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Zusammenfassung 

Der COP1/SPA Komplex ist ein zentraler Regulator der Photomorphogenese in Arabidopsis. 

COP1 wird für die Streckungsantwort des Hypokotyls bei einem niedrigen Verhältnis von 

Rotlicht zu Dunkelrotlicht (R:FR) benötigt, welches durch dichtstehende Nachbarn an 

natürlichen Standorten auftreten kann. In dieser Studie wurde gezeigt, dass SPA Gene 

essentiell für Streckungsantworten bei niedrigen R:FR Bedingungen sind. Von den SPA 

Genen waren vor allem SPA1 und SPA4 für die Keimlingsantworten zuständig. Nachbarn 

lösen auch eine Streckungsantwort der Blattstiele aus. Hierbei waren die SPA Gene und 

COP1 essentiell. Die Blütenbildung wird durch niedrige R:FR Bedingungen beschleunigt und 

der COP1/SPA Komplex reguliert den Blühzeitpunkt im Kurztag. Es wurde gezeigt, dass 

weder COP1 noch SPA Gene eine Funktion in der Beschleunigung der Blütenbildung in 

niedrigen R:FR Bedingungen haben. Eine Promotor-Tausch-Analyse von SPA1 und SPA2 in 

der Hypokotylstreckungsantwort auf niedrige R:FR Bedingungen enthüllte eine potentielle 

Funktion für SPA2 in diesem Prozess, allerdings nur, wenn SPA2 unter der Kontrolle des 

SPA1 Promoters exprimiert wurde. Genetische Interaktionsstudien zeigten, dass spa 

Mutationen mit der hfr1 Mutation in der Hypokotylstreckungsantwort bei niedrigen R:FR 

Bedingungen interagieren. Dies deutet darauf hin, dass eine Akkumulierung von HFR1 in den 

spa und cop1 Mutanten zum Fehlen der Streckungsantwort beitragen könnte. Genetische 

Interaktionsstudien zeigten auch eine Interaktion von der cop1 und der phyB Mutation und 

von spa Mutationen mit der phyA Mutation in der Hypokotylstreckungsantwort auf niedrige 

R:FR Bedingungen. Außerdem wurde bei einer gewebespezifischen Analyse eine Funktion 

von SPA1 in der Epidermis gefunden, während die Expression von SPA1 im Phloem auf die 

meisten Entwicklungen von Keimlingen dominiert. Darüber hinaus wurde gezeigt, dass eine 

Zunahme der Auxinsignaltransduktion in R:FR Bedingungen in spa Mutanten nicht 

stattfindet. Die Transkriptmengen von YUC8, einem Auxinbiosynthesegens, die im WT 

hochreguliert wurden, reagierten in den spa Mutanten nicht auf niedrige R:FR Bedingungen. 

Die Auxinsignaltransduktion war in spa Mutanten auch im Keimlingsstadium in Dunkelheit 

und monochromatischem Licht verändert und in Blättern, was darauf hindeuten könnte, dass 

eine veränderte Auxinsignaltransduktion zu den veränderten Keimlingsphänotypen und dem 

Zwergwachstum der spa Mutanten beitragen könnte. Es ist bekannte, dass eine Anzahl von 

auxin-induzierten Genen lichtreprimiert ist, aber, ob diese Lichtregulation direkt oder indirekt 

über Auxin funktioniert ist noch nicht geklärt. In diesem Zusammenhang konnten für zwei G-

Box Motive des IAA19 Promoters eine Beteiligung an der Lichtregulation von IAA19 gezeigt 
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werden, während ein  Auxinantwortselement (AuxRE), aber nicht die G-Box im SAUR-AC1-l 

Promotor zur Lichtregulation des SAUR-AC1-l Genes beitrug. Dies befürwortet die Ansicht, 

dass die Lichtsignaltransduktion direkt die Promotoraktivität von Zielgenen beeinflussen 

kann, aber auch über die Manipulation von Hormonsignalwegen Gene reguliert. 
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Abstract 

The COP1/SPA complex is a central regulator of photomorphogenesis in Arabidopsis. COP1 

is required for the elongation response of the hypocotyl to a low red light to far-red light ratio 

(R:FR ratio), which is caused by close neighbours in natural habitats. In this study, it was 

shown that SPA genes were also essential for elongation responses to low R:FR conditions. 

SPA1 and SPA4 were the main SPA genes that regulate the responses of seedlings. Close 

neighbours also trigger an elongation response of leaf petioles. Here, the SPA genes and 

COP1 were essential. Flowering is accelerated by low R:FR conditions and the COP1/SPA 

complex is a regulator of flowering time in SD. It was shown that neither COP1 nor SPA 

genes had a function in the acceleration of flowering in response to low R:FR conditions. A 

promoter-swap analysis of SPA1 and SPA2 revealed a function for SPA2 in the elongation 

response of the hypocotyl to simulated shade, but only when expressed from the SPA1 

promoter. Furthermore, genetic interaction studies showed that spa mutations interacted with 

the hfr1 mutation in the elongation response of the hypocotyl to low R:FR, indicating that 

over-accumulation of HFR1 may contribute to the lack of elongation response of spa and 

cop1 mutants. Genetic interaction studies also revealed a genetic interaction of the cop1 

mutation with the phyB mutation and of spa mutations with the phyA mutation in the 

hypocotyl elongation response to low R:FR. Moreover, a tissue-specific function for SPA1 in 

the elongation response to low R:FR was found in the epidermis, while seedling growth in 

darkness and light was largely controlled by expression of SPA1 in the phloem. Furthermore, 

it was shown that the increase of the auxin signalling by low R:FR conditions was absent 

from two spa mutants and that the transcript levels of YUC8, an auxin biosynthesis gene, were 

unresponsive to low R:FR in a spa mutant, while up-regulated in the WT. Moreover, auxin 

signalling was found to be altered in spa mutants at the seedling stage in darkness and light 

and in adult leaves, which suggests that altered auxin signalling may contribute to the aberrant 

seedling phenotype and dwarfed growth of spa mutants. It is known that a number of auxin-

induced genes are light-repressed, but whether the light-regulation is indirect via auxin or 

direct is not fully resolved. Here, two G-Box core motifs of the IAA19 promoter were shown 

to contribute to the light-regulation of the IAA19 gene, while an auxin response element 

(AuxRE), but not the G-Box present in the SAUR-AC1-l promoter was contributing to the 

light-regulation of the SAUR-AC1-l gene. This supports the notion that light signalling can 

directly act on promoter activity of target genes, but can also regulate genes via manipulation 

of hormonal pathways. 
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I. Introduction 

I.1 Light perception and photomorphogenesis in Arabidopsis thaliana 

Plants vitally depend on the energy they receive from the sunlight. The electromagnetic 

spectrum of the light that they can absorb to fuel their photosynthesis is referred to as the 

photosynthetically active radiation (PAR; 400-700 nm wavelengths). Beyond their energy 

consume, plants utilize light as a source of information about the environment they inhabit. 

They have developed the capacity to measure the wavelength composition, direction and 

duration. Light signals are used for the adaptation of germination, seedling and adult plant 

development and the transition to flowering to the environmental conditions in order to 

optimise reproductive success. 

 
 

Figure I-1: The photoreceptors of Arabidopsis thaliana and their functions in plant development. UV-B light activates 
the ULTRAVIOLET RESISTANCE 8 (UVR8) receptor. UV-A and blue (B) light are perceived by the phototropins (phot1-
2) and the cryptochromes (cry1-2). B light also activates the ZEITLUPE (ZTL) family of photoreceptors. The red (R) and far-
red (FR) light spectrum is perceived by phytochromes (phyA-E). The phytochromes are involved in germination, seedling-
deetiolation, shade avoidance and the transition from vegetative to reproductive growth. The cryptochromes also act on 
seedling-deetiolation and the transition to flowering. The Phototropins control growth towards or away from a light source 
(phototropism), while ZTL factors are involved in flowering time control and the UVR8-receptor contributes to 
photomorphogenic responses in seedlings. 
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Light perception is mediated by an array of photoreceptors that can be grouped into five main 

classes in Arabidopsis thaliana. These consist of five PHYTOCHROMES (phyA-E) that 

predominantly absorb in the red (R) and far-red (FR) light spectrum; two 

CRYPTOCHROMES (cry1 and cry2) and the two PHOTOTROPINS (phot1 and phot2) that 

perceive ultraviolet A (UV-A) and blue (B) light and the ZEITLUPE protein family 

(ZEITLUPE / FLAVIN-BINDING, KELCH REPEAT, F-BOX / LOV KELCH REPEAT 

PROTEIN 2 (ZTL/FKF1/LKP2)) that also absorbs blue light (B) (Briggs and Christie, 2002; 

Clack et al., 1994; Huala et al., 1997; Lin, 2002; Nelson et al., 2000; Somers et al., 2000). 

Furthermore, the recently identified ULTRAVIOLET RESISTANCE LOCUS 8 (UVR8) 

receptor is activated by UV-B light (Christie et al., 2012; Rizzini et al., 2011). A selection of 

important developmental processes regulated by the photoreceptors is shown in figure 1-1. 

First, the germination of seeds is induced by light in a red light-dependent manner by the 

phytochromes (reviewed in Franklin and Quail, 2010). Seedlings that grow in the absence of 

light depend on their seed storage of energy and biomolecules. They display long hypocotyls, 

closed apical hooks and closed, pale cotyledons. This skotomorphogenesis is continued until 

light is perceived. Once the seedlings reach the light, they undergo de-etiolation, which is 

characterised by the inhibition of the hypocotyl elongation, the opening of the cotyledons and 

the apical hook and the development of green chloroplasts. Morphological changes triggered 

by light are called photomorphogenesis. The de-etiolation of seedlings is driven by actions of 

phytochromes and cryptochromes (Strasser et al., 2010). The transition from the vegetative to 

the reproductive growth is regulated by light through the photoperiodic pathway, which 

involves the function of phytochromes, chryptochromes and the zeitlupe protein family 

(Yanovsky and Kay, 2002; Valverde et al., 2004; Somers et al., 2004). The floral inducer 

CONSTANS (CO) acts downstream of the photoreceptors in the photoperiodic pathway and 

is stabilized by long photoperiods that favour flowering (Laubinger et al., 2006; Valvere et al., 

2004). CO promotes the expression of the floral integrators FLOWERING LOCUS T (FT) 

and of TWIN SISTER OF FT (TSF), which move to the shoot apical meristem (SAM) to 

promote the induction of flowering (Corbesier et al., 2007; Wenkel et al., 2006; Yamaguchi et 

al., 2005).  

Besides the adaptations to the abiotic environment, plants have also developed the capacity to 

extract information about surrounding competitors from the ambient light, which represent a 

threat, as they might eventually shade the plants. Close neighbours can be detected well 

before they outgrow the plants as they reflect more FR light photons than any other 

component of the sunlight, because FR light is not used for photosynthesis and hardly 
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absorbed (reviewed in Vandenbussche et al., 2005). The phytochromes are capable of 

detecting this drop of the red light to far-red light (R:FR) ratio of the ambient light, and 

subsequently induce an increase in elongation processes, resulting in a longer hypocotyl, 

extended internodes and elongated petioles compared with plants grown in open sunlight 

(Ballare, 1999). Furthermore, the low R:FR conditions trigger an increase of the leaf angles 

(hyponasty), reduction of the leaf blade area, a lower branching of the shoot and an 

acceleration of flowering (Ballare, 1999). These reactions are collectively referred to as the 

shade avoidance syndrome (SAS). However, faster growth towards the sunlight to outcompete 

close neighbours is itself energy-consuming and may only be successful in certain 

environments, such as open fields, but futile in others (Yanovsky et al., 1995). Thus, plants 

have developed mechanisms to react appropriately to the different stages of canopy shading. 

Figure 1-2 illustrates the main stages of shade and the adaptations in Arabidopsis plants that 

detect competitors.  

 

.  

 

Figure I-2: Shade avoidance responses of Arabidopsis thaliana. A) Plants monitor the R:FR ratio of the ambient light to 
detect neighbours. Overgrown plants suffer from a lower photosynthetically active radiation (PAR). B) A low R:FR ratio of 
the ambient light triggers several elongation responses and leads to the acceleration of flowering. 
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I.1.1 Red and far-red light perception by the phytochromes  

 

 
 
Figure I-3: Phytochromes perceive light of the red and the far-red light spectrum. Phytochromes are synthesised in the 
inactive Pr form that absorbs red light. The Pfr form is active and moves to the nucleus and cause photomorphogenesis. The 
Pfr form is transferred to the Pr form by FR light or by a light-independent mechanism called dark-reversion. PhyA 
additionally functions as a FR light receptor in the FR high irradiance response. The Pfr form of phyA is rapidly degraded 
after activation by red light.  

 

The reactions to R and FR light and to different R:FR ratios are solely mediated by the 

phytochromes and depend on their unique properties and antagonistic activities. Each 

phytochrome consists of a 125 kDa polypeptide that carries a linear tetra-pyrrole 

chromophore (reviewed in Quail et al., 1995; Davis et al., 1999). Phytochromes act as dimers 
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and both, homo- and hero-dimerisation has been observed within the phytochrome family 

(Sharrock and Clack, 2004). The phytochromes can be subdivided into two groups according 

to their stability in the light. In Arabidopsis, the phytochrome type I consists only of phyA, 

which accumulates in darkness and is highly photo-labile. The phytochrome type II is formed 

by the remaining phyB, phyC, phyD and phyE, which are more stable in the light, but have 

also been shown to be regulated by protein degradation (Sharrock et al., 2002; Jang et al., 

2010). One of the most striking features of the phytochromes is their function in R/FR 

reversible responses that are known as the low fluence responses (LFR; reviewed in Nagy and 

Schäfer, 2002). Upon absorption of red light (around 660 nm wavelength), the tetra-pyrrole 

chromophore changes its conformation and this leads to the activation of the phytochrome, 

which is transferred to its FR light-absorbing form (Pfr). The absorption of FR photons 

(around 730 nm wavelength) transfers the phytochrome back to the inactive R light-absorbing 

form (Pr). The cycling between the Pr form and the Pfr form creates a dynamic equilibrium of 

the phytochromes (photoequilibrium) that is rapidly altered in response to different light 

conditions (Nagy and Schäfer, 2002). Figure I-3 illustrates the R/FR reversibility of the 

phytochromes. It follows from the above that in low R:FR conditions, the photoequilibrium of 

the phytochromes is shifted towards the inactive Pr state. The inactivation of phyB is 

considered as one of the major functions of the phytochromes in neighbour detection, as phyB 

mutants display a constitutive shade avoidance phenotype even in open sunlight conditions 

and display only weak responses to low R:FR treatment (Halliday et al., 1994; Reed et al., 

1993). Two additional phytochromes, phyD and phyE contribute to the shade avoidance 

responses, presumably employing the same molecular mechanism as phyB (Devlin et al., 

2003).  

In contrast to the type II phytochromes, phyA acts as a FR light receptor in the high irradiance 

response to FR light (FR-HIR; Nagy and Schäfer, 2002). Furthermore, phyA senses very low 

fluences of light (very low fluence response, VLFR) due to the high levels of phyA that 

accumulate in dark-grown seedlings and promotes germination (Botto et al., 1996). The 

photoconversion of phyA is similar to phyB, but as the phyA Pfr form is rapidly degraded, the 

phyA levels decrease strongly upon B and R light absorption (Sharrock et al., 2002). 

Therefore, phyA activity is negligible in direct sunlight. Moreover, phyA shows a maximum 

of activity in FR light (Nagy and Schäfer, 2002). Therefore, phyA activity is increased in low 

R:FR conditions. In deeper canopy shade, which is characterised by an additional loss in 

PAR, phyA is further stabilised by the low light intensities, which again increases its activity 

(Smith et al., 1997). Overall, phyA contributes to the shade avoidance responses especially at 
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lower light intensities and at very low R:FR conditions and counteracts the low R:FR-

dependent inactivation of phyB (Smith et al., 1997). The phyA inhibition of elongation 

responses in deep shade conditions is relevant for the fitness of plants, because phyA mutants 

die in deep shade. Thus, phyA function is adaptive in deep shade, presumably because 

elongation in deep shade situations is too energy consuming for the seedlings (Yanovsky et 

al., 1995).  

After activation by R light, the Pfr form of the phytochromes is imported to the nucleus by 

transport facilitators, which has long been established for phyA, but has recently also been 

shown for phyB and proposed to represent a general transport mechanism for phytochromes 

(Hiltbrunner et al., 2005 and 2006; Kircher et al., 1999; Pfeiffer et al., 2012). The nuclear 

localisation is crucial for phy function and results in a drastic change in the transcriptome 

(Huq et al., 2003; Tepperman et al., 2001). 

I.2 Light signalling downstream of the photoreceptors 

I.2.1 The PHYTOCHROME INTERACTING FACTORS (PIFs) promote 

skotomorphogenesis and shade avoidance responses 

In darkness, the PHYTOCHROME INTERACTING FACTORS (PIFs) that belong to the 

basic HELIX-LOOP-HELIX (bHLH) transcription factor family are important to maintain 

skotomorphogenesis and the associated elongation responses (Martínez-García et al., 2000; 

Duek and Fankhauser, 2005). Hence, a pif1 pif3 pif4 pif5 quadruple mutant (pifq) exhibits 

constitutive photomorphogenesis in darkness (Leivar et al., 2009). Furthermore, the 

transcriptome of dark-grown pifq mutants largely resembles the transcriptome of light-grown 

WT seedlings, which shows that the PIFs are important factors of gene expression in darkness 

(Leivar et al., 2009; Shin et al., 2009). PIF proteins bind to specific promoter sequences, G-

Boxes that have a CACGTG core consensus motif and induce the expression of genes that 

mainly promote cell elongation (de Lucas et al., 2008; Huq et al., 2004; Martínez-García et 

al., 2000; Moon et al., 2008). G-Boxes are a member of the E-Box motif family that share a 

CANNTG consensus and are targeted by bHLH transcription factors in eukaryotes (Atchley 

and Fitch, 1997). Upon light perception, the phytochromes are transported to the nucleus and 

interact with the PIFs (Duek and Fankhauser, 2005; Hiltbrunner et al., 2005 and 2006; Kircher 

et al., 1999; Pfeiffer et al., 2012). The interaction with the phytochromes leads to the 

phosphorylation of the PIFs and their subsequent ubiquitination and degradation via the 26-S 

proteasome (Bauer et al., 2004; Huq et al., 2004; Lorrain et al., 2008). Thus, light negatively 
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acts on PIF protein levels and inhibits the expression of genes that are up-regulated by the 

PIFs (see fig. I-4). However, low R:FR conditions promote PIF protein levels and enhance the 

expression of elongation promoting genes that are under the control of PIFs (Martínez-García 

et al., 2000; Li et al., 2012; Lorrain et al., 2008). Three members of the PIF family, PIF4, 

PIF5 and PIF7, were shown to be involved in the elongation response of hypocotyls in 

response to low R:FR conditions (Li et al., 2012; Lorrain et al., 2008). As a pif4pif5 double 

mutant and a PIF5 over-expresser both display a reduced elongation response of the hypocotyl 

to low R:FR compared with the WT, balanced PIF4 and PIF5 levels are thought to be required 

for the elongation of the hypocotyl in low R:FR. Furthermore, PIF4 and PIF5 negatively 

regulate phyB level, further promoting their own activity and shade reactions (Leivar et al., 

2008). PIF4 and PIF5 act directly by binding to promoter elements in shade avoidance up-

regulated genes. 

I.2.2 The COP1/SPA complex is a central repressor of transcription factors 

Besides the PIF transcription factors, additional proteins act downstream of the 

photoreceptors. A number of genes that promote skotomorphogenesis and inhibit 

photomorphogenesis were identified through the analysis of mutants that exhibit constitutive 

photomorphogenic development in darkness. These genes were unified in the 

CONSTITUTIVE PHOTOMORPHOGENESIS (COP)/ DE-ETIOLATED (DET)/ FUSCA 

(FUS) gene group (Wei and Deng, 1996). 

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a member of the 

COP/DET/FUSCA family that was shown to function as an E3 ubiquitin-ligase that acts 

negatively on photomorphogenesis by targeting transcription factors for degradation that 

promote light signalling (Deng et al., 1991; reviewed in Hoecker, 2005). It contains a WD40-

domain and a coiled-coil domain that serve as protein-protein interaction domains and a 

RING finger domain, which is central for the E3-Ubiquitin-ligase function (Deng et al., 

1992). Multiple mutants of the suppressor of phyA-105-1 (spa1) and spa1-like (spa) mutations 

exhibit constitutive photomorphogenic phenotypes similar to the cop1 mutants. This indicates 

that the SPA proteins are also important suppressors of photomorphogenesis.  The SPA1 gene 

was initially identified in a screen for suppressors of a weak phyA mutant and isolated by 

positional cloning (Hoecker et al., 1998 and 1999). SPA1 counteracts phytochrome meditated 

inhibition of hypocotyl elongation (Parks et al., 2001). Three additional SPA1-LIKE genes 

(SPA2-4) have been uncovered in the Arabidopsis genome (Laubinger and Hoecker, 2003). 

The four SPA genes have overlapping, but also distinct functions in the regulation of light-



Introduction 
__________________________________________________________________________ 

8 
 

mediated plant development (Laubinger and Hoecker, 2003; Laubinger et al., 2004; 

Fittinghoff et al., 2006; Balcerowicz et al., 2010). In dark-grown seedlings, SPA1 and SPA2 

are the main contributors to the repression of photomorphogenesis, while overstimulation of 

photomorphogenesis in the light is mainly repressed by SPA1, SPA3 and SPA4 (Laubinger et 

al., 2004). Adult plant development and final leaf size is mainly controlled by SPA3 and SPA4 

(Laubinger et al., 2004; Fackendahl, PhD Thesis, 2011). Flowering time in short days (SD) 

depends on functional SPA1, as a spa1 single mutant flowers early in short days (Laubinger et 

al., 2006). The SPA proteins contain a C-terminal WD40 domain and a central coiled-coil (cc) 

domain, which they both share with the COP1 protein and a more diverse N-terminal domain 

(Hoecker et al., 1999). The cc-domain is necessary for SPA-SPA interaction (Hoecker and 

Quail, 2001; Zhu et al., 2008). The N-terminus contains a region that is reminiscent of a 

kinase-domain, though a kinase function of the SPA proteins has never been shown (Hoecker 

et al., 1999; Hoecker, 2005). 

 

 

Figure I-4: COP1/SPA and PIF function in transcriptional control of light regulated genes downstream of the 
photoreceptors. In darkness, the COP1/SPA complex is active and targets transcription factors for degradation by 
ubiquitination. Additionally, PIF proteins bind to PIF-binding sites (G-boxes) of target genes and promote the expression of 
dark-up-regulated genes. These conditions lead to skotomophogenesis. The photoreceptors are activated by light and inhibit 
the COP1/SPA complex. The transcription factors accumulate and light regulated genes are expressed. Furthermore, PIF 
proteins are inhibited by the phytochromes and subsequently degraded, which inhibits the expression of dark-up-regulated 
genes. This causes photomorphogenesis. 
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It was shown that COP1 and SPA interact via their cc-domains and act together in a 

tetrameric complex consisting of two COP1 proteins and a homo- or hetero-dimer of the SPA 

proteins and that the interaction with SPA proteins enhances the activity of COP1 towards its 

targets (Saijo et al., 2003; Zhu et al., 2008). The COP1/SPA complex interacts physically and 

genetically with phyA, phyB and the cryptochromes and the protein-protein interaction can 

negatively regulate the function of COP1/SPA and of the photoreceptors (Boccalandro et al., 

2004; Jang et al., 2010; Lian et al., 2011; Liu et al., 2011; Seo et al., 2004; Wang et al., 2001; 

Yang et al., 2001).  

The COP1/SPA complex acts on virtually all aspects of light-regulated plant development by 

controlling different factors that are involved in the photomorphogenic development 

throughout the lifecycle. The activity of the COP1/SPA complex is also illustrated in figure I-

4. The well-characterised substrates of the COP1/SPA complex at the seedling stage include 

the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), the MYB transcription factor 

LONG AFTER FAR-RED LIGHT 1 (LAF1) and the atypical bHLH factor LONG 

HYPOCOTYL IN FAR-RED 1 (HFR1) (Ballesteros et al., 2001; Duek et al., 2004; Fairchild 

et al., 2000; Hardtke et al., 2000; Holm et al., 2002; Jang et al., 2005; Osterlund et al., 2000; 

Saijo et al., 2003; Seo et al., 2003; Yang et al., 2005a,b). HY5 is rapidly up-regulated by light 

and regulates the expression of genes by binding to several LIGHT RESPONSE ELEMENTS 

(LREs) in promoters. It activates or represses the expression of the target gene (Lee et al., 

2007). HY5 predominantly binds to G-Box elements (CACGTG), but also to other LRE (Lee 

et al., 2007). A large portion of light-regulated genes, around 20% of the genes of the 

Arabidopsis genome, was shown to be regulated by COP1 and HY5 antagonistically regulates 

a subset of the COP1 regulated genes (Tepperman et al., 2001; Ma et al., 2001 and 2002). A 

high number of transcription factors were identified to be expressed under the direct control 

of HY5 (Lee et al., 2007). In the regulation of adult leaf size, COP1/SPA is proposed to act 

via the regulation of B-BOX DOMAIN transcription factor BBX21 and HY5 (Fackendahl, 

PhD Thesis, 2011).The COP1/SPA complex inhibits flowering in short day (SD) conditions 

by regulating the protein levels of the B-BOX transcription factor CONSTANS (CO) that 

induces the expression of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in 

long day (LD) conditions, two floral inducers that promote the transition from vegetative to 

reproductive growth (Jang et al., 2008; Laubinger et al., 2006; Liu et al., 2008). It is expected 

that novel COP1/SPA targets are yet to be discovered as only a subset of the phenotypes of 

the cop1 and multiple spa mutant can currently be explained with the known targets 

(Fackendahl, PhD Thesis, 2011; Maier, PhD Thesis, 2011; Falke, Master Thesis, 2009).  



Introduction 
__________________________________________________________________________ 

10 
 

The response of the hypocotyl to low R:FR conditions requires the COP1 gene, as cop1 

mutants display diminished elongation responses compared with the WT (McNellis et al., 

1994). COP1 is required for normal PIF level accumulation (Leivar et al., 2008) and 

genetically interacts with transcription factors of the BBX family that are involved in the 

shade avoidance response of the hypocotyl (Crocco et al., 2010). The bbx mutants bbx19, bbx 

21 and bbx 22 exhibit increased elongation responses of hypocotyls to low R:FR treatments 

compared to the WT, while bbx18 and bbx24 display the opposite effect on the hypocotyl 

length (Crocco et al., 2010). The low R:FR induced hypocotyl elongation of the cop1-4 

mutant is restored when bbx21 and bbx22 are introduced into the mutant background, 

indicating that BBX proteins may act downstream of COP1 and that COP1 may in part exert 

its function in shade by repression of negative factors (Crocco et al., 2010). Whether SPA 

genes are also involved in the regulation of the SAS, is currently unknown. 

I.3 Light signalling in the shade avoidance responses 

The shade avoidance responses are tightly regulated by a number of promoting and repressing 

factors. The elongation responses are negatively regulated by atypical (b)HLH factors in order 

to prevent overstimulation (Hornitschek et al., 2009; Roig-Villanova et al., 2007; Sessa et al., 

2005). These factors include HFR1, which lacks a functional basic domain essential for the 

binding to DNA (Hornitschek et al., 2009; Sessa et al., 2005). It physically interacts with PIF4 

and PIF5 via the HLH domain and forms non-functional heterodimers (Heim et al., 2003; 

Hornitschek et al., 2009). This repression of elongation promoting factors is in agreement 

with the observed exaggerated hfr1 hypocotyl elongation exhibited in response to low R:FR 

compared with the WT (Sessa et al., 2005; Hornitschek et al., 2009). Overexpression of HFR1 

and especially of truncated versions of the HFR1 protein lead to a diminished hypocotyl 

elongation in response to simulated shade, which indicates that HFR1 protein levels are 

negatively regulated in low R:FR conditions to prevent over-accumulation of the negative 

factor (Galstyan et al., 2011). The transcript levels of HFR1 are elevated shortly after the 

onset of low R:FR conditions and they remain elevated for days in prolonged shade 

conditions providing a negative feedback-loop (Devlin 2003; Sessa et al., 2005).  Similarly to 

HFR1, two genes coding for small and atypical bHLH transcription factors, PHYTOCHROME 

RAPID REGULATED 1 and 2 (PAR1, PAR2), are involved in the repression of the elongation 

responses to low R:FR. They are swiftly upregulated in response to low R:FR and the 

induction of the expression can be reversed by high R:FR treatment (Roig-Villanova et al., 
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2006). The simultaneous reduction of PAR1 and PAR2 protein levels caused a stronger 

hypocotyl elongation response to low R:FR conditions compared with the WT, while 

overexpression of both factors diminished the hypocotyl response (Roig-Villanova et al., 

2007). PAR1 (and presumably PAR2 as well) acts on PIF function similar to HFR1 by 

forming heterodimers that are incapable of binding to the PIF target sequences of promoters 

(Galstyan et al., 2011; Hao et al., 2012). Additionally, PIF3-LIKE 1 (PIL1) is also highly up-

regulated in low R:FR conditions in a phytochrome-dependent manner by the binding of PIF 

transcription factors to the promoter (Devlin et al., 2003; Salter et al., 2003; Roig-Villanova et 

al., 2006; Lorrain et al., 2008). In contrast to HFR1 and PAR1/2, positive and negative 

functions in the shade avoidance response have been assigned to PIL1 in different studies, 

suggesting a more complex function (Salter et al., 2003; Roig-Villanova et al., 2007).  

Two positive regulators of the shade avoidance responses are the homeodomain-leucine 

zipper transcription factor, ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2) and 

ATHB4, which are implicated in the light-hormone interaction necessary for full shade 

response (Carabelli et al., 1993 and 1996; Roig-Villanova et al., 2006; Sorin et al., 2009). 

Overexpressors of ATHB2 exhibit longer hypocotyls, while reduced levels lead to shorter 

hypocotyls compared with the WT (Steindler et al., 1999). ATHB2 is also strongly up-

regulated in low R:FR conditions by the PIFs (Lorrain et al., 2008). Furthermore, the 

regulation of ATHB2 in the first hour of the low R:FR-dependent response is regulated by 

COP1 in an HY5-independent manner (Roig-Villanova et al., 2006). Factors that promote 

elongation responses to low R:FR also include extracellular proteins that modify the cell wall 

(Cosgrove et al., 2005). Two main classes of cell wall modifying enzymes are involved in cell 

wall loosening.  First, the expansins form a large family of nonenzymatic proteins in the cell 

wall that rapidly promote cell wall extension in a pH-dependent manner (Cosgrove et al., 

2000). The expansins function equally in white light and shade and are solely influenced by 

acidification of the cell wall (Cosgrove et al., 2005). Second, the XYLOGLUCAN 

ENDOTRANSGLUCOSYLASE / HYDROLASES / XYLOGLUCAN ENDOTRANS-

GLUCOSYLASE/HYDROLASES – RELATED PROTEINS (XTH/XTR) are a large family 

of enzymes that modify the xyloglucans that crosslink the cellulose fibres of the cell wall 

(Eklöf et al., 2010). 
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Figure I-5: Molecular network of the shade avoidance response in Arabidopsis thaliana. In open sunlight, the COP1 and 
the PIFs are inactivated by the active Pfr form of phyB and elongation responses are inhibited. In low R:FR, the 
photoequilibrium of phyB is shifted to the inactive Pr form and COP1 and the PIFs are activated and promote the shade 
avoidance elongation responses. COP1 acts on BBX21/21 that inhibit elongation and the PIFs promote the expression of 
elongation promoting factors. HFR1 represents a feed-back loop that negatively acts on the PIFs. 

 

They are required for the loosening of the wall prior to cell elongation (Cosgrove et al., 2005). 

In contrast to the expansins, XTH function is specifically enhanced in petioles in response to 

shade conditions, with a distinct set of XTH enzymes operating preferentially in different 

shade conditions (Sasidharan et al., 2010). Importantly, a xtr7/xth15 knock-out line shows no 

induction of growth rate of the petioles in low R:FR conditions and XTR7 is an established 

target gene of PIF4 and PIF5 that is up-regulated in response to low R:FR conditions (De 
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Lucas et al., 2008; Lorrain et al., 2008; Sasidharan et al., 2010). The factors that regulate 

elongation responses in low R:FR conditions are summerised in figure I-5. 

The control of accelerated flowering in response to low R:FR conditions is primarily 

regulated by phyB and to a minor extend by phyD (Devlin et al., 1999; Halliday et al., 1994). 

In low R:FR conditions, phyB has been proposed to act independently of the CO pathways on 

FT expression via PHYTOCHROME AND FLOWERING 1 (PFT1) transcription factor 

(Cerdán and Chory, 2003). Before flowering, even in short days, a large increase in FT 

transcript levels in phyB mutant compared with WT has been reported. However, the 

acceleration of flowering has also been observed to require GIGANTEA (GI) and CO and the 

role of PFT1 has been questioned (Kim et al., 2008: Wollenberg et al., 2008). The early 

flowering in response to close competitors can be suppressed by high FLOWERING LOCUS 

C (FLC) levels in a dose-dependent manner, which causes later flowering in shade in some 

Arabidopsis accessions (Adams et al., 2009; Wollenberg et al., 2008). Loss of phytochrome 

function overrides any FLC effect on FT expression, as in a phyB phyD phyE triple mutant, 

high FLC level cannot inhibit FT induction (Wollenberg et al., 2008).  

Taken together, the SAS mainly consist of elongation processes and the acceleration of 

flowering. Both depend largely on phyB inactivation and downstream signalling events that 

involve promoting and inhibiting factors. COP1 is a central regulator of light-dependent plant 

development downstream of several photoreceptors including phyB and has been assigned an 

important function in the hypocotyl elongation process in response to low R:FR. Whether the 

COP1-interacting SPA proteins also contribute to the control of the shade avoidance 

responses remains an open question. Preliminary results obtained under my supervision point 

towards a function for SPA genes in the shade avoidance response of seedlings (Stephen 

Dickopf, Master Thesis, 2011; Jan Sahm, Examensarbeit, 2010). 

I.4 Interactions of the light and auxin pathways 

Auxin is a phytohormone that is regarded as the master regulator of plant development 

(Jaillais and Chory, 2010). Auxin acts on cell elongation, proliferation and differentiation and 

is required for proper embryogenesis, root initiation, vascular patterning and apical 

dominance. Furthermore, it drives directional plant growth reactions, such as phototropism 

and gravitropism, towards or away from environmental cues, highlighting the interplay 

between sensory input and the mediation of plant growth responses by auxin. The levels of 

active auxin are tightly controlled by biosynthesis, conjugation and breakdown (Tam et al., 
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2000; Staswick et al., 2002; Staswick, 2005). Furthermore, auxin is actively transported by 

cellular import and export and the responsiveness of the target tissues can be modulated by 

differential regulation of the auxin signalling machinery (Fig. 1-6). Light signalling can be 

found to manipulate virtually all levels of the auxin pathway (Halliday et al., 2009).  

 
Figure I-6: The pathway of auxin biosynthesis, transport and signalling. IAA is mainly synthesized by TAA1 and 
YUCCA from tryptophan and transported from the site of biosynthesis via auxin influx and efflux carriers of the AUX/LAX 
and PIN families. Auxin can be perceived by the TIR1-auxin receptor that targets Aux/IAA protein for degradation that 
negatively regulated ARF transcription factors. ARFs then bind Auxin response elements (AuxRE) to induce auxin regulated 
genes. 
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I.4.1 Auxin-Biosynthesis, conjunction and catabolism 

Indole-3-acetic acid (IAA) is the main active auxin in Arabidopsis and mainly synthesized 

from tryptophan (Tao et al., 2008). The TRYPTOPHAN AMINOTRANSFERASE 1 (TAA1) is a 

key IAA biosynthesis gene that has been isolated from independent screens for altered auxin 

associated phenotypes, which include hypocotyl elongation in simulated canopy shade 

(SHADE AVOIDANCE 3 (SAV3), ethylene dependent root elongation (WEAK ETHYLEN 

INSENSITIVE 8 (WEI8)) and the resistance to auxin transport inhibitor treatment 

(TRANSPORT INHIBITOR RESPONSE 2 (TIR2)) (Stepanova et al., 2008; Tao et al., 2008; 

Yamada et al., 2009). TAA1 possesses enzymatic activity, converting tryptophan to indole-3-

pyruvate (IPA) which is subsequently metabolised to IAA (Tao et al., 2008; Stepanova et al., 

2008; Mashiguchi et al., 2011). Four TAA-RELATED genes TAR1-TAR4 are present in the 

Arabidopsis genome, with TAR1 and TAR2 being the most related family members to TAA1, 

exhibiting additive functions in IAA biosynthesis (Stepanova et al., 2008). Single and 

multiple mutations in the genes coding for the TAA1/TAR protein family result in severe 

auxin related phenotypes, including loss of response to gravity, deficit in the formation of 

primary roots and reduced length or complete absence of hypocotyls (Stepanova et al., 2008). 

TAA1 is the predominant enzyme of the TAA1/TAR family involved in the rapid increase of 

free auxin levels in response to shade (Tao et al., 2008). A second family of enzymes involved 

in auxin biosynthesis, the flavin monooxygenase-like YUCCA (YUC) proteins, consists of 11 

members in Arabidopsis with largely overlapping functions (Cheng et al., 2006; Cheng et al., 

2007; Zhao et al., 2001). YUC genes are equally important as the TAA1 gene family with 

regard to the development of Arabidopsis plants. Due to redundancy in the gene family, YUC 

genes have first been noticed by high-auxin phenotypes resulting from the overexpression of 

single YUC (Zhao et al., 2001). Multiple yuc mutants exhibit defects as early as during 

embryogenesis, because auxin produced by YUCCA gene is essential for proper development 

of the embryo (Cheng et al., 2007). Seedling development, the development of the vascular 

tissue and also the development of flowers depend in the same way on YUC function (Cheng 

et al., 2006, Cheng et al., 2007). Despite the long-lasting proposition of multiple parallel 

auxin biosynthesis pathways, recent findings favour a major straightforward two-step auxin 

biosynthesis pathway comprising of the TAA1/TAR family of enzymes and the YUC 

enzymes, in which TAA1 produces IPA from tryptophan and YUC metabolises IPA to IAA 

(Mashigushi et al., 2011; Phillips et al., 2011; Stepanova et al., 2011; Won et al., 2011). IAA 

is oxidized to an inactive form by an unknown mechanism and can also be temporally 

inactivated by conjugation to a sugar, amino acid or methyl-group and may subsequently be 
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reactivated or degraded (Li et al., 2007; Ljung et al., 2002; Woodward and Bartel, 2005; Yang 

et al., 2008). IAA is mainly produced in the cotyledons, young leaves and the meristems and 

transported to the other parts of the plant, but further local auxin biosynthesis exists in the 

meristem of the root, the tips of lateral roots and presumably further locations (Ljung et al., 

2001)  

I.4.2 Auxin transport 

Auxin is transported from the sites of synthesis over long distances throughout the plant. First, 

IAA can be loaded to the phloem and passively distributed via the stream to all sink tissues. 

Second, besides this passive and fast auxin flow, an active auxin transport mechanism exists, 

the polar auxin transport (PAT) (Gao et al., 2002). This mode of transport is considered to be 

unique among the phytohormones and is dependent on a set of auxin carriers that function in 

each individual cell contributing to the PAT (Delbarre et al., 1996). Auxin enters the cell by 

diffusion and active uptake that is mediated by 11-transmembrane AUXIN RESISTANT1 / 

AUXIN RESISTANT1-LIKE (AUX/LAX) carriers (Bennett et al., 1996; Swarup et al., 2004) 

(see Fig 1-5). In the cytoplasm, auxin is largely deprotonated due to the higher pH and the 

charged auxin is unable to diffuse out of the cell. PIN FORMED (PIN) proteins are essential 

components of the major efflux carriers of auxin from the cytoplasm to the apoplast (Friml et 

al., 2002). They form a family of eight members with two subgroups. The PIN1 subgroup 

members (PIN1, PIN2, PIN3, PIN4, and PIN7) can be dynamically relocated to the apical or 

basal sides of the plasma membrane (PM) by phosphorylation or dephosphorylation, 

respectively, which influences the direction of auxin efflux (Friml et al., 2002, 2004; Sukumar 

et al., 2009; Zhang et al., 2009). The phosphorylation status of the PIN proteins is regulated 

by PINOID (PID) serine-threonine kinases and the PROTEIN PHOSPHATASE 2A (PP2A) 

(Christensen et al., 2000; Friml et al., 2004; Sukumar et al., 2009). Furthermore, three ATP-

binding cassette class B (ABCB) transporters are specific for auxin transport and efficiently 

exclude it from the cytoplasm to the apoplast (Kubeš et al., 2012; Wu et al., 2010).  

I.4.3 Auxin signalling  

Two types of auxin receptors were identified to date. IAA is bound by the AUXIN BINDING 

PROTEIN 1 (ABP1) auxin receptor that contributes to the early phase of auxin induced 

elongation independent of regulation of gene expression (Perrot-Rechenmann, 2010). Auxin 

perception by ABP1 was shown to promote the activity of two Rho GTPases, which act on the 

lobbing of pavement cells (Xu et al., 2010). A family of six F-Box E3-ubiquitin ligases named 
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TRANSPORT INHIBITOR RESPONSE1 (TIR1)/ AUXIN SIGNALLING F-BOX (AFB) 

also possess auxin receptor function (Gray et al., 2001; Dharmasiri et al., 2005; Kepinski and 

Leyser 2005). Upon auxin binding to the catalytic site of the TIR1/AFB receptors, the E3-

ubiquitin-ligase binding and activity towards AUXIN INSENSITIV/ INDOLE-3-ACETIC 

ACID (Aux/IAA) proteins are strengthened and they become ubiquitinated and subsequently 

degraded by the 26S-proteasome (Kepinski and Leyser, 2004; Tan et al., 2007). The Aux/IAA 

proteins are inhibitors of AUXIN RESPONSE FACTORS (ARF), as they hetero-dimerization 

via conserved domains and prevent their binding to promoters of auxin-induced genes 

(Overvoorde et al., 2005). Hence, auxin induces the transcription of target genes by activation 

of the ARF proteins (see fig. I-5). ARF transcription factors form a family of 23 members in 

Arabidopsis and bind to AUXIN RESPONSE ELEMENTS (AuxREs) in promoters of auxin-

responsive genes (Okushima et al., 2005; Ulmasov et al., 1997 a). The majority of the 29 

Aux/IAA genes in Arabidopsis are rapidly auxin-induced, which provides a primary negative 

feed-back loop on auxin signalling, shaping the auxin signal (Abel et al., 1994; Remington et 

al., 2004). 

I.4.4 Interactions of light signalling and the auxin response 

Like other light signalling mutants, multiple spa mutants and cop1 mutants exhibit short 

hypocotyls and dwarfed plant growth with the number and the size of leaf cells being 

diminished (Fackendahl, Phd thesis, 2011; Ranjan et al., 2011; Laubinger et al., 2004; 

Fittinghoff et al., 2006). It remains an open question, whether these phenotypes are caused by 

misregulation of the auxin response (Ranjan et al., 2011). Non-cell-autonomous functions for 

SPA genes have been described for seedling growth, the induction of flowering time and the 

regulation of leaf size by the tissue-specific expression of SPA1 protein in spa triple mutants 

(Ranjan et al., 2011). Light can act on all levels of the auxin pathway. Auxin biosynthesis was 

shown to be regulated negatively by phyB, which acts by lowering TAA1-dependend auxin 

production (Tao et al., 2008). The PAT is also controlled by light. The intracellular 

distribution of PIN proteins is controlled by blue light via HY5 action in root cells (Laxmi et 

al., 2008). The ABCB19 auxin transporter is under the control of cry1 and phyB, which also 

influences auxin flow in a light-dependent fashion (Wu et al., 2010). Additionally, the root to 

shoot ratio of auxin is controlled by phyB and cry1. Furthermore, phyA phyB double mutants 

are largely deficient in the shoot to root distribution of auxin, causing aberrant growth 

responses of the root (Salisbury et al., 2007). Furthermore, the auxin signalling network is 

regulated by light signalling. Several iaa gain-of-function mutants exhibit growth defects in 
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light-associated phenotypes, such as in the HY2/IAA3 gene, which regulates auxin and light-

mediated development of the shoot and the root (Tian and Reed, 1999; Soh et al., 1999). 

Strinkingly, a high number of auxin-related genes is among the genes rapidly regulated by R 

and FR light (Tepperman et al., 2001 and 2006; Ma et al., 2001; Devlin et al., 2003). It has 

been noticed that several Aux/IAA genes are light-regulated (Tepperman et al., 2001 and 

2006). Studies of an IAA19 promoter::GUS fusion revealed that IAA19 expression was 

strongly repressed in a time and fluence-dependent manner in white light (Saito et al., 2007). 

IAA19 is strongly auxin-induced, mainly in the hypocotyl and the root, dependent on ARF7 

that binds to the IAA19 promoter (Tatematsu et al., 2004). Due to the strong up-regulation by 

auxin, the IAA19 promoter has been used to visualize auxin signalling (Keuskamp et al., 

2010). Interestingly, the transcript levels of IAA29 have been reported to be down-regulated in 

a multiple pif mutant and up-regulated in a PIF4/PIF5 dependent manner at the end of the 

night in SD grown plants (Leivar et al., 2009; Kunihiro et al, 2011). Whether PIF4 and PIF5 

directly bind to the IAA29 promoter to modulate auxin signalling or whether up-regulation of 

IAA29 requires additional factors has not been solved. A direct regulation of Aux/IAA genes 

by light signalling has also been proposed due to the HY5 binding to the promoters of the R 

repressed IAA8, IAA16, IAA17 and IAA18 (Lee et al., 2007). Furthermore, the transcript 

abundance of IAA7 and IAA14 are lower in hy5 mutants compared to the WT and HY5 can 

bind the IAA7 promoter in vitro (Cluis et al., 2004). The majority of SMALL AUXIN UP RNA 

(SAUR) genes are rapidly and strongly auxin-induced and they code for small proteins unique 

to plants that have repeatedly been noticed to positively correlate with cell elongation (Knauss 

et al., 2003; Esmon et al., 2006). The SAUR19-24 subfamily promotes cell expansion in an 

auxin-dependent fashion and the overexpression of SAUR19 in the pif4 mutant restores the 

auxin-induced hypocotyl elongation response to high temperatures (Franklin et al., 2011; 

Spartz et al., 2012). SAUR proteins may in part act on auxin transport by association to the 

PM (Spartz et al., 2012). Several SAUR promoters have also been identified as direct targets 

of HY5-binding (Lee et al., 2007). 

Two systems are employed to monitor the auxin response. A synthetic auxin-responsive 

promoter sequence has been generated that contains tandem repeats of AuxRE core motifs 

DR5 promoter that is fused to reporter genes (e.g. GUS and LUC).The DII-domain of IAA28 

was fused to VENUS (fast maturating YELLOW FLUORESCENT PROTEIN (YFP)), which 

was shown to represent a more direct and more sensitive auxin signalling sensor system 

(Ulmasov et al., 1997; Brunoud et al., 2011).  
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Due to the complexity of the auxin pathway, light repression of auxin-up-regulated genes 

could be caused by a direct or indirect regulation via the auxin signalling pathway 

(Tepperman et al., 2006). The characteristic promoter sequences of auxin-regulated genes are 

auxin response elements (AuxRE) and most of them share the common consensus core motif 

TGTCT(C), though cryptical AuxRE exist that do not share the consensus (Ulmasov et al., 

1997 b; Walcher and Nemhauser, 2011). Light regulated genes carry LRE in their promoter 

sequences, such as G-BOX motifs that can be bound by PIF and HY5 and may promote or 

repress the expression of the gene (Martínez-García et al., 2000; Lee et al., 2007). 

 

 
Figure I-7: Possible modes of the regulation of light- and auxin-regulated genes. Shown is a representation of the 
pathways that could influence the regulation of auxin-up-regulated and light-repressed genes. This applies to a large subset of 
auxin-associated genes. 

 

For the two Aux/IAA genes, IAA19 and IAA6, three AuxRE motifs were identified by 

sequence analysis within the 300-bp promoter region (Remington et al., 2004). A G-Box 

motif has also been detected in the 1000-bp promoter of IAA19 (Sibout et al., 2006).  

For virtually all auxin-induced genes, it remains to be solved, if direct light-regulation is 

involved in their light-repression or if their regulation is only controlled by AuxRE. 

Therefore, in order to unravel the input of light to the auxin signalling pathway, it will be 

important to investigate the interaction of light and auxin on the level of individual promoters 

to dissect direct and indirect regulation of gene expression (Fig. I-7). 

By controlling the regulation of auxin-regulated genes, such as IAA19, light could directly 

influence auxin-responsiveness of cells and tissues to modulate the output of the auxin 

system, such as elongation responses (Cluis et al., 2004; Sibout et al., 2006; Tepperman et al., 

2006).  
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I.4.5 Light regulation of the auxin response in the SAS 

The interplay of light and auxin responses is also beginning to be unravelled in the SAS. The 

shade induced elongation responses of the hypocotyl require the modulation of auxin 

biosynthesis, transport and signalling. TAA1 is essential for the increase of auxin levels in 

low R:FR conditions which is in turn required for the elongation response of the seedling (Tao 

et al., 2008). The gene expression of auxin-responsive genes (e.g. IAA genes) is elevated in 

low R:FR conditions and  the auxin response in cotyledons is higher in low R:FR than in high 

R:FR (Devlin et al., 2003; Tao et al., 2008). However, the transcript level of TAA1 is not 

responsive to the shade treatment (Tao et al., 2008). The two family members YUC1 and 

YUC4 are expressed in the aerial part of the seedling and they are together important for the 

hypocotyl elongation in low R:FR compared to high R:FR (Won et al., 2011). Furthermore, 

overexpression of YUC1 in the sav3 mutant background restores the shade avoidance 

phenotype of the mutant. YUC2, YUC5, YUC8 and YUC9 transcript levels are elevated in 

shade, but yuc multiple mutants including yuc8 yuc9 and the yuc3 yuc5 yuc7 yuc8 yuc9 

quintuple mutant (yuc-Q) exhibit normal elongation response of the hypocotyl to simulated 

shade (Tao et al., 2008). This indicates that the YUC enzymes that catalyse the rate-limiting 

step in the auxin biosynthesis may be up-regulated in shade conditions to increase auxin 

levels (Tao et al., 2008; Won et al., 2011). The transport of auxin is also essential for the low 

R:FR dependent elongation response of the hypocotyl (Steindler et al., 1999; Pierik et al., 

2009; Keuskamp et al., 2010). PIN3 is required for the hypocotyl elongation response, up-

regulated on the transcript level and the stabilized on the protein level in shade avoidance 

conditions (Devlin et al., 2003; Friml et al., 2002; Keuskamp et al., 2010). Furthermore, PIN3 

is relocated in order to redirect auxin flow towards the epidermis, which promotes auxin-

responsive gene expression in the epidermis (Friml et al., 2002; Keuskamp et al., 2010). Also, 

SAUR genes, which function in auxin regulated elongation processes, are up-regulated in 

shade conditions (Roig-Villanova et al., 2007). 
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I.5 Aims of this thesis 

(I)  Investigation of functions of the SPA genes and COP1 in shade avoidance 

responses: COP1 is an important positive regulator of the shade avoidance syndrome 

in seedlings, but a function for SPA genes in shade avoidance has not been described. 

Thus, the first aim of this study was to unravel a role of SPA genes in shade avoidance 

including an investigation of functions of COP1 and the SPA genes in shade avoidance 

responses of adult plants. The examination was carried out on the phenotypic and the 

molecular level.  

 

(II)  Analysis of auxin response in spa mutant backgrounds: The spa mutants exhibit 

seedling and adult leaf phenotypes that are phenocopied by auxin signalling and auxin 

biosynthesis mutants. Furthermore, SPA1 was implicated in non-cell-autonomous 

signalling. Thus, the second aim of this study was to investigate the auxin response in 

spa mutants. DR5::GUS was introduced in the spa1 spa2 spa4 background and 

analysed alongside the spa1 spa3 spa4 DR5::GUS in darkness, light, SAS and adult 

plant development. 

 

(III)  Dissection of the light- and auxin-regulation of auxin-induced and light-repressed 

genes: The evidence for light-regulation of auxin-induced genes is substantial, but 

whether direct light signalling to the promoters of auxin-induced genes down-

regulates them in the light is still unexplored. So, the third aim of this study was to 

investigate the regulation of genes that are auxin-induced and light-repressed on the 

level of the promoters. To this end, promoter::luciferase constructs were generated 

and analysed for the regulation in darkness vs. red light (Rc). 
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II.  Results 

II.1  SPA gene function in the SAS 

Several cop1 mutants exhibit a reduced elongation response to simulated shade and the cop1 

mutation genetically interacts with two bbx mutations in shade avoidance (Crocco et al., 2010; 

McNellis et al., 1994). As SPA proteins commonly act together with COP1 (reviewed in 

Hoecker, 2005), functions of SPA genes in shade avoidance were tested. 

 
Figure II-1: Simulated shade set-up for adult plant analysis. All seedlings were initially grown in continuous white light 
(Wc) in the lower shelf (A) and a subset subsequently shifted to Wc supplemented with continuous far-red light from LED 
light sources (Wc+FRc) in the upper shelf (B). The Wc+FRc set-up resulted in a lower R:FR ratio of the ambient light than in 
Wc alone, but the PAR was identical in both light conditions. Experiments with seedlings were analysed in two identical light 
chambers employing the same strategy. 

 

The simulated shade conditions employed in this study consisted of continuous white light 

(Wc) supplemented with additional continuous FR light (Wc+FRc), resulting in a lower R:FR 

ratio in comparison with the Wc light condition alone, but an unchanged PAR. Only de-

etiolated seedlings are capable of exhibiting longer hypocotyls in response to low R:FR 

conditions compared with sunlight conditions. Dark-grown seedlings react to low R:FR light 

treatment with inhibition of the hypocotyl elongation, due to the high activity of dark-
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accumulated phyA (Smith et al., 1997; Strasser 2010). Therefore, all seedlings were grown for 

three to four days in Wc, which was provided by fluorescent light tubes (chamber for adult 

plant growth) or white light LED light sources (chambers for seedling experiments). 

Subsequently, one part of the seedlings was moved to the low R:FR conditions that were 

generated by additional FR LED light sources (see Fig. IV-1 for spectral analyses). The 

growth strategy for the analysis of adult plant responses to simulated shade is exemplarily 

presented in figure II-1.  

First, soil-grown WT seedlings were analysed in the newly constructed simulated shade 

conditions and displayed elongated hypocotyls in low R:FR conditions compared to Wc (data 

not shown; Sahm, 2010). Additionally, seedlings were grown on MS plates in the simulated 

shade in order to allow transcript level analyses and other applications. When the response of 

the hypocotyl to low R:FR was analysed in seedlings grown on MS plates, no elongation 

response to the low R:FR treatment was observed compared with the seedlings grown in Wc. 

It was reasoned that the shade avoidance response might depend on the dark surface of the 

soil or other properties that differ between soil and MS plates in our set up. The hypocotyl 

elongation to low R:FR conditions could be restored in seedlings grown on blackened MS 

medium (agar supplied with 1% activated charcoal, black MS), but not on MS plates, which 

had a blackened bottom (supplemental figure S1). This suggests that the obscureness of the 

soil was the decisive factor for the elongation response of the seedlings to low R:FR in 

contrast to the translucent MS medium. Thus, all shade experiments were either performed on 

soil where indicated or on MS medium that contained 1% charcoal (black MS). 

II.1.1 Phenotypic and molecular analysis of spa mutants and the cop1 mutant in low 

R:FR conditions 

II.1.1.1 SPA genes are essential for the shade avoidance responses of seedlings  

In order to investigate functions for SPA genes in the SAS, spa single and multiple mutants 

were analysed in the Wc and Wc+FRc conditions. Seedlings were grown in Wc for three days 

and shifted to low R:FR conditions (Wc+FRc) for additional three days, while a second set of 

seedlings was kept in Wc. WT seedlings responded to the low R:FR treatment with increased 

hypocotyl elongation, exhibiting an approximately two times longer hypocotyl compared to 

seedlings grown in Wc (Fig. II-2 A,B). This demonstrates that the low R:FR set-up triggered 

an elongation response in seedlings. The phyB-9 mutant displayed long hypocotyls in Wc, 
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when compared to the WT and shorter hypocotyls in low R:FR conditions when compared to 

Wc. 

 
Figure II-2: SPA genes are essential for hypocotyl and petiole elongation in low R:FR.  A) Shade phenotype of six-day-
old black MS grown spa mutant seedlings. Within each pair of seedlings of one genotype, seedlings grown in continuous 
white light (Wc) are on the left, seedlings grown in continuous white light supplemented with far-red light (Wc+FRc) on the 
right. The white bar represents 5 mm. B) Hypocotyl length of spa mutants in Wc and Wc+FRc (>15 seedlings were 
measured, data presented as mean ± standard error of the mean (SEM)). C) The petiole length of the cotyledons of triple and 
quadruple spa mutants (the length of the two petioles per seedling was averaged, >15 seedlings were measured, data 
presented as mean ± SEM) 
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The reduction of hypocotyl elongation in the phyB mutant was described before and was most 

likely caused by the phyA-mediated HIR triggered by the higher FR fluences (Devlin et al., 

2003). Thus, the observed low R:FR triggered elongation responses reflect the net sum of low 

R:FR dependent increase and FR-HIR dependent decrease of the hypocotyl length of the 

seedlings (Devlin et al., 2003). The spa single mutants did not show an altered elongation 

response of the hypocotyl compared with the WT seedlings. However, the spa1 spa2 spa3 

spa4 quadruple mutant (spa-Q) did not show a hypocotyl elongation response to low R:FR 

compared with Wc. This indicates that the SPA genes are essential for the response of 

hypocotyls to low R:FR and function redundantly. Both tested double mutants, spa1 spa2 and 

spa3 spa4 exhibited longer hypocotyls in low R:FR than in Wc, but the elongation response to 

simulated shade was diminished compared with the WT and the single mutants (Fig. II-2 B). 

Similarly, the spa2 spa3 spa4 and spa1 spa2 spa3 triple mutants responded with a significant 

hypocotyl elongation response to the simulated shade conditions. The hypocotyl elongation 

response of the spa1 spa2 spa3 mutant to low R:FR conditions compared to the Wc 

conditions was stronger than the hypocotyl elongation response of the spa2 spa3 spa4 mutant 

that showed a reduced elongation response to low R:FR. The hypocotyls of the two other 

triple mutants failed to respond to the applied low R:FR treatment, exhibiting the same 

hypocotyl length under Wc and simulated shade. These results suggest that SPA genes have 

redundant, but also distinct functions in the elongation response of the hypocotyl to low R:FR 

treatment. SPA1 and SPA4 are sufficient to sustain a shade avoidance response of seedlings, 

when the other three SPA genes are mutated.  

The petiole elongation of the cotyledons of six-day-old plants in response to Wc and Wc+FRc 

treatment was also analysed. It was observed that the spa1 spa3 spa4 and the spa1 spa2 spa4 

triple mutants failed to exhibit a petiole elongation response to the low R:FR conditions 

compared with the elongation response seen in the WT (Figure II-2 C). The same was true for 

the spa-Q mutant. The two other triple mutants still expressing SPA1 or SPA4 displayed an 

elongation response of the petioles to the low R:FR treatment. Again, the spa1 spa2 spa3 

mutant showed a stronger response to the low R:FR treatment than the spa 2 spa3 spa4 

mutant. Thus, similar results were obtained for the elongation response of the hypocotyl and 

the elongation response of the petioles of the cotyledons. This suggests that both responses 

are connected by a common mechanism which is controlled by the SPA genes. 
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II.1.1.2 Transcript analysis of shade marker genes in spa mutants and cop1-4 

 
Figure II-3: Expression of early shade marker genes in spa multiple mutants. A) Transcript levels of PIL1, ATHB2, 
XTR7/XTH15 and IAA19 were analysed with quantitative qRT-PCR. Seedlings were grown for 4 d in continuous white light 
(Wc) and subsequently shifted to low R:FR conditions or kept in Wc for 3 h. UBQ10 was used as endogenous control. Data 
represent the mean of three biological replicates ± SEM. B) Transcript level of HFR1 were analysed with qRT-PCR. 
Seedlings were grown for 4 d in Wc and subsequently shifted to low R:FR conditions or kept in Wc for 24 h and 48 h. 
UBQ10 was used as endogenous control. All data was calibrated to 0 h Wc sample and represents the mean of three 
biological replicates ±SE.C) Time-course analysis of the transcript levels of PIL1 in Wc and low R:FR conditions. UBQ10 
was used as endogenous control. All data was calibrated to 0 h Wc sample and represents the mean of three biological 
replicates ± SEM. 
 



Results 
__________________________________________________________________________ 

   27 
  

Genes, which are swiftly up-regulated by shade conditions, are referred to as early shade 

marker genes. These include the transcription factors ATHB-2, PIL1 and HFR1 (Lorrain et al., 

2008) and genes encoding enzymes that are involved in cell wall modification, such as 

XTR7/XTH15 (De Lucas et al., 2008). Furthermore, a set of auxin-responsive genes is up-

regulated in response to low R:FR ratios (Devlin et al., 2003). As a loss of the shade-induced 

hypocotyl elongation response was observed in two of the four spa triple mutants and the spa-

Q, the involvement of SPA genes in the regulation of the transcript levels of early shade 

marker genes was tested. To this end, seedlings were grown for four days in Wc and were 

subsequently shifted to Wc+FRc (low R:FR) conditions or kept in Wc for the indicated time 

and the transcript levels of the shade marker genes were determined (Fig II-3). A significant 

up-regulation of HFR1, ATHB-2 and PIL1 in the WT was observed as early as 30 minutes 

after the onset of the shade treatment, the earliest time-point tested in this study (data not 

shown). Transcript levels of the shade marker genes ATHB2, PIL1 and XTR7 increased 

strongly in simulated shade conditions after three hours compared with Wc in the WT (Fig. II-

2 A). The transcript levels of ATHB2 and PIL1 equally increased in all spa multiple mutants 

in low R:FR compared to the WT. This indicates that SPA genes are not required for the 

initial accumulation of these transcripts in response to shade.  

The transcript levels of XTR7 were found to be significantly lower in all multiple spa mutants 

in low R:FR conditions compared with the WT and the induction of the XTR7 transcript level 

by low R:FR was weaker. The highest induction of the transcript level of XTR7 in the spa 

mutants was found in the spa1 spa2 spa3 mutant that exhibited a significantly higher 

induction compared to all other spa mutants (Fig. II-3 A). This indicates that the full 

induction of XTR7 by simulated shade requires functional SPA genes. It also provides a 

correlation between the aberrant elongation phenotypes of the spa multiple mutants compared 

to the WT and the transcript levels of a gene directly involved in the elongation of cells, 

except for the results obtained with the spa2 spa3 spa4 mutant (Fig II-2 B; Fig.  II-3 A).  

The transcript levels of another shade marker gene, IAA19, were also determined in the WT 

and the spa1 spa3 spa4 mutant in response to simulated shade treatment. The induction of the 

IAA19 transcript level was equal in WT and the spa1 spa3 spa4 mutant, though the IAA19 

transcript exhibited lower levels in the spa1 spa3 spa4 mutant in both conditions compared 

with WT. This indicates that the overall transcription levels of IAA19, but not the induction in 

response to low R:FR conditions, depend in part on SPA gene function (see also figure II-24).  

To test, if SPA genes might be required for the induction of transcript levels of shade marker 

genes in the seedling after prolonged shade treatment, the transcript levels of the shade marker 
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HFR1 were analysed after 24 and 48 hours of simulated shade treatment and Wc in the spa1 

spa3 spa4 triple mutant and the cop1-4 mutant (Fig. II-3 B). HFR1 transcript levels were 

found to be strongly increased in simulated shade in the WT and both mutants after 24 and 48 

hours. This indicates that neither SPA genes, nor COP1 are limiting for the up-regulation of 

HFR1 transcript levels in shade avoidance. This is in agreement with the previous observation 

that the regulation of HFR1 transcript levels in response to low R:FR conditions is largely 

independent of COP1 (Crocco et al., 2010).  

PIL1 is rapidly and strongly up-regulated by shade conditions. Furthermore, PIL1 levels 

remain elevated in prolonged shade. The transcript levels of PIL1 were also analysed in 

prolonged shade in a time-course experiment (Fig. II-3 C). The spa1 spa3 spa4 and the cop1-

4 mutants showed strongly increased transcript levels of PIL1 in response to low R:FR 

conditions that compare to the induction in the WT. The PIL1 transcript levels in Wc 

remained low in all lines. This suggests that SPA genes and COP1 are not limiting for the 

maintenance of high transcript levels of PIL1 and presumably other shade marker transcripts 

(data ATHB2 not shown) in prolonged shade conditions. The results of this study contradict 

the proposed function of COP1 in the general regulation of early shade marker genes, as 

COP1 was observed to negatively act on the increase of ATHB2 and PIL1 transcript levels in 

response to a low R:FR treatment (Roig-Villanova et al., 2006). On the other hand, PIL1 

transcript levels increased similarly in the WT and cop1 mutant in short term shade previously 

(Crocco et al., 2010), which is in agreement with this study. 

II.1.1.3 SPA gene function in adult leaves in low R:FR conditions 

SPA genes regulate adult stages in plant development, influencing final leaf size and also the 

timing of flowering (Laubinger et al., 2004 and 2006; Fittinghoff et al., 2006; Fackendahl, 

PhD Thesis, 2011 Ranjan et al., 2011). Hence, it was tested, if SPA genes are involved in the 

control of adult plant growth in response to our simulated shade conditions. Plants were 

grown on soil for four days in Wc and moved to simulated shade or kept in Wc for additional 

seven days (Fig. II-4). The elongation response to low R:FR conditions of the leaf petiole was 

detected in the WT that exhibited longer petioles, but leaf blades of similar size compared 

with Wc conditions (Figure II-4 B). The petioles from all spa triple mutants upheld robust 

responsiveness to the low R:FR treatment, while neither spa-Q nor cop1-4 showed any 

elongation response of the true leaf petioles. These results suggest that SPA genes and COP1 

have an essential function in the elongation response of leaf petioles to low R:FR conditions. 

In contrast to the seedling phenotype, where SPA genes differentially contribute to the 
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elongation response of hypocotyls and petioles of cotyledons, no qualitative difference in the 

SPA gene function could be found in the elongation response of petioles of true leaves in 

response to FR enriched conditions. 

 

 

Figure II-4: Adult plant growth in response to low R:FR is regulated by SPA genes and COP1. A) Pictures of 11-day-
old plants grown in continuous white light (Wc) or shifted to Wc supplemented with continuous far-red light (Wc+FRc) after 
four days. B) Leaf length measurements. The total leaf length and the petiole length of the longest leaves of plants grown in 
the Wc (-) or Wc+FRc (+) conditions were measured for each genotype and the leaf blade length calculated by substraction 
of the petiole length from the total leaf length. Data is represented as mean of blade length (± SEM of total length) and 
petiole length ± SEM, n > 8. C)  Sketch of the two values represented in B), the blade (dark green) and the petiole (light 
green) of a true leaf. 
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II.1.1.4 Accelerated flowering in low R:FR is independent of SPA and COP1 genes 

Shaded Arabidopsis plants react by accelerating flowering in long day conditions (Wollenberg 

et al., 2008). COP1 and SPA1 have a function in the photoperiodic pathway of flowering time 

control, as they inhibit early flowering in short days (Laubinger et al., 2006; Jang et al., 2008). 

Thus, the flowering time of all spa triple mutants and the spa-Q and cop1-4 mutants were 

determined in Wc and low R:FR light after four days of initial development in Wc (Fig. II-5). 

 

 

 

Figure II-5: Acceleration of flowering time in response to low R:FR is independent of SPA genes and COP1. The 
number of days (A) and number of true leaves (B) at bolting counted from plants grown on soil in continuous white light 
(Wc) or Wc supplemented with continuous far-red light (Wc+FRc) conditions after four days of Wc treatment. Data 
represented as mean of the flowering time of single plants (n≥8). Error bars represent SEM.  

 

The WT plants incubated in low R:FR conditions bolted markedly earlier and with fewer 

leaves compared with the plants grown in Wc (Fig. II-5 A,B). The flowering time in Wc of all 
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spa triple and quadruple mutants, except the spa1 spa2 spa4 mutant was indistinguishable 

from the WT. The spa1 spa2 spa3 mutant was found to flower significantly later in Wc 

conditions than the WT or any other spa mutant or the cop1-4 mutant. This was supported by 

observations in flowering time experiments in long day conditions (P. Fackendahl, personal 

communication). All genotypes displayed an acceleration of flowering time in simulated 

shade for both parameters similar to the WT flowering time. 

 

 
Figure II-6: The regulation of flowering time control genes in low R:FR conditions by SPA genes and COP1. The 
transcript levels of the floral integratos FT, CO and FLC were analysed in WT, spa1 spa3 spa4 and cop1-4 seedlings grown 
for four days in continuous white light (Wc) and shifted to Wc supplemented with far-red light (Wc+FRc) for additional 
seven days or kept in Wc. At a second time-point (6 h later), seedlings were harvested from both conditions. UBQ10 was 
used as endogenous control. Data represent the mean of three biological replicates ± SEM. 
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This result shows that neither SPA genes nor COP1 are involved in the acceleration of 

flowering in our simulated shade conditions. This indicates that phyB causes the acceleration 

of flowering time in low R:FR conditions independently of the COP1/SPA complex which is 

an important player in the photoperiodic flowering pathway in high R:FR (Laubinger et al., 

2006). 

In order to investigate the gene regulation of floral inducers and repressors implicated in the 

acceleration of flowering in low R:FR, the transcript levels of FT, CO and FLC were 

determined in the WT, spa1 spa3 spa4 and the cop1-4 mutant using qRT-PCR (Fig. II-6). The 

transcript levels of FT were strongly elevated in the WT background at the two chosen time-

points in low R:FR grown plants compared with Wc grown plants. This elevation was also 

observed in the spa triple and the cop1-4 mutant. This indicates that FT accumulates in 

response to the low R:FR treatment independently of SPA or COP1 genes and correlates with 

the observed flowering time phenotypes. 

CO transcript levels in the WT were similar at both time-points and in both conditions, but 

increased slightly in the spa1 spa3 spa4 mutant and the cop1-4 mutant in response to low 

R:FR conditions compared with Wc. FLC levels were unresponsive to the low R:FR treatment 

in all backgrounds, but the levels were low in the WT and the spa1 spa3 spa4 mutant and 

highly elevated in the cop1-4 background. The elevated FLC levels in the cop1-4 background 

correlate with the overall lower transcript levels of FT, but the FT transcript levels in the 

cop1-4 mutant were induced in the low R:FR conditions independent of the higher FLC 

transcript levels. The increased levels of FLC transcript in the cop1-4 mutant should be 

subject to further investigation with additional cop1 mutants. Taken together, FT levels were 

elevated in response to low R:FR independently of the CO and FLC transcript levels in all 

backgrounds.  

II.1.2 Analysis of the distinct functions of SPA1 and SPA2 in the regulation of the SAS 

II.1.2.1 SPA1/SPA2 promoter-swap analysis 

SPA1 sustains a hypocotyl elongation in response to low R:FR compared to Wc in the spa2 

spa3 spa4 mutant, whereas SPA2 could not serve this function in the spa1 spa3 spa4 mutant 

(Figure II-2). This difference in SPA1 function compared with SPA2 could be due to sequence 

differences in the protein-coding sequences or the regulating regions. The overlapping and 

distinct functions of SPA1 and SPA2 in photomorphogenesis were previously investigated 

using a promoter-swap approach (Balcerowicz et al., 2011; Fittinghoff, PhD Thesis, 2009). 
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Transgenic lines expressing SPA1 or SPA2 from the SPA1 or SPA2 regulatory sequences (5’ 

and 3’ regulatory regions) in a spa-Q mutant were analysed for complementation of the shade 

dependent elongation of the hypocotyl (Figure II-7). All lines that expressed the SPA1 protein 

over-complemented the spa-Q mutant hypocotyl shade phenotype. As observed previously, 

also the white light phenotype is at least fully complemented in all SPA1 expressing lines 

(Fittinghoff, PhD Thesis, 2008). Driven by the SPA2 promoter, SPA2 did not cause over-

complemention of the elongation response. 

 

 
Figure II-7: Divergent function of SPA1 and SPA2 in low R:FR derives from a combination of the regulatory 
sequences and the protein coding sequences. Hypocotyl measurements of black MS grown seedlings are presented. Lines 
expressing SPA1 or SPA2 from the 5’ and 3’ regulatory regions of SPA1 or SPA2 (promoter-swap constructs described in 
Balcerowicz et al., 2011 and Fittinghoff, PhD Thesis, 2009). Seedlings were grown in continuous white light (Wc) for 6 days 
or shifted to Wc supplemented with far-red light (Wc+FRc) after 3 days (≥ 10 seedlings were measured per genotype and 
condition, data presented as mean   ±  SEM)). The asterisk (*) indicates a still segregating line. 
 

However, when expressed from the SPA1 regulatory sequences, the SPA2 protein caused an 

elongation of the hypocotyl in response to low R:FR compared to the Wc conditions at least 

in one transgenic mutant line (in a second independent experiment, SPA1::SPA2 #68-5 also 

exhibited a more pronounced hypocotyl elongation similar to #61-8, data not shown). Thus, 

SPA2 alone is able to elicit the shade avoidance response in a spa1 spa2 spa3 spa4 quadruple 

mutant, but only if SPA2 is under the control of SPA1 regulatory sequences. This indicates 

that the protein sequence and the promoter activity both contribute to the distinct function of 

SPA1 and SPA2 in the low R:FR triggered elongation response of seedlings. 
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II.1.2.2 Analysis of SPA transcript levels in response to low R:FR 

As SPA genes are important for the hypocotyl elongation in response to low R:FR conditions, 

it is conceivable that their expression would be shade-regulated. Moreover, differential 

regulation of the four SPA genes might contribute to their difference in function. As the 

transcript levels of SPA1, SPA3 and SPA4 are light-induced, it could be expected that the 

supplemental FRc in the low R:FR conditions might result in elevated transcript levels of 

these genes  (Hoecker et al., 1999; Fittinghoff et al., 2006).  

 

Figure II-8: Regulation of SPA transcript levels in response to low R:FR conditions. Relative transcript levels of the four 
SPA genes were determined by qRT-PCR. Seedlings were grown for four days in Wc and transfered to low R:FR for the 
indicated time or kept in Wc. UBQ10 was used as endogenous control. Data were calibrated to Col-0 0 h for each gene and 
shown as the mean of three biological replicates ± SEM. A) Short-term experiment between 0 h and 3 h B) Long-term 
experiment between 0 h and 48 h. 
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The transcript levels of the SPA genes were determined in seedlings after different durations 

of Wc+FRc treatment (Fig. II-8). Thirty minutes after the onset of the shade treatment, the 

SPA transcript abundance was similar to the Wc conditions, thus the SPA transcript levels 

were not regulated in short-term shade (Fig. II-8 A).  Also, longer shade exposure did not 

result in an increased difference in SPA transcript levels between Wc and low R:FR grown 

seedlings (Figure II-8 B). SPA1 transcript levels increased over time in both simulated shade 

and Wc conditions, presumably indicating developmental dependent gene regulation. These 

data indicate that SPA transcript levels are not regulated by low R:FR conditions. Hence, the 

difference in SPA function is likely determined by differential activity of the SPA proteins. 

II.1.2.3 Analysis of SPA1 protein level in response to low R:FR 

SPA protein levels are subject to regulation in response to light signals (Balcerowicz et al., 

2011). Thus, stabilisation of SPA1 could contribute to its activity in the elongation responses 

to low R:FR. To determine the protein levels of SPA1 in Wc-grown seedlings and seedlings 

shifted to low R:FR conditions, an immunoblot with a SPA1-specific antibody was performed 

(Fig. II-9). The total protein levels in all samples were comparable as indicated by the overall 

equal tubulin levels. The SPA1 signal was absent from the spa1-100 null mutant and strong in 

the SPA1 overexpressing line (SPA1::SPA1-HA in RLD; Fittinghoff et al., 2006), though a 

faint background band was repeatedly observed in the null mutant.  

 
Figure II-9: SPA1 protein levels in simulated shade. Immunodetection of SPA1 protein levels in 4-day-old WT seedlings 
grown in continuous white light (Wc) and shifted to simulated shade for the indicated time (+FR) or kept in Wc (-). SPA1 
was detected with a SPA1 specific antibody (Maier, PhD Thesis, 2011). Tubulin levels were detected as loading control. 
Forty µg of total protein extract were loaded. For each time-point and light condition, two biological replicates are shown. 
 

The SPA1 levels in the protein samples taken from Wc and Wc+FRc treated seedlings 

showed no difference after one or three hours of the treatment. 24 and 48 hour time-points 

were also analysed with the same trend (data not shown). This indicates that the SPA1 protein 
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levels are not altered in response to the low R:FR treatment. Nevertheless, differences in 

SPA2 protein levels in Wc and simulated shade may contribute to the distinct function of 

SPA1 and SPA2 in the elongation responses of seedlings to low R:FR treatment. However, 

this question was not addressed as nuclear preparations would be necessary to determine 

SPA2 levels, which was not attempted due to time restriction. 

II.1.3 SPA genes genetically interact with HFR1, but not HY5 in shade avoidance 

The COP1/SPA complex acts as a negative regulator of transcription factors that trigger light 

responses (reviewed in Hoecker, 2005). Among these, HFR1 serves a prominent function as a 

negative regulator of shade avoidance responses (Sessa et al., 2005; Hornitschek et al., 2009). 

Overexpression of the HFR1 protein leads to a reduced hypocotyl elongation response to low 

R:FR conditions (Hornitschek et al., 2009; Galstyan et al., 2011). Thus, the question was 

addressed, whether the SPA genes might act via HFR1 to function in shade avoidance. 

Preliminary data in this regard were already obtained in our group under my supervision 

(Sahm, J., Examensarbeit 2010). The hfr1 mutant, spa mutants and a spa hfr1 quadruple 

mutant were used for the genetic interaction study and seedlings grown as described in figure 

II-2. In accordance with its function as a negative regulator of shade avoidance, hfr1-101 

mutants exhibited a longer hypocotyl only in low R:FR conditions compared to the WT 

(Figure II-10 A,B). As seen earlier in this study, the triple mutant only expressing the SPA2 

protein (spa1 spa3 spa4) did not show a shade avoidance phenotype. However, the 

introduction of hfr1-101 into this background partly restored the elongation response. This 

indicates that SPA genes interact with HFR1 in the response of the hypocotyl to low R:FR 

conditions and suggests that SPA genes act positively on shade avoidance by the repression of 

negative regulators as proposed for COP1 earlier (Crocco et al., 2010). It was reported that 

HFR1 inhibits transcript over-accumulation of ATHB2 as early as one hour after the onset of 

low R:FR conditions (Sessa et al., 2005). To investigate the regulation of ATHB2 in response 

to our shade avoidance conditions, the transcript levels were determined in the hfr1-101 

mutant and the hfr1 spa1 spa3 spa4 quadruple mutant after three hours of simulated shade 

treatment (Fig. II-10 C). No over-accumulation of the transcript was observed in the hfr1 

mutant, thus the reported transcript levels in the hfr1 mutant background could not be 

confirmed (Sessa et al., 2005). When compared to the WT, ATHB2 transcript levels were 

equally up-regulation within 3 hours of low R:FR treatment compared with Wc. Also, in the 

spa triple mutant background, the induction of the ATHB2 level was comparable to the WT, 

though lower levels were observed in Wc conditions. 
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Figure II-10: hfr1, but not hy5 mutation can rescue the hypocotyl elongation response to low R:FR in a spa triple 
mutant background. A) Continuous white light (Wc) and simulated shade (Wc supplemented with far-red light; Wc+FRc) 
phenotypes of eight-day-old seedlings. Within each pair of seedlings of one genotype, Wc grown seedlings are on the left, 
seedlings grown in low R:FR on the right. The white bar represents 10 mm. B) Hypocotyl length of soil-grown mutants in 
Wc and Wc+FRc (>15 seedlings were measured, data presented as mean ± SEM)). C) Relative transcript levels of ATHB2 
were analysed with quantitative qRT-PCR. Seedlings were grown for 4 days in Wc and subsequently shifted to low R:FR 
conditions or kept in Wc for 3 h. UBQ10 was used as endogenous control. Data represent the mean of three biological 
replicates ± SEM. 
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However, the ATHB2 transcript levels increased stronger in the spa1 spa3 spa4 hfr1 mutant 

background than in the spa triple mutant background. Thus, the up-regulation of the transcript 

levels of ATHB2 was not limited by the SPA genes or HFR1 alone in this experiment, but a 

genetic interaction between SPA genes and HFR1 was suggested on the level of ATHB2 

regulation. 

Another target of the COP1/SPA complex, HY5, has been associated with the shade 

avoidance response of seedlings recently (Sellaro et al., 2011). HY5 is a positive regulator of 

the sun-fleck response that is elicited in shaded plants that sporadically receive high R:FR 

signals, due to a changing lighting of the environment. Thus, altered regulation of HY5 in the 

cop1-4 and the spa1 spa3 spa4 triple mutant may cause shade avoidance related phenotypes 

and the elongation response of hy5 mutants. Crosses of hy5 with the cop1-4 and the spa1 spa3 

spa4 mutants were analysed accordingly (Fig. II-10 A,B). Both hy5 mutants exhibited longer 

hypocotyls in Wc, but normal elongation response compared with the WT. Furthermore, the 

hy5 mutations were not able to restore the diminished elongation response to low R:FR of the 

spa triple mutant or the cop1-4 mutant. Thus, HY5 was not required for the elongation 

response to low R:FR conditions. Furthermore, no shade specific genetic interaction of COP1 

or the SPA genes was observed with HY5, while the exaggerated elongation of hy5 mutants in 

white light was clearly SPA and COP1 dependent as described previously (Osterlund et al., 

2000; Saijo et al., 2003). 

II.1.4 Genetic interaction of phytochrome photoreceptors with SPA and COP1 genes in 

low R:FR 

The COP1/SPA complex is a central regulator of light signalling that is a direct and indirect 

downstream target of a large portion of the photoreceptors. It also functions upstream of phyA 

and phyB by regulating the protein levels of these photoreceptors (Boccalandro et al., 2004; 

Jang et al., 2010; Lian et al., 2011; Liu et al., 2011; Seo et al., 2004; Wang et al., 2001; Yang 

et al., 2001). The function of the COP1/SPA complex in shade avoidance may thus be 

upstream or downstream of phyA and/or phyB, as both phytochromes regulate the elongation 

response antagonistically. The spa1 spa3 spa4 mutant background was employed to analyse a 

genetic interaction of SPA genes with PHYA under low R:FR conditions (Fig. II-11). The 

phyA-211 single mutant exhibited an exaggerated shade phenotype compared to the WT, 

while no difference was observed in Wc between phyA-211 and the WT. The spa1 spa3 spa4 

phyA quadruple mutant displayed a pronounced elongation response in low R:FR conditions 

compared to the spa1 spa3 spa4 triple mutant. This may reflect the relief of a hyperactive 
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phyA-pathway in the spa triple mutant or may originate from a SPA independent phyA 

function. 

 

 

 
Figure II-11: Introduction of phyA mutation restores elongation response of spa1 spa3 spa4 to low R:FR.  
A) Shade phenotype of six-day-old seedlings. Within each pair of seedlings of one genotype, seedlings grown in continuous 
white light (Wc) are on the left, seedlings grown for three days in Wc and shifted for three days to low R:FR, are on the right. 
The white bar represents 10 mm. B) Hypocotyl lengths of black MS grown mutants. Seedlings were grown under Wc for 6 
days or shifted to white light supplemented with far-red light (Wc+FRc) after 3 days (>15 seedlings were measured per 
genotype, data presented as mean ± SEM). 

 

A putative dependency of phyB signalling on COP1 in low R:FR was tested with a cop1-6 

phyB double mutant (Fig. II-12). The cop1-6 single and the cop1-6 phyB-9 double mutants 

exhibited shorter hypocotyls than the WT and the phyB-9 mutant in both light conditions. 

 
Figure II-12: cop1 is epistatic over phyB in Wc and low R:FR. Hypocotyl length measurements of black MS grown WT 
(Col-0), phyB-9, cop1-6 and cop1 phyB double mutants. Seedlings were grown in continuous white light (Wc) for six days or 
shifted to Wc supplemented with continuous far-red light (Wc+FRc) after 3 days (n≥15, data presented as mean  ±  SEM). 
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Furthermore, the hypocotyl was not responsive to the low R:FR treatment in the cop1-6 and 

the cop1-6 phyB-9 double mutant, that both exhibited similar hypocotyl lengths in both light 

conditions. This result shows that cop1-6 suppresses the constitutive phyB phenotype 

completely, indicating that cop1 is epistatic over the phyB mutation in both light conditions. 

 

Notably, the spa1-2 mutation is capable of completely suppressing the phyB mutant 

phenotype of adult leaf blades in a spa1-2 phyB-1 double mutant (Ranjan et al., 2011) 

indicating an essential SPA1 function downstream of phyB involved in the constitutive shade 

avoidance phenotype of the adult plant. Thus, it was analysed, if spa1 was also epistatic over 

phyB in seedlings incubated in simulated shade (Fig.  II-13). 

 
Figure II-13: Genetic interaction analysis of the spa1-2 single mutant with phyA and phyB in low R:FR. A) White light 
(Wc) and shade phenotype of six-day-old seedlings grown on black MS in Wc (left) or shifted to low R:FR after three days 
(right). The white bar represents 5 mm. B) Hypocotyl lengths of black MS grown mutants. Seedlings were grown in Wc for 
six days or shifted to Wc supplemented with far-red light (Wc+FRc) after 3 days ( >15 seedlings were measured per 
genotype, data presented as mean ± SEM). 

 

Unlike the spa1-7 mutant (Col-0 background), the spa1-2 single mutant exhibited a 

significantly reduced hypocotyl elongation in response to low R:FR conditions compared with 

the RLD wild type (Fig. II-13 B). The phyA mutant exhibited an increased elongation in 

response to the simulated shade. In the spa1 phyA double mutant, the reduction of the shade 

phenotype of the spa1-2 single mutant was reversed, as the mutant exhibited an exaggerated 

shade dependent elongation response compared with the spa1-2 mutant or the RLD WT.  

The hypocotyl length of the spa1-2 phyB-1 double mutant was reduced in white light and 

simulated shade conditions compared to the phyB-1 mutant, but still considerably elevated 

compared to the spa1-2 single mutant.  
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Taken together, these results indicate that SPA1 contributes to the elongation response to low 

R:FR conditions and that phyB partly depends on SPA1, but to a far lesser extent than what 

was previously observed for the adult leaf phenotype (Ranjan et al., 2011). 

II.1.5 Structure-function analysis of SPA4 in low R:FR 

 

 
Figure II-14: The N-terminal domain of SPA4 is not limiting for the hypocotyl elongation response to low R:FR. A) 
Domain structure of the SPA4 protein and of the SPA4 deletions expressed in the spa3-1 spa4-1 double mutant background. 
Lines were described earlier (Fackendahl, PhD thesis, 2011) B) Hypocotyl length measurements of black MS grown mutants. 
Seedlings were grown in continuous white light (Wc) for six days or shifted to Wc supplemented with far-red light 
(Wc+FRc) after three days ( > 15 seedlings were measured per genotype and conditions, data presented as mean ± SEM). 

 

SPA4 (alongside SPA1) has a function in shade avoidance related elongation responses, as 

supported by the spa1 spa2 spa3 triple mutant phenotype in this study (see figure II-2). The 

investigation of the contribution of the different domains of SPA4 to the elongation response 

could promote the understanding of the function of SPA4 in shade avoidance. SPA proteins 
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contain a conserved coiled coil (cc)-domain for interaction with COP1 and other SPA 

proteins, a C-terminal WD-40 domain for substrate recognition and a more variable N-

terminal domain that carries a kinase-like domain of yet unknown function (Figure II-14 A). 

The N-terminus of SPA1 has been found to be important for SPA1 function in seedlings and 

flowering time control (Fittinghoff, PhD Thesis, Fackendahl, PhD Thesis; Dieterle, personal 

communication). 

 

In order to unravel functions of different SPA4 domains in the elongation response of 

seedlings, lines that express truncated protein versions of SPA4 driven by the 35S promoter 

were tested for complementation of the spa3 spa4 mutant phenotype (Fackendahl, PhD 

Thesis, 2011). Except the ∆cc-SPA4 construct (SPA4 lacking the coiled-coil domain) that 

showed no complementation of the hypocotyl elongation, neither in Wc, nor in response to 

simulated shade, all lines fully complemented or over-complemented the hypocotyl 

elongation in response to low R:FR conditions (Figure II-14 B).  

Here, making use of lines expressing different deletion constructs of SPA4, it was shown that 

the coiled-coil domain of SPA4 was necessary for SPA4 function in shade avoidance, 

suggesting that complex formation of COP1 and SPA4 and presumably with other SPA 

proteins is important for SPA4 function. Neither the kinase-like domain, nor the entire N-

terminal domain of SPA4 is likely to serve a limiting function for the elongation response. 

The fact that over-expression of SPA4 by the 35S promoter leads to an elevated hypocotyl 

elongation in low R:FR indicates a dose-dependent activity of SPA4. Moreover, the function 

of SPA4 is not dependent on regulation of the endogenous SPA4 promoter in shade 

conditions. 

II.1.6 Expression of SPA1 from the epidermis-specific ML1 and CER6 promoters 

rescues the spa1 spa3 spa4 response to low R:FR 

Functional SPA1 is sufficient to maintain a pronounced shade avoidance response of the 

hypocotyl in the spa2 spa3 spa4 triple mutant (Figure II-2). SPA1 is ubiquitously expressed 

throughout the seedling at high levels, but expression in the phloem is sufficient for its 

function in dark- and light-grown seedlings and in flowering time control (Fittinghoff et al., 

2006; Ranjan et al., 2011). In order to elucidate a tissue-specific SPA1 function in the shade 

avoidance response of seedlings, lines expressing SPA1 from various tissue-specific 

promoters in the spa1 spa3 spa4 mutant were analysed for complementation of the hypocotyl 

elongation phenotype (Figure II-15) (Ranjan et al., 2011).  
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Figure II-15: Expression of SPA1 from two epidermis-specific promoters (ML1 and CER6) restores the elongation 
response of the hypocotyl to low R:FR. Lines expressing SPA1 from various tissue-specific promoters were described 
earlier (Ranjan et al., 2011). A) White light (Wc) and shade phenotype of six-day-old seedlings grown on black MS in Wc 
(left) or shifted to low R:FR after three days (right). The white bar represents 5 mm. B) Hypocotyl length measurements of 
black MS grown mutants. Seedlings were grown in Wc for six days or shifted Wc supplemented with far-red light (Wc+FRc) 
after three days (n > 15, data presented as mean ± SEM)). 
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The tissue-specificity of the SPA1 expression in this spa mutant background has not been 

analysed, but differential expression of the promoters is assumed. SPA1 over-complemented 

the mutant shade avoidance phenotype, when expressed from the endogenous SPA1 promoter, 

as it was observed with SPA1::SPA1 lines in the spa-Q background, analysed in this study 

(Figure II-15 A,B,C see also figure II-7).When SPA1 was expressed from the ML1 promoter 

or the CER6 promoter (epidermis-specific promoters), the elongation response to low R:FR 

was partly restored in all transgenic lines. This suggests a function for SPA1 in the epidermis 

that leads to an elevated elongation of the hypocotyl in low R:FR conditions. The expression 

of SPA1 in the shoot apical meristem (KNAT1::SPA1), the phloem (SUC2::SPA1), the root 

(TobRB7::SPA1) or the mesophyll (CAB3::SPA1) did not restore the hypocotyl elongation in 

low R:FR compared to Wc, while slightly longer hypocotyls were observed for lines 

expressing SPA1 from the SUC2 promoter in both conditions (Fig. II-15 C). Taken together, 

this suggests that SPA1 expressed in single tissues other than the epidermis cannot rescue the 

hypocotyl response to low R:FR conditions.  

II.2  SPA genes interact with the auxin response 

It has been recognised that the spa mutant phenotypes overlap with auxin-related phenotypes, 

such as short hypocotyls in darkness and light compared with the WT and a reduced number 

and size of leaf cells in true leaves (Ranjan et al., 2011; Fackendahl, PhD Thesis, 2011). 

Furthermore, the shade avoidance phenotype of spa triple and quadruple mutants also 

resembles an aberrant auxin response. Thus, the auxin response was analysed in seedlings in 

different light conditions and in adult leaves in WT and spa triple mutants. DR5::GUS was 

crossed with the spa1 spa2 spa4 mutant (See Material and Methods for details on the 

selection of the mutants). 

II.2.1 Auxin signalling in SPA triple mutant seedlings in darkness and low FR light 

Seedlings of DR5::GUS and two lines from independent crosses of spa1 spa3 spa4 

DR5::GUS and spa1 spa2 spa4 DR5::GUS were grown in darkness or low FR light (0.2 µmol 

× m-2 × sec-1) for four days and a GUS staining was performed. Generally, all DR5::GUS lines 

employed throughout this study showed a pronounced staining at the root tip that reflects a 

local auxin signalling maximum, which was not observed to change in any condition. In a 

first set of experiments, high variations of the GUS signal distribution and intensity was 

observed within each genotype (data not shown). Nevertheless, the trend showed that the 



Results 
__________________________________________________________________________ 

   45 
  

GUS staining was strongest in dark-grown DR5::GUS seedlings, where the cotyledons and 

the apical hook were stained. Also in low intensities of FR light, the staining was weaker in 

DR5::GUS seedlings compared to dark-grown seedlings. The staining was overall weaker in 

the spa1 spa3 spa4 and the spa1 spa2 spa4 mutant backgrounds, exhibiting staining in dark-

grown seedlings that resembles the Wc grown WT seedlings in case of the spa1 spa2 spa4 

seedlings. 

 
Figure II-16: The auxin response in darkness is reduced in the spa1 spa3 spa4 and spa1 spa2 spa4 mutants. GUS stainings of seedlings 
which were grown for four days in darkness or low continuous far-red light (FRc) (0.2 µmol ×m-2 × sec-1). The black bar represents 200 µm. 
The two lines per cross derived from independent crosses. 

 

Subsequently, the experiment was conducted with an altered procedure that minimized 

manipulation of the seedlings prior to the GUS staining (Fankhauser, personal 

communication, 2011). In the second set of experiments with the new method, the staining 

was mostly weaker, but more reproducible results were obtained. GUS activity was visible in 

cotyledons of dark-grown DR5::GUS seedlings, but was almost absent from most of the 

cotyledons of FR grown seedlings even at low FR intensities (Fig. II-16). In most seedlings 
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from the spa1 spa2 spa4 and spa1 spa3 spa4 crossings, the GUS signal was faint or no 

staining was visible in the cotyledons in all conditions, apart from single seedlings that 

showed staining. This indicates that at the seedlings stage, the auxin response differs between 

WT and the spa triple mutants. Thus, the phenotypes of the spa mutant seedlings correlate 

with an altered auxin response, which could partly explain the shorter hypocotyl and 

photomorphogenesis of the mutants in darkness. 

II.2.2 Auxin signalling is not enhanced by low R:FR in spa1 spa3 spa4 and spa1 spa2 

spa4 mutants 

 
Figure II-17: DR5::GUS expression is not elevated in spa1 spa3 spa4 and spa1 spa2 spa4 mutants in response to low 
R:FR. GUS staining of seedlings grown for four days in Wc shifted to Wc+FRc for seven hours or kept in Wc (growth at 
27°C). A representative seedling of DR5::GUS and of two independent crosses of spa1 spa3 spa4 DR5::GUS and spa1 spa2 
spa4 DR5::GUS are shown. 
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DR5::GUS activity is enhanced in the cotyledons of seedlings by shade treatment, which 

indicates increased auxin signalling (Tao et al., 2008). Auxin is required for the hypocotyl 

elongation in response to low R:FR conditions (Tao et al., 2008; Keuskamp et al., 2010). 

Thus, the question was addressed, if auxin signalling may be affected in the cotyledons of 

spa1 spa3 spa4 and spa1 spa2 spa4 mutants that lack the elongation response of the 

hypocotyl and the petioles of the cotyledons to low R:FR conditions. Preliminary results with 

DR5::GUS lines in shade avoidance were obtained earlier under my supervision (Dickopf, 

Master Thesis, 2011). In order to enhance the faint DR5::GUS signals obtained in preliminary 

experiments, the seedlings were grown in 27°C, which causes overall elongation compared to 

growth at 21°C, but does not affect the elongation response to the low R:FR treatment (Figure 

S2). The majority of DR5::GUS seedlings showed a strong blue staining of the cotyledons in 

response to seven hours low R:FR treatment, while the Wc grown seedlings showed blue 

staining only at the margins of the cotyledons and in the root tip (Figure II-17). The 

pronounced increase in GUS staining in response to low R:FR was not observed in the spa 

triple mutant DR5::GUS lines tested. This indicates that the increase of the auxin response is 

absent from the two spa triple mutants that lack the elongation response of the hypocotyl in 

response to low R:FR and that SPA genes are involved in the enhancement of the auxin 

response in response to low R:FR conditions.   

II.2.3 SPA genes regulate auxin biosynthesis genes in response to low R:FR 

The reduced DR5::GUS expression in shade-treated spa mutants compared to WT may be 

caused by a lower auxin biosynthesis or reduced auxin signalling or altered auxin transport. 

De novo auxin biosynthesis by the TAA1 pathway is required for shade avoidance elongation 

responses (Tao et al., 2008). TAA1 is thought not to be regulated by low R:FR conditions, but 

was shown to be a direct PIF4 target in temperature signalling (Tao et al., 2008; Franklin et 

al., 2011). YUC genes have also been implicated in the control of auxin biosynthesis in 

response to low R:FR and the expression of several YUC genes is responsive to low R:FR 

treatment in the hypocotyl and the petioles of true leaves (Konzuka et al., 2010; Tao et al., 

2008; Won et al., 2011). Thus, the transcript levels of YUC genes in WT and the spa1 spa3 

spa4 triple mutant were measured from samples taken from 11-day-old plants (Fig. II-18A). 

YUC2 transcript levels were neither elevated in the WT, nor in the spa triple mutant in 

response to the simulated shade. YUC8 transcript levels were higher in response to low R:FR 

conditions in the WT, but the elevation by simulated shade conditions was diminished in the 

spa1 spa3 spa4 mutant. The same trend was observed for YUC9, though the induction by low 
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R:FR conditions was not significant in the WT. This indicates that the transcript levels of 

YUC8 are under the control of SPA genes in a shade-dependent manner. The TAA1 transcript 

was determined in seedling tissue including WT, the spa1 spa3 spa4 mutant and the cop1-4 

mutant grown in Wc and low R:FR conditions for the indicated time (Fig. II-18 B). 

 
Figure II-18: Transcript levels of auxin biosynthesis genes in the spa1 spa3 spa4 mutant in simulated shade.  
A) Relative transcript levels of YUC2, YUC8 and YUC9 in Col-0 and spa1 spa3 spa4 triple mutants under Wc and Wc+FRc 
were analysed in seedlings grown for 4 days under Wc and shifted to Wc+FRc for additional 7 days or kept in Wc. UBQ10 
was used as endogenous control. Data represent the mean of three biological replicates ± SEM. B) TAA1 transcript levels in  
prolonged simulated shade (24h / 48h of Wc+FRc treatment compared to Wc treatment) in the spa triple mutant and cop1-4 
mutant. UBQ10 was used as endogenous control. Data represent the mean of three biological replicates ± SEM. 
 

The TAA1 transcript levels were similar in all tested conditions and backgrounds. The 

transcript of TAA1 was unresponsive to the low R:FR conditions after 24h or 48h of treatment 

compared to Wc in the WT the spa triple mutant and the cop1-4 mutant. This suggests that 

TAA1 is not differentially induced in our shade conditions and that SPA genes and COP1 are 

not limiting for TAA1 expression. Taken together, the data presented on auxin response in spa 

triple mutants and on the transcript abundance of YUC genes in the spa triple mutant 

backgrounds support the notion that SPA genes may act on the shade avoidance related 
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elongation responses in part by manipulating the auxin biosynthesis pathway. The transcript 

levels of YUC genes should also be measured at the seedling stage in order to correlate the 

hypocotyl and cotyledon phenotypes with the YUC transcript levels.  

II.2.4 Auxin signalling in young leaves of adult spa mutants  

 
Figure II-19: Auxin response is reduced in young leaves of spa1 spa3 spa4. The auxin response in the youngest leaves of 
2- week-old DR5::GUS, spa1 spa3 spa4 DR5::GUS and spa1 spa2 spa4 DR5::GUS plants, determined by GUS analyses.  
A) GUS staining of the youngest leaves of DR5::GUS and spa1 spa3 spa4 DR5::GUS plants. Leaves were bisected to allow 
uniform substrate uptake. B) A quantitative GUS analysis of DR5 activity in Col-0, spa1 spa2 spa4 and spa1 spa3 spa4. 
Samples were analysed in technical duplicates. Data are represented as the mean of three biological replicates ± SE. A 
student‘s t-test was performed and significant (p<0.05) differences compared with the WT background were asterisked(*). 

 

The leaf size of spa mutants has been analysed previously and found to be reduced due to a 

lower cell number and a diminished cell size when compared to the WT (Fackendahl PhD 

Thesis, 2011). SPA4 is the main SPA gene acting on adult plant growth (Fackendahl, PhD 

Thesis, 2011). SPA1 can act non-cell-autonomously from the vascular tissue or the mesophyll 

to control the leaf size, which indicates that they may act on hormone pathways (Ranjan et al., 

2011). Thus, the question was addressed, if auxin response was altered in the young leaves of 

spa1 spa3 spa4 (that grows small leaves compared to the WT, Fig. II-19 A) and the spa1 spa2 

spa4 mutant that grows larger leaves compared with the spa1 spa3 spa4 triple mutant more 

similar to the WT.  
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The activity of the DR5 promoter was analysed in the youngest leaves (where expansion takes 

place) of two-week-old plants grown in long days (LD) (Fig. II-19). The GUS staining was 

strong along the leaf margins in the WT background, but was confined to the leaf tip in the 

spa1 spa3 spa4 mutant (Fig. II-19 A). The lack of auxin response alongside most of the leaf 

margins correlates with the dwarfed leaf phenotype of this mutant, because elevated auxin 

response is associated with cell elongation and division in growing tissues. The auxin 

response in the leaves was also quantified with a fluorometric MUG assay (Fig.  II-19 B). The 

WT and the spa1 spa2 spa4 mutant exhibited higher DR5::GUS activities compared to the 

spa1 spa3 spa4 triple mutant in the youngest leaves of two-week-old plants. This correlates 

with the phenotypes, as spa1 spa2 spa4 mutants grow larger leaves than spa1 spa3 spa4 

mutants (Fackendahl PhD Thesis, 2011) and suggests that reduced auxin response may be 

involved in the dwarfed spa mutant phenotypes. 

II.2.5 Auxin-responsiveness of seedlings in darkness and light 

 
Figure II-20: 1-naphthaleneacetic acid (NAA) dose-response curve of DR5::GUS seedlings in darkness and light. 
Seedlings were grown in darkness for five days in liquid culture and treated with different NAA concentrations or mock-
treated. Seedlings were then incubated in darkness or light for 24 hours. A quantitative GUS assay was performed. The data 
represent the mean of three biological replicates ± SEM. 

 

If light affects auxin response on the level of auxin-responsiveness of the tissues, the auxin-

responsiveness to externally applied auxin should differ between light and darkness. In order 

to address this hypothesis, a series of dose-response curves with increasing 1-
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naphthaleneacetic acid (NAA) concentrations were conducted. DR5::GUS seedlings were 

grown in darkness and transferred to continuous white light or kept in darkness in liquid 

cultures and supplemented with different concentration of NAA for 24 hours. A difference in 

the response was repeatedly observed in the fluorometric assays most notably between 10-7 

and 10-5 M NAA, as light-grown seedlings showed a lower response in this range, but similar 

responses at higher concentrations (data not shown). This was also observed in the 

representative transfer experiment shown in figure II-20. The induction of DR5::GUS activity 

is increasing with a different slope between 10-6 and 10-5 M externally applied NAA. 

Taken together the data favour a slight light-dependent difference in auxin-responsiveness of 

seedlings, pointing towards a direct light-mediated manipulation of auxin signalling 

components. 

II.2.6 COP1 and SPA act on root elongation in darkness in an auxin-transport 

dependent manner 

It has been observed previously that cop1 mutant plants kept developing under dark 

conditions and even flowered when supplied with sucrose (McNellis et al., 1994; Ranjan, A., 

unpublished data). In contrast to WT seedlings that arrest root growth in darkness at some 

point roots were found to further extend in prolonged darkness in the cop1-4 background. 

Root elongation is under the control of multiple phytohormones, including auxin, which is 

necessary for root initiation and root growth, but can also inhibit primary root growth 

depending at high auxin levels in the tissue (Rahman et al., 2007). Thus, it was tested for the 

auxin dependency of the root elongation phenotype in the cop1-4 mutant. The root length of 

11- and 15-day-old dark-grown DR5::GUS, the constitutive photomorphogenic spa1 spa2 

spa4 DR5::GUS and cop1-4 seedlings, was determined on MS with 1% sucrose and with or 

without auxin transport inhibitor 1-N-naphthylphtalamic acid (NPA) (Fig. II-21 A-C). The 

WT arrested root growth as it has been reported and exhibited similar root lengths on plates 

with and without NPA. Both, the spa1 spa2 spa4 DR5::GUS mutant lines and the cop1-4 

mutant displayed longer roots on MS plates compared to the WT after 11 days that were even 

longer after 15 days, indicating further extension beyond day 11 in these backgrounds. The 

exaggerated growth of the roots in the two mutant backgrounds was reversed on NPA.  
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Figure II-21: Roots of spa1 spa2 spa4 and cop1-4 show elevated elongation in darkness that is reversed by NPA. 
A+B) Phenotype of 15-day-old seedlings grown in darkness on vertical MS + 1% sucrose plates (A) or plates containing in 
addition 5 µM NPA (B). The white bar represents 10 mm. C) Root length of DR5::GUS, spa1 spa2 spa4 DR5::GUS lines 
and cop1-4 mutant after 11 and 15 days of growth in darkness on vertical MS +1% sucrose plates or additionally on 5 µM 
NPA. Data shown as the mean of measured roots ± SEM (n ≥ 20). D+E) GUS staining of 15-day-old DR5::GUS and spa1 
spa2 spa4 DR5::GUS seedlings grown in darkness without (D) or with (E) 5 µM NPA. Representative seedlings are shown. 
The black bar represents 10 mm. The arrows indicate the position of a cotyledon of a) DR5::GUS and b) spa1 spa2 spa4 
DR5::GUS seedlings. 
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This suggests an essential requirement for auxin transport of the observed elongation of the 

roots in spa1 spa2 spa4 and cop1-4 mutants, while normal root elongation in darkness in the 

WT was independent of auxin transport.  

A subset of the 15-day-old DR5::GUS and spa1 spa3 spa4 DR5::GUS seedlings were 

analysed with a GUS staining to analyse the intensity of auxin signalling in the WT and the 

mutants (Fig. II-21 D,E). In the seedlings grown on MS plates, GUS staining was absent from 

the cotyledons (Fig. II-21 D). The cotyledons of DR5::GUS seedlings grown on MS 

supplemented with NPA, exhibited blue staining (Fig. II-21 E). The staining was much more 

intensive in the spa1 spa2 spa4 seedlings tested. This indicates that the auxin response 

increased in the cotyledons when polar auxin transport was blocked and that the auxin 

response was stronger in spa1 spa2 spa4 mutants in darkness when auxin transport was 

blocked. These data point towards increased auxin levels in the spa1 spa2 spa4 mutant in 

darkness or altered responsiveness of auxin in the cotyledons. 

 

To determine the NPA dependency of root growth in the light in WT and spa and cop1 

mutant, dark-grown seedlings were compared with Wc-grown seedlings in a second set of 

experiments. Roots of 15-day-old spa1 spa2 spa4 mutants and cop1-4 were shorter in Wc 

compared to the WT, but longer than in the respective dark-grown seedlings. NPA had an 

effect on the root length of the WT and the mutants in Wc, but only on the root length of spa1 

spa2 spa4 mutants and the cop1-4 mutant in darkness (Fig. II-22).  

This suggests that NPA reversed the exaggerated root extension in the mutants in darkness, 

but NPA does not contribute to the shorter root of spa triple mutant and cop1-4 in Wc. This 

leads to the speculation that SPA genes and COP1 may regulate auxin transport or are 

involved in the root length control in an auxin-independent process in darkness. 
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Figure II-22: The root length is decreased by NPA in the WT only in Wc, but in Wc and darkness in spa triple mutant 
and cop1-4. Seedlings were grown in white light (Wc) or darkness for 15 days on vertical MS plates containing 1% Sucrose 
+/- auxin transport inhibitor (5 µM NPA). A+B) Total root length measurments of Wc or dark-grown seedlings of WT, spa1 
spa2 spa4 DR5::GUS and cop1-4.  C+D) Relative root length in Wc and darkness comparing growth on plates with and 
without NPA calculated as ratio. The mean of the root length on MS+NPA was divided by the mean on MS and the data are 
presented as mean ± SEM. A student‘s t-test was performed and significant (p<0.05) differences from the WT were 
asterisked(*). 
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II.3  Functional promoter analysis of light and auxin regulated genes 

At the onset of photomorphogenesis, a high number of genes are swiftly regulated, most of 

which are up-regulated to serve functions in the light growth of the seedling. Other genes are 

down-regulated in response to light. This down-regulation may originate from a loss of dark-

up-regulation or a repression by a light-activated factor or additional indirect effects 

(Tepperman et al., 2006). Among the down-regulated genes, known hormone responsive 

genes were found to be over-represented, such as genes responsive to auxin. These genes 

include IAA19, IAA29 and SAUR-AC1/SAUR15 and several SAUR-like genes, such as SAUR-

AC1-l (At4g13790). This led to the question, if the light signal has a direct impact on the 

regulation of these genes. In order to unravel the interactions of light and auxin signalling 

pathways in regulation of the expression of auxin up- and light down-regulated genes, an 

analysis of the regulation was performed on the level of the promoters. It was hypothesized 

that, if auxin was to solely account for light repression, AuxREs should be essential for the 

light regulation of the genes.  

SAUR-AC1-l, a member of the SAUR-LIKE gene family contains a transcribed 509 base pair 

(bp) fragment, which contains a single 279 bp exon encoding a 92 amino acid (aa) protein (11 

kda protein). The 5’ promoter region up to the next gene is 2074 bp long including the 5’ 

untranslated region (UTR) and was included in the analysis in this study. 

First, 2.5kb fragments (or in case of SAUR-AC1-l the 5’ region up to the neighbouring gene) 

of the 5’ untranslated regions of candidate genes were fused to luciferase (LUC) and β-

glucuronidase (GUS) genes and stably transformed into Arabidopsis. The down-regulation of 

promoter activity by light was more prominent in the lines expressing the luciferase, 

presumably due to a higher GUS protein stability (Koo et al., 2007, data not shown). Thus, the 

analysis was continued with the lines expressing LUC. 

Seedlings of independent T2 lines were grown in darkness for three days and subsequently 

shifted to Rc (30 µmol × m-2 × sec-1) or kept in darkness. The LUC activity per µg total 

protein was determined for each individual line and condition and the ratio of LUC activity in 

Rc and darkness was calculated. The mean values of the ratio of the LUC activity in Rc and  

darkness of the promoter::LUC expressing lines are presented in figure II-23 (results of 

individual T2 lines: Supplement figure S3).  
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Figure II-23: Light regulation of auxin-induced promoters. A set of quantitative luciferase analyses (qLUC) was 
performed with Promoter::LUC lines of auxin-responsive genes (T2). Seedlings were grown in darkness for four days and 
transferred to Rc (30 µmol × m-2 × sec-1) for 24 h or kept in darkness. Around 50 mg of tissue was harvested and luciferase 
activity measurements and protein estimation performed with protein extracts in technical duplicates. The ratio of LUC 
activity (counts (photons)/(10 sec × µg protein)) in Rc divided by the activity in darkness was calculated for each individual 
line. The mean of ≥ 15 T2 lines is presented with error bars indicating ± SEM. 
 

The two Aux/IAA promoters, IAA5 and IAA30, were also analysed, though the genes were 

previously not reported to be pronouncedly regulated by light on the transcript level 

(Tepperman et al., 2001 and 2006). While the luciferase activity of the T2 lines expressing 

LUC from the IAA30 promoter showed a slight upregulation of the expression in red light in 

most lines compared to darkness (Fig. II-23 and Supplemental Fig S3), the IAA5::LUC lines 

showed a down-regulation by Rc. The IAA29 promoter caused a decrease of the luciferase 

signal in the light compared with dark-grown seedlings, but an overall weak luciferase 

activity in the T2 lines (Fig. II-23, Fig. S3).  

The two constructs IAA19::LUC and SAUR-AC1-l::LUC showed a strong luciferase activity 

in darkness and Rc. Furthermore they both exhibited a significant repression of the luciferase 

activity by red light, which is present in most lines tested (Fig. S4). 

The two promoters, IAA19 and SAUR-AC1-l that showed the highest overall expression and a 

clear light regulation, were chosen for a deeper analysis of auxin and light regulation. Also, 

IAA19 has been proposed to be a good candidate for a directly light-regulated Aux/IAA 

(Sibout et al., 2006). In order to confirm the auxin induction and light reduction of the 

transcript levels of IAA19 and SAUR AC1-l, a qRT-PCR was performed prior to the promoter 

function analysis (Fig. II-24). 
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Figure II-24: Auxin inducibility and light repressi on of IAA19 and SAUR-AC1-L transcript levels. Transcript levels 
were analysed using qRT-PCR. UBQ10 was used as endogenous control and data were calibrated to 0 hours (Col-0). The data 
are presented as mean of two biological replicates ± SEM on a logarithmic scale. A+B) Col-0 seedlings were grown in liquid 
MS + 1% Sucrose in continuous white light (Wc) and treated with 10-6 M NAA or mock-treated for 24 hours and qRT-PCRs 
performed. C+D) Four day-old dark-grown Col-0, spa1 spa2 spa4 and cop1-4 mutant seedlings were incubated in continuous 
red light (Rc; 30 µmol × m-2 × sec-1) for the indicated time or kept in darkness and qRT-PCRs performed. 
 

Both transcripts accumulated in the samples treated for 24 hours with NAA compared to the 

mock-treated samples (Figure II-24 A,B). In the same way, the transcripts were down-

regulated by continuous red light treatment over the course of 24 hours with a substantial 

reduction observed after one hour. These results are in agreement with the auxin-inducibility 

and light regulation of the genes previously reported in microarray studies (see also: Goda et 

al., the AtGenExpress Consortium, http://jsp.weigelworld.org/expviz/expviz.jsp.), supporting 

the view that the two genes are good candidates to be studied further.  

Similarly to what can be observed for virtually all light up-regulated genes (e.g. Chlorophyll 

a,b-binding protein (CAB)) both light down-regulated genes showed lower transcript levels in 

the spa triple mutant background and cop1-4 in dark conditions (Fig. II-24 C,D) as the 
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transcriptomes of dark-grown cop1-4 largely resembles the one of light-grown WT seedlings 

(Ma et al., 2002). 

 

 
Figure II-25: Activity of IAA19 promoter deletion constructs and point-mutated constructs in darkness and light. The 
5‘ 2.5 kb promoter fragment and mutated and deleted versions of IAA19 were cloned and fused to the firefly luciferase (LUC, 
yellow boxes). The dark blue boxes indicate the position of the four canonical AuxRE core motifs (A1-4), the green boxes 
represent the two G-Box motifs (G1-2). Triangles represent mutated motifs. A set of quantitative luciferase analyses (qLUC) 
was performed with individual lines of the indicated IAA19::LUC constructs (T2). Seedlings were grown in darkness for four 
days and transferred to continuous red light (Rc; 30 µmol × m-2 × sec-1) for 24 h or kept in darkness. Around 50 mg of tissue 
was harvested and luciferase activity measurements and protein estimation performed with protein extracts in technical 
duplicates.  The ratio of LUC activity (counts (photons)/(10 sec × µg protein)) in Rc divided by the activity in darkness was 
calculated for each individual line. The mean of ≥ 18 T2 lines is presented ± SEM (exception: IAA19D2: seven T2 lines). 
  

 

In addition to AuxRE core motifs (TGTCTC) that were present in both promoters, core motifs 

of G-Box elements (CACGTG) that represent well-characterised LREs bound by PIF and 

other light signalling factors, such as HY5, were detected in the sequence of the two 

promoters. These core motifs were subsequently checked for their contribution to the light 

and auxin regulation of the genes. To this end, mutated versions of the IAA19::LUC 

promoter-reporter construct were generated by applying a site-directed PCR approach. The 

mutated sites were the four AuxRE elements core-motifs TGTCTC that were altered from 

TGTCTC to TGgCTC (mAuxRE). The introduced mutation was reported to abolish ARF 

binding to the sequence in the DORNRÖSCHEN (DRN) promoter causing the inhibition of 
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auxin induction of the corresponding gene and has already been known from early studies of 

AuxREs (Cole et al., 2009; Ulmasov et al., 1997a). Additionally, the two G-Box elements 

were also mutated by two point mutations in the decisive central nucleotides from CACGTG 

to CAatTG (mG-Box) (Izawa et al., 1994). I also generated deletion constructs of the 2.5 kb 

IAA19 promoter named deletion construct one (D1) and deletion construct two (D2) (Fig.  II-

25). The first deletion construct contains three AuxRE elements and both G-Boxes, while the 

second fragment only contains the second G-Box and contains no AuxRE core motif. 

Transgenic plants were generated and processed as described for the IAA19::LUC construct, 

the resulting T2 lines screened for luciferase activity and mean values of the Rc to darkness 

ratio of the LUC activities calculated (Fig. II-25). The individual results for each line are 

presented in Figure S5. The IAA19D1::LUC lines showed a similar Rc/d ratio of LUC activity 

compared to the full-length fragment analysed previously. The IAA19D2::LUC lines exhibited 

very low luciferase signal intensities under both conditions in all lines examines (seven), 

which likely reflects the loss of important regulatory elements that uphold overall 

transcription, though the core promoter is expected to be included in the chosen region 

(Supplemental fig…). The mean value of the repression of LUC signal by light was 

significantly higher for the IAA19mG-Box1,2::LUC lines compared to the IAA19D1::LUC, the 

IAA19mAuxRE1,2,3,4::LUC and also the IAA19::LUC lines, but was still detectable in most 

T2 lines which is also represented by the mean value (Fig. II-25 and fig. S4). 

Taken together, the data suggest a function for the two deleted G-Box core motifs in the light 

regulated repression of IAA19. The deleted AuxRE core motifs on the other hand did not 

influence regulation of IAA19 in Rc in this study.  

Mutated versions of the SAUR-AC1-l promoter were generated as described above for the 

IAA19 promoter. One core motif was found for each, AuxRE and G-Box, respectively. Also, 

two deletion constructs were generated that covered only the G-Box or none of the two 

elements (Fig.  II-26). The first deletion construct (D1) resulted in comparable LUC activities 

and repression of activity after transfer to Rc compared to the full length construct (Fig. II-26, 

Fig. S5), but the second deletion construct (D2) showed a reduced regulation in response to 

light and a reduced overall activity in both conditions compared to the SAUR-AC1-l full 

length and the D1 construct. In lines that contain the mAuxRE (mAuxRE and mAuxRE mG-

box), the repression by light was considerably released, while lines carrying the SAURmG-

Box::LUC construct still showed a strong decrease of luciferase activity between dark and 

light-grown seedlings. Taken together, in contrast to IAA19, where G-Box elements were 
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more important for light regulation of the promoter than the AuxREs, a function in the light 

regulation could be assigned to the mutated AuxRE, but not to the G-Box motif.  

 

 
Figure II-26: Activity of SAUR-AC1-l promoter deletion constructs and point-mutated constructs in darkness and 
light.  The SAUR-AC1-l genomic region and the mutated and deleted versions were cloned and fused to the firefly luciferase 
(LUC, yellow boxes). The dark blue box indicates the position of the canonical AuxRE core motif (A), the green box 
represent the G-Box motif (B). The triangles represent mutated versions of the motifs. A set of quantitative luciferase 
analyses (qLUC) was performed with individual lines of the SAUR::LUC constructs (T2). Seedlings were grown in darkness 
for four days and transferred to Rc (30 µmol × m-2 × sec-1) for 24 h or kept in darkness. Around 50 mg of tissue was 
harvested and luciferase activity measurements and protein estimation performed with protein extracts in technical duplicates.  
The ratio of LUC activity (counts (photons)/(10 sec × µg protein)) in Rc divided by the activity in darkness was calculated 
for each individual line. The mean of ≥16 T2 lines is presented ± SEM. 
 

On the other hand, the SAURD1 fragment that does not contain the AuxRE is still responsive to 

the Rc treatment, while the SAURD2 fragment that lacks both core motifs shows a diminished 

response. It is hypothesised that the SAUR full length promoter may contain additional sites 

in the region missing in the SAURD1 fragment that confer negative influence on the light 

regulation, which is relieved in the D1 fragment and counteracted by the AuxRE.  

The auxin response curve of IAA19 determined from seedlings grown in liquid culture, 

exhibited a steeper slope than the slope observed with the IAA19mAuxRE1,2,3,4 lines (Fig. II-27). 

This indicates that the auxin response was diminished in these lines by the introduced 

mutations. This was also observed in a preliminary experiment, where representative lines of 

IAA19D1, IAA19D2, IAA19mG-Box1,2 and IAA19mAuxRE1,2,3,4 were treated with 10-6 M 
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NAA or mock treated and the fold induction was compared between the lines. While the other 

lines all showed an induction between 10- and 100-fold, the three mAuxRE lines exhibited a 

10-fold or less induction of the LUC signal (data not shown). 

 

 
Figure II-27: Auxin dose-response of IAA19, IAA19mAuxRE1,2,3,4, SAUR (AC1-L) and SAURmAuxRE promoter::LUC lines. 
The luciferase activity was analysed in protein extracts from liquid culture grown seedlings treated with distinct NAA 
concentrations for 24h or mock-treated (logarithmic scales). Data represent the mean of three biological replicates ± SEM. A) 
Auxin response curves of three transgenic IAA19::LUC and IAA19mAuxRE1,2,3,4  ::LUC lines (T4). B) Auxin response curves of 
three transgenic SAUR (AC1-L)::LUC and SAURmAuxRE ::LUC lines (T4). 
  

The auxin inducibility of the promoter constructs was tested subsequently in an NAA-

induction assay based on liquid MS grown seedlings (Fig. II-27). 

SAUR-AC1-l lines showed a similar slope with increasing NAA concentrations, indicating 

that they respond to NAA in the same way, suggesting that the mutation does not alter auxin 

responsibility of the promoter in the range of this experiment (Fig. II-27B). In a preliminary 

set of experiments, similar results were obtained for all SAUR AC1-l constructs, further 
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supporting the notion that promoter::LUC lines carrying the mAuxRE elements are still 

responsive to auxin (data not shown). 

Taken together, the AuxRE mutated in the SAUR AC1-l promoter that showed a function in 

the light regulation of SAUR AC1-l did not alter the inducibility of the construct by exogenous 

NAA. Reversely, the four mutated AuxRE core motifs of the IAA19 promoter were not 

required for normal light regulation of the IAA19mAuxRE1,2,3,4::LUC constructs, but evidence 

points towards an involvement of the AuxRE in the NAA responsiveness of the promoter. 

 

It was repeatedly attempted to also analyse the light regulation of all promoter constructs of 

IAA19 and SAUR together in one experiment in the T3 and T4 generation in homozygous 

lines, but the results were not as convincing as the T2 data and not repeatedly reproducible. 

This might be due to the handling of the high number of LUC samples that are worked with 

during this experiment, as experiments with lower sample number resulted in reproducible 

results, such as the NAA treatment and the shade avoidance analysis. 

 

However, here, evidence is provided that suggests two distinct mechanisms by which auxin-

responsive genes may be repressed at the onset of photomorphogenesis. AuxREs may play an 

important role in the expression of some genes (e.g. SAUR AC1-l), while direct light 

signalling via G-Box elements could provide a more direct repression of other genes (e.g. 

IAA19) that may modulates auxin-responsiveness by light. 
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III.  Discussion 

III.1  SPA gene function in the shade avoidance syndrome of Arabidopsis 

thaliana 

Shade avoidance responses are important for the survival of shade-intolerant plants. Thus, 

Arabidopsis seedlings constantly monitor the R:FR ratio of the ambient light, which provides 

an unambiguous clue for the presence of close competitors. Low R:FR conditions are sensed 

by the phytochromes and trigger elongation responses and early flowering. The central 

repressor of light signalling, COP1, acts as a positive regulator of the elongation response of 

the hypocotyls to low R:FR signals. The four SPA genes code for repressors of 

photomorphogenesis that act together with COP1 in a complex. In this study, functions for the 

SPA genes in the elongation responses and the accelerated flowering were investigated.  

III.1.1  SPA genes are essential for elongation responses in shade avoidance   

 

 
Figure III-1: SPA gene function in shade avoidance. A representation of the functions of the four SPA genes and COP1 in 
the elongation responses to low R:FR. Red arrows indicate the elongation processes regulated. 

 

COP1 is required for the elongation response of hypocotyls to low R:FR conditions and was 

shown to genetically interact with BBX21 and BBX22 (Crocco et al., 2010; McNellis et al., 

1994). Our evidence shows that SPA genes are also essential for low R:FR - associated 
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elongation responses of the hypocotyl and of the petioles of cotyledons, as seedlings of the 

spa1 spa3 spa4, the spa1 spa2 spa4 and the spa-Q mutants failed to respond to the low R:FR 

treatment (Fig. II-1; Dickopf, Master Thesis, 2011; Sahm, Examensarbeit, 2010). The 

hypocotyl elongation responses of all four spa single mutants and the double, triple and the 

spa-Q mutant revealed redundancy among the SPA genes, as no single spa mutant was 

defective in the low R:FR response. Also, differential functions of the SPA genes were 

observed. SPA1 and SPA4 are the main regulators of shade avoidance elongation responses, 

based on the phenotype of the spa triple mutants (Fig. III-1). Furthermore, the phenotypes 

suggest that SPA4 is the major player of shade avoidance within the SPA gene family and that 

SPA1 is contributing. Divergent functions have commonly been assigned to the SPA genes 

(Laubinger et al., 2004; Fittinghoff et al., 2006). Due to sequence similarity, SPA genes have 

been divided into the SPA1/SPA2 and the SPA3/SPA4 clade (Laubinger and Hoecker, 2003).  

 
Figure III-2: Overlapping and distinct functions of  SPA genes. SPA genes function throughout the lifecycle of 
Arabidopsis. The SPAs mainly involved in the control of the respective developmental stage are shown (Adapted from 
Fittinghoff, 2009). 

 

While SPA1 and SPA2 are predominant in the repression of light signalling of dark-grown 

plants, SPA1, but not SPA2 has a function in light-grown seedlings (Laubinger et al., 2004). 

Thus, low R:FR conditions do not simply resemble dark-like conditions, where SPA1 and 

SPA2 are the predominant factors, nor do they resemble FR light conditions, where SPA3 has 

a function in addition to SPA1 and SPA4 (see fig. III-2; Laubinger et al., 2004). Low R:FR 

conditions rather represent a novel mode of differential SPA gene activity in seedlings, which 

resembles adult plant development and mostly the flowering time control, where SPA1 is the 
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predominant gene and SPA4 is contributing (Laubinger et al., 2006; Fackendahl, PhD Thesis, 

2011). The differences in SPA gene function may result from differential regulation of the 

transcript levels, of the protein levels, different substrate specificity of the SPA proteins or 

additional different contribution to the stability and function of the COP1/SPA complex.  The 

transcript levels of the SPA genes were determined and found to be unresponsive to the low 

R:FR conditions, which indicates that the difference in function in simulated shade is not 

solely due to differential regulation of the SPA genes or the transcript levels, but likely 

involves differences of the SPA protein activity (Fig. II-8). While SPA1 transcript levels 

increased over time in both conditions, SPA4 transcript levels did not increase, which could 

contribute to the SPA1 function, but would not favour a function for SPA4 in shade avoidance 

compared with SPA2 and SPA3. 

As SPA protein levels are controlled by light, differences in the accumulation to higher levels 

of the SPA proteins may contribute to their differential function (Balcerowicz et al., 2011). 

SPA1 protein levels were analysed, but no change in the protein levels in low R:FR 

conditions was observed, suggesting that SPA1 protein levels are not altered in response to 

low R:FR conditions (Fig. II-9). This indicates that other mechanisms are involved in the 

different activities of the SPA genes, given that SPA2 and SPA3 protein levels are not reduced 

by low R:FR conditions, which has not been addressed. In order to further unravel the 

contribution of the promoter activity and the protein function of SPA1 and SPA2, promoter-

swap lines were analysed that express SPA1 or SPA2 from the SPA1 or SPA2 regulatory 

sequnces in the spa-Q background (Fig. II-7). While SPA1 rescued the spa-Q phenotype 

expressed from either promoter, SPA2 was able to function in the simulated shade conditions, 

but only when expressed from the SPA1 regulatory sequences. Similar results have also been 

obtained for adult plant development in the light, but not for seedling phenotypes 

(Balcerowicz et al., 2011). It indicates that the inactivation of the SPA2 protein in the light in 

seedlings is partially reversed by the low R:FR conditions, but SPA2 activity is insufficient to 

cause SPA2 function in the spa1 spa3 spa4 mutant background (Fig. II-2/II-7, Balcerowicz et 

al., 2011). SPA1 and SPA2 have previously been shown to be ubiquitously expressed in 

seedlings, but SPA1 transcript accumulates to higher levels in light-grown seedlings than 

SPA2 levels (Fig. II-8; Balcerowicz et al., 2011; Fittinghoff et al., 2006). As both promoters 

express ubiquitously and no regulation of SPA1 and SPA2 transcript levels was observed in 

low R:FR, it is likely that SPA2 protein function is threshold-dependent, as the SPA1 

promoter expresses stronger than the SPA2 promoter (Fig. II-7, Fig. II-8, Balcerowicz et al., 

2011). To support this view, the SPA2 protein levels could be analysed in the spa1 spa3 spa4 
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mutant and compared with the protein levels in the WT and the SPA1::SPA2 lines. SPA1 

expressed from either promoter is functional, which suggests that the difference between 

SPA1 and SPA2 is partly conferred by the protein sequence, which might be due to protein 

stability, COP1/SPA complex activity or differential interaction with downstream targets. To 

address the possibility that different protein levels of SPA1 and SPA2 in light-grown 

seedlings may cause the difference between SPA1 and SPA2 function, lines that express 

comparable levels of SPA1 and SPA2, respectively, should be identified and analysed in the 

low R:FR conditions (Balcerowicz et al., 2011).  

SPA1 and SPA4 are the main regulators of the low R:FR elongation responses of seedlings 

and both likely act in a dose-dependent manner in the elongation response to low R:FR, as 

lines that were previously shown to overexpress SPA4, led to over-complementation of the 

mutant phenotype, which was also observed for SPA1 in this study and previously (Fig. II-14, 

Fig. II-15; Dickopf, Master Thesis, 2011; Fackendahl, PhD Thesis, 2011). The coiled-coil 

domain of SPA4 was essential for SPA4 function in the hypocotyl elongation in response to 

low R:FR conditions (Fig. II-14). This suggests that the interaction of SPA4 with other SPAs 

or COP1 or both is required for SPA4 function in shade avoidance, which adds on the 

compelling evidence for common COP1 and SPA functions that form the COP1/SPA 

complex dependent on the cc-domain interface (Zhu et al., 2008). Given that overexpression 

of SPA proteins is capable of over-complementing the elongation response of the hypocotyl, 

the SPA protein levels are a limiting factor for the low R:FR response of Arabidopsis (Figures 

II-14 and II-15). This further supports the notion that SPA genes are important positive 

regulators of the elongation response. The overexpression of SPA1 and SPA4 may cause 

over-complementation, because the amount of SPA1/4 containing complexes is expected to 

be increased compared with other residual COP1/SPA complexes, which may increase the 

activity of the complexes in the elongation responses. To further support the function of SPA1 

and SPA4 and show a lack of function of SPA3 and SPA4, I attempted to isolate a spa1 spa4 

and a spa2 spa3 double mutant from crossings, but the detection of correct mutants failed 

(data not shown). The newly available null mutants, spa1-100, spa2-2 and spa4-3, could be 

used for a new round of shade avoidance experiments to rule out effects from truncated 

proteins still expressed as was shown for SPA2 in the spa2-1 mutant (Zhu et al., 2008).  

SPA genes and COP1 are both required for the elongation responses of adult leaf petioles 

(Fig. II-4 see also Fig. III-1). While the spa-Q lacked a response of the petiole to the low 

R:FR treatment, all spa triple mutants retained the elongation response. This is in agreement 

with the observation that SPA2 has no function in light-grown seedlings, but a minor function 
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in adult plants that can even be strengthened by expressing SPA2 under the control of the 

SPA1 regulatory sequences (Laubinger et al., 2004; Fittinghoff et al., 2006; Balcerowicz et al., 

2010). All SPA genes contributed to the elongation of the petioles of true leaves, which 

contrasts the seedling phenotypes of the spa triple mutants that showed a differential 

contribution of the SPA genes to the low R:FR response. This could be explained with the 

action of different elongation promoting factors downstream to the COP1/SPA complex in 

true leaf petioles compared with the hypocotyl of seedlings or differences in the abundance 

and activity of COP1/SPA complexes in seedlings and adult plants. Though some genes, such 

as certain XHT genes, are only up-regulated in the true leaf blade and/or petiole and not in the 

seedling in response to low R:FR, the important shade marker genes, such as HFR1 and 

ATHB2 are also up-regulated in the adult leaves, which suggests largely similar mechanisms 

of the two elongation responses (Devlin et al., 2003; Kozuka et al., 2010). Thus, the 

difference in function of SPA2 and SPA3 in seedlings and adult leaves may be due to 

differences of the activity of the COP1/SPA complexes. However, it was shown that SPA1 

has different functions in different tissues and the SPA/COP1 complex may serve a different 

function in the two processes (Ranjan et al., 2011). 

As thoroughly discussed by Fackendahl (2011), the spa triple mutants and the spa-Q mutant 

used in this study only contain one true null-allele, spa3-1, while the other spa mutant alleles 

are not considered to be null alleles. Thus, the spa mutants may still express truncated 

versions of the SPA proteins, which was shown for spa2-1, which still expresses a truncated 

SPA2 protein (Laubinger and Hoecker, 2003: Zhu et al., 2008).The difference in seedling and 

adult elongation phenotype may not reflect a difference in SPA2 function in these processes, 

but could reflect a different influence of the N-termini of SPA1 or SPA4. There is evidence 

that the N-terminus of SPA1 is involved in the control of flowering, but not at the seedling 

stage (Fittinghoff, PhD Thesis, 2009). However, more recent observations indicate that the N-

terminus of SPA1 might also be contributing in certain spa mutant backgrounds, also in the 

seedling (Dieterle, S., unpubished data; Fackendahl, PhD Thesis, 2011). 

COP1 and other components of the shade avoidance elongation response pathway have been 

discovered in a genome wide association study (GWAS) with 180 Arabidopsis genotypes, but 

SPA genes were absent from the list of genes associated with shade elongation response of the 

hypocotl (Filiault and Maloof, 2012). This may reflect an unexpected invariability of SPA 

genes in the accessions included or might be due to the redundancy in the SPA gene family, as 

single mutants in the Col-0 background do not exhibit defects in the shade avoidance 

responses (Fig. II-2 A,B). However, the spa1-2 single mutant displayed a reduced elongation 
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response to the low R:FR conditions, which indicates that single SPA genes may be limiting 

for the shade avoidance response in certain Arabidopsis ecotypes or that certain mutations in 

SPA genes can elicit aberrant shade-related phenotypes compared to Col-0 (Fig. II-13).  

III.1.2  SPA gene and COP1 are not involved in the acceleration of flowering in response 

to low R:FR conditions 

Prolonged shade conditions lead to an acceleration of the transition from vegetative to 

reproductive growth, which is anticipated by an increase of FT transcript level well before the 

development of flowers (Cerdán and Chory, 2003; Wollenberg et al., 2008). The COP1/SPA 

complex acts in the photoperiodic flowering pathway, negatively influencing FT expression 

by the repression of CO protein levels in SD conditions (Laubinger et al., 2006; Jang et al., 

2008). Accordingly, the acceleration of flowering in simulated shade in the spa triple mutants, 

the spa-Q and cop1-4 mutant was analysed (Fig. II-5). All mutants flowered at the same time 

and with the same number of leaves compared to the WT in low R:FR conditions. The FT 

transcript levels were uniformly up-regulated in response to prolonged low R:FR conditions 

compared with the Wc conditions in the WT, the spa1 spa3 spa4 mutant and the cop1-4 

mutant, which is consistent with the similar flowering time phenotypes in low R:FR (Fig. II-

6). The CO transcript levels were reported to increase shortly after the onset of low R:FR 

conditions (Kim et al., 2008) and showed a minor regulation in response to the shade 

treatment in the spa1 sp3 spa4 mutant and cop1-4 mutant. No significant regulation of CO 

was observed in the WT. As the expression of CO is regulated by the circadian clock, the WT 

and the mutants may differ in the timing of the CO regulation or the regulation may generally 

differ in the backgrounds (Kim et al., 2008). Nevertheless, these differences in CO transcript 

levels are not dramatic and do not result in different FT transcript levels or altered flowering 

time phenotypes. In order to investigate, whether CO regulation is generally different in WT 

and the spa triple mutant and cop1-4, additional different time-points could be analysed as CO 

transcript levels are regulated by the clock with the highest differences between 12 hour time-

points (Imaizumi et al., 2003). FLC transcript levels were highly up-regulated in the cop1-4 

background with correlates with the lower overall FT levels in the cop1-4 mutant. FLC levels 

were reported to be elevated up to 5-fold in the spa1 spa3 spa4 and the spa2 spa3 spa4 

compared with the WT dependent on the time of day in SD (Laubinger et al., 2006). In order 

to unravel, if FLC transcript levels are up-regulated in a cop1 dependent manner, additional 

cop1 mutants also from other ecotypes could be analysed in parallel. Furthermore, the high 

FLC levels may be connected with the constitutive photomorphogenic phenotype, thus the 
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constitutive photomorphogenic spa1 spa2 spa4 mutant should be tested accordingly. Thus, it 

is concluded that neither the SPA genes, nor COP1 are involved in the acceleration of 

flowering time in the low R:FR environment. It had already been proposed that phyB may 

control CO protein levels independently of COP1 and could act on flowering time in a COP1 

independent fashion (Jang et al., 2008). Furthermore, SPA1 represses flowering in SD when 

expressed in the phloem, while phyB acts in the mesophyll to inhibit flowering, which likely 

places the COP1/SPA complex downstream of cry function in flowering time control and is 

likely to be independent of phyB input (Endo et al., 2005; Ranjan et al., 2011). The presence 

of CO was shown to be important for the acceleration of flowering, as co mutants are 

impaired in the early flowering in response to low R:FR (Wollenberg et al., 2008). To further 

support the notion that COP1 and the SPA genes are not involved in the acceleration of 

flowering, the genetic interaction of CO and COP1 and SPA1 in the flowering time cold be 

analysed with the cop1-4 co and the spa1 co mutants in our simulated shade conditions 

(Laubinger et al., 2006; Jang et al., 2008). 

Taken together with the SPA and COP1 function in the elongation responses to low R:FR, 

these results also support the hypothesis that two distinct molecular pathways of different 

evolutionary origin operate in the shade avoidance syndrome, as the elongation responses and 

the acceleration of flowering time are unrelated downstream of phyB (Botto and Smith, 

2002).  

III.1.3  SPA genes interact with a negative regulator of low R:FR signalling  

HFR1 is a negative regulator of shade avoidance that inhibits PIF proteins to prevent 

overstimulation of the shade avoidance responses (Hornitschek et al., 2009; Sessa et al., 

2005). COP1 and SPA1 physically interact with HFR1 and regulate HFR1 levels during 

photomorphogenesis (Duek et al., 2004; Yang et al., 2005a/b).Therefore, it was tested, if SPA 

genes may also interact with HFR1 genetically in the elongation response to low R:FR of the 

seedlings. A genetic interaction between SPA genes and HFR1 in the hypocotyl elongation 

response to low R:FR conditions could be observed, as introduction of the hfr1 mutation into 

the the spa1 spa3 spa4 mutant restored the elongation response to low R:FR (Fig. II-10; 

Sahm, Examensarbeit, 2010). 
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Figure III-3: Model of SPA function via HFR1 in low R:FR. In the WT background, SPAs acts on HFR1 levels to prevent 
over-accumulation, which positively acts on the PIF-pathway. In spa mutant backgrounds, HFR1 may overaccumulate and 
the PIF pathway blocked. Also, COP1 acts on BBX proteins that inhibit elongation. 

 

It is hypothesised that HFR1 over-accumulation causes the lack of elongation response of 

multiple spa mutants and the cop1-4 mutant (see Fig. III-3). The differential function of SPA1 

and SPA4 in shade avoidance together with the genetic interaction of HFR1 fostered the 

speculation that differential interaction of SPA proteins with HFR1 may account for the 

differences in SPA function. The results accumulated in two recent studies do not allow a 

clear conclusion, whether or not SPA proteins differentially interact with HFR1, because the 

data are contradictory (Dickopf, Master Thesis, 2011; Meller, Master Thesis, 2011).  

It has been stated that mutants deficient in single components of the shade avoidance 

signalling network exhibit mostly mild effects due to the complexity of the signalling network 

(Galstyan et al., 2011). The complete lack of elongation responses in the seedlings of two spa 

triple mutants and the spa-Q may seem unlikely to solely result from absence of the regulation 

of HFR1 protein levels in these mutants, as HFR1 negatively acts on PIF4 and PIF5 and the 

pif4 pif5 double mutant still exhibits a pronounced elongation response (Lorrain et al., 2008). 

This would indicate that the SPA genes act on additional target genes or that HFR1 would act 
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on additional targets others than PIF4 and PIF5 specifically in shade conditions. The N-

terminus of HFR1 is important for HFR1 stability and its N-terminus and bHLH domain are 

important for the interaction with COP1, while interaction with SPA1 depends on the 

presence of several domains (Yang et al., 2005a/b; Duek et al., 2004). Overexpression of the 

bHLH domain alone or the bHLH domain together with the C-terminal part of HFR1 causes 

severe reduction of the hypocotyl elongation in response to low R:FR treatment compared 

with the WT and leads to partial photomorphogenesis in darkness (Galstyan et al., 2011; Yang 

et al., 2003). Thus, HFR1 fragments, which lack the regulatory N-terminal domain for 

degradation by the COP1/SPA complex, cause a strong reduction of the elongation response 

of the WT, while overexpression of full length HFR1 causes only mild phenotypes in the 

response to low R:FR conditions. These findings are in agreement with the notion that over-

accumulation of HFR1 in the cop1 and spa triple and quadruple mutants may cause the severe 

seedling phenotypes observed in low R:FR conditions compared with the WT.  

HFR1 and COP1 have been proposed to affect the expression of shade marker genes 

previously. The transcript levels of PIL1 have been reported to be elevated in the hfr1 mutant 

and reversely reduced after 3h in both, pif4 pif5 double and pif4 pif5 hfr1 triple mutants 

specifically in response to low R:FR (Hornitschek et al., 2009). In the same study, XTR7 has 

also been shown to be antagonistically regulated by HFR1 and PIF4 / PIF5. PIF5 directly 

binds to the XTR7 and PIL1 promoters and the binding is inhibited by HFR1 (Hornitschek et 

al., 2009). Furthermore, the transcript levels of HFR1 were lower in pif4 pif5 mutants (Lorrain 

et al. 2008). Overexpression of truncated HFR1 inhibits the accumulation of PIL1 transcript 

levels after 1h of shade treatment in 7-day-old plants and a milder effect was observed in 

HFR1-HA overexpression lines (Galstyan, 2011). Also, COP1 has been reported to negatively 

act on the increase of ATHB2 and PIL1 transcript levels in response to low R:FR, which is in 

agreement with a COP1 function upstream of HFR1 (Roig-Villanova et al., 2006). On the 

contrary, PIL1 transcript levels were found to increase similarly in the WT and cop1 mutant 

in short term shade and also ATHB2 and HFR1 transcript levels were only slightly affected by 

COP1 in a different study (Crocco et al., 2010).  In this study, the up-regulation of the 

transcript levels of PIL1, ATHB2 (three hours of low R:FR treatment) and HFR1 (24 hours 

and 48 hours) were similar in the spa multiple mutant seedlings in response to low R:FR 

conditions compared to the WT. Also, HFR1 levels were equally up-regulated in the cop1-4 

background compared to the WT. This contradicts the proposed function for COP1 in the 

general regulation of early shade marker genes (Roig-Villanova et al., 2006). 
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The PIL1 transcript levels were strongly increased in response to the low R:FR treatment in 

the WT, the spa1 spa3 spa4 mutant and the cop1-4 mutant. No difference in the transcript 

levels of PIL1 was observed between the genotypes in the time-course experiment that 

covered 48 hours of low R:FR treatment (Fig II-3 C). On the one hand, this would contradict 

the notion that HFR1 may over-accumulate in two of the multiple spa mutants and the cop1 

mutant, as HFR1 has repeatedly been reported to act on the transcript levels of PIL1 and 

ATHB2 in a low R:FR-specific way (Hornitschek et al., 2009; Sessa et al., 2005). On the other 

hand, the transcript levels of XTR7 were found to be differentially regulated between the WT 

and the spa triple mutants in response to low R:FR conditions. It was shown previously that 

overexpression of a ΔN-HFR1 construct suppresses XTR7 expression, which leads to shorter 

hypocotyls in darkness (Yang et al., 2003). Furthermore, in this study, ATHB2 transcript 

levels in low R:FR and Wc were analysed in the hfr1 mutant and the spa1 spa3 spa4 hfr1 

quadruple mutant. In response to low R:FR treatment, the ATHB2 levels increased strongly in 

all backgrounds tested and no over-accumulation of ATHB2 transcript was detected in the hfr1 

mutant background compared to the WT (Fig- II-10 C). This indicates that the reported HFR1 

function on the expression of ATHB2 is not detectable in our shade setup. This supports the 

notion that SPA regulation of HFR1 may not be detected on the level of transcript level of 

shade marker genes, apart from the XTR7 levels. 

Taken together, SPA genes acted differentially on the expression of shade marker genes. The 

difference in regulation of PIL1 in the different studies could be explained by additional, PIF-

independent, mechanisms that may override the HFR1 function in specific low R:FR 

conditions, as it was reported that the binding of PIF factors to the G-Boxes of the PIL1 

promoter are not the only factors that influence PIL1 expression in response to low R:FR 

conditions (Li et al., 2012). Furthermore, as ATHB2, PIL1 and HFR1 transcript levels were 

strongly up-regulated in the spa multiple mutants, a functional significance for the increase in 

the transcript levels of these genes in the elongation responses to low R:FR is to be 

questioned. XTR7/XTH15 is up-regulated swiftly in short-term shade and remains up-

regulated in long-term shade, which is rare among the XHT genes. xtr7 mutants display no 

induction of growth rate of the petiole in low R:FR conditions (Sasidharan et al., 2010). As 

the shade-induction of XTR7 is directly associated with the increased elongation of seedlings, 

the transcript levels in low R:FR conditions can be correlated with the observed hypocotyl 

and cotyledons phenotypes of the spa mutants, with the exception of  the spa2 spa3 spa4 

mutant that exhibits an elongation response to low R:FR conditions, but lower XTR7 levels in 

low R:FR compared to the WT and the spa1 spa2 spa3 mutant (Fig. II-3 A).  
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Further evidence to support the hypothesis that over-accumulation of HFR1 may cause the 

observed elongation phenotypes of the spa mutants could derive from the determination of 

HFR1 protein levels in spa triple and spa-Q mutant backgrounds. No HFR1 antibody is 

available to date, so lines that express tagged versions of HFR1 could be crossed into the spa 

and cop1 mutant backgrounds to compare protein levels in Wc and low R:FR conditions 

between the mutants and the WT (HFR1-HA; Jang et al., 2005).  

COP1 was shown to act on two B-BOX transcription regulators of shade avoidance, BBX21 

and BBX22 (Crocco et al., 2010). Also, BBX21/STH2 was shown to act downstream to SPA 

genes in the control of adult plant growth (Fackendahl, PhD Thesis, 2011). Yeast-two hybrid 

protein-protein interaction studies revealed a putative interaction of SPA4 with BBX21 

(Falke, Master-Thesis). Taken together, it is likely that SPA proteins negatively regulate the 

function of BBX21 and presumably BBX22 in regulation of shade avoidance responses, 

which could be further investigated by the analysis of crosses with spa triple mutants and the 

bbx21/bbx22 single mutants and the determination of BBX protein levels in the mutants. 

Taken together, the data suggest that the COP1/SPA complex acts on negative regulators of 

the elongation responses to low R:FR conditions, such as HFR1 and BBX21/22 to control the 

negative feed-back on elongation (Fig. III-3). 

HY5 is targeted for degradation by the COP1/SPA complex in darkness, which inhibits HY5 

function that in turn promotes photomorphogenesis when the inhibition by COP1 is released 

in the light (Osterlund et al., 2000; Saijo et al., 2003). HY5 was recently described to be up-

regulated in response to a sunfleck treatment, which is characterised by a rapid and transient 

reversion of low R:FR conditions to high R:FR that inhibit the low R:FR triggered hypocotyl 

elongation (Sellaro et al., 2011). HY5 counteracts the shade avoidance machinery in response 

to sunfleck conditions. Thus, over-accumulation of HY5 in the spa mutant backgrounds could 

contribute to the lack of elongation response observed (Fig. II-10 A,B). In our simulated 

shade conditions, no genetic interaction of SPA genes and HY5 or COP1 and HY5 could be 

observed, as hy5 mutations in the spa1 spa3 spa4 background and the cop1-4 background 

rescued the Wc hypocotyl phenotype of the mutants, but did not restore the elongation 

response to simulated shade. The function of HY5 likely depends on the fact that in natural 

light-dark-cycles, HY5 transcript levels are highly up-regulation in sunfleck conditions. 

Furthermore, in natural conditions, HY5 is up-regulated at dawn even in shade conditions, 

which is different from our continuous light conditions (Sellaro et al., 2011). Hence, it is 

conceivable that COP1/SPA may be important to control HY5 protein levels in shade and 

sunfleck conditions in light/dark cycles to prevent over-accumulation of HY5, but not in our 
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simulated shade conditions. To test this hypothesis, it should be attempted to elicit sunfleck 

responses in WT seedlings with modifications of the low R:FR setup and reproduce the 

results obtained for HY5 in sunfleck. The sunfleck response could then be analysed in spa 

mutants and the cop1-4 mutant and in the cop1 hy5 double mutant and the spa1 spa3 spa4 hy5 

mutants to check for a genetic interaction of COP1 and HY5 and SPA genes and HY5 in the 

sunfleck response. 

III.1.4  Genetic interaction of photoreceptors with SPA genes and COP1 in shade 

avoidance 

 
Figure III-4: Model of the interaction of SPAs and phyA in low R:FR. phyA is activated in low R:FR and acts negatively 
on the elongation responses. The SPAs may act upstream of phyA to negatively regulated phyA signalling (A) or could act 
downstream of phyA (B).  

 

The COP1/SPA complex is a mediator of light signals that are perceived by the 

photoreceptors and downstream transcription factors that are repressed in the absence of light 

stimuli. It was shown to interact with phyA, phyB and the cryptochromes and functions in B, 

R and FR light signalling (Jang et al., 2010; Lian et al., 2011; Liu et al., 2011; Seo et al., 

2004; Wang et al., 2001; Yang et al., 2001). Between the Wc conditions applied in this study 

and our low R:FR conditions, which are enriched FR conditions on top of the Wc setting, the 

two phytochromes phyB and phyA are antagonistically regulated. phyB is largely transferred 

to the inactive Pr from, while phyA is stabilized and stimulated by the FR fluence-enriched 

environment. This is reflected by the phenotype of the phyA mutant that exhibited 

exaggerated hypocotyl lengths in the shade conditions compared with the WT and the phyB 

mutant, which displays shorter hypocotyls in the low R:FR compared with the Wc conditions, 

but elongated hypocotyls in Wc (Fig.  II-11-13). As cop1-6 phyB double mutants resemble 

cop1-6 mutants, the phyB-9 phenotype is completely repressed by cop1, which places COP1 
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downstream of phyB. This indicates that the inactivation of phyB is mainly acting on 

elongation responses via COP1 (Fig. II-12). 

While spa1 spa3 spa4 mutants failed to respond to low R:FR treatment phyA spa1 spa3 spa4 

mutants exhibited elongated hypocotyls in response to low R:FR, which means that 

introduction of the phyA mutation into the spa triple background restored the elongation 

response of the mutant (Fig. II-11). This suggests that the spa mutant is hypersensitive to 

phyA signalling, which is absent from the phyA mutant. This could be due to phyA over-

accumulation in the mutant, as COP1/SPA is shown to act negatively on phyA signalling (Seo 

et al., 2004). Alternatively, phyA may more efficiently inactivate COP1/SPA2 complexes 

than other COP1/SPA complexes, which would lead to a loss of activity of the COP1/SPA 

complex. These two possibilities are presented in figure III-4. In order to discriminate 

between them, it would be helpful to examine the cop1 phyA or spa1 spa2 spa4 phyA shade 

phenotypes, as these mutants are constitutively photomorphogenic, so no input from the 

phytochromes is expected and the mutants should be independent of phyA input, while spa1 

spa3 spa4 is still responsive to phyA signalling due to SPA2, which functions in darkness to 

repress photomorphogenesis (Laubinger et al., 2004). 

Previously it was shown that SPA1 is fully epistatic over PHYB in the development of the leaf 

blade (Ranjan et al., 2011). Analysing the interaction of SPA1 with PHYA and PHYB, it could 

be seen that the spa1-2 mutation only had mild effects in the backgrounds of the phyA and 

phyB mutants (Fig. II-13). As spa1-2 is not fully epistatic over phyB in the elongation 

response of the hypocotyl to low R:FR conditions, the phyB-dependent leaf expansion and the 

phyB-dependent hypocotyl elongation should be considered as two distinct pathways. SPA1 

has a more prominent function in the leaf expansion than in the elongation response of the 

hypocotyl downstream of phyB (Fig. II-13; Ranjan et al., 2011). 

III.1.5  SPA1 expression from the ML1 and CER6 promoters triggers an elongation 

response to low R:FR in the spa1 spa2 spa4 mutant background  

Tissue-specific functions of SPA1 were discovered previously (Ranjan et al., 2011). 

Expression of SPA1 from the SUC2 promoter represses the constitutive photomorphogenic 

phenotype of dark-grown spa mutants and causes an increase of the hypocotyl length in 

darkness and the light. Furthermore, SPA1 expression in the phloem restores proper flowering 

time and controls leaf size. Expression in the epidermis with the ML1 promoter in darkness 

and the ML1 and CER6 promoter in the light has only mild effects compared to the expression 

from the SUC2 promoter in the spa1 spa2 spa3 mutant background (Ranjan et al., 2011). 
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Expression from the ML1 and CER6 promoters did not complement the hypocotyl phenotype 

in Wc, but restored the elongation response of the spa triple mutant (Fig. II-15 A,B). Provided 

that low R:FR conditions do not alter the expression pattern of ML1 or CER6 and that SPA1 

functions in the tissue it is expressed in and does not move, it can be concluded that 

expression of SPA1 in the epidermis was sufficient to rescue the elongation response to low 

R:FR in the spa1 spa3 spa4 mutant. Both genes (ML1 and CER6) are stably expressed in 

different light conditions, which makes it likely that they uphold their expression pattern in 

response to low R:FR, but it will be necessary to investigate the GUS staining in the Wc and 

low R:FR conditions on a cellular level to rule out the possibility that ectopic expression is 

responsible for the rescue of the shade phenotype of the hypocotyl. The data reveal that the 

site of SPA1 function in shade avoidance related elongation responses of the hypocotyl differs 

from darkness- and light-regulated elongation responses of the hypocotyl. This suggests a 

function of SPA1 that is independent from its function in photomorphogenesis in the vascular 

tissue. Thus, an additional and likely distinct tissue-specific function was discovered by the 

results obtained in this study. The epidermis is involved in the regulation of plant growth and 

drives elongation responses (Savaldi-Goldstein et al., 2007).  This involves BR signalling. 

Hence, one hypothesis is that SPA1 in the epidermis could act on the BR signalling pathway, 

which is implicated in the elongation responses of the hypocotyl. BR biosynthesis mutants fail 

to elongate the hypocotyl in response to low R:FR (Luccioni et al., 2002). Furthermore the 

BR pathway is under negative control of the photoreceptors, which could place the 

COP1/SPA complex downstream of the photoreceptors and upstream of BR biosynthesis or 

signalling (Vandenbussche et al., 2005). Also the expression of XTR genes is under the 

control of BR and auxin signalling and XTR7 transcript levels are reduced in spa mutants 

compared to WT in low R:FR conditions. Alternatively, redistribution of auxin to the 

epidermis and auxin signalling in the epidermis are important for the elongation response of 

the hypocotyl and SPA1 may be important for the auxin response in the epidermis (Keuskamp 

et al., 2010). 

III.2  Phenotypes of spa mutants correlate with auxin signalling  

Auxin is involved in cell elongation and proliferation and determines final organ size and 

shape. The dwarfed phenotype of cop1 and multiple spa mutants from the seedling stage to 

adult plants may reflect an aberrant regulation of the auxin pathway in the spa mutants. 
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Furthermore, non-cell-autonomous functions have been assigned to SPA1, which makes it 

likely that SPA genes act on hormonal pathways, such as auxin biosynthesis, transport or 

signalling.  

III.2.1  Auxin response in spa1 spa3 spa4 and spa1 spa2 spa4 seedlings 

Auxin response in the hypocotyl and the cotyledons is under the control of the photoreceptors 

that act on auxin biosynthesis and transport (Hoecker et al., 2004; Salisbury et al., 2007; Tao 

et al., 2008). Auxin-transport is not necessary for elongation of seedlings in darkness and the 

PAT is under tight control in the light, which coordinates shoot and root development 

(Salisbury et al., 2007). Apart from that, light is thought to act on the responsiveness of the 

tissues to auxin (Cluis et al., 2004; Nozue et al., 2011; Sibout et al., 2006). 

Taken together, the auxin response differs in dark-grown and light-grown seedlings, which 

contributes to the skotomorphogenic and photomorphogenic phenotypes. 

It was tested, whether two spa triple mutants showed altered auxin response in seedlings in 

darkness and low FR light (Fig. II-16). While the WT showed high auxin response in the 

cotyledons in darkness, auxin response was mostly observed to be constraint to the root tip in 

the spa1 spa3 spa4 and spa1 spa2 spa4 mutants. This indicates that the auxin response in the 

mutants is already lowered in darkness in both mutants, though the spa1 spa3 spa4 mutant 

retains skotomorphogenesis comparable to the WT. This indicates that SPA genes act 

positively on auxin response in darkness. In the light, the photoreceptors may inhibit this SPA 

function. To further study the responsiveness of the spa mutants to auxin, dose-response 

curves with NAA could be carried out comparing the DR5::GUS response to exogenous auxin 

in WT and spa mutant backgrounds in darkness and light. Also, the hypocotyl elongation 

responses in response to the auxin treatment should be correlated with the results of the NAA 

dose-response curves.  

III.2.2  SPA genes are involved in the increase of auxin response in response to low R:FR  

Auxin is essential for the low R:FR triggered elongation responses. Auxin levels are elevated 

in low R:FR conditions, which likely results from the up-regulation of YUC genes that act 

downstream of TAA1 (Tao et al., 2008; Won et al., 2011). Also, the auxin response is elevated 

in the cotyledons of seedlings in response to simulated shade (Tao et al., 2008). A recent 

publication places PIF7 directly upstream of YUC gene expression specifically in low R:FR 

conditions (Liu et al., 2012). The auxin response was analysed in the spa1 spa3 spa4 and spa1 

spa2 spa4 mutant backgrounds that both failed to respond to low R:FR treatment at the 
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seedling stage. At 27°C, overall auxin levels are elevated, which facilitates the visualisation of 

the increase of the auxin response in the WT background (Franklin et al., 2011). Nevertheless, 

the elongation response on top of the increased hypocotyl length is comparable to 21°C (Fig.  

S2). The increased auxin response that could be observed in the DR5::GUS line, was absent 

from the spa triple mutant DR5::GUS lines, which indicates that the auxin response is not 

increased in these background and which correlates with the aberrant elongation phenotypes 

in low R:FR (Fig. II-17).  

 

 
Figure III-5: Model of SPA function in auxin signalling in response to low R:FR. A) SPAs are important for the elevated 

auxin signalling in low R:FR conditions B) SPA genes act on the expression of auxin biosynthesis genes (shown for YUC8) to 

elevate auxin levels. 

 

The data could be explained with a lack of an increase of the auxin biosynthesis in the spa 

mutant backgrounds, as it is established that in response to low R:FR, auxin levels are 

elevated, which leads to the increase of DR5 activity (Tao et al., 2008). Indeed, this study 

points towards a close link between SPA gene function and the control of auxin biosynthesis. 

The transcript levels of YUC8, an auxin biosynthesis gene reported to be up-regulated by low 

R:FR treatment in seedlings and in the leaf petioles, showed similar levels in Wc and 

Wc+FRc in the spa1 spa3 spa4 triple mutant background compared to the WT in response to 

low R:FR (Fig. II-18 ; Kozuka et al., 2010; Tao et al., 2008). The same trend could be 

observed for YUC9, but the induction in response to the low R:FR treatment is not significant 

in the WT. As has been reported, the transcript level of TAA1 was unresponsive to the shade 

treatment in the WT and also in the spa triple mutant and cop1-4 (Fig. II-18 B). This leads to 

the conclusion that at least one auxin biosynthesis gene is differentially regulated in one of the 

spa triple mutant background that displays no elongation response of the hypocotyl. On the 
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other hand, it had been reported that the yuc8 yuc9 double mutant displays a normal response 

to simulated shade avoidance (Tao et al., 2008). However, a second study has provided 

evidence that a yuc3 yuc5 yuc7 yuc8 yuc9 multiple mutant exhibits a weaker elongation 

response to low R:FR treatment and that auxin biosynthesis genes are direct targets of PIF7, 

which has been assigned a novel function in shade avoidance (Li et al., 2012). Furthermore, a 

yuc1 yuc4 double mutant exhibited a reduced elongation response of the hypocotyl to low 

R:FR conditions compared to the WT (Won et al., 2011). The transcript levels of YUC8 and 

YUC9 and additionally of YUC1, YUC3, YUC4, YUC5 and YUC7 should be tested at the 

seedling stage in white light and shade in the WT and spa triple and quadruple mutants to 

further investigate the regulation of auxin biosynthesis genes reported to be involved in shade 

avoidance. A function for YUC genes in the response to low R:FR conditions is further 

supported by evidence from a genome wide association study (GWAS), that discovered the 

two genes, YUC8 and YUC9 as important genes for the elongation response to low R:FR 

conditions traits (Filiault and Maloof, 2012). 

Apart from their putative action on auxin biosynthesis, SPA genes may also be involved in the 

control of auxin transport and the manipulation of auxin signalling by differentially regulating 

auxin-response genes. In contrast to the DR5::GUS results obtained in this study, the 

transcript levels of IAA19 were up-regulated in response to three hours of low R:FR treatment 

in the spa1 spa3 spa4 mutant. This may indicate that IAA19 expression is not solely 

dependent on auxin (see chapter II.3) in these conditions or that auxin signalling increases in 

the spa1 spa2 spa4 background, but does not reach the threshold necessary for the DR5::GUS 

detection. It can also not be ruled out that the elevation of auxin levels at the higher 

temperature may be absent in the spa1 spa2 spa4 and the spa1 spa3 spa4 mutant. 

Nevertheless, also results obtained at 21°C degrees pointed towards an elevation of 

DR5::GUS activity specifically in the WT in response to low R:FR conditions. 

III.2.3  Auxin signalling in young leaves of spa1 spa3 spa4 and spa1 spa2 spa4 mutant 

plants 

It was shown that cell size and cell number of dwarfed spa1 spa3 spa4 leaves is diminished, 

which could be connected to altered auxin response in the developing tissues (Fackendahl, 

PhD Thesis, 2011). 

The GUS activity was measured from the youngest leaves of two week-old DR5::GUS, spa1 

spa3 spa4 DR5::GUS and spa1 spa2 spa4 DR5::GUS plants (Fig. II-19.). The GUS activity 

was significantly reduced in the spa1 spa3 spa4 DR5::GUS leaves, but comparable in 
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DR5::GUS and spa1 spa2 spa4 DR5::GUS plants, which correlates with the leaf sizes of the 

three genotypes. This indicates that auxin response in the spa1 spa3 spa4 mutant background 

is reduced, which could cause the lower elongation and proliferation of cells in the leaves, 

which results in the dwarfed phenotype. The difference in auxin response between young 

leaves of the spa1 spa3 spa4 mutant and the bigger spa1 spa2 spa4 mutant points towards a 

function of SPA3 in the regulation of the auxin response that cannot be compensated for by 

SPA2. Total auxin levels could be determined in the spa triple mutants to correlate auxin 

levels with the observed phenotypes. Furthermore, the transcript levels of auxin biosynthesis 

genes could be determined in the mutants. Also, the localisation of PIN proteins and the 

expression of auxin signalling components could be analysed in the mutant backgrounds to 

gain further insight into the causes of the altered auxin response observed in the spa1 spa3 

spa4 mutant background. However, the reduced auxin response in the spa triple mutant could 

be a secondary effect in the spa mutants e.g. reduced leaf size itself, as the young leaves and 

the shoot apex are the main sources of auxin. Thus the auxin supply might be limited as a 

consequence of the phenotype and not vice versa.  

III.2.4  COP1/SPA inhibits the root elongation of dark-grown seedlings in an NPA 

dependent way 

Dark-grown spa1 spa2 spa4 mutants and the cop1-4 mutants largely resemble light-grown 

WT seedlings. This holds true for the elongation of roots in darkness as well, as roots keep 

extending in dark conditions compared to the WT (Fig. II-21/22; Dyachok et al., 2011; 

McNellis et al., 1994). It was hypothesised that auxin may contribute to the extension of the 

roots, so the seedlings were treated with auxin transport inhibitor (NPA). The application of 

NPA was able to reverse this extension, while the WT root was unaffected by the NPA 

treatment (Fig. II-21 A-C). Furthermore, the root growth in the light can be inhibited by NPA 

treatment to the same extend in the WT, the spa1 spa2 spa4 mutant and the cop1-4 mutant, 

which indicates that the effect of COP1 and SPA on root extension prevented by NPA was 

restricted to darkness.  

As light controls the shoot to root transport of auxin downstream of phyA and phyB by acting 

on PIN3 auxin efflux carrier function, auxin transport into the root in the spa an cop1 mutants 

may contribute to the root elongation in darkness (Salisbury et al., 2007). Through PIN 

proteins, auxin gradients are also established within the root, which regulate cell elongation 

and proliferation. PIN2 is stored in root cells in darkness and moves to the membrane 

triggered by light signalling (Laxmi et al., 2008). Thus, PIN2 localisation to the membrane in 
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dark-grown spa mutants and the cop1-4 mutant could contribute to the growth response of the 

primary root in these mutants. The localisation of PIN2 could be analysed in the mutant 

backgrounds with GFP-PIN2 fusion proteins.  

 

 
Figure III-6: Model of a possible SPA function in the root growth in darkness. SPAs could be important for the negative 
regulation of SCAR1 by COP1, which is important for inhibition of primary root growth in darkness (Dyachok et al., 2011). 

 

Though commonly associated with the inhibition of auxin transport, NPA has also been 

shown to reduce cell proliferation in the elongation zone of roots acting by depolarising actin 

filaments independent of auxin (Rahman et al., 2007). Thus, it could be concluded that the spa 

triple mutant and the cop1-4 mutant extend their roots in darkness due to cell proliferation in 

the root that can be abolished with NPA treatment, which may be unrelated to an auxin effect, 

but related to an effect on the cytoskeleton of root cells. Interestingly, COP1 was shown to 

interact with SCAR1 and to regulate the activity of the SCAR/WAVE protein complex, which 

is important for the polymerisation of actin and involved in the root elongation (Dyachok et 

al., 2011). COP1 and SCAR1 interact genetically in the regulation of root elongation in 

darkness, which firmly establishes a link between light, COP1, the SCAR/WAVE complex, 

the actin filaments and root elongation, which can also explain the observed phenotypes in 

this study obtained with NPA treatment of the roots (Fig. II-21). As spa triple mutant roots 

also kept extending in darkness, SPA proteins may contribute to the control of the 
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SCAR/WAVE complex in darkness (see Fig. III-6). To further investigate this possibility, all 

spa triple mutants should be tested for root growth in darkness and a physical interaction of 

SCAR1 with the SPA proteins should be tested. Furthermore, to support the hypothesis that 

SPA gene function in the root is necessary and sufficient to inhibit root extension in darkness, 

the spa1 spa2 spa3 and spa1 spa2 spa4 triple mutants that express SPA1 under various tissue-

specific promoters could be employed to rescue the root elongation phenotype with tissue-

specific expression of SPA1 (Ranja et al., 2011). If root-specific expression of SPA1 could 

rescue the extension phenotype, it could be hypothesised that SPA genes also act as regulators 

of the SCAR/WAVE complex in the root. If the expression of SPA1 in aerial tissues was 

necessary or sufficient for the rescue of the phenotype, SPA1 may likely act on the auxin 

transport (Salisbury et al., 2007). 

Taken together, the apparent links between SPA gene function and auxin signalling that were 

further explored in this study are good starting points for further investigation of the 

involvement of SPA genes in auxin biosynthesis, transport and signalling.  

III.3  The function of auxin response elements (AuxRE) and G-Boxes in 

auxin-induced and light-repressed promoters 

Light signalling and auxin signalling are closely intertwined. Light signals manipulate the 

auxin system on the level of auxin biosynthesis, transport and response (Keuskamp et al., 

2010; Salisbury et al., 2007; Tao et al., 2008). Light-regulated transcription factors, like PIFs 

and HY5 regulate the expression of auxin-induced genes and may bind to the promoter 

sequences to regulate their expression directly (Leivar et al., 2009; Sibout et al. 2006) On the 

other hand, the expression of auxin-induced genes may indirectly result from decreased auxin 

signalling in the light via the AuxREs without direct input from light signalling.  

Six auxin-induced promoters were analysed for their light regulation (Fig. II-23). It was found 

that IAA19 and SAUR-AC1-l were the best candidate promoters to investigate the direct input 

of regulation via AuxREs and G-Box motifs due to their high expression levels and robust 

light regulation. The light-regulation and auxin-induction was also confirmed on the transcript 

levels (Fig. II-24). LUC assays on the T2 generation showed that the mutation of the two G-

Box elements resulted in a reduced light-repression of the IAA19 promoter, while mutation of 

the four AuxREs had no effect on the light-regulation (Fig. II-25). Furthermore, the 

IAA19mAuxRE4,3,2,1::LUC  lines were less responsive to exogenous auxin, which indicates that 

the AuxRE elements are important for auxin regulation of the promoters, but not limiting for 
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the light-repression of the IAA19 gene (see Fig. III-7 A for a model of IAA19 regulation by 

light). 

 

 
Figure III-7: Model of the regulation of IAA19 and SAUR-AC1-l by light. A) The G-Boxes in the IAA19 promoter are 
important for light-regulation of IAA19 and may be bound by PIFs or HY5, which is negatively regulated by the COP1/SPA 
complex. B) The AuxRE core motif in the SAUR-AC1-l promoter is important for light-regulation of the gene and could be 
bound by ARFs in darkness, while no function was found for the G-Box. 

 

HY5 has been implicated in the regulation of the auxin-responsiveness as mutations in the 

HY5 gene cause phenotypes that are thought be represent decreased auxin sensitivity (Oyama 

et al., 1997). The transcript levels of IAA19 have been reported to be up-regulated in the hy5 

and the hy5 hyh double mutant in Wc, which corresponds with the finding that IAA19 

transcript was lower in the cop1-4 and the spa1 spa3 spa4 mutants, because HY5 is repressed 

by the COP1/SPA complex (Fig. II-24; Seo et al., 2003; Sibout et al., 2006). Therefore, it can 

be hypothesised that HY5 may directly bind to the IAA19 promoter and lead to its down-

regulation. Furthermore, it has been suggested that up-regulation of IAA19 in low R:FR 

conditions depends on the G-Boxes in the promoter, which would suggest that PIFs also bind 

to the G-Boxes (Christian Fankhauser, personal communication, unpublished data). Thus, it is 

concluded that the G-Boxes of IAA19 may function in a dual mode, being bound by PIF 

factors in darkness and in response to low R:FR conditions, which up-regulates IAA19 and by 

HY5 in the light, which inhibits IAA19 expression.  

To further support the function of the G-Boxes in the regulation of the IAA19 promoter and to 

show a PIF and HY5 dependency of the regulation, IAA19::LUC, IAA19mAuxRE1,2,3,4::LUC 

and IAA19mG-Box1,2::LUC could be crossed into the pifq mutant background or into PIF 

overexpressors, such as PIF4 or PIF5 overexpressing lines (Leivar et al., 2009; Lorrain et al., 

2008). Furthermore, the promoter lines could be crossed with the hy5 mutant and a HY5 

overexpressor (Oyama et al., 1997; Hardtke et al., 2000). A direct light action on genes that 
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regulate the auxin response, like Aux/IAA genes, is furthermore in agreement with the 

observed difference in auxin-responsiveness of seedlings grown in darkness or shifted to R 

light in this study (Fig. II-20).  

The SAUR-AC1-l::LUC promoter-reporter construct also showed a down-regulation of SAUR-

AC1-l by light in this study. However, the mutation of the G-Box element was not sufficient 

to alter the light response of the promoter. In lines that expressed LUC from the promoter that 

contained the mAuxRE, the light-down-regulation was decreased, which was observed in two 

independent constructs (mAuxRE and mAuxRE/mG-Box). This indicates that the AuxRE is 

important for the light-regulation seen with the original promoter. The G-Box on the other 

hand is not contributing to this regulation (Fig. II-26). However, the SAURD1 promoter 

fragment, which only contains the G-Box motif, but not the AuxRE, also showed a strong 

down-regulation of the reporter gene comparable to the full length SAUR-AC1-l promoter. 

This suggests that the AuxRE is not the only factor acting on the light-regulation of the 

promoter and that the deleted region upstream of the SAURD1 promoter fragment may contain 

other important regulatory elements. Furthermore, the responsiveness of three independent 

SAURmAuxRE::LUC lines (T4) to exogenous auxin was similar to three SAUR::LUC lines 

(T4), which indicates that the AuxRE mutated was functional in the light-regulation, but not 

limiting for the auxin response of the promoter (Fig. II-27). It has been recognised that beside 

the canonical AuxRE motifs, additional cryptical AuxRE exist that confer auxin-

responsiveness to promoters (Walcher and Nemhauser, 2012). Such motifs are likely to exist 

in the SAUR-AC1-l promoter, as the AuxRE element mutated was not essential for the auxin 

regulation of the promoter. 

Taken together, the two analysed promoters that both confer down-regulation by light 

function differentially, as light-regulation of IAA19 largely depends on the G-Boxes in the 

promoter sequence, while the AuxREs have no limiting effect on the light-regulation. On the 

other hand, the light-regulation of SAUR-AC1-l is independent on the G-Box motif, but the 

AuxRE motif is contributing to the regulation (see model in Fig. III-7 A,B). 

The functions of the AuxREs and G-Boxes in the two promoters should be dissected with 

further experiments, including time-course experiments in Rc and other light conditions and 

may also be used to investigate the up-regulation of IAA19 in shade conditions. Preliminary 

results indicated that the AuxRE motifs are not important for the upregulation of IAA19 four 

hours after the onset of the low R:FR treatment, while the G-Box elements limited the 

response in two of three lines (data not shown). 
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To my knowledge, this study provides the first evidence for a direct light- regulation of an 

auxin-induced gene via G-Box elements from a study of promoter elements, though a large 

body of evidence for close light-auxin interactions has been accumulated (reviewed in 

Halliday et al., 2009). 



Material and Methods 
__________________________________________________________________________ 

   86 
  

IV.  Materials and Methods 

IV.1 Materials 

IV.1.1 Plant material 

The Arabidopsis thaliana lines created, crossed and used in this study are presented in Table 

1. All plants were Col-0 ecotype except stated otherwise. 

 

Table 1: Arabidopsis lines used in this study. 
The name of mutations and transgenes, the background accession, the mutagen and references are listed. 

Allele / Transgene Mutagen Source / Reference 

cop1-4 EMS McNellis et al., 1994 

hy5-215  EMS Oyama et al., 1997 

cop1-4 hy5-215  EMS Ulm, R., unpublished 

phyB-9  EMS Rösler et al., 2007 

cop1-6  EMS McNellis et al., 1994 

cop1-6 phyB-9  EMS/T-DNA Boccalandro et al., 2004 

hfr1-101  T-DNA Fankhauser and Chory, 2000 

hfr1-101 spa1-7 spa3-1 spa4-1  T-DNA Fackendahl, PhD Thesis, 2011 

spa1-2 EMS Hoecker et al., 1998 

spa1-7  T-DNA Fittinghoff et al., 2006 

spa1-100  T-DNA Yang et al., 2005a 

spa2-1  T-DNA Laubinger et al., 2004 

spa3-1  T-DNA Laubinger and Hoecker, 2003 

spa4-1  T-DNA Laubinger and Hoecker, 2003 

spa1-7 spa2-1  T-DNA Fittinghoff et al., 2006 

spa3-1 spa4-1  T-DNA Laubinger and Hoecker, 2003 

spa2-1 spa3-1 spa4-1  T-DNA Fittinghoff et al., 2006 

spa1-7 spa3-1 spa4-1  T-DNA Fittinghoff et al., 2006 

spa1-7 spa2-1 spa4-1  T-DNA Fackendahl, PhD Thesis, 2011 

spa1-7 spa2-1 spa3-1  T-DNA Balcerowicz et al., 2011 

spa1-7 spa2-1 spa3-1 spa4-1 T-DNA Fittinghoff et al., 2006 
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hy5-SALK (renamed hy5-51) T-DNA Ruckle et al., 2007 

spa1-7 spa3-1 spa4-1 hy5-51 T-DNA Fackendahl, PhD Thesis, 2011 

phyA-211 T-DNA Nagatani et al., 1993 

spa1 spa3 spa4 phyA-211 T-DNA Hoecker, U., unpublished 

phyB-1 (RLD) EMS Parks et al., 2001 

spa1-2 phyB-1 (RLD) EMS Parks et al., 2001 

phyA-101 (RLD) EMS Dehesh et al., 1993 

spa1-2 phyA-101 (RLD) EMS Hoecker et al., 1998 

spa3 spa4 35S:GFP-SPA4 (FL) T-DNA Fackendahl, PhD Thesis, 2011 

spa3 spa4 35S:GFP-∆N-SPA4  T-DNA Fackendahl, PhD Thesis, 2011 

spa3 spa4 35S:GFP-∆kin-SPA4  T-DNA Fackendahl, PhD Thesis, 2011 

spa3 spa4 35S:GFP-∆cc-SPA4  T-DNA Fackendahl, PhD Thesis, 2011 

spa2 spa3 spa4 CAB3:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 CER6:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 KNAT1:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 ML1:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 SPA1:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 SUC2:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa2 spa3 spa4 TobRB7:GUS-SPA1 T-DNA Ranjan et al., 2011 

spa1 spa2 spa3 spa4 SPA1::SPA1-HA T-DNA Balcerowicz et al., 2011 

spa1 spa2 spa3 spa4 SPA1::SPA2-HA T-DNA Balcerowicz et al., 2011 

spa1 spa2 spa3 spa4 SPA2::SPA1-HA T-DNA Balcerowicz et al., 2011 

spa1 spa2 spa3 spa4 SPA2::SPA2-HA T-DNA Balcerowicz et al., 2011 

pIAA5::LUC T-DNA Generated  in this study 

pIAA29::LUC T-DNA Generated  in this study 

pIAA30::LUC T-DNA Generated  in this study 

pIAA19::LUC T-DNA Generated  in this study 

pIAA19::GUS T-DNA Generated  in this study 

pIAA19D1::LUC T-DNA Generated  in this study 

pIAA19D2::LUC T-DNA Generated  in this study 

pIAA19mAuxRE1,2,3,4::LUC T-DNA Generated  in this study 

pIAA19mG-Box1,2::LUC T-DNA Generated  in this study 
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pSAUR (AC1-l)::LUC T-DNA Generated  in this study 

pSAUR::GUS T-DNA Generated  in this study 

pSAURD1::LUC T-DNA Generated  in this study 

pSAURD2::LUC T-DNA Generated  in this study 

pSAURmAuxRE::LUC T-DNA Generated  in this study 

pSAURmG-Box::LUC T-DNA Generated  in this study 

pSAURmAuxREmG-Box::LUC T-DNA Generated  in this study 

DR5::GUS T-DNA Ulmanov et al., 1997a 

spa1 spa3 spa4 DR5::GUS T-DNA Höcker, U., unpublished 

spa1 spa2 spa4 DR5::GUS T-DNA Crossed in this study 

IV.1.2 Bacterial strains 

The bacterial strains used in this study were Escherichia coli strain DH5α for standard cloning 

procedures and the ccdB gene resistant E. coli strain DB3.1 for handling of empty Entry 

GatewayTM vectors and Destination GatewayTM vectors. The respective genotypes are: 

 

DH5α: F- Φ80dlacZ∆M15 ∆(lacZYA-argF) U169 deoR recA1 endA1 

hsdR17(rk-, mk+) phoA supE44 λ- thi-1 gyrA96 relA1 

 

DB3.1: F- gyrA462 endA ∆(sr1-recA) mcrB mrr hsdS20 (rB-,-mB-) supE44 

ara-14 galK2 lacY1 proA2 rpsL20 (SmR) xyl5 λ- leu mtl1 

 

The strains were obtained from Invitrogen (Karlsruhe, Germany) and Stratagene (Santa Clara, 

USA). For plant transformation, Agrobacterium tumefaciens strain GV3101 (pMK90RK) 

(Koncz et al., 1994) was used. 

 

 

 

 

IV.1.3 Cloning vectors 

The created and used cloning vectors are listed in table 2. 
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Table 2: Cloning vectors used and created in this study. 
The vectors are listed with name, resistance, description and reference. 

Vector Resistance Description Reference/Source 

pDONR207 

Gentamycin 

(Gentr) 

GatewayTM
 entry vector, used for 

recombination with PCR products 

containing att-sites 

Invitrogen 

pIAA30-pDONR207 
ENTRY vector carrying 2.5 kb 

IAA30 5’ regulatory sequence 

Generated in this 

study 

 

pIAA5-pDONR207 
ENTRY vector carrying 2.5 kb IAA5 

5’ regulatory sequence 

pIAA19-pDONR207 
ENTRY vector carrying 2.5 kb 

IAA19 5’ regulatory sequence 

pIAA19D1-

pDONR207 

ENTRY vector carrying IAA19 5’ 

regulatory sequence 

pIAA19D2-

pDONR207 

ENTRY vector carrying IAA19 5’ 

regulatory sequence 

pIAA19mAuxRE1,2,3,4-

pDONR207 

ENTRY vector carrying mutated 

IAA19 5’ regulatory sequence 

pIAA19mAuxRE1,2,3,4mG-

Box1,2-pDONR207 

ENTRY vector carrying mutated 

IAA19 5’ regulatory sequence 

pIAA19mG-Box1,2-

pDONR207 

ENTRY vector carrying mutated 

IAA19 5’ regulatory sequence 

pSAUR(AC1-l)-

pDONR207 

ENTRY vector carrying 2 kb SAUR 

AC1-l 5’ regulatory sequence 

pSAURD1-pDONR207 
ENTRY vector carrying SAUR 5’ 

regulatory sequence 

pSAURD2-pDONR207 
ENTRY vector carrying SAUR 5’ 

regulatory sequence 

pSAURmAuxRE-

pDONR207 

ENTRY vector carrying mutated 

SAUR 5’ regulatory sequence 

pSAURmAuxREmG-Box-

pDONR207 

ENTRY vector carrying mutated 

SAUR 5’ regulatory sequence 

pSAURmG-Box- ENTRY vector carrying mutated 
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pDONR207 SAUR 5’ regulatory sequence 

pGWB3 

Kanamycin 

(Kmr), 

hygromycin 

(Hygr) 

 

GUS gene fusion, binary vector for 

plant transformation 
Nakagawa et al., 2007 

pGWB35 
LUC gene fusion, binary vector for 

plant transformation 

pIAA30- pGWB35 
Expression of LUC driven by 2.5 kb 

IAA30 regulatory sequence 

Generated in this 

study 

pIAA5-pGWB35 
Expression of LUC driven by 2.5 kb 

IAA5 regulatory sequence 

pIAA19-pGWB3 
Expression of GUS driven by 2.5 kb 

IAA19 regulatory sequence 

pIAA19-pGWB35 
Expression of LUC driven by 2.5 kb 

IAA19 regulatory sequence 

pIAA19D1-pGWB35 
Expression of LUC driven by IAA19 

5’ regulatory sequence 

pIAA19D2-pGWB35 
Expression of LUC driven by IAA19 

5’ regulatory sequence 

pIAA19mAuxRE1,2,3,4-

pGWB35 

Expression of LUC driven by mutated 

IAA19 5’ regulatory sequence 

pIAA19mAuxRE1,2,3,4mG-

Box1,2-pGWB35 

Expression of LUC driven by mutated 

IAA19 5’ regulatory sequence 

pIAA19mG-Box1,2-

pGWB35 

Expression of LUC driven by mutated 

IAA19 5’ regulatory sequence 

pSAUR(AC1-l)-

pGWB3 

Expression of GUS driven by 2 kb 

SAUR AC1-l 5’ regulatory sequence 

pSAUR(AC1-l)-

pGWB35 

Expression of LUC driven by 2 kb 

SAUR AC1-l 5’ regulatory sequence 

pSAURD1-pGWB35 
Expression of LUC driven by SAUR 

5’ regulatory sequence 

pSAURD2-pGWB35 
Expression of LUC driven by SAUR 

5’ regulatory sequence 

pSAURmAuxRE-

pGWB35 

Expression of LUC driven by mutated 

SAUR 5’ regulatory sequence 



Material and Methods 
__________________________________________________________________________ 

   91 
  

pSAURmAuxREmG-Box-

pGWB35 

Expression of LUC driven by mutated 

SAUR 5’ regulatory sequence 

pSAURmG-Box-

pGWB35 

Expression of LUC driven by mutated 

SAUR 5’ regulatory sequence 

IV.1.4 Oligonucleotides 

Oligonucleotides were used for cloning, site-directed mutagenesis, sequencing, genotyping 

and qRT-PCR, respectively and are listed in Table 3. Mutagenic nucleotides are in red and 

capitalised. 

Table 3: The oligonucleotides created and used in this study.  
The oligonucleotides (primers) are listed with name, sequence and further description and reference. 

Name Sequence (5’-3’) Method/Reference 

IAA30 2,5kb Prom for 
ggggacaagtttgtacaaaaaagcaggctcgtattgtttttata
ctttcacaaatagga 

GATEWAY cloning 

IAA30 Prom rev 
ggggaccactttgtacaagaaagctgggtcttttttttatttcttt
tactatttctctc 

GATEWAY cloning 

IAA30 Prom int I for gaaacaagttacgttgtacatataaac Sequencing 

IAA30 Prom int II for gatgtgttttggtctctgcc Sequencing 

IAA5 prom for 
ggggacaagtttgtacaaaaaagcaggctcgtgatcacttttg
gtttttcctatttc 

GATEWAY cloning 

IAA5 Prom rev 
ggggaccactttgtacaagaaagctgggtgctttgatgtttttg
attgaaagtattg 

GATEWAY cloning 

IAA5 Prom int I ctcacatcatcatggctcg Sequencing 

IAA5 Prom int II ctattaatgatgcaacaatctgaac Sequencing 

pIAA29 prom 2.5kb for 
ggggacaagtttgtacaaaaaagcaggctctcgcgggatga
agcagatac 

GATEWAY cloning 

pIAA29 5’ rev 
ggggaccactttgtacaagaaagctgggtcttctaaggcagc
ttcgtctttg 

GATEWAY cloning 

IAA29 Prom int I for  
 

caacaccatatttttatagctttac 
Sequencing 

IAA29 Prom int II for  
 

ggacgttgtccgttccaac 
Sequencing 

IAA19 2,5kb Prom for 
ggggacaagtttgtacaaaaaagcaggctgcgagttctaaat
tttgacttaactaaaag 

GATEWAY cloning 

IAA19 prom rev 
ggggaccactttgtacaagaaagctgggtcttcttgaacttctt
tttttcctc 

GATEWAY cloning 

IAA19 Prom int I for 
 

gactacctgaatttccagttg 
Sequencing 

IAA19 Prom int II for gttcgagactaactttggagat Sequencing 

SAUR AC1-L Prom 
compl for 

 

ggggacaagtttgtacaaaaaagcaggctcgagacactcct
gtcttcataaac 
 

GATEWAY cloning 

SAUR AC1-L Prom rev 
 

ggggaccactttgtacaagaaagctgggtcttcgagtattag
aaagaaaaaaaaac 

GATEWAY cloning 

19 mAuxRE1 for gtctctgcccccactttgGctccccacacaaactgaataac Site-directed mutagenesis 

19 mAuxRE1 rev gttattcagtttgtgtggggagCcaaagtgggggcagagac Site-directed mutagenesis 
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Name Sequence (5’-3’) Method/Reference 

19 mAuxRE2 for cctcagttgacctgGctctgcccccactttgtctcc Site-directed mutagenesis 

19 mAuxRE2 rev ggagacaaagtgggggcagagCcaggtcaactgagg Site-directed mutagenesis 

19 mAuxRE3 for cagcaccaaacttatgGctctcatgtgaccgacc Site-directed mutagenesis 

19 mAuxRE3 rev ggtcggtcacatgagagCcataagtttggtgctg Site-directed mutagenesis 

19 mAuxRE4 for cgtataagaaacatgagCcatgtcacaatcac Site-directed mutagenesis 

19 mAuxRE4 rev gtgattgtgacatgGctcatgtttcttatacg Site-directed mutagenesis 

IAA19 mGbox 1 for gatatcaaatgactccaATtgtcgatattgg Site-directed mutagenesis 

IAA19 mGbox 1 rev ccaatatcgacaATtggagtcatttgatatc Site-directed mutagenesis 

IAA19 mGbox 2 for catataatttcaATtggcccaacttg Site-directed mutagenesis 

IAA19 mGbox 2 rev caagttgggccaATtgaaattatatg Site-directed mutagenesis 

IAA19 G1 BACK for gatatcaaatgactccacgtgtcgatattgg Site-directed mutagenesis 

IAA19 G1 BACK rev ccaatatcgacacgtggagtcatttgatatc Site-directed mutagenesis 

IAA19 G2 BACK for catataatttcacgtggcccaacttg Site-directed mutagenesis 

IAA19 G2 BACK rev caagttgggccacgtgaaattatatg Site-directed mutagenesis 

SAUR mAuxRE1 for catcgtatttttcttgGctcttgggtagatattttc Site-directed mutagenesis 

SAUR mAuxRE1 rev gaaaatatctacccaagagCcaagaaaaatacgatg Site-directed mutagenesis 

SAUR mGBOX1 for gcttataatgttcaATtgtacaacgtttacgtc Site-directed mutagenesis 

SAUR mGBOX1 rev gacgtaaacgttgtacaATtgaacattataagc Site-directed mutagenesis 

IAA19 D1 for ggggacaagtttgtacaaaaaagcaggctgcgtcacaatca
ctttaaaagttttcc 

Deletion construct, GATEWAY 

cloning 

IAA19 D2 for ggggacaagtttgtacaaaaaagcaggctgccccacacaaa
ctgaataacaag 

Deletion construct, GATEWAY 

cloning 

SAUR D1 for ggggacaagtttgtacaaaaaagcaggctgcgggtagatatt
ttcagatattttg 

Deletion construct, GATEWAY 

cloning 

SAUR D2 for 

 

ggggacaagtttgtacaaaaaagcaggctgccccacacaaa
ctgaataacaag 
 

Deletion construct, GATEWAY 

cloning 

PIL1f Lo08 aaattgctctcagccattcgtgg RT-PCR; Lorrain et al., 2008 

PIL1r Lo08 ttctaagtttgaggcggacgcag RT-PCR; Lorrain et al., 2008 

ATHB2r Lo08 gcatgtagaactgaggagagagc RT-PCR; Lorrain et al., 2008 

ATHB2f Lo08 gaggtagactgcgagttcttacg 
 

RT-PCR; Lorrain et al., 2008 

hfr1f Lo08 taaattggccattaccaccgttta RT-PCR; Lorrain et al., 2008 

hfr1r Lo08 accgtgaagagactgaggagaaga RT-PCR; Lorrain et al., 2008 

XTR7 f Ho09 cggcttgcacagcctctt RT-PCR; Hornitschek et al., 2009 

XTR7 r Ho09 tcggttgccacttgcaatt RT-PCR; Hornitschek et al., 2009 

SAUR AC1L_for II acgggcggtttgagtttac RT-PCR  

SAUR AC1L_rev II tgggattaacgaatctgagaag RT-PCR 

IAA19_for RT II tgctaccgggtttgggctgc RT-PCR 
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Name Sequence (5’-3’) Method/Reference 

IAA19_rev RT II accagctccttgcttcttgttcaagtc RT-PCR 

TAA1 Frlin_11 F  caagaagcatgtccgagtca RT-PCR; Franklin et al.,2011 

TAA1 Frlin_11 R agcttcatgttggcgagtct RT-PCR; Franklin et al.,2011 

YUC2 F ataggcggtgtgggttatg RT-PCR 

YUC2 R  catccttcttccctccggtt RT-PCR 

YUC8 F  atgcccttccctgaggactt RT-PCR 

YUC8 R  gatgaactgacgcttcgtcg RT-PCR 

YUC9 F  gtcccattcgttgtggtcg RT-PCR 

YUC9 R  ttgccacagtgacgctatgc 
 

RT-PCR 

FT F_Wol08 
 

ctcaggaacttctatactttggttatg  
 

RT-PCR; Wollenberg et al., 2008 

FT R_Wol08 
 

gttccagttgtacgagggatatcag 
 

RT-PCR; Wollenberg et al., 2008 

CO F_Wol08 
 

cattaaccataacgcatacatttcatc  
 

RT-PCR; Wollenberg et al., 2008 

CO F_Wol08 
 

tccggcacaacaccagttt 
 

RT-PCR; Wollenberg et al., 2008 

FLC F_Adams09 
ggatccatgggaagaaaaaaacta 
 

RT-PCR; Adams et al., 2009 

FLC R_Adams09 
ggtacctcacacgaataaggtacaaagttca 
 

RT-PCR; Adams et al., 2009 

SPA1 RT F 
tcttaccgatgccaatgact 
 

RT-PCR; Maier, A. unpublished 

SPA1 RT R 
cacacgctcgacacacaaactg 
 

RT-PCR; Maier, A. unpublished 

SPA2 RT F tcaggtaaggacatagaggaggac RT-PCR; Maier, A. unpublished 

SPA2 RT R tgtagaactttgattgacccattt RT-PCR; Maier, A. unpublished 

SPA3 RT for tcgtgtaccacaaggcattc RT-PCR 

SPA3 RT rev tcgtgtaccacaaggcattc RT-PCR 

SPA4 RT F4  cgtgtttgtctctttatgtaatca RT-PCR; Fackendahl, 2011 

SPA4 RT R3  gaggagacagggcagaatag RT-PCR; Fackendahl, 2011 

UBQ10 F cacactccacttggtcttgcgt RT-PCR, Balcerowicz et al., 2011 

UBQ10 R tggtctttccggtgagagtcttca RT-PCR, Balcerowicz et al., 2011 

IV.1.5 Chemicals 

Chemicals and reagents were ordered from the following companies: Applichem (Darmstadt, 

Germany), Applied Biosystems (Carlsbad, USA), Bio-Rad Laboratories (Hercules, USA), 

Clontech (Palo Alto, USA), Colgate-Palmolive (Hamburg, Germany), Difco (Detroit, USA), 

Duchefa (Haarlem, Netherlands), Gibco BRL (Neu Isenburg, Germany), Fermentas (St. Leon- 

Rot, Germany), Invitrogen (Karlsruhe, Germany), Merck (Darmstadt, Germany), Promega 

(Mannheim, Germany), Riedel-de-Haen (Seelze, Germany), Roche (Mannheim, Germany), 
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Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany), Sigma-Aldrich (München, 

Germany), Thermo Scientific (Rockford, USA), VWR (Darmstadt, Germany). 

IV.1.6 Antibiotics 

Antibiotics were dissolved and stored at -20°C as sterile-filtered 1000x stock solutions 

(except 100x in case of spectinomycin).  Used antibiotics are listed in Table 4. 

 

Table 4: Antibiotics used for selective growth media 

Antibiotics   Abbreviation       Concentration         Dissolvent (if not dH2O) 

Ampicillin  (Amp r)  100 mg/ml    

Gentamycin   (Gentr)  15 mg/ml  

Hygromycin   (Hygr)   50 mg/ml  

Kanamycin   (Kmr)   50 mg/ml 

Rifampicin   (Rif r)   100 mg/ml   DMSO 

Spectinomycin  (Specr)  10 mg/ml 

IV.1.7 Enzymes 

All enzymes (including restriction endonucleases, polymerases, clonases and reverse 

transcriptase) were purchased from Fermentas (St. Leon-Rot, Germany), Clontech (Palo Alto, 

USA) and Invitrogen (Karlsruhe, Germany). 

IV.1.8 Antibodies 

Antibodies were diluted from stocks before use in TBS buffer (NaCl 0.14 M; Tris 10 mM; pH 

7.3 (HCl)) containing 4% (w/v) non-fat milk powder (Table 5). Secondary antibodies were 

conjugated to the horse radish peroxidase (HRP). 

Table 5: Primary and secondary antibodies for immunoblot analysis 

Primary antibodies 

Antigen Dilution  Reference / Supplier 

α-SPA1 (rabbit) 1:300  Maier, A., PhD Thesis, 2011 

α-Tubulin (mouse) 1:50000  Sigma-Aldrich (München, Germany) 

Secondary antibodies 

Antigen Dilution  Reference / Supplier 

α-mouse (goat) 1:10000 Sigma-Aldrich (München, Germany); HRP-conjugated 

α-rabbit (goat) 1:80000 Sigma-Aldrich (München, Germany); HRP-conjugated 



Material and Methods 
__________________________________________________________________________ 

   95 
  

IV.1.9 Media 

Media for bacteria and plant growth were prepared as listed below: 

 
Luria Bertani (LB) medium 

Tryptone 10.0 g/l 

Yeast extracts 5.0 g/l 

NaCl 5.0 g/l 

1.5% (w/v) agar was added for LB plates  

 

Murashige and Skoog (MS) medium for plants 

MS salt  4.62 g/l 

pH 5.8 

1 % (w/v) agar was added for MS plates  

 

Black MS medium (for shade avoidance experiments) 

MS salt  4.62 g/l 

Charcoal 10 g/l 

pH 5.8 

1 % (w/v) agar was added for black MS plates   

 

All media were autoclaved at 121°C for 20 min. 

IV.2 Methods 

IV.2.1 Molecular biological methods 

Precipitation of DNA and RNA, gel electrophoresis, staining of DNA and other standard 

methods were performed according to standard protocols (Sambrook and Russell, 2001). 

Purification of nucleic acids was performed with the Qiagen Gel Extraction Kit or Qiagen 

PCR Purification Kit (Qiagen GmbH, Hilden, Germany). Plasmids were purified from E.coli 

with the Qia-prep Spin Miniprep Kit or Qia-prep Vacuum Miniprep Kit (Qiagen). 
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IV.2.1.1 Polymerase chain-reaction (PCR) 

PCRs were performed with 100 ng of genomic DNA from plants, 1 µl cDNA or 100 ng of 

plasmid DNA as template in a volume of 20 µl when using Taq polymerase and 50 µl for Pfu 

polymerase protocol (Oligonucleotides 0.2 µM; dNTPs 0.5 mM; 1x PCR reaction buffer). 

For a standard reaction 1 µl of Taq polymerase was used.  

Standard PCR runs consisted of a first step of denaturation by 95°C for 5 min followed by 35 

to 40 cycles of denaturing at 95°C for 30 sec, annealing at 56°C for 30 sec and elongation at 

72°C for 1 min / 1 kb. Final elongation step was 5 min. 

IV.2.1.2 PCR based site-directed mutagenesis 

Site-directed mutagenesis was performed according to the Stratagene kit protocol 

(www.stratagene.com). PCR was run using Pfu proof-reading polymerase (5 µl 10X Pfu 

buffer; 1µl 10 mM dNTPs; 2µl of each primer (100 nM); 1 µl template vector (50 ng/µl); 1 µl 

Pfu DNA polymerase; ad to 50 µl dH2O) amplifying the vector carrying the target sequence 

with two specific primers containing the desired point-mutation (Primers designed with 

Primer3, http://biotools.umassmed.edu/ bioapps/primer3_www.cgi). The PCR reaction was 

performed with the following steps: 1. 95°C for 1 minute 2. 95°C for 30 seconds, 60°C 

for 30 seconds, followed by 72°C for 1 minute/kb of plasmid with 18 cycles and a final 

extension with 72°C degrees for 10 minutes. 

The template vector was subsequently digested by DpnI for 2h at 37°C and the mix 

transformed into chemically competent DH5-α. Vector DNA from clones was test-digested 

and sequenced to obtain clones carrying the desired mutation. 

IV.2.1.3 Molecular cloning GatewayTM   technology 

BP and LR recombination reactions were performed as described in the manufacturer’s 

manual (Invitrogen, Karlsruhe, Germany). The pDONR207 (Invitrogen, see Table 2) was 

used as Entry GatewayTM vector for all BP reactions performed in this thesis. 

IV.2.1.4 Transformation of E.coli cells 

Cells of the E.coli strains DH5α and DB3.1 were made chemically competent, flash frozen 

and stored at -80°C (Inoue et al.,1990). 

For transformation, a test tube with 50 µl suspension of the competent cells was placed on ice 

and incubated with 10 to 100 ng of plasmid DNA for 15 min. After incubation at 42°C for 1 
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½ min (“heat-shock”) the tube was placed on ice for 1 min. 500 µl liquid LB medium was 

added to the mixture and incubated at 37°C for 45 min. The transformation suspension was 

centrifuged for 30 sec at 14000 rpm and the supernatant removed up to approximately 50 µl 

medium. The pellet was resuspended and the suspension plated onto LB plates containing 

antibiotics. 

IV.2.1.5 Transformation of A.tumefaciens cells 

Electro-competent cells of A. tumefaciens strain GV3101 (pMK90RK) were transformed with 

approximately 100 ng of vector DNA employing the MicroPulserTM
 electroporator (Bio-Rad 

laboratories, Hercules, USA) according to the manufacturer’s manual. 500 µl liquid LB 

medium was immediately added to the cuvette after the current surge and the suspension 

incubated at 37°C for 45 min. The transformation suspension was centrifuged for 30 sec at 

14000 rpm. Transformed cells were resuspended in 50 µl LB medium and plated onto 

selective media. 

IV.2.1.6 DNA Sequencing 

DNA sequences were verified by sequencing, which was undertaken by GATC (Konstanz, 

Germany). The quality of the sequencing result was examined with 4Peaks software 

(Mekentosj B.V., Amsterdam, The Netherlands)  

IV.2.1.7 DNA sequence management 

Sequence data was analysed, edited and stored using Vector NTI® (Invitrogen) and 

Lasergene® (DNASTAR, Madison, USA) software packages. 

IV.2.2 Transcript analysis 

IV.2.2.1 Extraction of total plant RNA 

Total RNA from Arabidopsis seedlings was obtained with the RNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s manual for plant tissue. The concentration 

of the total RNA was determined in 1.5 µl of the extract using a Nanodrop® 

spectrophotometer (Thermo Scientific). The integrity of the total RNA was analysed on a 2% 

agarose gel, checking for the visibility of the characteristic rRNA bands. 
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IV.2.2.2 Reverse transcription of plant mRNA 

1 µg of total RNA was DNase treated (2 µl DNase (RNase-free); 2 µl of 10x DNase buffer 

(Fermentas (St. Leon-Rot, Germany); ddH2O (RNase-free)) for 1 h at 37°C.  

2 µl of EDTA (25mM) was added and the DNase digest incubated at 65°C for 10 min. Oligo-

(dT)18 primers were added to the digested RNA and denatured at 72°C for 10 min in a PCR 

cycler. The PCR reaction tube was afterwards directly placed on ice and the reverse 

transcriptase mix (4 µl of 5 mM dNTPs; 8 µl of 5x reverse transcriptase buffer; 1 µl of 

RevertAIDTM
 H Minus M-MuLV reverse transcriptase (Fermentas)) was added. The sample 

was incubated for 1 h at 42°C and finally at 70°C for 10 min in a PCR cycler. The obtained 

cDNA was stored at -20°C. 

IV.2.2.3 Quantitative RT-PCR-PCR (qRT-PCR)  

1 µl of cDNA was used as template in a 25 µl qRT-PCR reaction (12,5 µl POWER SYBR 

Green PCR mix (Applied Biosystems, Darmstadt, Germany); 0,25 µl of each gene specific 

primer (100 nM); 11 µl of autoclaved ddH2O). The qRT-PCR was performed and analysed by 

the 7300 Real-Time PCR System (Applied Biosystems). Two to three biological replicates 

were used and each was analysed in technical duplicates. Ct values gained from the detection 

were statistically evaluated using the 2-∆∆Ct method (Livak and Schmittgen, 2001). UBQ10 

was amplified as endogenous control.  

IV.2.3 Biochemical methods 

IV.2.3.1 Protein extraction and preparation 

A sample of around 200 mg of seedlings was harvested and flash frozen in liquid nitrogen. 

The tissue was subsequently ground with cooled mortar and pistil and the resulting powder 

resuspended in 150 µl protein extraction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM 

EDTA, 10% glycerol, 1 mM DTT, 1% protease inhibitor cocktail (Sigma), 10 µM MG132, 

1% Triton-X-100) per 100 mg tissue. The lysate was centrifuged at 4°C for 15 min at 14000 

rpm and the supernatant transferred to a new reaction tube. The protein concentration was 

determined with the Bradford assay (Bio-Rad) using a 1:10 dilution of protein extract. 5x 

Laemmli buffer (310 mM Tris-HCl pH 6,8, 10% (w/v) SDS, 50% (v/v) Glycerol; 0,5% (w/v) 

Brom phenol blue, 500 mM DTT) (Laemmli et al., 1970) was added to the protein extract and 
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the mixture was incubated at 96°C for 5 min. The obtained protein samples were stored at -

20°C. 

IV.2.3.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Discontinuous SDS polyacrylamide gels were prepared according to Laemmli (Laemmli 

1970). The stacking gel contained 5% acrylamide, while the separation gel contained 7,5% 

acrylamide. Protein samples of similar total protein amount were loaded onto the gel (40µg) 

and separated. The proteins were then transferred onto an activated PVDF membrane (GE 

Healthcare, Piscataway, USA) using a semidry blotting system (LTF, Germany), employing 

Towbin buffer (96 mM Glycin, 10 mM Tris, 10% (v/v) Methanol). The transfer was achieved 

with a current of 0.35 mA / cm2 for 2 h.  

IV.2.3.3 Immunoblot analysis 

The PVDF membrane was blocked using Roti®-Block (Roth, Karlsruhe, Germany) and 

incubated in the primary antibody for 2 h at room temperature or over-night at 4°C. After 

washing three times for 5 min with TBS-T buffer (NaCl 0.14 M; Tris 10 mM; Tween® 20 0.1 

% (v/v) pH 7.3), the membrane was incubated with the corresponding secondary antibody 

conjugated to a horseradish peroxidase (HRP) for 1 h. After washing three times for 5 min 

again, bioluminescence was triggered with the ECL PlusTM Western Blotting Detection 

Reagents (GE Healthcare, Piscataway, USA) or SuperSignal® West Femto Maximum 

Sensitivity Substrate kit (Thermo Scientific, Rockford, USA) according to the manufacturers’ 

manuals and detected with a LAS-4000 mini (Fujifilm, www.fujifilm.com). Intensities of 

specific protein bands were quantified with Multi-Gauge 4.0 software (Fujifilm) and 

normalized to tubulin (TUB) signals. 

 

 

IV.2.4 Plant growth and transformation 

IV.2.4.1 Seed sterilisation 

Seeds were surface-sterilized by incubation in a chlorine gas atmosphere (80 ml of sodium 

hypochlorite; 2.5 ml of concentrated hydrochloric acid) for approximately 3 hours. Seeds 

were subsequently transferred to a sterile bench and incubated for 1 h to let the gas evaporate. 
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IV.2.4.2 Plant growth 

Seeds that were to be used in the same experiment and that originated from different seed 

batches were regrown in the green-house and harvested at the same point in time for 

synchronization.  

Seeds for seedling analysis were sterilized (see previous section), sown on sterile MS plates or 

dropped into liquid MS (+ 1% sucrose) and incubated at 4°C for three to four days. After 3 h 

of white light treatment at 21°C, the plates were either kept in white light (Wc) or moved back 

to darkness for 21 h at 21°C and subsequently incubated in the desired light regime at 21°C. 

Monochromatic light was produced by LED light sources (Quantum Devices, Barneveld, WI, 

USA). Prior of being sown on soil, Arabidopsis seeds were incubated at 4°C in darkness for 

three to four days in water. Seeds were sown in a mixture of three parts soil and one part 

vermiculite. Plants were either grown in the greenhouse for propagation or in light chambers 

for plant analysis (Percival Scientific).  

IV.2.4.3 A.tumefaciens-mediated stable transformation of Arabidopsis 

The floral dip method was applied for Agrobacterium-mediated transformation of Arabidopsis 

flowering organs (Clough and Bent, 1998). 

IV.2.5 Strategy of transgenic plant generation for promoter analysis 

The 2.5 kb 5’ upstream genomic regions including the 5’UTRs (or the complete 5’ upstream 

region up to the next gene) of AUX/IAA5, 19, 29, 30 and SAUR AC1-l were amplified from 

genomic DNA and cloned into pDONR207 (Invitrogen, gentr) by BP reaction, resulting in 

promoter entry clones verified by sequencing and restriction analysis. They were recombined 

by LR clonase reaction into pGWB35 and pGWB3, providing LUC and GUS gene fusions for 

promoter analysis (Nakagawa et al., 2007). The resulting vectors are listed in table 2 and 

represented by vector maps in figure IV-1. Primers used for the amplification of the promoters 

are listed in table 3.  The IAA5 promoter fragment (around 2.5 kb up to the next gene) was 

amplified with the IAA5 prom for / IAA5 prom rev primers. The IAA19 promoter was 

amplified with the IAA19 2.5kb prom for / IAA19 prom rev primers and IAA29 with the 

pIAA29 prom 2.5kb for / IAA29 5’ rev primers.   The IAA30 promoter fragment was amplified 

with the IAA30 2.5 kb prom for / IAA30 prom rev primers and the complete 5’ SAUR 

promoter fragment was amplified with the SAUR AC1-l prom compl for / SAUR AC1-l prom 

rev primer pair. 
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Figure IV-1: Promoter::LUC constructs. The Luciferase gene (LUC) is depicted in yellow and the insertion-site of the 
promoter sequence indicated. The pGWB35 carries a kanamycin resistance and a hygromycin resistance (in green). Unique 
restriction sites are shown. 
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The deletion constructs of pIAA19 and pSAUR AC1-l, pIAA19D1/D2 and pSAUR AC1-lD1/D2 

were amplified from promoter entry vectors by PCR and processed for LUC fusion as 

described for the full length promoters. For the IAA19D1 and IAA19D2 fragments, the primers 

IAA19 D1 for or IAA19 D2 for were combined with the IAA19 prom rev primer. Similarly, for 

the SAUR AC1-lD1 and SAUR AC1-lD2 fragments, the primers SAUR D1 for and SAUR D2 for 

were used with the SAUR AC1-l prom rev primer. 

Point mutated versions of IAA19 and SAUR AC1-l promoters were generated by site-directed 

mutagenesis (See IV.2.1.2) of the two promoter entry vectors pIAA19-pDONR207 and 

pSAUR-pDONR207. Mutations were generated in core AuxRE and G-Box sequences and 

verified by sequencing and test digestion.  

The IAA19 promoter sequence was mutated in the G-Boxes in two consecutive PCR reactions 

using the primer pairs IAA19 mGbox 1 for / IAA19 mGbox 1 rev and IAA19 mGbox 2 for / 

IAA19 mGbox 2 rev. The IAA19mAuxRE1,2,3,4 plasmid was generated from a previously obtained 

IAA19mG-Box1,2mAuxRE1,2,3,4 plasmid by mutation of the mutated G-Boxes back to the Col-0 

sequence. The four primer pairs for the consecutive mutation of the four AuxREs were 

19mAuxRE1 for/rev to 19AuxRE4 for/rev. The G-Boxes were mutated back the original 

sequence by the two primer pairs IAA19 G1 BACK for/rev and IAA19 G2 BACK for/rev in 

consecutive PCR based site directed mutagenesis applications. The SAUR promoter sequence 

was mutated with the primer pair SAUR mAuxRE1 for/rev and the SAUR mGBOX1 for/rev 

primers, respectively. For details, refer to the supplemental figures S6 and S7, which display 

detailed sequence maps of the two promoter fragments.  

Successfully mutated promoters were recombined with pGWB35 (::LUC) as described before. 

Transgenic plants carrying Promoter::LUC and Promoter::GUS fusions of SAUR AC1-l, 

IAA5, IAA19, IAA29 and IAA30 promoter sequences and of mutated or deleted versions were 

generated by the floral dip method and the T1 generation was harvested and selected on MS 

plates containing kanamycin. Resistant plants were propagated in the green house to obtain 

the T2 seeds. Around 20 T2 lines were screened for total Luciferase activity and the light 

regulation (24 h Rc/darkness). Segregation on kanamycin plates was analysed and 

homozygous T3 lines generated and propagated to T4 where indicated. 

IV.2.6 Crossing of plant lines 

The DR5::GUS line was crossed into the spa1-7 spa2-1 spa4-1 mutant background (Ulmasov 

et al., 1997 a; Fackendahl, unpublished). The F1 generations from two independent crosses 
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were propagated and the obtained F2 generation screened for plants exhibiting a spa1 spa2 

spa4 phenotype in darkness with spa1 spa2 spa4, spa1 spa2 and Col-0 WT as controls. 

The F3 seedlings were selected for a homozygous spa1 spa2 spa4 mutant phenotype in 

darkness again, were shifted to MS+1% sucrose plates for recreation and finally shifted to the 

greenhouse on soil. In parallel, around 20 F3 seedlings were treated with 10-5 NAA for 24 h 

and subsequent stained with GUS solution to confirm the DR5::GUS insertion. The coupling 

of the spa1 spa2 spa4 phenotype and the DR5::GUS insertion was very rare. Two lines, #1.3 

and #41.11 could be identified and were propagated to obtain F4 seeds. 

IV.2.7 Shade avoidance setup 

For adult plant growth analysis and determination of flowering time, seeds were pre-treated in 

water for 3 days at 4°C and plated on soil in single wells of 77-well trays in a randomized 

fashion. Plants were grown in constant white light at 21°C, 60% humidity for four days and 

were subsequently incubated in continuous low R:FR conditions in the upper shelf or kept in 

continuous white light on the lower shelf (Growth chamber AR-36L; cool-white fluorescent 

light sources; Percival-Scientific, Perry, USA). The upper shelf was additionally equipped 

with LED light sources (Quantum Devices, Barneveld, WI, USA) for far-red light emission. 

The white light photon fluence rate was kept constant at 50 µmol × m-2  × sec-1 in both shelves 

and the R:FR ratio was adjusted to 0.15 for low R:FR in the upper shelf. The R:FR ratio was 

9.8 in the continuous white light conditions (lower shelf). The settings were: Upper shelf 

(Wc+FRc): 98% Wc and 98% far-red light LEDs (additional far-red light fluence rate: 90 

µmol × m-2  × sec-1); lower shelf (Wc): 50% Wc. 

For seedling experiments and all transcript determinations and protein extractions, seeds were 

surface-sterilized and sown on MS plates containing 1% activated charcoal (black MS). Seeds 

were stratified at 4°C for three days in the dark and incubated in continuous white light (50 

µmol × m-2  × sec-1) provided by white light LED light sources. Seedlings were grown at 

constant 21°C. The R:FR ratio of the white light was 10.3 (Percival light chamber E-30B 

equipped with flora LEDs, CLF, Plant Climatics GmbH, Germany). Shade conditions were 

simulated by additional far-red light emitted by LED light sources in a chamber of identical 

construction (Model: E-30B with floral LEDs, CLF, Plant Climatics GmbH, Germany). The 

PAR was kept at 50 µmol × m-2  × sec-1 and the R:FR ratio adjusted to 0.23 with additional 70 

µmol × m-2  × sec-1 of far-red light. The settings for the white light and low R:FR light 

conditions were: Wc channel: 93%; FR channel 0% (Wc) / 80% (Wc+FRc). 
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All photon fluence rates and ratios were quantified using a SpectroSense2+ (Skye 

Instruments, Powys, United Kingdom) equipped with a 1- channel white light sensor or a 4-

channel sensor (red and far-red light specific sensors) . 

Furthermore, the spectral composition of the Wc and Wc+FRc conditions are shown in figure 

IV-1 (analysed with spectrometer F600, Stellar Net). 

 
Figure IV-2: Analysis of spectral composition of the Wc and Wc+FRc conditions for seedling and adult plant growth. 
The fluences at the wavelengths between 400 nm and 800 nm were plotted. A+C) Composition of the Wc and Wc+FRc 
conditions used for adult plant growth. B+D) Composition of the Wc and Wc+FRc conditions used for seedling experiments 
on black MS plates. 
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IV.2.8 Plant phenotypic analyses 

IV.2.8.1 Hypocotyl, petiole and leaf length measurements 

Seedlings were flattened to the agar plates and pictures were taken with a NIKON D5000 

digital camera (Nikon, www.nikon.com). Adult plant stages were documented from above or 

from one side. The measurements of hypocotyl length, cotyledon dimensions and leaf size 

were carried out with ImageJ 1.43u software (Wayne Rasband National Institutes of Health, 

USA). The values were statistically processed with Excel 2010 (Microsoft Corporation, USA) 

IV.2.8.2 Determination of flowering time 

Plants were grown randomized on soil in single wells at constant distances. Flowering time in 

simulated shade (Wc+FRc) and continuous white light (Wc) conditions was determined by 

the number of true leaves at the day the first inflorescence was visible to the unaided eye and 

the number of days to flower from the day of sowing. At least eight plants were analysed for 

each genotype. The data was analysed with Excel 2010. The experiment was rerun twice with 

similar results. 

IV.2.8.3 Determination of root length  

Plants were grown on square MS plates incubated vertically. The root length was then 

determined as described in section hypocotyl length (IV.2.8.1). 

IV.2.9 Quantitative luciferase assays 

Around 100 mg of seedlings were harvested into a 2 ml safe-lock reaction tube that contained 

five metal beats (Biorad). The tissue was flash frozen in liquid nitrogen. Homogenisation of 

the cooled sample was achieved by shaking for 1 min at 30 sec-1 with a Retsch Mill®. 200 µl 

of extraction buffer (100 mM NaPO4 pH7.5; 1 mM DTT) were added to the homogenized 

tissue and the tube placed on ice. After centrifugation at 4◦C for 10 min at 14000 rpm, 100 µl 

of the supernatant was transferred to a new reaction tube. 

The amount of total protein was estimated by processing 12.5 µl of a 1:10 dilution of the 

supernatant with the Pierce® BCA Protein Assay Kit (Thermo Scientific) according to the 

user manual (microtiter plate application). The measurements were carried out by a Tecan 

M200 plate reader (Tecan, Männedorf, Schweiz). 
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10 µl of undiluted protein extract was added to 15 µl 2 mM EDTA in a well of a microtiter 

plate (Greiner Bio-one, Germany). The plate reader was programmed to inject 100 µl 

luciferase assay buffer (50 mM Tris-HCl, pH 7,8; 10 mM MgCl2, 1 mM EDTA; 15 mM DTT; 1 

mM ATP; 0,5 mM Luciferin (Roth)) into a well, halt for two seconds and count the number of 

emitted photons within the following ten seconds. All measurements were performed for two 

to three biological replicates (in case not stated otherwise) in technical duplicates for each 

sample. 

IV.2.10 GUS assays 

GUS enzymatic activity was quantified and visualised by the following methods. 

IV.2.10.1 Quantitative GUS assay (MUG assay) 

Protein extraction and determination of the total protein concentration was performed as 

described in the quantitatve LUC assay section (see IV.2.9). 25 µl of the undiluted protein 

extract were transferred to a white flat bottomed 96-well microtiter (Greiner Bio-One, 

Frickenhausen, Germany)  plate and 100 µl qGUS assay buffer (extraction buffer; 1mM MUG 

(4-methylumbelliferyl-β-D-glucuronic acid)) were added. The detection of the 4-MU 

production was performed by a preheated Tecan M200 plate reader (Tecan, Männedorf, 

Switzerland) measuring the fluorescence at 455 nm after excitation with 365 nm in each well. 

Data were collected 150 times at two-minute intervals at continuous 37°C and the results 

plotted as a time chart. The linear slop of each curve was extracted from the data and the GUS 

activity calculated in pmol (4-MU) × min-1 × ug (total protein)-1 using a standard curve with 

increasing 4-MU concentrations. 

IV.2.10.2 Histochemical GUS assay 

GUS activity was made visible as described previously with minor modifications (Jefferson et 

al., 1987). Seedlings or leaves were incubated in staining buffer (0.1% TritonX-100, 10 mM 

EDTA, pH 7; 0.5 mM NaPO4, pH 7.0; 0.5 mM K4Fe(CN)6; 0.5 mM K3Fe(CN)6; 1 mM 5-

bromo-4-chloro-3-indolyl-β-d-glucuronic acid (X-Gluc; Duchefa) for two to 16 hours at 

37°C. The reaction was stopped by adding 70% ethanol to destain the samples. Blue staining 

was observed and documented with a Nikon 5000 camera. 
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IV.2.11 Auxin (1-naphthaleneacetic acid (NAA)) treatments 

Seeds were incubated over night at -80°C to prevent fungal growth and subsequently surface-

sterilized as described (see IV.2.4.1). Seedlings were grown in liquid MS supplied with 1% 

sucrose under white light conditions or in darkness for five days after 3h of white light 

treatment to synchronize germination. Sterile NAA solution or mock solution (containing 

DMSO) was added to the MS medium and plants were incubated for 24 h or the indicated 

time. Seedlings were then removed from the liquid medium, dried on a paper towel and flash 

frozen in liquid nitrogen. Tissue was stored at -80°C until use. Triplicates of each genotype 

and condition were taken as biological replicates and processed in parallel. 

IV.2.12 1-N-naphthylphtalamic acid (NPA) treatments (auxin transport inhibitor) 

In order to inhibit polar auxin transport, seeds were treated as described previously (IV.2.4.1) 

and subsequently sowed on plates that contained 5µM NPA or seedlings were transferred to 

NPA plates after growth on MS plates. 
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VI.  Supplement 

 
Figure S1: Hypocotyl elongation response of seedlings in low R:FR conditions is enhanced on black MS plates. WT 
and phyB-9 seedlings were grown on MS plates, on MS plates with blackened bottom (BBP) or on black MS plates. 
Seedlings were treated for three days with Wc followed by additional three days of low R:FR treatment or Wc. Hypocotyls 
were measured, the mean was calculated and expressed ± SEM (n  > 15).  

 

 
Figure S2: Hypocotyls of WT seedlings responded to low R:FR treatment at 27°C. WT seedlings were grown at elevated 
temperatures (27°C) for 3 days in Wc and shifted to low R:FR or kept in Wc for additinal 3 days. These conditions were 
applied for the DR5::GUS experiment to boost basal levels of auxin in the plants. 
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Figure S3: Activity of auxin-responsive promoters in darkness and light. The individual results obtained from 

quantitative luciferase analyses (qLUC) for each T2 line in the set of promoters from auxin-induced genes. Shown is the LUC 

activity in darkness (black bars), after 24 hours of Rc treatment (red bars) and the fold-induction (Rc/darkness; in blue). 
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Figure S4: Activity of IAA19 promoter constructs in darkness and light. The individual results obtained from 

quantitative luciferase analyses (qLUC) for each T2 line from the set of IAA19 deletions and mutation constructs. Shown is 

the LUC activity in darkness (black bars), after 24 hours of Rc treatment (red bars) and the fold-induction (Rc/darkness; in 

blue). 
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Figure S5: Activity of SAUR-AC1-l promoter constructs in darkness and light. The individual results obtained from 

quantitative luciferase analyses (qLUC) for each T2 line from the set of SAUR-AC1-l deletions and mutation constructs. 

Shown is the LUC activity in darkness (black bars), after 24 hours of Rc treatment (red bars) and the fold-induction 

(Rc/darkness; in blue). 
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Figure S6: Representation of the IAA19 2.5kb promoter fragment.  The 5’ stand is shown, primers are depicted in light 

green (for amplification and sequencing) and white (for point-mutation). AuxREs are highlighted in blue, G-Boxes in dark 

green. 
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Figure S7: Representation of the SAUR promoter fragment.  The 5’ stand is shown, primers are depicted in light green 

(for amplification and sequencing) and white (for point-mutation). AuxREs are highlighted in blue, G-Boxes in dark green. 

The attb1 and b2 sites are highlighted in orange. 
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