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ABSTRACT

Force-based modeling of pedestrian dynamics: Assets and shortcomings

by

Mohcine Chraibi

This dissertation investigates force-based modeling of pedestrian dynamics. Hav-

ing the quantitative validation of mathematical models in focus principle questions

will be addressed throughout this work: Is it manageable to describe pedestrian dy-

namics solely with the equations of motion derived from the Newtonian dynamics?

On the road to giving answers to this question we investigate the consequences and

side-effects of completing a force-based model with additional rules and imposing re-

strictions on the state variables. Another important issue is the representation of

modeled pedestrians. Does the geometrical shape of a two dimensional projection

of the human body matter when modeling pedestrian movement? If yes which form

is most suitable? This point is investigated in the second part while introducing a

new force-based model. Moreover, we highlight a frequently underestimated aspect

in force-based modeling which is to what extent the steering of pedestrians influences

their dynamics? In the third part we introduce four possible strategies to define the

desired direction of each pedestrian when moving in a facility.

Finally, the effects of the aforementioned approaches are discussed by means of

numerical tests in different geometries with one set of model parameters. Further-

more, the validation of the developed model is questioned by comparing simulation

results with empirical data.
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KURZZUSAMMENFASSUNG

Kraftbasierte Modellierung der Fußgängerdynamik: Umfassende Evaluierung

von

Mohcine Chraibi

Diese Dissertation befasst sich mit der kraftbasierten Modellierung in der Fußgänger-

dynamik. Mit Fokus auf die quantitative Validierung von mathematischen Mod-

ellen werden grundlegende Fragen untersucht. Ist es realistisch, mit den Bewe-

gungsgleichungen der Newtonschen Dynamik die Fußgängerdynamik ausreichend gut

zu beschreiben? Um diese Frage zu beantworten wird untersucht, welche Folgen

und Nebenwirkungen zusätzliche Regeln sowie Beschränkungen der Zustandsvari-

ablen für Kraftbasierte Modelle haben. Eine weitere wichtige Frage ist die Darstel-

lung der modellierten Fußgänger. Welcher Einfluss hat die geometrische Form der

zweidimensionalen Projektion des menschlichen Körpers auf die Modellierung der

Fußgängerbewegung? Welche Form eignet sich am besten für diesen Zweck? Diese

Fragen werden im zweiten Teil dieser Arbeit anhand eines neuen kraftbasierten Mod-

ells untersucht. Darüber hinaus befasst sich die Arbeit mit einem oft unterschätzten

Aspekt der Kraftbasierten Modellierung. Welche Rolle spielt die Richtungssteuerung

der Fußgänger auf die Dynamik des gesamten Systems? Im dritten Teil werden

vier mögliche Strategien eingeführt, um die gewünschte Richtung jedes Fußgängers

während einer Simulation zu definieren. Schließlich werden die Auswirkungen und

Ergebnisse der oben genannten Ansätze mit Hilfe von numerischen Tests in verschiede-

nen Geometrien mit einem Satz von Modellparametern untersucht. Die Prüfung und

Kalibrierung des entwickelten Modells auf Basis von empirischen Daten führt zu einer

realistischen Einschätzung seiner Qualität.

xii



RÉSUMÉ

Modélisation de la dynamique des piétons basée sur des forces: Avantages et lacunes

par

Mohcine Chraibi

Les modèles basés sur des forces sont une approche très populaire pour la modélisation

de la dynamique des piétons. Cette approche suppose que le mouvement des piétons

résulte de forces extérieures. Après avoir donné un aperçu sur l’état de l’art de la

modélisation de la dynamique des piétons basée sur les forces, nous discutons les

conséquences de compléter ces modèles avec des règles supplémentaires et des restric-

tions sur les variables d’état. Par ailleurs, la forme des piétons modélisés est étudiée.

Il est suggéré que, dans un espace deux dimensionnel, une ellipse à axes dépendants

de la vitesse décrit plus précisément le mouvement des piétons. La question concer-

nant la façon de diriger les piétons vers un goulot (ou un virage) a été négligée au

profit des forces de répulsion. À première vue, cela semble être compréhensible étant

donné que les interactions entre les piétons en particulier dans les situations de haute

densité dominent la dynamique globale de la foule. Toutefois, attribuer aux piétons

une direction inappropriée pourrait avoir un impact négatif sur le résultat de la dy-

namique. À cet effet, une nouvelle méthode sera introduite afin de diriger les piétons

et ainsi faciliter leur circulation en particulier dans les virages et dans les goulots.

D’autres algorithmes ont été également étudiés. Ces trois aspects seront examinés

au sein d’un nouveau modèl basé sur le principe des forces Vérification et étalonnage

du modèl basée sur des donnés empiriques permettra une évaluation réaliste de sa

qualité de décrire convenablement la dynamique des piétons.

xiii
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CHAPTER I

Introduction

1.1 Mathematical modeling of pedestrian dynamics

Mathematical modeling is the attempt to describe, explain and learn about real-

word phenomena by means of concepts. How to model a highway traffic or a crowd

of football fans? Probably, there is no unique and rigorous answer to this kind of

question. Certainly, to model those systems one should make some assumptions and

“simplifications” to restrain the complexity of the system.

Obviously, a given phenomena can be represented by more than one model. This

raises the question of criteria a model has to satisfy in order to be qualified as good

or worthless. Essentially, it is difficult to quantify the quality of a given model in a

rigorous manner. In other words the set of mathematical models is not ordered with

respect to the relation “model X is better that model Y”. As a consequence there

exists no “best model”. Nevertheless, one can introduce criteria to characterize the

quality of models, e.g. the formalization of Occam’s razor: The minimum description

length principle [92]. Thus statements like “model X is better that model Y” makes

only sense with respect to a certain principle or criterion.

This issue is not different in the study of pedestrians dynamics, where several

models have been developed in the past. One can briefly define pedestrian dynamics

as the study of properties and characteristics emerging from the collective motion
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of pedestrians. In everyday life a pedestrian moves in space freely without any re-

strictions from his environment. However, up the time where a pedestrian enters a

building or an area where in the same time other pedestrians reside, this “freedom” of

movement becomes manifestly restricted. For the sake of example one thinks of the

movement of individual pilgrims in crowds performing the Tawaf [12], where many

thousand of people perform a nearly circular movement.

From a mathematical point of view, pedestrian dynamics is widely considered as

an example of a complex system. In fact, a crowd can be interpreted as a complex

system emerging from non-linear interacting individuals. This categorization seems

to be comprehensible since a crowd is made up of a large number of individuals

that interact in a non-trivial manner. This becomes even more clear if the following

definition of a complex system is recalled:

“A system can be regarded as complex if it can be analyzed into many components

having relatively many relations among them, so that the behavior of each component

depends on the behavior of others” [109].

In order to predict the evolution of the crowd in cases where the movement of one

pedestrian depends on the movement of others, several models and experiments were

developed. Most of the models are based on physical analogies, i.e. fluids, particles,

that could hardly be expected to exactly reproduce the dynamics of pedestrians. This

is expectable, since on one hand a crowd is composed of heterogeneous and intelligent

individuals and on the other hand the physical analogy is based on observations of

qualitative properties of a crowd. Those observations can be significant or superficial.

In the past several aspects of pedestrian dynamics were investigated e.g., analysis

of design issues of facilities in urban areas [58, 67], evacuation planning [118, 99, 114,

39, 93], computer animation [107, 119, 78] and computer vision [120, 98]. For further

information we refer to the reviews [95, 96].

Independently of the investigated issue the central concern is how accurate and
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Figure 1.1: A possible hierarchical organization of models for pedestrian dynamics.

realistic the modeling of pedestrian dynamics is. For this purpose several mathemat-

ical models have been developed. In the next section a brief overview of existing

models and their classification is given (see Fig. 1.1). This non-exclusive classifica-

tion is based on some common properties that emerge from each model and is may

not unique. It is a result of the author’s attempt to analyze properties of the most

elaborated and most used models. For a more detailed overview the reader may refer

to [94].

1.2 Macroscopic models

Macroscopic models describe the state of a system with aggregate observables e.g.

of density and flow. The state of individuals is not in the center of the macroscopic

interpretation but rather the dynamics in the aggregate of the whole crowd.

In large-scale events, e.g. Hajj, Love Parade and music concerts, regions of high

density occur and could remain over a relatively long time period. In such cases the

degree of freedom of each individual is limited, thus an analogy of human crowd with

gases and fluids is justified. In [34, 35] an investigation of pedestrian dynamics with

help of the Maxwell-Boltzmann gas theory was presented. In [25] a similar model
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was developed but taking into account that, unlike to matter momentum and energy

conservation are not guaranteed in a human crowd.

To sum up macroscopic models can be useful in extreme crowded situations and

important questions can be answered with a useful precision, e.g. on the average how

much is the outflow? But the influence of individuals is neglected. Thus, the ability

of macroscopic models to describe less dense situations is questionable.

1.3 Microscopic models

In contrast to the macroscopic models microscopic ones are based on the idea that

the dynamics of the crowd emerges inevitably from the movement of individuals. In

other words, specifying the properties of individuals and defining their interactions is

sufficient to predict and infer the state of the crowd. This “reductionism” should be

interpreted with caution, since the whole is not necessary equivalent to the sum of the

parts. Later on we will show the existence of phenomena on a large scale, that still

can not be described in a satisfactory manner by microscopic models (stop-and-go

waves, turbulences).

With respect to observables like space, time and state variables one can classify

microscopic models in discrete, continuous or mixed models. The most elaborated

classes of models for pedestrian dynamics are rule-based models discrete in space

(cellular automata) [20, 3, 51, 59, 77, 97], force-based models [33, 82, 61, 67, 106, 10,

114, 112, 111, 58, 17, 73, 72], where the trajectories of pedestrians are defined by a

system of Ordinary Differential Equations (ODE), rule-based models continuous in

space [117, 99, 2, 9, 119, 107, 78, 103], defined through a set of rules describing the

reaction of pedestrians to their surrounding and finally hybrid models that incorporate

as well forces as rules [130, 85].

The distinction between “force-based” and “rule-based” is difficult, sometimes

even impossible to maintain. That has several reasons. First, this terminology is
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in pedestrian dynamics not well-established. That means there is no consensus on

its definition and meaning. Second, as the investigation in Chap. 2.1 shows, most

models that are based on the Newtonian dynamics incorporate rules to overcome some

side-effects and problems intrinsic to the main equation of movement. In this work

we mean with “force-based” models those where the described dynamics is mostly

dominated by the defined forces. We define “rule-based” models as such where the

space of the decisions that affects the state variables is discrete.

1.3.1 Rule-based models discrete in space: Cellular automata

For simplicity of exposition we restrict ourselves in this section to Cellular Automata

(CA). CA can be defined as follows: “CA are mathematical idealizations of physical

systems in which space and time are discrete, and physical quantities take on finite

set of discrete values.” [123]. Many complex systems have been described with CA,

e.g. biological systems [65, 36] and vehicular traffic [8]. Despite their complexity it

turns out that CA can describe fairly well some of the phenomena emerging from

those systems with few simple local rules.

A CA model consists of a regular lattice, usually with cell’s size of 40 × 40 cm2.

Each cell is described by a discrete variable; “1” for occupied and “0” for empty.

The status of CA evolves in discrete time steps n = 0, 1, 2, · · · . The state of one cell

is affected by cells in its “neighborhood”. Depending on the system different neigh-

borhoods can be defined. Fig 1.2 depicts schematically three of the most common

neighborhoods used in CA applied to pedestrian dynamics. Given a cell uniquely

determined by its center point (x0, y0) and edge length l, one can give following defi-

nitions:

• Von-Neumann neighborhood defined in a regular grid by

Nn =
{
(x, y) : (x− x0)

2 + (y − y0)
2 = l2

}
.
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Figure 1.2: Left: Von-Neumann neighborhood. Middle: Moore neighborhood. Right:
Hexagonal neighborhood.

Probably this is the most adopted neighborhood in CA models [6, 124, 128].

• Moore neighborhood defined in a regular grid by

Nm = {(x, y) : (x− x0)
2 + (y − y0)

2 ≤ 2l2}.

The F.A.S.T-model [59] implements Moore neighborhood for pedestrians mov-

ing with a maximal velocity of 1 cell/s.

• Hexagonal neighborhood defined by

Nh = {(x, y) : (x− x0)
2 + (y − y0)

2 ≤ 5l2}.

Although not very popular, hexagonal neighborhood was used successfully in

[19, 23, 54, 16].

The update procedure from time step n to n+1 of the state of a cell is performed

according to the states of the neighboring cells, a given order of update and with

respect of a definite set of (stochastic) rules.

The order of update is crucial for the dynamics induced by a CA. One can dis-

tinguish between at least four basic procedures to fulfill a transition from step n to

n + 1. Probably the most simple way is to update sequentially the state of cells in
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a given order. Another form of update procedure is random-sequential. Here cells to

be updated are chosen randomly without any predefined order. A third update pos-

sibility is called sublattice-parallel update, where cells belonging to a given lattice are

updated simultaneously. Finally, it is possible to update cell state in parallel [100]. In

[89] the influence of each update on the results of the ASEP-Model was investigated.

1.3.2 Force-based models

One important class of models for pedestrian dynamics are force-based models.

These models are motivated by the observation that the motion of pedestrians devi-

ates from a straight path in the presence of other pedestrians. Therefore their motion

is accelerated which according to Newton’s laws implies the existence of a force.

Force-based models take Newton’s second law of dynamics as a guiding principle

and profit from a rich theory of dynamical systems as well as well-known numerical

solvers for integrating ODE.

Strictly speaking, forced-based models induce some causality claims in a deter-

ministic world-view. Pedestrian movement depends only on the initial values of the

system they are defined within. However, in general the internal state of pedestrians,

which influences their movement, is not considered. Therefore, some models try to

compensate this lack by introducing noise and fluctuations.

Given a pedestrian i with coordinates
−→
Ri one defines the set of all pedestrians that

influence pedestrian i at a certain moment as Ni and the set of walls or boundaries

that act on pedestrian i as Wi. In general the forces defining the equation of motion

are split into driving and repulsive forces. The repulsive forces model the collision-

avoidance performed by pedestrians and should guarantee a certain volume exclusion

for each pedestrian. The driving force, on the other hand, models the intention of a

pedestrian to move to a certain destination and walk with a desired speed.
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Formally the movement of each pedestrian is defined by the equation of motion

mi

−̈→
Ri =

−→
Fi =

−→
Fi

drv +
∑

j∈Ni

−→
Fij

rep +
∑

w∈Wi

−→
Fiw

rep , (1.1)

where
−→
Fij

rep denotes the repulsive force from pedestrian j acting on pedestrian i,

−→
Fiw

rep is the repulsive force emerging from the obstacle w and
−→
Fi

drv is a driving force.

mi is the mass of pedestrian i.

The time evolution of the non-linear dissipative differential equations (1.1) given

particular initial conditions is represented by trajectories in the space of the state

variables.

Some seminal works [90, 91, 86] in traffic dynamics studied the movement of cars

by means of a system of ODE, describing the change of the state variables in time.

Following Newtonian dynamics, action of forces is considered as cause of change of

the state variable of an object. In other words, changes of the velocity (and space) in

time are induced by the existence of forces. As a result, thus the origin of force-based

modeling can be traced back to the beginning of the 50’s. In 1977 Hirai and Tarui

[37] presented a force-based model to desscribe the movement od a crowd in a “panic”

situation. Another explicit consideration of this forced-based principle to pedestrian

dynamics was probably initiated in 1985 by Gipps et al. who presented a CA model

that “hypothesizes the existence of repulsive forces between pedestrians so that as

the subject approaches another pedestrian the ‘potential energy’ of his position rises

and the ‘kinetic energy’ of his speed drops” [20].

Later, Helbing tried in [24] to model the “behavior” of pedestrians. This work

can be considered as the basis of the Social Force Model (SFM) [33] which has been

published four years later. At this point we would like to mention that the use of the

word “behavior” in this context is misleading because the proposed model considers

only the operational process of movement, not the causes or stimuli that produce it.
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One can argue, that the model [24] comprises the kind of behaviorism represented

by Skinner [110]; i.e. human behavior is restricted to what is publicly observed, let’s

say external action or movement. Internal processes, like thinking, perceiving and

feeling, are considered to be irrelevant and does not fit within the concept of “be-

havior”. This kind of radical behaviorism is being increasingly dismissed by cognitive

scientists, since behavior is hardly to be explained without reference to mental pro-

cesses. Despite, there is no doubt about the significance of the SFM for force-based

modeling of pedestrian movement on an operational level.

In the SFM the repulsive force is described by means of a negative potential with

elliptical equipotential lines. Although the repulsive force is symmetrical in space,

i.e. pedestrians in front and behind exert the same force, and computationally very

intensive (exponential function), the SFM reproduces several qualitative characteris-

tics of pedestrian dynamics, e.g. the formation of lanes in counterflow. Nevertheless

various improvements of the original SFM were suggested to overcome the problems

encountered. In [29] a more realistic form of the forces was introduced which reflects

the anisotropic character of the interactions. Furthermore this generalized SFM takes

into account repulsive forces that emerge when pedestrians have physical contact or

get too close to each other. Lakoba et al. [61] pointed out other problems like

the unrealistic choice of parameters which e.g. leads to extreme physical forces of

6000 N. The problem of the parameter choice in the SFM was again addressed in

[47] by calibration based on an evolutionary optimization algorithm. Parisi et al. [82]

investigated the difficulties of SFM concerning quantitative description of pedestrian

dynamics by introducing a “respect mechanism”. This rule-based mechanism helps

to mitigate overlapping among pedestrians.

Recently in [108] the human collective behaviors was studied by means of a force-

based model inspired by the dynamics of non-human organisms such ants. Needless to

say that similarities between human and non-human dynamics were always a source

9



of inspiration for several models, e.g. the floor-field model [51].

1.3.3 Rule-based and hybrid models

The paradigm of force-based models may become inapt to cover the complexity

of human behavior. That led to several attempts at describing interactions among

pedestrians and their movement by means of operational “instructions” or rules that

specify how state variables or/and specific parameters of a pedestrian should be up-

dated. In that way predictive and explanatory informations about the dynamics of

the system can be gained. The granularity of such instructions reflects the complexity

of human movement.

In some works both paradigms, namely forced-based and rule-based, were com-

bined to formulate a model. Yu et al. [130] proposed a new model based on forces and

rule-based conflict management. The CFM considers both the headway
−→
Rij =

−→
Rj−

−→
Ri

and the relative velocity vij = vj − vi among pedestrians in the specification of the

force:

−→
Fij

rep ∝ f(vij, ‖
−→
Rij‖−1) ·

−→
Rij

‖ −→
Rij ‖

. (1.2)

Compared to the SFM, the repulsive force in the CFM reflects several new ideas.

Besides the simple form of Eq. (1.2), the force is anisotropic since its range of influence

is reduced to range of vision of pedestrians, which is 180◦. This is realized by a

proper choice of the function f . Furthermore it takes into account the influence of

the relative velocity, i.e. faster pedestrians in front of a slower pedestrian do not affect

its movement.

Unlike most force-based models the role of the repulsive force in the CFM is more

to avoid collisions among pedestrians by detours than to prevent them. In order to

ensure a volume exclusion, the model introduces a set of rules.

Another hybrid model [85] that describes the movement of pedestrian according to

separated levels was investigated . The low level describes the operational movement
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of pedestrians and is based on the SFM, whereas high levels implement tactical and

behavioral aspects of the movement e.g., way-finding in buildings, communication

between pedestrians. In [12] a similar idea was realized by coupling a high-level

finite-state machine, that models pedestrian’s perception of space, with a low-level

collision avoidance mechanism.

1.4 Experimental investigation and model calibration

1.4.1 Preliminary

Of particular importance are empirical results which not only provide a benchmark

for mathematical models and allow their calibration, but can serve as an inspiration

for new modeling concepts. For design and evacuation purposes a reliable quantitative

investigation is essential. In order to provide an experimental basis for a quantitative

model verification, several experiments under laboratory conditions were conducted.

In section 1.1 the question about the quality of mathematical models was briefly dis-

cussed. In terms of the minimum-description-length principle it is conceivable even

preferable to design a model that describes the target system with a minimum of

physical parameters. Besides, another important question is how useful is a mathe-

matical model? Should a model be able to describe quantitative as well as qualitative

aspects of the described real-world problem? Roughly speaking, can a “bad looking”

model asses quantitative aspects of pedestrian dynamics?

To answer this question experimental measurements of characteristic properties of

crowds are necessary. On a quantitative level density, velocity and flow are measured.

Particular attention was devoted to the phenomenon of lane formation, especially

in bi-directional flow. Different works investigated quantitatively this phenomenon

e.g. in [42] by application of cluster analysis, in [125] the bond index method was

introduced. In [132] is has been distinguished between “stable separated lanes” and
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“dynamical multi lanes”. By means of a Voronoi method the influence of those

different lane forms on the Fundamental Diagram (FD) of bidirectional streams in

comparison to unidirectional ones is investigated.

1.4.2 Qualitative and quantitative aspects of pedestrian dynamics

From a macroscopic point of view several collective phenomena emerge from a

dynamic human crowd. Most known in the literature are

• lane formation [33, 125, 26, 130, 42, 132]: One of the most important and well

observed characteristics of bi-directional streams. This tendency of pedestrians

to walk behind each other and thus to build lanes is an attempt to avoid colli-

sions with pedestrians moving in the opposite direction and maximize its own

velocity.

• oscillations at bottlenecks [33, 26, 31, 60]: Oscillations occur when a group of

pedestrians compete with another group moving in the opposite direction and

aiming to pass trough the same bottleneck. It is characterized by the fact that

the direction of the flow alternates in different time intervals.

• the “faster-is-slower” effect [61, 79, 81]: It has been stated that the stronger the

collective desire to evacuate from a room the higher the tendency of pedestrians

to get stacked precluding them to cross the door and restricting the overall

evacuation time.

• clogging at exit [74, 127, 27]: Is a circular clustering of a crowd in front of

an exit. Is has been distinguished between “social clogging” and “granular

clogging” depending on the nature of interactions [79].

The quantitative aspect of a crowd is usually assessed by means of several physical

quantities like velocity, flow and density. In this context the direct comparison of those
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quantities is relevant. See also the discussion about the FD in section 1.4.4. Following

is a brief definition of each quantity:

• The speed is an average over time or over space. Given a time period ∆t and a

measurement area of length ∆x on can write

〈v〉∆t =
1

N∆t

N∆t∑

i=1

vi(t), (1.3)

with vi(t) the instantaneous velocity of the ith pedestrian and N∆t the number

of measured pedestrians within the time interval ∆t (see Fig. 1.3). The spatial

mean speed is written as

〈v〉i =
∆x

∆ti
, (1.4)

where ∆ti is the time necessary for the ith pedestrian to pass the measurement

area.

• The flow gives the number of pedestrians passing a measurement line during

a time interval. Given the time necessary ∆t for N∆t pedestrians to pass the

measurement line the flow J is given by

〈J〉∆t =
N∆t − 1

∆t
. (1.5)

• The density is is the number of pedestrians per unit of area. In order to de-

termine the density, in general a rectangular area is defined and the number of

pedestrians within this area is counted. The instantaneous density at time t is

given by

ρ(t) =
N

|A| , (1.6)

with N the number of pedestrian at the moment t that reside within the mea-
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∆x

∆y

x

Figure 1.3: Calculating the average of the quantities v, J and ρ by averaging over time
or over space; Average of the velocity and flow of pedestrians crossing the
line x during a measurement period ∆t and the average over the space
(∆x×∆y) of the velocity and the density. The missing observable cat be
calculated using the relation J ∝ vρ.

surement area A. ρ(t) can be averaged over a time period ∆t as follows:

〈ρ〉∆t =
1

∆t

∫

∆t

ρ(t)dt. (1.7)

As matter of fact the measurement method of each quantity impact the resulting

FD and should be taken into consideration while used to calibrate mathematical

models. In [101, 132] the advantages and disadvantages of those methods and others

were extensively discussed, particularly with regard to fluctuations in empirical data.

1.4.3 Measurement methods of the density

The main problem encountered when measuring the spatial average of the density

by means of Eq. (1.6) is the high fluctuations that can be of the same the order of

the measured density itself.

Assume N pedestrians reside within the measurement area A at time t. Further-
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more, let’s assume that at time t+ 1 the number of pedestrians increases by n. The

density is then ρ(t + 1) = ρ(t)± n ·Q, Q = 1/|A|. The function ρ(t) is then a step

function of time:

ρ(t) : R → R

t 7→ N(t)

|A|

That means the measurement area should be large enough to minimize the scale

of the fluctuations, as the quantum Q becomes smaller. However, for a beneficial

microscopic modeling and in order to gain microscopic information, the measurement

area should be as small as possible, at least about the average size of a human body.

Following, we introduce two methods to overcome those difficulties, concerning

the measurement of the density in one-dimensional and in two-dimensional space.

1.4.3.1 One-dimensional pedestrian dynamics

Pedestrian dynamics exhibits a huge amount of rich and complex phenomena.

In order to manage its complexity, several factors that have to be dealt with are

eliminated by reducing the system to one-dimensional space. In [106] the role of the

space requirement of pedestrians in single file movement is investigated. In [9, 88, 87]

an event driven model was introduced and developed to investigate the FD and the

phenomenon of phase separation in one-dimensional space. Also several experiments

in one-dimension were performed to consolidate the experimental database of one-

dimensional pedestrian dynamics [105, 7, 46].

Despite the geometric simplicity of one-dimensional systems, several interesting

and well known phenomena were showcased by those studies. In [7] an empirical

comparison of the FD across different cultures was performed by repeating the same
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experiment several times in different countries1. In [103, 88] the phenomenon of stop-

and-go waves, typical for single-file movement, was investigated experimentally and

by simulations.

To avoid the problematical issue of the instantaneous density, Seyfried et al. [105]

proposed an enhanced method for measuring the density on single file movement. For

each pedestrian one determines its entrance time tini to the measurement area and the

time touti when he leaves it. The density is defined as

ρ(t) =
N∑

i=1

Θi(t)

|A1d|
, (1.8)

Θi(t) =







t−tini
tin
i+1

−tin
i

: t ∈
[
tini , t

in
i+1

]

1 : t ∈
[
tini+1, t

out
i

]

touti+1
−t

tout
i+1

−tout
i

: t ∈
[
touti , touti+1

]

0 : else,

(1.9)

where Θi(t) gives the fraction of the space between pedestrian i and the pedestrian

in its front, which can be found inside the measurement area, |A1d| is the length of

measurement area (one-dimensional).

In the classical method, Eq. (1.6), the “contribution” of each pedestrian i to the

overall density is binary; 1 if i is within the measurement area, otherwise 0. In the

proposed method Eq. (1.8) the contribution of pedestrians is many-valued ∈ [0, 1].

Thus, it reflects better the impact of the actual situation of pedestrians on the density.

Meanwhile, the fluctuations are reduced.

1.4.3.2 Two-dimensional pedestrian dynamics

In [113] a method for calculating ρ with help of Voronoi diagrams was introduced.

For this Steffen et al. presented a method to calculate a density distribution p(−→x )

1The first experiment was performed in Germany [105] and the second in India [7].
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instead of the averaged density. At a given time t, the positions of pedestrians define

a unique partition of the space by means of Voronoi diagrams. To each pedestrian i

belongs a Voronoi-cell Ai. With those cells one can define a density distribution as

follows:

ρi(
−→x ) =







1
|Ai|

, if −→x ∈ Ai

0, otherwise.

The density inside the measurement area A is

ρ(t) =

∫

A

p(−→x )d−→x

|A| , (1.10)

with p(−→x ) =
∑

i

ρi(
−→x ).

With this measurement method it is possible to reduce, without serious side ef-

fects, the size of the area and gain insight of the dynamics on the microscopic level.

Furthermore, the fluctuations of the density are diminished [63, 133, 132, 131]. Note

that theoretically with the classical definition of the density (1.6), it is not possible

to reduce the size of the measurement area without strengthening the fluctuations of

the measurements.

1.4.4 Fundamental diagram

The FD depicts the variation of the flow in dependence of the density J(ρ). Other

equivalent variations of the FD e.g. v(ρ) and v(Js) follow from the the hydrodynamic

relation

Js = ρv. (1.11)

Js is the specific flow per unit width w (Js = J/w).

It describes the transport properties of systems of driven particles. Hence, it

is widely considered as a criterion for the correctness of mathematical models for
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pedestrian dynamics and is used to calibrate and validate them [68, 13, 106, 10]. In

some works [52, 15] the FD is considered as part of the model and not as a benchmark

to check against. For this purpose the most cited FD given by Weidmann [121] is

used:

v = v0 ·
(

1− exp
(

−γ · (1
ρ
− 1

ρmax

)
))

, (1.12)

with γ = 1.913P/m2 , v0 = 1.34m/s and ρmax = 5.4P/m2. Certainly the FD plays

an important role in pedestrian dynamics. Nevertheless there is an open discussion

about the collected empirical data that appears in some cases to be contradictory.

More often data used for measurements are not compatible, e.g. the FD given by

Weidmann comprehend measurements from unidirectional and bidirectional streams.

See [95] and [101] for a more extensive analysis. Despite the discussion about the

validity of the collected data, there is an unanimity that the velocity diminishes with

increasing density.

1.5 State of the art of experimental investigation of pedes-

trian dynamics

As the crucial part of any reasonable scientific approach is validation and verifica-

tion of the hypothesis and/or models that try to give an explanation of the observed

phenomena, several experiments under controlled laboratory conditions were pre-

pared and realized. Therefore a detailed quantitative evaluation of the mathematical

models was possible. But why should a scientist investigating the field of pedestrian

dynamics be interested in controlled experiments under laboratory conditions?

There are various reasons for this issue. First, with records from surveillance

cameras installed e.g. in railway stations and buildings it is rather often not possible

to extract microscopic trajectories at high quality in space and time. This is mainly

due to different factors like the perspective view of the camera, light conditions, etc.
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Second, with help of controlled experiments it is possible to study the influence of

different geometry specific parameters, e.g. the width of bottlenecks and corridors.

This makes the investigation of the influence of the environment on the dynamics

of pedestrians possible. Third and this is maybe the most important reason, is to

reduce the complexity of the studied system. For example well prepared experimental

environments in basic geometries are useful to study the dynamics of pedestrians and

to extract valuable knowledge that can be generalized to more complex geometries.

Despite the fact that the experimental data basis is relatively undeveloped, there

are important discrepancies in the extracted data and any comparison between experi-

ments should take this state into account. The reason of this is difficult to determine,

since some experiments are poorly documented. However, it was indicated in [7]

that cultural factors related to differences in the characteristics that emerge from

the empirical data. The discrepancies of reported empirical data can also be lead to

human properties related to the attendees of the experiments, e.g. age, motivation,

homogeneity of the group. Other reasons are more technical and are directly related

to the realization of the experiments, extraction of the data and their measurement

[104, 132].

In this sense several experiments have been performed to investigate specific issues

like flow in bottlenecks, the FD in narrow and wide corridors in comparison to T-

junctions.

In this section we give a brief overview of some recent experimental works inves-

tigating different issues of pedestrian dynamics.

1.5.1 Single file dynamics without overtaking

Several experimental works tried to eliminate any lateral interactions and bound-

ary effects by studying lane movement dynamics with closed boundary conditions.

This approach has the benefit to reduce the complexity of the phenomena that emerge
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from the dynamics of pedestrians.

Recently in [46] the instantaneous FD in 1-D movement was measured. It was

shown that both stationary and transient phases can be observed. As the main result

of those experiments it was observed that the “velocity–spatial headway” relation

obeys three different regimes, free, weakly constrained and strong constrained, where

the relation is piecewise linear. Those results are in accordance with experiments

performed in [105] that showed linearity of the velocity–spacial headway in the “strong

constrained” regime.

This empirical finding is quite important for mathematical modeling, as several

models assume that the volume exclusion of pedestrians depends linearly on the

velocity [106, 9, 87]. It would be interesting to distinguish, on a the modeling level,

between the different regions in the velocity–spacial headway relation.

Comparison of similar experiments performed in Germany [105] and India [7] show

some cultural influences on the way pedestrians react on each other. In this sense,

another experimental study of 1-D movement was presented in [66] with the following

result: In comparison to [105, 7], for the same density values higher velocities were

observed. In the authors’ opinion, this discrepancy could be ascribed to “different

body sizes”. This explication is hardly comprehensible, since in previous experiences

[105, 7] the attendees were students with average body size and thus large differences

in the body size can not be assumed.

1.5.2 Wide and narrow corridors with overtaking

Several experiments in straight corridors, where pedestrians could move laterally

were conducted in order to study the FD in dependence of various corridor widths.

In [133] the FD in straight corridors with open boundary conditions was investigated.

Different widths of the corridor were tested. In agreement with Hankin’s findings [22]

the FD for the same type of facility can be unified into one diagram for specific flow.
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In [132] the same kind of experiments in straight corridors were shown, but order-

ing in bidirectional pedestrian streams was investigated. Furthermore, a classification

of bi-directional streams was introduced and their influence on the flow was investi-

gated.

Further bi-directional flow experiments were contacted in [115] focusing on the

role of anticipation in mitigating conflicts. The attendees anticipation was varied

from weak, normal to excessive. Results of those experiments show that lane for-

mation is more natural in case of normal anticipation. It takes longer in the case of

excessive anticipation, but then the lanes formed are more stable. In the case of weak

anticipation the number of collisions is higher and thus the evacuation time is long.

1.5.3 Bottlenecks and T-junctions

Bottlenecks and T-junctions are two basic geometries that have attracted special

interest in the community of pedestrian dynamics. This can be traced back to the

interesting phenomena that emerge from those kind of geometries.

A large set of experiments was conducted in [41] to study the movement of pedes-

trians at bottlenecks. In those experiments the swaying of pedestrians was measured.

It could be found, that the amplitude of swaying decreases with increasing velocity.

In contrary, the frequency of swaying increases with increasing velocity. Furthermore,

one could also conclude that the flow is a step-function of the bottleneck’s width.

Concerning the increase of the flow in dependence of the width of the bottleneck,

further experiments were conducted in [57]. As a result Kretz et al. found that the

flow increases linearly with the width. Therefore, the assumption that the flow is a

step function of the bottleneck’s width could not be confirmed. In this experimental

work also the specific flow was investigated in dependence of the motivation as well

as the initial density.

In the same spirit other bottleneck experiments were performed in [102]. Time
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evolution of velocity, density and flow were measured. Here again, it was shown that

the relation between the flow and the width of the bottleneck is linear.

Further experimental results were presented in [63] with the aim to investigate a

wide range of bottleneck specific parameters like length and width of the bottleneck.

This allows to study the dependence of the outflow on the length and the width of the

bottleneck and confirms the previous results. A phenomenon of side-stepping occurs

when the length of the bottleneck is short. This leads to lower densities in front of the

bottleneck and hence increased velocities. In [64] an expansion of this work studied

the influence of the placement and dimension of the measurement area on the density.

Another experimental study [14] investigated the capacity of emergency doors

with the intention to allow an empirical verification of the threshold value in the

building decree in Holland. In fact, most experiments they conducted show a higher

capacity than expected. An important result of those experiments is the observation

that pushing leads to higher velocity. Therefore, the “faster-is-slower” effect could

not be confirmed.

The difficulty to correctly model the dynamics of pedestrians in bottlenecks is

mainly due to conflicts in front of the exit and how pedestrians deal with them

to filter into the bottleneck. In [126] several experiments of bottleneck situations

show interesting results. First, the outflow diminished in situations where conflicts

among pedestrians becomes relevant. Second, putting an obstacle in front of the exit

increases the outflow. According to the authors, the obstacle decreases the number

of conflicts, which explains the increased flow.

Finally, Nagai et al. [75] explored dynamical evacuation scenarios, like earthquake

or smoky rooms, where people can not any more walk normally by standing. Here

again the experiments showed that the flow depends linearly on the width of the exit.

A T-shaped channel or a T-junction is in principle another form of bottlenecks,

where two different flows in opposing directions meet at the exits and unify to a
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main flow. In [131] experimental results in straight corridors and a T-junction were

discussed. By mean of a measurement method based on Voronoi diagrams it was pos-

sible to observe a boundary-induced phase transition. A comparison between straight

corridor and T-junction indicated that the FDs for different facilities are not compara-

ble. What does this very important result mean for modeling pedestrians dynamics?

Especially for modeling works which focus on investigating different geometries, op-

timally with one set of parameters, this means that this goal may not be possible

to achieve and parameters should be adapted to each different geometry, unless the

models incorporate boundary effects and geometrical factor in their definition.

1.5.4 Further experiments and field studies

Some experiments were conducted without any geometrical focus in background.

In [71] experimental data were collected in order to calibrate the force-based model

[33]. Furthermore, with a suitable mathematical (exponential) function the gained

experimental data were fitted. Thus, the repulsive force between pedestrians is “not

prefabricated” but emerges from a fitting procedure. However, it is not clear if the

chosen function gives the best fit or its choice leans on the already published mod-

els [27, 79, 80, 61, 47, 129]. Besides, it is controversial if the measured interactions

between two pedestrians can still be guilty for several pedestrians, since the superpo-

sition principle is not unconditionally extendable to pedestrian dynamics. Moreover,

quantitative validation of the calibrated model was missing.

The presented experiments were all conducted in the 2-D plain. In [5] the FD

for stairs was extracted from controlled experiments as well as from field studies

performed in a football stadium in Düsseldorf (Germany). The gained data were

compared to FDs from well-known planning handbooks for pedestrian facilities and

evacuation routes. It was found that densities higher than 3.5 m−2 were not observed.

A concluding result of this work is that values for maximal flow in most hand books
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is optimistic. For security planing, smaller values should be taken into account.

Another interesting field study was described in [32]. This study is based on

video analysis of the Muslim pilgrimage in Mina/Makkah. The results show that in

average local speeds and flows do not vanish no matter how high is the level of the

crowdedness.
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CHAPTER II

Restrictions of state variables and collision

management in force-based models

2.1 Introduction

Most of force-based models describe pedestrian dynamics qualitatively fairly well.

Collective phenomena like lane formation [33, 26, 130], oscillations at bottlenecks [33,

26], the “faster-is-slower” effect [61, 81], clogging at exit doors [26, 130] are repro-

duced. Unfortunately there are only poor quantitative descriptions of these phenom-

ena or in case of the “faster-is-slower” effect a convincing experimental evidence is

still lacking.

For practical and critical application a reliable quantitative investigation is essen-

tial. In section 1.4 we have presented a brief overview of some experiments, that were

conducted in the past. They offer more experimental insights to understand the dy-

namics of pedestrians and serve as validation and verification tool for mathematical

models.

Most force-based models contain free parameters that can be adequately cali-

brated to achieve a good quantitative description [44, 47, 58, 82, 40]. In most works

quantitative investigations of pedestrian dynamics were restricted to a specific sce-

nario or geometry, like one-dimensional motion [9, 106, 103], behaviour at bottlenecks
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[58, 43, 41], two-dimensional motion [82] or outflow from a room [51, 50, 49, 126]. In

more complex scenarios e.g. a building where all “basic” geometries (corridors, bot-

tlenecks, corners, ...) and their variants can be found, it becomes more challenging

to calibrate a model that describes the dynamics in the complete building correctly.

Usually, implementations of the repulsive force require additional elements to guar-

antee realistic movement, especially in high density situations. One serious problem

is overlapping of the geometrical forms presenting pedestrians, e.g. circles, ellipses

[61, 130]. Another problem is negative and unrealistically high velocities that can be

produced while a simulation [33, 67] occur as artefacts of the force-based description.

This then has to be rectified by supplementing the equation of motion (1.1) with

other procedures, e.g. collision detection algorithms. This increases the complexity

of the model. Sometimes the additional procedures are not well documented which

can lead to misinterpretation of the model. In [11] it was shown that algorithms for

collision detection and avoidance can dominate the dynamics and mask the role of

the repulsive force.

Furthermore, this approach is clearly contradictory to the principle Occam’s razor,

since some elements of the model can become redundant or even superficial. This

point will be elaborated in section 2.3.

2.2 Intrinsic problems of force-based models

2.2.1 The “actio et reactio”-principle

As mentioned earlier the force-based modeling approach of pedestrian dynamics

is based on Newtonian dynamics. Paradoxically some principles of the latter are

conceptual problems of force-based models for pedestrian dynamics. The first problem

is Newton’s third law. According to this principle two particles interact by forces of

equal magnitudes and opposite directions. For pedestrians this law is unrealistic since
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−→vj
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−→vi

−→
Fij

−→
Fji

Figure 2.1: Illustration of the “actio et reactio”-problem. Pedestrian j exerts a re-
pulsive force on pedestrian i. Meanwhile a repulsive force with the same
magnitude and opposite direction acts upon his/her body and pushes
him/her forward.

e.g. in general a pedestrian does not react to pedestrians behind him/her. Even if

the angle of vision is taken into account, the forces mutually exerted on each other

are not of the same magnitude so that the “actio et reactio”-principle does not hold

in pedestrian dynamics. In Fig. 2.1 a simple scenario illustrate the side-effect of the

“actio et reactio”-principle. Pedestrian i moves faster than pedestrian j. By means of

a repulsive force that the later exerts on the first, this get slower and in optimal case

ends by adapting it velocity to the velocity of its predecessor. However, pedestrian

j get pushed by pedestrian i, since he/she will be influenced by the same repulsive

force but with opposite direction. In some crowd scenarios, it may be realistic to

get pushed by people behind. However, this can not be generalized to all possible

situations.

2.2.2 The superposition principle

The second problem emerges from the superposition principle, according to which

the total force acting on a particle is given by the vector sum of the individual forces.

This principle is valid in physics and systems theory for all linear systems. However,

for force-based models describing pedestrian dynamics this can lead to undesired

effects, especially in dense situations where unrealistic backwards movement or high

velocities can occur.

This problem becomes more serious with increasing range of the forces. Most
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Fli
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Fji
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Fki

∑

p

−→
Fpi

−→vk
−→vj

−→vi
−→vl

Figure 2.2: Illustration of the superposition-problem in a one-dimensional scenario.
Between i and k as well as l there is no visual contact. However, i is
influence by their presence.The Force acting on i results from summing
the influence of all pedestrians, which may lead to critical values of state
variables.

force-based models consider a long-range force. In [28, 81, 82] an exponential-like

function was considered. In [33, 106, 30, 130, 10] a function inversely proportional to

the distance of two pedestrians was introduced. Although in some works the range

of the forces was explicitly reduced to a certain cut-off radius.

Let’s consider the case where the repulsive force between two pedestrians i and

j takes the form
−→
Fij ∝ 1

r
, with r the distance between i and j. Without loss of

generality we can assume that the motion of the pedestrians can be compared to the

motion of particles and thus ignore their volume. In this case we consider a half circle

of radius r which center coincides with the center of i. Theoretically, on the half circle

on can count π · r particles. Because of the superposition principle the cumulative

force that exerts on i is:
∑

j 6=i

−→
Fij ∝ π · r ·

∑

j 6=i

1

r
∝ π.

That implies, the resulting force is constant and does not depend on the distance.

For r → ∞ one would expect no influences on i. However, the contribution to the

force remains constant, which is contradictory to logical expectations.
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Figure 2.3: Evacuation from a bottleneck. The simulation screenshot highlights the
problem of excessive overlapping.

2.2.3 Overlapping and oscillations

Further problems are related to the Newtonian equation of motion describing

particles with inertia. This could lead to overlapping and oscillations of the mod-

eled pedestrians. Depending on the strength of the repulsive forces the geometrical

form modeling the two-dimensional projection of the human body can be excessively

overlapped and violate the principle of volume exclusion1. In dense situations small

overlaps could be acceptable and be interpreted as “elastic deformations” of the body.

However, large overlaps or even inter-penetrations are clearly unrealistic (Fig. 2.3).

Oscillations occur in force-based models because pedestrians do not stop and keep

moving independently of the actual situation. It can not be excluded that in some

situations pedestrians perform repetitive backwards and forwards movement due to

e.g. high repulsive forces. In general we say oscillations occur if pedestrians fulfil

backwards movement. In Fig. 2.4 one sees how pedestrians are steering in the wrong

direction (white half ellipse stands for the face).

Avoiding overlapping between pedestrians and oscillations in their trajectories is

difficult to accomplish in force-based models. On one hand, increasing the strength

of the repulsive force with the aim of excluding overlapping during simulations leads

1In CA-Models this principle is guaranteed by a maximum cell-occupation number.
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Figure 2.4: Evacuation from a bottleneck. The simulation screenshot highlights the
problem of oscillations. Remark the pedestrian in the crowd and near the
walls have the wrong orientation.

to oscillations in the trajectories of pedestrians. Consequently backward movements

occur which is not realistic especially in evacuation scenarios. On the other hand,

reducing the strength of the repulsive force (to avoid oscillations) leads to an increase

of overlapping between pedestrians or between pedestrians and obstacles.

2.3 Collision management in force-based models

In this section we discuss the effects of collision management on the dynamics of

a system described by a force-based model. After calculating the actual forces the

equation of motion is solved at time t + ∆t to yield for each pedestrian i new state

variables 




−→
Ri(t+∆t)

−→vi (t+∆t)




 =

t+∆t∫

t






−→vi (t)
−→
Fi(t)/mi




 dt+






−→
Ri(t)

−→vi (t)




 . (2.1)

This procedure is repeated as many times as necessary. If using some supplementary

rules, the result of the force-based model according to the Eq. (2.1) is manipulated.

This could be the case if the state variables take erroneous values e.g., high velocities

(‖ −→vi ‖≫‖
−→
v0i ‖), or the exclusion principle is violated.
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The CFM [130] is one of the first force-based models that describes clearly a CDT

to deal with the problem of overlapping pedestrians. This supplementary collision

management can be interpreted as a failure of the avoidance mechanism expressed

in form of repulsive forces. In this sense, the formulation of a repulsive force that

theoretically should guarantee a certain volume exclusion is not consistent with a

further method to manage collisions and in fact do the same task.

To examine this redundancy we simulate the movement of N = 180 pedestrians

through a bottleneck. By changing constantly the width of the bottleneck we measure

the flow using formula (1.5). For our simulations we use the CFM [130]. Recall, the

CFM is a force based-model that is composed of a driven force, a repulsive force

and a CDT. The algorithm of the CDT is depicted in Fig. 2.5. For the sake of

demonstration we perform several simulations. At a first step by dispensing with the

CDT such that the effects of the forces especially the repulsive force can be observed.

At a second step we switch on the CDT and dispense with the repulsive force. In this

manner we can exactly differentiate between the impact of each mechanism on the

dynamics. To be in accordance with the CFM, we make use in both cases of circles

with constant radius of r = 40 cm.

In Fig. 2.6 we observe that the flow remains unrealistically high which let us

conclude that despite the existence of repulsive forces the amount of overlapping

during a simulation is important. This explains the high value of the flow. Thus

those results show that the repulsive force in this case has no significant effects on

the outcome of the simulation.

In the second part of our investigation we perform the same simulations by only

replacing the repulsive force by the CDT. Fig. 2.7 shows that the simulation results

are in good accordance with empirical data.

To conclude, we have observed that supplementary algorithms can have a major

influence on the behavior of a force-based model. In some cases even they make other
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Figure 2.5: Schematic representation of the collision detection technique (CDT),
which is an important component in the CFM [130], to manage collisions
and mitigate overlapping among pedestrians. In Chap. 3.1 a new model
will be introduced that does not rely on the CDT to manage collisions,
which is a considerable simplification in comparison to the CFM.
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Figure 2.6: Simulations with the CFM without the CDT compared with empirical
data from [63].
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Figure 2.7: Simulations with the CDT but without repulsive forces compared with
empirical data from [63].
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pivotal components of the model superficial. From a mathematical point of view

manipulating the right hand-side of the ODE (1.1) at each time step deteriorates in

some cases the stability of the system. This study shows that the volume exclusion is

a major factor in every model that aims to describe adequately pedestrian dynamics.

In the case of a bottleneck we showed that managing collisions by means of the CDT

enhanced the ability of the CFM to guarantee the volume exclusion. As a result the

values of the flow became realistic and comparable to the experimental data.
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CHAPTER III

The generalized centrifugal force model

3.1 Introduction

The Generalized Centrifugal Force Model (GCFM) [10] describes the two dimen-

sional projection of the human body, by means of ellipses with velocity-dependent

semi-axes. It takes into account the distance between the “edges” of the pedestri-

ans as well as their relative velocities. An elliptical volume exclusion has several

advantages over a circular one, since a circle is symmetric with respect to its center.

This contradicts the asymmetric space requirement of pedestrians in their direction

of motion and transverse to it.

As a force-based model, the GCFM describes the time evolution of pedestrians by

a system of superposing short-range forces. Besides the geometrical shape of modeled

pedestrians, it emphasizes the relevance of clear model definition without any hidden

restrictions on the state variables. Furthermore, the quantitative validation of the

model with help of experimental data, taken from different scenarios, plays a key

role in the development of the model. We systematically calibrate the free parame-

ters of the model by considering single file movement, two dimensional movement in

corridors, bottlenecks and corners.
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3.2 The driving force of pedestrians

Let’s consider a pedestrian i initially at rest (t = 0). Assuming there are no ex-

terior restrictions that might hinder its free movement, i accelerates towards a given

destination. After some time, i keeps moving with a certain velocity
−→
v0i . At this

moment its acceleration vanishes, either because it feels comfortable at the reached

velocity or its physical capacity does not permit further acceleration. From a mathe-

matical standpoint the acceleration may be of different nature, e.g. Dirac-like, linear

or exponential [86]. The later type is more realistic and can take the following ex-

pression:

−→vi (t) =
−→
v0i ·

(

1− exp

(

− t

τ

))

, (3.1)

with τ a time constant. Fig 3.1 shows the evolution of the velocity with respect to

time.

τ
t

∥
→
v 0
i ∥

∥
→ v i

(t
)
∥

Figure 3.1: Expected evolution of a pedestrian’s velocity with respect to time.

Derivation of Eq. (3.1) with respect to t yields

∂−→vi (t)
∂t

=
1

τ
·
−→
v0i exp

(

− t

τ

)

. (3.2)
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From Eq. (3.1) one gets
−→
v0i exp

(

− t

τ

)

=
−→
v0i −−→vi (t). (3.3)

Combining (3.2) and (3.3) and considering Newton’s second law, the force acting on

i with mass mi is

−→
Fi

drv = mi

−→
v0i −−→vi

τ
. (3.4)

This mathematical expression of the driving force, is systematically used in all

known force-based models and describes well the free movement of pedestrians. In

[122] is has been reported that evaluation of empirical data yields τ = −0.61 s. A

slightly different value of τ was measured in [71] (τ = 0.54± 0.05 s).

3.3 Pedestrian-pedestrian interaction

Assuming the direction connecting the positions of pedestrians i and j is given by

−→
Rij =

−→
Rj −

−→
Ri,

−→eij =
−→
Rij

‖ −→
Rij ‖

, (3.5)

the repulsive force reads

−→
Fij

rep = −mikij
(η ‖

−→
v0i ‖ +vij)

2

dij

−→eij, (3.6)

with the effective distance between pedestrians i and j

dij =‖ −→
Rij ‖ −ri(vi)− rj(vj). (3.7)

ri is the polar radius of pedestrian i (Fig. 3.2).
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ri
dij

−→
Rij

j

i

Figure 3.2: Direction of the repulsive force between two pedestrians.

This definition of the repulsive force reflects several aspects. First, the force be-

tween two pedestrians decreases with increasing distance. In the GCFM it is inversely

proportional to their distance (3.7). Furthermore, the repulsive force takes into ac-

count the relative velocity vij between pedestrians i and pedestrian j. The following

special definition ensures that slower pedestrians are less affected by the presence of

faster pedestrians than of slower ones:

vij =
1

2
[(−→vi −−→vj ) · −→eij + |(−→vi −−→vj ) · −→eij|]

=







(−→vi −−→vj ) · −→eij if (−→vi −−→vj ) · −→eij > 0

0 otherwise.

(3.8)

As in general pedestrians react only to obstacles and pedestrians that are within their

perception, the reaction field of the repulsive force is reduced to the angle of vision
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(180◦) of each pedestrian, by introducing the coefficient

kij =
1

2

−→vi · −→eij+ | −→vi · −→eij |
vi

=







(−→vi · −→eij)/ ‖ −→vi ‖ if −→vi · −→eij > 0 & ‖ −→vi ‖6= 0

0 otherwise.

(3.9)

The coefficient kij is maximal when pedestrian j is in the direction of movement of

pedestrian i and minimal when the angle between j and i is bigger than 90◦. Thus

the strength of the repulsive force depends on the angle.

3.4 Pedestrian-wall interaction

The repulsive force between a pedestrian i and a wall is zero if i performs a parallel

motion to the wall. While this behavior of the force is correct, it leads to very small

repulsive forces when the pedestrians motion is almost parallel to the wall. For this

reason we characterize in this model walls by three point masses acting on pedestrians

within a certain interaction range (Fig. 3.3).

.

. .. wi wi+1wi−1

oi

−→
F

rep

iwi+1

−→
F

rep

iwi−1

−→
F

rep

iwi

Figure 3.3: Each wall is modeled as three static point masses acting on pedestrians.

The middle point is the point with the shortest distance from the center of the

pedestrian to the line segment of the wall. All three points have to be computed at
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each step as the pedestrian moves. The distance between the three wall points is set

to the minor semi-axis of an ellipse If one lateral point (wi−1 or wi+1) does not lie on

the line segment of the wall, then it will not be considered in the computation of the

repulsive force.

The number of point masses have been chosen by a process of trial and error.

Simulations have shown that three point masses are sufficient to keep pedestrians

away from walls. Meanwhile they are computationally cost-effective.

As walls are static objects, the repulsive force emerging from a wall w and acting

on pedestrian i simplifies to

−→
Fiw

rep =
i+1∑

j=i−1

−−→
Fiwj

rep, (3.10)

with

−−→
Fiwj

rep = −mikiwi

(η ‖
−→
v0i ‖ +vni )

2

diwj

−−→eiwj
, j ∈ {i− 1, i, i+ 1} . (3.11)

vni is the component of the velocity normal to the wall, kiwi
and −−→eiwj

as defined resp.

in Eqs. (3.9) and (3.5) in Sec. 3.3.

The distance between a line w and the ellipse i is

diw = ki − ri, (3.12)

with ri the polar radius and ki the distance of point oi to the line w.

Note that in Eq. (3.11), kiwi
in the force is independent of the chosen lateral wall

point wj. That means, if a pedestrian is moving parallel to the wall, kiwi
= 0 and

thus the points j − 1 and j + 1 have no effects.
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3.5 Implementation of the repulsive force

In this section we describe a numerical treatment of the repulsive force. For the

sake of simplicity we focus on the case of pedestrian-pedestrian interactions. The

pedestrian-wall case is treated similarly.

The strength of the repulsive force decreases with increasing distance between two

pedestrians. Nevertheless the range of the repulsive force is infinite. This is unrealistic

for interactions between pedestrians. Therefore, we introduce a cut-off radius

rc = 2 m (3.13)

for the force limiting the interactions to adjacent pedestrians solely. To guarantee

robust numerical integration a two-sided Hermite-interpolation of the repulsive force

is implemented. The interpolation guarantees that the norm of the repulsive force

decreases smoothly to zero for dij → r−c = rc − reps. For dij → l̃+ the interpolation

avoids an increase of the force to infinity but to

fm = fmax ‖
−→
Fij

rep(reps) ‖ (3.14)

at s0 = reps and

reps = 0.1 m, (3.15)

where it remains constant. l̃ is the minimum distance between two ellipses and is

illustrated in Chap. IV. Fig. 3.4 shows the dependence of the repulsive force on the

distance for constant relative velocity.

The right interpolation function Pr and the left one Pl (dashed parts of the function
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in Fig. 3.4) are defined using







Pr(r̃c) =‖ −→
Fij

rep(r̃c) ‖, Pr(rc) = 0

(Pr)
′(r̃c) =

(

‖ −→
Fij

rep ‖
)′

(r̃c), (Pr)
′(rc) = 0,

(3.16)

(3.17)

with r̃c = rc − reps and







Pl(s0) = fm, Pl(reps) =‖ −→
Fij

rep(reps) ‖

(Pl)
′(s+0 ) = 1, (Pl)

′(reps) =
(

‖ −→
Fij

rep ‖
)′

(reps) ,

(3.18)

(3.19)

where the prime indicates the derivative. s0 is the minimum allowed magnitude of the

effective distance of two ellipses. Due to the superposition of the forces the inequality

dij ≥ s0 (3.20)

for pedestrians i and j is not guaranteed.

3.6 Quantification of the overlap-oscillation duality

In order to investigate the dual problem of overlapping and oscillations during

simulations we introduce two quantities: The overlapping and the oscillation ratios.

By means of simulations with different strength of the repulsive force we show that

it is difficult to find a value where both ratios vanish.
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fm

repsl̃ r′cs0 rc

dij

‖
−−→
F rep
ij ‖

Figure 3.4: The interpolation of the repulsive force between pedestrians i and j
Eq. (3.6) depending on dij and the distance of closest approach l̃, see
Chap. IV. As the repulsive force also depends on the relative velocity
vij, this figure depicts the curve of the force for vij = const. The right
and left dashed curves are defined in Eqs. (3.16), (3.17), (3.18) and (3.19)
respectively. The wall-pedestrian interaction has an analogous form with
dij and l̃ replaced by dwi and k̃, respectively.

3.6.1 Overlapping ratio

For the sake of convenience we assumed that pedestrians are represented with

ellipses. First, we define the overlapping-proportion by

o(v) =
1

nov

tend∑

t=0

N∑

i=1

N∑

j>i

oij , (3.21)

with

oij =
Aij

min(Ai, Aj)
≤ 1, (3.22)

where N is the number of simulated pedestrians and tend the duration of the sim-

ulation. Aij is the overlapping area of the ellipses i and j with areas Ai and Aj,

respectively (3.5).
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Aj

Aij

Ai

Figure 3.5: Overlapping area of two ellipses.

The algorithm [45] for calculating of Aij analytically is based on the Gauss-Green

formula. Since this work is still in process we adopt in this work an numerical ap-

proximation, where the ellipse is represented by a 40-sided polygon. Fig. 3.6 depicts

n-sided polygons inscribed in an ellipse for n = 6, 8, 10 and 40. In App.C we give

more details on this approximation and show by means of an error analysis that for

sufficiently large n the approximated area of the ellipse is sufficient for the concern of

this study.

Figure 3.6: Approximation of the ellipse by n-sided inscribed polygons.

nov is the cardinality of the set

O := {oij : oij 6= 0} . (3.23)
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For nov = 0, o(v) is set to zero.

3.6.2 Oscillation ratio

For a pedestrian with velocity −→vi and desired velocity
−→
v0i we define the oscillation-

proportion as

o(s) =
1

nos

tend∑

t=0

N∑

i=1

Si , (3.24)

where Si quantifies the oscillation-strength of pedestrian i and is defined as follows:

Si =
1

2
(−si + |si|) , (3.25)

with

si =
−→vi · −→vi 0

‖
−→
v0i ‖2

, (3.26)

and nos is the cardinality of the set

S := {si : si 6= 0}. (3.27)

Here again o(s) is set to zero if nos = 0. The proportions o(v) and o(s) are normalized to

1 and describe the evolution of the overlapping and oscillations during a simulation.

3.6.3 Numerical results

To investigate the behavior of the overlapping ratio (3.21) and the oscillation ratio

(3.24) we simulate the single-file movement of N = 5 pedestrians. By varying the

strength of the repulsive force we measure for each run ov and o(s). Fig. 3.7 shows

the mean value of 200 runs.

Increasing the strength of the repulsive force to make pedestrians “impenetrable”

leads to a decrease of the overlapping ratio o(v). After a while, the oscillation ratio o(s)

increases, thus the system tends to become unstable. Large values of the oscillation-
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Figure 3.7: The change of the overlapping ratio (3.21) and the oscillation ratio (3.24)
in dependence of the repulsive force strength. For each η, 200 simulations
were performed.

proportion o(s) imply less stability. For si = 1 one has −→vi = −−→vi 0, i.e. a pedestrian

moves backwards with desired velocity. Since, there are no restriction of the velocity,

even values of si higher than 1 are not excluded and can occur during a simulation.

Unfortunately, we were not able to adjust the strength of the repulsive force in

order to get an overlapping-free model which is at the same time also oscillation-free.
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CHAPTER IV

Modeling the shape of pedestrians beyond point

like repulsive forces

4.1 Introduction

In this section we investigate the following question: Does the form of the approx-

imated physical shape of the human body influence the performance and accuracy of

a model?

Force-based models consider the movement of pedestrians as a result of superpos-

ing forces, that acts on the center of mass of pedestrians. Therefore it seems to be

straightforward that the approach of modeling pedestrians as point-like particles influ-

enced by force fields of other point-like particles do not need to take into account the

volume of human bodies. Other models consider circles with constant radius, which

is in principle equivalent to point-like particles. However, it was shown in [103, 106]

that considering pedestrian as extended objects which change their shape with speed,

has several advantages and describe more closely the movement of pedestrians.

One drawback of circles that impact negatively the dynamics is their rotational

symmetry with respect to their centers. Therefore, they occupy the same amount

of space in all directions. In single file movement this is irrelevant since the circles

are projected to lines and only the required space in movement direction matters.
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However, in two-dimensional movement the aforementioned symmetry has a negative

impact on the movement of pedestrians by occupying unnecessary lateral space.

Other sophisticated form was also investigated. In [117] a “three circle body” was

introduced. It is based on three overlapping circles representing the 2-D projection

of the body. This form allows in principle easily an assessment of contact between

two pedestrians. The same geometrical interpretation of the human body was used

in [62] and [53].

In [18] Fruin introduced the “body ellipse” to describe the plane view of the

average adult male human body. Pauls [84] presented ideas about an extension of

Fruin’s ellipse model to better understand and model pedestrian movement as density

increases. Templer [116] noticed that the so called “sensory zone”, which is a bubble

of space between pedestrians and other objects in the environment to avoid physical

conflicts and for psychocultural reasons, varies in size and takes the shape of an ellipse.

In fact, ellipses are closer to the projection of required space of the human body on

the plane, including the extent of the legs during motion and the lateral swaying of

the body.

Given a pedestrian i we define an ellipse with center (xi,yi), major semi-axis a

and minor semi-axis b. a models the space requirement in the direction of movement.

We set

a = amin + τavi (4.1)

with two parameters amin and τa.

Fruin [18] observed body swaying during both human locomotion and while stand-

ing. Pauls [1] remarks that swaying laterally should be considered while determining

the required width of exit stairways. In [41] characteristics of lateral swaying are

determined experimentally. Observations of experimental trajectories in [41] indicate

that the amplitude of lateral swaying varies from a maximum bmax for slow move-

ment and gradually decreases to a minimum bmin for free movement when pedestrians
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Figure 4.1: Off-line trajectory detection with PeTrack [4]. Left: The trajectory of the
detected pedestrian shows strong swaying. Right: The faster pedestrians
move, the smoother and weaker is the swaying of their trajectories.

move with their free velocity (Fig. 4.1). Thus we describe with b the lateral swaying

of pedestrians and set

b = bmax − (bmax − bmin)
vi
v0i

(4.2)

Since a and b are velocity-dependent, the inequality

b ≤ a (4.3)

does not always hold for the ellipse i. In the rest of this work we denote the semi-axis

in the movement direction by a and its orthogonal semi-axis by b. The definition of

the lateral axis in Eq. (4.2) assumes that pedestrians always have an intending speed

and do not intend to stay motionless, e.g. waiting for the train in rail-way stations.

For those scenarios the model is not convenient and should indeed be generalized.

4.2 Distance between ellipses

In the following we give details for the calculation of the distance dij between two

ellipses which is defined as the distance between the borders of the ellipses, along a
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line connecting their centers (Fig. 4.2).

By proper choice of the coordinate system the ellipse imay be written as quadratic

form,

x2

a2i
+

y2

b2i
= 1 . (4.4)

In polar coordinates, with the origin at the center of the ellipse and with the angular

coordinate αi measured from the major axis, one gets

x = ri cos(αi) , y = ri sin(αi) . (4.5)

By replacing the expressions of x and y in Eq. (4.4) and rearranging we obtain the

expression

qr2i − 1 = 0, (4.6)

for the polar radius ri with

q =
cos2 αi

a2i
+

sin2 αi

b2i
. (4.7)

In the same manner we determine the polar radius rj.

Finally, the distance dij is determined as follows (Fig. 4.2):

dij =‖ −−→oioj ‖ −ri − rj . (4.8)
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−→vj

−→vi

oj

αj

ri

rj

αi −→eij

oi

dij

Figure 4.2: dij is the distance between the borders of the ellipses i and j along a line
connecting their centers.

Note that the distance between two ellipses can be non-zero even when the ellipses

touch or overlap, see Fig. 4.3. Therefore the forces are generically different from those

between circles, even for the same configuration.

4.3 Distance of closest approach

As the repulsive force (3.6) depends inversely on the distance between two pedes-

trians, it becomes maximal when two pedestrians are in contact. As a consequence

of the anisotropy of ellipses the contact distance is in general not zero. In following

we give a definition of this distance.

4.3.1 Distance of Closest Approach of two Ellipses

The Distance of Closest Approach (DCA) of two ellipses is the smallest distance

between their borders, along a line connecting their centers while they are not over-

lapping (see Fig. 4.3).

To mitigate overlapping the repulsive forces are high for distances in a certain

neighborhood of the distance of closest approach, see l̃ in Fig. 3.4. An analytic
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solution of this distance for two arbitrary ellipses is presented in [134]. The main idea

of the solution is to transform the ellipse-ellipse problem to a circle-ellipse one, by

appropriate transformation.

−→vj
−→vj

o i
o′j

oj

−→v i

l̃

Figure 4.3: Distance of closest approach of two ellipses.

4.3.2 Distance of Closest Approach of an Ellipse to a Line Segment

Similarly to the definition of the distance of closest approach for two arbitrary

ellipses [134] we define the DCA for an arbitrary ellipse and a line segment. This

distance is needed to calculate the repulsive force between a pedestrian and a wall as

defined in Eq. (3.6). See also Fig. 4.4.

X

Y

d

P

A

B

α

R

R′

r

l

O

Figure 4.4: Distance of closest approach between an ellipse and a line.

For two points A and B [AB] denotes the line segments delimited with A and B

while (AB) denotes the line joining A and B.
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Let E be an ellipse with semi-axis a and b and a segment line [AB]. We assume

without loss of generality that E is in canonical position (center at origin of the

coordinate system O and its major and minor semi-axis are parallel to the X-axis

and the Y -axis), (Fig. 4.4).

The problem that we want to solve in this section is finding the DCA l of an

ellipse E and a line segment [AB].

From Fig. 4.4 bottom one can see that

l = ‖ −→
OP ‖ − r − d (4.9)

P is the nearest point on [AB] to O.

Knowing α we can easily calculate r. To solve Eq. (4.9) one has to find the quantity

d, which would be the necessary amount to translate [AB] along the direction of
−→
OP

such that it becomes tangential to the ellipse.

Let R′ be the translation of R in the direction
−→
PO by d. Then

xR′ = xR − d · cos(α); yR′ = yR − d · sin(α) (4.10)

The parametric definition of the line segment [AB] is

x = xA + u · (xB − xA); y = yA + u · (yB − yA); (u ∈ [0, 1]) (4.11)

xR′ ∈ ellipse implies

x′
R
2

a2
+

y′R
2

b2
= 1 (4.12)

Or,

(xR − d · cos(α))2
a2

+
(yR − d · sin(α))2

b2
= 1 (4.13)
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rearranging Eq. (4.13) to make d the subject yields the quadratic equation

p · d2 + q · d+ s = 0 (4.14)

with

p =
cos(α)2

a2
+

sin(α)2

b2
> 0 (4.15)

q = −2 ·
(
xR · cos(α)

a2
+

yR · sin(α)
b2

)

(4.16)

s =
x2
R

a2
+

y2R
b2

− 1 (4.17)

If the point R is known then the solution of the problem is

d =
−q −

√
∆

2 · p (4.18)

with ∆ the discriminant of Eq. (4.14):

∆ = q2 − 4 · p · s (4.19)

As in general R is not known, we rearrange Eq. (4.13) to make u the subject and

become

p1 · u2 + q1 · u+ s1 = 0 (4.20)

with

p1 =
x2
BA

a2
+

y2BA

b2
≥ 0 (4.21)

q1 = 2 ·
(
xA − d · cos(α)

a2
· xBA +

yA − d · sin(α)
b2

· yBA

)

(4.22)

s1 =
(xA − d · cos(α))2

a2
+

(yA − d · sin(α))2
b2

− 1 (4.23)

54



with the substitutions xBA = xB − xA and yBA = yB − yA.

Since the line (AB) is tangential to the ellipse, Eq. (4.20) has only one solution.

Therefore the discriminant is zero:

∆ = q21 − 4 · p1 · s1 = 0, (4.24)

which leads to

q1
2 = 4 · p1 · s1 (4.25)

Supposing that O, P , A and B are not collinear we solve Eq. (4.25) and get

d1,2 =
±a · b · √p1 − xBA · yA + yBA · xA

yBA · cos(α)− xBA · sin(α) (4.26)

and

d = min(|d1|, |d2|). (4.27)

For the calculated value of d we find u:

u =
−q1
2 · p1

(4.28)

and check the inequality:

0 < u < 1 . (4.29)

If the inequality (4.29) does not hold or O, P , A and B are collinear then R is an

end point of [AB], i.e. A or B. In this case we solve Eq. (4.18) twice for A and B and

get dA and dB.

Finally the solution is

d = min(|dA|, |dB|). (4.30)
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4.4 Numerical comparison of different representations of the

body

In this section we perform different simulations in order to investigate the influence

of the shape of simulated pedestrians on the dynamics of pedestrians. The same

simulation scenario as in Sec. 2.3 for N = 180 pedestrians is considered.

Following shapes were tested:

1. Ellipses with velocity dependent axes (Eq. (4.1)): amin = 18 cm and τa = 0.43

and (Eq. (4.2)): bmin = 20 cm and bmax = 25 cm.

2. Circles with velocity dependent radius (Eq. (4.1)): amin = 18 cm and τa = 0.43

3. Circles with constant radius: amin = 18 cm and τa = 0.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.3 2.5

w [ m ]
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1 s
]

(Experiment) Liddle

E

C : amin=18 cm; τa =0.0

C : amin=18 cm; τa =0.43

Figure 4.5: Flow in dependence of the width of the bottleneck. Different shapes were
simulated and compared. Strategy 2 was used.
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By analyzing Fig. 4.5 we asses different conclusions: First, the velocity-dependence

of the shape is a key factor in the model. Results of simulation set 3 (τa = 0), that

corresponds to constant circles, show unrealistically high flow values. Only after

making the radius of the circles velocity dependent (simulation set 2) the flow shows

values near the empirical range. Second, a direct comparison between ellipses and

circles show that in terms of flow values the ellipse results are an upper limit for the

circle results. In other words, with the same set of parameter the flow measured with

ellipses is higher than the flow measured with circles. Third, we remark that until

a width of 1.8 m the flow measured by the simulation set 4 (constant circles with

mean radius) is approximately the same as the flow measured by ellipses. For widths

bigger that 1.8 m the flow starts to decrease. Those results show, that with constant

circles, one can adapt the radius such that the empirical flow still can be satisfactorily

reproduced. However, it is difficult to calibrate adequately the radius of the circles

for each simulation scenario.
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CHAPTER V

Approaches for the desired direction of the driving

force

5.1 Introduction

There is a substantial body of literature dealing with the repulsive force and

investigating new and better formulation for it. Since the publication of the SFM in

1995 by Helbing [33], several modifications and enhancements were proposed. In [33]

the repulsive force was generalized to depend on an equidistant elliptical potential

directed in the direction of motion. A slightly different specification of the repulsive

force was investigated in [47].

Lakoba et al. [61] mentioned that the original repulsive force exhibits a stiff

behavior, thus the equation of motion can not be solved time-efficiently. In order to

deal with this problem they proposed a “realistic” modification of the parameters of

the repulsive force. The form of the repulsive force and the choice of its parameters

was generally discussed in [111] by Steffen and Seyfried. Finally Yu et al. [130]

introduced a fully new repulsive force that we generalized in [10].

Somewhat surprisingly, whereas the repulsive force was extensively investigated

in the above mentioned works, the influence of the specific form of the driving force

(3.4) has so far not attracted much attention.
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Although the expression of Eq. (3.4) is simple, it is not clear how to choose the

desired direction
−→
e0i =

−→
v0i

‖
−→
v0i ‖

(5.1)

in a given situation. In most works the direction of (5.1) is neglected. As will be shown

later a naive solution like directing pedestrians to a single point leads to artificial jams

in particular for wide bottlenecks or corners in large rooms.

In [112] Steffen and Seyfried proposed an Ansatz with directing lines was intro-

duced to steer pedestrians around 90◦ and 180◦ corners. In [38] an algorithm for

generating automatically a navigation graph in complex buildings in combination

with directing lines at corners was proposed. Gloor et al. [21] used a path-oriented

approach to model the desired direction of agents with given hiking paths. In [72]

the determination of the desired direction was formulated in form of a minimization

problem.

It should be mentioned that the directing problem we discuss here, i.e. the deter-

mination of the desired direction for each pedestrian, is conceptually different from

the classical routing problem. In [38] an algorithm for generating automatically a

navigation graph in complex buildings in combination with directing lines at corners

was proposed. Another algorithm for way finding in buildings was proposed in [48].

Recently a further development of the notion of the “quickest path” using a non-

iterative method to estimate the desired direction in the SFM was introduced [56].

The main concern in this class of problems is how to define and connect intermedi-

ate targets, in order to facilitate the evacuation of pedestrians. By contrast, in the

directing problem the existence of such intermediate targets is in general assumed.
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5.2 Investigating the influence of the desired direction

In this section we show on the basis of the GCFM the impact of the desired

direction on the dynamics of a system by measuring the outflow from a bottleneck with

different widths. To avoid an abrupt change in the interactions between pedestrians

that leaves and those still in the bottleneck, we consider an extension of e = 2m

(Fig. 5.1). For the sake of demonstration, four different methods for setting the

direction of the desired velocity are suggested. After explaining each strategy a brief

qualitative analysis of simulation results is discussed.
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Figure 5.1: Scenario set-up. Pedestrians move from a holding area (shaded area)
through the bottleneck (l = 2.8m, h = 4.5m, b = 4m and w variable).
e = 2m is the length of the extra space adjacent to the bottleneck.

All the results shown in this chapter are specific for uni-directional movement.

Thus, the impact of the herein presented strategies in bi-directional movement is

unclear and should be studied in more details. In this work however, we limit our

investigations to the uni-direction case.

5.2.1 Strategy 1: Directing towards the middle of the exit

Maybe the first strategy is the most obvious one. Herein, the choice of the desired

direction for a pedestrian i,
−→
e0i , is permanently directed toward a reference point that

lies on the middle of the exit. In some situations it happens that pedestrians can not

get to the chosen reference point without colliding with walls. To avoid this and to
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make sure that all pedestrians can see the middle of the exit the reference point e1 is

shifted by half the minimal shoulder length bmin (Fig. 5.2). Pedestrians that pass to

the right of the reference point e1 head towards e2.

e2

bmin

e1

Figure 5.2: Strategy 1. All pedestrians are directed towards the reference points e1
and e2.

In Fig. 5.3 we observe that pedestrians are arching in front of the bottleneck. The

colors of pedestrians reflect their velocity. The red color (very low velocity) is a sign

for jamming. This is explained by the fact, that with this strategy pedestrians are

not exploiting the whole width of the bottleneck w and hinder each other. We have

weff ≪ w , with weff the effective with of the bottleneck.

Figure 5.3: Screenshot of a simulation with strategy 1. Top: Width of the bottleneck
w = 1.2m. Bottom: Width of the bottleneck w = 2.5m
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5.2.2 Strategy 2: Enhanced directing towards the middle of the exit

This is a modification of strategy 1. Pedestrian are still directed to the shifted

reference point e1. However, from a certain positions pedestrians can see through the

bottleneck the second reference point e2. In this case e1 is ignored and the desired

direction is set to be parallel to the line −−→e1e2.

Here again the reference points and the delimiting range of the bottleneck is shifted

in X− and Y−axis by bmax. See Fig 5.4.

e1 e2

bmax

bmax

Figure 5.4: Strategy 2. Depending on their position pedestrians adapt their direction.
In the range where the exit of the bottleneck is visible (marked with
dashed lines) the direction is longitudinal. Outside this area they are
directed towards the middle of the bottleneck.

Simulations with strategy 2 (see Fig. 5.5) show, that in contrary to strategy 1 the

situation in front of the bottleneck is clearly less dense. Due to the better use of the

whole width of the bottleneck, the form of the the form of the congestion is different.
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Figure 5.5: Screenshot of a simulation with strategy 2. Top: Width of the bottleneck
w = 1.2m. Bottom: Width of the bottleneck w = 2.5m

5.2.3 Strategy 3: Directing towards the nearest point on the exit

Another possibility to model the desired direction
−→
e0i is to define a line l in front

of the exit and take at each time the nearest point from the pedestrian i to l. In

comparison with strategy 2, pedestrians that are not in the range where the point e2

is not visible choose one of the end points of the line l. In strategy 2 this would be

the middle of l (5.6).

bmax

bmax

Figure 5.6: Strategy 3. Directing towards the nearest point on the exit. Molnár pub-
lished in [69] a very similar strategy. The only difference is the placement
of the line, which is away from the corner by bmax.

In Fig. 5.7 simulations performed with strategy 3 show that like strategy 2 the
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use of the whole width of the bottleneck is better than with strategy 1. However, in

front of the corners of the bottleneck pedestrians get slightly blocked (red ellipses).

Figure 5.7: Screenshot of a simulation with strategy 3. Top: Width of the bottleneck
w = 1.2m. Bottom: Width of the bottleneck w = 2.5m

The presented strategies are geometry specific. In the next section a more gen-

eralized strategy is introduced that can be realized independently on the simulation

geometry.

5.3 Guiding line segments for pedestrian orientation in dif-

ferent geometries

All three strategies introduces in the previous section are geometry specific since

it is supposed that the exit is always visible to pedestrians. This might not always

be the case in all geometries, e.g. corners, T-junctions, etc. In this case one should

introduce various “virtual” exits to guide pedestrians from one intermediate target

to another.
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5.3.1 Introduction strategy 4

Without loss of generality we introduce the main idea of strategy 4 with help of

the previous bottleneck. We recall, in strategy 3 a line in front of the bottleneck was

defined1. The nearest point from each pedestrian to this line was set to define the

desired direction. As a generalization we make use in strategy 4 of 3 different lines

to “smoothen” merging in front of the bottleneck (Fig 5.8).

e1

Figure 5.8: Strategy 4. Guiding line segments in front of the bottleneck. For each
corner a set of three line segments is generated.

The blue line set (below the dashed line segment) is considered by pedestrians

in the lower half of the bottleneck. Respectively, the red line set is considered by

pedestrians in the upper half of the bottleneck. Given a pedestrian i at position pi

we define the angle

θi = arccos

( −−→pie1 ·
−−→
pilij

‖ −−→pie1 ‖ · ‖ −−→
pilij ‖

)

, (5.2)

with lij the nearest point of the line j to the pedestrian i. The next direction is then

chosen to be
−→
e0i =

pilij

‖ −−→
pilij ‖

,

with j such that θj = min{θ1, θ2 θ3}. As in strategy 3 the directing lines are shifted

by bmin in in X- and Y -axis.

In Fig. 5.9 simulation results for two different widths are depicted. Simulations

were performed with strategy 4. Like strategy 2 and 3 the use of the whole width

1Some ideas in this section are based on the master thesis of Martina Freialdenhoven: “Model-
lierung der Wunschrichtung selbstgetriebener Teilchen am Beispiel der Fußgängerdynamik”.
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of the bottleneck is in comparison to strategy 1 enhanced. The red ellipses show the

formation of two lanes of pedestrians that block each other in front of the bottleneck.

This is when pedestrians choose from each line set the line that is parallel to the

bottleneck.

Figure 5.9: Screenshot of a simulation with strategy 4. Top: Width of the bottleneck
w = 1.2m. Bottom: Width of the bottleneck w = 2.5m.

5.3.2 Algorithm to generates guiding line segments

Given two walls, defined by two line segments AB and AC that intersect at the

common point A, we define a set of three line segments (Fig. 5.10).

Following, we give the outline of the algorithms to define from each corner the

three guiding line segments. First, find the point P on the longer wall such that

‖ −→
AP ‖ is equal to the length of the smaller wall (for example AB). The median

of the isosceles triangle (BAP ) that passes through A intersects BP in the point D.

Given a length l the first directing line starts from A is l1 = l ·
−−→
DA

‖
−−→
DA‖

. The two other
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B θ

θ
l

P

A

C

Figure 5.10: Identification of corners by searching for intersecting segment lines
(walls). With help of each corner define a set of three guiding line
segments. The angle between the guiding line segments is θ and their
length is l. θ and l are free parameter that can be adapted conveniently.

lines results from a rotation of l1 by θ resp. −θ

l2 = Mθ · l & l3 = M−θ · l.

With this algorithm it is possible to generate from each intersection of two walls a

set of three lines to determine the desired direction. Lines that do not lay inside the

geometry should be ignored.

5.3.3 The length of the directing line

So far we used in strategy 4 three different directing lines with length l. One could

ask if l should be variable or constant and which length guarantees best results. To

study the influence of l on the flow set

l = α · w, (5.3)
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with a constant α. The length of the guiding line depends on the width of the

bottleneck. In Fig. 5.11 we show the measurement flow for different values of α.

It becomes clear that longer lines have a negative impact on the flow. This is

explained by the fact, that pedestrians are more directed towards the middle of the

bottleneck. By short lines, pedestrians tend to be oriented more to regions near the

borders of the bottleneck and thus a maximum effective width is used.
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Figure 5.11: Strategy 4: Flow through a bottleneck with different widths and different
lengths of the directing lines.

5.3.4 Discussion

In this section we propose different methods (called strategies) how to choose

the desired direction
−→
e0i . Simulations results with the GCFM (unchanged set of

parameters) of the same bottleneck enables a direct comparison of the used strategy.

For each strategy only the width of the bottleneck was varied from 0.9m to 2.5m.

On the basis of a qualitative analysis it was shown how sensitive can be the

influence of each strategy on flow. Following we measure for each strategy the flow
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from the bottleneck with respect to the width w. The flow is measured directly at

the entrance to the bottleneck with the following formula:

J =
N∆t − 1

∆t
, (5.4)

with N∆t = 180 pedestrians and ∆t the time necessary that all pedestrians pass the

measurement line.

In Fig. 5.12 the resulting flow for all four strategies is presented. The flow mea-

sured by strategy 1 stagnates. This was expected since pedestrians do not profit

from the whole width of the bottleneck and keep oriented to the middle. The picture

changes for strategies 2 – 4, where the effective width of the bottleneck is clearly

larger.
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Figure 5.12: Flow through a bottleneck with different widths.

The main observations are:

• The choice of the strategy for the desired direction could influence considerably
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the outcome of the simulation.

• A native choice of strategy, in that case strategy 1, can lead to large deviations

from experimental results.

• In contrast to strategy 1, strategies 2 – 4 show better usage of the bottleneck

width and lead to higher flow values.

5.3.5 Motion around a corner

In this section, we extend strategy 4 and study its impact on the movement time,

i.e. the time until all pedestrians have left the simulation set up. For simplicity

purposes we consider the movement of N = 100 pedestrians in a 90◦−corner-like

corridor (Fig. 5.13).

Figure 5.13: Simulation set-up: 100 pedestrians move around the corner with help of
guiding lines. Corridor-width is 3 m and its length is 18 m.

The basis of our enhancements is the following observation: Given a guiding line l,

the desired direction of a pedestrian i is determined in dependency of its position and

the nearest point to l. That means the “choice” of pedestrians neglects two important

factors:

1. The geometrical perception of the space: Individuals try when possible to mini-

mize the length of their path to the exit. In our example pedestrian would take

a point near the corner as goal and not the nearest point on the guiding line.
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This can be, depending on the starting position of pedestrians, far away from

the corner and definitely longer that the “shortest path” to the exit.

2. The dynamical and collective influence of pedestrians: In presence of other

pedestrians and depending on the magnitude of the local density, the nature

of the “quickest path”2 changes dynamically and differs in most cases from the

“shortest path” to the exit.

A similar concept was first introduced in [6] and is well established and widely

used in CA. [76, 59]. Burstedde et al. introduced a model based on the notion of

static and dynamic floor field that tries to reflect the effects of long-range interactions

between the pedestrians. By means of those fields transition rates to neighboring cells

are determined. On one hand, the static floor field does not change with time and

is geometry specific. It should give a measure of the knowledge of the pedestrians

about the geometry. On the other hand, the dynamical floor field is characterized by

a virtual trace left by pedestrians. It stimulates the herding behavior of pedestrians.

That is e.g. when pedestrian, that are not familiar with the facility just follow others.

At a time step t the nearest point (Bi) to pedestrian i on the guiding line is set

to be a first “guess”. Bi is uniquely determined by its distance to the end point of

the line located next to the edge of the corner A: li(t) =‖ −−→
ABi ‖. Since we make use

of several guiding lines, we set Li as the line chosen by pedestrian i.

This distance may be modified at time t + ∆t depending on two different fac-

tors. First factor is static and depends only on the initial li(t). Especially it is also

independent of the presence of other pedestrians. We define this factor as

pis(t) = exp

(

− ks
lirel(t) + 1

)

, (5.5)

2a term introduced by Kretz et al. in [55].
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with

lirel(t) =
li(t)

lmax

(5.6)

and lmax is the width of the guiding line. ks is a constant that characterizes the ten-

dency of pedestrians to take the shortest path around the corner. pis(t) is reciprocally

proportional to the length li(t). That means the far away Bi is from A, the larger is

pis(t) and thus i tends to change its destination closer to the edge of the corner.

The second factor is of dynamical nature and depends mainly on previous decisions

taken by other pedestrians:

pid(t) = exp
(
−kd · occirel(t)

)
, (5.7)

where

occirel(t) =
ni

ni
b

(5.8)

is a measure of the occupation3 of the line. ni is the cardinality of the set

Al =
{
lj | j ∈ Bl & lj < li

}
.

That means the number of i’s neighbors that are steering towards a point on the

segment [A, Bi]. n
i
b is the cardinality of the set

Bl =
{
j ∈ [1, N ] | i 6= j & Li ≡ Lj & −→ei,l · −→ei,j ≥ 0

}
,

which is the set of all relevant neighbors of i. By means of a contribution to occirel(t)

(5.8) they influence i’s desired direction. For the scenario depicted in Fig. 5.14 the

set Bl for i (red ellipse) contains three pedestrians (bold ellipses), whereas ni = 1 (j).

That would give an occupation ratio of 1
3
.

3not to confound with the occupation of a cell in CA-models.
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Figure 5.14: How to get around the corner? Pedestrian i that is heading toward the
first guiding line, considers the positions of its neighboring pedestrians
as well as its initial position to decide whether or not to head closer to
the edge of the corner.

Large values of occirel(t) imply small values of pid(t). As a consequence pedestrians

tend not to change their desired direction closer to the edge of the corner.

Finally, the update rule of the distance li(t) is given by

li(t+∆t) = li(t) ·
(

1− pik(t) · pid(t)
︸ ︷︷ ︸

pi(t)

)

. (5.9)

pi(t) ∈ [0, 1] gives the rate of change from the initial “guess” of pedestrian i. For

pi(t) = 0 the desired direction of i stays orthogonal to the guiding line, while pi(t) = 1

displays the case where i’s desired direction is direction to the edge of the corner A.

5.3.6 The influence of the sensitivity parameter on the movement time

By means of the sensitivity parameter ks and kd it is possible to weight the in-

fluence of the above mentioned factors. Fig. 5.15 shows the dynamics observed by

changing ks and kd.
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Figure 5.15: Mean value of the movement time of N = 100 pedestrians around a
corner in dependency of ks and kd. 10 Simulations are performed.

The case ks ≪ 0 and kd ≪ 0 corresponds to the scenario where all pedestrians try

to take the shortest path around the corner. Obviously the short path leads to jams

which are reflected by high movement times.

It becomes clear that the behavior of the movement time in dependence of ks

(Fig. 5.15 up) and of ks (Fig. 5.15 down) is very similar. While the effect of kd is to

change the desire of pedestrian to take the shortest path, the influence of ks is the

following: Initially pedestrians are assumed to target perpendicularly the auxiliary

line L and are then motivated, by larger ks, to move towards the edge of the corner.

The question is what if pedestrians directly head toward the edge of the corner? In

this case the influence of kd should be sufficient to drive pedestrians away from the

corner and thus reduce the intensity of eventual jams.

By dispensing with the statistical factor pis(t) we simplify the update rule of the

distance li(t) to

li(t+∆t) = li(t) ·
(

1− pid(t)
)

. (5.10)

Note that pedestrians still show a statistical sense for the geometry by choosing the
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inner point of the geometry as a reference point.

5.3.7 Analysis of the sensitivity parameter kd

To understand the impact of the collective influence of pedestrians on the chosen

target point for each pedestrian i, we study the time evolution of the quantities defined

in Eqs. (5.8), (5.6) and (5.10) for different values of kd. The movement of N = 100

pedestrians around a corner for different values of kd is investigated. In order to

simplify our tests, only kd of the first line is varied. Pedestrians steer orthogonally to

the second and third line, which corresponds to very high values of kd.

Fig. 5.16 shows the case kd = 0. The rate of change p is constantly equal to

one. That means that the relative distance lrel decreases with time. The occupation

ratio is zero for pedestrians that move directly alongside the wall or one for the rest.

That is comprehensible since for pedestrian i all relevant pedestrians are also heading

towards A, thus ni = ni
max.
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Figure 5.16: kd = 0: The time-evolution of the relative length lrel, the occupation
ratio occrel and the rate of change p.

The situation changes considerably when kd 6= 0. Figs. 5.17 and. 5.18 show how

the range of spread of p grows from zero to ≈ 0.4 for kd = 0.5 and ≈ 0.6 for kd = 1.
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To that effect, the relative occupation occrel takes steadily more values in the interval

[0, 1]. As a consequence, the relative length lrel remains constant for longer time,

which indicates that more pedestrians get influenced by others, that are heading

towards the corner edge A.
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Figure 5.17: kd = 0.5: The time-evolution of the relative length lrel, the occupation
ratio occrel and the rate of change p.

0 10 20 30 40 50 60 70
0.0
0.2
0.4
0.6
0.8
1.0

l r
el

kd =1.00

0 10 20 30 40 50 60 70
0.0
0.2
0.4
0.6
0.8
1.0

oc
c r

el

0 10 20 30 40 50 60 70
t [ s ]

0.0
0.2
0.4
0.6
0.8
1.0

p

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 5.18: kd = 1: The time-evolution of the relative length lrel, the occupation
ratio occrel and the rate of change p.
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Finally, for kd = 10 the collective influence of pedestrians dominates the choice of

the desired direction, which is mostly chosen to be orthogonal to the guiding lines.

Like the case kd = 0 this is an extreme case that excludes pedestrians willing to take

the shortest path around the corner.

0 10 20 30 40 50
0.0
0.2
0.4
0.6
0.8
1.0

l r
el

kd =10.00

0 10 20 30 40 50
0.0
0.2
0.4
0.6
0.8
1.0

oc
c r

el

0 10 20 30 40 50
t [ s ]

0.0
0.2
0.4
0.6
0.8
1.0

p

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 5.19: kd = 10: The time-evolution of the relative length lrel, the occupation
ratio occrel and the rate of change p.

To showcase the impact of the collective influence of pedestrians on evacuation

time and jam building, we measure the variation of the movement time in dependence

of kd (Fig. 5.20).
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Figure 5.20: Movement time for a simulation with N = 100 pedestrians around a
corner for different values of kd. The parameters pi of the optimal fit
(red curve) were calculated with the Levenberg-Marquandt algorithm
[70].

We note that the movement time decays exponentially with kd. For kd ≥ 3 there

is no relevant change in the dynamics. The qualitative comparison shown in Fig. 5.21

confirms the above-mentioned quantitative analysis.

Figure 5.21: Screenshots of simulations with 100 pedestrians. Top left: kd = 0. Top
right: kd = 0.5. Bottom left: kd = 1. Bottom right: kd = 10. All
screenshots were taken at the same simulation time of 35 s.
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For kd = 0 the red ellipses (low velocity) indicate the existence of a jam immedi-

ately before the corner. This results from the big competition among the pedestrian

to pass through the edge of the corner A. Whereas, for kd = 10 pedestrians move

quicker, since they hardly compete for A.

In summary, we presented a strategy to define the desired direction
−→
e0i for each

pedestrian i. This method can be used in general in each geometry characterized

by the existence of corners, e.g. Bottlenecks (2 corners), T-junctions (2 corners). In

analogy to CA models we introduced and tested two factors to model the statistical

and dynamical interaction of pedestrians with the geometry. For a realistic movement

around the corner it would be useful to make the value of kd pedestrian-dependent.

That would reflect the heterogeneity of the decision pedestrians make, when choosing

between the shortest and quickest path out to the exit.

In contrary to a “commonly believed fact” [56] the desired direction even in ele-

mentary geometries is not obvious. We showed that the choice of the strategy for the

desired direction influences considerably the outcome of the simulation.
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CHAPTER VI

Simulations and validation of the GCFM

Computer simulation is the mathematical pendant of calculus. It is then essential

when equations can not be solved analytically. Its practical significance has been

widely acknowledged in the science. Just as observation is extended by experiments,

calculation is extended by simulations and are often the only way to understand the

dynamical nature of some systems.

Since force-based models represent the time-evolution of pedestrians, by expressing

equations of motion, we make use of simulations to solve numerically those equations

and gain insights into the target system.

In order to verify the GCFM and evaluate the impact of the elliptical shape of

the volume exclusion in comparison with the circular one we measure the FD in

two-dimensional space with the same set of parameter as for the one-dimensional FD.

In the one-dimensional case only the space requirement of pedestrians in movement

direction, expressed in terms of the semi-axis a, influences the dynamics of the system.

Therefore, one can calibrate at the first step the parameter of the axis a, We set amin

and τa (Eq. (4.1). Then we can proceed with calibrating the parameter of the second

axis b by means of the 2-D-FD.

Furthermore, we perform simulations in a bottleneck and compare the flow to

empirical data. The measurement method for the velocity, the density and the flow
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Figure 6.1: One single lane simulation of pedestrian dynamics. To ensure boundary
effects, pedestrians moving near the two ends of the corridor interact with
each other. In the figure after translating the position of pedestrian i by
the length of the corridor, its interaction with pedestrian j is calculated.

are described in App. B.

6.1 One-dimensional fundamental diagram

To illustrate the impact of the velocity-dependence of the radius on the dynamics

of pedestrians we measure the FD for 1-D movement in a corridor with periodic

boundary conditions. The measurement segment is 2 m long and situated in the

middle of the corridor. Details about the measurement method are given in App. B.

The simulation set-up is a straight corridor of 26 m length. The measurement

region is 2 m long and situated in the middle of the corridor. In order to reach a large

spectrum of densities and to generate stationary data we impose to the system periodic

boundary conditions. That implies that pedestrians walking near the boundaries of

the corridor still interact with each other, as if the extremities of the corridor were

connected. Thereby, following conditions should be checked for each two pedestrians

i and j:

|xi − c0| ≤
rc
2

& |xj − c1| ≤
rc
2
,

with rc the cut-off of the repulsive force (Fig. 6.1).

Different runs with different number of pedestrians N were performed. To empha-
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Figure 6.2: Changing τa influences the slope of the diagram. amin has been kept equal
to 0.18m. τa = 0 represents pedestrians with constant space-requirement.

size the importance of velocity dependent volume exclusion we vary the parameter τa

in Eq. (4.1) and measure the FD for each value by keeping the value of amin constant.

In Fig. 6.2 we observe the sensitivity of the FD to the form of the pedestrians. For

constant volume exclusion even the curvature of the FD changes. Those findings are

in accordance with the results of [106].

Now we verified that both parameters in Eq. (4.1) are necessary and we can not

dispense with the velocity-dependence of the radius. The next step would be to find

suitable values of the parameters such that the FD match the empirical data. For

τa = 0.53 s and amin = 0.18m we can observe a good agreement between simulated

and experimental data (Fig. 6.3).
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Figure 6.3: Velocity-density relation for one-dimensional movement compared to ex-
perimental data [101]. For the simulations, τa is set to 0.43 s.

6.2 Two-dimensional fundamental diagram

We extend now the simulation to two-dimensional space and simulate a 25 m×1 m

corridor with periodic boundary conditions. A measurement segment of 2 m × 1 m

was set in the middle of the corridor. We use the same measurement method as for

the single-file case (see App. B). Calibration of the parameters of the lateral semi-axis

b (bmin and bmax in Eq. 4.2) leads to the values bmin = 0.2m and bmax = 0.25 m. The

simulation result is shown in Fig 6.4.

With the chosen dimensions of the semi-axes a and b the model yields the right

relation between velocity and density both in single-file movement and wide corridors,

although only a corridor width of 1 m was investigated. For the sake of comparison

between ellipses and circles, we perform simulations of the same scenario with the

same initial values but with circular shaped pedestrians. In Fig. 6.5 the FD is de-

picted in comparison with experimental data. One remarks that the FD for elliptical
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Figure 6.4: Density-velocity relation with ellipses in a corridor of dimensions 25×1m2

in comparison with experimental data obtained in the HERMES-project
[39].
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Figure 6.5: Density-velocity relation with circles in a corridor of dimensions 25×1m2

in comparison with experimental data obtained in the HERMES-project
[39]. In these simulations b is set to be equal to a.
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shaped pedestrians is an upper bound for that of circular ones, especially at low and

medium densities. At high densities with circular pedestrians higher values of veloci-

ties are measured. This can be explained with the fact that the chosen shoulder width

(2bmin = 40 cm) is higher than the minimum space requirement along the movement

direction (amin = 18 cm).

In conclusion we can say that ellipses with velocity-dependent semi-axes emulate

the space requirement of the projected shape of pedestrians better. Even the shape

of the FD is reproduced after inclusion of this velocity-dependence. Finally, the

calibrated model yield realistic values of the parameters with physical meaning, e.g.

a and b.

6.3 Uni-directional flow in bottlenecks

So far the desired direction in the corridor was parallel to its walls. In other

two-dimensional facilities the desired direction changes and becomes, as was shown

in Chap. V, crucial to the outcome of the simulation. Therefore, we simulate in this

section the outflow from a bottleneck. The simulation set-up is depicted in Fig. 5.1.

180 pedestrian are initially distributed in the holding area. For different widths of the

bottleneck we measure the resulting flow. In this simulation we chose strategy 2 to

steer pedestrians. Fig. 6.6 shows the results in comparison with experimental data.
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Figure 6.6: The flow in comparison with empirical data from [63].

In summary, the model was systematically validated by considering the dynamics

in different geometries. The main challenge hereby is to reproduce the empirical data

in various scenarios with one set of parameters. Another important aspect is the

values that the parameters of the model takes. Especially the parameters that have a

physical meaning, e.g. shoulder width (b) and step length (a) should take reasonable

values.

This validation process may be continued with simulations in different geometries

like T-shaped bottlenecks.
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CHAPTER VII

Summary and Outlook

Pedestrian dynamics is a field rich with complex and transient properties that

can be addressed by computer simulations. For this purpose several “adjustable-

parameter”-models have been already developed. By means of calibration and ad-

justment of their parameters, they can fit empirical data and are mostly able to

describe fairly well observed phenomena, e.g. lane formations.

In principle, before modeling a real-life system, in this case pedestrian dynamics,

a decision must be made with regard to the intended purpose of the model and which

properties of the system it should cover. For example if the intended purpose of the

model is dedicated to visualization issues e.g. pattern recognition, then the designed

model should be able to make more or less precise predictions of the trajectories of

pedestrians. However for application-orientated purposes a quantitative description

of pedestrian dynamics is essential and should be a primary goal of the model.

From a physical point of view, what mostly counts is understanding the mecha-

nisms of the underlaying pedestrian’s movement. Nevertheless, it should be noticed

that an illusion of understanding may easily be generated, then the conceived and

developed models aim to reproduce qualitatively and quantitatively the collective

phenomena that emerges in a dynamical system. To identify and isolate the reasons

of such phenomena stays beyond the scope of most mathematical models of pedestrian
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dynamics.

In this dissertation modeling of pedestrian dynamics is investigated. A new force-

based model is developed and introduced. The minimum description length principle

[92] was respected while the conception of the repulsive force. By a proper choice

of the force’s strength it was possible to find a reasonable compromise between os-

cillations and overlapping; Two known side-effects of force-based models that are

quantified and investigated in this work.

Steering pedestrians by means of the driving force was studied. Especially, in

geometries where the visibility of the exit is restricted, considering intermediate goals

is necessary. In analogy to the well-known floor-field principle, the desired direction is

initialized at each time step in dependence of geometrical as well as dynamical factors

that depend on the local dynamics.

The projection of pedestrians on plane is modeled by means of ellipses with

velocity-dependent semi-axes. On one side, the semi-axis in the main working di-

rection get larger with increasing speed, which is in accordance with the nature of

human walking, i.e. the quicker pedestrians take larger steps and vice versa. On the

other side, the semi-axis in shoulder direction shrinks with increasing speed. This

feature captures the swaying of the human body while walking.

Finally, the developed model is systematically validated relatively to empirical

data. The model contains components that have no influence in some geometries,

e.g. the lateral axis in one-dimensional set-ups. This “natural” selection of param-

eters proved to be beneficial in calibrating only the parameters, that have influence

on the simulation in a given scenario. For example, by studying the one dimensional

fundamental diagram the parameter of the axis in the movement direction could be

adequately calibrated. Considering larger corridors and hence simulating two dimen-

sional unidirectional movement the calibration of the second semi-axis was possible.

In corridors the choice of desired direction is trivial, then pedestrians just move for-
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wards with minimal detours. This fact will be exploits by simulating bottlenecks and

corners, where the desired direction is important in the process of merging. By trying

different strategies the dynamics in bottlenecks and the corners was described fairly

well.

The proposed model (GCFM) was successfully used in the project Hermes1, which

goal is the development of an evacuation assistant for mass events. The use of different

optimization techniques have enabled a real time simulation.

1Hermes is funded by the German Government (Federal Ministry of Education and Research)
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APPENDIX A

Parameter set for the simulations

For all simulation in this work the initial value problem in Eq. (1.1) was solved

using an Euler scheme with fixed-step size ∆t = 0.01 s. First the state variables of all

pedestrians are determined. Then the update to the next step is performed. Thus,

the update in each step is parallel.

The desired speeds of pedestrians are Gaussian distributed with mean µ = 1.34 m/s

and standard deviation σ = 0.26 m/s. The time constant τ in the driving force

Eq. (3.4) is set to 0.5 s, i.e. τ ≫ ∆t. For simplicity, the mass mi is set to unity. In

Tab. A.1 we give an overview about the parameter incorporated in the GCFM.

Parameter Eq. number Value

η (3.6) 0.2

rc (3.13) 2 m

fmax (ped-ped) (3.14) 3

fmax (ped-wall) (3.14) 10

reps (3.15) 0.1 m

τa (4.1) 0.43 s

amin (4.1) 0.18m

bmax (4.2) 0.25 m

bmin (4.2) 0.2 m

Table A.1: Parameter values used in simulations if it is not mentioned explicitly that
changes have been mad.
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APPENDIX B

Measurement method

The mean velocity of pedestrian i that enters the measurement are in (xin
i , y

in
i )

and leaves it in (xout
i , youti ) is determined as

vi =

√

(xout
i − xin

i )
2 + (youti − yini )

2

touti − tini
(B.1)

where tini is the entrance time and touti exit time of i (Fig. B.1).

lm

xin
i

xout
i

yin
i

yout
i

i (tin
i
)

i (tout
i

)

Figure B.1: Pedestrian i enters the measurement area (red) at tini in (xin
i , y

in
i ) and

leaves it at touti in (xout
i , youti ). The direction of motion is from left to

right.

For the one-dimensional case yini = youti = 0.
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The density is defined as follows:

ρi =
1

touti − tini

tout∫

tin

ρ(t) dt (B.2)

ρ(t) =
Nin(t)

lm
. (B.3)

with lm = 2m the length of the measurement area in the movement direction and

Nin(t) is the number of pedestrians within the area at time t. In one dimensional

space the measurement area is reduced to a measurement segment of length lm.
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APPENDIX C

Approximation of the area of an ellipse

In this appendix we give details about the used method to approximate the area

of an arbitrary ellipse by means of a polygon. Without loss of generality we consider

an ellipse (E) centered at the origin of the coordinate system S and whose major and

minor axes coincide with the axes of S. The points Pi(xi, yi), i = 0, · · · , n− 1, with







xi = a cos(i
2π

n
)

yi = b sin(i
2π

n
)

(C.1)

(C.2)

define a n-sided polygon inscribed in E (Fig. C.1).

94



b

aO

Pi

i2π
n Pj

Figure C.1: A 6-sided polygon inscribed in an ellipse. The area of the ellipse can be
approximated by the area of the polygon, which is given by the sum of
the adjacent triangles △(OPiPj), i = 0, · · · , n− 1, j = (i+ 1) mod n.

The area of the triangle Ti = △(OPiPj) with j = (i+ 1) mod n, is

Ai =
1

2
|xiyj − xjyi| . (C.3)

Considering the expressions in Eqs. (C.1) and (C.2) we get

Ai =
ab

2
sin(

2π

n
). (C.4)

By summing the areas Ai of the n adjacent triangles Ti one obtains the area of the

polygon as

An =
n−1∑

i=0

Ai (C.5)

=
ab

2
n sin(

2π

n
). (C.6)
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Obviously the area of the ellipse E is given by A∞, since

An→∞ → ab

2
2π

n

2π
sin(

2π

n
)

︸ ︷︷ ︸
→1

(C.7)

= πab. (C.8)

The relative error between the approximated value of the area (An) and the exact

one (A∞) is given by

δ =

∣
∣
∣
∣

A∞ − An

A∞

∣
∣
∣
∣
. (C.9)

Substituting An and A∞ from Eqs. (C.6) and (C.8) in Eq. (C.9) we get

δ =

∣
∣
∣
∣

πab− abn
2
sin(2π

n
)

πab

∣
∣
∣
∣

(C.10)

=

∣
∣
∣
∣

π − n
2
sin(2π

n
)

π

∣
∣
∣
∣
. (C.11)

Fig. C.2 depicts the evolution of δ in dependence of the number of vertices. For

n = 40 we can approximate the area of the ellipse E with a relative error of δ =

0.41 · 10−2, which is a sufficiently acceptable error in approximating the overlapping

ratio (3.21).
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Figure C.2: The relative error of the approximate area of the ellipse by a n-sided
inscribed polygon.

The area (C.6) corresponds to the maximum n-sided polygon which can be in-

scribed in an ellipse [83]. Since we are interested in the approximated area, this

influences positively the relative error δ.
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APPENDIX D

Publications during PhD work

• U. Kemloh, M. Chraibi, A. Seyfried, A. Schadschneider. Efficient and vali-

dated simulation of crowds for an evacuation assistant. Comp. Anim. Virtual

Worlds, 2012, vol. 23, pp. 3− 15.

• G. B. Hughes and M. Chraibi. Calculating ellipse overlap areas. ArXiv e-

prints 1106.3787, 2011.

• M. Chraibi, U. Kemloh, A. Schadschneider, A. Seyfried. Force-based models

of pedestrian dynamics. Networks and Heterogeneous Media, 2010, vol. 6(3),

pp. 425− 442.

• M. Chraibi, A. Seyfried and A. Schadschneider. Generalized centrifugal force

model for pedestrian dynamics, Phys. Rev. E, 2010, vol. 82, p. 046111.

• A. Seyfried, M. Chraibi, U. Kemloh, J. Mehlich and A. Schadschneider. Run-

time Optimization of Forced Based Models within the Hermes Project. Pedes-

trian and Evacuation Dynamics, eds. R.D. Peacock, E.D. Kuligowski, J.D.

Averill, pp. 363−373, Springer, 2011
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• A. Seyfried, J. Mehlich and M. Chraibi. Hermes: An Evacuation Assistant for

Mass Events in Complex Buildings − Simulation of Crowd Movement Faster

than Realtime. Proceedings of 2009 first international conference on evacuation

modeling and Management, 23−25 September 2009, in Delft, Neederlands.

• M. Chraibi, A. Seyfried, A. Schadschneider and W. Mackens. Quantitative

Description of Pedestrian Dynamics with a Force-based Model. Proceedings of

2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence

and Intelligent Agent Technologies, 15−18 September 2009, in Milano, Italy.

• M. Chraibi, A. Seyfried, A. Schadschneider and W. Mackens. Modifications

of the Centrifugal Force Model for Pedestrian Dynamics. Proceedings of The

Conference on Traffic and Granular Flow 2009, June 22-24 2009
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Dissertation, Universität Stuttgart, 1995.
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