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1 Introduction 

 

1.1 Diabetes mellitus type 2 

Diabetes mellitus comprises a group of chronic diseases, affecting about 346 

million people worldwide. Over the last decades, the number of patients suffering from 

diabetes mellitus have drastically increased and are expected to tend to 440 million in the 

year 2030 (1). Diabetes mellitus is characterized by deregulation of glucose homeostasis. 

The hormone Insulin, released from pancreatic β-cells in response to food intake, plays a 

central role in the etiology of diabetes. Under non-pathogenic conditions, insulin 

maintains glucose homeostasis by stimulation of glucose uptake from the circulation into 

insulin target tissues (for review see (2)). Among the described forms of the disease type 

2 diabetes mellitus (T2DM) is the most common, comprising about 90% of diabetes cases 

(3). T2DM is characterized by the development of insulin resistance in insulin target 

tissues as well as insulin secretory dysfunction (for review see (3-5)). The development 

of insulin resistance is a rather slow process, accompanied by an initial compensatory 

rising, but finally discontinued, insulin secretion (6). The incapability to respond to 

insulin results in hyperglycemia, i.e. elevated blood glucose levels, a characteristic 

indication of T2DM (for review see (7)). Further common symptoms are loss of weight, 

fatigue and polyuria (for review see (8,9)). Untreated T2DM may lead to serious acute 

complications, like diabetic ketoacidosis and diabetic hyperglycemic hyperosmolar coma, 

both leading to death (10-12). Long-term complications include the development of 

neuro-, angio-, nephro, and retinopathy and increased risk of cardiovascular diseases and 

strokes (10-12). The emergence of T2DM is strongly positively correlated with obesity 

and reduced physical activity, but genetic predispositions are assumed to be an important 

factor as well. (13-15). To date, the exact molecular mechanisms leading to the 

development of insulin resistance remain to be elucidated. Nonetheless, it has been 

suggested that both insulin resistance and β-cell dysfunction are induced by the enhanced 

release of free fatty acids (FFA) and pro-inflammatory mediators from the adipose tissue 

during the course of obesity (16-18). As diabetes emerges from a severe malfunction of 
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insulin signaling, detailed investigation of it´s function and interaction with related 

pathways is of central importance for a deeper understanding of this disease and 

subsequent improvement of treatment strategies. 

 

 

1.2 The Insulin signaling system 

 

1.2.1 Biological functions of the insulin signaling system  

 Signaling through insulin is considered to be the major regulatory mechanism of 

glucose and energy homeostasis. Insulin is a peptide hormone released by the β-cells of 

the pancreatic islets of Langerhans mainly in response to high levels of blood glucose, 

amino acids and lipids after food ingestion (19-23). 

In its target tissues, particularly skeletal muscle, adipose tissue and liver, insulin regulates 

diverse processes involved in glucose uptake and metabolism. Broadly spoken, insulin is 

a signal to occupy externally supplied energy substrates instead of utilizing stored energy 

reserves. Insulin promotes the uptake of glucose in muscle and adipose tissue via 

translocation of the insulin responsive glucose transporter 4 (GLUT4) to the plasma 

membrane and stimulates glucose catabolism via glycolysis (24-26). Furthermore, insulin 

promotes the storage of substrates for energy metabolism by activating glycogen 

synthesis in liver, lipogenesis in adipose tissue and protein synthesis in muscle. On the 

other hand insulin inhibits the opponent processes, lipolysis, glycogenolysis and protein 

degradation (for review see (27)). Aside from its role in peripheral glucose homeostasis, 

insulin has been shown to reduce food intake via the central nervous system by acting on 

the hypothalamus (28-29). In addition to the acute effects of insulin on energy 

homestasis, it acts as a common growth factor by modulating mitosis and differentiation 

(for review see (27, 30)). 
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1.2.2 Insulin, structure and release 

Insulin consists of two peptides, A- and B- chains, cleaved from a single 

precursor, proinsulin (31). Serum Insulin concentration is predominantly controlled 

through the release and not de novo synthesis of insulin (32-33). The most important 

acute signal leading to secretion of insulin from the β-cells is a rise in blood glucose level 

above a specific threshold (34, 35). β-cells absorb glucose via facilitated diffusion 

through glucose transporter GLUT2 (36, 37). Metabolism of absorbed glucose is 

subsequently leading to the release of insulin from secretory vesicles into the blood 

stream (for review see (38)). Beside glucose, increasing plasma levels of amino acids, 

lipids, Glucagon-like-peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), 

gastrointestinal hormones released after food intake (39, 40), and stimulation of the 

parasympathetic nervous system (for review see (41)) trigger the release of insulin. 

  

 

1.2.3 Insulin receptor and post receptor signaling  

The gateway to transmit the signal of circulating insulin into target tissue cells is 

the insulin receptor (IR). IR belongs to a subfamily of receptor tyrosine kinases and is 

expressed almost ubiquitously in mammalian tissues (42-47. The heterotetrameric 

transmembrane receptor is composed of two α/β-dimers connected by disulfide bridges 

(48, 49). The extracellular α-subunits constitute the ligand binding site whereas the β-

subunits span the membrane and comprise the intrinsic tyrosine kinase activity in their 

intracellular portion (50-51). Upon binding of insulin, the α-subunit induces 

conformational changes of the β-subunit, leading to derepression of the tyrosine kinase 

activity. Trans-autophosphorylation at specific tyrosine residues (Tyr) provokes fully 

kinase activity and allows phosphorylation of cytoplasmic substrates binding the receptor 

(52-55). Most prominent among those is the family of insulin receptor substrates (IRS), 

IRS-1 to IRS-5. IRS-1 and IRS-2 seem to play the most crucial role. (56). Further 

substrates are Grb-2 associated binder (Gab), 14-3-3 proteins, SH2-containing protein 

(Shc) and others (57-59). These messengers distribute the signal from the IR into the 



1 Introduction 

                                                               

 

-4- 

 

phospatidylinisitol-3-kinase (PI3K)/Akt and the mitogen-activated protein kinase 

(MAPK) pathway, as the major downstream pathways. 

The PI3K/Akt pathway triggers the majority of acute responses to insulin on 

glucose and lipid metabolism, stimulating glucose uptake and the synthesis of glycogen, 

proteins and triglycerides as well as the expression of genes involved in glucose and lipid 

metabolism (60-62). PI3K is activated through binding to phosphorylated IRS and 

catalyses the transformation of the membrane lipid phosphatinositol-4,5-bisphosphate 

(PIP2) to phosphatinositol-3,4,5-triphosphate (PIP3) (60). The serine kinase AKT binds 

PIP3 and thereby is collocated with the activating kinases phospoinositide-dependent 

protein kinase 1 (PDK1) (63, 64) and mammalian target of rapamycin complex 2 

(mTORC2) (65, 66). Activated by those, AKT functions as a key regulator passing the 

signal to multiple downstream targets promoting glucose uptake, glycogen synthesis, 

protein synthesis and gene expression (for review see (27, 67, 68)) (Fig. 1). 

In contrast to acute metabolic reactions, the MAPK pathway controls the 

mitogenic and differentiation response to insulin (for review see(30)). The signal of  the 

activated IR is transmitted to the MAPK pathway through phosphorylated IRS and Shc 

by recruitment of growth factor receptor bound protein 2 (Grb2). Grb2 recruits Son of 

Sevenless (SOS). Colocalization of SOS and rat sarcoma protein (Ras) at the cell 

membrane leads to activation of Ras through exchange of Guanosine-5'-

diphosphate(GDP) for Guanosine-5'-triphosphate (GTP) (69, 70). Activated Ras elicits a 

cascade of successive activating serine (Ser) phosphorylations of Raf, mitogen-activated 

protein kinase kinase (MAP2K) and finally mitogen-activated protein kinase (MAPK). 

Activated MAPK enters the nucleus and promotes the expression of several genes giving 

a positive signal to growth and differentiation (for review see (27, 30)) (Fig. 1). 
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Fig. 1: Insulin receptor signal transduction via PI3K/Akt and MAPK pathway. Binding of insulin to 

the insulin receptor (IR) triggers the activation of it´s tyrosine kinase activity by autophosphorylation. The 

PI3K/Akt pathway is induced by insulin receptor substrate- 1 and 2 (IRS1/2) binding to the activated 

receptor and are phosphorylated by the IR itself.  Phospatidylinisitol-3-kinase (PI3K) is activated by 

binding to phosphorylated IRS-1/2 and catalyses the transition of the membrane lipid phosphatinositol-4,5-

bisphosphate (PIP2) to phosphatinositol-3,4,5-triphosphate (PIP3). Colocation of AKT kinase with it´s 

activating kinases phospoinositide-depent protein kinase 1 (PDK1) and mammalian target of rapamycin 

complex 2 (mTORC2) by their binding to PIP3 is leading to it´s activation. Akt controls a wide range of 

biological functions by acting downstream targets promoting glucose uptake, glycogen synthesis, protein 

synthesis and gene expression. The MAPK pathway is activated by phosphorylation of IRS1/2 or SH2-

containing protein (Shc) by the receptor. Recruitment of growth factor receptor bound protein 2 (Grb2) and 

Son of Sevenless (SOS) activates the GTPase rat sarcoma protein (Ras). Activated Ras induces a cascade of 

successive activating phosphorylations of Raf, mitogen-activated protein kinase kinase (MAP2K) and 

mitogen-activated protein kinase (MAPK). Activated MAPK promotes gene expression by acting on 

several transcription factors. 
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1.3 The insulin like growth factor 1 (IGF1) signaling system 

 

1.3.1 Biological functions of the IGF1 signaling system 

The insulin like growth factor (IGF1) is part of the somatotropic axis, one of the 

major endocrine systems regulating postnatal growth in mammals (71-73). IGF1 is 

mainly released by the liver in response to growth hormone (GH) secretion by the 

anterior pituitary gland (71, 74). Many of the somatic effects of GH are elicited by IGF1 

as intermediary (71, 74). The IGF1 system is structurally closely related to the insulin 

system. The circulating hormone IGF1 and its cognate receptor, the IGF1 receptor 

(IGF1R), display high degrees of homology in sequence and structure with insulin and 

IR. Moreover, both systems trigger MAPK and PI3K/Akt pathways as their major 

intracellular downstream pathways (48, 75-77). 

Despite the close relation between the two systems the well established biological 

effects of insulin and IGF1 signaling differ considerably. Whilst the major effects of 

insulin are thought to be regulation of energy homeostasis, IGF1 is mostly seen as an 

anabolic hormone and as a potent inhibitor of apoptosis (78-81). Deregulation of the 

IGF1 system is mainly correlated with the development of several types of cancer (for 

review see (82)). However, a growing numbers of studies suggest a role of IGF1 

signaling in maintaining glucose homeostasis, a role to the IGF1 system in the 

development of diabetes mellitus (83-91). 

 

 

1.3.2 IGF1, structure and release  

Beside the liver as the major contributor, IGF1 is synthesized and released at a 

lower degree by almost any tissue in an autocrine and paracrine fashion (71, 74, 90). 

IGF1 is a single chain hormone, displaying a high level of homology with insulin, 

showing 48% amino acid identity, identical bonding by disulfide bridges and similar 

tertiary structure (75). In contrast to insulin, IGF1 does not circulate in a free, unbound 

form. About 99% of circulating IGF1 is bound to one of six IGF1 binding proteins 
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(IGFBP1-6) or to one of nine IGFBP related proteins (IGFBP-rP1-9) (91-94). IGFBPs 

play a critical role in IGF1 signaling by prolonging half-life of IGF1, regulating intra- 

and extravascular transport and affecting their affinity for receptor binding (92, 95, 96).   

 

 

1.3.3 The IGF1 receptor and post receptor signaling  

The IGF1R is expressed almost ubiquitously (97). As insulin and IGF1, IR and 

IGF1R display a high degree of homology, the same tertiary structure and do share the 

same mechanism of receptors activation and signal transduction. (48, 77, 98). Like IR, 

the IGF1R is a tetrameric receptor tyrosine kinase, composed of two extracellular α and 

two membrane spanning β subunits, bearing an intracellular tyrosine kinase domain (99-

101). IGF1R and IR share approximately 70% amino acid homology, with 84 % as the 

highest degree in the tyrosine kinase domain (48, 102). Notably, IR and IGF1R display 

short highly heterogeneous sequences in their tyrosine kinase domains and further 

sequences of low homology in their carboxyl terminal domains (48). These differences 

may be in part responsible for distinctions in the downstream signaling and the biological 

effects of the both receptors.  

The process of IGF1R activation is very similar to the previously described 

activation of IR. Hormone binding to the IGF1R activates its intrinsic tyrosine kinase 

activity gaining full activity after initial trans-phosphorylations (for review see (103)). 

Activated IGF1R triggers diverse pathways by recruitment and phosphorylation of IRSs, 

Shc, Grb2 and 14-3-3 proteins (79-81, 104, 105). Among those, PI3K/Akt and MAPK 

pathway mediate most of IGF1´s effects and are the best investigated. The PI3K/Akt 

pathway is activated as previously described for IR signaling (Fig. 1). Anti-apoptotic and 

protein synthesis stimulating effects of IGF1 are mediated mainly via activation of Akt. 

Anti-apoptotic effects are induced by inhibitory phosphorylation of pro-apoptotic factors, 

as well as increased expression of anti-apoptotic proteins (103, 106-108). Furthermore 

Akt exerts a generally stimulating effect on protein synthesis (109). Activation of the 

MAPK pathway by IGF1R is associated with the effects of IGF1 on cellular proliferation 
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and differentiation by promoting expression of genes promoting mitosis (110, 111). 

Mechanisms of activation are the same for triggering MAPK via IR and IGF1R (Fig. 1).  

The fact that insulin and IGF1 signaling cause such unequal biological effects by 

triggering the same major intracellular pathways appears conflicting. Selective outcome 

of insulin and IGF1 signals is assumed to depend on differences in the recruitment of 

intracellular docking proteins resulting from different substrate specificities, binding 

velocities, reaction times and activities (112, 114-116). In part, different ligand binding 

behavior might be explained by the mentioned sequence variations in the tyrosine kinase 

domains and the carboxyl terminal domains of IR and IGF1R (48).  

 

 

1.3.4 Crosstalk events between insulin and IGF1 systems 

Due to homology in amino acid sequence and in structure of the hormones and 

receptors interferences among insulin and IGF1 system occur. Insulin binds and activates 

IGF1R as well as IGF1 is capable of binding and activating IR (117). The binding 

affinities are indeed much lower than binding to their cognate receptors, making non 

physiological concentrations of hormones required to achieve receptor activation (91, 

118, 119). Insulin binds to IGF1R with a 100-fold lower affinity than to IR (118). The 

binding affinity of IGF1 to IR is even 1.000-fold lower than the affinity of IGF1 to its 

cognate receptor (for review see (91, 119)). In this context, it is important that serum 

concentrations of IGF1 in human are 100-fold higher than concentrations of insulin (for 

review see (120)). More relevant than notional receptor binding seems to be the 

formation of functional hybrid receptors through the assembly of IR and IGF1R α/β- 

hemireceptors (121, 122). Hybrid receptors display low affinity to insulin, but high 

affinity to IGF1, at levels comparable to IGF1R (123-125). Until now, the biological 

response triggered by these hybrid receptors and their biological function remains unclear 

(for review see (126)). 
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Fig. 2: Crosstalk between insulin and IGF1R systems. Close structural homology between receptors and 

hormones allows crosstalk between both systems through binding of insulin and IGF1 to non cognate 

receptors and the formation of hybrid receptors between IR and IGF1R hemireceptors. Insulin and IGF1 

bind to each of these receptors, IRs, IGF1Rs and hybrid receptors, however with variable affinities. Insulin 

affinity to IGF1R and IR/IGF1R hybrid receptors is about 1,000-fold lower (dotted arrow) than to its 

cognate IR (solid arrow). IGF1 binds IGF1R and IR/IGF1R hybrid receptors with almost same affinity 

(solid arrow), whilst IR is bound with 100-fold lower affinity (dashed arrow). 

 

 

1.3.5 The IGF1 system in the context of glucose metabolism 

The close structural relation between insulin and IGF1 signaling systems suggest 

the possibility of redundant biological functions among IR and IGF1 system. As a matter 

of fact, there are increasing numbers of evidences from clinical trails as well as in vitro 

and in vivo studies suggesting a role of the IGF1 system in glucose homeostasis and the 

development of diabetes. 

Reduced levels of circulating IGF1 are observed in patients suffering from T2DM 

(127). Furthermore, administration of IGF1 has shown to reduce serum glucose levels in 

healthy humans and individuals suffering from T2DM (128-131). However, the 

magnitude of these insulin-like effects of IGF1R is only 4-7 % of that of insulin (85, 87). 

Furthermore, improved insulin sensitivity was demonstrated after IGF1 administration in 
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several of these studies (88, 130, 131). As observed for IGF1 itself, reduced levels of 

IGFBPs are associated with hyperglycaemia (85). In particular, IGFBP1 may be relevant 

for the effects of IGF1 on glucose homeostasis, since treatment with IGFBP1 has shown 

to reduce serum glucose levels in humans (132, 133). Furthermore, mice overexpressing 

IGFBP3 display increased fasting serum glucose levels and impaired glucose tolerance 

(134, 135). 

The role of IGF1R in this context has been demonstrated in mice overexpressing a 

dominant-negative IGF1R mutant in skeletal muscle, leading to functional inactivation of 

IGF1R and IGF1R/IR hybrid receptors and the development of a diabetes-like phenotype 

(87). In contrast, muscle specific inactivation of IR through it´s deletion or 

overexpression of a dominant-negative mutant in mice interestingly just cause a mild 

phenotype and allowed to maintain glucose homeostasis over months (42, 136). Further 

considerations about a role of IGF1R are given by in vitro studies in IR-deficient muscle 

cells and fibroblasts showing increased glucose uptake and glycogen synthesis after 

treatment with IGF1 or high concentrations of insulin (137, 138).  

The effects of IGF1 on glucose clearance are predominately attributed to an IGF1 

induced peripheral glucose uptake in skeletal muscle tissue (87, 89, 137-142). Glucose 

uptake in adipocytes after IGF1 stimulation has been described as well as decreased 

gluconeogenesis in hepatocytes (128, 141). However, both observations 

are controversially discussed. 

Taken together, these studies indicate a potential role of the IGF1 system in the 

context of glucose homeostasis and the etiopathogenesis of diabetes, possibly by adopting 

functions of the IR or by influencing insulin signaling.  
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1.4 Technical background 

1.4.1 Motivation for technical innovation 

In this study the functional redundancy between IGF1R and IR in the context of 

glucose homeostasis has been examined. For this reason novel technical approaches have 

been developed, aiming to generate transgenic mice lacking the function of both 

receptors. The basic concepts for this development are two techniques, the recombinase-

mediated cassette exchange (RMCE) and the use of RNA interference (RNAi). The 

combined application of these techniques is already successfully used to generate 

genetically engineered mice displaying a single gene inactivation (143, 144).  

 

 

1.4.2 RNA interference (RNAi) 

RNA interference (RNAi) is a eukaryotic mechanism of specific 

posttranscriptional gene regulation. Triggers of RNAi are 21 to 28 base pair (bp) long 

double stranded RNAs (dsRNAs) inducing degradation or translational inhibition of 

mRNAs bearing complementary sequences (145, 146). In vertebrates, natural occurring 

RNAi is induced by a non-coding RNA species designated as micro RNAs (miRNAs), 

cleaved out of complex hairpin structures and playing a crucial role in embryogenesis and 

tissue morphogenesis (147-153). This process employs a complex machinery of RNAses 

and multiproteincomplexes (153-157).  

Several techniques have been developed to establish RNAi as an efficient tool for 

the down regulation of a specific gene of interest, designated as knock down (KD), 

suitable application for achievement of in vivo gene silencing in animal models (158). 

The most practical option to specifically induce a target gene KD in mice is the in vivo 

expression of artificial hairpin structures entering the endogenous RNAi pathway (159-

163). Stable integration of expression vectors allows for a constitutive KD by constant 

production of hairpin RNAs (143, 160, 164). The most widely used method is the 

expression of so-called short hairpin RNAs (shRNAs). Those are composed of inverted 

repeats of a 19 to 29 nucleotide sequence, complementary to the target gene, connected 
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by a 6 to 9 nucleotide long spacer sequence. The shRNA transcript forms a hairpin by 

base pairing, constituting a substrate of the endogenous RNAi pathway and being 

processed to a RNA duplex triggering RNAi. Transcribed shRNA is exported actively 

from the nucleus into cytoplasm, where RNAse Dicer produces a duplex intermediate 

with characteristic 2nt 3´overhangs by removal of the loop sequence (154, 165, 166). 

This dsRNA is incorporated into the RNA-induced silencing complex (RISC), the 

effector of RNAi. Only one strain of the duplex remains in the Risc as a guide strand and 

mediates the specific binding of the complex to complementary target sites of mRNAs. 

Perfectly matching guide strands mediate endonuclear cleavage of bound mRNA by 

RISC (149, 150). RISC assembly shows a distinct strand bias favoring the incorporation 

of just one strand of the duplex, probable due to thermodynamic properties of the dsRNA 

intermediate (155, 156). Polymerase III (Pol III) depending promoters such as H1 and U6 

are used for shRNA expression, providing strong and ubiquitous expression of short well 

defined transcripts without poly-A-tails (159, 160, 169, 170). To allow temporary control 

of shRNA expression inducible Pol III promoters have been developed by combining U6 

and H1 with the tetracycline operator/repressor system (144, 171). The possibility to 

induce the KD upon administration of the inductor allows circumventing embryonic 

lethality by target genes loss of function, observed for about 30 % of murine genes. 

Predictable and reproducible KD efficiencies can be archived by targeted integrations of 

expression vectors in characterized and suitable loci. Rosa26 (R26) and hypoxanthine-

guanine phosphoribosyltransferase (Hprt) loci have been used for this issue (143, 172, 

173).  
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Fig. 3: RNAi induced by shRNA. The shRNA is expressed from a vector based or stably integrated 

template and enter the endogenous miRNA processing pathway. After export from nucleus into cytoplasm 

the loop structure is removed by Dicer thereby, producing the double strained siRNA. RISC incorporates 

and unwinds the double strain.  One strain of the siRNA remains in the activated from of RISC (RISC*), 

guiding the complex to complementary binding sites of the target mRNA. Expression of the target gene is 

repressed by cleavage and subsequent degradation of bound mRNA. 

 

Generation of loss of function mutants by using RNAi technology is directly 

competing with knockout (KO) mice achieving loss of function by partial or complete 

deletion of the gene of interest (GOI) by homologous recombination (158). Compared to 

KOs, there are several advantages of the RNAi technology, but disadvantages as well. 

First, a KD results in a reduction to 5 to 40 % of the original target mRNA level and not 

in a complete loss of function, as it is true for KOs (143, 174). In particular cases, a 

milder phenotype resulting from the remaining gene product offers a better-suited model 

for physiological conditions than a complete loss of function. On the other hand residual 

gene activities might complicate phenotype analysis in reverse genetic studies. A major 

advantage of RNAi is the short time needed for the generation of mouse KD mice. RNAi 
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alleles are acting in trans and thus do not have to be breed into homozygosity (143, 175). 

Furthermore, highly efficient recombinase based integration systems can be used for 

integration of shRNA expression vectors at predefined loci, since the mechanisms of 

RNAi are independent from the target gene´s genomic site and structure (143, 144). At 

last about 12 month are required to generate homozygote KO mice, whereas KD mice 

can be generated in just 7 month (143, 176). Problematic about artificial RNAi are 

potential off target effects, the unwanted KD of partially complementary mRNAs or 

unspecific effects due to immune stimulation (177-180). Options for the recognition of 

unspecific phenotypes originating from off target effects are given by control 

experiments using another shRNA sequence designed against the same target gene or co-

expression of rescue mutants, designed target gene mutants bearing no target sequence of 

the used shRNA (181). 

 

 

1.4.3 Recombinase mediated Cassette Exchange (RMCE) 

The recombinase-mediated cassette exchange (RMCE) is a technique to perform 

the stable integration of transgenic elements by the exchange of a vector based donor 

cassette and a genomic acceptor cassette at previously prepared allele.  

RMCE systems utilize the reaction catalyzed by sequence specific recombinases, FLP 

and Cre, in the first instance. These enzymes recombine DNA within their short 

recognition sites, the FLP recombinase recognition target (FRT) and the locus of 

crossover in P1 (loxP) of the Cre recombinase, at a very high frequency (182, 183). The 

basic principle of RMCE systems is the use of two couples of heterospecific recognition 

sites, e.g. a combination of loxP and FRT sites, or of wild type recognition site and an 

incompatible mutated sited (184-187). Two incompatible recognition sites in the same 

configuration flank donor and acceptor cassettes. In the presence of the corresponding 

recombinase just the compatible sites of vector and RMCE allele are recombined. 

Through this double reciprocal recombination, transposition of the cassettes between 

genome and vector is carried out (Fig. 4). The incompatible character of the available 

recognition sites prevents intramolecular reactions. Thus, even in the presence of the 
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recombinase, the exchanged cassette remains stably integrated. RMCE insertions occur at 

a very high frequency up to 95% in cultured murine embryonic stem (ES) cells (143, 

188). Nevertheless, to achieve a genomic locus prepared for RMCE integration, targeting 

of this locus by classical integration techniques is required (143, 188, 189, 193). The 

RMCE technique is beneficial in the case of the need for repeated integration of different 

elements at the same loci, e.g. the expression of transgenic mRNAs, research on 

regulatory elements, creation of multiple mutant alleles or the expression of short RNAs 

for RNAi induction (143, 189, 190).  

 

 

 

Fig.  4: Functionality of Recombinase mediated Cassette Exchange (RMCE).  A RMCE is mediated 

through the enzyme catalyzed recombination of two heterospecific pairs of recognition sites. By this 

reaction the sequences bordered by this recognition sites, a genomic acceptor cassette and a vector based 

donor cassette, are transposed. Due to the incompatibility of the genomic recognition sites the exchanged 

cassette remains stable integrated, even in presence of recombinase. 

 

The donor cassette integrates exclusive of prokaryotic backbone elements of the 

exchange vector, which are known for potential induction of epigenetic changes at the 

site of integration. The stable single copy integration in a predefined locus allows 

predictable and reproducible use of the given expression properties, the major advantage 

of the RMCE technique (144). Recently the potential to perform specific RMCE 
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reactions in two distinct genomic loci in parallel has been shown (191). Specificity for 

the individual loci has been archived by the use of four couples of heterospecific FRT 

variations. 

Within this study a FLP based RMCE system situated in the rosa 26 (R26) locus 

served as a technical basis (143) (Fig. 5). The genomic part of this system is integrated 

into the first intron of the R26 gene, displaying ubiquitous transcriptional activity through 

all stages of mouse development (192).  A phosphoglyceratkinase (PGK) promoter driven 

hygromycin resistance gene inside the acceptor cassette affords positive selection of 

R26(RMCE) bearing cells. Cassette exchange in R26 depends on the application of two 

hetereospecific pairs of wild type FRT sites and mutated recognition sites, designated as 

F3 sites (186). While a 2 bp variation within the recognition sequence inhibits the 

reaction between FRT and F3 sites completely, two F3 sites display the same self-

recognition capacity as the wild type does (184). RMCE reaction is carried out through 

double reciprocal recombination of FRT and F3 pairs bordering acceptor and donor 

cassette in the same configuration, mediated by a co-expressed FLP recombinase. A 

marker system allows antibiotic selection by reconstitution of a non-functional neomycin 

resistance gene (5´dNeo), leaking start codon (ATG) and promoter, upon correct 

exchange. A splice acceptor site (SA) and an ATG facilitate expression of the truncated 

neomycin resistance gene (5´dNeo) on the exchange vector by employing the endogenous 

rosa26 promoter after cassette exchange. Functionality of 5´dNeo is exclusively restored 

by correct recombination of the F3 site, allowing geneticin (G418) selection after proper 

cassette exchange. In case of random integration events, transcription of 5´d Neo is 

prevented by a pA upstream of 5´d Neo on the exchange vector. The Hyg resistance gene 

gets lost in couse of RMCE reaction. 

Stable single copy integration of shRNA or cDNA expression units in R26 takes 

advantage of the well characterized properties of this locus. Integration in R26 RMCE is 

highly efficient, with a frequency up to 95 % in murine ES cells, allowing rapid generate 

of transgenic mice with predictable and reproducible expression properties of inserted 

elements (143). 
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Fig. 5: Functionality of R26 RMCE system. A) The exchange vector contains in 5´-3´direction: 

polyadenylation signal (pA), F3 site, neomycin resistance gene leaking ATG and promoter (5´d Neo), 

insert, FRT site.  B) The genomic part of R26(RMCE) contains following elements in 5´-3´direction: splice 

acceptor (SA), start codon (ATG), F3 site, phosphoglycerate kinase promoter (PGK), hygromycin 

resistance gene (Hyg), FRT site. Hyg allows antibiotic selection of R26(RMCE) cells. Stable expression of 

FLP avoids incomplete recombination events. C) SA and an ATG facilitate expression of 5´dNeo by 

employing the endogenous rosa26 promoter after cassette exchange, allowing G418 selection after correct 

cassette exchange. Hygromycin resistance gets lost upon RMCE. 

 

 

1.5 Objectives 

The aim of this study was to examine the functional redundancy between IGF1R 

and IR in the context of energy homeostasis. For this reason novel technical approaches 

have been developed, allowing the shRNA mediated KD of two independent target genes 

in transgenic mice. Two different strategies were pursued to reach this aim. 

The first strategy was based on the generation of a murine ES cell line harbouring two 

irrespective RMCE acceptor cassettes at independent genomic loci. Such a cell line 

should enable the integration of two different shRNA expression cassettes in the two 

RMCE loci. As a second strategy two shRNA expression units were combined in a single 

RMCE donor cassette for integration into the R26 RMCE locus. This method was applied 
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for generation of a mouse model providing the concurrent KD of the insulin and the IGF1 

receptor. These mice were physiologically characterized in terms of energy homeostasis. 
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2 Material and Methods 

 

2.1 Chemicals and Enzymes 

Chemicals and enzymes used in this work and the respective sources of supplies 

are indicated below, chemicals in table 1 and enzymes in table 2. 

 

Chemical Supplier 

α-[32P]-dCTP PerkinElmer Life Science, Cologne, Germany 

β-mercaptoethanol Fisher Scientific, Schwerte, Germany  

10x PCR buffer Invitrogen, Karlsruhe, Germany 

20x saline-sodium citrate (SSC) Invitrogen, Karsruhe, Germany  

4-2-hydroxyethyl-1-piperazineethanesulfonic  

acid  (HEPES) 

Sigma Aldrich, Steinheim, Germany 

Adenosintriphosphat (ATP), 10 mM Invitrogen, Karlsruhe, Germany 

Agarose ultra pure Sigma Aldrich, Steinheim, Germany  

Albumine from bovine serum Sigma Aldrich, Steinheim, Germany  

Ampicilin VWR International, Langenfeld, Germany  

Bovine Serum Albumin (BSA) Santa Cruz Biotechnology, Santa Cruz, USA 

Bromophenol blue Merck, Darmstadt, Germany  

Chloroform Merck, Darmstadt, Germany 

Complete protease inhibitor cocktail tablets Roche Diagnostic, Mannheim, Germany 

Desoxyribonukleotide triphosphate set  

(dNTP)    

5 Prime, Hamburg, Germany  

Dextran sulfat sodium salt Sigma Aldrich, Steinheim, Germany 

Dimethyl Sulfoxide (DMSO)  Sigma Aldrich, Steinheim, Germany 

Dithiothreitol (DDT) Sigma Aldrich, Steinheim, Germany 

Dulbecco's Modification of Eagle's Medium 

(DMEM) 

Fisher Scientific, Schwerte, Germany 

Doxycycline hyclate Sigma Aldrich, Steinheim, Germany  
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Ethanol absolute Merck, Darmstadt, Germany  

Ethidium bromide tablets VWR International, Langenfeld, Germany  

Ethylenediaminetetraacetic (EDTA) Sigma Aldrich, Steinheim, Germany 

Fetal calf serum (FCS)  PAN-Biotech, Aidenbach, Germany 

Forward reaction buffer (x5) Invitrogen, Karlsruhe, Germany 

Fugene6 Transfection Reagent  Roche Diagnostics, Mannheim, Germany 

G153 Developer Agfa Healthcare, Mortsel, Belgium  

G354 Fix  Agfa Healthcare, Mortsel, Belgium  

Geneticin (G418) Sigma Aldrich, Steinheim, Germany 

Glucose 20% Bela-pharm, Vechta, Germany  

Glycerol Merck, Darmstadt, Germany  

Guanidine hydrochloride AppliChem, Darmstadt, Germany  

Hydrochloric acid (HCl) Sigma Aldrich, Steinheim, Germany 

Hygromycin B in PBS Invitrogen, Karlsruhe, Germany 

Insulin human Novo Nordisk, Basvaerd, Denmark  

Isopropanol TH. Geyer & Co, Renningen, Germany  

Kaliumchloride (KCl) Sigma Aldrich, Steinheim, Germany 

Lysogeny Broth (LB)   Sigma Aldrich, Steinheim, Germany  

Magnesium chloride (MgCl2) Invitrogen, Karlsruhe, Germany  

Magnesium sulfate (MgSO4) Invitrogen, Karlsruhe, Germany 

Modified Eagle Media (MEM), non essential 

aminoacids  

Invitrogen, Karlsruhe, Germany 

 

N-Laurylsacrosinate Sigma Aldrich, Steinheim, Germany 

optiMEM I with Glutamax-I  Invitrogen, Karlsruhe, Germany 

PCR reaction buffer HIFI (x10) Invitrogen, Karlsruhe, Germany 

PeqGOLD TriFast Peqlab, Erlangen, Germany 

Phenol-Chloroform-Isoamyl alcohol Applied Biosystems, Darmstadt, Germany   

Phosphatase inhibitor cocktail tablets,  

PhosSTOP  

Roche Diagnostic, Mannheim, Germany 

Phosphate buffered saline (PBS) Invitrogen, Karlsruhe, Germany  

Protein A Agarose Millipore, Eschborn, Germany 

Puromycin Dihydrochloride  Sigma Aldrich, Steinheim, Germany 
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QIAzol lysis reagent Qiagen, Hilden, Germany  

Reporter gene assay lysis buffer Roche Diagnostic, Mannheim, Germany  

Restriction enzymes and buffers P1 New England Biolabs, Frankfurt, Germany 

Restriction enzymes and buffers P2 New England Biolabs, Frankfurt, Germany 

Restriction enzymes and buffers P3 New England Biolabs, Frankfurt, Germany 

Restriction enzymes and buffers P4 New England Biolabs, Frankfurt, Germany 

RNAlater  Applied Biosystems, Darmstadt, Germany   

Salmon sperm DNA solution ultra pure, 

sonificated  

Fisher Scientific, Schwerte, Germany  

Sodium chloride 0,9% (NaCl) B. Braun, Melsungen, Germany  

Sodium dodecyl sulfate (SDS) Sigma Aldrich, Steinheim, Germany  

Sodium hydroxide (NaOH) VWR International, Langenfeld, Germany  

Sodium pyrophosphate (Na2HPO4) Sigma Aldrich, Steinheim, Germany 

Sodium pyrovate (C3H3NaO3) Sigma Aldrich, Steinheim, Germany 

Sucrose Sigma Aldrich, Steinheim, Germany 

Super Signal West Pico chemiluminescent 

substrate  

Fisher Scientific, Schwerte, Germany  

 

Tris/EDTA (TE) buffer, pH=7.0 Invitrogen, Karlsruhe, Germany 

Tris acetate EDTA (TAE) Fisher Scientific, Schwerte, Germany  

Tris-glycine SDS running buffer Invitrogen, Karlsruhe, Germany  

Triton X-100 Sigma Aldrich, Steinheim, Germany 

Trizma hydrochloride Sigma Aldrich, Steinheim, Germany 

Tween 20 Sigma Aldrich, Steinheim, Germany 

Trypsin-EDTA (0.25%) Gibco, Karlsruhe, Germany 

 

Table 1: Chemicals used in this work. 

 

 

 

Enzymes Supplier 

AflIII (5,000 U/ml)  New England Biolabs, Frankfurt, Germany 

AscI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 
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BamHI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

BbsI (5,000 U/ml)  New England Biolabs, Frankfurt, Germany 

BclI (15,000 U/ml)  New England Biolabs, Frankfurt, Germany 

BsaBI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

BstBI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

ClaI (5,000 U/ml)  New England Biolabs, Frankfurt, Germany 

DpnI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

EcoRI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

FseI (2,000 U/ml)  New England Biolabs, Frankfurt, Germany 

High fidelity (HIFI) platinum taq polymerase 

(5 U/µl) 

Invitrogen, Karlsruhe, Germany 

HindIII (20,000 U/ml) New England Biolabs, Frankfurt, Germany 

HpaI (5,000 U/ml)  New England Biolabs, Frankfurt, Germany 

KpnI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

MfeI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

MluI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

NarI (5,000 U/ml)  New England Biolabs, Frankfurt, Germany 

NcoI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

NdeI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

NheI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

PacI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

PmeI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

Proteinase K (600 mAU/ml) 5 Prime , Hamburg, Germany 

PstI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

PspXI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

SbfI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

SfiI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

SpeI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

SwaI (10,000 U/ml)  New England Biolabs, Frankfurt, Germany 

Taq DNA Polymerase Invitrogen, Karlsruhe, Germany 

T4 DNA Polymerase Invitrogen, Karlsruhe, Germany 

T4 Kinase (10 U/µl) Invitrogen, Karlsruhe, Germany 
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T4 Ligase H.C. (12 U/µl) Invitrogen, Karlsruhe, Germany 

XbaI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

XhoI (20,000 U/ml)  New England Biolabs, Frankfurt, Germany 

 

Table 2: Enzymes used in this work. 

 

 

2.2 Molecular Biological methods 

 

2.2.1 General cloning cloning procedure 

In general, digested plasmid DNA and annealed oligonucleotides were used for 

cloning DNA constructs. Vector DNA was digested by treatment of 2 µg DNA with 10 U 

of each applied restriction enzyme for 1.5 to 2 h. BSA and restriction enzymes and 

buffers were used according to manufacturer´s instructions.  Digested DNA fragments were 

separated by size using electrophoretic separation in agarose gel (0.8 -1.5 % (w/v), agarose; 1 

x TAE; 0.5 mg/ml ethidium bromide; 1 x TAE electrophoresis buffer) and isolated from gel 

using QIAquick Gel Extraction-Kit (Qiagen, Hilden, Germany), according to manufacturer’s 

instructions. 100 µg vector DNA were used per ligation reaction in a molar vector to 

insert ratio of 3:1, for sticky end ligations, and 5:1 for blunt end ligations. For ligation 

with oligonucleotides 100 µg vector DNA was ligated with 4µl of diluted and annealed 

oligonucleotides, as described below under 2.2.2. DNA was incubated in a total reaction 

volume of 20 µl containing 4µl 5x Ligase Reaction Buffer (Invitrogen, Karlsruhe, 

Germany), 1 U T4 Ligase H.C. (Invitrogen, Karlsruhe, Germany) for 4 h at 16 °C. 

Ligation mixtures were transformed into MaxEfficiency DH5α chemical competent cells 

(Invitrogen, Karlsruhe, Germany), according to manufacturer´s introductions, spread on 

LB plates containing 100 µg/ml ampicillin and incubate overnight at 37 °C. Single 

colonies were analysed for correct ligation product by using CloneChecker™ System 

(Invitrogen, Karlsruhe, Germany) following users manual and subsequent analytic 

restriction digest, adjusted to the accordant cloning product.  
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2.2.2 Annealing of synthetic oligonucleotides for cloning 

Oligonucleotides were used for several cloning steps. For each step two single 

strained oligonucleotides, sense (s) and antisense (as), were designed to be hybridizated 

into double strained DNA bearing overhangs compatible to the overhangs of vector 

fragment they are to be ligated to. Both oligonucleotides are phosphorylated by 

incubating 1 µg of each oligonucleotide with 5 µl 5x forward reaction buffer (Invitrogen, 

Karlsruhe, Germany), 2.5 µl 10 mM ATP (Invitrogen, Karlsruhe, Germany), 1 U T4 

Kinase (Invitrogen, Karlsruhe, Germany) in a total volume of 25 µl at 37 °C for 30 min. 

Kinase was inactivated by subsequent incubation at 65 °C for 10 min. For annealing 14 µl 

of each kinasing mixture were pooled with 4 µl 5M NaCl, incubated at 65 °C for 15 min 

and subsequently cooled down slowly to room temperature. After adding 68 µl TE buffer 

this mixture is diluted 1:10 with ddH2O. 4µl of diluted annealed oligonucleotides are used 

for ligation. All oligonucleotides used in this work were custom synthesized by metabion, 

Martinsried, Germany.  

 

 

2.2.3 Blunting of sticky ended DNA 

Blunting of sticky ends, created by restriction digest, was performed, if further 

procedure includes ligation with blunt ended fragments or abolishing of the restriction 

site by religation of blunted fragment. For blunting 4 µg vector DNA was digested in a 

Volume of 76 µl. After restriction digest 2 µl 10 mM dNTP mix, 20 µl 5 x T4 DNA 

Polymerase Buffer and 2 µl T4 DNA Polymerase (5 U/µl) were added and incubated at 

11°C for 15 min. Fragment were separated in agarose gel electrophoresis and isolated 

from gel as described above under 2.2.1. 
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2.2.4 Cloning of single shRNA expression vectors (pR-shIGF1R1 – pR-shIGF1R6) 

shRNA expression vectors were cloned using oligonucleotides constituted on 

basis of siRNAs designed by the algorithm BLOCK-iT™ RNAi Designer (Invitrogen, 

Karlsruhe, Germany). Used Sequences are displayed in table 3. The sense sequence, 

compatible to target mRNA, with an length of 19 to 21 nt siRNAs was embedded into an 

structure to allow transcripts formation of hairpin structure, termination of Pol III 

transcription and cloning of the oligonucleotide into pINV-7 (TaconicArtemis, Cologne, 

Germany), a standard vector for inducible RNAi and RMCE integration in R26. The 

siRNAs sense strand was connected to its fully complementary antisense strand by a loop 

sequence (TTCAAGAGA) and followed by five thymidines, a Pol III transcription 

termination site. Sense and antisense oligonucleotides (table 3) were designed to form 

overhangs compatible to BbsI/MluI digested pINV-7 (TaconicArtemis, Cologne, 

Germany) after annealing. Strands order relative to H1tetO promoter is sense strand 

followed by antisense strand. All oligonucleotides were purchased from metabion, 

Martinsried, Germany. Oligonucleotides were annealed, ligated to BbsI/MluI digested 

pINV-7 to yield pR-shIGF1R1 to pR-shIGF1R6. All Oligonucleotides were purchased 

from metabion, Martinsried, Germany.  

 

shRNA Sequence of sense strand (5´-3´) Oligonucleotides, name and sequence (5´-3´) 

oshIGF1R1_s: 

CCCGCAATCTGCTTATTAACATCCTTCAAGAG

AGGATGTTAATAAGCAGATTGCTTTTTA 

shIGF1R1 

 

GCAATCTGCTTATTAACATCCT 

oshIGF1R1_as: 

CGCGTAAAAAGCAATCTGCTTATTAACATCC

TCTCTTGAAGGATGTTAATAAGCAGATTGC 

oshIGF1R2_s: 

TCCCGGAAGAACCGAATCATCATAATTCAAG

AGATTATGATGATTCGGTTCTTCCTTTTTA 

shIGF1R2 GGAAGAACCGAATCATCATAA 

 

oshIGF1R2_as: 

CGCGTAAAAAGGAAGAACCGAATCATCATA

ATCTCTTGAATTATGATGATTCGGTTCTTCC 
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oshIGF1R3_s: 

TCCCGCACAACTACTGCTCCAAAGATTCAAG

AGATCTTTGGAGCAGTAGTTGTGCTTTTTA 

shIGF1R3 GCACAACTACTGCTCCAAAGA 

 

oshIGF1R3_as: 

CGCGTAAAAAGCACAACTACTGCTCCAAAGA

TCTCTTGAATCTTTGGAGCAGTAGTTGTGC 

oshIGF1R4_s: 

TCCCGGACAGATCCTGTGTTCTTCTTTCAAGA

GAAGAAGAACACAGGATCTGTCCTTTTTGGT

AC 

shIGF1R4 GGACAGATCCTGTGTTCTTCT 

 

oshIGF1R4_as: 

CGCGGTACCAAAAAGGACAGATCCTGTGTTC

TTCTTCTCTTGAAAGAAGAACACAGGATCTG

TCC 

oshIGF1R5_s: 

TCCCCCATCAGGATTGAGAAGATTCAAGAGA

TCTTCTCAATCCTGATGGTTTTTA 

shIGF1R5 CATCAGGATTGAGAAGA 

oshIGF1R5_as: 

CGCGTAAAAACCATCAGGATTGAGAAGATCT

CTTGAATCTTCTCAATCCTGATGG 

oshIGF1R6_s: 

TCCCGCACCATCCTGAAGGGCAATTCAAGAG

ATTGCCCTTCAGGATGGTGCTTTTTA 

shIGF1R6 GCACCATCCTGAAGGGCAA 

 

oshIGF1R6_as: 

CGCGTAAAAAGCACCATCCTGAAGGGCAATC

TCTTGAATTGCCCTTCAGGATGGTGC 

 

Table 3: Tested shRNAs against IGF1R, sequences and oligonucleotides. Sense strands of used 

shRNAs were designed by the algorithm BLOCK-iT™ RNAi Designer (Invitrogen, Karlsruhe, Germany) 

and embedded into a standard shRNA structure to enable cloning of the shRNA by using oligonucleotides 

into the expression vector pINV-7 (TaconicArtemis), transcripts formation of hairpin structure and 

termination of Pol III transcription.  Sequences are displayed in 5´-3´direction and are designated “sense” 

when complementary to target mRNA. All oligonucleotides were purchased from metabion, Martinsried, 

Germany. 
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2.2.5 Cloning of expression vectors for two shRNAs (pshIGF1R2_shIR5 and 

pshIR5_shIGF1R2) 

For cloning of double KD Vectors MluI restriction site was abolished from the 

vectors pINV-7_shIR5 (144), bearing a shRNA directed against IR, and pshIGF1R2 by 

MluI digestion followed by blunting and religation. Vectors without MluI restriction site 

were designated as pshIR5_dMluI and pshIGF1R2_dMluI. For cloning of 

pshIR5_shIGF1R2 the 8703 bp fragment of NheI/SpeI digested pshIGF1R2 was ligated 

to the 450 bp fragment of NheI/SwaI digested pshIR5_dMluI. For cloning of 

pshIGF1R2_shIR5 the 8703 bp fragment of NheI/SpeI digested pINV-7_shIR5 (144) was 

ligated to the 450 bp fragment of NheI/SwaI digested pshIGF1R2_dMluI. 

 

 

2.2.6 RecE/RecT based (ET)-cloning 

The arms of homology of Col1a1 needed for targeting vectors were subcloned 

from bacterial artificial chromosomes (BACs) bearing strain RPCIB731P14208Q 

(imaGenes, Nottingham) using ET-cloning, as described by Muyrers et al.. Two vectors 

were generated containing 3´ and 5´arm of homology. To obtain each PCR product for 

transformation in BAC cells containing pSC101-BAD-gbaA-tet (193) two consecutive 

PCR reactions were performed. In the first PCR step the primer couples designated as 

“inside” with pACYC177 (193) as template were used. The reactions were performed in a 

total volume of 50 µl, containing 2 ng  pACYC177 (193), 0.5 µM of each “inside” primer, 

sense and antisense, 0.3 mM dNTP Mix, 2 mM MgSO4, 1 x PCR reaction buffer (HIFI) and 5 

U HIFI platinum Taq polymerase (Invitrogen, Karlsruhe, Germany). Standard PCR program 

starts with 5 min of denaturation at 95°C, followed by 25 cycles of denaturation at 95°C for 

30 sec, annealing at 58 °C for 30 sec and elongation at 72 °C for 2.5 min and a final 

elongation step at 72 °C for 10 min. PCR products were purified using QIAquick Gel 

Extractions-Kit (Qiagen, Hilden, Germany), according to manufacturer’s instructions for 

PCR-fragment purification. For elimination of template DNA products were digested 

with DpnI for at least 3 hours and subsequently purified using QIAquick Gel Extractions-

Kit (Qiagen, Hilden, Germany), as described under 2.2.1. The second PCR step was 
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performed using the primer couples designated as “outside” with 5 µl of the respective 

PCR product obtained from step one as template. Reaction mixture and PCR program 

were the same as described above for the first PCR step.   

Primer couples “inside” and “outside” used to gain PCR products for ET-cloning of 3´ 

arm of homology as well as 5´ arm of homology are stated in table 4. Prior to transfection 

PCR products were purified using MSB® Vario Cleanup Kit (Invitek, Berlin, Germany), 

following manufacturer´s protocol 2. Both arms of homology for targeting of Col1a1 

locus were subcloned from BAC to the vectors pCol1a1_3´arm, containing the 3´arm arm 

of homology, and pCol1a1_5´arm, containing the 5´arm of homology. 

 

Arm of 

homology 

Primer name Primer sequence (5´-3´) 

3´_s-inside AGGTGGGGAGAGGCCAGCTACCCCTCCATGTGTGACCAAG

GAGCAACCTGGCAATTGGAGTTTTCGTTCCACTGAGCGTC 

3´_as-inside GTCTACAGAGTGAGTTCCAGGACAGCCAGGGCTACACAGA

GAAACCCTGTCTCTGATCAATGCTCTGCCAGTGTTACAACC 

3´_s-outside TGTGACACCCCAGCATTAGAAGGCCCCTTCTATACTAAATT

ATGGTTTCTTTGGGCTAGAGGTGGGGAGAGGCCAGCTACC

CC 

3´arm 

3´_as-outside AATCCCAGCACTTGGGAGGCAGAGGCAGGCGGATTTCAGA

GTTTGAGGCCAGCCTGGTCTACAGAGTGAGTTCCAGGACA

G 

5´_s-inside GCCCTCAAAGGGATTCAAGCAGCAGAAACAGGGACTGAGA

CATGGAGGAGTTTAAACGCAATTGGAGTTTTCGTTCCACT 

5´_as-inside CAGCTTCATATGGCAGGACCTGCCTTCCCTGCAGAGCCCCA

CCTGAGCTTGCTGATCAATGCTCTGCCAGTGTTACAACC 

5´_s-outside TCTCCATGCTGACGACCTGAGGCCTGGGAGGTGTTGCCCAT

GGATCCTGGGAGGTTCATGAGCCCTCAAAGGGATTCAAG 

5´arm 

5´_as-outside GGGAGATGAACCAATGACACCTTCCCTCCCTCCTGGTCCCT

TGAACTTCCTGGGTCACCAGCTTCATATGGCAGGACCTGC 

 

Table 4: Primers used in ET-cloning.  Primers used in ET-cloning to gain arms of homology for targeting 

of Col1a1 locus. Primer couples designated as ”inside” are used for a  first PCR step with pACYC177 
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(193) as template. Primer couples designated as “outside”  are used for the second PCR step with the 

Product of step one as template. Primer sequences are displayed in 5´-3´direction. All primers were 

purchased from metabion, Martinsried, Germany.  

 

 

2.2.7 Cloning of pCol1a1T(RMCE_2Neo) 

The targeting vector, pCol1a1T(RMCE_2Neo), for insertion of RMCE_2Neo in 

the locus of Col1a1 was cloned in 25 steps, as described below. All oligonucletides used 

for cloning these vectors are stated in table 5. For cloning of the first intermediate 

pColT1.1 the 3371 bp fragment of XhoI/KpnI digested pBasic48 (TaconicArtemis, 

Cologne, Germany) was ligated to the annealed oligonucleotides oColT1.1_s and 

oColT1.1_as. SbfI digested pColT1.1 was ligated to the 1823 bp fragment of SbfI 

digested pINV-7 (TaconicArtemis, Cologne, Germany) to generate pColT1.2. For 

cloning of pColT1.3 the vector pBasic46 (TaconicArtemis, Cologne, Germany) was 

XhoI/KpnI digested and ligated to annealed oligonucleotides oColT1.3_s and 

oColT1.3_as to gain pColT1.3. The 3190 bp fragment of PstI/MluI digested pColT1.3 

was ligated to the 5562 bp fragment of PstI/AscI digested pCAGGS-I-lacZ-pA 

(TaconicArtemis, Cologne, Germany) to generate pColT1.4. pColT1.4 was Nhe/KpnI 

digested and the resulting 5629 bp fragment was ligated to the 5001 bp fragment of 

Nhe/KpnI digested pColT1.2 to give pColT1.5. For cloning of pColT2.1 the plasmid 

pBasic45 (TaconicArtemis) was XhoI/KpnI digested and ligated to the annealed 

oligonucleotides oColT2.1_s and oColT2.1_as. The vector was ClaI/NheI digested and 

the resulting 2719 bp fragment was ligated to the 1989 bp fragment of ClaI/NheI digested 

pTT84 (TaconicArtemis, Cologne, Germany) to gain pColT2.2. In the next step the 4697 

bp fragment XhoI/SalI digested pColT2.2 was ligated to the 4038 bp fragment of 

XhoI/SalI digested pTT71-hGH (TaconicArtemis, Cologne, Germany) to obtain 

pColT2.3. For cloning of pColT2.4 the plasmid pBasic45 (TaconicArtemis, Cologne, 

Germany) was BamHI/AflIII digested and ligated to the annealed oligonucleotides 

oColT2.4_s and oColT2.4_as. pColT2.4 was HpaI/FseI digested and ligated to the 2082 

bp fragment of BsaBI/FseI digested pTT84-new (TaconicArtemis, Cologne, Germany). 

pColT2.5 was generated by ligation of the 4782 bp fragment of AscI/AflIII digested 
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ColT2.4 to the 3536 bp fragment of AscI/AflIII digested pColT2.3. pColT2.5 was AscI 

digested and ligated to the 7496 bp fragment of AscI digested pColT1.5 to obtain 

pColT2.6. For cloning of the intermediate pColT3.1 the 2789 bp fragment of BsaBI/KpnI 

digested pBasic45 (TaconicArtemis, Cologne, Germany) was ligated to the annealed 

oligonucleotides oColT3.1_s and oColT3.1_as. pColT3.1 was EcoRI/KpnI digested and 

ligated to annealed oligonucleotides oColT3.2_s and oColT3.2_as to gain pColT3.2. The 

3000 bp fragment of SfiI/KpnI digested pColT3.2 was ligated to the 1051 bp fragment of 

SfiI/KpnI digested pINV-6 (TaconicArtemis, Cologne, Germany) to generate pColT3.3. 

pColT3.4 was obtained by ligation of NarI/MfeI digested pColT3.3 to 3870 fragment of 

BstBI/MfeI digested pCol1a1_3´arm. For cloning of pColT3.5 the 7898 bp fragment 

MluI of digested pColT3.4 was ligated to the 7496 bp  fragment of AscI digested 

pCol2.6. For cloning of pColT4.1 pBasic45 (TaconicArtemis, Cologne, Germany) was 

XhoI/KpnI digested and ligated to the annealed oligonucleotides oColT4.1_s and 

oColT4.1_as. pColT4.2 was generated by ligation of the 3165 bp fragment of PacI/KpnI 

digested pColT4.1 with the annealed oligonucleotides oColT4.2_s and oColT4.2_as. The 

3230 bp fragment of SfiI/FseI digested pColT4.2 was ligated to the 1051 bp fragment of 

SfiI/FseI digested pINV-6 (TaconicArtemis, Cologne, Germany) to generate pColT4.3.  

This plasmid was ClaI/NcoI digested and the resulting 4268 bp fragment was ligated to 

the 822 fragment of ClaI/NcoI digested pINV-7 (TaconicArtemis, Cologne, Germany) to 

gain pColT4.4. pColT4.5 was generated by T4 blunting the AscI restriction site of 

pColT4.4 and religation of the generated fragment. For cloning of pColT4.6 the vector 

pColT4.5 was MluI digested, the resulting fragment was blunted and ligated to the 1319 

bp fragment of SfiI/NdeI digested pINV-6 (TaconicArtemis, Cologne, Germany). 

pColT4.7 was obtained by ligation of PmeI/BclI digested pColT4.6 to 10441 bp fragment 

of PmeI/BclI digested pCol1a1_5´arm. For generating the final targeting vector 

pCol1a1T(RMCE_2Neo) pColT4.7 was MluI/BstBI digested and the resulting 13454 bp 

fragment was ligated to the 12509 bp fragment of AscI/BstBI digested ColT2.6.  
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oligonucleotide Sequence (5´-3´) 

oColT1.1_s TCGAGGCGCGCCAGTATAACTTCGTATAGCATACATTATACGAAGTTAT

AGTCCTGCAGGGCTAGCACGCGTGGTAC 

oColT1.1_as CACGCGTGCTAGCCCTGCAGGACTATAACTTCGTATAATGTATGCTATA

CGAAGTTATACTGGCGCGCC 

oColT1.3_s 

 

TCGAGGCTAGCAGATAACTTCGTATAGCATACATTATACGAAGTTATAG

TCTGCAGCTGACGCGTGGCGCGCCGGTAC 

oColT1.3_as CGGCGCGCCACGCGTCAGCTGCAGACTATAACTTCGTATAATGTATGCT

ATACGAAGTTATCTGCTAGCC 

oColT2.1_s 

 

GATCCGGCGCGCCGCTAGCACGTGATCGATACTCGAGGTACCGTCGACG

AATTCTTAAGTGTACA 

oColT2.1_as CATGTGTACACTTAAGAATTCGTCGACGGTACCTCGAGTATCGATCACG

TGCTAGCGGCGCGCCG 

oColT2.4_s 

 

GATCCCGCGGCCGCGAGCTCGTTTAAACGGCCGGCCACGTGGTTAACGG

CGCGCCATCGATA 

oColT2.4_as CATGTATCGATGGCGCGCCGTTAACCACGTGGCCGGCCGTTTAAACGAG

CTCGCGGCCGCGG 

oColT3.1_s 

 

TTCGAACCATGGCCCGGGCGGCGCCATGGCAATTGGCCATAGCGGCCTA

GGCCGGCCGAATTCGGTAC 

oColT3.1_as CGAATTCGGCCGGCCTAGGCCGCTATGGCCAATTGCCATGGCGCCGCCC

GGGCCATGGTTCGAA 

oColT3.2_s 

 

AATTCAGAAGTTCCTATTCCGAAGTTCCTATTCTTCAAAAGGTATAGGA

ACTTCTTAAGACGCGTCAGCTGGCGCGCCGGTAC 

oColT3.2_as CGGCGCGCCAGCTGACGCGTCTTAAGAAGTTCCTATACCTTTTGAAGAA

TAGGAACTTCGGAATAGGAACTTCTG 

oColT4.1_s 

 

TCGAGGTTTAAACGGCCATAGCGGCCTAGGCCGGCCATCGATTTAATTA

AGGTAC 

oColT4.1_as CTTAATTAAATCGATGGCCGGCCTAGGCCGCTATGGCCGTTTAAACC 

 

oColT4.2_s 

 

CTGATCAGTTAACGCGTGAAGTTCCTATACTTTCTAGAGAATAGGAACT

TCGGAATAGGAACTTCTCCATGGTTAAT 

oColT4.2_as TAACCATGGAGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTAT

AGGAACTTCACGCGTTAACTGATCAGGTAC 

 



2 Material and Methods 

                                                               

 

-32- 

 

Table 5: Oligonucleotides used for cloning pCol1a1T(RMCE_2Neo). Corresponding sense and 

antisense oligonucleotides were phosphorylated and annealed as described under 2.2.2. All 

oligonucleotides were purchased from metabion, Martinsried, Germany. Sequences are displayed in 5´-

3´direction.  

 

 

2.2.8 Cloning of a basic exchange vector for RMCE-2 and pC-shIR5  

As an exchange vector for RMCE-2 a basic shRNA expression vector, pColEx5 

was cloned. All oligonucleotides used for cloning pColEx5 are stated in table 6. For 

cloning of the first intermediate pColEx1 the 2958 bp fragment of AscI/KpnI digested 

pBasic45 (TaconicArtemis, Cologne, Germany) was ligated to the annealed 

oligonucleotides oColEx1_s and oColEx1_as. pColEx1 was FseI/XhoI digested and the 

resulting 3029 bp fragment was ligated to a 1837 bp fragment resulting from FseI/XhoI 

digestion of pTT84 (TaconicArtemis, Cologne, Germany) to generate pEx2. AscI 

digested pINV-7 (TaconicArtemis, Cologne, Germany) was ligated to the annealed 

oligonucleotides oColEx2_s and oColEx2_as to yield pColEx3. pColEx3 was FseI 

digested and ligated to the annealed oligonucleotides oColEx4_s and oColEx4_as to  

obtain pColEx4. For cloning of the final exchange vector pColEx5 the 4846 bp fragment 

of FseI/AscI digested pColEx2 was ligated to the 3186 bp resulting from FseI/AscI 

digestion of pColEx4.  

 

oligonucleotide Sequence (5´-3´) 

oColEx1_s CGCGCCGGCCGGCCCTCGAGCGAAGTTCCTATACTTTCTAGAGAATAGG

AACTTCGGAATAGGAACTTCGGTAC 

 

oColEx1_as CGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC

GCTCGAGGGCCGGCCGG 

 

oColEx2_s  CGCGCCTAGGCTAGCCATGGTGATCA 

 

oColEx2_as CGCGTGATCACCATGGCTAGCCTAGG 
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oColEx4_s CCTAGGTACCATATGACCGG 

 

oColEx4_as TCATATGGTACCTAGGCCGG 

 

 

Table 6: Oligonucleotides used for cloning basic RMCE-2 exchange vector. Corresponding sense and 

antisense oligonucleotides were phosphorylated and annealed as described under 2.2.1.  All 

oligonucleotides were purchased from metabion, Martinsried, Germany. Sequences are displayed in 5´-

3´direction.  

 

 

The shRNA expression vector pColEx_shIR5 was generated by ligating BbsI/MluI 

digested pColEx5 to annealed oligonucleotides oshIR5_s and oshIR5_as (144). 

 

 

2.2.9 Cloning of pColVaLo_shEgln1 

The targeting vector, pColVaLo_shEgln1, for insertion of VaLo_shEgln1 in the 

locus of Col1a1 was cloned in 9 steps, as described below. All oligonucleotides used in 

this cloning procedure are stated in table 7. First the FseI site in pINV-7 

(TaconicArtemis, Cologne, Germany) was eliminated by digesting the vector with FseI, 

blunting the resulting fragment followed by its religation to gain pVaLo1. In a second 

step the NheI and SpeI sites in pVaLo1 were removed by digesting with both Enzymes 

and religation of the resulting 8669 bp fragment. The resulting vector pVaLo2 was 

KpnI/AscI digested and ligated to the annealed oligonucleotides oVaLo3_s and 

oVaLo3_as to gain pVaLo3. pVaLo3 was PspXI/SfiI digested and ligated to the annealed 

oligonucleotides oVaLo4_s and oVaLo4_as to generate pVaLo4. For cloning of pVaLo5, 

pVaLo4 was SpeI digested and ligated to the 1884 bp fragment of NheI digested 

pColT1.2. pVaLo6 was cloned by ligation of NheI/HpaI digested pVaLo5 with the 888 

bp fragment of XbaI/SwaI digested pINV-6 (TaconicArtemis, Cologne, Germany). 

pVaLo_shEgln1 was gained from ligation of MfeI/MluI digested pVaLo5 to the 412 bp 

fragment of MfeI/MluI digested pINV-7_shEgln1(TaconicArtemis, Cologne, Germany). 

The vector pCol_5´-3´arms was generated by ligation of PmeI/BclI digested 
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pCol1a1_3´arm with the 7141 bp fragment of PmeI/BclI digested pCol1a1_5´arm. The 

final vector pColVaLo_shEgln1 was cloned by ligation of FseI/MluI digested pCol_5´-

3´arms to the 7056 bp fragment of FseI/AscI digested pVaLo_shEgln1.  

 

 

oligonucleotide Sequence (5´-3´) 

oVaLo3_s CGCGTGGTACCGAATTCGTTAACGCTAGCGGCCGGCCATGTAC 

 

oVaLo3_as ACATGGCCGGCCGCTAGCGTTAACGAATTCGGTACCA 

 

oVaLo4_s TCGACATGGCGCGCCGCTCGAGGATCACGTGACTAGTGGCCATAG 

 

oVaLo4_as TGGCCACTAGTCACGTGATCCTCGAGCGGCGCGCCATGT 

 

 

Table 7: Oligonucleotides used for cloning pColVaLo_shEgln1. Corresponding sense and antisense 

oligonucleotides were phosphorylated and annealed as described under 2.2.1.  All oligonucleotides were 

purchased from metabion, Martinsried, Germany. Sequences are displayed in 5´-3´direction.  

 

 

2.2.10 Isolation of Genomic DNA 

To obtain genomic DNA from cultured cells murine embryonic stem cells were 

incubated in lysis buffer (10 mM Tris-HCl (pH 7.5), 10 mM EDTA, and 10 mM NaCl, 5% 

(w/v) N-Laurylsacrosinate, 0.5 mg/ml proteinase K) at 60°C overnight. DNA was 

precipitated by adding double amount of 100% ethanol, absolute, and incubation for 1 h at 

4°C. When performing DNA-isolation from 6-well cultured cells, DNA- precipitate was 

transferred into a new vial and washed twice with 70% (v/v) ethanol. After air drying at room 

temperature (RT) for 15 minutes, DNA was and resolved in 200 µl TE buffer (10 mM Tris- 

HCl (pH 7.5), 1 mM EDTA (pH 8.0)). When performing DNA-isolation from 96-well 

cultured cells, DNA- precipitate was washed and dissolved on 96-well plate. After 

precipitation liquid was discharged and DNA precipitate was washed twice with 70% (v/v) 

ethanol. After air drying at room temperature (RT) for 15 minutes DNA was directly resolved 
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in digest reaction mix for southern blot analysis. For genomic DNA isolation from mouse tail 

biopsies, samples were incubated overnight in lysis buffer (100 mM Tris-HCl (pH 8.5), 5 

mM EDTA, 0.2% (w/v) SDS, 0.2 M NaCl, 200 µg/ml proteinase K) in a thermomixer 

(Eppendorf, Hamburg, Germany) at 55°C and 1100 rpm. Samples were centrifuged to discard 

debris and supernatant was transferred into a new vial. DNA-precipitation was then 

performed by addition of an equivalent amount of isopropanol. After centrifugation and 

washing twice with 70% (v/v) ethanol, the DNA pellet was dried at room temperature for 15 

minutes and resolved in 400 µl in ddH2O. 

 

 

2.2.11Polymerase Chain Reaction (PCR) for genotyping of transgenic mice 

The PCR method (160, 161) was used to genotype generated mice for the presence of 

transgenic elements using customized primers listed in table 8. Reactions were performed in 

a thermocycler MultiCycler PTC 225 Tetrad (Bio-Rad Laboratories, CA, USA). All PCRs 

were performed in a total volume of 50 µl, containing a minimum of 50 ng genomic template 

DNA, 0.5 µM of each primer, sense and antisense, 0.3 mM dNTP Mix, 2 mM MgCl2, 1 x 

PCR buffer and 5 units/µl Taq DNA Polymerase (Invitrogen, Karlsruhe, Germany). Standard 

PCR program starts with 5 minutes (min) of denaturation at 95°C, followed by 35 cycles of 

denaturation at 95°C for 30 seconds (sec), annealing at 56 °C for 30 sec and elongation at 

72°C for 1 min and a final elongation step at 72°C for 10 min. Amplified DNA fragments 

were detected via electrophoretic separation in agarose gel (1,,5 % (w/v), agarose; 1 x TAE; 

0.5 mg/ml ethidium bromide; 1 x TAE electrophoresis buffer). Expected amplicon sizes are 

listed in table 8. 
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Detected alleles  Primer  Amplicons 

 

1165_s: 

CCATGGAATTCGAACGCTGACGTC 

 

 

- R26(shIGF1R1-6) 

 

- R26(shIR5) 

 

- Col1a1(VaLo_shEgln1) 

 

 

1165_as: 

TATGGGCTATGAACTAATGACCC 

 

 

Targeted allele: 365 bp 

 

Wt allele: no amplicon 

 

1734_s:  

GTTGGGTCCACTCAGTAGATGCC 

 

 

- R26(shIR5_shIGF1R2) 

 

1734_as: 

GGAACATACGTCATTATTGACGTC 

 

 

Targeted allele: 1050 bp 

 

Wt allele: no amplicon 

 

Table 8: Primer used in genotyping and amplicon length. Transgenic mice were genotyped via PCR. 

Primers used for amplification and the expected amplicon sizes for targeted alleles are shown. Primer 

sequences are displayed in 5´-3´direction and are designated “sense” when coinciding with transcriptional 

direction. All primers were purchased from metabion, Martinsried, Germany.  

 

 

2.2.12 Southern Blotting 

Southern Blots were used to detect targeting of Cola1 locus, Cre-mediated 

deletion of the neomycin resistance gene from Col1a1(RMCE_2Neo) as well as RMCE-

integration in Cola1(RMCE) and R26(RMCE). Probes and enzymes used for the 

particular detections are listed in table 9. 10 µg of genomic DNA were digested overnight 

using 40 U of enzyme, respectively to the detection to be performed. After separating 

fragments by size via electrophoresis in a 0.8 % (w/v) agarose gel at 90 V DNA was 

transferred to a Hybond
TM

 –XL nylon membrane (GE Healthcare, Freiburg Germany) by 

alkaline capillary transfer (194). Blotted DNA was crosslinked to the membrane by 
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baking at 80 °C for 1 h after washing two times  with 2x SSC. Membrane was pre-

hybridized in hybridization solution (1 M NaCl, 50 mM Tris-HCl (pH 7.5), 10 % (w/v) 

dextran sulfat, 0.1 % (w/v) SDS, 250 µg/ml sonicated salmon sperm) at 65 °C overnight 

in rotating hybridization tubes. Probes were generated by PCR or by digestion of plasmid 

DNA as stated in table 9 and labelled with α- 
32

P-dCTP (PerkinElmer Life Science, 

Cologne, Germany) using Amersham Readyprime II Random Prime Labelling System 

(GE Healthcare, Freiburg Germany) following users manual. For hybridization labelled 

probes were added to pre-hybridization solution and incubated overnight at 65 °C in 

rotating hybridization tubes. Unspecifically bound probes were removed by washing 

hybridizes membrane initially twice with 2 x SSC/ 0.1 % (w/v) SDS under gentle shaking 

for 10-20 min, followed by one washing step in 0.2 x SSC/ 0.1 % (w/v) SDS until 

radiation of membrane is reduced to a value under 20 impulses per second (IPS). Washed 

membranes were sealed with plastic foil and exposed to autoradiography film Kodak 

BioMax MS; Sigma Aldrich, Deisenhof, Germany) at -80 °C for 3 days. Films were 

developed using automatic developer processing machine Curix60 (Agfa Health Care 

GmbH, Mortsel, Belgium).  

 

Probe Size Origin 

Rosa3´ 386 bp Digest of vector JS43 (TaconicArtemis, Cologne, Germany) with HindIII 

 

Rosa5´ 533 bp PCR on vector JS32 (TaconicArtemis, Cologne, Germany) using R62s 

(AAGGATACTGGGGCATACG) and R64as 

(CTTCTCAGCTACCTTTACACACC) 

 

internal_Neo 519 bp Digest of vector KD602 (TaconicArtemis, Cologne, Germany) with HindIII 

and EcoRI 

 

internal_Puro 292 bp Digest of vector pMultilink  

Puro (TaconicArtemis, Cologne, Germany) with SpeI and XhoI 

 

Col3´ 451 bp PCR on BAC (RPCIB731P14208Q, imaGenes, Nottingham) using 
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ocol11(GGTCAGGATCTGACAGGTC) and  

ocol12 (GTCAGGGAGTGTCTCATCTGGC)  

 

Col 5´ 346 bp PCR on BAC (RPCIB731P14208Q, imaGenes, Nottingham, UK) 

using Cola 5´_s (CCTCTTGCTGCTGCTCCCTCC) and Cola 5´_as 

(CCACCGTTATAGACCTACTCTTC)  

 

Table 9: Probes used in Southern Blot analysis. Probes used for validation of RMCE integrations in 

R26(RMCE), Cola1(RMCE-2), for targeting of Cola1 locus with Col1a1(RMCE-2Neo), Cre-mediated 

deletion of Neo from Col1a1(RMCE-2Neo) and targeting of Cola1 locus with Col1a1(VaLo_shEgln1). 

Primer sequences are displayed in 5´-3´direction. All primers were purchased from metabion, Martinsried, 

Germany. 

 

 

2.2.13 RNA Extraction and Quantitative Realtime-PCR (qPCR) 

Realtime-PCR was applied to determine mRNA levels of IR, IGF1R and Egln1. 

Total RNA was extracted from murine ES-cells and tissue samples using Qiagen RNeasy 

Plus Mini Kit (Qiagen, Hilden, Germany) according to manufacturer´s introductions. 1 

µg mRNA per sample was reversely transcribed using High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Darmstadt, Germany) following users manual. 

Quantification was performed by using gene specific TaqMan® Gene Expression Assays 

(Applied Biosystems, Darmstadt, Germany) and ABI Prism 7900HTFast real-time PCR 

System (Applied Biosystems, Darmstadt, Germany).Gene Expression Assays and 

Accession Numbers of the National Centre of Biotechnology Information (NCBI) used 

for assay selection are stated in table 10. Samples were adjusted for total RNA content to 

levels of heterochromatin protein 1 binding protein 3 (Hp1bp3). Relative cDNA amounts 

were quantified using Sequence Detector System (SDS) software version 2.1 (ABI). 

Threshold cycle (Ct) values were automatically converted to fold range RQ value ((RQ) 

= 2
-∆∆Ct

).  
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mRNA Accession Number of reference 

sequence 

Assay 

IGF1R 

 

NM_010513.2 Mm00802831_m1 

IR 

 

NM_010568.2 Mm01211881_m1 

Egln1 

 

NM_053207.2 

 

Mm00459770_m1 

 

tetR 

 

DQ_414432 

 

Mm01211881_m1 

 

Hp1bp3 

 

NM_010470.1 

 

Mm00802807_m1 

 

Table 10: TaqMan® Gene Expression Assays and NCBI – Accession Numbers. Assays used for 

quantification of IGF1R, IR and Hp1bp3 mRNA levels were purchased from Applied Biosystems, 

Darmstadt, Germany.  

 

 

2.2.14 DNA-Sequencing 

DNA-sequencing reactions were performed used Big Dye Termination v3.1 Cycle 

Sequencing System Kits (Applied Biosystems, Darmstadt, Germany). 400 ng DNA were 

used in a reaction mix containing 1.0 µl, 2.5 x Ready Reaction Premix (2.5x), 3.0 µl 5 x 

BigDye, Sequencing Buffer, 2.0 pmol/µl sense as well as antisense primer in a total 

volume of 10 µl. Amplification was performed following the program of 20 sec at 95 °C, 

20 sec at 55 °C, 2 min at 60 °C for 25 cycles. Fluorescent-labelled fragment were purified 

by using Sephadex TM G-50 Medium (GE Healthcare Bio-science, Freiburg, Germany). 

DNA- sequence was automatically determined using ABI Prism 3130xl genetic Analyser. 

Evaluation of sequencing data was performed using Sequencher 4.9 (Gene Codes 

Corporation, Ann Arbor, USA) software. 
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2.2.15 DNA and RNA Quantification 

Nucleic acid concentrations were determined by measurement of absorption at 

260 nm using NanoDrop® ND-1000 UV-Vis Spectrometer (Peqlab, Erlangen, Germany). 

Quality of purified nucleic acid was estimated by 260/280 nm absorbance ratio. 

 

 

2.3 Biochemistry 

 

2.3.1 Protein Extraction  

Total Protein was extracted from snap-frozen tissue samples. Tissues were 

disrupted in 3 ml lysis buffer (50mM HEPES (pH 7.4); 1% Triton X-100 (v/v); 50 mM 

NaCl; 10mM EDTA; 0.1% (w/v) SDS; Protease Inhibitor Cocktail Tablets mini (Roche 

Diagnostic, Mannheim, Germany), 1 tablet to 10ml; phosphataseinhibitorcocktail1 

(Roche Diagnostic, Mannheim, Germany)100µl to 10ml) per mg sample and 

homogenized using TissueLyser II (Qiagen, Hilden, Germany) for 2 min at 30 Hz with 5 

mm stainless steel beads (Qiagen, Hilden, Germany).  Cell debris were removed by 

centrifugation at 13.000 rpm for 1 h at 4 °C. Lysed adipose tissues were centrifuged twice 

to get rid of formed fat layer. Supernatant was transferred to fresh vial.  

 

 

2.3.2 Protein Quantification 

Protein concentrations were determined using bicinchoninic acid (BCA) protein 

assay using Pierce BCA protein assay kit (Fisher Scientific, Schwerte, Germany) 

following manufacturer´s protocol.  

 

 

2.3.3 Western Blotting 

Protein extracts were diluted to a concentration of 2.5 mg/ml in organ lysis and 4 

x SDS sample buffer (250 mM Tris-HCl (pH 6.8), 200 mM DTT, 8% (w/v) SDS, 40% 
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(v/v) glycerol, and 0.04% (w/v) bromophenol blue), incubated for a minimum time of 5 

min at 95 °C. Samples were stored at -80 °C when not used immediately. 

Protein extracts were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) on 4-12 % Novex® Tris-Glycine polyacrylamide gel 

(Invitrogen, Karlsruhe, Germany) in 1 x SDS running buffer. 50 -100 µg protein of each 

sample were applied to SDS gel. Unraveled protein were transferred to nitrocellose 

membranes (Invitrogen, Karlsruhe, Germany) using the iBlot® Dry Blotting System 

(Invitrogen, Karlsruhe, Germany). Membranes were blocked by incubating in 5 % (w/v) 

BSA in 1 x TBS, 0.1 % (v/v) Tween20 for 1 h rotating at room temperature. Target 

protein specific primary antibody were applied to the membrane in freshly prepared 

blocking solution, diluted as stated by manufacturer, and incubated overnight at 4 °C on a 

rotating device. After hybridization membranes were washed three times with 1 x 

TBS/0.01% (v/v) Tween20 for 5 min. Hybridization and washing procedure was repeated 

with Anti rabbit IG-HRP linked #7074 (Cell signaling Technology, Beverly, USA), used 

as secondary antibody. Membranes were incubated in ECL Western Blotting Substrate 

(VWR International, Langenfeld, Germany) for 15 min, sealed with plastic foil and 

exposed to chemiluminescence films (Kodak BioMax MS; Sigma-Aldrich Chemie 

GmbH, Deisenhof, Germany) and  developed using an automatic developer processing 

machine Curix60 (Agfa Health Care GmbH, Mortsel, Belgium). For adjustment to total 

protein levels membranes were stripped by Incubating for 0.5-1 h at 56 °C in stripping 

buffer (100mM Mercaptoethanol, 2 % SDS and 62.5 mM Tris-HCl at pH 6.7) and 

blotting procedure was repeated with α-tubulin (DMA1) mouse mAb #3873 (Cell 

signaling Technology, Beverly, USA) in case of IR and IGF1R detection. Phospho-Akt 

and Phospho-GSK3 levels were adjusted to total Akt or total GSK3 levels, respectively. 

Used Antibodies are displayed below in table 11. 
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Target protein Antibody 

IGF1R 

 

IGF-I Receptor β (111A9) Rabbit mAb #3018 

 

IR 

 

Insulin Receptor β (4B8) Rabbit mAb #3025 

 

α-tubulin α-Tubulin (DM1A) Mouse mAb #3873 

 

Phospho-Akt  Phospho-Akt (Ser473) Antibody #9271 

 

Total Akt Akt (pan) (11E7) Rabbit mAb #4685 

 

Phospho-GSK3 

 

Phospho-GSK-3β (Ser9) (5B3) Rabbit mAb #9323 

 

Total GSK3 GSK-3β (27C10) Rabbit mAb #9315 

 

 

Table 11: Antibodies used for Western blot. Antibodies used for detection of IGF1R and IR expression 

levels as well as for the phosphorylation status of Akt and GSK3. All antibodies were purchased from Cell 

Signalling Technology, Beverly, USA. 

 

 

2.3.4 Enzyme-linked Immunosorbent Assay (ELISA) 

Serum Insulin levels were determined using Rat insulin ELISA Kit, #90010 

(Crystal Chem., Downer Grove, IL, USA) and Mouse Insulin Standard 2ng # 90020 / 

INSSM021(Crystal Chem., Downer Grove, IL, USA), according to manufacturer´s 

guidelines. Serum IGF1 concentrations were detected using Quantikine Mouse/Rat IGF-I 

Immunoassay # MG100 (R&D systems, Wiesbaden, Germany) 

 

 

2.3.5 Histological analysis 

Pancreatic tissue samples were dissected, fixed overnight in 4% (w/v) PFA 

(Sigma Aldrich, Steinheim, Germany) and subsequently embedded for paraffin sections. 

Sections of 7 µm were deparaffinised and stained in hematoxylin and eosin. H&E (Sigma 
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Aldrich, Steinheim, Germany) staining was performed following standard protocols. 

Optical examination was performed using AxioVisio 4.2 (Carl Zeiss MicroImagin, 

Oberkochen, Germany) 

 

 

2.4 Cell culture 

 

2.4.1 Murine embryonic stem cell lines  

Embryonic stem cell lines used in this thesis are C57BL/6NTac(TaconicArtemis, 

Cologne, Germany), a Taconic substrain of C57BL/6 hybrid line and B6/RMCE 

(TaconicArtemis, Cologne, Germany) C57BL/6NTac implying the previously described 

RMCE system at the R26 locus (Fig. 5) including zsGreen, and promoter hygromycin 

resistance gene. 

 

 

2.4.2 Embryonic stem cell culture 

Murine Es stem cells were cultured on a layer of mitomycin C treated 

primary feeder fibroblasts. Dulbecco's Modified Eagle Medium (DMEM) containing 

20% fetal calf serum (FCS), 1 x non essential amino acids (MEM), 2 mM L-glutamine, 1 

mM sodium pyruvate, 20 mM HEPES (pH 7.4), 0.1 mM 2-β-mercaptoethanol, 2000 

U/ml LIF was used as culture medium. In case of the cell line B6/RMCE 

(TaconicArtemis) 150 µg/ml hygromycin was added to the medium whilst C57BL/6NTac 

(TaconicArtemis) cells were cultured without addition of antibiotics. ES cells were grown 

in 10 cm dishes, 6-well or 96-well culture plates (Falcon, Bedford, USA) and kept at 37 

°C under humid atmosphere (95 %) with 7.5 % CO2. ES cell colonies were splitted every 

1-3 days. Culture plates were washed once with PBS and treated with trypsin at 37°C 

until cells detached from the plate surface. Cells were resuspended in an appropriate 

volume of media and splitted (usually 1:3 – 1:6) onto fresh feeder dishes.  



2 Material and Methods 

                                                               

 

-44- 

 

For long term storage ES-cells were frozen in cryovials (Nunc, Wiesbaden, Germany) 

with 10% DMSO at -80°C and transferred into liquid nitrogen. 

 

 

2.4.3 Transfection of ES cells with RMCE exchange vectors 

2 x 10
5
 ES cells were plated on a 6 well plate one day before transfection. For 

formation of transfection complex 6 µl Fugene6 Transfection Reagent was mixed with 

100 µl serum free medium optiMEM I with Glutamax-I and incubated for 5 min at room 

temperature. 2 µg of circular exchange vector DNA (c=0.5 µg/µl) and 2 µg (c=0.5µg/µl) 

pCAGGS-flpe-ires-puro (125, 177) were added to 100 µl of the Fugene6/OptiMEM 

mixture and incubated for 45 min at room temperature. Subsequently this mixture was 

added drop wise to the medium of cultured cells and mixed by gentle circuiting 

movement. Medium of the transfected cells was changed one day after transfection. For 

simultaneous transfection of RMCE exchange vectors of R26 and Col1a1 RMCE systems 

same amount of each vector was used, as described above. From day 2 on, the medium 

was changed daily to medium containing either 200 µg/ml Geneticin (G418) after 

transfection with R26 exchange vectors, 1.5 µg/ml puromycin after transfection with 

Cola1 exchange vectors, or both antibiotics in same concentrations after transfection with 

exchange vectors of both RMCE-systems. Seven days after transfection, single clones 

were isolated by standard procedures as described (125, 178). Correct integration was 

subsequently validated by Southern Blot analysis. 

 

 

2.4.4 Electroporation of ES cells with targeting vectors  

For integration via homologues integration 100 µg of targeting vector were 

linearised by digestion with a single cutting restriction endonuclease in a total volume of 

400 µl. Subsequently linearized vector DNA was purified by phenol-chloroform 

extraction. Reaction solution was mixed well with 400 µl Phenol-chloroform-

isoamylalcohol, 25:24:1 in a Phase-Lock tube (5 Prime, Hamburg, Germany) and 

centrifuged for 5 min at 10.000 rpm. Supernatant was mixed with 400 µl chloroform-
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isoamylalcohol, 24:1 in a new Phase-Lock tube (5 Prime, Hamburg, Germany) and 

centrifuged as described above. 1/10 Volume NaOAc pH 5.2 and 2 Volumes of Ethanol 

absolute were added to the supernatant and centrifuge at 13.000 rpm for 30 min at  room 

temperature. DNA-pellet was washed in 1 ml 70% Ethanol, air dried and redissolved in 

TE buffer to a final concentration of 1ug/µl. 1x10
7
 PBS washed cells were resuspended in 

700 µl Transfection buffer (20 mM HEPES (pH 7.0), 137 mM NaCl, 15 mM KCl, 0.7 

mM Na2HPO4, 6mM Glucose, 0.1mM β- mercaptoethanol) and transferred to 30 µg 

linearized targeting vector DNA in a volume of 100 µl. This suspension was incubated 

for 5 min at room temperature in an electroporation cuvette (Biorad, Hercules, USA), 

prior to electroporation cells in a Biorad Gene Pulser (Biorad, Hercules, USA) at 500 µF 

and 240 V. Time constant values in the range of 6.0 - 8.0 ms were accepted. After 

incubating the electroporated cells for 5 min at room temperature suspension was 

transferred to 3.5 ml prewarmed Dulbecco's Modified Eagle Medium (DMEM) 

containing 20% fetal calf serum (FCS), 1 x non essential amino acids (MEM), 2 mM L-

glutamine, 1 mM sodium pyruvate, 20 mM HEPES, 0.1 mM β-mercaptoethanol, 2000 

U/ml LIF and 2.5x10
6
 (1 ml) cells were plated per 10 cm dish containing selection 

resistant feeder. Cells were cultured for 48 hours before start of selection with 200 µg/ml 

geneticin (G418) after electroporation with VaLo_shEgln1 and Col1a1(RMCE-2Neo) 

constructs 

 

 

2.4.5 Doxycycline (dox) treatment of ES cells 

Single ES cell clones were cultivated in ES cell medium, as described under 2.4.2, 

containing 1 µg/ml doxycycline (Sigma Aldrich, Steinheim, Germany) for 72 hours. 

 

 

2.4.6 Cre- mediated in virto deletion 

Floxed neomycin resistance gene was deleted from Col1a1(RMCE-2Neo) bearing 

cells by Cre-mediated in vitro deletion. Cre expression vector pHW1 (TaconicArtemis, 
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Cologne, Germany) was transfected by electroporation in circular form after purification 

by phenol-chloroform extraction as described under 2.4.3. 20 µg purified expression 

vector DNA were electroporated to 5x10
6
 PBS washed cells using Amaxa Cell Line 

Nucleofector
TM

 KitR (Amaxa Biosystems, Cologne, Germany) following users manuals 

protocol A13. Total cells were plated on 10 cm dish containing selection resistant feeder. 

Cells were trypsinized one day after electroporation and 1x10
3
 to 1x10

4 
Cells were plated 

on 10 cm dish containing selection resistant feeder. Cells were incubated for 7 days 

selecting with 150 µg/ml hygromycin. 

 

 

2.5 Mouse experiments 

 

2.5.1 Animal care 

General animal handling was performed as described by Hogan and Silver (167, 

168). Mice were kept in a pathogen free facility at TaconicArtemis GmbH, Cologne, 

Germany in isolated ventilated cages TecniplastTM (Tecniplast Deutschland GmbH, 

Hohenpeißenberg, Germany) providing a High-Efficiency Particulate Air (HEPA) filter 

supply (Tecniplast Deutschland GmbH, Germany) and exhaust air (99.97 %). Mice were 

housed at 21°C +/- 1°C on a 12 h light / 12 h dark cycle with the light on from 7 a.m. to 7 

p.m. Animals were fed ad libitum with Ssniff PS M-Z; S8289-Po12 (Ssniff Spezialdiäten 

GmbH, Soest, Germany) either as normal chow or with addition of 1 g/kg dox, for dox-

induction. Withdrawn of food was only required prior accomplishment of glucose 

tolerance test for 16 h. All animals had access to water ad libitum. At the end of the study 

period, animals were sacrificed by CO2 anaesthesia or cervical dislocation. All work was 

performed in accordance with the “Gesetz zur Regelung der Gentechnik” (GenTGS) 

October 2001 (German Biologic Act) and the Tierschutzgesetz 1998 (German Animal 

Welfare Act). Animal procedures and euthanasia were approved by the local government 

authorities (Bezirksregierung Köln) and were in accordance with National Institutes of 

Health guidelines. 
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2.5.2 Generation of transgenic mice 

C57BL/6NTac mouse strains were obtained from Taconic. Chimeric mice were 

generated at TaconicArtemis GmbH by injection of trypsinized recombinant ES cell 

clones into diploid blastocystes and implanted into the uterus of pseudopregnant mice. 

Male chimeras were mated to C57BL/6NTac females to gain fully derived ES mice.  

 

 

2.5.3 Body weight 

Body weight was monitored daily from the first day of dox-induction for one 

week and subsequently in weekly interval for 7 more weeks. 

 

 

2.5.4 Blood collection for determination of blood glucose levels and recovery of 

Serum 

Whole venous blood was collected daily 2 h after beginning of light phase from 

the first day of Dox-induction for one week and subsequently in weekly interval for 7 

more weeks by submandibular puncture of the vena facialis. Volumes of taken blood 

samples were 20 µl in daily and up to 100 µl in weekly collections. Fasted blood glucose 

values were measured using an automatic glucose monitor (Ascensia ELITE, Bayer Vital, 

Leverkusen, Germany). Serum was obtained after incubating blood for 30 min on ice and 

precipitation of cellular blood components by centrifugation for 15 min, at 13.000 rpm 

and 4°C.   

 

 

2.5.5 Glucose and insulin tolerance test 

For glucose tolerance tests (GTT), mice were fasted by withdraw of food 

overnight for 16 h. After determination of fasted blood glucose levels, each animal 

received 10 ml/kg body weight of 20 % glucose solution applied via an intraperitoneal 

injection. Blood glucose was determined in whole venous blood obtained after tail cut at 

15, 30, 60 and 120 min after injection.  
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Insulin tolerance tests (ITT) was performed in random fed animal injected 

intraperitoneal with a 0.75 U/ml insulin solution (0.75 U/kg body weight) after 

determination of random fed blood glucose concentration. Blood glucose levels were 

estimated as described above 15, 30 and 60 min after injection. 

 

 

2.5.6 Food intake 

Daily food intake was measured over a period of 7 days for mice in groups of up 

to 2 animals per cage and calculated as the average intake per mice and day of chow over 

the time stated. 

 

 

2.5.7 In vivo nuclear magnetic resonance measurement of fat content 

Whole body fat content was determined in vivo by nuclear magnetic resonance 

using Minispec mq7.5 NMR analyzer (Brucker Optics, Ettlingen, Germany). Whole body 

fat mass is obtained as percentage of bodyweight. 

 

 

2.5.8 Stimulation of Insulin cascade 

For detection of Stimulation of Insulin cascade mice were fasted for 6 h and 

received 0.75 U/ml insulin solution (0.75 U/kg body weight) via intraperitoneal injection 

30 min prior to dissection of tissue samples. Phosphorylation status of Akt at Ser473 and 

GSK3 at Ser9 was detected using Western blot. 
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2.6 Statistical Methods 

 

2.6.1 Standard Deviation 

Variability within data sets was estimated by their calculating standard deviation 

(σ). 

 

 

∑
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2.6.2 Two-Tailed Unpaired Students T Test 

Data sets were analyzed for statistical significance using a two-tailed unpaired 

student’s T test.  
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p values where taken from tables of t-distribution comparing values of T to tn1+n2 -2 

distribution. All p values below 0.05 were considered to be significant. 
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2.6.3 Analysis of variance (ANOVA) and Bonferroni post-test 

Analysis of variance (ANOVA) and Bonferroni post-test were calculated using 

GraphPad Prism Version 4.0 by GraphPad Software Inc. 
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3 Results 

 

3.1 Technical Development  

 

3.1.1 Screen for efficient shRNAs directed against IGF1R 

Two different strategies were tested for the simultaneous silencing of two target 

genes in transgenic mice. The first strategy is based on the generation of a murine ES cell 

line bearing two independent RMCE acceptor cassettes at distinct genomic loci. Such a 

cell line enables the specific integration of two different shRNA expression cassettes at 

the prepared RMCE alleles. As a second strategy, two shRNA expression units were 

combined in a single exchange cassette for integration into the R26 RMCE allele. 

After evaluation, the method was applied for the generation of a mouse model providing 

the concurrent KD of the insulin and the IGF1 receptor. For silencing of IR, a previously 

described shRNA (shIR5) was used. Strong KD triggered by shIR5 has been 

demonstrated in ES cells as well as in vivo (126, 179). An shRNA sequence for efficient 

and specific silencing of IGF1R needed to be identified. 

For silencing of IR a previously described shRNA (shIR5) was used. Strong KD 

triggered by shIR5 has been demonstrated in ES cells as well as in vivo (126, 179). To 

define a potent trigger for silencing of IGF1R, six shRNAs of different sequence were 

designed using the invitrogen algorithm BLOCK-iT™ RNAi Designer. Those were 

inserted into R26 RMCE exchange vectors for shRNA expression, yielding pR-

shIGF1R1 to pR-shIGF1R6. Single copies of each vector were stably integrated into the 

murine ES cell line B6/RMCE by employing the R26 RMCE system (126). Correct 

RMCE was confirmed by Southern blot analysis (Fig. 6A). Expected signal sizes are 4.3 

kb for R26 wt allele, 3.8 kb for R26(RMCE) allele before exchange and 6.2 kb for 

R26(RMCE) allele after exchange. The employed shRNA expression system allows tet-

repressor (tetR)-mediated temporal control of RNAi. Transcription of the shRNA is 

blocked in absence of dox by binding of co-expressed tetR to the tet-operator (tetO), 

inserted in H1tetO (Fig. 6B). Upon administration of dox tetR detaches from H1tetO and 
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allows Pol III-dependent transcription of the encoded shRNA (Fig. 6C). Efficiency of 

IGF1R silencing was analyzed in ES cells via qPCR after doxycyclin induction in two 

clones per shRNA (Fig. 6D). Values are displayed as percentage of IGF1R expression in 

untreated cells of each clone. KD efficiencies were ranging between 13 % and about 50 

% remaining IGF1R mRNA levels, as average of both clones. The most potent effect was 

observed for shIGF1R2 at 13 % residual IGF1R expression, which was therefore selected 

for further procedure. 
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Fig. 6: Screen for efficient shRNAs against IGF1R. Six shRNAs, shIGF1R1 to shIGF1R6, were tested 

for their KD efficiency in murine ES cells. Single copies of shRNA expression vectors, pR-shIGF1R1 to 

pR-shIGF1R6 were stably integrated in B6/RMCE employing the  R26 based RMCE system. A) Southern 

blot was used to control 3 clones per vector for correct integration. Expected sizes for R26 wt allele, 

R26(RMCE) allele before and after exchanged were 4.3 kb, 3.8 kb and 6.2 kb, respectively. The used 

shRNA expression system allowed tetR-mediated temporal control of RNAi, depicted in a schematic view. 

B) Transcription is blocked in the absence of dox by binding of the co-expressed tetR to H1tetO. C) Upon 

administration of dox tetR detaches from the promoter allowing transcription of the shRNA. D) mRNA 

expression rates of IGF1R were measured under conditions of induced (+dox, light grey bars) and not 

induced (-dox, white bars) shRNA expression in duplicates of two clone per shRNA. Induced (+dox, dark 

grey bar) and not induced (-dox, black bars) B6/RMCE cells were applied as negative control. Expression 

in not induced cells was set as 100 % for each clone. Values are mean ± SEM. 

 

 

3.1.2 Generation of murine ES cell line bearing two RMCE alleles (first strategy) 

This strategy is based on the generation of a murine ES cell line harbouring two 

alleles prepared for RMCE integration, to allow the simultaneous and specific integration 

of two inserts via cassette exchange, hereafter designated as double RMCE (dRMCE). 

A established singular RMCE system, mediating integration into the in the Rosa 26 locus, 

served as a technical basis for this approach (125).  

 As a first step a second RMCE system (RMCE-2) had to be designed, whose 

architecture rules out interactions with the R26 system to allow the employment of both 

approaches in one cell line. RMCE-2 was designed by example of the R26 RMCE system 

in terms of the used RMCE-strategy, recombinase and marker-system. Functionality of 
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RMCE-2 is based on FLP mediated recombination of two pairs of FRT and F5 sites. The 

employed F5 site is a functional FRT mutant displaying no interaction to FRT and F3 

sites (168). A β-galactosidase gene (lacZ) in the acceptor cassette allows verification of 

cells bearing a prepared RMCE-2 locus by β-galactosidase staining. Permanent antibiotic 

selection had to be omitted because the three resistance markers, well established for the 

adopted cell line, are elsewhere used in R26 RMCE and RMCE-2. In presence of Flp 

recombinase donor and acceptor cassette are exchanged between vector and genome 

through recombination of FRT and F5 pairs (Fig. 7C). Correct recombination of the FRT 

site sets a truncated, non functional, puromycin resistance gene (5´dPuro) in the donor 

cassette into the frame of an ATG at the genomic RMCE-2 site and facilitates it’s 

expression by employing a PGK-promoter. Transcription of 5´ dPuro after unspecific 

integration events is blocked by a polyadenylation signal (pA) in the exchange vector. 

Thus, clones positive for exchange in RMCE-2 can be selected by puromycin treatment 

of transfected cells.  
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Fig. 7: Functionality of RMCE-2 system. A) The RMCE-2 exchange vector carries following features in 

5´-3´direction: polyadenylation signal (pA), FRT site, puromycin resistance gene leaking start codon and 

promoter (5´dPuro), insert, F5 site. B) The genomic part of RMCE-2 is composed of following elements in 

5´-3´direction: phospoglyceratkinase-promoter (PGK), start codon (ATG), FRT site, CAGGS promoter 

driven β-galactosidase gene (lacZ), F5 site. C) Cassette exchange is mediated through double reciprocal 

recombination of both pairs of FRT and F5 sites. Functionality of 5´dPuro is reconstituted through RMCE 

reaction, selection of positive clones can be carried out by puromycin treatment. D) RMCE-2 was designed 

to act independently from the R26 based system to allow the simultaneous use of both systems. Expression 

of both selection markers is exclusively given by correct integration of RMCE-2 cassette in RMCE-2 locus 

and correct exchange between R26 RMCE donor and acceptor cassette.  Specificity between R26 RMCE 

and RMCE-2 is achieved by the choice of the utilized recognition sites and the architecture of marker 

systems exclusively activated by specific exchange. 

 

 

To allow the combined application of RMCE-2 and R26 RMCE systems in one 

cell line, interactions between both systems had to be turned out by their architecture. 

Incompatibility between RMCE-2 and R26 RMCE systems is obtained through the 

choice and order of recombination sites and arrangement of selection systems.  

The RMCE-2 system employs couples of FRT and F5 sites whilst the R26 RMCE system 

uses FRT and F3 pairs, making cassette exchange through double reciprocal 

recombination specific for each associated couple of acceptor and donor cassette. 

Furthermore, architecture of the marker systems affords antibiotic selection after specific 

exchange in both RMCE loci. Reconstitution of the selection marker in RMCE-2 depends 
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on the correct recombination of the FRT site, whereas it depends on recombination of the 

F3 site in the R26 system. Since FRT and F3 sites are part of the reading frame of the 

accordant resistance genes activation of those is exclusively given by exchange of R26 

RMCE donor and acceptor cassette and RMCE-2 donor and acceptor cassette. RMCE-2 

was designed to act independently from R26 RMCE. Using both systems in one ES cells 

line should afford the specific exchange in both systems. Cells bearing both RMCE loci 

exchanged correctly can be selected by concurrent treatment with both antibiotics, 

puromycin and geneticin (G418) (Fig. 7D). 

To constitute the designed dRMCE system the genomic part of RMCE-2 was 

integrated into the murine ES cell line B6/RMCE, already bearing the R26 RMCE 

system, to yield a cell line comprising two loci prepared for RMCE. The locus of 

collagen, type I, alpha 1 (Col1a1) was chosen for integration of RMCE-2 as a promising 

candidate. This locus was previously targeted by Beard et al.. Transgenes inserted at the 

Col1a1 locus exhibited high transcriptional active in almost every tissue (180, 181).  

The exact site of integration was located in an intergenic region about 0.5 kb downstream 

of the 3´UTR of the Col1a1 gene and about 7 kb upstream of the Sarcoglycan α gene. A 

targeting vector, pCol1a1T(RMCE_2Neo), was cloned for integration of the genomic part 

of the RMCE-2 system via homologous recombination (Fig. 8A). Beside the described 

elements of the RMCE-2 system pCol1a1T(RMCE_2Neo) carries a loxP flanked, PGK 

driven, Neo resistance gene to afford antibiotic selection after targeting. The targeted 

Col1a1(RMCE-2Neo) allele was confirmed by Southern blot (Fig. 8C). Signals were 

expected for Col1a1 wt allele and Col1a1(RMCE-2Neo) at 9.3 kb and 8.5 kb, 

respectively. Neo was subsequently removed by Cre-deletion after successful targeting, 

to make G418 available for selection after exchange in R26(RMCE) again. The resulting 

Col1a1(RMCE-2) locus was detected by Southern blot (Fig. 8D). Expected sizes for 

Col1a1 wt allele, Col1a1(RMCE-2Neo) and Col1a1(RMCE-2) were 8.3 kb, 10.4 kb and 

9.5 kb, respectively. By insertion of RMCE-2 in Col1a1 of B6/RMCE the ES cell line 

B6/dRMCE was generated, carrying two independent RMCE alleles in R26(RMCE) and 

Col1a1(RMCE-2). 
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Fig. 8: Generation of ES cell line B6/dRMCE. A)The genomic part of RMCE-2 was integrated into the 

Col1a1 locus of B6/RMCE ES cells using the targeting vector pCol1a1T(RMCE_2Neo). A loxP flanked 

Neo resistance gene was used for selection after targeting. B) The site of integration is situated about 500 

bp downstream of the 3´UTR of the Col1a1 gene. C) Targeted Col1a1(RMCE-2Neo) allele was detected by 

Southern Blot. Expected sizes for Col1a1 wt allele and Col1a1(RMCE-2Neo) were 9.3 kb and 8.5 kb, 

respectively. Neo was deleted by Cre after targeting. E) The resulting Col1a1(RMCE-2) locus was detected 
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by Southern blot. Expected sizes for Col1a1 wt allele, Col1a1(RMCE-2Neo) and Col1a1(RMCE-2) were 

8.3 kb, 10.4 kb and 9.5 kb, respectively. 

 

 

Exchange Vectors for both systems were cloned to perform simultaneous 

integration in R26(RMCE) and Col1a1(RMCE). Both vectors were designed as shRNA 

expression vectors. The vector pC-shIR5 was cloned as an exchange in Col1a1(RMCE-2) 

and for expression of shIGF1R2. For integration in R26(RMCE) and expression of 

shIGF1R2 the vector  pR-shIGF1R2 was constructed. Transfection of both vectors in 

B6/dRMCE was performed concurrently to achieve integration of both shRNA 

expression cassettes. To elucidate whether exchange is specific for each RMCE-system 

cells were separately transfected with each singular exchange vectors. Selection was 

carried out with puromycin and, or G418, according to transfected exchange vectors.  
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Fig. 9: Integration of inducible shIR5 and shIGF1R2 expression vectors applying dRMCE in 
B6/dRMCE cells. A) Col1a1 RMCE exchange vector pC-shIR5 and R26 RMCE exchange vector pR-

shIGF1R2 for inducible RNAi were simultaneously transfected into B6/dRMCE do be integrated via 

dRMCE. B) Clones positive for Col1a1(shIR5) and R26(shIGF1R2) were selected using puromycin and 

G418 in respect to the selection markers of both RMCE-systems.  C) Expression of shIR5 and shIGF1R2 

by the H1tetO promoter can be induced by administration of doxycycline (dox). 

 

 

Correct integration of each donor cassette into it´s dedicated RMCE loci was 

confirmed by Southern blot (Fig. 10). Two external probes were used for validation of 

each RMCE locus. Col5´and Col3´ probes were applied for validation of exchange in 

Col1a1(RMCE) and Rosa5´and Rosa3´ probes for exchange in R26(RMCE). Furthermore 

the internal probes iNeo and iPuro were used. Used restriction enzymes (RE) and 

expected fragment sizes for wild type (wt) alleles of R26 and Col1a1 as well as for 

RMCE alleles, R26(RMCE) and Col1a1(RMCE-2), before and after exchange given by 

each probe are listened in table 12. 
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allele 

 

probe: RE                 

R26 

(wt) 

Col1a1 

(wt) 

R26 

(RMCE) 

Col1a1 

(RMCE-2) 

R26 

(shIGF1R2) 

Col1a1 

(shIR5) 

Rosa5´: HindIII 4.4 kb - 3.9 kb - 6.2 kb - 

Rosa3´: BamHI 5.8 kb - 9.5 kb - 3.2 kb - 

Col5´: MfeI - 10.7 kb - 4.2 kb - 5.0 kb 

Col3´: AvrII/BmtI - 8.3 kb - 11.6 kb - 6.0 kb 

iPuro: EcoNI - - 8.9 kb 14.6 kb 6.7 kb 7.0 kb 

iNeo: BamHI - - - - 5.5 kb - 

 

Table 12: Expected fragment sizes in Southern blot analysis of dRMCE. Used restriction enzymes (RE) 

an expected fragment sizes resulting from each relevant allele are shown for corresponding probe.  Wild 

type alleles, Col1a1(wt) and R26(wt), RMCE alleles before exchange R26(RMCE) and Col1a1(RMCE-2), 

as well as RMCE alleles after exchange Col1a1(shIR5) and R26(shIGF1R2) are listened. 

 

 

 



3 Results 

                                                               

 

-61- 

 

 

 

Fig. 10: Southern Blot analysis after  dRMCE in B6/dRMCE. Correct exchange in R26(RMCE) and 

Col1a1(RMCE-2) is shown by using internal and external binding probes: A) Col5´, B) Col3´, C) Rosa5´, 

D) Rosa3´, E) iNeo and F) iPuro. Expected signals sizes for wt alleles and RMCE alleles before and after 

exchange are listened in table 12. Transfected exchange vectors are indicated above. pC-shIR5 and   

pR-shIGF1R2 were transfected together to achieve dRMCE, whilst both vectors were transfected solely for 

single integration into their distinct loci. Untransfected B6/RMCE and B6/dRMCE cells were used as 

control. 

 

 

Among the 7 depicted clones, transfected with both exchange vectors, 5 displayed 

the expected pattern of both RMCE cassettes exchanged, showing signals of 

Col1a1(shIR5) and R26(shIGF1R2) as well as wt alleles of R26 and Col1a1.  

All clones transfected with single R26 exchange vector, pR-shIGF1R2, had the expected 

signals of the exchanged R26(shIGF1R2) allele, not exchanged Col1a1(RMCE) allele 

and both wt alleles. Among clones transfected with single Col1a1 exchange vector, pC-

shIR5, just clone #1 displayed signals of the exchanged RMCE-allele Col1a1(shIR5), 

unexchanged R26(RMCE) and both wt alleles.  

 Altogether 45 puromycin and G418 resistant clones yielded after divers 

accomplished transfections with both exchange vectors were analysed by Southern blot 

(data not shown). 36 of these had the expected pattern of both RMCE loci exchanged, 

demonstrating that dRMCE was successful in about 80 % of cells resistant to both 

antibiotics. 6 clones received from transfection solely with R26 exchange vector were 

verified (data not shown). Four of these were positive for single exchange in R26 in 

Southern blot. Negative clones gave wrong signals for R26 probes but not for the other 

applied probes, suggesting that recombinase mediated interactions of the R26 exchange 
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vector are restricted to its dedicated RMCE locus. Moreover, 10 clones obtained after 

transfection exclusively with the Col1a1 exchange vector were analysed (data not 

shown). Six of these were positive with all the probes. Two of the negative clones 

showed divergent signals for R26 probes, suggesting undesired interactions of the Col1a1 

exchange vector with the R26 RMCE locus. 

 For further demonstration of RMCE integration the KDs, triggered by the inserted 

shRNAs cassettes were verified by qPCR analysis. Silencing of both target genes was 

verified in clones, harbouring either a single or both shRNA expression cassettes, after 

inducing RNAi by dox treatment (Fig. 11). Target gene expression in untreated (-dox) 

cells of each clone was set as 100 %. Doxycycline induced and uninduced B6/dRMCE 

cells served as control.  
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Fig. 11: KD in ES cells obtained from single and double RMCE in B6/dRMCE. Expression of A) IR 

and B) IGF1R was measured in clones bearing either Col1a1(shIR5) or R26(shIGF1R2) after single RMCE 

and in clones bearing both loci exchanged after dRMCE. Target gene expression was determined after 

inducing RNAi by dox administration (+dox, white bars). Accordant gene expression in untreated cells (-

dox, grey bars) of each clone was set as 100%. Untransfected B6/dRMCE cells (black bars) served as 

negative control under induced and not induced conditions. Detection of target genes was performed in 

duplicate of each clone and are shown in percent of expression in  induced B6/dRMCE cells (+dox, black 

bars). Values are mean ± SEM.  

 

 

In accordance to the integrated shRNAs, clones bearing both exchanged RMCE 

loci, Col1a1(shIR5) and R26(shIGF1R2), displayed silencing of either target genes. IR 

expression was reduced to about 10 % and IGF1R expression to about 15 % of the 

original mRNA levels. Single transfected clones just exhibited target mRNA reduction 

accordant to the integrated shRNA expression unit. IR expressions were reduced to about 

20 % in single transfected cells bearing Col1a1(shIR5), whilst IGF1R mRNA levels were 

unaffected. The opposite picture was observed in cells bearing R26(shIGF1R2). IGF1R 

mRNA levels were reduced to about 30 % whilst IR expression remained unchanged.  

 Taken together, a murine ES cell line was generated bearing two independent 

RMCE alleles, R26(RMCE) and Col1a1(RMCE). Functionality of dRMCE was 

demonstrated by simultaneous integration of two shRNA expression cassettes. Specific 
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exchange in both loci was confirmed by Southern blot and indirectly confirmed by KD of 

both target genes, demonstrated functionality of dRMCE in the given cell line. dRMCE 

showed to work with an efficiency of about 80%.  

 

 

3.1.3 Evaluation of Col1a1 as a locus for transgenic expression (first strategy) 

In parallel to the generation of B6/dRMCE Col1a1 was characterized avoiding the 

complexity of constituting the RMCE-2 allele to clarify whether the locus fulfills the 

central demands for RMCE applications in terms of transgene expression properties for 

shRNAs and mRNAs. An inducible shRNA expression construct (VaLo_shEgln1) was 

designed to be inserted at the positions intended for RMCE-2 integration (Fig. 12A). 

VaLo_shEgln1 bears the elements of the doxycycline inducible shRNA expression 

system: H1tetO promoter, shRNA and CAGGS promoter driven tetR gene and a PGK 

driven Neo gene for selection after targeting. Due to interest of an independent project, an 

shRNA against EGL nine homolog 1 (Egln1) was used for locus validation.  Integration 

of VaLo_shEgln1 allowed evaluating the efficiency and functionality of the inducible 

shRNA expression system as well as the expression profile of transgenic mRNAs 

integrated in Col1a1. Col1a1(VaLo_shEgln1) positive clones were identified by Southern 

blot after targeting (Fig. 12B). Expected sizes for Col1a1 wt allele and 

Col1a1(VaLo_shEgln1) were 9.5 kb and 7.9 kb, respectively. 

 

 



3 Results 

                                                               

 

-65- 

 

 

 

Fig. 12: VaLo_shEgln1 was used for characterization of Col1a1 as a locus for RMCE-2 application.  
VaLo_shEgln1 affords evaluation of Col1a1 as a locus for the application of the inducible RNAi system as 

well as for expression of transgenic mRNAs. A) The components of VaLo_shEgln1 were Neo driven by 

PGK promoter, pA, H1tetO promoter, shEgln1, and CAGGS driven tetR gene. VaLo_shEgln1 was 

integrated at the position designated for integration of RMCE-2 system downstream of Col1a1. B) Correct 

integration was verified by Southern blot. Expected sizes for Col1a1 wt allele and ol1a1(VaLo_shEgln1) 

were 9.5 kb and 7.9 kb, respectively. C) RNAi was induced in three ES cells bearing 

Col1a1(VaLo_shEgln1) (+dox, white bars) and compared to cells under not induced conditions (-dox, gray 

bars). Untreated (-dox, grey striped bar) and induced (+dox, white striped bars). R26(Egln1) cells served as 

a reference for KD efficiency. Not induced (-dox, dark grey) and induced wild type cells (+dox, black bars) 

served as negative control. Egln1 mRNA levels were detected in duplicated for each clone and are shown 

as percent of expression in induced wild type cells. Values are mean ± SEM.  

 

 

First indications about the characteristics of Col1a1 were obtained from analyzing 

the shRNA mediated silencing of Egln1 in ES cells (Fig. 12C). Target mRNA reduction 

was measured under doxycyclin induced and not induced conditions in three clones 

bearing Col1a1(VaLo_shEgln1). Induced and not induced B6/RMCE cells served as 

negative control. Egln1 mRNA levels were reduced to about 5 % of their original 

concentration upon induction. R26(shEgln1) cells, expressing shEgln1 employing the 
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same inducible system, served as a reference for RNAi efficiency and displayed target 

gene reduction comparable to Col1a1(shEgln1) cells. 

After obtaining promising results in ES cells heterozygote 

Col1a1(VaLo_shEgln1) mice were generated to examine RNAi efficiency and transgene 

expression from Col1a1 in vivo. Silencing of Egln1 was determined in male mice after 

inducing RNAi for 10 days by feeding chow containing 1g doxycyclin /kg. Not induced 

target mice as well as induced and not induced wt mice served as control. Remaining 

Egln1 levels were measured in total brain, heart, skeletal muscle, liver, kidney, spleen, 

epigonadal white adipose tissue (EWAT) and brown adipose tissue (BAT) by pPCR (Fig. 

13A). R26(shEgln1) mice served as a reference for KD efficiency and functionality of the 

inducible system (Fig. 13B). Expression rates in induced wt mice were set as 100 % for 

each tissue. Egln1 expression in induced Col1a1(VaLo_shEgln1) +dox mice was reduced 

to levels ranging between 2 % remaining mRNA in heart, skeletal muscle and kidney as 

best results and about 16 % in spleen. Despite in liver and spleen observed RNAi 

efficiencies were comparable or even slightly higher compared to mRNA reduction 

observed in R26(shEgln1), resulting in a remaining Egln1 expression between 3% and 

10%. Unfortunately untreated Col1a1(VaLo_shEgln1) -dox control mice exhibited 

significant reduction of Egln1 mRNA in several tissues without shRNA expression being 

induced by doxycyclin administration, reflecting an insufficient control of shRNA 

expression by the given RNAi system in Col1a1. Leakiness occurred strongest in kidney 

showing a KD to 13 %. Brain, heart, liver, spleen, EWAT and BAT display reductions of 

target gene transcription to between 30 % and 60 % in control target animals. Among the 

examined tissues tightly controlled RNAi was only observed in muscle. Tissue depended 

leakiness is a known disadvantage of the employed RNAi system. Integrated in R26 this 

effect commonly occurs in brain and kidney as confirmed by the shown data (Fig. 13B). 

Slight target mRNA reduction was observed for BAT of control animals, as well. In 

contrast to Col1a1(VaLo_shEgln1) samples, the remaining tissues, considered for R26, 

exhibited tight controlled RNAi. 
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Fig. 13: Inducible RNAi in Col1a1(VaLo_shEgln1) mice. KD efficiency and inducibility of 

Col1a1(VaLo_shEgln1) were evaluated in brain, heart, skeletal muscle, liver, kidney spleen, epigonadal 

white adipose tissue (EWAT), brown adipose tissue (BAT). A) Egln1 expression is shown in untreated (-

dox, light grey bars) and dox induced (+dox, white bars) Col1a1(VaLo_shEgln1) mice. Not induced (-dox, 

dark grey) and induced wild type mice (+dox, black bars) served as negative control. B) R26(shEgln1) 

mice, encoding shEgln1 in a VaLo_shEgln1 accordant construct integrated in R26, served as a reference for 

efficiency. Egln1 expression was detected in untreated R26(shEgln1) mice (-dox, light grey striped bars) 

and mice upon doxycyclin induction (+dox, white striped bars). Not induced (-dox, dark grey) and induced 

wild type mice (+dox, black bars) were used as negative control. Remaining Egln1 mRNA levels were 

estimated by qPCR and displayed as percentage of expression in doxycycline treated wild type mice (+dox, 

black bars). All values are mean ± SEM. For each group n=3. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 

versus wt -dox. 
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Lastly, transgenic mRNA expression properties of Cola1a were verified by 

determining the transcription pattern of CAGGS driven tetR gene in 

Col1a1(ValLo_shEgln1) mice. Egln1 mRNA was detected in brain, skeletal muscle, 

liver, spleen, kidney and EWAT and BAT and was compared to the expression pattern 

given by R26 integrated teR gene transcribed by the same promoter (Fig.14). Results 

were adjusted by forming delta-Ct (dCt) obtained after subtraction of the cycle threshold 

(Ct) for the housekeeping gene heterochromatin protein 1 binding protein 3 (HP1BP3) 

from the CT of tetR mRNA. Col1a1(VaLo_shEgln1) mice exhibited significant lower 

tetR expression rates in brain, skeletal muscle, liver, kidney and EWAT, compared to 

R26 expressed tetR. dCT differed between 15 CTs in muscle and 7 CTs in kidney, 

approximately corresponding an 3,200 to 130 fold lower expression of Col1a1 encoded 

tetR gene, compared to R26 inserted gene. In contrast tetR expression from 

Col1a1(VaLo_shEgln1) was higher in BAT by 3 CTs and heart by 2 CTs, approximating 

an 4 to 250 times higher expression rate in these tissues, compared to R26 integrated 

tetR. Both loci revealed comparable tetR expression levels in spleen.    

 

 

 

Fig. 14: Transgic mRNA expression in Col1a1(VaLo_shEgln1) mice. Expression of tetR was 

determined in brain, heart, skeletal muscle, liver, kidney spleen, epigonadal white adipose tissue (EWAT), 

brown adipose tissue (BAT) of  Col1a1(VaLo_shEgln1) mice using qPCR. Expression rates of Col1a1 

encoded tetR-gene (white bars) were compared to expression of tetR in R26(shEgln1) mice  (white striped 
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bars), encoding tetR in a VaLo_shEgln1 accordant construct integrated in R26. Results were normalized by 

calculating dCT (CT tetR - CT HP1BP3). All values are mean ± SEM. For each group n=3. 
 

 

In conclusion, VaLo_shEgln1 was employed to characterize Col1a1 as a locus for 

RMCE applications. Efficient RNAi was triggered by shRNAs expressed from 

Col1a1(VaLo_shEgln1). Indeed, the employed inducible RNAi system turned out to be 

not tightly controllable in Col1a1. Almost all examined tissues exhibited severe target 

gene reduction without shRNA expression being induced by dox administration. 

Furthermore expression pattern of tetR was analysed, as an example for transgene 

mRNAs integrated in Col1a1. Col1a1(VaLo_shEgln1) gave a considerable lower tetR 

expression in most considered tissues, compared to R26 integrated tetR. With regard to 

these results, Col1a1 was not considered as a locus for the integration of the genomic 

RMCE-2 part and the strategy of using two independent shRNA expression loci was not 

further evaluated. 

 

 

3.1.4 Stable single copy integration of two shRNA expression units in R26  

(second strategy) 

The second strategy to obtain silencing of two target genes was the integration of 

two shRNA expression units combined in a single R26 RMCE exchange cassette. To 

determine whether the order of shRNA cassettes affects the activity of the promoters, two 

constructs were designed bearing the same shRNA units but in reverse successions (Fig. 

15A). Tandem constructs were designed for the simultaneous expression of shIR5 and 

shIGF1R2. The vector pshIR5_shIGF1R2 carries H1tetO_shIR5 at the 5´ position and 

H1tetO_shIGF1R at the 3´position. In contrast, H1tetO_shIGF1R was followed by 

H1tetO_shIR5 in pshIGF1R2_shIR5. Both vectors were stably integrated via RMCE into 

R26 locus of B6/RMCE cells. Correct integration was controlled by Southern blot (Fig. 

15B). Expected signal sizes were 4.3 kb for R26 wt allele, 3.8 kb for R26(RMCE) allele 

before exchange and 6.2 kb for R26(RMCE) allele after exchange. 
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Fig. 15: Tandem shRNA expression constructs and achieved KD of target genes in ES cells. A) Two 

R26 exchange vectors comprising two H1tetO_shRNA units were design to achieve simultaneous silencing 

of IR and IGF1R A). pshIR5_shIGF1R and pshIGF1R_shIR5 bear two independent  shRNA expression 

units in reverse orders. Integration of exchange vectors was confirmed by Southern blot analysis. B) 

Expected sizes for R26  wt allele, R26(RMCE) allele before exchange and after exchanged were 4.3 kb, 3.8 

kb and 6.2 kb, respectively. KD of IGF1R C) and of IR D) was estimated by qPCR in  not induced (-dox, 

white bars) and induced (+dox, light grey bars) cells in duplicates of two clones per construct. Target gene 

reduction triggered by tandem constructs was compared to solely expressed shRNAs. Induced (+dox, dark 

gey bars) and not induced (-dox, black bars) B6/RMCE cells served as negative control. Remaining 

expression of target genes after induction is shown as percentage of not induced (-dox, light gey bars) cells 

of each accordant clones. All data are presented as mean ± SEM. 

 

 

KD of both target genes was measured and compared to the efficiency given by 

solely expressed shRNA (Fig. 15C, D).  Both tandem constructs reduced target gene 

expression at comparable magnitude. Remaining expression rates of IFG1R mRNA in 

R26(shIR5_shIGF1R2) and R26(shIGF1R2_shIR5) bearing clones were ranging between 

12 % and 20 %. Concurrently IR mRNA levels were reduced to between 18 % and 28 % 

of the original concentration. Compared to the solely expressed shRNAs either double 

constructs triggered a distinct lowered but still strong reduction of both target mRNAs. 

IGF1 expression was reduced to 12% in R26(shIGF1R2) cells and IR expression to about 

16 % in R26(shIR5) cells. To translate these results into an in vivo setting transgenic mice 

were generated from R26(shIGF1R2_shIR5) ES cells. RNAi was induced in 6 week old 

male mice by feeding chow containing 1g doxycyclin /kg. Tissue samples of pituitary, 

hypothalamus, total brain, heart, skeletal muscle, liver, kidney, spleen, pancreas, EWAT 

and BAT were dissected after 10 days of induction to estimate expression rates of IR and 

IGF1R by qPCR (Fig. 16).  
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Fig. 16: KD of IR and IGF1R mediated by shIGF1R2_shIR5 in vivo. Silencing of IR A) and IGF1R B) 

was estimated in selected tissues collected from doxycyclin induced (shIGF1R_IR5 +dox, light grey bars) 

and not induced (shIGF1R_IR5 -dox, white bars) male target mice by qPCR. Induced (wt +dox, dark grey 

bars) and not induced (wt -dox, black bars) wilfd type males served as negative control. Remaining 

expression of target genes is displayed as percentage of not induced  wt mice. For all groups n= 3, data are 

mean ± SEM. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 versus control. 
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A significant reduction of both target genes upon doxycyclin treatment was 

observed in all tissues examined from shIGF1R2_shIR5+dox mice. IR mRNA levels 

were reduced to about 10% remaining in pituitary, heart, skeletal muscle and EWAT, as 

strongest effects. Other tissues exhibited a reduction to between 20 % in BAT and 50 % 

in spleen. IGF1R expression was reduced to between 10 % and 30 % in the analysed 

tissues. Notably silencing of both target genes was considerably low in liver, otherwise 

providing high KD efficiencies. Results of measurements on EWAT samples displayed a 

high level of variation. Subsequently performed qPCR on EWAT samples of 

shIGF1R2_shIR5 +dox mice revealed a reduction of IGF1R expression to 40 % (Fig. 

17A). However, accomplished reduction of both target genes was seen as sufficient to 

examine the coherency of IR and IGF1R function in terms of glucose metabolism.  

 

 

3.2 Phenotypical analysis of insulin- and IGF1-receptor double 

knockdown mice 

 

3.2.1 Confirmation of IR and IGF1R knockdown 

The generated shIGF1R2_shIR5 mouse line enables the temporally inducible 

RNAi- mediated ablation of the insulin and the IGF1 receptor. This model offers a unique 

opportunity to study the potentially redundant roles of IR and IGF1R action in terms of 

energy homeostasis in adult mice, bypassing developmental defects arising from receptor 

ablation during embryonic development. To complete the experimental arrangement 

shIGF1R2 and shIR5 single KD mice were generated, serving as control groups in the 

following studies. Expression of shRNAs was induced in 6 week old male mice by 

administration of a doxycycline-containing diet, while control groups received normal 

chow. The following experiments were carried out within 4 weeks of induction, since 

ablation of both receptors was lethal after 4 weeks due to unspecified reasons. 
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Silencing of insulin and IGF1 receptors was analyzed after 4 weeks of dox 

treatment by qPCR (Fig. 17A-19A) and Western blot (Fig. 17B-19B) in pituitary, total 

brain, skeletal muscle, liver and brown adipose tissue (BAT). Due to the low expression 

levels of IGF1R in liver, KD was only demonstrated by qPCR and not confirmed by 

Western blot in this tissue (182, 183). Since shIGF1R_IR5 +dox and shIR5 +dox mice 

had completely lost their white fat after 4 weeks, epigonadal white adipose tissue 

(EWAT) samples were collected separately from 7 week old mice after 10 days of 

induction to demonstrate shRNA mediated gene silencing this tissue. 

Upon doxycycline induction of shRNA transcription, both single KD mice display 

specific silencing of the correspending target gene with no impact on the expression of 

the second gene. 

There was a similar decrease in IR expression of 15 % to 20% in the analyzed tissues of 

shIR5 +dox and shIGF1R2_shIR5 +dox mice. In contrast, double KD mice display a 

considerable lower silencing in IGF1R expression, 2-fold weaker in muscle, pancreas, 

EWAT and BAT, compared to shIGF1R single KD mice. This finding indicates a 

position effect within the tandem construct leading to lowered transcriptional activity of 

the H1tetO promoter at the first position. The circumstance that double KD mice display 

IGF1R silencing at a lower degree than the single KD control group must be considered 

in the interpretation of the following findings. 
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Fig. 17: KD of IR and IGF1R in shIGF1R2_shIR5 mice. Silencing of IR A) and IGF1R B) was 

estimated in selected tissues of dox induced (shIGF1R_IR5 +dox, light grey bars) and not induced 

(shIGF1R_IR5 -dox, white bars) male target mice by qPCR. Induced (wt +dox, dark grey bars) and not 

induced (wt -dox, black bars) wild type males served as negative control. Remaining expression of target 

genes is displayed s percentage of not induced wt mice. C) Western blot analysis of IR, IGF1R and Akt 

(loading control).  For all groups n= 3. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 versus wt -dox control. 
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Fig. 18: KD of IGF1R in shIGF1R2 mice. Expression levels of IR A) and IGF1R B) were estimated in 

selected tissues of  dox induced (shIGF1R_IR5 +dox, light grey bars) and not induced (shIGF1R_IR5 -dox, 

white bars) male target mice by qPCR. Induced (wt +dox, dark grey bars) and not induced (wt -dox, black 

bars) wild type males served as negative control. Remaining expression of target genes is displayed s 

percentage of not induced wt mice. C) Western blot analysis of IR, IGF1R and Akt (loading control).  For 

all groups n= 3. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 versus wt -dox control. 
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Fig. 19: KD of IR in shIR5 mice. Expression levels of IR A) and IGF1R B) were estimated in selected 

tissues of  dox induced (shIGF1R_IR5 +dox, light grey bars) and not induced (shIGF1R_IR5 -dox, white 
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bars) male target mice by qPCR. Induced (wt +dox, dark grey bars) and not induced (wt -dox, black bars) 

wild type males served as negative control. Remaining expression of target genes is displayed s percentage 

of not induced wt mice. C) Western blot analysis of IR, IGF1R and Akt (loading control).  For all groups 

n= 3. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001 versus wt -dox control. 

 

 

3.2.2 Serum levels of Insulin and IGF1 in double knockdown mice 

The emergence of resistance to insulin and IGF1 in mice with silencing in both 

corresponding receptors was investigated by detection of circulation hormones, to 

demonstrate compensatory release (Fig. 20). Insulin levels were determined by Enzyme-

linked Immunosorbent Assay (ELISA) in samples collected daily in the first week of 

induction and in a weekly interval for the 3 consecutive weeks. Furthermore, serum 

levels of IGF1 were analyzed after 4 weeks of dox treatment. 
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Fig. 20: Compensatory changes in serum levels of insulin, not of IGF1. A) Concentrations of circulating 

insulin were monitored from beginning of doxycyclin induction over a period of 4 weeks in  shIGF1R_IR5 

+dox (filled diamond), shIR5 +dox (filled triangle), shIGF1R +dox (filled rectangle), wt +dox (filled circle) 

and wt -dox (open circle) mice.  Statistical significance was calculated using two-way ANOVA, followed 

by a Bonferroni post-test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. B) Separate depiction of serum insulin 

levels of serum insulin levels in shIGF1R2 +dox, shIR5 +dox and shIGF1R2_shIR5 +dox mice in relation 

to wt -dox (black bar) and wt +dox (dark grey bar) controls at the end of experiment (day 28). Statistical 

significance was calculated using two-tailed t-test versus wt -dox. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 

0.001. C) Serum concentrations of IGF1 were determined in dox treated (light grey bars) and untreated 

(white bars) mice of each group in week 4 after of dox induction. wt -dox (black bar) and wt +dox (dark 

grey bar) served as controls. For each group n= 5. All data are presented as mean ± SEM. Statistical 

significance was calculated using two-way ANOVA, followed by a Bonferroni post-test. *, P ≤ 0.05; **, P 

≤ 0.01; ***, P ≤ 0.001. For each group n= 5. All data are presented as mean ± SEM. 

 

 

Serum insulin concentrations rose drastically beginning from day 3 of induction 

in induced shIGF1R2_IR5 +dox and shIR5 +dox mice, reflecting a compensatory 

increase of insulin secretion due to target tissue resistance. Serum concentration of both 

groups peaked at 28 ng/ml at day 7. Values fluctuated between 23 ng/ml and 30 ng/ml in 

the following 3 weeks. No clear differences in the kinetics of onset or magnitude of 

compensatory increase in insulin concentrations were observed between shIGF1R2_IR5 

+dox and shIR5 +dox mice. A comparably subtle but significant, 3-fold, increase of 

serum insulin was observed in mice with silencing of the IGF1R, starting from week 2 of 
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induction. This elevation did not reach significance in ANOVA test performed on whole 

data representing temporal progress of insulin release (Fig. 20A). However, separate 

statistical analysis of insulin values at day 28 using two-tailed t-test revealed an increase, 

which was significant versus wt -dox controls (Fig. 20B). Control wt mice, induced and 

not induced, displayed no changes in insulin serum levels. 

Serum concentrations of IGF1 were analyzed in samples taken in week 4 of dox 

treatment (Fig. 20C). No significant differences between induced KD mice and wt control 

groups were observed, demonstrating the absence of compensatory increased release of 

IGF1 due to whole body ablation of the IGF1R.  

 

 

3.2.3 The effects of IR and IGF1R KD on energy homeostasis and somatic growth 

 Common physical parameters including body weight, fat content, body length and 

food intake were determined to investigate the effects of disturbed energy homeostasis 

and somatic growth. 

Body weight of induced mice and control groups was monitored weekly from 

beginning of dox administration in the age of 6 weeks. The weight curve of induced mice 

is depicted in Fig. 21A. Not induced control groups as well as induced wt +dox mice are 

shown in Fig. 21B. Induced double KD mice (shIGF1R2_shIR5 +dox) continuously lost 

weight to a mean value of 11 g after 4 weeks. Moreover, also shIR5 +dox mice 

considerably lost body mass, however not to the same extent as double KD mice. Induced 

shIGF1R2 +dox mice however showed no alteration in body weight after start of 

induction. Here, body weight did not increase over 19 g, indicating an arrest of somatic 

growth due to ablation of the IGF1R. Among the control groups, induced and not induced 

wt mice, wt +dox and wt -dox, and shIR5 -dox mice continuously gained weight to a 

final body weight of about 22 g. Notably, not induced shIGF1R2_shIR5 -dox and 

shIGF1R2 - dox mice display lower body weight at any time, compared to wt mice and 

shIR5 -dox mice.  

To further assess the effects of insulin and IGF1 receptor ablation on lipid 

metabolism, body fat content was dermined in week 5 of induction using nuclear 
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magnetic resonance (NMR). Fat content is displayed as percentage of whole body weight 

(Fig. 21C). Induced shIGF1R2_shIR5 +dox and shIR5 +dox mice exhibited a significant 

decrease in body fat percentage to about 5 %. In contrast, body fat in animals with 

silencing in IGF1R was significantly increased to about 18 % of whole body mass. Not 

induced shIGF1R2 -dox mice showed a slightly increased fat content, not reaching 

significance. Wild type mice and not induced control groups displayed fat percentage of 

about 10 %. 

Since IGF1 action is a well-established anabolic signal, the effect of IGF1R 

silencing on somatic growth was verified by determination of body length after 4 weeks 

of doxycyclin treatment (Fig. 21C). Mean body length of shIGF1R2_IR5 +dox and 

shIGF1R2 +dox mice was significantly reduced to 85 and 86 mm. These data indicate 

that the cause for the observed reduction in body weight of IGF1R deficient mice is 

attributable to reduced somatic growth. Body length between control groups as well as 

induced shIR5 +dox mice was undistinguishable with about 90 mm. 

Furthermore, average food intake was determined daily in 11-week-old mice after 

4 weeks of induction (Fig. 21D). Food intake of shIGF1R2_IR5 +dox and shIGF1R2 

+dox mice was drastically reduced to about 3.2 g per day. Not induced control groups as 

well as doxycyclin induced wt +dox and shIR5 +dox mice showed no alteration. Daily 

average food intake of these groups was about 4.1 g per day.   
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Fig. 21: Body weight, fat content, length and food intake. A) Body weight was monitored in a weekly 

interval from beginning of induction of induced wild type wt +dox (filled circle), shIGF1R +dox (filled 

rectangle), shIR5 +dox (filled triangle) and shIGF1R_IR5 +dox (filled diamond). B) wt +dox (filled circle) 

and not induced control groups wt -dox (open circle), shIGF1R -dox (open rectangle), shIR5 -dox (open 

triangle) and shIGF1R_IR5 -dox (open diamond) are depicted separately. For all groups n =10. C) Body fat 

content was detected in week 5 of induction in 11 week old induced (light gray bars) and not induced white 

bars) mice. For all groups n =10. D) Body length was determined in week 5 of induction in 11 week old 

induced (light gray bars) and not induced (white bars) mice. For all groups n =10. E) Average daily food 

intake of dox treated (light gray bars) and untreated (white bars) mice was measured in week 4. For all 

groups n =5. Wt -dox (black bars) and wt +dox mice served as controls in determination of body fat 

content, body length, and food consumption. All data are presented as mean ± SEM. The statistical 

significance was calculated using two-way ANOVA, followed by a Bonferroni post-test. *, P ≤ 0.05; **, P 

≤ 0.01; ***, P ≤ 0.001; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 

 

 

Taken together, shIGF1R2_shIR5 +dox mice exhibited a multitude of physical 

changes, primarily reflected by a drastical reduction in body weight. This observation 

goes along with effects that were observed in single and double KD mice. Loss of IR 

function results in a severely decreased body fat content. Ablation of the IGF1R reduced 

somatic growth, demonstrated by arrested weight gain and reduced body length. 

Furthermore, IGF1R deficient mice display reduced food intake. 

 

 

3.2.4 The effect of IR and IGF1R silencing on glucose metabolism  

 To assess the impact of simultaneous KD of insulin- and IGF1-receptor on 

glucose metabolism, serum glucose concentrations were monitored for the duration of the 

experiment. The progression of blood glucose concentrations in dox induced mice of all 

groups is shown in Fig. 22A. Not induced control groups as well as induced wt mice are 

displayed separately in Fig. 22B. 

Blood glucose concentrations started to rise in shIGF1R2_IR5 +dox and shIR5 

+dox mice beginning from day 4 of induction, indicating the development of insulin 

resistance in target tissues. Notably, induced double KD mice, namely 

shIGF1R2_shIR5+dox, exhibited a distinctly faster increase of glucose levels during day 

5 and 6 after induction, compared to shIR5 +dox mice. However, both lines reached 
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values of 450 mg/dl glucose at day 7 and fluctuated between 380 mg/dl and 550 mg/dl 

until the end of the analysis period. In contrast, induced shIGF1R +dox mice revealed no 

elevation but rather slightly lowered blood glucose values compared to wt control groups. 

This decrease did not reach significance in ANOVA test performed on whole data 

representing temporal progress of glucose levels in all groups (Fig. 22A). However, 

separate statistical analysis of glucose values in shIGF1R +dox mice at day 28 using two-

tailed t-test revealed a decline, significant versus wt -dox controls at that point in time 

(Fig. 22B). Dox treated wt mice and not induced control groups showed no alterations 

over the time monitored. 
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Fig. 22: Blood glucose levels in shIGF1R_IR5 mice. A) Blood glucose concentrations in male wild type 

wt +dox (filled circle), shIGF1R +dox (filled rectangle), shIR5 +dox (filled triangle) and shIGF1R_IR5 

+dox (filled diamond) mice were detected  for a period of 4 weeks, daily in the first week of induction and 

in a weekly interval for 3 more weeks. B) Blood glucose values of wt +dox (filled circle) and not induced 

controls wt -dox (open circle), shIGF1R -dox (open rectangle), shIR5 -dox (open triangle) and 

shIGF1R_IR5 -dox (open diamond) are displayed separately. The statistical significance was calculated 

using two-way ANOVA, followed by a Bonferroni post-test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. C) 

C) Separate depiction of serum glucose levels of shIGF1R2 -dox (whithe bar) and shIGF1R2 +dox (light 

grey bar) mice in relation to wt -dox (black bar) and wt +dox (dark grey bar) controls at the end of 

experiment (day 28). Statistical significance was calculated using two-tailed t-test versus wt -dox. *, P ≤ 

0.05; **, P ≤ 0.01; ***, P ≤ 0.001. For each group n= 10. All data are presented as mean ± SEM. 
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To further elucidate to what extent double KD of IR and IGF1R affects insulin 

sensitivity of target tissues, insulin tolerance tests (ITT) and glucose tolerance tests 

(GTT) were performed. 

 ITT was performed in induced and not induced mice of all groups in week two 

after start of dox treatment (Fig. 23A, B). Induced shIR5 +dox and shIGF1R2_shIR5 

+dox mice showed no response, i.e. decrease in blood glucose, upon administration of 

exogenous insulin. Reduction of blood glucose concentrations was significantly lowered 

in induced shIGF1R2 +dox mice after insulin stimulation compared to wt +dox mice. 

Response to insulin in not induced control groups, shIR5 -dox, shIGF1R2 -dox, 

shIGF1R2_shIR5 -dox, wt -dox and induced wt was indistinguishable (Fig. 23B). 

In addition, GTT was performed in week 3 after beginning of induction (Fig. 23C, 

D). All KD mice exhibited reduced glucose clearance upon exogenous glucose 

administration (Fig. 23C). The highest degree of impairment was observed in 

shIGF1R2_shIR5 mice. Double KD of insulin and IGF1 receptor in shIGF1R2_IR5 +dox 

mice lead to a slightly higher rise in blood glucose concentrations upon exogenous 

administration, compared to shIR5 +dox mice. However, this difference did not reach 

statistical significance. Ablation of IGF1R in shIGF1R2 +dox mice significantly reduced 

peripheral glucose uptake, indeed at a less severe degree compared to shIR5 +dox mice. 

Glucose clearance was indistinguishable between not induced control groups (Fig. 23D). 
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Fig. 23: Insulin and glucose tolerance in double KD mice. ITT was performed in week 2 after induction. 

A) Blood glucose levels of induced wild type wt +dox (filled circle), shIGF1R +dox (filled rectangle), 

shIR5 +dox (filled triangle) and shIGF1R_IR5 +dox (filled diamond) were determined 15, 30 and 60 min 

after injection of insulin. B) ITT results of control groups, wt +dox (filled circle) and not induced controls 

wt -dox (open circle), shIGF1R -dox (open rectangle), shIR5 -dox (open triangle) and shIGF1R_IR5 -dox 

(open diamond), are displayed separately. GTT was accomplished in week 3 after start of doxycyclin 
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induction. C) Blood glucose concentrations of induced wild type wt +dox (filled circle), shIGF1R +dox 

(filled rectangle), shIR5 +dox (filled triangle) and shIGF1R_IR5 +dox (filled diamond) were detected 15, 

30, 60 and 120 min after injection of glucose. D) The GTT results of wt +dox (filled circle) and not induced 

wt -dox (open circle), shIGF1R -dox (open rectangle), shIR5 -dox (open triangle) and shIGF1R_IR5 -dox 

(open diamond) control groups are displayed separately. For each group n= 10. All data are presented as 

mean ± SEM. The statistical significance was calculated using two-way ANOVA, followed by a 

Bonferroni post-test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 

 

In conclusion, mice with silencing in insulin and IGF1 receptor exhibited a 

stronger initial increase in serum glucose levels, compared to IR deficient mice, while the 

onset and magnitude of hyperglycemia were undistinguishable between both groups. 

Furthermore, double KD mice displayed a slightly reduced glucose clearance, compared 

to mice with silencing in IR, which however did not reach statistical significance. 

In contrast, no changes in blood glucose levels were observed in IGF1R deficient mice.  

Interestingly, these mice displayed severely impaired glucose tolerance and reduced 

insulin sensitivity.  
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4 Discussion 

 

4.1 Generation of murine ES cell line bearing two RMCE alleles (first 

strategy) 

The technical challenge of this thesis was the development of a system that allows 

the simultaneous shRNA-mediated knock down (KD) of two independent target genes in 

transgenic mice. The ablation of two target genes allows addressing a wider field of 

research issues by the RNAi technology, e.g. by silencing of redundant functions or 

compensatory pathways. Specifically, this study aimed to generate a tool to 

simultaneously and inducibly silence the insulin receptor and IGF1 receptor in a 

temporally controlled manner to analyze the role of IGF1R in compensating functions of 

IR in control of glucose metabolism and the development of type 2 diabetes mellitus 

(T2DM). Two distinct strategies were pursued to enable the integration of two shRNA 

expression cassettes, allowing the tet-repressor mediated temporal control of RNAi, to 

achieve the KD of two target genes.  

The first strategy based on the generation of a cell line harbouring two alleles 

prepared for cassette exchange, allowing the simultaneous integration of two independent 

shRNA expression cassettes at the two genomic loci. This dRMCE technology provides a 

platform for a wide range of applications. Beside the simultaneous expression of two 

shRNAs, spare combinations of shRNA and mRNA expression units can be integrated in 

a simple and fast way using dRMCE. The most significant advantage of dRMCE is given 

by the employment of two segregating RMCE alleles. Proper assembly of experiments 

comprising two modified factors require the analysis of single modified mice lines as 

control groups. The dRMCE approach enables to achieve all three mouse lines just by 

generation and breeding of dRMCE-mice, carrying each shRNA expression unit in 

independently inherited loci. Reducing pre-experimental work in transgenic mouse 

generation to one line makes complex experiments using double modified mice much 
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more work-, time- and especially cost-efficient. These benefits make dRMCE an 

interesting technique for several applications.  

An established RMCE system mediating integration in Rosa26 (125) served as a 

technical basis for the constitution of the dRMCE cell line. A second Flp-based RMCE-

system, designated as RMCE-2, was designed to act independently from the one in 

Rosa26 to allow simultaneous and specific exchange in both RMCE loci. The specificity 

of cassette exchange in both systems was given by the use of 3 pairs of heterospecific 

FRT versions (168). RMCE-2 employed couples of FRT and F5 sites whilst the R26 

RMCE system makes use of FRT and F3 pairs, limiting cassette exchange through double 

reciprocal recombination to each associated couple of acceptor and donor cassette. 

Moreover, the architecture of the marker systems afforded antibiotic selection after 

specific exchange in both RMCE loci. Reconstitution of a puromycin resistance gene in 

RMCE-2 depends on the correct recombination of the FRT site, whereas activation of a 

neomycin resistance gene depends on recombination of the F3 site in the R26 system. 

Since FRT and F3 sites were part of the reading frame of the accordant resistance genes 

activation of those is exclusively given by exchange of R26 RMCE donor and acceptor 

cassette and RMCE-2 donor and acceptor cassette. 

A second more critical task was the identification of a genomic locus for 

integration of the RMCE-2 acceptor cassette, providing ubiquitous and high expression of 

transgenic shRNAs and mRNAs as well as tight control of the employed inducible RNAi 

system. Further, structural demands had to be fulfilled by a candidate locus. Integration 

of the RMCE-2 cassette should be preferably neutral in sense of minimizing the risks of 

interference with endogenous functions to avoid a possible phenotype, e.g. through 

disruption of ORFs, promoter elements or regulatory elements, as well as trans effects of 

integrated transgenic promotors. For this reason a site of integration in an intergenic 

region downstream of a well defined 3´ UTR was favoured. Additionally, the 

chromosomal position of the site of integration has to ensure independent inheritance of 

RMCE-2 allele and R26(RMCE) allele. The locus of Cola1 was chosen for integration of 

the genomic part of RMCE-2 as a promising candidate. Col1a1 was previously 

characterized by Beard et al. (181) who demonstrated strong and ubiquitous expression 
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of integrated cDNAs, independent from the expression pattern of the Col1a1 gene. These 

preceded studies strongly suggested properties of the Col1a1 locus fulfilling the demands 

for dRMCE applications. Beard et al. (181) targeted an intergenic region about 0.5 kb 

downstream of the 3´UTR of the Col1a1 gene with the neighboring gene Sarcoglycan α 

(Sgca) in reverse orientation and in a distance of 7 kb. This positioning 3´of both ORFs, 

with no further known transcripts between, was seen as a good option for integration of 

the RMCE-2 acceptor cassette avoiding unwanted effects on endogenous gene activity. 

At last, Col1a1 is located on Chromosome 11, assuring independent inheritance from the 

R26 locus on Chromosome 6.  

The genomic part of RMCE-2 was integrated in Col1a1 of a ES cell line bearing 

R26(RMCE), yielding a cell line with two loci prepared for cassette exchange. 

Functionality of dRMCE was successfully demonstrated by the simultaneous and 

independent integration of two RMCE donor cassettes for shRNA expression in 

R26(RMCE) and Col1a1(RMCE-2). Specificity of the dRMCE reaction for both distinct 

loci was demonstrated by Southern blot analysis. 80 % of cells resistant to both 

antibiotics turned out to be positive for both exchanged alleles in Southern blot analysis. 

This rate of yield was arithmetically the optimum to be expected since R26(RMCE), as 

the basic system of dRMCE, provides about 90 % positive clones, when used in single 

RMCE (125). As a test for specificity of each exchange reaction in each independent 

system, cells bearing both RMCE alleles were transfected with single exchange vectors, 

either for integration in R26(RMCE) or Col1a1(RMCE-2). Several Cells transfected with 

Col1a1 exchange vector showed changed signal pattern of R26 specific probes, 

suggesting interactions between Col1a1 exchange vector and R26(RMCE) locus. 

Single site recombination of the FRT sites, used in both RMCE systems, might facilitate 

the integration of Col1a1 exchange vector in R26(RMCE). Such a recombination event 

separates the truncated Puro gene from the pA, intended to block transcription after 

incorrect integration, and allows it ´s expression through transcriptional activities at the 

site of integration. Certainly the number of analysed clones was much too small for a 

reasonable evaluation of these effects, but point at a possibly reduced specificity of 

RMCE reaction in presence of the second RMCE locus.  
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Anyhow, specific integrations obviously seem to superpose unspecific interactions events 

between both RMCE systems and avoid the outcome of false integrations, as 

demonstrated by the high succession rate of dRMCE.  

As a further demonstration of dRMCE integration target gene silencing, triggered 

by the both integrated shRNA expression cassettes was estimated in ES cells. Remaining 

levels of both target genes mRNAs were reduced to comparable levels by vectors 

integrated via dRMCE when compared to the same vector solely integrated. This result 

demonstrates the functionality of dRMCE integrated shRNA expression vectors and 

further demonstrates the specific integration of R26 and Col1a1 exchange vectors into the 

accordant RMCE locus, since KD of target genes occurs only in clones expected to 

express corresponding shRNA. 

In parallel to the generation of the dRMCE system a simple RNAi construct was 

integrated into the Col1a1 locus to analyse it´s transgenic expression properties, avoiding 

the complexity of constituting RMCE-2. The used construct allowed evaluating the 

functionality of the employed inducible RNAi system, the degree of shRNA triggered 

target gene silencing and expression of transgenic mRNA. Transgenic mice were 

generated after obtaining promising in vivo results, showing KD levels comparable to 

those yielded by R26. Remaining mRNA levels of the target gene as well expression 

levels of the tetR mRNA were determined in several tissues. Unfortunately expectations 

for Col1a1 were nut fulfilled. Expression levels of tetR mRNA showed to be considerable 

lower, 130 to 3,200 times, in most considered tissues, than those given by R26 integrated 

tetR genes. Indeed, silencing effects achieved by Col1a1 expressed shRNA in vivo were 

comparable or even slightly higher than those of the same shRNA expressed from R26, 

but regrettably, control mice showed significant reductions of target gene mRNA in 

several tissues without shRNA expression being induced by doxycycline treatment. 

Uninduced KD occurs strongest in kidney showing a KD to 13 % of remaining target 

gene expression. Brain, heart, liver, spleen, WAT and BAT are ranging between a 

reduction to about 60 % to 30 %. This unwanted KD results from a insufficient regulation 

of the H1tetO -tetR system leading to shRNA expression without induction. Among the 

analyzed tissues only muscle shows tight controlled shRNA expression, only after Dox 
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administration. This tissue depended leakiness is a known disadvantage of the used 

shRNA expression system. Integrated in R26(RMCE) this effect most commonly occurs 

in brain and kidney and at lower degree in other tissues.  

Most likely the high degree of leakiness can be attributed to the low tetR expression 

found in most tissues. Further factors might be tissue specific CpG methylation patterns 

or chromatin condensation status at the site of integration, impairing the binding of tetR 

or its ability to block Polymerase III depend transcription. Further investigation on 

methylation status, shRNA expression levels, use of insulator sequences, such as the 

chicken hypersensitive site-4 (cHS4) (202) etc. might help to understand and to avoid 

tissue depend leakiness of the H1tetO system. Anyhow, testing more loci for their 

expression properties seems to be a more promising option to obtain a dRMCE system 

deployable for all estimated areas of use. In general loci of strong and ubiquitous 

expressed house keeping genes are used for transgene expression issues. While 

interrupting endogenous gene functions were to be preserved in this work, several sites 

inside the ORFs of house keeping genes has been tested as versatile integration loci for 

expression of transgenic cDNAs or shRNAs. Disregarding the heterozygote interruption 

of endogenous gene function, testing these loci as sites for RMCE-2 seems to be a 

promising option. Examples are the hypoxanthine phosphoribosyltransferase 1 (Hprt1) 

loci, used for constitutive shRNA expression, or the beta actin locus, used for cDNA 

expression (155, 203, 204). 

During the accomplishment of this project Turan et al. (205) demonstrated the 

functionality of a dRMCE system following the same principle applied in this work. 

In contrast to the application presented in this thesis, genomic parts were not integrated at 

defined loci for transgenic gene expression. In conclusion, the functionality of the 

designed dRMCE was successfully demonstrated and reached the optimum integration 

rate to be expected. Albeit Col1a1 did not fully fit expectations and can not be used for 

inducible RNAi applications, the locus can be used for insertion of constitutivly active 

RNAi constructs, since achieved KD of Col1a1 expressed shRNA was high in all 

investigated tissues. Further mRNA expression in Col1a1 was lower, compared to R26, 

but might be sufficient for applications of transgenic mRNA expression. The constructed 
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RMCE-2 system can be used for further work on dRMCE technique, since the benefits of 

dRMCE, as described above, justify further investigation on dRMCE and especially 

screening of alternative loci as a site for the integration of the genomic part of RMCE-2.  

 

 

4.2 Stable single copy integration of two shRNA expression units in R26 

(second strategy) 

The second strategy to obtain silencing of two independent target genes based on 

the combination of two dox inducible shRNA expression units in a single exchange 

vector for the integration into the R26(RMCE) allele. The combination of multiple 

shRNA expression units in one vector has been demonstrated before (206-208), but so far 

the adaptability of RMCE technology and the suitability of R26 locus for single copy 

integrations of tandem constructs have not been demonstrated. The tandem approach was 

very straight forward, compared to the dRMCE approach, since it employs the 

established R26 system and requires no further genomic modification. In contrast to the 

described double RMCE system this approach requires the independent generation of 

single KD control lines necessary, extending pre-experimental costs. 

Two tandem constructs, harbouring the expression units for shRNAs directed 

against IR and IGF1R in contrariwise orders, were analysed for their silencing efficiency 

in ES cells. Both constructs displayed reduction of both target gene’s expression at a 

degree comparable to solely expressed shRNAs and revealed no position dependence in 

promoter activity in ES cells.  Heterozygote mice bearing a shIGF1R2_shIR5 tandem 

construct displayed silencing of both receptors. Both promotors of the tandem construct 

displayed the same tissue dependent leakiness of the inducible H1tetO -tetR system in 

total brain as single RNAi cassettes does. Although no effects of the promoter’s positions 

were observed in ES cells, measurements of target gene expression in mice revealed a 

lowered silencing efficiency of the shRNA encoded at the first position in most analysed 

tissues. Double KD mice displayed a twofold weaker silencing in IGFF1R expression in 

several tissues compared to shIGF1R single KD mice. IGF1R mRNA was reduced to just 
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about 40% in muscle, pancreas, EWAT and BAT of double KD mice. Weather the 

downstream neighbouring promotor negatively influenced transcriptional activity or both 

shRNA compete within the RNAi pathway was not further investigated in this thesis. 

However, the generated mice line provided silencing in IR and IGF1R, allowing 

to investigate the effects of concurrent diminished expression of both receptors. The 

circumstance that double KD mice displayed IGF1R silencing at a lower degree than the 

single KD control group must be considered in the interpretation of the following 

findings. 

 

 

4.3 Phenotypical analysis of insulin- and IGF1-receptor double 

knockdown mice 

The genetic techniques successfully developed in this thesis made it possible to 

generate a mouse model that allows the concurrent RNAi-mediated ablation of the insulin 

and the IGF1 receptor. Temporally controlled double KD provides an excellent option to 

investigate the impact of whole body loss-of-function of both receptors, since 

conventional homozygous knock outs of either of these receptors results in embryonic 

and perinatal lethality (87, 209).  

The insulin receptor (IR) plays a central role in nutrient metabolism by regulating 

glucose and lipid homeostasis and inhibition of its signalling cascade leads to the 

development T2DM (209 -213). Inactivation of IR function in mice provides a basic 

diabetic model of insulin resistance through disruption of intracellular downstream 

signalling (for review see (214). The IGF1 receptor (IGF1R) is structurally closely 

related to the IR (33, 58, 60) The high degree of Homology facilitates low affinity 

binding of IGF1 and insulin to the IR and IGF1R, respectively (74, 80, 100-102). 

Nevertheless, although both receptors share the same major intracellular signalling 

pathways (33, 58-60), the biological effects of IGF1 signalling differ considerably from 

those of insulin. To date, IGF1 is mostly seen as an anabolic hormone and as a potent 

inhibitor of apoptosis (62-64, 87, 100). However, experimental evidence derived from 
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clinical trials as well as in vitro and in vivo studies assign an important role to the IGF1 

system in maintaining glucose homeostasis and in the development of T2DM. Low levels 

of circulating IGF1 were observed in type 2 diabetic patients and clinical trails revealed 

insulin-like effects of administered exogenous IGF1, reducing serum glucose levels at a 

magnitude of 4-7% of the effect of insulin itself (66, 68, 111-114). In line with these 

observations, administration or overexpression of IGFBPs, thereby modulating IGF1´s 

bioavailability, were demonstrated to impair glucose homeostasis (110, 115-118). These 

described insulin like effects of IGF1 are mainly attributed to peripheral glucose uptake 

in skeletal muscle, while the role of hepatocytes and adipocytes in this context is 

controversially discussed (70, 111, 120-124). Furthermore, IGF1 signalling has shown to 

influence insulin action itself, since function of the IGF1R turned out to be crucial for 

adequate glucose induced insulin release by the pancreatic β-cells (215 -217). 

The simultaneous ablation of IR and IGF1R allows to examine whether both 

receptors display redundant functions in regard to glucose and energy homeostasis and to 

assess the role of the IGF1 receptor in the emergence of T2DM. Accordingly, the 

generated double KD line was analyzed in terms of metabolic parameters. As a central 

focus of interest, the development of insulin resistance in shIGF1R2_shIR5 mice was 

investigated by monitoring serum levels of insulin and glucose. Performance of insulin 

tolerance tests (ITT) and glucose tolerance tests (GTT) afforded to further elucidate in 

which magnitude double KD of IR and IGF1R effects insulin sensitivity of target tissues. 

The impact of receptor ablation on overall energy homeostasis and somatic growth was 

assessed by monitoring physical parameters, including body weight, body fat content, 

body length and food consumption. 

 Mice that lack the insulin receptor exhibited a pronounced diabetic phenotype, 

reflected by elevated blood glucose levels, compensatory insulin release as well as severe 

impaired glucose tolerance and insulin sensitivity. Moreover, reduced body fat content 

and the complete lack of epigonadal white fat pads, indicated reduced uptake of 

circulating lipids and increased hydrolysis of triglycerides due to abrogated insulin 

action. However, further analyses have to be performed to characterize the changes in 

energy metabolism e.g. by analysis of serum lipid species and the expression of genes 
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involved in lipid and glucose metabolism. Disturbed energy homeostasis was also 

reflected by a severe loss of whole body weight. These findings of IR KD mice are in line 

with the results of previous studies employing shIR5 mice (218). 

Parameters of insulin and glucose metabolism display a mixed picture in the 

second control group with KD of the IGF1R. These animals displayed severe resistance 

to exogenous glucose, with only a minor reduction in insulin sensitivity, a slight increase 

in basal serum insulin levels and no elevation in basal blood glucose levels but rather a 

slight decline. These current findings are largely in line with observations of studies 

demonstrating impaired glucose stimulated insulin secretion after β-cell specific ablation 

of the IGF1R (215 -216). Mice exhibited reduced glucose stimulated insulin release, with 

unaltered β-cell mass, causing impaired glucose clearance in both studies. These findings 

were accompanied by a mild increase in basal insulin levels, at a comparable degree to 

our observations, maintaining basal serum glucose concentrations at a normal level. No 

peripheral insulin resistance was found in both studies. Furthermore, in vitro studies in 

the MIN-6 β-cell line revealed dysregulation of ATP level controlling mechanisms, 

contributing to glucose stimulated insulin release, after silencing of the IGF1R  (217). 

Although no increase of basal glucose levels was observed in IGF1R KD mice, impaired 

glucose clearance after insulin challenge indicated the development of peripheral insulin 

resistance due to IGF1R ablation. However, these effects seem to be relatively mild since 

elevated basal insulin levels were sufficient to maintain glucose homeostasis reflected by 

decreased basal blood glucose levels under physiological conditions compared to 

controls. In contrast to our observations, a severe diabetic phenotype was described for 

mice expressing a dominant negative IGF1R mutant in skeletal muscle, leading to 

functional inactivation of IGF1R and IR (70). These mice displayed hyperglycemia as 

well as a high degree of glucose and insulin resistance. The findings of this study were 

attributed to missing IGF1R function because IR ablation in muscle caused no distinct 

diabetic phenotype (27). Neither occurrence of serious insulin resistance nor development 

of hyperglycemia was confirmed in the present study, despite a considerable KD of 

IGF1R in muscle. In contrast to reduced body fat percentage in IR KD mice, ablation of 
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IGF1R caused a significant elevation in body fat content, accompanied by a body weight 

decline. Increased number and size of adipocytes were described after tissue specific 

ablation of IGF1R in white adipose tissue and was assumed to be a consequence of 

increased insulin-stimulated glucose uptake and subsequent lipogenesis (219). 

Furthermore, increased body fat content and decreased whole body weight were 

described after brain specific ablation of IGF1R as a secondary effect due to neural 

developmental defects disturbing the somatic axis and leading to reduced GH release 

(220) Indeed, GH-deficient mouse models display similar phenotype regarding fat 

content and body weight (221 -223). Certainly, lowered GH levels should cause a 

reduced IGF1 release, that was not observed in the present study but was detected after 

brain specific IGF1R KO (220). Indeed, Klöting et al. (219) demonstrated increased 

IGF1 release from adipocytes after ablation of IGF1R in adipose tissue that might in part 

compensate missing GH stimulation. 

However, in the current study the phenotypic changes observed in shIGF1R mice 

might result from both described effects on adipose tissue, since IGF1R silencing was 

ubiquitous in the applied model and GH levels were not determined. In conclusion, the 

findings of this and preceded studies demonstrate no diabetes-like phenotype in terms of 

lipid metabolism after ablation of IGF1R. However, detailed analyses of serum lipid 

species and specifically the expression of enzymes involved in lipid biosynthesis or 

breakdown in adipose tissue and liver are necessary to draw any further conclusions. 

Monitoring body weight over the course of the experiment revealed that mice with 

silencing in IGF1R did not gain weight after start of dox treatment. This stagnation can 

be attributed to disruption of somatic growth and changed food consumption behaviour, 

found in shIGF1R2 KD mice. Accordingly, a reduction of food intake was observed in 

rats after central administration of an IGF1R antagonist. (224). Furthermore, reduced 

food consumption can be a consequence of altered leptin release from adipocytes and 

subsequent changes in hypothalamic neuropeptide expression (225-230). Circulating 

serum leptin levels strongly correlate with adipocyte size and number (231-233), which 

were both elevated in mice with brain-specific but not adipocyte-specific IGF1R deletion 

(219, 220). Although no changed food intake behaviour was revealed by both studies, the 
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inhibitory effects of leptin on calorie intake by acting on the central nervous system is 

well established (234-238). This assumption cannot be confirmed by the findings of this 

study because neither morphology of adipose tissue was analysed nor serum leptin levels 

were determined. Since food intake was monitored for just one week, we can not rule out 

the possibility that this effect was just temporary. The fact that body weight of mice with 

silencing in IGF1R just stagnated without severe reduction and displayed increased body 

fat content might indicate a temporary restricted change in food intake behaviour. If so, 

reduced weight gain would largely depend on disruption of somatic growth in mice with 

silencing in IGF1R, clearly demonstrated by reduced body length. Furthermore, reduced 

weight gain in not induced shIGF1R2 and shIGF1R2_shIR5 mice points to a disruption 

of the somatic axis due to constitutive shRNA expression in the brain even in the absence 

of dox. Growth retardation is a well-established phenotype of IGF1R loss-of-function 

mutants and was demonstrated in mice with conventional heterozygous deletion as well 

as after tissue specific ablation in brain and muscle (87, 220, 239, 240). Reduced body 

weight was either attributed directly to systemic disruption of IGF1 signaling or to neural 

developmental defects leading to reduced GH release in these studies (87, 219, 239).  

For the interpretation of the findings in double KD mice it must be considered that 

these displayed just approximately half of the silencing efficiency that was displayed by 

control group with single KD of IGF1R. Double KD mice, lacking IR and IGF1R, 

exhibited metabolic changes comparable to mice with single silencing in IR, displaying 

elevated blood glucose levels, compensatory insulin release, impaired glucose and insulin 

resistance as well as severe reduction of whole body weight and fat content.  

Neither onset kinetics nor degree of compensatory insulin release differed 

between mice lacking both receptors or just the IR, indicating either that insulin 

resistance is developed to the same extend, or compensatory mechanisms were activated 

at their maximum, in both mice lines. As demonstrated previously, IGF1R ablation 

caused impaired glucose-induced insulin release (215-217), but did not altered 

compensatory release in the present study, pointing to a dominant effect of β-cell mass 

expanison and enhanced function in response to target tissue resistance to insulin (241-

244). 
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Assessment of blood glucose levels in double KD mice revealed an earlier onset 

of hyperglycemia when compared to mice with single silencing in IR. This accelerated 

response might reflect a potential role of the IGF1R in insulin signaling. This finding is in 

line with the observed mild insulin resistance in mice with IGF1R ablation after insulin 

challenge. Possibly, hybrids of IR and IGF1R or even IGF1R homodimers maintain 

insulin signalling in the presence of severe hyperinsulinemia. Especially in the initial 

phase of compensatory insulin secretion, IR KD mice may still be able to dispose of the 

excess glucose via IGF1R signal transduction. However, this capability will be blunted in 

double KD mice, possibly explaining the sharper initial rise of blood glucose levels. 

However, function of IGF1R in this context does not seem to be critical enough to affect 

the overall magnitude of hyperglycemia in the further course of the experiment. The 

change in kinetics of glucose increment was the only significant finding indicating a 

worsening of a diabetic parameter between double KD and single IR KD mice. 

Furthermore, despite the observed gain of fat mass after IGF1R ablation (219-220), 

double KD mice lacking both receptors display a phenotype compliant with IR single KD 

in terms of reduced body fat content and the lack of epigonadal white fat pads, reflecting 

increased lipolysis and reduced uptake of lipids as a consequence of impaired insulin 

action on adipocytes. However, these findings in double KD mice cannot be clearly 

assigned to a dominant effect of IR ablation, since IGF1R reduction in adipose tissue of 

single KD mice is much more efficient compared to double KD mice. Further 

investigation on the expression of genes involved in lipogenesis and lipolysis might help 

to understand the interaction between IR and IGF1R ablation regarding lipid metabolism 

in adipocytes.  

Beside the metabolic changes, a multitude of physical parameters was altered in 

double KD mice, particularly a drastical reduction of body weight. Weight loss is a 

common diabetic symptom and was observed in IR single KD and, to a higher degree, in 

double KD mice. Increased weight loss of dKD mice can not be clearly attributed to a 

more severe affected energy metabolism, since double KD and IGF1R single KD mice 

displayed significantly reduction in food intake and somatic growth which might be seen 
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as the central factors in this context. Reduced food intake due to IGF1R ablation was 

described before (224) and might be a consequence of elevated fat mass leading to 

increased leptin release from adipocytes (219, 202). The possibility that changed food 

intake behavior was only transient must be considered, questioning the relevance of 

reduced food consumption for body weight reduction in mice with IGF1R KD. Growth 

retardation as a consequence of disturbing the somatic axis was an expected result of 

IGF1R KD (87, 220, 239), as described above, and was reflected by reduced body length 

of double KD mice to the same degree as in IGF1R single KD mice. Reduced food intake 

and somatic growth seem to be the most apparent factors by which IGF1R ablation 

contributes induces the drastic weight loss of double KD mice. However, contribution of 

metabolic effects to this phenotype cannot be ruled out. 

The simultaneous ablation of both receptors was lethal after 4 weeks. This 

increased mortality probably is a combinatory effect of disturbed glucose and lipid 

metabolism, reduced food intake behaviour and interrupted somatic growth. Due to the 

increased lethality all experiments were carried out in semi adult mice, up to 10 weeks of 

age. A potentially more important role of the IGF1R in aged mice was described by 

Bokov et al. (239) who observed progressive insulin resistance in heterozygous IGF1R 

KO mice of advanced age. The role of simultaneous silencing of IR and IGF1R in aged 

mice was not investigated and provides an interesting topic for follow-up studies. 

Taken together, simultaneous whole body silencing of the insulin and the IGF1 

receptor did not cause an enhanced middle-term diabetic phenotype in semi adult mice, 

displaying disturbance of glucose and lipid metabolism to the same extend as control 

mice with single ablation of the IR. Compensatory insulin release was undistinguishable 

between mice after silencing of IR or both IGF1R and IR receptor. Although mice with 

silencing of both receptors exhibited a more pronounced decline in body weight than IR 

KD mice, this decrease was rather a consequence of the combined effects of diabetic 

weight loss, reduced food intake and disturbed somatic growth, than due to a more 

pronounced impairment of metabolism. The only evidence for a worsening of metabolic 

parameters were the kinetics of developing hyperglycemia after silencing of both 



4 Discussion 

                                                               

 

-103- 

 

receptors. This finding confirms the previously described ability of IGF1R receptors or 

IGF1R/IR hybrids to adopt functions of the IR and thereby contributing to insulin action, 

which was also demonstrated by a lowered response of peripheral tissues upon insulin 

challenge found in IGF1R single KD control mice. However, this phenotype appears 

relatively mild and was not observed under basal conditions, since neither the magnitude 

of hyperglycaemia, nor peripheral glucose disposal were altered between double KD 

mice and IR KD mice after the initial phase of induction. These findings suggest that 

IGF1R might display a compensatory function in marginal or pre-diabetic insulin 

resistance but is not a determining factor in severe loss of IR function in semi adult mice.  
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5 Summary 

Diabetes mellitus type 2 (T2DM) is a serious and frequent disease, characterized 

by deregulation of glucose metabolism as a consequence of dysfunction of the insulin 

signaling system. The relevance of the IGF1 receptor (IGF1R) in compensating functions 

of the structurally closely related insulin receptor (IR) was subject to several studies but 

has not been clarified so far. To investigate a possible redundant function of both 

receptors two strategies were pursued to obtain the simultaneous RNAi-mediated 

knockdown (KD) of both receptors in transgenic mice. The first strategy based on the 

generation of a ES cell line bearing two alleles prepared for recombinase mediated 

cassette exchange (RMCE) in the loci of Rosa 26 (R26) and Collagen, type I, α1 (Col1a1) 

facilitating the integration of two shRNA expression cassettes. The Functionality of 

double RMCE was demonstrated, although expression properties of the Collagen locus 

did not meet our requirements. As a second strategy two shRNA expression units 

allowing tet-repressor (tetR)-mediated temporal control of RNAi, were combined in a 

tandem construct, integrated into the Rosa26 locus of ES cells using RMCE technologie. 

Transgenic mice harbouring this tandem construct displayed temporal controllable RNAi, 

reducing IR expression to 15-25% and IGF1R expression to 20-45%. Simultaneous 

whole body silencing of both receptors did not cause an enhanced middle-term diabetic 

phenotype in semi adult mice, displaying disturbance of glucose and lipid metabolism to 

the same degree as mice with single ablation of the IR. A faster initial increase of blood 

glucose was observed in double KD mice, possibly a consequence of a rudimental ability 

of the IGF1R or IGF1R/IR hybrids to adopt functions of the IR, also demonstrated by a 

lowered response of IGF1R single KD mice on insulin challenge. Certainly this effect 

seems not to be distinct enough to appear after complete silencing of IR, since neither the 

magnitude of hyperglycaemia, nor peripheral glucose disposal were distinguishable 

between double KD mice and IR KD mice after the initial phase. These findings indicate 

that IGF1R might in part compensate loss of IR function in marginal or pre-diabetic 

insulin resistance but is not crucial in severe loss of IR function in semi adult mice. 
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6 Zusammenfassung 

Diabetes mellitus Typ 2 (T2DM) ist eine ernste und häufig auftretende 

Erkrankung, charakterisiert durch Defekte des Insulin Systems, die eine gestörte 

Glucosehomöostase zur Folge haben. Die Bedeutung einer möglichen Kompensation der 

Funktion des Insulinrezeptors (IR) durch den strukturell eng verwandten IGF1-Rezeptor 

(IGF1R) wurde in vielen Studien untersucht, aber bisher nicht eindeutig geklärt. Um eine 

potenzielle redundante Funktion der Rezeptoren untersuchen zu können, wurden zwei 

neuartige technologische Strategien verfolgt, durch die eine zeitgleiche RNAi vermittelte 

Hemmung der Expression beider Rezeptoren in transgenen Mäusen ermöglicht werden 

sollte. Im Rahmen der ersten Strategie wurde eine ES Zelllinie generiert, in der zwei 

genomische loci, Rosa26 und Collagen, type I, alpha 1 (Col1a1), mit RMCE-Kassetten 

präpariert wurden, um so die gleichzeitige Integration zweier shRNA-

Expressionskassetten zu ermöglichen. Die Funktionalität dieses doppelten RMCEs 

konnte erfolgreich demonstriert werden. Jedoch zeigte sich, dass die 

Expressionseigenschaften des Col1a1 Locus nicht alle notwendigen Bedingungen 

erfüllen. In einer zweiten Strategie wurden zwei shRNA-Expressionseinheiten, die eine 

tet-repressor (tetR) vermittelte zeitliche Kontrolle der RNAi erlaubten, in einem 

Tandemkonstrukt kombiniert. Dieses wurde mittel RMCE in den Rosa26 locus muriner 

ES Zellen integriert. Das Tandemkonstrukt erlaubte in transgenen Mäusen eine zeitliche 

Kontrolle des RNAi Effektes und die Reduktion der IR-Expression auf 15-25% sowie der 

IGF1R-Expression auf 20-45%. Die gleichzeitige ubiquitär unterdrückte Expression von 

IR und IGF1R bewirkte keinen verstärkten diabetischen Phänotyp in semiadulten 

Mäusen. Diese zeigten keinen Unterschied in der Beeinträchtigung des Glucose- und 

Lipidmetabolismus im Vergleich zu Mäusen, in denen nur die Expression des IR 

gehemmt wurde. Ein initial stärkerer Anstieg der Blutglucosewerte in Mäusen, in denen 

beide Rezeptoren herunterreguliert wurden, deutete auf eine mögliche Fähigkeit des 

IGF1R oder von IR/IGF1R-Hybriden hin, Funktionen des IR zu erfüllen. Einen weiteren 

Anhaltspunkt für eine redundante Funktion gab die abgeschwächte Reaktion IGF1R 

defizienter Mäuse auf die Stimulation mit Insulin. Allerdings scheint dieser Effekt nicht 
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ausgeprägt genug zu sein, um sich bei einem vollständigen Verlust des IR zu 

manifestieren, da im weiteren Verlauf des Experimentes keine Unterschiede in der 

Ausprägung der Hyperglycämie oder der peripheren Glucoseaufnahme festgestellt 

werden konnten. Diese Ergebnisse deuten darauf hin, dass der IGF1R teilweise den 

Verlust der IR-Funktion in schwach ausgeprägter oder prädiabetischer Insulinresistenz 

ausgleichen kann. Dieser Effekt scheint allerdings keine Bedeutung bei einem stark 

ausgeprägten Funktionsverlust des IR in semiadulten Mäusen zu haben.  
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