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SUMMARY 
 

Pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) enables plants to efficiently 

defend themselves against most pathogens. PTI is initiated by plasma membrane pattern recognition 

receptors like Flagellin Sensitive 2 (FLS2), which detects flg22 peptides derived from bacterial 

flagellin. Flg22 triggers cellular trafficking of FLS2 to endosomal compartments and several defense 

responses, including early responses such as closure of stomatal apertures or gene activation and 

late responses such as seedling growth arrest or callose deposition.   

Cellular trafficking is often regulated by ubiquitination. In order to find factors modulating FLS2 

endosomal trafficking, we used the Pseudomonas syringe pv. tomato (Pto) DC3000 effector AvrPtoB 

to identify residues in FLS2, which are ubiquitinated by AvrPtoB. Using tandem mass-spectrometry 

we identified one ubiquitination site in the juxtamembrane domain of FLS2. FLS2 mutated in all 

juxtamembrane located lysines showed reduced ubiquitination in vitro, enhanced resistance to Pto 

DC3000 and increased FLS2 endosome numbers upon flg22 treatment. Ubiquitinated plasma 

membrane proteins are targeted to late endosomal compartments by the Endosomal Sorting 

Complex Required for Transport (ESCRT) in yeast and animals. Using confocal microscopy we 

observed flg22-dependent co-localization of FLS2 with ESCRT-1 positive vesicles. Furthermore, 

ESCRT-1 mutants vps28-2 and vps37-1 showed reduced flg22-triggered defense gene activation, loss 

of flg22-dependent stomatal closure and decreased numbers of FLS2 endosomes. Both mutants 

showed higher susceptibility to biotrophic pathogens, indicating a role of ESCRT-1 components in 

plant immunity.  

A second approach aimed to genetically dissect flg22 responses by analyzing a previously isolated 

flagellin insensitive 1 (fli1) mutant. Fli1 mutants were similar susceptible to Pto DC3000 than fls2-17 

receptor mutants. Increased susceptibility of fli1 to Pto DC3000 correlated with higher expression of 

sugar starvation responsive genes during infections and reduced late flg22 responses. Early flg22 

responses and transcriptional profiles three hours post infection resembled wild-type plants, 

suggesting a positive role of late PAMP responses in plant immunity. Genetic analysis showed that 

fli1 is recessive inherited and co-segregated with markers on the upper arm of chromosome 5. 

Sequence differences in fli1 predicted by whole genome sequence analysis were, however, shared 

with Ler wild-type plants, leaving the designation of fli1 to one gene open.   

In conclusion, these data provide good evidences for a role of late FLS2 endosomal trafficking and 

late flg22-repsonses as critical components of plant immunity against Pto DC3000.  
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ZUSAMMENFASSUNG 

Die Erkennung von Pathogenen wird über diverse Wirtsrezeptoren gewährleistet. Diese so 

genannten Mustererkennungsrezeptoren (engl. Pattern Recognition Receptors, PRR) erkennen 

pathogen-assoziierte molekulare Muster (engl. Pathogen Associated Molecular Pattern, PAMP). In 

Arabidopsis thaliana wird flg22, ein konservierter Bestandteil des bakteriellen Flagellums, von FLS2 

(Flagellin Sensitive 2) Rezeptoren erkannt. Flg22 Perzeption führt zur Endozytose von FLS2 und zur 

Initiierung von früheren und späten PAMP Antworten. Frühe PAMP Antworten sind zum Beispiel die 

transkriptionelle Aktivierung von Genen und das Schließen von Stomataöffnungen. Späte Antworten 

dagegen beinhalten Kalloseablagerungen und die Reduktion des Keimlingswachstums. 

Endozytose und endosomaler Transport wird oft über Ubiquitinierung reguliert. FLS2 wird von 

endogenen Ubiquitinligasen und AvrPtoB, einem Effektorportein aus Pseudomonas syringae pv. 

tomato (Pto) DC3000, ubiquitiniert. Unsere Experimente zeigen, dass FLS2 an mindestens zwei 

unterschiedlichen Positionen von AvrPtoB in vitro ubiquitiniert wurde. Eine Position konnte dabei 

mittels Massenspektrometrie einem Lysin in der Juxtamembranregion von FLS2 zugeordnet werden. 

FLS2 Varianten, in denen mögliche Ubiquitinierungsstellen mutiert wurden, zeigten eine reduzierte 

Ubiquitinierung durch AvrPtoB in vitro, eine erhöhte Resistenz gegenüber Pto DC3000, sowie eine 

erhöhte Anzahl von FLS2 Endosomen im Vergleich zu untersuchten Wildtypkonstrukten.  

Studien in Hefe und tierischen Zellen zeigen, dass ubiquitinierte Plasmamembranproteine über den 

endosomalen Sortierung Komplex für Transport (ESCRT) zu spätendosomalen Kompartimenten 

transportiert werden. Mittels konfokaler Mikroskopie beobachteten wir, dass in transgenen 

Arabidopsis Pflanzen, FLS2 Endosomen mit ESCRT-1 Vesikeln partiell kolokalisieren. Darüberhinaus 

zeigten ESCRT-1 Mutanten vps28-2 und vps37-1 reduzierte flg22 induzierte Genaktivierung, Verlust 

von flg22 vermittelter Schließung der Stomataöffnungen, und eine geringere Anzahl an FLS2 

Endosomen als Wildtyppflanzen. Beide Mutanten zeigten zudem eine erhöhte Anfälligkeit 

gegenüber biotropher Pathogene, was auf eine Rolle von ESCRT-1 Proteinen in der 

Pflanzenimmunität hindeutet. 

In einer zweiten Studie, wurde die Rolle später flg22 Antworten genetisch untersucht. Dabei wurde 

eine zuvor isolierte flagellin insensitive 1 (fli1) Mutante genauer analysiert. Fli1 Mutanten zeigten 

eine ähnliche erhöhte Anfälligkeit gegenüber Pto DC3000 wie fls2-17 Rezeptormutanten. 

Transkriptionsanalysen zeigten, dass fli1 Mutanten besonders in späten Infektionsphasen deutlich 

anders als Wildtyppflanzen reagieren. So wurde einer erhöhten Expression von Gene gefunden, 

denen eine Rolle im Zuckermangel zugeschrieben wird. Auch andere späte Immunantworten waren 

in fli1 Mutanten deutlich verändert. Es wurden deutlich weniger flg22 induzierte 

Kalloseablagerungen und eine geringere flg22 Sensitivität in Keimlingswachstumsexperimenten 

gefunden. Frühe transkriptionelle Antworten dagegen glichen denen in Wildtyppflanzen. Auch in 

frühen PAMP Antworten unterschieden sich fli1 Mutanten nicht signifikant von Wildtyppflanzen. 

Zusammenfassend deuten unsere Daten daraufhin, dass späte PAMP Antworten eine wichtige Rolle 
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in der pflanzlichen Immunität spielen. Genetische Analysen zeigten, dass fli1 rezessiv vererbt wird 

und mit Markern auf dem oberen Arm von Chromosom 5 kosegregiert. Sequenzunterschiede in fli1, 

ermittelt durch Genomsequenzierung, wurden jedoch auch in Wildtyppflanzen gefunden, so dass fli1 

keinem Gen zu geordnet werden konnte.  
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1. INTRODUCTION 

 

1.1. THE PLANT IMMUNE SYSTEM 
 

 
The plant immune system is based on two layers of active defense responses (Jones and Dangl, 

2006). The first layer senses pathogen-associated molecular patterns (PAMPs, also referred to as 

MAMPs for microbe-associated molecular patterns). PAMPs are conserved across large classes of 

microbial species, e.g. bacterial flagellin or fungal chitin, and detected by cognate pattern 

recognition receptors (PRRs). The second layer of plant immunity employs recognition of Avirulence 

gene products from one particular pathogen strain. In this case, recognition occurs often 

intracellular, when pathogen-derived Avirulence gene products or effectors, are injected into host 

cells. Effector proteins interact either directly or indirectly with their corresponding plant resistance 

proteins. Following pathogen recognition defense signaling is initiated, leading to several defense 

responses and subcellular re-organization (Boller and Felix, 2009; Frey and Robatzek, 2009). 

 

 

1.2. DEFENSE SIGNALING 
 

Plant PRRs can be grouped based on their modular structure into two major classes: Receptor-like 

kinases (RLKs) include rice Xa21 (Song et al., 1995), FLAGELLIN SENSITIVE 2 (FLS2) (Gómez-Gómez 

and Boller, 2000), ELONGATION FACTOR-TU RECEPTOR (EFR) (Zipfel et al., 2006), or CHITIN ELICITOR 

RECEPTOR KINASE1 (CERK1) (Miya et al., 2007). RLKs are built-up by a ligand binding extracellular 

domain, a single transmembrane domain and an intracellular kinase. Transmembrane domains of 

RLKs are flanked by regulatory juxtamembrane regions, which can modulate protein-protein 

interactions and kinase activity (Chen et al., 2010c; Chen et al., 2010b). 

The second class of PRRs lacks an intracellular kinase domain: Receptor-like proteins (RLPs) include 

Chitin Elicitor-Binding Protein (CEBiP) or tomato LeEIX2 (Kaku et al., 2006). LeEIX2 recognizes fungal 

ETHYLENE-INDUCED-XYLANASE (EIX) (Ron and Avni, 2004) and shows high homology to tomato Cf 

disease resistance proteins (Ron and Avni, 2004). Cf proteins confer resistance to certain 
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Cladosporium fulvum strains by detecting their cognate Avr protein (Stergiopoulos and de Wit, 

2009). 

 

 Arabidopsis FLS2 is a major model to study PRR function (Boller and Felix, 2009). FLS2 directly binds 

a conserved 22 amino acid peptide (flg22) of bacterial flagellin (Gómez-Gómez and Boller, 2000). 

FLS2 is wide-spread in plant genomes with orthologues found in tomato, Nicotiana benthamiana and 

rice (Hann and Rathjen, 2007; Robatzek et al., 2007; Takai et al., 2008). In contrast to FLS2, EFR is 

restricted to Brassicaceae and binds elf18, a conserved peptide derived from bacterial elongation 

factor Tu (Kunze et al., 2004; Zipfel et al., 2006).  

FLS2 and EFR require the BRI1-ASSOCIATED-KINASE1 (BAK1) for efficient activation of downstream 

responses (Chinchilla et al., 2007). BAK1 belongs to the family of SOMATIC-EMBRYOGENESIS 

RECEPTOR-LIKE KINASES (SERK1-5) and interacts with brassinosteroid receptor, BRASSINOSTEROID 

INSENSITIVE, BRI1 (Li et al., 2002). SERK1-5 share partially redundant functions in brassinosteroid 

signaling (Albrecht et al., 2008) and were recently also identified in active PRR complexes (Roux et 

al., 2011). FLS2 and EFR associate with BAK1 (SERK3) seconds after ligand binding (Chinchilla et al., 

2007; Schulze et al., 2010). The resulting protein complex triggers trans-phosphorylation events, 

which are essential for proper PAMP signaling (Chinchilla et al., 2007; Schulze et al., 2010; 

Schwessinger et al., 2011). Following the formation of this receptor complex cytosolic BOTRYTIS-

INDUCED KINASE 1 (BIK1) dissociates from FLS2 to activate downstream responses (Zhang et al., 

2010). Within in seconds or minutes after initiation of PRR signaling several cellular responses can be 

measured, including ion fluxes across the plasma membrane (Jeworutzki et al., 2010), generation of 

reactive oxygen species (ROS) (Gómez-Gómez and Boller, 2000), activation of mitogen-activated 

protein kinases (MAPKs) (Asai et al., 2002) and activation of calcium-dependent protein kinases 

(CDPKs) (Boudsocq et al., 2010). These responses are followed by transcriptional reprogramming of 

more than 1000 flg22 and elf18 responsive genes (Zipfel et al., 2004).  

This first wave of detected immune responses is collectively referred to as early PAMP responses 

(Boller and Felix, 2009). By contrast, late responses appear hours or days after PAMP stimulus and 

include callose deposition, and inhibition of seedling growth (Boller and Felix, 2009). Callose 

synthases PMR4 (POWDERY MILDEW RESISTANT 4, also referred to as GLUCAN SYNTHASE-LIKE 5, 

GSL5) is the major source of flg22-induced callose in Arabidopsis (Clay et al., 2009). Analyses of 

pmr4-1 loss of function mutants are hampered by elevated salicylic acid (SA), resulting in enhanced 

resistance to biotrophic pathogens (Nishimura et al., 2003). The relevance of callose deposition in 
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restricting bacterial growth is under debate (Boller and Felix, 2009) and alternative roles of callose in 

detoxification of antimicrobial compounds are discussed (Luna et al., 2011). If PAMP perception 

continues over days, Arabidopsis seedlings reduce growth and display severe stress symptoms 

(Boller and Felix, 2009). PAMP-induced hormones like ethylene, jasmonic acid or SA account only 

marginally for flg22-induced growth inhibition (Tsuda et al., 2009). Alternatively, down-regulation of 

auxin signaling by flg22 induced micro RNAs and gibberellin signaling via DELLA protein is linked to 

flg22-induced growth phenotypes (Navarro et al., 2006; Navarro et al., 2008). To date, most 

identified components of PTI signaling affect early PAMP responses, whereas genetic control of late 

response and PAMP-triggered immunity remains largely unknown.  

 

The contribution of one single PRR to plant immunity is often difficult to estimate. Fls2 mutants for 

example are only immuno-compromised in the pre-invasive infection phase, when pathogenic 

Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) are spray-inoculated, but not during the 

post-invasive phase, when bacteria are infiltrated into the leaf tissue (Zipfel et al., 2004). Flg22-

induced stomatal closure is discussed to account for FLS2’s predominate role in pre-invasive 

immunity (Zhang and Zhou, 2010). In contrast to eukaryotic plant pathogens, bacteria are unable to 

actively penetrate the plant epidermis. To access the nutrient-rich apoplastic space, they rely on 

natural openings like stomata or wounds. Flg22 induces stomatal closure within one hour of PAMP 

perception (Melotto et al., 2006) and requires PAMP-induced ROS signaling via Respiratory burst 

oxidase homolog D (RbohD), (Mersmann et al., 2010), MAPK signaling (Gudesblat et al., 2009) and 

several components which are shared with abscisic acid (ABA) - mediated stomatal closure (Melotto 

et al., 2006). Plant pathogens in turn evolved strategies to re-open stomata, for example with the 

help of the jasmonate mimic coronatine (Melotto et al., 2006).  

 

Besides the phytotoxin coronatine, several of the 28 type-three secreted effectors encoded by Pto 

DC3000 genome target PTI components (Cunnac et al., 2009): AvrPto and HopF2 interfere with PRR 

complex formation (Shan et al., 2008; Xiang et al., 2011), whereas AvrPtoB directly interacts with 

FLS2 (Göhre et al., 2008). AvrPtoB structurally mimics eukaryotic ubiquitin ligases (Rosebrock et al., 

2007). Ubiquitin ligases covalently attach ubiquitin moieties to lysine residues of substrate proteins, 

a common post-translational protein modification in eukaryotes. AvrPtoB ubiquitinates several plant 

kinases including FLS2 and CERK1 and promotes thereby their degradation (Rosebrock et al., 2007; 

Göhre et al., 2008; Gimenez-Ibanez et al., 2009). FLS2 ubiquitination was recently also shown by two 
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endogenous PLANT U-BOX PROTEINS (PUBs), PUB12 and PUB13 (Lu et al., 2011). Even though 

enhanced FLS2 turn-over by ubiquitination through PUB12, 13 or AvrPtoB appears analogous and 

requires flg22 activation in vivo, both interactions differ in their mode of action. Whereas PUB12 and 

PUB13 are recruited by BAK1, AvrPtoB binds directly to FLS2 to facilitate FLS2 ubiquitination and 

degradation.   

 

In conclusion, the progression of an infection is balanced between efficient activation of host 

immunity and deactivation by invading pathogens. This explains, why flg22 pre-treatment renders 

Arabidopsis plants more resistant to Pto DC3000 even in the post-invasive infection phase, a 

phenomenon termed flg22-induced resistance, (Zipfel et al., 2004). It also explains, why PTI 

component FLS2 is the major quantitative trait locus (QTL) for Arabidopsis non-host resistance to 

Pseudomonas syringae pv. phaseolicola 1448A (Forsyth et al., 2010). Vice versa, adapted pathogens 

partially loss their virulence, when exposed to PRRs of non-host plants as shown by expression of 

Arabidopsis EFR in Solanaceas or transgenic citrus expressing rice Xa21 (Mendes et al., 2009; 

Lacombe et al., 2010).  

 

Table 1 summarizes key components in PTI signaling on the basis of FLS2-flg22 pathway, including 

steps which are targeted by Pto DC3000 effectors. 
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Table 1 Illustration of key steps in the flg22-FLS2 signaling pathway  

PAMP PRR Complex Ca2+  NADPH 
oxidase 

MAPK b / 
CDPK 

Transcription 
Factors c 

Induced 
genes 

Stomatal closure Callose 
deposition 

Seedling 
growth arrest 

flg22 FLS2 

BAK1 
SERK1,2,4 

BIK1,  
PUB12,13 

? a RbohD 

MEKK1 
MKK1,2 
MKK4,5  

MPK3,4,6  
CDPK4,5,6,11 

Several WRKYs 
 

> 1000 

RbohD 
MPK3 
COI1 

 

PMR4 
miRNA 
 DELLA 

Pto DC3000 effectors targeting PTI steps: 

 AvrPtoB 
AvrPto 
HopF2 

  HopAI1   Coronatine   

a  Channels conducting flg22-induced calcium (Ca2+) influxes are currently not known, but inhibitor studies suggest a role  ionotropic glutamate receptor -like channels (Kwaaitaal et al., 
2011). 

b Two MAPK cascades are activated by flg22 (Rodriguez et al., 2010). HopAI1 inactivates MAPK3 and MAPK6 by removing phosphor groups (P) from activated MAPKs  (Zhang et al., 
2007a). 

c WRKY transcriptions play a major role in regulating transcriptional defense responses (Rushton et al., 2010).    
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1.3. CELLULAR DEFENSE 

 

Plant immunity involves the interplay of different subcellular compartments and vesicle transport 

pathways (Frey and Robatzek, 2009; Wang and Dong, 2011). PRRs for example need to be secreted 

from the endoplasmic reticulum (ER) via golgi compartments to the plasma membrane to perceive 

PAMPs. The importance of secretory and ER quality control pathway in PRR function was discovered 

in forward genetic screens for mutants impaired in elf18 signaling (Nekrasov et al., 2009; Saijo et al., 

2009). Interestingly, identified mutants were only slightly or not at all affected in flg22 and chitin 

responses, illustrating specific requirements for ER quality control proteins in different PRR 

maturation processes (Nekrasov et al., 2009; Saijo et al., 2009). EFR protein accumulation and 

functions are thereby differently compromised in ER quality control mutants. Radial swelling 3 

(rsw3, glucosidase 2) mutants show for example only slight reduction in elf18 binding and maintain 

wildtype-like early PAMP responses and callose depositions upon elf18 treatment, but fail to 

maintain wildtype-like defense gene expression and elf18-induced immunity during infections with 

Pto DC3000 (Lu et al., 2009).  

 

Post-golgi vesicle trafficking plays a major role in plant defense against non-host pathogens. 

Resistance of Arabidopsis thaliana against barley powdery mildew fungus Blumeria gramminins 

hordie (Bgh) is mediated by a protein complex consisting of the syntaxin PENETRATION 1 (PEN1, 

AtSYP121), SNAP33 (SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ADAPTOR PROTEIN 33) and 

VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP) 721/722 (Collins et al., 2003; Kwon et al., 2008). 

The PEN1-SNAP33-VAMP721/722 complex accumulates at fungal penetration sites and mediates 

exocytosis of cell-wall enhancing compounds (Kwon et al., 2008). SYP132 of N. benthamiana is 

essential for secretion the of PATHOGEN-RELATED protein 1 (PR1) and required for resistance to 

non-host Pto DC3000 (Heese et al., 2001). Alternatively to golgi-derived vesicles, PEN2 and PEN3 

dependent secretion of anti-microbial compounds employs trafficking of peroxisomes to fungal 

infection sites (Lipka et al., 2005; Stein et al., 2006; Bednarek et al., 2009). 
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The trans-golgi network (TGN) serves not only as secretory compartment, but also partially merges 

with plasma membrane derived early endocytic vesicles in plants (Richter et al., 2009; Viotti et al., 

2010). The TGN – early endosome compartment is highly dynamic and sorts vesicles back to the 

plasma membrane or to late endosomes (Viotti et al., 2010). Endomembrane systems are classified 

by associated proteins like Rab GTPase, which regulate vesicle formation, mobility and fusion 

(Stenmark and Olkkonen, 2001). Whereas Rab5 related proteins define early endosomes in animals, 

it also associated with late endosomes in plants or yeasts (Robinson et al., 2008; Ebine et al., 2011). 

Early endosome are the first endomembrane compartment of internalized plasma membrane 

proteins. Endocytosis of several plant plasma membrane proteins was shown, including auxin carrier 

proteins, metal transporters, BRI1, but also for PRRs like FLS2 and LeEIX2 (Russinova et al., 2004; 

Dhonukshe et al., 2007; Kasai et al., 2010; Barberon et al., 2011).   

 

Endocytosed plasma membrane proteins are often marked by ubiquitination (Sorkin and von 

Zastrow, 2009). Different types of ubiquitination have been reported. Attachment of one single 

ubiquitin (Ub) to lysines of substrate proteins is referred to as mono-ubiquitination. Mono-

ubiquitination and poly-ubiquitin chains linked via lysine 63 of ubiquitin (UbK63) are often associated 

with endocytic trafficking and protein-protein interactions. By contrast, UbK48-linked poly-

ubiquitination leads mainly to proteasomal degradation of substrate proteins (Mukhopadhyay and 

Riezman, 2007). In planta ubiquitination of two metal transporters was recently described (Kasai et 

al., 2010; Barberon et al., 2011). Controversially, ubiquitination is essential for internalization of 

IRON-REGULATED TRANSPORTER 1 (IRT1)(Barberon et al., 2011), but not for boron transporter 

REQUIRES HIGH BORON 1 (BOR1)(Kasai et al., 2010). Instead BOR1 ubiquitination is required for late 

endosomal trafficking to lytic vacuoles. Although FLS2 is ubiquitinated in an flg22-dependent manner 

(Lu et al., 2011), the implementation of ubiquitination in FLS2 endocytosis remains elusive. Inhibitor 

studies suggest that ubiquitination is required for receptor internalization (Robatzek et al., 2006). In 

addition, a FLS2ΔPEST variant is incapable to undergo endocytosis, but maintains a wild type-like ROS 

burst after flg22 treatment (Salomon and Robatzek, 2006). PEST-sequences act as ubiquitination and 

phosphorylation signals in yeast and plants (Rogers et al., 1986; Camborde et al., 2010). Notably, 

FLS2ΔPEST mutant variants do not escape ubiquitination by PUB12, 13 and AvrPtoB in vitro, which 

could point at an ubiquitination independent role of the FLS2 PEST domain in regulating endocytosis 

(Göhre et al., 2008; Lu et al., 2011).  
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After internalization BOR1 endosomes mature to late endosomes and co-localize with ARA6 and 

ARA7 (Takano et al., 2005; Ebine et al., 2011). Late endosomes are characterized by the presence of 

small internal vesicles, and are therefore also referred to as multivesicular bodies (MVBs) (Robinson 

et al., 2008). MVBs terminate in lytic plant vacuoles in plants and yeasts or fuse with lysosomes in 

animals (Stenmark and Olkkonen, 2001; Richter et al., 2009).  

 

 

 

Figure 1 Vesicle trafficking in plant immunity. PRR transport form the ER via the TGN to the plasma membrane (PM) is 
required for PRR function. PAMPs mediate PRR endocytosis from PM to TGN - early endosomal compartments, 
followed by maturation to late endosomes, MVBs, and receptor degradation. TGN dirved vesicles are recruited 
to fungal penetration sites in order to release cell wall enhancing compounts. Anti-microbial defense products 
are alternatively exocytosed from TGN-indepenent compartments.  

 

The presence of the Endosomal Complex Required for Transport (ESCRT) is a hallmark of MVBs. 

ESCRT proteins are directly involved in MVB biogenesis by mediating vesicle invagination and cargo 

recognition (Hurley and Hanson, 2010). The ESCRT machinery consists of three sub-complexes, 
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ESCRT-1-3, which are conserved in all eukaryotes (Figure 2) (Field and Dacks, 2009). Whereas 

ESCRT-1 initiates cargo recruitment, ESCRT-2 and ESCRT-3 are mainly involved in membrane scission 

(Hurley and Hanson, 2010).  ESCRT-1 is composed of three different proteins: VACULAR PROTEIN 

SORTING 23 (VPS23) mediates ubiquitin binding, VPS28 bridges ESCRT complex 1 to complex 2 and 

VPS37 interacts with acidic membrane lipids (Hurley and Hanson, 2010). Arabidopsis carries at least 

two VPS23 homologous (ELC, and ELC-like), two copies of VPS28 (VPS28-1 and VPS28-2) and two 

copies of VPS37 (VPS37-1 and VPS37-2) (Spitzer et al., 2006). ESCRT-3 accessory proteins CHARGED 

MULTIVESICULAR BODY PROTEIN1 (CHMP1) and CHMP2 were previously reported to target auxin 

carriers PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1) to MVBs and to be essential for 

embryo and seedling development (Spitzer et al., 2009). It is currently not known, if ESCRT proteins 

also participate in PRR trafficking. 

 

Figure 2 The ESCRT machinery consists of three major sub-complexes. ESCRT complex 1 (blue), 2 (yellow) and 3 (green) 
constitute together the ESCRT machinery, which is essential for MVB biogenesis. ESCRT-1 consists of VPS23 
(ELC in Arabidopsis), VPS37 and VPS28 and recruits early endosomes via interaction with ubiquitinated cargos 
to MVBs. Vesicle fusion is mediated by ESCRT-2 and ESCRT-3. VPS4 disassembles ESCRT complexes after 
endosomal sorting.    

 

The complexity of endocytic pathways and its integration in different signaling networks known from 

animals (Sorkin and von Zastrow, 2009) is likely to find its equivalent in plant cells. Many key 

components along endocytic trafficking pathways are conserved between animals and plants, others 

seem to be plant specific (Robinson et al., 2008). Although several plant receptors are endocytosed, 

a detailed understanding of their cellular routes and possible connections to signaling is still pending 

and focus of current and future research (Frey and Robatzek, 2009; Hicks and Raikhel, 2010).   
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1.4. AIM OF MY THESIS 
 

PAMP-triggered immunity comprises plasma membrane-derived signaling, endocytic trafficking and 

a series of cellular immune responses. To which extent these cell responses are linked is not well 

understood. My work aims to dissect spatio-temporal flg22 signaling and to contribute new insights 

to the two following questions: 

 

1. What controls FLS2 endocytic trafficking?   

 

2. Which genes regulate temporal flg22 responses?  

 
 

To address the first question, conserved features of endocytosis known from animals were 

exploited: Receptor ubiquitination and the Endosomal Sorting Complex Required for Transport 

(ESCRT) of ubiquitinated cargos. The second question is addressed by analysis of a late PAMP 

response-defective mutant, which was previously identified in a forward genetic screen for flagellin 

insensitivity (Salomon, 2009).   
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2. MATERIALS AND METHODS 

 

2.1. MATERIALS 

 

2.1.1. Plant material and growth conditions 
 

Arabidopsis thaliana plants used in this study are listed in Table 2. Unless otherwise indicated, plants 

were grown on soil (Arabidopsis mix, John Ines Centre, Norwich) or sterile on Murashige and Skoog 

medium (recipe in Table 6) under 10 hours or 16 hours of light at 20 - 22oC and 65 % humidity. Seeds 

were stratified in dark at 4°C for two days in 0.1 % (w/v) agarose or directly on agar plates. Nicotiana 

benthamiana plants were grown under 16 hours of light at approximately 24°C with a relative 

humidity of 45 - 65 %. 

Table 2 Description of plant material presented in this study. 

Lines
 a   Accession Description Reference 

Col-0 Col-0 wild-type (wt) reference line J. Dangl
 b   

eds1 Ler eds1-2 loss-of-function mutant (Aarts et al., 1998) 
fli1 Ler gamma-irradiation mutant (Salomon, 2009) 
fli2 Ler gamma-irradiation mutant (Salomon, 2009) 
fli3 Ler gamma-irradiation mutant (Salomon, 2009) 
fli4 Ler gamma-irradiation mutant (Salomon, 2009) 
fli5 Ler gamma-irradiation mutant (Salomon, 2009) 
fli6 Ler gamma-irradiation mutant (Salomon, 2009) 
fls2 Col-0 homozygous SAIL_691C4 T-DNA insertion line for 

FLS2 
(Zipfel et al., 2004) 

fls2 FLS2-GFP 
(fls2 pFLS2::FLS2:GFP) 

Col-0 fls2 plant expressing FLS2::GFP driven by  1 kb of 
native promoter   

present study 

FLS2-GFP3K->R 
(fls2 pFLS2:: FLS2KKK854, 857, 861RRR:GFP) 

Col-0 fls2 plant expressing FLS2KKK854, 857, 861RRR:GFP 
driven by  1 kb of native promoter 

present study 

fls2-17 Ler fls2G1064R substitution mutant (Gómez-Gómez and Boller, 
2000) 

Ler Ler wild-type reference line NASC
 c   

pFLS2::FLS2:GFP Col-0 Col-0 plant expressing FLS2::GFP driven by  1 kb 
of native promoter 

(Robatzek et al., 2006) 

FLS2-GFP RFP-VPS28-2 
(pFLS2::FLS2:GFP 35S::RFP:VPS28-2) 

Col-0 pFLS2::FLS2:GFP plant transformed with 
RFP:VPS28-2 driven by the 35S promoter 
sequence 

present study 

vps28-2 Col-0 homozygous SALK_040274 T-DNA line for VPS28-
2 

S. Schellmann, University of 
Cologne 

vps28-2 FLS2-GFP 
(vps28-2 pFLS2::FLS2:GFP) 

Col-0 vps28-2 mutants transgenic for pFLS2::FLS2:GFP, 
obtained by crossing.  

Present study 

vps37-1 Col-0 homozygous SAIL_97_H04 T-DNA line for VPS37-
1 

S. Schellmann, University of 
Cologne 

vps37-1 FLS2-GFP 
(vps37-1 pFLS2::FLS2:GFP) 

Col-0 Vps37-1 mutants transgenic for pFLS2::FLS2:GFP, 
obtained by crossing. 

present study 

Ws-2 Ws-2 wild-type reference line, natural fls2 null mutant K. Feldmann , University of 
Arizona, Tucson, AZ 

a  Names written in bold are used  abbreviation in this work. 
b  University of North Carolina, Chapel Hill, NC, USA;  

c Nottingham Arabidopsis Stock Centre 
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2.1.2. Bacterial strains 
 

E. coli DH5α, E. coli Rosetta and Agrobacterium tumefaciens and were used for cloning and 

heterologous gene expression, respectively. Plant pathogenic Pseudomonas syringe pv. tomato 

DC3000 and its non-virulent hrcC mutant (Yuan and He, 1996) were tested on selected Arabidopsis 

mutants to investigate potential immune deficiencies. All strains with corresponding antibiotic 

resistances and growth conditions are listed in Table 3.   

 

Table 3 Use of pathogenic and non-pathogenic bacterial strains   

Strain Used for Resistance Media 
Escherichia coli DH5α Cloning none L-medium 

    
Escherichia coli 

Rosetta 
heterologous gene 

expression 
CamR L-medium 

    
Agrobacterium 

tumefaciens GV3101 
heterologous gene 

expression 
RifR + GentR L-medium 

    
Pseudomonas syringe 

pv. tomato DC3000 
Pathogenicity test RifR NYBA, King's B 

    
Pseudomonas syringe 

pv. tomato DC3000 
hrcC 

(Yuan and He, 1996) 

Pathogenicity test RifR NYBA, King's B 

 

 

 

2.1.3. Oomycete strains 

 
Waco 9 isolate of Hyaloperonospora arabidopsidis (Hpa) was used in infection assays and 

microscopy.  Isolates were maintained as previously described in Toer et al., 2002 (Toer et al., 2002). 

Both strains originated from stocks maintained by Professor Dr. Jonathan Jones, Norwich. 
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2.1.4. Plasmids  
 

Plasmids were constructed by either classical cloning with appropriate restriction enzymes or using 

Gateway technology (Invitrogen, UK). Table 4  describes used vectors.  

 

Table 4 Vector used to generate transgenic plants or for heterologous gene expression. 

Name Insert Backbone type of vector Reference 
35S::CFP:ELC cds of ELC pAM-PAT-GW 

(Weinl et al., 
2005) 

binary vector present study 

35S::YFP:VPS28-2 cds of VPS28-2  pEARLY104  
(Earley et al., 
2006) 

binary vector,  present study 

35S::RFP:VPS37-1 cds of VPS37-1  pGWB555 
(Nakagawa et 
al., 2007) 

binary vector present study 

pFLS2::FLS2:GFP pFLS2::FLS2:GFP pGREEN binary vector (Robatzek et 
al., 2006) 

pFLS2::FLS2KjmR:GFP pFLS2::FLS2KKK854, 

857, 861RRR:GFP 
pGREEN binary vector present study 

FLS2CD-His cds of FLS2CD pET42 E. coli 
expression 

(Göhre et al., 
2008) 

FLS2CD KKK854, 857, 

861RRR-His 
cds of 
FLS2CDKKK854, 857, 

861RRR:GFP 

pET42 E. coli 
expression 

present study 

GST-AvrPtoB AvrPtoB pGEX-2TM-
GW 

E. coli 
expression 

(Göhre et al., 
2008) 

UBC9-His cds UBC9 pET42 E. coli 
expression 

(Göhre et al., 
2008) 

 

 

 

2.1.5. Oligonucleotides 
 

Oligonucleotides were synthesized by Sigma-Aldrich (St. Louis, MI, USA), diluted with ddH20 to 100 

µM stock solutions and 10 µM working solution. Table 5 lists used oligonucleotides and their 

corresponding targets.  
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Table 5 Overview of cloning, genotyping and qPCR primers with corresponding targets and sequences 

name  forward sequence reverse sequence used for target 
elc GW GGGGACAAGTTTGTACAAAAAAGCAGGCTTA

ATGGTTCCCCCGCCGTCTAATC 
GGGGACCACTTTGTACAAGAAAGCTGG
GTATCATGAATGTAACCTACCTGCGATG 

Gateway 
Cloning 

ELC, AT3G12400 

vps28-2 GW  GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
ATGATGGAGGTCAAATTATGGAACGAC 

GGGGACCACTTTGTACAAGAAAGCTGG
GTATTAATTACCAGCTTTAGGCAAAGCT
GCC 

Gateway 
Cloning 

VPS28-2, 
At4g05000 

vps37-1 GW GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
ATGTTCAATTTCTGGGGATC 

GGGGACCACTTTGTACAAGAAAGCTGG
GTATCAAATGTTTGACGTTTTAGC 

Gateway 
Cloning 

VPS37-
1,At3g53120 

elc ATGGTTCCCCCGCCGTCTAATC TCATGAATGTAACCTACCTGCGATG genotyping ELC, AT3G12400 
RFP GCGCTTCAAGGTGCGCATGG GTCTTGTAGGCGCCGGGCAG genotyping RFP 
SAIL_LBa1  GCCTTTTCAGAAATGGATAAATAGCCTTGCTT

CC 
 genotyping Sail tDNA 

SALK_LBa1  TGGTTCACGTAGTGGGCCATCG  genotyping Salk tDNA 
vps28-2 ATGATGGAGGTCAAATTATGGAACGAC TTAATTACCAGCTTTAGGCAAAGCTGCC genotyping VPS28-2, 

At4g05000 
vps37-1  ATGTTCAATTTCTGGGGATC TCAAATGTTTGACGTTTTAGC genotyping VPS37-

1,At3g53120 
CTR1 CCACTTGTTTCTCTCTCTAG  TATCAACAGAAACGCACCGAG map-based 

cloning 
Chr 5, 0.98 Mb 

5-AB010070-
0918 

CTCTGTTGGGGCAAAACC GATGCTGGAGAGTAGCTTAG map-based 
cloning 

Chr 5, 2.48 Mb 

5-AL133421-
0927 

TTATGCCCATTTGAAACC TGAAACTTTGGGCCTCAG map-based 
cloning 

Chr 5, 2.50 Mb 

5-AL360334-
1190 

TGGGATTACATAGGTACCG TGTCCAAATAATGAAATATC map-based 
cloning 

Chr 5, 3.21 Mb 

5-AL365234 GGGGACATTTAGGTGGTATC CATCGCCGCCAATACCTC map-based 
cloning 

Chr 5, 3.42 Mb 

5-AL391149-
1762 

GTAACGTATGCATGGTTTG AAGTTTTGGTTAGATTACAC map-based 
cloning 

Chr 5, 4.75 Mb 

ciw8 TAGTGAAACCTTTCTCAGAT  TTATGTTTTCTTCAATCAGTT map-based 
cloning 

Chr 5, 7.49 Mb 

ACO2 ACAACCCGGGAAGCGATGCG TGCAGAAGCATTCTTCATTGCTGCG qPCR ACO2, 
At1g62380 

Actin2 GGTAACATTGTGCTCAGTGGTGG AACGACCTTAATCTTCATGCTGC qPCR ACT2, At3g18780 
AT3G60140 ACTACACGGCTCGCTTCGCT GCCCCTTTCTTCCCCAGGTCC qPCR DIN2,AT3G60140 
FLS2qPCR ACTCTCCTCCAGGGGCTAAGGAT AGCTAACAGCTCTCCAGGGATGG qPCR FLS2, 

AT5G46330 
FRK1 ACGGCTCTTGTTGAACACTAC CTTTAATCTTCCTCATGGCATC qPCR FRK1, At2g19190 
PsaA AGCCCAAACAATGGATTCAA GGCACAAGCATCTCAGGTAA qPCR PsaA, 

ATCG00350 
PsbD TCCACTAGGTCAATCTGGTTGGTTC 

 
GGCGACTCCCATCATATGAAATG 
 

qPCR PsbD,  
ATCG00270 

AT3G06500 
 

CGGGGCTAATGCCAGCGAGT 
 

ACCACAAACCAGAGTCAACAGGGC 
 

qPCR AT3G06500 
 

WRKY22 GATCATCTAGCGGTGGGAGA TATTCCTCCGGTGGTAGTGG qPCR WRKY22, 
At4g01250 

FLS2seq1 ATGAAGTTACTCTCAAAGAC  sequencing FLS2, 
AT5G46330 

FLS2seq2 CTGAGGAAATCTGCAAAACC  sequencing FLS2, 
AT5G46330 

FLS2seq3 GATTCCTCGAGAAATCGGGA  sequencing FLS2, 
AT5G46330 

FLS2seq4 GATTTCTCGAGGAATCGGTC  sequencing FLS2, 
AT5G46330 

FLS2seq5 AGCCGATGTATTCAGCTTCGGGAT  sequencing FLS2, 
AT5G46330 

FLS2seq6 GGTGAACAGCTCCTCGCCCTT  sequencing FLS2, 
AT5G46330 

GFPseq1 ACAAGTTCAGCGTGTCCGGCG  sequencing GFP 
GFPseq2 CGCGCTTCTCGTTGGGGTCTTT  sequencing GFP 
FLS2K854R GTTCATTGTGATCTGAGGCCAGCTAATATACT

CC 
GGAGTATATTAGCTGGCCTCAGATCAC
AATGAAC 

SDM FLS2, 
AT5G46330 

FLS2K857R CAGCTCTGCGTCTGAGGAGATTTGAACCAAAA
G 

CTTTTGGTTCAAATCTCCTCAGACGCAG
AGCTG 

SDM FLS2, 
AT5G46330 

FLS2K861R GAGATTTGAACCAAGAGAGTTGGAGCAAGCA
ACAG 

CTGTTGCTTGCTCCAACTCTCTTGGTTCA
AATCTC 

SDM FLS2, 
AT5G46330 
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2.1.6. Chemicals 

 
If not stated otherwise, standard chemicals were purchased from Sigma-Aldrich (St. Louis, MI, USA), 

Merck (Whitehouse Station, NJ, USA), Invitrogen (Carlsbad, CA, USA), VWR (Radnor, PA, USA) or 

Helena Bioscience (Gateshead, UK). EZBiolab Inc. (Westfield, IN, USA) synthesized the flg22 peptide 

used in this study and previous work (Göhre et al., 2008). 

   

 

2.1.7. Enzymes 
 

Genotyping PCRs were performed with Taq DNA polymerase from New England Biolabs (Ipswich MA, 

USA). DNA amplification for cloning purposes was done the Expand High Fidelity PCR system (Roche 

Diagnostics Co., UK). RT-PCRs were carried out with Superscript II (Invitrogen Carlsbad, CA, USA), and 

SybrGreen master mix (Sigma-Aldrich, St. Louis, MI, USA). Restriction enzymes were commonly 

purchased from New England Biolabs (Ipswich MA, USA), Gateway Cloning Enzymes from Invitrogen 

(Carlsbad, CA, USA). 

 

 

2.1.8. Antibodies 

 

Anti (α)-FLS2 antibodies were raised in rabbits and purified by Eurogentec (Seraing, Liège, Belgium). 

1:5000 deletions in 1 % (v/w) milk powder (Premier International Food, St Albans, UK) TBS-t (10 mM 

Tris-HCl, pH 7.4, 14 mM NaCl, 2.5 mM  KCl , 0.05 % (v/w) Tween 20) were sufficient for specific 

detection of FLS2 as described in Göhre et al., 2008 (Göhre et al., 2008). αPhospho-p44/42 MAPK (α-

pERK, rabbit polyclonal antibody from Cell Signaling, Boston, MA, USA) were diluted 1:1000 in 5 % 

BSA (w/v) TBS-t. In both cases goat α-rabbit IgG coupled to alkaline phosphatase (Sigma-Aldrich (St. 

Louis, MI, USA) was used as secondary antibody. GFP as probed with αGFP from Roche Applied 

Science (Penzberg, Germany) 1:1000 dilutions, followed by goat α-mouse IgG- alkaline phosphatase 

(Sigma-Aldrich, St. Louis, MI, USA) detection. Ubiquitin conjugated were detected by αUbiquitin 

(mouse monoclonal, P4D1, Santa Cruz Biotechnology, Santa Cruz, CA, USA) in deletions of 1:2000. 
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2.1.9. Growth media and antibiotics 
 

Growth media were autoclaved for 20 min at 121°C, cooled down to approximately 50°C before 

adding antibiotics. Detailed recipes are listed in Table 6 and final concentrations of antibiotics in 

Table 7.  

 

Table 6 Growth media recipes  

Name Species Recipe 
L-Medium E.coli and 

A.tumefaciens 
10 g/l   
5 g/l     
5 g/l     
1 %  (w/v)      
 
pH 7.2 
 

bacto-peptone 
yeast extract 
NaCl 
bacto-agar (optional, (Duchefa, 
Haarlem, Netherlands) 

King’s B-Medium Pseudomonas 20 g/l    
1.5g/l  
1.5g/l  
10 % (v/v) 
1 %  (w/v)      
pH 7.2 
 

bacto-peptone 
heptahydrated magnesium sulfate 
potassium hydrogen phosphate   
glycerol     
bacto-agar  (optional) 

NYG-Medium Pseudomonas 5.0 g/l  
3 g/l  
20 % (v/v) 
1.5 % 
(w/v) 
pH 7.2 
 

bacto-peptone 
yeast extract 
glycerol 
bacto-agar (optional) 

 

MS (Murashige and 
Skoog)  

Arabidopsis 
thaliana 

4.4 g/l  
10.0 g/l 
pH 5.8 

MS powder 
Sucrose 

 

Table 7 Used antibiotics  

Name Abbreviation Final Concentration [µg/ml] 
    

Carbenicillin Carb 100 in ddH20 
Chloramphenicol Cam 35 in Ethanol 

Gentamicin Gent 30 in ddH20 
Hygrommycin Hygr 30 in ddH20 

Kanamycin Kan 50 in ddH20 
Phosphinothricin PPT 15 in ddH20 

Rifampicin Rif 50 in DMSO 
Spectinomycin Spec 100 in ddH20 
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2.2. METHODS 

 

2.2.1. Seed sterilization 
 

Arabidopsis thaliana seeds were sterilized for 10 min in 70 % (v/v) ethanol 0.05 % (v/v) SDS, followed 

by three short washings with 98 % (v/v) ethanol. Seeds were then dried on sterile Whatman paper 

before sowing on MS agar plates.   

 

 

2.2.2. Generation of Arabidopsis thaliana  F1,F2 and F3 progeny 
 

Plants were crossed according to Weigel and Glazbrook (Weigel and Glazebrook, 2002). Basically, 

flowers with well-developed stigma were emasculated and pollinated with one single donor stamen. 

Developing siliques were then carefully wrapped in paper envelopes and harvest once they turned 

yellow. The resulting F1 generation was tested for heterozygosity by PCR and allowed to self-

pollinate to generate F2 progeny.  With the exception of fli1 F2 families used for map-based cloning, 

F2 individuals were screened for the aimed genotypes and propagated to the next generation for 

further analyzes.  

 

 

2.2.3. Stable transformation of Arabidopsis thaliana  

 

Arabidopsis plants were stably transformed using floral dip method (Clough and Bent, 1998). 

Flowering plants were dipped for 30 sec in a 0.8 OD600-dense solutions of Agrobacteria (5 % sucrose, 

0.025 % Silwet L-77 (Lehle Seeds, Round Rock, TX, USA), kept in a dark environment for 24 hours and 

further propagated under standard long-day plant growth conditions. Successfully transformed 

seeds were recovered in the following T1 generation on selective MS agar plates or by spraying 

BASTA (Duchefa, Haarlem, Netherlands) three-times on 4-5 –week-old plants at weekly intervals. 
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2.2.4. Transient transformation of Nicotiana benthamiana 

 

 Agrobacteria were grown over night (o/n) at 28°C in L-medium containing the appropriate 

antibiotics, centrifuged for 5 min at 5000 x g and washed once with 10 mM MgCl2. A final OD600 = 0.1 

of agrobacterial suspensions were then infiltrated underneath the lower epidermis of three to four 

week-old N. benthamiana leaves using a 1 ml needless syringe. Microscopically analysis followed 

two to three days post infiltration. 

 

  

2.2.5. Pathogen infections 

 

2.2.5.1. Pseudomonas syringae patho-phenotyping 
 

Arabidopsis plants were grown for two weeks on Jiffy pellets (Jiffy Products International AS, Grorud, 

Norway) under controlled environment and 10 hours of photoperiod before inoculation. To prepare 

the inoculum, Pseudomonas was streaked out on King’s B plates with appropriate antibiotics from 

glycerol stocks (30 % (v/v) glycerol, -80°C) and incubated for two days at 28°C. Single colonies were 

then transferred to 50 ml NYG broth containing 50 µg/ml of Rifampicin and grown under constant 

shaking for 12 to 13 hours. Bacterial cultures were then centrifuged for 15 min at 1000 g (RC8, 

Sorvall, Thermo Fisher Scientific, Waltham, MA, USA) resuspended in 5 ml 10 mM MgCl2 and 

adjusted to a final density of OD600 = 0.02. 0.04 % Silwet (Lehle Seeds, Round Rock, TX, USA) was 

added before spraying the inoculum with an airbrush system (model AS18-2, Ningbo Haosheng 

Pneumatic Machinery Ningbo, China) on each seedling for approximately 2 seconds. Inoculated 

plants were kept under elevated humidity for 2.5 hours and disease symptoms were assessed 5 days 

post infection. Disease symptoms were grouped into four classes, where class 0 showed no 

symptoms, class 1 mild symptoms on maximal one leaf, class 2 infected plants had at least two 

infected leaves but showed no necrosis and class 3 with plants displaying severe disease symptoms 

including beginning necrotic lesions. Plants were randomly distributed on different trays. 
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2.2.5.2. Pseudomonas syringae growth quantification 

 

Bacterial growth curves assays followed the infection procedure described above (2.2.5.2), but using 

four-week-old plants. To quantify bacterial replication, two leaf disks (∅ = 0.5 cm) from two 

different surface-sterilized leaves (30 sec in 70 % (v/v) ethanol, followed by 30 sec in sterile ddH2O) 

and at least four plants per genotype were sampled 4 days after inoculation.  Leaf disks were grinded 

in 10 mM MgCl2 with an electric drill (Heidolph, Schwabach, Germany), diluted 1:10 serially and 

plated on selective NYG agar plates. Two dates after incubation at 28°C colonies forming units were 

counted and statistically analyzed. 

 

 

2.2.5.3. Flg22-induced resistance to Pseudomonas syringae 

 

According to the protocol published by Zipfel et al., 2004 (Zipfel et al., 2004), four-week-old plants 

were either pre-infiltrated with ddH2O or 1 µM flg22 using a needle-less syringe. 24 hours later the 

same leaves were syringe-inoculated with Pseudomonas syringe pv. tomato DC3000  (OD600 = 0.001). 

Bacterial growth was quantified as described above. 

    

 

2.2.5.4. Hyaloperonospora arabidopsidis (Hpa) spore counting 

 

Hpa spore suspensions of 5 x 104 spores/ml were spray-inoculated onto 14-day-old seedling and 

incubated at high humidity at 18°C. 6 days post-inoculation, spores of 12 seedlings per genotype (in 

pools of 3) were washed from infected leaves by vortexing in 1 ml ddH2O and quantified in relation 

to seedling fresh weight. Spores were counted with an improved Neubauer haemocytometer (Brand, 

Wertheim, Germany). 
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2.2.6. Plant assays 

 

2.2.6.1. Measurements of root growth 
 

Response to salt stress was studied according to Achard et al., 2006 (Achard et al., 2006). Seedlings 

were grown sterile on MS plates for 5-7 days and then transferred to MS plates containing 0, 50 mM 

or 100 mM NaCl. Plates were orientated vertically, and primary root growth of at least 20 individuals 

measured 3 days later. Glucose stress was applied similar to Zhou et al., 1998 (Zhou et al., 1998). 

Seven-day-old seedlings grown on MS plate were exposed for additional seven days to 0 %, 4 % 

(w/v) and 6 % (w/v) glucose. Primary root growth of at least 20 seedlings was measured and 

statistically analyzed. Root growth arrest upon flg22 stress was examined on seedlings grown in dark 

on vertical MS plates supplemented with 0, 100 nM or 500 nM flg22. At least 20 individual primary 

roots were measured per genotype and experiment.  

 

 

2.2.6.2. Flg22-induced callose deposition 
 

Flg22-induced callose deposition was stained as described in (Lu et al., 2009). Briefly, ten-day-old 

seedlings were transferred to liquid MS media with and without 1 µM flg22, destained after 24 hours 

in acetic acid - ethanol (1:3) for four hours, washed twice with ddH2O, and incubated o/n in aniline 

blue solution (150 mM KH2PO4, 0.01 % (w/v) aniline blue, pH 9.5). Stained callose was then visualized 

ultraviolet epifluorescence microscopy (Zeiss Axiophot, Carl Zeiss AG, Oberkochen, Germany).  

 

 

2.2.6.3. Measurements of stomatal apertures 
 

According to Mersmann et al., 2010 (Mersmann et al.) Arabidopsis seedlings were transferred after 

one week growth on solid MS plates to liquid MS media. One week later MS media was exchanged 

with 5 µM flg22 or ddH2O respectively. Mild vacuum was applied for 10 min and after 2 hours of 

recovery seedlings were mounted on glass slides. Stomatal apertures were imaged with a Zeiss 
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Axiophot microscope (Carl Zeiss AG, Oberkochen, Germany). In total at least 20 stomata were 

measured per genotype and condition. High-throughput stomatal apparatus measurements ( > 100 

stomata) were conducted with a fully automated confocal imaging system Opera (Perkin Elmer, 

Germany) and subsequent computational analyzes (Dr. Gildas Bourdais, The Sainsbury Laboratory, 

Norwich).      

 

 

2.2.6.4. Measurements of reactive oxygen production (ROS) 
 

16 leaf discs (∅ = 0.5 cm) per genotype of four-week-old plants were incubated o/n in ddH2O. Water 

was then exchanged with 100 µl of 20 μM luminol (Sigma-Aldrich (St. Louis, MI, USA), 1 μg 

horseradish peroxidase (Sigma-Aldrich, St. Louis, MI, USA) and 100 nM flg22. Light emission was read 

with a Varioskan Flash multiplate reader (Thermo Fisher Scientific, Waltham, MA, USA) for 35 min.  

 

 

2.2.7. Molecular biological methods 

 

2.2.7.1. Isolation of genomic plant DNA 
 

A modified version of the Edward’s DNA extraction protocol (Sambrook and William Russell, 2001) 

was used to extract genomic DNA. Approximately 10-20 mg a leaf tissue was grinded in 180 µl 

Edward’s buffer (200 mM Tris-HCl, pH 7.5, 250 mM, NaCl, 25 mM EDTA, 0.5 % SDS (v/v)), centrifuged 

at maximum speed for 5 min (table centrifuge 5415D, Eppendorf, Hamburg Germany)  and 120 µl of 

supernatant transferred into a fresh tube. One volume of isopropanol was added to precipitate DNA 

and centrifuged at maximum speed for 5 min. The supernatant was discarded and the pellet was 

washed once with 70 % (v/v) ethanol. Air-dried DNA pellets were dissolved in 100 μl sterilized ddH2O 

and 3 μl used in 50 μl PCR reactions. 

To extract high quality DNA for re-sequencing potential SNPs 10-20 mg leaf tissue was grinded in 200 

µl of CTAB extraction buffer (1 % CTAB (w/v), 100 mM Tris-HCl, pH 7.5, 1 M NaCl, 50 mM EDTA, 5 % 

N-Sarcosylate (v/v)), incubated for 10 min at 65°C followed by 5 minutes at room temperature. 200 

µL of 24:1 (v/v) chloroform-isoamylacohol was added, and centrifuged at 15000 g for 5 minutes at 
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4°C (table centrifuge 5415R, Eppendorf, Hamburg Germany). The upper phase was transferred into a 

new tube and one volume of cold (-20°C) isopropanol was added. Tubes were inverted 3 times and 

centrifuged at 15,000 g for one minute at 4°C. The precipitated DNA was washed once with 70 % 

(v/v) ethanol, air-dried and resuspended 100 μl sterilized ddH2O.  

 

 

2.2.7.2. Isolation of plasmid DNA and PCR products 
 

Plasmid DNA was purified with QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) and PCR 

product were isolated with QIAquick PCR purification and gel extraction kits (Qiagen, Hilden, 

Germany) according to manufacturer's recommendations. 

 

 

2.2.7.3. PCR protocols 
 

Standard DNA amplification, which did not require sequence accuracy and used mainly for 

genotyping, was performed with 0.2 mM dNTPs (Promega, Fitchburg, WI, USA), 0.2 μM of each 

primer, 15 mM MgCl2 and 1 U Taq polymerase (New England Biolabs) in Peltier Thermal Cycler PTC-

225 (GMI Inc., Ramsey, USA).  4 min of initial denaturation at 96°C proceeded 20-30 cycles of 

denaturation at 96°C, 30 sec of primer annealing at 55°C to 60°C, and 1 min per 1 kb DNA 

amplification at 72°C. A final elongation step at 72°C for 3 min was added at the end of the protocol. 

Standard PCR 

 

 

In cases where sequence accuracy was necessary (e.g. cloning of genes or introducing mutation, 

Expand High Fidelity PCR system (Roche Applied Science, Penzberg, Germany) was used according to 

manufactory’s instructions. The same thermal profile was used as in standard PCRs with the 

exception of 68°C instead of 72°C and 2 sec per kb during elongation steps. The Expand High Fidelity 

PCR system was also used for site-directed mutagenesis according to the protocol and primer design 

described for QuikChange Site-Directed Mutagenesis Kit (Startagene, Santa Clara, CA, USA).  

High Fidelity PCR and site-directed mutagenesis 
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20 µl PCR product was mixed with 5 µl of DNA-loading dye (5 M Betain, 0.05 % (w/v) Orange G, 

Sigma-Aldrich (St. Louis, MI, USA)  and separated on 1 -2 % agarose gels (Melford Laboratories,  

Ipswich, UK) by electrophoresis (80-110 V, Biorad, UK). Agarose gels were prepared by boiling 

agarose in TBE buffer (45 mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8.3). 1 μl/ml ethidium bromide 

(Sigma-Aldrich St. Louis, MI, USA) was added before pouring gels and visualized by UV excitation 

(ChemiDOC XRS, Bio-Rad Laboratories, Hercules, CA, USA). 2-log DNA ladder (New England Biolabs) 

was used as a reference.     

Visualizing PCR products 

 

 

2.2.7.4. Sanger-Sequencing 
 

Sanger method (Sanger et al., 1977) was used to verify DNA sequences. Reactions were carried out 

in final volumes of 10 μl containing 80-100 ng template DNA, 1 μM primer, 0.05 % (v/v) DTT, 1 μl 5x 

sequencing buffer and 1 μl Big Dye Terminator Ready Reaction Mix (Perkin Elmer, Waltham, MA, 

USA). The PCR program started with an initial denaturation step at 96°C for 1 min, followed by 35 

cycles of denaturation at 96°C for 10 sec, annealing at 50°C for 5 sec and elongation at 60°C for 4 

min. Read analysis was carried out with Dye-Deoxy Terminator Cycle Sequencer (Perkin Elmer, 

Waltham, MA, USA) in the The Genome Analysis Centre (TGAC, Norwich, UK). 

 

 

2.2.7.5. Illumina-Sequencing 
 

76 bp paired-end reads generated by Illumina Solexa GA2 platform (Illumina, Cambridge, UK) was 

used for whole-genome sequencing. High-purity DNA was isolated with protocol adapted from 

McKinney et al., 1995 (McKinney et al., 1995). 2 g fresh weight of two-week-old fli1 mutants was 

grinded in liquid nitrogen, incubated at 37°C for 30 minutes in 10 ml extraction buffer (50 mM Tris-

HCl, pH 8.0, 200 mM NaCl, 2 mM EDTA, 0.5 % SDS (v/v), 100 mg/ml Proteinase K, Invitrogen 

(Carlsbad, CA, USA). 10 ml of saturated phenol-chloroform-isoamyl alcohol was added, and 

centrifuged (SS-34 rotor, Beckman Thermo Fisher Scientific, Waltham, MA, USA) at 16,000 g for 10 

minutes (10°C). The top layer was transferred into a new tube and mixed with 10 ml of chloroform-
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isoamyl alcohol (24:1). After centrifugation at 16,000g for 10 minutes (10 °C) the upper layer was 

transferred into a new tube and mixed with 900 µl of 3M sodium acetate (pH 5) and 2.5 volumes 

ethanol (98 % (v/v)). Precipitated DNA was pelleted for 20 minutes at 8,000g (10 °C), washed twice 

with 70 % (v/v) ethanol, air dried and resuspended 200 µl of TE buffer (20 mM Tris-HCl, pH 7.5, 1 

mM EDTA). DNA was stored at 4°C. Library preparation and sequencing was carried out by Jodie 

Pike, followed by bioinformatics analysis in collaboration with Dr. Dan MacLean (The Sainsbury 

Laboratory, Norwich, UK). In brief, paired reads were removed prior to alignment if either of the pair 

contained an ambiguous nucleotide (I.E an 'N' was called). Illumina scaled quality scores (ASCII offset 

64)  were converted to Sanger scaled quality scores (ASCII offset 33) using the equations found in 

Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with 

quality scores, and the Solexa/Illumina FASTQ variants. Nucleotide distributions and Quality score 

distributions after filtering were calculated using the FASTQ Information tool in the FASTX-Toolkit 

version 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). Quality score distributions revealed that 

the reads had median quality scores of at least 25 across the length of the reads so no further pre-

filtering was carried out. Paired reads were mapped to the TAIR10 Arabidopsis thaliana reference 

sequence using BWA version 0.5.8c. The TAIR 10 Fasta sequence was indexed with the 'index' 

command and paired reads mapped with 'sampe'. Resulting SAM format files were filtered to 

remove reads that appeared to be optical or PCR duplicates and converted to BAM format using 

SAMTools version 0.0.12a. In order to identify candidate SNPs, positions polymorphic to the 

reference genome were identified using the bcftools software in the SAMTools 0.0.12a package. 

Pileups were generated using SAMTools mpileup as 'mpileup -Q 13 -q 20 -C 50 -uf' (-Q = minimum 

base quality for a read nucleotide to be included in the pileup; -q = minimum mapping quality for a 

read to be included in the pileup; -C = filter to remove effects of reads with very large number of 

mismatches). Pileups were converted to bcf format with the bcftools 'view' command and SNPs 

called using 'vcfutils.pl -D 100 -d 10' (-D = maximum coverage depth for SNP calling; -d = minimum 

coverage depth for SNP calling). Candidate SNPs were removed from the list if they appeared in 

candidate lists generated in an identical pipeline from Ler-FYVE, fel2, fel4 or fel9 mutants (Salomon, 

2009) or if they appeared in the list of Landsberg Erecta 1 / Colombia 0 SNPs generated by the 1001 

genomes project (Assembly dated 26-04-2011). SNP positions within genes (including UTRs, CDS, 

Exon and Intron) as described in the TAIR 10 annotation were marked with information as to which 

gene contained the SNP and whether it caused a synonymous or non-synonymous mutation in the 

gene using a custom Perl script. All bioinformatic analyzes were carried out in The Sainsbury 

Laboratory's compute cluster, a 22 node cluster composed of IBM blade server machines with AMD 

64 processors running Debian GNU/Linux version 5.0.8 'Lenny' and with 4Gb to 32Gb RAM. 
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2.2.7.6. DNA restriction and Gateway cloning 
 

DNA was digested with restriction enzymes according to the manufacturer’s recommended 

conditions. Plasmid DNA was cut for at least one hours at the appropriate temperature.  

Gateway cloning was done as described by Invitrogen (Carlsbad, CA, USA). Where necessary, pDONR 

vectors were cut with NsiI (New England Biolabs, Ipswich MA, USA) to remove the Kanamycin 

resistance cassette in pDONRs. 

 

 

2.2.7.7. RNA isolation and cDNA synthesis 
 

10 to 14 day-old plants were grinded in liquid nitrogen with mortar and pestle. Total plant RNA of 

approximately 50 mg of frozen plant powder was extracted with RNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany) and treated for 30 min with DNAse (Promega, Fitchburg, WI, USA). DNAse was 

heat inactivated for 10 min at 65°C and total RNA quantified with a Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA).  

1 µg of total RNA were used for cDNA synthesis with SuperScript II reverse transcriptase according to 

manufacturer's directions (Invitrogen, Carlsbad, CA, USA). In brief, 11 µl RNA (in total 1 µg) was pre-

incubated for 10 min at 65°C with 1 µl 10 mM dNTPs and 1 µl of 500 µg/ml oligo(dT)15, chilled on ice 

and added to 4 µl 5 x reaction buffer, 2 µl 2 µl DTT (0.1 M),  0.5 µl RNaseOUT (40 U/µl, Invitrogen, 

Carlsbad, CA, USA) and 1 unit of SuperScript II. After 50 min at 42°C, RT-Taq was heat-inactivated for 

15 min at 70°C. cDNA was diluted 1:50 with ddH2O and stored at -20°C.  

 

 

2.2.7.8. Quantitative real-time (RT) PCR  
 

Reactions were carried out in white 96 well plates with optical lids (Thermo Fisher Scientific, 

Waltham, MA, USA). Each reaction contained 1 µl cDNA, 1 µl or each primer (10 µM), 7 µl ddH2O and 

10 µl of SYBR Green Jump Start (Sigma-Aldrich (St. Louis, MI, USA). Each primer pair and cDNA 

combination was analyzed in triplicates by C1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, 
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CA, USA) with the following program: 95°C for 4 min, 40 cycles of 10 sec at 94°C, 15 sec at 62°C, 30 

sec at 72°C, followed by reading SYBR Green emission. The program terminated with a last 

elongation step at 72°C and melting curve measurements form 65°C to 95°C in 0.5°C steps. The data 

were analyzed by Bio-Rad CFX qPCR software. 

 

 

2.2.7.9. Whole genome transcript array 
 

For every genotype and condition five pools of each seven seedlings were sampled. The infection 

was done on two-week old seedlings as described previously with following modifications: An OD600 

of 0.1 (corresponds to approximately 108 cfu) was used instead of 0.02, and instead of 0.04 % Silwet, 

0.02 % was used. Infected plants were covered with lids for 3 hours instead of 2.5 hours. 

Adaptations became necessary to maintain similar disease progressions after changing growth 

cabinets used in later experiments. Samples were collected 3 hours after infection of Pto DC3000 

spray inoculated plants and 24 hours after infection from inoculated and control plants by cutting 

and freezing aerial parts in liquid nitrogen. RNA was extracted as previously described and stored at -

80°C. Quality assessment, Affymetrix Ath1 chip (Santa Clara, CA, USA) hybridization and read-out 

was done by Dr. Bruno Huettel (MPIPZ, ADIS, Cologne, Germany). Transcript abundances were 

calculated from three microarray chips per conditions and genotype.    

 

 

2.2.7.10. Total protein extraction from plants 
 

Harvested plant material was frozen in liquid nitrogen and stored at -80°C or directly grinded with 

mortar and pestle in liquid nitrogen. 15 - 25 mg plant powder was transferred into a 1.5 ml 

Eppendorf tube and 100 µl/mg protein extraction buffer (26 mM Tris-base, 17 % (v/v) glycerol, 2 % 

SDS (v/v), 0.005 % (w/v) Bromphenol Blue, 3 % (w/v) DDT , 3 mM PMSF, 1 x plant protease inhibitor 

(Sigma-Aldrich, St. Louis, MI, USA) ), 1 mM benzamidine) was added. Samples were vortexed briefly 

and boiled instantly at 95°C for 5 min (Thermomixer, Eppendorf, Hamburg Germany).     
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2.2.7.11. SDS-PAGE and Coomassie staining  
 

15 µl of protein samples were loaded on 10 mm spaced acryl-amid gels. Separating gels contained 7 

% – 12 % (v/v) final concentration of acrylamid (Severn Biotech Worcestershire, UK) in 0.375 M Tris-

HCl, pH 8.8, 0.1 % (v/v) SDS, 0.0005 % (v/v) APS, 0.0016 % (v/v) TEMED. Sacking gels consisted of 4.5 

% acrylamid in 0.5 M Tris-HCl (pH 6.8), 0.04 % SDS (v/w), 0.001 % APS (w/v), 0.002 % (v/w) TEMED 

final concentrations. Proteins were separated by electrophoresis (Mini-PROTEAN , Bio-Rad 

Laboratories, Hercules, CA, USA) at 20 mA per gel in SDS-running buffer (25 mM Tris-HCl, 250 mM 

glycin and 0.1 % (v/v) SDS). As reference 6.5 µl of pre-stained protein standard (Precision Plus, Bio-

Rad Laboratories, Hercules, CA, USA) was loaded on the same gels. If visualization and fixations of 

proteins was required, gels were stained with 0.25 % (w/v) Coomassie brilliant blue, 10 % (v/v) acidic 

acid, 50 % (v/v) methanol,  for 10 min, destained for 15 min in 10 % (v/v) acidic acid, 50 % (v/v) 

methanol, followed by 30 min in 10 % (v/v) acidic acid, 10 % (vv) methanol.   

  

 

2.2.7.12. Western Blot 
 

Protein gels were blotted on PVDF membrane (Imobilon, EMD Millipore, Billerica, MA, USA) with 

Bio-Rad Trans-Blot Semi-Dry blotting system. The protocol was previously described in Göhre et al. 

2008 (Göhre et al., 2008). In summary, membranes were activated with methanol for 2 min and 

incubated for at least 20 min in anode buffer 2 (300 mM Tris-Base, 20 % (v/v) methanol. Gels were 

shortly rinsed in cathode buffer (25 mM Tris, 40 mM  ε-amino-n-carpic acid, 20 % methanol and 

transferred on activated membranes, piled on one layer of extra-thick blotting paper soaked in 

anode buffer 1 (25 mM Tris, 20 % methanol), followed by a second blotting paper soaked in anode 

buffer 2. The stack was covered by a third blotting paper, which was rinsed in cathode buffer. 

Proteins were transferred for 90 min at 25 V. 

 

 

 

 

2.2.7.13. Immunodetection of proteins 
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Western blots were blocked with 5 % (w/v) milk powder (Premier International Food, St Albans, UK) 

in TBS-t (10 mM Tris-HCl, pH 7.4, 14 mM NaCl, 2.5 mM  KCl, 0.05 % (v/v) Tween 20) for at least one 

hour at room temperature or alternatively at 4°C o/n. Hybridization with primary antibodies was 

done o/n at 4°C. Membranes were then washed three times for 10 min with TBS-t and incubated for 

1 h at room temperature in 1:30,000 dilutions of alkaline-phosphatase coupled secondary antibodies 

(in 1 % (w/v) milk powder TBS-t). Three 10 min washing steps with TBS-t and one with alkaline 

phosphate buffer (100 mM Tris-HCl pH 9, 100 mM NaCl, 5 mM MgCl2) followed. CDP-Star (Roche 

Applied Science (Penzberg, Germany) was used as an alkaline-phosphate substrate and emission 

captured on medical X-ray films (Fuji, Tokyo, Japan).  

PVDF membranes were stained for 5 min in 0.25 % (w/v) Coomassie-brilliant blue in 10 % (v/v) acidic 

acid, 50 % (v/v) methanol and destaining for 10 min in 10 % (v/v) acidic acid, 50 % (v/v). 

 

 

2.2.7.14. Heterologous gene expression and protein purification 
 

Recombinant proteins were expressed in E. coli Rosetta cells by inducing expression with 0.2 mM 

IPTG for one hour. Cells were then harvested by centrifugation for 15 min, 2000 g, 4°C and stored at 

-20°C. According to Göhre et al, 2008 (Göhre et al., 2008), bacteria were lysed by sonication in STE 

buffer (10 mM Tris-HCl, pH 8, 150 mM NaCl,  1 mM EDTA, 100 μg/ml lysozyme, bacterial protease 

inhibitors (Sigma-Aldrich, St. Louis, MI, USA), centrifuged at maximal speed for 10 min at 4°C and 

bound to magnetic GST or NiNTA beads (Promega, Fitchburg, WI, USA) for 30 min at 4°C. Beads were 

washed three times with TBS buffer (10 mM Tris-HCl, pH 7.4, 14 mM NaCl, 2.5 mM  KCl). His-tagged 

proteins were eluted with 100 mM immidazol for 5, 20, 60 min. The first elution was discarded and 

only latter ones used for in vitro assays. 

 

 

 

2.2.7.15. In vitro ubiquitination assay 
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Ubiquitination assays were conducted as previously described (Göhre et al., 2008). In brief, purified 

substrate proteins were mixed with 33 ng/µl yeast E1 (Calbiochem, Merck, Whitehouse Station, NJ, 

USA), Ubiquitin variants (Calbiochem) 0.25 µg/µl UbcH5 (Calbiochem) or recombinant Ubc9-His and 

purified GST-bound AvrPtoB from E.coli. Reactions were carried out in ubiquitination buffer (50 mM 

Tris-HCl, pH 7.5,2 mM MgCl2, 4 mM ATP, 1 mM DTT) for 2 hours at 30°C and analyzed on Western 

blots. For identification of FLS2 ubiquitination sites, ubiquitinated FLS2CD was re-purified from the 

assay using magnetic NiNTA beads as described above and concentrated with centrifugal filters with 

a cut-off of 30 kDa (Millipore, Billerica, MA, USA). Tandem mass-spectrometry and spectra analysis 

were done in collaboration with Dr. Thomas Colby (MPIPZ, Cologne, Germany).      

 

 

 

2.2.8. Cell biological methods 

 

 

2.2.8.1. Confocal microscopy 
 

Four to five-week-old Nicotiana benthamiana leaf disks or cotyledons of ten-day-old sterile grown 

Arabidopsis seedlings were examined. Unless otherwise indicated in vivo confocal microscopy of 

fluorophor-labeled proteins was done with a Leica SP5 confocal microscope (Leica Microsystems, 

Wetzlar, Germany). Images were recorded using HCX PL APO CS 63.0 x 1.20 water objective, four 

scans per line, and zoom factor 4. Differential labeled proteins within one specimen were scanned 

sequentially.  An argon laser source was used to excite CFP at λ = 458 nm, and GFP with λ = 488 nm. 

Emitting CFP was detected at λ = 500nm - 535nm, and GFP between λ = 515 nm - 555 nm, 

respectively. RFP was excited with a diode-pumped solid-state laser at λ = 561 nm and emission 

captured between λ = 570 – 630 nm. Chlorophyll fluorescence was monitored between λ = 730 nm – 

800 nm. Data analyzes were done with Leica LAS AF software (Leica Microsystems, Wetzlar, 

Germany) and ImageJ (open source imaging tool from National Institutes of Health, Bethesda, MA, 

USA).  
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2.2.8.2. Automated confocal microscopy 
 

High-content confocal imaging was performed according to Salomon et. al, 2010 (Salomon et al., 

2010) using the Opera platform (Perkin Elmer, Waltham, MA, USA). Cotyledons of two-week-old 

plants grown on soil were placed on an imaging stamp, which was then inverted on top of a 96-well 

sensoplate with glass bottom (Greiner Bio-One GmbH, Essen, Germany). In all experiments a water-

immersion 40x-objective was used. FLS2-GFP endosome levels were monitored 35 min after 

incubation in 10 μM flg22 solution using a λ = 488 nm laser excitation, λ = 540/75 nm detection and 

an exposure time of 80 ms. 21 focal planes were merged on 5 fields of each cotyledon. Two plates 

each containing 12 control and 48 flg22-treated samples were measured per experiment. 

Experiments were done in triplicates.  

Co-localization studies were performed by sequential scanning of RFP (λ = 521 nm excitation, λ = 

521/630 nm detection, exposure time 120 ms) and GFP (λ = 488 nm excitation, λ = 540/75 nm 

detection, exposure time 120 ms).  

 

 

2.2.9. Data processing and statistical analysis 
 

DNA sequence analysis, including primer design, Clustal W alignments and Sanger-Sequencing 

assemblies were done with Vector NTI Advanced version 11 (Invitrogen, Carlsbad, CA, USA). 

Specificity of primers was tested in silico by blast search analysis on the NCBI database (National 

Centre for Biotechnology, Bethesda, MA, USA). DNA sequences were retrieved from NCBI or 

Phytozome (Joint Genome Institute, University of California Regents, Oakland, CA, USA). Mapping 

primers were obtained from the Arabidopsis Mapping Platform (AMP, Peking University, Beijing, 

China).  

Affymetrix data were processed with the open source data analyzing software R version 2.9.2 (R 

Foundation for Statistical Computing, Vienna, Austria) using freely accessible Affymetrix analyzes 

tools (Parmigiani et al., 2003) and further investigated in Microsoft Office Excel 2007 (Microsoft, 

Redmond, Washington, USA) and MeV 4.6.0 (Saeed et al., 2003) for hierarchical clustering. 

Assemblies of Illumina reads on reference genomes were visualized with Savant genome browser 

(Fiume et al., 2010). 



31 
 

R was used for statistical analysis of variance (ANOVA) in biological data, followed by multiple-

comparison testing with Tukey's honest significance test. Significant differences were observed 

when P values were below 0.05.  

Endosome levels were quantified with Acapella 2.0 (Perkin Elmer, Waltham, MA, USA) as previously 

described in Salomon et al., 2010 (Salomon et al., 2010) and statically analyzed using R. 

ImageJ, Adobe Photoshop and Adobe Illustrator (Adobe Systems, San Jose, CA, USA)  were used for  

illustration proposes as well as Cn3D 4.3 (NCBI, (Wang et al., 2000)) for protein structure 

representation.  
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3. RESULTS 

 

3.1. UBIQUITINATION-PATTERN INFLUENCES FLS2 FUNCTION  
 

To find new factors regulating FLS2 endosomal trafficking, we focused on previously reported FLS2 

ubiquitination (Göhre et al., 2008; Lu et al., 2011). To study FLS2 ubiquitination in more detail, we 

used Pto DC3000 effector AvrPtoB instead of Arabidopsis PUB12, 13 for two reasons: Firstly, the role 

of PUB12 and PUB13 in FLS2 ubiquitination was not identified, when our work was initiated. 

Secondly, the direct interaction between FLS2 and AvrPtoB allowed us to analyze FLS2 ubiquitination 

in a cell-free environment. We have previously reported that Pto DC3000 effector AvrPtoB catalyzes 

ubiquitination of FLS2, but the type of ubiquitination remained unknown (Göhre et al., 2008). We 

therefore surveyed different ubiquitin mutant variants for their ability to from AvrPtoB mediated 

FLS2-ubiqutin products in vitro (Figure 3). Purified recombinant cytosolic domains of FLS2 (FLS2CD) 

were analyzed on Western blots either in the presence or in the absence of AvrPtoB, ubiquitin 

activating enzyme E1, ubiquitin conjugating enzyme E2, and wt ubiquitin, ubiquitin mutated at lysine 

63 (UbK63R), ubiquitin mutated at lysine 48 (UbK48R), or ubiquitin mutated at all lysine residues (UbnoK). 

Non-ubiquitinated FLS2CD was detected as major band with an expected size of about 42 kDa in the 

absence of AvrPtoB (Figure 3). Additional bands separated by the approximately 10 kDa, the size of 

one single ubiquitin moiety, emerged above this band in the presence of AvrPtoB independent of 

the ubiquitin variant used. Bands of corresponding sizes were also detected by anti-Ubiquitin 

antibodies, indicating the observed shift in molecular weight was caused by covalent attachments of 

ubiquitin molecules. Due to cross-reacting bands detected by anti-FLS2 antibodies in a range 

between 75 kDa and 200 kDa, we were not able to clearly resolve FLS2-Ub conjugates in a higher 

order than triple ubiquitinated FLS2CD (FLS2CD-Ub3). Higher molecular weight ubiquitin conjugates 

could however be analyzed by anti-Ubiquitin antibodies. Ubiquitination was most pronounced with 

UbK48R, but also detectable with UbK63R variants and wt Ub. In each case strong anti-Ubiquitin 

antibody signals were detected for proteins above 75 kDa, presumably resulting from a mixture of 

ubiquitinated AvrPtoB and FLS2CD. By contrast, UbnoK –containing reaction mixtures generated 

severely fewer ubiquitinated proteins. Only two bands at the size of approximately 50 and 60 kDa 

were labeled at a similar size with anti-FLS2 and anti-Ubiquitin antibodies. Because UbnoK variants are 

not able to form poly-ubiquitin chains, we concluded that AvrPtoB ubiquitinated FLS2CD at least at 

two independent residues in vitro.   
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Figure 3 AvrPtoB ubiquitinates cytosolic domains of FLS2 at two independent sites. Purified recombinant proteins of 
histidin-tagged FLS2 cytoplasmic domain (FLS2CD) alone (-) or mixed with GST-AvrPtoB, and Ubc9-His (E2), 
yeast E1, and indicated  ubiquitin variants (+) were analyzed by Western blots using anti-FLS2 antibodies (upper 
panel) or  anti-Ubiquitin antibodies (lower panel). Cross-reacting bands are marked by asterisks. 

 

In order to identify FLS2 ubiquitination sites, we used UbnoK variants and increased the reaction 

volume to generate sufficient amounts of FLS2CD-Ub conjugates, suitable for tandem mass 

spectrometry (MS/MS) analyzes. FLS2CD and ubiquitinated forms were re-purified from the assay 

and concentrated. Purified and un-purified fractions of FLS2CD-Ub as well FLS2CD alone were 

analyzed on Coomassie stained SDS gels and by Western blots (Figure 4 A). In contrast to one single 

FLS2CD band of 42 kDa, several additional Coomassie stained bands of higher molecular weight 

appeared in AvrPtoB ubiquitination reaction mixtures. Re-purification of FLS2CD removed most of 

the bands except two, which run about 10 and 20 kDa above un-ubiquitinated FLS2CD proteins. Both 

additional bands were detected with anti-FLS2 and anti-Ubiquitin antibodies. Compared to un-

purified fractions, far less ubiquitinated proteins were labeled, indicating efficient enrichment of 

FLS2-ubiquitin conjugates. Purified fractions were further processed by MS/MS analysis (in 

collaboration with Dr. Thomas Colby, MPIPZ, Cologne, Germany). MS/MS data revealed a di-glycine 

modification resulting from trypsin digestion of ubiquitinated K854 in the N-terminal part of FLS2CD 

(Suppl. table 1). K854 is flanked by to two neighboring lysines on position 857 and 861 (Figure 4 B). 

All three lysine residues are located in the juxtamembrane region of FLS2. K861 is also present in the 
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juxtamembrane of tomato FLS2 (Figure 4 B). In addition, comparison with the crystal structure of 

human Ephrin type-A receptor 3 (Epha3) proposed a potential surface exposure of K861 (Figure 4 B). 

K854, K856 and K861 were substituted with arginine residues and equal amounts of FLS2CD and 

FLSCDK854,856,861R were tested for in vitro ubiquitination by AvrPtoB (Figure 4 C). In the presence of 

AvrPtoB, E2, E1 and UbnoK FLS2CD proteins of higher molecular weight were detected on Western 

blots, which corresponded to the expected size of mono- and di-ubiquitnated FLS2CD conjugates 

observed previously (Figure 3). FLSCDK854,856,861R variants showed less intense bands at comparable 

sizes and no bands in a range where di-ubiquitnated FLS2CD would have been expected (~ 60 kDa).   

 

 

Figure 4 FLS2 is ubiquitinated in the juxtamembrane by AvrPtoB. (A) Purified recombinant proteins of histidin-tagged 
cytosolic domains (CD) of FLS2 were incubated with (+) or without (-) AvrPtoB, E2, E1 and UbnoK. FLS2CD and 
ubiquitinated conjugated were purified from the assay. AvrPtoB-mediated ubiquitination of FLS2CD could be 
observed as a ladder of bands separated by 10 kDa of a single non-lysine containing ubiquitin by Commassie 
staining (blue), anti-FLS2 and anti-Ubiquitin immunoblotting. Cross-reacting bands are marked by asterisks. (B) 
Juxtamembrane regions of Arabidopsis (At) and tomato (Le) were aliened by using Clustal W. Residues identical 
in all three juxtamembranes are depicted in red and highlighted in yellow. Identical amino acids in two 
juxtamembranes regions are shown in blue, similar ones in green. MS/MS identified peptide is underlined and 
di-glycine modified lysine is highlighted in red. Substituted lysines in AtFLS2 are shown in bold and proposed 
projection on the crystal structure of human (Hs) Epha3 receptor is indicated. (C) Ubiquitination assay was 
carried out as described in (A).   
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In order to analyzes the effect of putative FLS2 ubiquitination mutant variants in planta, a full-length 

FLSK854,856,861R referred to as FLS23K->R fused to GREEN FLUORESCENT PROTEIN (GFP) under the control 

of a native FLS2 promoter fragment was transferred into Col-0 fls2 mutant plants. In total 30 plants 

transformed with FLS23K->R-GFP mutant variants and 30 plants with FLS2-GFP wild-type (wt)  

constructs were analyzed by flg22 induced ROS production in T1 (Suppl. Fig. 1). No significant 

differences were found in average ROS production between FLS23K->R-GFP T1 populations and wt 

FLS2-GFP T1 populations. T2 families with a segregation of 3:1 were further analyzed.  

 

Previously described ubiquitination site mutants of two Arabidopsis metal transporters showed 

altered endocytosis or endosomal trafficking (Kasai et al., 2010; Barberon et al., 2011). We 

quantified FLS2-GPF and FLS23K->R-GFP endosome numbers by automated confocal imaging (Figure 

5). One low and one high expressing line per construct were analyzed to avoid misleading results due 

to different FLS2-GFP protein levels (Figure 5 A). In average between 40 and 50 endosomes-like 

structures per image area were detected in the absence of flg22 and represent therefore the 

baseline of our measurements (Figure 5 B). Significantly more FLS2-GFP endosomes were detected 

after flg22 treatment. Depending on the line between 150 and 300 endosomes were measured 

(Figure 5 B). Low expressing FLS2-GFP line 3 generated significantly less endosomes than other lines 

tested. No significant differences were observed between high expressing FLS2-GFP line 4 and both 

high and low expressing FLS23K->R–GFP lines 1 and 4. 

  

Next we tested, whether expressed FLS2 variants complement disease phenotypes of fls2 mutants. 

Therefore we quantified Pto DC3000 growth three days after spray inoculations (Figure 5 C). All 

tested lines except low expressing FLS2-GFP wt line 3 restored Pto DC3000 resistance of fls2 mutants 

to at least Col-0 wt levels. Bacteria grew to significant higher numbers in low expressing FLS2-GFP 

line 3 and reached the susceptibility of untransformed fls2 mutants. Even though FLS23K->R–GFP line 1 

accumulated less FLS2-GFP levels than FLS2–GFP line 4, both conferred a similar level of resistance 

to Pto DC3000 infections. High expressing FLS23K->R –GFP line 4 displayed significantly less growth of 

Pto DC3000 than Col-0 wt plants. 



36 
 

 

Figure 5 FLS2 ubiquitination pattern contributes to immunity. (A) FLS2-GFP protein levels of indicated lines were 
revealed by Western blot with anti-GFP antibody (upper panel). Coomassie staining (CBB) is included as loading 
control. (B) FLS2-GFP endosome were quantified in independent transgenic lines representing levels of lower 
and higher FLS2-GFP accumulation. Number of analyzed pictures are given by n. Similar results were obtained 
in two independent experiments (C) Pto DC3000 growth were quantified in four-week-old plants three days 
after spray inoculation with Pto DC3000. Error bars indicate standard deviations from eight plants. (B + C) Small 
letters indicate significant levels based on P < 0.05 calculated by multiple pairwise comparisons according to 
standard posthoc ANOVA analysis. 
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3.2. FLS2 UNDERGOES ESCRT-MEDIATED SORTING 
 

Ubiquitinated plasma membrane proteins are subjected to ESCRT-mediated protein sorting in 

animals and yeast (Raiborg and Stenmark, 2009). We studied ESCRT-1 mutants vps28-2 and vps37-1 

in order to investigate, whether FLS2 endosomal trafficking involves ESCRT complexes. Both single 

T-DNA insertion lines accumulate no full-length transcripts (Suppl. Fig. 2) and showed previously 

increased disease development in Pto DC3000 infections (Salomon, 2009).  

 

Interactions between ELC, VPS28-2 and VPS37-1 were previously shown in yeast-two hybrid assays 

and by bi-molecular fluorescence complementation (Shahriari et al., 2011). To test if ESCRT-1 

components also localize to same subcellular compartment in plants, VPS28-2, VPS37-1 and ELC was 

cloned from Col-0 cDNA and expressed as fluorescent-labeled fusion proteins under the control of 

the 35S promotor transiently in N. benthamiana. Three days after infiltration in leaves of five-week-

old N. benthamiana plants, fluorescence-labeled vesicles were monitored by confocal microscopy 

(Figure 6). Fluorescent signals were mainly found in small vesicular structures, but occasionally also 

in the cytosolic and nucleus. A similar cellular distribution of ESCRT-3 subunit YFP-VPS4 was reported 

in Arabidopsis (Haas et al., 2007). In plant cells expressing all three constructs, ESCRT-1 subunits 

labeled the same vesicular compartment (Figure 6). ESCRT-1 vesicles were mobile and moved in a 

stop-and-go fashion with a velocity of approximately 0.5 µm/ seconds. This is in the range for 

previously described velocities of endosomal and pre-vacuolar vesicle movements in tobacco BY-2 

cells (Ruthardt et al., 2005). 

 

Figure 6 Arabidopsis ESCRT-1 subunits co-localize to mobile vesicles in N. benthamiana. (A) Representative confocal 
images show RFP-VPS37-1, YFP-VPS28-2  and CFP-ELC three days after transient co-expression in five-week-old 
N. benthamiana leaves at  time point 0 (A) and in 20 seconds later (B). Arrows mark localization at time point 0. 
Bar presents 10 μm.  
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To monitor FLS2 endosomal trafficking in Arabidopsis, VPS37-1 and VPS28-2 constructs fused with 

RFP under the control of the 35S promoter were stably introduced in FLS2-GFP plants. Although 30 

T1 transformed plants per line were recovered, only one single line could be further propagated due 

to sterility. ESCRT-associated genes play a curial role in embryogenesis (Spitzer et al., 2009). 

Constitutive over-expression of VPS37-1 and VPS28-2 could potentially interfere with 

embryogenesis. We are currently re-transforming Col-0 pfls2::FLS2-GFP as well as vps28-2 and 

vps37-1 T-DNA insertion lines to test this possibility. Noteworthy, T-DNA insertions in VPS37-1 and 

VPS28-2 cause no obvious growth or fertility phenotype as well as FLS2-GFP RFP-VPS28-2 double 

transgenic plants.  

 

We analyzed FLS2-GFP RFP-VPS28-2 plants by sequential confocal imaging (Figure 7). RFP signals 

were exclusively observed at vesicular structures. Incubation of FLS2-GFP RFP-VPS28-2 plants for 35 

min in 10 μM flg22 induced FLS2-GFP endocytosis. A sub-population of FLS2-GFP containing 

endosomes co-localized thereby with RFP-VPS28-2 labeled vesicles (Figure 7). This suggests that 

endosomal sorting of plasma membrane receptors involves ESCRT containing compartments not 

only in yeast and animals, but also in plants.  

 

 

 

Figure 7 FLS2-GFP and VPS28-2 co-localization in response to flg22. Detached cotyledons of two-week-old FLS2-GFP 
RFP-VPS28-2 plants were incubated in 10 μM flg22 for 35 min and imaged by sequential automated confocal 
microscopy. Representative GFP and RFP fluorescence micrographs of optical cross-sections of epidermal cells 
are merged in the left panel and shown in detail (dashed box) in right panels. Arrows indicate overlapping 
FLS2-GPF and RFP-VPS28-2 signals. Bars: 10 μm.    
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Next FLS2-GFP was crossed into vps28-2 and vps37-1 mutants to test if ESCRT-1 genes could regulate 

FLS2 endosome levels. We investigated FLS2-GFP protein levels in homozygous F3 progeny and 

evaluated FLS2-GFP protein levels by Western blots. FLS2-GFP accumulated to similar levels in wt 

and vps37-1 mutants, but protein levels of FLS2-GFP was reduced in vps28-2 mutant backgrounds 

(Figure 8 A). Similar results were observed in a second independent vps28-2 FLS2-GFP line. Notably, 

endogenous FLS2 protein accumulated to wt levels in vps28-2 mutants non-transgenic for FLS2-GFP 

(Figure 9 B). Since transgene expression can influence FLS2-GFP endosome quantifications (Figure 5), 

FLS2-GFP endosome quantification in vps28-2 FLS2-GFP plants has to be taken with care. 

 

After triggering FLS2 endocytosis with flg22, both ESCRT-1 mutants displayed significant lower 

numbers of FLS2-GFP endosomes compared to wt FLS2-GFP plants (Figure 8 B). Due to lower 

FLS2-GFP levels, fewer images could be analyzed for vps28-2. In average we observed a reduction of 

FLS2-GFP endosomes of about 23 % in vps37-1 and 47 % in vps28-2, respectively. In addition, we 

frequently observed a more peripheral localization of FLS2-GFP endosomes in ESCRT-1 mutants even 

45 min after flg22 treatment, when FLS2-GFP vesicles appeared to be randomly distributed in wt 

cells (Figure 8 C). Peripheral localization of FLS2-GFP endosomes was more pronounced in vps28-2, 

but also occurred in vps37-1 mutants (Figure 8 C).  
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Figure 8  ESCRT-1 regulates FLS2 endosome levels. (A) FLS2-GFP protein levels of the indicated genotypes revealed by 
Western blot with anti-GFP antibody (upper panel) and anti-FLS2 antibody (lower panel). Coomassie staining 
(CBB) is included as loading control. (B) FLS2-GFP endosomal numbers of indicated genotypes after mock 
treatment and in the presence of 10 μM flg22 were quantified by automated confocal microscopy. Endosomal 
numbers of n-analyzed Z-projections from three independent experiments are illustrated by boxplots. Letters 
indicate significant differences at the level of P < 0.05 as revealed by multiple pairwise comparisons according 
to standard posthoc ANOVA analysis. (C) Representative image show endosome distributions in Col-0 FLS2-GFP 
and vps37-1 FLS2-GFP after 45 min of flg22 treatment. Bars: 10 μm.    

 

 

We studied vps37-1 and vps28-2 mutants in more detail to determine the contribution of ESCRT-1 

genes in PAMP signaling. Flg22-induced ROS production is one of the earliest measurable PAMP 

responses. Both mutants showed no significant differences in flg22-induced ROS production (Figure 

9 A). Notably, endocytosis-deficient FLS2ΔPEST mutant is also not impaired in flg22-induced ROS burst 

(Salomon and Robatzek, 2006). Interestingly, vps37-1 or vps28-2 mutants displayed a slightly 

elevated ROS accumulation compared to Col-0 wt plants, when plants were challenged with flg22 

four hours after an initial flg22-induced ROS burst (Suppl. Fig. 5). 
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It has been reported that the endosome trafficking inhibitor wortmanin reduces flg22-induced MAPK 

activation (Lambris, 2007). We compared therefore kinetics of MAPK phosphorylation in response to 

flg22 by Western blots with anti-pERK antibodies. In Col-0, vps28-2 and vps37-1 anti-pERK labelling 

was strongest after 15 min of flg22 treatment and decreased in samples treated for 60 min with 

flg22 (Figure 9 B). No obvious differences in intensities were observed between Col-0 and vps28-2 or 

vps37-1, respectively. 

 

 

 

Figure 9 flg22-triggered ROS burst and MAPK activation is unaltered in ESCRT-1 mutants. (A) Flg22-triggered ROS 
production was measured in 16 leaf discs of eight independent four-week-old plants of indicated genotypes. 
Graphs present mean values +/- SD. Similar results were obtained in three independent results. RLU: relative 
light units. (B) Total FLS2 protein levels of indicated genotypes are revealed by Western blot with anti-FLS2 
antibody (upper panel) and phosphorylation of MAPKs by anti-pERK antibody (middle panel). Proteins were 
extracted from two-week-old seedlings 0, 15 and 60 min after flg22 treatment. Coomassie staining (CBB) is 
included as loading control (lower panel). 
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Transcriptional reprogramming by flg22 or other PAMPs is generally assessed 30 min to 60 min after 

treatment (Zipfel et al., 2006) and coincides temporal with FLS2 endosome maturation (Robatzek et 

al., 2006). To test whether vps28-2 and vps37-1 mutants are impaired in flg22-dependent gene 

induction, we analyzed FLS2, FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), and WRKY22 

transcripts abundance after 60 min of flg22 treatment (Figure 10 A). We observed no significant 

differences in FLS2, FRK1 and WRKY22 steady-state transcript levels between Col-0 wt, vps28-2 and 

vps37-1 mutants at time point 0. Flg22 induced the expression of all three marker genes in Col-0 wt, 

vps28-2 and vps37-1 mutants. In contrast to Col-0 wt plants, vps28-2 and vps37-1 mutants 

accumulated significantly less FLS2 and FRK1 transcripts 60 min after flg22 induction. Only minor 

differences were observed in WRKY22 induction. A slight up-regulation of WRKY22 transcript was 

also measured in fls2 mutants, presumably due to non-flg22 related stresses as previously reported 

(Lee et al., 2005).  

 

 

Reduced flg22-induced marker gene expression points at impaired immunity. One of the first layers 

in anti-bacterial immunity is stomatal closure (Melotto et al., 2006). We analyzed flg22-induced 

stomatal closure in vps28-2 and vps37-1 mutants (in collaboration with Dr. Gildas Bourdais, The 

Sainsbury Laboratory Norwich, UK). In Col-0 wt plants as well as in vps28-2 and vps37-1 mutants 

stomatal apertures were open under control conditions with an average width-to-length ratio of 

approximately 0.5 (Figure 10 B). In presence of flg22 the population of stomata with open apertures 

shifted significantly to apertures with lower width-to-length ratios, indicative of closing apertures in 

Col-0 wt plants, but not in vps28-2 and vps37-1 mutants (Figure 10 B). We also tested stomata 

response to ABA and observed no significant differences between wt and vps28-2 or vps37-1 

mutants, respectively (Suppl. Fig. 3).   
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Figure 10 ESCRT-1 mutants vps28-2 and vps37-1 are impaired in flg22-responses. (A) Transcript levels of FLS2, FRK1 and 
WRKY22 were measured by quantitative real-time PCR. Actin2 was used as control. Bars illustrate transcript 
levels before (0) and after 60 min incubation in 5 μM flg22 solution. Error bars indicate standard deviations 
based on n = 3 samples. Similar results were obtained in three independent experiments. (B) Relative 
distributions of stomata related to their aperture were measured in indicated genotypes without flg22 (red) 
and in the presence of 5 μM flg22 (green). Number of total stomata are given by n. P values were calculated by 
multiple pairwise comparisons according to standard posthoc ANOVA analysis.  

 

 

 

Reduced defense responses in vps28-2 and vps37-1 might increase susceptibility to pathogens as 

both ESCRT-1 mutant were reported previously to develop more disease symptoms in Pto DC3000 

spray infections than wt plants (Salomon, 2009). To determine if enhanced disease development and 

decreased flg22 responses correlated with increased pathogen growth, four-week-old vps28-2, 

vps37-1 mutants and control plants were spray inoculated with Pto DC3000. Growth was quantified 

four days after infection. Both ESCRT-1 mutants allowed significant higher Pto DC3000 multiplication 

than wild-type plants (Figure 11 A). Vps28-2 and vps37-1 displayed similar levels of susceptibility to 

Pto DC3000, which was below bacterial growth observed in fls2 mutants.  
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Other Arabidopsis-pathogen interactions were investigated to determine if increased susceptibility 

of vps28-2 and vps37-1 is restricted to Pto DC3000. Hyaloperonospora arabidopsidis (Hpa) is a well-

studied obligate-biotrophic oomycete, which specifically infects certain Arabidopsis thaliana 

ecotypes (Coates and Beynon, 2010). Two-week-old wt plants, vps28-2 and vps37-1 and super-

susceptible eds1 mutants (Aarts et al., 1998) were inoculated with Hpa strain Waco9. Pathogen 

reproduction was assessed by counting spores seven days after infection. Compared to Col-0 wt 

plants, significantly more spores were isolated from vps28-2 and vps37-1 mutants (Figure 11 B). 

Susceptibility of vps28-2 and vps37-1 mutants did not reach the level of eds1 mutants, indicating 

that immunity in vps28-2 and vps37-1 is only partially affected.  

 

 

 

Figure 11 ESCRT-1 mutants are more susceptible to biotrophic pathogens. (A) Average bacterial growth was analyzed 
four days post infection in eight four-week-old plants per genotype. (B) Spores of Hpa Waco9 were quantified 
seven days post infection on eight two-week-old seedlings. (A + B) Both experiments were repeated twice with 
similar results. Different letters indicate statistically significant of P < 0.05 calculated by multiple pairwise 
comparisons according to standard posthoc ANOVA analysis. Error bars show SD.  

 

We used FLS2-GFP RFP-VPS28-2 plants (Figure 7) to study the sub-cellular localization and dynamics 

of RFP-VPS28 containing vesicles during infection with Hpa Waco9. Plants were analyzed by confocal 

microscopy four days after inoculation. At that time point, several Hpa hyphae and haustoria were 

formed in infected plants, but no sporangia were yet developed (Figure 12). RFP signal were 

retrieved from small vesicles, which clustered around haustorial projections (Figure 12). Vesicles 

showed relatively low motility compared to analysis of RFP-VPS28-2 in not infected plants (Figure 6).      
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Figure 12 VPS28-2 resides close to Hpa infection sites. Representative confocal images of RFP-VPS28-2 expressing plants 
infected with Hpa Waco9 were taken 4 days after inoculation. RFP and bright field (BF) Z-projections of five 
confocal images spaced by 1 μm are shown in the left panel. Single confocal planes of haustria projection 
(dashed white box) in bright field (upper left panel) merged with RFP signals (lower right panel) are shown in 
detail. Localization of RFP signal is highlighted by white arrows. Scale bar indicates 25 μm.   

 

 

In summary, our data revealed that two ESCRT-1 mutants, vps28-2 and vps37-1, were impaired in 

immunity to Pto DC3000 and Hpa Waco9. Higher susceptibility to Pto DC3000 correlated with 

partially reduced flg22-triggered gene induction and loss of flg22-induced stomatal closure. Other 

tested flg22-responses were not significantly different from wild-type plants. We furthermore 

observed, that FLS2-GFP endosomes co-localized to RFP-VPS28-2 labeled vesicles in an flg22-

dependent manner. Late endosomal sorting of ubiquitinated plasma membrane proteins by ESCRT 

complexes has been shown in yeast and animals (Wegner et al., 2011), but so far not in plants.  

Higher susceptibility of vps37-1 correlated with reduced FLS2 endosome numbers in response to 

flg22. Reduced FLS2 endosome numbers were also observed in vps28-2, but this could be a result of 

lower FLS2-GFP protein accumulation in vps28-2 FLS2-GFP plants. Likewise, enhanced resistance to 

Pto DC3000 infections of a putative FLS2 ubiquitination mutant (FLS23K->R) correlated with slightly 

higher FLS2-GFP endosome numbers.  
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3.3. FLI1 REGULATES LATE FLG22 RESPONSES  
 

Temporal control of early and late PAMP responses is genetically poorly understood. In order to 

identify specific late PAMP response regulator, a gamma-irradiated Arabidopsis Ler population was 

screened for reduced seedling growth arrest in presence of flg22 (Salomon, 2009). Candidates with 

reduced ROS production were excluded from further analysis to counterselect for receptor mutants 

and early signaling regulators. These resulted in the isolation of six flagellin insensitive mutants (fli1-

6) (Salomon, 2009). Fli1 mutant line displayed the most severe phenotypes and was chosen for 

further analysis. 

 

Flg22-indiced seedling growth arrest is a commonly used read out for late PAMP-responses (Boller 

and Felix, 2009). We assessed flg22-induced growth arrest in one-week-old etiolated seedlings by 

measuring primary root length in the absence and presence of flg22 (Figure 13 A). Seedlings grown 

in the absence of flg22 showed similar root length in wt plants, fls2 and fli1 mutants. With increasing 

flg22 concentrations wt and fli1 plants displayed decreasing root length. Root length reduction was 

thereby approximately 30 % less affected in fli1 mutants compared to Ler wt plants. Reduced flg22 

responsiveness in fli1 appeared in a dose-dependent manner as similar root growth inhibition to Ler 

wt in the presence of 100 nM flg22 could be observed, when fli1 was treated with 500 nM flg22. 

Significant differences in flg22 responsiveness were also measured between fli1 and Col-0 wt plants, 

although less pronounced.   

Inhibition of root growth is a common stress response and also observed under high NaCl (Cazale et 

al., 2009) or high glucose conditions (Baena-Gonzalez et al., 2007). To test whether fli1 mutants 

exhibit reduced sensitivity to other stresses than flg22, we measured root growth in presence of 

increasing concentrations of NaCl (Figure 13 B) and glucose (Figure 13 C). Roots of Ler wt plants, 

fls2-17 and fli1 showed no significant differences in dose-dependent root growth inhibition on NaCl 

and glucose containing media. We therefore concluded that reduced flg22 sensitivity is unlikely to 

be caused by a general stress dysfunction.  
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Figure 13 Root growth phenotypes of fli1. (A) Seedlings of indicated genotypes were grown in the dark on plates 
containing different flg22 concentrations. Primary root length of 20 seedlings per condition was measured one 
week after germination. Col-0 fls2 mutant is depicted as fls2c. Dashed lines illustrate +/- SD of fli1 grown on 100 
nM flg22. (B + C) Indicated genotypes were grown for one week on MS plates and then transferred on plates 
with increasing concentrations of NaCl (B) or glucose (C). Primary roots of 20 seedlings per genotype and 
condition were measured after one week. Root growth in (B) and (C) is related to root growth under control 
conditions of indicated genotypes. (A+B+C) Bars present mean values +/- SD and different letters show 
statistically significance of P < 0.05, calculated by multiple pairwise comparisons according to standard posthoc 
ANOVA analysis. Experiments were repeated at least once with similar results.  

 

 

Four-week-old fli1 mutants were previously reported to be severely impaired in flg22-callose 

depositions (Salomon, 2009). Because we carried out most of our studies on two-week-old seedlings, 

we investigated flg22-triggered callose deposition accordingly. Two-week-old seedlings of Ler wt, 

fls2-17 and fli1 mutants were incubated in flg22 solution and stained for callose (Figure 14). 

Compared to mock treated seedlings, a strong accumulation of stained callose deposits were 

detected in wt seedlings, to lesser extent in fli1 mutants and not in fls2-17 mutants.  
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Figure 14 fli1 is impaired in flg22-triggered callose deposition. (A) Two-week-old seedlings were incubated for 12 hours 
in the absence (upper panel) or in the presence of 1 μM flg22 (lower panel). Representative images of aniline 
blue stained callose deposits in cotyledons from ten analyzed seedlings per indicated genotype and condition 
are shown. Scale bar presents 100 μm. 

 

 

Quantifying flg22-induced resistance is an often used method to assess PTI function (Zipfel et al., 

2004; Tsuda et al., 2009). To test whether impaired late PAMP responses in fli1 mutants are 

associated with reduced flg22-induced resistance, we pre-treated wt plants, fls2-17 and fli1 mutants 

with or without flg22 prior to syringe infiltration with Pto DC3000 (Figure 15). As shown previously 

(Zipfel et al., 2004), no significant differences in bacterial growth was observed between Ler and 

fls2-17 plants in mock infiltrated plants. Notably, bacteria grew to similar levels in mock treated fli1 

mutants than in mock treated Ler wt plants, indicating that fli1 mutants were not generally affected 

in post-invasive immunity (Figure 15 A). By contrast, in flg22 pre-treated plants significantly less Pto 

DC3000 growth was quantified in Ler wt plants than in fli1 and fls2-17 mutants (Figure 15 B). These 

results point at impaired flg22-induced resistance in fli1 and suggest a pivotal role of FLI1 in the pre-

invasive infection phase as previously reported for FLS2 (Zipfel et al., 2004).  
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Figure 15 Flg22-induced resistance is impaired in fli1 plants. Four-week-old plants were infiltrated with 10 mM MgCl2 (A) 
or 1 μM flg22 in 10 mM MgCl2 solution (B). 24 hours after pre-treatment plants were syringe-infiltrated with 
Pto DC3000 and bacterial replication was assessed in eight plants per indicated genotype and condition two 
days post infection. Bars show mean values +/- SD. Different letters indicate statistically significance of P < 0.05, 
calculated by multiple pairwise comparisons according to standard posthoc ANOVA analysis. Experiments were 
repeated twice with similar results. 

 

 

Flg22-triggered stomatal closure is discussed to account for the important role of FLS2 in pre-

invasive immunity (Melotto et al., 2006; Zhang and Zhou, 2010). We studied stomatal closure in 

response to flg22 in fli1, wt and fls2-17 (Figure 16). Width-length ratios of stomatal apertures in wt, 

fli1, and fls2-17 showed no significant differences under control conditions (Figure 16). Incubation in 

flg22 solution triggered significant lowered width-length ratios in wt and fli1 mutants, but not in 

fls2-17. This indicates that higher susceptibility in fli1 is not caused by impaired flg22-induced 

stomatal closure.   
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Figure 16  Flg22-induced stomatal closure is not impaired in fli1 plants. Two-week-old seedlings of indicated genotypes 
were vacuum infiltrated with (black bars) or without flg22 (grey bars). Images of cotyledons were taken with 
Zeiss Axiophot microscope. 20 stomata apertures per genotype and condition were measured in ImageJ. 
Results shown are means +/- SD. Different letters indicate statistically significance of P < 0.05, calculated by 
multiple pairwise comparisons according to standard posthoc ANOVA analysis.  

 

 

Mutants, previously reported to be impaired in flg22-induced resistance, PAMP induced seedling 

growth inhibition or callose deposition, but not in early PAMP responses are mainly linked to 

hormone homeostasis or gene silencing and exhibit sever developmental phenotypes (Navarro et al., 

2006; Navarro et al., 2008; Li et al., 2010). In addition, reduced flg22-triggered callose deposition in 

callose synthase mutant pmr4 is associated with elevated salicylic acid levels and increased 

resistance to biotrophic pathogens (Ham et al., 2007). Fli1 did not resemble any of these 

phenotypes. To gain insight into the molecular events underlying the susceptibility phenotype of fli1, 

we analyzed transcriptomes of fli1, wt and fls2-17 mutants during bacterial infection. Infections 

were carried out by spray-inoculation of two-week-old seedlings with virulent Pto DC3000 and RNA 

samples were collected at 0, 3 and 24 hours post infection and subjected to microarray hybridization 

(Dr. Bruno Huettel, MPIZP, ADIS, Cologne, Germany). 

 

Transcriptome profiles of wt plants, fli1 and fls2-17 mutants at different infection time points were 

hierarchical clustered (Figure 17). This revealed that profiles can be grouped in three major classes 

representing the progression of infection. Between these classes, three hours post infection 

transcriptome profiles differed most compared to profiles of uninfected and the 24 hours infection 

time point. In all three genotypes 700 genes were more than two-fold higher expressed 3 hpi 

compared to uninfected plants (Table 8). Up-regulated genes were significantly enriched in genes 

associated with defense responses. 209 genes showed two-fold less transcript abundance after 
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three hours of infection compared to uninfected plants. Down regulated genes contained 

significantly more genes associated with plant metabolism. During transition from 3 to 24 hours post 

infection a total of 745 genes showed significantly different expression levels in all three genotypes. 

234 of these genes were at least two-fold higher expressed at 24 hpi and overrepresented in genes 

regulated to biotic stimuli. The remaining 511 genes were at least two-fold lower expressed in all 

three genotypes and significantly enriched in abiotic stress responsive genes and genes with a 

predicted function in starch metabolism. Comparison between 0 hpi and 24 hpi showed an 

overrepresentation of defense genes. 98 less abundant genes at 24 hours were mainly enriched in 

transcription and nucleic acid metabolism.  

 

 

 

 

Figure 17 Transcriptional profiling of fli1 and fls2-17 during infection. Whole genome transcript array (Ath1, Affymetrix) 
of RNA collected from 21 two-week-old seedlings infected with Pto DC3000 for 0, 3 and 24 hours was used to 
detect changes in transcript abundances between Ler wt, fli1 and fls2-17. Transcript profiles were hierarchical 
clustered accordingly to expression levels.   
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Table 8 Transcriptional changes in Ler wt, fli1 and fls2-17 during infection with Pto DC3000.  

Transition 
(hpi) regulation 

Number 
of genesa 

GO enrichmentb P value 

 
  

  

0->3 up 700 response to stimulus 3.40E-12 

   
defense response 3.61E-11 

 
down 209 regulation of cellular process 6.99E-09 

   
regulation of metabolic processes 6.99E-09 

     
3->24 up 234 response to biotic stimulus  0.0108 

   
response to other organism 0.0155 

 
down 511 response to abiotic stimulus  8.07E-07 

   
Starch metabolism 4.16E-06 

     
0->24 up 272 response to stimulus 3.41E-06 

   
defense response  8.52E-06 

 
down 98 regulation of transcription  0.000545 

   
nucleotide and nucleic acid metabolic process  0.000545 

     
a  Transcriptional changes were determined from whole genome transcript arrays of Ler, fli1 and fls2-17 at 0, 3 and 24 

hpi. Numbers represent genes with transcriptional up or down-regulation of at least two-fold with an adjusted P value 
of < 0.05 in all three genotypes. 

b,c  Two most significant Gene Ontology classes and corresponding P values were obtained from GO Stat (Beissbarth and 
Speed, 2004). 

 

The smallest variation within in the three major transcriptome clusters was observed at three hours 

post infection profiles (Figure 17). Only two transcripts were significantly altered by two-fold in Ler 

and fli1, and six genes were specifically at least two-fold lower or higher expressed in fls2-17 (Figure 

18). A complete list of genes with significantly altered transcript levels in fls2-17 is given in Table 9. 

Several genes implicated in plant defense or oxidative stress were found to be lower expressed in 

fls2-17 mutants, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE 2 (ACO2). ACOs 

catalyze the last step of ethylene biogenesis and could therefore play an important role in ethylene-

mediated defense responses. We studied ACO2 transcripts abundances at 3 hpi in a Col-0 fls2 T-DNA 

insertion line (fls2c), which in contrast to fls2-17 mutant accumulates no FLS2 transcripts (Zipfel et 

al., 2004). We infected plants with virulent Pto DC3000 and non-virulent Pto DC3000 hrcC mutants 

and analyzed transcript levels by quantitative RT-PCR (Figure 19 A). Col-0 wt plants up-regulated 

ACO2 transcripts upon infection with both pathogens, whereas ACO2 transcript levels remained 

unaltered in Col-0 fls2 as previously observed in Ler fls2-17 mutants. Ethylene was reported to 

promote FLS2 transcript accumulation (Boutrot et al., 2010; Mersmann et al., 2010). Therefore, we 

also quantified FLS2 expression in the same experiment, but did not observe a correlation between 

up-regulation of AC02 and FLS2 transcript levels (Figure 19 A).  
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The largest variation within in the three major transcriptome classes was observed 24 hours post 

infection (Figure 17). Wt plant showed at least two-fold higher transcript abundances of 48 genes, 

which did not cluster into any gene ontology pathway (Figure 18). 135 genes were at least two-fold 

higher expressed in fls2-17 mutants and overrepresented in nucleasome assembly and chromatin 

remodeling associated genes. Fli1 mutants displayed the most distinct expression profile at 24 hours 

post infection (Figure 17). A list of the ten lowest and highest expressed genes in fli1 at 24 hpi is 

given in (Table 10). The total numbers of uniquely two-fold higher or lower expressed genes in fli1 

did not exceed those observed in Ler and fls2-17 plants (Figure 18). Higher expressed genes in fli1 

were significantly enriched in genes with a known function in photosynthesis. Several of higher 

expressed genes in fli1 were previously also linked to sugar starvation, including DARK INDUCIBLE 2 

(DIN2) and sucrose invertase AT3G06500 (Fujiki et al., 2000; Buchanan-Wollaston et al., 2005; 

Baena-Gonzalez et al., 2007; Veyres et al., 2008).  

 

 

Figure 18 Number of differently expressed genes between Ler, fli1 and fls2-17. Genes with an adjusted P value of < 0.05 
and at least two-fold (FC) lower (left panel) or higher (right panel) abundance in indicated genotypes are listed 
according to different time points after Pto DC3000 infection. Enrichment of genes associated with gene 
ontology pathways include numbers of identified genes and corresponding P value according to Beissbarth and 
Speed (2004).  
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Table 9  Genes differently expressed in fls2-17 after 3 hours of infection with Pto DC3000  

Gene Encoded protein Fold 
change 

 wt vs. fls2 
Fold 

change 
 fli1 vs. fls2 

 
Significantly lower expressed genes (adjusted P value < 0.05) 
AT5G42540 XRN2 (EXORIBONUCLEASE 2)  -3.1 -3.3 
AT3G49360 glucosamine/galactosamine-6-phosphate 

isomerase  -2.7 -2.8 
AT2G28630 beta-ketoacyl-CoA synthase family protein -2.1 -2.1 
AT1G78460 SOUL heme-binding family protein -2.0 -2.3 
AT1G63430 leucine-rich repeat transmembrane protein kinase -1.9 -1.2 
AT1G63770 peptidase M1 family protein -1.8 -1.2 
AT1G63810 Unknown protein -1.8 -1.2 
AT2G44790 UCC2 (UCLACYANIN 2); copper ion binding -1.8 -1.7 
AT1G63700 YDA (YODA); kinase -1.8 -1.2 
AT1G73330 ATDR4 (Arabidopsis thaliana drought-repressed 4) -1.8 -1.3 
AT1G69720 HO3 (HEME OXYGENASE 3);  -1.7 -1.5 
AT4G38080 hydroxyproline-rich glycoprotein family protein -1.7 -1.4 
AT1G63460 glutathione peroxidase, putative -1.7 -1.1 
AT5G44910 TIR-NBS-LRR protein -1.7 -2.2 
AT1G68600 similar to unknown protein -1.6 -1.2 
AT1G62380 ACO2 (ACC OXIDASE 2) -1.4 -1.3 
AT2G25350 phox (PX) domain-containing protein -1.4 -1.3 
AT1G52870 peroxisomal membrane protein-related -1.4 -1.3 

 
 Significantly higher expressed genes (adjusted P value < 0.05) 
AT4G21100 DDB1B (DAMAGED DNA BINDING PROTEIN 1 B) 4.7 5.5 
AT5G50360 unknown protein  2.0 2.1 
AT1G61580 ARP2/RPL3B (ARABIDOPSIS RIBOSOMAL PROTEIN 2) 1.7 1.3 
AT4G24450 ATGWD2/GWD3/PWD  1.5 1.4 
AT2G19990 PATHOGENESIS-RELATED PROTEIN-1-LIKE 1.5 1.1 
AT2G33620 DNA-binding family protein  1.4 1.2 
AT2G38195 protein binding / zinc ion binding 1.4 1.3 
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Table 10  Ten most differentially expresses genes in fli1 after 24 hours of infection with Pto DC3000 

Gene a Encoded protein Fold 
change 

 wt vs. fli1 
Fold  

change 
  fls2 vs. fli1 

 
Top ten significantly higher expressed genes (adjusted P value < 0.05) 
AT3G60140  DIN2 (DARK INDUCIBLE 2); 6.5 2.0 
ATCG00350 PsaA (photosystem I) 4.5 3.2 
ATCG00270 PsbD (photosystem II) 4.3 3.0 
AT1G61810 BGLU45; hydrolase, hydrolyzing 3.9 3.2 
AT4G16990 disease resistance protein (TIR-NBS class), 

putative 
3.9 1.7 

AT3G06500 Sucrose invertase, putative / saccharase, 
putative 

3.8 2.4 

ATCG00500 beta subunit of the Acetyl-CoA carboxylase 
(ACCase) 

3.6 2.5 

ATCG00770 chloroplast 30S ribosomal protein S8 3.4 2.1 
ATCG00180 RNA polymerase beta' subunit-1 3.0 1.9 
ATCG00120 alpha subunit of ATP synthase and part of the CF1 

portion 
3.0 2.9 

  
   

Top ten significantly lower expressed genes (adjusted P value < 0.05) 
AT2G42560 LEA domain-containing protein -2.8 -2.2 
AT5G07530 GRP17 (Glycine rich protein 17) -2.7 -2.8 
AT1G32290 unknown protein -2.7 -2.1 
AT1G24620 polcalcin, putative  -2.6 -2.1 
AT3G22121 other RNA -2.6 -3.0 
AT4G29340 PRF4 (PROFILIN 4); actin binding -2.6 -2.1 
AT2G14700 unknown protein -2.5 -1.7 
AT4G02660 WD-40 repeat family protein / beige-related -2.5 -1.5 
AT4G19770 glycosyl hydrolase family 18 protein -2.5 -2.2 
AT5G09970 cytochrome P450, family 78,  -2.5 -1.4 

  
  a Transcripts of highlighted genes were quantified by qRT-PCR in independent infections.  

 

 

We tested transcriptional responses in wt plants, fli1 and fls2-17 mutants in independent Pto 

DC3000 infections by quantitative RT-PCR of selected genes (Figure 19 B). Enhanced expression of 

DIN2 and AT3G06500 encoding a putative sucrose invertase was repeatedly detected in fli1 but not 

in wt plants. Up-regulation was also observed in fls2-17 mutants. Expression of PHOTOSYSTEM I 

APOPROTEIN A (PsaA) was not significantly different expressed in fli1 and Ler wt or fls2-17 in 

independent infections. In all three genotypes, expression of PsaA was lower at late stages of 

infection. This stands in contrast to data obtained from microarray experiments, where high 

expression of PsaA was maintained in fli1 during infection. PHOTOSYSTEM II APOPROTEIN D (PsbD) 

was higher expressed in fli1 when compared to Ler wt, but lower when compared to fls2-17 mutants 
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at 48 hpi. Relative transcript levels of both genes varied significantly between different infections 

(Figure 21).  

No significant enrichment of cellular pathways was found to be linked with genes lower expressed in 

fli1 or fls2-17, respectively (Figure 18 and Table 10). In summary, our transcription profiling did not 

clearly point at any cellular pathway, which was robustly and specifically impaired in fli1 mutants 

during infection with Pto DC3000. By contrast, fli1 plants showed a remarkable similar early 

transcriptional response to wt plants. This is in line with previous experiments showing wt-like early 

flg22-repsonses. Transcriptional profiles of fli1 at late stages were most different from wt plants. 

This further strengthens the hypothesis for a role of fli1 in late immune responses.         
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Figure 19 Differential gene expression in wt, fli1 and fls2 mutants during bacterial infections. (A) Transcript levels of 
ACO2 and FLS2 in Col-0 wt and fls2 (fls2c) mutants were measured by quantitative RT-PCR in mock treated 
plants (white bars), or 3 hours after spray inoculation with virulent Pto DC3000 (black bars) or non-virulent Pto 
DC3000 hrcC mutants. (B) Indicated genes were quantified by qRT-PC in non-infected plants (white bars) or 48 
hpi with Pto DC3000 (black bars) in Ler, fli1 and fls2-17 mutants. (A + B) Bars present mean relative expression 
values +/- SD of three technical samples. Actin2 was used as reference. Experiments were repeated with similar 
results in independent infections.  
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To identify the genetic mutation responsible for the fli1 mutant phenotype, we combined classical 

map-based cloning with whole-genome sequencing analysis. Previous fli1 map-based cloning 

approaches using flg22-induced seedling growth inhibition as phenotypical readout were hampered 

by small differences between fli1 and Col-0 wt plants, which favored detection of false positives. We 

therefore used the most severe fli1 phenotype, which is enhanced disease development in Pto 

DC3000 infections (Salomon, 2009). Two-week-old seedlings were spray inoculated with Pto DC3000 

and disease symptoms visually evaluated after five days. Most fls2-17 and fli1 seedlings developed 

chlorosis and necrosis within this time. Necrotic and chlortic spots were in contrast only rarely 

observed on Ler or Col-0 wt seedlings (Figure 20 A). In order to quantify Pto DC3000 susceptibility, 

disease symptoms were grouped in four classes, with macroscopic healthy plants in class 0 and 

severely diseased plants in class 3. We first tested, whether the enhanced disease phenotype of fli1 

is inherited in a recessive manner by crossing fli1 mutants to Ler wt plants. Disease development was 

assessed in bi-directional F1 progeny. Fli1 plants showed significant higher disease symptoms then 

Ler wt plants and were indistinguishable from fls2-17 mutant plant populations (Figure 20 B). 

Disease development in fli1 x Ler crosses was restored to wt levels, independent of the direction of 

analyzed crosses (Figure 20 B). 

 

Fli1 was isolated from a mutagenized Ler population along with five other fli mutants (Salomon, 

2009). We analyzed F1 crosses of fli1 to other fli mutants to test potential allelic interactions 

between fli1 and other fli mutations (Figure 20 B). Fli2-6 showed no significant increase in disease 

development, when infected with Pto DC3000. This is in line with previous studies showing that 

susceptibility to Pto DC3000 of different fli mutants is most severely affected in fli1 (Salomon, 2009). 

Notably fli2, fli5 and fli6 showed slightly elevated susceptibly and fli6 was previously shown to allow 

higher multiplication of Pto DC3000 in bacterial counting assays compared to wt, but not compared 

to fli1 mutants (Salomon, 2009). F1 progeny of fli1 crossed to fli1, fli3 and fli6 showed wt-like disease 

symptoms, indicating that underlying mutations are not allelic (Figure 20 B). Slightly higher disease 

symptoms were observed in fli1 x fli4 and fli1 x fli5 crosses, but did not reached the level of fli1 

susceptibility. Also Ler x fli4 and Ler x fli5 crosses were slightly more susceptible than Ler wt plants 

(Figure 20 B). 



59 
 

 

Figure 20 Genetic analysis of fli1. (A). 48 two-week-old seedlings were spray inoculated with Pto DC3000 and disease 
development categorized from healthy plants, class 0, to severely infected plants in class 3. Graphs show 
distributions of individuals per indicated genotype according to disease class. Grey circles represent 
proportions of plants grouped in one class. Different letters indicate statistically significance of P < 0.05, 
calculated according to Fisher’s exact test analysis. (B) The same method as an (A) was used to analyze fli1 and 
Ler crosses to indicated genotypes in F1 progeny. Different letters indicate statistically significance of P < 0.05 to 
Ler wt plant, calculated by Fisher exact test. 
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Fli1 x Ler crosses were further analyzed on the level of F3 families (Table 11). 48 individual plants of 

15 different F3 families were phenotyped for enhanced disease development upon Pto DC3000 

infections. Four families showed fli1-like disease phenotypes (Table 11), whereas 11 families were 

indistinguishable from wt plants. The observed ratio was statistically insignificant different from a 

1:3 ratio underlying recessive inheritance of a single mutant locus. Fli1 x Ler back-crosses with fli1-

like phenotypes showed higher expression of DIN2, but not PsaA in infections with Pto DC3000 

(Figure 21), as previously observed in fli1 parental lines (Figure 19 B). Notably, DIN2 expression was 

significant higher compared to Ler wt, but did not reach the level of fli1 plants.  

 

Next, we used fli1 crosses to Col-0 to identify genetic markers co-segregating with fli1 higher 

susceptibility in Pto DC3000 spray infections. 10 out of 54 F3 families generated from six 

independent F2 populations displayed fli1-like disease phenotypes. Chi-square analyzes indicate that 

the observed distribution is likely to meet a 1:3 segregation ratio of one single recessive locus. 

Alternatively, a 3:13 segregation with an even lower chi-square value is plausible. Since fli1 x Ler 

crosses segregated with a ratio of 1:3, a potential dominant-epistatic effect of a second Ler allele 

might be considered as well as an additive effect of a dominant-inherited Ler virulence gene (Suppl. 

Fig. 5). In conclusion, the most likely scenario links the fli1 phenotype to a single recessive locus and 

this might require one copy of a second Ler gene. More phenotyped F3 families would be required 

for a detailed genetic analysis. 

        

Table 11 Genetic analysis of fli1 mutants 

Cross 
Total 

number of 
F3 familya 

Number of families 
with observed 

phenotypes 

Tested 
segregation 

χ2 P value b 

  
Susceptible Resistant 

   

fli1 x Ler 15 4 11 1 : 3 0.02 > 0.8 
       

fli1 x Col-0 54 10 44 1 : 3 1.21 > 0.25 
     3 : 13 0.002 > 0.95 
     1 : 15 13.87 < 0.001 
       

a  48 individual plants per F3 were phenotyped by according to their disease development in Pto DC3000 
spray infection assays. 

 b P values were calculated by F test with degree of freedom =1. P values below 0.05 indicate a significant 
deviation from tested segregation. 
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Figure 21 fli1 backcrosses to Ler show DIN2 up-regulation in infections with Pto DC3000. Indicated genes were 
quantified by qRT-PCR five days after spray-infection with Pto DC3000 of two-week-old Ler (white bars), fli1 
(black bars) parental seedlings and Ler x fli1 F3 progeny displaying fli1-like disease development (grey bars). 
Bars present mean relative expression values +/- SD of three technical samples containing four seedlings each. 
Actin2 was used as reference.  

 

 

Two Ler markers on the upper arm of chromosome 5 co-segregated with fli1 associated disease 

phenotype in seven out of eight tested F3 families of fli1 x Col-0 crosses (Figure 22). We defined 

therefore the region between marker CTR1 and 5-AL3911491762 as rough mapping interval of fli1, 

which likely harbors the fli1 mutation. This 3.8 Mb long region contained more than 1400 genes.  

 

 

 

Figure 22 fli1 co-segragates with genetic markers on chromosome 5. Four individual plants for each F3 Fli1 x Col-0 family 
showing fli1-like disease phenotype were genotyped with simple sequence length polymorphism markers 
between Ler and Col-0. Ratios indicate number of F3 families showing only Ler specific PCR products and 
corresponding location of used markers on Arabidopsis thaliana chromosome 5.  
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To reduce the mapping interval sufficiently, a classical map-based cloning approach would require an 

extension of the mapping population to approximately three or four thousand F2 plants (Jander et 

al., 2002). We used populations of 48 individuals per F3 family to limit false-positive phenotying. A 

classical map-based approach would therefore multiply the amount of required plants substantially 

and appeared not applicable for our purposes.  

Fli1 originated from a gamma-irradiation mutagenized Ler population. A survey of gamma-irradiation 

introduced loss of function mutations in Arabidopsis detected exclusively deletions of at least 5 kb 

(Cecchini et al., 1998). Radiation induced deletion in Drosophila were previously successfully mapped 

at kb-resolution using the Illuminina sequencing platform (Daines et al., 2009). Since Drosophila 

melanogaster and Arabidopsis thaliana share a similar genome size, a similar approach to detect fli1 

mutations appeared rational. Whole-genome sequencing was done with the Illumina platform (in 

collaboration with Jodie Pike and Dr. Dan MacLean in the Sainsbury Laboratory Norwich, UK). In total 

more than 26 million 76 bp paired-end reads were generated from fli1 M5 genomic DNA reaching an 

average coverage of 31.6. Reads were aligned to the Col-0 reference genome.  A summary of 

technical sequencing details are given in Table 12.  

 

 

Table 12 Whole genome sequencing of fli1  

Sequencing platform: Illumina 
Read length: 76 bp, paired-end 
Raw Paired-Read counts: 26,220,486 
Average coverage: 31.6 
  
  
SNPs identified in mapping range: 23 
SNPs confirmed exclusively in fli1: 0 
  
Indels identified in mapping range: 5 
Indels confirmed exclusively in fli1: 0 
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We searched systematically for deletions in fli1 rough mapping range, which could potentially affect 

genes, and identified five putative deletions varying in size from 23 bp to 2175 bp (Table 13). 

Candidate regions were amplified on fli1, fli2, Ler and Col-0 genomic DNA by PCR or sequenced. In all 

cases, including deletions located outside of fli1 mapping interval, PCR products of the same size 

were amplified in fli1, fli2, Ler wt, but not in Col-0. This indicates that in silico identified deletions 

represent natural polymorphisms between Ler and Col-0 accessions and are likely not the cause of 

fli1 enhanced susceptibility to Pto DC3000.  

 

Table 13  In silico prediction of fli1 deletions and validatio 

Del # Gene Description Chr. Start Size [bp] Re.seq. 

del_1 AT5G05657 Late embryogenesis 
abundant (LEA) 

5 1688990 581 Ler SNP 

del_2 AT5G06800 Myb-like 5 2105874 2175 Ler SNP 

del_3 AT5G09530 hydroxyproline-rich 
glycoprotein family 

protein 

5 2960444 23 Ler SNP 

del_4 AT5G09978 PEP7 (utr) 5 3120927 224 Ler SNP 

del_5 AT5G10180 SULTR2;1 5 3196231 141 Ler SNP 

       

 Outside rough mapping interval    

       

del_6 AT5G02930 Skp2-like 5 681711 2047 Ler SNP 

del_7 AT5G17880 CONSTITUTIVE 
SHADE-

AVOIDANCE1 

5 5908874 4225 Ler SNP 

 

 

We did not exclude the possibility that one single nucleotide exchange (SNP) might cause the fli1 

phenotype. Mutagenizing irradiation was previously reported to introduce SNPs (Torii et al., 1996). 

We searched for homozygous, non-synonymous fli1 SNPs and small Indel relative to the Col-0 

reference genome. Schneeberger et al. (2011) showed recently that over 50 % of aligned Ler genes 

contained at least one non-synonymous polymorphism between Ler and Col-0 sequences 

(Schneeberger et al., 2011). We used Illumina reads generated from four other Ler lines (Yi-Ju Lu, 

Martina Beck, Silke Robatzek, The Sainsbury Laboratory Norwich, UK) and public available SNPs 

annotations to limit detection of natural occurring polymorphisms. In total, 23 putative, non-

synonymous and homozygous SNPs were retrieved and further analyzed by classical Sanger 

sequencing. All but two showed the same nucleotide sequence in fli1 and Ler wt, and thus are likely 

Ler polymorphisms or wrong annotations of the Col-0 reference genome (Table 14). Sequencing of 
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the two remaining positions revealed the same nucleotide sequence as observed in Col-0 reference 

genome annotations. We also sequenced ten genes outside fli1 mapping range and recovered 

exclusively Ler polymorphisms or false-positives detected SNPs.  

 

Table 14 In silico prediction and validation of fli1 SNPs and Indels 

SNP 
# 

Gene Description Chr. Position Ref. a SNP AA level b Re-seq. c 

1 AT5G03650 Starch branching 
enzyme 2.2 

5 936893 G C G to A Ler SNP 

2 AT5G04853 unknown protein 5 1410610 T G F to V Ler SNP 

3 AT5G05000 TOC34 5 1474318 A T K to Stop No SNP 

4 AT5G05060 Cystatin/monellin 5 1494963 G C P to S Ler SNP 

5 
6 

AT5G05900 UDP-
Glycosyltransferase 

5 1776033 
1776047 

G 
A 

C 
G 

E to D 
Q to R 

Ler SNP 
Ler SNP 

7 AT5G06140 SORTING NEXIN 1 5 1856705 C A S to Stop No SNP 

8 AT5G06640 Proline-rich 
extensin-like family 

protein; 

5 2041610 A T N to Y Ler SNP 

9 AT5G06790 unknown protein 5 2098302 C A T to N Ler SNP 

10 AT5G07150 LRR protein kinase 5 2216685 G C A to P Ler SNP 

11 
12 

AT5G07170 microtubule 
associated protein 

5 
5 

2222903 
2222915 

* 
* 

na 
na 

 Ler SNP 
Ler SNP 

13 AT5G07540 glycine-rich protein 5 2386249 A C E to A Ler SNP 
14 
15 
16 
17 

AT5G07690 MYB29 5 
5 
5 
5 

2448202 
2448204 
2448206 
2448216 

A 
T 
G 
T 

G 
C 
A 
A 

T to A 
Silent 
G to D 
N to K 

Ler SNP 
Ler SNP 
Ler SNP 
Ler SNP 

18 AT5G10230 calcium-binding 
protein annexin 

5 3209839 A T I to F Ler SNP 

19 AT5G10600 CYP81K2 5 3352211 G T V to L Ler SNP 
20 AT5G10630 Translation 

elongation factor 
5 3362055 G A D to N Ler SNP 

21 AT5G11400 Protein kinase  5 3637096 C A T to N Ler SNP 
22 AT5G12930 unknown protein 5 4085156 G T A to S Ler SNP 
23 AT5G12930 unknown protein 5 4085173 A C H to P Ler SNP 

         

 Outside rough mapping position      

24 AT5G13370 auxin response 
factor 

5 4288005 C A S to K Ler SNP 

25 AT5G18180 ribonucleoprotein 5 6009521 * na  Ler SNP 
26    6009522 * na  Ler SNP 
27 AT5G24950 P450 5 8596102 G T G to Stop No SNP 

         

28 AT5G02810 Pseudo-response 
regulator 7 

5 639642 G A P to L Ler SNP 

29 AT5G03120 unknown protein 5 734764 * na three_prime
_UTR 

Ler SNP 
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Table 14 continued.         

SNP 
# 

Gene Description Chr. Position Ref. a SNP AA level b Re-seq. c 

30 AT5G54650 FORMIN 
HOMOLOGY5  

5 22198277 T A L to stop Ler SNP 

31 AT5G64860 DISPROPORTIONATI
NG ENZYME (DPE1) 

5 25926859 G T E to stop No SNP 

32 AT1G48740 oxygenase 
superfamily protein 

1 18025081 T A I to F Ler SNP 

33 AT1G52500 DNA N-glycosylase 1 19562103 T A Y to N Ler SNP 
         

a  Reference according to Col-0 genome. A = Adenine, C = Cytosine, G = Guanine, T =Thymine, * indicates 
deletions, na not available.  

b Amino acid abbreviations according to (JCBN, 1984).  

 c Primers used to re-sequence (Re-seq.) predicted SNPs by Sanger sequencing can be found in Suppl. table 
2.   

 
 

 

 

In summary, even though gamma-irradiation was previously reported to introduce deletions of 

several kbs, we did not identity unique deletions in fli1 whole genome alignments to the Col-0 

reference genome. Identified deletions, as well as predicted SNPs were also found in Ler wt plants, 

and therefore not linked to the enhanced disease development phenotype in fli1 mutants. Initial 

genetic analysis indicated that enhanced disease development upon infection with Pto DC3000 co-

segregates with genetic markers on chromosome 5 and is likely to be caused by one recessive 

inherited mutation.  
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4. DISCUSSION 
 

4.1. UBIQUITINATION AND FLS2 TRAFFICKING 
 

In order to find cellular factors contributing to FLS2 trafficking, we studied the role of ubiquitination 

in FLS2 endocytosis. Ubiquitination serves as signal for receptor endocytosis and endosomal 

trafficking across species (Mukhopadhyay and Riezman, 2007). Recently, two ubiquitin E3 ligases 

PUB12 and PUB13 were shown to be recruited by BAK1 to facilitate flg22-dependent FLS2 

ubiquitination and protein turn-over (Lu et al., 2011). Double mutant knock-outs in pub12 and pub13 

show elevated flg22 responses, favoring a negative regulation of FLS2 signaling by ubiquitination. 

Slightly enhanced flg22-repsonses were also observed in pub22 pub23 pub24 triple mutants (Trujillo 

et al., 2008), but direct interaction or ubiquitination by PUB22, PUB23 or PUB24 could not been 

shown despite repeated attempts (personal communication by Dr. Vera Göhre, University of 

Düsseldorf, Germany). The negative regulation of FLS2 function by ubiquitination is exploited by the 

Pto DC3000 effector AvrPtoB (Göhre et al., 2008). Occupation of host ubiquitination processes is not 

restricted to Pto DC3000 and also observed in other host microbe interactions (Spallek et al., 2009).   

In order to gain a better understanding of AvrPtoB-mediated ubiquitination, we analyzed FLS2 

ubiquitination by different ubiquitin mutants. This revealed that AvrPtoB is able to from poly-

ubiquitin chains independent of ubiquitin lysine 48 and lysine 63. Interestingly, ubiquitination was 

most pronounced with ubiquitin K48R mutant variants. K48-linked ubiquitin chains mark proteins for 

proteasomal degradation, whereas K48-independent chains are often associated with endocytic 

processes (Mukhopadhyay and Riezman, 2007). Using an ubiquitin variant mutated in all lysines 

(UbnoK) enabled us to identify one out of presumably two FLS2 ubiquitination sites. The identified site 

was located in the juxtamembrane region of FLS2. Juxtamembrane domains play important 

regulatory roles in Xa21 auto-phosphorylation and protein-protein interactions (Chen et al., 2010c). 

Our data show that substitutions of all three lysines by arginines reduced FLS2 ubiquitination in vitro. 

Furthermore, complementation of fls2 mutants with FLS23K->R-GFP variants conferred enhanced 

resistance to Pto DC3000 compared to complementation with wt FLS2-GFP constructs at similar 

expression levels. This is in line with previous results, showing a negative role of FLS2 ubiquitination 

in plant immunity (Göhre et al., 2008; Lu et al., 2011). We cannot exclude that identified 

ubiquitination sites are specific for AvrPtoB function and increased resistance resulted from reduced 

Pto DC3000 virulence. Infection assays with Pto DC3000 deleted in AvrProB will provide a 

clarification.  FLS23K->R-GFP variants showed, however, slightly elevated FLS2-GFP endosome number 
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in response to flg22. This would point at an AvrPtoB independent function of FLS2 putative 

ubiquitination sites. Similar results were obtained with ubiquitination resistant BORK590A variants, 

which accumulate in late endosomal compartments due to impaired trafficking of BORK590A to lytic 

vacuoles (Kasai et al., 2010). Further studies are required to determine if lysines located in the 

juxtamembrane are also targeted by PUB12, 13 and if the observed FLS23K->R phenotypes are linked 

to altered FLS2 ubiquitination statuses in vivo. 

 

Ubiquitinated receptors trafficking along the endocytic pathway are recognized components of the 

ESCRT machinery. ESCRT complexes have been extensively studied in yeast and animals, where 

ESCRT proteins catalyze MVB biogenesis (Henne et al., 2011). It is therefore not surprising, that 

ESCRTs are involved in various cellular processes like cytokinesis, viral budding, exosome secretion, 

and autophagy (Henne et al., 2011). Plant genes encoding for ESCRT-1 proteins VPS23, VPS28 and 

VPS37 were identified based on homology, interaction studies, sub-cellular localization in 

protoplasts and their ability to bind ubiquitin (Spitzer et al., 2006). Although carrying each a 

functional homolog vps28-2 and vps37-1 were more susceptible to bacterial infections compared to 

wt plants and T-DNA insertion lines of vps28-1 and vps37-2 (Salomon, 2009). Different cellular 

functions were also reported for the four VPS37 isoforms encoded by the human genome (Carlton et 

al., 2008; Stefani et al., 2011). Both VPS28-2 and VPS37-1 show in addition different affinities to 

other ESCRT proteins. Unlike VPS28-1 and VPS37-2, VPS28-2 and VPS37-1 are able to bridge the 

ESCRT-1 complex to ESCRT-3 subunits in protoplasts and yeast two hybrid assays (Shahriari et al., 

2011). It remains to be shown, if this ability is linked to the observed role of VPS28-2 and VPS37-1 in 

plant immunity. Using transient expression of fluorescent-tagged ESCRT-1 proteins in N. 

benthamiana, we observed that CFP-ELC, YFP-VPS28-2 and RFP-VPS37-1 are targeted to the same 

mobile vesicular compartment. Furthermore, FLS2-GFP endosomes partially co-localized with 

RFP-VPS28-2 containing vesicles in Arabidopsis after flg22 treatment. These results indicate that key 

endocytic routes are conserved in eukaryotic cells (Husebye et al., 2006; Field and Dacks, 2009).  

 

In mammals and Drosophila ESCRT-1 depletion goes along with prolonged MAPK phosphorylation 

(Babst et al., 2000; Lloyd et al., 2002; Malerod et al., 2007). Our experiments showed no evident 

differences in flg22 triggered MAPK activation between wt and vps28-2 or vps37-1 mutants, 

respectively. Surprisingly, even though vps28-2 or vps37-1 mutants showed wt-like MAPK activation, 

flg22 induced up-regulation of MAPK-dependent FRK1 (Boudsocq et al., 2010) and FLS2 transcripts 
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was significantly lower in both mutants compared to wt plants. Although FLS2 transcripts were 

higher abundant in Col-0 wt plant after 60 min of flg22 treatment, Col-0 wt plants generated less 

ROS than vps28-2 and vps37-1 mutants, when plants were treated a second time with flg22 four 

hours after an initial ROS burst. Reduced desensitization in vps37-1 or vps28-2 mutants could 

indicate higher availability of FLS2 receptors at the plasma membrane, and thus point at reduced 

FLS2 endocytosis or enhanced recycling of FLS2 similar to studies on mammalian loss-of-function 

mutants in tumor susceptibility gene 101 (tsg101, homolog of yeast VPS23 and Arabidopsis ELC). 

Tsg101 cells show delayed endosomal trafficking and enhanced recycling of EGFR receptor to the 

plasma membrane upon EGF stimulation (Babst et al., 2000). Quantification of FLS2 endosomes 

supported this possibility, since significantly less FLS2-GFP endosomes were generated in vps37-1 

mutants compared to wt plants at similar FLS2-GFP protein levels.    

We also observed impaired stomatal closure in vps28-2 and vps37-1 mutants after flg22 treatment. 

A detailed understanding of flg22-induced stomatal closure is still pending, but recent work 

highlights the importance of flg22-induced MPK3 signaling (Gudesblat et al., 2009). Reduced flg22 

responses might not solely rely on MAPK activation, but might dependent on FLS2 trafficking to 

ESCRT compartments per se. Endocytic trafficking and interaction with ESCRT-1 associated proteins 

is essential for Drosophila Toll receptor signaling to fully activate immune responses (Huang et al., 

2010). A different study shows that accelerated Toll receptor endocytosis amplifies signaling locally 

from Rab5-positve vesicles (Lund et al., 2010) and also human TLR4 activates endosomal responses 

from Rab5-positve vesicles independent of plasma membrane derived signaling (Kagan et al., 2008). 

Arabidopsis ESCRT components were previously shown to localize with Rab5 containing vesicles 

(Spitzer et al., 2006; Haas et al., 2007). VPS28-2 and VPS37-1 role in plant immunity is likely not 

restricted to FLS2 function, since vps28-2 and vps37-1 mutants were not only higher susceptible to 

Pto DC3000, but also to the oomycete Hpa Waco9. It might therefore be possible that immunity 

against oomycetes employs PRR trafficking. Studies on bak1-5 serk4 double mutants show an 

enhanced susceptibility to different Hpa strains (Roux et al., 2011). BAK1 is required to activate most 

flg22 responses including FLS2 endocytosis (Chinchilla et al., 2007). This could indirectly hint on a 

contribution of PRR signaling in immunity against Hpa.   

 

 

 



69 
 

Taken together, our data revealed flg22 dependent FLS2 localization to ESCRT-1 containing vesicles 

and the requirement of two ESCRT-1 genes VPS28-2 and VPS37-1 for efficient activation of FLS2 

responses, immunity to Pto DC3000 and Hpa Waco9. In parallel, mutations in putative FLS2 

ubiquitination sites conferred higher resistance to Pto DC3000. FLS2-GFP endosome levels were 

reduced in vps37-1, but slightly elevated for FLS23K->R. It is therefore possible that FLS2 endosomes 

per se contribute to defense signaling. Endosomal signaling was previously shown for BRI1 (Geldner 

et al., 2007) and several studies in non-plant systems highlight the importance of endocytic signaling 

(Sadowski et al., 2009; Sorkin and von Zastrow, 2009; Scita and Di Fiore, 2010). The benefit of 

endosomal signaling appears striking: (1) The small volume in endosomes favors ligand receptor 

interaction, thus strengthen receptor activation. (2) Passive diffusion is not sufficient for effective 

signal transduction in cells. Considering that endosomal movement is directed, it will necessarily 

facilitate detection of activated receptors by intracellular regulators. (3) Compartmentalization 

provides a platform for receptors to specifically interact with proteins at a given time (Scita and Di 

Fiore, 2010). Endosomal signaling was proposed for the tomato RLP LeEIX2 (Sharfman et al., 2011). 

LeEIX2 requires a tyrosine-based motif for endocytosis and function in N. benthamiana (Bar and 

Avni, 2009). This motif is shared with other PRRs like Cf proteins or EFR but absent in FLS2 

(Altenbach and Robatzek, 2007). It is therefore possible that different endocytic pathways require 

different molecular components. Figure 23 provides a model, how late endosomal trafficking could 

contribute to FLS2 signaling.  
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Figure 23 A model for FLS2 endosomal signaling. (A) Plants require plasma membrane derived and endosomal signaling 
to fully activate FLS2 signaling. (B) Plasma membrane derived and endosomal responses require receptor 
complex formation with BAK1 to initiate signaling. (C) FLS2 ubiquitination could influences endosomal 
trafficking and termination of activated receptors, thus lead to sustained signaling if altered. (D) Reduced 
endosome numbers in ESCRT mutants leads to less endosomal signaling, but does not affect plasma membrane 
derived signaling.  Arrows indicate positive interactions, T-bars negative interactions.  
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4.2. FLI1 REGULATES LATE PAMP RESPONSES IN PLANT IMMUNITY 
 

We used whole genome next generation sequencing to detect fli1 specific mutations in a defined 

rough mapping region. Earlier attempts to map fli1 using a classical map-based cloning approach 

were hampered by variability of fli1 phenotypes in F2 mapping populations (Salomon, 2009). To 

reduce to number of false-positive phenotyped F2 progeny and increase the chance to find markers 

linked to the fli1 phenotype, we analyzed a relatively high number of 48 individual plants in F3 

progeny. This lowered the total number of analyzed F2 crosses and thus possible recombination 

events close to the fli1 locus. One the other hand, stringent phenotyping proofed to be successful: 

The majority of identified fli1 x Col-0 progenies displaying fli1-like disease development showed 

linkage with markers on the upper arm of chromosome 5, comprising a 3.8 Mbp region of 

approximately 1400 genes. Notably, in one out of eight genotyped fli1 x Col-0 crosses no 

homozygous Ler markers were detected in this region. It is thus still possible that false-positive 

phenotyping occurred even when 48 F3 plants were phenotyped. Based on known mutation 

frequencies, a relatively small number of chromosome deletions would have been expected in an 

interval of this size (Cecchini et al., 1998). Unexpectedly, we did not find any large deletions within 

or outside the fli1 mapping range, which were also not found in Ler wt plants or non-allelic fli2 

mutants, respectively. It is therefore likely that the fli1 phenotype is not caused by large deletions as 

result of gamma-irradiation, but rather by small Indels, SNPs or chromosome rearrangement as seen 

in other systems (Anderson et al., 1995).  

 

We identified several SNPs within the fli1 mapping range, but none of them was unique to fli1. Our 

approach was based on Col-0 reference guided alignments and this allowed us only to detect 

mutations at positions homologous to the Col-0 genome (Austin et al., 2011). We can therefore not 

exclude that potential deletions and SNPs were excluded from analyzes due to high variation or 

absence in the Col-0 genome. Because so far all tested genetic variations were shared between Ler 

wt plants and fli1 mutants, we could not test if the mapping range identified in crosses to Col-0 

corresponds to fli1 regions in crosses between fli1 mutants and Ler wt plants. Our SNP and deletion 

analyzes were based on the assumption that the fli1 mutation is homozygous in M5 progeny. We 

have no data contradicting this assumption: Fli1 phenotypes were robustly observed in different 

progenies and crosses to Ler or Col-0 wt plants segregated in the expected ratio of a single recessive 

mutation. Identification of the mutation underlying the fli1 phenotype is crucial to for a detailed 
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analysis of fli1 and could benefit from a newly released Ler genome assembly (Cao et al., 2011; 

Schneeberger et al., 2011). 

 

We conducted whole genome transcript profiling of fli1 plants during infection with virulent Pto 

DC3000 and detected significant differences in fli1 transcript profiles compared to Ler wt and fls2-17 

24 hours post infection. Several genes with predicted functions in sugar starvation and 

photosynthesis were higher expressed in fli1 plants at that time point of infection. Such genes are 

typically down-regulated in wild-type plants upon biotic stresses (Bilgin et al., 2010). Follow-up 

studies showed that relative expression levels of identified genes coding for photoreaction centres 

varied significantly between different infections. Fli1 hyper-susceptibility to Pto DC3000 was in 

contrast to microarray analyzes also observed in infections, where PsaA and PsbD were similar 

expressed in fli1 and wt plants at later stages of infection. Even though variation in disease 

progression between different infections was frequently observed, a direct negative regulation of 

genes encoding for proteins with core functions in photosynthesis by FLI1 during infections 

appeared questionable. Regulation of chloroplast encoded genes is complex and influenced by 

multiple environmental factors (Saibo et al., 2009) and in many cases, transcription levels do not 

correlate with protein levels of photosynthetic genes (Eberhard et al., 2008). 

 

By contrast, genes associated with sugar starvation were reproducibly higher expressed in fli1 

mutants compared to Ler plants during infection. DIN2 and sucrose invertase At3g06500 were 

previously reported to be up-regulated during infection, but not studied in detail (de Torres-Zabala 

et al., 2007; Zhang et al., 2007b). Sugar responses are intertwined with abiotic stress signaling 

(Baena-Gonzalez et al., 2007). Notably, root growth in presence of different NaCl and glucose 

concentration was similar affected in fli1 mutants than in wild-type plants. This suggests that fli1 is 

not globally impaired in stress responses. It is not clear, whether higher transcription of genes 

associated with sugar starvation in fli1 is cause or consequence of higher susceptibility to Pto 

DC3000 infections. Pathogens were shown to actively promote sugar effluxes from host cells, thus 

directly compete with available sugar resources (Chen et al., 2010a). Higher infection rates in fli1 

could consequently lead to accelerated depletion of energy resources and trigger starvation 

inducible genes.  
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Higher infection rates in fli1 correlated with reduced late flg22-dependent defense responses. Whole 

genome transcriptome analyzes indicated that fli1 activated a similar transcriptional program like wt 

plants three hours after spray inoculation with Pto DC3000. Also other early PAMP responses like 

flg22-mediated stomatal closure, PAMP-induced ROS and ethylene production as well as flg22-

induced MAPK activation were indistinguishable from wt plants (Salomon, 2009). By contrast, flg22-

induced resistance and late PAMP responses like callose deposition and seedling growth arrest were 

impaired in fli1. It is therefore possible that Pto DC3000 virulence is fostered in fli1 mutants by 

reduced late PAMP response and deficiencies in flg22-induced immunity. The contribution of late 

PAMP responses to plant immunity is not well understood. Most identified PTI mutants are impaired 

in PAMP signal transduction or PRR biogenesis directly (Zhang and Zhou, 2010). Loss of function 

mutations in callose synthase pmr4 is accompanied with reduced flg22-induced callose deposits, 

elevated SA levels and enhanced resistance to pathogens. By contrast, pmr4 mutants crossed to 

mutants impaired in SA signaling show slightly more growth of non-host Pseudomonas syringae pv. 

phaseolicola 1448a than SA-deficient mutants per se, suggesting a role of callose deposition in plant 

immunity (Ham et al., 2007). In contrast to pmr4 mutants, fli1 mutants showed residual callose 

deposition, but were also impaired in other late PAMP responses and flg22-induced resistance. It is 

therefore possible, that combined disturbance of several late PAMP responses account for fli1 

hyper-susceptibility to Pto DC3000 at levels comparable to fls2-17 receptor mutants.  

 

Our experiment on transcriptional changes during infection with Pto DC3000 showed that three 

hours after spray inoculation, only a relatively small number of genes was significantly different 

expressed in wt plants, fli1 and fls2-17, with fls2-17 displaying the most distinct transcriptional 

profile. Similar transcript profiles might be explained by partially overlapping transcriptional changes 

upon perception of different PAMPs (Zipfel et al., 2006; Denoux et al., 2008). It is therefore 

remarkable that fls2-17 mutants are severely immuno-compromised in bacterial infections (Zipfel et 

al., 2004). Among genes significantly less expressed in fls2-17 mutants three hours post infection, 

ACO2 oxidizes aminocyclopropane-1-carboxylic acid (ACC) to finally release ethylene (Wang et al., 

2002). Arabidopsis ACO2 and homologs in tomato are up-regulated upon pathogen infection, but 

also by ethylene per se (Jia and Martin, 1999; Zhong and Burns, 2003). FLS2 transcription is under 

direct positive control of ethylene signaling components (Boutrot et al., 2010; Mersmann et al., 

2010), but we did not observed significant differences in FLS2 transcript levels three hours after 

infection with virulent Pto DC3000 or non-virulent Pto DC3000 hrcC. Alternatively a role of ethylene 

in regulating late immune responses has been proposed (Denoux et al., 2008). Further analyzes are 
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required to test if ethylene levels are indeed altered in fls2 mutants and if this is mediated by ACO2 

expression during infection.  

 

In summary, our data provide good evidence that late PAMP responses and flg22-induced resistance 

contribute to plant immunity in infections with virulent Pto DC3000. We used fli1, a mutant impaired 

in late, but not early PAMP responses, and compared differences between fli1, wt and fls2, 

respectively. Higher susceptibility of fli1 to Pto DC3000 was associated with higher expression of 

sugar starvation responsive genes. Fli1 co-segregated with markers on the upper arm of 

chromosome 5 in fli1 crosses to Col-0, but remains to be identified. Further studies will implement 

sequence information from recently released Ler genome assemblies (Cao et al., 2011; Schneeberger 

et al., 2011) and broaden analyzes to SNPs in non-protein coding regions and regulatory sequences. 

Re-sequencing of fli1 mutants backcrossed multiple times to wt plants might also be considered, 

since it was successfully used in other studies (Ashelford et al., 2011). 
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APPENDIX A – SUPPLEMENT DATA 
 

 

 

 

Suppl. Fig. 1 ROS in T1 fls2 complemented lines. Leaf disks of 15 individual eight-week-old T1 plants were tested 
for flg22-sensitiviety in ROS measurements. Error bars show +/- SD.   

 

 

Suppl. Fig. 2 Analyzes of T-DNA insertion lines vps28-2 and vps37-1. (A) VPS28-2 and a fragment of VPS37-1 
including translation start site (B) were amplified from cDNA of Col-0 wt, vps28-2 and vps37-1 
T-DNA mutants. Actin2 was used as a control. Lower panels indicate position and orientation of 
T-DNA and used primers. Bars present 100 bp.  
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Suppl. Fig. 3 ESCRT-1 mutatns vps28-2 and vps37-1 are not impaired in ABA mediated stomatal closure. 
Stomatal aperture measurements of n two-week-old seedlings were done after incubation in 5 μM 
flg22 (grey) and 10 μM ABA (green). Significance was calculated by multiple pairwise comparisons 
according to standard posthoc ANOVA analysis (collaboration with Dr. Gildas Bourdais, The 
Sainsbury Laboratory, Norwich, UK).  

 

 

 

 

Suppl. Fig. 4 Models of fli1 genetics. A) 1:3 ration in fli1 x Ler backcrosses indicates recessive inheritance of one 
single fli1 locus. (B) 3:13 can be explained by the requirement of a second dominant Ler allele (pink) 
for fli1 phenotype development in Col-0 crosses.  
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Suppl. Fig. 5 ESCRT-1 mutants are less desensitised for subsequent ROS burst. ROS measurements were done 
of eight biological replicates in two independent experiments on four-week-old plants. Leaf disks 
were washed twice with ddH2O after first measurements were completed. Error bars indicate +/- 
SD.    
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Suppl. table 1 MASCOT analysis of ubiquitinated FLS2CD 
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Suppl. table 2 Sequencing primer used to validate fli1 SNPs and Indels 

# Forward Reverse 2nd reverse 

indel_01 GGTAACACAGACGCGTCCCCG GACTTGAGGCCGACGCGGAG  

indel_02 ACGGTGCGATAACGGAGGCG GCTCAGTACCAGTGTACGAATTCCC  

indel_03 GGTCTCAGTTGCTGCCGTTGGT ACGTCTTGGAAGATAAAGCGTGGT AAGGCGTGGACGGGGTCAGG 

indel_04 TCCGGCGGAATGGAGTCCGT ACGGGATGTACTCTGTATGCGTGC CGGTTGAGCTGACAAAGGTTTCGG 

indel_05 GCCTGAGTTGCCAAAGATCCCGG AGCTGGGCCTTCTCTTCGCT  

indel_06 GGTACACGACGCTGAAGCCC CCGGAGACGAAGAAGACCGGTGA CTGGCGTTCCTGGTGCGGTT 

indel_07 GCATCCCTTTTAACTCCATCCGCGA TTCGCGCTGCAACGTTCCCC  

indel_08 CATACGGGGTGGGTCAGGGC AGTGAAGTGGTTATGCCACAGCCAA 

indel_09 CGATTTGGTTGAGAGGCTCGT TCTGATGGTTGCTTCTGATATACCA  

indel_10 AGTCTATGCAGATCGTGGCGCC TTCCCTCTCAGCGATCCACTTTCCA GGGCGAGAACCCTTCATTCACGG 

snp_01 CTCAAGTTTGTCGGCTACTCCGAG CGCTTCTATTCAGGGTTCCTTGGG 

snp_02 CCGTCGTTTCGTAACCGCGC TCTGAGACGGGTTTAGGGATCTCAA  

snp_03,07 ACGAGTCGTAACCCGGTCTGGG ACACAGCATCTCCCTCACAAGCA  

snp_05,06,08,11 TCCTTGAGCTCCAAGAAACGTTGTT CCACGGCATCACAAGGTTCTCTAAC  

snp_09 ACTGGTCAACTGTGGGGCAGGT TCCCAACGCCTTTGGAAATGGCA  

snp_10 TGGAATCGGGCAACGAGGCG TGGAAGATGGAAGCCAAAACTGGC  

snp_12 TGACGTTAGCTAGGTCCGAGGCT ACCAAGTTGCAAGTCCAACCACA  

snp_13,18 CGCGGGGTCAATGAGAGTGA GCCACACTGAACGCAGGCC  

snp_14,15 ACCTTCTCATAGCTACTTCCCAGGC TTTCCATCCTCTCTCGGATCGCT  

snp_16 TTGGGGCTTGTGAGGGTGAACC TGTCTGAACGTGTGAGCATGAGTT  

snp_17 AGCTCCCCGCCCCCACAATA TGGTGGTGGGGGAGACTTGTAGT  

snp_19 ACTGAAGGTGTAAGAGCGGCTCG CGCGCACAATCACAAACAAACGC  

snp_20 CAACACCCCTTGTTCTTGTTGCAGT TGGCGTCTGAGGATGTGGAGC  

snp_21 TGTGAAGCTTTGCACACATCCA ATCACCCACATTATAACAGTGCCT  

snp_22 TCTGGCAAGAAAGATGAGGTCCAGT TGGAACAGCTCAAGGTCTCGCG  

snp_23,25 CGTGGCTTCAATGTAGACCCAGAC CTTCTTCGACTGAGCGGCGGC  

snp_24 TGGGAAACGAATTCGGACATCCAGG ACTCTGCCTTGCGATCGAGCC  

snp_26 ACCCCGAGTCCGATGTTGTTACT TGTACTGTGCCATGGTGCCTG  

snp_29 TGTGAACACGTAGAATCTGGTTAGG GCTCCACACTCTTCAGGGAAGA  

snp_30 ATACCTCCGCCGCTGGGCTC AGACCGGACATGACATCAGGAGAG 

snp_31 GGAAGACTGTATGCGTCGTCCA TGTCGCATCGCCGCGAATCT  

snp_32 CCACGTTCTCTTTTTCTCGCGT AACTGCAGCGGTTACTTTTACCATT  

snp_33 TCGTAGTAAACGTGAAAAGCCCTTT AGATGAACAGCTCCGCGACCA  
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