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Summary 

 
Tissue repair is a highly dynamic process comprising the sequential phases of inflammation, 

tissue formation, and maturation. The mechanisms that orchestrate the natural sequence of 

the wound healing response remain elusive. Influx of macrophages plays a crucial role in 

tissue repair. However, the precise function of macrophages during the healing response has 

remained a subject of debate due to their functional dichotomy as effectors of both, tissue 

injury and repair. In this study the hypothesis was examined whether macrophages recruited 

during the diverse phases of skin repair after mechanical injury exert specific functions to 

restore tissue integrity. For this purpose a mouse model was developed that allows 

conditional depletion of macrophages during the sequential stages of the repair response by 

using the inducible diphtheria toxin receptor mouse model in combination with a myeloid cell-

specific Cre mouse line. Depletion of macrophages restricted to the early stage of the repair 

response (inflammatory phase) significantly reduced the formation of a vascularized 

granulation tissue and showed impaired re-epithelialization. However, recruitment of 

macrophages during the mid phase of repair, after macrophage depletion was stopped, 

rescued the impaired healing response and resulted in minimized scar formation. In contrast, 

depletion of macrophages restricted to the mid stage of the repair response (phase of tissue 

formation) resulted in severe hemorrhages within the wound tissue. Under these conditions, 

transition into the subsequent phase of tissue maturation and wound closure did not occur. 

Finally, macrophage depletion restricted to the late stage of repair (phase of tissue 

maturation) did not significantly impact the outcome of the repair response. Taken together, 

these results demonstrate that macrophages exert distinct functions during the different 

phases of skin repair, which are crucial to control the natural sequence of repair events. 

Furthermore, the effect of macrophages on endothelial cell function and wound angiogenesis 

appeared to be critical. Therefore the impact of macrophage-derived vascular endothelial 

growth factor-A (VEGF-A) on the outcome of the wound healing response was analyzed, by 

using conditional gene targeting to specifically deplete VEGF-A expression in myeloid cells. It 

could be shown that during the early phase of repair, myeloid cell-derived VEGF-A is 

essential to induce the angiogenic response, in contrast, at later stages of the wound healing 

response epidermal-derived VEGF-A controls vascular growth. We further showed that 

myeloid cell-derived VEGF-A is critical for tip cell formation, a process fundamental for 

vascular sprouting. Collectively, our findings propose novel mechanistic insights on 

macrophage-mediated repair events after skin injury and potentially might identify new 

therapeutic targets that can promote wound angiogenesis in impaired wound healing 

conditions. 



Zusammenfassung 

 
Wundheilung ist ein komplexer und dynamischer Prozess, der mehrere Phasen umfasst: 

Entzündung, Gewebebildung und -reifung. Die Mechanismen, die diese Abfolge der 

Wundheilung kontrollieren sind bisher wenig verstanden. Auf der Grundlage bereits 

bekannter Untersuchungen ist davon auszugehen, dass Makrophagen eine wichtige 

Funktion im Heilungsprozess übernehmen. Dennoch ist ihre genaue Aufgabe noch 

ungeklärt. Zum einen sind Makrophagen bedeutend für die Immunabwehr in offenen kutanen 

Wunden, zum anderen spielen sie aber auch eine entscheidende Rolle bei der 

Gewebeheilung. In dieser Arbeit wurde der Hypothese nachgegangen, dass Makrophagen in 

den individuellen Phasen der Wundheilung unterschiedliche Funktionen ausüben. Um dieser 

Fragestellung nachgehen zu können, wurde ein Mausmodel entwickelt, in dem spezifisch 

und induzierbar Makrophagen depletiert werden können. Dazu wurde eine transgene 

Mauslinie verwendet in der der humane Diphterietoxinrezeptor nur in myeloiden Zellen 

exprimiert wird. Makrophagendepletion in der frühen Entzündungsphase der Wundheilung 

resultierte in einer signifikant verringerten Bildung von Granulationsgewebe und einer 

verzögerten Reepithelisierung. Dahingegen bewirkte eine Makrophagendepletion in der 

folgenden Phase der Gewebeneubildung massive Hämorrhagien im Wundgewebe, so dass 

eine Reifung der Wunde zu einem stabilen Narbengewebe nicht stattfinden konnte und es zu 

keinem Wundschluss kam. Eine Makrophagendepletion in der späten Phase der 

Wundheilung, der Phase der Gewebereifung, hatte keinen wesentlichen Effekt auf den 

Verlauf der Heilung. Die bisherigen Ergebnisse zeigen deutlich, dass Makrophagen 

unterschiedliche Funktionen in den individuellen Phasen der Wundheilung ausüben, welche 

für den physiologischen Ablauf der Heilung entscheidend sind. Darüber hinaus scheinen 

Makrophagen einen wichtigen Einfluss auf die Funktion von Endothelzellen auszuüben. Aus 

diesem Grund wurde die Bedeutung von Makrophagen-spezifischem vaskulären 

endothelialem Wachstumsfaktor-A (VEGF-A) in der Wundheilung analysiert, indem VEGF-A 

spezifisch in myeloiden Zellen deletiert wurde. Es konnte gezeigt werden, dass speziell von 

myeloiden Zellen sezerniertes VEGF-A in der frühen Phase der Wundheilung die 

Angiogenese stimuliert. Im Gegenzug gewinnt epidermales VEGF-A in den späteren Phasen 

der Wundheilung an Bedeutung. Darüber hinaus erscheint myeloid Zell-spezifisches VEGF-A 

wichtig für die Bildung von neusprießenden Gefäßen in der frühen Phase der Wundheilung 

zu sein, ein fundamentaler Prozess der Wundangiogenese. Zusammenfassend liefern diese 

Daten neue mechanistische Einblicke in die Makrophagen-vermittelte Wundheilung und 

bieten möglicherweise neue therapeutische Angriffspunkte zur Unterstützung der 

Wundangiogenese bei Ischämie und chronischen Wundheilungsstörungen. 



Table of contents 

1 Introduction ............................................................................................................ 1 

1.1 Skin morphology and function ................................................................................. 1 

1.2 Physiological skin repair ........................................................................................... 2 

1.2.1 The inflammatory phase ......................................................................................................... 2 

1.2.2 The tissue formation phase .................................................................................................... 3 

1.2.3 The tissue maturation phase .................................................................................................. 4 

1.3 Macrophages .............................................................................................................. 5 

1.3.1 Macrophage origin .................................................................................................................. 5 

1.3.2 Macrophage activation and function ....................................................................................... 7 

1.3.3 The role of macrophages in wound healing ........................................................................... 8 

1.4 Vascular endothelial growth factor-A ....................................................................... 9 

1.4.1 VEGF function in angiogenesis ............................................................................................ 11 

1.4.2 The role of VEGF and macrophage-derived VEGF in wound repair .................................... 13 

2 Specific aims ........................................................................................................ 15 

3 Results .................................................................................................................. 16 

3.1 Cell type specific and timely restricted depletion of macrophages in 

LysMCre/iDTR mice ........................................................................................................16 

3.2 Macrophage function during the different stages of repair ...................................19 

3.2.1 Macrophage function during the early stage of repair .......................................................... 19 

3.2.1.1 Macrophages recruited during the inflammatory phase of repair induce granulation 

tissue formation, which results in scar formation ....................................................................... 19 

3.2.1.2 Macrophage depletion in wounds of LysMCre/iDTR mice receiving DT injections 

following regimen A ................................................................................................................... 24 

3.2.1.3 Wound vascularization and contraction is controlled by macrophage influx during the 

inflammatory phase of repair ..................................................................................................... 26 

3.2.1.4 Macrophage recruitment during the inflammatory phase of repair promotes alternative 

activation .................................................................................................................................... 28 

3.2.2 Analysis of macrophage depletion during the mid stage of repair ....................................... 30 

3.2.2.1 Macrophages recruited during the inflammatory phase of tissue formation control 

vascular stability and the transition of granulation tissue into scar tissue ................................. 30 

3.2.2.2 Endothelial cell damage and apoptosis in macrophage-depleted granulation tissue ... 33 

3.2.3 Analysis of macrophage depletion during the late stage of repair ....................................... 35 

3.2.3.1 Macrophages present at the late stage of repair do not impact tissue maturation ....... 35 

3.3 The impact of myeloid cell-derived VEGF-A on the outcome of the wound healing 

response ..........................................................................................................................38 

3.3.1 Macrophages are the prevailing VEGF-A source in the early phase of tissue repair .......... 38 

3.3.2 VEGF expressing macrophages reveal a pro-inflammatory M1 phenotype ........................ 41 

3.3.3 Efficient VEGF gene deletion in macrophages..................................................................... 41 

3.3.4 VEGF synthesis by myeloid cells is critical for the induction of wound angiogenesis and 

tissue growth during the early phase of repair .............................................................................. 45 

3.3.5 Epidermal-derived VEGF is critical for wound angiogenesis during the late phase of tissue 

repair .............................................................................................................................................. 48 

3.3.6 Myeloid cell-derived VEGF controls tip cell formation and the spatial association between 

macrophages and sprouting vessels during the early phase of tissue repair ............................... 55 

4 Discussion ........................................................................................................... 58 



4.1 Eligible mouse model for inducible and timely-restricted depletion of 

macrophages ..................................................................................................................58 

4.2 Macrophage functions during the early phase of repair ........................................59 

4.2.1 Macrophages recruited during the inflammatory phase of repair induce a highly 

vascularized granulation tissue, which results in scar formation ................................................... 59 

4.2.2 Myeloid cell-derived VEGF initiates the angiogenic response in the early phase of the 

wound healing response ................................................................................................................ 60 

4.2.2.1 Myeloid cell-derived VEGF controls tip cell formation and the spatial association 

between macrophages and sprouting vessels during the early phase of tissue repair ............. 62 

4.2.3 Macrophage depletion during the early phase of repair attenuates alternative activation ... 63 

4.3 Macrophage depletion during the mid stage of repair abrogates transition into 

scar tissue and causes vessel instability .....................................................................65 

4.4 Macrophages present at the late stage of repair do not impact tissue maturation

 .........................................................................................................................................67 

4.5 Model: Macrophages as sentinels directing the quality of skin repair ..................67 

5 Material and Methods .......................................................................................... 69 

5.1 Material ......................................................................................................................69 

5.1.1 Chemicals and enzymes ...................................................................................................... 69 

5.1.2 Buffers used.......................................................................................................................... 69 

5.1.3 Kits ........................................................................................................................................ 69 

5.1.4 Oligonucleotides ................................................................................................................... 70 

5.1.5 Antibodies ............................................................................................................................. 71 

5.1.6 Special technical equipment ................................................................................................. 72 

5.1.7 Software ................................................................................................................................ 72 

5.2 Standard molecular biology methods .....................................................................72 

5.2.1 RNA extraction, RT PCR and quantitative real time PCR .................................................... 72 

5.2.1.1 Mouse angiogenesis real time PCR array ..................................................................... 73 

5.2.2 RNA quantification ................................................................................................................ 73 

5.2.3 Isolation of genomic DNA ..................................................................................................... 73 

5.2.4 Polymerase chain reaction (PCR) ........................................................................................ 74 

5.2.5 VEGF-specific ELISA ........................................................................................................... 74 

5.3 Mice ............................................................................................................................74 

5.3.1 Mouse strains ....................................................................................................................... 74 

5.3.2 Genotyping ........................................................................................................................... 75 

5.3.3 Administration of diphtheria toxin ......................................................................................... 75 

5.3.4 Thioglycolate-induced peritonitis .......................................................................................... 76 

4.3.5 Wounding.............................................................................................................................. 76 

5.4 Flow cytometrie .........................................................................................................77 

5.4.1 Single cell suspensions ........................................................................................................ 77 

5.4.1.1 Peritoneal lavage ........................................................................................................... 77 

5.4.1.2 Blood leukocyte cell suspension ................................................................................... 77 

5.4.1.3 Wound cell suspension .................................................................................................. 77 

5.4.2 FACS staining ....................................................................................................................... 78 

5.4.2.1 FDG staining .................................................................................................................. 78 

5.5 Cultivation of macrophages .....................................................................................79 

5.6 Histology ...................................................................................................................79 

5.6.1 Histochemistry ...................................................................................................................... 79 



5.6.2 Immunohistochemistry .......................................................................................................... 80 

5.6.3 X-Gal staining ....................................................................................................................... 80 

5.6.4 Morphometric analysis .......................................................................................................... 82 

5.6.4.1 Quantification of wound healing parameters ................................................................. 82 

5.6.4.2 Quantification of histochemical stainings ...................................................................... 83 

5.6.4.3 Quantification of immunohistochemical stainings.......................................................... 83 

5.7 Statistical analysis ....................................................................................................83 

6 References ........................................................................................................... 84 

7 Abbreviations ....................................................................................................... 89 

 

 

 

 

 

 

 



Introduction 
 

1 

 

1 Introduction 

1.1 Skin morphology and function 

The skin is the largest organ in mammals and protects the organism from the surrounding 

environment. This anatomical barrier protects the inside from pathogens and UV-damage, 

but it is also a water resistant barrier protecting from liquid and nutrient loss. Furthermore, 

this organ is an important storage compartment for water and lipids, and the place of 

vitamin D synthesis. The skin contains nerve endings sensing heat and cold, touch, pressure 

and pain and protects the organism in this way passively from mechanical damage. It is 

highly vascularized and therefore important in thermoregulation by controlled vascular 

contraction and dilatation, respectively.  

Structurally, the skin is divided into three layers, the cell-rich epidermis, the collagen-rich 

dermis and the subcutis, consisting of fat tissue. The epidermis is a stratified squamous 

epithelium and consists mainly of keratinocytes, but also hosts Langerhans cells, 

melanocytes and merkel cells. The epidermis is renewed constantly [1]. Keratinocytes 

originate from stem cells in the basal cell layer and differentiate on their way through the 

different epidermal layers until they reach the stratum corneum, where they undergo 

apoptosis and build up this layer. The layers between the stratum basale and the stratum 

corneum are named stratum spinosum and stratum granulosum and are characterized by the 

different differentiation states and a specific expression pattern of keratinocytes. The 

epidermis itself is anchored via hemidesmosomes to the basement membrane, which is a 

thin sheet of fibers and mediates the contact to the dermis (for review see [2]). The dermis 

predominantly consists of connective tissue characterized by a strong tensile strength. Its 

major constituent are cross-linked collagen bundles, with collagen type I being the major 

collagen found, and elastin fibers. Embedded in this network the most common cell type 

found in the dermis is the fibroblast, but also cells from the innate immune system, such as 

mast cells or macrophages are located there. Both collagen and elastin fibers as well as the 

cells are embedded in a basic substance consisting of glycosaminoglycans and 

proteoglycans, which are produced by fibroblasts [3]. Furthermore, although coming from 

and anchored in the epidermis, the dermis hosts appendages of the skin, namely hair 

follicles, sebaceous glands and sweat glands. It also carries many blood and lymphatic 

vessels. Without a defined border the dermis merges into the subcutis. This subcutaneous 

fat layer is less elastic, but rich in blood vessels and lipocytes and is directly lying on the 

muscle fascia. A cartoon illustrating skin structure is shown in figure 1 A. 
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1.2 Physiological skin repair 

Restoration of skin integrity and homeostasis following injury is a vital process, because the 

skin serves as a protective barrier against pathogens and water loss and any break in it must 

be rapidly and efficiently mended [4]. Across different species this event requires a complex 

and dynamic interplay of epithelial and mesenchymal cells in concert with tissue resident and 

recruited hematopoetic cells to accomplish the sequential phases of the repair response: 

inflammation, tissue formation and maturation [5-8].  

1.2.1 The inflammatory phase 

Skin injury causes blood vessel damage. To prevent blood loss, a clot is formed which 

consists of platelets embedded in a fibrin-fibronectin network. The clot further serves as a 

provisional matrix over and into which cells can migrate, and in the same time it is also a 

reservoir for cytokines and growth factors released by activated platelets [4]. These factors 

are important to recruit inflammatory cells from the circulation to the site of injury, which 

initiate the subsequent wound healing steps. Within a few hours post injury, 

polymorphonuclear leukocytes (PMN, neutrophils) transmigrate across the endothelial cell 

wall of blood vessels by adhesion to P- and E-selectin as well as to the inter-cellular 

adhesion molecules 1 and 2 (ICAM-1 and -2). Bacterial compounds such as 

lipopolysaccharides (LPS) and formyl-methionyl peptides can accelerate the directed 

neutrophil locomotion. Recruited neutrophils begin the debridement of devitalized tissue and 

phagocytosis of infectious agents. For this purpose they release reactive oxygen species 

(ROS) and a cocktail of different proteases such as elastase, proteinase 3 and cathepsin G 

[9]. Under physiological situations, neutrophils normally disappear after a few days of healing 

as they become phagocytosed by macrophages, appearing at the wound site around two 

days post injury. Besides some tissue-resident macrophages already present at the site of 

injury, the main portion of macrophages is recruited from the blood. Macrophage infiltration is 

regulated by gradients of different chemotactic factors, such as macrophage inflammatory 

protein-1α (MIP-1α) and chemokine (C-C motif) ligand 2 (CCL2, also known as monocyte 

chemotactic protein-1, MCP-1) [10, 11], which are secreted by platelets, hyperproliferative 

keratinocytes, fibroblasts and leukocyte-subsets themselves. Monocytes leave the blood 

stream via adhesion to selectins, ICAMs or integrins, which are expressed by endothelial 

cells. After leaving the circulation, they differentiate in the wound environment to become 

mature and activated tissue macrophages due to different stimuli. Besides their 

immunological functions as antigen presenting cells and phagocytes, they are important 

sources of growth factors, such as transforming growth factor-ß (TGF-ß), basic fibroblast 

growth factor (bFGF, FGF2), platelet-derived growth factor (PDGF) and vascular endothelial 
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growth factor-A (VEGF-A), which promote directly or indirectly angiogenesis, cell proliferation 

and the synthesis of extracellular matrix (ECM) molecules by resident skin cells [12]. In 

contrast to neutrophils, macrophages stay at the wound site for the subsequent healing 

phases. The cartoon in figure 1 B illustrates the critical events of the inflammatory phase. 

 

 

Figure 1: Skin morphology and the physiological sequence of wound healing. (A) Cartoon of 

normal unwounded skin, divided into in the keratinocyte-rich epidermis and the collagen-rich dermis. 

(B) The inflammatory response three days post injury. A fibrin/fibrinogen-rich clot is formed and a lot of 

inflammatory cells are recruited. (C) The tissue formation phase five to seven days post injury. 

Keratinocytes start to proliferate in order to reach wound closure. Myofibroblasts and new blood 

vessels are present to support wound healing. (D) Late phase of the tissue maturation phase resulting 

in a remaining scar tissue.  

 

1.2.2 The tissue formation phase 

The mid stage of the repair response consists of the phase of tissue formation, which is 

characterized by the development of granulation tissue, refilling the dermal wound space, 

and keratinocyte proliferation that closes the epidermal gap. Granulation tissue formation 
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encompasses the invasion of endothelial cells and angiogenesis, the influx of fibroblasts, 

differentiating into myofibroblasts, and the accumulation of additional macrophages.  

During neo-angiogenesis, new vessels sprout out of existing vessels and along growth factor 

gradients, mainly consisting of VEGF-A and bFGF secreted by keratinocytes, macrophages, 

and other cell types [4]. To mediate this outgrowth, endothelial cells have to degrade the 

basement membrane and the surrounding ECM, which is accomplished by the expression of 

proteases, mainly matrix metalloproteases (MMPs), serin, and cystein proteases [13]. 

Furthermore, they have to alternate their integrin expression for the adhesion to the 

provisional ECM and successful migration [14]. Contemporaneous resident dermal 

fibroblasts start to proliferate and migrate from the adjacent unwounded skin area into the 

provisional matrix of the wound bed, in response to secreted TGF-ß. Once arrived, they 

produce a new collagen-rich matrix, mostly consisting of collagen type III. Besides of 

collagen deposition, some fibroblasts transform into myofibroblasts, which express α-smooth 

muscle actin (α-SMA) and promote wound contraction [15]. Wound contraction is a concerted 

action mediated by cell-cell and cell-matrix contacts as well as by tractional forces generated 

by migrating cells within the collagen matrix [16]. This contractile force supports the 

contemporaneously keratinocyte hyperproliferation and migration at the wound edge in order 

to restore the epidermal barrier, finally leading to wound closure. Growth factors which 

support proliferation and migration of keratinocytes are mainly epidermal growth factor 

(EGF), transforming growth factor-α (TGF-α) and keratinocyte growth factor (KGF) expressed 

by keratinocytes and dermal fibroblasts. As mentioned above in unwounded skin 

keratinocytes are attached to the basement membrane. This contact has to be dissolved and 

the integrin expression profile needs to be changed to allow crawling over the provisional 

fibrin-fibronectin wound matrix [17]. By expression of proteases, mainly plasmin and MMPs, 

keratinocytes carve path through the fibrin clot and the underlying dermal granulation tissue. 

Once the wound area has been covered by a layer of keratinocytes their migration stops, and 

a new basal lamina is synthesized, to which both keratinocytes and fibroblasts contribute 

[17], followed by reestablishment of the stratified epithelium starting at the wound margins 

[18]. Granulation tissue formation continues until the wound space is refilled and the 

overlaying epidermis is restored. The critical events of the tissue formation phase are 

illustrated in figure 1 C. 

 

1.2.3 The tissue maturation phase 

Upon completion of the epidermal barrier, the repair response enters the last and longest 

stage, which is characterized by tissue maturation. During the phase of tissue maturation 
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granulation tissue transforms into scar tissue, characterized by attenuated cell proliferation, 

inflammation, neovascularization as well as replacement of the provisional matrix by 

deposition of collagen. Remaining vessels mature by recruitment of pericytes and the 

network re-organizes by pruning [19]. Most endothelial cells, macrophages and 

myofibroblasts undergo apoptosis or exit the wound, leaving a cell-poor and ECM-rich scar 

tissue [5]. Collagen type III, predominating in the wound matrix, is exchanged by a collagen 

type I network which is re-arranged, cross-linked and aligned along tension lines to increase 

tensile strength [20]. This process is supported by MMPs secreted by fibroblasts, 

macrophages and endothelial cells and strengthens the remaining scar tissue. However, 

tensile strength of uninjured skin is never re-established [21]. Also skin appendages like hairs 

and sweat glands are not regenerated. Figure 1 D illustrates the remaining scar tissue after 

wounding. 

 

1.3 Macrophages 

1.3.1 Macrophage origin 

Organisms are exposed to many different pathogens in their environment. Besides physical 

barriers like the skin protecting the inner organism from pathogen infection passively, multi-

cellular organisms developed additional immune host defense mechanisms against 

pathogens which are carried out by specialized cells and proteins. Vertebrates use two types 

of immune defense, first the rapid but pathogen-unspecific innate immune response and 

second the more effective and pathogen-specific adaptive immune response. The innate 

immune system is the first line of defense against invading pathogens. It is composed of 

different cell types including mast cells, dendritic cells (DCs), natural killer cells (NK cells), 

neutrophils and macrophages. Mast cells spontaneously degranulate upon infection and 

release different pro-inflammatory cytokines which in turn recruit other innate immune cells 

for phagocytosis and degradation of the invaded pathogens. Macrophages and DCs further 

link the innate and the adaptive immune response by presenting antigens to the 

corresponding T helper cells, effector cells of the adaptive immune system. Macrophages 

and many other leukocytes do not normally divide or reproduce by themselves. They develop 

from multipotent hematopoetic stem cells (HSCs) in the bone marrow. Two cell lineages 

originate from HSCs, the lymphoid lineage, containing T-, B-, and NK cells and the myeloid 

lineage, containing macrophages, neutrophilic granulocytes, and DCs among others.  

The first developing stadium of macrophages is the highly proliferative monoblast which 

resides in the bone marrow and develops to the promonocyte stadium. The promonocytic 
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stadium is mainly found in the bone marrow as well, but can also enter the blood circulation, 

which is the main location for the following maturation state the monocytic stadium 

(Figure 2). Monocytes share already some typical features of macrophages such as 

phagocytic capacity and adhesion to specific endothelial cell molecules. They are a systemic 

reservoir for the renewal of tissue macrophages and DCs [22, 23]. Monocyte development 

depends on the availability of the growth factor colony-stimulating factor-1 (Csf-1, also known 

as macrophage colony-stimulating factor, M-CSF, and CD115) [24]. Different subpopulations 

of monocytes have been described in the circulation of mouse and humans, which are 

distinguishable by a different expression pattern of cell surface marker proteins [25, 26]. It is 

speculated that in mouse the Ly-6Chigh expressing monocyte subset is related to 

inflammatory conditions whereas the Ly-6Clow subset takes part in the renewal of tissue 

macrophages [26]. The majority of macrophages are stationed at critical points to police the 

respective organ in case of emergency. These so called tissue resident macrophages are 

found in skin, lung (alveolar macrophages), liver (Kupffer cells), bone (osteoclasts), neural 

tissue (microglia) and spleen (Figure 2). Without a specified stimulus or activation, 

macrophages have a vital homeostatic role by phagocytosis of erythrocytes, tissue debris 

and apoptotic cells. In contrast, in case of inflammation or tissue damage, monocytes adhere 

to endothelial cells via selectins or ICAMs. They transmigrate through the endothelial wall 

into the destination tissue where they mature and become activated macrophages.  

 

Figure 2: Macrophage development and diversity. Multipotent hematopoetic stem cells in the bone 

marrow pass through different maturation states until they are released into the circulation as blood 

monocytes and differentiate into macrophages when entering the tissue. Monocytes represent a 

reservoir for the renewal of tissue resident macrophages, such as alveolar macrophages in the lung, 

Kupffer cells in the liver, osteoclasts in the bone, microglia cells in neural tissues and skin 

macrophages.  
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1.3.2 Macrophage activation and function 

Classically macrophages become activated by bacterial compounds such as LPS, 

recognized by Toll-like receptors (TLR), and by T helper 1 cells (Th1) via interferon-γ (INF-γ) 

and the corresponding receptor, which both trigger a harsh pro-inflammatory response, 

required to kill intracellular pathogens, such as Mycobacterium tuberculosis, Leishmania spp. 

or HIV [27] (Figure 3). Certainly, macrophages are plastic cells and they can adopt to 

different stimuli in the environment, leading to the concept of pro-inflammatory “classically 

activated M1” macrophages versus anti-inflammatory “alternatively activated M2” 

macrophages. In contrast to the classically M1 activation state, the alternative activation 

state is T helper 2 cell (Th2) –mediated in response to the two cytokines interleukin-4 (IL-4) 

and interleukin-13 (IL-13) [28] (Figure 3). The M2 phenotype is in contrast to M1 

macrophages described to be important for the immune response to extracellular pathogens, 

such as nematodes or helminths. In addition, M2 macrophages are thought to have an 

important role in tissue repair and homeostasis. They function as immunoregulator and 

contribute to the production of ECM [29]. But alternatively activated M2 macrophages can 

also be detrimental to the host when their matrix-enhancing activity is dysregulated, similarly 

to the dysregulated activity of classically activated macrophages in autoimmunity [29]. 

Besides their substantial role in innate immunity and homeostasis, macrophages are 

important player in tumor biology. On the one hand, they are involved in antitumor immunity 

(rather M1 macrophages), but on the other hand, there is substantial evidence that in the 

majority of tumors these tumor-associated macrophages (TAMs) enhance tumor progression 

to malignancy by supporting tumor-associated angiogenesis, promoting tumor cell invasion, 

migration, and intravasation, as well as suppressing antitumor immune responses [30]. TAMs 

are thought to resemble the M2 phenotype and to support tumor progression by secreting 

growth factors like VEGF-A, TGF-ß and PDGF [31].  

M1 and M2 macrophages can be distinguished by the expression of different proteins. M1 

macrophages highly up-regulate pro-inflammatory cytokines such as interleukin-6 (IL-6), 

interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) as well as inducible nitric oxide 

synthase (iNOS), regarding their function in host defense and bacterial killing. By contrast, 

the M2 macrophage phenotype is characterized by the expression of arginase 1 (antagonist 

of iNOS), mannose receptor (CD206), found in inflammatory zone-1 (Fizz1, also known as 

resistin like molecule-α, Relm-α), eosinophil chemotactic factor (Ecf, also known as Ym1) 

and selected chemokines [32] (Figure 3). The expression of the intracellular enzyme 

arginase is implicated in cell recruitment and granuloma formation, whereas the mannose 

receptor stimulates endocytosis [33]. Most of the work studying the importance and the 

phenotype of M2 macrophages was done in mouse and cannot be directly translated to 
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humans. Arginase 1 for instances cannot be used as a marker for human M2 macrophages 

because it is also induced by other pathways [28]. It is discussed that both activation stadia 

are not terminal and that they can switch from one to the other due to environmental stimuli.  

 

1.3.3 The role of macrophages in wound healing 

Numerous studies in the past revealed functional consequences of the innate immune 

response of resident cells as well as of recruited inflammatory cells during skin repair [34]. 

They combat invading microbes and contribute to debris scavenging, but may also critically 

support the repair process by releasing a spectrum of growth factors. However, due to the 

release of pro-inflammatory and cytotoxic mediators, the uncontrolled activity of 

macrophages may also be detrimental to tissue repair. Indeed, imbalanced inflammation 

characterized by increased numbers of macrophages is a hallmark of an attenuated repair 

response in human diseases including diabetes mellitus, vascular disease as well as aging 

[9, 35].  Neutrophils and macrophages represent the major fraction of inflammatory cells 

recruited to the wound site. Within a few hours post injury neutrophils transmigrate across 

the endothelial cell wall and begin the debridement of devitalized tissue and infectious agents 

as described above. Whereas the presence of neutrophils at the wound site is timely 

restricted to the early stage of the wound healing response, macrophages persist through all 

stages of the repair response. Their number increases during the phase of inflammation, 

peaks during the phase of tissue formation and gradually declines during the maturation 

phase [36].   

Experiments in the 1970’s established the concept, that under sterile conditions, the influx of 

macrophages is essential for efficient healing of incisional skin wounds, whereas the influx of 

neutrophils might not be crucial [37, 38]. This dogma has been challenged by recent reports, 

thereby arguing against an essential role of inflammatory cells in wound repair: early fetal 

wounds heal with minimal scarring, which is associated with little inflammation [39]. 

Furthermore, wounds in the neonatal PU.1 null mouse, which lacks macrophages and 

neutrophils (but also B cells, mast cells, eosinophils), heal without scarring and, surprisingly, 

with a similar time course as wild-type siblings [40]. However, the need of macrophage and 

neutrophil influx for physiological repair in adults is supported by different studies using 

murine knock out models deficient for specific endothelial cell or leukocyte adhesion 

molecules (E-, P- selectins, ICAM-1, ß-1,4-galactosyltransferase, CD18) [41-44] or individual 

inflammatory mediators or their receptors (IL-6, CX3CR1) [11, 45]. These mouse mutants 

showed a dramatic delay in wound closure and a significantly reduced infiltration of 

neutrophils and macrophages.  
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Although these studies emphasize that leukocytes clearly affect the quality of the healing 

response, validity of these models is limited, because they either do not target pathways 

mediated exclusively by macrophages or neutrophils or they address a neonate repair 

response, which is known to differ from healing in the adult organism [46]. Furthermore, it is 

hypothesized that both macrophage phenotypes, M1 and M2 are present in wounds during 

physiological repair. The classically activated M1 differentiation state is thought to mediate 

apoptosis of damaged cells, killing of bacteria and destruction of matrix and extracellular 

structures, whereas the alternatively activated M2 phenotype seems to rather play an 

immunomodulatory role and to induce cell proliferation and angiogenesis (Figure 3). As both 

macrophage types are necessary at the inflamed site, the right balance between these two 

populations is required for healing and resolution of inflammation [47-49]. However, 

experiments proving this concept of the importance of M1 and M2 macrophages in skin 

repair are still missing. 

 

Figure 3: Model of macrophage activation. Macrophages can either be activated by a microbial 

stimulus and INF-γ to function as a classically activated macrophage or by IL-4/IL-13 to act as an 

alternatively activated macrophage. TLR, toll-like receptor; iNOS, inducible nitric oxide synthase; IL, 

interleukin; INF-γ, interferon-γ; CD206, mannose receptor; Fizz-1, found in inflammatory zone; MΦ, 

macrophage.  

 

1.4 Vascular endothelial growth factor-A 

The vascular endothelial growth factor-A (VEGF-A) was discovered around thirty years ago, 

first as an inducer of vascular permeability in tumors, the reason why it is also known as 
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vascular permeability factor (VPF), and later as a strong endothelial cell specific mitogen [50, 

51]. Since its discovery VEGF-A has been one of the most studied angiogenic growth factors 

and is thought to be of singular importance in vascular biology. The essential role of VEGF-A 

during developmental vasculogenesis (mobilization of bone marrow-derived endothelial stem 

cells) and angiogenesis (sprouting of capillaries from existing blood vessels) was shown by 

different knock out models, which unraveled that already a heterozygous knock out of VEGF-

A is embryonically lethal [52, 53]. Further, it was shown in adults, that endothelial cells 

require an autocrine VEGF-A-mediated survival signal [54]. Meanwhile, the VEGF family in 

mammals consists of five members, VEGF-A, VEGF-B, VEGF-C, VEGF-D and placenta 

growth factor (PlGF). Furthermore, structurally related proteins were also found in 

parapoxvirus (VEGF-E) and snake venom (VEGF-F). All VEGF members are homodimeric 

glycoproteins and share a common structure of eight characteristically spaced cystein 

residues in a VEGF-homology domain. They have different physiological functions and exert 

them by binding in an overlapping fashion to three receptor tyrosine kinases, known as 

VEGFR-1 (also known as Fms-related tyrosine kinase-1, Flt-1), -2 (also known as kinase 

insert domain receptor, KDR or fetal liver kinase, Flk-1), and -3 (also known as Flt-4), as well 

as to co-receptors, including neuropillins (Nrp) and heparan sulfate proteoglycans [12, 55, 

56] (Figure 4). 

VEGF-A is the most prominent member of the VEGF family and is henceforth referred to as 

VEGF. VEGF is encoded by eight exons. Exon one to five encodes for the VEGFR-binding 

domains, whereas exons six and seven encode for two separate heparin binding domains 

[51]. Currently, eight alternative splice variants are described and named by their 

corresponding amino acid length (VEGF121, 145, 148, 162, 165, 183, 189, and 206). Their relative 

abundance varies among different tissues [57]. All VEGF isoforms differ in their capability to 

bind to cell surfaces, the ECM and the corresponding receptors and have therefore their own 

biological significance [12]. VEGF121, VEGF165 and VEGF189 are the major isoforms 

expressed in VEGF expressing cells. VEGF121 lacks both exons encoding for heparin binding 

domains and represents therefore a soluble isoform. VEGF165 comprises the heparin binding 

domain encoded by exon 6 which mediates a moderate binding to heparin, and VEGF189 

contains both heparin binding domains and has therefore a strong affinity to ECM structures.  

Due to alternate capabilities of different VEGF isoforms to bind ECM proteins VEGF 

gradients can be formed [12]. Among the different isoforms, VEGF165 is the major gene 

product found in human tissues. In mice, VEGF-isoforms are one amino acid shorter than in 

humans, and therefore denoted as VEGF120, VEGF164, VEGF188 and so on.  

The major VEGF functions are mediated in binding to VEGFR-2 which is mostly expressed 

on endothelial cells but also on neuronal cells and hematopoetic stem cells [58]. VEGFR-2 is 
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a type III transmembrane receptor tyrosine kinase. The extracellular domain of the receptor 

comprises seven immunoglobulin-like domains, of which the second and third interact with 

VEGF. A single transmembrane domain connects the outer domain to the intracellular two 

tyrosine kinase domains (Figure 4). Binding of VEGF to VEGFR-2 leads to enhanced 

proliferation, migration, cell survival and permeability by the induction of various complex 

signaling pathways (for review see [58]). Besides, VEGF is also able to bind to VEGFR-1, but 

VEGFR-1 signaling is less well understood. Strong experimental evidence indicates that 

VEGFR-1 on the vasculature may act primarily as a ligand-binding molecule during 

angiogenesis, rather than as a signaling tyrosine kinase [12]. Furthermore, in vitro studies 

revealed that VEGFR-1 on monocytes/macrophages promotes chemotaxis [59]. 

 

 

Figure 4: VEGF members and their receptors. Schematic representation of interactions between 

VEGF ligands and their transmembrane or soluble receptors (sVEGFR-1) as well as co-receptors 

(Modified: Eming et al., 2007, [12]). 

 

1.4.1 VEGF function in angiogenesis 

Almost all tissues depend on blood supply, which in turn depends on endothelial cells, which 

form the inner linings of the blood vessels. Endothelial cells originate in the early embryo 

during development from bone marrow-derived stem cells. Early embryonic endothelial cells 

migrate, proliferate, and differentiate to form the first rudimental blood vessels in a process 
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termed vasculogenesis. Subsequent growth and branching of the vessels throughout the 

embryo and later in adults during tissue repair is mainly mediated by proliferation and 

migration of endothelial cells of pre-existing vessels, in a process termed angiogenesis. New 

vessels originate as a capillary sprout from the side of an existing capillary. Under 

physiological situations, endothelial cells are in a quiescent state, thus, they need to be 

activated and re-programmed during the early stages of angiogenesis [60]. Hypoxia is a 

strong stimulator for angiogenesis by leading to stabilization of the transcription factor 

hypoxia-induced factor-1α (HIF-1α) which in turn induces the expression of a wide range of 

pro-angiogenic mediators such as angiopoietins, TGF-ß, bFGF and VEGF (Figure 5). VEGF 

then stimulates endothelial cell proliferation and directed migration. For endothelial cell 

migration, cell-cell contacts have to be disrupted, an additional function of VEGF activity [61]. 

The impaired cell barrier leads furthermore to vascular leakage and extravasation of plasma 

proteins, forming a provisional matrix constituting an anchorage point for migrating cells via 

integrins. In addition, VEGF stimulates the expression of different proteases to digest the 

basal membrane and the surrounding matrix to allow cell invasion. The outgrowing vascular 

sprout is guided by a single specialized endothelial cell, distinctive by tip structures with 

potential functions in guidance and migration [62] (Figure 5). The endothelial cells following 

the tip cell, named stalk cells, are hyperproliferative, while the tip cell is not. The tip cell 

guides the way by expressing VEGFR-2 and recognizing extracellular VEGF gradients 

released by nearby oxygen-deficient tissue [63] (Figure 5). Tip cells meet and fuse, forming 

blood vessel loops in a process termed anastomosis, to develop a new vascular network; 

though the precise mechanism remains unclear [64]. It is speculated that macrophages might 

function as bridge cells between two sprouting vessels in order to prepare them for fusion 

[65, 66]. Lateral inhibition prevents overgrow of blood vessels during angiogenesis by a 

precise selection of tip cells. This inhibition is mediated by delta/notch signaling. The delta 

like-4 ligand (Dll4) is up-regulated in tip cells and inhibits via signaling through the notch 

receptor, expressed by stalk cells, the same cell fate in neighboring cells [67] (Figure 5). Dll4 

expression in turn is induced by VEGF, indicating not only a stimulatory, but also a 

modulatory role of VEGF in angiogenesis [68]. The newly formed blood vessels are highly 

instable, leaky and, dependent of VEGF signaling for their survival. Vessels mature by the 

recruitment of pericytes, which cover the outside of the vessels and help to build a novel 

basal membrane [69]. Besides of the pro-angiogenic effects of VEGF in developmental and 

postnatal angiogenesis, there is substantial evidence that implicates VEGF as a mediator of 

pathological angiogenesis [55]. VEGF is highly up-regulated in the vast majority of human 

tumors, expressed by tumor and stromal cells, in order to supply the tumor environment with 

blood vessels. Anti-VEGF therapy in humans and VEGF knock out mouse models could 

substantiate the supporting effect of VEGF on tumor growth.  
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Figure 5: Model of vascular sprouting. Induced by a VEGF gradient, specialized tip cells guide the 

expanding sprout by exploring the environment for tissue gradients of guiding cues. They are followed 

by proliferating stalk cells, which form the sprout and generate lumen. Tip cell fate is determined by 

lateral inhibition, mediated by Dll4/Notch signaling. 

 

1.4.2 The role of VEGF and macrophage-derived VEGF in wound repair 

Angiogenesis is a central event during wound healing because the restoration of blood flow 

to the site of injured tissue is necessary to mount the initial immune response to pathogens, 

and at the same time to initiate repair of wounded tissue. Thus, VEGF, as a key regulator of 

angiogenesis represents an important mediator in skin repair. VEGF expression is nearly 

absent in unwounded skin, but highly induced after injury, mainly by hypoxia but also in 

response to different pro-inflammatory cytokines and growth factors [70].  

A central function of VEGF during skin wound healing is supported by different studies in 

which reduced expression or activity of VEGF caused severe wound healing defects [11, 70]. 

The first study indicating VEGF as an important factor in wound healing was done in the 

wound healing impaired diabetic mouse model (db/db). It was shown that VEGF amounts 

were dramatically decreased, directly linking the reduced angiogenic response observed in 

this mouse model to the subsequent impaired healing response [70]. In another study it was 

shown that under the pathological healing conditions in the db/db mouse model, VEGF is a 

target for increased proteolytic activity, probably causing in the wound healing defects in 

diabetic mice [71]. Furthermore, these impaired healing conditions can be rescued or 

improved by applying a mutant protease resistant VEGF variant [72, 73].  
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Mechanistically, during the early phase of repair release of VEGF into the wound is likely to 

contribute to increased vascular permeability, which mediates extravasation and 

extravascular deposition of plasma proteins (fibrinogen, fibronectin), a process central for the 

formation of the provisional wound matrix [74]. During the phase of tissue formation, VEGF 

provokes wound angiogenesis. Further, it is discussed that VEGF serves as a 

chemoattractant for monocytes and macrophages. Both express VEGFR-1 and can therefore 

answer to VEGF signals [75].  

Initial studies of wound healing demonstrated that VEGF is mainly expressed by 

keratinocytes at the wound edge and by recruited macrophages [71, 74]. Some in vitro 

studies could further show that also platelets, mast cells, pericytes and fibroblasts are able to 

secrete VEGF. Additional wound healing studies with two different reporter mouse lines for 

VEGF expression gave contradictive results with regard to the sites of VEGF expression 

during repair. One model revealed VEGF expression mainly in wound fibroblasts, whereas in 

the other model keratinocytes were the main source for VEGF supply [12, 76, 77]. These 

different results can be explained by different promoter regions used and by the fact that the 

human VEGF promoter was used in these mouse models. However, the contribution of 

different cell compartments of VEGF expression during skin repair is not well understood. 

The importance of one specific cellular compartment releasing VEGF in wounds was shown 

by a Cre-mediated knock out for VEGF in keratinocytes, which results in an impaired healing 

response and decreased susceptibility to chemically-induced skin carcinogenesis [78]. 

Surprisingly, however, in wound repair consequences of VEGF depletion in keratinocytes 

became only apparent after wound closure had been completed, whereas granulation tissue 

formation and angiogenesis during the early phase occurred normally. This study suggests 

that keratinocyte-derived VEGF is dispensable for the early healing response, but plays a 

role in the later phases, indicating that during the phase of inflammation, other or additional 

cells must be a source for VEGF. Macrophages for example are the dominant cell type 

during the early steps of repair and they express VEGF [71]. Important stimuli for 

macrophage activation and induction of VEGF expression are hallmarks of 

microenvironmental conditions found in injured tissues, including hypoxia and lactate [79]. 

Furthermore, the importance of macrophage-derived VEGF on angiogenesis was shown by 

two recently published articles. A Cre-mediated knock out for VEGF exclusively in 

macrophages was analyzed in a mouse model for breast cancer and lung fibrosis [80, 81]. In 

both cases, the macrophage-specific knock out for VEGF had fundamental influences on the 

outcome of the angiogenic response, which was diminished. 
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2 Specific aims 

Skin injury leads to an acute phase response, which is characterized by activation of the 

innate immune system, resulting in the activation of various repair mechanisms. 

Physiologically, when timely limited, the inflammatory response is beneficial for wound 

closure. However, when the acute inflammation persists and a chronic inflammatory 

response develops, it leads to severely impaired healing conditions. Therefore, it can be 

speculated that the inflammatory response is a crucial target to impact the outcome of the 

healing response. Currently, it is not completely understood how macrophages exactly 

influence the physiology of the repair response and how they may contribute to the pathology 

of healing in diseased conditions. Therefore, a more thorough understanding of macrophage-

specific functions during the diverse phases of the repair response might broaden the 

understanding of this cell type in skin physiology and pathology. So far it is not examined 

how different cellular compartments contribute to VEGF-A supply in wounds. Macrophages 

could be an eminent source releasing significant amounts of this growth factor into wounds. 

 

The specific aims of this study are: 

1.) To test the hypothesis that macrophages present at the wound site during the 

different stages of skin repair exert specific functions. To this end, a mouse model is 

needed that allows the conditional depletion of macrophages in a timely restricted 

fashion during the distinct phases of the repair response in skin to delineate repair 

mechanisms dependent or independent from macrophage function. 

2.) To determine the time course of VEGF-A expression in wounds and to identify 

different cellular compartments of VEGF-A expression by using a VEGF-lacZ reporter 

mouse, in which both proteins, VEGF-A and ß-galactosidase are expressed under the 

control of the murine VEGF-A promoter. 

3.) To analyze the specific functional impact of macrophage-derived VEGF-A on the 

outcome of the healing response by using conditional gene targeting to specifically 

deplete VEGF-A expression in myeloid cells. 
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3 Results 

3.1 Cell type specific and timely restricted depletion of 

macrophages in LysMCre/iDTR mice 

To analyze the functional impact of macrophages during diverse phases of skin repair, mice 

were generated in which macrophages can be inducibly ablated, using a model of Cre-

inducible diphtheria toxin receptor-mediated cell ablation. This system is based on a Cre-

inducible human diphtheria toxin receptor transgenic mouse line (iDTR) in which Cre-

mediated excision of a STOP cassette, downstream of the ubiquitous active Rosa26 

promotor, renders naturally diphtheria toxin (DT)-resistant mouse cells DT sensitive (kindly 

provided by Ari Waisman [82]). To generate mice in which macrophages can be inducibly 

ablated, the iDTR mouse line was crossed to lysozyme M Cre (LysMCre) mice, reported to 

express the Cre recombinase in cells of myeloid origin (macrophages and neutrophils) 

(kindly provided by Irmgard Förster [83], Figure 6).   

 

 

Figure 6: Mouse model for inducible myeloid cell depletion. (A) To generate mice in which 

myeloid cells can be indubly ablated the iDTR mouse line, in which the expression of the DT receptor 

is under control of the Rosa26 promotor after Cre-mediated excision of a stop cassette, was crossed 

to the LysMCre mouse line. (B) Genotyping of iDTR (left) and LysMCre (right) mice by PCR. The 

300 bp fragment represents the iDTR gene, whereas the 600 bp fragment shows the wild type allele in 

the iDTR PCR. For LysMCre, a 700 bp fragment indicates the presence of the gene encoding the Cre 

recombinase. The 350 bp fragment indicates the wild type allele. bp, base pairs; DTR, diphtheria toxin 

receptor; LysM, lysozyme M; wt, wild type; fl, loxP site. 

A 

B 
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First, it was investigated how macrophage depletion can be controlled by the dose, kinetics, 

and route of diphtheria toxin (DT) application (intraperitoneal versus intravenous), as well as 

the DTR gene dose (heterozygous versus homozygous). As revealed by flow cytometry for 

macrophages (F4/80 and CD11b), a single intraperitoneal (i.p.) injection of DT (25 ng/g 

bodyweight) in LysMCre/iDTR(heterozygous) mutants resulted in complete depletion of 

peritoneal macrophages 24 hours later, that persisted approximately for 3 days (Figure 7 A). 

In contrast, total numbers of peritoneal B cells (CD19) as identified by flow cytometry were 

similar in LysMCre (control) and LysMCre/iDTR(heterozygous) mice, demonstrating the 

specificity of macrophage depletion following DT injection. By contrast, depletion of tissue 

resident macrophages in skin, liver and spleen was not achieved by a single i.p. injection of 

DT in LysMCre/iDTR(heterozygous) mice, as revealed by immunohistochemical staining for 

F4/80 (Figure 7 B, mid panel). Also repetitive i.p. DT injections did not result in efficient 

depletion of resident macrophages in these tissues. Therefore, it was investigated whether 

increasing the DTR gene dose and intravenious (i.v.) DT application affects the efficacy of 

tissue resident macrophage depletion. In fact, repetitive i.v. injections of DT (25 ng/g 

bodyweight) at two consecutive days in LysMCre/iDTR(homozygous) mice resulted in 

efficient depletion of both peritoneal and tissue resident macrophages in skin, spleen and 

liver one day after DT injection (Figure 7 A, B). Furthermore, the same regimen of DT 

application resulted in efficient depletion of circulating monocytes (CD115, CD11b) 24 hours 

later (Figure 7 C). Interestingly, although the lysozyme M gene is also expressed in 

polymorphonuclear leukocytes, DT injection did not result in efficient depletion of neutrophils 

(Gr-1) in the circulation (Figure 7 C). To investigate whether myeloid cells can be efficiently 

depleted under inflammatory conditions, LysMCre/iDTR(homozygous) and LysMCre mice 

received two i.v. injections of DT at consecutive days, which 24 hours later was followed by a 

single i.p injection with thioglycolate. This substance is standardly used to induce a sterile 

peritonitis characterized by a strong infiltration of macrophages and neutrophils into the 

peritoneal cavity. After thioglycolate injection, mice received DT injections i.p. for 3 

consecutive days, and at day 4 post thioglycolate application, peritoneal lavage cells were 

analyzed. As revealed by flow cytometry for macrophages (F4/80, CD11b) and neutrophils 

(Gr-1) only macrophages were efficiently ablated, while the treatment did not affect 

neutrophil populations (Figure 7 D). Whether increased neutrophil number in LysMCre mice 

is simply the result of reduced phagocytosis by macrophages or results from the lack of 

different macrophage-mediated control mechanisms, is currently unknown. For the 

subsequent wound healing studies LysMCre/iDTR(homozygous) and LysMCre (control) mice 

were used. 
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Figure 7: Selective depletion of macrophages in LysMCre/iDTR mice. (A) Analysis of macrophage 

depletion by peritoneal lavage following a single i.p. injection of DT (25 ng/g bodyweight) in 

LysMCre/iDTR(heterozygous) or LysMCre/iDTR(homozygous) mice resulted in efficient depletion of 

peritoneal macrophages (F4/80, CD11b) 24 hours after DT injection that lasted for 3 days. Specificity 

of macrophage depletion was identified by normal B cell numbers (CD19). DT injection in LysMCre 

(control) mice had no effect on macrophage numbers. (B) Tissue resident macrophages (stained by 

F4/80) in skin, spleen and liver were efficiently depleted in LysMCre/iDTR(homozygous) mice 24 hours 

following i.v. DT injections (25 ng/g bodyweight) at two consecutive days. Tissue resident 

macrophages were not affected by DT injection in LysMCre mice and partially depleted in 

LysMCre/iDTR(heterozygous) mice. (C) Efficient depletion of monocytes (CD11b, CD115) and partial 

depletion of neutrophils (Gr-1) in the circulation 24 hours after two i.v. DT injections at consecutive 

days. (D) Effective depletion of macrophages (F4/80, CD11b) but not neutrophils (Gr-1) in 

LysMCre/iDTR(homozygous) mice after thioglycolate induced peritonitis. e, epidermis; d, dermis; sc, 

subcutaneous fat layer; wp, white pulp; rp, red pulp. 

 

3.2 Macrophage function during the different stages of repair 

 

To analyze macrophage function during the different phases of tissue repair, the above 

described mouse model was used and a cell depletion scheme in which macrophages were 

inducibly depleted in a timely restricted manner during the different phases of repair was 

developed (Figure 8). To this end, injections were performed on specific days prior or post 

wounding to achieve macrophage depletion during the inflammation, the tissue formation or 

the maturation phase (Figure 8 regimen A to C). 

 

3.2.1 Macrophage function during the early stage of repair 

3.2.1.1 Macrophages recruited during the inflammatory phase of repair induce 

granulation tissue formation, which results in scar formation 

First, the impact of macrophages recruited during the early inflammation phase was analyzed 

by cell depletion following injection scheme A (Figure 8). For this purpose, mice were first 

injected with DT twice prior wounding to prevent an initial influx of macrophages after injury, 

which was followed by two i.p. DT injections at day two and four post injury. Macroscopic 

assessment of wound closure showed that depletion of macrophages during the 

inflammatory phase resulted in a significant delay of the early repair response compared with 

control (LysMCre) mice. While at day 5 post injury, the wound area was reduced to 50% of 

the original wound size in control mice, in macrophage-depleted wounds of LysMCre/iDTR 

mice the wound size was reduced by only 25%. However, at later time points, when DT 
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injections were discontinued, wounds in LysMCre/iDTR mice demonstrated rapid wound 

closure comparable to control wounds (Figure 9). 

 

 

 

Figure 8: Schematic representation of DT-mediated macrophage depletion in distinct stages of 

the repair response. To achieve wound-phase-restricted depletion of macrophages LysMCre/iDTR 

and LysMCre mice were injected with DT (intraveniously, i.v. or intraperitoneally, i.p.) according to 

three regimens: (A) DT injection regimen A, macrophage depletion during the inflammatory phase: DT 

injections 2 and 1 days prior wounding as well as at day 2 and 4 post wounding; (B) DT injection 

regimen B, macrophage depletion during the tissue formation phase: DT injections at day 3, 4, 6 and 8 

post injury; (C) DT injection regimen C, macrophage depletion during the maturation phase: DT 

injections at days 8, 9, 11, and 13 post injury. At time points indicated mice were sacrificed and the 

wound tissue was excised for analysis. MΦ, macrophages; DT, diphtheria toxin. 
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Figure 9: Macrophage depletion during the early stage of repair results in a delayed wound 

closure rate. (A) Macroscopic appearance of wounds in LysMCre/iDTR and LysMCre (control) mice 

after DT injection following regimen A; whereas wounds of control mice had already lost their scab, 

macrophage-depleted wounds in LysMCre/iDTR mice still carry a firmly adherent scab 7 days post 

wounding. (B) At the time points indicated, the wound area was determined using image analysis and 

expressed as percentage of the wound area immediately after injury (n = 12 wounds on 6 mice for 

each time point and genotype). Data are expressed as mean ± SD. 

 

The macroscopic findings were confirmed by histological assessment. For this purpose 

LysMCre/iDTR and control mice were sacrificed on day 5, 10 and 14 after injury and the 

wound tissue (5-12 wounds on 3-6 mice per time point for each group) was excised and 

analyzed. For histological quantification, the amount of granulation tissue, the distance 

between the two ends of the epithelial tips and the distance between the ends of the 

panniculus carnosus were measured on H&E stained paraffin sections (see overview in 

Figure 10 A). 

At day 5 post injury, a significantly shorter distance between the tips of the epithelial tongues, 

representing the longitudinal diameter of the wound, was measured for the control wounds 

compared to macrophage-depleted wounds (Figure 10 B, C). Furthermore, as revealed by 

expression of the cell proliferation marker Ki67, the epidermal margins in control wounds 

were hyperproliferative, whereas the epidermal wound edge in macrophage-depleted 

wounds was short and showed few proliferating keratinocytes (Figure 10 B, G). To analyze 

dermal repair the amount of granulation tissue formation in wound tissue of macrophage-

depleted and control mice was determined. Differences in the quantity of granulation tissue 

were analyzed in H&E-stained sections and were shown to be significantly reduced at all 

time points in macrophage-depleted wounds compared to controls (Figure 10 E). Whereas at 
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day 5 post injury control wounds showed a highly vascularized, cellular and proliferative 

granulation tissue, in macrophage-depleted wounds granulation tissue was scarcely 

vascularized and showed few proliferating cells (Figure 10 B, G). Wound contraction was 

significantly reduced in LysMCre/iDTR mice when compared to controls (Figure 10 D).  

At day 10 post injury, wounds in LysMCre/iDTR and control mice were still covered by eschar 

(Figure 9 A) and histological analysis revealed that in both a complete neo-epithelium had 

formed beneath the eschar (Figure 10 B). However, in LysMCre/iDTR mice, the epithelium 

appeared fragile, was thinner, and partially detached from the dermis, when compared to 

control mice, indicating immature anchorage and basement membrane formation. 

Furthermore, although in these wounds the quantity of granulation tissue increased when 

compared to day 5 post injury, it was significantly reduced compared to control wounds 

(Figure 10 B, E). Also wound contraction remained reduced in LysMCre/iDTR mice when 

compared to controls (Figure 10 D).  

At day 14 post injury both wounds in LysMCre/iDTR and control mice had lost their eschar 

and were similar in their macroscopic appearance (Figure 9 A). In contrast, major differences 

between wounds in LysMCre/iDTR and control mice became apparent regarding the extent 

of scar tissue formation. As revealed by H&E (Figure 10 B) and Sirius red staining analyzed 

in polarized light (Figure 10 F), fine collagen bundles characteristic for scar tissue were 

almost absent in wounds of LysMCre/iDTR mice. Morphometric quantification of scar tissue 

revealed a significant reduction in LysMCre/iDTR mice when compared to controls 

(Figure 10 E). Morphological analysis of the epidermis overlaying the scar tissue revealed a 

slightly hyperproliferative, closed epithelium which was similar in mutant and control wounds 

(Figure 10 B). 
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Figure 10: Macrophage depletion during the early stage of repair attenuates epithelialization, 

granulation tissue formation and wound contraction. (A) H&E stained wild type wound section 5 

days following injury. (B) H&E stainings of wounds in LysMCre (control) and LysMCre/iDTR mice at 

indicated time points after injury. Whereas in LysMCre mice, the day-5 wound is filled with a 

vascularized granulation tissue in LysMCre/iDTR mice only scarce granulation tissue has formed 

(black hatched line outlines granulation tissue, white dotted line outlines hyperproliferative epithelial 

tongue); in day-10 wounds of LysMCre and LysMCre/iDTR mice the granulation tissue is covered by a 

complete epithelium; however the epithelium is detached; day-14 wounds of LysMCre and 

LysMCre/iDTR are closed, scar tissue is minimal in LysMCre/iDTR mice (hatched line outlines scar 

tissue). (C-E) Morphometric analysis of wound tissue at different time points post injury: (C) Distance 

between the epithelial tips; (D) Distance between the edges of the panniculus carnosus; (E) Amount of 

granulation tissue (day 5 and 10 post injury) or scar tissue (day 14 post injury). Each dot represents 

one wound (day 5: two wounds on one mouse, day 10 and 14: one wound per mouse); horizontal bar 

represents the mean. (F) Sirius red staining and examination with polarized light revealed increased 

scar formation in control wounds when compared to LysMCre/iDTR wounds 14 days post injury. (G) 

Left: day 5 wounds of LysMCre and LysMCre/iDTR mice stained for Ki67 (green) and propidium iodide 

(red), arrowheads indicate Ki67 positive cells (yellow). Right: quantification of Ki67 positive cells in the 

hyperproliferative epithelium. Data are expressed as mean ± SD, n = 3 wounds on 3 mice for each 

time point and group. Hatched line indicates basement membrane. e, epidermis; he, hypertrophic 

epidermal wound edge; d, dermis; sm, subcutaneous muscle layer; pc, panniculus carnosus; g, 

granulation tissue; st, scar tissue; arrows point to the tips of epithelial tongue, white arrowheads 

indicate wound edges, black arrowheads indicate edges of panniculus carnosus. 

 

3.2.1.2 Macrophage depletion in wounds of LysMCre/iDTR mice receiving DT 

injections following regimen A 

To analyze whether changes observed in the tissue repair response between LysMCre/iDTR 

and control (LysMCre) mice correlated with macrophage depletion, wound tissue was stained 

for the macrophage marker F4/80. In control wounds 5, 10 and 14 days post injury, F4/80 

positive cells were present throughout the entire granulation tissue (Figure 11 A, B). 

Quantification of F4/80 positive macrophages revealed that their number was highest at day 

5 post injury and subsequently declined to approximately 1/3 until 14 days post injury (Figure 

11 B). In contrast, in LysMCre/iDTR mice receiving DT injections following regimen A 

(Figure 8), F4/80 positive cells were absent at day 5 post injury but appeared at the wound 

site at day 10 and 14 post injury (Figure 11 A, B). Thus, in LysMCre/iDTR mice, the absence 

of macrophages during the early stage of repair corresponded to the time course of DT 

injections. Furthermore, the data revealed that after DT injections were abolished, newly 

generated macrophages were recruited into the wound site during the consecutive phases of 

tissue formation and maturation. Finally and most importantly, the results demonstrate that 

macrophages recruited during the inflammatory phase impact repair mechanisms not only in 

the early stage of the repair response, but also in the consecutive mid and late stages of 

repair. As revealed by staining for the neutrophil marker Gr-1 (Figure 11 C) 5 days post injury 

neutrophils were not effectively depleted at the wound site by DT injections in this model, 

which is in agreement with the data presented in figure 6 D after thioglycolate-induced 
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peritonitis. Of note, whereas in controls neutrophils are scattered throughout the granulation 

tissue, in LysMCre/iDTR wounds neutrophils are clustered at the wound surface 

(Figure 11 C). 

 

 

Figure 11:  DT-mediated macrophage depletion in LysMCre/iDTR mice following DT injection 

regimen A. (A) Immunostaining for F4/80 (red) revealed the presence of numerous macrophages in 

the granulation tissue of control (LysMCre) wounds 5 and 10 days post injury; in LysMCre mice 

macrophages are absent at day 5 post injury and present 10 days post injury. (B) Quantification of 

F4/80 positive macrophages present in granulation tissue at indicated time points post injury. (C) Left: 

immunostaining for Gr-1 (brown) revealed the presence numerous neutrophils both in control and 

LysMCre/iDTR wounds 5 days post injury. Right: quantification of Gr-1 positive neutrophils present in 

granulation tissue of day 5 wounds post injury; data are expressed as mean ± SD, n = 3 wounds on 3 

mice for each time point and group. g, granulation tissue; sm, skeletal muscle; hpf, high power field. 

 

 



Results 
 

26 

 

3.2.1.3 Wound vascularization and contraction is controlled by macrophage 

influx during the inflammatory phase of repair  

To assess whether the influx of macrophages during the early stage of the repair response 

impacts wound angiogenesis, morphometric quantification of the expression of the 

endothelial cell marker CD31 within the area of granulation tissue was used as read-out for 

angiogenesis at the wound site. Wounds in control mice revealed a strong vascular response 

5 days post injury which decreased about 30% until day 10 post injury (Figure 12 A, B left 

panel). In wounds of LysMCre/iDTR mice, vascular density was significantly reduced 

compared to control wounds 5 days post injury and slightly increased by day 10 post injury. 

Thereby, in LysMCre/iDTR and control mice, wound angiogenesis correlated positively with 

the presence of macrophages. Furthermore, to investigate whether the influx of 

macrophages during the phase of inflammation impacts wound contraction, the distance 

between the edges of the panniculus carnosus at the wound margins in LysMCre/iDTR and 

control mice receiving DT injections following regimen A were measured and indicated 

reduced wound contraction in macrophage-depleted wounds (Figure 10 D). In assessment 

with this, at both time points, α-SMA, a well-accepted marker for myofibroblast differentiation, 

was abundantly expressed throughout the entire granulation tissue (Figure 12 A, B right 

panel). In contrast, wounds of LysMCre/iDTR mice showed weak α-SMA staining in the 

scarce granulation tissue present at day 5 following injury (Figure 12 A), which slightly 

increased in intensity within the small amount of granulation tissue at day 10. 

Immunofluorescent double labeling for CD31 and α-SMA, indicated in wounds of control and 

LysMCre/iDTR mice a non-endothelial cell origin of the α-SMA staining and thereby the 

presence of myofibroblasts. This data is suggestive for attenuated myofibroblast 

differentiation and subsequent reduced wound contraction in the absence of macrophages 

during the early stage of tissue repair.  

In order to identify factors that might mediate the accelerated vascular response and the 

myofibroblast differentiation in control mice, wound tissues were stained for TGF-ß1, a key 

mediator of myofibroblast differentiation [16] and for VEGF-A, one of the most potent 

angiogenic mediators [56]. In control wounds 5 and 10 days post injury, numerous wound 

cells were detected that stained positive for TGF-ß1 or VEGF-A within the granulation tissue 

(Figure 12 C, D left). Double staining for F4/80 and TGF-ß1 or VEGF-A indicated that 

macrophages represent a major fraction of TGF-ß1 or VEGF-A expressing cells (Figure 12 

C, D right). Consistently, in macrophage-depleted wounds of LysMCre/iDTR mice 5 days 

post injury, staining for total TGF-ß1 and VEGF-A, but in particular also double staining for 

F4/80 and TGF-ß1 or VEGF-A was significantly reduced compared to control wounds (Figure 

12 C, D left). These results suggest that macrophage-derived TGF-ß1 and VEGF-A could 
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contribute to myofibroblast differentiation and the accelerated angiogenic response in control 

mice in the early phase of repair. 
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Figure 12: Macrophage depletion during the early stage of repair attenuates angiogenesis and 

myofibroblast differentiation. LysMCre/iDTR and control (LysMCre) mice received DT injections 

following regimen A. (A) CD31 (green) and α-SMA (red) double immunostaining of day-5 wound tissue 

in control and LysMCre/iDTR mice, DAPI counterstaining of nuclei (blue); dotted line indicates 

basement membrane; hatched line outlines granulation tissue; e, epidermis; he, hyperproliferative 

epidermis; d, dermis; g, granulation tissue; sm, skeletal muscle; arrow points to the tip of epithelial 

tongue. (B) Morphometric quantification of the area within the granulation tissue which stained positive 

for CD31 and α-SMA at indicated time points after injury. Morphometric quantification of the area 

within the granulation tissue which stained positive for TGF-β1 (C) and VEGF-A (D) at indicated time 

points after injury; double labeled macrophages for TGF-ß1 or VEGF-A and F4/80 were counted in 

high power fields (hpf). Data are expressed as mean ± SD, n = 3 wounds on 3 mice for each time 

point and group.  

 

3.2.1.4 Macrophage recruitment during the inflammatory phase of repair 

promotes alternative activation 

To phenotypically characterize the macrophage infiltrate in wound tissue of LysMCre/iDTR 

and control mice receiving DT injections following regimen A (Figure 8), F4/80+ 

macrophages were analyzed for the expression of Fizz1 (found in inflammatory zone)/Relm-

α and Ym1/ECF (eosinophil chemotactic factor). Expression of both factors was recently 

described as a reliable marker of alternatively activated macrophages [84-86]. Whereas in 

wound tissue of control mice at day 5 and 10 post injury, a large fraction of F4/80+ 

macrophages stained positive for Fizz1 (Figure 13 A-C), Ym1 was present only until day 5 

post injury (Figure 13 C right). In contrast, in wounds of LysMCre/iDTR mice 5 and 10 days 

post injury the number of cells, that stained positive for F4/80 and Fizz1 or Ym1 was 

significantly reduced, even when the cells are allowed to infiltrate the wound area (Figure 13 

A-C). These data indicated that the impaired healing response in LysMCre/iDTR mice 

receiving DT injections following regimen A (Figure 8) was not only due to reduced numbers 

of macrophages present at the wound site, but potentially also due to different activation 

states. 
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Figure 13:  Fizz1- and Ym1-expressing macrophages in wound tissue of LysMCre/iDTR and 

control mice. LysMCre/iDTR and control (LysMCre) mice received DT injections following regimen A. 

(A, B) In granulation tissue of control mice at day 5 and 10 post injury double labeling for F4/80 (red) 

and Fizz1 (green) revealed expression of Fizz1 by macrophages; in contrast, in LysMCre/iDTR mice 

F4/80 and Fizz1 expressing cells are not detectable at day 5 post injury, in day-10 wounds F4/80 

positive cells are negative for Fizz1 staining. DAPI counterstaining of nuclei (blue). (C) Morphometric 

quantification of macrophages present in granulation tissue at day 5 and 10 post injury in control and 

LysMCre/iDTR mice; double positive cells for F4/80 and Fizz1 or Ym1 were counted in high power 

fields (hpf). g, granulation tissue; arrow heads point to double positive cells; data are expressed as 

mean ± SD, n = 3 wounds on 3 mice for each time point and group. 



Results 
 

30 

 

3.2.2 Analysis of macrophage depletion during the mid stage of repair 

3.2.2.1 Macrophages recruited during the inflammatory phase of tissue 

formation control vascular stability and the transition of granulation tissue into 

scar tissue 

To characterize the functional impact of macrophages present in an already developed 

granulation tissue, skin wounds were inflicted on the back of control (LysMCre) and 

LysMCre/iDTR mice, which then received DT injections at day 3, 4, 6 and 9 after wounding 

(Figure 8, DT injection regimen B).  

The macroscopic analysis of the early wound healing response in LysMCre/iDTR mice was 

similar to controls. However, DT-mediated macrophage depletion in LysMCre/iDTR mice 

during the mid stage of repair significantly delayed the subsequent wound closure rate when 

compared to controls (Figure 14).  

 

 

Figure 14:  Macrophage depletion during the mid stage of repair delays the subsequent healing 

response. LysMCre/iDTR and control (LysMCre) mice received DT injections following regimen B. (A) 

Macroscopic appearance of LysMCre/iDTR wounds in which macrophages were depleted during the 

tissue formation phase of repair and control mice at indicated time points after injury; whereas wounds 

of control mice had already lost their scab, macrophage-depleted wounds still carry a firmly adherent 

scab 10 days after wounding. (B) The wound area was determined at the time points indicated using 

image analysis and expressed as percentage of the wound area immediately after injury. n = 10 

wounds on 5 mice for each time point and genotype. Data are expressed as mean ± SD. 

 

These macroscopic findings were confirmed by histological assessment. For this purpose 

LysMCre/iDTR and control mice were sacrificed on day 7 and 10 after injury, and the wound 

tissue (4-10 wounds on 3-5 mice per time point for each group) was excised. 
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As revealed by H&E-stained paraffin sections 7 days post injury, all wounds in control mice 

and six out of 10 wounds in LysMCre/iDTR mice showed complete wound closure (Figure 15 

A, B). Interestingly, whereas until day 10 post injury granulation tissue in all wounds of 

control animals matured and showed regular transition into a scar tissue (Figure 15 A), all 

wounds in LysMCre/iDTR mice revealed a regression of granulation tissue maturation and 

appeared immature (Figure 15 A). However, the amount of granulation tissue was not 

affected (Figure 15 D). Immature appearance of day 10 old, macrophage-depleted 

granulation tissue in LysMCre/iDTR mice was reflected by severe hemorrhages, fibrin and 

serum exudates, which was present in all wounds analyzed (8 wounds on 4 mice). 

Hemorrhages were assessed by the presence of extravascular erythrocytes on H&E stained 

paraffin sections (Figure 15 A) as well as by immunohistochemical staining for 

fibrinogen/fibrin (Figure 15 E). Morphometric analysis of fibrinogen/fibrin staining revealed a 

significant increase in macrophage-depleted versus control mice. Furthermore, attenuated 

functional capacity of granulation tissue at days 7 and 10 post injury in wounds of 

LysMCre/iDTR mice became evident by a slightly weaker wound contraction, which however 

did not reach statistical significance (Figure 15 C). In addition, hypertrophic epidermal wound 

edges at day 5 post injury regressed into atrophic epidermal wound edges, which may 

contribute to the decrease in their wound closure capacity at day 10 post injury observed in 

LysMCre/iDTR wounds (Figure 15 B). 

Staining for F4/80 revealed that the morphological and functional alterations in wounds of 

LysMCre/iDTR mice at day 7 and 10 post injury were characterized by a significant reduction 

of macrophages within the granulation tissue compared with controls (Figure 16 A, B). 

However, whereas in wound tissue of control mice, at both time points post injury, only few 

neutrophils were detected, their number was increased in macrophage-depleted wounds 

(Figure 16 C, D). Of interest, while hemorrhages were present in all wounds of 

LysMCre/iDTR mice, the number of neutrophils was only increased in those wounds with 

incomplete epithelialization. Overall, these data demonstrate that DT-mediated macrophage 

depletion in LysMCre/iDTR mice during the phase of tissue maturation severely disturbed the 

transition of the mid stage into the late stage of the repair response. Neutrophils appeared 

resistant to DT-mediated cell depletion. 
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Figure 15:  Macrophage depletion during the mid stage of repair abrogates the transition into 

the phase of tissue maturation. LysMCre/iDTR and control (LysMCre) mice received DT injections 

following regimen B. (A) H&E stainings of wounds of control and LysMCre/iDTR mice 10 days after 

injury. Control wounds reveal a cellular and vascular late granulation tissue covered by a closed 

hyperproliferative neo-epithelium. In contrast, in LysMCre/iDTR wounds severe hemorrhages, fibrin 

and serum exudates are present; the epithelium is not closed and the epidermal wound edge is thin 

and detached. (B-D) Morphometric analysis of wound tissue at different time points post injury: (B) 

Distance between the epithelial tips; (C) Distance between the edges of the panniculus carnosus; (D) 

Amount of granulation tissue. Each dot represents one wound on one mouse, horizontal bar 

represents the mean. (E) Left: immunohistochemical stainings of fibrinogen/fibrin and vessels (CD31) 

in wounds of control and LysMCre/iDTR mice 10 days after injury. Control wounds reveal a vascular 

late granulation tissue lacking fibrinogen/fibrin. In contrast, in LysMCre/iDTR wounds severe 

fibrinogen/fibrin exudate is present. DAPI counterstaining of nuclei (blue). Right: morphometric 

analysis of fibrinogen/fibrin exudate in wound tissue at indicated time points post injury. n = 3 wounds 

on three different mice per time point and group. Data are expressed as mean ± SD. e, epidermis; sm, 

subcutaneous muscle layer; g, granulation tissue; pc, panniculus carnosus.  
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Figure 16: DT-mediated macrophage depletion in LysMCre/iDTR mice during the mid stage of 

repair. LysMCre/iDTR and control (LysMCre) mice received DT injections following regimen B. (A) 

Numerous macrophages (stained by F4/80, red) are present in granulation tissue of control wounds 10 

days post injury, whereas macrophages are almost absent in granulation tissue of LysMCre/iDTR 

mice. DAPI counterstaining of nuclei (blue). (B) Morphometric quantification of macrophages present 

in granulation tissue at indicated days post injury. (C) Whereas neutrophils are absent in control 

wounds, numerous neutrophils (stained by Gr-1, brown) are present in wounds of LysMCre/iDTR mice 

10 days post injury. (D) Morphometric quantification of neutrophils present in granulation tissue at 

indicated days post injury. e, epidermis; g, granulation tissue; dotted line indicates basement 

membrane; data are expressed as mean ± SD, n = 3 wounds on 3 mice for each time point and group. 

 

3.2.2.2 Endothelial cell damage and apoptosis in macrophage-depleted 

granulation tissue 

To unravel the reason for the severe hemorrhages observed in macrophage-depleted 

granulation tissue (Figure 15 A, E), vessel maturation and endothelial cell apoptosis in 

LysMCre/iDTR and control (LysMCre) mice receiving DT injections following regimen B 

(Figure 8) was analyzed. Maturation of blood vessels in healing wounds is reflected by the 

presence of perivascular cells [73, 87]. Double-immunofluorescent labeling for CD31 and the 

pericyte marker desmin revealed that in both granulation tissue of control and LysMCre/iDTR 

wounds, desmin-positive cells were associated with vascular structures at day 7 and 10 post 

injury (Figure 17 A). To test, if the observed hemorrhages were due to endothelial cell 

apoptosis, co-staining for CD31 and the apoptosis marker cleaved caspase-3 were 

performed.  This  staining  revealed  that,  whereas  in granulation  tissue  of  control wounds  
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Figure 17: Macrophage depletion during the phase of tissue formation results in endothelial 

cell apoptosis, but does not alter pericyte recruitment. LysMCre/iDTR and control (LysMCre) mice 

received DT injections following regimen B. (A) Double labeling for desmin (green) and CD31 (red) 

revealed no major differences in the coverage of blood vessels by pericytes in granulation tissue of 

macrophage-depleted wounds 10 days post injury. (B) Double labeling for cleaved caspase-3 (red) 

and CD31 (green) revealed numerous apoptotic endothelial cells in granulation tissue of macrophage-

depleted wounds, 7 days post injury; arrowheads indicate double positive cells. DAPI counterstaining 

of nuclei (blue). (C) Morphometric quantification of the area within the granulation tissue which stained 

positive for activated caspase-3 and CD31. Double immunolabeled cells were counted in high power 

fields (hpf). Data are expressed as mean ± SD, n = 3 wounds on 3 mice for each time point and group. 

 



Results 
 

35 

 

endothelial cell apoptosis was a rare event, in macrophage-depleted granulation tissue 

numerous apoptotic endothelial cells were present (Figure 17 C). These findings suggest that 

hemorrhages observed in macrophage-depleted granulation tissue in LysMCre/iDTR mice 

were rather caused by misscheduled apoptosis than altered vessel maturation. 

 

3.2.3 Analysis of macrophage depletion during the late stage of repair 

3.2.3.1 Macrophages present at the late stage of repair do not impact tissue 

maturation 

To characterize the functional impact of macrophages present during the phase of tissue 

maturation following restoration of the epidermal barrier, skin wounds were inflicted on the 

back of control (LysMCre) and LysMCre/iDTR mice and DT injections were given at day 8, 9, 

11 and 13 after wounding (Figure 8, DT injection regimen C).  

Depletion of macrophages during the phase of tissue maturation did not result in 

macroscopic or microscopic alterations of the wound tissue compared to control wounds. 

Fourteen days post injury both macrophage-depleted and control wounds had lost their 

eschar and revealed similar scar tissue (Figure 18 A-C). LysMCre/iDTR and control mice 

were sacrificed on each of days 10 and 14 after injury and the wound tissue (4-7 wounds on 

4-7 mice per time point for each group) was excised. As revealed on H&E-stained paraffin 

sections 14 days post injury, all wounds in control and LysMCre/iDTR mice showed complete 

wound closure and a slightly hyperproliferative neo-epidermis covering the scar tissue 

(Figure 18 B). Morphometric analysis revealed that the amount of scar tissue was similar in 

control and LysMCre/iDTR wounds (Figure 18 C). 

Scar tissue stained for F4/80 revealed the presence of macrophages in control mice between 

day 10 and day 14 post injury, but macrophage numbers were significantly reduced in DT 

injected LysMCre/iDTR mice (Figure 19 A). Of interest, at all time points analyzed, 

neutrophils were absent in both control and macrophage-depleted wounds as shown by 

staining for Gr-1 (Figure 19 B). Furthermore, as revealed by Giemsa staining at day 14 post 

injury the number of mast cells present in scar tissue was similar in control and 

LysMCre/iDTR mice (Figure 19 C). 
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Figure 18: DT-mediated macrophage depletion during the late stage of the repair response 

does not impact tissue maturation. LysMCre/iDTR and control (LysMCre) mice received DT 

injections following regimen C. (A) At the time points indicated, the macroscopic wound area was 

determined using image analysis and expressed as percentage of the wound area immediately after 

injury (n = 4 wounds on 4 mice for each time point and genotype). (B) H&E stainings of wounds of 

control and LysMCre/iDTR mice 14 days after injury. Wounds of control and LysMCre/iDTR mice were 

closed and showed a similar epithelium and scar tissue. (C) Morphometric analysis of the amount of 

granulation or scar tissue 10 and 14 days post injury. Each dot represents one wound on one mouse; 

horizontal bar represents the mean. e, epidermis; st, scar tissue; g, granulation tissue. 
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Figure 19: Macrophages and neutrophils are absent whereas mast cell numbers are similar in 

LysMCre/iDTR and control mice. LysMCre/iDTR and control (LysMCre) mice received DT injections 

following regimen C. (A) Left: macrophages (stained by F4/80, red) are present in scar tissue of 

control wounds 14 days post injury, whereas macrophages are almost absent in granulation tissue of 

LysMCre/iDTR mice. DAPI counterstaining of nuclei (blue). Right: quantification of F4/80 positive cells 

in the granulation tissue in control and LysMCre/iDTR mice at indicated time points post injury. (B) 

Neutrophils (stained by Gr-1) are absent in scar tissue of control and LysMCre/iDTR wounds 14 days 

post injury. (C) Left: mast cells (visualized by Giemsa staining) are present in scar tissue of 

LysMCre/iDTR and control wounds 14 days post injury. Right: quantification of positive stained cells in 

the scar tissue of control and LysMCre/iDTR wounds reveal similar numbers of mast cells 14 days 

post injury. e, epidermis; st, scar tissue; hpf, high power field; data are expressed as mean ± SD. n = 3 

wounds on three mice per time point and genotype.  
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3.3 The impact of myeloid cell-derived VEGF-A on the outcome of 

the wound healing response 

3.3.1 Macrophages are the prevailing VEGF-A source in the early phase of 

tissue repair 

The novel findings up to here are that macrophages have distinct functions in the different 

phases of skin repair, and that their impact on endothelial cell function seems to be critical. In 

order to identify mechanisms by which macrophages might influence endothelial cell 

function, the role of VEGF-A, the major regulator of endothelial cell biology and angiogenesis 

was investigated. VEGF-A is henceforth abbreviated as VEGF. 

First, the expression pattern of VEGF in normal unwounded skin as well as in wounds at 

different time points post injury was analyzed. For this purpose, wild type mice were 

sacrificed and normal skin from unwounded mice as well as wounds on days 4, 7, and 14 

post injury were analyzed for VEGF expression by quantitative real time PCR (4-10 wounds 

on 2 to 4 mice per time point). VEGF expression was strongly up-regulated after wounding at 

day 4 post injury in comparison to unwounded skin and declined during the subsequent days 

of healing (Figure 20 A). To further analyze the dynamics of VEGF expression in wounds and 

to identify different cellular compartments of VEGF expression, a reporter mouse line was 

used, in which both the VEGF gene expression and the lacZ reporter gene expression are 

under control of the murine VEGF promoter. By cloning an internal ribosome entry site in the 

3’- untranslated region of the VEGF gene, a simultaneous expression of both proteins is 

ensured (kindly provided by Andras Nagy, [88]). Reporter mice were genotyped by PCR and 

VEGF-lacZ+/wt (VEGF-lacZ) mice were used as experimental mice (Figure 20 B). To analyze 

VEGF expression in these reporter mice, mice were sacrificed and normal unwounded skin 

as well as wounds at day 4, 7, and 14 post injury were harvested (8-12 wounds on 2-3 mice 

per time point). To unravel VEGF expression, wound sections were stained with X-Gal 

(BCIG, bromo-chloro-indolyl-galactopyranoside), a substrate for the ß-galactosidase, and 

photographed. As a negative control to show specificity of the staining, lacZ negative 

littermates (VEGF-lacZwt/wt, Figure 20 B) were treated and analyzed in the same way (data 

not shown). Whereas unwounded skin revealed only few VEGF positive cells present within 

the subcutaneous fat layer, skin injury resulted in a robust increase of VEGF expressing cells 

within the epidermal and dermal compartment. During the early phase of repair, VEGF 

expressing cells were scattered throughout the granulation tissue and were present within 

the basal and suprabasal layers of the neo-epithelial tongue at the wound edges (Figure 20 

C). As the wound healing response advanced the number of VEGF expressing cells within 

the granulation tissue declined, while the number of VEGF positive cells increased and their 
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presence was sustained in the neo-epithelium (Figure 20 C). By day 14 post injury only few 

VEGF positive cells were detectable in both compartments (Figure 20 C).  

The shift of VEGF expressing cells from macrophages predominating the early phase of 

repair and non-myeloid cells, most likely keratinocytes, during the later stage was 

corroborated by FACS analysis of single cell suspensions of wound tissue obtained from 

VEGF-lacZ reporter mice. VEGF expression was detected by fluorescein di-ß-D-

galactopyranoside (FDG) staining, a further substrate for ß-galactosidase resulting in a 

fluorescent cleavage product. The threshold for positive FDG staining was set in relation to 

the wild type control (VEGF-lacZwt/wt), treated with FDG as well (negative control, data not 

shown). During the early phase of repair, F4/80+CD11b+ cells represented the predominant 

cell type expressing VEGF at the wound site accounting for 65%. Polymorphonuclear 

granulocytes (Gr1+CD11b+) and non-myeloid cells (F4/80-CD11b-Gr1-CD115-) constituted a 

minor portion of VEGF expressing cells, with 19% and 17%, respectively. Whereas the 

fraction of VEGF expressing F4/80+CD11b+ cells decreased over the healing time, the 

portion of non-myeloid cells increased (Figure 20 D). Interestingly, although F4/80+CD11b+ 

macrophages represented the major cell source expressing VEGF during the early phase of 

repair, only a small fraction of all macrophages (19.1%) present at the wound site expressed 

VEGF. This fraction further declined to 5.6% following wound closure (Figure 20 E). 

Together, these findings demonstrate a dynamic switch of VEGF expression in physiological 

skin wound healing between macrophages, being the major source of VEGF during the early 

phase and the neo-epithelium in the late phase. Furthermore, the finding that VEGF 

expression in macrophages is restricted to a specific population of macrophages at the 

wound site is in accordance with the idea of a functional heterogeneity of macrophages 

during skin repair. 
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Figure 20: Macrophages express VEGF in the early phase of skin repair. (A) Real time PCR 

analysis for VEGF expression levels in wild type unwounded skin and wounds at day 4, 7, and 14 post 

injury. VEGF expression is strongly induced at day 4 post wounding and declines over the subsequent 

phases of healing. n = 4-10 wounds on 4-5 mice. (B) VEGF-lacZ mice were genotyped by PCR. The 

350 bp fragment indicates the presence of one allele including the lacZ reporter gene, whereas the 

300 bp fragment shows two wild type alleles. bp, base pairs. (C) X-Gal staining (blue) of unwounded 

skin and wounds at days 4, 7, and 14 post injury, harvested from VEGF-lacZ reporter mice. VEGF 

expression is nearly absent in unwounded skin. An induction of VEGF expression is shown in day-4 

wounds in the hyperproliferative epithelium as well as in the granulation tissue, whereas the signal 

weakens at days 7 and 14 post injury. e, epidermis; d, dermis; sc, subcutaneous fat tissue; he, 
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hyperproliferative epithelium; g, granulation tissue. Arrowheads point to positive stained cells. (D) 

FACS analysis of wound tissue 4, 7, and 14 post injury from VEGF-lacZ reporter mice. VEGF 

expression was unravelled by FDG staining, macrophages were identified by staining for F4/80 and 

CD11b and neutrophils by staining for Gr-1 and CD115 to exclude monocytes. At day 4 post wounding 

65% of all wound cells stained positive for FDG and the two macrophage markers. Seven and fourteen 

days post wounding the portion of macrophages which stained positive for VEGF decreases and the 

portion of the non-myeloid cell population increases. (E) Histogramm of the FACS analysis, gated for 

F4/80 positive as well as F4/80 and FDG double positive wound cells. At day 4 post injury, only 19.1% 

of all F4/80 positive wound macrophages stained positive for VEGF expression, which decreases 

continuing for the subsequent healing phases. Grey areas reflect the macrophage portion of all wound 

cells at the time points indicated. Data are expressed as mean ± SD. n = 8-12 wounds on 2-3 mice per 

time point.  

 

3.3.2 VEGF expressing macrophages reveal a pro-inflammatory M1 phenotype 

To examine the activation state of VEGF expressing macrophages infiltrating the wound site, 

F4/80+FDG(VEGF)+ and F4/80+FDG(VEGF)- cells were isolated from the wound tissue of 

VEGF-lacZ reporter mice by FACS and analyzed for M1 and M2 gene expression profiles. 

VEGF expressing macrophages revealed a robust up-regulation of IL-6 and iNOS when 

compared to VEGF negative macrophages at day 4 post injury (Figure 21). No major 

differences between VEGF positive and negative macrophages were found for IL-1ß, TNF-α 

as well as for M2 gene signatures including Fizz-1, IL-10 and TGF-ß at both time points 

analyzed. Even though there was a tendency of increased arginase expression in VEGF 

positive wound macrophages up to day 7 post injury when compared to VEGF negative 

macrophages, this difference was not significant (Figure 21). Together, these findings 

suggest that in physiological skin repair, a pro-angiogenic phenotype of macrophages is 

characterized rather by classical activation than by alternative activation. Similarly, as has 

been shown during repair of other organ systems [89, 90] and pathological conditions 

including tumorgenesis and macular degeneration [90]. 

 

3.3.3 Efficient VEGF gene deletion in macrophages 

To analyze the functional impact of the VEGF producing macrophage population on the 

outcome of the wound healing response, conditional gene targeting was used to specifically 

deplete the VEGF gene in macrophages. To this end, a VEGF floxed mouse strain, with loxP 

sites flanking the third exon of the VEGF gene (kindly provided by Napoleone Ferrara, [53]) 

was crossed to the LysMCre mouse line, reported to express the Cre recombinase in 

myeloid cells [83]. Genetic recombination leads to a frameshift of the VEGF gene resulting in 

an early stop codon after exon 2. Both mouse lines were genotyped by PCR (Figure 6 B,  
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Figure 21: VEGF-expressing macrophages tend to the classically activated phenotype. 

Quantitative real time PCR analysis of isolated F4/80 positive wound macrophages from VEGF-lacZ 

reporter mice at day 4 and 7 post injury, which were either positive or negative for FDG staining, 

reflecting VEGF expression. Markers for the alternatively activated phenotype, such as Fizz-1, IL-10, 

TGF-ß and arginase are equally expressed, both in macrophages positive and negative for VEGF 

expression. The pro-inflammatory cytokines IL-6 and iNOS are significantly up-regulated 4 days post 

injury in macrophages positive for VEGF expression, whereas IL-1ß and TNF-α were equally 

expressed. n = 12 wounds on 3 mice per time point. Data are expressed as mean ± SD. 

 

right panel and Figure 22 A) and efficient gene deletion was validated on the genomic, on the 

transcriptional as well as on the protein level in vitro (Figure 22 B-D). In order to confirm 

successful recombination and therefore gene deletion, primers were used flanking the floxed 

region, resulting in a 2.1 kb PCR fragment before recombination and in a 560 bp fragment 

after recombination (Figure 22 B). Furthermore, VEGF expression was measured in cultured 

peritoneal macrophages isolated from control (VEGFfl/fl) and VEGFfl/fl LysMCre mice. VEGF 

expression was induced in control macrophages when exposed to either hypoxia or a 

mixture of LPS and INF-γ in comparison to un-stimulated macrophages. Both stimulants are 

reported to be strong inducers of VEGF expression in vitro [91]. By contrast, despite 
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stimulation with either LPS/INF-γ or hypoxia, induction of VEGF expression in VEGFfl/fl 

LysMCre macrophages was completely absent (Figure 22 C). Additionally, efficient gene 

deletion was confirmed on the protein level. Cell culture supernatants of peritoneal 

macrophages, isolated from control and VEGFfl/fl LysMCre mice were measured for secreted 

VEGF levels by ELISA. Control macrophages secreted VEGF after 24 and 48 hours of 

stimulation with LPS and INF-γ but this stimulation of VEGF release was not observed in 

VEGFfl/fl LysMCre macrophages (Figure 22 D). 

 

Figure 22: Efficient VEGF gene deletion in macrophages in vitro. (A) Genotyping PCR of VEGF 

floxed mice. A 150 bp fragment indicates the presence of one loxP site, whereas the 100 bp fragment 

reflects the wild type allele. (B) Left panel, scheme of the floxed VEGF gene construct with the two 

loxP sites in the two introns flanking exon 3. Bars below indicate the corresponding PCR fragment 

length for the gene deletion PCR (right panel). The 2.1 kb long fragment shows the allele before 

recombination, whereas the shorter 560 bp fragment indicates successful recombination. (C) 

Quantitative real time PCR analysis for VEGF expression in control (VEGF
fl/fl

) and VEGF
fl/fl

 LysMCre 

peritoneal macrophages. VEGF expression is induced in control cells after exposure to either hypoxia 

or a mixture of LPS and INF-γ, which is in contrast blocked in VEGF
fl/fl

 LysMCre macrophages. n = 3 

mice per genotype and condition, cells were pooled while seeding. (D) Quantitative ELISA for 

measurement of secreted VEGF protein levels of control and VEGF
fl/fl

 LysMCre peritoneal 

macrophages. Cells were stimulated with LPS and INF-γ for either 24 h or 48 h and supernatants were 

collected. Secreted VEGF levels were dramatically decreased in VEGF
fl/fl

 LysMCre macrophages in 

contrast to control cells. n = 3 mice per time point and genotype. Data are expressed as mean ± SD. 
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In order to confirm efficient gene deletion in vivo, F4/80 and CD11b positive wound 

macrophages were isolated at days 3, 5, 7, and 14 post injury from control (VEGFfl/fl) and 

VEGFfl/fl LysMCre mice by FACS. Further, for normalization CD115 and CD11b positive blood 

monocytes from the circulation were isolated from both groups as well. VEGF expression 

was strongly induced in control wound macrophages three days post injury, while VEGF 

expression was nearly absent in blood monocytes. VEGF expression in control wound 

macrophages declines from day 3 post injury on to the subsequent days of healing (Figure 

23 A). In contrast VEGF expression in VEGFfl/fl LysMCre wound macrophages was 

significantly reduced as compared to controls at all time points analyzed (Figure 23 A). In 

order to address the question whether the deletion of myeloid cell-derived VEGF impacts the 

total amount of VEGF expression in wounds, RNA was isolated from complete wound tissue 

of control and VEGFfl/fl LysMCre wounds at days 3, 5, 7, and 14 post injury. VEGF 

expression induced in control mice was comparable to the expression in wild type mice in 

figure 20 A. In contrast, VEGF expression in VEGFfl/fl LysMCre wounds was significantly 

reduced at day 3 post injury, indicating that myeloid cells deliver significant amounts of VEGF 

in early wounds (Figure 23 B). 

 

 

 

Figure 23: Efficient VEGF gene deletion in wound macrophages. (A) Quantitative real time PCR 

analysis for VEGF expression in F4/80 and CD11b positive wound macrophages isolated at days 3, 5, 

7, and 14 post injury from control (VEGF
fl/fl

) and VEGF
fl/fl

 LysMCre mice. VEGF expression levels were 

normalized to CD115 and CD11b positive blood monocytes. VEGF expression was clearly induced in 

control macrophages after wounding and significantly reduced in VEGF
fl/fl

 LysMCre macrophages. (B) 

Quantitative real time PCR analysis for VEGF expression in complete wound tissue of control and 

VEGF
fl/fl

 LysMCre mice at days 3, 5, 7, and 14 post injury, normalized to unwounded skin. VEGF 

expression was considerably induced after wounding in control mice and significantly reduced in 

VEGF
fl/fl

 LysMCre mice three days post injury. n = 4-8 wounds on 2-4 mice per time point and 

genotype. Data are expressed as mean ± SD. 
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3.3.4 VEGF synthesis by myeloid cells is critical for the induction of wound 

angiogenesis and tissue growth during the early phase of repair 

To analyze the functional impact of myeloid cell-derived VEGF on the outcome of the wound 

healing response, control (VEGFfl/fl) and VEGFfl/fl LysMCre mice were sacrificed on days 4, 7, 

and 14 post injury, and the wound tissue (4-6 wounds on two to three mice per time point for 

each group) was excised and histomorphometrically analyzed. At day 4 post injury, a 

significantly reduced amount of granulation tissue was measured in VEGFfl/fl LysMCre 

wounds in comparison to control wounds (Figure 24 A, B). Furthermore, cell density was 

distinctly impaired in VEGFfl/fl LysMCre granulation tissue (Figure 24 A, upper panel). 

However, reduced amount of granulation tissue in the early phase of healing was recovered 

at days 7 and 14 post injury (Figure 24 A, B). By day 7, a cell-rich and dense granulation 

tissue developed in control as well as in VEGFfl/fl LysMCre wounds (Figure 24 A). Despite the 

reduced amount of granulation tissue in early wounds of VEGFfl/fl LysMCre mice, the overall 

healing response was not impaired. Wound closure, measured by the distance between the 

epithelial tips, and wound contraction, expressed as the distance between the two edges of 

panniculus carnosus, were not altered at all time points analyzed (Figure 24 B). 

To address the question whether reduced granulation tissue formation in VEGFfl/fl LysMCre 

wounds in the early phase of healing is accompanied by reduced angiogenesis, wound 

sections of VEGFfl/fl (control) and VEGFfl/fl LysMCre mice were stained for CD31 and desmin. 

Indeed, granulation tissue formation is accompanied by reduced amount of blood vessels in 

VEGFfl/fl LysMCre mice. Whereas in control wounds a well vascularised granulation tissue 

has been developed 4 days post injury, VEGFfl/fl LysMCre wounds show only sparse 

vascularisation (Figure 25 A, upper panel). At day 7 post injury, as for the granulation tissue 

formation, this effect was abolished in VEGFfl/fl LysMCre wounds (Figure 25 A, lower panel). 

Interestingly, during the transition of the early to the mid stage of repair, vascularisation in 

wounds of VEGFfl/fl LysMCre mice increased dramatically and at day 7 post injury was 

significantly increased over control wounds (Figure 25 B). This dynamic of an early 

significantly reduced but subsequently increased vascularisation of wound tissue in VEGFfl/fl 

LysMCre mice was accompanied by a similar timely distribution of desmin positive 

perivascular cells (Figure 25 C). Thus, the ratio of perivascular cells to endothelial cells 

(desmin:CD31), reflecting the maturation of vascular structures, was similar in VEGFfl/fl 

LysMCre and control mice (Figure 25 D). Of note, desmin coverage in VEGFfl/fl LysMCre 

mice was significantly increased seven days post injury over controls, indicating that the 

delayed sprouting led to mature vessels (Figure 25 D). Certainly, the particular kinetic of 

increased wound angiogenesis in VEGFfl/fl LysMCre mice during the mid stage of healing was 
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Figure 24: Myeloid cell-derived VEGF induces granulation tissue formation in the early phase 

of healing. (A) H&E staining of wounds in VEGF
fl/fl 

(control) and VEGF
fl/fl

 LysMCre mice at indicated 

time points post injury. Whereas in control mice, the day-4 wound is filled with a cell-rich granulation 

tissue, in VEGF
fl/fl

 LysMCre mice, only a sparse granulation tissue has formed (hatched line outlines 

granulation tissue; dotted line outlines hyperproliferative epithelial tongue). In day 7 wounds of control 

and VEGF
fl/fl

 LysMCre mice, the cell-rich granulation tissue is covered by a complete epithelium 

(dotted line outlines basement membrane). Arrows point to the tips of epithelial tongue. d, dermis; e, 

epidermis; g, granulation tissue; he, hyperproliferative epithelium. (B) Morphometric analysis of wound 

tissue at different time points post injury: distance between epithelial tips (left); distance between ends 

of panniculus carnosus (pc, middle); amount of granulation tissue (right). Each dot represents one 

wound and two wounds were inflicted on one mouse; horizontal bars represent the mean. 
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Figure 25: Myeloid cell-derived VEGF induces angiogenesis in the early phase of healing. (A) 

CD31 (red) and desmin (green) double immunostaining of day 4 and day 7 wound tissue in control and 

VEGF
fl/fl

 LysMCre mice; DAPI counterstaining of nuclei (blue). Dotted line indicates hyperproliferative 

epithelium; arrow points to the tips of epithelial tongue. he, hyperproliferative epithelium; g, granulation 

tissue. Morphometric quantification of the area within the granulation tissue that stained positive for 

CD31 (B) and desmin (C) at indicated time points post injury. (D) Percentage of the ratio of CD31 and 

desmin positive stained areas. Each dot represents one wound, two wounds on one mouse; horizontal 

bars represent the mean. 

 

unexpected and suggests that wound tissue in VEGFfl/fl LysMCre mice that is initially deprived 

of myeloid cell-derived VEGF during the early phase of repair rescues impaired angiogenesis 

by VEGF synthesis through other cell compartments. Indeed, quantitative reverse 

transcriptase PCR analysis of the entire wound tissue revealed that in VEGFfl/fl LysMCre mice 

significantly attenuated VEGF expression was limited to the early phase of repair (Figure 23 

B). At later stages, levels of VEGF expression in wound tissue were similar in mutant and 

control mice. Collectively, these findings provide strong evidence that myeloid cell-derived 

VEGF is critical for the induction of tissue angiogenesis and granulation tissue deposition 

during the early phase of skin repair. 

 

3.3.5 Epidermal-derived VEGF is critical for wound angiogenesis during the late 

phase of tissue repair 

To address the question which mechanisms might rescue wound angiogenesis as well as the 

deposition of granulation tissue during the late stage of repair in VEGFfl/fl LysMCre mice, two 

hypotheses were investigated. First, if VEGF expression by another cell compartment than 

myeloid cells becomes critical during the late phase of repair and/or second, whether up-

regulation of other pro-angiogenic mediators in VEGF deficient macrophages might rescue 

wound angiogenesis at later stages. 

Based on the findings in wounded VEGF-lacZ mice that the neo-epithelium dominates wound 

VEGF expression during later stages of skin repair (Figure 20 B, C) and previous data by 

others, indicating that a keratinocyte-specific knock out of VEGF delays healing and reduces 

the amount of blood vessels in the later phases of healing [78], mice were generated which 

lack VEGF expression in both myeloid cells and the epidermal compartment (VEGFfl/fl 

LysMCre K14Cre). For this purpose, VEGFfl/fl LysMCre females were mated with males 

expressing the Cre recombinase under control of the keratinocyte-specific keratin 14 (K14) 

promotor, reported to be active in basal keratinocytes [92]. Efficient VEGF gene deletion was 

shown in vitro by PCR of genomic DNA from VEGFfl/fl (control), VEGFfl/fl LysMCre (myeloid 
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cell-specific knock out), VEGFfl/fl K14Cre (keratinocyte-specific knock out) and VEGFfl/fl 

LysMCre K14Cre (double knock out) mice by using the same primer set described in figure 

22 B. The keratinocyte-specific and the double knock out showed a strong signal for the 

560 bp fragment, indicating successful recombination, while this band was absent in controls 

(Figure 26 A). The less efficient recombination in myeloid cell-specific knock outs derives 

from the fact that tail DNA was used and macrophages constitute a minor population in this 

tissue. Furthermore, VEGF gene deletion was evaluated by quantitative real time PCR of 

complete wound tissue isolated from control and VEGFfl/fl LysMCre K14Cre mice. Whereas 

VEGF expression was strongly up-regulated in control wounds 4 and 7 days post injury, it 

was significantly reduced in VEGFfl/fl LysMCre K14Cre wounds (Figure 26 B), indicating that 

both myeloid cells and keratinocytes deliver important amounts of VEGF into wound tissue. 

Of note, whereas at day 7 and 14 VEGF expression in wound tissue of VEGFfl/fl LysMCre 

mice was not altered in comparision to control mice (Figure 23 B), in wound tissue of VEGFfl/fl 

LysMCre K14Cre mice VEGF expression was significantly reduced (Figure 26 B). These 

findings strongly suggest that the neo-epidermis significantly contributes to the VEGF content 

during the late stage of skin healing.   

 

 

Figure 26: Efficient VEGF gene deletion in macrophages and keratinocytes in VEGF
fl/fl

 LysMCre 

K14Cre mice. (A) PCR of genomic DNA isolated from tail biopsies of VEGF
fl/fl 

(control), VEGF
fl/fl

 

LysMCre (myeloid cell-specific knock out), VEGF
fl/fl

 K14Cre (keratinocyte-specific knock out) and 

VEGF
fl/fl

 LysMCre K14Cre (double knock out) mice. The 2.1 kb PCR fragment shows the floxed region 

before recombination and the 560 bp fragment indicates successful recombination. (B) Quantitative 

real time PCR analysis for VEGF expression in complete wound tissue at days 4, 7, and 14 post injury 

from VEGF
fl/fl

 and VEGF
fl/fl

 LysMCre K14Cre mice, normalized to VEGF expression in unwounded 

skin. n = 4-8 wounds on two to four mice per time point and genotype. Data are expressed as mean ± 

SD.  
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To examine the functional impact and the interplay of myeloid cell- and keratinocyte-derived 

VEGF synthesis in skin wound healing, full thickness wounds were generated on the back of 

VEGFfl/fl LysMCre K14Cre and control (VEGFfl/fl) mice and harvested at indicated time points 

post injury (6-8 wounds on three to four mice per time point for each group). As revealed by 

H&E staining, at day four post injury, a significantly reduced amount of granulation tissue 

was measured in VEGFfl/fl LysMCre K14Cre wounds in comparison to control wounds, and 

this phenotype was comparable to the one shown for the myeloid cell-specific VEGF knock 

out (Figure 24 and 27 A). By contrast, at day 7 post injury, the time point in which the amount 

of granulation tissue was similar in control and in myeloid cell-specific VEGF knock outs, 

granulation tissue in VEGFfl/fl LysMCre K14Cre wounds was still significantly reduced (Figure 

27 A, B). The data indicate that keratinocyte-derived VEGF rescued the observed phenotype 

in myeloid cell-specific VEGF knock outs. Surprisingly, despite the dramatically impaired 

granulation tissue formation in VEGF double knock outs, the overall healing response was 

not altered. Wound closure as well as wound contraction was similar at all time points 

analyzed in control and in VEGFfl/fl LysMCre K14Cre wounds (measured by the distance 

between the epithelial tips and the distance between the two edges of panniculus carnosus) 

(Figure 27 B). 

As revealed by staining for CD31 and desmin, the reduced amount of granulation tissue at 

days 4 and 7 post injury in VEGFfl/fl LysMCre K14Cre wounds was accompanied by an 

impaired angiogenic response. While control wounds show a strong angiogenic response in 

the granulation tissue of day 4 and day 7 wounds, granulation tissue in VEGFfl/fl LysMCre 

K14Cre wounds was only scarcely vascularised (Figure 28 A). Morphometric analysis of the 

area which stained positive for CD31 in control wounds compared to VEGFfl/fl LysMCre 

K14Cre wounds confirmed a significant decrease of the early angiogenic response in knock 

out wounds and also at later stages of the healing response (Figure 28 B). Also pericyte 

numbers, analyzed by staining for desmin, were significantly reduced at day 4 and 7 post 

injury in the knock outs compared to controls. In contrast, in myeloid cell-specific VEGF 

knock outs the ratio of CD31 to desmin positive stained area was not altered, indicating that 

pericyte coverage was not impaired despite the reduced amount of blood vessels (Figure 25 

D), in VEGFfl/fl LysMCre K14Cre wounds the ratio was significantly reduced (Figure 28 D), 

indicating that not only the vessel number was reduced, but also vessel maturation was 

impaired. These data provide strong evidence that macrophages deliver significant amounts 

of VEGF in the early phase of healing and that keratinocytes take over this part at later time 

points post injury. 
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Figure 27: Both myeloid cell- and keratinocyte-derived VEGF contribute to granulation tissue 

formation. (A) H&E staining on wounds of VEGF
fl/fl 

(control) and VEGF
fl/fl

 LysMCre K14Cre mice at 

indicated time points post injury. Whereas in control mice, the day-4 wound is filled with a cell-rich 

granulation tissue, in VEGF
fl/fl

 LysMCre K14Cre mice, only sparse granulation tissue has formed 

(hatched line outlines granulation tissue; dotted line outlines hyperproliferative epithelial tongue). At 

day 7 post injury, wounds of VEGF
fl/fl 

LysMCre K14Cre mice show still a reduced amount of 

granulation tissue (dotted line outlines basement membrane). Arrows point to the tips of epithelial 

tongue. d, dermis; g, granulation tissue; he, hyperproliferative epithelium; sm, skeletal muscle; sc, 

subcutaneous fat tissue. (B) Morphometric analysis of wound tissue at different time points post injury: 

amount of granulation tissue (left); distance between ends of panniculus carnosus (pc, middle); 

distance between epithelial tips (right). Each dot represents one wound, two wounds on one mouse; 

horizontal bars represent the mean. 
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Figure 28: Myeloid cell- and keratinocyte-derived VEGF contribute to angiogenesis in wound 

granulation tissue. (A) CD31 (red) and desmin (green) double immunostaining of day 4 and day 7 

wound tissue in control and VEGF
fl/fl

 LysMCre K14Cre mice; DAPI counterstaining of nuclei (blue). 

Dotted line indicates hyperproliferative epithelium; arrow points to the tips of epithelial tongue. he, 

hyperproliferative epithelium; g, granulation tissue; he, hyperproliferative epithelium; d, dermis. 

Morphometric quantification of the area within the granulation tissue that stained positive for CD31 (B) 

and desmin (C) at indicated time points post injury. (D) Percentage of the ratio of CD31 and desmin 

positive stained areas. Each dot represents one wound, two to four wounds on one mouse; horizontal 

bars represent the mean. 
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To investigate in the second hypothesis that up-regulation of other pro-angiogenic mediators 

in VEGF deficient macrophages might rescue wound angiogenesis at later stages, a broad 

real time PCR array was performed for genes differentially regulated in angiogenesis. To this 

end, peritoneal macrophages from control (VEGFfl/fl) and VEGFfl/fl LysMCre mice were 

isolated and exposed to hypoxia to mimic a stimulus probably participating in the activation of 

macrophages in the wound environment. Gene expression levels were calculated by adding 

cDNA from the respective genotype on a commercial well plate pre-coded with primers 

aiming for genes, which expression is related to angiogenesis (cells from three mice per 

genotype were pooled for analysis). It was shown that some pro-inflammatory cytokines were 

down-regulated, such as TNF-α, IL-6 and IL-1ß, whereas some pro-angiogenic mediators 

were up-regulated, such as PlGF, connective tissue growth factor (CTGF) and vascular 

endothelial cadherin (VE-cadherin) in VEGFfl/fl LysMCre macrophages in comparison to 

control cells. These data indicate that macrophages depleted for VEGF show an altered 

gene expression profile in vitro (Figure 29 A). The expression of these differentially 

expressed angiogenic modulators measured in vitro in peritoneal macrophages from control 

and VEGFfl/fl LysMCre mice was subsequently investigated over time in wound macrophages 

obtained from both groups. Whereas PlGF, TNF-α and IL-1ß expression was similar in 

control and VEGF knock out macrophages, CTGF was significantly up-regulated 14 days 

post injury (Figure 29 B). The pro-inflammatory cytokine IL-6 was significantly down-

regulated at day three post injury in VEGFfl/fl LysMCre macrophages (Figure 29 B). 

Interestingly, the endothelial cell-specific adhesion molecule VE-cadherin was up-regulated 

in VEGF knock out macrophages, even though it did not reach statistical significance (Figure 

29 B). To address whether the significantly altered expression of CTGF and IL-6 in VEGF 

knock out macrophages reflected the overall expression levels in complete wound tissue, 

RNA was isolated from control and VEGFfl/fl LysMCre wounds and the expression of CTGF 

and IL-6 was quantified by real time PCR. By this approach, no differences could be 

observed (Figure 29 C). Collectively, these data suggest that rescue of wound angiogenesis 

and deposition of granulation tissue during the late stages of the healing response in VEGFfl/fl 

LysMCre mice is not due to compensatory up-regulation of other pro-angiogenic mediators. 

Rather, an increase of epidermal-derived VEGF expression during the late stage of repair 

seems to account for this effect.  



Results 
 

54 

 

 

Figure 29: Macrophages deficient for VEGF expression display an altered gene expression 

profile. (A) Summary of real time PCR array data (commercial array for genes related to mouse 

angiogenesis) on cultured peritoneal macrophages isolated from control (VEGF
fl/fl

) and VEGF
fl/fl 

LysMCre mice. Cells were stimulated under hypoxia and measured for gene expression related to 

angiogenesis. Cells from three mice per genotype were pooled for analysis. Bars indicate alterations 

of gene expression in VEGF knock out macrophages relative to the control. (B) Quantitative real time 

PCR analysis on isolated blood monocytes and wound macrophages from control and VEGF
fl/fl 
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LysMCre mice at days 3, 5, 7, and 14 post injury for different genes as indicated. (C) Real time PCR 

analysis of unwounded skin and complete wound tissue, from control and VEGF
fl/fl

 LysMCre mice, 

harvested at time points as indicated. n = 4-8 wounds on 2-4 mice per group and time point. Data are 

expressed as mean ± SD.  

 

3.3.6 Myeloid cell-derived VEGF controls tip cell formation and the spatial 

association between macrophages and sprouting vessels during the early 

phase of tissue repair 

To analyze cellular mechanisms that potentially control myeloid cell-derived VEGF mediated 

angiogenesis during the early phase of repair, first, the recruitment of macrophages to the 

site of injury in control (VEGFfl/fl) and VEGFfl/fl LysMCre mice was investigated. This 

experiment aimed to exclude, that indirectly, reduced numbers of macrophages caused 

diminished granulation tissue formation and angiogenesis in mice deficient for VEGF 

expression in myeloid cells. It is well described that macrophages express the VEGFR-1 and 

that VEGF is chemotactic for macrophages in vitro [75]. Decreased myeloid cell-derived 

VEGF expression may thus result in less efficient macrophage recruitment to the wound site. 

To this end, wound cells were isolated from control and VEGFfl/fl LysMCre mice at days 4 and 

7 post injury and relative numbers of macrophages, positive for the cell surface markers 

F4/80 and CD11b were determined. Approximately 35% of all wound cells stained positive 

for F4/80 and CD11b in control and in VEGFfl/fl LysMCre wounds at both time points analyzed 

(Figure 30). Thus, indicating the recruitment of macrophages to the site of injury is not 

impaired in myeloid cell-specific VEGF knock outs, and myeloid cell-derived VEGF has no 

major impact on macrophage recruitment. 

 

Figure 30: Myeloid cell-derived VEGF does not function as a chemoattractant for macrophages 

into wounds. FACS analysis of isolated wound cells from control (VEGF
fl/fl

) and VEGF
fl/fl 

LysMCre 

mice at time points as indicated. Relative macrophage numbers recruited to the site of injury were 

quantified by staining for F4/80 and CD11b. Each dot represents one wound, two wounds on one 

mouse. Horizontal bars represent the mean. 
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Second, it was examined whether myeloid cell-derived VEGF is critical for the formation of 

delta-like-4(DII4)-positive tip cells. Recently it was shown that in a VEGF dependent fashion, 

DII4-Notch1 signaling regulates the formation of appropriate numbers of tip cells to control 

vessel sprouting and branching in the mouse retina [93]. Immunostainings on wound tissue 

from day 4 wounds showed that in wounds of control mice the leading edge of vascular 

sprouts invading the provisional extracellular matrix stained positive for DII4 and CD31 

(Figure 31 A). In contrast, in wound tissue of VEGFfl/fl LysMCre mice only few DII4 positive 

cells were detected in the poorly vascularized granulation tissue. These findings indicate, 

that myeloid cell-derived VEGF is critical for the formation of delta-like-4(DII4)-positive tip 

cells (which means ultimately vascular sprouts) in early granulation tissue. 

Furthermore, recently it was shown during mouse development and in zebrafish, that tissue 

macrophages can act as important cellular chaperones for vascular anastomosis [65]. 

Interestingly, in brain vascularisation this process was independent of macrophage-derived 

VEGF. Nevertheless, motivated by the findings of Fantin et al. and due to an additional 

publication in which VE-cadherin was described as an interesting candidate in mediating this 

cell-cell contact [66] as well as accompanied by the finding of increased VE-cadherin 

expression in wound macrophages of VEGFfl/fl LysMCre mice (although not statistically 

significant different when compared to control mice) the question was assessed whether 

potential macrophage-mediated sprout fusion in skin wounds is dependent on myeloid cell-

derived VEGF. Therefore, day 4 wound tissue sections of mutant and control mice were co-

stained for VE-cadherin and F4/80. In wound tissue of control mice, F4/80+ macrophages 

and VE-cadherin positive vascular structures showed a homogenous distribution throughout 

the entire depth of the granulation tissue (Figure 31 B). Using high magnification confocal 

microscopy at several occasions close proximity between VE-cadherin positive tube-like 

(resembling vascular structures) structures and F4/80 positive cells could be detected 

(Figure 31 C). In contrast, the distribution of VE-cadherin positive vascular structures and 

F4/80 positive cells within the granulation tissue of VEGFfl/fl LysMCre mice was strikingly 

different. Staining for VE-cadherin and F4/80 was discrete and no intermingling could be 

detected (Figure 31 B). Whereas VE-cadherin positive vascular structures were present at 

the outer wound edge, F4/80 positive macrophages were concentrated within the granulation 

tissue at the center of the wound. Close proximity between VE-cadherin and F4/80 positive 

cells could hardly be detected and were significantly reduced when compared to granulation 

tissue of control mice (Figure 31 B, C). Therefore, these findings propose that during 

formation of early granulation tissue in skin wounds in mice, tip cell guidance and possibly 

also sprout fusion is controlled by myeloid cell-derived VEGF.  
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Figure 31: Macrophages are in close proximity with endothelial cells during physiological 

tissue repair. (A) Left: CD31 (green) and Delta-like 4 (Dll4, red) double immunostaining of day 4 

wound tissue in control (VEGF
fl/fl

) and VEGF
fl/fl

 LysMCre mice. Right: Morphometric quantification of 

the area within the granulation tissue which were double positive for CD31 and Dll4 at indicated time 

points post injury. Each dot represents one wound, two wounds on one mouse. Horizontal bar 

represents the mean. (B) VE-cadherin (red) and F4/80 (green) double immunostaining of day 4 wound 

tissue in control and VEGF
fl/fl

 LysMCre mice. (C) Left: High magnification confocal image to illustrate 

close proximity of macrophages (F4/80, green) and endothelial cells (VE-cadherin, red) in control 

wounds 4 days post injury. Right: Morphometric quantification of F4/80 positive macrophages and VE-

cadherin positive endothelial cells, which were in close proximity to each other, counted in high power 

fields (hpf) in granulation tissues of control and VEGF
fl/fl

 LysMCre mice at time points as indicated. n = 

6 wounds, two wounds on one mouse. Data are expressed as mean ± SD. DAPI counterstaining of 

nuclei (blue). Dotted line indicates hyperproliferative epithelial tongue. d, dermis; he, hyperproliferative 

epithelium; g, granulation tissue. 
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4 Discussion 

In this study it is shown that macrophages play a crucial role during skin repair in the adult 

organism and that their timely restricted depletion during distinct phases of the wound 

healing response has profound impact on phase-specific repair mechanisms. The results 

presented in this thesis show that repair mechanisms controlled by macrophages recruited 

during the early stage of the repair response encompass induction of granulation tissue and 

myofibroblast differentiation which ultimately control the degree of scar formation. Further, 

they induce the angiogenic response in early wounds by releasing significant amounts of 

VEGF (VEGF-A). During the mid stage of the repair response macrophage function is crucial 

for stabilization of vascular structures and transition of granulation tissue into scar tissue. But 

at this stage of the healing response macrophage-derived VEGF is receding in its importance 

and epidermal compartments take over the VEGF supply in the consecutive phases of the 

repair response. Finally, macrophages present at the late stage of the repair response do not 

impact tissue maturation and scar formation. Therefore, this study provide evidence that 

macrophages exert different roles at diverse stages of the repair response and that they 

orchestrate the natural sequence of repair phases in skin, which are essential to restore solid 

tissue homeostasis and integrity after injury. Overall, this study suggests a crucial and varied 

role for macrophages in wound healing and adds to the previous knowledge.  

 

4.1 Eligible mouse model for inducible and timely-restricted 

depletion of macrophages 

To assess macrophage function at distinct stages of skin repair, a mouse system was 

developed that allows the cell type specific and timely restricted depletion of macrophages in 

skin wounds. The role of macrophages during skin repair has remained a subject of debate 

due to their functional dichotomy as effectors of both tissue injury and repair [47]. 

Furthermore, in earlier studies of skin injury, macrophages have been depleted by 

administration of anti-macrophage serum and/or hydrocortisone, methods that have 

pleiotropic effects and lead to unspecific and partial cell depletion [37, 38]. To circumvent 

these difficulties, the transgenic LysMCre/iDTR mouse line was used, in which minute 

amounts of DT can efficiently, specifically as well as in a timely restricted manner deplete 

tissue resident and inflammatory macrophages recruited to the site of skin injury. However, it 

was surprising that neutrophils could not be efficiently depleted in the presented model by 

DT, because lysozyme M promoter activity has been reported in neutrophils [83]. Inefficient 

neutrophil depletion might be explained by low lysozyme M promoter activity, reduced 



Discussion 
 

59 

 

phagocytosis by macrophages and/or short-lived turnover of neutrophils, so that DT might fail 

to efficiently interfere with the high number of neutrophils that infiltrate the wound side [48, 

94]. These findings are consistent with those of previous studies showing that DT treatment 

did not significantly affect neutrophil numbers [95, 96]. 

 

4.2 Macrophage functions during the early phase of repair 

4.2.1 Macrophages recruited during the inflammatory phase of repair induce a 

highly vascularized granulation tissue, which results in scar formation 

This study provides evidence that macrophages exert different functions during the distinct 

phases of skin repair. Specifically, in control mice macrophages recruited during the early 

stage of the repair response induce a vascularized and fibroblast-rich granulation tissue that 

promotes dermal as well as epidermal repair. Consistently, wound closure at day 5 post 

injury was significantly delayed in mice in which macrophages were depleted specifically 

during the early stage of repair. However, macrophage influx subsequent to their depletion 

rescued the delayed wound closure rate during the late stage of repair. Yet, the overall 

amount of granulation tissue, that developed under these conditions as well as 

vascularization, cellularity, contractile force and most important the extent of scar formation 

remained reduced when compared to control wounds. These findings demonstrate that 

macrophages which infiltrate the wound site immediately after injury induce a robust, highly 

vascularized granulation tissue associated with myofibroblast differentiation and wound 

contraction. These results are consistent with two recent studies published during the time 

when this thesis was in work [95, 96]. Although all of these events ensure rapid wound 

closure, they result in significant scar formation. However, a healing response that lacks 

specifically the initial burst of macrophage influx results in minimal scarring. Based on the 

findings, it is intriguing to speculate that providing a pathogen-free environment and 

preventing macrophage influx selectively during the early stage of repair, improves the 

quality of the wound healing response with less scar formation and without compromising the 

rate of wound closure. Certainly, it has to be proven whether minimal scarring in wounds 

lacking the initial influx of macrophages achieves the same quality of tensile strength of 

physiological scars or it is solely a cosmetic advantage with less stability. However, one 

should take into account that scar formation and wound contraction in mice, differs 

significantly to scar formation in the human system. Therefore, to validate the observations, 

future studies in other model systems which are more adequate to study scar formation are 

needed.  
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4.2.2 Myeloid cell-derived VEGF initiates the angiogenic response in the early 

phase of the wound healing response 

In order to identify mediators released by macrophages which could cause the observed 

phenotype of reduced vascularization in macrophage-depleted wounds during the early 

phase of the wound healing response, conditional gene targeting was used to efficiently 

deplete VEGF expression specifically in myeloid cells. It was already shown by others as well 

that VEGF expression is induced after skin injury, mainly in keratinocytes and macrophages 

[71, 74], and that VEGF exerts important functions during wound angiogenesis [70, 72, 73]. 

Furthermore, the data provided in this thesis could demonstrate that VEGF expression in the 

early phase of the wound healing response is primarily macrophage mediated, whereas in 

later phases epidermal compartments take over the VEGF supply. By staining for the 

common blood vessel marker CD31 in VEGFfl/fl LysMCre and VEGFfl/fl LysMCre K14Cre 

wounds, VEGF could be identified as a factor of singular importance released by 

macrophages to initiate angiogenesis in the early phase of the wound healing response 

which is then in later phases mediated by keratinocytes. Reduced angiogenesis in wounds 

lacking VEGF expression either in macrophages or in macrophages and keratinocytes was 

interestingly accompanied by reduced amounts of granulation tissue. These findings are 

supported by a recently published article in which the same mouse model of a myeloid cell-

specific VEGF knock out was used and analyzed for the outcome of the wound healing 

response [97]. Interestingly, despite reduced angiogenesis and granulation tissue formation 

in the early phase of the wound healing response, the overall wound healing kinetic was not 

altered in the punch injury model investigated. These results can be explained by a wound 

size-dependent effect of myeloid cell-derived VEGF on the outcome of the healing response 

reported by Stockmann et al. In their study they could show delayed healing in large 8 mm of 

diameter excisional wounds in VEGFfl/fl LysMCre mice, whereas the healing kinetic was 

unaltered in smaller incisional wounds [97].  

Furthermore, the question was addressed, if secondary effects and not directly myeloid cell-

derived VEGF could cause reduced angiogenesis in myeloid cell-specific VEGF knock out 

wounds in the early phase of the wound healing response. To this end, first the number of 

macrophages recruited to the site of injury in control and VEGFfl/fl LysMCre mice was 

evaluated by FACS analysis of wound cell suspensions stained for the common macrophage 

markers F4/80 and CD11b, because it is well described that macrophages express the 

VEGFR-1 and that VEGF is chemotactic for macrophages in vitro [59]. But no major 

differences could be observed regarding the relative number of macrophages recruited to the 

site of injury, indicating that myeloid cell-derived VEGF does not influence additional 

macrophage recruitment into wounds. These findings are further supported by two recently 



Discussion 
 

61 

 

published articles in which the importance of myeloid cell-derived VEGF in a breast cancer 

and in a lung fibrosis model was investigated. The angiogenic response was impaired or 

reduced in both studies, but no differences in macrophage recruitment could be observed 

[80, 81]. Second, the expression pattern in macrophages depleted for VEGF expression was 

investigated, because VEGF could possibly stimulate a specific expression pattern in an 

autocrine loop, which could finally, when inhibited, lead to the observed phenotype of 

reduced angiogenesis in the early phase of the wound healing response. To this end, a 

broad real time PCR array was carried out with peritoneal macrophages from control and 

VEGFfl/fl LysMCre mice, stimulated under hypoxia. It was found that some pro-inflammatory 

cytokines were down-regulated, whereas some pro-angiogenic mediators were up-regulated. 

When validated in in vivo isolated wound macrophages, only the pro-inflammatory cytokine 

IL-6 and the growth factor CTGF were significantly altered in VEGFfl/fl LysMCre wound 

macrophages, however total amounts of both factors were not altered in complete wound 

tissue. CTGF expression was significantly up-regulated in macrophages lacking VEGF 

expression at day 14 post injury, a time point in which angiogenesis was similar in both 

control and VEGFfl/fl LysMCre wounds and therefore probably not a cause for the observed 

phenotype in the early phase of healing. Additionally, CTGF is normally not produced by 

macrophages in wound tissue rather by fibroblasts and could be therefore an artifact [98]. IL-

6 in contrast was significantly down-regulated at day 3 post injury, the time point when 

reduced angiogenesis was observed in myeloid cell-specific VEGF knock out wounds. Even 

though reduced IL-6 expression in VEGFfl/fl LysMCre macrophages was not reflected in total 

expression levels in complete wound tissue, it cannot be completely excluded at this point, 

that local effects contributed to reduced angiogenesis. A complete knock out for IL-6 was 

shown to delay the cutaneous wound healing response in mice and was accompanied by 

reduced vascularization [99]. The pro-angiogenic effect of IL-6 is so far proposed by the 

induction of VEGF expression [100, 101]. If also myeloid cell- derived VEGF is able to induce 

IL-6 expression in macrophages in an autocrine loop via VEGFR-1 remains unresolved and 

needs further investigation. By usage of specific antibodies blocking VEGFR-1 signaling in 

macrophages, this question could be addressed. In conclusion, the data presented in this 

thesis propose an effect of singular importance of myeloid cell-derived VEGF for the initiation 

of the angiogenic response in the early phase of the wound healing response. No 

compensatory up-regulation of other pro-angiogenic mediators in VEGFfl/fl LysMCre wounds 

could be detected, indicating that the observed phenotype was probably solely mediated by 

the lack of VEGF expression in myeloid cells. These data provide novel mechanistic insights 

on macrophage-mediated repair events after skin injury and potentially might identify new 

therapeutic targets that can promote wound angiogenesis in impaired wound healing 

conditions. 
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4.2.2.1 Myeloid cell-derived VEGF controls tip cell formation and the spatial 

association between macrophages and sprouting vessels during the early 

phase of tissue repair 

Reduced vascularization in myeloid cell-specific VEGF knock out wounds was evident in this 

study by diminished staining for CD31 and desmin, whereas the ratio of the CD31 and 

desmin double positive stained area was not altered, indicating that the few developed blood 

vessels were qualitatively not impaired. In order to identify mechanisms which could cause 

reduced angiogenesis in VEGFfl/fl LysMCre wounds, wound sections of controls and myeloid 

cell-specific VEGF knock outs were stained for CD31 and the tip cell marker Dll4 and it could 

be shown that reduced vascularization goes along with impaired tip cell formation. As it was 

shown for the mouse retina, that DII4-Notch1 signaling regulates the formation of appropriate 

numbers of tip cells to control vessel sprouting and branching in the mouse retina in a VEGF 

dependent fashion, it can be speculated that wound angiogenesis functions with a similar 

mechanism [93]. The findings in this thesis provide evidence, that especially myeloid cell-

derived VEGF initiates tip cell formation, because CD31 and Dll4 double positive stained tip 

cells were significantly reduced in VEGFfl/fl LysMCre wounds.  

Furthermore, the observation was made that in early wounds VE-cadherin positive stained 

blood vessels and macrophages show a specific distribution in which macrophages are 

located in the area of actively sprouting blood vessels. In contrast, in macrophage-specific 

VEGF knock out wounds this pattern was strikingly different and macrophages as well as 

blood vessels were separately located within the granulation tissue of early wounds and no 

intermingling was observed. It can be speculated if this impaired collocation leads to the 

observed phenotype of reduced angiogenesis in early wounds. Recently, it was shown 

during mouse development and in postnatal vascularization of the retina as well as in 

zebrafish that yolk sac-derived macrophages can act as important cellular chaperones for 

vascular anastomosis [65]. Fantin et al. could show that vessel sprouting acts in response to 

VEGF and that macrophages guide and prepare two tip cells for fusion. However, this 

process was independently of macrophage-derived VEGF. If impaired fusion of two sprouting 

blood vessels caused reduced angiogenesis in the mouse model used can just be 

speculated. On the one hand, one should take into account, that yolk sac-derived 

macrophages differ from adult macrophages recruited to the wound site. They do not 

develop from hematopoietic stem cells in the bone marrow therefore it remains unclear 

whether bone marrow-derived macrophages can act with a similar mechanism causing 

vessel fusion in adults. On the other hand in an additional article it has been described, that 

macrophages express the endothelial adhesion molecule VE-cadherin on a low level and 

that this protein could be an interesting candidate in mediating the contact between 



Discussion 
 

63 

 

macrophages and endothelial cells in order to accomplish vessel fusion [66]. Interestingly, 

VE-cadherin was slightly up-regulated in macrophages depleted for VEGF expression and by 

double staining for VE-cadherin and F4/80 the observation was made that during 

physiological wound angiogenesis macrophages are in close proximity to endothelial cells. 

However, VE-cadherin and F4/80 double positive macrophages could not be detected so far 

and needs further investigation. Whether macrophages are indeed in a direct cell-cell contact 

to endothelial cells or just co-localized can only be speculated as well. Nevertheless, the 

findings made in this thesis provide a first evidence that myeloid cell-derived VEGF guide 

sprouting blood vessels into the area of granulation tissue and that macrophages might 

probably mediate vessel fusion. Indeed, further experiments are needed to support the 

mentioned hypothesis and to identify the underlying mechanisms of the angiogenic response 

in wounds. The questions remain unresolved, if a specific macrophage population is indeed 

able to express VE-cadherin and if macrophage-derived VEGF has the capability to induce 

and guide vessel sprouting in wounds. Regarding the first open question, the challenge is to 

demonstrate the weak VE-cadherin expression in macrophages, which failed so far by 

immunohistochemical stainings of wound tissue against VE-cadherin and F4/80, probably 

due to less sensitivity of the antibody. In vitro stainings of cultured macrophages under 

hypoxia could resolve this issue and might identify a specific macrophages population 

expressing VE-cadherin. Further, co-cultivation of macrophages and endothelial cells under 

hypoxia could highlight the close proximity of macrophage to endothelial cells. To finally 

address the question whether macrophages have in fact a direct cell-cell contact to 

endothelial cells via VE-cadherin, a macrophage-specific knock out for VE-cadherin is 

required, which should exhibit impaired vessel fusion or angiogenesis during the early phase 

of skin repair. Regarding the second open question, if myeloid cell-derived VEGF is indeed 

able to induce and guide vessel sprouting, spheroid outgrow assays or 3D cell culture 

systems could be suitable. By stimulation of endothelial cells with macrophage-derived 

VEGF or directly by co-cultivation of macrophages and endothelial cells it can be analyzed if 

macrophage-derived VEGF is able to induce and guide vessel sprouting. 

 

4.2.3 Macrophage depletion during the early phase of repair attenuates 

alternative activation 

It was also investigated whether the different repair phenotypes in control and LysMCre/iDTR 

mice in which macrophages were exclusively depleted during the early stage of repair, might 

originate in different activation states of macrophages present at the wound site. The current 

conceptual model of tissue macrophage activation is based on the hypothesis that 
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macrophages are plastic cells and adapt their response to micro-environmental signals. 

Several activation states and related functions of macrophages have been described in mice 

and humans [27, 29, 102]. The best characterized activation states in mice encompass 

“classical activated macrophages” (also named M1) that exert pro-inflammatory activities, 

eradicate invading microorganisms and promote type I immune responses and “alternatively 

activated macrophages” (also termed M2), which are hyporesponsive to pro-inflammatory 

stimuli, are involved in debris scavenging, angiogenesis, connective tissue remodeling and 

resolution of inflammation (paradigm of M1/M2 polarization) [33]. The latter one is considered 

to exert repair and regenerative activities [86, 103]. However, conclusive evidence whether 

the concept of classical/alternative macrophage activation is operative at the cutaneous 

wound site and which of the microenvironmental cues might direct macrophage activation is 

still missing. Recent studies in mice report on a critical role of alternative macrophage 

activation for regeneration of skeletal muscle and myocardium after injury [49, 89].  However, 

this study reveals the presence of alternatively activated macrophages (as defined by 

expression of Fizz1 and Ym1) in control skin wounds particularly during the early stage of the 

repair response and to a lesser extent also during the mid stage of repair. In contrast, 

expression of both markers was absent in macrophages infiltrating the wound site, which 

was deprived of macrophages during the early stage of repair. These findings indicate that 

environmental factors which induce alternative macrophage activation are primarily present 

during the early stage of repair. Furthermore, a healing response, which lacks macrophage 

recruitment during the early stage of repair in mice is inefficient in alternative activation. In 

addition, these data reveal that alternative macrophage activation correlates positively with 

the extent of a highly vascularized and cellular granulation tissue as well as ultimately with 

the degree of scar formation. Contrary to the latter hypothesis, that especially M2 

macrophages are pro-angiogenic, this study provides evidence that M1 macrophages 

present in the early phase of healing are rather pro-angiogenic in wounds and release 

significant amounts of VEGF. By isolation of VEGF-positive and –negative macrophages, it 

could be shown on transcriptional level that the pro-inflammatory cytokines IL-6 and iNOS 

were significantly up-regulated in macrophages expressing VEGF whereas marker for the 

M2 phenotype, such as arginase or Fizz1 [32] were more or less equally expressed in both 

macrophages negative and positive for VEGF expression. Indeed, if the early angiogenic 

response is solely mediated by M1-derived VEGF needs further investigation. Mouse models 

are needed with lack either M1 or M2 macrophage activation to completely explore the 

importance of both macrophage activation states and their influence during the different 

phases of skin repair. For instance, a mouse model is available which specifically lacks the 

IL-4 receptor α chain, inhibiting signaling through IL-4 and IL-13 and therefore preventing 

macrophages from alternative activation signals [104]. By wounding of those mice, the 
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importance of alternatively activated macrophages can be analyzed. Nevertheless, besides 

the beneficial effect for the outcome of the wound healing response described for 

alternatively activated macrophages [29] this study provides strong evidence, that also M1 

macrophages do not only exert harmful activities during wound healing by triggering a harsh 

pro-inflammatory response, they also carry out beneficial functions by releasing significant 

amounts of VEGF and initiating the early angiogenic response. 

 

4.3 Macrophage depletion during the mid stage of repair abrogates 

transition into scar tissue and causes vessel instability 

Depletion of macrophages during the mid stage of the repair response, consecutively to the 

development of a highly vascularized and cellular-rich granulation tissue, resulted in the 

abrogation or even retrogression of the physiological repair cycle. This process was evident 

by severe hemorrhages and fibrin exudates, suspicious for destabilization of vascular 

structures. Indeed, apoptosis of endothelial cells was significantly increased in macrophage-

depleted granulation tissue. Furthermore, epidermal wound edges appeared atrophic and 

detached from the underlying granulation tissue, indicating severe disturbances in epidermal-

dermal interactions. In addition, the number of neutrophils increased in macrophage-depleted 

wounds which had not yet completed re-epithelialization. During physiological skin repair in 

the used model, the number of neutrophils declines within the initial 5 days post injury [94]. 

Thus, high numbers of neutrophils present in macrophage-depleted granulation tissue at day 

7 and 10 post injury is abnormal. Whether macrophage recruitment during the late phase of 

repair by discontinuing DT injection could rescue the impaired and retrogressive healing 

conditions observed in macrophage depleted wounds during the mid stage of healing 

remains elusive. Regarding this question later time points have to be investigated to analyze 

if wound closure occurs and if a stable scar tissue develops resulting in tissue maturation 

and restoration of skin homeostasis. 

Several mechanisms underlying the morphological and functional changes associated with 

macrophage depletion during the mid stage of the repair response might be discussed. 

Sudden withdrawal of several growth factors by macrophage depletion from the metabolically 

highly active granulation tissue might result in severe alterations in tissue homeostasis. For 

example, withdrawal of VEGF and TGF-ß, both of which are potent survival factors for 

endothelial cells, might explain endothelial cell apoptosis and vessel destabilization observed 

in macrophage-depleted wounds [56, 105]. However, a single withdraw of myeloid cell-

derived VEGF in the conditional knock out mouse model used did not result in hemorrhages 
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as observed in DT treated LysMCre/iDTR wounds, indicating that the described phenotype 

was not a result of the withdrawal of this growth factor alone. Moreover, it could be shown 

that myeloid cell-derived VEGF is receding in its importance during the phase of tissue 

formation. By contrast, epidermal compartments take over VEGF supply at this stage of the 

wound healing response, because vessels could grow normally during the mid phase in 

VEGFfl/fl LysMCre mice despite a lack of myeloid cell-derived VEGF, which was however not 

the case in double knock outs for VEGF in myeloid cells and keratinocytes. The double 

knock out showed a prolonged delay in the angiogenic response indicating a dynamic switch 

of the importance of macrophage- and keratinocyte-derived VEGF on the outcome of the 

angiogenic response in wounds. Interestingly, even the double knock out for VEGF in both 

keratinocytes and macrophages does not cause vessel instability and hemorrhages, 

indicating that keratinocyte- and myeloid cell-derived VEGF during wound angiogenesis 

might not be an important survival signal for endothelial cells. These findings are further 

supported by another study in which VEGF expression was exclusively depleted in 

keratinocytes [78]. The wounds in these mice showed indeed reduced vascularization 

particularly during later phases of the skin repair response but did not exhibit hemorrhages. 

Whether VEGF amounts coming from other cell compartments present at the wound site or 

VEGF expressed by endothelial cells themselves is sufficient for vessel stability during 

wound angiogenesis needs to be further investigated. Indeed, autocrine VEGF derived by 

endothelial cells is required for the homeostasis of blood vessels in the adult [54] and could 

also be sufficient enough for vessel stabilization during wound angiogenesis. Yet, by usage 

of an inducible complete knock out mouse model for VEGF, the overall function of VEGF in 

wound angiogenesis and vessel stabilization could be identified. 

As mentioned above, TGF-ß released by macrophages is another interesting candidate in 

mediating endothelial cell survival during wound angiogenesis [105]. In a knock out model 

which lacks the TGF-ß receptor type II exclusively in macrophages [106], showed reduced 

amounts of TGF-ß in wounds (TGF-ß amplifies its expression in an autocrine loop [107]) and 

displayed the same hemorrhages within the granulation tissue during the tissue formation 

phase (personal communication R. Ranjan, [108]). Yet, to identify macrophage-derived TGF-

ß as an important factor for vessel stability during wound angiogenesis, a macrophage-

specific knock out directly for TGF-ß is needed. Furthermore, it can be discussed that the 

sudden withdrawal of TGF-ß as a potent immunosuppressive mediator [109] might be 

responsible for the increased influx of neutrophils into the macrophage-depleted granulation 

tissue. In turn, neutrophils are rich in highly active tissue degrading proteases and reactive 

oxygen species, which could contribute to the severe endothelial cell damage observed 

[110]. Although, at this stage we cannot exclude neutrophil-mediated vascular cell damage, 

we consider it an unlikely event, because hemorrhages and endothelial cell apoptosis were 
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also present in macrophage-depleted granulation tissue which did not present increased 

numbers of neutrophils. Overall, our data clearly illustrate that macrophages present in an 

already developed granulation tissue are crucial for the progression of the mid stage of the 

repair response into the late stage characterized by tissue maturation. 

 

4.4 Macrophages present at the late stage of repair do not impact 

tissue maturation 

Finally, depletion of macrophages during the late stage of repair did not cause significant 

morphological changes, indicating a minor role of macrophages present during the phase of 

tissue maturation and scar formation. Indeed, as outlined above, macrophages recruited 

during the early stage of repair significantly control the degree of scar formation. 

Furthermore, absence of morphological alterations in macrophage-depleted day 14 wounds 

of LysMCre/iDTR mice, demonstrates that DT-mediated macrophage apoptosis itself does 

not inevitably cause cellular changes in the wounded tissue. Therefore, in our model the 

altered healing response observed in macrophage-depleted wounds during the early or mid 

stage of repair is a consequence of macrophage deficiency and not a sequela of their 

apoptosis. 

 

4.5 Model: Macrophages as sentinels directing the quality of skin 

repair 

In conclusion, this study adds to previous knowledge on the function of macrophages in skin 

repair [38, 95, 96], but also uncovers several novel aspects. First, the findings substantiate 

previous work, demonstrating a crucial role of macrophages in healing skin wounds in the 

adult organism to achieve tissue homeostasis. Secondly, repair mechanisms were identified 

that are dependent or independent from macrophage function. Third, it was revealed that 

macrophages exert distinct functions during the diverse phases of skin repair which are 

however complementary to restore skin integrity. Finally, the findings suggest that different 

macrophage functions in skin repair can originate in different macrophage activation states. 

Overall, our findings delineate cellular and molecular mechanisms that control the kinetics of 

skin repair and links macrophage function as the critical force to the dynamics of wound 

repair. Future studies will analyze whether selective modulation of macrophage activation 

and function during specific stages of repair might be an effective therapeutic strategy to 
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normalize tissue regeneration in pathological healing conditions. However, one has to take 

into account that skin repair in mice differs significantly to the human system. Therefore, it is 

suggested that additional experimental studies in mice and/or other model organisms, should 

be paralleled by analysis of macrophage activation and function during wound repair in the 

human system. Figure 32 illustrates the proposed model for macrophage function during the 

different phases of the cutaneous wound healing response.  

 

 

Figure 32: Model for macrophage functions during the different phases of the cutaneous 

wound healing response. First, influx of macrophages during the early phase of healing is crucial to 

induce a highly vascularized granulation tissue, which however leads to scar formation. Macrophage-

derived VEGF-A initiates this angiogenic response and there is evidence that these pro-angiogenic 

macrophages show a rather pro-inflammatory M1 phenotype. Macrophage recruitment at later stages 

reaches wound closure and interestingly scar formation is reduced. Second, it could be shown that the 

presence of macrophages in an already developed granulation tissue is important for the transition of 

granulation tissue into a stable scar tissue and therefore for the restoration of skin homeostasis. Third, 

macrophages present in the late phase of repair after re-epithelialization is completed do not impact 

scar formation and tissue maturation. 
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5 Material and Methods 

5.1 Material 

5.1.1 Chemicals and enzymes 

Unless otherwise specified, all standard chemicals were purchased from Roth (Karlsruhe, 

Germany), Merck Bioscience (Schwalbach, Germany), Serva (Heidelberg, Germany) or 

Sigma-Aldrich (St. Louis, MO, USA). Used chemical solutions and buffers were prepared 

with deionized water at room temperature. Taq polymerase including the respective buffers 

was obtained from Bio Budget (Krefeld, Germany), proteinase K from Sigma-Aldrich, 

Liberase Blendzyme from Roche Applied Science (Mannheim, Germany), Power SYBR® 

Green from Applied Biosystems (Carlsbad, CA, USA) and RT2 SYBR Green/ROX qPCR 

Master Mix from SABioscience (a Qiagen Company, Hilden, Germany). 

 

5.1.2 Buffers used 

PBS: 10 mM Na2HPO4, 1.5 mM KH2PO4; 2.6 mM KCl, 136 mM NaCl, pH 7.4 

TE buffer: 10 mM TrisHCl (pH 8.0), 1 mM EDTA 

TAE buffer: 40 mM TrisHCl (pH 8.0), 20 mM NaAc, 1 mM EDTA 

5x loading dye: 40% Glycerol, 0.04% bromphenol blue, 0.2% orange G, 1 mM EDTA 

Tail lysis buffer: 100 mM Tris-HCl (pH 8.0), 5 mM EDTA, 0.2% (w/v) SDS, 0.2 M NaCl,  

500 mg/ml proteinase K 

FACS buffer: 1% BSA, 2 mM EDTA in PBS 

Anticoagulation buffer: 1 mM EDTA in PBS supplemented with Heparin (1:4000, Heparin-

Natrium-25,000-ratiopharm®, Ratiopharm GmbH, Ulm, Germany) 

ACK lysis buffer: 150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA 

 

5.1.3 Kits 

Following commercial kits were used within this work: RNeasy Plus Mini Kit, RNeasy Plus 

Micro Kit, RNeasy Fibrous Tissue Kit (all from Qiagen, Hilden, Germany), mouse VEGF 

Quantikine® ELISA Kit (R&D Systems, Minneapolis, MN, USA), High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA), RT2 First Strand Kit 

(SABioscience, a Qiagen Company, Hilden, Germany) and RT2 ProfilerTM PCR Array for 

genes related to mouse angiogenesis (PAMM-024, SABioscience, a Qiagen Company, 

Hilden, Germany). 

javascript:getTitle('https://products.appliedbiosystems.com:443/ab/en/US/adirect/ab?cmd=catNavigate2&catID=601045','productcatalognav','1')
javascript:getTitle('https://products.appliedbiosystems.com:443/ab/en/US/adirect/ab?cmd=catNavigate2&catID=601045','productcatalognav','1')
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5.1.4 Oligonucleotides 

Table 1: Oligonucleotides used in this thesis were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Lyophilized primers were dissolved in TE buffer (see section 5.1.2). 

No. Name  Sequence 

   

P1 Lys1 5’ CTTGGGCTGCCAGAATTTCTC 

P2 Lys2 5’ TTACAGTCGGCCAGGCTGAC 

P3 Cre8 5’ CCCAGAAATGCCAGATTACG 

P4 K14Cre Up 5’ GATGAAAGCCAAGGGGAATG 

P5 K14Cre Down 5’ CATCACTCGTTGCATCGACC 

P6 iDTR 1 5’ CCAAAGTCGCTCTGAGTTGTTATC 

P7 iDTR 2 5’ GCGAAGAGTTTGTCCTCAACC 

P8 iDTR 3 5’ GGAGCGGGAGAAATGGAT 

P9 muVEGF419.F 5’ CCTGGCCCTCAAGTACACCTT 

P10 muVEGF567.R 5’ TCCGTACGACGCATTTCTAG 

P11 lacZex8 5’ TGGCGATTTAGCAGCAGATA 

P12 lacZ WT 5’ ATGTGACAAGCCAAGGCGGTG 

P13 lacZ5’ 5’ GGTAGGGGTTTTTCACAGAC 

P14 VEGFc5R.2 5’ ACATCTGCTGTGCTGTAGGAAG 

P15 VEGF322.F 5’ ACTTCATGGACAGGCTTCGG 

P16 Cdh5for 5’ CCGCTGATCGGCACTGTGGT 

P17 Cdh5rev 5’ TGGAGTACCCGATGCTGCGCT 

P18 CTGFfor 5’ CCTCCGTCGCAGGTCCCATCA 

P19 CTGFrev 5’ CCATAGCAGGCCGGGTGCAG 

P20 IL-1ßfor 5’ GGACCCCAAAAGATGAAGGGCTGC 

P21 IL-1ßrev 5’ GCTCTTGTTGATGTGCTGCTGCG 

P22 PlGFfor 5’ ACTCAACAGAAGTGGAAGTGGTGCC 

P23 PlGFrev 5’ TCAGAAGGACACAGGACGGACTGAA 

P24 VEGFfor 5’ TGTACCTCCACCATGCCAAGT 

P25 VEGFrev 5’ CGCTGGTAGACGTCCATGAA 

P26 IL-6for 5’ ACACATGTTCTCTGGGAAATC 

P27 IL-6rev 5’ AAGTGCATCATCGTTGTTCATACA 

P28 iNOSfor 5’ CCACCTTGGTGAAGGGACTGAGCT 

P29 iNOSrev 5’ AGGGGCAAGCCATGTCTGAGACT 

P30 TNFαfor 5’ GACCCTCACACTCAGATCATCTTCT 

P31 TNFαrev 5’ CCTCCACTTGGTGGTTTGCT 
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P32 Arg1for 5’ GCTTCGGAACTCAACGGGAGGG 

P33 Arg1rev 5’ ACCAGAAAGGAACTGCTGGGATACA 

P34 IL-10for 5’ AGCCGGGAAGACAATAACTG 

P35 IL-10rev 5’ CATTTCCGATAAGGCTTGG 

P36 S18for 5’ GATCCCAGACTGGTTCCTGA 

P37 S18rev 5’ GTCTAGACCGTTGGCCAGAA 

P38 TGF-ßfor 5’ TGGAGCAACATGTGGAACTC 

P39 TGF-ßrev 5’ GTCAGCAGCCGGTTACCA 

P40 Fizz1for 5’ TATGAACAGATGGGCCTCCT 

P41 Fizz1rev 5’ GGCAGTTGCAAGTATCTCCAC 

 

5.1.5 Antibodies 

As primary antibodies for immunohistochemistry, monoclonal rat antibodies against F4/80 

(Dianova BMA AG, Augst, Switzerland), CD31 (Pecam-1, BD Pharmingen, Heidelberg, 

Germany), Ki67 (DakoCytomation Inc., Carpinteria, CA, USA), Gr-1 (Ly-6G, BD Pharmingen, 

Heidelberg, Germany) or CD144 coupled to biotin (VE-cadherin, eBioscience Inc., San 

Diego, CA, USA) were used; further, monoclonal mouse antibodies against Desmin 

(DakoCytomation Inc., Carpinteria, CA, USA) or -SMA coupled to Cy-3 (Sigma-Aldrich, St. 

Louis, MO, USA), polyclonal rabbit antibodies against Fizz1 (Peprotech, Paris, France), 

VEGF-A (A-20) (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) or fibrinogen/fibrin 

(DakoCytomation Inc., Carpinteria, CA, USA), monoclonal goat antibodies against Dll4 

(Delta-like protein 4, R&D Systems, Minneapolis, MN, USA), Ym1 (R&D Systems, 

Minneapolis, MN, USA) or TGF-ß1 (R&D Systems, Minneapolis, MN, USA) and a 

monoclonal rabbit antibody against cleaved caspase-3 (Asp175) (Cell Signaling Technology 

Inc., Boston, MA, USA). Bound primary antibodies were detected by incubation with 

corresponding Alexa-conjugated secondary antibodies (Invitrogen, Darmstadt, Germany). 

For flow cytometry direct labeled antibodies to either Fluoresceinisothiocyanat (FITC), 

Phycoerythrin (PE) or Allophycocyanin (APC) were used against F4/80 (AbD Serotec, 

Düsseldorf, Germany), Gr-1 (Miltenyi, Bergisch Gladbach, Germany), CD11b (Mac-1, 

Miltenyi, Bergisch Gladbach, Germany), CD115 (eBioscience Inc., San Diego, CA, USA) or 

CD19 (Miltenyi, Bergisch Gladbach, Germany). Further details are listed in table 3, 4 and 5.  
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5.1.6 Special technical equipment 

Microscopes: Leica DM 4000B (Leica Camera AG, Solms, Germany), Nikon eclipse E 800 

(Nikon, Melville, NY, USA), Nikon A1 (Nikon, Melville, NY, USA). 

PCR machines: 7300 Real Time PCR system (Applied Biosystems, Carlsbad, CA, USA), 

T3000 Thermocycler (Biometra, Göttingen, Germany). 

Flow Cytometers: FACS Canto (BD, Heidelberg, Germany), FACS Aria III (BD, Heidelberg, 

Germany). 

 

5.1.7 Software 

Statistical analyses were performed by using GraphPad Prism5 (GraphPad Software, Inc., 

San Diego, CA, USA), FACS data were analysed with FACSDiva (BD, Heidelberg, 

Germany), light microscopy images were taken and analyzed with Diskus 4.50 Software 

(Diskus, Königswinter, Germany), fluorescent microscopy images with NIS-Elements AR 

2.30 Software (Nikon, Melville, NY, USA) and confocal fluorescent images with Velocity 

Software (Nikon, Melville, NY, USA) and analysed with either ImageJ (Image Processing and 

Analysis in Java, Wayne Rasband, National Institute of Mental Health, Bethesda, MD, USA) 

or Adobe Photoshop 7.0 (Adobe Systems Inc., Dublin, Ireland). 

 

5.2 Standard molecular biology methods 

5.2.1 RNA extraction, RT PCR and quantitative real time PCR 

Total RNA from wound tissue was extracted using the Qiagen RNeasy Fibrous Tissue Kit 

(Qiagen, Hilden, Germany) and total RNA from isolated monocytes or macrophages using 

either the RNeasy Mini or Micro Kit, depending on the cell number (Qiagen, Hilden, 

Germany). 500-1000 ng of each RNA sample was reversely transcribed using the High 

Capacity cDNA RT Kit (Applied Biosystems, Carlsbad, CA, USA) according to 

manufacturer’s protocols. Amplification reactions, each in triplicates, were set up using 

PowerSYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, CA, USA). Real time 

PCR was validated with the 7300 Real Time PCR system (Applied Biosystems, Carlsbad, 

CA, USA). The comparative method of relative quantification (2-Ct) [111] was used to 

calculate expression level of the target gene normalized to the house keeping gene S18. 

Note, in case that no expression in blood monocyte samples for the normalization was 

detectable, the Ct value was set to 40 corresponding to the last cycle of the PCR run. All 

used oligonucleotides are listed in table 1 (P16-P41). Primer were designed with the NCBI 
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Primer-BLAST tool and were, if possible, exon-exon spanning. Primer were tested for 

specificity by analyzing a dissociation curve, resulting in one single curve in case of one 

specific PCR product and by loading the PCR fragments on a agarose gel (see section 5.2.4) 

and calculating the corresponding fragment length. The amplified PCR fragments were not 

longer than 250 bp and the annealing temperature was always 60°C ± 1°C. 

 

5.2.1.1 Mouse angiogenesis real time PCR array 

RNA was isolated out of cultured macrophages, stimulated under hypoxia as described 

above and in section 5.5. For cDNA generation the RT2 First Strand Kit (SABioscience, a 

Qiagen Company, Hilden, Germany) was used according to the manufacturer’s 

instructions. Primer for qPCR were pre-coated by the company on a 96-well plate for a RT2 

ProfilerTM PCR Array for genes related to mouse angiogenesis (PAMM-024; SABioscience, a 

Qiagen Company, Hilden, Germany). Amplification reactions were set up using RT2 SYBR 

Green/ROX qPCR Master Mix (SABioscience, a Qiagen Company, Hilden, Germany) 

according to the manufacturer’s instructions and real time PCR was validated as described 

above.   

 

5.2.2 RNA quantification 

The concentration of RNA was determined by measuring absorption at 260 nm and 280 nm 

(A260 and A280). An A260 of 1 corresponds to a concentration of approximately 40 µg/ml of 

RNA. The purity of the RNA can be assessed by calculating the ratio of A260/A280 with 2 

reflecting pure RNA. A ratio below or above 2 indicates protein or genomic DNA 

contamination, respectively.  

 

5.2.3 Isolation of genomic DNA 

Mouse tail biopsies (~5 mm) or isolated peritoneal cells (see section 5.3.3.1) were incubated 

in tail lysis buffer (see section 5.1.2) in a thermo mixer (Eppendorf, Hamburg, Germany) at 

56°C over night. DNA was then precipitated from the solution by adding an equivalent of 

isopropanol, centrifuged and the pelleted DNA was washed with the same volume of 70% 

ethanol. After an additional centrifugation step, the DNA pellet was dried at room 

temperature for ~1 hour and resuspended in 125 µl (in case of tail biopsies) or 30 µl (in case 

of cultured cells) 1x TE buffer (see section 5.1.2). 
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5.2.4 Polymerase chain reaction (PCR) 

PCR was mainly used for genotyping. In a standard protocol 10-100 ng template DNA 

(conforms to 1 µl of isolated tail DNA resuspended in 125 µl TE buffer) was amplified in a 

reaction batch containing 1x reaction buffer, 2 mM MgCl2, 200 nM each primer, 200 μM 

dNTP mix and 0.05 U/μl Taq-Polymerase (Bio Budget, Krefeld, Germany; except primers). 

For most applications the template DNA was denatured at 95°C for 5 min followed by 30-35 

cycles of 45 sec at 95°C, 1 min at the appropriate annealing temperature and 1 min per kb 

DNA to be amplified at synthesis temperature (72°C). Amplification was completed with a 

final synthesis step at 72°C for 7 min. The optimal annealing temperature of the primers was 

estimated with the following formula: TA=59.9+0.41(GC%)-600/L (GC%, GC content in 

percent, L, total number of base pairs). All primers used for genotyping are listed in table 1 

(P1-P15). PCR-amplified DNA fragments were mixed with 5x loading dye (see section 5.1.2) 

and applied to 1% - 2% (w/v) agarose gels (1x TAE, 0.5 mg/ml ethidium bromide) and 

electrophoresed at 120 V. 

 

5.2.5 VEGF-specific ELISA 

A commercial VEGF sandwich ELISA from R&D (Quantikine® Mouse VEGF immunoassay, 

R&D Systems, Minneapolis, MN, USA) was used for the determination of secreted VEGF 

protein of cultured peritoneal macrophages (see section 5.5) in comparison to a VEGF-

standard curve following the manufacturer’s manual. 

 

5.3 Mice 

5.3.1 Mouse strains 

All mouse strains were maintained and bred under standard pathogen-free conditions. To 

generate mice in which macrophages can be depleted in a temporally controlled manner, 

iDTR mice (C57Bl/6 background) [82] were bred with mice expressing the Cre recombinase 

(C57Bl/6 background) from the myeloid cell specific lysozyme M promoter [83]. To generate 

mice in which VEGF-A is specifically depleted in either macrophages or keratinocytes and 

macrophages, FVB/N VEGFfl/fl mice [53] were bred with mice expressing Cre (C57Bl/6 

background) from the LysM promoter or from the keratinocyte specific keratin 14 promotor 

(K14Cre, C57Bl/6 background) [92], respectively. Mice were backcrossed to the FVB/N 

background for at least six generations. To analyze VEGF expression in tissues a VEGF-

lacZ reporter mouse line (CD-1/129 mixed background) was used in which both the VEGF 
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and the LacZ gene is expressed under the control of the murine VEGF promoter [88]. 8- to 

12-week-old iDTR (control), iDTR/LysMCre (inducible macrophage-depleted mice, 

heterozygous or homozygous for the DTR gene), VEGFfl/fl (control), VEGFfl/fl LysMCre 

(myeloid cell-specific knock out), VEGFfl/fl LysMCre K14Cre (double knock out) or VEGF-

lacZ+/wt (reporter) mice were used for the experiments. In each and every case the Cre 

recombines was used heterozygously. All experiments were done according to institutional 

guidelines. 

 

5.3.2 Genotyping 

Tail biopsies were taken from mice with three weeks of age and DNA was isolated (see 

section 5.2.3). Mice were genotyped by PCR using the standard PCR program (see section 

5.2.4) with varying annealing temperatures (TA) and cycle numbers (Table 2). Primers used 

for genotyping are listed in table 1. 

 

Table 2: Protocols for genotyping by PCR, the corresponding primer sequences are listed in 

table 1 under the respective primer numbers. 

Strain/PCR Primer PCR product TA and cycle number 

iDTR P6-8 wt: 600 bp 

iDTR: 300 bp 

TA = 54°C, 12 cycles 

TA = 51°C, 18 cycles 

LysMCre P1-3 wt: 350 bp 

LysMCre: 750 bp 

TA = 56°C, 12 cycles 

TA = 52°C, 18 cycles 

VEGFflox P9-10 wt: 100 bp 

flox: 150 bp  

TA = 55°C, 30 cycles  

K14Cre P4-5 K14Cre: 250 bp TA = 60°C, 32 cycles 

VEGFlacZ P11-13 wt: 300 bp 

lacZ: 350 bp 

TA = 55°C, 35 cycles 

VEGFDel P14-15 before recombination: 2.1 kb 

after recombination: 560 bp 

TA = 58°C, 30 cycles 

 

5.3.3 Administration of diphtheria toxin 

The 1 mg/ml stock solution of the diphtheria toxin (DT, Merck Bioscience, Schwalbach, 

Germany) in pyrogen free ddH2O was aliquoted and stored at -80°C. Fresh aliquots were 

thawed on ice for each treatment. The working concentration was 5 μg/ml, diluted in sterile 

PBS and LysMCre/iDTR mice (hetero- or homozygous for the iDTR gene as indicated) and 
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control mice (LysMCre) received DT (25 ng/g bodyweight) injections intraperitoneally or 

intravenously at indicated time points. For wound-phase-restricted depletion of macrophages 

LysMCre/iDTR and control mice were injected with DT according to three regimens outlined 

in Figure 8. For macrophage depletion during the inflammatory phase mice were injected 

with DT 2 and 1 days prior wounding as well as 2 and 4 days post wounding (regimen A), the 

phase of tissue formation mice were injected with DT 3, 4, 6 and 8 days post injury (regimen 

B), and the phase of maturation mice were injected with DT 8, 9, 11, and 13 days post injury 

(regimen C). 

 

5.3.4 Thioglycolate-induced peritonitis 

For thioglycolate-mediated peritonitis a 4% thioglycolate brew (Sigma-Aldrich, St. Louis, MO, 

USA) in PBS was prepared, autoclaved and matured in the bottle for at least one month in 

the dark before use. Mice were then injected intraperitoneally with 2 ml 4% thioglycolate and 

peritoneal cells were isolated 4 days thereafter for FACS analysis, as described in section 

5.4.3.2. For LysMCre/iDTR and control mice, mice were injected additionally prior 

thioglycollate administration two times with DT (25 ng/g bodyweight) i.v. and afterwards three 

times i.p. 

 

4.3.5 Wounding 

Mice were anesthetized by intraperitoneal injection of Ketanest/Rompun (Ketanest S: Park 

Davis GmbH, Karlsruhe, Germany; Rompun 2%: Bayer, Leverkusen, Germany). The back 

was shaved and two (iDTR mouse strain) to four (VEGFflox mouse strain and reporter mice) 

6-mm diameter full thickness wounds were generated using a standard biopsy puncher 

(Stiefel, Offenbach, Germany). For histological analysis, wound cell isolation or RNA 

extraction, wounds were excised at indicated time points post injury. For histological analysis 

wounds were bisected in caudocranial direction and the tissue was either fixed overnight in 

4% paraformaldehyde or embedded in OCT compound (Tissue Tek, Miles, Elkhart, IN, USA) 

for immunohistochemical stainings. Histological analysis was performed on serial sections 

from the central portion of the wound. For wound cell isolation, tissues were processed 

immediately as described in section 5.4.3.3 and for RNA extraction wounds were stored in 

RNAlater® at -20°C (Ambion, Applied Biosystems, Carlsbad, CA, USA) until isolation was 

performed (see section 5.2.1). 
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5.4 Flow cytometrie 

5.4.1 Single cell suspensions 

5.4.1.1 Peritoneal lavage 

Mice were sacrificed, the skin was removed from the peritoneum as far as possible and the 

peritoneal cavity was flushed with around 8 ml ice-cold FACS buffer (see section 5.1.2). Cells 

were centrifuged at 300 g for 8 min at 4°C and the pellet was resuspended in 1 ml FACS 

buffer before counting with a Neubauer counting chamber. 

 

5.4.1.2 Blood leukocyte cell suspension 

Mice were sacrified and the thorax was opened as far as possible. Blood was taken by 

dissecting the heart and collected in 5 ml anticoagulation buffer (see section 5.1.2). After 

centrifugation at 300 g for 8 min at 4°C blood leukocytes were purified by hypotonic lysis of 

erythrocytes with 5 ml ACK lysing buffer (two times for 8 min) (see section 5.1.2), the 

reaction was stopped by adding 45 ml of ice-cold FACS buffer (see section 5.1.2). The 

suspension was poured over a 70 µm cell strainer (BD, Heidelberg, Germany) and 

centrifuged. Cells were resuspended in 1 ml FACS buffer and counted. 

 

5.4.1.3 Wound cell suspension 

Wounds at indicated time points post injury were excised and minced thoroughly using a 

scalpel. The wound mush was further digested enzymatically with Liberase blendzyme (0.15 

U/ml) (Roche Applied Science, Mannheim, Germany) in DMEM (Dulbecco’s modified eagle 

medium, Invitrogen, Darmstadt, Germany) for 90 min at 37°C and 1000 rpm in a thermo 

mixer (Eppendorf, Hamburg, Germany). After enzymatical digestion, wounds were 

additionally disrupted mechanically by using the BDTM Medimachine System (BD Bioscience, 

Heidelberg, Germany) for 5 min at room temperature in PBS containing 10% FCS (fetal calf 

serum, PAA, Pasching, Austria). Cells were collected through a 70 µm cell strainer and 

centrifuged at 300 g for 8 min at 4°C. The cell suspension was then resuspended in 

PBS/2 mM EDTA and poured additionally through a 40 µm strainer, centrifuged and 

resuspended in 1 ml FACS buffer (see section 5.1.2) before counting.  
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5.4.2 FACS staining 

Cells of interest in the different cell suspensions (described above) were identified by staining 

for cell surface markers. Unspecific binding of antibodies to Fc receptors via their invariable 

part of the heavy chain was avoided by blocking with anti-CD16/32 (eBioscience Inc., San 

Diego, CA, USA) directed against the FcgIII and the FcgII receptor, respectively. 

Subsequently, cells were incubated with the antibodies listed in table 3 in 50-100 μl FACS 

buffer (see section 5.1.2) for 20-30 min on ice in the dark. After two washing steps with 1 ml 

FACS buffer, 7-Amino-Actinomycin D (7-AAD, 1:20, eBioscience Inc., San Diego, CA, USA) 

was added 10 min before analysis for the detection of dead cells. The samples were 

analyzed in a BD FACS Canto or sorted in a BD FACS Aria III with the appropriate laser 

using the BD FACS Diva Software. 

 

Table 3: Monoclonal antibodies used for flow cytometry. Antibodies were conjugated with 

fluoresceinisothiocyanat (FITC), phycoerythrin (PE) or allophycocyanin (APC). 

Specificity Target cells Host/Isotype Clone Dye Final 

dilution 

Commercial 

source 

 

F4/80 Macrophages Rat IgG2a κ BM8 FITC, 

PE 

1:100 AbD Serotec  

CD11b/ 

Mac-1 

Macrophages, 

DCs, NK cells, 

neutrophils 

Rat IgG2b κ M1/70 PE, 

APC 

1:100 BD-

Pharmingen 

 

CD115 Monocytes Rat IgG2a κ AFS98 APC 1:250 eBioscience  

Gr-1 Neutrophils, 

monocytes 

Rat IgG2b κ RB6-

8C5 

PE 1:10 BD-

Pharmingen 

 

CD19 B cells Rat IgG2a κ 1D3 APC 1:100 BD-

Pharmingen 

 

 

5.4.2.1 FDG staining 

ß-Gal activity in wound cell suspensions harvested from the VEGF-lacZ reporter mouse 

strain was unraveled by fluorescein di-ß-D-galactopyranoside (FDG) (Invitrogen, Darmstadt, 

Germany) incubation and always done after cell surface staining. The 10 mM stock solution 

of FDG in DMSO was aliquoted and stored at -20°C. Fresh aliquots were thawed for each 

treatment, diluted with ddH2O to a working concentration of 2 mM and immediately used to 

avoid spontaneous degradation in water, which leads to a high background and a false 

positive signal. For the staining procedure cells were resuspended in 40 µl FACS buffer (see 
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section 5.1.2) and for the hypotonic shock 1:1 diluted with water containing 2 mM FDG for 

exactly 20 sec at 37°C. The hypotonic shock was stopped by adding immediately 1 ml ice-

cold FACS buffer. FDG incubation within the cells lasted up to 1 hour. The threshold for FDG 

positive cells was set related to the wild type control (VEGF-lacZwt/wt), treated with FDG as 

well. 

 

5.5 Cultivation of macrophages 

Primary macrophages were isolated under sterile conditions from the peritoneal cavity (see 

section 5.4.1.1) and seeded in either 6-well or 24-well plates (0.5 x 106 cells/cm2) (BD, 

Heidelberg, Germany) in DMEM (Dulbecco’s Modified Eagle Medium, Invitrogen, Darmstadt, 

Germany) supplemented with 10% FCS (PAA, Pasching, Austria) and Penicillin-

Streptomycin (100 U/ml penicillin, 0.1 mg/ml streptomycin (final concentrations, Biochrom 

AG, Berlin, Germany)) (1x106 cells/ml). Cells were cultured in a 5% CO2 atmosphere at 37°C. 

Macrophages were enriched by plastic adhesion for 4 h, washed twice with fresh medium 

and cultured over night. Thereafter cells were stimulated with either a mixture of LPS (1 

mg/ml; Sigma Aldrich, St. Louis, MO, USA) and recombinant mouse INF-y (0.1 mg/ml; R&D 

Systems, Minneapolis, MN, USA) in DMEM supplemented with 1% FCS for 24 h and 48 h or 

under hypoxia (1% O2, 5% CO2, 37°C) in DMEM supplemented with 1% FCS for 8 h. For 

measurements of secreted VEGF protein amounts supernatants were harvested, centrifuged 

at high speed for 1 min and stored at -80°C until analysis (see section 5.2.5). For RNA 

isolation cells were lysed and processed as indicated in section 5.2.1. 

 

5.6 Histology 

5.6.1 Histochemistry 

Skin samples were fixed in 4% formalin over night and embedded in paraffin. 6 μm sections 

were stained with hematoxylin/eosin (H&E), Giemsa stain, and Sirius Red stain following 

standard protocols in a routine histology laboratory. H&E staining was used for an overview 

and quantification of common wound healing parameters (see section 5.6.3). In this case 

eosin stains eosinophilic structures like cytoplasm and protein pink, and erythrocytes red. 

Hematoxylin stains basophilic structures such as nucleic acids purple. Giemsa staining was 

used to identify in particular mast cells by means of their dark purple cytoplasmic granules. 
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Sirius Red stain was used to analyze collagen fibers, which when examined through 

polarized light appear bright pink or orange on a dark background. 

5.6.2 Immunohistochemistry 

For immunohistochemical stainings 10 µm cryosections were fixed either in 4% PFA (7 min) 

or in ice-cold acetone (2 min, air-dried) and blocked with 10% normal goat serum 

(DakoCytomation Inc., Carpinteria, CA, USA) or with 10% fetal calf serum (FCS; PAA, 

Pasching, Austria) in PBS containing 5% BSA to reduce nonspecific antibody binding (at 

least 1 h at room temperature). Sections were then incubated either 1-2 hours at room 

temperature or overnight at 4°C with the primary antibodies diluted in the respective blocking 

buffer. Primary antibodies used in this thesis are listed in table 4. Bound primary antibody 

was detected by incubation with respective Alexa-conjugated (Invitrogen, Darmstadt, 

Germany) or peroxidase-conjugated (Southern Biotechnology, Birmingham, AL, USA) 

secondary antibodies for 1 hour at room temperature (see table 5), followed by 

counterstaining with DAPI (mainly, 1 µg/ml final concentration) or propidium iodide (in case of 

the Ki67 staining, 1 µg/ml final concentration) (both Invitrogen, Darmstadt, Germany). 

 

Please note, for the anti CD144/VE-cadherin antibody it is recommend using PBS containing 

magnesium and calcium for all steps to protect the protein from shedding. For the usage of 

biotin labeled primary antibodies endogenous biotin was blocked with the DakoCytomation 

Biotin Blocking System according to the manufacturer’s protocol (DakoCytomation Inc., 

Carpinteria, CA, USA) before incubation of the primary antibody. By usage of a peroxidase-

conjugated secondary antibody endogenous peroxidase was inactivated with PBS containing 

0.03% H2O2 and 0.15 mol/L NaN3 for 20 min at room temperature and aminoethyl carbazole 

(AEC substrate solution, DakoCytomation Inc., Carpinteria, CA, USA) was used as a 

substrate for peroxidase activity by adding some drops on the sections and incubation of 5-

20 min at room temperature (depending on the signal intensity). In this case sections were 

counterstained with hematoxylin. 

 

5.6.3 X-Gal staining 

For X-Gal (BCIG, bromo-chloro-indolyl-galactopyranoside) staining 20 µm cryosections from 

VEGF-lacZ wound tissues were fixed with 0.5% glutaraldehyde for 30 min at room 

temperature and washed three times with PBS containing 0.02% NP-40 and 0.2 mM MgCl2. 

X-Gal staining solution contained 0.5 mg/ml X-Gal (Fermentas, St. Leon-Rot, Germany), 10 

mM K3[Fe(CN)6], 10 mM K4[Fe(CN)6] and 0.2 mM MgCl2. Sections were incubated for 4-6 

hours at 37°C (depending on the signal intensity). After washing with PBS/0.02% 
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NP-40/0.2 mM MgCl2, sections were counterstained with a nuclear fast red aluminum 

sulphate solution (Roth, Karlsruhe, Germany) for 30 sec at room temperature. 

 

Table 4: Primary monoclonal or polyclonal antibodies used for immunohistochemistry 

Specificity Host/Isotype Clone Final 

dilution 

PrimaryAb 

incubation 

Commercial 

Source 

F4/80 Rat IgG2a, 

monoclonal 

BM8 1:200 2 h, RT Dianova 

CD144/VE-

cadherin* 

Rat IgG1, 

monoclonal 

BV13 1:1000 o.n., 4°C eBioscience 

CD31/Pecam-1 Rat IgG2a κ, 

monoclonal 

MEC 

13.3 

1:1000 1 h, RT BD Pharmingen 

Gr-1 Rat IgG2b κ, 

monoclonal 

RB6-

8C5 

1:10 o.n., 4°C BD Pharmingen 

Fizz1/Relm-α Rabbit, 

polyclonal 

 1:50 o.n., 4°C Peprotech 

VEGF-A Rabbit IgG, 

polyclonal 

sc-

152-G 

1:100 2 h, RT Santa Cruz 

Fibrinogen/Fibrin Rabbit, 

polyclonal 

 1:8000 1 h, RT DakoCytomation 

Ym1/ECF-L Goat IgG, 

polyclonal 

 1:50 o.n., RT R&D Systems 

Cleaved 

caspase-3 

Rabbit, 

monoclonal 

 1:200 o.n., 4°C Cell Signaling 

α-SMA** Mouse IgG2A, 

monoclonal 

1A4 1:250 1 h, RT Sigma-Aldrich 

Dll4 Goat IgG, 

monoclonal 

 1:50 o.n., 4°C R&D Systems 

TGF-ß* Goat IgG, 

polyclonal 

 1:30 o.n., 4°C R&D Systems 

Desmin Mouse IgG1 

κ, 

monoclonal 

D33 1:100 o.n., 4°C DakoCytomation 

Ki67 Rat IgG2a, 

monoclonal 

TEC-

3 

1:50 1 h, RT DakoCytomation 

* Coupled to biotin, ** coupled to Cy-3 
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Table 5: Secondary antibodies used for immunohistochemistry were purchased from 

Invitrogen (Darmstadt, Germany) or Southern Biotech (Birmingham, AL, USA) 

Secondary Antibody Dye Final 

dilution 

Commercial 

source 

Goat anti-rabbit IgG (H+L) Alexa Fluor® 488, 568 1:500 Invitrogen 

Goat anti mouse IgG1 (y1) Alexa Fluor® 488, 

594 

1:500 Invitrogen 

Chicken anti goat IgG 

(H+L) 

Alexa Fluor® 488 1:500 Invitrogen 

Goat anti rat IgG (H+L) Alexa Fluor® 488, 

594 

1:500 Invitrogen 

Donkey anti goat IgG (H+L) Alexa Fluor® 594 1:1000 Invitrogen 

Streptavidin Alexa Fluor® 555 1:500 Invitrogen 

Goat anti-rat IgG+M (H+L) HRP 1:250 Southern Biotech 

 

 

5.6.4 Morphometric analysis 

5.6.4.1 Quantification of wound healing parameters  

The macroscopic wound area was quantified by processing of photographs taken at various 

time points, and was calculated as the percentage of the wound area immediately after 

surgery using the software ImageJ (Image Processing and Analysis in Java, Wayne 

Rasband, National Institute of Mental Health, Bethesda, MD, USA). For scale setting a ruler 

next to the wounds was photographed as well. The microscopic wound area was quantified 

on H&E stained paraffin sections using a light microscope and the corresponding software 

(Leica DM4000B, Leica Microsystems, Wetzlar, Germany; Diskus 4.50 Software, Diskus, 

Königswinter, Germany). The extent of epithelialization was determined by measuring the 

distance between the two epithelial tips and the distance between the edges of the 

panniculus carnosus was determined as a measure of wound contraction. Finally, dermal 

repair was estimated by measuring the area of granulation tissue.  
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5.6.4.2 Quantification of histochemical stainings 

Organization and maturation of collagen bundles was assessed on paraffin sections of day 

14 wounds stained with Sirius Red and analyzed by polarized light microscopy (Leica 

DM4000B, Leica Microsystems, Wetzlar, Germany). Numbers of mast cells were determined 

by counting cells in the entire area of giemsa stained scar tissues (Leica DM4000B, Leica 

Microsystems, Wetzlar, Germany; Diskus 4.50 Software, Diskus, Königswinter, Germany). 

 

5.6.4.3 Quantification of immunohistochemical stainings 

Immunofluorescence microscopy was conducted at indicated magnifications (Microscope 

Eclipse 800E; Nikon, Melville, NY, USA). Morphometric analysis was performed on digital 

images using Imaging Software NIS-Elements AR 2.3 (Nikon, Melville, NY, USA). Numbers 

of macrophages, neutrophils and cells positive for activated caspase-3, VEGF-A or TGF-ß1 

and also macrophages in close proximity to blood vessels were determined by counting cells 

in 2-3 representative rectangles of 200 x 160 µm2 (defined as high power fields, hpf) in the 

granulation tissue of wound sections at indicated time points post injury. Ki67 positive cells 

were determined by counting positively stained cells in 2 representative rectangles of 200 x 

160 µm2 (hpf) within the hyperproliferative epidermal wound margins. For quantitative 

analysis of CD31, α-SMA, Desmin and Dll4 expression as well as for fibrinogen/fibrin 

excudate, the area in parts of the granulation tissue, which stained positive for the respective 

antibodies were calculated by using the ImageJ software (Image Processing and Analysis in 

Java, Wayne Rasband, National Institute of Mental Health, Bethesda, MD, USA). F4/80 

positive cells in close proximity to VE-cadherin positive blood vessels were further analyzed 

with confocal fluorescence microscopy using a Nikon A1 confocal microscope and the 

corresponding Velocity software (Nikon, Melville, NY, USA). 

 

5.7 Statistical analysis 

Statistical analyses were performed using GraphPad Prism5 (GraphPad Software, Inc., San 

Diego, CA, USA). Significance of difference was analyzed using unpaired student t-test. All 

data presented as mean ± SD. P ≤ 0.05 was considered significant. 
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7 Abbreviations 

 

7-AAD  7-aminoactinomycin D 

APC  allophycocyanin 

α-SMA  α-smooth muscle actin 

bFGF  basic fibroblast growth factor 

bp  base pairs 

BSA  bovine albumin 

CCL2  chemokine (C-C motif) ligand 2 

CD  cluster of differentiation 

Cdh-5  cadherin 5 

cDNA  copy deoxyribonucleic acid 

Csf-1  colony stimulating factor 

CTGF  connective tissue growth factor 

d  dermis 

DAPI  4’,6-diamidino-2-phenylindole 

DC  dendritic cell 

Dll4  delta-like 4 protein 

DMEM  dulbecco’s modified eagle medium 

DNA  deoxyribonucleic acid 

DT  diphtheria toxin 

e   epidermis  

Ecf  eosinophil chemotactic factor 

ECM  extracellular matrix 

EDTA  ethylenediaminetetraacetic acid 

EGF  epidermal growth factor 

ELISA  enzyme-linked immunosorbent assay 

FACS  fluorescence activated cell sorting 

FCS  fetal calf serum 

FDG  fluorescein di-ß-D-galactopyranoside 
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FITC  fluoresceinisothiocyanat 

Fizz1  found in inflammatory zone 

fl  floxed 

Flk-1  fetal liver kinase-1 

Flt-1  fms-related tyrosine kinase-1 

g  granulation tissue  

he   hyperproliferative epithelium 

H&E  hematoxylin and eosin stain 

HIF-1α  hypoxia inducible factor-1α 

hpf  high power field  

HSC  hematopoietic stem cell 

ICAM  intercellular adhesion molecule 

INF-γ  interferon-γ 

i.p.  intraperitoneal 

i.v.  intravenous 

iDTR  inducible diphteria toxin receptor 

IL  interleukin 

iNOS  inducible nitric oxide synthase 

K14  keratin 14 

kb  kilo base pairs  

KDR  kinase insert domain receptor 

KGF  keratinocyte growth factor 

LPS  lipopolysaccharide 

LysM  lysozyme M 

MΦ  macrophage 

MCP-1  monocyte chemotactic protein-1 

MIP-1α macrophage inflammatory protein 

MMP  matrix metalloprotease 

NK cells natural killer cells 

Nrp  Neuropilin 

p  p-value  
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PBS  phosphate buffer saline 

pc  panniculus carnosus  

PCR  polymerase chain reaction 

PDGF  platelet-derived growth factor 

PE  phycoerythrin 

PECAM platelet endothelial cell adhesion molecule 

PFA  paraformaldehyde 

PlGF  placenta growth factor 

PMN  polymorphonuclear 

qPCR   quantitative polymerase chain reaction 

Relm-α resistin-like molecule-α 

RNA  ribonucleic acid 

ROS  reactive oxygen species 

rp  red pulp 

RT PCR reverse transcriptase polymerase chain reaction 

sc   subcutaneous fat tissue  

SD  standard deviation 

sm   skeletal muscle 

st  scar tissue 

sVEGFR-1 soluble vascular endothelial growth factor receptor-1 

TA  annealing temperature  

TAM  tumor-associated macrophages 

TAE  Tris base acetic acid EDTA 

TE   Tris base EDTA  

TGF  transforming growth factor 

TNF-α  tumor necrosis factor-α 

Th1  T helper 1 cells 

Th2  T helper 2 cells 

TLR  toll-like receptor 

Tris  tris(hydroxymethyl)aminomethane 

UV  ultraviolet 
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VE-cadherin vascular endothelial cadherin 

VEGF  vascular endothelial growth factor 

VEGFR vascular endothelial growth factor receptor 

VPF  vascular permeability factor 

wp  white pulp  

wt  wild type 
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