Studien zur Genomkolinearität in der Familie der Brassicaceae: Arabidopsis thaliana und Capsella rubella

Inaugural - Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Adile Acarkan

aus Duisburg

Köln 2001

Berichterstatter:

Prof. Dr. J. Schell Prof. Dr. U.-I. Flügge

Tag der mündlichen Prüfung:15.06.2000

Abstract

Comparative genetic and physical mapping experiments were performed for two diploid species belonging to the family of the Brassicaceae, *Arabidopsis thaliana* and *Capsella rubella*.

Markers located on *Arabidopsis thaliana* chromosome IV were used for genetic mapping experiments in *Capsella* and two linkage groups could be established. In respect to marker repertoire and colinearity, a high degree of conservation could be demonstrated for the two species. A 200 kb region located on chromosome IV and a 30 kb region located on chromosome I of *Arabidopsis thaliana* were chosen for microsynteny studies. *Arabidopsis* and *Capsella* showed conservation of gene repertoire, order and orientation. Intergenic distances were also of similar size in both species. Some genes were present in different copy numbers in the analysed regions of the *Arabidopsis* and *Capsella* genomes. Comparative sequence analysis revealed a high degree of conservation for the exon-intron structure of orthologous genes in the two crucifer species. Average sequence identity values of 90% were found for exon sequences at nucleotide and amino acid level.

In summary, on genetic as well as molecular levels, an almost complete colinearity of genomes could be demonstrated for the two closely related species, *Arabidopsis thaliana* and *Capsella rubella*. The results presented here show that it is feasible to transfer information obtained in the *Arabidopsis* genome project to other closely related diploid species.

Inhaltsverzeichnis

1. Einleitung	1
1.1 Variabilität der Genomgrößen im Pflanzenreich	1
1.2 Klassen repetitiver Elemente in Pflanzen	2
1.3 Karten pflanzlicher Genome	5
1.4 Untersuchungen pflanzlicher Genome mittels Sequenzierung	9
1.5 Vergleichende Kartierungsexperimente	10
1.6 Ein Modellsystem für vergleichende Genomanalysen	14
1.7 Zielsetzung	16
1.8 Abkürzungen	18
2. Material und Methoden	19
2.1 Material	19
2.1.1. Chemikalien und Enzyme	19
2.1.2 DNA-Längenstandards	20
2.1.3 Lösungen und Medien	20
2.1.3.1 Medien	20
2.1.3.2 Lösungen	21
2.2 Verwendete Bakterienstämme und Vektoren	21
2.2.1 Bakterienstämme	21
2.2.2 Vektoren	21
2.3 Oligonukleotide	21
2.4 Verwendete Marker für genetische Kartierungsexperimente	22
2.5 Molekularbiologische Techniken	22
2.5.1 Isolierung von Pflanzen-Gesamt-DNA	22
2.5.2 Southern-Blot und Hybridisierungsexperimente	23
2.5.3 Genomische Capsella rubella Cosmid-Bibliothek	23
2.5.4 Herstellung der Capsella rubella Cosmid-Koloniemembranen	24
2.5.5 Koloniehybridisierung der Capsella rubella Cosmid-Membranen	24
2.6 Sequenzierung und Sequenz-Analyse	25
2.6.1 Sequenzierung	25
2.6.2 Sequenz-Analyse	25

2.7 Genetische Analyse	25
2.7.1 Erstellung der Kartierungspopulation	25
2.7.2 Polymorphismus-Analyse	26
3. Ergebnisse	27
3.1 Genetische Kartierung von Arabidopsis thaliana-Markern in Capsella	27
3.1.1 Kartierungspopulation von Capsella	27
3.1.2 Restriktions-Fragment-Längen-Polymorphismus (RFLP)-Analyse	
von C. grandiflora und C. rubella	27
3.1.3 Genetische Marker für die Kartierung	28
3.1.4 RFLP-Analyse der Arabidopsis thaliana Chromosom IV-Marker	32
3.1.5 Kartierung der Marker in Capsella	35
3.2 Vergleichende Mikrosyntenieanalyse in Arabidopsis thaliana und	
Capsella rubella	41
3.2.1 Identifizierung kodierender Sequenzen in der 200 Kbp-Region	
von Arabidopsis thaliana	41
3.2.1.1 Identifizierung der homologen Cosmid-Klone im Capsella	
rubella-Genom	43
3.2.1.2 Sequenzierung der beiden Capsella rubella Cosmid-"Contigs"	50
3.2.1.3 Analyse der Sequenzierungsdaten	53
3.2.1.3.1 Analyse der Region zwischen den Contigs 0 und I	53
3.2.1.3.2 cDNAs K und 8 in der genomischen C. rubella-Sequenz	60
3.2.1.4 Vergleich der genomischen Sequenzen von A. thaliana und	
C. rubella	60
3.2.2 Vergleichende Mikrosyntenieanalyse einer 30 Kbp-Region in	
A. thaliana und C. rubella	76
3.2.2.1 Identifizierung kodierender Sequenzen	76
3.2.2.2 Identifizierung der homologen Region in Capsella rubella	77
3.2.2.3 Subklonierung und Sequenzierung der Cosmide 10 und 20	77
3.2.2.4 Sequenzanalyse von Cosmid 10 und 20 aus Capsella rubella	80
3.2.2.5 Vergleichende Sequenzanalyse in A. thaliana und C. rubella	80
4. Diskussion	87
4.1 Vergleichende genetische Kartierungsexperimente	87
4.1.1 Konservierung des Markerrepertoires in Arabidopsis und Capsella	87
4.1.2 Kolineare Chromosomensegmente in Arabidopsis und Capsella	89

4.2 Mikrosyntenieuntersuchungen in Arabidopsis und Capsella	93
4.2.1 Konservierung des Markerrepertoires und der Markeranordnung in	
Arabidopsis und Capsella	94
4.2.2 Vergleichende Sequenzuntersuchungen	99
5. Zusammenfassung	103
6. Literaturverzeichnis	104

Anhang

I Daten der genetischen Kartierungsexperimente in Capsella	Ι
II Daten der Kopplungsanalyse in Capsella	II
III Sequenzen	III
IV Sequenzierte Subklone und PCR-Produkte	XLIII

1. Einleitung

Die Genome höherer Pflanzen-Arten zeigen erhebliche Unterschiede in ihrer Größe. Aufgrund sehr kleiner Genomgrößen sind *Arabidopsis thaliana* und Reis zu Modellsystemen der pflanzlichen Genomforschung geworden. Das *A. thaliana* Genom stellt zur Zeit das best-untersuchte Pflanzengenom dar (Meinke *et al.*, 1998). Ähnlich detaillierte Genomuntersuchungen wie sie für *A. thaliana* und Reis durchgeführt werden, sind mit der heutigen Technologie nicht für viele andere Pflanzenarten möglich. Daher muß es ein zentrales Ziel der pflanzlichen Genomanalyse sein, die Übertragbarkeit der Daten, die im Rahmen der *A. thaliana* und Reisgenomprojekte gewonnen werden, auf verwandte Arten zu prüfen. Zur Klärung dieser Fragestellung sind vergleichende Genomuntersuchungen unverzichtbar.

1.1 Variabilität der Genomgrößen im Pflanzenreich

Die DNA-Menge im haploiden Genom höherer Pflanzen beträgt zwischen 0,2 pg und >100 pg und unterscheidet sich somit um mehr als das 500-fache (Bennett und Smith, 1976). Während bei den Dikotyledonen *Arabidopsis thaliana* mit ca. 145 Mbp (Arumuganathan und Earle, 1991) und Reis (*Oryza sativa*) (Arumuganathan und Earle, 1991) mit 415-463 Mbp als Vertreter der Monokotyledonen zu den Arten mit einem kleinen Genom gehören, stellen beispielsweise Weizen (*Triticum aestivum*; ca. 16000 Mbp) (Arumuganathan und Earle, 1991) und *Fritillaria assyriaca* (ca. 127400 Mbp) (Bennett und Smith, 1976) Arten mit größeren Genomen dar. Eine große Varianz bezüglich der Genomgröße kann auch innerhalb einer Familie beobachtet werden. In der Familie der Brassicaceae wird zum Beispiel eine Genomgröße von 145 Mbp für *Arabidopsis thaliana* beobachtet, während die von *Brassica napus* mit 1129-1235 Mbp angegeben wird (Arumuganathan und Earle, 1991).

Eine direkte Beziehung zwischen Genomgröße und Komplexität des Organismus wird nicht beobachtet. Unterschiede können nur bedingt auf Polyploidisierung der Genome zurückgeführt werden. In der Familie der Brassicaceae liegen beispielsweise für *Brassica rapa*, *B. oleracea* und *B. nigra* Triplikationen umfangreicher Genombereiche

vor (Lagercrantz und Lydiate, 1996). Auch in der Familie der Poaceae ist für Mais eine Genomvergrößerung durch Duplikationen zu beobachten (Helentjaris *et al.*, 1988).

Analysen zur DNA-Reassoziationskinetik zeigten, daß Genome aus hoch- und mittelrepetitiven Elementen sowie aus Einzelkopie-Sequenzen aufgebaut sind. Der Unterschied in Genomgrößen ist dabei hauptsächlich auf den Anteil repetitiver Sequenzen im Genom zurückzuführen (Flavell et al., 1974). Der Anteil der repetitiven Elemente im Genom variiert sehr stark in den unterschiedlichen Pflanzenarten. Dabei reichen die Anteile im Genom von 10% in Arabidopsis (Leutwiler et al., 1984) bis zu 70-75% in Weizen (Flavell und Smith, 1976), Roggen (Smith und Flavell, 1977) und Erbse (Murray et al., 1978). Auch die Verteilung von Gensequenzen kann zwischen relativ eng verwandten Arten sehr verschieden sein. Während im Genom von Erbse Einzelkopiesequenzen in der Regel nicht länger als 1 Kbp sind (Murray et al., 1978), sind in der Mungobohne, die derselben Familie angehört, etwa 50% der Einzelkopiesequenzen in Blöcken größer als 6 Kbp organisiert (Murray et al., 1979). Somit kann ein direkter Zusammenhang zwischen Genomgröße, repetitiven Elementen und Sequenzverteilung im Genom festgestellt werden. Größere Genome haben oft einen größeren Anteil an repetitiven Sequenzen, und Gensequenzen sind als kleinere Blöcke in die repetitiven Bereiche eingefügt (Flavell, 1980). Es handelt sich bei repetitiven Bereichen vielfach um Retrotransposon-ähnliche Elemente (SanMiguel et al., 1996). Für die Komplexität der Pflanzen scheint dieser repetitive Anteil im Genom nicht von großer Bedeutung zu sein, da Pflanzen mit kleinen wie großen Genomen ähnlich komplexe Stoffwechselleistungen und morphologische Entwicklungen aufweisen können.

1.2 Klassen repetitiver Elemente in Pflanzen

Repetitive Elemente setzen sich aus einer Vielzahl von Familien zusammen. Der repetitive Anteil des Genoms wird in zwei Gruppen eingeteilt, den in Tandem organisierten und im Genom verteilt vorkommenden repetitiven Elementen.

Zu tandemartig organisierten Elementen, die kodierende Eigenschaften haben, gehören rDNA-Sequenzen. Die 18S-25S rDNA-Sequenzen stellen die Nukleolusorganisierenden Regionen (NOR) des Genoms dar. In *Arabidopsis thaliana* sind die einzelnen 18S-25S rDNA-Elemente ca. 10 Kbp lang und kommen im Genom in 570 bis 750 Kopien vor (Pruitt und Meyerowitz, 1986; Copenhaver und Pikaard, 1996).

Satelliten-DNA, die aus kurzen in Tandem organisierten Sequenzen aufgebaut ist, wurde erstmals in CsCl-Gradient-Analysen beobachtet. Sie repräsentiert den hochrepetitiven Anteil der Elemente im Genom. Monomere der Satelliten-DNA setzen sich aus 150 bis 350 Bp langen Sequenzabschnitten zusammen und stellen in der Regel das konstitutive Heterochromatin dar (Gerlach und Peacock, 1980), das in Centromerund Telomer-Regionen vorliegt (Bedbrook *et al.*, 1980; Maluszynska und Heslop-Harrison, 1991). Aber auch in anderen Regionen der Chromosomen wurde Satelliten-DNA lokalisiert (Ganal *et al.*, 1988; Bedbrook *et al.*, 1980). Während einige Mitglieder der Satelliten-DNA, die in Centromernähe lokalisiert sind, Konservierung bezüglich ihrer Sequenz zwischen verschiedenen Arten (Xia *et al.*, 1993) zeigen, ist die Sequenz der repetitiven Elemente in den restlichen Chromosomenregionen sogar in sehr eng verwandten Arten nicht konserviert (Schweizer *et al.*, 1993).

In *A. thaliana* macht Satelliten-DNA ca. 1-2% des Genoms aus. Für *A. thaliana* sind verschiedene Elemente mit einer Monomerlänge von 160 Bp, 180 Bp und 500 Bp bekannt (Martinez-Zapater *et al.*, 1986; Simoens *et al.*, 1988). Das 180 Bp-Element ist in den Centromer-Regionen von *A. thaliana* in repetitiven Blöcken von ca. 1000 Kbp vertreten (Round *et al.*, 1997; Maluszynska und Heslop-Harrison, 1991). Das 500 Bp-Element ist ebenfalls in den Centromerregionen lokalisiert, während die Vertreter der 160 Bp-Familie im Gegensatz dazu verteilt im Genom vorkommen (Bauwens *et al.*, 1991).

Weitere tandemartig organisierte repetitive Elemente im Pflanzen-Genom kommen in Telomerregionen vor. Die Tandemblöcke dieser kurzen Einheiten sind heterogen in ihrer Länge. In Mais beträgt die Länge dieser Blöcke aus Telomer-spezifischen Sequenzen zwischen 1,8 bis 40 Kbp je nach Gewebe und Entwicklungszustand (Burr *et al.*, 1992). Diese Sequenzen spielen eine funktionelle Rolle bei der Chromosomenreplikation. Aufgrund der Funktionalität dieser repetitiven Sequenzen im Genom liegt ein hoher Konservierungsgrad im Vergleich zu anderen repetitiven Sequenzen vor. In *A. thaliana* besteht das Monomer aus einer 7 Bp-Einheit (5'-CCCTAAA-3') (Richards und Ausubel, 1988).

Weitere repetitive Elemente im Genom sind die kurzen Sequenzwiederholungen, sogenannte Mikro- und Mini-Satelliten. Sie kommen verstreut im Genom vor. Minisatelliten-DNA ist aus Kopien von 10-100 Bp-Monomeren aufgebaut (Ramel, 1997), und Mikrosatelliten-DNA setzt sich aus Kopien von Di- oder Tri-Nukleotid-Einheiten zusammen (Akkaya *et al.*, 1992).

Ebenfalls verteilt im Genom vorkommende Elemente sind die Retrotransposons und ihre Derivate. Es sind transponierbare Elemente, deren Transposition über ein RNA-Intermediat erfolgt. Zu der Klasse der LTR-Retrotransposons gehört unter anderem das *Athila*-Element (Péllissier *et al.*, 1995) aus *A. thaliana*. In Mais sind viele verschiedene Retrotransposon-Familien beschrieben, die in sehr hohen Kopienzahlen vorliegen. In der 240 Kbp *Adh*-1-Region von Mais konnten 10 Retroelement-Familien mit 10 bis 50000 Kopien identifiziert werden. Der Anteil der Retroelemente am Mais-Genom wird auf 50% geschätzt (SanMiguel *et al.*, 1996).

Die andere Klasse der transponierbaren Elemente sind die Transposons, die im Gegensatz zu Retrotransposons über ein DNA-Intermediat mobilisiert werden. Transposon-Elemente sind besonders intensiv in Mais (z.B. *Ac* und *Spm*) charakterisiert worden (Fedoroff, 1989). Diese Elemente kommen in geringen Kopienzahlen (<100 Kopien) vor.

Kleine, AT-reiche transponierbare Elemente mit charakteristischen invertierten repetitiven Sequenzen, die in einer viel höheren Kopienzahl vorkommen, sind MITEs (miniature inverted-repeat elements). Zu dieser Familie der mobilen Elemente gehören Tourist, Stowaway und Emigrant (Bureau und Wessler, 1992; Bureau und Wessler, 1994; Casacuberta et al., 1998). Während Stowaway in dikotylen und monokotylen Pflanzen gefunden wurde, wurde Tourist nur in Gräser-Arten identifiziert (Bureau und Wessler, 1994). In A. thaliana konnte mit Emigrant ebenfalls ein MITE-Element detektiert werden, das auch in verschiedenen anderen Arten der Brassicaceae-Familie vorkommt (Casacuberta et al., 1998). Während Mitglieder der Tourist-Familie in Kopienzahlen von >10000 im Genom von Mais vorliegen, beträgt die Kopienzahl der Emigrant-Elemente in verschiedenen Arabidopsis-Ökotypen und Brassica-Arten 500 bis 1000. Die verschiedenen Familien zeigen keine Sequenzhomologien, haben jedoch die gleichen strukturellen Merkmale. Sie besitzen keine kodierenden Sequenzen. Der Transpositionsmechanismus ist bisher nicht bekannt.

Eine weitere Familie repetitiver Elemente, die in *A. thaliana* vorkommt, ist die *AthE1*-Familie, die ca. 1% des Genoms repräsentiert (Surzycki und Belknap, 1999). Die Vertreter dieser Gruppe haben keine Ähnlichkeiten zu bekannten Retrotranposons oder MITEs und sind nicht durch repetitive Sequenzen flankiert. Verschiedene Vertreter der Familie zeigen sowohl für die 5'- als auch die 3'-Sequenzen Identitäten über 98%, dies stellt das charakteristische Merkmal dieser Familie dar.

1.3 Karten pflanzlicher Genome

Ein wesentliches Ziel der Genom-Analyse ist die Analyse der Genom-Organisation und die Erstellung von Genom-Karten. Dabei können für das Genom einer Pflanze cytogenetische, genetische und physikalische Karten etabliert werden.

Cytogenetische Karten liefern Informationen über die Struktur des Genoms in Bezug auf Chromosomenzahl, Chromosomengröße und Position der Centromere. Für cytogenetische Analysen eignen sich besonders die Pflanzen-Arten mit großen Chromosomen wie *Fritillaria* ssp. oder *Vicia* ssp. In Mais zum Beispiel wurden durch die Verbindung cytogenetischer Techniken mit genetischen Daten erstmals mobile Elemente postuliert (McClintock, 1948).

Mit genetischen Karten wird der relative Abstand zwischen zwei Markern bestimmt. In klassisch genetischen Karten werden phänotypisch sichtbare Mutationen als Marker eingesetzt. Zur Etablierung der Karten werden Pflanzen, die polymorphe Genloci haben, miteinander gekreuzt und der Phänotyp der Nachkommenschaft wird in den Nachfolge-Generationen bestimmt. Dabei wird die Häufigkeit von Rekombinationsereignissen zwischen den phänotypischen Markern untersucht. Die Rekombinationshäufigkeit spiegelt den Kopplungsgrad der beiden Marker wider und wird als Maß für den relativen Abstand angenommen. Bei Rekombinationshäufigkeiten >50% werden die Marker als ungekoppelt bezeichnet. Die Einheit für die relative Distanz wird mit 1 cM angegeben, dies entspricht einer Rekombinationshäufigkeit von 1%. Zur Kartierung werden Zwei- und Drei-Punkt-Analysen eingesetzt. Für *Arabidopsis thaliana* liegt eine genetische Karte mit mehr als 450 Loci vor (Meinke *et al.*, 1998).

Durch Kopplungsanalysen unter Verwendung trisomer Linien ist es möglich, die ermittelten Kopplungsgruppen aus der klassischen Kartierung mit den entsprechenden Chromosomen in Beziehung zu setzen. Die Positionen von 76 Loci auf den fünf Chromosomen wurden in *A. thaliana* ebenso wie die Position der Centromere für Chromosomen I-III und V auf diese Art bestimmt (Koornneef *et al.*, 1983). Das Centromer von Chromosom IV wurde später durch Anwendung der Tetraden-Analyse lokalisiert (Copenhaver *et al.*, 1998).

Bei den molekularen Markern handelt es sich dagegen um phänotypisch neutrale DNA-Marker. Die Analyse beruht dabei auf der Detektion von Sequenzunterschieden (DNA-Polymorphismen) in homologen Genomregionen zwischen verschiedenen Pflanzen-Arten oder Ökotypen einer Art. Die DNA-Polymorphismen werden durch molekularbiologische Methoden wie Southern-Blot-Hybridisierung oder PCR-Amplifizierung nachgewiesen. Die RFLP (Restriktionsfragment-Längen-Polymorphismus)-Marker gehören zu dem am meisten verbreiteten Markersystem (Chang und Meyerowitz, 1991).

Weitere molekulare Markertypen, die auf PCR-Methodik beruhen, sind RAPDs (random amplified polymorphic DNAs, Williams et al., 1990), CAPS (cleaved amplified polymorphic sequences, Konieczny und Ausubel, 1993) AFLPs (amplified fragment length polymorphisms, Vos et al., 1995) und SNPs (single nucleotide polymorphisms, Cho et al., 1999). Es können auch Mikrosatelliten-Sequenzen zur Erzeugung von Markern ausgenutzt werden, da die Di- und Tri-Nukleotid-Einheiten der Mikrosatelliten sich durch die Anzahl der Wiederholungen in einem repetitiven Block in verschiedenen Ökotypen unterscheiden können (Bell und Ecker, 1994). Ein Vorteil der Marker, die auf PCR basieren, ist im Vergleich zur RFLP-Methode der geringere Bedarf an genomischer DNA zur Durchführung der Analysen.

Molekulare Marker erlauben im Gegensatz zu phänotypischen Markern eine viel schnellere Etablierung von genetischen Karten, für ihre Erstellung werden nur eine bzw. wenige Kartierungspopulationen benötigt. Als Kartierungspopulationen werden oft F_{2} -Generationen einer Kreuzung zweier Arten oder Ökotypen oder aber rekombinante Inzucht (*recombinant inbred*=RI)-Linien (Burr *et al.*, 1988) eingesetzt. Mit Hilfe molekularer Marker wurden genetische Karten für viele verschiedene Pflanzen-Arten aufgestellt, zum Beispiel für Tomate, *Arabidopsis*, Mais und Kartoffel (Bonierbale *et al.*, 1988; Chang *et al.*, 1988; Helentjaris *et al.*, 1988; Gebhardt *et al.*, 1991). Für einige Pflanzen-Arten wie Tomate, Reis oder Mais liegen Karten mit weit über 1000 Markern vor (Tanksley *et al.*, 1992; Harushima *et al.*, 1998; Davis *et al.*, 1999).

Auch können klassisch-genetische Karten mit molekular-genetischen Karten in Beziehung gesetzt werden (Tanksley *et al.*, 1992; Hauge *et al.*, 1993), wenn eine ausreichende Anzahl von Markern sowohl auf der klassisch-genetischen als auch auf der molekular-genetischen Karte verankert sind. Werden klassisch-genetische Merkmale, welche für die Pflanzenzüchtung von Bedeutung sind, auf diese Weise auf molekularen Markerkarten verankert, so kann die gewonnene Information zur Markergestützten Züchtung (*marker-assisted breeding*) von Pflanzensorten eingesetzt werden. Eine molekulare Markerkarte eines Genoms gibt Auskunft über die Abfolge und genetischen Abstände von Markern entlang der verschiedenen Chromosomen. Daher liefert die molekulare Markerkarte ein Bild über die Organisation der Chromosomen, ihre Erstellung ist dabei unabhängig von der Genomgröße der untersuchten Art. Soll die Genomorganisation der Pflanzen dagegen auf der Ebene der Gene untersucht werden, so ist die Erstellung physikalischer Chromosomenkarten eine notwendige Voraussetzung. Die Klonierung von genomischen DNA-Fragmenten und anschließende Anordnung der klonierten DNA-Fragmente resultiert in der Erstellung einer physikalischen Karte, die auf Klonen beruht. Diese Methodik wurde in Pflanzen bisher erfolgreich für kleine Genome eingesetzt sowie für ausgewählte Bereiche größerer Genome.

Die Klonierung von großen genomischen DNA-Fragmenten in entsprechende Vektoren vereinfacht eine solche Analyse der Genome. Zu diesen Vektoren gehören zum Beispiel die YAC (*yeast artificial chromosome*)-Vektoren (Burke *et al.*, 1987), in die bis zu 1000 Kbp große DNA-Fragmente kloniert werden können. BAC (*bacterial artificial chromosome*)-Klone tragen 100-300 Kbp große DNA-Fragmente (Shizuya *et al.*, 1992). Der Vorteil von BAC- gegenüber YAC-Bibliotheken ist die höhere Stabilität der Klone, der viel geringere Anteil chimärer Klone und die höhere Redundanz der Bibliotheken.

Die Klone der BAC-Bibliotheken von Reis und A. thaliana wurden durch Fingerprinting-Analyse zu großen Blöcken aus überlappenden Klonen (Contigs) angeordnet (Hong et al., 1997; Marra et al., 1999). Bei der Fingerprinting-Analyse, die erstmals in C. elegans erfolgreich zur Erstellung von Chromosomenkarten mit Cosmid-Klonen eingesetzt wurde (Coulson et al., 1986), werden die Klone mit Restriktionsenzymen gespalten und im Anschluß an die gelelektrophoretische Auftrennung nach teilweise identischen Fragmentmustern untersucht. Die Klonbereiche mit teilweise gleichem Fragmentmuster repräsentieren überlappende Regionen. Die erste Karte eines pflanzlichen Genoms mit der Fingerprinting-Methode wurde für A. thaliana erstellt (Marra et al., 1999).

Im Gegensatz zu einer solchen Strategie, in der alle Regionen des Genoms gleichzeitig untersucht werden, kann auch eine Methode zur Genomkartierung gewählt werden, welche sich an Karten oder Chromosomen orientiert. Auf diese Weise können die Arbeiten auf ein Chromosom oder einen genomischen Bereich beschränkt werden. Molekulare Sonden, denen eine bestimmte genetische Kartenposition zugewiesen sind, werden eingesetzt, um korrespondierende Klone aus Klonbibliotheken zu isolieren. Dies verankert die identifizierten Klone auf der genetischen Karte. Wird eine große Anzahl molekularer Sonden und Klonbibliotheken mit großen Insertionen zur Kartierung eingesetzt, so werden Klone oft nicht nur durch eine einzige Sonde verankert, sondern durch zwei und mehr Sonden, die eng gekoppelt in einer Region des Genoms vorliegen. Dadurch können Klone zueinander angeordnet und zu Contigs zusammengefaßt werden. Der Einsatz ausreichend vieler molekularen Marker als Sonden resultiert in einer umfassenden physikalischen Karte des untersuchten Genombereichs oder Genoms.

Die ersten auf diese Weise erstellten Klonkarten pflanzlicher Chromosomen waren die Karten für die Chromosomen II und IV von *Arabidopsis thaliana* (Schmidt *et al.*, 1995; Zachgo *et al.*, 1996).

Durch die Verwendung der molekularen Marker zur Klonidentifizierung sind die erstellte physikalische Karte und die genetischen Karte unmittelbar miteinander verknüpft. Daher können genetische und physikalische Distanzen zwischen Markern verglichen werden. Dabei variiert der Wert für den genetischen Abstand von 1 cM in verschiedenen Bereichen des Chromosoms IV von *Arabidopsis thaliana* zwischen 30 Kbp und >550 Kbp (Schmidt *et al.*, 1995; Schmidt *et al.*, 1996).

Die physikalischen Klonkarten können ausgenutzt werden, um Daten über Verteilung von Genen und repetitiven Elementen zu erhalten. Für *A. thaliana* konnte auf diese Weise gezeigt werden, daß repetitive Elemente gehäuft in Centromerbereichen vorkommen, während die euchromatischen Regionen kaum repetitive Sequenzen aufweisen (Schmidt *et al.*, 1995).

Die integrierten physikalischen und genetischen Karten von Genombereichen sind eine Voraussetzung für kartierungsgestütztes Klonieren (*map based cloning*) von Loci. Diese Methode wurde beispielsweise erfolgreich zur Isolierung von Genen in *Arabidopsis* (Arondel *et al.*, 1992; Giraudat *et al.*, 1992), Tomate (Martin *et al.*, 1993), Reis (Song *et al.*, 1995) und Gerste (Büschges *et al.*, 1997) verwendet.

1.4 Untersuchungen pflanzlicher Genome mittels Sequenzierung

Die Sequenzierung stellt eine Methode zur Analyse der Genomorganisation auf Nukleotidebene dar, setzt aber Klonkarten der Chromosomen oder der zu untersuchenden Regionen voraus. Klone werden subkloniert, und die ermittelten Sequenzen werden mit Hilfe von Computerprogrammen zueinander angeordnet. Für Sequenzierungsprogramme, welche die Etablierung der gesamten Sequenz eines Organismus zum Ziel haben, eignen sich besonders Arten mit kleinen Genomen wie zum Beispiel *Arabidopsis thaliana*, als Modellorganismus der Dikotyledonen, und Reis (*Oryza sativa*), als Modellorganismus der Monokotyledonen.

Die Genom-Sequenzierung von Arabidopsis thaliana wird bereits durch verschiedene Gruppen durchgeführt (Bevan et al., 1997). Es sind 86,5% des Genoms, was 122488 Kbp entspricht, sequenziert (28.2.00; http://www.arabidopsis.org/agi.html). Die beiden Chromosomen II und IV sind bis auf die Centromer, Telomer und Nucleolusorganisierenden Regionen sequenziert (Lin et al., 1999; Mayer et al., 1999). Die Sequenzen sind in verschiedenen Datenbanken zugänglich. Auf Chromosom IV wurde der kurze Arm beginnend von der NOR-Region bis zum repetitiven Bereich des Centromers (3Mbp) sequenziert. Auf dem langen Arm wurde die Sequenz des 14,5 Mbp umfassenden Bereichs zwischen Centromer und Telomer erstellt. Für diese Regionen wird geschätzt, daß ca. 3800 Gene vorliegen. Mehr als 10000 ESTs (expressed sequence tags) konnten diesen Genen zugeordnet werden (Mayer et al., 1999). Analysen zur Bestimmung der Gendichte basieren auf Vergleichen der genomischen Sequenz mit EST-Daten und der Anwendung geeigneter Computeralgorithmen für Genvorhersagen. Die Analysen dieser Sequenzen ergaben eine Gendichte zwischen 4,1-4,6 Kbp pro Gen für Arabidopsis thaliana (Lin et al., 1999; Mayer et al., 1999; Sato et al., 1998). Die ersten Angaben bezüglich der Gendichte wurden durch Bevan et al. (1998) für eine 1,9 Mbp große Region auf dem langen Arm von Chromosom IV gemacht. Für diese Region wurde ein Gen pro 4,8 Kbp ermittelt.

Die Genomsequenzierung des zweiten Modellorganismus, Reis, wurde von mehreren Gruppen begonnen (Sasaki und Burr, 2000). Neben der kleinen Genomgröße von ca. 450 Mbp ist die ökonomisch wichtige Rolle dieser monokotylen Pflanze der entscheidende Faktor für die Genomsequenzierung. Die Sequenzierung wird für den Reis-Ökotyp *Nipponbare* durchgeführt. Die ersten Daten der Sequenzierung und die verfolgte Strategie sind in der Datenbank zugänglich (http://www.staff.or.jp/).

Weitere Sequenzierungsprojekte, die unabhängig von der Genomgröße sind, und die eine Etablierung von physikalischen Karten nicht erfordern, sind die EST-Sequenzierungsprojekte (Höfte et al., 1993; Newman et al., 1994; Cooke et al., 1996; Yamamoto und Sasaki, 1997). In EST-Projekten werden durch Sequenzierung von cDNA-Klonen Teilsequenzen ermittelt und in Datenbanken zugänglich gemacht (http://www.ncbi.nlm.nih.gov/dbEST/index.html). Die resultierenden Sequenzdaten sind in der Regel nur 300-500 Bp lang. Die ermittelten Sequenzen werden mit Gensequenzen aus der Datenbank verglichen, und anhand der vorliegenden Sequenzhomologie werden den ESTs Funktionen zugeordnet. Sowohl für Arabidopsis thaliana als auch Reis sind bereits mehr als 45000 ESTs sequenziert (http://www.ncbi.nlm.nih.gov/dbEST/index.html). Durch die Sequenzierung der EST-Klone, die transkribierte Sequenzen im Genom repräsentieren, ist beispielsweise die Identifizierung von Genen möglich, die durch klassische Methoden nicht identifiziert werden können (Delseny et al., 1997). ESTs, die Sequenzhomologien zu bestimmten Genen wie Resistenzgenen besitzen, können zur Kartierung dieser Gene in molekularen Karten eingesetzt werden (Botella et al., 1997).

1.5 Vergleichende Kartierungsexperimente

Besonders detaillierte Genomuntersuchungen können mit der vorliegenden Methodik zur Zeit nur für wenige Arten durchgeführt werden. Daher ist es von besonderem Interesse zu untersuchen, ob Ergebnisse der Genomorganisation, die für Modellorganismen erarbeitet werden, auf andere Arten übertragbar sind. Vergleichende Kartierungen nehmen dabei eine zentrale Rolle ein.

Die Verwendung von RFLP-Markern in verschiedenen Arten ist aufgrund der hohen Konservierung von Gensequenzen während der Evolution möglich. Für die vergleichende Kartierung werden dieselben Marker in zwei verwandten Spezies eingesetzt. Mit dieser Methode werden Chromosomenkarten für die beiden Arten etabliert, die direkt verglichen werden können. Es können Aussagen über den Kolinearitätsgrad ganzer Chromosomen oder Chromosomen-Abschnitte gemacht werden. Durch einen Vergleich der Markeranordnung in den verschiedenen Arten können außerdem Duplikationen, Inversionen oder Translokationen von Chromosomenbereichen ermittelt werden.

Die ersten Kartierungsexperimente wurden in der Familie der Solanaceae durchgeführt. Zu dieser Familie gehören Tomate, Kartoffel, Paprika und Tabak. Die ersten vergleichenden RFLP-Karten wurden für Tomate und Kartoffel mit 134 Markern erstellt (Bonierbale et al., 1988). Schon nach kurzer Zeit wurden Karten mit höheren Markerdichten etabliert (Tanksley et al., 1992). Die Vergleiche der genetischen Tomaten-Karte mit der Kartoffel-Karte mit Hilfe der RFLP-Kartierung zeigten einen hohen Grad an Konservierung des Genrepertoires und der Genomkolinearität zwischen diesen beiden Arten (Gebhardt et al., 1991; Tanksley et al., 1992). In sieben von zwölf Chromosomen ist die Reihenfolge der verwendeten molekularen Marker in Tomate und Kartoffel identisch. Die restlichen fünf Chromosomen unterscheiden sich in den beiden Arten durch Inversionen von Chromosomenarmen, die durch Rekombinationsereignisse in der Nähe oder direkt am Centromer verursacht wurden (Tanksley et al., 1992). Im Gegensatz zu der ähnlichen Genomorganisation in Tomate und Kartoffel unterscheidet sich das Paprika-Genom vom Tomaten-Genom trotz ähnlichen Genrepertoires und gleicher Chromosomenzahl (n=12) durch zahlreiche Inversionen und Translokationen (> 22) (Tanksley *et al.*, 1988; Prince *et al.*, 1992; Livingstone *et al.*, 1999).

Auch die Familie der Poaceae wurden mit vergleichender genetischer Kartierung auf Genomkolinearität hin untersucht. Zu dieser Familie gehören alle wichtigen Getreide-Arten. Mit der Etablierung von vergleichenden Karten für die homeologen Kopplungsgruppen 2 und 3 in Weizen, Roggen und Gerste konnte für diese drei verwandten Arten ein hoher Grad an Kolinearität für die drei Genome (A, B und D) des hexaploiden Weizens und der Genome von Gerste und Roggen etabliert werden (Devos *et al.*, 1993b; Devos und Gale, 1993). Eine Abweichung von der Kolinearität zeigen die kurzen Arme der Chromosomen 2B (Weizen) und 2R (Roggen). Die beiden Chromosomensegmente scheinen in interchromosomale Translokationen (2BS/6BS und 2RS/7RL) involviert zu sein (Devos *et al.*, 1993b). Mit weiteren vergleichenden Kartierungsexperimenten zwischen Weizen und Roggen wurden Translokationen für alle Roggen-Chromosomen ermittelt (Devos *et al.*, 1993a).

Die Analysen in Mais und Hirse zeigen ebenfalls Kolinearität der verwendeten Marker für große Segmente der beiden Genome (Whitkus *et al.*, 1992; Berhan *et al.*, 1993). Viele der *Sorghum*-Loci kartieren zu zwei Loci in der genetischen Mais-Karte (Whitkus *et al.*, 1992). In neun Fällen wurden für die beiden Spezies Inversionen der Markerreihenfolge festgestellt, die durch intrachromosomale Translokationen oder Inversionen hervorgerufen wurden. Dagegen wurden in Mais und *Sorghum* keine interchromosomalen Translokationen festgestellt.

Mit vergleichender Kartierung in Mais und Reis wurden kolineare Kopplungsgruppen erstellt, die etwa 67% der Genome von Mais und Reis repräsentieren. Die Kopplungsgruppen sind fast identisch in Bezug auf das Genrepertoire und die Genanordnung. Der Anteil der Loci in Mais, die während der Polyploidisierung dupliziert wurden, konnte mit Hilfe der vergleichenden Kartierung identifiziert werden (72%) (Ahn und Tanksley, 1993).

Durch die vergleichende genetische Kartierung vieler Gräser-Arten wird deutlich, daß ihre Genome durch kolineare Blöcke aufgebaut sind (Moore, 1995). Durch einfaches Umordnen der Blöcke ist es möglich, die Chromosomen von Reis, Mais, Weizen, Hirse etc. aufzubauen (Gale und Devos, 1998). Dies ist beachtlich, da die Trennung von Mais, Reis und Weizen ca. 60 Millionen Jahre zurückliegt (Moore *et al.*, 1995) und große Unterschiede in der Genomgröße in den untersuchten Pflanzen, zum Beispiel zwischen Reis und Mais um das 5-6-fache, beobachtet werden können (Arumuganathan und Earle, 1991).

Vergleichende genetische Kartierungsexprimente wurden zur Bestimmung der Genomkolinearität auch in der Familie der Brassicaceae durchgeführt. Die Genome der diploiden Arten Brassica oleracea, Brassica rapa und Brassica nigra sind vervielfacht, und jedes Chromosomensegment liegt dabei in ein bis drei Kopien vor (Lagercrantz und Lydiate, 1996). Die vergleichende Analyse von Brassica nigra und Arabidopsis thaliana zeigt eine Konservierung von Chromosomensegmenten mit einer durchschnittlichen Größe von 8 cM (Lagercrantz, 1998), was ca. 90 Rearrangement-Ereignissen seit der Trennung der Vorläufer von Brassica nigra und Arabidopsis thaliana entspricht. Vergleiche der Markeranordnung in Arabidopsis thaliana und Brassica oleracea deuten ebenfalls auf eine hohe Zahl von Umorganisationsereignissen der Chromosomen hin. Elf Regionen mit konservierter Organisation wurden identifiziert, die 3,7 bis 49,6 cM großen Kopplungssegmenten in A. thaliana entsprechen. Mindestens 17 Translokations- und 9 Inversions-Ereignisse führten zu den Unterschieden in der Genomorganisation der beiden Spezies (Kowalski et al., 1994). In Brassica napus wurden für eine 30 cM-Region des A. thaliana Chromosoms IV sechs kolineare Bereiche mit einer durchschnittlichen Länge von 22 cM identifiziert. Zwei der kolinearen Segmente zeigten jedoch Inversionen, die ca. 20 cM groß sind (Cavell *et al.*, 1998). Die vergleichende Analyse zwischen *A. thaliana* und *B. nigra* für einen 7,5 cM großen Bereich aus *A. thaliana* konnte drei kolineare Segmente in *B. nigra* identifizieren. Die Kolinearität eines der drei Segmente ist durch eine Insertion unterbrochen (Lagercrantz *et al.*, 1996).

Vergleichende genetische Kartierungsexperimente eng verwandter Arten ergab in allen Fällen Evidenzen für kolineare Chromosomenabschnitte, jedoch variierte die Länge der identifizierten kolinearen Blöcke. Chromosomenkartierungen auf physikalischer und auf Sequenzebene ermöglichen einen viel detaillierteren Vergleich der Genome als vergleichende genetische Kartierungen. Solche Untersuchungen können die Verteilung von Genen und repetitiven Elementen ermitteln. Auch können Aussagen über die Abfolge von einzelnen Genen in einer Region sowie die Abstände zwischen Genen gemacht werden.

Durch vergleichende physikalische Kartierung der Region um den Selbstinkompatibilitäts (SI)-Locus in *B. campestris* wurde ein hoher Grad an Syntenie zwischen *B. campestris* und *A. thaliana* festgestellt. Allerdings liegt das *SI*-Gen in der orthologen Region von *Arabidopsis thaliana* nicht vor (Conner *et al.*, 1998).

Eine 15 Kbp-Region von *A. thaliana*, die fünf Gene enthält, zeigt identische Anordnung der Gene in den diploiden *Brassica*-Arten *B. rapa*, *B. oleracea* und *B. nigra*. Die Größe der orthologen Genomregionen in den verschiedenen *Brassica*-Arten umfaßt zwischen 121-320 Kbp. Zumindest der Abstand von zwei Genen ist in *B. rapa* und *Arabidopsis thaliana* ähnlich (Sadowski *et al.*, 1996).

Auch die Analyse der orthologen *Adh*-Region in *Sorghum* und Mais zeigte, daß die Anordnung der Gene in dieser Region kolinear ist. Während die Region in *Sorghum* 75 Kbp groß ist, ist die orthologe Region in Mais dreimal so groß (225 Kbp). 74% der Maisregion setzt sich dabei aus verschiedenen Vertretern der repetitiven Elemente wie Retrotransposons und MITEs zusammen. Auch im Genom von *Sorghum* wurden MITEs und Transposon-ähnliche Elemente identifiziert, allerdings zu einem geringeren Anteil. Die Vergrößerung der Genomregion in Mais ist also auf verstärkte Insertion von repetitiven Elementen zurückzuführen (Tikhonov *et al.*, 1999).

Pflanzen mit großen Genomen, wie beispielsweise Mais, zeichnen sich durch vergrößerte intergenische Bereiche aus (Barakat *et al.*, 1998). Jedoch liegen in Mais auch Genombereiche vor, die eine ähnliche Gendichte aufweisen wie Pflanzen mit kleineren Genomen. Der Vergleich der orthologen Region des *Lrk*- bzw. *Tak*-Gens in

Weizen, Gerste, Mais und Reis zeigte eine Konservierung der Genanordnung und der Gendichte in allen vier untersuchten Pflanzen. Dabei ist die Gendichte mit einem Gen pro 4-5 Kbp ähnlich hoch wie in *A. thaliana*, obwohl sich die untersuchten Pflanzen beträchtlich in der Genomgröße unterscheiden (Feuillet und Keller, 1999). Ein möglicher Grund für die Konservierung des geringen Genabstandes zwischen *Lrk* und *Tak* könnte ein bidirektionaler Promotor sein, der zwischen den beiden zueinander invertiert angeordneten Genen vermutet wird (Feuillet und Keller, 1999).

Zur Zeit liegen nur exemplarische Daten zur Mikrosyntenie vor. In diesen Untersuchungen wurde auch auf der Ebene der Gene einer hoher Grad an Kolinearität festgestellt, jedoch werden erhebliche Unterschiede in Bezug auf Gendichte und des Vorkommens repetitiver Elemente beobachtet.

1.6 Ein Modellsystem für vergleichende Genomanalysen

Als Modellsystem für vergleichende Kartierungen auf genetischer wie auf physikalischer Ebene wurde die Familie der Brassicaceae ausgewählt. In der Brassicaceae-Familie wurden 10-fache Unterschiede in der Genomgröße beobachtet. Die Genomgrößen liegen zwischen ca. 130 Mbp (*Arabidopsis thaliana*) und 1129-1235 Mbp (*Brassica napus*) (Arumuganathan und Earle, 1991). Zu dieser Familie gehören die wichtige Kulturpflanze Raps (*Brassica napus*) sowie die verschiedenen *Brassica-*Arten (*Brassica rapa, Brassica oleracea* und *Brassica nigra*), die ein diploides Genom besitzen und aus einem hexaploiden Vorläufer hervorgegangen sind (Lagercrantz und Lydiate, 1996). Zu den Vertretern der *Brassica rapa-*Arten gehören die verschiedenen Rüben-Sorten und Chinakohl. In der *B. oleracea-*Gruppe sind alle bekannten Kohlsorten vertreten wie zum Beispiel Broccoli, Blumenkohl oder Rosenkohl. Schwarzer Senf repräsentiert einen der bekannten Vertreter der *B. nigra-*Gruppe. Aus den diploiden *Brassica-*Arten *B. rapa, B. oleracea* und *B. nigra* sind die amphidiploiden *Brassica-*Arten *B. napus, B. juncea* und *B. carinata* hervorgegangen (zusammengefaßt in Lydiate *et al.*, 1993).

Arabidopsis thaliana gehört zur Familie der Brassicaceae, hat ein sehr gut untersuchtes Genom von ca. 130 Mbp und einem Anteil an repetitiven Elementen von lediglich 10%. Zahlreiche genetische (Chang *et al.*, 1988; Nam *et al.*, 1989; Liu *et al.*, 1996; AlonsoBlanco *et al.*, 1998) wie molekulare Karten (zusammengefaßt in Schmidt, 1998; Mozo *et al.*, 1999; Marra *et al.*, 1999) wurden für *A. thaliana* etabliert. Über 80% der Genom-Sequenzen sind ermittelt (http://www.arabidopsis.org/). Chromosomen II und IV, die 35% des Genoms repräsentieren, wurden bis auf die Centromer, Telomer und NOR-Regionen sequenziert (Lin *et al.*, 1999; Mayer *et al.*, 1999).

Neben der Genomsequenzierung ist die Identifizierung von Genen und Mutanten ein weiterer Aspekt der Genomanalyse in *A. thaliana* (Meinke *et al.*, 1998). Die Analyse von Mutanten, reverse Genetik und Insertionsmutagenese sind die Techniken, die zur Ermittlung der Gene und Genfunktionen eingesetzt werden. Die Identifizierung der Gene, die bisher auf klassische Weise nicht gefunden wurden, erfolgt über die umfangreichen EST-Sequenzierungsprojekte (Delseny *et al.*, 1997). Mehr als 45000 EST-Sequenzen sind zur Zeit für *A. thaliana* in der EST-Datenbank zugänglich (http://www.ncbi.nlm.nih.gov/dbEST/index.html). Die *Microarray*-Technik wird eingesetzt, um Daten über Expressionsmuster der Gene und somit über die Genfunktion zu erhalten (Ruan *et al.*, 1998; Richmond und Somerville, 2000).

Ein Ziel des Genomprojektes für den Modellorganismus *Arabidopsis* ist die Übertragung der Information auf Arten mit größeren Genomen, zum Beispiel für Karten-gestütztes Klonieren (*map-based cloning*) oder Marker-unterstützte Züchtungsprogramme in Raps. Um dies zu ermöglichen, muß zunächst die Übertragbarkeit der ermittelten Daten in *A. thaliana* durch vergleichende Genomanalyse in der Brassicaceae-Familie überprüft werden.

Die *Brassica*-Genome sind aus polyploiden Vorläufern hervorgegangen, daher besitzen sie komplexe Genome (Lagercrantz und Lydiate, 1996). Um in vergleichenden Genomanalysen abschätzen zu können, ob und welche Auswirkungen Polyploidie auf den Grad der Genomkolinearität hat, ist es nötig, einerseits verschiedene diploide Arten zu untersuchen, andererseits müssen diploide und polyploide Arten betrachtet werden.

Die *Capsella*-Arten sind weitere Vertreter der Familie der Brassicaceae, die jedoch ökonomisch nicht von Bedeutung sind. Die bekannteste Art ist *Capsella bursa-pastoris*. Ihren Ursprung haben die *Capsella*-Arten in Eurasien. Die Ausbreitung von *C. bursapastoris* ist weltweit zu beobachten. Ein wichtiges Merkmal, das für die Verbreitung der Pflanze verantwortlich ist, ist die genetische Flexibilität durch das polyploide Genom. Während *C. bursa-pastoris* tetraploid ist, kommen in diesem Genus auch diploide Vertreter wie *Capsella rubella* oder *Capsella grandiflora* vor. *C. rubella* ist wie *C. bursa-pastoris* selbstbestäubend. *Capsella grandiflora* dagegen ist selbstinkompatibel. Die Größe des Verbreitungsgebietes von *C. grandiflora* ist auf Griechenland, den Balkan und Nord-Italien beschränkt. Die Chromosomenzahlen für die diploiden Arten sind n=8 Chromosomen (Hurka und Neuffer, 1997). Die Genomgröße von *C. bursapastoris* ist mit ca. 680 Mbp (Bennett und Smith, 1976) bestimmt.

Die diploiden Vertreter der Capsella-Gruppe stellen trotz ihrer geringen ökonomischen Bedeutung gute Objekte zur vergleichenden Genomkartierung mit Arabidopsis thaliana dar. Ihr Genom zeigt Veränderungen in der Genomorganisation, was durch die unterschiedliche Zahl der Chromosomen in beiden Arten (n=5 A. thaliana; n=8 Capsella) deutlich wird. Die Trennungszeitpunkte von Brassica und A. thaliana wurden durch einen Vergleich der plastidären Maturase-Gene (matK) mit 16-20 Millionen Jahren bestimmt, während Capsella und Arabidopsis sich vor ca. 8-10 Millionen Jahren getrennt haben (Koch et al., zur Veröffentlichung eingereicht). Neben den unterschiedlichen Trennungszeitpunkten ist beim Vergleich von Arabidopsis, Capsella und Brassica der unterschiedliche Ploidiegrad der Pflanzen der entscheidende Aspekt. Während Arabidopsis und Capsella die diploiden Vertreter der Brassicaceae-Familie repräsentieren, leiten sich die diploiden Brassica-Arten von hexaploiden Vorfahren her. Daher besitzen sie vervielfachte Genome, wobei für verwendete Marker ein bis drei Loci identifiziert wurden (Lagercrantz und Lydiate, 1996). Durch vergleichende Genomanalyse in den Arten Arabidopsis, Capsella und Brassica kann eine Aussage über den Grad der Genomkolinearität in der Familie der Brassicaceae getroffen werden. Da sich diese Arten durch verhältnismäßig kleine Genome auszeichnen ist es möglich, die Vergleiche sowohl auf genetischer als auf Sequenzebene durchzuführen. Lediglich Vergleiche auf diesen verschiedenen Ebenen gewährleisten umfassende Kenntnisse über die Genomstruktur in den untersuchten Pflanzen und lassen verläßliche Aussagen über die Übertragbarkeit von Daten von A. thaliana auf verwandte Arten zu. Im Rahmen dieser Arbeit wird der Grad der Genomkolinearität sowohl auf genetischer und als auch auf Sequenzebene in Arabidopsis und Capsella untersucht.

1.7 Zielsetzung

Im Rahmen dieser Arbeit soll eine detaillierte Analyse der Genomkolinearität für die beiden diploiden Arten Arabidopsis thaliana und Capsella rubella, die zu der Familie der Brassicaceae gehören, durchgeführt werden. Dazu muß die vergleichende Genomanalyse auf genetischer, physikalischer wie auf Sequenz-Ebene in beiden Spezies durchgeführt werden.

Für die vergleichenden Analysen stehen ausgehend von *A. thaliana* zahlreiche Chromosomen-Karten, RFLP-Marker, ESTs und genomische Sequenzen zur Verfügung. Für *Capsella* soll eine geeignete Population erstellt werden, die sich zur Etablierung einer genetischen Karte eignet. *Arabidopsis*-Sonden sollen für die Kartierungsexperimente in *Capsella* eingesetzt werden. Durch vergleichende genetische Kartierungsexperimente soll der Grad der Markerkonservierung und Kolinearität zwischen *Arabidopsis thaliana* Chromosom IV und orthologen Chromosomen-Bereichen in *Capsella rubella* untersucht werden. Die ermittelten Daten sollen zeigen, ob in den diploiden *Capsella*-Arten die Kolinearität durch eine ähnlich hohe Anzahl von Genom-Umorganisationsereignissen unterbrochen ist wie sie für die *Brassica*-Arten beschrieben sind, die hexaploiden Ursprungs sind.

Kleine sequenzierte Bereiche des *Arabidopsis*-Genoms sollen für die vergleichende physikalische Kartierung in *Capsella rubella* herangezogen werden. Hierdurch soll ermittelt werden, inwieweit sich die beiden Arten bezüglich des Genrepertoires und der Genreihenfolge in orthologen Regionen gleichen. Durch Sequenzierung der orthologen Bereiche soll die vergleichende Analyse der Genstrukturen und Sequenzidentitäten ermöglicht werden.

Diese Untersuchungen sollen zeigen, ob und inwieweit Daten über die strukturelle Organisation des *A. thaliana* Genoms auf andere diploide Arten der Familie der Familie der Brassicaceae übertragbar und damit nutzbar sind.

Arabidopsis thaliana Capsella rubella

1.8 Abkürzungen

Abb.	Abbildung
A. thaliana	Arabidopsis thaliana
bp (Kbp, Mbp)	Basenpaare (Kilobasenpaare, Megabasenpaare)
BSA	Rinderserumalbumin
°C	Grad Celcius
C. grandiflora	Capsella grandiflora
C. rubella	Capsella rubella
СТАВ	Cetyltrimethylammoniumbromid
DNA	Desoxyribonukleinsäure
dNTP	Desoxyribonucleosidtriphosphat
E. coli	Escherichia coli
EDTA	Ethylendiaminotetraessigsäure
EST	expressed sequence tag
g	Gramm, Erdbeschleunigung
IPTG	Isopropyl-ß-D-thiogalaktopyranosid
mM, M	Millimolar, Molar
PCI	Phenol-Chloroform-Isoamylalkohol
PCR	Polymerase-Kettenreaktion
RFLP	Restriktionsfragmentlängenpolymorphismus
RNase	Ribonuklease
SDS	Natriumdodecylsulfat
Tris	Tris-(Hydroxymethyl)-Aminomethan
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen
X-Gal	5-Brom-4-Chlor-3-Indolyl-B-D-Galaktopyranosid

2. Material und Methoden

2.1 Material

2.1.1 Chemikalien und Enzyme

Agarose	Gibco BRL, USA
ATP	Boehringer Mannheim
Bacto-Agar, Bacto-Trypton, Hefe-Extrakt	Difco Laboratories, Detroit USA
BSA	MBI Fermentas, St. Leon-Rot
Chemikalien	Calbiochem Behring Corp., USA
	Gibco BRL, USA
	J.T.Baker, Holland
	Merck, Darmstadt
	Pharmacia, Schweden
	Serva, Heidelberg
	Sigma Chem. Co., St. Louis USA
DNA-Längenstandards	MBI Fermentas, St. Leon-Rot
dNTPs	MBI Fermentas, St. Leon-Rot
Filterpapiere	Schleicher & Schüll, Dassel
Klenow-Fragment der DNA-Polymerase I	MBI Fermentas, St. Leon-Rot
Lachsspermen-DNA	Sigma Chem. Co., St. Louis USA
DNA modifizierende Enzyme	Boehringer Mannheim
	MBI Fermentas, St. Leon-Rot
	New England Biolabs, Inc., USA
Nylonmembranen	Amersham, England (HybondN ⁺ -
	Membran)
	Pall, USA (BiodyneA-Membran)
Nukleotide	MBI Fermentas, St. Leon-Rot
Oligonukleotide	Gibco BRL, USA
	Metabion, Martinsried
	MWG, Ebersbach
PCR-Produktaufreinigung	Boehringer Mannheim (High Pure PCR-
	Purification-Kit TM)
Plasmid-DNA-Präparation	Boehringer Mannheim (High Pure Plasmid-
	Kit TM)
Radiochemikalien	Amersham, England (α - ³² P-dCTP)

"Random-Primer" (p(dN) ₆)	Boehringer Mannheim
Restriktionsenzyme	Boehringer Mannheim
	MBI Fermentas, St. Leon-Rot
RNase A	Boehringer Mannheim
Röntgenfilme	Kodak, USA (Kodak-X-OMAT AR-5)
Taq-Polymerase	Gibco BRL, USA
T4-DNA-Ligase	New England Biolabs, Inc., USA

2.1.2 DNA-Längenstandards

	Fragmentgrößen (in Kbp)
GeneRuler [™] 1Kbp DNA Leiter	10/ 8/ 6/ 5/ 4/ 3,5/ 3/ 2,5/ 2/ 1,5/ 1/ 0,75/ 0,5/ 0,25
(MBI Fermentas)	
λ-DNA (MBI Fermentas)	48,5
λ-DNA, <i>Eco</i> RI/ <i>Hin</i> dIII gespalten	21,226/ 5,148/ 4,973/ 4,268/ 3,53/ 2,027/ 1,904/
(MBI Fermentas)	1,584/ 1,375/ 0,947/ 0,831/ 0,564/ 0,125

2.1.3 Lösungen und Medien

Alle Lösungen und Medien wurden in destilliertem Wasser angesetzt und vor Gebrauch entweder autoklaviert oder sterilfiltriert.

2.1.3.1 Medien

Medien für die E. coli-Anzucht:

 LB:
 1% (w/v) Bacto-Trypton

 0,5% (w/v) Hefe-Extrakt
 1% (w/v) NaCl

 pH 7,0 mit NaOH
 LB-Medium

 LS-Agar:
 LB-Medium

 1,5% (w/v) Bacto-Agar
 LB-Medium

2.1.3.2 Lösungen	
PCI:	50% (v/v) Tris gesättigtes Phenol 48% (v/v) Chloroform 2% (v/v) Isoamylalkohol
RNase A:	Stammlösung 10 mg/ml in 10 mM Tris/HCl (pH 7,5), 15 mM NaCl
TE:	10 mM Tris/HC1, pH 8,0 1 mM EDTA, pH 8,0

2.2 Verwendete Bakterienstämme und Vektoren

2.2.1 Bakterienstämme

E. coli K12 DH5 α (Hanahan, 1983) *E. coli* SURETM2 (Stratagene)

2.2.2 Vektoren

pGEM7Z (Promega) pGEM-T (Promega) pCLD04541 (Bancroft *et al.*, 1997)

2.3 Oligonukleotide

Universe:	GTA AAA CGA CGG CCA GT
Reverse:	AAC AGC TAT GAC CAT G
T7:	GTA ATA CGA CTC ACT ATA GGG C
T3:	AAT TAA CCC TCA CTA AAG GG
SP6:	CAT ACG ATT TAG GTG ACA CTA TAG

Zusätzliche Oligonukleotide wurden bei den Firmen Gibco, Metabion und MWG synthetisiert.

2.4 Verwendete Marker für genetische Kartierungsexperimente

Als Marker für die genetischen Kartierungsexperimente in *Capsella* wurden *Arabidopsis thaliana* RFLP-Marker (mi und ARMS) (Liu *et al.*, 1996; Fabri und Schäffner, 1994) und ESTs (Höfte *et al.*, 1993; Newman *et al.*, 1994) eingesetzt. Diese wurden vom *Arabidopsis thaliana*-Stock-Center, Ohio, USA, bezogen.

2.5 Molekularbiologische Techniken

Alle gängigen molekularbiologischen Techniken wurden entsprechend den Standardprotokollen durchgeführt (Sambrook *et al.*, 1989).

2.5.1 Isolierung von Pflanzen-Gesamt-DNA

Die Präparation von Pflanzen-Gesamt-DNA erfolgte nach der CTAB-Methode (Dellaporta et al., 1983). 1-2 g junge Blätter wurden in flüssigen Stickstoff schockgefroren und anschließend in einem Mörser mit flüssigem Stickstoff zu einem feinen Pulver verarbeitet. Das gefrorene und in pulverisierter Form vorliegende Blattmaterial wurde in 10 ml auf 65°C vorgewärmten CTAB-Extraktionspuffer aufgenommen und unter wiederholtem Mischen 45 Minuten bei 65°C inkubiert. Ein Volumen PCI wurde zugegeben und 10 Minuten bei Raumtemperatur auf einem Überkopfschüttler inkubiert. Anschließend wurde die Lösung 10 Minuten bei 4000 rpm (Heraeus Varifuge 3.OR) zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt, mit einem Volumen Chloroform erneut 10 Minuten bei Raumtemperatur auf dem Überkopfschüttler invertiert und dann 10 Minuten bei 4000 rpm (Heraeus Varifuge 3.OR) zentrifugiert. Für die DNA-Fällung wurde der Überstand in einem Reaktionsgefäß mit 0,7 Volumen Isopropanol vermischt. Die Lösung wurde 5 Minuten auf Eis inkubiert und anschließend bei 4000 rpm (Heraeus Varifuge 3.OR) zentrifugiert. Das resultierende DNA-Pellet wurde in 200-500 µl TE-Puffer mit 10 mg/ml RNase A gelöst und bei 4°C gelagert.

CTAB-Extraktionspuffer:

2% CTAB 1,4 M NaCl 0,1 M Tris/HCl, pH 8,0 20 mM EDTA, pH 8,0 0,2% β-Mercaptoethanol

2.5.2 Southern-Blot und Hybridisierungsexperimente

Die Southernblot- und Hybridisierungs-Experimente wurden entsprechend den empfohlenen Herstellerangaben durchgeführt (HybondN⁺, Amersham; BiodyneA, Pall). Nach der Hybridisierung der Nylonmembranen über Nacht bei 65°C wurden die Membranen zuerst in kalter Waschlösung und anschließend bei 60°C 20-30 Minuten gewaschen.

Waschlösung:

0,3 M NaCl 30 mM Natriumcitrat 0,1% SDS

2.5.3 Genomische Capsella rubella Cosmid-Bibliothek

Für die Identifizierung der *Capsella rubella* Cosmid-Klone wurde eine genomische Gesamt-DNA-Bibliothek von *Capsella rubella* eingesetzt. Die Bibliothek besteht aus 46.000 Einzelklonen (Schmidt *et al.*, 1999).

Gesamt-DNA von *Capsella rubella* wurde partiell mit *Mbo*I bzw. *Taq*I gespalten und über einen Saccharose-Gradienten größenfraktioniert. Die DNA-Fraktionen, die Fragmente im Bereich von 17-25 Kbp enthielten, wurden in den Cosmidvektor pCLD04541 (Bancroft *et al.*, 1997) kloniert. Die mit *Mbo*I behandelte genomische Pflanzen-DNA wurde in die *Bam*HI-Schnittstelle des Cosmidvektors kloniert, und die mit *Taq*I behandelte DNA in die *Cla*I-Schnittstelle des Vektors. Die durchschnittliche Insertgröße der Cosmidklone beträgt 20 Kbp.

Die Cosmidklone wurden in 384-Kammer-Mikrotiterplatten mit LB-Medium, welches Glycerin und 10 μ g/ml Tetracyclin enthält, bei -70°C gelagert.

2.5.4 Herstellung der Capsella rubella Cosmid-Koloniemembranen

Die Cosmidklone wurden mit Hilfe eines Stempels mit 384 Stiften auf LB-Agarplatten mit 10 μ g/ml Tetracyclin gestempelt. Auf jeweils eine LB-Agarplatte wurden insgesamt 4x384 Einzelkolonien übertragen. Nach der Inkubation der Platten über Nacht bei 37°C wurde eine Nylonmembran (11x7,5 cm, HybondN⁺; Amersham) luftblasenfrei auf die Agarplatte aufgelegt. Nach 2-3 Minuten wurde die Membran vorsichtig von der Agarplatte abgenommen und mit der Kolonieseite nach oben auf eine LB-Agarplatte mit 10 μ g/mlTetracyclin aufgelegt. Die Weiterbehandlung der Membranen erfolgte nach der Inkubation über Nacht bei 37°C entsprechend der Methode in Sambrook *et al.* (1989). Für die Erstellung der Koloniemembranen wurden jeweils zwei Mikrotiterplatten zweimal auf eine LB-Agarplatte entsprechend des unten angegebenen Schemas überstempelt.

2.5.5 Koloniehybridisierung der Capsella rubella Cosmid-Membranen

Kolonie-Hybridisierungen wurden über Nacht bei 65°C den Herstellerangaben (Amersham) entsprechend durchgeführt. Anschließend wurden die Membranen zuerst mit kalter Waschlösung (2.5.2) bei Raumtemperatur, dann 20-30 Minuten bei 60°C gewaschen.

2.6 Sequenzierung und Sequenz-Analyse

2.6.1 Sequenzierung

Die Sequenzierungen wurden duch die Sequenzierungs-Arbeitsgruppe ADIS (Automatische DNA-Isolierung und Sequenzierung) des Max-Planck-Institutes durchgeführt. Die Bearbeitung der Sequenzen erfolgte auf Unix-Rechnern.

Für die Sequenzierungen wurden die unter 2.3 genannten Oligonukleotide eingesetzt.

2.6.2 Sequenz-Analyse

Für die Bearbeitung der Sequenzen wurden verschiedene Programme aus den GCG-Programm-Paket verwendet (Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisc.).

In den erstellten genomischen *Capsella rubella* Sequenzen sind die kodierenden Regionen in der Regel auf beiden Strängen sequenziert worden. Für Bereiche, die lediglich einmal sequenziert wurden, wurden die Elektropherogramme der jeweiligen Sequenzierungen überprüft.

2.7 Genetische Analyse

2.7.1 Erstellung der Kartierungspopulation

Zur Erstellung einer Kartierungspopulation wurde die selbst-inkompatible Art *Capsella grandiflora* mit Pollen von *Capsella rubella* bestäubt. Um eine guten Samenansatz zu gewährleisten, wurde die Selbstbestäubung der F_1 -Hybridpflanzen mit Pinseln unterstützt.

Ca. 100 Nachkommen einer der F₁-Hybridpflanzen wurden ausgesät. Für die Kartierung wurden aus dieser Population 50 selbst-kompatible F₂-Pflanzen ausgewählt. Für jede dieser 50 F₂-Pflanzen wurde Gesamt-DNA aufgearbeitet.

2.7.2 Polymorphismus-Analyse

Für die Polymorphismus-Analyse wurde Gesamt-DNA von *Capsella rubella* und ein Gemisch von Gesamt-DNA aller F_2 -Pflanzen der Kartierungspopulation mit den Restriktionsenzymen *Bgl*II, *Dra*I, *Eco*RI, *Eco*RV bzw. *Xba*I behandelt, auf Agarose-Gelen aufgetrennt, und auf Membranen transferiert.

Das Gemisch von Gesamt-DNA aller F_2 -Pflanzen wurde anstelle von Gesamt-DNA von *Capsella grandiflora* eingesetzt, da aufgrund der Selbst-Inkompatibilität dieser *Capsella*-Art nicht ausreichende Mengen an Blattmaterial zur Isolierung von Gesamt-DNA für die Polymorphismus-Analysen zur Verfügung standen. Bei der weiteren Auswertung dieser Experimente mußte daher beachtet werden, daß das Gemisch von Gesamt-DNA der F_2 -Pflanzen sowohl den *Capsella grandiflora*- als auch den *Capsella rubella*-Genotyp repräsentiert.

Zur Polymorphismus-Bestimmung wurden für die Hybridisierungsexperimente als DNA-Sonden *Arabidopsis-thaliana*-RFLP-Marker (Fabri und Schäffner, 1994; Liu *et al.*, 1996) oder ESTs (Höfte *et al.*, 1993; Newman *et al.*, 1994) verwendet. Alle Marker wurden sequenziert. Ein Vergleich der ermittelten Sequenzen mit Sequenzen in den Datenbanken diente zur Ermittlung bzw. der Verifizierung der Kartenpositionen der Marker.

Für die Kartierungsdaten der kodominanten Marker wurden Nachkommen, die für einen bestimmten Marker die *C. grandiflora*-Allele homozygot vorliegen hatten, mit 1 bezeichnet. Heterozygote Genotypen für einen bestimmten Marker wurden mit einer 2 benannt, während das Vorliegen homozygoter *C. rubella*-Allele mit 3 angegeben wurde.

Für die Kopplungsanalyse wurde das Programm MAPMAKER mit der Haldane cM-Funktion eingesetzt (Lander *et al.*, 1987). Die genetischen Abstände wurden in centi-Morgan (cM) angegeben.

3. Ergebnisse

3.1 Genetische Kartierung von *Arabidopsis thaliana*-Markern in *Capsella*

Das Ziel der genetischen Kartierungsexperimente in *Capsella* war die vergleichende Untersuchung der Genomorganisation von *Capsella* und *Arabidopsis thaliana*. Die resultierenden Kopplungsgruppen sollten mit der *Arabidopsis* Chromosomenkarte verglichen werden (Lister und Dean, 1993; http://nasc.nott.ac.uk/new_ri_map.html), um Aussagen über den Grad der Genomkolinearität und die Chromosomen-Evolution zu machen. *Arabidopsis thaliana* besitzt 10 Chromosomen (2n), *Capsella rubella*, die auch zur Familie der Brassicaceae gehört, 16 Chromosomen (2n).

Für die genetischen Kartierungsexperimente in *Capsella* wurden *Arabidopsis thaliana* RFLP-Marker (mi-...: Liu *et al.*, 1996; m-...: Fabri und Schäffner, 1994) und ESTs (Höfte *et al.*, 1993; Newman *et al.*, 1994) eingesetzt, die vom *Arabidopsis thaliana-Stock-Center* (Ohio, USA) bezogen wurden.

3.1.1 Kartierungspopulation von Capsella

Da keine Informationen über den Polymorphismusgrad in *Capsella* vorlagen, wurde eine interspezifische Kreuzung für die Etablierung der genetischen Karte von *Capsella* gewählt. Hierfür wurden *C. grandiflora*-Blüten mit *C. rubella*-Pollen bestäubt (Marcus Koch, unveröffentlicht). Bei *C. grandiflora* handelt es sich um eine selbstinkompatible Spezies. Nach Selbstbestäubung einer Pflanze, die aus dieser Kreuzung stammte, wurden 100 Pflanzen aus der F_2 -Generation angezogen. Aus dieser Population wurden 50 selbstkompatible Pflanzen für die genetischen Kartierungsexperimente ausgewählt.

3.1.2 Restriktions-Fragment-Längen-Polymorphismus (RFLP)-Analyse von *C. grandiflora* und *C. rubella*

Mit genetischen Markern als radioaktiv markierte Sonden sollte der Polymorphismus-Grad zwischen den beiden Spezies *C. grandiflora* und *C. rubella*, die den genetischen Hintergrund der Kartierungspopulation repräsentieren, festgestellt werden, um Aussagen über die Eignung der erstellten Kartierungspopulation zu treffen.

Für die DNA-Polymorphismus-Analyse wurden Membranen mit Gesamt-DNA von C. *rubella* und einem Gemisch von Gesamt-DNA der F_2 -Pflanzen, die die Kartierungspopulation repräsentieren, erstellt. Zur Untersuchung wurde Gesamt-DNA benutzt, die mit den Restriktionsenzymen BglII, DraI, EcoRI, EcoRV, HindIII bzw. XbaI gespalten worden war. Das Gemisch aus Gesamt-DNA der F₂-Pflanzen wurde statt Gesamt-DNA von *C. grandiflora* eingesetzt, da aufgrund der Selbstinkompatibilität dieser *Capsella*-Art keine homozygote Linie herangezogen werden konnte. Für die weiteren Untersuchungen war zu beachten, daß das DNA-Gemisch sowohl die Allele von *C. grandiflora* als auch die von *C. rubella* repräsentiert.

3.1.3 Genetische Marker für die Kartierung

Es wurden 33 Marker für Chromosom IV und 13 Marker für die restlichen vier Chromosomen von *A. thaliana* für die RFLP-Analyse eingesetzt. Es handelt sich bei diesen Markern um RFLP-Marker (mi...-Marker; Liu *et al.*, 1996; ARMS-Marker, m:...; Fabri und Schäffner, 1994) und um EST-Sequenzen (Höfte *et al.*, 1993; Newman *et al.*, 1994). In den folgenden Tabellen 3.1-3.3 und Abbildung 3.1 wurden diese Marker, die zur Überprüfung sequenziert wurden, mit der jeweiligen Position auf der genetischen Karte angegeben. Für Marker mi390, der mit Hilfe von RFLP-Kartierung auf Chromosom 4 von *Arabidopsis thaliana* kartiert worden war (Liu *et al.*, 1996), ergab die Kartierung der ermittelten Sequenz, daß der Marker zu einem Lokus auf Chromosom 2 korrespondiert (Tabelle 3.1, Abb. 3.1). Für die Marker, welche in *Arabidopsis* nicht auf der genetischen Karte lokalisiert sind, werden RFLP-Marker angegeben, die physikalisch eng benachbart sind. Diese Informationen wurden mit Hilfe der *Arabidopsis thaliana* Datenbank ermittelt (http://www.arabidopsis.org/).

Das Ziel der Arbeit für die vergleichende genetische Analyse von *C. rubella* mit *A. thaliana* war in erster Linie die Erstellung einer vergleichenden genetischen Karte mit den *A. thaliana* Markern von Chromosom IV. Die Kartierung der *A. thaliana* Marker von Chromosom I war erforderlich, da im zweiten Teil der Arbeit die Mikrosyntenie einer Region des Chromosoms I von *A. thaliana* im Vergleich zu *Capsella rubella* analysiert werden sollte (3.2.2). Die Untersuchung der Marker, die auf den *Arabidopsis* Chromosomen I, II, III und V liegen, sollte außerdem zeigen, ob Kopplungen zu Markern von Chromosom IV in *Capsella* nachgewiesen werden können.

29

3.1-B

Marker	Position in Arabidopsis thaliana RI-Karte (cM)
mi30	50,3
mi32	60,9
mi51	1,5
mi112	58,1
mi122	5,0
mi123	75,6
mi232	76,7
mi233	19,8
mi260	54,5
mi301	9,8
mi306	21,4
mi330	58,1
mi369	108,5
mi390	Chr. II 30,9
mi422	69,3
mi431	82,3
mi465	45,9

Arabidopsis thaliana Chromosom IV mi...-RFLP-Marker:

Tabelle 3.1: Für die RFLP-Analyse eingesetzte mi...-Marker (Liu *et al.*, 1996), die auf Chromosom IV von *A. thaliana* kartieren (http://nasc.nott.ac.uk/new_ri_map.html), sind in cM angegeben. Es handelt sich bei diesen Markern um genomische Zufallsfragmente. Die Sequenz des Markers mi390 korrespondiert zu einer Kartenposition auf Chromosom II.

Arabidopsis thaliana ARMS-Marker:

Marker	Chromosom-(cM)	Sequenzierter Klon
m235A	I (31,9)	T26J12
m254A	I (49,2)	F28K20
m315B	I (94,5)	F18J1
m453A	I (110,2)	F24J13
m283C	II (61,0)	T6B20
m336A	II (79,3)	F16B22
m497A	II (13,3)	F5G3
m249A	III (61,3)	F18L15
m409B	III (64,0)	T23J7
m457A	III (71,6)	F18B3
m326B	IV (51,9)	ATFCA1
m448A	IV (19,9)	F9H3
m518A	IV (31,7)	T22B4
m557A	IV (64,1)	T5K18
m211A	V (119,0)	MJH22

Tabelle 3.2: Aufgelistet wurden ARMS-Marker von *A. thaliana* (Fabri und Schäffner, 1994). Die Marker-Position auf den jeweiligen Chromosomen sind in cM angegeben (http://nasc.nott.ac.uk/new_ri_map.html) sowie die sequenzierten Klone, auf denen die ARMS-Marker lokalisiert sind (http://www.arabidopsis.org/maps.html).

Marker	Chromosom (cM)	Genbank- Akzession	Sequenzierter Klon	Physikalischer Abstand zum nächsten kartierten Marker in der RI-Karte
21484	I (81 7)	N96681	F20N2	<100 Kbn nga280
3486	IV(52,4)	T21478	ATFCA2	<110 Kbp mi198
5149	IV (69,3)	T41886	F16G20	<60 Kbp mi422
16793	IV (51,9)	R90438	ATFCA1	<170 Kbp m326
ATTS0636	IV (50,3)	Z18140	ATFCA0	<90 Kbp mi30
ATTS2212	IV (82,3)	Z29768	F26P21	<300 Kbp mi431
ATTS2243	IV (57,0)	Z29799	ATFCA6	<200 Kbp m226
ATTS2810	IV (54,5)	Z33719	ATFCA5	<65 Kbp mi260
ATTS2845	IV (83,4)	Z33754	T4L20	<15 Kbp SGCSNP232
ATTS3374	IV (83,4)	Z34614	M4E13	<230 Kbp nga1139
5760	IV (57,0)	T42497	ATFCA6	<200 Kbp m226
11177	IV (57,6)	T76399	ATFCA7	<150 Kbp g4539
cDNA J	IV (57,6)		ATFCA7	<100 Kbp g4539
17698	IV (82,3)	H75993	F10N7	<300 Kbp mi431

Arabidopsis thaliana ESTs und cDNAs:

Tabelle 3.3: Angegeben sind die verwendeten A. thaliana-ESTs und die cDNA J (3.2.1). AufgeführtsinddieMarkerbezeichnunginderDatenbank,dieChromosomenposition(http://nasc.nott.ac.uk/new_ri_map.html), die Genbank-Akzessionsnummer und der sequenzierte Klon, aufwelchem der Marker lokalisiert ist.

3.1.4 RFLP-Analyse der Arabidopsis thaliana Chromosom IV-Marker

Von den 46 getesteten Markern konnte für zwei Marker, mi32 und ATTS2810, kein Polymorphismus mit den verwendeten sechs verschiedenen Restriktionsenzymen *Bgl*II, *Dra*I, *Eco*RI, *Eco*RV, *Hin*dIII bzw. *Xba*I gefunden werden (Daten nicht gezeigt). Für weitere sechs Marker, EST11177, mi233, m497A, m283C, m336A und m409B, konnte mit Gesamt-DNA aus *Capsella* keine Hybridisierung nachgewiesen werden (Abb. 3.2, Daten nicht gezeigt). Offensichtlich liegen die entsprechenden Markersequenzen in *Capsella* nicht vor. Das Ergebnis der Hybridisierung einer Membran mit *Dra*I beziehungsweise mit *Eco*RI/*Hin*dIII gespaltener Gesamt-DNA von *A. thaliana* und *C. rubella* bestätigte, daß mi233 und EST11177 mit *A. thaliana*-DNA hybridisieren, jedoch nicht mit *C. rubella*-DNA (Abbildung 3.2).

Für die monomorphen Marker, mi32 und ATTS2810, wurde die RFLP-Analyse nicht mit weiteren Restriktionsenzymen durchgeführt, da für die restlichen 29 Marker, die auf Chromosom IV lokalisiert sind, mit verschiedenen Restriktionsenzymen Polymorphismen ermittelt werden konnten (Tabelle 3.4).

Abbildung 3.2: Die Ergebnisse der Hybridisierungen mit den radioaktiv markierten Sonden der Marker mi233 (**A**) und EST 11177 (**B**) sind gezeigt. An die Membran ist mit *Dra*I- bzw. *Eco*RI/*Hin*dIII-gespaltene Gesamt-DNA von *A. thaliana* (At) bzw. *C. rubella* (Cr) gebunden.

Marker 11177 (**B**) zeigt ein repetitives Hybridisierungsmuster mit Gesamt-DNA von *A. thaliana*. Die Signalstärke der hybridisierenden DNA-Fragmente liefert Hinweise über den Grad der Sequenzhomologie zwischen der verwendeten Sonde und den hybridisierenden DNA-Fragmenten.

Marker	BglII	DraI	<i>Eco</i> RI	<i>Eco</i> RV	<i>Hin</i> dIII	XbaI
mi30	+	_	_	-	+	+
mi51	-	+	+	+	-	-
mi112	_	+	-	-	-	_
mi122	+	-	_	+	-	+
mi123	_	+	+	+	+	_
mi232	-	-	+	+	+	-
mi260	-	+	+	+	_	-
mi301	-	+	+	-	-	-
mi306	+	-	-	-	-	+
mi330	+	-	-	+	-	+
mi369	-	+	-	-	-	-
mi390	-	+	+	-	-	+
mi422	-	-	+	-	+	-
mi431	+	-	-	+	+	-
mi465	-	-	+	+	-	+
3486	n.g.	n.g.	+	+	n.g.	+
5149	n.g.	n.g.	+	+	n.g.	+
16793	n.g.	n.g.	n.g.	+	n.g.	+
ATTS2243	n.g.	n.g.	+	+	n.g.	+
ATTS2212	n.g.	n.g.	+	+	n.g.	+
ATTS2243	-	+	-	-	-	-
ATTS2845	-	-	+	+	-	-
ATTS3374	-	-	-	-	+	+
cDNA J	+	+	+	+	+	+
21484	-	+	-	-	-	-
17698	-	+	+	+	-	+
5760	-	+	+	-	-	-
m235A	n.g.	n.g.	+	n.g.	n.g.	n.g.
m254A	n.g.	n.g.	n.g.	+	n.g.	+
m315B	-	-	-	+	-	+
m453A	+	-	-	-	+	-
m249A	n.g.	n.g.	n.g.	n.g.	n.g.	+
m457A	-	+	-	+	+	+
m448A	n.g.	n.g.	+	+	n.g.	n.g.
m518A	n.g.	n.g.	+	n.g.	n.g.	+
m326B	n.g.	n.g.	+	+	n.g.	n.g.
m557A	n.g.	n.g.	n.g.	n.g.	n.g.	+
m211A	+	+	-	-	+	+

Tabelle 3.4: Die Ergebnisse der Polymorphismusanalyse der Marker von *A. thaliana* mit *Capsella*-Gesamt-DNA ist gezeigt. Gesamt-DNA von *C. rubella* und dem Gemisch aus Gesamt-DNA von Pflanzen der Kartierungspopulation wurde mit verschiedenen Restriktionsenzymen gespalten, aufgetrennt und auf Membranen transferiert. Mit "+" bzw. "-" ist gekennzeichnet, ob ein Polymorphismus zwischen *C. grandiflora* und *C. rubella* mit dem jeweiligen Restriktionsenzym detektiert wurde. Nicht ermittelte Daten sind mit "n.g." angegeben.

Für 12 Marker wurden bei den Hybridisierungen Membranen verwendet, die nur mit drei verschiedenen Enzymen (*Eco*RI, *Eco*RV und *Xba*I) gespaltene Gesamt-DNA von *C*.

rubella und dem Gemisch aus Gesamt-DNA von 50 Pflanzen der Kartierungspopulation gebunden hatten. Für die restlichen 26 Marker wurden Membranen eingesetzt, die mit sechs verschiedenen Restriktionsenzymen (*Bgl*II-, *Dra*I-, *Eco*RI-, *Eco*RV-, *Hin*dIIIbzw. *Xba*I-) gespaltene DNA trugen. In Abbildung 3.3 ist exemplarisch das Hybridisierungsergebnis für den Marker cDNA J gezeigt.

Der Polymorphismus-Grad der einzelnen Markern ist sehr unterschiedlich. Der Marker cDNA J zeigt für alle sechs verschiedenen Restriktionsspaltungen Polymorphismen. Für die Marker mi369, ATTS2243 und 21484 dagegen konnte nur für die Spaltung mit einem Restriktionsenzym ein Polymorphismus nachgewiesen werden. In der Regel wurden Polymorphismen am häufigsten mit *Eco*RI, *Eco*RV, *Hin*dIII und *Xba*I gespaltener Gesamt-DNA ermittelt (Tabelle 3.5).

Restriktions- enzym	Anzahl der Marker, die Polymorphismus zeigen	Gesamt-Zahl der Marker, die mit dem jeweiligen Enzym getestet wurden	Polymorphismus- Häufigkeit (%)
BglII	8	26	30,8
DraI	14	26	53,8
EcoRI	20	34	58,8
EcoRV	21	34	61,8
HindIII	10	26	38,5
XbaI	21	35	60,0

Tabelle 3.5: Berechnung der Polymorphismushäufigkeit

Es ist angegeben, wie viele Marker einen Polymorphismus mit DNA zeigen, die mit einem bestimmten Enzym gespalten wurde. Außerdem ist angegeben, wie viele Marker insgesamt für die Analyse mit dem jeweiligen Enzym verwendet wurden.

Die Marker mi260 und mi422 wurden in weiteren Experimenten nicht eingesetzt, da diese Marker ein repetitives Hybridisierungsmuster zeigten. Der Sequenzhomologie-Grad zwischen *Arabidopsis* und *Capsella* ist nicht für alle getesteten Marker gleich hoch. Für mi198 und mi465 beispielsweise ist die Hybridisierungssignalstärke in *C. rubella* gering, was auf einen niedrigen Homologiegrad zwischen *Arabidopsis* und *Capsella* zurückschließen läßt. Die Marker wurden für die weiteren Experimente nicht benutzt.

3.1.5 Kartierung der Marker in Capsella

22 RFLP-Marker (Fabri und Schäffner, 1994; Liu *et al.*, 1996) und ESTs (Höfte *et al.*, 1993; Newman *et al.*, 1994), die auf *Arabidopsis thaliana* Chromosom IV lokalisiert sind und für welche DNA-Polymorphismen ermittelt werden konnten, wurden für die genetische Kartierung eingesetzt (Tabelle 3.6).

Abbildung 3.3: Das Hybridisierungsergebnis von Marker cDNA J mit einer Membran, auf die mit sechs verschiedenen Restriktionsenzymen gespaltene Gesamt-DNA von *C. rubella* (Cr) sowie einem DNA-Gemisch der 50 F2-Pflanzen der Kartierungspopulation (Gem) transferiert wurde, ist abgebildet. Bei den verwendeten Enzymen handelt es sich um: *Bgl*II, *Dra*I, *Eco*RI, *Eco*RV, *Hin*dIII und *Xba*I.

An der linken Bildseite ist in Kbp der Längenstandard angegeben. Die Restriktionsfragmente, die einen RFLP anzeigen, sind mit einem Stern (*) gekennzeichnet.

In den Gelspuren mit Gesamt-DNA-Gemisch (Gem) hybridisiert der Marker mit DNA-Fragmenten des *C. rubella-* und des *C. grandiflora*-Allels.

Bei 18 Markern handelt es sich um Marker, die in *Capsella* zu einem Locus im Genom korrespondieren, während für die restlichen vier Marker 3486, ATTS2212, ATTS3374 und mi330 je zwei RFLP-Loci ermittelt wurden. Abbildung 3.4A zeigt das Hybridisierungsergebnis mit Marker mi122 für 25 Pflanzen der *Capsella*-Kartierungspopulation. Marker mi122 hybridisiert in *C. grandiflora* mit einem ca. 10 Kbp langen DNA-Fragment, während es in *C. rubella* mit einem ca. 7 Kbp langen DNA-Fragment hybridisiert. Das Hybridisierungsergebnis für Marker ATTS3374, der wie die drei weiteren Marker 3486, ATTS2212 und mi330 im *Capsella*-Genom mindestens zwei Loci besitzt, ist in Abbildung 3.4B gezeigt.

Zusätzlich wurden die Marker m315B, m235A, 21484 und m254A von *Arabidopsis* Chromosom I, mi390 von Chromosom II, m457A und m249A von Chromosom III und m211A von Chromosom V in *Capsella* kartiert. Für den Chromosom I-Marker m315B konnten im *Capsella*-Genom zwei Loci ermittelt werden.

Die ermittelten Daten in der Kartierungspopulation sind in Tabelle 3.6 und im Anhang aufgeführt. In der Kartierungspopulation wird für die kodominanten Marker eine 1:2:1-Verteilung (*C. grandiflora* homozygot: heterozygot: *C. rubella* homozygot) erwartet. Die Daten einer χ^2 -Analyse zeigen für die Marker mi30, mi306, m211A, m326A und ATTS0636 eine abweichende Verteilung. Für die Allele von *C. rubella* und *C. grandiflora* wird eine 1:1-Verteilung erwartet. Die Daten der χ^2 -Analyse zur Allelverteilung zeigte nur für die beiden Marker m211A und m457A abweichende Werte. Der Signifikanzwert betrug für die Analysen 0,05.

Für die Kopplungsanalyse wurde das Programm MAPMAKER mit einem lod-Wert von 3 verwendet (Lander *et al.*, 1987). Die genetischen Abstände wurden in centi-Morgan (cM) angegeben (Haldane-Funktion). Abbildung 3.5 zeigt den Vergleich zwischen den ermittelten Kopplungsgruppen für *Capsella* und der Karte von *Arabidopsis thaliana* Chromosom IV. Die Kartierungsdaten beziehen sich auf die rekombinante Inzuchtlinien-Population von *A. thaliana* (Lister und Dean, 1993) und wurden der *A. thaliana*-Datenbank entnommen (http://nasc.nott.ac.uk/new_ri_map.html). Für die Chromosom IV-Marker konnten in *Capsella* zwei Kopplungsgruppen ermittelt werden. In beiden Kopplungsgruppen wurde ein hoher Grad an Kolinearität beobachtet. Lediglich Marker 3486 zeigte in *Capsella* keine Kopplung zu den restlichen Chromosom IV-Markern. Einer der zu Marker m315B korrespondierenden Loci (*A. thaliana* Chromosom I-Marker) (m315Bb) wurde in *Capsella* gekoppelt zu *Arabidopsis* Chromosom IV-Marker mi122 und m448A gefunden. Die anderen auf den Chromosomen I, II, III und V von *Arabidopsis* lokalisierten RFLP-Marker zeigten in *Capsella* keine Kopplung zu den Loci, die mit Chromosom IV von *Arabidopsis* identifiziert wurden (siehe Anhang).

Abbildung 3.4: A: Gezeigt ist das Hybridisierungsergebnis der Sonde mi122 mit einer Membran, die *Bgl*II-gespaltene Gesamt-DNA vom DNA-Gemisch der Kartierungspopulation (Gem), von Pflanzen der Kartierungspopulation (1-25) und von *C. rubella* (Cr) gebunden hat. mi122 korrespondiert in *Capsella* zu einem Locus.

B: Hybridisierung des Markers ATTS3374 mit einer Membran, die *Xba*Igespaltene Gesamt-DNA vom DNA-Gemisch der Kartierungspopulation (Gem), von Pflanzen der Kartierungspopulation (26-50) und von *C. rubella* (Cr) gebunden hat.

Marker ATTS3374 liegt in *Capsella* an mindestens zwei unterschiedlichen Loci vor. Die polymorphen DNA-Fragmente der jeweiligen Loci sind mit **A** bzw. **B** und die beiden monomorphen DNA-Fragmente wurden mit einem **C** gekennzeichnet.

Bei DNA-Fragmenten mit schwächeren Hybridisierungssignalen handelt es sich um Kreuzhybridisierungen.

Abbildung 3.5: Vergleichende genetische Karte von Chromosom IV von *Arabidopsis thaliana* und den *Capsella*-Kopplungsgruppen. Auf der rechten Bildhälfte ist die Col x Ler RI-Karte für A. thaliana Chromosom IV angegeben. Die Informationen zur Erstellung der Karte wurden aus der A. thaliana-Datenbank bezogen (http://nasc.nott.ac.uk/new-ri_map.html). Links sind die beiden ermittelten Kopplungsgruppen für *Capsella* dargestellt. Einige der verwendeten Marker (ESTs und cDNAs) (ATTS0636; ATTS2243; 5760; cDNAJ; 5149; 17698;ATTS2212a; ATTS3374a; 3486), die in *Arabidopsis* bisher genetisch nicht kartiert wurden, sind an Positionen kartierter Marker angegeben, die physikalisch eng benachbart sind. Marker mi233 und 11177 zeigten keine Hybridisierung in *C. rubella* (Abb. 3.2).

Marker	Anzahl der ausge- werteten Indivi-	C. grandi- flora homozy- gote	Hetero- zygote Indivi- duen	<i>C. rubella</i> homozy- gote Individuen	χ^{2} - Test	Anzahl der C. grandiflo- ra-Allele	Anzahl der C. <i>rubella</i> - Allele	χ^{2} - Test
	duen	Individu-						
mi30	48	en 5	34	0	0.01	ΔΔ	52	0.41
mi50	40	7	32	9	0.06	46	50	0,41 0.68
mi122	50	7	33	10	0.06	47	53	0,00
mi122	49	10	29	10	0.44	49	49	1.00
mi232	49	11	28	10	0.59	50	48	0.84
mi306	50	7	35	8	0.02	49	51	0.84
mi330a	50	10	31	9	0.23	51	49	0.84
mi330b	50	14	25	11	0.84	53	47	0.55
mi369	50	11	30	9	0.34	52	48	0.69
mi390	47	9	24	14	0.58	42	52	0.30
mi431	50	11	28	11	0.70	50	50	1.00
m211A	47	13	31	3	0.01	57	37	0.04
m235A	47	10	29	8	0,25	49	45	0,68
m249A	47	13	24	10	0,82	50	44	0,54
m254A	47	13	26	8	0,45	52	42	0,30
m315Ba	50	14	26	10	0,70	54	46	0,42
m315Bb	49	7	32	10	0,08	46	52	0,54
m326B	47	4	34	9	0,01	42	52	0,30
m448A	49	8	33	8	0,05	49	49	1,00
m457A	48	17	24	7	0,12	58	38	0,04
m518A	45	14	24	7	0,30	52	38	0,14
m557A	47	9	28	10	0,41	46	48	0,84
3486a	45	11	24	10	0,88	46	44	0,83
3486b	50	18	23	9	0,17	59	41	0,07
5149	44	10	24	10	0,83	44	44	1,00
ATTS0636	50	5	35	10	0,01	45	55	0,32
ATTS2212a	50	12	28	10	0,64	52	48	0,69
ATTS2212b	46	13	26	7	0,31	52	40	0,21
ATTS2243	50	9	32	9	0,14	50	50	1,00
ATTS3374a	50	12	29	9	0,44	53	47	0,55
ATTS3374b	49	9	26	14	0,55	44	54	0,31
5760	45	7	30	8	0,08	44	46	0,83
cDNA J	50	9	33	8	0,08	51	49	0,84
21484	50	17	25	8	0,20	59	41	0,07
17698	50	11	27	12	0,84	49	51	0,84

Tabelle 3.6: Die Segregationsdaten und die Werte der χ^2 -Analyse der *Capsella*-Kartierungspopulation sind für alle zur vergleichenden Kartierung eingesetzten Marker aufgeführt (siehe Anhang). Der Signifikanzwert für die χ^2 -Analyse liegt bei 0,05. Die Anzahl der Individuen, die für die jeweiligen Marker ausgewertet wurden, die Zahl der homozygoten und heterozygoten Pflanzen für die Allele von *C. grandiflora* und *C. rubella* und die beobachtete Allelverteilung sind aufgeführt.

3.2 Vergleichende Mikrosyntenieanalyse in Arabidopsis thaliana und Capsella rubella

Die Genomkolinearität zwischen A. *thaliana* und C. *rubella* wurde in diesem Teil der Arbeit auf molekularer Ebene untersucht. Für die Analyse wurde ein 200 Kbp großer Bereich zwischen den genetischen Markern m226 (57,0 cM) und g4539 (57,6 cM) auf dem langen Arm von A. *thaliana* Chromosom IV ausgesucht (Lister und Dean, 1993; http://nasc.nott.ac.uk/new_ri_map.html).

3.2.1 Identifizierung kodierender Sequenzen in der 200 Kbp-Region von Arabidopsis thaliana

Zur Identifizierung kodierender Sequenzen in diesem 200 Kbp-Bereich wurden zuerst Fragmente aus A. thaliana Cosmid-Klonen (Bancroft et al., 1997), die diese Region repräsentieren, als Sonden für Hybridisierungen einer PRL2 cDNA-Bibliothek von A. thaliana (Newman et al., 1994) verwendet (Schmidt et al., 1999). Elf cDNA-Klone, die verschiedene Gene repräsentieren, wurden isoliert (cDNA A-K) (Abbildung 3.6). Die Klone, welche jeweils die längste cDNA-Insertion besaßen, wurden für die Sequenzanalyse eingesetzt (Sequenzen siehe Anhang). Der Vergleich der ermittelten cDNA-Sequenzen mit der genomischen A. thaliana-Sequenz (Bevan et al., 1998; Z97341, Z97342) zeigte, daß zehn cDNA-Klone mit Ausnahme von cDNA I eine Sequenzidentität zwischen 97-100% im Vergleich zur genomischen A. thaliana-Sequenz haben. Durch einen weiteren Vergleich der ermittelten cDNA-Sequenzen mit den Sequenzen in der A. thaliana-Datenbank konnte gezeigt werden, daß in drei Fällen Sequenzhomologien zu bekannten Genen vorliegen. cDNA B kodiert für eine Acyl-CoA-Oxidase (ACX1, AF057044) und cDNA D entspricht dem ATHB-2/HAT-4-Gen von Arabidopsis thaliana (Carabelli et al., 1993; X68145; Schena et al., 1993; M90394). Für cDNA I wurde eine hohe Sequenzhomologie zum RPP5-Resistenzgen (U97106) aus Landsberg erecta festgestellt (Parker et al., 1997).

Durch einen Vergleich der genomischen A. *thaliana*-Sequenz in dem untersuchten 200 Kbp-Bereich mit den EST-Sequenzdaten (Höfte *et al.*, 1993; Newman *et al.*, 1994) wurden ESTs gefunden, die Sequenzhomologien von 90% oder mehr zur genomischen Sequenz haben. Acht EST-Klone, die nicht homolog zu den bereits ausgewählten elf cDNA-Klonen waren, wurden zur Sequenzanalyse ausgesucht (EST 1-8) (Abbildung 3.6; Tabelle 3.7). Die Analyse der ermittelten Sequenzen zeigte für die acht EST-Klone eine Sequenzidentität zwischen 97-100% zur genomischen A. *thaliana*-Sequenz (Sequenzen siehe Anhang).

Sequenzen für die Mikrosyntenie-Analysen ausgesucht werden (Höfte et al., 1993; Newman et al., 1994). Alle 19 NOR : Nucleolus organisierende Region identifizierten cDNA-Klone wurden für die weiteren Analysen sequenziert (Sequenzen im Anhang) Klone (1-8) konnten durch Vergleich der genomischen A. thaliana Sequenz mit bekannten Arabidopsis EST-Die Region ist in der Abbildung in Form eines Kästchens mit grüner Umrandung gezeichnet. Weitere acht cDNAlokalisiert ist. Elf cDNA-Klone (A-K) wurden durch Hybridisierung einer PRL2 A. thaliana cDNA-Bibliothek Abbildung 3.6: Gezeigt ist die 200 Kbp-Region, die auf dem langen Arm von Arabidopsis thaliana Chromosom IV (Newman et al., 1994) identifiziert (Schmidt et al., 1999). Mehrere Bereiche zeigen Sequenzhomologien zu cDNA I

Auch hier wurden in der Datenbank für einen EST hohe Homologien zu bereits bekannten Genen gefunden. EST 4 zeigt Homologien zum ribosomalen Protein L15 aus *Petunia hybrida* (AF088912).

Gen	EST-Bezeichnung in der	Akzessionsnummern der
	Datenbank	EST-Sequenzen
EST 1	13004	R30399
EST 2	26868	AA395085
	5760	T42497
EST 3	ATTS1135 (VBVYE05)	Z25670
EST 4	ATTS1638 (VCVCB12)	Z26547
	25012	AA042756
EST 5	28424	AA585775
	4442	T22434
EST 6	12918	R30313
	34356	AI099630
EST 7	4420	T22412
EST 8	11177	T76399

 Tabelle 3.7: Die acht EST-Klone sind mit den jeweiligen Akzessionsnummern und der Klonbezeichnung aus der A. thaliana-Datenbank gezeigt.

3.2.1.1 Identifizierung der homologen Cosmid-Klone im *Capsella rubella*-Genom

Zur Identifizierung von *Capsella rubella* Cosmid-Klonen, welche die homologen Sequenzen zu den 19 cDNA-Sequenzen aus *A. thaliana* besitzen, wurden die cDNA-Klone (cDNA A-K, EST 1-8; Abbildung 3.6) als Sonden in Koloniehybridisierungen mit der *Capsella rubella*-Cosmidbibliothek eingesetzt (Schmidt *et al.*, 1999). In Abbildung 3.7 ist exemplarisch das Ergebnis einer Koloniehybridisierung mit cDNA B als Sonde gezeigt.

Für 17 der 19 cDNA-Sequenzen wurden *C. rubella* Cosmid-Klone identifiziert, die Sequenzhomologie zu den eingesetzten Sonden zeigten. Dies konnte durch Southern-Blot-Analysen bestätigt werden. Das Ergebnis weist auf einen hohen Konservierungsgrad des Genrepertoires der beiden Pflanzen *A. thaliana* und *C. rubella* hin. Für EST 8 (11177) wurde bereits in genetischen Kartierungsexperimenten gezeigt, daß das entsprechende Gen in *C. rubella* nicht vorliegt (Abbildung 3.2). Weitere Hybridisierungsexperimente mit Gesamt-DNA von *C. rubella* und *A. thaliana* und cDNA K als Sonde zeigten, daß auch dieses Gen in *C. rubella* fehlt (Abbildung 3.8). Beide cDNAs hybridisieren mit Gesamt-DNA von *A. thaliana*, jedoch nicht mit *C. rubella*-DNA. Während cDNA K in beiden DNA-Spaltungen von *A. thaliana* mit drei DNA-Fragmenten hybridisiert, zeigt EST 8 ein repetitives Hybridisierungsmuster mit *A. thaliana*-DNA (Abbildung 3.2).

Abbildung 3.7: Das Ergebnis einer Koloniehybridisierung mit der genomischen *Capsella rubella* Cosmid-Bibliothek ist gezeigt. Die Membran hat die Klone der Mikrotiterplatten 31 und 32 der *Taq*I-Klonierung gebunden. Gen B wurde als radioaktiv markierte Sonde eingesetzt. Da jeder Cosmidklon bei der Herstellung der Koloniemembranen doppelt gestempelt wurde, hybridisieren zwei Kolonien mit der verwendeten Sonde, diese entsprechen dem Klon mit den Koordinaten B23 der Mikrotiterplatte 32. Dieser Klon wurde in den späteren Analysen als Cosmid 44 bezeichnet.

Abbildung 3.8: Das Hybridisierungsergebnis von cDNA K mit Gesamt-DNA von A. *thaliana* und C. *rubella* ist gezeigt. Die Gesamt-DNA in den ersten beiden Spuren wurde mit DraI gespalten und in den letzten beiden Spuren mit EcoRI/HindIII. Während die Sonde in A. *thaliana* mit mehreren DNA-Fragmenten hybridisiert, ist kein Hybridisierungssignal ähnlicher Stärke für C. *rubella*-DNA zu sehen. Bei dem ca. 6 Kbp großen EcoRI/HindIII C. *rubella* DNA-Fragment handelt es sich um Kreuzhybridisierung. Am linken Bildrand ist zur Orientierung der Längenstandard angegeben.

EST 8 korrespondiert zur LTR-Region (*long terminal repeat*) eines Retrotransposonähnlichen Elementes in *A. thaliana* (http://websvr.mips.biochem.mpg.de/proj/thal/). In der Regel liegt zwischen verschiedenen Spezies kein hoher Konservierungsgrad für repetitive Elemente vor. Dies steht in Übereinstimmung mit dem hier gezeigten Fehlen der EST 8-Sequenz in *Capsella rubella*.

Viele der identifizierten *C. rubella*-Cosmide hybridisieren mit mehreren (2 bis 4) cDNAs. Für Cosmid-Klon 3-II konnten sogar Homologien zu fünf verschiedenen cDNAs (cDNAs G-I) festgestellt werden (Tabelle 3.8; Abbildung 3.9).

Für cDNA E konnte eine große Anzahl von *C. rubella*-Cosmiden identifiziert werden, die nur mit diesem cDNA-Klon hybridisierende DNA-Fragmente besaßen, jedoch keine Homologien mit den unmittelbar benachbart lokalisierten cDNAs aufwiesen. Lediglich für die Cosmide 3-I, 5, 17, 54-I, 98 und 110 konnten Hybridisierungen zu cDNA D, die in *A. thaliana* in enger Nachbarschaft zu Gen E vorliegt, festgestellt werden. Die Cosmide 17, 54-1, 98 und 110 korrespondierten außerdem noch mit Gen F (Tabelle 3.8; Abbildung 3.9). Die anderen Cosmide, die mit cDNA E in *C. rubella* identifiziert wurden, repräsentieren offensichtlich nicht die orthologe Region zu dem untersuchten *A. thaliana*-Bereich.

Die identifizierten *C. rubella* Cosmid-Klone konnten mit Hilfe der ermittelten Southern-Blot Daten zueinander angeordnet und zu zwei Bereichen ("Contigs = *contiguous regions*") zusammengefaßt werden (Tabelle 3.8; Abbildung 3.9).

cDNA/FST	Cosmide die mit den entsprechenden
CDIVALDI	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
	cDNAs und ESTs aus A. thaliana
	hybridisieren
1	2, 6, 7-I, 18, 34
2	2, 6, 7-I, 14-I, 18, 34
А	2, 6, 7-I, 14-I, 18, 34
3	14-I, 34
4	12
В	7-II, 44,
5	7-II, 44, 47, 3-I, 5, 49-I
С	7-II, 44, 47, 3-I, 5, 49-I
D	3-I, 5, 49-I, 17, 54-I, 98, 110
E	3-I, 5, 49-I, 17, 54-I, 98, 110
F	17, 54-I, 98, 110
G	49-II, 3-II
6	49-II, 3-II
Н	49-II, 3-II, 7-III, 15, 54-II, 63
7	3-II, 7-III, 15, 54-II, 63
Ι	3-II, 7-III, 15, 54-II, 63
J	7-III, 15, 25, 54-II, 63

Tabelle 3.8: Die Southern-Blot-Hybridisierungsergebnisse der identifizierten *C. rubella* Cosmid-Klone mit den 17 *A. thaliana* cDNAs (A-J, 1-7) sind zusammengefaßt.

Identifizierung der homologen Capsella rubella Cosmid-Klone eingesetzt. Die C. rubella Cosmide sind als horizontale Linien dargestellt. Die Cosmide sind in zwei Cosmid-Contigs zusammengefaßt. Durch Pfeile sind Gene Abbildung 3.9: In der unteren Bildhälfte ist die 200 Kbp Arabidopsis thaliana Region gezeigt. Die Lage der cDNAs Aund 1-7 in C. rubella wurde in Form von vertikalen Balken gezeichnet. Im Fall von cDNA I wurden die multiplen Kopien mit Hilfe eines Rechtecks dargestellt. Die Arabidopsis thaliana cDNA-Klone wurden als Sonden zur gekennzeichnet, deren Reihenfolge in Capsella rubella nicht eindeutig bestimmt werden konnte. In rot gezeichnete Cosmide wurden für die Subklonierungs- und Sequenzierungsexperimente eingesetzt. Die genaue Position der Cosmid-Enden sowie die genaue Größe der Cosmide wurde nicht ermittelt, daher wurden die Cosmide in dieser Abbildung nicht maßstabsgerecht gezeichnet. In roten Kästchen mit schwarzer Schrift wurden cDNAs angegeben, die mit den jeweiligen C. rubella-Cosmiden hybridisierende DNA-Fragmente zeigten. Für einige Gene war es möglich, durch Zusammenstellung der Ergebnisse aller Hybridisierungsexperimente die Reihenfolge der Gene in *C. rubella* zu ermitteln. Gene, deren Reihenfolge in *C. rubella* nicht eindeutig bestimmt werden konnte, sind in Abbildung 3.9 durch Pfeile markiert. Diese Analyse zeigte, daß die Gene in *Arabidopsis thaliana* und *Capsella rubella* in sehr ähnlicher Reihenfolge angeordnet sind.

Exemplarisch sind die Southern-Blot Ergebnisse für die drei *A. thaliana*-cDNAs A, D und J in Abbildung 3.10 gezeigt. cDNA D hybridisiert mit DNA-Fragmenten der Cosmide 3-I, 5, 49-I, 17, 54-I, 98 und 110, wobei bei den Cosmiden 5, 17, 54-I, 98 und 110 ein ca. 4 Kbp großes DNA-Fragment mit Gen D hybridisiert. In den Cosmiden 3-I und 49-I hybridisieren DNA-Fragmente >20 Kbp. Hier wurde die *C. rubella* DNA, welche mit cDNA D hybridisiert, in der verwendeten *Hin*dIII-Spaltung nicht vom Cosmidvektor abgespalten.

Für die Erstellung der zwei Cosmid-Contigs wurden auch "Chromosom-walking"-Experimente durchgeführt. Hiermit wurden die Ergebnisse der Southern-Blot-Analysen mit den cDNA-Klonen als Sonden bestätigt und zusätzlich weitere Cosmid-Klone identifiziert. Durch Einsatz von Subklonen aus den Cosmiden 12 und 34 konnte in Southern-Blot-Experimenten bestätigt werden, daß diese Cosmide teilweise überlappen (Daten nicht gezeigt). Diese Analyse war erforderlich, da keines der identifizierten Cosmide sowohl mit EST 3 als auch EST 4 hybridisiert (Abbildung 3.9).

In der Koloniehybridisierung der genomischen *C. rubella*-Bibliothek mit den verwendeten cDNA-Klonen als Sonden konnte kein Cosmid, welches sowohl mit cDNA F als auch cDNA G hybridisiert, identifiziert werden. Durch Verwendung von Subklonen aus den Cosmiden 98 und 3-II wurde in einer weiteren Koloniehybridisierung der *C. rubella*-Bibliothek Cosmid 14-II identifiziert. Mit Hilfe von Southern-Blot-Experimenten wurde bestätigt, daß Cosmid 14-II weder mit Gen F noch mit Gen G hybridisiert. In diesem Cosmid-Klon ist also ausschließlich der intergenische Bereich zwischen Gen F und G vertreten. Zur Bestätigung, daß Cosmid 14-II überlappende Bereiche mit den Cosmiden 98 und 3-II hat, wurden Cosmid 14-II und weitere Cosmide, die in der Region vorliegen, mit Sonden aus den Cosmiden 98 und 3-II hybridisiert. In Abbildung 3.11 ist schematisch die Lage der verwendeten Subklone gezeigt.

In Abbildung 3.12 sind die Ergebnisse dieser Analyse dargestellt. Sonde 98-1 hybridisiert mit einem 2 Kbp-Fragment in Cosmid 14-II und in Cosmid 98 mit einem DNA-Fragment >20Kbp. Hier wurde der DNA-Abschnitt, der mit der Sonde hybridisiert, mit der verwendeten *Hin*dIII-Restriktionsspaltung vom ca. 20 Kbp großen Cosmidvektor nicht abgespalten (Abbildung 3.12A). Mit Sonde 3-3 hybridisieren die Cosmide 14-II, 49-II und 3-II (Abbildung 3.12B). Auch hier hybridisiert die Sonde in den Cosmiden 14-II und 3-II zu DNA-Abschnitten, die vom Cosmidvektor nicht abgespalten wurden. Bei dem markierten DNA-Fragment in Cosmid 98 handelt es sich um eine unspezifische Kreuzhybridisierung mit der verwendeten Sonde.

Abbildung 3.10: Die Ergebnise von Southern-Blot-Analysen mit Cosmid-DNAs sind gezeigt. In den Hybridisierungsexperimenten wurden die Sonden cDNA A (A), cDNA D (**B**) und cDNA J (**C**), die in der 200 Kbp A. thaliana Region liegen, eingesetzt. Die Cosmid-DNA wurde mit dem Restriktionsenzym HindIII gespalten und nach der gelelektrophoretischen Auftrennung auf Membranen transferiert. Die Gene hybridisieren je nach Lage der Gene auf den Cosmiden zu verschiedenen DNA-Fragmenten. Am linken Bildrand sind die Fragmentgrößen des benutzten DNA-Größenstandards gezeigt.

Abbildung 3.11: Schematische Darstellung der Lage der Subklone 3-3, 3-6, 98-1 und 98-6 in den Cosmiden 3-II und 98.

In Abbildung 3.12C und 3.12D sind die Ergebnisse der Hybridisierungen mit den Sonden 98-6 und 3-6 gezeigt. Beide Subklone zeigen kein Hybridisierungssignal mit Cosmid 14-II. Probe 98-6 hybridisiert mit den Cosmiden 3-I, 54-I und 98 und repräsentiert den Cosmidbereich von 98, welcher in der Nähe von cDNA D liegt (Abbildung 3.12C). Sonde 3-3 hybridisiert nur mit Cosmid 3-II (Abbildung 3.12D).

In der Region zwischen Genen 4 und B konnten durch den Einsatz von Subklonen aus den Cosmiden 12 und 7 in der verwendeten genomischen *C. rubella*-Bibliothek keine Cosmid-Klone identifiziert werden, die sowohl mit Cosmid 12 aus Contig A als auch Cosmid 7 aus der Contig B-Region hybridisieren (Abbildung 3.9; Analyse siehe unten).

3.2.1.2 Sequenzierung der beiden Capsella rubella Cosmid-"Contigs"

Für die Syntenie-Analyse von A. *thaliana* und C. *rubella* auf Sequenzebene wurden Cosmide aus beiden C. *rubella* Contigs subkloniert und anschließend sequenziert.

Die Cosmide 12 und 34 aus Cosmid-Contig A bzw. Cosmide 7-II, 44, 3-I, 54-I, 98, 14-II, 3-II, 54-II aus Contig B (Abbildung 3.9) wurden hierfür mit geeigneten Restriktionsenzymen gespalten und in den Plasmidvektor pGEM7Z (Promega) kloniert (Tabelle 3.9).

Durch Hybridisierungen mit cDNAs als Sonden wurde festgestellt, welche Subklone kodierende Sequenzen tragen. Cosmid-DNAs wurden ebenfalls als Sonden eingesetzt, um auch diejenigen Subklone zu identifizieren, die den intergenischen Bereichen entsprechen.

Abbildung 3.12: Die Ergebnisse d e r Experimente in denen Cosmide, die in Nachbarschaft von Cosmid 14-II lokalisiert sind, mit Subklonen aus Cosmid 98 und 3-II hybridisiert wurden, sind abgebildet. Bild A: Sonde 98-1, Bild **B**: Sonde 3-3, Bild C: Sonde 98-6 und Bild D: Sonde 3-6. Die Cosmide wurden mit HindIII gespalten und nach der gelelektrophoretischen Auftrennung auf Membranen transferiert.

Zur Subklonierung eingesetzte Cosmid-	Zur Subklonierung der Cosmide verwendete
Klone	Restriktionsenzyme
12	EcoRI (E)
	SacI (Š)
	EcoRI/Xhol (EX)
34	EcoRI(E)
	SacI (S)
	HindIII (H)
7-II	EcoRV(V)
	HindIII (H)
	SacI/XhoI (SX)
44	EcoRI (E)
	HindIII (H)
	EcoRI/Sacl (ÉS)
3-I	EcoRI (E)
	HindIII (H)
	EcoRI/XbaI/XhoI (EXX)
54-I	EcoRI (E)
	EcoRI/XbaI/XhoI (EXX)
98	HindIII (H)
	HindIII/XhoI (HX)
	EcoRI/XhoI (EX)
14-II	EcoRI (E)
	HindIII/XhoI (HX)
3-II	EcoRI (E)
	SacI (S)
	EcoRI/XbaI/XhoI (EXX)
54-II	EcoRI (E)
	HindIII (H)
	SacI (S)
	EcoRI/XbaI/XhoI (EXX)
	EcoRI/XhoI (EX)

Tabelle 3.9: Die Cosmidklone aus den Contigs A und B sind mit den entsprechenden Restriktionsenzymen aufgelistet, die für die Subklonierung der Cosmide verwendet wurden. In Klammern sind die Abkürzungen der Restriktionsenzyme angegeben, die für die Bezeichnung der entsprechenden Subklone verwendet wurden. Bei Verwendung eines Restriktionsenzyms für die Spaltung der Cosmid-DNA wurden die DNA-Fragmente in die entsprechende Restriktionsenzymen gleichzeitig behandelt, wurden die DNA-Fragmente nach Auffüllen der überhängenden Fragment-Enden in die *Sma*I-Schnittstelle des Vektors kloniert. Eine Liste aller sequenzierten Subklone ist im Anhang zu finden.

Alle unterschiedlichen Subklone eines Cosmids wurden zunächst mit den Oligonukleotiden "Universe" und "Reverse" sequenziert (2.3). Bei Subklonen mit größeren Insertionen von genomischer *C. rubella*-DNA (>1 Kbp) wurden für die weiteren Sequenzierungen geeignete Oligonukleotidsequenzen aus den erhaltenen Sequenzierungsdaten ausgewählt.

Bei der Zusammenstellung der Einzelsequenzdaten für die jeweiligen Subklone wurde festgestellt, daß mit den verwendeten Restriktionsenzym-Kombinationen in einigen Bereichen der Cosmide keine überlappenden Sequenzen zwischen den einzelnen Subklonen eines Cosmids erhalten wurde. In diesen Fällen wurde die fehlende Sequenz zwischen den benachbarten Subklonen mittels PCR amplifiziert und anschließend sequenziert (siehe Anhang).

In Abbildung 3.13 ist exemplarisch die Contig A-Region, im folgenden mit Contig 0 bezeichnet, mit den jeweiligen Positionen der sequenzierten Subklone und der verwendeten PCR-Produkte angegeben. In Abbildung 3.14 ist das Ergebnis der Sequenzierung der *C. rubella* Cosmide zusammengefaßt.

Aufgrund der Ergebnisse der Hybridisierungsexperimente mit den Sonden G, 6, H, 7, I und J wurden die Cosmide 49-II, 3-II, 7-III, 15, 54-II, 63 und 25 zu einem Contig zusammengefaßt (Abbildung 3.9). Wie in Abbildung 3.14 gezeigt wird, sind in der Regel die überlappenden Regionen benachbarter Cosmide groß. Eine Ausnahme in dieser Hinsicht stellt der Sequenzbereich dar, der sowohl von Cosmid 3-II als auch 54-II abgedeckt wird. Hier beträgt der überlappende Bereich lediglich 29 Bp. Durch PCR-Analysen auf den *C. rubella* Cosmidklonen 7-III und 25, die ebenfalls diese Region umfassen (Abbildung 3.9), konnte jedoch nicht sichergestellt werden, daß der gesamte Sequenzbereich durch die Cosmide 3-II und 54-II repräsentiert ist. Daher wurden nur die Sequenzen der Cosmide 7-I, 44, 3-I, 54-I, 98, 14-II und 3-II in Contig I zusammengefaßt, während Cosmid 54-II Contig II repräsentiert (Abbildung 3.14).

Die ermittelten genomischen *C. rubella* Sequenzen betragen für Contig 0 36190 Bp, für Contig I 86006 Bp und für Contig II 22005 Bp. Für die Cosmide 44, 54–I, 98 und 14-II wurden lediglich Teile der genomischen Insertion ermittelt. Insgesamt wurden in *Capsella rubella* ca. 144 Kbp sequenziert, die einem Großteil der 200 Kbp großen Region in *Arabidopsis thaliana* entsprechen.

3.2.1.3 Analyse der Sequenzierungsdaten

3.2.1.3.1 Analyse der Region zwischen den Contigs 0 und I

Mit genetischen Kartierungsexperimenten konnte gezeigt werden, daß die beiden Contigs 0 und II eng gekoppelt in *Capsella* vorliegen. In 45 Individuen der Kartierungspopulation zeigen EST 2 (5760) und cDNA J Kosegregation (Abbildung 3.5). Das heißt, daß die Loci maximal 1,1 cM voneinander entfernt liegen.

Mit Hilfe von "Chromosome-walking"-Experimenten konnten für die Region zwischen den Contigs 0 und I keine Cosmid-Klone identifiziert werden, die die zwei Contigs miteinander verbinden bzw. die Contigs vergrößern (Abbildung 3.9).

abgedeckt. In der unteren Bildhälfte sind die PCR-Produkte gezeigt, die zur Sequenzierung eingesetzt wurden. Die PCR-Produkte wurden mit den und aus welchem Cosmid die Subklone stammen. Diese Bereiche der genomischen Sequenz waren nur teilweise durch die vorliegenden Subklone aus beiden Cosmiden dargestellt. Anhand der Subklonbezeichnung ist erkennbar, welche Restriktionsenzyme für die Subklonierung verwendet wurden eingezeichnet, die die genomischen Fragmentenden der Cosmide anzeigen. In der oberen Bildhälfte sind die zur Sequenzierung eingesetzten Subklone Namen der Oligonukleotide gekennzeichnet. Die getrichelt abgebildeten Subklone 34S1P, 34H8 und 12EX17 sind chimär.

Zur Bestätigung dieser Ergebnisse wurden der Subklon 12E3P aus Cosmid 12 (Abbildung 3.13) und Subklon 7SX10 aus Cosmid 7 für Hybridisierungen mit Cosmiden aus den Contigs 0 und I eingesetzt. Die Lage der Subklone auf den Cosmiden ist in Abbildung 3.15 dargestellt. Die Subklone hybridisieren nur mit dem Cosmid, aus dem sie stammen (Daten für Subklon 7SX10 nicht gezeigt; Abbildung 3.16). In Cosmid 12 hybridisieren ca. 4 Kbp, 2 Kbp und 1,6 Kbp große DNA-Fragmente mit dem Subklon 12E3P. Aus der Sequenz des Cosmids 12 kann abgeleitet werden, daß auch ein 117 Bp Fragment mit der Sonde nachgewiesen werden sollte (Abbildung 3.15), welches in dem durchgeführten Southern-Blot Experiment jedoch nicht zu erkennen war. Keines der anderen Cosmide aus dem Contig 0- bzw. Contig I-Bereich zeigt eine Hybridisierung mit dem Subklon. Diese Ergebnisse belegen ebenso wie Sequenzvergleiche, daß die beiden Cosmid-Contigs 0 und I keine Überlappung zeigen.

Eine weitere Hybridisierungsanalyse wurde mit PCR-Produkt 288/289, das sich aus Cosmid 7 ableitet, und Subklon 12E3P aus Cosmid 12 durchgeführt. Es sollte ermittelt werden, ob es C. rubella DNA-Fragmente gibt, die sowohl mit dem Subklon aus Cosmid 12 als auch mit dem PCR-Produkt aus Cosmid 7 hybridisieren. C. rubella Gesamt-DNA wurde jeweils mit den Restriktionsenzymen EcoRI, EcoRV und HindIII gespalten und auf Membranen transferiert. Der Vergleich der in Abbildung 3.18 dargestellten Ergebnisse der Hybridisierungsexperimente zeigt, daß der Subklon und das PCR-Produkt in keinem Fall ein oder mehrere gleiche DNA-Fragmente detektieren. In Abbildung 3.17 sind die genaue Lage der Restriktionsschnittstellen für die drei verwendeten Restriktionsenzyme in der genomischen Sequenz der Contigs 0 und I, die Positionen des verwendeten Subklons sowie des PCR-Produkts und die Mindestgrößen der erwarteten DNA-Fragmente gezeigt. Die Sonden von Subklon 12E3P und PCR-Produkt 288/289 hybridisieren unter anderem mit C. rubella Restriktionsfragmenten, die sowohl Cosmidsequenzen als auch dem bisher nicht identifizierten Genom-Abschnitt zwischen Contig 0 und I entsprechen. Die Differenzen der bekannten Mindestgröße dieser Restriktionsfragmente und den tatsächlich ermittelten Fragmentgrößen geben Auskunft über die Position der Restriktionsschnittstellen für EcoRI, EcoRV und HindIII in der genomischen Sequenz von C. rubella, die bisher nicht ermittelt wurde. Aus diesen Ergebnissen kann abgeleitet werden, daß der Bereich zwischen Contig 0 und Contig I mindestens 5,5 Kbp umfaßt (Tabelle 3.10).

Durch Vergleich der A. *thaliana* genomischen Sequenz mit den Sequenzdaten für die cDNAs 4 und B (Abbildung 3.9) wurde ermittelt, daß der Bereich zwischen den beiden Genen in A. *thaliana* ca. 24,5 Kbp groß ist. In C. *rubella*-Contig 0 beträgt die Sequenzlänge von cDNA 4 bis zum Contig 0-Ende ca. 6 Kbp und in Contig I beträgt die Sequenzlänge bis zum Gen B ca. 14 Kbp (Tabelle 3.12). In C. *rubella* wurden somit bereits ca. 20 Kbp des intergenischen Bereichs zwischen den Genen 4 und B sequenziert.

Restriktionsstelle in der Region zwischen Contig 0 und I nicht bekannt ist, wurde die Mindestgröße angegeben. H: *Hin*dIII; RI: *Eco*RI; RV: *Eco*RV tion und Größe der erwarteten DNA-Fragmente ist im oberen Teil der Zeichnnung angegeben. Für Fragmente bei denen die

Abbildung 3.18: Die Hybridisierung von gespaltener *C. rubella* Gesamt-DNA mit Subklon 12E3P und einem PCR-Produkt aus Subklon 7SX10 ist abgebildet. Die Gesamt-DNA wurde mit den Restriktionsenzymen *Eco*RI, *Eco*RV und *Hin*dIII gespalten. In Bild **A** ist das Ergebnis der Hybridisierung gezeigt, in der die Membran mit dem Subklon 12E3P analysiert wurde. Bild **B** zeigt das Ergebnis mit der Sonde aus Subklon 7SX10 (288/289). Der Vergleich der Ergebnisse für die einzelnen Hybridisierungen zeigt, daß die beiden Sonden nicht mit DNA-Fragmenten gleicher Größe hybridisieren.

Da mindestens 5,5 Kbp zwischen den	Contigs 0 und I liegen, umfaßt der intergenische
Bereich zwischen den Genen 4 und B	in C. rubella mindestens 25,5 Kbp und ist dami
länger als in A. thaliana.	

	EcoRI		EcoRV		HindIII	
	erwartete Fragment- größen	detektierte Fragment- größen	erwartete Fragment- größen	detektierte Fragment- größen	erwartete Fragment- größen	detektierte Fragment- größen
12E3P	>4,9 Kbp	6,1 Kbp	>2,7 Kbp 2,8 Kbp 0,6 Kbp 0,4 Kbp	3,4 Kbp 2,8 Kbp	>1,6 Kbp 1,9 Kbp 4,1 Kbp 0,1 Kbp	2,5 Kbp 1,9 Kbp 4,1 Kbp
288/289	>2,6 Kbp	6,2 Kbp	>1,1 Kbp	4,2 Kbp	>5,4 Kbp	10 Kbp

Tabelle 3.10: Die Mindestgrößen der erwarteten DNA-Fragmente (Abbildung 3.17) und die im Hybridisierungsexperiment detektierten Banden (Abbildung 3.18) für die drei Spaltungen sind zusammengefaßt.

3.2.1.3.2 cDNAs K und 8 in der genomischen C. rubella-Sequenz

Kolonie- und Southern-Blot-Experimente hatten ergeben, daß in den identifizierten Cosmiden keine Homologen zu den cDNAs K und 8 gefunden wurde. Vergleiche der cDNA-Sequenzen K und 8 mit den ermittelten genomischen *C. rubella*-Sequenzen bestätigten, daß die homologen Sequenzen in den untersuchten *C. rubella*-Contigs nicht vorlagen.

3.2.1.4 Vergleich der genomischen Sequenzen von A. thaliana und C. rubella

Mit der Analyse auf Southern-Blot-Ebene konnte die Anordnung einiger Gene in *C. rubella* nicht genau ermittelt werden (Abbildung 3.9). In der weiteren Analyse wurden die ermittelten *C. rubella*-Sequenzen mit den Sequenzen der *A. thaliana*-cDNAs verglichen, um die genaue Anordnung der Gene auf den *C. rubella* Cosmid-Contigs zu bestimmen. Die Positionsangaben der Gene in der *A. thaliana*-Region sind bezogen auf einen Sequenzabschnitt, der sich aus Abschnitten der ATFCA6- (Z79742) und ATFCA7-Contigs (Z79743) zusammensetzt. Die Sequenzen von 140001-200952 des ATFCA6-Contigs und 1-140000 des ATFCA7-Contigs entsprechen dabei den Positionen 1-60952

bzw. 56292-196291 im hier verwendeten Contig. Zunächst wurden die ermittelten Sequenzen der verwendeten *A. thaliana* cDNA- und EST-Klone mit vorhergesagten Genen im ATFCA-Contig verglichen (http://websvr.mips.biochem.mpg.de/proj/thal/). Damit wurde festgestellt, inwieweit die Genvorhersagen mit den cDNA-Sequenzen für die untersuchten Gene übereinstimmten (Tabelle 3.11).

Für die weiteren Vergleiche mit *C. rubella*-Sequenzen wurden die cDNA-Klone benutzt, wenn die cDNA-Sequenz teilweise keine Übereinstimung zu den vorhergesagten Gensequenzen zeigten (2, A, 5, C, 6, H, 7, J). Die Genvorhersage At4g16830 und das offene Leseraster der cDNA-Sequenz G sind identisch, auch in diesem Fall wurde die cDNA-Sequenz für die Vergleiche benutzt. In den Fällen 3, 4, E und F wurde die Genvorhersage für die Vergleiche herangezogen, da diese cDNA-Klone nicht vollständig die 5'-kodierenden Sequenzen der Gene umfassen. cDNA 1 zeigt Übereinstimmung zur Sequenz der Genvorhersage, jedoch sind sowohl die Sequenz der Genvorhersage als auch die cDNA-Sequenz nicht vollständig. In diesem Fall wurde die cDNA-Sequenz weiterverwendet.

Ein Vergleich der ermittelten cDNA-Sequenzen mit den genomischen *A. thaliana* Sequenzen zeigte, daß 16 der 17 untersuchten cDNA-Klone Sequenzidentitäten zwischen 97-100% mit der genomischen Sequenz aufwiesen. Lediglich cDNA I zeigte geringere Sequenzidentitäten. Daher wurde die Sequenz von cDNA I für die Vergleiche nicht verwendet. Die stattdessen aus der Datenbank bezogene RPP5-Gensequenz stammt aus dem *A. thaliana* Ökotyp Landsberg *erecta* (U97106, Parker *et al.*, 1997). Auch für Gen D wurde eine Sequenz aus der Datenbank für die Vergleiche herangezogen (Athb-2, X68145), da der charakterisierte cDNA-Klon D einige Sequenz-Unterschiede zur genomischen *A. thaliana*-Sequenz aufweist.

cDNA	Exon-Sequenzen im vorhergesagten	Sequenz, die für die vergleichenden
	Gen und cDNA stimmen überein	Analysen verwendet wurde
1	+	cDNA 13004
2	-	cDNA 5760
A	-	cDNA A
3	+	At4g16690
4	+	At4g16720
В	-	ACX1-cDNA, AF057044
5	-	cDNA 4442
С	-	cDNA C
D	+	Athb-2-cDNA, X68145
E	+	At4g16790
F	+	At4g16800
G	+	cDNA G
6	-	cDNA 12918
Н	-	cDNA H
7	_	cDNA 4420
Ι	_	RPP5-cDNA, U97106
J	_	cDNA J, cDNA ATTS1159

Tabelle 3.11: Die Daten aus dem Vergleich der cDNA-Sequenzen mit den vorhergesagten Genen in der Datenbank (http://websvr.mips.biochem.mpg.de/proj/thal/) für die ATFCA-Region sind zusammengefaßt. In der zweiten Spalte der Tabelle wurde angegeben, welche Genvorhersage- und cDNA-Sequenzen in den Exonsequenzen übereinstimmen. In der dritten Spalte ist aufgeführt, welche Sequenzen für die Analyse der Exon-Intron-Strukturen in der *Capsella rubella*-Sequenz benutzt wurde (siehe Anhang).

Ein Vergleich einiger cDNA-Sequenzen mit der genomischer Sequenz von *A. thaliana* gab Hinweise auf mögliche Fehler in der genomischen Sequenz. Denn es wurden für die Gene B, 5 und C Verschiebungen im offenen Leseraster in der cDNA-Sequenz verglichen mit der genomischen Sequenz nachgewiesen. Durch die Sequenzierung von PCR-Produkten, die diesen Bereich des *A. thaliana* Genoms abdeckten, konnte bestätigt werden, daß in der Region von Bp 49400 bis Bp 60400 von ATFCA zahlreiche Sequenzfehler in der genomischen Sequenz vorlagen. In diesen Fällen wurden die PCRermittelten Daten für die Vergleiche herangezogen (M. Roßberg, unveröffentlicht; siehe *A. thaliana* Gen 5 und C im Anhang).

Bei den cDNA-Klonen A bzw. B handelt es sich um chimäre Klone. Die 119 Bp, die am 5'-Ende der cDNA B liegen, sowie eine 47 Bp lange Insertion in cDNA-Klon A zeigen keine Homologie zu *A. thaliana*-Sequenzen. Für cDNA B, die für Acyl-CoA-Oxidase (ACX1, AF057044) kodiert, wurde die cDNA-Sequenz von ACX1 aus der *A. thaliana*-Datenbank für die Sequenz-Vergleiche eingesetzt. Für cDNA A wurde aus der genomischen *A. thaliana*-Sequenz eine cDNA-Sequenz ohne den nicht-homologen 47 Bp-Bereich abgeleitet (siehe Anhang).

Weitere cDNA-Klone, für die einige Sequenzunterschiede zur genomischen *A. thaliana*-Sequenz ermittelt wurden, sind cDNA E, 6 und H. Außerdem lagen auch einige Unterschiede in cDNA 5 verglichen mit der PCR-ermittelten genomischen Sequenz vor (siehe oben). In diesen Fällen konnten die Unterschiede nicht auf fehlerhafte genomische oder cDNA-Sequenzen zurückgeführt werden. Daher wurde angenommen, daß in diesen Fällen eine fehlerhafte cDNA-Synthese stattgefunden haben mußte. Für cDNA E wurde die Genvorhersage weiterverwendet (siehe oben), während für die Gene 5, 6 und H cDNA-Sequenzen aus der genomischen *A. thaliana*-Sequenz abgeleitet wurden (siehe Anhang) und für die Vergleiche mit *Capsella rubella* verwendet wurden.

In Tabelle 3.11 sind die Ergebnisse für die Übereinstimmung der Genvorhersagen mit den cDNA-Sequenzen zusammengefaßt. Außerdem wurde in der Tabelle angegeben, mit welcher Sequenz weitergearbeitet wurde, um die Transkriptionsrichtungen und die Exon-Intron-Strukturen der Gene in *Capsella rubella* zu ermitteln. Die zur weiteren Analyse eingesetzten *A. thaliana*-Sequenzen und die ermittelten *Capsella rubella*-Gensequenzen sind im Anhang angegeben.

Die Anordnung der Gene und die Transkriptionsrichtung wurde in *C. rubella* und *A. thaliana* verglichen. Dabei wurden die Bereiche vom Start- bis zum Stop-Codon berücksichtigt. Die Ergebnisse sind in Tabelle 3.12 und Abbildung 3.19 gezeigt. Die Anordnung der 17 Gene in *C. rubella* ist identisch mit der Genreihenfolge in *A. thaliana*. Dies gilt ebenso für die Transkriptionsrichtungen. Von Gen 1 sind lediglich die letzten 136 Basenpaare in der Contig 0-Region vertreten. Gen C ist in *C. rubella* dupliziert und die beiden Kopien sind in Tandem organisiert. Gen 7 liegt ebenfalls in *Capsella rubella* in zwei Kopien vor, während *Arabidopsis thaliana* lediglich eine Kopie besitzt. RPP5-

homologe Sequenzen liegen im *A. thaliana* Ökotyp Columbia in einem Block aus zehn in Tandem organisierten Kopien vor (Bevan *et al.*, 1998). Auf den *C. rubella* Cosmid-Contigs I und II konnten lediglich zwei Teilsequenzen mit Homologie zu RPP5 nachgewiesen werden. Aus der Abbildung ist zu erkennen, daß die intergenischen Bereiche zwischen den Genen 3 und 4 sowie F und G in *C. rubella* verglichen mit *A. thaliana* vergrößert sind. Die restlichen intergenischen Bereiche zeigen eine ähnliche Größe wie in *A. thaliana*. Die Größe der Gene in dieser Region ist ebenfalls in beiden Arten konserviert.

Gen	Position auf	Position auf	Position auf	Position auf
	ATFCA-Contig	Contig 0	Contig I	Contig II
1	3958 ¹⁾ -5733	1-136		
2	9827-12071	4137-6158		
A*	11562-15369	5616-9491		
3	16906-17355	10701-11109		
4	24657-25816	28897-30203		
В	49431-53189		14084-17873	
5	54474-56348		19203-21206	
С	59069-61639		22266-24939	
			26000-28757	
D	73792-75105		38755-40183	
E	76248-77669		41510-42922	
F	79432-80810		45462-46866	
G	95122-96809		71596-73261	
6*	98895-100044		75486-76507	
H*	100644-104386		76960-80845	
7	105263-106141		81607-82485	6409-7149
Ι	107427-120201		84132-86006	999-3937
	120558-123427		(RPP5-cDNA	(RPP5-cDNA
	125007-129956		2323-3993)	1-2952)
	136508-141042			
	143674-150192			
	154065-154616			
	157650-162286			
	163511-168841			
	170844-175508			
	184656-186459			
8	133055-134100			liegt nicht vor
	136360-137406			
J	181588-182082			16469-17065
K	184656-189726			liegt nicht vor

Tabelle 3.12: Die ermittelten Positionen für die Gene in *A. thaliana* und *C. rubella* sind aufgeführt. Die Angaben wurden für die Erstellung der Abbildung 3.19 verwendet. Die Positionsangaben in der Tabelle beziehen sich auf die in dieser Arbeit zusammengefaßten Region von ATFCA6 und ATFCA7. Der Bereich von 140001-200952 des ATFCA6-Contigs (Z79742), und 1-140000 des ATFCA7-Contigs (Z79743) entsprechen den Positionen 1-60952 bzw. 56292-196291 im hier verwendeten Contig. Für die Positionsangaben wurde der Bereich der Gene zwischen Start- und Stop-Codons berücksichtigt. Die Gene, die kein längeres offenes Leseraster haben, sind in der Tabelle mit einem Stern (*) gekennzeichnet. Für Gen 1 ist die Position des Startcodons nicht bekannt (¹⁾). Die Kopien der RPP5-homologen Sequenzen in *A. thaliana* wurden der Datenbank entnommen (http://websvr.mips.biochem.mpg.de/proj/thal/).

der homologen Region in C. rubella ist gezeigt. Im oberen Teil der Abbildung ist die Region in A. thaliana mit den 19 Abbildung 3.19: Die ermittelten Positionen der Gene in der 200 Kbp-Region auf A. thaliana Chromosom IV bzw. in 56292-196291 im hier verwendeten Contig. Die Transkriptionsrichtung der Gene wurde mit Pfeilen angegeben. ATFCA6-Contigs (Z79742) und 1-140000 des ATFCA7-Contigs (Z79743) entsprechen den Positionen 1-60952 bzw dieser Arbeit zusammengefaßten Regionen von ATFCA6 und ATFCA7. Der Bereich von 140001-200952 des Genen A-K und 1-8, die in dieser Region lokalisiert sind, abgebildet. Die Positionsangaben beziehen sich auf die in

Ein Vergleich der cDNA-Sequenzen bzw. der vorhergesagten Sequenzen mit den genomischen *A. thaliana* und *C. rubella* Sequenzen wurde durchgeführt, um die Exon-Intron-Struktur der Gene zu bestimmen. Durch Sequenzuntersuchungen wurde für die Gene 2, 4, 5, B-G und J gezeigt, daß ein offenes Leseraster vorliegt. Für Vergleiche wurden lediglich die Bereiche vom Start- bis zum Stop-Codon berücksichtigt. Die Gene besitzen eine konservierte Exon-Intron-Struktur in *A. thaliana* und *C. rubella* (Abbildung 3.20A-F).

Im Fall von Gen 3 wurde ermittelt, daß der 5'-Bereich der Genvorhersage aus *A. thaliana* (At4g16690, Bp 1-440) mit der Sequenz des *C. rubella* Contigs keine Konservierung bezüglich der Exon-Intron-Struktur aufweist. Wird jedoch lediglich der Bereich 457-789 der Genvorhersage sowohl in *A. thaliana* als auch in *C. rubella* für die Genvorhersage benutzt, so kann in beiden Arten ein Gen mit einem Intron nachgewiesen werden (Abbildung 3.20AII).

Für Gen 7 wurde ein cDNA-Klon identifiziert, der nicht das vollständige offene Leseraster des Gens umfaßt. Auch in diesem Fall wurde ermittelt, daß die Genvorhersage (At4g16850) mit der Sequenz des *C. rubella*-Contigs keine Konservierung bezüglich der Exon-Intron-Struktur aufweist. Für Gen 7 liegen in *C. rubella* zwei Kopien vor (siehe Tabelle 3.12 und Abbildung 3.19). Ein Vergleich der genomischen *A. thaliana*-Sequenzen mit den *C. rubella*-Sequenzen ergab Hinweise, daß ein ca. 900 Bp großer Bereich im ATFCA-Contig hohe Homologien zu ähnlich großen Bereichen in den *Capsella*-Contigs I und II aufweist. Die weitere Analyse zeigte, daß auf diese Weise offene Leseraster in beiden Arten identifiziert werden konnten (Abbildung 3.20FI), dabei zeigen die letzten 431 Bp des für *A. thaliana* bestimmten offenen Leserasters vollständige Übereinstimmung mit der cDNA 4420 (siehe Anhang).

Die ermittelten Längen der offenen Leseraster sind für einige der Gene (3, 4, B, C und F) in *Arabidopsis thaliana* und *C. rubella* identisch. Eine der Kopien für Gen 7 (7-1) aus *C. rubella* weist ebenfalls eine identische Länge der Exonsequenzen verglichen mit dem *A. thaliana*-Gen auf, während die andere Kopie (7-2) kürzer ist. In den Genen 2, 5, D und J aus *C. rubella* liegt ein längeres offenes Leseraster als in *A. thaliana* vor, für die Gene E und G kann der umgekehrte Fall beobachtet werden. Bis auf die Gene 2, 3 und G ist die Gesamtlänge der Gene in *C. rubella* durch geringfügig längere Intronsequenzen größer als in *A. thaliana* (Tabelle 3.13).

Für die cDNAs A, 6 und H konnte kein offenes Leseraster identifiziert werden, welches den weitaus größten Teil der cDNA-Klone umfaßte. Die ermittelten cDNA-Sequenzen in *A. thaliana* weisen lediglich offene Leseraster auf, die sich über Teilbereiche der cDNA Sequenzen erstrecken und für Peptide bzw. Proteine mit einer Länge von bis zu 576 Aminosäuren kodieren. In diesen Fällen kann daher durch Sequenzanalysen allein nicht festgestellt werden, ob die cDNA-Sequenzen vollständigen Gensequenzen entsprechen.

transkribierten Genbereichen entsprechen, sind die Enden des ersten und letzten Exons gestrichelt dargestellt. In Stop-Codon außer für Gen A, 6 und H. Da in diesen Fällen nicht bekannt ist, ob die cDNA-Klone den gesamten rechts bzw. unter den Genstrukturen angezeigt. Die Angaben beziehen sich auf den Bereich zwischen Start- und Die jeweiligen Exon- und Intron-Größen sind angegeben, sowie die Gesamtlängen der Gene und Exons sind der Abbildung ist Arabidopsis thaliana mit At und Capsella rubella mit Cr abgekürzt.

Abbildung 3.20 D

Die Sequenzvergleiche ergaben, daß auch für diese cDNA-Sequenzen konservierte Bereiche in *C. rubella* identifiziert werden konnten. Aus der genomischen *C. rubella*-Sequenz konnten Exon- und Intronsequenzen abgeleitet werden, die darauf hinweisen, daß diese Gene ebenso wie Gene, die für lange offene Leseraster kodieren, die gleiche Anzahl von Exons in beiden Arten aufweisen sowie eine konservierte Struktur zeigen (Abbildung 3.20FIII, 3.20G).

Gen	Exongröße in A.	Exongröße in C .	Genlänge in A.	Genlänge in C.
	танана (Бр)	тирена (вр)	танана (Бр)	<i>тирена</i> (Бр)
2	1290	1329	2245	2022
A*	3461	3558	3808	3876
3	333	333	450	409
4	615	615	1160	1307
В	1995	1995	3760	3790
5	801	807	1875	2004
С	948	C1 - 948	2557	C1 - 2674
		C2 - 948		C2 - 2758
D	855	870	1314	1429
E	1422	1413	1422	1413
F	690	690	1379	1405
G	1068	1062	1688	1666
6*	872	841	1060	1022
H*	1737	1688	3743	3886
7	879	7-1 - 879	879	7-1 - 879
		7-2 - 741		7-2 - 741
J	495	597	495	597

Tabelle 3.13: Die Exongrößen und Gesamtlängen der Gene in Abbildung 3.20 ist tabellarisch zusammengefaßt gezeigt. Es ist jeweils der Bereich zwischen Start und Stop-Codon berücksichtigt. Die Gene, die eine konservierte Exon-Intron-Struktur jedoch kein offenes Leseraster haben, sind in der Tabelle mit einem Stern (*) gekennzeichnet.

C1 bzw. C2: Kopien von Gen C in C. rubella; 7-1 bzw. 7-2: Kopien von Gen 7 in C. rubella

Die Gene beider Arten wurden anschließend hinsichtlich der Sequenzidentität auf Nukleotidebene und auf Proteinebene untersucht. Für Sequenzidentitätsanalysen auf Nukleotidebene wurden nur die Exonsequenzen im Bereich zwischen Start- und Stop-Codon verglichen. Sie betragen auf Nukleotidebene >87,5% und auf Proteinebene >83,5% (Tabelle 3.14). Wurden die Intronsequenzen in die Sequenzvergleiche mit einbezogen, so ergaben sich geringere Sequenzidentitäten.

Ein weiterer Vergleich von Gen C in *A. thaliana* und *C. rubella* wurde auf der Aminosäuresequenz-Ebene durchgeführt. In beiden Genkopien von *C. rubella* liegen 20 synapomorphe Aminosäuren vor. Dagegen zeigen die *C. rubella*-Genkopie C1 bzw. die *C. rubella*-Genkopie C2 verglichen mit *A. thaliana*-Gen C lediglich 13 und 8 synapomorphe Aminosäuren in der Proteinsequenz. Dieser Unterschied in der Aminosäure-Zusammensetzung bedeutet, daß die Gen-Duplikation in *Capsella* nach der Trennung von *Arabidopsis* und *Capsella* stattgefunden haben muß (Abbildung 3.21).

Gen	Sequenzidentität auf	Sequenzidentität auf
	Nukleotidebene (%)	Proteinebene (%)
2	87,6	83,7
3	88,9	85,5
4	96,4	99,5
В	93,3	96,7
5	93,2	94,7
C (A. thaliana) - C1	91,2	89,8
C (A. thaliana) - C2	91,0	88,2
C1 - C2	93,6	91,7
D	92,7	96,5
Е	91,2	88,5
F	93,9	97,4
G	93,2	92,8
7 (A. thaliana) - 7-1	92,6	91,4
7 (A. thaliana) - 7-2	91,4	90,3
7-1 - 7-2	95,7	94,1
J	89,8	85,8

Tabelle 3.14: Die Werte für die Sequenzidentitäten zwischen den homologen Genen in A.*thaliana* und C. *rubella* ist für die Exon- und Protein-Sequenzen angegeben. Dabei wurdendie Bereiche von den Start bis zu den Stop-Codons berücksichtigt.C1 bzw. C2: Kopien von Gen C in C. *rubella*; 7-1 bzw. 7-2: Kopien von Gen 7 in C. *rubella*

Cr-Cl	MGTILKLPII	DLSSPEKLST	SSLIRQACLD	HGFFYLTNHG	VSEELMEGVL
At-C	MGTALKLPII	DLSSPEKLST	SRLIRQACLD	HGFFYLTNHG	VSEELMEGVL
Cr-C2	MGTVLKLPII	DLSSPEKIST	SRLIRQACLD	HGFFYLTNHG	VSEELMEGVL
Cr-Cl	MESKKLFSLP	LDEKMVMARR	GFRGYSPLYE	EKPHSSTLAK	GDSKEMFTFG
At-C	IESKKLFSLP	LDEKMVMARH	GFRGYSPLYD	EKLESSSTSI	GDSKEMFTFG
Cr-C2	MESKKLFSLP	LDEKMVMARR	GFRGYSPLYD	EKLDPSATSK	GDSKEIFTFG
Cr-C1	SSEGVLAQIY	PNEWPREELL	PLWRPTMECY	YKTVMDVGKK	LLGLVALALN
At-C	SSEGVL <mark>GQL</mark> Y	PNKWPLEELL	PLWRPTMECY	YKNVMDVGKK	LFGLVALALN
Cr-C2	SSEGVLAQIY	PNEWPLEELL	PLWRPTMECY	YKSVMDVGKK	LLGLVALALD
Cr-Cl	LEENFFEQVG	GFNAQAAVVR	LLRYPGELNS	SGEVTCGASA	HSDYGMITLL
At-C	LEENYFEQVG	AFNDQAAVVR	LLRYSGESNS	SGEETCGASA	HSDFGMITLL
Cr-C2	LEEKFFEQVE	GFNVQAAVVR	LLRYPGELNS	SGEVTCGASA	HSDYGMLTLL
Cr-Cl	ATDGVPGLQV	CRDKDKEPKV	WEDVAGVKGA	FVVNIGDLME	RWTNGLFRST
At-C	ATDGVAGLQV	CRDKDKEPKV	WEDVAGIKGT	FVVNIGDLME	RWTNGLFRST
Cr-C2	ATDGVPGLQV	CRDKDKEPRV	WEDVAGIKGA	FLVNIGDLME	RWTNGLFRST
Cr-Cl	MHRVVSVGKE	RYSVAVFVDP	DPNCVVECLE	SCCSETSPPR	FPPVRTKDYF
At-C	LHRVVSVGKE	RFSVAVFVDP	DPNCVVECLE	SCCSETSPPK	FPPVRARDYF
Cr-C2	MHRVVSVGKE	RYSVAVFFDP	DPNSVVECLE	SCCSETSPPR	FPPIRTRDYF
Cr-Cl At-C Cr-C2	HERFSQTLAS HERFSQTLAS HERFSQTFAS	YSGSG YSGSD YSGSG			

Abbildung 3.21: Gezeigt ist der Aminosäuresequenz-Vergleich für Gen C aus *A. thaliana* (At-C) mit den beiden Kopien von *C. rubella* (Cr-C1, Cr-C2). Positionen an denen Aminosäure-Unterschiede vorliegen, sind grau unterlegt.

3.2.2 Vergleichende Mikrosyntenieanalyse einer 30 Kbp-Region in *A. thaliana* und *C. rubella*

Eine weitere Region auf *A. thaliana* Chromosom I wurde für die Syntenieanalyse in den beiden Spezies *A. thaliana* und *C. rubella* ausgesucht. Es sollte festgestellt werden, ob und inwieweit die ermittelten Synteniedaten in der 200 Kbp Region auf *A. thaliana* Chromosom IV für weitere chromosomale Regionen zutreffen. Die ausgewählte Region liegt in *A. thaliana* auf BAC-Klon F20N2 (AC002328) in Nachbarschaft zum genetischen Marker nga280 (81.7 cM; http://nasc.nott.ac.uk/new_ri_map.html). Zur genetischen Kartierung in *C. rubella* wurde EST 21484 verwendet, welcher ca. 100 Kbp von nga280 entfernt lokalisiert ist (siehe 3.1).

3.2.2.1 Identifizierung kodierender Sequenzen

Durch Vergleich genomischer Chromosom I-Sequenzen von *A. thaliana* mit den zugänglichen EST-Sequenzdaten in der Datenbank konnten für diesen Genombereich drei EST-Klone (22916, 21484 und 5787) (Höfte *et al.*, 1993; Newman *et al.*, 1994) identifiziert werden. Die Sequenzidentitäten der drei ESTs betrugen 90% oder mehr, verglichen mit der genomischen *A. thaliana*-Sequenz. In Tabelle 3.15 sind diese ESTs mit den jeweiligen Akzessionsnummern aus der Datenbank und ihrer Lage auf dem jeweiligen BAC-Klon angegeben. Die ESTs sind alle auf BAC F20N2 zwischen Position 79956 und 101710 lokalisiert.

EST-Klon	Akzessionsnummer	Position auf BAC F20N2
22916	W43308	79956-83795
21484	N96681	99292 -101649
5787	T42524	101212-101710

Tabelle 3.15: Für die drei identifizierten EST-Klone sind die Akzessionsnummern in der Datenbank angegeben. Alle ESTs sind auf BAC-Klon F20N2 auf *A. thaliana* Chromosom I lokalisiert. Die Bereiche auf BAC F20N2, die den ermittelten cDNA-Sequenzen entsprechen, sind aufgeführt.

Die ESTs wurden sequenziert (Sequenzen siehe Anhang) und zur Identifizierung von Cosmiden in *C. rubella*, die homologe Sequenzen tragen, eingesetzt. Die ermittelten cDNA-Sequenzen zeigen Identitäten zwischen 98% und 100% zur genomischen *A. thaliana*-Sequenz. Außerdem konnte gezeigt werden, daß die ESTs 5787 und 21484 auf dem BAC-Klon F20N2 in der gleichen Region lokalisiert sind (Tabelle 3.15). Es handelt es sich bei diesen beiden ESTs um Klone, die verschiedene Abschnitte eines Gens repräsentieren.

3.2.2.2 Identifizierung der homologen Region in Capsella rubella

Die drei **ESTs** radioaktiv markierte DNA-Sonden wurden als in Koloniehybridisierungsexperimenten mit der genomischen Capsella rubella Cosmid-Bibliothek eingesetzt (Schmidt et al., 1999). Es wurden acht C. rubella Cosmid-Klone identifiziert (Abbildung 3.22 und 3.23). Southern-Blot-Analysen zeigten, daß auch in dieser Region des C. rubella-Genoms die identifizierten Cosmide mit einem oder mehreren Genen, die als Sonden eingesetzt wurden, hybridisierende DNA-Fragmente aufwiesen (Abbildung 3.22). Von acht identifizierten C. rubella-Cosmiden hybridisierten die Cosmide 7 und 10 sowohl mit EST 21484 als auch 22916. Wenn berücksichtigt wurde, daß die ESTs 5787 und 21484 cDNA-Klone eines Gens repräsentieren, hybridisieren die restlichen sechs Cosmide zu jeweils einem der als Sonde benutzten Gene in der betrachteten Region.

Die durchschnittliche Insertgröße der *C. rubella*-Cosmide beträgt 20-25 Kbp und der Abstand der ESTs 21484 und 22916, die zu DNA-Fragmenten in zwei verschiedenen *C. rubella*-Cosmiden (Cosmid 7 und 20) hybridisieren, beträgt in *A. thaliana* ca. 16 Kbp (Tabelle 3.15). Daher weisen die Southern-Blot Daten auch für diese Region in *C. rubella* auf eine ähnliche genomische Größe wie in *A. thaliana* hin. Die Cosmide wurden mit Hilfe der ermittelten Southern-Blot Daten zu einem Cosmid-Contig zusammengefaßt (Abbildung 3.23). Aus diesem Cosmid-Contig wurden die Cosmide 10 und 20 für die Sequenzanalysen ausgewählt. Beide Cosmide hybridisieren mit den ESTs 5787 und 21484, und Cosmid 10 hybridisiert zusätzlich mit EST 22916.

3.2.2.3 Subklonierung und Sequenzierung der Cosmide 10 und 20

Zur Subklonierung der Cosmide wurden Einzelspaltungen mit *Hin*dIII und Mehrfachspaltungen mit *Eco*RI/*Xba*I/*Xho*I eingesetzt. Die *Hin*dIII-DNA-Fragmente wurden in die entsprechende Schnittstelle im Plasmidvektor pGEM7Z kloniert und die DNA-Fragmente aus der Dreifachspaltung nach Auffüllreaktion der überhängenden Enden mit dem Klenow-Fragment der Polymerase I in die *Sma*I-Schnittstelle desselben Vektors. Die identifizierten Subklone wurden sequenziert und zur weiteren Analyse mit Hilfe des GCG-Programmpaketes bearbeitet.

Abbildung 3.22: Die Ergebnisse von Southern-Blot-Experimenten der acht identifizierten *C. rubella*-Cosmide aus der *C. rubella* Cosmid-Bibliothek mit Sonden der ESTs 5787, 21484 und 22916 sind gezeigt. Die *C. rubella*-Cosmide wurden mit *Hin*dIII gespalten. A: Sonde 22916; B: Sonde 21484 und C: Sonde 5787. Zur Orientierung sind links die Fragmentgrößen des DNA-Längenstandards angegeben.

3.2.2.4 Sequenzanalyse von Cosmid 10 und 20 aus Capsella rubella

Die Sequenzen der einzelnen Subklone wurden zu einer genomischen Gesamtsequenz von 27056 Bp zusammengefügt. In Abbildung 3.24 ist die Anordnung der einzelnen Subklone relativ zur ermittelten genomischen Sequenz der gesamten *C. rubella*-Region gezeigt. Sequenzbereiche, die durch Subklone nicht repräsentiert waren, wurden mit Hilfe von PCR-Experimenten amplifiziert. Im Fall von Cosmid 10 wurde die gesamte Sequenz der genomischen *C. rubella*-Insertion ermittelt. Die Insertgröße für diesen Cosmid-Klon beträgt ca. 22,5 Kbp. Im Fall von Cosmid 20 wurden ca. 9,8 Kbp der klonierten *C. rubella*-DNA sequenziert. Die sequenzierten Subklone sind im Anhang aufgelistet.

3.2.2.5 Vergleichende Sequenzanalyse in A. thaliana und C. rubella

Für die weiteren Mikrosyntenie-Analysen wurden sechs vorhergesagte Gene aus der annotierten Datenbanksequenz, im weiteren als TOM 1-6 bezeichnet, herangezogen. Zwei der Gene werden durch die verwendeten EST-Klone 5787, 21484 und 22916 repräsentiert. Bei den ESTs 5787 und 21484 handelt es sich um cDNAs des Gens TOM 2. EST 22916 zeigt Homologien zu Gen TOM 5. Allerdings konnte in diesem Fall gezeigt werden, daß die vorhergesagte Genstruktur falsch ist, da Teile der cDNA-Sequenz nicht den vorhergesagten Exons entsprechen. Die mit Hilfe der cDNA abgeleitete Genstruktur ist in Abbildung 3.26B(E) gezeigt. In Tabelle 3.16 sind die Positionen der vorhergesagten Gene auf der Teilsequenz von BAC F20N2 (34161 Bp) angegeben. Diese Teilsequenz wurde für die weiteren Analysen aus der Gesamtsequenz des BAC-Klons erstellt. Dabei entspricht Nukleotidposition 1 auf der Teilsequenz Position 75000 in der Gesamtsequenz von F20N2 und Position 34161 entsprechend 109160.

Gen	Position auf der Teilsequenz von F20N2	Sequenzidentitätsnummer des vorhergesagten Gens
TOM 1	30588-31925	25033
TOM 2	24275-26555	25032
TOM 3	19738-21982	25031
TOM 4	12657-16157	25030
Gen 22916	5041-8693	W43308
TOM 6	2384-4214	25028

Tabelle 3.16: Die fünf vorhergesagten Gene TOM 1-4, 6 und Gen 22916 in der untersuchten Region auf Chromosom I von *A. thaliana* wurden mit den entsprechenden Positionen auf der Teilsequenz von BAC F20N2 und der Sequenzidentitätsnummer angegeben. Dabei ist der Bereich vom Start- bis zum Stop-Codon berücksichtigt. Die Sequenzidentitätsnummern wurden aus der Datenbank bezogen (http://www.tigr.org/tdb/at/atgenome/atgenome.html).

Die aus der *A. thaliana*-Datenbank entnommenen Sequenzen von TOM 1-4 und 6 wurden für die anschließenden Analysen verwendet, wobei diese mit dem Start-Codon ATG beginnen und mit einem der drei Stop-Codons enden. Für die Analyse von TOM 5 wurde das offene Leseraster der cDNA-Sequenz des EST-Klons 22916 eingesetzt.

Durch Vergleiche der erstellten Gesamtsequenz von C. rubella mit Sequenzen von TOM 1-4, 6 und der cDNA-Sequenz von EST 22916 aus A. thaliana wurden die Positionen für sechs homologe Gene in C. rubella abgeleitet. Die Ergebnisse sind in Abbildung 3.25 zusammengefaßt. In der sequenzierten Region von C. rubella ist das Gen TOM 6 nicht mit der gesamten Gensequenz vertreten. Durch einen Sequenzvergleich von TOM 6 mit der C. rubella-Gesamtsequenz konnte festgestellt werden, daß lediglich der kodierende 3'-Bereich des Gens sequenziert wurde. Die restlichen fünf Gene TOM 1-4 und 22916 sind in C. rubella mit der gesamten Gensequenz vertreten. Für alle sechs Gene ist die Reihenfolge und die Transkriptionsrichtung in A. thaliana und C. rubella identisch. Auch die Größe der Gene ist in C. rubella und A. thaliana sehr ähnlich. Die intergenischen Bereiche zeigen dagegen größere Unterschiede in ihrer Länge. Während in C. rubella für den intergenischen Bereich zwischen TOM 1 und 2 eine Vergrößerung der genomischen Sequenzlänge um ca. 740 Bp verglichen mit dem in A. thaliana ermittelt wurde, wurde für die restlichen intergenischen Bereiche eine Reduktion der genomischen Sequenzlänge zwischen 200 Bp und 1,8 Kbp festgestellt (Abbildung 3.25). In C. rubella beträgt die genomische Größe der Region zwischen TOM 1 (Position 2960) und TOM 6 (Position 26602) 23643 Bp und für den korrespondierenden Bereich in A. thaliana 26373 Bp (Position 4215-30587). Für diesen Bereich ist die genomische Sequenz in A. thaliana um ca. 2,7 Kbp länger als in C. rubella.

In den weiteren Analysen wurde die Struktur und Sequenzhomologie der Gene auf Nukleotid- und Protein-Ebene untersucht (Abbildung 3.26). Dazu wurde ein Sequenzvergleich der vorhergesagten Exon-Sequenzen mit den genomischen *A. thaliana*und *C. rubella*-Sequenzen vorgenommen. Die Gene TOM 1-4 und 22916, die in der sequenzierten Region von *C. rubella* mit der gesamten Gensequenz vorliegen, haben die gleiche Zahl an Exons und Introns wie die homologen Gene in *A. thaliana*. Die Größe der Exons und Introns variiert jedoch in den meisten Fällen zwischen beiden Spezies. Die Varianz für die Exons beträgt in der Regel zwischen 3 und 15 Basenpaare und für die Intronbereiche 2 bis 109 Basenpaare. Lediglich das dritte Exon von TOM 3 zeigt zwischen *C. rubella* und *A. thaliana* einen Größenunterschied von 90 Bp. Beim Vergleich der Gesamtlängen der Gene TOM 1, 2, 3, 4 und 22916 in *A. thaliana* und *C. rubella* fällt auf, daß vier der Gene in *C. rubella* länger sind. Ein Vergleich der gesamten Exonlängen zeigte, daß in TOM 1 und 3 die kodierenden Bereiche in *C. rubella* größer sind. TOM 4 besitzt in beiden Pflanzen die gleiche Länge von 3501 Bp. Im Fall von TOM 2 und Gen 22916 ist dies umgekehrt.

B

Abbildung 3.26A

Abbildung 3.26: Genstrukturen für TOM1-4 und 22916 in *A. thaliana* und *C. rubella*

3.26A: A: TOM1; **B:** TOM2 **C:** TOM3; **D:** TOM4 und **E:** 22916

Die jeweiligen Exon- und Intron-Größen sind für den Bereich zwischen Start. und Stop-Codon angegeben. Außerdem sind die Gesamtlängen der Gene und die Summe der Länge der Exons rechts neben den Genstrukturen angezeigt. In der Abbildung ist *Arabidopsis thaliana* mit At und *Capsella rubella* mit Cr abgekürzt.

Abbildung 3.26B

Zusammenfassend wurde für das TOM-Contig in *C. rubella* festgestellt, daß die intergenischen Bereiche kürzer und die Gensequenzen in der Regel länger sind als in *A*. *thaliana*.

Nachdem ein hoher Konservierungsgrad für die Genstrukturen der Gene TOM 1-4 und 22916 in *C. rubella* im Vergleich zu *A. thaliana* festgestellt wurde, wurde der Identitätsgrad der Gensequenzen ermittelt. Auch hier wurde ein hoher Konservierungsgrad für die Gene in *C. rubella* und in *A. thaliana* festgestellt. Die Daten dieser Analyse sind in Tabelle 3.17 gezeigt.

Gen	Sequenzidentität auf Nukleotidebene	Sequenzidentität auf Proteinebene
TOM 1	92,6%	91,4%
TOM 2	94,1%	95,1%
TOM 3	80,3%	65,2%
TOM 4	92,3%	94,1%
Gen 22916	93,4%	95,4%

Tabelle 3.17: Die ermittelten Daten für die Sequenzidentität auf Nukleotid- und Protein-Ebene für die Gene TOM 1-4 und 22916 sind angegeben. Während für den Vergleich im Fall von TOM 1-4 die vorhergesagte Gensequenz aus der Datenbank eingesetzt wurde, wurde für TOM 5 die Sequenz von cDNA 22916 verwendet. Berücksichtigt wurden hierfür die Sequenzen zwischen Start- und Stop-Codons.

Die Sequenzidentitäten auf Nukleotid-Ebene liegen zwischen 80,3% und 94,1%, die Werte auf Protein-Ebene zwischen 65,2% und 95,4%. Die geringste Sequenzidentität auf Nukleotid- bzw. Protein-Ebene wurde für das Gen TOM 3 ermittelt und für Gen 22916 die höchsten Identitätswerte. Mit Ausnahme von TOM 3 ist der Identitätsgrad in den einzelnen Genen sowohl für die Nukleotid- als auch die Protein-Sequenzen sehr ähnlich und liegt jeweils über 90%.

4. Diskussion

Die im Rahmen dieser Arbeit durchgeführten Untersuchungen sollten nachweisen, in welchem Maße es möglich ist, Daten über die strukturelle Organisation des *A. thaliana*-Genoms auf andere diploide Arten der Familie der Brassicaceae zu übertragen. Diese Fragestellung erfordert die vergleichende Genomanalyse von zwei Arten. *Arabidopsis* und *Capsella* wurden für die Vergleiche ausgewählt. Es wurden Kopplungsgruppen vergleichend betrachtet, um zu zeigen, ob Kolinearität in den diploiden Brassicaceae-Vertretern über größere Chromosomensegmente vorliegt. Die vergleichende physikalische Genomanalyse kleiner ausgewählter Genombereiche wurde dann eingesetzt, um nachzuweisen, ob der in genetischen Experimenten gefundene Grad der Kolinearität in ähnlicher Weise auf der molekularer Ebene beobachtbar ist.

4.1 Vergleichende genetische Kartierungsexperimente

Vergleichende genetische Kartierungsexperimente geben Auskunft über die Konservierung des Markerrepertoires in den untersuchten Arten. Weiterhin erlauben sie festzustellen, ob kolineare Chromosomensegmente in den Spezies vorliegen. Außerdem kann die Größe der kolinearen Bereiche abgeschätzt werden.

4.1.1 Konservierung des Markerrepertoires in Arabidopsis und Capsella

Es wurden für die genetische Kartierungsanalyse in *Capsella Arabidopsis thaliana*-RFLP-Marker (mi...-, Liu *et al.*, 1996; m...-Marker, Fabri und Schäffner, 1994) und cDNA-Klone verwendet. Die Hybridisierungsanalysen dieser Marker zeigten, daß für 40 der 46 getesteten Marker in *Capsella* homologe Sequenzen vorliegen.

Zu den Markern, für die keine Hybridisierung mit *Capsella*-DNA nachgewiesen werden konnten gehören mi233 und EST 11177. Für RFLP-Marker mi233 und weitere sieben mi-RFLP-Marker war bekannt, daß diese Sequenzen in einigen Ökotypen von *Arabidopsis thaliana* fehlen. Während die mi233-Sequenz in den Ökotypen Columbia, Rschew und Wassilewskija vorliegt, fehlt sie in Landsberg *erecta*. Es handelt sich

wahrscheinlich bei dieser Gruppe von Markern um nicht-kodierende Bereiche des Genoms, die in einigen Ökotypen deletiert wurden (Liu *et al.*, 1996). Im Rahmen der in dieser Arbeit durchgeführten Mikrosyntenieuntersuchungen wurde festgestellt, daß kodierende Bereiche des Genoms eine sehr viel höhere Sequenzidentität in *Arabidopsis* und *Capsella* aufweisen als intergenische Regionen (siehe unten). Daher ist davon auszugehen, daß Marker die intergenische Regionen des *Arabidopsis*-Genoms repräsentieren, in den durchgeführten Hybridisierungsexperimenten in *Capsella* nicht nachgewiesen werden können.

EST 11177 hat hohe Sequenzhomologien zur LTR (*long terminal repeat*)-Region eines Retrotransposon-ähnlichen Elementes in *Arabidopsis thaliana*. Während dieser Marker in *A. thaliana* zu mehreren Kopien im Genom hybridisiert, konnte in *Capsella rubella* keine homologe Sequenz gefunden werden (Abb. 3.2). Der Konservierungsgrad für repetitive Sequenzen wie die Retrotransposon-ähnlichen Elemente ist zwischen verschiedenen Arten weniger hoch als für die kodierenden Sequenzbereiche des Genoms. Für das Retroelement *Reina*, welches in der Nähe des *Adh*-Gens in Mais lokalisiert ist, konnte in Hirse keine Kreuzhybridisierung gezeigt werden (Avramova *et al.*, 1996). Auch für weitere Retroelemente aus einer 225 Kbp-Region um das *Adh*-Gen in Mais, die zu 74% aus LTR-Retroelementen besteht, wurden in der korrespondierenden Hirse-Region keine homologen Sequenzen gefunden (Tikhonov *et al.*, 1999). Das Fehlen homologer Sequenzen von EST 11177 in *Capsella* steht im Einklang mit diesen Ergebnissen.

Die ermittelten Hybridisierungsdaten für die getesteten Marker zeigen somit einen sehr hohen Konservierungsgrad bezüglich des Markerrepertoires in *A. thaliana* und *Capsella*. Da 14 von 46 Markern cDNA-Sequenzen repräsentieren (Tabelle 3.3) und ein großer Teil der verwendeten 32 RFLP- bzw. ARMS-Marker Sequenzhomologien zu EST-Sequenzen in der *A. thaliana*-Datenbank zeigen (Daten nicht gezeigt), kann bereits aus diesen Daten ein hoher Konservierungsgrad bezüglich des Genrepertoires abgeleitet werden.

Der gefundene, hohe Konservierungsgrad des Markerrepertoires entspricht den Erwartungen, denn dies wurde bereits in anderen vergleichenden Untersuchungen beschrieben. In der Familie der Solanaceae konnte dies für Tomate - Kartoffel (Bonierbale *et al.*, 1988; Gebhardt *et al.*, 1991; Tanksley *et al.*, 1992) und Tomate - Paprika (Tanksley *et al.*, 1988; Livingstone *et al.*, 1999) gezeigt werden. Auch in der Familie der Poaceae wurde ein hoher Konservierungsgrad bezüglich des Genrepertoires

festgestellt (zusammengefaßt in Devos und Gale, 1997). In der Familie der Brassicaceae zeigen die Vergleiche verschiedener *Brassica*-Arten ähnliche Ergebnisse (Lagercrantz und Lydiate, 1996; Bohuon *et al.*, 1996). Kartierungsexperimente, in denen *Arabidopsis thaliana* und die *Brassica*-Arten *B. napus*, *B. nigra*, *B. rapa* und *B. oleracea* verglichen wurden, zeigen auch für diese eng verwandten Arten das Vorliegen eines sehr ähnlichen Genrepertoires (Conner *et al.*, 1998; Cavell *et al.*, 1998; Lagercrantz *et al.*, 1996; Lagercrantz, 1998; Teutonico und Osborn, 1994; Kowalski *et al.*, 1994).

4.1.2 Kolineare Chromosomensegmente in Arabidopsis und Capsella

Für die genetische Kartierung wurde in *Capsella* eine Kartierungspopulation aus 50 F_{2} -Pflanzen durch eine interspezifische Kreuzung von *C. grandiflora* und *C. rubella* etabliert. *A. thaliana* Chromosom IV RFLP-Marker und cDNAs wurden als Sonden für genetische Kartierungsexperimente in *Capsella* verwendet. Ein Vergleich der resultierenden Kopplungsgruppen erlaubt Aussagen über den Konservierungsgrad bezüglich der Chromosomen-Organisation in *Capsella* und *A. thaliana*. Während die *Capsella*-Arten im haploiden Chromosomensatz 8 Chromosomen besitzen (Hurka und Neuffer, 1997), hat *A. thaliana* n=5 Chromosomen (Koornneef *et al.*, 1983).

In *Capsella* wurden zur Kartierung 22 *A. thaliana* Chromosom IV-Marker eingesetzt (Tabelle 3.6), von denen vier Marker (3486, ATTS2212, ATTS3374, mi330) zu je zwei verschiedenen polymorphen Loci im *Capsella*-Genom korrespondieren. Zwei Kopplungsgruppen konnten mit 21 der 26 Loci etabliert werden. Drei der Marker (ATTS2212, ATTS3374 und mi330), für die im *Capsella*-Genom zwei polymorphe Loci ermittelt wurden, sind mit einem Lokus auf einer der erstellten Kopplungsgruppen repräsentiert. Lediglich Marker 3486, der auch zu zwei verschiedenen polymorphen Loci in *Capsella* korrespondiert, konnte auf keiner der beiden Kopplungsgruppen von *Capsella* lokalisiert werden. Da dieser Marker nicht nur zu polymorphen DNA-Fragmenten, sondern auch mit mehreren monomorphen DNA-Sequenzen in *Capsella* hybridisiert (Daten nicht gezeigt), ist nicht auszuschließen, daß einer dieser monomorphen Loci in einer der ermittelten Kopplungsgruppen von *Capsella* kartiert. Dies könnte durch den Einsatz anderer Restriktionsenzyme für die

Polymorphismusanalyse und weitere genetische Kartierungsexperimente geklärt werden.

Ein weiterer Marker, der auf *A. thaliana*-Chromosom IV lokalisiert ist und keiner der beiden Kopplungsgruppen in *Capsella* zugeordnet werden konnte, ist der RFLP-Marker mi390. Alle Marker, die zur genetischen Kartierung eingesetzt wurden, wurden sequenziert und in der *A. thaliana*-Datenbank auf die Position im *A. thaliana*-Genom hin überprüft. Lediglich die Sequenz von mi390 wurde bei dieser Analyse an einer von der molekularen Markerkarte (Liu *et al.*, 1996) abweichenden Position im Genom kartiert. Den Sequenzvergleichen zufolge ist mi390 auf *A. thaliana*-Chromosom II lokalisiert (Tabelle 3.1). Diese Ergebnisse erklären, warum der eingesetzte Marker nicht auf den für *Capsella* erstellten Kopplungsgruppen gefunden wurde.

In *Capsella* konnte gezeigt werden, daß 5 von 30 Markern zu mindestens zwei verschiedenen Loci korrespondieren. Durch Sequenzvergleiche in der *A. thaliana*-Datenbank für Marker, die zu zwei verschiedenen polymorphen Loci in *Capsella* kartieren, wurde festgestellt, daß jeder dieser Marker ein Mitglied einer Multigenfamilie repräsentiert. Zum Beispiel 3486 zeigt hohe Homologien zu α -Tubulin-Genen (Kopczak *et al.*, 1992) und ATTS3374 zu Ascorbatperoxidase-Genen in *A. thaliana* (Jespersen *et al.*, 1997). Jedoch liegt keine Evidenz für Duplikationen von Chromosomensegmenten vor wie zum Beispiel in den verschiedenen diploiden *Brassica*-Arten *B. oleracea*, *B. rapa* und *B. nigra* (Lagercrantz und Lydiate, 1996; Lagercrantz, 1998). Auch in der Familie der Poaceae wurde für viele Arten gezeigt, daß ganze Chromosomen oder Chromosomensegmente dupliziert vorliegen. In Weizen liegen beispielsweise die meisten Gene tripliziert in den drei Weizen-Genomen A, B und D vor (Devos und Gale, 1993). Auch in Mais hybridisieren viele RFLP-Marker zu zwei Loci im Genom, was durch Duplikation von Chromosomenbereichen zu erklären ist (Helentjaris *et al.*, 1988).

Die beiden erstellten Kopplungsgruppen für *Capsella* zeigen Kolinearität zu *A*. *thaliana*-Chromosom IV für die Bereiche zwischen den Markern mi51 und m518A bzw. mi30 und mi369 (Abbildung 3.5). Die Größe der Kopplungsgruppen beträgt in *Capsella* 23,9 bzw. 63,9 cM und für die entsprechenden Bereiche in *A. thaliana* 30,2 bzw. 58,2 cM. Durch weitere genetische Kartierungsexperimente mit RFLP-Markern aus Centromer-Regionen der *A. thaliana*-Chromosomen wurden zwei Chromosom V-Marker in einer der *Capsella* Kopplungsgruppen gekoppelt zu mi30 gefunden (Oliver

Clarenz, Diplomarbeit Universität zu Köln, 2000). Die Kartierung eines weiteren Markers aus der Centromer-Region von *A. thaliana*-Chromosom IV (N97271) zeigte eine Inversion des Chromosomenbereichs zwischen Marker m518A und N97271 in *Capsella* relativ zu *Arabidopsis* (Oliver Clarenz, Diplomarbeit Universität zu Köln, 2000).

Zusammenfassend kann festgestellt werden, daß durch den Einsatz der Arabidopsis Chromosom IV-Marker zwei ausgedehnte kolineare Chromosomensegmente für Arabidopsis und Capsella ermittelt werden konnten. Es gibt keinerlei Hinweise für das Fehlen größerer Chromosomenbereiche in Capsella, denn bis auf die wenigen diskutierten Ausnahmen finden sich alle Markersequenzen sowohl in Capsella als auch in Arabidopsis wieder. Weiterhin gibt es keine Evidenzen für Duplikationen von Chromosomenbereichen. Da Arabidopsis und Capsella eine unterschiedliche Chromosomenzahl aufweisen, ist es nicht unerwartet, daß Arabidopsis-Chromosom IV in Capsella auf zwei verschiedenen Kopplungsgruppen vorliegt. Eine weitere Abweichung von der Genomkolinearität stellt die Inversion des Chromosomenbereichs zwischen Marker m518A und N97271 in Capsella relativ zu Arabidopsis dar.

Auch die Kopplungsanalysen, die mit Markern der *A. thaliana*-Chromosomen I-III und V durchgeführt wurden, wiesen kolineare Chromosomenbereiche nach. Zum Beispiel die Marker m235A und m254A aus *A. thaliana*-Chromosom I sowie die Marker m249A und m457A aus *A. thaliana*-Chromosom III liegen auch in *Capsella* gekoppelt vor. Für die Chromosomensegmente konnte eine ähnliche Größe wie in *A. thaliana* ermittelt werden (siehe Anhang). Außerdem konnten die verwendeten Marker der *A. thaliana* Chromosomen I-III und V in allen Fällen in die Kopplungsgruppen, die mit weiteren *Arabidopsis*-Markern dieser Chromosomen erstellt wurden, eingeordnet werden (Karine Boivin, unveröffentlicht). Die kolinearen Chromosomenblöcke, die in dieser Studie gefunden wurden (Karine Boivin, unveröffentlicht), sind ähnlich groß wie die, die in dieser Arbeit ermittelt wurden.

Trotz der unterschiedlichen Chromosomenzahl zwischen A. *thaliana* und *Capsella* ist für die beiden diploiden Arten also ein hoher Grad an Kolinearität zu beobachten. Lediglich zwei intrachromosomale Inversionen wurden in *Capsella* relativ zu *Arabidopsis* beobachtet (Oliver Clarenz, Diplomarbeit Universität zu Köln, 2000; Karine Boivin, unveröffentlicht). Diese Ergebnisse stehen im Gegensatz zu Untersuchungen, in denen *Arabidopsis* mit paleoploiden Arten der Brassicaceae verglichen wurde. Zwischen A. thaliana und B. oleracea, für die ein konserviertes Genrepertoire festgestellt wurde, ist die Kolinearität als Folge zahlreicher Genom-Umorganisationen, die seit der Trennung der beiden Spezies stattgefunden haben, auf kleinere Chromosomenbereiche von 3,7 bis 49,6 cM begrenzt. Diese Unterschiede in der Anordnung der Marker sind auf mindestens 17 Translokations- und 9 Inversions-Ereignisse zurückzuführen (Kowalski et al., 1994). In A. thaliana und einer weiteren Brassica-Art, B. nigra, wurde auch eine große Anzahl von Chromosomen-Umorganisationen seit der Trennung dieser beiden Spezies festgestellt. Ihre Zahl wird auf ca. 90 geschätzt. Durch die zahlreichen Umstrukturierungen des B. nigra-Genoms beträgt die durchschnittliche Größe der kolinearen Chromosomenbereiche nur ca. 8 cM (Lagercrantz, 1998).

Die Trennung der Vorläufer von Arabidopsis und Capsella erfolgte später als die Trennung von Brassica und Arabidopsis. Die Analyse der mitochondrialen Gene für die NADH-Untereinheit (nad4) ermittelte für die Brassica-Arten und A. thaliana einen Trennungszeitpunkt zwischen 14,5 bis 20 Millionen Jahren (Yang et al., 1999). Die Trennungszeitpunkte von Brassica und A. thaliana wurden durch einen weiteren Vergleich der plastidären Maturase-Gene (matK) mit 16-20 Millionen Jahren bestimmt, während Capsella und Arabidopsis sich vor ca. 8-10 Millionen Jahren getrennt haben (M. Koch, B. Haubold und T. Mitchell-Olds, zur Veröffentlichung eingereicht). Dieser spätere Trennungszeitpunkt der Arten bietet eine Erklärung für die geringere Anzahl an Chromosomen-Umorganisationen, die für Arabidopsis–Capsella verglichen mit Arabidopsis–Brassica beobachtet wird.

Auch in der Familie der Solanaceae wurde bei genetischen Kartierungsuntersuchungen festgestellt, daß für den Vergleich verschiedener Arten unterschiedliche Anzahlen von Chromosomenumordnungs-Ereignissen gefunden wurden. Die Genome von Kartoffel und Tomate unterscheiden sich lediglich durch fünf intrachromosomale Inversionen, die durch Chromosomenbrüche in der Nähe oder am Centromer hervorgerufen wurden (Tanksley *et al.*, 1992). Im Gegensatz dazu unterscheidet sich das Paprika-Genom vom Tomaten-Genom trotz ähnlichen Genrepertoires und gleicher Chromosomenzahl (n=12) durch zahlreiche Inversionen und Translokationen (Prince *et al.*, 1992; Livingstone *et al.*, 1999). Auch diese Ergebnisse können durch unterschiedliche Trennungszeitpunkten für die untersuchten Artenpaare erklärt werden. Die Trennung der Kartoffel- und Tomatenarten erfolgte vor ca. 10 Millionen Jahren, während die

Vorläufer von Tomate und Paprika sich vor ca. 40 Millionen Jahren auseinanderentwickelt haben (Paterson *et al.*, 1996).

Trotz des Divergenzzeitpunktes von über 60 Millionen Jahren und der unterschiedlichen Genomgrößen zeigen genetische Kartierungsexperimente in Weizen, Mais, Reis und weiteren Arten der Poaceae dagegen einen hohen Grad an Konservierung bezüglich des Genrepertoires und der Kolinearität (Ahn *et al.*, 1993; Ahn und Tanksley, 1993; Devos *et al.*, 1993). Obwohl die Trennung der Vorläufer von *Brassica* und *Arabidopsis* später erfolgte als die Trennung der untersuchten Gräserarten (Moore *et al.*, 1995; Yang *et al.*, 1999) zeigen diese Brassicaceae-Arten, verglichen mit den Poaceae-Arten, einen viel höheren Grad an Genom-Umorganisationsereignissen (Lagercrantz, 1998).

In polyploiden Pflanzen muß die Paarung homeologer Chromosomen verhindert werden, um aberrante Chromosomensegregationen in der Meiose zu vermeiden. Arten der Poaceae zeigen einen hohen Anteil repetitiver Elemente im Genom (Gale und Devos, 1998), dies könnte dazu beitragen, die Paarung homeologer Chromosomen zu unterdrücken. Die *Brassica*-Arten besitzen kleinere Genome (Arumuganathan und Earle, 1991) und damit einen sehr viel geringeren Anteil repetitiver Elemente. In diesen Arten könnte die Paarung homeologer Chromosomen durch die hochgradige Umorganisation der Chromosomen gewährleistet sein. Diese Spekulation bietet einen Erklärungsansatz, für die verglichen mit den polyploiden Brassicaceae-Arten, stärker ausgeprägte Kolinearität in der Familie der Poaceae.

4.2 Mikrosyntenieuntersuchungen in Arabidopsis und Capsella

Die vergleichende physikalische Genomanalyse sollte zeigen, ob die festgestellte Markerkolinearität auf chromosomaler Ebene auch auf physikalischer Ebene vorzufinden ist. Dabei war das Ziel festzustellen, ob beispielsweise in der Region zwischen zwei kolinearen Markern eine Konservierung des Genrepertoires und unter Umständen der Genreihenfolge zu beobachten ist. Der vergleichenden Kartierung auf physikalischer Ebene sind Grenzen in der Auflösung gesetzt. Nur vergleichende Sequenzierungsexperimente von orthologen Bereichen in *C. rubella* können umfassende Daten über den Konservierungsgrad der Genorientierung, der Genstrukturen und der Sequenzidentität zwischen *A. thaliana* und *C. rubella* ermitteln. Die geplanten detaillierten Mikrosyntenieuntersuchungen konnten im Rahmen dieser Arbeit nur geleistet werden, indem die Experimente auf zwei kleine Genombereiche beschränkt wurden. Die Untersuchung von zwei verschiedenen Regionen wurde durchgeführt, um generellere Aussagen zur Mikrosyntenie in den untersuchten Arten machen zu können. Die erste ca. 200 Kbp große Region kartiert auf dem langen Arm von *A. thaliana* Chromosom IV zwischen den Markern m326A und mi330 (Lister und Dean, 1993; http://nasc.nott.ac.uk/new_ri_map.html) und ist vollständig sequenziert (Bevan *et al.*, 1998; Mayer *et al.*, 1999). Die zweite Region liegt in *A. thaliana* auf Chromosom I auf dem sequenzierten BAC-Klon F20N2 (AC002328) in Nachbarschaft zum genetischen Marker nga280 (81.7 cM; http://nasc.nott.ac.uk/new_ri_map.html). Für die genetische Kartierung in *C. rubella* wurde EST 21484 verwendet, welcher ca. 100 Kbp von nga280 lokalisiert ist.

4.2.1 Konservierung des Markerrepertoires und der Markeranordnung in *Arabidopsis* und *Capsella*

Für die 200 Kbp-Region aus *A. thaliana* wurden durch Hybridisierung einer *A. thaliana* cDNA-Bibliothek (Newman *et al.*, 1994) elf verschiedene cDNA-Klone (A-K) identifiziert, die hohe Homologien zu Genen dieser Region zeigten. Ein Vergleich der EST-Sequenzdaten mit den genomischen Sequenzen beider Regionen ermittelte 11 EST-Klone. Die korrespondierenden Gene für 8 ESTs konnten in der 200 Kbp-Region lokalisiert werden, während für die Chromosom I-Region 3 ESTs, die zwei verschiedenen Genen entsprechen, isoliert wurden.

Alle Klone wurden eingesetzt, um homologe Sequenzen in *Capsella rubella* zu identifizieren. Die Ergebnisse dieser Experimenten zeigten einen ebenso hohen Konservierungsgrad bezüglich des Genrepertoires wie er in den vergleichenden genetischen Kartierungsexperimenten ermittelt wurde (siehe 4.1.1). Mit Ausnahme von cDNA-Klon K und EST 8 konnten für die restlichen 20 cDNA-Klone, die in den ausgewählten *A. thaliana* Regionen lokalisiert sind, die homologen Sequenzen in *C. rubella* identifiziert werden. Der EST-Klon 8 entspricht dem genetischen Marker 11177, für den bereits diskutiert wurde, daß keine homologe Sequenz in *C. rubella*

vorliegt und daß dieser Klon Homologien zur LTR-Sequenz eines Retrotranposonähnlichen Elementes aus *A. thaliana* aufweist.

Durch Vergleich der 19 verschiedenen cDNA-Klon-Sequenzen aus der 200 Kbp-Region mit vorhergesagten Genen in der Α. den *thaliana*-Datenbank (http://websvr.mips.biochem.mpg.de/proj/thal/) konnten für alle 19 cDNA-Klone Sequenz-Homologien zu vorhergesagten Genen ermittelt werden. Eine der cDNA-Sequenzen zeigte dabei Homologie zu zehn in Tandem organisierten homologen Sequenzen (Bevan et al., 1998). In dieser analysierten 200 Kbp-Region sind jedoch weitere acht vorhergesagte Gene lokalisiert, die weder durch Hybridisierung der A. thaliana cDNA-Bibliothek noch durch Vergleich der genomischen Sequenz von A. thaliana mit den EST-Sequenzdaten identifiziert werden konnten. Da die Gendichte für A. thaliana mit einem Gen pro 4,1 bis 4,6 Kbp ermittelt wurde (Lin et al., 1999; Mayer et al., 1999; Sato et al., 1998), ist davon auszugehen, daß nicht alle kodierenden Sequenzen der Region mit Hilfe der EST-Analysen und dem Durchsuchen der cDNA-Bibliotheken identifiziert wurden. Zum Beispiel ist die Region zwischen Gen 4 und B in A. thaliana ca. 24,5 Kbp groß. Jedoch konnten für diesen Bereich keine cDNA-Klone oder ESTs identifiziert werden. In einer Region dieser Größe wären statistisch 4 bis 5 Gene lokalisiert. In der A. thaliana-Datenbank sind für diesen Bereich drei Gene vorhergesagt (http://websvr.mips.biochem.mpg.de/proj/thal/). Der Vergleich der genomischen Sequenz von C. rubella mit den Sequenzen der vorhergesagten Gene zeigte, daß zumindest in zwei Fällen die Sequenzbereiche, für die Genvorhersagen vorliegen, in C. rubella einen hohen Sequenzhomologiegrad aufweisen.

Es war auch nicht zu erwarten, daß die verwendeten Ansätze zur Identifizierung von cDNA-Sequenzen aller Gene der Region führen würde. Trotz des Umfangs der *Arabidopsis*-EST-Kollektionen liegen für einen großen Teil der transkribierten Sequenzen in *Arabidopsis* keine EST-Sequenzen vor (Mayer *et al.*, 1999; Lin *et al.*, 1999). Für die Identifizierung der cDNA-Sequenzen mittels eines Hybridisierungsansatzes wurde eine ca. 200000 Klone umfassende Bibliothek eingesetzt, daher ist es unwahrscheinlich, daß sehr gering exprimierte Gene nachgewiesen werden (Schmidt *et al.*, 1999).

In der zweiten 30 Kbp-Region auf *A. thaliana* Chromosom I wurden drei ESTs identifiziert. In der *A. thaliana*-Datenbank sind für diese Genomregion sechs Gene vorhergesagt. Daher beträgt die durchschnittliche Gendichte ein Gen pro 5 Kbp. Dieser

Wert liegt im Rahmen der veröffentlichten Daten von einem Gen pro 4,1-4,6 Kbp (Mayer *et al.*, 1999; Lin *et al.*, 1999).

Es konnte gezeigt werden, daß in beiden Regionen die Anordnung der in C. rubella vorliegenden Gene identisch zu der in A. thaliana beobachteten ist. Auch die intergenischen Bereiche sind in beiden Spezies ähnlich groß. Gene, die in A. thaliana physikalisch eng benachbart vorliegen, sind in C. rubella ebenfalls physikalisch eng benachbart. Auch in B. oleracea, diese Art besitzt eine Genomgröße von ca. 618 Mbp (Arumuganathan und Earle, 1991), ist das Genrepertoire der 200 Kbp-Region aus A. thaliana im wesentlichen konserviert. Jedoch sind die intergenischen Bereiche in B. oleracea in der Regel größer als in A. thaliana oder C. rubella (M. Roßberg, unveröffentlicht). Die Analyse der Region um das RPM1-Gen in A. thaliana und Brassica napus zeigte, daß die Reihenfolge der Gene GTP, RPM1 und M4 identisch ist und die intergenischen Bereiche eine ähnliche Größe aufweisen (Grant et al., 1998). Auch für eine homologe 15 Kbp große Region des A. thaliana Chromosoms III ist in den drei Brassica-Arten B. nigra, B. rapa und B. oleracea die Reihenfolge der fünf Gene konserviert. Die Größe der homologen Regionen in den Brassica-Arten wurde mit Hilfe von Southern-Blot-Analyse von Pulsfeld-aufgetrennter DNA bestimmt und beträgt maximal 320 Kbp (Sadowski et al., 1996).

Wie in dieser Arbeit für zwei verschiedene Regionen in C. rubella und A. thaliana beobachtet, zeigen auch die Mikrosyntenieanalysen in Mais, Reis und Hirse für die sh2-Region Konservierung bezüglich der Genanordnung der beiden Gene sh2 und a1 in den homologen Regionen. Die Größe der intergenischen Bereiche in diesen Arten ist dagegen gering konserviert. Während der Abstand zwischen den beiden Genen in Mais ca. 140 Kbp umfaßt, beträgt die Distanz in Reis und Hirse lediglich ca. 19 Kbp (Chen et al., 1997). Auch für die 225 Kbp große Adh-Region in Mais wurde in Hirse Kolinearität für die neun bekannten bzw. vorhergesagten Gene, die in dieser Region lokalisiert sind, gezeigt. Die homologe Region in Hirse ist jedoch lediglich 78 Kbp groß und enthält weitere fünf Gene (Tikhonov et al., 1999). Diese Daten lassen vermuten, daß die Länge der intergenischen Bereiche mit der Genomgröße der Pflanzen korreliert ist (Bennetzen et al., 1998), da die Genomgrößen für Mais ca. 2292 Mbp, für Hirse ca. 748 Mbp und für Reis ca. 415 Mbp betragen (Arumuganathan et al., 1991). Doch die Analyse der Lrk-Region in den vier Vertretern der Gräser Weizen (Genomgröße ca. 16000 Mbp), Gerste (Genomgröße ca. 5000 Mbp), Mais und Reis zeigte, daß trotz der sehr unterschiedlichen Genomgrößen die intergenischen Bereiche in der Lrk-Region in Weizen, Reis und Gerste eine ähnliche Länge haben (vgl. Einleitung; Feuillet und Keller, 1999). In diesen chromosomalen Bereichen ist auch die Gendichte mit einem Gen pro 4-5 Kbp sehr ähnlich zu der beobachteten Gendichte in *A. thaliana* (Lin *et al.*, 1999; Mayer *et al.*, 1999).

Die Genomgröße von A. *thaliana* wird nach den neuesten Daten auf ca. 130 Mbp geschätzt (Mayer *et al.*, 1999). Für *Capsella rubella*, die eine diploide Verwandte der tetraploiden *C. bursa-pastoris* ist, liegen bisher keine Daten zur Genomgröße vor. Jedoch wurde die Genomgröße der tetraploiden *C. bursa-pastoris* mit ca. 680 Mbp bestimmt (Bennett und Smith, 1976). Unter Berücksichtigung des Ploidiegrades zwischen den beiden *Capsella*-Arten kann die Genomgröße auf ca. 340 Mbp geschätzt werden. Jedoch deuten die Hybridisierungsergebnisse der *C. rubella*-Bibliothek, die zur Identifizierung der *C. rubella* Cosmid-Klone eingesetzt wurde, auf eine 4- bis 5-fache Genomäquivalenz hin. Da die genomische Bibliothek aus 46000 Klonen mit einer durchschnittlichen DNA-Insertionsgröße von ca. 20 Kbp besteht und dies ca. 920 Mbp genomischer *C. rubella*-DNA in der Bibliothek entspricht, wäre die Genomgröße von *C. rubella* mit 340 Mbp überschätzt. Diese Hypothese wird auch dadurch gestützt, daß die untersuchten genomischen Regionen in *A. thaliana* und *C. rubella* eine sehr ähnliche Größe aufweisen. Wahrscheinlicher ist ein Wert für die Genomgröße von *C. rubella* in der Größenordnung von 200 Mbp.

In *C. rubella* ist die homologe Region zur 200 Kbp-Region in *A. thaliana* durch drei Cosmid-Contigs repräsentiert. Genetische Kartierungen der Marker EST 5760 (Contig 0), 54-I/54X06 (Contig I) und cDNA J (Contig II) zeigen, daß alle drei Contigs genetisch eng gekoppelt sind (siehe Anhang). Insgesamt umfaßt der bisher sequenzierte Bereich ca. 144 Kbp. Die 30 Kbp-Region setzt sich aus einem Contig mit zwei Cosmiden zusammen, das eine genomische Gesamt-Sequenzlänge von 27056 Bp aufweist. Die Analyse der genomischen *C. rubella*-Sequenzen zeigt, daß neben der Konservierung des Genrepertoires und der Genreihenfolge auch die Transkriptionsrichtung der Gene in *C. rubella* und *A. thaliana* identisch ist. Unterschiede zwischen den Regionen von *A. thaliana* und *C. rubella* sind neben den fehlenden Sequenzen von cDNA K und EST 8 in *Capsella rubella* die Duplikationen der Gene C und 7 in *Capsella rubella*. Die beiden Kopien von Gen C sind dabei in Tandem organisiert. Der Vergleich der *sh2/a*1-homologen Regionen in Reis, Mais und Hirse zeigt ebenfalls eine Duplikation von *a*1 in Reis und Hirse, die auch tandemartig organisiert ist (Chen *et al.*, 1997; 1998). Die Duplikation von Gen C konnte nur in *C.* *rubella* beobachtet werden. In der homologen Region in *Brassica oleracea* liegt Gen C ebenso wie in A. *thaliana* als Einzelkopie-Sequenz vor (M. Roßberg, unveröffentlicht). Die Daten deuten auf eine Duplikation von Gen C in *C. rubella* nach der Trennung der Vorläufer von *Capsella* und *Arabidopsis* hin, dies konnte durch die Untersuchung der abgeleiteten Aminosäuresequenzen der Gene erhärtet werden (Abbildung 3.21). Die Duplikation von *a*1 in Hirse scheint dagegen vor der Trennung von Mais, Reis und Hirse stattgefunden zu haben, da in Reis ebenfalls eine zweite Kopie von *a*1 gefunden wurde (Chen *et al.*, 1998).

Durch Analysen auf Expressionsebene könnten Aussagen zur Funktionalität der beiden Genkopien von Gen C in *Capsella rubella* gemacht werden. Aus den Sequenzdaten alleine ist keine Aussage möglich, ob eventuell eine Genkopie für ein nichtfunktionelles Protein bzw. ein Protein mit veränderter Funktion kodiert.

Homologe Sequenzen von RPP5 (Parker et al., 1997) liegen in der 200 Kbp-Region von A. thaliana Ökotyp Columbia in einem Block aus zehn tandemartig organisierten Kopien vor (Bevan et al., 1998), während in C. rubella bisher lediglich zwei Teilsequenzen des Gens in den Contigs I und II identifiziert wurden. Es kann aber nicht ausgeschlossen werden, daß weitere Kopien in C. rubella vorliegen, da der Bereich zwischen Contig I und Cosmid 54-II (Contig II) nicht sequenziert wurde. Die beiden Contigs I und II überlappen mit lediglich 29 Bp. Da die PCR-Analysen keine eindeutige Evidenz für den überlappenden Bereich zwischen den beiden Contigs lieferten, ist nicht auszuschließen, daß zwischen Contig I und II weitere Cosmidklone lokalisiert sind, die weitere Kopien des RPP5-Homologs tragen. Durch Identifizierung dieser weiteren Cosmid-Klone könnten in C. rubella auch Aussagen über die Kopienzahl der RPP5homologen Sequenzen gemacht werden. Eine solche weiterführende Analyse wäre besonders interessant, da sie die vergleichende Analyse von Resistenzgen-ähnlichen Sequenzen in Arabidopsis und Capsella ermöglichen würde. Für andere Arten wurde gezeigt, daß in solchen Regionen des Genoms ein höherer Grad an Umordnungen stattfindet.

In Reis, *A. thaliana*, Tomate und Kartoffel sind die Resistenz-Gene zusammen mit den Resistenzgen-ähnlichen Sequenzen (RGA) in Blöcken ("*Clustern*") organisiert (Leister *et al.*, 1996; Leister *et al.*, 1998; Botella *et al.*, 1997). Resistenz-Genloci zeigen im Vergleich zum restlichen Genom eine viel schnellere Umorganisation (Leister *et al.*, 1998). Duplikationen, Deletionen bzw. Insertionen scheinen die Mechanismen zu sein, die zu den Unterschieden in der Resistenzgen-Organisation führen. Die Organisation der Kopien in tandemartigen Wiederholungen kann als ein Hinweis für die Entstehung der Gene durch Genduplikationen mit anschließenden ungleichen Rekombinationen verstanden werden (Ronald, 1998). Im Ökotyp L. *erecta* liegen zum Beispiel zwei Kopien von *RPP8* im Genom vor, von denen *RPP8-Ler* das funktionelle Gen und *RPH8A* ein nicht-funktionelles Homolog ist. Der Ökotyp Columbia, der kein funktionelles *RPP8-*Gen besitzt, trägt ein chimäres Gen, das aus ungleicher Rekombination zwischen den Vorläufern von *RPP8-Ler* und *RPH8A* in einem L*er*ähnlichen Haplotyp hervorgegangen ist (McDowell *et al.*, 1998). In *Brassica napus* und *A. thaliana-*Ökotypen wurden unabhängige Deletionsereignisse für die *RPM1-*Gene nachgewiesen. Die Deletionen sind dabei auf das Resistenzgen beschränkt, da die Kolinearität der flankierenden Marker in der Region erhalten ist (Grant *et al.*, 1998).

4.2.2 Vergleichende Sequenzuntersuchungen

In A. thaliana wurden die Sequenzen der 17 Gene der 200 Kbp-Region vom Start- bis Stop-Codon ermittelt, um eine weitere Analyse der Gene bezüglich des Konservierungsgrades in der Exon-Intron-Struktur und der Sequenzhomologie zu ermöglichen. Hierfür wurden die Sequenzdaten der A. thaliana cDNA-Klone mit vorhergesagten Gensequenzen aus der A r a b i d o p s i s-Datenbank (http://websvr.mips.biochem.mpg.de/proj/thal/) verglichen. Der Vergleich zeigt, daß die vorhergesagten Exon-Intron-Strukturen in 10 von 17 Fällen in A. thaliana nicht mit cDNA-Sequenzen übereinstimmen. Die Genvorhersagen konnten aber in einigen Fällen zur Ermittlung der vollständigen kodierenden Sequenz ausgenutzt werden, wenn, wie in dieser Arbeit für 3 cDNAs gezeigt, relativ kleine Sequenzabschnitte in der 5'-Region des Gens fehlen. Eine weitere cDNA-Sequenz, die nicht mit der vorhergesagten Gensequenz Übereinstimmung zeigt, ist Gen 22916 aus der auf A. thaliana Chromosom I lokalisierten 30 Kbp-Region. In der Sequenz der Genvorhersage von TOM 5 war ein zusätzlicher Sequenzabschnitt, der in der Sequenz des cDNA-Klons 22916 nicht vorliegt.

Die Ermittlung der Exon-Intron-Strukturen für die homologen Gene in *C. rubella* zeigt einen hohen Konservierungsgrad bezüglich der Exon-Intron-Struktur in *A. thaliana* und *C. rubella*. Dies konnte genutzt werden, um durch Sequenzvergleiche der genomischen Arabidopsis- und Capsella-Sequenzen Genvorhersagen für zwei Gene abzuleiten (Gen 3 und Gen 7), für die Arabidopsis cDNA-Klone vorlagen, die lediglich einen Teilbereich der kodierenden Region umfaßten. Diese Ergebnisse belegen, daß die vergleichende Sequenzierung des *C. rubella*-Genoms zur Identifizierung von Genbereichen in *A. thaliana* ausgenutzt werden kann. Ein solcher Ansatz ist umso wichtiger, weil ein Vergleich der cDNA-Sequenzen mit den vorhergesagten Genen zahlreiche Diskrepanzen aufzeigt. Allerdings geben diese Daten nur Hinweise auf das Vorliegen von Gensequenzen und müssen experimentell überprüft werden.

Mit Ausnahme von TOM 3 zeigen die Exonsequenzen der *C. rubella* Gene sehr hohe Sequenzidentität auf Nukleotid- (>87,5%) bzw. Aminosäure-Ebene (>83,5%) zu den homologen Genen in *A. thaliana*. TOM 3 zeigt in *Capsella rubella* im Vergleich zu *Arabidopsis thaliana* lediglich eine Sequenzidentität von 80% auf Nukleotid-Ebene und 65% auf Protein-Ebene. Expressionsstudien für die vorhergesagten TOM 3-Gene in *C. rubella* und *A. thaliana* könnten Auskunft darüber geben, ob es sich um funktionelle Gene handelt. Wenn in beiden Arten Expression der vorhergesagten TOM 3-Gene nachgewiesen würden, so wäre es außerordentlich interessant festzustellen, welche Funktion diese Gene haben und ob sie noch ähnliche oder gleiche Funktionen ausüben, da sie verglichen mit allen anderen untersuchten Sequenzen sehr viel umfangreicheren Sequenzveränderungen unterworfen wurden.

Neben den ermittelten Gensequenzen, die ein offenes Leseraster besitzen, liegen in der untersuchten Region cDNA-Sequenzen (zum Beispiel: cDNAs A, H und 6) vor, für die zwar eine Konservierung der Exon-Intron-Strukturen in *A. thaliana* und *C. rubella* gezeigt wurde, die aber kein längeres offenes Leseraster aufweisen. Für diese cDNA-Klone konnten in der *A. thaliana*-Datenbank keine Genvorhersagen gefunden werden, da diese auf der Identifizierung längerer offener Leseraster beruhen. Dies zeigt deutlich, daß vergleichende Genomanalysen dazu beitragen können, solche Sequenzen zu identifizieren. Bei diesen cDNA-Sequenzen kann es sich um mRNA-ähnliche, nichtkodierende Sequenzen handeln. Diese Gruppe von transkribierten Sequenzen wurde sowohl bei Pflanzen als auch bei Tieren beobachtet. Es handelt sich dabei um stabile Transkripte, die gespleißt und polyadenyliert werden, jedoch kein längeres offenes Leseraster (ORF) besitzen (Erdmann *et al.*, 1999; Olivas *et al.*, 1997). Es wird vermutet, daß die Transkripte regulatorische Funktionen haben. Zu dieser Gruppe gehören unter anderem die Vertreter der ENOD40-Gene (Crespi *et al.*, 1994), Systemin (Barciszewski und Legocki, 1997) und CR20 (Teramoto *et al.*, 1996), die bereits in vielen PflanzenArten identifiziert wurden und als Signalträger bei biotischem Stress aktiv sind (Erdmann *et al.*, 1999). In *A. thaliana* sind bisher zwei nicht-kodierende Transkriptsequenzen bekannt, die den CR20- bzw. GUT15-Genen zugeordnet werden. Die Länge der Transkripte beträgt 758 bzw. 1377 Bp, wobei im 1377 Bp-Transkript eine kleine Region mit offenem Leseraster vorhanden ist (Erdmann *et al.*, 1999; http://www.man.poznan.pl/5Ddata/ncRNA/index.html). In Gurke wurden mehrere Transkripte des CR20-Gens identifiziert, die durch alternatives Spleißen des zweiten Introns der prä-RNA hervorgehen. Der Vergleich der CR20-RNA aus Gurke und AtCR20-1 aus *A. thaliana* zeigt Konservierung für eine 180 Bp-Region, wobei diese aus sieben Elementen besteht, die das Potential zur Bildung von Sekundärstrukturen besitzen (Teramoto *et al.*, 1996). Das Potential zur Sekundärstrukturbildung ist ein charakteristisches Merkmal der Regulator-Elemente. Aufgrund der niedrigen Sequenzhomologie dieser Transkripte zwischen verschiedenen Arten konnten die cDNA-Sequenzen aus *A. thaliana*, die kein offenes Leseraster besitzen, zu keiner der bereits bekannten Sequenzen in der Datenbank zugeordnet werden.

Zusammenfassend kann gesagt werden, daß die vergleichenden Sequenzanalysen sehr zum Verständnis der Mikrosyntenie beigetragen haben. Nur mit Hilfe einer solch detaillierten Analyse konnte nachgewiesen werden, daß nicht nur homologe Sequenzen zu den untersuchten *Arabidopsis*-Genen in *Capsella rubella* vorliegen, sondern daß die Struktur der Exon-Sequenzen weitgehend erhalten ist. Dies steht interessanterweise im Gegensatz zu Ergebnissen, die der Vergleich einiger Gene in *Arabidopsis thaliana* und *Brassica oleracea* ergab (Mathias Roßberg und K. Boivin, unveröffentlicht). Auch das Studium der duplizierten Gene kann nur auf Sequenzebene erschöpfend untersucht werden. Ebenso würden Sequenzbereiche, die geringere Sequenzidentitäten aufweisen als die meisten anderen untersuchten Genbereiche, wie z. B. TOM 3, mit den angewendeten Stringenzkriterien in Hybridisierungsexperimenten detektiert werden.

Die ermittelten vergleichenden Sequenzdaten bieten die Möglichkeit, auch die untersuchten *Arabidopsis*-Bereiche genauer zu charakterisieren, da in dieser Arbeit gezeigt werden konnte, daß in vielen Fällen vergleichende Daten verläßliche Interpretationen zur Genstrukturvorhersage beitragen können.

Im Gegensatz zu den hoch-konservierten Exonsequenzen (<90%) zeigen die Intronsequenzen in *A. thaliana* und *C. rubella* eine niedrigere Sequenzhomologie (<80%). In intergenischen Bereichen liegt ebenfalls eine geringere Sequenzidentität zwischen beiden Arten vor. Die intergenischen Bereiche in den analysierten
Genomregionen von *C. rubella* zeigen keine deutlichen Größen-Unterschiede zu denen in *A. thaliana*. In einigen Fällen ist die Gesamtgenlänge bestehend aus Exon- und Intron-Sequenzen durch Vergrößerung bzw. Verkleinerung der Intronsequenzen zwischen *A. thaliana* und *C. rubella* verschieden. Die Exonlängen sind in den meisten Fällen in beiden Pflanzen sehr ähnlich. Auch in Mais, Reis und Hirse wurde für die Gene *sh*2 und *a*1 eine höhere Sequenzhomologie in den Exons als in den Introns beobachtet (Chen *et al.*, 1997).

Die vergleichbar großen intergenischen Bereiche in *Arabidopsis* und *Capsella* deuten an, daß der Anteil repetitiver Elemente in *Capsella* ähnlich niedrig ist wie in *Arabidopsis thaliana* (Lin *et al.*, 1999; Mayer *et al.*, 1999). In einigen Regionen konnten in *Capsella* Mikrosatelliten-Sequenzen, die aus Dinukleotid-Monomeren zusammengesetzt sind, identifiziert werden. Der Genomanteil direkter Sequenz- bzw. indirekter Sequenzwiederholungen in *C. rubella* ist in den untersuchten Regionen sehr niedrig. Für zwei Bereiche in der zu der 200 Kbp-Region homologen Region konnten längere, indirekte Sequenzwiederholungen in den sequenzierten Cosmid-Contigs festgestellt werden. Der erste Bereich liegt in Contig I zwischen den Genen C2 und D bei Position 33450 bis 34000, und der zweite Bereich ist in Contig II zwischen Position 8100 bis 10550 lokalisiert. Im zweiten Bereich ist zwischen den beiden indirekten Sequenzwiederholungen, die eine Länge von ca. 1 Kbp haben, ein 400 Bp langer Sequenzabschnitt eingefügt.

Die Syntenieuntersuchungen in *C. rubella* und *A. thaliana* zeigen einen hohen Grad an Kolinearität sowohl auf molekularer als auch auf genetischer Ebene. Die für diese beiden diploiden Pflanzen ermittelten Daten werden unverzichtbar sein, um Ergebnisse zur Genomstruktur, die in diploiden *Brassica*-Arten, die hexaploiden Ursprungs sind, gewonnen werden, interpretieren zu können. Weiterhin zeigen die Daten, daß die Informationen aus *A. thaliana* unmittelbar auf andere diploide Arten der Brassicaceae übertragen werden können und beispielsweise zur Karten-gestützten Klonierung von Genen eingesetzt werden können. Diese Strategie wurde bereits für die Klonierung des Gai-Gens aus Reis, Mais und Weizen ausgenutzt (Peng *et al.*, 1999).

5. Zusammenfassung

Im Rahmen dieser Arbeit wurden vergleichende genetische und physikalische Kartierungsstudien in zwei diploiden Spezies der Brassicaceae-Familie, im Modellorganismus *Arabidopsis thaliana* und *Capsella rubella*, durchgeführt.

Vergleichende Kartierungsexperimente mit Chromosom IV-Markern von A. thaliana etablierten zwei Kopplungsgruppen in Capsella. Ein hoher Konservierungsgrad bezüglich des Markerrepertoires und der Kolinearität konnte zwischen A. thaliana und Capsella ermittelt werden. Für Mikrosyntenie-Analysen wurden eine 200 Kbp-Region auf Chromosom IV bzw. eine 30 Kbp-Region auf Chromosom I von Arabidopsis thaliana ausgewählt. Beide Arten zeigen hohe Konservierung des Genrepertoires. Dies gilt ebenso für die Genreihenfolge und die Orientierung der Gene. Einige Gene liegen in unterschiedlichen Kopienzahlen in Arabidopsis thaliana und Capsella rubella in den untersuchten Genombereichen vor. Auch die intergenischen Bereiche sind in beiden Spezies in der Länge vergleichbar. Durch Sequenzanalysen wurde für die orthologen Gene in C. rubella ein hoher Konservierungsgrad für die Exon-Intron-Strukturen der Gene gezeigt. Die Sequenzidentitäten der orthologen Gene betragen in den Exonsequenzen in der Regel über 90% auf Nukleotid- und Aminosäureebene. In dieser Arbeit wurde sowohl auf genetischer wie auf molekularer Ebene zwischen den beiden eng verwandten Spezies, A. thaliana und C. rubella, eine nahezu vollständige Kolinearität der Genome ermittelt.

Diese Ergebnisse zeigen, daß die unmittelbare Übertragbarkeit von Daten aus dem Genomprojekt von *A. thaliana* auf verwandte diploide Arten möglich und damit nutzbar ist.

6. Literaturverzeichnis

Ahn, S. and Tanksley, S.D. (1993). Comparative linkage maps of the rice and maize genomes. *Proc. Natl. Acad. Sci.* USA **90**, 7980-84.

Ahn, S., Anderson, J.A., Sorrells, M.E. and Tanksley, S.D. (1993). Homoeologous relationships of rice, wheat and maize chromosomes. *Mol. Gen. Genet.* **241**, 483-490.

Akkaya, M.S., Bhagwat, A.A. and Cregan, P.B. (1992). Length polymorphisms of simple sequence repeat DNA in soybean. *Genetics* **132**, 1131-39.

Alonso-Blanco, C., Peeters, A.J.M., Koornneef, M., Lister, C., Dean, C., van den Bosch, N., Pot, J. and Kuiper, M.T.R. (1998). Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. *The Plant Journal* **14**, 259-271.

Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. (1992). Map-based cloning of a gene controlling omega-3 fatty acid desaturation in *Arabidopsis. Science* **258**, 1353-1355.

Arumuganathan, K. and Earle, E.D. (1991). Nuclear DNA content of some important plant species. *Plant Mol. Biol. Rep.* **9**, 208-218.

Avramova, Z., Tikhonov, A., SanMiguel, P., Jin, Y.-K., Liu, C., Woo, S.-S., Wing, R.A. and Bennetzen, J.L. (1996). Gene identification in a complex chromosomal continuum by local genomic cross-referencing. *The Plant Journal* **10**, 1163-1168.

Bancroft, I., Love, K., Bent, E., Sherson, S., Lister, C., Cobbett, C., Goodman, H. and Dean, C. (1997) A strategy involving the use of high redundancy YAC subclone libraries facilitates the contiguous representation in cosmid and BAC clones of 1.7 Mb of the genome of the plant *Arabidopsis thaliana*. *Weeds World* **4**, 1-9.

Barakat, A., Matassi, G. and Bernardi, G. (1998). Distribution of genes in the genome of *Arabidopsis thaliana* and its implications for the genome organization of plants. *Proc. Natl. Acad. Sci.* USA **95**, 10044-10049.

Barciszewski, J. and Legocki, A.B. (1997). Two plant signalling peptides: systemin and ENOD 40. *Acta Biochimica Polonica* **44**, 795-802.

Bauwens, S., Van Oostveldt, P., Engler, G. and Van Montagu, M. (1991). Distribution of the rDNA and three classes of highly repetitive DNA in the chromatin of interphase nuclei of *Arabidopsis thaliana*. *Chromosoma* **101**, 41-48.

Bedbrook, J.R., Jones, J., O'Dell, M., Thompson, R.D. and Flavell, R.B. (1980). A molecular description of telomeric heterochromatin in Secale species. *Cell* **19**, 545-560.

Bell, C.J. and Ecker, J.R. (1994). Assignment of 30 microsatellite loci to the linkage map of *Arabidopsis*. *Genomics* **19**, 137-144.

Bennett, M.D. and Smith, J.B. (1976). Nuclear DNA amounts in angiosperms. *Phil. Trans. R. Soc. Lond.* **274**, 227-274.

Bennetzen, J.L., SanMiguel, P., Chen, M., Tikhonov, A., Francki, M. and Avramova, Z. (1998). Grass genomes. *Proc. Natl. Acad. Sci.* USA **95**, 1975-1978.

Berhan, M.A., Hulbert, S.H., Butler, L.G. and Bennetzen, J.L. (1993). Structure and evolution of the genomes of *Sorghum bicolor* and *Zea mays. Theor. Appl. Genet.* **86**, 598-604.

Bevan, M., Ecker, J., Theologis, S., Federspiel, N., Davis, R., McCombie, D., Martienssen, R., Chen, E., Waterston, B., Wilson, R., Rounsley, S., Venter, C., Tabata, S., Salanoubat, M., Quetier, F., Cherry, M. and Meinke, D. (1997). Objective: the complete sequence of a plant genome. *The Plant Cell* **9**, 476-478.

Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Van Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.-A., Patel,

K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T.,
Pohl, T.M., Terryn, N., Gielen, J., Villarroel, R., De Clerck, R., Van Montagu, M.,
Lecharny, A., Auborg, S., Gy, I., Kreis, M., Lao, N., Kavanagh, T., Hempel, S., Kotter,
P., Entian, K.-D., Rieger, M., Schaeffer, M., Funk, B., Mueller-Auer, S., Silvey, M.,
James, R., Montford, A., Pons, A., Puigdomenech, P., Douka, A., Voukelatou, E.,
Millioni, D., Hatzopolous, P., Piravandi, E., Obermaier, B., Hilbert, H., Düsterhöft, A.,
Moores, T., Jones, J.D.G., Eneva, T., Palme, K., Benes, V., Rechman, S., Ansorge, W.,
Cooke, R., Berger, C., Delseny, M., Voet, M., Volckaert, G., Mewes, H.-W.,
Klostermann, S., Schueller, C. and Chalwatzis, N. (1998). Analysis of 1.9 Mb of
contiguous sequence from chromosome 4 of *Arabidopsis thaliana*. *Nature* 391, 485-488.

Bonierbale, M.W., Plaisted, R.L., Tanksley, S.D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. *Genetics* **120**, 1095-1103.

Botella, M.A., Coleman, M.J., Hughes, D.E., Nishimura, M.T., Jones, J.D.G. and Somerville, S.C. (1997). Map positions of 47 *Arabidopsis* sequences with sequence similarity to disease resistance genes. *The Plant Journal* **12**, 1197-1211.

Bohuon, E.J.R., Keith, D.J., Parkin, I.A.P., Sharpe A.G. and Lydiate, D.J. (1996). Alignment of the conserved C genome of *Brassica oleracea* and *Brassica napus*. *Theor. Appl. Genet.* **93**, 833-839.

Bureau, T.E. and Wessler, S.R. (1992). *Tourist*: a large family of small inverted repeat elements frequently associated with maize genes. *The Plant Cell* **4**, 1283-1294.

Bureau, T.E. and Wessler, S.R. (1994). *Stowaway:* A new family of inverted repeat elements associated with the genes of both monocotyledenous and dicotyledonous plants. *The Plant Cell* **6**, 907-916.

Burke, D.T., Carle, G.F. and Olson, M.V. (1987). Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. *Science* 236, 806-812.

Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C. and Stuber, C.W. (1988). Gene mapping with recombinant inbreds in maize. *Genetics* **118**, 519-526.

Burr, B., Burr, F.A., Matz, E.C. and Romero-Severson, J. (1992). Pinning down loose ends: Mapping telomeres and factors affecting their length. *The Plant Cell* **4**, 953-960.

Büschges, R., Hollrichter, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. (1997). The barley *Mlo* gene: a novel control element of plant pathogen resistance. *Cell* **88**, 695-705.

Carabelli, M., Sessa, G., Baima, S., Morelli, G. and Ruberti, I. (1993). The *Arabidopsis Athb-2* and *-4* genes are strongly induced by far-red-rich light. *The Plant Journal* **4**, 469-479.

Casacuberta, E., Casacuberta, J.M., Puigdomenech, P. and Monfort, A. (1998). Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of *Arabidopsis thaliana*: characterisation of the *Emigrant* family of elements. *The Plant Journal* **16**, 79-85.

Cavell, A.C., Lydiate, D.J., Parkin, I.A.P., Dean, C. and Trick, M. (1998). Collinearity between a 30-centimorgan segment of *Arabidopsis thaliana* chromosome 4 and duplicated regions within the *Brassica napus* genome. *Genome* **41**, 62-69.

Chang, C. and Meyerowitz, E.M. (1991). Plant genome studies: restriction fragment length polymorphism and chromosome mapping information. *Curr. Opin. Genet. Dev.* **1**, 112-118.

Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S. and Meyerowitz, E.M. (1988). Restriction fragment length polymorphism linkage map for *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. USA* **85**, 6856-6860. Chen, M., SanMiguel, P., de Oliveira, A.C., Woo, S.-S., Zhang, H., Wing, R.A. and Bennetzen, J.L. (1997). Microcolinearity in *sh2*-homologous regions of the maize, rice, and sorghum genomes. *Proc. Natl. Acad. Sci. USA* **94**, 3431-3435.

Chen, M., SanMiguel, P. and Bennetzen, J.L. (1998). Sequence organization and conservation in *sh2/a1*-homologous regions of sorghum and rice. *Genetics* **148**, 435-443.

Cho, R.J., Mindrinos, M., Richards, D.R., Sapolsky, R.J., Anderson, M., Drenkard, E., Dewdney, J., Reuber, T.L., Stammers, M., Federspiel, N., Theologis, A., Yang, W.-H., Hubbell, E., Au, M., Chung, E.Y., Lashkari, D., Lemieux, B., Dean, C., Lipschutz, R.J., Ausubel, F.M., Davis, R.W. and Oefner, P.J. (1999). Genome-wide mapping with biallelic markers in *Arabidopsis thaliana*. *Nat. Genet.* **23**, 203-207.

Clarenz, O. (2000). Studien zur Genomkolinearität in der Familie der Brassicaceae. Diplomarbeit, Universität zu Köln.

Conner, J.A., Conner, P., Nasrallah M.E. and Nasrallah, J.B. (1998). Comparative mapping of the *Brassica* S locus region and its homeolog in Arabidopsis: Implications for the evolution of mating systems in the Brassicaceae. *The Plant Cell* **10**, 801-812.

Cooke, R., Raynal, M., Laudié, M., Grellet, F., Delseny, M., Morris, P.C., Guerrier, D., Giraudat, J., Quigley, F., Clabault, G., Li, Y.-F., Mache, R., Krivitzky, M., Gy, I.J.-J., Kreis, M., Lecharny, A., Parmentier, Y., Marbach, J., Fleck, J., Clément, B., Philipps, G., Hervé, C., Bardet, C., Tremousaygue, D., Lescure, B., Lacomme, C., Roby, D., Jourjon, M.F., Chabrier, P., Charpenteau, J.-L., Desprez; T., Amselem, J., Chiapello H. and Höfte, H. (1996). Further progress towards a catalogue of all *Arabidopsis* genes: analysis of a set of 5000 non-redundant ESTs. *The Plant Journal* **9**, 101-124.

Copenhaver, G.P. and Pikaard, C.S. (1996). Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in *Arabidopsis thaliana*, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. *The Plant Journal* **9**, 273-282.

Copenhaver, G.P., Browne, W.E. and Preuss, D. (1998). Assaying genome-wide recombination and centromere functions with *Arabidopsis* tetrads. *Proc. Natl. Acad. Sci.* USA **95(1)**, 247-252.

Coulson, A., Sulston, J., Brenner, S. and Karn, J. (1986) Toward a physical map of the genome of the nematode *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* **83**, 7821-7825.

Crespi, M.D., Jurkevitch, E., Poiret, M., d'Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E. and Kondorosi, A. (1994). enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. *EMBO Journal* **13**, 5099-5012.

Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S. and Coe, E.H. Jr. (1999). A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. *Genetics* **152**, 1137-1172.

Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: version II. *Plant Mol. Biol. Rep.* **1**, 19-21.

Delseny, M., Cooke, R., Raynal, M. and Grellet, F. (1997). The Arabidopsis thaliana cDNA sequencing projects. *FEBS Letters* **405**, 129-132.

Devos, K.M. and Gale, M.D. (1993). Extended genetic maps of the homoeologous group 3 chromosomes of wheat, rye and barley. *Theor. Appl. Genet.* **85**, 649-652.

Devos, K.M. and Gale, M.D. (1993). The genetic maps of wheat and their potential in plant breeding. *Outlook on Agriculture* **22**, 93-99.

Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X. and Gale, M.D. (1993a). Chromosomal rearrangements in the rye genome relative to that of wheat. *Theor. Appl. Genet.* **85**, 673-

680.

Devos, K.M., Millan, T. and Gale MD. (1993b). Comparative RFLP maps of homoeologous group-2 chromosomes of wheat, rye and barley. *Theor. Appl. Genet.* **85**, 784-792.

Devos, K.M. and Gale, M.D. (1997). Comparative genetics in the grasses. *Plant Molecular Biology* **35**, 3-15.

Erdmann, V.A., Szymanski, M., Hochberg, A., de Groot, N. and Barciszewski, J. (1999). Collection of mRNA-like non-coding RNAs. *Nucleic Acids Research* 27, 192-195.

Fabri, C.O. and Schäffner, A.R. (1994). An *Arabidopsis thaliana* RFLP mapping set to localize mutations to chromosomal regions. *The Plant Journal* **5**, 149-156.

Fedoroff, N. V. (1989). About maize transposable elements and development. *Cell* 56, 181-191.

Feuillet, C. and Keller, B. (1999). High gene density is conserved at syntenic loci of small and large grass genomes. *Proc. Natl. Acad. Sci. USA* **96**, 8265-8270.

Flavell, R.B., Bennett, M.D., Smith, J.B. and Smith, D.B. (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. *Biochem. Genet.* **12**, 257-269.

Flavell, R.B. and Smith, D.B. (1976). Nucleotide sequence organisation in the wheat genome. *Heredity* **37**, 231-252.

Flavell, R. (1980). The molecular characterization and organization of plant chromosomal DNA sequences. *Annu. Rev. Plant Phys.* **31**, 569-596.

Gale, M.D. and Devos, K.M. (1998). Comparative genetics in the grasses. *Proc. Natl. Acad. Sci. USA* **95**, 1971-1974.

Ganal, M.W., Lapitan, N.L.V. and Tanksley, S.D. (1988). A molecular and cytogenetic survey of major repeated DNA sequences in tomato (*Lycopersicon esculentum*). *Mol. Gen. Genet.* **213**, 262-268.

Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschnabel, U., Kaufmann, H., Thompson, R.D., Bonierbale, M.W., Ganal, M.W., Tanksley, S.D. and Salamini, F. (1991). RFLP maps of potato and their alignment with the homoeologous tomato genome. *Theor. Appl. Genet.* **83**, 49-57.

Gerlach, W.L. and Peacock, W.J. (1980). Chromosomal locations of highly repeated DNA sequences in wheat. *Heredity* **44**, 269-276.

Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman, H.M. (1992). Isolation of the Arabidopsis *ABI3* gene by positional cloning. *The Plant Cell* **4**, 1251-1261.

Grant, M.R., McDowell, J.M., Sharpe, A.G., de Torres Zabala, M., Lydiate, D.J. and Dangl, J.L. (1998). Independent deletions of a pathogen-resistance gene in *Brassica* and *Arabidopsis. Proc. Natl. Acad. Sci. USA* **95**, 15843-15848.

Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. 166, 557-580.

Harushima, Y., Yano, M., Shomura, A., Sato, M., Shimano, T., Kuboki, Y., Yamamoto, T., Lin, S.Y., Antonio, B.A., Parco, A., Kajiya, H., Huang, N., Yamamoto, K., Nagamura, Y., Kurata, N., Khush, G.S. and Sasaki, T. (1998). A high-density rice genetic linkage map with 2275 markers using a single F2 population. *Genetics* **148**, 479-494.

Hauge, B.M., Hanley, S.M., Cartinhour, S., Cherry, J.M., Goodman, H.M., Koornneef,
M., Stam, P., Chang, C., Kempin, S., Medrano, L. and Meyerowitz, E.M. (1993). An integrated genetic/RFLP map of the *Arabidopsis thaliana* genome. *The Plant Journal* 3, 745-754.

Helentjaris, T., Weber, D. and Wright, S. (1988). Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. *Genetics* **118**, 353-363.

Höfte, H., Desprez, T., Amselem, J., Chiapello, H., Caboche, M., Moison, A., Jourjon,
M.-F., Charpenteau, J.-L., Berthomieu, P., Guerrier, D., Giraudat, J., Quigley, F.,
Thomas, F., Yu, D.-Y., Mache, R., Raynal, M., Cooke, R., Grellet, F., Delseny, M.,
Parmentier, Y., de Marcillac, G., Gigot, C., Fleck, J., Philipps, G., Axelos, M., Bardet,
C., Tremousaygue, D. and Lescure, B. (1993). An inventory of 1152 expressed
sequence tags obtained by partial sequencing of cDNAs from *Arabidopsis thaliana*. *The Plant Journal* 4, 1051-1061.

Hong, G., Qian, Y., Yu, S., Hu, X., Zhu, J., Tao, W., Li, W., Su, C., Zhao, H., Qiu, L., Yu, D., Liu, X., Wu, B., Zhang, X. and Zhao, W. (1997). A 120 kilobase resolution contig map of the rice genome. *DNA Seq.* **7**, 319-335.

Hurka, H. and Neuffer, B. (1997). Evolutionary processes in the genus *Capsella* (*Brassicaceae*). *Pl. Syst. Evol.* **206**, 295-316.

Jespersen, H.M., Kjaersgard, I.V.H., Ostergaard, L. and Welinder, K.G. (1997). From sequence analysis of the three novel ascorbate peroxidases from *Arabidopsis thaliana* to structure, function and evolution of seven types of ascorbate peroxidase. *Biochem. J.* **326**, 305-310.

Koch, M., Haubold, B. and Mitchell-Olds, T. Comparative evolutionary analysis of the chalconesynthase and alcohol dehydrogenase from *Arabidopsis* and *Arabis* relatives. (eingereicht zur Veröffentlichung)

Konieczny, A. and Ausubel, F.M. (1993). A procedure for mapping *Arabidopsis* mutations using co-dominant ecotype-specific PCR-based markers. *The Plant Journal* **4**, 403-410.

Koornneef, M., van Eden, J., Hanhart, C.J., Stam, P., Braaksma, F.J. and Feenstra, W.J. (1983). Linkage map of *Arabidopsis thaliana*. *J. Hered.* **74**, 265-272.

Kopczak, S.D., Haas, N.A., Hussey, P.J., Silflow, C.D. and Snustad, D.P. (1992). The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. *The Plant Cell* **4**, 539-547.

Kowalski, S.P., Lan, T.-H., Feldmann, K.A. and Paterson, A.H. (1994). Comparative mapping of *Arabidopsis thaliana* and *Brassica oleracea* chromosomes reveals islands of conserved organization. *Genetics* **138**, 499-510.

Lagercrantz, U. and Lydiate, D. (1996). Comparative genome mapping in Brassica. *Genetics* **144**, 1903-1910.

Lagercrantz, U., Putterill, J., Coupland, G. and Lydiate, D. (1996). Comparative mapping in *Arabidopsis* and *Brassica*, fine scale genome collinearity and congruence of genes controlling flowering time. *The Plant Journal* **9**, 13-20.

Lagercrantz, U. (1998). Comparative mapping between *Arabidopsis thaliana* and *Brassica nigra* indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. *Genetics* **150**, 1217-1228.

Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. *Genomics* **1**, 174-181.

Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. (1996). A PCR-based approach for isolating pathogen resistance genes from tomato with potential for wide application in plants. *Nat. Genet.* **14**, 421-429.

Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A., Schulze-Lefert, P. (1998). Rapid reorganization of resistance gene homologues in cereal genomes. *Proc. Natl. Acad. Sci. USA* 1998 **95**, 370-375.

Leutwiler, L.S., Hough-Evans, B.R. and Meyerowitz, E.M. (1984). The DNA of *Arabidopsis thaliana*. *Mol. Gen. Genet.* **194**, 15-23.

Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.-I., Town, C.D., Fujii, C.Y., Mason, Y., Bowman, C.L., Barnstead, M., Feldblyum, T.V., Buell, C.R., Ketchum, K.A., Lee, J., Ronning, C.M., Koo, H.L., Moffat, K.S., Cronin, L.A., Shen, M., Pai, G., Van Aken, S., Umayam, L., Tallon, L.J., Gill, J.E., Adams, M.D., Carrera, A.J., Creasy, T.H., Goodman, H.M., Somerville, C.R., Copenhaver, G.P., Preuss, D., Nierman, W.C., White, O., Eisen, J.A., Salzberg, S.L., Fraser, C.M. and Venter, C. (1999). Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. *Nature* **402**, 761-768.

Lister, C. and Dean, C. (1993). Recombinant inbred lines for mapping RFLP and phenotypic markers in *Arabidopsis thaliana*. *The Plant Journal* **4**, 745-750.

Liu, Y.-G., Mitsukawa, N., Lister, C., Dean, C. and Whittier, R.F. (1996) Isolation and mapping of a new set of 129 RFLP markers in *Arabidopsis thaliana* recombinant inbred lines. *The Plant Journal* **10**, 733-736.

Livingstone, K.D., Lackney, V.K., Blauth, J.R., van Wijk, R. and Jahn, M.K. (1999). Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. *Genetics* **152**, 1183-1202.

Lydiate, D., Sharpe, A., Lagercrantz, U. and Parkin, I. (1993). Mapping the *Brassica* genome. *Outlook Agric*. **22**, 85-92.

Maluszynska, J. and Heslop-Harrison, J.S. (1991). Localization of tandemly repeated DNA sequences in *Arabidopsis thaliana*. *The Plant Journal* **1**, 159-166.

Marra, M., Kucaba, T., Sekhon, M., Hillier, L., Martienssen, R., Chinwalla, A., Crockett, J., Fedele, J., Grover, H., Gund, C., McCombie, W.R., McDonald, K., McPherson, J., Mudd, N., Parnell, L., Schein, J., Seim, R., Shelby, P., Waterston, R. and Wilson, R. (1999). A map for sequence analysis of the *Arabidopsis thaliana* genome. *Nat. Genet.* **22**, 265-270.

Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. and Tanksley, S.D. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. *Science* **262**, 1432-1436.

Martinez-Zapater, J.M., Estelle, M.A. and Somerville, C.R. (1986). A highly repeated DNA sequence in *Arabidopsis thaliana*. *Mol. Gen. Genet.* **204**, 417-423.

Mayer, K., Schüller, C., Wambutt, R., Murphy, G., Volckaert, G., Pohl, T., Düsterhöft, A., Stiekema, W., Entian, K.-D., Terryn, N., Harris, B., Ansorge, W., Brandt, P., Grivelli, L., Rieger, M., Weichselgartner, M., de Simone, V., Obermaier, B., Mache, R., Müller, M., Kreis, M., Delseny, M., Puigdomenech, P., Watson, M., Schmidtheini, T., Reichert, B., Portatelle, D., Perez-Alonso, M., Boutry, M., Bancroft, I., Vos, P., Hoheisel, J., Zimmermann, W., Wedler, H., Ridley, P., Langham, S.-A., McCullagh, B., Bilham, L., Robben, J., Van der Schueren, J., Grymonprez, B., Chuang, Y.-C., Vandenbussche, F., Braeken, M., Weltjens, I., Voet, M., Bastiaens, I., Aert, R., Defoor, E., Weitzenegger, T., Bothe, G., Ramsperger, U., Hilbert, H., Braun, M., Holzer, E., Brandt, A., Peters, S., van Staveren, M., Dirkse, W., Mooijman, P., Klein Lankhorst, R., Rose, M., Hauf, J., Kötter, P., Berneiser, S., Hempel, S., Feldpausch, M., Lamberth, S., Van den Daele, H., De Keyser, A., Buysshaert, C., Gielen, J., Villaroel, R., De Clercq, R., Van Montagu, M., Rogers, J., Cronin, A., Quail, M., Bray-Allen, S., Clark, L., Doggett, J., Hall, S., Kay, M., Lennard, N., McLay, K., Mayes, R., Pettet, A., Rajandream, M.-A., Lyne, M., Benes, V., Rechmann, S., Borkova, D., Blöcker, H., Scharfe, M., Grimm, M., Löhnert, T.-H., Dose, S., de Haan, M., Maarse, A., Schäfer, M., Müller-Auer, S., Gabel, C., Fuchs, M., Fartmann, B., Granderath, K., Dauner, D., Herzl, A., Neumann, S., Argiriou, A., Vitale, D., Liguori, R., Piravandi, E., Massenet, O., Quigley, F., Clabauld, G., Mündlein, A., Felber, R., Schnabl, S., Hiller, R., Schmidt, W., Lecharny, A., Aubourg, S., Chefdor, F., Cooke, R., Berger, C., Montfort, A., Casacuberta, E., Gibbons, T., Weber, N., Vandenbol, M., Bargues, M., Terol, J., Torres, A., Perez-Perez, A., Purnelle, B., Bent, E., Johnson, S., Tacon, D., Jesse, T., Heijnen, L., Schwarz, S., Scholler, P., Heber, S., Francs, P., Bielke, C., Frishman, D., Haase, D., Lemcke, K., Mewes, H.W., Stocker, S., Zaccaria, P., Bevan, M., Wilson, R.K., de la Bastide, M., Habermann, K., Parnell, L., Dedhia, N., Gnoj, L., Schutz, K., Huang, E., Spiegel, L., Sehkon, M., Murray, J., Sheet, P., Cordes, M., Abu-Threideh, J., Stoneking, T., Kalicki, J., Graves, T., Harmon, G., Edwards, J., Latreille, P., Courtney, L., Cloud, J., Abbott, A., Scott, K., Johnson, D., Minx, P., Bentley, D., Fulton, B., Miller, N., Greco, T., Kemp, K., Kramer, J., Fulton, L., Mardis, E., Dante, M., Pepin, K., Hillier, L., Nelson, J., Spieth, J., Ryan, E., Andrews, S., Geisel, C., Layman, D., Du, H., Ali, J., Berghoff, A., Jones, K., Drone, K., Cotton, M., Joshu, C., Antonoiu, B., Zidanic, M., Strong, C., Sun, H., Lamar, B., Yordan, C., Ma, P., Zhong, J., Preston, R., Vil, D., Shekher, M., Matero, A., Shah, R., Swaby, I.K., O'Shaugnessy, A., Rodriguez, M., Hoffman, J., Till, S., Granat, S., Shohdy, N., Hasegawa, A., Hameed, A., Lodhi, M., Johnson, A., Chen, E., Marra, M., Martienssen, R. and McCombie, W.R. (1999). Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. *Nature* **402**, 769-777.

McClintock, B. (1948). Mutable loci in maize. *Carnegie Inst. Wash. Yearbook* **47**, 155-169.

McDowell, J.M., Dhandaydham, M., Long, T.A., Aarts, M.G., Goff, S., Holub, E.B. and Dangl, J.L. (1998). Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the *RPP8* locus of Arabidopsis. *The Plant Cell* **10**, 1861-1874.

Meinke, D.W., Cherry, J.M., Dean, C., Rounsley, S.D. and Koornneef, M. (1998). *Arabidopsis thaliana*: a model plant for genome analysis. *Science* **282**, 662, 679-682.

Moore, G. (1995). Cereal genome evolution: pastoral pursuits with "Lego" genomes. *Curr. Opin. Genet. Dev.* **5**, 717-724.

Mozo, T., Dewar, K., Dunn, P., Ecker, J.R., Fischer, S., Kloska, S., Lehrach, H., Marra, M., Martienssen, R., Meier-Ewert, S. and Altmann, T. (1999). A complete BAC-based physical map of the *Arabidopsis thaliana* genome. *Nat. Genet.* **22**, 271-275.

Murray, M.G., Cuellar, R.E. and Thompson, W.F. (1978). DNA sequence organization in the pea genome. *Biochemistry* **17**, 5781-5790.

Murray, M.G., Palmer, J.D., Cuellar, R.E. and Thompson, W.F. (1979). Deoxyribonucleic acid sequence organization in the mung bean genome. *Biochemistry* **18**, 5259-5266.

Nam, H.-G., Giraudat, J., den Boer, B., Moonan, F., Loos, W.D.B., Hauge, B.M. and Goodman, H.M. (1989). Restriction fragment length polymorphism linkage map of *Arabidopsis thaliana*. *The Plant Cell*, **1** 699-705.

Newman, T., de Bruijn, F.J., Green, P., Keegstra, K., Kende, H., McIntosh, L., Ohlrogge, J., Raikhel., N., Somerville, S., Thomashow, M., Retzel, E. and Somerville, C. (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous *Arabidopsis* cDNA clones. *Plant Phys.* **106**, 1241-1255.

Olivas, W.M., Muhlrad, D. and Parker, R. (1997). Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. *Nucleic Acids Research* **25**, 4619-4625.

Parker, J.E., Coleman, M.J., Szabo, V., Frost, L.N., Schmidt, R., van der Biezen, E.A., Moores, T., Dean, C., Daniels, M.J. and Jones J.D.G. (1997). The Arabidopsis downy mildew resistance gene *RPP5* shares similarity to the Toll and Interleukin-1 receptors with *N* and *L6*. *The Plant Cell* **9**, 879-894.

Paterson, A.H., Lan, T.-H., Reischmann, K.P., Chang, C., Lin, Y.-R., Liu, S.-C., Burow, M.D., Kowalski, S.P., Katsar, C.S., DelMonte, T.A., Feldmann, K.A., Schertz, K.F. and Wendel, J.F. (1996). Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. *Nature Genet.* **14**, 380-382.

Pélissier, T., Tutois, S., Deragon, J.M., Tourmente, S., Genestier, S. and Picard, G. (1995). *Athila*, a new retroelement from *Arabidopsis thaliana*. *Plant Mol. Biol.* **29**, 441-452.

Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999). 'Green revolution' genes encode mutant gibberellin response modulators. *Nature* **400**, 256-261.

Prince, J.R., Pochard, E. and Tanksley, S.D. (1992). Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. *Genome* **36**, 404-417.

Pruitt, R.E. and Meyerowitz, E.M. (1986). Characterization of the genome of *Arabidopsis thaliana*. J. Mol. Biol. 187, 169-183.

Ramel, C. (1997). Mini- and microsatelites. *Environ. Health Perspect.* **105** Suppl. **4**, 781-789.

Richards, E.J. and Ausubel, F.M. (1988). Isolation of a higher eukaryotic telomere from *Arabidopsis thaliana*. *Cell* **53**, 127-136.

Richmond, T. and Somerville, S. (2000). Chasing the dream: plant EST microarrays. *Curr. Opin. Plant Biol.* **3**, 108-116.

Ronald, C.R. (1998). Resistance gene evolution. Curr. Opin. Plant Biol. 1, 294-298.

Round, E.K., Flowers, S.K. and Richards, E.J. (1997). *Arabidopsis thaliana* centromere regions: genetic map positions and repetitive DNA structure. *Genome Res.* **7**, 1045-1053.

Ruan, Y., Gilmore, J. and Conner, T. (1998). Towards *Arabidopsis* genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. *The Plant Journal* **15**, 821-833.

Sadowski, J., Gaubier, P., Delseny, M. and Quiros, C.F. (1996). Genetic and physical mapping in *Brassica* diploid species of a gene cluster defined in *Arabidopsis thaliana*. *Mol. Gen. Genet.* **251**, 298-306.

Sambrook, J., Fritsch, E.F. and Maniatis, T. (eds), 1989. Molecular cloning: a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, New York.

SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K., Lee, M., Avramova, Z., Bennetzen, J.L.

(1996). Nested retrotransposons in the intergenic regions of the maize genome. *Science* **274**, 765-768.

Sasaki, T. and Burr, B. (2000). International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. *Curr. Opin. Plant Biol.* **3**, 138-141.

Sato, S., Kotani, H., Hayashi, R., Liu, Y.G., Shibata, D. and Tabata, S. (1998). A physical map of *Arabidopsis thaliana* chromosome 3 represented by two contigs of CIC YAC, P1, TAC and BAC clones. *DNA Res.* **5**, 163-168.

Schena, M., Lloyd, A.M. and Davis, R.W. (1993). The *HAT4* gene of *Arabidopsis* encodes a developmental regulator. *Genes Dev.* **7**, 367-379.

Schmidt, R., West, J., Love, K., Lenehan, Z., Lister, C., Thompson, H., Bouchez, D. and Dean, C. (1995). Physical map and organization of *Arabidopsis thaliana* chromosome 4. *Science* **270**, 480-483.

Schmidt, R., West, J., Cnops, G., Love, K., Balestrazzi, A. and Dean, C. (1996). Detailed description of four YAC contigs representing 17Mb of chromosome 4 of *Arabidopsis thaliana* ecotype Columbia. *The Plant Journal* **9**, 755-765.

Schmidt, R. (1998). Physical mapping of the Arabidopsis thaliana genome. Plant Physiol. Biochem. 36, 1-8.

Schmidt, R., Acarkan, A., Koch, M. and Roßberg, M. (1999). A strategy for comparative physical mapping in cruciferous plants. In *Plant Evolution in Man-Made Habitats, Proceedings of the VIIth International IOPB Symposium Amsterdam* (eds. L.W.D. van Raamsdonk and J.C.M. den Nijs), Hugo de Vries Laboratory, Amsterdam, The Netherlands, pp. 183-196.

Schweizer, G., Borisjuk, N., Borisjuk, L., Stadler, M., Stelzer, T., Schilde, L. and Hemleben, V. (1993). Molecular analysis of highly repeated genome fractions in *Solanum* and their use as markers for the characterization of species and cultivars. *Theor. Appl. Genet.* **85**, 801-808.

Shizuya, H., Birren, B., Kim, U.-J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in *Escherichia coli* using an F-factor-based vector. *Proc. Natl. Acad. Sci. USA* **89**, 8794-8797.

Simoens, C.R., Gielen, J., Van Montagu, M. and Inzé, D. (1988). Characterization of highly repetitive sequences of *Arabidopsis thaliana*. *Nucl. Acids Res.* **16**, 6753-6766.

Smith, D.B. and Flavell, R.B. (1977). Nucleotide sequence organisation in the rye genome. *Biochim. Biophys. Acta* **474**, 82-97.

Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim. H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C. and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. *Science* **270**, 1804-1806.

Surzycki, S.A. and Belknap, W.R. (1999). Characterization of repetitive DNA elements in *Arabidopsis. J. Mol. Evol.* **48**, 684-691.

Tanksley, S.D., Bernatzky, R., Lapitan, N.L. and Prince, J.P. (1988). Conservation of gene repertoire but not gene order in pepper and tomato. *Proc. Natl. Acad. Sci.* USA **85**, 6419-6423.

Tanksley, S.D., Ganal., M.W., Prince, J.P., de Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Röder, M.S., Wing, R.A., Wu, W. and Young, N.D. (1992). High density molecular linkage maps of the tomato and potato genomes. *Genetics* **132**, 1141-1160.

Teramoto, H., Toyama, T., Takeba, G. and Tsuji, H. (1996). Noncoding RNA for CR20, a cytokinin-repressed gene of cucumber. *Plant Molecular Biology* **32**, 797-808.

Teutonico, R.A. and Osborn, T.C. (1994). Mapping of RFLP and qualitative trait loci in *Brassica rapa* and comparison to the linkage maps of *B. napus*, *B. oleracea*, and *Arabidopsis thaliana*. *Theor. Appl. Genet.* **89**, 885-894.

Tikhonov, A.P., SanMiguel, P.J., Nakajima, Y., Gorenstein, N.M., Bennetzen, J.L. and Avramova, Z. (1999). Colinearity and its exceptions in orthologous *adh* regions of maize and sorghum. *Proc. Natl. Acad. Sci. USA* **96**, 7409-7414.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. *Nucl. Acids Res.* **23**, 4407-4414.

Whitkus, R., Doebley, J. and Lee, M. (1992). Comparative genome mapping of sorghum and maize. *Genetics* **132**, 1119-1130.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucl. Acids Res.* **18**, 6531-6535.

Xia, X., Selvaraj, G. and Bertrand, H. (1993). Structure and evolution of a highly repetitive DNA sequence from *Brassica napus*. *Plant Mol. Biol.* **21**, 213-224.

Yamamoto, K. and Sasaki, T. (1997). Large-scale EST sequencing in rice. *Plant Mol. Biol.* **35**, 135-144.

Yang, Y.W, Lai, K.N., Tai, P.Y. and Li, W.H. (1999). Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between *Brassica* and other angiosperm lineages. *J. Mol. Evol.* **48**, 597-604.

Zachgo, E.A., Wang, M.L., Dewdney, J., Bouchez, D., Camilleri, C., Belmonte, S., Huang, L., Dolan, M. and Goodman, H.M. (1996). A physical map of chromosome 2 of *Arabidopsis thaliana. Genome Res.* **6**, 19-25.

Anhang

I Daten der genetischen Kartierungsexperimente in Capsella

Kartierungspopulation: 50 F2-Pflanzen aus einer Kreuzung zwischen Capsella grandiflora und Capsella rubella

- 1 = Genotyp der F2-Pflanze: *Capsella grandiflora* homozygot
- 2 =Genotyp der F2-Pflanze: heterozygot
- 3 = Genotyp der F2-Pflanze: *Capsella rubella* homozygot
- = Genotyp der F2-Pflanze nicht ermittelt

m518A	213221222122-111211221212232232221212113222333
mi306	2132222221222221223222222122232232221212123222333
m448A	213222222122222122322322221-2332222221112123222332
m315Bb	2132222221222212233232222-22332222221112123223332
mi122	2132222322222212233232222122332222221112123223322
mi51	21322223222222122332322221223332222211121232222
mi30	21-222222222222222222222222222222222222
ATTS0636	213222222221222232223322331222232221212223323222
m326B	213222222212223222322-3312222322222222
ATTS2243	21322222222122122312232223312231212222212223323221
EST5760	2-3-222222-1-21223-2232223312231212222212222323221
cDNAJ	21322222222122122312232223312231212222212222323221
mi330a	2132222222122122312232223313231212222211222323221
m557A	2232222221-2122312332223323231212222111222323221
EST5149	222122221-212131223-2-2323321222323121232233211
mi123	3222221122213222131223222223321122323221232-32211
mi232	3222221122213222131223222223321122323221232-32111
EST17698	32222112222132232312231232223321122323221322232111
mi431	32222112222132232212231232223321122323221322232111
ATTS2212a	32212112222132222212231232223321122323221322232111
ATTS3374a	32212112222132222212231232223221122323221322232111
mi369	322121122221322222122312322232211223232223223
mi390	2-3-21232122-1233212323322312312322222212133322321
ATTS3374b	223121232222-1233212323322312312322222212133322321
m211A	31231211223221222211122-2222122222212222121222212
mi330b	12233312222132223222322332313222111123121122122
EST3486a	32123122123313213222122213311-232222122222321
m315Ba	3212312212331321322212111222133112232222122222321
ATTS2212b	213-1132111222111222-1212222212323132222232232
m235A	-12232122232122223221122-2223222-3112321232
m254A	-1222-12222313222231311-11222322223212321
EST3486b	21131111222213223231331111122212213222231312222122
EST21484	2113111222221322333223211111211121322223221222122
m249A	-1322-2113121-12122112132323222222231321322232231
m457A	31222111131112121221121323222221-2-3122232223

EST5760 2-3-22222-1-21223-2232223312231212222212222323221 54-I/54X06 213222222212212231-23222331223121322221222323221 cDNAJ 213222222212212231223222331223121222221222323221

II Daten der Kopplungsanalyse in Capsella

MAPMAKER, lod-Wert 3, Haldane cM-Funktion

mi30	0 cM	m518A	$12.1 \mathrm{cM}$
ATTS0636		mi306	
m326B	2,1 cM	m448A	5,5 cM
ATTS2243	8,0 cM	m315Bb	2,1 cM
EST5760	1,0 cM	mi122	3,2 cM
	0 cM	mi51	1,1 cM
	2,1 cM	1111.5 1	23,9 сМ
m1330a	4,5 cM		
m557A	21,6 cM	mi390	1,1 cM
EST5149	9.1 cM	ATTS3374b	
mi123	1.0 cM		
mi232		EST3486a	0. M
EST17698	9,2 CM	m315Ba	0 CM
mi431	1,0 cM		
ATTS2212a	2,1 cM	m235A	
ATTS3374a	1,0 cM	m254A	13,6 cM
m;260	1,0 cM	11125 17 1	
1111309	63,9 cM		
		EST3486b	11.8 cM
		EST21484	
		m249A	

11.8 cM

m457A

III Sequenzen

Aufgeführt sind die im Rahmen dieser Arbeit ermittelten cDNA-Sequenzen sowie die genomischen Sequenzen von *Capsella rubella*, die den untersuchten *Arabidopsis thaliana* cDNA-Sequenzen entsprechen. Wurden für die Vergleiche Genvorhersagen oder andere Datenbanksequenzen verwendet, so sind die entsprechenden Sequenzen ebenfalls aufgeführt.

Translatierbare Bereiche sind in Fettdruck dargestellt. In Fällen, in denen kein längeres offenes Leseraster in den cDNAs bzw. den abgeleiteten Genen gefunden wurde, sind die Exonsequenzen durch Großbuchstaben und die Intronsequenzen durch Kleinbuchstaben dargestellt. Unterstrichene Bereiche in den cDNA-Sequenzen zeigen keine Homologie zur entsprechenden genomischen Sequenz in *Arabidopsis thaliana*, sie repräsentieren Klonierungsartefakte.

Sequenz des Arabidopsis thaliana cDNA-Klons 13004 (EST 1)

1	AGGCAAATCT	GCATTTCTCT	CTAAGTAGAA	GTGGGATTCT	CAGTCTAGAT
51	CGAGGAGATG	CTGTAATTGA	AATCACAGAA	TGGGTAGACG	TTCCTAAGAA
101	GAACGTGACT	ATTGATAGTA	ACACAACTAC	ATCAACAGGC	AATGCCACTG
151	ACGAGAATTC	ACAAGAAAAT	AAAGAAGACC	TGCAAACCGA	TGCTGAAAAC
201	AGCACTGCTT	CAAATACAAC	AGCAGAAGAG	CCAGCTGTTG	CTTCTCTGGG
251	CACAGAAAAA	AAGCTGAAGA	AGCGGACATT	CAGAATACCT	CTGAAGGTAG
301	TTGAGAAAAC	TGTTGGACCT	GGAGCACCAT	TTTCGAAAGA	GTCTCTTGCT
351	GAAGCTAAGA	TAAAATTAGA	AGCCTTGGAC	AAGAAAGATA	GGGAAAGAAG
401	AAGAACGGCT	GAGTTAAAAA	ACAACCTTGA	ATCTTATATA	TATGCTACCA
451	AAGAGAAGCT	GGAAACACCC	GAGTTTGAAA	AGATATCCAC	CCAAGAAGAG
501	CGCAAGGCGT	TTGTTGAAAA	GCTTGATGAG	GTGCAAGATT	GGCTTTACAT
551	GGATGGAGAA	GATGCTAATG	CCACAGAGTT	TGAGAAGCGG	CTTGACTCAC
601	TTAAAGCCAT	CGGCAGTCCC	ATATCTTTCC	GATCAGAGGA	GCTTACAGCA
651	CGACCAGTAG	CAATTGAATA	TGCTAGGAAA	TACCTAACTG	AACTCAAAGA
701	GATCATAAAA	GAATGGGAGA	CGAACAAAAC	TTGGCTTCCA	AAAGAAAAAA
751	TCGACGAGGT	CTCAAAGGAA	GCAGAGAAAG	TAAAAAGCTG	GTTAGATAAG
801	AATGTGGCTG	AGCAAGAAAA	GANTTCTCTG	TGGAGCAAAC	CGGTGTTCAC
851	GTCCACTGAA	GTGTACGCTA	AAGTATTTAC	TNTACAAGAC	AAGGTCACAA
901	AGGTGAATAA	GATCCCAAAG	CCAAAGCCAA	AGATAGAGAA	AGTAACCAAG
951	ACGGAGAACA	CAACAAAGGA	GGAGGAACAA	TCAAAATCCT	NTGATGAAGC
1001	TGCCAAAGAA	GAAGAAAGTC	ACGACGAGCT	TTGA TTAAGG	АТАТААТААА
1051	TAGAGTTTTC	GTTAATTTTT	GTGTTTTTAA	GAGGGAAAAT	AGGATTAAAA
1101	GTAGGCAGCT	GAGATGAGCA	AAAGGATTTT	ATTCCTTTCT	CCTCAACTTT
1151	TTCACATCAC	CATTAGAAAC	GGAATNTTCT	GTGTTTTTGT	TTTTCATTAT
1201	ATCAAGTTTT	GGTCTCTCTA	TTTCTATAAC	TGAATNTTCA	ATATATTTAG
1251	TAGAAGTTTA	TAACCNAAAA	ААААААААА	ААААААААА	ААААААААА
1301	A				

Sequenz des abgeleiteten Genfragments 1 (Capsella rubella)

- 1 GATCCCAAAG CCAAAGCCAA AGATAGAGAA AGCAACAAAG AAAGAGAACA
- 51 CAACGAAGGA GGAGAAAGAG GAACAATCAA AAGCCTCAGA CTCCAATTCT
- 101 TCTTCCGATG AAGCTGGCAG CAAAGACGAG CTTTGA

Sequenz des Arabidopsis thaliana cDNA-Klons 5760 (EST 2)

- 1 CAAGTGATCG AATATTTGAT TCTTTTTCAT GATCAGAGAT CTGATCTAAA
- 51 TGGAGTATGA CCGTACGTTG AACTTGATTC CATACGGACT ACAAGGAGTA
- 101 AGAGAGGAGG AAGAAATCGA AGAAGACGAT GAAGAGAGCA TGACGTTGTC

151	GTCAGTACCA	GAAAACGAAA	CGTCGGAGTG	TTCTTCGCCT	CCGGCGACGT
201	ATCCTCCAAT	CCCTCCTCGG	CCTAAAACAC	CGAGAGAGCC	GATGGAGTTT
251	CTATGCAGAT	CATGGAGTCT	TTCTACTTCT	GAGATCTCTT	TAGCTTTATC
301	ATCTCAGAAA	TCTGATAAAC	AACTCAACAA	AAACCCTAAT	ATTTCTCAGT
351	TGGCCGATGT	CACTTCTCTG	GCTCCGGTAG	CACCACCACC	GCCGCTACAA
401	ACGGGAAAGC	TAGCGAGTGC	GGTTCACGCG	CGGAGAACGG	GAACGATCGG
451	AAAATGGTTC	CACCACCGAG	AATTCGTCGG	CGGGAAGGTC	TCCGCCGTGA
501	AGAAGAGAGA	TAGAGTTCGC	GTGGAGAAAG	CTCATCTGCA	TTCCGCCGTG
551	TCCATTGCGT	CTCTGGCGAC	GGCAATCGCC	GCAGTGACCG	CTTCAGGCAA
601	TCAAGACGGC	TTCGCTGGAT	CAAAGATGAG	CTCAGCCCTT	GCCTCGGCGT
651	CGGAGTTGTT	AGCTTCTCAC	TGCCTCGAAT	TGGCGGAGCT	TGCCGGCGCC
701	GATCACGATC	GCGTCGTCTC	TGCTGTCCGA	TCAGCTGTTG	ATGTTCGTGG
751	ACCTGGCGAT	TTGTTGACTC	TAACTGCTGC	AGCTGCAACA	GCATTGAGAG
801	GAGAAGCAGC	TTTGAGGGTT	AGACTACCAA	AGGAAGCTAA	GAACAGTGCA
851	GCTATAAGCC	CCTGTGAGAG	AGTTTTACCA	GAGACTCATA	GTTGCTCTTC
901	TGAGCTCGAT	CGCACTAGCA	CGACCGATGA	ACTCATATCT	GCAAAAGGAG
951	TTGAAGAATC	AACTGGAGAG	CTAATGCAGT	GCACACGAAA	CGGTGTTNTG
1001	CGGTGGAAGC	ATGTAAAAGT	GTACATCAAC	AAAAAATCTC	AGGTCATAGT
1051	AGAAATCAAA	AGCAAACACG	TTGTAGGAGC	ATTCTCCATG	AAAAGCAAAG
1101	GCATTGTAAA	TGATGTATGC	GAGACAGTCT	CAGGCCTGCA	AAATGGAAAA
1151	GACACGGAAA	ACACAGAAGA	AGAGCTCTAT	TTCGGAATCA	GTACAGGGAA
1201	AGGTCTGACA	AAGTTCAAGT	GCAAGAGCAA	GGCTGATAAG	CAGACATGGG
1251	TGGATAGCAT	CCGGAATCTT	CTCCATCGAG	TAACTGCTGT	TGAGGTCGAC
1301	ACTTCTCTTG	АААСТАТААА	CATTAACGAT	AGCACATAA A	TCATGATGTC
1351	TTGTGTTAAC	GGTGTTAGTG	TTGGTTATTT	TCATTACAAG	CCAATGATAT
1401	GTATTGTTTC	AAGAACATAN	ACATATCTGC	AAGTAGGTGT	AGTGTTTTTC
1451	ATCTTCGTCA	CTTGTTTTTA	TTTCAGTCAA	ATTGTAAACA	TTGTTTTGTG
1501	GAAATAATGA	AGAAGATTAT	ААТАААААА	ААААААААА	AAAAAA

Sequenz des abgeleiteten Gens 2 (Capsella rubella)

1	ATGGAGCATG	ACCGTACGTT	CGACTTGTTT	CCATACGGAC	TACAAGAAGT
51	CGCCGAGGAA	GAAGAAATCG	AAGAGTTAGA	AAGAGATGAC	GAGAGCATGA
101	CGCTGTCGTC	GGTGCCGGAA	AACGATACGT	CGGAGTGTTC	TTCATCTCCG
151	GCTATGTATC	CTCCGATCCC	TCCTCCGCCT	AAAACTCCGA	GAGAGCCTAT
201	GGAGTTTCTA	TGCAGATCAT	GGAGCATGTC	TACGTCTGAG	ATCTCTTTAG
251	CTTTGTCTTC	TCAGAAACCT	ААТАААСААА	CCAACAAAGA	ATCTAATATT
301	TCTAAGTTGG	ACGCCGTACC	TTCGCCGGCT	CCGGCACCAT	CACCACCAGT
351	TCCACCACCA	CCGCCGCTAC	TA GTAAGTCT	CTCTTGCTTC	TCCATCTTCA
401	GTTTTAGTGT	CTTTTTATGA	TTTGTATGCT	ACGATCATGC	AAATAAGGTG
451	TTTTATCGTA	CGGGCCAATA	ATTTGTTCAT	AGGCCCAAAA	TTATATAATA
501	CCCATATCTT	GGAAAAGCCC	ATAATATTTA	AACTGTTTCT	TCGACAG ACG
551	GGAAAGCAAC	CGAGTGTGGT	AAACGCGCGG	AGGACGGGAA	CGCTCGGTAA
601	ATGGTTCCAC	CACCGAGAAA	TTGTCGGAGG	TAAAGGCTCC	GCCGTAAGAA
651	AGAGAGATAA	AGCTCGAGTG	GAGAATGCGC	ATCTACATTC	CGCCGTATCG
701	ATTGCGTCTC	TGGCGACGGC	CATCGCCGCC	GTGACAGCTT	CGTGCAGCCA
751	AGACGGCTTC	ACGGAATCAA	AGACGATGAG	TTCAGCGCTG	GCTTCGGCTT
801	CGGAGCTGTT	GGCTTCTCAC	TGCCTCGAAT	TGGCGGAGCT	CTCCGGAGCC
851	GGTCACGATC	GTGTCGTCTC	TGCAGTCCGA	TCTGCCGTAG	ATGTTCGTGG
901	ACCTGGCGAT	TTGTTGACTT	TAACTGCTGC	AGCTGCAACT	G GTAAATTCA
951	TCCTTGACCT	TGATCAGATC	TTTCTTTTTG	CTACAATGGC	GTAAACTTAG
1001	TCCAATGCAT	ATTTGAGTTG	ATCTTTCGAT	TTGGTTTCAT	GATAAGATTT
1051	ATGTTTATGG	CTTTTCTGAT	AATGTAG CAT	TGAGAGGAGA	AGCAGCTTTG
1101	AGGGCAAGAC	TACCAAAGGA	AGCTAAGAAC	AACGCAGCTA	TAAGCCCTTG
1151	CGAAAGAGCT	TTACCAGAAA	CTCATGATTG	TTCTTCTGAG	GTCGATTGCG
1201	CTAGCACGAC	CGATGAACAG	ATCTCTGCAC	AGGGAGATGA	AGAATCAAAA
1251	CTGGATTGTA	CTGGAGATCT	AATGCAGTGC	ACACGAAACG	GTAATATTTT
1301	CAGCAAGAGA	GCTTATTCTT	TGCTGATTGC	TGTGAATGAT	GATATTCTAT
1351	TTCAAGAAAG	TGTATATTCG	GCCTATGTAA	TTTGAACAAC	AAATAACTTT
1401	CACTTACCGA	TATTGATAAA	CCGACCTATG	AACCTGTCAG	GAGCTTTTCG
1451	GTGGAAGCAT	ATAAAAGTGT	ACATCAACCA	GAGATCTCAG	GTTAAAAAAA
1501	AAAAGCAAAA	ACTCATCAAA	GCAAAAAAGT	TTTATGGTTG	TCAAATTCTA
1551	GAGTTGACAT	TCAACTCGTT	TTCTCTTGCA	G GTTGTAGTA	GAAATCAAAA

1601	GCAAACACGT	CAGAGGAGCG	TTCTCCATGA	AAAGCAAAG G	TAGTTAACTA
1651	ACTATTGTCA	CCTTCAGATA	TCTCTTCTTT	CTTTCAATGG	TCGTGGTGTT
1701	CATTTGTGTA	AAGCCAAAGT	AGTCTTGAGA	CTTTTTCCAA	TGCTTACTTG
1751	ATCCAATGGT	TATATCACTA	CACACTATAG	GAATTGTAAA	CGATGTATGC
1801	GAGATCGTCT	CGGGCCTGCA	ATATGGAAAA	GAAACAGAAA	ACGCAGAAGA
1851	AGAGCTCTAC	TTCGGAATCA	GTACTGGGAA	AGGTCTAACG	AAGTTCAAGT
1901	GCAAGAGCAA	GGCTGATAAG	CAGACATGGA	TGGATGACAT	CCGGAATCTT
1951	CTCCATCGGG	TAACTGCTGT	TGAGGTTACC	AACACTTCTC	TTGAAACTAC
2001	AAACATTGCC	GATAGCACAT	AA		

Sequenz des Arabidopsis thaliana cDNA-Klons A

1	ATTAGATTTC	AGAGCTAACT	CTGAGAATTA	GGGTTCGTCT	CTCGACAAAC
51	АААААТСТСА	GCCCCGTGGA	ATCTATTCTG	GTGTAAATCG	AAGAATGGAG
101	ACTAATGTTC	CGGAGAAGAA	GATCCTTGGT	TTCCCGGAAG	AGATGAATTC
151	GACAATTCAG	TTTTTATCTG	TTGAGAAAAC	AACATGTCGT	CTTCCTGTTT
201	СТАТААААТТ	CAATATACCA	AAGAAAATTT	CTACAAAGAG	AAGAAGAATA
251	TCTGTAGAAG	AAGAAGAAGA	AGAAGAAGAC	GAGAATAAAA	CGAAGTTGAG
301	TTCTTGGGAG	AAGGTTTTGA	GTAGCGATGA	GATTTTGAGG	TTAAGGGAAG
351	TTTCAAGACG	AAAGTATTTG	ACGGATCGAG	AGAATAAGAA	GGTGGAGGAG
401	TTAAGGGATG	AGATCAAAGA	CGAGATTATG	TTGAATGATG	GTGTGAAGAT
451	GCCTAAGAAG	GAAGTAATTG	AGTTTAGATA	TAAGAGAGCA	TTGTATGAGT
501	TGGTGAAGAA	AACAGAGGAT	GATGATGATG	TTGAAGGGTA	TAGGTTTCCA
551	GATGCTTATG	ATCAAGAAGG	GTGTATTGAT	CAGAAGAAGA	GGTTTGATGT
601	TGCCAAGGAG	AGGTATTGTG	AGCGAAGAAG	GAGCGGGAGA	GTTGTTACGG
651	AGCAAGAAGC	TTGGGAGGAT	CATCAGGCTC	AGAAAGCGAG	AGTGAGGTTT
701	GGTGCAAAGG	ATAAGAAGCA	AGTTGTTGAT	GGGTATGAGT	TTGTGTTTGA
751	TGATTTGACA	GGCTTTGTTG	AGGAGTCTAG	CGAGGCGGAA	ACTGGGAAAC
801	ATCGAGGTTG	TTATTCGAAG	ACTGCTGCAG	AGAAGGCTCG	GGAGGGGAGG
851	GAGTTTCTTC	CGATTCATGG	GTACAGGGAG	GAACTGCTGA	AACTTATTGA
901	AGAGAATCAG	GTTCTTGTCA	TTGTTGGAGA	GACAGGATCG	GGTAAAACTA
951	CGCAGATACC	GCAGTATCTT	CAAGAAGCCG	GTTACACAAA	GCGTGGAAAG
1001	ATCGGTTGTA	CTCAGCCTCG	GAGAGTTGCT	GCAATGAGCG	TTGCTTCCCG
1051	AGTGGCTCAA	GAGGTTGGTG	TTAAACTTGG	ACATGAGGTT	GGATATTCCA
1101	TTAGATTTGA	AGACTGTACT	TCAGAGAAAA	CAGTTATCAA	GTACATGACT
1151	GATGGGATGC	TGCTACGAGA	GCTACTCATA	GAACCGAAAC	TCGATAGCTA
1201	TAGTGTCATC	ATTATTGATG	AGGCGCACGA	AAGAACACTG	TCCACTGATA
1251	TTTTGTTTGC	GTTAGTGAAG	GATGTAGCCA	AGGTTAGGCC	TGATCTGAGG
1301	TTAATAATCT	CCAGTGCAAC	GCTTGAAGCT	AAAAAGTTCT	CCGAATACTT
1351	TGATTCGGCT	CGGATTTACC	TGATTCCAGG	AAGAAGATAT	CCAGTTGAAA
1401	AGCTCTTCAG	AAAATGTCCT	GAACCTGACT	ACTTGGAGAC	AGTGATACGC
1451	ACTGTGGTTC	AGATACATCA	GACTGAGGCG	ATAGGAGACA	TTTTAGTTTT
1501	CCTCACTGGT	CAAGAAGAGA	TCGAAACAGT	AGAAACGAAT	TTGAAGCGAA
1551	GGATGATGGA	TTTGGGTACA	AAGGGATCTG	AGATCATTAT	CTGTCCTATC
1601	TACTCAAATC	TCCCAACTCC	ACTACAGGCA	AAAGTGTTTG	AACCGGCCCC
1651	TAAAGGGACA	CGGAAAGTTG	TCTTGGCAAC	GAATATTGCA	GAAACATCGT
1701	TAACCATTGA	TGGGGTTAAA	TACGTCATTG	ATCCAGGATA	TTGCAAGATC
1751	AACTCATACA	ACCCGAGAAC	GGGAATGGAG	TCACTCCTTG	TAACTCCTAT
1801	TTCCAAGGCT	TCCGCAGCGC	AACGAGCTGG	TCGGTCTGGA	AGAACAGGTC
1851	CTGGGAAATG	TTTCCGGTTG	TACAATATCA	AGGATTTAGA	GCCCACTACA
1901	ATACCGGAAA	TCCAAAGGGC	TAACCTTGCA	AGTGTTGTGC	TTACTTTGAA
1951	GAGTCTTGGG	ATTCAAGATG	TGTTCAATTT	TGATTTCATG	GATCCTCCAC
2001	CTGAAAACGC	TCTTTTGAAG	GCTCTAGAGT	TGCTCTATGC	GCTGGGTGCT
2051	TTGGATGAAA	TTGGTGAGAT	TACTAAGGGA	ACTCGGTCTT	CTATCGACCA
2101	AAGAACCAGC	AAGTTTTCGC	CGACAAGGCT	CGGATGGATT	TCTATGAAGA
2151	TACAGAGAAC	GTCGGCGATC	ACATTGCATT	GTTAAGGGTT	TACAATTCCT
2201	GGAAGGAAGA	АААСТАСТСА	ACTCAATGGT	GCTGCGAGAA	GTTCATTCAG
2251	AGCAAGAGTA	TGAAAAGGGC	AAGAGATATA	CGTGACCAGC	TACTTGGACT
2301	TTTAAACAAG	ATTGGAGTAG	AACTTACTTC	CAACCCGAAT	GATTTAGACG
2351	CAATAAAGAA	AGCAATCTTG	GCCGGATTCT	TCCCGCATTC	TGCAAAGTTA

2401	CAAAAGAATG	GATCGTACAG	AAGAGTCAAA	GAACCTCAGA	CAGTTTATGT
2451	ACACCCTAAC	TCAGGCTTAT	TTGGGGCGTC	ACCTAGTAAG	TGGTTGGTGT
2501	ATCATGAACT	AGTACTTACT	ACCAAGGAAT	ATATGAGGCA	TACAACTGAA
2551	ATGAAGCCTG	AGTGGCTAAT	TGAAATAGCT	CCTCATTACT	ACAAGCTTAA
2601	AGACATTGAA	GATACTCGGC	CAAAGAAAAC	ACAGAGAAGA	ATCGAAGAAG
2651	CCTCGACGTC	TAAGGTTGAT	ACTAACAAGA	AAACCCGGAC	CTCGAAGGTT
2701	GATACTAACA	AGAAATCAAA	GAGGTAACAA	CCAAACTAGT	CGTTTCTCTT
2751	TACTGTTTCT	GAACGAAGTT	AAAGCAATTG	TGATACTAGT	ACTTTTTTAT
2801	CCGTTTTTCT	CTGAAAGATT	CTTATGTTTA	AGTCATCATT	TACTGACTAT
2851	TGTTTATTTT	TATCTTATAA	ACGCATGATT	CTGGGTTTTT	TCGAGTCTTT
2901	ACTGGAGACT	ATAGACAACT	GATTAGAAAG	ACAGAAGAAA	ATCAAGTATG
2951	CAGAAGTGAC	AGAGAAACTC	ACCGTGATTG	TCATCGGGGA	AGAAGCCATG
3001	GAGAAACACA	TGGACATTTC	TCCGTTTCAA	GAGAAGTGTC	GACCTCAACA
3051	GCAGTTACTC	GATGGAGAAG	ATTCCGGATG	CTATCCACCC	ATGTCTGCTT
3101	ATCAGCCTTG	CTCTTGCACT	TGAACTTTGT	CAGACCTTTC	CCTGTACCGA
3151	TTCCGAAATA	GAGCTCTTCT	TCTGTGTTTT	CCGTGTCTTT	TCCATTTTGC
3201	AGGCCTGAGA	CTGTCTCGCA	TACATCATTT	ACAATGCCTG	TAGTGATTCA
3251	ACCACTGGAT	TATTGTAAAG	CATTGGACAA	AGTCCCAAGA	TCACTCTGCT
3301	TATACAAATG	AACCCCTTGG	CCTTTGAAAG	AAAGAAGAGT	AGCTCACTAA
3351	CCTTTGCTTT	TCATGGAGAA	TGCTCCTACA	ACGTGTTTGC	TTTTGATTTC
3401	TACTATGACC	TGCAAAAGAG	AAACCGAGCA	AAATTCAACT	CTAGAATTCA
3451	ACCAGCATAT	AACTTTGTTA	GCTTCAATGA	GTATTCGATG	TTTTAACCTG
3501	AGATTTTTTT	GTTAAAAAAA	ААААААААА	ААААААА	

Sequenz des abgeleiteten Gens A (Arabidopsis thaliana)

1	ATTAGATTTC	AGAGCTAACT	CTGAGAATTA	GGGTTCGTCT	CTCGACAAAC
51	АААААТСТСА	GCCCCGTGGA	ATCTATTCTG	GTGTAAATCG	AAGAATGGAG
101	ACTAATGTTC	CGGAGAAGAA	GATCCTTGGT	TTCCCGGAAG	AGATGAATTC
151	GACAATTCAG	TTTTTATCTG	TTGAGAAAAC	AACATGTCGT	CTTCCTGTTT
201	CTATAAAATT	CAATATACCA	AAGAAAATTT	CTACAAAGAG	AAGAAGAATA
251	TCTGTAGAAG	AAGAAGAAGA	AGAAGAAGAC	GAGAATAAAA	CGAAGTTGAG
301	TTCTTGGGAG	AAGGTTTTGA	GTAGCGATGA	GATTTTGAGG	TTAAGGGAAG
351	TTTCAAGACG	AAAGTATTTG	ACGGATCGAG	AGAATAAGAA	GGTGGAGGAG
401	TTAAGGGATG	AGAGAAGTAA	TTGAGTTTAG	ATATAAGAGA	GCATTGTATG
451	AGTTGGTGAA	GAAAACAGAG	GATGATGATG	ATGTTGAAGG	GTATAGGTTT
501	CCAGATGCTT	ATGATCAAGA	AGGGTGTATT	GATCAGAAGA	AGAGGTTTGA
551	TGTTGCCAAG	GAGAGGTATT	GTGAGCGAAG	AAGGAGCGGG	AGAGTTGTTA
601	CGGAGCAAGA	AGCTTGGGAG	GATCATCAGG	CTCAGAAAGC	GAGAGTGAGG
651	TTTGGTGCAA	AGGATAAGAA	GCAAGTTGTT	GATGGGTATG	AGTTTGTGTT
701	TGATGATTTG	ACAGGCTTTG	TTGAGGAGTC	TAGCGAGGCG	GAAACTGGGA
751	AACATCGAGG	TTGTTATTCG	AAGACTGCTG	CAGAGAAGGC	TCGGGAGGGG
801	AGGGAGTTTC	TTCCGATTCA	TGGGTACAGG	GAGGAACTGC	TGAAACTTAT
851	TGAAGAGAAT	CAGGTTCTTG	TCATTGTTGG	AGAGACAGGA	TCGGGTAAAA
901	CTACGCAGAT	ACCGCAGTAT	CTTCAAGAAG	CCGGTTACAC	AAAGCGTGGA
951	AAGATCGGTT	GTACTCAGCC	TCGGAGAGTT	GCTGCAATGA	GCGTTGCTTC
1001	CCGAGTGGCT	CAAGAGGTTG	GTGTTAAACT	TGGACATGAG	GTTGGATATT
1051	CCATTAGATT	TGAAGACTGT	ACTTCAGAGA	AAACAGTTAT	CAAGTACATG
1101	ACTGATGGGA	TGCTGCTACG	AGAGCTACTC	ATAGAACCGA	AACTCGATAG
1151	CTATAGTGTC	ATCATTATTG	ATGAGGCGCA	CGAAAGAACA	CTGTCCACTG
1201	ATATTTTGTT	TGCGTTAGTG	AAGGATGTAG	CCAAGGTTAG	GCCTGATCTG
1251	AGGTTAATAA	TCTCCAGTGC	AACGCTTGAA	GCTAAAAAGT	TCTCCGAATA
1301	CTTTGATTCG	GCTCGGATTT	ACCTGATTCC	AGGAAGAAGA	TATCCAGTTG
1351	AAAAGCTCTT	CAGAAAATGT	CCTGAACCTG	ACTACTTGGA	GACAGTGATA
1401	CGCACTGTGG	TTCAGATACA	TCAGACTGAG	GCGATAGGAG	ACATTTTAGT
1451	TTTCCTCACT	GGTCAAGAAG	AGATCGAAAC	AGTAGAAACG	AATTTGAAGC
1501	GAAGGATGAT	GGATTTGGGT	ACAAAGGGAT	CTGAGATCAT	TATCTGTCCT
1551	ATCTACTCAA	ATCTCCCAAC	TCCACTACAG	GCAAAAGTGT	TTGAACCGGC
1601	CCCTAAAGGG	ACACGGAAAG	TTGTCTTGGC	AACGAATATT	GCAGAAACAT
1651	CGTTAACCAT	TGATGGGGTT	AAATACGTCA	TTGATCCAGG	ATATTGCAAG
1701	ATCAACTCAT	ACAACCCGAG	AACGGGAATG	GAGTCACTCC	TTGTAACTCC
1751	TATTTCCAAG	GCTTCCGCAG	CGCAACGAGC	TGGTCGGTCT	GGAAGAACAG
1801	GTCCTGGGAA	ATGTTTCCGG	TTGTACAATA	TCAAGGATTT	AGAGCCCACT

1851	ACAATACCGG	AAATCCAAAG	GGCTAACCTT	GCAAGTGTTG	TGCTTACTTT
1901	GAAGAGTCTT	GGGATTCAAG	ATGTGTTCAA	TTTTGATTTC	ATGGATCCTC
1951	CACCTGAAAA	CGCTCTTTTG	AAGGCTCTAG	AGTTGCTCTA	TGCGCTGGGT
2001	GCTTTGGATG	AAATTGGTGA	GATTACTAAG	gtaggagaaa	gaatggtgga
2051	gtttccagtt	gatccaatgc	tgtcaaagat	gattgttggt	tcggaaaagt
2101	ataagtgctc	gaaagagata	atcacgatag	ctgccatgtt	gtctgtagGG
2151	AACTCGGTCT	TCTATCGACC	AAAGAACCAG	CAAGTTTTCG	CCGACAAGGC
2201	TCGGATGGAT	TTCTATGAAG	ATACAGAGAA	CGTCGGCGAT	CACATTGCAT
2251	TGTTAAGGGT	TTACAATTCC	TGGAAGGAAG	AAAACTACTC	AACTCAATGG
2301	TGCTGCGAGA	AGTTCATTCA	GAGCAAGAGT	ATGAAAAGGG	CAAGAGATAT
2351	ACGTGACCAG	CTACTTGGAC	TTTTAAACAA	GATTGGAGTA	GAACTTACTT
2401	CCAACCCGAA	TGATTTAGAC	GCAATAAAGA	AAGCAATCTT	GGCCGGATTC
2451	TTCCCGCATT	CTGCAAAGTT	ACAAAAGAAT	GGATCGTACA	GAAGAGTCAA
2501	AGAACCTCAG	ACAGTTTATG	TACACCCTAA	CTCAGGCTTA	TTTGGGGCGT
2551	CACCTAGTAA	GTGGTTGGTG	TATCATGAAC	TAGTACTTAC	TACCAAGGAA
2601	TATATGAGGC	ATACAACTGA	AATGAAGCCT	GAGTGGCTAA	TTGAAATAGC
2651	TCCTCATTAC	TACAAGCTTA	AAGACATTGA	AGATACTCGG	CCAAAGAAAA
2701	CACAGAGAAG	AATCGAAGAA	GCCTCGACGT	CTAAGGTTGA	TACTAACAAG
2751	AAAACCCGGA	CCTCGAAGGT	TGATACTAAC	AAGAAATCAA	AGAGGTAACA
2801	ACCAAACTAG	TCGTTTCTCT	TTACTGTTTC	TGAACGAAGT	TAAAGCAATT
2851	GTGATACTAG	TACTTTTTTA	TCCGTTTTTC	TCTGAAAGAT	TCTTATGTTT
2901	AAGTCATCAT	TTACTGACTA	TTGTTTATTT	TTATCTTATA	AACGCATGAT
2951	TCTGGGTTTT	TTCGAGTCTT	TACTGGAGAC	TATAGACAAC	TGATTAGAAA
3001	GACAGAAGAA	AATCAAGTAT	GCAGAAGTGA	CAGAGAAACT	CACCGTGATT
3051	GTCATCGGGG	AAGAAGCCAT	GGAGAAACAC	ATGGACATTT	CTCCGgtgag
3101	attcatcaag	ccttattata	atcttcttca	ttatttccac	aaaacaatgt
3151	ttacaatttg	actgaaataa	aaacaagtga	cgaagatgaa	aaacactaca
3201	cctacttgca	gatatgtata	tgttcttgaa	acaatacata	tcattggctt
3251	gtaatgaaaa	taaccaacac	taacaccgtt	aacacaagac	atcatgattt
3301	atgtgctatc	gttaatgttt	atagTTTCAA	GAGAAGTGTC	GACCTCAACA
3351	GCAGTTACTC	GATGGAGAAG	ATTCCGGATG	CTATCCACCC	ATGTCTGCTT
3401	ATCAGCCTTG	CTCTTGCACT	TGAACTTTGT	CAGACCTTTC	CCTGTACCGA
3451	TTCCGAAATA	GAGCTCTTCT	TCTGTGTTTT	CCGTGTCTTT	TCCATTTTGC
3501	AGGCCTGAGA	CTGTCTCGCA	TACATCATTT	ACAATGCCTG	TAGTGATTCA
3551	ACCACTGGAT	TATTGTAAAG	CATTGGACAA	AGTCCCAAGA	TCACTCTGCT
3601	TATACAAATG	AACACCATAG	ACATTGAAAG	AAAGAAGAGT	AGCTCACTAA
3651	CCTTTGCTTT	TCATGGAGAA	TGCTCCTACA	ACGTGTTTGC	TTTTGATTTC
3701	TACTATGACC	TGCAAAAGAG	AAACCGAGCA	AAATTCAACT	CTAGAATTCA
3751	ACCAGCATAT	AACTTTGTTA	GCTTCAATGA	GTATTCGATG	TTTAACCTGA
3801	GATTTTTT				

Sequenz des abgeleiteten Gens A (Capsella rubella)

1	AAAATCCCAG	TCCCCTGTTG	TAAATCGAAG	CATGGAGAGC	AATGATCTGG
51	AGAAGAAGAC	CACTGATTCA	GCGGAAGAGA	TGAATTCGAG	AGATCAGGTA
101	CGAGCATCAT	CATCAGGTGA	GAATCTGGAT	CTGTATGAAC	ATAGGGAAGA
151	AGATGAAGAA	GGGTTTATGT	CGGTGGAGAA	GATATGTCGC	CTTCCTGTTT
201	CTATAAGATT	TAATCTACCA	AAGAAAAACT	CTACTAAGAG	AAGAAGAGAA
251	TCTAGAGAAG	AAGATGGCGA	GAAGAAGAAA	GCGAAAATGA	GTTCTGGAGA
301	TAAGGTTTTG	AGTAGCGATG	CGATTAGGAT	AGTGAGGAGG	CGAGGGTATC
351	TGAAGGATCG	AGAGAAGAAG	AAGGTGGAGG	AGTTAAGGGA	CGCGATAGAA
401	GACGAGATTA	TGTTCTTTGA	TGGTGTGAAG	GTTACTGAGA	GAGAAGAAAT
451	TGCGCTTAGA	CATAAGATAG	AGTTGTATGA	ATTGGTGAAG	AAAACAGAGG
501	ATGATGATGA	TGACGATGTT	GAAGGGTATA	GGATTCCAGA	TGCTTATGAT
551	CAAGATGGGT	GTATTAATCA	GAAGAAGAGA	TTTGCTGTGG	CCGAGCAGCG
601	TTATAGTGAG	GGGAAGAGGA	CCCGGAGAGT	CGTTACCGAG	CAAGAAGCTT
651	GGGAGGATCA	TCAGGCGCAG	AAAGCGAGAG	TAGGTTTCGG	TGCAAAGGAT
701	AAGAAGCAAG	TTTGTGATGG	GTATGAGTTT	GTGTCTGACG	AGTTAGCAGG
751	TTTGGTTGAG	GATTCTAGTA	GTGAGGTGGA	AACTGGGAAG	CACCGAGGTC
801	GTTACTCGAA	AACAGTTGCA	GAAAAGGCTC	GGGAAGAGAG	GGAGTTTCTT
851	CCGATTCATG	GATACCGGGA	TGAATTGCTG	AATCTCATTG	ААААААТСА
901	GGTTCTTGTG	ATTGTTGGGG	AAACAGGATC	AGGGAAGACT	ACGCAGATAC

951	CGCAGTATCT	TCAGGAAGCC	GGTTACACAA	AGCGTGGAAA	GATCGGTTGC
1001	ACTCAGCCTA	GGAGAGTTGC	TGCTATGAGC	GTTGCTTCCC	GAGTGGCTCA
1051	AGAGGTTGGT	GTTAAACTGG	GACATGAAGT	TGGGTATTCC	ATTAGATTTG
1101	AAGACTGTAC	TTCAGATAAA	ACAGTTGTGA	AGTACATGAC	TGATGGGATG
1151	CTGTTGCGAG	AGCTACTCAC	AGAACCGAAA	CTTGATAGCT	ATAGTGTGAT
1201	CATAATTGAT	GAGGCACACG	AAAGAACCCT	GTCCACTGAT	ATTTTGTTTG
1251	ССПТАСТТАА	GGATGTAACA	AAGGTTAGGC	СТСАТСТСАС	СТТААТААТС
1301	TCAACCCCAA	CCCTTCAACC		тессалтает	
1251	тессалттас			теслеттелл	A A C C T A T A C A
1/01	CAACATCCCC	TRAICCCAG	UACUAAUAIA MACUMUCCACA	CACCAMEACC	
	GAAGAIGGCC	IGACGCIGAC	CACTIGGAGA		
1451	CAGATCCATC	AGACTGAGCC	GACTGGAGAC	ATTTTAGTT	TCCTCACAGG
1501	TCAAGAAGAG	ATTGAAACAG	CAGAAACAAA	GTTGAAGCGA	AGGATGATGG
1551	ATTTGGGGTAC	AAAGAGCTCT	GAGATCATTA	TCTGTCCTAT	CTACTCAAAT
1601	CTCCCAACCG	AACTACAGGC	AAAAGTGTTT	GAACCAGCTC	CTAAAGGGTC
1651	GCGGAAAGTT	GTCCTGGCAA	CCAATATCGC	AGAAACATCA	TTAACCATTG
1701	ATGGGATAAG	GTACGTCATT	GATCCGGGAT	ATTGTAAGAT	CAACTCATAC
1751	AACCCGAGAA	CCGGAATGGA	GTCATTGCTT	GTAAGTCCTA	TTTCCAAGGC
1801	CTCCGCAGAG	CAACGAGCTG	GTCGGTCTGG	AAGAACAGGT	CCAGGAAAAT
1851	GTTTCCGGTT	GTACAATGTA	AAGGATTTGG	AACCCACCAC	AATACCGGAA
1901	ATCCAAAGGG	CTAACCTTGC	AAGTGTTGTG	CTTACTTTGA	AGAGTCTTGG
1951	GATTCAAGAT	GTGTTTAATT	TTGATTTCAT	GGATCCTCCA	CCAGAAACCG
2001	CTCTTTTGAA	AGCTCTAGAG	TTGCTCTATG	CTCTGGGTGC	TTTGGATGGC
2051	AATGGTGAGA	TTACTAAGqt	aqqaqaaaqa	atggtggagt	ttccagttga
2101	tccgatgcta	tcaaagatga	ttattaattc	ggaaaagtac	aagtgctcga
2151	aagagataat	cacgatagee	accatattat	ctataaGGAA	СТСААТСТТТ
2201	TATCGACCAA	AGAACCAGCA	ACTTCTCGCC	GACAATGCTC	GGATGAATTT
2251	Статстасат		TAGGCGACCA	САТТСССТТС	TTAAGGGTCT
2201		CAAACAAACA	AACTACTCCA	СТСААТССТС	
2251	MUCCHUCACA	CCAACACTAT	CAAAACACCT		CTACGAGAAC
2331		GCAAGAGIAI	GAAAAGAGCI	AGAGAIAIAC	A CCCC A MCC
2401	GATIGGACTT			ACTIANTICC	AACCCGAAIG
2451	ATTAGACGC	AATAAAGAAA	GCGATCTTGG	CCGGATTCTT	CCCGCATTCT
2501	GCAAAGTTAC	AAAAAGATGG	ATCGTACAGA	AGAGTGAAAG	AACCTCAGAC
2551	AGTTTATGTA	CATCCTAACT	CAGGCTTATT	TGGGGCATCA	CCTAGTAAGT
2601	GGTTGGTGTA	TCATGAACTA	GTACTTACTA	CCAAGGAATA	TATGAGGCAT
2651	ACAACCGAGA	TGAAACCCGA	GTGGCTAATT	GAAATAGCTC	СТСАСТАСТА
2701	CAAGGTTAAA	GACATTGAAG	ACACTCAGCC	AAAGAAAACG	CACAGAAGAA
2751	GCGAAAGAGC	CTCAACGTCA	AAGGTTGATA	CTCACAAGAA	AACCCGGACA
2801	TCAAAGGTCG	ATACGAACAA	GAAAGCAAAG	AGGTAACAAC	CAAACTTAGT
2851	CATATCTCTT	TACTGTTTCT	GAACGAAGTT	AAAAAATTG	TGCTACTAGA
2901	ACTTTTTCAT	CCATTCTCTC	CGGAAGATAC	TTTTATGTTT	AGTCGGCATC
2951	AGTTTTTTTA	ATCATTACTA	ACTACTGTTC	CTTTCCATCT	TATAAACGCA
3001	TGATTCTGAG	TTATTTCGAG	TTTACTGGGG	ACTATAGACA	ACTGATAAGA
3051	AAGGGGAAAA	TCAAGAATTC	AACAGCGACT	GAAAAACTCA	CCCGGTATAT
3101	ACACGGGGAA	GATGCCAGGA	TTTTCACGGG	TGGTGGAGAA	ACACCTGGAC
3151	ATTCTTCCGa	tgagattcat	taggccttag	aataatcttc	ttcattattt
3201	ttagaaaaaa	aaatgtttac	aactgactga	aataaaaact	gcgaagatga
3251	aaaaacatca	caactactta	cagatatgta	tatotaatoa	aaataaccaa
3301	ctaatactct	tataacaaga	catggettat	atattatata	ctatcggcaa
3351		ттсаасасаа	Стсттсстаа	ССТСААСАСС	
3/01	тсслеллелт	ТСАКОНСКА	ATCCATCCAT	СПСТСААСАОС	CACCCTTCCT
2401		A COMPCOMPA	CACCERECCC	ACMACMCAMM	CCCAACTACA
2501	COMOMMONMO	MACTICGTTA MCCCMMMMCM		CAMAMMCCAC	CCCCCACACACA
3501 2551	Amenacaama		JAMMCOMARA	CHIATATTGCAG	
2021	ATCTCGCATA	CATCGTTTAC	AATTCCTATA	GIGIGIAGIG	ATATAACCAT
3601	TGGATCAAGT	AAGCATTGGA	AAAAGTCTCA	AGACTACTT	GGCTTTACAC
3051	AAATGAACAC	CACGACCATT	GAAAGAAAGA	AGAGATATCT	GAAGGTGACA
3701	ATAGTTAGTT	AACTACCTTT	GCTTTTCATG	GAGAACGCTC	CTCTGACGTG
3751	TTTGCTTTTG	ATTTCTACTA	CAACCTGCAA	GAGAAAACGA	GTTGAATGTC
3801	AACTCTAGAA	TTTGACAACC	АТААААСТТТ	TTTGCTTTGA	TGAGTTTTTG
3851	CTTTTTTTTT	TTAACCTGAG	ATCTCT		

Sequenz des Arabidopsis thaliana cDNA-Klons ATTS1135 (EST 3)

1CTTTCTTCTCTGTCCCAACTACCTTATTCGCGTATCTCCCCGTGCGGTT51TCTTTTCTTCAACGATAAACTTCAACTTATCCTTCATACATTCCGATCTA101GATAACAAACTAATTGGGAATAATTAGATGATTTGTTTGGAAGGTGATTG151ATATGATATTATGATTCTATTAAGTAATTCCTTTATGTTATTTGATTG201AGTTTGAATAAGCTTTACATGCGAAGCAATCCAGGGTAAGAGAGATAGAA251ATCTCCTTGTAAAGGAATGTTATTTGTATCCTTGGTTTCTTTTTGTCAAT301AAATCTATCATAGTAGCTAAGCCC

Sequenz der vorhergesagten cDNA des Gens 3 (Arabidopsis thaliana)

```
1ATGAAACCGGAGTTTATACGCCATTATTACTATAGCCAAAGCCCTCTTGA51GGACGTAACTTTGTCATCTAAGCTGTTGCGTCCTGCTCCTATGAGGGCCT101TTCAAGATCTTGATAAGCTACCTCCAAATCCCGAGGCCGAGAAAGTTCCT151CGAGTTTACATCAAGACTGCTAAGGATAATCTATTTGATTCTGTGCGTCA201AGACCTTTGGTGGAGAATTGGCCACCTTCTCAGCTGTATGTCTTGGAGG251ATAGTGACCATTCTGCTTTCTTCTCAACGATAA301CTCCTCCGTGCGGTTTCTTTCTTCAACGATAA
```

Sequenz des abgeleiteten Gens 3 (Capsella rubella)

1	ATGAAACAAG	AGTTTCTACG	CCAATATTAC	TATAGCCAAA	GCCCTCTTGA
51	\mathbf{G} GTTACTCTC	TTATTTACTT	CACAAGCTAA	TGTTTCAATA	TTACTATTGT
101	GTGGTTATTG	AATATGGTTA	TTGGTAG GAT	GTAAGTTTGG	CAACTAAACT
151	GCTGCGTCCT	GCTCCTATGA	GGGCATTTCA	AGATCTTGAT	AAGTCGCCTC
201	CAAATCCCGA	GGTAGAGAAA	GTTCCGCGAG	TCTACATCAA	GACTGGTAAG
251	GATAATCTAT	TTAGTTCCGT	GCGTCAAGAC	CTTTTGGTGA	AGAACTGGCC
301	ACCCTCTCAG	TTCTATGTCT	TGGAGGAGAG	TGACCATTCT	GCTTTTTTCT
351	CTGTGCCAAC	CACCTTATTC	GTCTATCTCC	TCCGTGCCGT	TTCTTTTCTT
401	САСАААТАА				

Sequenz des Arabidopsis thaliana cDNA-Klons ATTS1638 (EST 4)

1	GGGAAAGAAG	AACAGAGGTC	TCCGCGGAAA	GGGTCACAAC	AACCACAAGA
51	ACCGTCCATC	TCGCAGGGCT	ACATGGAAGA	AAAACAACTC	TCTCAGCCTT
101	CGTCGTTACC	GTTGA TTGCC	TTTTGCTTTT	ATTATTACTG	TTATCATCTT
151	CTAGGTTCCA	TGTTGTTGCA	CTTTTATCTC	TCTCAGGATG	ACTTGTTTTT
201	GCAAATTTTG	GAGACTATAC	AATTATGCTT	TGAACCTAAA	TTTTATATTT
251	GCTTTGCTTT	AA			

Sequenz des Arabidopsis thaliana cDNA-Klons 25012 (EST 4)

1	CAAGTATGTA	TCTGAGCTAT	GGAGGAAGAA	ACAGTCCGAT	GTGATGAGAT
51	TCCTCCAGAG	GGTTAGGTGC	TGGGAGTACA	GACAGCAACC	TTCGATTGTT
101	CGTCTCGTCA	GGCCTACTCG	TCCTGATAAG	GCTCGTCGTT	TGGGTTACAA
151	GGCCAAGCAG	GGCTTTGTTG	TGTACCGTGT	ACGTGTGAGA	CGTGGTGGAC
201	GCAAGAGGCC	AGTGCCTAAG	GGTATTGTGT	ATGGTAAGCC	AACAAACCAG
251	GGAGTGACAC	AACTCAAGTT	CCAGCGTAGC	AAGCGTTCTG	TTGCTGAGGA
301	GCGTGCTGGC	AGGAAATTGG	GTGGTCTCAG	AGTTGTCAAC	TCTTACTGGC
351	TCAATGAGGA	TTCGACCTAC	AAGTACTACG	AGATCATCTT	GGTTGACCCA
401	GCACACAATG	CTGTGCGTAA	TGACCCGAGA	ATCAACTGGA	TCTGCAACCC
451	AGTTCACAAG	CACCGTGAGC	TCAGAGGACT	TACCTCAGAG	GGAAAGAAGA
501	ACAGAGGTCT	CCGCGGAAAG	GGTCACAACA	ACCACAAGAA	CCGTCCATCT
551	CGCAGGGCTA	CATGGAAGAA	AAACAACTCT	CTCAGCCTTC	GTCGTTACCG
601	TTGA TTGCCT	TTTGCTTTTA	TTATTACTGT	TATCATCTTC	TAGGTTCCAT
651	GTTGTTGCAC	TTTTATCTCT	CTCAGGATGA	CTTGTTTTTG	CAAATTTTGG
701	AGACTATACA	ATTATGCTTT	GAACCTAAAT	TTTATATTTG	CTTTGCTTTT
751	TTGTTGATCT	CAGTCTGGTT	TTGGAATATA	TCGAGG	

Sequenz der vorhergesagten cDNA des Gens At4g16720 (Arabidopsis thaliana)

ATGGGTGCGT ACAAGTATGT ATCTGAGCTA TGGAGGAAGA AACAGTCCGA 1 51 TGTGATGAGA TTCCTCCAGA GGGTTAGGTG CTGGGAGTAC AGACAGCAAC 101 CTTCGATTGT TCGTCTCGTC AGGCCTACTC GTCCTGATAA GGCTCGTCGT 151 TTGGGTTACA AGGCCAAGCA GGGCTTTGTT GTGTACCGTG TACGTGTGAG 201 ACGTGGTGGA CGCAAGAGGC CAGTGCCTAA GGGTATTGTG TATGGTAAGC 251 CAACAAACCA GGGAGTGACA CAACTCAAGT TCCAGCGTAG CAAGCGTTCT 301 GTTGCTGAGG AGCGTGCTGG CAGGAAATTG GGTGGTCTCA GAGTTGTCAA 351 CTCTTACTGG CTCAATGAGG ATTCGACCTA CAAGTACTAC GAGATCATCT 401 TGGTTGACCC AGCACACAAT GCTGTGCGTA ATGACCCGAG AATCAACTGG 451 ATCTGCAACC CAGTTCACAA GCACCGTGAG CTCAGAGGAC TTACCTCAGA 501 GGGAAAGAAG AACAGAGGTC TCCGCGGAAA GGGTCACAAC AACCACAAGA 551 ACCGTCCATC TCGCAGGGCT ACATGGAAGA AAAACAACTC TCTCAGCCTT 601 CGTCGTTACC GTTGA

Sequenz des abgeleiteten Gens 4 (Capsella rubella)

1	ATGG GTAAAT	TCGATCTTCT	CCATCTTTCG	TCTAGATCCA	TTCTCCTGCT
51	ATGTTTTTCC	AAATGATGTA	TGTGTTGCGG	ATCTGTTATT	ACGAGCTACT
101	TAGCTAAATG	GATTTTGGTG	AACCTTAG GT	GCGTACAAGT	ATGTATCGGA
151	GCTATGGAGG	AAGAAACAGT	CCGATGTGAT	GAGGTTCCTC	CAGAGGGTGA
201	GGTGCTGGGA	GTACAGACAG	CAACCTTCGA	TTGTTCGTCT	CGTTAGGCCT
251	ACTCGTCCTG	ATAAGGCTCG	TCGTTTGGGT	TACAAGGCCA	AGCAG GTGAT
301	TGATTTCATC	CTAAATTTCT	CGTCCTTGTT	GTAGTTTTTA	CTAATGTTGC
351	CTCGTATATA	ATGAGGCTAG	TGAACTTTGT	TGCTCAACTG	TCAAATGAGT
401	TTTGTAGGAG	TTGATTGATA	TTGGTAGAAA	TGAGATCCTG	TAAGGTAGAT
451	AGTGAGGTTT	TTTTTTTGAT	ATTGTTGTGA	TATCTGCGTA	TGATCTAGCC
501	TCTGTTGGTT	GAGTTTGATG	TTTTTTTGCG	TTGTTAGTAG	AGATTTAGAA
551	GCGTTACTGG	TTATGTGGTC	TCTTGAAACA	CGCCATTTCT	GAAAATTGTG
601	TGTTAGTGAT	TGAATCCCTC	CCATGACCAG	CTACATGAAA	CTAGCCAGTC
651	TGATATGCTG	ATTTATACTT	TTATACAAAT	CTAGCTCTTG	TTCTGACTGG
701	TACATGTAAA	GATAGTTCTT	GCTCTAGCTT	CAGAATCTGG	TACTAATCTT
751	GTTGGGTTGT	TGATGTTTGT	TTAG GGCTTT	GTTGTGTACC	GTGTCCGTGT
801	GAGACGTGGT	GGACGCAAGA	GGCCAGTGCC	CAAGGGTATT	GTGTATGGTA
851	AGCCTACAAA	CCAGGGAGTG	ACACAACTCA	AGTTCCAGCG	TAGCAAGCGA
901	TCTGTTGCTG	AGGAGCGTGC	TGGCAGGAAA	TTGGGTGGTC	TCAGAGTTGT
951	CAACTCTTAC	TGGCTCAATG	AG GTATACTT	ACTACCTATT	TTCAGAACTC
1001	CATTTTGGTG	ACTCTTGGTT	TTACAGATAA	CAGATGTTAA	TTTACCAATT
1051	GTTTTCAATA	$\mathbf{G}\textbf{GATTCGACT}$	TACAAGTACT	ACGAGATCAT	CTTGGTTGAC
1101	CCAGCACACA	ATGCTGTCCG	TAATGACCCG	AGGATCAACT	GGATCTGCAA
1151	CCCAGTTCAC	AAGCACCGTG	AGCTCAGAGG	ACTTACTTCA	GAGGGAAAGA
1201	AGAACAGAGG	TCTTCGTGGA	AAGGGTCACA	ACAACCACAA	GAACCGCCCA
1251	TCTCGCAGAG	CTACATGGAA	GAAGAACAAC	TCCATCTCCC	TTCGTCGTTA
1301	CCGTTAA				

Sequenz des Arabidopsis thaliana cDNA-Klons B

1	GGAGATAGGA	AGAGAAGGCG	GAGGTCGATG	AAGAAGCGGA	GTTCGCATAA
51	GAGAAGGAGT	TTGAGTGAGT	CTGAGGATGA	GGAAGAGGGA	AGGAGTAAGA
101	GAAGAAAGGA	GAGGAGAGG A	AGATGGGAAA	TGGAGCATAT	AACTCAATGG
151	ACAACGGGTT	TCTTATGTTT	GATCATGTTC	GCATTCCTAG	AGATCAAATG
201	CTCATGAGGC	TGTCGAAAGT	TACAAGGGAA	GGAAAATATG	TTCCATCGGA
251	TGTTCCAAAG	CAGCTGGTAT	ATGGTACTAT	GGTGTATGTG	AGACAAGCAA
301	TTGTGGCAGA	TGCTTCCATT	GCACTGTCTC	GAGCAGTTTG	CATAGCTACA
351	AGGTACAGCG	CAGTGCGGAG	GCAGTTTGGC	GCACATAATG	GTGGCATTGA
401	GACACAGGTG	ATTGATTATA	AAACTCAGCA	GAACAGGCTA	TTTCCTCTGC
451	TAGCATCTGC	ATATGCATTT	CGATTTGTTG	GAGAGTGGCT	AAAATGGCTG

501	TACACGGATG	TAACTGAAAG	ACTGGCGGCT	AGTGATTTTG	CAACTTTGCC
551	TGAGGCTCAC	GCATGCACTG	CAGGATTGAA	GTCTCTCACC	ACCACAGCCA
601	CTGCGGATGC	CATTGAAGAA	TGTCGTAAGT	TATGTGGTGG	ACACGGCTAC
651	TTGTGGTGCA	GTGGGCTCCC	CGAGCTGTTT	GCTGTATATG	TTCCTGCCTG
701	CACATACGAA	GGAGACAATG	TTGTGCTGCA	ATTACAGGTT	GCTCGATTCC
751	TCATGAAGAC	AGTCGCCCAG	CTGGGATCTG	GAAAGGTTCC	TGTTGGCACA
801	ACTGCTTATA	TGGGCCGGGC	AGCACATCTT	TTGCAATGTC	GTTCTGGTGT
851	TCAAAAGGCT	GAGGATTGGT	TAAACCCTGA	TGTTGTACTG	GAAGCTTTCG
901	AGGCTAGGGC	TCTAAGAATG	GCTGTTACTT	GTGCCAAAAA	TCTCAGCAAG
951	TTTGAGAATC	AGGAACAAGG	ATTCCAAGAG	CTCTTGGCTG	ATTTGGTTGA
1001	AGCCGCTATT	GCTCATTGCC	AATTGATTGT	TGTTTCCAAG	TTCATAGCGA
1051	AACTAGAGCA	AGACATAGGT	GGCAAAGGAG	TGAAGAAACA	GCTGAACAAT
1101	CTGTGTTACA	TTTATGCTCT	TTATCTCCTC	CACAAACATC	TCGGCGATTT
1151	CCTGTCCACT	AACTGCATCA	CTCCCAAACA	AGCCTCTCTT	GCTAACGACC
1201	AGCTCCGTTC	CTTATACACT	CAGGTCCGCC	CTAATGCGGT	TGCACTTGTG
1251	GACGCCTTCA	ATTACACAGA	CCATTACTTG	AACTCGGTGC	TGGGCCGTTA
1301	CGACGGTAAT	GTGTACCCAA	AGCTCTTTGA	GGAAGCGTTG	AAGGATCCAT
1351	TGAACGACTC	GGTGGTTCCT	GATGGGTACC	AAGAATACCT	TCGACCTGTG
1401	CTTAAGCAGC	AACTTCGTAC	CGCTAGGCTC	TGA AGAGTTT	TCTTTGCTTG
1451	ATACTCGATA	TGGTTAATCA	CATTTGACTT	GCTTCGTCCT	TCTTCTTCGT
1501	CTTCTTCGTC	ATCTCGCTTT	GAATAATTTC	GCAGTTTAAA	AACTGGCGAT
1551	GCCCTTATTT	ATATGTAGCA	ATGTAATAGT	TAATGTACGA	TCGTCATATG
1601	GCGGAATTTT	AGTACTATTT	TTCGTTTTCA	ATGCAACATT	ААТАСААААА
1651	ААААААААА	AA			

Sequenz des Arabidopsis thaliana Acyl-CoA Oxidase cDNA-Klons (AF057044)

1	TTTTTTTCCT	ATCATCTCTG	AGAGTTTTCT	CGAGAAACTT	TTGAGTGTTT
51	AGCTACTAGA	TTCTGAATTA	CGAATC ATGG	AAGGAATTGA	TCACCTCGCC
101	GATGAGAGAA	ACAAAGCAGA	GTTCGACGTT	GAGGATATGA	AGATCGTCTG
151	GGCTGGTTCC	CGCCACGCTT	TTGAGGTTTC	CGATCGAATT	GCCCGCCTTG
201	TCGCCAGCGA	TCCGGTGTTT	GAGAAAAGCA	ATCGAGCTCG	GTTGAGTAGG
251	AAGGAGCTGT	TTAAGAGTAC	GTTGAGAAAA	TGTGCCCATG	CGTTTAAAAG
301	GATTATCGAG	CTTCGTCTCA	ATGAGGAAGA	AGCAGGAAGA	TTGAGGCACT
351	TTATCGACCA	GCCTGCCTAT	GTGGATCTGC	ACTGGGGAAT	GTTTGTGCCT
401	GCTATTAAGG	GGCAGGGTAC	AGAGGAGCAG	CAGAAGAAGT	GGTTGTCGCT
451	GGCCAATAAG	ATGCAGATTA	TTGGGTGTTA	TGCACAGACT	GAGCTTGGTC
501	ATGGCTCAAA	TGTTCAAGGA	CTTGAGACAA	CTGCCACATT	TGATCCCAAG
551	ACTGATGAGT	TTGTAATTCA	CACTCCAACT	CAGACTGCAT	CCAAATGGTG
601	GCCTGGTGGT	TTGGGAAAAG	TTTCTACTCA	TGCTGTTGTT	TACGCTCGTC
651	ТСАТААСТАА	CGGAAAAGAC	TACGGTATCC	ATGGATTCAT	CGTGCAACTG
701	CGAAGCTTAG	AAGATCATTC	TCCTCTTCCG	AATATAACTG	TTGGTGATAT
751	CGGGACAAAG	ATGGGAAATG	GAGCATATAA	TTCAATGGAC	AACGGGTTTC
801	TTATGTTTGA	TCATGTTCGC	ATTCCTAGAG	ATCAAATGCT	CATGAGGCTG
851	TCAAAAGTTA	CAAGAGAAGG	AGAATATGTT	CCATCGGATG	TTCCAAAGCA
901	GCTGGTATAT	GGTACTATGG	TGTATGTGAG	ACAAACAATT	GTGGCTGATG
951	CTTCCAATGC	ACTATCTCGA	GCAGTTTGCA	TAGCTACAAG	ATACAGTGCA
1001	GTGCGGAGGC	AATTTGGCGC	ACATAATGGT	GGCATTGAGA	CACAGGTGAT
1051	TGATTATAAA	ACTCAGCAGA	ACAGGCTATT	TCCTCTGCTA	GCATCTGCAT
1101	ATGCATTTCG	ATTTGTTGGA	GAGTGGCTAA	AATGGCTGTA	CACGGATGTA
1151	ACTGAAAGAC	TGGCGGCTAG	TGATTTCGCA	ACTTTGCCTG	AGGCTCATGC
1201	ATGCACTGCA	GGATTGAAGT	CTCTCACCAC	CACAGCCACT	GCGGATGGCA
1251	TTGAAGAATG	TCGTAAGTTA	TGTGGTGGAC	ATGGATACTT	GTGGTGCAGT
1301	GGGCTCCCCG	AGCTGTTTGC	TGTATATGTT	CCTGCCTGCA	CATACGAAGG
1351	AGACAATGTT	GTGCTGCAAT	TACAGGTTGC	TCGATTCCTC	ATGAAGACAG
1401	TCGCCCAGCT	GGGATCTGGA	AAGGTTCCTG	TTGGCACAAC	TGCTTATATG
1451	GGCCGGGCAG	CACATCTTTT	GCAATGTCGT	TCTGGTGTTC	AAAAGGCTGA
1501	GGATTGGTTA	AACCCTGATG	TTGTACTGGA	AGCTTTCGAA	GCTAGGGCTC
1551	TCAGAATGGC	TGTTACGTGT	GCCAAAAATC	TCAGCAAGTT	TGAGAATCAG
1601	GAACAAGGAT	TCCAAGAGCT	CTTGGCTGAT	TTGGTTGAGG	CCGCTATTGC
1651	TCATTGCCAA	TTGATTGTTG	TTTCCAAGTT	CATAGCGAAA	CTGGAGCAAG
1701	ACATAGGTGG	CAAAGGAGTG	AAGAAACAGC	TGAATAATCT	GTGTTACATT

1751	TATGCTCTTT	ATCTCCTCCA	CAAACATCTC	GGCGATTTCC	TCTCCACTAA
1801	CTGCATCACT	CCCAAACAAG	CCTCTCTTGC	TAACGACCAG	CTCCGTTCCT
1851	TATACACTCA	GGTCCGGCCT	AATGCGGTTG	CACTTGTGGA	CGCCTTCAAT
1901	TACACCGACC	ATTACTTGAA	CTCGGTTCTT	GGCCGTTACG	ACGGTAATGT
1951	GTACCCAAAG	CTCTTTGAGG	AAGCGTTGAA	GGATCCATTG	AACGACTCGG
2001	TGGTTCCTGA	TGGGTACCAA	GAATACCTTC	GACCTGTGCT	TCAGCAGCAA
2051	CTTCGTACCG	CTAGGCTCTG	AAGAGTTTTC	TTTGCTTGAT	ACTCGATATG
2101	GTTAATCACA	TTAGACTTGC	TTCGTCCTTC	TTCTTCGTCT	TCTTCTTCTT
2151	CTCGCTTTGA	ATAATTTCGC	AGTTTAAAAA	CTGGCGATGC	CCTTATTTAT
2201	ATGTAGCAAT	GTAATAGTTA	ATGTACGATC	GTCATATGGC	GGAATTTTAG
2251	TACTATTTTT	CGTTTTCAAT	GCAACATTAA	TACAATTGAT	CGTTTCTACT

Sequenz des abgeleiteten Gens B (Capsella rubella)

-					
1	ATGGAAGGAG	TTGATCACCT	TGCTGATGAG	AGGAACAAGG	CGGAGTTCGA
51	CGTCGACGAG	ATGAAGATCG	TCTGGGCTGG	TTCCCACCAC	GCTTTTGAGG
101	TTTCCGATCG	AATTGCCCGC	CTCGTCGCCT	CCGATCCG GT	TAATTTCCTT
151	CTTCTTCTCA	ATTTCTCAAT	TCTCCTTGTT	TTTTGGTAGG	ATTAGGGATT
201	TTTCATGGTG	TTCGATTTTG	TGAATTTCGT	TTTTGTGTTT	TTGTTTATGT
251	ATAG GTCTTT	GAGAAAAGCA	ATAGAGCTAG	GTTGAGTAGG	AAGGAGCTGT
301	TTAAGAGCAC	TTTGAGGAAA	TGTGCTCATG	CTTTTAAGAG	GATTATTGAG
351	CTTCGTCTCA	ATG GTAATGG	AGGATTCTTC	TTCTCACGCT	CCTCCTAATT
401	GTTTTCGTTG	ATTCAAGGTT	TTTGTATTGA	GAGTCTTTTG	TTGGTTACAG
451	AGGAAGAAGC	AGGAAGATTG	AGGCACTTTG	TAGATCAGCC	TGCCTTTGTG
501	GATCTGCACT	GG GTACTCTT	TTTTTTTTTT	CTCAATCAAT	AGATATGGTT
551	TATAAAGACA	CCGTTTTGAT	TTTTTTATTC	ATGGTATCTC	TTTCTGTAG G
601	GAATGTTTGT	GCCTGCTATT	AAAGGGCAGG	GTACTGAGGA	GCAGCAGCAG
651	AAGTGGTTGT	CGCTGGCTAA	TAAGATGCAG	ATTATTGGGT	GTTATGCACA
701	AACTGAGCTT	GGCCATGGCT	CTAATGTTCA	AGGCCTTGAG	ACAACTGCCA
751	CTTTTGATCC	CAAGACGGAT	GAGTTTGTTA	TTCATACACC	AACTCAGACT
801	GCATCTAAA G	TGAGTTGACG	ACTAAGAAGA	AGCCTTTCAT	TGAGTTATTA
851	TTATGCACTG	TGACTTAGTT	GTGTAAGAAT	TTTATCTGCT	TTGATTGTTG
901	AATAG TGGTG	GCCTGGTGGC	CTGGGAAAAG	TTTCTACTCA	TGCTGTTGTT
951	TACGCTCGTC	TCATTACTGA	CGGCAAAGAC	TATGGTATCC	ΑΤGGTATGTA
1001	CTGCAAAACA	AAACAAAAAA	GCCAGTATT	ͲͲͲΑGͲͲΑΑΑ	TTTTTTCTTGT
1051	тсасстаттс	ΔͲͲϾϹͲͲΔΔΔ	СФФССФСФФС	CAGGATTCAT	CGTGCAACTG
1101	CGCAGCTTAG	AAGATCATTC	тсстсттсса	AATATAACTG	ттсстсатат
1151	TGGGACGAAG	ATGGGAAATG	GAGCATATAA	TTCAATGGAC	AACGGGTTTC
1201	ттатсттса	TCATGTTCGC	ATTCCTAGAG	ATCAAATGCT	CATGAGGTCC
1251	тесстетте	ССФФФСФСССФ	СТСАСТТАА	татссаттса	
1301				TAIGCALLEA	TGGTTCTACA
1351				GTCCAACTT	ACAACCCAAC
1/01	Сазататст	тссатссаат	GTTCCAAAAC	асстсстста	СССТАСТАТС
1401	GARAATAIGI	GACAAACAAT	TCTCCCACAT	CCTTCCAATC	CTCTATCTCC
1401	ACCACEEECC		CCTACACTCC	ACTICCARIG	
1551	CACATAATGC	TCCCATTCAC		ͲϹϪͲͲͲϪϪͲϪ	
1601					
1651					CCACAMMMC
1701				COMPRESSION	GCAGAIIIGI
1751	CIGIAAGIIII	CTGCTGAACT	GATTITCTTC	GATTTGGTTG	
1/51	GCTTTTTTT	CTTTTGCAAT	CATTAACGTT	TTTTGGTTAT	CACAGGIGAT
1001	TGATTATAAA	ACTCAGCAGA	ACAGGCTATT	TCCTCTGCTA	GCGTCTGCAT
1851	ATGCATTCCG	ATTTGTTGGA	GAGTGGCTAA	AATGGCTGTA	CACGGATGTA
1901	ACTGAAAGAC	TGGCGGCTAG	TGATTTCACA	ACTTTGCCAG	AGGCTCATGC
1951	ATGCACTGCA	GGATTGAAGT	CTCTCACCAC	CACAGCCACT	GCGGTATGTG
2001	TCTGAGCTGA	TCCTTTTATGC	TCACTAGACT	AAACAGATGA	ATTTCTTTTC
2051	TCTGAGGGTC	CTACGGCTCG	CATGTTGAAA	ATTTTGTTTG	TTACCTCGAC
2101	ATTGTCTTGG	TGGTTTATTT	AGAA'I'AGAAA	AGTCAGCCTA	AGCGTTATAT
2151	TGGGTGCAGG	ATGGCATTGA	AGAATGTCGT	AAGTTATGTG	GTGGACATGG
2201	CTATTTGTGG	TGCAGTGGGC	TACCTGAGCT	GTTTGCTGTG	TATGTTCCTG
2251	CCTGCACATA	TGAAGGAGAC	AATGTTGTGC	TGCAATTACA	GGTACTTATT
2301	ATCAGCTACG	ACCTATTCCC	ACTTACTAGA	ATAATACTGT	CAGCTCAAAT
2351	ATATTTCGTA	GAACGTGGGT	CTTCCTCTTA	TGTCTCTTTT	GTGTTTTAGC

2401	TGTGAGCTCT	TGATTTAACA	GGCTTATCGT	AGTTTTCTAC	TTTCTTAGAT
2451	ATGATTATTT	GCAAGGTTTT	GTTAATTTCA	CCTGATCCCA	GCTGGGATAC
2501	TGTCTTCTGA	AGAATTGAGC	AACATATACA	CATAATTTGG	GCTTCGATCA
2551	CCTGCATTTT	GTTTTTGTTT	TTCTGGTTGA	TATGAAAAAC	CACATTTAAC
2601	TGCTTTTGAA	GTTTATGGTT	CATTGTTGTT	TCCCCAATAT	TCAATAAGAA
2651	AAGCTCTAAC	CCCCCTTGCC	ATTTGTGGTT	ATTCACGCTA	ATGTTTGAAA
2701	TTGTATGTAT	AG GTTGCTAG	ATTCCTTATG	AAGACAGTCG	CCCAGCTGGG
2751	ATCCGGAAAG	GTTCCTGTTG	GCACAACTGC	TTATATGGGC	CGGGCAGCAC
2801	ATCTTTTGCA	ATGTCGTTCT	GGTGTTCAAA	AGG GTAAGTT	TTTAAGTTTA
2851	TATATTCTAT	TTTCGTACTG	ATACAATAAC	AAACGAATGA	TCTTTCCTCG
2901	AGAAAATTCA	CGAGTTAATG	GTATAGTTGG	TTTTATTTAT	TGGGTATGTA
2951	$\mathbf{G}\mathbf{CTGAGGATT}$	GGTTAAAACC	TGGTGCGGTA	CTGGAAGCTT	TTGAAGCTAG
3001	GGCTTTGAGA	ATGGCTGTTA	CTTGTGCCAA	AAATCTCAGC	AAGTTTGAGA
3051	ATCAGGAACA	\mathbf{AG} GTACTCTT	CTAACTCCGT	GAATCCAGAA	CAACTGGTCG
3101	TCATGTCACA	TCCTAAGCCA	AAAGACCAAA	CTCTCACATA	TTTCTCCTGT
3151	CTATAG GATT	CCAAGAGCTT	TTGGCTGATC	TGGTTGAGGC	TGCAATTGCC
3201	CATTGCCAAT	TGATTGTTGT	TTCCAA GTAA	GCTACTTCAG	AATCCGTTCA
3251	CACTTATCAA	ATAAGTTAGT	GATTCTCTCT	CTAGATCAGC	TCCTGAATCT
3301	TGCCTATTTT	GTCTCGGTTA	$\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{T}\mathbf{A}\mathbf{G}\mathbf{C}$	TAAACTAGAG	CAAGACATAG
3351	AAGGCAAAGG	AGTGAAGAAA	CAGCTGAATA	ATCTGTGTTA	CATTTACGCG
3401	CTCTACCTCC	TTCACAAACA	CCTCGGAGAT	TTCCTCTCCA	CAAACACCAT
3451	CACTCCCAAA	CAAGGGTCGC	TCGCCAACGA	CCAGCTCCGC	TCCTTGTACT
3501	CTCAG GTTTT	ACATTGCTTT	CTCGCTGCAT	TTGATTCCTT	CCAAAAGCTG
3551	AGTCCTAACA	CTTTGTGTTC	CATCATCTAG	GTTCGTCCTA	ATGCAGTTGC
3601	GCTTGTGGAC	GCGTTCAATT	ACACTGACCA	CTACTTGAAC	TCGGTGCTGG
3651	GCCGTTACGA	CGGTAATGTG	TACCCGAAAC	TGTTTGAGGA	AGCGTGGAAG
3701	GATCCATTGA	ACGACTCCGT	GGTTCCTGAC	GGATACCATG	AATACATCCG
3751	ACCTTTGCTC	AAGCAGCAAC	TTCGTACCGC	TAGACTCTAA	

Sequenz des Arabidopsis thaliana cDNA-Klons 4442 (EST 5)

1	ACTTCCGATC	ATCGACCTTT	CTTCGCCGGG	AAAAATTTCC	ACTGCTAAAT
51	TGATTCGTCA	GGCATGTCTT	GAACATGGAT	TCTTCTATGT	AAAGAATCAT
101	GGAATCTCGG	AAGAATTA AT	GGAAGGGGTT	TTTAAGGAGA	GCAAAGGCTT
151	CTTTAATCTC	CCATTAGAGG	AAAAGATGGC	TTTACTCCGC	CGTGATTTGC
201	TCGGTTATAC	TCCGTTGTAT	GCTGAGAAAC	TTGACCCGTC	CTTGAGCTCC
251	ATAGGTGATT	CCAAGGAAAG	CTTCTATTTT	GGCTCTTTGG	AAGGTGTTCT
301	AGCTCAACGT	TACCCAAATC	AATGGCCTTC	TGAAGGTATC	TTGCCATCAT
351	GGAGGCAAAC	CATGGAAACT	TACTACAAGA	ATGTCCTGTC	CGTGGGTAGA
401	AAATTGCTTG	GCTTGATTGC	CTTAGCATTG	GATTTAGATG	AGGACTTCTT
451	CGAAAAAGTT	GGAGCCTTGA	ATGATCCTAC	AGCAGTTGTT	CGCCTCTTAC
501	GCTATCCAGG	TGAAGTGATT	TCGTCAGATG	TTGAAACGTA	TGGTGCCTCA
551	GCTCACTCAG	ATTATGGAAT	GGTCACTCTT	CTTTTGACTG	ATGGAGTTCC
601	AGGACTTCAG	GTTTGTAGAG	ACAAATCGAA	ACAACCACAC	ATTTGGGAAG
651	ATGTCCCTGG	AATTAAAGGG	GCGTTTATCG	TCAACATTGG	TGATATGATG
701	GAGAGATGGA	CCAATGGATT	GTTCCGGTCT	ACATTGCATA	GAGTGATGCC
751	GGTGGGAAAA	GAACGTTACT	CGGTGGTGTT	CTTCTTAGAT	CCCAATCCAG
801	ATTGTAATGT	GAAATGCTTG	GAGAGTTGTT	GCAGCGAAAC	TTGTCCCCCT
851	AGATTCCCGC	CTATCCTCGC	CGGTGACTAT	ATTAAGGAGC	GTTTCAGGCT
901	AACATACGCC	ACTTCCTAGT	CTATGTTTGT	TACGAAATGT	AAGAAAATAA
951	TAATGTTCAA	ACTTCTACGT	ACCATAATGT	TTAATTAGTG	GAAACTTATG
1001	GAACTTGAAA	ААААААААА	ААААААААА	AAA	

Sequenz des abgeleiteten Gens 5 (Arabidopsis thaliana)

1	ATGGAAGGGG	TTTTTAAGGA	GAGCAAAGGC	TTCTTTAATC	TCCCATTAGA
51	GGAAAAGATG	GCTTTACTCC	GCCGTGATTT	GCTCGGTTAT	ACTCCGTTGT
101	ATGCTGAGAA	ACTTGACCCG	TCCTTGAGCT	CCATAG GTTT	GCATTTTTTG
151	CATATGTGGC	TTGTTTTTTG	TTTGCTGAGC	TAGTCTATAA	AGTTGATATT

201	TCCTTGTTAG	GTGATTCCAA	GGAAAGCTTC	TATTTTGGCT	CTTTGGAAGG
251	TGTTCTAGCT	CAACGTTACC	CTAACCAATG	GCCTTCTGAA	G GTAATTTCT
301	TCCTAACTGT	TTCATTAATC	TGTTTTAATT	TCAATCTCTC	ACGGTCACGG
351	ATTATGTGTA	TGTTAAAG GT	ATCTTGCCAT	CATGGAGGCA	AACCATGGAA
401	ACTTACTACA	AGAATGTCCT	GTAAGCAGTT	GCTCTCTTGT	CGTTCTTCTT
451	CAAAGTGAAT	CTCAAACTAA	AACTTCATAC	CTATATTCTC	AGTTGAGAAT
501	AGGTTTCAAG	TTCATTTCAA	CAGTTAGATT	TAAACCTTGA	TGGTAGGAAT
551	AAATATAGTC	TATTTTAGCC	AAGTACATCG	GTAGTACAAA	TGAAAAATTC
601	TTTTCAGGTC	ATAAATTGTA	AGTAGATTAG	GCTGTTTCAT	GAGTATTTCC
651	TCTCTTTTAT	TTGCAATTTC	CATATTACTT	TCCTGGATCA	ACTTGCTAGT
701	TGTGTGTTTG	CATTCCTGCT	TTAAG GTCCG	TGGGTAGAAA	ATTGCTTGGC
751	TTGATTGCCT	TAGCATTGGA	TTTAGATGAG	GACTTCTTCG	AAAAAGTTGG
801	AGCCTTGAAT	GATCCTACAG	CAGTTGTTCG	CCTCTTACGA	TATCCAG GTG
851	TGTCTATGTA	CATCAAAAAG	TTCTGGTTGG	CTTGATATTA	ATCTTAATGA
901	ACTTTGGTCA	GAGTTAGATC	GTAACATATG	TAATCAGTGG	AAACTTAAGC
951	CACATTCCGG	GAGTTTGAGT	CAGGTTTTGA	TCTCTGCACT	TGTTATGATT
1001	ATAG GTGAAG	TGATTTCGTC	AGATGTTGAA	ACGTATGGTG	CCTCAGCTCA
1051	CTCAGATTAT	GGAATGGTCA	CTCTTCTTTT	GACTGATGGA	GTTCCAGGAC
1101	TTCAG GTCAA	TATCTCTGAA	TTTCTCGTCA	TAATCTTCTA	TTAGTAACCT
1151	TATGTTCTTA	CACTGTCTTT	GAACTGAACT	CTTAG GTTTG	TAGAGACAAA
1201	TCGAAACAAC	CACACATTTG	GGAAGATGTC	CCTGGAATTA	AAGG GTAAGT
1251	CTAGCTTTTC	TTAGCTACTA	GTTTATGATG	AGAAATGATT	GTTGAAATCC
1301	GGGGACTTTC	TGTAACCGCA	G GGCGTTTAT	AGTCAACATT	GGTGATATGA
1351	TGGAGAGATG	GACCAATGGA	TTGTTTCG GT	AAACTTAAAC	CAGTTTACCT
1401	AGTCGTGAGT	GCGGTTTTTA	TGCGTTCTTC	ACATTTCGTA	TTTTCTTGTA
1451	ATGGGTTTAG	GTCTACATTG	CACAGAGTGA	TGCCGGTGGG	AAAAGAACGT
1501	TACTCG GTAG	CTTTGTCTTG	TTTCTTTCTT	TCTAATTTCT	ATACAAATTG
1551	ATAAAGTTTT	GAGTTATTTA	AAGGAAAAGT	TTTTTGTAG G	TGGTGTTCTT
1601	CTTAGATCCC	AATCCAGATT	GTAATGTGAA	ATGCTTGGAG	AGTTGTTGCA
1651	GCGAAACTTG	TCCCCCAAG G	TATTTCTTCT	TGAATCTTAA	TCCAATTTAA
1701	GGGTGTGAGG	AGAGGCACGT	TACACGTTTG	TTAAATCATT	TGGTCTTCAA
1751	GTGTAAAAGA	ATAAAAGTTT	AGTCCTTCTC	TCATAAAGAT	TTAGTTCCAT
1801	CGGTGCAG AT	TCCCGCCTAT	TCTCGCCGGC	GACTATATCA	AGGAGCGTTT
1851	CAGGCTAACA	TACGCCACTT	CCTAG		

Sequenz des abgeleiteten Gens 5 (Capsella rubella)

1	ATGGAAAGGG	TTTTTAAGGA	GAGCAAAGGC	TTCTTTAATC	TTCCACTAGA
51	GGAGAAGATG	GCTTTACTCC	GCCGTGATTT	GCTTGGTTAT	ACTCCTTTGT
101	TTGCTGAGAA	GCTTGACCCG	TCTTTGACCT	CCTCCACAG G	TTTTATTCAT
151	TTGGTGGTTT	GTTTTCTTGC	TGGAGGTAGT	CTACAGATTT	GATCTCTCTT
201	TGTTAG GTGA	TTCCAAGGAA	AGCTTTTATT	TTGGCTCTTT	GGAAGGCGTG
251	CTTGCTCAAC	GATACCCAAA	TCAATGGCCT	CCTGAAG GTT	ATTTCCTACT
301	ACATGGGTTT	TTTCTAATCT	GTTTTGATCT	CAATCTCTTT	TTTTCTCTCT
351	CACGGATTAT	GTGTATGTAT	TAGATCTCTT	GCCATCATGG	AGACAAACCA
401	TGGAATGTTA	CTACAAGAAT	GTCCT GTAAG	TACCTGCTCT	TTAGTCGTTC
451	TTCTGCTAAG	TTAATCCAAA	GCTAAAACTT	AATACCATGA	TTTCTCTATA
501	CATCCTCAGC	TGATAATAGG	TTTTCAAGTT	CATATCAACA	GTTCAAATTT
551	GAACCTTGAT	GGTAGGGACA	AAAATAGTTT	ATTGTAGCCA	ATTACATTGT
601	TAGTAGAAGT	GGACAATCTT	AGCTGCCTAT	GTGTTCTTGA	AATATCTTCT
651	TTTCAGGTTA	TAAATTGTAA	GGAGATTATG	CTTATTTCAT	GAGTAGTTTC
701	TCATTTTGCA	ACTTTCCTAT	TACTTTCCTG	GACCAACGTG	CTAGTTGTGT
751	TTTGCTTTTC	TGCTTTAAGC	TCCGTCGGTA	GAAAATTGCT	CGGCTTGATT
801	GCCTTGGCAT	TGGATTTAGA	TGAGGACTTC	TTCGAAAAAG	TTGGAGCCTT
851	GAATGATCCT	ACAGCAGTTG	TTCGCCTCTT	ACGCTATCCA	G GTATCTATG
901	TACATTAGAT	TCTGGTTGGA	TTGATGATTG	ATATTAATAT	TGATGAACTT
951	TGGTAAGAAT	TAGTATCTTA	ACAGAAATAG	AGGAACATGT	ATCTAAACAT
1001	ATGCAAGAAG	TGGAAATGTA	AGCCATATTC	CAGGAGTTCG	AGTCAGGCAG
1051	GTTTTGATCT	CTGCACTTGT	GATGATATAT	ATATATATAT	TATAG GTGAA
1101	GTGATTATGT	CGAATGAAGA	AACATATGGT	GCCTCAGCTC	ACTCAGACTA
1151	TGGAATGGTC	ACTCTTCTAA	CGACTGATGG	AGTTCCAGGG	CTTCAG GTAA
1201	ATGATTTCTT	ATTCTTTCTT	GTAACTCTCC	TCATACTCTT	CTCCTTTTAG

1251	TAACCTTATG	TTCTTACACC	GTCTGTGAAA	CTCATAGGTT	TGTAGAGACA
1301	AATCGAAACA	ACCACACATT	TGGGAAGATG	TCCCTGGAAT	TAAAGG GTAA
1351	AGTTAGCTTT	TTTTTAACTA	CTTGGTTTTG	GAGGTTTGTC	GAATAGAAAC
1401	AATTGTCGAA	ATCGGGGGGAC	TTTCCTATAA	CTGTAGGGCG	TTTATCGTCA
1451	ACATTGGTGA	TATGATGGAG	AGATGGACCA	ATGGACTGTT	CCG GTAAATT
1501	TTTAATCAAT	CCTAGTTTAG	AGTGAGTGTG	TTTTCTAGGT	AACACTTCAC
1551	ATTATTCATG	TAATGGGGTT	TAG GTCTACG	TTGCACAGAG	TGATGCCAGT
1601	TGGAAAAGAA	$\textbf{CGTTACTCG}\mathbf{G}$	TAACTTTGCC	TCAATCTTTT	CCATTTTTAC
1651	TAACAAATTG	ATAATGTTTT	GGGGGATAAA	GTAATTAATT	CGAGGAGAAG
1701	$\mathtt{TTACTGTAG}{\boldsymbol{G}}$	TGGTGTTCTT	CTTAGATCCC	AATCCAGACT	GTAATGTGGA
1751	ATGCTTGGAG	AGTTGTTGCA	GCGGAACTTG	$\textbf{TCCCCCAAG}\mathbf{G}$	TATTGGAGAA
1801	AACTCTTGTT	GAATTACTCC	AATTTAGGGT	GTGAAGGGGT	GCATATCTGT
1851	TGTTAAATCG	TTTTTGACCT	TGAATGGCAA	AAGAATAAAA	GTTAAGTCCG
1901	TTTCTGATAT	ACAACTCTGC	TTGTATCGGT	${\tt GTAG}{\textbf{ATTCCC}}$	GCCTATTCTC
1951	GCAGGCGACT	ATATGAAGGA	GCGTTTCAGG	CTAACATACG	CAACATCCTC
2001	TTAG				

Sequenz des Arabidopsis thaliana cDNA-Klons C

1	AACAAA ATGG	GAACAGCTCT	GAAACTTCCG	ATCATCGATC	TTTCTTCGCC
51	GGAGAAGCTC	TCTACTTCCC	GATTGATTCG	TCAGGCTTGC	TTGGATCATG
101	GATTCTTCTA	TCTTACGAAC	CATGGCGTTT	CGGAAGAGTT	GATGGAAGGA
151	GTGTTAATAG	AGAGCAAGAA	ACTATTCTCC	CTTCCTCTTG	ATGAGAAGAT
201	GGTGATGGCT	CGTCATGGTT	TTCGTGGTTA	CTCACCGTTA	TACGACGAGA
251	AACTTGAATC	ATCTTCCACC	TCCATAGGTG	ATTCCAAGGA	GATGTTCACT
301	TTTGGATCTT	CAGAAGGAGT	TTTGGGTCAA	CTTTACCCTA	ACAAGTGGCC
351	TCTTGAAGAG	CTTTTGCCGC	TTTGGAGGCC	AACCATGGAA	TGCTACTATA
401	AAAATGTCAT	GGATGTTGGT	AAGAAATTGT	TTGGCCTAGT	GGCTTTGGCA
451	TTGAATTTAG	AGGAAAACTA	CTTTGAACAA	GTGGGAGCTT	TCAATGATCA
501	AGCAGCGGTT	GTTCGTCTCT	TACGTTATTC	AGGAGAATCA	AATTCATCTG
551	GAGAAGAAAC	ATGTGGTGCC	TCTGCTCATT	CAGATTTTGG	AATGATAACT
601	CTTCTTGCAA	CTGATGGAGT	TGCAGGGCTT	CAAGTTTGTA	GAGATAAAGA
651	TAAAGAACCA	AAAGTTTGGG	AAGATGTCGC	TGGTATTAAA	GGGACTTTTG
701	TTGTCAACAT	CGGCGACCTT	ATGGAAAGAT	GGACTAATGG	TCTTTTCCGA
751	TCAACATTGC	ATAGAGTGGT	GTCAGTGGGA	AAGGAACGTT	TTTCGGTGGC
801	TGTATTTGTC	GATCCAGACC	CAAACTGCGT	TGTAGAGTGC	TTGGAGAGCT
851	GTTGTAGTGA	AACATCTCCT	CCCAAGTTTC	CACCGGTCCG	GGCCAGAGAT
901	TATTTCCACG	AGCGATTCAG	TCAAACCCTC	GCCTCGTACT	CCGGTTCCGA
951	СТАА ААТАТА	TGAGAACTGA	GAAGCTCCAG	GTTTTCTTAA	ATAAGACATG
1001	TGTCAAATGT	TTGAGTTTCA	CTTTTGCGTG	GACATGAAAT	AGCTATTATA
1051	AACCAAAAGG	TGATAAAACA	CTTAAAACAG	TATAATGTAA	TTAGGTGTAT
1101	TTTCGATTGA	TAAATGTATT	AATTGTAGAC	ТАААААААА	ААААААААА
1151	AAAAA				

Sequenz des abgeleiteten Gens C (Arabidopsis thaliana)

1	ATGGGAACAG	CTCTGAAACT	TCCGATCATC	GATCTTTCTT	CGCCGGAGAA
51	GCTCTCTACT	TCCCGATTGA	$\textbf{TTCGTCAG} \mathbf{G} \mathbf{T}$	TCTTCTTCTT	CTCCCCTTG
101	TCTTTTTTTT	CATGGTAACA	AAACGAAGAT	ATTGATTGTA	TTATTTATAC
151	TCTAAACAGT	AAATGGTTCT	TATATTACTG	TAGAAATGTC	GGTTGTCGAT
201	AATAGTGTTT	TAGAATGATA	TTGTGATGCT	TAAATATCCA	ATTGTTTAG G
251	CTTGCTTGGA	TCATGGATTC	TTCTATCTTA	CGAACCATGG	CGTTTCGGAA
301	GAGTTGATGG	AAGGAGTGTT	AATAGAGAGC	AAGAAACTAT	TCTCCCTTCC
351	TCTTGATGAG	AAGATGGTGA	TGGCTCGTCA	TGGTTTTCGT	GGTTACTCAC
401	CGTTATACGA	CGAGAAACTT	GAATCATCTT	CCACCTCCAT	AG GTTCTTGA
451	TAGTATAATA	GCTCATGAAA	TTGCTTTGAT	TTGTCCAATG	ACTGGATTCA
501	TGTGTTTCAA	TTATTTGCGT	TTTGGTTCCA	AAAAGTGGAA	TGTGTCATTT
551	GAGTTTTCAT	$ACAAACAG\mathbf{GT}$	GATTCCAAGG	AGATGTTCAC	TTTTGGATCT
601	TCAGAAGGAG	TTTTGGGTCA	ACTTTACCCT	AACAAGTGGC	CTCTTGAAG G
A	n	h	a	n	g
---	---	---	---	---	---
					_

651	TAAACTCTTT	GCCAACTCTA	CTATGTGGAC	TAGATGAGAG	CAAACAGGAA
701	TTCTGTGATC	ATCTAGTCAG	ТАААТСАТАА	TTTTTAAAAG	ATAAAGAACT
751	TACTCATGTT	AAATTAACAA	CAATTTTTTA	AAAATTTTAA	AATAATTATG
801	AGCTATCTTG	AATCCAAAAC	ATTTTAAATT	СААААСТААС	ATTAGAAAAT
851	TCTAACGACT	TCTCGAAAGT	TATGAACTAT	AACACTGAAA	АААСАААААТ
901	ATAAGAAATA	АААТААААА	CTATATATTT	AGATGATAAG	TTTATTAAAG
951	CTATAAATTT	TTAACCGTAT	TTCCCCATAA	CTAAAACCAA	ACTCGACATA
1001	TAAGAAAAAA	TTGAAGAGCA	TATAAATTAA	TCACAAAATC	TTAATGAAGT
1051	TGAAGAAAAT	AGTGAGATAT	ATGAAAATGG	TGATAAACCC	TATTTAGCAA
1101	ATAGTAACAA	AACCATTTAG	GCCTCTAAAC	CCATTGTTTC	TTTCAAATTA
1151	TAGTTCTTTC	TTTTGTTTAT	GTTGATTATA	TATATATAAC	TTATGTGTTA
1201	TGGATGTTTA	CAG AGCTTTT	GCCGCTTTGG	AGGCCAACCA	TGGAATGCTA
1251	СТАТАААААТ	GTCAT GTAAG	TAGCAGGAAA	TTCTGCTTAT	GCATACCCCA
1301	TGCTTAAGTC	TAAATGGTCA	CTCTAGCACC	TTAGATACTT	CTAAGGCTAA
1351	AGATGTCATT	GTTGCTTCTT	AATAG GGATG	TTGGTAAGAA	ATTGTTTGGC
1401	CTAGTGGCTT	TGGCATTGAA	TTTAGAGGAA	AACTACTTTG	AACAAGTGGG
1451	AGCTTTCAAT	GATCAAGCAG	CGGTTGTTCG	TCTCTTACGT	TATTCAG GTC
1501	TTTTACCAAA	CCTTGTAGCA	TTTTGGGGAT	TGATTAGAGA	CATTTTAGCA
1551	ACTGTTCTAA	AACTGTTCTA	AAAGAAAAAC	CCACTGCTAG	TTTGTTTACT
		_ ~ ~ ~			
1601	TTACTCTTTG	TCACATTATT	AAAG GAGAAT	CAAATTCATC	TGGAGAAGAA
1601 1651	ACATGTGGTG	TCACATTATT CCTCTGCTCA	AAAG GAGAAT TTCAGATTTT	CAAATTCATC GGAATGATAA	TGGAGAAGAA CTCTTCTTGC
1601 1651 1701	ACATGTGGTG AACTGATGGA	TCACATTATT CCTCTGCTCA GTTGCAGGGC	AAAG GAGAAT TTCAGATTTT TTCAAGTATT	CAAATTCATC GGAATGATAA CATCTCATAA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA
1601 1651 1701 1751	ACATGATGGTG AACTGATGGA ACTGAGAATG	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG	AAAG GAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA	САААТТСАТС GGAATGATAA CATCTCATAA CTTCTTATAA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC
1601 1651 1701 1751 1801	ACATGTGATGGA AACTGAGAATG ACTGAGAATG GTATACTAAA	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG
1601 1651 1701 1751 1801 1851	ACATGAGAATG ACTGAGAATG ACTGAGAATG GTATACTAAA AAGATGTCGC	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTAAA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA
1601 1651 1701 1751 1801 1851 1901	ACATGATGATGGA AACTGATGATGGA ACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTAAA TTTTGATTGA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT
1601 1651 1701 1751 1801 1851 1901 1951	ACATGATGATGGA AACTGATGATGGA ACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTAAA TTTTGATTGA GTGTAAGGAC	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAGA GGGTAAGTTA CACTATTTGT TTTTGTTGTC	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGGA
1601 1651 1701 1751 1801 1851 1901 1951 2001	ACATGATGATGGA AACTGATGATGGA ACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAGA GGGTAAGTTA CACTATTTGT TTTTGTTGTC TCCGGTACCG	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGGA TCCTTACTTT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051	ACATGATGATGGA AACTGAGAATG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA	AAAGGAGAAT TTCAGATTTT TTTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAATAT TTGATTCAAG	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTACTTT ATCCTTTACTTT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101	ACATGACATGA ACATGACAATG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTACTTT ATCGCTTCTT AGGAACGTTT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2151	ACATGACATGA ACATGAGAATG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTAAGAT TTCGGTACGG	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTAAA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG TTGAATTAGT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGT ACCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2151 2201	TTACTCTTTG ACATGTGGTG AACTGATGGGA GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG TTGAATTAGT TATTGGTTTG	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGT ACCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2151 2201 2251	ACATGACGATGG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTGTCGAT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG TTGAATTAGT TATTGGTTTG ACTGCGTTGT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA AGAGTGCTTG	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGTA ACCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT GAGAGCTGTT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2151 2201 2251 2301	ACATGATGATGGA AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTTGTCGAT GTAGTGAAAC	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA ATCTCCTCCC	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG TTGAATTAGT TATTGGTTTG ACTGCGTTGT AAGTATGTAA	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA AGAGTGCTTG TAACTCGTTA	TGGAGAAGAA CTCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGGA TCCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT GAGAGCTGTT TTTTGGTTGT
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2251 2201 2251 2301 2351	TTACTCTTTG ACATGTGGTG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTTGTCGAT GTAGTGAAAC CTCATGTTAT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA ATCTCCTCCC AAACTTTTGA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGGTG TTGAATTAGT TATTGGTTTG ACTGCGTTGT AAGTATGTAA GTTTGACTGT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA AGAGTGCTTG TAACTCGTTA TTTCATCCAT	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTACTTT ACCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT GAGAGCTGTT TTTTGGTTGT CATGCTGGGG
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2251 2201 2251 2301 2351 2401	TTACTCTTTG ACATGTGGTG AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTTGTCGAT GTAGTGAAAC CTCATGTTAT GTGATTTGTGG	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA TTTTGATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA ATCTCCTCCC AAACTTTTGA	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGATATT TAGAGTGATTG ACTGCGTTGT AAGTATGTAA GTTTGACTGT AGTTTTGTC	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA TAACTCGTTA TTTCATCCAT TTTCATCGA	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTACTTT ACCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT GAGAGCTGTT TTTTGGTTGT CATGCTGGGG AAAACAAAA
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2251 2201 2251 2301 2351 2351 2401 2451	ACATGATGATGGA AACTGAGAATG GTATACTAAA AAGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTTGTCGAT GTAGTGAAAC CTCATGTTAT GTGATTTGTG AAGATGATTT	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA ATCTCCTCCC AAACTTTTGA ATAACTAGAA GTCAATTTCT	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTC TCCGGTACCG AGGTGATATT TAGAGTGATATT TAGAGTGGTTTG ACTGCGTTGT AGTTTGACTGT AGTTTTGTC TGCCTCAGGT	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA AGAGTGCTTG TAACTCGTTA TTTCATCCAT TTTCATCGA TTTCATCGAT	TGGAGAAGAA CTCTTCTTGC TCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGGA TCCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT AGGTGGCTGT GAGAGCTGTT TTTTGGTTGT CATGCTGGGG AAAACAAAA CCGGGCCAGA
1601 1651 1701 1751 1801 1851 1901 1951 2001 2051 2101 2151 2251 2301 2351 2351 2401 2451 2501	ACATGTGTTTG ACATGTGGGTG AACTGAGAATG GTATACTAAA AGGATGTCGC AACATATGCT GAGAAATTTT AAGATGGACT TAGTTTACAT GATTTAAGAT TTCGGTACGG TTATTATCGT ATTTGTCGAT GTAGTGAAAC CTCATGTTAT GTGATTTGTG AAGATGATTT GATTATTCC	TCACATTATT CCTCTGCTCA GTTGCAGGGC TCTTCTTTTG AAGGTTTGTA TGGTATTGA GTGTAAGGAC AATGGTCTTT TTCATATATA CAACATTGCA TACAATTTGT GACATTAACT CCAGACCCAA ATCTCCTCCC AAACTTTTGA ATAACTAGAA GTCAATTTCT ACGAGCGATT	AAAGGAGAAT TTCAGATTTT TTCAAGTATT TTTTCTTCTA GAGATAAAGA GGGTAAGTTA CACTATTTGT TTTGTTGTCGT TCCGGTACCG AGGTGATATT TAGAGTGGTGT TGAATTAGT TATTGGTTTG ACTGCGTTGT AGTTTGACTGT AGTTTTGTC TGCCTCAGGT CAGTCAAACC	CAAATTCATC GGAATGATAA CATCTCATAA CTTCTTATAA TAAAGAACCA TATACTTATA AATTAAGGCC AACATCGGCG AAAAAAATAT TTGATTCAAG TCAGTGGGAA CTCTGTTTTA ATTACTTTGA AGAGTGCTTG TAACTCGTTA TTTCATCCAT TTTTATTGGA TCCACCGGT CTCGCCTCGT	TGGAGAAGAA CTCTTTTTTAA CAATGTTTAC AAAGTTTGGG TAAATGCTTA TAAAACTTGT ACCTTATGGA TCCTTACTTT ATCGCTTCTT AGGAACGTTT CTAATCCTCT GAGAGCTGT TTTTGGTTGT CATGCTGGGG AAAACAAAA CCGGGCCAGA ACTCCGGTTC

Sequenz des abgeleiteten Gens C1 (Capsella rubella)

1	ATGGGAACGA	TTCTGAAACT	TCCAATCATC	GATCTTTCCT	CGCCGGAGAA
51	ACTCTCTACT	TCCAGTTTGA	$\textbf{TTCGTCAG} \mathbf{GT}$	TCTTCTTCTT	CTTCTCCCTC
101	TAAGATAACA	AAACGACATT	ATTGATTGTA	TTATTAGTTA	ATACTCTTAA
151	AAAAGACAGT	AAATGCTTCT	TTATATGGTT	ACTGTGTCGG	TGGTAAAATT
201	GTTTTTTTTT	TTTTGAAG GC	TTGTTTGGAT	CATGGATTCT	TCTACTTAAC
251	GAATCATGGC	GTTTCGGAAG	AGTTGATGGA	AGGAGTGTTA	ATGGAGAGCA
301	AGAAACTGTT	CTCTCTTCCT	CTTGACGAGA	AGATGGTGAT	GGCTCGTCGT
351	GGTTTTCGTG	GTTACTCACC	TTTATACGAG	GAGAAACCCC	ACTCCTCTAC
401	CTTAGCCAAA	\mathbf{G} GTTCTTAAT	TATATTATAG	CTTATCATAG	TTAGCTTATA
451	CTAACTTTTA	TCATTGGTTT	TGGTTAAGAA	ATGGAAATGT	GTGATATATT
501	GATTTGAGAT	TTTTTTTTTT	TTCTTTTCTT	ATAAAAG GTG	ATTCCAAGGA
551	GATGTTCACA	TTTGGATCTT	CAGAAGGAGT	TTTGGCACAA	ATTTACCCTA
601	ATGAGTGGCC	TCGTGAAG GT	AACATTTCTT	GGATAATACT	TTATAATCGA
651	TATTATACTA	TTGAAACTTT	TTATTTAATA	TATGATGATA	GTGAGCAAGT
701	TGATATAGTG	AAACTCCTAT	TAGTCCTCAA	TGATTGTTTC	TCTTTGATAT
751	AAAAACTCTT	TACCCACTCT	TGATCGAGAC	GTGTATATAA	AATTATAAAT
801	AGAAAAGTAG	AATTAGCTAC	АААСАААТТА	TTATATTTTT	AAGACGAATC
851	GGGAAAGCAA	ACCGGATTTT	CCGGACAATC	AGTTCAATAT	TGTATTATAG
901	TTTAATATAG	TTTTTGATAA	TTAATGTTAT	CATAAGAGTT	TGATAACAAT
951	TTTTCTTCTT	CTTCATTTTT	TGGCCTAGAT	CTTAATAACA	ААААААААА

1001	АААААААТ	CTACACCTTG	TAATCAGTGT	TCTAACAGAG	TTCTAAACGG
1051	TCTTCTAGCT	AGGTGCTCAT	TATCGAAGTA	TTTGTTTCTT	GAATTCACAA
1101	TATTTTTAAA	TGCAAAACTA	ATATTGAGGT	TTGGAAATTT	CCTAATCATA
1151	TTGACCCGGA	GAACATAGAA	AGAAAAATA	GAACTAATGA	AATGTTTATT
1201	TCATCTACCA	ATTTAACGGA	ATTTCAAGAA	ATTGTGGGCC	TTTGAACCCC
1251	TTGTTTCTAT	CAAATAGTAA	TGCTTTATTT	TGTAATTGTT	TATGATAATT
1301	ATCTATATCT	TATGGATTAT	GAATGTTTGT	AG AGCTTTTG	CCGCTGTGGA
1351	GGCCAACCAT	GGAATGTTAC	TATAAAACTG	TAAT GTAAGC	AGATGGAAAC
1401	TTGTTCTGCT	TATGCTGACC	AAAATACTTG	ТААААСТААТ	TAATTAATGA
1451	TGTCAACGTT	GTTTCCTTTT	CTATATATAT	TGGATTGTTG	TATGTTGTGG
1501	TTTTTGTTTA	ATGGTCTTTT	GTTGCTTCTT	AATTAG GGAT	GTTGGTAAAA
1551	AATTGCTTGG	CCTAGTGGCT	TTGGCACTGA	ATTTAGAAGA	AAACTTCTTT
1601	GAACAAGTGG	GAGGCTTCAA	TGCTCAAGCA	GCAGTTGTTC	GTCTTTTACG
1651	$\textbf{TTATCCAG} \mathrm{GT}$	CTTATAACAT	TTTGGGGATT	GATATGAAAA	CTCTACTACT
1701	GCTAGATTTA	TTTACTTTTA	TTCTTATTAA	AAGTCTCTCT	TTCTCACATT
1751	ATATATAAAT	AG GAGAGTTG	AATTCATCTG	GAGAAGTAAC	ATGTGGAGCG
1801	TCTGCTCATT	CAGATTATGG	AATGATAACT	CTTCTTGCAA	CTGATGGAGT
1851	TCCAGGGCTT	CAA GTATTCA	TCTCATAATC	TTTAACTTAA	AACTCAGTTT
1901	TAAAGTAAAA	ТААААСАААТ	ATTTTGTTAT	ACGTTTAACA	ATGTTTACGT
1951	ACTAAAAGGT	ATGTAGGGAT	AAAGATAAAG	AACCAAAAGT	TTGGGAAGAT
2001	GTCGCTGGAG	TCAAAGG GTA	AGTTACACTA	TCATGTACTT	TATTATTAAG
2051	GCCTAAAAAC	TTAAGATATG	ATATGACTTG	GTGTAAATTA	AAACCGCAG G
2101	GCTTTTGTTG	TCAACATTGG	CGACCTAATG	GAGAGATGGA	CTAATGGTCT
2151	TTTCAG GTAC	CTACAAAAAC	TAAAACATTC	ATACTTTTTA	GTTTACAGTT
2201	TCATTTCTAA	ACTAAAACAT	TCATACTTTG	AGTTAATTAA	GATATATCTC
2251	TTCTTGATTA	TAATTAAG AT	CAACAATGCA	TAGAGTGGTG	TCGGTGGGAA
2301	AAGAACGTTA	TTCG GTACGT	ACGATGTAAT	TCGTTTGAAT	AAGTCTCTGT
2351	TTTTGCTAAT	CATCATCATT	AAACGTGAAC	TAAACAAGTT	GGTTTTGATT
2401	ACTTGAAG GT	GGCTGTATTC	GTCGATCCAG	ACCCAAACTG	CGTTGTGGAG
2451	TGCTTGGAGA	GCTGTTGTAG	TGAAACATCT	$\textbf{CCTCCAG} \mathrm{GT}$	ATATTAAGAC
2501	AATAATGCAT	AGAGTGTTGT	TTGTGATAAC	TTAAAATAAT	TTGGTCTTCT
2551	ATTGAAATCA	CTTAAATTGG	TTGATTTGTC	ATTTTGTTGC	CTCAG GTTTC
2601	CACCTGTCCG	GACCAAAGAT	TATTTCCACG	AGCGATTCAG	TCAAACCCTC
2651	GCCTCGTACT	CCGGTTCGGG	CTAA		

Sequenz des abgeleiteten Gens C2 (Capsella rubella)

ATGGGAACGG	TTCTGAAACT	TCCGATCATC	GATCTTTCTT	CGCCGGAGAA
AATCTCTACT	TCCCGATTGA	TTCGTCAG GT	TCTTCTCCTT	CTTCTTCTTC
TTCTTCTTCG	GAAACAAAAC	GACCGGACTA	TATTGGTTGT	ATTATATCTA
GTCTGAAAAA	ATAGTAAATG	CTTTCTTTAT	ATGGTTACTA	TGCAAACGAC
GGTAGTAAAT	TGATATTTTG	ATGATTGTTT	TTTTATTTT	ATTGAGGCTT
GTTTGGATCA	TGGATTCTTC	TACCTCACGA	ATCATGGAGT	CTCGGAAGAG
TTGATGGAAG	GAGTGTTAAT	GGAGAGCAAG	AAACTGTTCT	CTCTTCCTCT
TGACGAGAAG	ATGGTGATGG	CTCGTCGTGG	TTTTCGTGGT	TACTCACCTT
TATACGACGA	AAAGCTTGAC	CCCTCTGCCA	$\textbf{CATCCAAAG}\mathbf{G}$	TTCGTAATTA
CATTATGTTA	TAGCTTATCC	TAATTTTATT	ATACTAACTC	TTATCATTGG
CTTTGGTTGA	GAAAAAGGAA	ATGTGTGACA	TACAGTATAT	TCATTTTACA
TTTTTTTCTT	TTCTTATAAA	AG GTGATTCC	AAGGAGATTT	TCACATTTGG
ATCATCAGAA	GGAGTTTTGG	CACAAATTTA	CCCTAATGAA	TGGCCTCTTG
AAG GTAACAT	TTGTTGGATC	ATAATATGTA	CTTTATAATG	GATATAATAT
AGAAACTTTA	TACTTAAATA	GATGATAATA	GTGAGGAAGT	TAATACTAAT
TTAAAGACAT	TGTAAAAAAT	GGGGATCTAA	ATGTTTTTAG	GGAGACAGAA
TTCTCTTTTC	AAAGATATCC	ATTTTTTTTT	TAAATATCAT	ATATTGAAAG
AGTTTTATTT	AAAGACACCC	АТААААТТАА	CCATTGTGGA	TGCTCATTTT
TTTAATAGCT	ATTTTAATAG	TTTGATAGTT	ATTTTAAAGA	TTTATAGTTA
ATAGTTATTT	AAATAGTTTG	ATAATATGTT	TTCTTCTTCC	TCATTTTTTT
TGGCCTTAGT	ААСАААААТ	AAATGCATAC	CTTCTACTAA	TAGTTATGAG
TTATATGAAG	TATCTTTTTT	CTTATAACAA	TTATGAACTT	ATTGAATCCA
AAATATTTTG	AAATGAAAAA	CTAACATTGA	GGTGTGAAAA	AATCTTAAAC
ATATTGAATT	ATAGAACGTT	АААААААТТ	GATGGAATAT	TGTTTGTTTT
AGCTACCAAT	TTTAACCAAA	TTGCAACAAA	ТААААТСААА	CATTCCAACC
	ATGGGAACGG AATCTCTACT TTCTTCTCG GTCTGAAAAA GGTAGTAAAT GTTTGGATCA TTGATGGAAG TGACGAGAAG TATACGACGA CATTATGTTA CTTTGGTTGA TTTTTTTCTT ATCATCAGAA AAGGTAACAT TTCATCATTA TTAAAGACAT TTCATCATTT TTTAATAGCT ATAGTTATTT TGGCCTTAGT TTATATGAAG AAATATTTG ATATTGAATT AGCTACCAAT	ATGGGAACGGTTCTGAAACTAATCTCTACTTCCCGATTGATTCTTCTTCGGAAACAAAACGTCTGAAAAAATAGTAAATGGGTAGTAAATTGATATTTTGGTTGGATAAATGATATTTTGTTGATGGAACAATAGTAATTTGACGAGAAGATGGTGATGACATTATGTATAGCTTATCCCTTGGTTGAGAAACATGACCCATTATGTATAGCTTATCCCTTGGTTGAGAAAAAGGAATTTTTTTCTTTTCTTATAAAAAGGTAACATTTGTTGGATCAGAAACTTTATACTTAAAAATTCTCTTTCCAAAGATATCCAGTTTAATAGCTATAGAACACCTTTAATAGCTAAATAATTTGAAAGTTAATTAAAAAAAAATTAATGAAGTATCTTTTTTAAATATTTGAAATGAAAAAATATTGAATATAGAACGTTAGCTACCAATTTTAAACAAAA	ATGGGAACGGTTCTGAAACTTCCGATCATCAATCTCTACTTCCCGATTGATTCGTCAGGTTTCTTCTTCGGAAACAAAACGACCGGACTAGTCTGAAAAATGATAATGCTTTCTTTATGGTAGTAAATTGATATTTGATGATGTTTGTTGGACAAGGAGTGTTAATGGAGAGCAAGTGACGAGAAGATGGTGATGACCCTCGCGAGTAACGACGAAAAGCTTGACCCCTCTGCCACATTATGTATAGCTTATCCTAATTTATTCTTGGTTGAGAAAAAGGAAATGTGTGACATTTTTTTCTTTTCTTATAAAAGGGAATCCCAAGGTAACATTTGTTGGATCATAATATGTAAAGGTAACATTGTTAAAAAAAGGGGATCTAAAGAAACTTTAAAGACATATGGGGATCTAAATATTATTTAAAGACACCATAATATGTAATATTATATTAAAGACACCATAATATGTAATAGTTAATTAAAGACATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATGGGAACGGTTCTGAAACTTCCGATCATCGATCTTTCTAATCTCTACTTCCCGATTGATTCGTCAGATTCTTCTCCTTTTCTTCTTCGGAAACAAAACGACCGGACTATATTGGTTGTGTCTGAAAAAATAGTAAATGCTTTCTTATATGGTTACTAGGTAGTAAATTGGATTCTCTACCTCACGAATACTGGGGTTTGATGGATCATGGATGTAATGGGAGACAGAAACTGTTCTTGACGAGAGAATGGTGATGACCCTCTGCCACATCAAGGGTATACGACGAAAGCTTGACCCCTCTGCCACATCAAAGGCATTATGTATAGCTTATCCTAATCTAACTATACTAACTCCTTTGGTTGAGAAAAAGGAAATGTGTGACATACAGAAATTTTTTTTTTCTTTCTTATAAAAGGTGATCCAAGGAACTTTAAGGTAACATTTGTTGGATCATAATATGAACCTAATGAAAAGGTAACATTTGTTGGATCATAATATGAAAAGGTAACATTGTTAAAAAAAGGGGATCTAAAAGAACTTTAAAAGAAACCATAATATGAGATTTAATAGCATTTTAAAAAAAGGGGATCTAAAAGATAATTAAAGAACACCATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1251	ААААGААААА	CATTACAATT	AGGTCTGGCT	TTTGAACCCC	TTAATTATTI
1301	ATATTGTAAT	TGTTTTGAAT	GTTTGTAG AG	CTTTTGCCGC	TTTGGAGGCC
1351	AACCATGGAA	TGCTACTATA	AATCTGTCAT	GTAAGTGGCT	GGAAACTTGI
1401	TCTGCTTATG	CTGACCAAAA	AAATACTTTT	AAAATTTATT	AATGGAGCAA
1451	TTTTTGTTTT	CCTTTTCATA	TATTTAATTG	GATTGTTGTA	AGCATGTTGI
1501	GGTTTTTGTT	GCTTCTTAAT	TAG GGATGTT	GGTAAGAAAT	TGCTTGGCCI
1551	AGTGGCTTTG	GCATTGGATT	TAGAGGAAAA	ATTTTTTGAA	CAAGTGGAAG
1601	GCTTCAATGT	TCAAGCAGCA	GTTGTTCGTC	TTTTACGCTA	TCCAG GTCTT
1651	TCAACATACC	TTGTATAGTC	TTATAACATT	TTGGGGATTG	ATAAGAATGC
1701	TCTAGTACTG	CTAGAGTTCT	TTACTTTTAT	TCTTAATTAA	AGTCCCTCTT
1751	TATCACATAG	GAGAGTTGAA	TTCATCTGGA	GAAGTAACAT	GTGGTGCCTC
1801	TGCTCATTCA	GATTATGGAA	TGCTAACTCT	TCTGGCAACA	GATGGAGTTC
1851	CAGGGCTTCA	AGTATTCATC	TCATATATTA	TATATTTTAA	TTCAGCTTTT
1901	AAAATTAAAT	ААААСААААТ	AGTTGCTATA	CGTTTAACAA	TGTTTACGTA
1951	CTAAAAG GTT	TGTAGGGATA	AAGATAAAGA	ACCAAGAGTT	TGGGAAGATG
2001	TCGCTGGAAT	CAAAGG GTAA	GTTACATAAA	ACCATAAACA	TATATGCTTI
2051	TTAATTGACA	CTATTTGTAG	TTAAGGCCTA	AAATACTTGA	GATATATATA
2101	TGATTGACTT	TTAAAATCAC	AG GGCTTTTC	TTGTTAACAT	TGGCGACCTI
2151	ATGGAGAGAT	GGACTAATGG	$\textbf{CCTTTTCCG}\mathbf{G}$	TACCTACAAA	AACTAAAACA
2201	TCTATATATA	TACTTTTTAG	TTTACATTTT	CATTTCTTTT	ATAACACTAC
2251	AATTTCATTT	CTTTTGAAAC	ACTACAGTTT	CATTTTTCTA	AGGTAATATT
2301	TAAACTTAAG	ATTTTGCATG	TCTCTTCTTG	ATTATAATCA	AGATCAACAA
2351	TGCATAGAGT	GGTGTCGGTG	GGGAAAGAAC	GTTATTCG GT	ACGTACGATO
2401	TAATTCGTTC	GAACTAGCTA	GTCTCTGTTT	TTGCTAATCA	CCATCACATA
2451	AACGTGACAT	AAACAAGTTG	GTTCTGATTA	CTTGAAG GTG	GCTGTATTCI
2501	TCGATCCAGA	CCCAAACAGC	GTTGTGGAGT	GCTTGGAGAG	CTGTTGTAGI
2551	GAAACATCTC	CTCCCCG GTG	TGTGTGTGTA	TATTAATAAA	TCTTGTTGTT
2601	TTGTGATAAC	TTAAAAAGTT	TTGGTGTTCT	ATCGTAAGAA	CTTAAATTAA
2651	ATGGTTGATT	TGTCATTTTG	TTGCATCAGG	TTTCCACCTA	TCCGGACCAG
2701	AGATTATTTC	CACGAGCGAT	TCAGTCAAAC	CTTCGCCTCC	TATTCCGGTI
2751	CCGGCTAA				

Sequenz des Arabidopsis thaliana cDNA-Klons D

1	CAAAAGAAAA	GCAGACAACT	TTATTTGCAA	AACAGAGTTT	TTTTTTCTTT
51	TCTTGAGAAA	GTTCAACAGA	AG ATGATGTT	GGAGAAAGAC	GATCTGGGTC
101	TAAGCTTAGG	CTTGAATTTT	CCAAAGAAAC	AGATCAATCT	CAAATCAAAT
151	CCATCTGTTT	CTGTTACTCC	TTCTTCTTCT	TCTTTTGGAT	TATTCAGAAG
201	ATCTTCATGG	AACGAGAGTT	TTACTTCTTC	AGTTCCAAAC	TCAGATTCGT
251	CACAAAAAGA	AACAAGAACT	TTCATCCGAG	GAATCGACGT	GAACAGACCA
301	CCGTCTACAG	CGGAATACGG	CGACGAAGAC	GCTGGAGTAT	CTTCACCTAA
351	CAGTACAGTC	TCAAGCTCTA	CAGGGAAAAG	AAGCGAGAGA	GAAGAAGACA
401	CAGATCCACA	AGGCTCAAGA	GGAATCAGTG	ACGATGAAGA	TGGTGATAAC
451	TCCAGGAAAA	AGCTTAGACT	TTCCAAAGAT	CAATCTGCTA	TTCTTGAAGA
501	GACCTTCAAA	GATCACAGTA	CTCTCAATCC	GAAGCAGAAG	CAAGCATTGG
551	CTAAACAATT	AGGGTTAAGA	GCAAGACAAG	TGGAAGTTTG	GTTTCAGAAC
601	AGACGAGCAA	GAACAAAGCT	GAAGCAAACG	GAGGTAGACT	GTGAGTTCTT
651	ACGGAGATGC	TGCGAGAATC	TAACGGAAGA	AAACCGTCGG	CTACAAAAAG
701	AAGTAACGGA	GTTGAGAGCA	CTTAAGCTCT	CTCCTCAGTT	CTACATGCAC
751	ATGAGCCCAC	CCACTACTTT	GACCATGTGC	CCTTCATGTG	AACACGTGTC
801	GGTCCCGCCA	CCACAACCTC	AGGCTGCTAC	GTCAGCACAC	CACCGGACGT
851	TGCCGGTCAA	TGCGTGGGCT	CCTGCGACGA	GGATATCTCA	CGGCTTGACT
901	TTTGACGCTC	TTCGTCCTAG	GTCCTAA GTC	TTTTTACTTA	CAATCAAAGG
951	GCATTGTGGT	CGTTTTATTA	AGTTTCAGGG	ACCAGATATG	CATGTAGTTG
1001	TTAACATGTA	TGTATTTTTT	TTAGAAAGAA	AGAAAAACAG	ΑΤΤΑΑΤΑΑΑΑ
1051	ААААААААА	AAA			

Sequenz der Athb-2 cDNA (X68145)

1 TGCCCCCAGC TAGTCACATA CTCATGATTG CAAAATCTCT CTCTCTCTC

An	hang
	incuring.

51	GCCTCTCTAT	ATATTAACCT	TTCTTCTTCC	TTTACTTTCT	CATCTTCTAT
101	CTCTCAAAAG	AAAAGCAGAC	AACTTTATTT	GCAAAAACAG	AGTTTTTTTT
151	TCTTATCTTG	AGAAAGTTCA	ACAGAAG ATG	ATGTTCGAGA	AAGACGATCT
201	GGGTCTAAGC	TTAGGCTTGA	ATTTTCCAAA	GAAACAGATC	AATCTCAAAT
251	CAAATCCATC	TGTTTCTGTT	ACTCCTTCTT	CTTCTTCTTT	TGGATTATTC
301	AGAAGATCTT	CATGGAACGA	GAGTTTTACT	TCTTCAGTTC	CAAACTCAGA
351	TTCGTCACAA	AAAGAAACAA	GAACTTTCAT	CCGAGGAATC	GACGTGAACA
401	GACCACCGTC	TACAGCGGAA	TACGGCGACG	AAGACGCTGG	AGTATCTTCA
451	CCTAACAGTA	CAGTCTCAAG	CTCTACAGGG	AAAAGAAGCG	AGAGAGAAGA
501	AGACACAGAT	CCACAAGGCT	CAAGAGGAAT	CAGTGACGAT	GAAGATGGTG
551	ATAACTCCAG	GAAAAAGCTT	AGACTTTCCA	AAGATCAATC	TGCTATTCTT
601	GAAGAGACCT	TCAAAGATCA	CAGTACTCTC	AATCCGAAGC	AGAAGCAAGC
651	ATTGGCTAAA	CAATTAGGGT	TACGAGCAAG	ACAAGTGGAA	GTTTGGTTTC
701	AGAACAGACG	AGCAAGAACA	AAGCTGAAGC	AAACGGAGGT	AGACTGCGAG
751	TTCTTACGGA	GATGCTGCGA	GAATCTAACG	GAAGAGAACC	GTCGGCTACA
801	AAAAGAAGTA	ACGGAATTGA	GAGCACTTAA	GCTCTCTCCT	CAGTTCTACA
851	TGCACATGAG	CCCACCCACT	ACTTTGACCA	TGTGCCCTTC	ATGTGAACAC
901	GTGTCGGTCC	CGCCACCACA	ACCTCAGGCT	GCTACGTCAG	CGCACCACCG
951	GTCGTTGCCG	GTCAATGCGT	GGGCTCCTGC	GACGAGGATA	TCTCACGGCT
1001	TGACTTTTGA	CGCTCTTCGT	CCTAGGTCCT	AAGTCTTTTT	ACTTGCAACC
1051	AAAGGGCATT	TTGGTCGTTT	TTTAAGTTTC	ATGGACCAGA	TATGCATGTA
1101	GTTGTTAACA	TGTATGTATT	ТТСТТААААА	ААААААААА	

Sequenz des abgeleiteten Gens D (Capsella rubella)

1	ATGATGTTGG	AGAAGGACGA	CTTGGGTCTA	AGCTTAGGCT	TGAACTACCC
51	TAAGAAACAG	ATGAATCTCA	ATTCAAATCC	CTCTGTTTCT	GTTACTCCTT
101	CTTCTTCTTC	TTTTGGATTA	CTCCGTAGAT	CTTCATTGAA	CGAGAGTTTT
151	ACTTCTTCAG	GTATTTTCAT	ATCTTTCTGG	GTTCCTCTGT	TTTTATTATT
201	TTCCCGAGAA	AAAATCAATT	TTTCCAGGAA	AAACTCAGCA	ААААССТТАА
251	AAGTCTCACT	TTTCTTAACA	TATTCATAAA	ACCCATCTTT	AATCTGTTGT
301	AAAAACCATT	GCTTTTTGAC	AATTTTCTCC	ACTTTCCGGA	GAAAATAATA
351	TCCATTTTCC	CGGAAAATCA	CATCATATAA	CCTTAAAGGT	СТАААТСТТА
401	TGCATGCAGT	TCCAAACTCA	GATTCATCTC	AAAAAGAAAC	AAGAACTTTC
451	ATCCGTGGAA	TCGACGTGAA	CAGACCACCG	TCGACGGCGG	AATACGGCGA
501	AGAAGACGCC	GGAGTATCTT	CACCGAACAG	CACAGTCTCA	AGCTCAACAG
551	GGAAAAGAAG	CGAGAGAGAA	GAAGACACAG	ATCCACAAGG	CTCAAGAGGA
601	GGAATCAGCG	ACGATGAAGA	CGGTGATAAC	TCCAGGAAAA	AACTCAGACT
651	CTCCAAAGAT	CAATCTGCTA	TTCTCGAAGA	AACCTTCAAA	GATCACAGTA
701	CTCTCAATCC	\mathbf{G} GTAAATAAT	TTTTACTCTT	CTTTCAAATG	GACCAATGAT
751	GATGGAAACG	AAAATAACGC	GTAAATGTTT	TATATTCAAC	ATGACTATTA
801	TTACTTGTTG	ACAAGAGAAG	GAAAAAAACA	TTTGCTACTA	TTGGGTTTTT
851	GGTCACTCAT	AAATGCAGAT	ATTAATTTGT	AAAATGGTAT	TTTCGTAAAT
901	TTTATACTGA	TTCAAGGTTC	GTTTTTTTGT	AACAG AAGCA	GAAGCAAGCA
951	TTGGCTAAGC	AATTAGGATT	GAGAGCTAGA	CAAGTGGAAG	TTTGGTTTCA
1001	GAACAGACGA	GCTAG GTAAG	ATATAAAACG	AACCAACTCT	GTTTCCCCGA
1051	TTTGCCCCTG	TTTTATCTTA	TGTACTGATA	AGGGTAGTTT	GGTAATAACA
1101	GAACAAAGCT	GAAGCAGACG	GAGGTTGACT	GCGAGTTCTT	ACGGCGATGC
1151	TGCGAGAATC	TAACGGAAGA	GAACCGTAGG	CTACAGAAAG	AAGTAACGGA
1201	GTTAAGAGCA	CTTAAGCTGT	CTCCTCAGTT	CTACATGCAC	ATGAGCCCAC
1251	CAACCACATT	GACCATGTGC	CCTTCGTGCG	AACACGTGTC	GGCCCCTCCA
1301	CCACAACAAC	CACCTCAGGC	TGCAACGTCA	GCGCAGCACC	ACCGAGGGTC
1351	GTTGCCGGTC	AATGCTTGGG	CTCAGGGTAC	GAGGATCTCT	CACGGCTTGA
1401	CTTTTGACGC	TCTTCGTCCT	CGGTCCTAA		

Sequenz des Arabidopsis thaliana cDNA-Klons E

1	GGAAGCAAGA	AGCTTGAAGA	AACCAATCCA	ATTGGGTAAT	AAAGAAGATC
51	AAAACCCTAG	AAAATTCTAC	TCTCGATTCA	TCTTTAAAGC	TCTTATCCTC
101	ACCGTGCTCT	GCGCCGTCGT	ACCTGTCTTC	CTTTCTCAGA	CACCAGAGCT

151	TGCTAACCAA	ACAAGACTCC	TCGAGCTTCT	CCACCTTGTT	TTCGTCGGTA
201	TCGCAGTCTC	TTACGGTCTC	TTCAGCCGCA	GGAACTACGA	CGGAGGAGGA
251	GGTGGAGGAA	CAAGCAATAG	TGATCACAAC	AAAGCTGATC	ATAGTAATAA
301	TAATTCGCAT	TCATATGTGC	CTAAGATTCT	TGAAGTATCC	TCTGTTTTTA
351	ACGTGGGTCA	CGAGAGTGAA	TCTGAACCGT	CCGATGATTC	CTCCGGTGAT
401	CAACGTAAGT	TTCAGACATG	GAAGAACAAG	TACCACATGA	AAATCCCCGA
451	GGTTGAGACT	CGTTTCGTTG	ATCGAGTTAG	TTCAGAAAAC	AGAGAGAAGC
501	CTCTGCTTTT	GCCGGTTCGG	AGCTTGAATT	ATTCTCGTGT	TTCTGATTCT
551	TCCGGCGATA	ATTCCGGTCG	ATGGGAGAAA	GTGAGATCTA	AGAGAGAACT
601	TCTGAAGACT	CTTGGCGATG	ATAATAGTGA	TGTGCTTCCT	TCTCCGATTC
651	CATGGAGGTC	AAGATCATCT	TCATCATCAT	CATCATCATC	AAAGGAGGTT
701	GAATCTCTAC	CGTCCGTTAA	GAATCTGACT	ACAGTTGAAT	CACAGCCGTT
751	GATCAAGAAT	CTGACACCAT	CTTCTTCTTT	CTCTTCTCCA	AGAAAGTCGA
801	ATCCTATACC	TAATCTCGCA	TCTGAGTTCC	ATCCATCTCC	GCCACCGCCT
851	CCTCCGCCGC	CGCCACCACT	ACCGGCGTTT	TATAACTCCT	CGTCGAGAAA
901	AGATCATCCC	GGAATTTACA	GGGTTGAGAG	GAGAGAATCA	TCAGTTCACA
951	AGACGAAATT	TGCAGGAGGT	GAGTTTCATC	CTCCGCCGCC	TCCTCCTCCA
1001	CCACCTCCGG	TGGAGTATTA	TAAGTCACCT	CCGACAAAAT	TCAGACTAAG
1051	TAACGAACGG	AGAAAGTCCT	CGGAGCAAAA	GATGAAAAGA	AACGCTCCTA
1101	AAAAGGTTTG	GTGGTCCGAT	CCAATCGTGG	AATCGAAGGA	ACAAGACACA
1151	GAGAAGAATG	ATCAAAGAAG	TAACTTGGGA	AGCAAGGCAG	TGGAAGAATC
1201	CGAGAATGGA	GAACAGAGAA	GAGGAGAAAA	TGAAATCCAC	GACGAGGTTG
1251	AGAAGAAGAT	AGTAGAGGAA	GAAGGAGTTA	GTGAGATCAA	CAATGGAAGT
1301	GACGTGGACA	AGAAGGCAGA	TGAGTTCATT	GCAAAGTTCA	GAGAACAGAT
1351	TAGGTTACAA	AGAATCGAGT	CTATCAAGAG	ATCTACTAAT	AAGATCTCTG
1401	CAAATTCTTC	GAGGTAG AAC	TCATTATTTA	TTAATAATAG	GTATACATTT
1451	TAAGTATGTT	TTGGTAATCA	TCATAAGGTT	GTAATATTAA	GGGGAACAAA
1501	TATTTTTGTT	ААААААААА	AAAAAA		

Sequenz der vorhergesagten cDNA des Gens At4g16790 (A. thaliana)

1	ATGGTGGAAG	CAAGAAGCTT	GAAGAAACCA	ATCCAATTGG	GTAATAAAGA
51	AGATCAAAAC	CCTAGAAAAT	TCTACTCTCG	ATTCATCTTT	AAAGCTCTTA
101	TCCTCACCGT	GCTCTGCGCC	GTCGTACCTG	TCTTCCTTTC	TCAGACACCA
151	GAGCTTGCTA	ACCAAACAAG	ACTCCTCGAG	CTTCTCCACC	TTGTTTTCGT
201	CGGTATCGCA	GTCTCTTACG	GTCTCTTCAG	CCGCAGGAAC	TACGACGGAG
251	GAGGAGGTGG	AGGAACAAGC	AATAGTGATC	ACAACAAAGC	TGATCATAGT
301	AATAATAATT	CGCATTCATA	TGTGCCTAAG	ATTCTTGAAG	TATCCTCTGT
351	TTTTAACGTG	GGTCACGAGA	GTGAATCTGA	ACCGTCCGAT	GATTCCTCCG
401	GTGATCAACG	TAAGTTTCAG	ACATGGAAGA	ACAAGTACCA	CATGAAAATC
451	CCCGAGGTTG	AGACTCGTTT	CGTTGATCGA	GTTAGTTCAG	AAAACAGAGA
501	GAAGCCTCTG	CTTTTGCCGG	TTCGGAGCTT	GAATTATTCT	CGTGTTTCTG
551	ATTCTTCCGG	CGATAATTCC	GGTCGATGGG	AGAAAGTGAG	ATCTAAGAGA
601	GAACTTCTGA	AGACTCTTGG	TGATGATAAT	AGTGATGTGC	TTCCTTCTCC
651	GATTCCATGG	AGGTCAAGAT	CATCTTCATC	ATCATCATCA	TCATCAAAGG
701	AGGTTGAATC	TCTACCGTCC	GTTAAGAATC	TGACTACAGT	TGAATCACAG
751	CCGTTGATCA	AGAATCTGAC	ACCACCTTCT	TCTTTCTCTT	CTCCAAGAAA
801	GTCGAATCCT	ATACCTAATC	TCGCATCTGA	GTTCCATCCA	TCTCCGCCAC
851	CGCCTCCTCC	GCCGCCGCCA	CCACTACCGG	CGTTTTATAA	CTCCTCGTCG
901	AGAAAAGATC	ATCCCGGAAT	TTACAGGGTT	GAGAGGAGAG	AATCATCAGT
951	TCACAAGACG	AAATTTGCAG	GAGGTGAGTT	TCATCCTCCG	CCGCCTCCTC
1001	CTCCACCACC	TCCGGTGGAG	TATTATAAGT	CACCTCCGAC	AAAATTCAGA
1051	CTAAGCAACG	AACGGAGAAA	GTCCTCGGAG	CAAAAGATGA	AAAGAAACGC
1101	TCCTAAAAAG	GTTTGGTGGT	CCGATCCAAT	CGTGGAATCG	AAGGAACAAG
1151	ACACAGAGAA	GAATGATCAA	AGAAGTAACT	TGGGAAGCAA	GGCAGTGGAA
1201	GAATCCGAGA	ATGGAGAACA	GAGAAGAGGA	GAAAATGAAA	TCCACGACGA
1251	GGTTGAGAAG	AAGATAGTAG	AGGAAGAAGG	AGTTAGTGAG	ATCAACAATG
1301	GAAGTGACGT	GGACAAGAAG	GCAGATGAGT	TCATTGCAAA	GTTCAGAGAA
1351	CAGATTAGGT	TACAAAGAAT	CGAGTCTATC	AAGAGATCTA	CTAATAAGAT
1401	CTCTGCAAAT	TCTTCGAGGT	AG		

Sequenz des abgeleiteten Gens E (Capsella rubella)

1	ATGGTGGAAG	CAAAAAGCTC	CAAGAAACCA	ACCCAATTGG	GTACTAAAGA
51	AGATCAAAAC	CCTACAAGAT	TCTACTCTCG	ATTCATATTC	AAAGCTCTTA
101	TCCTCACCGT	GCTCTGCGCC	GTCGTACCTG	TCTTCCTTTC	TCAGACGCCG
151	GAGCTAGCTA	ACCAAACAAG	ACTCCTCGAG	CTTCTCCACC	TTGTTTTCGT
201	CGGCATAGCC	GTCTCCTACG	GCCTCTTCAG	CCGCCGTAAC	TATGACGGAG
251	GAGGAGCCGG	AGGATCAAGC	AATAGTGATT	ACAACAAAGC	TGATCATCAT
301	AACAACAACA	ACTCGCACTC	TTATGTTCCT	AAGCTTCTTG	AAGTATCCTC
351	TGTTTTTAAC	GTTGATCACG	AGAGTGAATC	TGAACCGTCC	GATGATTCCT
401	CCGGCGACCA	CCGTAAGTTT	CAGGCATGGA	GGAACAAGTA	CCACATGAAA
451	ATCCCCGAGG	TTGAGACTCG	TTTCGTCGAT	CGAGTTAGCT	CAGAGATCAG
501	AGAGAAACCT	CTGCTTTTAC	CTGTTCGGAG	CTTGAACTAT	TATCCTGTTC
551	CTGATTCCTC	CGGCGATAAC	TCCGGTCGAT	GGGATAAAGT	GAGATCCAAA
601	AGACAGCTTT	TGAAGACTCT	TGGTGATGAT	AACAGTGATG	TGCTTCCTTC
651	TCCGATTCCA	TGGAGGTCAA	GATCATCATC	ATCGTCAAAA	GAGATTGAAT
701	CTCCACCGTC	CATTAAGAAT	CTGACTACAG	TTGAATCACA	GCCGTTGATC
751	AAGAATCTGA	CACCATCTTC	TTCTTACTCC	TCTCCCAGAA	AGTCGAATCC
801	TATACCTAAT	CTCGCATCTC	AGTTTCATCC	ATCTCCGCCA	CCTCCTCCTC
851	CGCCTCCACC	GCCTCTACCG	GCGTTTTATA	AATCATCGTC	GAGAAAGGTT
901	CAACCGGGAA	TTTACAGAGT	TGAGCGGAGG	GAATCAGTTC	ACAAGACTAA
951	ATTTGAAGGC	GGTGAGTTTC	ATAATCCTCC	GCCGCCTCCG	CCACCACCAC
1001	CTCCGGTGGA	GTATTATAAG	TCACCTCCGA	CAAAATTCAG	AATAAGTAGC
1051	GAACGGAGAA	AGACGTCGGA	GCAAAAGATG	AAAAGAAACT	ТТССТААААА
1101	GGTGTGGTGG	TCTGATCCAA	TCGTGGAATC	CAAGGAACAA	GACACGGAGA
1151	AGAATGATCA	AAGAAGTTAC	TTGGAAAGCA	AGGAAGCTGA	AGACTTCGAG
1201	AAAGAAGAAC	AGAGAAGAAG	AGAAAATGAA	ATGCACGAGG	AGGTTGAGAA
1251	GAAGATAGTA	GAGGAAGAAC	GAGCTTGTGA	AAGCAACAAT	GTAAGTGACG
1301	TGGACAAGAA	GGCAGATGAG	TTCATTGCAA	AGTTCAGAGA	ACAGATTAGG
1351	TTACAGAGAA	TCGAGTCTAT	CAAGAGATCT	GCTAGTAAGA	TCTCTGCAAA
1401	CACTTCGAGG	TAG			

Sequenz des Arabidopsis thaliana cDNA-Klons F

TACATCAAGA	TAATTCCGCT	AGGGTTGTGA	TGATCAGAAG	TCTGGTTCCA
GGAGTTTTCT	GTGCAGGTGC	AGATCTTAAG	GAACGTAGAA	CTATGAGTCC
ATCTGAGGTT	CACACATATG	TCAACTCGTT	GCGCTACATG	TTCTCGTTCA
TTGAGGCACT	AAGTATCCCA	ACTATTGCTG	CAATAGAAGG	TGCAGCACTG
GGAGGTGGAC	TCGAAATGGC	TCTAGCTTGT	GATCTTCGAA	TCTGTGGCGA
AAATGCGGTA	TTTGGCTTGC	CTGAAACAGG	ACTCGCTATA	ATCCCTGGAG
CTGGTGGGAC	ACAGAGGCTC	TCAAGGCTGG	TTGGGAGATC	GGTATCAAAG
GAACTTATAT	TTACAGGTCG	AAAGATTGAT	GCAATAGAAG	CTGCAAATAA
AGGGCTTGTG	AACATTTGTG	TTACGGCAGG	TGAGGCTCAT	GAGAAAGCAA
TTGAAATGGC	ACAGCAGATA	AACGAAAAAG	GTCCATTAGC	TATAAAGATG
GCGAAGAAAG	CGATTGATGA	AGGAATTGAA	ACAAATATGG	CTTCAGGTTT
GGAAGTAGAA	GAGATGTGTT	ATCAGAAGCT	TCTTAATACT	CAAGATCGTC
TTGAAGGATT	AGCTGCTTTT	GCTGAGAAGC	GTAAGCCTCT	GTACACTGGC
AATTGA AAAC	CTTATAAGAG	AAAGAATCAT	TAGTGTCCTA	TCAATTTAGT
TTCAATAAAT	ATTGAGTTGG	ATATTAATAA	CCGGAATGGT	CTAAGCAAGG
АААААААААС	ATCTAAATGT	САААААААА	АААААА	
	TACATCAAGA GGAGTTTTCT ATCTGAGGTT TTGAGGCACT GGAGGTGGAC AAATGCGGTA CTGGTGGGAC GAACTTATAT AGGGCTTGTG TTGAAAATGGC GCGAAGAAAG GGAAGTAGAA TTGAAGGATT AATTGAAAAC TTCAATAAAT AAAAAAAAAA	TACATCAAGATAATTCCGCTGGAGTTTTCTGTGCAGGTGCATCTGAGGCACTAAGTATCCCAGGAGGTGGACTCGAAATGGCAAATGCGGTATTTGGCTTGCCTGGTGGGGACACAGAGGCTCGAACTTATATTTACAGGTCGAGGGCTTGTGAACATTTGTGTTGAAATGGCACAGCAGATAGCGAAGAAAGCGATTGATGAGGAAGTAGAAGAGATGTGTTTTGAAGGATTAGCTGCTTTTAATTGAAAACCTTATAAGAGTTCAATAAATATTGAGTTGGAAAAAAAACATCTAAATGG	TACATCAAGATAATTCCGCTAGGGTTGTGAGGAGTTTTCTGTGCAGGTGCAGATCTTAAGATCTGAGGTTCACACATATGTCAACTCGTTTTGAGGCACTAAGTATCCCAACTATTGCTGGGAGGTGGACTCGAAATGGCTCTAGCTTGTAAATGCGGTATTTGGCTTGCCTGAAACAGGCTGGTGGGACACAGAGGCTCTCAAGGCTGGGAACTTATATTTACAGGTCGAAAGATTGATAGGGCTTGTGAACATTGTGTTACGGCAGGTTGAAATGCCACAGCAGATAAACGAAAAAGGCGAAGAAAGCGATTGATGAAGGAATTGAAGGAAGTAGAAGCGAAGAACGCTGAGAAGCTTGAAAGGATTAGCTGCTTTGCTGAGAAGCAATTGAAAAAATTGAATGGATATTAATAAAAAAAAAACATCTAAATGTCAAAAAAAA	TACATCAAGATAATTCCGCTAGGGTTGTGATGATCAGAAGGGAGTTTTCTGTGCAGGTGCAGATCTTAAGGAACGTAGAAATCTGAGGTTCACACATATGTCAACTCGTTGCGCTACATGTTGAGGCACTAAGTATCCCAACTATTGCTGCAATAGAAGGGGAGGTGGACTCGAAATGGCTCTAGCTTGTGATCTTCGAAAAATGCGGTATTTGGCTTGCCTGAAACAGGACTCGCTATACTGGTGGGACACAGAGGCTCTCAAGGCTGGTTGGGAGATCGAACTTATATTTACAGGTCGAAAGATTGATGCAATAGAAGAGGGCTTGGGACACAGAGATAAACGAAAAAGGCCAATAGCGCGAAGAAGCGATTGATGAAGGAATTGAAACAAATATGGGGAAGTAGAAGAGATGTTTGCTGAAGAACGTAAGCCTCTAATTGAAAAACTTATAAGAGAAAAAAACCGGAATGGTAAAAAAAAAATTGAATGTCAAAAAAAAAAAAAAAA

Sequenz der vorhergesagten cDNA des Gens At4g16800 (A. thaliana)

1	ATGTTGAAAA	GTCTCCAGAA	CGCATTTGAG	TCCATACATC	AAGATAATTC
51	CGCTAGGGTT	GTGATGATCA	GAAGTCTGGT	TCCAGGAGTT	TTCTGTGCAG
101	GTGCAGATCT	TAAGGAACGT	AGAACTATGA	GTCCATCTGA	GGTTCACACA
151	TATGTCAACT	CGTTGCGCTA	CATGTTCTCG	TTCATTGAGG	CACTAAGTAT
201	CCCAACTATT	GCTGCAATAG	AAGGTGCAGC	ACTGGGAGGT	GGACTCGAAA
251	TGGCTCTAGC	TTGTGATCTT	CGAATCTGTG	GCGAAAATGC	GGTATTTGGC

301	TTGCCTGAAA	CAGGACTCGC	TATAATCCCT	GGAGCTGGTG	GGACACAGAG
351	GCTCTCAAGG	CTGGTTGGGA	GATCGGTATC	AAAGGAACTT	ATATTTACAG
401	GTCGAAAGAT	TGATGCAATA	GAAGCTGCAA	ATAAAGGGCT	TGTGAACATT
451	TGTGTTACGG	CAGGTGAGGC	TCATGAGAAA	GCAATTGAAA	TGGCACAGCA
501	GATAAACGAA	AAAGGTCCAT	TAGCTATAAA	GATGGCGAAG	AAAGCGATTG
551	ATGAAGGAAT	TGAAACAAAT	ATGGCTTCAG	GTTTGGAAGT	AGAAGAGATG
601	TGTTATCAGA	AGCTTCTTAA	TACTCAAGAT	CGTCTTGAAG	GATTAGCTGC
651	TTTTGCTGAG	AAGCGTAAGC	CTCTGTACAC	TGGCAATTGA	

Sequenz des abgeleiteten Gens F (Capsella rubella)

1	ATGCTGAAAA	GTCTCCAGAA	CACATTTGAG	TCCATACACC	AAGATAGTTC
51	AGCTCGGGTT	GTCATGATCA	GAAGTCTGGT	TCCAGGAGTT	TTCTGTGCTG
101	GTGCAGATCT	CAAG GTAGTG	TTGTCACTGG	CATGTCTCGC	GGAATGTTCA
151	ATTTGTGTAG	CCATTTCTTA	AAAATATCTG	TTTTGTTTTG	ATTGATGTCA
201	G GAGCGTAGA	ACAATGAGTC	CATCTGAGGT	TCACACATAT	GTCAACTCGT
251	TGCGGTACAT	GTTCTCGTTC	ATAGAG GTAT	ATTCTCATCT	ATCCTTGATG
301	GTGTTCATAG	ATTAGCAGCT	ACTGTCATTG	ATGGAAAAAT	TGTTGGGTTA
351	TGTTAACGGT	CAACCTTAAC	TGTGTTTGGC	ATTAATGTAT	ACAATCTCAC
401	ATCAAATCAT	TAGGATGGCC	TACTACAATT	TGTTGAATTA	GCTCTAGCTT
451	TATCAAGATT	AAGAATTTAC	TTATAGTTGT	TCTACTTATA	TGAAATTCTT
501	TTTCTTGTTT	CTTTGTTTTG	TTCTCCCTTA	TCTCAATGTA	AAAGCTCTAG
551	GAATTGAATT	TCAGTGAGAT	TTTTATGCTG	TAGTGACTTG	AAAGACTTGT
601	$GTTTTCTAG{\boldsymbol{G}}$	CACTGAGCAT	CCCAACTATT	GCTGCAATCG	AAGGTGTGGC
651	ACTGGGAGGT	GGACTCGAAA	TGGCTCTAGC	TTGTGATCTT	CGAATTTGTG
701	GTACACATAT	CTGGTCATAC	TCTTATTATA	ATCAACCGGC	CAAGATAAGA
751	AAATATGGTT	AATACTCAGG	AAATTGAATT	TCTCAG GCGA	AAATGCAGTA
801	TTTGGCTTGC	CTGAAACAGG	ACTGGCTATA	ATCCCTGG GT	АТАТААТААА
851	CTTCATCACT	CTTGACAATT	GATTTCTCTT	ATCACCCTTT	TTATCATTCT
901	TCTGATAATT	CATTTCTCTT	TGCTTCTATT	TAG AGCTGGT	GGGACACAGA
951	GGCTGTCGAG	GCTGGTTGGG	AGATCCATAT	CAAAGGAACT	TATATTCACA
1001	GGTCGAAAGA	TTGATGCAAG	AGAAGCTGCA	AATAAAG GTC	TTTGACTATA
1051	CAAGTTGCAT	TTCTTATATT	GTGGTTTTGT	TTTGGCAATC	TTCCCAAATA
1101	AGGATTGATT	CATATACTCT	TTTCATTTTT	TTTTTCTTTT	GTGTGGTGCA
1151	G GGCTTGTGA	ACATTTGTGT	TACCGCTGGT	GAGGCTCATG	AGAAAGCAAT
1201	TGAAATGGCA	CAGCAGATAA	ATGAAAAAGG	TCCACTGGCT	atAAAGATGG
1251	CGAAGAAAGC	GATTGATGAA	GGAATAGAGA	CGAATATGGC	TTCGGGTTTG
1301	GAGGTAGAAG	AGATGTGTTA	TCAGAATCTT	CTTAATACTC	AAGATCGTCT
1351	TGAAGGATTA	GCTGCTTTTG	CCGAGAAGCG	AAAGCCTCTT	TACACTGGCA
1401	AGTGA				

Sequenz des Arabidopsis thaliana cDNA-Klons G

1	ACCCATTTCG	TCTCCTTCAT	TTTGACGTTT	TCTTTAGATC	TGTTAATAAT
51	CCCATCCATG	GCTTGGTCTA	GTCACTAGTG	GTGTTATCTC	TCTGTGTGGA
101	ATAAAAAGCA	AGGTTTTTTA	ATCACTTGGA	TTGTTTTAAG	AT ATGGCAAC
151	TTTGAACCCT	TTTGATTTGT	TGGATGATGA	TGCTGAGGAT	CCAAGCCAGC
201	TCGCTGTTGC	CATCGAGAAG	ATTGATAAGT	CCAAGAAATC	TGGACAGGTT
251	TCGAGCTTGC	CTGCTAAGTC	AGCTCCTAAG	CTTCCATCGA	AGCCACTTCC
301	TCCTGCTCAA	GCCGTGAGAG	AGGCAAGGAG	TGATGCTCCA	CGTGGTGGTG
351	GAGGCCGTGG	AGGATTTAAC	CGTGGTCGTG	GTGGTTACAA	CCGTGATGAT
401	GGTAACAATG	GATATTCAGG	GGGATACACT	AAACCCTCAG	GTGAAGGAGA
451	TGTTTCAAAG	TCTTCTTACG	AGAGGCGTGG	CGGTGGTGGT	GCTCCTCGTG
501	GTTCCTTCCG	TGGTGAAGGT	GGTGGACCTG	GTGGTGGTCG	TCGTGGTGGA
551	TTCAGCAATG	AGGGTGGTGA	TGGGGAACGT	CCTCGAAGGG	CCTTTGAGCG
601	TCGTAGTGGA	ACTGGCAGAG	GGAGTGACTT	CAAGCGTGAC	GGATCTGGTC
651	GTGGGAATTG	GGGAACTCCA	GGGGAAGAGA	TAGCTGCTGA	GACTGAAGCA
701	GTAGCTGGTG	TTGAGACTGA	GAAGGATGTT	GGAGAGAAGC	CAGCTGTTGA
751	TGATGTAGCT	GCTGATGCTA	ACAAGGAGGA	TACTGTTGTT	GAGGAGAAAG
801	AGCCTGAGGA	TAAGGAAATG	ACTCTTGATG	AGTATGAGAA	AATACTCGAG

851	GAGAAGAAAA	AGGCACTTCA	ATCATTAACT	ACCTCTGAGA	GGAAAGTTGA
901	TACGAAAGTG	TTTGAATCAA	TGCAACAACT	GTCAAACAAG	AAGTCTAATG
951	ATGAAATCTT	CATCAAGCTG	GGTTCTGATA	AGGACAAACG	CAAAGATGAC
1001	AAAGAAGAGA	AGGCTAAGAA	GGCTGTGAGC	ATCAATGAGT	TTCTGAAGCC
1051	AGCAGAGGGT	GGGAACTACT	ACCGAGGAGG	TCGTGGTGGC	CGTGGACGTG
1101	GTGGTCGTGG	CCGTGGAGGT	GTTTCTAGTG	GCGAATCTGG	TGGTTACCGT
1151	AATGAAGCTG	CACCGGCAAT	TGGAGATGCT	GCTCAGTTCC	CATCTCTTGG
1201	GGGCAAGTAA	GATCCATCCA	TGATAACGTC	CACACTCGTG	CATCCTCCTT
1251	TAGGATTTTG	TGCGAGGATT	TACTGTTTAC	TGGTCTCTCG	TTGTCAGATG
1301	TAAATAATTA	GGTGTCGTCG	TCAGTTTTTA	GATTTTATGC	AAAACTTTAC
1351	ACTTGTTGGT	GTTCTTTACT	TTTGAAACAG	TACACTCTTC	TTAATTTTAC
1401	CATTTTACTC	GTTTTGTGTT	TGTTGTTTTC	TTATTTATGA	AACATGTTTT
1451	GAGACGGACA	TATCTAATGT	TATCGGGTTT	GAGTCTTTAC	TCTGTCTCCT
1501	CTTTTCTCCA	ААААААААА	ААААААААА	AAAAAA	

Sequenz des abgeleiteten Gens G (Capsella rubella)

1	ATGGCAACTT	TGAACCCTTT	TGATTTGTTG	GGTGATGATG	CTGAGGATCC
51	GAGCCAGCTT	GCTGTTTCCA	TCGAGAAAAC	TGATAAGTCC	AAGAAATCTG
101	GACAAGTTTC	GGGCTTGTCT	GCTAAGTCAA	CTCCTAAGCT	TCCCTCTAAG
151	CCACTTCCTC	CTGCTCAAGC	CGGTGAAGTT	TCTTTCTTCT	САТАААААА
201	GAGTCAATAC	TTTAATTATA	AAAATTCGAT	CTTTATCACT	GGAGTAAGCT
251	GTTAATATCG	TTGTTTGGAT	TATGTTGATT	ATTTCATGGA	GTTGGGTATT
301	GTTGTTTGAG	TGATTTGGAT	TGGTATCTGA	TTAGTTTTGG	TGTTGTTGAT
351	TAG TGAGAGA	GGCAAGGAGT	GATGCTCCGC	GTGGTGGTGG	TGGAGGAGgC
401	CGTGGAGGAT	TTAGCCGTGG	TCGTGGTGGT	TACAATCGTG	ATGATGGTAA
451	CAATGGATAT	TCAGGAGGAT	ACTCTAAACC	CTCTGAGGAA	GGAGATGTTT
501	CTAAGTCTTC	ATACGAGAGG	CGTGCTGGTG	GTGGTGGTGC	TCCTCGTGGT
551	TCTTTCCGTG	GTGAAGGTGG	TGTTGGTCGT	CGTGGTGGAT	TCGGCAATGA
601	GGGTGGTGAA	GGTGAACGTC	CTCGAAGGAC	ATTTGAGCGT	CGTAGTGGAA
651	CTGGCAGAGG	GTCAGTCTTA	GTCTGTTGTT	GCATAATCTA	CAATTGAAAT
701	GACTGTTCCA	ATCTCATCTG	TTGGTGTTTA	TCTTTTGGAT	AG GAGTGACT
751	TCAAACGTGA	TGGATCTGGC	CGTGGGAATT	GGGGAACTCC	AGGGGAAGAG
801	TTAGCTTC GT	AAGTATATGT	TTATGGTTTA	TTGCATCTGT	TATAATTGTA
851	TGTATTTATG	TGATTATGAT	TGGGAATTTG	GACTCAAAGA	AGCTTCTCTG
901	CATCTTTAAG	TGAGACTGAA	GCAGTAGCTG	GTGTTGACAC	TGAGAAGGAT
951	GTTGGGGAGA	AACCAGCTGT	TGATGCTGAT	GCTAACAAGG	AGAACACTGC
1001	TGaAGTTGAG	GAGAAAGAGC	CTGAGGATAA	G GTAAACAGA	GAATGGAATA
1051	GAATTACACT	GGCATCAGTT	TTTCATCATC	AATGATTGCT	TATTGACTTG
1101	TGTTTCTACA	GGAAATGACT	CTTGATGAGT	ATGAAAAGAT	ACTTGAGGAG
1151	AAGAAAAAGG	CACTTCAATC	ATTGACCACC	ACTGAGAGGA	AAGTTGATAC
1201	TAAAGTGTTT	GAATCAATGC	AACAACTGTC	AAACAAGAAG	TCTAATGATG
1251	AAATCTTCAT	TAAGTTG GTA	AGATCATGTA	TCATTTCTTT	TTTTGGTCGC
1301	CTGTAAACTT	GCTTAAACGA	TTCTGAACCT	TTCTTTGATC	TATTTACCAG
1351	GGTTCTGATA	AGGACAAACG	CAAAGACGAC	AAAGAAGAGA	AGGCTAAAAA
1401	G GTTTGAACC	ATTGTCTGAA	TCTAACATTT	TGTAGAAGTC	AATAAGTTTG
1451	CTTACTGATG	TGTTTTCTGA	TTTGCAGGCT	GTAAGCATCA	ATGAGTTTCT
1501	GAAGCCAGCT	GAGGGTCAGA	ACTACTACCG	AGGAGGTCGC	GGTGGCCGTG
1551	GACGTGGTGG	TCGCGGCCGT	GGAGGTGTTT	CTAGTGGAGA	GCATGGTGGT
1601	TACCGTAATG	AACCTGCACC	AGCCATTGGA	GATACCACTC	ACTTCCCATC
1651	TCTTGGCGGA	AAGTAA			

Sequenz des Arabidopsis thaliana cDNA-Klons 12918 (EST 6)

AGAAACTGAA	GGAGTTGGAG	AAGAAGATGA	AACTAGCTGG	ATACAAACCG
GAACTAGAGT	TTGCTTTACA	CAATGTAGAG	GAAGAGCAGA	AGGAGAAGCT
ATTGTTATGG	CACAGCGAGA	AGTTAGCTGT	TGCCTTTGGT	TGCATAAAAC
TCCCTGAAGG	TTCACCAATA	CAAGTGTTCA	AGAATTTGAG	AATCTGTGGT
GATTGTCATA	AAGCAATCAA	ATTTATTTCG	GAGATAGAGA	AACGAGAGAT
CATTGTAAGA	GACACCACAA	GGTTTCACCA	TTTCAAAGAT	GGGTCTTGCT
	AGAAACTGAA GAACTAGAGT ATTGTTATGG TCCCTGAAGG GATTGTCATA CATTGTAAGA	AGAAACTGAA GGAGTTGGAG GAACTAGAGT TTGCTTTACA ATTGTTATGG CACAGCGAGA TCCCTGAAGG TTCACCAATA GATTGTCATA AAGCAATCAA CATTGTAAGA GACACCACAA	AGAAACTGAA GGAGTTGGAG AAGAAGATGA GAACTAGAGT TTGCTTTACA CAATGTAGAG ATTGTTATGG CACAGCGAGA AGTTAGCTGT TCCCTGAAGG TTCACCAATA CAAGTGTTCA GATTGTCATA AAGCAATCAA ATTTATTTCG CATTGTAAGA GACACCACAA GGTTTCACCA	AGAAACTGAAGGAGTTGGAGAAGAAGATGAAACTAGCTGGGAACTAGAGTTTGCTTTACACAATGTAGAGGAAGAGCAGAATTGTTATGGCACAGCGAGAAGTTAGCTGTTGCCTTTGGTTCCCTGAAGGTTCACCAATACAAGTGTTCAAGAATTTGAGGATTGTCATAAAGCAATCAAATTTATTTCGGAGATAGAGACATTGTAAGAGACACCACAAGGTTTCACCATTTCAAAGAT

301	CTTGTGGCGA	TTACTGGTGA	AAAGAGAAGA	GCTTTGACTC	TCTCATTGGT
351	CAAACCTGAC	TGTATTTATA	TGCGTTATTG	TGTGGTAAAG	TTTCGACCTT
401	TGACTTTACA	AGTTGGCGTT	AAGAAGAGAG	ATGCGTAGAT	CAGCGAGTGG
451	TTCTAGATTT	TTGGATCATT	TTCCGGCGAC	TTCAAGGTCT	CCGCCTCGAT
501	CTCAGAGTGT	TACAGCTATG	GAAGATGATG	TGGAGCTGCT	TTTGCCTAGG
551	TACGATCCGA	ATTCACAAGC	GGGGAAGAGA	GAGAAGTCAA	GATTCAGATT
601	TGCAGAAAAC	GTCATCCATT	TGATTCCTCT	CATTCTTCTT	CTCTGTGTTG
651	CAATCCTCTG	GCTCTCCTCT	TATTCAGCAG	CGTTAAGGAG	TTGAGTTCAA
701	GAAGCAACAT	GTTGTCTTGT	CTCCATGGAA	ACTCATCATA	TTCAGTTTTG
751	GGAAAGGAAA	CAATTATTTT	ACCGCCGGTG	ATTATGTGCC	GCAAACCATA
801	CGTAACTCTT	GTAATTTTTG	GTTCTGTAGA	CACATAAAAG	GATCTCTCGT
851	TTTCATGAAA	TGTATGTTTA	ATAGTTCACT	АТААААААА	ААААААААА
901	ААААААААА				

Sequenz des abgeleiteten Gens 6 (Capsella rubella)

	1	AGAAACTGAA	TGAGTTGGAG	AAGAAGATGA	TATTAGCTGG	ATACAATCCG
	51	GAGCTAGAGT	TTGATTTACA	CAATGTAGAA	GAAGAGCAAA	AGGAGAAGCT
	101	ATTGTTATGG	CATAGTGAGA	AGTTAGCTGT	TGCATTTGGT	TGCATAAAAC
	151	TCCCTCAAGG	TTCACAGATA	CAAGTGTTCA	AGAACTTGAG	AATCTGTGGT
	201	GATTGTCATA	AAGCAATCAA	ATTTATCTCG	GAGATAGAGA	AACGAGAGAT
	251	CATGGTGAGA	GACACCACAA	GGTTTCACCA	TTTCAAAAAT	GGGTCTTGTT
	301	CTTGTGGCGA	TTACTGGTGA	AAAGAGAAGA	GCTTTGACTC	TTCCATTGGT
	351	CAAACCTGAC	GTAACGACTG	TATTTATATG	CGTTATTGGG	TGAAAAAGT
	401	ATCGACCTTT	GACTTGACAA	CTTGCGTTAA	GGATAGAGAT	GCGTAGATCG
	451	ACGAGTGGTT	CTAGAGTTTC	GGATCAGTCT	CCGGCGAAGA	CCCCGCCTCC
	501	GCCACGATCT	CAGAGTGTTA	CAGCTATGGA	AGATGATGAT	GTAGAGCTGC
	551	TTTTGCCTCG	GTACGACCCG	AATTCTCAAG	CGGGGAAGAG	AGAAAAATCA
	601	AGATTCAGAT	CTGCAGAAAA	CGTCATCCAT	CTCATTCCTC	TCATTCTTCT
	651	TCTGTGTGTC	ATAATCCTCT	GGCTCTTCTC	TCATTCAGgt	aaaccgagaa
	701	attgattcag	tctctatgga	agctataatt	gatctgtgaa	acttaattag
	751	gaacttcaca	aagacccatt	tggatataag	gattgggata	tctctgtaat
	801	gttagaatct	tgtgttgatt	catttcattg	tttcattttg	ttcatatgat
	851	ggatttggta	atttgtcagC	AGCCTTAAGG	AGTTGAGTTC	AAGAAGCAAA
	901	AATGTTGTCT	TGTCTCCATG	GGAACTCATT	TCAGTTTTGA	GGGAAGGAAA
	951	CAACTGTTTT	TTTACTGCCG	GTGATTTTGT	GCCGCAACGC	AAAGCCATAC
1	001	GTAACTCTTG	CATTTTTTGG	ТТ		

Sequenz des Arabidopsis thaliana cDNA-Klons H

1	CAAGCTTCTT	CGATTTTGCT	CTCTCTTACA	CAGCCAATCG	GTGTTTTCGC
51	AGCTTTCAGG	CCTCAATCCA	AGACATTCTA	TATAAGCATA	TTGCAGAAGA
101	GGCGGTTCTA	ATTGTTGCAT	TGAGTTTATC	GCTATGACGT	AGGGAAATTC
151	TAATTTAGGG	GAGGCCTCAG	AGTTTGCACT	AACTTCATAA	TCGGCTCTTG
201	ACGTTGTTGA	GTGTAATTGA	ACAAGAATGT	GTAGGCAGAA	TTGTCGCGCG
251	AAATCCTCAC	CGGAGGAAGT	GATTTCAACT	GATGAGAATC	TCTTGATATA
301	TTGTAAACCT	GTTCGACTAT	ATAACATCTT	TCACCTTCGC	TCTCTAGGCA
351	ACCCATCGTT	TCTTCCAAGA	TGCTTGAACT	ACAAAATTGG	AGCAAAGCGC
401	AAAAGAAAGT	CAAGATCTAC	TGGGATGGTA	GTTTTCAACT	ATAAGGATTG
451	TAATAACACA	TTACAGAAAA	CTGAAGTTAG	GGAGGATTGT	TCTTGTCCAT
501	TTTGCTCTAT	GCTATGTGGT	AGCTTCAAGG	TGGGCAACTA	TTACAACTGA
551	GGGGCTGCAA	TTTCATTTGA	ATTCATCTCA	TGATTTATTT	GAATTTGAGT
601	TCAAGCTTTC	GGAAGAATAC	CAGACAGTTA	ATGTTTCTGT	AAAACTTAAT
651	TCCTTCATAT	TTGAGGAAGA	AGGAAGTGAT	GACGATAAAT	TTGAGCCCTT
701	CTTTCTCTGC	TCGAAACCTC	GTAAGCGGAG	ACAAAGAGGT	GGCAGAAATA
751	ACACCAGGAG	ACTTAAAGTA	TGCTTTTTAC	CGTTGGATTC	ACCCAGTTTA
801	ACTAATGGCA	CAGAAAATGG	AATCACCCTA	CTTAATGACG	GAAACCGTGG
851	TTTAGGATAT	CCCGAGGCAA	CAGAGCTTGC	TGGACAATTT	GAGATGACCA
901	GCAACATTCC	ACCAGCCATA	GCCCACTCTT	CTCTGGACGC	TGGTGCTAAA
951	GTTATATTGA	CAAGCGAAGC	TGTGGTCCCT	GCTACTAAGA	CAAGAAAGTT

1001	ATCTGCTGAG	CGATCAGAGG	CTAGAAGCCA	CCTACTTCTT	CAGAAACGCC
1051	AATTCTATCA	TTCTCACAGA	GTCCAGCCAA	TGGCGCTTGA	GCAAGTAATG
1101	TCTGACCGGG	ATAGCGAGGA	TGAAGTCGAT	GACGATGTTG	CAGATTTTGA
1151	AGATCGCCAG	ATGCTTGATG	ACTTTGTGGA	TGTGAATAAA	GATGAAAAGC
1201	AATTCATGCA	TCTTTGGAAC	TCGTTTGTAA	GAAAACAAAG	GGTTATAGCA
1251	GATGGTCATA	TTTCGTGGGC	ATGTGAAGCA	TTTTCAAGAT	TTTACGAGAA
1301	AGAGTTGCAC	CGTTACTCAT	CACTCTTCTG	GTGTTGGAGA	TTGTTTTTGA
1351	TTAAACTATG	GAACCATGGA	CTTGTCGACT	CAGCCACCAT	CAACAACTGC
1401	AATACCATCC	TCGAGAATTG	CCGTAATAGC	TCAGACACCA	CCACCACCAA
1451	CAACAACAAC	AGTGTGGATC	GTCCCAGTGA	CTCAAACACC	ААСААСААТА
1501	ACATTGTGGA	TCATCCCAAT	GACATAAACA	ACAAGAACAA	TGTTGACAAC
1551	AAGGACAATA	ACAGCAGAGA	ACAAAGTAAT	TAAATAGGAA	AATCTCCGGC
1601	TTAGATGATA	CCGATTTATC	GGATTGTAAC	TTATTCTTCT	TTCTTAAAAA
1651	ATTGTTTAGG	AGCAAACAAA	TTTTTTTATAT	GTTAGTGTAT	TCAACTGATT
1701	ACATTTTTAG	ТТААААААА	AAAAGGATTC	TGCTTATAAC	ТАААААААА
1751	АААААААА				

Sequenz der abgeleiteten cDNA des Gens H (Arabidopsis thaliana)

1	CAAGCTTCTT	CAATTTTGCT	TGCTCTCTCT	CTTACACGGC	CAATCGGTGT
51	TTTCGCAGCT	TTCAGGCCTC	AATACAAGAC	ΑΤΤϹΤΑΤΑΤΑ	AGCATATTGC
101	AGAAGAGGCG	GTTCTAATTG	TTGCATGGAG	TTGAACAATA	TGACGTAGGG
151	AAATTCTAAT	TTAGGGGAGG	CCTCAGAGTT	TGCACTAACT	TCATAATCAG
201	CTCTGGACGT	TGTTGATTGT	ATTTGAACAA	GAATGTGTAG	GCAGAATTGT
251	CGCGCGAAAT	CCTCACCGGA	GGAAGTGATT	TCAACTGATG	AGAATCTCTT
301	GATATATTGT	AAACCTGTTC	GACTATATAA	CATCTTTCAC	CTTCGCTCTC
351	TAGGCAACCC	ATCGTTTCTG	CCAAGATGCT	TGAACTACAA	AATTGGGGCA
401	AAGCGCAAAA	GAAAGTCAAG	ATCTACTGGG	ATGGTAGTTT	ТСААСТАТАА
451	GGATTGTAAT	AATACATTAC	AAAGAACTGA	AGTTAGGGAG	GATTGTTCTT
501	GTCCATTTTG	CTCTATGCTA	TGTGGTAGCT	TCAAGGTGGG	CAACTATTAC
551	AACTGAGGGG	CTGCAATTTC	ATTTGAATTC	ATCTCATGAT	TTATTTGAAT
601	TTGAGTTCAA	GCTTTTGGAA	GAATACCAGA	CAGTTAATGT	TTCTGTAAAA
651	CTTAATTCCT	TCATATTTGA	GGAAGAAGGA	AGTGATGATG	ATAAATTTGA
701	GCCCTTCTCT	CTCTGCTCGA	AACCTCGTAA	GCGTAGACAA	AGAGGTGGCA
751	GAAATAACAC	CAGGAGACTT	AAAGTATGCT	TTTTACCGTT	GGATTCACCC
801	AGTTTAGCTA	ATGGCACAGA	AAATGGAATT	GCCCTGCTGA	ATGATGGAAA
851	CCGTGGTTTA	GGATATCCCG	AGGCAACAGA	GCTTGCTGGA	CAATTTGAGA
901	TGACTAGCAA	CATTCCACCA	GCCATAGCCC	ACTCTTCTCT	GGACGCTGGT
951	GCTAAAGTTA	TATTAACAAC	CGAAGCTGTG	GTCCCTGCTA	CTAAGACAAG
1001	AAAGTTATCT	GCTGAGCGAT	CAGAGGCTAG	AAGCCACCTA	CTTCTTCAGA
1051	AACGCCAATT	CTATCATTCT	CACAGAGTCC	AGCCAATGGC	GCTTGAGCAA
1101	GTAATGTCTG	ATCGGGATAG	CGAGGATGAA	GTCGATGACG	ATGTTGCAGA
1151	TTTTGAAGAT	CGCCAGATGC	TTGATGACTT	TGTGGATGTG	AATAAAGATG
1201	AAAAGCAATT	CATGCATCTT	TGGAACTCGT	TTGTAAGAAA	ACAAAGGGTT
1251	ATAGCAGATG	GTCATATCTC	TTGGGCATGT	GAAGTATTTT	CAAGATTTTA
1301	CGAGAAAGAG	TTGCACTGTT	ACTCATCACT	CTTCTGGTGT	TGGAGATTGT
1351	TTTTGATTAA	ACTATGGAAC	CATGGACTTG	TCGACTCAGC	CACCATCAAC
1401	AACTGCAATA	CCATCCTCGA	GAATTGCCGT	AATACCTCAG	TCACTAACAA
1451	CAACAACAAC	AGTGTGGATC	ATCCCAGTGA	CTCAAACACC	ААСААСААТА
1501	ACATTGTGGA	TCATCCGAAT	GACATAAAAA	ACAAGAACAA	TGTTGACAAC
1551	AAGGACAATA	ACAGCAGAGA	CAAGTAATTA	AATAGGAAAC	ACTCCGGTTT
1601	AGATGATACC	GATCTATCGG	ATTGTAACTT	ATTCTTCTTT	СТТАААААА
1651	TTGTTTAGGA	GCAAACAAAG	ATTTTATTTG	TTAGTGTATT	CAACTGATTA
1701	CATTTTTAGT	TAAAAAATG	GATTCTCCTT	AATAACT	

Sequenz des abgeleiteten Gens H (Capsella rubella)

1	CAAGCTACTT	CGATTTTTGC	TTGCTCTTCT	TTTACACGAC	CAATCGGTGT
51	TTTCGCAGCT	TTCAGgtttg	tctcaaatct	caaattagat	cggagtcacg
101	tcataacaat	tgataaaacc	taattgcttt	cgttatattg	taagagtatt
151	aaatttttgc	agtagatccg	gaattcgaat	tttaccttaa	ctttcatata
201	gactaatata	gttttaggat	acggagccta	gttctggatt	tttagatttc

251	ttcaatgcac	atttttcca	taaaattcgt	acaatttgat	ctccgaactt
301	gtgtttttaa	caaagtttct	gtttttagaa	ttattgctta	aagtgtcatt
351	ctttcatctc	gtcctgagaa	agctgtgatt	tttctaataa	gctatgattc
401	ttctgctgag	tqqaattqqa	taaagttttc	gttttttgta	cgcctactct
451	tgtatgtgtc	ttgaaaggac	tctctgaatt	gctaaaaaaa	gtcttgtgct
501	ttctttgcta	cacagGTCGC	AAACAGGACA	TTCTCTAGAA	GGTTCTATTG
551	CAGAATTTAC	CCTGAAGAAG	CCGGATCTAA	TTGCTGCATC	AAGTTGATTG
601	CTATGAAATA	GAAATTCTAA	TTCCAGAAAG	GCCTCAGAGT	TTGCACTAAC
651	СТСАТАААТС	GGCTGTGGAC	ATCGTTGATT	GTGAATGAAC	AAGAATGTGT
701	AGACAAAATT	GTCGCGCGAA	ATCCTCGCCG	GAGGAAGTGA	TTTCAACTGA
751	TGAGAATCTC	TTGATATATT	GTAAACCTGT	TCGACTCTAC	AACATCTTTC
801	ACCTTCGCTC	TCTATGCAAC	gtatgattta	ccttcctctc	tcatcatttt
851	agctcagtaa	tgactgtttt	cagttttttc	tttcatctcc	tgtgtagatt
901	tcccactaat	aatttgggtt	tgttaagctg	ataatggcct	gattcatggc
951	gagtgtgtgc	ttgttttgtc	tcataatgtt	atttgaactt	gttgcttgtt
1001	gttacagCCA	TCGTTTCTTC	CAAGATGCTT	GAACTACAAA	ATTGGAGCAA
1051	AGCGCAAAAG	AAAgtatgag	tttcttctcg	tatgtagttg	ctacagtgat
1101	atgttattat	attataagga	agctgattat	ttatctttgt	tgagagatat
1151	ggacatgatg	atgtttttca	ccttttcatg	ctatacactt	ttttcaaaat
1201	tgtgttttga	ttagGTCAAG	ATCTACTGGG	ATGGTAGTTT	ТСААСТАТАА
1251	GGATTGTAAT	AACACGTTAC	AGAAAACTGA	AGgtgagtat	ttttcggttc
1301	ttagacatat	tcgacgccag	tttctatgtt	tctctagatg	aatttttact
1351	aactatttt	ctgtattgtt	atgcagTTAG	GGAGGATTGT	TCTTGTCCAT
1401	TTTGCTTTAT	GCTATGTGGT	AGCTTCAAGG	TGGGCATATA	TTACAACTGA
1451	Ggtttcttcc	gaggcctttc	atatctaaca	ctgtgaaacg	ctactaccct
1501	ttcatgctgt	atacttgcag	tgtgcggttg	catacttttg	tgtttgttgg
1551	ttgtcttctc	actcttgaac	tgctgagtga	gaaaacatgt	tccagatgga
1601	gcttacaatc	cattgtcttg	tgtctatgca	gGGGCTTCAG	TTTCATTTGA
1651	ATTCATCTCA	TGATTTGTTT	GAATTTGAGT	TCAAGgtatg	tggttttatg
1701	gaatttcatg	ttttactctg	cctttttta	atgagattat	agttaaaagg
1751	gtctttcctg	ttgtagCTTT	CGGAAGAATA	CCAGACAGTT	AATGTTTCTG
1801	TGAAACTTAA	TTCCTTCATA	TTTGAGgtta	gttaccttta	actgttaatt
1851	ccttcatatt	tgaggttagt	tacctttaac	tgggaaatcc	tatagctggt
1901	gaaaatgtag	tttatattcc	atccttcttt	gtactagGAA	GAAGGAAGTG
1951	ATGACGATAA	ATTTGAGCCC	TTCTCTCTCT	Ggtaaatctc	aacaccccta
2001	gatagaattc	cttaatagca	gtaactcctt	acttttcttg	tcagtacttc
2051	tttataaatc	caaccataat	gttttgcagC	TCAAAACCTC	GAAAGCGTAG
2101	ACAAAGAGGT	GGCAGAAATA	ACACAAGGCG	ACTTAAAGTT	AGCTTTTTAC
2151	CGCTGGATTC	ACCCAGTTTA	GCTAATGGCA	CAGAAAATGG	AACTTCCCTA
2201	CTGACTGATG	gtaaaatcac	atcttcttct	gtggcattcc	ttgtggtttt
2251	gaacttcata	ttacaggaga	agatacaatg	gcttgattgt	ttagtttttt
2301	tccttctcct	cgcattcttc	atgagagggt	aattttacca	taactgatgt
2351	acaaaatgaa	tgacatgcta	cagGAAACCG	TGGTCTAGGA	TATCCCGAGG
2401	CAACAGAGCT	TGCTGGACAA	TTTGAGATGA	CTAGCAACAC	TCCGCCTGCC
2451	ATAGCTCATT	CTTCTGGCGC	TGATGCTAAA	GTTGTATTGA	CAAGCGAAGC
2501	TGTGGTCACT	GCTACTAGGA	CAAAAAAGTT	ATCTGCTGAG	CGATCAGAGG
2551	CTAGAAGgtt	tgttcatcat	gcatcttgtc	atcataattt	accattcccg
2601	ttgttacaaa	ttcatctttc	tatgatggat	aagtgtttac	catacttccc
2651	taataaccga	gaaaatttct	tccagCCACC	TACTTCTTCA	GAAACGCCAA
2701	TTCTATCATT	CTCACAGAGT	GCAGgtgatt	tgagttcttt	cacctacttc
2751	ttaagcattt	tctttatatt	gcccgctatg	atatcttatt	aaagcatact
2801	tggtcccgat	tcacggtact	ggtttgattg	ttctcatcca	aatctgtata
2851	ttttattttg	tctatccacg	aagaagatac	taagtccatg	tagtctctat
2901	ttcattttaa	ctaaccaaaa	actgcatttt	tttctgacaa	agCCAATGGG
2951	TCTTGAGCAA	GTAATGTCTG	ATCGGGATAG	CGAGGATGAA	GTTGATGACG
3001	ATGTTGCAGA	TTTCGAAGAT	CGCCAGgtat	tccatgattt	ctttctgcta
3051	actacaggaa	atggtatatt	cgatataact	tgctaatggc	ttttgaaact
3101	taaaaaagct	gcagATGCTT	GATGATTTTG	TGGATGTGAA	TAAAGATGAA
3151	AAGCAATTCA	TGCATCTTTG	GAACTCATTT	GTAAGAAAAC	AAAGgtaact
3201	acatttctta	aactttaaag	aaacacacac	tcaaaaggct	caaagcttat
3251	tttcttctgt	ttctgaacgg	aaagacctta	tgtgttacat	tacaatcctt
3301	tgtactgatt	ttggttatgg	aacaatatgc	taaaattcaa	ataatgatta
3351	atgttgcagA	GTTATAGCAG	ATGGTCATAT	CTCATGGGCA	TGTGAAGCAT

3401	TTTCAAGATT	TTACGAGAAG	GAATTGCACA	GTTACTCATC	ACTTTTTCTGg
3451	taaatacact	gactacacta	catactcatt	tacacacgtc	acattattac
3501	actatcaatt	tggctacgtt	tctgagaaaa	taaaaatttg	CagGTGCTGG
3551	AGATTATTTT	TGATCAAACT	ATGGAACCAT	GGACTTGTGG	ACGCAGCTAC
3601	CATCAACAAC	TGCAGTACCA	TACTCGAGAA	TTGCCGTAAT	AGCTCAGACA
3651	CCAACAACAA	TAACATCGCA	GATCATCCCA	ATGACATGAA	CAACATCAAC
3701	ATTGACAACG	ACGACCATAA	CTGCAGAGAC	AAGTAACTTA	AAATAGGAAG
3751	ATCTCCGGTT	TAGAGGATTA	CTATTGATGG	GATCGTATAA	CTTATTCCTT
3801	CTTTTATTCA	AAAAATGTTT	AGGAGCAAAC	AAAGATGTAC	TCAACTGATT
3851	TTTACATTTT	TTAGTTTGAA	AAAATGGATT	CTGATT	

Sequenz des Arabidopsis thaliana cDNA-Klons 4420 (EST 7)

1CGTTGGTTATACACCTACATTGCGTTATCTAATCACGATCCTCTTTCTCG51GAGTTGAGGTATACATAATGGCTATAACAGGGCTTGGGTTTGTCGTCTCT101GTATTGGAAGAAAGATACGGTTTTGATGCGATTAAGGAAGGAACCGCTCT151GATGAAAGGGAGGAGGATAACAGGGTTGGCCTTGGCGGGTGTATTGTGTG201TTCTATCGAGTTTCATTGGTCATGGGATGGAGGATGGCGGAAGGAGCTA251GATATGGACTTGAGCTCAGGGTCGTGGTGGAGGTCGGTGGGAGGTGGCCG301TGGGTGGGACGGGTGGAAGCTGGTTTTTACTGTGAGTGTAGGAACGCCAT401GGTAACAGTTATGCAATGTTGCTGATGAGGAAGGTCTTGCTATTTAAAA451TTAGTTCCAACACTTTTTGTTGTTGATAATTCTCTTGTGAATCTGTGAA501ATACATTTTGTTTACCAAAAAAAAAAAAAAAAAA

Sequenz der abgeleiteten cDNA des Gens 7 (Arabidopsis thaliana)

ATGATTCTTT	TCAGAAACAA	ACACATCTTA	TTACCAATCT	TTGCTTTCAT
AGCGATCCCT	CTCGCAGCCT	TACACCTCTC	CTTAACTCTT	ACCTCCTTTC
GCCTTAAAAA	CCATGTCTTT	CGTTTAGAAG	CCTTAGCTAA	CGTTGTGCAT
ACACGGTTTG	AAGCTAGACA	GATTTGGCAA	GAGTCTAGAG	AAGATGCTGT
CTCGCTTTTA	CATCTCAAAT	TCCGGTATTT	CGTCCCATCC	TTTATCCTCT
CCTGTATGGC	CTCCATAACT	GTCATCACAT	CAACTTCCTT	CTCACACCAA
GGCATAAACC	CATCTCTGAA	GTCGTCATTT	GCTTCAGTCA	AGTCTTCGTG
GATGCGAGTA	ACAGCAACTT	CCATCATCGT	CTACGGTCTG	CTCTTCCTCT
ACTCACCAAT	TTCCATGTTT	CTATCAGCTC	TCGTTGGTTA	TACACCTACA
TTGCGTTATC	TAATCACGAT	CCTCTTTCTC	GGAGTTGAGG	TATACATAAT
GGCTATAACA	GGGCTTGGGT	TTGTCGTCTC	TGTATTGGAA	GAAAGATACG
GTTTTGATGC	GATTAAGGAA	GGAACCGCTC	TGATGAAAGG	GAGGAGGATA
ACAGGGTTGG	CCTTGGCGGG	TGTATTTGTG	TTTCTATCGA	GTTTCATTGG
TCATGGGATG	GAGAAGTTGG	CGAAGGAGCT	AGATATGGAC	TTGAGCTCAG
GGTCGTGGTG	GAGGTCGGTG	GTTGTGGCCG	GTGGGTGGGA	CGGGTGGAAG
CTGGTTTGTA	TGTATGGGGC	TGAGGTTGTG	CTGAGTTATG	TTGTAATCAC
TGTTTTTTAC	TGTGAGTGTA	GGAAACGCCA	TGGTAACAGT	TATGCAATTG
TTGCTGATGA	GGAAGGTCTT	GCTATTTAA		
	ATGATTCTTT AGCGATCCCT GCCTTAAAAA ACACGGTTTG CTCGCTTTA CCTGTATGGC GGCATAAACC GATGCGAGTA ACTCACCAAT TTGCGTTATC GGCTATAACA GTTTTGATGC ACAGGGTTGG TCATGGGATG GGTCGTGGTG CTGGTTTGTA TGTTTTTAC TTGCTGATGA	ATGATTCTTTTCAGAAACAAAGCGATCCCTCTCGCAGCCTGCCTTAAAAACCATGTCTTTACACGGTTTGAAGCTAGACACTCGCTTTACATCTCAAATCCTGTATGGCCTCCATAACTGGCATAAACCCATCTCTGAAGATGCGAGTAACAGCAACTTACTCACCAATTTCCATGTTTTTGCGTTATCTAATCACGATGGCTATAACAGGGCTTGGGTGGCTATAACAGGGCTTGGGTGGCTATAACAGGGCTTGGGTGGTCGTGGTGGAGAAGTTGGGGTCGTGGTGGAGGTCGGGGCTGGTTTTTACTGTATGGGGCTGTTTTTTACTGTGAGTGTATTGCTGATGAGGAAGTCTT	ATGATTCTTTTCAGAAACAAACACATCTTAAGCGATCCCTCTCGCAGCCTTACACCTCTCGCCTTAAAAACCATGTCTTTCGTTTAGAAGACACGGTTGAAGCTAGACAGATTTGGCAACTCGCTTTACATCTCAAATTCCGGTATTTCCTGTATGGCCTCCATAACTGTCATCACATGGCATAAACCCATCTCTGAAGTCGTCATGTGATGCGAGTAACAGCAACTTCCATCATCGTACTCACCAATTTCCATGTTCTATCAGCTCGGCTATAACAGGGCTTGGGTTTGTCGTCTCGGCTATAACAGGGCTTGGGTTTGTCGTCTCGGCTATAACAGGGCTTGGGGGGAACCGCTCACAGGGTGGGAGAAGTGGCGAAGGAGCTGGTCGTGGTGGAGAGGGCGGGAAGGTGGGCTGGTTTTTACTGTATGGGGCTGAGGTGGGTGTCTGAAGAGGAAACCCCAGGAAACCCCATGTTTTTACTGTAGGGATGCAAACGCCATGCTGAAGAGGAAGGTCTTGCAATTAAA	ATGATTCTTTTCAGAAACAAACACATCTTATTACCAATCTAGCGATCCCTCTCGCAGCCTTACACCTCTCCTTAACTCTTGCCTTAAAAACCATGTCTTTCGTTTAGAAGCCTTAGCTAAACACGGTTGAAGCTAGACAGATTTGGCAAGAGTCTAGAGCTCGCTTTACATCTCAAATTCCGGTATTCGTCCCATCCCCTGTATGGCCTCCATAACTGTCATCACATCAACTTCCTTGGCATAAACCCATCTCTGAAGTCGTCATTGGCTTCAGTCAGATGCGAGTAACAGCAACTTCCATCATCGTTCGGTGGTGACTCACCAATTTCCATGTTCTATCAGCTCTCGTGAGTGAGGGGCTATAACAGGGCTTGGGTTTGTCTTTCCGGAGTTGGAGGGCTATAACAGGGCTTGGGTTTGTCTATCGAAAGGACAGGGTTGGGATAAGGAAGGAACCGCTCTGATATGGAAGGTCGTGGGGGAGAAGTTGGCTGAGTAACGAGGGTCGTGGTGGAGAGGTGGAGGAAACGCCATGGGTAACAGTGGTCGTGGTATGTATGGGGCTGAGGTGGGACTGAGTTATGTGTTTTTACTGTAAGGAGTAGGAAACGCCATGGTAACAGTTGCTGAATGAGGAAGTCTTGCTATTAA

Sequenz des abgeleiteten Gens 7-1 (Capsella rubella)

1	ATGATTCTCT	TCAGAAACAA	ACACATCTTG	TTCCCAGTCT	TTGCTCTCAT
51	AGCGATCCCT	TTAGCTGCCC	TACACCTATC	CCTAACTCTG	ACCTCCTTTC
101	GCCTTAAAAA	CCATGTCTTT	CGTCTAGAAG	CCTTAGCTAA	CGTCGTGCAC
151	ACACGGTTTG	AAGCTAGACA	GATTTGGCAA	GAGTCTAGAG	AAGATGCTGT
201	CTCGCTTTTA	CATCTCAAAT	CCCGGTATTT	TGTCCCATCC	TTTATCCTCT
251	CTAGTATTGC	CTCCATAACC	GTCATTACAT	CTACTTCCTT	CTCACACCAA
301	GGCCTAAACC	CATCTCTTAA	GTCGTCATGG	GCTTCAGTGA	AGTCCTCGTG
351	GATGCGAGTA	ACAGTAACTT	CCGTCATCGT	CTATGGTCTG	CTCTTCCTCT
401	ACTCTCCAAT	TCCCATGTTT	ATATCAGCTC	TCCTCGGTTA	CACACCCACA
451	TTACGTTATC	TCATCACGAT	CTTCTGTCTC	GTTGTTGAGG	TATACATAAT
501	GGCTATAACA	GGGCTCGGCC	TTGTCGTCTC	TGTATTGGAA	GAAAGATACG
551	GTTTTGATGC	GATTAAGGAA	GGAACCGCTC	TGATGAAAGG	GAGGAGGATA

601ACAGGGTTGGCTTTGGCGGGGTGTATTTGTGTTCTTATCAAGTTTCATTGG651TCATGGGATGGAGAAGTTGGCAAAGGAGCTAGATATGGACTCCAGCTCAG701GGTCGTGGTGGAGGTCGGTGGTTGTGGGCGGTGGGTGGGGACGGTTGGAAG751CTGGTTTGTATGTATGGGGCTGAGGTGGTGCTGAGTTATGTTGTAATCAC801TGTTTTTACTGTGAGTGTAGGAATCGCAATGGTATCAGCGATGCAAATG851TTGCTGATGACGCAGGTCTTGCTATTTAA

Sequenz des abgeleiteten Gens 7-2 (Capsella rubella)

1	ATGATTCTCT	TCGGAAACAA	ACACATCTTG	TTCCCAGTCT	TTGCTTTCAA
51	AGCGATCCCT	TTAGCTGCCC	TACACCTATC	CCTAACTCTT	ACCTCCTTTC
101	GCCTTAAAAA	CCATGTCTTT	CGTCTAGAAG	CCTTCGCTAA	CGCCGTGCAC
151	ACACGGTTTG	AAGCTAGACA	GATCTGGCAA	GAGTCTAGAG	AAGACGCTGT
201	CTCGCTTTTA	CATCTCAAGT	CCCGGTATTT	TGTCCCATCC	TCTATCCTCT
251	CTTGTATTGC	CTCCATAACC	GTCATTACAT	ATACTTCCTT	CTCACACCAA
301	GGCCTAACCC	CATCTCTTAA	GTCGTCATGG	GCTTCAGTGA	AGTCCTCGTG
351	GATGCGAGTA	ACAGTAACTT	CCGTCATCGT	CTATGGTCTG	CTCTTCCTCT
401	ACTCTCCAAT	TCCCATGTTT	ATATCAGCTC	TCGTTGGTTA	CACACCCACG
451	TTGCGTTATC	TCATCACCAT	CTTCTGTCTC	GGTGTTGAGG	TATACATAAT
501	GGCTATAACA	GGGATTGGCC	TTGTTGTCTC	TGTATTGGAA	GAAAGATATG
551	GTTTTGATGC	TATTAACGAA	GGAACCGCTC	TGATGAAAGG	GAGGAGGATA
601	ACAGGGTTGG	CTTTGGCGGG	TGTATTTGTG	TTTTTATCGA	GTTTCATTGG
651	TCATGGGATG	GAGAAGTTGG	CGAAGGAGCT	AGATATGGAC	TTCAGCTCAG
701	GGTCGTGGTT	GTGGCTGGTG	GGTGGGATGG	TTGGAAGTTG	A

Sequenz des *Arabidopsis thaliana* cDNA RPP5 abgeleitet aus der Gensequenz U97106

1	ATGGCGGCTT	CTTCTTCTTC	TGGCAGACGG	AGATACGACG	TTTTTCCAAG
51	CTTCAGTGGG	GTTGATGTTC	GCAAGACGTT	CCTCAGCCAT	CTTCTCAAGG
101	CTCTCGACGG	CAAATCAATC	AATACATTCA	TCGATCATGG	AATCGAGAGA
151	AGCCGCACAA	TCGCCCTGA	GCTTATATCG	GCGATTAGAG	AAGCTAGGAT
201	CTCAATCGTC	ATCTTCTCTA	AGAACTATGC	TTCTTCAACG	TGGTGCTTAA
251	ATGAATTGGT	TGAGATCCAC	AAGTGCTTTA	ATGATTTAGG	TCAAATGGTG
301	ATTCCAGTTT	TCTACGACGT	TGATCCTTCG	GAAGTTAGAA	AACAGACCGG
351	CGAATTTGGA	AAGGTCTTTG	AAAAGACATG	CGAGGTCAGC	AAGGACAAAC
401	AACCAGGGGA	TCAGAAACAA	AGATGGGTGC	AAGCTCTCAC	AGATATAGCA
451	AATATAGCCG	GAGAGGATCT	TCTGAACGGG	CCTAATGAAG	CGCATATGGT
501	TGAAAAGATA	TCCAATGATG	TTTCGAATAA	ACTTATCACT	CGGTCAAAGT
551	GTTTTGATGA	CTTCGTCGGA	ATTGAAGCTC	ATATTGAGGC	ААТААААТСА
601	GTATTGTGCT	TGGAATCCAA	GGAAGCTAGA	ATGGTCGGGA	TTTGGGGACA
651	GTCAGGGATT	GGTAAGAGTA	CCATCGGAAG	AGCTCTTTTC	AGTCAACTCT
701	CTAGCCAGTT	CCACCATCGC	GCTTTCCTAA	CTTATAAAAG	CACCAGTGGT
751	AGTGACGTCT	CTGGCATGAA	GTTGAGTTGG	CAAAAAGAGC	TTCTCTCGGA
801	AATCTTAGGT	CAAAAGGACA	TAAAGATAGA	GCATTTTGGT	GTGGTGGAGC
851	AAAGGTTAAA	TCACAAGAAA	GTTCTTATCC	TTCTTGATGA	TGTGGATAAT
901	CTAGAGTTTC	TTAAGACCTT	GGTGGGAAAA	GCTGAATGGT	TTGGATCTGG
951	AAGCAGAATA	ATTGTGATCA	CTCAAGATAG	GCAACTTCTC	AAGGCTCATG
1001	AGATTGACCT	TGTATATGAG	GTGAAGCTGC	CATCTCAAGG	TCTTGCTCTT
1051	AAGATGATAT	CCCAATATGC	TTTTGGGAAA	GACTCTCCAC	CTGATGATTT
1101	TAAGGAACTA	GCATTTGAAG	TTGCCGAGCT	TGTCGGTAGT	CTTCCTTTGG
1151	GTCTCAGTGT	CTTGGGTTCA	TCTTTAAAAG	GAAGGGACAA	AGATGAGTGG
1201	GTGAAGATGA	TGCCTAGGCT	TCGAAATGAT	TCAGATGATA	AAATTGAGGA
1251	AACACTAAGA	GTCGGCTACG	ATAGGTTAAA	тааааааат	AGAGAGTTAT
1301	TTAAGTGCAT	TGCATGTTTT	TTCAATGGTT	TTAAAGTCAG	TAACGTCAAA
1351	GAATTACTTG	AAGATGATGT	TGGGCTTACA	ATGTTGGCTG	AGAAGTCCCT
1401	CATACGTATT	ACACCGGGTG	GATATATAGA	GATGCACAAT	TTGCTAGAGA
1451	AATTGGGTAG	AGAAATTGAT	CGTGCAAAGT	CCAAGGGTAA	TCCTGGAAAA
1501	CGTCAATTTC	TGACGAATTT	TGAGGATATT	CGAGAAGTAT	TGACCGAGAA
1551	AACTGGGACC	GAAACTCTTC	TTGGAATACG	TTTGCCACAC	CCGGGATATC

1601	TTACGACAAG	GTCGTTCTTA	ATAGATGAAA	AATCATTCAA	AGGCATGCGT
1651	AATCTCCAAT	ATCTAGAAAT	TGGTTATTGG	TCAGATGGGG	TTCTACCTCA
1701	GAGCCTCGTT	TATTTCCCTC	GTAAACTCAA	AAGGCTATGG	TGGGATAATT
1751	GTCCATTGAA	GCGTTTGCCT	TCTAATTTTA	AGGCTGAGTA	TCTGGTTGAA
1801	CTCAGAATGG	TGAATAGTAA	GCTTGAGAAG	CTGTGGGATG	GAACTCAGCC
1851	CCTTGGAAGT	CTCAAGAAGA	TGGATTTGTA	TAATTCCTAC	AAATTGAAAG
1901	AAATTCCAGA	TCTTTCTTTA	GCCATAAACC	TCGAGGAATT	AAATCTTGAA
1951	GAATGCGAAT	CTTTGGAGAC	ACTTCCTTCC	TCGATTCAGA	ATGCCATTAA
2001	ACTGAGGGAG	TTAAATTGTT	GGGGGGGGCT	ATTAATAGAT	TTAAAATCAT
2051	TAGAAGGCAT	GTGTAATCTC	GAATATCTAT	CAGTTCCTAG	TTGGTCAAGT
2101	AGGGAATGCA	CTCAGGGCAT	CGTTTATTTC	CCTCGTAAAC	TCAAAAGTGT
2151	ATTGTGGACT	AATTGTCCAT	TGAAGCGTTT	GCCTTCTAAT	TTTAAGGCTG
2201	AGTATCTGGT	TGAACTCATA	ATGGAGTACA	GTGAGCTTGA	GAAGCTGTGG
2251	GATGGTACTC	AGTCACTTGG	AAGTCTCAAG	GAGATGAATT	TGAGGTATTC
2301	CAACAATTTA	AAAGAAATTC	CAGATCTTTC	TTTAGCCATA	AACCTCGAGG
2351	AATTAGATCT	TTTTGGATGC	GTATCTTTGG	TGACACTTCC	TTCCTCGATT
2401	CAGAATGCCA	CTAAACTGAT	CTATTTAGAT	ATGAGTGAAT	GCGAAAATCT
2451	AGAGAGTTTT	CCAACCGTTT	TCAACTTGAA	ATCTCTCGAG	TACCTCGATC
2501	TCACTGGATG	CCCGAATTTG	AGAAATTTCC	CAGCAATCAA	AATGGGATGT
2551	GCCTGGACTA	GATTATCTCG	AACAAGATTG	TTTCCGGAAG	GGAGAAATGA
2601	GATCGTGGTA	GAAGATTGTT	TCTGGAACAA	GAATCTCCCT	GCTGGACTAG
2651	ATTATCTCGA	CTGCCTTATG	AGATGTATGC	CTTGTGAATT	TCGCTCAGAA
2701	CAACTCACTT	TTCTCAATGT	GAGCGGCTGC	AAGCTTGAGA	AGCTATGGGA
2751	AGGCATCCAG	TCGCTTGGAA	GTCTCGAAGA	GATGGATCTG	TCAGAATCTG
2801	AAAACCTGAA	AGAACTTCCA	GATCTTTCAA	AGGCCACCAA	TCTGAAGCTT
2851	TTATGTCTCA	GCGGGTGCAA	AAGTTTGGTG	ACACTTCCTT	CTACAATTGG
2901	GAATCTTCAA	AATTTGAGAC	GTTTGTACAT	GAACAGATGC	ACAGGGCTGG
2951	AGGTTCTTCC	GACCGATGTC	AACTTGTCAT	CTCTCGAAAC	CCTCGATCTC
3001	AGTGGTTGCT	CAAGTTTGAG	AACTTTTCCT	CTGATTTCAA	CTAATATTGT
3051	ATGTCTCTAT	CTGGAAAACA	CCGCCATTGA	AGAAATTCCA	GATCTTTCAA
3101	AGGCCACCAA	GCTCGAGTCT	TTGATACTCA	ACAACTGCAA	AAGTTTGGTG
3151	ACACTTCCTT	CTACAATTGG	GAATCTTCAA	AATTTGAGAC	GTTTGTACAT
3201	GAACAGATGC	ACAGGGCTGG	AGCTTCTTCC	GACCGATGTC	AACTTGTCAT
3251	CTCTCGAAAC	CCTCGATCTC	AGTGGTTGCT	CAAGTTTGAG	AACTTTTCCT
3301	CTGATTTCAA	CTAGAATCGA	ATGTCTCTAT	CTAGAAAACA	CCGCCATTGA
3351	AGAAGTTCCC	TGCTGCATTG	AGGATTTCAC	GAGGCTCACT	GTACTACGGA
3401	TGTATTGTTG	CCAGAGGTTG	AAAAACATCT	CCCCAAACAT	TTTCAGACTG
3451	ACTAGTCTTA	CGCTCGCCGA	CTTTACAGAC	TGTAGAGGTG	TCATCAAGGC
3501	GTTGAGTGAT	GCAACTGTGG	TAGCGACAAT	GGAAGATCAC	GTTTCTTGTG
3551	TACCATTATC	TGAAAACATT	GAATATACAT	GTGAACGTTT	CTGGGATGCG
3601	TGTTCTGATT	ATTACTCTGA	TGACTTTGAG	GTAAATCGGA	ACCCAATTAG
3651	ATTGTCAACG	ATGACTGTCA	ACGATGTGGA	GTTTAAGTTT	TGTTGCTCCA
3701	TTACGATCAA	AGAATGCGGT	GTACGACTCT	TGTATGTCTA	TCAAGAAACA
3751	GAGCACAACC	AACAAACTAC	GAGAAGCAAG	AAGCGGATGC	GGATGACATC
3801	GGGGACATCT	GAAGAAGATA	TCAACTTACC	CTATGGCCAA	ATTGTAGCGG
3851	ACACAGGATT	GGCCGCTCTA	AATACAGAGC	TTTCGTTAGG	GCAGGGAGAA
3901	GCATCATCAT	CAACATCTCT	AGAGGGGGAA	GCTTTGTGTG	TTGATGATTA
3951	CATGATAAAT	GAAGAACAAG	ATGAACAAAT	ACCTATCTTG	TATCCTGTTT
4001	ATGATATAGA	CGATGATATG	TGGAGATCAT	TATTTTTGG	AGATACAGAC
4051	GATGATATGT	GGAGATCATT	ATATTCTGCA	GAATGA	

Sequenz des Arabidopsis thaliana cDNA-Klons 11177 (EST 8)

1	GGAGTTGGCC	ATAAGCTCGG	ACAAAGGGAA	ATCATGCGGG	CTAAGCTAGG
51	ATCGTAAAGG	AATCAGCTGG	GTCAGCTCGT	CCGAAGCTCA	AGCTCAGCTG
101	GAAGGAGTGA	CGGTTACTCG	GGTTGAGTGA	CAGTCCACCT	CGAGCAGCTG
151	GGCGAGTGAC	GGTTGAGCTC	GAGGCAGCTG	GTCGACTGTC	TGACCAGCTG
201	GGCGGTTACC	CGGACGGTTA	CTTGGGCGGT	TACGGTCGAA	CGGGTGCTCG
251	CCCAAAGGGT	GGATAAGGGC	GAGCAGTTAC	GGACCGAGAG	ATGCAACTCT
301	TCGGAAAGGT	GCAAGGAACG	GAGGTGATCC	TTCGGGAAGC	ATCAATTCGC

351	CCCTTATATA	AGGGAGGGTG	CCCAAGACCT	TTAGAGGCAC	CAGAACACAC
401	AGAAAATACC	GGAAACTCAC	TATTAAACTC	TCGTCCTTTC	GGGAGAATAA
451	ATCGTCGGAG	GAAATCGGTA	GTCGGACTGT	GACCGGCAAG	GAAGAAGAAG
501	GGTCGGATCG	ACCGAACATC	GTGAAGGAAG	GTAAGGGAAA	CCTAGACCTC
551	GAGTCTAAGG	ATTCTAGAAT	ACGTTAATTG	AGTCGAGATT	CCTTGAAAGG
601	AACGACTAAT	GGGCTGGGTA	GAATCGGGTC	ATGTGCAACC	TACACAAGAC
651	TCAGTCCGGG	CAAGGGATCG	GCTAGGGCGG	GGACGCGGCT	CGGTGGAGGA
701	CCGGAGGGTC	TTAATTGACC	TACCGAGAAT	CGGCTGGACT	TATGCGCGAT
751	CTTCCCCTCT	CCAAATCCTC	TCCGCGGATC	CGAGTAGTGA	ACCAATGGTG
801	ATCGTGGGAA	GGACTTGGCT	TAGGCGCGAG	AGACTCAAGG	CCGGGATGAT
851	GGGTGGTGAT	AGTTTCGGAT	AGTCTAGGGA	TCAATTATAT	TACTTGTAAT
901	AGCTTATATG	CAAACTCATA	AGTTGTATCG	AATCCTTTAC	TTAATTAATA
951	AAGTATCTGA	TTGTTTGTTT	ААААААААА	AAAAAA	

Sequenz des Arabidopsis thaliana cDNA-Klons J

1	AAGAACCTTC	ACTTTTCTCT	CCCACTCTTT	CTTTTACTAC	TCTCACACAT
51	ATCTCTGTCT	ATATATCACT	TTACATAAAC	GACTATTCCA	CACACAAACA
101	CACATAGCCA	TGGCCTCTTC	TTTCTCTTCA	CAAGCCTTCT	TCTTGCTCAC
151	ATTGTCTATG	GTTTTAATTC	CTTTCTCTTT	AGCTCAAGCT	CCCATGATGG
201	CTCCTTCTGG	CTCAATGTCC	ATGCCGCCTA	TGTCTAGCGG	CGGTGGAAGC
251	TCGGTTCCTC	CTCCAGTGAT	GTCTCCGATG	CCAATGATGA	CTCCACCACC
301	TATGCCTATG	ACTCCACCAC	CCATGCCCAT	GACTCCACCA	CCTATGCCTA
351	TGGCTCCACC	ACCAATGCCC	ATGGCTTCAC	CACCAATGAT	GCCAATGACT
401	CCATCTACAA	GCCCAAGCCC	ATTAACAGTT	CCGGATATGC	CTTCGCCGCC
451	GATGCCATCC	GGAATGGAAT	CTTCACCTTC	TCCAGGACCC	ATGCCACCGG
501	CAATGGCGTC	GCCGGATTCA	GGAGCTTTCA	ATGTTAGAAA	CAACGTCGTA
551	ACACTTTCAT	GCGTTGTTGG	AGTTGTTGCA	GCCCATTTTC	TCCTCGTTTG
601	AAATGATTAT	TGAATTGGTC	AGCCTCGATC	GTTTTCTTGT	AATTTACCTT
651	CATTTTTTTC	CCTCAAATTA	TTAGTGGTCA	TCATTTTATA	ATATTTGAGT
701	TTGTGTTTGA	TGTACGATTC	AGACATTTGT	TTGCATTATG	TGCTTAATAA
751	GTTTATCGTT	GACTCTAAAA	ААААААААА	ААААААААА	ААААААААА
801	AAAA				

Sequenz des Arabidopsis thaliana cDNA-Klons ATTS1159

1	CTCTTCACAA	GCCTTCTTCT	TGCTCACATT	GTCTATGGTT	TTAATTCCTT
51	TCTCTTTAGC	TCAAGCTCCC	ATGATGGCTC	CTTCTGGCTC	AATGTCCATG
101	CCGCCTATGT	CTAGCGGCGG	TGGAAGCTCG	GTTCCTCCTC	CAGTGATGTC
151	TCCGATGCCA	ATGATGACTC	CACCACCTAT	GCCTATGACT	CCACCACCCA
201	TGCCCATGAC	TCCACCACCT	ATGCCTATGG	CTCCACCACC	AATGCCCATG
251	GCTTCACCAC	CAATGATGCC	AATGACTCCA	TCTACAAGCC	CAAGCCCATT
301	AACAGTTCCG	GATATGCCTT	CGCCGCCGAT	GCCATCCGGA	ATGGAATCTT
351	CACCTTCTCC	AGGACCCATG	CCACCGGCAA	TGGCGGCTTC	GCCGGATTCA
401	GGAGCTTTCA	ATGTTAGAAA	CAACGTCGTA	ACACTTTCAT	GCGTTGTTGG
451	AGTTGTTGCA	GCCCATTTTC	TCCTCGTTTG	AAATGATTAT	TGAATTGGTC
501	AGCCTCGATC	GTTTTCTTGT	AATTTACCTT	CATTTTTTTC	CCTCAAATTA
551	TTAGTGGTCA	TCATTTTATA	ATATTTGAGT	TTGTGTTTGA	TGTACGATTC
601	AGACATTTGT	TTGCATTATG	TGCTTAATAA	GTTTATCGTT	GACTCTACTT
651	GAAGAGAG				

Sequenz des abgeleiteten Gens J (Capsella rubella)

1	ATGGCCTCTT	CTTCCTCTCC	ACAAGCCTTC	CTCTTGCTTG	CATTGTCTAT
51	GGTTTTAGTT	CCTTTCTCTT	TAGCTCAAGC	TCCCATGATG	GCTCCTTCCG
101	GCTCAATGTC	CATGCCCCCA	ATGCCTAGCG	GCGGCGGTGG	AAGCATGATC
151	CCCCCTCCGG	CTATGACTCC	ACCACCCATG	CCTATGATGA	CTCCACCACC
201	TATGCCTATG	ATGACTCCAC	CACCTATGCC	TATGATGACT	CCACCACCCA
251	TGCCTATGAT	GACTCCACCA	CCCATGCCTA	TGATGACTCC	GCCACCCATG

```
301TCCATGACTCCACCACCTATGCCTATGATGACTCCACCACCTATGTCCAT351GACTCCACCACCAATGCCTATGGCTTCACCACCAATGATGTCAATGGGCC401CAAGCCCAAGCCCATTAACAGTTCCCGGTATGGCTTCCCCGCCGATGCCA451TCGGGAATGGAATCAGCAGCATCTCCGGGACCCATGCCACCGCCAATGGC501GGCCTCCCCTGATTCTGGAGCTTTCAATGTTAGAAACAACGTCGTAGCAG551TGTCTTGCGTTGTTGGAGTTGTTGCAGCACATCTTCTCCCGTTTGA
```

Sequenz des Arabidopsis thaliana cDNA-Klons K

1	AGTTTCC ATG	AAGTCTTCTT	CTTCTCAGAG	CTACGATGTT	TTCCCCAACT
51	TCAGAGGGGA	AGATGTCCGC	CACTCATTAG	TCAGCCACCT	TCGTAAGGAA
101	CTTGATCGCA	AATTCATCAA	TACATTCAAC	GACAACAGGA	TCGAAAGAAG
151	CCGCAAAATA	ACCCCAGAGC	TGTTATTGGC	TATAGAAAAC	TCAAGGATCT
201	CACTTGTCGT	СТТСТСТААА	AACTATGCTT	CTTCCACGTG	GTGCTTAGAT
251	GAATTGGTGA	AGATCCAAGA	GTGCTATGAG	AAATTGGATC	AAATGGTGAT
301	TCCTATTTTC	TACAAAGTAG	ATCCTTCTCA	TGTTAGAAAA	CAGACCGGAG
351	AGTTTGGCAT	GGTCTTTGGG	GAGACCTGCA	AGGGCAGAAC	AGAGAATGAG
401	AAGCGAAAAT	GGATGCGAGC	TCTAGCAGAG	GTAGCACATC	TAGCCGGAGA
451	AGATCTTCGG	AACTGGCGTA	GCGAAGCAGA	AATGCTTGAA	AATATCGCCA
501	AGGATGTTTC	АААСАААСТС	TTCCCCCCAT	CAAATAATTT	CAGTGACTTC
551	GTCGGGATTG	AAGCTCATAT	AGAGGCATTG	ATATCAATGT	TGCGCTTCGA
601	CTCCAAGAAA	GCGCGAATGA	TAGGGATTTG	TGGGCCTTCT	GAAACTGGTA
651	AGACTACTAT	AGGAAGAGCT	TTATACAGCA	GACTCAAAAG	CGACTTCCAC
701	CATCGGGCTT	TCGTAGCATA	TAAGAGAAAA	ATACGGAGCG	ACTATGACCA
751	GAAGCTGTAT	TGGGAAGAAC	AATTTCTATC	AGAAATTCTT	TGTCAGAAGG
801	ATATAAAGAT	AGAGGAATGT	GGTGCGGTGG	AACAACGACT	AAAGCACACG
851	AAAGTTCTTA	TTGTTCTTGA	TGATGTTGAT	GATATAGAGC	ТАСТАААААС
901	GTTGGTAGGA	CGTATCAGAT	GGTTTGGATC	TGAGAGCAAA	ATTGTTGTGA
951	ТТАСТСАААА	AAGGGAACTT	CTCAAGGCTC	ACAACATTGC	ACATGTTTAT
1001	GAAGTGGGAT	TCCCATCAGA	AGAACTGGCT	CATCAAATGT	TTTGTCGATA
1051	TGCTTTTGGG	AAAAACTCTC	CACCTCATGG	TTTCAACGAG	CTTGCAGATG
1101	AAGCTGCAAA	GATTGCCGGT	AATCGTCCTA	AAGCTCTCAA	GTACGTTGGT
1151	TCGTCTTTTA	GAAGACTAGA	CAAGGAACAA	TGGGTGAAGA	TGCTATCGGA
1201	GTTCCGTAGT	AATGGGAATA	ААСТАААААТ	CAGCTATGAT	GAGTTAGATG
1251	GTAAAGGTCA	AGATTACGTT	GCGTGTTTAA	CCAATGGTTC	AAATTCCCAG
1301	GTGAAGGCAG	AGTGGATCCA	CTTGGCACTA	GGCGTGTCTA	ТАТТАСТТАА
1351	CATCCGCAGT	GACGGAACGA	CAATTCTCAA	ACATTTGAGC	TACAATCGAA
1401	GCATGGCGCA	ACAAGCAAAA	ATATGGTGGT	ATGAAAATTT	GGAAAGAGTG
1451	TGCAAGAAGT	ACAATATATG	TGGCATAGAT	AGCTCAACTG	ATGGTGGTGG
1501	TTCAACGTAT	GGACAATGTT	CAAATTCCCA	ATTTCAAAGA	AACATGGACG
1551	CAAGCCCCGG	GGGAAACAAA	ACCAGTAATC	ААТССАСААА	AGATTCACCG
1601	AGAGCTTCTC	AAGTAGAGAA	GGAAAAGATC	GAGTACTGTG	AGCCACATGT
1651	АТАТАТААСА	CCTGCCATCT	TCAGTGACGG	AACCAGAGCT	CCCAAATACG
1701	TGGAGTCTAG	TAGCCGAAGA	GTAACCCAAG	TGCACCACGC	CAAAACATGG
1751	TGGCCGGAGA	ATTGTGAAAA	AGTGTACGAG	AACCACAACA	ACATATATGG
1801	CATAGATAGA	TCAATTGACG	GTGGTGATAA	GTTTGAGGGA	AAAAGTAAAG
1851	TTAGTGACGG	TGGGTTAGAC	GGCAAAGATC	AAGGTTCAAT	GTATGGACAA
1901	AGTTCAAATT	CCGAGCTTCA	AATAAACATG	GACGCAGACA	ATAGGAGATG
1951	TGAACCTGTG	AGTGAGATGC	TTTTCAAAAA	TTACAATGTG	TGTTCGCCTA
2001	ATGGTTTAAC	CGATGTAAAC	TGTTCAAATC	CCCAGTCTCA	AAGAAAATTG
2051	GACGCAAGCC	TAAAGAAAGA	CAAAATTGTG	CATGAGTGGA	TTCGAACCGG
2101	TAGTGGCTTC	TTTTTTGATT	TTCAGGGCCC	ААААТСТАТА	GTGAGTGCTG
2151	CTCAAGTGGA	CGAGAAAAAT	TTCGAGTACT	GTGAACAAGG	TGTGTATATA
2201	ACACTTGGCA	TCCTCAGTGG	CGGAATTATA	GTTCTCAAAC	ATTTGGAGTT
2251	CAGCCGAAGA	ATGGCGCAAC	AAGCAAAAGT	TTGGTGGTCG	GAAAATTGGA
2301	TAAAAGTGTA	CCAGGAGCAC	AACATATGTG	GCATAGATAA	ATCATTTGAT
2351	GGTAGGTTTG	ATGATAGACG	TGTCATTCGT	CAATTAAGAC	CAAACTGA AG
2401	CACGGCCTGG	CCCTTGTAAA	AGTCAGGACT	TGAGCTAGAT	ACTTAAGCCA
2451	AGCAGATCTG	TTTGGCTAAG	TCTGGTCGGG	TTAGCGCGAA	ATTGTCGAAA
2501	TCTGTTTAAT	AATTGCATTC	AGTGCAAGTC	TTTAATTTGT	ACTTCATGGC

25033 - Sequenz der vorhergesagten cDNA des Gens TOM1 (Arabidopsis thaliana)

1	ATGCTTACTT	CCTTCAAATC	CTCTAGCTCC	TCCTCCGAAG	ATGCCACCGC
51	TACCACCACC	GAGAATCCTC	CTCCTTTGTG	CATCGCCTCC	TCCTCGGCCG
101	CAACCTCCGC	CTCACATCAC	CTCCGTCGTC	TTCTTTTCAC	CGCTGCGAAT
151	TTCGTCTCCC	AGTCAAACTT	CACCGCCGCT	CAAAACTTAC	TCTCAATCCT
201	CTCCCTTAAC	TCTTCTCCTC	ACGGCGACTC	CACCGAGCGA	CTTGTACACC
251	TCTTCACTAA	AGCCTTGTCC	GTACGAATCA	ACCGTCAGCA	ACAAGATCAG
301	ACGGCTGAAA	CGGTTGCCAC	GTGGACGACG	AACGAAATGA	CGATGAGTAA
351	CTCCACGGTG	TTCACGAGCA	GTGTATGCAA	AGAACAGTTC	TTGTTTCGAA
401	CCAAGAACAA	CAATTCTGAC	TTCGAGTCTT	GTTACTATCT	TTGGCTAAAC
451	CAACTAACGC	CGTTTATTCG	GTTCGGTCAT	TTAACGGCGA	ACCAAGCTAT
501	CCTCGACGCG	ACGGAGACAA	ACGATAACGG	AGCTCTACAT	ATACTTGATT
551	TAGATATATC	ACAAGGACTT	CAATGGCCTC	CATTGATGCA	AGCCCTAGCA
601	GAGAGGTCAT	CAAACCCTAG	CAGTCCACCT	CCATCTCTCC	GCATAACCGG
651	ATGCGGTCGA	GATGTAACCG	GATTAAACCG	AACTGGAGAC	CGGTTAACCC
701	GGTTCGCTGA	CTCTTTAGGT	CTCCAATTCC	AGTTTCACAC	GCTAGTGATC
751	GTAGAAGAAG	ATCTCGCCGG	ACTTTTGCTA	CAGATCCGAT	TGTTAGCTCT
801	CTCAGCCGTA	CAAGGAGAGA	CCATTGCCGT	CAATTGTGTT	CACTTCCTCC
851	ACAAAATATT	TAACGACGAT	GGAGATATGA	TCGGTCACTT	CTTGTCAGCG
901	ATCAAGAGCT	TAAACTCTAG	AATCGTTACA	ATGGCAGAGA	GAGAAGCTAA
951	TCATGGAGAT	CACTCGTTCT	TGAATAGATT	CTCTGAGGCA	GTGGATCATT
1001	ACATGGCGAT	CTTTGATTCG	TTGGAAGCGA	CGTTGCCGCC	AAATAGCCGA
1051	GAGAGACTAA	CCCTAGAGCA	ACGGTGGTTC	GGTAAGGAGA	TTTTGGATGT
1101	TGTGGCGGCG	GAAGAGACGG	AGAGAAAGCA	AAGACATCGG	AGGTTTGAGA
1151	TTTGGGAAGA	GATGATGAAG	AGGTTTGGTT	TCGTTAACGT	TCCTATTGGA
1201	AGCTTTGCTT	TGTCTCAAGC	TAAGCTTCTT	CTTAGACTTC	ATTATCCTTC
1251	AGAAGGTTAT	AATCTTCAGT	TCCTTAACAA	TTCTTTGTTT	CTTGGCTGGC
1301	AAAATCGTCC	CCTCTTCTCC	GTTTCGTCGT	GGAAATGA	

Sequenz des abgeleiteten Gens TOM1 (Capsella rubella)

1	ATGCTTACTT	CTTTCAAATC	CTCTAGCTCC	TCCTCCGAAG	ATGCCACCAC
51	CGAGACTCCT	CCTCCTCCTT	TTTGTCAGCT	TGCCTCCTCC	TCCTCATCCT
101	CCGCCGCTAC	CTCCGCCTCC	CATCACCTCC	GTCGTCTACT	TTTCACCGCT
151	GCTGATTTCG	TCTCCCAGTC	TAACTTCACC	GCCGCTCGGA	ACTTACTCTC
201	AATCCTCTCC	CTCAACTCTT	CTCCTTACGG	CGACTCCACC	CAGCGACTCG
251	CCCATCTCTT	CACGAAAGCC	TTGTCCTTAC	GGATCAACCG	TCTACAACAG
301	GAACAAGATC	CAACGGTTGC	CACGTGTACG	ACGAACGAAA	TGACTATGAG
351	TACCAACTCC	ACGGTGTTCA	CGAGCAGTGT	GTGCAAAGAA	CAGTTCTTGT
401	TTCGGACCAA	GAACAACAAC	TCTGACTTCG	AGTCTTGTTA	CTATCTTTGG
451	CTGAATCAAC	TAACGCCGTT	TATTCGGTTC	GGTCATTTAA	CGGCGAACCA
501	GGCGATCCTC	GACGCGACCG	AGACAAACGA	TAATGGAGCT	CTACATATAC
551	TTGATTTAGA	TATATCACAA	GGACTTCAGT	GGCCTCCATT	GATGCAAGCC
601	CTAGCAGAGA	GGTCATCAAG	CCCTAACAGT	CCACCACCAT	CTCTCCGCAT
651	AACCGGATGC	GGTCGAGATG	TAACCGGATT	AAACCGAACC	GGAGATAGGT
701	TAACCCGGTT	TGCTAACTCT	TTAGGTCTCC	AGTTCCAGTT	TCACAAGCTG
751	GTGATCGTAG	ACGAAGATCT	CCCTGGGCTC	TTGCTACAGA	TCCGATTGTT
801	AGCTCTCTCC	GCCGTACAAG	GAGAGACCAT	TGCCGTCAAC	TGTGTTCACT
851	TCCTCTACAA	GTTCTTTAAC	GACGATGCAG	ATTTGATCGG	TCACTTCTTA
901	ACAGTGATCA	AGAGCTTAAA	CCCTAGAATC	GTGACAATGG	CTGAGAGAGA
951	AGCTAATCAT	GGAGATCACT	CGTTCTTGAT	TAGATTCTCA	GAGGCTTTGG
1001	ATCATTACGT	GGCGATATTT	GATTCCTTGG	AAGCGACTTT	GCCGCCAAAT
1051	AGCCGAGAGA	GACTAACCCT	AGAGCAACGG	TGGTTCGGTA	AGGAGATTAT
1101	GGATGTCGTG	GCGGCGGAAG	CGACGGAGAG	GAAGCAAAGA	CATCGGAGGT
1151	TTGAGATATG	GGGAGAGATG	ATGAAGAGAT	TTGGTTTCGT	TAACGTTCCT
1201	ATTGGAAGCT	TTGCTTTGTC	TCAAGCTAAG	CTTCTTCTTA	GGCTCCATTA

1251TCCTTCAGAA GGTTATAATC TTCAGTTCCT TAACGATTCT TTGTTTCTTG1301GTTGGCAAAA TCGTCTACTC TTCTCCGTTT CATCGTGGAA ATGA

Sequenz des Arabidopsis thaliana cDNA-Klons 5787

1GGCTTTAACAGAGCTGAGTATCAGGAGTTGCTTTCACGTAACAGATTCTT51CGATAGAGTCCCTGGCTACATGGGAAAGACAAGCAGAGGGAGGAAGCAAA101CAATTGAGGAAGCTCAATGTCCATAACTGTGTGAGCTTAACTACTGGAGCA101CAATTGAGGAAGCTCAATGTCCATAACTGTGTGAGCTTAACTACTGGAGAC101ACTGAGATGGTTAAGCAAGCCGTCTTTGCGGGTCTGCATTGCGCTGGAA101ACTGAGAAGAACGATTCGCGGGTCGAAAAAGACGGTTACAGCTATGATT101TGGGACAAACACGATTCGCGGGTCGAAAAGAGCACGCTCGAGCACGCTGGC101ATGCTCTGATGGTTGGGAATCCAACACGCCACAACACGCACTGAACAAAC101AGTAGGATGTGTAATTTATTTAAACCTTTTAAAAAAATTTGATTGTAAAC101AAAAAAAAAAAAAAAAAAAA

Sequenz des Arabidopsis thaliana cDNA-Klons 21484

1	TCTGTGTTAG	CAGAAGAAAT	ACTGAAGCGT	TTAGATCTGG	AGAATCTCTG
51	TTCCGTCGCA	TGCGTTTCCA	CCACTCTCCG	CTCCGCCGTT	GTTTCCGGCG
101	TTCTTCCTTC	TCTTACCTCC	CTCGATCTCT	CTGTTTTCTC	TCCGGACGAT
151	GAAACTCTGA	ATCACGTGCT	GCGTGGTTGT	ATCGGACTCA	GCAGCTTAAC
201	TCTGAATTGT	CTCCGCCTTA	ACGCTGCTTC	TGTGCGTGGA	GTTCTCGGGC
251	CACATCTCCG	AGAACTTCAC	TTGCTCAGGT	GTTCACTTTT	ATCCTCCACC
301	GTCCTCACTT	ACATTGGCAC	CCTCTGCCCA	AATCTCCGGG	TTCTTACTCT
351	GGAAATGGCA	GACCTGGATT	CTCCCGATGT	TTTTCAGTCT	AACTTGACGC
401	AGATGCTTAA	CGGGTGTCCT	TATCTGGAGT	CTCTGCAACT	TAATATCCGA
451	GGTATCCTAG	TAGATGCCAC	CGCTTTCCAG	TCTGTTAGAT	TCTCCTTGCC
501	AGAAACTCTC	AAAGCTCTAA	GGTTACAGCC	ACTTCTTGAG	TCTGAGGCAA
551	TTCTTCTCAT	GAACAGATTC	AAAGTGACTG	GAACTTATTT	ATCTCAGCCT
601	GATTATAATA	GTGCCTTGCT	ATCTCCTTCA	CCTTCTTTTA	CTTTGCAAAG
651	CCTGTCTCTT	GTCCTGGACT	TGATATCTGA	CAGGCTTATC	ATAGCTATCA
701	CAGGTTCTCT	TCCTCAACTT	GTCAAACTGG	ACCTTGAAGA	TCGTCCTGAA
751	AAAGAGCCAT	TTCCCGACAA	TGACTTGACT	TACACTGGGC	TTCAGGCTCT
801	CGGTTTTTGT	CAGCAACTCA	CAAGCCTCTC	TCTGGTTCGA	ACTTGTTACA
851	ACCGCAAGAT	ATCATTCAAG	AGAATAAACG	ATATGGGTAT	ATTTCTTCTC
901	TCCGAGGCTT	GCAAGGGTTT	AGAGTCTGTG	AGACTCGGTG	GGTTCCCAAA
951	AGTCAGCGAC	GCTGGTTTTG	CGTCGCTCCT	TCACTCATGT	CGGAACTTGA
1001	AAAAGTTTGA	AGTTCGAGGT	GCCTTCCTGT	TGTCTGATTT	GGCATTTCAT
1051	GATGTCACAG	GGTCTTCCTG	TTCTCTTCAA	GAGGTCAGAC	TCTCGACGTG
1101	CCCTCTCATA	ACAAGTGAAG	CTGTGAAGAA	ACTGGGGTTG	TGTGGCAATC
1151	TTGAGGTGCT	CGACTTGGGC	AGCTGCAAAA	GTATATCAGA	TTCTTGCCTC
1201	AACTCTGTTT	CAGCCCTCAG	AAAGTTAACT	TCTCTGAATC	TCGCTGGAGC
1251	TGATGTAACC	GATAGTGGCA	TGCTTGCACT	TGGTAAGTCA	GATGTTCCCA
1301	TCACGCAACT	GTCTCTCCGC	GGCTGTAGGA	GAGTCAGTGA	CAGAGGAATA
1351	TCCTATCTGT	TGAACAATGA	AGGAACAATC	AGCAAAACAT	TGTCAACACT
1401	TGATCTCGGT	CATATGCCAG	GAATCTCAGA	CAGAGCCATC	CACACAATCA
1451	CACACTGTTG	CAAGGCTTTA	ACAGAGCTGA	GTATCAGGAG	TTGCTTTCAC
1501	GTAACAGATT	CTTCGATAGA	GTCCCTGGCT	ACATGGGAAA	GACAAGCAGA
1551	GGGAGGAAGC	AAACAATTGA	GGAAGCTCAA	TGTCCATAAC	TGTGTGAGCT
1601	TAACTACTGG	AGCACTGAGA	TGGTTAAGCA	AGCCGTCTTT	TGCGGGTCTG
1651	CATTGGCTCG	GAATGGGACA	AACACGATTC	GCGGGTCGAA	AAGAGACGGT
1701	TACAGCTATG	ATTTGTGGAC	AGAGGCCGTG	GCTCACGTTG	TGCTTCGATG
1751	GATGTGAGCT	TGGATGCTCT	GATGGTTGGG	AATTCCACAC	GCCACAACGC
1801	CACTGA AGAA	CTCATTGTCT	CACTAGTTCA	TGTATTGTAT	AAAATCGTTC
1851	AGAAACATGA	TTCAGTAGGA	TGTGTAATTT	TATTTAAACC	TTTTAAAAAA
1901	Т				

25032 - Sequenz der vorhergesagten cDNA des Gens TOM2 (Arabidopsis thaliana)

1	ATGGAGGAAG	TGACGAGATC	TGTGTTAGCA	GAAGAAATAC	TGAAGCGTTT
51	AGATCTGGAG	AATCTCTGTT	CCGTCGCATG	CGTTTCCACC	ACTCTCCGCT
101	CCGCCGTTGT	TTCCGGCGTT	CTTCCTTCTC	TTACCTCCCT	CGATCTCTCT
151	GTTTTCTCTC	CGGACGATGA	AACTCTGAAT	CACGTGCTGC	GTGGTTGTAT
201	CGGACTCAGC	AGCTTAACTC	TGAATTGTCT	CCGCCTTAAC	GCTGCTTCTG
251	TGCGTGGAGT	TCTCGGGCCA	CATCTCCGAG	AACTTCACTT	GCTCAGGTGT
301	TCACTTTTAT	CCTCCACCGT	CCTCACTTAC	ATTGGCACCC	TCTGCCCAAA
351	TCTCCGGGTT	CTTACTCTGG	AAATGGCAGA	CCTGGATTCT	CCCGATGTTT
401	TTCAGTCTAA	CTTGACGCAG	ATGCTTAACG	GGTGTCCTTA	TCTGGAGTCT
451	CTGCAACTTA	ATATCCGAGG	TATCCTAGTA	GATGCCACCG	CTTTCCAGTC
501	TGTTAGATTC	TCCTTGCCAG	AAACTCTCAA	AGCTCTAAGG	TTACAGCCAC
551	TTCTTGAGTC	TGAGGCAATT	CTTCTCATGA	ACAGATTCAA	AGTGACTGGA
601	ACTTATTTAT	CTCAGCCTGA	TTATAATAGT	GCCTTGCTAT	CTCCTTCACC
651	TTCTTTTACT	TTGCAAAGCC	TGTCTCTTGT	CCTGGACTTG	ATATCTGACA
701	GGCTTATCAT	AGCTATCACA	GGTTCTCTTC	CTCAACTTGT	CAAACTGGAC
751	CTTGAAGATC	GTCCTGAAAA	AGAGCCATTT	CCCGACAATG	ACTTGACTTA
801	CACTGGGCTT	CAGGCTCTCG	GTTTTTGTCA	GCAACTCACA	AGCCTCTCTC
851	TGGTTCGAAC	TTGTTACAAC	CGCAAGATAT	CATTCAAGAG	AATAAACGAT
901	ATGGGTATAT	TTCTTCTCTC	CGAGGCTTGC	AAGGGTTTAG	AGTCTGTGAG
951	ACTCGGTGGG	TTCCCAAAAG	TCAGCGACGC	TGGTTTTGCG	TCGCTCCTTC
1001	ACTCATGTCG	GAACTTGAAA	AAGTTTGAAG	TTCGAGGTGC	CTTCCTGTTG
1051	TCTGATTTGG	CATTTCATGA	TGTCACAGGG	TCTTCCTGTT	CTCTTCAAGA
1101	GGTCAGACTC	TCGACGTGCC	CTCTCATAAC	AAGTGAAGCT	GTGAAGAAAC
1151	TGGGGTTGTG	TGGCAATCTT	GAGGTGCTCG	ACTTGGGCAG	CTGCAAAAGT
1201	ATATCAGATT	CTTGCCTCAA	CTCTGTTTCA	GCCCTCAGAA	AGTTAACTTC
1251	TCTGAATCTC	GCTGGAGCTG	ATGTAACCGA	TAGTGGCATG	CTTGCACTTG
1301	GTAAGTCAGA	TGTTCCCATC	ACGCAACTGT	CTCTCCGCGG	CTGTAGGAGA
1351	GTCAGTGACA	GAGGAATATC	CTATCTGTTG	AACAATGAAG	GAACAATCAG
1401	CAAAACATTG	TCAACACTTG	ATCTCGGTCA	TATGCCAGGA	ATCTCAGACA
1451	GAGCCATCCA	CACAATCACA	CACTGTTGCA	AGGCTTTAAC	AGAGCTGAGT
1501	ATCAGGAGTT	GCTTTCACGT	AACAGATTCT	TCGATAGAGT	CCCTGGCTAC
1551	ATGGGAAAGA	CAAGCAGAGG	GAGGAAGCAA	ACAATTGAGG	AAGCTCAATG
1601	TCCATAACTG	TGTGAGCTTA	ACTACTGGAG	CACTGAGATG	GTTAAGCAAG
1651	CCGTCTTTTG	CGGGTCTGCA	TTGGCTCGGA	ATGGGACAAA	CACGATTCGC
1701	GGGTCGAAAA	GAGACGGTTA	CAGCTATGAT	TTGTGGACAG	AGGCCGTGGC
1751	TCACGTTGTG	CTTCGATGGA	TGTGAGCTTG	GATGCTCTGA	TGGTTGGGAA
1801	TTCCACACGC	CACAACGCCA	CTGA		

Sequenz des abgeleiteten Gens TOM2 (Capsella rubella)

1	ATGGAGGAAG	TGACGAGATC	TGTGTTAGCG	GAGGAGATAC	TGAAGCGTTT
51	AGATCTGGAG	ААТСТСТСТСТ	СССТСССТС	TGTTTCCACC	ACCCTCCGCT
101	CCGCCGTTGT	CTCCGGCGTT	CTCCCTTCTC	TTACGTCTCT	CGATCTCTCT
151	GTGAGTTTCA	GATTCTCTGA	GATTTTGGAG	ATTTTCTCTG	GAAAGAGAGT
201	AATTTTATCG	AATTCTGTTT	AG GTTTTCTC	TCCGGACGAG	GAGACTCTGA
251	ATCACGTGCT	GCGTGGTTGC	ATCGGACTTA	GTAGCTTAAC	TCTGAATTGT
301	CTCCGTCTTG	ACGCTAATTC	TGTTCGTGGG	GTTCTCGGCC	CACATCTCCG
351	GGAACTTCAC	TTGCTCAGGT	GTTCTCTTCT	ATCCTCCACC	GTCCTCACTT
401	CCATCGGTAC	CCTCTGCCCA	AATCTCCG GT	ACTATTTCTT	CTTCCCATGA
451	ACTTTTTAAT	AGATACCTCA	ATGAATTCTC	GTGCTTTTGG	CCCATGTTTG
501	TTTCTGGAAA	AGGGAGAAGA	TTTACGAAAA	GTCTCATTTT	TTCTGAATTT
551	ATCACTTCAT	TGATAGAATT	GAATTAAATT	GAGTCCTCTG	TCACTCCCCT
601	TGAAGGCAAG	CCTTTACATA	TCTGGGGTTA	GCTATGACTT	TTGTCAATCA
651	CTCTTTCTTG	ATTAGAAGCA	TTGAGTTTAG	AGCTCTAGAG	TTGAAGTTGT
701	GATTGTGACT	TTGTGAGTAC	TTAAGAGTTT	TTTTTGGTTC	ААТТАТТТАТ
751	TACAG GGTTC	TTACCCTGGA	AATGTCAGAC	CTGGATTCTC	CCGCTGTTTT
801	CCAGTCTAAT	TTGACGCAGA	TGCTTAACGG	GTGTCCTTAT	CTGGAG GTAA
851	TTTGTTAAAA	GCTTGCTGAG	GCATTGGTCA	GAAGAAGCGA	GAAAGTGTGA
901	AATTGAATTT	GGGTTTTATA	TTCTTGTGAT	GCTTGCAG TC	TCTGCAACTT
951	AATATCCGAG	GTATCCTAGT	AGATGCCACA	GCTTTCCAGT	CTGTTAGATT

1001	CTCCTTGCCA	GAAACTCTCA	AAGCTCTCAG	GTTACAGCCA	CTGCTTGAGT
1051	CCGAAGCAAT	TCTTCTCATG	AACAGATTCA	AAGTCACTGG	AACTTGTTTA
1101	TCTCAGGCTG	ATTATAGTGC	CTTGCTTTCT	CTTTCACCTT	CTTTTACTTT
1151	GCAAAGCCTG	TCTCTTGTGC	TGGACTTGAT	ATCTGACAGG	CTAATCATAG
1201	CTATCACAGG	TTCTCTTCCT	CAACTTGTCC	AACTGGACCT	TGAAGACCGT
1251	CCTGAAAAAG	AGCCATTTCC	CGACAGTGAC	CTGACTTACA	CTGGGCTTCA
1301	AGCTCTGGGT	TATTGTCAGC	AACTCACAAG	CCTCTCTCTG	GTTCGAACTT
1351	GTTACAACCG	CAAGATATCA	TTCAAGAGAA	TAAACGATAT	GGGTATATTT
1401	CTTCTCTCCG	AGGCTTGCAA	GGGTTTAGAG	TCAGTGAGAC	TCGGTGGGTT
1451	CCAAAAAGTT	AGCGACGCTG	GTTTTGCATC	GCTCCTGCAC	TCATGTCGGA
1501	ACTTGAAAAA	GTTTGAAGTA	CGAGGTGCCT	TCCTCTTGTC	TGATTTGGCA
1551	TTCCATGATG	TCACAGGGTC	TTCTTGTTTT	CTTCAAGAGG	TCAGACTCTC
1601	GACTTGTCCT	CTCATAACCA	GCGAAGCTGT	GAAGAAACTG	GGGTTGTGTG
1651	GCAATCTTGA	GGTGCTCGAC	TTGGGCAGCT	GCAAAAGTAT	ATCAGATTCT
1701	TGCCTCAACT	CTGTTTCAGT	CCTTAGAAGG	TTAACTTCTC	TGAATCTCGC
1751	AGGAGCTGAT	GTAACCGATA	GTGGCATGCT	TGCACTTGGT	AAGTCAGATG
1801	TTCCTATCAC	GCAACTGTCT	CTCCGCGGCT	GTAAGAGAGT	CAGTGATAGG
1851	GGAATATCCC	ATCTGTTGAT	CAATGAAGGA	ACAATCAGCA	AAACATTATC
1901	AACACTTGAT	CTTGGTCACA	TGCCAGGAAT	GTCAGACAGA	GCCATCCACA
1951	CAATCACGCG	TTATTGCAAG	GCTTTAACAG	AGCTAAGTAT	CAGGAGTTGC
2001	TTTTACGTAA	CAGATTCTTC	GATAGAGTCG	CTGGCTACAA	GGGAAAGACA
2051	AGTAGAGGGA	GGAAGCAAAC	AGTTGAGGAA	GCTCAATATC	CATAACTGTG
2101	TGAGCTTAAC	GACTGGAGCA	CTGAGATGGC	TGAGCAAGCC	GTCTTTTGCG
2151	GGTCTGCATT	GGCTCGGTTT	GGGACAAACA	CGAATTGCTG	GTCGAAAAGA
2201	GACGGTCACA	GCTACGATTT	GTGGGCAGAG	GCCGTGGCTC	ACATTGTGCT
2251	TCGATGGGTG	TGAGCTTGGA	TGCTACGATG	GTTGGGAATT	CCACACGCCA
2301	CAGCGCCACT	GA			

25031 - Sequenz der vorhergesagten cDNA des Gens TOM3 (Arabidopsis thaliana)

1	ATGAGTGATT	TTGATGAAAA	CTTCATCGAA	ATGACGTCGT	ATTGGGCTCC
51	ACCATCCAGT	CCTAGCCCAA	GAACGATATT	GGCAATGCTG	GAGCAAACCG
101	ACAATGGTCT	GAATCCAATC	AGTGAGATCT	TCCCTCAAGA	AAGCTTGCCA
151	AGAGATCATA	CTGATCAATC	TGGACAAAGA	TCTGGTCTTC	GTGAGAGACT
201	GGCTGCAAGA	GTAGGATTCA	ATCTTCCAAC	ACTCAATACA	GAAGAAAACA
251	TGAGTCCTTT	GGATGCATTT	TTCAGGAGCT	CGAATGTTCC	TAATTCTCCT
301	GTCGTTGCAA	TCTCTCCAGG	ATTCAGTCCA	TCAGCACTAT	TGCATACTCC
351	CAATATGGTC	AGTGATTCTT	CCCAGATTAT	CCCTCCGTCT	TCAGCCACCA
401	ATTACGGACC	TCTAGAGATG	GTGGAAACTT	CCGGTGAAGA	CAATGCAGCG
451	ATGATGATGT	TCAACAACGA	TCTTCCTTAT	CAGCCGTACA	ATGTTGATCT
501	GCCTTCTCTA	GAAGTCTTTG	ATGATATTGC	AACGGAAGAG	TCCTTTTATA
551	TCCCATCTTA	TGAACCTCAT	GTTGACCCAA	TTGGAACTCC	TTTAGTCACA
601	TCCTTTGAAT	CTGAACTCGT	TGACGATGCC	CATACCGACA	TCATCTCCAT
651	TGAGGACAGT	GAGAGCGAGG	ATGGAAACAA	AGATGATGAC	GACGAGGACT
701	TCCAATACGA	AGACGAAGAC	GAAGACCAAT	ACGACCAAGA	TCAAGATGTA
751	GATGAAGATG	AAGAGGAAGA	AAAAGATGAA	GACAATGTTG	CATTAGATGA
801	TCCTCAACCT	CCACCTCCAA	AGAGAAGGAG	ATATGAGGTA	TCAAACATGA
851	TTGGAGCCAC	AAGAACAAGC	AAGACACAAA	GGATCATACT	TCAGATGGAA
901	AGCGACGAAG	ACAATCCTAA	CGATGGTTAT	CGCTGGAGAA	AATACGGTCA
951	GAAAGTCGTC	AAAGGAAATC	CTAATCCGAG	GAGTTACTTC	AAGTGCACAA
1001	ACATCGAGTG	CAGAGTGAAA	AAACATGTGG	AGAGAGGAGC	AGACAATATC
1051	AAGTTGGTTG	TGACTACATA	CGATGGGATA	CACAACCATC	CTTCACCACC
1101	TGCACGTAGA	AGCAATTCCA	GTTCAAGGAA	CCGGTCTGCA	GGGGCAACAA
1151	TACCTCAAAA	TCAGAATGAT	CGAACCAGTC	GGTTAGGTAG	GGCTCCTCCT
1201	ACTCCTACTC	CTCCTACTCC	TCCTCCTTCG	TCTTACACAC	CTGAGGAGAT
1251	GAGGCCTTTC	TCTTCGTTGG	CTACAGAAAT	TGATCTGACA	GAGGTTTATA
1301	TGACCGGAAT	CTCTATGCTG	CCGAATATAC	CGGTTTACGA	GAATTCGGGT
1351	TTTATGTACC	AGAATGATGA	ACCGACGATG	AATGCGATGC	CGGATGGTTC
1401	AGATGTGTAC	GATGGGATCA	TGGAACGCCT	GTATTTTAAG	TTTGGTGTCG
1451	ACATGTAG				

Sequenz des abgeleiteten Gens TOM3 (Capsella rubella)

1	ATGAGTGATT	TTGATGGAAA	CTTCAACGAA	TCGACGTCGT	GTTGGGCACC
51	ACCTTTCAGC	CCTAGCCCAA	GAGCGATATT	GGCGATGATT	GATCAAGCCG
101	AAGACGATGG	TCTGGATCTA	ATCTCTGAGA	TGTTCCCTCA	TACCAACTTA
151	CCAAGAGACC	ATAGTGCTCA	GTCCTCTGAA	CAAAGATCTG	GTCTCGGCCA
201	GAGATTAGCT	GCAAGAGTAG	GGTTCAGTCC	TCCACCACTC	GACACAGAAA
251	ACATAAGTCC	TTCGGCTGCA	TCTTTAAGGA	GCTCGACGAC	TGTTCCTCCT
301	CCTGTCTCTG	CAATCCCTCC	GGGATTTATC	CCATCAACGC	TATTGCAATC
351	TCCCAATATG	GTCACTGATT	CTTCACAG GT	ACGTAGCAAT	GTCTTTCGTG
401	TTTAATCATA	TGGTTATAAA	TGAATTTATT	ТАТСАААААТ	ATATAAGTTA
451	AACGAATCTG	TCATTGAACC	AAATATTTCG	ACGTATGTTA	TTTCAATTCT
501	TTTACGTGTA	GCATAGACTA	AAAAATGGTT	TTATATACAT	CTATTGGTAA
551	ACACGAAATC	TATTATTTCC	TTTTGTTTAC	GTTTTGAAAA	TTTCCATACC
601	CCATTTGCGT	TTACTCCAAC	TTACGAATGA	ATGTTTGGTT	CATGAATCTG
651	GTTGTCTCGG	ACAGATTTGT	TTTGTTATGA	TTGACTGTAT	TTTTTCTCGGA
701	TGGATTTTGA	TACCAGCTAT	ATATATATTT	AATTACATTT	CATATAATTC
751	ATTTTAATTT	TCGTTTATAT	ATATATATAT	ATATATATAT	ATATATATAT
801	ACATAATATA	CATAAAATTA	TTGTTAAAAC	CATCGAGATC	TTGGTCTCAT
851	TCTTAAGCCG	AAACTGTAAT	ATTCTTTGT	AACCTTCTTA	TTTCCAGATG
901	ATCCCAGCTC	CGTCTTCAGA	CACCAATTAC	GGACCTCAAG	GTATGGTGGA
951	AACTTCCGGC	GAAGGCAATG	CACCAACGTT	GATATTCAAC	AACGATCACC
1001	CTTATCAGCC	AGTGAATGCT	GATCTGCCTC	TTCTTGATGG	TAACGGAGTT
1051	GCTTGTGTCA	CAAGTTTGCT	TCCATTTCTC	TATAATTTCT	СТАТСТТТТА
	ATTTTATCAT	AATTTTTTCTT	ACAGAATGTG	AGGCAGTCTT	TGATGATGTT
1201		AGTCCGTTTA	ТСТСССААСТ		ATCATGTTGA
1201	GCCAATTGGG	GATTCCTTAG	AMCMCCAAMC		GAATICGIIG
1201	GAGAIGCCAA	GCGATGATGA	GTTGGACTTC	CACTTTCAAT	TCGAGCGIGAAG
1351	ACATCA ACCT	GAACCTGAAG	CTGAAGATAA	TCATCAACAT	AAACCTCAAC
1/01	AGAIGAAGCI	ACATAATCAT	CIGARGAIAA	ATGALGAAGAI	ARAGCIGARG
1451	GATGAGGAAG	ATGAAAATGA	TGAGGAAGAG	GCTGATCACG	ACGACGAAGC
1501	TGACTTTGAT	GATGCTGAAC	CTTCATCTCC	AAAGAGAAGG	тссадасада
1551	ACCTAACGAT	Сатааттатс		Стталасаа	Сатататата
1601	тстттатаа	ССТАААСТАТ		САССАВАСТТТ	GAGGCATCAT
1651	CAAACATGAT	CGGAGCAACG	AGAACAAACA	AGGCACAAAG	GGTCATACTT
1701	CAGATGGAAA	GCGATGAAGA	TAATCCTGAA	GATGGCTTTC	GCTGGAGAAA
1751	ATACGGACAG	AAAGTTGTCA	AAGGAAATCC	TAATCCGAGG	TTGTTATTTC
1801	CCCCCACCCA	CCCATCTTCT	TTATTTCTCT	CTACTAGTCA	CTTTGGTTTT
1851	GATGTTCTGT	CCGTAGCTGC	ТТТААТАТАТ	ATATATATGC	TTCTTAATTA
1901	ATACGTTTTT	TTGTGTGTGT	GGGTATATAT	GTTATGAATC	GCAG GAGTTA
1951	CTTCAAATGC	ACAAACAACG	ACTGCAACGT	GAAGAAACAT	GTGGAGAGAG
2001	GAGCAGACAA	TTTTAAGATA	CTTGTGACAT	CCTACGATGG	GATACACAAC
2051	CATCCTCCCC	CACCTGCACG	CTGTAGAATC	AATTCCGGTC	CAAGGAATCG
2101	GTCCGGTACA	ACAACAACGA	СТСААААТСА	GAGCTATCGA	ACCGACCGGT
2151					
2201	TAGGTAGGTT	TCCTGCTCCT	TCGTCTGTGA	TCACACCTAT	GGAGATGATG
	TAGGTAGGTT CCTTTATCTT	TCCTGCTCCT CCTTTACTCC	TCGTCTGTGA ACCACTTGAT	TCACACCTAT ATGTCTAAGG	GGAGATGATG TTTACATGAC
2251	TAGGTAGGTT CCTTTATCTT CGGACTTAAT	TCCTGCTCCT CCTTTACTCC AAGCTGCCGA	TCGTCTGTGA ACCACTTGAT ATTTTTCAGT	TCACACCTAT ATGTCTAAGG TTTCCAGAAT	GGAGATGATG TTTACATGAC CCCGGTTACA
2251 2301	TAGGTAGGTT CCTTTATCTT CGGACTTAAT TGTACCGGAA	TCCTGCTCCT CCTTTACTCC AAGCTGCCGA TGATGAACCG	TCGTCTGTGA ACCACTTGAT ATTTTTCAGT ATGATGAATG	TCACACCTAT ATGTCTAAGG TTTCCAGAAT TTGTACCGAA	GGAGATGATG TTTACATGAC CCCGGTTACA TGGTTCTGGG
2251 2301 2351	TAGGTAGGTT CCTTTATCTT CGGACTTAAT TGTACCGGAA ATTTACGGTG	TCCTGCTCCT CCTTTACTCC AAGCTGCCGA TGATGAACCG GGATCAGGCA	TCGTCTGTGA ACCACTTGAT ATTTTTCAGT ATGATGAATG TCGCCTATTT	TCACACCTAT ATGTCTAAGG TTTCCAGAAT TTGTACCGAA GCTGAGTTTG	GGAGATGATG TTTACATGAC CCCGGTTACA TGGTTCTGGG GTGTTAACTT
2251 2301 2351 2401	TAGGTAGGTT CCTTTATCTT CGGACTTAAT TGTACCGGAA ATTTACGGTG GATGTAA	TCCTGCTCCT CCTTTACTCC AAGCTGCCGA TGATGAACCG GGATCAGGCA	TCGTCTGTGA ACCACTTGAT ATTTTTCAGT ATGATGAATG TCGCCTATTT	TCACACCTAT ATGTCTAAGG TTTCCAGAAT TTGTACCGAA GCTGAGTTTG	GGAGATGATG TTTACATGAC CCCGGTTACA TGGTTCTGGG GTGTTAACTT

25030 - Sequenz der vorhergesagten cDNA des Gens TOM4 (Arabidopsis thaliana)

1	ATGAAGCAGA	GATGGCTGTT	AGTGTTGATA	CTCTGTTTCT	TTACGACTTC
51	TCTTGTGATG	GGCATTCATG	GAAAACACCT	AATCAACGAT	GACTTCAACG
101	AAACTGCTCT	GTTATTGGCG	TTCAAGCAAA	ACTCTGTAAA	ATCTGATCCT
151	AATAACGTTC	TTGGTAACTG	GAAATACGAG	TCGGGTCGTG	GTTCATGCTC
201	TTGGCGAGGG	GTTTCTTGCT	CTGACGATGG	TCGAATCGTC	GGATTAGATC
251	TCCGAAACAG	TGGACTCACC	GGAACCCTAA	ACCTAGTTAA	CCTCACGGCG

301	TTGCCTAATC	TCCAGAATCT	TTACTTGCAA	GGAAATTACT	TCTCCTCTGG
351	AGGAGATTCG	TCTGGTTCTG	ATTGTTATCT	TCAAGTTCTG	GATTTGTCTT
401	CGAATTCTAT	TTCAGACTAT	TCAATGGTGG	ATTACGTTTT	CTCAAAATGT
451	TCGAATCTGG	TTTCGGTGAA	TATCTCCAAC	AACAAGCTCG	TCGGAAAATT
501	AGGTTTTGCT	CCGTCGTCTT	TACAGAGCTT	GACGACTGTT	GATCTCTCTT
551	ACAACATCTT	ATCAGATAAG	ATTCCGGAGA	GTTTTATTTC	AGATTTTCCG
601	GCGTCGTTGA	AATATCTCGA	TCTAACTCAC	AACAACTTAT	CCGGCGACTT
651	CTCCGATCTC	AGTTTCGGTA	TCTGTGGGAA	TCTCACCTTC	TTCAGTCTAT
701	CACAGAACAA	TCTCTCCGGT	GATAAATTCC	СААТСАСТСТ	ACCAAACTGC
751	AAATTCCTCG	AGACATTAAA	CATCTCTCGG	AACAATCTCG	CCGGAAAAAT
801	CCCTAACGGA	GAGTATTGGG	GAAGTTTCCA	GAATCTGAAA	САССТСТСТС
851	тасстсатаа	CCGTCTCTCC	GCCGAAATCC	CACCEGACCT	TTCTCTACTC
0.01	TAGCICAIAA		GGCGAAAICC TCATCTATCC	CACCOGAGCI	TICICIACIC
901			IGAICIAICC	GGAAACACII	
951	GUITCUTTCA	CAGITCACCG		GTTACAGAAT	CITAACCICG
1001	GAAACAACTA	CCTCTCCGGA	GATTTCTTAA	ACACGGTCGT	GAGTAAAATC
1051	ACCGGAATCA	CTTATCTATA	CGTTGCTTAC	AACAACATCT	CAGGCTCTGT
1101	TCCGATTTCT	CTCACAAACT	GTTCAAATCT	TCGTGTTCTT	GATCTAAGCT
1151	CAAATGGTTT	CACCGGAAAT	GTACCGTCTG	GTTTCTGCTC	TCTGCAAAGC
1201	TCGCCGGTTC	TTGAAAAGAT	TCTCATAGCT	AACAATTACC	TCTCAGGAAC
1251	AGTTCCTATG	GAGCTTGGTA	AATGCAAGAG	CTTGAAGACA	ATTGATCTTA
1301	GCTTCAATGA	GCTTACTGGT	CCGATTCCGA	AAGAGATATG	GATGTTGCCG
1351	AATCTGTCGG	ATTTGGTTAT	GTGGGCGAAC	AATCTCACTG	GGACGATCCC
1401	GGAAGGTGTT	TGTGTTAAAG	GAGGAAATTT	GGAAACTCTT	ATCCTCAACA
1451	ACAATCTCTT	AACCGGTTCA	ATCCCTGAGT	CGATCTCGAG	ATGCACCAAT
1501	ATGATCTGGA	TCTCTCTTTC	TAGTAATCGT	CTCACCGGGA	AAATCCCGAG
1551	CGGGATTGGT	AATCTTTCCA	AGTTAGCAAT	CTTGCAGCTA	GGGAATAACT
1601	CTCTGTCCGG	GAACGTTCCT	CGCCAGCTTG	GGAACTGCAA	GAGTCTGATC
1651	TGGCTTGATC	TGAACAGCAA	CAATCTAACC	GGGGACCTCC	CGGGTGAGCT
1701	AGCTAGCCAA	GCCGGGTTAG	TAATGCCTGG	GAGCGTTTCA	GGTAAACAGT
1751	TTGCGTTTGT	GAGAAACGAA	GGTGGAACAG	ACTGCAGAGG	TGCAGGTGGG
1801	ттастасаст	TTGAAGGCAT	тсстсстсаа	CGATTAGAGC	GGCTACCAAT
1851	GGTTCATTCG	TGTCCCGCGA	CACGGATATA	CTCAGGCATG	ACAATGTACA
1901	CATTCTCAGC	AAATGGAAGC	АТСАТСТАТТ	TCGACATCTC	GTATAATGCT
1951	GTTTCAGGTT	ттатасстсс	тесттатест	AACATGGGCT	ATCTCCAGGT
2001	СТТСААТТТС	GCACATAACC	CCATAACCCC	AACCATCCCG	GACAGTTTTG
2001	CACCATTCAA	ACCGATTCCT	GTTCTCGATC	татстсасаа	Слатсттсаа
2101	CCCTACTTAC	CCCCCCTCCCT	GEGGTCGCTT	тстттсстса	СПАТСТІСАА
2101	TCTCTCT AC		CTCCTCCAAT	CCCAMMMCCA	CCTCACCTTA
2101			TACCCANACA	ACTICACCCCT	CTCTCCCTCTT
2201	CARCGIICCC		ACCECCECCA		CIGIGGIGII
2201	CCTTTGCGTC		AGCICCICGA	CGGCCCATTA	CCICCGIAI
2301		CTCCTTTC	AMCCMACCGC	TGTGATCGCT	GGAATIGCGT
2351	TITCTTTCAT	GTGCTTTGTG	ATGCTAGTCA	TGGCGCTTTA	
2401	AAAGTTCAGA	AGAAGGAACA	GAAGAGGGAG	AAATACATTG	AGAGCCTTCC
2451	AACTTCCGGA	AGCTGCAGCT	GGAAGCTCTC	TAGCGTTCCT	GAACCGCTTA
2501	GCATCAACGT	TGCTACATTC	GAGAAACCGC	TGAGAAAACT	CACTTTCGCT
2551	CATCTTCTTG	AAGCTACAAA	CGGGTTTAGC	GCAGAGACTA	TGGTCGGGTC
2601	TGGTGGGTTT	GGAGAAGTAT	ACAAGGCCCA	ACTCAGAGAC	GGATCTGTTG
2651	TAGCGATCAA	GAAGTTGATT	CGAATCACGG	GACAAGGCGA	CAGAGAGTTC
2701	ATGGCTGAGA	TGGAAACAAT	CGGAAAAATC	AAACACAGAA	ACCTTGTTCC
2751	ACTTTTGGGA	TATTGCAAGG	TTGGTGAAGA	GAGGCTTCTT	GTCTACGAAT
2801	ACATGAAATG	GGGAAGCTTA	GAAACCGTTC	TTCACGAGAA	ATCATCGAAG
2851	AAAGGCGGAA	TATATCTGAA	TTGGGCCGCA	AGGAAGAAGA	TCGCGATTGG
2901	AGCTGCAAGA	GGGCTAGCGT	TTTTGCACCA	TAGCTGCATT	CCTCACATTA
2951	TCCACAGAGA	CATGAAATCA	AGCAATGTTC	TTCTGGACGA	AGATTTCGAA
3001	GCACGTGTTT	CGGATTTCGG	AATGGCGAGG	CTGGTCAGCG	CTCTAGACAC
3051	GCATCTGAGC	GTGAGCACGC	TCGCGGGTAC	ACCAGGTTAC	GTTCCACCGG
3101	AATATTACCA	GAGTTTCCGG	TGTACAGCTA	AAGGGGATGT	TTACAGCTAC
3151	GGAGTTATAC	TTCTTGAGCT	TCTGTCTGGT	AAGAAACCAA	TTGATCCAGG
3201	GGAGTTTGGA	GAAGATAATA	ACCTTGTAGG	GTGGGCGAAA	CAGCTATACA
3251	GAGAGAAAAG	AGGAGCTGAG	ATTCTTGATC	CGGAGCTTGT	AACCGATAAA
3301	TCAGGCGATG	TTGAGCTGTT	TCATTATTTG	AAGATCGCGT	CTCAATGCTT
3351	GGATGATCGA	CCGTTTAAGC	GGCCGACAAT	GATTCAACTG	ATGGCAATGT
3401	TCAAAGAGAT	GAAGGCTGAT	ACAGAGGAAG	ACGAAAGTCT	CGATGAGTTT

3451 TCGCTCAAGG AAACTCCGTT GGTCGAAGAA TCGCGAGATA AGGAGCCTTA 3501 A

Sequenz des abgeleiteten Gens TOM4 (Capsella rubella)

1	ATGAAGCAAA	AATGGCTGTT	TGTGTTGATC	CTCTGTTTCT	TTACGGCGTT
51	GGGCATTCAT	GGAAAAAGAC	TAATCAACTC	CGACTTCGAC	GAAACTGCTC
101	TTCTAATGGC	TTTCAAGCAA	TTCTCTGTGA	AATCTGATCC	CAATAACGTT
151	CTTGGTAACT	GGATATACGA	GTCGGGTCGT	GGTTCATGTT	CTTGGCGAGG
201	CGTTTCCTGC	TCTGACGACG	GTCGAATCGT	CGGACTAGAT	CTCCGAAACG
251	GTGGAGTCAC	CGGAACACTA	AACCTAGCTA	ACCTCACGGC	GTTGCCTAAT
301	CTCCAGAATC	TTTACCTACA	AGGAAACTAT	TTCTCCTCTT	CCTCTGGAGG
351	AGATTCGTCG	TCTGGTTCTT	ATTGTTATCT	TCAAGTTCTG	GATTTGTCTT
401	CGAACTTGAT	CTCAGACTAC	TCATTGGTGG	ATTACGTTTT	CTCAAAATGT
451	TCGAATCTGG	TTTCTGTGAA	TTTCTCAAAC	AACAAGCTCG	TCGGGAAATT
501	AGGTTTTGCT	CCGTCGTCGT	TGAAGAGCTT	GACGACTGTT	GATTTCTCTT
551	ACAATATCTT	ATCGGAGAAG	ATCCCGGAGA	GTTTTATCTC	AGAGTTCCCG
601	GCGTCGTTGA	AGTATCTTGA	TCTCACTCAT	AACAATTTCT	CCGGCGATTT
651	CTCCGATTTA	AGTTTCGGGA	TGTGTGGGAA	TCTCAGCTTC	TTCAGTCTAT
701	CACAGAACAA	TATCTCCGGC	GTTAAATTCC	CGATTTCTCT	ACCGAACTGC
751	AGATTCCTCG	AGACGTTGAA	CATCTCTCGG	AACAATCTCG	CCGGAAAAAT
801	CCCCGGCGGA	GAATATTGGG	GAAGTTTCCA	GAATCTAAAA	CAGCTATCTC
851	TAGCTCACAA	CCGTTTCTCC	GGCGAAATCC	CACCGGAGCT	TTCTCTACTC
901	TGCAAAACAT	TAGAGACTCT	TGATCTCTCT	GGAAACGCTC	TCTCCGGCGA
951	GCTCCCTTCA	CAGTTCACCG	CCTGCGTCTG	GTTACAGAAC	CTTAATATCG
1001	GAAACAACTA	CCTCTCCGGC	GATTTCTTAA	GCACCGTCGT	GAGTAAAATC
1051	ACCAGAATCA	CTTATCTATA	CGTTGCTTTC	AACAACATCT	CAGGCTCTGT
1101	TCCGATTTCA	CTCACCAACT	GTACAAACCT	TCGTGTTCTT	GATTTAAGCT
1151	CAAATGGTTT	CACCGGAAAT	GTACCGTCTG	GTTTATGCTC	TCAGCAAAGC
1201	TCGCCGGTTC	TTGAAAAGCT	TCTCATAGCC	AACAATTACC	TCTCAGGAAC
1251	AGTTCCTGTG	GAGCTTGGTA	AATGTAAGAG	CTTGAAGACA	ATTGATCTCA
1301	GCTTCAATGA	GCTTACTGGT	CCGATTCCAA	AAGATGTATG	GATGTTGCCG
1351	AATCTGTCGG	ATCTGGTTAT	GTGGGCGAAC	AATCTCACTG	GAAGTATCCC
1401	AGAAGGTGTT	TGTGTTAAAG	GAGGGAAATT	GGAAACTATC	ATCCTCAACA
1451	ACAATCTCTT	AACCGGTTCT	ATCCCTCAGT	CGATCTCAAG	ATGCACCAAC
1501	ATGATCTGGA	TCTCTCTTTC	AAGTAACCGT	CTGACCGGGA	AAATCCCTAC
1551	TGGAATCGGT	AATCTTTCCA	AGTTAGCAAT	CCTGCAGCTG	GGGAACAATT
1601	CTTTGTCCGG	AAACGTTCCA	CGCCAGCTCG	GGAACTGCAA	GAGCTTGATT
1651	TGGCTCGATC	TGAACAGCAA	CAATCTAACC	GGGGACCTCC	CTGGTGAGCT
1701	AGCTAGCCAA	GCGGGGGTTAG	TAATGCCCGG	GAGTGTTTCA	GGTAAACAGT
1751	TTGCGTTTGT	GAGGAACGAA	GGCGGAACAG	ACTGCAGAGG	TGCAGGGGGA
1801	CTAGTAGAAT	TTGAAGGCAT	TCGCGCAGAA	CGATTAGAGC	GGTTTCCAAT
1851	GGTTCATTCG	TGTCCTGCGA	CACGGATATA	CTCAGGCATG	ACAATGTACA
1901	CATTCTCTGC	AAATGGAAGC	ATGATCTACT	TCGACATCTC	GTACAATGCG
1951	GTTTCGGGTT	TAATACCTCC	TGGTTATGGT	AACATGGGCT	ATCTCCAGGT
2001	CTTGAATCTG	GGACATAATC	GGATAACTGG	AAACATCCCT	GACAGTCTTG
2051	GAGGACTGAA	AGCCATTGGT	GTTCTCGATC	TATCTCACAA	CGATCTTCAA
2101	GGCTACTTAC	CCGGATCGCT	GGGATCGCTT	TCTTTCCTCA	GTGATCTCGA
2151	TGTCTCTAAC	AACAACCTCA	CTGGTCCAAT	CCCATTTGGA	GGTCAGCTTA
2201	CAACATTCCC	TGTCTCAAGA	TACGCAAACA	ACTCTGGCCT	ATGTGGTGTC
2251	CCTTTGCGCC	CGTGCGGTTC	AGCTCCTAGG	CGGCCCATTA	CCTCCAGTGT
2301	CCATGCCAAG	AAGCAAACTC	TTGCAACCGC	TGTGATTGCT	GGAATCGCAT
2351	TTTCTTTCAT	GTGCCTTGTG	ATGCTATTTA	TGGCGCTTTA	CAGGGTGAGG
2401	AAAGTTCAGA	AGAAGGAACT	GAAGAGGGAG	AAATACATTG	AGAGCCTTCC
2451	AACTTCGGGA	AGTTGCAGCT	GGAAGCTCTC	TAGCGTTCCT	GAACCGCTTA
2501	GCATCAATGT	TGCTACGTTC	GAAAAACCCT	TGAGAAAACT	CACGTTCGCG
2551	CATCTTCTTG	AAGCTACAAA	CGGGTTTAGC	GCAGAGACTA	TGGTCGGATC
2601	TGGTGGGTTT	GGAGAAGTCT	ACAAGGCTCA	ACTCAGAGAC	GGATCTGTTG
2651	TAGCAATCAA	GAAGTTGATT	CGGATCACAG	GACAAGGCGA	TAGAGAGTTC
2701	ATGGCTGAGA	TGGAAACAAT	TGGAAAAATC	AAGCACAGAA	ACCTTGTTCC
2751	GCTTTTGGGA	TATTGCAAAG	TTGGTGAAGA	GAGGCTTCTT	GTTTATGAAT
2801	ACATGAAATG	GGGAAGCTTA	GAAACCGTTC	TTCACGAGAA	ATCATCGAAG
2851	AAAGGTGGAA	TATTTCTAAA	CTGGACAGCA	AGGAAGAAGA	TTGCGATTGG

2901	AGCTGCAAGA	GGGCTAGCGT	TTCTGCACCA	TAGCTGCATT	CCTCACATAA
2951	TCCACAGAGA	CATGAAATCG	AGCAATGTTC	TTCTAGATGA	AGATTTTGAA
3001	GCACGTGTCT	CGGATTTTGG	AATGGCGAGG	CTGGTCAGCG	CTCTAGACAC
3051	GCATCTGAGC	GTGAGCACGC	TCGCGGGTAC	ACCAGGATAC	GTTCCACCAG
3101	AATATTACCA	GAGTTTCCGG	TGTACAGCTA	AAGGGGATGT	TTACAGCTAC
3151	GGAGTTATAC	TTCTTGAGCT	TCTCTCTGGT	AAGAAACCCA	TTGATCCAGG
3201	GGAGTTTGGA	GAAGACAATA	ACCTGGTCGG	GTGGGCAAAA	CAGCTATATA
3251	GAGAGAAAAG	TGGAACTGAG	ATTCTTGACC	CGGAGCTTGT	AACCGAAAAA
3301	TCAGGTGATG	CTGAGCTATT	TCATTACTTG	AAGATTGCGT	CTCAATGCTT
3351	GGATGATCGA	CCGTTTAAGC	GGCCAACAAT	GATTCAAGTG	ATGGCAATGT
3401	TCAAAGAGCT	TAAGGCTGAC	ACAGAAGAAG	ACGAAAGTCT	CGATGAGTTT
3451	TCGCTCAAGG	AAACTCCGTT	GGTAGAAGAG	TCCCGAGATA	AGGAGCCTTA
3501	A				

Sequenz des Arabidopsis thaliana cDNA-Klons 22916

1	CCCGGGGAGA	CTTAAATTGA	TGCAGTAGTG	AAATATCACG	GCGAAGGGAT
51	GGTTTGTTGG	TAAAAGAGCC	AATTGAAATC	AGTT ATGTCA	TCGGGAGGAG
101	CCGGAGAGTA	TAACGAAGAC	AGACATCTGT	TACGATCCAC	CGACGGAGAT
151	GAAGTCGGCA	TTGGCGGAGG	AGAGGGTGAT	CTAGATGTTG	AATCTCAGTC
201	TCCGGCTATC	AGAAGTGGAG	CTGGAGGAGT	TAGGGATCTG	TTCAAGCATA
251	TAGATCGGAG	ATTTTCTCTT	TCCGGTCGTC	GTTTAAGTTT	TAAACGGATG
301	GAGAATATCA	GAGTCGATAG	AGAGCGCCAT	AATCCTTCTT	CTTCTTCAGC
351	GTTTTCGGCT	GCTGGAGAAG	AAGATGGTGG	TGGTATCAGT	AATTTACATA
401	GCGTTGATGA	TCGAAATGAC	GAGTACGGGT	TTGATGAAGA	AGTTCTCGGA
451	GATAGTGCTC	CACCTGAGTG	GGCTCTGCTT	CTCATTGGCT	GTCTTATTGG
501	TGTTGCCGCT	GGAATTTGTG	TCGCCGGCTT	CAATAAAGGG	GTTCATGTCA
551	TTCATGAGTG	GGCATGGGCT	GGTACTCCCA	ACGAAGGTGC	TGCATGGCTT
601	CGTCTACAGA	GACTAGCTGA	TACTTGGCAT	CGGATTCTTC	TAATTCCGGT
651	CACTGGAGGT	GTTATAGTAG	GAATGATGCA	CGGTTTGCTT	GAGATCTTAG
701	ACCAAATAAG	GCAATCTAAT	TCTTCTCAAA	GACAAGGACT	AGATTTTCTT
751	GCTGGTATTT	ATCCAGTGAT	AAAGGCCATC	CAAGCTGCTG	TGACCCTTGG
801	TACAGGATGT	TCACTGGGTC	CTGAGGGACC	TAGCGTTGAC	ATTGGAAAAT
851	CATGTGCCAA	CGGTTTTGCA	CTCATGATGG	AAAACAACAG	AGAAAGAAGA
901	ATAGCTCTCA	CCGCAGCTGG	TGCGGCTTCT	GGGATTGCAT	CTGGTTTCAA
951	TGCAGCAGTG	GCGGGTTGTT	TCTTTGCTAT	TGAAACTGTT	TTAAGACCTT
1001	TACGTGCCGA	GAACTCGCCT	CCATTTACCA	CTGCAATGAT	AATATTGGCC
1051	TCTGTTATAT	CATCGACTGT	GTCAAATGCT	CTGCTTGGGA	CTCAATCAGC
1101	TTTCACAGTT	CCCTCATACG	ACCTGAAGTC	TGCTGCAGAG	CTCCCTCTGT
1151	ACCTGATACT	AGGCATGCTT	TGCGGTGCTG	TCAGTGTTGT	TTTTTTCTCGG
1201	CTCGTCACGT	GGTTTACCAA	GTCATTCGAT	TTCATCAAAG	ACAAATTTGG
1251	TCTTCCTGCT	ATCGTGTGCC	CTGCACTAGG	TGGTTTAGGA	GCTGGAATTA
1301	TTGCTCTCAA	GTACCCTGGA	ATTTTGTATT	GGGGGGTTTAC	AAATGTTGAG
1351	GAAATCCTGC	ATACTGGAAA	AAGTGCTTCA	GCTCCTGGAA	TCTGGTTATT
1401	AGCTCAGTTA	GCCGCTGCAA	AAGTTGTGGC	TACAGCTCTT	TGCAAAGGCT
1451	CTGGGCTTGT	AGGTGGTCTA	TATGCACCAA	GTTTGATGAT	TGGTGCTGCT
1501	GTTGGTGCTG	TATTTGGGGGG	TTCGGCTGCT	GAGATTATTA	ACAGAGCTAT
1551	TCCTGGTAAT	GCTGCTGTTG	CTCAACCACA	AGCTTATGCT	CTGGTTGGAA
1601	TGGCAGCGAC	ACTAGCTTCA	ATGTGCTCTG	TTCCCTTAAC	ATCAGTATTA
1651	CTGCTGTTCG	AGCTAACGAA	AGATTATAGA	ATTTTGCTTC	CCCTCATGGG
1701	AGCAGTTGGT	TTAGCAATAT	GGGTTCCCTC	TGTGGCAAAC	CAAGGCAAAG
1751	AGAGTGATTC	ATCTGAAGGT	CGTAGCACAG	GAAGAGGATA	CTCTTCTCTT
1801	TCACCTTCCG	AACGTAAAAC	CGAAGGAGTC	TGGAGACATA	CGGATAATGC
1851	TGACTCCCTT	GAGCTTACCG	TCATAGAGAA	CCCTGACCAT	AATTCCTTTT
1901	TGGATGAAGA	GACTATTCTG	GAAGACTTAA	AAGTTATGCG	GGTTATGTCA
1951	AAGAACTATG	TGAAAGTTTC	TTCAGGAACA	ACTCTAAGAG	AAGCAAGAAA
2001	CATCCTTAAA	GAGAGCCACC	AAAACTGCAT	TATGGTGGTC	GATGACGATG
2051	ATTTTCTAGC	TGGAATCCTA	ACACACGGTG	ACATAAGAAG	ATACTTGTCC
2101	AATAACGCCT	CTACAATCTT	AGATGAGAAT	ACATGTCCGG	TTTCTTCTGT
2151	ATGTACTAAG	AAAATAAGCT	ATCGAGGCCA	AGAACGCGGT	TTACTTACTT

2201GTTATCCAGACGCCACAGTTGGTGTAGCCAAGGAGTTGATGGAGGCTAGA2251GGTGTAAAGCAATTACCTGTTGTAAAACGAGGTGAAGTAATTCACAAAGG2301GAAACGAAGGAAACTGCTTGGCCTCCTTCATTACGATTCCATTTGGACTT2351TTCTCAGAGATGGAAATGAGTCGTAGGAGATCGGAGAAAA2401GACAAAGAGGTTGGTACAAATGGGCATTGATTGGGTTTGT2451GTATAGCTTTTTTTTTATATTTTTCTTCTTTTAAATTTTT2501TGATTAGAACGAGGCAAACAAGATCGTAAAAAT

Sequenz des abgeleiteten Gens 22916 (Capsella rubella)

1	ATGTCATCGG	GAGGAGCCGG	AGAGTATAAC	GAAGACAGGC	ATCTGTTGCG
51	ATCCACCGGC	GATGAAGACA	GCATTGGTAG	AGAGGATGGT	GATATCGATG
101	TTGAATCTCA	GTCTCCGGCT	GTCAGAAGTG	GAGCGGGAGG	AGTTAGGGAT
151	CTGTTTAAGC	ATCTGGATCG	GAGATTTTCA	CTCTCCGGGC	GTCGTTTAAG
201	CTTCAAACGG	ATGGAGAATA	ACAGAGTCGA	TAGAGAGCGC	CACAACCCGT
251	CTTCTTCTTC	CTCCGCGTTT	TCGGCTGCAG	AAGAAGATGG	CGGTGGTATC
301	AGTAATTTAC	ATAACGTGGA	TGATCGAATT	GACGAGTACG	GATTTGATGA
351	AGAAGTGCTC	GGAGATAGTG	CTCCACCTGA	GTGGGCTTTG	CTTCTCATCG
401	GCTGTCTTAT	CGGTGTTGCC	GCTGGAATTT	GTGTCGCTGG	CTTCAACAAA
451	GGG GTACGGT	CATAGATCAG	ATCTCGATCT	ATGTTGATTC	GATTGAACAC
501	CTTGATCCTG	CTAGCTTTAA	TTTACGTTAT	ACTATTTTGA	CTGCTGATTC
551	ATTAGAGTAG	TGCTATTGTC	TAGGTTCATG	TTATTCATGA	GTGGGCATGG
601	GCTGGTACTC	CCAACGAAGG	TGCTGCATGG	CTCCGTCTAC	AGAGACTAGC
651	TGACACTTGG	CACCGGATTC	TTCTAATTCC	GGTCACTGGG	GGTGTTATAG
701	TTGGGATGAT	GCACGGTTTG	CTCGAGATCT	TAGACCAAAT	CAGGCAATCC
751	ACTTCTTCTC	AGCGACAAGG	ACTAGATTTT	CTTGCTGGTA	TTTATCCCGT
801	GATAAAGGCC	ATCCAAGCTG	CTGTGACCCT	TGGTACAGGA	TGTTCACTGG
851	GTCCTGAGGG	ACCTAGCGTC	GACATTGGAA	AGTCTTGTGC	CAATGGTTTT
901	GCTCTCATGA	TGGAAAACAA		AGAATAGCTC	
951	TGGTGCGGCT	TCTGGGGATTG	CMCATCTGGTAT	AATCTACGCC	
1001	TAAAACAGCT	TATGCACCTT	CTGAATTGAT	ATTGATGTAA	CERTIFIC
1101					GTATATTAGC
1101	ACTAGTTAAC	ATTAGCTTTA	ACCTGGTGAA		AAATGTCTAT
1201				GCAATCTTTA ACCUAUCUAU	
1201	ACAAATCTCC	CAUTTATUTG	TACCUTATAAT	TAGGIAIGIAI	ACATCT
1201					AACAICIIGC
1351	TGGGAGIAAI			AIGGCIAIII	AAAGIAIGAI
1/01			AGCTARAGAT		TCTTTCTCCT
1451				GTGTTACAG	TTTCAATGCA
1501	GCAGTGGCAG	GTTGTTCTT	TGCTATTGAG	ACCGTTTTAA	GACCTCTACG
1551	TGCCGAGAAC	TCGCCTCCAT	TTACCACTGC	ААТGАТААТА	TTGGCCTCTG
1601	ттататсттс	GACTGTGTCA	AATGCACTGC	TTGGAACTCA	ATCAGCTTTC
1651	ACAGTTCCCT	CATACGACCT	GAAGTCCGCT	GCAGGTATGT	ТТТТТСАТТС
1701	ттаатссата	TTGCAAACCT	TCCAGTTAGT	ATTATGGTAT	TATTTTGTG
1751	TAAGATTCTG	ATTTAGTGTC	CTGATGATTA	TGGTATAATG	TGATATATCA
1801	TAAAGAATCG	TGGTAATTAT	AAAATAATGA	AGGTCAATAT	TTATTTGCTT
1851	CATCGAGTAT	TTGTGTATAG	ATTTACATAT	CTGTTTTCAA	TTGTCTCCAG
1901	AGCTCCCTCT	GTACCTGATA	TTAGGCATGC	TTTGCGGTGC	TGTCAGCGTT
1951	GTTTTTTCTC	GTCTCGTCAC	CTGGTTTACC	AAGTCATTCG	ACTTCATCAA
2001	AGAAAAATTT	GGTCTTCCTG	CTATTGTGTG	CCCTGCACTA	GGTGGTTTAG
2051	GAGCTGGAAT	TATTGCTCTC	AAGTACCCTG	GAATTTTGTA	TTGGGGGGTTT
2101	ACAAATGTTG	AGGAAATCCT	GCATACTGGA	AAGAGTGCTT	CAGCTCCTGG
2151	AATTTGGTTA	TTAGCTCAGT	TAGCCGCAGC	CAAAGTTGTG	GCTACAGCTC
2201	TTTGCAAAGG	CTCTGGGCTT	GTAGGTGGTC	TATATGCACC	AAGTTTGATG
2251	ATTGGTGCTG	CTGTTGGTGC	TGTGTTTGGG	GGTTCGGCTG	CTGAGATTAT
2301	TAACAGAGCT	ATTCCTGGTA	ATGCTGCTGT	TGCTCAACCA	CAAGCTTACG
2351	CTCTG GTATT	GTATTTCCTT	TGTCGCAGGC	CTTGCTTCAG	TGCAGTTTTT
2401	ТААААТАААТ	TTTGTTACTC	TTCAATTTGG	ATGTCATGAA	ATCTCAGTTG
2451	TTAAGATGCT	GTCGTTTTAT	GTGATGCAGG	TTGGAATGGC	AGCTACACTA
2501	GCTTCCATGT	GTTCTGTTCC	GTTAACATCA	GTGTTACTGC	TGTTCGAGCT
2551	AACAAAAGAT	TATAGAATTT	TGCTTCCCCT	CATG GTAAAT	ATTATCTTTC
2601	CCGCTTAGTT	TCAATGGTGC	ATGTCGTGTA	AATTTGCTTA	AGAAGGGCGG

2651	GATTCATAAA	GATAGTTCTG	ATTTTTCTCG	TTTAACTAAT	CAAGCAGTAA
2701	AACCGTGGCA	AAACTATGAA	ATGTACCACT	TAAGATGTCG	CTGTAACAGG
2751	ATGTTATTAA	CTAGAGGTCC	AGAGCTTGTT	TGTATGTAGA	CAAGAATATT
2801	CTTTTTTCAC	TTAACATGCT	GCATTCTGGT	TCATATTTTG	ATCAAGTTGT
2851	TCTTGATCTG	ATCTCTCTGT	CGATTTCTAC	TAACAG GGAG	CAGTTGGTTT
2901	AGCTATATGG	GTTCCCTCTG	TCGCAAACCA	AGGCAAAGAG	AGTGAGTCAT
2951	CTGAAGGTCG	CAACACTGGA	AGAGGATACT	CTTCTGTTTC	ACCTTTAGAG
3001	CGTAAAACGG	AAGGTGTATG	GAGACACACG	GATAATGTTG	ACTCCCTTGA
3051	GCTCACCGTC	ATAGAGAGCC	CTGACCATAA	ATCCTTTTTG	GATGAGGAAA
3101	CTATTCTGGA	GGATTTAAAG	GTTTTGCGGG	TTATGTCAAA	GAACTACGTG
3151	AAGGTTTCTC	CAGGAATGAC	TTTAAGGGAA	GCAAGAAATA	TCCTTAAAGA
3201	CAGCCACCAA	AACTGCCTTA	TGGTGGTCGA	TGAAGATGAT	TTTCTAGCCG
3251	GGATCCTAAC	ACACGGCGAC	ATCAGAAGAT	ACTTGTCCAA	CAACGTCTCA
3301	ACAATCTTAG	AT GTAAGAAG	TGAAACAAAA	CAAACCCCCT	CAGTCTCGTA
3351	CTACTCATAA	CTCTGCTCTT	TAAATTACAG	TGGACTTGAA	AATAAGTCTA
3401	TGTCTCTTGG	CAG GAGAATA	CATGCCAGGT	TTCTTCAGTG	TGTACTAAGA
3451	АТАТААТСТА	CCGAGGCCAA	GAACGCGGTC	TGCTAACTTG	TTATCCAGAC
3501	GCGACGGTTG	GAGTAGCCAA	AGAGTTGATG	GAGGCAAGAG	GAGTGAAGCA
3551	ATTACCTGTC	GTAAAACGAG	GTGAAGTAAT	TCACAAAGGG	AAAAGAAGGA
3601	AACTGCTTGG	CCTTCTTCAC	TATGACTCTA	TTTGGACTTT	TCTCAG GTAA
3651	CAGAAAAAAG	АААААААТ	CTGTTTTTAC	TCAAAGTTAA	CCAAAGCCAA
3701	AGTTGTTAAC	CTTTGGTTGG	TTGTTTTTTC	ACGCAG AGAT	GAAATGAGTC
3751	GGAGGAGATC	GATCAACGAC	CGGAGAAAAG	ACAAAGAGGT	TGGTGCAAAT
3801	GGGCATTGA				

25028 - Sequenz der vorhergesagten cDNA des Gens TOM6 (Arabidopsis thaliana)

1	ATGGGCCAGT	TTTATTTTAG	GGCCCATAAA	AGTCGGGTCG	GATCCTCTTC
51	AAAATGTGGA	TTCGGTTCAG	CGATTCTCTT	CTCGGTAGTT	CTCAAAAGCA
101	GAGAGCAGCG	GCAGAGACGT	CTGAGTAGAA	CCTGGGATCC	AGGTTCAGTT
151	ATTTTACCAT	TATACCCCTT	GAACTCGTCT	TCTTCGTCAA	GCACTAGTGT
201	TGCGGTTCGT	AAAGCTTCTC	GCTTTCTCTT	CACATCGAGG	AAATTTTGCA
251	ATGGTAGCAT	CGGTGGTGAT	GTAACCGATA	ACGGGACCGA	AGAGCCCTTG
301	AAGATAACTT	GGGAATCTTC	GGAGATGGAT	TGTGAGTTTG	ACCAGGAGGA
351	AAATGGTGAG	AAAATCTCTG	TTAGAAAAAG	GTTTATGGAG	AGTACTAAAC
401	TCAGTGCGTC	TCGGGTTCTC	GATACGTTAC	AGCAAGATTG	TCCCGGTTTC
451	AATACGAAAT	CAGCTTTAGA	TGAATTGAAT	GTTTCAATCT	CAGGGCTATT
501	AGTGAGAGAG	GTTCTTGTTG	GGATCTTAAG	AACTCTGAGC	TTTGATAATA
551	AAACAAGGTG	TGCTAAGCTC	GCTTACAAGT	TCTTTGTGTG	GTGTGGTGGA
601	CAAGAGAATT	TCAGGCACAC	TGCGAATTGT	TATCATTTAC	TTATGAAGAT
651	ATTTGCTGAA	TGTGGTGAGT	ATAAAGCCAT	GTGCAGGCTA	ATTGATGAGA
701	TGATCAAAGA	CGGTTATCCA	ACAACAGCAT	GCACGTTTAA	TCTATTGATA
751	TGTACTTGCG	GGGAAGCAGG	CCTTGCTAGA	GATGTTGTTG	AGCAGTTCAT
801	CAAGTCGAAA	ACTTTCAATT	ACCGACCTTA	TAAACACTCT	TACAATGCCA
851	TTTTGCATTC	TTTGCTAGGG	GTGAAACAGT	ACAAGCTGAT	TGATTGGGTT
901	TACGAGCAGA	TGTTAGAAGA	CGGGTTTACG	CCAGATGTTC	TGACTTACAA
951	CATTGTAATG	TTTGCAAACT	TTAGGTTAGG	GAAAACAGAT	CGGCTTTATA
1001	GATTGCTAGA	TGAAATGGTT	AAAGACGGGT	TTTCTCCTGA	TTTGTATACA
1051	TACAACATCC	TCCTCCATCA	TCTAGCAACA	GGAAACAAGC	CTCTCGCTGC
1101	TCTTAACCTT	CTGAATCATA	TGAGGGAAGT	AGGAGTTGAG	CCCGGTGTCA
1151	TCCATTTCAC	TACTCTGATA	GACGGGCTGA	GCCGAGCTGG	GAAGTTAGAA
1201	GCTTGCAAAT	ACTTTATGGA	CGAAACGGTG	AAAGTTGGAT	GCACGCCAGA
1251	TGTTGTTTGC	TACACTGTTA	TGATCACAGG	ATATATATCA	GGTGGGGAGC
1301	TCGAGAAAGC	CGAAGAAATG	TTCAAAGAAA	TGACAGAAAA	GGGGCAACTC
1351	CCGAATGTTT	TCACATACAA	TTCGATGATC	CGCGGGTTTT	GTATGGCGGG
1401	GAAATTCAAA	GAGGCGTGCG	CGTTGCTCAA	GGAAATGGAG	TCAAGAGGGT
1451	GTAACCCTAA	TTTTGTAGTG	TATAGTACAC	TGGTGAACAA	тстаааааас
1501	GCGGGGAAGG	TTTTAGAGGC	TCATGAAGTA	GTGAAGGACA	TGGTAGAGAA
1551	AGGGCATTAT	GTTCATCTTA	TTTCAAAGTT	GAAAAAATAT	AGAAGATCTT
1601	AG				

Sequenz des abgeleiteten Genfragments TOM6 (Capsella rubella)

1	ATCCATTTCA	CTACTCTCGT	AGACGGGCTT	AGCCGAGCTG	GGAAGTTAGA
51	AGCTTGCCAA	TACTTTATGG	ACGAAATGGT	GAAAGTTGGA	TGCACGCCGG
101	ATGTTGTTTG	CTACACTGTT	ATGATTACAG	GATATATTTC	AGGCGGGGAG
151	CTCGAGAAAG	CTGAGGAGAT	GTTCAAAGAG	ATGACGGAAA	AGGGACAGCT
201	CCCAAATGTT	TTCACATACA	ATTCCCTGAT	CCGGGGGGTTT	TGTATGGCGG
251	GAAAGTTCAA	AGAGGCGTGC	TCGTTGCTCA	AGGAAATGGA	GTCAAGAGGG
301	TGTAACCCTA	ATTTTGTGGT	GTATAGTACA	CTGGTGAACA	ATCTTAGAAA
351	TGCCGGGAAG	CTTTTAGAGG	CTCACGAGGT	AGTTAAGGAC	ATGGTGGAGA
401	AAGGGCATTA	TGCTCATTTA	CTTTCAAAGC	TGAAAAAATA	TAGAAGATCC
451	TAG				

IV Sequenzierte Subklone und PCR-Produkte

Cosmid 34 (Contig0)

34E01, 2, 7, 13 34S01, 1P, 2, 3, 3P, 8, 8P 34H2P, 3, 4P, 5, 7P, 8, 8P, 20

<u>PCR-Produkte:</u> 34-143-145-PCR (526-2162 Contig0) C34-179-PCR (179-291: 2970-3747 Contig0) P3-160 (160-216: 10404-11833 Contig0) C34-197-160-PCR (160-197: 10404-15962 Contig0) C34-197f-PCR (197-for: 15263-15962 Contig0)

Cosmid 12 (Contig0)

12E01, 3P 12EX3, 10, 17 12S01, 2, 3, 4, 7, 8, 15

<u>PCR-Produkte:</u> 12XhoI-for-uni-PCR (15191-16377 Contig0) C12-205-206-PCR (205-206: 24470-29122 Contig0)

Cosmid 7-II (ContigI)

7H01, 2, 3, 5, 12, 22 7S10, 11, 27, 39 7RV12

<u>PCR-Produkte:</u> C7-283-285 (3797- 5930 ContigI) 7292-PCR (292-293: 10660-11993 ContigI)

Cosmid 44 (ContigI)

44E01, 2, 4, 6 44H01, 2, 4, 6, 7, 10 44ES3

<u>PCR-Produkte:</u> 44HIII.rev (ca. 11889-14889 ContigI) 44JK (20812-21158 ContigI) 44C-172 (172-229: 20941-21532 ContigI) C44E-229 (172-229: 20941-21532 ContigI)

Cosmid 3-I (ContigI)

3E01, 2, 4, 6, 7 3H01, 2, 3, 3del, 4, 4.1, 4.3, 4.5, 4.6, 5 3X02, 4, 5, 6, 7

PCR-Produkte:

P1-229 (172-229: 20941-21532 ContigI) 3I-30-34 (30-34: 22936-23706 ContigI) 10-174 (33-174: 23687-23891 ContigI) 3I-30-31 (30-31:26755-27203 ContigI) 3I-32-35 (27861-32131 ContigI) 3I-28-29 (37591-37891 ContigI)

Cosmid 98 (ContigI)

98H01, 2, 3, 3P, 5, 7, 8, 10, 17, 20 98EX4, 5, 12 98HX01, 13, 15, 18, 25, 28

<u>PCR-Produkte:</u> 11-181 (181-182: 48241-50218 ContigI) P2-182-245 (48919-50218 ContigI)

Cosmid 54-I (ContigI)

54E02, 6 54X02, 3, 4, 5, 6

<u>PCR-Produkte:</u> 54-22f (44853-51069 ContigI) 54-27f (45595-51069 ContigI) 54I-26-uni (50132-51069 ContigI)

Cosmid 14-II (ContigI)

14E01, 2, 4, 4.5, 7 14HX1, 2, 3, 4, 7, 8, 9, 10, 29

<u>PCR-Produkte:</u> C14-AB (57791-58207 ContigI)

Cosmid 3-II (ContigI)

3E02, 3, 4, 9, 10, 17, 18 3S01, 3, 4, 18 3X03, 8, 9, 12, 12-2P, 14, 17 PCR-Produkte: 3II-38-uni (63441-64398 ContigI) 3II-37-38 (64219-64398 ContigI) 3II-94-95-PCR (70492-71738 ContigI) 2-177-178 (73981-76123 ContigI) 3II-97-141 (77051-78382 ContigI) 3-175 (175-176: 78465-79087 ContigI) 3II-SpeI (84452-86006 ContigI) 3II-SacI (84827-86006 ContigI)

Cosmid 54-II (ContigII)

54E01, 1a, **2**, 2-2P, 3, 4, 4-2P, 7, 15, 16 54H01, 2, 5, 7, 8, 10, 11, 12 54S01, 2, 5, 6, 12, 13, 16, 21 54EX3, 3P, 7, 16 54X06, 8, 10, 11, 12, 14, 16

<u>PCR-Produkte:</u> 54XhoI (1-1548 ContigII) 54S-167-127 (714-2699 ContigII) 54S-168-188 (3045-5418 ContigII) 5440-163 (163-277: 8219-8820 ContigII)

Cosmid 10 (Contig-TOM)

10H01, 2, 3, 4, 7, 8, 12, 13, 15, 16, 17 10X04-2P, 7-2P, 16, 17, 18, 19

<u>PCR-Produkte:</u> T23 (T7-T8): 9652-10055 107-108: 9759-11765 Co10-122 (110-122): 18437-18805 1-133/10-133134-133: 21292-21759 Co10-123 (122-123): 23451-23693

Cosmid 20 (Contig-TOM)

20H01, 3, 5, a, b, d 20X15, 17, 20

<u>PCR-Produkte:</u> Co20-104-121: 2740-3743 T423 (T42-T43): 23325-23942

Anmerkungen

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen in der Arbeit einschließlich Tabellen, Karten und Abbildungen, die anderen Werke im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation in keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. J. Schell betreut worden.

Publikationen:

Schmidt, R., Acarkan, A., Koch, M. and Roßberg, M. (1999). A strategy for comparative physical mapping in cruciferous plants. *Plant Evolution in Man-Made Habitats, Proceedings of the VIIth International IOPB Symposium Amsterdam* (eds. L.W.D. van Raamsdonk and J.C.M. den Nijs), Hugo de Vries Laboratory, Amsterdam, The Netherlands, pp.183-196.

Danksagung

Herrn Prof. Dr. J. Schell möchte ich für die Betreuung meiner Doktorarbeit bedanken. Herrn Prof. Dr. U.-I. Flügge danke ich für die Übernahme des Zweitgutachtens.

Frau Dr. R. Schmidt möchte ich mich für die Bereitstellung des Arbeitsplatzes und für die außerordentliche Betreuung danken. Die zahlreichen Anregungen und Diskussionen trugen zum Gelingen dieser Arbeit bei.

Bei den Mitgliedern meiner Arbeitsgruppe, Karine Boivin, Oliver Clarenz, Alexandra Forsbach, Mario Gils, Berthold Lechtenberg, Dr. Mathias Roßberg, Daniel Schubert, Sandra Stegemann möchte ich für die gute Arbeitsatmosphäre bedanken und vor allem für das Verständnis und die Unterstützung in der Endphase meiner Arbeit.

Mein besonderer Dank gilt Dr. Markus Koch und Dr. Mathias Roßberg Betreuung zu Beginn der Arbeit und die zahlreichen Hilfestellungen bei experimentellen und theoretischen Problemen.

Karine Boivin, Oliver Clarenz, Dr. Markus Koch und Dr. Mathias Roßberg danke ich für die Verwendung ihrer unveröffentlichten Forschungsdaten im Diskussionsteil.

Meinem langjährigen Studien- und Laborkollegen Mario Gils möchte ich für die gute Freundschaft danken, sein stets offenes Ohr bei Problemen jeglicher Art und für unsere "Privatgespräche" im Kaffeeraum.

Frank Eickelmann danke ich für die Pflege meiner Pflanzen und die zahlreichen Ermahnungen. "Adile! Deine Pflanzen können geerntet werden oder soll ich sie wegschmeissen?".

Den Mitgliedern der übrigen Arbeitsgruppen des Max-Delbrück-Laboratoriums danke ich für die nette Zusammenarbeit und Hilfsbereitschaft.

Außerdem möchte ich mich bei meinen Bekannten und Freunden bedanken, die stets Verständnis gezeigt haben, wenn "Frau Doktor wieder im Stress? war.

Zuletzt und vor allem möchte ich meiner Familie für die moralische und finanzielle Unterstützung danken, die mir das Studium und die Promotion erst möglich machten. Außerdem möchte ich mich für die Verpflegungspakete bedanken, die oft die Ausübung meiner "hervorragenden" Kochkünste während der Doktorarbeit überflüssig machte.

<u>Lebenslauf</u>

Name, Vorname	Acarkan, Adile
Geburtsdatum	31.03.1971
Geburtsort	Duisburg
Eltern	Yurdanur Acarkan Altan Acarkan
Staatsangehörigkeit	türkisch
Familienstand	ledig
Schulbildung	1977-1981 Gemeinschafts-Grundschule Hochfeldstr., Duisburg 1981-1983 Freiherr-vom-Stein-Realschule, Duisburg 1983-1990 August-Seeling-Gymnasium, Duisburg
Studium	
Oktober 1990 - September 1996 Februar 1993 April/Mai 1995 Mai 1995- September 1996	Studium der Biologie an der Heinrich-Heine- Universität Düsseldorf Diplomvorprüfung mündliche Diplomprüfung Diplomarbeit in der Arbeitsgruppe von Prof. Dr. Bünemann mit dem Thema: "Versuche zur immunologischen Identifizierung spezifischer Dynein-"heavy chain"-Proteine aus Spermien von <i>Drosophila</i> "
November 1996 - Juni 2000	Dissertation am Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft Betreuung: Prof. Dr. J. Schell