [23] that a more realistic model would be
obtained by considering spatial heterogeneous reproduction rates. The propagation of the
mutant gene is then in�uenced e.g. by local weather or temperature in�uences. Having
pointed out several results for the homogeneous equation, where the reaction term depends
only on the solution itself, the natural question arises whether similar results as in the last
two sections hold true for more general reaction terms as well. However, it makes sense if we
limit ourselves to certain nonlinearities, which are important in the context of this thesis.
We assume that the reaction term can be represented as the product of a time-independent
and space-dependent potential ξ and a nonlinearity F :

wt(t, x) =
1

2
wxx(t, x) + ξ(x) · F (w(t, x)), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R.
(1.3.1)

We focus on results for periodic potential and then turn attention to random potential.

1.3.1 Periodic potential

Let the function ξ be a periodic function on R. In this case, a recent breakthrough in
generalizing Bramson's results has been achieved in [32]. The authors assume a bounded,
strictly positive and 1-periodic potential ξ, i.e. ξ(x) = ξ(x + 1) for all x ∈ R, KPP-type
nonlinearity F (see (1.1.4)) and initial conditions w0 ful�lling w0(x) ∈ [0, 1] for all x ∈ R
and having compact support. Under these assumptions it is shown that there exist v0, λ0

such that for any ε ∈ (0, 1) and some s(ε) ∈ (0,∞) the solution w to (1.3.1) ful�lls

w(t, x) > 1− ε for all t > s(ε) and all x ∈ [0,m(t)−Oε(1)] and

w(t, x) < ε for all t > s(ε) and all x ∈ [m(t) +Oε(1),∞).
(1.3.2)



8 Introduction Chapter 1

The function m is given by

m(t) = v0t−
3

2λ0
ln t, (1.3.3)

see [32, Theorem 1.1]. This, on the one hand, gives an asymptotic of the front of the solution
w up to logarithmic order, similar to Bramson's result (1.2.2). On the other hand, it shows
that the area where the solution drops from the value one to zero, the so-called transition

front, is uniformly bounded by a constant. To get (1.3.3), the authors in [32] use that the
solution to (1.3.1) behaves similarly to the front of the solution to the linearized equation

ut(t, x) =
1

2
uxx(t, x) + ξ(x) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R
(1.3.4)

with a Dirichlet boundary condition u(t, v0t) = 0. For instance, the parameters v0 and λ0

arise in variational problems including the eigenvalue of a 1-periodic eigenvalue problem in
terms of a linear second order ODE operator, see [32, (4)]. Then, to get the upper bound
in (1.3.2), one uses that the solution to the nonlinear problem is upper bounded by the
solution to the linearized PDE (1.3.4). The (more complicated) proof of the lower bound
requires a detailed treatment of a �subsolution� of (1.3.1), which is a rescaled version of the
solution to (1.3.4), see [32, (11)]. Instead of Bramson, who uses a probabilistic argument to
show the results in [13], the techniques in [32] are purely analytic.

In this context it should be mentioned that a probabilistic interpretation of the solution
to (1.3.1) for constant ξ, as we explained it in Section 1.2, does not hold for non-constant
ξ. In this case, the solution to (1.3.1) is not given by the distribution of the maximum of a
BBM (with space-dependent branching rates). However, there is another interpretation in
terms of a BBM, which is explained in Section 2.2.3 and we take advantage of this Chapter 3
and 4.

1.3.2 Random potential

Another option is to take the potential ξ = (ξ(x, ω))x∈R, ω ∈ Ω, in (1.3.1) as random. Here,
ξ is a stochastic process on a probability space (Ω,F ,P). Of course, one may need the paths
of ξ to be �nice� and ξ to ful�ll a certain stochastic regularity structure like stationarity
or ergodicity with respect to spatial shifts of the paths. The object of interest is thus the
solution to the randomized Fisher-KPP (F-KPP) equation

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R.
(F-KPP)

As in the periodic case, it turns out useful to consider its linearization, the so-called parabolic
Anderson model (PAM),

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.
(PAM)

Similar topics as in the homogeneous setting have been treated for random potential as well.
For example, Shen [65] examines a �random traveling wave� phenomenon under suitable
regularity assumptions on ξ and F . This thesis, however, is aimed towards the more speci�c
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question on the behaviour of the solution in the vicinity of the wave front. To be precise,
we focus on the behavior of the corresponding (left- and right-) fronts

mε(t) := sup{x ∈ R : w(t, x) ≥ ε} and

mε,−(t) := inf{x ≥ 0 : w(t, x) ≤ ε}, ε ∈ (0, 1),

for the solution w to (F-KPP), consider the (left- and right-) fronts

mM (t) := sup{x ∈ R : u(t, x) ≥M} and

mM,−(t) := inf{x ≥ 0 : u(t, x) ≤M}, M > 0,

for the solution u to (PAM) and examine the connection between these quantities.
Let us give a short overview of previous results. To begin with, under fairly general

assumptions and using large deviation principles, Fre��dlin and Gärtner [28] have derived the
existence and characterization of the propagation speed, i.e. the linear order limt→∞m

ε(t)/t
of the front. That is, there exists v0 > 0, such that P-a.s., the solution w to (F-KPP) with
a KPP-type nonlinearity F converges to 0 (resp. 1), uniformly for all x ≥ vt with v > v0

(resp. for all x ≤ vt with v < v0), as t tends to in�nity. In a similar way, this result is also
valid for the solution to (PAM) with the same speed v0, i.e. mM (t)/t −→

t→∞
v0 P-a.s. This

shows that the speeds of both fronts m and m coincide in the �rst order. Consequently, as
in the homogeneous case, the question of second order corrections arises naturally.

Unfortunately, sharp asymptotics up to logarithmic order as in the periodic case (1.3.3)
are not generally known for nontrivial random potential. However, as the front is random,
it seems reasonable to ask for a central limit theorem of m (resp. m) around v0. This has
been partially investigated for supercritical initial conditions by Nolen [54]. Let us take a
closer look at these assumptions. He examines (F-KPP) by assuming F to be Fisher-type,
i.e. F (w) = w(1 − w), and ξ to be bounded, positive, stationary with respect to spatial
shifts and to ful�ll the following mixing condition: For all j ≤ k and X ∈ L2(Ω,Fj ,P) and
Y ∈ L2(Ω,Fk,P), where Fj := σ{ξ(x, ·) : x ≤ j} and Fk := σ{ξ(x, ·) : x ≥ k}, Nolen
assumes ∣∣E[XY ]− E[X]E[Y ]

∣∣ ≤ (ρ(k − j)
)1/2(E[X2]E[Y 2]

)1/2
, (1.3.5)

for some function ρ ful�lling
∑

k ρ(k)1/2 <∞. This is usually called ρ-mixing. Furthermore,
Nolen requires initial conditions satisfying

C1(ω)gω,γ(x) ≤ w0(x, ω) ≤ C2(ξ)gω,γ(x) ∀ x > 0, (1.3.6)

where C1(ω), C2(ω) > 0 and g = gω,γ is a solution to the ODE

g′′(x) + (ξ(x)− γ)g(x) = 0, x > 0,

for γ > γ and some suitable γ > 0. The rate µ(γ) := limx→∞− 1
x ln gξ,γ(x) is shown to

exist P-a.s and to be increasing in γ. For technical reasons, Nolen additionally requires
γ < γ∗, i.e. the initial condition w0(x) must not decay too fast as x tends to in�nity. As
explained at the end of Section 1.2, initial conditions ful�lling (1.3.6) can be categorized to
be �supercritical�. As his main result, Nolen obtains a central limit theorem for m in this
case, see [54, Theorem 1.4].

These results are obtained also for other types of nonlinearities. For ignition-type (see
(1.1.6)) or bistable (see (1.1.5)) nonlinearities, Nolen shows in another paper [55] that the
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front of the solution to (3.3.14) obeys a central limit theorem and, for non-vanishing variance,
an invariance principle, see [55, Corollary 1.2].

Another question is whether the transition front is uniformly bounded or �sharp�, as has
been shown for the periodic case, see (1.3.2). For ignition-type nonlinearities, the answer is
yes. More precisely, in [56] the authors assume ξ to be stationary, ergodic with respect to
the spatial shift, positive, bounded and Lipschitz continuous. Then, for nonnegative initial
conditions having compact support, the authors show that for every ε ∈ (0, 1) there exists
a constant Cε ∈ (0,∞) such that

0 ≤ mε(t)−m1−ε,−(t) ≤ Cε, (1.3.7)

see [56, Proposition 2.3]. This yields a so-called uniformly bounded transition front.
We have already mentioned that exact asymptotics of the front of the solution to

(F-KPP) up to logarithmic order are generally unknown for random potentials. A di�erent
approach would then be to compare the KPP-front m to the front m of the corresponding
linearized equation. This has already been done in (1.2.3) for the homogeneous case: For
large times t, m lags logarithmically in t behind m, i.e. the di�erence m(t)−m(t) is 1√

2
ln t

up to some constant as t→∞. The question arises whether we can �nd a similar result in
the case of random potential.

In the context of branching processes, this question can be answered in the a�rmative.
To explain this, we recall from Section 1.2 that in the homogeneous setting ξ ≡ 1, the
solution to (F-KPP) can be represented in terms of the distribution function of the right-
most particle of a BBM. Furthermore, it can be shown that the solution to the linearized
equation (PAM) for ξ ≡ 1 can be represented in terms of the expected site of the right-
most particle. Now for a discrete-space analogon of the latter process with inhomogeneous
branching rates, in the recently published paper by Ji°í �erný and Alexander Drewitz [16],
it is shown that the median of the right-most particle at time t is at most C ln t space units
behind the expected site.

Although for non-constant ξ, there is another representation of a branching process,
which is described in Section 2.2, the interpretation of the solutions to (F-KPP) and (PAM)
in terms of the right-most particle fails to hold for non-constant ξ. It is not straight-forward
to adapt the results from [16] to the continuous-time setting and deduce a statement about
the Log-distance of the fronts of equations (F-KPP) and (PAM). Fortunately, at least the
proof technics in [16] turn out to be applicable in our setup.

The next section gives a guideline and a short summary of every chapter of the thesis.

1.4 Organization of the thesis

Recall the randomized Fisher-KPP equation (F-KPP equation)

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

and its linearization, the parabolic Anderson model,

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R,
(PAM)
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where ξ is a stochastic process ful�lling suitable boundedness, stationarity and mixing con-
ditions, and F is a standard F-KPP-nonlinearity, see Section 3.1.1 for precise assumptions.
We start with recalling several technical tools in Chapter 2 which are necessary to treat the
topics in the subsequent Chapters 3 and 4.

1.4.1 Chapter 2: Technical tools

Although in Sections 1.1 and 1.2 we have mostly spoken about solutions to certain partial
di�erential equations, this thesis mainly belongs to the �eld of stochastics. This is explained
by the fact that we are able to take advantage of crucial connections between the theory of
PDEs and the theories of di�usion and branching processes. It turns out that the solution
to (F-KPP) and (PAM) can be represented as a functional of a Brownian motion, also
known as Feynman-Kac representation. For (PAM) the solution is given explicitly and for
(F-KPP), with nonlinear function F , implicitly. While the implicit expression is used at
some point in this thesis, we frequently take advantage of another, explicit expression for
the solution to (F-KPP) in terms of a branching process.

Chapter 2 ends with a summary of the results from Sections 2.1 and 2.2, serving as a
preparation of Chapters 3 and 4.

1.4.2 Chapter 3: Log-distance and invariance principles of the F-KPP-
and PAM-front

Motivated by the results from Sections 1.2 and 1.3, Chapter 3 deals with the fronts of the
respective solutions to (F-KPP) and (PAM). Our assumptions on ξ are stronger than those
from Nolen's paper [54], given in (1.3.5), i.e. we assume ψ- instead of ρ-mixing. However,
our nonlinearity F ful�lls general KPP-conditions and is not of Fisher-type. The main
di�erence to Nolen's setup is that we consider a class of �critical� initial conditions w0(x),
vanishing for x > 0 and non-vanishing for x → −∞. First, we investigate the solution u
to (PAM) with the help of a change-of-measure technique obtained from the Feynman-Kac
representation of u. This makes it possible to derive an exact large deviation principle for
the solution u and also provides an invariance principle for lnu. These methods are then
used to control perturbations of the solution u in time and space and to obtain an invariance
principle for the front m of the solution to (PAM). In the main part of the chapter we show
the so-called Log-distance of both fronts, i.e. for all t large enough, the front m of the
solution to (F-KPP) lags at most C ln t space units behind the front m, where C ∈ (0,∞) is
a deterministic constant. Here, the representation of the solutions to (F-KPP) and (PAM)
in terms of a branching process plays a crucial role. As a corollary, we then get an invariance
principle of m.

Chapter 3 is taken from the article [19].

1.4.3 Chapter 4: (Un)-bounded transition fronts, (non)-monotonicity
and model assumptions

Due to the Log-distance proved in Chapter 3, we get that the di�erence of the fronts m
and m is bounded by a logarithmically increasing function. In Section 4.1, however, it
becomes apparent that their corresponding transition fronts behave di�erently. On the one
hand, with the methods already established in Chapter 3, one can easily show that for every
ε,M > 0, ε ≤ M , the transition front of the solution to (PAM) remains bounded, i.e. for t
large enough we have

0 ≤ mε(t)−mM,−(t) ≤ Cε,M ,
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where Cε,M ∈ (0,∞) is some constant, not depending on the initial condition. As has been
mentioned in (1.3.7) that this behavior is also observed for the KPP-front in the case of
bistable and ignition-type nonlinearity F . On the other hand, we show a di�erent behavior
of the front for KPP-type nonlinearities. More precisely, for a suitable subsequence of times
(tn)n∈N tending to in�nity, we prove that the transition front of the solution to (F-KPP)
tends to in�nity, i.e. mε

tn − m
1−ε,−
tn −→

n→∞
∞. Here we use once more that the solution to

(F-KPP) can be represented in terms of a branching process. The idea of the proof is to
apply a coupling argument for two branching processes, one starting in a site surrounded
by high values of ξ and the other one starting in a site surrounded by low values of ξ. In
Section 4.2, parts of the latter proof can then be used to show that the solution to (F-KPP)
does not need to be monotone in space, even for large times. This is in contrast to the
case of constant ξ and Heaviside initial condition, where we have seen that the graph of the
solution �attens out and the solution is monotone in space.

The remaining part of the chapter, Section 4.3, is dedicated to our model assumptions.
In addition to the usual regularity requirements, we frequently demand a purely technical
assumption (VEL). We show that (VEL) is not trivial in the sense that there are potentials
which satisfy all assumptions except (VEL). However, we then show that all results from
Chapters 3 and 4 apply simultaneously for a rich family of potentials.

Sections 4.1 and 4.2 are taken from the article [20] and Section 4.3 contains results from
[19] and [20].

1.4.4 Chapter 5: Outlook

In Chapter 5 we discuss several consequences of our results and treat questions that remain
unanswered from Chapters 3 and 4.



Chapter Two

Technical tools

This chapter gives a short introduction into several concepts from the theory of partial
di�erential equations (PDEs) and branching processes. Since we will consider PDEs with
non-smooth initial conditions, it is desirable to expand the space of classical solutions by
introducing the concept of so-called generalized solutions. This is also known under the
name Feynman-Kac representation and connects the �eld of PDEs to the theory of di�usion
processes. The second section we introduce a branching process, the branching Brownian

motion in random environment (BBMRE), and we show that the (generalized) solution to
certain PDEs can be represented by a functional of a BBMRE. In Section 2.3, we apply the
results of Sections 2.1 and 2.2 to a certain PDE, which is examined in the main part of the
thesis.

Those readers already familiar with the theory of PDEs (especially with the concept of
generalized solutions of parabolic PDEs) and the theory of branching processes can move
directly to Section 2.3.

2.1 Partial di�erential equations and di�usion processes

In the following we need some notation regarding the theory of PDEs. In addition to the
notation of partial derivatives, we also have to consider function spaces, which are important
in the context of generalized solutions.

2.1.1 Notation

We start with introducing some function spaces and notation for partial derivatives. For
A ⊂ Rn, n ∈ {1, 2}, and B ⊂ R, we write C(A,B) for the space of continuous functions,
mapping from A to B. Furthermore, for open A ⊂ R2, B ⊂ R and p, q ∈ N, Cp,q(A,B)
denotes the space of functions f : A → B such that the partial derivatives A 3 (t, x) 7→
∂k+l

∂tk∂xl
f(t, x) exist and are continuous for all k ∈ {1, . . . , p} and l ∈ {1, . . . , q}. Then

C∞(A,B) :=
⋂
p,q∈NC

p,q(A,B) is the space of smooth functions. For A ⊂ Rn, n ∈ {1, 2},
and B ⊂ R, we denote by Cc(A,B) the space of continuous functions with compact support,
and by Cb(A,B) the space of bounded continuous functions.

Furthermore, to abbreviate notation and because we mostly deal with functions w in two
variables, we write wt(t, x) := ∂

∂tw(t, x), wx(t, x) := ∂
∂xw(t, x) and wxx(t, x) := ∂2

∂x2
w(t, x),

if these partial derivatives exist. We sometimes omit the arguments of w, but nonetheless
write the subscripts t, x to indicate the corresponding partial derivatives wt, wx and wxx;
e.g. wx(s, y) = ∂

∂xw(t, x)
∣∣
(t,x)=(s,y)

.

13
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2.1.2 The classical reaction-di�usion equation

Let us consider the PDE

wt(t, x) =
1

2
wxx(t, x) + f(t, x, w(t, x)), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R.
(2.1.1)

Equation (2.1.1) is called (time and space inhomogeneous) reaction-di�usion equation. The
term f is usually referred to as the reaction term or growth term. In Section 1.1.1 we
discussed examples of di�erent reaction terms and applications of the corresponding PDEs.

In the main part of this thesis we focus on speci�c choices of the function f . That
is, in Chapters 3 and 4 we examine (2.1.1) for the cases of function f being either linear
or quasi-linear in w. As will be shown in the remainder of Section 2.1, in these cases it
is possible to represent the solution to (2.1.1) in terms of a functional of Brownian paths,
establishing a connection to probability theory.

2.1.3 Linear reaction term

General concepts and statements for linear PDEs

This section follows [27, Chapter 6.4]. We assume that the reaction term f in (2.1.1) depends
linearly on the solution. Therefore, we consider

wt(t, x) =
1

2
wxx(t, x) + c(t, x) · w(t, x), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R.
(2.1.2)

We want to show that under suitable conditions for the function c, the solutions to (2.1.2)
admit a representation in terms of a fundamental solution:

De�nition 2.1. Let T > 0. A fundamental solution to (2.1.2) in [0, T ] × R is a function

Γ(t, x; s, y), de�ned for all (t, x) ∈ [0, T ]×R and all (s, y) ∈ [0, T ]×R such that s < t, which
ful�lls the following condition:

For any function w0 ∈ Cc(R,R) and any s ∈ [0, T ), the function w : (s, T ]× R→ R,

w(t, x) =

∫
R

Γ(t, x; s, y)w0(y) dy

satis�es

wt(t, x) =
1

2
wxx(t, x) + c(t, x)w(t, x), (t, x) ∈ (s, T ]× R,

lim
t↓s

w(t, x) = w0(x), x ∈ R.
(2.1.3)

To guarantee the existence of such a function, we have to introduce the following condi-
tion for the coe�cient c in (2.1.2).

Assumption 2.2. For every T > 0 the function c ful�lls c ∈ Cb([0, T ]×R,R) and is Hölder
continuous (with exponent α) in x, uniformly with respect to (t, x) in compact subsets of
[0, T ] × R, i.e. for every compact subset I ⊂ [0, T ] × R there exists a constant C(I) < ∞,



Section 2.1 Partial di�erential equations and di�usion processes 15

such that

sup
t∈[0,T ], x,y∈R:

(t,x),(t,y)∈I

|c(t, x)− c(t, y)|
|x− y|α

≤ C(I).

Note that every function in CαT (C) for some C > 0 ful�lls Assumption 2.2. Assumption
2.2 guarantees the fundamental solution to have a su�ciently fast decaying derivative, which
is stated in the next proposition. This is needed later in the proof of Proposition 2.6.

Proposition 2.3 ([27, Theorem 6.4.5]). Let Assumption 2.2 be ful�lled. Then there exists

a fundamental solution Γ to (2.1.2) satisfying

∣∣ ∂k
∂xk

Γ(t, x; s, y)
∣∣ ≤ A

(t− s)(1+k)/2
e−a

(x−y)2
t−s (2.1.4)

for k = 0, 1, where a,A > 0 are positive constants.

The proof of this result as well as the construction of the function Γ can be found in
[26, Chapter 9]. Then we represent the solution to (2.1.2) in terms of the corresponding
fundamental solution. This is stated in the next proposition.

Proposition 2.4 ([26, Theorem 9.4.3]). Let T > 0, Assumption 2.2 be ful�lled and let

w0 ∈ C(R,R). Further assume that there exist positive constants ã, Ã > 0 such that

|w0(x)| ≤ Ãeãx2 , x ∈ R.

Then there exists a solution w to (2.1.2) in [0, T ∗] × R, i.e. w ∈ C1,2((0, T ∗] × R,R) ∩
C([0, T ∗] × R,R), where T ∗ := T ∧ (b/ã) and b > 0 is some constant depending on the

function c, and w ful�lls

|w(t, x)| ≤ Âeâx2 , (t, x) ∈ [0, T ∗]× R,

for some positive constants â, Â > 0. The solution w is given by w(0, x) = w0(x) and

w(t, x) =

∫
R

Γ(t, x; 0, y)w0(y) dy, (t, x) ∈ (0, T ∗]× R (2.1.5)

Stochastic representation of the solution

Although by Proposition 2.4, the representation (2.1.5) of the solution w to (2.1.2) is given
explicitly and w can be investigated using analytical tools, it is useful to have another,
stochastic, interpretation of the solution. A �rst example can be given for the easiest case
c ≡ 0, which is usual referred to as the heat equation. In this case the fundamental solution

Γ is given by Γ(t, x; s, y) = 1√
2π(t−s)

e
− (x−y)2

2(t−s) and ful�lls Γ(·, ·, s, y) ∈ C∞((s,∞) × R,R),

s > 0, y ∈ R. Indeed, for every s > 0 and w0 ∈ Cc(R,R), using dominated convergence,
the function w(t, x) =

∫
R Γ(t, x; s, y)w0(y) dy solves (2.1.3). Then, due to Proposition 2.4,

w solves (2.1.2) (for c ≡ 0). A trivial, but nevertheless interesting, observation from a
probabilistic point of view is that for the heat equation, Γ is the density at site x of the
probability distribution of a standard Brownian motion (Br)r≥0 at time t − s, starting in
y. The function w de�ned above is usually called a mild solution to (2.1.2) and can be
considered as a functional of a Brownian path, weighted by the initial condition w0. This is
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known by the name Feynman-Kac formula or Feynman-Kac representation, which we now
deduce for the equation (2.1.2).

To this end, we need the initial condition w0 to be continuous and to ful�ll a certain
growth condition:

w0 ∈ C(R,R) and there exist constants a,A > 0, such that

|w0(x)| ≤ A(1 + |x|a), x ∈ R.
(2.1.6)

Lemma 2.5. Let T > 0, Assumption 2.2 be ful�lled and w0 satisfy (2.1.6). Then there

exists a unique solution w to (2.1.2) satisfying

∣∣ ∂k
∂xk

w(t, x)
∣∣ ≤ B(1 + |x|a), (t, x) ∈ [0, T ]× R, (2.1.7)

for k = 0, 1, where a > 0 is given in (2.1.6) and B > 0 is some positive constant.

Proof. First note that all assumptions of Proposition 2.4 are ful�lled. Thus a solution
exists and it can be represented as in (2.1.5). Uniqueness follows from [27, Corollary 6.4.4].
Estimate (2.1.7) for k = 0 follows jointly from (2.1.4) (for the case k = 0), (2.1.5) and
(2.1.6). By (2.1.4) (for k = 1) and (2.1.6), using dominated convergence we obtain (2.1.7)
for k = 1.

Now we can prove the Feynman-Kac formula for the linear equation.

Proposition 2.6. Let Assumption 2.2 be ful�lled and w0 satisfy (2.1.6). Then the unique

solution w to (2.1.2) is given by

w(t, x) = Ex
[
e
∫ t
0 c(t−s,Bs) dsw0(Bt)

]
, (t, x) ∈ [0,∞)× R.

Here and for the remainder of the thesis, we denote by Ex the expectation operator of
the probability measure Px under which the process (Bt)t≥0 is a standard Brownian motion
starting in x ∈ R.

Proof of Proposition 2.6. Fix T > 0 and de�ne

Yt := w(T − t, Bt)e
∫ t
0 c(T−s,Bs) ds, t ∈ [0, T ].

Note that by Proposition 2.4 we have w ∈ C1,2((0,∞) × R,R) ∩ C([0,∞) × R,R). Then
Itô's formula (see e.g. [8, I.III.1.10, page 43]) yields for all t ∈ [0, T )

Yt = Y0 +

∫ t

0

(
c(T − s,Bs)w(T − s,Bs)− wt(T − s,Bs)

+
1

2
wxx(T − s,Bs)

)
e
∫ s
0 c(T−r,Br) dr ds

+

∫ t

0
wx(T − s,Bs)e

∫ s
0 c(T−r,Br) dr dBt

= Y0 +

∫ t

0
wx(T − s,Bs)e

∫ s
0 c(T−r,Br) dr dBt,

where we used that w solves (2.1.2). Furthermore the assumptions of Lemma 2.5 are ful�lled.
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Using (2.1.7) (for k = 1) and boundedness of c, we have

sup
0≤t≤T

∫ t

0
Ex
[(
wx(T − s,Bs)e

∫ s
0 c(T−r,Br)

)2]
ds <∞.

Therefore (see [64, Proposition A.5] or [41, Proposition 3.2.10]), the stochastic integral is a
martingale with respect to the �ltration generated by (Bt)t≥0 and thus has zero expectation,
implying

Ex
[
w(T − t, Bt)e

∫ t
0 c(T−s,Bs) ds

]
= Ex

[
Yt
]

= Ex
[
Y0

]
= w(T, x).

Additionally, Proposition 2.4 provides

lim
t↑T

w(T − t, Bt)e
∫ t
0 c(T−s,Bs) ds = w(0, BT )e

∫ T
0 c(T−s,Bs) ds Px-a.s.,

where we used that [0, T ]×R 3 (t, x) 7→ w(t, x) is continuous. Furthermore, by (2.1.7) (for
k = 0) we have

Ex

[
sup

0≤t≤T
|w(T − t, Bt)|

]
≤ const · Ex

[
sup

0≤t≤T
(1 + |Bt|a)

]
<∞, (2.1.8)

where the latter inequality is due to Ex[sup0≤t≤T |Bt|a] <∞ by Doob's maximal inequality
[8, I.I.1.20 (a), p. 10]. Applying dominated convergence, we �nally get

Ex[w0(BT )e
∫ T
0 c(T−s,Bs) ds] = lim

t↑T
Ex
[
w(T − t, Bt)e

∫ t
0 c(T−s,Bs) ds

]
= w(T, x).

Since T > 0 is chosen arbitrarily, we can conclude.

It is worth noting that if the function c does not depend on t, we get the following
corollary. It is of special interest in the main part of the thesis.

Corollary 2.7. Assume w0 ful�lls (2.1.6) and c : R → R to be bounded and uniformly

Hölder continuous on compact subsets of R. Then the unique solution to

wt(t, x) =
1

2
wxx(t, x) + c(x) · w(t, x), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,

is given by

w(t, x) = Ex
[
e
∫ t
0 c(Bs) dsw0(Bt)

]
, (t, x) ∈ [0,∞)× R.

2.1.4 Quasilinear reaction term

The interlude in the last subsection reveals that the solution to the reaction-di�usion equa-
tion may admit a representation in terms of a functional of Brownian paths. The proof
relies heavily on the fact that the reaction term is linear in w. To preserve this structure,
we restrict to the case where the reaction term

f(t, x, w(t, x)) = c(t, x, w(t, x)) · w(t, x)
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admits an (implicit) linearity in w. Thus let us consider the quasilinear PDE

wt(t, x) =
1

2
wxx(t, x) + c(t, x, w(t, x)) · w(t, x), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R.
(2.1.9)

In contrast to the previous section, the term c(t, x, w(t, x)) can depend on the solution
w itself. Therefore, one may expect that the solution to (2.1.1) is given only implicitly.
However, it is shown in this section that w still admits a representation in terms of a
functional of Brownian paths. We abbreviate

c(t, x;w) := c(t, x, w(t, x)).

The results in this subsection have �rst been published as a remark without a proof in
the paper [24] and then (also without a complete proof) republished in [25, Section 5.3]
for a more general PDE. We follow the representation from [39, �1, �2], where the author
considers a slightly more general model than [24] and covers the model in the main part of
this thesis in the Chapters 3 and 4.

We �x T > 0 for the remainder of Section 2.1.4.

Generalized solution

For non-smooth initial conditions it is not clear whether there exists a classical solution to
(2.1.9). However, it is possible to expand the space of the solutions in such a way that we
also get a solution concept for such initial conditions. These solutions are called generalized

solutions.
Let us introduce a function space that is needed in the context of generalized solutions.

For t > 0 let Ut be the Banach space of bounded Borel measurable functions w : [0, t]×R→
R, equipped with the norm ‖w‖t := sup{|w(s, x)| : (s, x) ∈ [0, t]× R}, w ∈ Ut.

We further assume that c from (2.1.9) is de�ned for all w ∈ UT and all (t, x) ∈ [0, T ]×R
and that [0, T ] × R 3 (t, x) 7→ c(t, x;w) is Borel measurable for every w ∈ UT . We need
some conditions for c. In essence, we demand c to be suitably bounded and w 7→ c(·, ·;w)
to be Lipschitz continuous.

Assumption 2.8. (i) For all K > 0 there exist K1,K2 > 0 such that for all u, v ∈ UT
ful�lling ‖u‖T ≤ K and ‖v‖T ≤ K we have

|c(t, x;u)| ≤ K1, (t, x) ∈ [0, T ]× R,

and

|c(t, x;u)− c(t, x; v)| ≤ K2‖u− v‖t, (t, x) ∈ [0, T ]× R.

(ii) There exists a constant K3 > 0 such that c(t, x;w) ≤ K3 for all (t, x) ∈ [0, T ]×R and
for all w ∈ UT with w ≥ 0.

As is shown below, under the assumptions on c given above, there exists a unique
solution to (2.1.9) in an implicit way. Solutions of such a type are de�ned to ful�ll a certain
(implicit) Feynman-Kac formula and are called generalized solutions. This is made precise
in the following de�nition.



Section 2.1 Partial di�erential equations and di�usion processes 19

De�nition 2.9. A function w : [0,∞)× R→ R is called generalized solution to (2.1.9), if
it ful�lls the equation

w(t, x) = Ex
[
e
∫ t
0 c(t−s,Bs;w)) dsw0(Bt)

]
, (t, x) ∈ [0,∞)× R. (2.1.10)

The next proposition ensures the existence and uniqueness of the generalized solution
to (2.1.9).

Proposition 2.10 ([39, Theorem 1]). Assume that the coe�cient c satis�es Assumption

2.8. Then (2.1.10) has a unique solution in UT for any bounded nonnegative measurable

function w0.

Proof. We de�ne the operator Φ : UT → UT ,

(Φ ◦ w)(t, x) = Ex

[
e
∫ t
0 c(t−s,Bs;w) dsw0(Bt)

]
, (t, x) ∈ [0, T ]× R. (2.1.11)

Let K3 be such that Assumption 2.8 (ii) is satis�ed. For K := ‖w0‖∞eK3T let K1,K2 be as
in Assumption 2.8 (i). Further, for t ∈ [0, T ] let

Ut(K) := {w ∈ Ut : ‖w‖t ≤ K and w ≥ 0} ,

which is a complete subset of Ut. Then by de�nition of K, Φ maps Ut(K) to itself. We
now show that it is contractive on Ut1(K) for some suitable t0 > 0. To this end, for
(t, x) ∈ [0, T ]× R and u,w ∈ Ut(K) we get∣∣(Φ ◦ u)(t, x)− (Φ ◦ w)(t, x)

∣∣ ≤ ‖w0‖∞Ex
[∣∣∣e∫ t0 c(t−s,Bs;u) ds − e

∫ t
0 c(t−s,Bs;w) ds

∣∣∣]
≤ ‖w0‖∞

(
Ex
[
e
∫ t
0 2c(t−s,Bs;w) ds

])1/2 (
Ex

[∣∣e∫ t0 c(t−s,Bs;u)−c(t−s,Bs;w) ds − 1
∣∣2])1/2

≤ ‖w0‖∞eK3t
(
Ex

[∣∣∣ ∫ t

0

(
c(t− s,Bs;u)− c(t− s,Bs;w)

)
× e

∫ s
0

(
c(t−r,Br;u)−c(t−r,Br;w)

)
dr ds

∣∣∣2])1/2

≤ ‖w0‖∞e(2K1+K3)T tK2‖u− w‖t,

where we used Cauchy-Schwarz in the second, the identity e
∫ t
0 f(s) ds−1 =

∫ t
0 f(s)e

∫ s
0 f(r) dr ds

in the third and Assumption 2.8 (i) in the last inequality. Thus for t0 := e−(2K1+K3)T 1
2K2‖w0‖∞

the operator Φ is contractive on Ut0(K) and by the Banach �xed-point theorem (cf. e.g. [1,
Theorem 1.1]), there exists a unique u0 on Ut0(K) such that (Φ ◦ u0)(t, x) = u0(t, x) for all
(t, x) ∈ [0, t0] × R. To show that this function can be uniquely continued for times t > t0,
let w ∈ UT be an extension of u0, i.e. w(t, x) = u0(t, x) for all (t, x) ∈ [0, t0] × R. Then
we have (Φ ◦w)(t0, ·) = (Φ ◦ u0)(t0, ·) = u0(t0, ·) and the Markov-property of (Bt)t≥0 yields
that for all (t, x) ∈ [0, T − t0]× R we get

(Φ ◦ w)(t0 + t, x) = Ex

[
e
∫ t
0 c(t+t0−s,Bs;w) ds(Φ ◦ w)(t0, Bt)

]
= Ex

[
e
∫ t
0 c
′(t−s,Bs;w) dsu0(t0, Bt)

]
,

(2.1.12)
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where we set

c′(t, x;w) := c(t+ t0, x;w∗),

w∗(t, x) := u0(t, x)1[0,t0](t) + w(t− t0, x)1(t0,T ](t). (2.1.13)

Then we can solve a �xed-point problem for the operator Φ′ : U ′T−t0 → U
′
T−t0 , where

(Φ′ ◦ w)(t, x) = Ex

[
e
∫ t
0 c
′(t−s,Bs;w) dsu0(t0, Bt)

]
, (t, x) ∈ [0, T − t0]× R,

U ′t := {w ∈ Ut : w(0, ·) = u0(t0, ·)} , 0 ≤ t ≤ T − t0.

Indeed, because by Assumption 2.8 and also using

‖u0(t0, ·)‖∞eK3(T−t0) ≤ ‖w0‖∞eK3T = K,

Φ′ is contractive on U ′t0(K) :=
{
w ∈ U ′t0 : ‖w‖t ≤ K and w ≥ 0

}
and the Banach �xed-

point theorem yields a unique function v0 on U ′t0(K) such that (Φ′ ◦ v0)(t, x) = v0(t, x) for
all (t, x) ∈ [0, t0] × R. But in view of (2.1.12), the function v∗0 as de�ned in (2.1.13) is the
unique function on U2t0 such that (Φ◦v∗0)(t, x) = v∗0(t, x) for all (t, x) ∈ [0, 2t0]×R. We can
repeat this procedure until we �nally get a unique function on UT ful�lling (2.1.10).

Classical solution

The proof of Proposition 2.10 reveals that a generalized solution solves a certain �xed-point
equation and it is not clear whether it is a solution to (2.1.1) in the classical sense. In this
subsection we show that under certain additional assumptions, the solution to (2.1.10) also
solves (2.1.1).

To this end, we introduce some additional function space. For t > 0 let Cαt be the space
of bounded continuous functions w : [0, t]×R→ R, which are uniformly Hölder continuous
in x with Hölder exponent α > 0, i.e. for w ∈ Cαt there exists some Hölder coe�cient
C = C(w, t) > 0 such that

sup
x,y∈R:x6=y, s∈[0,t]

|w(s, x)− w(s, y)|
|x− y|α

≤ C.

For L > 0 we abbreviate Cαt (L) := {w ∈ Cαt : C(w, t) ≤ L} to be the set of Hölder continuous
functions whose Hölder coe�cient is at most L.

We take advantage of the results from Section 2.1.3. Thus, additionally to Assumption
2.8, we have to impose further conditions on the function c.

Assumption 2.11. (i) For all t ∈ [0, T ] we have that w ∈ Cαt implies [0, t]×R 3 (s, x) 7→
c(s, x;w) ∈ Cαt ;

(ii) For all K > 0 there exist constants K4,K5 > 0 such that for all w ∈ CαT with Hölder
coe�cient L and ‖w‖T ≤ K we have

|c(t, x;w)− c(t, y;w)| ≤ (K4 +K5L)|x− y|α, t ∈ [0, T ], x, y ∈ R.

The next example treats a special case for the nonlinearity which is used in the main
part of the thesis. For this case, Assumptions 2.8 and 2.11 are ful�lled.

Example 2.12. Assume we have c(t, x;w) = ξ(x) · k(w(t, x)) such that
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� ξ : R→ R is bounded and Hölder continuous with exponent αξ and coe�cient Lξ and

� k : R→ R is bounded and Lipschitz continuous with Lipschitz constant C.

We observe that c ful�lls Assumption 2.8. Additionally, c ful�lls Assumption 2.11 for all
α ≤ αξ. Indeed, because ξ is bounded, by [22, (1.81)] we have

sup
x 6=y

|ξ(x)− ξ(y)|
|x− y|α

≤ 2(Lξ)α/α
ξ ·
(
‖ξ‖∞

)αξ−α
αξ ∀α ∈ [0, αξ).

Thus we get that ξ is Hölder continuous also for all α ∈ [0, αξ) with some uniform Hölder
coe�cient C̃. Then, also using that k is Lipschitz continuous and bounded, for w ∈ CαT (L)
we get

|c(t, x;w)− c(t, y;w)| ≤ |ξ(x)− ξ(y)| · |k(w(t, x))|+ |ξ(y)| · |k(w(t, x))− k(w(t, y))|

≤ (‖k‖∞C̃ + ‖ξ‖∞C · L)|x− y|α, t ∈ [0, T ], x, y ∈ R.

Assuming additional regularity for the initial function, we get existence and uniqueness
of the classical solution to (2.1.9), which is stated in the next proposition.

Proposition 2.13. Let Assumptions 2.8 and 2.11 be ful�lled. If an initial condition w0

is nonnegative, bounded and satis�es |w0(x) − w0(y)| ≤ L0|x − y|α0, x, y ∈ R, for some

α0, L0 > 0, then there exists a unique solution w ∈ Cα0
T of (2.1.10) which is the unique

solution to (2.1.9).

The proof is based on the following lemma, which we prove by adapting the proof of [39,
Lemma 2]. However, we replace the condition [39, (IV)] therein by Assumption 2.11 (ii),
and we obtain a slightly stronger statement. We abbreviate by

Cαt (L,K) :=
{
w ∈ Cαt (L) : w ≥ 0, ‖w‖t ≤ K

}
,

the set of nonnegative functions w ∈ Cαt (L) which satisfy ‖w‖t ≤ K.

Lemma 2.14. Let Assumptions 2.8 and 2.11 be ful�lled and w0 be nonnegative, bounded

and satisfying |w0(x) − w0(y)| ≤ L0|x − y|α0, x, y ∈ R, for some α0, L0 > 0. Further,

let K = ‖w0‖∞eK3T with K3 from Assumption 2.8 (ii). Then the mapping Φ, de�ned in

(2.1.11), maps Cαt (L,K) to Cαt (J1L0 + (J2 + J3L)t,K) for each t ≤ T . J1, J2 and J3 are

positive constants, depending only on K and T .

Proof. For K = ‖w0‖∞eK3T let K1, K2 be the constants from Assumption 2.8 (i), and K4,
K5 be the constants from Assumption 2.11 (ii). For w ∈ Cα0

T (L,K), s, t ∈ [0, T ] such that
s ≤ t and x, y ∈ R, we have∣∣(Φ ◦ w)(t, x)− (Φ ◦ w)(s, y)

∣∣
=
∣∣∣E0

[
e
∫ t
0 c(t−r,Br+x;w) drw0(Bt + x)

]
− E0

[
e
∫ s
0 c(s−r,Br+y;w) drw0(Bs + y)

]∣∣∣
≤ E0

[
|w0(Bt + x)− w0(Bs + y)|e

∫ t
0 c(t−r,Br+x;w) dr

]
+ E0

[
|w0(Bs + y)| ·

∣∣e∫ t0 c(t−r,Br+x;w) dr − e
∫ s
0 c(s−r,Br+y;w) dr

∣∣]
=: I1 + I2.
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Then we have by Cauchy-Schwarz

I1 ≤ L0

(
E0

[
|Bt −Bs + x− y|2α0

])1/2 · eK3t ≤ 2L0

(
|x− y|α0 + |t− s|α0/2 · κ

)
eK3t,

where κ :=
( ∫

R |z|
2α0(2π)−1/2e−z

2/2 dz
)1/2. Furthermore,

I2 ≤ ‖w0‖∞eK3s

×
(
E0

[∣∣∣ exp
{∫ t

0
c(t− r,Br + x;w) dr −

∫ s

0
c(s− r,Br + y;w) dr

}
− 1
∣∣∣2])1/2

and because of the identity e
∫ t
0 f(s) ds − 1 =

∫ t
0 f(s)e

∫ s
0 f(r) dr ds for some integrable function

f , the assumption ‖c‖t ≤ K1 and |a+ b|2 ≤ 2|a|2 + 2|b|2, a, b ∈ R, we get

E0

[∣∣∣ exp
{∫ t

0
c(t− r,Br + x;w) dr −

∫ s

0
c(s− r,Br + y;w) dr

}
− 1
∣∣∣2]

= E0

[∣∣∣ ∫ t

0

(
c(t− r,Br + x;w)− c(s− r,Br + y;w)

)
× exp

{∫ r

0

(
c(t− z,Bz + x;w)− c(s− z,Bz + y;w)

)
dz
}

dr
∣∣∣2]

≤ e4K1tE0

[
2
∣∣ ∫ s

0

(
c(t− r,Br + x;w)− c(s− r,Br + y;w)

)
dr
∣∣2 + 2K1|t− s|2

]
≤ e4K1t

(
2sE0

[ ∫ s

0

(
c(t− r,Br + x;w)− c(s− r,Br + y;w)

)2
dr
]

+ 2K1|t− s|2
)
,

where we set c(s, ·; ·) := c(s, ·; ·) for s > 0 and c(s, ·; ·) ≡ 0 for s ≤ 0. Thus by the estimates
for I1 and I2, using continuity and boundedness of c, we observe that [0, T ]× R 3 (t, x) 7→
(Φ ◦ w)(t, x) is continuous for all w ∈ Cα0

T (L,K). By the above inequalities we get for
x, y ∈ R and all t ∈ [0, T ]∣∣(Φ ◦ w)(t, x)− (Φ ◦ w)(t, y)

∣∣ ≤ 2L0e
K3T |x− y|α0

+ ‖w0‖∞eK3T+2K1T (2t)1/2 ×
(
E0

[ ∫ t

0

(
c(t− r,Br + x;w)− c(t− r,Br + y;w)

)2
dr
])1/2

≤
(

2L0e
K3T + ‖w0‖∞eK3T+2K1T 21/2(K4 +K5L)t

)
|x− y|α0 ,

i.e. Φ maps Cαt (L,K) to Cαt (J1L0 + (J2 + J3L)t,K) for each t ≤ T , where

J1 := 2eK3T , J2 := Ke2K1T 21/2K4, and J3 := Ke2K1T 21/2K5.

Subsequently, we can now prove Proposition 2.13 by following the argument in [39, Proof
of Theorem 2].

Proof of Proposition 2.13. Let Φ be de�ned in (2.1.11) and let us �rst show that the equation

w = Φ ◦ w

has a unique solution in Cα0
T . We put Φ(0) := Id, Φ(n) := Φ ◦ Φ(n−1), n ∈ N, and set
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K := ‖w0‖∞eK3T . Using Lemma 2.14 n times, we get that Φ(n) maps Cα0
t (L0,K) to

Cα0
t (Ln,K) with

Ln := (J3t)
nL0 + (J1L0 + J2t)

n−1∑
k=0

(J3t)
k.

Let t1 > 0 be as in the proof of Proposition 2.10 (i.e. such that Φ is a contraction on Ut1)
and set t′1 := t1 ∧ 1

2(J2∨J3) , where a ∧ b denotes the minimum of a, b ∈ R . Then Φ is
contractive and by Banach's �xed-point theorem [1, Theorem 1.1] we get that there exists
a unique �xed point u0 = limn→∞Φ(n) ◦ w0 in Cα0

t′1
(1 + (1 + 2J1)L0,K). Then, just as we

did at the end of the proof of Proposition 2.10, we can uniquely prolong the solution u0 to
w ∈ Cα0

T .
To show that w is a solution to (2.1.9), we mention that by Assumption 2.11 (i) and

w ∈ Cα0
T we have c(·, ·;w) ∈ Cα0

T . Thus we can apply Proposition 2.4, which yields that there
exists a unique solution v to the PDE

vt(t, x) =
1

2
vxx(t, x) + c(t, x;w) · v(t, x), (t, x) ∈ (0,∞)× R,

v(0, x) = w0(x), x ∈ R.

Let us show v(t, x) = w(t, x) for all (t, x) ∈ [0, T ]× R. To do so, �x t ∈ (0, T ] and de�ne

Ys := v(t− s,Bs)e
∫ s
0 c(t−r,Br;w) dr, s ∈ [0, t].

Then applying Itô's formula from [8, I.III.1.10, page 43], we get for all s < t

Ys = Y0 +

∫ s

0
vx(t− r,Br)e

∫ r
0 c(t−u,Bu;w) du dBr.

Since w0 is bounded, Lemma 2.5 provides that the stochastic integral is a martingale and
has zero expectation with respect to Px. Taking expectation on both sides of the latter
equality and putting s = t (this is possible by the same arguments as in (2.1.8)), we get

w(t, x) = Ex
[
w0(Bt)e

∫ t
0 c(t−r,Br;w) dr] = Ex

[
Yt
]

= Ex
[
Y0

]
= v(t, x).

2.2 Branching processes

The second major tool for the investigations in the main part of the thesis stems from the
theory of branching processes. We provide a construction of a certain branching process
and then derive useful applications.

2.2.1 Construction of BBMRE

The basic construction is based on the model from [66, Section 2.1]. While the author
of [66] models the randomness of a certain medium by a Poisson point process hit by a
Wiener sausage, our medium is modeled by a continuous nonnegative random-function ξ.
With regard to the next subsection, we also use notation from [34] and [33], and the main
theorem of the next subsection is a corollary of the results and ideas in these papers.

Before we provide a construction of a branching Brownian motion in random environment
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(BBMRE), we supply a guideline of its dynamics. We follow the representations from [34,
Section 2], where a more general model is described.

A BBMRE can be characterize as follows. Let ξ = (ξ(x))x∈R = (ξ(x, ω))x∈R, ω ∈ Ω, be
a stochastic process on a probability space (Ω,F ,P) with continuous and nonnegative paths
x 7→ ξ(x). Given ξ, we start the branching process with one particle at x. This particle
moves as a standard Brownian motion. When at position y, the particles branches at rate
ξ(y), i.e. it dies and gives birth to a random number of new particles, which start at the
site where their parent has died. We further assume that at every branching event, at least
one particle is born and the process will never die out. Each of the new born particles then
independently repeats the stochastic behavior of its parent.

Construction

Let ξ : R→ R be a nonnegative, bounded and continuous function.
Furthermore, let M := (Ω̂, F̂ , (F̂t)t≥0, (Bt)t≥0, (Px)x∈R, (θt)t≥0) be a standard Brown-

ian motion on R. Here, (θt)t≥0 denotes the time shift operator of paths, i.e. for each ω̂ ∈ Ω̂,
Bt(θsω̂) = Bt+s(ω̂) identically for any s, t ≥ 0, and Px is the probability measure under
which we have Px(B0 = x) = 1. Furthermore, let τ be a nonnegative random variable
on (Ω̂, F̂ , Px), which is independent of the Brownian motion and exponentially distributed
with mean 1, i.e. Px(τ > t) = e−t for every t ≥ 0. Furthermore, let

S = S(ω̂, ξ) := inf
{
t ≥ 0 :

∫ t

0
ξ(Bs(ω̂)) ds ≥ τ(ω̂)

}
, ω̂ ∈ Ω̂. (2.2.1)

Then we have

Px(S(·, ξ) > t) = Px
(
τ >

∫ t

0
ξ(Bs) ds

)
= Ex

[
Px
(
τ >

∫ t

0
ξ(Bs) ds

∣∣ (Bs)s≥0

)]
= Ex

[
e−

∫ t
0 ξ(Bs) ds

]
, t ≥ 0,

where in the third equality we used independence of τ and (Bt)t≥0. Thus under Px, S(·, ξ)
can be regarded as an exponentially distributed random variable with inhomogeneous rate
ξ(Bs(·)).

Let (pn)n∈N be a probability distribution supported on N, i.e. pn ≥ 0 for all n ∈ N and∑∞
n=1 pn = 1. We further assume p1 < 1, so that we exclude the trivial case where there is

no actual branching. Further, let I be an N-valued random variable on (Ω̂, F̂ , Px), which
is independent of τ and the Brownian motion (Bt)t≥0 and has distribution (pn)n∈N, i.e.
Px(I = n) = pn, n ∈ N.

To describe the genealogy of the particles of the branching process, we use the following
labeling system. The set

K := {∅} ∪
⋃
n∈N

Kn,

where
K1 := {(1)}, Kn := {(1, k2, . . . , kn) : k2, . . . , kn ∈ N}, n ≥ 2,

is called the set of particles; particle ∅ is referred to as the initial ancestor. We use the
convention that the initial ancestor has exactly one child (1). As an example, (1, 4, 9) ∈ K
denotes the ninth child of the fourth child of the child of the initial ancestor. For k ∈ N
and u = (1) we set v := uk = (1)k := (1, k) ∈ K2 and if u = (1, k2, . . . , kn) ∈ Kn, n ≥ 2,
we de�ne v := uk := (1, k2, . . . , kn, k) ∈ Kn+1; we say that v is the k-th child of u. For



Section 2.2 Branching processes 25

convention, we set ∅(1) := (1) ∈ K1 and allow the notation ∅(k) := (k), k ∈ N \ {1}; recall
that (k) /∈ K for k ∈ N \ {1} and this notation is introduced only to shorten some notation
below.

Since we wish to have a certain view of particles, as a system evolving in time and
space, we associate to every particle certain random objects such as motion, life- and death-
time as well as the number of its children. To be precise, let (Bu

t )t≥0 and τu, u ∈ K, be
independent copies of the random objects (Bt)t≥0 and τ , respectively, and denote by Su the
corresponding branching time with (Bt)t≥0 and τ in (2.2.1) replaced by (Bu

t )t≥0 and τu,
u ∈ K. Furthermore, set I∅ := 1 and let Iu, u ∈ K \ {∅}, be independent copies of τ . We
extend M such that all objects are assumed to be de�ned on the same probability space.

Then de�ne the family of random variables Tu and (Xu
t )t≥0, indexed by u ∈ K, on

(Ω̂, F̂ ) as follows; for each ω̂ ∈ Ω̂ de�ne T ∅(ω̂) := T ∅(ω̂, ξ) := 0 and X∅t (ω̂) := X∅t (ω̂, ξ) :=
B∅t (ω̂) for all t ≥ 0. Then for all u ∈ K, k ∈ N and ω̂ ∈ Ω̂ we set

Tuk(ω̂) := Tuk(ω̂, ξ) :=

{
Tu(ω̂, ξ) + Suk(θTu(ω̂,ξ)ω̂, ξ), if k ≤ Iu(ω̂),

∞, if k ≥ Iu(ω̂) + 1,

and

Xuk
t (ω̂) := Xuk

t (ω̂, ξ) :=


Xu
Tu(ω̂,ξ)(ω̂, ξ) +Buk

t (ω̂)−Buk
Tu(ω̂,ξ)(ω̂),

if Tu(ω̂, ξ) ≤ t < Tuk(ω̂, ξ) and k ≤ Iu(ω̂),

∆, otherwise,

where ∆ /∈ R is some cemetary state. We use Xu
t and Tu to denote, respectively, the

position and branching time of the particle u. More precisely, we can describe the branching
Brownian motion as follows:

� At time 0, one initial particle with index ∅ dies at site X∅0 = B∅0 and gives birth to
exactly one Brownian particle (1).

� A Brownian particle with index u ∈ K\{∅} dies at time Tu and site Xu
Tu and produces

k new Brownian particles with probability Px(Iu = k), k ∈ N.

� These Brownian particles, indexed by u1, . . . ,uIu, respectively, start from Xu
Tu , and

independently repeat the stochastic behaviour of their parent.

Note that we included the cemetary state ∆ only for the sake of completeness. One could
think of that at a branching event there are in�nitely many particles born, but those with
index k ≥ Iu+1 are dead-born (or �never born�) and taken to the cemetary. These particles
are irrelevant in the course of the thesis, since we only consider particles uk up to time t
such that Tu ≤ t, which is impossible if k ≥ Iu + 1.

Above construction of the branching process is, due to the relatively simple branching
mechanism, quite short and self-contained. However, we can consult general results ensuring
existence of branching processes, described e.g. in the monographs [36, 37, 38]. There, the
authors use semigroup theory to construct general branching Markov processes. As a special
case, the process constructed above is given in [37, Example 3.4 (A) Branching Brownian
motions].

For a given function ξ, we denote by Pξx the probability measure under which the above
constructed process (Xu

t )t≥0,u∈K starts in x ∈ R.
The next step is to take ξ random. More precisely, let ξ = (ξ(x, ω))x∈R, ω ∈ Ω, be a

stochastic process on a probability space (Ω,F ,P) with P-a.s. continuous, nonnegative and
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bounded paths. Conditioned on ξ, we let P
ξ
x be the probability measure of a the above

branching process, under which the process starts at site x ∈ R. Thus P
ξ
x is the regular

conditional probability of the above branching process. The existence (also for more general
branching processes) of the regular conditional probability P

ξ
x is proven in [62, Theorem 4.2]

using the construction [37, Theorem 3.5]. It usual called quenched law of the branching
process.

We call the above described process the branching Brownian motion in random environ-

ment (BBMRE ).
Finally, let us introduce some notation. For t ≥ 0 we let

N(t, A) :=
{
uk : Tu ≤ t < Tuk, Xu

t ∈ A, u ∈ K, k ∈ N
}
, A ∈ B(R),

N(t) := N(t,R),

N≤(t, x) := |N(t, (−∞, x])|, x ∈ R,
N≥(t, x) := |N(t, [x,∞))|, x ∈ R,

where B(R) is the Borel-σ-algebra on R. Further, (Xu
s )0≤s≤t denotes the path of the unique

ancestor of u up to time t. Finally, we let Eξx be the corresponding expectation associated
to P

ξ
x.

2.2.2 The many-to-few lemmata

As the construction of the previous subsection reveals, a BBMRE is a priori complicated to
analyze because there is a large number of ingredients governing the dynamics. Nevertheless,
if one wants to calculate the moments of the number of particles, there exist useful, if not
even indispensable tools: the many-to-few lemmata. These lemmata simplify the calculation
of cumbersome expressions, including many particles of the BBMRE, by a functional of
only few Brownian particles. What is more, in the case of the �rst moment, the many-

to-one formula and the Feynman-Kac formula for a suitable PDE actually coincide. This
forms a bridge between the theory of branching processes and the theory of PDEs and this
observation is crucial for the main part of the thesis.

The main ingredients in this subsection are the papers [34] and [30]. As [34] treats the
many-to-few lemmata in their most general form, [30] gives an application of certain results
from [34] for so-called branching random walks in random environment, which we can easily
adapt to our setting. Furthermore, for our purposes, it su�ces to state the many-to-few
lemmata up to the second moments (i.e. many-to-one and many-to-two formula).

Let ξ = (ξ(x))x∈R = (ξ(x, ω)), ω ∈ Ω, be a stochastic process on a probability space
(Ω,F ,P) with P-a.s. continuous, nonnegative and bounded paths. Further, let Pξx, be the
probability measure of a BBMRE with o�spring distribution (pn)n∈N, starting in x ∈ R.
For the o�spring distribution, we assume the following assumptions on the moments:

m1 =

∞∑
k=1

kpk > 1, m2 :=

∞∑
k=1

k2pk ∈ (1,∞). (2.2.2)

Proposition 2.15. Let ϕ1, ϕ2 : [0,∞)→ [−∞,∞] be càdlàg functions satisfying ϕ1 ≤ ϕ2.

Then P-a.s., the �rst and second moments of the number of particles in N(t) whose genealogy



Section 2.2 Branching processes 27

stays between ϕ1 and ϕ2 in the time interval [0, t] are given by

E
ξ
x

[∣∣{u ∈ N(t) : ϕ1(s) ≤ Xu
s ≤ ϕ2(s) ∀s ∈ [0, t]

}∣∣]
= Ex

[
e(m1−1)

∫ t
0 ξ(Br) dr;ϕ1(s) ≤ Bs ≤ ϕ2(s) ∀s ∈ [0, t]

] (Mom1)

and

E
ξ
x

[∣∣u ∈ N(t) : ϕ1(s) ≤ Xu
s ≤ ϕ2(s) ∀s ∈ [0, t]

∣∣2]
= Ex

[
e(m1−1)

∫ t
0 ξ(Br) dr;ϕ1(s) ≤ Bs ≤ ϕ2(s) ∀s ∈ [0, t]

]
+ (m2 −m1)

∫ t

0
Ex

[
e(m1−1)

∫ s
0 ξ(Br) dr ξ(Bs)1{ϕ1(r)≤Br≤ϕ2(r) ∀0≤r≤s}

×
(
Ey
[
e(m1−1)

∫ t−s
0 ξ(Br) dr

1{ϕ1(r+s)≤Br≤ϕ2(r+s) ∀0≤r≤t−s}
])2

|y=Bs

]
ds,

(Mom2)

respectively.

Here and for the remainder of the thesis we use the notation Ex[f ; ·] = Ex[f1{·}] and
E
ξ
x[g; ·] = E

ξ
x[g1{·}] for suitable functions f, g.

Proof of Proposition 2.15. The proof is basically an adaptation of the proof of [30, Theorem
2.1]. For u ∈ N(t) we de�ne Bu as the birth time (i.e. the death time of its parent
v ∈ K such that u = vk for some k ∈ N) and Tu as the death time of u, and abbreviate
Bu(t) := Bu ∧ t and Tu(t) := Tu ∧ t. To apply [34, Lemma 1] for the cases k = 1, 2 therein,
we have to de�ne new probability measures Q(i)

x (·), i = 1, 2, as follows:

i) We start with one particle at x, carrying i marks (as well as their positions).

ii) We denote ψjt ∈ N(t) as the particle carrying mark j, and Zjt as its position at time
t. The particles carrying marks are called spines. For i = 1 there is one spine for all
t ≥ 0 and for i = 2 there is one spine at time 0 (i.e. Z1

0 = Z2
0 ) and at most two spines

for all times t > 0.

iii) A particle at position y carrying j marks di�uses as a standard Brownian motion,
branches at rate mj · ξ(y) and is replaced by k o�spring particles with probability
p

(j)
k := kjpk

mj
, j = 1, 2, k ∈ N. The number of o�spring particles for each particle is

independent of everything else.

iv) At a branching event of a particle carrying j marks, each mark independently and
uniformly at random chooses one of the o�spring particles to follow.

v) Particles not carrying any marks behave as under Pξx.

The existence of the measures Q(i)
x (·), i = 1, 2, is proven in [34, Section 5]. We write E

(i)
x [·],

i = 1, 2, as the corresponding expectation. The set of particles carrying at least one mark up
to time t is called skeleton at time t. It is denoted by skel(t). Further we de�neD(v) ∈ {1, 2}
to be the number of marks carried by particle v ∈ skel(t). Let us abbreviate

A(t) := exp
{ ∑

v∈skel(t)

∫ Tv(t)

Bv(t)
(mD(v) − 1)ξ(Xv

r ) dr
}
,

Y (u, t) := 1{ϕ1(s)≤Xu
s ≤ϕ2(s) ∀s≤t}, u ∈ N(t),
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and

Nϕ1,ϕ2(t) :=
{
u ∈ N(t) : ϕ1(s) ≤ Xu

s ≤ ϕ2(s)∀s ∈ [0, t]
}
.

Then applying the general many-to-few lemma [34, Lemma 1] with ζ ≡ 1 and k = 1, 2
therein, we obtain

E
ξ
x

[
|Nϕ1,ϕ2(t)|

]
= E

ξ
x

[ ∑
u∈N(t)

Y (u, t)
]

= E
(1)
x

[
A(t)

∑
v∈N(t)

Y (v, t)1{v=ψ1
t }

]
,

E
ξ
x

[
|Nϕ1,ϕ2(t)|2

]
= E

ξ
x

[ ∑
u1,u2∈N(t)

Y (u1, t)Y (u2, t)
]

= E
(2)
x

[
A(t)

∑
v1,v2∈N(t)

Y (v1, t)Y (v2, t)1{vi=ψit ∀i=1,2}

]
.

(2.2.3)

We see that in the latter display, the quantities in the expectations E(1)
x and E

(2)
x only contain

particles from the skeleton. In the �rst equation, the skeleton consists of one single spine v

and under Q(1)
x (·), its position (Z1

t )t≥0 di�uses as a standard Brownian motion. The splitting
mechanism is irrelevant in this case. We thus have Bv(t) = 0 and Tv(t) = t and we get

E
ξ
x

[
|Nϕ1,ϕ2(t)|

]
= E

(1)
x

[
e
∫ t
0 (m1−1)ξ(Z1

r ) dr;ϕ1(s) ≤ Z1
s ≤ ϕ2(s) ∀s ≤ t

]
= Ex

[
e
∫ t
0 (m1−1)ξ(Xr) dr;ϕ1(s) ≤ Bs ≤ ϕ2(s) ∀s ≤ t

]
and hence (Mom1). To show (Mom2), we have to make sure that the right-hand side in
(Mom2) equals the very last term in (2.2.3), where there are two marks. We condition
on whether there is a splitting before time t, i.e. the initial particle, carrying both marks,
branches and the two marks choose di�erent lines to follow. Let T be the time of the
�rst splitting event. If at a branching event we branch into k particles, this happens with
probability 1/k. Thus at site y, the rate of T is equal to m2ξ(y) ·

∑
k(1−

1
k )p

(2)
k = ξ(y)(m2−

m1). On {T > t} the skeleton consists only of one single spine v ∈ skel(t) until time t, which
ful�lls Bv(t) = 0, Tv(t) = t, D(v) = 2 and (Xv

s )s∈[0,t] = (Z1
s )s∈[0,t]. Thus we have

Q(2)
x

(
T > t |Z1

)
= exp

{
−
∫ t

0
(m2 −m1)ξ(Z1

r ) dr
}

and then

E
(2)
x

[
A(t)1{T>t}

∑
v1,v2∈N(t)

Y (v1, t)Y (v2, t)1{vi=ψit ∀i=1,2}
∣∣Z1

]
= e

∫ t
0 (m1−1)ξ(Z1

r ) dr
1{ϕ1(s)≤Z1

s≤ϕ2(s) ∀s≤t}.

Integrating this with respect to Q
(2)
x , we get

E
(2)
x

[
A(t)1{T>t}

∑
v1,v2∈N(t)

Y (v1, t)Y (v2, t)1{vi=ψit ∀i=1,2}

]
= E

(2)
x

[
e
∫ t
0 (m1−1)ξ(Z1

r ) dr
1{ϕ1(s)≤Z1

s≤ϕ2(s) ∀s≤t}
]

= Ex
[
e
∫ t
0 (m1−1)ξ(Br) dr

1{ϕ1(s)≤Bs≤ϕ2(s) ∀s≤t}
]
. (2.2.4)
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giving the �rst summand in (Mom2). For the conditional density, we get

Q(2)
x

(
T ∈ ds |Z1

)
= exp

{
−
∫ s

0
(m2 −m1)ξ(Z1

r ) dr
}
ξ(Z1

s )(m2 −m1) ds,

and if T ≤ t, we have

A(t) = exp

{∫ T

0
(m2 − 1)ξ(Z1

r ) dr

}
·

2∏
i=1

e
∫ t
T

(m1−1)ξ(Zir) dr

and ∑
v1,v2∈N(t)

Y (v1, t)Y (v2, t)1{vi=ψit ∀i=1,2}

= 1{ϕ1(r)≤Z1
r≤ϕ2(r) ∀r≤T}

2∏
i=1

1{ϕ1(T+r)≤ZiT+r≤ϕ2(T+r) ∀r≤t−T}.

Applying the strong Markov property we then get

E
(2)
x

[
A(t)1{T≤t}

∑
v1,v2∈N(t)

Y (v1, t)Y (v2, t)1{vi=ψit ∀i=1,2}
∣∣Z1

]
=

∫ t

0
e
∫ s
0 (m1−1)ξ(Z1

r ) dr(m2 −m1)ξ(Z(1)
s )1{ϕ1(r)≤Z1

r≤ϕ2(r) ∀r≤s}

×
(
E
ξ
Z1
s

[
|Nϕ1(·+s),ϕ2(·+s)(t− s)|

])2
ds.

Integrating the latter expression with respect to Q
(2)
x and using (2.2.4), we see that the very

last term in (2.2.3) equals the term on the right-hand side in (Mom2). This completes the
proof.

2.2.3 The McKean representation

Finally, we are in the position to represent the solution to (2.1.1) for a certain class of
nonlinearities and initial conditions in terms of a functional of a BBMRE. We also take the
chance to get in touch with some model assumptions from Chapters 3 and 4.

To be precise, consider the randomized Fisher-KPP equation

wt =
1

2
wxx + ξ(x, ω) · F (w), t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

where we make the following assumptions:
We assume that ξ = (ξ(x))x∈R = (ξ(x, ω))x∈R, ω ∈ Ω, is a stochastic process on some

probability space (Ω,F ,P), which is bounded away form 0 and in�nity as well as Hölder
continuous, i.e. P-a.s. we have

0 < ei := ess inf
ω

ξ(x) < ess sup
ω

ξ(x) =: es <∞ for all x ∈ R, , (BDD)

where ess inf denotes the essential in�mum and ess sup the essential supremum of ξ, and
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there exist α = α(ω) > 0 and C = C(ω) > 0, such that

|ξ(x)− ξ(y)| ≤ C · |x− y|α ∀x, y ∈ R. (HOEL)

Let (pk)k∈N be a sequence of real numbers and the function F = F (pk)k∈N on [0, 1] be as
follows:

pk ∈ [0, 1] ∀k ∈ N,
∞∑
k=1

pk = 1, m1 =
∞∑
k=1

kpk ≡ 2, m2 =
∞∑
k=1

k2pk <∞;

F (u) = 1− u−
∞∑
k=1

pk(1− u)k, u ∈ [0, 1]. (PROB)

Note that F ∈ C1([0, 1], [0, 1]) and that F can be extended to a bounded C1 function on
the real line. However, this is not important for our applications, as our choice of initial
functions forces the solution to stay in [0, 1], see Corollary C.3.

Denoting the solution to (F-KPP) with initial function w0 by ww0 , let

Ĩsmooth

F-KPP :=
{
w0 ∈ C(R, [0, 1]) : ww0 ∈ C([0,∞)× R,R) ∩ C1,2((0,∞)× R,R)

and ww0 solves (F-KPP)
}

be the class of continuous initial functions such that the corresponding solution to (F-KPP)
exists and is classical and let

ĨF-KPP :=
{
w0 : 0 ≤ w0 ≤ 1 and ∃(w̃(n)

0 )n∈N ⊂ Ĩsmooth

F-KPP : w̃
(n)
0

mon.→ w0

}
.

Here, mon.→ denotes pointwise monotone convergence, i.e. an
mon.→ a if an ≤ an+1 or an ≥ an+1

for all n ∈ N and an −→
n→∞

a. ĨF-KPP is the class of functions which can be approximated

pointwise by a monotonically increasing or decreasing sequence of functions from Ĩsmooth

F-KPP
.

Let us give a few remarks why we use these conditions. Note that by the assumptions
in (PROB), F is Lipschitz continuous and bounded on [0, 1] with Lipschitz constant 1 (and
these properties are ful�lled on the real line by a suitable extension of F ). Therefore, Propo-
sition 2.10 gives that there exists a unique bounded generalized solution to (F-KPP), see
De�nition 2.9 for the notation of generalized solutions. In addition, under the conditions
(BDD) and (HOEL), the assumptions from Example 2.12 are ful�lled. Thus, by Proposi-
tion 2.13, if the initial function ful�lls a suitable Hölder condition, the solution is classical.
Consequently, the class of Hölder continuous functions is a subset of Ĩsmooth

F-KPP
and we have

Ĩsmooth

F-KPP
⊂ ĨF-KPP. The de�nition of ĨF-KPP is explained in the following remark. Basically,

if an initial function w0 ful�lls w0 ∈ ĨF-KPP, the corresponding generalized solution ww0

can be approximated by classical solutions. This guarantees the generalized solution to
be monotone in its initial function (i.e. w0 ≤ u0 implies ww0 ≤ wu0), which is due to the
corresponding monotonicity of classical solutions in their initial functions, see Corollary C.2.

Remark 2.16. For initial conditions in ĨF-KPP, generalized solutions can be approximated
by classical solutions. Indeed, if (w

(n)
0 )n∈N ⊂ Ĩsmooth

F-KPP
approximates w0 ∈ ĨF-KPP mono-

tonically pointwise, then by Corollary C.2 the corresponding sequence of classical solu-
tions (w(n))n∈N = (ww

(n)
0 )n∈N to (F-KPP) is also monotone and thus the limit w(t, x) :=

limn→∞w
(n)(t, x) exists for all (t, x) ∈ [0,∞)×R. Dominated convergence (note that ξ, w0

and w 7→ F (w)
w are bounded) and the fact that w(n) is also a generalized solution (which is
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due to Proposition 2.10) then imply

w(t, x) = lim
n→∞

w(n)(t, x) = lim
n→∞

Ex

[
exp

{∫ t

0
ξ(Bs)

F (w(n)(t− s,Bs))
w(n)(t− s,Bs)

ds
}
w

(n)
0 (Bt)

]
= Ex

[
exp

{∫ t

0
ξ(Bs)

F (w(t− s,Bs))
w(t− s,Bs)

ds
}
w0(Bt)

]
,

i.e. w is the generalized solution to (F-KPP) with initial condition w0.

As constructed in Section 2.2.1, let Pξx, x ∈ R, be the probability measure of a BBMRE
with o�spring distribution (pn)n∈N, starting in x ∈ R. Recall further notation for BBMRE
from page 26. Then we get the followingMcKean representation of the solution to (F-KPP):

Proposition 2.17. Let w0 ∈ ĨF-KPP, ξ ful�ll (BDD) and (HOEL) and let F ful�ll (PROB).
Then P-a.s., the solution to (F-KPP) is given by

w(t, x) = 1− E
ξ
x

[ ∏
u∈N(t)

(
1− w0(Xu

t )
)]
, (t, x) ∈ [0,∞)× R. (McKean)

Proof. We divide the proof into two parts, one in which w0 is assumed to be continuous and
one in which we have w0 ∈ ĨF-KPP.

Let w0 be continuous and w0(x) ∈ [0, 1] for all x ∈ R. We abbreviate ∂2
x := ∂2

∂x2
,

de�ne u := 1 − w and u0 := 1 − w0. Then by Corollary 2.7, the function u(1)(t, x) =

Ex
[
e−

∫ t
0 ξ(Br) dru0(Bt)

]
is the unique classical solution to u(1)

t (t, x) = 1
2u

(1)
xx (t, x)−ξ(x)u(1)(t, x)

ful�lling u(1)(0, x) = u0(x). Furthermore, by the same argument, for all s < t and k ∈ N
�xed, the function

u(2)(t, x; s, k) := Ex

[
ξ(Bt−s)e

−
∫ t−s
0 ξ(Br) dru(s,Bt−s)

k
]

is the unique classical solution to u(2)
t (t, x; s, k) = 1

2u
(2)
xx (t, x; s, k) − ξ(x)u(2)(t, x; s, k). By

dominated convergence, taking advantage of the uniform continuity of the �rst and second
order derivatives, for every �xed t′ ≤ t, it is allowed to interchange the limits to obtain the
identities ∑

k

pk

∫ t′

0

∂

∂t
u(2)(t, x; s, k) ds =

∂

∂t

∑
k

pk

∫ t′

0
u(2)(t, x; s, k) ds,

∑
k

pk

∫ t′

0

(1

2
∂2
x − ξ(x)

)
u(2)(t, x; s, k) ds =

(1

2
∂2
x − ξ(x)

)∑
k

pk

∫ t′

0
u(2)(t, x; s, k) ds.

(2.2.5)

Conditioning on the �rst splitting time of the initial particle and on how many children are
born, we have

u(t, x) = Ex
[
e−

∫ t
0 ξ(Br) dru0(Bt)

]
+
∑
k

pk

∫ t

0
Ex

[
ξ(Bs)e

−
∫ s
0 ξ(Bs)u(t− s,Bs)k

]
ds

= u(1)(t, x) +
∑
k

pk

∫ t

0
Ex

[
ξ(Bt−s)e

−
∫ t−s
0 ξ(Br) dru(s,Bt−s)

k
]

ds,
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where we used the Markov property of the process (Bt)t≥0. Then for h 6= 0,

1

h

(
u(t+ h, x)− u(t, x)

)
=

1

h

(
u(1)(t+ h, x)− u(1)(t, x)

)
+
∑
k

pkEx

[1

h

∫ t+h

t
ξ(Bt+h−s)e

−
∫ t+h−s
0 ξ(Br) dru(s,Bt+h−s)

k ds
]

+
∑
k

pk

∫ t

0

1

h

(
u(2)(t+ h, x; s, k)− u(2)(t, x; s, k)

)
ds.

Invoking once again the arguments from the beginning of the proof, as h tends to zero,
the �rst summand converges to 1

2u
(1)
xx (t, x) − ξ(x)u(1)(t, x) and by dominated convergence,

the second summand converges to ξ(x)
∑

k pku(t, x)k. For the third term, we observe that
the integrand is uniformly bounded since u(2)

t is continuous. Again, due to dominated
convergence and (2.2.5), the latter term converges to

(1

2
∂2
x − ξ(x)

)∑
k

pk

∫ t

0
u(2)(t, x; s, k) ds.

Combining these observations, we arrive at

ut(t, x) = u
(1)
t (t, x) + ξ(x)

∑
k

pku(t, x)k +
(1

2
∂2
x − ξ(x)

)∑
k

pk

∫ t

0
u(2)(t, x; s, k) ds

=
(1

2
∂2
x − ξ(x)

)
u(t, x) + ξ(x)

∑
k

pku(t, x)k,

which is equivalent to w being a solution to (F-KPP). Thus, we have shown the claim for
continuous w0.

To show that the function w in (McKean) is the unique (probably generalized) solution
to (F-KPP) for every w0 ∈ ĨF-KPP, let (w

(n)
0 )n∈N ⊂ Ĩsmooth

F-KPP
be a monotone sequence approx-

imating w0. Then by the step 1), the corresponding McKean representations w(n) = ww
(n)
0 ,

n ∈ N, are classical solutions to (F-KPP) and converge pointwise to w by dominated con-
vergence (note that w(n)

0 ∈ [0, 1] for all n ∈ N). On the other side, by Remark 2.16, the limit
of classical solutions is the unique (generalized) solution. Thus the McKean presentation is
the unique (generalized) solution to (F-KPP) for all w0 ∈ IF-KPP.

Let us discuss an application of Proposition 2.17.

Remark 2.18. In Chapters 3 and 4 we frequently use Proposition 2.17 for the function
w0 = 1(−∞,0], resulting in

w(t, x) = 1− E
ξ
x

[ ∏
u∈N(t)

1(0,∞)(X
u
t )
]

= 1− P
ξ
x

(
Xu
t > 0 ∀u ∈ N(t)

)
= P

ξ
x

(
N≤(t, 0) ≥ 1

)
. (2.2.6)

Indeed, although the function 1(−∞,0] is not smooth and we can't expect a continuous
solution to (F-KPP), the function can be approximated by a monotonically decreasing
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sequence of functions (w
(n)
0 )n∈N such as

w
(n)
0 (x) :=


1, x ≤ 0,

e
x

nx−1 , 0 < x < 1
n ,

0, x ≥ 1
n .

Because all these functions are smooth, by Proposition 2.13 the corresponding solutions to
(F-KPP) are classical. Thus 1(−∞,0] ∈ ĨF-KPP.
Remark 2.19. Let us recall what we already mentioned in Section 1.2. Proposition 2.17
slightly di�ers from the McKean representation in homogeneous branching environment,
used by Bramson [13]. More precisely, for ξ ≡ c being a constant function and w(0, ·) =
1(−∞,0], the canonical representation is given by w(t, x) = Pc0(N≥(t, x) ≥ 1). This represen-
tation follows from Proposition 2.17 using the symmetry Pcx(N≤(t, 0) ≥ 1) = Pc0(N≥(t, x) ≥
1) which is a consequence of the re�ection symmetry of the Brownian motion and the ho-
mogeneity of the environment. Thus w(t, ·) is the tail of the distribution function of the
rightmost particle of a BBM at time t with branching rate c, starting in the origin. For
non-homogeneous potential, however, this interpretation fails to hold due to non-symmetry
of the BBM. In this case, we have to work with the presentation from (2.2.6).

2.3 Summary

Before we turn our attention to the actual content of this thesis in the next two chapters,
we give a short summary of the last two sections. As we have already seen, there are
several connections between the theory of PDEs, functionals of Brownian motion and those
of BBMRE. Let us summarize these links and provide the formulas we frequently use. Of
course, as it is in the nature of a summary, there may be overlaps with the previous content.
Nevertheless, this section serves well as referencing is made easier.

Let us state the theorem about existence, uniqueness and representation of the corre-
sponding solutions to the randomized Fisher-KPP equation

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F (w(t, x)), (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

as well as its linearization, the parabolic Anderson model,

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R,
(PAM)

with ξ = (ξ(x, ω))x∈R, ω ∈ Ω, a stochastic process on a probability space (Ω,F ,P).
As before, we work under some boundedness and smoothness conditions for ξ. More

precisely, P-a.s. we have

0 < ei := ess inf
ω

ξ(x) < ess sup
ω

ξ(x) =: es <∞ for all x ∈ R, (BDD)

where ess inf denotes the essential in�mum and ess sup the essential supremum of ξ, and
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that there exist α = α(ω) > 0 and C = C(ω) > 0, such that

|ξ(x)− ξ(y)| ≤ C · |x− y|α ∀x, y ∈ R. (HOEL)

Further, we recall some special nonlinearity, generated by the o�spring distribution of the
BBMRE. That is, let (pk)k∈N be a sequence of real numbers and the function F = F (pk)k∈N

on [0, 1] be as follows:

pk ∈ [0, 1] ∀k ∈ N,
∞∑
k=1

pk = 1, m1 =
∞∑
k=1

kpk ≡ 2, m2 =
∞∑
k=1

k2pk <∞;

F (u) = 1− u−
∞∑
k=1

pk(1− u)k, u ∈ [0, 1]. (PROB)

Note that F ∈ C1([0, 1], [0, 1]).
Let us also recall a set of initial conditions for the solution to (F-KPP). Denoting the

solution to (F-KPP) with initial function w0 by ww0 , let

Ĩsmooth

F-KPP :=
{
w0 ∈ C(R, [0, 1]) : ww0 ∈ C([0,∞)× R,R) ∩ C1,2((0,∞)× R,R)

and ww0 solves (F-KPP)
}

be the class of continuous initial functions such that the corresponding solution to (F-KPP)
exists and is classical and let

ĨF-KPP :=
{
w0 : 0 ≤ w0 ≤ 1 and ∃(w̃(n)

0 )n∈N ⊂ Ĩsmooth

F-KPP : w̃
(n)
0

mon.→ w0

}
.

We recall the probability measure Pξx and the corresponding expectation E
ξ
x of a BBMRE.

Proposition 2.20. P-a.s., let ξ satisfy (BDD) and (HOEL). Then the following hold P-a.s.:

(a) Let F ∈ C1([0, 1],R) be such that (0, 1] 3 w 7→ F (w)
w is bounded, Lipschitz continuous

and continuously extendable to w = 0. Then for every bounded, nonnegative and mea-

surable initial condition w0 there exists a unique generalized solution w to (F-KPP),
i.e. w ful�lls

w(t, x) = Ex

[
exp

{∫ t

0
ξ(Bs)

F
(
w(t− s,Bs)

)
w(t− s,Bs)

ds
}
w0(Bt)

]
, (t, x) ∈ [0,∞)× R.

(2.3.1)
If w0 is bounded and Hölder continuous, then the generalized solution is a classical

one.

(b) If F is given by (PROB), then for all w0 ∈ ĨF-KPP the solution to (F-KPP) is given
by (McKean) and in the case w0 = 1(−∞,0] we have

w(t, x) = P
ξ
x

(
N≤(t, 0) ≥ 1

)
, (t, x) ∈ [0,∞)× R. (2.3.2)

(c) If u0 is continuous and of at most polynomial growth (as in (2.1.6)), the generalized

solution u (or: Feynman-Kac formula) to (PAM), de�ned by

u(t, x) = Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
u0(Bt)

]
, (t, x) ∈ [0,∞)× R. (2.3.3)
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is the unique classical solution to (PAM).

(d) Let F ful�ll (PROB). Then for the case u0 = 1[a,b], a, b ∈ R, a < b, the generalized

solution u to (PAM) is given by

u(t, x) = E
ξ
x

[
|N(t, [a, b])|

]
, (t, x) ∈ [0,∞)× R. (2.3.4)

and for the case u0 = 1(−∞,0] the solution u is given by

u(t, x) = E
ξ
x

[
N≤(t, 0)

]
, (t, x) ∈ [0,∞)× R. (2.3.5)

Proof. (a) If w 7→ F (w)
w is bounded and Lipschitz continuous, then for every T > 0 and

w ∈ UT the function c,

[0, T ]× R 3 (t, x) 7→ c(t, x, w(t, x)) = ξ(x)
F (w(t, x))

w(t, x)

ful�lls Assumption 2.8. Then by Proposition 2.10, there exists a unique generalized solu-
tion to (F-KPP), which, by de�nition, is given by (2.3.1). Further, the function c ful�lls
Assumptions 2.8 and 2.11. Thus, if the initial condition w0 is bounded, nonnegative and
Hölder continuous, then by Proposition 2.13, the generalized solution is a classical one, i.e.
it solves (F-KPP).

(b) The �rst part of the claim follows from Proposition 2.17. Furthermore, as was
explained in Remark 2.18, we have 1(−∞,0] ∈ ĨF-KPP and an application of Proposition 2.17
gives that (2.3.2) is the unique (generalized) solution to (F-KPP) with initial condition
1(−∞,0].

(c) The claim follows from Corollary 2.7.
(d) As shown in Remark 2.18, we have 1(−∞,0] ∈ ĨF-KPP. A similar argument gives

1[a,b] ∈ ĨF-KPP for all a, b ∈ R such that a < b. Applying (2.3.3) and using the many-to-one
formula (Mom1) from Proposition 2.15, we can conclude.
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Chapter Three

Log-distance and invariance principles for

the fronts of F-KPP and PAM

The rest of the thesis deals with the randomized Fisher-KPP equation

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

as well as its linearization, the parabolic Anderson model,

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.
(PAM)

In order to be able to summarize our results, we introduce some notation. Let ε ∈ (0, 1) and
M > 0. Furthermore, write w = wξ,F,w0 for the solution to (F-KPP) with initial condition
w0 and nonlinearity F and u = uξ,u0 for the solution to (PAM) with initial condition u0.
We denote the fronts of the respective solutions by

mu0,M (t) := mξ,u0,M (t) := sup
{
x ∈ R : u(t, x) ≥ a

}
,

mF,w0,ε(t) := mξ,F,w0,ε(t) := sup
{
x ∈ R : w(t, x) ≥ ε

}
,

(3.0.1)

and sometimes use the abbreviations

m(t) := mξ(t) := mξ,1(−∞,0],1/2(t),

m(t) := mξ,F (t) := mξ,F,1(−∞,0],1/2(t).
(3.0.2)

Our �ndings are, on the one hand, motivated by the respective results from Section 1.2 for
the homogeneous case, which provide information about the position of the fronts of the
solutions to the respective equations, and thus their respective backlog as well, see (1.2.3).
On the other hand, we investigate the �uctuations of the fronts, similar to Nolen's central
limit theorem [54, Theorem 1.4], already mentioned in Section 1.3.2.

Under suitable assumptions, our results are summarized in the following statements:

(a) There exist a constant C ∈ (0,∞) and a P-a.s. �nite random time T (ω) such that for
all t ≥ T (ω),

m(t)−m(t) ≤ C ln t;

see Theorem 3.5 below.

37
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Figure 3.1: Sketches of functions ful�lling (SC), all of which are dominated by the identity
function.

(b) After centering and di�usive rescaling, the stochastic processes [0,∞) 3 t 7→ m(t) and
[0,∞) 3 t 7→ m(t) ful�ll an invariance principle; see Theorem 3.4 and Corollary 3.6
below.

This chapter is taken from the preprint article [19] and for the sake of brevity we refrain
from detailed references to the relevant parts of [19].

3.1 Results

In order to be able to precisely formulate the previously summarized results, we have to
introduce our model assumptions, some of which we have already seen in Section 2.2.3,
where we prove the McKean representation of the solution to (F-KPP).

3.1.1 Precise model assumptions

Let us start with introducing the standard conditions for the nonlinearity, i.e., F in (F-KPP)
has to ful�ll the following:

F ∈ C1([0, 1], [0, 1]), F (0) = F (1) = 0, F (w) > 0 ∀w ∈ (0, 1),

F ′(0) = 1 = sup
w>0

F (w)w−1, F ′(1) < 0, lim sup
w↓0

1− F ′(w)

w
<∞.

(SC)

We sometimes need a special kind of nonlinearity, generated by a probability distribution.
That is, let (pk)k∈N be a sequence of real numbers and the function F = F (pk)k∈N on [0, 1]
be as follows:

pk ∈ [0, 1] ∀k ∈ N,
∞∑
k=1

pk = 1, m1 =

∞∑
k=1

kpk ≡ 2, m2 =
∞∑
k=1

k2pk <∞;

F (u) = 1− u−
∞∑
k=1

pk(1− u)k, u ∈ [0, 1].

(PROB)

It is easy to check that every F ful�lling (PROB) also ful�lls (SC).
We now specify the classes of initial conditions under consideration for both, (F-KPP)

and (PAM). For this purpose, we �x δ′ ∈ (0, 1) and C ′ > 1, and require an initial condition
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u0 of (PAM) to ful�ll

δ′1[−δ′,0] ≤ u0 ≤ C ′1(−∞,0]. (PAM-INI)

In addition, let us introduce a tail condition for the initial condition of (F-KPP), which
is the same as the one for the case ξ ≡ 1 stated in [12, (1.17)]. For this purpose, additionally
to the constant δ′ from (PAM-INI), we �x N,N ′ > 0, and require w0 as in (F-KPP) to ful�ll

0 ≤ w0 ≤ 1(−∞,0] and
∫

[x−N ′,x]
w0(y) dy ≥ δ′ ∀x ≤ −N. (KPP-INI)

As in Section 2.2.3, we �rst de�ne subclasses for our initial conditions, which guarantee a
classical solution, that are

Ismooth

F-KPP :=
{
w0 : ww0 ∈ C([0,∞)× R,R) ∩ C1,2((0,∞)× R,R) and ww0 solves (F-KPP)

}
,

Ismooth

PAM :=
{
u0 : uu0 ∈ C([0,∞)× R,R) ∩ C1,2((0,∞)× R,R) and uu0 solves (PAM)

}
,

Then we de�ne the classes of initial conditions as follows.

IF-KPP := IF-KPP(δ′) :=
{
w0 : w0 ful�lls (KPP-INI) and

∃(w(n)
0 )n∈N ⊂ Ismooth

F-KPP : w
(n)
0

mon.→ w0

}
,

IPAM := IPAM(δ′, C ′) :=
{
u0 : u0 ful�lls (PAM-INI) and

∃(u(n)
0 )n∈N ⊂ Ismooth

PAM : u
(n)
0

mon.→ u0

}
.

An emblematic example which is contained in both, IF-KPP and IPAM, is the function
1(−∞,0] of Heaviside type, as we already saw in Remark 2.18. We also have that the class of
nonnegative bounded Hölder continuous functions is a subset of Ismooth

F-KPP
by Proposition 2.13

and that the class of bounded nonnegative continuous functions is a subset of Ismooth

PAM
by

Corollary 2.7.
It remains to specify the assumptions on ξ. We assume ξ = (ξ(x))x∈R = (ξ(x, ω))x∈R,

ω ∈ Ω, to be a stochastic process on a probability space (Ω,F ,P), having Hölder continuous
paths, i.e. P-a.s. there exists α = α(ω) > 0 and C = C(ω) > 0, such that

|ξ(x)− ξ(y)| ≤ C · |x− y|α ∀x, y ∈ R. (HÖL)

and such that the following conditions are ful�lled:

� ξ is uniformly bounded away from 0 and ∞: P-a.s. we have

0 < ei := ess inf
ω

ξ(x) < ess sup
ω

ξ(x) =: es <∞ for all x ∈ R; (BDD)

� ξ is stationary : For every h ∈ R we have

(ξ(x))x∈R
d
= (ξ(x+ h))x∈R, (STAT)

i.e. the �nite dimensional distributions of both processes in (STAT) coincide.

� ξ ful�lls a ψ-mixing condition: Let Fx := σ(ξ(z) : z ≤ x) and Fy := σ(ξ(z) : z ≥ y),
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x, y ∈ R and assume that there is a continuous, non-increasing function ψ : [0,∞)→
[0,∞), such that for all j ≤ k as well as X ∈ L1(Ω,Fj ,P) and Y ∈ L1(Ω,Fk,P) we
have P-a.s. ∣∣E[X − E[X] | Fk

]∣∣ ≤ E[|X|] · ψ(k − j),∣∣E[Y − E[Y ] | Fj
]∣∣ ≤ E[|Y |] · ψ(k − j), (MIX)
∞∑
k=1

ψ(k) <∞.

Note that (MIX) implies the ergodicity of ξ with respect to the shift operator θy acting
via ξ(·) ◦ θy = ξ(·+ y), y ∈ R.

Let us make a few remarks about our model assumptions. The �rst remark considers the
mixing condition (MIX).

Remark 3.1. ψ-mixing is usually de�ned in the following manner. Set

ψ̃(G1,G2) := sup
A∈G∗1 ,B∈G∗2

∣∣∣∣P(A ∩B)− P(A)P(B)

P(A)P(B)

∣∣∣∣ ,
where G1,G2 are sub-σ-algebras of F and G∗i := {A ∈ Gi : P(A) > 0}, i = 1, 2, as well as

sup
j
ψ̃(Fj ,F j+k) =: ψ̃(k), k ≥ 0. (3.1.1)

Then ξ is called ψ-mixing if ξ is stationary and ψ̃(k) → 0 as k → ∞, which by simple
arguments, see Lemma A.1, corresponds to ψ(k)→ 0, where ψ is as in (MIX).

In Section 1.3, we mentioned Nolen's paper [54], which demands a ρ-mixing condition
(1.3.5) for the potential, similar to (MIX). However, due to Remark 3.1 and [11, (1.12)],
Nolen's condition (1.3.5) is weaker than our ψ-mixing condition (MIX).

In the next remark we take a look at our nonlinearity F and our initial conditions.

Remark 3.2. Note that the condition F ′(0) = 1 in (SC) can be replaced by F ′(0) > 0.
Indeed, in this case we would de�ne F̂ (w) := F (w)/F ′(0), ξ̂(x) := ξ(x) ·F ′(0), and arrive at
the same equation (F-KPP). The statements about (PAM) would still be valid by de�ning
ês := es · F ′(0), êi := ei · F ′(0) and suitable ψ̂, which makes the assumptions (BDD),
(STAT) and (MIX) hold for the corresponding quantities. Additionally, note that we as-
sumed in (PAM-INI) and (KPP-INI) our initial conditions to vanish for x > 0. This can
be weakened in the sense that we can demand the initial condiditons to vanishes for x > b,
where b > 0 is �xed. Indeed, if uξ,u0 solves (PAM) for u0 ∈ IPAM, then û(t, x) := u(t, x− b)
solves (PAM) with data ξ̂(x) := ξ(x − b) and û0(x) := u0(x − b) instead of ξ and u0. Fur-
thermore, ξ̂ still ful�lls (BDD), (STAT) and (MIX), while û0(x) vanishes for x > b. We even
expect our results to hold for initial conditions that decay su�ciently fast at in�nity, as well
as for initial conditions that grow towards minus in�nity with su�ciently small exponential
rate. However, in order to avoid further technical complications we stick to the above set
of initial conditions.

Summarizing, we arrive at the following standing assumptions:

We assume conditions (BDD), (STAT) and (MIX) to be

ful�lled from now on, if not explicitly mentioned otherwise.
(Standing assumptions)



Section 3.1 Results 41

As was summarized in Proposition 2.20, under the above model assumptions we get that
both (F-KPP) and (PAM) have a unique generalized solution, which are classical solutions
if the corresponding initial conditions are nice.

If the nonlinearity F ful�lls (PROB), i.e. is generated by the probability distribution of
the number of o�spring particles of the BBMRE, then the solution to (F-KPP) is given by
the McKean representation (McKean), i.e.

w(t, x) = 1− E
ξ
x

[ ∏
u∈N(t)

(
1− w0(Xu

t )
)]
, (t, x) ∈ [0,∞)× R.

Recall from Proposition 2.20 (c) that the solution to (PAM) can be represented by the
Feynman-Kac formula

u(t, x) = Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
u0(Bt)

]
. (3.1.2)

Due to the many-to-one formula (Mom1) (with m1 = 2), for u0 = 1(−∞,0], the solution to
(PAM) can be represented as the expected number of particles of a BBMRE which are to
the left of the origin, i.e.

u(t, x) = E
ξ
x

[
N≤(t, 0)

]
= Ex

[
exp

{∫ t

0
ξ(Bs) ds

}
;Bt ≤ 0

]
.

3.1.2 An invariance principle for the PAM front

In Section 1.2 in the case of constant ξ, we saw that the linearized equation exhibits a similar
behavior as the corresponding nonlinear equation. We thus expect that investigating the
solution to (PAM) might also provide some insight into the solution to (F-KPP).

Let us therefore explain the strategy of the proofs. Starting with the �rst order of the
front as a function of time, it turns out useful to consider the so-called Lyapunov exponent

Λ(v) := lim
t→∞

1

t
lnu(t, vt). (3.1.3)

We will see in Proposition 3.7 and Corollary 3.22 that the Lyapunov exponent exists P-
a.s. for all v ∈ R, is non-random, and does not depend on the initial condition in IPAM.
Furthermore, the function [0,∞) 3 v 7→ Λ(v) is concave, tends to −∞ as v → ∞ and
Λ(0) = es, where es is de�ned in (BDD). Λ(v) describes the exponential growth of the
solution in the linear regime with speed v. By Proposition 3.7, there exists a unique v0 > 0,
such that

Λ(v0) = 0,

which we call velocity or speed of the solution to (PAM). Using the properties of the
Lyapunov exponent, we immediately infer the �rst order asymptotics for m to P-a.s. satisfy

m(t)

t
−→
t→∞

v0.

It will turn out that our methods only work if we require v0 to be strictly larger than
some �critical� value vc, de�ned in Lemma 3.9 (d). Roughly speaking, the condition v > vc
allows us to �nd a suitable additive tilting parameter in the exponent of the Feynman-Kac
representation, see (2.3.3), which depends on v and makes the solution u(t, x) to (PAM)
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Λ(v) Λ(v)

v v
vc

vcv0

v0

Figure 3.2: Illustration of the Lyapunov exponent from (3.1.3), depending on whether con-
dition (VEL) is ful�lled (left picture) or not (right picture).

amenable to the investigation by standard tools for values x ≈ vt and large t. Hence, we
work under the assumption

v0 > vc, (VEL)

where vc is de�ned in Lemma 3.9 (c). As will be shown in Section 4.3, this assumption is
ful�lled for a rich class of potentials ξ.

We start with investigating the �uctuations of lnu(t, vt) around tΛ(v) for values v in a
neighborhood of v0, which are interesting in their own right. To this end, we de�ne a metric
ρ on C([0,∞)), the space of continuous functions f : [0,∞) → R, making (C([0,∞)), ρ) a
complete separable metric space (see [71, Theorem 2.1] for a proof of the latter claim), that
is for f, g ∈ C([0,∞)) we let ‖f − g‖j := supx∈[0,j] |f(x)− g(x)| and

ρ(f, g) :=
∞∑
j=1

2−j
‖f − g‖j

1 + ‖f − g‖j
. (3.1.4)

Theorem 3.3. Let u0 ∈ IPAM and u = uξ,u0 be the corresponding solution to (PAM).
Furthermore, let V ⊂ (vc,∞) be a compact interval such that v0 ∈ int(V ). Then for each

v ∈ V , as n → ∞ the sequence of random variables (nv)−1/2
(

lnu(n, vn) − nΛ(v)
)
, n ∈ N,

converges in P-distribution to a centered Gaussian random variable with variance σ2
v ∈

[0,∞), where σ2
v is de�ned in (3.3.1). If σ2

v > 0, the sequence of processes

[0,∞) 3 t 7→ 1√
nvσ2

v

(
lnu(nt, vnt)− ntΛ(v)

)
, n ∈ N,

converges as n→∞ in P-distribution to a standard Brownian motion in the sense of weak

convergence of measures on C([0,∞)) endowed with the metric ρ from (3.1.4).

In combination with certain perturbation estimates for u, we will use this result in order
to infer an invariance principle for the front of the solution to (PAM). Note that since
the function t 7→ m(t) may only be càdlàg, we consider convergence in the Skorohod space
D([0,∞)) in the following result.

Theorem 3.4. Let (VEL) be fu�lled, u0 ∈ IPAM andM > 0. Then for n→∞, the sequence
n−1/2

(
mξ,u0,M (n)−v0n

)
, n ∈ N, converges in P-distribution to a centered Gaussian random

variable with variance σ̃2
v0 ∈ [0,∞), where σ̃2

v0 is de�ned in (3.3.76). If σ̃2
v0 > 0, the sequence
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of processes

[0,∞) 3 t 7→ mξ,u0,M (nt)− v0nt√
nσ̃2

v0

, n ∈ N,

converges as n→∞ in P-distribution to a standard Brownian motion in the Skorohod space

D([0,∞)).

We stress that in the latter theorems the case σ2
v = 0 (resp. σ̃2

v0 = 0) is allowed and
leads to a degenerate limit of the corresponding sequences. This can be excluded, e.g. if
the �nite-dimensional projections of the stochastic process ξ = (ξ(x))x∈R are associated
(see e.g. [59] or [58] for de�nitions and results). In this case the covariances in (3.3.1) are
nonnegative and σ2

v > 0 follows. [54, Proposition 2.1] provides an example of a potential,
which is generated by an i.i.d. sequence of random variables and thus associated.

3.1.3 Log-distance of the F-KPP and PAM front

Coming back to the original equation of interest, it is natural to ask whether we can obtain
results for (F-KPP), which are in some sense counterparts to those derived in Section 3.1.2
for (PAM). As already mentioned in (a) on page 37, the next result, which can be considered
as the main results of the thesis, states that there is an at most logarithmic distance of the
fronts of (F-KPP) and (PAM).

Theorem 3.5. Let (VEL) be fu�lled. Then for each F ful�lling (SC) there exists a constant
C1 > 0 such that the following holds: For allM > 0, ε ∈ (0, 1), u0 ∈ IPAM and w0 ∈ IF-KPP,
there exists a non-random C = C(ε,M, u0, w0) > 0 and a P-a.s. �nite random time T =
T (ξ, ε,M, u0, w0) ≥ 0, such that

− C ≤ mξ,u0,M (t)−mξ,F,w0,ε(t) ≤ C1 ln t+ C ∀t ≥ T . (3.1.5)

Moreover for w0 = u0 and M ≤ ε, the left inequality in (3.1.5) is zero for all t ≥ 0.
Furthermore, combining Theorem 3.4 and Theorem 3.5, we can deduce an invariance

principle for the front of (F-KPP) as well.

Corollary 3.6. Let (VEL) be fu�lled, F ful�ll (SC), w0 ∈ IF-KPP and ε ∈ (0, 1). Then

as n → ∞, the sequence n−1/2
(
mξ,F,w0,ε(n) − v0n

)
, n ∈ N, converges in P-distribution to

a centered Gaussian random variable with variance σ̃2
v0 ∈ [0,∞), where σ̃2

v0 is de�ned in

(3.3.76). If σ̃2
v0 > 0, the sequence of processes

[0,∞) 3 t 7→ mξ,F,w0,ε(nt)− v0nt√
nσ̃2

v0

, n ∈ N,

converges as n→∞ in P-distribution to a standard Brownian motion in the Skorohod space

D([0,∞)).

3.2 First observations and technical tools

Before we turn our attention to the actual proofs of results from Sections 3.1.2 and 3.1.3,
let us �rst commit ourselves to some notation which we use throughout the remaining part
of the thesis.
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Notational conventions

We will frequently use sums of real-indexed quantities Ax, x ∈ R. In this case, we write

x∑
i=1

Ai :=

bxc∑
i=1

Ai +Ax, x ∈ [0,∞) \ N0,

where
∑0

i=1 := 0. This notion remains consistent if we also allow for additive constants
b ∈ R, i.e.

x∑
i=1

(Ai + b) =

bxc∑
i=1

Ai +Ax + b · x =

x∑
i=1

Ai +

x∑
i=1

b, x ∈ [0,∞).

Finally, we set

y∑
i=x+1

Ai :=

{∑y
i=1Ai −

∑x
i=1Ai, x ≤ y,∑x

i=1Ai −
∑y

i=1Ai, x > y,
x, y ∈ [0,∞).

A prime example is the quantity Ax = lnEx
[
e
∫Hdxe−1
0 (ξ(Bs)−es) ds

]
, where Hy := inf{t ≥ 0 :

Bt = y}. Indeed, by the strong Markov property we have

lnEx
[
e
∫H0
0 (ξ(Bs)−es) ds

]
=

bxc∑
i=1

Ai +Ax for all x ∈ [0,∞) \ N0.

Furthermore, we will often use positive �nite constants c1, c2, . . . in the proofs, primarily
in large chains of inequalities. This numbering is consistent within any of the proofs, and
it is reset after each proof. Furthermore, C1, C2, . . . will be used to denote positive �nite
constants that are �xed throughout the rest of the thesis, and they oftentimes depend on
each other. Other constants like c, C, ε, δ etc. in the proofs are used to compare certain
quantities and are also reset after each proof.

Dependence of an object or a statement G on the environment ξ (and thus on the
randomness in ω ∈ Ω) is usually abbreviated by the notation G(ξ). The phrase �P-a.s. for
all t large enough, ...� abbreviates that �There exists a P-a.s. �nite random time T = T (ξ),
such that for all t ≥ T , ...�.

This section serves to prepare for the proofs of the main results of the thesis. We
will see direct consequences of our model assumptions and introduce important tools that
accompany us through the chapter.

3.2.1 The Lyapunov exponent of the solution to PAM

Let us state a �rst result about the asymptotic velocity of the solution to (PAM).

Proposition 3.7. Let u = u1[x−δ,x+δ] be a solution to (PAM) with initial condition 1[x−δ,x+δ].

Then the limit

Λ(v) := lim
t→∞

1

t
lnu(t, vt), v ∈ R, (3.2.1)

exists P-a.s., is non-random and independent of x ∈ R and δ > 0. The function [0,∞) 3
v 7→ Λ(v) is concave, Λ(0) = es and limv→∞

Λ(v)
v = −∞. In particular, there exists a

unique v0 > 0 such that Λ(v0) = 0.
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Proof. Let x = 0, λ ∈ (0, 1) and v1, v2 ∈ R, and set v := λv1 + (1 − λ)v2 and A :=
[(1− λ)v2t− δ, (1− λ)v2t+ δ]. By (3.1.2), the solution to (PAM) admits the Feynman-Kac
representation u1[x−δ,x+δ](t, vt) = Evt

[
e
∫ t
0 ξ(Bs) ds;Bt ∈ [x − δ, x + δ]

]
. Then by the Markov

property, for all y ∈ [vt− δ, vt+ δ] we have

lnEy
[
e
∫ t
0 ξ(Bs) ds;Bt ∈ [−δ, δ]

]
≥ lnEy

[
e
∫ λt
0 ξ(Bs) ds;Bλt ∈ A

]
+ inf
z∈A

lnEz
[
e
∫ (1−λ)t
0 ξ(Bs) ds;B(1−λ)t ∈ [−δ, δ]

]
.

(3.2.2)

De�ning µδs,t(v) := infy∈[vt−δ,vt+δ] lnEy
[
e
∫ t−s
0 ξ(Br) dr;Bt−s ∈ [vs − δ, vs + δ]

]
, s < t, by the

same argument as in the last display one can see that µδs,t(v) ≥ µδs,u(v) + µδu,t(v) for all
s < u < t. Furthermore for the h-lateral shift θh on ξ (i.e. ξ(·) ◦ θh = ξ(·+ h)) we have

µδs,t(v) ◦ θh = inf
y∈[vt−δ,vt+δ]

lnEy
[
e
∫ t−s
0 ξ(Br+h) dr;Bt−s ∈ [vs− δ, vs+ δ]

]
= inf

y∈[vt+h−δ,vt+h+δ]
lnEy

[
e
∫ t−s
0 ξ(Br) dr;Bt−s ∈ [vs+ h− δ, vs+ h+ δ]

]
= µδ

s+h
v
,t+h

v

(v)

for every h ∈ R, v 6= 0 and s < t. By (BDD) we get

µδ0,t(v) ≥ eit+ lnP0

(
B1 ∈

[
v
√
t− 2δ/

√
t, v
√
t
])

and a Gaussian estimate gives inft≥1 µ
δ
0,t(v)/t ≥ −Kδ,v for some Kδ,v ∈ (0,∞). By (BDD)

we also have µδ0,t(v) ≤ es · t and thus µδ0,t(v) ∈ L1 for all t > 0. Thus, Kingman's
subadditive ergodic theorem [49, Theorem 1.10] to (µδs,t(v))0<s<t implies that the limit
Λδ(v) := limt→∞

1
tµ

δ
0,t(v) exists P-a.s. Furthermore, by (MIX), ξ is mixing and thus er-

godic, so the Λδ(v) is non-random. By standard estimates, the limit is independent of δ > 0
and we can exchange x = 0 by any real number x ∈ R.

To show the concavity of v 7→ Λ(v), for v1, v2 ≥ 0 and dividing by t, the left-hand side of
(3.2.2) converges P-a.s. to Λ(λv1 + (1− λ)v2), while the second term on the right-hand side
of (3.2.2) converges P-a.s. to (1− λ)Λ(v2). Dividing by t and using (STAT), the �rst term
on the right-hand side of (3.2.2) converges in distribution to the constant λΛ(v1), proving
the concavity of v 7→ Λ(v).

By [25, Theorem 7.5.2] we have limt→∞
1
t lnu1(−δ,δ)(t, 0)

]
= es, independent of δ > 0,

giving Λ(0) = es. Due to (BDD) and a standard Gaussian computation, i.e. lnPvt(Bt ∈
[−δ, δ]) ≤ −const · v2t for large t, we have limv→∞

Λ(v)
v = −∞. This, together with Λ(0) =

es > 0 and the concavity of v 7→ Λ(v), implies the existence of a unique v0 > 0, such that
Λ(v0) = 0.

We will see that the for v ≥ 0 the Lyapunov exponent Λ(v) exists and is independent of
the initial condition u0 ∈ IPAM (i.e. also for initial conditions with non-compact support as
was assumed in Proposition 3.7), see Corollary 3.22.

3.2.2 Change of measure

In this section we introduce a change of measure which turns out to assure the Brownian
motion in the Feynman-Kac formula started at tv, some v 6= 0, to be close to the origin at
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time t. For this purpose, let (ξ(x))x∈R be as in (BDD) and de�ne the shifted potential

ζ := ξ − es.

Then P-a.s.,
ζ(x) ∈ [−(es− ei), 0] ∀x ∈ R. (3.2.3)

We oftentimes write

Hy := inf
{
t ≥ 0 : Bt = y

}
, y ∈ R, and τi := Hi−1 −Hi, i ∈ Z, (3.2.4)

for the �rst hitting times and their pairwise di�erences. Then for x, y ∈ R as well as η ≤ 0
de�ne the probability measures P ζ,ηx,y via

P ζ,ηx,y (A) :=
1

Zζ,ηx,y
Ex

[
exp

{∫ Hx−y

0

(
ζ(Bs) + η

)
ds
}

;A
]
, A ∈ σ

(
Bt∧Hx−y : t ≥ 0

)
, (3.2.5)

with normalizing constant

Zζ,ηx,y := Ex

[
exp

{∫ Hx−y

0

(
ζ(Bs) + η

)
ds
}]
∈ (0,∞),

For A ∈ σ
(
Bt∧Hx−y : t ≥ 0

)
, using the strong Markov property at time Hx−y, we infer

P ζ,ηx,y (A) = P ζ,ηx,y′(A) for all y′ ≥ y. Thus, by Kolmogorov's extension theorem (see e.g. [70,
Theorem 2.4.3]),(
P ζ,ηx,y

)
y≥0

can be extended to a unique probability measure P ζ,ηx on σ
(
Bt : t ≥ 0

)
. (3.2.6)

We write Eζ,ηx for the corresponding expectation and introduce the logarithmic moment
generating functions

Lζx(η) := lnEx

[
exp

{∫ Hdxe−1

0

(
ζ(Bs) + η

)
ds
}]
, x ∈ R, (3.2.7)

L
ζ
x(η) :=

1

x

x∑
i=1

Lζi (η) =
1

x
lnEx

[
exp

{∫ H0

0
(ζ(Bs) + η) ds

}]
, x > 0,

where we recall the notation introduced in Section 3.2, and where the last equality is due
to the Markov property. In addition, set

L(η) := E
[
Lζ1(η)

]
. (3.2.8)

Due to (3.2.3), for any η ≤ 0 the quantities above are well-de�ned, and it is easy to check
that in this case and under (BDD), the expressions de�ned in (3.2.7) � (3.2.8) are �nite.

Analytical properties

We have the following useful analytical properties of the latter functions.

Lemma 3.8. (a) L, Lζx, for x ∈ R, and L
ζ
x, for x > 0, are in�nitely di�erentiable on
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(−∞, 0). Furthermore, for all η < 0 we have

(
Lζx
)′

(η) =
Ex

[
e
∫Hdxe−1
0 (ζ(Br)+η) drHdxe−1

]
Ex

[
e
∫Hdxe−1
0 (ζ(Br)+η) dr

] = Eζ,ηx [τdxe−1], x ∈ R, (3.2.9)

(
L
ζ
x

)′
(η) =

1

x
Eζ,ηx

[
H0

]
, x > 0, (3.2.10)

L′(η) = E
[E1

[
e
∫H0
0 (ζ(Br)+η) drH0

]
E1

[
e
∫H0
0 (ζ(Br)+η) dr

] ] = E
[
Eζ,η1 [H0]

]
, (3.2.11)

and

(
Lζx
)′′

(η) =
Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) drH2

dxe−1

]
Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) dr

] −

(
Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) drHdxe−1

]
Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) dr

]
)2

= Eζ,ηx
[
τ2
dxe−1

]
−
(
Eζ,ηx [τdxe−1]

)2
= Varζ,ηx (τdxe−1) > 0, x ∈ R, (3.2.12)(

L
ζ
x

)′′
(η) =

1

x
Varζ,ηx (H0), x > 0, (3.2.13)

L′′(η) = E

[
E1

[
e
∫H0
0 (ζ(Br)+η) drH2

0

]
E1

[
e
∫H0
0 (ζ(Br)+η) dr

] − (E1

[
e
∫H0
0 (ζ(Br)+η) drH0

]
E1

[
e
∫H0
0 (ζ(Br)+η) dr

] )2
]

= E
[
Eζ,η1 [H2

0 ]−
(
Eζ,η1 [H0]

)2]
= E

[
Varζ,η1 (H0)

]
> 0. (3.2.14)

(b) For each compact interval 4 ⊂ (−∞, 0) there exists a constant C2 = C2(4) > 0,
such that the following inequalities hold P-a.s.:

−C2 ≤ inf
η∈4,
x≥1

{
Lζbxc(η), L

ζ
x(η), L(η)

}
≤ sup

η∈4,
x≥1

{
Lζbxc(η), L

ζ
x(η), L(η)

}
≤ −C−1

2 ,

C−1
2 ≤ inf

η∈4,
x≥1

{
(Lζbxc)

′(η), (L
ζ
x)′(η), L′(η)

}
≤ sup

η∈4,
x≥1

{
(Lζbxc)

′(η), (L
ζ
x)′(η), L′(η)

}
≤ C2,

C−1
2 ≤ inf

η∈4,
x≥1

{
(Lζbxc)

′′(η), (L
ζ
x)′′(η), L′′(η)

}
≤ sup

η∈4,
x≥1

{
(Lζbxc)

′′(η), (L
ζ
x)′′(η), L′′(η)

}
≤ C2.

Proof. (a) Due to the convexity of the exponential function we have
∣∣ ehx−1

h

∣∣ ≤ xehx ∨ 1 for
all x ≥ 0 and h ∈ R. If we choose h0 := |η|

2 , then since ζ ≤ 0, we have that for all |h| ≤ h0,∣∣∣1
h
e
∫Hy
0 (ζ(Br)+η) dr

(
ehHy − 1

)∣∣∣ ≤ eηHy/2(Hy ∨ 1). (3.2.15)

Due to Hye
ηHy ≤ 1

|η| for all Hy ≥ 0 and η < 0, as well as limh→0
ehHy−1

h = Hye
hHy for all

Hy ≥ 0, dominated convergence yields for all η < 0 that

d

dη
Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) dr

]
= Ex

[
e
∫Hdxe−1
0 (ζ(Br)+η) drHdxe−1

]
. (3.2.16)

Then (3.2.9) is a consequence of the chain rule and the fact that the expectation on the
left-hand side in (3.2.16) is positive. Then (3.2.10) follows from linearity of the derivative.
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To show (3.2.11), we have to apply dominated convergence once more. This time, we
additionally need that the expectation on the left-hand side in (3.2.16) for x = 1 is strictly

bounded from below by the constant E1[e−(es−ei−η)H0 ] = e−
√

2(es−ei−η) > 0 due to (BDD)
and [8, (2.0.1), p. 204]. Using the mean value theorem and (3.2.15) entail the existence of
c1 > 0 such that

sup
|h|≤|η|/2

∣∣∣1
h

(
Lζ1(η + h)− Lζ1(η)

)∣∣∣ ≤ sup
|h|≤|η|/2

(Lζ1)′(η + h) ≤ c1E1

[
eηH0/2(H0 ∨ 1)

]
≤ c1

( 2

|η|
∨ 1
)
.

Using (3.2.9) for x = 1 and dominated convergence, we arrive at (3.2.11).
By induction and similar arguments as above, it follows that for all n ∈ N, the func-

tion (−∞, 0) 3 η 7→ Ex
[
(Hy)

ne
∫Hy
0 (ζ(Br)+η) dr

]
is positive P-a.s. and di�erentiable. Due

to (BDD), one can interchange expectation and di�erentiation in η, yielding (3.2.12) and
(3.2.13). The �rst equality in (3.2.14) is then again a consequence of dominated conver-
gence. The strict inequalities in (3.2.12) and (3.2.14) are due to the fact that under P1, and
thus also P-a.s. under P ζ,η1 , the random variable H0 is non-degenerate.

(b) Observe that the function ζ 7→ Ex
[
e
∫Hdxe−1
0 (ζ(Bs)+η) ds

]
is nondecreasing. Conse-

quently, using the notation 4 = [η∗, η
∗], we have

−∞ < e−
√

2(es−ei+|η∗|) ≤ Ex
[
e(ei−es+η∗)Hdxe−1

]
≤ inf

η∈4
ess inf

ζ
Ex
[
e
∫Hdxe−1
0 (ζ(Bs)+η) ds

]
≤ sup

η∈4
ess sup

ζ
Ex
[
e
∫Hdxe−1
0 (ζ(Bs)+η) ds

]
≤ Ex

[
eη
∗Hdxe−1

]
= e(x−dxe+1)

√
2|η∗|,

where we used [8, (2.0.1), p. 204] for the second inequality and last equality. Due to the
inequality e−xyx ≤ 2

ye
−xy/2 for all x ≥ 0 and y > 0, these estimates can be used to

derive similar bounds for Ex
[
e
∫Hdxe−1
0 (ζ(Br)+η) drHk

dxe−1

]
, k = 1, 2. Thus, estimating the

numerator and the denominator of the corresponding expressions in (3.2.9) to (3.2.14), we
can conclude.

Asymptotic properties and Legendre transformation

The next lemma deals with the asymptotic properties of the functions in (3.2.7) and (3.2.8)
as well as introduces the Legendre transformation for the function L from (3.2.8) and its
properties.

Lemma 3.9. (a) We have P-a.s. that

lim
x→∞

L
ζ
x(η) = L(η) for all η ≤ 0. (3.2.17)

(b) L′(η) ↓ 0 as η ↓ −∞

(c) For every v > vc := 1
L′(0−) (where 1

+∞ := 0), which we call critical velocity, there
exists a

unique solution η(v) < 0 to the equation L′(η(v)) =
1

v
. (3.2.18)
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η(v) can be characterized as the unique maximizer to (−∞, 0] 3 η 7→ η
v − L(η), i.e.

sup
η≤0

(η
v
− L(η)

)
=
η(v)

v
− L

(
η(v)

)
. (3.2.19)

The function (vc,∞) 3 v 7→ η(v) is continuously di�erentiable and strictly decreasing.

Proof of Lemma 3.9. (a) By [25, Theorem 7.5.1], for every η ≤ 0 we get P-a.s. that
limx→∞ L

ζ
x(η) = E

[
Lζ1(η) | Fζ

inv

]
, where Fζ

inv
is the σ-algebra of all P-invariant sets.

Due to our standing assumptions, the family ζ(x), x ∈ R, is mixing and thus ergodic.
Thus, Fζ

inv
is P-trivial, i.e., E

[
Lζ1(η) | Fζ

inv

]
= L(η). By continuity of the functions

L
ζ
x(·) and L(·) by Lemma 3.8, the statement follows.

(b) We note that L is strictly increasing and strictly convex on (−∞, 0) by (3.2.11) and
(3.2.14) and

L(η) ≥ E
[

lnE1

[
e−(es−ei−η)H0

]]
= −

√
2(es− ei− η) for all η ≤ 0,

where the equality is due to [8, (2.0.1), p. 204]. Thus, we infer that its derivative L′(η)
tends to 0 as η → −∞.

(c) Using that 1/vc > 1/v (where 1
0 := +∞) and the fact that L′ is strictly increasing with

L′(η) ↓ 0 for η ↓ −∞, we can �nd a unique η(v) < 0 such that L′(η(v)) = 1/v, giving
(3.2.18). On the other hand, (3.2.19) is a direct consequence of (3.2.18) and standard
properties of the Legendre transformations of strictly convex functions. Because L′ is
strictly increasing and smooth on (−∞, 0), it has a strictly increasing inverse function
(L′)−1, which is di�erentiable on (0, 1/vc). By (3.2.18), for v > vc we have η(v) =
(L′)−1(1/v) and thus by the formula for the derivative of the inverse function we get

η′(v) = − 1

v2
· 1

L′′(η(v))
.

Because the right-hand side of the latter display is continuous in v and negative, we
conclude.

We use the standard notation L∗ : R→ (−∞,∞] to denote the Legendre transformation

v 7→ sup
η≤0

(
ηv − L(η)

)
of L. Lemma 3.9 entails that

L∗(1/v) =
η(v)

v
− L

(
η(v)

)
. (3.2.20)

In the next part of this section, we are interested in a suitable tilting parameter ηζx(v) such
that

Eζ,η
ζ
x(v)

x

[
H0

]
=
x

v
, x > 0, v > 0, (3.2.21)

holds true (setting ηζx(v) := 0 if no such parameter exists). For ηζx(v) ful�lling (3.2.21) we

observe that under P ζ,η
ζ
x(v)

x , the Brownian motion is tilted to have time-averaged velocity
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v until it reaches the origin. In Lemma 3.10, we will show that for suitable v and x large
enough, a tilting parameter as postulated in (3.2.21) actually exists. Furthermore, we will
show that the random parameter ηζx(v) concentrates around the deterministic η(v) de�ned
in (3.2.18). The last result is a perturbation estimate for ηζx(v) in x, cf. Lemma 3.12.

3.2.3 Concentration inequalities

We have the following result regarding the existence (or, more precisely, negativity) and
concentration properties of the postulated parameter ηζx(v).

Lemma 3.10. (a) For every v > vc there exists a �nite random variable N = N (v) such

that for all x ≥ N the solution ηζx(v) < 0 to (3.2.21) exists.

(b) For each q ∈ N and each compact interval V ⊂ (vc,∞), there exists C3 := C3(V, q) ∈
(0,∞) such that

P
(

sup
v∈V

sup
x∈[n,n+1)

|ηζx(v)− η(v)| ≥ C3

√
lnn

n

)
≤ C3n

−q for all n ∈ N. (3.2.22)

Proof. We recall that due to Lemma 3.8, the tilting parameter ηζx(v) can alternatively be
characterized as the unique solution ηζx(v) ∈ (−∞, 0) to(

L
ζ
x

)′
(ηζx(v)) =

1

v
, (3.2.23)

if the solution exists, and ηζx(v) = 0 otherwise. We start with noting that Part (a) directly
follows from Part (b). Indeed, let An, n ∈ N, be the event in the probability on the left-
hand side of (3.2.22). Then

∑
n P(An) < ∞ for q ≥ 2. By the �rst Borel-Cantelli lemma,

P-a.s. only �nitely many of the An occur. In combination with the fact that η(v) < 0, cf.
(3.2.18), this implies that P-a.s., the value of ηζx(v) can only vanish for x > 0 small enough.
In particular, we deduce the existence of a P-a.s. �nite random variable N as postulated.
Hence, it remains to show (3.2.22). For this purpose, in the following lemma we investigate
the �uctuations of the functions through which the parameters ηζx(v) and η(v) are implic-
itly de�ned; we will then infer the desired bounds on the �uctuations of the parameters
themselves through perturbation estimates for these functions.

Lemma 3.11. For every compact interval 4 ⊂ (−∞, 0) and each q ∈ N, there exists a

constant C4 = C4(4, q) ∈ (0,∞) such that

P
(

sup
η∈4

sup
x∈[n,n+1)

∣∣∣(Lζx)′(η)− L′(η)
∣∣∣ ≥ C4

√
lnn

n

)
≤ C4n

−q for all n ∈ N. (3.2.24)

In order not to hinder the �ow of reading, we postpone the proof of this auxiliary result
to the end of the proof of Lemma 3.10 and �nish the proof of Lemma 3.10 (b) �rst. Let q ∈ N
and V ⊂ (vc,∞) be a compact interval. By Lemma 3.8, for each compact 4 ⊂ (−∞, 0) we
have P-a.s.,

C−1
2 ≤ inf

η∈4
L′′(η) ≤ sup

η∈4
L′′(η) ≤ C2,

C−1
2 ≤ inf

x≥1
inf
η∈4

(
L
ζ
x

)′′
(η) ≤ sup

x≥1
sup
η∈4

(
L
ζ
x

)′′
(η) ≤ C2.

(3.2.25)
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Therefore, and because the function V 3 v 7→ η(v) is strictly decreasing by Lemma 3.9, it
is possible to �nd N = N(V ) ∈ N and a compact interval 4 = 4(N,V ) ⊂ (−∞, 0), where
for notational convenience we write

V = [v∗, v
∗] and 4 = [η∗, η

∗], (3.2.26)

such that, using standard calculus for sets,(
η(V )− C4C2

√
lnn/n

)
∪
(
η(V ) + C4C2

√
lnn/n

)
⊂ 4 for all n ≥ N.

Let n ≥ N and assume that the complement of the event on the left-hand side of (3.2.24),

sup
η∈4

sup
x∈[n,n+1)

∣∣(Lζx)′(η)− L′(η)
∣∣ < C4

√
lnn

n
, (3.2.27)

occurs. On this event, for all v ∈ V and all x ∈ [n, n+ 1),(
L
ζ
x

)′(
η(v)− C4C2

√
lnn/n

)
≤ 1

v
≤
(
L
ζ
x

)′(
η(v) + C4C2

√
lnn/n

)
(3.2.28)

and thus, due to the strict monotonicity of (L
ζ
x)′ implied by (3.2.25), there exists a unique

ηζx(v) ∈ 4 such that
(
L
ζ
x

)′
(ηζx(v)) = 1/v. Due to (3.2.28), still assuming (3.2.27), we have

sup
v∈V

sup
x∈[n,n+1)

|η(v)− ηζx(v)| ≤ C4C2

√
lnn

n
.

Thus, for n ≥ N , choosing C3 > 2C4C2, the probability in (3.2.22) is bounded by the
right-hand side of (3.2.24), which �nishes the proof.

It remains to prove Lemma 3.11.

Proof of Lemma 3.11. Applying the strong Markov property, we get

x
(
L
ζ
x

)′
(η) = Eζ,ηx (H0) = Eζ,ηx

[
Hbxc

]
+ Eζ,ηbxc

[
H0

]
= Eζ,ηx

[
Hbxc

]
+ bxc

(
L
ζ
bxc
)′

(η).

Furthermore, 0 ≤ Eζ,ηx
[
Hbxc

]
=
(
Lζx
)′

(η) ≤ C2 by (3.2.9) and Lemma 3.8 b), and thus also

0 ≤
(
L
ζ
x

)′
(η) = 1

x

∑x
i=1

(
Lζi
)′

(η) ≤ C2 for all x ≥ 1 and all η ∈ 4, P-a.s. As a consequence,
we get that for all x ≥ 1,∣∣(Lζx)′(η)− L′(η)

∣∣ ≤ ∣∣(Lζbxc)′(η)− L′(η)
∣∣+

2C2

bxc
.

It is therefore enough to prove

P
(

sup
η∈4

∣∣∣(Lζn)′(η)− L′(η)
∣∣∣ ≥ C4

√
lnn

n

)
≤ C4n

−q for all n ∈ N. (3.2.29)

For each η ∈ 4, ((Lζi )
′(η) − L′(η))i∈Z is a family of stationary, centered and bounded

random variables. Furthermore, they ful�ll the exponential mixing condition (A.4) due
to Lemma A.2. Since σ((Lζi )

′(η) : i ≥ k) ⊂ σ(ξ(x) : x ≥ k − 1) and (MIX), setting
Yi := (Lζi )

′(η) − L′(η), the left-hand side in (B.1) is bounded by some constant c2 > 0,
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uniformly for every i. Then setting mi := c1, condition (B.1) is ful�lled and we can apply
the Hoe�ding-type inequality from Corollary B.2 to get c2 > 0 such that

P
(∣∣∣(Lζn)′(η)− L′(η)

∣∣∣ ≥ c2

√
lnn

n

)
≤ c2n

−q−1 for all η ∈ 4 and all n ∈ N.

Let 4n := (4 ∩ 1
nZ) ∪ {η∗, η∗}, recalling the notation of (3.2.26). Because |4 ∩ 1

nZ| ≤
n · diam(4) + 1, taking advantage of the previous display we infer

P
(

sup
η∈4n

∣∣∣(Lζn)′(η)− L′(η)
∣∣∣ ≥ c2

√
lnn

n

)
≤ |4n| · sup

η∈4n
P
(∣∣∣(Lζn)′(η)− L′(η)

∣∣∣ ≥ c2

√
lnn

n

)
≤ c3(4)n−q, for all n ∈ N.

By Lemma 3.8 b), we have P-a.s. supn supη∈4
∣∣(Lζn(η)

)′′∣∣ ∨ ∣∣L′′(η)
∣∣ ≤ C2. Thus, the mean

value theorem entails that

sup
η∈4

∣∣(Lζn)′(η)− L′(η)
∣∣ ≤ sup

η∈4n

∣∣(Lζn)′(η)− L′(η)
∣∣+

2C2

n
,

and thus we �nd C4 > 0 such that (3.2.29) and hence (3.2.24) hold true.

In what comes below, many results will implicitly depend on the choice of compact
intervals V and 4, which have already occurred before. Thus, in order to avoid ambiguity
and due to assumption (VEL), we now

�x arbitrary compact intervals V ⊂ (vc,∞) and 4 = 4(V ) ⊂ (−∞, 0) such that

v0 ∈ int(V ) and η(V ) ⊂ int(4).
(3.2.30)

Furthermore, as a consequence of Lemma 3.10, there exists a P-a.s. �nite random variable
N1 = N1(ξ, C3(V, 2)) such that

Hx := Hx(V ) :=
{
ηζx(v) ∈ 4 for all v ∈ V

}
occurs for all x ≥ N1. (3.2.31)

We write (
L
ζ
x

)∗(1

v

)
= sup

η<0

(η
v
− Lζx(η)

)
=
ηζx(v)

v
− Lζx(ηζx(v)), x ≥ 1,

for Legendre transformation of the weighted averages. We also recall to set ηζx(v) = 0, if
there is no solution ηζx(v) ∈ 4 to (3.2.23); note that this can only happen on Hcx.

In order to show an invariance principle for the Legendre transformation (L
ζ
x)∗ in the

following section, we now derive a perturbation result on the tilting parameter ηζx(v) in x.

Lemma 3.12. There exists a constant C5 > 0 such that P-a.s., for all x ∈ (0,∞) large

enough, uniformly in v ∈ V and 0 ≤ h ≤ x,∣∣ηζx(v)− ηζx+h(v)| ≤ C5
h

x
. (3.2.32)

Proof. By Lemma 3.10 we can choose x large enough such that ηζy(v) ∈ 4 for all y ≥ x and
all v ∈ V . For h = 0, the statement is obvious. For 0 < h ≤ x, it su�ces to show that there
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exists c1 > 0 such that

sup
η∈4

∣∣(Lζx+h

)′
(η)−

(
L
ζ
x

)′
(η)
∣∣ ≤ c1

h

x
. (3.2.33)

Indeed, using (3.2.23) we can write(
L
ζ
x+h

)′
(ηζx+h(v))−

(
L
ζ
x

)′
(ηζx+h(v)) =

(
L
ζ
x

)′
(ηζx(v))−

(
L
ζ
x

)′
(ηζx+h(v))

=
(
L
ζ
x

)′′
(η̃)(ηζx(v)− ηζx+h(v))

for some η̃ ∈ 4 between ηζx(v) and ηζx+h(v). By the second display in (3.2.25) we know that

P-a.s. infη∈4,x≥1(L
ζ
x

)′′
(η) ≥ C−1

2 . Using this, inequality (3.2.32) is a direct consequence of
(3.2.33) with C5 := c1C2. To prove (3.2.33), recall that for all η ∈ 4, x ≥ 1, and 0 < h ≤ x,
by the strong Markov property applied at time Hx,(

L
ζ
x+h

)′
(η)−

(
L
ζ
x

)′
(η) =

1

x+ h

(
Eζ,ηx+h

[
Hx

]
+ Eζ,ηx [H0]

)
− 1

x
Eζ,ηx [H0]

= − h

x+ h

(
L
ζ
x

)′
(η) +

h

x+ h

1

h
Eζ,ηx+h[Hx].

Finally, recall that by Lemma 3.8 there exists C2 = C2(4) > 0 such that P-a.s. we have
supη∈4,x>0

∣∣(Lζx)′(η)
∣∣ ≤ C2. By exactly the same argument used for the proof of the latter

inequality (see proof of (3.8)), one can show that also supη∈4,x,h>0

∣∣ 1
hE

ζ,η
x+h[Hx]

∣∣ ≤ C2 holds
P-a.s. with the same constant C2. (3.2.33) now follows choosing c1 := 2C2.

3.3 Large deviations and perturbation results for the PAM

The main objective of this section is to establish certain exact large deviation results for
hitting times of Brownian motion under the tilted measures introduced above, and then to
apply these in order to obtain perturbation results. For this purpose let

V ζ,v
x (η) :=

η

v
− Lζx(η), x ∈ R,

σ2
v := VarP(V ζ,v

1 (η(v)) + 2

∞∑
i=2

CovP
(
V ζ,v

1 (η(v)), V ζ,v
i (η(v)

)
, σv :=

√
σ2
v , v ∈ V.

(3.3.1)

We start with observing that σ2
v ∈ [0,∞) for all v ∈ V . Indeed, (L̃i)i∈N, where L̃i :=

Lζi (η(v))−E[Lζi (η(v))], is a sequence of bounded (see Lemma 3.8), centered and mixing (see
Lemma A.2) random variables, giving

∞∑
i=1

∣∣CovP(V ζ,v
1 (η(v)), V ζ,v

i (η(v))
)∣∣ =

∞∑
i=1

∣∣E[L̃1L̃i
]∣∣ =

∞∑
i=1

∣∣E[L̃iE[L̃1 | F i−1]
]∣∣ <∞,

(3.3.2)

where the last inequality is due to uniform boundedness of L̃i in i, (A.2) and the summa-
bility criterion in (MIX). Thus σ2

v < ∞. Furthermore, σ2
v ≥ 0 is due to (3.3.2) and [61,

Lemma 1.1].
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We now introduce the process W v
x (t) of empirical Legendre transformations

W v
x (t) := t

√
x
(

(L
ζ
xt)
∗(1/v)− L∗(1/v)

)
, t, x > 0, v ∈ V, (3.3.3)

and set W v
0 (t) = W v

x (0) = 0 for t, x > 0, v ∈ V , and obtain a �rst functional Central limit
theorem for it.

Proposition 3.13. For every v ∈ V , W v
n (1) converges in P-distribution to a centered

Gaussian random variable with variance σ2
v ≥ 0. If σ2

v > 0, the sequence of processes

[0,∞) 3 t 7→ 1

σv
W v
n (t), n ∈ N,

converges in P-distribution to a standard Brownian motion in the sense of weak convergence

of measures on C([0,∞)) with topology induced by the metric ρ from (3.1.4).

Proof. It is su�cient to show the claim if (W v
n (t))t∈[0,∞) is replaced by (W v

n (t) ·1Hnt)t∈[0,∞),
n ∈ N, with Hnt as de�ned in (3.2.31), since the P-probability of Hnt tends to 1 for n→∞
by Lemma 3.10. In the notation of (3.3.1), setting

Sζ,vx (η) :=
x∑
i=1

V ζ,v
i (η), x ∈ R, (3.3.4)

on Hnt we have

(
L
ζ
nt

)∗(1

v

)
=
ηζnt(v)

v
− Lζnt(η

ζ
nt(v)) =

1

nt

nt∑
i=1

V ζ,v
i (ηζnt(v)) =

1

nt
Sζ,vnt (ηζnt(v)).

Thus, we can rewrite the relevant term as a sum of three di�erences

nt
(

(L
ζ
nt)
∗(1/v)− L∗(1/v)

)
=
(
Sζ,vnt (ηζnt(v))− Sζ,vnt (η(v))

)
+
(
Sζ,vnt (η(v))− E

[
Sζ,vnt (η(v))

])
+
(
E
[
Sζ,vnt (η(v))

]
− ntL∗(1/v)

)
,

(3.3.5)

where we note that the third summand vanishes. Indeed, we have

E
[
Sζ,vnt (η(v))

]
= nt

(η(v)

v
− E[Lζ1(η(v))]

)
= ntL∗(1/v),

where the last equality is due to (3.2.19) and the de�nition of the Legendre transform. The
proof is completed by the use of Lemmas 3.15 and 3.14 below, which show that the second
summand of (3.3.5) exhibits the postulated di�usive behavior whereas the latter summand
is negligible in that scaling.

Lemma 3.14. For every v ∈ V , 1√
n

(
Sζ,vnt (η(v))−E

[
Sζ,vnt (η(v))

])
converges in P-distribution

to a centered Gaussian random variable with variance σ2
v ≥ 0. If σ2

v > 0, the sequence of

processes

[0,∞) 3 t 7→ 1

σv
√
n

(
Sζ,vnt (η(v))− E

[
Sζ,vnt (η(v))

])
, n ∈ N,

converges in P-distribution to a standard Brownian motion in the sense of weak convergence

of measures on C([0,∞)) with topology induced by the metric ρ from (3.1.4).
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Proof. Let L̃i := Lζi (η(v))−E[Lζi (η(v))], Ṽi := V ζ
i (η(v))−E[V ζ

i (η(v))] and M ∈ N. Further
set L̃(M)

i :=
∑iM

j=1+(i−1)M L̃j . Then (L̃
(M)
i )i∈Z is a sequence of centered, stationary and (by

Lemma 3.8) bounded random variables. To show the central limit theorem on C([0,M ]), we
use the method of martingale approximation from [31], which is summarized as a theorem
in [54, Section 2.3], see Theorem A.3, and it turns out to be applicable in our situation.
That is, we have to make sure that condition (A.7) is ful�lled. Indeed, replacing in (A.6)
F j by Fk and noting that quantity A in (A.6) is Fk-measurable we get

∞∑
k=1

|L̃(M)
0 − E[L̃

(M)
0 | Fk]| ≤ c1

∞∑
k=1

e−k/c1 <∞,

giving the convergence of the �rst series in (A.7). Furthermore, using that L̃(M)
k is F (k−1)M -

measurable and bounded, also recalling (MIX), we get

∞∑
k=1

|E[L̃
(M)
k | F0]| ≤

∞∑
k=1

ψ(k − 1)E[|L̃(M)
0 |] <∞.

Because the series in (3.3.1) is absolutely convergent, by [61, Lemma 1.1] and Theorem A.3
we have limn→∞

1
nE
[(∑n

k=1 L̃
(M)
k

)2]
= M · limn→∞

1
MnE

[(∑Mn
k=1 L̃k

)2]
= M · σ2

v ∈ [0,∞).
Furthermore, if σ2

v > 0, Theorem A.3 entails that the sequence of processes

[0, 1] 3 t 7→ X(M)
n (t) :=

1

σv
√
nM

( bntc∑
k=1

L̃
(M)
k + (nt− bntc)L̃(M)

bntc+1

)
, n ∈ N,

converges in P-distribution to a standard Brownian motion (Bt)t∈[0,1] in the sense of weak
convergence of measures on C([0, 1]) with the topology induced by the uniform metric. Then
by de�nition, above convergence also holds true for (Ṽi)i≥1 instead of (L̃i)i≥1. Furthermore,
we have the uniform bound

sup
t∈[0,M ],n∈N

∣∣∣Sζ,vnt (η(v))−
( bntM cM∑

i=1

V ζ,v
i + (nt− bnt

M
cM)

M+bnt
M
cM∑

i=1+bnt
M
cM

V ζ,v
i

)∣∣∣ ≤ c2 P-a.s.

Consequently, the sequence [0,M ] 3 t 7→ 1
σv
√
n

(
Sζ,vnt (η(v)) − E

[
Sζ,vnt (η(v))

])
has the same

weak limit as
(√
M ·X(M)

n (t/M)
)
t∈[0,M ]

, n ∈ N, which converges to
(√
M · B(t/M)

)
t∈[0,M ]

and the latter process is a standard Brownian motion on [0,M ]. Because M ∈ N was
arbitrary, [71, �rst Theorem 2.4 on page 15] gives weak convergence on C([0,∞)).

The next lemma shows that the �rst summand in (3.3.5) is asymptotically negligible.

Lemma 3.15. There exists a constant C6 ∈ (0,∞) such that for every v ∈ V and M > 0,

lim sup
n→∞

1

lnn
sup

0≤t≤M

∣∣∣Sζ,vnt (ηζnt(v))− Sζ,vnt (η(v))
∣∣∣ ≤ C6 P-a.s.

Proof. There exists a P-a.s. �nite time N1(ω), de�ned before (3.2.31), such that for all
x ≥ N1 and all v ∈ V we have ηζx(v) ∈ 4. Furthermore, by Lemma 3.8, Sζ,vx is in�nitely
di�erentiable on (−∞, 0), so for all x ≥ N1 there exists η̃ζx(v) ∈ [η(v) ∧ ηζx(v), η(v) ∨ ηζx(v)]
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such that

Sζ,vx (η(v)) = Sζ,vx (ηζx(v)) +
(
Sζ,vx

)′
(ηζx(v))

(
η(v)− ηζx(v)

)
+

(
Sζ,vx

)′′
(η̃ζx(v))

2

(
η(v)− ηζx(v)

)2
.

Due to (3.2.23), (Sζ,vx )′(ηζx(v)) = 0 and by Lemma 3.8 we have

sup
η∈4

sup
x≥1

∣∣(Sζ,vx )′′(η)
∣∣/x ≤ c1.

By (3.2.22) and the �rst Borel-Cantelli lemma, there exists a �nite random variableN2 ≥ N1

such that for x ≥ N2 the complementary event on the left-hand side of (3.2.22) occurs, hence

sup
x≥N1

(
ηζx(v)− η(v)

)2 x

lnx
≤ C2

3 (V, 2)

and thus

sup
x≥N1

1

lnx

∣∣Sζ,vx (ηζx(v))− Sζ,vx (η(v))
∣∣ ≤ C6 (3.3.6)

with C6 :=
c1C2

3 (V,2)
2 . Finally, we have

sup
0≤t≤M

∣∣∣Sζ,vnt (ηζnt(v))− Sζ,vnt (η(v))
∣∣∣ ≤ sup

0≤x≤N1

∣∣∣Sζ,vx (ηζx(v))− Sζ,vx (η(v))
∣∣∣

+ sup
N1/n≤t≤M

∣∣∣Sζ,vnt (ηζnt(v))− Sζ,vnt (η(v))
∣∣∣

≤ 2N1c2 + C6 lnM + C6 lnn,

where in the last inequality we used that P-a.s., every summand in the de�nition of Sζ,ηn is
uniformly bounded by c2. The P-a.s. �niteness of N1 gives the claim.

As a by-product of the proof above we get an approximation result of W v
x being a

centered stationary sequence.

Corollary 3.16. For every v ∈ V and all t such that vt ≥ N1 we have

∣∣∣√vtW v
vt(1)−

vt∑
i=1

(
L(η(v))− Lζi (η(v))

)∣∣∣ ≤ C6 ln v + C6 ln t.

Proof. By the de�nition of W v
x (t) and Sζ,vx (η) from (3.3.3) and (3.3.4), as well as the de�-
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nition in (3.2.20) for the corresponding Legendre transformations, we have

√
vtW v

vt(1) = vt
((
L
ζ
vt

)∗
(1/v)− L∗(1/v)

)
= vt

(ηζvt(v)

v
− Lvt

(
ηζvt(v)

)
− η(v)

v
+ L(η(v))

)
= Sζ,vvt

(
ηζvt(v)

)
−

vt∑
i=1

(η(v)

v
− Lζi (η(v))

)
+

vt∑
i=1

(
L(η(v))− Lζi (η(v))

)
= Sζ,vvt

(
ηζvt(v)

)
− Sζ,vvt

(
η(v)

)
+

vt∑
i=1

(
L(η(v))− Lζi (η(v))

)
.

Then we can conclude using (3.3.6).

3.3.1 An exact large deviation result for auxiliary processes

For x ≥ 0 and v > 0 we introduce

Y ≈v (x) := Ex

[
e
∫H0
0 ζ(Bs) ds;H0 ∈

[x
v
−K, x

v

]]
,

Y >
v (x) := Ex

[
e
∫H0
0 ζ(Bs) ds;H0 <

x

v
−K

]
, and

Yv(x) := Ex

[
e
∫H0
0 ζ(Bs) ds;H0 ≤

x

v

]
= Y ≈v (x) + Y >

v (x),

where K > 0 is a constant, de�ned in (3.3.16) below. For v ∈ V and x ≥ 1 we de�ne

σζx(v) :=


∣∣ηζx(v)

∣∣√Varζ,η
ζ
x(v)

x (H0), on Hx,

sup
η∈4
|η|
√
Var

ζ,supη∈4
x (H0), on Hcx.

Furthermore, by Lemma 3.8, there exists some C > 1 such that Varζ,ηx (H0) = x
(
L
ζ
x

)′′
(η) ∈

[xC−1
2 , xC2] for all x ≥ 1. Thus, there is some constant C7 = C7(4) > 1 such that

C−1
7

√
x ≤ σζx(v) ≤ C7

√
x for all v ∈ V, x ≥ 1, on Hx. (3.3.7)

We now prove the following result.

Proposition 3.17. Let V be as in (3.2.30), σv de�ned by (3.3.1) and W v
x (t) as in (3.3.3),

v ∈ V , and K > 0 be such that (3.3.16) holds. Then there exists a constant C8 ∈ (1,∞),
such that for all v ∈ V and all x ≥ 1, on Hx we have

σζx(v)Y >
v (x) exp

{
xL∗(1/v) +

√
xW v

x (1)
}
∈
[
C−1

8 , C8

]
. (3.3.8)

Furthermore, for all v ∈ V and all x ≥ 1, on Hx we have

Y ≈v (x)

Y >
v (x)

∈ [C−1
8 , C8], (3.3.9)

and the sequence n−1/2
(

lnY ≈v (n) − nL∗(1/v)
)
, n ∈ N, converges to a centered Gaussian

random variable with variance σ2
v ∈ [0,∞), where σ2

v is de�ned in (3.3.1) and if σ2
v > 0, the
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sequence of processes

[0,∞) 3 t 7→ 1

σv
√
n

(
lnY ≈v (nt) + ntL∗(1/v)

)
, n ∈ N, (3.3.10)

converges in P-distribution to standard Brownian motion in C([0,∞)).

Proof. We start with proving (3.3.8) and for this purpose let x ≥ 1 such that Hbxc occurs.
Write η := ηζx(v) and σ := σζx(v), and recall the notation introduced in (3.2.4), i.e. τi =
Hi − Hi−1, i = 1, . . . , dxe − 1, and set τx := Hdxe−1 − Hx, x ∈ R\Z, (which would be

consistent with the de�nition in (3.2.4) for x integer) to de�ne τ̂i := τ̂
(x)
i := τi − Eζ,ηx [τi].

Then
∑x

i=1E
ζ,η
x [τi] = Eζ,ηx [H0] = x

v . We now rewrite

Y ≈v (x) = Ex

[
e
∫H0
0 (ζ(Bs)+η) ds exp

{
− η

x∑
i=1

τ̂i

}
;

x∑
i=1

τ̂i ∈ [−K, 0]
]

exp
{
−xη

v

}
= Eζ,ηx

[
exp

{
− σ η

σ

x∑
i=1

τ̂i

}
;
η

σ

x∑
i=1

τ̂i ∈
[
0,−Kη

σ

]]
exp

{
−x
(η
v
− Lζx(η)

)}
.

(3.3.11)

Analogously, we get

Y >
v (x) = Eζ,ηx

[
exp

{
− σ η

σ

x∑
i=1

τ̂i

}
;
η

σ

x∑
i=1

τ̂i > −
Kη

σ

]
exp

{
−x
(η
v
− Lζx(η)

)}
.

We de�ne µζ,vx as the distribution of η
σ

∑x
i=1 τ̂i under P

ζ,η
x . Then

Y ≈v (x) = e−x( η
v
−Lζx(η))

∫ −Kη
σ

0
e−σy dµζ,vx (y) (3.3.12)

and

Y >
v (x) = e−x( η

v
−Lζx(η))

∫ ∞
−Kη
σ

e−σy dµζ,vx (y). (3.3.13)

Using Lemma 3.18 below, the integrals on the right-hand side of (3.3.12) and (3.3.13),
multiplied by σ, are bounded from below and above by positive constants. Display (3.3.8)
now follows by the de�nition of W v

x , and (3.3.9) is direct a consequence of (3.3.12)-(3.3.15).
The last two statements, are a consequence of (3.3.8), (3.3.9), W v

nt(1) = 1√
t
W v
n (t) and

Proposition 3.13.

To complete the previous proof, it remains to prove the following.

Lemma 3.18. Under the conditions of Proposition 3.17, there exists a constant C9 > 1
such that for all v ∈ V and x ≥ 1, on Hx,

σζx(v)

∫ −Kηζx(v)/σζx(v)

0
e−σ

ζ
x(v)y dµζ,vx (y) ∈ [C−1

9 , C9] (3.3.14)

and

σζx(v)

∫ ∞
−Kηζx(v)/σζx(v)

e−σ
ζ
x(v)y dµζ,vx (y) ∈ [C−1

9 , C9], (3.3.15)
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with µζ,vx as in the proof of Proposition 3.17.

Proof. We write n := dxe and recall that under P ζ,ηx , the sequence
(√

n η
ζ
x(v)

σζx(v)
τ̂i

)
i=1,...,bxc,x

is a sequence of independent, centered random variables. Thus, on Hx we obtain

1

n

x∑
i=1

Varζ,ηx

(√
n
ηζx(v)

σζx(v)
τ̂i

)
=

(
ηζx(v)

σζx(v)

)2

Varζ,ηx

( x∑
i=1

τ̂i

)
=

(
ηζx(v)

σζx(v)

)2

Varζ,ηx (H0) = 1.

Additionally, the τ̂i's have uniform exponential moments. Thus, the conditions of [7, Theo-
rem 13.3] are ful�lled and an application of [7, (13.43)] yields

sup
C

∣∣µζ,vx (C)− Φ(C)
∣∣ ≤ c1n

−1/2,

where the supremum is taken over all Borel-measurable convex subsets of R, Φ denotes
the standard Gaussian measure on R and c1 only depends on the uniform bound of the
exponential moments of the τ̂i's. Without loss of generality, we assume c1 > 4. Then, due
to (3.3.7), by denoting C :=

[
0,−Kηζx(v)/σζx(v)

]
we can choose K > 0 large enough, so that

Φ(C) ≥ 2c−1
1 n−1/2 for all n ∈ N and v ∈ V. (3.3.16)

We thus get

c−1
1 n−1/2 ≤ Φ (C)−

∣∣µζ,vx (C)− Φ(C)
∣∣ ≤ µζ,vx (C)

≤
∣∣µζ,vx (C)− Φ(C)

∣∣+ Φ (C) ≤ c2(K) · n−1/2.
(3.3.17)

Because the integrand in (3.3.14) is bounded away from 0 and in�nity on the respective
interval of integration (uniformly in n ∈ N), (3.3.14) is a direct consequence of (3.3.7) and
(3.3.17). For (3.3.15), we split the integral into a sum:∫ ∞

−Kηζx(v)/σζx(v)
e−σ

ζ
x(v)y dµζ,vx (y) =

∞∑
k=1

∫ −(k+1)Kηζx(v)/σζx(v)

−kKηζx(v)/σζx(v)
e−σ

ζ
x(v)y dµζ,vx (y)

≤
∞∑
k=1

µζ,vx

(
−Kη

ζ
x(v)

σζx(v)
[k, k + 1]

)
e−k·K|η

ζ
x(v)| ≤ c2n

−1/2
∞∑
k=1

e−k·K|η
∗| ≤ C9n

−1/2,

where we recall the notation from (3.2.26). The lower bound in (3.3.15) can be obtained by
noting that ∫ ∞

−Kηζx(v)/σζx(v)
e−σ

ζ
x(v)y dµζ,vx (y) ≥

∫ −2Kηζx(v)/σζx(v)

−Kηζx(v)/σζx(v)
e−σ

ζ
x(v)y dµζ,vx (y)

≥ e2Kηζx(v)µζ,vx
(
[−Kηζx(v)/σζx(v),−2Kηζx(v)/σζx(v)]

)
.

Analogously to (3.3.17), choosing C9 large enough, the last expression is bounded from
below by C−1

9 n−1/2. Combining this with (3.3.7), we �nally arrive at (3.3.15).

We are now in the position to prove the following result.

Lemma 3.19. Under the conditions of Proposition 3.17, for all δ > 0 there exists a constant
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C10 = C10(δ) ∈ (1,∞) such that for all v ∈ V , t > 0, on Hvt we have

C−1
10 Y

≈
v (vt) ≤ Evt

[
e
∫ t
0 ζ(Bs) ds;Bt ∈ [−δ, 0]

]
≤ Evt

[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

]
≤ C10Y

≈
v (vt).

(3.3.18)

Proof. The second inequality is obvious. Since {Bt ≤ 0} ⊂ {H0 ≤ t} and ζ ≤ 0, we get
Evt
[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

]
≤ Yv(vt) ≤ (1 + C8)Y ≈v (vt) by Proposition 3.17 and thus the last

inequality in (3.3.18) is obtained. Therefore, it remains to show the �rst inequality. For
this purpose, de�ne the function p(s) := E0

[
e
∫ s
0 ζ(Br) dr;Bs ∈ [−δ, 0]

]
which is bounded from

below by c1(K, δ) > 0 for all s ∈ [0,K]. Using the strong Markov property at H0, we �nally
get

Y ≈v (vt) = Evt

[
e
∫H0
0 ζ(Br) dr;H0 ∈ [t−K, t]

]
≤ c1(K, δ)−1Evt

[
e
∫H0
0 ζ(Br) drp(t− s)|s=H0

;H0 ∈ [t−K, t]
]

≤ c1(K, δ)−1Evt

[
e
∫H0
0 ζ(Br) drp(t− s)|s=H0

]
= c1(K, δ)−1Evt

[
e
∫ t
0 ζ(Br) dr;Bt ∈ [−δ, 0]

]
.

and the claim follows by choosing C10 := c1(K, δ) ∨ (1 + C8).

Plugging the relation ξ(x) = ζ(x) + es, x ∈ R, into Lemma 3.19 immediately supplies
us with the following corollary.

Corollary 3.20. Let C10 be as in Lemma 3.19. Then for all v ∈ V , t > 0, on Hvt we have

C−1
10 e

es·tY ≈v (vt) ≤ Evt
[
e
∫ t
0 ξ(Bs) ds;Bt ≤ 0

]
≤ C10e

es·tY ≈v (vt).

Using the Feynman-Kac formula (3.1.2) we also get the following result. Recall that uu0

denoted the solution to (PAM) with initial condition u0 ∈ IPAM.

Corollary 3.21. Let C10 = C10(δ) be as in Lemma 3.19. Then for all v ∈ V , t > 0, on
Hvt we have

u1[−δ,0](t, vt) ≤ u1(−∞,0](t, vt) ≤ C2
10 · u1[−δ,0](t, vt).

The previous results are fundamental for proving perturbation statements in the next
section, which themselves allow us to analyze path probabilities of the branching process.

3.3.2 Proof of Theorem 3.3

Now we are ready to prove our �rst main result.

Proof of Theorem 3.3. We �rst assume σ2
v > 0 and consider the case u0 = 1(−∞,0] to show

the second part of the claim, i.e. that the sequence of processes

[0,∞) 3 t 7→ 1√
nvσ2

v

(
lnu(nt, vnt)− ntΛ(v)

)
, n ∈ N, (3.3.19)

converges in P-distribution to standard Brownian motion. Because [0,∞) 3 t 7→ lnu(t, vt)
might be discontinuous only in 0, we have to make clear what we mean by above convergence.
In fact, we show the invariance principle for a sequence of auxiliary processes (Xv

n(t))t≥0,
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n ∈ N, where for every n ∈ N and t ≥ 1
n , X

v
n(t) is the same as in (3.3.19), whereas for t ∈

[0, 1/n] the term lnu(nt, vnt) in (3.3.19) is replaced by (1−nt) lnu(0, 0)+nt ln(1, v), making
(Xv

n(t))t≥0 continuous. Because the di�erence of the processes in (3.3.19) and (Xv
n(t))t≥0

converges uniformly to zero as n→∞, convergence of the processes in (3.3.19) to a standard
Brownian motion is de�ned as the convergence of the processes (Xv

n(t))t≥0, n ∈ N, to a
standard Brownian motion in C([0,∞)) with topology induced by the metric ρ from (3.1.4).

By Proposition 3.17 and Corollary 3.20, on Hnvt (recall the notation from (3.2.31)) we
have

− lnC8 ≤ lnσζnvt(v) + lnY ≈v (nvt) + nvtL∗(1/v) +
√
nvtW v

vnt(1) ≤ lnC8, and

− lnC10 ≤ lnu(nt, vnt)− es · nt− lnY ≈v (vnt) ≤ lnC10.
(3.3.20)

Recall that a sequence of processes t 7→ An(t), n ∈ N, converges in P-distribution to
standard Brownian motion if and only if for all σ > 0 the sequence t 7→ σ−1An(σ2t), n ∈ N,
converges in P-distribution to a standard Brownian motion. Applying this to (3.3.10), the
sequence of processes

[0,∞) 3 t 7→ 1√
nvσ2

v

(
lnY ≈v (vnt) + vntL∗(1/v)

)
, n ∈ N, (3.3.21)

converges in P-distribution to a standard Brownian motion. Further, by the second line in
(3.3.20),

− lnC10 ≤
(

lnu(nt, vnt)− nt(es− vL∗(1/v))
)
−
(

lnY ≈v (vnt) + vntL∗(1/v)
)
≤ lnC10

holds. Consequently, if we can prove that

Λ(v) = es− vL∗(1/v) ∀v ∈ V. (3.3.22)

the claim follows from (3.3.21). To prove (3.3.22), we set n = 1 in (3.3.20) and note that
W v
vt(1)√
t
−→
t→∞

0 P-a.s. for all v ∈ V , because Wn(1) converges in P-distribution to a centered

normally distributed random variable by Proposition 3.13. Using (3.3.24), (3.3.20) and
(3.3.7), we get (3.3.22).

It remains to show the claim for arbitrary u0 ∈ IPAM. Recall that there exist δ′ ∈ (0, 1)
and C ′ > 1, such that δ′1[−δ′,0](x) ≤ u0(x) ≤ C ′1(−∞,0](x) for all x ∈ R. Therefore, using
Lemma 3.19, there exists a constant c1 > 0 such that

c1Evt[e
∫ t
0 ξ(Bs) ds;Bt ≤ 0] ≤ Evt[e

∫ t
0 ξ(Bs) dsu0(Bt)] ≤ C ′Evt[e

∫ t
0 ξ(Bs) ds;Bt ≤ 0]. (3.3.23)

Thus, the convergence of (3.3.19) for arbitrary initial condition u0 ∈ IPAM follows from the
one with initial condition 1(−∞,0]. This gives the second part of Theorem 3.3.

It remains to show that (nv)−1/2
(

lnu(n, vn)− nΛ(v)
)
converges in P-distribution to a

Gaussian random variable. For u0 = 1(−∞,0] this is a direct consequence of (3.3.20) for
t = 1, (3.3.22) and the second part of Proposition 3.17. For general u0 the claim follows
from (3.3.23).

In view of Corollary 3.21, Proposition 3.7 and (3.3.22), it is possible to say that the
Lyapunov exponent Λ, de�ned in (3.1.3), determines the exponential decay resp. growth for
solutions to (PAM) for arbitrary initial conditions u0 ∈ IPAM (and not only for those with
compact support).
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Corollary 3.22. For all v ≥ 0 and all u0 ∈ IPAM we have

Λ(v) = lim
t→∞

1

t
lnuu0(t, vt) P-a.s. (3.3.24)

Λ is linear on [0, vc] and strictly concave on (vc,∞) and the convergence in (3.3.24) holds
uniformly on every compact interval K ⊂ [0,∞).

Proof. Note that by Proposition 3.7, δ′1[−δ′,0] ≤ u0 ≤ C ′1(−∞,0] and Corollary 3.21 we have
that (3.3.24) holds for all v ∈ V and all compact V ⊂ (vc,∞). Thus (3.3.24) is true for all
v > vc. The strict concavity of Λ on (vc,∞) follows from the strict convexity of L∗(1/v),
which in turn follows from the strict convexity of L and usual properties of the Legendre
transformation. If vc = 0, the proof is complete due to limt→∞

1
t lnuδ

′
1[−δ′,0] = Λ(0) = es

by Proposition 3.7 and uu0 ≤ eest for all u0 ∈ IPAM. Let us assume vc > 0. First observe
that L∗(1/v) tends to L∗(1/vc) = −L(0) as v ↓ vc. Indeed, recalling Lemma 3.9 (d), for all
v > vc there exists a unique η(v) ∈ (−∞, 0) de�ned by L′

(
η(v)

)
= 1

v , such that

L∗(1/v) =
η(v)

v
− L(η(v)).

Furthermore (vc,∞) 3 v 7→ η(v) is continuously di�erentiable and strictly decreasing,
bounded from above by 0, and (−∞, 0) 3 η 7→ L′(η) is smooth and strictly monotone
and tends to L′(0−) as η ↑ 0, we get that η(v) ↑ 0 as v ↓ vc and thus L∗(1/v)→ L∗(1/vc) as
v ↓ vc. Therefore Λ(v) = es− vL∗(1/v) for all v ∈ [vc,∞). Furthermore, for all u0 ∈ IPAM,
due to (BDD)

uu0(t, vt) ≤ C ′eestEvt
[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

]
≤ C ′eestEvt

[
e
∫H0
0 ζ(Bs) ds;H0 ≤ t

]
≤ C ′ exp

{
t
(
es + vLvt(0)

)}
.

(3.3.25)

Using Lemma 3.9 (b), taking logarithm and deviding by t, we get that the (by Proposi-
tion 3.7) concave function Λ is bounded from above by the linear function [0,∞) 3 v 7→
es− vL(0) = es+ vL∗(1/vc) and coincides with this function at v = 0 and v = vc and thus
on the whole interval [0, vc]. Using (3.3.25) once more, we infer (3.3.24) for all v ≥ 0 and
u0 ∈ IPAM.

To show that the convergence is uniform on every compact interval K ⊂ [0,∞), for ε > 0
arbitrary we consider εZ := {kε : k ∈ Z}, and for y ∈ R set bycε := sup{x ∈ εZ : x ≤ y}.
Then the convergence holds uniformly for all y ∈ K ∩ εZ. A fortiori, for t large enough,
uniformly in y ∈ K,

u(t, tbycε) ≥ et(Λ(bycε)−ε).

Lemma D.4 then entails that

inf
z∈[tbycε−1,tbycε+1]

u(t+ 1, z) ≥ 1

C20
u(t, tbycε) ≥

1

C20
et(Λ(bycε)−ε). (3.3.26)

Furthermore, using 0 ≤ y − bycε ≤ ε, by a Gaussian estimate we get

Pyt(Bεt ∈ [tbycε − 1, tbycε + 1]) ≥
√

2

πεt
inf

x∈[tbycε−1,tbycε+1]
e−

(x−yt)2
2εt

≥
√

2

π
· exp

{
− εt

2
− ln(εt)

2
− 1− 1

2ε

}
.

(3.3.27)
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Using the Feynman-Kac formula in the equality, the Markov property at time εt, and (BDD)
in the �rst inequality, we infer that

u(t+ 1 + εt, yt) = Eyt
[
e
∫ t+1+εt
0 ξ(Bs) dsu0(Bt+1+εt)

]
≥ eeiεt · Pyt(Bεt ∈ [tbycε − 1, tbycε + 1]) · inf

z∈[tbycε−1,tbycε+1]
u(t+ 1, z)

≥ c1 exp
{
t
(

Λ(bycε) + (ei− 3/2)ε− ln(εt)

2t
− 1

t
− 1

2εt

)}
, (3.3.28)

where in the last inequality we used (3.3.26) and (3.3.27). Setting t′ := t + 1 + εt and
y′ := t′

t y, we get

1

t′
lnu(t′, t′y)− Λ(y) =

t

t′

(1

t
lnu(t′, ty′)− Λ(by′cε)

)
+
t

t′
Λ(by′cε)− Λ(y).

Since (3.3.28) holds uniformly for all y ∈ K, we infer that

inf
y∈K

( 1

t′
lnu(t′, t′y)− Λ(y)

)
≥ t

t′

( ln c1

t
+ (ei− 3/2)ε− ln(εt)

2t
− 1

t
− 1

2εt

)
− sup
y∈K

∣∣∣ t
t′

Λ(by′cε)− Λ(y)
∣∣∣. (3.3.29)

Since Λ concave and �nite, it is uniformly continuous on compact intervals, hence choosing
ε > 0 small, we deduce the lower bound

lim inf
t→∞

inf
y∈K

(1

t
lnu(t, ty)− Λ(y)

)
≥ 0. (3.3.30)

To derive the matching upper bound, we assume that the convergence does not hold uni-
formly on K. Then, due to (3.3.30), there exists α > 0 and sequences (tn)n∈N ⊂ [0,∞) and
(yn)n∈N ⊂ K such that tn →∞ and

1

tn
lnu(tn, tnyn)− Λ(yn) ≥ α ∀n ∈ N. (3.3.31)

Retreating to a suitable subsequence, we can assume yn −→
n→∞

y ∈ K. We choose ε > 0 such
that

(1 + ε)Λ(y) ≤ Λ(y) + α/3 and
(1 + z)2

2
ε ≤ α/3 ∀z ∈ K. (3.3.32)

For n such that |yn − y| ≤ ε, a Gaussian estimate yields

Py(tn+1+εtn)

(
Bεtn ∈ [tnyn − 1, tnyn + 1]

)
≥
√

2

πεtn
inf

x∈[tnyn−1,tnyn+1]
e−

(x−y(tn+1+εtn))2

2εtn

≥
√

2

πεtn
exp

{
− (1 + y)2

2εtn
(tnε+ 1)2

}
.

An argument as in (3.3.28) yields

u(tn + 1 + εtn, (tn + 1 + εtn)y) ≥ c2 · u(tn, tnyn) ·
√

1

εtn
exp

{
εeitn −

(1 + y)2

2εtn
(tnε+ 1)2

}
(3.3.33)
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for all n such that |yn − y| ≤ ε. Now �rst taking logarithms, dividing by tn, taking n →
∞ and recalling yn −→

n→∞
y and continuity of Λ, the left-hand side in (3.3.33) converges to

(1 + ε)Λ(y), whereas by (3.3.31), the limit of the right-hand side is bounded from below
by Λ(y) + α − (1+y)2

2 ε. But by (3.3.32), this leads to a contradiction. We thus deduce the
uniform convergence on K.

3.3.3 Time perturbation

In the next step we prove perturbation results, i.e., time and space perturbation Lemmas 3.23
and 3.24. These statements will be useful when comparing the expected number of particles
evolving which are slightly �slower� or �faster� (within a certain margin) than the ones with
given velocity. In the following, u = uu0 denotes the solution to (PAM) with initial condition
u0 ∈ IPAM.

Lemma 3.23. (a) Let u0 ∈ IPAM and let ε : (0,∞) → (0,∞) be a function such that

ε(t) → 0 and tε(t) → ∞ as t → ∞. Then there exists C11 = C11((ε(t))t≥0, u0) such

that P-a.s., for all t large enough,

sup
(v,h)∈Et

∣∣∣ ln(uu0(t+ h, vt)

uu0(t, vt)

)
− h(es− η(v))

∣∣∣ ≤ C11 + C11|h|
(√ ln t

t
+
|h|
t

)
, (3.3.34)

where Et :=
{

(v, h) : v ∈ V, |h| ≤ tε(t), vt
t+h ∈ V

}
.

(b) For all ε > 0 and u0 ∈ IPAM there exists a constant C12 > 1 and a P-a.s. �nite random
variable T1 such that for all t ≥ T1, uniformly in 0 ≤ h ≤ t1−ε, v ∈ V and vt

t+h ∈ V,

C−1
12 e

h/C12uu0(t, vt) ≤ uu0(t+ h, vt) ≤ C12e
C12huu0(t, vt). (3.3.35)

Proof. (a) Note that it su�ces to show the claim for u0 = 1(−∞,0]. Indeed, for all u0 ∈ IPAM
we have δ′1[−δ′,0] ≤ u0 ≤ C ′1(−∞,0]. Using Corollary 3.21, we infer that for all u0 ∈ IPAM,
all v ∈ V, and all t large enough

δ′C−2
10 u

1(−∞,0](t, vt) ≤ uu0(t, vt) ≤ C ′u1(−∞,0](t, vt).

where uu0 denotes the solution to (PAM) with initial condition u0. Let t be large enough
such that Hvt occurs for all v ∈ V , which is possible by (3.2.31). Letting (v, h) ∈ Et and
writing v′ := vt

t+h ∈ V, we infer that

u1(−∞,0](t+ h, vt)

u1(−∞,0](t, vt)
=
Evt

[
e
∫ t+h
0 ξ(Bs) ds;Bt+h ≤ 0

]
Evt

[
e
∫ t
0 ξ(Bs) ds;Bt ≤ 0

] = ees·h
Evt

[
e
∫ t+h
0 ζ(Bs) ds;Bt+h ≤ 0

]
Evt

[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

] .

(3.3.36)

Using Lemma 3.19, on Hvt, the last fraction divided by
Y ≈
v′ (vt)

Y ≈v (vt) is bounded away from 0

and in�nity for all t large enough. As in the derivation of (3.3.11), the term
Y ≈
v′ (vt)

Y ≈v (vt) can be
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written as

E
ζ,ηζvt(v

′)
vt

[
exp

{
− ηζvt(v′)

∑vt
i=1 τ̂i

}
;
∑vt

i=1 τ̂i ∈ [−K, 0]
]

E
ζ,ηζvt(v)
vt

[
exp

{
− ηζvt(v)

∑vt
i=1 τ̃i

}
;
∑vt

i=1 τ̃i ∈ [−K, 0]
] · exp

{
− vt

(
ηζvt(v

′)
v′ − L

ζ
vt(η

ζ
vt(v

′))
)}

exp
{
− vt

(
ηζvt(v)
v − Lζvt(η

ζ
vt(v))

)} ,

(3.3.37)

where τ̂i = τi−E
ζ,ηζvt(v

′)
vt [τi] and τ̃i := τi−E

ζ,ηζvt(v)
vt [τi]. But now, since v′ ∈ V, as in the proof

of Proposition 3.17, the �rst fraction of the previous display is bounded from below and
above by positive constants, for all t large enough. Indeed, setting x = vt in (3.3.12), the
denominator in (3.3.37) equals the integral in (3.3.12) and, replacing v by v′ in (3.3.12), the
numerator equals the integral in (3.3.12). The claim then follows due to Lemma 3.18 and
using (3.3.7). Therefore, taking logarithms in (3.3.36) and recalling the de�nition of Sζ,vvt (η)
in (3.3.4), according to the previous considerations it su�ces to show that the logarithm of
the second fraction in (3.3.37) plus η(v) · h, i.e.(

Sζ,vvt (ηζvt(v))− Sζ,vvt (ηζvt(v
′))
)

+
(
Sζ,vvt (ηζvt(v

′))− Sζ,v
′

vt (ηζvt(v
′))
)

+ η(v) · h, (3.3.38)

satis�es bound on the right-hand side of (3.3.34), uniformly in (v, h) ∈ Et. Recall that
1
v′ = 1

v

(
1 + h

t

)
, thus the second summand in (3.3.38) is−h·ηζvt(v′). The triangular inequality

entails

|ηζvt(v′)− η(v)| ≤ |ηζvt(v′)− η(v′)|+ |η(v′)− η(v)|, (3.3.39)

and so by Lemma 3.10, uniformly for v′ ∈ V and t large enough, the �rst term on the right-

hand side of (3.3.39) can be upper bounded by C3

√
ln vt
vt , P-a.s. Furthermore, by Lemma 3.9

d) we know that η is continuously di�erentiable and strictly decreasing, having uniform
positive bounds of the derivative on every bounded subinterval of (vc,∞). Hence, η(·) is
Lipschitz continuous on V and we therefore get that the second summand in (3.3.39) can
be upper bounded by c1|v− v′| = c1v

|h|
|t+h| = c1v

|h|
t ·

t
|t+h| ≤ c2

|h|
t , uniformly for all v, v′ ∈ V

and all t large enough, where the last inequality is due to |h|/t ≤ ε(t) → 0. Therefore, the
absolute value of the sum of the second and third summand in (3.3.38) is upper bounded

by C11|h|
(√

ln t
t + |h|

t

)
with C11 := c2 ∨ C3.

It remains to show that the �rst summand in (3.3.38) tends to 0 as t tends to ∞. We
write

Sζ,vvt (ηζvt(v
′)) = Sζ,vvt (ηζvt(v)) +

(
ηζvt(v

′)− ηζvt(v)
)
·
(
Sζ,vvt

)′
(ηζvt(v))

+
1

2

(
ηζvt(v

′)− ηζvt(v)
)2 · (Sζ,vvt )′′(η̃)

for some η̃ ∈ [ηζvt(v
′) ∧ ηζvt(v), ηζvt(v

′) ∨ ηζvt(v)]. Recall that Sζ,vvt (η) = vt
(η
v − L

ζ
vt(η)

)
and

by de�nition
(
L
ζ
vt

)′(
ηζvt(v)

)
= 1

v . Thus,
(
Sζ,vvt

)′
(ηζvt(v)) = 0. Furthermore,

(
Sζ,vvt

)′′
(η) =

−vt
(
L
ζ
vt

)′′
(η) and the function

(
L
ζ
vt

)′′ is uniformly bounded away from 0 and in�nity by
Lemma 3.8 on V. Thus, by the characterizing equation (3.2.23) and the implicit function
theorem, on Hvt, the function ηζvt(·) is di�erentiable with uniformly bounded �rst derivative,
i.e. ∣∣ηζvt(v′)− ηζvt(v)

∣∣ ≤ c3|v′ − v| ≤ c3v
|h|

t(1− ε(t))
. (3.3.40)
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Thus, on Hvt, the �rst summand in (3.3.38) can be bounded by c4 · t · h
2

t2
= c4 · h

2

t , uniformly
in (v, h) ∈ Et, for all t large enough. This implies a).

(b) The �rst part of the proof is similar to that of a); indeed, dividing by uu0(t, vt) and
taking logarithms in (3.3.35), one arrives at (3.3.38) again. The second part then consists of
showing that (3.3.38) is lower and upper bounded by two strictly increasing linear functions
for all 0 < h ≤ t1−ε. Following the same computations as in the proof of a), for v ∈ V and
h > 0, such that v′ ∈ V , we have up to some additive constant, which is independent of h,
that

ln
uu0(t+ h, vt)

uu0(t, vt)
� ct

vt

2
(v − v′)2 − ηζvt(v′) · h+ es · h,

where ct is a function which for t large enough is positive and bounded away from 0 and
in�nity. Because ηζvt(v

′) < 0, the latter expression is bounded from below by h/C12 and
bounded from above by C12 · h for our choice of parameters, hence we can conclude.

3.3.4 Space perturbation

While in the previous section we have been investigating the e�ects of time perturbations of
u and related quantities, here we consider space perturbations. As before, let uu0 denotes
the solution to (PAM) with initial condition u0 ∈ IPAM.

Lemma 3.24. Let ε(t) be a positive function such that ε(t)→ 0 and tε(t)
ln t →∞ as t→∞.

Then for all ε > 0 there exists C = C(ε) > 0 such that P-a.s., for all u0 ∈ IPAM we have

(a)

lim sup
t→∞

sup

{∣∣∣∣1h ln

(
u(t, vt+ h)

u(t, vt)

)
− L

(
η(v)

)∣∣∣∣ : (v, h) ∈ Et
}
≤ ε, (3.3.41)

where Et :=
{

(v, h) : v, v + h
t ∈ V, C(ε) ln t ≤ |h| ≤ tε(t)

}
.

(b) Let ε(t) be a positive function such that ε(t) → 0. Then there exists a constant

C13 <∞ and a P-a.s. �nite random variable T2 such that for all t ≥ T2, uniformly in

0 ≤ h ≤ tε(t), v ∈ V , v + h
t ∈ V and u0 ∈ IPAM we have

C−1
13 e

−C13h · u(t, vt) ≤ u(t, vt+ h) ≤ C13e
−h/C13 · u(t, vt). (3.3.42)

Proof of Lemma 3.24. (a) For all u0 ∈ IPAM we have δ′1[−δ′,0] ≤ u0 ≤ C ′1(−∞,0]. Using
Corollary 3.21, we infer that for all u0 ∈ IPAM, all v ∈ V, and all t large enough

δ′C−2
10 u

1(−∞,0](t, vt) ≤ uu0(t, vt) ≤ C ′u1(−∞,0](t, vt). (3.3.43)

where uu0 denotes the solution to (PAM) with initial condition u0.
For this u0, the solution to (PAM) can be represented by the Feynman-Kac formula (see

(3.1.2))

u(t, vt) = Evt

[
e
∫ t
0 ξ(Bs) ds;Bt ≤ 0

]
.

If follows from Corollary 3.20 and (3.3.9) that if Hvt occurs, then, up to a universal multi-
plicative constant, this can be approximated by

Evt

[
e
∫H0
0 ξ(Bs) ds;H0 ≤ t

]
.
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We now consider t large enough such that Hvt occurs for all v ∈ V . Taking (v, h) ∈ Et and
de�ning v′ := v+ h

t ∈ V , we see that Hv′t occurs as well. Therefore the fraction in (3.3.41),
up to a positive multiplicative constant, is equal to

Ev′t
[

exp
{ ∫ H0

0 ζ(Bs) ds
}

;H0 ≤ t
]

Evt
[

exp
{ ∫ H0

0 ζ(Bs) ds
}

;H0 ≤ t
]

=
Ev′t

[
exp

{ ∫ H0

0

(
ζ(Bs) + ηζv′t(v

′)
)

ds
}
e−η

ζ

v′t(v
′)H0 ;H0 ≤ t

]
Evt
[

exp
{ ∫ H0

0

(
ζ(Bs) + ηζvt(v)

)
ds
}
e−η

ζ
vt(v)H0 ;H0 ≤ t

] .

Using that Eζ,ηvt(v)
vt [H0] = E

ζ,ηv′t(v
′)

v′t [H0] = t, recalling (3.2.5) and (3.3.4), the latter fraction
can be written as

E
ζ,ηζ

v′t(v
′)

v′t

[
e−η

ζ

v′t(v
′)(H0−E

ζ,η
ζ
v′t

(v′)

v′t [H0]);H0 − E
ζ,ηζ

v′t(v
′)

v′t [H0] ≤ 0
]

E
ζ,ηζvt(v)
vt

[
e−η

ζ
vt(v)(H0−E

ζ,η
ζ
vt(v)

vt [H0]);H0 − E
ζ,ηζvt(v)
vt [H0] ≤ 0

]
× exp

{
Sζ,vvt (ηζvt(v))− Sζ,v

′

v′t (ηζv′t(v
′))
}
,

SinceHvt andHv′t occur, the fraction is bounded from below and above by positive constants
(see Lemma 3.18). The logarithm of the second factor divided by h can be written as

1

h

(
Sζ,vvt (ηζvt(v))− Sζ,v

′

v′t (ηζvt(v))
)

+
1

h

(
Sζ,v

′

v′t (ηζvt(v))− Sζ,v
′

v′t (ηζv′t(v
′))
)
. (3.3.44)

We claim that the second summand in (3.3.44) tends to 0 uniformly in (v, h) ∈ Et as t→∞,
P-a.s. Indeed, by a Taylor expansion we get

Sζ,v
′

v′t (ηζvt(v))− Sζ,v
′

v′t (ηζv′t(v
′))

= (Sζ,v
′

v′t )′(ηζv′t(v
′)) ·

(
ηζvt(v)− ηζv′t(v

′)
)

+
1

2
(Sζ,v

′

v′t )′′(η̃)
(
ηζvt(v)− ηζv′t(v

′)
)2 (3.3.45)

for some η̃ ∈ 4 between ηζv′t(v
′) and ηζvt(v). Using again Eζ,ηvt(v)

vt [H0] = t and (3.2.10) we

have (Sζ,v
′

v′t )′(ηζv′t(v
′)) = 0. Lemma 3.8(b) entails that (L

ζ
v′t)
′′(·) is uniformly bounded on 4

and thus
(Sζ,v

′

v′t )′′(η̃) = −v′t(Lζv′t)′′(η̃) ∈ [−v′tc−1
1 ,−v′tc1]. (3.3.46)

Furthermore, by Lemma 3.12 we have

∣∣ηζvt(v)− ηζv′t(v)
∣∣ ≤ c2

|h|
vt
≤ c3

|h|
t
, (3.3.47)

and by (3.3.40)

∣∣ηζv′t(v)− ηζv′t(v
′)
∣∣ ≤ c4|v − v′| = c4

|h|
t
. (3.3.48)

Thus, for all t large enough, uniformly in (v, h) ∈ Et, we get∣∣∣1
h

(
Sζ,v

′

v′t (ηζvt(v))− Sζ,v
′

v′t (ηζv′t(v
′))
)∣∣∣ ≤ c5

|h|
t
≤ ε(t), (3.3.49)
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which tends to zero by assumption.
It remains to show convergence of the �rst summand in (3.3.44). We �rst note that

1

h

(
Sζ,vvt (ηζvt(v))− Sζ,v

′

v′t (ηζvt(v))
)

=
1

h

v′t∑
i=vt+1

Lζi (η
ζ
vt(v)). (3.3.50)

To �nish the proof, we use the following lemma. Recall N1 from de�nition (3.2.31) and let
ε∗(t) := sups∈[btc,dte] ε(s).

Lemma 3.25 (cf. [16, Claim 5.2]). For every δ > 0 and every q ∈ N, there exists C0 =
C0(q, δ) > 0 such that for all t ≥ 1

P
(

sup
C0 lnbtc≤|h|≤dte·ε∗(t),

v∈V

∣∣∣L(η(v))− 1

h

vt+h∑
i=vt+1

Lζi (η
ζ
vt(v))

∣∣∣ > δ,
(
vt ≥ N1 ∀v ∈ V

))
≤ ct−q.

(3.3.51)

To not disturb the �ow of reading, we postpone the proof of Lemma 3.25 to the end of
the proof of Lemma 3.24. We let At be the �rst event and Bt be the second event on the left-
hand side of (3.3.51). By Lemma 3.25 with q = 2 and C0 = C0(2, δ/3),

∑
n P(An, Bn) <∞

and thus, by the �rst Borel-Cantelli lemma, P-a.s. the event An ∩ Bn occurs only �nitely
often. Because N1 is P-a.s. �nite, we get

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣L(η(v))− 1

h

vbtc+h∑
i=vbtc+1

Lζi (η
ζ
vbtc(v))

∣∣∣ ≤ δ

3
(3.3.52)

P-a.s. for all t large enough.
To bound the right-hand side of (3.3.50), we need to replace vbtc in (3.3.52) by vt. First

note that due to the strong Markov property atHy we have
∑z

i=x+1 L
ζ
i (η) =

∑y
i=x+1 L

ζ
i (η)+∑z

i=y+1 L
ζ
i (η) and thus

vbtc+h∑
i=vbtc+1

Lζi (η)−
vt+h∑
i=vt+1

Lζi (η) = lnEvt
[
e
∫Hvbtc
0 (ζ(Bs)+η)

]
− lnEvt+h

[
e
∫Hvbtc+h
0 (ζ(Bs)+η)

]
.

By [8, (2.0.1), p. 204] we have

lnEx
[
e−cHy

]
=
√

2c|y − x|, for all c ≥ 0 and x, y ∈ R. (3.3.53)

Therefore, for all t large enough, for every η ∈ 4 ⊂ (−∞, 0) and 0 ≥ ζ(x) ≥ −(es− ei),

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣1
h

( vbtc+h∑
i=vbtc+1

Lζi (η)−
vt+h∑
i=vt+1

Lζi (η)
)∣∣∣ ≤ 2v

√
2(|η|+ (es− ei))

C0 ln t
≤ δ

3
. (3.3.54)

In particular, since ηζvbtc(v) ∈ 4 ⊂ (−∞, 0) (cf. (3.2.31)), (3.3.54) holds with η replaced by

ηζvbtc(v). Moreover, By Lemma 3.12, there exists C5 > 0 such that P-a.s. for all x large

enough we have supv∈V |η
ζ
x+h(v)− ηζx(v)| ≤ C5

h
x for all h ∈ [0, x]. Furthermore, as a direct



Section 3.3 Large deviations and perturbation results for the PAM 69

consequence of Lemma 3.8 (b), we have that the family of functions{
I 3 η 7→ Lζx(η) : x ∈ R,−(es− ei) ≤ ζ ≤ 0}

is equicontinuous on every compact interval I ⊂ (−∞, 0). All together this implies that
P-a.s. for all t large enough we have

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣1
h

vt+h∑
i=vt+1

(
Lζi (η

ζ
vbtc(v))− Lζi (η

ζ
vt(v))

)∣∣∣ ≤ δ

3
. (3.3.55)

Applying the triangle inequality to the inequalities (3.3.52)�(3.3.55), the absolute value of
the di�erence of the right-hand side of (3.3.50) and L(η(v)) is bounded from above by δ,
uniformly in (v, h) ∈ Et for all t large enough, completing the proof of claim (a).

(b) Analogously to the �rst steps in the proof of (a), it is enough to consider the case
u0 = 1(−∞,0], and then to show that the expression in (3.3.44) is bounded from above
and below by negative constants, uniformly for all 0 < h ≤ tε(t). Performing the same

!

calculations as in the proof of (a), i.e. using equations (3.3.45) to (3.3.48), one can observe
that the second summand in (3.3.44) is contained in the interval [−c5

h
t , 0] for c5 from (3.3.49)

uniformly for all v ∈ V and v′ := v + h
t ∈ V and all t large enough.

For the �rst summand in (3.3.44), we mention that due to the strong Markov property
at time Hvt, we have

Sζ,vvt (ηζvt(v))− Sζ,v
′

v′t (ηζvt(v)) = lnEvt+h
[
e
∫H0
0 (ζ(Bs)+η

ζ
vt(v)) ds

]
− lnEvt

[
e
∫H0
0 (ζ(Bs)+η

ζ
vt(v)) ds

]
= lnEvt+h

[
e
∫Hvt
0 (ζ(Bs)+η

ζ
vt(v)) ds

]
.

Using (3.3.53),(BDD) and ηζvt(v) ∈ 4 ⊂ (−∞, 0), for all t large enough, we get

−
√

2(|ηζvt(v)|+ es− ei)h ≤ lnEvt+h
[
e
∫Hvt
0 (ζ(Bs)+η

ζ
vt(v)) ds

]
≤ −

√
2|ηζvt(v)|h (3.3.56)

and we can conclude.

To �nish the proof of Lemma 3.24, we still have to provide the proof of Lemma 3.25.

Proof of Lemma 3.25. We decompose the di�erence in (3.3.51) as

L(η(v))−
vt+h∑
i=vt+1

Lζi (η
ζ
vt(v)) = L(η(v))−

vt+h∑
i=vt+1

Lζi (η(v)) +
vt+h∑
i=vt+1

(
Lζi (η

ζ
vt(v))− Lζi (η(v))

)
.

(3.3.57)
To bound the last summand on the right-hand side, we again recall that the family

(
Lζi (·) :

i ∈ R, 0 ≥ ζ(·) ≥ ei − es

)
is bounded and uniformly equicontinuous on 4. Therefore, by

Lemma 3.10, we have

P
(

sup
lnbtc≤|h|≤dteε∗(t),

v∈V

∣∣∣1
h

vt+h∑
i=vt+1

(
Lζi (η

ζ
vt(v))− Lζi (η(v))

)∣∣∣ > δ

2
, vt ≥ N1 ∀v ∈ V

)
≤ ct−q

for t large enough. It thus su�ces to bound the �rst summand in (3.3.57), i.e. to show that
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there exists C0 = C0(ε, q) > 0 such that for all t large enough we have

P
(

sup
C0 lnbtc≤|h|≤dteε∗(t),

v∈V

∣∣∣L(η(v))− 1

h

vt+h∑
i=vt+1

Lζi (η(v))
∣∣∣ > δ

2

)
≤ ct−q. (3.3.58)

Hence, for every h we write hL(η) −
∑vt+h

i=vt+1 L
ζ
i (η) =

∑bhc+2
i=1 L̃ζ,h,vi (η), where the se-

quence of random variables (L̃ζ,h,vi (η))
b|h|c+2
i=1 is centered and P-a.s. uniformly bounded in

v ∈ V , h ∈ R, t ∈ R and η ∈ 4, as well as ful�lls the mixing condition from Lemma A.2.
Thus, we can apply Corollary B.2 to show that there exist constants C > 0 and C0(ε, q) > 0,
such that for all v ∈ V and all h ful�lling |h| ≥ C0 ln t we have

P
(∣∣∣L(η)− 1

h

vt+h∑
i=vt+1

Lζi (η(v))
∣∣∣ > δ

2

)
≤
√
e exp

{
− 1

2Cbhc

( |h|ε
2

)2}
≤ c1t

−q−3

for all t large enough.
To get the �uniform bound� from (3.3.58), we �rst show it on the grid Vn := ( 1

nZ) ∩ V
and C

(t)
n := ( 1

nZ) ∩ [lnbtc, dteε∗(t)], n ∈ N. Indeed, because |Vn| ≤ (diam(V ) + 1)n and

|C(t)
n | ≤ nt, we get

P
(

sup
|h|∈C(t)

btc, v∈Vbtc

∣∣∣L(η(v))− 1

h

vt+h∑
i=vt+1

Lζi (η(v))
∣∣∣ > δ

2

)
≤ diam(V )c2 · t−q (3.3.59)

for all t large enough. To control all v ∈ V and |h| ∈ [lnbtc, dteε∗(t)], we note that for all
s ≥ 0 we have

lnEvt+ k
n

+s

[
e
∫Hvt
0 (ζ(Bs)+η) ds

]
− lnEvt+ k

n

[
e
∫Hvt
0 (ζ(Bs)+η) ds

]
= lnEvt+ k

n
+s

[
e
∫Hvt+ k

n
0 (ζ(Bs)+η) ds

]
∈
[
− s
√

2(es− ei + |η|), 0
]

where the last display is again a consequence of (3.3.53). Thus for all h not on the grid the
terms in (3.3.59) di�er at most by a term of order 1/t. A similar statement holds for all
v ∈ V not on the grid, because η(·) is uniformly Lipschitz continuous on V (see Lemma 3.9
(c)). Thus the uniform bound in (3.3.59) can be extended to be valid for all h such that
C0 lnbtc ≤ |h| ≤ dteε∗(t). This completes the proof.

3.3.5 Approximation results

In this section we mainly show how moment generating functions can be used in order
to approximate quantities related to the solution to (PAM) and BBMRE. As usual, for
u0 ∈ IPAM let uu0 be the solution to (PAM) with initial condition u0.

Lemma 3.26. There exists a constant C14 > 0 and a P-a.s. �nite random variable T3 such

that for all u0 ∈ IPAM and t ≥ T3,∣∣∣ lnuu0(t, v0t)−
v0t∑
i=1

(
Lζi (η(v0))− L(η(v0))

)∣∣∣ ≤ C14 ln t. (3.3.60)
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Proof. By (3.3.22) and Λ(v0) = 0, we have L∗(1/v0) = es

v0
. Also, by (PAM-INI) and

monotonicity of the solution to (PAM) in its initial condition, we have uδ
′
1[−δ′,0] ≤ uu0 ≤

uC
′
1(−∞,0] . Thus, on the one hand, by the many-to-few lemma (Proposition 2.15) and

Lemma 3.19, for all u0 ∈ IPAM and t such that v0t ≥ N1, where N1 was de�ned in (3.2.31),
we have ∣∣lnuu0(t, v0t)−

(
lnY ≈v0 (v0t) + v0tL

∗(1/v0)
)∣∣ ≤ ln(C10/δ

′).

On the other hand, due to Proposition 3.17 and Corollary 3.16, there exists a �nite random
variable N , such that for all t ≥ N we have

∣∣∣ lnY ≈v0 (v0t) + v0tL
∗(1/v0) + lnσζv0t(v0)−

v0t∑
i=1

(
Lζi (η(v0))− L(η(v0))

)∣∣∣
≤ lnC8 + C6 ln v0 + C6 ln t.

Finally, by (3.3.7), | lnσζv0t(v0) − 1
2 ln t| ≤ lnC7 + 1

2 | ln v0| for all t such that v0t ≥ N1.
Combining this with the previous two display, inequality (3.3.60) follows with T3 := (N ∨
N1)/v0 and C14 suitable.

We introduce the so-called breakpoint inverse

T u0,Mx := inf
{
t ≥ 0 : uu0(t, x) ≥M

}
, x ∈ R, M ∈ [0,∞), u0 ∈ IPAM, (3.3.61)

and abbreviate
T (M)
x := T

1(−∞,0],M
x . (3.3.62)

Next, we state an important approximation result for T u0,Mx , x ≥ 0, in terms of the centered
logarithmic moment generating functions.

Lemma 3.27. There exists a constant C15 < ∞ and a P-a.s. �nite random variable C1 =
C1(M,u0), M > 0, u0 ∈ IPAM, such that for all x ≥ 1,∣∣∣T u0,Mx − 1

v0L(η(v0))

x∑
i=1

Lζi (η(v0))
∣∣∣ ≤ C1 + C15 lnx. (3.3.63)

Additionally, for each u0 ∈ IPAM and M > 0,

lim
x→∞

T u0,Mx

x
=

1

v0
P-a.s. (3.3.64)

Proof. We set t = x/v0 and let

ht :=
1

v0L(η(v0))

v0t∑
i=1

(
L(η(v0)− Lζi (η(v0))

)
.

We �rst note that due to Lemma A.2, the family (L(η(v0)) − Lζi (η(v0)))i∈Z satis�es the
assumptions of Corollary B.2 with all mi equal to some large enough �nite constant and
thus

∑
n P(|hn| ≥ C

√
n lnn) < ∞ for some C > 1 large enough. The �rst Borel-Cantelli

lemma then readily supplies us with |hn| < C
√
n lnn P-a.s. for all n large enough. To
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control non-integer t, we recall

ht − hbtc =
1

v0L(η(v0))

(
v0(t− btc)L(η(v0))− lnEv0t

[
e
∫Hv0btc
0 (ζ(Bs)+η(v0)) ds

])
and hence P-a.s. that |ht − hbtc| ≤ 1 +

√
2(es−ei−η(v0))

|L(η(v0))| by (BDD) and [8, (2.0.1), p. 204],
thus giving

|ht| < c1

√
t ln t P-a.s. for all t large enough. (3.3.65)

To show the desired inequality, we note that (3.3.63) is equivalent to∣∣T u0,Mv0t
− (t− ht)

∣∣ ≤ C1 + C15 ln(v0t). (3.3.66)

For proving the latter, observe that it is su�cient to show that we can choose C15 > 0 as
well as a P-a.s. �nite random variable T , such that

uδ
′
1[−δ′,0](t− ht + C15 ln t, v0t) ≥M and

u1(−∞,0](t− ht − C15 ln t, v0t) <
M

2C ′
, ∀t ≥ T .

(3.3.67)

with δ′, C ′ from (PAM-INI). Indeed, due to (PAM-INI), the �rst inequality in (3.3.67)

implies T u0,Mv0t
≤ T

δ′1[−δ′,0],M

v0t
≤ t−ht+C15 ln t for t ≥ T . To use the second inequality, �rst

note that T u0,Mv0t
≥ T

C′1(−∞,0],M
v0t

= T
1(−∞,0],M/C′

v0t
. Then, using Lemma D.2, (3.3.67) implies

T
1(−∞,0],M/C′

v0t
≥ t−ht−C15 ln t for all t ≥ T . For t < T on the other hand, we can use that

P-a.s., the family T u0,Mv0t
, t < T , as well as the Lζi (η(v0)) are uniformly bounded, allowing

us to upper bound the remaining cases of (3.3.66) by some �nite random variable C1.
Thus, in order to show (3.3.67), note that for α ∈ R and uniformly in u0 ∈ IPAM we

have that

lnuu0(t− ht + α ln t, v0t)

= ln
(uu0(t− ht + α ln t, v0t)

uu0(t, v0t)

)
+

v0t∑
i=1

(
Lζi (η(v0))− L(η(v0))

)
+ at

= (−ht + α ln t)(es− η(v0)) + v0L(η(v0))ht + b(α, t) = α(es− η(v0)) ln t+ b(α, t),

for some error terms at and b(α, t) ful�lling |at| ≤ C14 ln t and

|b(α, t)| ≤ C14 ln t+ C11 + C11 · |α ln t− ht| ·
(√ ln t

t
+
|α ln t− ht|

t

)
for all t large enough. Indeed, the �rst equality is due to Lemma 3.26, the second due to the
time perturbation Lemma 3.23, the last one due to the identity es − η(v0) = v0L(η(v0)).

Then due to |ht| ≤ c1

√
t ln t for large t (cf. (3.3.65)), choosing C15 = α > 2C11·C2

es−η(v0) the latter
term tends to in�nity, supplying us with (3.3.67).

To complete the proof, equation (3.3.64) is a direct consequence of (3.3.63) and (3.2.17).

Recall the de�nition mu0,M = mξ,u0,M from (3.0.1).
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Corollary 3.28. For all u0 ∈ IPAM and M > 0 we have

mu0,M (t)

t
−→
t→∞

v0 P-a.s. (3.3.68)

Proof. For an upper bound, we have

lim sup
t→∞

mu0,M (t)

t
= lim sup

t→∞

mu0,M (t)

T u0,M
mu0,M (t)

T u0,M
mu0,M (t)

t
≤ v0,

where the last inequality is due to T u0,M
mu0,M (t)

≤ t and (3.3.64). To get a lower bound, we can
use the properties of the Lyapunov exponent from Corollary 3.22, giving the lower bound
lim inft→∞

mu0,M (t)
t ≥ v for all v ∈ [0, v0), and we can conclude.

Lemma 3.29. For every M > 0 there exists a constant C16 = C16(M) > 0 and a P-a.s.
�nite random variable T4 = T4(M) such that for all u0 ∈ IPAM and t ≥ T4,

t− C16 ≤ T u0,Mmu0,M (t)
≤ t. (3.3.69)

Proof. By de�nition, the inequality T u0,M
mu0,M (t)

≤ t follows directly. To show t − C16 ≤
T u0,M
mu0,M (t)

, recall that due to (3.3.68) we can use time perturbation. Indeed, by de�ning

C16 := C12 ln
(
C12 · 3C ′/M

)
with C ′ from (PAM-INI) and C12 from Lemma 3.23 b), for all

t large enough

u1(−∞,0](t− C16,m
u0,M (t)) ≤ C12e

−C16/C12uu0(t,mu0,M (t)) <
M

2C ′

and thus, recalling Lemma D.2, we get T u0,M
mu0,M (t)

≥ T
C′1(−∞,0],M

mu0,M (t)
= T

1(−∞,0],M/C′

mu0,M (t)
≥ t− C16

for all t large enough and we can conclude.

Recall de�nition (3.3.62) for T (M)
x .

Corollary 3.30. There exists K ∈ (1,∞) such that P-a.s., for all M > 0 and for all x
large enough

sup
|y|≤1

T
(M)
x+y −K ≤ T (M)

x ≤ inf
|y|≤1

T
(M)
x+y +K. (3.3.70)

Proof. We set K := 1 +C12

(
ln(2C12C13) +C13

)
. Then due to (3.3.64), P-a.s. for all x large

enough we have
x+ y′

T
(M)
x+y′′ ±K

∈ V ∀ y′, y′′ ∈ [−1, 1].

This allows us to apply the inequalities (3.3.35) and (3.3.42) for u0 = 1(−∞,0]. Indeed, for
all |y| ≤ 1,

u(T
(M)
x+y −K,x) ≤ C13e

C13u(T
(M)
x+y −K,x+ y) ≤ C13e

C13C12e
−(K−1)/C12u(T

(M)
x+y − 1, x+ y)

<
M

2
,

where the �rst inequality is due to (3.3.42), the second one due to (3.3.35) and the last one
uses u(T

(M)
x+y − 1, x+ y) < M . By Lemma D.2 we get u(t, x) < M for all t ≤ T (M)

x+y −K and



74 Log-distance and invariance principles Chapter 3

thus the left-hand side in (3.3.70). Analogously, �rst applying (3.3.42) and then (3.3.35),
we have

u(T
(M)
x+y +K,x) ≥ C−1

13 e
−C13u(T

(M)
x+y +K,x+ y) ≥ C−1

13 e
−C13C−1

12 e
K/C12u(T

(M)
x+y , x+ y)

≥M

for all |y| ≤ 1, giving the right-hand side of (3.3.70).

Corollary 3.31. Let mM (t) = mξ,1(−∞,0],M (t), M > 0, be de�ned in (3.0.1). Then for all

0 < ε ≤M there exists C = C(ε,M) such that P-a.s. for all t large enough

0 ≤ mε(t)−mM (t) ≤ C.

Proof. The �rst inequality is clear. By Corollary 3.28, we can use the second inequality
from Lemma 3.24 b) and get the claim by de�ning C := C13 ln

(
C13 ·M/ε

)
with C13 from

Lemma 3.24 b) to get u1(−∞,0](t,mε(t) − C) ≥ M and thus mM (t) ≥ mε(t) − C for all t
large enough.

3.3.6 Proof of Theorem 3.4

Using the preparatory results from the previous sections, it is now possible to obtain an
invariance principle for the front of the solution to (PAM). Roughly speaking, up to some
error which can be controlled by the results from the previous sections, we have m(t) ≈
lnu(t, v0t) and can then use the invariance principle from Theorem 3.3 to conclude.

Proof of Theorem 3.4. Let u0 ∈ IPAM, M > 0 and abbreviate u = uu0 and m := mu0,M .
We �rst assume σ2

v0 > 0. Then we have to show that the sequence of processes

[0,∞) 3 t 7→ m(nt)− v0nt√
nσ̃2

v0

, n ∈ N, (3.3.71)

where σ̃2
v0 > 0 is given in (3.3.76) below, converges in P-distribution to standard Brownian

motion in the Skorohod space D([0,∞)). Notice that [0,∞) 3 t 7→ m(t) might not be càdlàg
only, but this can happen only in 0. To avoid this issue, above convergence is de�ned as
convergence of the sequence of processes in (3.3.71) where we set m(t) ≡ 0 for t such that
m(t) ≤ 0, making it càdlàg.

Due to the limiting behavior and the continuity of x 7→ u(t, x) for t > 0, the value
r(t) := m(t)− v0t is the largest solution to

lnu(t, v0t+ r(t)) = − ln 2.

We de�ne

L(t, h) := ln
u(t, v0t+ h)

u(t, v0t)
, t > 0, h ∈ R,

U(t) := − lnu(t, v0t)− ln 2 = L(t, r(t)), t ≥ 0,

let
δ ∈

(
0, |L(η(v0))|

)
and ε(t) be a positive function such that ε(t)→ 0 and ε(t)t1/2 →∞. Then by Lemma 3.24,
there is C(ε) > 0 such that for t large enough and all h ∈ R ful�lling C(ε) ln t ≤ |h| ≤ ε(t)t
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and v0 + h
t ∈ V we have

−
(
|L(η(v0))|+ δ

)
h ≤ L(t, h) ≤ −

(
|L(η(v0))| − δ

)
h. (3.3.72)

Now, multiplying (3.3.63) by v0, replacing x by m(t) in (3.3.63) and recalling that t−C16 ≤
Tm(t) ≤ t by Lemma 3.29, we get

∣∣∣(m(t)−v0t)−
1

L(η(v0))

m(t)∑
i=1

(
Lζi (η(v0))−L(η(v0))

)∣∣∣ ≤ v0C1 +C16 +v0C15 ln(m(t)) (3.3.73)

for all t large enough. Next, recall that m(t)
t → v0 by Corollary 3.28 and that the stan-

dardized sum 1√
n

∑nt
i=1

(
Lζi (η(v0))−L(η(v0))

)
converges in distribution to a non-degenerate

Gaussian random variable by Lemma 3.14. As a consequence, in combination with (3.3.73),
we infer that |r(t)| = |m(t)− v0t| ∈ [C(ε) ln t, ε(t)t] with probability tending to 1 as t tends
to in�nity. This and (3.3.72) implies

r(t) ∈
[ U(t)

|L(η(v0))| ∓ δ
,

U(t)

|L(η(v0))| ± δ

]
, (3.3.74)

with probability tending to 1 as t tends to ∞, where the upper sign is chosen if U(t) > 0
and the lower sign if U(t) < 0. If σ2

v0 > 0, due to Λ(v0) = 0 and Theorem 3.3, the sequence
of processes

[0,∞) 3 t 7→ 1√
nv0σ2

v0

U(nt), n ∈ N, (3.3.75)

converges in P-distribution to standard Brownian motion. Because (3.3.74) holds for all
δ > 0 small enough, Theorem 3.4 is a direct consequence of the convergence in distribution
of (3.3.75) by choosing

σ̃v0 :=

√
σ2
v0v0

|L(η(v0))|
. (3.3.76)

where σ2
v0 is de�ned in (3.3.1). This gives the second part of Theorem 3.4. If σ2

v0 = 0,
we can proceed analogously and the �rst part of Theorem 3.4 follows from the �rst part of
Theorem 3.3 and (3.3.74).

3.4 Log-distance of the fronts of the solutions to PAM and

F-KPP

We �nally prove our last main result of this chapter, Theorem 3.5. In Sections 3.4.1 and
3.4.2, we will assume that u0 = w0 = 1(−∞,0]. Indeed, using a comparison argument in
the proof of Theorem 3.5, it will turn out that this is actually su�cient for or purposes. It
should also be mentioned here that the tools we employ are inherently probabilistic. As a
consequence, and for notational convenience, we will mostly formulate the respective results
in terms of the BBMRE in what follows below; the correspondence to the results in PDE
terms is immediate from (3.1.2) and Remark 2.18.

In the case u0 = w0 = 1(−∞,0], using Markov's inequality we infer

P
ξ
x

(
N≤(t, 0) ≥ 1

)
≤ E

ξ
x

[
N≤(t, 0)

]



76 Log-distance and invariance principles Chapter 3

and thus m(t) ≥ m(t) for all t ≥ 0, which establishes the �rst inequality in (3.1.5). The rest
of this section will be dedicated to deriving the second inequality in (3.1.5), i.e., that the front
of the randomized F-KPP equations lags behind the front of the solution to the parabolic
Anderson model at most logarithmically. We introduce some notation and, recalling the
notation Xu introduced from section 2.2.1, start with considering certain �well-behaved�
particles

NL,Ms,u,t :=
∣∣{u ∈ N(s) : Xu

s ≤ 0,

Hu
k ≥ u− T

(M)
k − 5χ1(mM (t)) ∀k ∈ {1, . . . , bmM (t)c}

}∣∣,
M > 0, s, t, u ≥ 0;

(3.4.1)

(3.4.1) here, Hu
k := inf{t ≥ 0 : Xu

t = k}, the random variable T (M)
k has been de�ned in

(3.3.62), and

χb(x) := C1 + b(1 +K + C16) + C15(lnx ∨ 1), x ∈ (0,∞), b ∈ R, (3.4.2)

where C1 and C15 have been de�ned in Lemma 3.27, K is taken from Corollary 3.30, the
constant C16 from Lemma 3.29. We abbreviate NL,Mt := NL,Mt,t,t and call the particles
contributing to NL,Mt leading particles at time t. Cauchy-Schwarz immediately gives

P
ξ
x

(
N≤(t, 0) ≥ 1

)
≥ P

ξ
x

(
NL,Mt ≥ 1

)
≥

E
ξ
x

[
NL,Mt

]2

E
ξ
x

[
(NL,Mt )2

] . (3.4.3)

The next two sections are dedicated to deriving an upper bound for the denominator and a
lower bound for the numerator of the right-hand side, both for x in a neighborhood of m(t).

3.4.1 First moment of leading particles

The biggest chunk of this section consists of proving the following �rst moment bound on
the number of leading particles. Recall the notation mM (t) from (3.0.2).

Lemma 3.32. For all M > 0 there exists γ1 = γ1(M) ∈ (0,∞) such that P-a.s., for all t
large enough

inf
x∈[mM (t)−1,mM (t)+1]

E
ξ
x

[
NL,Mt

]
≥ t−γ1 .

Proof. LetM > 0. To simplify notation, we omit the indexM > 0 in the quantities involved
and write NLs,u,t := NL,Ms,u,t , T

(M)
x := Tx, mM (t) := m(t) from now on.

Let Au,t := {Hk ≥ u−Tk−5χ1(m(t)) ∀k ∈ {1, . . . , bm(t)c}}, let K be such that (3.3.16)
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holds and set t := Tbm(t)c. We obtain for all t large enough that

inf
x∈[m(t)−1,m(t)+1]

E
ξ
x

[
NLt
]
≥

infx∈[m(t)−1,m(t)+1] E
ξ
x

[
NLt
]

2Eξbm(t)c
[
N≤(t, 0)

]
≥ c

2

E
ξ
bm(t)c

[
NLt−1,t,t+1

]
E
ξ
bm(t)c

[
N≤

(
t, 0
)] =

c

2

Ebm(t)c

[
e
∫ t−1
0 ξ(Bs) ds;Bt−1 ≤ 0, At+1,t

]
Ebm(t)c

[
e
∫ t
0 ξ(Bs) ds;Bt ≤ 0

]
≥ c1

Ebm(t)c

[
e
∫ t−1
0 ζ(Bs) ds;Bt−1 ≤ 0, At+1,t

]
Ebm(t)c

[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

] ;

(3.4.4)

here, the �rst inequality follows from the de�nition of Tbm(t)c, the second inequality is due
to Lemma D.3, the equality follows using Proposition 2.15 and the last inequality is due
to ξ = ζ + es, as well as (3.3.70) which gives t = Tbm(t)c ≤ Tm(t) + K ≤ t + K. Now the
numerator can be bounded from below by

Ebm(t)c

[
e
∫ t−1
0 ζ(Bs) ds;H0 ∈ [t− 3K − C16, t− 1], Bt−1 ≤ 0, At+1,t

]
≥ Ebm(t)c

[
e
∫H0
0 ζ(Bs) ds E0

[
e
∫ r
0 ζ(Bs) ds;Bt−1−r ≤ 0

]∣∣∣
r=t−1−H0

;

H0 ∈ [t− 3K − C16, t− 1], At+1,t

]
≥ c2Ebm(t)c

[
e
∫H0
0 ζ(Bs) ds;H0 ∈ [t− 3K − C16, t− 1], At+1,t

]
,

where the second inequality is due to ζ ≥ −(es − ei) and P0(Bs ≤ 0) ≥ 1/2 for all
s ≥ 0. Now using the inclusion {Bt ≤ 0} ⊂ {H0 ≤ t} in combination with ζ ≤ 0, we infer

Ebm(t)c
[
e
∫ t
0 ζ(Bs) ds;Bt ≤ 0

]
≤ Ebm(t)c

[
e
∫H0
0 ζ(Bs) ds;H0 ≤ t

]
. Thus, recalling η(v0) < 0 and

(3.2.5), we can continue to lower bound (3.4.4) via

inf
x∈[m(t)−1,m(t)+1]

E
ξ
x

[
NLt
]
≥ c3

E
ζ,η(v0)
bm(t)c

[
e−η(v0)H0 ;H0 ∈ [t− 3K − C16, t− 1], At+1,t

]
E
ζ,η(v0)
bm(t)c

[
e−η(v0)H0 ;H0 ≤ t

]
≥ c4

P
ζ,η(v0)
bm(t)c

(
H0 ∈ [t− 3K − C16, t− 1], Hk ≥ t+ 1− Tk − 5χ1(m(t)), ∀k ≤ bm(t)c

)
P
ζ,η(v0)
bm(t)c

(
H0 ≤ t

)
≥ c4P

ζ,η(v0)
bm(t)c

(
H0 ∈ [t− 2K, t−K − 1], Hk ≥ t− Tk − 5χ0(m(t)), ∀k ≤ bm(t)c

)
,

where the last inequality is due to t ≥ Tm(t) ≥ t−K and t ≥ Tm(t) − C16 −K (by (3.3.70)

and (3.3.69)). Now as we recall that bm(t)c
t → v0, abbreviating η = η(v0), n := bm(t)c and

thus t = Tn, we see that in order to �nish the proof, it su�ces to show that there exists
γ ∈ (0,∞) such that P-a.s., for all n ∈ N large enough,

P ζ,ηn
(
H0 ∈ [Tn − 2K,Tn −K − 1], Hk ≥ Tn − Tk − 5χ0(n) ∀k ∈ {1, . . . , n}

)
≥ n−γ . (3.4.5)

Using the notation

Ĥ
(n)
k := Hk − Eζ,ηn [Hk] as well as R

(n)
k := Tn − Tk − Eζ,ηn [Hk] , (3.4.6)
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the probability in (3.4.5) can be rewritten as

P ζ,ηn
(
Ĥ

(n)
0 ∈ [R

(n)
0 − 2K,R

(n)
0 −K − 1], Ĥ

(n)
k ≥ R(n)

k − 5χ0(n) ∀k ∈ {1, . . . , n}
)
. (3.4.7)

In order to facilitate computations, we approximate the sequence (R
(n)
k ) by a stationary

one, setting

ρi :=
Lζi (η)

v0L(η)
− (Lζi )

′(η) =
1

v0L(η)

(
Lζi (η)− L(η)

)
−
(
Eζ,ηn [τi−1]− E[Eζ,ηn [τi−1]]

)
(3.4.8)

and

R̂
(n)
k :=

n∑
i=k+1

ρi, k < n, (3.4.9)

where τi−1 = Hi−1−Hi, and in the equality we used Eζ,ηn [τi−1] = (Lζi )
′(η) and E[Eζ,ηn [Hk]] =

n−k
v0

. Applying inequality (3.3.63) from Lemma 3.27 and using the identity E[Eζ,ηn [Hk]] =
n−k
v0
, we get that P-a.s.,∣∣R(n)

k − R̂
(n)
k

∣∣ ≤ 2 (C1 + C15 lnn) for all n ∈ N and each k ∈ {0, . . . , n}. (3.4.10)

From now on we write χ := χ0. Then by (3.4.10), the probability in (3.4.7) can be lower
bounded by

P ζ,ηn
(
Ĥ

(n)
0 ∈ [R

(n)
0 − 2K,R

(n)
0 −K − 1]; Ĥ

(n)
k ≥ R̂(n)

k − 3χ(n) ∀k ∈ {1, . . . , n}
)
. (3.4.11)

Now, for every n, enlarging the underlying probability space if necessary, we introduce two
processes (B

(i,n)
t )t≥0, i = 1, 2, which are independent from everything else and Brownian

motions under Pn, starting in n, and, without further formal de�nition, we tacitly assume in
the following that the tilting of the probability measure P ζ,ηn of our original Brownian motion
also applies to (B

(i,n)
t )t≥0, i = 1, 2, in the obvious way. For i = 1, 2, let H(i,n)

k := inf{t ≥ 0 :

B
(i,n)
t = k}, k ∈ Z, be the corresponding hitting times, Ĥ(i,n)

k := H
(i,n)
k − Eζ,ηn [H

(i,n)
k ] and

let Σn be a random variable which, under Pn, is uniformly distributed on {1, . . . , n−1} and
independent of everything else. We de�ne

β
(i,n)
k := Ĥ

(i,n)
k − R̂(n)

k , k = n− 1, n− 2, . . . , i = 1, 2,

β
(n)
k :=

{
β

(1,n)
k , Σn ≤ k < n,

β
(1,n)
Σn

+
(
β

(2,n)
k − β(2,n)

Σn

)
, k < Σn.

The ξ-adaptedness of the process (R̂
(n)
k )k<n implies that the processes (β

(i,n)
k )k<n, i = 1, 2,

are P ζ,ηn -independent and have the same distribution as (β
(n)
k )k<n. We can therefore rewrite

(3.4.11) as

P ζ,ηn

(
β

(n)
k ≥ −3χ(n) ∀k ∈ {1, . . . , n} , β(n)

0 ∈ In
)
, (3.4.12)

where In :=
[
R

(n)
0 − R̂(n)

0 − 2K,R
(n)
0 − R̂(n)

0 −K − 1
]
. Due to (3.4.10) we have that P-a.s.
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for all n large enough, R(n)
0 − R̂(n)

0 − 2K ≥ −3χ(n), i.e.

In ⊂ [−3χ(n),∞). (3.4.13)

For each k ∈ {0, . . . , n} we introduce

β
(1,n)
k := β

(1,n)
n−1−k − β

(1,n)
n−1 , β

(2,n)
k := β

(2,n)
k − β(2,n)

0 ,

and note that
β

(n)
0 = β

(1,n)
n−1−Σn − β

(2,n)
Σn + β

(1,n)
n−1 . (3.4.14)

An illustration of the various processes introduced above is given in �gure 3.3 below. Now
the key to bound the probability in (3.4.12) is the following lemma.

Lemma 3.33. (a) There exists γ′ <∞ such that P-a.s. for all n large enough,

P ζ,ηn
(
β

(1,n)
k ≥ 0 ∀0 ≤ k ≤ n, β(1,n)

n ≥ n1/4
)
≥ n−γ′ , and

P ζ,ηn
(
β

(2,n)
k ≥ 0 ∀0 ≤ k ≤ n, β(2,n)

n ≥ n1/4
)
≥ n−γ′ .

(b) There exists C(γ′) > 0 such that P-a.s. for all n large enough,

P ζ,ηn

(
max

1≤k≤n,i∈{1,2}

∣∣β(i,n)
k − β(i,n)

k−1

∣∣ ≤ C(γ′) lnn
)
≥ 1− n−3γ′ . (3.4.15)

(c) Let δ ∈ (0, 1). There exists c > 0 such that for all x ≥ 1 and all n ∈ Z,

P ζ,ηn
(
β

(1,n)
n−1 ∈ [x, x+ δ]

)
≥ cδe−x/c.

Before proving Lemma 3.33, we �nish the current proof in order not to interrupt the
Reader. To this end let

Jn := sup
{
k ∈ {1, . . . , n− 1} : In − β

(1,n)
n−k+1 + β

(2,n)
k ⊂ [0, 2C(γ′) lnn]

}
,

where as always sup ∅ := −∞. We have{
β

(n)
k ≥ −3χ(n) ∀0 ≤ k ≤ n− 1, β

(n)
0 ∈ In

}
⊃
({
β

(1,n)
k ≥ 0 ∀0 ≤ k ≤ n, β(1,n)

n ≥ n1/4
}
∩
{

max
1≤k≤n

∣∣β(1,n)
k − β(1,n)

k−1

∣∣ ≤ C(γ′) lnn
}

∩
{
β

(2,n)
k ≥ 0 ∀0 ≤ k ≤ n, β(2,n)

n ≥ n1/4
}
∩
{

max
1≤k≤n

∣∣β(2,n)
k − β(2,n)

k−1

∣∣ ≤ C(γ′) lnn
}

∩
{
β

(1,n)
n−1 ∈ In − β

(1,n)
n−1−Σn + β

(2,n)
Σn

}
∩ {Σn = Jn}

)
. (3.4.16)

Indeed, due to (3.4.14), the �fth event on the right-hand side of (3.4.16) entails that β(n)
0 ∈ In

must hold. On the last two events on the right-hand side of (3.4.16) we have β(1,n)
n−1 ≥ 0

and thus the �rst event on the right-hand side of (3.4.16) implies that β(n)
k is nonnegative

for k ≥ Σn. The third event then implies monotonicity at times k < Σn. Since In ⊂
[−3χ(n),∞) due to (3.4.13), this gives the �rst condition on the left-hand side of (3.4.16).
Now the �rst and third event on the right hand-side of (3.4.16) are independent under P ζ,ηn
and their probabilities are bounded from below by n−γ

′
due to Lemma 3.33 a). Thus, as a
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n1/4

n

Jn = Σn

β
(1,n)
n−1−k β

(2,n)
k

β
(n)
k

In
k

−3χ(n)

0

Figure 3.3: Illustration of (3.4.16).

consequence of Lemma 3.33 b), for n large enough the probability of the �rst four events
is bounded from below by n−2γ′ − n−3γ′ . Furthermore, the �rst four events imply that
Jn ∈ {1, . . . , n− 1}. Thus, due to Lemma 3.33, conditionally on the occurrence of the �rst
four events, the probability of the last two events on the right-hand side in (3.4.16) can be
bounded from below by cn−1e−C(γ′) lnn/c ≥ n−γ

′′
for n large enough. The proof of (3.4.5)

and thus of Lemma 3.32 is completed by the choice γ1 > 2γ′ + γ′′.

Proof of Lemma 3.33. (b) We have H(1,n)
k − H

(1,n)
k−1

d
= τk−1 under P ζ,ηn . Thus, recalling

E
[
Eζ,ηn [τk]

]
= 1

n and the de�nition of R̂(n)
k from (3.4.8), we have β(1,n)

k −β(1,n)
k−1 = τk−1−

Lζk(η)

v0L(η) .

Now Lζk(η) is P-a.s. bounded by Lemma 3.8. Furthermore, for all θ such that |θ| ≤ |η∗|
(where 4 = [η∗, η

∗]), we have

0 ≤ Eζ,ηn
[
eθτk−1

]
= Eζ,ηk

[
eθτk−1

]
≤ 1

Ek
[
e(−es+ei+η∗)Hk−1

] = e
√

2(es−ei+|η∗|) <∞,

where the last equation is due to [8, (2.0.1), p. 204]. I.e., τk has uniform exponential
moments under P ζ,ηn and thus (3.4.15) follows by a union bound in combination with the
exponential Chebyshev inequality.

(c) We have β(1,n)
n−1 = H

(1,n)
n−1 − Eζ,ηn [H

(1,n)
n−1 ] − R̂

(n)
n−1 = H

(1,n)
n−1 − Eζ,ηn [τn−1] − ρn, thus

recalling de�nition (3.4.8), the event in (c) is equivalent to {H(1,n)
n−1 ∈ [x, x + δ] + Lζn(η)

v0L(η)}.

Because Lζn(η)
v0L(η) is uniformly bounded and nonnegative, it su�ces to check that for every

C > 0, there exists c > 0 such that infy∈[0,C] P
ζ,η
n (H

(1,n)
n−1 ∈ [x+ y, x+ y + δ]) ≥ cδe−x/c for

all x ≥ 1. Indeed, recalling (3.2.5), we can lower bound

P ζ,ηn (H
(1,n)
n−1 ∈ [x+ y, x+ y + δ]) ≥ En

[
e−(es−ei−η∗)Hn−1 ;H

(1,n)
n−1 ∈ [x+ y, x+ y + δ]

]
≥ e−(es−ei−η∗)(x+y+δ)Pn

(
H

(1,n)
n−1 ∈ [x+ y, x+ y + δ]

)
≥ δe−(es−ei−η∗)(x+y+δ)√

2π(x+ y + δ)3
e
− 1

2(x+y) ,
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where the last inequality is due to [8, (2.0.2), p. 204]. Now since the latter term can be
lower bounded by cδe−x/c, uniformly in y ∈ [0, C], the claim follows.

(a) We will prove the second inequality, and explain the modi�cations that are necessary
to show the �rst one at the end of the proof. For later reference it will serve our purposes
to exclude some potentially bad behavior of the process (R̂

(n)
k − R̂

(n)
k−1)k. To do so, we take

advantage of the next claim, the proof of which we provide after concluding the proof of
Lemma 3.33.

Claim 3.34. For each n ∈ Z, the sequence (ρi)i∈Z consists of P-centered and P-stationary
random variables, and the family (ρi)i∈Z is bounded P-a.s. In addition, ρi is F i−1-adapted

and there exists C17 > 0 such that P-a.s., for all k, n ∈ Z, k < n, we have∣∣E[ρn−k|Fn]∣∣ ≤ C17 ·
(
ψ(k/2) + e−k/C17

)
. (3.4.17)

Furthermore, there exists σ ∈ [0,∞) such that n−1/2
∑n

l=1 ρl and n
−1/2

∑n
l=1 ρ−l converge in

P-distribution to σX as n→∞, where X ∼ N (0, 1) is a standard Normal random variable.

Now due to (3.4.17), (ρi)i∈Z ful�lls the conditions of Corollary B.2. As a consequence

we deduce that for k ∈ N and x ≥ 0 we have P
(∑k

l=1 ρl ≥ x
)
≤ c1e

− x2

c1k , which, using
stationarity, can be extended to the maximal inequality (e.g. by [42, Theorem 1])

P
(

max
0≤k≤y

(
R̂

(n)
r+k − R̂

(n)
r

)
≥ x

)
= P

(
max

0≤k≤y

k∑
l=0

ρl ≥ x
)
≤ c2e

− x2

c2y ∀r, y ∈ Z, x ≥ 0.

(3.4.18)

Furthermore, recalling (3.4.6), (3.4.8) and (3.4.9), the increments of the process (β
(2,n)
k )k

can be written as

β
(2,n)
k − β(2,n)

k−1 =
(
Hk −Hk−1 − Eζ,ηn [Hk −Hk−1]

)
−
( n∑
i=k+1

ρi −
n∑
i=k

ρi

)
=
(
− τk−1 + (Lζk)

′(η)
)
−
(
−

Lζk(η)

v0L(η)
+ (Lζk)

′(η)
)

=
Lζk(η)

v0L(η)
− τk−1.

P-a.s., by Lemma 3.8 b), the last fraction in the previous display is positive and uniformly
bounded away from zero and in�nity, whereas under P ζ,ηn , τk−1 is an absolutely continuous
random variable with positive density on (0,∞). Therefore, for the constant

a :=
1

4
sup
k∈Z

ess inf
ξ

(
β

(2,n)
k − β(2,n)

k−1

)
,

we have ess infk,n∈Z: k≤n, ξ P
ζ,η
n (β

(n)
k − β

(n)
k−1 ≥ 2a) ≥ δ for some universal constant δ ∈

(0, 1). We now split the environment into ξ(j) := (ξ(l))l≥j and ξ(j) := (ξ(l))l<j and set
t0 = t−1 := 0 as well as ti := 2i for i ≥ 1. Furthermore, we introduce two constants: c > 0,
which is de�ned in (3.4.31) below, and C > 0, which is independent of c and will be chosen
large enough such that the sums in (3.4.21) and (3.4.35) below are �nite. For i ≥ 1, we
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de�ne the random variables

Z
(n)
i := ess inf

ξ(ti+1)
inf

x≥at1/2i−1

P ζ,ηn
(
β

(2,n)
ti ≥ at1/2i , β

(2,n)
k ≥ t1/4i ∀k ∈ {ti−1, . . . , ti}

∣∣ β(2,n)
ti−1

= x
)

= ess inf
ξ(ti+1)

P ζ,ηn
(
β

(2,n)
ti ≥ at1/2i , β

(2,n)
k ≥ t1/4i ∀k ∈ {ti−1, . . . , ti}

∣∣ β(2,n)
ti−1

= at
1/2
i−1

)
,

(3.4.19)

where ess inf
ξ(x)

means taking the essential in�mum with respect to ξ(x), and where the

second equality is due to the monotonicity of the �rst probability in (3.4.19) as a function
in x. Thus, as a random variable, Z(n)

i is measurable with respect to Fti+1 . Now since

β
(2,n)
k is Fk-measurable, we have that Z(n)

i is (F ti−1 ∩ Fti+1)-measurable. Setting i(n) :=

log2

(
b
(
C lnn

)2c), we further de�ne
Y (n) := P ζ,ηn

(
β

(2,n)
k ≥ 0 ∀bC lnnc ≤ k ≤ ti(n), β

(2,n)
ti(n)

≥ abC lnnc
∣∣∣ β(2,n)

bC lnnc = 2abC lnnc
)
.

Writing j(n) := dlog2(n)e, due to the Markov property of the process β
(2,n)

under P ζ,ηn , we
have P-almost surely that for all n large enough,

P ζ,ηn

(
β

(2,n)
n ≥ n1/4,β

(2,n)
k ≥ 0 ∀k ≤ n

)
≥
bC lnnc∏
k=1

P ζ,ηn
(
β

(2,n)
k − β(2,n)

k−1 ≥ 2a
)
Y (n)

j(n)∏
i=i(n)+1

Z
(n)
i

≥ δbC lnnc · Y (n) · exp
{ j(n)∑
i=i(n)+1

lnZ
(n)
i 1

B
(n)
i

}
, (3.4.20)

where the event

B
(n)
i :=

{
max

r∈[ti−1,ti], 0≤k≤ 5
2
at

1/2
i /c

(
R̂r+k − R̂r

)
< at

1/2
i−1/16

}
occurs P-almost surely for all i ∈ [i(n), j(n)] and all n large enough. Indeed, by (3.4.18) we
have

∑
n

j(n)∑
i=i(n)

P
(
(B

(n)
i )c

)
≤
∑
n

j(n)∑
i=i(n)

ti−1P
(

max
0≤k≤ 5

2
at

1/2
i /c

(
R̂k − R̂0

)
≥ at1/2i−1/16

)

≤ c3

∑
n

n

j(n)∑
i=i(n)

e−a
2ct

1/2
i−1/c3 ≤ c4

∑
n

n log2(n)e−a
2C lnn/c4 <∞, (3.4.21)

where the last inequality holds true for C large enough. Thus, the Borel-Cantelli lemma
implies that P-a.s., for all n large enough the events B(n)

i occur for all i ∈ [i(n), j(n)].
Furthermore, it is possible to show that P-almost surely, for all n large enough we have
Y (n) ≥ n−γ

′′
. We postpone a proof of this fact, because it uses the same arguments as

the following paragraph and we will describe necessary adaptations afterwards, cf. page 87.
Thus, for the time being it remains to show that there exists c̃ > 0 such that P-almost
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surely, for all n large enough,

j(n)∑
i=i(n)

ln(Z
(n)
i )1

B
(n)
i

≥ −c̃ · j(n). (3.4.22)

Then the second inequality in Lemma 3.33 (a) follows from (3.4.20) with γ′ > C ln(1/δ) +
γ′′ + c̃/ ln(2).

In order to show (3.4.22), we use the following result, whose proof we postpone to the
argument that it actually implies (3.4.22).

Lemma 3.35. There exist c′′, θ > 0, independent of c̃, such that for all i large enough,

sup
n

E
[
e
−θ ln(Z

(n)
i )1

B
(n)
i

]
≤ c′′. (3.4.23)

Indeed, if (3.4.23) holds, setting Z̃(n)
i := ln(Z

(n)
i )1

B
(n)
i

, by Markov's inequality we have

P
( j(n)∑
i=i(n)

Z̃
(n)
i < −c̃ · j(n)

)
≤ P

( 3∑
k=0

b j(n)
4
c−1∑

i=di(n)/4e

Z̃
(n)
4i+k < −c̃ · j(n)

)

≤
3∑

k=0

P
( b j(n)4

c−1∑
i=di(n)/4e

Z̃
(n)
4i+k < −c̃ · j(n)/4

)
≤ 4e−θc̃·j(n)/4 max

k≤4
E
[
e
−θ

∑bj(n)/4c−1
i=di(n)/4e Z̃

(n)
4i+k

]
.

We will only estimate the above expectation for the case k = 0; the cases k ∈ {1, 2, 3} can
be estimated similarly. Now Z̃

(n)
4i is F t4i−1-measurable, hence, also recalling t4i−1 − t4i−2 =

24i−2, by (MIX) we have

E
[
e−θZ̃

(n)
4i |Ft4i−2

]
≤ (1 + ψ(24i−2))E[e−θZ̃

(n)
4i ].

Since furthermore Z̃(n)
4(i−1) is F

t4i−2-measurable, we obtain via iterated conditioning that

E
[
e
−θ

∑b j(n)4 c

i=d i(n)4 e
Z̃

(n)
4i
]

= E
[
E
[
· · ·E

[
E
[
e
−θ

∑b j(n)4 c

i=d i(n)4 e
Z̃

(n)
4i

| Ft4j(n)−2

]
| Ft4j(n)−6

]
· · · | Ft2

]]
≤

b j(n)
4
c∏

i=di(n)/4e

(1 + ψ(24i−2))E[e−θZ̃
(n)
4i ] ≤ (c6c

′′)j(n),

for some c6 > 0 and n large enough. Choosing c̃ large enough, by a Borel-Cantelli argument
similar to the proof of Lemma 3.10, inequality (3.4.22) follows. We thus have to show
Lemma 3.35.

Proof of Lemma 3.35. Note that

Z
(n)
i = Z

(n)
i (ξ(·)) = Z

(n−k)
i (ξ(·+ k))

d
= Z

(n−k)
i (ξ(·)) = Z

(n−k)
i , (3.4.24)

so we can drop the supremum in (3.4.23). In the following, we �rst choose i large enough
(and from then on �xed) such that several estimates in the remaining part of the proof hold,
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and afterwards we adapt n = n(i) to ensure 0 ≤ i ≤ dlog2(n)e. For simplicity, we write

Zi := Z
(n)
i , βk := β

(2,n)
k , Ĥk := Hk − Eζ,ηn [Hk], R̂k := R̂

(n)
k and de�ne

ρ
(j)
k := ess sup

ξ(j)

ρk, R
(j)
k :=

k∑
l=0

ρ
(j)
l , 0 ≤ k ≤ j.

Furthermore, Thus, ρ(j)
k is Fj-measurable and R

(j)
k+l − R

(j)
k is (Fk ∩ Fj)-measurable for all

l ≥ 0. Let MR := ess sup ρ0 and L := at
1/2
i , and note that the latter choice corresponds to

di�usive scaling. Then we de�ne

r0 := ti−1, m :=
L

16MR
, s0 :=

(
inf
{
k ≥ r0 : R

(k+m)
k −R(k+m)

r0 ≥ L/8
}
− 1
)
∧ ti,

(3.4.25)

and for j ≥ 1 let

rj := sj−1 +
⌈ L

8MR

⌉
,

sj :=
(

inf
{
k ≥ rj : R

(k+m)
k −R(k+m)

rj ≥ L/8
}
− 1
)
∧ (rj + (ti − ti−1)) .

(3.4.26)

Heuristically, sj is the �rst time after which the process R (and thus R̂) increases at least
by the amount L/8 after time rj . Such large increments of R̂ are potentially troublesome,
since as a consequence, the process β might decrease too much and cause the event in the
de�nition of Zi to have too small probability. In order to cater for this inconvenience, we
start noting that by de�nition, sj − rj is bounded by ti − ti−1 and Fsj+m-measurable, and
rj+1− (sj +m) ≥ m. Thus, by condition (MIX), for every nonnegative measurable function
f we notice for later reference that

E[f(sj − rj) | Frj+1 ] ≤
(
1 + ψ(m)

)
E[f(sj − rj)]. (3.4.27)

Next, we de�ne

Gj :=
{

inf
rj≤k≤sj

(Ĥk − Ĥrj ) ≥ −L/8, βsj ≥ 2L
}
,

G′j :=
{

inf
sj≤k≤rj+1

(Ĥk − Ĥsj ) ≥ −L/8
}
,

J := inf
{
j : sj − rj = ti − ti−1

}
∧ inf{j : sj ≥ ti}, as well as

G :=

J⋂
j=0

Gj ∩
J−1⋂
j=0

G′j ,

and claim that
Zi ≥ P ζ,ηn

(
G | βti−1 = at

1/2
i−1

)
. (3.4.28)

Indeed, on [r0, s0], the process R (and thus also R̂) increases by at most L/8, and the
process Ĥ decreases by at most L/8 on G0. Moreover, for j ≥ 1, on [sj−1, rj ], the process
R̂ increases by at most L/8, and Ĥ decreases by at most L/8 on G′j . Finally, on [rj , sj ],

the process R (and thus R̂) increases by at most L/8, and on Gj , Ĥ decreases by at most
L/8 and βsj ≥ 2L. All in all, conditioning on βti−1 = at

1/2
i−1 = L/

√
2 ≥ L/2, we have
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βk ≥ L/4 ≥ t
1/4
i for k ∈ [r0, s0] and βk ≥ L for all k ∈ [s0, sJ ]. Since by de�nition, sJ ≥ ti,

we get βti ≥ L = at
1/2
i , implying (3.4.28).

Furthermore, we can continue to lower bound

P ζ,ηn
(
G | βti−1 = at

1/2
i−1

)
≥ P ζ,ηn

(
G0 | βr0 = L/

√
2
) J−1∏
j=0

P ζ,ηn
(
G′j
) J∏
j=1

P ζ,ηn
(
Gj | βrj = 2L

)
.

(3.4.29)

To see this, successively condition on βrj ≥ 2L, j = 1, . . . , J, and use the Markov property
of the process Ĥ as well as the fact that x 7→ P ζ,ηn

(
Gj |βrj = x

)
is increasing. Then use

the fact that under P ζ,ηn , the event G′j is independent of βrj by the independence of the

increments of Ĥ, j = 0, . . . , J − 1.
In order to lower bound (3.4.29), observe that under P ζ,ηn , the sequence (Ĥk+1−Ĥk)k≥rj

consists of independent and centered random variables, whose P ζ,ηn -moment generating func-
tion is �nite in a neighborhood of zero. Thus, the central limit theorem entails that for i
large enough we have P ζ,ηn (G′j) ≥ 1/2 for all relevant choices of j. Moreover,

P ζ,ηn
(
Gj | βrj = 2L

)
≥ P ζ,ηn

(
Ĥsj − Ĥrj ≥ 5L/2, inf

rj≤k≤sj
(Ĥk − Ĥrj ) ≥ −L/8

)
.

We see that both events are non-decreasing in the (independent) increments of Ĥ. By
Harris' inequality ([9, Theorem 2.15]) we get

P ζ,ηn

(
Ĥsj − Ĥrj ≥ 5L/2, inf

rj≤k≤sj
(Ĥk − Ĥrj ) ≥ −L/8

)
≥ P ζ,ηn

(
Ĥsj − Ĥrj ≥ 5L/2

)
· P ζ,ηn

(
inf

rj≤k≤sj
(Ĥk − Ĥrj ) ≥ −L/8

)
.

Recalling sj − rj ≤ ti − ti−1 = L2

2a2
, a Gaussian scaling yields P ζ,ηn

(
infrj≤k≤sj (Ĥk − Ĥrj ) ≥

−L/8
)
≥ c7 > 0. To bound the �rst factor, we recall that by (A.3) and (A.5), we have

P-a.s.
0 ≤ ρ(rj+k+m)

rj+l
− ρrj+l ≤ c8(ψ(m/2) + e−m/c8) for all l ≤ k ≤ ti/2.

Because m = L
16MR

and ti/2 = L2

2a2
, due to (MIX) we �nally get for all i (and thus L) large

enough (due to ψ(x) · x→ 0 (x→∞), which itself is due to summability of ψ(k)), that

0 ≤
(
R

(rj+k+m)
rj+k

−R(rj+k+m)
rj

)
−
(
R̂rj+k − R̂rj

)
=

k∑
l=1

(
ρ

(rj+k+m)
rj+l

− ρrj+l
)

≤ c8L
2(ψ(L/16MR) + e−L/c8) ≤ L/16 for all k ∈

{
0, . . . ,

L2

2a2

}
.

(3.4.30)

By sj−rj ≤ ti−ti−1 = L2

2a2
and (3.4.26), we see that sj−rj ≥ L/16 for all i large enough.

Recall that under P ζ,ηn , the sequence Ĥsj − Ĥrj is a sum of independent centered random
variables, whose moment generating function is uniformly bounded in a neighborhood of the
origin. Then by [72, (1)], we can apply [72, Theorem 4] in the following manner: Let c′ > 0
be as in [72, Theorem 4] and in the notation of the latter theorem we choose k = sj − rj ,
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α = ess infζ,k<nE
ζ,η
n [(Ĥk − Ĥk−1)2] > 0, M = |η|/2, u1 = . . . = uk = 1 and

c := c′ · |η|
2
· α (3.4.31)

Then a lower Bernstein-type inequality from [72, Theorem 4] gives that on B(n)
i we have

P ζ,ηn
(
Ĥsj − Ĥrj ≥ 5L/2

)
≥ c9e

− L2

c9(sj−rj) . (3.4.32)

Note that the condition in B
(n)
i makes [72, Theorem 4] applicable by ensuring 'enough'

summands sj − rj and is the main reason we have to introduce the sets B(n)
i . We will write

c = c7∧c9 from now on. Using (3.4.28) in combination with the lower bounds for the factors
of (3.4.29) just derived, the term in (3.4.23) can be bounded from above by

E
[
e−θ ln(Zi)

]
≤ c10E

[
exp

{
θJ ln(2/c) + θ

J∑
j=0

L2

c(sj − rj)

}]

≤ c10

∞∑
k=0

E
[(2

c

)θk
exp

{
θ

L2

c(sk − rk)
1sk−rk=ti−ti−1 + θ

k−1∑
j=0

L2

c(sj − rj)
1sj−rj<ti−ti−1

}]

≤ c10

∞∑
k=0

(2

c

)θk(
1 + ψ(m)

)k
e

2θL2

cti−1 ·
k−1∏
j=0

E
[

exp
{ θL2

c(sj − rj)

}
1sj−rj<ti/2

]
, (3.4.33)

where we recall m from (3.4.26), and the last inequality is due to (3.4.27) in combination
with ti − ti−1 = ti/2. For the latter expectation we have

E
[
exp

{ θL2

c(sj − rj)

}
1sj−rj<ti/2

]
=

∫ ∞
0

P
(
e

θL2

c(sj−rj)1sj−rj<ti/2 ≥ x
)

dx

≤ e
2θL2

cti P
(
sj − rj < ti/2

)
+

∫ ∞
e
2θL2
cti

P
(
e

θL2

c(sj−rj) ≥ x
)

dx. (3.4.34)

Substituting x = e
θL2

cy , the second summand can be written as∫ ti/2

0

θL2

cy2
e
θL2

cy P (sj − rj ≤ y) dy.

In order to obtain an upper bound, we start with the probability inside the integral and get

P (sj − rj ≤ y) = P
(

max
1≤k≤y

k∑
l=1

ρ
(rj+k+m)
rj+l

≥ L/8
)
≤ P

(
max

1≤k≤y

k∑
l=1

ρrj+l ≥ L/16
)

≤ c11e
− L2

c11y , ∀ y ∈ [0, ti/2];

here the �rst inequality is due to (3.4.30) and the last inequality due to (3.4.18).
Putting these bounds together, the second summand in (3.4.34) can be bounded from
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above by∫ ti/2

0

θL2

cy2
e
θL2

cy c10e
− L2

yc10 dy = c11

∫ ti/2

0

θL2

cy2
e
L2

cy
(θ−c12)

dy ≤ c13

∫ 1/2a2

0

θ

z2
e

1
cz

(θ−c12) dz

≤ c14θ

∫ ∞
0

e
x(θ−c11)

c dx.

Now the latter term can be made arbitrarily close to zero by choosing θ > 0 small enough.
Furthermore, again choosing θ > 0 small enough, the �rst term in (3.4.34) is strictly smaller
than one by the central limit theorem from Lemma 3.34. Thus, θ > 0 can be chosen small
enough such that for all i large enough, the sum on the right-hand side in (3.4.33) converges,
with a �nite upper bound independent of i. The proof of Lemma 3.35 is complete.

To complete the proof of Lemma 3.33 (a), there are still two things to show. First
we have to show Y (n) ≥ n−γ

′′
. Let us adapt the strategy in the proof of (3.4.22), i.e.

set L := 2aC lnn, r0 = bC lnnc and J := inf{j : sj ≥ b(C lnn)2c} and keep the other
de�nitions as in (3.4.25) and (3.4.26). Then by the same argument below display (3.4.23),
Y (n) ≥ n−γ

′′
for some suitable γ′′ > 0 follows if E[e−θY

(n)
] ≤ c for some constant c > 0,

some small θ > 0 and all n large enough. But this follows (as in the argument leading
to the de�nition of B(n)

i ), if the process (R̂k − R̂k−1)k does not decrease too fast, see the
Borel-Cantelli argument below display (3.4.32), which itself is a consequence of∑

n

(C lnn)2 · P
(

sup
0≤k≤L/8c

(
R̂k − R̂0

)
≥ L

8

)
≤ c15

∑
n

(C lnn)2e−aC lnn/c15 <∞. (3.4.35)

Secondly, we will now explain how to adapt the latter arguments for the proof of the �rst
inequality in (a). We de�ne βk = β

(1,n)
k − β(1,n)

n−1 . In the de�nition of Z(n)
i , we have to take

the essential in�mum over ξ(n− ti−2) and have to replace the subscripts k of βk by n− k,
i.e. �running backwards� from n. Thus, Z(n)

i is (Fn−ti ∩ Fn−ti−2)-measurable. It is then

enough to consider the case n = 0 due to the argument in (3.4.24). Writing Zi := Z
(0)
i ,

βk := β
(0)
k , Ĥk := Hk − Eζ,η0 [Hk], R̂k := R̂

(0)
k and de�ning

ρ
(j)
k := ess sup

ξ(j)

ρk, R
(j)
k :=

0∑
l=k+1

ρ
(j)
l , k < 0, k ∈ Z,

we have to adapt the de�nitions of rj and sj by the expressions

r0 := −ti−1, s0 :=
(

sup
{
k ≤ r0 : R̂k − R̂r0 ≥ L/8

}
+ 1
)
∨ (−ti),

rj := sj−1 −
⌈ L

8MR

⌉
, s′j := sj−1 −

L

16MR
, j ≥ 1,

sj :=
(

sup
{
k ≤ rj : R

(s′j)

k −R(s′j)
rj ≥ L/8

}
+ 1
)
∨ (rj − (ti − ti−1)) , j ≥ 1,

J := inf{j : sj − rj = −ti} ∨ sup{j : sj ≤ −ti}.

The remaining part of the proof essentially follows the same steps as for the second inequality
in (a). This completes the proof Lemma 3.33.

Proof of Claim 3.34. Boundedness, stationarity and adaptedness are direct consequences of
the corresponding properties of the sequences (Lζi (η))i∈Z and ((Lζi )

′(η))i∈Z and Lemma 3.8.
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at(k + 1) at(k − 1) at(k) at(k − 2)

k + 2

k + 1

k

k − 1

ϕt(s)

s

Z

Figure 3.4: Illustration of ϕt, which is the red line. We denote at(k) := t− Tk − 5χξ(m(t)).
Note that the sequence (at(k))k∈Z does not have to be monotone and thus the interval
[at(k + 1), at(k)) might be empty. In this case the graph of ϕt jumps at least two steps at
time s = at(k).

Display (3.4.17) is due to Lemma A.2. To show that the central limit theorem, we note
that the sequence (ρi)i∈Z ful�lls the same conditions as the sequence (L̃i)i∈Z in the proof of
Lemma 3.14

3.4.2 Second moment of leading particles

Recall the notation NLt from below (3.4.2) and that of m(t) from (3.0.2). For the second
moment of the leading particles we now prove the following upper bound.

Lemma 3.36. For every function F ful�lling (PROB) and for every a > 0, there exists

γ2 = γ2(F,M) <∞ such that P-a.s., for all t large enough,

sup
x∈[mM (t)−1,mM (t)+1]

E
ξ
x

[(
NL,Mt

)2] ≤ tγ2 . (3.4.36)

Proof. We omit the superscriptM in the quantities involved and use the same abbreviations
as in the beginning of the proof of Lemma 3.32.

We want to show (3.4.36) with the help of the second-moment formula (Mom2). To this
end, de�ne the function ϕξt : [0, t]→ Z ∪ {−∞},

ϕt(s) := bm(t)c ∧ sup
{
k ∈ Z : s ∈

[
t− Tk+1 − 5χ1(m(t)), t− Tk − 5χ1(m(t))

)}
,

where sup ∅ := −∞ and χ1 has been de�ned in (3.4.2). Due to Tk = 0 for all k ≤ 0 (recall
the notation Tk from (3.3.61) and (3.3.62)), we have 1 ≤ ϕt(0) ≤ bm(t)c. Furthermore,
ϕt(t) = −∞, because Tk ≥ 0 and χξ1(m(t)) ≥ 0. To apply (Mom2), the following upper
bound will prove useful.

Claim 3.37. We have

NLt ≤ |{u ∈ N(t) : Xu
t ≤ 0, Xu

s > ϕt(s) ∀s ∈ [0, t]}| (3.4.37)

and P-a.s. for all t large enough, the function [0, t] 3 s 7→ ϕt(s) is a non-increasing, càdlàg

step function.

In order not to hinder the �ow of reading, we postpone the proof of the latter claim to
the end of the proof of Lemma 3.36. By the Feynman-Kac formula (cf. Proposition 2.15)
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C̃1χ1 (m(t))

ϕt(s)

t

−∞

s = 0 t− C̃2χ1 (m(t))

Figure 3.5: Leading particles and the di�erent areas in the proof of Lemma 3.36.

and (3.4.37), we have

E
ξ
x

[
(NLt )2

]
≤ E

ξ
x

[
NLt
]

+ (m2 − 2)

∫ t

0
Ex

[
e
∫ s
0 ξ(Br) drξ(Bs)1{Br≥ϕt(r) ∀r∈[0,s]}

×
(
Ey

[
e
∫ t−s
0 ξ(Br) dr

1{Br≥ϕt(r+s) ∀r∈[0,t−s]},Bt−s≤0

])2

|y=Bs

]
ds.

(3.4.38)

For the �rst summand we have

sup
x∈[m(t)−1,m(t)+1]

E
ξ
x

[
NLt
]
≤ sup

x∈[m(t)−1,m(t)+1]
E
ξ
x

[
N≤(t, 0)

]
≤ c1E

ξ
m(t)+1

[
N≤(t, 0)

]
≤ c1

2
, (3.4.39)

where the �rst inequality is due to the �rst inequality in (3.3.42) and the last one due to
the de�nition of m(t). Recall that the Markov property provides us with

Ex

[
e
∫ s
0 ξ(Br) drEy

[
e
∫ t−s
0 ξ(Br) dr

1{Bt−s≤0}
]
|y=Bs

]
= E

ξ
x[N≤(t, 0)].

Using ξ ≤ es and the two previous displays, the second summand in (3.4.38) can thus be
bounded from above by

es(m2 − 2) sup
x∈[m(t)−1,m(t)+1]

E
ξ
x[N≤(t, 0)] ·

∫ t

0
sup

y≥ϕt(s)
Ey
[
e
∫ t−s
0 ξ(Br) dr;Bt−s ≤ 0

]
ds

≤ es(m2 − 2)c1

2

∫ t

0
sup

y≥ϕt(s)
E
ξ
y[N

≤(t− s, 0)] ds.

(3.4.40)

It thus su�ces to upper bound supy≥ϕt(s) E
ξ
y[N≤(t − s, 0)] by a polynomial in t. We treat

di�erent areas for s and y separately and we will need an additional claim, the proof of
which will be provided after this proof. It guarantees that the assumptions of the time
perturbation Lemma 3.23 are satis�ed in our setting.

Claim 3.38. There exists C̃1 ∈ (0,∞) such that P-a.s. for all t large enough and all y ≥
C̃1χ1(m(t)) we have y

Ty−1 ,
y

Ty+K+5χ1(m(t))
∈ V , where V is de�ned in (3.2.30). Furthermore,

there exists C̃2 = C̃2(C̃1) ∈ (0,∞) such that P-a.s. for all t large enough and all s ∈
[0, t− C̃2χ1(m(t))) we have ϕt(s) ≥ C̃1χ1(m(t)).
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We choose γ′ > 5C12C15. Then, recalling the de�nition of χ1 from (3.4.2) and that P-a.s.
m(t)
t → v0 by Corollary 3.28, for t large enough, the statements from Claim 3.38 hold true,

we have C12e
C12(K+1+5χ1(m(t))) ≤ tγ

′
and also Tbyc+1 ≤ Ty + K for all y ≥ C̃1χ1(m(t)) by

Corollary 3.30.
1) Let s ∈

[
0, t − C̃2χ1 (m(t))

)
and y ≥ ϕt(s). Then by Claim 3.38, y ≥ C̃1χ1 (m(t)) and

thus y
Ty−1 ,

y

Ty+K+5χ1(m(t))
∈ V . By de�nition of ϕt we have s ≥ t− Tbyc+1− 5χ1 (m(t)) and

thus Ty +K+5χ1 (m(t)) ≥ Tbyc+1 +5χ1 (m(t)) ≥ t−s. Thus, by Lemma D.2, we infer that
E
ξ
y

[
N≤(t− s, 0)

]
≤ 2Eξy

[
N≤

(
Ty +K + 5χ1 (m(t)) , 0

)]
, and then the second inequality in

(3.3.35) entails that for all t large enough,

sup
0≤s<t−C̃2χ1(m(t))

y≥ϕt(s)

E
ξ
y[N

≤(t− s, 0)] ≤ 2C12e
C12(K+1+5χ1(m(t)))

× sup
y∈R

E
ξ
y

[
N≤((Ty − 1) ∨ 0, 0)

]
≤ tγ′ .

2) The remaining part of the domain above the graph of ϕt not controlled by 1) is a subset
of {

(s, y) ∈ [0, t]× R : t− C̃2χ1 (m(t)) ≤ s ≤ t
}
.

Recalling the de�nition of χ1 from (3.4.2) and that P-a.s., m(t)
t → v0 by Corollary 3.28,

choosing γ′′ > esC̃2C15, on the the above domain we get that P-a.s., for all t large enough,

E
ξ
y

[
N≤ (t− s, 0)

]
≤ 2Eξy

[
N≤
(
C̃2χ1 (m(t)) , 0

)]
≤ 2eesC̃2χ1(m(t)) ≤ tγ′′ . (3.4.41)

To conclude the proof, de�ning γ2 := 1 ∨ γ′ ∨ γ′′ + 1, inequalities (3.4.39), (3.4.40) and
the estimates (3.4.41) and (3.4.41) for the term Eξy

[
N≤(t− s, 0)

]
entail the statement of

Lemma 3.36.

Proof of Claim 3.37. Let at(k) := t− Tk − 5χξ1(m(t)) and recall the de�nition of NLt :

NLt =
∣∣{u ∈ N(t) : Xu

t ≤ 0, Hu
k ≥ at(k) ∀ k ∈ {1, . . . , bm(t)c}

}∣∣ .
To prove (3.4.37), note that Hu

k ≥ at(k) if and only if Xu
s > k for all s < at(k). But

the property Xu
s > k for all s ∈ [0, at(k)) and all k ∈ {1, . . . , bm(t)c} implies that Xu

s >
sup{k ∈ Z : s ∈ [at(k + 1), at(k))} ∧ bm(t)c = ϕt(s) for all s ∈ [0, t] and thus (3.4.37) is
shown. The property of ϕt being a càdlàg step-function is a direct consequence of the use of
left-closed, right-open intervals in the de�nition of ϕt. It remains to show that s 7→ ϕt(s) is
non-increasing. For this purpose, let us �rst prove by induction in k = bm(t)c, bm(t)c−1, . . .
that for all t large enough and all k ≤ m(t),

[0, at(k − 1)) ⊂
bm(t)c⋃
l=k

[at(l), at(l − 1)) (3.4.42)

holds. By Corollary 3.30 and Lemma 3.29, there exist K,C16 > 0 such that t− Tbm(t)c−1 ≤
t− Tm(t) +K ≤ C16 +K and thus at(bm(t)c) ≤ 0 for all t large enough. Assume now that
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(3.4.42) holds for some k ≤ m(t). Then

[0, at(k − 2)) ⊂ [0, at(k − 1)) ∪ [at(k − 1), at(k − 2)) ⊂
bm(t)c⋃
l=k−1

[at(l), at(l − 1)),

where the last inclusion is due to induction hypothesis. Thus, we have shown (3.4.42). Now
let 0 ≤ s1 ≤ s2. Assume there exists k2 such that s2 ∈ [at(k2), at(k2 − 1)). Then by (3.4.42),
there exists k1 ∈ Z with k2 ≤ k1 ≤ bm(t)c, such that s1 ∈ [at(k1), at(k1 − 1)). By de�nition
we get ϕt(s1) ≥ ϕt(s2). If no such k2 exists, then ϕt(s2) = −∞ ≤ ϕt(s1).

Proof of Claim 3.38. We write V = [v∗, v
∗]. Since P-a.s. we have y

Ty
→ v0 ∈ int(V ) by

(3.3.64), it follows that y
Ty−1 ,

y
Ty
∈ V for all y large enough. Among others, there exists

ε = ε(v∗, v
∗, v0) > 0 and N ′(ξ) such that v∗(1+ε) ≤ y

Ty
≤ (1−ε)v∗ for all y ≥ N ′. Choosing

C̃1 >
5v∗

ε , this implies 1 ≤ Ty+K+5χ1(m(t))
Ty

≤ 1 + ε for all y ≥ C̃1 · χ1 (m(t)) and all t large
enough. Thus, we get

v∗ ≤
y

Ty
· Ty

Ty +K + 5χ1 (m(t))
≤ v∗ for all y ≥ C̃1χ1(m(t)) and all t large enough.

This gives the �rst part of the Claim 3.38. For the second part, recall that Ty ≤ 1
vy

for all y ≥ N ′. Furthermore, by the de�nition of ϕt we have ϕt(s) ≥ byc + 1 for all
s ∈

[
0, t− Tbyc − 5χ1 (m(t))

)
. Choosing y := bC̃15χ1 (m(t))c and C̃2 >

C̃1
v + 1, this implies

that for t large enough we get ϕt(s) ≥ C̃15χ1 (m(t)) for all s ∈
[
0, t− C̃25χ1(m(t))

)
.

3.4.3 Proof of Theorem 3.5

We start with an ampli�cation result.

Lemma 3.39. For every (pk)k∈N ful�lling (PROB) there exists C18 = C18((pk)) > 1 and

t0 > 0 such that P-a.s., for all t ≥ t0,

sup
x∈R

P
ξ
x

(
|N(t, [x− 1, x+ 1])| ≤ Ct18

)
≤ C−t18 .

Proof. For the proof it is enough to show the claim for binary branching with rate ξ(x) ≡
ei
′ := ei(1 − p1) (which is the rate of �rst branching into more than one particle) by a

straightforward coupling argument. Due to the spatial homogeneity of ei′ it is enough to
show

P
ei
′

0

(
|N(t, [−1, 1])| ≤ Ct18

)
≤ C−t18

for all t ≥ t0, where P
ei
′

0 is the probability measure under which the branching Brownian
motion starts with one particle in 0 and has constant branching rate ei

′ > 0. Then for
every ε > 0 there exists δ = δ(ε) > 0 such that

P
ei
′

0

(
|N(t/3, [−ε, ε])| ≥ δt

)
≥ 1− e−δt (3.4.43)

for all t large enough. Indeed, the probability that the initial particle does not leave the
interval [−εt/2, εt/2] before time t/3 is at least 1 − e−c1ε2t. If this happens, the particle
produces more than tei′/4 o�springs with probability 1−e−c2t before time t/3, while each of
these o�springs does not leave the interval [−εt, εt] before time t/3 with probablity at least
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1 − e−c1ε2t/2. Combining these observations and choosing δ(ε) > 0 small enough provides
us with (3.4.43). For a particle u ∈ N(t/3) let Du(t/3 + s) be the set of o�springs of u in
the interval [Xu

t/3 − 1, Xu
t/3 + 1] at time t/3 + s, s ≥ 0. We will show the existence of some

p > 0 and c > 1 such that
P
ei
′

0

(
|Du(t/3 + s)| ≥ cs

)
≥ p (3.4.44)

for all s large enough. To obtain (3.4.44), let r > 0 be such that

inf
y∈[−1,+1]

E
ei
′

y

[
|N(r, [−1,+1])|

]
=: µ > 1,

(the feasibility of such a choice of r is a direct consequence of the Feynman-Kac formula).
For u ∈ Dε(t/3) consider the following process under Pei

′
0 , conditionally on Xu

t/3:

� the process starts with one particle at position Xu
t/3;

� between times r(n − 1) and rn, n ∈ N, the process evolves as a branching Brownian
motion with branching rate ei′;

� at times rn, n ∈ N, particles outside of the interval
[
Xu
t/3 − 1, Xu

t/3 + 1
]
are killed.

Using the Markov property, one readily observe that the number of particles of the lat-
ter process stochastically dominates the number of particles of a Galton-Watson process
(Ln)n∈N which starts with one particle and whose o�spring distribution has expectation µ.
Then by [4, Theorem 1, section I.5], the Galton-Watson process has positive probability to
survive, i.e. P (Ln > 0 ∀n ∈ N) =: p1 > 0. Conditioned on surviving, there exists c > 1
such that

P
(
Lk ≥ ck |Ln > 0 ∀n ∈ N

)
≥ 1

2
for all k ∈ N.

One can see that for every u ∈ N(t/3), inequality (3.4.44) holds true with the choice
p := p1/2 for all s ∈ r · N. By a straightforward comparison argument, this extends to all
s ≥ 0. Therefore, we can now apply (3.4.43) and (3.4.44) in order to deduce

P
ei
′

0

(
|N(2t/3, [−εt, εt])| ≥ ct

)
≥ 1− ec′(ε)t. (3.4.45)

Furthermore, we have

Pεt
(
Xt/3 ∈ [−1, 1]

)
≥ c3t

−1/2e−3ε2t/2 ≥
(1 + c

2

)−t/3
,

for all t large enough ε > 0 small enough and c > 1 suitable, where for the last inequality
we used that ε does not depend on c. The latter inequality and a large deviation statement
then gives for all t ≥ t4 ≥ t3

P
ei
′

0

(
|N(t, [−1, 1])| ≥ 1

2
ct
(1 + c

2

)−t/3 ∣∣ |N(2t/3, [−εt, εt])| ≥ ct
)
≥ 1− e−c4t. (3.4.46)

Thus, for t ≥ t0, where t0 is chosen large enough, by (3.4.45) and (3.4.46), in combination
with c > 1, we infer the desired result.

Now recall mM (t) = sup{x ∈ R : u(t, x) ≥ M} and mε(t) = sup{x ∈ R : w(t, x) ≥ ε},
where u and w are the solutions to (PAM) and (F-KPP), respectively.

With the help of Lemmas 3.32, 3.36, and 3.39, it is now possible to state a crucial result
for the proof of Theorem 3.5.
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Proposition 3.40. For every q > 0, F satisfying (PROB) and M > 0, there exist a

constant C1 = C1(q, F ) ∈ (0,∞), a P-a.s. �nite C = C(t) = C(t, q, F, ξ) > 0 and a P-a.s.
�nite random variable T5 = T5(M, q, F, ξ) such that for all t ≥ T5, we have C(t) ≤ C1 and

P
ξ

mM (t)−C ln t

(
N≤(t, 0) ≥ 1

)
≥ 1− 2t−q. (3.4.47)

Proof. For simplicity, we write m(t) := mM (t). Without loss of generality, it is enough to
show the claim for all q > 2(γ1 + γ2), where γ1 = γ1(M) and γ2 = γ2(M) are de�ned in
Lemmas 3.32 and 3.36, respectively. Let further C18 and t0 be as in Lemma 3.39, and c1 be
such that for r := c1 ln t we have C−r18 = t−q.

We claim that there exist C1, C(t) and T5 as above such that m(t−r) = m(t)−C(t) ln t,
C(t) ≤ C1 and the conclusions of Lemmas 3.32 and 3.36 hold for all t ≥ T5. Indeed, writing
u(t, x) = E

ξ
x[N≤(t, 0)], by the time and space perturbation Lemmas 3.23 and 3.24, de�ning

c2 := C12 ∨ C13, we deduce that

u(t− r,m(t)− C1 ln t) ≥ c−1
2 eC1 ln t/c2u(t− r,m(t)) ≥ c−2

2 eC1 ln t/c2−r/c2u(t,m(t)) ≥M,
(3.4.48)

where for the last inequality we choose C1 and T5 = T5(ε) large enough such that the last
inequality holds for all t ≥ T5. As a consequence, we infer

m(t− r) ≥ m(t)− C1 ln t. (3.4.49)

By (3.3.35), we also get u(t,m(t − r)) ≥ C−1
12 e

r/C12u(t − r,m(t − r)) ≥ M for all t large
enough, i.e.

m(t− r) ≤ m(t).

Thus, combining the two previous displays, we can �nd C(t) ≤ C1 such that m(t − r) =
m(t) − C(t) ln t. Now let x := m(t) − C(t) ln t = m(t − r). Conditioning on whether until
time r there are more or less than Cr18 particles in [x− 1, x+ 1], we get for all t ≥ T5,

P
ξ
x

(
N≤(t, 0) ≥ 1

)
≥ 1− P

ξ
x

(
|N(r, [x− 1, x+ 1])| ≤ Cr18

)
− sup
y∈[x−1,x+1]

(
P
ξ
y

(
N≤(t− r, 0) = 0

) )Cr18
≥ 1− C−r18 − sup

y∈[x−1,x+1]

(
P
ξ
y

(
NL,Mt−r = 0

))Cr18
,

using Lemma 3.39 in the last inequality. Now using Cauchy-Schwarz as in (3.4.3), in com-
bination with Lemmas 3.32 and 3.36, we infer

sup
y∈[x−1,x+1]

(
P
ξ
y(N

L,M
t−r = 0)

)Cr18 ≤ (1− t−2γ1−γ2)tq ≤ t−q,
adapting T5 = T5(M, q, ξ, q) such that the last inequality holds for all t ≥ T5.

Proof of Theorem 3.5. 1) We �rst prove the result under the additional assumption that F
ful�lls (PROB). Let wξ,F,w0 be the solution to (F-KPP) with initial condition w0 ∈ IF-KPP,
so in particular 0 ≤ w0 ≤ 1(−∞,0]. Because F ful�lls (PROB), by (McKean) and the Markov
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property we infer

wξ,F,w0(t, x) = E
ξ
x

[
1−

∏
u∈N(t)

(
1− w0(Xu

t )
)]

≥ E
ξ
x

[
1−

∏
u∈N(t)

(
1− w0(Xu

t )
)
;N≤(t− s, 0) ≥ 1

]
≥ P

ξ
x

(
N≤(t− s, 0) ≥ 1

)
· inf
y≤0

wei,F,w0(s, y),

(3.4.50)

where w = wei,F,w0 solves the homogenous equation wt = 1
2wxx+ei ·F (w) with initial con-

dition w(0, ·) = w0. Then we have w1,F,w̃0 = wei,F,w0( t
ei
, x√

ei
) with w̃0(x) := w0(x/

√
ei).

Because wei,F,w0(0, x) = 0 for x > 0, conditions [12, (8.1) and (1.17)] are ful�lled. Together
with (KPP-INI) and [12, Theorem 3, p. 141], w1,F,w̃0 (and thus also wei,F,w0) is a travelling
wave solution, i.e., there exist mei(t) =

√
2eit+o(t) and some g ful�lling limx→−∞ g(x) = 1

and limx→∞ g(x) = 0 such that

sup
y

∣∣wei,F,w0(t, y +mei(t))− g(y)
∣∣→ 0, t→∞. (3.4.51)

Now let ε ∈ (0, 1) and choose δ > 0 such that ε
1−δ ∈ (0, 1). Then by (3.4.51) we get

inf
y≤0

wei,F,w0(s, y) = inf
y≤−mei(s)

wei,F,w0(s, y +mei(s)) ≥ 1− δ for all s ≥ s0(F,w0, δ, ei),

which, together with (3.4.50), gives

mξ,F,w0,ε(t) ≥ mξ,F,1(−∞,0],
ε

1−δ (t− s0) for all t ≥ s0(F,w0, δ, ei). (3.4.52)

The inequality

mξ,F,1(−∞,0],
ε

1−δ (t− s0)≥ mξ,1(−∞,0],
ε

1−δ (t− s0)− C1 ln(t), for all t ≥ T1(ξ, F, ε, δ),

follows from Proposition 3.40. By Corollary 3.31, for C ′ > 1 from (PAM-INI) we get

mξ,1(−∞,0],
ε

1−δ (t− s0) ≥ mξ,1(−∞,0],
ε
C′ (t− s0)− c1(ε, δ, C ′)

≥ mξ,1(−∞,0],
ε
C (t)− c2(ε, δ, C ′, s0) for all t ≥ T2(ξ, ε, δ),

where the second inequality can be obtained similarly to the argument in (3.4.48) and
(3.4.49). Combining the above inequalities, we arrive at

mξ,F,w0,ε(t) ≥ mξ,1(−∞,0],
ε
C′ (t)− C1 ln(t)− c3

= mξ,C′1(−∞,0],ε(t)− C1 ln(t)− c3 for all t ≥ T3(ξ).

Now by (PAM-INI) every u0 ∈ IPAM is upper bounded by the function C ′1(−∞,0], and since
we have mξ,1(−∞,0],ε(t) ≥ mξ,F,w0,ε(t) for all ε ∈ (0, 1) and w0 ∈ IF-KPP, this �nishes the
proof for F ful�lling (PROB).

2) Now let F ful�ll (SC) and w0 be such that wξ,w0,F is a classical solution to (F-KPP).
By Lemma D.1 there exists some function G ful�lling (PROB), such that F (w) ≥ G(w)
for all w ∈ [0, 1]. We now use a sandwich argument. By Corollary C.2 the solutions
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wF = wξ,w0,F and wG = wξ,w0,G to

wFt −
1

2
wFxx − ξ(x)F (wF ) = 0 = wGt −

1

2
wGxx − ξ(x)G(wG)

(which are classical by Proposition 2.17) ful�ll wF ≥ wG. As a consequence, we infer that
mξ,F,w0,ε(t) ≥ mξ,G,w0,ε(t) ≥ mM (t) − C1 ln(t), where the second inequality is due to step
1). The claim for arbitrary w0 ∈ IF-KPP is then true by an approximation argument of w0

by continuous functions, that is if F ≥ G, by Remark 2.16 we have ww0,F ≥ ww0,G and
consequently mξ,w0,F,ε(t) ≥ mξ,w0,G,ε(t) for all t ≥ 0 and we can conclude.
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Chapter Four

Complementary results

The main result of Chapter 3 tells us that the upper front mε of the solution to (F-KPP)
lags at most logarithmically behind the upper front mM of the solution to (PAM), see
Theorem 3.5. We could directly transfer asymptotic results for the front of the solution to
(PAM), such as the �rst order asymptotics mM (t)/t → v0 or the invariance principles in
Theorem 3.3, to those for the front of the solution to (F-KPP), see Corollary 3.6.

However, several topics remain untreated. A natural question is whether the logarithmic
upper bound in Theorem 3.5 is �sharp�, i.e. if there exists a constant c > 0 such that the
fronts of both models at time t lag at least c log t behind each other, for t large enough.
Although we are not able to treat this lower bound as generally as the upper bound in
Chapter 3, there is a partially positive answer to this question for a subsequence of times,
see (4.1.4). This is a consequence of the main result of the �rst section in this chapter.
That is, in Section 4.1 we show a somewhat surprising behavior of the transition front of
both models, where the solution changes from small to large values. We can show, see
Theorem 4.2, that the solution to (PAM) has a uniformly bounded (or �sharp�) transition
front. Surprisingly, this is not generally true for the solution to (F-KPP) and we give a
counterexample (Theorem 4.3). As a by-product of the construction, we show in Section 4.2
that the solution to (F-KPP) need not be monotone in space, even for large times, and this
is in stark contrast to the observations which have been made for constant potential. We
close the chapter with Section 4.3, where we discuss some of our model assumptions from
Section 3.1.1. We �rst show that there are potentials ξ such that all relevant results in this
thesis hold simultaneously, which ensures that we have not made too restrictive assumptions
about our model. Then we show that for unbounded potential we cannot expect a linear
order of the front of (PAM). Further, we take a closer look at the technical condition (VEL),
which is essential for the proofs of Theorem 3.4 and 3.5. We show that it is ful�lled for
a large class of bounded potentials, but, more importantly, that it is non-trivial, which is
shown by constructing an example of a potential ful�lling all model assumptions except
(VEL).

We use the same notation as in Chapter 3. Recall the PDEs of interest

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω) · F

(
w(t, x)

)
, (t, x) ∈ (0,∞)× R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

97



98 Complementary results Chapter 4

as well as its linearization

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R,
(PAM)

with (see Section 3.1.1) ξ = (ξ(x))x∈R = (ξ(x, ω))x∈R, ω ∈ Ω, being a stochastic process on
some probability space (Ω,F ,P) ful�lling (HÖL), (BDD), (STAT) and (MIX), F ful�lling
(PROB), u0 ∈ IPAM and w0 ∈ IF-KPP.

Sections 4.1 and 4.2 are taken from the preprint article [20] and we omit a reference to
corresponding parts in the paper. Proposition 4.14 and Claim 4.13 from Section 4.3 are
taken from [19, Section 4.4], and we also refrain from references.

We continue the numbering of the constants C1, C2, . . . that has been used in Chapter 3.

4.1 Unbounded F-KPP and bounded PAM transition front

In order to investigate the position of the front, we recall already existing and introduce
new notation. For ε ∈ (0, 1), M > 0 and t ≥ 0 consider the quantities

mε(t) := mw0,F,ε(t) := sup{x ∈ R : w(t, x) ≥ ε},
mε,−(t) := mw0,F,ε,−(t) := inf{x ≥ 0 : w(t, x) ≤ ε},
mM (t) := mu0,M (t) := sup{x ∈ R : u(t, x) ≥M},

mM,−(t) := mu0,M,−(t) := inf{x ≥ 0 : u(t, x) ≤M}.

(4.1.1)

In this section we are mainly interested in the transition fronts of the fronts, more
precisely whether these areas are bounded or not. Let us explain what we mean by this.

De�nition 4.1. The solution to (F-KPP) is said to have a uniformly bounded transition

front if for each ε ∈ (0, 1
2), there exists a constant Cε ∈ (0,∞) such that P-a.s., for all t

large enough we have
mε(t)−m1−ε,−(t) ≤ Cε.

The solution to (PAM) is said to have a uniformly bounded transition front if for all ε,M ∈
(0,∞) with ε ≤ M , there exists a constant Cε,M ∈ (0,∞) such that P-a.s., for all t large
enough,

mε(t)−mM,−(t) ≤ Cε,M . (4.1.2)

Observe that the transition front of the solution to (PAM) stays bounded uniformly in
time. This is stated in the next theorem.

Theorem 4.2. Let (HÖL), (BDD), (STAT), (MIX) and (VEL) be ful�lled. Then for

all u0 ∈ IPAM(δ′, C ′), the solution to (PAM) has a uniformly bounded transition front.

Furthermore, for δ′, C ′ > 0 �xed, the corresponding constant Cε,M in (4.1.2) is independent
of u0 ∈ IPAM(δ′, C ′).

However, the transition fronts of the solutions to (F-KPP) and (PAM) di�er fundamen-
tally. That is, as a second result we get that an analogous statement as in Theorem 4.2 is
not true for the solution to (F-KPP) in general.

Theorem 4.3. Let w0 = 1(−∞,0] and F ful�ll (PROB). Then there exist potentials ξ

ful�lling (HÖL), (BDD), (STAT) and (MIX) such that the transition front of the solution
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to (F-KPP) is not uniformly bounded in time. More precisely, such ξ can be chosen so that

for any δ ∈ (0, 1) and any ε > 0 we �nd a sequence (xn, tn)n∈N in R × [0,∞) as well as a

function ϕ ∈ Θ(lnn) such that

(a) xn, tn →∞ as n→∞, and (xn)n∈N ∈ Θ(n),

(b) for all n ∈ N,
δ = w(tn, xn) ≤ w(tn, xn + ϕ(n)) + ε. (4.1.3)

This means that, at least along a subsequence of times, the interval of transition in which
the solution changes from being locally unstable (w ≈ 0) to locally stable (w ≈ 1), grows
at least logarithmically in time as t → ∞. This phenomenon is di�erent to the behavior
of the front for certain other reaction terms. For example, if the potential ξ is constant,
or, as mentioned in Section 1.3.2, if the potential is ergodic and the nonlinearity F is of
ignition-type, the transition front is bounded, see (1.3.7).

As already mentioned in the introduction of this chapter, the question arises whether the
logarithmic upper bound from Theorem 3.5 is �sharp�. Theorem 4.3 provides the following
partial a�rmative answer: There exist c0 ∈ (0,∞), an increasing sequence (tn)n∈N of times
with tn ∈ (0,∞) ful�lling limn→∞ tn = ∞ and a sequence (xn)n∈N of real numbers such
that m

1
2 (tn)− xn ≥ c0 log tn such that for all n ∈ N :

w(tn, xn) <
1

2
and (by de�nition) u(tn,m

1
2 (tn)) =

1

2
. (4.1.4)

As has already been mentioned, at �rst glance, it may seem slightly di�cult to reconcile
the statement of Theorem 4.2 with the statements of Theorem 4.3. In particular, it might
seem surprising given that oftentimes the linearization of a nonlinear PDE is considered to
be a good approximation for the original PDE. However, from a probabilistic point of view,
the phenomenon of the uniformly bounded transition front of the solution to (PAM) from
Theorem 4.2 can be explained as follows: Consider the Feynman-Kac representation

u(t, x) = Ex
[
e
∫ t
0 ξ(Bs) ds

1(−∞,0](Bt)
]

(4.1.5)

of the solution to (PAM) for x of linear order in time t. Then it is �costly� to start in some
value x+C for C large instead, i.e. a Brownian motion starting in x and being to the left of
the origin at time t has to make less of an e�ort in terms of large deviations than a Brownian
motion starting in x+ C and being to the left of the origin at time t. However, the former
can still collect at least as high potential values as the latter, since, typically between x and
0 there are enough locations where the potential is large. This yields u(t, x)� u(t, x+ C)
for C large.

On the other hand, see (2.3.2), the solution w to (F-KPP) has been shown to ful�ll the
probabilistic representation

w(t, x) = P
ξ
x

(
N≤(t, 0) ≥ 1

)
, (t, x) ∈ [0,∞)× R. (4.1.6)

To show Theorem 4.3, we take advantage of (4.1.6) and the fact that the term in (4.1.6)
is much more sensible with respect to the starting point x of the BBMRE than the term
in (4.1.5). This can be explained as follows. Note that it is likely that a BBMRE starting
in some site r surrounded by large potential produces more particles in the beginning than
starting in some site l surrounded by small potential. One then expects, if these two sides
are �not too far away� from each other, that the o�spring of the particle starting in r has



100 Complementary results Chapter 4

higher probability to reach the origin before time t than the o�spring of the particle starting
in l and thus w(t, r) > w(t, l) by (4.1.6). The leading idea of the proof of Theorem 4.3 is
therefore to show that a BBMRE starting in some site r produces more particles than the
corresponding BBMRE starting in l < r, the former set of particles eventually �overtakes�
latter set and r − l can be taken to tend to in�nity.

We �rst show that there is a potential ξ that ful�lls (Standing assumptions), so that
P-a.s. we can �nd wide islands with small values of the potential and (to the right of these)
neighboring wide islands of large values. Then we construct a coupling of two BBMRE, one
starting in a site l surrounded by the small potential island and one starting in a site r > l
surrounded by the large potential. The coupling aims at controlling the o�spring particles
of the process started in l through appropriate �mirroring� and �matching� by the o�spring
particles of the process started in r.

4.1.1 Bounded PAM front

The boundedness of the front of (PAM) essentially follows from the space perturbation result
from Section 3.3.4 (b) and the properties of the Lyapunov exponent proved in Corollary 3.22.
Let us �rst recall what need for the proof of Theorem 4.2.

Due to (VEL), we can choose a compact interval V ⊂ (vc,∞) such that v0 is in the
interior of V . By Corollary 3.28 we know that for all u0 ∈ IPAM and M > 0 we have

mu0,M (t)

t
−→
t→∞

v0 P-a.s.

Furthermore we have (trivially) mu0,ε,−(t) ≤ mu0,M (t) for 0 < ε ≤ M . For the Lyapunov
exponent Λ we have Λ(v) > 0 for all v ∈ [0, v0) and by Corollary 3.22 the convergence of
the Lyapunov exponent holds uniformly on every compact interval K ⊂ [0,∞). Thus we
get lim inft→∞ infx∈[0,v]

1
t lnuu0(t, xt) > 0 for all v < v0. Consequently, for arbitrary initial

conditions u0 ∈ IPAM and every ε,M > 0, ε ≤M , we have P-a.s.

lim
t→∞

mu0,ε(t)

t
= lim

t→∞

mu0,M,−(t)

t
= v0. (4.1.7)

In particular, mε(t)/t ∈ V and mM,−(t)/t ∈ V for t large enough, since we assume that v0

is in the interior of V , and at := mε(t)−mM,−(t) ∈ o(t). By Lemma 3.24 (b), uniformly in
u0 ∈ IPAM and v ∈ V , for all t large enough such that vt+ at ∈ V , we get

u(t, vt+ at)

u(t, vt)
=

b
√
tc∏

k=1

u(t, vt+ kat/b
√
tc)

u(t, vt+ (k − 1)at/b
√
tc)

≤
(
C13e

−at/(C13b
√
tc))b√tc = e

−at/C13(1− b
√
tc

at
·C13 lnC13)

.

(4.1.8)

Now we have all we need to prove Theorem 4.2.

Proof of Theorem 4.2. Set Cε,M := 2C13 ln
(

2MC13
ε

)
and ε(t) := 2t−1/2C13 lnC13. Assume

by contradiction that the claim of the theorem does not hold. Then there exist 0 < ε ≤M
and a (random) sequence (tn)n∈N such that tn −→

n→∞
∞ and atn = mε(tn)−mM,−(tn) ≥ Cε,M

for all n ∈ N. Recalling that mε(t)/t ∈ V , we get for all n large enough that

ε = u(tn,m
ε(tn)) = u

(
t,mM,−(tn) + atn

)
≤ u(tn,m

M,−(tn)) · C13e
−atn/2C13 ≤ ε/2,
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where in the �rst inequality we used Lemma 3.24 (b) if atn ≤ tnε(tn) and (4.1.8) if atn >
tnε(tn). This is a contradiction. As a consequence, we must have 0 ≤ mε(t)−mM (t) ≤ Cε,M
for all t large enough. Furthermore, this inequality holds uniformly for all u0 ∈ IPAM(δ′, C ′),
because C13 is independent of u0 ∈ IPAM(δ′, C ′), proving the claim of the theorem.

4.1.2 Unbounded F-KPP-front: The potential

We start the proof of Theorem 4.3 by constructing a suitable potential ξ, for which we
then show the unboundedness of the transition front of the solution to (F-KPP) with w0 =
1(−∞,0]. For the constants es and ei from (BDD) we assume that

es

ei
> 2. (4.1.9)

We further let δ1, δ2 ∈ (0, 1) be small positive constants, which will be �xed at the end of
the proof of Lemma 4.6, see the paragraph below (4.1.34).

It is an interesting open question whether the condition (4.1.9) is necessary for the
unboundedness of the front. We could not improve it using the methods of this section, see
in particular after (4.1.31) where the condition (4.1.9) is crucially needed.

Let furthermore χ : R → [0, 1] be a Lipschitz-continuous non-increasing function with
χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2, and let ω = (ωi)i∈Z be a Poisson point process
on R with intensity 1 constructed on (Ω,F ,P), see e.g. [60, Chapter 3] for a construction
and related results. Among others, ω = (ωi)i is a mapping from Ω into the set of all locally
�nite point con�gurations on R, satisfying the following properties:

� |{i : ωi ∈ B}| <∞ for every bounded Borel set,

� ωi 6= ωj for all i 6= j,

� for pairwise disjoint Borel sets B1, . . . , Bn and k1, . . . , kn ∈ N0, n ∈ N, the events
{|ω ∩B1| = k1}, . . . , {|ω ∩Bn| = kn} are independent and

� for all k ∈ N0 and all Borel sets B we have

P(|ω ∩B| = k) =

{
λ(B)k

k! e−λ(B), λ(B) <∞,
0, λ(B) =∞.

We then de�ne our potential via

ξ(x) := ei + (es− ei) · sup{χ(x− ωi) : i ∈ Z}. (4.1.10)

Observe that the map x 7→ ξ(x) is a Lipschitz continuous function (i.e. (HÖL) is
ful�lled), ξ(x) ∈ [ei, es] for all x ∈ R (i.e. ξ ful�lls (BDD)), ξ(x) = ei if |x−ωi| > 2 for all i,

and ξ(x) = es if there exists ωi such that |x−ωi| ≤ 1. Also, because (ωi)i∈Z
d
= (ωi+h)i∈Z by

translation invariance of the Lebesgue measure, (STAT) is ful�lled and by the independence
property of the Poisson process on disjoint Borel sets, we get that ξ also ful�lls (MIX). Thus
ξ ful�lls all conditions from Section 3.1.1. We refer to Figure 4.1 for an illustration of this
potential.

The crucial property of this potential is that it has long stretches where it equals ei

that are adjacent to comparably long stretches where it equals es, as is proved in the next
lemma.
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xn

es

ei

ξ(x)

x0

2ϕ(n) 2ϕ(n)

Figure 4.1: Realization of a potential ξ (top red line) ful�lling (4.1.11) with ϕ(n) = c0 lnn.
Here we chose χ(x) = ((3− 2x) ∧ 1) ∨ 0.

Lemma 4.4. There is a constant c0 > 0 such that P-a.s. there exists a (random) increasing

sequence (xn)n∈N of reals tending to in�nity, such that

ξ(x) = ei ∀x ∈ [xn − 2c0 lnn, xn],

ξ(x) = es ∀x ∈ [xn + 2, xn + 2c0 lnn− 2],
(4.1.11)

and ξ(·) is non-decreasing on [xn − 2c0 lnn, xn + 2c0 lnn− 2]. Moreover, P-a.s.,

1 ≤ lim inf
n→∞

n−1xn ≤ lim sup
n→∞

n−1xn ≤ 2. (4.1.12)

Proof. The proof is an easy application of the Borel-Cantelli lemma. For k ∈ N, let Ak,n be
the event

Ak,n =

{ω : ω ∩ [n+ (4k − 2)c0 lnn− 2, n+ 4kc0 lnn+ 2) = ∅ and

ω ∩ [n+ 4kc0 lnn+ `, n+ 4kc0 lnn+ `+ 1) 6= ∅
for all ` = 2, . . . , b2c0 lnnc − 3

}
.

Observe that if Ak,n occurs, then ξ satis�es (4.1.11) with xn = n+ 4kc0 lnn, and that Ak,n
only depends on ω in the interval [n+ (4k−2) lnn−2, n+ 4k lnn+ b2 lnnc−2). Therefore,
the events (Ak,n)k∈N are independent. Moreover,

P(Ak,n) = e−2c0 lnn−4

b2c0 lnnc−3∏
`=2

(1− e−1) ≥ α−c0 lnn = n−c0 lnα

for some α > 1 independent of c0. Therefore, using 1− x ≤ e−x,

P
( n/(4c0 lnn)−1⋂

k=0

Ack,n

)
≤ (1− n−c0 lnα)n/(4c0 lnn) ≤ exp{−n1−c0 lnα(4c0 lnn)−1}.

For c0 < 1/ lnα, the right-hand side is summable and thus by the Borel-Cantelli lemma,
almost surely for n large enough, there exists k ∈ [0, n/(4c0 lnn)− 1] such that Ak,n occurs.
This implies that P-a.s. for n large enough there is x ∈ [n, 2n] satisfying (4.1.11), completing
the proof.

In the following, if not mentioned otherwise, we will always refer to the sequence (xn)
as the one the existence of which is provided by (4.4).
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4.1.3 Unbounded F-KPP-front: The coupling

In the next step towards a proof of Theorem 4.3, we construct a coupling of two BBMREs
started in the vicinity of the points xn where the potential satis�es the conditions (4.1.11)
of Lemma 4.4. A coupling is a proof technique used to compare random objects X and Y by
de�ning them on the same probability space such that the marginal distribution of (X,Y )
correspond to X and Y , respectively. In our case, X will have the distribution of a BBMRE
starting in small potential and Y that of a BBMRE starting in high potential to the right of
X. The idea is to �couple their motion� such that under the common probability measure
it is very likely that the o�spring particles of the BBMRE whose ancestor started in high
potential will overtake those particles starting in low potential.

Throughout this section, we assume that the constant c0 and the random sequence xn
are as in Lemma 4.4, and write

ϕ(n) = c0 lnn. (4.1.13)

In order to emphasize the dependence of the BBMRE on the starting point, we write Nx =
(Nx(t))t≥0 for the set of particles of a BBMRE started from x, that is for the process whose
distribution is Pξx.

The content of the next proposition is the coupling alluded to above. Its statement
is slightly more general than needed to show Theorem 4.3, since we construct couplings
for many di�erent starting points. This additional control will be useful in the proof of
Theorem 4.9 in Section 4.2. Recall that the (possibly small but) positive parameter δ1 is
�xed below (4.1.34).

As before, for x, y ∈ R and t ≥ 0 we set N≤x (t, y) = |{u ∈ Nx(t) : Xu
t ≤ y}|.

Proposition 4.5. For every ε > 0 there exists C19 = C19(ε) ∈ (0,∞) such that for all n
large enough, l ∈ [xn − 5δ1ϕ(n), xn − 4δ1ϕ(n)], and r ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)], there

exists a coupling Q
ξ
l,r of the BBMREs Nl and Nr such that

Q
ξ
l,r(Nl(t) ⊂ Nr(t) ∀t ≥ C19 lnn) ≥ 1− ε. (4.1.14)

For an illustration of the coupling and an explanation of the strategy to show that the
event in (4.1.14) occurs with high probability, we refer to Figure 4.2 on page 105.

Before proving Proposition 4.5, let us �rst show that it implies Theorem 4.3.

Proof of Theorem 4.3. Using the notation from Proposition 4.5 we set

tn := inf{t ≥ 0 : w(t, xn − 4δ1ϕ(n)) = δ}.

Note that tn ≥ C19 lnn for all n large enough (using xn ≥ n and the fact that the front
moves at least linearly, which is essentially a consequence of wξ ≥ wei and by the results
of Bramson [13], wei moves linearly in �rst order

√
2ei). By (4.1.12) and (4.1.13) we get

ϕ ∈ Ω(lnn), xn, tn →∞, (xn)n∈N ∈ O(n) and it remains to show (4.1.3). Let us abbreviate
l := xn − 4δ1ϕ(n) and r := xn + 2δ1ϕ(n). By de�nition of the coupling Q

ξ
l,r and the

representation w(t, x) = P
ξ
x

(
N≤(t, 0) ≥ 1

)
of the solution to (F-KPP) (see (4.1.6)), we have



104 Complementary results Chapter 4

for all n large enough that

δ = w(tn, xn − 4δ1ϕ(n)) = P
ξ
l

(
N≤(tn, 0) ≥ 1

)
= Q

ξ
l,r

(
N≤l (tn, 0) ≥ 1

)
≤ Q

ξ
l,r

(
N≤l (tn, 0) ≥ 1, Nl(t) ⊂ Nr(t) ∀t ≥ C19 lnn

)
+ ε

≤ Q
ξ
l,r

(
N≤r (tn, 0) ≥ 1

)
+ ε = Pξr

(
N≤(tn, 0) ≥ 1

)
+ ε

= w(tn, xn + 2δ1ϕ(n)) + ε,

where we used (4.1.14) in the �rst inequality. Adapting the notation to that of the statement,
we can conclude.

Proof of Proposition 4.5. To construct the coupling, we endow every particle in Nl and Nr

at every time with a type. The type of the particle does not in�uence its dynamics within
Nl or Nr, but rather helps to encode the dependence between Nl and Nr under Q

ξ
l,r. At

any given time, every particle in Nl can have either of the types l-mirrored, l-coupled, or
bad. Similarly, every particle in Nr can have either of the types r-mirrored, r-coupled, or
free. We denote LM(t), LC(t), B(t) and RM(t), RC(t) and F(t) the sets of particles with those
respective types at time t. A particle is given a type when it is created, and its type can
change only if it branches, meets another particle or hits some special point in space, as we
will describe later. The assignment of the type is a right-continuous function in times, in
the sense that if, e.g., a particle u changes its type from l-mirrored to bad at time t, then
∈ B(t) and u ∈ LM(t−).

In addition, under the coupling, at every time t ≥ 0, there are bijections µt : LM(t) →
RM(t) and γt : LC(t)→ RC(t). The bijections µt �mirror� the positions of the particles:

If u ∈ LM(t) and u′ = µt(u) ∈ RM(t), then m−Xu
t = Xu′

t −m, (4.1.15)

where m is the midpoint of the segment (l, r),

m :=
1

2
(l + r) ∈ [xn − 2δ1ϕ(n), xn − δ1ϕ(n)].

On the other hand, coupled particles are at the same position:

If u ∈ LC(t) and u′ = γt(u) ∈ RC(t), then Xu
t = Xu′

t . (4.1.16)

As time evolves, the bijections µt and γt naturally follow the particles. That is, for the
mirrored particles, if u ∈ LM(t) ∩ LM(t′), u′ ∈ RM(t) ∩ RM(t′) and u′ = µt(u), then also
u′ = µt′(u), and similarly for the coupled particles.

We set
L := xn − ϕ(n) and R := 2m− L. (4.1.17)

It will turn out that under the coupling constructed below, the l-mirrored particles will
always be in the interval (L,m), that is {Xu

t : u ∈ LM(t)} ⊂ (L,m), see (A) and (C)
below. As a consequence of (4.1.15) and (4.1.17), we then have {Xu

t : u ∈ RM(t)} ⊂ (m,R).
In particular, in combination with (4.1.11), we infer that the potential is always larger at
the position of an r-mirrored particle than at the position of the corresponding l-mirrored
particle:

If u ∈ LM(t) and u′ = µt(u), then ξ(Xu
t ) ≤ ξ(Xu′

t ). (4.1.18)

We can now describe the dynamics of Nl, Nr and of the types under the coupling Qξl,r. At
time 0, there is one (l-mirrored) particle at position l in Nl and one (r-mirrored) particle at
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L

t

Rl rm R

LM(t)

RM(t)

LC(t)
RC(t)

B(t)

F(t)

xn

Figure 4.2: An illustration of the coupling mechanism. l-mirrored particles are illustrated in
red, r-mirrored particles in green, while l- and r-coupled particles are illustrated in orange.
Free particles are blue and bad particles are black. The fat red (resp. green) line on the
R-axis denotes the set [xn−5δ1ϕ(n), xn−4δ1ϕ(n)] (resp. [xn+δ1ϕ(n), xn+2δ1ϕ(n)]). Note
that xn is nearer to the green domain, forcing a particle u ∈ Nl to go a long way to reach
high branching-potential. The event in (4.1.14) occurs, if at time t = c lnn, all l-mirrored
particles (red) are already turned into l-coupled ones (orange) and no l-mirrored particles
have crossed L yet. But then there will be no bad particles (black) either, which already
implies the event in (4.1.14).

position r in Nr; this determines the bijection µ0 uniquely. Every particle in Nl (resp. Nr)
performs Brownian motion, independently of the other particles in Nl (resp. Nr). The
corresponding mirrored and coupled particles are required to satisfy (4.1.15) and (4.1.16)
respectively, which is possible, since the law of Brownian motion is invariant by re�ection;
besides these two conditions the motion of particles in Nl is independent of the motion of
particles in Nr.

The branching events occur according to the following rules.

(a) At time t, every u ∈ Nl branches with rate ξ(Xu
t ). It is replaced by k new particles,

with probability pk, independently of remaining randomness. The type of the new
particles is the same as of u.

If a particle u is l-mirrored (resp. l-coupled), u ∈ LM(t−) (resp. u ∈ LC(t−)) before time
t, then the corresponding r-mirrored particle u′ = µt−(u) (resp. r-coupled particle,
u′ = γt−(u)) branches as well. It is replaced by the same number k of particles. The
newly created particles are set to be r-mirrored (resp. r-coupled) and the bijection µt
(resp. γt) is a natural extension of µt− (resp. γt−) to the newly created particles.

(b) At time t, every r-mirrored particle u′ ∈ RM(t−) (mirrored with u = µ−1
t− (u′)) branches

with rate ξ(Xu′
t ) − ξ(2m − Xu′

t ) = ξ(Xu′
t ) − ξ(Xu

t ), in addition to the branching
occurring in (a). This rate is nonnegative due to (4.1.15) and (4.1.18). It is replaced
by k new particles, with probability pk, independently of everything else. One of the
newly created particles, say v′, is set to be r-mirrored, and we set µt(u) := v′. The
type of the remaining newly created particles is free.

(c) At time t, every free particle u′ ∈ F(t) branches with rate ξ(Xu′
t ). It is replaced by k

new particles, with probability pk, independently of everything else. The type of the
new particles is free.

As a result of the rules (a)�(c), every u′ ∈ Nr branches with rate ξ(Xu′
t ) at time t, as it

should.
Finally, the particles can change their type if one of the following events occur:
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(A) If an l-mirrored particle hits m, that is u ∈ LM(t−) and Xu
t = m, then, by consequence

of (4.1.15), the corresponding particle u′ = µt−(u) satis�es Xu′
t = m as well. We thus

change the types of u and u′ to l-coupled and r-coupled, respectively, and de�ne
γt(u) := u′.

(B) If an l-mirrored particle u ∈ LM(t−) meets a free particle at time t, that is there is
v′ ∈ F(t−) with Xv′

t = Xu
t , then we change the types of u and v′ to l-coupled and r-

coupled, respectively, and de�ne with γt(u) := v′. The type of the r-mirrored particle
u′ = µt−(u) that was mirrored with u is changed to free.

(C) If an l-mirrored particle hits L, that is u ∈ LM(t−) and Xu
t = L, then the type of u is

changed to bad, and the type of the corresponding r-mirrored particle u′ = µt−(u) is
changed to free.

To show that the coupling succeeds, i.e. that (4.1.14) holds, it is su�cient to show that
with probability at least 1−ε, there are no l-mirrored and bad particles after time C19 log n.
In this vein, we de�ne two good events:

G1(t) := {N≤l (s,L) = 0∀s ≤ t}, (4.1.19)

i.e., on G1(t) no particle from Nl enters (−∞,L) before time t, and

G2(t) :=
{
N≤r (t,L) ≥ 1

}
; (4.1.20)

i.e., there is a (necessarily free, if G1(t) occurs as well) particle to the left of L at time t. We
now need the following lemma which ensures that we can �nd t such that those events are
typical.

Lemma 4.6. For any ε > 0 there exists t′ < 1 such that for all n large enough, with

t = t′ϕ(n)/
√

2ei,

Q
ξ
l,r

(
G1(t) ∩ G2(t)

)
≥ 1− ε. (4.1.21)

We postpone the proof of this lemma and complete the proof of Proposition 4.5 �rst.
Let t be as in Lemma 4.6. We claim that

{Nl(t) ⊂ Nr(t)} ⊃ G1(t) ∩ G2(t). (4.1.22)

If we show this, then the claim of Proposition 4.5 follows with C19 = t/ lnn = t′c0/
√

2ei.
To prove (4.1.22), recall �rst that bad particles can only be created if an l-mirrored

particle hits L. As a consequence,

on G1(t) there cannot be any bad particles at time t. (4.1.23)

Next, we show that

on G1(t) ∩ G2(t) there are no l-mirrored particles at time t (4.1.24)

either. To this end de�ne R(t) = inf{Xu′
t : u′ ∈ F(t)} to be the position of the leftmost

free particle, and L(t) = sup{Xu
t : u ∈ LM(t)} to be the position of the rightmost l-mirrored

particle, with the convention inf ∅ = +∞, sup ∅ = −∞; in the remaining cases, a.s., the
in�mum and supremum are attained, since F(t) and LM(t) are a.s. �nite sets). Let

τ := inf{t ≥ 0 : L(t) > R(t)}.
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We claim that τ =∞, Qξl,r-a.s. Indeed, we �rst note that L and R are right-continuous. In
addition, the only jumps that L has are downward jumps. They occur a.s. i� the rightmost
l-mirrored particle changes its type due to (A)�(C). (If one of (A)�(C) occurs, then a.s. there
is only one l-mirrored particle at position L(t). At branching events, L is unchanged, as
l-mirrored particles are created only at positions where l-mirrored particles are already
present, see (a)). Similarly, with the exception of the �rst jump from +∞, the only jumps
that the function R has are upwards jumps, occurring a.s. i� the leftmost free particle
becomes r-coupled due to (B). Therefore, it follows that a.s. τ ≥ inf{t ≥ 0 : L(t) = R(t)}.
However, the event {∃t ∈ [0,∞) : L(t) = R(t)} cannot occur by the construction of the
coupling, since if an l-mirrored and a free particle meet, then at this instant they become
l-/r-coupled immediately. Hence, τ =∞ almost surely, as claimed.

Assume now that G1(t) ∩ G2(t) occurs. At time t, there is thus a particle from Nr and
no particle from Nl to the left of L. From the construction, this particle is neither r-coupled
(since on G1(t) there is no corresponding l-coupled particle there), nor r-mirrored (as all
r-mirrored particles are always in (m,R)). Therefore, it must be free and thus R(t) < L.
Since τ =∞ a.s., L(t) < L as well. However, by construction, l-mirrored particles are always
located in (L,m), and thus L(t) < L implies L(t) = −∞, that is LM(t) = ∅, establishing
(4.1.24).

All in all, from the above it follows that on G1(t) ∩ G2(t), (4.1.23) as well as (4.1.24)
hold true, i.e., there do not exist any l-mirrored or bad particles at time t. Hence, all
particles in Nl(t) are necessarily l-coupled, which proves (4.1.22). This completes the proof
of Proposition 4.5.

It remains to show Lemma 4.6.

Proof of Lemma 4.6. Let us �rst estimate the probability of G1(t) as a function of t ∈
[0, ϕ(n)/

√
2ei]. To this end we write N (t) for the number of particles from Nl that hit L

before t; here, we only count the �rst hit of L by any particle. That is, we disregard possible
successive hits of L by the same particle, and also the fact that this particle could branch
between the hitting of L and the time t, and thus produce more particles at time t that hit
L. The expectation of N (t) can be written as

E
ξ
l [N (t)] = El

[
e
∫HL
0 ξ(Xs)ds;HL < t

]
≤ El

[
e
∫HL
0 ξ̃(Xs)ds;HL < t

]
, (4.1.25)

where the potential ξ̃ is given by ξ̃(x) = es if x ≥ xn, and ξ̃(x) = ei if x < xn. To estimate
the right-hand side, note that there are two possible scenarios for a particle to hit L. Either,
it stays all the time in the interval (L, xn) where the potential equals ei and hits L (i.e.,
it displaces by altogether at least l − L ≥ (1 − 5δ1)ϕ(n)). Or, it spends some s units of
time in the interval [xn,∞), where the potential is es, but then it should displace by at
least (xn − l) + (xn − L) ≥ (1 + 4δ1)ϕ(n) in t − s units of time. Ignoring prefactors which
are sub-exponential in ϕ(n) and using standard Gaussian tail bounds, we thus arrive at the
following upper bound:

E
ξ
l [N (t)] . exp

{
tei− (1− 5δ1)2ϕ(n)2

2t

}
+ sup

s≤t
exp

{
(t− s)ei + ses− (1 + 4δ1)2ϕ(n)2

2(t− s)

}
= exp

{
σ(n)

(
t′ − (1− 5δ1)2

t′

)}
+ sup
s′<t′

exp
{
σ(n)

(
t′ + s′

es− ei

ei
− (1 + 4δ1)2

t′ − s′
)}
,

(4.1.26)
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where we introduced

σ(n) = ϕ(n)

√
ei

2
and t′ =

t ei

σ(n)
(4.1.27)

in order to put the various terms on the same scale. Using Markov's inequality, to show
that Pξl (G1(t)c) → 0, it is su�cient to show that both summands on the right-hand side of
(4.1.26) tend to 0. For this to be the case for the �rst one, it is su�cient to require

t′ < (1− 5δ1). (4.1.28)

Before dealing with the second term (which we will do below (4.1.30)), we turn our attention
to the event G2(t).

To control the probability of the event G2, we need two claims.

Claim 4.7. For every ε > 0 there exists t0 <∞ such that for all n large enough,

Pξr

(∣∣{u ∈ Nr(t) : Xu
t ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]

}∣∣ ≥ e(1−δ2)es t
)
≥ 1− ε/2, ∀ t ≥ t0.

In order not to hinder the �ow of reading, we postpone the proof of Claim 4.7 to the
end of the proof of Lemma 4.6.

Claim 4.8. Let t = t′ϕ(n)/
√

2ei with t′ < 1 and η > 0. Then for every y ∈ [xn +
δ1ϕ(n), xn + 2δ1ϕ(n)] and all n large enough

Pξy(N
≤(t,L) ≥ 1) ≥ exp

{
σ(n)

(
t′ − (1 + 2δ1)2

t′
− η
)}
. (4.1.29)

Proof. Obviously P
ξ
y(N≤(t,L) ≥ 1) ≥ Peiy (N≤(t,L) ≥ 1) ≥ Peixn+2δ1ϕ(n)(N

≤(t,L) ≥ 1).

Moreover, by the large deviation lower bound from [17, Theorem 1], for every v >
√

2ei
and η > 0, if t is su�ciently large, then

Pei0 (N≤(t,−vt) ≥ 1) ≥ exp{t(ei− v2/2− η)}.

Using this estimate with v = (xn + 2δ1ϕ(n)−L)/t = (1 + 2δ1)ϕ(n)/t = (1 + 2δ1)
√

2ei/t′ >√
2ei, and by rewriting it using the notation introduced in (4.1.27), the claim follows.

Using these two claims, we have that for any 0 < s′ < t′ < 1 as well as for t =
t′ϕ(n)/

√
2ei and s = s′ϕ(n)/

√
2ei, that

Pξr(G2(t)c) ≤ Pξr

(
|{u ∈ Nr(s) : Xu

s ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]} ≤ e(1−δ2)es s
)

+ Pξr

(
G2(t)c

∣∣ |{u ∈ Nr(s) : Xu
s ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]}| ≥ e(1−δ2)es s

)
≤ ε

2
+
(

1− exp
{
σ(n)

(
t′ − s′ − (1 + 2δ1)2

t′ − s′
− η
)})exp{(1−δ2)es s}

.

The second summand on the right-hand side converges to 0 as n→∞ if

exp
{
σ(n)

(
t′ − s′ − (1 + 2δ1)2

t′ − s′
− η
)}
· exp{(1− δ2)es s}

= exp
{
σ(n)

(
t′ + s′

es(1− δ2)− ei

ei
− (1 + 2δ1)2

t′ − s′
− η
)}
→∞.

(4.1.30)
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The factors in the exponents of (4.1.26) and (4.1.30) are both of the form t′ + As′ −
B/(t′ − s′) such that (for δ2 > 0 small) A > 0 and B > 1. For A, B and t′, �xed, this
function is maximized for s ∈ [0, t′] by

s′ =

{
t′ −

√
B/A,

0,
with a maximum value of

{
(1 +A)t′ − 2

√
AB, if t′ >

√
B/A,

t′ −B/t′, otherwise.
(4.1.31)

Ignoring for a moment the constants δ2 and η, we write A = (es− ei)/ei, B1 = (1 + 4δ1)2,
and B2 = (1 + 2δ1)2. Observe that A > 1 by (4.1.9). In order to satisfy (4.1.30) and let
(4.1.26) tend to 0, we must �x t′ and δ1 so that (4.1.28) holds, and at the same time

sup
0<s′<t′

t′ + s′A−B1/(t
′ − s′) < 0, (4.1.32)

sup
0<s′<t′

t′ + s′A−B2/(t
′ − s′) > 0. (4.1.33)

Since B2 > 1 and t′ < 1, the analysis in (4.1.31) implies that the supremum in (4.1.33) can
be positive only if

t′ > max

(√
B2

A
,
2
√
AB2

1 +A

)
=

2
√
AB2

1 +A
, (4.1.34)

where to obtain the equality we used the fact that A > 1. We thus �x δ1 > 0 small enough
so that 1 − 5δ1 > 2

√
AB2/(1 + A) and (4.1.28) as well as (4.1.34) can be both satis�ed;

this is possible only if A > 1 which is true by assumption. We then �x t′ satisfying (4.1.28)
and (4.1.34), so that the supremum in (4.1.33) is positive (this is by construction), but
small enough, so that the supremum in (4.1.32) is negative; this is possible since B1 > B2.
Finally, we �x δ2 > 0, η > 0 so that the validity of the established inequalities is not modi�ed.
With this choice of constants, (4.1.30) holds and the right-hand side of (4.1.26) tends to
0, as required. Hence, for t = t′ϕ(n)/

√
2ei we have Q

ξ
r,l(G1(t)c ∪ G2(t)c) ≤ P

ξ
l (G1(t)c) +

P
ξ
r(G2(t)c)→ 0 as n→∞. This completes the proof.

It remains to prove Claim 4.7.

Proof of Claim 4.7. The proof follows by a comparison with branching processes split into
two phases. For the �rst phase we recall that by Lemma 3.39 there exist κ > 1 and t1 <∞
such that, P-a.s.,

sup
x∈R

Pξx
(
|{u ∈ N(t) : Xu

t ∈ [x− 1, x+ 1]}| ≤ κt
)
≤ κ−t for all t ≥ t1. (4.1.35)

For the second phase we need few preparatory steps. We �x T > 0 such that

e(1− δ2
2

)esT ≤ 1

4
eesT and P0(BT > 1) ≥ 7

16
. (4.1.36)

We further �x K1 > 1 large enough so that

inf
x∈[−K1−1,K1+1]

Px
(
BT ∈ [−K1,K1]

)
≥ 3

8
, (4.1.37)

which is possible due to the second part of (4.1.36). Finally, we �x K2 > K1 large enough
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so that
sup

x∈[−K1−1,K1+1]
Px
(
Bs /∈ [−K2,K2] some s ∈ [0, T ]

)
≤ 1

16
, (4.1.38)

so (4.1.37) in combination with (4.1.38) entail that

inf
x∈[−K1−1,K1+1]

Px
(
BT ∈ [−K1,K1], Bs ∈ [−K2,K2] ∀s ≤ T

)
≥ 5

16
. (4.1.39)

Next, assume that n is large enough, so that δ1ϕ(n) > K2/2, and in particular ξ equals es
on [xn + δ1ϕ(n)−K2, xn + δ1ϕ(n) +K2]. For x ∈ [xn + δ1ϕ(n)− 1, xn + δ1ϕ(n) + 1], de�ne

x′ =


xn + δ1ϕ(n) +K1, if x < xn + δ1ϕ(n) +K1,

xn + 2δ1ϕ(n)−K1, if x > xn + 2δ1ϕ(n)−K1,

x, otherwise,

(4.1.40)

and set Ii = [x′ − Ki, x
′ − Ki], i = 1, 2, so that I1 ⊂ I2. We now consider the BBMRE

started at x and for k ≥ 1 we de�ne

Zk = |{u ∈ N(kT ) : Xu
lT ∈ I1 ∀1 ≤ l ≤ K,Xu

s ∈ I2 ∀s < kT}|. (4.1.41)

Zk can be interpreted as the number of particles in the k-th generation of a multi-type
branching process; here, the type corresponds to the position of the particle in I1 at which
it is born (with exception of the initial particle which is at most at distance 1 from I1), and
where the number of o�spring of a particle of type y is distributed as |{u ∈ N(T ) : Xu

T ∈
I1, X

u
s ∈ I2 ∀s ≤ T}| under Pesy . In particular, using the Feynman-Kac formula as well as

(4.1.39) and then (4.1.36), the expected o�spring number of a particle of type y satis�es

Eesy [|{u ∈ N(T ) : Xu
T ∈ I1, X

u
s ∈ I2 ∀s ≤ T}|]

= eesTPy(BT ∈ I1, Bs ∈ I2 ∀s ≤ T ) ≥ 5

16
eesT ≥ e(1− δ2

2
)esT ,

(4.1.42)

uniformly over all admissible types y. In addition, the second moment of the same quantity is
�nite, again uniformly over all admissible types, by comparison with branching process with
branching rate es. It thus follows by the standard results on multi-type branching processes
that for some ρ ≥ e(1− δ2

2
)esT �nite, Zk/ρk converges in distribution to a nonnegative random

variable W with P (W > 0) > 0 (see e.g. [35, Theorem 14.1], where ρ is the principal
eigenvalue of the expectation operator of the multi-type branching process; observe also
that Condition 10.1 of this theorem is easily checked for V being the Lebesgue measure).
In particular, one can �nd ε2 > 0 and k0 large such that

Pesx
(
Zk ≥ ε2e

(1− δ2
2

)es kT
)
≥ Pesx (Zk ≥ ε2ρ

k) ≥ ε2 for all k ≥ k0, (4.1.43)

uniformly in x ∈ [xn + δ1ϕ(n) − 1, xn + δ1ϕ(n) + 1]. This terminates the investigation of
the second phase of comparison with a branching process, and we may now proceed to the
proof of Claim 4.7.

To this end, �x K such that (1− ε2)K < ε/4 and set (for κ and t1 from (4.1.35))

t′ = inf{s ∈ [t1, t], κ
s > K ∨ (4/ε), t− s = kT for some k ∈ N}. (4.1.44)

Observe that there is c <∞ such that t′ < c for all t ≥ c. Setting N = {u ∈ N(t′) : Xu
t′ ∈
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[r − 1, r + 1]}, we have, using (4.1.35) and (4.1.44) for the last inequality, that

Pξr

(∣∣{u ∈ Nr(t) : Xu
t ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]

}∣∣ ≤ e(1−δ2)es t
)

≤ Pξr(|N | < κt
′
) + Pξr

(
{|N | ≥ κt′} ∩ A

)
≤ ε

4
+ Pξr

(
{|N | ≥ κt′} ∩ A

)
,

(4.1.45)

where A denotes the event that each particle in N produces less than e(1−δ2)es t particles
in [xn + δ1ϕ(n), xn + 2δ1ϕ(n)] at time t. For a particle at position x ∈ [r − 1, r + 1],
we then �x the intervals I1, I2 as above, and observe that the number of its children in
[xn + δ1ϕ(n), xn + 2δ1ϕ(n)] at time t − t′ =: ktT dominates Zkt under Pesx . Since the
o�spring of di�erent particles are independent, for t large enough such that e(1−δ2)es t ≤
ε2e

(1− δ2
2

)es ktT , we obtain

Pξr
(
{|N | ≥ κt′} ∩ A

)
≤ Eξr

[ ∏
u∈N

PXu
t′

(
Zkt ≤ e(1−δ2)es t

)
; |N | ≥ κt′

]
≤ Eξr

[ ∏
u∈N

PXu
t′

(
Zkt ≤ ε2e

(1− δ2
2

)es ktT
)
; |N | ≥ κt′

]
≤ Eξr

[
(1− ε2)|N |; |N | ≥ κt′

]
≤ (1− ε2)κ

t′ ≤ (1− ε2)K ≤ ε

4
,

(4.1.46)

where for the third inequality we used (4.1.43) and for the last two inequalities we applied
(4.1.44). Combining (4.1.45) with the last display completes the proof of the claim.

4.2 Spatial non-monotonicity of the solution to F-KPP

While the previous result has been derived using probabilistic techniques, we will enhance
it employing analytic techniques to show that the statement of Theorem 4.3 is true even
for some negative ε. In particular, this entails the non-monotonicity of the solution w to
(F-KPP) in space.

Theorem 4.9. Let w0 = 1(−∞,0]. There exist potentials ξ ful�lling (HÖL), (BDD), (STAT)
and (MIX), some ε > 0 small enough, and sequences (t′n)n∈N ⊂ [0,∞), (l′n)n∈N ⊂ R and

(r′n)n∈N ⊂ R such that t′n →∞, l′n < r′n for all n, rn − ln ∈ Θ(lnn) and for all n ∈ N,

w(t′n, l
′
n) ≤ w(t′n, r

′
n)− ε.

The proof of Theorem 4.9 is based on the simple idea that if there are two adjacent long
stretches, the left one with potential ei and the right one with es, where the values of w
are comparable at some time tn, as proved in Theorem 4.3, then at some later time tn + s
the function w must be non-monotone, since it grows faster on the right stretch.

For the �rst time we use the analytical expression for the solution w to (F-KPP), i.e. w
ful�lls

w(t, x) = Ex

[
exp

{∫ t

0
ξ(Bs)c(w(t− s,Bs)) ds

}
w0(Bt)

]
, (t, x) ∈ [0,∞)× R, (4.2.1)

where we abbreviated c(w) := F (w)
w , with some F : [0, 1] → [0, 1] ful�lling (PROB), see

Proposition 2.20 (a). It is easy to see that c is strictly decreasing, can be extended contin-
uously to w = 0, i.e. c(0) = limw↓0 c(w) = supw∈(0,1] c(w) = 1, c(1) = 0 and the function
c : [0, 1]→ [0, 1] is Lipschitz continuous with Lipschitz constant H ∈ (0,∞).
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Proof of Theorem 4.9. For every ε > 0 we choose K = K(ε) such that

f(K) := eesP0

(
sup

0≤u≤1
|Bu| > K

)
≤ ε. (4.2.2)

Recall that by Proposition 4.5, the de�nition of the coupling Q
ξ
l,r and the representation

w(t, x) = P
ξ
x

(
N≤(t, 0) ≥ 1

)
of the solution to (F-KPP) (see (4.1.6)), for δ ∈ (0, 1) there

exist ln, rn, tn such that tn →∞, w(tn, ln) = δ, rn − ln −→
n→∞

∞ and such that for all n large
enough

sup
l∈[ln−K,ln+K]

w(tn, l) ≤ inf
r∈[rn−K,rn+K]

w(tn, r) + ε (4.2.3)

holds. We will prove the result by contradiction and therefore assume for the time being
that the claim of the theorem does not hold. Then, for all ε > 0, all n large enough and all
s ∈ [0, 1], we have

inf
l∈[ln−K,ln+K]

w(tn + s, l) ≥ sup
r∈[rn−K,rn+K]

w(tn + s, r)− ε. (4.2.4)

Let us choose ε ∈ (0, δ), s′ ∈ (0, 1] small enough and b ∈ (0, 1) such that for all s ∈ [0, s′],

ees s(δ + 3ε) ≤ b. (4.2.5)

Due to (4.2.4) and w ∈ [0, 1], for all s ∈ [0, 1] we have

sup
l∈[ln−K,ln+K]

c
(
w(tn + s, l)

)
≤ inf

r∈[rn−K,rn+K]
c
(
w(tn + s, r)

)
+Hε. (4.2.6)

Furthermore, by the Feynman-Kac formula (4.2.1) and the Markov property, for all s ≥ 0
we have

w(tn + s, ln) = Eln

[
exp

{∫ s

0
ξ(Bu)c

(
w(tn + s− u,Bu)

)
du
}
w(tn, Bs)

]
.

Then due to ξ ≤ es, w ∈ [0, 1], c ≤ 1, (4.2.3), (4.2.4), (4.2.2), and (4.2.5), for all n large
enough we have for all s ∈ [0, s′] that

w(tn + s, ln) ≤ ees s
(
Pln
(

sup
0≤u≤1

|Bu − ln| > K
)

+ sup
l∈[ln−K,ln+K]

w(tn, l)
)
≤ b. (4.2.7)

Furthermore, using ξ ≤ es, w ∈ [0, 1] and c(w) ∈ [0, 1] for w ∈ [0, 1] we get that for all
s ∈ [0, 1] we have

w(tn + s, ln) ≤ Eln
[

exp
{∫ s

0
ξ(Bu)c

(
w(tn + s− u,Bu)

)
du
}
w(tn, Bs); sup

0≤u≤1
|Bu − ln| ≤ K

]
+ eesP0

(
sup

0≤u≤1
|Bu| > K

)
.

To bound the �rst summand, we recall (by de�nition of ln, rn) that ξ(l) = ei for all l ∈
[ln−K, ln +K] and ξ(r) = es for all r ∈ [rn−K, rn +K]. Using (4.2.3) and (4.2.6), we see
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that the �rst summand can be bounded from above by

Eln

[
exp

{
ei

es

∫ s

0
ξ(Bu − ln + rn)

(
c(w(tn + s− u,Bu − ln + rn)) +Hε

)
du
}

×
(
w(tn, Bs − ln + rn) + ε

)
; sup

0≤u≤1
|Bu − ln| ≤ K

]
= eeiH εsErn

[
exp

{
ei

es

∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du

}
× (w(tn, Bs) + ε); sup

0≤u≤1
|Bu − rn| ≤ K

]
.

Recall the inequality eax ≤ ex− (1−a)x for all a ∈ [0, 1] and x ≥ 0. Then, since ei

es
∈ (0, 1),

we get

w(tn + s, ln)

≤ f(K) + eeiH εs

(
εeeis + Ern

[
exp

{∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du

}
w(tn, Bs)

]
−
(
1− ei

es

)
Ern

[ ∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du w(tn, Bs); sup

0≤u≤1
|Bu − rn| ≤ K

])
.

(4.2.8)

Recalling (4.2.3), we also have infr∈[rn−K,rn+K]w(tn, r) ≥ δ − ε. Furthermore, using the
properties of c, for ε small enough such that ε + b < 1, we have that c = c(ε, b) :=
infv∈[0,b+ε] c(v) > 0. Using (4.2.2), ξ ≥ ei, (4.2.4), (4.2.7), the inequality ex ≤ 1 + 2x for
x ≥ 0 small enough, and w ∈ [0, 1], we get, choosing s = s′ from (4.2.5) and continuing the
bound from (4.2.8),

w(tn + s′, ln) ≤ ε(1 + e(1+Hε)eis′) + (1 + 2Hεeis′)w(tn + s′, rn)

− (1− ei/es) ei c (δ − ε)(1− ε)s′

≤ w(tn + s′, rn) + ε(1 + 2ei(1 + 2Hε))

− (1− ei/es) ei c (δ − ε)(1− ε)s′

and the right-hand side can made smaller than w(tn + s′, rn) − 2ε if we choose s′ (say) of
order

√
ε and ε small enough. But this is a contradiction to (4.2.4), which hence proves

Theorem 4.9.

4.3 On boundedness of the potential and the condition vc < v0

We close this chapter with some complementary results about our model assumptions. While
(HÖL) is needed for the existence of the solution and (STAT) and (MIX) are needed to get
�enough randomness� for the central limit theorems in Sections 3.1.2 and 3.1.3, the questions
arise whether the assumption (BDD) is necessary and, more importantly, the assumption

vc < v0, (VEL)

is always ful�lled. What is more, we needed the condition

es > 2ei (4.3.1)
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for Theorems 4.3 and 4.9 to hold, see (4.1.9). The �rst result in this chapter shows that all
these condition can be ful�lled and thus all relevant results from Chapter 3 and (4) (so far)
can hold simultaneously.

Proposition 4.10. There exists ξ, such that (HÖL), (BDD), (STAT), (MIX), (VEL) and
(4.3.1) are ful�lled.

To show Proposition 4.10, we will take advantage of the following lemma. Recall the
de�nition of L from (3.2.8), its derivative (3.2.11) and the de�ntion of vc = 1

L′(0−) from
Lemma 3.9 (c).

Lemma 4.11. Let ξ be the potential constructed in (4.1.10) for real numbers es and ei

satisfying 0 < ei < es (with (4.1.9) not necessarily ful�lled). Then, making the dependence

of L explicit in writing L = Lξ, we have that the family of real numbers
1

L′Cξ(0−)
, C ∈ [1,∞),

is upper bounded away from in�nity.

Proof. Equation (3.2.11) and monotone convergence entail that for all C ∈ [1,∞) we have

L′Cξ(0−) = E

[
E1

[
eC

∫H0
0 (ξ(Br)−es) drH0

]
E1

[
eC

∫H0
0 (ξ(Br)−es) dr

]
]
.

Since the expectation in the denominator on the right-hand side of the previous display
is P-a.s. upper bounded by 1, we can continue the above to infer that for some positive
constant c > 0 and all C ∈ [1,∞) we have

L′Cξ(0−) ≥ E
[
E1

[
eC

∫H0
0 (ξ(Br)−es) drH0

]
· 1{ξ(x)=es∀x∈[0,2]}

]
≥ E

[
E1[H0 · 1{Br∈[0,2] ∀r∈[0,H0]}] · 1{ξ(x)=es∀x∈[0,2]}

]
≥ c > 0,

which �nishes the proof of the lemma.

Now we have everything to prove Proposition 4.10.

Proof of Proposition 4.10. Let ξ be as in (4.1.10) with ei, es such that (4.3.1) is ful�lled.
We had seen that this ξ ful�lls (HÖL), (BDD), (STAT) and (MIX) as well. Furthermore, it
is clear that all these conditions are ful�lled for the potential Cξ for any C ∈ [1,∞). It is
thus su�cient to choose C ∈ [1,∞) such that for the potential Cξ condition (VEL) holds
true. For this purpose, note that by Lemma 4.11 1

L′Cξ(0−)
and thus vc(Cξ) is upper bounded

away from in�nity C → ∞. Regarding v0, a comparison with the constant potentials Cei
yields that v0(Cξ)→∞ as C →∞, so (VEL) holds true for all C large enough.

Furthermore, for unbounded potential, we have superlinear speed of the front. This
is made more precise in the next lemma. It essentially follows the argument from [48,
Remark 5.4] and cannot be considered as a new result.

Lemma 4.12 ( [48, Remark 5.4] ). If es =∞, then v0 =∞.

In the proof of this lemma as well as in the proof of the next Proposition 4.14, we will
take advantage of the following alternative representation of v0.

Claim 4.13.

v0 = inf
η≤0

η − es

L(η)
. (4.3.2)



Section 4.3 On boundedness of the potential and the condition vc < v0 115

Proof. As shown in [25, p. 514�.], the function

I : (0,∞) 3 y 7→ sup
η≤−es

(
yη − L(η + es)

)
is strictly decreasing, �nite, convex, ful�lls limy↓0 I(y) = +∞ and limy↑∞ I(y) = −∞, there
exists a unique v∗ > 0 such that I(1/v∗) = 0, and one has

v∗ = inf
η≤0

η − es

L(η)
.

We now show v∗ = v0. For this purpose, let w and u be solutions to (F-KPP) and (PAM),
respectively, both with initial condition 1[−1,0]. Then w ≤ u and thus by [25, Lemma 7.6.3]
and Proposition 3.7 we have for all v > v∗ that P-a.s.,

Λ(v) = lim
t→∞

1

t
lnu(t, vt) ≥ lim inf

t→∞

1

t
lnw(t, vt) ≥ −vI(1/v).

Furthermore, the function Λ is concave and the function I is convex. Since both are �nite,
they are continuous and by passing to the limit v ↓ v∗, we deduce that Λ(v∗) ≥ −v∗I(1/v∗) =
0. Furthermore, Λ(v) < 0 for all v > v0 and thus we infer v0 ≥ v∗.

To get the converse inequality, we use that for all v > 0 and all η ≤ 0 we have

u(t, vt) = Evt
[
e
∫ t
0 (ζ(Bs)+es) ds;Bt ∈ [−1, 0]

]
= Evt

[
e
∫ t
0 (ζ(Bs)+es) ds;Bt ∈ [−1, 0], H0 ≤ t

]
≤ e(es−η)tEvt

[
e
∫H0
0 (ζ(Bs)+η) ds

]
.

In combination with (3.2.17) this yields that for all v > 0,

Λ(v) = lim
t→∞

1

t
lnu(t, vt) ≤ inf

η≤0

(
(es− η) + vL(η)

)
= −v sup

η≤−es

(η
v
− L(η + es)

)
= −vI(1/v).

But then Λ(v∗) ≤ −v∗I(1/v∗) = 0 and thus we must have v∗ ≥ v0.

Now we can prove Lemma 4.12.

Proof of Lemma 4.12 . Let ξ be a potential ful�lling (HÖL), (STAT) and (MIX), bounded
from below by ei ∈ (0, 1), but unbounded from above. ξ can be constructed using the
method from Section 4.1.2. Indeed, instead of having height 1 of the function χ, the height
could be determined by an unbounded random variable, independently of the Poisson point
process, and we would get es =∞. Now for every k ∈ N let ξ(k) := ξ ∧ k be the truncation

of ξ. Then we have ess sup ξ(k) = k and we can de�ne the quantities L(k) = Lξ
(k)

as in
(3.2.8) and v(k) by the right-hand side of (4.3.2) (again replacing L by L(k) and es by k)
associated to the potential ξ(k). Then v0 ≥ v(k) and both v(k) and L(k) are nondecreasing
in k. Thus Claim 4.13 gives

v0 ≥ v(k) = inf
η≤0

η − k
L(k)(η)

≥ inf
η≤−k

η

L(0)(η)
.

Furthermore L(0)(η) = E
[

lnE1

[
eηH0

]]
= −

√
2|η| by [8, (2.0.1), p. 204]. Thus v(k) −→

k→∞
∞
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and we get v0 =∞.

On the other side, the answer to the question whether (VEL) is always ful�lled is gener-
ally no, and we will construct a counterexample where the all other model assumptions are
satis�ed, but (VEL) fails to hold. The next statement can be considered as the main result
of this section.

Proposition 4.14. There exist potentials ξ ful�lling (HÖL), (BDD), (STAT) and (MIX),
and such that vc > v0; i.e., condition (VEL) is violated.

Proof. Recalling (4.3.2), de�nition vc := 1
L′(0−) from Lemma 3.9 (c), it is su�cient to show

L(0) + es · L′(0−) < 0, which means

E
[

lnE1

[
e
∫H0
0 ζ(Bs) ds

]]
+ es · E

[E1

[
H0e

∫H0
0 ζ(Bs) ds

]
E1

[
e
∫H0
0 ζ(Bs) ds

] ] < 0. (4.3.3)

To establish the latter, let ω̃ be a one-dimensional Poisson point process with intensity one.
In a slight abuse of notation, ω̃ = (ω̃i)i can be seen as a random mapping into the set of
all locally �nite point con�gurations; i.e., ω̃ = (ω̃i)i can be interpreted as a random set of
countably many points in R, satisfying |{i : ω̃i ∈ B}| < ∞ for every bounded Borel set
and ω̃i 6= ω̃j for all i 6= j. See [60] for further details. Now denote by ω = (ωi)i be the
point process that is obtained from ω̃ by deleting simultaneously all points in ω̃ which have
distance 1 or less to their nearest neighbor in ω̃. (see [50, p. 47] for details). Let ϕ(x) be a
molli�er with support [−1/2, 1/2], non-decreasing for x ≤ 0, non-increasing for x ≥ 0 with
ϕ(0) = 1 and let ϕ(ε)(x) := ϕ(x/ε), ε > 0. Finally, for ε ∈ (0, 1) and a > 0, de�ne the
potential ζ(x) = ζ(ε,a)(x) := −a + a

∑
i ϕ

(ε)(x − ωi). One can easily check that ζ is the
corresponding shifted potential as in (3.2.3) of some ξ ful�lling (BDD), (STAT) and (MIX),
i.e. a = es − ei. We will choose a > ln 2, ei ∈ (0, a8 ) and ε(a) > 0 suitably at the end of
the proof. Let us now consider both summands in (4.3.3) separately.

1) We observe that P-a.s., ζ(ε,a) ↓ −a as ε ↓ 0 for all x ∈ R, as well as by [8, (2.0.1),
p. 204]

−
√

2a = lnE1

[
e−aH0

]
≤ lnE1

[
e
∫H0
0 ζ(ε,a)(Bs) ds

]
≤ 0

for all ε ∈ (0, 1). Thus, by dominated convergence, for all a > 0 there exists ε1 = ε1(a) > 0,
such that

E
[

lnE1

[
e
∫H0
0 ζ(ε1,a)(Bs) ds

]]
≤ −3

4

√
2a. (4.3.4)

2) To bound the second summand in (4.3.3), we lower bound its denominator by

E1

[
e
∫H0
0 ζ(Bs) ds

]
≥ E1

[
e−aH0

]
= e−

√
2a. (4.3.5)

For the numerator, de�ne J to be the set of possible point con�gurations of the process
(ωi)i. Let us �rst check that for all a > 0 there exists ε = ε(a) > 0, such that

sup
(ωi)i∈J

E1

[
H0e

∫H0
0 (−a+a

∑
i ϕ

(ε)(Bs−ωi)) ds
]
<∞. (4.3.6)
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Indeed, letting gε,(ω
i)i(x) :=

∑
i ϕ

(ε)(x− ωi), we have

E1

[
H0e

∫H0
0 (−a+a·gε,(ωi)i (Bs)) ds

]
=

∞∑
n=0

E1

[
H0e

∫H0
0 (−a+a·gε,(ωi)i (Bs)) ds;H0 ∈ [n, n+ 1)

]
≤
∞∑
n=0

(n+ 1)E1

[
e
∫ n
0 (−a+a·gε,(ωi)i (Bs)) ds

]
.

(4.3.7)

Note that by the property of all point con�gurations in J to have points with mutual distance
at least one, we have

sup
(ωi)i∈J

sup
x∈R

Ex

[
a

∫ 1

0
gε,(ω

i)i(Bs) ds
]
≤ a

∫ 1

0
E0

[
1Aε(Bs)

]
ds ≤ 1

2

for all ε(a) > 0 small enough, where Aε :=
⋃
i∈Z[−ε/2 + i, ε/2 + i]. Using Kasmin-

skii's lemma (cf. e.g. [69, Lemma 1.2.1]) we infer supx∈REx
[
ea

∫ 1
0 g

ε,(ωi)i (Bs) ds
]
≤ 2. An

(n − 1)-fold application of the Markov property at times 1, . . . , n − 1 supplies us with

supx∈REx
[
ea

∫ n
0 gε,(ω

i)i (Bs) ds
]
≤ 2n for all n ∈ N and all (ωi)i ∈ J. Plugging this into (4.3.7)

we infer

sup
(ωi)i∈J

E1

[
H0e

∫H0
0 (−a+a·gε,(ωi)i (Bs)) ds

]
≤
∞∑
n=0

(n+ 1)e−na2n,

so the right-hand side in (4.3.7) is �nite, and (4.3.6) holds true for all a > ln 2 and ε(a)
small enough as well. Since gε,(ω

i)i decreases P-a.s. to 0 monotonically as ε ↓ 0, we infer

lim
ε↓0

E
[
E1

[
H0e

∫H0
0 ζ(ε,a)(Bs) ds

]]
= E1

[
H0e

−aH0
]

= − d

da
E1

[
e−aH0

]
= − d

da
(e−
√

2a) =
1√
2a
e−
√

2a,

(4.3.8)

using [8, (2.0.1), p. 204] in the third equality. Thus, combining (4.3.5) and (4.3.8) we infer
that there exists ε2(a) > 0 such that the second summand on the left-hand side of (4.3.3)
is upper bounded by es · 4/3√

2a
= (a + ei) · 4/3√

2a
. Using this in combination with (4.3.4), we

infer that for all a > ln 2 (which is su�cient for (4.3.6)) and ε ∈ (0, ε1(a)∧ ε2(a)), choosing
ei ∈ (0, a8 ), we get that the left-hand side in (4.3.3) is upper bounded by −3

4

√
2a + (a +

ei) · 4/3√
2a
< 0.



118



Chapter Five

Outlook and open questions

In this chapter we list several open questions that arise in the course of this thesis.

Discrete-space PDEs

Besides equations (F-KPP) and (PAM), see Chapter 3, we can take a look at the discrete-
space counterparts. More precisely, we have the discrete-space randomized F-KPP equation

wt(t, x) =
1

2
4dw(t, x) + ξ(x, ω) · F (w(t, x)), (t, x) ∈ (0,∞)× Z,

w(0, x) = w0(x), x ∈ Z,
(5.0.1)

where

4df(t, x) =
∑

y∈Z:|y−x|=1

(f(t, y)− f(t, x)), (t, x) ∈ (0,∞)× Z, f : Z→ R,

is the generator of a simple random walk, ξ = (ξ(x))x∈Z = (ξ(x, ω))x∈Z, ω ∈ Ω, is a random
�eld being stationary and ful�lling suitable boundedness and mixing conditions, similar to
its real-indexed counterpart (ξ(x))x∈R, and F ful�lls the F-KPP standard conditions (SC).
The corresponding linearized equation is

ut(t, x) =
1

2
4du(t, x) + ξ(x, ω) · u(t, x), (t, x) ∈ (0,∞)× Z,

u(0, x) = u0(x), x ∈ Z.
(5.0.2)

Equation (5.0.2) is commonly known by the name parabolic Anderson model, which is the
reason why we choose this name for the model in continuous space. The equations (5.0.1) and
(5.0.2) play a role in the investigation of branching random walks in random environment
(BRWRE), see [16]. We believe that the results of this thesis can readily be transferred
to statements about the discrete-space counterparts (5.0.1) and (5.0.2). Furthermore, as
this work is initially motivated by the paper [16], we believe that the assumptions in [16]
on ξ(x), x ∈ Z, being a sequence of i.i.d. random variables, can be weakened so that ξ(x),
x ∈ Z, ful�lls a mixing condition as in (MIX).

Subsequential bounded transition front

As a consequence of Theorem 4.3 we get that the transition front can diverge, i.e. for every
ε ∈ (0, 1/2) there exists a subsequence of time-points (tn)n∈N tending to in�nity, such that
mε
tn−m

1−ε,−
tn −→

n→∞
∞. We refer to this as subsequential unbounded transition front. However,

119
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the question arises whether there is also a subsequential bounded transition front, i.e. whether
for all ε ∈ (0, 1/2), with P-probability one, we can �nd a sequence (t̃n)n∈N = (t̃n(ξ, ε))n∈N,
tending to in�nity, such that mε

t̃n
− m1−ε,−

t̃n
≤ Cε. Although we are not able to show or

disprove this statement, there is another interesting result in the recently published article
[46] in the context of BRWRE. To explain what the author proves in [46], let us �rst forge
a link to his setup. Recall that it is possible to represent the solution to (F-KPP) in terms
of the position Mt of the right-most particle of a BBMRE. More precisely, the function

w(t, x) = P
ξ
x

(
Mt ≥ 0

)
(5.0.3)

solves (F-KPP) with initial condition w0 = 1[0,∞). We have seen in Section 1.2 in the
continuous-space setting, that for constant potential ξ ≡ const, using the symmetry of the
branching Brownian motion, we get

P
const
x

(
Mt ≥ 0

)
= P

const
0

(
Mt ≤ x

)
,

and thus, for ξ ≡ const, it is possible to consider the solution to (F-KPP) as the distribution
function of the maximal particle of a BBMRE starting in 0. Unfortunately, this represen-
tation is not valid anymore for non-constant potential ξ. In the context of BRWRE, again
denoting the position of the right-most particle at time t by Mt, the methods in the proof
of [46, Theorem 1] reveal that there exists a sequence of deterministic time-points (t̂n)n∈N
such that (Mt̂n

−Eξ0[Mt̂n
])n∈N is tight with respect to the measure Pξ0 and thus the transition

front of the front of the function x 7→ P
ξ
0

(
Mt ≤ x

)
is bounded. Although a direct transfer

to the case of BBMRE is not possible, it is an interesting question whether the methods in
[46] can also be used to show subsequential tightness for the transition front of the solution
to (F-KPP) with the help of (5.0.3).

Lower transition front

In our main result, Theorem 3.5, we show that the upper front mε of (F-KPP) lags at most
logarithmically behind the upper frontmM of (PAM). Furthermore, in Theorem 4.2 we show
that the transition front of the solution to (PAM) is uniformly bounded, i.e. mε(t)−mM,− ≤
Cε,M for all t large enough. Unfortunately, an analogous statement like Theorem 4.2 for
the transition front of the solution to (F-KPP) is not true in general, see Theorem 4.3.
Therefore, it is not straight-forward to show � and we were not able to prove � that one has
an analogous statement as in Theorem 3.5 for the lower transition fronts, i.e.

|mε,−(t)−mM,−(t)| ≤ Cε,M log t (5.0.4)

for some constant Cε,M ∈ (0,∞) and all t large enough. Using the methods in this thesis,
(5.0.4) follows if we were able to show that inequality (3.4.47) from Proposition 3.40 holds
uniformly for all subscripts x ∈ [0,mM (t)− C ln t], i.e.

inf
x∈[0,mM (t)−C ln t]

P
ξ
x

(
N≤(t, 0) ≥ 1

)
≥ 1− 2t−q,

and not only for x = mM (t)− C ln t. However, the proof of Proposition 3.40 relied heavily
on the fact that the subscript mM (t) − C ln t is moving linear in time with some velocity
in the neighborhood V of v0. Unfortunately, V must ful�ll V ⊂ (vc,∞), see (3.2.30) and
(VEL), and we showed in Proposition 4.14 that condition (VEL) cannot be dropped. The
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proof of (5.0.4) thus requires a signi�cant amount of extra work and we address the claim
(5.0.4) to future research.

Phase transition from bounded to unbounded transition front for F-KPP

In the notation of this thesis, homogeneous potential means ei = es with ei, es as in
(BDD). In this setting, the transition front of the solution to (F-KPP) is bounded. However,
Theorem 4.3 tells us that the condition es > 2ei leads to an (at least subsequential)
unbounded transition front. We thus expect that the front of the solution to (F-KPP)
shifts from exhibiting unbounded transition fronts (essentially when es/ei large, and maybe
further conditions) to exhibiting bounded transition fronts (essentially if es/ei small, and
maybe further conditions). While it is not clear if �small� means �vanishes� in this context,
let us point out here that � while periodic media are oftentimes taken to be a simple instance
for heterogeneous or random media, cf. also [25, 32] � it is clear from our proofs that the
phenomenon of long stretches of areas of high and low potential, which is crucial in our
proof, is not observed for periodic media.

The condition (VEL)

Recall that directly before Theorem 3.3 we have introduced our assumption (VEL), which
reads v0 > vc; from a technical point of view, this is necessary for our change of measure
argument to work. We show in Proposition 4.10 that for a rich class of potentials this
condition is satis�ed. What is more, however, according to Proposition 4.14 there exist
potentials ξ ful�lling (Standing assumptions), but such that v0 < vc holds true. In this
regime our methods do not apply, and it is an interesting and open question to obtain a
more profound understanding of this situation as well.
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Chapter Six

Appendix

A ψ-mixing

For a stochastic process ξ = (ξ(x, ω))x∈R, ω ∈ Ω, recall the de�nitions Fj = σ(ξ(x, ·) : x ≤ j)
and Fk = σ(ξ(x, ·) : x ≥ k).

Lemma A.1. Let ξ ful�ll (STAT). Further, let ψ be some function ful�lling (MIX) and ψ̃
be de�ned in (3.1.1). Then we have ψ(t) −→

t→∞
0 if and only if ψ̃(t) −→

t→∞
0.

Proof. Let ψ(t) −→
t→∞

0, �x j ≤ k and let A ∈ Fj , B ∈ Fk. Then by (MIX)

|P(A ∩B)− P(A)P(B)| ≤ E
[∣∣E[1A − P(A) | Fk]1B

∣∣]
≤ P(A)P(B)ψ(k − j)

and because our choices of the quantities involved was arbitrary, also using (STAT), we get
ψ̃(t) ≤ ψ(t)→ 0.

Now assume ψ̃(t) −→
t→∞

0. We use algebraic induction to show that the choice ψ := ψ̃ is

su�cient. We will only show the �rst inequality in (MIX). The second inequality can be
shown by exactly the same arguments. Now ψ̃(t) → 0 implies that for all j ≤ k , A ∈ Fj
and B ∈ Fk with P(A),P(B) > 0 we have

|E [1A − P(A)|B]| ≤ P(A) · ψ̃(k − j).

If the set
{ ∣∣E [1A − P(A)|Fk

]∣∣ > P(A) · ψ̃(k − j)
}

=: B ∈ Fk had positive probability,
this would contradict the above inequality and our claim is true for indicator functions. Let
X ∈ L1(Fj) be a simple function, i.e. X =

∑n
l=1 αl1Al , where αl ≥ 0 for all l as well as

Al ∈ Fj for all l and the Al, l = 1, . . . , n, are pairwise disjoint. Then P-a.s.

∣∣E [X − E[X] | Fk−j
] ∣∣ ≤ n∑

l=1

αl

∣∣∣E [1Al − P(Al) | Fk
]∣∣∣ ≤ n∑

l=1

αlP(Al) · ψ̃(k − j)

= E[X] · ψ̃(k − j) = E[|X|] · ψ̃(k − j). (A.1)

As usual, we can approximate nonnegative X by a non-decreasing sequence of simple func-
tions, e.g. X = supn Y

(n) with Y (n) as above and the statement follows by monotone
convergence. The step for integrable X = X+ − X−, X± ≥ 0, is obvious. Thus (A.1) is
true for all X ∈ L1(Fj) and we can conclude.
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Lemma A.2. Let 4 ⊂ (−∞, 0) be a compact interval. Then there exists a constant C4 > 0
such that P-a.s., for all i, j ∈ Z with i < j, and all η ∈ 4,∣∣E[Lζi (η)|F j

]
− L(η)

∣∣ ≤ C4 · (ψ(j − i
2

)
+ e−(j−i)/C4

)
, (A.2)

0 ≤
(

ess sup
ξ(k):k≥j

Lζi (η)
)
− Lζi (η) ≤ C4 ·

(
ψ
(j − i

2

)
+ e−(j−i)/C4

)
, (A.3)

as well as ∣∣∣E[(Lζi )′(η)|F j
]
− L′(η)

∣∣∣ ≤ C4 · (ψ(j − i
2

)
+ e−(j−i)/C4

)
, (A.4)

0 ≤
(

ess sup
ξ(k):k≥j

(
Lζi
)′

(η)
)
−
(
Lζi
)′

(η) ≤ C4 ·
(
ψ
(j − i

2

)
+ e−(j−i)/C4

)
. (A.5)

Proof. By translation invariance, it is enough to prove (A.2) for i = 0 and j ≥ 2 (the
case j = 1 follows immediately from the uniform boundedness of Lζ0 and L on 4 due to
Lemma 3.8). To show (A.2), let η ∈ 4 and write Lζ0(η) = ln(A+B) with

A = A(η) := E0

[
e
∫H−1
0 (ζ(Bs)+η) ds; sup

0≤s≤H−1

Bs < dj/2e
]

and

B = B(η) := E0

[
e
∫H−1
0 (ζ(Bs)+η) ds; sup

0≤s≤H−1

Bs ≥ dj/2e
]
.

Then A ≤ E0[eH−1η] ≤ c4,1 < 1, and, using (3.2.3), at the same time we have

A ≥ E0

[
e−(es−ei+|η|)H−1 ; sup

0≤s≤H−1

Bs < dj/2e
]
≥ c4,2 > 0 for all j ≥ 2.

To bound B, we condition on H−1 to happen before or after time j and use the re�ection
principle for Brownian motion and the tail estimate from [10, Lemma 1.1] to infer for all
j ≥ 2

0 ≤ B ≤ P0

(
sup

0≤s≤j
Bs ≥ dj/2e

)
+ eηj = 2P0(Bj ≥ dj/2e) + eηj ≤ 2e−j(1/8∧|η|).

As ln(1 + x) ≤ x, the above implies that for all j ≥ 2

ln(A) ≤ Lζ0(η) = ln(A) + ln
(

1 +
B

A

)
≤ ln(A) + c4,3e

−j/c4,3 .

Since Lζ0 is continuous on 4, the latter display P-a.s. holds uniformly for all η ∈ 4. Now
ln(A) is Fdj/2e-measurable and bounded, so by (MIX)

sup
η∈4

∣∣∣E[Lζ0(η)|F j ]− L(η)
∣∣∣ ≤ sup

η∈4

∣∣E[ln(A)− E[ln(A)]|F j ]
∣∣+ 2c4,3e

−j/c4,3

≤ C4 ·
(
ψ(j/2) + e−j/C4

)
. (A.6)

The proof of (A.4) is similar. Indeed, using the same notation we have (Lζ0)′ = A′

A+B + B′

A+B .
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Then by A+B ≥ c4,2 and eηH−1H−1 ≤ 2
|η|e

ηH−1/2, we can use above calculation to conclude

that B′

A+B decays exponentially to 0 as j →∞. Further, A
′

A −
BA′

A(A+B) = A′

A+B ≤
A′

A , Fdj/2e-

measurability of A′

A and above estimates give a similar bound as in (A.6) for (Lζ0)′(η) and
L′(η) instead of (Lζ0)(η) and L(η). Finally, (A.3) and (A.5) follow by the same arguments
as (A.2) and (A.4).

Theorem A.3 ([54, Theorem 2.1], also cf. [31, Section 5.4]). Let (Xi)i∈Z be a stationary

sequence of square-integrable and centered random variables, such that the two series

∞∑
k=1

(
X0 − E[X0 | F̃k]

)
and

∞∑
k=1

E[Xk | F̃0] (A.7)

converge in L2(Ω,F ,P), where F̃i := σ(Xj : j ≤ i). Then the limit

σ2 := lim
N→∞

1

N
E
[∣∣∣N−1∑

k=0

Xk

∣∣∣2]
exists and is �nite. If σ2 > 0 and Sn :=

∑n−1
k=0 X0, then as n→∞ the family of processes

Zn(t) =
1√
nσ2

(
Sk + (nt− k)Xk

)
, k ≤ nt ≤ k + 1, k = 0, 1, . . . , n− 1,

converges in P-distribution to a standard Brownian motion on [0, 1], in the sense of C([0, 1])
with topology of uniform convergence.

B Concentration inequalities

Lemma B.1 ([61, Theorem 2.4]). Let (Xi)i∈Z be a sequence of real-valued bounded random

variables, F̃i := σ(Xj : j ≤ i), Sn :=
∑n

i=1Xi, and let (m1, . . . ,mn) be an n-tuple of positive
reals such that for all i ∈ {1, . . . , n},

sup
j∈{i,i+1,...,n}

(
‖X2

i ‖∞ + 2‖Xi

j∑
k=i+1

E[Xk|F̃i]‖∞
)
≤ mi,

with the convention
∑i

k=i+1 E[Xk|F̃i] = 0. Then for every x > 0,

P (|Sn| ≥ x) ≤
√
e exp

{
−x2/(2m1 + · · ·+ 2mn)

}
.

Rearranging the quantities in the above result, we arrive at the following corollary which
we primarily pronounce explicitly since its formulation tailor-made for our purposes.

Corollary B.2. Let (Yi)i∈Z be a sequence of real-valued bounded random variables, F̃k :=
σ(Yj : j ≥ k), and let (m1, . . . ,mn) be an n-tuple of positive real numbers such that for all

i ∈ {1, . . . , n},

sup
j∈{1,...,i}

(
‖Y 2

i ‖∞ + 2
∥∥∥Yi i−1∑

k=j

E[Yk|F̃ i]
∥∥∥
∞

)
≤ mi, (B.1)
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with the convention
∑i−1

k=i E[Yk|F̃ i] = 0. Then for every x > 0,

P
(∣∣∣ n∑

i=1

Yi

∣∣∣ ≥ x) ≤ √e exp
{
−x2/(2m1 + · · ·+ 2mn)

}
.

Proof. For i = 1, . . . , n we de�ne m̃i := mn+1−i, and let Ỹi := Yn+1−i and

F̃i := σ(Ỹj : j ≤ i) = σ(Yn+1−j : j ≤ i)

= σ(Yj : j ≥ n+ 1− i) = F̃n+1−i.

Then rearranging the above quantities and indices we get

sup
i≤j≤n

(
||Ỹ 2

i ||∞ + 2||Ỹi
j∑

k=i+1

E[Ỹk|F̃i]||∞
)
≤ m̃i ∀ i ∈ {1, . . . , n}

if and only if

sup
i≤j≤n

(
||Y 2

n+1−i||∞ + 2||Yn+1−i

j∑
k=i+1

E[Yn+1−k|F̃n+1−i]||∞

)
≤ mn+1−i ∀ i ∈ {1, . . . , n}

⇔ sup
n+1−i≤j≤n

(
||Y 2

i ||∞ + 2||Yi
j∑

k=n+2−i
E[Yn+1−k|F̃ i]||∞

)
≤ mi ∀ i ∈ {1, . . . , n}

⇔ sup
n+1−i≤j≤n

||Y 2
i ||∞ + 2||Yi

i−1∑
k=n+1−j

E[Yk|F̃ i]||∞

 ≤ mi ∀ i ∈ {1, . . . , n}

⇔ sup
1≤j≤i

(
||Y 2

i ||∞ + 2||Yi
i−1∑
k=j

E[Yk|F̃ i]||∞
)
≤ mi ∀ i ∈ {1, . . . , n}.

We see that the conditions in Lemma B.1 are satis�ed for the sequence (Ỹi)i∈Z, (F̃i)i∈Z and
(m̃1, . . . , m̃n). This gives

P
(∣∣∣ n∑

i=1

Yi

∣∣∣ ≥ x) = P
(∣∣∣ n∑

i=1

Ỹi

∣∣∣ ≥ x) ≤ √e exp
{
−x2/(2m̃1 + · · ·+ 2m̃n)

}
=
√
e exp

{
−x2/(2m1 + · · ·+ 2mn)

}
.

C PDEs

For the next lemma, we introduce the di�erential operator

(LGw)(t, x) := wt(t, x)− 1

2
wxx(t, x)−G(x,w(t, x)),

where G is uniformly Lipschitz-continuous in w, i.e., there exists a constant α > 0, such
that

|G(x, u)−G(x, v)| ≤ α|u− v| ∀ x, u, v ∈ R. (C.1)
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The next lemma is in the spirit of [2, Proposition 2.1].

Lemma C.1. Let T > 0, Q := (0, T ) × R and G be such that (C.1) holds. Let w(1)

and w(2) be nonnegative and bounded functions on Q, such that for i ∈ {1, 2}, w(i)
x and

w
(i)
xx are continuous on Q, and such that w

(i)
t exists in Q. If LGw(1) ≤ LGw(2) on Q and

0 ≤ w(1)(0, x) ≤ w(2)(0, x) for all x ∈ R, then also w(1) ≤ w(2) on Q.

Proof.

w
(2)
t (t, x)− w(1)

t (t, x) ≥ 1

2
(w(2)

xx (t, x)− w(1)
xx (t, x)) +G(x,w(2)(t, x))−G(x,w(1)(t, x)).

Then, recalling (C.1) and letting

v(t, x) := e−2αt
(
w(2)(t, x)− w(1)(t, x)

)
,

we get

vt(t, x)− 1

2
vxx(t, x) ≥ −2αv(t, x) + e−2αt

(
G(x,w(2)(t, x))−G(x,w(1)(t, x))

)
≥
(
− 2− sgn(v(t, x))

)
α · v(t, x).

Now the the �rst factor on the right-hand side is negative and bounded. Applying the
maximum principle [47, Theorem 8.1.4] to −v then implies that v ≥ 0 on Q and we can
conclude.

As an important application we get that the solution w to LGw = 0 is monotone in G
and in the initial condition.

Corollary C.2. Let T > 0, Q := (0, T )×R, and let G1 and G2 ful�ll G1 ≤ G2 on R×[0,∞).
Furthermore, assume that G2 satis�es (C.1). In addition, let w(1) and w(2) be nonnegative

and bounded functions on Q, such that for i ∈ {1, 2}, wix and wixx are continuous on Q and

wit exist on Q. If LG1w
(1) = LG2w

(2) and w(1)(0, ·) ≤ w(2)(0, ·) on x ∈ R, then we have

w(1) ≤ w(2) on Q.

Proof. Since the function w(2) is nonnegative, we have LG2w
(2) = LG1w

(1) ≥ LG2w
(1). Then

by Lemma C.1, we have w(1)(t, x) ≤ w(2)(t, x) for all (t, x) ∈ Q.

Corollary C.3. Let G ful�ll (C.1) and G(x, 0) = G(x, 1) = 0 for all x ∈ R. Let w be a

solution to LGw = 0 with 0 ≤ w(0, x) ≤ 1. Then 0 ≤ w(t, x) ≤ 1 for all (t, x) ∈ [0,∞)×R.

Proof. The functions w(1)(t, x) = 0 and w(2)(t, x) = 1 are solutions to Lw(1) = Lw(2) = 0
and w(1)(0, x) ≤ w(0, x) ≤ w(2)(0, x). The claim then follows from Lemma C.1.

D Auxiliary results

Lemma D.1. For all functions F ful�lling (SC) there exists a sequence (pk)k∈N ful�lling

(PROB) such that for the function G = G(pk)k∈N : [0, 1]→ [0,∞), G(u) = 1−u+
∑∞

k=1 pk(1−
u)k we have

F (u) ≥ G(u) ∀u ∈ [0, 1]
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Proof. Recall that (SC) implies that there exists M ∈ N such that

1− F ′(x) ≤ M

2
x and F (1− x) ≥ xM−1 for all x ∈ [0,M−1]. (D.1)

De�ne Gn(x) := 1−x
n

(
1 − (1 − x)n

)
, x ∈ [0, 1], n ∈ N. Then each Gn, n ∈ N, satis�es

(PROB) with p1 = 1 − n−1 and pn+1 = n−1, and our goal is to show that Gn ≤ F for all
x ∈ [0, 1] and all n large enough.

We start with noting that Gn+1 ≤ Gn as functions on x ∈ [0, 1], for all n ∈ N, and that
Gn ↓ 0 uniformly as n tends to in�nity. Thus, since F is continuous and F > 0 on (0, 1)
due to (SC), we only have to take care of the neighborhoods of 0 and 1. From (D.1) we
immediately get GM (x) ≤ (1− x)M−1 ≤ F (x) for all x ∈ [1−M−1, 1]. To infer the desired
inequality for x ∈ [0, 1−M−1], Taylor expansion yields

(1− x)M ≥ 1−Mx+

(
M

2

)
x2 −

(
M

3

)
x3.

Then for M large enough and for all x ∈ [0,M−1] we get

GM (x) ≤ (1− x)
(
x− M − 1

2
x2 +

(M − 1)(M − 2)

6
x3
)
≤ x− M

3
x2

≤ x− M

4
x2 =

∫ x

0
(1−Mt/2) dt ≤

∫ x

0
F ′(t) dt = F (x),

where the last inequality is due to (D.1) again.

Recall that uu0 denotes the solution to (PAM) with initial condition u0.

Lemma D.2. For all x ∈ R and 0 ≤ s ≤ t we have u1(−∞,0](s, x) ≤ 2u1(−∞,0](t, x).

Proof. By the Feynman-Kac formula, ξ ≥ 0 and the Markov property at time s we have

u1(−∞,0](t, x) = Ex

[
e
∫ t
0 ξ(Br) dr;Bt ≤ 0

]
≥ Ex

[
e
∫ s
0 ξ(Br) dr;Bs ≤ 0, Bt ≤ 0

]
≥ E

ξ
x

[
N≤(s, 0)

]
P0(Bt−s ≤ 0) =

1

2
u1(−∞,0](s, x).

Lemma D.3. Let NL,Ms,u,t be as in (3.4.1). Then there exists c > 0 such that P-a.s.

E
ξ
x

[
NLt,t,t

]
≥ cEξbxc

[
NLt−1,t+1,t

]
for all t ≥ 1 and x ≥ 1.

Proof. Write Ay,z,t :=
{
Hk + y ≥ z + t − T

(M)
k − 5χ1(m(t)) ∀k ∈ {1, . . . , bm(t)c}

}
and

p(r) := infy≤0 Py(Br ≤ 0) = 1
2 . Then

E
ξ
x

[
NLt,t,t

]
= Ex

[
e
∫ t
0 ξ(Bs) ds;Bt ≤ 0, A0,0,t

]
≥ Ex

[
e

∫ t−1+Hbxc
Hbxc

ξ(Bs) ds
;Bt ≤ 0, Bt−1+Hbxc ≤ 0, AHbxc,1,t, Hbxc ≤ 1

]
≥ Ex

[
Ebxc

[
e
∫ t−1
0 ξ(Bs) ds × inf

r∈[0,1]
p(r);Bt−1 ≤ 0, A0,1,t

]
;Hbxc ≤ 1

]
≥ 1

2
Px(Hbxc ≤ 1)Ebxc

[
e
∫ t−1
0 ξ(Bs) ds;Bt−1 ≤ 0, A0,1,t

]
≥ cEξbxc

[
NLt−1,t+1,t

]
,
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with c = 1
2P1(H0 ≤ 1), where the last inequality can be obtained analogously to the proof

of Lemma 3.29.

The next result is a Harnack inequality for the solution to (PAM).

Lemma D.4. There exists a constant C20 ∈ (0,∞) such that P-a.s. for all y ∈ R, t ≥ 1
and all u0 ∈ IPAM we have

uu0(t, y) ≤ C20 inf
x∈[y−1,y+1]

uu0(t+ 1, x). (D.2)

Proof. For x ∈ R and t > 0 let ft,x be the probability density of a Brownian motion at time
t, starting in x. Let us �rst show that for all y, z ∈ R we have

f1,y(z) ≤
√

2/e inf
x∈[y−1,y+1]

f2,x(z). (D.3)

Indeed, using ft,y(z) = 1√
2πt
e−

(z−y)2
2t , (D.3) follows from

inf
x∈[y−1,y+1]

{
2(z − y)2 − (z − x)2

}
=

{
2(z − y)2 − (z − y + 1)2 = (z − y − 1)2 − 2, y < z,

2(z − y)2 − (z − y − 1)2 = (z − y + 1)2 − 2, y ≥ z,
≥ −2.

Now by the Feynman-Kac formula and the Markov property, we have

uu0(t, y) = Ey
[
e
∫ t
0 ξ(Br) dru0(Bt)

]
≤ ees

∫
R
f1,y(z)Ez

[
e
∫ t−1
0 ξ(Br) dru0(Bt−1)

]
dz

≤ ees
√

2/e inf
x∈[y−1,y+1]

∫
R
f2,x(z)Ez

[
e
∫ t−1
0 ξ(Br) dru0(Bt−1)

]
dz

≤ ees
√

2/e inf
x∈[y−1,y+1]

uu0(t+ 1, x),

where in the second inequality we used (D.3). Then (D.2) follows with C20 = ees
√

2/e.
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