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Köln, 2012



a

Berichterstatter: Prof. Dr. Michael Lässig
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Abstract

The recent advent of large-scale genomic sequence data and improvement of se-

quencing technologies has enabled population genetics to advance from a mostly ab-

stract theoretical basis to a quantitative molecular description. However, functional

units in DNA are typically combinations of interacting nucleotide segments, and evo-

lutionary forces acting on these segments can result in very complicated population

dynamics. The goal is to formulate these interactions in such a way that the macro-

scopic features are independent of the microscopic details, as in statistical mechanics.

In this thesis, I discuss the evolutionary dynamics of regulatory sequences, which

control the production of protein in cells. One of the primary forms of regulation occurs

through interactions of proteins called Transcription factors, with binding sites in the

DNA sequence, and the strength of these interactions influence the individual’s fitness

in the population. What makes this an ideal model system for quantitative analysis of

genomic evolution, is the possibility of inferring this relationship.

Compared to prokaryotes and yeast, gene regulation is much more complex in higher

eukaryotes. Regulatory information is organized in modules with multiple binding

sites that are linked to a common function. In Chapter. 2, we show that binding site

complexes are commonly formed by local sequence duplications, as opposed to forming

from scratch by single point mutations. We also show that the underlying regulatory

grammar is in tune with this mechanism such that the duplication events confer an

adaptive advantage.

Regulatory complexes resemble a many-particle system whose function emerges

from the collective dynamics of its elements. In Chapter. 3, we develop a thermo-

dynamic framework to characterize the effective affinity of site complexes to multiple

transcription factors with cooperative binding. These affinities are the phenotype, or

trait of binding complexes on which selection acts, and we characterize their evolu-

tion. From the yeast genome polymorphism data, we infer a fitness landscape as a

function of binding affinity by using the novel method developed in Chapter. 4. This

method of quantitative trait analysis can deal with long-range correlations between



sites which arise in asexual populations. Our fitness landscape quantitatively predicts

the amount of conservation of the phenotype, as well as the amount of compensatory

changes between sites.

Our results open a new avenue to understand the regulatory “grammar” of eukary-

otic genomes based on quantitative evolution models. They prove that a combination

of theoretical models, high-throughput experimental measurements, and analysis of

genomic variation is necessary for a proper quantitative understanding of biological

systems.



Acknowledgements

First of all, I would like to express my gratitude to my advisor Michael
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1

Introduction

1.1 Gene regulation

Proteins, as functional units in the cell, are encoded by “genes” in DNA sequence. The

decoding process from DNA to proteins involves the following steps: a molecule called

RNA-polymerase (RNAP) transcribes the encoded gene in the DNA sequence to another

polymer, RNA, which is later translated into amino-acid chain molecules that are the

building blocks for the protein; see Fig. 1.1(a). Although, all cells in an organism

carry identical DNA molecules which encode similar proteins, they perform distinct

functions ranging from blood cells to brain tissue cells. The answer to this dilemma

lies in the intermediate yet influential role of the control machinery (regulatory system)

during protein production. The most pervasive form of gene regulation occurs during

the first step of RNA transcription. Special types of proteins, transcription factors

(TF), recognize and bind to specific site sequences (binding sites) in the regulatory

region of a gene (promoter sequence) and affect the transcription rate and hence protein

production; Fig. 1.1(b). The significance of regulatory variation as a driving force for

phenotypic evolution has been suggested some time ago (Monod and Jacob, 1961). Most

of the phenotypic variations (i.e., difference of functional characters) between species

are not due to their protein code but rather the control machinery which determines the

combination and amount of available proteins in the cell at various points in time (King

and Wilson, 1975; Monod and Jacob, 1961; Ptashne and Gann, 2002).

Despite the biological significance of the regulatory system, a quantitative un-

derstanding of gene regulation has become possible only after the advent of large-

1



1. INTRODUCTION

Figure 1.1: Gene expression and regulatory processes. (a) Information transfer
from DNA sequence to protein molecule: (1) RNA-polymerase (RNAP) binds to the DNA
sequence and (2) transcribes a single stranded polymer, RNA molecule. (3) Messenger RNA
(mRNA) is the transcribed copy of the DNA sequence which encodes the information for
protein production. (4) A ribosome molecule then translates the mRNA sequence to amino
acids which are the building blocks of the protein. The structure will be folded and form
a 3-dimensional protein molecule. (b) Transcription regulation is one of the most perva-
sive forms of gene regulation. Throughout this process a type of protein molecule called
transcription factors binds to the binding sites in the regulatory region of the gene and
form a complex that interacts with the RNA-polymerase. In this way, the level of protein
production in the cell is regulated by proteins called transcription factors, which interact
with RNA-polymerase. (c) Promoter architecture depends on the organism’s complexity.
Prokaryotes and unicellular eukaryotes have short regulatory regions, which encode a few
binding sites. (d) Multi-cellular eukaryotes exhibit more complex regulatory architectures
organized in modules with multiple binding sites that interact with different transcription
factors. The example here is a regulatory region in the sea urchin (Davidson, 2006).

scale genomic sequences and regulatory interaction data. Important building blocks

are genome-wide maps of protein-DNA binding, statistical inference methods (Berg

and von Hippel, 1987; Stormo and Fields, 1998), high-throughput measurements of

sequence-specific binding affinities of transcription factors (Badis and et. al., 2009;

Fields et al., 1997; Maerkl and Quake, 2007; Mukherjee et al., 2004), and cross-species

2



1.2 Complexity of regulatory structures

comparisons of regulatory sequences and regulatory functions (Stark and et. al., 2007).

1.2 Complexity of regulatory structures

The evolutionary constraint of regulatory sequence and function depends on the level

of complexity in promoter architecture. Prokaryotes and unicellular eukaryotes have

short intergenic regions, and regulatory functions are often encoded by only a few

binding sites; Fig. 1.1(c). The more complex cis-regulatory information in higher eu-

karyotes is organized into regulatory modules, which are typically a few hundred base

pairs long and are spatially separated by larger segments of intergenic DNA (Bergman

and et. al., 2002; Ondek et al., 1988); Fig. 1.1(d). Within modules, regulatory func-

tions often depend on clusters of neighboring binding sites for multiple transcription

factors, which are coupled by cooperative interactions (Davidson, 2006; Harbison and

et. al., 2004; Lynch, 2006; Ptashne and Gann, 2002; Sinha et al., 2004). The rela-

tive order and spacing of sites within clusters follows a regulatory “grammar”, which

distinguishes functionally neutral site changes from rearrangements affecting promoter

function (Arnosti and Kulkarni, 2005; Kulkarni and Arnosti, 2005; Lusk and Eisen,

2010; Markstein et al., 2002; Small et al., 1993; Stanojevic et al., 1991).

The combinatorial complexity of this grammar ensures the specificity of regula-

tion in the larger genomes of multicellular eukaryotes (Buchler et al., 2003; Levine and

Tjian, 2003). Unlike prokaryotes, single binding sites in eukaryotes are not specific

enough to be recognized by transcription factors to alter gene expression. The required

specificity however, can emerge from module structures with an agglomeration of bind-

ing sites; Fig. 1.1(d). We can address this feature in a simple quantitative fashion.

Information theory dictates that finding a unique object among L alternatives requires

Imin = log2 L bits of information. Similarly, a minimum of Imin = log2 L bits of in-

formation is required to specify a unique location in a genome containing L possible

sites for a transcription factor to bind (i.e. L bp sequence). In Table. 1.1, we compare

the required regulatory information to the actual information content of transcription

factors in three classes of species: prokaryotes (represented by E. coli), unicellular eu-

karyotes (represented by S. cerevisiae) and multicellular eukaryotes (D. melanogaster).

3



1. INTRODUCTION

L (bp) Imin = log2 L (bits) 〈I〉(bits)

E. coli 106 20 20− 27

S. cerevisiae 107 23 2− 17

D. melanogaster 108 27 6− 8

Table 1.1: Different regulatory strategies between prokaryotes and eukaryotes.
Unlike prokaryotes, individual transcription factors in multi-cellular eukaryotes, such as
Drosophila, do not encoded sufficient amount of information to identify single binding sites
in the DNA sequence. The third column shows the amount of information required to
identify a single binding site, Imin, and the fourth column shows the average information
content of transcription factors 〈I〉 in the organism. To overcome this inconsistency, the
regulatory information in eukaryotes is organized in modules with multiple binding site
which provide the required specificity in those large genomes.

The genome length and thus the minimum required information Imin from the

transcription factors increase with the organisms complexity. The actual amount of

information encoded by the transcription factors however, does not follow this pat-

tern. We compute the information content of a typical transcription factor I, from

the redundancy of the functional sequence patterns that bind to it; see the Discus-

sion on information content of the binding motifs in Chapter. 2.The specificity of the

transcription factors are sufficient in prokaryotes but far below the minimum limit in

multicellular eukaryotes, such as flies. In this case, the presence of multiple sites in

proximity to each other, i.e., regulatory modules, play the leading role in specifying a

regulatory region; see e.g., (Wunderlich and Mirny, 2009). Characterizing regulatory

modules, their formation, function and evolutionary conservation is the central focus

of this thesis.

1.3 Regulatory interaction: a biophysical approach

As mentioned above, regulation is grounded in the biophysics of TF-DNA interactions

which has been approached both by statistical inference methods and high-throughput

experimental measurements of sequence-specific binding affinities. The strength of these

interactions influence the functional output of the cell (i.e., gene expression) and hence,

it is a molecular phenotype on which natural selection acts. The possibility of inferring

(albeit simplistic) genotype-phenotype maps, makes the regulatory sequence an ideal

model system for quantitative analysis of genomic evolution. Thus, characterizing the

4



1.3 Regulatory interaction: a biophysical approach

regulatory code is a significant step in an emerging interaction-based picture of the

genome.

Binding of a transcription factor to a DNA sequence is a probabilistic process with

an affinity that depends on the nucleotide content of the binding sequence, with a

length of about 10-15 base pairs. The binding energy of this protein-DNA interaction

determines the probability of the transcription factor to be bound at the binding site.

In a reversible binding interaction,

TF + DNA
kbind−⇀↽−
kdiss

TF-DNA

the rate constants, i.e., binding constant kbind and dissociation constant kdiss, are

related to the binding energy of the interaction E through the Boltzmann weight,

kbind
kdiss

∝ exp(−β E) (1.1)

where β is proportional to the inverse temperature, β = 1/kBT . We can compute

the occupancy probability ρ(E) for a sequence with binding energy E in a solution that

contains the corresponding transcription factor,

ρ(E) =
kbind ntf

kbind ntf + kdiss
=

1

1 + exp[β(E − ν)]
(1.2)

ν is the so-called chemical potential in statistical physics and is related to the tran-

scription factor density nth: ν = kBT log κntf (Buchler et al., 2003; Djordjevic et al.,

2003; Lässig, 2007). κ is the proportionality factor in eq. (1.1). The binding proba-

bility in eq. (1.2) is a nonlinear function (Fermi function) of the sequence dependent

binding energy between the protein and the DNA sequence. The chemical potential in

eq. (1.2) acts as a threshold for the sequence specific binding energy E, below which

the transcription factor is more likely to be bound to the sequence. We will see that

the nonlinear dependency of the binding probability on the interaction energy will also

be reflected in the fitness value of the binding site.

Binding energy is of course a biophysical quantity that can be measured experi-

mentally. High-throughput techniques, such as microfluidic experiments (Maerkl and

Quake, 2007), have been developed to measure the sequence specific binding affinities

5



1. INTRODUCTION

of the transcription factors. Statistical inference methods also play an important role

in this direction (Berg and von Hippel, 1987; Stormo and Fields, 1998). Identifying

functional sites in a genome is not as strenuous as measuring the binding affinity of a

protein to all nucleotide combinations. Experimental methods such as ChIP-chip (Lee,

2002; Ren, 2000) or protein binding microarrays (PBMs) (Mukherjee et al., 2004) can

identify binding sites for different transcription factors on a genome-wide scale. We

can then use information theoretical based methods to infer the energy contribution

of single nucleotides from the ensemble of the functional binding sequences (Berg and

von Hippel, 1987; Lässig, 2007; Stormo and Fields, 1998). The key idea is to weigh the

over-representation of the sequence compositions associated with the class of functional

sites, in relation to their binding affinity to the transcription factor.

The probability distribution of functional binding sites Q(a) is significantly different

from the genomic background distribution P0(a) for sites of length `, a = (a1, . . . , a`).

If functional sites are drawn from a Boltzmann distribution, where their occurrence

is in proportion to their affinity, then the best energy model to distinguish this site

ensemble from the background ensemble is, E(a) = logQ(a)/P0(a). This is an imme-

diate consequence of the Maximum Entropy Principle (Jaynes, 1957). Two simplifying

assumptions make this inference a straightforward process: (i) the energy contributions

are additive across the positions of the site and (ii) the correlations between nucleotides

are negligible. This allows us to express the site distributions as the product of single-

nucleotide frequencies,

Q(a) =
∏̀

i=1

qi(ai) (1.3)

and P0(a) =
∏`
i=1 p0(ai). The 4× ` matrix of single-nucleotide frequencies (2.3) is

called the position weight matrix (PWM) of the transcription factor. Therefore,

E(a) =
∑

εi(ai) with, εi(ai) = log
qi(ai)

p0(ai)
(1.4)

We will use these simplifying approximations for our analysis in the following chap-

ters. However, more refined statistical inference methods have been developed that

include higher orders of nucleotide correlations and are suitable for analysis of larger

sampling sets (Gershenzon and Stormo, 2005; Siddharthan, 2010).

6



1.4 Population genetics of binding site evolution

1.4 Population genetics of binding site evolution

Quantifying phenotype, in this case binding phenotype, is a significant and necessary

step in characterizing the evolutionary dynamics of a population. The primary forces

of evolutionary dynamics are (i) mutations that generate genomic variation during

reproduction, (ii) genetic drift related to the stochastic sampling of a discrete population

and (iii) natural selection which determines the reproduction success of a subpopulation

with a certain phenotype. Mutations and genetic drift are the evolutionary forces

which directly interact with genotypes, whereas natural selection is the response to the

phenotypic manifestation of the genetic code in the population. A description of the

evolutionary dynamics of a population should involve a map between the genetic code

and its phenotypic outcome. Other molecular mechanisms, such as recombination in

sexual organisms and horizontal gene transfer in bacteria, also play important parts

during evolution. However, we do not include them in our following analysis.

We assume a binding locus as a sequence of nucleotides a = (a1, . . . , a`) which can

potentially bind to a transcription factor. In this case, the genotype is the binding se-

quence “a” and the phenotype is its binding affinity to the transcription factor “E(a)”

which regulates gene expression in the cell. First, we describe the neutral evolutionary

dynamics in a finite population of size N . The neutral forces, mutations and genetic

drift, modify the population composition of the genotype a during evolution. Most

biological systems, except for viruses and types of mutator bacteria, evolve in the low

mutation regime, µN � 1 where µ is the mutation rate per nucleotide per generation.

The short length of binding sites in eukaryotes, about 10-15 bp, assures that µN` < 1,

and therefore the binding sites are mostly monomorphic in the population. In this weak

mutation regime, it is reasonable to picture the subsequent substitutions, which are the

fixed mutations in the population, as independent jump events which are well separated

in time. This is not the case for larger genomic loci, such as a whole promoter sequence

that provides a larger mutational target during evolution; see Chapter. 3 for discussion.

Since the substitutions are separated in time, we can assume that populations at most

contain two genotypes, a and b. At the level of individuals, mutations are the stochas-

tic processes that change a → b with a rate, µa→b or vice versa. We denote the size

of the subpopulation that carry genotype a with Na and hence the rest with genotype

7



1. INTRODUCTION

b are of the size Nb = N−Na. The change in number of a-carriers in each generation is,

d

dt
Na(t) = µb→aNb(t)− µa→bNa(t) + ξa(t) (1.5)

where ξa(t) is the Gaussian random variable due to the sampling from a finite

discrete subpopulation of size Na with properties,

〈ξa(t)〉 = 0 and 〈ξa(t)ξb(t′)〉 = Na(t)δ(t− t′)δa,b (1.6)

〈.〉 denotes the ensemble average. For N � 1, we can map the discrete variable Na

and Nb onto the continuous frequency variables ya = Na/N and yb = 1 − ya. The

stochastic term in the continuous coordinate will be related to the discrete noise by,

χ(t) =
∂y

∂Na
ξa(t) +

∂y

∂Nb
ξb(t) (1.7)

In this way, we can express the dynamics in eq. (1.5) as,

d

dt
ya(t) = µb→a [1− ya(t)]− µa→b ya + χ(t) (1.8)

with the Gaussian noise term χ(t),

〈χ(t)〉 = 0 and 〈χ(t)χ(t′)〉 =
1

N
ya(t)[1− ya(t)] (1.9)

Fig. 1.2(a) shows such stochastic evolutionary dynamics in the population. The

Langevin picture in eq. (1.8) corresponds to a Fokker-Planck equation for the prob-

ability density P0(ya, t); see e.g., the discussion on stochastic processes in (Gardiner,

2004).

d

dt
P0(y, t) =

1

2N

∂2

∂y2
y(1− y) P0(y, t)− µb→a

∂

∂y
(1− y) P0(y, t) + µa→b

∂

∂y
y P0(y, t)

(1.10)

Which results in Kimura’s U-shape equilibrium solution shown in Fig. 1.2(b), (Kimura,

8



1.4 Population genetics of binding site evolution
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Figure 1.2: Stochastic evolutionary dynamics of a population. (a) Stochastic
evolutionary dynamics of single locus allele frequency under selection in the low mutation
regime µN � 1. Substitution events, starting from the initial mutations and ending by
fixation, are highlighted in green. The time is measured in units of 1/µ.The parameters are
chosen as, µN = 0.05 and N∆F = 1. (b) Stationary distribution of the allele frequencies
y for evolutionary dynamics in neutral conditions (black), eq. (1.11) and under selection
(red), eq. (1.12). The parameters are chosen as, µN = 0.05 and N∆F = 0.2.

1962).

P0(ya) =
1

Z
y−1+Nµb→a
a (1− ya)−1+Nµa→b (1.11)

Given the neutral equilibrium with mutation rates µa→b and µb→a, the underlying

distribution of an evolutionary process in a time-independent fitness landscape Q(a)

will also be in an equilibrium and have a simple relation to its neutral counterpart by

a Boltzmann factor; see Fig. 1.2(b).

Q(a) =
1

Z
P0(a) exp[2NF ]. (1.12)

where Z is the appropriate normalization factor and F is the mean population

fitness which is the average population growth in the absence of mutations and genetic

drift,

d

dt
N(t) = F (t)N(t) (1.13)

We denote the malthusian fitness of the existing alleles by Fa for allele a and Fb

for allele b. The mean population fitness is therefore,

F (t) = ya(t)Fa + yb(t)Fb = Fb + ya(t)∆Fab (1.14)

9



1. INTRODUCTION

with ∆Fab = Fa − Fb. In this way, we can also compute the substitution rates

ua→b i.e., the rate of fixation of an allele in the population under selection (Kimura,

1968),

ua→b = Nµa→b
1− exp(2∆Fab)

1− exp(2N∆Fab)
(1.15)

For a binding site, we have argued that the relevant phenotype is the binding

affinity E(a) of the site sequence a to the transcription factor. Using a biophysical

genotype-phenotype map, be it experimental measurements or statistical inference, we

can project the evolutionary dynamics and the resulting distribution onto the binding

phenotype,

P (E) =
∑

a

P (a)δ(E(a)− E) (1.16)

where δ(x) = 1 for x = 0 and 0, otherwise. The binding energy distribution in the

whole genome W (E) is a composition of the functional part Q(E) and the background

distribution P0(E), W (E) = λQ(E)+(1−λ)P0(E). λ is a hidden Markov variable which

determines the fraction of the functional sites in the genome. For a one-dimensional

biophysical map from sequence to binding energy, the equilibrium state of the genotypes

dictates an equilibrium state for the stationary phenotype distribution. Therefore, the

relation between the neutral and the selective dynamics is,

Q(E) = P0(E) exp[2N∆F (E)] (1.17)

We can infer the shape of the fitness landscape by comparing the phenotype (binding

energy) distribution of the functional site sequences to that of the background genome.

This inference will then enlighten us about the constraints imposed on binding site

evolution. Fig. 1.3(a) shows the the comparison between the functional and neutral

distributions of binding energy in the E. coli genome (Mustonen and Lässig, 2005).

Not surprisingly, there is an over-representation of high-affinity (low binding energy)

site sequences in the functional set compared to the genomic background. The fitness

function, which is also the log-likelihood ratio of these two distributions, is then inferred

in Fig. 1.3(b) (Mustonen and Lässig, 2005). Fitness is a highly nonlinear function of

the binding energy which is related to the nonlinearity of the occupancy function in

10



1.5 Thesis organization

Figure 1.3: Binding energy distribution in E. coli genome. Energy statistics and
fitness landscape for CRP-binding loci in E. coli. (a) Count histogram with energy bins of
width 0.1 (black), expected background counts (blue), and excess counts above background
(red), with a 30-fold zoom into the region E < 14. The color bar indicates the probability of
functionality , ranging from 1 (red) to 0 (blue). (b) Decomposition of the counts (log-scale,
left y axis) according to the hidden Markov model: background distribution (1− λ)P0(E)
(blue), distribution of functional loci λQ(E) (red), and total distribution W (E). (orange).
The resulting fitness landscape ∆F (E) according to eq. (1.17) is also shown in orange
(thick curve, right y axis). The Figure is taken from (Mustonen and Lässig, 2005).

eq. (1.2). The immediate consequence of this nonlinearity is an asymmetry in the

turnover of binding sites. Functional sites can rapidly loose their binding affinity to

a transcription factor by one or two mutations. However, rapid formation of a site

requires a seed sequence with marginal binding to which positive selection towards

strong binding can latch on (Berg et al., 2004; Lässig, 2007). This is the topic we

discuss further in Chapter. 2.

1.5 Thesis organization

The following topics are discussed in this thesis,

Chapter. 2: Binding site formation by local sequence duplication. In higher

eukaryotes, genes often have complex regulatory input, which is encoded in regulatory

sequence regions with multiple transcription factor binding sites. However, the modes

of genome evolution generating this regulatory complexity are poorly understood. In
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chapter. 2 we report a surprising finding: in fly regulatory modules, the majority of

transcription factor binding sites show evidence of local sequence duplication in their

evolutionary history, which relates their sequence information to that of neighboring

binding sites. Our analysis suggests that local sequence duplications are a pervasive

production mode of regulatory information. This mode appears to be specific to higher

eukaryotes, and we have not found evidence of frequent local duplications in the yeast

genome. Our results affect genomic sequence analysis, in particular, computational

identification of cis-regulatory elements and alignment of regulatory DNA. At the same

time, they address fundamental questions on the evolution of regulation: How much

of the regulatory “grammar” observed in higher eukaryotes is due to the optimization

of function, and how much reflects the underlying sequence evolution modes? What is

the result and what is the substrate of natural selection? The content of this chapter

is partly published by (Nourmohammad and Lässig, 2011).

Chapter. 3: Emergent selection on regulatory complexes. Individual bind-

ing sites in eukaryotic regulatory complexes have highly flexible binding affinities and

relative positioning. Therefore, it is often difficult to assess which of the constituents

are important for function. In particular, the functional role of low-affinity binding

sites, which are found ubiquitously in eukaryotic genomes and can be produced by lo-

cal duplications (Chapter. 2), has remained controversial. In Chapter. 3, we present a

quantitative evolutionary analysis of such binding site complexes in yeast. These com-

plexes consist of a strong binding site surrounded by a cloud of several low-affinity sites,

whose functional importance has recently been demonstrated experimentally (Gertz

et al., 2008). Based on the biophysical interactions of transcription factors and the

sequence, we characterize a joint affinity phenotype for the regulatory complex which

determines its functional output. We show that this collective binding phenotype is

under substantial stabilizing selection and is well conserved within Saccharomyces para-

doxus populations and between three species of Saccharomyces. At the same time, in-

dividual low-affinity sites evolve near-neutrally and show considerable affinity variation

even within one population. We infer a fitness landscape depending on this phenotype

using yeast whole-genome polymorphism data and a new method of quantitative trait

analysis discussed in Chapter. 4. These quantitative studies suggest that functionality

of and selection on regulatory complexes emerge from the entire cloud of sites, but

12
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cannot be pinned down to individual sites.

Chapter. 4: Evolution of polygenic traits. In this chapter, we develop a novel the-

oretical framework to characterize the evolutionary dynamics of “quantitative traits”

which are combinations of numerous loci all attributing to a common function. De-

tailed dynamics of such high-dimensional systems seems to be very complex. However,

the extensive self-averaging properties of macroscopic trait observable, e.g., the average

phenotype in a population, makes it possible to characterize the phenotypic composition

in a population. This resembles the simple thermodynamic description of a gas despite

its chaotic molecular composition. We introduce a coarse-grained description of a popu-

lation by mapping its individual-based genomic components (such as allele frequencies)

to population-based phenotype statistics. In this approach, characteristic parameters

of the fitness landscape will be coupled to the statistics of the intra-population trait

distribution and hence can be measured along with the macroscopic trait observables.

As a result, we will suggest simple tests to infer the shape of the fitness landscape from

phenotypic polymorphisms in a population. Our analysis covers both regimes of zero

recombination (i.e., asexual genome with full linkage) and infinite recombination with

perfect reassortments of genomic content. Given the current state of genomic data and

advancements in high-throughput experimental techniques that produce quantitative

genotype-phenotype maps, these methods can be put into practice. We present such

genomic analysis in Chapter. 3.
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2

Binding site formation by local

duplications

2.1 Introduction

As we discussed in the previous chapter, the complex cis-regulatory information in

higher eukaryotes is organized into regulatory modules, which are typically a few hun-

dred base pairs long and are spatially separated by larger segments of intergenic

DNA (Bergman and et. al., 2002; Ondek et al., 1988). Within modules, regulatory

functions often depend on clusters of neighboring binding sites for multiple transcrip-

tion factors, which are coupled by cooperative interaction (Davidson, 2006; Harbison

and et. al., 2004; Lynch, 2006; Ptashne and Gann, 2002; Sinha et al., 2004). The

resulted complex regulatory grammar ensures the specificity of regulation in the larger

genomes of multicellular eukaryotes (Buchler et al., 2003; Levine and Tjian, 2003). At

the same time, the grammar is flexible enough to allow substantial sequence evolution

in a regulatory module while maintaining its overall functional output. On the other

hand, the evolutionary modes of these modules are to be efficient to transports and

produces cis-regulatory information.

In addition to point mutations, sequence insertions and deletions (indels) play a

significant role in this dynamics. Several studies have noted the prevalence of repeti-

tive sequence elements in promoter regions and their potential influence on regulatory

function (Boeva et al., 2006; Britten, 1996; Gruen, 2006; Hancock et al., 1999; Messer

and Arndt, 2007; Sinha and Siggia, 2005; Tanay and Siggia, 2008; Vinces et al., 2009).
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

In particular, a recent detailed analysis of the evolutionary rates of short tandem repeats

in Drosophila has shown a net surplus of insertions, suggesting that these repeats may

produce new regulatory sequence (Sinha and Siggia, 2005). Short tandem repeats are

common sequence patterns in DNA where nucleotide segments with length of about

3-6 base paris are repeated and repetitions are directly adjacent to each other. But to

what extent in this case do these sequence entities produce regulatory information? A

priori, the link between repeat evolution and regulation is far from obvious: Duplica-

tions in repeats can either be part of the neutral background evolution in regulatory

sequences, or increase the spacing between existing binding sites of a regulatory mod-

ule, or contribute to the formation of new sites. Disentangling these roles is subtle,

because detected tandem repeats in contemporary sequence overlap with only a small

fraction of binding sites, motif size and total length of most repeats are shorter than

length and spacing of typical binding sites in a cluster, and repeat lifetimes are much

shorter than conservation times of regulatory elements (Gruen, 2006). Hence, the role

of repeat dynamics for regulation is an open problem: Do local duplications actually

transport and produce regulatory information?

This is the topic of the present chapter. We show that local duplications have left

a striking signature in the fly genome: the majority of transcription factor binding

sites in regulatory modules show evidence of a duplication event in their evolutionary

history. We conclude that over long evolutionary times, local duplications are pervasive

and crucial for the formation of complex regulatory modules in the fly genome. This

mode of evolution sets the speed of regulatory evolution and facilitates adaptive changes

of promoter function. We infer site duplications from their traces in the sequence of

neighboring binding sites, but most duplication events predate the tandem repeats

present in contemporary sequence. This distinguishes our study from comparative

analysis of regulatory sequence between closely related species (Boeva et al., 2006;

Gruen, 2006; Messer and Arndt, 2007; Sinha and Siggia, 2005; Tanay and Siggia, 2008),

which can detect the insertion-deletion dynamics of contemporary repeats, but cover

only a small window in the evolution of regulatory sites.

The importance of binding site evolution by duplication is grounded in the bio-

physics of transcription factor-DNA interactions: the sequence-dependent probability

of binding between factor and site depends in a strongly nonlinear way on the binding

energy (Berg and von Hippel, 1987): it takes values close to 1 in an energy range below
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the maximum binding energy, then drops rapidly as the energy decreases further, and

is close to 0 in the energy range of non-binding sites; see Section. 1.3. This nonlinearity

generates strong epistatic effects for point mutations within binding sites (Berg et al.,

2004; Mustonen et al., 2008) and, in turn, an asymmetry in the turnover of binding

sites. Functional sites can rapidly lose their binding affinity to a factor by one or two

point mutations. Rapid adaptive formation of a site, however, requires a seed sequence

with marginal binding, to which positive selection for point mutations towards stronger

binding can latch on. Such seeds are contained in random sequence, but at unspecific

positions. Estimates of the rate of site formation based on biophysically grounded fit-

ness models suggest that point mutations alone can explain the rapid formation of an

individual site in a sufficiently large sequence interval, but not the formation of spa-

tially confined agglomerations of sites characteristic of regulatory modules (Berg and

Lässig, 2003; Berg et al., 2004; Lässig, 2007). As we show in this chapter, local sequence

duplications generate seeds for new sites specifically in the neighborhood of functional

sites.

Our analysis in this chapter proceeds in three steps. First, we analyze local se-

quence similarities in regulatory regions of the Drosophila melanogaster genome in a

model-independent way. In regulatory modules, we find a significant autocorrelation

in nucleotide content for distances up to about 70 bp. This autocorrelation includes

the known contributions of tandem repeat sequences, but it extends to a much larger

distance range. The signal turns out to be generated by local sequence clusters, a sub-

stantial fraction of which are functional transcription factor binding sites with similar

sequence motifs. In the second part of the paper, we turn specifically to binding sites:

we infer the evolutionary origin for pairs of neighboring sites, using a known set of val-

idated sites and a probabilistic model with mutations, genetic drift, and selection. The

model compares the likelihood of two alternative histories: a pair of sites evolves either

independently or by duplication from a common ancestor sequence. The duplication

is followed by diversification under selection for binding of two (in general different)

factors. We show that the duplication pathway is the most likely history for pairs of

sites with a mutual distance up to about 50 bp. Furthermore, we find evidence that

this pathway is specific to regulatory modules of multicellular eukaryotes. Finally, we

show that the duplication mode has adaptive potential: duplicated ancestor sites can
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

act as seeds for the subsequent formation of a novel binding site for the same factor

and, notably, even for a different factor.

2.2 Statistics of sequence similarity in Regulatory DNA

2.2.1 Sequence autocorrelation in regulatory DNA

The most straightforward measure of local similarity in a sequence segment is the

autocorrelation function, which is defined as the difference between the likelihood that

two nucleotides at a distance of r base pairs are identical and mean identity of two

random nucleotides. In a given sequence segment a1, . . . , aL, the nucleotide frequencies

are given by

p0(a) =
1

L

L∑

ν=1

δ(aν , a), (2.1)

where δ(aν , a) = 1 if aν = a and δ(aν , a) = 0 otherwise. These determine the mean sim-

ilarity between two random nucleotides of the segment, c0 =
∑

a p
2
0(a). The sequence

autocorrelation function is then defined by,

∆(r) = −c0 +
1

L− r
L−r∑

ν=1

δ(aν , aν+r). (2.2)

The distance dependence of the autocorrelation signal provides information about the

range, within which the nucleotides appearing in the sequence are correlated. This

function is straightforward to evaluate from sequence data. We have obtained the

autocorrelation function in 346 regulatory modules of the D. melanogaster genome with

length of more than 1000 bp identified by REDfly database (Bergman et al., 2005; Gallo

et al., 2006; Halfon et al., 2008). The results are shown in Fig. 2.1 (a). In the distance

range up to about 70 bp, the function ∆(r) takes positive values that decay with r

in a roughly exponential way; this signal is clearly above the noise level. The mean

identity is evaluated in a local window of 500 bp (changing the window length affects

the baseline of this function, but not its short-distance behavior). The autocorrelation

signal is small and has several potential sources, such as multiple binding sites for

similar motifs, tandem repeats at short length scales (Gruen, 2006; Messer and Arndt,

2007; Sinha and Siggia, 2005; Tanay and Siggia, 2008), homopolymeric stretches of
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2.2 Statistics of sequence similarity in Regulatory DNA

nucleotides characteristic of nucleosome-depleted regions (Segal and Widom, 2009), or

other local inhomogeneities in sequence composition.

Information about the spatial distribution of correlated nucleotides along the genome

is contained in higher orders of sequence autocorrelation (i.e., reoccurrence of doublets,

triplets, etc.). As a next step, we use information theory to identify such clusters of cor-

related nucleotides in a sequence region. We will characterize local sequence similarity

in a more specific way: we will show that mutually correlated nucleotide pairs are not

evenly distributed over regulatory modules, but occur in local clusters with a charac-

teristic length scale of around 7 bp. This signal will be analyzed from an evolutionary

point of view and be linked to cis-regulatory function.

2.2.2 Sequence motifs and information

To motivate the following analysis, assume that a given sequence segment is covered by

families of sites belonging to different motifs which are reoccurring nucleotide patterns.

A motif of length ` is a probability distribution Q(a) of genotypes a = (a1, . . . , a`),

which describes a specific set of sequence sites with ` consecutive base pairs and is

significantly different from the background distribution P0(a). If we neglect correlations

between nucleotides, we can write these distributions as the product of single-nucleotide

frequencies,

Q(a) =
∏̀

i=1

qi(ai) (2.3)

and P0(a) =
∏`
i=1 p0(ai). The 4 × ` matrix of single-nucleotide frequencies (2.3) is

called the position weight matrix of the motif (similar to that shown for transcription

factor motifs in Chapter. 1). The sequence information of the motif is measured by the

relative entropy (Kullback-Leibler distance) between these distributions (Kullback and

Leibler, 1951),

H(Q|P0) =
∑̀

i=1

∑

a

qi(a) log
qi(a)

p0(a)
. (2.4)

This quantity measures the statistical deviation of the motif pattern from the back-

ground and determines the average sequence information per site, which is often quoted

in units of bits (Stormo and Fields, 1998). Multiplying H(Q|P0) with the number of
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Figure 2.1: Sequence similarity in regulatory modules of the fly genome. (a) Se-
quence autocorrelation ∆(r) as a function of distance r, obtained from 346 regulatory mod-
ules in D. melanogaster (gray: unbinned data, blue: binned in intervals of variable length).
The autocorrelation values are positive and depend on r in a roughly exponential way up
to about 70 bp. (b) Total similarity information Ktot(`) =

∑100
r=1 K`(r) as a function of

motif length ` for all pairs of strongly correlated sites with mutual distance r < 100 bp
in the same set of regulatory modules. This function takes its maximum at a character-
istic motif length of ` = 7 bp. (c) Distance-dependent similarity information K7(r) for
motif length ` = 7 evaluated in all sequence (red), binding site-masked sequence (green),
repeat-masked sequence (blue) in regulatory modules, and in generic intergenic sequence
(black). Repeat-masked sequence is generated using the Tandem Repeat Finder (Benson,
1999) with match-mismatch-indel penalty parameters (2,3,5). Insert: Total similarity in-
formation Ktot(` = 7) for the same sequence categories. Binding sites, but not tandem
repeats, account for a substantial fraction of the similarity information.

sites for each motif and summing over all motifs produces a measure of the total se-

quence information contained in a genomic region.

Well-known motifs in regulatory DNA are the families of binding sites for a given
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transcription factor. In eukaryotic systems, these sites have a typical length of about

5-10 bp and frequency distributions Q (called position weight matrices) with a typical

information content H ≈ 6 − 8 bits per site; see the recent discussion by(Wunderlich

and Mirny, 2009) and the introductory discussion in Section. 1.2. Other motifs can

be defined, for example, in nucleosome-depleted sequences in eukaryotes and for repeat

units in tandem repeats. If all motifs occurring in a given sequence segment were known,

we could try to predict their sites and evaluate the information content directly. In

the present part of the analysis, we proceed differently. We only assume that sequence

motifs carry a certain information content over sites of a given length `, but we make

no further assumptions on position weight matrices, sequence coverage, or evolutionary

origin. Hence, even without any prior knowledge on frequency distributions, we can

recover part of the sequence information for those motifs that occur more than once in

the sequence segment. A pair of sites of length ` belonging to the same motif has an

average similarity information given by the relative entropy K(c, `|c0), which measures

the enhanced similarity c of aligned nucleotides of the site sequences compared to the

background similarity c0,

K(c, `|c0) = `

[
c log

c

c0
+ (1− c) log

1− c
1− c0

]
. (2.5)

Clearly, the similarity information between pairs of sites is a somewhat diluted

measure of the full information content due to motifs. As a rule of thumb, the mutual

entropy per site pair, K(c, `|c0), recovers about half of the sequence information per

site, H(Q|P0). For example, binding sites for the same transcription factor are strongly

correlated, with a typical similarity c ≈ 0.7 and a similarity information K ≈ 3 bits

per site pair whereas, the information content of a binding motif is typically H ≈ 6− 8

bits per site.

With this approach, we want to identify pairs of similar sites at a given distance r

and relate them to the sequence autocorrelation function ∆(r) discussed above. Thus,

we estimate the total similarity information K`(r) per unit sequence length of all

strongly correlated pairs of sites with distance r and length ` in regulatory modules.
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 TGCTGCAGTAAACGTGCGGCAATA GTAACTGATAATACGTAACTGCTACCATCTACTCTATTGTACATTCCTAATCGTACGTT

TGCTGCAGTAAACGTGCGGCAATAGTAACTGATAA TACGTAACTGCTACCATCTACTCTATTGTACATTCCTAATCGTACGTT

r
           

Figure 2.2: Motif detection in sequence segments (schematic). The figure shows
a configuration of correlated sequence sites of length ` = 10 bp and distance r = 14 bp
from each other. Pairs of correlated sites have the following properties: (i) The average
mutual similarity between aligned nucleotides is larger than a given threshold, c ≥ cmin =
0.8. (ii) The left sites (and, hence, also the right sites) of all pairs have no common
nucleotides. This condition is necessary in order to avoid overcounting of mutual similarity
in overlapping site pairs. (iii) The sum of the mutual similarities of all pairs in the set is
maximal. In the example shown, there are three different motifs with reoccurring sequence
patterns marked by different colors (red, blue, green). To illustrate the alignment of the
site pairs, we shift the whole sequence by r = 14 bp in the second row. The left and
right site of each motif are shown in boldface in the first and the second row, respectively.
Mismatches between aligned sites of the same motif are shown in boldface gray letters.
The flanking regions separating the correlated sequence pairs are shown in smaller font.

This quantity can be defined by constructing a set of site pairs for given r and `,

{(aν1 , . . . , aν1+`−1), (aν1+r, . . . , aν1+r+`−1)}, . . . , {(aνn , . . . , aνn+`−1), (aνn+r, . . . , aνn+r+`−1)}
(2.6)

with the following properties:

(i) The left sites (and, hence, also the right sites) of all pairs have no mutual overlaps,

να+1 − να ≥ ` for α = 1, . . . , n− 1. (2.7)

This condition is necessary in order to avoid overcounting of mutual similarity in over-

lapping site pairs.

(ii) The mean mutual similarity of each site pair is greater than a threshold cmin,

cα ≡
1

`

∑̀

i=1

δ(aνα+i, aνα+r+i) > cmin for α = 1, . . . , n. (2.8)

(iii) The sum of mutual similarities
∑n

α=1 cα is maximal.

Fig. 2.2 illustrates this procedure. To identify a set of site pairs with properties (i)

to (iii), we use a dynamic programming algorithm with a recursion,
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Ct = max[Ct−1, Ct−` + [
1

`

∑̀

i=1

δ(at−`+i−r, at−`+i)]− cmin], (2.9)

we obtain the sequence of partial scores C1, . . . , CL with the initial condition C1 = 0.

We then use a backtracking procedure (see, e.g., (Durbin et al., 1998)) to determine

the set of positions (ν1, . . . , νn) of the high-similarity pairs (2.6). In the maximum-

similarity set, we record the average mutual similarity c̄(r, `) of aligned nucleotides in

site pairs, which determines the mean information content per site pair, K(c̄(r, `), `|c0)

(see eq. (2.5). We also record the number n(r, `) of site pairs and compare to the number

expected by chance in background sequence, n0(`). To estimate the expected number of

pairs in background sequence, we apply the same procedure to 1000 sequences of length

L, which are generated by a first-order Markov model with the same single-nucleotide

frequencies p0(a) and conditional frequencies T (a|b) as in the actual sequence,

P (a1, . . . , aL) = p0(a1)

L∏

ν=2

T (aν |aν−1) (2.10)

We then evaluate the excess ∆n(r, `, cmin) = n(r, `, cmin)− n0(r, `, cmin) and obtain

an estimate of the total information contained in the enhanced autocorrelation of motifs

as given by eq. (2.5),

K`(r) = `max
cmin

[
∆n(r, `, cmin)

L

(
log

c̄(r, `, cmin)

c0
+ log

1− c̄(r, `, cmin)

1− c̄0

)]
. (2.11)

We infer cmin by maximum likelihood analysis of the total similarity information in

the sequence. This method also allows for optimization of the motif length `, similar

to the procedure in the local sequence alignment algorithms (Durbin et al., 1998).

Our analysis is limited to known regulatory modules and focuses on the dependence

of K`(r) on r and `. A specific part of this signal, obtained from sites with distance r

below 50 bp, will be associated below with local duplications as prevalent evolutionary

mode.

2.2.3 Similarity information in regulatory modules of Drosophila

We evaluate the similarity information in the set of 346 regulatory modules of Drosophila

melanogaster and in surrounding background sequence. The following features of local
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

sequence similarity can be extracted:

—The total information of local sequence similarity is maximal for motifs of length

` = 7. Fig. 2.1(b) shows the total similarity information of all detected site pairs in

the range of up to 100 bp, Ktot(`) =
∑100

r=`K`(r), as a function of the site length `.

The function Ktot(`) takes its maximum, that is, the similarity information is most

significant, for ` = 7. The signal falls off at shorter length scales, because typical motif

sequences are only partially covered, and at larger length scales, because uncorrelated

flanking nucleotides contribute negatively to the similarity information. In this sense,

detected motifs cover a characteristic length of about 7 bp. A similar length scale has

been observed in tandem repeats (Boeva et al., 2006; Messer and Arndt, 2007; Tanay

and Siggia, 2008).

—The function K7(r) takes distance-dependent positive values in the range of up to 50

bp and saturates to a positive asymptotic value for larger distances. Thus, its distance

dependence is compatible to that of the sequence autocorrelation function ∆(r) shown

in Fig. 2.1(a). This pattern is due to site pairs with high mutual similarity, c > 0.85.

—Correlated binding sites explain a substantial part of the similarity information. We

estimate this contribution by masking all functional sites (Bergman et al., 2005; Gallo

et al., 2006; Halfon et al., 2008) and re-evaluating the function K7(r) in their sequence

complement; see Fig. 2.1(c). Known binding sites cover about 10% of the regulatory

modules, but the signal is reduced by about 50%, indicating that these sites are an im-

portant source of similarity information. The binding site-masked signal is comparable

to its counterpart K7(r) in non-regulatory intergenic sequence.

—Short tandem repeats explain only a small part of the similarity information. We

identify such repeats using the Tandem Repeat Finder (Benson, 1999). If we remove

about 5% of the sequence in regulatory modules as repeats, the similarity information

is reduced by less than 10%; Fig. 2.1(c). This is not surprising, because our sequence

similarity measure differs from that of repeat analysis. In particular, our measure is

sensitive to correlated segments on larger distance scales than typical tandem repeats,
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2.2 Statistics of sequence similarity in Regulatory DNA
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Figure 2.3: Sequence similarity in regulatory modules of 3 Drosophila species.
Distance-dependent similarity information K7(r) for motif length ` = 7 in regulatory mod-
ules (red) and in generic intergenic sequence (black), evaluated in D. melangaster and in
the homologous regions of D. yakuba and D. pseudoobscura (see Materials and Methods
in Section. 2.5). These data show a consistent pattern of overall amplitudes and of decay
lengths.

because it does not require a contiguous interval of self-similar sequence in between.

—Homologous regions in other fly genomes show a consistent form of K7(r). We ana-

lyze homologous regions of two other Drosophila species, D. yakuba and D. pseudoob-

scura; see Materials and Methods in Section. 2.5. As shown in Fig. 2.3, these putative

regulatory modules have patterns K7(r) of very similar overall amplitude and distance-

dependence, with enhanced values in the range of up to 50 bp.
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

In summary, our model-independent analysis shows that motifs with a character-

istic length of about 7 bp play an important part in the distance-dependent sequence

autocorrelation of Drosophila regulatory modules. The characteristic length coincides

with the typical length of binding sites, and a substantial fraction of the signal can

be explained by sequence correlations involving known binding sites. Therefore, we

now focus the analysis on a smaller, but experimentally validated set of sites (Bergman

et al., 2005; Gallo et al., 2006; Halfon et al., 2008). This allows us to analyze in detail

the evolutionary mechanism generating the sequence similarity between neighboring

sites.

2.3 Evolutionary modes of binding sites

Binding sites are ideal objects to study the production of information by sequence evo-

lution. The sequence motif in the form of a position weight matrix, is approximately

known for about 70 transcription factors in Drosophila. Thus, we can analyze the full

position-dependent sequence information of these motifs, not just the similarity infor-

mation of motif pairs. Furthermore, there is a simple link between sequence statistics

and evolution of binding sites: assuming the sequence distribution Q defines a motif

at evolutionary equilibrium, its sequence information H is proportional to the average

fitness effect of its binding sites,

N〈F 〉 = H(Q|P0) =
∑

a

Q(a) log
Q(a)

P0(a)
(2.12)

with a proportionality constant equal to the effective population size (Berg and

Lässig, 2003; Berg et al., 2004; Moses et al., 2003, 2004). The fitness contribution of a

particular binding sequence, F (a), is proportional to its log-likelihood ratio in the dis-

tributions Q and P0. The ensemble of these fitness values defines an information-based

fitness landscape F for binding of a specific transcription factor. These relations be-

tween sequence statistics and fitness of binding sites quantify our intuition that specific

sequences are overrepresented in a motif to the extent they confer a selective advantage

over random sequences (Stormo and Fields, 1998). If we write the motif distribution Q

in the product form of a position weight matrix, we obtain an approximate expression
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2.3 Evolutionary modes of binding sites

for the fitness F (a) in terms of the position-specific single-nucleotide frequencies qi(a)

in the motif sequence and their counterparts p0(a) in background sequence:

NF (a) =
∑̀

i=1

fi(ai) with fi(a) = log
qi(a)

p0(a)
. (2.13)

This expression, which is in its simplest form already contained in Kimura’s U-

shaped equilibrium distribution for a two-allele locus (Fig.1.2(b) (Kimura, 1962)), is

known as Bruno-Halpern model in the context of protein evolution (Halpern and Bruno,

1998) and has been used to infer fitness effects of mutations in binding sites (Berg and

Lässig, 2003; Berg et al., 2004; Lässig, 2007; Moses et al., 2003, 2004; Mustonen and

Lässig, 2009). Although this additive fitness model neglects fitness interactions between

nucleotides within binding sites as well as between sites within a regulatory module, it

is justified for the purpose of this study (see below).

The fitness landscape F defines the selection coefficient of any change from a state

a to a state b of a binding site, ∆Fab = F (b) − F (a). Here, we use the standard

Kimura-Ohta formalism to infer the rates ua→b of point substitutions a→ b from the

fitness model and the point mutation rates µa→b (see Section. 1.4),

ua→b = µ
N∆Fab

1− exp(−N∆Fab)
, (2.14)

For simplicity, the mutation rates are assigned a uniform value µa→b = µb→a = µ.

This relation is valid in the regime µN � 1 (in which subsequent substitution processes

are unlikely to overlap in time) and ∆Fab � 1 (Kimura, 1962; Kimura and Ohta, 1969).

The matrix of these substitution rates then determines the transition probabilities

(propagators) Gτ (b|a) from an ancestor site a to a descendent site b through a series

of point substitutions within an evolutionary distance τ (Durbin et al., 1998; Mustonen

and Lässig, 2005).

Here, we use this quantitative sequence evolution model to infer modes of binding

site evolution. For any given pair of adjacent sites a and b that bind transcription fac-

tors A and B, respectively, we want to evaluate the likelihood of two different histories

of site formation.
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS
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Figure 2.4: Evolutionary modes of transcription factor binding sites. The
figure shows alternative formation histories for two adjacent binding sites, whose present
sequences bind transcription factors A and B, respectively. The color coding indicates
the evolution of binding function for factor A (red) and B (blue) with evolutionary time
t. (a) Evolution from independent ancestor sequences. The sites evolve to their present
states by independent evolutionary processes under stationary selection given by different
fitness landscapes FA and FB (see text). In this mode, adjacent sites will show no enhanced
average sequence similarity compared to the similarity of their motifs. (b) Evolution by
duplication of a common ancestor sequence. Left panel: The original site evolves in the
stationary fitness landscape FA. At a distance τ from the present, this site undergoes
a duplication. The duplicated site evolves its new function of binding B in the fitness
landscape FB . Right panel: The same process with the roles of A and B interchanged.
In the duplication mode, the sites retain an enhanced sequence similarity, which reflects
their common descent. (c) Examples of adjacent functional binding sites with enhanced
sequence similarity in the D. melanogaster genome. The sites of each pair are aligned. The
color background of nucleotide a at position i indicates its contributions to fitness (binding
affinity) for factor A and B, i.e., fi,A(a) (level of red) and fi,B(a) (level of blue). The
sequence similarity leads to hybrid binding characteristics: some nucleotides of the A-site
(top row) have binding characteristics of the B -motif, and vice versa. Examples from top to
bottom (factor A / factor B, genomic positions, duplication score): (i) Kruppel / hunchback,
chr3L: 8639822 / 8639878, S = 4.40, (ii) zeste / Trithorax-like, chr3R: 12560236 / 12560218,
S = 3.97, (iii) Kruppel / tailless, chr3L: 8639586 / 8639596, S = 3.40, (iv) pangolin /
apterous, chr3R: 22997722 / 22997752, S = 2.38.

(i) Evolution from independent ancestors. In the first mode of evolution, the

sites are assumed to evolve to their present sequence states by point substitutions from

independent ancestor sequences and under independent selection given by the fitness

landscapes FA and FB, as illustrated in Fig. 2.4(a). If the selection for binding is

assumed to act over a sufficiently long evolutionary time, the probability of observing

the present sequence states a and b in this independent mode of evolution is simply

QA(a)QB(b). This mode of evolution can only result in distance-dependent sequence
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2.3 Evolutionary modes of binding sites

similarity arising from an increased coverage with pairs of adjacent sites with correlated

motifs QA and QB (evidence for this effect will be discussed below). However, it does

not generate increased similarity of individual pairs of adjacent sites beyond that of

their motifs.

(ii) Evolution from a common sequence ancestor. In the second mode of evo-

lution, the sites are assumed to evolve from a common ancestor sequence by a local

duplication event at a distance τ from the present, followed by diversification under

selection given by separate fitness landscapes FA and FB: either the original site is

under stationary selection for binding factor A and the duplicated site has evolved the

new function of binding the B−factor or vice versa, as illustrated in Fig. 2.4(b). In this

mode, the present sequences a and b have evolved from their last common ancestor c by

independent substitution processes with transition probabilities GτA(a|c) and GτB(b|c).

The dynamics results in a joint probability of the form,

Qτ (a,b) =
∑

c

GτA(a|c)GτB(b|c)Q(c) (2.15)

To proceed, we first assume that the ancestor site c is at evolutionary equilibrium

under selection to bind factor A, that is, the contemporary site a has the ancestral

function and b has evolved a new function after duplication. This gives the contribu-

tion,

QτA(a,b) =
∑

c

GτA(a|c)GτB(b|c)QA(c)

=
∑

c

GτB(b|c)GτA(c|a)QA(a), (2.16)

where we have used the detailed balance condition of the substitution dynamics,

i.e., GA(a|c)QA(c) = GA(c|a)QA(a) (Mustonen and Lässig, 2005). There is a second

contribution QτB(b,a) describing the case of the ancestor c under stationary selection

to bind factor B. Weighing these cases with equal prior probabilities, Q(c) = [QA(c) +

QB(c)]/2, we obtain

Qτ (a,b) =
1

2

[
QτA(a,b) +QτB(b,a)

]
. (2.17)
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

In this mode, distance-dependent sequence similarity arises due to common descent,

causing the sequences of adjacent sites to be more similar than their motifs QA and

QB. Importantly, this effect is generic and not tied to any functional properties of the

transcription factors A and B. Fig. 2.4(c) shows a few examples of enhanced sequence

similarity in pairs of adjacent binding sites in regulatory modules of D. melanogaster.

The relative likelihood of common versus independent descent for a specific pair of

sites a,b is given by the duplication score,

S(a,b) = log
Qτ (a,b)

QA(a)QB(b)
(2.18)

The information about common or independent descent comes from the similarity

between the sequences a and b in a gapless alignment. The particular feature of

site sequences is that they have evolved under selection for the binding motifs of the

transcription factors A and B. Therefore, our score measures the similarity between

the sequences a and b in a specific way: it gauges matches and mismatches depending

on the weights of aligned nucleotides in their respective binding motifs QA and QB.

For example, a match gets low score if it concurs with a common preferred nucleotide

of the motifs, and high score if it goes against the preferred nucleotide of at least one

of the motifs. A positive score value indicates that the pair a, b is more likely to have

evolved by duplication from a common ancestor sequence than independently.

The similarity score in eq. (2.18) depends on the evolutionary distance parameter

τ . We infer the optimal value of τ by maximizing the likelihood ratio between the score

distribution estimated from the set of closeby site-pairs (with mutual distance r < 50)

and the score distribution of pairs with independent origin. This parameter describes

the expected excess similarity of site pairs related by common descent, but it is not

a linear clock of divergence time and should be regarded as model fit parameters for

the observed sequence similarities. Energy-based fitness models (Mustonen et al., 2008;

Mustonen and Lässig, 2005), which take into account the epistasis between mutations

within binding sites, are required to obtain more accurate estimates of τ , which can

be tested against phylogenetic data. Epistasis will increase the inferred values of τ

compared to the additive (Bruno-Halpern) model (Mustonen et al., 2008; Mustonen

and Lässig, 2005).
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2.3 Evolutionary modes of binding sites

Below, we use the distribution W (S) of duplication scores to infer the mode of evo-

lution prevalent in a given class of site pairs. We evaluate the score distribution W (S)

of a given class of site pairs in terms of a mixture model of common and independent

descent,

W (S) = (1− λ)Q0(S) + λQ(S). (2.19)

The distribution of scores for independent descent, Q0(S), is obtained from pairs of

sites in a common module with a relative distance r > 200 bp (Fig. 3(a), dashed line).

This distribution is approximately Gaussian and has a width of order one. Because we

build Q0 from sites in a common module, its score average is above that for pairs of

sites located in different modules. In this way, the overall sequence similarity within

modules, which depends on the local GC-content, is assigned to the background model

and does not confound the evidence for common descent. The distribution Q(S) is the

best fit to the the large-score excess of the distribution W (S) for adjacent sites with a

relative distance r < 50 bp (Fig. 3(a), violet-shaded).

Given a set of k site pairs (a,b) with scores S(a,b) described by the distribution

W (S), the log-likelihood of the mixed-descent model (2.19) relative to the independent-

descent background model is given by

Σ = kH(W |Q0) =
∑

site pairs

log

[
W (S(a,b))

Q0(S(a,b))

]

=
∑

site pairs

log

[
(1− λ) + λ

Q(S(a,b))

Q0(S(a,b))

]
(2.20)

it equals the product of the number of sites and the relative entropy H(W |Q0). The

extensive quantity Σ, measures the statistical evidence for the mixture model based

on the number and the score distribution of site pairs, whereas H(W |Q0) quantifies

only the shape differences between the distributions W (S) and Q0(S). This likelihood

analysis goes beyond the inference of the sequence similarity K`(r) introduced above

in eq. (2.11). It can be seen as a decomposition of the distance-dependent similar-

ity between sites into two parts: the similarity between their motifs, and the excess

similarity of the actual site pairs beyond that of their motifs. The first part reflects

functional correlations within regulatory modules and is assigned to the background

model QA(a)QB(b). Only the second part provides evidence for common descent,
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

which is gauged by the scoring function S(a,b).

2.3.1 Local sequence duplications in Drosophila

Using the duplication score S, we have evaluated the sequence similarity of 506 pairs of

neighboring binding sites in regulatory modules of the Drosophila melanogaster genome.

These sites are experimentally validated and recorded in the REDfly database (Bergman

et al., 2005; Gallo et al., 2006; Halfon et al., 2008) (see Materials and Methods). We

infer the prevalent mode of evolution as a function of the distance r between sites and

obtain the main result of this paper:

—In fly, binding sites with a distance of up to about 50 bp are more likely to share a

common ancestor than to have evolved from independent origins. Fig. 2.5(a) shows the

histogram of duplication scores S(a,b) for the set of k = 306 binding site pairs with

r ≤ 50 bp. The score distribution W (S) of these pairs is clearly distinguished from the

background distribution Q0(S), which is obtained from pairs of sites located in the same

module at a distance r > 200 bp and is associated with independent descent. We decom-

pose the score distribution of adjacent sites in the form W (S) = (1−λ)Q0(S)+λQ(S),

attributing the excess of large scores to pairs of sites of common descent with a score

distribution Q(S). Our best fit of this mixed-descent model to the data distribution

has a fraction λ = 57% of adjacent site pairs formed by duplication; see Fig. 2.5(a).

The total log-likelihood of the mixed-descent model relative to the background model

is given by multiplying the relative entropy of the distributions W and Q0 with the

number of site pairs, Σ = kH(W |Q0). We estimate Σ > 234, providing significant

statistical evidence that the prevalent mode in adjacent sites is evolution from common

descent. We note that this significance emerges for the ensemble of the adjacent site

pairs, whereas the relative log-likelihood for duplication per site pair, H(W |Q0), is of

order one: individual site sequences are inevitably too short to reliably discriminate

between the two evolutionary modes. Our conclusion that local sequence duplications

generate the observed excess similarity of adjacent sites is supported by a number of

further controls and a comparison with the yeast intergenic regulatory sequences:

—The relative log-likelihood for duplication per site pair decreases with increasing dis-

tance r between sites. In Fig. 2.5(b), we evaluate the relative entropy H(Wr|Q0) for
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Figure 2.5: Common vs. independent descent of binding sites in fly and yeast.
(a) Histogram of the duplication score S for 306 pairs of binding sites with a mutual distance
of up to 50 bp in the genome of D. melanogaster (sum of grey-shaded and violet-shaded
part). Decomposition of counts according to the mixed-descent model (see Materials and
Methods): 43% of the site pairs are of independent descent and have the score distribution
Q0(S) (obtained from pairs with relative distance r > 200 bp, dashed line), 57% of the
site pairs of are of common descent and have the score distribution Q(S) (violet-shaded).
(b) Relative log-likelihood for duplication per site pair, i.e., relative entropy H(Wr|Q0)
obtained from the score distribution Wr(S) of site pairs in the relative distance range
(r, r+15) bp (evaluated from a total of 506 sites). The rapid decay of this function suggests
a local mechanism generating excess similarity between adjacent sites. (c) Histogram of
partial score averages 〈S〉AB for all factor pairs (A,B) binding the site pairs of (a) (grey-
shaded) and corresponding distribution of averages obtained after scrambling the score
values of site pairs (normalized to the same number of total counts, dashed line). The two
distributions are statistically indistinguishable (KS-test p-value = 0.8378), which shows
that positive duplication scores are not limited to a subset of factor pairs. (d) Histogram
of the duplication score S for 833 pairs of binding sites with a mutual distance of up to
50 bp in the genome of S. cerevisiae (grey-shaded). The distribution is not significantly
different from the null distribution obtained from random site pairs (normalized to the
same number of total counts, dashed line), i.e., there is no evidence for common descent
as prevalent evolutionary mode.
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

the score distributions Wr(S) of site pairs with different values of mutual distance

r. We find a rapid decay up to about 100 bp, that is, the score distribution Wr be-

comes successively more similar to the background distribution Q0 with increasing site

distance. This pronounced distance-dependance is comparable to that of the total

sequence similarity shown in Fig. 2.1(c) and is consistent with local duplications as

underlying mechanism.

—Similarity of neighboring sites is broadly distributed over pairs of transcription fac-

tors. We partition the 306 site pairs with a mutual distance of less than 50 bp by

factor pairs and evaluate the partial score averages 〈S〉AB. We compare the distribu-

tion of these averages with the corresponding distribution of averages evaluated after

scrambling the score values of the site pairs, as shown in Fig. 2.5(c). The two distribu-

tions are statistically indistinguishable, which shows that excess sequence similarity is

a broad feature of adjacent binding sites and is not limited to a subset of sites for factor

pairs with specific functional relationships. This supports our conclusion that the ex-

cess sequence similarity reflects common descent and not fitness interactions (epistasis)

between sites. Of course, epistasis is common for binding sites in the same regulatory

module, because these sites perform a common regulatory function. However, generic

interactions couple the binding energies of adjacent sites, not directly their sequences.

Epistatic effects generating excess sequence similarity are conceivable for specific factor

pairs, but do not appear to be a parsimonious explanation for the broad similarities of

adjacent binding sites we observe.

—In yeast, binding site duplications are not frequent. For comparison, we have also

evaluated a set of 1352 pairs of binding sites in the Saccharomyces cerevisiae genome.

Fig. 2.5(d) shows distribution of duplication scores S(a,b) for the set of binding

sites with r ≤ 50 bp. This distribution is strongly peaked around zero (because the

maximum-likelihood value of τ is large; τ > 1/µ) and indistinguishable from the dis-

tribution of the control set of random site pairs; both distributions have a negative

average. As in Drosophila, most binding sites in the same intergenic region of S. cere-

visiae are located within 50 bp from each other. However, we do not observe evidence

for local duplications as a mode of binding site formation in yeast. Clearly, this re-

sult does not exclude that such duplications take place, but they do not appear to be
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2.3 Evolutionary modes of binding sites

frequent enough to generate a statistically significant excess similarity of neighboring

sites. This is not surprising given the differences in regulatory architecture between

yeast and fly: individual sites in S. cerevisiae are more specific than in Drosophila;

the average sequence information of a binding motif is H ≈ 12 − 17 bits, compared

to H ≈ 6 − 8 bits; see Table. 1.1 and (Wunderlich and Mirny, 2009). Accordingly, a

larger part of the regulatory functions in yeast relies on single sites, and there are no

regulatory modules which would require frequent duplications for their formation.

2.3.2 Adaptive potential of duplications

Do the inferred site duplications have adaptive potential for the formation of novel

binding sites? Here, we use the term adaptive potential to indicate that the duplication

itself may be a neutral process, and selection for factor binding may latch on later to

duplicated sites. The duplication of a site for a given transcription factor has obvious

adaptive potential towards formation of an adjacent site for the same factor. But

local duplications also have adaptive potential if the duplicated site is to evolve the

new function of binding a different factor, because the binding motifs of transcription

factors with adjacent sites are correlated. This correlation quantifies the ability of one

factor to recognize the binding sites of another factor, including seed sites generated

by sequence duplications. Specifically, we define the binding correlation HAB of a

transcription factor A with another factor B as the average information-based fitness

to bind factor B in the ensemble of A-sites.

HAB = 〈FB〉A =
∑

i,a

qA,i(a)fB,i(a) with fB,i(a) = log
qB,i(a)

p0(a)
. (2.21)

This value is an estimate for the compatibility of the A-sites with the transcription

factor B and equals, up to a constant, the information-theoretic cross entropy between

the distributions QA and QB.

In Fig. 2.6, this quantity is evaluated for all factor pairs (A,B) with adjacent binding

sites and is compared to (i) the sequence information HB of the motif QB, which equals

the average fitness of B -sites for the B -factor by eq. (2.4),

HB ≡ H(QB|P0) =
∑

i,a

qB,i(a)fB,i(a), (2.22)
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

and (ii) to the average fitness of background sequence for the B -factor,

H0B =
∑

i,b

p0(b)fB,i(b). (2.23)

For most such factor pairs, the fitness of a typical A-site is seen to be similar to that

of weak B -sites and significantly larger than the average fitness of background sequence.

This binding correlation between motifs is sufficient so that an A-site duplicate can act

as a seed for a B -site, which can subsequently adapt its strength by point mutations.

The binding correlation is specific to factors which have adjacent binding sites; we have

found no such effect in the control ensemble of all factor pairs (A,B) (most of which do

not have adjacent sites). Furthermore, some highly specific motifs, such as hunchback,

twi and z do not show binding correlations with other factors.
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Figure 2.6: Adaptive potential of binding site duplications. The binding cor-
relation HAB of all pairs of Drosophila transcription factors (A,B) which have adjacent
binding sites in a common regulatory module is evaluated as the average information-based
fitness of A-sites for factor B and plotted against the sequence information HB of the bind-
ing motif of factor B (blue crosses); see eqs. (2.21) and (2.22). The binding correlation
is compared to the distribution of fitness values FB of the B -sites (red dots, the average
fitness for each factor is shown as diamond and equals the abscissa HB) and to the average
fitness FB in background sequence (green dots); see eq. (2.23). The binding correlation
HAB is significantly larger than the background average of FB and is comparable to the
fitness FB of weak B -sites in a substantial fraction of cases. Some highly specific motifs,
such as hunchback, twi and z do not show binding correlations with other factors.
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2.4 Discussion & Outlook

Local sequence duplication as a mechanism of regulatory evolution

Local sequence duplications (and deletions) are a generic evolutionary characteristic of

intergenic DNA and, in particular, of regulatory sequence (Boeva et al., 2006; Gruen,

2006; Messer and Arndt, 2007; Sinha and Siggia, 2005; Tanay and Siggia, 2008; Vinces

et al., 2009). In this chapter, we have established evidence for local sequence duplica-

tions as a mechanism that transports and produces cis-regulatory information. These

duplications generate specific, distance-dependent sequence similarity in strongly cor-

related pairs of sites with a relative distance of up to about 50 bp, which account for

a substantial part of the sequence autocorrelation in fly regulatory modules. In par-

ticular, they provide a parsimonious explanation for the excess sequence similarity of

transcription factor binding sites, which is broadly observed in this range of relative

distance. We conclude that the majority of these adjacent site pairs have evolved from

a common ancestor sequence. The large amplitude of the duplication signal may be the

most surprising result of this study. It far exceeds the level expected from the repeats

in contemporary sequence, which cover only about 5 percent of binding sites and are

typically shorter than the distance between correlated sites. Common-descent site pairs

are the cumulative effect of past duplications over macro-evolutionary intervals, whose

trace is conserved by selection on site functionality.

This result establishes local duplication as a pervasive formation mode of regula-

tory sequence, which generates, for example, the known local variations in site numbers

between Drosophila species. Of course, our evidence for this mode is statistical and,

at this point, is confined to a limited dataset of binding sites with confirmed function-

ality (Bergman et al., 2005; Gallo et al., 2006; Halfon et al., 2008). The duplication

mode appears to be specific to multicellular eukaryotes; we have not found comparable

evidence in the yeast genome. Our findings are relevant for genome analysis in two

ways: including local duplications should inform inference methods for binding sites

as well as alignments of regulatory sequence with improved scoring of indels (Gruen,

2006; Messer and Arndt, 2007; Sinha and Siggia, 2005; Tanay and Siggia, 2008). With

such methods, it may become possible to follow the evolutionary history of binding site

duplications across species.
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

Life cycle of a binding site

We have found evidence that local duplications can confer adaptive potential for the

formation of novel binding sites, because they generate seed sequences with marginal

binding specifically in the vicinity of existing sites. This mechanism is necessary, be-

cause point mutations alone can only lead to rapid loss but not to gain of new sites with

positional specificity. Thus, duplications and point mutations complement each other,

suggesting that typical binding sites within multicellular eukaryotes have an asymmet-

ric life cycle: formation within a functional cluster by local duplication, adaptation of

binding energy by point mutations, evolution of relative distance to neighboring sites

by insertions and deletions in flanking sequence, conservation by stabilizing selection

on binding energy, and loss by point mutations.

The life cycle of individual binding sites interacts with other levels of genome evolu-

tion. Gene duplications with subsequent sub-functionalization have been identified as

an important evolutionary mode specifically in higher eukaryotes (Lynch and Conery,

2003). If subfunctionalization is initialized at the level of gene regulation, it amounts to

a loss of regulatory input for both gene duplicates and provides a mechanism for adap-

tive loss of binding sites. This process alone would lead to genomes with many genes,

but few functions per gene. Maintaining regulatory complexity with multi-functional

genes as observed in eukaryotic genomes (Davidson, 2006; Ptashne and Gann, 2002)

requires a converse evolutionary mode: gain of new functions by existing genes. At the

regulatory level, this amounts to gain of regulatory input, i.e., adaptive formation of

new binding sites.

Sequence evolution and regulatory grammar

Previous studies have identified regulatory modules as important units of transcrip-

tional control, in which clusters of binding sites bind multiple transcription factors with

cooperative interactions. The sites in a cluster follow a regulatory grammar resulting

from natural selection acting on site order, strength, and relative distances (Kulkarni

and Arnosti, 2005; Markstein et al., 2002; Small et al., 1993). If sequence duplications

play a major role in the formation of such clusters, we may ask how much of their

observed structure reflects this mode of sequence evolution, rather than optimization
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of regulatory function by natural selection. Local duplications generically produce de-

scendant sites, which are weak binding sites for another factor at best, as shown in

Fig. 2.6. (Significant heterogeneity in binding strength between adjacent sites is indeed

observed in our sample.) The resulting binding sequences are hardly optimal in terms of

specificity and discrimination between different factors. Cooperative binding between

transcription factors may have evolved as a secondary mechanism to confer regulatory

function to these sequence structures. This is the topic discussed in Chapter. 3.

In this chapter, we have argued that local sequence duplications facilitate the adap-

tive evolution of gene regulatory interactions. However, the adaptive potential of du-

plications does not imply that the duplication process itself has to be adaptive or even

confined to regulatory sites. Similar to gene duplications (Lynch and Conery, 2003),

many site duplications may be neutral and provide a repertoire of marginal regulatory

links. Adaptive diversification can build subsequently on this repertoire, conserving

and tuning those links that confer a fitness advantage and discarding others.

2.5 Materials and Methods

The sequence analysis of D. melanogaster is based on the cis-regulatory modules and

experimentally validated binding sites collected in the REDfly v.2.2 database (Bergman

et al., 2005; Gallo et al., 2006; Halfon et al., 2008), and on the position weight matrices

of Dan Pollard’s dataset, (http://www.danielpollard.com/matrices.html).

To measure the distance-dependent sequence similarity K`(r), we use the 346 known

regulatory modules with length of more than 1000 bp in D. melanogaster. The analysis

in D. yakuba and D. pseudoobscura is based on the 249 well-aligned homologous regions

obtained from multiple alignments of 12 Drosophila species (dm3, BDGP release5); see

Fig. 2.3. For the evolutionary inference in the second part of the paper, we use only

the experimentally validated binding sites contained in these modules which are not

necessarily selected for high similarity to motifs or for high mutual similarity. To avoid

biases in our analysis, the set of sites is truncated in three ways: (i) We only use

binding sites for transcription factors that occur in at least two different regulatory

modules, so that the position weight matrix is not biased by the sequence context

of a single module. (ii) We use only sites that have no sequence overlap with other

sites in the dataset, because our inferred fitness landscapes describe the selection for
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2. BINDING SITE FORMATION BY LOCAL DUPLICATIONS

a single regulatory function (Mustonen et al., 2008). (iii) We exclude sites in the X

chromosome, which could bias the results by its high rate of recent gene duplications

and the abundance of repeat sequences (Katti et al., 2001; Thornton and Long, 2002).

These conditions produce a cleaned set of 506 transcription factor binding site pairs

located in 74 cis-regulatory modules.

For the analysis in S. cerevisiae, we use sites and position weight matrices from

the SwissRegulon database (Pachkov et al., 2007). These footprints do not always

match the length ` of their position weight matrices. To produce a set of site sequences

of common length `, longer footprints are cut and shorter ones joined with flanking

nucleotides, such that the binding affinity is maximized.
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Emergent selection on regulatory

complexes

3.1 Introduction

In this chapter we will discuss another aspect of the regulatory evolution, that is the

evolution of the binding complexes as single biological units. Gene expression in higher

eukaryotes is regulated by combinations of transcription factors which in cooperation

influence the rate of transcription. The combinatorial complexity ensures the speci-

ficity of regulation in the larger genomes of multicellular eukaryotes (Bintu et al., 2005;

Buchler et al., 2003; Gertz and Cohen, 2009; Kuhlman et al., 2007; Levine and Tjian,

2003; Shea, 1985). At the same time, the resulting flexibility in the regulatory mod-

ules allows for a substantial sequence changes while maintaining its overall functional

output. Among the well-characterized systems is the eve-stripe enhancer region in the

fruitfly (Drosophila) which plays a significant role during the development of the organ-

ism. Studies on four Drosophila species by (Ludwig et al., 2000; Ludwig and Kreitman,

1995; Ludwig et al., 1998) show that the wild sequence divergence has minor effects

on expression regulation of the even-skipped gene and binding site turnover has been

mostly tolerated. This property is even present on larger evolutionary distances (Hare

et al., 2008). This form of evolution can be understood as a compensatory gain and

loss of binding sites through which the functional output is maintained. Expectantly,

there are also numerous case-studies to show modified expression by variation in bind-

ing module structures. Nonetheless, the maintenance and robustness of the function is
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3. EMERGENT SELECTION ON REGULATORY COMPLEXES

rather a surprising outcome.

In Section. 1.3, we discussed the biophysics of protein-sequence interactions for sin-

gle binding sites. We characterize a fitness landscape for evolution of the single site

sequences based on their interactions with a transcription factor (eq. 1.17). The fitness

of a binding site, which is associated with its ability to regulate gene expression in the

cell, is a highly nonlinear function of the site affinity and yields epistatic interactions

between nucleotide changes in the site sequence; see Fig. 1.3(b). Considering a regula-

tory region with multiple binding sites, the picture becomes even more complex: The

tolerance for site turnover and functional exchange results in an epistatic evolutionary

effect not only at the level of nucleotides in a single binding site but also between the

binding sites in a regulatory region. The complexity is indeed two fold: (i) The bio-

physical interactions are more complex for a system with multiple interacting binding

sites, and thus a collective phenotype has to be associated with such many-particle

(i.e., multiple site) complexes. (ii) The evolutionary dynamics of these regulatory se-

quences are also more involved: these regions with a length of several hundred base

pairs provide larger mutational targets compared to single binding sites with a length

of about 10 base pairs. Hence, different individuals in a population carry polymorphic

binding complexes whereas single binding sites have mostly monomorphic population

compositions known for the weak-mutation regime. This is simply a manifestation of

a quantitative trait with multiple contributing loci. The three underlying evolutionary

forces, mutation, selection and genetic drift affect the trait on comparable timescales

and the simplifying assumptions previously used for separation of these timescales are

not anymore applicable; see Section. 1.4. In this way, the stationary population compo-

sition is set by the mutation-selection-drift balance. Furthermore, a limited amount of

genomic reassortment by mechanisms such as recombination or horizontal gene trans-

fer, cause mutations to be physically linked to each other on the chromosome. This

condition known as linkage-disequilibrium, adds further complications in characterizing

the observed variations in the population.

These are the issues that we encounter in this chapter. We study the evolution of a

type of regulatory complexes in yeast which consists of a central high-affinity binding

site surrounded by a cloud of weak site sequences; see Fig. 3.1 (b). The biological

importance of such structures has been recently highlighted through a series of synthetic

experiments in yeast (Gertz and Cohen, 2009; Gertz et al., 2008). Transcription factors
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3.2 Binding phenotype of regulatory complexes

in yeast typically exhibit cooperative interactions with their adjacent factors on DNA

and thus, form dimers and not longer oligomers. The resulting protein-DNA complexes

with cooperatively bound transcription factors are more stable than the structures

formed by single site interactions. In this picture, low affinity binding sites influence the

regulatory output of a gene through cooperation with the strong site and hence confer

a significant biological role. Besides the mechanistic importance of these structures, we

have also identified the evolutionary role of the weak binding sites as seed sequences

that facilitate the formation of the regulatory modules in eukaryotes (Nourmohammad

and Lässig, 2011); see Chapter. 2.

Despite the functional significance of the low-affinity site sequences, inference of

selection pressure during their evolution has proven to be a challenge. Individual weak

sites do not experience a strong purifying selection pressure and thus have a high

turnover rate. The resulted divergence across species has illuded to the understanding

that these flanking regions are evolving near-neutrally and hence are not of any phe-

notypic significance. As we pointed out however, their effects should be studied in the

context of their neighboring binding sites which together establish a collective binding

phenotype for the regulatory complex .

Here, we develop a thermodynamic framework that quantifies a binding phenotype

for a regulatory complex with multiple cooperatively interacting binding sites. This

will serve as a molecular phenotype which is related to the rate of protein production

in the cell and hence is the functional target for natural selection during evolution. We

develop a population genetics test to infer the shape of the fitness landscape from the

phenotypic polymorphism in a population. We apply this method to infer the selection

pressure on the binding complexes associated with the transcription factor Rap1 in the

S. paradoxus population. Using the inferred evolutionary rates, we will then predict

the long-term sequence divergence between different yeast species. The resulting fitness

landscape explains the compensatory evolution and the binding site turnover observed

in these regulatory complexes.

3.2 Binding phenotype of regulatory complexes

A regulatory complex contains several binding sites for multiple transcription factors.

In chapter. 1, we discussed both experimental and statistical methods to infer the
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Figure 3.1: Transcription factor-binding site interactions. (a) Single binding site
interaction with a transcription factor. εi is the sequence specific binding energy of this
interaction. (b) Cooperative interaction of transcription factors in a regulatory complex.
Upper row: The direct binding energy of the factors to DNA varies along the sequence
depending on the nucleotide compositions of a sequence segment. The darkness shows
binding affinity at each position εi. A strong binding site in the middle (dark) is surrounded
by a cloud of low-affinity site sequences (light). The cooperative strength of the bound
factors is ω. Lower row: The binding configuration can be specified by a binary model:
σi = 1 for occupied positions and σi = 0, otherwise.
The dashed lines show the extension of the occupied position to exclude the overlapping
bound factors.

binding affinity of a transcription factor to a specific sequence pattern which we note

as the single site binding phenotype. Here, we want to extend such phenotypic picture

to larger stretches of sequence regions that interact with multiple transcription factors.

This requires a transition from a single-particle to many-particle statistics; see Fig. 3.1.

In the following analysis, we will characterize the binding phenotype of a sequence

stretch in contact with one type of a cooperatively binding transcription factor. This

level of complexity is sufficient to describe the regulatory system of the Rap1 tran-

scription factor that we study in this chapter. The cooperative binding between two

transcription factors can be achieved through various mechanisms such as protein-

protein interactions (direct or via DNA looping) (Arnosti et al., 1996; Bintu et al.,

2005; Ptashne and Gann, 2002) and nucleosome-mediated interactions (Lam et al.,

2008; Mirny, 2010). In our analysis, we do not distinguish between these different

biological mechanisms and use a minimal model to characterize these cooperative in-

teractions. The more general models which incorporate several types of transcription

factors (i.e., different binding motifs) and even their interactions with chromatin struc-

tures are not much harder; see e.g., discussions by (Bintu et al., 2005; He et al., 2010;

Raveh-Sadka and Levo, 2009; Shea, 1985).

Here, similar to Section. 1.3, we use an additive energy model based on the posi-

tion weight matrix (PWM) of the transcription factor under study, to infer the binding
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3.2 Binding phenotype of regulatory complexes

affinity of its interaction with a single binding site of length d; see eq. (1.4). This pro-

vides an estimate for binding energy of direct interactions between the transcription

factor and site sequence segments at each position of the regulatory complex. Our

minimal interaction model assigns only an effective cooperativity, ω, between the tran-

scription factors bound next to each other without any interfering factors in between

(see Fig. 3.1(b)). Assuming such short-range interactions is justified in prokaryotes and

in yeast (Bintu et al., 2005; Gertz et al., 2008; Ptashne and Gann, 2002). However, in

higher eukaryotes long-range interactions are essential parts of the regulatory grammar

and should be taken into account (Arnosti and Kulkarni, 2005; Kulkarni and Arnost,

2005). These interaction parameters, together with the transcription factor density in

the cell, characterize the collective binding phenotype of a regulatory complex.

To proceed, we will use the analogy between this system and well known spin

interaction models in physics. We associate a state vector, σi (i = 1 . . . `) to a binding

configuration of transcription factors on a sequence of length `. The state vector takes

values 0 and 1 to denote the occupancy at different genomic positions: σi = 1 if the

site sequence (ai−d+1, . . . , ai) is occupied and σi = 0, otherwise; Binding position “i”

is by construct the location of the right-most tip of the bound transcription factor on

the sequence. Therefore, the interaction affinity assigned to a genomic position “i”

is the binding energy for direct interactions between the transcription factor and the

connected sequence on its left, εi = E(ai−d+1, . . . , ai); see Fig. 3.1(b). The cooperative

interaction for a binding configuration σ can be described by a Hamiltonian,

H(σ) =
∑

i

σiεi + ωθ


∑

j<i

σiσj − 1


 (3.1)

θ(x) is a step function: θ(x) = 1 for positive values of x > 0 and θ(x) = 0, other-

wise. The second term on the right hand side of eq. (3.1) accounts for the cooperative

interaction of the immediate neighboring bound factors on the sequence. Later, we

will add the constraint that the binding interactions are exclusive and factors do not

overlap with each other.

Since binding interactions are stochastic, there are numerous possible binding con-

figurations, σ for each regulatory complex. Expression regulation as the ultimate phe-

notype, is a response to all of these configurations. Therefore, a sound biophysical

phenotype should take into account all of these binding configurations and weigh them
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according to their regulatory contributions. This is a well-known procedure in statistical

physics and the corresponding function is termed the partition sum, Z which depends

on the interaction parameters of the system. The likelihood that a specific binding

configuration σ occurs in equilibrium is given by the Boltzmann factor, exp(−βH(σ)).

where H(σ) is the interaction Hamiltonian in eq. (3.1) and β is inversely related to the

temperature times Boltzmann’s constant, β = 1/kBT . In our analysis, we will rescale

the energy values by β. The partition sum for the binding interactions between the

transcription factors and a regulatory complex of length ` is,

Z =
∑

σ`=0,1

· · ·
∑

σ1=0,1

e−H(σ)+
∑
i(νσi+V∞σi

∑i+d−1
j=i+1 σj)

=
∑

σ`=0,1

· · ·
∑

σ1=0,1

e−
∑
i[(εi−ν)σi+ωθ(

∑
j<i σiσj−1)+V∞σi

∑i+d−1
j=i+1 σj] (3.2)

ν is the chemical potential related to the finite density of transcription factors in

the cell: ν ∝ log nTF ; see eq. (1.2). The last term in the exponent assures the exclusive

binding criteria: V∞ � 1 is a large potential barrier that dismisses the configurations

with overlapping bound factors.

Enumerating all possible configurations that grow exponentially with the sequence

length ≈ 2` is a strenuous task. Since the interactions assumed in this model are local

(i.e., only adjacent transcription factors cooperate), we can compute the partition sum

in eq. (3.2) in a recursive form. This technique is known as transfer matrix method in

physics and dynamical programming in computer science. The recursive form of the

partition function is,

Zr = Zr−1 + e−(εr−ν)[Z0 + e−ω(Zr−d − Z0)] (3.3)

with the initial condition, Z0 = 1. The first term on the right hand side of eq. (3.3)

is the contribution of the unbound state at position r (σr = 0), to the partition sum.

The second term is the contribution of the bound state (σr = 1) with two possibilities:

(i) there is no other factor bound on the sequence prior to position r and hence no

cooperative interaction, (e−(εr−ν)Z0) and (ii) there is at least one other factor bound

prior to the position r, (e−(εr−ν+ω)[Zr−d −Z0]). The recursive form in eq. (3.3) proves

to be very useful in computing the large partition sum in eq. (3.2).
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From the partition function, we can then compute different macroscopic observables

that characterize the molecular phenotype of a regulatory complex. One of the extensive

thermodynamic parameters is the free-energy of the system, G = logZ which accounts

for all the contributing configurations with an appropriate weight. The traditional

definition of Helmholtz free energy in statistical mechanics is A = −kBT logZ. Here,

we define G in units of β = 1/kBT and adopt a positive sign to relate it to the effective

binding affinity of a regulatory complex: higher values G are associated with larger

effective bindings. In contrast to the binding energy, which is approximately additive

in its single nucleotide contributions, the free-energy of a regulatory complex G, is a

highly nonlinear function of the individual site energies.

Another thermodynamics observable that we will use for our analysis is the marginal

occupancy of each nucleotide position,

Oi =
Z(`|σi = 1)

Z`
(3.4)

Z(`|σi = 1) is the conditional partition sum over all configurations in which the

sequence position “i”, (ai−d+1, . . . , ai) is bound. This measure confers positional infor-

mation for all nucleotides and account for their contribution to the effective binding of

a regulatory complex. These two observables, free-energy and marginal occupancy, will

be the central phenotypic observables in our evolutionary analysis. Using the partition

function in eq. (3.2), we can easily estimate other statistical observables such as the

average number of bound factors or the binding fluctuations in a regulatory complex,

which provide some more intuition about the binding statistics of the region.

3.3 Evolutionary dynamics of regulatory complexes

Biological traits as combinations of multiple loci, known as “quantitative traits”, have

been studied in the context of classical quantitative genetics. We will treat the free-

energy of the regulatory complexes as a quantitative trait. In this case, a sequence

of 100 base pairs encodes the phenotypic characteristics of this trait, and mutations

at any of these positions can influence the trait value. The number of contributing

loci makes the regulatory complex a large mutational target, such that its binding

phenotype remains polymorphic between the individuals of a population. This is the

main difference compared to the single binding site with a length of about 10 bp,
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which is practically monomorphic in the population. The relevant population based

picture for regulatory complexes is a cloud of individuals with a broad spectrum of

trait values whereas the picture for a single binding site resembles that of a point-like

population; see Fig. 3.2(a). Inevitably, the evolutionary dynamics of these sequence

regions becomes more complex. Mutations, selection and genetic drift all influence

the trait on comparable time scales and hence distinguishing their contributions to the

evolutionary dynamics is cumbersome.

One of the main difficulties in addressing the evolution of a binding complex, is

the genomic linkage that physically connects the fate of all its constituent loci. This

condition, known as linkage disequilibrium, adds a substantial amount of complications

to the theoretical descriptions of this system. There is a lot going on in the population

at the same time: the fate of a single mutation is determined not only by its own

selective advantage but by the fitness contribution of all the other genomic loci which

coexist in its background. This makes the natural selection to be less effective and

the population to appear more neutral (Desai and Fisher, 2007; Gerrish and Lenski,

1998; Park and Krug, 2007; Rouzine et al., 2008; Schiffels et al., 2011). Single allele

statistics given e.g., by Kimura’s U-shape distribution, (eq. (1.11) and Fig. 1.2) cannot

anymore characterize the genomic composition of a population (Kimura, 1962). Higher

orders of allele correlations should be taken into account. Classical quantitative genetics

however, mostly considers the traits as perfect reassortments of the genomic information

for which single allele statistics are applicable (Barton and Coe, 2009; de Vladar and

Barton, 2011b; Falconer, 1989; Kirkpatrick et al., 2002; Lande, 1976; Lynch and Walsh,

1998). Such assumption is justified for traits with loci that are encoded far away from

each other on the genome or on different chromosomes, but certainly not for the binding

complexes that we study here.

In Chapter. 4, we developed a novel theoretical framework to characterize the evo-

lutionary dynamics of the polygenic traits. By drawing analogies between thermo-

dynamics and quantitative genetics, we characterize the phenotypic composition of a

population despite its complicated dynamics at the level of individual loci. This pic-

ture is valid for traits with a large number of contributing loci (Barton and Coe, 2009;

de Vladar and Barton, 2011a; Kirkpatrick et al., 2002; Neher and Shraiman, 2011). In

this section, we briefly discuss this mathematical framework to the extent that it is

applicable to the analysis of the regulatory complex evolution. This analysis will yield
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Figure 3.2: Evolution of quantitative traits under stabilizing selection. (a) Quan-
titative traits with multiple loci are polymorphic in the population.Their constitutive loci
provide a large mutational target which in turn is reflected in phenotypic composition of
the population. Therefore, populations should be viewed as clouds of individuals (enclosed
by dashed lines in the figure) which span a range of phenotypes and evolve in a fitness
landscape (here, a non-linear step-like landscape). The color indicates the probability of
functionality , ranging from 1 (red) to 0 (blue). The plot shows fitness (y-axis) as a func-
tion of the population phenotype (e.g., a regulatory phenotype) on the x−axis. (b) The
phenotypic diversity of a population that evolves under stabilizing selection pressure (in
red) is reduced compared to its neutral counterpart (in blue). (c) Population realizations
for simulated evolution of a regulatory complex binding phenotype under a minimal stabi-
lizing selection (i.e., quadratic fitness landscape Nf(G) = −0.38(G−G?)2) (shown in red)
and under neutral conditions (shown in blue). Each realization is depicted on separate
z-plane. The evolutionary trajectories span over 3000 generations of yeast populations
(approximately 1 year). The solid line in each of the trajectories show the population
mean phenotype and the shadowed region around represents the phenotypic spread in the
population. The phenotypic spread is reduced under stabilizing selection. The optimal
phenotype for each realization G? is set separately according to the equilibrated value of
the original binding complex in yeast. In our analysis, we view different regulatory com-
plexes as independent population realizations and use the phenotypic statistics across these
loci to infer the shape of the minimal epistatic fitness landscape.

49



3. EMERGENT SELECTION ON REGULATORY COMPLEXES

a population genetics test to infer the strength selection from the phenotypic polymor-

phism in a population. More details are discussed in Chapter. 4 and summarized in

Section. 4.4.

Quantitative traits, here the binding free-energy, are combinations of a large number

of loci and thus vary even between the individuals in a population. If the number of

constituent loci is very large, the phenotype distribution in a population approaches a

Gaussian form (central limit theorem) and can be characterized only by its first two

moments. Here, we follow the dynamics of the intra-population mean and variance of

the binding phenotype, respectively denoted by ΓG and ∆G. This is an approximation

to the full phenotype distribution which is not a perfect Gaussian in the parameter

regime of µN` ∼ 1 relevant to the regulatory complexes. Still, our following results will

show the power of this formalism in describing the genomic composition of a population.

A population can be thought as a single realization of an evolutionary process.

Current high-throughput experimental techniques, mostly applicable to microbial pop-

ulations, made it possible to follow not only one but many population realizations

which evolve in similar fitness landscapes (Lenski and Travisano, 1994). Of course, the

details of these populations differ from one to another, but the distributions of their

macroscopic observables may inform us about the common evolutionary constraints

that they have experienced.

This is the central idea behind our approach. We will view the different regula-

tory complexes as parallel evolutionary realizations that are to fulfill certain functional

criteria; see simulated results in Fig. 3.2(c) for demonstration. In this approach, we

naturally disregard the possibility that the evolutionary histories of these regulatory

complexes might have met in the past e.g, through duplication events. This is a reason-

able approximation if the number of regulatory complexes considered in the population

ensemble is large. We also assume that all these loci have evolved in similar fitness

landscapes. In the following section, the advantages and disadvantages of this anal-

ogy will be discussed. Nonetheless, this will offer a unique opportunity to study the

phenotypic statistics in a genomic context.

The neutral dynamics, i.e., mutations and genetic drift, affect the mean and the

variance of the intra-population phenotype distribution. Our goal is to characterize

the stationary state of the population phenotype statistics, ΓG and ∆G, so that we can

quantify their deviation due to selection. The subscript stands for the phenotype of
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interest e.g., G for the binding free-energy. If the loci were independent, as in a freely

recombining genome, both phenotype statistics would be additive in the comprising

loci and thus have Gaussian distributions across populations due to the central limit

theorem. In the presence of linkage, evolutionary dynamics of loci are correlated and

hence follow more complex statistics. In Chapter. 4 we characterize the dynamics of

Γφ and ∆φ for an additive phenotype φ =
∑`

i φi. We consider a binary genome where

each locus has two states. This is a justified approximation in a low-mutation rate

regime µN � 1 which is valid for most of biological systems; the polymorphic sites in

the genome do not carry more than two types of nucleotides in the population. In this

way, we can reduce the 4-state nucleotide composition at each locus ai = A,C,G, T to

a 2-state system, φi = 0, 1 where the allele “1” contributes to the phenotype φ =
∑`

i φi.

The intra-population phenotype statistics can be expressed in terms of the marginal

allele frequencies, yi = φi, and haplotype frequencies of pairs of loci, yij = φiφj . The

overlines denote the intra-population averages. The phenotype statistics follow,

Γφ = φ =
∑

yi (3.5)

∆φ = varφ = φ2 − φ2
=
∑

i

yi(1− yi) +
∑

i 6=j
(yij − yiyj) (3.6)

We can characterize the stochastic dynamics of these trait statistics under neutral-

ity. Due to the stochastic nature of this process, we characterize the population state

in neutrality by the joint probability density, P0(ΓG,∆G, t). The temporal changes

of the cross-population marginal probability distributions, P0(Γφ; ∆φ = 〈∆φ〉, t) =

P0(Γφ; 〈∆〉) and P0(∆φ; 〈Γ〉) follow,

∂tP0(Γ; 〈∆〉, t) =
1

2N
〈∆〉 ∂

2

∂Γ2
P0(Γ; 〈∆〉, t) + 2µ

∂

∂Γ
(Γ− `/2)P0(Γ; 〈∆〉, t)

(3.7)

∂tP0(∆; 〈Γ〉, t) =
1

N

∂2

∂∆2
∆2P0(∆; 〈Γ〉, t) + 4µ

∂

∂∆2
(∆− `/4 + ∆/4µN)P0(∆; 〈Γ〉, t)

(3.8)

The difference between this dynamics to that of the free-recombining genome, is the

large fluctuations in the trait diversity, ∆, which is caused by the long-range correlations
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between loci. The equilibrium state of eq. (3.7) and eq. (3.8) for phenotype statistics

in a binary genome follows,

P0(Γφ; 〈∆〉) =
1

ZΓ
exp

[−2(Γ− `/2)2

`

]
(3.9)

P0(∆φ; 〈Γ〉) =
1

Z∆
∆−3−4µN
φ exp

[−µN`
∆φ

]
(3.10)

where ZΓ and Z∆ are the appropriate normalization factors; see eq. (4.80) eq. (4.82).

This way, we characterize the neutral dynamics of the population phenotype distribu-

tion. Given the neutral equilibrium, the distribution of the phenotype statistics for an

evolutionary process in a time-independent fitness landscape f(φ) of a gradient form,

will have a simple relation to its neutral counterpart,

Q(Γφ; 〈∆φ〉) =
1

Z
P0(Γφ; 〈∆〉) exp[2NF (Γφ; ∆φ = 〈∆φ〉)]

Q(∆φ; 〈Γ〉) =
1

Z
P0(∆φ; 〈Γφ〉) exp[2NF (∆φ; Γφ = 〈Γφ〉)] (3.11)

The Boltzmann factor that relates each of the two distributions is the rescaled mean

population fitness 2NF (Γφ,∆φ) projected on the corresponding plane in the Γ − ∆

coordinate. In a population with a trait distribution ρ(φ),

F (Γφ,∆φ) = f(φ) =

∫
dφρ(φ)f(φ) (3.12)

and the corresponding projections are obtained, F (Γφ; ∆φ) =
∫
d∆φF (Γφ,∆φ)Q(Γφ,∆φ) ≈

F (Γφ; ∆ = 〈∆φ〉), and similarly for F (∆φ; 〈Γφ〉). In a well-behaved fitness landscape

f(φ), we can expand the fitness values around an arbitrary trait of interest φ?,

f(φ)− f(φ?) = f ′(φ?) (φ− φ?) +
1

2
f ′′(φ?) (φ− φ?)2 + . . . (3.13)

In this way, we can compute the mean population fitness F (Γφ,∆φ) as a function of

the intra-population trait statistics Γ, ∆ and in relation to the derivatives of the fitness

landscape. This will prove to be useful to infer the shape of the fitness landscape. The

derivatives of the fitness function are coupled to the intra-population trait statistics, Γ
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3.3 Evolutionary dynamics of regulatory complexes

and ∆ and hence, we can infer its shape from changes in the phenotype statistics under

selection.

In Chapter. 4, we discuss in length the changes in phenotype statics as a response

to different types of analytical gradient-form fitness functions. The results are also

summarized in Section. 4.4. Here, our goal here is to characterize the evolutionary

dynamics of regulatory complexes with ongoing compensatory binding site turnover.

Thus, we only confine ourselves to a minimal fitness landscape that can accommodate

epistatic evolutionary interactions i.e., a quadratic fitness landscape with a negative

curvature, f(φ) = −ω(φ− φ?)2. φ? is the location of the fitness peak. We will see that

this fitness function can already explain the divergence patterns of regulatory complexes

in Saccharomyces. The mean population fitness in a quadratic landscape has the form,

F (Γφ; 〈∆〉) = −ω (Γ− φ?)2 , F (∆φ; 〈Γ〉) = −ω ∆ (3.14)

We can now determine the modified marginal distributions for the trait statistics

under selection, Q(Γφ; 〈∆〉) and Q(∆φ; 〈Γ〉),

Q(Γφ; 〈∆〉) =
1

Z
P0(Γφ; 〈∆〉) exp[−2Nω(Γφ − φ?)2] (3.15)

Q(∆φ; 〈Γ〉) =
1

Z
P0(∆φ; 〈Γ〉) exp[−2Nω∆φ] (3.16)

Binding free-energy G, is a non-linear function of the binding contributions from the

constituent site sequences in a regulatory complex (see section. 3.2). Nonetheless, we

apply the theoretical techniques that we have developed for linear traits to describe the

evolutionary dynamics of the binding phenotype. This approximate scheme is applica-

ble because of the sparse regulatory interactions in the binding complexes of interest

where transcription factors are not likely to compete for overlapping binding sites. We

will see the strength of this method in the following sections.

Trait statistics in a quadratic fitness landscape. Evolution in a a quadratic fit-

ness lasndscape with a negative curvature reduces the phenotypic diversity and hence,

sharpens the ΓG distribution, P0(ΓG; 〈∆〉) and shortens the long-tail of the ∆G dis-
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3. EMERGENT SELECTION ON REGULATORY COMPLEXES

tribution, P0(∆G; 〈Γ〉)); see Fig. 4.7. We can simply evaluate the effect of quadratic

selection, f(G) = −ω(G−G?)2 on the cross-population (here, cross-loci) trait statis-

tics; see Section. 4.2.5.2 for more details.

• Trait average (Γ
(0)
G → Γ

(s)
G )

〈ΓG〉s = G? − G? − 〈ΓG〉0
1 + 4ωN(〈Γ2

G〉0 − 〈ΓG〉20)
(3.17)

(varΓ)s = 〈Γ2
G〉s − 〈ΓG〉2s =

〈Γ2
G〉0 − 〈ΓG〉20

1 + 4ωN
(
〈Γ2
G〉0 − 〈ΓG〉20

) (3.18)

• Trait variance (∆
(0)
G → ∆

(s)
G )

〈∆G〉s = 〈∆G〉0 − 2ωN〈∆G〉20 + O[(ωN)2] (3.19)

〈.〉s refers to averages over the population ensemble that evolved under selection

pressure and 〈.〉0 denotes the averages over the neutral ensemble.

Using the results in eq. (3.17) and eq. (3.19), we can infer the parameters of the

fitness function, ω and G?.

2ωN =
〈∆G〉0 − 〈∆G〉s
〈∆G〉20

(3.20)

and
G? − 〈ΓG〉s
G? − 〈ΓG〉0

= 1 + 4ωN
(
〈Γ2
G〉0 − 〈ΓG〉20

)
(3.21)

Stabilizing selection reduces the spread of the phenotype in the population and

as a result narrows the distribution of the average phenotype across populations,
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3.3 Evolutionary dynamics of regulatory complexes

Figure 3.3: Trait statistics in quadratic fitness landscapes. (a) Distribution of
intra-population trait average Γ in neutrality (light blue) and under stabilizing selection
(red). Each value Γ is computed from the phenotype distribution of a single population
(shown as an insert). The fitness landscape has a quadratic form with a width ω (solid
black line). The phenotype range under selection rs is smaller than in the neutral case, r0.
The stationary state of a finite population is determined by both selection and stochastic
fluctuations. In very small populations selection is less efficient and entropic forces make
the population look more neutral; a Γ distribution for a smaller population size is shown
in purple solid line. Free fitness F̃ = F −H provides an expression for the balance between
natural selection (mean population fitness F ) and stochastic drift (population entropy H).
(b) Γ distribution (in red) across loci which evolve in quadratic fitness landscapes with
different optimums but similar width ω (solid dark lines). The resulting probability distri-
bution Q(Γ), as the sum of several different distributions, resembles the neutral distribution
(in blue) and does not indicate an evolutionary dynamics under stabilizing selection. In
this case ∆-statistics are useful.

(varΓ)s < (varΓ)0; eq. (3.18). The ratio between the phenotype range under selec-

tion r2
s ≡ (varΓ)s and in neutrality r2

0 ≡ (varΓ)0 is then a dimension-less quantity that

indicates the strength and efficacy of stabilizing selection on the trait; see Fig. 3.3(a).

r2
s =

1

4ωN
− 1

(4ωNr0)2
+ O(1/(ωNr0)3) (3.22)

Since Γ has a Gaussian distribution (eq. (3.9) and eq. (3.15)), the phenotypic range

as defined above is related to the entropy, HΓ = −〈logP (Γ)〉 and hence the information

content and redundancy of the distribution.
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3. EMERGENT SELECTION ON REGULATORY COMPLEXES

Free fitness: a measure of selection strength on the trait. In finite popula-

tions, it is not only the maximization of the mean population fitness F (ΓG,∆G) that

determines the stationary phenotype composition, but rather it is the free fitness that is

maximized at the stationary state (Barton and Coe, 2009; Berg et al., 2004; Iwasa, 1988;

Mustonen and Lässig, 2010; Sella and Hirsch, 2005). A free fitness function provides

an expression for the balance between natural selection, mutations and stochastic drift,

which is related to the entropy of the population phenotype distribution H. In analogy

to statistical physics, free fitness in finite populations plays the role of free energy in

finite temperature, and is maximal at equilibrium; this is the evolutionary analog of

Boltzmann’s H theorem. It is the free fitness F̃ = NF −H that gauges the stability

of a population state by balancing between the evolutionary tendencies in finite pop-

ulations to increase both fitness and entropy. Therefore, the excess of the free fitness

for the evolutionary state under selection over the neutral counterpart, δF̃ = F̃s − F̃0

measures the strength of selection that constrains the phenotype composition in the

population; see Fig. 3.3. We compute this quantity from the phenotype distributions

across loci and compare it to the neutral expectation evaluated in the simulated evo-

lution of regulatory complexes.

Genomic analysis across different loci. As mentioned above, we will study the

evolutionary dynamics of Rap1 regulatory complexes in yeast. These complexes are

responsible for regulation of different genes, but through interactions with common

transcription factor. The underlying biochemistry of these interactions is their shared

characteristic. However each is tuned to regulate the output expression level of its

own gene. In other words, the fitness optimum for each of these trait loci is located

at the value that best matches its own regulatory output. If fitness functions for all

loci are equal, they can be thought of as different realizations of the same evolutionary

process, and cross-loci statistics will match the cross-population statistics of the trait

observables as discussed above. If only the fitness optimum G? differs between the loci,

then the cross-loci Γ-statistics differ from that of the cross-population description, but

the higher order statistics (∆-statistics for our analysis) will remain compatible. These

relations can be generalized to higher moments.
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3.4 Rap1 binding complexes in S. paradoxus

The spread of the cross-loci fitness optima, r? = (varG?)1/2 is then a measure

for deviation of the cross-loci Γ-statistics from the cross-population descriptions; see

Fig. 3.3(b). If r? ∼ r0, the Γ-statistics are diluted and we cannot infer the fitness

parameter ω from the reduction in the spread of the intra-population trait average Γ.

On the other hand, if loci-specific fitness functions have similar width ω, the reduction

in trait diversity ∆ is comparable across loci and is related to the fitness width by

eq. (3.19).

These results are applicable to actual genomic data. The biophysical map between

genotype and binding phenotype is a peculiar feature of regulatory complexes. Muta-

tions are random events which introduce an unbiased change to the nucleotide content

of the trait loci. Selection however, acts on the binding phenotype which is related

to gene expression and protein production. Clearly, the genotype-phenotype map is

an essential element for pursuing evolutionary analysis of this type. Comparing cross-

population phenotype statistics of the actual genomic data to its neutral counterpart

then provides information about the shape of the underlying fitness landscape. We

will see that a minimal epistatic fitness landscape (quadratic fitness) presented here,

can already explain the conservation of the binding phenotype as well as ubiquitous

compensatory changes between sites in a regulatory complex.

3.4 Rap1 binding complexes in S. paradoxus

We have evaluated the free-energy of 411 promoter regions in 37 individuals of the

S. paradoxus population. We treat the different promoters as different realizations of a

regulatory complex that evolved to interact with the Rap1 transcription factor. In this

way, we distinguish between the intra-population statistics evaluated from homologous

regions in 37 individuals and cross-loci statistics evaluated from the 411 regulatory

complexes. As explained above, the cross-loci statistics are not necessarily compatible

with the cross-population formalism that we introduced in Section. 3.3. We will see

the limitations of these analogies in our analysis. We compare these statistics with

the phenotypic statistics evaluated from the population realizations that evolved neu-

trally. The neutral expectation is measured from simulated evolution of the regulatory

complexes for which the central strong binding site is maintained, but the flanking
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3. EMERGENT SELECTION ON REGULATORY COMPLEXES

Figure 3.4: Inference of selection from phenotypic polymorphism. (a) Cross-loci
distribution of the intra-population phenotype (free-energy) average ΓG over 411 binding
complexes for Rap1 transcription factor in S. paradoxus (in red). The blue distribution in
the back is the neutral expectation of the intra-population phenotype average. The two
distributions are not significantly different. This is due to the different preference of the
binding phenotype across regulatory complexes which results in an inhomogenous ensemble
of loci. (b) Cross-loci distribution of the intra-population phenotype variance ∆ over 411
binding complexes. The actual distribution is less spread out and has a smaller mean
value (by a factor of two) compared to its neutral counterpart. This suggests that the
underlying fitness landscape allows for epistatic interactions between the trait loci. The
minimal fitness landscape of such type has a quadratic form, f(G) = −ω (G−G?)2 with the
curvature parameter 2ωN = 0.38; see eq. (3.20). The location of the fitness peak G? is set
independently for individual loci. (c) Simulated evolution in a quadratic fitness landscape,
2Nf(G) = −0.38 (G−G?)2 with a peak set at the value G? = 8 (black curve). The cross-
loci histogram of intra-population phenotype average (average free-energy) ΓG is shown
in purple. The intra-population width of the phenotype distributions ∆G is indicated for
a number of cases (cyan lines). The phenotypic equilibrium does not coincide with the
fitness landscape due to the mutational load effect.

low-affinity binding regions have evolved neutrally; see Materials and Methods in Sec-

tion. 3.7. The following features can be extracted:

—The cross-loci distribution of the mean phenotype ΓG is not significantly different from

the neutral expectation. We evaluate the intra-population average binding free-energy

(phenotype) for each of the 411 regulatory complexes in the S. paradoxus genome. We

compare the cross-loci distribution of ΓG to that of the neutrally evolved populations

which still carry the strong binding sites, but have not experienced constraints on their

low-affinity sequence regions. The two distributions are not significantly different; see

Fig. 3.4(a). The intra-population mean phenotype in S. paradoxus is as widely spread as

its neutral counterpart which suggests that the phenotypic preferences G? vary across

loci. Since the intra-population phenotype diversity is small, Γ can be a good approx-

imation for phentype preference G? at each loci. In this way, we can argue that the
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3.4 Rap1 binding complexes in S. paradoxus

spread of the G? distribution is comparable to the width of the Γ distribution in neu-

trality, r? ∼ r0. Therefore, Γ-statistics cannot inform us about the shape of the fitness

landscape for these regulatory complexes.

—The intra-population phenotype diversity ∆G is significantly reduced compared to the

neutral expectation. As shown in Fig. 3.4(b), the distribution of ∆G is less spread than

the neutral expectation. The cross-loci average of the population phenotype diversity is

〈∆G〉s = 0.27, which is significantly smaller that its neutral counterpart, 〈∆G〉0 = 0.5.

This is an indication of evolution in a stabilizing fitness landscape. Phenotype diversity

statistics is not affected by the preferred binding value G? which differs between regu-

latory complexes. In the following, we proceed with a minimal model that assumes a

similar width ω for fitness landscapes of all loci and use ∆-statistics to infer this fitness

parameter; see Section. 4.3. We will then show that this minimal model can adequately

explain the data.

—Regulatory complexes have evolved in a stabilizing fitness landscape. We compute the

curvature of the fitness landscape by comparing the distribution of the cross-loci trait

diversity in the population, Q(∆G; 〈ΓG〉) to its neutral counterpart, P0(∆G; 〈ΓG〉); see

eq. (3.20). The two-fold reduction of the mean trait diversity suggests evolutionary

dynamics in a fitness landscape with a negative curvature, f(G) = −ω (G−G?)2. We

estimate the width of the rescaled fitness landscape from eq. (3.20), 2ωN = 0.38. This

type of fitness landscape imposes a stabilizing selection on the trait value: loss/gain of

binding sites are compensated by other gain/loss events. Evolutionary dynamics in this

fitness landscape reduces the phenotypic spread in a population rs by eq. (3.22). We

estimate the phenotype spread in the neutral evolution, r0 = 2.7 and under stabilizing

selection, rs = 1.04. The 2.5-fold reduction of the trait range for typical loci suggests a

substantial fitness effect on regulatory complexes. We will quantify this in the following

steps.

In Fig. 3.4(c), we show the distribution of the average binding phenotype ΓG esti-

mated from the simulated evolution of regulatory complexes in a single quadratic fitness

landscape with a negative curvature, 2Nf(G) = −0.38(G − 8)2. Each population re-

alization is a cloud of binding phenotypes. The ensemble of populations equilibrates
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Figure 3.5: Fitness effects of single mutations in regulatory complexes. The
gray histogram shows the phenotypic change ∆G for single mutations that we introduce
to the low-affinity binding region of 411 Rap1 regulatory complexes in the S. paradoxus
genome. The bar plot shows the rescaled fitness effects of these mutations N∆f as a
function of their phenotypic effect. The fitness function is the minimal epistatic landscape
that we infer from the phenotypic polymorphism in Section. 3.4. Single mutations have
fitness effects of order one and thus expected to evolve near-neutrally. The substantial
stabilizing selection on the trait emerges only from their collective effect; see Fig. 3.4.

around a value which is lower than the peak of the fitness landscape, G? = 8. This

effect is related to the accumulation of deleterious mutations (mutational load) during

asexual reproduction and is termed Muller’s Ratchet in evolutionary genetics (Muller,

1964).

—Single mutations experience negligible selection pressure but their collective effect is

under strong stabilizing selection. We compute the fitness effect of single mutations

in the weak binding regions of the 411 regulatory complexes in S. paradoxus. Most

of these mutations reduce the binding phenotype of the regulatory complex, ∆G < 0

(Fig. 3.5). We compute the fitness effect of these mutations ∆f in the quadratic fitness

landscape, f(G) = −ω (G − G?)2 with 2Nω = 0.38. The location of the peak G? is

set for each binding complex according to the mean phenotype in the homologous reg-

ulatory regions of the 37 S. paradoxus samples. The fitness effect of single nucleotide

mutations are of order, N∆F ∼ 1 which suggests their effect to be nearly neutral;

see Fig. 3.5. The fitness effect of a regulatory complex can be computed by difference

between the free-fitness F̃ = NF − H of the population under selection and in neu-

trality. H is the entropy of the phenotype distribution in the population. We estimate
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3.5 Divergence of Rap1 binding complexes across species

δF̃ = F̃s − F̃0 = 15.7, for a typical regulatory complex. There is a substantial fitness

effect δF̃ � 1 per regulatory complex to maintain its phenotype during evolution. The

stabilizing selection pressure on the regulatory complex emerges from the collective

effect of its comprising low-affinity sites in a population.

In summary, our population genetics test can infer the shape of the fitness landscape

from the reduction of the phenotype diversity compared to the neutral expectation.

This method is particularly useful for systems with heterogenous phenotype prefer-

ences. We show that the binding phenotype (free-energy) of the regulatory complexes

is under substantial stabilizing selection and is well conserved within S. paradoxus pop-

ulations. At the same time, individual low-affinity sites evolve near-neutrally and show

considerable variation in affinity even within one population. Thus, functionality of

and selection on regulatory complexes emerge from the entire cloud of sites, but cannot

be pinned down to individual sites.

3.5 Divergence of Rap1 binding complexes across species

In this section, we analyze the evolution of the binding site complexes on a longer

timescales i.e., divergence time between three yeast species, S. paradoxus, S. cerevisiae

and S. bayanus. Binding site turnover is more pronounced on longer timescales than

among the individuals of a single population. Therefore, we can quantify the ongoing

compensatory evolution in the regulatory complexes. Furthermore, we compare the

cross-species phenotypic divergence of the regulatory complexes to the expected diver-

gence from the evolutionary dynamics in the quadratic fitness landscape inferred in

Section. 3.4. In this way, we evaluate the power of our fitness inference method, which

is based on short-term evolutionary dynamics, in predicting the long-term evolution

i.e., cross-species divergence.

3.5.1 Conservation of regulatory phenotype between species

Here, we study the phenotypic (free-energy) divergence of the 411 regulatory com-

plexes across homologous regions in three yeast species S. paradoxus, S. cerevisiae and

S. bayanus; see Material and Methods in Section. 3.7. We compare the divergence
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pattern to the neutral expectation evaluated from the forward simulations of the evolu-

tionary dynamics; see Materials and Methods in Section. 3.7. In these simulations, the

strong binding sites are kept as observed in the actual genomes and only the flanking

weak binding regions have evolved neutrally. Similarly, we simulate the evolution of

regulatory complexes under the influence of stabilizing selection that constrains the

binding phenotype (free-energy). The fitness landscape is the inferred quadratic fit-

ness in Section. 3.4, f(G) = −ω (G − G?)2. The fitness peak G? is set separately for

each regulatory complex depending on the average binding affinity of that region in the

S. paradoxus population. The simulations cover the divergence time relevant to species

pairs: S. cerevisiae-S. paradoxus and S. cerevisiae-S. bayanus. The following features

can be extracted:

—The weak-site contribution to the collective binding phenotype is significantly con-

served across yeast species compared to the neutral expectation. We evaluate the bind-

ing phenotype (free-energy) of the 411 homologous Rap1 regulatory complexes in three

yeast species, S. paradoxus, S. cerevisiae and S. bayanus. The difference in the free-

energy of the homologous regions is a measure of phenotypic divergence. We show that

the collective binding phenotype is highly conserved between the homologous regions

of the species pairs and neutral evolution cannot explain such reduction in phenotypic

variations; see Fig. 3.6. Neutrally evolved sequences have lower binding affinity (free-

energy) and an enhanced phenotypic divergence compared to the actual regulatory

complexes. These results are consistent with evolution under stabilizing selection in

Section. 3.4.

—Fitness landscape inferred from the phenotypic variations in the S. paradoxus pop-

ulation explains the phenotypic divergence across yeast species. The fitness landscape

that we inferred from the phenotypic polymorphism of the S. paradoxus population in

Section. 3.4 imposes stabilizing selection on the trait value. Here, we examined the

consistency of this minimal epistatic fitness landscape with the long-term divergence

data. Can the reduced phenotypic divergence observed across species be explained by

the strength of the stabilizing selection, 2Nf(G) = −3.8 (G − G?)2? The phenotypic

divergence estimated from the in-silico evolutionary dynamics under stabilizing selec-

tion matches the phenotypic difference between the homologous region of the species
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Figure 3.6: Conservation of the collective binding phenotype between yeast
species. (a) 2D histogram of the binding free-energy estimates for 411 orthologous regu-
latory complexes of Rap1 transcription factor in two species S. cerevisia and S. paradoxus.
The color code denotes the number of orthologous binding complexes with the correspond-
ing free-energy values in the two species. The diagonal pattern observed in this histogram
shows the significant conservation of the binding phenotype between S. cerevisiae and
S. paradoxus. (b) Shows the same type of 2D histogram for binding free-energy but esti-
mated between S. cerevisiae and its neutrally evolved counterpart for a divergence time
equal to the evolutionary distance between S. cerevisiae and S. paradoxus. The fuzzy pat-
tern in comparison to (a) suggests that the neutral dynamics of the low-affinity flanking
regions cannot explain the conservation of the binding phenotype across species. (c) The
black bars show the distribution of free energy differences between the homologous regula-
tory regions of S. cerevisiae and S. paradoxus. The blue histogram on the back shows the
expected difference from neutral dynamics of the low-affinity regions. The red histogram
shows the free-energy difference between S. cerevisiae and the simulated evolution under
minimal stabilizing fitness landscape f(G) = −ω (G−G?)2 inferred from phenotypic poly-
morphism in Section. 3.4. The in-silico divergence time corresponds to the evolutionary
distance between S. cerevisiae and S. paradoxus . The inferred quadratic fitness landscape
can explain the conservation of the binding phenotype across species. (d) similar to (c)
but for a longer evolutionary distance between S. cerevisiae and S. bayanus.
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pairs, S. cerevisiae -S. paradoxus and S. cerevisiae-S. bayanus; see Fig. 3.6(c) and

Fig. 3.6(d). In both cases, the divergence is far less than the neutral expectations.

3.5.2 Compensatory evolution in regulatory complexes

The high rate of site turnover across species gives us a chance to study the compen-

satory evolution of the weak site sequences quantitatively. As the divergence time

between organisms increases, their sequence similarity decays. Phenotypic conserva-

tion between homologous regulatory complexes in diverged species can be explained in

two ways: (i) the constituent loci are all conserved during evolution, i.e. no binding site

turnover, or (ii) gain/loss of site sequences is compensated by another loss/gain in the

regulatory complex. This analysis requires more knowledge of the functional contribu-

tions of individual loci to the overall binding phenotype. For this purpose, we use the

marginal occupancy of each locus “oi” introduced in eq. 3.4. If the constituent loci of

the trait are all conserved, their marginal occupancy also remains unchanged between

the diverged species, δoi ∼ 0 (scenario (i)). On the other hand, if the phenotype is con-

served only by compensation, a change in the occupancy at one position δoi is fixed by

another change δoj with opposite sign, δoiδoj < 0 (scenario (ii)). This way the overall

occupancy profile can still remain conserved. Phenotypic evolution under stabilizing

selection can feature both of these scenarios depending on the evolutionary divergence

time between organisms. Analysis of short-time divergence (e.g., intra-population com-

parisons) mostly resemble the first description whereas, the long-term divergence shows

evidence for compensatory functional turnovers i.e., the second scenario. On the other

hand, the neutral counterpart of the long-term divergence results in independent po-

sitional changes with no compensatory effect between mutations to retain the overall

function.

With this background, we introduce the following statistic to quantify compensatory

evolutionary changes in a regulatory region. The extensive occupancy variable O =
∑`

i=1 oi is the sum of individual position occupancies in a regulatory complex of length

`. The overall occupancy difference between two orthologous sequence regions of two

species is a sum of contributions from individual positional differences, ∆O =
∑

i o
a
i −obi

where the upper index denotes the species “a” or “b” . The choice of the reference

genome is arbitrary. We compare the overall occupancy divergence 〈∆O2〉 for the
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homologous regulatory complexes with the additive divergence,
∑

i〈δo2
i 〉. The overall

averaged divergence reads,

〈(∆O)2〉 = 〈
∑̀

i=1

δo2
i 〉+

∑

i 6=j
〈δoi δoj〉 (3.23)

〈.〉 refers to cross-loci averages as used in previous sections. It is clear that if posi-

tional changes in a regulatory complex are independent, the two divergence measures

would be equal, 〈(∆O)2〉 =
∑

i〈δo2
i 〉 . We primarily fix 〈δoi〉 = 0 for all positions by

subtracting the single species positional average occupancy 〈oai 〉 from individual occu-

pancy values. The difference between the additive and the overall occupancy divergence

shows the level of epistasis and compensatory evolution that occurs between the two

species.

—Divergence of regulatory complexes show evidence for compensatory evolution. We

computed the additive and overall occupancy divergence between pairs of species S.

cerevisiae-S. paradoxus and S. cerevisiae-S. bayanus. Fig. 3.7(a) shows that the over-

all occupancy divergence 〈∆O2〉 is significantly smaller than the additive divergence
∑

i〈δo2
i 〉 between the two species pairs. This implies that mutations are often com-

pensatory and despite the substitutions between the two species, stabilizing selection

maintains the overall binding affinity of the regulatory complex. The difference be-

tween these two divergence measures increases with the evolutionary distance between

the two species and is more pronounced in the large-distance limit. We also compared

the occupancy difference across loci and applied the same type of statistics on those

estimates (triangles in Fig. 3.7(a)).This can be thought as an approximate measure for

an infinite-time divergence of the regulatory traits that have to maintain their func-

tionality during evolution.

—Bindings site turnover and stabilizing evolution of the binding phenotype can be re-

produced by the minimal epistatic fitness landscape in Section. 3.4. The observed com-

pensatory evolution in Fig. 3.7(a) cannot be explain by means of linear fitness land-

scape. The fitness landscape that we inferred from the phenotypic polymorphism in

Section. 3.4 however, allows epistatic dynamics during trait evolution. We evaluate

the occupancy statistics for the set of simulated sequence pairs that have evolved in
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Figure 3.7: Compensatory evolution of the Rap 1 regulatory complexes. (a)
Overall occupancy divergence 〈(∆O)2〉 (red filled diamonds) versus the additive divergence∑
i〈δo2

i 〉 (blue filled squares) estimated over 411 homologous Rap1 regulatory complexes
between pairs of yeast species, S. cerevisiae- S. paradoxus and S. cerevisia-S. bayanus. The
x-axis shows the divergence time between S. cerevisiae and each of the species estimated
from nucleotide substitutions in each pair. The long-time data shown by filled triangles are
estimated from occupancy divergence between different regulatory complexes. The open
circles show the same statistics for simulation data of evolution in a minimal epistatic fitness
landscape f(G) = −ω(G−G?)2 with 2ωN = −0.38 inferred from phenotypic polymorphism
in the S. paradoxus population; see Section. 3.4. The full curves are exponential fits to these
data points. The significant agreement between the simulations and the actual divergence
data proves the strength of our fitness inference method discussed in Section. 3.4. (b)
Binding occupancy of two sets of homologous regulatory complexes with length of 100 bp
in 3 yeast species, S. cerevisiae, S. paradoxus and S. bayanus. Each column spans the
genomic sequence stretch in which the middle site at position 50 is a strong binding site.
The color code shows the relative occupancy (light to dark as high to low). The low affinity
sites around the strong site are not all conserved across the species. We can see patterns
of site turnover with compensatory effects.

an epistatic fitness landscape with a rescaled width, 2ωN = 0.38. Fig. 3.7(a) shows

perfect agreement between the time-dependence of the occupancy-statistics predicted

by the quadratic fitness model in Section. 3.4 and the actual population divergence.

This result further confirms the power of our fitness inference method to predict the

long-term evolutionary divergence.

In summary, we show that the joint binding phenotype of the regulatory complexes

in yeast is under substantial stabilizing selection and is well conserved within S. para-

doxus populations and between three species of Saccharomyces. Binding affinity of

individual sites vary considerably across yeast species however, their collective function

is conserved. We infer a fitness landscape depending on this phenotype based on the
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polymorphism data in S. paradoxus. Evolution in this minimal epistatic fitness land-

scape explains the compensatory changes between sites of the regulatory complexes.

3.6 Discussion & Outlook

Evolution of regulatory site complexes

Site clusters in eukaryotes exhibit a different kind of selection pressure during evolution

compared to single functional binding sites in prokaryotes. Our thermodynamic frame-

work characterizes the binding affinity of a regulatory region with multiple interacting

transcription factor binding sites. We extend the biophysical fitness estimates for sin-

gle binding site evolution towards the evolution of multiple interacting sites, which

involves the transition from single particle to many particle statistics. We infer a fit-

ness landscape depending on this phenotype using yeast whole-genome polymorphism

data of Rap1 regulatory complexes and a new method of quantitative trait analysis.

The stationary state of the population is set by mutation-selection-drift balance. These

three evolutionary forces influence the binding phenotype on similar time-scales. This

analysis goes beyond previous work, which often did not consider regimes where all of

three forces are prominent. For example, the quasi-species model disregards genetic

drift, and hence is a mutation-selection approximation, or the conventional analysis

of the weak selection regime in which fitness differences are small. Incorporating all

three evolutionary forces in our analysis, we showed that the joint binding phenotype

of these regulatory structures is under substantial stabilizing selection, and is well

conserved within Saccharomyces paradoxus populations and between three species of

Saccharomyces. At the same time, individual low-affinity sites evolve near-neutrally

and show considerable affinity variation even within one population. Therefore, func-

tionality of and selection on regulatory complexes emerge from the entire cloud of sites,

but cannot be pinned down to individual sites.

Modularity and pleiotropy in regulatory complexes

Modularity of a trait, which refers to the connectedness of its constituent elements, is

an important aspect of biological organization. In this chapter we studied one type of

these functional modules i.e., groups of binding sites which are connected by a common

functional regulatory output. We viewed this modularity from two angles. First, we
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characterized the modular binding complexes in light of the biophysical properties of

cooperative interactions between their constituent binding sites. We then discussed

modularity from an evolutionary perspective. Genetic load and accumulation of dele-

terious mutations make the evolutionary dynamics of linked genomes less efficient. It

is essential for organizations such as regulatory regions to maintain their functional ef-

ficacy during evolution. The modular structure of these regions brings an opportunity

for compensatory evolution by applying only a small selective pressure on individual

elements of the module and yet maintaining the overall function. We showed strong

evidence for this type of evolutionary dynamics in regulatory complexes.

The fitness effects of genomic mutations in modular regulatory complexes, at least

for binding to the transcription factor Rap1, is very small. Rap1 is a highly pleiotropic

transcription factor, and regulates a broad range of essential genes in the yeast genome.

The regulatory complexes of these genes are all tuned to interact efficiently with the

same transcription factor. On the other hand, they confer a high level of sequence

flexibility as a result of their modular structures, so that they can remain functional

even in challenging environmental conditions.

Combining these two views, we can ask whether genomic modularity and functional

pleiotropy are two features which can stably coexist through interactions. For one,

complex organisms have developed modular structures, and at the same time, recruit

more restricted pleiotropic agents, such as transcription factors, which interact with a

subset of the organism’s gene network. This will bring further understanding to the

emergence of complexity during evolution.

Adaptive dynamics of regulatory complexes

In this chapter, we characterized the evolution of regulatory complexes under equilib-

rium conditions. We infer a time-independent fitness landscape, which can best describe

the phenotypic composition of a population at regulatory loci. However, the possibil-

ity of a genotype-phenotype map allows us to address the adaptive dynamics of these

complex structures during evolution. We can characterize the cost/benefit of these

many-body structures in response to environmental changes. On one hand, genomic

linkage in these regions reduces the efficacy of natural selection and limits the speed of

adaptation in the population. On the other hand, the standing phenotypic variation in

the population, which is set by the mutation-selection-drift balance, has more potential
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for adaptive dynamics. Quantifying these relations is necessary for understanding the

regulatory “grammar” on larger scales.

3.7 Materials and methods

Rap1 binding complexes. Rap1 transcription factor is the regulator of Telomer,

Glycolysis and Ribosomal protein genes in yeast species. The transcription factor Rap1

binds as dimer (König et al., 1996) and thus makes a suitable case for our study on

cooperative regulatory interactions. The frequent occurrence of Rap1 cognate sites in

the genome is also an advantage for our statistical analysis. There is direct evidence

that Rap1 is involved in the regulation of 957 genes (Abdulrehman and Monteiro, 2011;

Monteiro et al., 2008; Teixeira and et. al., 2006).

The functional sequence regions are chosen based on the conservation of their strong

Rap1 binding site: the strong site should be present in the homologous regions of the

three yeast species . The species genomic alignments are extracted from the SGD

genome project (Liti and et. al., 2009). We further verified the predicted functional

regions in the subset of ribosomal protein genes for which experimental measurements

are available (Lavoie et al., 2010). The Rap1 regulatory complexes that we study here

are regions with one strong binding site and a flanking sequence with a length of 100

base pairs (50 bp on each side of the strong site). The flanking sequence does not

contain any strong binding site for Rap1 or any other transcription factor. The low

affinity sites in this region can be functional in cooperation with the strong Rap1 binding

sequence; see Fig. 3.1(b). These criteria retain 411 of the Rap1 regulatory complexes

for our analysis.

Rap1 binding affinity. We infer the sequence-dependent binding characteristics of

the Rap1 transcription factor, from in vivo CHIP-seq measurements reported by Swis-

sRegulon database (Pachkov et al., 2007). The corresponding binding profile is shown

as a frequency logo in Fig. 3.8(a).

Inference of the energy parameters for Rap1 transcription factor. Scanning

the intergenic sequence of S. cerevisiae with the Rap1 position weight matrix produces

the histogram of energy counts shown in Fig. 3.8(b). For E > −5 (non-specific bind-

ing), this distribution is close to Gaussian and can be fit by the energy distribution of
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Figure 3.8: Rap1 binding site characteristics. (a) Sequence logo of the transcription
factor Rap1 evaluated from the in vivo CHIP-seq measurements reported in the SwissReg-
ulon database (Pachkov et al., 2007). (b) Histogram of the site energies as predicted by
the Rap1 energy matrix across the intergenic regions of the S. cerevisiae genome (dots).
The expected energy distribution for the neutral sequence estimated from the background
Markov model has a Gaussian form shown by dashed line. The over-representation of the
low energy site sequences in e, S. cerevisiae, E < −5 is related to the functional Rap1
binding sites in the genome. The strong functional binding sites are chosen from the tail
of the distribution, E < −7 which accounts for 0.05% of the sites in the genome.

uncorrelated random site sequences with single-nucleotide frequencies P0(a) that are

chosen from the intergenic sequence of S. cerevisiae. The chemical potential parameter

in eq. (3.2) is inferred to be equal to the energy threshold for specific bindings, ν = −7.

This is a log-likelihood estimate for ν which best fits the single-site energy model that

we use in our analysis; see e.g.,(Mustonen et al., 2008; Mustonen and Lässig, 2005).

The strong sites have energy values E < −7 which accounts for 0.05% of the sites in

the genome. The energy values are measured in arbitrary units set by the information

content of individual positions in the PWM; biophysical measurements are required to

determine the absolute binding energy values. In our analysis, we set the strength of

cooperativity to ω = −4 which is in the range for the specific binding energy of Rap1

transcription factor. Our conclusions are not sensitive to the exact value of ω. This is

a minimal biophysical model for interaction of multiple binding sites.

Forward simulations for the evolutionary dynamics of regulatory complexes.

The numerical methods used to simulate the evolutionary dynamics is based on the

Wright-Fisher model of asexually reproducing population with non-overlapping gener-
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ations and fixed population size N . Individuals are represented by nucleotide sequences

a(a1 . . . a`) of length ` = 100 bp. The genotype-phenotype map G(a) is based on the

binding affinity model described in Section. 3.2. Each generation is stochastically sam-

pled from the previous generation, using a multinomial sampling process, in which the

probability pi of picking individual i is given by, pi = eF (Gi)−F with mean population

fitness, F = 1
N

∑
i F (Gi). We initialize the program with a monomorphic population

where all genotypes are identical to the original promoter. In each run of the simu-

lation, we let the population equilibrate before initiating any measurement to ensure

that the population is in the stationary state. In each generation, mutations change

the genotypes with rate µ per nucleotide.
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4

Evolution of polygenic traits

4.1 Introduction

Studies of polygenic traits such as organism’s height, eye color, drug resistance, etc.

have been traditionally pursued in the context of quantitative genetics (Falconer, 1989;

Lynch and Walsh, 1998). While quantitative genetics mainly focuses on a phenomeno-

logical description of phenotypic distributions (Fisher, 1930; Hartl and Taubes, 1996;

Rice, 1990), population genetics is concerned with the genetic composition of a popula-

tion in response to the primary evolutionary forces: natural selection, mutation, genetic

drift, recombination, etc. (Kimura, 1968; McDonald and Kreitman, 1991; Smith, 1970);

see discussion in Chapter. 1. However, recent advancements in identifying molecular

components of phenotypic traits, make the need to combine these two fields more ev-

ident; some examples include, (Bedford and Hartl, 2009; Berg et al., 2004; Fernández

and Lynch, 2011; Ludwig et al., 1998; Mustonen et al., 2008; Poelwijk et al., 2007;

Weinreich et al., 2006).

As the term “polygenic” suggests, a large number of loci contribute to these con-

tinuous traits, and it is their collective phenotype that effectively responds to any

selection pressure during evolution. Efforts have been devoted to draw analogies be-

tween quantitative genetics and the concepts of statistical physics. For one, both fields

are concerned with analysis of many-particle systems to quantify their collective behav-

ior without following all the microscopic details. Most of the studies in this direction

characterize traits that are comprised of independently evolving loci: either recombi-

nation is very rapid in the organism that assures an efficient loci reassortment, or the
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loci are encoded far apart in the genome or may be on different chromosomes and are

not physically linked together (de Vladar and Barton, 2011b; Kirkpatrick et al., 2002).

This condition, known as “linkage-equilibrium”, certainly is of interest from a theoret-

ical point of view because of its consequent simplifications in analytical descriptions.

The framework to study the evolutionary dynamics of each of these independent loci

resembles that of single-particle statistics with relatively tractable microscopic details.

Analogies to statistical physics then provide a quantitative description of the collective

dynamics of these independent particles and characterize the role of natural selection

on their organization (Barton and Turelli, 1989; Barton and Coe, 2009; de Vladar and

Barton, 2011a; Fisher, 1930; Kirkpatrick et al., 2002; Neher and Shraiman, 2011; Sella

and Hirsch, 2005).

However, biological systems are not necessarily tuned to simplify our theoretical

understanding. As a matter of fact, genomic traits do not often satisfy the required

conditions for linkage-equilibrium. The evolutionary dynamics of linked genomes, e.g.,

in asexual populations of microbes and viruses, involves a lot of genomic complica-

tions: many mutations appear together just because of this physical constraint and

natural selection cannot treat them separately and distinguish between their individ-

ual fates (Desai, 2007; Desai and Fisher, 2007; Gerrish and Lenski, 1998; Park and

Krug, 2007; Rouzine et al., 2008; Schiffels et al., 2011). In sexual populations, finite

recombination rate sets the correlation length between the genomic positions. This

way, linkage is not only the property of asexual organisms but clusters of nucleotides

in sexual genomes with low rate of recombination, experience its evolutionary conse-

quences (Comeron and M, 2002).

The study of these quantitative traits, which are encoded by multiple linked loci,

would correspond to the field of many-particle statistics that follows complicated and

chaotic dynamics at the microscopic level (Baxter and Blythe, 2007; Mustonen and

Lässig, 2010). Thermodynamics has thought us that despite such microscopic compli-

cations, the macroscopic properties of a system can still follow simple rules. In this

chapter, we will approach this problem from a macroscopic point of view. We introduce

a coarse-grained description of a population by mapping its individual-based genomic

components to population-based phenotype statistics. This macroscopic description

proves to be very essential in eliminating the small-scale microscopic complications, yet

it is informative enough to explain standing variation in populations. The large number
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of contributing loci in a quantitative trait allows us to explain linked genomic varia-

tions by means of thermodynamics analogies. We show that despite the existence of

linkage-disquilibrium on a microscopic level, intra-population macroscopic observables

can still be described within the framework of an equilibrium statistical physics. We

can infer the shape of the fitness landscape on which the evolutionary dynamics has

been directed by quantifying the deviation of phenotype statistics from the neutral ex-

pectations. Our theory is most applicable at the current state of sequencing techniques

with an ease and feasibility of acquiring large scale genomic samples from populations;

see Chapter. 3 for application of this theory. The macroscopic description of the linked

genome is summarized in Section. 4.4.

4.2 Evolution of genotype, allele and phenotype distribu-

tion

We start our analysis with a complete picture of the population evolution which tracks

the frequency changes of all the genotypes in the population through time. Although

this picture captures the full population information, it proves to be rather detailed

and thus an adequate number of samples from the population can hardly be provided

for this model. One of the most common approaches to overcome this problem is

to follow the marginal allele frequencies in the population instead of the complete

genotype compositions. We will then use the allelic description of the genomic system

to build a phenotype-based evolutionary theory that characterizes the macroscopic trait

observables of a population both for free-recombining and for linked genomes.

4.2.1 Stochastic evolution of genotypes

We consider the evolution of a population with k possible genotypes aα (α = 1, . . . , k),

in which each genotype is a sequence a = (a1, . . . , a`) of length ` with letters ai =

A,C,G, T . This dynamics is defined on the space of genotype frequencies xα with the

constraints xα ≥ 0 (α = 1, . . . , k) and
∑k

α=1 x
α = 1, which is a (k − 1)dimensional

simplex denoted by Σk−1. Here we use the set of k−1 linearly independent frequencies

x = (x1, . . . , xk−1) as coordinate system on Σk−1 (however, most of the equations below

do not depend on the choice of any particular coordinate system). Unless otherwise
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specified, coordinate indices α, β, . . . take the values 1, . . . , k − 1, and we use the con-

vention that if the same coordinate appears in a product as upper and lower index, it

is summed over, e.g., sαx
α ≡∑k−1

α=1 sαx
α. The shorthand ∂α ≡ ∂/∂xα denotes partial

derivatives with respect to these coordinates.

Stochastic evolution of finite populations is described by a time-dependent prob-

ability distribution of genotype frequencies, P (x, t). The evolution of P (x, t) can be

described by a Kimura-Ohta evolution equation (generalized diffusion equation) of the

form (Kimura and Ohta, 1969),

∂tP (x, t) = ∂α

[
1

2N
∂βg

αβ(x)− vα(x, t)

]
P (x, t) (4.1)

Here, N is the effective population size, gαβ are response coefficients, and vα(x, t)

are the total rates of frequency change due to selection sα(x, t), mutations mα(x, t),

and recombination ρα(x, t),

vα(x, t) = sα(x, t) +mα(x, t) + ρα(x, t) (4.2)

The diffusion equation eq. (4.1) expresses the temporal change of P (x, t) as the

divergence of a probability current, ∂P (x, t) = −∇ ·JP (x, t). It captures both changes

due to the stochastic sampling noise during the reproduction of a finite size discrete

population (i.e., genetic drift) and the deterministic changes cased by the forces that

act on larger time scales than a generation, (i.e., mutation, selection and recombina-

tion).

Selection and fitness landscape for genotypes. Selection is given by genotype

fitness values fα(x, t) (reproductive success), which determine the deterministic change

of genotype frequencies in the absence of mutations and genetic drift,

1

xα
dxα

dt
= fα(x, t)−

k∑

α=1

xαfα(x, t), (4.3)

for α = 1, . . . , k. The second term on the right hand side ensures conservation of

the constraint
∑k

α=1 x
α(t) = 1. In terms of the linearly independent frequencies x =
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(x1, . . . , xk−1), these evolution equations take the form (Mustonen and Lässig, 2010),

dxα

dt
= sα(x, t) ≡ gαβ(x)sβ(x, t) (4.4)

with selection coefficients,

sβ(x, t) = fβ(x, t)− fk(x, t) (4.5)

and response coefficients,

gαβ(x) =

{
−xαxβ if α 6= β
xα(1− xα) if α = β.

(4.6)

The inverse of this matrix, gαβ = (gαβ)−1, plays the role of a metric on Σk−1. In writing

the continuum evolution equations (4.4), it is assumed that the selection coefficients are

small on the time scale of a generation and have temporal correlations over much larger

times than a generation. By eq. (4.5), the selection coefficient sα can be expressed as

partial change of the mean population fitness in response to a change in the frequency

xα at constant genotype fitness values,

sα(x, t) =


 ∂

∂xα

k∑

β=1

xβfβ(y, t)



y=x

. (4.7)

Evolutionary equilibrium can be reached if the selection coefficients are time-independent

and can be expressed as the gradient of a scalar fitness landscape,

sα(x) = ∂αF (x). (4.8)

In general, we have to distinguish mean population fitness and fitness landscape: the

former governs the overall growth rate of population size, the latter depends only on

growth rate differences between genotypes according to eq. (4.5). Directional selection

with arbitrary epistasis is given by a linear landscape, F (x) = sβx
β, whereas a nonlin-

ear landscape describes frequency-dependent selection. Epistatic interactions between

loci introduces a dependency of the selection coefficient of changes at each locus on

the existing alleles of other loci (background sequence). We have seen such effects in

the evolution of the transcription factor binding sites discussed in Chapter. 1 (Berg
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et al., 2004; Mustonen et al., 2008; Mustonen and Lässig, 2005) and the evolution of

regulatory complexes in Chapter. 3.

Mutations and recombination. In the absence of selection and genetic drift, the

frequency change due to mutations has the form,

dxα

dt
= mα(x) =

k∑

β=1

µαβx
β −

( k∑

β=1

µβα
)
xα (4.9)

given by the mutation rates µβα ≡ µ(aα → aβ) between genotypes (α, β = 1, . . . , k),

which we assume to be time-independent over the interval of observation. We can

rewrite the ratemα(x) in terms of the linearly independent frequencies x = (x1, . . . , xk−1),

mα(x) = µ̂αβx
β + µαk (4.10)

with

µ̂αβ =

{
µαβ − µαk (α 6= β)

−∑k
γ=1 µ

γ
α − µαk (α = β).

(4.11)

The “covariant” rates mα(x) = gαβm
β(x) are defined in analogy to (4.4).

We assume the evolutionary process is in the low mutation regime µN � 1 (where

N is the effective population size) and the substitution rates uβα satisfy the detailed

balance conditions,

uβα
uαβ

=
pβ0
pα0

(4.12)

where pα0 is the neutral probability distribution for the genotype aα (α = 1, . . . , k).

These conditions, which are fulfilled in all standard models of nucleotide mutation

rates, imply that the neutral substitution dynamics in the discrete space of genotypes

a1, . . . ,ak has an equilibrium probability distribution pα0 . It is then straightforward to

show that the rates mα(x) are asymptotically of gradient form,

mα(x) = ∂αM(x) +O(µ2NL). (4.13)

The gradient property is tied to the existence of an evolutionary equilibrium under
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mutations and genetic drift. The equilibrium frequency distribution P0(x) turns out to

be simply related to the “mutation potential” M(x). Deviations from the form (4.13)

arise only from multiple simultaneous mutations and are negligible for compact genomic

units (µNL� 1) such as transcription factor binding sites.

If the detailed balance conditions (4.12) are replaced by the more restrictive condi-

tions µβα = µβ, the rates mα are of exact gradient form for arbitrary values of µN and

the mutation potential is known exactly (Baxter and Blythe, 2007)

M(x) =

k∑

α=1

µα log(xα). (4.14)

In sexually reproducing populations, two genotypes α and β can recombine and

produce a new genotype γ. The consequent reshuffling of the polymorphic loci in the

population makes the exploration of the genotypic space more effective. The genotype

frequency changes due to recombination are described by additional terms in eq. (4.9).

The effect of finite recombination on evolutionary dynamics of multi-locus traits has

been discussed by (Barton and Otto, 2005; Neher and Shraiman, 2009, 2011; Rouzine,

2010). Despite the significant adaptive role of recombination, we will only consider

the two limits of zero and infinite recombination in this chapter. Further extension to

include a finite recombination rate is certainly crucial (Neher and Shraiman, 2011).

4.2.2 Stochastic evolution of alleles

Genotype space for multiple genomic loci is very high-dimensional (4`-D for the system

described above) and always under-sampled. However, appropriate marginal distribu-

tions and averages of P (x, t) (such as allele frequencies at single loci) can be compared

with observations. The genotype frequencies x can be projected onto marginal distri-

butions at individual genomic loci, pairs of loci, etc.. These marginal frequencies can

be defined by the nucleotide identity variables,

εai ≡ δ(ai, a) (4.15)

where δ(a, b) is a discrete delta function which takes value 1 for the identity a = b

and 0, otherwise. The identity variable εai then takes value 1 when the letter at position
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i of the sequence is a and 0, otherwise. The expectation values and correlation functions

within a population (denoted by overbars) then follow,

1. Allele frequencies at individual loci:

yai ≡ εai =
∑

α

δ(aα,i, a)xα. (4.16)

As before, xα is the frequency of genotype aα in the population. With the nor-

malization constraints
∑4

a=1 y
a
i = 1 (i = 1, . . . , `), the space of allele frequencies

has dimension 3`. We use the shorthand y for the set of allele frequencies at all

genomic loci,

y = ((y1
1, . . . , y

4
1), . . . , (y1

` , . . . , y
4
` )). (4.17)

2. Allele variation at individual loci:

gabi = (εai − yai )(εbi − ybi ) = yai δ(a, b)− yai ybi (4.18)

The matrix gi determines the allele diversity

πi ≡ Tr gi =
∑

a

yai (1− yai ). (4.19)

3. Haplotype frequencies for pairs of loci:

yabij = εai ε
b
j =

∑

α

δ(aα,i, a)δ(aα,j , b)x
α (i 6= j) (4.20)

and connected frequency correlations (linkage disequilibrium)

cabij ≡ (εai − yai )(εbj − ybj) = yabij − yai ybj (i 6= j). (4.21)

The projection from genotype to allele frequencies involves no loss of information

if and only if the genotypes in the population are at linkage equilibrium, i.e., if the

frequency x of each sequence a is the product of the frequencies of its alleles,

x = x̂(y) =
∏̀

i=1

yaii (4.22)
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We refer to this case as the limit of free recombination; note that if the number of poly-

morphic loci is large, the factorization (4.22) can only hold approximately, because not

all genotypes can be sampled in a finite population. The allele frequency distribution

P (y, t) then follows an autonomous evolution equation,

∂tP (y, t) =
∑̀

i=1

∂

∂yai

[
1

2N

∂

∂ybi
gab(yi)− vai (y, t)

]
P (y, t) (4.23)

where gab(yi) are allele response coefficients and vai (y, t) are deterministic rates of the

allele frequency change at locus i. This rate involves the projection of selection onto

individual loci and the contribution of mutations,

vai (y, t) = sai (y, t) +
∑̀

i=1

ma
i (yi) (4.24)

4.2.3 Stochastic evolution of phenotypic traits

Polygenic traits can in general be any arbitrary nonlinear function of their comprising

loci. In the following theoretical analysis, we study the simple case of additive phe-

notype φ with ` constitutive nucleotide loci. We are considering a low-mutation rate

regime which is valid for most biological systems. Therefore, it is justified to assume

that the polymorphic genomic positions carry not more than two types of nucleotides

in the population. Thus, the 4-state nucleotide composition at each loci ai = A,C,G, T

can be reduced to a 2-state model. Using the nucleotide identity variable in eq. (4.15),

we can assign the binary states {0, 1} to the coexisting nucleotides at position i in the

population. We set our choice such that the a-allele associated with εai = 1 contributes

by the amount γi and the other allele makes zero contribution to the trait. The resulted

additive phenotype is,

φ(a) =
∑̀

i=1

γiεi (4.25)

Further nonlinearities can in general be added to this model in the form of a Fourier
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4. EVOLUTION OF POLYGENIC TRAITS

expansion,

φ(a) =
∑̀

i=1

γiεi +
∑

i 6=j
γijεiεj + . . . (4.26)

Even in the regime of low-mutation rates µN � 1, the large number of compris-

ing loci of a trait (` � 1) generates a broad distribution of trait values among the

individuals of a population (because µN` ∼ 1). Consequently, the populations should

be pictured as clouds of haplotypes rather than point-like monomorphic objects re-

sponding to the underlying evolutionary forces. Ultimately, we would be interested in

understanding the evolutionary dynamics of the trait distribution in populations. Here,

we characterize the intra-population trait distribution by its moments.

The population mean phenotype Γ ≡ φ depends only on the allele frequencies at

individual loci,

Γ(yi) =
∑̀

i=1

γi εi =
∑̀

i=1

γiyi (4.27)

where yi is chosen to be the frequency of allele “1” at position “i”. The intra-

population phenotype diversity, ∆ ≡ φ2 − φ 2 depends on the allele variation of indi-

vidual loci and connected correlations for pairs of loci (see eq. (4.19) and eq. (4.21)),

∆(yi, yij) =
∑̀

i,j=1

γiγj(εiεj − εi εj)

=
∑

i

γ2
i πi +

∑

i 6=j
γiγjcij (4.28)

where πi = yi(1 − yi) and cij = yij − yiyj are single locus allele variation and

connected frequency correlation.

For traits with large number of contributing loci, we expect a Gaussian distribution

of phenotypes in a population which is fully characterized by its first two moments

(Central limit theorem). In our analysis, we will not explicitly use a Gaussian approx-

imation for the trait distribution and leave our theory to be applicable beyond those

limits. However, we will confine our analysis to the first two moments of the phenotype

distribution Γ, ∆ as independent macroscopic population observables; see Discussion in
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4.2 Evolution of genotype, allele and phenotype distribution

Section. 4.4 for further generalization of this scheme. For now, we also assume γi = 1.

The general case is not much different.

Distribution of trait statistics P (Γ,∆, t) then follows the autonomous evolution

dynamics,

∂tP (Γ,∆, t) = ∂α

[
1

2N
∂βg

αβ(Γ,∆)− vα(Γ,∆, t)

]
P (Γ,∆, t) (4.29)

We use Einstein summation convention for the distribution parameters Γ and ∆

indicated by Greek indices. In the following sections, we compute the response coeffi-

cients gαβ and the deterministic evolutionary forces vα = sα + mα for the projection

from the marginal allele frequencies onto the Γ−∆ coordinate. We will characterize the

dynamics of these macroscopic observables for the two regimes of free-recombination

and asexual evolution (no recombination). The summary of these results is presented

in Section. 4.4 and in Table. 4.1.

4.2.4 Phenotypic equilibrium for free-recombining loci

Classical quantitative Genetics is based on the assumption that genotypes are random

re-assortments of alleles, each occurring with a certain frequency (de Vladar and Bar-

ton, 2011b; Falconer, 1989; Kirkpatrick et al., 2002; Lande, 1976; Lynch and Walsh,

1998). This absence of correlations between alleles at different loci (cij = 0) is termed

“linkage equilibrium”, implying that recombination has relaxed correlations between

loci (Barton and Turelli, 1989; Barton and Coe, 2009; de Vladar and Barton, 2011a;

Fisher, 1930; Kirkpatrick et al., 2002; Neher and Shraiman, 2011). The mean trait of

the population remains as Γ =
∑
yi but the trait diversity reduces to the additive part

of the variance, ∆ =
∑
yi(1− yi). In the long-run, allele frequencies at each loci reach

the equilibrium state of the form of the Kimura’s U-shape distribution (Kimura, 1962).

The full equilibrium distribution then factorizes between loci (see eq. (4.22)).

4.2.4.1 Neutral evolution of free-recombining loci

Genetic Drift. Random sampling in a discrete population of a finite size N introduces

a stochastic force during the reproductive process which is termed genetic drift. For a
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4. EVOLUTION OF POLYGENIC TRAITS

two-allele system (εi = 0, 1), this stochasticity is simply a Gaussian random variable

for sampling from the two subpopulations of the size N1
i and N0

i = N −N1
i ,

〈ξai 〉 = 0 , 〈ξai (t)ξbi (t
′)〉 = Na

i (t)δ(t− t′)δa,b (4.30)

where upper indices {a, b} denote the allele types {0, 1} and lower indices point to

genomic positions. In large populations, allele frequencies yi = N1
i /N can be treated as

continuous variables. We can then simply map the noise of the discrete variables ξai in

eq. (4.30) onto the continuous allele frequencies, χi(t) = (∂yi/∂N
0
i )ξ0

i + (∂yi/∂N
1
i )ξ1

i .

Assuming linkage-equilibrium, the statistics of the allele frequency noise χi(t) follows,

〈χi(t)〉 = 0 , 〈χi(t)χj(t′)〉 =
yi(1− yi)

N
δ(t− t′)δi,j (4.31)

We can now map the set of allele frequencies yi (i = 1 . . . `), to the macroscopic

observables Γ =
∑

i yi, and ∆ =
∑

i πi =
∑

i yi(1− yi). As a result, the noise terms in

the Γ−∆ coordinate follow,

χΓ(t) =
∑

i

χi(t) (4.32)

χ∆(t) =
∑

i

(1− 2yi) χi(t) =
∑

i

√
1− 4πi χi(t) (4.33)

with the following statistics,

〈χΓ(t)〉 = 0 , 〈χΓ(t)χΓ(t′)〉 =
1

N
∆(t)δ(t− t′) (4.34)

〈χ∆(t)〉 = 0 , 〈χ∆(t)χ∆(t′)〉 =
1

N

∑

i

(1− 4πi(t))πi(t) δ(t− t′) (4.35)

Mutations. At the level of an individual, mutations are stochastic events often coupled

to reproduction that change the alleles, 1→ 0 or vice versa. For simplicity, we assume

that mutations occur with a uniform rate µ at all nucleotide positions (i.e., µ1→0 =

µ0→1 = µ). In order to quantify the effect of mutations on the trait statistics Γ and ∆,

we first need to compute their effect on allele frequencies, yi. The change in the number
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4.2 Evolution of genotype, allele and phenotype distribution

of individuals with allele “1” (N1
i ) in the population due to mutations per generation

is,

δN1
i = µ(N0

i −N1
i ) = µ(N − 2N1

i ) (4.36)

We can now simply compute the temporal changes of the marginal frequency,

δyi = δN1
i /N due to mutations and genetic drift,

d

dt
yi = µ(1− 2yi) + χi (4.37)

noise term χi satisfies the conditions in eq. (4.31). In populations with perfect

allele re-assortment (free-recombination), marginal allele frequencies are sufficient to

characterize the macroscopic trait observables, Γ and ∆.

1. Trait average, Γ

Trait average of an additive phenotype in eq. (4.27) is a linear combination of

single-locus allele frequencies, Γ =
∑
yi. Therefore, the temporal change of the

intra-population trait average follows from eq. (4.34) and eq. (4.37),

dΓ(t)

dt
= −2µ(Γ(t)− `/2) + χΓ (4.38)

χΓ satisfies the conditions in eq. (4.34). From the stochastic Langevin equation

in eq. (4.38), we can derive a Fokker-Planck equation that characterizes the dy-

namics of the underlying probability distribution for the intra-population trait

average P0(Γ, t); see discussions on stochastic processes e.g., in (Gardiner, 2004).

∂

∂t
P0(Γ, t) =

1

2N

∂2

∂Γ2
∆(t)P0(Γ, t) + 2µ

∂

∂Γ
(Γ− `/2)P0(Γ, t) (4.39)

This is conceptually an important matter: The probability distribution P0(Γ, t)

in eq. (4.39), characterizes the likelihood of the intra-population trait average Γ

across different realizations of a population and should not be mistaken with the

trait distribution in single population, ρ(φ).
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4. EVOLUTION OF POLYGENIC TRAITS

We obtain the stationary solution of the marginal distribution P0(Γ; 〈∆〉) by using

the result of the following eq. (4.49) to integrate over the intra-population trait

diversity. We approximately use ∆ ≈ 〈∆〉 = µN`(1− 4µN); see Fig. (4.1).

P0(Γ; 〈∆〉) =
1√
π`/2

exp[
−2(Γ− `/2)2

`(1− 4µN)
] (4.40)

Cross-population mean and variance of the trait average Γ are,

〈Γ〉 = `/2 〈Γ2〉 − 〈Γ〉2 = `(1− 4µN)/4 (4.41)

2. Trait diversity, ∆

In a free-recombining genome, trait diversity is a linear combination of single

locus allele variation, ∆ =
∑
πi =

∑
yi(1 − yi). Due to the complicated noise

term in eq. (4.35), we first compute the statistic of the single locus diversity

∆i = πi and then apply the central limit theorem to characterize the equilibrium

distribution of the full trait diversity, ∆. The temporal change of the single-locus

allele diversity ∆i due to mutations and genetic drift is,

d∆i

dt
= µ(1− 4∆i)−

∆i

N
+ χ∆i (4.42)

with a Gaussian noise term χ∆i ,

〈χ∆i(t)〉 = 0 , 〈χ∆i(t)χ∆i(t
′)〉 =

∆i(1− 4∆i)

N
δ(t− t′) (4.43)

The term ∆i/N in eq. (4.43) appears due to the nonlinear dependency of the trait

diversity ∆i on marginal frequency yi; see e.g., the discussion on Ito Calculus in

Chapter. 4 of (Gardiner, 2004). The corresponding Fokker-Planck equation for

the cross-population distribution of the single-locus allele variation takes the form,

∂

∂t
p0(∆i, t) =

[
1

2N

∂2

∂∆2
i

∆i(1− 4∆i)−
∂

∂∆i
(µ(1− 4∆i)−∆i/N)

]
p0(∆i, t)

(4.44)

which yields an equilibrium distribution,
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Figure 4.1: Equilibrium distribution of free-recombining traits in neutrality.
(a) The analytical estimate for the marginal distribution of intra-population trait average
P0(Γ; 〈∆〉) (full line) vs. the numerical result for simulated evolution (open circles) of the
free-recombining traits; eq. (4.40). (b) Same comparison as in (a) for the trait diversity
observable ∆; eq. (4.48). The simulation parameters are chosen: N = 500, ` = 100 bp and
µN = 0.0125.

p0(∆i) =
1

Z∆i

∆−1+2µN
i√
1− 4∆i

(4.45)

Z∆i is the appropriate normalization factor,

Z∆i = 4−2µN√π Γ[2µN ]

Γ[1/2 + 2µN ]
(4.46)

Cross-population mean and variance of single-locus allele diversity are,

〈∆i〉 = µN(1− 4µN) + O((µN)3) 〈∆2
i 〉 − 〈∆i〉2 = µN/6 + O((µN)2) (4.47)

In free-recombining genomes, the intra-population diversity ∆ of a trait with large

number of loci (` � 1) has a Gaussian distribution (Central limit theorem); see

Fig. (4.1).

P0(∆; 〈Γ〉) =
1

Z∆
exp[
−3(∆− µN`)2

µN`
] (4.48)
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4. EVOLUTION OF POLYGENIC TRAITS

with the following cross-population statistics,

〈∆〉 = µN`(1− 4µN) + O((µN)3) , 〈∆2〉 − 〈∆〉2 =
µN`

6
+ O((µN)2) (4.49)

4.2.4.2 Evolution of the free-recombining loci under selection

We have reduced the high-dimensional space of multi-locus allele frequencies to a 2-

dimensional space of trait observables. In free-recombining genomes, allele frequencies

in a low-mutation regime (µN � 1) reach an approximate equilibrium for an arbitrary

number of loci. Clearly, the marginal stationary distributions of the macroscopic ob-

servables P0(Γ; 〈∆〉) and P0(∆; 〈Γ〉) also reach an equilibrium (de Vladar and Barton,

2011a). The evolutionary dynamics in a time-independent fitness landscape f(φ) of

a gradient-form will have a simple relation to its neutral counterpart (Mustonen and

Lässig, 2010),

Q(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉) exp[2NF (Γ; 〈∆〉)] (4.50)

Q(∆; 〈Γ〉) =
1

Z
P0(∆; 〈Γ〉) exp[2NF (∆; 〈Γ〉)] (4.51)

where Z is the appropriate normalization factor. The Boltzmann factor that relates

each of the two distributions is the rescaled mean population fitness 2NF (Γφ,∆φ)

projected on the corresponding plane in the Γ − ∆ coordinate. The mean fitness

(average growth rate) of a population with trait distribution ρ(φ) is,

F (Γ,∆) = f(φ) =

∫
dφ ρ(φ)f(φ) (4.52)

and the corresponding projections are obtained as, F (Γ; ∆) =
∫
d∆F (Γ,∆)Q(Γ,∆) ≈

F (Γ; ∆ = 〈∆〉) and similarly, F (∆; Γ = 〈Γ〉). This relation is a property of the Fokker-

Planck equation in equilibrium; see similar relation in eq. (1.12). In a well-behaved

fitness landscape f(φ), we can expand the fitness values around an arbitrary trait of

interest φ?,

f(φ)− f(φ?) = f ′(φ?) (φ− φ?) +
1

2
f ′′(φ?) (φ− φ?)2 + . . . (4.53)
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4.2 Evolution of genotype, allele and phenotype distribution

We will use eq. (4.53) to evaluate the mean population fitness in eq. (4.52) as a

function of the intra-population trait statistics Γ and ∆. In this way, the derivatives of

fitness function will be coupled to phenotype observables and hence become measurable

in the population.

In this section, we will analyze two types of fitness landscapes, linear and quadratic

landscapes. The first one is additive in loci, whereas the second one causes epistatic

interactions between the loci.

Linear fitness (Directional selection). Directional selection on a trait φ applies

as, flin(φ) = α φ with a non-zero slope α. The mean population fitness Flin(Γ) in this

landscape has the form; see eq. (4.52),

Flin(Γ; 〈∆〉) =

∫
dφ ρ(φ)flin(φ)

= α Γ (4.54)

The full distribution under selection takes the form,

Qlin(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉) e2NαΓ , Qlin(∆; 〈Γ〉) = P0(∆; 〈Γ〉) (4.55)

Z is the appropriate normalization factor. Linear fitness only affects the cross-

population mean of the trait average,

〈Γ〉s = 〈Γ〉0 + 2Nα
[
〈Γ2〉0 − 〈Γ〉20

]

= 〈Γ〉0 + αN` (1− 4µN)/2 (4.56)

〈·〉s refers to averages over the population ensemble that evolved under selection

pressure and 〈·〉0 denotes the averages over the neutral ensemble.

Quadratic fitness. This type of fitness landscape, fquad(φ) = ω(φ−φ?)2 has non-zero

slope and curvature and is the minimal fitness function that accommodates epistatic
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Figure 4.2: Equilibrium distribution of free-recombining traits under stabiliz-
ing selection. Quadratic selection, f(φ) = ω(φ− φ?)2 affects both intra-population trait
average Γ and trait diversity ∆. (a) The analytical estimate for the marginal distribution
of the trait mean Qf (Γ) under stabilizing selection (full line) eq. (4.58) and the neutral
expectation (dashed line) vs. the numerical result for simulated evolution in a quadratic
fitness landscape (filled circles) of the free-recombining traits. (b) Same comparison as in
(a) for the trait diversity Qf (∆) under stabilizing selection; eq. (4.59). The parameters are,
N = 200, µN = 0.0125 and ` = 100 bp with the rescaled fitness parameter, 2ωN = −0.2.
The fitness peak φ? is set to 0.7`. Quadratic fitness with negative curvature reduces the
trait diversity and stabilizes the trait values in the population.

evolutionary interactions between loci. The mean population fitness in this landscape

has the following dependencies,

Fquad(Γ,∆) =

∫
dφ ρ(φ)fquad(φ)

= ω(Γ− φ?)2 + ω ∆ (4.57)

The marginal distributions of the trait statistics under quadratic selection are,

Qquad(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉) exp[2Nω(Γ− φ?)2] (4.58)

Qquad(∆; 〈Γ〉) =
1

Z
P0(∆; 〈Γ〉) exp[2Nω∆] (4.59)

Z is the appropriate normalization factor. Evolution in a quadratic fitness landscape

modifies both distributions of trait average Γ and trait diversity ∆; see Fig. (4.2).

• Trait average (Γ0 → Γs)
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Figure 4.3: Effect of stabilizing selection on the statistics of free-recombining
traits. Dependency of (a) cross-population mean of the trait average 〈Γ〉, (b) cross-
population variance of the trait average (trait divergence) 〈Γ2〉 − 〈Γ〉2 and (c) cross-
population mean of the trait diversity 〈∆〉 on the strength of stabilizing selection 2ωN
in a quadratic fitness landscape. Stabilizing selection reduces the trait diversity in a pop-
ulation and the trait divergence across populations. Analytical estimates in eq. (4.60),
eq. (4.61) and, eq. (4.62) (solid lines) are in good agreement with simulation results for
evolution in a quadratic fitness landscape (full circles). Parameters are N = 200, ` = 100
and µN = 0.0125 and the fitness peak φ? = 0.7`.

〈Γ〉s = φ? − φ? − 〈Γ〉0
1− 4ωN

(
〈Γ2〉0 − 〈Γ〉20

)

=
`/2− ωN`φ?

1− ωN` (4.60)

〈Γ2〉s − 〈Γ〉2s =
〈Γ2〉0 − 〈Γ〉20

1− 4ωN
(
〈Γ2〉0 − 〈Γ〉20

)

=
`/4

1− ωN` (4.61)

Evolution in a quadratic fitness landscape with negative curvature ω < 0 (i.e.,

stabilizing selection), reduces the spread of the intra-population trait average

distribution.

• Trait diversity (∆0 → ∆s)

〈∆〉s = 〈∆〉0 + 2Nω[〈∆2〉0 − 〈∆〉20]

= µN`+ ωN µN`/3 + O((µN)2) (4.62)
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4. EVOLUTION OF POLYGENIC TRAITS

〈∆2〉s − 〈∆〉2s = 〈∆2〉0 − 〈∆〉20 (4.63)

Evolution under stabilizing selection reduces the average intra-population trait

diversity; see Fig. (4.3).

4.2.5 Phenotypic equilibrium of linked loci

In asexual reproduction, chromosomes resemble solid rods that carry the heritable infor-

mation in a single package. The mutations occurring at different positions of a chromo-

some are physically linked and unlike the free-recombining case, their fates are bound to

each other. This inevitable correlation which is termed “linkage-disequilibrium”, then

results in a less efficient role of natural selection and introduces significant constraints

throughout adaptation (Desai, 2007; Desai and Fisher, 2007; Gerrish and Lenski, 1998;

Park and Krug, 2007; Rouzine et al., 2008; Schiffels et al., 2011). Beneficial mutations

in the genome cannot be fixed without carrying the rest of the genomic package in-

cluding the coexisting deleterious mutations of other positions. Quantitative traits in

linked genomes are also affected by these long-range correlations between their con-

stituent loci. In this section, we address phenotypic evolution in asexual populations

within the macroscopic framework described in the previous part.

4.2.5.1 Neutral evolution of linked loci

Genetic Drift. Genetic drift is the noise in the genotype and allele numbers due to

the stochastic reproduction (or sampling) of the population at each generation. Unlike

the case of the free-recombining traits, linkage introduces correlations between the

sampling noise at different genomic positions. We denote the number of individuals in

a population that carry the haplotype pair (α, β) at genomic positions (i, j) by Nα,β
i,j .

The discrete sampling noise then has the following properties,

〈ξα,βi,j (t)〉 = 0

〈ξα,βi,j (t)ξν,γk,l (t′)〉 = [δα,ν δβ,γ δi,k δj,l + δα,γ δβ,ν δi,l δj,k]δ(t− t′)Nα,β
i,j

(4.64)
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The macroscopic observables Γ and ∆ can be expressed as functions of marginal

allele frequencies, yαi and haplotype frequencies of allele pairs, yαβij . As before, the lower

Latin indices indicate the genomic positions and the upper Greek indices indicate the

allele types,

yαβij =
Nαβ
ij∑

α,βN
αβ
ij

, yαi =

∑
j,β N

αβ
ij∑

k,α,β N
αβ
ik

(4.65)

We then use the following relations to project the discrete sampling noise ξαβij onto

the continuous frequency space,

χαβij =
∑

ν,γ

∂yαβij
∂Nνγ

ij

ξνγij , χαi =
∑

ν,γ,k

∂yαi
∂Nνγ

ik

ξνγik (4.66)

The sampling noise for the continuous frequency variables has the following prop-

erties (use of eq. (4.64), eq. (4.66)),

〈χαβij (t)〉 = 0

〈χαi (t)〉 = 0

〈χαβij (t)χα
′β′

i′j′ (t′)〉 =
1

N
[δi,i′δj,j′y

αβ
ij (δαα′δββ′ − yα

′β′

ij ) + δi,j′δji′y
αβ
ij (δβ,α′δα,β′ − yα

′β′

ji )]δ(t− t′)

〈χαi (t)χβj (t′)〉 =
1

N
[δi,jy

α
i (δαβ − yβi ) + (1− δi,j)(yαβij − yαi y

β
j )]δ(t− t′)

〈χαβij (t)χα
′
i′ (t′)〉 =

1

N
yαβij [δi,i′(δα,α′ − yα

′
i ) + δj,i′(δβ,α′ − yα

′
i )]δ(t− t′)

(4.67)

We can now similarly compute the noise terms for the independent macroscopic

trait variables, Γ(yi) =
∑

i yi and, ∆(yi, yij) =
∑

i yi(1 − yi) +
∑

i 6=j yij − yiyj . To

simplify our notation, we denote the marginal frequencies of allele “1” and allele pair

(1,1) by yi = y1
i and yij = y11

ij .
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4. EVOLUTION OF POLYGENIC TRAITS

χΓ =
∑

i

∂Γ

∂yi
χi

χ∆ =
∑

i

∂∆

∂yi
+
∑

i 6=j

∂∆

∂yij

(4.68)

which then results in,

〈χΓ(t)〉 = 0, 〈χΓ(t)χΓ(t′)〉 =
1

N
∆ δ(t− t′)

〈χ∆(t)〉 = 0, 〈χ∆(t)χ∆(t′)〉 ≈ 1

N
2∆2 δ(t− t′)

〈χΓ(t)χ∆(t′)〉 ≈ 0

(4.69)

The approximate closed form solutions in eq. (4.69) are truncated at two-point

correlations of the trait distribution ρ(φ).

Mutations. At the level of an individual, mutations are stochastic events often coupled

to reproduction and change the allele 1 → 0 or vice versa. As before, we assume that

mutations occur with a uniform rate µ at all nucleotide positions. The macroscopic

trait statistics Γ, ∆ in a linked genome are functions of both marginal allele frequencies

yi and haplotype frequencies of the allele pairs yij . Therefore, we need to quantify the

effect of mutations on both of these marginals. As computed for free-recombining loci,

the change due to mutations in the number of individuals that carry allele “1” (N1
i ) is,

δN1
i = µ(N0

i −N1
i ) = µ(N − 2N1

i ) (4.70)

Similarly, the mutational effect on the number of individuals that carry allele pair

“1-1” (N11
ij ) is,

δN11
ij = µ[N10

ij +N01
ij − 2N11

ij ] + O(µ2)

= µ[N1
i +N1

j − 4N11
ij ] (4.71)
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4.2 Evolution of genotype, allele and phenotype distribution

We can then compute the corresponding marginal frequency changes, δyi = δN1
i /N

and, δyij = δN11
ij /N . The stochastic temporal changes of the marginal frequencies in a

neutral evolution are,

d

dt
yi = µ(1− 2yi) + χi (4.72)

d

dt
yij = µ(yi + yj − 4yij) + χij (4.73)

We project the neutral changes of the allele frequencies yi and yij onto the macro-

scopic trait observables, Γ and ∆,

dΓ

dt
=
∑

i

dyi
dt

= −2µ(Γ− `/2) + χΓ (4.74)

and,

d∆

dt
=

∑

i

d

dt
(yi − y2

i ) +
∑

i 6=j

d

dt
(yij − yiyj)

= −4µ [
∑

i

(yi(1− yi)− `/4]− ∆

N
− 4µ

∑

i 6=j
(yij − yiyj) + χ∆

= −4µ(∆− `/4)− ∆

N
+ χ∆ (4.75)

The properties of the noise terms, χΓ and χ∆ are given in eq. (4.69). The term ∆/N

in eq. (4.75) appears due to the nonlinear dependency of the trait variance on marginal

frequency yi; see e.g., the discussion on Ito Calculus in Chapter. 4 of (Gardiner, 2004).

The temporal changes of the trait statistics in eq. (4.74) and eq. (4.75) together with

noise covariance relations in eq. (4.69) can be used to derive the corresponding Fokker-

Planck equation for the neutral probability distribution P0(Γ,∆, t); see eq. (4.29).

We can write the two Langevin equations, eq. (4.74), eq. (4.75), in the form of a

multi-variant Ornstein-Uhlenbeck process,

dΩ = A(Ω, t)dt+B(Ω, t)dW (t) (4.76)
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4. EVOLUTION OF POLYGENIC TRAITS

where ΩT = (Γ,∆) is a vector of the state variables, A is a vector denoting the

deterministic dynamics, B is a 2 × 2 matrix and dW (t) is a 2-dimensional Wiener

process associated with the noise terms, χΓ and χ∆. Using eq. (4.69), eq. (4.74) and

eq. (4.75),

A = −2µ

(
Γ− `

2

2∆− `
2 + ∆

2µN

)
, B =

(√
∆/N 0

0
√

2∆2/N

)
(4.77)

The corresponding Fokker-Planck equation for the probability density p(Ω, t) can

be derived in the following way,

∂tp(Ω, t) = −
∑

i

∂iAi(Ω, t)p(Ω, t) +
1

2

∑

i,j

∂i∂j [B(Ω, t)BT(Ω, t)]ijp(Ω, t) (4.78)

which then results in

d

dt
P0(Γ,∆, t) =

1

2N

[
∂2

∂Γ2
∆ + 2

∂2

∂∆2
∆2

]
P0(Γ,∆, t)

+2µ

[
∂

∂Γ
(Γ− `/2) + 2

∂

∂∆
(∆− `/4 + ∆/4µN)

]
P0(Γ,∆, t)

(4.79)

To emphasize one more time, P0(Γ,∆, t) is the distribution of intra-population trait

statistics over different population realizations, and should be distinguished from the

trait distribution in a single population, ρ(φ).

We can analytically compute the stationary solutions of eq. (4.79) for the marginal

distributions, P0(Γ; 〈∆〉) and P0(∆; 〈Γ〉).

1. Trait average, Γ

The marginal stationary probability distribution for the intra-population trait

average is,

P0(Γ; 〈∆〉) =
1

ZΓ
exp[
−2(Γ− `/2)2

`(1− 4µN)
] (4.80)

with ZΓ ≈
√
π(1− 4µN)`/2 as the normalization factor. We obtain the station-

ary solution of the marginal distribution P0(Γ; 〈∆〉) by using the result of the
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Figure 4.4: Equilibrium distribution of linked traits in neutrality. (a) The

analytical estimate for the marginal distribution of intra-population trait average P
(l)
0 (Γ)

(full line) vs. the numerical result for simulated evolution (open circles) of linked traits;
eq. ((4.80). (b) Same comparison as in (a) for the trait diversity observable ∆; eq. (4.82).
The Fokker-Planck equation in eq. (4.79) can accurately describe the stationary state the
macroscopic trait observable in linked genomes. The simulation parameters are chosen:
N = 200, ` = 100 bp and µN = 0.0125.

following eq. (4.84) to integrate over the intra-population trait diversity. The

marginal distribution P0(Γ; 〈∆〉) is in agreement with numerical results for sim-

ulated evolution of a linked genome; see Fig. 4.4(a). Simulation are base on the

forward Wright-Fisher process similar to what we discussed in the Materials and

Method of Section. 3.7.

Cross-population mean and variance of the trait average Γ are,

〈Γ〉 = `/2 〈Γ2〉 − 〈Γ〉2 = `(1− 4µN)/4 (4.81)

Comparing the Γ statistic under linkage to the free-recombining case in eq. (4.41),

shows that linkage properties do not influence the statistics of the linear macro-

scopic observable, Γ.

2. Trait diversity, ∆

The marginal stationary probability distribution for the intra-population trait

diversity is,

P0(∆; 〈Γ〉) =
1

Z∆
∆−3−4µN exp [−µN`

∆
] (4.82)
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4. EVOLUTION OF POLYGENIC TRAITS

with the normalization factor,

Z∆ = (µN`)−2−4µNΓ[2 + 4µN ] (4.83)

The marginal distribution P0(∆; 〈Γ〉) is in agreement with numerical results for

simulated evolution of a linked genome; see Fig. 4.4(b). Cross-population mean

and variance of the intra-population trait diversity ∆ are,

〈∆〉 = µN`(1−4µN)+O((µN)3) , 〈∆2〉−〈∆〉2 = µN`2(1/4−2µN)+O((µN)3)

(4.84)

The distribution of the intra-population trait diversity under linkage grows lin-

early with the genome length, whereas for the free-recombining case, it grows

sub-linearly as `1/2. This is due to the long-range correlations between the loci

under linkage which is not present between the free-recombining loci.

4.2.5.2 Evolution of linked loci under selection

Long-range correlations in a linked polygenic trait cause complicated microscopic dy-

namics at the level of individual loci. Detailed balance is not satisfied in the sta-

tionary description of the high-dimensional allele frequency vector xα. The extensive

self-averaging of the microscopic complexities however, can result in a tractable macro-

scopic picture. Here, we have reduced the high-dimensional space of multi-locus allele

frequencies onto a 2-dimensional space of trait observables. Nonetheless, the joint

stationary description for these macroscopic observables in eq. (4.79) can still have a

non-vanishing current JP (Γ,∆) on a 2-dimensional simplex. However, the marginal

stationary distributions P (Γ; 〈∆〉) and P (∆; 〈Γ〉), which are the 1-dimensional projec-

tion of the joint distribution, satisfy detailed balance.

Given neutral equilibrium at the level of the marginal distributions, evolution in an

arbitrary time-independent fitness landscape f(φ) of a gradient-form follows, (Musto-

nen and Lässig, 2010),
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4.2 Evolution of genotype, allele and phenotype distribution
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Figure 4.5: Equilibrium distribution of linked traits under directional selec-
tion. Directional selection f(φ) = αφ only affects the intra-population trait average Γ.
We compare the stationary distribution of trait average in neutrality P0(Γ) (in blue) to
the distribution under directional selection Qlin(Γ) (in red). The analytical estimates of
eq. (4.87) (solid curves) are in agreement with simulation results from the evolution of
linked loci in linear fitness landscape and in neutral conditions (bar histograms). The pa-
rameters are N = 500, µN = 0.0125 and ` = 1000 bp. The rescaled slope of the fitness
landscape in red histogram is, Nα = 0.1. Directional selection shifts the Γ distribution,
but does not change its width.

Q(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉) e2NF (Γ;〈∆〉) (4.85)

Q(∆; 〈Γ〉) =
1

Z
P0(∆; 〈Γ〉) e2NF (∆;〈Γ〉) (4.86)

where Z is the appropriate normalization factor. The Boltzmann factor that re-

lates each of the two distributions is the rescaled mean population fitness 2NF (Γφ,∆φ)

(eq. (4.52)) projected on the corresponding plane in the Γ−∆ coordinate. Similar to

the analysis of free-recombining loci in Section. 4.2.4.2, we will characterize the evo-

lutionary dynamics of the linked genome in two types of fitness landscapes: (i) linear

fitness which is additive in loci and (ii) quadratic fitness which is the minimal landscape

that allows epistatic interactions.

Linear Fitness (Directional selection). Directional selection on trait φ acts as

flin(φ) = α φ with a non-zero slope α. The mean population fitness in this landscape

has the form, Flin(Γ) = α Γ; see eq. (4.54). This type of selection only affects the
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4. EVOLUTION OF POLYGENIC TRAITS

Figure 4.6: Effect of directional selection on the trait statistics of linked loci.
Dependency of the mean estimates for (a) intra-population trait average 〈Γ〉 and (b) intra-
population trait diversity 〈∆〉 on the strength of directional selection α. Directional se-
lection changes the mean of the trait average but does not influence the trait diversity.
The theoretical estimates (solid lines) are in good agreement with simulation results for
evolution of a linked genome in a linear fitness landscape (blue dots) in the regime of weak
to moderate selection. The deviation between numerical and analytical results is due to the
limited number of available loci in a finite genome that can satisfy the high selection crite-
ria. This separation gets smaller with increasing genome size `. Parameters are N = 100,
` = 500 and 2Nµ = 0.025.

cross-population mean of the trait average; see eq. (4.55). The marginal distribution

under selection follows,

Qlin(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉)e2NαΓ

=
1

Z
exp

[
−2 (Γ− `/2)2

`(1− 4µN)
+ 2NαΓ

]
(4.87)

Z is the appropriate normalization factor. In Fig. 4.5 we compare the marginal

distribution Qlin(Γ; 〈∆〉) in eq. (4.87) to the numerical results for simulated evolution

of a linked genome in a linear fitness landscape. The analytical predictions are in

perfect agreement with the numerical results. As shown in Fig. 4.5 and in eq. (4.87),

the mean phenotype under selection is normally distributed with a similar variance to

that of the neutral evolution but with a shifted average 〈Γ〉s,
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4.2 Evolution of genotype, allele and phenotype distribution

〈Γ〉s = 〈Γ〉0 +
αN

2
[〈Γ2〉0 − 〈Γ〉20]

= `/2 + αN` (1− 4µN)/2 (4.88)

As before, 〈·〉s refers to averages over the population ensemble that evolved under

selection pressure and 〈·〉0 denotes the averages over the neutral ensemble. The higher

moments of the Γ distribution remain unchanged in the linear landscape. Directional

selection affects the statistics of the intra-population trait average similarly in both

linked and free-recombining genomes. Trait diversity ∆ is also not affected by direc-

tional selection; see Fig. 4.6 for comparisons with numerical simulations.

Quadratic fitness. This type of fitness landscape, fquad(φ) = ω(φ − φ?)2 has non-

zero slope, 2ω(φ− φ?) and curvature, 2ω. The mean population fitness in a quadratic

landscape has the form, Fquad(Γ,∆) = ω(Γ− φ?)2 + ω∆. The marginal distributions

of intra-population trait average and trait diversity under quadratic selection follow,

Qquad(Γ; 〈∆〉) =
1

Z
P0(Γ; 〈∆〉) e2Nω(Γ−φ?)2

=
1

Z
exp

[
−2 (Γ− `/2)2

`(1− 4µN)
+ 2Nω(Γ− φ?)2

]
(4.89)

Qquad(∆; 〈Γ〉) =
1

Z
P0(∆; 〈Γ〉) e2Nω∆

=
1

Z
∆−3−4µN exp [−µN`

∆
+ 2Nω∆] (4.90)

Z is the appropriate normalization factor. Fig. 4.7 compares the analytical esti-

mates of eq. (4.89) and eq. (4.90) to the numerical results for simulated evolution of a

linked genome in a quadratic fitness landscape. Quadratic selection affects statistics of

both intra-population trait average Γ and trait diversity ∆,
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Figure 4.7: Equilibrium distribution of linked traits under stabilizing selection.
Quadratic selection, f(φ) = ω(φ − φ?)2 affects both intra-population trait average Γ and
trait diversity ∆. (a) The analytical estimate for the marginal distribution of the trait
mean Q(l)(Γ) under stabilizing selection (full line) and the neutral expectation (dashed
line) vs. the numerical result for simulated evolution in a quadratic fitness landscape
(filled circles) of linked traits. The simulation results are in excellent agreement with the
analytical prediction in eq. (4.89). (b) Same comparison as in (a) for the trait diversity
Q(l)(∆) under stabilizing selection; eq. 4.90). The parameters are, N = 200, µN = 0.0125
and ` = 100 bp with the rescaled fitness parameter, 2ωN = −0.2. The fitness peak φ?

is set to 0.7`. Quadratic fitness with negative curvature reduces the trait diversity and
stabilizes the trait values in the population.

• Trait average (Γ0 → Γs)

〈Γ〉s = φ? − φ? − 〈Γ〉0
1− 4ωN

(
〈Γ2〉0 − 〈Γ〉20

)

=
`/2− ωN`φ?

1− ωN` (4.91)

〈Γ2〉s − 〈Γ〉2s =
〈Γ2〉0 − 〈Γ〉20

1− 4ωN
(
〈Γ2〉0 − 〈Γ〉20

)

=
`/4

1− ωN` (4.92)

Evolution in a quadratic fitness landscape with negative curvature ω < 0 (i.e.,

stabilizing selection), reduces the spread of the intra-population trait average dis-

tribution. Fig. 4.8 shows the dependency of Γ statistics on the fitness parameter

ω and compares the analytical estimates to the simulation results for the evolu-
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Figure 4.8: Effect of stabilizing selection on the trait statistics of linked traits.
Dependency of (a) cross-population mean of the trait average 〈Γ〉, (b) cross-population
variance of the trait average (trait divergence) 〈Γ2〉 − 〈Γ〉2 and (c) cross-population mean
of the trait diversity 〈∆〉 on the strength of stabilizing selection 2ωN in a quadratic fitness
landscape. Stabilizing selection reduces both trait diversity in the population and diver-
gence across populations. Analytical predictions in eq. (4.91), eq. (4.92) and, eq. (4.93)
(solid lines) are in good agreement with simulation results for evolution in a quadratic
fitness landscape (full circles). Parameters are N = 200, ` = 100 and 2Nµ = 0.025 and
the fitness peak φ? = 0.7`.

tionary dynamics of the linked loci.

• Trait diversity (∆0 → ∆s)

〈∆〉s =

√
−µN`
2ωN

k1+4µN [
√

(−8µN` ωN)]

k2+4µN [
√

(−8µN` ωN)]
(4.93)

〈∆2〉s−〈∆〉2s =
−µN`
2ωN


 k4µN [

√−8µN` ωN ]

k2+4µN [
√
−8µN` ωN ]]

−
(
k1+4µN [

√
(−8µN` ωN)]

k2+4µN [
√

(−8µN` ωN)]

)2



(4.94)

where kn(z) = BesselK[n, z] is the modified Bessel function of the second kind

which satisfies the differential equation, z2y′′+zy′−(z2 +n2)y = 0. In the regime

of weak selection (|ωN | � 1), average diversity under selection 〈∆〉s in eq. (4.93)

simplifies,

〈∆〉s = 〈∆〉0 + 2ωN〈∆〉20 + O[(µN`)3(ωN)2]

≈ µN`+ 2(µN`)2ωN (4.95)
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4. EVOLUTION OF POLYGENIC TRAITS

Fig. 4.8 compares the analytical estimates for statistics of ∆ to the numerical results

for simulated evolution of a linked genome in a quadratic fitness landscape. Quadratic

selection with negative curvature, sharpens the Γ distribution, P0(Γ) and shortens the

long-tail of the ∆ distribution P0(∆), i.e., the trait composition in the population is

stabilized. The exact analytical derivations in this section couple the characteristics

of the fitness landscape to the statistics of the trait distribution. In this way, we can

infer the shape of the fitness landscape through measurements of the macroscopic trait

observables.

4.3 Inference of selection strength from phenotypic poly-

morphism

In this part, we present the most practical result of this section: inference of fitness

parameters by comparing the statistics of the phenotypic polymorphisms to the neutral

expectations. Our effort was to quantify the neutral dynamics of the linked genome

despite the mathematical difficulties that arise from the microscopic details of multi-

loci statistics. We then study the effect of selection on these traits and characterize the

modified statistics of the macroscopic population observable, trait average Γ and diver-

sity ∆. We distinguish between intra- and inter- population statistics and introduce a

framework through which the phenotypic trait in neutrality and under the influence of

natural selection are related. Using the results in Section. 4.2.4.2 for free-recombining

genome and in Section. 4.2.5.2 for asexual populations, we can now infer the shape of

the fitness landscape on which the evolutionary dynamics has been directed.

4.3.1 Free-recombining genome

Although the free-recombining model does not address the genomic composition of ac-

tual biological systems, it is still a useful approximation for traits with loci located far

apart or on different chromosomes. The two types of analytical fitness landscapes that

we analyzed in Section. 4.2.4.2 are coupled to the trait observables and thus measurable

in the following way,
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4.3 Inference of selection strength from phenotypic polymorphism

Directional Selection, (f(φ) = α φ)

In a free-recombining genome, directional selection only affects the cross-population

mean trait distribution by shifting its average. In this way, we can infer the rescaled

slope of the fitness landscape Nα from eq. (4.56),

Nα =
1

2

〈Γ〉s − 〈Γ〉0
〈Γ2〉0 − 〈Γ〉20

(4.96)

Quadratic Selection, (f(φ) = ω (φ− φ?)2)

Evolution in a quadratic fitness landscape affects the statistics of intra-population

trait average and trait diversity . The rescaled curvature of the fitness functionNC = 2ωN

is coupled to both trait average Γ and trait diversity ∆ and can be inferred in two ways.

From the analysis of Γ-statistics in eq. (4.61),

NC = 2Nω =
1

2

(var Γ)s − (var Γ)0

(var Γ)s (var Γ)0
(4.97)

with var Γ = 〈Γ2〉 − 〈Γ〉2, is the variance of the trait average in the population

ensemble under selection (·)s or in neutrality (·)0. Similarly, from the analysis of ∆-

statistics in eq. (4.62),

NC =
〈∆〉s − 〈∆〉0
〈∆2〉0 − 〈∆〉20

(4.98)

and the location of the fitness peak φ? can be inferred from eq. (4.60),

φ? − 〈Γ〉s
φ? − 〈Γ〉0

= 1− 2CN
(
〈Γ2〉0 − 〈Γ〉20

)
(4.99)
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4.3.2 Fully linked genome

Directional Selection, (f(φ) = α φ)

Due to the additivity of phenotype φ, directional selection affects the linked genome

in the same way that it affects the free-recombining genome. We can infer the rescaled

slope of the fitness landscape Nα from eq. (4.88),

Nα =
1

2

〈Γ〉s − 〈Γ〉0
〈Γ2〉0 − 〈Γ〉20

(4.100)

Quadratic Selection, (f(φ) = ω (φ− φ?)2)

Similar to the free-recombining case, the parameters of a quadratic fitness landscape

are coupled to both Γ-statistics and ∆-statistics. The change in the spread of the Γ-

distribution yields (eq. (4.92)),

NC = 2Nω =
1

2

(var Γ)s − (var Γ)0

(var Γ)s (var Γ)0
(4.101)

The curvature of the quadratic fitness function is coupled to the cross-population

average of the phenotype diversity 〈∆〉 which in asexual population is given by com-

binations of Bessel functions in eq. (4.93). In the regime of weak selection (ωN � 1),

this function simplifies and we can infer the rescaled curvature of the fitness landscape

from eq. (4.95),

NC = 2Nω =
〈∆〉s − 〈∆〉0
〈∆〉20

(4.102)

and the location of the fitness peak φ? follows from eq. (4.91),

φ? − 〈Γ〉s
φ? − 〈Γ〉0

= 1− 2CN
(
〈Γ2〉0 − 〈Γ〉20

)
(4.103)
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4.4 Discussion & Outlook

One can immediately realize that relations to infer the shape of the fitness landscape

in free-recombining genome in Section. 4.3.1 are mostly identical to that of the linked

genome in Section. 4.3.1. It should not however be forgotten that the trait statistics are

different in these two cases and hence, different selection pressures are required to reduce

the phenotypic diversity of the linked and the free-recombining genomes by the same

amount. These estimates allow us to infer the shape of the time-independent fitness

landscape, by comparing the distributions of the phenotype statistics to the neutral

expectations and hence serve as a valuable means for empirical and genomic analysis;

see the Discussion on genomic applications of the polygenic analysis in Section. 4.4.

4.4 Discussion & Outlook

Evolution of polygenic traits in linked and free-recombining genomes

In this chapter, we study the phenotypic evolution of polygenic traits in both free-

recombining (with perfect reassortment) and linked (asexual) genomes. We characterize

the phenotypic composition of a population by its intra-population statistics, trait aver-

age Γ and trait diversity ∆. In this way, we map the microscopic locus-based statistics

of the trait onto the macroscopic population observables. This description proves to be

very essential in eliminating the small-scale microscopic complications, yet it is infor-

mative enough to explain standing variation in populations. We estimate the likelihood

of the trait statistics Γ and ∆ for a linear phenotype which is comprised of ` nucleotide

loci with equal phenotypic contributions. We first characterize the stochastic neutral

evolution of the trait statistics and evaluate the stationary marginal distributions for

trait average Γ, P0(Γ; 〈∆〉) and for trait diversity ∆, P0(∆; 〈Γ〉) under mutation-drift

balance. These results are summarized in Table. 4.1. The main difference between the

free-recombining and linked loci lies in their distribution of trait diversity P0(∆; 〈Γ〉).
Long-range correlations in linked genome results in a broad distribution of the trait

diversity P0(∆; 〈Γ〉) with a power-law tail. In a free-recombining genome however, the

∆ distribution is Gaussian as expected from central limit theorem. This result has

further consequences especially in the presence of selection.

We then characterize the distribution of the macroscopic trait observables in pop-

ulations which have evolved in two types of fitness landscapes: Linear (directional

selection) and quadratic fitness landscape. The statistics of Γ and ∆ can be computed
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P (Γ) P (∆) 〈Γ〉 〈∆〉 varΓ var∆

Neutrality

Free Recom.

exp[−2(Γ−`/2)2

` ] exp[−3(∆−µN`)2

µN` ] `/2 µN`(1 − 4µN) `/4 µN`/6

Sel.-Lin.

Free Recom.

P
(f)
0 (Γ) e2NαΓ P

(f)
0 (∆) `/2+αN`/2 µN`(1 − 4µN) `/4 µN`/6

Sel.-Quad.

Free Recom.

P
(f)
0 (Γ) e2Nω(Γ−φ?)2 P

(f)
0 (∆) e2Nω∆ `/2−ωN`φ?

1−ωN` µN`(1 + ωN/3)
`/4

1−ωN` µN`/6

Neutrality

Full Linkage

exp[−2(Γ−`/2)2

`(1−4µN) ] ∆−3−4µNe
−µN`

∆ `/2 µN`(1 − 4µN) `/4 µN`2/4

Sel.-Lin.

Full Linkage

P
(l)
0 (Γ) e2NαΓ P

(l)
0 (∆) `/2+αN`/2 µN`(1 − 4µN) `/4 µN`2/4

Sel.-Quad.

Full Linkage

P
(l)
0 (Γ) e2Nω(Γ−φ?)2 P

(l)
0 (∆) e2Nω∆ `/2−ωN`φ?

1−ωN` µN`+2ωN(µN`)2 `/4
1−ωN` eq. (4.94)

Table 4.1: Statistics of the intra-population phenotype observables. Charac-
teristics of intra-population trait average Γ and trait diversity ∆ for the linked and free-
recombining genomes. The table shows the stationary probability distributions for these
macroscopic observables in neutrality, P0(Γ) and P0(∆) and their corresponding statistic:
cross-population average, 〈Γ〉, 〈∆〉 and variance varΓ and var∆ of the distributions . Sim-
ilar information is shown for populations which have evolved in a linear fitness landscape
(Sel.-Lin.), f(φ) = αφ and in a quadratic fitness landscape (Sel.-Quad.), f(φ) = ω(φ−φ?)2.
φ is the polygenic trait under study with ` constitutive loci, N is the population size and
µ is mutation rate per nucleotide per generation.

exactly under such dynamics; see Table. 4.1. Characteristic properties of the fitness

function are coupled to the phenotype observables, and hence become measurable in

the population; see Section. 4.3. A quadratic fitness landscape, f(φ) = ω(φ − φ?)2

with ω < 0, imposes a stabilizing selection on traits in the population which reduces

both trait divergence across population var(Γ) and diversity within populations ∆. In

this description, the stationary state of the polygenic traits in linked genome is set by
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mutation-selection-drift balance; all these evolutionary forces may in general influence

the trait on comparable timescales. The example of such type is discussed in Chapter. 3.

Application of the polygenic analysis to genomic data

The possibility of inferring genotype-phenotype maps from large genomic datasets re-

quires a better characterization of evolutionary dynamics, such that it is applicable to

the analysis of genomic variation. Phenotypic variations can be viewed on different

timescales:

(i) Trait diversity across species. Nucleotide divergence across species has been

used as a proxy for positive selection and evidence for adaptation i.e., response to the

change of fitness preference during evolution (McDonald and Kreitman, 1991). Sub-

stitution patterns have also been used in analysis of molecular traits such as binding

sites by presuming that the underlying fitness landscape has been maintained dur-

ing the evolutionary divergence (Mustonen et al., 2008; Mustonen and Lässig, 2005;

Nourmohammad and Lässig, 2011). In most of these cases however, this assumption

is questionable and is mainly made due to the limitations in genomic sequence data

of each population. Analysis of quantitative traits with numerous linked loci should

incorporate the full dynamics with mutation-selection-drift balance at stationary state.

Inference of positive selection and degree of adaptation between two species can the be

characterized on those basis.

(ii) Trait variations within a population. This is the short-term variation of

phenotypes between the individuals of a population which experience similar selective

constraints. In this picture, the average phenotype in the population remains close to

the fitness peak and the phenotypic diversity is reduced in comparison to the neutrally

evolving populations; see Fig. 4.9(a). Different populations evolving in a common fit-

ness landscape also cluster around the fitness peak, and the difference between their

typical phenotypes (Fig. 4.9(a)) is much smaller than that of the neutrally evolving

populations (Fig. 4.9(b)). One of the immediate applications of this approach is to

characterize the population dynamics in evolution experiments with multiple indepen-

dent populations. Analysis of the phenotypic polymorphism is an unbiased approach
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Figure 4.9: Trait variations on different time-scales. (a) Populations evolving
in a quadratic fitness landscape for the trait φ. Each population is shown by a cloud of
individuals spread around a phenotypic average Γ with a diversity ∆. The populations
are clustered around the fitness peak φ?. (b) Neutrally evolving populations. The intra-
population phenotypic diversity ∆ is larger than the ones evolving under quadratic selection
in (a). Also, the population clouds are located further from each other than in (a) which
indicates the absence of selection for a specific phenotype value (φ? in (a)). (c) Cross-loci
phenotypic composition of a population. Different loci are pictured to evolve in fitness
landscapes with similar shapes (curvature) yet different location of the peak. Populations
are again shown with clouds that center around the intra-population phenotype average
Γ with a spread ∆. Different fitness landscapes are associated with different loci with
the phenotype preference φ?i (i=1,2,3). The intra-population phenotype diversity is not
sensitive to the value of φ? and hence the ∆-statistics can be formed from all these loci to
extract the common width of these fitness functions, ω. This method is most practical for
analysis of molecular phenotypes with common biophysical constraints e.g., transcription
factor binding site interactions. We found this type of fitness landscape to be consistent
with evolution of regulatory complexes in yeast; Chapter. 3.

to characterize the evolutionary forces that derive the population.

(iii) Trait variations across loci. This level of diversity is particularly informative
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about the biophysically constrained molecular phenotypes, such as transcription factor-

binding site interactions (Kinney et al., 2007; Mustonen and Lässig, 2005), nucleosome

positioning (Tsankov et al., 2010) and protein folding (Fernández and Lynch, 2011).

The peculiar feature of these molecular phenotypes is that the biochemical interac-

tions, which determine the trait functionality, is shared even across various loci in the

genome. For example, the binding characteristics of a transcription factor molecule

dictates the nucleotide composition of its binding sites across the genome (see Chap-

ter. 1). This feature introduces another type of phenotypic similarity which is not due

to common descent but rather common functional characteristics between loci. On the

other hand, these loci may often be required for differential functional outputs (e.g.,

promoters with different regulatory outputs yet interacting with the same transcription

factor). In other words, the fitness optimum for each of these trait loci is located at

the value that best matches its own regulatory output. If fitness functions for all loci

are equal, they can be thought of as different realizations of the same evolutionary

process, and cross-loci statistics will match the cross-population statistics of the trait

observables as discussed above. If only the fitness optimum G? differs between the loci,

then the cross-loci Γ-statistics differ from that of the cross-population description, but

the higher order statistics (∆-statistics for our analysis) will remain compatible. As

a result, we can form cross-loci statistics by averaging over all fitness landscapes with

similar curvatures; see Fig. 4.9(c). In this way, different loci are effectively treated

as separate population realizations to form the ∆-statistics. This approach is highly

practical for genomic analysis of compatible traits.

In Chapter. 3 we combined the intra-population and cross-loci phenotype variations

and extract information on the evolutionary dynamics of promoter complexes in yeast.

Complex fitness function and complex phenotypes

Genomic loci, especially in eukaryotes, may encode multiple phenotypes. The analysis

of such pleiotropic features have been carried out mostly in the context of Fisher’s

geometrical model in multi-dimensional phenotype space (Fisher, 1930). In this model,

phenotypes are presented as points a multi-dimensional space where the axis correspond

to phenotype characters.The fitness is a decreasing function of the phenotype distances

to the local optimum. Mutations in this model are stochastic events that are defined on
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this phenotype space and create a new phenotype from the pre-existing ones. Clearly,

this model does not incorporate the genomic information to the evolutionary dynamics

of the phenotypic traits. The connection to the population composition of genotypes

which map into multiple phenotypes in an organisms has not been often discussed. The

analysis in this section can in principle be generalized to multi-dimensional phenotypes,

but the existence of evolutionary equilibrium in that context is unresolved. The fitness

landscapes also can be arbitrarily more complicated. In this section, we only discuss

an equilibrium state of a population which evolve in a static fitness landscape. Adap-

tation and driven evolution is of course lacking from this picture. Generalization of

the macroscopic framework in this chapter to integrate the time-dependent character-

istics of a fitness function (Mustonen and Lässig, 2007, 2010), is our next step towards

understanding the adaptive evolution of the polygenic traits.
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Zusammenfassung

Die seit kurzem bestehende Verfügbarkeit riesiger genomischer Datenmengen und

die Verbesserung von Technologien zur Sequenzierung eines Genoms ermöglichen es,

dass die Populationsgenetik sich von zumeist abstrakt-theoretischen Grundlagen hin zu

einer quantitativen Molekültheorie weiterentwickelt. Funktionseinheiten in der DNA

sind jedoch normalerweise Kombinationen aus interagierenden Nukleotidsegmenten und

die evolutionären Kräfte, die sich auf diese Segmente auswirken, können zu sehr kom-

plizierten Populationsdynamiken führen. Es ist das Ziel, diese Interaktionen so zu

beschreiben, dass die makroskopischen Eigenschaften unabhängig von den mikroskopis-

chen Details dargestellt werden, wie in der statistischen Mechanik.

In dieser Doktorarbeit beschäftige ich mich mit der Evolutionsdynamik von reg-

ulierenden Sequenzen, die die Produktion von Proteinen in den Zellen steuern. Eine

der wichtigsten Regulationsarten tritt durch das Zusammenspiel von Proteinen, die

Transkriptionsfaktoren genannt werden, mit Bindungsstellen in der DNA-Sequenz auf.

Die Stärke dieser Interaktionen beeinflusst die Fitness des Individuums in der Popula-

tion. Da man diesen Zusammenhang herleiten kann, ist dies ein ideales Modellsystem

fr die quantitative Analyse von genetischer Evolution.

Verglichen mit Prokaryoten und Hefe ist die genetische Regulation bei höheren

Eukaryoten viel komplexer. Die Informationen fr die Regulation sind in Module mit

mehreren Bindungsstellen aufgeteilt, die mit einer gemeinsamen Funktion in Zusam-

menhang stehen. In Kapitel. 2 zeigen wir, dass die Bildung von Bindungsstellenkom-

plexen üblicherweise durch lokale Sequenzduplikationen geschieht und nicht aus dem

Nichts durch einzelne Punktmutationen entsteht. Weiterhin zeigen wir, dass die zu-

grunde liegende regulatorische “Grammatik” mit diesem Mechanismus in Einklang

steht, sodass die Duplikationen einen Anpassungsvorteil bedeuten.



Regulatorische Komplexe ähneln einem Vielteilchensystem, dessen Funktion sich

aus den kollektiven Dynamiken seiner Elemente herausbildet. In Kapitel. 3 entwickeln

wir ein thermodynamisches Modell um die tatsächliche Affinität von Bindungsstel-

lenkomplexen zu mehreren Transkriptionsfaktoren mit zusammenwirkender Bindung

zu charakterisieren. Diese Affinitäten sind der Phänotyp oder das Merkmal eines

Bindungskomplexes, auf den Selektion einwirkt, und wir charakterisieren ihre Evolu-

tion. Aus den Polymorphismusdaten des Hefegens leiten wir eine “Fitness-Landschaft”

anhand des Verhältnisses von Fitness zu Bindungswahrscheinlichkeit ab unter Ver-

wendung der neuartigen Methode, die in Kapitel. 4 entwickelt wird. Durch diese

Methode der quantitativen Merkmalsanalyse können langfristige Korrelationen zwis-

chen Bindungsstellen, wie sie in asexuellen Populationen auftreten, verarbeitet werden.

Mit unserer “Fitness-Landschaft” treffen wir quantitative Voraussagen zur erhaltenen

Phänotyp-Menge, sowie zur Menge der ausgleichenden Veränderungen zwischen den

Bindungsstellen.

Unsere Ergebnisse weisen einen neuen Weg hin zum Verständnis der regulatorischen

“Grammatik” des eukaryotischen Genoms basierend auf quantitativen Evolutonsmod-

ellen. Sie beweisen, dass eine Kombination von theoretischen Modellen, experimentellen

Hochdurchsatzmessungen und die Analyse von genetischen Variationen für das richtige

quantitative Verständnis von biologischen Systemen notwendig ist.
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− einschließlich Tabellen, Karten und Abbildungen −, die anderen Werken im Wort-

laut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich

gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität
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