
Microsimulation
of Complex System

Dynamics
Automata Models in Biology and Finance

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von
Filippo Castiglione
aus Catania, Italien

Köln 2001

Berichterstatter: Prof. Dr. Rainer Schrader
Prof. Dr. Dietrich Stauffer

Tag der mündlichen Prüfung: 15.05.2001

“For the things we have to learn before we can do them, we learn by
doing them.”
Aristotle (384 - 322 BC), Nichomachean Ethics

“First you guess. Don’t laugh, this is the most important step. Then
you compute the consequences. Compare the consequences with expe-
rience. If it disagrees with experience, the guess is wrong. In this simple
statement is the key to science.”
Richard P. Feynmann

“If people do not believe that mathematics is simple, it is only because
they do not realize how complicated life is.”
John L. von Neumann (1903 - 1957)

Quotations taken from [3]

Contents

Preface 1

Introduction 5

1 Computational immunology 13
1.1 The model of Kaufman, Urbain and Thomas 14
1.2 The model of Weisbuch and Atlan 14
1.3 The model of Pandey and Stauffer 15
1.4 The bit-string model of Farmer, Packard and Perelson 16

2 The Celada-Seiden model 17
2.1 The computational model . 19

2.1.1 Entity/State description 19
2.1.2 The repertoire . 21
2.1.3 The affinity potential . 23
2.1.4 The interactions . 23
2.1.5 The mutation process . 26
2.1.6 Simulations . 27
2.1.7 The parameters . 27
2.1.8 The dynamics . 28
2.1.9 Notes . 33

2.2 Learning cascade . 35
2.2.1 Collective dynamics in the immune system response . . . 35

2.3 The role of the affinity potential and hypermutation 42
2.3.1 Numerical simulations 44

3 Antigen recognition and evolution 51
3.1 Introduction . 52
3.2 The model . 53

3.2.1 Discussion . 57
3.3 Numerical integration . 59
3.4 Summary and conclusions . 60

vi Contents

4 Econophysics 69
4.1 Lévy stable distribution and fat tails 71
4.2 Stylized facts of financial time series 73

5 Microsimulation of stock markets 77
5.1 The Cont-Bouchaud herding model 78

5.1.1 Multi-affinity in financial price series 80

6 An agent – based model of stock market 87
6.1 Model description . 88

6.1.1 Trading strategy . 89
6.1.2 Collective formation and diffusion 90

6.2 Discussion . 92
6.2.1 Chartist’s influence on price dynamics 98

6.3 Hurst exponent and modified R/S statistics 101
6.4 Conclusions and future developments 103

7 Forecasting 105
7.1 Introduction . 105
7.2 Multi-layer Perceptron . 106
7.3 Detrending analysis . 107
7.4 Determining the net topology . 108
7.5 Stopping criteria . 110
7.6 Results . 111
7.7 Weekly and intra-day data . 115
7.8 Artificially generated price series 116
7.9 Discussion . 116

Summary 117

A Basic immunology 119
A.1 The humoral response . 119
A.2 The cellular mediated response 121

B CImmSim: optimization and parallel programming 123
B.1 Dynamic memory allocation . 123

B.1.1 List permutation . 124
B.1.2 The single antigen case 125

B.2 State flags . 125
B.3 Optimized Hamming distance computation 126
B.4 Compressed output . 127

B.4.1 Saving detailed information 129

vii

B.5 The parallel version of the simulator 129
B.6 Computing requirements . 131
B.7 Timing . 132

B.7.1 Scaling the lattice size 132
B.7.2 Scaling the bit-string length 133
B.7.3 Scaling the initial number of cells 134

B.8 Porting to other platforms . 135

C AMSE: parallel programming 137
C.1 The parallel version of the simulator 137

D Glossary of Notation 141

Bibliography 145

Deutsche Zusammenfassung 157

Acknowledgments 161

Lebenslauf 167

viii Contents

List of Figures

1 Computational Science . 2
2 FHP lattice . 7
3 Finite State Automata . 9

2.1 Triangular lattice . 19
2.2 Bit-string representation . 22
2.3 B cell automaton . 26
2.4 Population of virus and interferon- � 29
2.5 B cell population dynamics . 30
2.6 T cells population . 31
2.7 APC population . 32
2.8 T killer population . 32
2.9 PLB population . 33
2.10 IC population and D-signal . 34
2.11 Total number of Ag and B-cells 38
2.12 B-cells distribution f (m � t) . 38
2.13 Time evolution of � n, H(t) and G(t) 40
2.14 Total affinity as a function of time 46
2.15 Affinity classes . 49
2.16 Same data as in fig 2.15 for runs without mutation. 50

3.1 Fitness function or reproduction efficiency 54
3.2 Real part of the eigenvalues . 57
3.3 The range � of figure 3.2 . 58
3.4 Asymptotic states of the model of eq(3.2) 61
3.5 (cont.) asymptotic states of the model of eq(3.2) 62
3.6 Error threshold . 63
3.7 Error threshold ph for different affinity increments l − mc 65

4.1 Comparing a random walk with S&P500 70
4.2 The market crash of 1987 . 71
4.3 Histogram of price change of the S&P500 index 73
4.4 Autocorrelation function of absolute net return of the DJI index . . 75

x List of Figures

5.1 Histogram of price change for the Cont-Bouchaud model 81
5.2 Scaling exponent of DJI and Gaussian random walk 83
5.3 Scaling exponent for the CB-model synthetic returns 84
5.4 Scaling exponent for L = 1001 85

6.1 Fundamentalists and chartists automata 90
6.2 Variation from the initial price 94
6.3 Wealth per agent-class . 95
6.4 Profit per capita . 96
6.5 Histogram of return . 97
6.6 Comparing the log return of ft and pt 98
6.7 Autocorrelation function of volatility of return 99
6.8 Moving averages . 100
6.9 Volatility histogram. Run with and without chartists 101
6.10 Histogram of volatility . 102
6.11 MRS statistics . 104

7.1 Learning, validation, check and test data sets 106
7.2 S&P500 detrended time series 108
7.3 A multi-layer perceptron . 109
7.4 Forecast with MLP . 111
7.5 Normalized � as function of � p 112

A.1 Cell specific interactions . 120

B.1 CImmSim communication pattern 130
B.2 CImmSim: CPU time . 131
B.3 Scaling the lattice size . 132
B.4 Scaling the bit string length . 133
B.5 Scaling the initial number of cells 134

C.1 AMSE: communication scheme 138
C.2 AMSE: speedup . 139

List of Tables

2.1 Cellular and molecular entities 20
2.2 Entity/State table . 20
2.3 Cell interactions . 22
2.4 Entity/Repertoire table . 25
2.5 Affinity potential for convex and concave shapes 45

3.1 Error threshold as function of l − mc 64

7.1 Good/Bad neural net’s ratio . 113
7.2 Net topology . 113
7.3 Success ratio for the prediction of the sign change 114
7.4 Success of a “random” prediction 115

B.1 State-determining flags . 126

xii List of Tables

Preface

Since the advent of digital computers, the way research proceeds has dramatically
changed. The study of physical systems for example, is traditionally investigated
by means of mathematical models. These models are often very difficult to be
solved analytically and approximations are necessary to reach a solution.

The use of computers has brought great advantages in handling complex mod-
els in two different although complementary ways: (1) the mathematical formula-
tion of a model can be solved numerically using sophisticated algorithms to find a
good “numerical” solution; (2) a system can be analysed in term of its constituents,
i.e. the overall dynamics can be simulated by its very microscopic elements and
global quantities can be compared with experimental data.

Among the two, the first field is by no means more mature. In fact, since the
fifties, a huge amount of methods have been developed and many more are cur-
rently under study. Books and articles describing what is considered “standard lit-
erature” on Numerical Calculus are largely available nowadays.

Traditionally, also the term “simulation” refers to numerical methods to com-
pute, for example, the solution of a system of partial differential equations. In con-
trast, the definition that will be used throughout this manuscript will point to a dif-
ferent narrower meaning.

To simulate a system means to reproduce the “functional behaviour” of the con-
stituents under particular laws which rule the global dynamic of the system itself.
These laws are not known in general and are exactly the target of the investigation.
Even the variables defining a single system-constituents are not known in general.

This approach is much more valuable as the computing power of today’s computer
increases. In fact the number of micro-constituents of the system should be, by
definition, large [8].

Complex behaviour can occur in any system made up of large numbers of inter-
acting constituents with non-linear coupling, be they atoms in a solid, cells in a
living organism, or traders in a financial market.

It is the availability of digital computers that makes possible to solve sophisticated
models and, in so doing, to reveal the micro-dynamics of some complicated nat-
ural phenomena. Thus, Microsimulation (MS) [66] belongs to the Computational

2

Sciences and mainly refers to methods similar to those used by computational sta-
tistical physics that are being applied to other disciplines [36]. Figure 1 sketches a
diagram in which the Computational Sciences are identified as the intersection of
physics methods and applied disciplines, with the use of computers as combining
element.

Disciplines
Applied

Computer
Science

Computational
Science

Physics

Figure 1 Computational Science

From the mere technical point of view, the Moore’s law (computer power doubles
every 1.5 years) assures increasing memory and CPU speed to simulate larger and
larger systems. Although many problems are now solvable by common personal
computers, there are problems for which even the largest parallel machine is not
able to find a “real” solution. These problems are called Grand Challenges. A
Grand Challenge is a large-scale science or engineering computational problem.
Examples can be found in Physics, Biology, Chemistry, Materials Sciences, Fluid
and Plasma Dynamics, Finance, Environment and Earth Sciences, and so on.

The reason of the intractability of such problems lies in the level of details one
wants to take into accounts. For example one may think of a biological cell as a
single element ruled by very simple dynamics which brings the cell at most into
one excitatory state. In this scenario the amount of memory needed to represent
a cell is reduced to the minimum (a bit) and the number of operations to test and
possibly switch its state is negligible. Stated like this, even if we wanted to take
into account millions of cells at one time we would not run into troubles today if we
could access a reasonable workstation. Problems arise when we want to go into the
details of the cell. In fact, a cell, is a whole universe for its own, with an unthink-
able level of details. Even top supercomputers would not be able to represent all
that information. So, what chances do we have? The possibilities stay in between:

3

we cannot take all the details at once but we can add them one after another as
long as the computing power required is available. This philosophy has gone long
enough today to allow sufficiently-detailed simulations of complex phenomena.

The present manuscript deals with complex systems composed by many interact-
ing elements. In particular it deals with problems from biology and finance. In both
fields the rules governing the micro-behaviour of the constituents (cells, molecules
but also traders and brokerage agencies) are mostly unknown. All that is given is
the macro-behaviour that can be observed empirically either by experiments (this
is the case in biology) or by applying statistical methods to the already given data
(this is the case in finance where the use of databases allows to track any transac-
tion worldwide).

This manuscript is divided in two main parts. The first part, composed by chap-
ters 1 – 3, is devoted to what is called “Computational Immunology” and in partic-
ular it deals with the microsimulation of the immune system response. A sophis-
ticated MS model called the Celada-Seiden model is discussed in details and then
used to investigate the immune response in typical statistical mechanics fashion.
The “learning cascade” is proposed to explain the mechanism by which the collec-
tive recognition of (reads “the information on”) the antigen proceeds as a cascade
in a suitable state-space. Chapter 3 shows how it is possible to use a different ap-
proach to understand complex phenomena. It deals with a coupled-map system to
reproduce the learning cascade first discovered using the microsimulation model.

The second part, composed by chapters 4 – 7, is about the emerging field of
“Econophysics”. After a description of the stylized facts of financial markets in
chapter 4 and short review of the existing models given at the beginning of chap-
ter 5, particular attention is devoted to the Cont-Bouchaud percolation model in
section 5.1. In the following chapter 6 a new MS model is presented. This model
has many technical points in common with the immunological model presented in
the preceding chapters. In particular they both belong to the class of unbounded
lattice gases that will be defined in the introduction. Finally, chapter 7 deviates a
bit from the path of this manuscript (although it shows a model inspired by biology
applied to a financial problem) and face up to the problem of forecasting financial
time series.

The joining element between the two MS models of chapters 2 and 6 is not
only conceptual but also technical in certain respects. In fact they are both being
coded following a precise architectural schema. This aspect, together with a short
overview of pre-existing models of this kind that are being used since decades in
various fields of science, will be presented in the introductory section.
Appendix B and C will report some technical details about the implementation
of the two simulation programs mentioned before, to allow them to run on par-
allel computers. In appendix A it is given a small introduction on the immunology

4

needed in chapter 2. Finally, a glossary of notation with the list of symbols used
throughout this manuscript is given. It is safe to say however, that few symbols are
being used in more than one contest with different meaning, in places where there
is very little danger to generate confusion. Because this manuscript is about com-
putational models, the name of the codes (simulators) presented herein are given
in bold.

Part of chapters 2, 3, 5, 6 and 7 have been published on journals on computa-
tional physics or complex systems. The corresponding references are given in the
section “Erklärung” at the end of this dissertation. I wish to thank from the very
beginning all the coauthors.

A final section of this manuscript was mandatory to express my debt of grati-
tude to all the people who introduced me into this fascinating field.

Cologne, February 2001

Introduction

Nowadays, the scientific study of a phenomena in general consists of three major
approaches: theoretical, experimental and computational. The computational as-
pect becomes more and more important. Computational science has the flavor of
both theoretical and experimental science. One must have a very good theoretical
background to study a subject by means of computational methods. A good com-
putational method often comes from a thorough theoretical analysis. On the other
hand, the analyses of results are not much different from analysing experimental
data. Computational methods in science become advantageous when (1) the prob-
lem at hand is too difficult to do analytically; (2) an approximate theoretical result
may not be reliable, and it is necessary to check with a different method; (3) an
experiment is expensive or not feasible at all.

As already mentioned in the preface, computational methods can be roughly
divided in two areas, that of numerical analysis and that of computer simulation.
Numerical methods include solving linear equations, eigenvalue problems, solving
differential equations and partial differential equations, etc. They are very useful
and important but are not the core of this dissertation.
In contrast, computer simulations are methods that try to model the physical world
directly, rather than solving the equations governing the physical processes.

A complex systems (physical, biological, chemical or financial, just to mention
a few) can be defined as a system with a large number of degrees of freedom. Thus,
microsimulation (MS) is a method to mimic a complex phenomenon through the
description of its micro-components. That is, leaving the system free to evolve
without too many constraints and simplifying assumptions.

In the following we present techniques belonging to the class of MS methods.
These have been applied with success in the field of statistical mechanics [12].
Some of them are being also used in biology and recently in finance [36, 66]. At
the end we define a new class of MS models that we use throughout this manuscript
to describe two different simulation algorithms dealing respectively with problems
from immunology and finance.

The very first definitions are those of “spin” and “lattice”. A ferromagnet can
be regarded as a system composed by a large number of elementary magnets placed

6

on the sites of a crystal lattice. To model and to understand the magnet properties
of solids, various types of lattice spin models have been proposed. Such models are
defined by (i) a lattice type (dimension 1,2,3..., and topology, i.e. cubic, triangular
and so on); (ii) the possible values of the random variable, called “spin” at each
lattice site, that is, the number of possible states a spin can take (these may be either
discrete or continuous; also, a spin can be in generalized sense, a single value, a
vector or a tensor, although some representations may lack of a physical meaning);
(iii) the interactions among spins, in terms of rules determining the way the value
of the spins are coupled and how they change with time. Iterating the interaction
rules, one gets a discrete dynamical system.

The following overview of spin systems is by no means complete. Moreover,
we voluntary avoided to talk about the interaction rules which, together with the
topological definition of a spin system, is the most important element to distinguish
one application from another.

If the total number of lattice sites is L, we identify a spin with a stochastic vari-
able sn, for n = 1 � 2 ���	�	�
� L. According to (ii) one deals with different spin models.
The most popular are the enunciated below.

Ising model A spin may take on just two values; “up” or “down”, usually sn = +1
or sn = −1.

Potts model of the Kth order It is a generalization of the Ising model with the
spins taking one of K possible values, i.e. sn = 1 � 2 � 3 ���
�	�
� K.

XY model Each spin is a complex number of absolute value 1, i.e. sn = ei � n .

Later, other models have been derived from these definitions.

Cellular Automata (CA) Inspired by the early work of J. von Neumann [121] on
self-replicating machines, they are discrete dynamical systems where each spin per
lattice site is updated according to the state of the spin in its neighborhood [127].
CA are being used to model many physical systems but seem more suited to model
biological systems.

Lattice Gas Automata (LGA) Lattice gas automata were introduced by Frisch,
Hasslacher and Pomeau as a means to solve the Navier-Stokes equations of fluid
dynamics. The two dimensional triangular lattice gas (figure 2) is indeed called
FHP lattice [46]. A lattice gas is like the Potts model in which the states of particles
represent velocities. The FHP model is associated to particular types of lattices
with peculiar interaction rules (collisions conserving mass and momentum). The

7

FHP model is a two-dimensional triangular lattice, thus the number of velocities
K is equal to six.

Figure 2 Triangular lattice. Particles at time t and t + 1 are marked by
single and double arrows, respectively.

Integer Lattice Gas Automata (ILGA) A generalization of lattice gas has been
proposed with the name of Integer Lattice Gas Automata [17]. The generalization
is given allowing more than a single particle per each direction to stay on a lattice
site, e.g. sn
�� 1 ��������� K � r with fixed number of particles per site equal to r.

Through this step-wise definition of spin models we come to the definition of a spin
system in which each site of the lattice contains exactly r particles, each in one of
K different states-velocities. To reach the goal of defining a model to describe the
systems of the following chapters, we still need two further generalizations: (1)
we want to represent different particles types each having their own micro-state
space; (2) we do not want a fixed number of particles on each lattice site.
The first of these requirements leads to a definition of spin with many components
sn = sn = (s(1)

n � s(2)
n ��������� s(E)

n) with E the number of different types of entities 1. Each
agent belonging to class e = 1 ��������� E, can be found in a micro-state taken from a
discrete set of states � 1 ��������� K(e) � whose number depends on e.
The second point requires to consider r � r(x � t) that is, the number of entities on
each lattice site x is a function of time t and x. In general, the number of entities
in a given lattice site depends on the diffusion process we choose. In practice it is
sufficient to choose r as the maximum number of particles on the lattice during the
whole simulation to recover the definition of integer lattice gas.

1 It is time now to use also the term entity in place of particle. In fact “entity” fits better the
meaning of (e.g.) agents in a stock market or cells in the immune system.

8

Because we allow r(x � t) to grow without constraints we set apart this particular
case of unbounded capacity and call it Unbounded Lattice Gas.

Unbounded Lattice Gas (ULG) It is a lattice gas with unlimited number of par-
ticles on each lattice site. Particles belong to different classes e = 1 ��������� E. They
may take on one micro-state from a set � 1 ��������� K(e) � which in turn depends on
the class e to which they belong to.

Summarizing, we are able now to define models where the different entities be-
longs to different classes. They occupy the lattice sites with no constraint on the
number. They interact locally instead of interacting with the neighborhood as in
CA models. Finally, eliminating the constraint on the occupation number we al-
low the particles to diffuse freely on the lattice grid. At this time we consider the
particles to follow the classical Brownian motion. General non-uniform diffusion
schema are also well defined thanks to the unconstrained capacity r(x � t).
As already anticipated in the preface, the use of ULG as formal definition of the
microsimulation systems developed and discussed in the following chapters is jus-
tified by the availability of large-memory computers. Instead of storing a single
bit like in the Ising model or at most few bytes as in the Potts model to keep the
memory consumption at minimum, 2 we can now represent particles (cells, atoms,
molecules, traders etc) as a collection of information or attributes. Thus, the infor-
mative structure representing a single particle is heterogeneous as we allow to mix
binary information, integer numbers or even arrays of more complicated records.
Note that we intentionally restricted ourself to the use of integer numbers to repre-
sent the internal states. The reason is to avoid floating points operations to assure
unconditional numerical stability to the simulation algorithm. Moreover, given the
unbounded capacity of the lattice, the choice of a static data structure is clearly
wrong. Indeed, a dynamic memory allocation is in order. In practice, all we need
to represent a d-dimensional 3 ULG is a pointer to a list of “records” containing
the information structure of the entities for each lattice site.

In our models the complex behaviour of the entities is subjected to precise state-
changes upon interaction. Every single entity can be thought as a Stochastic Finite
State Machine (SFSM) [80] which processes information and changes its state ac-
cording to the result of the interaction with other entities, or with external fields.
Probabilistic or stochastic models should not be confused with non deterministic

2 For Ising and Potts models many computing techniques which optimize memory usage have
been developed. For example, according to the kind of coding approach one speak about ”multi-
spin” and ”multi-site” coding [61, 19].

3We will always use d = 2.

9

s1

s3

s2

pr[s1 � s2]

Figure 3 Stochastic Finite State Automata. The probability pr[s1 � s2]
to switch from state one to state two, for example, can be given or can be the
outcome of a more complicated procedure. In our case these probabilities
are computed by complex rules (see chapters 2 and 6).

models in theoretical computer science [80]. A typical example of stochastic sys-
tem is a Markov chain where each state transition is subject to a given probability.

A typical diagram showing a stochastic finite state (automata) is given in figure
3. The transition between the states s1 � s2 and s3 is stochastic. The transition prob-
abilities can be fixed or changing in time. In our case they depend on the outcome
of more or less complicated interaction rules between entities. They can also de-
pend on some global quantities or external fields. For them, a special syntax has
been developed and examples of its use will be given in chapter 2 to describe the
model of the immune response.

Finally, because the particles interact locally (i.e. inside each lattice site) and
only after they diffuse to adjacent sites, we can “easily” divide the CPU-load dis-
tributing the lattice grid to different processors of a parallel machine [100]. Mes-
sage passing among processors is needed only during the diffusion phase. This
allow us to simulate a large number of interacting entities with a high level of de-
tails.

Part One

Chapter
1

Computational immunology

Vertebrate animals have an Immune System (IS) protecting them against diseases.
The immune system is composed by many cooperating agents (cells and mole-
cules) whose task is to recognize and defeat “foreign agents” as virus, bacteria and
dangerous molecules.

The panorama of immune system models is quite large. This short chapter is
meant to give a very introductory review of some of the existing automata models
chosen according to my personal knowledge. The review of Perelson and Weis-
buch [95] reports on the different models developed to study the immune response
from the physics point of view. In that work both equation-based and computer-
simulation models are discussed. Instead, in this chapter, we concentrate on the
models where computer simulation methods similar to statistical physics are em-
ployed. For differential equations we refer to the recent review of Lippert and Behn
[72], the already mentioned review of Perelson and Weisbuch [95] and also the two
volumes “Theoretical Immunology” [93, 94]. A review about the specific use of
cellular automata in modeling the immune response is given by R.M. Zorzenon
Dos Santos in [130].

In the next chapter we will concentrate on the Celada-Seiden model which is
one of the most detailed lattice gas automata for the immune system response. Its
complexity derives from the fact that in addition to different cellular populations
considered, also a molecular representation of the cell and molecular binding site
is given in term of specific recognition between bit strings. Moreover, a kind of
intra-cellular interaction is modeled for the presence of the Major Histocompat-
ibility Complex allowing for a direct self-non self discrimination via lymphocyte
selection in the thymus.
The basic mechanisms of the immune system, or at least what is sufficient to known
here, are given in appendix A.

14 Chapter 1 Computational immunology

1.1 The model of Kaufman, Urbain and Thomas

One of the first application of discrete automata to immunology is the one of Kauf-
man et al. [57] in 1985. The original model considers five types of cells and mole-
cules: antibodies (A), helper cells (H), suppressor cells (S), white blood cells (B)
and virus (V). Each entity is represented by a variable denoting “spin up” (high
concentration) and “spin down” (low concentration). The rules modeling the dy-
namic evolution of these variables are expressed by logical operations. The appli-
cation of the rules is iterated over discrete time and the dynamics is observed. The
discrete evolution rules are:

A(t + 1) = V(t) AND B(t) AND H(t)

H(t + 1) = H(t) OR V(t) AND NOT S(t)

S(t + 1) = H(t) OR S(t)

B(t + 1) = H(t) AND (V(t)OR B(t))

V(t + 1) = V(t) AND NOT A(t)

where AND, OR and NOT are the usual logical operators of the first order predicate
calculus, respectively and, or and not. There are five fixed points in the state space
composed by 25 = 32 points. Fixed points identify the global state of the immune
system: naive, vaccinate, immune, paralyzed, paralyzed and sick.

1.2 The model of Weisbuch and Atlan

This primitive model was followed by many other models. For example Weisbuch
and Atlan [125] focused on the special case of auto-immune diseases like multiple
sclerosis, in which the immune system attacks the cells of the nervous system of
our own body. As the model of Kaufman et al., this model uses five binary vari-
ables representing: killer cells (S1), activated killers (S2), suppressor cells (S3),
helpers (S4) and suppressor produced by the helpers (S5). The different types of
cells influence each other with a strength which is 1, 0 or -1. At the next time step,
the concentration of one cell is unity if the sum of the interactions with the various
cell types is positive; for zero or negative sums, the concentration is taken as zero.

1.3. The model of Pandey and Stauffer 15

In formulas

S1(t + 1) = sgn �! S1(t) + S4(t) − S3(t) "
S2(t + 1) = sgn �! S1(t) + S4(t) − S3(t) − S5(t) "
S3(t + 1) = sgn �! S1(t) " (1.1)

S4(t + 1) = sgn �! S1(t) "
S5(t + 1) = sgn �! S4(t) "

where Si(t) denotes the concentration of the ith component at time t and the func-
tion sgn(x) defined on the natural numbers (#) is 1 if x > 0 and 0 otherwise. This
model shows the existence of only two basins of attractions over 25 = 32 possible
states: the empty state where all the concentrations are zero and a state where only
activated killers disappear while the other four concentrations are unity.

Further generalizations of this model consider the same dynamics but putting
the cells on a lattice to allow simulations in statistical physics way (Ising-like mod-
els). In Dayan et al. [35] the authors put five variables on each lattice site corre-
sponding to five boolean concentrations (0 or 1). Recalling the definitions of the
precedent chapter we may see the model of Dayan et al. as an Integer Lattice Gas
with r = 5 (five entities) and K = 2 (two states per entity).
Each site influences itself and its nearest neighbours in the same way as in the
model of Weisbuch et al.. For a square lattice of L $ L sites there are 5 $ L2 spins.
The main difference is that in this model the summation in eq(1.1) runs over the
site itself and its nearest neighbours.
This lattice-version of the Weisbuch-Atlan model is found to have a simpler dy-
namics than the original model as the number of fixed points is found to be smaller
than in [125].

1.3 The model of Pandey and Stauffer: the case of
AIDS

Pandey and Stauffer further extended the model of Kaufman et al. using a prob-
abilistic generalization of deterministic cellular automata. Their model focus on
a possible explanation of the time delay between HIV infection and the establish-
ment of AIDS [89, 90]. They represent helper cells (H), cytoxic cells (S), virus (V)
and interleukin (I). The interleukin molecules produced by helper cells induce the

16 Chapter 1 Computational immunology

suppressor cells to kill the virus. The dynamics is given by the following rules:

V(t + 1) = H(t) AND NOT S(t)

H(t + 1) = I(t) AND NOT V(t)

I(t + 1) = H(t)

S(t + 1) = I(t)

The dynamics of this model has been investigated. Oscillatory behaviour followed
by a fixed point where the immune system is totally destroyed, similar to the real
onset of the AIDS, is found.

1.4 The bit-string model of Farmer, Packard and
Perelson

A peculiar class of models in immunology is the so-called bit-string models. The
first of these models has been introduced by Farmer, Packard and Perelson [42] to
study the theory of the Idiotipic Networks. All the molecules and cell binding sites
(e.g. cell receptors) are modeled as binary strings of length l. Antibody molecules
are assumed to recognize the antigen whenever their bit strings can be matched
complementarity. The specific rule that was used was to align the bit string and
require a complementary match over a stretch of at least r adjacent positions. For
string matches over exactly r adjacent positions, a low affinity was assigned, say
0.1. If the match was bigger than r adjacent positions the affinity was increased by
means of a certain formula which depends on some probability counts.

The idea of bit strings has been taken up by the Celada-Seiden model. In that,
the match between virus and lymphocyte receptors, for example, is given consid-
ering the number of complementary bits in the bit-wise comparison. For example,
if the lymphocyte B is equipped with the binary string 00010101 (l = 8) while
the virus is represented by the string 11101010 then the probability to trigger a re-
sponse is very high (see also figure 2.2). In this model the bit-string match is not
required to be perfect, i.e. some mismatches are allowed like for example one bit
from eight in the case above.

This list of immunological models is by no means complete. We send the reader
to the aforementioned bibliography for a better reference (see also the chapter on
immunological models in [36]).

Chapter
2

The Celada-Seiden model

Cellular Automata based models have proven capable of providing several new
insights into the dynamics of the immune system response. A qualitative picture
of the IS behavior can be obtained with small-scale simulations. However for a
more detailed analysis and to further validate the models, large scale simulations
are required.

One of the most prominent attempts to cope with the quest for biological fi-
delity is the IMMSIM (Immune Simulator) automaton, developed by P.E. Seiden
and F. Celada in 1992 [29, 106]. We will refers herein to IMMSIM to identify the
computational model, i.e. the algorithm or the code, while CS-model refers to the
conceptual model in term of logical statements describing the entities and their in-
teraction rules.
IMMSIM belongs to the class of immunological cellular automata, but its degree
of sophistication sets it apart from simpler CA in the Ising-like class [57, 90]. In
the words of Franco Celada, “in machina” experiments should complement the tra-
ditional in vivo and in vitro experiments of the immunologists.

Immunologists distinguish between humoral and cellular response. They also
set apart the clonal selection and idiotypic networks theory. Formulated by Niels
K. Jerne in 1973, according to the idiotypic network theory [13], the organism
forms antibodies combating its own antibodies in such a way that a kind of im-
munological balance and an exchange of information is established in the immune
system in the same way as in the central nervous system. Together with Georges
Kohler and César Milstein, Niels K. Jerne was awarded the Nobel Prize for Phys-
iology/Medicine in 1984.
The CS-model explicitly implements both kind of response (cellular and humoral)
but rest its foundation on the clonal selection theory of the Nobel Price F.M. Bur-
net (1959) [20] developed following the track first highlighted by P. Ehrlich at the
beginning of the twenties century. The theory of the clonal selection states that the
immune response is the result of a selection of the “right” antibody by the antigen
itself, much like the best adapted individual is selected by the environment in the

18 Chapter 2 The Celada-Seiden model

theory of natural selection of Charles Darwin. It is noteworthy the fact that F.M.
Burnet got the Nobel Price in the 1960 together with P.B. Medawar for his works on
the acquired immune tolerance and not because of his discoveries about the clonal
selection theory.

The original implementation of the model made use of APL2 that is an inter-
preted language with no “explicit” dynamic memory allocation capability. This
choice along with the intrinsic complexity of the model prevented the authors from
running any but “relatively” small scale simulations.

This situation is not uncommon. The study of complex systems behavior by
means of simulations of the single entities micro-dynamics is extending from the
physics and biology to other fields like the financial markets analysis [68]. Un-
fortunately, many times these complex models are implemented in such a naive
way that the code must be considered just a “proof of concept” rather than a real
working tool.

When we started to face the problem of extending the IMMSIM automaton
capabilities, we decided from the very beginning that the new version of the simu-
lator had to be a parallel code written in a highly efficient, compiled (and portable)
language. Armed with these considerations, we developed a parallel version of the
IMMSIM automaton named CImmSim, coded by means of the C language [25]
and PVM as message passing library.

CImmSim was designed according to criteria of openness and modularity to
allow smooth upgrades and addition of new features (cells, molecules, interactions
and so on) for future investigations. As a matter of fact, the aforementioned mod-
ularity has been recently exploited when the description of new types of cells, in-
volved in cellular response, has been introduced with a reasonable effort. The cur-
rent version of the code (version 4.3) is able to simulate both the humoral response
described in [29, 106, 25] and the cellular response described in [16]. In this re-
spect it is the most advanced parallel version of the Celada-Seiden automaton. Ac-
tually, there is another complete version of the IMMSIM automaton which is de-
veloped and maintained by P. Seiden himself [105]. However, being still based
on APL2, that code imposes hard constraints on the maximum system size. The
corresponding limit of CImmSim is, up to date, almost two orders of magnitude
bigger than that.

In the following paragraph we will present the “computational” version of the CS-
model. The underlying formal model is that of an Unbounded Lattice Gas derived
in the introductory chapter.

2.1. The computational model 19

2.1 The computational model

A single lymph node of a vertebrate animal is mapped onto a bidimensional trian-
gular lattice (six neighbour sites) L % L, with periodic boundary conditions in both
directions (up-down, left-right).

Figure 2.1 The hexagonal lattice (left) is equivalent to the “honeycomb”
lattice. The difference is only apparent.

Cells and molecules belonging to the IS cooperate, with different roles, to the
defense of the host organism from attacks of potentially offending invaders called
Antigens (Ag).

CImmSim belongs to the class of bit string models [42]. The bonds among
the entities are described in terms of matching between binary strings with fixed
directional reading frame (or the dual mismatch). Bit strings represent the “bind-
ing site” of cells and molecules.
The following description of CImmSim is given by key points: i) entities rep-
resentation, ii) repertoire, iii) affinity function, iv) interactions among entities, v)
hyper-mutation.

2.1.1 Entity/State description

A simple way to describe the model is to look at the possible states for each bi-
ological entity represented. The entities are divided in cells and molecules. The
former are much more sophisticated structures compared to the latter because of
their inherent higher complexity. Table 2.1 lists all the entities used in the model.
For the molecular entities we need to make just a few remarks:

• IFN and D-signal belong to the class of the lymphokines, i.e. molecular carri-
ers of physiological signals used by the cells to acknowledge the occurrence
of certain events.

20 Chapter 2 The Celada-Seiden model

Cellular entities Molecular entities

Lymphocyte B (B) interferon- & (IFN)
Lymphocyte T helper (Th) Danger signal (D)
Lymphocyte T Killer (cytotoxic) (Tk) Immune complexes or Ab-Ag

binding (IC)
Macrophage (generic antigen processing
cell) (APC)

Antigen or generic Virus (Ag)

Epithelial (generic target) cell (EP) Antibody (Ab)
Lymphocyte Plasma B (PLB)

Table 2.1 Cellular and molecular entities of the CS-model.

• Major Histocompatibility Complex (MHC); these are not listed in table 2.1
since they are not considered independent entities. This means that they are
present inside other entities (like B, APC and EP cells) [95] whereas the
other molecules can circulate in the lymphatic system. MHC molecules are
divided in class I and class II. Further details will be given in section A.2.

• Peptide(s) and epitope(s) refer to fragments of a single molecule. For in-
stance, the antigen’s epitope is, by definition, the part of the antigen which
is bound to cell receptors.

The major difference among cellular and molecular entities is that cells may be
classified on the basis of a state attribute. The state of a cell is an artificial label
introduced by the logical representation of the cells behavior.

Every single cell can be thought as a Stochastic Finite State Machine (SFSM)
which processes information and changes its state according to the results of the in-
teraction with other cells. The transitions among the various states are determined
by stochastic events.

E/S ACT INT INF EXP LOA RES STI DEA

B ' ' ' '
Th ' '
Tk ' '
APC ' ' ' ' '
PLB '
EP ' ' ' '

Table 2.2 Cellular entity/state.

2.1. The computational model 21

The set of possible transitions for our SFSM’s are defined by the interaction
procedures reported in table 2.3. Table 2.2 summarizes the entity-state descrip-
tion. It should be read as follows: the cellular entity E can assume state S if the
corresponding entry in the table is crossed. The semantic of the labels is the fol-
lowing:

• ACT (Active) means normal state. This is the initial state for each cell;

• INT (Internalized) means that an antigen presenting cell (like B and APC)
has phagocitated one antigen. This state follows to an interaction with an
antigen;

• INF (Infected) means that one antigen (now called virus) has penetrated the
cellular membrane of the cell. After that, the virus duplicates inside the host
cell;

• EXP (Exposing) means that the cell has phagocitated one antigen and has
already processed it. If the bind with the MHCII molecule is successful then
the cell is exposing the MHCII molecule bond with one antigen peptide;

• LOA (Loaded) means that the cell expose the MHCI molecule loaded with
one antigen peptide;

• RES (Resting) means that the cell is in resting state, i.e. inactive;

• STI (Stimulated) means that the cell is in duplication phase;

• DEA (Dead) means that the cell has been marked to die by lysis by a Tk (Tk
“kills” the cell).

All other entities (i.e. the molecules) may be considered always active, i.e. are
ready to interact. The set of plots in figure 2.4 to 2.10 show the total number of
entities for a large simulation.
The state, along with other information, is stored in a flag byte for each cell (see
paragraph B.2 in the appendix). C language specific macros have been defined to
access and modify the flag byte.

2.1.2 The repertoire
In the CS-model a clonotypic set of cells is characterized by the receptor which is
represented by a bit-string. The bit-string length l is clearly one of the key parame-
ters in determining both time and space complexity of the algorithm that simulate
the behavior of the whole set of entities as the number of potential repertoire of
receptors scales as 2l (see [25, 27]).

Every entity is represented by a certain number of molecules, the receptor be-
ing one of these. The repertoire is then defined as the cardinality of the set of pos-
sible instances of entities that differ in, at least, one bit of the whole set of binary

22 Chapter 2 The Celada-Seiden model

1 0 0 1 1 1 0 0 10011000

1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0

Figure 2.2 Bit-string representation of the binding site of cells and mole-
cules. In this figure two complementary strings of length l = 16.

strings used to represent its attributes.
Indeed, the cells equipped with binding sites and the antibodies, have a potential
repertoire of 2Nel. Where Ne indicates the number of binary strings used to repre-
sent receptors, MHC-peptide complexes, epitopes and so on, of the entity e. Other
entities do not need to be specified by binary strings so their repertoire is just one
(i.e. Ne = 0). An example are the interleukin molecules like the Interferon− ((IFN)
and the Danger signal (D). Table 2.4 summarizes the number of strings used to rep-
resent each entity. Since the number of different MHC molecules (class I or II) is
limited to a few units, they do not contribute to the complexity of the cells. In other
words all cell equipped with MHC molecules carry the same number of the same
molecules. Actually, we need to represent the MHC-peptide complex produced
by the internal processing of antigens (endocitosys). This bit string is important
because it is used for further recognitions of the T (helper of killer) lymphocytes.

external interactions cell-internal interactions
B – Ag, B – Th, Ab – Ag, Th –
APC, Tk – APC, Tk – EP,
APC – IC, APC – Ag, EP –
Virus,

B – MHCII, APC – MHCII,
APC – MHCI, EP – MHCI

Table 2.3 External and internal interactions. Here antigen and virus are
the “same” entity.

Although the Ag are specified by np+nep binary strings (np indicates the number
of peptides whereas nep is the number of epitopes), they do not need to be explicitly
represented by a repertoire of 2np+nep because in the current version of the simulator
there is no support for antigen mutation. As a consequence the number of antigen
represented at run time is limited by the number of different antigens we plan to
inject into the host. Thus, during the simulation, we need just to distinguish among
nj number of injections (cfr table 2.4). It follows that also the IC’s may be treated

2.1. The computational model 23

in this simplified way.

2.1.3 The affinity potential

Some entities have, on their surface, molecules, usually called receptors or bind-
ing sites, which are in charge of recognizing the antigen. In this model two entities
equipped with receptor interact with a probability which is a function of the Ham-
ming distance [51] between the binary strings representing the entities’ binding
site. This probability is called the affinity potential. For two strings s and s) such
probability is max (i.e. equal to 1) when all corresponding bits are complementary
(0 * 1), that is, when the Hamming distance between s and s) is equal to the bit
string length. A good and widely used analogy is the matching between a lock and
its key.
If l is the bit string length and m is the Hamming distance between the two strings,
the affinity potential is defined in the range 0 +�,�,�,�+ l as follows:

- (m) = . - (m−l) / (mc−l)
c + m 0 mc +

0 + m < mc , (2.1)

where -
c 1 (0 + 1) is a free parameter which determines the slope of the function

whereas mc (l 2 2 < mc 3 l) is a cut-off (or threshold) value below which no binding
is allowed (see figure 3.1). With CImmSim it is possible to choose among four
different affinity potentials. The impact of a different affinity potential shape on
the IS dynamics will be discussed in section 2.3.

2.1.4 The interactions

The interactions among entities are described in terms of state transitions (condi-
tion - action description). They can be divided in two categories: external inter-
actions, which happen among cells and molecules having the same position on the
lattice and internal (to the cell) interactions, that account for MHC Ag-peptide in-
teractions inside the phagocitating (B and APC) or infected (EP) cells.

External interactions.

There are 11 different interactions among the whole set of entities. The syntax to
describe each interaction is the following:

24 Chapter 2 The Celada-Seiden model

INTERACTION : < involved entities >
SPECIFIC : < Yes | No >
MATCH : < involved molecules >
CONDITION : < allowed state for <involved entities> >
ACTION : < final state for <involved entities> >

where involved entities are the two interacting entities;
the field SPECIFIC is Yes if the interaction probability depends on the matching
degree between the involved molecules of the two entities and is NO oth-
erwise (aspecific bind).
The conditions are expressed in terms of first order predicates by means of the log-
ical AND, OR, NOT and boolean unary operators that check each possible state of
the entities looking at their state-flags (cfr B.2): IsACT(4), IsINT(4) and so on;
the name of the operator is self-explaining; e.g. IsACT(cell) is true if cell
is found in state ACT.
The state transitions are registered by flipping the corresponding flags in the state-
flag-byte as described in the paragraph B.2 of the appendix. To this purpose a set
of unary operators like DoACT(4), DoINT(4) and so on, have been defined. In
addition, the operators Kill(4) and Create(4) respectively delete or create the
specified entity. For example:

INTERACTION : B, Th
SPECIFIC : Yes
MATCH : B-MHCIIpeptide molecule, Th-receptor
CONDITION : IsEXP(B) AND IsACT(Th)
ACTION : DoSTI(B) AND DoSTI(Th)

means that the specific interaction between the receptor of Th and the MHCII-
peptide molecule exposed on the surface of a B cell may happen only among in-
stances of active Th’s and instances of exposing B’s. No other state is allowed. If
the interaction really happens (as determined by the stochastic event), the action
is to update both Th and B to state STI (note that we are not specifying the details
of the actions taken to store the information required for successive processing).

Moreover some entities have more than one receptor (or generic binding site) like
the antigen that may be represented with two or more epitopes. In this case the
interaction is allowed if at least one of their binding-site matches. In particular
the action are undertaken as soon as one match is successful (greedy paradigm).
For every aspecific binding (i.e. SPECIFIC: No) the probability to bind is given
as parameter and do not depends on any match (the field MATCH is empty).

Each of these procedures examines the data structures (see appendix B.1) of the
two involved entities looking for a simultaneous true value of the predicates ex-

2.1. The computational model 25

pressed in CONDITION. For each specific interaction the Hamming distance be-
tween the involved molecules specified by the tag MATCH is computed as
described in section B. After that, the probability of a successful interaction is ob-
tained by looking at the affinity function. At this time, a random number between
0 and 1 is generated. If the random number is less than the interaction probabil-
ity, then the actions specified in the tag ACTION are undertaken. These actions
are usually composed by very few assignments so they do not constitute a major
overhead compared to the scanning of the two lists.

One may argue that it would be helpful to have a single data structure for each
possible state. Instead, the advantage of keeping all the cells mixed in a single list
is that code upgrades are simpler.

A list of all the interactions (external and internal) is reported in table 2.3. The
extensive description of these interactions is not the goal of the present work.

Entity Ne Repertoire
B, APC 2 22l

Th, Tk, EP, PLB, Ab 1 2l

IC, Ag np + nep 2(np+nep)l

IFN, D 0 20

Table 2.4 Entity/Repertoire. For example, Ne is 2 for the B cells because
each B cell carries a receptor and a MHCII-peptide molecule. For the IC
and Ag, we show here the theoretical repertoire. Actually, in the current
version of CImmSim, the number of possible choices for these entities is
reduced to nj as explained in section 2.1.2.

Cell-internal interactions.
The syntax for the description of the cell-internal events is very similar to the pre-
vious case. The only difference is that one of the involved entities is always the
infecting/phagocitated antigen. This is, from the computational viewpoint, a ma-
jor advantage since just one data structure must be scanned to select which cells
will be processed. We report here just an example, whose meaning follows the
previous one.

CELL INTERNAL INTERACT. : B
SPECIFIC : Yes
MATCH : MHCII-molecule(s), Ag peptide(s)
CONDITION : IsINT(B)
ACTION : DoEXP(B)

26 Chapter 2 The Celada-Seiden model

STI

EXP

INT

ACT

no interaction

no interaction

no interaction

4 times

pr[EXP 5 ACT]

pr[INT 5 ACT]

B – Ag

B – Ag
B – MHCII

B – Th

Figure 2.3 Stochastic finite state automaton corresponding to B cell be-
haviour.

An example of finite state automaton applied to the behaviour of the entities of
this model is given in figure 2.3. The B cell state dynamics is considered. A B cell
starts in the active state. After having recognized a virus it goes in the internalized
state. If the internal recognition of the peptides with the MHC class II molecules
is successful, then it goes to the exposing state. If not, there is a chance to get back
to the active state otherwise keep trying with the internal B–MHCII interaction.
From the exposing state it may goes either to the stimulating state or back to the
active state, depending on the interaction with a Th cell. It stays in the stimulating
state for a certain number of time steps while it creates clones of itself. After the
duplicating period is expired it goes back to the active state, ready to start this cycle
again.

2.1.5 The mutation process
“Hyper-mutation” is a term used for indicating a set of complex phenomena whose
result is a mutation in the portion of the DNA of the lymphocyte B coding for the
variable region of the antibody [124].
In CImmSim, mutation of each string representing the cell receptor in the dupli-
cating B cells, is implemented in two different ways that the user may choose at
compile time.

• Binomial distribution: the number of mutations follows a binomial distrib-
ution with parameters l and pb (pb is the probability to change a single bit).

2.1. The computational model 27

This schema assumes that the single bit mutation probability is IID (Inde-
pendent and Identically Distributed) with respect to the other bits of the same
string.

• Poisson distribution: the mutation process follows a Poisson law. 1

The effects of the hyper-mutation on affinity maturation can be easily highlighted
by CImmSim by means of the parameter hc (“hole in the repertoire”). If the value
of hc is within the range [mc 6 l], the bone marrow is not allowed to produce cells
with a “natural” affinity to the antigen higher than hc. As a consequence, hyper-
mutation becomes the only mechanism for the IS to enhance the affinity to the anti-
gen.

2.1.6 Simulations
To show the capabilities of CImmSim we present the results of a very large simu-
lation. It reproduces an immunization experiment in which the antigen is injected
in the body in two different time steps to stimulate the immune response. The im-
munization consists in a faster secondary response due to the memory the system
has produced during the first one. The run has been performed on a shared memory
machine and is very demanding especially for what concerns the memory require-
ments. Details are given below.

2.1.7 The parameters
The bit string length l has been set equal to 24, corresponding to a potential reper-
toire of 16777216 distinct receptors and molecules. The initial number of cells has
been set equal to 0 7 13 8 106 per type (i.e. a total of 650000 cells). Two injections
of 0 7 5 8 106 antigens at time step 0 and 120 have been considered. The mutation
rate per bit pb (see section 2.1.5) is equal to 5 8 10−3 which means a total mutation
rate per string of 1 − (1 − pb)24 9 0 7 11. The cut-off value of the Hamming distance
(see section 2.1.3) is mc = 16 whereas hc (see section 2.1.5) is equal to 20. We
recall that receptors with affinity greater or equal to hc are created merely by mu-
tation from active (i.e. with affinity : mc) clones of B cells during the duplication

1 A simple generator (even if somewhat inefficient) for random numbers taken from a Poisson
distribution with parameter ; , is obtained using the rejection method [98]: if x1 < x2 <>=?=>=@< xk is a
sequence of random numbers via uniform distribution between 0 and 1, then k, taken as the first

integer for which the product A k
i xi is less than e− B , i.e. mink CEDGF k : A k

i xi < e− B!H , is distributed

as a Poisson with parameter ; . After the number of mutating bits in a string has been determined,
the position of such bits is chosen at random among the l possibilities. In such a way a bit can be
selected more than once and there is the chance that it is finally left unchanged (if selected an even
number of times).

28 Chapter 2 The Celada-Seiden model

phase.
The virus proliferation rate has been set equal to 0.01 for free-circulating viruses
and to 0.2 inside target cells. The size of the bi-dimensional grid is 1024 points
(L = 32).

The value of the parameters is such that the system is able to eliminate all the
antigens during the response. Note that, with an higher virus-growth rate, the in-
fection may be strong enough that the system fails in removing the antigens. This
case is well described in [16].

2.1.8 The dynamics
Figure 2.4 shows the number of antigens versus time. At time step 0 and 120 half
million antigens are uniformly injected on the lattice. The first response takes some
time to mount since the production of antibodies and specialized T killer cells re-
quires many recognition steps. However, the response to the second injection is
very quick because the system has memory capabilities (see figures 2.5, 2.6 and
2.8 respectively for B, Th and Tk cells).
The second peak of Ag during the primary response (about 17th time step) is due
to the antigens proliferation inside the EP cells. When such antigens reach a criti-
cal number, the cell explodes spreading them on the lattice site. The second peak
is very high because in the time steps following to the first injection the virus in-
fections are almost simultaneous on a large number of EP cells (see the plot at the
bottom of figure 2.7). The time required to the antigen to reach the critical number
inside the target cell depends on its grow rate and the threshold value which are
both settled as input parameters.
The large number of Interferon- I in bottom figure of panel 2.4 indicates that many
APC are in the exposing state during the first response.

The plots in figure 2.5 describe the evolution of the B-cell population during
the simulation. The top plot shows the B cells affinity classes. Two B-cells belong
to the same affinity class if their receptors have the same Hamming distance from
the antigen. We define the mismatch of two bit strings as the difference between
the bit string length l and their Hamming distance. So there are affinity classes with
mismatch m equal to 0 J 1 J�K	K	K
J l − mc. The number of cells belonging to any affinity
class is normalized by division with the binomial coefficient L l

m M . Since the value
of hc (see section 2.1.5) is equal to 20, the value of the mismatch for the cells pro-
duced by the bone marrow is equal or greater than 4. Nevertheless an affinity class
with mismatch 3 is generated by means of the hyper-mutation mechanism. Note
that the class with best mismatch (i.e. 4) grows faster than the others during the sec-
ondary response. This is exactly the affinity maturation phenomenon expected by
the clonal selection theory (as reference see bibliography in [29, 106, 25, 119, 95]).
During the primary response (between time step 0 and 30) the class with mismatch

2.1. The computational model 29

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

Virus (y log scale)

Antigen

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

Interferon-gamma (y log scale)

IFN

Figure 2.4 Population of antigen-virus on the top; Population of
interferon- N at the bottom.

5 wins (as expected) the race with the others classes.
The bottom plots in panel figure 2.5 shows the number of memory and naive B
cells along with their sum. The number of naive cells remains constant because
stimulated B cells produce just memory and plasma cells.
The plot at the bottom of the same panel shows the number of B cells for three
(out of four) of the possible “stable” states. The fourth state (“Internalized” in this
case) is considered “unstable” because the cell switches to another state within the
same time step.

During the first and second response there is a relative large fraction of cells
in exposing or stimulated state. The shift of few time steps between the two cor-
responding curves is not surprising since the latter state follows the former in the
recognition process.

Figure 2.6 shows the population of T helper cells. Their evolution is closely related
to the B cells one.

The top plot in figure 2.7 shows the number of APC cells for any possible state.
The cells go very quickly from active to either loaded or exposed state. A fraction
becomes inactive (state resting) but is immediately brought to another state by the
antigenic stimulation.
Some of the possible states for the APC (cfr table 2.2) are not shown because they
are not stable (the definition of “stable” state is the one adopted for the B cells). A
counting between time steps would show nothing but zero for them.
Note that the small decrease in the total number of cells (in this plot and in others)

30 Chapter 2 The Celada-Seiden model

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 20 40 60 80 100 120 140 160 180 200

time steps

B cell by mismatch with the antigen

mismatch
3
4
5
6
7
8

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100 120 140 160 180 200

time steps

B cell detailed dynamics

Memory
Naive
Total

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

B cell detailed dynamics (y log scale)

State
Active
Exposing
Stimulated

Figure 2.5 The upper plot shows the B cells affinity classes defined by
the mismatch with the infecting virus. The number is normalized by the bi-
nomial coefficient O l

m P where m is the mismatch indicated in the key panel
of figure. The bottom plots show the population of B cells (memory or
naive) in all the possible states.

2.1. The computational model 31

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 20 40 60 80 100 120 140 160 180 200

time steps

T cell detailed dynamics

Memory
Naive
Total

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

T cell detailed dynamics (y log scale)

State
Active
Stimulated

Figure 2.6 Population of T helper cells (memory or naive) in all the
possible states. The growth follows the antigenic stimulation. The peak is
reached few time steps later compared to the B cells (cfr fig.2.5) because the
stimulation depends also on the concentration of interferon- Q (cfr fig.2.4).

is due to the normal birth-death ratio which sets the stable point at a lower value
compared with the initial one. This is an effect of numerical approximations.

The plot at the bottom of panel figure 2.7 shows the evolution of the EP (virus-
target) cells. The global number decreases because the antigens start to kill them
(approximately at the 15th time step). Actually, many EP cells go immediately to
the loaded state. These are the infected cells. Their number decreases because
either the inside proliferating virus or a T killer cell kill them. The total number of
cells does not decrease significantly during the second response because the IS is
able to recognize the virus in time preventing further infections (immunization).

Figure 2.8 shows the evolution of the T killer population. The highest peaks are
at time step 20 and 125, this means that there is a delay with respect to the anti-
genic stimulation. The Immune System needs more time to mount a first cellular
response (3 time steps to start and about 20 to become strong enough). During the
second response the reaction is much faster. The T killer stimulation needs, as in
the T helper case, the presence of interferon- Q (cfr fig.2.4).

Figure 2.9 shows the Plasma B cells affinity classes normalized with respect to the
binomial coefficient R l

m S . As in the B cells case, the mismatch m is equal to the bit
string length l minus the Hamming distance between the Plasma B cell receptor
and the antigen. It is clear that the humoral response is completely dominated by

32 Chapter 2 The Celada-Seiden model

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160 180 200

time steps

APC detailed dynamics

State
Total
Active
Infected
Exposing
Loaded
Resting

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160 180 200

time steps

EP cell detailed dynamics

State
Total
Active
Loaded

Figure 2.7 On top it is shown the population of APC in the different
states. At the bottom the EP population.

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

TK cell detailed dynamics (y log scale)

State
Active
Stimulated

0

100000

200000

300000

400000

500000

600000

700000

0 20 40 60 80 100 120 140 160 180 200

time steps

TK cell detailed dynamics

Memory
Naive
Tot TK

Figure 2.8 T killer cell population detailed dynamics.

2.1. The computational model 33

high affinity clones (m = 4 and 5). The Hamming distance is equal to 19 during
the first response. Then it increases to 20 during the second response as a result
of the hyper-mutation process. The same remarks apply to antibodies (the bottom
plot in figure 2.9) since they are produced directly by the Plasma cells.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0 20 40 60 80 100 120 140 160 180 200

time steps

Plasma B cells by mismatch with the antigen

mismatch
4
5
6
7
8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

time steps

Antibodies by mismatch with the antigen

mismatch
4
5
6
7
8

Figure 2.9 Plasma B cells and antibodies by mismatch (normalized to T li U).
The figure on the top of panel 2.10 shows the evolution of the immunecomplexes.
The huge number of IC in the first response witnesses the massive production of
antibodies required to eliminate the viruses in this phase. In the second response
the IC population is much smaller because the antigens do not have the time to
grow (the antigen is eliminated more quickly).
In the same panel it is shown the Danger signal (bottom plot in figure 2.10). Again,
during the first response a large amount of D-signal is released by the EP cells that
get killed by the virus.

2.1.9 Notes

The model allows a large repertoire to be represented. This is not a simple “tech-
nical” result. For instance, the memory of a past immunization can be thought as
a fixed point in the population dynamics of memory lymphocytes [6]. The num-
ber of fixed points, which reflects the “general” memory capacity of the system, is
more rich and close to the reality if we may represent a large repertoire.

Moreover, another aspect worth to be implemented is the mutation of the anti-
gen (during the replication inside a cell). This, and new interaction procedures

34 Chapter 2 The Celada-Seiden model

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

time steps

Immunocomplexes (y log scale)

IC

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100 120 140 160 180 200

time steps

Danger signal (y log scale)

D

Figure 2.10 Immunocomplexes (top) and D-signal (bottom) both in
semi-log scale.

which allow the T helper to be target cells of the antigen. The microscopic sce-
nario of mutating viruses which attack the Immune System itself is important be-
cause it corresponds to the behavior in case of HIV infection. Using CImmSim
we could hopefully discover interesting aspects not yet revealed by other models
developed for this purpose (see [90]).

2.2. Learning cascade 35

2.2 Learning cascade
In the recent past, the simulation of the Immune System (IS) has been drawing sig-
nificant benefits from the resort to cellular automata (CA), namely fully discrete
dynamical systems evolving according to boolean rules [113, 56]. CA appear par-
ticularly well suited to the simulation of biological systems mainly on account of
their capability to naturally incorporate complex non-linearities. In addition, ow-
ing to their space-time locality, they are almost ideal candidates for massively par-
allel processing.

In the following paragraph we use CImmSim to investigate this phenomenon
by means of computer simulations. The cellular response triggered by the presence
of lymphocytes T killer (Tk) has been turned off, thus only the humoral response
is considered.

This work represents an attempt to frame the immune system response to the
Information theory of C.E. Shannon [107, 60]. It is suggested that the process
by which the immune system learns how to recognize foreign invaders proceeds
through a cascade of “metastable states” behaving like collective modes in a bit-
matching space.

2.2.1 Collective dynamics in the immune system response
For the present study, the affinity potential is chosen in the same form of the trun-
cated exponential of eq(2.1). Here V c is equal to 0.05, m is the number of matching
bits and mc is the “cut - off” match below which no recognition takes place. In ad-
dition, each cell is endowed with a set of internal degrees of freedom specifying
its internal state (e.g. inert, stimulated, Ag-processing, etc, as in table 2.2). Full
details on the system specification are given in [64].

Based on a set of computer simulations, we have come up with the follow-
ing picture of the immune system response. Antigens injected from time t0 on-
wards start to interact with a random background of B-cells, distributed along a
Maxwellian

M0(m W?X 0 W T0) = (2 Y T0)−1 Z 2 exp [−(m − X 0)2 \ 2T0]
centered about X 0 = l \ 2 with variance ^ 0 = _ l \ 2. Here T0 = ^ 2

0 is the “temper-
ature” measuring the scattering (uncertainty) around the mean value X 0. Subse-
quently, after a given induction period, selective Ag interactions with B-cells, lying
in the tail of M0 with matchings above mc, trigger the growth of a new population
of high-match B-cells centered about a higher matching number X 2 = mc. This
growth proceeds via stimulation of B-cells by Th-cells and subsequent prolifera-
tion via clonal multiplication. This is the start-up of the learning process: B-cells

36 Chapter 2 The Celada-Seiden model

peaked about mc trigger, in turn, the growth of higher-match populations, in a sort
of upward cascade in m space ending up with the highest available bit-match num-
ber m = l.

Such “bump-in-tail” distributions are often encountered in physics where they
are usually associated with instabilities ensuing from their high energy/entropy
content. In the immunological context, however, there is no thermodynamic prin-
ciple forcing the release of the entropical excess associated with the “bump-in-
tail”. On the contrary, the system dynamics is presumably geared towards a nega-
tive entropy production feeding the learning process that allows the IS to recognize
foreign invaders. Hereafter, we are going to show that a quantitative measure of
this learning process is provided by its relative entropy.

To be more specific, let us consider a dynamical process turning state 1 into
state 2, characterized by distributions f 1 and f 2 respectively. The quantity G12 de-
fined as

G12 = `
m

f 2
m log a f 2

m

f 1
m b (2.2)

is the relative entropy or Kullback information of the process [38].
Owing to the inequality log x c (1 − 1 d x) (equal sign applying if x = 1), it is

readily shown that G12 is positive definite and zero just in case the two distribu-
tions are exactly the same. According to [12], G12 represents the information gain
encoding the extra-knowledge associated with the availability of an additional dis-
tribution function. We observe that G12 may be related to a metric measuring the
distance between distributions f 1 and f 2 in a suitable information space [10].

We shall consider the information gain associated with the transition from an
initial state f 1 to a final state f 2, identified by their first three moments:

ni = `
m

f i
m e ni f i = `

m

mf i
m and niTi = `

m

f i
m(m − f i)2

(ni is the number of individuals belonging to f i, with 0 ≤ ni ≤ 1).
The total entropy of the “bound-state” (f 1 + f 2) is given by

H12 = H1 + H2 + HX

where
Hi g `

m

f i
m log f i

m (i = 1 e 2)

are the entropies of the “pure” states f i and

HX = ` f 1
m log(1 + f 2

m d f 1
m) + ` f 2

m log(1 + f 1
m d f 2

m)

2.2. Learning cascade 37

is the exchange entropy due to superposition of the two states.
Using Maxwellian states as interpolants, simple algebra on eq(2.2) yields

G12 = n2 log
n2

n1
+

n2

2
(log h 12 + h −1

12 − 1 + i 2
12) (2.3)

where h 12 = T1 j T2 and i 12 = (k 2 − k 1) jml T1.
Such simple formula calls for a number of comments. The term log h 12+ h −1

12 −1
on the rhs of eq(2.3) is the “thermal” component of the information gain, namely
the information gained through a differentiation of the two states via a temperature
change (scale dilatation/contraction in m space). It is positive definite and vanishes
only for T2 = T1.

The other term on the rhs of eq(2.3), i 2
12, is the information gain associated with

differentiation via shifts in m space and consequently it shows explicitly the desired
dependence on the mean displacements we were looking for. It is also positive
definite, regardless of the sign of the displacement i 12, and symmetric under the
exchange 1 n 2 so that it can serve as a metric distance between f 1 and f 2.

How do these notions map out onto the immune system response? The infor-
mation gain G12 alone can not tell the whole story because its translational invari-
ance does not allow to distinguish between “smart” (high k) and “dumb” states
(low k). Thus, this indicator has to be complemented with the sign of the mean
matching separation i 12. In other words, the sign of i 12 indicates whether the sys-
tem has moved uphill (learning) or downhill (unlearning) along the learning land-
scape, the module of information gained/lost in such process being given by G12.
Within this picture, G12 is naturally interpreted as the information cost associated
with the process yielding a learning amount o i 12 o .

These considerations allow us to gain a better insight into the actual results of
the numerical simulations. The runs have been performed with the following pa-
rameters: l = 12 p mc = 10, grid size = 16 q 15, r c = 0 s 05, initial number of B,
Th and APC cells equal to 2000. The Antigens are continuously injected at a rate
of 300 units/step. All the input values are drawn from [29, 106] which represents
the basic reference with respect to the biological parameters of the model. The to-
tal number of Antigens and B-cells, as a function of time, is represented in figure
2.11. The B-cells succeed to level off the Ag content after about 50 time steps.
Since a single time step covers 1 j 10 of a typical B-cell lifetime, this corresponds
to about 2 weeks in physical units. The dramatic drop of Antigens after t = 50 is
a clear clue that the IS has been capable to mount a very effective response to the
invading agents.

More insight on the specific carriers of the IS response can be gained by in-
specting the time evolution of the B-cell distribution function fm(t) reported in fig-
ure 2.12. Here fm is the total number of B-cells with matching number m versus
the total number of B-cells in the system.

38 Chapter 2 The Celada-Seiden model

tu?t�t�tv�t�t�tw�t�t�tx�t�t�ty�t�t�tz�t�t�t{�t�t�t|�t�t�t}�t�t�t

t y�t u>t�t u?y�t v�t�t v�y�t w�t�t w�y�t x�t�t x�y�t

~���~�������~���~�� ����~���������������������

Figure 2.11 The total number of Ag and B-cells as a function of time

0
50

100
150

200
250

300
350

400
450

500

02
468

101214

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 2.12 The B-cells distribution f (m � t) as a function of time

2.2. Learning cascade 39

At the beginning, only the initial Maxwellian corresponding to the mean bit
matching number (� = l � 2 = 6) develops. Subsequently, this Maxwellian sends in-
dividuals to a second mode, say M10, corresponding to the lowest matching number
(� = mc = 10) recognizable by the system. The M10 mode behaves like an ordered
(low temperature) metastable state, being fed by the tail of the M6 and sending it-
self individuals to the upper-lying states. In a sense, it serves as an intermediate
bridge to accomplish a learning cascade process taking � = 6 states into the final� = 12 (perfect learning) state.

Several aspects of such process deserve particular attention, like the depen-
dency (if any) on the bit-string length and on the specific form of the affinity po-
tential. For longer strings (l > 12), we expect the number of learning stages to
increase as (l − mc). Unfortunately, this hypothesis is hard to test due to the expo-
nential complexity (O(22l)) of the model. Any additional bit in the string requires
a four-fold increase in computing time.

An interesting feature of the learning cascade is that it is realized via shifted
“bump-in-tail” states, which stand out as “collective modes” of the immune system
dynamics. This is to be contrasted to an alternative scenario whereby the initial
Maxwellian would develop long (exponential or algebraic) tails rather than narrow
bumps at high-m.

It is worth to point out an amazing analogy with the mechanism of “current
drive” in fusion plasma, namely the dramatic rise of electric current triggered by
injection of even minute amounts of radio-frequency power in a range of frequen-
cies much higher than the mean electron speed [118].

Formally the analogy proceeds by identifying B-cells with electrons interacting
with Antigens (photons) via the affinity potential � (m) (electron-wave potential).
Within this analogy, the mean bit-matching number � can be seen as the electric
current driven by the waves, perfectly in line with the interpretation of m as a fic-
titious “particle speed”. In this context, it would be interesting to define a sort of
learning efficiency as the analogue of electric conductivity, namely the ratio be-
tween the mean bit-match � and the strength of the affinity potential � c.

In figure 2.13 we show the normalized mean match � n = � (t)− � (0)� (0) , (� (0) = l � 2),
the entropy H(t) = � m fm log fm and the information gain G(t).

The mean bit match number is the most immediate indicator of whether or not
the system is learning to withstand the Antigens attack.

As expected, after an induction time of about 50 time units, the mean bit match
exhibits a sharp rise associated with the onset of the � = 10 mode. This is the
time it takes the system to develop the catalytic growth of B-cells lying in the tail
(m � mc) of the initial Maxwellian. It is also the stage of substantial learning. The
subsequent evolution shows a progressive improvement due to the disappearance
of M10 in favor of the “smarter” M12 mode. Since the M6 is continuously sustained

40 Chapter 2 The Celada-Seiden model

� �
��
� �

� � � � ��� � � � ����� � � � � ��� ��� � ����� � � �

 ¢¡�£�¤�¥�¦�§�¨�©Gª�«�¡¬¨�­¯®?ª°¡±­±ª�£�²´³ µ·¶ £@¸© ¶ £´¸­

Figure 2.13 Time evolution of the normalized mean match ¹ n, standard
entropy H(t) and information gain G(t)

from the exterior, it never dies out completely thereby preventing ¹ from achieving
the top value ¹ = 12 (perfect learning state).

After a stagnation period (up to t º 50), the entropy undergoes a sudden drop
as a result of the IS primary response. Note, in fact, that the statistical dispersion of
M10, T10, is significantly smaller than T6. Subsequently, the simultaneous presence
of competing modes causes a slight entropy increase, mainly contributed by the ex-
change entropy component. Finally, as the mode centered in m = 12 prevails, the
entropy starts again to decrease monotonically. As a general remark, we observe
that the entropy H(t) does not behave like a proper H-function, i.e. a monotoni-
cally decreasing/increasing function of time. Since our fm is a standard probability
density function (i.e. positive definite and normalized to one), our interpretation is
that no standard H function can be associated to the C-S automaton dynamics.

Finally, we inspect the evolution of the information gain G(t). As expected
from previous analytical considerations, G(t) proceeds much in sympathy with the
mean match number ¹ (t). However, the sharp rise around t = 50 is significantly
steeper, taking almost the connotations of a first order phase transition.

A semiquantitative assessment of the time evolution of G(t) may be attempted
on the assumption that the bump-in-tail modes behave like Maxwellian distribu-
tions. We want to stress that, due to the limited string length (l = 12) this is no
more than a reasonable hypothesis. In other words, we have been able to test it
just for the initial Maxwellian M6. For higher-match modes longer strings are re-

2.2. Learning cascade 41

quired. Nevertheless it is reasonable to state that the specific shape of these modes
should not affect the qualitative features of the learning cascade.

By identifying state 1 with M6 and state 2 with M10, from figure 2.12 we infer
n1 = 1, n2 = 0 » 63, T1 = 3, T2 ¼ 0 » 4, ½ 12 = (10 − 6) ¾!¿ 3. According to eq(2.3),
this yields G12 ¼ 1 » 75 in a satisfactory agreement with the data of figure 2.13.
By modeling the subsequent evolution as a transition from M10 to M12, we obtain
n1 ¼ 0 » 63, n2 ¼ 0 » 85 ¾ 2, À 12 ¼ 1, ½ 2

12 ¼ (12 − 10)2 ¾ 0 » 4 = 10. Since M12 lies on the
rightmost boundary of bit-matching space, we must account for finite-size effects.
Some algebra yields

Gfs = G ¾ 2 +
n2

2
T2

T1
½ 12 ¾¬Á 2 Â T2

where the subscript fs stands for ‘finite size’. The final result for the transition M10

to M12 is therefore G ¼ 2 » 8, again in a reasonable agreement with the results of
the numerical simulation.

As a further observation, we note that, at variance with standard entropy, the
information gain does behave like a proper H -function, namely it monotonically
increases with time. This is conducive to the idea of a “maximum information-gain
principle” [99] of the form dG

dt Ã 0 with the equality sign holding when the learning
process is basically over. This is a direct consequence of G being a monotonic
function of ½ , which is quite reasonable in light of the interpretation of G as the
information cost associated with the learning amount ½ .

In turn, ½ is a monotonic function of time because high-m bumps develop as
a result of the depletion of lower-m “parents”, hence after them. This is why the
system dynamics exhibits a “built-in” time-arrow.

The present study sets a pointer in the direction of kinetic-theory (Boltzmann)
as a valuable approach to the IS dynamics, possibly achieving an optimal compro-
mise between CA microdynamics and macroscopic population dynamics.

42 Chapter 2 The Celada-Seiden model

2.3 The role of affinity potential and
hypermutation in the cascade

In the previous section the sequential nature of the process allowing the Immune
System to learn how to withstand pathogen agents has been explored by means of
large-scale computer simulation of the Celada-Seiden immunological automaton.
The question was: how does the IS learn how to mount a specific response against
invading entities? This capability of the IS is rooted in the specific functions of
each of its micro constituents, but it is also true that the way the IS as a whole
learns to withstand antigen attacks depends even more on the mutual interactions
between these micro constituents. Once the importance of collective behaviour
is acknowledged, a relevant question becomes whether non-equilibrium statistical
mechanics and the theory of (non-linear) dynamical systems, provide a convenient
mathematical framework to characterize, at least semiquantitatively, the generic
features of the immune system response [95, 65].

Within the CS-model, each cell is characterized by a bit matching number m
denoting the number of matching bits with the bit string representing the Antigen.
Bit match when they are complementary (0 Ä 1). High / Low affinity is therefore
to be understood as high / low values of the matching number m. With a string
length l, the repertoire of the model is best organized into a hierarchical set of l + 1
classes of cells characterized by the matching number m = 0 Å 1 Å 2 Æ�Æ�Æ l. The generic
mth class contains Ç

l
m È =

l!
m!(l − m)!

elements; the sum over all possible classes involving a total repertoire

lÉ
m=0

Ç
l
m È = 2l

possible specificities. This defines the internal shape space of the automaton. The
active region (defined later) has a structure markedly pyramidal: only one state
with perfect match m = l, l states with m = l − 1 and so on down the line.

The population density in this phase space is given by the actual occupation
number Nm(x Å t) of cells in class m at site x at time t. Knowledge of the occupation
numbers Nm at each space-time location yields a complete characterization of the
dynamical system. The B and T-cells binding affinity is expressed via an “affinity
potential” Ê (m). The specific form of the affinity potential is not known in de-
tail from biological data, but it is plausible to express it in the form of a sharply
increasing function of m above a critical cut-off mc < l, and zero below it (see
eq(2.1)). As a result, only a subset of the phase space, characterized by the condi-
tion mc Ë m Ë l, is immunologically active. We shall call this the active region of

2.3. The role of the affinity potential and hypermutation 43

immunological phase-space, whose size l−mc+1 counts the populations competing
for the Antigen.

Numerical evidence was reported in [119] that the IS learning process proceeds
through a cascade of higher and higher affinity populations (B-cell) in which the
low affinity modes indirectly feed the higher affinity ones in a kind of sequential
process dubbed learning cascade. A quantitative indicator of the aforementioned
learning cascade was identified with the Kullback relative entropy, or information
gain [38], defined as in eq(2.2). where we refer to a transformation taking the sys-
tem from initial state “1” at time t = t1 to final state “2” at time t2 = t1 + Ì , and

fm =
NmÍ
m Î Nm Î

is the probability density of class m. Ordinary Boltzmann entropy did not show
any sign of monotonic behaviour, which is not surprising since there is no rea-
son to believe the underlying micro dynamics of the CS automaton should obey
a Boltzmann H-principle.

In accord with the theory of clonal selection, the learning process is basically a
shift of the occupation numbers towards the high-affinity region of the spectrum,
a bias towards “smart” individuals. A prime indicator of this shift is an increase in
time of the average matching Ï

(t) = Ð
m Ñ x mfm(x Ò t)

where x runs over the spatial extension of the system. The gain can be interpreted
as the information-cost needed to bring the IS from low to high-affinity states, and
under certain assumptions on the shape of fm it can be expressed as an analytic
function of

Ï
[119].

Our previous results pertained to relatively small repertoire, with l = 12, con-
sisting of 212 = 4096 specificities. This is about four orders of magnitude lower
than the expressed repertoire of the human Immune System. The question, which
makes the hard-core of this paper, is whether the generic features observed in our
previous work do survive once larger repertoire are considered. To this purpose,
we have upgraded our computational tool to take full advantage of parallel com-
puting capabilities [26]. Specifically, we have extended the size of the repertoire
from 212 up to 220, namely more than two orders of magnitude above our previous
work, more than an order of magnitude beyond any previous study with the CS-
model we are aware of, and, more importantly, only an order of magnitude below
the expressed repertoire of the real IS. Being aware that a mere rise in the size of
the repertoire does not necessarily imply a corresponding gain of immunological
fidelity, we have also included hypermutation, namely the mechanism by which

44 Chapter 2 The Celada-Seiden model

clones that differentiate from their mother cells, may show point mutations in their
receptors [123, 30].

In the model, hypermutation is represented by a given string s turning into a
different string s Ó as a result of one (or more) bits changing state (zero to one, one
to zero). The qualitative effect of hypermutation is to generate cells which would
not appear otherwise in the system, thus giving the IS more freedom to explore
its phase space. The chief question is whether such freedom is used to help affin-
ity maturation, and, if so, to what extent. This question is genuinely dynamical
in nature. On the one side, affinity-degrading (high-to-low) mutations are more
likely than affinity-enhancing (low-to-high) ones simply on account of the pyra-
midal structure of the active region of the phase space. On the other hand, since
high-match cells are more effective in capturing the Antigens, once generated, they
get a chance to reproduce faster than all other competing cells and possibly pro-
mote the affinity maturation. Whether such a chance does indeed materialize in
actual practice is a non-trivial question which involves a genuinely dynamic non-
equilibrium process. Computer simulation is well placed to provide a semi - quan-
titative guidance in this complex territory.

2.3.1 Numerical simulations
We have performed a series of numerical simulations by varying the string length l,
with and without mutation, and the shape of the affinity potential. The simulations
are performed on a 16 Ô 16 grid, with the following parameters: average lifetime of
B cells, Õ B = 10, initial population B(0) = 2184, birth-rate Ḃ Ö 0 × 07B(0). The Ag
are injected at a rate of 1000 individuals per time step. Each time step corresponds
to about 8 hours in real time. Finally, we assume a time independent single-bit
mutation rate equal to pb = 0 × 02. We do not address the issue of optimal mutation
schedule as in [58]. Our observations are based on a series of simulations with
l = 20, mc = 15 with and without mutation, and two typical shapes of the affinity:
A) Convex, B) Concave.

The values of the affinity functions are reported in Table 2.5:
Each simulation has been performed 40 times with different random seeds to

double-check possible dramatic differences in the outcomes. Although no quan-
titative conclusions can be drawn, we can state that there are no indications of a
strong sensitivity to the choice of the random numbers.

Our data show that affinity maturation does take place and in all cases it pro-
ceeds through a sequential cascade from low to high affinity populations (see fig.
2.15).

Since no virgin B-cells above mc are allowed, the appearance of active cells
in the course of time is necessarily due to hypermutation. The conclusion is that,
albeit penalized in the average, hypermutation does have a dramatic effect in pro-

2.3. The role of the affinity potential and hypermutation 45

m VA VB VB/VA
15 0.05000 0.05000 1.000
16 0.09103 0.50072 5.501
17 0.16572 0.74829 4.515
18 0.30171 0.88428 2.931
19 0.54928 0.95897 1.746
20 1.00000 1.00000 1.000

Table 2.5 Affinity potential for convex and concave shapes

moting affinity maturation. The intuitive picture is that, once a favourable mu-
tation occurs by fluctuation, the higher reactivity of the high-affinity cells allows
them to reproduce and survive for a long time.

In all cases, affinity maturation ramps up between t = 50 and t = 100 time units,
that is between two and four weeks respectively in real time. During this burst, the
total affinity, defined as

ˆØ (t) = Ù
m

Nm(t) Ø (m)

grows by almost two orders of magnitude, or more, depending on the shape of the
affinity potential, as shown in fig. 2.14. This burst is followed by a slower but
steady growth associated with an increasing fraction of high-affinity cells.

Runs without hypermutation (see fig. 2.16) also show a learning cascade, actu-
ally faster than with hypermutation. This means that the chance of generating ac-
tive cells (m Ú mc) by a mutation event is smaller than the corresponding chance of
generating it out of the binomial distribution of virgin cells in the hypermutation-
free scenario.

Given this intrinsically transient scenario, it is useful to develop a semi - quan-
titative rationale for the role of the shape of the affinity potential.

To this purpose, let us consider all matching bits of a bit string s (whose length
is l) as part of a substring g (“good” bits) and all other bits of s as part of a substring
b (“bad” bits). String g has length m (m ≥ mc > l Û 2). Obviously, b’s length m̄ is
equal to l − m.

By definition, mutations on b enhance the affinity whereas mutations on g de-
crease it.

To compute the total probability of increasing the Hamming distance (i.e. the
number of 0 Ü 1 matchings) of n units, we must take into account all possible
combinations of mutations in the b and g strings such that k − j is equal to n. Here
k and j are, respectively, the number of mutations in the b and g string and j < k so
that n > 0. The expression of such total probability is:

46 Chapter 2 The Celada-Seiden model

0.001

0.01

0.1

1

10 100 1000

Total affinity

Affinity
Concave-mutation ON

Convex-mutation ON
Convex-mutation OFF

Concave-mutation OFF

Figure 2.14 Total affinity as a function of time

P+
n = Ý

j Þ k:k=n+j ß m
j à pjqm−j ß m̄

k à pkqm̄−k (2.4)

The block á mj â pjqm−j gives the probability of j mutations in the g string, whereas the

block á m̄k â pkqm̄−k gives the probability of k mutations in b. Upon using the relation
k = n + j, we may recast eq(2.4) in terms of the index j, which runs between 0
and m̄−n (otherwise we would have a degrading mutation). Consequently, we can
write:

P+
n =

m̄−nÝ
j=0 ß m

j à ß m̄
n + j à pn+2jql−(n+2j) (2.5)

The probability of affinity degrading mutations, P−
n, is obtained by considering

j > k, swapping m with m̄ in the above expression and letting the index to run from
0 to m̄.

One minute’s thought reveals that, since mc > l ã 2, under the standard condition
m > m̄, P = P+

n − P−
n is negative, reflecting the intuitive idea that in the average,

mutation works against high-affinity cells.

2.3. The role of the affinity potential and hypermutation 47

It is now instructive to observe that for low mutation rates pb << 1, the summa-
tion in expression 2.5 can be replaced by its first order term. This leads to a very
handy expression for the total one-bit affinity improving mutation rate

P+
1 ä m̄p(1 − p)l−1 = (l − m)p(1 − p)l−1 (2.6)

showing that, within this approximation, the one-bit improving mutation probabil-
ity decays linearly with m.

Coming back to the interpretation of our results, the picture is as follows. Once
an active cell materializes, the chance to capture an Antigen and rapidly duplicate
can be estimated as Am = 1 åçæ (m), that is one cell, times its microscopic affinityæ (m). How many cells should materialize before the duplication process is actually
triggered? The condition is of course Nm æ (m) è 1, which sets a natural thresh-
old 1 éêæ (m) for the affinity maturation process to take off. This threshold would
of course favour high m’s, were it not for the strong penalty set by the mutation
probability: a direct jump of n matching numbers ahead, scales roughly like pn

b,
which means that the next matching number above mc is picked up by the condi-
tion Nm æ (m)pm−mc > 1, associated with a critical threshold Nc

m ä pmc−m éêæ (m). It is
easily seen that Nc

m is a sharply decreasing function of m, unless æ (m) would grow
faster than the decrease of pm−mc

b , not a plausible assumption given the small value
of pb. This explains the sequential nature of the learning cascade.

The next question relates to the mid-long term dynamics of the response. Here
two competing effects must be balanced.

The probability of cells’ clonation is proportional to æ (m). A stimulated cell
duplicates every step during four steps after stimulation, yielding 16 clones in four
steps. This exponential growth is contrasted by a mean hypermutation loss propor-
tional to P. No way for mutation to compete with such exponential growth in the
short term.

It is plausible to assume that the long-term winner is selected by the condi-
tion of maximizing Nm æ (m) é P, which leads to a second threshold, Nc ë 2

m ä P é�æ (m).
Now, using the simplified expression P+

1 given by 2.6, it is readily seen that highest
affinity modes are favoured unless æ (m) grows slower than P+

1 , i.e. linearly, with
m. This supports the intuitive idea that convex potentials favour the development
of high-affinity populations as the asymptotic carriers of the IS response.

Of course, the notion of asymptotic, long-term carriers, although interesting
from the point of view of statistical mechanics (final attractor of the system) is not
necessarily the most relevant one to immunological purposes. To this end, one is
probably more interested in the short and mid-term (days-to-weeks) dynamics of
the total affinity ˆæ (t) = ì m Nm(t) æ (m).

This is shown in fig. 2.14 for the two different choices of the affinity poten-
tial. From these curves we see that, notwithstanding the significant statistical fluc-
tuations in the initial phase, indeed the concave potential yields the quickest and

48 Chapter 2 The Celada-Seiden model

most intense response, especially within the ramp-up period, up to t í 100. This
is obviously due to the much higher affinity of the B-cells (see fourth column in
Table 1). Asymptotically, however, our data suggest that the convex shape might
be able to recover due to the emergence of perfect match cells with m = l suffering
less competition with other cells as compared to the case of a concave potential.

The above considerations, albeit still semi - qualitative, provide a sound back-
ground for the interpretation of affinity maturation as a cascade process in affinity
space. They also show that the learning cascade is quite robust vis-a-vis the shape
of the affinity potential. This latter, however, plays a central role in the short and
mid-term dynamics of the IS response.

In closing, a few considerations on computational performance are in order.
The parallel simulator (see appendix B) takes about 10 ms / step per grid-point,
corresponding to about 10 î 000 seconds elapsed time for a 500 step long (about
160 days of real life) simulation on four processors of an UltraSparc Enterprise
4500. Memory requirements peak at about 2 GBytes during the burst of affinity
maturation. These figures prove that the numerical investigation of the Immune
System response via the Celada-Seiden automaton requires substantial amounts of
computational resources.

2.3. The role of the affinity potential and hypermutation 49

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

A
ve

ra
ge

 p
op

ul
at

io
n

(lo
g

sc
al

e)

time steps (log scale)

Matching for Convex affinity (mutation on)

match
0
1
2
3
4
5

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

A
ve

ra
ge

 p
op

ul
at

io
n

(lo
g

sc
al

e)

time steps (log scale)

Matching for Concave affinity (mutation on)

match
0
1
2
3
4
5

Figure 2.15 Population growth for affinity classes of the active region
for string length of 20 bits (details in the plots’ titles).

50 Chapter 2 The Celada-Seiden model

0.1

1

10

100

1000

10000

1 10 100 1000

A
ve

ra
ge

 p
op

ul
at

io
n

(lo
g

sc
al

e)

time steps (log scale)

Matching for Convex affinity (mutation off)

match
0
1
2
3
4
5

0.1

1

10

100

1000

10000

1 10 100 1000

A
ve

ra
ge

 p
op

ul
at

io
n

(lo
g

sc
al

e)

time steps (log scale)

Matching for Concave affinity (mutation off)

match
0
1
2
3
4
5

Figure 2.16 Same data as in fig 2.15 for runs without mutation.

Chapter
3

Antigen recognition and evolution

The study of the learning cascade in section 2.2 and 2.3 has given a qualitative
assessment about the role played by the affinity potential ï (m) and the hypermuta-
tion in the learning cascade which drives the IS toward the recognition of a foreign
antigen.

We present here a simple model of selection and mutation of cell populations
which is based on generic assumptions and in this respect it resembles a model
for evolution in simple ecosystems. In this case the selection acts by means of the
same affinity function of eq(2.1) representing the ability of a certain class of lym-
phocytes to recognize a foreign antigen. Carrying out some analytical and numer-
ical studies we determine the critical values for the parameters ruling the selection
and mutation.

Starting from the simple definition of bit string representation in complex bio-
logical system originally given in [42] for the immune system modeling, we devel-
oped a simple spatial mean field approximation of the clonal expansion and affinity
maturation in the IS. We carried out some analytical studies on its dynamics and
also developed a numerical resolution of the corresponding discrete model.

The presented model works on general assumptions of mutation and selection
which are the basis of any model for Darwinian evolution in simple ecosystems. In
this respect it resembles the Eigen model [37] for species formation, further stud-
ied in [9]. They consider the evolution of an infinite set of self-reproducing (i.e.
asexual reproduction) molecules that undergo Darwinian evolution. In the pres-
ence of a very selective environment the model shows the formation and survival
of a cluster of genetically affine well-adapted molecules (called quasi-species).

In the following some basic concepts are borrowed from this framework; then,
we will make use of terms as fitness and affinity, or matching class and population,
interchangeably, to keep the metaphor of the evolution always in mind.

52 Chapter 3 Antigen recognition and evolution

3.1 Introduction

The immune system is an ecosystem for its own and the population dynamic is
ruled by selection and mutation. In [42] the original idea of representing a mole-
cule by means of a binary bit string was used to investigate the dynamics of the im-
mune system using differential equations. The idea was further extended in a dis-
crete fashion in the Celada-Seiden automaton [106]. The CS-model concentrates a
lot of biological complexity in a single spatially extended automata system. In that
model the genotype coincides with the phenotype; there is no distinction between
the DNA portion coding for the receptor (called the complementarity-determining-
region, CDR) and the receptor itself that will bind the antigen. Both are bit strings
of a certain length l.

In our model we focus on the ability of the lymphocytes to recognize the anti-
gen. Then we have that the genotype-phenotype map is accomplished indirectly
by means of the affinity function ð , which in turns selects highly adapted elements
on the basis of their recognition ability for the antigen. This leads to a one - di-
mensional phenotypic space (integers between 0 and l).

In a previous work [119] we showed how such models could be used to un-
derstand the mechanism by which the IS learns to recognize the shape of the in-
vading antigen. In that case we identified with the word “learning cascade” the
dynamics of the cell population distributed according to the match with the anti-
gen; in other words with a string length l, the repertoire of the model is organized
into a hierarchical set of l + 1 classes of cells characterized by a given matching
number, m = 0 ñ 1 ñ�ò�ò�ò�ñ l, denoting the number of bits of the lymphocyte receptors
which match with the string representing the antigen. The generic m-th class con-
tains ó l

m ô elements; the sum over all possible classes involving a total repertoire ofõ l
m=0 ó l

m ô = 2l possible specificities.
Apart from the details of the other cellular entities involved in the process (B

and T lymphocytes, Plasma B lymphocytes, Macrophages, Antibodies and so on)
which we leave to the bibliography, one may concentrate on the affinity function ð
of the match with the antigen to discriminate the good (i.e. recognizing) lympho-
cytes from the bad ones. This function is the key to push the system toward the
proliferation of the recognizing clones of lymphocytes and, thus, can be thought
as a generic fitness function in a competition landscape, where the goal is the recog-
nition of a certain pattern or set of binary attributes (i.e. the bit string representing
the antigen).

Questions on how the function ð influences the dynamics of the response in
terms of cell population predominance eventually leading to a perfect match re-
sponse (i.e. clone with match m = l) are addressed here. Moreover, because the
mutation phenomena have been demonstrated to be crucial for the IS to generate

3.2. The model 53

diversity and cover the unavoidable holes in the native repertoire [30], we consider
point mutations in the genotype, that is, the possibility that elements with match m
produce, during the cloning expansion, some with match m ö .

The error threshold [9] is determined as the value of the mutation rate above
which the fittest population is no longer the dominating one. We make estimation
of such value for different bit-string-length systems.

In contrast to [37, 9] where the authors consider unlimited bit string length, we
are interested in the real potential specificity of the immune system of a mouse [95]
and thus up to log2 1011 ÷ 36 bits per string 1.

3.2 The model

The experimental setup reference is that of lymphocyte antigen-specific popula-
tions that proliferate under constant supply of the antigenic stimulus in the pres-
ence of the helping environments like the signal from the T helper (Th) lympho-
cytes needed to trigger the response. Also suppose a complete initial repertoire and
assume continuous regeneration of dying cells so that we may fix the birth-death
rate equal to zero and observe just the growth due to cloning expansion.

The affinity potential and the grow rate. Given l øúù and l û 2 < mc < l, the
affinity potential or fitness function is defined over the integer 0 ü�ý�ý�ý�ü l in the same
way it has already been discussed for eq(2.1) reported here for convenience:þ (m) = ÿ þ (m−l) � (mc−l)

c ü m � mc;

0 ü m < mc ý
where þ

c ø (0 ü 1) is the free parameter (see figure 3.1). Here þ
c determines the

sharpness of the fitness (this is the same as in [9], but they do not use any threshold).
The fitness summarizes the effect of the recognition ability as well as the reproduc-
tion efficiency. This means that high affinity cells proliferate at higher rate than the
lower affinities. Note that class m < mc does not grow, for þ (m < mc) = 0. Also
note that for þ c � 1 the affinity transforms into a flat landscape and there is no pre-
ferred genotype for the interacting individuals (m � mc); in this case, a vanishing
mutation rate leads the evolutive path into the subregion of the state space corre-
sponding to constant population of not-recognizing clones (m < mc) and equally
distributed, though dominating, populations of recognizing clones (m � mc).

1We should point out the difference between the expressed repertoire and the potential reper-
toire; this last is the number of possible receptors that can be constructed given the genetic mech-
anisms involved

54 Chapter 3 Antigen recognition and evolution

1e-05

0.0001

0.001

0.01

0.1

1

10 12 14 16 18 20

fit
ne

ss
 o

r a
ffi

ni
ty

 fu
nc

tio
n

(lo
g-

sc
al

e)

match

υc
.00001

.002
.05

.2

.5

Figure 3.1 The affinity function (y axis in log-scale) or reproduction ef-
ficiency (fitness) is a monotonic function of the match with the antigen-
target. Matches below the threshold mc have null fitness score. In figure
l = 20 and mc = 12 for different � c. Small � c give sharp peak affinity. For� c approaching unity it transforms into a linear fitness and for � c = 1 the
landscape is flat corresponding to an environment which makes only dif-
ference between recognizing and not recognizing class.

The mutation process is performed at the gene level but is expressed at the phe-
notype level in the form of increased/decreased match with the antigen. Mutations
occur during the cloning expansion meaning that only class m � mc are affected.
The number of mutated bits is binomially distributed with parameters pb and l.

To calculate the probability that a string with match m is mutated into a string
with match i we subdivide the original string in two substrings G � B composed by
matching bits (G good) and non matching bits (B bad); let be �G � = i the actual
match and �B � = l− i (���	� denotes the number of bits in the string). Be
 the number
of flipped bits in substring G, 0 ��

� i, and analogously � in B, 0 ����� l − i.
The matrix � mij � gives the probability of a jump from class j to class i by mutation

3.2. The model 55

(q = 1 − p);

mi � j = mij = �
(��� �):� − � =j−i

�
j��� � l − j� � p� + � ql−(� + �) (3.1)

Observe that since we take mc > l � 2, the mutation is most likely to lower the affin-
ity than to increase it, i.e.�

k � mc > l � 2 l�
i=k+1

mik ! k�
i=0

mik "
This means that mutations have no other positive effect other than generating di-
versity, thus spreading a proliferating class into adjacents, with preference to the
lower ones.

A very approximate equivalence [30] between the per bit mutation rate pb and per
base-pair (bp) mutation rate in vivo r, is the relation r = 1 − (1 − pb)l # 180 bp. 2

The model. Given l and mc fixed, and $ c and pb as free parameters, we indicate
with xj(t) = xj the population of class j at time t. The initial time t = 0 corresponds
to the infection time, and the initial unbiased set of population match-classes is
binomially distributed with parameters l and 1

2 . 3 The population dynamics can
then be expressed by a set of l + 1 linear differential equations (balance equation
for population xj);%

xj%
t

= �
i

$ (i)mjixi − $ (j)xj �
i &=j

mij

�
j = 0 "'"'" l

that is, after some easy manipulations%
xj%
t

= �
i &=j

$ (i)mjixi + $ (j)(2mjj − 1)xj (3.2)

Mutations realize a kind of cooperation or symbiosis among populations. There is
no competition in our model because we assume to have sufficient antigens to feed
the proliferation of the clones during the immune response. This is surely the case
if we consider the effect [95] of the Dentridic Cells that retain the antigen for long
periods (weeks).

2 Assuming that (60 out of 210 amino acids contribute to the VH and VL CDR, the number of
base pairs is (180.

3 This is equivalent to have the initial population of cells with the receptor-strings drawn at
random. The probability to choose a single bit as ‘1’ or ‘0’ is 1

2 .

56 Chapter 3 Antigen recognition and evolution

It is important to note that we have excluded any limiting factor in our sys-
tem; this corresponds to have unlimited carrying capacity K, in the Verhulst fac-
tor (1 −) x * K) [85] which sounds quite unrealistic when speaking about the IS.
This simplification will be taken out in the following section when we compute
numerically the solution. For what concerns the analytical study, we may avoid
such complication as we are mainly interested in observing the cloning expansion
during the infection and the production of the immune response which clearly last
for a finite period (days or weeks), otherwise leading to the death of the host. This
translates in observing the dynamics far from the saturation given to the carrying
capacity K.

In system 3.2, if we use the properties) i +=j mij = 1 − mjj and we made the
following substitution ,

ij = -/. (j)(2mjj − 1) 0 i = j 0. (j)mij 0 i 1= j 2
we may write the associated matrix equation as 3 x *�3 t = 4 x, where x denotes the
l+1 row vector (x0 0 x1 052'2'260 xl) at time t and 4 = 7 , ij 8 . Note that the first mc columns
of 4 are null as . (j < mc) = 0.

For analytical manipulation it is convenient to “condense” all the population
xj<mc into a single cumulative population. We will then make the following substi-
tution of variables and consider a number of populations equal to the number of
interacting plus one; i.e. class mc, class mc + 1 and so on, up to class l. Then we
indicate with new indices -1 the absorbing population, with 0 the minimum inter-
acting population mc, with 1 the intermediate or mc + 1 population and so on, until
the perfect match population l, that will take index l − mc.
In the following we fix the number of interacting population l − mc + 1 equal to

3 so that populations will be indicated by x 9 = (x−1 0 x0 0 x1 0 x2). The corresponding
values for the affinity potential are (. −1 0 . 0 0 . 1 0 . 2) = (0 0 . c 0	: . c 0 1);
The evolution equation expressed in matrix form is33 t

x(t) = 4 9 x(t) (3.3)

where the matrix 4;9 governing the dynamics is:

4 9 = <==> 0 . c ? −1 @ 0 : . c ? −1 @ 1 ? −1 @ 2
0 . c(2 ? 0 @ 0 − 1) : . c ? 0 @ 1 ? 0 @ 1
0 . c ? 1 @ 0 : . c(2 ? 1 @ 1 − 1) ? 1 @ 2
0 . c ? 2 @ 0 : . c ? 2 @ 1 (2 ? 2 @ 2 − 1)

A'BBC
The elements ? i @ j 0 i 0 j DE7 −1 0 0 0 1 0 2 8 can be calculated from the mutation matrix7 mij 8 as it follows

3.2. The model 57

F
−1 G 0 = H j<mc

mj Gmc I F
−1 G 1 = H j<mc

mj Gmc+1 I F
−1 G 2 = H j<mc

mj Gmc+2;F
0 G 0 = mmc Gmc I F

0 G 1 = mmc Gmc+1 I F
0 G 2 = mmc Gmc+2;F

1 G 0 = mmc+1 Gmc I F
1 G 1 = mmc+1 Gmc+1 I F

1 G 2 = mmc+1 G mc+2;F
2 G 0 = mmc+2 Gmc I F

2 G 1 = mmc+2 Gmc+1 I F
2 G 2 = mmc+2 Gmc+2 J

(note that subscript mc + 1 = l − 1 and mc + 2 = l as we have fixed l − mc = 2).

0.2 0.4 0.6 0.8 1

-2

-1

1

Figure 3.2 K (L i) for L i M= 0, computed for l = 20 I mc = 18 ION c = 0 J 05.
In the range (J 02 I J 05) the real part of all eigenvalues pass from positive
to negative values (see figure 3.3). It is also possible to identify a critical
value pc P 0 J 65 correspondent to bifurcations.

3.2.1 Discussion
We have used Mathematica c

Q
4 to compute the eigenvalues L i of the matrix R;S as

functions of the parameters pb and N c. We may determine the qualitative behavior
of the solution by looking at the sign of the real part of the eigenvalues indicated byK (L i). Its study must not be intended in the sense to give analytical considerations
about the behavior for t T U . In fact the validity of the model is limited to the
time the immune system takes to set up the immune response which, fortunately,
requires a limited amount of time.

4 Symbolic calculation package [128], c
Q

Copyright Wolfram Research www.wolfram.com

58 Chapter 3 Antigen recognition and evolution

0.025 0.03 0.035 0.04 0.045 0.05

-0.3

-0.2

-0.1

0.1

0.2

Figure 3.3 The range VXW (0 Y 02 Z 0 Y 05) of figure 3.2.

One eigenvalue is zero because of the first column of []\ . From the fact that we
allow unlimited grows of the populations follows the only trivial fixed point x(0) =
0, which is unstable. In any case this initial condition has no biological meaning.
From figure 3.2 and 3.3, showing ^ (_ i) for _ i =̀ 0, it is possible to identify the
interval VaW (u− Z u+) as the range in which all the eigenvalues pass through zero
and become negative (see particular in figure 3.3).

For values of pb < u− the eigenvalues are positive and the solution will diverge
in the limit t b c . When pb d V the real part of some eigenvalues are positive and
some are negative. The asymptotic behavior corresponds to an indefinite growth of
some interacting population. Note that this argument cannot tell which population
will eventually dominate. We will answer this question in the following section,
showing the results obtained numerically integrating the system.

When pb > u+ all _ i have negative real value and then the interacting pop-
ulations, xj e mc, will feed the non-interacting, xj < mc, because of the highly
disruptive mutation. This corresponds to have no immune response at all.

The range V is where we find the most variable solutions, ranging from the best
response x2 to the lack of response x−1.

The best fitted population x2 happens to dominate only for very small values
of the mutation rate pb. We then indicate with ph the highest value for which the
system still exhibits the domination of the fittest population x2. This value is called
the error threshold [9]. In the next section we will give some estimate of such

3.3. Numerical integration 59

value.
One may argue that f ghf (i c) indicating a dependence on the shape of the

affinity. This is certainly true as we found that large values of i c slightly shrink
the range f and vice versa smaller values enlarges it but in any case this variation
can be reasonably ignored (on the order < 10−2).

For large values of l (l = 20, approaching the real IS expressed specificity
107 → log2 107 j 24 in the mouse), we found a critical value pc

j 0 k 65 such
that for pb > pc all l (m i) n= 0 are subjected to strong oscillations around zero (see
figure 3.2). We know that, in general, parameter values for which the real part of
the eigenvalues passes through zero are associated with qualitative changes in dy-
namics (bifurcations). The same does not apply for smaller values of the bit string
length l. In fact carrying out the same calculations for l = 3 o 8 and 12 we did not
find any critical values pc (to tell the whole story, for l = 12 and pb > 0 k 8 we ob-
served small oscillation of l (m i) but not large enough to change the sign). Probably
this unexpected behavior comes from the lack of the limiting factor K that we are
going to add in the next section.

What happens if we consider l − mc > 2, i.e. more interacting populations? For
example if we have l = 12, mc = 9, so to consider four interacting populations, the
analogue consideration leads to fpg (0 k 045 o 0 k 100) for i c = 0 k 002 (which is the
value used in [30] and will be mentioned later). This means that decreasing mc,
thus having more interacting populations l − mc + 1, shows not to affect the value
u−, but moving u+ q 1. Instead, what is interesting is the relation between the
error threshold ph and mc that will be investigated below.

3.3 Numerical integration

Iterating the correspondent discrete of the complete system 3.3 we were able to
further classify the asymptotic dynamics.

We assumed non-overlapping generations in the discrete population dynamics
so that the time unit is equal to the generation time, or cell duplication time, for the
best fitting population (i.e. i (l) = 1 means that perfect match cells double every
time step, match l − 1 double every i −1(l − 1) and so on).

Here we want to add the limiting factor, so instead of xt
j we consider xt

j(1 −
Nt r K), with Nt = s l

j=0 xt
j, as the equivalent discrete and limited population vari-

ables where K is the carrying capacity.
In the following we will classify the asymptotic behavior in which only one of

the four populations x−1 o x0 o x1 and x2 (reduced populations) will dominate over the
others.

60 Chapter 3 Antigen recognition and evolution

Asymptotic dynamics We call “attractors” the sets

Sj = t x : xj > xk uwv k = t −1 u 0 u 1 u 2 x u k y= j x{z
For example S1 is the set of possible populations x such that x1 > xk uwv k = −1 u 0 u 2.
Figures 3.4 and 3.5 depict four representative trajectories leading to S−1 u S0 u S1 and
S2.

The asymptotic dynamics fall in one of these, according to the mutation rate
pb and, at a first approximation, independently by | c (supposing | c } 1 so not
to be in a flat fitness landscape) and independently also from x(0), even though
we are interested to the case in which the initial population of cells is binomially
distributed as already mentioned.

We may summarize the results obtained in the following schema:

• for pb ~ (0 u ph), x(t) � S2 u meaning the perfect maturation of the response,
corresponding to the domination of the best fitting population;

• if pb ~
� , x(t) � Sj u for some j ~ t −1 u 0 u 1 u 2 x . This case includes all the
possible responses. For pb � u+ the match of the dominating population
will decrease, until there is no response at all (i.e. x−1 dominates).

• For pb > u+, x(t) � S−1, which means lack of response.

From the last point, in agreement with the analytical studies, we find u+ to be
the threshold for which the mutation is lethal, thus leading to immunodeficiency.
Moreover, from figure 3.3 we find ph � | −1

c that is a demonstration of the intuitive
idea that sharp fitness favors the best adapted population.

Error threshold. In figure 3.4 we show the error threshold for different values of
the interacting populations (i.e. different l − mc + 1). The same values are reported
in table 3.1. We see that ph decreases exponentially with l − mc + 1.

It is worth to compare these results with the ones obtained using the Celada-
Seiden automaton [30]. In contrast to our schema, they used a mutation rate ps

corresponding to the probability to change only one bit in a string. They found the
most efficient maturation occurs for ps = 0 z 2, using l = 12, four interacting pop-
ulations (i.e. mc = 9) and | c = 0 z 002. This means ps = � 12

1 � pb(1 − pb)11 giving
the per-bit optimal mutation rate pb � 0 z 021, which is below our estimated error
threshold ph = 0 z 054 for the same parameter values, thus in line with our previ-
sions.

3.4 Summary and conclusions
We developed a simple linear system of differential equations to model the cloning
expansion and mutation in the immune response. The model mimics some of the
features of the automata model of discussed in sections 2.

3.4. Summary and conclusions 61

(A) p = 0.05

0

50

100

150

200

time steps

181920

match

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

(B) p = 0.04

0

200

400

600

800

1000

1200

time steps

181920

match

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Figure 3.4 The possible asymptotic states (normalized populations for
parameters l = 20 � mc = 18 �O� c = 0 � 05). Typical value for x(0) is the bino-
mial distribution centered around l � 2 = 10. Picture (a) corresponds to ab-
sence of response S−1 for pb = 0 � 05; (b) is the mc-response S0 for pb = 0 � 04
but shown with a longer transient time (1200 iterations);

62 Chapter 3 Antigen recognition and evolution

(C) p = 0.035

0
50

100
150

200
250

300
350

400

time steps

181920

match

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

(D) p = 0.029

0

50

100

150

200

time steps

181920

match

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Figure 3.5 (c) intermediate response S1 for pb = 0 � 035 (400 iterations)
and (d) is the perfect match response for pb = 0 � 029 reached very quickly.

3.4. Summary and conclusions 63

0.005

0.01

0.02

0.04

0.1

0.2

1

3 8 12 20 24 28 32 36

er
ro

r t
hr

es
ho

ld
 p

_h
 a

nd
 U

 (l
og

sc
al

e)

bit string length l

alpha =
0.5

0.05
0.005

Figure 3.6 Different values for ph computed numerically iterating over
1000 time steps the equivalent discrete of system 3.2, for � c = 0 � 005, 0.05
and 0.5, with l = 3,8,12,20,24,28,32 and 36. The continuous lines depict
the range � = (u− � u+) computed with � c = 0 � 05. We may observe that
ph � � −1

c . The carrying capacity is fixed to K = 103; its variation doesn’t
affect the results.

We have shown some similarity with the Eigen’s model of evolution. This par-
allel seems particularly fruitful while studying the cloning expansion of recogniz-
ing cells apart from the complexity of the IS. In particular we were interested in
questions as to what extend the fitness function of the class-specific cell popula-
tions as well as the mutation rate influence the dynamics of the response.

We have found error thresholds for the mutation rate (in agreement with [9]),
both with analytical arguments and with numerical integration of the equivalent
discrete system, for different values of the bit string length. They show that the er-
ror threshold scales as a decaying exponential function of the number of interacting
cells populations.

It is interesting to compare these results with the well established idea that mu-
tation is not a time-independent process, instead alternating its action between pe-
riods of free growing with periods of “hyper mutation” (the mutation rate during
the hyper mutation period is most likely to be very high, i.e. pb > u+). It seems
that this scheme is the optimal to achieve the maturation of the fittest population

64 Chapter 3 Antigen recognition and evolution

l − mc ph rh � 103 bp mutations
1 0.019112 3.85196
2 0.018605 3.74900
3 0.017438 3.51218
4 0.016165 3.25411
6 0.013835 2.78244
8 0.011905 2.39242
10 0.010451 2.09899
12 0.009225 1.85185
16 0.007459 1.49627
18 0.006811 1.36593

Table 3.1 Error threshold for l = 36 e � c = 0 � 005, K = 103 as function
of the number of interacting populations l − mc. In the third column the
estimate of the in vivo per base pair error threshold rh = 1 − (1 − ph)l � 180.

[58]. In the light of our considerations this time-dependence could be a natural
way to achieve high mutation rates and, at the same time, escape from an intrinsic
immunodeficiency that would have been with constant high mutation rates.

3.4. Summary and conclusions 65

0.019112
0.018605

0.017438

0.016165

0.014962

0.013835

0.011905

0.010451

0.009225

0.007459
0.006811

1 2 3 4 5 6 8 10 12 16 18

er
ro

r t
hr

es
ho

ld

affinity increment

numerical data
0.02 * exp(-0.06 * x)

Figure 3.7 Error threshold ph for different affinity increments l − mc;
l = 36, � c = 0 � 005, K = 103. These values are reported in table 3.1. Expo-
nential fit AeBx with A = 2 � 10−2 and B = −6 � 10−2.

Part Two

Chapter
4

Econophysics

A new field of research called “Econophysics” has been populated, during the last
decade, by physicists who wish to apply techniques from theoretical and statis-
tical physics to complex dynamics such as stock prices, currency exchange rates
and other more complex financial products. Apart from the interest in studying
the stock markets as a genuine complex system, another reason for the increasing
popularity of this field among scientists is the joint availability of powerful com-
puters and large historical databases which store nearly every financial transaction
worldwide.

Before we proceed further, it is better to define the most used and studied quan-
tity in financial time series analysis: the price fluctuations. Some authors consider
the price change � pt = pt − pt−1 as the most straightforward definition of fluctu-
ation of the variable pt, which in turn indicates the price of a certain asset at time
t (e.g. seconds, minutes, days, years). Instead of considering the price change it
is common practice to use one of the following definitions of relative change or
return [21]:

– simple net return Rt, on the asset between dates t − 1 and t, Rt = pt � pt−1 − 1;
– simple gross return 1 + Rt;
– the continuously compounded return or log-return is the logarithm of the gross
return, rt = log(1 + Rt) = log pt � pt−1 = log pt − log pt−1.

Since Louis Bachelier’s random walk hypothesis for price change back in 1900,
one of the main goals in this area was to state a correct form for the distribution of
price change. In his original work, Bachelier postulated an uncorrelated random
walk with independent identically Gaussian distributed increments to model the
stochastic process underlying the asset price fluctuations on varying time scale.

This hypothesis has survived for a long time but it has been finally criticized
and, at a certain level, contradicted. The problem with the random walk hypothe-
sis leading to a Gaussian distribution is that it underestimates the possibility of ex-
treme events such as crashes and/or bubbles. In a Gaussian, this probability is just

70 Chapter 4 Econophysics

too small. In reality this events are not so rare and actually dominate the markets.
In figure 4.1, for example, it is shown both the time series of S&P500 index on a
daily time scale (from February 1992 to January 2000) and a random walk with
Gaussian independent increments (generated by xt+1 = xt + � t with � t ��� (���O� 2),
Gaussian with mean � = 0 and standard deviation � = 2). The arrow in figure
points to a “rare event”, something much unlikely to be produced by a random
walk. A well known “rare event” is the market crash reported in 1987. Figure 4.2

Comparison between S&P500 and random walk with indipendent increments (500 days)

RARE EVENT

S&P500
random walk

random walk

S&P500

Figure 4.1 Comparison between a random walk with i.i.d. increments
iterated for 500 time steps and 500 daily close values of the index S&P500
during the periods February 1992 - January 2000. In the small plots down
in the figure it is shown the correspondent net return Rt.

shows two major indexes of the New York Stock Exchange (NYSE), the Standard
and Poor 500 (S&P500) and the Dow Jones Industrial Average (DJI) taken over
a period of fifty years on a daily time scale. The market crash of 1987 is visible.
Strong fluctuations are visible in the lower plot which reports the log-return com-
puted for the DJI.

The random walk hypothesis with independent identically distributed (i.i.d.)
increments is the basis of the Efficient Market Hypothesis (EMH). It states, in
few and simple words, that price variation is random as a results of the activity
of traders who attempt to make profit (arbitrage opportunities); the application of

4.1. Lévy stable distribution and fat tails 71

10

100

1000

10000

100000

p t
 (l

og
-s

ca
le

)

DJI and S&P500 daily (3 Jan 1950 -- 24 Jan 2001)

Black monday

DJI
S&P500

-0.100

0.000

0.100

1950 1960 1970 1980 1990 2000

r t

t (days)

DJI

Figure 4.2 DJI and S&P500 indexes are shown together with the log-
return computed for the DJI series. The market crash (black Monday) of
October 19, 1987 is shown.

their strategies induce a dynamical feedback on the market influencing the stock
price that become random as a consequence. Thus, under the strict EMH, methodic
strategies producing wealth are impossible. On the other hand, we know that some
people are actually able to take advantage of deviations from this law. To overcome
this contradiction various variants of the EMH have been suggested (strong, semi-
strong and weak) [21, 129]. In particular it seems that in a weak or semi-strong
efficient market hypothesis there is place for smart speculators; a probabilistic edge
to be exploited in real markets [129, 83].

4.1 Lévy stable distribution and fat tails
The only partial agreement of the EMH (i.e. the random walk with independent
increments) with the recently discovered empirical evidences, suggested the needs
for more accurate, though more complex, probability distribution functions (PDF)
than the Gaussian as models for price fluctuations or return.

In 1963, Benoit Mandelbrot proposed the Lévy stable distribution as model for
the distribution of returns [78]. He proposed a power law form P(x) = � x � −(1+) with

72 Chapter 4 Econophysics

0 < ¡
¢ 2 for intermediate and large £ x £ , but rounded peak at £ x £¥¤ 0. In statistics,
the Lévy distribution arises from the generalization of the central limit theorem to a
wider class of distributions which do not have a finite second moment [70, 49, 18].
In particular it is the asymptotic distribution of a random variable Xn = ¦ n

i=1 xi for
n ¤ § where the variables xi are distributed as P(x) ¨©£ x £ −(1+ ª).

In general, the central limit theorem of statistics [43] assures that under cer-
tain conditions of the distribution of the variables xi, the sum Xn converges to a
Gaussian or to a Lévy distribution. The existence of the variance of the variables
xi plays a role. In particular, if the variance is infinite then only if xi is distributed
as a Lévy one can have convergence. In fact, for generic distributions of xi, if the
variance is finite then the sum converges to a Gaussian (at least in the central part)
otherwise it does not converge. Instead, if xi are distributed as a Lévy (or power)
law then ii) for infinite variance (¡ < 2) Xn converges to a Lévy stable distribution;
iii) ¡ = 2 converges to a Gaussian; iv) for finite variance (¡ > 2) Xn converges to
a Gaussian in the central part but with non-Gaussian tails.

The Lévy stable probability density does not have an analytic closed form but
can be expressed by its characteristic function [76] or in term of its Fourier trans-
forms [50]. This distribution function is leptokurtic (positive excess kurtosis 1)
that is, it has more probability mass in its tails and center than a Gaussian. The
advantage over the Gaussian is that the Lévy PDF with its fat tails accounts for a
higher probability of extreme events.

Recent empirical studies conducted on asset prices of different markets have
shown partial agreement with the Lévy distribution [81, 50]. In fact the excess
kurtosis of daily returns ranges between 2 and 50, and is even higher for intra-day
data.

Although Lévy distribution are stable under convolution, that is, the sum of two
independent random variables characterized by a Lévy distribution is itself charac-
terized by the same Lévy distribution, the problem is that the resulting limit distri-
bution have infinite second and higher moments. This is in contrast with empirical
data which show finite second moment in the distribution of return. Moreover, the
central part appear to be well fit by a Lévy distribution but the asymptotic behav-
iour shows faster decay then predicted by a Lévy distribution. For this purpose
a truncated Lévy distribution (TL) has been proposed [77, 82, 81]. Recently the
scale-invariant truncated Lévy distribution (STL) has been proposed to model the
scale invariance observed in empirical data [78, 81]. The STL distribution is de-
fined as

P(z) = Ae− «�¬ z ¬ ­ £ z £ −(1+ ª) 0 < ¡ < 2 ® > 0 ¯
1 The kurtosis ° of a distribution is defined as ° = ± 4 ²	³ 4 where ± 4 is the fourth central moment

and ³ is the standard deviation. One often refers to excess kurtosis as ° − 3, relative to the kurtosis
of the Gaussian ´ (0 µ 1).

4.2. Stylized facts of financial time series 73¶ −1 is related to the size of the truncation of the Lévy distribution and the exponen-
tial pre-factor e− ·¹¸ z ¸ º ensures a smooth truncation. The parameter A determines the
“spread” in the central region [82, 97].

1e-05

0.0001

0.001

0.01

0.1

1

-60 -40 -20 0 20 40

lo
g

sc
al

e
(n

or
m

al
iz

ed
)

 S&P500 ∆p

x-(1+α)

fit of negative tail
fit of positive tail

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

log-log plot

x-(1+α)

Figure 4.3 Histogram of » p for the S&P500 index computed over
12446 daily close values and fit with a power law x−(1+ ¼) with ½ = 1 ¾ 598
for the negative tail and ½ = 1 ¾ 538 for the positive tail. In the inset panel it
is shown the tails of the distribution in log-log scale. The excess kurtosis
of the equivalent unnormalized histogram is ¿ 56.

4.2 Stylized facts of financial time series

Empirical studies on volatile markets have discovered some universal character-
istics of price fluctuation. Some of them are well accepted while others are still
under debate.

Fat tails The already discussed leptokurtosis of returns on small time scale (see
figure 4.3). In empirical studies [50] a universal power law with exponents be-
tween 3 and 5 has been found.

74 Chapter 4 Econophysics

Multi-scaling The concept of scaling in physics has been applied to the distrib-
ution of return (see section 5.1.1). It is still quite controversial whether the distri-
bution of return is multi-scaling or not. Some studies reported that the distribution
of return possesses the property of scale invariance with respect to the time scale
(i.e. mono-scaling). In other words, rescaling the histograms of returns computed
on different time scales (1 min, 1 day, etc) this will overlap [78, 81]. This item will
be addressed in the following chapter.

No correlation of price return The absence of correlation of price returns. This
means roughly that the price time series looks superficially as a random walk with
independent increments. To measure correlations in a numerical series xt one often
uses the autocorrelation function defined as

c(À) = Á N− Â
t=1 (xt+ Â − < x >)(xt− < x >)Á N− Â

t=1 (xt− < x >)2
(4.1)

For time scales beyond 20 minutes the autocorrelation function of rt is found at
level of noise [50] in agreement with the EMH. Thus, for time scales beyond hours
or days no correlation is observed (see inset panel of plot in figure 4.4).

Clustering of volatility The amplitude of increments usually called volatility
can be defined in different ways. We sometimes adopt the following definition of
volatility, vt = Ã r2

t = Ä rt Ä . In real data the volatility clusters in time, meaning that
its autocorrelation function is positive and decays slowly to zero. Empirical studies
have reported autocorrelation function with universal power law decay with expo-
nent between 0.1 and 0.4. In figure 4.4 we plotted the autocorrelation function c(À)
for the net return Rt of the Dow Jones Industrials index from more than 12398 daily
close values. We also plotted the autocorrelation function of the absolute net returnÄRt Ä , i.e. the volatility. The volatility possesses strong correlation slowly decaying
to zero. The solid line in plot 4.4 corresponds to a fit with 0 Å 03 Æ log(100 Ç�À) + 0 Å 07
resembling the curve for volatility defined in [108] and related papers.

Log-normal distribution of volatility This empirical fact has been recently ob-
served in a large database of financial index of the NYSE [73]. Later studies have
reported similar results on various currencies exchange rates. The form of the right
tail is controversial instead. Some studies [73] reported a power law behaviour
with exponent È 3 for the S&P500 index while other a common decay in the right
tail as in a log-normal distribution for the NYSE index [92].

4.2. Stylized facts of financial time series 75

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 100 200 300 400 500 600 700 800 900 1000

c(
τ)

: a
ut

oc
or

r.
of

 v
ol

at
ili

ty
 o

f R
t f

or
 D

ow
Jo

ne
s

in
de

x

τ

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

c(
τ)

τ

autocorr. of Rt for DowJones index

Figure 4.4 In the inset the autocorrelation of net return Rt computed over
12398 daily close for DJI. It shows absence of two point correlations. In-
stead, the autocorrelation of absolute net return ÉRt É shown in the large plot
indicates strong correlation slowly declining to zero.

Cross-Correlation between absolute return and trading volume There seems
to be a positive correlation between the absolute value of the return and the trading
volume (IBM return-volume cross-correlation [63]).

In the following chapter we will discuss some MS models of stock markets that try
to reproduce and explain the origin of these stylized facts. In particular the Cont-
Bouchaud model seems to be one of the first who proposed the herding behaviour
as the decisive factor of the fat tailed distribution of return. We will show that this
model is able to produce price time series that are not scale invariant, i.e. they are
multi-affine. In the successive chapter we will then introduce another microsimu-
lation model able to account for some other stylized facts of financial markets. It is
much more sophisticated than the Count-Bouchaud and resemble in many aspects
features of other MS models reviewed at the beginning of chapter 5.

76 Chapter 4 Econophysics

Chapter
5

Microsimulation of stock markets

The basic idea is to develop simple microscopic models dealing with the interac-
tion between traders. These models aim to explain the underlined mechanisms that
determine the complexity of price fluctuations. All above is summarized in the
words of the economist Stigler in 1964 who was the first to perform a stock mar-
ket simulation [117]:

“The goal is to have, on the one hand, the simplest and most parsimonious de-
scription of the market and, on the other hand, the most faithful representation of
the observed market characteristics.”

Many microsimulation systems have been described in literature (see [66], [76]
or [62] for a review). In these models, the traders (single or group of investor) acts
buying or selling commodities, e.g. stocks, gold, foreign currencies. The price
is then determined, as usual, proportionally to the difference or in more compli-
cated ways to balance supply and demand. The traders assume different strategies
according to their stylized behaviour: chartists (who follows trends and are sub-
ject to some sort of herd behaviour) versus fundamentalists (who buy/sell when
the price is believed to be below/above the fundamental value) or noisy (small in-
vestors) versus capitalists (people or group of investors who move large quantity
of money).
One example is given by Lux and Marchesi which distinguish between optimistic
and pessimistic according to the attitude to follow the fundamental price [77]. In
their model traders are not bound to remain within the same group, that is, they
may move to a different group if the corresponding strategy gives an advantage.
LeBaron et al. [63] or Chen et al. [31] try to reproduce the information processing
(i.e. the learning process) of individual traders.
Cont et al. [33] represent agents as vertices of a random graph to model the herd
behavior of traders.
Another well known model is the one of Levy, Levy and Solomon (LLS-model)

[67, 68, 69]. In that model agents are sophisticated entities. They have the choice

78 Chapter 5 Microsimulation of stock markets

between a risk-less asset (like a bond) and a risky asset with stochastic returns.
Moreover agents may reinvest the capital or accumulate it. The authors start with
a set of rational, informed and identical traders and then, one by one, they add el-
ements of heterogeneity and deviations from rationality to study their effects on
the market dynamics. Moreover, traders base their decision on past returns over a
certain time horizon.
Kim and Markowitz distinguish between liquidity and stocks at the current nomi-
nal price [59].
As a further step towards more realistic simulations, Farmer [39] considers dif-
ferent strategies for value traders instead of the simple random buy/sell/inactive
choice of [33].

Each of these works allows to achieve a better understanding of the compo-
nents that may be included in a model of financial markets and how their interac-
tion influences the overall dynamics. Following this line one may think to model
not only different characters but also the way they interact (see also the evolution-
ary agent based models of [41, 40]) to understand the possible relations between
traders behaviour and price fluctuations and in general, the statistical characteris-
tics of the market.

5.1 The Cont-Bouchaud herding model
One of the simplest models able to show fat tails in the histogram of returns is the
Cont-Bouchaud herding model (CB-model) [33]. In their work the authors showed
the relation between the excess kurtosis observed in the distribution of price change
and the tendency of market participants to imitate each other (what is called herd
behaviour). The model consists of a random graph in which the nodes are occu-
pied by agents. The connection between agents have the meaning of forming a
coalition of traders influencing each other so to choose the same strategy to buy,
sell or not to trade. At a given time step a certain number of coalitions, formed
by the random matching, decide what to do. In particular each cluster buys with
probability a, sells with probability a or stays inactive with probability 1−2a. The
demand of a certain group of traders is proportional to its size. The parameter a
determines the “frequency” by which the traders buy or sell: small a Ê 1

2 means
short time intervals with few trades; large a Ë 1

2 means long time intervals where
a large fraction of all investors participate. Iterating this process the price is de-
termined for each time step and the histogram of returns is computed. The result
(also shown analytically in [33]) is the relation between a parameter controlling the
connectivity of the graph (i.e. the tendency of the agents to group together) and the
kurtosis of the out coming histogram. As expected, high connectivity induces fat
tails (or excess kurtosis) in the histogram of returns.

5.1. The Cont-Bouchaud herding model 79

The same model can be seen considering percolating clusters instead of random
graph [109, 115]. In this view the Cont-Bouchaud random graph corresponds to an
infinite-range bond percolation lattice. Same results are found if we limit ourselves
to lattices with nearest neighbors and to site percolation instead of bond percolation
[110].

In Percolation Theory every site of a d-dimensional lattice is occupied with
probability p and left empty with probability 1 − p (the same as the links between
two agents in Cont-Bouchaud’s random graph). A cluster is then defined as a group
of neighboring occupied sites. According to the exact definition of neighborhood
we have different cluster formations. In the following we will refer to square lat-
tices (d = 2) so that the 4-neighborhood corresponds to up-down-left-right 1. Each
occupied site of the lattice identifies one investor. Clusters are group of investors
acting together as in the CB-model.

For p above some critical value pc an infinite cluster appears spanning the lat-
tice from one side to the opposite side. At the percolation threshold pc the average
number ns(p) of cluster containing s sites each, varies as a power law ns Ì s− Í with
a certain exponent Î .

For market applications, each site of the lattice represents one single investor
while the percolation clusters are group of investors acting together. As in the CB-
model, at every time step of the simulation, each cluster buys with probability a,
sells with probability a or stays inactive with probability 1 − 2a. The demand of a
certain group of traders is proportional to its size. Denoting n+

s the number of buy-
ing clusters and n−

s that of selling clusters, the relative price change is proportional
to the difference between supply and demandÏ

p ÌEÐ
s

s Ñ n+
s − Ð

s

s Ñ n−
s Ò (5.1)

Non-trading clusters have no influence. In this model all investors have infinite
supply of credits to buy stocks and infinite number of stock to sell. Moreover, the
availability of stocks to buy is always assured.

The power law of the distribution of returns comes from the cluster size distri-
bution of percolation theory: i) p < pc gives less volatile behaviour, i.e. unrealistic
Gaussian also for small a; (ii) p > pc gives unrealistic oscillations (crashes and bub-
bles) because the market is dominated by the “infinite” cluster, whatever a; (iii) at
p = pc the fraction p of lattice sites occupied by the investor in a d-dimensional lat-
tice of linear extent L barely suffices to form an “infinite” cluster stretching from
top to bottom. In this case we observe power laws: ns Ì s− Í , P(r) Ì r− Í for
1 Ó s Ó LD where ns is the number of clusters of size s, r is the return and
D = d Ô (Î −1) is the fractal dimension of the percolating cluster [115]. This last case

1 Generalization to higher dimension can be found in [114, 111, 115, 112].

80 Chapter 5 Microsimulation of stock markets

is much more realistic as we observe power law consistent with the Lévy regime
for small activity a and crossover to Gaussian for increasing a Õ 1

2 .
This model reproduces some stylized facts of real markets: i) the average re-

turn rt = log pt+1 − log pt is zero, ii) there is no correlation between two successive
returns simply because there is no memory in the decision of the investors, iii) a
power law for the tails of the histogram of return holds for small values of the ac-
tivity parameter a while for larger a Õ 1

2 (longer time) a progressive crossover to
a Gaussian is observed.

No other stylized facts are fulfilled by this simple model if no complications are
added. For example in [111] traders are allowed to diffuse on the lattice to induce
realistic correlations of volatility.

We have implemented the CB-model in C language with a naive parallelization
using the PVM message passing library. The core of the algorithm is a clustering
labeling algorithm of percolation theory. For this purpose we tried two different
algorithms:

1. a recursive algorithm very intuitive and easy to implement;

2. a performant algorithm of Hoshen and Kopelman (1976) described and re-
ported in Fortran language in [110].

After having produced a percolation cluster the rest of the Cont-Bouchaud algo-
rithm consists of iterating the traders activity for all the clusters and determine the
price. Figure 5.1 shows the histogram of price changes Ö pt = pt −pt−1 obtained for
different activity a of traders in a two dimensional lattice (L = 100) at the critical
value pc = 0 × 592746 over a time period of time steps. The interesting behaviour of
the histogram of Ö p depending on the parameter is that for large value of activity
a there is a crossover to a Gaussian exactly as observed empirically in real markets
price ([81] and further papers). In real prices the crossover to a Gaussian is found
on time scales from four days up to one month.

5.1.1 Multi-affinity in financial price series

Empirical evidence of non-unique scaling exponent in time series of stock prices,
currency exchange rates or market indexes can be found in many recent papers.
For instance, Baviera et al. analyse the German DM/US$ dollar exchange rates
[11], Ghashghaie et al. the high frequency bid-ask quotes for the US$/DM ex-
change rates [48], Rotyis et al. analysed a stock index of the Budapest Stock Ex-
change [102], Lux worked on the German DAX, the NYSE Composite Index, the
DM/US$ exchange rate as well as the gold price from the London Precious Metal
Exchange [75], Vandewalle et al. analyse the US$/DM and JPY/US$ exchange
rates [120], Ivanova et al. look at Gold price, Dow Jones Industrial Average and

5.1. The Cont-Bouchaud herding model 81

100

1000

10000

100000

-300 -200 -100 0 100 200 300

lo
g

sc
al

e

∆P

1000 percolation lattices 100x100 at different activity

activity
.0005

.002
.04
.01

.1

.2

Figure 5.1 Histogram of Ø pt determined with the Cont-Bouchaud herd-
ing model. Thousand critical square lattices 100 Ù 100 iterated for 1000
time steps. For a Ú 1

2 a progressive convergence to a Gaussian process is
observed as in real data.

BGL/US$ exchange rate [55]. They all showed that scaling of return exists but not
with a unique exponent.

To detect multi-scaling we employ a method that is considered standard in lit-
erature of turbulence theory [45] and used in some of the already mentioned works.
Define the structure function

Fq(Û) Ü < Ý r(Þ)
t Ý q > (5.2)

where < ß > is the time average and r(Þ)
t is the time-lagged return defined as

r(Þ)
t Ü t+ Þà

i=t+1

ri = log
pt+ Þ
pt á (5.3)

In the following analysis we will use the log-return r(1)
t = log pt+1 − log pt as defi-

nition of return while Rotyis et al. in [102] and Iori in [54] take the simple price
difference r(1)

t = pt+1 − pt thus r(Þ)
t = pt+ Þ − pt instead.

82 Chapter 5 Microsimulation of stock markets

The structure function Fq(â) is assumed to scale as a power law i.e. Fq(â) ãâåä q , where æ q is the scaling exponent. If æ q = hq for some h, then the process is
self-affine (sometimes called uni-fractal). h < 1

2 is the Lévy-stable case while the
Gaussian behaviour corresponds to h = 1

2 . On the contrary, if the scaling exponent
is not linear (æ q is a convex function of q [43]), the process is called multi-affine or
multi-fractal. The larger is the difference of æ q from the linear behaviour in q, the
wilder are the fluctuations and the correlation of the absolute return [53].

Given Fq(â), computed as in eq(5.2) for each q, the value of æ q has been es-
timated by standard linear regression over the set of points ç (âéè Fq(â)) ê for â =
20 è'ë'ë'ë'è 216. Moreover Fq(â) is computed for different values of the exponent q = k

2
with k = 1 è 2 è'ë5ë'ë	è 20.

It is well known that, in contrast to the early prediction of Brownian motion
given by Louis Bachelier one century ago, real price series have different behav-
iour [81]. Brownian motions, besides a Gaussian distribution of return, lead to a
uniform exponent æ q = q ì 2. In contrast, as already mentioned, financial time se-
ries show a scaling exponent very different from q ì 2. To show this we made a
quick check on the Dow Jones Industrial Average Index (DJI daily closing) over
seven decades, from 1-Oct-1928 to 22-Aug-2000, for a total of 19103 values 2. At
the same time we calculated the scaling exponent of a time series generated by a
multiplicative Gaussian random walk log pt+1 − log pt = í t with í t drawn from a
Gaussian î (0 èOï 2) with ï = 10−2, over five million time steps.

Contrary to the scaling exponent of the random walk which we found to have
a slope very close to 1

2 , the scaling exponent of the DJI shows in agreement with
the literature cited above a clear deviation from q ì 2 (see fig. 5.2). In particular two
regions are visible; roughly q < 3 with a slope ð 1

2 and q > 3 with slope ð 0 ë 12.
We then generated time series with the CB model and computed the scaling

exponent for different values of the activity a and system size L at the critical per-
colation threshold pc = 0 ë 592746 in two dimensions. The same departure from
a Gaussian behaviour, but also from a simple scaling behaviour (straight line), is
found for some value of the activity a. Figure 5.3 shows the scaling exponent æ q
computed as the average of fifty independent runs (different random seeds, i.e.
different lattice cluster formations) for each of four values of the activity (a =
10−4 è 10−3 è 10−2 and 10−1) and four values of lattice dimension (L = 1001 è 701 è 401
and 101). A total of 800 simulations composed by one million time steps each took
a total running time of about a thousand hours on three fast workstations.

Plot (a) of figure 5.3 refers to a = 10−4. Two different regimes are present, one
for small q (= 1

2 and 1) and another for q ñ 3
2 . No significant dependence from the

2 Note that this analysis is partial when compared to those in the referenced bibliography be-
cause of the limited amount of points at our disposal. Indeed, using only 19103 values, the linear
fit of the structure function was performed over 10 values of ò only instead of 16, i.e. ò varied from
21 to 210 instead of 216.

5.1. The Cont-Bouchaud herding model 83

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

ζ q

q

q/2
DJI

"random walk"

Figure 5.2 Compare the scaling exponent of a multiplicative Gaussian
random walk with that of the DJI daily closing values.

lattice dimension L is found (see also figure 5.4). Similar multi-scaling behaviour
is found for a = 10−3 (panel (b)).

Increasing the activity the model goes to self-affine behaviour as seen in panels
(c) and (d) in figure 5.3 corresponding respectively to a = 10−2 and a = 10−1. The
scaling exponent becomes a straight line with slope always below 1

2 indicating a
Lévy regime. The slope of the scaling exponent depends strongly on the lattice
dimension L. Indeed figure 5.3 panel (d) which corresponds to a = 10−1 shows
the slope of the scaling exponent to be inversely proportional with the lattice size
L. This finite size effect is better shown in figure 5.4 where we show the scaling
exponent relative to L = 1001 which is the most representative of the asymptotic
behaviour of the percolation of critical lattices. In this plot a crossover to a self-
affine behaviour is visible for a going from 10−4 to 10−1.

From percolation theory we know that the cluster size distribution is a power
law with a certain exponent. Moreover, if the activity a is very small, at any time
step only one cluster is active, thus according to eq(5.1), the price change or return
is distributed as a power law (this is trivially true in particular when a < 1 ó L2).
Such dynamics seems equivalent to a Lévy walk which we know to be a self-affine
process. Thus we need not to look for multi-scaling when a < 1 ó L2.

84 Chapter 5 Microsimulation of stock markets

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

ζ q

q

(a)

lattice dimension L
q/2

101
401
701

1001

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10
ζ q

q

(b)

lattice dimension L
q/2

101
401
701

1001

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

ζ q

q

(c)

lattice dimension L
q/2

101
401
701

1001

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

ζ q

q

(d)

lattice dimension L
q/2

101
401
701

1001

Figure 5.3 Panel (a) corresponds to a = 10−4, panel (b) to a = 10−3, (c)
to a = 10−2 and (d) to a = 10−1. q on the x-axis, the scaling exponent ô q on
the y-axis. For each a and L, the scaling exponent ô q has been computed.
This has been repeated for fifty independent runs (different random seeds,
thus different cluster configurations). The scaling exponent here shown is
the result of averaging for the single ô q.

5.1. The Cont-Bouchaud herding model 85

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

ζ q

q

activity a
q/2

0.0001
0.001

0.01
0.1

Figure 5.4 Scaling exponent for L = 1001, different activity.

Instead, when 1 õ L2 ö a ö 1
2 the process seems to be multi-affine. This is

non-trivial and, more important, is well in line with the empirical findings relative
to the real financial series. However, the value of q for which the scaling exponent
change its slope (q ÷ 3 in figure 5.2 for the DJI) is quite different for the synthetic
series generated with the CB-model (q ÷ 1 in figure 5.2) and independent from
the two parameters investigated in this work, namely the activity a and the system
dimension L.

In summary it seems the CB-model shows interesting behaviour over a certain
window of the parameter a giving power-law histogram and multi-scaling as real
financial time series. Simulations suggest this window to be independent of the
system size L.

86 Chapter 5 Microsimulation of stock markets

Chapter
6

An agent – based model of stock
market fluctuations

In this chapter we describe a new model to simulate the dynamic interactions be-
tween market price and the decisions of different kind of traders. They possess
spatial mobility and group together to form coalitions. Each coalition follows a
strategy chosen from a proportional voting “dominated” by a leader’s decision.
The interplay of the different kind of agents gives rise to complex price dynam-
ics that is consistent with the main stylized facts of financial time series.

The present model incorporates many features of other known models and is
meant to be the first step toward the construction of an agent based model that
uses more realistic markets rules, strategies, and information structures. The main
goal is to give an easy way to implement different key issues in modeling the stock
market, to understand the relevance and the mutual influence of certain factors
that other models have treated separately, and to investigate the necessary and suf-
ficient conditions determining the factors which actually drive the empirical ob-
served facts in real markets.

The modeling and simulation of real systems consisting of agents that coop-
erate with each other has emerged as an important field of research. They are re-
garded as a consistent paradigm enabling an important step forward in empirical
sciences, technology and theory [5]. To model the dynamics of a complex sys-
tem composed of interacting entities with their internal complex structure and dy-
namics has many appealing points: self organization strategies and decentralized
control, emergent behaviour, autonomous behaviour, cooperative capacity and ag-
gregation, and spatial mobility. The purpose of the model hereafter described is to
provide a relatively simple description of the price formation in a stock market.
The agents paradigm is most suited to accomplish this task.

Recalling the introduction, the computational model described herein is for-
mally equivalent to an unbounded lattice gas. The technical implementation of this
computational model called AMSE (A Model of Stock Exchange) is very similar

88 Chapter 6 An agent – based model of stock market

to the coding of CImmSim already described in chapter 2 and also in appendix B.
In appendix C some details about the parallel implementation of AMSE are given.

This chapter is organized as follows: in section 6.1 we present the model, in
section 6.2 we discuss its dynamics presenting the results of some simulations. In
section 6.3 we use a well known statistics to determine long-range correlations in
the time series of the absolute return generated by AMSE. Finally, in section 6.4
we point out some further developments.

6.1 Model description
In the first version of the model [24] there were two kinds of agents trading for a
single asset (stock): fundamentalists and noisy [77, 116]. The former consider a
reference (or “fundamental”) value to determine the “right” price of an asset. The
latter represent most of the “small” traders which do not follow any reference value
and do not look at charts. Their behaviour is mostly random.

Following [77] the fundamental value ft is modeled as a simple multiplicative
random process log(ft+1) − log(ft) = ø t where relative changes are drawn from a
Gaussian ø t ùûú (0 üOý 2) with zero mean and standard deviation ý . In this way the
fundamental value is an exogenous stochastic process (a critique to this approach
is found in [44]).

We later introduced traders which take into account information about the evo-
lution of the price, namely the moving average over certain horizons of time [15].
These are the traders that we name chartists.

To model how the decisions of agents are influenced by their mutual interac-
tion, we assume that the decision process undergoes a proportional voting where
agents occupying the same lattice site express their preference. The single agent’s
decision is weighted by its influence strength to form the collective decision.

Each agent i is defined by a set of attributes. The buy/sell order at time t is
given by x(i)

t þEÿ −1 ü 0 ü 1 � which indicates respectively the decision to sell, to be
inactive or to buy for the current step. The capital c(i)

t of agent i at time t is the cur-
rent amount of money or credits. Each agent starts with an equal capital of money
c(i)

0 with which (s)he can buy stocks. Agents reinvest their profit and accumulate
capital. The number of stocks owned by agent i is indicated by n(i)

t . The initial
number of owned stocks n(i)

0 is randomly chosen for each agent. At each time step,
the stocks account for the current wealth of the trader i, indicated by w(i)

t , as the cur-
rent nominal price of the asset, indicated by pt. Thus the current wealth of trader i
at time t is w(i)

t = n(i)
t pt + c(i)

t .
The current price pt is determined by a single market maker. While the traders

submit orders x(i)
t , the market maker fixes the new price pt+1 according to a certain

function of the excess demand Dt = � i x(i)
t . For the sake of simplicity, we set the

6.1. Model description 89

price change proportional to the excess demand

pt+1 − pt � Dt with Dt ���
i

x(i)
t � (6.1)

The initial setup of the model is given by NN noisy traders, NF fundamentalist
traders and NC chartist traders displaced on a L � L lattice. Each trader starts with
a capital c(i)

0 and a number of stocks n(i)
0 both drawn from uniform distributions.

At each time step the traders decide to trade or stay inactive respectively with
probability a and 1−a. The parameter a corresponds to the activity as in [33]. Once
each trader determines if (s)he stays inactive or not, the decision to buy or to sell
is reached in two phases: (1) first, each agent makes his choice according to his
actual situation and potential benefit from the activity as specified by the trading
strategy in section 6.1.1 (she/he looks at her/his micro-state, defined by the avail-
ability of capital c(i)

t and/or stocks of the asset n(i)
t , the price history (if chartist) and

the fundamental value (if fundamentalist)); (2) then in the second phase, the indi-
vidual preferences are summed up in a kind of proportional voting and the resulting
“collective” decision determines the probability to follow the majority agreement.
If a trader can not fulfill the constraints of money/stocks availability (s)he ignores
the collective agreement and stays inactive.
The trading phases are described in the following two sections.

6.1.1 Trading strategy
This section describes the logic which rules the trading activity. At each time step
each agent decides with probability a and independently from the others, if to be
active or not to trade. For active traders, a different decision path is followed de-
pending on the class.

Fundamentalist strategy Fundamentalists take into account the reference value
ft. They buy if pt � ft or sell if pt > ft. Their activity can be seen as a global
elastic force attracting the price to the fundamental value [28]. The fundamentalist
behaviour represented as a SFSM is sketched in figure 6.1.1.

Noisy strategy Noisy traders buy randomly (probability 1
2) but sell only if con-

venient. The average price they paid for all the stocks they own must be lower than
pt, i.e.

1

n(i)
t

n(i)
t�

j=1

ptj < pt with t > 1 and tj < t 	 j �

90 Chapter 6 An agent – based model of stock market

sell buy

pt > ft

pt
 ft

inactive

buy

sell

m̄(q) < p−

p−
 m̄(q)
 p+

m̄(q) > p+

p−
 m̄(q)
 p+

Figure 6.1 Sketch of the fundamentalist (left) and chartist (right) trading
rule as finite state automaton.

Chartist strategy Chartists consider the trend with respect to a given time hori-
zon h �
� . At each time step they sell if and only if the moving average value

m̄t(h) =
1
h

t−1�
t � =t−h

pt � (6.2)

computed over the time horizon h is above the “filtered” price p+
t (�) = pt + � pt

(0 < � < 1 is an input parameter). If m̄t(h) is below the filtered price p−
t (�) = pt− � pt,

they buy. Finally they stay inactive when p−
t (�) < m̄t(h) < p+

t (�). The chartist
behaviour represented as a SFSM is sketched in figure 6.1.1.
We allow three values for h, 10, 60 and 360, so there are three groups of chartists
who look at moving averages on different time horizons (respectively short, middle
and long term).

6.1.2 Collective formation and diffusion
At this stage of formulation the agents follow independent strategies. Thus, the ex-
cess demand Dt of eq(6.1) is the sum of i.i.d. random variables and the central limit
theorem determines a Gaussian distribution of the histogram of log-return which
is different from what is observed in the real markets [81] (see also chapter 4).

To obtain a deviation from Gaussian we need to take into account the herding
behaviour that has already been demonstrated to determine (at least in part) the fat
tail property of the distribution of returns [33, 115, 32, 112].

6.1. Model description 91

Instead of determining a priori the clusters distribution as in percolation models
we just allow the agents to diffuse on the grid and to aggregate inside each single
lattice site .

We model the market as an unbounded lattice gas. Agents are placed randomly
on a regular triangular two-dimensional lattice (six neighbour sites) L � L (six links
at 60 �) with toroidal boundary conditions (see figure 2.1 in chapter 2). At each time
step, agents diffuse uniformly to a neighboring site. The diffusion determines a
re-shuffling of agents inside each single lattice site and changes the impact on the
price fluctuations.

In the spirit of Nowak et al. [87] (see also [32]) the decision of each agent af-
fects and gets affected by other agents on the basis of its influence strength. The
influence strength of agent i is represented as a real number s(i). If we assign a
much larger influence to some traders among the totality (call them leaders), the
dynamics of the model will be dependent on how many leaders are present. Lead-
ers are chosen uniformly among all the classes of traders. We represent a group by
those agents contained in the same lattice site. So, each group of traders forms a
collective system. A possible example is a group of people following the advises
of a single financial analyst. We also want a group to be dominated by a leader
so that we can set the number of leaders equal to L2 given that N � L2 where N
indicates the total number of agents.

Each agent belonging to a group imposes his/her strategy according to the in-
fluence strength s(i). For each x(i)

t ��� −1 � 0 � +1 � determined by the trading strat-
egy discussed in section 6.1.1, we sum the influence strength of each agent that is
following strategy x = −1 � 0 � 1 and we normalize it to the total so to get values be-
tween zero and one to be interpreted as probabilities. The final decision of selling,
staying inactive or buying, represented respectively by −1 � 0 � 1 is determined by
the following distribution (� x pr[x] = 1):

pr[x] = P[x(i)
t = x] =

� j:x(j)
t =x s(j)� j s(j)

(6.3)

where the index i runs over all agents of the group. The influence strength of the
leader is larger than those of a “regular” trader. How much larger is specified as
an input parameter. Given the distribution pr[−1], pr[0] and pr[+1] of eq(6.3), the
agents’ strategy x(i) is updated using a random wheel selection.

A collective system arises from the coherent behaviour of a group of strongly
interacting constituents. It also has a weak external coupling. In our case, the col-
lective can be treated as an individual whose strategy’s distribution is determined
by the single agent’s actual strategy x(i) through eq(6.3). This means that if exactly
one agent is a leader and he has chosen strategy x̂ then, for the other choices x,
pr[x̂] � pr[x]. Thus, the fraction of agents in that collective that will follow strat-

92 Chapter 6 An agent – based model of stock market

egy x̂ is large. If two leaders are present in the same site and their decision is dif-
ferent, then they will compete to determine the majority strategy. On average half
of the traders will follow one leader and the other half will follow the other. And
so on for the other possibilities. In general, if we set more than one single leader
in each site (on average), their competition will destroy the effects of the herding
behaviour. This determines, as confirmed by numerical simulations, a Gaussian
distribution of returns. In conclusion we decided to set on average a single leader
(or less) in each lattice site.

It is worthwhile to note that even in this case the dynamics of each collective
group is equivalent to that of a single agent (the leader) with combined capital and
the collectives take decisions independently one from the others. Following this
reasoning, for the central limit theorem, one would expect again a Gaussian dis-
tribution of return. In fact the effect of the collective strategies of the leaders with
combined capital would end up to zero when summed over the whole grid just be-
cause the uniformity of the collectives’ dimension which is about (NC+NF+NN) � L2

on average. The results show a clear deviation from a Gaussian instead. Why this
happens?
The answer is found considering the synergy between the trading rule of section
6.1.1 and the collective formation mechanism described in 6.1.2; the collective
groups influenced by a fundamentalist leader are coupled (weakly, but they do) by
means of the fundamental price that is perceived by all of them equally. So, while
the noisy’ collectives, being totally uncoordinated, only produce noise, it happens
that fundamentalists’ leaders occasionally end up with the same decision to buy or
sell, driving a large fraction of all the traders to follow the same decision. Same
rationale applies to the chartist’ collectives. Chartists look at the price history (the
“charts”) and eventually end up to follow the same “trend”. This behaviour of fun-
damentalists and chartists drives a large fraction of agents to take the same decision
causing large fluctuations of price, that is, fat tails in the distribution of return.

The re-shuffling given by the random diffusion of agents on the lattice can also
be interpreted as a change of preference, in the same way people decide to trust to
another brokerage agency or bank. In fact, one agent that leaves a group whose
leadership is for example fundamentalist for a group whose leadership is chartist
will end up in a behaviour’s change much like the fundamentalist-noisy switch in
[77]. Moreover, not all lattice sites will contain a leader. In these “leader free” sites
no collective if formed and the behaviour of the agents is almost independent.

6.2 Discussion
When the number of fundamentalists is higher than that of the noisy traders, the
price pt tracks closely the perceived value ft. This is both trivial and unrealistic. In

6.2. Discussion 93

fact, evidence from real market data suggests that, while prices track values over
the very long term, large deviations are the rule rather than the exception [22]. The
opposite situation results in too random fluctuations given the random behaviour
of the noisy.
A non trivial dynamics is obtained for NF � NN. In this case we observe periods in
which the price follows the fundamental price followed by periods of apparently
independent fluctuations. The influence of the chartists on the price dynamics is
quite different and will be discussed in section 6.2.1.
We set NF = NC = NN = N̂L2 for a certain N̂ ��� . The value of this parameter
is found observing that the collective dynamics depends on its dimension. If the
collective systems are too small we do not get any herding behaviour.

We can also get rid of another parameter and set the activity a = a0 � (NF + NC +
NN) for a certain fixed a0 so to scale with the system size.

Figure 6.2 refers to a simulation with L2 = 400 and N̂ = 25 for a total of 30000
agents. The influence strength of the leader is set to a hundred times bigger than
that of normal ones. The diffusion speed is set to 10−1 meaning that each trader
changes group every ten time steps on average. As in [23] half of the agents start
with one stock while the remaining with no stocks. In this way we obtain a balance
between an initial number of people willing to sell and people willing to buy.

It is worthwhile to note that the initial amount of capital each agent is equipped
with, induces the ability of the market price pt to follow the fundamental value ft

when this strongly deviates from the initial value f0. To see this fact just consider
the case in which the agents own little initial capital, then pt is limited by the global
capacity of the agents to buy. On the other hand, the price pt is limited from below
by the amount of initial stocks we equip the agents with; the greater it is, the larger
will be a potential fall of the price pt to follow the fundamental value ft. These and
other related questions will be investigated elsewhere.
Another consequence coming from the constraint given by the availability of funds
and stocks is that, given the trading rule described above, the activity of the agents
is not uniform. In fact, agents may end up with the decision to stay inactive either
if they want to sell but they do not own stocks or they want to buy but they do not
have money.

Figure 6.2 shows the price pt to follow the fundamental price ft apart of some
large occasional deviations. The standard deviation of the price is p = 46 while
that of the fundamental value is f = 44 ! 94, giving an excess volatility of 2.3%.
In the small chart at the bottom of the same figure we show the traded volume Vt

computed each time step (in contrast to reality where it is computed every certain
period of time, e.g. day or week but not instantaneously). Because in this model

94 Chapter 6 An agent – based model of stock market

-8

-6

-4

-2

0

2

4

6

8

p t
-p

0

pt
ft

MA(360)

0
5

10
15
20
25
30

400 600 800 1000 1200 1400 1600 1800

vo
lu

m
e

time steps

Vt

Figure 6.2 Variation from the initial price in percent. Price (up), volume
(down). The volume Vt is defined as in eq(6.4). MA indicates the moving
average on long term.

we do not require to match the sell/buy orders, we compute the volume as

Vt = "
i

#
x(i)

t

#%$
(6.4)

The model does not require that each buy order should match a sell order because
the balance is assured to be made involving a market maker outside the model it-
self.
The figure shows an increase in volume when pt & ft because, according to the
trading rule, fundamentalists trade much more in proximity of the fundamental
value. This is opposed to periods in which they either (a) sell all stocks they own
because the price is higher than the perceived value and wait to buy a new stock
when the price is lower than its expected value or (b) they have already invested
all the capital and cannot buy other stocks even if appropriate (see also plots of
wealth 6.3).

The dynamics of wealth per agent’s type is depicted in figure 6.3. This collec-
tive analysis does not show realistic behaviour as the fundamentalists tend to trade
to compensate the effect of the noisy traders on price dynamics (see fig. 6.3 plots
(a) and (b)). On the other hand, the dynamics of the chartists seems uncorrelated

6.2. Discussion 95

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

th
is

 s
ca

le
: f

un
da

m
en

ta
lis

t a
nd

 n
oi

sy

th
is

 s
ca

le
: c

ha
rti

st
s

time steps

average number of owned stocks per agent

(a)

fundamentalists
noisy

chartists

220

240

260

280

300

320

340

360

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
250

260

270

280

290

300

310

th
is

 s
ca

le
: f

un
da

m
en

ta
lis

t a
nd

 n
oi

sy

th
is

 s
ca

le
: c

ha
rti

st
s

time steps

average amount of credits (arbitrary units) per agent

(b)

fundamentalists
noisy

chartists

-20

-10

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

20

30

40

50

60

th
is

 s
ca

le
: f

un
da

m
en

ta
lis

t a
nd

 n
oi

sy

th
is

 s
ca

le
: c

ha
rti

st
s

time steps

average total wealth per agent (arbitrary units)

(c)

fundamentalists
noisy

chartists

Figure 6.3 Average number of stocks (a) 1 ' Ne (Ne

i=1 n(i)
t and average

amount of cash (b) 1 ' Ne (Ne
i=1 c(i)

t for each trader type during the simula-
tion, where Ne is the number of agents per type e. Plot (c) shows the dif-
ference with the initial wealth given by both liquidity and nominal price of
the owned stocks 1 ' Ne (Ne

i=1 w(i)
t

96 Chapter 6 An agent – based model of stock market

with the rest of the agents. Different simulations have not shown altogether a clear
advantage of one strategy with respect to the others.

To better investigate the final distribution of capital we run a large simulation
involving two million agents and running for 15000 time steps. In figure 6.4 is

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-8 -6 -4 -2 0 2 4 6 8

Normal. hist. of total wealth change of 2 mil. agents after 15000 time steps

profit

Figure 6.4 On the X-axis the difference between the final accumulated
capital per agent and the initial capital they are equipped with. A re-shaping
from a uniform distribution (at the beginning they have the same capital)
to a power law in the center of the histogram is observed (Y-scale is loga-
rithmic). The unit for the X-axis is given in Euro or in an arbitrary unit of
money.

shown the histogram of agent’s wealth-change distribution. It shows a power law
in the central part with slope -1.3 and wide tails. The central part of the distribu-
tion is consistent with a Pareto-like distribution [91]. Similar questions have been
investigated with the Cont-Bouchaud model [71]. It is noticeable the fact that the
initial uniform distribution (all agents start with same capital) is strongly reshaped
over a sufficiently long run. Indeed over shorter run the final distribution of wealth
is Gaussian-like (not shown).

Plot 6.5 shows the histogram of log-return rt. The excess kurtosis) of the
distribution is 4.58. Moreover, the histogram has fat tails and power law decay* + x + − , in the central part leading to exponent -/. 2 0 8 (see inset plot) roughly

6.2. Discussion 97

consistent with empirical studies [77, 50].

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-10 -5 0 5 10 15 20
returns

N(0,1)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 4

N(0,1)
left tail

right tail
fit of right tail

Figure 6.5 Histogram of standardized price returns (rt− < rt >) 132 rt . The
excess kurtosis is 4.58. In the log-log inset plot the fit of the central part of
the histogram have slope 4 2 5 8.

Figure 6.6 show the comparison of the return of the market price pt and those of
the fundamental price ft. The deviation is clear; the exogenous source of informa-
tion is transformed into something else by the endogenous dynamics of the market
participant as already demonstrated in [77].

Another relevant property of market price dynamics is the absence of correlation of
return and the persistence of long range correlation of volatility [77, 50]. Volatility
of stock price changes is a measure of how much the market is liable to fluctuate
and can be defined in different ways. In the following we define the volatility as
the square of return vt = r2

t .
Figure 6.7 shows the autocorrelation function c(6) of volatility vt defined as in
eq(4.1). Empirical studies report a power law decay with exponent between 0.1
and 0.3 for the autocorrelation of volatility in real data [18, 82, 48]. Instead we
found a slope 475 013 that is one order of magnitude less.

98 Chapter 6 An agent – based model of stock market

1

10

100

1000

10000

100000

1e+06

-10 -8 -6 -4 -2 0 2 4 6 8 10

Comparing histogram of log-ret of pt and ft

perceived value ft
market price pt

-0.004
0

0.004

0 200 400 600 800 1000

ft return

-0.004
0

0.004 pt return

Figure 6.6 Comparing the log return of ft with that of pt. The exoge-
nous source of information is transformed into something else by the en-
dogenous dynamics of the market participants. On the X-axis of the upper
plot it is reported the price return while on the two plots at the bottom is
reported the time step.

6.2.1 Chartist’s influence on price dynamics

Empirical studies of large data bases [73] show that the cumulative distribution of
the volatility is consistent with a log-normal behaviour, at least for the central part
of the histogram. We use here another definition of time average volatility that has
also being used in [73]

vt = 8 < r2
t > 9 t − < rt >29 t : 1 ; 2 (6.5)

where < < > indicates the average over a fixed time interval = t. This definition of
volatility coincides with the estimate of the standard deviation of the log-return on
the time interval = t.

As already stated, the model uses the collective strategy of section 6.1.2 to re-
produce imitation or herding behaviour. Although imitation is enough to repro-
duce fat tails in log-return distribution, it fails to explain the log-normal volatility
distribution.

6.2. Discussion 99

1 10 100 1000

fit

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c(
τ)

τ

autocorrelation function of square of return (rt)
2

Figure 6.7 Autocorrelation function of volatility of return (eq(4.1)). It
shows the correlation of volatility persisting for long time. In the log-log
plot the fit has slope -0.013.

To test this conjecture we performed four different runs where in two of them the
chartists were absent and in other two the aggregation (collective strategies) was
switched off. Figure 6.9 shows the histogram of volatility for simulations with
15360 agents on 16 > 16 lattice sites, a = 0 ? 001302 and @ = 3%. Figure 6.9 clearly
shows that when no aggregation is present the histogram of volatility can not be
fitted with a log-normal curve. Same pattern when no chartists are present (same
figure panel (b)). Instead, a good fit with a log-normal distribution

1A
2 BDC x

exp E −(log x− < x >)2

2 C 2 F
with parameters C = 0 ? 371 and < x >= −6 ? 620 is found for the run with both
aggregation and chartists behaviour. This result is consistent with the empirical
findings on the S&P500 [73] only for the central part of the histogram (see fig-
ure 6.10). Other empirical studies of large data bases [73] show right tails of the
volatility distribution of S&P500 consistent with a power-law asymptotic behav-
iour characterized by an exponent G 3. This power-law right tail is not recovered
here. Nevertheless it is worthwhile to mention the work in [92] where a quite good
fit with a log-normal distribution is indeed found for the NYSE index.

100 Chapter 6 An agent – based model of stock market

-10

-8

-6

-4

-2

0

2

4

6

8

10

400 600 800 1000 1200 1400 1600 1800

p t
 (p

er
ce

nt
 o

f v
ar

ia
tio

n
fro

m
 p

0)

time steps

pt-δpt
pt+δpt

MA(10)
MA(60)

MA(360)

Figure 6.8 Variation from the initial price (in percent). Indicated in fig-
ure the filtered price pt − H pt, pt + H pt, and the three moving averages m̄t(10),
m̄t(60) and m̄t(360). Large fluctuations are provoked by the m̄t(h) crossing
the price pt I H pt. Positive and negative trends are visible.

In general, a log-normal distribution predicts that large “positive” (i.e. greater
than the average) jumps (fluctuations) are more frequent than “negative” ones. Our
simulations show that a good fit is doable only for the histogram of the run with
chartists revealing a positive effect of chartist’s trading on the overall dynamics.

The effect of chartists on the price dynamics can be rationalized as follows.
According to the trading rule in 6.1 chartists do not influence the price as long as
the moving average m̄(h) defined in eq(6.2) stays in the range (pt − H pt J pt + H pt).
When m̄(h) hits the upper or lower border of the filter the chartists take a position:
buy if it goes over pt + H pt or sell in the other case (see fig. 6.8). Trends are clearly
visible as well as large fluctuations (crashes?) in proximity of the points in which
one (or more) moving average crosses the filtered price pt I H pt.

Let’s have a look at the consequences of such behaviour in closer detail.
Chartists are equally distributed in three classes, as many as the time horizons over
which the moving averages are computed, NC = NC10 + NC60 + NC360 . Let’s take for
example the simple case in which two different time horizon are computed, h1 K=
h2. Also call NCh1 and NCh2 the number of chartists respectively. Now consider

6.3. Hurst exponent and modified R/S statistics 101

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.0001 0.001 0.01

fit: s=0.371, m=-6.620
 k=8.766e-05

(a)

collective strategy
no collective strategy

1e-05

0.0001

0.001

0.01

0.0001 0.001 0.01

(b)

collective strategy
no collective strategy

Figure 6.9 Volatility histogram (log-log scale): figure (a) corresponds
to runs with chartist traders; figure (b) without chartist traders. Runs of
105 time steps. One of the two histograms of each figure indicates a run
without imitation or herding behaviour. In plot (a), s indicates the standard
deviation and m the mean value of the log-normal fit.

the price following a descending path, whatever has provoked it. What happens is
that, a sharp decrease of the price will induce m̄(h1) to decrease first (just to make
an example). At a certain point m̄(h1) > p+

t (L) calling aNCh1 , on average, for a sell
order. This synchronous signal to all the chartists NCh1 will bring the price to fall
accordingly. Eventually, at a later time t M also m̄(h2) > p+

t N (L) calling for a second
wave of sell orders by aNCh2 .

This reasoning could be extended at will according to the number of different
time horizons considered to compute the moving average. This kind of domino
effect is valid also the other way around for a rising price, inducing positive trends.
Figure 6.8 shows the filtered price with three moving averages computed over time
horizons 10, 60 and 360. The corresponding price and volume is shown in figure
6.2.

6.3 Long-term dependencies: Hurst exponent and
modified R/S statistics

Evidence of positive correlations in the magnitude of the return (volatility clus-
tering) in real time series in a well accepted and documented fact. The modified

102 Chapter 6 An agent – based model of stock market

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

P
D

F

volatility

normalized volatility histogram
log-normal distrib

Figure 6.10 Histogram of volatility. The histogram is well fitted in the
central part by a log-normal distribution.

R/S statistics (MRS) proposed by Lo (1991, [74]) is a modification of the Hurst-
Mandelbrot rescaled range (R/S) statistics [52, 79]. Lo generalized the R/S sta-
tistics as he suggested the R/S is sensible to short-range dependencies. Thus, ev-
idence of dependencies using the R/S statistics may come merely by short-term
dependencies and not from the long-term ones.
Given a time series of N values X1 OQPQPQPQO XN, the MRS statistics is defined as follows:

Qn R 1
ˆS n(z) T max

1 U k U n

kV
j=1

(Xj − X̄n) − min
1 U k U n

kV
j=1

(Xj − X̄n)W (6.6)

where X̄n is the sample average,

ˆS 2
n(z) R 1

n

nV
j=1

(Xj − X̄n)2 +
2
n

zV
j=1

wj(z) X nV
i=j+1

(Xi − X̄n)(Xi−j − X̄n) Y
= ˆS 2

X + 2
zV

j=1

wj(z) ˆZ j P (6.7)

6.4. Conclusions and future developments 103

ˆ[2
X(z) is the sample variance estimation of X computed over n samples and ˆ\ j are

the auto-covariance estimators weighted by wj(z)] 1 − j ^ (z + 1) for z < n. Equa-
tion 6.6 computes the range of partial sums of deviations of a time series Xt from
its mean X̄n, rescaled by ˆ[n(z).
To choose z in eq(6.7) is not a simple problem. The parameter z is called the “trun-
cation lag” and must be chosen with some consideration of the data at hand [7]. A
simpler solution compared to that in [7] is given by Phillips [96]. Following his
advice we take z _ o(N1 ` 4). Note that when z = 0 the MRS statistics is identical
to Mandelbrot’s R/S.

In our case the time series Xt represents the series of volatility defined as the
absolute value of the log-return, a rt a . Our sample consists of N = 106 points. The
procedure to compute the MRS statistics is the following: (i) compute Qn over N ^ n
non-overlapping intervals of size n; (ii) the value of Qn is computed as the average
value over the N ^ n non overlapping intervals; (iii) the procedure is repeated for
different value of n = 2k b k = 6 bQcQcQcdb 15.
Plotting log Qn against log n should show the slope H beyond large n. The slope
H is called Hurst correlation coefficient by the name of the hydrologist H.E. Hurst
who first devised this method [52] in his studies of river discharges.

Figure 6.11 shows log Qn against log n computed for a run with L2 = 400 b N =
18000 on 3 e 105 time steps. The slope of the fit in the range log n > 6 is 0.79
revealing long-range positive correlations.

6.4 Conclusions and future developments
We have described a new model to reproduce the price fluctuations of a single stock
in an artificial stock exchange whose traders are modeled as chartists, fundamen-
talists and noisy. Some of them have more influence than others and represent a
brokerage agency where people go to ask for advice. They group together inside
each lattice site to form a collective system and to follow a common strategy ac-
cording to proportional voting. Traders are free to diffuse on a two-dimensional
lattice to model the tendency to change opinion and to follow a different advisor.

The model is consistent with fat tails of histogram of returns, log-normal dis-
tribution and clustering of volatility.

The structure of the model is versatile enough to allow future expansion. We
believe that a more realistic description of the agents behaviour and trading may
allow to get further insight in the dynamics of price change as well as in the distri-
bution of wealth among traders.

Agents should be able to buy/sell more than just one stock at a time according to,
for example, the availability of capital and difference between perceived value and
actual price. Besides it is worth (and the model will easily allow it) to develop more

104 Chapter 6 An agent – based model of stock market

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

3 4 5 6 7 8 9 10 11 12

lo
g

Q
n

log n

MRS statistics

slope= 0.79

Figure 6.11 log Qn against log n computed over 3 f 105 values for a run
with AMSE.

realistic trading strategies like trend-following [39] and/or divide the action among
different choices (more stocks and/or bonds with fixed income as in [67, 68, 69]).

Chapter
7

Forecasting

Forecasting future values of an asset gives, besides the straightforward profit op-
portunities, indications to compute various interesting quantities such as the price
of derivatives (complex financial products) or the probability for an adverse mode
which is the essential information when assessing and managing the risk associ-
ated with a portfolio investment.

Forecasting the price of a certain asset (stock, index, foreign currency, etc) on
the ground of available historical data, corresponds to the well known problem in
science and engineering of time series prediction. While many time series may
be approximated with a high degree of confidence, financial time series are found
among the most difficult to be analysed and predicted. This is not surprising since
the dynamics of the markets following at least the semi-strong EMH should de-
stroy any easy method to estimate future activities using past informations.

7.1 Introduction
Among the methods developed in Econometrics as well as other disciplines 1, the
artificial Neural Networks (NN) are being used by “non-orthodox” scientists as
non-parametric regression methods [21, 84]. They constitute an alternative to non
parametric regression methods like kernel regression [21]. The advantage of us-
ing a neural network as non-linear function approximator is that it appears to be
well suited in areas where the mathematical knowledge of the stochastic process
underlying the analysed time series is unknown and quite difficult to be rational-
ized. Besides, it is important to note that the lack of linear correlations in the fi-
nancial price series and the already accepted evidence of an underlying process
different from i.i.d. noise point out to the existence of higher-order correlations

1 see the vast bibliography with more than 800 entries at
www.stern.nyu.edu/ g aweigend/Time-Series/Biblio/SFIbib.html reported
from [122]

106 Chapter 7 Forecasting

or non-linearities. It is this non-linear correlation that the neural net may eventu-
ally catch during its learning phase. If some macroscopic regularities, arising from
the apparently chaotic behaviour of the large amount of components are present,
then a well trained net could identify and “store” them in its distributed knowledge
representation system made by units and synaptic weights [86, 101].

In the following we will see that a well suited NN for each of a set of price
time series showing a “surprising” rate of success in predicting the sign of the price
change on a daily base can be found. Not less interesting, we will see that the fore-
told regularities in the time series seem to be more present on larger time scale
than on high frequency data, as the performance of the net degrades if we go from
monthly to minutes data.

-15

-10

-5

0

5

10

15

20

500 800 1000
day

learning set and forecast on the test set

Learning Validation Check Test

Pday
Gday

Figure 7.1 Each time series is divided in four data sets: learning, vali-
dation, checking and testing (see text for explanation). A difficulty arises
from the fact that the oscillations in the test set are much more pronounced
than in the learning set. In figure, daily closing price of Intel Corp.

7.2 Multi-layer Perceptron
Multi-layer perceptrons (MLP) are the neural nets usually referred to as function
approximators. A MLP is a generalization of Rosenblatt’s perceptron (1958); ni

7.3. Detrending analysis 107

input units, nh hidden and no output units with all feed forward connections be-
tween adjacent layers (no intra-layer connections or loops). Such net’s topology is
specified as ni-nh-no.

A NN may perform various tasks connected to classification problems. Here
we are mainly interested in exploiting what is called the universal approximation
property, that is, the ability to approximate any nonlinear function to any arbitrary
degree of accuracy with a suitable number of hidden units [126, 34].

The approximation is performed finding the set of weights connecting the units.
This can be done with one of the available methods of non-parametric estimation
techniques like nonlinear least-squares. In particular we choose error back propa-
gation (EBP) which is probably the most used algorithm to train MLPs [103, 104].
It is basically a gradient descent algorithm of the error computed on a suitable
learning set. A variation of it use bias, terms and momentum as characteristic pa-
rameters. Moreover we fixed the learning rate h = 0 i 05, the momentum j = 0 i 5
and the usual sigmoidal 2 as nonlinear activation function.

7.3 Detrending analysis
We have trained the neural nets on “detrended” time series. The detrending analy-
sis was performed to mitigate the unbalance between the learning set, and the test
set. In fact, subdividing the available data in learning set and testing set as speci-
fied in the following section (have a look at figure 7.1), we train the nets on a data
set corresponding to a periods much back in time while we test the nets on data set
corresponding to the most recent period of time. This problem is know in literature
as noise/nonstationarity tradeoff [84, 86].

It is known that in the 1990’s the American market has noticeably changed in
that almost all the titles connected to the information technology have not only
jumped to record values but also the fluctuations of price today are much stronger
than before. 3 Ignoring this fact would lead to a mistake because the net would not
learn the characteristics of the “actual situation”.

To detrend a time series we performed a nonlinear least squares fit using the
Marquardt-Levenberg algorithm [21, 98] with a polynomial of sixth degree. Then
we just computed the difference of the series with the fitting curve. For each time
series considered we ended up with a detrended series composed by 2024 points
corresponding to the period from about January 1990 to February 2000. For ex-
ample, the plot in figure 7.2 shows the detrended time series of the index S&P500
along with the original series and the polynomial fit.

2 the sigmoidal or logistic activation function is g(u) = 1 k (1 + e−u)
3 pt is what we use to train our nets. Considering log(pt) instead of pt would mitigate the problem

but it would introduce further nonlinearities

108 Chapter 7 Forecasting

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000
-200

-150

-100

-50

0

50

100

or
ig

in
al

 ti
m

e
se

rie
s

w
ith

 p
ol

yn
om

ia
l f

it

de
tre

nd
ed

 ti
m

e
se

rie
s

days

Detrend analysis

original time series
fit

detrended

Figure 7.2 S&P500 detrended time series. The plot shows the original
series, the polynomial fit and the resulting detrended time series obtained
just by difference between the original and the fitting curve. The detrended
time series consist of 2024 points.

We choose daily closing of historical series for 3 indices and 14 assets on the
NYSE and Nasdaq. In particular the assets were chosen among the most active
companies in the field of information technology.

7.4 Determining the net topology
One of the primary goals in training neural networks is to ensure that the network
will perform well on data that it has not been trained on (called “generalization”
The standard method of ensuring good generalization is to divide our training data
into multiple data sets. The most common data sets are the learning L, cross val-
idation V, and testing T data sets. (The checking set C will be explained later in
this subsection.) While the learning data set is the data that is actually used to train
the network the usage of the other two may need some explanation.

Like the learning data set, the cross validation data set is also used by the net-
work during training. Periodically, while training on the learning data set, the net-
work is tested for performance on the cross validation set. During this testing, the

7.4. Determining the net topology 109

pt0

pt1

pt2

pt3

Figure 7.3 A three layer perceptron 3 − 7 − 1 with three inputs, seven
hidden and one output units.

weights are not trained, but the performance of the network on the cross validation
set is saved and compared to past values. If the network is starting to overtrain on
the training data, the cross validation performance will begin to degrade. Thus, the
cross validation data set is used to determine when the network has been trained
as well as possible without overtraining (e.g. maximum generalization).

Although the network is not trained with the cross validation set, it uses the
cross validation set to choose a ”best” set of weights. Therefore, it is not truly an
out-of-sample test of the network. For a true test of the performance of the network
the testing data set T is used. This data set is used to provide a true indication of
how the network will perform on new data.

In figure 7.3, an example of MLP with ni = 3, nh = 7 and one output unit takes
pt0 l pt1 l pt2 in input and gives the successive value pt3 as forecast. The number of
free parameters is given by the number of connections between units (ni + no) m nh.

While the choice of one output unit comes from the straightforward definition
of the problem, a crucial question is “how many input and hidden units should we
choose?”. In general there is no way to determine apriori a good network topology.
It depends critically on the number of training examples and the complexity of the
time series we are trying to learn. To face this problem a large number of methods
are being developed (recurrent networks, model selection and pruning, sensitivity
analysis [84, 86]), some of which follow the evolution’s paradigm (Evolutionary
Strategies and Genetic Algorithm).

Because we have observed a critical dependence of the performance of the net
from ni and nh, and to avoid the great complexity of more powerful strategies [84,
86], we ended up with the decision to explore all the possible combinations of n i-nh

110 Chapter 7 Forecasting

in a certain range of values. Our “brute force” procedure consists of training nets
of different topologies (varying 2 n ni n 15 and 2 n nh n 25) and observe their
performance. More precisely we select good nets on the basis of the mean square
error (see eq(7.1)) computed on 200 points out of the sample set constituting the
test set. Thus, besides the separation in Learning-Validation-Testing of our time
series, we further distinguish a subset from the Testing set: the Checking C (see
fig. 7.1). The reason is that while we train the net to interpolate the time series
(minimizing the mean square error) we finally extrapolate to forecast the sign of
the increments (to be defined later).

To assess the efficiency of the learning and to discard bad trained nets during
the search procedure we use the mean square error o defined aso =

1prq 1s
C
sut

t v C

(gt − pt)
2 (7.1)

where pt is the price value, gt is the forecasted value at time t w C and p is the stan-
dard deviation of the time series. For good forecasts we will have small positive
values of o (1 x ozy 0).

We set the threshold 0.015 to discriminate good from bad nets. Only those nets
for which ozn 0 { 015 are further tested for sign prediction.

In summary, first we learn on set L, and through validation V we find when to
stop learning; then through check on C we see if the learning process worked well,
and in case it did, we make predictions in the test phase on set T for ”future” (i.e.
previously unused) price changes and compare them with reality.

7.5 Stopping criteria
To avoid overfitting and/or very slow convergence of the training phase, the stop-
ping criteria is determined by the following three conditions, one of which is suf-
ficient to end the training phase (early stopping):

1. Stopping is assured within 5000 iterations of cross validation (see section
7.4);

2. during cross validation the mean square error on the validation set V is com-
puted as o V = 1

2 | t v V (gt − pt)
2; during training o V should decrease, so a

stopping condition is given if o V increase again more than 20% of the mini-
mum value reached up to then;

3. learning is also stopped if o V reaches a plateau; this is tested during cross
validation averaging 1000 successive values of o V and checking if the actual
value is above this average.

7.6. Results 111

7.6 Results

The plot in figure 7.4 compares the forecasted gt and the real pt values for the time
series of Apple Corp. on the test set T. It also shows a linear fit for the points}
pt ~ gt � . A raw measure of performance on the test set T can be obtained by the

slope of the fitting line (let’s call it �). It will be a value close to one if the fit cor-
responds to the y = x line, i.e. if pt = gt. We obtained the following � ’s for the
time series in table 7.2 and 7.3: � S&P500 = 0 � 906, � DJI = 0 � 874, � Nasdaq100 = 0 � 860.� AAPL = 0 � 976, � T = 0 � 921, � AMD = 0 � 914, � STM = 0 � 885, � HON = 0 � 885, � INTC = 0 � 874,� CSCO = 0 � 860, � WCOM = 0 � 847, � IBM = 0 � 842, � ORCL = 0 � 824, � MSFT = 0 � 803, � SUNW =
0 � 774, � DELL = 0 � 692, � QCOM = 0 � 488.

-15

-10

-5

0

5

10

15

20

25

30

-15 -10 -5 0 5 10 15 20 25 30

G
t

Pt

fit

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

-15 -10 -5 0 5 10 15 20 25 30
Pt

Pt-Gt

-15
-10

-5
0
5

10
15
20
25
30

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
time (Test set)

P
G

Figure 7.4 Forecast of the time series AAPL. Price is expressed in US$.
A perfect forecast will be represented by dots on the y = x line (shown as
the continuous line). The dashed line is a linear fit of the points

}
pt ~ gt � . A

raw measure of the error in forecasting is given by the slope of the fitting
line. Values close to one indicate gt � pt.

The final estimation of the performance in forecasting is made by means of the

112 Chapter 7 Forecasting

one-step sign prediction rate � defined on T as follows� =
1�
T
�u�

t � T

HS(� pt � � gt) + 1 − HS(
� � pt

�
+
� � gt

�
) (7.2)

where � pt = pt − pt−1 the price change at time step t � T and � gt = gt − pt−1

is the guessed price change at the same time step. Note that we assume to know
the value of pt−1 to evaluate � gt. HS is a modified Heaviside function HS(x) = 1
for x > 0 and 0 otherwise 4. The argument of the summation in eq(7.2) gives one
only if � pt and � gt are non-zero and with same sign, or if � pt and � gt are both
zero. In other words � is the probability of a correct guess on the sign of the price
increment estimated on T.

In the lower-right inset of figure 7.4 it is shown pt − gt as function of pt. One
can see that the difference between the real and the forecasted values clusters for
small pt. Another way see it is to look at the histogram of � as function of � pt.
In other words the rate of correct guesses on the sign of the price increment rel-
ative to the magnitude of the fluctuation of the real price. To obtain an unbiased

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

si
gn

 p
re

di
ct

io
n

ra
te

∆P

Figure 7.5 Normalized � as function of � p (arbitrary units). The the
sign prediction rate seems independent from the magnitude of the price
change

� � p
�
.

histogram we have to normalize it dividing each bin by the corresponding value
of the � p’s histogram (the limit of � p follows a power law so that large fluctua-
tions are much less probable). The resulting distribution is plotted in figure 7.5. It
is now clearly visible that the net does not favor large increments over small ones
or vice versa. In fact the probability to make a correct guess on the sign of the in-
crement seems independent from the magnitude of the increment itself. This does

4 The usual HS function gives 1 in zero, i.e. HS(0) = 1

7.6. Results 113

Series ok � tot Series ok � tot

S&P500 32/54 DowJones Ind 189/450
Nasdaq 100 45/86

SUNW 112/112 DELL 69/69
WCOM 76/76 AAPL 309/311
INTC 46/46 AMD 244/245
STM 33/269 ORCL 35/35
MSFT 21/21 IBM 9/9
CSCO 39/48 HON 22/82
T 6/6 QCOM 43/436

Table 7.1 Here tot indicates the number of nets such that ��� 0 � 015,
that is, we judged as good nets, while ok is the number of them that gave a
sign prediction rate � above 50 percent.

Symbol ni nh � L � �V � � � (%)
S&P500 8 2 500 300 0.008938 52.272727
DowJones Ind 13 2 700 200 0.012074 51.488423
Nasdaq 100 4 25 700 200 0.014182 50.982533

Table 7.2 For each index the net topology ni − nh − 1 is specified along
with � , � , �L � and �V � . �T � = 2024 − (ni + �L � + �V � + �C �) and �C � = 200.

not means that the net forecasts “rare events” (i.e. a profit opportunity) as easily
as normal fluctuation, because the statistics here calculated are not significant with
respect to extreme events.

To interpret the results that we are going to show we have to concentrate our
attention on the way we select a good net to be used to make forecast. For each
time series we have performed a search to determine the topology of a good net as
specified in the last section. Once we get a pool of candidates the question is “how
many of them give a sign prediction rate above fifty percent?”

This question is answered in table 7.1. There, tot indicates the number of nets
such that ��� 0 � 015, that is, we judged as good nets, while ok is the number of
them that gave ��� 50. This ratio can be seen as an estimation of the confidence
that the net will perform a “sufficient” forecast of price change, where sufficient
means above fifty percent.

The value of � together with the specification of the number of units per layer
of the best net is reported in table 7.2 and table 7.3 along with the dimension of the
learning and validation set.

The sign prediction rates range from 50.29% to 54%. While the smallest values

114 Chapter 7 Forecasting

Company Symbol ni nh � L � � V � � � (%)� Sun Microsys SUNW 9 7 500 300 0.014435 54.005935� Dell Computer DELL 4 18 500 300 0.004315 53.543307� Mci Worldcom WCOM 3 2 500 300 0.004024 53.392330� Apple Comp Inc AAPL 5 17 700 300 0.013786 53.374233� Intel Corp INTC 6 6 500 300 0.009953 53.254438� Adv Micro Device AMD 4 23 500 300 0.012339 52.952756� ST Microelectron STM 6 2 500 300 0.003978 52.465483� Oracle Corp ORCL 6 2 500 300 0.006333 52.366864� Microsoft Cp MSFT 10 4 500 300 0.008327 52.277228� Intl Bus Machine IBM 10 6 500 300 0.006642 52.079208� Cisco Systems CSCO 4 14 500 300 0.008364 51.968504� Honeywell Intl HON 8 2 600 200 0.008506 51.877470� AT&T T 3 22 500 300 0.014920 51.327434� Qualcomm Inc QCOM 4 25 500 300 0.009888 50.295276

Table 7.3 Success ratio for the prediction of the sign change. For each
asset the net topology is specified along with � , � and the number of points
in the learning and validation set. In the second column is specified the
symbols from the respective stock exchange NYSE(�) or Nasdaq(�).

50.29 may be questionable, the larger values above 54 seem a clear indication that
the net is not behaving randomly. Instead it has captured some regularities in the
nonlinearities of the series.

A quite direct test for randomness can be done computing the probability that
such forecast rate can be obtained just by flipping a coin to decide the next price
increment. For this purpose we use a random walk (pr(up) = pr(down) = 1

2) as
forecasting strategy grwt and observe how many, over 1000 different random walks,
give a sign prediction rate � rw defined in eq(7.2) above the value obtained with our
net. Note that each random walk perform about 1000 time steps, the same as T for
that specified time series (see table 7.2 and 7.3). These values are reported in table
7.4. They indicate that except for QCOM the random walk assumption “cannot
give” the same prediction rate as the neural net.

In other words, given a neural net which produce � as prediction rate over a
certain time series pt we may compute the probability at which the null hypothe-
sis of randomness is rejected. We use a random walk (pr(up) = pr(down) = 1

2) as
forecasting strategy grwt and then compute � rw defined in eq(7.2) on the time series
pt. The random variable � rw have mean 0.5 and standard deviation ¡£¢ rw. By defi-
nition � rw is the sample mean of T i.i.d. Bernoullian random variables. Thus, as-
suming that � rw converges to a Gaussian ¤ (1

2 ¥ ¡¦¢ rw), we can estimate the unknown

7.7. Weekly and intra-day data 115

Series #rw : § rw ¨ § Series #rw : § rw ¨ §
S&P500 78 DowJones Ind 186
Nasdaq 100 258

SUNW 7 DELL 16
WCOM 13 AAPL 25
INTC 21 AMD 30
STM 50 ORCL 69
MSFT 76 IBM 103
CSCO 98 HON 108
T 194 QCOM 431

Table 7.4 For every sign prediction rate © reported in table 7.2 and 7.3 it
is here shown the number of random walks (over 1000) that have totalized
a sign prediction rate © rw greater or equal © .

variance of © rw as ˆª 2
rw = 1

N « N
i=1(© rwi − 1

2)2. To have an estimation of ª­¬ rw we ran
N = 1000 random walks each giving a value for © rw. Once we estimate ª rw, the
null hypothesis becomes “what is the probability p ¬ rw[x > ©] that the neural net
is doing a random prediction on pt with rate © ?” or the other way around ”what
is the probability p ¬ rw[x ®¯©] that the net is not doing randomly?”. In formula,
p ¬ rw[x ®°©] = ± ¬− ²´³ (1

2 µ ˆª rw)(x)dx where ³ (1
2 µ ˆª rw) is a Gaussian and ˆª rw is the es-

timation of the standard deviation ª rw of the random variable © rw. In summary, for
every sign prediction rate © obtained with our neural net on a time series pt, we first
estimate ˆª rw as specified above, then we compute the probability p ¬ rw[x ®¶©] at
which the null hypothesis of randomness prediction is rejected. The results tell us
that for some bad prediction values (like for QCOM or Nasdaq100) the randomess
hyphothesis cannot be rejected but for the majority of the series the probability to
reject the null hypothesis is something between 0.01 and 0.1.

7.7 Weekly and intra-day data

It is interesting to ask if the MLP may exploit regularities in the time series of price
sampled at a lower/higher rate than daily. Apart from the “scaling behaviour” ob-
served empirically in real price series we are interested in the performance of our
procedure (search plus learn) when we change the time scale on which we sample
the price of the assets or the index at a stock market.

To answer this question we performed the same search for the good net on the
IBM and AMD stock price sampled on weekly basis as well as taking intra-day
data with the frequency of one minute. Both series consisted of 2024 points, the

116 Chapter 7 Forecasting

same as the daily price series.
The outcome is that intra-day data are much difficult to be forecasted with our

MLPs. In fact for both the one-minute-delay data series the search did not suc-
ceeded to find a good net; all the good nets (few) have given a sign prediction rate·

< 40%.
On the other hand the forecast of weekly data gave a success rate compara-

ble with that of daily series (e.g. a 4-2-1 net performed
·

= 51 ¸ 422764 with ¹ =
0 ¸ 004947).

7.8 Artificially generated price series
As last question, and to further test the correctness of our prediction, we tried to
forecast the sign of price changes of an artificially generated time series. This was
generated by the the Cont-Bouchaud herding model (see section 5.1 in chapter 5)
that seems one of the simplest one able to show fat tails in histogram of returns [33].
This model shows the relation between the excess kurtosis observed in the distrib-
ution of returns and the tendency of market participants to imitate each other (what
is called herd behaviour). The model consists of percolating clusters of agents
[109, 108, 115, 32, 112]. At a given time step a certain number of coalitions (clus-
ters) decide what to do: they buy with probability a, sell with probability a or stay
inactive with probability 1−2a. The demand of a certain group of traders is propor-
tional to its size and the total price change is proportional to the difference between
supply and demand.

It is clear that such a model generates unpredictable time series, and our net-
works should not be able to make any predictions. Indeed, when our method was
applied to this series it did not succeeded to find a good net as all the tried nets
performed bad on the check set C, i.e. ¹ > 0 ¸ 015.

7.9 Discussion
We have shown that a suitable neural net able to forecast the sign of the price incre-
ments with a success rate slightly above 50 percent on a daily basis can be found.
This can be an empirical demonstration that a good net exists but we do not have
a mechanism to find it with “high probability”. In other words we cannot use this
method as a profit opportunity because we do not know a priori which net to use.
Perhaps a better algorithm to search for the good topology (model selection and
pruning with sensitivity analysis [84, 86]) would give some help.

As final remark we have found that intra-day data are much more difficult to
be forecasted with our method than daily or weekly data.

Summary

The main question addressed above was how to derive “the collective” (i.e. macro-
scopic) properties of a system starting from the knowledge of the laws ruling the
individual (i.e. microscopic) behaviour.
Similar problem gave rise to the field of statistical mechanics although a major dif-
ference is present. The macroscopic laws of thermodynamics were derived from
the knowledge of the microscopic Newtonian’s law of motion which are well un-
derstood. In contrast, in finance and in biology and in particular in immunology,
the microscopic rules are mostly empirical and nonetheless unable to completely
define the system.

In the search for computational models that help to understand the dynamics of
complex systems, one can take a great advantage from the impressive acceleration
of computer tools and techniques. In fact the very structure of computation on dig-
ital computers has inspired the introduction of new class of models (algorithms),
where interaction among degrees of freedom are expressed by logical rules acting
over a discrete state space – something much closer to “biological language” than
to standard (floating point) physical models.

We have presented a unifying approach to model complex systems with large
number of degree of freedom. Starting from the definitions of spin systems, with
little changes we have defined a new model (called unbounded lattice gas) that is
well suited to describe two different simulation systems.

The first system (called CImmSim) simulates the humoral and cellular im-
mune response. It is based on the original model of F. Celada and P.E. Seiden.
This detailed model uses six cellular entities, five molecular entities and various
signals like interleukin. Through complex interaction rules among the cells and
molecules, the response to a generic antigen or virus is triggered by multiple recog-
nition of the bit-string representing the chemical-physical conformation of the re-
ceptors. The computational model IMMSIM has been completely re-coded in C
language (CImmSim) with message passing facilities to run large-scale simula-
tions on parallel machines. Particular attention has been devoted to the efficiency
in using both memory and CPU. By means of CImmSim we have investigated the
complex dynamics of the immune response and described the process of the anti-
gen recognition as a cascade in a suitable (information) state space.

118

The second system (called AMSE) simulates the trading activity of agents in
a stock market. It is built borrowing some ingredients from other known models.
In addition, a group a traders called moving-average followers represents chartists
who base their decision upon the evolution of the price of the asset. Also, traders
group together to take collective decision to model the herding behaviour. Simula-
tions reveal the following results: (1) the aggregation behaviour is responsible for
the fat-tailed histogram of return; (2) the log-normal distribution and long-range
correlation of volatility come from the activity of the chartists following the mov-
ing average. Many other features of the market dynamics can be investigated with
this model and are actually works in progress.
The architectural schema of AMSE is equivalent to the one used for CImmSim,
i.e. it is also an unbounded lattice gas. Also for this simulation system we have
adopted the message passing paradigm to allow large scale simulation.

Two other efforts described in this dissertation are (i) the implementation of the
Cont-Bouchaud model using the algorithm of Hoshen and Kopelman as the clus-
tering labeling algorithm and (ii) the realization of a multi-layer perceptron with
error-back propagation learning algorithm to forecast financial time series.

Appendix
A

Basic immunology

In this appendix is given the cardinal features of the immune system response as
needed for chapters 2 and 3. It is subdivided in humoral and cellular response.

A.1 The humoral response
The humoral immune response is characterized by the production of antibodies.
These are soluble (i.e. free) copies of the B cell receptors which are commonly
carried on the cell surface and are responsible for the antigen binding and recog-
nition.
According to the clonal selection theory, the lymphocytes B that proliferate dur-
ing the antigen attack are those whose receptor is able to bind the antigen. During
the proliferation, the B lymphocytes differentiate into memory B cells (same func-
tionality of the parent cell but a slower aging process) and Plasma B lymphocytes.
Plasma cells have basically the task of producing and releasing large quantities of
antibodies.
Apart from the mutation phenomena briefly mentioned in paragraph 2.1.5, the re-
leased antibodies are exact copies of the receptor of the originating Plasma B cell.
As a consequence, the antibodies match the antigen with the same strength. The
B cells are obviously the main agent in the humoral response. How and when do
they start to duplicate? The process begins when a potential antigen (molecule,
bacterium or virus) is found by either the B cells or the AP cells. The major differ-
ence between these two cells is that the former binds the antigen with its receptor
whereas the latter “eats” it without any recognition process. In a broad sense, this
is another kind of response to the antigenic invasion. It is quick but not powerful
enough to face a massive antigen attack. Actually, the AP cells are not very aggres-
sive with respect to the antigen population, they rather keep catching occasionally
some molecules. For this reason they are called the “street sweeper” of the immune
system. The best defense is offered by the so-called acquired immune system and

120 Appendix A Basic immunology

B

peptide

BCR
0 0

00

0

1 1

1 1 1 1

10

MHC 1 1 1

0

000

232

0

0000

1

1111

epitopo 158

192

97

10

BCR

MHC /pep 200

97

0000 111 0

T

TCR11111 000 55

BB

Figure A.1 B-Antigen interaction, endocitosys of B cell and B-T inter-
action in a system with strings of 8 bits.

it is based on specialized T and B cells.
Both B cells and AP cells process internally the antigens (endocitosys, MHC class
II bind antigen-peptides). Upon successful binding, they expose the MHC/peptide
groove on their surface. This is a first indication of an antigenic attack but the B’s
wait for another signal to activate. When a T cell is able to bind the MHC/peptide
groove on AP or B cell surface, it gets stimulated and stimulates back the B cells
via the emission of certain lymphokines. Figure A.1 shows the various phases of
the humoral response.

The lymphokines are soluble molecules. It is known that a large number of
different lymphokines exists whose regulatory function is extremely complex.
T helper and B cells stimulate each other. At this time, they start to proliferate.
While a proliferating clone of T helper is basically composed by memory cells,
some of the clones of the B cells differentiate into Plasma B cells. They produce
the antibodies that eliminate the antigen.

A.2. The cellular mediated response 121

A.2 The cellular mediated response
The mechanisms of the cellular response are of special interest in devising and test-
ing vaccines, one of the main applications of immunology.
The simulation of the cellular response requires the modeling of new entities. For
instance, the MHC class I (MHCI) was not represented in the previous versions
of CImmSim. The molecules MHC class I and II play a major role in the process
of antigen recognition. They control the binding between the antigen-virus and,
respectively, T killer (class I) and T helper (class II) cells. The cells representing
the virus targets are modeled as Generic Epithelial cells (EP). The virus infects
such cells penetrating the cellular membrane. Then it starts to proliferate com-
pletely hidden to any antibody produced by the humoral response (see appendix
A.1). Virus proliferation inside the infected cell eventually terminates with the ex-
plosion of the cell. As a result there is the release of a large amount of viruses.

The infection is counteracted by the T killer cells. These lymphocytes are able
to recognize MHCI-virus complexes on the infected cells. Upon recognition they
kill the infected cells preventing further proliferation of the virus.

Before dying an EP releases a D signal (danger signal) which is here explicitly
modeled. The D signal determines the activation of APC from a resting state.
During the immune response, both lymphocytes and “accessory” cells (i.e. macro-
phages and dendritic cells; the latter are not modeled here) produce a number of
different molecules named cytokines. T helper cells, in this case, release cytokines
which help T killer activation. Upon recognition of an MHCI-peptide complex on
the surface of an active APC, they produce the interferon- º (IFN) molecule which
determines the probability for a T killer cell to proliferate.
The cytokines have many functions, but most of them act as regulators of the re-
sponse. In CImmSim, for sake of simplicity, just few kinds of cytokines are ex-
plicitly modeled. We chose to represent the cytokines whose concentration de-
termine the probability for an event to occur. For instance, the aforementioned
probability that a T killer duplicates depends on a factor which can be written as
1 − exp(−(º¼» E)2) where º is proportional to the number of interferon- º molecules
for a certain constant E. The cytokines which trigger “deterministic” events are not
strictly required in our model since, by definition, such events happen regardless
of the actual number of molecules.

122 Appendix A Basic immunology

Appendix
B

CImmSim: optimization techniques
and parallel programming

The CImmSim code does not just resort to parallel processing to run faster. Data
structures and I/O have been optimized as well to limit the (huge) memory and disk
space requirements. In this appendix we discuss the solutions adopted to overcome
the limitations of the original IMMSIM code due to the impractical growth of the
APL2-workspace.

B.1 Dynamic memory allocation
In a classic CA there is a simple correspondence between entities of the automa-
ton and sites of the grid. Usually each site contains either one or zero instances of
an entity and the number of distinct entities is pretty small. 1 This feature makes
the computation of the interactions among entities very simple. Unfortunately it
imposes a severe restriction on the number of instances that can be represented.
This number can not be greater than the number of lattice points. For a biologi-
cal model, this is a too strong limitation. As a matter of fact, the IS is a dynamic
system with a population that, due to the combination of multiple mechanisms like
evolution, learning and memory, may change significantly during the simulation.

One of the most serious issue we had to address has been the huge amount of
memory required to store the information which describe the entities and their at-
tributes.

In an “alpha” version of CImmSim [25] we adopted, for the sake of simplicity,
static data structures (arrays) for all the entities of the simulation. This strategy was
quickly abandoned because of the exponential growth of the memory requirements
for larger simulations. It is easy to show that using arrays the space complexity is

1 In the well known Game of Life there is just one possible entity. The Game of Life was intro-
duced in the late 1960’s by John Horton Conway [47].

124 Appendix B CImmSim: optimization and parallel programming

O(2Nl) for some constant N, which is obviously unbearable. So we resort to use a
more flexible, although more complex, dynamic memory allocation technique.

After the choice of the attributes for each cellular entity, the information re-
quired for each cell is organized in blocks of variables, one block for each cell.
In such a way, each cell gets a clear identity (record) in memory and can be easily
told apart from the others. The blocks are linked in lists, one for each class of cells:
B list, Th list and so on (see table 2.1 for a complete list of the cellular entities).
These are forward or single linked lists. To save memory there is no pointer to the
previous element. Only the pointer to the next element is used. The lists are ini-
tialized at startup time and are managed dynamically at run time. When a cell dies
out it is removed from the list. Likewise, when a virgin cell comes in (from the
bone marrow, lymph nodes and/or for clone division of stimulated cells) a block
of memory is allocated and the variables-attributes are filled with appropriate val-
ues. The new block becomes the head of the corresponding list.
The allocated memory grows linearly with the number of cells (there is no direct
dependency on the bit string length l) following the clonal growth of cells during
the immune response. The growth is limited by an embedded mechanism which
emulates the effect of having limited space for cell-proliferation in real bodies.

B.1.1 List permutation

In the real immune system each cell has tens of thousands of receptors on its sur-
face. So, albeit very unlikely, it is possible that it binds more than one entity at the
same time. In our simulator this not supported. Each cell has a single receptor, so
the binding events follow a greedy paradigm: a successful binding event removes
the tied entities from the eliciting set to prevent further interactions during the same
time step.

It is pretty clear that such mechanism may introduce an artificial bias in the
simulation. Indeed, if the scanning order during the interaction phase were simply
the cells’ lists order, the cells close to the head of the list would get more chances
to interact. To alleviate such problem the order of the cells lists changes for each
time step. Basically this is a three steps procedure:

1. the pointers to the list elements are copied to an array of pointers;

2. the array is randomly shuffled by swapping pairs of elements;

3. a new list of cells is built with the order defined by the array of pointers.

This technique allows to scan the original list just once. The array is re-ordered
in O(n) time. The temporary space required is also O(n) where n is the number of
items in the list.

B.2. State flags 125

B.1.2 The single antigen case

In a preliminary version of the simulator, the antibodies were stored in static arrays,
one for each lattice site. To save space, we introduced a sparse data structure and
an hash table to access it. As a result the amount of memory required to store the
antibodies was reduced to ½ 9%.

Unfortunately, this simple mechanism does not allow to keep track of more
than one Ag. A careful analysis shows that changing the hash table structure to
support different antigens is too tricky.
A possible alternative is to represent the antibodies by means of a dynamic data
structure similar to the lists employed for the cells. The only difference is that,
for each lattice site, there is a field in the list to count the number of antibodies
that have identical bit strings. With this approach, the memory requirements are
reduced to the bare minimum (i.e. in the worst case proportional to ¾ l

k=mc ¿ lk À).
Obviously, the list does not allow immediate access to the single records which

is one of the advantages of an hash table. As a consequence, more CPU time is
spent updating a record since each access requires a sequential scan of the list.
Such drawback is overcome by advantages like code simplicity and generality. As
a matter of fact, no change in the data structure will be required when we simulate
mutating antigens.

B.2 State flags

All information about the state of a single cell are stored as bit-flags in a packed
form. In the previous release [25] just two bits were used. With the introduction
of the cellular response the number of possible states was increased. The layout of
the byte associated with each cell is currently the following:

byte-flags = b7 b6 b5 b4 b3 b2 b1 b0

• b7 : Memory flag,

• b6 : NOT USED,

• b5 : Ablink flag,

• b4 : NOT USED,

• b3, b2, b1, b0 : State bits (see table B.1).

The use of four state-bits allows to distinguish among 16 states. This is more than
actually needed (the number of states is 8) but it leaves space for future develop-
ments. Table B.1 gives a short description of each possible state, to be compared
with the list in paragraph 2.1.1.

126 Appendix B CImmSim: optimization and parallel programming

b3 b2 b1 b0 State Short description Used for

0 0 0 0 ACT Ready to interact APC, B, Th, EP, Tk, PLB
0 0 0 1 INT Has phagocitated one Ag APC, B,
0 0 1 0 INF Ag has infected the cell EP
0 0 1 1 EXP Expose Ag-pep on MHCII APC, B,
0 1 0 0 LOA Expose Ag-pep on MHCI APC, EP
0 1 1 0 RES Inactive (do nothing) APC
0 1 0 1 STI Duplicating B, Th, Tk
0 1 1 1 DEA Dead (lysis) EP

Table B.1 State-determining flags.

B.3 Optimized Hamming distance computation
In the CS-model each interaction between molecules or between cell receptors and
molecules requires the evaluation of the Hamming distance between two binary
strings (see section 2.1.4). The number of such operations per time step and per
each lattice site is proportional to the product between the number of interacting
cells. This number can be astonishingly high when millions of cells for each entity
are simulated. The Hamming distance can be easily evaluated with a simple loop
over the bit string length:

int dist=0, k, xyxor;
xyxor = x ˆ y;
for(k=0; k<l; k++) dist+=((xyxor>>k) & 0x1);

Obviously such naive algorithm would have a dramatic impact on the overall per-
formance of the simulator.

A simple but effective alternative is to build a look-up table with 2l entries
which stores the number of bits equal to 1 for each integer between 0 and 2l − 1.
After that, a single bitwise XOR between the two binary strings is required. The
result of the XOR is used as an index to lookup the table. The value of the corre-
sponding entry is the Hamming distance of the strings.
Even if time is required at startup to build the table, there is a clear advantage
in this approach since the evaluation of the distance becomes almost independent
from the bit string length. The following fragment of C-code fills the look-up table
DHLookUp:

for(n=0; n<(2<<(l-1)); n++){
for(i=0, ones=0; i<l; i++)

ones += ((n >> i) & 0x1);

B.4. Compressed output 127

DHLookUp[n] = ones;
}

The Hamming distance is now given by DHLookUp[x Á y], where Á is the bitwise
XOR operation between the two strings x and y. Note that the size of table grows
exponentially with the bit string length l. To avoid the overhead of such large ta-
ble, for l > 24 the evaluation of the Hamming distance is performed in two steps:
the strings are divided in two substrings, then the total distance is the sum of the
distances of the substrings. In such a way the table has just 2l Â 2 entries instead of
2l.

B.4 Compressed output
In paragraph 2.1.2 we have seen how most of the entities are specified by a integer
number in the range [0 Ã 2l − 1]. Information about the number of entities having
the same “specificity” must be stored at each time step to allow off-line analysis
and visualization of the system evolution. Saving such information, for all possi-
ble values, requires an array with 2l entries. Actually, many entries are equal to
zero because the expressed repertoire is always a (small) subset of the potential
repertoire. So, there is a danger of wasting a lot of back storage by filling with
zeros. Unfortunately, to cope with the general case, there is no way to know in
advance which entries will be not equal to zero. The number and the position of
such entries may vary according to some random events at each time step. As a
consequence, we need to store the whole array.

The amount of disk space required just for the B cell can be evaluated as fol-
lows: a long integer variable is used for each value of the specificity (the number
of entities for some specificity may be greater than 65536, so neither a char nor a
short variable can be used). A long integer requires usually four bytes, so we store
4 Ä 2l bytes each time we sample the population state. For a run of 500 time steps,
500 Ä 2l+2 bytes of disk space are required. This means Å 8 Gbytes for a simula-
tion with l = 22.
To save space we resort to run time data compression before the information are
stored to the disk in binary format. This means that instead of using the standard C
function fwrite() directly, there is a call to the gzipfwrt() function defined
as follows:

int gzipfwrt
(void *ps,size_t size,size_t nitems,FILE *stream){
static char *pc=NULL;
static int pcsize=0;
int compsize,rc;

128 Appendix B CImmSim: optimization and parallel programming

if((size*nitems)>pcsize) {
if(pc!=NULL) free(pc);
pcsize=size*nitems*1.01+12+1;
pc=(char *)malloc((unsigned)pcsize);
if(pc==NULL) {
fprintf(stderr,"Can’t get %d bytes\n",pcsize);
exit(-1);

}
}
compsize=pcsize;
if((rc=compress(pc, &compsize, ps, size*nitems))) {

fprintf(stderr,"Error %d in compress\n",rc);
exit(-1);

}
fwrite(&compsize,sizeof(int),1,stream);
fwrite(pc,(unsigned)compsize,1,stream);
}

The function compress() is part of zlib, a general purpose data compression
library [4]. It takes in input a pointer to the original array, the length (in bytes) of
the array, a pointer to the buffer which, on return, contains the compressed data
and a pointer to a variable which contains the length (in bytes) of the compressed
data. When the buffer with the compressed data is ready, its length and the buffer
itself are written to disk by means of the fwrite() function.

After the simulation ends, the results may be extracted by means of a reverse
procedure called gunzipfrd(). The length of each data block is read along
with the data in compressed format. After that, uncompress() is invoked on
the specified block of data.
All this machinery will naturally take CPU time but the advantage in saved disk
space are much more valuable for long bit string simulations. In any case the com-
pression can be disabled at compiling time.

The compression ratio depends greatly on the number of zeroes to be saved.
This number can be roughly estimated given l and mc. If we do not consider the
small fluctuation due to the birth of new cells, the population who reach consider-
able values are those who may get stimulated to proliferate, that is in other words,
those who match the antigen. Given, for example a single antigen with one epi-
tope (i.e. one bit string) the number of possible matches over the threshold mc are
given by the sum Æ l

k=mc Ç lk È . The compression ratio can be calculated dividing this
number by the total 2l (assuming the compression reduces to zero the space needed
for null values, which is clearly a rough approximation). For a large typical sim-
ulation with l = 20 and mc = 15 the compression ratio is É 97%. It decreases

B.5. The parallel version of the simulator 129

if we lower the affinity threshold mc because then we have more interacting cells,
that is, less population counters equal to zero. The compression performs better
on long bit string simulations. Test cases report a compression rate between about
75% and 82%.

B.4.1 Saving detailed information
Some other information (for example the number of cells for each allowed state)
are cumulative. It is possible to store directly their values at run time, even in
ASCII format. This facilitates both the debugging and the monitoring of long sim-
ulations taking hours, since we can observe the evolution of the different popula-
tions just plotting them on the fly.

B.5 The parallel version of the simulator
In CImmSim all the phases of the simulation run in parallel. The lymphnode is
mapped onto a bi-dimensional triangular lattice (six neighbour sites) of L = L Ê L
sites, with periodic boundary conditions in both directions (up-down, left-right).
However, to make the internal management of the lists easier, the lattice sites of
the automaton are not arranged as a two-dimensional array but as a linear vector.
The transformation is carried out by a simple function ËÌÊÍË → Ë , Z = X Ê L + Y
and does not change the global toroidal topology of the body.
The lists which describe the entities are “local” to the processors. In other words,
there is no single list split among the processors but as many independent lists as
the number of processors in use.
Each Processing Element (PE) works on a subset of lattice sites. In case the Num-
ber of PE (NPE) is not an exact divisor of L, the reminder R of the sites is spread
among the first R PE’s instead of being assigned to a single PE. This technique
minimizes the load unbalance among the PE’s. No PE keeps a copy of lists or data
structures belonging to other PE’s and in such a way for a fixed bit string length l
the memory required on a PE decreases linearly as NPE grows.

The problem is not “embarrassingly parallel” because there is a diffusion phase
in which cells and molecules may migrate from a lattice site towards one of its six
nearest neighbors (see figure 2.1).
Elements are deleted from or inserted in the lists of cells and molecules when a cell
leaves the “domain” of a PE to migrate to one of the “nearest neighbor PE’s”. Since
the sites are distributed as if they were a one-dimensional array, each PE needs to
communicate, in a ring topology, with at most with two other PE’s. The element is
deleted from the original list and all the attributes are packed in a message sent to
the PE which now owns the cell (PEd). PEd unpacks the message and inserts the

130 Appendix B CImmSim: optimization and parallel programming

attributes of the incoming cell in a new element that becomes the head of the list.
Actually each PE packs all its outgoing cells in just two messages for performance
reasons. The first is directed to (PEd − 1) mod NPE, whereas the second goes to
(PEd + 1) mod NPE.
Fig B.1 shows the various subtasks of NPE processes. The horizontal lines repre-
sent the communication among PE’s.

Send parameters
to workets

Receive parameters Receive parameters

Propagate entities Propagate entities Propagate entities

Send Send

Store data

Input Parameters

Collect

Spawn NPE-1
processes

until(end) until(end) until(end)

repeat repeat repeat

.....

.....

.....

.....

.....

.....

Master (worker_0) worker_1 ... worker_{NPE-1}

.....

Works on
domain M_{NPE-1}

Allocate mem M_0 Allocate mem M_1

Works on
domain M_0

Works on
domain M_1

Allocate mem
M_{NPE-1}

Figure B.1 CImmSim communication pattern. NPE indicates the num-
ber of processing elements.

For CImmSim we have resorted to the primitives for parallel programming
defined by the PVM software package [2]. The main advantage of PVM is, for

B.6. Computing requirements 131

our application, the very simple mechanism for packing/unpacking multiple and
heterogeneous elements in a single message.

B.6 Computing requirements
For the run presented in section 2.1.6 we have employed 4 nodes of a SUN Ultra
Enterprise 10000. These are 333 MHz Ultra SPARC CPU’s running SunOS 5.5.1.
The run has required almost 11 hours of elapsed time; plot in figure B.2 shows
the CPU time for each time step on node 0 (the landscape behavior is explained in
the caption). The peak of memory allocation has been about 880 MBytes per task
whereas the “working set” (that we define as the size shown in the RSS column
of the ps command output) is 260 MBytes for each slave plus 340 MBytes for
the master. The permanent storage requirements for the intermediate results have
been limited to 225 Mbytes thanks to the on-line compression (see section B.4).
At the end of the run, the data have been extracted and filtered to get few Kbytes
corresponding to the most significant results.

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180 200

se
co

nd
s

(l
og

 s
ca

le
)

time steps

CPU time for each time step of the simulation

Figure B.2 CPU time for each time step of the 24-bit simulation (see
section B.6). The burst of CPU load follows exactly the clonal growth of
the cells (see the plots below) because the time required by the interaction
procedures depends on the number of cells in each lattice point.

132 Appendix B CImmSim: optimization and parallel programming

B.7 Timing
Three sets of runs have been performed to measure the efficiency of the parallel
code. The quality of these simulations is, from the immunology viewpoint, poor
because the set of input parameters is tuned to highlight the impact on the code
performance of some “key” parameters. The three set of runs are described in the
following paragraphs. All the timings we report are the sum of the user times on
all PE’s in seconds.

20

40

60

80

100

120

576 2304 9216

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Lattice size (log scale)

Number of PE’s
2
4
6
8

Figure B.3 Scaling of the lattice size L. A set of three runs for 2, 4, 6
and 8 PE’s: L = 242, L = 482 and L = 962; 30 time steps; l = 16; 15000
initial cells per type (for a total of 75000 cells); one initial injection of 104

antigens.

B.7.1 Scaling the lattice size
For this set of simulations we chose the following set of parameters: initial number
of cells 15000 per type (i.e. a total of 75000 cells); one injection of 10000 antigens;
the lattice size is varied from 24 Î 24 to 48 Î 48 and 96 Î 96.
From figure B.3 it is apparent that the computing time decreases going from the
smallest grid to the largest one. The result is less surprising than it looks for a very

B.7. Timing 133

simple reason: in this model the computational load is determined by the concen-
tration of cells in each lattice site (see paragraph B.7.3) rather than the lattice size as
in most of other CA models. The interesting point is that the total time increases
by using more processors. The straightforward explanation is that the computa-
tional complexity of these test cases does not justify the parallel-machinery. That
is, the time the CPU’s spend to exchange messages is higher than the time required
to compute the interactions among cells.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

256 1024 4096 16384 65536 262144 1048576 4194304 16777216

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of receptor molecules represented (from l=8 to l=24, log scale)

Number of PE’s
2
4
6
8

Figure B.4 Scaling of the bit string length. A set of nine runs for 2, 4,
6 and 8 PE’s: l from 8 to 24. 100 time steps on a 242 grid with 104 initial
cells per type and no injection of antigens.

B.7.2 Scaling the bit-string length
In the second set of tests we varied the bit string length from 8 to 24 with 5 affinity
classes (l − mc = 5). Lattice size is 242; 100 time steps; 10000 cells per type but no
antigens. In this case the simulation reproduces just the aging process of the cells.
The outcomes (figure B.4) show how the code is improved compared to the previ-
ous versions [25]. The computing time does not grow anymore when the bit string
length increases. Note that the time goes up for l ≥ 22 since the compression mech-
anism to save disk space (see section B.4) is not active for l < 22.

134 Appendix B CImmSim: optimization and parallel programming

It is not yet clear why, with few processors, the total time is reduced when l in-
creases.

B.7.3 Scaling the initial number of cells

In the last set of runs we have varied the initial number of cells on a 48 Ï 48 grid.
The bit string length l is fixed and equal to 16; the number of time steps is 10. The
initial number of cells is scaled from 1000 to 512000 for each type (that means
up to 2.56 millions of cells) whereas 106 antigens are injected for each time step
determining a great load which triggers a quick response (cfr figure B.2). Here we
obtain a classic scaling law for the elapsed time: growing with the number of cells
and decreasing with the number of processors.

This result confirms that the computational complexity of CImmSim depends
essentially on the number of interacting elements.

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
, l

og
 s

ca
le

)

Number of initial cells per type (thousands, log scale)

Number of PE’s
2
4
6
8

Figure B.5 Scaling of the initial number of cells. It determines the num-
ber of total interactions. A set of ten runs for 2, 4, 6 and 8 PE’s. One mil-
lion antigens are injected at each time step for 10 time steps. L = 482; the
number of distinct molecules is 216 (i.e. bit string length l = 16).

B.8. Porting to other platforms 135

B.8 Porting to other platforms
The choice of the PVM programming model has made pretty easy the porting of
CImmSim to other platforms. Indeed, besides the original SP2 version, CImm-
Sim runs on a number of other platforms: from NOW (Network Of Workstations)
to the Cray/T3E supercomputer. However, the public domain version of PVM has
been used just on clusters. For performance reasons, for instance, we have been
forced to use our own version of PVM on the Sun Ultra Sparc. This version is
similar to PVMe in design but it is specially tuned for shared memory architec-
tures [14].

On the T3E we have resorted to the Cray PVM environment. The only problem
of the Cray PVM is that it follows strictly the SPMD philosophy, the pvm spawn
primitive is not supported and there is a one to one correspondence between task
and processor. These features have required slight changes in the CImmSim code.

136 Appendix B CImmSim: optimization and parallel programming

Appendix
C

AMSE: parallel programming

Since we have more sophisticated agents than in [24], more computing power is
required to carry on large scale simulations. To address this issue, the current ver-
sion of the code (AMSE ver 0.6) resorts to parallel processing.

C.1 The parallel version of the simulator

The approach to the parallelization is similar to that described in [26] (see appendix
B) for the simulation of the immune system response. However there are some
significant differences. First of all we have replaced PVM with MPI [1] mainly to
exploit the better support for Collective Communication Primitives (CCP’s) that
MPI offers. In the present code (AMSE), CCP’s are used to perform many reduce
operations in parallel instead of collecting all data on a single node and then process
them sequentially.

The scheme which is shown in figure C.1 can be summarized as follows. Each
task of a parallel run is in charge of a subset of the total number of agents. All
phases of the simulation are executed in parallel and there is no dependency on the
total number of tasks. There are two phases in which the tasks interact: the “diffu-
sion” phase and the output phase. During the diffusion, agents may migrate from
a task to another and the communication is point-to-point. All receive operations
are posted in advance, to avoid any dependency on the internal buffering mech-
anisms of MPI. To evaluate global quantities required by all tasks (e.g. the price
change or the total volume) CCP’s are employed. The same technique is applied
when data are collected from all tasks before writing results in the files.

As shown in figure C.2, the efficiency of the parallel code depends strongly
on the number of agents. This is not surprising since the overhead of the implicit
synchronization required by the CCP’s is, for few agents, greater or equal to the
speedup due to the parallel processing.

138 Appendix C AMSE: parallel programming

Input Parameters Input Parameters Input Parameters

Store data

Propagate entities Propagate entities Propagate entities

Propagate entities Propagate entities Propagate entities

until(end) until(end) until(end)

repeat repeat repeat

.....

.....

.....

.....

.....

Allocate mem M_0 Allocate mem M_1

Master (worker_0) worker_1 ...

mpi_reduce mpi_reduce

.....
mpi_send (N-1)

mpi_irecv (1)

mpi_send (0)

mpi_irecv (0)

mpi_send (N-2)

.....
mpi_irecv (N-2)

mpi_send (1)

mpi_irecv (N-1)

mpi_send (2)

mpi_irecv (0)

mpi_send (0)

mpi_irecv (0)

mpi_irecv (2)

mpi_reduce
data collection data collection data collection

worker_{N-1}

..... Works onWorks on
domain M_0

Works on
domain M_1 domain M_{N-1}

M_{N-1}
Allocate mem

Figure C.1 AMSE Communication scheme. The numbers in parenthe-
ses represent the source, for the mpi irecv, or the target, for the mpi send,
of the point-to-point communication operations (e.g., mpi irecv(1)
means receive message from worker 1, mpi send(N-1) means send
message to worker Ð N-1 Ñ).

C.1. The parallel version of the simulator 139

1

10

100

1000

1 2 4 8 16 32 64 128

sp
ee

du
p

(lo
g 1

0
- s

ca
le

)

processors (log2 - scale)

Total number of traders
linear speedup

~ 11500
~ 46100

~ 185000

Figure C.2 Speedup for different system size simulations (the speedup is
defined as T(1) Ò T(N), where T(N) is the time with N processors). Timings
on a Cray T3E with a number of processors up to 128.

Owing to the MPI portability, exactly the same code runs on pretty different
platforms like the Sun Enterprise 10000, the Cray T3E and the IBM SP2.

140 Appendix C AMSE: parallel programming

Appendix
D

Glossary of Notation

Symbol Meaning See page
MS microsimulation model 1
L linear dimension of a lattice 6
sn stochastic variable identifying a spin 6

LGA lattice gas automata 6
ILGA integer lattice gas automata 7

r(x Ó t) the number of entities on each lattice site x at time t 7
ULG unbounded lattice gas automata 8

SFSM stochastic finite state machine 8
IS immune system 13
AND logical and 14

OR logical or 14
NOT logical not, negation 14

APL2 c
Ô

A Programming Language. c
Ô

Copyright IBM Corp. 17

CImmSim C version of IMMSIM 18
IMMSIM Celada-Seiden computational model 18

MHC major histocompatibility complex 20
B lymphocyte B 20

Th lymphocyte T helper 20
Tk lymphocyte T killer, cytotoxic 20

APC generic antigen processing cell, macrophage 20
EP epithelial cell, generic virus-target cell 20

PLB lymphocyte plasma B 20
IFN interferon- Õ 20
D danger signal 20

142 Appendix D Glossary of Notation

IC immune-complexes 20
Ag generic antigen or virus 20

Ab generic antibody 20
l bit-string length 21Ö (m) affinity potential 23
mc affinity threshold 23

pb per-bit mutation probability 26
hc hole in the repertoire 27

G12 information gain of the transition from state 1 to state 2 36× is defined as 37
fm Ø f (m Ø t) concentration of m-matching B-cells at time t 37Ù (t) mean match number 39
H(t) entropy 39
G(t) information gain 39Ú roughly equal 40
Nm(x Ø t) number of B cells in class m at site x at time t 42
ˆÖ (t) total affinity at time t 45Û

set of natural numbers 53Ü
mij Ý mutation probability matrix 54

mij probability to jump from class i to j by mutation 54Þ
(ß) real part of the variable which appear between parenthesis 57

ph error threshold 58à much smaller than 60á proportional to 60

pt asset price at time t 69â
pt price change at time t 69

Rt net return 69
rt log-return 69ã

t Gaussian increment 69ä standard deviation of a probability distribution 69Ù mean value of a probability distribution 69

NYSE New York Stock Exchange 70

S&P500 Standard and Poor 500 financial index 70
DJI Dow Jones Industrial Average financial index 70
i.i.d. independent identically distributed 70

EMH efficient market hypothesis 70

143

PDF probability distribution function 71å exponent of a power law or a Lévy distribution 71

P(æ) PDF of the random variable which appears between parenthe-
sis

72

STL Scale-invariant Truncated Lévy distribution 72ç excess kurtosis 72è
(éëêíì 2) standardized Gaussian distribution with mean é and standard

deviation ì 72

c(î) autocorrelation function 74
vt volatility at time t 74
a probability for a trader to be active at each time step 78

p probability to occupy a site in a percolation lattice 78
pc percolation threshold 79

PVM parallel virtual machine 80
Fq(î) structure function 81
< æ > time average 81

r(ï)
t time-lagged return 81ð
q scaling exponent 81

AMSE A Model of Stock Exchange 87

x(i)
t decision to buy, sell or stay inactive of agent i at time t 88

c(i)
t amount of credits or money of agent i at time t 88

n(i)
t number of owned stock of agent i at time t 88

w(i)
t total wealth (stocks plus money) of agent i at time t 88

Dt excess demand at time t 88
Ne number of traders in class e 89
NF number of funamentalists 89
NN number of noisy 89

NC number of chartists 89
s(i) influence strength of agent i 89
m̄t(h) moving average computed over the time horizon h 89

p+
t (ñ) filtered price pt + ñ pt 89

p−
t (ñ) filtered price pt − ñ pt 89ò much bigger than 91

pr[æ] probability of the elementary event between parenthesis 91
Vt trading volume at time t 94

144 Appendix D Glossary of Notation

MRS modified rescaled range statistics 102
Qn MRS statistics 102
NN neural networks 105
MLP multi-layer perceptrons 106

EBP error back propagation learning algorithm 107ó learning rate of the EBP algorithm 107ô
momentum of the EBP algorithm 107õ mean square error 110

gt forecasted price at time t 110õ
V mean square error on the validation set 110ö

one-step sign prediction rate 111
HS Heaviside function 112
XOR bitwise logical exclusive OR 126
PE processing element 129

CCP collective communication primitives 137
MPI message passing interface 137

Bibliography

[1] The Message Passing Interface standard. www-unix.mcs.anl.gov/mpi/ .

[2] Parallel Virtual Machine. www.epm.ornl.gov/pvm/ .

[3] The Quotations Page. www.quotationspage.com .

[4] Zlib ver. 1.0.4, a general purpose data compression library.

[5] Workshop 2000 “Agent-Based Simulations”, Passau, Germany, May 2-3,
2000 , 2000. www.or.uni-passau.de/workshop2000/agents.html.

[6] AGUR, Z., AND KERSZBERG, M. The emergence of phenotipic novelties
through progressive genetic change. Am. Nat. 129:862–875, 1987.

[7] ANDREW, D. Heteroskedasticity and autocorrelation consistent covariance
matrix estimation. Econometrica 59:817–858, 1991.

[8] AUYANG, S. Foundations of Complex-System Theories in Economics, Evo-
lutionary Biology and Statistical Physics. Cambridge Univ. Press, Cam-
bridge, UK, 1998.

[9] BAGNOLI, F., AND BEZZI, M. Species formation in simple ecosystems.
Int. J. Mod. Phys. C 9:999, 1998.

[10] BALASUBRAMANIAM, V. e-print archive, cond-mat/9601030 , 1996.

[11] BAVIERA, R., PASQUINI, M., SERVA, M., VERGNI, D., AND VULPI-
ANI, A. Efficiency in foreign exchange markets. e-print archive, cond-
mat/9901225 , 1999.

[12] BECK, C., AND SCHLOGL, F. Thermodynamics of chaotic systems. Cam-
bridge Univ. Press, Nonlinear Science Series, Cambridge, UK, 1993.

[13] BERNARDES, A., AND ZORZENON DOS SANTOS, R. Immune network at
the edge of chaos. J. Theo. Biol. 186:173–187, 1997.

[14] BERNASCHI, M. Efficient message passing on UNIX shared memory mul-
tiprocessor. Future Generation Computer Systems Journal 13:443, 1998.

[15] BERNASCHI, M., AND CASTIGLIONE, F. Effect of technical traders in a
synthetic stock market. Int. J. Mod. Phys. C 11:1437, 2000.

146 Bibliography

[16] BEZZI, M., CELADA, F., RUFFO, S., AND SEIDEN, P. The transition be-
tween immune and disease states in a cellular automaton model of clonal
immune response. Physica A 245:145–163, 1997.

[17] BOGHOSIAN, B., YEPEZ, J., ALEXANDER, F., AND MARGOLUS, N. In-
teger lattice gases. Phys. Rev. E 55:4137–4147, 1997.

[18] BOUCHAUD, J., AND POTTERS, M. Theory of financial risk. Cambridge
Univ. Press, Cambridge, MA, 2000.

[19] BROSA, U., AND STAUFFER, D. Vectorized multisite coding for hydrody-
namic cellular automata. Jour. Stat. Phys. 57:399–403, 1989.

[20] BURNET, F. The Clonal Selection Theory of Acquired Immunity. Vanderbuil
University, Nashville, TN, 1959.

[21] CAMPBELL, J., LO, A., AND MACKINLAY, A. The Econometrics of Fi-
nancial Markets. Princeton Univ. Press, NJ, 1997.

[22] CAMPBELL, J., AND SHILLER, R. The dividend-price ratio and expecta-
tions of future dividends and discount factors. Review of Financial Studies
1:195–227, 1988.

[23] CARDARELLI, G., MARSILI, M., AND ZHANG, Y. A prototype model of
stock exchange. Europhys. Lett. 40:479, 1997.

[24] CASTIGLIONE, F. Diffusion and aggregation in an agent based model of
stock market fluctuations. Int. J. Mod. Phys. C 11:865–880, 2000.

[25] CASTIGLIONE, F., BERNASCHI, M., AND SUCCI, S. Simulating the im-
mune response on a distributed parallel computer. Int. J. Mod. Phys. C
8:527–545, 1997.

[26] CASTIGLIONE, F., BERNASCHI, M., AND SUCCI, S. A high performance
simulatior of the immune response. Future Generation Computer Systems
15:333–342, 1999.

[27] CASTIGLIONE, F., MANNELLA, G., MOTTA, S., AND NICOSIA, G. A
network of cellular automata for the simulation of the immune system. Int.
J. of Mod. Phys. C 10:677–686, 1999.

[28] CASTIGLIONE, F., PANDEY, R., AND STAUFFER, D. Effect of trading mo-
mentum and price resistance on stock market dynamics: A Glauber Monte
Carlo simulation. Physica A 289:223–228, 2001.

[29] CELADA, F., AND SEIDEN, P. A computer model of cellular interaction in
the immune system. Immunology Today 13:56–62, 1992.

Bibliography 147

[30] CELADA, F., AND SEIDEN, P. Affinity maturation and hypermutation in
a simulation of the humoral immune response. Eur. J. Immunol. 26:1350,
1996.

[31] CHEN, S.-H., AND YEH, C.-H. On the emergent properties of artifi-
cial stock markets: some initial evidences. National Chengchi University,
Taipeh , 1999.

[32] CHOWDHURY, D., AND STAUFFER, D. A generalized spin model of finan-
cial markets. Eur. Phys. J. B 8:477–482, 1999.

[33] CONT, R., AND BOUCHAUD, J. Herd behaviour and aggregate fluctuations
in financial markets. Macroeconomic Dynamics 4, 2000.

[34] CYBENKO, G. Approximation by superposition of a sigmoidal function.
Mathematics of Control, Signal and Systems 2:303–314, 1989.

[35] DAYAN, I., HAVLIN, S., AND STAUFFER, D. Cellular automata gener-
alisation of the Weisbuch-Atlan model for immune response. J. Phys. A
21:2473–2476, 1988.

[36] DE OLIVEIRA, S., DE OLIVEIRA, P., AND STAUFFER, D. Evolution,
Money, War, and Computers - Non-Traditional Applications of Computa-
tional Statistical Physics. Teubner, Stuttgart-Leipzig, 1999.

[37] EIGEN, W. Naturwissenschaften 58:465, 1971.

[38] ELLIS, R. Entropy, Large Deviations and Statistical Mechanics. Springer,
Berlin, 1985.

[39] FARMER, J. Market force, ecology, and evolution. J. Econ. Behavior and
Organization , 1998. e-print archive, adapt-org/9812005.

[40] FARMER, J. Physicists attempt to scale the ivory towers of finance. e-print
archive adapt-org/9912002 , 1999.

[41] FARMER, J., AND LO, A. Frontiers of finance: evolution and efficient mar-
kets. Proc. Natl. Acad. Sci. USA 96:9991–9992, 1999.

[42] FARMER, J. D., PACKARD, N., AND PERELSON, A. The immune system,
adaptation and machine learning. Physica D 22:187–204, 1986.

[43] FELLER, W. An introduction to the probability theory and its applications.
John Wiley & Sons, New York, NY, 1971.

[44] FRANCI, F., AND MATASSINI, L. Life in the stock market - a realistic
model for trading. e-print archive, cond-mat/0008466 , 2000.

148 Bibliography

[45] FRISCH, U. Turbulence: the legacy of Kolmogorov. Cambridge Univ.
Press, Cambridge, UK, 1995.

[46] FRISCH, U., HASSLACHER, B., AND Y.POMEAU. Lattice-gas automata
for the Navier-Stokes equation. Phys. Rev. Lett. 56:1505–1508, 1986.

[47] GARDNER, M. The fantastic combinations of John Conway’s new solitaire
game of ”Life”. Scientific American 223:120–123, 1970.

[48] GHASHGHAIE, S., BREYMANN, W., PEINKE, J., AND TALKNER, P. Tur-
bulent cascades in foreign exchange markets. Nature 381:767–770, 1996.

[49] GNEDENKO, B., AND KOLMOGOROV, A. Limit Distribution for Sums of
Independent Random Variables. Addison Wesley, 1954.

[50] GOPIKRISHNAN, P., PLEROU, V., AMARAL, L. N., MEYER, M., AND

STANLEY, H. Scaling of the distribution of fluctuations of financial market
indices. Phys. Rev. E 60:5305–5316, 1999.

[51] HAMMING, R. W. Error detecting and error correcting codes. Bell Syst.
Tech. J. 29:147–160, 1950.

[52] HURST, H. Long term storage capacity of reservoirs. Transaction of the
American Society of Civil Engineers 116:770–799, 1951.

[53] IORI, G. A microsimulation of traders activity in the stock market: the role
of heterogeneity, agents’ interactions and trade frictions. e-print archive,
adap-org/9905005 , 1999.

[54] IORI, G. Scaling and multi-scaling in financial markets. e-print archive,
cond-mat/0007385 , 2000.

[55] IVANOVA, K., AND AUSLOOS, M. Low q-moment multifractal analysis
of gold price, Dow Jones Industrial average and BGL-USD exchange rate.
Eur. Phys. J. B 8:665–669, 1999.

[56] KAUFFMAN, S. The origins of order. Oxford Univ. Press, New York, NY,
1993.

[57] KAUFMAN, M., URBAIN, J., AND THOMAS, R. Towards a logical analysis
of the immune response. J. Theor. Biol. 114:527, 1985.

[58] KEPLER, T., AND PERELSON, A. Somatic hypermutation in B cells: an
optimal control treatment. J. theor. Biol. 164:37, 1993.

[59] KIM, G., AND MARKOWITZ, H. Investment rules, margin, and market
volatility. The Journal of Portfolio Management 16:45–52, 1989.

Bibliography 149

[60] KINCHIN, A. Mathematical foundations of Information Theory. Dover
Publications, Inc., New York, 1957.

[61] KOHRING, G. Parallelization of short- and long-range cellular automata on
scalar, vector, SIMD and MIMD machines. Int. J. Mod Phys. 2:755–772,
1991.

[62] LEBARON, B. Agent based computation finance: suggested readings and
early research. Journal of Economic Dynamics and Control . to appear.

[63] LEBARON, B., ARTHUR, W., AND PALMER, R. Time series properties
of an artificial stock market. Journal of Economic Dynamics and Control
23:1487–1516, 1999.

[64] LEFÈVRE, O. IMMSIM 2 ÷ 1 c
ø

a user’s guide, 1995. c
ø

Copyright IBM
Corp. 1992-94, All right reserved.

[65] LEVIN, S., GRENFELL, B., HASTINGS, A., AND PERELSON, A. Mathe-
matical and computational challenges in population biology and ecosystem
science. Science 275:334–343, 1997.

[66] LEVY, H., LEVY, M., AND SOLOMON, S. Microscopic Simulations of Fi-
nancial Markets. Academic Press, New York, NY, 2000.

[67] LEVY, M., LEVY, H., AND SOLOMON, S. A microscopic model of the
stock market: cycles, booms, and crashes. Econ. Lett. 45:103, 1994.

[68] LEVY, M., LEVY, H., AND SOLOMON, S. Microscopic simulation of the
stock market: the effect of microscopic diversity. J. Physique I 5:1087,
1995.

[69] LEVY, M., LEVY, H., AND SOLOMON, S. New evidence for the power
law distribution of wealth. Physica A 242:90, 1997.

[70] LÉVY, P. Théorie de l’addition des variables aléatoires. Gauthier Villars,
Paris, 1937.

[71] LIEBREICH, J. Influence of finite capital in the Cont-Bouchaud-model for
market fluctuations. Int. J. Mod. Phys. C 10:1317–1325, 1999.

[72] LIPPERT, K., AND BEHN, U. Modeling and immune system: architec-
ture and dynamics of idiotypic networks. In Ann. Rev. Comp. Phys. vol.
V (1997), D. Stauffer, Ed., World Scientific, p. 287.

[73] LIU, Y., GOPIKRISHNAN, P., CIZEAU, P., MEYER, M., PENG, C.-K.,
AND STANLEY, H. Statistical properties of the volatility of price fluctu-
ations. Phys. Rev. E 60:1390–1399, 1999.

150 Bibliography

[74] LO, A. Long-term memory in stock market prices. Econometrica 59:1279–
1313, 1991.

[75] LUX, T. Multi-fractal processes as model for financial returns: a first as-
sessment. Uni-Bonn preprint , 1999.

[76] LUX, T., AND AUSLOOS, M. Market fluctuations I: scaling, multi-scaling
and their possible origins. 2000. (review) preprint.

[77] LUX, T., AND MARCHESI, M. Scaling and criticality in a stochastic multi-
agent model of financial market. Nature 397:499–500, 1999.

[78] MANDELBROT, B. J. Business, Univ. Chicago 36:394, 1963.

[79] MANDELBROT, B. The Fractal geometry of Nature. W.H. Freeman and
Co., New York, NY, 1977.

[80] MANDRIOLI, D., AND GHEZZI, C. Theoretical Foundations of Computer
Science. Krieger Publishing Company, Melbourne, Florida, 1993.

[81] MANTEGNA, R., AND STANLEY, H. Scaling behaviour in the dynamics of
an economic index. Nature 376:46, 1995.

[82] MANTEGNA, R., AND STANLEY, H. An introduction to Econophysics:
correlation and Complexity in Finance. Cambridge University Press, Cam-
bridge, MA, 1999.

[83] MOLGEDEY, L., AND EBELING, W. Local order, entropy and predictability
of financial time series. Eur. Phys. J. B 15:733–737, 2000.

[84] MOODY, J. Forecasting the Economy with Neural Nets: A survey of Chal-
lenges and Solutions. In Orr and Müller [88], 1998.

[85] MURRAY, J. Mathematical Biology. Springer, Berlin, 1989.

[86] NEUNEIER, R., AND ZIMMERMANN, H. How to Train Neural Networks.
In Orr and Müller [88], 1998.

[87] NOWAK, A., SZAMREJ, J., AND LATANÈ, B. From private attitude to
public opinion: a dynamic theory of social impact. Psychological Review
97:362–376, 1990.

[88] ORR, G., AND MÜLLER, K.-R., Eds. Lect. N. Comp. Sci. 1524, “Neural
Networks: tricks of the trade”. Springer, Heidelberg, 1998.

[89] PANDEY, R., AND STAUFFER, D. Immune response via interacting three
dimensional network of cellular automata. J. de Physique 50:1, 1989.

[90] PANDEY, R., AND STAUFFER, D. Metastability with probabilistic cellular
automata in an HIV infection. J. Stat. Phys. 61:235, 1990.

Bibliography 151

[91] PARETO, V. Cours d’Economique Politique 2, 1897.

[92] PASQUINI, M., AND SERVA, M. Clustering of volatility as a multiscale
phenomenon. e-print archive, cond-mat/9903334 , 1999.

[93] PERELSON, A., Ed. Theoretical Immunology, Part Two. Addison Wesley,
Redwood City, CA, 1988.

[94] PERELSON, A., AND WEISBUCH, G., Eds. Theoretical Immunology, Part
One. Springer, Berlin, 1988.

[95] PERELSON, A., AND WEISBUCH, G. Immunology for physicists. Rev.
Mod. Phys. 69:1219–1267, 1997.

[96] PHILLIPS, P. Time series regression with ù unit root. Econometrica 55:277–
301, 1987.

[97] PODOBNIK, B., IVANOV, P., LEE, Y., AND STANLEY, H. Scale invariant
truncated Lévy process. e-print archive, cond-mat/9906381 , 1999.

[98] PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B. Nu-
merical recipes in C: the art of scientific computing. Cambridge University
Press, Cambridge, UK, 1994.

[99] PRIGOGINE, I. From being to becoming. Freeman and Co., New York, NY,
1980.

[100] QUINN, M. Parallel Computing : Theory and Practice. McGraw-Hill,
New York, NY, 1993.

[101] REFENES, A., BURGESS, A., AND BENTZ, Y. Neural networks in finan-
cial engineering: a study in methodology. IEEE Transactions on Neural
Networks 8, 1997.

[102] ROTYIS, J., AND VATTAY, G. Statistical analysis of the stock index of the
Budapest stock exchange. e-print archive, cond-mat/9711008 , 1997.

[103] RUMELHART, D., HINTON, G., AND WILLIAMS, R. Learning internal
representation by error propagation. In Parallel Distributed Processing:
Exploration in the Microsctructure of Cognition. Volume I: Foundations
(Cambridge, MA, 1986), D. Rumelhart and J.L.McClelland, Eds., MIT
Press/Bradford Books, pp. 318–362.

[104] RUMELHART, D., HINTON, G., AND WILLIAMS, R. Learning represen-
tation by back-propagation-error. Nature 323:533–536, 1986.

[105] SEIDEN, P. personal communication .

152 Bibliography

[106] SEIDEN, P., AND CELADA, F. A model for simulating cognate recognition
and response in the immune system. J. Theor. Biol. 158:329–357, 1992.

[107] SHANNON, C. The mathematical theory of communication. Bell Syst.
Techn. J. 27:379–423;623–656, 1948.

[108] SORNETTE, D., STAUFFER, D., AND TAKAYASU, H. Market fluctuations
II: multiplicative and percolation models, size effects and predictions. e-
print archive, cond-mat/9909439 , 1999.

[109] STAUFFER, D. Can percolation theory be applied to the stock market? An-
nalen der Physik (Leipzig) 7:529, 1998.

[110] STAUFFER, D., AND AHARONY, A. Introduction to Percolation Theory,
2nd ed. Taylor & Francis, 1992.

[111] STAUFFER, D., DE OLIVEIRA, P., AND BERNARDES, A. Monte Carlo
simulation of volatility clustering in market model with trading. Int. J.
Theor. and Appl. Finance 2:83–94, 1999.

[112] STAUFFER, D., AND JAN, N. Sharp peaks in the percolation model for
stock markets. Physica A 277:215, 2000.

[113] STAUFFER, D., AND PANDEY, R. Computers in Physics 6:404, 1992.

[114] STAUFFER, D., AND PENNA, T. Crossover in the Cont-Bouchaud perco-
lation model for market fluctuations. Physica A 256:284–290, 1998.

[115] STAUFFER, D., AND SORNETTE, D. Self-organized percolation model for
stock market fluctuations. Physica A 271:496, 1999.

[116] STEIGLITZ, K., HONIG, M., AND COHEN, L. Market-based control: a
paradigm for distributed resource allocation. In Market-Based Control: A
Paradigm for distributed resource allocation (Hong Kong, 1996), S. Clear-
water, Ed., World Scientific.

[117] STIGLER, G. Public regulation of the securities market. J. Business 37:117–
142, 1964.

[118] SUCCI, S., APPERT, K., MUSCHIETTI, L., VACLAVIK, J., AND

WERSINGER, J. Phys. Lett. A 106:137, 1984.

[119] SUCCI, S., CASTIGLIONE, F., AND BERNASCHI, M. Collective dynamics
in the immune system response. Phys. Rev. Lett. 79:4493–4496, 1997.

[120] VANDEWALLE, N., AND AUSLOOS, M. Multi-affine analysis of typical
currency exchange rates. Eur. Phys. J. B 4:257–261, 1998.

Bibliography 153

[121] VON NEWMANN, J., AND BURKS, A. Theory of Self-Reproducing Au-
tomata. Urbana: U. Ill. Press, 1966.

[122] WEIGEND, A., AND GERSHENFELD, N. Time Series Prediction: Fore-
casting the Future and Understanding the Past. Addison-Wesley, Reading,
MA, 1994.

[123] WEIGERT, M., CESARI, I., YONKOVITCH, S., AND COHN, M. Variability
in the light chain sequences of mouse antibody. Nature 228:1045–1047,
1970.

[124] WEINAND, R. Somatic mutation, affinity maturation and the antibody
repertoire: a computer model. J. Theor. Biol. 133:409–428, 1990.

[125] WEISBUCH, G., AND ATLAN, H. J. Phys. A 21:189, 1988.

[126] WHITE, H. Artificial Neural Networks approximation and Learning The-
ory. Blackwell Publishers, Cambridge, MA, 1992.

[127] WOLFRAM, S. Cellular Automata and Complexity. Addison Wesley, New
York, NY, 1994.

[128] WOLFRAM, S. The Mathematica Book. Cambridge Univ. Press, Cam-
bridge, UK, 1996.

[129] ZHANG, Y. Toward a theory of marginally efficient markets. Physica A
269:30–44, 1999.

[130] ZORZENON DOS SANTOS, R. Immune responses: getting close to experi-
mental results with cellular automata models. In Ann. Rev. Comp. Phys. vol.
VI (1999), D. Stauffer, Ed., World Scientific.

Index

A
affinity potential 23
algorithm

error back propagation 107
Marquardt-Levenberg 107

antibody . 20
antigen . 20
APL2 . 17
autocorrelation function 74

B
Bachelier, Louis 69, 82
bit-string

length . 21
receptor . 21

Brownian motion 82

C
cellular automata 6
collective comm. primitives 137

D
danger signal 20
distribution

binomial 26
Gaussian 69
Lévy stable 71, 72
log-normal 99
Maxwellian 35
Pareto . 96
Poisson . 26
scale-inv. truncated Lévy 72
truncated Lévy 72

Dow Jones Industrial Average . . . 70

E
Econometrics 105
Econophysics 69
Efficient Market Hypothesis

semi-strong 71
strong . 71
weak . 71

efficient market hypothesis 70
epithelial cell 20
epitopes . 20
error threshold 53, 59
excess kurtosis 72

F
function

Heaviside 112
logistic 107
sigmoidal 107

G
grand challenge. 2

H
herding behaviour 75, 78
Hurst correlation coefficient 103
Hurst, H.E. 103
hyper-mutation 26

I
immune system. 13
immune-complexes 20
information gain 36
interferon- ú . 20

154

INDEX 155

K
Kullback information 36
Kullback relative entropy 43
kurtosis . 72

L
lattice . 5

integer lattice gas 7
lattice gas 6
unbounded lattice gas 8

learning cascade 39, 43
lymphocyte

B. 20
plasma B. 20
T helper 20
T killer . 20

lymphokines 19

M
macrophage . 20
Major Histocompat. Complex . . . 20
Mandelbrot, Benoit 71
message passing interface 137
Message Passing Library 18, 80
model

IMMSIM 18
AMSE . 87
CImmSim 18
agent-based 87
bit-string 19
Celada-Seiden 18
cellular automata 6
Cont-Bouchaud 78
Farmer-Packard-Perelson 16
Frisch-Hasslacher-Pomeau 6
Ising . 6
Kaufman-Urbain-Thomas . . . 14
lattice gas 6
Levy-Levy-Solomon 77
microsimulation 1, 5
Pandey-Stauffer 15

Potts . 6
spin . 5
Weisbuch-Atlan 14
XY . 6

mono-affinity 80
mono-fractality 80
mono-scaling 73
Moore’s law . 2
multi-affinity 80
multi-fractality 80
multi-layer perceptrons 106
multi-scaling 73
mutation . 26

N
net return . 69
neural networks 105
New York Stock Exchange 70
nonlinear least squares fit 107

O
overfitting . 110

P
parallel virtual machine . 18, 80, 130
peptides . 20
percolation . 79
processing element 129

R
random walk 69
relative price change 69
return . 69

S
scale invariance 73
scaling exponent 81
self-affinity . 80
Shannon, C.E. 35
spin . 5
Standard and Poor 500 70
statistics

156 INDEX

modified rescaled range 101
R/S. 101

stochas. finite state machine . . . 8, 20
structure function 81

T
theory

clonal selection 17
idiotypic networks 17
information 35

thymus . 13

V
volatility 74, 97, 98
volume . 93

Deutsche Zusammenfassung

Die Enwicklung der Computertechnologie hat die Art und Weise zu Forschen stark
beinflusst und verändert. Betrachtet man zum Beispiel physikalische Systeme, so
werden diese üblicherweise mit Hilfe mathematischer Modelle untersucht. Diese
Modell sind häufig analytisch sehr schwer oder gar nicht lösbar, so dass approxi-
mative, d.h. numerische oder simulative, Verfahren zum Auffinden einer Lösung
notwendig sind.

Bei der Untersuchung numerischer Modelle ist der Computer auf Grund der rasan-
ten und stetigen Steigerung der Rechnerleistung ein effizientes Hilfsmittel, um die
Dynamik komplexer Systeme zu verstehen. Darüber hinaus hat die Arbeitsweise
digitaler Rechner sogar zu einer vollkommen neuen Klasse von Modellen (Algo-
rithmen) geführt, in der die Wechselwirkungen zwischen den Freiheitsgraden ei-
nes Systems durch Regeln zwischen diskreten Zustandsvariablen ausgedrückt wer-
den. Diese Vorgehen ist oft sehr viel näher an der intuitiven Vorstellung über das
Systemverhalten als physikalisch–mathematische Modellgleichungen im kontinu-
ierlichen Zahlenraum.

In dieser Arbeit wird ein einheitlicher Rahmen vorgestellt, in dem sich komplexe
Systeme mit einer großen Zahl von Freiheitsgraden abbilden lassen. In Anlehnung
an die Beschreibung von Spinsystemen lässt sich ein Modell definieren, mit dem
sich unterschiedliche Simulationssysteme beschreiben lassen. Dieses neue Mo-
dell, “Unbounded–Lattice–Gas” genannt, ist ein Gittergasmodell, bei dem sich auf
jedem Gitterplatz eine unbegrenzte Anzahl von “Teilchen” (Zellen, Agenten, etc)
aufhalten kann. Die Teilchen gehören zu unterschiedlichen Klassen und können
– in Abhängigkeit von ihrer Zugehörigkeit zu einer Klasse – verschiedene Mikro-
zustände annehmen. Anstatt wie bei Zellularautomaten mit Teilchen auf benach-
barten Gitterplätzen zu interagieren, findet die Wechselwirkung lokal zwischen
Teilchen an demselben Gitterplatz statt. Zusätzlich können sich die Teilchen frei
über das Gitter bewegen, ähnlich zum klassischen Brown’schen Diffusionprozess.

Jedes Teilchen (Entität) des Systems besitzt eine komplexe innere Dynamik und
lässt sich als Stochastic Finite State Machine repräsentieren. Zustandswechsel des

158

Teilchens werden durch stochastische Ereignisse ausgelöst, die durch die Wechsel-
wirkung mit anderen Entitäten (wie im Falle des immunologischen Modells) oder
äusseren Feldern (wie im Falle des Börsenmodells) entstehen.

Der erste Teil der vorliegenden Arbeit, bestehend aus Kapitel 1 – 3, beschäftigt
sich mit der numerischen Immunologie (“computational immunology”), speziell
mit der Mikrosimulation der Reaktion des Immunsystems auf Antigene.

Ein sehr differenziertes Mikrosimulationsmodell (“Celada–Seiden Modell”) wird
detailliert vorgestellt und die Antwort des Immunsystems auf Antigene mit Me-
thoden der statistischen Mechanik untersucht. Der Mechanismus, der zur kollek-
tiven Erkennung von Anitgenen durch das System führt (d.h. der Erkennung der
Information, die die Antigene tragen), ist als Lernprozess beschreibar, der sich
kaskadenartig im Zustandsraum des Gesamtsystems ausbreitet (“learning casca-
de”). In Kapitel 3 wird ein anderer Zugang zum Verständnis dieses komplexen
Vorgangs gewählt. Ein System gekoppelter Differentialgleichungen wird in Form
von “coupled-maps” behandelt. Es wird gezeigt, dass sich hiermit die Lernkaska-
den, die zuerst im Mikrosimulationsmodell beobachtet wurden, reproduzieren und
erklären lassen.

Der zweite Teil der Arbeit, Kapitel 4 – 7, beschäftigt sich mit dem noch jungen
Forschungsgebiet der Wirtschaftsphysik (“Econophysics”). Zunächst werden in
Kapitel 4 einige Grundbegriffe von Finanzmärkten eingeführt und empirische Be-
obachtungen beschrieben. Das anschliessende Kapitel 5 stellt kurz bereits exi-
stierende Modelle vor, wobei der Schwerpunkt auf der Beschreibung des “Cont-
Bouchaud Perkolations Modells” liegt (Abschnitt 5.1). Schließlich wir in Kapitel
6 das im Rahmen dieser Arbeit entwickelte neue Mikorsimulationsmodell zur Ab-
bildung von Aktivitäten an Finanzmärkten diskutiert.

Das letzte Kapitel der Arbeit (Kapitel 7) weicht von der ansonsten gewählten Vor-
gehensweise der Arbeit ab und beschäftigt sich mit dem Problem der Vorhersage
von Zeitreihen auf Finanzmärkten. Auch hier wird jedoch ein Modell zur Anwen-
dung auf wirtschaftsphysikalische Probleme verwendet, das durch biologische Sy-
steme inspiriert wurde.

Durch die parallelisierte Implementierung beider Modelle konnte die Rechenzeit
soweit reduziert werden, dass es möglich ist, Systeme realistischer Größe zu simu-
lieren. Beide Implementierungen nutzen “Message Passing” und können so auf
Rechnerarchitekturen mit gemeinsamen und verteiltem Speicher betrieben wer-
den. Konkret verwendet CImmSim die Bibliothek “Parallel Virtual Machine”
(PVM) und AMSE die “Message Passing Interface” (MPI). Auf Grund der un-
terliegenden Modellarchitektur des Unbounded Lattice Gas ergibt sich ein enor-

159

mer Geschwindigkeitzuwachs (“Speedup”) für beide Implementierungen bereits
mit einem “relativ einfachen” Schema der Parallelisierung.

160

Acknowledgments

My best acknowledgments go to

Prof. Dr. Dietrich Stauffer and Prof. Dr. Rainer Schrader for supervising my work
at the ZPR/ZAIK and for many interesting discussions, sharp criticisms but also
many encouragements.

Sauro Succi for making this happen, Massimo Bernaschi for his constant “virtual
presence”, encouragements and last (but not least!) for teaching me innumerable
“computer tricks”.

The Graduiertenkollegs “Scientific Computing” for support.

The Regional Computing Center of the University of Cologne (RRZK) and the
Italian Center for Parallel Computing (CINECA) are kindly acknowledged for pro-
viding most of the computational resources.

R.B. Pandey (thanks for supporting my visit to the University of South Missis-
sippi), P.E. Seiden, F. Celada, S. Motta, M. Bezzi (for letting me browse his code
on the cellular response) and Z.-F. Huang for stimulating discussions.

All the colleagues at the ZPR/ZAIK for providing a very nice atmosphere to work
with. In particular Nils Eissfeld, not only for helping me to translate the summary
but also for having shared these years of daily life.

C. Teuner for her kindness and prompt aid. She helped me to solve many practical
problems especially during the first period in Cologne.

All my friends in Cologne. Life would have been much more “complex” without
them. I will miss them all.

Finally I am grateful to my family for all the rest!

162

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entleh-
nung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät
oder Universität zur Prüfung vorgelegen hat; daß sie – abgesehen von unten ange-
gebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, daß ich
eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vor-
nehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt.
Die von mir vorgelegte Dissertation ist von Prof. Dr. R. Schrader und Prof. Dr.
D. Stauffer betreut worden.

Teilpublikationen

M. Bernaschi and F. Castiglione, Design and implementation of an Immune Sys-
tem Simulator, Computers in Biology and Medicine, to appear, 2001

S. Succi, F. Castiglione, and M. Bernaschi, Collective dynamics in the immune
system response, Phys. Rev. Lett. 79:4493–4496, 1997

M. Bernaschi, F. Castiglione, and S. Succi, Large-scale Cellular Automata simu-
lations of the Immune System response, Phys. Rev. E 61:1851–1854, 2000

F. Castiglione, Antigen recognition and evolution in a bit-string population model,
Int. J. Mod. Phys. C 10(6):989–1002, 1999

F. Castiglione and D. Stauffer, Multi-scaling in the Cont-Bouchaud microscopic
stock market model, submitted to Quantitative Finance, Jan. 2001

164

F. Castiglione, Diffusion and Aggregation in an Agent Based Model of Stock Mar-
ket Fluctuations, Int. J. Mod. Phys. C 11(5):865–880, 2000

M. Bernaschi and F. Castiglione, Effect of technical traders in a synthetic Stock
Market, Int. J. Mod. Phys. C 11(7):1437, 2000

F. Castiglione, Forecasting price increments using an artificial Neural Network,
Advances in Complex Systems 3(1), Hermes-Oxford, 2001

Short summary
The main question addressed in this dissertation is how to derive “the collective”
(i.e. macroscopic) properties of a system starting from the knowledge of the laws
ruling the individual (i.e. microscopic) behaviour. We have presented a unify-
ing approach to model complex systems with large number of degree of freedom.
Starting from the definitions of spin systems, with little changes we have defined
a model that is well suited to describe two different simulation systems. The first
simulates the humoral and cellular immune response and is based on the model of
F. Celada and P.E. Seiden. The second simulates the trading activity of agents in
a stock market. It is built borrowing some ingredients from other known models.
In addition, a group a traders called moving average followers represents chartists
who base their decision upon the evolution of the price of the asset. Also, traders
group together to take collective decision to model the herding behaviour.

Kurzzusammenfassung
Bei der Untersuchung numerischer Modelle ist der Computer auf Grund der rasan-
ten und stetigen Steigerung der Rechnerleistung ein effizientes Hilfsmittel, um die
Dynamik komplexer Systeme zu verstehen. Darüber hinaus hat die Arbeitsweise
digitaler Rechner sogar zu einer vollkommen neuen Klasse von Modellen (Algo-
rithmen) geführt, in der die Wechselwirkungen zwischen den Freiheitsgraden ei-
nes Systems durch Regeln zwischen diskreten Zustandsvariablen ausgedrückt wer-
den. Diese Vorgehen ist oft sehr viel näher an der intuitiven Vorstellung über das
Systemverhalten als physikalisch–mathematische Modellgleichungen im kontinu-
ierlichen Zahlenraum. In dieser Arbeit wird ein einheitlicher Rahmen vorgestellt,
in dem sich komplexe Systeme mit einer großen Zahl von Freiheitsgraden ab-
bilden lassen. Ein sehr differenziertes Mikrosimulationsmodell (“Celada–Seiden
Modell”) wird detailliert vorgestellt und die Antwort des Immunsystems auf Anti-
gene mit Methoden der statistischen Mechanik untersucht. Der zweite Teil der Ar-
beit, beschäftigt sich mit dem noch jungen Forschungsgebiet der Wirtschaftsphy-
sik (“Econophysics”). Zunächst werden in Kapitel 4 einige Grundbegriffe von Fi-
nanzmärkten eingeführt und empirische Beobachtungen beschrieben. Das ansch-
liessende Kapitel 5 stellt kurz bereits existierende Modelle vor, wobei der Schwer-
punkt auf der Beschreibung des “Cont-Bouchaud Perkolations Modells” liegt (Ab-
schnitt 5.1). Schließlich wir in Kapitel 6 das im Rahmen dieser Arbeit entwickelte
neue Mikorsimulationsmodell zur Abbildung von Aktivitäten an Finanzmärkten
diskutiert.

166

Lebenslauf

Persönliche Daten
Name Filippo Castiglione
Adresse Wilhelm–Backhaus–Straße 23, 50931 Köln
geboren am 17.02.1969 in Catania, Italien
Staatsangehörigkeit italienisch
Familienstand ledig

Schulbildung
1974 – 1979 Grundschule in Catania
1979 – 1987 Gymnasium in Catania

Zivildienst
1994 – 1995 beim Patronato ACLI, Arezzo, Italien

Studium
1987 – 1993 Studium an der “Università Statale di Milano”, Mailand,

Italien. Abschluß “Laurea in Scienze dell’Informazione”.
08.1991 – 12.1991 ERASMUS-Projekte an der “Universiteit van Amsterdam”,

Holland
02.1994 – 06.1994 Kurs: Industrielle Modellierung (Uni-Catania mit IBM,

Italsiel)
09.1995 Kurs: Paralleles Programmierung Techniken, Italian

Center of Parallel Computing (CINECA), Bologna, Italy
08.1996 Forschungaufenthalt beim IBM Watson Labor, New York,

und Princeton University, NJ, USA
1998 – 2001 Promotionsstudium der Informatik an der Universität

zu Köln. Stipendiat des Graduiertenkollegs Scientific
Computing

Berufstätigkeit
04.1997 – 03.1998 Ingenieur für Informationstechnik bei ST – Mikroelektro-

nik, Catania
Seit 11.2000 Wissenschaftlicher Assistent am “Dipartimento di Scienze

dell’Informazione” der Universität “La Sapienza” zu Rom

	The model of Kaufman, Urbain and Thomas
	The model of Weisbuch and Atlan
	The model of Pandey and Stauffer
	The bit-string model of Farmer, Packard and Perelson
	The computational model
	Entity/State description
	The repertoire
	The affinity potential
	The interactions
	The mutation process
	Simulations
	The parameters
	The dynamics
	Notes

	Learning cascade
	Collective dynamics in the immune system response

	The role of the affinity potential and hypermutation
	Numerical simulations

	Introduction
	The model
	Discussion

	Numerical integration
	Summary and conclusions
	L'evy stable distribution and fat tails
	Stylized facts of financial time series
	The Cont-Bouchaud herding model
	Multi-affinity in financial price series

	Model description
	Trading strategy
	Collective formation and diffusion

	Discussion
	Chartist's influence on price dynamics

	Hurst exponent and modified R/S statistics
	Conclusions and future developments
	Introduction
	Multi-layer Perceptron
	Detrending analysis
	Determining the net topology
	Stopping criteria
	Results
	Weekly and intra-day data
	Artificially generated price series
	Discussion
	The humoral response
	The cellular mediated response
	Dynamic memory allocation
	List permutation
	The single antigen case

	State flags
	Optimized Hamming distance computation
	Compressed output
	Saving detailed information

	The parallel version of the simulator
	Computing requirements
	Timing
	Scaling the lattice size
	Scaling the bit-string length
	Scaling the initial number of cells

	Porting to other platforms
	The parallel version of the simulator

