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SUMMARY 
 

Plants, like animals, are constantly exposed to attack by pathogens such as viruses, bacteria, 

fungi or oomycetes that have different life styles and infection strategies. Unlike animals, 

plants lack a somatic adaptive immune system and rely on cell-autonomous events and the 

innate immune system. Successful pathogens have evolved effector proteins that can suppress 

plant defense responses. To counteract the activities of pathogen effectors, plants have 

evolved resistance (R) proteins that specifically recognize these effectors either through direct 

interaction or through perception of effector manipulation of the host cell. TIR-type 

Nucleotide-binding Leucine-rich-repeat (TIR-NB-LRR) receptors invariably require EDS1 to 

confer resistance. Activation of effector-triggered immunity usually involves a rapid influx of 

calcium ions, a burst of reactive oxygen species, activation of MAPKs, synthesis of SA, 

reprogramming of gene expression and often a hypersensitive response (HR). However, it is 

not known whether the HR is an essential component of disease resistance mechanisms in 

plants. Deciphering the molecular mechanisms by which bacterial effectors contribute to 

disease and are recognized by resistant hosts is important for our understanding of host-

pathogen communication and co-evolution. It is also important to establish how activated 

TIR-type R proteins molecularly connect to EDS1-dependent defense induction. 

The work presented here characterizes the mechanism by which the Pseudomonas syringae 

effector AvrRps4 is recognized by its cognate TIR-NB-LRR-type receptor proteins RPS4 and 

RRS1 and how this leads to subsequent defense signalling in the host plant Arabidopsis 

thaliana (hereafter named Arabidopsis). Nuclear localization of RPS4 is required for its 

resistance function but it remained unclear how and where in the host cell AvrRps4 is 

perceived by its cognate R proteins. Increased export of AvrRps4 from the nucleus by fusion 

to a nuclear export sequence (NES) fails to induce a full immune response. In contrast, 

AvrRps4 targeted to the nucleus through the addition of a nuclear localization sequence 

(NLS) triggers full resistance, measured by limitation of bacterial growth. Notably, AvrRps4 

targeted to the nucleus induces resistance but fails to elicit a host cell death response. 

Restriction of bacterial multiplication can thus be uncoupled from induction of cell death. 

Collectively, the data suggest that at least one essential step of RPS4/RRS1-mediated 

AvrRps4 recognition leading to resistance occurs in the nucleus. Results from genetic and 

molecular analysis of RPS4 and RRS1 modes of action suggest that these R proteins function 

cooperatively in the nucleus in recognizing AvrRps4.  
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To further dissect AvrRps4 function and recognition through RPS4 and RRS1, interaction 

partners of AvrRps4 in planta were analyzed. AvrRps4 physically interacts with the central 

immune regulator EDS1 in the nucleus suggesting that EDS1 might be the virulence target of 

AvrRps4. Furthermore, EDS1 forms a complex with RPS4 and RRS1 in the nucleus. These 

data provide a potential direct link between TIR-NB-LRR-type receptors and EDS1-

dependent defense induction and suggest that important recognition and signalling events can 

occur inside the plant nucleus. 
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ZUSAMMENFASSUNG 
 

Pflanzen und Tiere werden ständig von Krankheitserregern, wie z.B. Viren, Bakterien und 

Pilzen angegriffen. Im Gegensatz zu Tieren besitzen Pflanzen kein humorales Immunsystem, 

sondern nur ein angeborenes Immunsystem. Krankheitserreger verfügen über 

Effektorproteine, welche die pflanzliche Immunantwort unterdrücken können. Um dem 

entgegenzuwirken, haben Pflanzen Resistenzproteine entwickelt, die entweder 

Effektorproteine direkt erkennen können oder deren Funktionen in der Wirtszelle. Eine 

bestimmte Gruppe dieser Resistenzproteine, TIR-NB-LRR Rezeptoren, benötigen das 

Pflanzenprotein EDS1 zur Aktivierung der Immunantwort. Aktivierung der Resistenzantwort 

durch die Erkennung eines Effektorproteins führt zu einem Einstrom von Kalziumionen in die 

Zelle, gefolgt von der lokalen Freisetzung radikaler Sauerstoffspezies und oft zur Aktivierung 

des programmierten Zelltods in den angegriffenen Zellen. Allerdings wird die Aktivierung 

des programmierten Zelltods nicht immer für die Resistenz benötigt. Um ein besseres 

Verständnis der Co-Evolution von Krankheitserregern und Pflanzen zu erlangen, ist es 

wichtig, die molekularen Mechnismen der Erkennung von Effektorproteinen sowie deren 

Funktionen in der Wirtszelle zu untersuchen. Desweiteren ist bisher unbekannt, wie TIR-NB-

LRR Rezeptoren nach ihrer Aktivierung die EDS1-abhängige Immunantwort auslösen.  

Diese Arbeit beschäftigt sich mit den molekularen Mechanismen der Erkennung des 

Effektorproteins AvrRps4 von Pseudomonas syringae durch die TIR-NB-LRR 

Rezeptorproteine RPS4 und RRS1 in der Wirtspflanze Arabidopsis thaliana. Eine 

Lokalisierung von RPS4 im Zellkern wird benötigt, um eine effektive Immunantwort 

auszulösen. Bisher ist nicht bekannt, in welchem Zellkompartiment die Erkennung von 

AvrRps4 stattfindet. Ein verstärkter Export von AvrRps4 aus dem Zellkern korreliert mit 

einer schwächeren Immunantwort der Pflanze wohingegen der Import von AvrRps4 in den 

Zellkern Resistenz auslöst. Interessanterweise führt der Import von AvrRps4 in den Zellkern 

zu einer vollständigen Resistenz der Pflanze, jedoch ohne das dafür programmierter Zelltod 

ausgelöst werden muss. Aus diesen Ergebnissen lässt sich schliessen, dass zumindest ein 

essentieller Schritt zur Erkennung von AvrRps4 im Zellkern stattfindet. Weitere Ergebnisse 

deuten darauf hin, dass die beiden Rezeptorproteine RPS4 und RRS1 kooperativ arbeiten um 

Resistenz gegenüber AvrRps4 zu vermitteln.  

Um einen besseres Verständnis für die Funktion von AvrRps4 in der Pflanze und die 

Erkennung durch RPS4 und RRS1 zu bekommen, wurden die Interaktionspartner von 

AvrRps4 untersucht. AvrRps4 interagiert mit EDS1 im Zellkern der Pflanze, was darauf 
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hindeutet, dass EDS1 das Target (Zielprotein) von AvrRps4 sein könnte. Desweiteren wurde 

eine Interaktion von EDS1 mit RPS4 und RRS1 im Zellkern beobachtet. Diese Ergebnisse 

weisen darauf hin, dass sowohl die Erkennung von Effektorproteinen als auch die Aktivierung 

der Immunantwort im Zellkern der Pflanze stattfinden können.  
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1 INTRODUCTION 
 

Plants, like animals, are constantly exposed to attack by multiple pathogens such as viruses, 

bacteria, fungi or oomycetes that have different life styles and infection strategies (Dangl and 

Jones, 2001). Plant pathogens can be broadly divided into those that kill the host and feed on 

dead plant material (necrotrophs) and those that require a living host to complete their life 

cycle (biotrophs). However, disease is rather rare in nature due to the existence of a 

sophisticated multi-layered immune system. Unlike animals, plants lack a somatic adaptive 

immune system and rely on cell-autonomous events and the innate immune system. The 

innate immune systems of both plants and animals consist of two layers (Jones and Dangl, 

2006). The first layer is activated upon recognition of conserved molecules common to many 

classes of microbes, including potentially non-pathogens. The second responds to pathogen 

virulence proteins either directly or through their effects on host targets. Although the innate 

immune systems of animals and plants share common features and analogous regulatory 

modules, the two immune systems are likely the consequence of convergent evolution 

(Ausubel, 2005).  

 

1.1 First layer- recognition of conserved microbial patterns 
 

Plants possess passive and active defenses against pathogen attack. Preformed physical and 

biochemical barriers such as epidermal wax layers, the cell wall and apoplastic antimicrobial 

compounds, represent initial obstacles to infection that provide resistance against a wide 

range of potential plant pathogens (Heath, 2000). When pathogens are successful in 

overcoming these passive defenses, plants rely on active immunity to restrict pathogen 

proliferation.  

The first active layer of the plant immune system is based on the recognition of slowly 

evolving microbial-or pathogen-associated molecular patterns (MAMPs or PAMPs). These 

are conserved molecules, which are characteristic to certain classes of microbes and usually 

essential for the life cycle of the microbe, such as flagellin (Jones and Dangl, 2006). PAMPs 

are sensed at the plant cell surface by pattern-recognition receptors (PRRs), which leads to 

induction of PAMP-triggered immunity (PTI). PTI involves MAPK (mitogen-activated 

protein kinases) activation, production of reactive oxygen species (ROS), transcriptional re-

programming and hormone biosynthesis but does usually not include programmed cell death 
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at the infection site, named the hypersensitive response (HR) (Segonzac and Zipfel). So far 

characterized plant PRRs are transmembrane proteins belonging to the receptor-like kinase 

(RLK) or receptor-like protein (RLP) families. RLKs are structurally defined by the presence 

of a ligand-binding extracellular leucine-rich repeat (LRR) domain and a cytoplasmic kinase 

signalling domain. In animals, PAMPs are recognized by plasma-membrane resident Toll-like 

receptors (TLRs).  These receptors are characterized by an extracellular LRR domain and an 

intracellular Toll/Interleukin-1 receptor (TIR) protein-protein interaction domain that initiates 

a defense signalling cascade through interaction with signalling adaptors such as MyD88, 

which also have TIR domains (Hayashi et al., 2001; Ausubel, 2005; Kawai and Akira, 2007). 

In plants, the best characterized PRRs are FLS2 (FLAGELLIN SENSING 2) that perceives 

bacterial flagellin in most plant species and EFR (EF-TU RECEPTOR) that recognizes the 

elongation factor Tu (EF-Tu) in Brassicaceae species (Gomez-Gomez and Boller, 2000; 

Zipfel et al., 2006). Furthermore, the LysM-RLK CERK1 (CHITIN ELICITOR RECEPTOR 

KINASE 1) was indentified in Arabidopsis that is involved in perception of fungal chitin 

(Miya et al., 2007). Recently, the ligand of the rice PRR Xa21, which confers immunity to 

most strains of Xanthomonas oryzae pv. oryzae, was identified as the secreted protein Ax21 

(Chen et al., ; Lee et al., 2009b). A sulphated peptide corresponding to the first 17aa of Ax21 

is sufficient to trigger Xa21-mediated resistance. In contrast to the conserved PAMPs flagellin 

and EF-Tu, Ax21 shows only a narrow distribution and is restricted to Xanthomonas strains 

(Thomma et al.). Thus, the strict definition of PAMPs and PRRs as being conserved between 

species does not always hold since EFR is restricted to Brassicaceae and Xa21 provides race-

specific resistance to Xanthomonas.  

In addition to these pattern recognition receptor systems, another class of surveillance system 

recognizes plant-derived molecules known as DAMPs (damage-associated molecular 

patterns): DAMPs are endogenous molecules that appear in the intercellular space in response 

to the damage caused by a pathogen attack, e.g. cell wall fragments or effectors derived from 

cytoplasmic proteins (Lotze et al., 2007; Matzinger, 2007; Boller and Felix, 2009). One 

hypothesis is that the integration of PAMP and DAMP responses is critical to mount robust 

PAMP-triggered immunity. This signal integration might help plants to distinguish between 

pathogenic and non-pathogenic microbes.  
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1.2 Pathogen effectors- enhancers of virulence 
 

Successful pathogens have to avoid or actively suppress recognition of their PAMPs, given 

the ability of plants to recognize a multitude of PAMPs. Bacterial pathogens have acquired a 

needle-like type III secretion system (T3SS) which enables them to deliver effector proteins 

into plant cells to suppress plant defense responses (Alfano and Collmer, 2004). Plant 

pathogens such as the hemi-biotrophic bacterium Pseudomonas syringae deliver 15-35 

effectors per strain into host cells (Chang et al., 2005). The vast majority of the P. syringae 

DC3000 effectors can suppress ETI and many of them also PTI (Guo et al., 2009). This 

suggests an overlap in the signalling machinery between PTI and ETI (Katagiri and Tsuda, 

2010). A well characterized example for an effector protein that suppresses PTI is the P. 

syringae bipartite protein AvrPtoB. The amino terminus suppresses flagellin responses 

through its kinase-targeting domain and its carboxy-terminal E3 ligase domain can tag 

interacting kinase proteins with ubiquitin to direct them for degradation (Rosebrock et al., 

2007; Gimenez-Ibanez et al., 2009).  

In addition to suppression of plant defenses, some effectors may promote nutrient leakage or 

pathogen dispersal (Badel et al., 2002; Jones and Dangl, 2006). One example of an alternative 

bacterial effector strategy is given by the transcription activator-like (TAL) effectors of 

Xanthomonas spp., which are transcription factors that induce the expression of specific host 

genes, some of which contribute to symptom development (Kay and Bonas, 2009). 

In addition to effector proteins, pathogens can produce small molecules that mimic plant 

hormones. Some P. syringae strains produce coronatine, a mimic of a jasmonic acid precursor 

that suppresses salicylic-acid (SA)-mediated defense to biotrophic pathogens and induces 

stomatal opening, thereby facilitating pathogen entry into the apoplast  (Brooks et al., 2005; 

Melotto et al., 2006). Plants protect themselves from virulent pathogens by exerting the so-

called `basal resistance` which describes the residual, effector-suppressed level of PAMP-

triggered immunity (Jones and Dangl, 2006). 

 

1.3 Second layer- NB-LRR receptor mediated immunity 
 

To counteract the activities of pathogen effectors, plants have evolved resistance (R) proteins 

that specifically recognize these effectors.  In the absence of a matching R protein (compatible 

interaction) the effector exerts its virulence function, whereas recognition by its cognate R 

protein (incompatible interaction) results in a rapid defense response that overrides effector-
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suppression of PTI, named effector-triggered immunity (ETI)  (Jones and Dangl, 2006; Dodds 

and Rathjen). In this case, the recognized effector is called an avirulence (Avr) protein. The 

major differences between PTI and ETI result not from differences in the nature of the 

signalling machinery but are caused by a different timing and amplitude of the response  

(Katagiri and Tsuda, 2010).  

Activation of effector-triggered immunity induces a rapid influx of calcium ions, a burst of 

reactive oxygen species, activation of MAPKs, synthesis of SA, reprogramming of gene 

expression and often a hypersensitive response (HR) (Dodds and Rathjen, 2010).  Induction 

of this programmed cell death is thought to restrict pathogen colonization (Jones and Dangl, 

2006). However, it is not clear whether the HR is an essential component of disease resistance 

mechanisms in plants. For instance, resistance mediated by the potato R protein Rx to Potato 

virus X (PVX) involves the suppression of virus accumulation without an HR (Bendahmane et 

al., 1999). Recently, it was shown that two type I metacaspases, AtMC1 and AtMC2, 

antagonistically control programmed cell death in Arabidopsis (Coll et al., 2010). Mutation of 

AtMC1 could nearly eliminate the hypersensitive cell death response induced by plant 

intracellular immune receptor, but did not lead to enhanced pathogen proliferation, suggesting 

that HR is not always required for resistance. 

 

1.3.1 Direct and indirect recognition of pathogen effectors 

 

NB-LRR proteins can recognize pathogen effectors either directly through physical 

interaction (Figure 1A) or indirectly by detecting modifications caused by these effectors on 

host targets. A direct interaction of an effector with its cognate R protein is consistent with the 

gene-for-gene hypothesis proposed by Flor (Flor, 1971). In the case of direct recognition, 

effector and R proteins tend to show high levels of sequence polymorphism between alleles of 

the host and pathogen populations, reflecting the coevolutionary arms race between host and 

pathogen (Stukenbrock and McDonald, 2009). Direct recognition has been reported only for 

few cases (Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006) and given that the 

Arabidopsis Col-0 genome encodes only ~150 NB-LRR genes in contrast to thousand of 

pathogen effectors, direct interaction is most likely not the most prevalent mode of 

recognition (Meyers et al., 2003). 

Currently, three different models have been proposed that could explain indirect recognition 

mechanisms of an effector protein by its cognate R protein. The `guard` model postulates that 

R proteins function as `guards` of target host proteins (`guardee`) and are activated upon 
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effector-induced modifications of a target protein (Figure 1B) (Dangl and Jones, 2001). An 

extension of the guard hypothesis is described in the `decoy` model (van der Hoorn and 

Kamoun, 2008). In this model, a host protein that mimics the real virulence target of an 

effector can act as a decoy and participate solely in effector perception (Figure 1B). A further 

modification of the guard model is the bait-and-switch model, which describes a two-step 

recognition event (Figure 1C). First, an effector interacts with the target host protein 

associated with an NB-LRR which in turn facilitates direct recognition of the pathogen 

effector (Collier and Moffett, 2009). 

 

 
 
Fig. 1: Recognition mechanisms of pathogen effectors through plant resistance proteins. (A) In a direct 
recognition mechanism, the effector (red) physically interacts with the NB-LRR resistance protein (blue) which 
leads to defense signalling. (B) In the guard or decoy model, the effector modifies a host protein (green) that is 
either its virulence target (guard model) or a structural mimic of the target protein (decoy model). Effector-
induced alterations of this host protein are recognized by the receptor. (C) In the bait-and-switch model, the 
effector physically interacts with a host protein which in turn leads to direct recognition through the R protein. 
Adapted from Dodds and Rathjen, 2010.   
 

One example for an indirect recognition mechanism is Arabidopsis RIN4 (RPM1 

INTERACTING PROTEIN 4), a plasma-membrane-associated protein that negatively 

regulates basal host defense responses (Mackey et al., 2002; Mackey et al., 2003; Desveaux et 

al., 2007). Two unrelated type III effectors, AvrRpm1 and AvrB associate with and induce 

phosphorylation of RIN4. Recently, it was shown that RIPK, a receptor-like kinase, can 

phosphorylate RIN4 in response to these bacterial effectors (Liu et al., 2011). However, it is 

not clear whether AvrB can also directly phosphorylate RIN4. RIN4 phosphorylation 

activates the RPM1 resistance protein (RESISTANCE TO P. SYRINGAE PV. 

MACULICOLA 1) (Chung et al., 2011). A third effector, AvrRpt2 is a cysteine protease that 

cleaves RIN4 which leads to de-repression of the RPS2 (RESISTANCE TO P. SYRINGAE 

2) NB-LRR protein (Axtell and Staskawicz, 2003; Mackey et al., 2003). Activation of RPS2 

requires the GPI-anchored NDR1 protein, and RIN4 interacts with NDR1 (Day et al., 2006). 

   A Direct                                   B Guard/Decoy                               C Bait-and-Switch 

NB       LRR 

effector 

effector 

effector 

NB       LRR NB       LRR 
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These examples illustrate how plants use NB-LRR proteins to guard against pathogens that 

deploy effectors to inhibit defense induction.  

 

1.3.2 Structures and functions of resistance proteins 

 

Some plant R genes encode membrane bound proteins with an extracellular leucine-rich 

repeat (LRR) domain, either with or without an intracellular kinase domain. The 

corresponding Avr proteins are secreted into the apoplastic space during infection, where they 

may be detected (Dangl and Jones, 2001). However, the majority of known R genes encode 

intracellular proteins with an LRR (leucine-rich repeat) domain and a NB (nucleotide-

binding) domain. The NB domain is part of a larger domain termed NB-ARC that shows 

homology to cell death effectors such as the human Apaf-1 (APOPTOSIS ACTIVATING 

FACTOR 1) and Caenorhabditis elegans CED4 (CELL DEATH 4) (Dangl and Jones, 2001).  

Proteins that have an NB-ARC domain are evolutionary related to the mammalian nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs), many of which also function 

in innate immunity (Takken et al., 2006). Both plant and animal NB-LRR receptors belong to 

the STAND (signal transduction ATPases with numerous domains) group of NTPases. ATP 

hydrolysis of the NB-ARC domain is thought to trigger a conformational change leading to 

receptor activation and signal transduction (Takken et al., 2006). To prevent damage due to 

inappropriate activation, R proteins must be under tight negative control. This is thought to be 

accomplished by intramolecular interactions between the various subdomains of the R 

protein. Pathogen perception is proposed to release this autoinhibition, enabling the 

conformational changes required to activate defence signalling (Lukasik and Takken, 2009; 

Bernoux et al., 2011). 

The LRR domain of plant R proteins has a role in determining specificity towards an effector 

and direct effector-LRR interactions have been reported (Jia et al., 2000; Krasileva et al., 

2010). Extensive amino acid variation occurs in this domain as a result of strong diversifying 

selection (Rafiqi et al., 2009). However, in the L class of flax rust resistance genes, 

diversifying selection also acts on the N-terminal receptor domain indicating that these 

residues are likely co-evolving with the corresponding LRR domain to provide specificity 

(Luck et al., 2000). Also, the tobacco (Nicotiana tabacum) NB-LRR receptor N recognizes 

the helicase domain of Tobacco Mosaic Virus (TMV) replicase protein, termed p50, through 

association with its N-terminal domain (Burch-Smith et al., 2007).  
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Plant NB-LRR proteins are subdivided into two classes based on their N-terminal domain: 

they carry either a coiled coil (CC) domain or a TIR domain with homology to Drosophila 

Toll and mammalian Interleukin-1 receptors (Meyers et al., 2003). In animal TLRs, PAMP 

perception induces homo-dimerization of the cytoplasmic TIR domain which provides a new 

scaffold that can bind to adapter proteins and activates defense signalling (Tapping, 2009). 

Overexpression of the TIR domain of plant R proteins can trigger an effector-independent cell 

death response suggesting that the TIR domain of plants is also involved in mediating R 

protein signalling (Frost et al., 2004; Swiderski et al., 2009).  Recently, it was shown that 

homo-dimerization of the TIR domain of L6 strongly correlates with autoactivity in planta, 

suggesting that this is a key event in defense signalling (Bernoux et al., 2011). Also for the 

MLA CC domain it has been recently shown that this domain forms homo-dimers and that 

homo-dimerization is required for autoactivity in planta (Maekawa et al., 2011). 

In contrast to plants, mammalian NB-LRR proteins carry either N-terminal caspase 

recruitment (CARD) or pyrin domains that link activated NB-LRR receptors to both 

activation of nuclear factor κB (NF-κB) and the caspase I complex leading to production of 

proinflammatory cytokines  (Strober et al., 2006; Ting et al., 2006). Mammalian NOD 

receptors recognize only highly conserved microbe-associated molecules (e.g. peptidoglycan) 

in contrast to species-specific effectors recognized by plant NB-LRRs. For vertebrates, the 

evolution of the adaptive immune system may have obviated the need for pathogen-specific 

PRRs or may have allowed their disappearance (Ausubel, 2005). 

 

1.3.3 Components required for R protein-mediated resistance 

 

Genetic screens for loss of resistance in plants have identified several components required 

for the function of NB-LRR receptors. Mutations in the cochaperone HSP90 (HEAT SHOCK 

PROTEIN 90) compromise resistance triggered by the CC-NB-LRR receptors RPM1 and 

RPS2  (Hubert et al., 2003; Takahashi et al., 2003). Furthermore, it has been demonstrated 

that RAR1 (REQUIRED FOR Mla12 RESISTANCE 1) and SGT1 (SUPPRESSOR OF G-2 

ALLELE OF SKIP1) are co-chaperones of HSP90 in the folding of NB-LRR proteins, and are 

required for efficient defense activation (Shirasu and Schulze-Lefert, 2000; Belkhadir et al., 

2004; Shirasu, 2009). Each of these three proteins can independently interact with one another 

and it is thought that RAR1, SGT1 and HSP90 operate together as a cytosolic co-chaperone 

for NB-LRR function (Nishimura and Dangl, 2010).  
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The signal transduction pathway downstream of activated NB-LRR receptors is poorly 

understood. TIR-and CC-type NB-LRR receptors employ different signalling components.  

EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1), which encodes a lipase-like protein, is 

required for the function of TIR-NB-LRR class R genes (Parker et al., 1996; Falk et al., 1999; 

Feys et al., 2001), whereas NDR1 (NON-RACE SPECIFIC DISEASE RESISTANCE 1) 

encoding a plasma membrane-localized protein is essential for the function of most, but not 

all, CC-NB-LRR class R genes (McDowell et al., 2000; Day et al., 2006). In addition to its 

role in TIR-NB-LRR mediated resistance, EDS1 is an essential component of basal resistance 

to virulent biotrophic and hemi-biotrophic pathogens (Falk et al., 1999). It forms complexes 

in the cytoplasm and nucleus with its defense co-regulators PAD4 (PHYTOALEXIN 

DEFICIENT 4) and SAG101 (SENESCENCE ASSOCIATED GENE 101) (Feys et al., 2001; 

Feys et al., 2005). EDS1 and PAD4 function upstream of pathogen-induced SA accumulation, 

but their expression is also enhanced by exogenous applications of SA indicating that defense 

induction involves a SA-associated positive feedback loop that may potentiate resistance 

(Shirasu et al., 1997; Falk et al., 1999; Jirage et al., 1999). EDS1 was shown to signal 

downstream of activated TIR-NB-LRR receptors and upstream of the transcriptional 

reprogramming of defense genes and cell death induction (Rusterucci et al., 2001; 

Wirthmueller et al., 2007; Garcia et al., 2010). A balanced nuclear and cytoplasmic 

distribution of EDS1 is required for the coordinated induction and repression of particular 

defense-related genes and the establishment of an appropriate immune response (Garcia et al., 

2010). However, it is not yet clear what intermediaries connect EDS1 and activated TIR-NB-

LRRs.  

 

1.3.4 Subcellular localization of NB-LRR immune receptors and pathogen effectors 

 

The establishment of an appropriate immune response requires the spatial and temporal 

regulation of its immune components (Deslandes and Rivas, 2011). Recent studies on the 

localization of defense components showed that many subcellular organelles play a role in 

orchestrating a successful immune response (Padmanabhan and Dinesh-Kumar, 2010). 

Especially protein translocation to the nucleus constitutes an important level for the regulation 

of the defense response (Garcia and Parker, 2009).  

Several R proteins have been found to localize to the nucleus, including N, MLA, RPS4, and 

snc1 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1), and their nuclear localization is 

required for proper functioning (Burch-Smith et al., 2007; Shen et al., 2007; Wirthmueller et 
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al., 2007; Cheng et al., 2009). The tobacco (Nicotiana tabacum) TIR-NB-LRR protein N 

confers resistance against Tobacco Mosaic Virus (TMV) through recognition of the viral 

helicase protein p50. N has a nucleo-cytoplasmic distribution and interfering with its nuclear 

localization renders the receptor non-functional in triggering resistance (Burch-Smith et al., 

2007). N associates with transcription factors via its LRR domain and thus provides a link of 

receptor function to transcriptional reprogramming of host cells (Shen and Schulze-Lefert, 

2007). Nuclear activity was also shown for the barley CC-NB-LRR protein MLA. Shen et al 

(2007) could show that nuclear localization of MLA10 is required for race-specific resistance 

towards the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh). The nuclear pool 

of MLA10 associates with two WRKY transcription factors that function as negative 

regulators of resistance and the MLA10-HvWRKY2 interaction abolishes WRKY repressor 

function, enabling rapid defense gene induction (Shen et al., 2007). These data suggest a 

relatively short pathway between R protein activation and downstream transcriptional 

reprogramming. 

The importance of subcellular localization of effector proteins for recognition through their 

cognate R proteins has been shown only in few cases. A recent study by Slootweg et al (2010) 

investigated the role of the subcellular distribution of the Potato Virus X (PVX) coat protein 

(CP) for the function of its cognate receptor protein. PVX CP is recognized in potato 

(Solanum tuberosum) by the CC-NB-LRR receptor Rx1 that shows a nucleo-cytoplasmic 

distribution (Slootweg et al., 2010). Forcing PVX CP exclusively to the nucleus showed that 

Rx1 needs to be activated in the cytoplasm and that the CP is not able to activate Rx1 in the 

nucleus (Slootweg et al., 2010). Another example is the Xanthomonas campestris pv. 

vesicatoria effector avrBs3 that requires functional NLSs for induction of HR on pepper 

carrying the R gene Bs3 (VandenAckerveken et al., 1996). However, these studies solely 

utilized HR induction as an indicator of recognition.  

In eukaryotes, trafficking between the cytoplasm and the nucleus occurs via the nuclear pore 

complexes (NPCs) consisting of approximately 30 nucleoporins that form channels through 

the nuclear envelope (Cook et al., 2007; Meier, 2007; Xu and Meier, 2008). Proteins larger 

than 50kDa cannot passively diffuse through the nuclear pore and thus require specific 

transporters. Nuclear import is mediated by importin α which recognizes nuclear localization 

sequences (NLS) consisting of a short stretch of basic residues (three to six Lys/Arg) and 

forms a heterodimer with importin β. This allows an energy-dependent, Ran-mediated 

translocation of the proteins through the nuclear pore (Gorlich et al., 1995). Nuclear export is 
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directed via exportins that recognize Leucine-rich nuclear export sequences (NES) (Haasen et 

al., 1999; Hutten and Kehlenbach, 2007). 

The importance of nucleocytoplasmic trafficking for both basal resistance and R protein-

mediated resistance was underlined by a suppressor screen that identified components 

required for the Arabidopsis snc1 mutant phenotype. Snc1 contains a gain-of-function 

mutation in the NB-LRR linker region of a TIR-NB-LRR receptor resulting in an 

autoactivated defense response and increased resistance to several pathogens (Li et al., 2001; 

Zhang et al., 2003). In a snc1 suppressor screen, mutations in MOS3, MOS6 and MOS7 (for 

MODIFIER OF SNC1) were identified (Palma et al., 2005; Zhang and Li, 2005; Cheng et al., 

2009). MOS3 and MOS7 encode homologs of the nucleoporins Nup96 and Nup88 and MOS6 

encodes importin α3. Mammalian Nup88 promotes nuclear retention of NFκB transcription 

factors thereby regulating the immune reponse (Xylourgidis et al., 2006). Similarly, MOS7 is 

required for the nuclear accumulation of EDS1 and the autoactivated snc1 protein, suggesting 

that regulation of the nuclear accumulation of some defense components is crucial for 

orchestrating an appropriate immune response (Cheng et al., 2009).  

 

1.4 The Arabidopsis TIR-NB-LRR receptors RPS4 and RRS1  
 

RPS4 (RESISTANCE TO P. SYRINGAE 4) was identified in Arabidopsis due to its ability to 

confer resistance to P. syringae pv. tomato (Pst) expressing the effector protein AvrRps4 

(Hinsch and Staskawicz, 1996). The RPS4 locus (At5g45250) was mapped to a disease 

resistance gene cluster on chromosome 5 in a cross between Arabidopsis accession RLD 

(susceptible) and Ws-0 (resistant) (Gassmann et al., 1999). RPS4 encodes a TIR-NB-LRR 

receptor that in addition to the TIR and NB-ARC domains harbors 15 degenerate LRRs 

consisting of 24 aa each and C-terminal 318 aa that do not show homology to other known 

proteins. The non-functional rps4 allele from RLD encodes a protein that contains five amino-

acid changes compared to the functional Col-0 protein (Gassmann et al., 1999). A T-DNA 

insertion line in Col-0, designated rps4-2, was shown to be more susceptible to Pst AvrRps4 

compared to Col-0 but did not show compromised basal resistance to virulent bacteria 

(Wirthmueller et al., 2007). 

Consistent with other TIR-NB-LRR R genes from different plant species, RPS4 produces 

alternative transcripts with truncated open reading frames encoding mainly the TIR and NBS 

domains and a combination of full length and alternative transcripts is required for RPS4 

function (Gassmann et al., 1999; Zhang and Gassmann, 2003). As mentioned for other TIR-
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NB-LRR receptors, the TIR domain of RPS4 is likely to have a signalling role during 

resistance responses since transient expression of the TIR domain plus 80 aa of the NB-ARC 

domain in Nicotiana benthamiana leads to cell death (Swiderski et al., 2009). 

As a member of the TIR-NB-LRR class of R proteins, RPS4 shows complete dependence on 

EDS1. Constitutive RPS4 overexpression in stable transgenic Arabidopsis lines induces 

dwarfism resembling an auto-activated defense response, which is EDS1-dependent 

(Wirthmueller et al., 2007). Moreover, overexpression of RPS4 in N. benthamiana triggers 

AvrRps4-independent cell death that is dependent on NbEDS1, NbSGT1 and NbHSP90 

orthologs (Zhang et al., 2004). How activated RPS4 links molecularly to EDS1-dependent 

defense induction is not known. 

RPS4 contains a bipartite NLS in the C-terminus and a subpool of functional RPS4 was 

shown to localize to nuclei, whereas the majority of RPS4 protein is associated loosely with 

endomembranes (Wirthmueller et al., 2007). Mutation of the NLS and thus depletion of the 

nuclear RPS4 pool correlates with loss of RPS4 function (Wirthmueller et al., 2007). 

However, the exact roles of nuclear or the endomembrane pools of RPS4 in AvrRps4-

triggered resistance are not known. 

 

Arabidopsis RRS1 (RESISTANCE TO R. SOLANACEARUM 1) was identified by its ability to 

confer resistance to the bacterial strain Ralstonia solanacearum GMI1000 (Deslandes et al., 

2002). The RRS1 locus (At5g45260) maps to a disease resistance gene cluster on chromosome 

5 where RPS4 is also located (Deslandes et al., 2002).  RRS1 encodes an unusual TIR-NB-

LRR-type receptor harbouring a C-terminal WRKY transcription factor domain (Deslandes et 

al., 2002; Eulgem and Somssich, 2007). According to the Rosetta stone principle (Enright and 

Ouzounis, 2001), the existence of such a chimeric protein is an indication that interaction with 

transcription factors may be part of the R protein signalling mechanism, as was shown for 

MLA10 (Shen et al., 2007). A single amino acid insertion in the RRS1 WRKY domain in the 

slh1 (SENSITIVE TO LOW HUMIDITY 1) mutant causes a loss of DNA-binding activity and 

results in autoactivation of defense responses and hypersensitive cell death (Noutoshi et al., 

2005). This suggests that RRS1, as most WRKY transcription factors, acts as a negative 

regulator of defense gene induction (Noutoshi et al., 2005; Eulgem and Somssich, 2007).  

The RRS1 gene exhibits a high level of sequence polymorphism between Arabidopsis 

accessions and different allelic variants appear to be required to confer resistance to different 

pathogens (Birker et al., 2009; Narusaka et al., 2009). Based on resistance to R. 

solanacearum, the Col-0 RRS1 allele is termed RRS1-S (for susceptible) and the Nd-1 allele 
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RRS1-R (for resistant). In comparison to RRS1-R, RRS1-S contains several amino acid 

substitutions in the TIR-NB-LRR region and a 90 amino acid deletion at its C-terminus after 

the WRKY domain (Deslandes et al., 2002). RRS1-R recognizes the R. solanacearum 

GMI1000 type III effector PopP2, which belongs to the YopJ/AvrRxv protein family that is 

conserved in both mammalian and plant pathogens (Staskawicz et al., 2001; Deslandes et al., 

2003). PopP2 contains a predicted NLS and localizes to the plant nucleus where it physically 

interacts with RRS1-R and RRS1-S (Tasset et al., 2010). Thus, the susceptibility of Col-0 to 

R. solanacearum GMI1000 cannot be explained by the lack of interaction between PopP2 and 

RRS1-S. PopP2 is able to stabilize RRS1-R and RRS1-S protein accumulation in planta 

probably through inhibition of their proteasome-dependent degradation (Tasset et al., 2010). 

As for other members of the YopJ/AvrRxv protein family, PopP2 displays acetyl-transferase 

activity and is able to auto-acetylate. RRS1-R is able to perceive this enzymatic activity 

leading to the activation of a resistance response whereas RRS1-S might be unable to perceive 

PopP2 acetyl-transferase activity (Tasset et al., 2010).  

 

In addition to AvrRps4-triggered resistance, RPS4 was shown to be required for resistance 

against R. solanacearum and the hemibiotrophic fungus Colletotrichum higginsianum  (Birker 

et al., 2009; Narusaka et al., 2009). Similarly, RRS1 mediates resistance not only to R. 

solanacearum PopP2 but is involved as well in the immune response against Pst AvrRps4 and 

C. higginsianum (Birker et al., 2009; Narusaka et al., 2009). Thus, both TIR-NB-LRR 

receptors were found to confer resistance to three different pathogens. As already mentioned, 

the RRS1 gene displays high sequence polymorphisms and different allelic variants are 

required to confer resistance to different pathogens. Accession Col-0 harbours the RRS1-S 

allele and is susceptible to R. solanacearum and C. higginsianum but resistant to Pst AvrRps4 

(Birker et al., 2009; Narusaka et al., 2009). The molecular basis for the allelic dependency on 

recognition capability is not known. In the Arabidopsis genome, RPS4 and RRS1 display a 

head-to-head (inverted) tandem arrangement separated by a small intergenic region (254bp) 

(Gassmann et al., 1999). This region contains potential cis-regulatory motifs arranged in 

opposite orientations: the E2F consensus sequence, which can be bound by E2F transcription 

factors, and Element II, both of which are characteristic of plant bidirectional promoters  

(Birker et al., 2009; Dhadi et al., 2009). It was found that homologs of RPS4 are physically 

paired with homologs of RRS1 in Arabidopsis, and that these gene pairs also display a head-

to-head arrangement with variable spacings (Gassmann et al., 1999). The evolutionary 

conservation of homologous gene pairs in a head-to-head arrangement might allow 
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cooperative action of these genes since this might lead to a transcriptional co-regulation and 

thus balanced levels of the protein pair (Narusaka et al., 2009). It was shown that mutation of 

both RPS4 and RRS1 genes in Ws-0 does not lead to increased susceptibility to any of the 

three pathogens compared with each single mutant indicating that these two NB-LRR 

receptors might function closely together (Narusaka et al., 2009). Resistance mediated by 

pairs of NB-LRR genes is an emerging theme in the field (Eitas and Dangl, 2010). The two 

NB-LRR receptors RPP2A and RPP2B are both required to confer isolate-specific resistance 

to Hyaloperonospora arabidopsidis and are thought to function cooperatively (Sinapidou et 

al., 2004). This is in contrast to the case of TAO1, a TIR-NB-LRR gene that, together with 

RPM1, additively contributes to resistance against Pst expressing AvrB (Eitas et al., 2008). 

It was shown in several reports that a single R gene can confer resistance to multiple 

pathogens. For instance, the tomato Mi resistance gene mediates resistance to three different 

types of pest (Nombela et al., 2003). However, RPS4 and RRS1 so far represent the only pair 

of R genes that induces dual resistance against three distinct pathogens. Analysis of RPS4 and 

RRS1 functions and interactions might provide deeper insights into the molecular 

mechanisms required for pathogen perception and reveal common components involved in 

resistance to diverse pathogens. 

 

1.5 The Pseudomonas syrinage type III effector AvrRps4 
 

AvrRps4 was cloned from the plant pathogenic bacterial strain Pseudmonas syringae pv. pisi 

based on its ability to induce HR on Arabidopsis accession Po-1 (Hinsch and Staskawicz, 

1996). From DNA hybridization experiments, it was shown that AvrRps4 is present in all P. 

syringae pv. pisi strains tested as well as in P. syringae pv. glycinea and pv. phaseolicola 

(Hinsch and Staskawicz, 1996). AvrRps4 is secreted into the plant cell by the bacterial T3SS, 

where it is then processed into a smaller form (Sohn et al., 2009). The C-terminal 88 amino 

acids are sufficient to induce resistance. A virulence activity of AvrRps4 could be 

demonstrated since expression of AvrRps4 in Arabidopsis plants lacking RPS4 promotes 

susceptibility of Pst bacteria and can suppress PTI (Sohn et al., 2009). In planta processing is 

required for this virulence but not for the avirulence activity of AvrRps4 (Sohn et al., 2009). 

The KRVY motif at the N-terminus of cleaved AvrRps4 is required for both virulence and 

avirulence function (Sohn et al., 2009).  

As mentioned previously, AvrRps4 is recognized by the two TIR-NB-LRR receptors RPS4 

and RRS1. Recently, it was shown that the TIR-NB-LRR gene SNC1 also contributes to 
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AvrRps4-triggered immunity in the absence of RPS4 at a certain temperature (Kim et al., 

2010). In contrast to RPS4/RRS1-mediated resistance, RPS4 and SNC1 contribute additively 

to AvrRps4-triggered resistance (Kim et al., 2010). 

Thus, AvrRps4 recognition seems to involve a complex mechanism involving several receptor 

proteins. Molecular and genetic dissection of this recognition mechanism could provide 

further insights into immune receptor signalling networks. 

 

1.6 Thesis aims 
 

Deciphering the molecular mechanisms by which bacterial effectors are recognized by 

resistant hosts is important for our understanding of host-pathogen communication and co-

evolution. Although R proteins were first reported as plant immune receptors more than 15 

years ago, how these proteins activate downstream defense responses is largely unknown. 

Identification of potential downstream signalling partners in plants will enhance our 

knowledge of plant immunity. In Arabidopsis, the P. syringae effector AvrRps4 is recognized 

by two TIR-NB-LRR-type receptors RPS4 and RRS1. RPS4 and RRS1 represent the only R 

gene pair so far characterized that induces resistance to three distinct pathogens. Analysis of 

RPS4 and RRS1 function might thus provide deeper insights into the molecular mechanisms 

required for pathogen perception and reveal common components and mechanisms involved 

in resistance to diverse pathogens. Nuclear localization of RPS4 is required for its resistance 

function but it remained unclear how and where in the host cell AvrRps4 is perceived by its 

cognate R proteins. The importance of subcellular localization of effector proteins for 

recognition through their cognate R proteins has been shown only in few cases. 

Therefore, the aims of my thesis were to: (1) analyze in which subcellular compartment 

AvrRps4 induces a resistance response, (2) determine the modes of action of RPS4 and RRS1 

in response to AvrRps4 and (3) identify a potential virulence target of AvrRps4 in the host 

and dissect the molecular mechanism of resistance signalling through RPS4 and RRS1.  

To explore in which subcellular compartment AvrRps4 recognition takes place, transgenic 

Arabidopsis lines were generated expressing AvrRps4 fused to a functional or mutated 

nuclear localization (NLS) or nuclear export signal (NES) and tested for defense activation. 

Also, P. syringae strains expressing AvrRps4-NLS or -NES variants were tested for induction 

of resistance leading to restriction of bacterial growth. To determine the modes of action of 

RPS4 and RRS1 in response to AvrRps4, a knockdown line of RRS1 in Col-0 rps4 mutant 

background was generated and analyzed in terms of resistance activation to bacteria 
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expressing AvrRps4. Furthermore, transgenic lines overexpressing functional epitope-tagged 

RPS4 protein in the rrs1 mutant background were generated to assess to which extent RPS4 

function might be dependent on RRS1. Finally, an interaction between RPS4 and RRS1 in 

planta was determined. In order to identify potential virulence targets of AvrRps4 and to 

dissect resistance signalling in response to AvrRps4, interaction partners of AvrRps4 in 

planta were analyzed.  
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2 RESULTS 
 

2.1 Nuclear localization of AvrRps4 is required to induce full disease  
      resistance  
 

2.1.1 Enforced localization of AvrRps4 to a specific cellular compartment 

 

The P. syringae pv. pisi effector AvrRps4 is translocated to the plant cell via the type III 

secretion system (Sohn et al., 2009). It was shown that AvrRps4 is cleaved in planta by an 

unknown protease but not in bacteria or yeast and that only the C-terminus induces a defense 

response in resistant Arabidopsis genotypes or backgrounds (Sohn et al., 2009). AvrRps4 is 

recognized by the two TIR-NB-LRR-type receptors RPS4 and RRS1 (Birker et al., 2009; 

Narusaka et al., 2009). RPS4 localizes to nuclei and is associated with endomembranes and 

depletion of the nuclear RPS4 pool correlates with loss of RPS4 function (Wirthmueller et al., 

2007). RRS1 was shown to localize exclusively to the plant nucleus when coexpressed with 

its elicitor PopP2 (Deslandes et al., 2003). 

In order to determine in which subcellular compartment AvrRps4 is recognized, I created a 

set of constructs of the full length AvrRps4 protein C-terminally fused to mYFP and a signal 

that alters its localization in the plant cell. Since AvrRps4 is cleaved in planta, only the C-

terminus would be directed to a specific subcellular compartment by the localization signal. 

To target AvrRps4 C-terminus to the nucleus, it was fused to the SV40 Large T-antigen 

monopartite nuclear localization signal (Lanford and Butel, 1984; Haasen et al., 1999). The 

PKI nuclear export signal (Wen et al., 1995) was used to promote AvrRps4 C-terminus export 

from the nucleus to the cytoplasm. As controls, fusions were made with mutated, non-

functional versions of these targeting signals (nes and nls). The constructs were first 

transiently expressed by Agrobacterium-mediated infiltration in N. benthamiana leaves. 

Optimal fluorescence levels for microscopic imaging were reached 2 to 3 days after 

infiltration. AvrRps4-mYFP showed a nuclear and cytoplasmic distribution in N. 

benthamiana epidermal cells although a putative nuclear localization sequence was not 

predicted using the PSORT  program (Nakai and Horton, 1999). The AvrRps4 C-terminus 

fused to mYFP (37kDa) is below the size exclusion limit of ~50kDa of the nuclear pore  
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Fig. 2: Enforced localization of AvrRps4 to a specific cellular compartment. 
(A) Subcellular localization of YFP-tagged AvrRps4 constructs fused to functional (big letters) or mutated 
(small letters) NLS or NES. Confocal images of representative cells were taken at 72 hours after Agrobacterium 
infiltration in N. benthamiana epidermal cells. Right panel shows 3D plot of the image in the left panel. The 
transient expression assay was repeated three times with similar results. Arrowheads indicate nuclei. Scale bars= 
25µm. (B) Immunoblot analysis showing expression of AvrRps4 fusion proteins. AvrRps4-mYFP-NES protein 
is not detectable. Samples were taken 72hpi from leaf tissue. Membrane was probed with α-GFP antibody. 
Ponceau staining was performed to ensure equal loading.  
 

complex and might thus passively diffuse into the nucleus (Xu and Meier, 2008). This is in 

contrast to the results of Wirthmueller et al (2007), who showed only cytoplasmic localization 

of AvrRps4-HA in a biochemical nuclear fractionation experiment (Wirthmueller et al., 

2007). This discrepancy might be due to the method since AvrRps4-HA might have leaked 

out of the nuclei during the fractionation procedure and was thus not detectable in the nuclear 

fraction. 

Confocal microscopy imaging of the constructs expressed from the constitutive CaMV 35S-

overexpression promoter in N. benthamiana confirmed that the NES and NLS sequences were 

able to redirect the localization of the C-terminus of AvrRps4 although the fusion proteins are 

small enough to passively diffuse between cytoplasm and nucleus (Figure 2A, left panel). 

When fused to the mutated nls sequence, AvrRps4-mYFP-nls gave stronger nuclear 

accumulation than AvrRps4-mYFP suggesting that the mutation of one amino acid is not 

sufficient to completely disrupt the NLS sequence function. Fluorescence signals in 

cytoplasm and nucleus were quantified by 3D plot analysis. This further supported the 

functionality of localization sequences in N. benthamiana (Figure 2A, right panel).  

Protein accumulation of mYFP-fusions 3 days after infiltration was analyzed by immunoblot 

analysis (Figure 2B). The AvrRps4-mYFP-NES fusion protein was not detectable on a 

Western Blot probed with α-GFP antibody although fluorescence was visible (Figure 2A). 

This might be due to a conformational change of YFP that prevents exposure of the epitope. 

Furthermore, cleavage of AvrRps4-mYFP fusion proteins into an N- and a C-terminal part 

was confirmed, although not all protein was cleaved, probably due to the overexpression of 

AvrRps4 fusion proteins. 

Transient expression of AvrRps4 fusion proteins in N. benthamiana did not lead to cell death 

induction since AvrRps4 is not recognized in N. benthamiana. Also, coexpression of 

AvrRps4-mYFP and RPS4-YFP did not affect the weak cell death induced by RPS4-YFP 

alone (data not shown). 

I was interested to determine the effects of directed mis-localisation of AvrRps4 in its host 

plant Arabidopsis in which AvrRps4 is recognized and triggers a defense response. For that, I 

generated several independent transgenic lines that stably express AvrRps4 C-terminally 
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fused to a functional or mutated NLS or NES sequence by transforming the overexpression 

(p35S) constructs that were already characterized in N. benthamiana to a Col-0 eds1-2 

background. The eds1-2 mutant is defective in downstream signalling after activation of TIR-

NB-LRR-type intracellular R proteins and thus enabled me to first analyse protein expression 

and localization of AvrRps4 C-terminus without induction of a defense response. Transgenic 

lines were then selected that express AvrRps4 fusion proteins to similar levels but do not 

massively overexpress it. 

 

 
Fig. 3: Stable overexpression of AvrRps4 fusion proteins in Arabidopsis eds1-2 plants. 
(A) Transgenic T2 plants overexpressing YFP-tagged AvrRps4 fused to functional or mutated NLS or NES in 
Col-0 eds1-2 do not show any morphological defects. Picture was taken of 4 week old plants. (B) Confocal 
microscopy of transgenic Arabidopsis lines show that localization tags are also functional in Arabidopsis. 
Images of representative cells were taken of 3 week old plants.   
 

Stable overexpression of AvrRps4 fusions in Col-0 eds1-2 background did not lead to a 

morphological defect (Figure 3A). Confocal microscopy of AvrRps4-mYFP in these lines 

showed that the NLS and NES localization sequences are also functional in Arabidopsis 

(Figure 3B). 
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2.1.2 AvrRps4 needs to localize to the plant nucleus to induce a full resistance response 

 

To establish in which subcellular compartment AvrRps4 induces a resistance response, I 

crossed the segregating T2 generation of the stable transgenic lines overexpressing AvrRps4 

fusion proteins in eds1-2 background with Col-0 to introduce an EDS1 allele. The F1 progeny 

of multiple transgenics were analyzed in terms of their growth inhibition as a marker of 

resistance activation when grown at 22°C under short day conditions (see Methods section). 

   

 

 
Fig. 4: AvrRps4 needs to localize to the plant nucleus to induce a full resistance response. 
(A) Stable overexpression of AvrRps4-mYFP and AvrRps4-mYFP-NLS/nls/nes in an EDS1 containing 
background induces strong dwarfism. Overexpression of AvrRps4-YFP-NES does not result in dwarfism, 
although plants are smaller than Col-0 wildtype plants. Pictures were taken of 4 week old F1 plants. (B) 
Quantitative measurement of plant size of 5 week old F1 plants. Diameter of plant rosettes was measured. (C) 
Equal accumulation of AvrRps4-mYFP fusion proteins in F1 plants was verified by immunoblot analysis. 
Membrane was probed with α-GFP antibody and a Ponceau staining was performed to ensure equal sample 
loading.  
 

The stable overexpression of AvrRps4-mYFP in an EDS1 containing background caused 

severely dwarfed plants that died after approximately six weeks when grow under short day 

conditions at 22°C. Also, overexpression of nuclear accumulated AvrRps4 C-terminus in 
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AvrRps4-mYFP-NLS lines caused strong dwarfism and eventually death (Figure 4A, B). 

Interestingly, overexpression of only cytoplasmic localized AvrRps4-mYFP-NES did not 

cause severe dwarfism although these plants were smaller than Col-0 wt plants (Figure 4A, 

B). This phenotype is not due to different protein expression levels of AvrRps4 fusion 

proteins as shown by immunoblot analysis (Figure 4C). Although the AvrRps4-mYFP-NES 

fusion protein was not detectable in immunoblot analysis when transiently expressed in N. 

benthamiana plants (Figure 2B), it was detectable in the stable Arabidopsis transgenics. These 

results indicate that the AvrRps4 C-terminus needs to localize to the plant nucleus to induce a 

strong resistance response as measured by inhibition of plant growth. The reduced plant size 

of 35S::AvrRps4-mYFP-NES Col-0 plants compared to Col-0 wt plants might be due to the 

fact that the AvrRps4 fusion protein needs to reside for a short time in the plant nucleus 

before it is exported to the cytoplasm. This may be sufficient to induce a partial defense 

response that results in growth inhibition. Alternatively, it cannot be excluded that extra-

nuclear AvrRps4 also contributes to full resistance. 

 

2.1.3 Delivery of AvrRps4 to the plant cell via the bacterial type III secretion system 

 

To avoid prolonged overexpression of a bacterial protein in the host plant Arabidopsis, I 

followed a complementary approach in which the AvrRps4 variants were secreted via the 

bacterial type III secretion system. This approach allowed AvrRps4 analysis under more 

natural conditions since the bacteria expressing AvrRps4 variants had to gain excess to the 

plant by entry through the stomata. Furthermore, AvrRps4 was not constitutively 

overexpressed in the host plant but could be expressed under control of its native promoter. 

For this, I generated P. syringae pv. tomato (Pst) DC3000 bacteria expressing AvrRps4 

variants by using the effector detector vector system (EDV) that contains the native promoter 

of AvrRps4 (vector kindly provided by J. Jones group; Sainsbury Laboratory, Norwich, UK). I 

cloned full length AvrRps4 into it, C-terminally fused to an HA-tag and a functional or 

mutated NLS or NES sequence. I used the NES sequence of the HIV Rev protein (Wen et al., 

1995) for these constructs since fusions of AvrRps4 to the PKI NES sequence were not 

detectable by immunoblot analysis (Figure 2B). Introduction of AvrRps4-HA fused to a 

functional or mutated NLS or NES sequence to Pst DC3000 did not alter bacterial growth 

rates in bacterial growth medium (data not shown). To rule out the possibility that the 

attachment of a localization tag might interfere with AvrRps4 secretion via the T3SS, I 

measured AvrRps4 delivery in a secretion assay in type III secretion induction media 
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(Mudgett and Staskawicz, 1999). I was able to detect similar levels of uncleaved AvrRps4 

fusion proteins in the cellular lysate and secreted fraction by immunoblot analysis (Figure 

5B).  

 

 
Fig. 5: Pst DC3000 and Pfo bacteria express and secrete HA-tagged AvrRps4 variants. 
(A) Secretion assay of P. fluorescens strains expressing AvrRps4-HA fused to a functional or mutated NLS or 
NES confirms that AvrRps4 fusion proteins are expressed and secreted to similar levels. Membranes were 
probed with α-HA and α-RIP1 antibody and a Ponceau staining was performed to ensure equal sample loading. 
(B) Secretion assay of Pst DC3000 strains expressing AvrRps4-HA fused to a functional or mutated NLS or 
NES confirms that AvrRps4 fusion proteins are expressed and secreted. AvrRps4-HA-NLS/nls proteins are 
expressed and secreted to lower amounts compared to AvrRps4-HA. Membranes were probed with α-HA and α-
RIP1 antibody and a Ponceau staining was performed to ensure equal sample loading.  
 

2.1.4 Bacteria expressing AvrRps4-NES induce a weaker resistance response 

 

In order to determine if enforced localisation of the AvrRps4 C-terminus to a specific 

subcellular compartment might alter its recognition, resistant Col-0 plants that contain 

functional RPS4 and RRS1 alleles (Gassmann et al., 1999; Birker et al., 2009; Narusaka et al., 

2009), were spray infected with Pst DC3000 expressing AvrRps4 variants (7x107 cfu/ml). 

The Col-0 eds1-2 mutant was included as measure of full bacterial growth potential. As a 

control for successful infection, Pst DC3000 wt bacteria were also inoculated. A similar entry  

rate of bacteria to the plant was ensured by measuring bacterial growth 4h after spray 

infection (hpi) (data not shown). 
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Fig. 6: Bacteria expressing AvrRps4-NES induce a weaker resistance response. 
(A) Five week old plants of the indicated genotypes were spray-infected with Pst DC3000 expressing AvrRps4 
variants. Bacterial titers 3 days post infection (dpi) are depicted. Bacterial entry was determined at 4hpi and was 
similar for all genotypes and bacterial strains but is not shown here due to space limitations. Error bars represent 
standard error of 3 biological replicates. Characters a-d indicate significant differences in growth (Student`s t-
test: p= 0.05). The experiment was repeated twice with similar results. (B) Five week old plants of the indicated 
genotypes were spray-infected with Pst DC3000 expressing AvrRps4 variants. Bacterial titers 3 days post 
infection are depicted. Bacterial entry was determined at 4hpi and was similar for all genotypes and bacterial 
strains but is not shown here due to space limitations. Error bars represent standard error of 3 biological 
replicates. Characters a-d indicate significant differences in growth (Student`s t-test: p= 0.05). The experiment 
was repeated twice with similar results. 
 
 

Pst DC3000 bacteria expressing AvrRps4-HA-NLS induced a similar degree of resistance in 

Col-0 as AvrRps4-HA at 3 days after spray-infection (dpi) (Figure 6A). By contrast, bacteria 
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expressing AvrRps4-HA-NES grew to >10-fold higher levels. Bacterial proliferation in Col-0 

eds1-2 mutant was similar for all bacterial strains. This result suggests that bacteria 

expressing AvrRps4-HA-NES induce a weaker resistance response. 

I also tested growth of Pst DC3000 expressing AvrRps4 variants in Ws-0 and Ws-0 eds1-1 

mutant backgrounds since a different allelic recognition variant of RRS1 is present in Ws-0 

accession (Birker et al., 2009; Narusaka et al., 2009). Furthermore, Ws-0 might harbour 

different proteins involved in AvrRps4 recognition that are not present in Col-0 since 

components of the plant immune system, such as R genes, show high levels of polymorphism 

between natural populations (Van der Hoorn et al., 2002; Todesco et al., 2010).  

I found that Ws-0 plants are more susceptible to Pst DC3000 in general since I inoculated 

these plants with half the dose of bacteria compared to Col-0 but obtained similar growth 

rates after 3dpi. Infection with the same concentration of bacteria as used for Col-0 resulted in 

heavy disease that made it difficult to observe subtle differences in susceptibility (data not 

shown). As in Col-0, Pst DC3000 bacteria expressing AvrRps4-HA-NES could proliferate to 

significantly higher levels than AvrRps4-HA in Ws-0 background (Figure 6B). Thus, the 

reduced resistance response to bacteria expressing AvrRps4-HA-NES is not accession-

dependent. 

Taken together with the results in the stable AvrRps4 overexpression lines, this strongly 

indicates that AvrRps4 C-terminus needs to accumulate in the plant nucleus to induce a full 

resistance response.  

 

2.1.5 RPS4 and RRS1 are both required to confer resistance to mis-localized AvrRps4  

          variants 

 

To further investigate the mechanism of AvrRps4 recognition in Arabidopsis, I tested if the 

localization of AvrRps4 to a specific subcellular compartment might reduce the need for 

RPS4 or RRS1 in resistance. One possibility could be that enforced nuclear localization of 

AvrRps4 might abolish the requirement of RPS4 for resistance induction. A possible scenario 

is that RPS4 might be activated in the cytoplasm through recognition of the cytoplasmic 

AvrRps4 pool and then translocates into the nucleus to activate downstream components  
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Fig. 7: RPS4 and RRS1 are both required to confer resistance to mis-localized AvrRps4 variants. 
(A) Five week old plants of the indicated genotypes were spray-infected with Pst DC3000 expressing AvrRps4 
variants. Bacterial titers 3 days post infection are depicted. Bacterial entry was determined at 4hpi and was 
similar for all genotypes and bacterial strains but is not shown here due to space limitations. Error bars represent 
standard error of 3 biological replicates. The experiment was repeated twice with similar results. (B) Five week 
old plants of the indicated genotypes were spray-infected with Pst DC3000 expressing AvrRps4 variants. 
Bacterial titers 3 days post infection are depicted. Bacterial entry was determined at 4hpi and was similar for all 
genotypes and bacterial strains but is not shown here due to space limitations. Error bars represent standard error 
of 3 biological replicates. The experiment was repeated twice with similar results. 
 

involved in the defense response. Enforced nuclear accumulation of AvrRps4 might already 

activate the nuclear downstream defense components and circumvent the need for RPS4 to 

translocate into the nucleus for activation of a defense response. In this case, the rps4 mutant 
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would not be more susceptible to bacteria expressing AvrRps4-HA-NLS. To analyze this 

hypothesis, I infected rps4 and rrs1 mutants in the Col-0 and Ws-0 backgrounds with Pst 

DC3000 expressing the different AvrRps4 variants. Both R gene mutants showed an impaired 

resistance response to Pst DC3000 expressing AvrRps4-HA in Col-0 and Ws-0 (Figure 5A, 

B). No significant changes in bacterial proliferation compared to Pst DC3000 AvrRps4-HA 

were observed in rps4 and rrs1 mutants when infected with Pst DC3000 expressing either 

AvrRps4-HA-NLS or AvrRps4-HA-NES in both accessions (Figure 6 A, B). Thus, enforced 

nuclear localization of AvrRps4 still requires RPS4 for defense induction. Furthermore, it can 

be concluded that enforced localization of AvrRps4 to a specific compartment does not reduce 

the need for both RPS4 and RRS1 in resistance.  

It was shown that RPS4 needs to accumulate in the nucleus to trigger immunity through 

activation by AvrRps4 and depletion of the nuclear RPS4 pool by mutation of its intrinsic 

NLS sequence correlates with loss of RPS4 resistance (Wirthmueller et al., 2007). Nuclear 

localized AvrRps4 might compensate or abolish the need for RPS4 nuclear accumulation for 

resistance. Another possibility might be that the extra-nuclear RPS4 pool might recognize 

cytoplasmic enriched AvrRps4-NES and induce a defense response. To investigate this 

hypothesis, I tested bacterial growth of Pst DC3000 AvrRps4-HA-NLS and AvrRps4-HA-

NES in an RPS4-nls mutant. In the RPS4-nls mutant, four lysine residues that constitute the 

core basic regions of the bipartite NLS were substituted with alanines resulting in an 

exclusion of RPS4 from nuclei (Wirthmueller et al., 2007). RPS4-nls mutant plants showed a 

similar degree of enhanced susceptibility to bacteria expressing AvrRps4 as the rps4-2 mutant 

(Figure 7A) which correlated with published results (Wirthmueller et al., 2007). No 

significant differences in bacterial proliferation compared to Pst DC3000 AvrRps4 were 

observed in this mutant when infected with Pst DC3000 AvrRps4-HA-NLS or AvrRps4-HA-

NES (Figure 7A). Thus, the hypothesis that cytoplasmic RPS4 can recognize cytoplasmic 

localized AvrRps4 can be rejected since RPS4-nls plants do not show enhanced resistance to 

Pst AvrRps4-HA-NES. Nuclear localization of RPS4 is required to trigger immunity to 

nuclear and cytoplasmic localized AvrRps4. 

An rps4-21/rrs1-1 double null mutant was generated by Narusaka et al (2009) by crossing of 

the two single mutants in the Ws-0 background (Narusaka et al., 2009). No significant 

difference could be observed in pathogen growth of Ralstonia solanacearum, Colletotrichum 

higginsianum and Pst AvrRps4 in the double mutant compared to the single mutants 

suggesting that RPS4 and RRS1 function cooperatively in resistance to these pathogens 

(Narusaka et al., 2009). I tested whether RPS4 and RRS1 function additively or cooperatively 
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in response to mis-localized AvrRps4. The modes of action of RPS4 and RRS1 might be 

altered when AvrRps4 is enforced to a specific subcellular compartment. For this, I spray-

infected the rps4-21/rrs1-1 double mutant with Pst DC3000 AvrRps4-HA, NLS or NES and 

compared susceptibility with the rps4-21 and rrs1-1 single mutants. Figure 7B shows that 

growth of Pst DC3000 AvrRps4-HA was similar in the double and the single mutants, 

confirming published results (Narusaka et al., 2009). There were no significant differences in 

bacterial growth of Pst DC3000 expressing AvrRps4-NLS or NES in the rps4-21/rrs1-1 

double mutant compared to the single mutants (Figure 7B). This result further indicates that 

enforced localization of AvrRps4 to a specific subcellular compartment does not compromise 

the need for RPS4 and RRS1 and that the modes of action of RPS4 and RRS1 are not altered 

upon AvrRps4 mis-localization. 

 

2.1.6 RPS4 and RRS1 are required for AvrRps4-triggered cell death induction 

 

The above data suggest that enforced nuclear export of the AvrRps4 C-terminus induces a 

weaker RPS4/RRS1-dependent resistance response. It has been widely viewed in the field that 

induction of effector triggered immunity through activation of R proteins correlates with cell 

death induction. The localized cell death is thought to stop bacterial proliferation (Chisholm et 

al., 2006). I therefore tested whether reduced resistance to AvrRps4-NES correlates with 

reduced cell death induction.  

For this, I introduced the vectors encoding AvrRps4-HA fused to a functional or mutated NLS 

or NES sequence into the saprophytic bacterial strain Pseudomonas fluorescens (Pfo), a 

nonpathogen of Arabidopsis that does not cause disease on Arabidopsis (Huang et al., 1988). 

Introduction of a cosmid that contains the type III secretion apparatus allows this strain to 

secrete effector proteins into plant cells (van Dijk et al., 2002; Guo et al., 2009). First, I 

validated in a secretion assay that all AvrRps4 variants are secreted from Pfo (Figure 5A). 

Infiltration of Pfo expressing AvrRps4-HA in Col-0 and Ws-0 leaves induced strong cell 

death which was visible as necrosis in the infiltrated area at 24hpi (Figure 8B). The cell death 

induction is completely dependent on EDS1 since the eds1 mutant in Col-0 and Ws-0 

background did not exhibit necrosis upon AvrRps4 delivery. I quantified cell death induction 

by monitoring ion leakage through conductivity measurements after Pfo infiltration. 

AvrRps4-mediated cell death induction measured by ion leakage started at 8hpi. Interestingly,  
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Fig. 8: RPS4 and RRS1 are required for AvrRps4-triggered cell death induction. 
(A) Four week old plants of the indicated genotypes were infiltrated with Pfo expressing AvrRps4-HA and 
conductivity was measured at the indicated time points. Error bars represent standard deviation of 4 biological 
replicates. The experiment was repeated twice with similar results. (B) Lower half of leaves of 4 week old plants 
were infiltrated with Pfo expressing AvrRps4-HA. Pictures were taken 24hpi and show necrosis induction 
through AvrRps4 secretion that is EDS1-dependent. (C) Four week old plants of the indicated genotypes were 
infiltrated with Pfo expressing AvrRps4-HA and conductivity was measured at the indicated time points. Error 
bars represent standard deviation of 4 biological replicates. The experiment was repeated twice with similar 
results. 
 

a stronger ion leakage response was observed in Ws-0 accession than in Col-0 upon Pfo 

AvrRps4-HA infiltration (Figure 8A). This was surprising given the fact that Col-0 is 

generally more resistant to Pst DC3000 AvrRps4 than Ws-0 (see Figure 7; Ws-0 was infected 

with half the dose of bacteria compared to Col-0). Thus, cell death induction and resistance do 

not necessarily correlate in all cases. The eds1 mutants in Col-0 and Ws-0 background only 

produced background levels of ion leakage (Figure 8A). This further supports the specificity 

of measured conductivity to AvrRps4-triggered cell death. Natural populations of Arabidopsis 

show high levels of polymorphisms in components of the immune system reflecting the 
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adaptation to spatially restricted pathogens (van der Hoorn et al, 2002; Todesco et al, 2010). 

For instance harbour Col-0 and Ws-0 different allelic recognition variants of RRS1 (Narusaka 

et al, 2009; Birker et al, 2009). These natural variations might cause the differences in cell 

death induction after AvrRps4 infiltration in Ws-0 and Col-0. 

To elucidate the role of RPS4 and RRS1 in AvrRps4-triggered cell death induction, I 

measured ion leakage upon AvrRps4 delivery in the rps4-21 and rrs1-1 single and double 

mutants in the Ws-0 background. Both the single and double mutant exhibited strongly 

reduced cell death, although this was greater than in eds1-1 leaves (Figure 8C). I was not able 

to detect an additive effect of the rps4-21/rrs1-1 double mutant in this assay. Thus, the cell 

death measurements in these mutants correlate with the phenotypes observed in bacterial 

growth assays, since the rps4-21 and rrs1-1 mutants display enhanced bacterial growth of Pst 

DC3000 AvrRps4 and reduced cell death upon AvrRps4 delivery. Furthermore, the absence 

of an additive phenotype of the rps4-21/rrs1-1 double mutant in terms of bacterial growth 

(Figure 7B) is reflected in the extent of AvrRps4-triggered cell death. 

 

2.1.7 AvrRps4 targeted to the nucleus fails to elicit a cell death response 

 

To establish whether the mis-localized AvrRps4 variants are still capable of inducing a cell 

death response, I measured ion leakage of Ws-0 plants after Pfo delivery. AvrRps4 induces 

strong cell death detectable from 6hpi (Figure 9). Cytoplasmic localized AvrRps4-HA-NES 

produces an attenuated cell death response which correlates with its reduced resistance 

induction. The mutated AvrRps4-nes variant that displays AvrRps4-like distribution in the 

plant when fused to YFP (Figure 2A) also induced ion leakage equivalent to AvrRps4-HA 

when infiltrated via Pfo. Surprisingly, I found that nuclear localized AvrRps4-HA-NLS fails 

to elicit a cell death response even though it leads to full resistance in Arabidopsis (Figure 9). 

Pfo delivery of AvrRps4-HA-nls caused intermediate levels of ion leakage, correlating with 

its distribution in the plant cell. Note, AvrRps4-mYFP-nls exhibited stronger nuclear 

accumulation than AvrRps4-mYFP (Figure 2A). 

In conclusion, these data suggest that increased nuclear export of AvrRps4 C-terminus 

correlates with a reduced resistance response and attenuated cell death induction. These 

results further suggest an uncoupling of cell death induction and bacterial growth since 

AvrRps4-NLS induces resistance but fails to induce cell death. 
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Fig. 9: Nuclear localized AvrRps4 fails to elicit a cell death response. 
Four week old Ws-0 plants were infiltrated with Pfo expressing AvrRps4-HA fused to a functional or mutated 
NLS or NES and conductivity was measured at the indicated time points. The experiment was repeated twice 
with similar results. 
 

2.1.8 Transcriptional reprogramming induced by AvrRps4-NLS 

 

Based on the data obtained, nuclear localized AvrRps4 effectively induces a resistance 

response but fails to induce host cell death. In order to determine the cause of what seems to 

be a discrepancy, I analyzed defense gene expression after AvrRps4-HA-NLS delivery. It was 

previously shown that transcriptional reprogramming after infection with Pst DC3000 

AvrRps4 bacteria is almost completely EDS1-dependent (Bartsch et al., 2006; Garcia et al., 

2010). Central well characterized defense genes were induced in wildtype plants but not in 

eds1 mutants. I selected some of these EDS1-dependent defense marker genes for my 

transcriptional analysis. 

For this, I spray-infected Col-0 plants with Pst DC3000, Pst DC3000 AvrRps4-HA and 

AvrRps4-HA-NLS and took samples for RNA extraction from aerial tissue at 0, 8 and 24hpi.  

I chose these time points since most EDS1-dependent genes are induced or repressed at 8h 

after spray-infection with Pst DC3000 AvrRps4 (Garcia et al., 2010). By choosing a later time 

point (24hpi) I wanted to asses if transcriptional reprogramming might be delayed after 

infection with Pst DC3000 AvrRps4-NLS. Quantitative transcription profiles of selected 

defense marker genes were analyzed using UBIQUITIN as internal control.  
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Fig. 10: Transcriptional reprogramming induced by AvrRps4-NLS. 
Four week old Col-0 plants were spray-infected with Pst DC3000 wt or expressing AvrRps4-HA or AvrRps4-
NLS. Leaf samples were collected at 0 (white bars), 8 (grey bars) and 24 (black bars) hpi. Transcript levels were 
determined and normalized using the internal control UBIQUITIN. Error bars represent standard deviation of 4 
technical replicates. p<0.01 indicates significant differences calculated with Student`s t-test. The experiment was 
repeated twice with similar results.  
 

Transcript levels of PR1, a commonly used defense marker gene (Laird et al., 2004), and 

EDS1 itself, which is rapidly induced in response to avirulent bacteria (Bartsch et al., 2006; 

Garcia et al., 2010), were analyzed. Furthermore, the downregulated gene DND1, encoding a 

nucleotide-gated ion channel whose mutation results in resistance in the absence of HR, was 
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tested (Yu et al., 1998). Also, gene expression of RPS4 and RRS1 was analyzed. Figure 10 

shows PR1 induction 24h after infection with Pst DC3000 AvrRps4-HA but not with 

AvrRps4-NLS or Pst DC3000. Similarly, RPS4 expression was induced at 8h after infection 

with Pst DC3000 AvrRps4-HA but not with AvrRps4-HA-NLS. By contrast, EDS1 gene 

expression was induced by AvrRps4-HA and AvrRps4-HA-NLS and DND1 and RRS1 genes 

were both repressed by AvrRps4-HA and AvrRps4-HA-NLS. The induction of PR1 and RPS4 

by AvrRps4-HA but not by AvrRps4-HA-NLS correlates with the cell death measurements 

whereas gene expression of EDS1, DND1 and RRS1 does not correlate. It is interesting that 

not all defense genes tested behave in the same manner. There might be specific sets of genes 

that are induced or repressed for a resistance response and others whose gene products are 

associated with cell death induction. More genes have to be tested in future experiments, e.g. 

genes that encode components involved in cell death in plants. 

 

Taken together, these results show that enhanced nuclear export of AvrRps4 C-terminus 

causes attenuated resistance in the plants as measured by restriction of bacterial proliferation 

and growth of Arabidopsis transgenics overexpressing AvrRps4-NES. Also, AvrRps4-NES 

induces intermediate levels of cell death. This suggests that nuclear localization of AvrRps4 is 

required to induce a full immune response. Alternatively, a shuttling of AvrRps4 between the 

cytoplasm and the nucleus is needed for resistance. The intermediate effect of AvrRps4-NES 

might have several reasons. On the one hand, the AvrRps4-NES fusion protein needs to reside 

for a short time in the plant nucleus before it is exported to the cytoplasm. This may be 

sufficient to induce a partial defense response. On the other hand, it cannot be excluded that 

extra-nuclear AvrRps4 also contributes to full resistance. Furthermore, an intra-nuclear 

component might inhibit cell death induced by AvrRps4-NES.  
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2.2 Modes of action of RPS4 and RRS1  
 

2.2.1 Regulation of RPS4 and RRS1 gene expression 

 

The two TIR-NB-LRR genes RPS4 and RRS1 display a head-to-head (inverted) tandem 

arrangement in the Arabidopsis genome separated by a small intergenic region (254bp) 

(Gassmann et al., 1999). This region contains potential cis-regulatory motifs arranged in 

opposite orientations: the E2F consensus sequence, which can be bound by E2F transcription 

factors, and Element II, both of which are characteristic of plant bidirectional promoters 

(Figure 11A) (Dhadi et al., 2009). Genes regulated by bidirectional promoters are more likely 

to be co-ordinately expressed than random pairs of genes (Engstrom et al., 2006).  

To investigate whether RPS4 and RRS1 are co-regulated, I analysed their expression profiles 

after spray infection with virulent Pst DC3000 or avirulent Pst DC3000 AvrRps4 bacteria. 

Samples for RNA extraction were taken at 0h, 8h and 24h after infection from aerial tissue. I 

chose these timepoints since Garcia et al (2010) showed that most defense-related genes are 

upregulated 8h after spray infection with avirulent Pst DC3000. Transcript levels were 

determined by qRT-PCR and normalized using the internal control UBIQUITIN. RPS4 

mRNA levels were induced more than 3-fold at 8h after infection with avirulent Pst DC3000 

AvrRps4 but not with virulent bacteria (Figure 11B). At 24h after infection, RPS4 mRNA 

levels were back to uninduced state. Surprisingly, RRS1 mRNA levels were repressed ~2-fold 

at 8h and ~5-fold at 24h after infection with virulent or avirulent bacteria (Figure 11B). 

However, quantitative transcription profile data should be interpreted with caution since both 

genes are expressed to extremely low levels. 

In order to determine whether a mutation in RRS1 affects RPS4 expression and vice versa, I 

analyzed RPS4 gene expression in Col-0 rrs1-11 as well as RRS1 gene expression in the Col-

0 rps4-2 mutant background by qRT-PCR. RPS4 gene expression levels were comparable in 

Col-0 and rrs1-11 backgrounds (Figure 11C). Similarly, RRS1 gene expression was not 

altered in rps4-2 mutant compared to Col-0 wildtype.  

In summary, these results indicate that i) RPS4 and RRS1 seem not to be co-regulated since 

RPS4 is induced whereas RRS1 is repressed upon infection with avirulent bacteria and ii) that 

there is no epistasis conferred by either mutation on the expression of the other gene.  
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Fig. 11: Regulation of RPS4 and RRS1 gene expression. 
(A) Schematic representation of the Arabidopsis locus encoding RPS4 and RRS1. Nucleotide positions are based 
on the Col-0 reference genome sequence. Two potential regulatory elements were located at positions 2–6 
(GCCCA; Element II) and 14–21 (TTTCCCGG; high similarity to E2F consensus sequence), corresponding to 
the upstream sequence of RRS1. Two other putative cis-elements at positions 219–212 (TTTCGCCG) and 252–
245 (TTTCGCGC) showed high homology to the E2F consensus sequence, corresponding to the upstream 
sequence of RPS4 (inverse direction). One putative TATA box was identified at positions 102–97 (TATTTA), 
corresponding to the RPS4 orientation, but none was found in the RRS1 orientation. Adapted from Birker et al, 
2009. (B) Four week old Col-0 plants were spray-infected with Pst DC3000 wt or expressing AvrRps4-HA. Leaf 
samples were collected at 0 (white bars), 8 (grey bars) and 24 (black bars) hpi. Transcript levels of RPS4 and 
RRS1 were determined and normalized using the internal control UBIQUITIN. Error bars represent standard 
deviation of 4 technical replicates. The experiment was repeated twice with similar results. (C) Quantitative 
transcript levels of RPS4 and RRS1 in the depicted genotypes. Leaf samples were collected from untreated, four 
week old plants and transcript levels were normalized to UBIQUITIN. Error bars represent standard deviation of 
4 technical replicates. The experiment was repeated twice with similar results. 
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Fig. 12: Amino acid sequence variations in RRS1 and recognition specificities in different accessions. 
(A) Depicted are amino acid sequence variations in RRS1 proteins. Amino acid substitutions among 19 
Arabidopsis accessions are shown. TIR (Toll/Interleukin-1 receptor), NB-ARC (nucleotide-binding adaptor 
shared by APAF-1, R proteins, and CED-4), LRR (leucine-rich repeat), WRKY (WRKY-containing DNA-
binding domain). Nd: not detected. Adapted from Narusaka et al, 2009 (B) Table showing either resistance (R) 
or susceptibility (S) of Col-0 and Ws-0 accessions to the denoted pathogens.  
 

2.2.2 Evidence that RPS4 and RRS1 act cooperatively 

 

The two adjacent R genes RPS4 and RRS1 confer resistance to three distinct pathogens with 

different infection strategies and virulence mechanisms. Natural variation analysis of RRS1 in 

Arabidopsis accessions revealed distinct amino acid polymorphisms as illustrated in Figure 

12A. Dependent on their resistance response to Ralstonia solanacearum, they are named 

RRS1-R (for resistant) and RRS1-S (for susceptible). RRS1 alleles from Col-0 (RRS1-S) 

contain a premature stop codon at S1291 resulting in an 83-aa deletion after the WRKY 

domain compared to Ws-0 (RRS1-R) (Figure 12A) (Narusaka et al., 2009). This region might 

be important for resistance against R. solanacearum and C. higginsianum since Col-0 plants 

are susceptible to both pathogens whereas Ws-0 plants are resistant (Figure B). However, this 

region is not required for resistance to Pst AvrRps4 since Col-0 plants are resistant 

(Gassmann et al., 1999; Birker et al., 2009). Thus, the precise recognition mechanism of Pst 

AvrRps4 is probably different from that of R. solanacearum and C. higginsianum. 

As mentioned earlier, RPS4 and RRS1 seem to work cooperatively in Ws-0 (Chapter 2.1; 

Figure 7B). I was interested in analyzing a potential cooperativity between RPS4 and RRS1 in 

the Col-0 background since this accession is resistant to Pst AvrRps4 and features of RPS4 

resistance (e.g. nuclear activity) and associated EDS1-dependent defense reprogramming have 

been characterized in Col-0 (Wirthmueller et al., 2007; Garcia et al., 2010). Because RRS1 

and RPS4 are tightly linked, the generation of a double mutant in Col-0 by crossing of the 

individual single mutants would be extremely difficult and time consuming. Thus, I generated 

stable transgenic Arabidopsis lines in which RRS1 is silenced in an rps4-2 mutant 

background. For this, I ordered a commercially available AGRIKOLA Gateway entry plasmid 

that contains a gene-specific sequence tag of RRS1 (165bp) designed to be as specific as 

possible to the cognate gene (http://bccm.belspo.be/db/lmbp_gst_clones). I then performed a 

double LR clonase reaction into pHellsgate destination vector that is designed for the 

expression of hairpin RNAs in transgenic plants (http://www.pi.csiro.au/RNAi/vectors.htm).  
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Fig. 13: Silencing of RRS1 in the Col-0 rps4-2 mutant.  
(A) Quantitative transcription profile of RRS1 in T2 RRS1-RNAi lines. Samples for RNA extraction were taken 
from aerial tissue from 3 week old plants. UBIQUITIN was used as internal control. Error bars represent the 
standard deviation of 4 technical replicates. The experiment was repeated twice with similar results. (B) Four 
week old plants of the indicated genotypes were spray-infected with Pst DC3000. Bacterial titers 3 dpi are 
depicted. Bacterial entry was determined at 4hpi and was similar for all genotypes but is not shown here due to 
space limitations. Error bars represent standard error of 3 biological replicates. The experiment was repeated 
twice with similar results. (C) Four week old plants of the indicated genotypes were spray-infected with Pst 
DC3000 AvrRps4. Bacterial titers 3 dpi are depicted. Bacterial entry was determined at 4hpi and was similar for 
all genotypes but is not shown here due to space limitations. Error bars represent standard error of 3 biological 
replicates. The experiment was repeated twice with similar results. 
  

Initially, I tested if the silencing construct was functional in Arabidopsis by analysing RRS1 

gene expression in three independent T2 transgenic lines, referred to as RRS1-RNAi lines. 

Figure 13A shows quantitative transcript levels of RRS1 normalized to UBIQUITIN. RRS1 

gene expression was downregulated by 7-fold in the RRS1-RNAi lines compared to the rps4-2 

mutant background (Figure 13A). This indicates that silencing of RRS1 was successful. 

Nevertheless, the RRS1-RNAi lines had low residual RRS1 expression which might be 

sufficient for RRS1 function.  

To assess whether RRS1 and RPS4 are acting additively or cooperatively in Col-0 

background, I spray infected the same three independent T2 RRS1-RNAi lines with Pst 

DC3000 AvrRps4 and measured bacterial growth at 3 days after infection. I analyzed 

susceptibility of T2 lines since RRS1 gene expression showed attenuated silencing in 

homozygous T3 lines maybe due to silencing of the RRS1-RNAi construct (data not shown). A 

similar entry rate of bacteria to the plant was ensured by measuring bacterial growth 4h after 

spray infection (data not shown). The Col-0 eds1-2 mutant was included as a measure of full 

bacterial growth potential and the rps4-2 and rrs1-11 mutants as references for a potential 

additive effect. As a control for successful infection, Pst DC3000 bacteria were infected. 

Growth of virulent Pst DC3000 was similar in all RRS1-RNAi lines compared to Col-0, 

indicating that the infection was successful and that the silencing of RRS1 has no effect on 

basal resistance (Figure 13B). Susceptibility of all three RRS1-RNAi lines to Pst DC3000 

AvrRps4 was similar to that exhibited by the rps4-2 and rrs1-11 single mutants since all 

mutants showed a 5-10-fold increase in bacterial numbers compared to Col-0 (Figure 13C). 

The absence of an additive susceptible phenotype of the RRS1-RNAi lines compared to rps4-2 

in response to Pst DC3000 AvrRps4 suggests that RRS1 and RPS4 also function 

cooperatively in Col-0 background. Nonetheless, the residual RRS1 expression in RRS1-RNAi 

lines might be sufficient for AvrRps4 recognition.  
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2.2.3 Overexpression of RPS4 induces an autoimmune phenotype that is RRS1- 

           dependent 

 

The expression of R proteins is tightly regulated in order to prevent inappropriate activation 

of defense responses. Plant defense responses need to be tightly regulated to prevent 

autoimmunity which is detrimental to growth and development of the plant. It was shown in 

several studies that the overexpression of an R gene leads to constitutive activation of defense 

responses (Oldroyd and Staskawicz, 1998; Moffett et al., 2002). 

RPS4 expression under control of its own promoter was close to the detection limit. Thus, 

transgenic lines constitutively expressing RPS4-HA-StrepII (RPS4-HS) under control of the 

strong CaMV 35S overexpression promoter were generated in the signalling-deficient eds1-2 

background and then crossed to Col-0 to introduce a functional EDS1 allele (Wirthmueller et 

al., 2007). The overexpression of RPS4 in Col-0 leads to reduced plant size which is 

indicative of a constitutively activated plant defense (Figure 14A, C). The stunted 

morphology is completely dependent on EDS1 since 35S::RPS4-HS lines in eds1-2 

background show wildtype morphology demonstrating that the RPS4 overexpression signal is 

transduced in an EDS1-dependent manner (Figure 14A, C) (Wirthmueller et al., 2007). 

Since the above and published results (Narusaka et al., 2009) suggest that the R gene pair 

RPS4 and RRS1 functions cooperatively to confer resistance to three different pathogens, I 

was interested in testing whether the RPS4 overexpression phenotype depends on the presence 

of RRS1. To investigate this, I generated a 35S::RPS4-HS line in an rrs1-11 background by 

crossing the rrs1-11 mutant to the 35S::RPS4-HS Col-0 line (Wirthmueller et al., 2007). I 

selected F3 lines homozygous for the RPS4 transgene and rrs1-11 and analyzed RRS1 gene 

expression by qRT-PCR to ensure that they were RRS1 null mutants (Figure 15; right panel). 

Figure 14A shows the developmental phenotype of one representative homozygous F3 line in 

comparison to 35S::RPS4-HS in Col-0 and eds1-2. The stunted phenotype of 35S::RPS4-HS 

Col-0 line depended on the presence of RRS1 since the 35S::RPS4-HS rrs1-11 line displayed 

a wildtype-like morphology. To exclude the possibility that the wildtype-like growth of the 

35S::RPS4-HS rrs1-11 line is caused by reduced RPS4 protein accumulation, I compared 

RPS4 steady state levels in all three genetic backgrounds. RPS4 protein levels were similar in 

all lines (Figure 14B). Therefore, the stunted morphology of RPS4 overexpressing plants in 

Col-0 depends on the presence of RRS1. This further supports the hypothesis that RPS4 and  
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Fig. 14: Constitutive RPS4 overexpression induces dwarfism that is EDS1- and RRS1-dependent. 
(A) Constitutive RPS4 overexpression causes a dwarfed phenotype that is EDS1- and RRS1-dependent. Picture 
was taken from 4 week old plants grown at 22°C. (B) RPS4 protein accumulation is similar in all RPS4 
overexpression lines. Immunoblot analysis was performed of total leaf extract taken from 4 week old plants. 
Membrane was probed with α-HA antibody. A Ponceau staining was performed to ensure equal sample loading. 
(C) Quantitative measurement of plant size of 4 week old plants. Diameter of plant rosettes was measured. (D) 
Dwarfism of 35S::RPS4-HS Col-0 is suppressed at high temperature. Upper picture: Growth phenotype of RPS4 
overexpression lines at 28°C. Picture was taken from plants grown at 28°C for 4 weeks. Lower picture: Shifting 
of plants to low temperature (19°C) induces leaf yellowing in 35S::RPS4-HS Col-0 and partially in 35S::RPS4-
HS rrs1-11 . Plants were grown at 28°C for 4 weeks before shifting them to 19°C. Picture was taken after 6d at 
19°C. 
 

RRS1 act cooperatively in Col-0 and suggests that RRS1 operates coincidently or downstream 

of activated (deregulated) RPS4. 
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2.2.4 Constitutive defense gene activation caused by RPS4 overexpression is partially  

          RRS1-dependent 

 

It is known that elevated temperature can inhibit plant defense responses (Whitham et al., 

1996; Wang et al., 2009b). Recently, it was shown that R proteins are  a major temperature-

sensitive component in plant immunity and that constitutive activated defense responses 

caused by autoactive R proteins can be suppressed at elevated temperature (Zhu et al., 2009).  

The stunted phenotype of RPS4 overexpressing plants can be suppressed by growing plants at 

elevated temperature (J. Parker group, unpublished). Figure 14D shows the growth 

phenotypes of 35S::RPS4-HS in Col-0, eds1-2 and rrs1-11 mutant backgrounds compared to 

Col-0 when grown at 28°C revealing that the stunted phenotype can indeed be suppressed at 

this temperature. When shifted to 19°C, this suppression effect is abolished and 35S::RPS4-

HS Col-0 plants develop leaf yellowing indicative of cell death induction visible from 6 days 

at 19°C (Figure 14D). The RPS4-induced chlorosis was partially RRS1-dependent since 

35S::RPS4-HS rrs1-11 plants displayed weak leaf yellowing. The temperature shift from 

28°C to 19°C of the 35S-RPS4-HS Col-0 line resembles defense activation through Pst 

AvrRps4 infection since several well characterized EDS1-dependent defense marker genes are 

up- or downregulated after temperature shift that are also induced or repressed after Pst 

AvrRps4 infection (J. Parker group, unpublished; Garcia et al, 2010; Bartsch et al, 2006). 

Among the upregulated genes are components of SA biosynthesis and signalling (ICS1, PBS3, 

CBP60) (Wildermuth et al., 2001; Okrent et al., 2009; Wang et al., 2009a), as well as FMO1, 

a positive regulator of an SA-independent branch of EDS1 signalling (Bartsch et al., 2006; 

Mishina and Zeier, 2006). EDS1 and PR1, a commonly used defense marker gene (Laird et al, 

2004), were also among the EDS1-dependent upregulated genes. Furthermore, the 

downregulated gene ERECTA, encoding a receptor-like kinase required for resistance to R. 

solanacearum (Godiard et al., 2003), also displayed EDS1-dependency. I made use of this 

temperature shift system to analyse whether attenuated defense gene reprogramming in 

35S::RPS4-HS rrs1-11 plants could be the cause of the suppression of the stunted phenotype.  

For this, I grew Col-0, 35S::RPS4-HS in Col-0, eds1-2 and rrs1-11 plants for 4 weeks at 28°C 

before shifting to 19°C. Samples for RNA extraction were taken from aerial tissue directly 

before and 1h, 2h, 4h, 8h and 24h after temperature shift. I chose early as well as late time  
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Fig. 15: Constitutive defense gene activation of RPS4 overexpression is only partially RRS1-dependent. 
Four week old plants of the indicated genotypes were shifted from 28°C to 19°C. Leaf samples were collected at 
0, 2, 4, 8 and 24 hpi. Transcript levels were determined and normalized using the internal control UBIQUITIN. 
Error bars represent standard deviation of 3 biological replicates. p<0.01 indicates significant differences 
calculated with Student`s t-test. 
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points after the temperature shift to assess if RRS1 might be either required for i) initial 

induction or repression of defense genes, ii) timing of transcriptional reprogramming or iii) 

maintenance of induction or repression through RPS4. Transcriptional induction or repression 

started at 2 to 4h after the temperature shift and reached a maximum at 8h (Figure 15). The 

transcriptional reprogramming of defense genes was faster compared to bacterial spray-

infection experiments probably due to the fact that avirulent bacteria have to enter the leaves 

before a defense response is activated. The expression of all genes tested was as expected 

strongly EDS1-dependent. However, most of the genes tested were not strongly RRS1-

dependent. Rather, a quantitative difference in gene expression in 35S::RPS4-HS Col-0 

compared to 35S::RPS4-HS rrs1-11 was observed for certain genes. For example, transcript 

levels of FMO1 and ICS1 were significantly reduced in rrs1-11 mutant background. A clear 

explanation for the RRS1-dependency of the stunted morphology of 35S::RPS4-HS Col-0 

cannot be provided by this analysis because only a limited number of genes were tested. It is 

possible that the threshold for the transcriptional reprogramming of defense genes might be 

different than for the suppression of the stunted morphology. Alternatively, RRS1 might 

regulate a specific subset of genes that are induced upon RPS4 activation. Also, RRS1 

mutation might have a quantitative effect on transcriptional reprogramming as it seems the 

case for FMO1 and ICS1. A gene expression microarray of 35S-RPS4-HS line in Col-0 

compared to rrs1-11 background might provide deeper insights into which genes are RRS1-

dependent or if RRS1 is required for the timing or maintenance of gene induction through 

RPS4. 

           

2.2.5 Increased RPS4 levels cannot compensate for loss of RRS1 in bacterial resistance 

 

Overexpression of RPS4 in Col-0 leads to a dwarfed phenotype which is dependent on RRS1 

(Figure 14A). To further position RRS1 in the RPS4-mediated resistance pathway, I tested 

whether RPS4 overexpression can compensate for loss of RRS1 in resistance to Pst bacteria. 

First, I analyzed growth of virulent Pst DC3000 bacteria in the 35S::RPS4-HS in the Col-0, 

eds1-2 and rrs1-11 backgrounds. As control for full bacterial growth potential, the eds1-2 

mutant was included as well as rrs1-11, which displayed enhanced susceptibility to Pst 

AvrRps4 as described in Section 2.1.5. Plants were grown for 4 weeks at 28°C in order to 

avoid developmental differences that might affect pathogen growth. After spray-infection, 

plants were kept at 23°C for 3 days. As shown in Figure 16A, the 35S::RPS4-HS Col-0 line  
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Fig. 16: RPS4 overexpression cannot compensate for loss of RRS1. 
(A) Four week old plants grown at 28°C of the indicated genotypes were spray-infected with Pst DC3000. 
Bacterial titers 3 dpi are depicted. Bacterial entry was determined at 4hpi and was similar for all genotypes but is 
not shown here due to space limitations. Error bars represent standard error of 3 biological replicates. The 
experiment was repeated twice with similar results. (B) Four week old plants grown at 28°C of the indicated 
genotypes were spray-infected with Pst DC3000 AvrRps4. Bacterial titers 3 dpi are depicted. Bacterial entry was 
determined at 4hpi and was similar for all genotypes but is not shown here due to space limitations. Error bars 
represent standard error of 3 biological replicates. Characters a-c indicate significant differences calculated by 
Student`s t-test. The experiment was repeated twice with similar results. 
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exhibited increased resistance to virulent Pst DC3000 bacteria suggesting that the RPS4 

deregulation response after the temperature shift increases basal resistance to virulent 

bacteria. The RPS4-activated defense response was not observed in 35S::RPS4-HS rrs1-11 

since these plants were as susceptible as Col-0 wt plants (Figure 16A). Next, I tested growth 

of avirulent Pst DC3000 AvrRps4 bacteria. 35S::RPS4-HS Col-0 plants exhibited slightly 

increased resistance compared to Col-0 wt plants that was not statistically significant but was 

reproducible in independent repeats (Figure 16B). By contrast, overexpression of RPS4 in 

eds1-2 did not render plants more resistant than eds1-2 plants confirming that EDS1 functions 

downstream of activated RPS4 (Wirthmueller et al., 2007). 35S::RPS4-HS rrs1-11 plants 

showed increased susceptibility compared to 35S::RPS4-HS Col-0 plants which was also not 

statistically significant but reproducible and plants were not as susceptible as rrs1-11. It is 

notable that susceptibility of the rrs1-11 mutant to Pst AvrRps4 was increased in this assay 

compared to bacterial infections of plants grown at 22°C (Figure 6). This suggests that RRS1-

mediated resistance is temperature-dependent. Taken together, these results indicate that 

RPS4 still partially functions in the absence of RRS1 but not as effectively as in the presence 

of RRS1. Thus, the overexpression of one of the two R genes cannot fully compensate for the 

absence of the other. It might be possible that both R proteins have distinct functions in the 

cell and are not completely working cooperatively.  

 

2.2.6 TIR domains of RPS4 and RRS1 physically interact  

 

In animals, perception of PAMPs is mediated by the extracellular LRR region of Toll-like 

receptors (TLR). This induces homo-dimerization of the cytoplasmic TIR domain which 

provides a new scaffold that can bind to adapter proteins and initiate a defense response 

(Tapping et al, 2009). Recently, it has been shown that the TIR domain of plant R proteins 

also has signalling function (Bernoux et al., 2011). The TIR domain of flax L6 self-associates 

in yeast and in vitro. This homo-dimerization of L6 TIR domain strongly correlates with 

autoactivity in planta suggesting that this is a key event in TIR domain signalling (Bernoux et 

al., 2011). Furthermore, Bernoux et al (2011) were able to redefine the minimal functional 

region of the TIR domain required for defense signalling. 

Our collaborators M. Bernoux and P. Dodds (CSIRO Canberra) analyzed whether the 

functional TIR domains of RPS4 and RRS1, which consist of the first exon plus 24 aa, are 

able to associate in yeast. Functional TIR domains were determined by aligning the minimal 

region required for autoactivity of L6 with RPS4 and RRS1. The TIR domains of RRS1-R  
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Fig. 17: Homo- and hetero-domerization of TIR domains of RPS4 and RRS1. 
Yeast-Two-hybrid analysis of the TIR domains of L6, RRS1 and RPS4. Four independent colonies of each tested 
combination were grown for four days at 30°C on SC media -His-Try-Leu (-HTL). AD= GAL4 Activation 
Domain; BD= GAL4 DNA Binding Domain. Yeast-Two-hybrid analysis was performed by Maud Bernoux 
(CSIRO, Canberra). 
 

(Nd-0 allele) and RRS1-S (Col-0 allele) do not harbour nucleotide polymorphisms. Both 

homo- and hetero-dimerization of TIR RPS4 and TIR RRS1 could be observed (Figure 17). 

As a negative control, the TIR domain of L6 was used which did not hetero-dimerize with the 

TIR domain of RPS4 or RRS1 (Figure 17). This suggests that the interaction of the TIR 

domains of RPS4 and RRS1 is specific. Nonetheless, a further control of a functional TIR 

domain of another Arabidopsis R protein should be included since L6 is a flax R protein that 

shows higher sequence polymorphisms to RPS4 and RRS1 compared to other Arabidopsis R 

proteins.  

To test whether the interaction of the TIR domains of RPS4 and RRS1 can occur in planta, 

we performed FRET/FLIM experiments of protein domains transiently expressed in N. 

benthamiana in collaboration with L. Deslandes and C. Tasset (CNRS/INRA Toulouse). This 

method has several advantages compared to other interaction assays since it allows the 

analysis of potential interactions in living plant cells, in contrast to Yeast-Two-Hybrid, and is 

more reliable than the BiFC (Bimolecular Fluorescence Complementation) method. In this 

quantitative noninvasive approach, the Förster resonance energy transfer (FRET) between a 

donor (CFP; cyan fluorescent protein) and an acceptor (YFP; yellow fluorescent protein) 

fluorophore is measured. If these two proteins interact, the transfer of energy from the donor 

to the acceptor decreases the fluorescence lifetime (FLIM; average time that a molecule 

remains in its excited state prior returning to its basal state) of the donor fluorophore. The 
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relative difference of lifetime is a measure of FRET efficiency. Several controls have to be 

included to make sure that the reduction in lifetime of the donor is not due to nonspecific 

transfer of energy between the two fluorophores. To this end, lifetime of the donor upon 

coexpression with free YFP is measured. In the assay, the TIR domain of RRS1 was fused at 

its C-terminus to CFP and the TIR domain of RPS4 to YFP (data not shown). Both fusion 

proteins were expressed under the control of the constitutive 35S promoter via 

Agrobacterium-mediated infiltration in N. benthamiana leaves. At 36h after infiltration, 

fluorescence lifetime of the donor was measured upon coexpression of the fusion proteins 

compared to expression of the donor alone. Preliminary experiments showed that the CFP 

lifetime was reduced upon coexpression of both fusion proteins compared to expression of 

TIR-RRS1-CFP alone. This experiment was performed only once and has to be repeated to be 

able to calculate whether the reduction in CFP lifetime is significant. Taken together, these 

data point to a physical interaction of the TIR domains of RPS4 and RRS1 inside the plant 

nucleus. Nevertheless, further controls have to be included to make sure that the reduction in 

TIR-RRS1-CFP lifetime is not due to nonspecific transfer of energy between the two 

fluorophores. To this end, lifetime of TIR-RRS1-CFP upon coexpression with free YFP 

should be measured.  

Since the TIR domain of R proteins is thought to mediate resistance signalling, the interaction 

of RPS4 TIR and RRS1 TIR might be a critical early event for activation and signalling and 

required for the cooperative action of the two R proteins. The homo- and hetero-dimerization 

of the TIR domains might reflect formation of a multi-protein complex consisting of several 

RPS4 and RRS1 molecules required for AvrRps4 recognition in planta. An important aspect 

that should be addressed in the future is whether the full length R proteins also interact. 

Accessibility of the TIR domain resembles an activated conformation of the R protein and 

addition of NB-ARC or NB-ARC-LRR domains might inhibit TIR domain interactions. If the 

full length proteins interact as well might answer the question if RPS4 and RRS1 are 

interacting in their activated or resting state. In addition, it would be highly informative to 

assess whether this interaction occurs only in the plant nucleus since at least one critical step 

of AvrRps4 recognition takes place in the nucleus. Another important aspect that should be 

addressed is whether the interaction is a consequence of AvrRps4 recognition to induce 

subsequent defense signalling.  
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2.3 AvrRps4 complex formation with immune regulators 
 

2.3.1 Nuclear AvrRps4 physically interacts with the central immune regulator EDS1 

 

Recognition of a pathogen effector through direct interaction with its corresponding plant 

Resistance (R) protein has been shown only for few cases (Jia et al., 2000; Deslandes et al., 

2003; Dodds et al., 2006). Another scenario is indirect recognition of an effector, which 

would conform to the guard hypothesis. The guard hypothesis proposes that an R protein 

guards a host protein that is targeted by an effector to enhance pathogen virulence. Effector-

induced alterations of the target protein are perceived by R proteins so that they become 

activated and induce a defense response (Collier and Moffett, 2009). 

The mode of recognition of AvrRps4 by RPS4 and RRS1 is not known. Also, the virulence 

target of AvrRps4 was not yet identified. To gain more information about the function of 

AvrRps4 in planta, we analyzed if AvrRps4 physically interacts with known components of 

AvrRps4-triggered immunity. In collaboration with L. Deslandes and C. Tasset (CNRS/INRA 

Toulouse), I performed FRET/FLIM experiments after Agrobacterium-mediated expression 

of candidate proteins in N. benthamiana. All genes tested were under control of the 

constitutive CaMV 35S overexpression promoter and protein expression of all fusion proteins 

was verified on a Western Blot probed with α-GFP antibody. First, I analyzed a potential 

interaction of AvrRps4 with the central immune regulator EDS1 since AvrRps4-triggered 

resistance depends on EDS1 (Wirthmueller et al., 2007). For that, I generated constructs of 

AvrRps4 C-terminally fused to CFP and EDS1 fused to YFP. Since AvrRps4 is cleaved in 

planta and is C-terminally tagged, only interactions of the AvrRps4 C-terminus are analyzed. 

Upon transient coexpression of AvrRps4-CFP and EDS1-YFP in N. benthamiana, both 

proteins showed a nucleo-cytoplasmic distribution (Figure 18A). Lifetime of the donor was 

measured in nuclei since I showed that AvrRps4 needs to localize to the nucleus to induce a 

full resistance response. Also, the nuclear pool of EDS1 was shown to have an essential role 

in immunity and reprogramming defense gene expression (Garcia et al., 2010). Furthermore, 

measurement of CFP lifetime in the nucleus is easier compared to measurements in the 

cytoplasm since fluorescence is usually higher in nuclei and less diffuse.  The average CFP 

lifetime in nuclei expressing AvrRps4-CFP was 2.30ns (Figure 18B). A significant reduction 

of the average CFP lifetime to 1.98ns was recorded in nuclei coexpressing the AvrRps4-CFP 
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and EDS1-YFP fusion proteins which corresponds to a FRET efficiency of 14%. This 

indicates that the AvrRps4 C-terminus and EDS1 physically interact in the nucleus when 

transiently coexpressed in N. benthamiana. 

 

 
 
Fig. 18: AvrRps4 physically interacts with the central immune regulator EDS1. 
(A) Subcellular localization of AvrRps4-CFP and EDS1-YFP transiently expressed in N. benthamiana. Confocal 
images of representative cells were taken 48h after Agrobacterium infiltration. Experiment was repeated twice 
with similar results. (B) FLIM Measurements showing that AvrRps4 physically interacts with EDS1 in the 
nucleus of N. benthamiana epidermal cells. Lifetime= mean lifetime in nanoseconds; p value= probability value; 
nuclei= total number of nuclei measured; FRET= FRET efficiency percentage (E= 1- τDA/τD) was calculated 
by comparing the lifetime of the donor in the presence of the acceptor (τDA) with its lifetime in the absence of 
the acceptor (τD). Experiment was repeated twice with similar results. 
 

As negative control, MLA1-YFP (material kindly provided by T. Maekawa, MPIPZ 

Cologne), a CC-NB-LRR R protein, was coexpressed with AvrRps4-CFP. This did not result 

in a significant decrease in CFP lifetime, indicating that the interaction of AvrRps4 and EDS1 

is specific (Figure 18B). Based on these data, one possible hypothesis is that EDS1 is the 

virulence target of AvrRps4.  
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2.3.2 Evidence for AvrRps4 physical interaction with RPS4 and RRS1  

 

To gain more information about how AvrRps4 is recognized by its cognate R proteins, either 

directly or indirectly, we tested if AvrRps4 physically interacts with RPS4 or RRS1. In these 

experiments, the RRS1-R allele was used for interaction studies. In future experiments, the 

RRS1-S allele should be included since this allelic variant confers resistance to Pst AvrRps4 

(Birker et al., 2009; Narusaka et al., 2009).  

 

 
 
Fig. 19: AvrRps4 physically interacts with its cognate R proteins, RPS4 and RRS1. 
(A) Subcellular localization of AvrRps4-CFP, YFP-RPS4 and RRS1-R-YFP transiently expressed in N. 
benthamiana. Confocal images of representative cells were taken 48h after Agrobacterium infiltration. 
Experiment was performed only once. (B) FLIM Measurements showing that AvrRps4 physically interacts with 
RPS4 and RRS1-R in the nucleus of N. benthamiana epidermal cells. Lifetime= mean lifetime in nanoseconds; 
FRET= FRET efficiency percentage (E= 1- τDA/τD) was calculated by comparing the lifetime of the donor in 
the presence of the acceptor (τDA) with its lifetime in the absence of the acceptor (τD). Experiment was 
performed only once. 
 

Upon coexpression with RRS1-R-YFP or YFP-RPS4, the nucleo-cytoplasmic distribution of 

AvrRps4-CFP was not altered (Figure 19A). RRS1-R-YFP showed exclusive nuclear 

localization and YFP-RPS4 was nuclear and extra-nuclear localized (Figure 19A). Lifetime of 
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the donor was measured in nuclei since the nuclear pool of RPS4 is required for its function 

(Wirthmueller et al., 2007) and RRS1-R exclusively localized to nuclei. The average CFP 

lifetime in nuclei expressing AvrRps4-CFP was 2.11ns (Figure 19B). Upon coexpression with 

YFP-RPS4, CFP lifetime was reduced to 1.97ns which corresponds to 10% FRET efficiency. 

A significant reduction of the average CFP lifetime to 1.81ns was recorded in nuclei 

coexpressing AvrRps4-CFP and RRS1-R-YFP fusion proteins which also corresponds to 10% 

FRET. This experiment was performed only once and needs to be repeated with further 

controls. Also, it was not possible to perform a statistical analysis of these data due to a 

limited number of nuclei tested in order to analyze if the reduction in lifetime is significant. 

These results suggest that AvrRps4 C-terminus is directly recognized by RPS4 and RRS1, 

although FRET does not reveal with complete confidence whether an interaction is direct or 

through an intermediate. Lifetime of the donor decreases if donor and acceptor molecules are 

less than 10nm apart. It is thus possible that AvrRps4 does not directly interact with RPS4 and 

RRS1 but rather that this interaction is mediated by another protein, such as EDS1. Despite 

years of research, the mechanism how EDS1 connects with TIR-NB-LRR receptors is not 

known. Therefore, we tested whether RPS4 and RRS1 are also physically interacting with 

EDS1.   

 

2.3.3 Nuclear EDS1 physically interacts with RPS4 and RRS1  

 

To test whether RPS4 and RRS1 are interacting with EDS1, EDS1-CFP was coexpressed with 

either RRS1-YFP or YFP-RPS4 in N. benthamiana and lifetime of CFP was measured. The 

average CFP lifetime in nuclei expressing EDS1-CFP was 2.56ns (Figure 20B). A significant 

reduction of the average CFP lifetime to 2.04ns was recorded in nuclei coexpressing the 

EDS1-CFP and YFP-RPS4 fusion proteins which corresponds to a FRET efficiency of 20%. 

Upon coexpression of EDS1-CFP with RRS1-R-YFP, CFP lifetime was reduced to 2.20ns, 

corresponding to a FRET efficiency of 14%. As negative control, EDS1-YFP was 

coexpressed with PopP2-CFP which did not result in a significant decrease in CFP lifetime 

suggesting that the interaction of EDS1 with RPS4 and RRS1-R is specific. The Ralstonia 

solanacearum effector PopP2 is recognized by RRS1-R and also localizes to the nucleus 

which makes it an appropriate negative control. Furthermore, the absence of an interaction 

between EDS1 and PopP2 indicates that the observed interaction of AvrRps4 and EDS1 is 

specific. Protein expression of none of the combinations tested resulted in a cell death 

reaction of the plant at the infiltration site. 
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Fig. 20: EDS1 physically interacts with the R proteins RPS4 and RRS1. 
(A) Subcellular localization of EDS1-CFP, YFP-RPS4 and RRS1-R-YFP transiently expressed in N. 
benthamiana. Confocal images of representative cells were taken 48h after Agrobacterium infiltration. 
Experiment was repeated once with similar results. (B) FLIM Measurements showing that EDS1 physically 
interacts with RPS4 and RRS1-R in the nucleus of N. benthamiana epidermal cells. Lifetime= mean lifetime in 
nanoseconds; p value= probability value; nuclei= total number of nuclei measured; FRET= FRET efficiency 
percentage (E= 1- τDA/τD) was calculated by comparing the lifetime of the donor in the presence of the 
acceptor (τDA) with its lifetime in the absence of the acceptor (τD). Experiment was repeated once with similar 
results. 
 

Another interesting observation we made is that AvrRps4 protein seems to be stabilized by 

RPS4, RRS1-R and EDS1. Upon transient Agrobacterium-mediated coexpression of 

AvrRps4-CFP with either YFP-RPS4, RRS1-R-YFP or EDS1-YFP in N. benthamiana, 

AvrRps4 protein steady state accumulation increased compared to expression of AvrRps4-

CFP alone (Figure 21A). This stabilization effect seems to be specific for AvrRps4-

interacting proteins since coexpression of MLA1-YFP did not have a stabilizing effect (Figure 

21A). Furthermore, we found that EDS1 protein also seems to be stabilized through 

coexpression with either RPS4 or RRS1-R (Figure 21B). Immunoblot analysis of total protein 
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extracts showed higher accumulation of EDS1-CFP in the presence of YFP-RPS4 and RRS1-

R-YFP. This effect appears specific for EDS1-interacting proteins since coexpression of 

MLA1-YFP did not have an effect on EDS1 protein accumulation (Figure 21B). It was 

recently shown that PopP2 stabilizes accumulation of its interacting partners RRS1-R and 

RRS1-S in planta (Tasset et al, 2010). The authors suggest that the interaction of PopP2 and 

RRS1-R/S may block a molecular mechanism that leads to RRS1-R/S proteasome-dependent 

degradation. It has still to be determined whether this is also the case for the stabilization 

effect of AvrRps4 and EDS1 protein accumulation.  

 

 
 
Fig. 21: AvrRps4 and EDS1 proteins are stabilized by coexpression of their interacting partners. 
(A) Immunoblot analysis showing that AvrRps4-CFP protein is stabilized upon coexpression with YFP-RPS4, 
RRS1-R-YFP and EDS1-YFP. Fusion proteins were transiently expressed via Agrobacterium in N. benthamiana 
epidermal cells. Leaf samples were harvested 48hpi and subjected to immunoblot analysis with α-GFP antibody. 
Experiment was repeated twice with similar results. (B) Immunoblot analysis showing that EDS1-CFP protein is 
stabilized upon coexpression with YFP-RPS4 and RRS1-R-YFP. Fusion proteins were transiently expressed via 
Agrobacterium in N. benthamiana epidermal cells. Leaf samples were harvested 48hpi and subjected to 
immunoblot analysis with α-GFP antibody. Experiment was repeated twice with similar results. 
 

Taken together, the data show potential physical interaction between AvrRps4 and EDS1 as 

well as between EDS1 and RPS4 or RRS1-R in nuclei. An interaction of AvrRps4 with RPS4 

and RRS1-R is suggested by the FRET/FLIM study although it is not clear whether this 

interaction is mediated by an intermediate, such as EDS1. Also, N. benthamiana harbours an 

EDS1 homolog that might mediate the interaction of AvrRps4 and RPS4 or RRS1. Since Col-

0 harbours the RRS1-S allele which is sufficient to confer resistance to Pst AvrRps4, it would 

be interesting to assess in future experiments if RRS1-S also interacts with AvrRps4 and 

EDS1. Also, CFP lifetime was measured only in plant nuclei, although EDS1 and AvrRps4 

also localize to the cytoplasm and RPS4 to endomembranes. In follow-up experiments it 

would be interesting to assess if these interactions are also taking place in other subcellular 

compartments. Another important aspect to take into account is that AvrRps4 is cleaved in 

planta by an unknown protease into an N- and a C-terminal part, whereas only the C-terminus 
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induces a resistance response. CFP was fused C-terminally to AvrRps4 so that only 

interactions of AvrRps4 C-terminus were analyzed. In future experiments, interactions of 

AvrRps4 N-terminus should be explored as well to shed light on AvrRps4 function in the 

plant cell.   

 

2.3.4 Verification of AvrRps4-EDS1 interaction in Arabidopsis 

 

The FRET/FLIM interaction studies were performed upon transient expression of the fusion 

proteins in N. benthamiana. It is crucial to verify these interactions in Arabidopsis, since 

transient expression of Arabidopsis proteins in N. benthamiana is an artificial system. In a 

first experiment, I wanted to verify the interaction of AvrRps4 and EDS1 by performing a Co-

Immunoprecipitation (Co-IP) in stable transgenic Arabidopsis lines. For that, I used lines 

expressing AvrRps4-HA under the control of the Dexamethasone-inducible promoter in Col-0 

background. Material for Co-IP was harvested 2 days after Dexamethasone induction since 

AvrRps4 expression is at its maximum at this timepoint (data not shown).  As negative 

controls for this experiment, I used lines expressing TIR1-HA-StrepII (TIR1-HS), an auxin 

receptor, under control of its native promoter in Col-0 as well as Col-0 wt plants that do not 

express the HA-epitope tag. Co-IP was performed on total plant extract of ~3 week old plants 

with α-HA antibody. Input and eluate fractions were subject to SDS-PAGE and Western Blot 

(Figure 22).  

Figure 22 shows that the pulldown of AvrRps4-HA as well as TIR1-HS was successful since 

both proteins show a strong enrichment in the eluate fraction. In order to determine if EDS1 

was co-immunoprecipitated, I probed the fractions with α-EDS1 antibody and could detect a 

strong signal in the eluate of pDex::AvrRps4-HA but no signal in the negative controls 

pTIR1::TIR1-HS and Col-0. This result indicates that AvrRps4 and EDS1 are also part of the 

same complex in Arabidopsis. However, EDS1 protein levels were higher in the input fraction 

of pDex::AvrRps4-HA compared to pTIR1::TIR1-HS and Col-0 since AvrRps4 expression in 

resistant plants induces EDS1 accumulation. In future experiments, EDS1 protein levels in the 

different input fractions should be adjusted, e.g. by inducing EDS1 accumulation through Pst 

AvrRps4 infection of the control lines.  
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Fig. 22: Co-Immunoprecipitation of AvrRps4 and EDS1 from transgenic Arabidopsis plants.  
Co-IP with α-HA agarose beads from total extracts of wildtype Col-0, pTIR1::TIR1-HS Col-0 and 
pDex::AvrRps4-HA Col-0 plants. Crude extracts (left panel, input) and immunoprecipitated protein (right panel, 
eluate) were detected with α-HA and α-EDS1 antibodies. Ponceau staining was performed to ensure equal 
loading. Asterisk= unspecific band. 
 

2.3.5 Verification of EDS1-RPS4 interaction in Arabidopsis 

 

To verify the interaction of RPS4 and EDS1 in Arabidopsis, I used p35S::RPS4-HS Col-0 

plants that were grown at 28°C for ~3 weeks and then shifted to 19°C to induce a resistance 

response (Wirthmueller et al., 2007). The temperature shift from 28°C to 19°C of the 35S-

RPS4-HS Col-0 line resembles defense activation through Pst AvrRps4 infection since several 

well characterized EDS1-dependent defense marker genes are up- or downregulated after 

temperature shift that are also induced or repressed after Pst AvrRps4 infection (Bartsch et al., 

2006; Garcia et al., 2010). Plant material for Co-IP was harvested 8h after temperature shift. 

RPS4 is mainly associated with endomembranes but also localizes to the plant nucleus 

(Wirthmueller et al., 2007). To address the question in which subcellular compartment RPS4 

and EDS1 may interact, I performed a Co-IP of the soluble and microsomal fractions. For 

this, the microsomal fraction was separated by ultracentrifugation from the soluble cell extract 

and from both fractions a pulldown with α-HA antibody was performed. As negative control, 

the pTIR1::TIR1-HS line was included. Furthermore, I included the pDex::AvrRps4-HA line 

in order to test whether AvrRps4 and EDS1 are interacting as well in the microsomal fraction.  
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Figure 23 shows that EDS1 protein could be detected in the total, soluble and in small 

amounts in the microsomal fraction of the input. AvrRps4 protein was also detected in all 

fractions whereas RPS4 accumulated in the total and microsomal fraction and only to very 

low amounts in the soluble fraction. TIR1 was found in the total and soluble fraction of the 

input. 

  

 
Fig. 23: Co-Immunoprecipitation of AvrRps4 with EDS1 and EDS1 with RPS4 from transgenic 
Arabidopsis plants. Co-IP with α-HA agarose beads from soluble and microsomal fractions of pDex::AvrRps4-
HA Col-0, p35S::RPS4-HS Col-0 and  pTIR1::TIR1-HS Col-0 plants. Immunoblot analysis was performed of 
total (T), soluble (S) and microsomal (M) fractions of the input and immunoprecipitated proteins of the soluble 
(S) and microsomal (M) fractions (eluate). Membranes were probed with α-HA, α-PEPC and α-EDS1 
antibodies. Ponceau staining was performed to ensure equal loading. Asterisk= unspecific band. 
 

As a marker for the cleanness of the microsomal fraction, the soluble protein PEPC was used. 

RPS4 protein was purified from the soluble and microsomal fraction. Interestingly, I was able 

to co-purify EDS1 together with RPS4 from the soluble fraction. Furthermore, AvrRps4 

accumulated in both the soluble and microsomal fraction and EDS1 co-purified with AvrRps4 

in the soluble fraction. The negative control TIR1 was found in the soluble fraction but EDS1 

did not co-immunoprecipitate with this protein.  

Taken together, I could show that EDS1 and RPS4 associate in one complex in the soluble 

fraction of Arabidopsis leaf extracts. Furthermore, I could confirm the Co-IP of AvrRps4 and 

EDS1 in the soluble fraction. In our FRET/FLIM experiments, an interaction of EDS1 and 

RPS4 as well as EDS1 and AvrRps4 was measured in the plant nucleus. To verify these 

interactions in the nucleus, a Co-IP of the nuclear fraction should be performed. However, 

total extract contains nuclear protein as well (data not shown) so that the co-purification of 

EDS1 and AvrRps4 from total plant extract might be a result of a nuclear interaction.  

Another question that should be addressed is whether AvrRps4 and RPS4 are interacting in 

the absence of EDS1 or if this interaction is mediated by EDS1. So far, attempts to co-purify 

AvrRps4 and RPS4 in Arabidopsis leaf extracts were unsuccessful (data not shown). Another 

important aspect that should be addressed in future experiments is the dynamics of these 
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interactions. Is EDS1 the virulence target of AvrRps4 or is this interaction a consequence of 

AvrRps4 recognition by RPS4 and RRS1? Are EDS1 and RPS4 interacting before or after 

pathogen stimulus? Furthermore, it would be informative to know if AvrRps4, EDS1 and 

RPS4 are part of a higher order complex or if they are part of separate complexes that may 

even reside in different subcellular compartments.  
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3 DISCUSSION 
 

3.1 Nuclear localization of AvrRps4 is required to induce full disease     
      resistance 
 
Induction of an immune response against infection by microbial pathogens is a highly 

dynamic process that requires the spatial and temporal regulation of defense components 

(Deslandes and Rivas, 2011). Many recent publications emphasize the role of nucleo-

cytoplasmic partitioning in regulation of an appropriate resistance response (Burch-Smith et 

al., 2007; Shen and Schulze-Lefert, 2007; Wirthmueller et al., 2007; Garcia et al., 2010; 

Slootweg et al., 2010). Several effector proteins from diverse pathogens are targeted to the 

plant nucleus (Szurek et al., 2002; Deslandes et al., 2003; Schornack et al., 2010). Despite 

recent advances, little is known about the influence of the subcellular localization of an 

effector protein on the initiation of a resistance response.  Therefore, the aim of this part of 

my thesis was to analyze in which subcellular compartment AvrRps4 induces a resistance 

response and how this relates to RPS4 distribution and signalling.  

 

3.1.1 Enhanced nuclear export of AvrRps4 causes attenuated resistance 

 

A C-terminal fusion to mYFP revealed that AvrRps4 localizes to the cytoplasm and the 

nucleus when expressed in planta (Figure 2A). Addition of a functional or mutated NLS or 

NES to AvrRps4-mYFP could redirect the AvrRps4 C-terminus to the respective 

compartment in N. benthamiana and Arabidopsis plants (Figure 2A). Stable expression of 

these AvrRps4 constructs under control of the constitutive CaMV 35S promoter in eds1-2 

plants did not cause morphological defects (Figure 3A). By contrast, the stable overexpression 

of AvrRps4-mYFP and AvrRps4-mYFP-NLS in an EDS1 containing background caused 

severely dwarfed plants that eventually died (Figure 4A). The EDS1-dependency of this 

phenotype suggests that it is caused by an activated immune response that is induced upon 

AvrRps4 overexpression. Enhanced nuclear export of AvrRps4 in AvrRps4-mYFP-NES 

overexpressing lines did not cause severe dwarfism although these plants were smaller than 

Col-0 wt plants.  

These results indicate that the AvrRps4 C-terminus needs to localize to the plant nucleus to 

induce a strong resistance response, as measured by inhibition of plant growth. Nevertheless, 
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constitutive overexpression of a bacterial protein in the host plant might lead to secondary 

consequences not directly related to effector recognition. To circumvent this, I followed a 

complementary approach in which the AvrRps4 variants were secreted via the bacterial type 

III secretion system. Pst DC3000 bacteria expressing AvrRps4-HA-NES grew to >10-fold 

higher levels than bacteria expressing AvrRps4-HA in the accessions Ws-0 and Col-0 (Figure 

6A,B). Furthermore, I could show that the reduced resistance response to AvrRps4-HA-NES 

also correlates with an attenuated cell death response (Figure 9).  

Taken together, these results show that enhanced nuclear export of the AvrRps4 C-terminus 

causes attenuated resistance but not full susceptibility in the host. The residual resistance 

response to AvrRps4-NES might have several reasons: i) the AvrRps4-NES fusion protein 

resides for a short time in the plant nucleus before it is exported to the cytoplasm and this may 

be sufficient to induce a partial defense response or ii) the cytoplasmic AvrRps4 C-terminus 

might also contribute to full resistance or iii) a shuttling of AvrRps4 C-terminus between the 

cytoplasm and the nucleus might be required to induce a full resistance response. So far, none 

of these possibilities can be excluded. I favour the first hypothesis since a NES sequence 

promotes export of nuclear proteins to the cytoplasm which implies that AvrRps4 needs to 

reside briefly in the nucleus before it is exported. This would suggest that at least one 

essential step of RPS4/RRS1-mediated AvrRps4 recognition occurs in the nucleus. 

Little is known about how the subcellular localization of an effector protein influences the 

initiation of resistance in the host. A recent study investigated the role of the subcellular 

distribution of the Potato Virus X (PCX) coat protein (CP) for the function of its cognate 

receptor protein (Slootweg et al., 2010). PVX CP is recognized in potato (Solanum 

tuberosum) by the CC-NB-LRR receptor Rx1 that has a nucleo-cytoplasmic distribution, as 

does the elicitor. Forcing PVX CP to the nucleus abolished activation of Rx1 suggesting that 

Rx1 needs to be activated in the cytoplasm where elicitor recognition also takes place 

(Slootweg et al., 2010). Another study showed that the tobacco (Nicotiana tabacum) 

resistance protein N recognizes its cognate elicitor, the Tobacco Mosaic Virus (TMV) protein 

p50 as well in the cytoplasm (Burch-Smith et al., 2007). However, these studies solely 

utilized the HR (localized programmed cell death) induction as an indicator of recognition 

and measure elicitor recognition upon transient Agrobacterium-mediated expression in the 

host plant. This could lead to potential artefacts since it might not resemble the localization of 

the elicitor proteins in a natural infection situation. More evidence on how localization of an 

effector influences the recognition through its cognate R protein comes from the Ralstonia 

solanacearum effector PopP2. This bacterial protein is recognized in resistant Arabidopsis 
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accessions through the nuclear localized TIR-NB-LRR receptor RRS1-R (Deslandes et al., 

2002). PopP2 contains a predicted NLS and localizes to the plant nucleus where it physically 

interacts with RRS1-R (Tasset et al., 2010). Deletion of the PopP2 NLS prevents its own 

nuclear accumulation as well as the nuclear localization of RRS1-R and does not trigger 

RRS1-R-mediated defense (Deslandes et al., 2003; Lahaye, 2004).  

Analogous to these results, one possibility could be that AvrRps4-NES prevents nuclear 

accumulation of RRS1 and thereby abolishes RRS1-mediated resistance. The localization of 

RRS1 upon coexpression with AvrRps4-NES has to be determined in future experiments. 

Another possibility is that AvrRps4 might interact with a host protein or its cognate R 

proteins in the cytoplasm and a subsequent shuttling of this complex into the nucleus might 

induce a complete resistance response. A further scenario is that AvrRps4 C-terminus targets 

a host protein in the nucleus and thus activates RPS4 and RRS1 which is consistent with the 

guard hypothesis. Alternatively, AvrRps4 might directly interact with RPS4 and/or RRS1 in 

the nucleus which leads to resistance activation. The enforced nuclear export of AvrRps4 C-

terminus might prevent its interaction with its target or cognate R proteins which may explain 

why nuclear localization of AvrRps4 is required to induce full resistance. 

 

3.1.2 AvrRps4 targeted to the nucleus induces resistance but fails to elicit a cell death 

response 

 

The AvrRps4 C-terminus targeted to the nucleus induces resistance as shown by growth 

inhibition of plants constitutively overexpressing AvrRps4-mYFP-NLS as well as by 

restriction of multiplication of bacteria expressing AvrRps4-HA-NLS (Figure 4, 6). 

Surprisingly, I found that AvrRps4-HA-NLS fails to elicit a cell death response even though it 

leads to full resistance (Figure 9). Quantitative transcription profiling after pathogen infection 

revealed that the genes PR1 and RPS4 were induced by AvrRps4-HA but not by AvrRps4-

HA-NLS infection (Figure 10). By contrast, EDS1 gene expression was induced by both 

AvrRps4-HA and AvrRps4-HA-NLS and DND1 and RRS1 genes were both repressed by 

infection with the AvrRps4 variants. It is interesting that all defense genes tested show 

transcriptional reprogramming after infection with AvrRps4-HA but only a subset with 

AvrRps4-HA-NLS. Thus, there might be specific sets of genes that are induced or repressed 

for a resistance response and others whose gene products are associated with cell death 

induction. Transcriptional upregulation of PR1 expression is widely used as a marker for SA-

promoted resistance activation and was found to be upregulated after infection with avirulent 
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bacteria (Bartsch et al., 2006). However, the data suggest that resistance can be uncoupled 

from PR1 induction since AvrRps4-HA-NLS induces resistance but PR1 levels are not 

induced. Alternatively, PR1 expression might be induced earlier after infection with 

AvrRps4-HA-NLS and might already be back to uninduced state at 24h. Therefore, in future 

experiments, it is important to analyze transcriptional reprogramming very early after 

infection and to compare the timings of transcriptional reprogramming and cell death 

induction. Furthermore, more genes have to be analyzed including ones whose gene products 

are associated with cell death, for example by performing a gene expression microarray. Also, 

it would be highly informative to measure SA levels in plants infected with bacteria 

expressing AvrRps4-HA or AvrRps4-HA-NLS since SA plays a role in ETI whereas the exact 

function of PR1 is not known (Mishina and Zeier, 2007).  

Taken together, these results suggest an uncoupling of cell death induction and bacterial 

growth restriction since AvrRps4 targeted to the nucleus induces resistance but fails to elicit a 

cell death response. Induction of HR is thought to restrict pathogen colonization (Jones and 

Dangl, 2006). However, it is not clear whether an HR is an essential component of disease 

resistance mechanisms in plants. Recently, it was shown that two type I metacaspases, 

AtMC1 and AtMC2, antagonistically control programmed cell death in Arabidopsis (Coll et 

al., 2010). AtMC1 positively regulates cell death whereas AtMC2 is a negative regulator of 

cell death.  Mutation of AtMC1 can almost completely suppress induction of HR through 

intracellular immune receptors but does not lead to increased susceptibility of the plant. Thus, 

these results also show an uncoupling of HR and pathogen growth restriction. This 

observation is reminiscent to the analysis of the potato Rx receptor protein that mediates 

resistance to Potato Virus X (PVX) without the induction of HR, a phenomenon named 

`extreme resistance` (Bendahmane et al., 1999). The authors argue that extreme resistance 

occurs if resistance is activated early in the infection cycle and if there is a high affinity 

between the elicitor and its receptor. In a different study it was shown that Rx is also capable 

of inducing an HR response depending on the viral strain and host genetic background. This 

further supports the idea that there is no qualitative difference between Rx-mediated and other 

NB-LRR-mediated resistance, but rather that the response is very rapid (Baures et al., 2008).   

Based on these results, it is possible that recognition of AvrRps4-NLS induces a defense 

response that is extremely rapid and robust, arresting the bacteria before cell death occurs. If 

PR1 expression is indeed induced earlier after infection with bacteria expressing AvrRps4-

NLS, this would support this hypothesis. It might be informative to analyze if AvrRps4-NLS 

is capable of inducing a systemic acquired resistance (SAR) response. SAR leads to broad-
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spectrum resistance towards otherwise virulent pathogens (Durrant and Dong, 2004). For 

many years it was anticipated that HR is required to induce an effective SAR response 

(Durrant and Dong, 2004). However, recent results show that extreme resistance mediated by 

Rx leads to induction of SAR against subsequent TMV infections without cell death being 

required (Liu et al., 2010). If AvrRps4-NLS is able to induce SAR might indicate if AvrRps4-

NLS triggered resistance is caused by a similar mechanism as the Rx-mediated extreme 

resistance.   

A possible explanation may be that during a natural infection of the plant with Pseudomonas 

bacteria, AvrRps4 C-terminus enters the nucleus at later stages of the infection process. 

Forcing AvrRps4 C-terminus to the nucleus already from the beginning of the infection 

process by fusing it to a NLS sequence might induce a very rapid and robust defense response 

without HR being required. Unfortunately, due to technical constraints, it is not yet possible 

to visualize the secretion of an effector protein into the plant cell in lifetime.  

Another possibility is that enforced nuclear localization of the AvrRps4 C-terminus might 

enhance its affinity to a nuclear receptor early in the infection process which induces a rapid 

defense response resulting in resistance before cell death occurs. Alternatively, a shuttling of 

the AvrRps4 C-terminus between the nucleus and the cytoplasm might be required to induce a 

full cell death response. Finally, AvrRps4-NLS might interfere with a cell death inducing 

factor in the nucleus and thus suppress cell death induction. Whatever might be the precise 

mechanism of AvrRps4 recognition, the AvrRps4 mis-localization experiments show that 

nuclear AvrRps4 can fully suppress bacterial proliferation without cell death being required.   

 

3.1.3 RPS4 and RRS1 are both required to confer resistance to mis-localized AvrRps4  

 

I further tested whether recognition of mis-localized AvrRps4 still requires RPS4 and RRS1 

for resistance by analyzing the susceptibility of the rps4 and rrs1 mutants in Col-0 and Ws-0 

accessions (Figure 6A,B). One possibility could be that enforced nuclear localization of 

AvrRps4 might abolish the requirement of RPS4 for resistance induction. A possible scenario 

is that RPS4 might be activated in the cytoplasm through recognition of the cytoplasmic 

AvrRps4 pool and then translocates into the nucleus to activate downstream components 

involved in the defense response. Enforced nuclear accumulation of AvrRps4 might already 

activate the nuclear downstream defense components and circumvent the need for RPS4 to 

translocate into the nucleus for activation of a defense response. 
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When infected with Pst DC3000 expressing either AvrRps4-HA-NLS or AvrRps4-HA-NES 

no significant changes in bacterial proliferation compared to Pst DC3000 AvrRps4-HA were 

observed in rps4 and rrs1 mutants in both accessions (Figure 6A,B). This suggests that the 

reduced resistance response to bacteria expressing AvrRps4-HA-NES depends on RPS4 and 

RRS1. Furthermore, these results indicate that enforced localization of AvrRps4 to a specific 

subcellular compartment does not circumvent the need for either RPS4 or RRS1 in resistance. 

They also show that both allelic variants of RRS1 in Col-0 and Ws-0 are involved in the 

resistance response to mis-localized AvrRps4 variants.  

I also tested whether RPS4 and RRS1 function additively or cooperatively in response to mis-

localized AvrRps4 variants by infecting the rps4-21/rrs1-1 double mutant in Ws-0 

background with bacteria expressing the different AvrRps4 variants (Figure 7B). It was 

previously shown that mutation of both R genes in Ws-0 did not have an additive effect in 

susceptibility to R. solanacearum, C. higginsianum or Pst AvrRps4 suggesting that RPS4 and 

RRS1 function cooperatively in response to these distinct pathogens (Narusaka et al., 2009). 

No significant differences in susceptibility of the double mutant compared to the single 

mutants were observed when infected with AvrRps4-HA, AvrRps4-HA-NLS or AvrRps4-

HA-NES (Figure 7B). This indicates that the modes of action of RPS4 and RRS1 are not 

altered upon AvrRps4 mis-localization and suggests that RPS4 and RRS1 function 

cooperatively in response to nuclear or cytoplasmic enriched AvrRps4.  

Depletion of the nuclear RPS4 pool by mutation of its intrinsic C-terminal NLS correlates 

with loss of RPS4 resistance to Pst AvrRps4 (Wirthmueller et al., 2007). Upon infection with 

Pst DC3000 expressing either AvrRps4-HA, AvrRps4-HA-NLS or AvrRps4-HA-NES, I 

could not observe significant differences in susceptibility of the RPS4-nls mutant (Figure 7A). 

This suggests that nuclear localization of RPS4 is required to trigger immunity to nuclear and 

cytoplasmic localized AvrRps4. The nuclear RPS4 pool might thus be required for its 

signalling function but not for recognition of AvrRps4. Alternatively, mutation of the NLS 

could alter the biochemical properties of RPS4 and thus affect the resistance-inducing 

function of RPS4. Results obtained from transient expression of YFP-RPS4-NES in N. 

tabacum argue against this hypothesis since this construct that contains a non-mutated NLS 

failed to induce HR (L. Wirthmueller, unpublished).  

Taken together, these results indicate that both RPS4 and RRS1 are required to confer 

resistance to mis-localized AvrRps4 and that the reduced resistance response to bacteria 

expressing AvrRps4-HA-NES depends on RPS4 and RRS1. Furthermore, enforced 

localization of AvrRps4 to a specific subcellular compartment does not affect the modes of 
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action of RPS4 and RRS1 which seem to function cooperatively. Forcing AvrRps4 into the 

nucleus induces full RPS4/RRS1-mediated resistance. Thus, recognition of AvrRps4 through 

RPS4 and RRS1 in the cytoplasm and subsequent shuttling of the protein complex into the 

nucleus for induction of resistance can be excluded. This is in contrast to Rx1-mediated 

resistance since forcing PVX CP to the nucleus abolished activation of Rx1 suggesting that 

the receptor needs to be activated in the cytoplasm (Slootweg et al., 2010). 

 

3.1.4 Model of AvrRps4-triggered resistance 

 

Based on my results in the context of published data, I suggest the following model to 

describe a possible mechanism of AvrRps4-triggered resistance. Initially, AvrRps4 is secreted 

into the plant cell via the type III secretion system. In the cell, it is cleaved by an unknown 

protease into an N-terminal and a C-terminal part and only the C-terminus that consists of 88 

aa induces a resistance response (Sohn et al., 2009). Cleavage of AvrRps4 protein is not 

required to induce resistance since a mutant of AvrRps4 (R112L) that is not cleaved still 

induces an immune response (Sohn et al., 2009). Rather, a nuclear localization of the 

AvrRps4 C-terminus is needed for resistance induction since AvrRps4 C-terminus targeted to 

the cytoplasm fails to induce a full resistance response. The non-cleaved mutant protein of 

AvrRps4 (R112L) still localizes to the nucleus and the cytoplasm when transiently expressed 

in N. benthamiana (data not shown) suggesting that cleavage of AvrRps4 protein does not 

alter its subcellular localization in the cell. I found that the N-terminus of AvrRps4 localizes 

exclusively to the cytoplasm in Arabidopsis when fused to mYFP (Supplementary Figure 2). 

In preliminary experiments, I observed that the N-terminus might have a virulence activity 

which I measured as enhancement of virulence when bacteria express the AvrRps4 N-

terminus (Supplementary Figure 1). Thus, the N-terminus of AvrRps4 might execute its 

virulence activity in the cytoplasm and the C-terminus might induce a resistance response in 

the nucleus. Unexpectedly, the nuclear localized AvrRps4 C-terminus failed to elicit a cell 

death response although it induced full resistance as measured by restriction of bacterial 

growth. Thus, cell death induction is not the end point of resistance as it is not required for 

resistance to nuclear localized AvrRps4. This is reminiscent of the extreme resistance to TMV 

mediated by the NB-LRR receptor Rx that is characterized by a rapid and robust resistance 

response without HR induction. Thus, the AvrRps4 C-terminus targeted to the nucleus might 

induce a rapid resistance response which suggests that under natural conditions in which an 

HR is observed, the C-terminus enters the nucleus at a later stage of infection. The exact 
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mechanism of nuclear import of the AvrRps4 C-terminus is not known since it does not 

harbour an intrinsic NLS for active transport. Instead, it might passively diffuse into the 

nucleus as it is below the size exclusion limit of the nuclear pore complex. Another possibility 

is that the AvrRps4 C-terminus is transported through the nuclear pores by a `piggyback` 

mechanism together with a nuclear targeted host protein (Garcia and Parker, 2009). This in 

turn induces a resistance response mediated by RPS4 and RRS1 since both receptors are 

required to confer resistance to nuclear localized AvrRps4 C-terminus. A possible scenario is 

that resistance is activated upon direct interaction of RPS4 and /or RRS1 with AvrRps4 in the 

nucleus. Alternatively, AvrRps4 might target a host protein in the nucleus which leads to 

activation of RPS4 and RRS1 and defense induction.   
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3.2 Modes of action of RPS4 and RRS1  
 

Early research in plant pathology revealed the gene-for-gene relationship in which a pathogen 

avirulence (Avr) gene is recognized by its corresponding Resistance (R) gene (Flor, 1971). 

Further characterization of several R and Avr proteins suggests that resistance is often not 

activated upon a simple ligand-receptor association as predicted by the gene-for-gene model. 

Recent advances indicate that an emerging theme in the field is resistance mediated by pairs 

of NB-LRR genes (Eitas and Dangl, 2010). However, RPS4 and RRS1 represent the only R 

gene pair so far that induces resistance to three distinct pathogens, namely Colletotrichum 

higginsianum, Ralstonia solanacearum and Pst AvrRps4 (Gassmann et al., 1999; Deslandes 

et al., 2002; Birker et al., 2009; Narusaka et al., 2009). Analysis of RPS4 and RRS1 function 

might provide deeper insights into the molecular mechanisms required for pathogen 

perception and might reveal common principles underlying resistance to diverse pathogens.  

 

3.2.1 Evidence that RPS4 and RRS1 act cooperatively  

 

The modes of action of pairs of NB-LRR genes in resistance can be very different. The two 

NB-LRR receptors RPP2A and RPP2B are both required to determine isolate-specific 

resistance to Hyaloperonospora arabidopsidis and are thought to function cooperatively 

(Sinapidou et al., 2004). RPP2A and RPP2B may become activated by multiple effector 

proteins since there was no evidence that they recognize a single effector. By contrast, the 

TIR-NB-LRR gene TAO1 contributes additively, with RPM1, to resistance to Pst expressing 

the effector protein AvrB (Eitas et al., 2008). RPS4 and RRS1 are both activated upon 

perception of the R. solanacearum effector PopP2, the P. syringae effector AvrRps4 and a so 

far unknown effector protein from C. higginsianum (Gassmann et al., 1999; Deslandes et al., 

2003; Birker et al., 2009; Narusaka et al., 2009). Examples of resistance mediated by pairs of 

NB-LRR receptors are not restricted to TIR-type receptors since the CC-NB-LRR pair Pi5-1 

and Pi5-2 mediates resistance to a specific isolate of Magnaporthe oryzae (Lee et al., 2009a).  

For RPS4 and RRS1 it was shown that mutation of both genes in Ws-0 does not lead to 

increased susceptibility compared to the single mutants to all three pathogens indicating that 

these two NB-LRR receptors might function cooperatively (see Chapter 2.1.5) (Narusaka et 

al., 2009). I also found that both RPS4 and RRS1 are involved in cell death induction by 

AvrRps4 and that mutation of both genes did not lead to decreased cell death suggesting a 

cooperative action (Figure 8C). I analyzed the potential cooperativity between RPS4 and 
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RRS1 in Col-0 since this accession is resistant to Pst AvrRps4 and harbours a different allelic 

recognition variant of RRS1 that might affect the mode of action of RPS4 and RRS1 (Birker et 

al., 2009; Narusaka et al., 2009). Furthermore, RPS4-mediated resistance and associated 

EDS1-dependent defense reprogramming have been characterized in Col-0 (Wirthmueller et 

al., 2007; Garcia et al., 2010).  

Silencing of RRS1 in a Col-0 rps4-2 background via RNAi effectively reduced RRS1 mRNA 

(Figure 13A). Nevertheless, the RRS1-RNAi lines had low residual RRS1 expression. 

Susceptibility of the RRS1-RNAi lines to Pst AvrRps4 was similar to that exhibited by the 

rps4-2 and rrs1-11 single mutants (Figure 13C). The absence of an additive susceptible 

phenotype suggests that RPS4 and RRS1 also function cooperatively in Col-0 background. 

Nonetheless, the residual RRS1 expression in RRS1-RNAi lines might be sufficient for RRS1 

function in AvrRps4-triggered resistance. 

Further evidence for a cooperative action between the RPS4 and RRS1 NB-LRR receptors 

came from stable transgenic Arabidopsis lines overexpresing RPS4 in an rrs1-11 mutant 

background. Constitutive overexpression of RPS4 in Col-0 led to reduced plant size which is 

indicative of a constitutively activated plant defense that is caused by transcriptional 

reprogramming of EDS1-dependent defense genes (Figure 14, 15) (Wirthmueller et al., 2007). 

The stunted morphology caused by RPS4 overexpression was completely dependent on EDS1 

since p35S::RPS4-HA-StrepII (35S::RPS4-HS) eds1-2 plants showed wildtype-like 

morphology demonstrating that the RPS4 overexpression signal is transduced in an EDS1-

dependent manner (Figure 14) (Wirthmueller et al., 2007). Reduced plant size in 35S::RPS4-

HS Col-0 was also RRS1-dependent since 35S::RPS4-HS rrs1-11 displayed wildtype-like 

growth although RPS4 protein accumulation was similar in all genetic backgrounds (Figure 

14A, B). 

Taken together, these data suggest that RRS1 operates coincidently or downstream of 

activated RPS4 since removal of one of the receptors seems to abolish the function of the 

other at least in terms of growth inhibition. In future experiments, it will be interesting to 

analyze whether all allelic variants of RRS1 operate in a cooperative manner with RPS4 or 

whether the different resistance capabilities of the RRS1 variants are caused by different 

modes of action with RPS4. The head-to-head arrangement of RPS4 and RRS1 genes was also 

found for the closest RPS4 and RRS1 homologs (Gassmann et al., 1999). Evolutionary 

conservation of homologous gene pairs in a head-to-head arrangement might allow a 

cooperative action of these genes and thus might indicate that all allelic variants of RRS1 

might function in a cooperative manner with RPS4 alleles.   
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For the Ws-0 accession it has been shown that RPS4 and RRS1 act cooperatively in response 

to R. solanacearum, C. higginsianum and Pst AvrRps4 (Narusaka et al., 2009). It is not 

known yet if all allelic variants of RRS1 act cooperatively with RPS4 in response to all three 

pathogens.  

A cooperative function of two NB-LRR receptors might have several reasons. The two NB-

LRR receptors RPP2A and RPP2B function cooperatively to confer isolate-specific resistance 

to Hyaloperonospora arabidopsidis (Sinapidou et al., 2004). RPP2A has an unusual structure 

since it contains two potential but incomplete TIR-NB domains and a short LRR domain that 

lacks conserved motifs (Sinapidou et al., 2004). By contrast, RPP2B encodes a typical TIR-

NB-LRR protein but requires RPP2A for pathogen recognition. Thus, the cooperative action 

of RPP2A and RPP2B might be caused by their structural features as they may provide a 

recognition or signalling function lacked by either partner protein (Sinapidou et al., 2004). 

Since RPS4 and RRS1 both encode functional R proteins this is probably not the cause for 

their potential cooperativity. One possibility might be that RPS4 and RRS1 act together at the 

DNA for transcriptional reprogramming of defense genes. RPS4 might regulate the 

association and dissociation of the RRS1 WRKY transcription factor domain with the DNA 

and thus regulate induction or repression of particular defense genes. In future experiments, it 

will be important to examine RRS1 binding sites on the DNA and to analyze whether RPS4 

regulates RRS1 binding or dissociation to particular sites on the DNA.  

The cooperative activity of pairs of NB-LRR receptors might be beneficial for the plant since 

this allows a higher diversity of recognition capabilities of a specific R protein. The 

combination of R proteins might allow recognition of several effector proteins which could 

explain how the relatively small number of R proteins can mediate recognition of a large set 

of pathogen effectors. Consistent with this, RPS4 and RRS1 are able to recognize three 

different effector proteins of diverse pathogens.  

 

3.2.2 TIR domains of RPS4 and RRS1 physically interact 

 

Further evidence for a potential cooperative action of RPS4 and RRS1 came from a Yeast-

Two-Hybrid study. Our collaborators M. Bernoux and P. Dodds (CSIRO Canberra) found that 

the functional TIR domains of RPS4 and RRS1 homo- and hetero-dimerize in yeast (Figure 

17). Furthermore, in preliminary experiments, we found that the TIR domains of RPS4 and 

RRS1 also interact in the plant nucleus as measured by FRET/FLIM analysis of transiently 

expressed protein domains in N. benthamiana (in collaboration with L. Deslandes and C. 
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Tasset; CNRS/INRA Toulouse). In future experiments, further controls have to be included to 

make sure that the reduction in TIR-RRS1-CFP lifetime is not due to nonspecific transfer of 

energy between the two fluorophores.  

The TIR domains of plant R proteins are thought to have a signalling role in the plant immune 

response as was mostly measured by cell death induction (Frost et al., 2004; Swiderski et al., 

2009; Krasileva et al., 2010; Bernoux et al., 2011). Recently, it was shown that the homo-

dimerization of the TIR domain of the flax L6 NB-LRR receptor correlates with autoactivity 

in planta, suggesting that this is a key event in defense signalling (Bernoux et al., 2011). 

Another study showed that the TIR-NB-LRR receptor N from tobacco oligomerizes upon 

coexpresion with the elicitor p50 (Mestre and Baulcombe, 2006). This is reminiscent of 

animal PAMP-triggered immunity. Perception of PAMPs in animals is mediated by the 

extracellular LRR domain of Toll-like receptors (TLRs). This induces homo-dimerization of 

the intracellular TIR domain which provides a new scaffold that can bind to adapter proteins, 

such as MyD88 and initiate a defense response (Tapping, 2009). Thus, the homo-dimerization 

of the TIR domains of RPS4 and RRS1 might be a critical early event for activation and 

signalling of a defense response and might represent an interacting surface for downstream 

signalling components. Indeed it was previously shown that the TIR domain of RPS4 has a 

role in the cell death signalling pathway since overexpression of the functional TIR domain 

triggers an effector-independent cell death response in the plant (Swiderski et al., 2009). It 

was observed that the L6 TIR domain homo-dimerization is of low affinity and readily 

reversible in vitro suggesting that transient low-affinity oligomerization may be required for 

the regulation of R proteins as this might prevent inappropriate defense activation (Bernoux et 

al., 2011).   

The hetero-dimerization of the TIR domains of RPS4 and RRS1 might reflect formation of a 

multi-protein complex consisting of several RPS4 and RRS1 molecules in planta. The 

formation of such a multi-protein complex might be required for AvrRps4 recognition or 

defense signalling and is a further indication for the cooperative activity of RPS4 and RRS1. 

The TIR sequence used for the interaction studies described here is from the RRS1-R allele 

from Nd-0 accession but this does not have sequence polymorphisms compared to the RRS1-S 

allele from Col-0. It would be interesting to analyze whether the TIR domains of all RRS1 

allelic variants can form homo- and hetero-dimers with the RPS4 TIR domain. This might 

indicate if the mode of action of RPS4 and RRS1 is the same in response to all three distinct 

pathogens since different allelic RRS1 variants are required for resistance to different 

pathogens.    
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Another question that should be addressed in future experiments is whether the full length R 

proteins are also physically interacting. This might answer the question if RPS4 and RRS1 are 

interacting in their activated or resting state and thus if the interaction is the cause or 

consequence of AvrRps4 recognition. Accessibility of the TIR domain resembles an activated 

conformation of the R protein and addition of NB-ARC or NB-ARC-LRR domains might 

inhibit TIR domain interactions (van Ooijen et al., 2007). It is not clear whether the 

interaction of RPS4 and RRS1 TIR domains is a functional requirement. In mammals, it was 

shown that NLRs can form hetero-oligomers (Damiano et al., 2004). The interaction of 

NLRP1 and NOD2 for example is required for the defense induction upon perception of 

bacterial peptidoglycan (Pan et al., 2007).    

Furthermore, it would be interesting to assess if the interaction of the TIR domains is 

restricted to the plant nucleus or might also occur in the cytosol. RRS1 was so far shown to 

localize exclusively to the nucleus when coexpressed with the R. solanacearum effector 

PopP2 but subcellular distribution of RRS1 when expressed alone could not yet be 

determined. RPS4 in contrast exhibits also endomembrane localization in addition to its 

nuclear accumulation and the endomembrane-associated pool of RPS4 might have a distinct 

function in immunity and possibly be part of other resistance complexes. However, it was 

shown that RPS4 needs to localize to the nucleus to induce a resistance response 

(Wirthmueller et al., 2007) which suggests that the hetero- and homo-dimerization of the TIR 

domains might be restricted to the plant nucleus. Nevertheless, it is not yet clear whether 

RPS4 is activated in the nucleus. However, since a shuttling of RPS4 to the nucleus after 

pathogen infection was not observed (Wirthmueller et al., 2007), it is more likely that RPS4 is 

also activated in the nucleus. 

 

3.2.3 Evidence that RPS4 and RRS1 have distinct functions in plant immunity  

 

Not all my data support simple cooperativity between RPS4 and RRS1. Constitutive 

overexpression of RPS4 in Col-0 leads to reduced plant size that was RRS1-dependent (Figure 

14A). The reduced plant size is indicative of a constitutively activated plant defense and 

quantitative transcriptional profiling revealed a transcriptional reprogramming of defense 

genes in this line (Figure 15). As expected, the expression of all genes tested was strongly 

EDS1-dependent (Figure 15). However, most of the genes tested were not strongly RRS1-

dependent. Rather, a quantitative difference in expression was observed for certain genes. A 

clear explanation for the RRS1-dependency of the stunted morphology of 35S::RPS4-HS Col-
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0 could not be provided by this analysis because only a limited number of genes were tested. 

Based on the obtained data different scenarios are possible: i) RRS1 might regulate a specific 

subset of genes whose products are important for the stunted phenotype but were not tested 

here or ii) rrs1 mutation might have a quantitative effect on transcriptional reprogramming of 

genes so that a certain threshold for the induction of the stunted phenotype is not reached. 

This is supported by the existing data. In this case, the threshold for the transcriptional 

reprogramming of defense genes might be different than for the suppression of the stunted 

morphology. A gene expression microarray of 35S::RPS4-HS line in Col-0 compared to rrs1-

11 background should provide deeper insight to which genes are RRS1-dependent or whether 

RRS1 is required for the timing or maintenance of defense gene induction or repression 

through RPS4.   

To further position RRS1 in the RPS4-mediated resistance pathway, I tested whether increased 

RPS4 levels can compensate for loss of RRS1 in bacterial resistance. In response to virulent 

Pst DC3000 bacteria, the 35S::RPS4-HS Col-0 line exhibited enhanced resistance suggesting 

that the basal resistance is increased due to RPS4 activation (Figure 16A). An increased basal 

resistance response was not observed for the 35S::RPS4-HS rrs1-11 line suggesting that a 

certain threshold of defense activation depends on RRS1. In response to Pst AvrRps4 bacteria, 

35S::RPS4-HS rrs1-11 plants displayed increased susceptibility compared to 35S::RPS4-HS 

Col-0 plants which was not statistically significant but reproducible (Figure 16B). However, 

35S::RPS4-HS rrs1-11 plants were not as susceptible as rrs1-11. This suggests that RPS4 still 

partially functions in the absence of RRS1 but not as effectively as in the presence of RRS1. 

Thus, overexpression of one of the two R proteins cannot fully compensate for the loss of the 

other which suggests that they might have distinct attributes for the immune response. The 

generation of lines overexpressing RRS1 in an rps4-2 mutant background might help to 

further dissect RPS4 and RRS1 functions. 

Further evidence for the absence of a cooperative action came from the gene expression 

analysis of RPS4 and RRS1 genes after pathogen challenge. RPS4 gene expression was 

induced after infection with Pst AvrRps4 whereas RRS1 gene expression was repressed 

(Figure 11B). Thus, RPS4 and RRS1 do not seem to be co-regulated which suggests that RPS4 

and RRS1 might not function in an entirely cooperative manner. 

Taken together, these results suggest a more complex relationship between RPS4 and RRS1 

than simple cooperativity. Overexpression of RPS4 initiates a defense response in the absence 

of RRS1 activation which might suggest that RPS4 operates downstream of RRS1. 

Alternatively, overexpression of one R protein might overcome the requirement for the 
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partner NB-LRR receptor. This is reminiscent of the NB-LRR pair N and NRG1 since 

overexpression of NRG1 induces a resistance response without N being required (Peart et al., 

2005). It is also possible that the overexpression system does not resemble the natural 

situation of RPS4 and RRS1 function even though all activated defense responses were 

EDS1-dependent. 

A different scenario is that a certain threshold of RPS4 and RRS1 protein accumulation is 

needed to induce resistance. For a cooperative action of two proteins, a strict stoichiometry of 

both proteins in the cell is required. Overexpression of RPS4 completely alters the 

stoichiometric relations of RPS4 and RRS1 in the cell which might disrupt their modes of 

action under natural conditions.  

 

3.2.4 Model for RPS4 and RRS1 modes of action 

 

Based on the obtained data, it is not possible to formulate a clear hypothesis for RPS4 and 

RRS1 function. In the following section, I will discuss hypothetical scenarios and will put 

them into the context of published data.  

The presence of a WRKY transcription factor domain of RRS1 suggests that one function of 

RRS1 is the regulation of defense gene expression through direct association with the DNA. 

Indeed, a DNA binding activity of RRS1 has been shown (Noutoshi et al., 2005). Mutation of 

one amino acid in the WRKY domain in the slh1 mutant leads to incapability of RRS1 to bind 

to DNA. This mutant shows constitutive activated defense response suggesting that RRS1 

acts as a repressor of defense genes as suggested for many WRKY transcription factors 

(Eulgem and Somssich, 2007). However, a transcriptional null mutant of RRS1 does not show 

constitutive activated defense. One possibility could be that in the complete absence of RRS1 

protein, another WRKY transcription factor takes over RRS1 function and suppresses defense 

gene induction. A redundant function has indeed been shown for some WRKY transcription 

factors (Xu et al., 2006).    

A possible scenario is that RPS4 regulates the dissociation of the RRS1 WRKY domain from 

the DNA after AvrRps4 perception and thus induces defense activation. Alternatively, RPS4 

might also redirect RRS1 to other sites on the DNA to regulate defense genes. The hetero-

dimerization of RPS4 and RRS1 TIR domains in the nucleus would be consistent with this 

model. The accessibility of the TIR domain resembles the activated state of the R protein 

which suggests that RPS4 and RRS1 are interacting in their activated state. This in turn might 

induce RRS1 dissociation off the DNA or a redirection to other sites on the DNA and 
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subsequent reprogramming of defense gene expression. However, it is equally possible that 

the hetero-dimerization of the TIR domains induces a downstream signalling response that 

mediates RRS1 dissociation off the DNA or binding to other sites on the DNA. Thus, in an 

rps4 mutant, RRS1 might stay associated with the DNA which prevents defense activation 

and results in susceptibility of the plant.  

Interestingly, the rps4-21/rrs1-1 mutant still allows residual resistance activation upon 

infection with Pst AvrRps4. This suggests that another R protein is involved in AvrRps4 

recognition and resistance signalling which is probably another TIR-NB-LRR-type R protein 

since AvrRps4-triggered immunity is completely EDS1-dependent. Recently, it was shown 

that the TIR-NB-LRR gene SNC1 contributes to AvrRps4-triggered resistance in the absence 

of RPS4 at a certain temperature (Kim et al., 2010). However, susceptibility of rps4-2/snc1-1 

was not complete suggesting that additional factors contribute to AvrRps4-triggered 

immunity. A double mutant of rrs1-11/snc1-1 should be analyzed in the future.    

These results suggest that RPS4 and SNC1 function in parallel to provide resistance at 22°C. 

The authors further showed that RPS4 and SNC1 both interact with SRFR1 (SUPPRESSOR 

OF rps4-RLD) in the microsomal compartment. SRFR1 is a negative regulator of RPS4-

mediated resistance possibly through its interaction with the co-chaperone SGT1 (Li et al., 

2010). Mutations in SRFR1 also activate SNC1. In a resting state, SRFR1 might form a 

complex with RPS4 and SNC1 in the microsomal compartment and negatively regulate RPS4 

and SNC1 function by preventing their nuclear translocation or maintaining them in an 

inactive conformation. To induce resistance, both RPS4 and SNC1 need to localize to the 

nucleus (Wirthmueller et al., 2007). This is supported by another publication where it was 

shown that the autoactive mutant of SNC1 (snc1) has a function in the nucleus since mutation 

of a Nup88 homolog, MOS7, reduced snc1 nuclear levels and diminished snc1 function 

(Cheng et al., 2009). SNC1 interacts via its TIR domain with the transcriptional co-repressor 

TPR1 (Zhu et al., 2010). TPR1 associates with histone deacetylase 19 in vivo and represses 

negative regulators of immunity that are EDS1-dependent thus probably activating the 

immune response. Similarly, RPS4 interacts via its TIR domain with RRS1, as well a 

proposed negative regulator of immunity, which might regulate defense gene expression.  

A possible scenario of RPS4/RRS1-mediated resistance might be that RPS4 is part of 

different multi-protein complexes before and after pathogen stimulus and in different 

subcellular compartments. Before pathogen stimulus, RPS4 might reside in a complex with 

SRFR1 and SNC1 in the microsomal compartment that maintains RPS4 in an inactive state. 

After pathogen stimulus, the nuclear pool of RPS4 is required to induce a resistance response. 
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RPS4 might either regulate RRS1 association or dissociation of the DNA or redirect RRS1 to 

particular binding sites on the DNA which leads to a reprogramming of defense genes.  
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3.3 AvrRps4 complex formation with immune regulators 
 

Pathogen effectors can be recognized by plant Resistance (R) proteins through different 

mechanisms. Recognition of an effector protein through direct interaction with its 

corresponding plant R protein has been shown only for a few cases (Jia et al., 2000; 

Deslandes et al., 2003; Dodds et al., 2006). In the case of direct recognition, effector and R 

proteins tend to show high levels of sequence polymorphism between alleles of the host and 

pathogen populations, reflecting the coevolutionary arms race between host and pathogen 

(Stukenbrock and McDonald, 2009). Another possibility is the indirect recognition of an 

effector which would conform to the guard hypothesis. The guard hypothesis proposes that an 

R protein guards a host protein that is targeted by an effector to enhance pathogen virulence. 

Effector-induced alterations of the target protein are perceived by R proteins so that they 

become activated and induce a defense response (Collier and Moffett, 2009). The mode of 

recognition of AvrRps4 by RPS4 and RRS1 is not known. Also, the virulence target of 

AvrRps4 was not yet identified. Analysis of AvrRps4 interaction partners in planta might 

provide deeper insights to the mechanism of AvrRps4 recognition and function in the plant. 

Although R proteins were first reported as plant immune receptors more than 15 years ago, 

how these proteins activate downstream defense responses is largely unknown. Identification 

of potential downstream signalling partners in plants will greatly enhance our knowledge of 

plant immunity. The analysis of AvrRps4 targets in planta and how these activate 

downstream resistance responses should provide deeper insights to this topic.  

 

3.3.1 Nuclear AvrRps4 interacts with the central immune regulator EDS1 and its  

          cognate R proteins RPS4 and RRS1 

 

In collaboration with L. Deslandes and C. Tasset (CNRS/INRA Toulouse), I performed 

FRET/FLIM experiments after Agrobacterium-mediated expression of components of 

AvrRps4-triggered immunity in N. benthamiana. I found that a significant reduction of the 

average CFP lifetime occurred in nuclei coexpressing AvrRps4-CFP and EDS1-YFP (Figure 

18). This suggests that the AvrRps4 C-terminus and EDS1 physically interact in the plant 

nucleus. I could confirm that the AvrRps4 C-terminus and EDS1 are part of the same complex 

in Arabidopsis by co-purifying AvrRps4-HA and EDS1 from total plant extract (Figure 22). 

Based on these data, it is possible that EDS1 is the virulence target of AvrRps4.  
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Furthermore, I found that coexpression of AvrRps4-CFP with RRS1-R-YFP or YFP-RPS4 

also led to a significant reduction in CFP lifetime in the nucleus suggesting that AvrRps4 C-

terminus is part of one complex with RPS4 and RRS1-R in the plant nucleus (Figure 19). So 

far, attempts to co-purify AvrRps4 and RPS4 from Arabidopsis were not successful (data not 

shown). The interaction of AvrRps4 with RPS4 and RRS1-R might be mediated by an 

intermediate, such as EDS1. For example, in the FRET/FLIM experiments, the N. 

benthamiana EDS1 homolog bridges the interaction of AvrRps4 with RPS4 and RRS1-R. 

Another interesting observation we made is that AvrRps4 protein seems to be stabilized by 

RPS4, RRS1-R and EDS1. Upon transient Agrobacterium-mediated coexpression of 

AvrRps4-CFP with either YFP-RPS4, RRS1-R-YFP or EDS1-YFP in N. benthamiana, 

AvrRps4 protein steady state accumulation increased compared to expression of AvrRps4-

CFP alone (Figure 21A). A similar observation was made for the TIR-NB-LRR receptor N 

that is stabilized upon coexpression with its cognate elicitor p50 (Mestre and Baulcombe, 

2006). Furthermore, we found that EDS1 protein also seems to be stabilized through 

coexpression with either RPS4 or RRS1-R (Figure 21B). It was recently shown that PopP2 

stabilizes accumulation of its interacting partners RRS1-R and RRS1-S in planta (Tasset et 

al., 2010). The authors suggest that the interaction of PopP2 and RRS1-R/S may block a 

molecular mechanism that leads to RRS1-R/S proteasome-dependent degradation. It has still 

to be determined whether this is also the case for the stabilization effect of AvrRps4 and 

EDS1 protein accumulation.  

In future experiments, the RRS1-S allele should be analyzed as well since this allelic variant 

confers resistance to Pst AvrRps4 with the Col-0 RPS4 allele (Birker et al., 2009; Narusaka et 

al., 2009). Another open question that should be addressed is how RPS4 and RRS1 can 

recognize several distinct effectors. An interaction of EDS1 with PopP2 was not found in 

FRET/FLIM experiments, suggesting that the recognition mechanism of PopP2 is different 

from the recognition of AvrRps4.  

An important aspect that has to be taken into account is that AvrRps4 is cleaved in planta 

whereas only the C-terminal part induces a resistance response (Sohn et al., 2009). Since the 

fusion proteins of AvrRps4 for FRET/FLIM analysis and Co-IP were C-terminally fused to 

either a fluorophore or the HA-epitope, only interactions of the AvrRps4 C-terminus were 

analyzed. In future experiments, interactions of the AvrRps4 N-terminus should be explored 

as well since preliminary data show that the N-terminus might have a virulence activity 

(Supplementary Figure 1). How this would connect molecularly to C-terminal recognition 

would be a point of interest.  
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3.3.2 EDS1 physically interacts with RPS4 and RRS1 in the plant nucleus 

 

In order to analyze further whether the interactions of AvrRps4 C-terminus with RPS4 and 

RRS1-R are direct or mediated by EDS1, I explored a physical interaction between RPS4 or 

RRS1-R and EDS1. In FRET/FLIM experiments, I found that EDS1 physically interacts with 

RPS4 and RRS1-R in the plant nucleus (Figure 20). An interesting observation in the 

FRET/FLIM experiments was made when EDS1-CFP was coexpressed with either YFP-

RPS4 or RRS1-R-YFP. Without EDS1 coexpression, the YFP fluorescence was evenly 

distributed in the nucleus whereas upon EDS1 coexpression, YFP fluorescence was detectable 

in speckles at the nuclear periphery. This observation is reminiscent of a study describing the 

localization of the NLRP3 inflammasome before and after immune induction (Zhou et al., 

2011). Resting NLRP3 localizes to the endoplasmic reticulum whereas upon inflammasome 

activation, NLRP3 localizes to the perinuclear space. A possible scenario might be that EDS1 

redirects the localization of RPS4 and RRS1 to the nuclear periphery possibly to regulate 

defense gene expression: It is a widely accepted model that subnuclear localization of 

chromatin is important for gene expression. Active genes have been found to be associated 

with nuclear pores (Heessen and Fornerod, 2007; Dillon, 2008) and nuclear pore proteins 

were found to be involved in transcriptional regulation (Mendjan et al., 2006). 

To confirm whether interaction of EDS1 and RPS4 occurs in Arabidopsis, I performed a Co-

IP of p35S::RPS4-HA-StrepII (35S::RPS4-HS) Col-0 plants after temperature shift and found 

that EDS1 and RPS4 are present in the same complex in the soluble plant extract (Figure 23). 

Temperature shift of the 35S::RPS4-HS Col-0 line from 28°C to 19°C resembles a defense 

activation which suggests that EDS1 and RPS4 are interacting after RPS4 activation. 

Nevertheless, it is not clear whether the temperature shift completely resembles an infection 

with Pst AvrRps4. Ideally, in future experiments it has to be determined whether this 

interaction occurs before and/or after infection with Pst AvrRps4. Also, the interaction of 

EDS1 with RRS1-R and RRS1-S has to be measured. The difference in the recognition 

capabilities of the RRS1 allelic variants might be caused by different binding affinities to 

EDS1 due to the amino acid sequence variation of RRS1-R and RRS1-S. Furthermore, it 

would be interesting to analyze whether EDS1 interacts with the TIR domains of RPS4 and 

RRS1 since the TIR domain of R proteins has a function in defense signalling (Swiderski et 

al., 2009; Bernoux et al., 2011).   

Since defense signalling mediated by TIR-NB-LRR-type receptors is EDS1-dependent, the 

finding of an interaction of EDS1 with RPS4 and RRS1 might indicate that this is the link to 
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signal emission. EDS1 might have the function of a signalling adapter mediating signal 

transmission. In mammals, signal transduction mediated by NLRs depends on the recruitment 

of specific adapter proteins. Intriguingly, some NLRs are part of higher order signalling 

complexes together with adapter proteins, termed inflammasomes (Schroder and Tschopp). 

The best characterized inflammasome to date is the NLRP3 inflammasome that consists of 

NLRP3, the adapter ASC and caspase-1. Upon NLRP3 activation, NLRP3 oligomerizes 

which mediates an interaction with the adapter protein ASC that in turn leads to activation of 

caspase-1 (Schroder and Tschopp). Thus, this higher order complex provides a molecular 

platform that controls immune activation. 

RPS4 and RRS1 might be part of a similar `resistasome` higher order complex with EDS1 as 

adapter protein. Upon pathogen stimulus, the TIR domains of RPS4 and RRS1 might form 

homo- and hetero-oligomers which mediates their interaction with EDS1. EDS1 in turn might 

regulate defense gene expression through association with RPS4 and RRS1 and transcription 

factors. Analysis of the dynamics of this potential `resistasome` complex should provide 

further insights to the mechanism of AvrRps4-triggered resistance. Convergence of numerous 

TIR-NB-LRR receptor activities on EDS1 raises the question whether EDS1 might act as an 

adapter for all TIR-NB-LRRs. Since the TIR domain is thought to be required for signalling, 

this implies that EDS1 interacts with multiple TIR domains of diverse TIR-NB-LRR 

receptors. Given that the sequence of the TIR domain is diverse among different receptors, a 

direct interaction with EDS1 is unlikely for all cases. The differential responses mediated by 

distinct NB-LRR receptors might be explained in part by the selective usage of adapter 

proteins as it is the case for animal receptors (Akira et al., 2006).  

In a recent study, it was shown that the TIR-NB-LRR gene SNC1 contributes to AvrRps4-

triggered immunity in the absence of RPS4 at 22°C (Kim et al., 2010). Furthermore, the 

authors found that RPS4 and SNC1 both interact with SRFR1 in the microsomal compartment 

and hypothesize that this negatively regulates RPS4 and SNC1 function. Based on these 

results, another possibility is that RPS4 cooperates with SNC1 in response to AvrRps4. Since 

both receptors need to localize to the nucleus for resistance function (Wirthmueller et al., 

2007; Cheng et al., 2009), a physical interaction of RPS4 and SNC1 should be explored in 

this compartment. Furthermore, an interaction of EDS1 and SNC1 should be measured since 

SNC1-mediated resistance is EDS1-dependent (Li et al., 2001).   

Nevertheless, the data suggest that defense signalling in plants might as well be mediated by 

higher order complexes as it is the case for animal innate immunity. A systems biology 

approach using mathematical modelling of crystallography, biochemistry and protein 
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interaction data further supports that the cell is to a large extent regulated by highly discrete 

yet dynamic protein complexes in which individual proteins can make several interactions 

(Gibson, 2009). 

 

3.3.3 Possible mechanisms of AvrRps4 recognition and resistance induction 

 

Based on the obtained data, three different models might explain the observed interactions 

(Figure 24). The described mechanisms of AvrRps4 recognition only refer to the C-terminus 

of AvrRps4 since only interactions of the AvrRps4 C-terminus were analyzed. In the first 

scenario, EDS1 is the virulence target of AvrRps4 in the plant cytoplasm and forms a pre-

recognition complex with AvrRps4 in this compartment (Figure 24A). This interaction 

induces a relocalization of EDS1 into the nucleus with AvrRps4 being transported by a 

`piggyback` mechanism with EDS1 import. In the plant nucleus, an interaction of 

EDS1/AvrRps4 with RPS4 and RRS1 occurs which activates both R proteins. This in turn 

might lead to EDS1-dependent defense gene reprogramming. This model is consistent with 

results from Garcia et al (2010) that show increased EDS1 steady state accumulation in the 

nucleus after infection with Pst AvrRps4. Furthermore, conditional release of EDS1 to nuclei 

correlated with transcriptional reprogramming of EDS1-dependent defense genes (Garcia et 

al., 2010). A similar mechanism was proposed for the tobacco TIR-NB-LRR receptor N that 

mediates resistance to the replicase p50 protein of Tobacco Mosaic Virus (TMV). The elicitor 

p50 interacts in the cytoplasm with NRIP1. This pre-recognition complex is recognized by N 

through direct association with its TIR domain. Upon activation, cytoplasmic N is either 

translocated to the nucleus or activates the N nuclear pool that mediates resistance (Burch-

Smith et al., 2007; Caplan et al., 2008).     

In the second scenario, EDS1 is constitutively guarded by RPS4 and RRS1 in the plant 

nucleus (Figure 24B). AvrRps4 enters the nucleus through an unknown mechanism or simple 

diffusion and targets EDS1 for virulence promotion. This in turn activates RPS4 and RRS1 

and leads to EDS1-dependent defense gene reprogramming. In contrast to the first scenario, 

EDS1 resides here in a complex with RPS4 and RRS1 already before the pathogen stimulus. 

The association of the R proteins with their guardee might keep them in an inactive state until 

pathogen effectors activate them. This is reminiscent of the plasma-membrane localized RIN4 

protein that is guarded by the two R proteins, RPM1 and RPS2, (Mackey et al., 2002; Mackey 

et al., 2003) illustrating that the same effector target can be monitored by different R proteins.  
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   A                                     B                                      C 

 
 
Fig. 24: Models of AvrRps4 C-terminus recognition and defense induction. (A) AvrRps4 C-terminus targets 
EDS1 in the plant cytoplasm which leads to the formation of a pre-recognition complex that is re-localized to the 
nucleus. In the nucleus, EDS1 interacts with RPS4 and RRS1 which in turn activates both R proteins and leads 
to defense gene reprogramming. (B) EDS1 is guarded by RPS4 and RRS1 in the nucleus. AvrRps4 C-terminus 
enters the nucleus and targets EDS1. This subsequently activates RPS4 and RRS1 and leads to activation of a 
resistance response. (C) AvrRps4 C-terminus targets an unknown protein in the nucleus which leads to its direct 
recognition by RPS4 and RRS1. EDS1 is recruited to this complex to mediate resistance activation.   
 

The first two scenarios are consistent with the guard hypothesis since AvrRps4 is recognized 

not through direct interaction with its cognate R proteins but through its interaction with 

EDS1. However, it is not known whether AvrRps4 modifies EDS1 protein which in turn leads 

to activation of RPS4 and RRS1. EDS1 might also function as a `decoy` and exclusively be 

required for perception of AvrRps4. This is a rather unlikely scenario since EDS1 is required 

for resistance mediated by most TIR-NB-LRRs and has a role in basal defense (Parker et al., 

1996; Aarts et al., 1998; Feys et al., 2001; Wirthmueller et al., 2007). Furthermore, mutation 

of a `decoy` has by definition no effect on immunity in the absence of the cognate R protein 

whereas mutation of EDS1 renders plants hypersusceptible to virulent and avirulent 

biotrophic and hemi-biotrophic pathogens (Parker et al., 1996; Aarts et al., 1998; Feys et al., 

2001; van der Hoorn and Kamoun, 2008). 

In the third scenario, AvrRps4 has an unknown virulence target either in the cytoplasm which 

leads to subsequent transport together with the target into the nucleus or in the plant nucleus 

(Figure 24C). In the nucleus, it is directly recognized through RPS4 and RRS1 which are then 

activated upon AvrRps4 interaction. This in turn leads to a direct interaction of RPS4 and 

RRS1 with EDS1 which promotes proximity of AvrRps4 to EDS1. In this scenario, 
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interaction of AvrRps4 and EDS1 is the consequence of AvrRps4 recognition whereas in the 

other two scenarios, AvrRps4 targets EDS1 which leads to resistance activation. A 

straightforward way to test which possibility might be most fitting, is to test whether the 

KRVY mutant of AvrRps4 interacts with EDS1. The AvrRps4 KRVY mutant has the amino 

acids KRVY at the beginning of the AvrRps4 C-terminus substituted with alanine and does 

not induce a defense response (Sohn et al., 2009). An interaction of EDS1 with this AvrRps4 

mutant might discriminate whether AvrRps4 and EDS1 are interacting as a consequence of 

recognition. Consistent with all three models are my results showing that nuclear localization 

of AvrRps4 is required to induce a full defense response (Chapter 3.1).  

The role of EDS1 as a defense signalling `hub` makes it an attractive target for pathogen 

effectors since interfering with EDS1 function is highly incapacitating for the plant innate 

immune system. If this were the case, EDS1 would be expected to be targeted by several 

distinct effector proteins and this is yet unknown. 
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3.4 Future perspectives  
 

The results of this study showed that the P. syringae effector AvrRps4 needs to localize to the 

nucleus to induce a full RPS4/RRS1-mediated resistance response. There is evidence that 

RPS4 and RRS1 function cooperatively in response to AvrRps4. One hypothesis is that RPS4 

regulates RRS1 binding to particular sites on the DNA and thus mediates defense gene 

reprogramming. A gene expression microarray of Arabidopsis lines overexpressing RPS4 in 

Col-0 and the rrs1-11 mutant backgrounds in the temperature shift system will reveal whether 

RRS1 is required for the timing or maintenance of defense gene reprogramming through 

RPS4. In addition, Chromatin Immunoprecipitation (ChIP) experiments in combination with a 

whole genome microarray should reveal RRS1 binding sites to the DNA and clarify whether 

RRS1 association or dissociation to particular sites is regulated by RPS4 or the downstream 

regulator EDS1. Both homo- and hetero-dimerization of the TIR domains of RPS4 and RRS1 

was observed in the plant nucleus which might indicate the formation of a multi-protein 

complex for resistance. In future experiments, the dynamics of this interaction should be 

explored.  

I showed that EDS1 can form a complex with RPS4 or RRS1 in the nucleus in transient 

expression assays. These data provide a potential direct link between TIR-NB-LRR-type 

receptors and EDS1-dependent defense induction and suggest that important recognition and 

signalling events can occur inside the plant nucleus. However, it is crucial to analyze the 

dynamics of this potential `resistasome` complex to determine whether formation of particular 

interactions is required for effector recognition or downstream signalling. Also, certain 

proteins might be part of distinct complexes in different subcellular compartments. For 

example, RPS4 is forms distinct associations in the microsomal and nuclear compartments 

(Wirthmueller et al., 2007; Kim et al., 2010) but the dynamics and functional importance of 

these different configurations for resistance signalling still have to be explored. Affinity 

purification of RPS4 and subsequent mass spectrometric analysis of its interaction partners 

from different subcellular compartments before and after pathogen stimulus should reveal the 

dynamics of these complexes and provide a link to gene expression reprogramming dynamics 

(Seebacher and Gavin, 2011). This will help us to understand how the fine control of cellular 

reprogramming is established and which events or molecules are decisive downtream 

components of ETI. 

Furthermore, I showed that AvrRps4 C-terminus interacts with EDS1 in the nucleus, 

suggesting that EDS1 might be the virulence target of AvrRps4. Being a major regulator of 
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defense, EDS1 is an attractive target for pathogen effectors. Therefore, it will be interesting to 

analyze whether more effectors of diverse pathogens target EDS1. Also, potential targets of 

the N-terminus of AvrRps4 in the plant cytoplasm should be identified since preliminary data 

suggest that the N-terminus might have virulence activity. For these experiments, Arabidopsis 

lines expressing HA- and YFP-tagged AvrRps4 N-terminus that were generated within this 

study will be useful. This will improve our knowledge on AvrRps4 function in the host cell.   
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4 MATERIALS AND METHODS 
 
 

4.1 Materials  
 

4.1.1 Plant materials  

 

4.1.1.1 Arabidopsis thaliana (hereafter Arabidopsis) 
Arabidopsis wild-type, mutant, and transgenic lines used in this study are listed in Table 4.1, 
4.2, and 4.3, respectively.  
 
Table 4.1: Wild-type Arabidopsis lines used in this study 
Accession Abbreviation  Original Source  
Columbia Col-0  J. Dangla 
Wassilewskija Ws-0 K. Feldmannb 
RLD RLD-0  W. Gassmannc  

a University of North Carolina, Chapel Hill, NC, USA 
b University of Arizona, Tucson, AZ, USA 
c University of Missouri-Columbia, Columbia, MO, USA 
 
Table 4.2: Mutant Arabidopsis lines used in this study 
Mutant allele Accession Mutagen Reference/ Source  
eds1-2 Col-0 /(Ler)a  FN Bartsch et al., 2006 
eds1-1 Ws-0 EMS Parker et al., 1996 
rps4-2 Col-0  T-DNA Wirthmueller et al., 2007 
rps4-21 Ws-0 T-DNA K. Shirasub 
rrs1-11 Col-0  T-DNA L. Deslandesc 
rrs1-1 Ws-0 T-DNA Y. Narusakad 
rps4-21/rrs1-1 Ws-0 T-DNA Y. Narusakad 

a Ler eds1-2 allele introgressed into Col-0 genetic background, 8th backcrossed generation 
b RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan 

c Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA, Castanet Tolosan, France 
d Research Institute for Biological Sciences, 7549-1 Yoshikawa, Kibityuo, Kaga-gun, Okayama, Japan 
 
FN: fast neutron; EMS: ethyl methane sulfonate; T-DNA: Transfer-DNA 
 
Table 4.3: Transgenic Arabidopsis lines used in this study 
Line Accession Construct Reference/ Source  
Dex-AvrRps4-HA Col-0  pDex::AvrRps4-HA Mackey et al, Cell 2003 
TIR1-HS Col-0 pTIR1::TIR1-HA-StrepII Zhang et al., PNAS 2008 
35S-RPS4-HS Col-0  p35S::RPS4-HA-StrepII Wirthmueller et al., 2007 
35S-RPS4-HS eds1-2 Col-0  p35S::RPS4-HA-StrepII Wirthmueller et al., 2007 

RPS4-nls rps4-2 Col-0 pRPS4::RPS4-HA-
StrepII-nls Wirthmueller et al., 2007 
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4.1.1.2 Nicotiana benthamiana  
Nicotiana benthamiana (310A) plants were obtained from T. Romeis (MPIZ, Cologne) and 
used for transient Agrobacterium-mediated transformation of leaf tissues.  
 

4.1.2 Pathogens 

Arabidopsis plants were infected with isogenic Pseudomonas syringae pv. tomato strains 
(DC3000) expressing different Pseudomonas effector proteins. 
 

4.1.2.1 Pseudomonas syringae pv. tomato (Pst) 
Pseudomonas syringae pv. tomato (Pst) strain DC3000 was obtained from R. Innes (Indiana 
University, Bloomington Indiana, USA) and used throughout this study.  
 
Table 4.4: Pseudomonas syringae pv. tomato (Pst) strains generated in this study 
Name Strain Construct 
AvrRps4-HA DC3000  EDV6::pAvrRps4::AvrRps4-HA 
AvrRps4-HA-NLS DC3000 EDV6::pAvrRps4::AvrRps4-HA-NLS 
AvrRps4-HA-nls DC3000 EDV6::pAvrRps4::AvrRps4-HA-nls 
AvrRps4-HA-NES DC3000 EDV6::pAvrRps4::AvrRps4-HA-NES 
AvrRps4-HA-nes DC3000 EDV6::pAvrRps4::AvrRps4-HA-nes 

 

4.1.2.2 Pseudomonas fluorescens (Pfo) 
Pseudomonas fluorescens (Pfo) strain was obtained from J. Dangl (University of North 
Carolina, Chapel Hill, NC, USA). 
 
Table 4.5: Pseudomonas fluorescens (Pfo) strains generated in this study 
Name Strain Construct 
AvrRps4-HA Pfo EDV6::pAvrRps4::AvrRps4-HA 
AvrRps4-HA-NLS Pfo EDV6::pAvrRps4::AvrRps4-HA-NLS 
AvrRps4-HA-nls Pfo EDV6::pAvrRps4::AvrRps4-HA-nls 
AvrRps4-HA-NES Pfo EDV6::pAvrRps4::AvrRps4-HA-NES 
AvrRps4-HA-nes Pfo EDV6::pAvrRps4::AvrRps4-HA-nes 

 
 

4.1.3 Bacterial strains 

 

4.1.3.1 Escherichia coli strains 
All E. coli strains were obtained from Invitrogen™ (Karlsruhe, Germany). 
 
DH5α 
Genotype: F- Φ80dlacZΔM15 Δ(lacZYA-argF) U169 deoR recA1 endA1 hsdR17(rk-, mk+) 
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phoA supE44 λ- thi-1 gyrA96 relA1 
 
DH10B 
Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 deoR recA1 endA1 
araΔ139 Δ(ara, leu)7697 galU galK λ- rpsL (StrR) nupG 
 
DB3.1 
Genotype: F- gyrA462 endA Δ(sr1-recA) mcrB mrr hsdS20 (rB- mB-) supE44 ara14 galK2 

lacY1 proA2 rpsL20 (StrR) xyl5 λ- leu mtl1 
 

4.1.3.2 Agrobacterium tumefaciens strains 
For stable transformation of Arabidopsis and transient expression in N. benthamiana, DNA 
constructs were transformed in Agrobacterium tumefaciens strain GV3101 carrying the helper 
plasmid pMP90 (with resistance to Rifampicin and Gentamycin) or the helper plasmid 
pMP90RK (with resistance to Rifampicin, Kanamycin and Gentamycin) (Koncz and Schell, 
1986). 
 

4.1.4 Vectors 

The following vectors have been used or were generated in this study: 
 
pEDV6 Gateway®-compatible vector carrying AvrRps4 

N-terminus under control of the native promoter 
(kindly provided by Kee Hoon Sohn; Sainsbury 
Lab, Norwich) 

  
pEDV6-AvrRps4-HA-NLS/nls/NES/nes Bacterial expression vectors carrying AvrRps4 

full length genomic sequence under control of 
the native promoter with C-terminal HA- tag and 
functional or non-functional localization signals; 
cloned into pEDV6 via PstI/XhoI 

  
pEDV6-AvrRps4-N-terminus-HA Bacterial expression vector carrying AvrRps4 N-

terminus (aa 1-133) genomic sequence under 
control of the native promoter with C-terminal 
HA- tag; cloned into pEDV6 via PstI/XhoI 

  
pXCSG-mYFP Binary Gateway® destination vector for 

expression of a fusion protein under control of 
35S promoter with a C-terminal mYFP tag  

  
pXCSG-mYFP-NLS/nls/NES/nes Binary Gateway® destination vectors for 

expression of a fusion protein under control of 
35S promoter with a C-terminal mYFP tag 
carrying a functional or non-functional 
localization signals 

  
pXCSG-AvrRps4-mYFP Binary Gateway® destination vector for 

expression of AvrRps4 full length under control 
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of 35S promoter with a C-terminal mYFP tag 
  
pXCSG-AvrRps4-mYFP-
NLS/nls/NES/nes 

Binary Gateway® destination vectors for 
expression of AvrRps4 full length under control 
of 35S promoter with a C-terminal mYFP tag 
carrying a functional or non-functional 
localization signals 

  
pXCSG-AvrRps4-N-terminus-mYFP Binary Gateway® destination vector for 

expression of AvrRps4 N-terminus (aa 1-133) 
under control of 35S promoter with a C-terminal 
mYFP tag 

  
pXCSG-AvrRps4-N-terminus-GGAA-
mYFP 

Binary Gateway® destination vector for 
expression of AvrRps4 N-terminus (aa 1-133) 
with G132 and G133 substituted with Alanine 
under control of 35S promoter with a C-terminal 
mYFP tag 

  
pENTRY-RRS1-RNAi AGRIKOLA Gateway® entry plasmid that 

contains a gene-specific sequence tag of RRS1 
(165bp) 

  
pHellsgate Binary Gateway® destination vector containing 

two Gateway cassettes that is designed for the 
expression of hairpin RNAs 

  
pHellsgate-RRS1-RNAi Binary Gateway® destination vector for the 

expression of hairpin RNAs of a gene-specific 
sequence tag of RRS1; cloned by double LR 
clonase reaction 

4.1.5 Oligonucleotides 

Primers used in this study are listed in Table 2.4. Oligonucleotides were purchased from 
Sigma-Aldrich (Deisenhofen, Germany), Operon (Cologne, Germany) or Metabion 
(Martinsried, Germany). Lyophilised primers were resuspended in ddH2O to a final 
concentration of 100 pmol/μl (= 100 μM). Working solutions were diluted to 10 pmol/μl (=10 
μM). 
 
Table 4.6: Oligonucleotides used in this study 

Name Purpose Sequence (5`→ 3`) 
Cloning     

KH1-NES-XbaI cloning pXCSG-
mYFP-NES 

AGTCTAGAGCTCTTACAGTGTTAGTCTTTCCAAAG
GTGGTAATTGGAGCTTGTACAGCTCGTCCATGCCG 

KH2-nes-XbaI cloning pXCSG-
mYFP-nes 

AGTCTAGAGCTCTTACAGTGTTGCTCTTTCTGCAGG
TGGTGCTTGGAGCTTGTACAGCTCGTCCATGCCG 

AvrRps4-HA-
XhoI-rev 

cloning pEDV6-
AvrRps4-HA GATCTAGAGCTCTCATGCGTAATCAGGAACATCGT 

AvrRps4-HA-
NLS-XhoI-rev 

cloning pEDV6-
AvrRps4-HA-NLS 

AGTCTAGAGCTCTTATCCTCCAACCTTTCTCTTCTT
CTTAGGTGCGTAATCAGGAACATCG 
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AvrRps4-HA-
nls-XhoI-rev 

cloning pEDV6-
AvrRps4-HA-nls 

AGTCTAGAGCTCTTATCCTCCAACCTTTCTCTTCGT
CTTAGGTGCGTAATCAGGAACATCG 

AvrRps4-HA-
NES-XhoI-rev 

cloning pEDV6-
AvrRps4-HA-NES 

AGTCTAGAGCTCTTACAGTGTTAGTCTTTCCAAAG
GTGGTAATTGGAGTGCGTAATCAGGAACATCG 

AvrRps4-HA-
nes-XhoI-rev 

cloning pEDV6-
AvrRps4-HA-nes 

AGTCTAGAGCTCTTACAGTGTTGCTCTTTCTGCAGG
TGGTGCTTGGAGTGCGTAATCAGGAACATCG 

qRT-PCR     

RPS4 fw qRT-PCR CGGCTGCTCAACTTTTAAGG 

RPS4 rev qRT-PCR GGCCTGGAATTTCCTCTAGC 

RRS1 fw qRT-PCR CCACTAAACGCAAGGCTCTC 

RRS1 rev qRT-PCR CTCCTCCATGTCCGTCATTT 

UBIQ fw qRT-PCR AGATCCAGGACAAGGAGGTATTC 

UBIQ rev qRT-PCR CGCAGGACCAAGTGAAGAGTAG 

EDS1fw qRT-PCR CGAAGACACAGGGCCGTA 

EDS1 rev qRT-PCR AAGCATGATCCGCACTCG 

CBP60 fw qRT-PCR GGCGAGAAGTGAAGCTTTTG 

CBP60 rev qRT-PCR GCGAAAATCCTTGACGGTTA 

PBS3 fw qRT-PCR ACACCAGCCCTGATGAAGTC 

PBS3 rev qRT-PCR CCCAAGTCTGTGACCCAGTT 

ICS1 fw qRT-PCR TTCTGGGCTCAAACACTAAAAC 

ICS1 rev qRT-PCR GGCGTCTTGAAATCTCCATC 

FMO1 fw qRT-PCR GTTCGTGGTTGTGTGTACCG 

FMO1 rev qRT-PCR TGTGCAAGCTTTTCCTCCTT 

ERECTA fw qRT-PCR CATGGCCCTACGAAGAAAAA 

ERECTA rev qRT-PCR TGGACGACTTCACGTCTCTG 

DND1 fw qRT-PCR CTCCCATGGTGGTTCCTCTA 

DND1 rev qRT-PCR ATCGATCCCAGTCGTTTGTC 

PR1 for qRT-PCR TTCTTCCCTCGAAAGCTCAA 
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PR1 rev qRT-PCR AAGGCCCACCAGAGTGTATG 

Genotyping     

rps4-mutR detection of rps4-21 
mutation TTAACCATTCACAAAAGCAATCAACAG 

rps4-mutF detection of rps4-21 
mutation TAAGCTACCATTGAAAGAAGTTCG 

JL271 detection of rrs1-1 
mutation ACATGAAGCCATTTACAATTGAATATATCC 

RRS1-CR detection of rrs1-1 
mutation TGATGGGTTTACAGTTTGGGGAGGACTGGTAATTG 

NRS2-S8 detection of rrs1-1 
mutation 

TACAAAAAGCCATTAGAGATGTATCAGTATGCTAC
C 

W2-52-400F detection of rrs1-11 
mutation TGTAGAAGAGATTGTGAGAGATGT 

Fish 1rev detection of rrs1-11 
mutation CTGGGAATGGCGAAATCAAGGCATC 

RRS1 fw genotyping rrs1-11 
mutation homozygous GGCTCGTCAACTTTTCTTGC 

RRS1 rev genotyping rrs1-11 
mutation homozygous CCTGAGCACGTTTGAAGGTT 

Sequencing     

Agri 51 sequencing of 
pHellsgate insert CAA CCA CGT CTT CAA AGC AA 

Agri 56 sequencing of 
pHellsgate insert CTG GGG TAC CGA ATT CCT C 

Agri 64 sequencing of 
pHellsgate insert CTT GCG CTG CAG TTA TCA TC 

Agri 69 sequencing of 
pHellsgate insert AGG CGT CTC GCA TAT CTC AT 

 

4.1.6 Enzymes 

4.1.6.1 Restriction endonucleases 
Restriction enzymes were purchased from New England Biolabs (Frankfurt, Germany) unless 
otherwise stated. Enzymes were supplied with 10x reaction buffer which was used for 
restriction digests. 
 

4.1.6.2 Nucleic acid modifying enzymes 
Standard PCR reactions were performed using home made Taq DNA polymerase. To achieve 
high accuracy, Pfu polymerases were used when PCR products were generated for cloning. 
Modifying enzymes and their suppliers are listed below: 
 
Taq DNA polymerase                                               home made 
PfuTurbo® DNA polymerase                                    Stratagene® (Heidelberg, Germany) 
T4 DNA ligase                                                          Roche (Mannheim, Germany) 
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Alkaline Phosphatase, shrimp                                   Roche (Mannheim, Germany) 
SuperScript™ II RNase H- Reverse Transcriptase   Invitrogen™ (Karlsruhe, Germany) 
Gateway™ LR Clonase™ Enzyme mix                   Invitrogen™ (Karlsruhe, Germany 
 

4.1.7 Chemicals 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich (Deisenhofen, 
Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), Invitrogen™ 
(Karlsruhe, Germany), Serva (Heidelberg, Germany), and Gibco™  BRL®  (Neu Isenburg, 
Germany) unless otherwise stated. 
 

4.1.8 Antibiotics (stock solutions) 

Ampicillin (Amp)                         100 mg/ml in ddH2O 
Carbenicillin (Carb)                      50 mg/ml in ddH2O 
Gentamycin (Gent)                       15 mg/ml in ddH2O 
Kanamycin (Kan)                         50 mg/ml in ddH2O 
Rifampicin (Rif)                           100 mg/ml in DMSO 
Spectinomycin                              10 mg/ml in ddH2O 
Tetracycline (Tet)                         10 mg/ml in 70 % ethanol 
 
Stock solutions (1000x; 100x for Spectinomycin) stored at -20° C. Aqueous solutions were 
sterile filtrated. 
 

4.1.9 Media 

Media were sterilised by autoclaving at 121° C for 20 min. For the addition of antibiotics and 
other heat labile compounds the solution or media were cooled to 55° C. Heat labile 
compounds were sterilised using filter sterilisation units prior to addition. 
 
Escherichia coli media: Luria-Bertani (LB) broth or agar plates; SOC 
Pseudomonas syringae media: NYG broth or agar plates 
Agrobacterium tumefaciens media: YEB broth or agar plates 
Arabidopsis thaliana media: MS (Murashige and Skoog). 
 

4.1.10 Antibodies 

Listed below are primary and secondary antibodies used for immunoblot detection. 
 
Table 4.7: Primary antibodies used in this study 

Antibody Source Dilution Reference 

α-EDS1 rabbit polyclonal 1:500 S. Rietz; J. Parkera 

α-PEPC rabbit polyclonal 1:500 Rocklands, Gilbertsville, PA, USA 

α-Histone H3 (ab1791) rabbit polyclonal 1:5000 Abcam (Cambridge, UK) 

α-HA 3F10 rat monoclonal 1:2000 Roche (Mannheim, Germany) 

α-GFP mouse monoclonal 1:2000 Roche (Mannheim, Germany) 
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α-RIP1 rabbit polyclonal 1:2000 F. Kaschani and R. van der Hoorn; 
unpublished 

a Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany 
 
Table 4.8: Secondary antibodies used in this study 

Antibody Feature  Dilution  Source  

goat anti-rabbit IgG-HRP  horseradish peroxidase 
conjugated  1:5000 Santa Cruz  

(Santa Cruz, USA)  

goat anti-mouse IgG-HRP  horseradish peroxidase 
conjugated  1:5000 Santa Cruz  

(Santa Cruz, USA)  

goat anti-rat IgG-HRP  horseradish peroxidase 
conjugated  1:5000 Santa Cruz  

(Santa Cruz, USA)  
 
 

4.1.11 Buffers and solutions 

Buffers and solutions are displayed in the following listing. Buffers and solutions not 
displayed in this listing are denoted with the corresponding methods. All buffers and solutions 
were prepared using Milli-Q water. Buffers and solutions for molecular biological 
experiments were autoclaved or sterilised using filter sterilisation units.  
 
DEPC-H2O Diethylpyrocarbonate 0.1 % in H2O 
 Shake vigorously, let stand O/N and autoclave 30 min. 
   
DNA extraction buffer Tris  

NaCl 
EDTA  
SDS  
pH 7.5 (HCl) 

200 mM 
250 mM 
25 mM 
0.5 % 

   
DNA gel loading dye (6x) Sucrose  

EDTA (0.5 M)  
Bromphenol blue  
dH2O to 10 ml 

4 g 
2 ml 
25 mg 

   
PCR reaction buffer (10x) Tris  

KCl  
MgCl2  
Triton X-100  
pH 9.0 

100 mM 
500 mM 
15 mM 
1 % 

   
Ponceau S Ponceau S working solution was prepared by dilution 

of ATX Ponceau S concentrate (Fluka) 1:5 in H2O. 
   
Running buffer (10x) Tris  

Glycine  
SDS  
dH2O to 1000 ml 
Do not adjust pH. 

30.28 g 
144.13 g 
10 g 
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Sample buffer (2x) Tris  
SDS  
Glycerol  
Bromphenol blue  
Dithiothreitol (DTT)  
pH 6.8 

0.125 M 
4 % 
20 % (v/v) 
0.02 % 
0.2 M 

   
TAE buffer (50x) Tris  

EDTA  
Glacial acetic acid  
dH2O to 1000 ml 
pH 8.5 

242 g 
18.6 g 
57.1 ml 
 

   
TBS-T buffer Tris  

NaCl  
Tween 20  
pH 7.5 (HCl) 

10 mM 
150 mM 
0.05 % 

   
TE buffer Tris  

EDTA  
pH 8.0 (HCl) 

10 mM 
1 mM 

   
Transfer buffer (10x) Tris  

Glycine  
SDS (10 %)  
dH2O to 1000 ml 
pH 9.2 

58.2 g 
29.3 g 
12.5 ml 
 

 Before use dilute 80 ml 10x buffer with 720 ml H2O 
and add 200 ml methanol. 

 
 

4.2 Methods 
 

4.2.1 Maintenance and cultivation of Arabidopsis plants 

Arabidopsis seeds were sown directly onto moist compost (Stender, Schermbeck, Germany) 
containing 10 mg l-1 Confidor® WG 70 (Bayer, Germany). Seeds were vernalised at 4° C for 
48 h in the dark covered with a propagator lid. Afterwards the seeds were transferred to a 
plant growth chamber and maintained under short day conditions (10 h photoperiod, light 
intensity of approximately 200 μEinsteins m-2 sec-1, 22° C and 65 % humidity). 3-5 days post 
germination, propagator lids were removed. To obtain progeny, three week old plants were 
transferred to long day conditions (16 h photoperiod) and allowed to flower. To collect seeds, 
aerial tissue was enveloped with a paper bag and sealed with tape at its base until siliques 
were ripe.  
 

4.2.2 Generation of Arabidopsis F1 and F2 progeny 

To emasculate individual flowers, fine tweezers and a magnifying-glass were used. Only 
flowers that had a well-developed stigma but immature stamen were used for crossing to 
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prevent self-pollination. Fresh pollen from three to four independent donor stamens was 
dabbed onto each single stigma. F1 seed were harvested from mature siliques and allowed to 
dry. F1 seeds were grown as described above and allowed to self pollinate. Produced F2 seeds 
were collected and stored. 
 

4.2.3 Agrobacterium-mediated stable transformation of Arabidopsis (floral dip) 

The method for Agrobacterium-mediated stable transformation of Arabidopsis was adapted 
from (Clough and Bent, 1998). Approximately 10 Arabidopsis plants were grown in 9 cm 
square pots (3 pots for each transformation) under short day conditions for 4 - 5 weeks. To 
induce flowering, the plants were shifted to 16 h photoperiod conditions. First inflorescence 
shoots were cut off as soon as they emerged to induce the growth of more inflorescences. 
When plants had a maximum number of young flower heads, plants were used for 
transformation. For that, Agrobacterium was streaked out onto selective YEB plates 
containing appropriate antibiotics and was grown at 28 °C for 3 days. Bacteria were scraped 
off the plates and resuspended in 5 % sucrose to OD600 ~ 0.8. Silwet L-77 (Lehle seeds, USA) 
at 500 μl/l was added as surfactant. Plants to be transformed were inverted in the cell-
suspension ensuring all flower heads were submerged. Plants were agitated slightly to release 
air bubbles and left in the solution for approximately 5 sec. Plants were removed and dipping 
was repeated as before. Plants were placed overnight into the glasshouse away from direct 
light covered in plastic bags and sealed with tape. Afterwards, bags were removed and pots 
were moved to direct light and left to set seed. 
 

4.2.4 Arabidopsis seed surface sterilization  

Previous to in vitro growth of Arabidopsis, seeds were sterilized. Seeds were distributed in 
1.5 ml open microcentrifuge tubes inside a desiccator jar together with a beaker containing 
100 ml of 12 % hypochlorite solution (“chlorine bleach”). 10 ml of 37 % HCl was added 
directly into the hypochlorite solution to allow chlorine gas to be produced. The lid of the 
desiccator was immediately closed and vacuum was generated by connecting to a vacuum 
pump and incubated for 4 – 8 h. After the sterilisation period, seeds were quickly closed and 
removed from the jar, then placed in a sterile hood and let stand for 15 min in the opened 
vessel. Sterilized seed were spread out on suitable culture media and vernalized for 48 h at 
4°C in the dark. Alternatively, the seeds were sterilized using columns from DNA/RNA prep 
kits by subsequent incubations and washes with ethanol 70% for 2 min followed by ethanol 
95% for 1 min. Afterwards, tubes were centrifuged for 1 min to remove all ethanol and seeds 
were dried under the sterile hood. 
 

4.2.5 Maintenance of P. syringae pv. tomato and Pseudomonas fluorescens cultures 

Pseudomonas syringae pv. tomato and Pseudomonas fluorescens strains were streaked onto 
selective NYG agar plates from -80° C DMSO or glycerol stocks. Streaked plates were 
incubated at 28° C for 72 h before storing at 4° C and refreshed weekly. 
 

4.2.6 P. syringae pv. tomato growth assay 

P. syringae cultures of the denoted strains were started from bacteria grown on NYG agar 
plates. One day before infection, bacterial strains were restreaked on NYG agar plates 
containing the appropriate antibiotics and incubated ON at 28°C. For spray-infection, the 
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concentration of bacteria was adjusted to 1 x 107 cfu/ml in 10 mM MgCl2 containing 0.04 % 
Silwet L-77 (Lehle seeds, USA) if not otherwise stated. For bacterial growth assays, single 
pots with five plants grown under short day conditions for 4-5 weeks, were used. Two hours 
before spray-infection, plants were watered and kept under a dH2O-humidified lid to allow 
opening of stomata. Plants were spray-infected with a dispenser and kept under a dH2O-
humidified lid for 3 hours. Day zero (d0) samples were taken 3-4 hours after spray-infection 
by using a cork borer (d= 0.6 cm). 3 parallel samples each with 3 leaf discs were taken from 5 
independent plants and transferred to a 1.5 ml centrifuge tube, resulting in a total excised area 
of ~1 cm2. Bacterial titers were determined by shaking leaf discs from infected leaves in 10 mM 
MgCl2

 
supplemented with 0,01% Silwet L-77 at 28°C for 1 h (Tornero and Dangl, 2001; Garcia et 

al., 2010). 20µl of the resulting bacterial suspension were plated on NYG agar plates containing 
the appropriate antibiotics and incubated at 28°C for 48 h before colonies were counted. Day 
three (d3) samples were taken in an identical manner to that of d0. For each sample a dilution 
series ranging between 10-1 and 10-7 was made and 20 μl aliquots from each dilution were 
spotted sequentially onto a single NYG agar plate containing the appropriate antibiotics. 
Bacterial plates were incubated at 28° C for 48 h before colony numbers were determined. 
 

4.2.7 Infiltration assays of Pseudomonas fluorescens 

One day before infection, bacterial strains were restreaked on NYG agar plates containing the 
appropriate antibiotics and incubated ON at 28°C. The concentration of bacteria was adjusted 
to OD600 0.3 in 10 mM MgCl2. Leaves of 4 to 5 week old plants were infiltrated with a 
needle-less syringe. 24 h after infiltration, HR symptom formation was analyzed visually.    
 

4.2.8 Ion leakage experiments 

Pseudomonas fluorescens wt bacteria or expressing AvrRps4 variants were restreaked on 
NYG agar plates containing the appropriate antibiotics and incubated ON at 28°C. The 
concentration of bacteria was adjusted to OD600 0.3 in 10 mM MgCl2. Leaves of 4 to 5 week 
old plants were infiltrated with a needle-less syringe. After infiltration, 12 leaf discs were 
collected using a cork borer (d=0.6 cm) and washed in a petri dish containing 30 ml H2O for 
30 min. 4 parallel samples of 3 leaf discs were transferred in one well of a 24-well microtiter 
plate with 3 ml H2O. To determine ion leakage, the conductivity of 60µl of each sample was 
measured with the conductivity meter Horiba Twin cond B-173. In the beginning, ion leakage 
was measured every 2 hours until 12 hpi and then again at 24 hpi and 48 hpi.  
 

4.2.9 Secretion assay 

Protocol for secretion assay was adapted from (Mudgett and Staskawicz, 1999). Briefly, Pst 
DC3000 or P. fluorescens strains were grown overnight on NYG agar plates containing the 
appropriate antibiotics at 28°C. Cells were diluted to 1x108 cells/ml in NYG medium 
containing antibiotics. Cultures were grown overnight at 28°C in a rotary shaker until late log-
phase growth. Cells were collected by centrifugation at 3000g and washed with minimal 
media containing 50 mM KPO4 pH5.7; 7.6 mM (NH4)2SO4; 1.7 mM MgCl2; 1.7 mM NaCl; 
10 mM fructose and 10 mM mannitol. Cells were then diluted to 2x108 cells/ml in minimal 
media lacking antibiotics and grown for 14 h at 21°C in a rotary shaker. After centrifugation 
at 3000 g, supernatants were filtered through 0.2µm sterile filters (Nalgene) to remove 
residual bacteria. 100 µl 2x Laemmli-buffer was added to the pellet fraction and boiled for 5 
min prior to immunoblot analysis. The supernatant fraction was precipitated by adding 10 µl 
StrataClean beads and incubated for 15 min on a rotating wheel. After centrifugation at 1000 
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g for 3 min, 100 µl 2x Laemmli-buffer was added and samples were boiled for 5 min before 
loading them on a SDS-PAGE. Western blots were probed with α-HA antibody for detection 
of AvrRps4 fusion proteins and α-RIP1 (antibody against Pst DC3000 lipoprotein 
PSPTO_4211; F. Kaschani and R. van der Hoorn, unpublished) for analyzing bacterial 
contamination of the supernatant fraction. 
 

4.2.10 Triparental Mating 

The E. coli HB101 (pRK2013) helper strain, donor E. coli pEDV6 strain and the recipient Pst 
strain were plated on agar plates with appropriate antibiotics and incubated overnight. 
Bacterial strains were cultured overnight in LB (E. coli) and NYGA (Pst) medium. OD600 was 
measured, diluted to 0.2-0.3, and cultures were further incubated for 3 hours. Bacterial density 
of cultures was measured again and cultures were centrifuged at 3000 rpm for 10 min at room 
temperature. The bacterial pellets were washed with H2O and centrifuged again at 3000 rpm 
for 10 min. The pellets were resuspended in H2O to a final concentration of OD600= 0.8. 100 
µl of donor, helper and recipient strain were mixed and centrifuged at 3000 rpm for 10 min. 
The bacterial pellet was resuspended in 100 µl H2O and streaked on NYGA agar plates 
without antibiotics and incubated at 28°C overnight. Bacteria were streaked on NYGA plates 
with appropriate antibiotics and incubated for 2-3 days. Three independent single colonies 
were re-streaked on plates with appropriate antibiotics and incubated for 2-3 days and tested 
by colony-PCR. 
 

4.2.11 Biochemical methods 

 

4.2.11.1 Arabidopsis total protein extraction for immunoblot analysis 
Total protein extracts were prepared from 3- to 5-week-old plant materials and frozen in 
liquid nitrogen. Samples were homogenized 2 x 15 sec to a fine powder using a Mini-Bead-
Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) in 2 ml centrifuge 
tubes. After the first 15 sec of homogenisation samples were transferred back to liquid 
nitrogen and the procedure was repeated. 150 μl of 2x SDS-PAGE sample buffer was added 
to 50 mg sample on ice. Subsequently, samples were boiled for 5 min while shaking at 700 
rpm in an appropriate heating block. If not directly loaded onto SDS PAGE gels, samples 
were stored at -20° C.  
 

4.2.11.2 Co-Immunoprecipitation from total plant extract 
Plant material was ground in YS buffer (50 mM Tris pH 7,5; 150 mM NaCl; 1 mM EDTA; 
10% glycerol; 5 mM DTT; 1x protease inhibitor cocktail). The extract was centrifuged at 
2000 g for 15 min at 4°C. 30 µl pre-cleared protein G Sepharose was added to the supernatant 
and incubated at 4°C for 30 min. The samples were subjected to centrifugation at 1000 g for 3 
min. 10 µl anti-HA Agarose was added to the supernatant and incubated on a rotating wheel 
for 2 h at 4°C. The samples were centrifuged for 3 min at 1000 g. The beads were washed 
three times with YS buffer and subsequently boiled in 2x Laemmli-buffer for 5min before 
analyzing the immunoprecipitates by immunoblot assay. 
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4.2.11.3 Microsomal fractionation and subsequent Co-Immunoprecipitation 
Microsomal and soluble fractions were prepared according to (Heese et al., 2007). Briefly, 
plant materials were ground in Buffer H (50 mM HEPES pH 7.5; 250 mM sucrose; 15 mM 
EDTA; 5% glycerol; 0,5% polyvinylpyrrolidone containing 3 mM DTT and 1x protease 
inhibitor cocktail (Sigma)). The extracts were filtered through two layers of buffer H pre-wet 
miracloth and centrifuged at 2000 g for 15 min at 4°C to remove cell debris and nuclei. The 
supernatant was further subjected to ultracentrifugation at 100,000 g (Optima™ MAX-E 
ultracentrifuge, Beckmann Coulter, USA) to separate the soluble and microsomal fractions. 
The pellet was resuspended in buffer H containing 1x protease inhibitor cocktail. The non-
ionic detergent Igepal CA-630 (Sigma) was added to 0,2% and 1% final concentration to the 
soluble and microsomal fractions respectively. The extracts were precleared by incubation for 
30 min with 25 µl protein G agarose (Millipore). The samples were centrifuged at 16000g at 
4°C. The supernatants were incubated overnight with 20 µl anti-HA Agarose beads (Sigma). 
The beads were washed three times with buffer H containing 0,2% Igepal CA-630 and the 
immunoprecipitates were analyzed by immunoblot assay with anti-HA antibody.    
 

4.2.11.4 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  
Denaturing SDS-PAGE was carried out using Mini-PROTEAN

 
3 system (BioRad). Tris-

Glycine polyacrylamide (PAA) gels were prepared according to standard precedures 
(Sambrook et al., 1989) and poured between two glass plates and overlaid with 500 μl of 50 
% isopropanol. After gels were polymerized the alcohol overlay was removed and the gel 
surface rinsed with dH2O. Stacking gel was poured onto the top of the resolving gel, a comb 
was inserted and the gel was allowed to polymerize. In this study, resolving gels used were 6, 
10 or 15 % polyacrylamide and stacking gel 5 % polyacrylamide. Gels prepared were of 0.75, 
1.0 or 1.5 mm thickness. After removing the combs, each PAA gel was placed into the 
electrophoresis tank and submerged in 1x Tris-glycine electrophoresis running buffer (25 mM 
Tris, 250 mM glycine pH 8.3, 0.1% SDS). A pre-stained molecular weight marker (Precision 
plus protein standard dual color, BioRad) and denatured protein samples were loaded onto the 
gel and run at 90 V (stacking gel) and 110-130 V (resolving gel) until the desired separation 
was reached. 
 

4.2.11.5 Immunoblot analysis (Western Blot) 
Proteins that had been resolved on PAA gels were transferred to Hybond™-ECL™ 
nitrocellulose membrane (Amersham Biosciences) after gels were released from the glass 
plates and stacking gels have been removed. PAA gels and membranes were pre-equilibrated 
in 1x transfer buffers for 10 min on a rotary shaker. The blotting apparatus (Mini Trans-Blot® 
Cell, BioRad) was assembled according to the manufacturer instructions. Transfer was carried 
out at 100 V for 80 min. Equal loading of gels was tested by staining with Ponceau S for 5 
min before rinsing in copious volumes of deionised water. Ponceau S stained membranes 
were scanned and thereafter washed for 5 min in TBS-T before membranes were blocked for 
1 h at room temperature in TBS-T containing 5% (w/v) non-fat dry milk (Roth). The blocking 
solution was removed and membranes were washed briefly with TBS-T. Incubation with 
primary antibodies was carried out overnight by slowly shaking on a rotary shaker at 4° C in 
TBS-T supplemented with 3% (w/v) non-fat dry milk. Afterwards, the primary antibody 
solution was removed and membranes were washed 3 x 15 min with TBS-T at room 
temperature on a rotary shaker. Secondary antibodies were diluted 1:5000 in TBS-T 
containing 2% (w/v) non-fat dry milk. Membranes were incubated in the secondary antibody 
solution for 1 h at room temperature on a rotary shaker. The antibody solution was removed 
and membranes were washed as described above. This was followed by chemiluminescence 
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detection using the SuperSignal® West Pico Chemimuminescent kit or a 9:1 - 1:1 mixture of 
the SuperSignal® West Pico Chemimuminescent- and SuperSignal® West Femto Maximum 
Sensitivity-kits (Pierce) according to the manufacturer instructions. Luminescence was 
detected by exposing the membrane to photographic film (BioMax light film, Kodak). 
 

4.2.12 Molecular biological methods 

 

4.2.12.1 Isolation of genomic DNA from Arabidopsis (Quick prep for PCR) 
This procedure yields a small quantity of poorly purified DNA. However, the DNA is of 
sufficient quality for PCR amplification. Leaf samples were taken by closing the cap of a 1.5 
ml microcentrifuge tube onto a leaf to clip out a section of tissue and 400 μl of DNA 
extraction buffer were added. To grind the tissue, a micropestle was used until the tissue was 
well mashed. The solution was centrifuged at maximum speed for 5 min in a bench top 
microcentrifuge and 300 μl supernatant were transferred to a new tube. To precipitate the 
DNA, 1 volume of isopropanol was added and centrifuged at maximum speed for 5 min in a 
bench top microcentrifuge. The supernatant was discarded carefully. The pellet was washed 
with 750 μl of 70 % ethanol and dried for 5 min at 45 °C. Finally the pellet was dissolved in 
100 μl dH2O and 0.5 - 2 μl of the solution were used for PCR. 
 

4.2.12.2 Isolation of total RNA from Arabidopsis 
Total RNA was prepared from 3- to 6-week-old plant material. RNA was either extracted 
with QIAGEN Plant Rneasy Kit or according to the following protocol: Liquid nitrogen 
frozen samples (approximately 100 mg) were homogenized 2 x 15 sec to a fine powder using 
a Mini- Bead-Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) in 2 ml 
centrifuge tubes. After the first 15 sec of homogenisation samples were transferred back to 
liquid nitrogen and the procedure was repeated. 1 ml of TRI® Reagent (Sigma) was added 
and samples were homogenised by vortexing for 1 min. For dissociation of nucleoprotein 
complexes the homogenised sample was incubated for 5 min at room temperature. 0.2 ml of 
chloroform was added and samples were shaken vigorously for 15 sec. After incubation for 3 
min at room temperature samples were centrifuged for 15 min at 12000 g and 4° C. 0.5 ml of 
the upper aqueous, RNA containing phase were transferred to a new microcentrifuge tube. 
RNA was precipitated by adding 0.5 volumes of isopropanol and incubation for 10 min at 
room temperature. Afterwards, samples were centrifuged for 10 min at 12000 g and 4°C and 
the pellet was washed by vortexing in 1 ml of 75 % ethanol. Samples were again centrifuged 
for 5 min at 7500 g and 4° C, pellets were air dried for 10 min and dissolved in 50 μl DEPC-
H2O. All RNA extracts were adjusted to the same concentration with DEPC-H2O and samples 
were stored at -80° C.  
 

4.2.12.3 Polymerase chain reaction (PCR) 
Standard PCR reactions were performed using home made Taq DNA polymerase. For cloning 
of PCR products Pfu or Phusion polymerases were used according to the manufacturers 
instructions. All PCRs were carried out using a PTC-225 Peltier thermal cycler (MJ 
Research). 
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4.2.12.4 Reverse transcription-polymerase chain reaction (RT-PCR) 
SuperScript™ II RNase H- Reverse Transcriptase (Invitrogen) was used for first strand cDNA 
synthesis by combining 1 - 2 μg template total RNA, 1 μl oligo dT18X (0.5 μg/μl, X standing 
for a variable nucleotide), 5 μl dNTP mix (each dNTP 2.5 mM) in a volume of 13.5 μl (deficit 
made up with DEPC-H2O). To destroy secondary structures, the sample was incubated at 65° 
C for 10 min before cooling on ice. For reverse transcription, 4 μl of 5x reaction buffer 
(supplied with the enzyme), 2 μl of 0.1 M DTT and 0.5 μl reverse transcriptase was added to a 
final volume of 20 µl. The reaction was incubated at 42° C for 60 min before the enzyme was 
heat inactivated at 70° C for 10 min. 
 

4.2.12.5 Quantitative Real Time-PCR (qRT-PCR) 
Quantitative RT-PCR experiments were performed in an iQ5 Real-Time PCR Detection 
System (Bio-Rad). Brilliant SYBR Green QPCR Core Reagent (Stratagene) was used as dye. 
Experiments were performed using three independent biological samples if not otherwise 
mentioned. Relative transcript levels were calculated using the iQ5 Optical System Software 
(Version 2.0). As internal reference, Ubiquitin (At4g05320) transcript levels were used. 
 

4.2.12.6 Plasmid DNA isolation from bacteria 
Standard alkaline cell lysis minipreps of plasmid DNA were carried out using the Macherey-
Nagel plasmid prep kit according to the manufacturer’s instructions. Larger amounts of 
plasmid DNA were isolated using QIAGEN Midi preparation kits. 
 

4.2.12.7 Restriction endonuclease digestion of DNA 
Restriction digests were carried out using the recommended manufacturer’s instructions. 
Usually, reactions were carried out using 1 μl of restriction enzyme per 20 μl reaction. All 
digests were carried out at the appropriate temperature for a minimum of 1h. 
 

4.2.12.8 DNA ligations 
Usually, DNA ligations were carried out at 16° C overnight in a total volume of 15 μl 
containing 1 μl T4 DNA ligase (1 U/μl; Roche), ligation buffer (supplied by the 
manufacturer), 25 - 50 ng vector and 3- to 5-fold molar excess of insert DNA for sticky and 
blunt end ligations. In some cases ligations were performed for 1 - 3 h at room temperature. 
 

4.2.12.9 Agarose gel electrophoresis of DNA  
Agarose gel electrophoresis was used to separate DNA fragments. Gels consisted of 1 – 2 % 
(w/v) SeaKem® LE agarose (Cambrex, USA) in TAE buffer and agarose was dissolved by 
heating in a microwave. Molten agarose was cooled to 50° C before 2.5 μl of ethidium 
bromide solution (10 mg/ml) was added. The agarose was poured and allowed to solidify 
before being placed in TAE in an electrophoresis tank. 6x DNA loading buffer were added to 
the DNA samples before loading onto an agarose gel. Separated DNA fragments were 
visualised by placing the gel on a 312 nm UV transilluminator and photographed. 
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4.2.12.10 Isolation of DNA fragments from agarose gels 
DNA fragments were excised from a separating agarose gel with a clean razor blade and 
extracted using the Macherey-Nagel gel extraction kit according to the manufacturer’s 
protocol. 
 

4.2.12.11 Site specific recombination of DNA in Gateway®-compatible vectors 
LR reactions between the entry clone and a Gateway® destination vector were performed by 
incubating the reaction for 1 h at room temperature before 0.5 μl proteinase K solution 
(supplied with the kit) was added. Reactions were incubated at 37° C for 10 min before 
completely transformed into E. coli strain DH10B. 
 

4.2.12.12 DNA sequencing and sequence analysis 
DNA sequences were determined by the “Automatische DNA Isolierung und Sequenzierung” 
(ADIS) service unit at the MPIPZ on Applied Biosystems (Weiterstadt, Germany) Abi Prism 
377 and 3700 sequencers using Big Dye-terminator chemistry. Sequence data were analysed 
using SeqMan™ II version 5.00 (DNASTAR, Madison, USA), EditSeq™ version 5.00 
(DNASTAR, Madison, USA) and Clone Manager 6 version 6.00 (Scientific and Educational 
software, USA). 
 

4.2.12.13 Transformation of chemically competent E. coli cells 
To 50 μl aliquot of chemically competent cells, 10 to 25 ng of ligated plasmid DNA (or ~ 5 μl 
of ligated mix from 10 μl ligation reaction) was added and incubated on ice for 30 min. The 
mixture was heat-shocked for 90 sec at 42° C and immediately put on ice for 2 min. 500 μl of 
SOC or LB medium was added to the microcentrifuge tube and incubated at 37° C for 1 h on 
a rotary shaker. The transformation mixture was centrifuged for 5 min at 1500 g, resuspended 
in 50 μl LB medium and plated onto selective media plates. 
 

4.2.12.14 Transformation of electro-competent A. tumefaciens cells 
Aliquots of 40 μl of electro-competent A. tumefaciens cells were thawed on ice. 50 ng of 
plasmid DNA was added and transferred to an electroporation cuvette on ice (2 mm electrode 
distance; Eurogentec, Seraing, Belgium). The BioRad Gene Pulse™ apparatus was set to 25 
μF, 2.5 kV and 400 Ω. The cells were pulsed once at the above settings for a second, the 
cuvette was put back on ice and immediately 1 ml of YEB medium was added to the cuvette. 
Cells were quickly resuspended by slowly pipetting and cuvettes were incubated for 3 h at 28° 
C and 600 rpm. A 5 μl fraction of the transformation mixture was plated onto selective YEB 
agar plates. 
 

4.2.13 Transient plant transformations 

 

4.2.13.1 Agrobacterium-mediated transient transformation of tobacco leaves 
Prior to A. tumefaciens infiltration the following media were prepared: 
 
Induction medium (1 l):                                          Infiltration medium: 
K2HPO4              10.5 g                                         MES 10 mM 
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KH2PO4              4.5 g                                           MgCl2 10 mM 
(NH4)2SO4          1.0 g                                            pH 5.3 - 5.5 
NaCitrate·2H2O  0.5 g                                           Prior to use add 150 μg/ml Acetosyringone. 
MgSO4 (1M)       1.0 ml 
Glucose                1.0 g 
Fructose               1.0 g 
Glycerol               4.0 ml 
MES                    10.0 mM 
pH 5.6 
autoclave 
 
Prior to use add appropriate antibiotics and 50 μg/ml Acetosyringone (3’,5’-Dimethoxy-4’-
hydroxyacetophenone). 
 
Cultures were grown in liquid YEB (including appropriate antibiotics) at 28 °C overnight. 
Afterwards, the cultures were spun down and bacteria were resuspended in 5 ml induction 
medium. Cultures were grown further for another 4 - 6 h. Bacteria were spun down and the 
pellet was resuspended in infiltration medium to an OD600 of 0.4. The bacterial solution was 
then left at room temperature for 1 - 3 h. Young N. benthamiana plants were watered a few 
hours before infiltrating and incubated under a propagator lid. Healthy, fresh looking leaves 
were infiltrated with a needle-less syringe on the underside. Samples of infiltrated leaf areas 
for protein extractions or microscopy were taken 2 - 3 d after infiltration. 
 

4.2.14 Confocal laser scanning microscopy (CLSM) 

Detailed analysis of intracellular fluorescence was performed by confocal laser scanning 
microscopy using a Leica TCS SPS AOBS (Leica, Wetzlar, Germany) based on an Axiovert 
microscope equipped with an Argon ion laser as an excitation source. YFP tagged proteins 
were excited by a 514 nm laser line. YFP fluorescence was selectively detected by using an 
HFT 514 dichroic mirror and BP 535 – 590 band pass emission filter. Images were analysed 
with Leica Lite software. 3D images of fluorescence were generated using the 3D plot feature 
of the Leica Lite software. 
 

4.2.15 FLIM measurements and data analysis 

Fluorescence lifetime of the donor was experimentally measured in the presence and absence 
of the acceptor. FRET efficiency (E) was calculated by comparing the lifetime of the donor in 
the presence (τDA) or abscence (τD) of the acceptor: E = 1 2 (τDA)/(τD). FLIM 
measurements were performed using a multiphoton FLIM system coupled to a streak camera 
(Krishnan et al., 2003). The light source was a mode-locked Ti: sapphire laser (Tsunami, 
model 3941; Spectra-Physics), pumped by a 10-W diode laser (Millennia Pro; Spectra-
Physics), delivering ultrafast femtosecond pulses with a fundamental frequency of 80 MHz. A 
pulsepicker (model 3980; Spectra-Physics) was used to reduce the repetition rate to 2 MHz. 
All the experiments were performed at l = 820 nm, the optimal wavelength to excite CFP in 
multiphoton mode while minimizing the excitation of YFP (Chen and Periasamy, 2004). The 
power delivered at the entrance of the FLIM optics was 14 mW. All images were acquired 
with a 360 oil immersion lens (Plan Apo 1.4 numerical aperture, IR) mounted on an inverted 
microscope (Eclipse TE2000E; Nikon) coupled to the FLIM system. The fluorescence 
emission was directed back out into the detection unit through a short-pass filter (l < 750 nm). 
The FLIM unit was composed of a streak camera (Streakscope C4334; Hamamatsu 
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Photonics) coupled to a fast and high-sensitivity CCD camera (model C8800-53C; 
Hamamatsu) (Krishnan et al., 2003; Biener et al., 2005). For each nucleus, average 
fluorescence decay profiles were plotted and lifetimes were estimated by fitting data with 
biexponential function using a nonlinear least squares estimation procedure with Origin 7.5 
software (OriginLab) (Bernoux et al., 2008). 
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Supplementary Fig. 1: Potential virulence activity of the N-terminus of AvrRps4.  
Four week old plants were spray-infected with DC3000ΔHopK1 wt, AvrRps4-HA and AvrRps4 N-terminus-HA. 
The bacterial strain DC3000ΔHopK1 has a deletion in the DC3000 AvrRps4 homolog HopK1. Depicted is 
bacterial growth at 3 dpi. Letters indicate significant differences calculated by Sudent`s t-test. The experiment 
was repeated twice showing inconsistent results.     
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Supplementary Fig. 2: Localization of the N-terminus of AvrRps4 in stable transgenic Arabidopsis lines.  
(A) Confocal images of three week old T2 plant expressing AvrRps4-N-terminus-YFP and AvrRps4-N-
terminus-GGAA-YFP in under control of CaMV 35S promoter in Col-0 background. The last two amino acids 
of the N-terminus, G132 and G133 were mutated to Alanine since these amino acids might be required for the 
cleavage of AvrRps4 protein in planta. The localization of AvrRps4 N-terminus in Arabidopsis upon mutation of 
G132 and G133 is not altered. (B) Immunoblot analysis of the stable transgenic Col-0 lines depicted in (A). 
Samples for Western Blot were taken from three week old plants and the membrane was probed with α-GFP 
antibody. Mutation of G132 and G133 to Alanine prevents that the YFP-tag is cleaved off.  
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