
Adaptive Evolution in Linked Genomes

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Stephan Schiffels

aus Aachen



Berichterstatter:
HGutachterL

Prof. Dr. Michael Lässig

Prof. Dr. Martin Lercher

Tag der mündlichen Prüfung: 27. Januar 2012

2   Stephan Schiffels



Zusammenfassung

Adaptive  Evolution  wird  von  verschiedenen  Kräften  beherrscht:  Mutationen  entste-

hen zufällig im Genom und erzeugen Unterschiede im reproduktiven Erfolg einzelner

Individuen;  natürliche  Selektion  verschiebt  diese  Variabilität  zugunsten  von  Indi-

viduen  mit  hoher  Fitness;  Gendrift  erzeugt  Zufallsfluktuationen  in  der  Zahl  der

Nachkommen  und  beeinflusst  vor  allem  Mutationen  mit  schwachem  Fitness-Effekt.

Darüber  hinaus  stellt  Genkopplung  eine  wichtige  evolutionäre  Kraft  dar.  Genkop-

plung  erzeugt  Interferenzen  und  Wechselwirkungen,  durch  die  gleichzeitig  entste-

hende Mutationen sich gegenseitig beeinflussen.  In dieser Arbeit  entwickeln wir  ein

umfassendes  Modell  für  adaptive  Evolution,  welches  Wechselwirkungen  durch

Genkopplung  zwischen  vorteilhaften  und  schädlichen  Mutationen  in  einem  ein-

heitlichen  System  zusammenfasst.  Unsere  näherungsweise  analytische  Lösung

beschreibt sowohl die Fixationsraten solcher Mutationen, als auch das Verhältnis zwi-

schen  vorteilhaften  und  schädlichen  Allelen  in  der  Sequenz.  Unser  Ergebnis  zeigt,

dass Wechselwirkungen durch Genkopplung ein Regime effektiver Neutralität erzeu-

gen:  Gene  mit  einem  Fitness-Effekt,  der  kleiner  ist  als  ein  charakteristischer  Wert,

haben  zufällig  fixierte  Allele,  und  sowohl  vorteilhafte  als  auch  schädliche  Mutatio-

nen  in  diesen  Regionen  haben  nahezu  neutrale  Fixationsraten.  Diese  Dynamik

begrenzt nicht nur die Geschwindigkeit adaptiver Prozesse, sondern auch die Anpas-

sung  einer  Population  an  ihre  Umgebung.  Wir  wenden  unser  Modell  auf  zwei  ver-

schiedene  Szenarien  an:  stationäre  Adaptation  in  einer  zeitabhängigen  Umgebung,

und  Anpassung  an  eine  konstante  Umgebung.  In  beiden  Fällen  stimmen  unsere

analytischen  Vorhersagen  gut  mit  Simulationen  überein.  Unser  Ergebnis  zeigt,  dass

Genkopplung biologische Funktionen einer adaptierenden Population beeinträchtigen

kann,  wodurch  natürlicher  Anpassungsfähigkeit  Grenzen  gesetzt  sind.  Darüber  hin-

aus  entwickeln  wir  ein  probabilistisches  Modell,  mit  welchem  Genom-Daten

analysiert  werden  können,  und  welches  Genkopplung  explizit  berücksichtigt.  Tests

anhand  simulierter  Daten  zeigen,  dass  unsere  Methode  das  Maß  an  positiver  Selek-

tion einer gekoppelten Sequenz korrekt vorhersagt. Im Gegensatz dazu interpretieren

bisherige  Methoden  Genkopplungs-Effekte  fälschlicherweise  als  positive  Selektion.

Wir  wenden  unsere  Methode  auf  Genom-Daten  der  Spezies  Drosophila

melanogaster  an  und  zeigen,  dass  ein  substantieller  Anteil  der  Sequenzunterschiede

zweier  Fliegen-Arten  nicht  auf  natürliche  Selektion,  sondern  auf  Genkopplung

zurückzuführen ist.
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Abstract

Adaptive  evolution  is  governed  by  various  forces:  Mutations  occur  randomly  in  the

genome  and  generate  variability  in  the  individuals’ reproductive  success;  natural

selection  shifts  this  variability  in  the  population  towards  individuals  with  high  fit-

ness;  genetic  drift  introduces  random  fluctuations  in  the  number  of  offspring  of  an

individual and affects weakly selected or neutral mutations. On top of these, genetic

linkage can be an important evolutionary force. Linkage generates interference interac-

tions,  by  which  simultaneously  occurring  mutations  affect  each  other’s  chance  of

fixation.  Here,  we  develop  a  comprehensive  model  of  adaptive  evolution  in  linked

genomes,  which  integrates  interference  interactions  between  multiple  beneficial  and

deleterious mutations into a unified framework.  By an approximate analytical  solu-

tion,  we  predict  the  fixation  rates  of  these  mutations,  as  well  as  the  probabilities  of

beneficial  and  deleterious  alleles  at  fixed  genomic  sites.  We  find  that  interference

interactions generate a regime of emergent neutrality: all genomic sites with selection

coefficients smaller in magnitude than a characteristic threshold have nearly random

fixed alleles, and both beneficial and deleterious mutations at these sites have nearly

neutral fixation rates. We show that this dynamics limits not only the speed of adapta-

tion,  but  also  a  population’s  degree  of  adaptation  in  its  current  environment.  We

apply  the  model  to  different  scenarios:  stationary  adaptation  in  a  time-dependent

environment, and approach to equilibrium in a fixed environment. In both cases, the

analytical predictions are in good agreement with numerical simulations. Our results

suggest that interference can severely compromise biological functions in an adapting

population,  which  sets  viability  limits  on  adaptive  evolution  under  linkage.  We

furthermore  develop  a  likelihood-based  inference  method  for  genomic  data,  which

explicitly takes into account genetic linkage. Tests with simulated datasets show that

our method correctly predicts the amount of positive selection in linked sequence. In

contrast, many existing tests falsely interpret traces from linkage as spurious positive

selection. We apply our method to fruit fly genome data (Drosophila melanogaster),

and  find  that  a  substantial  fraction  of  sequence  differences  between  two  related  fly

species is in fact caused by linkage instead of natural selection.
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Introduction

Populations  adapt  to  new  or  changing  environments  by  increasing  their  overall  fit-

ness,  that  is,  their  survival  probability  and  reproductive  success.  The  “fuel” of  this

process  are  mutations  in  the  individuals’ heritable  information that  occur  at  random

times and with random effects. The fate of a mutation depends on its effect: Benefi-

cial  mutations  convey  a  reproductive  advantage  and  typically  increase  in  frequency

from generation to generation, and ultimately can become fixed in the whole popula-

tion.  In  contrast,  deleterious  mutations  will  typically  go  extinct  after  only  a  few

generations,  because  they  cause  a  selective  disadvantage.  While  these  evolutionary

processes are based on simple principles,  their understanding on the molecular level

has proven considerably difficult.

One  reason  for  this  difficulty  is  that  the  correspondence  between  changes  in  the

genomic sequence and the resulting effect on the biological function is often opaque.

While many encoded biological functions are known, most parts of the genome have

unknown  functional  effects.  But  even  given  all  this  functional  information,  under-

standing  the  adaptive  dynamics  is  still  challenging.  One  feature  that  is  particularly

interesting in the light of statistical physics is genomic linkage. Linkage couples the

fate  of  one  mutation  to  neighboring  mutations  in  the  same  sequence.  The  cause  of

this  coupling  is  the  common  genomic  background  on  which  mutations  occur.  For

example, if a new mutation occurs in a sequence that already carries an advantageous

mutation, the new mutation will have an increased chance of fixation independent of

its  own  fitness  effect.  We  can  therefore  think  of  linkage  as  a  dynamical  coupling

among  mutations  in  a  sequence,  similar  to  interactive  couplings  in  many-body  sys-

tems known from statistical physics.

Genomic linkage comes in different strengths: While sexually reproducing organisms

counteract  linkage by recombination,  asexual  populations are  strongly affected.  One

important  consequence  of  linkage  is  its  impact  on  the  speed  of  adaptation.  Several

classical  studies  have  shown  that  linkage  interferences  can  substantially  reduce  the

speed of adaptation in large asexual populations [25, 46, 24, 5, 28]. These results are

supported by microbial evolution experiments that provide a growing amount of data

on adaptive evolution under linkage [74, 66, 75, 70, 18, 60, 38, 4, 7, 42], and similar

data are available for adaptive evolution in viral systems [10, 62, 52]. Even for higher

organisms  that  reproduce  sexually,  the  importance  of  linkage  has  been  recognized

[23,  36,  76,  67,  14].  Today,  modern  deep  sequencing  technologies  open  these  sys-

tems to population genomic analysis, which provides unprecedented insights into the

dynamical  processes  of  adaptation  under  linkage.  We  can  now  ask  new  questions:

How  do  the  genomes  of  a  population  and  their  current  fitness  values  evolve,  and

what are the rates of beneficial and deleterious changes observed in the process?
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tems to population genomic analysis, which provides unprecedented insights into the

dynamical  processes  of  adaptation  under  linkage.  We  can  now  ask  new  questions:

How  do  the  genomes  of  a  population  and  their  current  fitness  values  evolve,  and

what are the rates of beneficial and deleterious changes observed in the process?

The  model  developed  in  chapter  1  establishes  the  conceptual  framework  to  answer

such  questions.  It  describes  the  adaptive  evolution  of  a  finite  asexual  population,

whose individuals have non-recombining genotypes of finite length.  Evolution takes

place by mutations, genetic drift, and selection, given by a genomic fitness landscape,

which  is  specified  by  the  distribution  of  selection  coefficients  between  alleles  at

individual  sequence sites.  The evolving population is  described by its  genome state,

i.e., by the fraction of fitter vs. less fit alleles in the genomic sequence. The genome

state determines the rate of  beneficial  and deleterious mutations and the distribution

of  their  fitness  effects:  if  the  population  is  well  adapted,  most  sites  are  fixed  at  the

fitter alleles and most novel mutations will be deleterious; if the population is poorly

adapted,  more  mutations  will  be  beneficial.  Thus,  the  scope  of  our  genomic  model

goes  beyond  that  of  previous  studies,  which  analyze  the  statistics  of  substitutions

given the  rate  and selection coefficients  of  mutations  as  fixed input  parameters  [28,

18,  57].  In  particular,  our  model  can  describe  non-stationary  adaptation,  i.e.,  pro-

cesses in which the distribution of selection effects for mutations becomes itself time-

dependent.

Linkage enters our model  by affecting the efficacy  of  the adaptive process:  Because

other  mutations  influence  the  fate  of  a  given  mutation,  its  chance  of  fixation  is

strongly affected. In chapter 2, we develop an approximate calculus for the chance of

fixation  under  multiple  simultaneous  interacting  mutations.   Since  any  mutation  is

both  the  target  of  interference  effects  from other  mutations,  and  is  itself  interfering

with yet other target mutations, we obtain an approximate, self-consistent summation

of  interference  interactions  between  all  co-occurring  mutations.  We show that  these

interactions partition the adaptive dynamics into strongly beneficial driver mutations,

which  fix  without  substantial  interference,  and  beneficial  or  deleterious  passenger

mutations,  which  suffer  from  strong  interference.  Our  analytical  approach  differs

from  the  two  classes  of  models  analyzed  in  previous  work.  The  clonal  interference

calculus  [28]  focuses  on  the  dynamics  of  driver  mutations,  but  it  does  not  consider

passenger mutations and neglects the effects of multiple co-occurring mutations.  On

the other hand, the traveling-wave approach assumes an ensemble of many co-occur-

ring mutations, which have the same or similar selective effect [64, 18]. The adaptive

dynamics studied in this thesis, which takes place in a linked genome with a broader

distribution of  selection coefficients,  follows neither  of  these  models:  it  is  governed

by  interference  interactions  between  few  strongly  beneficial  substitutions  and  their

effect on more weakly selected alleles. 
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In  chapter  3,  we  analyze  the  biological  implications  of  our  model  for  two  specific

scenarios of adaptive evolution, using computer simulations. The first is a stationary

adaptive  process  maintained  by  an  explicitly  time-dependent  fitness  “seascape”,  in

which selection coefficients at individual genomic sites change direction at a constant

rate  [48,  49,  50].  Such  time-dependence  of  selection  describes  changing  environ-

ments, which can be generated by external conditions, migration or co-evolution. An

example  is  the  ongoing  antigen-antibody  co-evolution  of  the  human  influenza  virus

[10].  Our model predicts a selection regime of effective neutrality.  Mutations in this

regime  have  effectively  neutral  fixation  rates,  independent  of  their  selection  coeffi-

cients. The model furthermore predicts the speed of adaptation, and the population’s

degree of adaptation in its  current environment.  The second adaptive scenario is  the

approach  to  evolutionary  equilibrium  in  a  static  fitness  landscape,  starting  from  a

poorly  adapted  initial  state.  This  case  describes,  for  example,  the  long-term  labora-

tory  evolution  of  bacterial  populations  in  a  constant  environment  [50].  The  predic-

tions  of  our  model  are  now  time-dependent:  the  regime  of  effectively  neutral  sites

and  the  speed  of  adaptation  decrease  over  time,  while  the  degree  of  adaptation

increases.

Finally,  in  chapter  4,  we  develop  an  application  scheme  of  our  theory  to  genomic

data.  Many  existing  methods  that  infer  adaptive  evolution  from  genomic  data  treat

linkage  at  best  heuristically,  but  mostly  ignore  it  entirely  [23].  Here  we  develop  a

new  method  that  explicitly  incorporates  linkage  between  neighboring  sites  and  the

resulting  hitchhiking  and  interference  effects.  This  method  is  based  on  a  simpler

model than introduced in chapter 1, but with two important extensions: First, in order

to  apply  our  theory  to  higher  organisms  we  need  to  incorporate  genetic  recombina-

tion, which is a distinctive feature of sexual reproduction; second, we need to explic-

itly describe within-population diversity (polymorphisms),  which was not covered in

the analyses  of  chapters  2  and 3.  We develop a  likelihood-framework which can be

used  for  inference  from  genomic  data  of  within-species  and  between-species  diver-

sity. Because of recombination, observables now become position-dependent, due to

the  distance-dependence  of  driver-passenger  effects.  We  first  apply  our  likelihood-

framework to simulated datasets and demonstrate its statistical power. We then apply

this method to real genomic data from the fruit fly Drosophila melanogaster and find

that many genes have a substantial number of deleterious passenger substitutions and

hence exhibit strong linkage effects.
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1 Genomic model for adaptation

Here we develop a genomic model of adaptation under linkage. The model describes

the evolution of a finite asexual population, whose individuals have non-recombining

genotypes  of  finite  length.  Evolution  takes  place  by  mutation,  selection  and  genetic

drift.  We show how the  adaptive  process,  which changes  the  frequencies  of  benefi-

cial and deleterious alleles at polymorphic sites, is linked to the genome state, which

includes the distribution of beneficial and deleterious alleles at fixed sites.

1.1 Genome, mutations and fitness

We  consider  a  population  as  a  set  of  N  individuals,  each  described  by  one  linear

chromosome.  Each  chromosome  consists  of  L  sites  with  two  possible  alleles  1  and

-1.  As  notation,  we  use  aij � 8-1, 1<  with  i � 1 … N  and j � 1 … L  to  describe

allele j of individual i, and the vector notation a Î 8-1, 1<L to denote a whole chromo-

some. The population is kept fixed throughout evolution and the reproduction scheme

follows the familiar Wright-Fisher process [21]: Each next generation of N  individu-

als is sampled with replacement from the previous generation, where the individual i

is sampled with probability

(1)pi =
ãFHaiL

Úk=1
N ãFHakL

.

The  fitness  landscape  FHaL # R  assigns  a  fitness  value  to  each  chromosome.  Note

that  with  a  trivial  fitness  landscape  FHaL º F,  the  sampling  probability  of  a  given

individual  is  simply  pi º 1 � N,  corresponding  to  standard  random  sampling  with

replacement.  Mutations  occur  with  a  uniform  probability  Μ  per  genomic  site  per

individual  and  simply  “flip” the  allele  aij ® -aij  in  a  randomly  chosen  individual  i

and site j. The selection effect of a mutation, and whether it is beneficial or deleteri-

ous depends on the fitness landscape and the state  of  the population,  as  will  be dis-

cussed  later.  In  the  following,  we  introduce  the  different  fitness  landscapes  used  in

this work.

Static additive fitness landscape    

Consider  as  simplest  evolutionary  case  a  genomic  sequence  that  encodes  for  some

biologically  important  feature,  such  as  a  protein.  In  the  simplest  possible  case,  the

function  of  the  encoded  feature  depends  only  on  the  sequence  and  furthermore

depends  only  additively  on  the  individual  genomic  sites.  To model  this  case,  I  con-

sider this additive fitness function:

10   Stephan Schiffels



Consider  as  simplest  evolutionary  case  a  genomic  sequence  that  encodes  for  some

biologically  important  feature,  such  as  a  protein.  In  the  simplest  possible  case,  the

function  of  the  encoded  feature  depends  only  on  the  sequence  and  furthermore

depends  only  additively  on  the  individual  genomic  sites.  To model  this  case,  I  con-

sider this additive fitness function:

(2)FHaL =
1

2
â
j=1

L

a j f j

where  the  selection  coefficients  f j ³ 0  are  fixed  random  numbers,  drawn  from  a

normalized distribution ΡH f L.  According to  this  fitness  landscape,  each genomic site

has a “preferred” allele a j = 1 and an “unpreferred” allele a j = -1. The fitness differ-

ence between these two alleles is determined by the selection coefficients f j  and, due

to the additivity in equation 2, independent between locations j.

Not every genomic site has equal importance for the biological function. Some sites

have zero or weak fitness effects, while other sites are strongly selected. The distribu-

tion  of  selection  coefficients,  ΡH f L  depends  on  the  protein  or  feature,  as  well  as  on

environmental and ecological conditions and on other features that are encoded in the

genomic background. For most parts of our theory, this distribution will not explicitly

enter  the derivations.  In the simulations (chapter 3),  we use an exponential  distribu-

tion for ΡH f L, and - where explicitly stated - a Weibull-distribution [58], parametrized

by two parameters Ζ and Κ: 

(3)ΡH f L =
Κ

Ζ

f

Ζ

Κ-1

ã-H f �ΖLΚ
,

which  is  shown  in  Figure  1.  For  Κ � 1,  this  distribution  is  exponential  with  mean

f � Ζ.  For  Κ < 1,  the  tail  falls  off  slower  than  exponential,  whereas  Κ > 1  yields  a

steeper  tail.  For  general  values  of  the  shape  parameter  Κ,  the  mean  fitness  of  this

distribution is  directly connected to Ζ  and Κ  via  f � Ζ GH1 + 1 � ΚL.  To uniquely refer

to a given distribution, I will use the parameter pair f  and Κ, rather than Ζ  and Κ. The

shape  parameter  Κ  controls  how  similar  the  selection  coefficients  of  mutations  are:

the higher Κ, the more similar the fitness effects. This has consequences for the dynam-

ics, as will be discussed in section 3.5.
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ò Figure 1. Distributions of fitness effects. This plot shows the distribution of selection
coefficients,  ΡHf L,  given  by  equation  3,  for  three  different  shape  parameters
and a mean selection coefficient 2 N f � 50.

The Weibull-distribution has the advantage that  it  is  numerically easy to  create  ran-

dom deviates from it: The cumulative probability density

(4)WH f L = à
0

f

ΡH f L â f = 1 - ã-H f �ΖLΚ

can be trivially inverted:

(5)W-1HxL � Ζ log
1

1 - x

1�Κ

Random  deviates  are  obtained  by  drawing  uniform  continuous  deviates  from  the

interval x Î @0; 1D and transforming via equation 5. 

Time-dependent additive fitness landscape  

I  now  extend  the  simple  fitness  landscape  (equation  2)  to  include  time-dependent

selection.  This  time-dependence  can  be  caused  by  changing  external  conditions,  by

changing ecological pressure or even by other genes or genomic features that change

inside  the  genomic  background  (epistatic  fitness  interactions).  A  minimal  time-

dependence  of  the  fitness  landscape  was  suggested  by  Mustonen  and  Lässig  [48]

where a single locus with two-alleles evolves under “selection flips”. A selection flip

changes  the  preferred  allele  to  the  unpreferred  allele  and  vice  versa,  but  keeps  the

amplitude of selection, i.e. the fitness difference between the two alleles unchanged.

Here  we  use  this  concept  to  extend  the  multi-locus  fitness  landscape  defined  in

equation 1:
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equation 1:

(6)FHa, tL � 1

2
â
j�1

L

a j f j Η jHtL

where  Η j HtL � 8-1, 1<  are  j  independent  stochastic  processes,  each  with  the  same

“flip rate” Γ: 

(7)Η jHtL � 0 and Η j HtL Ηk Ht¢L � ∆ j k e-Γ t-t¢
.

Note  that  this  particular  time-dependent  fitness  landscape  presents  a  minimal  model

in the sense that it is the simplest time-dependent fitness landscape that is still analyti-

cally tractable. It generates a surplus of beneficial over deleterious fixations, which is

an essential non-equilibrium property of adaptation. 

Epistatic fitness landscape  

The additive fitness landscapes above have the important property that fitness effects

of mutations at one site j are independent of mutations at another site k. In real popula-

tions,  this  independence cannot  strictly  hold.  In  a  protein,  for  example,  the  encoded

three-dimensional  structure  introduces  dependencies  between  distant  sites.  These

dependencies  are  called  epistasis  and  can  be  very  complex.  Here,  we  consider  a

simple  extension  of  our  additive  fitness  landscapes  that  introduces  epistatic  interac-

tions between loci, which has been suggested as “pairwise epistatic model” by Neher

and Shraiman [53]. In addition to the additive part of the fitness landscape, we con-

sider a pairwise term that includes all possible pairwise interactions in the sequence: 

(8)FHa, tL � 1

2
â
j�1

L

a j f j Η jHtL + e â
j<k

a j ak f j k.

It has two fitness components: the familiar additive component presented before, and

an  additional  non-additive  (epistatic)  component  with  individual  terms  f j k  for  all

pairwise allele combinations. The tunable parameter e controls the relative weight of

the  epistatic  component.  Here,  we  fill  the  matrix  f j k  with  normally  distributed  ran-

dom  numbers  with  mean  0  and  variance  1.  This  fitness  landscape  is  analyzed  in

section  3.5,  where  we  show  that  epistasis  does  not  have  a  sizable  influence  on  our

results.
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Rates and dynamical regimes

Our model crucially depends on two rates: the mutation rate Μ determines the rate of

allelic mutations ai j ® -ai j,  and the flip rate Γ  determines the rate of selection flips

Η j ® -Η j.  Two  dynamical  regimes  are  distinguished  by  the  mutation  rate:  For

Μ N ` 1, each locus is fixed most of the time and polymorphisms need to be consid-

ered only in order to compute the transition probabilities between these fixed states.

In  contrast,  if  ΜN > 1,  each  locus  is  polymorphic  at  each  locus  most  of  the  time,

which results in entirely different dynamics than a sequence of substitutions between

fixed states. In this thesis, we only consider the regime, in which Μ N ` 1, because it

is  relevant  for  many  natural  populations  [19].  Note  however,  that  the  genomewide

mutation  rate,  Μ N L,  can  still  be  much  larger  than  1,  which  results  in  simultaneous

substitution events than interfere with each other and influence fixation probabilities.

Another important parameter combination is given by Γ � IΜ N f M, which governs the

speed  with  which  the  fitness  seascape  changes  its  shape.  We  can  again  distinguish

two  regimes,  defined  by  comparing  this  parameter  combination  with  1.  For

Γ ` Μ N f ,  selection  flips  occur  with  a  rate  that  is  much  lower  than  the  rate  with

which beneficial mutations arise and fix ( ~ Μ N f ) in the population. In other words,

with  a  flip  rate  that  is  low in  the  sense  defined  here,  flip  dynamics  do  not  interfere

with substitution dynamics and we expect selected sites to substitute with rate Γ (see

equation  24  and  below).  The  other  dynamical  regime,  in  which  Γ t Μ N f  is  gov-

erned by fast fluctuating selection [49], which is not studied here.

As  discussed,  we  restrict  the  mutation  rate  to  the  regime  Μ N ` 1.  As  a  result,  the

state of the population is determined by the probabilities of fixed states

(9)Λ+H f L + Λ-H f L » 1,

where  Λ+H f L  is  the  probability  that  a  site  with  selection  coefficient  f  is  fixed  at  the

beneficial  allele,  and Λ-H f L  is  the probability that it  is  fixed at  the deleterious allele.

We will refer to the fixed state probabilities as genome state.
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beneficial  allele,  and Λ-H f L  is  the probability that it  is  fixed at  the deleterious allele.

We will refer to the fixed state probabilities as genome state.

We  expect  our  model  to  be  applicable  to  microbial  laboratory  populations,  which

often fall into the range of evolutionary parameters covered by this study. For exam-

ple,  the  population-  and  genome-wide  mutation  rate  in  an  E.coli  population  of  size

N = 105 is Μ N L = 250 [19]. Our simulations cover system sizes up to Μ N L = 2000.

Mutations and substitution rates  

The genome state determines the fraction of mutations that are beneficial or deleteri-

ous.  As  an  example,  in  a  perfectly  adapted  population  with  Λ+ H f L � 1  for  all  f ,  all

new  mutations  are  deleterious.  In  general,  the  distribution  of  mutations  can  be

expressed as

(10)UHΣL = ¶ ΡHΣL Μ L Λ-HΣL Σ > 0

ΡH Σ¤L Μ L Λ+H Σ¤L Σ < 0.

Substitutions take place with a rate VHΣL, which is given by the product of the muta-

tion rate UHΣL and the fixation probability GHΣL:

(11)VHΣL = N UHΣL GHΣL.

To  compute  this  fixation  probability  is  the  key  challenge  of  the  analysis  of  this

model:  Without  interference,  the  fixation  probability  is  given  by  Kimura’s  well

known formula [41]

(12)G0HΣL =
1 - ã-2 Σ

1 - ã-2 N Σ
,

which  is  determined  by  selection  and  genetic  drift.  This  famous  equation  has  three

important  limits:  Strongly  deleterious  mutations  have  an  exponentially  decreasing

fixation  probability:  G0HΣL ® 2  Σ¤ � expH-2 N ΣL.  Neutral  mutations  have  a  fixation

probability  G0H0L = 1 � N.  Beneficial  mutations  fix  with  a  linear  probability

G0HΣL ® 2 Σ, which can also be derived from branching process arguments [30, 5].

Linkage interferences

Under linkage, new mutations are not only influenced by selection and genetic drift,

but  also by mutations at  linked loci.  These mutations introduce interference interac-

tions  that  have  severe  consequences  on  the  dynamics  of  these  sites,  even  under  the

simple additive fitness landscapes considered here. The complexity of these interfer-

ence interactions is reflected by the long history of the subject in population genetics

literature,  which  dates  back  to  Fisher  and  Muller  in  the  1930's  [25,  46].  The  key

observation of the Fisher-Muller theory is that in the absence of recombination, two

mutations can both reach fixation only if the second mutation occurs in an individual

that already carries the first. In other words, mutations occurring in different individu-

als interfere with each other. Interference inevitably causes a fraction of all mutations

to be lost, even if they are beneficial and have already reached substantial frequencies

in  the  population  (i.e.,  have  overcome  genetic  drift).  Following  a  further  seminal

study,  the  interference  between  linked  mutations  is  commonly  referred  to  as  Hill-

Robertson effect  [35].  This  term is  also used more broadly to  describe the interplay

between linkage and selection: interference interactions reduce the fixation probabil-

ity of beneficial  mutations and enhance that  of deleterious ones.  Hence, they reduce

the effect of selection on substitution rates [24, 5]. More recently, a number of theoret-

ical  and  experimental  studies  have  addressed  evolution  under  linkage,  focusing  on

particular interaction types that are shown schematically in Figure 2 and summarized

in the following:
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particular interaction types that are shown schematically in Figure 2 and summarized
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è Clonal interference: Two beneficial mutations that appear on different genetic 

backgrounds can not both fix in the population. Instead, one of the two 

mutations will eventually be outcompeted by the other. This effect on average 

results in a loss of beneficial mutations in comparison to unlinked loci [28, 55, 

77, 57]. 

è Multiple mutations: The opposite effect of clonal interference occurs if the 

second beneficial mutation appears on the same background like the first 

beneficial mutation. This effect has been mainly described via traveling wave 

theory [64, 32, 18].

è Hitchhiking of neutral mutations: A new beneficial mutation appears on a 

genetic background with other neutral mutations already present. If the 

beneficial mutation fixes, neutral mutations in its background will “hitchhike” 

to fixation. This effect has been mainly used to describe the removal of neutral 

diversity by linked positive selection (“genetic draft”) [72, 6, 29, 40, 34, 2, 76].

è Hitchhiking of deleterious mutations: Even strongly deleterious mutations can 

fix in the population by hitchhiking with linked beneficial mutations [8, 33].
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è Background selection: If a beneficial mutation appears on a genetic 

background that carries a strongly deleterious mutant, the beneficial mutation 

will have a reduced probability of fixation [11, 39, 37, 12, 13, 3]

Although this summary is not an exhaustive description as we only considered pair-

wise interference effects, it is already clear that the fixation probability of both benefi-

cial, neutral or deleterious mutants can be strongly affected by linkage, which will be

quantified in chapter 2.
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L

ò Figure 2. Interference  interactions  of  mutations  in  linked  genomes.  Here  we
schematically  show  a  population  of  N  individuals  with  two-nucleotide
genomes  of  length  L.  In  a  non-recombining  genome,  this  process  is
governed  by  positive  and  negative  interference  interactions  between
beneficial (green), neutral (blue), and deleterious mutations (red). The figure
shows  five  mutations  simultaneously  present  in  the  population;  their
expected frequency changes in the absence of genetic linkage are indicated
by  arrows.  The  fitness  contribution  of  each  mutation  additively  effects  the
fitness  of  all  individuals  carrying  that  mutation,  which  is  indicated  by  the
background  color  of  the  sequences.  Linkage  introduces  the  following
interactions:  allele  1  may  be  driven  to  fixation  by  allele  2  (hitchhiking  of  a
neutral mutation), alleles 2 and 3 enhance each other’s probability of fixation
(positive interference between beneficial mutations), alleles 3 and 4 compete
for fixation (negative interference between beneficial mutations), allele 4 may
be driven to loss by allele 5 (background selection), or allele 5 may be driven
to fixation by allele 4 (hitchhiking of a deleterious mutation). 

1.2 Adaptive dynamics

Degree of adaptation and fitness flux

We  introduce  two  observables  that  characterize  the  efficiency  of  the  adaptive  pro-

cess. First, the degree of adaptation is defined as

(13)ΑH f L = Λ+H f L - Λ-H f L

and  as  such  is  a  number  between  0  and  1.  Note  that  randomly  fixed  sites  have

Λ+H f L = Λ-H f L = 1 � 2  and  hence  ΑH f L = 0.  In  contrast,  sites  with  perfect  adaptation

have Λ+ = 1 and Λ- = 0 and hence ΑH f L = 1. The total degree of adaptation is defined

as a weighted average across all sites:
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(14)Α =
1

f
à

0

¥

ΑH f L ΡH f L f â f ,

A more intuitive definition of the degree of adaptation can be obtained as follows. By

equation 2, we can write the mean fitness of the population as

(15)

XF\ =
1

2
â
j=1

L

Xa j\ f j

=
L

2
à

0

¥

HΛ+H f L - Λ-H f LL ΡH f L f â f =
L

2
à

0

¥

ΑH f L ΡH f L f â f = L f Α � 2.

In  a  similar  way,  we  also  define  the  fitness  of  a  perfectly  adapted  population

XFmax\ = L f � 2  and  the  fitness  of  a  population  of  random  sequences,  which  in  our

fitness landscape is zero, XF0\ = 0. We can then define the degree of adaptation in a

way that is applicable to general fitness landscapes:

(16)Α =
XF\ - XF0\

XFmax\ - XF0\

which is closely related to various concepts of genomic loads, introduced by Haldane

and others [30, 31, 47]. Equation 16 yields the intuitive interpretation of 1 - Α as the

normalized  “distance” of  a  population  to  the  global  fitness  optimum.  Due  to  muta-

tions  and  drift,  this  distance  will  always  be  non-zero  (i.e.  Α < 1),  since  deleterious

mutations  lower  a  population’s  fitness  and  hence  lower  Α.  Linkage  interferences

increase this effect as we will see in chapter 3.

As  a  second  observable,  we  define  the  fitness  flux,  which  has  been  introduced  by

Mustonen  and  Lässig  [48]  as  a  measure  of  the  speed  of  adaptation.  In  the  above

described regime of Μ N ` 1, it can be defined via the substitution rate VHΣL, defined

by equation 11:

(17)FH f L = f HVH f L - VH- f LL.

The total fitness flux is defined as an integral over all sites:
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(18)F = à
0

¥

FH f L â f = V ΣV ,

with the total substitution rate V  and the average selection coefficient of fixed muta-

tions ΣV .

In  general,  under  time-dependent  selection,  the  state  probabilities  Λ+H f L  and  Λ-H f L
change  according  to  a  Markov-process  in  time  due  to  selection  flips  and  substitu-

tions. The master equation of this process reads [68]:

(19)
â

â t
Λ+H f L =

1

L Ρ H f L
@VH f L - VH- f LD + Γ@Λ+H f L - Λ-H f LD = -

â

â t
Λ-H f L.

Here,  VHΣL  depends  on  the  mutation  rate  via  equation  (11)  and  hence  -  via  the

genome state - on time. The full dynamics are thus quite complex. Before we discuss

special  cases,  it  will  prove  useful  to  rewrite  equation  (19)  in  terms  of  the  above

introduced degree of adaptation and the fitness flux:

(20)FH f L = L ΡH f L f
1

2

â ΑH f L
â t

+ Γ ΑH f L

and

(21)F = L f
1

2

â Α

â t
+ Γ Α .

These  two  equations  show  that  fitness  flux  and  degree  of  adaptation  are  intuitively

connected:  The  degree  of  adaptation  describes  the  adaptive  state  of  the  population,

while  the  fitness  flux  describes  the  adaptive  process  that  changes  this  state.  This

connection  becomes  clear  when  we  now  focus  on  two  particular  special  cases  of

equations 20 and 21.

Stationary adaptation in a fitness-seascape

Stationary  adaptation  is  achieved,  if  the  substitution  rates  become  stationary  and

exactly balance the time-dependence of the fitness function. From equation (19) and

(11) it follows from â Λ±H f L � â t = 0:
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(22)Λ+H f L =
N GH f L + Γ � Μ

N GH f L + N GH- f L + 2 Γ � Μ
= 1 - Λ-H f L.

Equation  22  links  the  fixation  probabilities  GH± f L  to  the  genomic  state  Λ±H f L.  The

more  efficient  the  fixation  process  is  in  fixing  beneficial  mutations  and  removing

deleterious mutations, the higher is the probability of observing a given genomic site

at its fitter state, Λ+H f L and vice versa for Λ-H f L. 

Note  that  under  strong  selection  2 N f p 1  and  a  low  rate  of  selection  flips

Γ ` Μ N f  and no interference effects, we can set GH f L~2 f  and GH- f L = 0 and get

(23)Λ+H f L » 1, Λ-H f L =
Γ � Μ

2 N f

and hence

(24)FH f L = Μ N f HΛ-H f L GH f L + Λ+H f L GH- f LL » Γ f

with  the  total  substitution  rate  ~Γ  [48].  This  result  intuitively  reflects  that  under

efficient fixation processes, substitutions occur with a rate equal to the rate of selec-

tion flips.

A more general characterization of the stationary dynamics follows from equation 21:

(25)F = L f Γ Α = Α Fmax,

where Fmax = L f Γ is the maximally possible fitness flux, in which all L sites substi-

tute after each flip (with rate Γ) and contribute an average increase f  to the popula-

tion’s  mean  fitness.  Hence,  the  degree  of  adaptation,  although  defined  via  the

genomic state, also serves as the realized fraction of the fitness flux in comparison to

the optimal flux. This also means that any evolutionary mechanism that slows down

evolution  due  to  interference  effects  (clonal  interference,  multiple  mutations,  back-

ground selection) also degrades the genomic state,  as will  become clearer in section

3.3.

Approach to stationary equilibrium

In  this  scenario,  we  consider  a  static  fitness  landscape,  that  is  time-independent.  In

this  case,  the  stationary solution necessarily  has  fitness  flux zero,  following directly

from equation  21  with  Γ = 0.  We  are  in  this  case  therefore  more  interested  in  non-

stationary  adaptation,  such  as  the  approach  to  a  mutation-selection-drift  equilibrium

state.  In  this  case,  it  follows  from  equation  21  that  the  fitness  flux  is  simply  the

change in Α
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(26)F =
f L

2

â Α

â t
=

â XF\
â t

,

where  the  right  hand  side  of  this  equation  follows  from equation  15  and  intuitively

interprets the fitness flux as the speed of adaptation as it is traditionally defined. It is

simply the rate of increase of the mean fitness XF\.  An approach to equilibrium is a

relevant  scenario  for  laboratory  evolution  experiments,  in  which  populations  of

bacteria are evolved to adapt to some environment that is constant in time [4].
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2 Fixation probability under linkage    

In  this  chapter,  we  derive  the  fixation  probability  of  mutations  under  linkage.  Our

result  applies to beneficial,  neutral and deleterious mutations under general distribu-

tions  of  fitness  effects.  The  full  solution  is  a  self-consistent  summation  of  linkage-

interferences and can be approximated by analytical expressions. 

2.1 Pairwise interaction diagrams

Consider  the  situation  from  figure  2,  where  many  linked  mutations  simultaneously

segregate in the population and interfere with each other. We first classify the differ-

ent  pairwise  interference  interactions,  shown  in  figure  2,  systematically.  We  distin-

guish  a  target  mutation  from an interfering mutation:  the  target  mutation  is  the  one

that we want to compute the fixation probability for, while the interfering mutation is

a passive part of our calculation. This asymmetry is necessary to close the formalism,

as  will  become  clear  later.  We  identify  five  different  binary  criteria  that  the  two

interacting mutations can be classified by:  

è Time ordering: the target mutation appears before of after the interfering 

mutation. 

è Selection sign of the interfering mutation: the interfering mutation can be 

beneficial or deleterious. 

è Selection sign of the target mutation: also the target mutation can be either 

beneficial or deleterious. 

è Selection strength: the interfering mutation can have a larger or smaller 

absolute selection coefficient than the target mutation. 

è Allele association: interfering mutation and target mutation can be linked on 

the same or on a different genotypic background. 

These five binary criteria yield 25 = 32 different pairwise interaction scenarios. To be

able  to  illustrate  these  interaction  scenarios  with  reasonable  overview,  we  drop  two

of  the  above  criteria:  First,  we  will  only  consider  those  interference  interactions,  in

which  the  interfering  mutation  has  a  larger  absolute  selection  coefficient  than  the

target mutation, which is justified because weaker interfering mutations have a negligi-

ble effect on the target mutation. We refer to this assumption as the hierarchy assump-

tion. Second, we will keep the sign of the selection coefficient of the target mutation

undetermined in the diagrams. In systematically illustrating all pairwise interactions,

this  leaves  23 � 8  different  interference  scenarios.  Of  these  8  types,  we  show  6  in

Figure 3, leaving out the case of future deleterious interfering mutations, since these

can never affect the fixation probability of the target mutation: Because future deleteri-

ous  mutations  will  only  affect  a  subpopulation  of  individuals  that  already  carry  the

target  mutation,  there  will  always  remain  a  fitter  larger  subpopulation  not  carrying

the interfering deleterious mutation.
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ò Figure 3. Linkage Interaction diagrams. A target mutation with origination time Τ and
frequency xHtL  (black arrow) is subject to a stronger interfering mutation with
origination  time  Τ '  and  frequency  x ' HtL  (colored  arrow).  The  interactions
between this pair of mutations can be classified as follows: (a,b)  Interference
by  a  deleterious  background  mutation  (red  arrow):(a)  The  target  mutation
originates on the deleterious allele of the interfering mutation and is driven to
loss,  (b)  the  target  mutation  originates  on  the  ancestral  (beneficial)  allele  of
the interfering mutation and is enhanced in frequency. (c,d) Interference by a
beneficial  background  mutation  (green  arrow):  (c)  The  target  mutation
originates on the beneficial allele of the interfering mutation and is enhanced
in  frequency,  (d)  the  target  mutation originates on  the  ancestral(deleterious)
allele of  the interfering mutation and is driven to loss.  (e,f)  Interference by a
beneficial  future  mutation  (green  arrow):  (e)  The  interfering  mutation
originates on the new allele of the target mutation and drives it to fixation, (f)
The interfering mutation originates on the ancestral background of the target
locus and drives the target mutation to loss. 

In the following, we compute the conditional fixation probability GHΣ, Τ Σ ', Τ 'L of a

target  mutation with selection coefficient  Σ  and origination time Τ,  which is  subject

to an interfering mutation with selection coefficient Σ ' and origination time Τ ', for the

different cases of Figure 3:

è a, b: Interference by deleterious background mutations (Τ ' < Τ and 

Σ ' < 0 <  Σ¤),

è c, d: Interference by beneficial background mutations (Τ ' < Τ and Σ ' >  Σ¤ > 0)

è e, f: Interference by beneficial future mutations (Τ ' > Τ and Σ ' >  Σ¤ > 0)

We  neglect  the  effects  of  interference  mutations  weaker  than  the  target  mutations

(-  Σ¤ < Σ ' <  Σ¤), which is consistent with the hierarchy approximation. Note that we

treat the fate of the target mutation probabilistically, while we treat interfering muta-

tions  as  destined  for  fixation  or  extinction,  depending  on  the  sign  of  their  selection

coefficient.
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Interference by deleterious background mutations
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The  diagrams  of  Figure  3  (a,b)  describe  background  selection  caused  by  strongly

deleterious alleles originating before the target mutation. We assume for now that at

the time where the target mutation appears, Τ, the frequency of the background allele

is  at  frequency  x '  with  some  probability  QHx '; Τ ', Σ 'L.  For  a  given  frequency  x ',  we

can  then  simply  give  the  probabilities  for  positive  (a)  or  negative  (b)  interference:

Case a) occurs with probability x ', while b) occurs with probability 1 - x '. Following

our deterministic assumption of interfering mutations, the first case results in the loss

of the target mutation. Case b), however results in a small boost of the frequency of

the  target  mutation,  because  the  target  mutation  will  gain  a  small  advantage  by  the

loss of a deleterious genotype not linked to it,  as indicated in diagram b). Given the

quick  loss  of  the  interfering  mutation,  we  can  model  this  frequency  boost  as  an

increase  of  the  initial  frequency  of  the  target  mutation  by  a  factor  1 � H1 - x 'L.
Together  with  the  probability  for  case  b)  to  occur  in  the  first  place,  the  resulting

fixation probability of the target mutation is then

(27)GHΣ, Τ Σ ', Τ 'L = à
0

1

QHx '; ΣL H1 - x 'L G0
1

1 - x '
, Σ â x '

with Kimura’s unlinked fixation probability:

(28)G0Hx0, ΣL =
1 - ã-2 N Σ x0

1 - ã-2 N Σ
,

from  which  equation  12  is  derived  as  the  special  case  x0 = 1 � N.  We  can  test  the

model of the frequency boost numerically by a simple Wright-Fisher model with the

three haplotypes of diagram 3b:
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from  which  equation  12  is  derived  as  the  special  case  x0 = 1 � N.  We  can  test  the

model of the frequency boost numerically by a simple Wright-Fisher model with the

three haplotypes of diagram 3b:

è the wildtype (WT) with fitness 0.

è WT + target mutation with fitness Σ.

è WT + background mutation with fitness Σ '.

The  fixation  probability  increase  by  diagram  (b)  can  now  be  tested  against  simula-

tions,  as  shown  in  Figure  4.  For  small  frequencies  of  the  background  mutation,  the

prediction is very accurate, but deviates for large background frequencies and hence

strong boosts. This is expected, because we assumed an immediate extinction of the

interfering  mutation,  which  overestimates  the  effect  for  larger  initial  frequencies  of

the background allele.
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ò Figure 4. Frequency  increase  of  a  target  mutation  by  deleterious  background
mutations.  We  plot  the  fixation  probability  of  a  beneficial  target  mutation
2 N Σ = 10 with a strongly deleterious background mutation with 2 N Σ ' = -50,
that is not linked to the target mutation and initially present with frequency x '.
The  target  mutation  has  initial  frequency  x0 = 0.01.  The  dots  are  simulation
results,  the  blue  dashed  line  is  the  expected  fixation  probability  without
background  selection,  the  red  line  is  the  theory  prediction  by  the  frequency
increase G0Hx0 � H1 - x 'L, ΣL. The population size is N = 1000.

Because the interfering mutation is deleterious, its frequency distribution QHx '; Τ ', ΣL
is dominated by very small frequencies x ' ` 1, for which our prediction is shown to

be very accurate.
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Because the interfering mutation is deleterious, its frequency distribution QHx '; Τ ', ΣL
is dominated by very small frequencies x ' ` 1, for which our prediction is shown to

be very accurate.

For Σ ³ 0 and x ' ` 1, the fixation probability G0Hx0, ΣL » 2 Σ is in good approxima-

tion  linear  in  its  first  argument.  In  that  case,  the  factor  H1 - x 'L  cancels  out  and  we

recover  the  unlinked  fixation  probability  GHΣ, Τ Σ ', Τ 'L = G0H1 � N, ΣL.  This  argu-

ment  does  not  apply  to  deleterious  target  mutations,  but  this  case  can  be  neglected

because  G0Hx0, ΣL  is  exponentially  small  for  Σ < 0,  even  including  a  boost  in  the

initial frequency.

The effects of background selection have been subject to a large number of articles.

Often,  these  studies  find  that  background  selection  in  fact  retains  a  substantial  net

effect on the fixation probability of a target mutation [59, 5, 55]. These studies typi-

cally  assume  a  mutation-selection  balance  of  many  deleterious  mutations,  with  a

constant  deterministic  influx  of  deleterious  mutations.  For  this  case,  an  argument

from  Fisher  [25]  shows  that  the  fixation  probability  of  a  beneficial  mutation  is

reduced (see [5] and [55]) by a factor expH-Ud � ΣdL,  where Ud  is the rate and Σd  is

the selection coefficient of deleterious mutations.

In  our  model,  Fisher's  argument  does  not  hold,  for  two  reasons:  i)  because  of  the

presence  of  adaptive  substitutions  (selective  sweeps),  variance  in  the  population  is

constantly  removed,  hence  a  stationary  mutation-selection  balance  is  never  main-

tained;  ii)  because  we  consider  an  exponential  distribution  of  selection  coefficients,

the number of deleterious mutations that are stronger  in effect than the target muta-

tion,  are  typically  rare  enough  to  be  treated  stochastically,  as  done  in  our  pairwise

interaction scheme using the diagrams of Figure 3.
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Interference by beneficial background mutations

x x'

Τ' Τ

c

x x'

Τ' Τ

d

The diagrams of Figure 3(c,d) describe positive and negative interference by a selec-

tive  sweep  starting  at  time  Τ ' < Τ.  As  in  diagrams  (a,b),  the  interfering  mutation  is

present at the time where the target mutation appears. Given that the frequency of the

interfering mutation is  x '  at  time Τ,  we can again distinguish the two cases:  Case d)

occurs  with  probability  1 - x ',  while  c)  occurs  with  probability  x '.  Both  diagrams

have opposite effect on the fate of the target mutation: d) describes partial  hitchhik-

ing, where the target mutation gets an advantage in the beginning, until the driver is

fixed. Diagram d) results in extinction of the target mutation because we again treat

the  interfering  mutation  deterministically  and  as  destined  to  fix.  Similar  to  diagram

b), we will again model the advantage of partial hitchhiking by a boost of the initial

frequency x0  of the target mutation by a factor 1 � x '.  In contrast to diagram b) how-

ever, this frequency-boost can now be large, when the frequency of the past interfer-

ing mutation is still small at time Τ. Hence, the net effect is non-zero, since the fixa-

tion probability (given by Kimura’s equation 28) is non-linear for large initial frequen-

cies.  Also,  since  the  interfering  mutation  is  beneficial,  we  now  have  to  explicitly

account for the time-dependence on Τ - Τ '. Treating the interfering mutation as deter-

ministic, its frequency x ' at time Τ is given by 

(29)x ' = xdetHΤ - Τ '; Σ 'L =
1

1 + HN - 1L ã-Σ' HΤ-Τ'L ,

which  simply  solves  the  deterministic  evolution  equation  â x � â t = Σ xH1 - xL  (see

[21]) under initial condition xdetH0L = 1 � N. The full fixation probability under partial

hitchhiking of the target mutation is then:
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(30)GHΣ, Τ Σ ', Τ 'L = à
0

1

∆Hx ' - xdetHΤ - Τ '; Σ 'LL x ' G0
1

N x '
, Σ â x ',

where  ∆HxL  is  Dirac's  Delta-distribution  and  G0Hx0, ΣL  is  again  Kimura’s  equation

given by equation 28.

We show a comparison with the simulation scheme described above in Figure 5. The

effect depends in an opposite way on x ' than in Figure 4, because now the advantage

is given by a factor 1 � x ' instead of 1 � H1 - x 'L. The deviation between simulation and

theory increases for small frequencies x ', which corresponds to the case of very short

times Τ - Τ '.
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ò Figure 5. Frequency increase of  a  target  mutation by partial  hitchhiking.  We plot
the  fixation  probability  of  a  beneficial  target  mutation  2 N Σ = 10  on  the
background of  a  strongly  selected mutation with  2 N Σ ' = 50,  initially  present
with  frequency  x '.  The  target  mutation  has  initial  frequency  x0 = 0.01.  The
dots  are  simulation  results,  the  blue  dashed  line  is  the  expected  fixation
probability without background selection, the red line is the theory prediction
by the frequency increase G0Hx0 � H1 - x 'L, ΣL. The population size is N = 1000.

In a previously described model by Otto and Whitlock [56] the fixation probability in

an  expanding  subpopulation  is  computed  explicitly,  which  yields  a  result  that  is

comparable to our approach (see their equation 11). Their result is more accurate than

the  expression  we  provide  above  (expanding  the  initial  frequency  in  Kimura's  for-

mula).  Here,  modeling  the  effect  of  the  expansion  as  an  increase  in  the  initial  fre-

quency is accurate enough. This is true in particular since the dominant interference

effect is provided by future interfering mutations and not by background mutations.
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In a previously described model by Otto and Whitlock [56] the fixation probability in

an  expanding  subpopulation  is  computed  explicitly,  which  yields  a  result  that  is

comparable to our approach (see their equation 11). Their result is more accurate than

the  expression  we  provide  above  (expanding  the  initial  frequency  in  Kimura's  for-

mula).  Here,  modeling  the  effect  of  the  expansion  as  an  increase  in  the  initial  fre-

quency is accurate enough. This is true in particular since the dominant interference

effect is provided by future interfering mutations and not by background mutations.

Interference by future beneficial mutations
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x x'
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Finally, the diagrams of Figure 3(e,f) describe positive and negative interference by a

selective  sweep  starting  at  time  Τ ' > Τ.  These  two  diagrams  are  different  from  the

diagrams  (a-d),  because  we  now  consider  the  case  where  the  interfering  mutation

appears  after  the  target  mutation,  Τ ' > Τ.  In  contrast  to  the  previous  cases,  we  now

have to take into account the time-evolution of the target mutation explicitly. For that

purpose, we will make use of the propagator G0Hx, Τ ' - Τ; x0, ΣL, by which we denote

the probability,  that  a polymorphism that  appeared at  time Τ  with frequency x0  with

selection coefficient Σ will have reached frequency x at time Τ '. Given this propaga-

tor, we can again simply distinguish between the two cases e) and f): Case (e) occurs

with  probability  x G0Hx, Τ ' - Τ; x0, ΣL,  while  case  f)  occurs  with  probability

H1 - xL G0Hx, Τ ' - Τ; x0, ΣL.  Because  of  the  deterministic  nature  of  the  interfering

mutation, the first case results in fixation of the target mutation by complete hitchhik-

ing,  while  the  second case  results  in  extinction of  the  target  mutation.  We therefore

obtain the hitchhiking probability as an integral over all frequencies x:

(31)GHΣ, Τ Σ ', Τ 'L = à
0

1

x G0Hx, Τ ' - Τ; x0, ΣL â x.

As will be derived in section 2.2, this integral can be solved in the diffusion approxi-

mation (equations 41 and 42). We get

Adaptive Evolution in Linked Genomes  31



(32)

GHΣ, Τ Σ ', Τ 'L =

G0Hx0, ΣL � I1 + ã-Σ
` HΤ'-ΤLIG0Hx0, ΣL x0

-1 - 1MM for Σ > 0

x0 ãΣ
` HΤ'-ΤL + I1 - ãΣ

` HΤ'-ΤLM G0Hx0, ΣL for Σ < 0
.

The regularized selection coefficient Σ̀ is a shorthand for the crossover from strong to

weak  selection:  Σ̀ > Σ  for  N Σ t 1  and  Σ̀ > 1 � 2 N  for  N Σ d 1.  The  exact  form  of

this crossover is not important. Here we choose

(33)Σ̀ = ¶ 1 � 2 N for N Σ £ 1

Σ for N Σ > 1.

2.2 Single site propagator

The missing piece in  the evaluation of  the pairwise interaction diagrams is  the inte-

gral in equation 31, which describes the time evolution of the mean allele frequency.

Here  we  derive  a  solution  within  the  diffusion  approximation.  The  Fokker-Planck

equation for a single site under drift and selection reads: 

(34)¶t G = B
1

2 N
¶x

2 HxH1 - xLL - Σ ¶x HxH1 - xLLF G.

To derive an expression for the integral MHt, x0, ΣL = Ù0

1
x G0Hx, Τ ' - Τ; x0, ΣL â x, we

multiply equation 34 with x and integrate by parts, neglecting boundary terms:

(35)¶t à
0

1

x G â x = Σ à
0

1

xH1 - xL G â x

or

(36)¶t M = Σ M - à
0

1

x2 G â x

We introduce the centered second moment M2 = ΣJÙ0

1
x2 G â x - M2N to write

(37)¶t M = Σ MH1 - ML - M2.

An  exact  solution  of  this  equation  can  not  be  given,  since  M2  depends  on  the  third

moment of G,  which itself  depends on the fourth moment,  and this infinite chain of

dependencies is not closed. We therefore make an heuristic ansatz for the solution of

equation 37, which is motivated by the known limits of the solution: First, for t = 0,

the variance term M2  must vanish, because G is a Green’s function and has the initial

condition  GHx, 0; x0, ΣL = ∆Hx - x0L.  We  then  see  from  equation  37  that  M  evolves

logistically with initial value MH0L = x0. Secondly, for times larger than the character-

istic  polymorphism  lifetime  ~1 � Σ,  any  polymorphism  initially  present  will  have

gone extinct or fixed. Therefore, G must become stationary after time ~1 � Σ and will

consist of two delta peaks at 0 and 1 with weights reflecting the fixation probability

G0.
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equation 37, which is motivated by the known limits of the solution: First, for t = 0,

the variance term M2  must vanish, because G is a Green’s function and has the initial

condition  GHx, 0; x0, ΣL = ∆Hx - x0L.  We  then  see  from  equation  37  that  M  evolves

logistically with initial value MH0L = x0. Secondly, for times larger than the character-

istic  polymorphism  lifetime  ~1 � Σ,  any  polymorphism  initially  present  will  have

gone extinct or fixed. Therefore, G must become stationary after time ~1 � Σ and will

consist of two delta peaks at 0 and 1 with weights reflecting the fixation probability

G0.

(38)GHx, t, x0, ΣL tt1�Σ H1 - G0L ∆HxL + G0 ∆H1 - xL,

and hence

(39)M2
tt1�Σ

G0H1 - G0L.

For the stationary first moment we get

(40)¶t Mstat = 0 � Mstat = G0

Knowing  these  two  boundary  cases  and  given  the  logistic  form  of  the  differential

equation  37,  we  choose  a  logistic  equation  for  beneficial  and  an  exponential  for

deleterious mutations:

(41)M+Ht, x0, ΣL =
G0Hx0, ΣL

1 + ã-Σ
`

tIG0Hx0, ΣL x0
-1 - 1M

and

(42)M-Ht, x0, ΣL = x0 ã-Σ
`

t + I1 - ã-Σ
`

tM G0Hx0, -ΣL

with  the  standard  Kimura  fixation  probability  G0,  given  by  equation  28  and  the

regularized  selection  coefficient  introduced  in  equation  33.  Note  that  both  of  these

equations yield the correct limit M±Ht, x0, ΣL ® G0Hx0, ΣL. This limit reflects that the

target mutation is only interfered, if  the second mutation appears within the lifetime

of the target mutation. The heuristic predictions from equations 41 and 42 agree very

well with simulations, as shown in Figure 6.
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ò Figure 6. Single site propagator. This plot shows the mean frequency of a beneficial
(a)  and  deleterious  (b)  mutation  as  a  function  of  time,  measured  in
generations. Black circles are data obtained from simulations, red solid lines
are the theory predictions of equations 41 and 42. Simulation data has been
obtained  from  many  trajectories  started  with  different  random  seeds.  Error
bars  indicate  the  standard  error  of  the  mean.  Parameters:  N = 1000,
2 N Σ = 10, x0 = 10 �N.

2.3 From pairwise to many locus interactions

Rate of drivers

We now derive an approximate expression for the total fixation probability of a target

mutation  based  on  pair  interactions  with  multiple  interfering  mutations.  Clearly,  a

straightforward “cluster expansion” makes only sense in a regime of dilute  events at

sufficiently  low  rates  of  beneficial  mutations,  where  the  interference  interactions  of

Figure  3(c-f)  are  infrequent.  However,  we  are  primarily  interested  in  adaptive  pro-

cesses  under  linkage  in  the  dense-interactions  regime  at  high  rates  of  beneficial

mutations  (the  crossover  between these  regimes  is  further  quantified  below).  In  this

regime,  dense  beneficial  mutations  generate  strongly  correlated  clusters  of  fixed

mutations  nested  in  each  other's  background,  called  selective  sweeps.  This  nesting

has  the  simple  topological  reason  that  without  recombination,  no  two  beneficial

mutations can fix simultaneously if they are not nested in the same cluster. We treat

the dense-interactions regime by an approximation: Each sweep is associated with a

unique driver mutation,  which is the strongest beneficial mutation in its cluster. The

driver  mutation  itself  evolves  free  of  interference,  but  it  influences  other  mutations

by interference; that is, we neglect the feedback of weaker beneficial and deleterious

mutations  on  the  driver  mutation.  This  hierarchy  approximation  has  already  been

anticipated  in  section  2.1,  where  we  neglected  pairwise  interactions  of  a  weaker

interfering mutation with a stronger target mutation. Here, we use it to derive the rate

of driver mutations.
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mutations  (the  crossover  between these  regimes  is  further  quantified  below).  In  this

regime,  dense  beneficial  mutations  generate  strongly  correlated  clusters  of  fixed

mutations  nested  in  each  other's  background,  called  selective  sweeps.  This  nesting

has  the  simple  topological  reason  that  without  recombination,  no  two  beneficial

mutations can fix simultaneously if they are not nested in the same cluster. We treat

the dense-interactions regime by an approximation: Each sweep is associated with a

unique driver mutation,  which is the strongest beneficial mutation in its cluster. The

driver  mutation  itself  evolves  free  of  interference,  but  it  influences  other  mutations

by interference; that is, we neglect the feedback of weaker beneficial and deleterious

mutations  on  the  driver  mutation.  This  hierarchy  approximation  has  already  been

anticipated  in  section  2.1,  where  we  neglected  pairwise  interactions  of  a  weaker

interfering mutation with a stronger target mutation. Here, we use it to derive the rate

of driver mutations.

The  coherence  time  of  a  selective  sweep  is  set  by  the  fixation  time  of  its  driver

mutation

(43)ΤfixHΣL =
2 logH2 N ΣL

Σ
,

which is  the solution of  equation 29 for  starting frequency x0 = 1 � H2 N ΣL  and final

frequency x = 1 - 1 � H2 N ΣL.  These frequencies determine the regime of determinis-

tic growth, in contrast to the drift dominated boundaries [63]. Since driver mutations

are  by  definition  non-interfering  (because  they  are  the  strongest  mutation  in  their

sweep-cluster),  we  can  treat  their  occurrence  approximately  as  a  Poisson  process.

The sweep rate is then equal to the rate of driver mutations, VdriveHΣL, and is given by

the condition that no stronger selective sweep occurs during the interval ΤfixHΣL. This

condition can be written as a waiting time probability, which is a negative exponential

(44)pdriveHΣL = ã-ΤfixHΣL V>HΣL

with the total rate of stronger driver mutations:

(45)V>HΣL = à
Σ

¥

VdriveH¹L â ¹

and the rate of drivers, which again depends circularly on the driver probability:

(46)Vdrive HΣL = pdriveHΣL G0HΣL UHΣL.

Because of the circular dependence between equations 44, 45 and 46, they have to be

solved self-consistently, which can only be achieved numerically (see section 3.2).

This  self-consistent  solution can be regarded as  a  partial  summation of  higher-order

interference interactions characteristic of the dense-sweep regime [68].

We note that the arguments leading to equations 46 and 44 must be modified, if the

distribution of selection coefficients ΡH f L falls off much faster than exponentially (as

shown numerically  by Fogle  et  al.  [27]).  In  that  case,  selective  sweeps may contain

several  driver mutations of comparable strength.  In section 3.5,  we show simulation

results for non-exponential distributions and show that our approximations still work

to  a  reasonable  degree.  But  we  clearly  expect  our  hierarchy  assumption  to  break

down if selection coefficients become very similar.
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We note that the arguments leading to equations 46 and 44 must be modified, if the

distribution of selection coefficients ΡH f L falls off much faster than exponentially (as

shown numerically  by Fogle  et  al.  [27]).  In  that  case,  selective  sweeps may contain

several  driver mutations of comparable strength.  In section 3.5,  we show simulation

results for non-exponential distributions and show that our approximations still work

to  a  reasonable  degree.  But  we  clearly  expect  our  hierarchy  assumption  to  break

down if selection coefficients become very similar.

We  can  compare  our  derivation  to  the  model  of  clonal  interference  by  Gerrish  and

Lenski [28] (GL), which has some similarities to our approach. The GL-model deter-

mines  an  approximation  of  the  sweep  rate,  VGLHΣL,  by  requiring  that  no  negative

interference by a future mutation occurs (see section 3.3). In GL-theory, the fixation

probability is

(47)GGLHΣL = UHΣL G0HΣL exp -
1

2
ΤfixHΣL à

Σ

¥

UHΣ 'L G0HΣ 'L â Σ ' ,

where  the  fixation  time  is  given  by  equation  43.  The  factor  1 � 2  in  the  exponent

follows from counting only  those  stronger  mutations  that  appear  on  the  background

not carrying the target mutation. Only these mutations decrease the fixation probabil-

ity of the target mutation.

Equation 47 is analogous to equation 44, in which we require that a driver mutation is

not interfered with by any stronger driver mutation. There are, however, two impor-

tant differences: i) Equation 44 has no factor 1 � 2, since we exclude from the driver

rate  those  mutations  that  fix  by  positive  interference  (hitchhiking,  diagram  3e).  In

contrast,  in  GL-theory,  the  only  mode  of  fixation  are  driver  mutations  that  are  not

suffering  negative  interference.  ii)  Equation  44  reflects  a  self-consistent  closure,  in

which  each  interfering  driver  must  itself  be  free  from  even  stronger  interfering

drivers. Therefore, apart from the factor 1 � 2, equation 47 can be seen as a first itera-

tion loop of our self-consistent driver rate (equation 46). Taking into account hitchhik-

ing as a positive outcome of interference dramatically enhances the fixation probabil-

ity  of  weakly  beneficial  mutations  and  in  particular  allows  us  to  compute  the  influ-

ence on deleterious alleles, a case which is not covered by GL-theory.

Full fixation probability

We now evaluate  the  pairwise  interaction  diagrams  from Figure  3  in  the  context  of

the  driver  rate  derived  above.  We  need  to  find  a  way  to  combine  the  different  dia-

grams  into  one  fixation  probability.  We  again  summarize  their  expected  contribu-

tions: diagrams 3a) and b) describe deleterious background selection and we showed

that  positive  and  negative  interference  cancel  out  exactly,  because  of  the  expected

low frequency of background deleterious alleles. Diagrams c) and d) describe interfer-

ence by a past driver mutation and these interactions retain a net effect on the fixation

probability of the target mutation. Finally, diagrams e) and f) describe interference by

future drivers and they have a strong expected contribution.
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We now evaluate  the  pairwise  interaction  diagrams  from Figure  3  in  the  context  of

the  driver  rate  derived  above.  We  need  to  find  a  way  to  combine  the  different  dia-

grams  into  one  fixation  probability.  We  again  summarize  their  expected  contribu-

tions: diagrams 3a) and b) describe deleterious background selection and we showed

that  positive  and  negative  interference  cancel  out  exactly,  because  of  the  expected

low frequency of background deleterious alleles. Diagrams c) and d) describe interfer-

ence by a past driver mutation and these interactions retain a net effect on the fixation

probability of the target mutation. Finally, diagrams e) and f) describe interference by

future drivers and they have a strong expected contribution.

Based  on  the  pairwise  cancellation  of  diagrams  3a)  and  b)  and  the  results  on  the

remaining  diagrams,  we  make  a  combination  ansatz  for  multiple  interaction  scenar-

ios:  We assume that  of  the  many  potentially  interfering  mutations,  exactly  two  will

strongly interfere with the target mutation: the last driver mutation before its origina-

tion  (with  parameters  Σ ' > Σ  and  Τ ' < Τ),  and  the  first  driver  after  its  origination

(with parameters Τ '' > Τ  and Σ '' > Σ). These two drivers affect the fixation probabil-

ity GHΣL in a combined way: the target mutation can only be fixed if it appears on the

background of the last background sweep and if it is itself the background of the first

future  sweep.  The  resulting  conditional  fixation  probability  of  the  target  mutation,

GHΣ, Τ Σ ', Τ ', Σ '', Τ ''L, is a straightforward combination of equations 30 and 31:

(48)

GHΣ, Τ Σ ', Τ ', Σ '', Τ ''L =

à
0

1

â x ' à
0

1

â x ∆Hx ' - xdetHΤ - Τ '; Σ 'LL x ' x G0 x, Τ '' - Τ;
1

N x '
, Σ .

This expression is based on the assumption that the two sweeps act sequentially and

independently,  that is,  the target mutation can only fix if  it  is  free of interference or

positively  interfered  with  by  both  sweeps.  Interactions  between  the  sweeps  them-

selves are neglected (such as rescue of the target mutation by a future sweep, follow-

ing  negative  interference  by  a  past  sweep).  This  is  in  tune  with  our  self-consistent

determination of the sweep rate, which absorbs the overlap exclusion between driver

mutations  (i.e.,  the  condition  Τ '' - Τ ' > ΤfixHΣ 'L)  into  a  reduced  uniform  or  “mean-

field” rate  VdriveHΣL,  given  by  equations  46  and  44.  In  this  approximation,  a  target

mutation  of  selection  coefficient  Σ  is  subject  to  interference  by  stronger  selective

sweeps at a total rate V>HΣL.  We can now integrate equation 48 over past and future

sweeps (i.e., driver mutations) with an exponential distribution of waiting times Τ - Τ '

and Τ '' - Τ,

(49)
GHΣL = à

-¥

Τ

â Τ ' à
Τ

¥

â Τ '' à
Σ

¥

â Σ ' à
Σ

¥

â Σ '' ´

VdriveHΣ 'L VdriveHΣ ''L ã-V>H Σ¤L HΤ''-Τ'L GHΣ, Τ Σ ', Τ ', Σ '', Τ ''L.

The exponential factor is based on an argument similar to the derivation of the driver

probability, equation 44: Driver mutations are by construction independent and form

a  Poisson  process,  so  the  waiting  time  between  drivers  is  again  exponential.  Using

equation 32, the integrations over Σ '' and Τ '' can be treated analytically, and we obtain
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The exponential factor is based on an argument similar to the derivation of the driver

probability, equation 44: Driver mutations are by construction independent and form

a  Poisson  process,  so  the  waiting  time  between  drivers  is  again  exponential.  Using

equation 32, the integrations over Σ '' and Τ '' can be treated analytically, and we obtain

(50)

GHΣL =

à
-¥

Τ

â Τ ' à
 Σ¤

¥

â Σ ' VdriveHΣ 'L ã-V>H Σ¤L HΤ-Τ'L à
0

1

â x ' ∆Hx ' - xdetHΤ - Τ '; Σ 'LL

´
x ' G0I 1

N x'
, ΣM 2F1I1, V>HΣL

Σ
` ; 1 + V>HΣL

Σ
` ; 1 - N x ' G0I 1

N x'
, ΣMM HΣ > 0L,

1

NI Σ` ¤+V>H Σ¤L IN x ' G0I 1
N x'

, ΣM  Σ̀¤ + V>H Σ¤LM HΣ < 0L,

where 2F1Ha, b; c; zL  is the hypergeometric function [68].  The remaining integrals in

this  expression  can  be  evaluated  numerically,  using  standard  numerical  integration

methods, as implemented for example by Mathematica’s NIntegrate routine.

In  order  to  understand  the  dependence  of  the  fixation  probability  on  the  driver  rate

better, we try to approximate equation 50 by a closed expression. A simple approxima-

tion can be  achieved by neglecting the  integral  over  past  sweeps.  As argued in  sec-

tion 2.1,  the net  effect  of  past  sweeps is  small  in comparison to the effect  by future

sweeps.  We  therefore  obtain  a  closed  form  of  equation  50  by  setting  x ' = 1  and

omitting the integral over x ':

(51)

GHΣL =

G0I 1
N

, ΣM 2F1I1, V>HΣL
Σ
` ; 1 + V>HΣL

Σ
` ; 1 - N x ' G0I 1

N
, ΣMM Hfor Σ > 0L,

1

NI Σ` ¤+V>H Σ¤L IN G0I 1
N

, ΣM  Σ̀¤ + V>H Σ¤LM Hfor Σ < 0L.

An  evaluation  of  this  equation  for  a  constant  driver  rate  N V>HΣL º 1  is  shown  in

Figure 7. We observe two main features of the fixation probability in comparison to

the  classical  Kimura  results  (equation  12).  First,  both  beneficial  and  deleterious

mutations  have  a  fixation  probability  that  is  more  neutral  than  expected  without

linkage.  Secondly,  the  fixation  probability  of  deleterious  mutations  is  dramatically

increased:  while  the  classical  result  predicts  an  exponential  decrease

~expH-2 N  Σ¤L �  Σ¤ our result predicts an algebraic decrease ~V>H Σ¤L �  Σ¤ (see inset

of Figure 7).  Note however, that V>  will  itself become exponentially small for large

 Σ¤,  because of  the tail  of  the (typically exponential)  distribution of selection coeffi-

cients, ΡH f L. Both of these effects will be discussed in more detail in sections 2.4 and

3.3.
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ò Figure 7. Fixation  probability  under  linked  drivers.  This  figure  shows  the  fixation
probability under linkage with a uniform driver rate N V> = 1. Here we use the
approximate closed form equation 51. In comparison to the standard Kimura
equation  (shown  as  dashed  curve),  the  beneficial  fixation  probability  is
reduced,  while  the  deleterious  fixation  probability  is  dramatically  increased,
as emphasized in the inset.

Knowing the full fixation probability under driver mutations, we can now distinguish

between Driver and Passenger contributions. Since we know that the driver contribu-

tion is given by equation 44 as pdriveHΣL G0HΣL, we can define the passenger part as

(52)GpassHΣL =
GHΣL - pdriveHΣL G0HΣL

1 - pdriveHΣL
,

which is discussed in more detail in section 3.3.

2.4 Selection regimes and emergent neutrality

With  an  increasing  rate  of  driver  mutations,  the  fixation  probability  of  beneficial

mutations  decreases,  and  the  fixation  probability  of  deleterious  mutations  increases

(see Figure 7). This suggests a reduction factor of the efficacy of selection. Indeed, a

Taylor expansion of equation 51 gives:

(53)GHΣL =
1

N
+

Σ

1 + 2 N V>HΣL
+ OIΣ2M

We  can  compare  this  expansion  with  the  corresponding  expansion  of  Kimura’s

formula (equation 12):
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We  can  compare  this  expansion  with  the  corresponding  expansion  of  Kimura’s

formula (equation 12):

(54)G0HΣL =
1

N
+ Σ 1 -

1

N
+ OIΣ2M »

1

N
+ Σ + OIΣ2M

We see that linkage leads to a linear reduction of the strength of selection by a factor

1 + 2 N V>HΣL » 1 + 2 N V>H0L compared to unlinked sites. We define the threshold of

emergent  neutrality  as  2 N Σ� = 1 + 2 N V>H0L.  For  mutations  of  sufficiently  weak

effect, the fixation probability then takes the particularly simple form

(55)GHΣL > G0
Σ

2 N Σ�
Hfor - Σ� < Σ < Σ� L,

where  the  neutrality  threshold  Σ�  is  given  by  the  total  sweep  rate
V>H0L = Ù0

¥
VdriveH¹L â ¹

(56)Σ� =
1

2 N
+ V>H0L.

These  equations  show  how  neutrality  emerges  for  strong  adaptive  evolution  under

linkage  [68].  Specifically,  the  relation  for  Σ�  delineates  two  dynamical  modes:  the

dilute  sweep mode  (V>H0L d 1 � 2 N),  where  the  neutrality  threshold is  set  by  genetic

drift  to  the  Kimura  value  Σ� > 1 � 2 N  (see  [41]),  and  the  dense  sweep  mode

(V>H0L t 1 � 2 N), where interference effects generate a broader neutrality regime with

Σ� > V>H0L. The transition between these modes marks the onset of clonal interference

as  defined  in  previous  work  [77,  57].  For  stationary  adaptation  in  a  time-dependent

fitness  seascape,  the  upper  bound  V>H0L > Γ L  produces  the  estimate  2 N Γ L > 1  for

the  crossover  from  dilute  to  dense  sweeps.  However,  equations  55  and  56  remain

valid  for  non-stationary  adaptation,  where  the  neutrality  threshold  Σ�  becomes  time-

dependent (see below).

We  also  anticipate  results  seen  in  section  3.3:  Strongly  beneficial  mutations  do  not

show  emergent  neutral  behavior.  In  contrast,  for  strongly  deleterious  mutations,  we

see a reduction of the efficacy of selection similar to the emergent neutrality regime.

In  summary,  interference  interactions  in  the  dense-sweep mode  produce  the  follow-

ing selection classes of mutations and genomic sites:
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In  summary,  interference  interactions  in  the  dense-sweep mode  produce  the  follow-

ing selection classes of mutations and genomic sites:

1. Emergent neutrality regime: Mutations with selection coefficients 

-Σ� < Σ < Σ�  fix predominantly as passenger mutations. Their near-neutral 

fixation probability (equation 55) is the joint effect of positive and negative 

interference. Compared to unlinked mutations, GHΣL is reduced for beneficial 

mutations and enhanced for deleterious mutations. Accordingly, sites with 

selection coefficients f < Σ�  have near-random probabilities of their alleles.

2. Adaptive regime: Mutations with effects Σ > Σ�  have a fixation rate 

significantly above the neutral rate and, hence, account for most of the fitness 

flux. Moderately beneficial mutations (Σ t Σ� ) still fix predominantly as 

passengers, whereas strongly beneficial mutations (Σ p Σ� ) are predominantly 

drivers. Hence, the fixation rate increases to values of order G0HΣL > 2 Σ, 

which are characteristic of unlinked mutations. Accordingly, sites with f > Σ�  

evolve towards a high degree of adaptation.

3. Deleterious passenger regime: Mutations with Σ < -Σ�  can fix by positive 

interference, i.e., by hitchhiking in selective sweeps. This effect drastically 

enhances the fixation rate in comparison to the unlinked case (see Inset of 

Figure 7). It follows the heuristic approximation 

GHΣL » GpassHΣL~expH-  Σ¤ � Σ� L, which extends the linear reduction in the 

effective strength of selection, equation 55, obtained in the emergent neutrality 

regime.

The  cross-over  between  adaptive  and  emergent-neutrality  regime  implies  a  non-

monotonic dependence of the substitution rate VHΣL  on the population size: In suffi-

ciently small populations sizes (where Σ� < Σ), beneficial mutations of strength Σ are

likely  to  be  driver  mutations.  Hence,  VHΣL  is  an  increasing  function  of  N  with  the

asymptotic  behavior  VHΣL > Μ N Σ  familiar  for  unlinked  sites.  In  larger  populations

(where  Σ� > Σ),  the  same  mutations  are  likely  to  be  passenger  mutations  and  VHΣL
decreases with N  towards the neutral rate VHΣL > Μ. The maximal substitution rate is

expected  to  be  observed  in  populations  where  Σ�  is  similar  to  Σ.  By  the  same argu-

ment, deleterious mutations have a minimum in their substitution rate in populations

where Σ�  is similar to  Σ¤.
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3 Analysis of adaptive scenarios

Here we analyze  our  results  for  two specific  adaptive  scenarios:  stationary  adaption

in  a  fitness  seascape  and  approach  to  equilibrium  in  a  static  fitness  landscape.

Detailed comparisons of  our  analytical  results  with numerical  simulations show that

our  approach  is  valid  in  both  cases.  We  show  that  genomic  linkage  can  drastically

affect  process  and  state  in  large  asexual  populations:  Although adaptation  generates

beneficial driver mutations, a substantial fraction of sequence changes are passenger

mutations,  whose  chance  of  fixation  depends  only  weakly  on  their  fitness  effect.  In

particular, we find a regime of emergent neutrality with a threshold Σ� , which is time-

dependent  for  non-stationary  processes.  Due  to  this  effectively  neutral  dynamics,  a

fraction  of  genomic  sites  has  nearly  random  fixed  alleles,  which  do  not  reflect  the

direction  of  selection  at  these  sites.  Thus,  linkage  interactions  not  only  reduce  the

speed of adaptation, but also degrade the genome state and the population’s fitness in

its current environment.

3.1 Computer simulation scheme

We represent  the  population  as  a  list  of  haplotypes  Hak, nk, fkL  with  k = 1 … n £ N.

Each haplotype is a structured data type that consists of a sequence ak  (which is a bit-

string  in  our  case  of  two  alleles  per  locus),  the  “occupation  number” of  individuals

carrying that haplotype, nk, and the fitness of the haplotype fk. In each generation, we

first  apply  mutations,  then  we  apply  selection  flips,  and  finally  we  sample  the  next

generation from the current generation. 

Mutations are realized by creating new haplotypes.  More specifically,  every genera-

tion we draw the number of mutations from a Poisson distribution with mean Μ N L.

For every mutation, we then randomly draw a haplotype and a site. The haplotype is

drawn  with  the  weight  corresponding  to  the  number  of  individuals  carrying  that

haplotype. We create a new haplotype Hbk, 1, gkL as a copy of the mutating haplotype

with one individual, a mutated sequence vector bk  and a modified fitness gk. The new

fitness is computed by evaluating the fitness landscape, equation 2 or 6,  on the new

sequence.

We  draw  the  number  of  selection  flips  each  generation  from  a  Poisson  distribution

with mean Γ L. For each flip we draw a random location and flip the selection coeffi-

cient of the fitness landscape. We then recompute the fitness of each haplotype in the

population accordingly.
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We  draw  the  number  of  selection  flips  each  generation  from  a  Poisson  distribution

with mean Γ L. For each flip we draw a random location and flip the selection coeffi-

cient of the fitness landscape. We then recompute the fitness of each haplotype in the

population accordingly.

Finally, the next generation is determined as new occupation numbers m1, m2 … mn,

drawn as multinomial random deviates with the probability distribution

(57)PHm1, m2 … mnL =
N !

Ûk=1
n mk !

ä
k=1

n

Jnk ã fk- f N
mk

with the mean fitness

(58)f = log â
k=1

n

nk ã fk .

If the drawn number of individuals of some haplotype is zero (mk = 0), we delete the

corresponding  haplotype.  The  multinomial  random deviate  is  realized  by  the  condi-

tional binomial method [17]. This method uses binomial random deviates, for which

we use the Boost-C++ Libraries [9].

In a running simulation, substitutions are observed if sites that were monomorphic at

some allele become polymorphic and then fixed at the other allele. Each substitution

can be categorized as beneficial, if the new allele is the currently fitter, or deleterious

if it is the currently less fit of the two alleles. We also keep track of the fixation state:

Over a sufficiently large number of generations, we can compute Λ±, j  of site j as the

fraction  of  time  at  which  the  frequency  of  the  currently  fitter  allele  was  below

(above)  0.5.  Since  we  generally  consider  low  local  mutation  rates  Μ N ` 1,  this

fraction  yields  approximately  the  fraction  of  time  the  population  was  fixed  at  the

locally  fitter  (less  fit)  allele.  At  every  site,  the  origination  rate  of  new  beneficial

(deleterious)  mutations  can  be  computed  as  Μ Λ±, j.  Fixation  probabilities  can  be

computed  by  dividing  the  rate  of  beneficial/deleterious  substitutions  by  the  rate  of

beneficial (deleterious) mutations.

For  the  stationary  adaptation  simulations  (section  3.3),  we  let  the  population  reach

stationarity  for  ~1 � Γ  generations  before  initiating  any  measurement  to  ensure  that

the  population  is  in  the  stationary  state.  In  case  of  the  approach  to  equilibrium

(section  3.4),  we  first  run  the  above  protocol  for  stationary  adaptation  (for  some

parameter Γ as given in the particular presentation of the results) for sufficiently long

time to ensure stationarity. Then we stop flipping, by setting Γ = 0 and start obtaining

measurements  as  described  above.  All  results  are  now  time-dependent.  To  obtain

averages,  we repeat this program many times and average over the full  ensemble of

simulations for each time point.
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For  the  stationary  adaptation  simulations  (section  3.3),  we  let  the  population  reach

stationarity  for  ~1 � Γ  generations  before  initiating  any  measurement  to  ensure  that

the  population  is  in  the  stationary  state.  In  case  of  the  approach  to  equilibrium

(section  3.4),  we  first  run  the  above  protocol  for  stationary  adaptation  (for  some

parameter Γ as given in the particular presentation of the results) for sufficiently long

time to ensure stationarity. Then we stop flipping, by setting Γ = 0 and start obtaining

measurements  as  described  above.  All  results  are  now  time-dependent.  To  obtain

averages,  we repeat this program many times and average over the full  ensemble of

simulations for each time point.

The theoretical  derivations for  our  model  suggest  some simple scaling laws.  As can

be  seen,  the  population  size  N  and  the  genome  length  L  are  only  relevant  in  the

parameter combinations HN L ΜL, HN L ΓL and IN f M. As long as we keep these parame-

ter  combinations  fixed,  we  can  use  smaller  values  for  N  and  L  than  in  real  popula-

tions to speed up the simulations. This scaling holds up to the following conditions: i)

Μ L ` 1  to  avoid  two  mutations  in  the  same  individual  in  the  same  generation,  ii)

Μ N ` 1 so that sites follow substitution dynamics with short polymorphic times, and

iii) N Γ ` 1 so that the time between selection flips is larger than the time needed for

a  fixation.  These  conditions  can  always  be  fulfilled  for  given  parameter  products

HN Μ LL, HN Γ LL and IN f M.

3.2 Numerical solution

Here we show how the coupled set of equations derived above can be solved. For the

following, we define a set of discrete values for the selection coefficients fi ³ 0 with

i = 1 … n.  We  typically  choose  at  least  n = 40  equidistant  points  in  the  interval

0 £ fi £ 10 f . 

General solution

Given the genome state at some time t0, Λ±Ht0, fiL , we want to propagate equation 19

a small time-interval Dt. This is achieved via the following steps:

1. Use Λ¡Ht0, fiL to compute the mutation rate UH± fiL from equation 10.

2. Use UH± fiL to compute the driver rate VdriveH fiL from equations 46 and 44.

3. Use VdriveH f jL to compute the cumulative rate of drivers,

(59)V>H fiL = â
j=i+1

n

H f j - f j-1L HVdriveH f jL - VdriveH f j-1LL,
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4. Use V>H fiL to compute the fixation probabilities GH± fiL from equation 50.

5. From UH± fiL and GH± fiL compute the substitution rate VH± fiL via equation 11.

6. Compute the genome state at time t + Dt from equation 19:

(60)
Λ+Ht0 + Dt, fiL � Λ+Ht0, fiL +

1

LΡH fiL
HVH fiL - VH- fiLL +

ΓHΛ+H fiL - Λ-H fiLL Dt = 1 - Λ-Ht0 + Dt, fiL

Iterative stationary solution

The  selfconsistent  solution  of  the  dynamics  is  found  by  the  following  numerical

procedure:  We  initialize  the  iteration  by  setting  VdriveH fiL º 0.  We  then  iterate  the

following steps: 

1. As above, use VdriveH f jL to compute the cumulative rate of drivers (equation 59).

2. Use V>H fiL to compute the fixation probabilities GH± fiL from equation 50.

3. Use GH± fiL to compute the stationary state probabilities Λ+H fiL = 1 - Λ-H fiL 
from equation 22. 

4. Use Λ¡H fiL to compute the mutation rate UH± fiL from equation 10.

5. Use UH± fiL to compute the driver rate VdriveH fiL from equations 46 and 44. Go 

back to step 1.

For  the  parameters  used  in  this  work,  this  algorithm  converges  already  after  6

iterations.

3.3 Stationary adaptation

Here  we  show  results  of  simulations  and  theory  for  stationary  adaptation  in  our

minimal  fitness  seascape  (equation  6).  This  stationary  solution  is  characterized  by

ongoing  selection  flips,  which  occur  with  rate  Γ  per  site  and  generate  an  excess  of

beneficial over deleterious substitutions, with rates VHΣL > VH-ΣL (see equation 19).

Driver rate

A key concept of our solution is the rate of driver mutations, VdriveHΣL and the cumula-

tive rate of drivers, V>HΣL, defined by equations 46 and 45. These two quantities are

themselves an outcome of the dynamics, since they depend on the mutation rate and

hence  on  the  genome  state.  An  example  is  shown  in  Figure  8,  where  we  show  the

driver rate and the cumulative driver rate in stationarity. Note that the non-monotonic-

ity of the driver rate comes from the underlying exponential distribution of selection

coefficients. The driver rate is small for very large selection coefficients, because not

many  mutations  with  that  high  selection  coefficients  occur.  It  is  again  low for  very

small  selection  coefficients,  because  the  driver  probability  pdriveHΣL  is  low for  these

mutations  (see  equation  44).  Therefore,  the  cumulative  rate  of  drivers,  V>HΣL  satu-

rates for low selection coefficients.

Adaptive Evolution in Linked Genomes  45



A key concept of our solution is the rate of driver mutations, VdriveHΣL and the cumula-

tive rate of drivers, V>HΣL, defined by equations 46 and 45. These two quantities are

themselves an outcome of the dynamics, since they depend on the mutation rate and

hence  on  the  genome  state.  An  example  is  shown  in  Figure  8,  where  we  show  the

driver rate and the cumulative driver rate in stationarity. Note that the non-monotonic-

ity of the driver rate comes from the underlying exponential distribution of selection

coefficients. The driver rate is small for very large selection coefficients, because not

many  mutations  with  that  high  selection  coefficients  occur.  It  is  again  low for  very

small  selection  coefficients,  because  the  driver  probability  pdriveHΣL  is  low for  these

mutations  (see  equation  44).  Therefore,  the  cumulative  rate  of  drivers,  V>HΣL  satu-

rates for low selection coefficients.

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

2N Σ¤

2N
V

dr
iv

eHΣ
L

0 50 100 150 200
0

5

10

15

20

2N Σ¤

2N
V

>
HΣ

L

ò Figure 8. Driver  rate  under  stationarity.  This  figure  shows  the  driver  rate  V HΣL  and
the  cumulative  driver  rate  V>HΣL.  Parameters  are  N = 2000,  L = 1000,
2 N Γ = 0, 1, 2 N Μ = 0.025 and 2 N f = 50.

Fixation probability

The effect  of  the driver  rate  on the fixation probability is  shown in Figure 9,  which

shows the selection-dependent fixation probability GHΣL in a linked genome undergo-

ing  stationary  adaptive  evolution.  The  emergent  neutrality  regime  ( Σ¤ < Σ� ),  the

adaptive regime (Σ > Σ� ), and the deleterious passenger regime (Σ < -Σ� ) are marked

by color shading (using equation 56).  The self-consistent solution of our model (red

line)  is  in  good  quantitative  agreement  with  simulation  results  for  a  population  of

linked sequences (open circles).  Data and model  show large deviations from single-

site  theory  (long-dashed blue  line),  which demonstrate  strong interference effects  in

the dense-sweep regime.

Figure 9 also shows an effective single-site probability with a globally reduced effi-

cacy of selection, G0HΣ � 2 N Σ� L (short-dashed blue line). While this correctly predicts

mutations in the emergent neutrality regime and in the deleterious passenger regime,

it  fails  to  capture  the  adaptive  regime,  where  mutations  have  a  fixation  probability

approaching the single-site value 2 Σ.
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ò Figure 9. Fixation  probability  in  stationary.  Selection-dependent  fixation  probability
of  mutations  GHΣL,  scaled  by  the  population  size  N.  Analytic  model  solution
(red line) and simulation results (circles) show three regimes of selection: (i)
Effective  neutrality  regime  (white  background):  GHΣL  takes  values  similar  to
the  fixation  probability  of  independent  sites  with  reduced  selection,
G0HΣ �2 N Σ� L  (short-dashed  blue  line).  (ii)  Adaptive  regime  (green):  GHΣL
crosses  over  to  the  fixation  probability  for  unlinked  sites  with  full  selection,
G0HΣL  (long-dashed blue  line).  The  strong-selection  part  of  this  crossover  is
captured  by  the  Gerrish-Lenski  model,  GGLHΣL  (brown  line).  (iii)  Strongly
deleterious  passenger  regime  (red):  GHΣL  is  exponentially  suppressed,  but
drastically  larger  than  for  unlinked  sites  (long-dashed  blue  line)  due  to
hitchhiking  in  selective  sweeps.  Simulation  results  are  averaged  over
intervals  of  Σ,  with  error  bars  obtained  by  the  standard  deviation  within  an
interval.

It  is  instructive  to  compare  our  results  for  stationary  adaptation  with  one  particular

mutation-based model, namely the classical clonal interference model by Gerrish and

Lenski (GL) [28]. As discussed in section 2.3, GL-theory predicts the fixation proba-

bility  of  a  beneficial  mutation  in  a  manner  similar  to  how  we  compute  the  rate  of

driver  mutations.  However,  to  directly  compare  our  model  with  the  GL-model,  we

need  to  make  an  important  assumption  on  the  mutation  rate.  Our  genomic  model

yields beneficial mutation rates and their distribution as an outcome, while GL-theory

takes  distribution  and  rate  of  beneficial  mutations  as  an  input.  In  GL-theory  all

stronger  driver  mutations  in  the  exponent  of  equation  47  are  assumed  to  be  free  of

interference.  A  straight-forward  comparison  between  our  theory  and  GL-theory  is

possible, if we use the following mutation rate as an input for GL-theory:
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possible, if we use the following mutation rate as an input for GL-theory:

(61)UGLHΣL = Λ-
GLHΣL ΡHΣL

with

(62)Λ-
GLHΣL =

N G0H-ΣL + Γ � Μ

N G0HΣL + N G0H-ΣL + 2 Γ � Μ

with  the  unlinked  fixation  probability,  equation  12.  A  comparison  with  the  fixation

probability  of  GL-theory  is  shown  in  Figure  9  and  some  of  the  following  plots  as

brown  curve.  GL-theory  captures  two  salient  features  of  the  stationary  adaptive

process: the behavior of strongly beneficial driver mutations and the drastic reduction

of  the  total  substitution  rate  caused  by  interference.  However,  the  full  spectrum  of

GHΣL  requires  taking  into  account  positive  and  negative  interference.  Furthermore,

mutation-based models with rate and effect of beneficial mutations as input parame-

ters cannot predict the degree of adaptation, as discussed in section 3.3.

Mutation and substitution rates

In  Figure 10 we plot  the  rate  of  mutations,  UHΣL  and their  substitutions,  VHΣL  com-

pared  to  the  expectation  without  interference  from  linkage.  The  rate  of  beneficial

mutations is enhanced, while the rate of deleterious mutations is decreased in compari-

son  to  single  site  theory.  This  increase  reflects  the  fact  that  the  population  under

linkage is less adapted to its environment and many sites in the genome are not fixed

at the locally fitter allele. Hence mutations at these maladapted sites emit more benefi-

cial  mutations.  The  substitution  rate  also  shows  large  deviations  from  the  classical

theory.  In  particular,  GL-theory  underestimates  the  rate  of  weakly  beneficial  muta-

tions by neglecting hitchhiking, as emphasized in section 2.3. 
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ò Figure 10. Mutation  and  substitution  rates.  a)  rate  of  mutations,  b)  rate  of
substitutions,  c)  theory  prediction  of  substitutions  with  partitioning  into
passengers  (gray)  and  drivers  (green).  Black  circles:  Simulation  data,  blue
line: single site theory, red line: self-consistent theory, brown line: GL-theory.
Parameters are the same as in Figure 9.

Degree of adaptation and fitness flux

In  Figures  11,  we  plot  the  selection-dependent  degree  of  adaptation  ΑH f L  and  the

fitness  flux  FH f L  at  stationarity,  which  are  proportional  to  each  other  according  to

equation  20.  Recall  that  ΑH f L = 0  for  randomly  fixed  sites  and  ΑH f L = 1  for  perfect

adaptation.  Simulation  results  are  again  in  good  agreement  with  our  self-consistent

theory,  but  they  are  not  captured  by  single-site  theory,  single-site  theory  with  glob-

ally  reduced  selection  efficacy,  or  Gerrish-Lenski  theory.  The  functions  ΑH f L  and

FH f L  display  the  emergent  neutrality  regime  ( f < Σ� )  and  the  adaptive  selection

regime  ( f > Σ� )  for  genomic  sites,  which  are  again  marked  by  color  shading.  Using

equations 22 and 55, we can obtain approximate expressions for both regimes. Consis-

tent with near-neutral substitution rates, sites in the emergent neutrality regime have

a low degree of adaptation and fitness flux:

(63)ΑH f L =
FH f L

f Γ L ΡH f L
>

1

1 + Γ � Μ

f

2 Σ�
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ò Figure 11. Degree  of  adaptation.  Selection  dependent  degree  of  adaptation  ΑHf L  and
fitness  flux  FHf L.  Analytical  model  solution  (red  line)  and  simulation  results
(circles)  show two regimes of  selection:  (i)  Effective  neutrality  regime (white
background): ΑHf L and FHf L take values similar to those of unlinked sites with
reduced selection (short-dashed blue line ). (ii) Adaptive regime (green): ΑHf L
and  FHf L  cross  over  to  values  of  unlinked  sites  with  full  selection  (short-
dashed  blue  lines).  For  FHf L,  the  strong-selection  part  of  the  crossover  is
captured  by  the  Gerrish-Lenski  model,  FGLHf L  (brown  line).  Parameters  are
the same as in Figure 9.

Hence,  fixed  sites  in  this  regime  have  nearly  random  alleles:  they  cannot  carry

genetic  information.  Two processes contribute to this  degradation:  negative interfer-

ence  slows  down  the  adaptive  response  to  changes  in  selection,  and  hitchhiking  in

selective  sweeps  increases  the  rate  of  deleterious  substitutions.  By  contrast,  sites  in

the  adaptive  regime  ( f > Σ� )  have  a  high  degree  of  adaptation  and  generate  most  of

the fitness flux. Sites under moderate selection ( f t Σ� ) are still partially degraded by

interference,  and  the  negative  component  of  fitness  flux  (i.e.,  the  contribution  from

deleterious substitutions) is peaked in this regime (Figure 13). Strongly selected sites

( f p Σ� ) are approximately independent of interference. Hence, their degree of adapta-

tion and fitness flux increase to values characteristic of unlinked sites,

(64)ΑH f L =
FH f L

f Γ L ΡH f L
>

f

f + Γ � Μ N

Drivers vs. passengers

An important feature of the adaptive dynamics under linkage is the relative weight of

driver  and  passenger  mutations  in  selective  sweeps.  The  separation  into  drivers  and

passenger  is  given  by  equations  44  and  52.  The  fixation  probability  is  highest  for

strongly  beneficial  mutations  (Σ p Σ),  which  are  predominantly  driver  mutations.

Nevertheless,  the  majority  of  observed  substitutions  can  be  moderately  adaptive  or

deleterious  passenger  mutations.  Figure  12  shows  this  separation  as  different  shad-

ings. For the process displayed here, for example, about 60% of all substitutions are

passengers, 20% of which are deleterious.
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ò Figure 12. Driver and passenger substitutions. This plot shows the separation of the
total substitution rate into drivers (green) and passengers (gray). Parameters
are the same as in Figure 9.

In our simulations,  we can not  trivially disentangle passengers from drivers,  so Fig-

ure 12 shows only theory predictions. However, a related decomposition can be done

for the fitness flux, which we can disentangle into a positive fitness flux, constituted

by the beneficial mutations, and a negative part, caused by the fixation of deleterious

mutations:

(65)FH f L = F+H f L - F-H f L = f HVH f L - VH- f LL.

In figure 13 we show this decomposition with a ten-fold amplification of F-. As can

be seen, the two terms of the fitness flux have their main contributions coming from

different  parts  of  the  spectrum  of  selection  coefficients:  While  the  positive  flux  is

mainly carried by strongly beneficial mutations, the negative flux consists of weaker

deleterious fixations. In total,  the positive flux is always much larger than the nega-

tive one, but the decomposition reveals an interesting pattern: Remarkably, even very

strongly selected genomic sites provide a significant contribution to the negative flux,

reflecting ubiquitous (strongly) deleterious passenger mutations.
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ò Figure 13. Positive  and  negative  fitness  flux.  In  green:  Positive  fitness  flux,  in  red:
negative fitness flux. For clarity, the negative fitness flux is shown with a ten-
fold amplification to give a more direct comparison. Circles: Simulation data.
Parameters are the same as in Figure 9.

Genome-wide characteristics

In  addition  to  the  selection-dependent  quantities  discussed  so  far,  our  theory  also

predicts how genome-wide characteristics of the adaptive process depend on its input

parameters. The adaptively evolving genome is parametrized by the mutation rate Μ,

the  effective  population  size  N,  and  by  three  parameters  specific  to  our  genomic

model: average strength f  and flip rate Γ of selection coefficients, and genome length

L. As an example, Figure 14 shows the dependence of the average degree of adapta-

tion  Α  on  Γ  and  on  L,  with  all  other  parameters  kept  fixed  (recall  that  according  to

Equation 25, this also determines the behavior of the total fitness flux, F = Α f Γ L).

The genome-wide rate of selection flips, Γ L, describes the rate at which new opportu-

nities  for  adaptive  substitutions  arise  at  genomic  sites.  With  increasing  supply  of

opportunities for adaption, interference interactions become stronger. This leads to an

increase in the neutrality threshold Σ� , a decrease in the degree of adaptation Α, and a

sub-linear increase of the fitness flux F. All of these effects are quantitatively repro-

duced  by  the  self-consistent  solution  of  our  model.  As  shown  in  Figure  14,  low

values of the degree of adaptation Α are observed over large regions of the evolution-

ary  parameters  Γ  and  L.  This  indicates  that  a  substantial  part  of  the  genome can  be

degraded to a nearly random state, implying that interference effects can compromise

biological functions.

52   Stephan Schiffels



In  addition  to  the  selection-dependent  quantities  discussed  so  far,  our  theory  also

predicts how genome-wide characteristics of the adaptive process depend on its input

parameters. The adaptively evolving genome is parametrized by the mutation rate Μ,

the  effective  population  size  N,  and  by  three  parameters  specific  to  our  genomic

model: average strength f  and flip rate Γ of selection coefficients, and genome length

L. As an example, Figure 14 shows the dependence of the average degree of adapta-

tion  Α  on  Γ  and  on  L,  with  all  other  parameters  kept  fixed  (recall  that  according  to

Equation 25, this also determines the behavior of the total fitness flux, F = Α f Γ L).

The genome-wide rate of selection flips, Γ L, describes the rate at which new opportu-

nities  for  adaptive  substitutions  arise  at  genomic  sites.  With  increasing  supply  of

opportunities for adaption, interference interactions become stronger. This leads to an

increase in the neutrality threshold Σ� , a decrease in the degree of adaptation Α, and a

sub-linear increase of the fitness flux F. All of these effects are quantitatively repro-

duced  by  the  self-consistent  solution  of  our  model.  As  shown  in  Figure  14,  low

values of the degree of adaptation Α are observed over large regions of the evolution-

ary  parameters  Γ  and  L.  This  indicates  that  a  substantial  part  of  the  genome can  be

degraded to a nearly random state, implying that interference effects can compromise

biological functions.

ç ç ç ç ç ç ç ç ç ç

ó
ó

ó
ó ó ó ó ó ó ó

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

2NΓ

Α

çççççççççç
ó
óóóó

óóóóó ó ó ó ó ó ó ó

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

ΜNL
Α

ò Figure 14. Degree  of  adaptation  at  stationarity.  Results  from  our  model  (red  lines),
simulation  results  (circles),  and  values  for  independent  sites  (dashed  blue
lines)  of  the  degree  of  adaptation  are  plotted  (a)  against  the  total  selection
flip  rate  Γ L  for  two  different  values  of  the  genome  length,  L = 200  (circles)
and  L = 2000  (diamonds),  (b)  against  the  total  genomic  mutation  rate  Μ N L
for  two  different  values  of  the  selection  flip  rate,  2 N Γ = 0.01  (circles)  and
2 N Γ = 0.1 (diamonds). Note that for the smaller value of Γ, the time to reach
stationarity  is  very  long,  which  limits  the  numerical  results  to  smaller  values
of  the  system  size.  Other  system  parameters:  N = 4000,  2 N Μ = 0.025,
2 N f = 50, simulation time: 8 ×105 generations.

This shows that interference can strongly reduce the degree of adaptation of an evolv-

ing  population,  and  hence  its  viability.  This  result  is  likely  to  be  valid  beyond  the

specifics  of  our  model:  in  any  ongoing  adaptive  process  driven  by  time-dependent

selection, a large reduction in the speed of adaptation due to interference is inextrica-

bly linked to a large fitness cost compared to unlinked sites.

Comparison to mutation-based models

The self-consistency of genomic state and mutations is one feature that distinguishes

our  model  from most  previous  studies  of  adaptation  under  linkage  [28,  77,  18,  57].

These  mutation-based  models  constrain  the  distribution  of  selection  coefficients  for

beneficial  mutations,  uHΣL = H1 � UbL UHΣL,  to  a  fixed  shape  and  use  the  total  rate  of

beneficial  mutations,  Ub,  and  their  mean  effect,  Σb = Ù0

¥
Σ uHΣL â Σ,  as  independent

input parameters. This is a suitable setup to evaluate the speed of adaptation at station-

arity, because F depends in good approximation only on the distribution of beneficial

mutations (see Figure 15a). However, mutation-based approaches of this type cannot

predict  genomic  quantities  such  as  the  average  degree  of  adaptation,  Α,  which

arguably  is  the  most  appropriate  measure  of  the  efficiency  of  the  adaptive  process

over long periods of time. Even at stationarity, the average degree of adaptation is not

uniquely determined by Ub  and Σb,  but depends on all  three genomic parameters f ,

Γ, and L in a nontrivial way (see Figure 15b). In our model, the rates UHΣL of benefi-

cial  mutations  (and,  hence,  Ub  and  Σb)  are  dependent  quantities,  which  must  be

derived  from  the  self-consistent  solution  of  the  genome  dynamics  described  in  the

main text. Changing any of the genomic parameters, say L, will change Ub and Σb, so

that these parameters are not suitable as input if we want to evaluate the dependence

of the model on L.  Similarly, Ub  and Σb  change with time in a non-stationary adap-

tive process.
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ò Figure 15. Comparison with mutation based models. This plot shows the fitness flux
F and the degree of adaptation Α as a function of Σb  at fixed 2 N Ub = 30. The
data  points  have  been  obtained  by  interpolating  simulation  results  with

varying  Γ,  L  and  Μ  with  three  different  fixed  values  of  2 N f = 40, 50, 60  in
blue,  red  and  yellow.  Error  bars  are  predicted  by  the  interpolation  method
(see  Numerical  Recipes  3rd  edition  [61]  “Kriging”).  In  a)  circles  have  been
shifted  horizontally  by  Ε = ±0.2  to  make  distinction  between  the  data  points
possible.

3.4 Approach to equilibrium in a static fitness landscape

A particular non-stationary adaptive process is the approach to evolutionary equilib-

rium in a static fitness landscape, starting from a poorly adapted initial genome state.

In contrast to the above described stationary adaptation scenario, we can analyze this

process  under  less  generality.  The  reason  is,  that  the  process  now  depends  on  the

initial  state,  for  which  we  can  choose  any  configuration  of  fixed  or  polymorphic

alleles. For example, we could start with a population that is perfectly adapted, with

all  sites being fixed at their better alleles.  This state corresponds to an initial  degree

of  adaptation  Α = 1.  Since  the  equilibrium  degree  of  adaptation  is,  due  to  drift,

smaller than 1,  we expect Α  to decrease with this initial  state.  On the other side, we

could start with a random population, with alleles fixed at random, and hence Α = 0,

or even more extreme, with Α = -1, which corresponds to all sites being fixed at the

worse of the two alleles.
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worse of the two alleles.

We  do  not  expect  our  theoretical  analysis  to  predict  all  of  the  approach-to-equilib-

rium processes equally well. In particular, if the initial state has a very poor degree of

adaptation,  we  expect  our  description  of  effective  pairwise  interactions  to  break

down, as many sites simultaneously try to adapt to their better allele and hence form

combined haplotypes of multiple beneficial mutations (see [18] and [27]). We there-

fore  restrict  this  part  of  the  work  to  a  particular  initial  state  and  its  subsequent

approach  to  equilibrium.  This  initial  state  belongs  to  the  above  analyzed  family  of

stationary states  in  a  fitness seascape with Γ > 0.  This  particular  choice of  an initial

state is relevant for the study of laboratory evolution experiments, in which a popula-

tion that has undergone long-term adaption in environments that slowly changed over

time (Γ > 0), is put into controlled laboratory conditions that are kept fixed over time

(Γ = 0).

Time-dependent degree of adaptation

Figure 16 shows the selection-dependent degree of adaptation ΑH f L of this process at

three consecutive times. The numerical solution has been obtained with the protocol

described  above  (section  3.2).  The  self-consistent  solution  of  our  model  is  again  in

good agreement with simulation data.  There is  still  a  clear  grading of  genomic sites

into an emergent neutrality regime and an adaptive regime, which is again marked by

color shading. The neutrality threshold Σ� HtL  can be obtained numerically from equa-

tion  56  and  is  now  a  decreasing  function  of  time.  Figure  16  also  shows  the  time-

derivative of the degree of adaptation, which equals half the adaptive substitution rate

per site by equations 21 and 17:
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(66)
â ΑH f L

â t
=

1

2 ΡH f L
HVH f L - VH- f LL

Data  and  model  solution  show  that  the  adaptive  process  is  non-uniform:  at  a  given

time t, adaptation is peaked at sites of effect f ~Σ� HtL, while sites with stronger selec-

tion have already adapted at earlier times and sites with weaker selection are delayed

by interference.  Thus,  our model  predicts  a  non-monotonic behavior of  the adaptive

rate â ΑH f L � â t  on time: For sites with a given selection coefficient f ,  this rate has a

maximum  at  some  intermediate  time  when  Σ� HtL = f ,  after  interference  effects  have

weakened  and  before  these  sites  have  reached  equilibrium.  This  result  mirrors  the

maximum  of  the  substitution  rate  VHΣL  at  some  intermediate  population  size  for

stationary adaptation. As before, a substantial fraction of substitutions are passengers

in selective sweeps.
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ò Figure 16. Selection  regimes  for  approach  to  equilibrium.  The  population  evolves
from  a  poorly  adapted  initial  state  to  a  high-fitness  equilibrium  state.  The
degree of  adaptation (circles and solid  line)  and its  time-derivative (which is
related to the adaptive rate per site, crosses and dashed line) are shown for
three consecutive times, t = 600, 8000 and 55.000 generations. Theory lines
are  obtained  by  numerically  solving  equation  21.  The  emergent  neutrality
regime (Σ < Σ� ) and the adaptive regime (Σ > Σ� ) are shown by color shading;
the  neutrality  threshold  Σ�  decreases  with  time.  Parameters  are  N = 1000,
L = 1000,  2 N f = 50,  2 N Μ = 0.025.  The initial  state is  a stationary state with
2 N Γ = 0.1.

Figure 17a shows the evolution of the genome-averaged degree of adaptation, Α, and

of  the  mean  population  fitness,  F,  which  are  linearly  related  by  equation  15.  The

fitness  flux  F = âF � â t  and  the  total  substitution  rate  V  are  plotted  in  Figure  17b.

According  to  equation  18,  these  quantities  are  linked  in  a  time-dependent  way,

FHtL = VHtL ΣV HtL » VHtL Σ� HtL.   We  observe  that  fitness  increases  monotonically  with

time. Its rate of increase F rapidly slows down as the system comes closer to evolu-

tionary equilibrium, whereas the total substitution rate V  shows a slower approach to

equilibrium.  A qualitatively  similar  time-dependence  of  fitness  and  substitution  rate

has been reported in a long-term bacterial evolution experiment by [4].
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ò Figure 17. Degree  and  speed  of  adaptation  for  approach  to  equilibrium.  (a)  The
degree  of  adaptation  evolves  from  a  poorly  adapted  initial  state  towards
equilibrium  at  high  fitness.  Simulation  results  are  shown  as  circles,  theory
predictions as red lines. (b) The fitness flux (circles) and the substitution rate
(crosses)  as  a  function  of  time,  together  with  theory  (red).  The  substitution
rate  decays  slower  than  the  fitness  flux,  due  to  a  decrease  in  Σ� .  Theory
predictions are obtained by numerically solving equation 21. Parameters are
the same as in Figure 16.

Time-dependent mutation rates

As discussed in detail, our model involves a coupling between the genomic state and

the  rate  of  beneficial  and  deleterious  mutations.  This  has  consequences  for  an

approach  to  equilibrium.  Specifically,  we  expect  the  distribution  of  beneficial  and

deleterious mutations, UHΣL, to shift towards a higher deleterious mutation rate as the

population adapts towards the equilibrium.

Figure 18 shows the distribution of fitness effects of new mutations at three different

time points.  Initially,  the  population  is  poorly  adapted,  so  there  are  many beneficial

mutations  available.  As  the  population  approaches  equilibrium,  more  mutations

become deleterious,  as  seen  in  the  plot.  Note  that  this  time-dependence  is  not  to  be

confused  with  a  particular  type  of  epistasis,  which  generates  diminishing  returns  in

the  effect  of  beneficial  mutations  [70].  Under  diminishing-returns-epistasis,  the

fitness  effect  of  an  individual  mutation  depends  on  the  genome  state.  As  a  conse-

quence,  this  type  of  epistasis  generates  a  dependence  of  the  distribution  of  fitness

effects on the genome state. In our model, the fitness effect of an individual mutation

is independent of the genome state, and yet the distribution depends on it, simply as a

consequence of the finite sequence.
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ò Figure 18. This  Figure  shows  simulation  and  theory  results  for  an  approach  to
equilibrium,  starting  from  an  initially  poorly  adapted  state.  We  plot  the
distribution of new mutations for three different time points. Simulation results
are shown in circles, theory predictions are shown in red. Parameters are the
same as in Figure 16.
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3.5 Non-exponential and epistatic fitness landscapes

Non-exponential distribution of selection coefficients

In  addition  to  the  exponential  distribution  results  shown  in  section  3.3,  we  present

two additional cases of distributions. Recall that the shape parameter Κ (in equation 3)

controls the slope of the tail  of  the distribution: For Κ = 1 � 2 the tail  of  the distribu-

tion  is  a  stretched  exponential  with  broadly  distributed  selection  coefficients.  For

Κ = 2 we get a Gaussian tail and hence more sharply distributed selection coefficients

than  for  the  exponential  case,  Κ = 1.  In  Figure  19  we  show  simulation  results  with

theory predictions for the three distribution shapes Κ = 80.5, 1, 2<. In all three cases,

theory and simulation results agree very well, with the exponential case, Κ = 1, exhibit-

ing  the  best  agreement.  Note  that  we  expect  our  approach  to  break  down  for  very

large  values  of  Κ,  i.e.  very  steep  tails  the  distribution  of  selection  coefficients.  The

reason is that our approximation of associating a selective sweep with a single driver

mutation will become invalid in that case. If the distribution of selection coefficients

is  very  narrow,  beneficial  mutations  will  have  very  similar  selection  coefficients,

which  means  that  selective  sweeps  are  associated  with  multiple  driver  mutations.

This regime is covered by previous studies, e.g. Desai and Fisher, 2007 [18], Rouzine

et al., 2008 [65], Hallatschek [32].
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ò Figure 19. Degree  of  adaptation  for  different  fitness  distributions.  This  plot  shows
simulation  results  for  the  degree  of  adaptation  as  a  function  of  the  total
mutation  rate.  We  show  results  for  three  values  of  Κ = 0.5  (Circles),  Κ = 1
(Rectangles)  and  Κ = 2  (Diamonds).  Other  parameters  are  N = 4000,
2 N f = 50, 2 N Γ = 0.1, 2 N Μ = 0.025.

Epistasis

In  section  1.1,  we  introduced  not  only  the  additive  fitness  landscape  studied  so  far,

but  with  equation  8  also  an  epistatic  fitness  landscape.  This  landscape  exhibits

explicit  interactions  between genomic sites  at  the  level  of  fitness,  as  opposed to  the

additive landscape, in which mutations interact only through linkage. 

The impact of the epistatic interactions can be estimated by comparing the magnitude

of  the  additive  fitness  effects  with  the  magnitude  of  the  epistatic  effects.  As  can  be

seen  from  equation  8,  the  epistatic  term  scales  as  L2  because  of  the  double  sum,

whereas  the  additive  term  scales  as  L.  We  therefore  have  e~ f � L  as  the  typical

crossover at which epistatic interactions dominate the additive fitness.

We simulate a population in the epistatic fitness landscape with the same protocol as

for the additive landscape (see section 3.1). Figure 20 shows the degree of adaptation

as  a  function  of  the  site  selection  coefficient  f ,  for  both  the  strictly  additive  model

(blue  curve)  and  the  epistatic  model  with  e = f � L,  which  is  exactly  the  crossover

value.  Clearly,  although  the  epistatic  contribution  to  the  fitness  function  is  of  the

same  magnitude  as  the  additive  part,  the  degree  of  adaptation  does  not  change

substantially.
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ò Figure 20. Degree  of  adaptation  under  epistasis.  This  plot  shows  the  degree  of
adaptation as a function of the local selection coefficient fj . The blue curve is

the result from a simulation with no epistasis, e = 0, while the red curve was
simulated  with  the  epistatic  fitness  component  being  equal  to  the  additive
component:  e = f � HL - 1L.  Other  parameters  are  N = 1000,  L = 1000,
2 N Γ = 0.1, 2 N Μ = 0.025, 2 N f = 50.

Figure 21 shows the total degree of adaptation for varying values of the scaled epista-

sis parameter è = eHL - 1L � f . The predicted crossover is given by è = 1. In summary,

epistasis does not quantitatively change our model and results, as long as the epistatic

interactions are of the same magnitude as the additive component of the fitness.
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ò Figure 21. Total  degree  of  adaptation  under  epistasis.  Here  we  show  the  total
degree of adaptation with the same parameters as in Figure 20, with varying
values  of  scaled  epistasis  e

` HL - 1L � f .  For  e
`

> 1  the  epistatic  component  of

the fitness is larger than the additive component.

3.6 Fluctuations and intermittency of the adaptive process

So far,  we have been focusing on the mean values of fitness flux, degree of adapta-

tion  and  other  observables,  but  given  genetic  drift  and  interference  as  stochastic

driving  forces,  how  stochastic  is  the  resulting  adaptive  substitution  dynamics?  This

question  has  been  addressed  in  several  recent  studies,  which  treat  the  adaptive  pro-

cess as a traveling fitness wave [64, 18, 65, 32]. If all mutations are assumed to have

the same effect,  these models are solvable. One finds a traveling wave with a deter-

ministic  bulk  of  stationary  shape  (given  by  a  mutation-selection  flux  state)  and  a

stochastic tip. The variance of this wave determines its speed (i.e., the fitness flux) by

Fisher's Fundamental Theorem. Given a stationary bulk of the wave, the fitness flux

has  only  small  fluctuations  around  its  mean  value,  whereas  the  tip  of  the  wave  is

explicitly stochastic.

The  adaptive  process  studied  here  shows  a  drastically  different  behavior.  In  our

model, fitness effects at genomic sites follow a distribution ΡH f L with shape parame-

ter Κ. For the case of exponential ΡH f L (given by Κ = 1), a snapshot of the population's

fitness distribution at a given point in time is shown in Figure 22a). This distribution

has large shape fluctuations throughout its bulk,  not just  at  the tip.  It  shows that the

adaptive  process  is  dominated  by  few  co-occurring  beneficial  mutations  of  large

effect, whereas a stationary wave is maintained by many mutations of smaller effect.

To measure the stochasticity of the fitness flux, we define the short time cumulative

fitness flux [51]:

Adaptive Evolution in Linked Genomes  63



The  adaptive  process  studied  here  shows  a  drastically  different  behavior.  In  our

model, fitness effects at genomic sites follow a distribution ΡH f L with shape parame-

ter Κ. For the case of exponential ΡH f L (given by Κ = 1), a snapshot of the population's

fitness distribution at a given point in time is shown in Figure 22a). This distribution

has large shape fluctuations throughout its bulk,  not just  at  the tip.  It  shows that the

adaptive  process  is  dominated  by  few  co-occurring  beneficial  mutations  of  large

effect, whereas a stationary wave is maintained by many mutations of smaller effect.

To measure the stochasticity of the fitness flux, we define the short time cumulative

fitness flux [51]:

(67)FD tHtL = â
j=1

L

D x jHtL D F jHtL,

where  D x jHtL  is  the  frequency  change  at  site  j  between  time-points  t  and  D t  and

D F jHtL is the change in the population’s mean fitness due to that frequency change.

As shown in Figure 22b) the fitness flux becomes intermittent:  on small  time scales

(here  we  choose  D t = 20  generations),  it  has  large  fluctuations  around  its  mean

value.  Importantly,  this  strong  stochasticity  accelerates  evolution:  at  given  rate  Ub

and  mean  effect  Σb = 1 � Ub Ù0

¥
Σ UHΣL â Σ  of  beneficial  mutations,  our  model  pro-

duces a much higher mean fitness flux than the traveling-wave solution.  The reason

is simple: a distribution of selection coefficients generates a dynamics dominated by

strong driver mutations, whose effect is substantially larger than the mean [58].
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ò Figure 22. Stochasticity  of  the  adaptive  process.  The  speed  of  adaptation  and  the
shape of the distribution of fitnesses in the population are governed by large
fluctuations.  (a)  Snapshot  of  the  fitness  distribution  in  the  population,
centered  around  the  mean  fitness.  The  shape  of  this  distribution  is  very
different  from  the  average  shape,  shown  as  dashed  line.  The  dynamics  is
governed by few fitness classes with a large number of individuals (note the
logarithmic  axis).  (b)  Time-series  of  the  fitness  flux  (we  use  D t = 20
generations). This flux is intermittent, i.e., the traveling fitness wave has short-
term boosts in its speed. Other simulation parameters: N = 500$ (c), L = 500,
2 N Γ = 0.1, 2 N Μ = 0.025, Κ = 1, 2 N f = 50.

To further test  the range of applicability of our model,  we evaluate the stochasticity

of  the  fitness  flux  for  different  evolutionary  parameters.  In  Figure  23,  we  plot  the

ratio of the variance and the mean fitness flux as a function of the genome length L

for fitness effect distributions ΡH f L of different shapes, which have a stretched expo-

nential  (Κ = 1 � 2),  exponential  (Κ = 1),  or  Gaussian (Κ = 2) tail  for large values of f .

As expected, we observe a decrease in stochasticity with increasing shape parameter

Κ.  This is  consistent with a crossover to fitness waves with deterministic bulk shape

in the limit of a sharp distribution (Κ ® ¥). However, we do not see any evidence of

a  cross-over  to  deterministic  fitness  waves  with  increasing  genome  length  L:  the

stochasticity ratio
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a  cross-over  to  deterministic  fitness  waves  with  increasing  genome  length  L:  the

stochasticity ratio

(68)Ε =
YHFD tL2]
XHFD tL\

stays roughly constant and the fitness wave retains strong shape fluctuations even for

the largest values of L. At the same time, our model predictions of the fixation proba-

bility  GHΣL  overestimate  the  simulation  results  at  large  L,  in  particular  for  strongly

beneficial driver mutations. This may indicate a crossover to a new mode of adaptive

evolution:  selective  sweeps  are  driven  cooperatively  by  multiple  beneficial  muta-

tions, but the adaptive dynamics remains intermittent. This regime is not yet covered

in the existing literature, but we expect that our interaction calculus can be extended

to more complex multi-driver sweeps.
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ò Figure 23. Stochasticity of the fitness flux. The ratio of variance and mean fitness flux
FD t HtL over a population’s history is plotted as a function of the total mutation
rate  Μ N L  for  selection  shape  parameters  Κ = 1 �2  (circles),  Κ = 1  (squares),
and  Κ = 2  (triangles).  For  a  given  total  mutation  rate,  the  stochasticity  is
highest  for  Κ = 1 �2  and  decreases  with  increasing  Κ.  However,  the
stochasticity  remains  approximately  constant  for  increasing  system  size.
Other  simulation  parameters:  N = 1000,  L = 500,  2 N Γ = 0.1,  2 N Μ = 0.025,
Κ = 1, 2 N f = 50.
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4 Inference in genomic data

In  this  chapter,  we  apply  our  developed  theory  to  genomic  data.  More  specifically,

we  want  to  infer  the  amount  of  adaptive  evolution  from  polymorphism  and  diver-

gence data of real genomes, explicitly taking into account linkage. Standard methods

for genomic inference of adaptation are based on comparing the rate of species diver-

gence  with  the  frequencies  of  polymorphisms  (these  include  the  MK-test[44],  Taji-

ma’s D [73] and the Fay and Wu test [22]). Most of these tests either ignore linkage

completely or take into account only partial  aspects,  such as linkage effects on neu-

tral  polymorphisms.  This  is  in  particular  worrying  since  many  studies  have  shown

that linkage can in fact play a crucial role, even in recombining species, such as yeast

[36],  fruit  fly  [76]  and  humans  [14].  There  is  an  urgent  need  for  new methods  that

quantify  adaptive  evolution  while  considering  linkage  as  an  explicit  feature  of

genome evolution, rather than a caveat (see also the recent review from Fay [23]). 

Here  we  develop  a  novel  inference  method  for  genomic  data  that  aims  to  quantify

adaptive  evolution  using  intra-  and  interpopulation  sequencing  data.  We  show  that

linkage generates spurious signals of positive selection, which lead to an overestima-

tion in  the  rate  of  adaption when interpreted with  many existing inference methods.

Given this  finding  and  several  recent  reports  on  pervasive  adaptive  evolution  in  the

Drosophila  genome  [43,  1,  69,  23],  the  amount  of  positive  selection  in  Drosophila

needs to be re-examined. We apply our method to polymorphism and divergence data

from  Drosophila  melanogaster  and  Drosophila  simulans  and  find  that  a  substantial

fraction  of  substitutions  between  these  species  are  in  fact  a  result  of  linkage,  rather

than adaptation.

Most  ingredients  of  the  method developed in  this  chapter  base  upon concepts  intro-

duced in the previous chapters,  extended with important  features like recombination

and allele-frequency predictions. We derive a likelihood-framework that we test with

simulated data and show that  it  correctly infers  the fraction of  driver  mutations in a

given sequence under  finite  recombination.  In  the  first  four  sections  of  this  chapter,

we will derive dynamics for so called passenger sites, that evolve under static selec-

tion  Γ = 0.  These  passenger  sites  will  be  linked  or  partially  linked  to  driver  sites,

whose  only  property  is  that  they  emit  driver  substitutions  with  rate  Γ  per  site.  This

setup is a simplification of the full distribution of selection coefficients ΡH f L, which is

necessary to make the inference scheme, developed in the last section of this chapter,

numerically feasible. 
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necessary to make the inference scheme, developed in the last section of this chapter,

numerically feasible. 

4.1 Substitution rate of passenger mutations

Single driver

We consider a single passenger site with site selection coefficient Σ  at  time Τ  and a

single driver mutation with selection Σ ' at time Τ '. We assume for now that the driver

is  close  enough  to  remain  linked  throughout  its  fixation.  For  the  purpose  of  this

chapter,  we  neglect  effects  from  past  sweeps  (Τ ' < Τ),  but  the  theory  can  easily  be

extended to include the same calculation including past  sweeps as in chapter 2.  The

fixation probability of the passenger facing a driver in the future, GHΣ, Τ Σ ', Τ 'L is an

integral over all possible frequencies that the passenger has reached when the driver

appears

(69)GHΣ, Τ Σ ', Τ 'L = à
0

1

x G0Hx, Τ ' - Τ; x0, ΣL â x,

with  the  neutral  propagator  of  allele  frequencies,  G0Hx, Τ ' - Τ; x0, ΣL,  as  derived  in

section 2.2. The integral in equation 69 can be solved in the diffusion approximation

(equation 32): For Τ ' - Τ > ΤfixH Σ¤L, the fixation probability GHΣ, Τ Σ ', Τ 'L is equal to

Kimura’s unlinked probability, G0HΣL, while it is more neutral (see Emergent neutral-

ity,  section  2.4)  for  times  Τ ' - Τ < ΤfixH Σ¤L.  Figure  24  shows  GHΣ, Τ Σ ', Τ 'L  as  a

function of the passenger origination time Τ,  if the driver occurs at time Τ ' � 2 N = 3.

The effect  of  the driver  consists  in  a  decrease of  the beneficial  fixation rate,  and an

increase  of  the  deleterious  fixation  rate,  as  discussed  in  chapter  2.  Note  that  the

selection coefficient of the driver mutation, Σ ', does not enter at this point.
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ò Figure 24. Time-dependent  passenger  fixation  probability.  We  consider  the  fixation
probability of  a passenger with selection 2 N Σ = ±5,  conditioned on a driver
mutation  appearing  at  time  Τ ' �2 N = 3.  For  a  beneficial  passenger  (upper
plot),  the  fixation  probability  is  reduced,  while  for  a  deleterious  passenger
(lower plot),  it  is  increased by the driver  mutation (lower plot).  Note that  the
fixation probability of neutral mutations is N G0HΣL = 1.

We  define  the  fixation  rates  u±HΤ ' - ΤL = Μ N GHΣ, Τ Σ ', Τ 'L.  For  a  static  fitness

landscape, the genome state generally evolves according to:

(70)
â

â Τ
Λa = -Λa u-aHΤ ' - ΤL + Λ-a uaHΤ ' - ΤL

(see also equation 19) or in matrix notation:

(71)
â

â Τ

Λ+

Λ-
= K -u-HΤ ' - ΤL u+HΤ ' - ΤL

u-HΤ ' - ΤL -u+HΤ ' - ΤL O Λ+

Λ-

where  u+  and  u-  are  now  explicitly  time-dependent  quantities,  that  depend  on  the

driver time Τ '. This ordinary differential equation (ODE) is formally solved as

(72)
Λ+HΤ0 + ΤdivL
Λ-HΤ0 + ΤdivL = gHΤdivL ×

Λ+HΤ0L
Λ-HΤ0L
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with the divergence time Τdiv and the propagator matrix

(73)gHΤdivL = exp à
Τ0

Τ0+Τdiv

K -u-HΤ ' - ΤL u+HΤ ' - ΤL
u-HΤ ' - ΤL -u+HΤ ' - ΤL O â Τ .

The  matrix  gHΤdivL  defines  the  transition  probabilities  between  the  ancestral  genome

state  Λ±HΤ0L  and  the  final  genome  state  Λ±HΤ0 + ΤdivL.  It  absorbs  the  influence  of

genetic drift, selection and interference by the driver mutation into one propagator.

To solve the integral in equation 73, we first define the waiting time  Τw = Τ ' - Τ  and

note  that  the  driver  affects  the  functions  u±HΤwL  only  for  waiting  times

Τw < ΤfixH Σ¤L ` Τdiv.  For  all  other  times,  in  particular  also  for  Τw < 0  (i.e.  a  driver

that  appears before the passenger),  the rates u±HΤ ' - ΤL º Μ N G0H±ΣL  are constant  in

time. We can therefore shift the boundaries of the integral:

(74)gHΤdivL = expKà
0

Τdiv

K -u-HΤwL u+HΤwL
u-HΤwL -u+HΤwL O â ΤwO.

where  we  neglected  cases  in  which  the  driver  appears  very  early  Τ ' < Τ0 + ΤfixH ΣL¤.
To solve the integral  in equation 74,  we now introduce the normalized waiting time

distribution PwHΤw; 1 � ΤdivL = expH-Τw � ΤdivL � Τdiv. This enables us to integrate from 0

to  infinity,  which  does  hardly  change  the  integral,  because  PwHΤwL » 1  for

Τw < Τfix ` Τdiv, and u± = u0 for Τw > Τfix:

(75)gHΤdivL » expKΤdiv à
0

¥

PwHΤw; 1 � ΤdivL K -u-HΤwL u+HΤwL
u-HΤwL -u+HΤwL O â ΤwO.

The integrals in equation 75 have been computed before (see equation 51). Here we

use the notation uHΣ, VL = Μ N GHΣ, VL  to denote the full fixation rate under linkage

with driver rate V = 1 � Τdiv, which was derived for stationary adaptation in chapter 2

and can be given in terms of hypergeometric functions (see equation 51). The propaga-

tor matrix then gives

(76)
gHΤdiv, 1 � ΤdivL =

gHa, a '; Τdiv, VL = expKΤdivK -uH-Σ, 1 � ΤdivL uHΣ, 1 � ΤdivL
uH-Σ, 1 � ΤdivL -uHΣ, 1 � ΤdivL OO.

Equation  76  shows  that  the  substitution  matrix  of  passengers  under  a  single  driver

can  be  computed  as  if  every  passenger  faces  drivers  with  a  rate  that  equals  1 � Τdiv

instead of  taking into  account  this  single  driver  explicitly.  Note  that  the  time of  the

driver mutation, Τ ', disappeared from equation 76, because the relevant time was the

time  difference  between  the  passenger  and  the  driver,  which  is  integrated  out.  This

has  an important  consequence:  since passenger  mutations  occur  randomly and inde-

pendently  at  every  site  in  the  genome,  every  passenger  locus  evolves  independently

according to the same ODE as above (equation 71), even if we initially consider the

same  driver  at  time  Τ '.  We  will  use  this  independence  for  our  likelihood  method,

derived in section 4.5.
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according to the same ODE as above (equation 71), even if we initially consider the

same  driver  at  time  Τ '.  We  will  use  this  independence  for  our  likelihood  method,

derived in section 4.5.

Many drivers and recombination

In  addition to  the  previous  case,  we now include partial  linkage and recombination.

Recombination  is  a  process  that  only  occurs  in  sexually  reproducing  organisms,

where every sampled individual of the current generation is sampled from two individ-

uals of the previous generation. The resulting sequence is a hybrid combination of the

two  parent  sequences,  with  break-points  (recombination  event,  or  crossing  over),

separating chunks of one parent from chunks of the other parent chromosome. These

break-points  occur  with  rate  Ρ  per  site  and  per  generation  and  have  an  important

effect  on  the  interference  dynamics:  they  can  decouple  driver  and  passenger,  and

hence counteract interference effects. The full dynamics of recombination on interfer-

ence  effects  such  as  hitchhiking  is  complicated  and  has  been  subject  to  detailed

studies (see for example [5]).

Consider  a  single  passenger  locus  at  site  r  and  time  Τ  that  is  potentially  interfered

with  by  many  driver  mutations  occurring  at  positions  ri  and  times  Τi  with  selection

coefficients Σi as sketched in Figure 25.
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ò Figure 25. Interference by many drivers. Schematic plot of a passenger locus at time
Τ = 0 (blue) facing several driver mutations (red).

Not all of these driver mutations are fully linked to the passenger site, due to recombi-

nation.  Here  we  make  the  approximation,  that  every  driver  can  only  be  either  fully

linked,  or  completely  unlinked.  This  binary  approximation  will  prove  accurate

enough for our purposes and in addition provides a means to combine many drivers

easily  under  recombination.  We  associate  with  every  driver-passenger  pair  a  binary

variable, l, denoting full linkage (li = 1) or not (li = 0). We assume that li is a random

variable  that  reflects  the  probability  that  recombination  breaks  linkage  between  the

particular driver i and the passenger:

(77)plHli = 1;  ri - r¤L = expH-  ri - r¤ Ρ ΤfixHΣiLL.

It is derived by a simple assumption: Recombination events occur as a Poisson pro-

cess with rate Ρ  ri - r¤, where Ρ is the recombination rate per site per generation and

we  assume  that  the  recombination  rate  between  to  loci  depends  linearly  on  their

distance.  Equation  77  then  simply  describes  the  probability  that  no  recombination

event  occurs  between  the  driver  and  the  passenger  throughout  its  fixation  time

ΤfixHΣiL,  which  is  equivalent  to  the  probability  that  the  two  mutations  remain  fully

linked.
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How  do  these  many  linked  and  unlinked  driver  mutations  interact  with  the  single

passenger? In case of the fully linked genome, we solved this problem by a topologi-

cal  argument:  Only  the  first  driver  mutation  after  the  passenger  will  have  an  effect,

since  it  completely  determines  the  fate  of  the  passenger  (see  section  2.3).  Here  this

argument  needs  to  be  modified,  since  the  first  driver  mutation  after  the  passenger

does  not  necessarily  determine  the  fate  of  the  passenger,  as  recombination  could

break  the  linkage.  Our  binary  approximation  of  linkage,  using  the  variable  li,  pro-

vides an easy solution: we simply take the first linked driver mutation after the passen-

ger to be the one that matters. That is, we define the waiting time

(78)Τmin = min
8i, li=1,Τi>Τ<

Τi.

as  the  minimum  of  all  future  drivers,  conditioned  on  li = 1.  We  then  express  the

fixation probability of the passenger as an integral over the unlinked propagator G0,

evaluated at time Τmin - Τ, analogous to equation 69:

(79)GHΤmin - Τ, ΣL = à
0

1

G0Hx; Τmin - Τ, ΣL x â x.

Following  the  arguments  from  above,  we  see  HΤmin - ΤL  as  a  random  variable  of

waiting times, similar to equation 75. But now, the mean value of this waiting time is

not anymore given by 1 � Τdiv  as before, but by a smaller mean waiting time until the

next linked driver occurs. This mean waiting time can be expressed as 1 � V , where V

is the rate of linked drivers. We then yield a propagator matrix similar to equation 76:

(80)gHΤdiv, VL » expKΤdivK -uH-Σ, VL uHΣ, VL
uH-Σ, VL -uHΣ, VL OO,

where  V  is  now  the  rate  of  linked  drivers  that  determines  the  mean  waiting  time

XΤw\ = 1 � V .  To compute the rate of linked drivers, we assume that drivers are emit-

ted in the genome with rate ΓHrL,  which generally depends on the location. The total

probability that between time Τ and Τ + â Τ there occurred a driver that remains linked

(in Figure 25: number of red dots in a time-interval â Τ) is:

(81)VHrL â Τ = à
0

L

ΓHr 'L plH r ' - r¤L âr ' â Τ,

where  we have  integrated  over  all  distances  in  the  full  sequence  (from 0  to  L)  with

the linkage probability pl defined in equation 77. Equation 81 defines the driver field,

which  counts  all  nearby  drivers  weighted  with  their  genetic  distance.  It  will  be  dis-

cussed in more detail in section 4.4.
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Total substitution rate of passengers

The substitution matrix gHΤdiv, VL describes how the genome state propagates through

time under selection, drift and partial linkage to drivers. It enables us, to compute the

first  ingredient  for  our  cross-species  analysis,  namely  the  expected  rate  of  substitu-

tions between related species. We assume that passenger sites of the ancestral popula-

tion have evolved for a long time under stationary evolution. Their equilibrium state

probabilities are then given by 

(82)ΛaHΣ, VL =
uHa Σ, VL

uHΣ, VL + uH-Σ, VL
,

which  are  stationary  solutions  of  equation  71.  The  total  rate  of  substitutions  is  then

given by the same equation as (see also [48]):

(83)

utotHΣ, VL =

Λ-HΣ, VL uHΣ, VL + Λ+HΣ, VL uH-Σ, VL =
2 uHΣ, VL uH-Σ, VL
uHΣ, VL + uH-Σ, VL

.

We now derive an approximate expression for utotHΣ, VL.  We assume that passenger

sites  are  most  likely  fixed  at  their  beneficial  allele  and  set  Λ+HΣ, VL = 1,

Λ-HΣ, VL = 0.  Because  of  deleterious  mutations,  these  sites  will  be  in  mutation-

selection balance,  which is  characterized by an equilibrium frequency of deleterious

mutants

(84)xdel =
Μ

Σ
.

Each linked driver that  occurs will  create a hitchhiking substitution at  the passenger

locus with probability xdel. After hitchhiking, the passenger will soon try to substitute

back  to  the  beneficial  allele.  If  the  time  between  subsequent  driver  events  is  long

enough to let this happen, the rate of substitutions at the passenger locus is

(85)ùtotHΣ, VL = 2 V
Μ

Σ
,

where V  is the rate of linked drivers. We will discuss the approximate linearity in the

driver rate further in section 4.3.
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where V  is the rate of linked drivers. We will discuss the approximate linearity in the

driver rate further in section 4.3.

4.2 Allele frequency of passenger mutations

The calculation in the last section was concerned with the substitutions dynamics, i.e.

the  changes  of  fixed  allelic  states  in  the  population.  We  have  introduced  the  driver

field VHrL,  which equals the rate of linked driver mutations at site r.  Here we derive

the  allele  frequency  spectrum of  a  passenger  site  that  is  linked  to  driver  mutations.

We will first recapitulate results without linkage to drivers, following Mustonen and

Lässig [48].

Allele frequency spectrum under selection and drift

We consider  a  single  passenger  locus with  two alleles  a = 8+1, -1<.  We denote  the

frequency of allele +1 with x. The probability distribution of the frequency x, evolv-

ing under selection, drift and mutations follows from the Fokker-Planck equation:

(86)¶t pHx, tL = B
1

2 N
¶x

2 xH1 - xL - Σ ¶x xH1 - xL - Μ ¶x H1 - 2 xLF pHx, tL.

Asymptotically,  for  small  values  of  Μ N,  two  linearly  independent  stationary  solu-

tions exist [48]:

(87)paHx; Μ, ΣL =
1

ZaHΜ, ΣL
@xH1 - xLD-1+Μ

`
I1 - ãΣ

` Hx-H1-aL�2LM, for a = ±1

where Μ̀ = 2 N Μ and Σ̀ = 2 N Σ. The normalization factors are

(88)ZaHΜ, ΣL =
GHΜ̀L2

GH2 Μ̀L
I1 - ã-H1-aL Σ

` �2
1F1HΜ̀; 2 Μ̀; Σ̀LM

where  1F1Ha; b; zL  is  the  confluent  hypergeometric  function.  The  two  solutions  for

a = ±1 have a  simple interpretation.  They are conditioned  on the fact  that  the poly-

morphic  allele  always  begins  from  one  of  the  two  fixed  states  (see  Figure  26).  For

a = 1,  the  population  is  fixed  at  allele  +1  when  the  polymorphism starts,  while  for

a = -1 it is fixed at allele -1. Note that in case of no selection (Σ = 0), the solutions

pa take the different form
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where  1F1Ha; b; zL  is  the  confluent  hypergeometric  function.  The  two  solutions  for

a = ±1 have a  simple interpretation.  They are conditioned  on the fact  that  the poly-

morphic  allele  always  begins  from  one  of  the  two  fixed  states  (see  Figure  26).  For

a = 1,  the  population  is  fixed  at  allele  +1  when  the  polymorphism starts,  while  for

a = -1 it is fixed at allele -1. Note that in case of no selection (Σ = 0), the solutions

pa take the different form

(89)paHx; Μ, 0L =
1

ZaHΜ, 0L
a - 1 + 2 x

a
HxH1 - xLL-1+Μ

`

with

(90)ZaHΜ, 0L =
G@Μ̀D2

G@2 Μ̀D
.

In  real  data,  the  allele  frequencies  are  impossible  to  directly  measure,  but  we  can

estimate x from small samples of the population. Consider a small sample of individu-

als, randomly drawn from the population. The probability to observe k £ m individu-

als with allele +1, can then be written as an integral over binomial moments [48]:

(91)

MaHk; m, Μ, ΣL =
m

k à
0

1

paHx; Μ, ΣL xkH1 - xLm-k â x =

1

ZaHΜ, ΣL
m

k

G@k + Μ̀D G@m - k + Μ̀D
G@m + 2 Μ̀D

´

I1 - ã-Σ
` H1-aL�2

1F1Hk + Μ̀; m + 2 Μ̀; Σ̀LM.

Note again that in case of no selection, we get a different form:

(92)

Ma@k; m, Μ, 0D =

1

ZaHΜ, 0L
m

k

G@k + Μ̀D G@m - k + Μ̀D
a G@1 + m + 2 Μ̀D

H2 k - m + a m + 2 a Μ̀L

Both paHx; Μ, ΣL  and MaHk; m, Μ, ΣL  are  shown with  and without  selection in  figure

26.  In  contrast  to  the  full  probability  density  paHxL,  the  sampling  probabilities  pro-

duce finite probabilities for the boundary cases k = 0 and k = m.
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ò Figure 26. Allele  frequency distributions.  This  figure  shows the  theory  predictions  of
the  allele  frequency  spectra  paHxL  (a)  and  its  moments  MaHk ; mL  (b)
Parameters  are  2 N Μ = 0.025,  m = 0,  a = -1  (blue),  a = 1  (red),  Ν = 2.  For
comparison we also show the neutral spectrum as semi-opaque curve.

Linked drivers

We  extend  the  above  equations  to  include  linked  drivers.  Their  rate  V  enters  the

calculation with an approximation: We require that a given neutral polymorphism of

frequency x needs a number of generations x 2 N  (the neutral time to reach fixation is

~2 N,  see  [21])  to  reach  its  frequency  if  it  started  at  fixed  state  a = -1,  and

H1 - xL 2 N  generations if it started at fixed state a = 1. The probability that no linked

driver occurred during that time is a negative exponential, reflecting the waiting time

in  a  Poisson  process.  Strictly,  this  argument  holds  only  for  neutral  polymorphisms,

which travel to fixation in ~2 N  generations. In contrast, non-neutral polymorphisms

travel faster than neutral mutations. Nevertheless, we approximate the joint effect of

linked drivers and selection by applying the same argument to non-neutral polymor-

phisms,  but  expect  it  to  break  down  for  strongly  selected  mutations.  We  can  now

simply extend the stationary solution (equation 87) to include the exponential factor:

(93)

paHx; Μ, Σ, VL =
1

ZaHΜ, Σ, VL
@xH1 - xLD-1+Μ

`
I1 - ãΣ

` Hx-H1-aL�2LM ã-V
`

H-a x+H1+aL�2L

with V
`

= 2 N V  and a modified normalization factor:
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(94)

ZaHΜ, Σ, VL =

GHΜ̀L2

GH2 Μ̀L
ã-

1

2
H1+aL V

`

J1F1IΜ̀; 2 Μ̀; a V
` M - ã

1

2
H-1+aL Σ

`

1F1IΜ̀; 2 Μ̀; Σ̀ + a V
` MN

We again use binomial sampling (see equation 91) to derive the moments:

(95)
MaHk; m, Μ, Σ, VL =

1

ZaHΜ, s, VL
m

k

GHk + Μ̀L GH-k + m + Μ̀L
GHm + 2 Μ̀L

ã-
1

2
H1+aL V

`

´ J1F1Ik + Μ̀; m + 2 Μ̀; a V
` M - ã

1

2
H-1+aL s

1F1Ik + Μ̀; m + 2 Μ̀; Σ̀ + a V
` MN.

In Figure 27, we plot these moments with and without driving. Note that by putting

V = 0 in equations 93, 94 and 95, we recover the known case without linkage.
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ò Figure 27. Conditional  polymorphism  probabilities.  This  figure  shows  the  moments
MaHk ; mL  under  linkage  to  drivers.  Parameters  are  2 N Μ = 0.025,  2 N V = 1,
2 N Σ = 2, m = 10. For comparison, we show the case without driving as semi-
opaque curve.

Full frequency spectrum under stationarity

So far we have derived the two conditional solutions pa  and moments Ma  for evolu-

tion  under  linkage  to  drivers.  The  full  solution  is  a  linear  combination  of  these  two

conditional  solutions,  where  the  coefficients  are  simply  the  genome  state  probabili-

ties Λa:
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So far we have derived the two conditional solutions pa  and moments Ma  for evolu-

tion  under  linkage  to  drivers.  The  full  solution  is  a  linear  combination  of  these  two

conditional  solutions,  where  the  coefficients  are  simply  the  genome  state  probabili-

ties Λa:

(96)pHx; Μ, Σ, VL = Λ+HΜ, Σ, VL p+Hx; Μ, Σ, VL + Λ-HΜ, Σ, VL p-Hx; Μ, Σ, VL,

where not only the allele frequency spectra pa  and their moments reflect the effect of

drivers,  but  also  the  stationary state  probabilities  Λa,  as  derived in  the  previous  sec-

tion.  Similarly to the full  probability distributions, the discrete moments are a linear

combination:

(97)
MHk; m, Μ, Σ, VL =

Λ+HΜ, Σ, VL M+Hk; m, Μ, Σ, VL + Λ-HΜ, Σ, VL M-Hk; m, Μ, Σ, VL.

We note  that  one particular  observable  that  follows from the allele  frequency spec-

trum is the mean heterozygosity, which is here simply given by a particular moment:

(98)ΠHΜ, Σ, VL = MH1; 2, Μ, Σ, VL.

Under  neutrality  and  without  linked  drivers,  one  can  show  that  ΠHΜ, 0, 0L » 2 N Μ

[21].

Outgroup-directed allele frequency spectrum

We  can  now  use  the  results  on  the  cross-species  substitution  rate  and  of  the  allele

frequency  spectrum  to  derive  a  probability  distribution  for  cross-species  polymor-

phism.  Consider  two  species  that  diverged  independently  for  some  time  Τdiv  from

some common ancestor. We want to compute the probability of observing k out of m

alleles with a = 1 from species 1 and k '  out of m '  alleles with a = 1 from species 2.

We assume that  both  species  evolve  independently  on  this  tree,  but  under  the  same

evolutionary  parameters,  including  the  same  driver  rate  V .  We  further  assume  that

the  common  ancestor  to  the  two  diverged  species  is  given  by  the  stationary  state

probabilities Λa.  The probability that  the two diverged species are at  allelic  states a '

and a '' is then simply

(99)pHa ', a ''L = â
a=81,-1<

ga' aHΤdiv, VL ga'' aHΤdiv, VL ΛaHΜ, Σ, VL,

where ga' aHΤdiv, VL is the cross-species propagator under linkage to drivers (equation

80) and ΛaHΜ, Σ, VL is the stationary state probability (equation 82). The sum over the

ancestral allele captures our lack of knowledge about the ancestral state.

Given the two allelic states a '  and a '',  we use the moment formulas (equation 95) to

compute  the  likelihood  of  sampling  k '  and  k ''  alleles  from  the  two  species

pHa ', a ''L Ma'Hk '; m ', Μ, Σ, VL Ma''Hk ''; m '', Μ, Σ, VL.  The  full  likelihood  is  then  a  sum

over all unknown states a, a ' and a '':
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Given the two allelic states a '  and a '',  we use the moment formulas (equation 95) to

compute  the  likelihood  of  sampling  k '  and  k ''  alleles  from  the  two  species

pHa ', a ''L Ma'Hk '; m ', Μ, Σ, VL Ma''Hk ''; m '', Μ, Σ, VL.  The  full  likelihood  is  then  a  sum

over all unknown states a, a ' and a '':

(100)

PHk ', k ''; m ', m '', Τdiv, Μ, Σ, VL =

â
a,a',a''=81,-1<

ga' aHΤdiv, VL ga'' aHΤdiv, VL ´

Ma'Hk '; m ', Μ, Σ, VL Ma''Hk ''; m '', Μ, Σ, VL.

A  special  case  is  m '' = 1  and  m ' > 1,  i.e.  the  situation  in  where  one  species  is  only

known as  a  single  reference sequence (outgroup-species),  whereas  the  other  species

is sampled more deeply with m ' > 1 (ingroup-species). The likelihood of observing k

alleles in the ingroup that are different from the outgroup allele is then simply:

(101)

PHk; m, Τdiv, Μ, Σ, VL =
1

2
HPHk, 0; m, 1, Τdiv, Μ, Σ, VL + PHm - k, 1; m, 1, Τdiv, Μ, Σ, VLL.

The  frequency,  k,  of  alleles  that  differ  from  the  outgroup-species  is  also  called  the

outgroup-directed allele frequency. Equation 101 is the key derivation of this section.

It  is  an  analytical  likelihood  function  that  can  be  used  to  score  genomic  outgroup-

directed  polymorphism and  substitution  data,  as  shown  in  section  4.5.  A  fit  to  data

from  synonymous  sites  from  drosophila  can  be  found  in  the  Appendix  (see  also

section 4.5).

4.3 Single-locus computer simulations 

To  test  both  allele  frequency  predictions  and  substitution  dynamics  under  driver

mutations,  we  introduce  a  simple  computer  simulation  model.  Consider  a  Wright-

Fisher model with a single locus and two alleles under static selection and mutations.

We introduce  so  called  Quasi-driver  events,  which  occur  as  a  Poisson  process  with

rate  V .  At  any  such  event,  the  allele  frequency  at  our  single  locus  will  be  instanta-

neously “reset” to  either  x = 1 (with probability  x)  or  x = 0 (with probability  1 - x).

This  process  mimics  a  linked  driver  locus,  which  emits  infinitely  strongly  selected

driver mutations with rate V . A similar model has been proposed by Gillespie [29] to

study genetic  draft  of  neutral  diversity.  In  this  simulation,  we can  then measure  the

substitution rate and the polymorphism spectrum. In the following, we show several

observables and compare theory prediction with simulation results.
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Single species

We  first  study  the  above  described  simulation  scheme  for  a  single  population  in

stationarity.  In  this  case,  observables  are  derived  by  averaging  over  many  samples

taken  every  few  generations.  The  total  substitution  rate  under  drivers  is  shown  in

Figure 28. The solid line shows the prediction by equation 83. The linear approxima-

tion,  given  by  equation  85  is  very  accurate  for  low and  moderate  driver  rates.  This

linearity  of  the  total  substitution  rate  allows  a  simple  interpretation:  Every  driver

event  creates  a  passenger  substitution  with  probability  Μ � Σ.  The  higher  the  driver

rate,  the  more  passenger  substitutions  we  will  observe.  This  simple  linearity  breaks

down if driver events become so common, that passenger sites will  be fixed at their

deleterious allele for substantial fraction of the time, which violates the assumptions

behind the linear approximation (see derivation of equation 85).
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ò Figure 28. Passenger  substitution  rate  with  drivers.  We  show  simulation  data  in
dots.  The  theory  prediction  is  shown  in  solid  red  (equation  83),  and  the
approximate  formula  in  dashed  red  (equation  85).  Parameters  are
2 N Μ = 0.025, 2 N Σ = 10.

Figure  29  shows  the  stationary  allele  frequency  spectrum  in  a  population  with  and

without  linkage to drivers.  Linked drivers remove a substantial  fraction of  the poly-

morphisms  as  can  be  seen  by  comparing  the  red  and  blue  curve.  At  the  same time,

they  largely  increase  the  probability  that  the  population  is  fixed  at  the  less  fit  state

(left side of the spectrum). Note that the analytical prediction of the frequency spec-

trum (equation 97) agrees surprisingly well  with the simulations,  given the heuristic

approximations of the driver-extension (equation 93).
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ò Figure 29. Allele frequency spectrum. Full  allele frequency spectrum under selection,
drift  and  linkage,  simulated  in  a  Wright-Fisher  model.  Parameters  are
2 N Μ = 0.025,  2 N Σ = 2,  m = 37  and  2 N V = 5  (red),  V = 0  (blue).  Dots  are
simulation data, solid lines are theory.

A particularly interesting summary statistics of the full polymorphism spectrum is the

mean  heterozygosity  ΠHΜ, Σ, VL,  given  by  equation  98.  Under  linked  driver  muta-

tions, the diversity in the population is reduced, which results in a decreasing Π with

V .  For  neutral  mutations,  this  effect  is  known as  genetic  draft  (see  [29]).  Figure  30

shows  the  effect  of  draft  on  the  diversity  of  neutral  passengers.  Again,  theory  and

simulations agree very well.
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ò Figure 30. Mean  heterozygosity  of  neutral  sites.  Here  we  show  the  mean
heterozygosity (equation 98) as a function of the driver rate. Parameters are
2 N Μ = 0.025 and Σ = 0.  Dots are simulation results,  the solid red line is  the
prediction from theory.

Cross-species simulations

We  now  apply  the  above  described  quasi-driver  algorithm  for  a  cross-species  sce-

nario. We first run the model for a single population and wait until the population has

reached stationarity. This population is the ancestor-population. We then evolve both

outgroup- and ingroup-species independently from that same ancestor for a time Τdiv.

To  obtain  statistics  we  run  this  protocol  many  times  and  average  over  the  whole

ensemble.  Every  simulation  yields  an  outgroup-directed  allele  frequency  0 £ k £ m,

where a substitution is defined by all samples of the ingroup differing from the allele

of  the  outgroup.  For  related  species  the  substitution  probability  is  approximately

linear in the divergence time Τdiv  and in the driver rate V .  Figure 31 shows the frac-

tion of substitutions at passenger sites as a function of the rate of linked drivers, with

good agreement between theory and simulations. 
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ò Figure 31. Cross-species  divergence.  This  plot  shows  the  divergence  at  passenger
sites  between  two  species.  Dots  are  simulation,  solid  red  line  is  theory
prediction.  Parameters  are  2 N Μ = 0.025,  2 N Σp = 10  and  Τdiv = 6´2 N

generations.

In  Figure  32  we  plot  the  outgroup-directed  allele  frequency  spectrum  for  evolution

under  drivers  and without  drivers  (blue).  The last  value in  each spectrum (k = m)  is

simply  the  above  described  cross-species  divergence  rate.  Most  interestingly,  apart

from the higher rate of divergence, the dominant effect of driver mutations affects the

high-frequency allele frequencies of this spectrum: There are about an order of magni-

tude  more  passengers  at  high  outgroup-directed  allele  frequencies  under  linkage  to

driver mutations than without drivers. Note that traditional methods to infer positive

selection,  such  as  the  MK-test  [44]  or  the  method  by  Mustonen  and  Lässig  [48]

would infer substantial positive selection from this spectrum, as shown by the yellow

curve  in  Figure  32,  which  is  a  maximum  likelihood  fit  of  the  fluctuating  selection

model [48] to the simulation data.
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ò Figure 32. Outgroup  directed  polymorphism  spectrum.  This  plot  shows  simulation
data  from  a  Wright-Fisher  Simulation  (dots)  and  an  evaluation  of  equation
101  (solid  lines).  Parameters  are  2 N Μ = 0.025,  2 N V = 2  (red),  2 N Σ = 5,
Τdiv = 6 ´ 2 N, m = 37. For comparison we also show the case without driving,
2 N V = 0, in blue and a best fit  model without drivers but with selection flips
[48] in yellow. This last model contains substitutions solely as a consequence
of  positive  selection,  rather  than  hitchhiking.  It  is  given  by  a  fit  of  the
simulation to the theory from Mustonen and Lässig [48],  yielding a selection
coefficient 2 N Σ = 9.45 and a selection flip rate 2 N Γ = 0.0189.

4.4 Multi-locus computer simulations

No recombination, background selection

We now test the above theory on multi-locus simulations. For that we use the follow-

ing  simulation  setup:  We define  three  types  of  sites  in  the  sequence:  i)  a  passenger

site is a site with static selection coefficient Σ;  ii)  A driver  site has selection coeffi-

cient Σd > Σ and evolves under selection flips with rate Γ (see chapter 1); iii) Finally,

a neutral site has zero selection. We run a Wright-Fisher model on this sequence and

measure  substitution  rates  and  neutral  diversity  (based  on  the  neutral  sites  only)  in

stationarity.

We  first  consider  the  case  of  zero  recombination.  In  that  case,  every  driver  is  fully

linked to every passenger and neutral site and there is a global constant driver field,

which simply equals the number of driver sites times their substitution rate Γ. Figure

33 shows the rate of passenger substitutions and the neutral diversity as a function of

the  number  of  linked  drivers  with  two  different  sequence  lengths.  While  the  theory

prediction works nearly perfect for small sequence lengths, it fails to predict the large

L  simulation.  The reason are interference effects between passenger sites,  which are

also known as background selection (see [11] and [12]). Background selection lowers

the  effective  population  size,  which  results  in  a  higher  deleterious  substitution  rate

and in a lower neutral diversity, as seen in Figure 33 for the longer sequence length

simulation data (dark red dots).
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ò Figure 33. Multi-locus simulations without recombination. This figure shows the rate
of  passenger  substitutions  (a)  and  the  neutral  diversity  (b)  as  a  function  of
linked  driver  sites  in  the  sequence.  Simulation  results  are  shown  in  blue
(L = 200) and red (L = 1000) dots. The red curve is the prediction from theory
(equations  83  and  98).  Other  parameters  are  2 N Μ = 0.025,  2 N Σ = 10  and
2 N Σd = 200.

Finite recombination

Consider  now  a  recombining  chromosome  with  uniform  recombination  rate  Ρ  and

length L.  Recombination is  implemented via random crossing-over events with total

rate  N L Ρ.  For  every  crossing-over  we  randomly  pick  two  individuals  from  the

population and create two new hybrid-individuals that contain all the alleles from the

two individuals with a single crossing-over point that is also randomly picked. Above

we  already  showed  that  recombination  creates  a  distance  dependent  driver  field

(equations 77 and 81). For a site at position 1 £ r £ L, the driver field is defined as:

(102)VHrL = â
r'=1

L

ΓHr 'L exp -
 r - r '¤

Ξ

where ΓHr 'L is the rate of drivers emitted at site r '. The effect length of a driver event

is given by the selection coefficient of the driver, Σd and the recombination rate Ρ:
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where ΓHr 'L is the rate of drivers emitted at site r '. The effect length of a driver event

is given by the selection coefficient of the driver, Σd and the recombination rate Ρ:

(103)Ξ =
ΤfixHΣdL

Ρ
=

Σd

2 Ρ

1

logH2 N ΣdL
.

An example of a driver field for a random configuration of drivers is shown in Figure

34.
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ò Figure 34. Example  for  a  random  driver  field.  Here  we  show  an  evaluation  of
equation  102  with  2 N Γ = 0.1,  2 N Ρ = 0.05  and  2 N Σ = 200.  This  yields  a
correlation  length  of  Ξ » 380  (equation  103).  We  distributed  25  driver  sites
randomly and show their positions as red dots at the bottom of the plot.

We  run  simulations  in  this  driver  configuration  to  measure  the  rate  of  passenger

substitutions  and  neutral  diversity.  The  result  is  shown  in  Figure  35.  The  effect  of

driver  positions  on  the  predicted  and  simulated  passenger  substitutions  is  clearly

visible  in  the  shown  pattern.  Both  of  the  observables  are  qualitatively  predicted

correctly, however with an offset. 
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ò Figure 35. Simulations  with  drivers,  passengers  and  neutral  sites.  The  red  dots  in
both plots indicate the positions of the driver sites. a) Blue dots are measured
substitution  rates  (smoothed  by  a  moving  average).  The  red  line  is  the
predicted substitution rate (equation 83) under the driver field created by the
actual  drivers in  the simulation and computed by equation 102 (we took the
rate  of  drivers  that  actually  occurred,  which  is  less  than  Γ  due  to  clonal
interference).  Note  that  the  substitution  rate  of  passengers  without  any
drivers  is  quasi  zero.  b)  Blue  dots  are  measured  neutral  diversity  values.
Again,  the  red  curve  indicates  the  theory  prediction  by  equation  98.  The
number  of  drivers  in  this  simulation  was  50,  the  number  of  neutral  sites  is
100,  both  randomly  distributed  along  the  sequence.  The  dashed  blue  curve
indicates the value expected without linkage to driver sites. Other parameters
are  N = 500,  L = 2000,  2 N Μ = 0.025,  2 N Σd = 100,  2 N Σ = 10,  2 N Ρ = 0.05,
t = 1000 ´ 2 N generations.

To  further  explore  this  multi-locus  model  with  recombination,  we  plot  again  the

mean passenger substitution rate and neutral diversity as a function of the number of

drivers. Comparing with the zero-recombination case (Figure 33), we first notice that

the passenger substitution rate without drivers (leftmost values) shows no offset due

to background selection.  However,  the  neutral  diversity  still  shows an offset  similar

to the fully linked case due to background selection. 
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ò Figure 36. Substitution  and  Polymorphism  with  recombination.  Here  we  show  the
mean passenger  substitution  rate  (a)  and  the  mean heterozygosity  (b)  as  a
function of the number of drivers. Parameters are L = 1000 and 2 N Ρ = 0.05.

4.5 Likelihood-model for genomic data

We  will  now  use  the  developed  predictions  to  build  a  likelihood  function  for  out-

group-directed  frequency  data.  Consider  a  given  dataset  of  length  L,  consisting  of

outgroup-directed  frequencies  kHrL  with  r = 1 … L  and  a  set  of  classifications  into

synonymous  and non-synonymous  sites.  We generally  assume that  those  two classes

of  sites  follow  different  dynamics.  While  synonymous  sites  are  considered  neutral,

we  will  give  two  different  “roles” to  non-synonymous  sites:  drivers  or  passengers.

One ingredient for this mixture model is the likelihood for stationary allele frequen-

cies  of  passengers  under  linked  drivers,  as  derived  above  (equation  101).  The  other

ingredient is the likelihood function for independent drivers that evolve under selec-

tion flips with rate Γ. This likelihood function has been derived and used for genomic

inference by Mustonen and Lässig [48] and is briefly summarized in the following.

Similarly  to  the  Markov  model  from  section  4.1,   we  define  a  four-state  Markov

model for the dynamics of substitutions and selection flips. We define the four states

Λa
Ε  with two binary variables a  (for the allele) and Ε  for the “preferred” allele.  Simi-

larly  to  the  transition  probability  in  equation  76,  we  can  then  define  a  4 ´ 4  rate

matrix:
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(104)
â

â t

Λ+
+

Λ-
+

Λ+
-

Λ-
-

=

-u- - Γ u+ Γ 0

u- -u+ - Γ 0 Γ

Γ 0 -u+ - Γ u-

0 Γ u+ -u- - Γ

Λ+
+

Λ-
+

Λ+
-

Λ-
-

,

where  we  omitted  the  arguments  Μ  and  Σ  in  the  substitution  rates  u±.  This  matrix

equation  can  be  solved  exactly  and  defines  cross-species  substitution  rates

ga' a
Ε' Ε HΤdiv, ΓL similarly to equation 99 with sums over all four states:

(105)

DHk ', k ''; m ', m '', Τdiv, Μ, Σ, ΓL =

â
a,Ε,a',Ε',a'',Ε''=81,-1<

ga' a
Ε' Ε HΤdiv, ΓL ga'' a

Ε'' Ε HΤdiv, ΓL

Ma'Hk '; m ', Μ, Ε ' ΣL Ma''Hk ''; m '', Μ, Ε '' ΣL,

and for the outgroup-directed allele frequencies, similarly to equation 101:

(106)

DHk; m, Τdiv, Μ, Σ, ΓL =
1

2
HDHk, 0; m, 1, Τdiv, Μ, Σ, ΓL + DHm - k, 1; m, 1, Τdiv, Μ, Σ, ΓLL.

Details  are  found  in  reference  [48].  We  now  have  all  ingredients  for  inference  of

passenger-driver dynamics.

We define two likelihood-models for cross-species analysis:

Mixed model I: driver-passenger

For  non-synonymous  sites  in  this  model,  we  assume  a  mixed  likelihood  function:

With  probability  Η,  they  are  driver  sites  with  substitution  rate  Γ  and  selection  Σd,

while with probability 1 - Η,  they are passengers that  evolve under the driver mean-

field  VHrL  created  by  the  drivers.  Since  we  leave  the  exact  positioning  of  the  driver

sites  undefined,  we define the  driver  mean-field as  an average over  all  non-synony-

mous sites:

(107)VHrL = â
r'=8nonsyn<

L

Γ Η exp -
 r - r '¤

Ξ
.

For  synonymous  sites,  this  model  assumes  neutral  dynamics  under  linkage  to  the

driver  field  VHrL.  The  full  log-likelihood score  of  this  model  given a  dataset  of  out-

group-directed allele frequencies kHrL is then
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For  synonymous  sites,  this  model  assumes  neutral  dynamics  under  linkage  to  the

driver  field  VHrL.  The  full  log-likelihood score  of  this  model  given a  dataset  of  out-

group-directed allele frequencies kHrL is then

(108)

S1Hk; ΗL = â
r=8nonsyn<

logHH1 - ΗL PHkHrL; Σp, VHrLL + Η DHkHrL; Σd, ΓLL +

â
r=8syn<

logHPHkHrL; 0, VHrLLL.

where  the  passenger  likelihood,  PHk; Σ, VL = PHk; m, Τdiv, Μ, Σ, VL,  is  given  by

equation  101,  and  the  driver  likelihood,  DHk; Σ, ΓL = DHk; m, Τdiv, Μ, Σ, ΓL,  is  given

by  a  equations  106.  We  explicitly  use  the  previously  discussed  independence

between  sites,  which  results  in  a  factorization  of  the  likelihood  function,  and  the

additivity  of  the  above  log-likelihood  score  function.  Correlations  between  sites  are

implemented  only  via  the  driver  field  (see  Discussion).  Note  that  we  can  easily

extend the driver-model (equation 105) to include effects from other drivers, i.e. their

coupling to the driver field VHrL. But if selection on the drivers is strong as assumed

here, this coupling will hardly matter.

Mixed model II: unlinked drivers

The second model is similar to the driver-passenger model, but without linkage. We

therefore ignore any driver field in this model. The log-likelihood score is then

(109)

S2Hk; ΗL = â
r=8nonsyn<

logHH1 - ΗL PHkHrL; Σp, 0L + Η DHkHrL; Σd, ΓLL +

â
r=8syn<

logHPHkHrL; 0, 0LL.

In comparison to the Driver-passenger model, this model does not contain passenger

substitutions,  except  for  the  very  unlikely  event  of  substitutions  by  drift  against

selection. This model therefore attributes almost all non-synonymous substitutions to

driver mutations, which will overestimate the fitness flux (see below).

Application to a simulated dataset

To test the two models, we use our multi-locus simulation algorithm (see section 4.4)

to create a simulated dataset with outgroup-directed polymorphism frequencies under

finite  recombination.  We  simulate  the  Wright-Fisher  model  (see  section  4.4)  to

stationarity  and  define  the  resulting  population  as  the  common  ancestor  population.

Subsequently we evolve both outgroup and ingroup species independently from that

common ancestor for time Τdiv. From such a simulation, we get a vector of outgroup-

directed  frequencies  at  every  site  in  the  sequence,  kHrL  for  r = 1 … L.  We  can  then

compute the log-likelihood score for both models (equations 108 and 109). In Figure

37,  we show the  result  of  such an  inference,  where  we fixed all  parameters  to  their

true  values  and  inferred  only  the  parameter  Η,  which  defines  the  fraction  of  driver

sites in the sequence. This one-dimensional inference has the advantage that we can

plot the likelihood-surface explicitly,  as shown by background-coloring. As a result,

we  find  a  slight  underestimation  of  the  driver-fraction,  Η,  by  the  driver-passenger

model,  and  a  large  over-estimation  by  the  unlinked-driver  model.  Recall  again,  that

we used both non-synonymous and synonymous sites for this inference method. Our

results clearly indicate that finite recombination in the simulated datasets has a strong

impact on the data: While the model without driver-passenger effects attributes every

observed  substitution  to  a  driver  mutation,  the  linkage-model  attributes  the  correct

fraction of observed substitutions to hitchhiking events. 
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ò Figure 37. Likelihood surface of the driver inference. We simulate outgroup-directed
frequency  data  with  parameters  L = 2000,  2 N Μ = 0.025,  Τdiv = 6,
2 N Ρ = 0.05,  2 N Σ = 10  and  different  numbers  of  drivers  with  Γ = 0.1.  We
then evaluate  the  three  models  (given by  equations  108 and 109)  for  every
dataset,  trying  different  values  of  Η.  The  Dots  give  the  maximum  likelihood
estimates,  the  shading  reflects  the  log-likelihood  surface  around  the
maximum:  Red  corresponds  to  the  maximum,  while  blue  indicates  a  log-
score  difference  of  20  or  higher  with  respect  to  the  maximum.  The  dashed
line is a diagonal for comparison. Note that the absolute score is comparable
in  model  I  and  model  II,  while  in  model  III  the  score  is  much  lower,
suggesting a very poor fit of the data to model III, as expected.

Preliminary application to Drosophila data

As an outlook of this work, we apply the above likelihood models to real data from

the  fruit-fly  Drosophila  melanogaster.  For  this  analysis,  we  use  re-sequencing  data

from the  Drosophila  Population  Genomics  Project  [20].  This  data  comprises  whole

genome  sequences  for  chromosomes  2L,  2R,  3L,  3R  and  chromosome  X  from  37

individuals  from  a  wild  North-American  population.  As  an  outgroup,  we  use  the

reference genome sequence of Drosophila simulans. We analyze coding regions from

all  genes  in  the  five  chromosomes,  which  are  more  than  12.000  genes.  To  give  an

overview  on  the  dataset,  we  show  histograms  of  the  fraction  of  non-synonymous

substitutions and of the heterozygosity in Figure 42 in the Appendix.

Recombination  rate  estimates  in  Drosophila  can  be  obtained  via  a  web-tool  from

Fiston-Lavier  [26]  and  converted  to  our  preferred  parameter  2 N Ρ  via  an  effective

population size Ne = 106  (see [48] and the Appendix). Mutation rate and divergence

time  estimates  are  obtained  from  a  neutral  model  fit  to  synonymous  sites  in  highly

recombining regions as 2 N Μ = 0.01261 and Τdiv � 2 N = 3.928 (see Appendix).  Note

that  the  divergence  time  measures  the  branch  length  between  the  common  ancestor

and each of the two species.
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While in our simulations, we could fix the parameters Σp  and Σd, in real data we do

not know selection coefficients of passengers and drivers a priori. Moreover, they can

be different in every gene. We therefore have to find the maximum likelihood set of

parameters  Σd,  Σp  and  Η  for  every  gene.  This  multi-dimensional  optimization  is

realized via the program “amoeba” from Numerical Recipes, 3rd edition [61], which

is  a  downhill-simplex  algorithm by  Nelder  and  Mead  [54].  As  initial  values  for  the

likelihood-maximization  we  choose  2 N Σp = 10,  2 N Σd = 100  and  Η = 0.02,  which

are  motivated  by  inferred  values  from  Mustonen  and  Lässig,  2007  [48]  and  by  the

mean divergence of non-synonymous sites (see Figure 42, Appendix).

Results are shown in Figure 38 in form of a scatter plot that shows the inferred fitness

flux F = Η Γ Σd  for the two likelihood models, with a mean value indicated by the red

line. While the optimization routine is not perfect and partly depends on the choice of

the initial values, the results of this preliminary analysis are promising: The inferred

fitness flux under the unlinked-driver model is much larger than for the driver-passen-

ger model. We showed above, that the observed number of substitutions between the

two  species,  and  hence  also  their  fitness  flux,  is  overestimated  by  a  model  that

ignores  linkage.  The  results  shown  in  Figure  38  are  therefore  consistent  with  our

simulations results (see Figure 37) and indicate that a substantial number of substitu-

tions in the Drosophila genome are hitchhiking as deleterious passenger substitutions

rather then fixing as driver substitutions by positive selection.

94   Stephan Schiffels



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.1

0.2

0.3

0.4

0.5

F HDriver-PassengerL

F
HU

nl
in

ke
d

D
ri

ve
rs

L

ò Figure 38. Inferred driver-dynamics in  Drosophila.  We show the  inferred fitness  flux
under  both  the  Driver-Passenger  model  and  the  unlinked-driver  model.  The
green dashed line indicates the diagonal, the red lined the mean of the data.
From this plot we excluded the highest 20% of all  genes with respect to the
inferred F under the Driver-Passenger model, since for numerical reasons we
expect a very high uncertainty for high values of inferred Σd .
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Summary and discussion

In this thesis we have developed a comprehensive framework to incorporate genomic

linkage  into  the  analysis  of  population  genetic  processes  and  observables.  A  key

feature of our theory was the computation of the fixation probability of mutations of

arbitrary selection strengths and -sign. We find that while interference interactions in

the dense-sweep regime may be complicated in their details, their net effect is simple:

genomic  sites  with  selection  coefficients  Σ  smaller  than  a  threshold  Σ�  have  nearly

random  fixed  alleles,  and  mutations  at  these  sites  fix  with  near-neutral  rates.  The

neutrality threshold Σ�  is given by the total rate of selective sweeps, Vdrive.  Emergent

neutral mutations, as well as strongly deleterious changes, fix as passengers in selec-

tive sweeps. That is, both classes of mutations are subject to interference, not genetic

drift, as dominant stochastic force. Their resulting fixation probability GHΣL  depends

only  weakly  on  the  effective  population  size  N.  Mutations  with  larger  beneficial

effect (Σ > Σ� ) suffer gradually weaker interference interactions. Hence, their fixation

rates  show  a  drastic  increase  towards  the  Haldane-Kimura  value  GHΣL = 2 Σ  set  by

genetic drift.

At a qualitative level, these results tell the story of the Hill-Robertson effect: genetic

linkage reduces the efficacy of selection. Quantitatively, they demonstrate that emer-

gent  neutrality  is  not  equivalent  to  a  simple  reduction  in  effective  population  size.

The fixation rate of emergent neutral and deleterious passenger mutations can heuristi-

cally  be  interpreted  as  a  linear  reduction  in  effective  population  size  by  a  factor

2 N Σ� ,  but  this  approximation  breaks  down  for  mutations  with  larger  beneficial

effect, as shown in Figure 9. In other words, we cannot absorb the effects of interfer-

ence into a single modified strength of genetic drift. Of course, both interference and

genetic  drift  are  stochastic  processes  that  randomize  alleles  of  genomic  sites.  How-

ever,  they  have  fundamentally  different  characteristics:  genetic  drift  is  a  diffusion

process  causing  independent  changes  in  allele  frequencies  in  each  generation,

whereas  interference  generates  coherent  changes  over  time  intervals  given  by  the

inverse selection coefficient of the driver mutation.

An  important  concept  arising  from  our  derivation  of  the  fixation  probability  is  the

classification of driver-  and passenger-  mutations. This classification arose from the

necessity  to  close  the  self-consistent  formalism  of  effective  pair-interactions  and  it

proves very useful to understand adaptive processes. We find that a substantial frac-

tion  of  genomic  substitutions  observed  in  dense-sweep  processes  are  not  driver

mutations,  but  moderately  beneficial  or  deleterious  passenger  mutations  fixed  by

hitchhiking.  This  fraction  increases  with  increasing  population  size  N  or  genome

length L.
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As  shown  in  the  last  chapter  of  this  thesis,  the  concept  of  drivers  and  passengers

served  as  the  key  to  extend  the  developed  formalism  for  the  fixation  probability  to

recombining  systems:  Here  the  driver-rate  becomes  a  position-dependent  driver-

field,  which  encapsulates  genomic  correlations  caused  by  linkage:  Every  driver

mutation  affects  neighboring  sites  up  to  a  characteristic  distance  Ξ,  and  multiple

driver  sites  in  the  same  region  additively  accumulate  their  effect.  The  dynamics  of

passenger mutations are then fully specified by the strength of the local driver field,

with  no need to  specify the  exact  pairwise interactions between every possible  pair.

Moreover, we can accurately quantify how the driver field affects not only the substi-

tution  rate,  but  also  the  allele-frequency  spectrum.  Both  of  these  observables  are

affected in a way that gave rise to a new inference scheme for genomic data, that in

contrast  to  many  previous  methods  explicitly  takes  into  account  genomic  linkage.

This  method uses  a  mixed model,  in  which non-synonymous sites  evolve as  drivers

or  passengers,  and  synonymous  sites  evolve  under  neutral  evolution  with  genetic

draft. We have shown that this simple model is analytically tractable, such that accu-

rate predictions for allele-frequencies and cross-species divergence could be derived.

Application to real data from coding region in Drosophila melanogaster suggests that

a substantial fraction of sites is affected from linkage. We show that traditional infer-

ence methods for positive selection (see the review from Fay [23]), that do not incor-

porate  the possibility of  hitchhiking,  will  overestimate  the amount  of  positive selec-

tion in linked genomes.
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Appendix

Data

We  focus  exclusively  on  the  5  large  chromosome  arms  of  the  drosophila  genome.

The recombination rate varies across these chromosomes, as shown in Figure 39. The

recombination rate estimates used here are obtained via the Drosophila melanogaster

recombination rate calculator from Fiston-Lavier et al. [26,71].
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ò Figure 39. Recombination rates in Drosophila. Data obtained from Fiston-Lavier et al.
[26].

We  expect  linkage  effects  like  background-selection  and  hitchhiking  with  driver

mutations  to  be  stronger  in  regions  of  low  recombination  rate  (see  section  4.4).

Indeed, the outgroup-directed allele frequency spectrum for synonymous sites show a

clear  grading  with  respect  to  high,  medium  and  low  recombination  regions,  see

Figure 40.
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ò Figure 40. Synonymous  and  nonsymonymous  polymorphism  spectra.  a)
synonymous  polymorphisms,  b)  nonsynonymous  polymorphisms.  Blue:  Low
recombination (Ρ < 1 cM �mb), Red: Medium recombination (1 £ Ρ £ 3) Yellow:
High recombination (Ρ > 3). The outliers in bin 18 are numerical artifacts due
to the discretization of the allele frequencies.

To  obtain  estimates  for  the  mutation  rate  and  the  divergence  time,  we  fit  a  neutral

model  to  the  synonymous  sites  data  in   highly  recombining  regions  (Ρ > 3 ´ 10-8).

The model has been derived in section 4.2 (equation 101). For the neutral model fit,

we set Σ = V = 0 and fit  only the parameters t  and Μ.  Using the same maximization

algorithm  as  for  the  gene  inference  in  section  4.5,  we  obtain  fit  parameters

Τdiv � 2 N = 3.928 and 2 N Μ = 0.01261. As can be seen in Figure 41, a neutral model

with these parameters fits the data very well. 
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ò Figure 41. Neutral  model  fit.  This  fit  has  been  obtained  by  maximizing  the  likelihood-
function  for  outgroup-directed  allele  frequencies,  equation  101,  with  fixed
parameters  Σ = V = 0  and  varying  Μ  and  Τdiv.  Fit  Parameter  values  are
Τdiv �2 N = 3.928 and 2 N Μ = 0.01261.

To give an overview on the protein-coding data in drosophila, we show histograms of

all protein-coding genes in Drosophila in Figure 42. Mean values are indicated by the

red  line.  As  expected,  the  average  synonymous  heterozygosity  is  very  close  to  the

population  mutation  rate  2 N Μ = 0.01261,  as  obtained  from  the  allele-frequency

spectrum.  The  mean  fraction  of  non-synonymous  substitutions  is  much  lower  than

the neutral expectation ~ Μ H2 ΤdivL » 10 %, indicating negative selection in the major-

ity of genes. This is consistent with our likelihood model, where a fraction H1 - ΗL of

non-synonymous sites evolves under static (and hence negative) selection pressure.
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ò Figure 42. Divergence and diversity in protein-coding genes from Drosophila. Here
we show two histograms of the fraction of non-synonymous substitutions and
the  mean  heterozygosity  in  protein-coding  genes  from  Drosophila.  The  red
lines indicate the mean values.
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