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“For the things we have to learn before we can do them, we learn by
doing them.”
Aristotle (384 - 322 BC), Nichomachean Ethics

“First you guess. Don't laugh, this is the most important step. Then
you compute the consequences. Compare the consequences with expe-
rience. If it disagreeswith experience, theguessiswrong. Inthissmple
statement is the key to science.”

Richard P. Feynmann

“If people do not believe that mathematicsis smple, it is only because
they do not realize how complicated lifeis.”
John L. von Neumann (1903 - 1957)

Quotationstaken from [i]
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Preface

Since the advent of digital computers, the way research proceeds has dramatically
changed. The study of physical systemsfor example, istraditionally investigated
by means of mathematical models. These models are often very difficult to be
solved analytically and approximations are necessary to reach a solution.

The use of computers has brought great advantages in handling complex mod-
elsin two different athough complementary ways: (1) the mathematical formula-
tion of amodel can be solved numerically using sophisticated algorithmsto find a
good “numerical” solution; (2) asystem can beanalysed interm of itsconstituents,
i.e. the overal dynamics can be smulated by its very microscopic elements and
global quantities can be compared with experimental data.

Among the two, the first field is by no means more mature. In fact, since the
fifties, a huge amount of methods have been developed and many more are cur-
rently under study. Books and articles describing what is considered “ standard lit-
erature’” on Numerical Calculus are largely available nowadays.

Traditionally, also the term “simulation” refers to numerical methods to com-
pute, for example, the solution of asystem of partial differential equations. Incon-
trast, the definition that will be used throughout this manuscript will point to adif-
ferent narrower meaning.

To simulate a system means to reproduce the * functional behaviour” of the con-
stituents under particular laws which rule the global dynamic of the system itself.
Theselaws are not known in general and are exactly thetarget of the investigation.
Even the variables defining a single system-constituentsare not known in general.

Thisapproach ismuch more val uable as the computing power of today’scomputer
increases. In fact the number of micro-constituents of the system should be, by
definition, large [H].

Complex behaviour can occur in any system made up of large numbers of inter-
acting constituents with non-linear coupling, be they atomsin a solid, cellsin a
living organism, or tradersin a financial market.

Itistheavailability of digital computersthat makes possible to solve sophisticated
models and, in so doing, to reveal the micro-dynamics of some complicated nat-
ural phenomena. Thus, Microsimulation (MS) [aH] belongs to the Computational



Sciences and mainly refersto methods similar to those used by computational sta-
tistical physicsthat are being applied to other disciplines[[3d]. Figurelll sketches a
diagram in which the Computational Sciences are identified as the intersection of
physics methods and applied disciplines, with the use of computers as combining
element.

Computational
Science

Applied
Disciplines

Computer Physics
Science

Figure 1 Computational Science

From the mere technical point of view, the Moore'slaw (computer power doubles
every 1.5 years) assuresincreasing memory and CPU speed to smulate larger and
larger systems. Although many problems are now solvable by common persona
computers, there are problems for which even the largest parallel machine is not
able to find a “rea” solution. These problems are called Grand Challenges. A
Grand Challenge is a large-scale science or engineering computational problem.
Examples can be found in Physics, Biology, Chemistry, Materials Sciences, Fluid
and Plasma Dynamics, Finance, Environment and Earth Sciences, and so on.

The reason of the intractability of such problemsliesinthelevel of detailsone
wants to take into accounts. For example one may think of a biological cell asa
single element ruled by very ssmple dynamics which brings the cell at most into
one excitatory state. In this scenario the amount of memory needed to represent
acell isreduced to the minimum (abit) and the number of operations to test and
possibly switch its state is negligible. Stated like this, even if we wanted to take
into account millionsof cellsat onetimewewould not runinto troublestoday if we
could access areasonable workstation. Problemsarise when wewant to gointo the
details of the cell. Infact, acell, isawhole universe for its own, with an unthink-
ablelevel of details. Even top supercomputers would not be able to represent all
that information. So, what chances do we have? The possibilities stay in between:



we cannot take all the details at once but we can add them one after another as
long as the computing power required isavailable. This philosophy has gonelong
enough today to allow sufficiently-detailed simulations of complex phenomena.

The present manuscript deals with complex systems composed by many interact-
ing elements. Inparticular it deal swith problemsfrom biology and finance. Inboth
fieldsthe rules governing the micro-behaviour of the constituents(cells, molecules
but also traders and brokerage agencies) are mostly unknown. All that isgivenis
the macro-behaviour that can be observed empirically either by experiments (this
isthe case in biology) or by applying statistical methods to the already given data
(thisisthe case in finance where the use of databases allows to track any transac-
tion worldwide).

Thismanuscript isdividedintwo main parts. Thefirst part, composed by chap-
tersil—B, isdevoted towhat iscalled “ Computational Immunology” and in partic-
ular it deals with the microsmulation of the immune system response. A sophis-
ticated MS model called the Celada-Seiden model is discussed in details and then
used to investigate the immune response in typical statistical mechanics fashion.
The“learning cascade’ isproposed to explain the mechanism by which the collec-
tive recognition of (reads “the information on”) the antigen proceeds as a cascade
in a suitable state-space. Chapter @ shows how it is possible to use a different ap-
proach to understand complex phenomena. It deals with a coupled-map system to
reproduce the learning cascade first discovered using the microsimulation model.

The second part, composed by chaptersBll — [, is about the emerging field of
“Econophysics’. After a description of the stylized facts of financial markets in
chapter @l and short review of the existing models given at the beginning of chap-
ter B, particular attention is devoted to the Cont-Bouchaud percolation model in
section B2l In the following chapter @anew MS model is presented. This model
has many technical pointsin common with theimmunological model presented in
the preceding chapters. In particular they both belong to the class of unbounded
lattice gases that will be defined in the introduction. Finally, chapter [ deviates a
bit from the path of thismanuscript (although it shows amodel inspired by biology
applied to afinancial problem) and face up to the problem of forecasting financial
time series.

The joining element between the two MS models of chapters Bl and H is not
only conceptual but also technical in certain respects. In fact they are both being
coded following a precise architectural schema. This aspect, together with a short
overview of pre-existing models of thiskind that are being used since decades in
various fields of science, will be presented in the introductory section.

Appendix B and B will report some technica details about the implementation
of the two simulation programs mentioned before, to allow them to run on par-
alel computers. InappendixBlit isgiven asmall introduction on the immunol ogy
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needed in chapter @ Finally, a glossary of notation with the list of symbols used
throughout thismanuscript isgiven. Itissafeto say however, that few symbolsare
being used in more than one contest with different meaning, in places where there
isvery little danger to generate confusion. Because this manuscript is about com-
putational models, the name of the codes (smulators) presented herein are given
in bold.

Part of chapters@, B, B, H and [ have been published on journals on computa-
tional physics or complex systems. The corresponding referencesare givenin the
section “Erklarung” at the end of this dissertation. | wish to thank from the very
beginning all the coauthors.

A final section of this manuscript was mandatory to express my debt of grati-
tude to al the people who introduced me into thisfascinating field.

Cologne, February 2001



Introduction

Nowadays, the scientific study of a phenomenain general consists of three major
approaches: theoretical, experimental and computational. The computational as-
pect becomes more and more important. Computational science has the flavor of
both theoretical and experimental science. One must have a very good theoretical
background to study a subject by means of computational methods. A good com-
putational method often comes from a thorough theoretical analysis. On the other
hand, the analyses of results are not much different from analysing experimental
data. Computational methodsin science become advantageous when (1) the prob-
lem at hand is too difficult to do analytically; (2) an approximate theoretical result
may not be reliable, and it is necessary to check with a different method; (3) an
experiment is expensive or not feasible at all.

As aready mentioned in the preface, computational methods can be roughly
divided in two areas, that of numerical analysis and that of computer simulation.
Numerical methodsinclude solving linear equations, eigenval ue problems, solving
differential equations and partial differential equations, etc. They are very useful
and important but are not the core of this dissertation.

In contrast, computer simulations are methods that try to model the physical world
directly, rather than solving the equations governing the physical processes.

A complex systems (physical, biological, chemical or financial, just to mention
afew) can be defined asasystem with alarge number of degreesof freedom. Thus,
microsimulation (MS) is a method to mimic a complex phenomenon through the
description of its micro-components. That is, leaving the system free to evolve
without too many constraints and simplifying assumptions.

In the following we present techniques belonging to the class of MS methods.
These have been applied with success in the field of statistical mechanics [[L4].
Some of them are being also used in biology and recently in finance [[3d, B]. At
the end we defineanew class of MS model sthat we use throughout thismanuscript
to describetwo different simul ation algorithmsdealing respectively with problems
from immunology and finance.

The very first definitions are those of “spin” and “lattice”. A ferromagnet can
beregarded asasystem composed by alargenumber of elementary magnets placed



on the sites of acrystal lattice. To model and to understand the magnet properties
of solids, varioustypes of lattice spin model shave been proposed. Suchmodelsare
defined by (i) alattice type (dimension 1,2,3..., and topology, i.e. cubic, triangular
and so on); (ii) the possible values of the random variable, called “spin” at each
latticesite, that is, thenumber of possible states a spin can take (these may be either
discrete or continuous; also, a spin can be in generalized sense, a single value, a
vector or atensor, athough some representations may lack of aphysical meaning);
(iii) the interactions among spins, in terms of rules determining the way the value
of the spins are coupled and how they change with time. Iterating the interaction
rules, one gets a discrete dynamical system.

The following overview of spin systemsis by no means complete. Moreover,
we voluntary avoided to talk about the interaction rules which, together with the
topological definition of aspin system, isthe most important el ement to distinguish
one application from another.

If the total number of lattice sitesisL, weidentify a spin with astochastic vari-
ables,, forn=12 ....L. According to (ii) one deals with different spin models.
The most popular are the enunciated bel ow.

Isngmodel A spinmay takeonjust twovalues, “up” or “down”, usualy s, = +1
ors,=-1

Potts model of the K" order It is ageneralization of the Ising model with the
spins taking one of K possiblevalues, i.e. s, =1,2,3,....K.

XY model  Each spin isacomplex number of absolute value 1, i.e. s, = €n.

Later, other models have been derived from these definitions.

Cellular Automata(CA) Inspiredby theearly work of J. von Neumann [[LZ1] on
self-replicating machines, they are discrete dynamical systemswhere each spin per
lattice Site is updated according to the state of the spin in its neighborhood [[L27].
CA arebeing used to model many physical systems but seem more suited to model
biological systems.

LatticeGasAutomata (LGA) Lattice gas automatawereintroduced by Frisch,
Hasd acher and Pomeau as a means to solve the Navier-Stokes equations of fluid
dynamics. The two dimensional triangular lattice gas (figureB) is indeed called
FHPIattice[46]. A latticegasislikethe Pottsmodel in which the states of particles
represent velocities. The FHP model is associated to particular types of lattices
with peculiar interaction rules (collisions conserving mass and momentum). The
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FHP model is a two-dimensional triangular lattice, thus the number of velocities

K isegua to six.

VAVAVAVA

Figure 2 Triangular lattice. Particlesat timet and t + 1 are marked by
single and double arrows, respectively.

Integer LatticeGasAutomata (ILGA) A generalization of |attice gas has been
proposed with the name of Integer Lattice Gas Automata [[LZ]. The generalization
is given allowing more than asingle particle per each direction to stay on alattice
dgte, eg. s, € {1,...,K}" with fixed number of particles per siteequal tor.

Through this step-wise definition of spin model swe cometo the definition of aspin
system in which each site of the lattice contains exactly r particles, each in one of
K different states-velocities. To reach the goa of defining amodel to describe the
systems of the following chapters, we still need two further generalizations: (1)
we want to represent different particles types each having their own micro-state
space; (2) we do not want a fixed number of particles on each lattice site.
Thefirst of these requirements|eadsto a definition of spin with many components
$ =5 = (8P, 92, ..., 9P) with E the number of different typesof entitiesl. Each
agent belongingtoclasse=1,--- ., E, can be found in a micro-state taken from a
discrete set of states {1, - - - , K(€)} whose number depends on e.

The second point requiresto consider r = r(x, t) that is, the number of entities on
each lattice site x isa function of timet and x. In general, the number of entities
in agiven lattice site depends on the diffusion process we choose. In practiceitis
sufficient to choose r as the maximum number of particleson the lattice during the
whole simulation to recover the definition of integer |attice gas.

LIt istime now to use also the term entity in place of particle. In fact “entity” fits better the
meaning of (e.g.) agentsin a stock market or cellsin theimmune system.



Becauseweallow r(x, t) to grow without constraints we set apart this particul ar
case of unbounded capacity and call it Unbounded L attice Gas.

Unbounded LatticeGas(ULG) Itisalattice gaswith unlimited number of par-
ticles on each lattice site. Particlesbelong to different classese=1,--- ,E. They
may take on one micro-state fromaset {1, -- , K(€)} which in turn depends on
the class e to which they belong to.

Summarizing, we are able now to define models where the different entities be-
longs to different classes. They occupy the lattice sites with no constraint on the
number. They interact locally instead of interacting with the neighborhood as in
CA models. Finaly, eliminating the constraint on the occupation number we al-
low the particles to diffuse freely on the lattice grid. At thistime we consider the
particlesto follow the classical Brownian motion. General non-uniform diffusion
schema are also well defined thanks to the unconstrained capacity r(x, t).

As aready anticipated in the preface, the use of ULG as formal definition of the
microsimulation systems devel oped and discussed in thefollowing chaptersisjus-
tified by the availability of large-memory computers. Instead of storing a single
bit like in the Ising model or at most few bytes as in the Potts model to keep the
memory consumption at mini mum, l we can now represent particles(cells, atoms,
molecules, tradersetc) as acollection of information or attributes. Thus, theinfor-
mative structure representing asingle particle is heterogeneous aswe allow to mix
binary information, integer numbers or even arrays of more complicated records.
Notethat weintentionally restricted ourself to the use of integer numbersto repre-
sent the interna states. The reason is to avoid floating points operations to assure
unconditional numerical stability to thesimulation agorithm. Moreover, giventhe
unbounded capacity of the lattice, the choice of a static data structure is clearly
wrong. Indeed, a dynamic memory allocation isin order. In practice, all we need
to represent a d-dimensional BuLGisa pointer to alist of “records’ containing
the information structure of the entities for each lattice site.

In our models the complex behaviour of the entitiesis subjected to precise state-
changes uponinteraction. Every single entity can be thought asa Sochastic Finite
Sate Machine (SFSM) [B]] which processes information and changesits state ac-
cording to the result of the interaction with other entities, or with external fields.

Probabilistic or stochastic models should not be confused with non deterministic

2 For Ising and Potts models many computing techniques which optimize memory usage have
been developed. For example, according to the kind of coding approach one spesk about " multi-
spin” and "multi-site” coding [I5 [L9].

SWe will lways used = 2.
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S
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Figure 3  Stochastic Finite State Automata. The probability pr[s; — <]
to switchfrom state oneto state two, for example, can begiven or can bethe
outcome of a more complicated procedure. In our case these probabilities
are computed by complex rules (see chaptersl and B).

modelsin theoretical computer science [[B]. A typical example of stochastic sys-
temisaMarkov chain where each state transition is subject to a given probability.

A typical diagram showing astochastic finite state (automata) isgiveninfigure
B Thetransition between the states s, s, and s; is stochastic. The transition prob-
abilities can be fixed or changing in time. In our case they depend on the outcome
of more or less complicated interaction rules between entities. They can also de-
pend on some global quantities or external fields. For them, a specia syntax has
been developed and examples of its use will be given in chapter B to describe the
model of the immune response.

Finally, because the particles interact locally (i.e. inside each lattice site) and
only after they diffuse to adjacent sites, we can “easily” divide the CPU-load dis-
tributing the lattice grid to different processors of a parallel machine [[iti]]. Mes-
sage passing among processors is needed only during the diffusion phase. This
allow usto simulate alarge number of interacting entitieswith ahigh level of de-
tails.
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Chapter
1

Computational immunology

Vertebrate animals have an Immune System (1S) protecting them against diseases.
The immune system is composed by many cooperating agents (cells and mole-
cules) whose task isto recognize and defeat “foreign agents” asvirus, bacteriaand
dangerous molecules.

The panorama of immune system modelsis quite large. This short chapter is
meant to give avery introductory review of some of the existing automatamodels
chosen according to my personal knowledge. The review of Perelson and Weis-
buch [M5] reports on the different model s devel oped to study theimmune response
from the physics point of view. In that work both equation-based and computer-
simulation models are discussed. Instead, in this chapter, we concentrate on the
models where computer simulation methods similar to statistical physics are em-
ployed. For differential equationswerefer to therecent review of Lippert and Behn
[iZ4], the aready mentioned review of Perel son and Wei sbuch [[H5] and al so thetwo
volumes “Theoretical Immunology” [H4, B4]. A review about the specific use of
cellular automata in modeling the immune response is given by R.M. Zorzenon
Dos Santosin [ILC30].

In the next chapter we will concentrate on the Celada-Seiden model which is
one of the most detailed lattice gas automatafor the immune system response. Its
complexity derives from the fact that in addition to different cellular populations
considered, also amolecular representation of the cell and molecular binding site
is given in term of specific recognition between bit strings. Moreover, a kind of
intra-cellular interaction is modeled for the presence of the Major Histocompat-
ibility Complex allowing for a direct self-non self discrimination vialymphocyte
selection in the thymus.

Thebasi c mechanisms of theimmune system, or at |east what is sufficient to known
here, are given in appendix Bl
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1.1 The model of Kaufman, Urbain and Thomas

One of thefirst application of discrete automatato immunology isthe one of Kauf-
man et al. [B4] in 1985. Theoriginal model considersfivetypes of cellsand mole-
cules: antibodies (A), helper cells (H), suppressor cells (S), white blood cells (B)
and virus (V). Each entity is represented by a variable denoting “spin up” (high
concentration) and “spin down” (low concentration). The rules modeling the dy-
namic evolution of these variables are expressed by logical operations. The appli-
cation of therulesisiterated over discretetime and the dynamicsisobserved. The
discrete evolution rules are:

At+1) = V(t) AND B(t) AND H(t)
H(t+1) = H(t) ORV(t) AND NOT S(t)
St+1) = H() RS

B(t+1) = H(t) AND (V(t) OR B(t)
V(t+1) = V() ANDNOT A(t)

where AND, OR and NOT are the usual logical operators of thefirst order predicate
calculus, respectively and, or and not. There arefivefixed pointsin the state space
composed by 2° = 32 points. Fixed points identify the global state of theimmune
system: naive, vaccinate, immune, paralyzed, paralyzed and sick.

1.2 The model of Weisbuch and Atlan

This primitive model wasfollowed by many other models. For example Weisbuch
and Atlan [IZ5] focused on the special case of auto-immune diseases like multiple
sclerosis, in which the immune system attacks the cells of the nervous system of
our own body. As the model of Kaufman et al., this model uses five binary vari-
ables representing: killer cells (S,), activated killers (S;), suppressor cells (S3),
helpers (S;) and suppressor produced by the helpers (Ss). The different types of
cellsinfluence each other with astrengthwhichis1, O or -1. At the next time step,
the concentration of one cell isunity if the sum of theinteractionswith the various
cell typesis positive; for zero or negative sums, the concentration is taken as zero.



1.3. The model of Pandey and Stauffer 15

In formulas
sit+D) = son (D S0+ S0 -S0)
S+ = on (Y S0+ - SO -SO)
s+ = sn (Y s0) (LD
s+ = sn (Y s0)
s+ = sn (Y s)

where S(t) denotes the concentration of the ith component at time t and the func-
tion sgn(x) defined on the natural numbers (N) is 1 if x > 0 and 0 otherwise. This
model shows the existence of only two basins of attractions over 2° = 32 possible
states: the empty state where all the concentrations are zero and a state where only
activated killers disappear while the other four concentrations are unity.

Further generalizations of this model consider the same dynamics but putting
thecellson alatticeto allow simulationsin statistical physicsway (Ising-likemod-
els). In Dayan et al. [25] the authors put five variables on each lattice site corre-
sponding to five boolean concentrations (0 or 1). Recalling the definitions of the
precedent chapter we may see the model of Dayan et al. as an Integer Lattice Gas
withr =5 (fiveentities) and K = 2 (two states per entity).

Each site influences itself and its nearest neighbours in the same way as in the
model of Weisbuch et al.. For asquarelattice of L x L sitesthereare 5 x L2 spins.
The main differenceis that in this model the summation in eq(Zll) runs over the
steitself and its nearest neighbours.

This lattice-version of the Weisbuch-Atlan model is found to have a smpler dy-
namicsthan the original model asthe number of fixed pointsisfound to be smaller
than in [lLZ].

1.3 The model of Pandey and Stauffer: the case of
AIDS

Pandey and Stauffer further extended the model of Kaufman et al. using a prob-
abilistic generaization of deterministic cellular automata. Their model focus on
apossible explanation of the time delay between HIV infection and the establish-
ment of AIDS[BS, 5. They represent hel per cells(H), cytoxic cells(S), virus(V)
and interleukin (I). The interleukin molecules produced by helper cellsinduce the
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suppressor cellsto kill the virus. The dynamicsis given by the following rules:

V(t+1) = H(t) AND NOT St)
H(t+1) = I(t) ANDNOT V(1)
I(t+1) = H()
St+1) = 1(t)

The dynamicsof thismodel has been investigated. Oscillatory behaviour followed
by afixed point where the immune system is totally destroyed, similar to the real
onset of the AIDS, isfound.

1.4 The bit-string model of Farmer, Packard and
Perelson

A peculiar class of modelsin immunology is the so-called bit-string models. The
first of these models has been introduced by Farmer, Packard and Perelson [44] to
study thetheory of theldiotipic Networks. All the moleculesand cell binding sites
(e.g. cell receptors) aremodeled as binary strings of length I. Antibody molecules
are assumed to recognize the antigen whenever their bit strings can be matched
complementarity. The specific rule that was used was to align the bit string and
require a complementary match over a stretch of at least r adjacent positions. For
string matches over exactly r adjacent positions, a low affinity was assigned, say
0.1. If the match was bigger than r adjacent positionsthe affinity was increased by
means of a certain formulawhich depends on some probability counts.

Theidea of bit strings has been taken up by the Celada-Seiden model. In that,
the match between virus and lymphocyte receptors, for example, is given consid-
ering the number of complementary bitsin the bit-wise comparison. For example,
if the lymphocyte B is equipped with the binary string 00010101 (I = 8) while
the virusis represented by the string 11101010 then the probability to trigger are-
sponse is very high (see dso figureEZ3). In this model the bit-string match is not
required to be perfect, i.e. some mismatches are allowed like for example one bit
from eight in the case above.

Thislist of immunological models is by no means complete. We send the reader
to the aforementioned bibliography for a better reference (see aso the chapter on
immunological modelsin [[3d]).



Chapter
2

The Celada-Seiden model

Cellular Automata based models have proven capable of providing severa new
insights into the dynamics of the immune system response. A qualitative picture
of the IS behavior can be obtained with small-scale ssimulations. However for a
more detailed analysis and to further validate the models, large scale ssimulations
arerequired.

One of the most prominent attempts to cope with the quest for biologica fi-

delity istheIMM SIM (Immune Simulator) automaton, developed by PE. Seiden
and F. Celadain 1992 [[29, [itic]] . We will refershereinto IMM SIM to identify the
computational model, i.e. the algorithm or the code, while CS-model refersto the
conceptual model interm of logical statements describing the entities and their in-
teraction rules.
IMMSIM belongs to the class of immunological cellular automata, but its degree
of sophistication sets it apart from ssimpler CA in the Ising-like class [B4, B0]. In
thewordsof Franco Celada, “in machina” experiments should complement thetra-
ditional in vivo and in vitro experiments of the immunologists.

Immunol ogi sts distinguish between humoral and cellular response. They also
set apart the clonal selection and idiotypic networks theory. Formulated by Niels
K. Jerne in 1973, according to the idiotypic network theory [[id], the organism
forms antibodies combating its own antibodies in such away that a kind of im-
munological balance and an exchange of informationis established in theimmune
system in the same way as in the central nervous system. Together with Georges
Kohler and César Milstein, Niels K. Jerne was awarded the Nobel Prize for Phys-
iology/Medicinein 1984.

The CS-model explicitly implementsboth kind of response (cellular and humoral)
but rest its foundation on the clonal selection theory of the Nobel Price FEM. Bur-
net (1959) [?U]] developed following the track first highlighted by P. Ehrlich at the
beginning of the twenties century. The theory of the clonal selection statesthat the
immune response isthe result of aselection of the “right” antibody by the antigen
itself, much like the best adapted individual is selected by the environment in the
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theory of natural selection of Charles Darwin. It is noteworthy the fact that FM.
Burnet got the Nobel Pricein the 1960 together with P.B. Medawar for hisworkson
the acquired immunetolerance and not because of his discoveriesabout the clonal
selection theory.

The original implementation of the model made use of APL2 that is an inter-
preted language with no “explicit” dynamic memory allocation capability. This
choiceaong with theintrinsic complexity of themodel prevented the authorsfrom
running any but “relatively” small scale simulations.

This situation is not uncommon. The study of complex systems behavior by
means of simulations of the single entities micro-dynamics is extending from the
physics and biology to other fields like the financial markets analysis [B5]. Un-
fortunately, many times these complex models are implemented in such a naive
way that the code must be considered just a“proof of concept” rather than a real
working tool.

When we started to face the problem of extending the IMM SIM automaton
capabilities, we decided from the very beginning that the new version of thessmu-
lator had to be aparallel code written in ahighly efficient, compiled (and portable)
language. Armed with these considerations, we developed aparallel version of the
IMMSIM automaton named CImmSim, coded by means of the C language [Z]
and PVM as message passing library.

CIlmmSim was designed according to criteria of openness and modularity to
allow smooth upgrades and addition of new features(cells, molecules, interactions
and so on) for futureinvestigations. As amatter of fact, the af orementioned mod-
ularity has been recently exploited when the description of new types of cells, in-
volvedin cellular response, has been introduced with areasonable effort. The cur-
rent version of the code (version 4.3) isable to simulate both the humoral response
described in [[29, [i0ik, [25] and the cellular response described in [[iE]. In thisre-
spect it isthe most advanced parallel version of the Celada-Seiden automaton. Ac-
tually, there is another complete version of the IMM SIM automaton which is de-
veloped and maintained by P. Seiden himself [[iti5]. However, being still based
on APL2, that code imposes hard constraints on the maximum system size. The
corresponding limit of CImmSim is, up to date, amost two orders of magnitude
bigger than that.

In the following paragraph we will present the“ computational” version of the CS-
model. The underlying formal model isthat of an Unbounded L attice Gas derived
in the introductory chapter.
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2.1 The computational model
A single lymph node of avertebrate animal is mapped onto a bidimensional trian-

gular lattice (six neighbour sites) L x L, with periodic boundary conditionsin both
directions (up-down, left-right).

Figure 2.1 Thehexagonal lattice (I€ft) is equivalent to the“honeycomb”
lattice. The differenceis only apparent.

Cells and molecules belonging to the | S cooperate, with different roles, to the
defense of the host organism from attacks of potentially offending invaders called
Antigens (AQ).

CIlmmSim belongs to the class of bit string models [[24]. The bonds among
the entities are described in terms of matching between binary strings with fixed
directional reading frame (or the dual mismatch). Bit strings represent the “bind-
ing site” of cells and molecules.

The following description of CImmSim is given by key points. i) entities rep-
resentation, ii) repertoire, iii) affinity function, iv) interactions among entities, v)
hyper-mutation.

2.1.1 Entity/State description

A simple way to describe the model is to look at the possible states for each bi-
ological entity represented. The entities are divided in cells and molecules. The
former are much more sophisticated structures compared to the latter because of
their inherent higher complexity. TableEdl lists al the entities used in the model.
For the molecular entities we need to make just afew remarks:

* |FN and D-signal belong to theclass of thelymphokines, i.e. molecular carri-
ersof physiological signals used by the cellsto acknowledge the occurrence
of certain events.
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| Cellular entities | Molecular entities |
Lymphocyte B (B) interferon-+ (1FN)
Lymphocyte T helper (Th) Danger signa (D)
Lymphocyte T Killer (cytotoxic) (Tk) Immune complexesor Ab-Ag

binding (IC)

Macrophage (generic antigen processing | Antigen or generic Virus (Ag)
cell) (APC)
Epithelial (generic target) cell (EP) Antibody (Ab)
Lymphocyte Plasma B (PLB)

Table 2.1 Cedlular and molecular entities of the CS-model.

» Major Histocompatibility Complex (MHC); these arenot listed in table Xl
since they are not considered independent entities. This meansthat they are
present inside other entities (like B, APC and EP cells) [E5] whereas the
other molecules can circulate in the lymphatic system. MHC molecules are
dividedin class | and class I1. Further detailswill be given in section B3,

» Peptide(s) and epitope(s) refer to fragments of a single molecule. For in-
stance, the antigen’s epitope is, by definition, the part of the antigen which
isbound to cell receptors.

The major difference among cellular and molecular entities is that cells may be
classified on the basis of a state attribute. The state of acell is an artificia label
introduced by the logical representation of the cells behavior.

Every single cell can be thought as a Stochastic Finite Sate Machine (SFSM)
which processesinformationand changesits state according to theresultsof thein-
teraction with other cells. The transitions among the various states are determined
by stochastic events.

| E/S | ACT | INT | INF| EXP | LOA | RES | STI | DEA |

B X X X X

Th X X

Tk X X

APC X X X X X

PLB X

EP X X X X

Table 2.2 Cdllular entity/state.
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The set of possible transitions for our SFSM’s are defined by the interaction
procedures reported in table 23 Table 24 summarizes the entity-state descrip-
tion. It should be read as follows: the cellular entity E can assume state Sif the
corresponding entry in the table is crossed. The semantic of the labelsis the fol-
lowing:

» ACT (Active) means normal state. Thisistheinitial state for each cell;

* INT (Internalized) means that an antigen presenting cell (like B and APC)
has phagocitated one antigen. This state follows to an interaction with an
antigen,

* INF (Infected) means that one antigen (now called virus) has penetrated the

cellular membraneof the cell. After that, the virus duplicatesinside the host
cell;

» EXP (Exposing) means that the cell has phagocitated one antigen and has
already processed it. If the bind with the MHCII moleculeis successful then
the cell is exposing the MHCII molecule bond with one antigen peptide;

* LOA (Loaded) meansthat the cell expose the MHCI molecule loaded with
one antigen peptide;

* RES (Resting) means that the cell isin resting state, i.e. inactive;
» STI (Stimulated) means that the cell isin duplication phase;

* DEA (Dead) meansthat the cell has been marked to dieby lysisby a Tk (Tk
“kills’ the céell).

All other entities (i.e. the molecules) may be considered always active, i.e. are
ready to interact. The set of plotsin figure B4 to EZI0 show the total number of
entitiesfor alarge smulation.

The state, along with other information, is stored in a flag byte for each cell (see
paragraph B in the appendix). C language specific macros have been defined to
access and modify the flag byte.

2.1.2 The repertoire

In the CS-model a clonotypic set of cellsis characterized by the receptor whichis
represented by abit-string. Thebit-stringlength| isclearly one of the key parame-
tersin determining both time and space complexity of the algorithm that simulate
the behavior of the whole set of entities as the number of potential repertoire of
receptors scales as 2' (see [25, IZ4)).

Every entity is represented by a certain number of molecules, the receptor be-
ing one of these. The repertoireisthen defined asthe cardinality of the set of pos-
sible instances of entitiesthat differ in, at least, one bit of the whole set of binary
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11/1 40911911 gl0lo 11,

Figure 2.2  Bit-string representation of thebinding site of cellsand mole-
cules. Inthisfigure two complementary strings of length | = 16.

strings used to represent its attributes.

Indeed, the cells equipped with binding sites and the antibodies, have a potential
repertoire of 2", Where N, indicates the number of binary strings used to repre-
sent receptors, MHC-peptide complexes, epitopes and so on, of the entity e. Other
entities do not need to be specified by binary strings so their repertoireisjust one
(i.e. Ne = 0). Anexamplearetheinterleukin moleculeslikethe Interferon— (IFN)
and the Danger signal (D). TableZ summarizesthe number of strings used to rep-
resent each entity. Since the number of different MHC molecules (class| or Il) is
l[imitedto afew units, they do not contribute to the complexity of thecells. Inother
words all cell equipped with MHC molecules carry the same number of the same
molecules. Actually, we need to represent the MHC-peptide complex produced
by the internal processing of antigens (endocitosys). This bit string is important
because it is used for further recognitions of the T (helper of killer) lymphocytes.

external interactions cell-internal interactions
B—-Ag,B-Th,Ab—Ag,Th— | B — MHCII, APC — MHCII,
APC, Tk — APC, Tk — EP. | APC —MHCI, EP-MHCI
APC — IC, APC — Ag, EP —
Virus,

Table 2.3 External and internal interactions. Here antigen and virus are
the “same” entity.

Althoughthe Ag are specified by ny+ne, binary strings (n, indicates the number
of peptideswhereas ng, isthe number of epitopes), they do not need to be explicitly
represented by arepertoireof 2" because in the current version of thesimulator
thereis no support for antigen mutation. As a consequence the number of antigen
represented at run time is limited by the number of different antigens we plan to
injectinto thehost. Thus, during the smulation, weneed just to distinguish among
n; number of injections (cfr table ). It follows that also the IC’'s may be treated
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in thisssmplified way.

2.1.3 The affinity potential

Some entities have, on their surface, molecules, usually called receptors or bind-
ing sites, which arein charge of recognizing the antigen. Inthismodel two entities
equipped with receptor interact with a probability which isafunction of the Ham-
ming distance [21] between the binary strings representing the entities' binding
site. Thisprobability is called the affinity potential. For two stringss and s’ such
probability ismax (i.e. equal to 1) when all corresponding bits are complementary
(0 < 1), that is, when the Hamming distance between sand s’ is equal to the bit
string length. A good and widely used anal ogy isthe matching between alock and

itskey.
If | isthe bit string length and misthe Hamming distance between the two strings,
the affinity potential is defined intherangeO, . .., | asfollows:

21
0, m<m. (21)

v(m) = {Uém)/(m_l)’ mz= m,
where v, € (0,1) is afree parameter which determines the slope of the function
whereasm (I/2 < m; < I) isacut-off (or threshold) val ue below which no binding
is alowed (see figure E). With ClmmSim it is possible to choose among four
different affinity potentials. The impact of a different affinity potential shape on
the IS dynamics will be discussed in section EZ3

2.1.4 The interactions

The interactions among entities are described in terms of state transitions (condi-
tion - action description). They can be divided in two categories. external inter-
actions, which happen among cells and mol ecul es having the same position on the
lattice and internal (to the cell) interactions, that account for MHC Ag-peptidein-
teractions inside the phagocitating (B and APC) or infected (EP) cells.

External interactions.

There are 11 different interactions among the whole set of entities. The syntax to
describe each interactionis the following:
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| NTERACTION : < involved entities >

SPECI FI C < Yes | No >

MATCH . < involved nol ecul es >

CONDI TI ON < allowed state for <involved entities> >
ACTI ON < final state for <involved entities> >

wherei nvol ved enti ti es arethetwo interacting entities;

thefield SPECI FI CisYes if theinteraction probability depends on the matching
degree between thei nvol ved nol ecul es of the two entities and is NO oth-
erwise (aspecific bind).

The conditionsare expressed in terms of first order predicates by means of thelog-
ical AND, OR, NOT and boolean unary operator s that check each possible state of
the entitieslooking at their state-flags (cfriB3): 1 sACT(-), | sI NT(-) and soon;
the name of the operator is self-explaining; e.g. | SACT(cel |') istrueif cel |
isfound in state ACT.

The state transitions are registered by flipping the corresponding flagsin the state-
flag-byte as described in the paragraph B3 of the appendix. To this purpose a set
of unary operators like DOACT(-), Dol NT(-) and so on, have been defined. In
addition, the operators Ki | | (-) and Cr eat e(:) respectively delete or create the
specified entity. For example:

| NTERACTION : B, Th

SPECI FI C : Yes

MATCH . B-MHCl I peptide nol ecul e, Th-receptor
CONDITION : ISEXP(B) AND |SACT(Th)

ACTI ON : DoSTI(B) AND DoSTI(Th)

means that the specific interaction between the receptor of Th and the MHCII-
peptide molecule exposed on the surface of a B cell may happen only among in-
stances of active Th's and instances of exposing B’s. No other stateis alowed. If
the interaction really happens (as determined by the stochastic event), the action
isto update both Th and B to state STI (note that we are not specifying the details
of the actions taken to store the information required for successive processing).

Moreover some entities have more than one receptor (or generic binding site) like
the antigen that may be represented with two or more epitopes. In this case the
interaction is allowed if at least one of their binding-site matches. In particular
the action are undertaken as soon as one match is successful (greedy paradigm).
For every aspecificbinding (i.e. SPECI FI C.  No) the probability to bindisgiven
as parameter and do not depends on any match (thefield MATCH s empty).

Each of these procedures examines the data structures (see appendix B of the
two involved entities looking for a smultaneous true value of the predicates ex-
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pressed in CONDI TI ON. For each specific interaction the Hamming distance be-
tweenthei nvol ved nol ecul es specified by the tag MATCH is computed as
described in section Bl After that, the probability of asuccessful interactionisob-
tained by looking at the affinity function. At thistime, arandom number between
0 and 1 is generated. If the random number is less than the interaction probabil-
ity, then the actions specified in the tag ACTI ON are undertaken. These actions
are usually composed by very few assignments so they do not constitute a major
overhead compared to the scanning of thetwo lists.

One may argue that it would be helpful to have asingle data structure for each
possible state. Instead, the advantage of keeping all the cells mixed inasinglelist
isthat code upgrades are smpler.

A list of al theinteractions (external and internal) isreported intable 23 The
extensive description of these interactionsis not the goal of the present work.

Entity Ne | Repertoire
B, APC 2 22
Th, Tk, EP, PLB, Ab 1 2!
IC, Ag Np + Nep 2(pnep)l
IFN, D 0 20

Table 2.4 Entity/Repertoire. For example, Ne is 2 for the B cellsbecause
each B cell carries areceptor and a MHCII-peptide molecule. For the IC
and Ag, we show here the theoretical repertoire. Actually, in the current
version of ClmmSim, the number of possible choices for these entitiesis
reduced to n; as explained in section &4

Cell-internal interactions.

The syntax for the description of the cell-internal eventsisvery smilar to the pre-
vious case. The only differenceis that one of the involved entities is aways the
infecting/phagocitated antigen. Thisis, from the computational viewpoint, a ma-
jor advantage since just one data structure must be scanned to select which cells
will be processed. We report here just an example, whose meaning follows the
previous one.

CELL | NTERNAL | NTERACT. : B

SPECI FI C : Yes
MATCH : MHCI I -nol ecul e(s), Ag peptide(s)
CONDI TI ON . I sINT(B)

ACTI ON . DOEXP(B)
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no interaction

no interaction

no interaction

4 times

Figure 2.3  Stochastic finite state automaton corresponding to B cell be-
haviour.

An example of finite state automaton applied to the behaviour of the entities of
thismodel isgiveninfigureEZd The B cell statedynamicsisconsidered. A B cell
startsin the active state. After having recognized avirusit goesin the internalized
state. If the internal recognition of the peptides with the MHC class || molecules
issuccessful, then it goesto the exposing state. If not, thereis achance to get back
to the active state otherwise keep trying with the internal B-MHCII interaction.
From the exposing state it may goes either to the stimulating state or back to the
active state, depending on the interaction withaTh cell. It staysin the stimulating
state for a certain number of time steps while it creates clones of itself. After the
duplicating periodisexpired it goesback tothe active state, ready to start thiscycle

again.

2.1.5 The mutation process

“Hyper-mutation” isaterm used for indicating aset of complex phenomenawhose
result isamutation in the portion of the DNA of the lymphocyte B coding for the
variable region of the antibody [IC24].

In CImmSim, mutation of each string representing the cell receptor in the dupli-
cating B cells, isimplemented in two different ways that the user may choose at
compile time.

» Binomial distribution: the number of mutations follows a binomia distrib-
ution with parameters| and py, (p, is the probability to change a single bit).
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This schema assumes that the single bit mutation probability is 1D (Inde-
pendent and | dentically Distributed) with respect to the other bitsof the same
string.

* Poisson distribution: the mutation process follows a Poisson law. |

The effects of the hyper-mutation on affinity maturation can be easily highlighted
by CImmSim by means of the parameter h. (“holeinthe repertoire”). If thevaue
of h; iswithin the range [m, I], the bone marrow is not allowed to produce cells
with a“natural” affinity to the antigen higher than h.. As a consequence, hyper-
mutation becomes the only mechanism for the I Sto enhance the affinity to the anti-
gen.

2.1.6 Simulations

To show the capabilitiesof ClmmSim we present the results of avery large ssimu-
lation. It reproduces an immunization experiment in which the antigen is injected
in the body in two different time steps to stimulate theimmune response. The im-
munization consists in afaster secondary response due to the memory the system
has produced during thefirst one. Therun hasbeen performed on ashared memory
machine and is very demanding especially for what concerns the memory require-
ments. Details are given below.

2.1.7 The parameters

The bit string length | has been set equal to 24, corresponding to a potential reper-
toireof 16777216 distinct receptorsand molecules. Theinitial number of cellshas
been set equal to 0.13 x 10° per type (i.e. atotal of 650000 cells). Two injections
of 0.5 x 10° antigens at time step 0 and 120 have been considered. The mutation
rate per bit py, (see section ZIH) isequal to 5 x 1072 which means atotal mutation
rate per string of 1—(1—pp)?* ~ 0.11. The cut-off value of the Hamming distance
(see section ZI3) ism. = 16 whereas h, (see section ZI3) is equal to 20. We
recall that receptors with affinity greater or equal to h. are created merely by mu-
tation from active (i.e. with affinity > m) clones of B cells during the duplication

1 A simple generator (even if somewhat inefficient) for random numbers taken from a Poisson
distribution with parameter J, is obtained using the regjection method [Ed]:  if X3, %, ..., X isa
sequence of random numbers via uniform distribution between 0 and 1, then k, taken as the first
integer for which the product H:(Xa islessthane™, i.e. miney {k : H:‘xi < e‘*}, is distributed
asa Poisson with parameter A. After the number of mutating bitsin a string has been determined,
the position of such hitsis chosen at random among the| possibilities. In such away abit can be
selected more than once and there isthe chancethat it isfinally left unchanged (if selected an even
number of times).
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phase.

The virus proliferation rate has been set equal to 0.01 for free-circulating viruses
and to 0.2 insde target cells. The size of the bi-dimensional grid is 1024 points
(L =32).

The value of the parametersis such that the system is able to eliminate all the
antigens during the response. Note that, with an higher virus-growth rate, the in-
fection may be strong enough that the system failsin removing the antigens. This
case iswell described in [[ie].

2.1.8 The dynamics

FigureEZ4 shows the number of antigens versustime. At time step 0 and 120 half
millionantigensareuniformly injected on thelattice. Thefirst responsetakessome
time to mount since the production of antibodies and specialized T killer cellsre-
quires many recognition steps. However, the response to the second injection is
very quick because the system has memory capabilities (see figuresE3, Ed and
A respectively for B, Th and Tk cells).

The second peak of Ag during the primary response (about 17" time step) is due
to the antigens proliferation inside the EP cells. When such antigens reach acriti-
cal number, the cell explodes spreading them on the lattice site. The second peak
isvery high because in the time steps following to the first injection the virus in-
fections are almost simultaneous on alarge number of EP cells (see the plot at the
bottom of figureZZd). The time required to the antigen to reach the critical number
inside the target cell depends on its grow rate and the threshold value which are
both settled as input parameters.

The large number of Interferon-~ in bottom figure of panel EZindicates that many
APC arein the exposing state during the first response.

The plots in figure 3 describe the evolution of the B-cell population during
thesimulation. The top plot showsthe B cells affinity classes. Two B-cellsbelong
to the same affinity classif their receptors have the same Hamming distance from
the antigen. We define the mismatch of two bit strings as the difference between
thebit string length | and their Hamming distance. Sothereare affinity classeswith
mismatchmequal t0 0, 1, ..., | —m.. The number of cells belonging to any affinity
classis normalized by division with the binomial coefficient (!) . Sincethe value
of h. (see section Z1) is equa to 20, the value of the mismatch for the cells pro-
duced by the bone marrow is equal or greater than 4. Neverthelessan affinity class
with mismatch 3 is generated by means of the hyper-mutation mechanism. Note
that the classwith best mismatch (i.e. 4) growsfaster than the othersduring the sec-
ondary response. Thisisexactly the affinity maturation phenomenon expected by
the clonal selection theory (asreference see bibliography in [[25, [0e, 24, [T, B5]).
During the primary response (between time step 0 and 30) the class with mismatch
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Figure 2.4 Population of antigen-virus on the top; Population of
interferon-+ at the bottom.

5 wins (as expected) the race with the others classes.

The bottom plots in panel figure B3 shows the number of memory and naive B
cells along with their sum. The number of naive cells remains constant because
stimulated B cells produce just memory and plasma cells.

The plot at the bottom of the same panel shows the number of B cells for three
(out of four) of the possible “stable”’ states. The fourth state (“Internalized” in this
case) isconsidered “unstable” because the cell switchesto another state within the
same time step.

During the first and second response there is a relative large fraction of cells
in exposing or stimulated state. The shift of few time steps between the two cor-
responding curvesis not surprising since the latter state follows the former in the
recognition process.

FigurelZA showsthe population of T helper cells. Their evolutionisclosely related
to the B cellsone.

The top plot in figure 24 shows the number of APC cells for any possible state.
The cells go very quickly from active to either loaded or exposed state. A fraction
becomesinactive (state resting) but isimmediately brought to another state by the
antigenic stimulation.

Some of the possible states for the APC (cfr tableEZ) are not shown because they
arenot stable (the definition of “stable” state isthe one adopted for the B cells). A
counting between time steps would show nothing but zero for them.

Note that the small decrease in the total number of cells (in thisplot and in others)
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Figure 2.5 The upper plot shows the B cells affinity classes defined by
the mismatch with theinfecting virus. The number isnormalized by the bi-
nomial coefficient () where misthe mismatch indicated in the key panel
of figure. The bottom plots show the population of B cells (memory or

naive) in all the possible states.
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Figure 2.6 Population of T helper cells (memory or naive) in al the
possible states. The growth follows the antigenic stimulation. The peak is
reached few timesteps|ater compared tothe B cells(cfr fig ZH) because the
stimulation depends also on the concentration of interferon-+ (cfr fig Z2).

is due to the normal birth-death ratio which sets the stable point at a lower value
compared with theinitial one. Thisisan effect of numerical approximations.

The plot at the bottom of panel figure EZ4 shows the evolution of the EP (virus-
target) cells. The global number decreases because the antigens start to kill them
(approximately at the 15" time step). Actually, many EP cells go immediately to
the loaded state. These are the infected cells. Their number decreases because
either theinside proliferating virusor aT killer cell kill them. The total number of
cells does not decrease significantly during the second response because the ISis
able to recognize the virusin time preventing further infections (immunization).

FigureEZ3 shows the evolution of the T killer population. The highest peaks are
at time step 20 and 125, this means that there is a delay with respect to the anti-
genic stimulation. The Immune System needs more time to mount afirst cellular
response (3 time stepsto start and about 20 to become strong enough). During the
second response the reaction is much faster. The T killer stimulation needs, asin
the T helper case, the presence of interferon-+ (cfr figEZ2).

FigurelEZd shows the PlasmaB cells affinity classes normalized with respect to the
binomial coefficient (! ). Asinthe B cells case, the mismatch mis equal to the bit
string length | minus the Hamming distance between the Plasma B cell receptor
and the antigen. It is clear that the humoral response is completely dominated by
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Figure 2.7 On top it is shown the population of APC in the different
states. At the bottom the EP population.
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Figure 2.8 T killer cell population detailed dynamics.
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high affinity clones (m = 4 and 5). The Hamming distance is equal to 19 during
the first response. Then it increases to 20 during the second response as a result
of the hyper-mutation process. The same remarks apply to antibodies (the bottom
plot in figureEZX) since they are produced directly by the Plasmacells.

Plasma B cells by mismatch with the antigen Antibodies by mismatch with the antigen
0.0009 T T T T T T T T T 0.05
0.0008 | mismatch 0.045 |
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00007 8 0.04 1
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Figure 2.9 PlasmaB cdlls and antibodies by mismatch (normalizedto (})).

The figure on the top of panel EZI shows the evol ution of the immunecomplexes.
The huge number of IC in the first response witnesses the massive production of
antibodies required to eliminate the viruses in this phase. In the second response
the IC population is much smaller because the antigens do not have the time to
grow (the antigen is eliminated more quickly).

Inthe same panedl it isshown the Danger signal (bottom plot in figureZId). Again,
during thefirst response alarge amount of D-signal isreleased by the EP cellsthat
get killed by the virus.

2.1.9 Notes

The model alows alarge repertoire to be represented. Thisis not asimple “tech-
nical” result. For instance, the memory of a past immunization can be thought as
afixed point in the population dynamics of memory lymphocytes [5]. The num-
ber of fixed points, which reflectsthe “ genera” memory capacity of the system, is
morerich and close to the reality if we may represent alarge repertoire.
Moreover, another aspect worth to be implemented is the mutation of the anti-
gen (during the replication inside a cell). This, and new interaction procedures
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Figure 2.10 Immunocomplexes (top) and D-signal (bottom) both in
semi-log scale.

which allow the T helper to be target cells of the antigen. The microscopic sce-
nario of mutating viruses which attack the Immune System itself isimportant be-
cause it corresponds to the behavior in case of HIV infection. Using CImmSim
we could hopefully discover interesting aspects not yet revealed by other models
developed for this purpose (see [E]).
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2.2 Learning cascade

Inthe recent past, the ssimulation of the Immune System (1S) has been drawing sig-
nificant benefits from the resort to cellular automata (CA), namely fully discrete
dynamical systems evolving according to boolean rules [[iL3, BE]. CA appear par-
ticularly well suited to the smulation of biological systems mainly on account of
their capability to naturally incorporate complex non-linearities. In addition, ow-
ing to their space-timelocality, they are almost ideal candidatesfor massively par-
allel processing.

In the following paragraph we use ClmmSim to investigate this phenomenon
by meansof computer simulations. The cellular responsetriggered by the presence
of lymphocytes T killer (TK) has been turned off, thus only the humoral response
isconsidered.

This work represents an attempt to frame the immune system response to the
Information theory of C.E. Shannon [[iiiZ, bO]. It is suggested that the process
by which the immune system learns how to recognize foreign invaders proceeds
through a cascade of “metastable states’ behaving like collective modes in a bit-
matching space.

2.2.1 Collective dynamics in the immune system response

For the present study, the affinity potential is chosen in the same form of the trun-
cated exponential of eq(). Here v isequal to 0.05, misthe number of matching
bitsand m. isthe*“ cut - off” match below which no recognition takes place. Inad-
dition, each cell is endowed with a set of internal degrees of freedom specifying
itsinternal state (e.g. inert, stimulated, Ag-processing, etc, asin table E2). Full
details on the system specification are given in [[24].

Based on a set of computer ssimulations, we have come up with the follow-
ing picture of the immune system response. Antigens injected from time to on-
wards start to interact with a random background of B-cells, distributed along a
Maxwellian

Mo(M, 10, To) = (27 To) ™ exp [~(M = 10)?/2To]

centered about o = |/2 with variance oo = V/1/2. Here Ty = o3 is the “temper-
ature” measuring the scattering (uncertainty) around the mean value po. Subse-
quently, after agiveninduction period, selective Ag interactionswith B-cells, lying
inthetail of My with matchings above m, trigger the growth of a new population
of high-match B-cells centered about a higher matching number z, = m.. This
growth proceeds via stimulation of B-cells by Th-cells and subsequent prolifera-
tion viaclonal multiplication. Thisisthe start-up of the learning process. B-cells
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peaked about m trigger, in turn, the growth of higher-match populations, in a sort
of upward cascade in mspace ending up with the highest available bit-match num-
berm=1.

Such “bump-in-tail” distributions are often encountered in physics where they
are usually associated with instabilities ensuing from their high energy/entropy
content. In theimmunological context, however, thereis no thermodynamic prin-
ciple forcing the release of the entropical excess associated with the “bump-in-
tail”. On the contrary, the system dynamicsis presumably geared towards a nega-
tive entropy production feeding thelearning processthat allowsthe I Sto recognize
foreign invaders. Hereafter, we are going to show that a quantitative measure of
thislearning process is provided by its relative entropy.

To be more specific, let us consider a dynamical process turning state 1 into
state 2, characterized by distributionsf* and f2 respectively. The quantity G;, de-
fined as

f2
Gz =) falog <f11“> (2.2)

isthe relative entropy or Kullback information of the process [[34].

Owing to the inequaity logx > (1 - 1/x) (equa sign applying if x = 1), itis
readily shown that G;, is positive definite and zero just in case the two distribu-
tions are exactly the same. According to [[LZ], G;, represents the information gain
encoding the extra-knowl edge associated with the avail ability of an additional dis-
tribution function. We observe that G, may be related to a metric measuring the
distance between distributionsf* and f2 in a suitable information space [[if].

We shall consider the information gain associated with the transition from an
initial state f* to afinal state f2, identified by their first three moments:

n = Z frln, Ny = Z mfr'n and niTi = Z fr'n(m— ,ui)z
m m m
(n; isthe number of individualsbelonging to f', with0 < n; < 1).
The total entropy of the “bound-state” (f* +f2) isgiven by
Hiz = Hi + Hz + Hx

where _ _
Hi=Y fylogfy, (i=1,2)
m

are the entropies of the “pure” statesf' and

Hx = falog(1+fa/fn) + > falog(1+fr/f2)
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is the exchange entropy due to superposition of the two states.
Using Maxwellian states as interpolants, simple algebra on eq(EZ3) yields

n n
G2 = nzlog n_i + Ez(log f1p+ 075 —1+62, (2.3)

Whereelz = Tl/Tz and 512 = (/Lz - ,ul)/\/ﬂ

Such simpleformulacallsfor anumber of comments. Thetermlog;,+603-1
on therhs of eq(E3) isthe “thermal” component of the information gain, namely
the information gained through a differentiation of thetwo states viaatemperature
change (scaledilatation/contractionin mspace). Itispositive definite and vanishes
only for T, = Tj.

Theother termon therhsof eq(&3), §2,, istheinformation gain associated with
differentiation viashiftsin mspace and consequently it showsexplicitly the desired
dependence on the mean displacements we were looking for. It is aso positive
definite, regardless of the sign of the displacement 4;,, and symmetric under the
exchange 1 «+ 2 so that it can serve as a metric distance between f and f2.

How do these notions map out onto the immune system response? The infor-
mation gain Gy, aone can not tell the whole story because its trandlational invari-
ance does not allow to distinguish between “smart” (high ) and “dumb” states
(low ). Thus, thisindicator has to be complemented with the sign of the mean
matching separation d;,. In other words, the sign of 4;, indicates whether the sys-
tem has moved uphill (learning) or downhill (unlearning) along the learning land-
scape, the module of information gained/lost in such process being given by Gas.
Within this picture, Gy, is naturally interpreted as the information cost associated
with the process yielding alearning amount |415|.

These considerations allow us to gain a better insight into the actual results of
the numerical smulations. The runs have been performed with the following pa-
rameters: | = 12, m; = 10, grid size = 16 x 15, v, = 0.05, initial number of B,
Th and APC cells equal to 2000. The Antigens are continuously injected at arate
of 300 unitg/step. All the input values are drawn from [[2S, [0&] which represents
the basic reference with respect to the biological parametersof the model. The to-
tal number of Antigensand B-cells, as afunction of time, is represented in figure
ETI The B-cells succeed to level off the Ag content after about 50 time steps.
Since asingle time step covers 1/10 of atypical B-cell lifetime, this corresponds
to about 2 weeks in physical units. The dramatic drop of Antigens aftert = 50 is
aclear cluethat the IS has been capable to mount a very effective response to the
invading agents.

More insight on the specific carriers of the IS response can be gained by in-
specting the time evolution of the B-cell distribution function f,(t) reportedin fig-
ureZIA Here f,, is the total number of B-cells with matching number m versus
the total number of B-cellsin the system.
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At the beginning, only the initial Maxwellian corresponding to the mean bit
matching number (¢ = | /2 = 6) develops. Subsequently, thisMaxwellian sendsin-
dividual sto asecond mode, say M, correspondingto thelowest matching number
(1 = me = 10) recognizable by the system. The M1, mode behaves|like an ordered
(low temperature) metastable state, being fed by thetail of the Mg and sending it-
self individuals to the upper-lying states. In a sense, it serves as an intermediate
bridge to accomplish alearning cascade process taking ¢ = 6 states into the final
p = 12 (perfect learning) state.

Several aspects of such process deserve particular attention, like the depen-
dency (if any) on the bit-string length and on the specific form of the affinity po-
tential. For longer strings (I > 12), we expect the number of learning stages to
increase as (I — m;). Unfortunately, this hypothesisis hard to test due to the expo-
nential complexity (O(2%)) of the model. Any additional bit in the string requires
afour-fold increase in computing time.

An interesting feature of the learning cascade is that it is realized via shifted
“bump-in-tail” states, which stand out as* collective modes’ of theimmune system
dynamics. Thisisto be contrasted to an alternative scenario whereby the initial
Maxwellian would develop long (exponential or agebraic) tailsrather than narrow
bumps at high-m.

It is worth to point out an amazing analogy with the mechanism of “current
drive’ in fusion plasma, namely the dramatic rise of electric current triggered by
injection of even minute amounts of radio-frequency power in arange of frequen-
cies much higher than the mean electron speed [[L1&].

Formally theanal ogy proceedsby identifying B-cellswith el ectronsinteracting
with Antigens (photons) via the affinity potential v(m) (electron-wave potential).
Within this analogy, the mean bit-matching number ¢ can be seen as the electric
current driven by the waves, perfectly in line with the interpretation of mas afic-
titious “ particle speed”. In this context, it would be interesting to define a sort of
learning efficiency as the analogue of electric conductivity, namely the ratio be-
tween the mean bit-match ¢ and the strength of the affinity potential v..

In figureZZId we show the normalized mean match ., = #0720, (,1(0) =1/2),
the entropy H(t) = >, fml0gfy, and theinformation gain G(t).

The mean bit match number isthe most immediate indicator of whether or not
the system islearning to withstand the Antigens attack.

Asexpected, after an induction time of about 50 time units, the mean bit match
exhibits a sharp rise associated with the onset of the x = 10 mode. This s the
time it takes the system to devel op the catalytic growth of B-cellslying in thetall
(m> m) of theinitial Maxwellian. Itisalso the stage of substantial learning. The
subsequent evolution shows a progressive improvement due to the disappearance
of My infavor of the“smarter” M1, mode. Sincethe Mg iscontinuously sustained
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Figure 2.13 Time evolution of the normalized mean match pn,, standard
entropy H(t) and information gain G(t)

fromtheexterior, it never diesout completely thereby preventing i from achieving
thetop value p = 12 (perfect learning state).

After astagnation period (up tot ~ 50), the entropy undergoes a sudden drop
asaresult of thelSprimary response. Note, infact, that the statistical dispersion of
Mo, T1o, issignificantly smaller than Tg. Subsequently, the simultaneous presence
of competing modes causes adight entropy increase, mainly contributed by the ex-
change entropy component. Finally, as the mode centered in m = 12 prevails, the
entropy starts again to decrease monotonically. As a general remark, we observe
that the entropy H(t) does not behave like a proper H-function, i.e. a monotoni-
cally decreasing/increasing function of time. Since our f,, isastandard probability
density function (i.e. positive definite and normalized to one), our interpretationis
that no standard H function can be associated to the C-S automaton dynamics.

Finally, we inspect the evolution of the information gain G(t). As expected
from previousanalytical considerations, G(t) proceeds much in sympathy with the
mean match number . (t). However, the sharp rise around t = 50 is significantly
steeper, taking almost the connotations of afirst order phase transition.

A semiquantitative assessment of the time evolution of G(t) may be attempted
on the assumption that the bump-in-tail modes behave like Maxwellian distribu-
tions. We want to stress that, due to the limited string length (I = 12) thisisno
more than a reasonable hypothesis. In other words, we have been able to test it
just for the initial Maxwellian Mg. For higher-match modes longer strings are re-



2.2. learning cascade 41

quired. Neverthelessit is reasonable to state that the specific shape of these modes
should not affect the qualitative features of the learning cascade.

By identifying state 1 with Mg and state 2 with Mg, from figureZI we infer
m=1n =063 T, =3, T, ~ 04,6, = (10 - 6)/v/3. According to eq@3J),
thisyields Gy ~ 1.75 in a satisfactory agreement with the data of figure EZI3
By modeling the subsequent evolution as atransition from M;g to M2, we obtain
m ~ 0.63,n; ~ 0.85/2, 01, ~ 1, §2, ~ (12— 10)?/0.4 = 10. Since My, lieson the
rightmost boundary of bit-matching space, we must account for finite-size effects.
Some algebrayields

n, T
Gis=G/2+ EZT—Zélz/\/ZWTz
1

where the subscript fs standsfor ‘finitesize’. Thefinal result for the transition Mg
to My, istherefore G ~ 2.8, again in a reasonable agreement with the results of
the numerical ssimulation.

As afurther observation, we note that, at variance with standard entropy, the
information gain does behave like a proper H -function, namely it monotonically
increaseswithtime. Thisisconducivetotheideaof a“maximuminformation-gain
principle” [E5] of theform ‘fj—? > Owiththeequality sign holding when thelearning
process is basically over. Thisis a direct consequence of G being a monotonic
function of 4, which is quite reasonable in light of the interpretation of G as the
information cost associated with the learning amount §.

In turn, ¢ is a monotonic function of time because high-m bumps develop as
aresult of the depletion of lower-m “parents’, hence after them. Thisiswhy the
system dynamics exhibits a “built-in” time-arrow.

The present study sets a pointer in the direction of kinetic-theory (Boltzmann)
as avaluable approach to the | S dynamics, possibly achieving an optimal compro-
mise between CA microdynamics and macroscopic popul ation dynamics.
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2.3 The role of affinity potential and
hypermutation in the cascade

In the previous section the sequential nature of the process allowing the Immune
System to learn how to withstand pathogen agents has been explored by means of
large-scale computer simulation of the Celada-Seiden immunological automaton.
The question was: how doesthe IS learn how to mount a specific response against
invading entities? This capability of the IS is rooted in the specific functions of
each of its micro constituents, but it is also true that the way the IS as a whole
learns to withstand antigen attacks depends even more on the mutual interactions
between these micro constituents. Once the importance of collective behaviour
isacknowledged, arelevant question becomes whether non-equilibrium statistical
mechanics and thetheory of (non-linear) dynamical systems, provide aconvenient
mathematical framework to characterize, at least semiquantitatively, the generic
features of the immune system response [25, [24].

Within the CS-model, each cell is characterized by a bit matching number m
denoting the number of matching bits with the bit string representing the Antigen.
Bit match when they are complementary (O <+ 1). High/ Low affinity istherefore
to be understood as high / low values of the matching number m. With a string
length |, the repertoire of the model is best organized into ahierarchical set of | +1
classes of cellscharacterized by the matchingnumber m=0,1,2...l. Thegeneric

m" class contains I '
<m> ~ mi(l - m)!

elements; the sum over all possible classes involving a total repertoire

|
> (w) =2
m=0 m

possible specificities. This definesthe internal shape space of the automaton. The
active region (defined later) has a structure markedly pyramidal: only one state
with perfect match m=1, | stateswith m =1 -1 and so on down theline.

The population density in this phase space is given by the actual occupation
number Nin(X, t) of cellsin classmat site x at timet. Knowledge of the occupation
numbers N, a each space-time |location yields a complete characterization of the
dynamical system. The B and T-cells binding affinity is expressed viaan “ affinity
potential” v(m). The specific form of the affinity potential is not known in de-
tail from biological data, but it is plausible to express it in the form of a sharply
increasing function of m above a critical cut-off m; < |, and zero below it (see
eq@&). Asaresult, only a subset of the phase space, characterized by the condi-
tionm, < m < |, isimmunologically active. We shall call thisthe active region of
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immunol ogical phase-space, whose size |-m+1 countsthe popul ationscompeting
for the Antigen.

Numerical evidence wasreported in [[L1Y] that the | Slearning process proceeds
through a cascade of higher and higher affinity populations (B-cell) in which the
low affinity modes indirectly feed the higher affinity ones in akind of sequential
process dubbed learning cascade. A quantitative indicator of the aforementioned
learning cascade was identified with the Kullback relative entropy, or information
gain [38], defined asin eq(3). where we refer to atransformation taking the sys-
tem frominitial state“1” at timet =t; to final state “2” at timet, =t; + 7, and

_ Nn
Em’ Nny

is the probability density of class m. Ordinary Boltzmann entropy did not show
any sign of monotonic behaviour, which is not surprising since there is no rea-
son to believe the underlying micro dynamics of the CS automaton should obey
aBoltzmann H-principle.

In accord with thetheory of clonal selection, the learning processisbasically a
shift of the occupation numbers towards the high-affinity region of the spectrum,
abiastowards®smart” individuals. A primeindicator of thisshiftisanincreasein
time of the average matching

fm

p(t) = min(x 1)

where x runs over the spatial extension of the system. The gain can be interpreted
asthe information-cost needed to bring the ISfrom low to high-affinity states, and
under certain assumptions on the shape of f, it can be expressed as an anaytic
function of p [[K15].

Our previous results pertained to relatively small repertoire, with | = 12, con-
sisting of 212 = 4096 specificities. Thisis about four orders of magnitude lower
than the expressed repertoire of the human Immune System. The question, which
makes the hard-core of this paper, iswhether the generic features observed in our
previous work do survive once larger repertoire are considered. To this purpose,
we have upgraded our computational tool to take full advantage of parallel com-
puting capabilities [[2€]. Specifically, we have extended the size of the repertoire
from 212 up to 22°, namely more than two orders of magnitude above our previous
work, more than an order of magnitude beyond any previous study with the CS-
model we are aware of, and, more importantly, only an order of magnitude below
the expressed repertoire of thereal 1S. Being aware that a mere rise in the size of
the repertoire does not necessarily imply a corresponding gain of immunol ogical
fidelity, we have aso included hypermutation, namely the mechanism by which
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clonesthat differentiate from their mother cells, may show point mutationsin their
receptors [[LZ23, [3].

In the model, hypermutation is represented by a given string s turning into a
different string s’ as aresult of one (or more) bits changing state (zero to one, one
to zero). The qualitative effect of hypermutation isto generate cells which would
not appear otherwise in the system, thus giving the IS more freedom to explore
its phase space. The chief question is whether such freedom is used to help affin-
ity maturation, and, if so, to what extent. This question is genuinely dynamical
in nature. On the one side, affinity-degrading (high-to-low) mutations are more
likely than affinity-enhancing (low-to-high) ones smply on account of the pyra-
midal structure of the active region of the phase space. On the other hand, since
high-match cellsaremoreeffectivein capturing the Antigens, once generated, they
get a chance to reproduce faster than all other competing cells and possibly pro-
mote the affinity maturation. Whether such a chance does indeed materiaize in
actual practiceis anon-trivial question which involves a genuinely dynamic non-
equilibrium process. Computer smulationiswell placed to provide asemi - quan-
titative guidance in this complex territory.

2.3.1 Numerical simulations

We have performed aseries of numerical ssimulationsby varying thestring lengthl,
with and without mutation, and the shape of the affinity potential. The simulations
areperformedona16x 16 grid, with thefollowing parameters: averagelifetimeof
B cells, 75 = 10, initial population B(0) = 2184, birth-rate B ~ 0.07B(0). The Ag
areinjected at arate of 1000 individuals per time step. Each time step corresponds
to about 8 hours in real time. Finally, we assume a time independent single-bit
mutation rate equal to p, = 0.02. We do not address the issue of optimal mutation
schedule as in [B5]. Our observations are based on a series of smulations with
| = 20, m; = 15 with and without mutation, and two typical shapes of the affinity:
A) Convex, B) Concave.

The values of the affinity functions are reported in Table 23

Each smulation has been performed 40 times with different random seeds to
double-check possible dramatic differences in the outcomes. Although no quan-
titative conclusions can be drawn, we can state that there are no indications of a
strong sensitivity to the choice of the random numbers.

Our data show that affinity maturation does take place and in all casesit pro-
ceeds through a sequential cascade from low to high affinity populations (see fig.
ED).

Since no virgin B-cells above m. are allowed, the appearance of active cells
in the course of timeis necessarily due to hypermutation. The conclusion is that,
albeit penalized in the average, hypermutation does have a dramatic effect in pro-
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m VA VB VB/VA
15 0.05000 0.05000 1.000
16 0.09103 0.50072 5.501
17 0.16572 0.74829 4.515
18 0.30171 0.88428 2.931
19 054928 0.95897 1.746
20 1.00000 1.00000 1.000

Table 2.5 Affinity potential for convex and concave shapes

moting affinity maturation. The intuitive picture is that, once a favourable mu-
tation occurs by fluctuation, the higher reactivity of the high-affinity cells allows
them to reproduce and survive for along time.

Inall cases, affinity maturation rampsup betweent = 50 and t = 100 time units,
that is between two and four weeksrespectively inreal time. During thisburst, the
total affinity, defined as

(1) =Y Nm(®)v(m)

grows by almost two orders of magnitude, or more, depending on the shape of the
affinity potentia, as shown in fig. EZI4 This burst is followed by a slower but
steady growth associated with an increasing fraction of high-affinity cells.

Runswithout hypermutation (see fig. EZIH) also show alearning cascade, actu-
ally faster than with hypermutation. This means that the chance of generating ac-
tivecells(m > m.) by amutation event issmaller than the corresponding chance of
generating it out of the binomial distribution of virgin cellsin the hypermutation-
free scenario.

Giventhisintrinsically transient scenario, it isuseful to develop a semi - quan-
titative rationale for the role of the shape of the affinity potential.

To thispurpose, let us consider all matching bits of abit string s (whose length
isl) aspart of asubstring g (“good” bits) and al other bitsof sas part of asubstring
b (“bad” bits). String g haslength m (m = m. > [/2). Obvioudly, b'slength mis
equa tol —m.

By definition, mutations on b enhance the affinity whereas mutations on g de-
creaseit.

To compute the total probability of increasing the Hamming distance (i.e. the
number of 0 «» 1 matchings) of n units, we must take into account al possible
combinations of mutationsin the b and g strings such that k —j is equal to n. Here
k and | are, respectively, the number of mutationsintheb and g stringandj < k so
that n > 0. The expression of such total probability is:
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Pr= > (T) P (D pg™ (24)
j,k:k=n+j
Theblock (rJ“) p'q™ givesthe probability of j mutationsin the g string, whereasthe
block (T)pkg™ givesthe probability of k mutationsin b. Upon using the relation
k = n+j, we may recast eq(Zd) in terms of the index j, which runs between 0
and m-n (otherwise we would have a degrading mutation). Consequently, we can
write:

T M\ [ M\ o o2 2
i ,z:(;(i)(mi)p : 29
The probability of affinity degrading mutations, P, is obtained by considering
j >k, swapping mwith min the above expression and | etting theindex to run from
Otom.
One minute’ sthought reveal sthat, sincem, > | /2, under the standard condition
m > m, P = P} — P, is negative, reflecting the intuitive idea that in the average,
mutation works against high-affinity cells.
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Itisnow instructiveto observethat for low mutation ratesp, << 1, the summa-
tion in expression Z3 can be replaced by its first order term. This leads to avery
handy expression for the total one-bit affinity improving mutation rate

P} ~ mp(1-p)™ = (I-mp(1-p)~ (2.6)

showing that, within this approximation, the one-bit improving mutation probabil-
ity decays linearly with m.

Coming back to theinterpretation of our results, the pictureisasfollows. Once
an active cell materializes, the chance to capture an Antigen and rapidly duplicate
can be estimated as A, = 1 x v(m), that is one cell, timesits microscopic affinity
v(m). How many cellsshould materialize beforethe duplication processisactually
triggered? The condition is of course Nyv(m) > 1, which sets a natural thresh-
old 1/v(m) for the affinity maturation process to take off. This threshold would
of course favour high m's, were it not for the strong penalty set by the mutation
probability: a direct jump of n matching numbers ahead, scales roughly like pg,
which means that the next matching number above m, is picked up by the condi-
tion Npyo(m)p™™ > 1, associated with a critical threshold NS, ~ p™™/v(m). Itis
easily seen that Nj, isasharply decreasing function of m, unless »(m) would grow
faster than the decrease of pp' ™, not a plausible assumption given the small value
of py. Thisexplains the sequential nature of the learning cascade.

The next question relatesto the mid-1ong term dynamics of the response. Here
two competing effects must be balanced.

The probability of cells' clonation is proportional to v(m). A stimulated cell
duplicates every step during four steps after stimulation, yielding 16 clonesin four
steps. Thisexponential growth is contrasted by amean hypermutation [oss propor-
tional to P. No way for mutation to compete with such exponential growth in the
short term.

It is plausible to assume that the long-term winner is selected by the condi-
tion of maximizing Nyv(m)/P, which leadsto a second threshold, N&2 ~ P/v(m).
Now, using the simplified expression P; given by ZR, it isreadily seen that highest
affinity modes are favoured unless v(m) grows slower than P7, i.e. linearly, with
m. This supports the intuitive ideathat convex potentials favour the development
of high-affinity populations as the asymptotic carriers of the | S response.

Of course, the notion of asymptotic, long-term carriers, athough interesting
from the point of view of statistical mechanics (final attractor of the system) isnot
necessarily the most relevant one to immunological purposes. To thisend, oneis
probably more interested in the short and mid-term (days-to-weeks) dynamics of
the total affinity 0(t) = >, Nm(t)o(m).

Thisis shown in fig. EZI2 for the two different choices of the affinity poten-
tial. From these curveswe see that, notwithstanding the significant statistical fluc-
tuations in the initial phase, indeed the concave potential yields the quickest and
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most intense response, especially within the ramp-up period, up tot ~ 100. This
is obviously due to the much higher affinity of the B-cells (see fourth column in
Table 1). Asymptotically, however, our data suggest that the convex shape might
be able to recover dueto the emergence of perfect match cellswith m =1 suffering
less competition with other cells as compared to the case of a concave potential.

The above considerations, abeit still semi - qualitative, provide a sound back-
ground for the interpretation of affinity maturation as a cascade processin affinity
space. They also show that the learning cascade is quite robust vis-a-vis the shape
of the affinity potential. This latter, however, plays a central role in the short and
mid-term dynamics of the IS response.

In closing, a few considerations on computational performance are in order.
The paralel simulator (see appendix B) takes about 10 ms/ step per grid-point,
corresponding to about 10, 000 seconds elapsed time for a 500 step long (about
160 days of real life) smulation on four processors of an UltraSparc Enterprise
4500. Memory requirements peak at about 2 GBytes during the burst of affinity
maturation. These figures prove that the numerical investigation of the Immune
System response viathe Cel ada- Sei den automaton requires substantial amounts of
computational resources.
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Figure 2.15  Population growth for affinity classes of the active region

Matching for Convex affinity (mutation on)

1000
time steps (log scale)

Matching for Concave affinity (mutation on)

1000
time steps (log scale)

for string length of 20 bits (detailsin the plots' titles).
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Figure 2.16 Samedataasin figZId for runs without mutation.



Chapter
3

Antigen recognition and evolution

The study of the learning cascade in section 24 and EZ3 has given a qualitative
assessment about the role played by the affinity potential «(m) and the hypermuta-
tion in the learning cascade which drivesthe | Stoward the recognition of aforeign
antigen.

We present here a simple model of selection and mutation of cell populations
which is based on generic assumptions and in this respect it resembles a model
for evolution in ssimple ecosystems. In this case the selection acts by means of the
same affinity function of eq() representing the ability of a certain class of lym-
phocytesto recognize aforeign antigen. Carrying out some analytical and numer-
ical studies we determinethe critical valuesfor the parameters ruling the selection
and mutation.

Starting from the simple definition of bit string representation in complex bio-
logical system originally givenin [24] for theimmune system modeling, we devel-
oped asimple spatial mean field approximation of the clonal expansion and affinity
maturation in the IS. We carried out some analytical studies on its dynamics and
also developed anumerical resolution of the corresponding discrete model.

The presented model works on general assumptions of mutation and selection
which arethe basisof any model for Darwinian evolutionin simple ecosystems. In
thisrespect it resembles the Eigen model [[37] for species formation, further stud-
ied in [8]. They consider the evolution of an infinite set of self-reproducing (i.e.
asexua reproduction) molecules that undergo Darwinian evolution. In the pres-
ence of avery selective environment the model shows the formation and survival
of acluster of genetically affine well-adapted molecules (called quasi-species).

In the following some basic concepts are borrowed from this framework; then,
wewill make use of termsasfitness and affinity, or matching classand population,
interchangeably, to keep the metaphor of the evolution awaysin mind.
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3.1 Introduction

The immune system is an ecosystem for its own and the population dynamic is
ruled by selection and mutation. In [Z4] the original idea of representing a mole-
culeby meansof abinary bit string was used to investigate the dynamics of theim-
mune system using differential equations. The ideawas further extended in adis-
cretefashion in the Celada-Seiden automaton [[I0]. The CS-model concentratesa
lot of biological complexity inasingle spatially extended automatasystem. Inthat
model the genotype coincides with the phenotype; there is no distinction between
the DNA portion coding for the receptor (called the complementarity-deter mining-
region, CDR) and the receptor itself that will bind the antigen. Both are bit strings
of acertain length I.

In our model we focus on the ability of the lymphocytes to recognize the anti-
gen. Then we have that the genotype-phenotype map is accomplished indirectly
by means of the affinity function v, which in turns selects highly adapted elements
on the basis of their recognition ability for the antigen. This leads to a one - di-
mensiona phenotypic space (integers between 0 and ).

In a previous work [[i¥] we showed how such models could be used to un-
derstand the mechanism by which the IS learns to recognize the shape of the in-
vading antigen. In that case we identified with the word “learning cascade” the
dynamics of the cell population distributed according to the match with the anti-
gen; in other words with astring length I, the repertoire of the model is organized
into a hierarchical set of | + 1 classes of cells characterized by a given matching
number, m=0,1, ..., I, denoting the number of bits of the lymphocyte receptors
which match with the string representing the antigen. The generic m-th class con-
tains (r'r) elements; the sum over all possible classesinvolving atotal repertoire of
Yo (1) = 2' possible specificities.

Apart from the details of the other cellular entities involved in the process (B
and T lymphocytes, Plasma B lymphocytes, Macrophages, Antibodies and so on)
which weleave to the bibliography, one may concentrate on the affinity function v
of the match with the antigen to discriminate the good (i.e. recognizing) lympho-
cytes from the bad ones. This function is the key to push the system toward the
proliferation of the recognizing clones of lymphocytes and, thus, can be thought
asagenericfitnessfunctionin acompetition landscape, wherethe goal istherecog-
nition of a certain pattern or set of binary attributes (i.e. the bit string representing
the antigen).

Questions on how the function v influences the dynamics of the response in
terms of cell population predominance eventually leading to a perfect match re-
sponse (i.e. clone with match m = 1) are addressed here. Moreover, because the
mutation phenomena have been demonstrated to be crucial for the IS to generate
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diversity and cover the unavoidable holesin the native repertoire [[3]], we consider
point mutationsin the genotype, that is, the possibility that elementswith match m
produce, during the cloning expansion, some with match ny.

The error threshold [H] is determined as the value of the mutation rate above
which the fittest population is no longer the dominating one. We make estimation
of such value for different bit-string-length systems.

In contrast to [[24, E] where the authors consider unlimited bit string length, we
areinterested inthereal potential specificity of theimmune system of amouse [E5]
and thus up to log, 10 ~ 36 bits per stri ngll.

3.2 The model

The experimental setup reference is that of lymphocyte antigen-specific popula-
tions that proliferate under constant supply of the antigenic stimulusin the pres-
ence of the helping environments like the signal from the T helper (Th) lympho-
cytesneeded to trigger theresponse. Also suppose acompleteinitial repertoireand
assume continuous regeneration of dying cells so that we may fix the birth-death
rate equal to zero and observe just the growth due to cloning expansion.

The affinity potential and thegrow rate. Givenl € Nand /2 < m < |, the
affinity potential or fitness function is defined over theinteger O, . . ., | inthe same
way it has already been discussed for eq(El) reported here for convenience:

(m=)/ (me-1) .

m >
U(“I):{UC ’ _rn:’
0, m<m.

where v, € (0, 1) isthe free parameter (see figure El). Here v determines the
sharpnessof thefitness (thisisthe sameasin [IF], but they do not use any threshold).
Thefitness summarizesthe effect of the recognition ability aswell asthereproduc-
tion efficiency. Thismeansthat high affinity cellsproliferateat higher ratethan the
lower affinities. Note that class m < m, does not grow, for v(m < m;) = 0. Also
notethat for v, — 1theaffinity transformsinto aflat landscape and thereisno pre-
ferred genotype for the interacting individuals (m > my); in this case, a vanishing
mutation rate leads the evolutive path into the subregion of the state space corre-
sponding to constant population of not-recognizing clones (m < m.) and equally
distributed, though dominating, populations of recognizing clones (m > mc).

IWe should point out the difference between the expressed repertoire and the potential reper-
toire; thislast isthe number of possiblereceptorsthat can be constructed given the genetic mech-
anismsinvolved



54 Chapter 3 Antigen recognition and evolution

0.01

0.001

fitness or affinity function (log-scale)

0.0001

1le-05

10

Figure 3.1 Theaffinity function (y axisinlog-scale) or reproduction ef-
ficiency (fitness) is a monotonic function of the match with the antigen-
target. Matches below the threshold m; have null fitness score. In figure
| =20 and m; = 12 for different v.. Small v give sharp peak affinity. For
v @pproaching unity it transformsinto alinear fitness and for v; = 1 the
landscape is flat corresponding to an environment which makes only dif-
ference between recognizing and not recognizing class.

Themutation process isperformed at the genelevel but isexpressed at the phe-
notypelevel in theform of increased/decreased match with the antigen. Mutations
occur during the cloning expansion meaning that only class m > m. are affected.
The number of mutated bitsis binomialy distributed with parameters p, and |.

To calculate the probability that a string with match mis mutated into a string
with match i we subdivide the original string in two substrings G, B composed by
matching bits (G good) and non matching bits (B bad); let be |G| = i the actual
match and |B| = | -i (|- | denotes the number of bitsin the string). Be v the number
of flipped bitsin substring G, 0 < ~ < i, and analogoudly 5 inB,0 < 3 < | —1i.
Thematrix {my;} givesthe probability of ajump fromclassj to classi by mutation
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(@=1-p);

M =m = Z <J > (I ;J> p g =0+A) (3.0)

oo

Observethat since wetake m; > | /2, the mutation ismost likely to lower the affin-
ity than to increase it, i.e.

| k
Vk>me>1/2, Y me< ) my
i=0

i=k+1

This means that mutations have no other positive effect other than generating di-
versity, thus spreading a proliferating class into adjacents, with preference to the
lower ones.

A very approximate equivalence [[3]] between the per bit mutation rate p, and per
base-pair (bp) mutation ratein vivo r, istherelationr = 1 — (1 - py)/2 bp. i

Themodel. Given | and m. fixed, and v, and py, as free parameters, we indicate
with x;(t) = x; the population of classj at timet. Theinitial timet = O corresponds
to the infection time, and the initial unbiased set of population match-classes is
binomially distributed with parameters| and % l The population dynamics can
then be expressed by a set of | + 1 linear differential equations (balance equation
for population x;);

0% . . .
=Y vimx -G Y m V=0l
i i
that is, after some easy manipulations

P = 3 vl + oG - 1% (32)
i

Mutationsrealize akind of cooperation or symbiosisamong populations. Thereis
no competition in our model because we assume to have sufficient antigensto feed
the proliferation of the clones during the immuneresponse. Thisissurely the case
if we consider the effect [M5] of the Dentridic Cellsthat retain the antigen for long
periods (weeks).

2 Assuming that ~ 60 out of 210 amino acids contributeto the Vi and V. CDR, the number of
base pairsis~ 180.

3 This is equivaent to have the initial population of cells with the receptor-strings drawn at
random. The probability to chooseasinglebitas‘1l’ or ‘0’ is %
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It is important to note that we have excluded any limiting factor in our sys-
tem; this corresponds to have unlimited carrying capacity K, in the Verhulst fac-
tor (1 - > x/K) [B5] which sounds quite unrealistic when speaking about the IS.
This smplification will be taken out in the following section when we compute
numerically the solution. For what concerns the analytical study, we may avoid
such complication as we are mainly interested in observing the cloning expansion
during theinfection and the production of the immune response which clearly last
for afinite period (days or weeks), otherwise leading to the death of the host. This
trandates in observing the dynamics far from the saturation given to the carrying
capacity K.

In system B3, if we use the properties ) .. m; = 1 - m; and we made the
following substitution

__ [vbem -, Q=i
I = . . .
b e, i 7).
we may write the associated matrix equation as 9x/dt = 11x, where x denotes the

[+1 row vector (Xo, X1, . - ., %) attimetand IT = {7j; }. Notethat thefirst m; columns
of ITarenull asv(j <mg) = 0.

For analytical manipulation it is convenient to “condense” al the population
Xi<m, 1Nt0 asingle cumulative population. We will then make the following substi-
tution of variables and consider a number of populations equal to the number of
interacting plus one; i.e. classm, classm; + 1 and so on, up to class|. Then we
indicate with new indices -1 the absorbing population, with O the minimum inter-
acting population mg, with 1 the intermediate or m¢ + 1 population and so on, until
the perfect match population |, that will take index | — m..

In the following we fix the number of interacting population | — m; + 1 equal to
3 so that populationswill beindicated by X" = (X-1, Xo, X1, X2). The corresponding
valuesfor the affinity potential are (v-1, vo, v1, v2) = (0, v¢, \/vc, 1);

The evolution equation expressed in matrix formis

R
X0 =TIX() (3.3)

where the matrix I’ governing the dynamicsis:

0 Uefl-1,0 V/Ucli-1,1 H-1.2
= |0 ve(ZHoo—1) V/Uchon [0,

0 Vehl1,0 VUe(2p11 = 1) [1,2

0 Velh2,0 VUcli2,1 (2u22-1)

The elements 4 ,i,j € {-1,0, 1,2} can be calculated from the mutation matrix
{m;} asit follows
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£10 = D iam Mimes H10 = D Mimests f-12 = D i Mmes2;

#0,0 = Mg, me #0,1 = Mg me+1, 10,2 = Mg, me+25
11,0 = Mg+t me 1,1 = M+ me+1, H1,2 = Mme+1,me+2,
12,0 = M2, mes H2,1 = M2 me+1, 12,2 = M2 me+2-

(notethat subscriptm; + 1 =1-1and m; + 2 =| aswe havefixed | —m; = 2).

1 'u

'
N
T

‘ vy | ‘
N |

Figure 3.2 R(\) for A\j # 0, computed for | = 20, m. = 18, v, = 0.05.
In the range (.02, .05) the real part of all eigenvalues pass from positive
to negative values (see figureBE3). It is also possible to identify a critical
value p. ~ 0.65 correspondent to bifurcations.

3.2.1 Discussion

We have used Mathematica®© ll to compute the eigenvalues ); of the matrix I1’ as
functions of the parameters p, and v.. We may determine the qualitative behavior
of the solution by looking at thesign of thereal part of the eigenvaluesindicated by
R(Ai). Itsstudy must not be intended in the sense to give analytical considerations
about the behavior fort — oc. Infact the validity of the model is limited to the
time the immune system takes to set up the immune response which, fortunately,
reguires alimited amount of time.

4 Symbolic cal cul ation package [IE2], ©CopyrightWoIfram Research www. wol f ram com
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Figure 3.3 Therange/ = (0.02, 0.05) of figure B2

Oneeigenvaueiszero because of thefirst column of I1’. From thefact that we
allow unlimited grows of the populationsfollowsthe only trivial fixed point x(0) =
0, which isunstable. In any case thisinitial condition has no biological meaning.
From figure B3 and B33, showing R(\;) for \; # 0, it is possible to identify the
interval 4/ = (U, u") asthe rangein which al the eigenvalues pass through zero
and become negative (see particular in figure BE3).

For values of p, < u” the eigenvalues are positive and the solution will diverge
inthelimitt — oo. Whenpy € U therea part of someeigenvaluesarepositiveand
somearenegative. The asymptotic behavior correspondsto an indefinite growth of
some interacting population. Note that this argument cannot tell which population
will eventually dominate. We will answer this question in the following section,
showing the results obtained numerically integrating the system.

When p, > u® al A have negative real value and then the interacting pop-
ulations, X; > m, will feed the non-interacting, x; < m, because of the highly
disruptive mutation. This corresponds to have no immune response at all.

Therangel/ iswherewe find the most variabl e sol utions, ranging from the best
response x, to the lack of response x;.

The best fitted population x, happens to dominate only for very small values
of the mutation rate pp. We then indicate with p;, the highest value for which the
system still exhibitsthe domination of thefittest population x,. Thisvaueiscalled
the error threshold [H]. In the next section we will give some estimate of such
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value.

One may argue that &/ = U (v.) indicating a dependence on the shape of the
affinity. Thisis certainly true as we found that large values of v dightly shrink
therange/ and vice versasmaller values enlargesit but in any case thisvariation
can be reasonably ignored (on the order < 1072).

For large values of | (I = 20, approaching the real 1S expressed specificity
10" - log,10” ~ 24 in the mouse), we found a critical value p. ~ 0.65 such
that for p, > pc al R()\) # 0 are subjected to strong oscillations around zero (see
figureB3). We know that, in general, parameter values for which the real part of
the eigenval ues passes through zero are associated with qualitative changes in dy-
namics (bifurcations). The same does not apply for smaller values of thebit string
length |. In fact carrying out the same calculationsfor | = 3,8 and 12 we did not
find any critical values p. (to tell the whole story, for | = 12 and p, > 0.8 we ob-
served small oscillation of #( ;) but not large enoughto changethesign). Probably
this unexpected behavior comes from the lack of the limiting factor K that we are
going to add in the next section.

What happens if we consider | — m; > 2, i.e. more interacting populations? For
exampleif wehavel = 12, m. = 9, so to consider four interacting populations, the
anaogue consideration leadsto 2/ = (0.045, 0.100) for v, = 0.002 (which isthe
value used in 3] and will be mentioned later). This means that decreasing mc,
thus having more interacting populations | —m. + 1, shows not to affect the value
u”, but moving u* — 1. Instead, what is interesting is the relation between the
error threshold p, and m, that will be investigated below.

3.3 Numerical integration

Iterating the correspondent discrete of the complete system B2 we were able to
further classify the asymptotic dynamics.

We assumed non-overlapping generationsin the discrete popul ation dynamics
so that thetime unit isequal to the generation time, or cell duplication time, for the
best fitting population (i.e. v(l) = 1 means that perfect match cells double every
time step, match | — 1 double every v (I — 1) and so on).

Here we want to add the limiting factor, so instead of X we consider x{(1 -
NY/K), with Nt = 3~ %, as the equivalent discrete and limited popul ation vari-
ableswhere K is the carrying capacity.

In the following we will classify the asymptotic behavior in which only one of
thefour populations x-1, Xo, X; and X, (reduced popul ations) will dominate over the
others.
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Asymptotic dynamics Wecall “attractors’ the sets
S = {x:% >x%,k={-1,0,1,2},k #j}.

For example St isthe set of possible populations x such that x; > x, Vk=-1,0, 2.
FiguresEZ and B3 depict four representativetrajectoriesleadingto S?, &, St and
g

The asymptotic dynamics fall in one of these, according to the mutation rate
pp and, at a first approximation, independently by v. (supposing v, < 1 so not
to be in aflat fitness landscape) and independently aso from x(0), even though
we are interested to the case in which the initial population of cellsis binomially
distributed as already mentioned.

We may summarize the results obtained in the following schema:

« forpp € (0, pn), X(t) — S, meaning the perfect maturation of the response,
corresponding to the domination of the best fitting popul ation;

o ifpp € U, x(t) — S, forsomej € {-1,0,1,2}. Thiscase includesall the
possible responses. For pp, — u* the match of the dominating population
will decrease, until thereisno response at al (i.e. x-; dominates).

 For p, > u*, x(t) — S, which means lack of response.

From the last point, in agreement with the analytical studies, we find u™ to be
the threshold for which the mutation is lethal, thus leading to immunodeficiency.
Moreover, from figureB3wefind p, oc v ! that isademonstration of theintuitive
ideathat sharp fitness favors the best adapted population.

Error threshold. InfigureBdwe show theerror threshold for different values of
the interacting populations (i.e. different | —m¢ +1). The same values are reported
intableBdl We see that p;, decreases exponentialy with | — m + 1.

It is worth to compare these results with the ones obtained using the Celada-
Seiden automaton [[3]]. In contrast to our schema, they used a mutation rate ps
corresponding to the probability to change only one bit in astring. They found the
most efficient maturation occurs for ps = 0.2, using | = 12, four interacting pop-
ulations (i.e. me = 9) and vc = 0.002. This means ps = () po(1 - po)™* giving
the per-bit optima mutation rate p, ~ 0.021, which is below our estimated error
threshold p,, = 0.054 for the same parameter values, thus in line with our previ-
sions.

3.4 Summary and conclusions

We developed asimplelinear system of differential equationsto model the cloning
expansion and mutation in the immune response. The model mimics some of the
features of the automata model of discussed in sectionsBL
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Figure 3.6 Different valuesfor p, computed numericaly iterating over
1000 time steps the equivalent discrete of system B3, for v, = 0.005, 0.05
and 0.5, with | = 3,8,12,20,24,28,32 and 36. The continuous lines depict
therange/ = (u”,u") computed with v, = 0.05. We may observe that
Pn o< v:t. The carrying capacity isfixed to K = 10%; its variation doesn't
affect the results.

We have shown some similarity with the Eigen’s model of evolution. Thispar-
allel seems particularly fruitful while studying the cloning expansion of recogniz-
ing cells apart from the complexity of the IS. In particular we were interested in
questions as to what extend the fitness function of the class-specific cell popula-
tions as well as the mutation rate influence the dynamics of the response.

We have found error thresholds for the mutation rate (in agreement with [H]),
both with analytical arguments and with numerical integration of the equivalent
discrete system, for different values of the bit string length. They show that the er-
ror threshold scal es as adecaying exponential function of thenumber of interacting
cells populations.

It isinteresting to compare these results with the well established ideathat mu-
tation is not atime-independent process, instead aternating its action between pe-
riods of free growing with periods of “hyper mutation” (the mutation rate during
the hyper mutation period is most likely to be very high, i.e. pp > u®). It seems
that this scheme is the optimal to achieve the maturation of the fittest population
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[ —m Ph rn x 10° bp mutations
1 0.019112 3.85196
2 0.018605 3.74900
3 0.017438 3.51218
4 0.016165 3.25411
6 0.013835 2.78244
8 0.011905 2.39242
10 | 0.010451 2.09899
12 | 0.009225 1.85185
16 | 0.007459 1.49627
18 | 0.006811 1.36593

Table 3.1  Error threshold for | = 36 e v, = 0.005, K = 10° as function
of the number of interacting populations | — m¢. In the third column the
estimate of the in vivo per base pair error threshold r, = 1 — (1 — py)'"/*°.

[B5]. Inthe light of our considerations this time-dependence could be a natural
way to achieve high mutation rates and, at the sametime, escapefromanintrinsic
immunodeficiency that would have been with constant high mutation rates.
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Figure 3.7  Error threshold py for different affinity increments| — m;
| =36, v = 0.005, K = 103. These values are reported in table BEZl Expo-
nential fit Ae®™ withA=2 x 10?and B = -6 x 1072.
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Chapter
4

Econophysics

A new field of research called “ Econophysics’ has been populated, during the last
decade, by physicists who wish to apply techniques from theoretical and stetis-
tical physics to complex dynamics such as stock prices, currency exchange rates
and other more complex financia products. Apart from the interest in studying
the stock markets as a genuine complex system, another reason for the increasing
popularity of this field among scientists is the joint availability of powerful com-
putersand large historical databases which store nearly every financial transaction
worldwide.

Beforewe proceed further, it is better to definethe most used and studied quan-
tity in financial time seriesanalysis: the pricefluctuations. Some authors consider
the price change Ap; = p; — p-1 as the most straightforward definition of fluctu-
ation of the variable p;, which in turn indicates the price of a certain asset at time
t (e.g. seconds, minutes, days, years). Instead of considering the price change it
IS common practice to use one of the following definitions of relative change or
return [[Z1]:

—simple net return R;, on the asset between datest—1and t, R, = pi/p-1 — 1;
—smplegrossreturn 1 + R;;

— the continuously compounded return or log-return is the logarithm of the gross
return, r = log(1 +R;) = logp:/p-1 = 10g p: — 109 P-1.

Since Louis Bachelier’s random walk hypothesis for price change back in 1900,
one of the main goalsin thisareawasto state acorrect form for the distribution of
price change. In his origina work, Bachelier postulated an uncorrelated random
walk with independent identically Gaussian distributed increments to model the
stochastic process underlying the asset price fluctuations on varying time scale.

This hypothesis has survived for along time but it has been finally criticized
and, at acertain level, contradicted. The problem with the random walk hypothe-
sisleading to a Gaussian distributionisthat it underestimates the possibility of ex-
treme events such as crashes and/or bubbles. In a Gaussian, this probability isjust
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too small. In reality this events are not so rare and actually dominate the markets.
In figure N, for example, it is shown both the time series of S& P500 index on a
daily time scale (from February 1992 to January 2000) and a random walk with
Gaussian independent increments (generated by X1 = X + &y With &y o< N (1, 2),
Gaussian with mean . = 0 and standard deviation o = 2). The arrow in figure
points to a “rare event”, something much unlikely to be produced by a random
walk. A well known “rare event” isthe market crash reported in 1987. Figure =4

Comparison between S&P500 and random walk with indipendent increments (500 days)

| S&P500 —+—
random walk -——-x-2

RARE EVENT M

S&P500

random walk

Figure 4.1  Comparison between a random walk with i.i.d. increments
iterated for 500 time steps and 500 daily close values of the index S& P500
during the periods February 1992 - January 2000. In the small plots down
in thefigureit is shown the correspondent net return R;.

shows two major indexes of the New York Stock Exchange (NY SE), the Standard
and Poor 500 (S&P500) and the Dow Jones Industrial Average (DJI) taken over
aperiod of fifty years on adaily time scale. The market crash of 1987 isvisible.
Strong fluctuations are visible in the lower plot which reports the log-return com-
puted for the DJI.

The random walk hypothesis with independent identically distributed (i.i.d.)
increments is the basis of the Efficient Market Hypothesis (EMH). It states, in
few and simple words, that price variation is random as a results of the activity
of traders who attempt to make profit (arbitrage opportunities); the application of
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DJI and S&P500 daily (3 Jan 1950 -- 24 Jan 2001)
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Figure 4.2 DJ and S&P500 indexes are shown together with the log-
return computed for the DJl series. The market crash (black Monday) of
October 19, 1987 is shown.

their strategies induce a dynamical feedback on the market influencing the stock
pricethat become random asaconsequence. Thus, under the strict EMH, methodic
strategies producing wealth areimpossible. On the other hand, we know that some
peopleareactually ableto takeadvantage of deviationsfromthislaw. To overcome
this contradiction various variants of the EMH have been suggested (strong, semi-
strong and weak ) [IZE, [T2Y]. In particular it seems that in a weak or semi-strong
efficient market hypothesisthereisplacefor smart speculators; aprobabilistic edge
to be exploited in real markets [[I29, [B4].

4.1 Lévy stable distribution and fat tails

The only partial agreement of the EMH (i.e. the random walk with independent
increments) with the recently discovered empirical evidences, suggested the needs
for more accurate, though more complex, probability distribution functions (PDF)
than the Gaussian as models for price fluctuations or return.

In 1963, Benoit Mandel brot proposed the Lévy stabl e distribution as model for
thedistribution of returns[IZ&]. He proposed apower law form P(x) = |x|~®**) with
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0 < a < 2forintermediateand large |x|, but rounded peak at |x| — O. In statistics,
the Lévy distribution arisesfrom the generalization of the central limit theoremtoa
wider class of distributionswhich do not have afinite second moment [[Z01, 29, [id] .
In particular it is the asymptotic distribution of arandom variable X, = 31, x; for
n — oo where the variables x; are distributed as P(X) o< |x|7(4*2),

In general, the central limit theorem of statistics [43] assures that under cer-
tain conditions of the distribution of the variables x;, the sum X, converges to a
Gaussian or to aLévy distribution. The existence of the variance of the variables
X playsarole. In particular, if the varianceis infinite then only if x; is distributed
as a Lévy one can have convergence. In fact, for generic distributions of x;, if the
varianceisfinite then the sum convergesto a Gaussian (at least in the central part)
otherwise it does not converge. Instead, if x; are distributed as a Lévy (or power)
law thenii) for infinite variance (o < 2) X, convergesto aL évy stabledistribution;
i) o = 2 convergesto a Gaussian; iv) for finite variance (a > 2) X, converges to
aGaussian in the central part but with non-Gaussian tails.

The Lévy stable probability density does not have an analytic closed form but
can be expressed by its characteristic function [[Z€] or in term of its Fourier trans-
forms [BL]. This distribution function is leptokurtic (positive excess kurtosis i )
that is, it has more probability mass in its tails and center than a Gaussian. The
advantage over the Gaussian is that the Lévy PDF with itsfat tails accounts for a
higher probability of extreme events.

Recent empirical studies conducted on asset prices of different markets have
shown partial agreement with the Lévy distribution [B1, BO]. In fact the excess
kurtosis of daily returns ranges between 2 and 50, and is even higher for intra-day
data.

Although Lévy distribution are stable under convolution, that is, the sum of two
independent random variables characterized by aL évy distributionisitself charac-
terized by the same Lévy distribution, the problem isthat the resulting limit distri-
bution have infinite second and higher moments. Thisisin contrast with empirical
datawhich show finite second moment in the distribution of return. Moreover, the
central part appear to be well fit by a Lévy distribution but the asymptotic behav-
iour shows faster decay then predicted by a Lévy distribution. For this purpose
atruncated Lévy distribution (TL) has been proposed [[Z4, B4, 51]. Recently the
scale-invariant truncated Lévy distribution (STL) has been proposed to model the
scale invariance observed in empirical data [[Z5, B1]. The STL distribution is de-
fined as

P@) =Ae |70+ 0<a<2 B>0.

! Thekurtosisk of adistributionisdefined ask = p4/c* where p14 isthe fourth central moment
and ¢ isthe standard deviation. One often refersto excess kurtosis as « — 3, relative to the kurtosis
of the Gaussian NV(0, 1).



4.2. Stylized facts of financial time series 73

Mtisrelated to the size of the truncation of the Lévy distribution and the exponen-
tial pre-factor e14” ensures asmooth truncation. The parameter A determinesthe
“spread” in the central region [B2, B4].
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Figure 4.3 Histogram of Ap for the S& P500 index computed over
12446 daily close values and fit with a power law x" ) with o = 1.598
for the negativetail and o = 1.538 for the positivetail. Intheinset pandl it
is shown the tails of the distribution in log-log scale. The excess kurtosis
of the equivalent unnormalized histogram is~ 56.

4.2 Stylized facts of financial time series

Empirical studies on volatile markets have discovered some universal character-

istics of price fluctuation. Some of them are well accepted while others are still
under debate.

Fat tails Theaready discussed leptokurtosis of returnson small time scale (see

figureE2J). In empirical studies [B] a universal power law with exponents be-
tween 3 and 5 has been found.
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Multi-scaling The concept of scaling in physics has been applied to the distrib-
ution of return (see section B2I). It is still quite controversial whether the distri-
bution of returnis multi-scaling or not. Some studies reported that the distribution
of return possesses the property of scale invariance with respect to the time scale
(i.e. mono-scaling). In other words, rescaling the histograms of returns computed
on different time scales (1 min, 1 day, etc) thiswill overlap [IZ&, B1]. Thisitem will
be addressed in the following chapter.

Nocorrelation of pricereturn Theabsence of correlation of pricereturns. This
means roughly that the price time series |ooks superficially as arandom walk with
independent increments. To measure correlationsin anumerical seriesx; one often
uses the autocorrelation function defined as

) = 2ty (er = <X 24 <x)

Ztl\l?' (Xt_ <X >)2 (41)

c(r

For time scales beyond 20 minutes the autocorrelation function of ry is found at
level of noise[al] in agreement withthe EMH. Thus, for time scal es beyond hours
or days no correlation is observed (see inset panel of plot in figure ).

Clustering of volatility The amplitude of increments usually called volatility
can be defined in different ways. We sometimes adopt the following definition of
volatility, v; = \/rTZ =|r¢|. Inreal datathe volatility clustersin time, meaning that
itsautocorrelation functionis positiveand decaysslowly to zero. Empirical studies
have reported autocorrel ation function with universal power law decay with expo-
nent between 0.1 and 0.4. In figureE4 we plotted the autocorrel ation function c(r)
for thenet return R, of the Dow Jones I ndustrialsindex from morethan 12398 daily
closevaues. Weal so plotted the autocorrel ation function of the absol ute net return
IR, i.e. thevolatility. The volatility possesses strong correlation Sowly decaying
to zero. The solid linein plot B2 correspondsto afit with 0.03 - log(100/7) +0.07
resembling the curve for volatility defined in [[ifig] and related papers.

Log-normal distribution of volatility Thisempirical fact has been recently ob-
served in alarge database of financial index of the NY SE [[Z3]. Later studies have
reported similar resultson various currenciesexchangerates. Theform of theright
tail is controversia instead. Some studies [IZ3] reported a power law behaviour
with exponent ~ 3 for the S& P500 index while other acommon decay in the right
tail asin alog-normal distribution for the NY SE index [H4].
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Figure 4.4 Intheinset the autocorrelation of net return R, computed over
12398 daily close for DJI. It shows absence of two point correlations. In-
stead, the autocorrelation of absolute net return |R;| shown in the large plot
indicates strong correlation slowly declining to zero.

Cross-Correlation between absolutereturnand tradingvolume Thereseems
to be apositive correlation between the absol ute value of the return and the trading
volume (IBM return-volume cross-correlation [24]).

Inthe following chapter wewill discuss some MS models of stock marketsthat try
to reproduce and explain the origin of these stylized facts. In particular the Cont-
Bouchaud model seemsto be one of the first who proposed the herding behaviour
asthe decisive factor of the fat tailed distribution of return. We will show that this
model is able to produce pricetime seriesthat are not scale invariant, i.e. they are
multi-affine. In the successive chapter we will then introduce another microsimu-
lation model ableto account for some other stylized factsof financial markets. Itis
much more sophisticated than the Count-Bouchaud and resemble in many aspects
features of other MS models reviewed at the beginning of chapter B
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Chapter
5

Microsimulation of stock markets

The basic ideais to develop ssmple microscopic models dealing with the interac-
tion between traders. These modelsaim to explain the underlined mechanismsthat
determine the complexity of price fluctuations. All above is summarized in the
words of the economist Stigler in 1964 who was the first to perform a stock mar-
ket ssimulation [[i4] :

“The goal isto have, on the one hand, the simplest and most parsimonious de-
scription of the market and, on the other hand, the most faithful representation of
the observed market characteristics.”

Many microsimul ation systems have been describedin literature (see[lat], [[Z€]
or [ad] for areview). Inthese models, the traders (single or group of investor) acts
buying or selling commodities, e.g. stocks, gold, foreign currencies. The price
is then determined, as usual, proportionally to the difference or in more compli-
cated waysto balance supply and demand. The traders assume different strategies
according to their stylized behaviour: chartists (who follows trends and are sub-
ject to some sort of herd behaviour) versus fundamentalists (who buy/sell when
the price is believed to be below/above the fundamental value) or noisy (small in-
vestors) versus capitalists (people or group of investors who move large quantity
of money).

One example isgiven by Lux and Marches which distinguish between optimistic
and pessimistic according to the attitude to follow the fundamental price [IZZ]. In
their model traders are not bound to remain within the same group, that is, they
may move to a different group if the corresponding strategy gives an advantage.
LeBaronetal. [lod] or Chenet al. [[31] try to reproduce theinformation processing
(i.e. thelearning process) of individual traders.

Cont et al. [[3d] represent agents as vertices of a random graph to model the herd
behavior of traders.

Another well known modé is the one of Levy, Levy and Solomon (LLS-model)
B4, b&, BY]. In that model agents are sophisticated entities. They have the choice
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between a risk-less asset (like a bond) and a risky asset with stochastic returns.
Moreover agents may reinvest the capital or accumulate it. The authors start with
aset of rational, informed and identical traders and then, one by one, they add el-
ements of heterogeneity and deviations from rationality to study their effects on
the market dynamics. Moreover, traders base their decision on past returnsover a
certain time horizon.

Kim and Markowitz distinguish between liquidity and stocks at the current nomi-
nal price [&Y].

As a further step towards more redlistic simulations, Farmer [[39] considers dif-
ferent strategies for value traders instead of the smple random buy/sell/inactive
choice of [[34].

Each of these works allows to achieve a better understanding of the compo-
nents that may be included in amodel of financial markets and how their interac-
tion influences the overall dynamics. Following this line one may think to model
not only different characters but also the way they interact (see a so the evolution-
ary agent based models of [[4F, [4]]) to understand the possible relations between
traders behaviour and price fluctuations and in general, the statistical characteris-
tics of the market.

5.1 The Cont-Bouchaud herding model

One of the simplest models able to show fat tailsin the histogram of returnsisthe
Cont-Bouchaud herding model (CB-model) [[34]. Intheir work the authorsshowed
therelation between the excess kurtosisobserved inthedistribution of pricechange
and the tendency of market participantsto imitate each other (what is called herd
behaviour). The model consists of arandom graph in which the nodes are occu-
pied by agents. The connection between agents have the meaning of forming a
codition of traders influencing each other so to choose the same strategy to buy,
sell or not to trade. At a given time step a certain number of coalitions, formed
by the random matching, decide what to do. In particular each cluster buys with
probability a, sellswith probability a or staysinactive with probability 1-2a. The
demand of a certain group of tradersis proportional to its size. The parameter a
determines the “frequency” by which the traders buy or sell: small a <  means
short time intervals with few trades; large a ~  means long timeintervals where
alarge fraction of all investors participate. Iterating this process the price is de-
termined for each time step and the histogram of returnsis computed. The result
(also shown analyticaly in[[33]) istherel ation between aparameter controlling the
connectivity of thegraph (i.e. thetendency of the agentsto group together) and the
kurtosis of the out coming histogram. As expected, high connectivity induces fat
tails (or excess kurtosis) in the histogram of returns.
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The same model can be seen considering percolating clusters instead of random
graph [lL0Y, [i15] . Inthisview the Cont-Bouchaud random graph correspondsto an
infinite-rangebond percolationlattice. Sameresultsarefound if welimit ourselves
tolatticeswith nearest neighborsand to site percol ation instead of bond percolation
[ii] .

In Percolation Theory every site of a d-dimensiona lattice is occupied with
probability p and left empty with probability 1 — p (the same as the links between
two agentsin Cont-Bouchaud srandom graph). A cluster isthen defined asagroup
of neighboring occupied sites. According to the exact definition of neighborhood
we have different cluster formations. In the following we will refer to square lat-
tices(d = 2) so that the 4-neighborhood correspondsto up-down-left-rightl. Each
occupied site of the lattice identifies one investor. Clusters are group of investors
acting together asin the CB-model.

For p above some critical value p. an infinite cluster appears spanning the lat-
ticefrom one side to the opposite side. At the percolation threshold p. the average
number ns(p) of cluster containing ssites each, variesasapower law ns < s~ with
acertain exponent 7.

For market applications, each site of the lattice represents one single investor
whilethe percolation clusters are group of investors acting together. Asinthe CB-
model, a every time step of the smulation, each cluster buys with probability a,
sellswith probability a or stays inactive with probability 1 —2a. The demand of a
certain group of tradersisproportional toitssize. Denoting n{ the number of buy-
ing clusters and n; that of selling clusters, the relative price changeis proportional
to the difference between supply and demand

Apoc Y sxni=) sxns. (5.1)
S S

Non-trading clusters have no influence. In this model al investors have infinite
supply of creditsto buy stocks and infinite number of stock to sell. Moreover, the
availability of stocksto buy isalways assured.

The power law of the distribution of returns comes from the cluster size distri-
bution of percolation theory: i) p < p. giveslessvolatile behaviour, i.e. unredlistic
Gaussianasofor small a; (ii) p > pc givesunrealistic oscillations (crashes and bub-
bles) because the market is dominated by the “infinite” cluster, whatever a; (iii) at
p = p. thefraction p of |attice sites occupied by theinvestor in ad-dimensional lat-
tice of linear extent L barely suffices to form an “infinite” cluster stretching from
top to bottom. In this case we observe power laws. ng < s7, P(r) « r7" for
1 <« s <« LP where ng is the number of clusters of size s, r is the return and
D =d/(r—1) isthefractal dimensionof thepercolating cluster [[l1H]. Thislast case

1 Generalization to higher dimension can be found in [[£i2, [T, [55, [
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is much more realistic as we observe power law consistent with the Lévy regime
for small activity a and crossover to Gaussian for increasing a — 1.

This model reproduces some stylized facts of real markets: i) the average re-
turnr; =logpw1 —logp; is zero, ii) thereis no correlation between two successive
returns ssmply because there is no memory in the decision of the investors, iii) a
power law for thetails of the histogram of return holds for small values of the ac-
tivity parameter a whilefor larger a — 3 (longer time) a progressive crossover to
aGaussian is observed.

No other stylized factsarefulfilled by thisssmplemodel if no complicationsare
added. For example in [ILLT] traders are allowed to diffuse on the lattice to induce
realistic correlations of volatility.

We have implemented the CB-model in C language with anaive parallelization
using the PVM message passing library. The core of the algorithmis aclustering
labeling algorithm of percolation theory. For this purpose we tried two different
algorithms:

1. arecursive agorithm very intuitive and easy to implement;

2. aperformant algorithm of Hoshen and Kopelman (1976) described and re-
ported in Fortran language in [[Cid]] .

After having produced a percolation cluster the rest of the Cont-Bouchaud algo-
rithm consists of iterating the traders activity for al the clusters and determine the
price. FigureBdl shows the histogram of price changes Ap; = p,—p-1 obtained for
different activity a of tradersin atwo dimensiona lattice (L = 100) at the critical
value p; = 0.592746 over atime period of time steps. Theinteresting behaviour of
the histogram of Ap depending on the parameter isthat for large value of activity
athereisacrossover to a Gaussian exactly asobserved empirically in real markets
price ([E1] and further papers). In real pricesthe crossover to a Gaussian isfound
on time scales from four days up to one month.

5.1.1 Multi-offinity in financial price series

Empirical evidence of non-unique scaling exponent in time series of stock prices,
currency exchange rates or market indexes can be found in many recent papers.
For instance, Baviera et al. anayse the German DM/US$ dollar exchange rates
[ii3], Ghashghaie et al. the high frequency bid-ask quotes for the US$/DM ex-
change rates [25], Rotyis et al. analysed a stock index of the Budapest Stock Ex-
change [[iti7], Lux worked on the German DAX, the NY SE Composite Index, the
DM/USS$ exchange rate as well as the gold price from the London Precious Metal
Exchange [[Z5], Vandewalle et al. anayse the US$/DM and JPY/US$ exchange
rates [[LZ20], Ivanovaet al. look at Gold price, Dow Jones Industrial Average and
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Figure 5.1 Histogram of Ap; determined with the Cont-Bouchaud herd-
ing model. Thousand critical square lattices 100 x 100 iterated for 1000
time steps. Fora — % aprogressive convergence to a Gaussian processis
observed asin real data.

BGL/US$ exchangerate[[25]. They all showed that scaling of return exists but not
with a unique exponent.

To detect multi-scaling we employ a method that is considered standard in lit-
eratureof turbulencetheory [[25] and used in some of the already mentioned works.
Define the structure function

Fo(r) =< [r{D|9 > (5.2)

where< - >isthetime average and r{"”) is the time-lagged return defined as

t+r

r) = Z r, =log p;:. (5.3)

i=t+1

In the following analysis we will use the log-return r{® = log p; — log p; as defi-
nition of return while Rotyis et al. in [[{iZ] and lori in [54] take the simple price
differencer® = pu1 — p; thus r{”) = py. — py instead.
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The structure function Fq(7) is assumed to scale as a power law i.e. Fq(7) o
7%, where (q is the scaling exponent. If {4 = hq for some h, then the processis
self-affine (sometimes called uni-fractal). h < % isthe Lévy-stable case while the
Gaussian behaviour correspondsto h = £. On the contrary, if the scaling exponent
isnot linear ({y isaconvex function of g [[£3]), the processis called multi-affine or
multi-fractal. The larger isthe difference of (4 from the linear behaviour in g, the
wilder are the fluctuations and the correlation of the absolute return [B4].

Given Fq(7), computed as in eq(@3) for each g, the value of (4 has been es-
timated by standard linear regression over the set of points {(r, Fq(7))} for = =
2°,...,2%. Moreover Fq(r) iscomputed for different values of theexponent g = &
withk=1,2,...,20.

It is well known that, in contrast to the early prediction of Brownian motion
given by Louis Bachelier one century ago, real price series have different behav-
iour [B1]. Brownian motions, besides a Gaussian distribution of return, lead to a
uniform exponent (4 = g/2. In contrast, as aready mentioned, financial time se-
ries show a scaling exponent very different from g/2. To show this we made a
quick check on the Dow Jones Industrial Average Index (DJl daily closing) over
seven decades, from 1-Oct-1928 to 22-Aug-2000, for atotal of 19103 val uesll. At
the same time we calculated the scaling exponent of atime series generated by a
multiplicative Gaussian random walk logpw.1 — logps = et with & drawn from a
Gaussian V(0, o) with o = 1072, over five million time steps.

Contrary to the scaling exponent of the random walk which we found to have
aslope very close to 2, the scaling exponent of the DJI shows in agreement with
theliteraturecited above aclear deviationfrom q/2 (seefig. B3). In particular two
regions are visible; roughly q < 3with aslope~ 3 and q > 3 with slope ~ 0.12.

We then generated time series with the CB model and computed the scaling
exponent for different values of the activity a and system size L at the critical per-
colation threshold p. = 0.592746 in two dimensions. The same departure from
a Gaussian behaviour, but also from a simple scaling behaviour (straight line), is
found for some value of the activity a. Figure B2 shows the scaling exponent (
computed as the average of fifty independent runs (different random seeds, i.e.
different lattice cluster formations) for each of four values of the activity (a =
10,1073, 1072 and 107%) and four values of lattice dimension (L = 1001, 701, 401
and 101). A total of 800 simulations composed by one million time steps each took
atotal running time of about athousand hours on three fast workstations.

Plot (a) of figureB refersto a = 1074, Two different regimes are present, one
for small g (= § and 1) and another for g > 2. No significant dependence from the

2 Note that thisanalysisis partial when compared to those in the referenced bibliography be-
cause of the limited amount of pointsat our disposal. Indeed, using only 19103 values, the linear
fit of the structurefunction was performed over 10 valuesof = only instead of 16, i.e. = varied from
2% to 219 instead of 2%6.
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Figure 5.2  Compare the scaling exponent of a multiplicative Gaussian
random walk with that of the DJI daily closing values.

lattice dimension L is found (see also figureB2). Similar multi-scaling behaviour
isfound for a = 1073 (panel (b)).

Increasing the activity the model goesto self-affine behaviour as seenin panels
(c) and (d) in figureB= corresponding respectively toa =102 anda = 101. The
scaling exponent becomes a straight line with slope always below % indicating a
Lévy regime. The dope of the scaling exponent depends strongly on the lattice
dimension L. Indeed figure B3 panel (d) which correspondsto a = 107! shows
the slope of the scaling exponent to be inversely proportiona with the lattice size
L. Thisfinite size effect is better shown in figure B where we show the scaling
exponent relativeto L = 1001 which is the most representative of the asymptotic
behaviour of the percolation of critical lattices. In this plot a crossover to a self-
affine behaviour is visible for a going from 107 to 1072,

From percolation theory we know that the cluster size distribution is a power
law with a certain exponent. Moreover, if the activity aisvery small, at any time
step only one cluster isactive, thus according to eq(&3l), the price change or return
is distributed as a power law (thisis trivialy true in particular when a < 1/L2).
Such dynamics seems equiva ent to aL évy walk which we know to be a self-affine
process. Thus we need not to look for multi-scalingwhena < 1/L2,
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Figure 5.3 Panel (a) correspondsto a = 1074, panel (b) to a = 1073, (c)
toa=1072and (d) toa = 10"1. g on the x-axis, the scaling exponent ¢, on
the y-axis. For each a and L, the scaling exponent ¢, has been computed.
This has been repeated for fifty independent runs (different random seeds,
thus different cluster configurations). The scaling exponent here shown is

the result of averaging for the single (.
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Figure 5.4  Scaling exponent for L = 1001, different activity.

Instead, when 1/L? < a < 1 the process seems to be multi-affine. Thisis
non-trivial and, more important, iswell in line with the empirical findingsrelative
tothereal financia series. However, the value of g for which the scaling exponent
changeitsslope (g ~ 3infigureBAfor the DJI) isquite different for the synthetic
series generated with the CB-model (q ~ 1 in figure B3 and independent from
the two parametersinvestigated in thiswork, namely the activity a and the system
dimension L.

In summary it seems the CB-model shows interesting behaviour over acertain
window of the parameter a giving power-law histogram and multi-scaling as real
financial time series. Simulations suggest this window to be independent of the
systemsizelL.
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Chapter
6

An agent - based model of stock
market fluctuations

In this chapter we describe a new model to simulate the dynamic interactions be-
tween market price and the decisions of different kind of traders. They possess
gpatial mobility and group together to form coalitions. Each codlition follows a
strategy chosen from a proportional voting “dominated” by a leader’s decision.
The interplay of the different kind of agents gives rise to complex price dynam-
icsthat is consistent with the main stylized facts of financia time series.

The present model incorporates many features of other known models and is
meant to be the first step toward the construction of an agent based model that
uses morerealistic marketsrules, strategies, and information structures. Themain
goal istogive an easy way to implement different key issuesin modeling the stock
market, to understand the relevance and the mutual influence of certain factors
that other model s have treated separately, and to investigate the necessary and suf-
ficient conditions determining the factors which actually drive the empirical ob-
served facts in real markets.

The modeling and simulation of real systems consisting of agents that coop-
erate with each other has emerged as an important field of research. They arere-
garded as a consistent paradigm enabling an important step forward in empirical
sciences, technology and theory [5]. To model the dynamics of a complex sys-
tem composed of interacting entities with their internal complex structure and dy-
namics has many appealing points. self organization strategies and decentralized
control, emergent behaviour, autonomous behaviour, cooperative capacity and ag-
gregation, and spatial mobility. The purpose of the model hereafter described isto
provide a relatively ssmple description of the price formation in a stock market.
The agents paradigm is most suited to accomplish thistask.

Recalling the introduction, the computational model described herein is for-
mally equivalent to an unbounded latticegas. Thetechnical implementationof this
computational model called AM SE (A Model of Stock Exchange) isvery similar
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to the coding of CImmSim aready described in chapter Bland also in appendix B
I n appendix & some detail s about the parallel implementation of AM SE are given.

This chapter is organized as follows: in section B2l we present the model, in
section B2 we discuss its dynamics presenting the results of some simulations. In
section B3 we use awell known statistics to determine long-range correlationsin
the time series of the absolute return generated by AM SE. Finally, in section
we point out some further developments.

6.1 Model description

In the first version of the model [[22] there were two kinds of agents trading for a
single asset (stock): fundamentalists and noisy [[Z4, [L1E]. The former consider a
reference (or “fundamental”) value to determine the “right” price of an asset. The
latter represent most of the“small” traderswhich do not follow any referencevalue
and do not look at charts. Their behaviour is mostly random.

Following [[ZZ] the fundamental value f; is modeled as a smple multiplicative
random process log(fi+1) — log(f) = e where relative changes are drawn from a
Gaussian ¢, o NV (0, o2) with zero mean and standard deviation o. Inthisway the
fundamental value is an exogenous stochastic process (acritique to this approach
isfound in [44]).

We later introduced traders which take into account information about the evo-
[ution of the price, namely the moving average over certain horizons of time[[15].
These are the traders that we name chartists.

To model how the decisions of agents are influenced by their mutual interac-
tion, we assume that the decision process undergoes a proportional voting where
agents occupying the same lattice site express their preference. The single agent’s
decision isweighted by its influence strength to form the collective decision.

Each agent i is defined by a set of attributes. The buy/sell order at timetis
given by X € {-1,0,1} which indicates respectively the decision to sell, to be
inactive or to buy for the current step. The capital c{” of agent i at timet isthe cur-
rent amount of money or credits. Each agent startswith an equal capital of money
c) with which ()he can buy stocks. Agents reinvest their profit and accumulate
capital. The number of stocks owned by agent i is indicated by n{’. The initial
number of owned stocks n) israndomly chosen for each agent. At each time step,
the stocksaccount for the current wealth of thetrader i, indicated by w", asthe cur-
rent nominal price of the asset, indicated by p;. Thusthe current wesalth of trader i
attimetisw’ = n’p, +cl.

The current price p is determined by asingle market maker. While the traders
submit orders X, the market maker fixes the new price w1 according to a certain
function of the excess demand D, = 3~ x. For the sake of simplicity, we set the
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price change proportional to the excess demand

Pt+1 — Pt D with D = Z X{(I) (61)

Theinitia setup of the model is given by Ny noisy traders, Ng fundamentalist
tradersand Nc chartist tradersdisplaced onal x L lattice. Each trader starts with
acapital ¢!’ and anumber of stocks n{ both drawn from uniform distributions.

At each time step the traders decide to trade or stay inactive respectively with
probability aand 1-a. Theparameter a correspondsto theactivity asin [[33]. Once
each trader determines if (S)he stays inactive or not, the decision to buy or to sell
is reached in two phases. (1) first, each agent makes his choice according to his
actual situation and potential benefit from the activity as specified by the trading
strategy in section B2l (she/he looks at her/his micro-state, defined by the avail-
ability of capital ¢ and/or stocks of the asset n{”, the price history (if chartist) and
the fundamental value (if fundamentalist)); (2) then in the second phase, the indi-
vidual preferencesare summed up inakind of proportional voting and theresulting
“collective” decision determines the probability to follow the majority agreement.
If atrader can not fulfill the constraints of money/stocks availability (s)he ignores
the collective agreement and stays inactive.

The trading phases are described in the following two sections.

6.1.1 Trading strategy

This section describes the logic which rulesthe trading activity. At each time step
each agent decides with probability a and independently from the others, if to be
active or not to trade. For active traders, a different decision path is followed de-
pending on the class.

Fundamentalist strategy Fundamentaliststake into account the referencevaue
fi. They buy if p; < f; or sell if p, > f.. Their activity can be seen as a global
elastic force attracting the price to the fundamental value[[25]. The fundamentalist
behaviour represented as a SFSM is sketched in figure B2

Noisy strategy Noisy traders buy randomly (probability %) but sl only if con-
venient. The average pricethey paidfor all the stocksthey own must belower than
P, i.€.
1 i
5 > Py <pwitht>1andt <t Vj.
N =
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Figure 6.1  Sketch of thefundamentalist (Ieft) and chartist (right) trading
rule as finite state automaton.

Chartist strategy Chartists consider the trend with respect to a given time hori-
zon h € N. At each time step they sell if and only if the moving average value

t-1

A =2 > b (62

t'=t-h

computed over the time horizon h is above the “filtered” price p; () = pt + dpt
(0 < § < lisaninput parameter). If m(h) isbelow thefiltered pricep; (6) = pi—dpr,
they buy. Finally they stay inactive when p;(§) < m(h) < p{(§). The chartist
behaviour represented as a SFSM is sketched in figure BT

We allow three values for h, 10, 60 and 360, so there are three groups of chartists
who look at moving averageson different timehorizons(respectively short, middle
and long term).

6.1.2 Collective formation and diffusion

At thisstage of formulationthe agentsfollow independent strategies. Thus, theex-
cess demand D of eq(@3l) isthesum of i.i.d. random variablesand the central limit
theorem determines a Gaussian distribution of the histogram of log-return which
isdifferent from what is observed in the real markets [E1] (see also chapter @).

To obtain a deviation from Gaussian we need to take into account the herding
behaviour that has already been demonstrated to determine (at least in part) the fat
tail property of the distribution of returns [[33, LIS, 32, [L17].
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Instead of determining a priori the clusters distribution as in percolation models
wejust alow the agents to diffuse on the grid and to aggregate inside each single
lattice Site .

We model the market as an unbounded | attice gas. Agentsare placed randomly
onaregular triangular two-dimensional lattice (six neighbour sites) L x L (six links
at 60°) withtoroidal boundary conditions (seefigureEZlin chapterB). At eachtime
step, agents diffuse uniformly to a neighboring site. The diffusion determines a
re-shuffling of agents inside each single lattice sSite and changes the impact on the
price fluctuations.

In the spirit of Nowak et al. [B7] (see dso [I34]) the decision of each agent af-
fects and gets affected by other agents on the basis of its influence strength. The
influence strength of agent i is represented as a real number s©. If we assign a
much larger influence to some traders among the totality (call them leaders), the
dynamics of the model will be dependent on how many leaders are present. Lead-
ersare chosen uniformly among all the classes of traders. We represent agroup by
those agents contained in the same lattice site. So, each group of tradersforms a
collective system. A possible exampleis agroup of people following the advises
of asingle financial analyst. We also want a group to be dominated by a leader
so that we can set the number of leaders equal to L2 given that N >> L2 where N
indicates the total number of agents.

Each agent belonging to a group imposes his/her strategy according to thein-
fluence strength s. For each X’ € {-1,0,+1} determined by the trading strat-
egy discussed in section B2 we sum the influence strength of each agent that is
following strategy x = —1, 0, 1 and we normalizeit to the total so to get values be-
tween zero and oneto be interpreted as probabilities. Thefinal decision of selling,
staying inactive or buying, represented respectively by —1, 0, 1 is determined by
the following distribution (>, pr[x] = 1):

i E':xg)zx s(j)
X = PO = = = 5 (63)

where the index i runs over al agents of the group. The influence strength of the
leader is larger than those of a “regular” trader. How much larger is specified as
an input parameter. Given the distribution pr[—1], pr[0] and pr[+1] of eq(@3), the
agents strategy xO) is updated using a random whee! selection.

A collective system arises from the coherent behaviour of agroup of strongly
interacting constituents. It also has aweak external coupling. In our case, the col-
lective can be treated as an individual whose strategy’s distribution is determined
by the single agent’sactual strategy x through eq@@3). This meansthat if exactly
one agent is a leader and he has chosen strategy X then, for the other choices x,
pr[X] > pr[X]. Thus, the fraction of agentsin that collectivethat will follow strat-
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egy Xislarge. If two leaders are present in the same site and their decision is dif-
ferent, then they will compete to determine the majority strategy. On average half
of the traders will follow one leader and the other half will follow the other. And
so on for the other possibilities. In general, if we set more than one single leader
in each site (on average), their competition will destroy the effects of the herding
behaviour. This determines, as confirmed by numerical smulations, a Gaussian
distribution of returns. In conclusion we decided to set on average a single leader
(or less) in each lattice Site.

It isworthwhile to note that even in this case the dynamics of each collective

group isequivalent to that of a single agent (the leader) with combined capital and
the collectives take decisions independently one from the others. Following this
reasoning, for the central limit theorem, one would expect again a Gaussian dis-
tribution of return. Infact the effect of the collective strategies of the leaders with
combined capital would end up to zero when summed over the whole grid just be-
cause the uniformity of the collectives' dimensionwhichisabout (Nc+Ng+Ny)/L?
on average. The results show aclear deviation from a Gaussian instead. Why this
happens?
The answer is found considering the synergy between the trading rule of section
B and the collective formation mechanism described in B2, the collective
groupsinfluenced by afundamentalist leader are coupled (weakly, but they do) by
means of the fundamental pricethat isperceived by all of them equally. So, while
the noisy’ collectives, being totally uncoordinated, only produce noise, it happens
that fundamentalists' |eaders occasionally end up with the same decision to buy or
s, driving a large fraction of all the traders to follow the same decision. Same
rationale appliesto the chartist’ collectives. Chartistslook at the price history (the
“charts’) and eventually end up to follow the same“trend”. Thisbehaviour of fun-
damentalistsand chartistsdrivesalargefraction of agentsto take the same decision
causing large fluctuations of price, that is, fat tailsin the distribution of return.

The re-shuffling given by the random diffusion of agents on the lattice can also
beinterpreted as achange of preference, in the same way people decideto trust to
another brokerage agency or bank. In fact, one agent that leaves a group whose
leadership is for example fundamentalist for a group whose leadership is chartist
will end up in a behaviour’s change much like the fundamentalist-noisy switch in
[iZ4]. Moreover, not all latticesiteswill contain aleader. Inthese“leader free” sites
no collective if formed and the behaviour of the agents is almost independent.

6.2 Discussion

When the number of fundamentalists is higher than that of the noisy traders, the
price p, tracks closely the perceived valuef;. Thisisbothtrivial and unredistic. In
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fact, evidence from real market data suggests that, while prices track values over
thevery long term, large deviationsare therulerather than the exception [24]. The
opposite situation results in too random fluctuations given the random behaviour
of the noisy.

A nontrivial dynamicsisobtained for Nr ~ Ny. Inthiscase we observe periodsin
which the price follows the fundamental price followed by periods of apparently
independent fluctuations. The influence of the chartists on the price dynamicsis
quite different and will be discussed in section B2Z

Weset Ne = Nc = Ny = NL2 for acertain N € N. The value of this parameter
is found observing that the collective dynamics depends on its dimension. If the
collective systems are too small we do not get any herding behaviour.

We can also get rid of another parameter and set the activity a = ag/(Ng +N¢ +
Nn) for acertain fixed ap so to scale with the system size.

FigureBEA refersto asimulation with L2 = 400 and N = 25 for atotal of 30000
agents. The influence strength of the leader is set to a hundred times bigger than
that of normal ones. The diffusion speed is set to 107t meaning that each trader
changes group every ten time steps on average. Asin [[Z3] half of the agents start
with one stock while the remaining with no stocks. Inthisway we obtain abalance
between an initial number of people willing to sell and people willing to buy.

Itisworthwhileto note that theinitial amount of capital each agent isequipped

with, induces the ability of the market price p; to follow the fundamental value f;
when this strongly deviates from the initial value fo. To seethisfact just consider
thecasein whichtheagentsownllittleinitial capital, then p; islimited by the global
capacity of the agentsto buy. On the other hand, the price p; islimited from below
by the amount of initial stockswe equip the agentswith; the greater it is, thelarger
will be apotential fall of the price p; to follow the fundamental valuef;. These and
other related questions will be investigated el sewhere.
Another consequence coming from the constraint given by the availability of funds
and stocksisthat, given thetrading rule described above, the activity of the agents
isnot uniform. In fact, agents may end up with the decision to stay inactive either
if they want to sell but they do not own stocks or they want to buy but they do not
have money.

FigureB shows the price p; to follow the fundamental price f; apart of some
large occasional deviations. The standard deviation of the priceis o, = 46 while
that of the fundamental value is s = 44.94, giving an excess volatility of 2.3%.
Inthe small chart at the bottom of the same figure we show the traded volume V;
computed each time step (in contrast to reality whereit is computed every certain
period of time, e.g. day or week but not instantaneously). Because in this model
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Figure 6.2 Variationfromtheinitia pricein percent. Price(up), volume
(down). The volume V; is defined asin eq(B4). MA indicates the moving
average on long term.

we do not require to match the sell/buy orders, we compute the volume as
V= ). (6.4)
i

The model does not require that each buy order should match a sell order because
the balance is assured to be made involving a market maker outside the model it-
self.

The figure shows an increase in volume when p; ~ f; because, according to the
trading rule, fundamentalists trade much more in proximity of the fundamental
value. Thisis opposed to periodsin which they either (a) sell all stocksthey own
because the price is higher than the perceived value and wait to buy a new stock
when the price is lower than its expected value or (b) they have already invested
all the capital and cannot buy other stocks even if appropriate (see aso plots of
weathB3d).

The dynamics of wealth per agent’stypeisdepicted in figureB=3 This collec-
tive analysis does not show realistic behaviour as the fundamentaliststend to trade
to compensate the effect of the noisy traders on price dynamics (see fig. B2 plots
(@) and (b)). On the other hand, the dynamics of the chartists seems uncorrelated
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with therest of the agents. Different simulations have not shown altogether aclear
advantage of one strategy with respect to the others.

To better investigate the final distribution of capital we run alarge simulation
involving two million agents and running for 15000 time steps. In figure B is

Normal. hist. of total wealth change of 2 mil. agents after 15000 time steps
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Figure 6.4 On the X-axis the difference between the final accumulated
capital per agent andtheinitial capital they areequipped with. A re-shaping
from a uniform distribution (at the beginning they have the same capital)
to a power law in the center of the histogram is observed (Y-scaleisloga
rithmic). The unit for the X-axisis given in Euro or in an arbitrary unit of
money.

shown the histogram of agent’s wealth-change distribution. It shows a power law
in the central part with dope -1.3 and wide tails. The central part of the distribu-
tion is consistent with a Pareto-like distribution [&1]. Similar questions have been
investigated with the Cont-Bouchaud mode! [[Z1]. It is noticeable the fact that the
initial uniform distribution (all agents start with same capital) is strongly reshaped
over asufficiently long run. Indeed over shorter run thefinal distribution of wesalth
is Gaussian-like (not shown).

Plot BA shows the histogram of log-return r;. The excess kurtosis « of the
distribution is 4.58. Moreover, the histogram has fat tails and power law decay
o |[X|™ in the central part leading to exponent o ~ 2.8 (see inset plot) roughly
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consistent with empirical studies [[ZZ, 5U].
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Figure 6.5 Histogram of standardized pricereturns(r,— <r >)/oy,. The
excess kurtosisis4.58. Inthelog-log inset plot thefit of the central part of
the histogram have slope ~ 2.8.

Figurela® show the comparison of the return of the market price p; and those of
the fundamental pricef;. The deviation is clear; the exogenous source of informa-
tion istransformed into something el se by the endogenous dynamics of the market
participant as already demonstrated in [[Z4].

Another relevant property of market pricedynamicsisthe absence of correlation of
return and the persistence of long range correlation of volatility [[Z4, 5] . Volatility
of stock price changes is a measure of how much the market is liable to fluctuate
and can be defined in different ways. In the following we define the volatility as
the square of return v; = r2.

Figure B2 shows the autocorrelation function c(r) of volatility v; defined as in
eq@@). Empirical studies report a power law decay with exponent between 0.1
and 0.3 for the autocorrelation of volatility in rea data [[IH, B4, 4&]. Instead we
found a lope ~ .013 that is one order of magnitude less.
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Figure 6.6 Comparing the log return of f; with that of p;.. The exoge-
nous source of information is transformed into something else by the en-
dogenous dynamics of the market participants. On the X-axis of the upper
plot it is reported the price return while on the two plots at the bottom is
reported the time step.

6.2.1 Chartist’s influence on price dynamics

Empirical studies of large data bases [[Z3] show that the cumulative distribution of
the volatility is consistent with alog-normal behaviour, at least for the central part
of the histogram. We use here another definition of time average volatility that has
also being used in [IZ5]

— 2 2 \1/2
Vi = << My >at = <rt >At)

(6.5)
where < - > indicatesthe average over afixed timeinterval At. This definition of
volatility coincides with the estimate of the standard deviation of thelog-returnon
thetimeinterval At.

Asalready stated, the model uses the collective strategy of section B2 to re-
produce imitation or herding behaviour. Although imitation is enough to repro-
ducefat tailsin log-return distribution, it fails to explain the log-normal volatility
distribution.
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Figure 6.7  Autocorrelation function of volatility of return (eq(E)). It
shows the correlation of volatility persisting for long time. In the log-log
plot the fit has sope -0.013.

To test this conjecture we performed four different runs where in two of them the
chartists were absent and in other two the aggregation (collective strategies) was
switched off. Figure B shows the histogram of volatility for smulations with
15360 agentson 16 x 16 lattice sites, a = 0.001302 and § = 3%. FigureB™ clearly
shows that when no aggregation is present the histogram of volatility can not be
fitted with alog-normal curve. Same pattern when no chartists are present (same
figure panel (b)). Instead, a good fit with alog-normal distribution

1 o [_(Iogx—<x>)2}
V2rox P 207

with parameters o = 0.371 and < x >= —6.620 is found for the run with both
aggregation and chartists behaviour. This result is consistent with the empirical
findings on the S& P500 [IZ3] only for the central part of the histogram (see fig-
ureBI0). Other empirical studies of large data bases [[Z3] show right tails of the
volatility distribution of S& P500 consistent with a power-law asymptotic behav-
iour characterized by an exponent ~ 3. This power-law right tail is not recovered
here. Neverthelessit isworthwhileto mention thework in [H4] whereaquite good
fit with alog-normal distribution isindeed found for the NY SE index.
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Figure 6.8 Variation fromtheinitia price (in percent). Indicatedin fig-
urethefiltered price pi—dpy, pt+Jdpt, and the three moving averages m;(10),
my(60) and my(360). Large fluctuations are provoked by the my(h) crossing
the price p; & dp;. Positive and negative trends are visible.

In general, alog-normal distribution predicts that large “ positive” (i.e. greater
thanthe average) jumps (fluctuations) aremorefrequent than“ negative’ ones. Our
simulations show that a good fit is doable only for the histogram of the run with
chartistsrevealing a positive effect of chartist’s trading on the overall dynamics.

The effect of chartists on the price dynamics can be rationalized as follows.
According to the trading rule in B3l chartists do not influence the price as long as
the moving average m(h) defined in eq(B=) stays in the range (p; — dpt, pt + py).
When m(h) hitsthe upper or lower border of thefilter the chartists take aposition:
buy if it goesover p; +dp; or sell in the other case (seefig. BH). Trends areclearly
visible aswell as large fluctuations (crashes?) in proximity of the pointsin which
one (or more) moving average crosses the filtered price p; + dp.

Let’'shave alook at the consequences of such behaviour in closer detail.
Chartistsareequally distributed in three classes, as many as thetime horizonsover
which the moving averages are computed, Nc = N¢,, + N¢,, + Nc,,,- Let’stake for
example the ssimple case in which two different time horizon are computed, hl #
h2. Also call N¢,, and Ng,, the number of chartists respectively. Now consider
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Figure 6.9 Voldtility histogram (log-log scale): figure (a) corresponds
to runs with chartist traders; figure (b) without chartist traders. Runs of
10° time steps. One of the two histograms of each figure indicates a run
without imitation or herding behaviour. In plot (a), sindicates the standard
deviation and mthe mean value of the log-normal fit.

the pricefollowing a descending path, whatever has provoked it. What happensis
that, a sharp decrease of the price will induce m(h1) to decrease first (just to make
an example). At a certain point m(hl) > p;(§) calling aN¢,,, on average, for a sl
order. This synchronous signal to al the chartists Ng,, will bring the price to fall
accordingly. Eventually, at alater timet’ aso m(h2) > p;;(4) calling for a second
wave of sell ordersby aNc,,.

This reasoning could be extended at will according to the number of different
time horizons considered to compute the moving average. This kind of domino
effect isvalid also the other way around for arising price, inducing positivetrends.
FigurelBA showsthefiltered price with three moving averages computed over time
horizons 10, 60 and 360. The corresponding price and volumeis shown in figure
ow |

6.3 Long-term dependencies: Hurst exponent and
modified R/S statistics

Evidence of positive correlations in the magnitude of the return (volatility clus-
tering) in real time seriesin awell accepted and documented fact. The modified



102 Chapter 6 An agent — based model of stock market

0.009 T T T T L UV T
o O normalized volatility histogram o
x log-normal distrib

0.008

0.007 -

0.006

0.005

PDF

0.004

0.003

0.002 -

0.001

5

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
volatility

Figure 6.10  Histogram of volatility. The histogram iswell fitted in the
central part by alog-normal distribution.

R/S statistics (MRS) proposed by Lo (1991, [[Z4]) is a modification of the Hurst-
Mandelbrot rescaled range (R/S) statistics [B4, [Z8]. Lo generalized the R/S sta-
tistics as he suggested the R/S is sensible to short-range dependencies. Thus, ev-
idence of dependencies using the R/S statistics may come merely by short-term
dependencies and not from the long-term ones.

Givenatimeseriesof NvauesXy, .. ., Xy, theMRS statisticsisdefined asfollows:

@ = on(2) 1<k<n

k
[?agx (% =) = min Z(x, xn)] (6.6)

where X, is the sample average,

632 = %Z(x,-—in)z Zw,(z){Z(x Xn) (Xij = xn)}
=1

i=j+1

z
= 55+2) w2 (6.7)

=1
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5%(2) is the sample variance estimation of X computed over n samples and ; are
the auto-covariance estimators weighted by w;(2) = 1-j/(z+ 1) for z < n. Equa-
tion B computes the range of partial sums of deviations of atime series X; from
itsmean X,, rescaled by o,(2).

To choose zin eq(B=A) isnot asimple problem. The parameter ziscalled the “trun-
cation lag” and must be chosen with some consideration of the data at hand [[Z]. A
smpler solution compared to that in [[4] is given by Phillips [B€]. Following his
advice we take z < o(N*#). Note that when z = 0 the MRS statistics is identical
to Mandelbrot’'s R/S.

In our case the time series X; represents the series of volatility defined as the
absolute value of the log-return, |r;|. Our sample consists of N = 10° points. The
procedureto computethe MRS statisticsisthefollowing: (i) compute Q, over N/n
non-overlappingintervalsof sizen; (ii) the vaue of Q, iscomputed asthe average
value over the N/n non overlapping intervas; (iii) the procedure is repeated for
different valueof n=2% k=6, ..., 15.

Plotting log Q,, against log n should show the slope H beyond large n. The slope
H iscalled Hurst correlation coefficient by the name of the hydrologist H.E. Hurst
who first devised this method [52] in his studies of river discharges.

Figure =Tl shows log Q,, against log n computed for arun with L? = 400, N =
18000 on 3 x 10° time steps. The dope of the fit in the range logn > 6 is 0.79
revealing long-range positive correlations.

6.4 Conclusions and future developments

We have described anew model to reproducethe pricefluctuationsof asinglestock
in an artificial stock exchange whose traders are modeled as chartists, fundamen-
talists and noisy. Some of them have more influence than others and represent a
brokerage agency where people go to ask for advice. They group together inside
each lattice site to form a collective system and to follow a common strategy ac-
cording to proportional voting. Traders are free to diffuse on a two-dimensional
lattice to model the tendency to change opinion and to follow a different advisor.

The model is consistent with fat tails of histogram of returns, log-normal dis-
tribution and clustering of volatility.

The structure of the model is versatile enough to allow future expansion. We
believe that a more realistic description of the agents behaviour and trading may
allow to get further insight in the dynamics of price change aswell asin the distri-
bution of wealth among traders.

Agents should be able to buy/sell more than just one stock at atime according to,
for example, the availability of capital and difference between perceived value and
actual price. Besidesitisworth (and themodel will easily allow it) to devel op more
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Figure 6.11 logQ, against logn computed over 3 x 10° valuesfor arun
with AM SE.

realistic trading strategiesliketrend-following [[3Y] and/or dividethe action among
different choices (more stocks and/or bonds with fixed income asin [a4, b5, BY]).



Chapter
7

Forecasting

Forecasting future values of an asset gives, besides the straightforward profit op-
portunities, indications to compute various interesting quantities such asthe price
of derivatives (complex financial products) or the probability for an adverse mode
which is the essentia information when assessing and managing the risk associ-
ated with a portfolio investment.

Forecasting the price of a certain asset (stock, index, foreign currency, etc) on
the ground of available historical data, corresponds to the well known problem in
science and engineering of time series prediction. While many time series may
be approximated with a high degree of confidence, financial time series are found
among the most difficult to be analysed and predicted. Thisis not surprising since
the dynamics of the markets following at least the semi-strong EMH should de-
stroy any easy method to estimate future activities using past informations.

7.1 Introduction

Among the methods devel oped in Econometrics as well as other discipli nesll, the
artificial Neural Networks (NN) are being used by “non-orthodox” scientists as
non-parametric regression methods [[Z1, 3Z]. They constitute an alternative to non
parametric regression methods like kernel regression [[Z1]. The advantage of us-
ing a neura network as non-linear function approximator is that it appears to be
well suited in areas where the mathematical knowledge of the stochastic process
underlying the analysed time series is unknown and quite difficult to be rational-
ized. Besides, it isimportant to note that the lack of linear correlationsin the fi-
nancial price series and the already accepted evidence of an underlying process
different fromi.i.d. noise point out to the existence of higher-order correlations

! see the vast bibliography with more than 800 entries at
www. st er n. nyu. edu/ ~awei gend/ Ti me- Seri es/ Bi bl i o/ SFI bi b. ht M reported
from [[E2d]



106 Chapter 7 Forecasting

or non-linearities. It is this non-linear correlation that the neural net may eventu-
ally catch duringitslearning phase. If some macroscopic regularities, arising from
the apparently chaotic behaviour of the large amount of components are present,
then awell trained net could identify and “ store” them initsdistributed knowledge
representation system made by units and synaptic weights [t [T .

In the following we will see that a well suited NN for each of a set of price
time seriesshowinga“surprising” rate of successin predicting thesign of the price
changeon adaily base can befound. Not lessinteresting, we will seethat thefore-
told regularities in the time series seem to be more present on larger time scale
than on high frequency data, asthe performance of the net degradesif we go from
monthly to minutes data.

learning set and forecast on the test set
20

Pday
Gday

15

Learning Validation Check | Test
10 £

e % @
o
A
e 8

o

- \\sjwfﬁg WY

-10

-15

500 800 1000
day

Figure 7.1 Each time seriesisdivided in four data sets: learning, vali-
dation, checking and testing (see text for explanation). A difficulty arises
from the fact that the oscillationsin the test set are much more pronounced
than in thelearning set. In figure, daily closing price of Intel Corp.

7.2 Multi-layer Perceptron

Multi-layer perceptrons (MLP) are the neural nets usually referred to as function
approximators. A MLP is a generalization of Rosenblatt’s perceptron (1958); n;
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input units, n, hidden and n, output units with all feed forward connections be-
tween adjacent layers (no intra-layer connections or loops). Such net’stopology is
specified as nj-np-no.

A NN may perform various tasks connected to classification problems. Here
we are mainly interested in exploiting what is called the universal approximation
property, that is, the ability to approximate any nonlinear function to any arbitrary
degree of accuracy with a suitable number of hidden units [[LZ26, [34].

The approximationis performed finding the set of wei ghts connecting theunits.
This can be done with one of the available methods of non-parametric estimation
techniqueslikenonlinear least-squares. In particular we choose error back propa-
gation (EBP) which isprobably the most used algorithm to train ML Ps [[iti], [itid] .
It is basically a gradient descent algorithm of the error computed on a suitable
learning set. A variation of it use bias, terms and momentum as characteristic pa-
rameters. Moreover we fixed the learning rate n = 0.05, the momentum 3 = 0.5
and the usual sigmoidal B as nonlinear activation function.

7.3 Detrending analysis

We have trained the neural nets on “detrended” time series. The detrending analy-
siswas performed to mitigate the unbal ance between the learning set, and the test
set. In fact, subdividing the available data in learning set and testing set as speci-
fied in the following section (have alook at figure[Zl), we train the nets on a data
set corresponding to a periods much back in time while wetest the nets on data set
corresponding to the most recent period of time. Thisproblemisknow inliterature
as noise/nonstationarity tradeoff [34, [3d].

It is known that in the 1990's the American market has noticeably changed in
that almost all the titles connected to the information technology have not only
jumped to record values but al so the fluctuations of price today are much stronger
than before. ll | gnoring thisfact would lead to amistake because the net would not
learn the characteristics of the “actua situation”.

To detrend a time series we performed a nonlinear least squares fit using the
Marquardt-Levenberg algorithm [IZE, 5] with apolynomial of sixth degree. Then
we just computed the difference of the series with thefitting curve. For each time
series considered we ended up with a detrended series composed by 2024 points
corresponding to the period from about January 1990 to February 2000. For ex-
ample, the plot in figurelZZ2 shows the detrended time series of theindex S& P500
along with the original series and the polynomial fit.

2 the sigmoidal or logistic activation functionisg(u) = 1/(1+e™)
3 pyiswhat we usetotrain our nets. Consideringlog(py) instead of p; woul d mitigatethe problem
but it would introduce further nonlinearities
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Detrend analysis
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Figure 7.2  S& P500 detrended time series. The plot shows the original
series, the polynomial fit and the resulting detrended time series obtained
just by difference between the original and thefitting curve. The detrended
time series consist of 2024 points.

We choose daily closing of historical seriesfor 3 indices and 14 assets on the
NY SE and Nasdag. In particular the assets were chosen among the most active
companiesin the field of information technology.

7.4 Determining the net topology

One of the primary goalsin training neura networksis to ensure that the network
will perform well on data that it has not been trained on (called “generalization”
The standard method of ensuring good generalization isto divide our training data
into multiple data sets. The most common data sets are the learning L, cross val-
idation V, and testing T data sets. (The checking set C will be explained later in
thissubsection.) Whilethelearning data set isthe datathat isactually used to train
the network the usage of the other two may need some explanation.

Like the learning data set, the cross validation data set is also used by the net-
work during training. Periodically, while training on the learning data set, the net-
work istested for performance on the cross validation set. During this testing, the
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Prs

Figure 7.3 A threelayer perceptron 3 — 7 — 1 with three inputs, seven
hidden and one output units.

weightsare not trained, but the performance of the network on the crossvalidation
set is saved and compared to past values. If the network is starting to overtrain on
thetraining data, the crossvalidation performancewill beginto degrade. Thus, the
cross validation data set is used to determine when the network has been trained
aswell as possible without overtraining (e.g. maximum generalization).

Although the network is not trained with the cross validation set, it uses the
cross validation set to choose a”best” set of weights. Therefore, it isnot truly an
out-of-sampletest of the network. For atruetest of the performance of the network
the testing data set T isused. This data set is used to provide a true indication of
how the network will perform on new data.

In figurelZZ3, an example of MLP with n; = 3, n, = 7 and one output unit takes
Pt P, Pr, 1N input and gives the successive value py, as forecast. The number of
free parametersis given by the number of connections between units (n; + ny) - N;,.

While the choice of one output unit comes from the straightforward definition
of the problem, acrucial question is*“how many input and hidden units should we
choose?’. Ingeneral thereisno way to determine apriori agood network topol ogy.
It depends critically on the number of training examples and the complexity of the
timeserieswe aretrying to learn. To face this problem alarge number of methods
are being developed (recurrent networks, model selection and pruning, sensitivity
analysis [B4, Bd]), some of which follow the evolution’s paradigm (Evolutionary
Strategies and Genetic Algorithm).

Because we have observed acritical dependence of the performance of the net
from n; and ny,, and to avoid the great complexity of more powerful strategies [34,
3], we ended up with the decision to exploreall the possible combinationsof n;-ny
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in a certain range of values. Our “brute force” procedure consists of training nets
of different topologies (varying2 < n; < 15and 2 < np < 25) and observe their
performance. More precisely we select good nets on the basis of the mean square
error (see eq(IZ)) computed on 200 points out of the sample set constituting the
test set. Thus, besides the separation in Learning-Validation-Testing of our time
series, we further distinguish a subset from the Testing set: the Checking C (see
fig. ZN). The reason is that while we train the net to interpolate the time series
(minimizing the mean square error) we finally extrapolate to forecast the sign of
the increments (to be defined later).

To assess the efficiency of the learning and to discard bad trained nets during
the search procedure we use the mean square error o defined as

g:§-|—é|2(gt—po2 (7.1)

teC

wherep; isthepricevalue, g; istheforecasted valueat timet € Cand o isthestan-
dard deviation of the time series. For good forecasts we will have small positive
vauesof o (1> p > 0).

We set the threshold 0.015 to discriminate good from bad nets. Only those nets
for which ¢ < 0.015 are further tested for sign prediction.

In summary, first we learn on set L, and through validation V we find when to
stop learning; then through check on C we seeif the learning process worked well,
and in case it did, we make predictionsin the test phase on set T for "future’ (i.e.
previously unused) price changes and compare them with reality.

7.5 Stopping criteria

To avoid overfitting and/or very slow convergence of the training phase, the stop-
ping criteriais determined by the following three conditions, one of which is suf-
ficient to end the training phase (early stopping):

1. Stopping is assured within 5000 iterations of cross validation (see section
2

2. during cross validation the mean square error on the validation set V iscom-
puted as oy = 13"y (0 — )% during training oy should decrease, so a
stopping conditionisgiven if oy increase again more than 20% of the mini-
mum value reached up to then;

3. learning is aso stopped if ¢y reaches a plateau; this is tested during cross

validation averaging 1000 successive valuesof ¢y and checking if the actual
valueis above this average.
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7.6 Results

The plot in figurelZ4 compares the forecasted g, and thereal p; valuesfor thetime
series of Apple Corp. on thetest set T. It aso shows alinear fit for the points
{p,0t}. A raw measure of performance on the test set T can be obtained by the
dope of thefitting line (let’s call it 8). It will be avalue close to oneif thefit cor-
respondsto they = x line, i.e. if p; = g.. We obtained the following #’s for the
time seriesin table I and I3 O = 0.906, 05, = 0.874, Oygano0 = 0.860.
Ounm. = 0.976, 0; = 0.921, 0,» = 0.914, b, = 0.885, 0,,,, = 0.885, 8, = 0.874,
Ocsco = 0.860, Oyoon = 0.847, 05y = 0.842, O, = 0.824, 0,4+ = 0.803, sy =
0.774, O, = 0.692, 0400 = 0.488.
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Figure 7.4  Forecast of thetime seriesAAPL. Priceis expressed in USS.
A perfect forecast will be represented by dots on they = x line (shown as
the continuousline). The dashed lineisalinear fit of thepoints {p;, g:}. A
raw measure of the error in forecasting is given by the slope of the fitting
line. Values close to one indicate g; ~ p.

The final estimation of the performance in forecasting is made by means of the
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one-step sign prediction rate S defined on T as follows

1
=1 D HSAp - Ag) +1-HS(|Ap +|Agl) (7.2)

teT

where Ap; = p; — pr—1 the price change at timestept € T and Agt = G — P1
is the guessed price change at the same time step. Note that we assume to know
the value of p—; to evaluate Ag:. HSisamodified Heavisde functionHSx) = 1
for x > 0 and 0 otherwisell. The argument of the summation in eq(IZ2) gives one
only if Ap; and Ag; are non-zero and with same sign, or if Ap; and Ag; are both
zero. In other words S isthe probability of a correct guess on the sign of the price
increment estimated on T.

In the lower-right inset of figurelZA it is shown p; — g; as function of p;. One
can see that the difference between the real and the forecasted values clusters for
small p;. Another way see it isto look at the histogram of S as function of Ap.
In other words the rate of correct guesses on the sign of the price increment rel-
ative to the magnitude of the fluctuation of the real price. To obtain an unbiased
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Figure 7.5 Normalized S as function of Ap (arbitrary units). The the
sign prediction rate seems independent from the magnitude of the price
change |Ap|.

histogram we have to normalize it dividing each bin by the corresponding value
of the Ap’s histogram (the limit of Ap followsa power law so that large fluctua-
tions are much less probable). The resulting distributionisplotted in figurelZ3 It
isnow clearly visible that the net does not favor large increments over small ones
or vice versa. Infact the probability to make a correct guess on the sign of thein-
crement seems independent from the magnitude of the increment itself. This does

4 The usual HSfunction gives 1in zero, i.e. HS0) = 1
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| Series ok/tot || Series ok/tot |
S& P500 32/54 DowJonesind 189/450
Nasdaqg 100 45/86
SUNW 112/112 || DELL 69/69
WCOM 76/76 AAPL 309/311
INTC 46/46 AMD 244/245
STM 33/269 || ORCL 35/35
MSFT 21/21 IBM 9/9
Csco 39/48 HON 22/82
T 6/6 QCOM 43/436

Table 7.1 Here tot indicates the number of nets such that o > 0.015,
that is, we judged as good nets, while ok is the number of them that gave a
sign predictionrate S above 50 percent.

Symbol N nm (L[ V] 2 S(%)
S&P500 8 2 500 300 0.008938 52272727
DowJonesind 13 2 700 200 0.012074 51.488423
Nasdag100 4 25 700 200 0.014182 50.982533

Table 7.2  For each index the net topology n; — n, — 1 is specified along
with o, S, |L| and |V|. |T| = 2024 — (n; + |L| + V| + |C]) and |C] = 200.

not means that the net forecasts “rare events’ (i.e. a profit opportunity) as easily
asnormal fluctuation, because the statistics here cal culated are not significant with
respect to extreme events.

To interpret the results that we are going to show we have to concentrate our
attention on the way we select a good net to be used to make forecast. For each
time series we have performed a search to determine the topology of agood net as
specified in the last section. Oncewe get apool of candidatesthe questionis“how
many of them give a sign prediction rate above fifty percent?’

This question isanswered in tablelZl There, tot indicates the number of nets
such that ¢ < 0.015, that is, we judged as good nets, while ok is the number of
them that gave S > 50. Thisratio can be seen as an estimation of the confidence
that the net will perform a*“sufficient” forecast of price change, where sufficient
means above fifty percent.

The value of S together with the specification of the number of units per layer
of the best net isreported in tablelZd and tablelZZ3 al ong with the dimension of the
learning and validation set.

Thesign prediction ratesrangefrom 50.29% to 54%. Whilethe smallest values
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Company Symbol n ny L] |V 0 S(%)

e Sun Microsys SUNW 9 7 500 300 0.014435 54.005935
¢ Dell Computer DELL 4 18 500 300 0.004315 53543307
e Mci Worldcom WCOM 3 2 500 300 0.004024 53.392330
e Apple Comp Inc AAPL 5 17 700 300 0.013786 53.374233
e Intel Corp INTC 6 6 500 300 0.009953 53.254438
o Adv Micro Device AMD 4 23 500 300 0.012339 52.952756
o ST Microelectron ST™M 6 2 500 300 0.003978 52.465483
e Oracle Corp ORCL 6 2 500 300 0.006333 52.366864
¢ Microsoft Cp MSFT 10 4 500 300 0.008327 52.277228

o Intl Bus Machine IBM 10 6 500 300 0.006642 52.079208

o Cisco Systems CSCO 4 14 500 300 0.008364 51.968504
o Honeywdll Intl HON 8 2 600 200 0.008506 51.877470
o AT&T T 3 22 500 300 0.014920 51.327434
e Qualcomm Inc QCOM 4 25 500 300 0.009888 50.295276

Table 7.3  Success ratio for the prediction of the sign change. For each
asset the net topology is specified along with ¢, S and the number of points
in the learning and validation set. In the second column is specified the
symbols from the respective stock exchange NY SE(o) or Nasdag|(e).

50.29 may be questionabl e, the larger values above 54 seem a clear indication that
the net is not behaving randomly. Instead it has captured some regularitiesin the
nonlinearities of the series.

A quite direct test for randomness can be done computing the probability that
such forecast rate can be obtained just by flipping a coin to decide the next price
increment. For this purpose we use a random walk (pr(up) = pr(down) = %) as
forecasting strategy g, and observe how many, over 1000 different randomwalks,
giveasign predictionrate Sy, defined in eq(IZ2) above the val ue obtained with our
net. Notethat each random walk perform about 1000 time steps, thesameas|T| for
that specified time series (see tablelZ andIZd). These valuesare reportedin table
IZ4 They indicate that except for QCOM the random walk assumption “cannot
give’ the same prediction rate as the neural net.

In other words, given a neura net which produce S as prediction rate over a
certain time series p; we may compute the probability at which the null hypothe-
sis of randomness isrgjected. We use arandom walk (pr(up) = pr(down) = %) as
forecasting strategy grw, and then compute S,, defined in eq(IZ3) on thetime series
p:. The random variable S;,, have mean 0.5 and standard deviation os,,. By defi-
nition Sy is the sample mean of T i.i.d. Bernoullian random variables. Thus, as-
suming that S,,, convergesto aGaussian A/ (%, cs,..), We can estimate the unknown
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| Series #rw: Sy > S || Series #HW: Sy > S |

S& P500 78 DowJonesInd 186

Nasdaq 100 258

SUNW 7 DELL 16

WCOM 13 AAPL 25

INTC 21 AMD 30

STM 50 ORCL 69

MSFT 76 IBM 103

CSCO 98 HON 108

T 194 QCOM 431

Table 7.4  Forevery signpredictionrate S reported in tableZ2 andIZ3 it
is here shown the number of random walks (over 1000) that have totalized
asign prediction rate Sy, greater or equal S.

variance of Sy 8562, = + SN (S — 2)2 To have an estimation of o5, we ran
N = 1000 random walks each giving a value for S,,,. Once we estimate oy, the
null hypothesis becomes “what is the probability ps,, [X > S] that the neural net
isdoing arandom prediction on p; withrate S 7' or the other way around " what
is the probability ps,,[x < S] that the net is not doing randomly?’. In formula,
Psu[X < S1= [ N(E, 6m)(X)dx where V' (3, 51v) isaGaussian and &, isthe es-
timation of the standard deviation o, of the random variable S;,. In summary, for
every sign predictionrate S obtained with our neural net on atime seriespy, wefirst
estimate &, as specified above, then we compute the probability ps,, [X < S] at
which the null hypothesis of randomness predictionisrejected. Theresultstell us
that for some bad prediction values (likefor QCOM or Nasdagl100) the randomess
hyphothesis cannot be rejected but for the majority of the series the probability to
reject the null hypothesis is something between 0.01 and 0.1.

7.7 Weekly and intra-day data

Itisinteresting to ask if the MLP may exploit regularitiesin thetime seriesof price
sampled at alower/higher rate than daily. Apart from the “scaling behaviour” ob-
served empirically inreal price series we are interested in the performance of our
procedure (search pluslearn) when we change the time scale on which we sample
the price of the assets or the index at a stock market.

To answer this question we performed the same search for the good net on the
IBM and AMD stock price sampled on weekly basis as well as taking intra-day
data with the frequency of one minute. Both series consisted of 2024 points, the



116 Chapter 7 Forecasting

same as the daily price series.

The outcomeisthat intra-day data are much difficult to be forecasted with our
MLPs. In fact for both the one-minute-delay data series the search did not suc-
ceeded to find agood net; al the good nets (few) have given asign prediction rate
S < 40%.

On the other hand the forecast of weekly data gave a success rate compara-
ble with that of daily series (e.g. a4-2-1 net performed S = 51.422764 with o =
0.004947).

7.8 Atrtificially generated price series

Aslast question, and to further test the correctness of our prediction, we tried to
forecast the sign of price changes of an artificially generated time series. Thiswas
generated by the the Cont-Bouchaud herding model (see section BZlin chapter B)
that seemsoneof the simplest oneableto show fat tailsin histogram of returns[i34].
Thismodel showsthe relation between the excess kurtosis observed in the distrib-
ution of returnsand the tendency of market participantsto imitate each other (what
is called herd behaviour). The model consists of percolating clusters of agents
[0S, [T0H, (015, 32, [T04] . At agiven time step a certain number of coalitions (clus-
ters) decide what to do: they buy with probability a, sell with probability a or stay
inactivewith probability 1-2a. Thedemand of acertain group of tradersispropor-
tional toitssize and thetotal price changeis proportional to the difference between
supply and demand.

It is clear that such a model generates unpredictable time series, and our net-
works should not be able to make any predictions. Indeed, when our method was
applied to this series it did not succeeded to find a good net as all the tried nets
performed bad on the check set C, i.e. ¢ > 0.015.

7.9 Discussion

We have shown that asuitable neural net ableto forecast the sign of thepriceincre-
ments with a success rate dightly above 50 percent on adaily basis can be found.
This can be an empirical demonstration that a good net exists but we do not have
amechanism to find it with “high probability”. In other words we cannot use this
method as a profit opportunity because we do not know a priori which net to use.
Perhaps a better algorithm to search for the good topology (model selection and
pruning with sensitivity analysis [[B4, 56]) would give some help.

As final remark we have found that intra-day data are much more difficult to
be forecasted with our method than daily or weekly data.



Summary

The main question addressed above was how to derive“the collective” (i.e. macro-
scopic) properties of a system starting from the knowledge of the laws ruling the
individual (i.e. microscopic) behaviour.

Similar problem gaverisetothefield of statistical mechanics although amajor dif-
ferenceis present. The macroscopic laws of thermodynamics were derived from
the knowledge of the microscopic Newtonian's law of motion which are well un-
derstood. In contrast, in finance and in biology and in particular in immunol ogy,
the microscopic rules are mostly empirical and nonethel ess unable to completely
define the system.

In the search for computational modelsthat help to understand the dynamics of
complex systems, one can take agreat advantage from the impressive accel eration
of computer toolsand techniques. Infact the very structure of computation ondig-
ital computers has ingpired the introduction of new class of models (algorithms),
where interaction among degrees of freedom are expressed by logical rules acting
over adiscrete state space — something much closer to “biological language”’ than
to standard (floating point) physical models.

We have presented a unifying approach to model complex systems with large
number of degree of freedom. Starting from the definitions of spin systems, with
little changes we have defined a new model (called unbounded lattice gas) that is
well suited to describe two different ssimulation systems.

The first system (called CImmSim) simulates the humoral and cellular im-
mune response. It is based on the origina model of F. Celada and PE. Seiden.
This detailed model uses six cellular entities, five molecular entities and various
signals like interleukin. Through complex interaction rules among the cells and
molecules, theresponseto agenericantigen or virusistriggered by multiplerecog-
nition of the bit-string representing the chemical-physical conformation of the re-
ceptors. The computational model IMMSIM has been completely re-coded in C
language (CIlmmSim) with message passing facilities to run large-scale simula-
tions on parallel machines. Particular attention has been devoted to the efficiency
in using both memory and CPU. By meansof CImmSim we haveinvestigated the
complex dynamics of the immune response and described the process of the anti-
gen recognition as a cascade in a suitable (information) state space.
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The second system (called AM SE) ssimulates the trading activity of agentsin
astock market. It is built borrowing some ingredients from other known models.
In addition, agroup atraders called moving-averagefollowersrepresents chartists
who base their decision upon the evolution of the price of the asset. Also, traders
group together to take collective decision to model the herding behaviour. Simula-
tionsreveal thefollowing results: (1) the aggregation behaviour isresponsible for
the fat-tailed histogram of return; (2) the log-normal distribution and long-range
correlation of volatility come from the activity of the chartists following the mov-
ing average. Many other features of the market dynamics can be investigated with
thismodel and are actually worksin progress.

The architectura schema of AM SE is equivalent to the one used for ClmmSim,
i.e. it isaso an unbounded lattice gas. Also for this smulation system we have
adopted the message passing paradigm to alow large scale simulation.

Two other effortsdescribed inthisdissertation are (i) theimplementation of the
Cont-Bouchaud model using the algorithm of Hoshen and Kopelman as the clus-
tering labeling algorithm and (ii) the realization of a multi-layer perceptron with
error-back propagation learning algorithm to forecast financial time series.



Appendix
A

Basic immunology

In this appendix is given the cardinal features of the immune system response as
needed for chaptersBand @ It is subdivided in humoral and cellular response.

A.1 The humoral response

The humoral immune response is characterized by the production of antibodies.
These are soluble (i.e. free) copies of the B cell receptors which are commonly
carried on the cell surface and are responsible for the antigen binding and recog-
nition.

According to the clonal selection theory, the lymphocytes B that proliferate dur-
ing the antigen attack are those whose receptor is able to bind the antigen. During
the proliferation, the B lymphocytesdifferentiateinto memory B cells (samefunc-
tionality of the parent cell but aslower aging process) and PlasmaB lymphocytes.
Plasma cells have basically the task of producing and releasing large quantities of
antibodies.

Apart from the mutation phenomena briefly mentioned in paragraph 23, the re-
leased antibodies are exact copies of the receptor of the originating PlasmaB cell.
As a consequence, the antibodies match the antigen with the same strength. The
B cells are obvioudly the main agent in the humoral response. How and when do
they start to duplicate? The process begins when a potential antigen (molecule,
bacterium or virus) isfound by either the B cellsor the AP cells. The major differ-
ence between these two cellsisthat the former binds the antigen with its receptor
whereasthe latter “eats’ it without any recognition process. In abroad senseg, this
is another kind of response to the antigenic invasion. It is quick but not powerful
enoughto faceamassive antigen attack. Actually, the AP cellsarenot very aggres-
sive with respect to the antigen population, they rather keep catching occasionally
somemolecules. For thisreasonthey arecalled the* street sweeper” of theimmune
system. The best defense is offered by the so-called acquired immune system and
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Figure A.1  B-Antigen interaction, endocitosys of B cell and B-T inter-
action in asystem with strings of 8 bits.

it is based on specialized T and B cells.
Both B cellsand AP cells processinternally the antigens (endocitosys, MHC class
Il bind antigen-peptides). Upon successful binding, they expose the MHC/peptide
groove on their surface. Thisisafirst indication of an antigenic attack but the B's
wait for another signal to activate. When aT cell isable to bind the MHC/peptide
groove on AP or B cell surface, it gets stimulated and stimulates back the B cells
viathe emission of certain lymphokines. Figure BZl shows the various phases of
the humoral response.

The lymphokines are soluble molecules. It is known that a large number of
different lymphokines exists whose regulatory function is extremely complex.
T helper and B cells stimulate each other. At this time, they start to proliferate.
While a proliferating clone of T helper is basically composed by memory cells,
some of the clones of the B cells differentiate into Plasma B cells. They produce
the antibodies that eliminate the antigen.
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A.2 The cellular mediated response

Themechanismsof thecellular response are of special interest in devising and test-
ing vaccines, one of the main applications of immunology.

The simulation of the cellular response requires the modeling of new entities. For
instance, the MHC class | (MHCI) was not represented in the previous versions
of CImmSim. The molecules MHC class | and Il play amajor rolein the process
of antigen recognition. They control the binding between the antigen-virus and,
respectively, T killer (class 1) and T helper (class|l) cells. The cells representing
the virus targets are modeled as Generic Epithelial cells (EP). The virus infects
such cells penetrating the cellular membrane. Then it starts to proliferate com-
pletely hidden to any antibody produced by the humoral response (see appendix
EXD). Virusproliferationinside theinfected cell eventually terminateswith the ex-
plosion of the cell. Asaresult thereisthe release of alarge amount of viruses.

Theinfectioniscounteracted by the T killer cells. These lymphocytesare able
to recognize MHCI-virus complexes on the infected cells. Upon recognition they
kill the infected cells preventing further proliferation of the virus.

Beforedying an EP releases aD signal (danger signal) which ishere explicitly

modeled. The D signal determinesthe activation of APC from aresting state.
During theimmune response, both lymphocytesand “accessory” cells(i.e. macro-
phages and dendritic cells; the latter are not modeled here) produce a number of
different molecules named cytokines. T helper cells, in thiscase, release cytokines
which help T killer activation. Upon recognition of an MHCI -peptide complex on
the surface of an active APC, they producethe interferon-~ (IFN) molecule which
determines the probability for aT killer cell to proliferate.
The cytokines have many functions, but most of them act as regulators of the re-
sponse. In CImmSim, for sake of simplicity, just few kinds of cytokines are ex-
plicitly modeled. We chose to represent the cytokines whose concentration de-
termine the probability for an event to occur. For instance, the aforementioned
probability that a T killer duplicates depends on a factor which can be written as
1-exp(—(y/E)?) where is proportional to the number of interferon-y molecules
for acertain constant E. The cytokineswhichtrigger “ deterministic” eventsare not
strictly required in our model since, by definition, such events happen regardless
of the actual number of molecules.
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Appendix
B

ClmmSim: optimization techniques
and parallel programming

The CImmSim code does not just resort to parallel processing to run faster. Data
structuresand I/0O have been optimized aswell to limit the (huge) memory and disk
spacerequirements. Inthisappendix we discussthe sol utions adopted to overcome
the limitations of the original IMM SIM code due to the impractical growth of the
APL2-workspace.

B.1 Dynamic memory allocation

In aclassic CA thereis asimple correspondence between entities of the automa-
ton and sites of the grid. Usually each site contains either one or zero instances of
an entity and the number of distinct entitiesis pretty small. B This feature makes
the computation of the interactions among entities very simple. Unfortunately it
imposes a severe restriction on the number of instances that can be represented.
This number can not be greater than the number of lattice points. For a biologi-
cal model, thisisatoo strong limitation. As a matter of fact, the ISisadynamic
system with apopulation that, due to the combination of multiple mechanismslike
evolution, learning and memory, may change significantly during the simulation.

One of the most serious issue we had to address has been the huge amount of
memory required to store the information which describe the entities and their at-
tributes.

Inan“apha’ versionof ClmmSim [[Z5] we adopted, for the sake of smplicity,
static datastructures(arrays) for al the entitiesof thesmulation. Thisstrategy was
quickly abandoned because of the exponential growth of the memory requirements
for larger simulations. It is easy to show that using arrays the space complexity is

L Inthewell known Game of Lifethere isjust one possible entity. The Game of Lifewasintro-
duced in the late 1960's by John Horton Conway [[44].
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O(2V") for some constant N, which is obviously unbearable. So we resort to use a
more flexible, although more complex, dynamic memory allocation technique.
After the choice of the attributes for each cellular entity, the information re-
quired for each cell is organized in blocks of variables, one block for each cell.
In such away, each cell getsaclear identity (record) in memory and can be easily
told apart from theothers. The blocksarelinkedin lists, onefor each classof cells:
B list, Th list and so on (see table ZJl for a complete list of the cellular entities).
These areforward or single linked lists. To save memory thereis no pointer to the
previous element. Only the pointer to the next element isused. The lists are ini-
tialized at startup time and are managed dynamically at run time. When acell dies
out it is removed from the list. Likewise, when a virgin cell comesin (from the
bone marrow, lymph nodes and/or for clone division of stimulated cells) a block
of memory is allocated and the variables-attributes are filled with appropriate val -
ues. The new block becomes the head of the corresponding list.
The allocated memory grows linearly with the number of cells (thereis no direct
dependency on the bit string length ) following the clonal growth of cells during
the immune response. The growth is limited by an embedded mechanism which
emulates the effect of having limited space for cell-proliferationin real bodies.

B.1.1 List permutation

In the real immune system each cell has tens of thousands of receptors on its sur-
face. So, albeit very unlikely, itis possible that it binds more than one entity at the
sametime. In our simulator this not supported. Each cell has a single receptor, so
the binding events follow a greedy paradigm: a successful binding event removes
thetied entitiesfromthe eliciting set to prevent further interactionsduring the same
time step.

It is pretty clear that such mechanism may introduce an artificial bias in the
simulation. Indeed, if the scanning order during the interaction phase were ssimply
the cells' lists order, the cells close to the head of the list would get more chances
to interact. To alleviate such problem the order of the cells lists changes for each
time step. Basically thisis a three steps procedure:

1. the pointersto thelist elements are copied to an array of pointers;

2. thearray israndomly shuffled by swapping pairs of el ements;

3. anew list of cellsisbuilt with the order defined by the array of pointers.
This technique allows to scan the original list just once. The array is re-ordered

in O(n) time. The temporary space required is also O(n) where n is the number of
itemsinthelist.
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B.1.2 The single antigen case

Inapreliminary version of thesimulator, theantibodieswere storedin staticarrays,
one for each lattice site. To save space, we introduced a sparse data structure and
an hash table to access it. Asaresult the amount of memory required to store the
antibodies was reduced to ~ 9%.

Unfortunately, this ssimple mechanism does not allow to keep track of more

than one Ag. A careful analysis shows that changing the hash table structure to
support different antigensistoo tricky.
A possible alternative is to represent the antibodies by means of a dynamic data
structure similar to the lists employed for the cells. The only difference is that,
for each lattice site, there is afield in the list to count the number of antibodies
that have identical bit strings. With this approach, the memory requirements are
reduced to the bare minimum (i.e. in the worst case proportional to ZL:M (W)

Obvioudly, thelist does not allow immediate access to the single recordswhich
is one of the advantages of an hash table. As a consequence, more CPU timeis
spent updating a record since each access requires a sequential scan of the list.
Such drawback is overcome by advantages like code simplicity and generality. As
amatter of fact, no changein the data structurewill be required when we simulate
mutating antigens.

B.2 State flags

All information about the state of a single cell are stored as bit-flagsin a packed
form. In the previous release [[Z5] just two bits were used. With the introduction
of the cellular response the number of possible stateswasincreased. The layout of
the byte associated with each cdll is currently the following:

byte-flags = b7 b6 b5 b4 b3 b2 b1 b0

* b7: Memory flag,
b6 : NOT USED,
b5 : Ablink flag,
b4 : NOT USED,

b3, b2, bl, b0 : State bits (see table EXl).

The use of four state-bitsallowsto distinguish among 16 states. Thisis more than
actually needed (the number of statesis 8) but it leaves space for future develop-
ments. Table Bl gives a short description of each possible state, to be compared
with thelist in paragraph 2L
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| b3b2b1 b0 | State | Short description | Used for |

0000 ACT | Ready to interact APC, B, Th, EP, Tk, PLB
0001 INT | Has phagocitated oneAg | APC, B,

0010 INF | Ag hasinfected the cell EP

0011 EXP | Expose Ag-pep on MHCII | APC, B,

0100 LOA | Expose Ag-pep on MHCI | APC, EP

0110 RES | Inactive (do nothing) APC
0101 STI | Duplicating B, Th, Tk
0111 DEA | Dead (lysis) EP

Table B.1 State-determining flags.

B.3 Optimized Hamming distance computation

Inthe CS-model each interaction between moleculesor between cell receptorsand
molecules requires the evaluation of the Hamming distance between two binary
strings (see section EZI4). The number of such operations per time step and per
each lattice Site is proportional to the product between the number of interacting
cells. Thisnumber can be astonishingly high when millions of cellsfor each entity
are smulated. The Hamming distance can be easily evaluated with a ssmple loop
over the hit string length:

int dist=0, k, xyxor;
Xyxor = x 7 vy;
for(k=0; k<l; k++) dist+=( (xyxor>>k) & Ox1 );

Obvioudly such naive algorithm would have adramatic impact on the overall per-
formance of the simulator.

A simple but effective alternative is to build a look-up table with 2" entries

which stores the number of bits equal to 1 for each integer between 0 and 2' — 1.
After that, a single bitwise XOR between the two binary strings is required. The
result of the XOR is used as an index to lookup the table. The value of the corre-
sponding entry is the Hamming distance of the strings.
Even if time is required at startup to build the table, there is a clear advantage
in this approach since the evaluation of the distance becomes almost independent
fromthe bit string length. Thefollowing fragment of C-codefillsthe look-uptable
DHLook Up:

for(n=0; n<(2<<(l-1)); n++){
for(i=0, ones=0; i<l; i++)
ones += ( (n >> i) & Ox1);
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DHLookUp[ n] = ones;
}

The Hamming distanceisnow given by DHLook Up[ x&y] ,where & isthebitwise
XOR operation between the two strings x and y. Note that the size of table grows
exponentially with the bit string length |. To avoid the overhead of such large ta-
ble, for | > 24 the evaluation of the Hamming distance is performed in two steps:
the strings are divided in two substrings, then the total distance is the sum of the
distances of the substrings. In such away the table has just 2'/2 entries instead of
2.

B.4 Compressed output

| n paragraph 2L we have seen how most of the entities are specified by ainteger
number in the range [0, 2' — 1]. Information about the number of entities having
the same “specificity” must be stored at each time step to allow off-line analysis
and visualization of the system evolution. Saving such information, for all possi-
ble values, requires an array with 2" entries. Actually, many entries are equal to
zero because the expressed repertoire is aways a (small) subset of the potential
repertoire. So, there is adanger of wasting a lot of back storage by filling with
zeros. Unfortunately, to cope with the genera case, there is no way to know in
advance which entries will be not equal to zero. The number and the position of
such entries may vary according to some random events at each time step. Asa
consequence, we need to store the whole array.

The amount of disk space required just for the B cell can be evaluated as fol-

lows: along integer variableis used for each value of the specificity (the number
of entities for some specificity may be greater than 65536, so neither a char nor a
short variable can be used). A long integer requiresusually four bytes, so we store
4 % 2' bytes each time we sampl e the popul ation state. For arun of 500 time steps,
500 x 2'*2 bytes of disk space are required. This means ~ 8 Gbytes for asimula-
tion with | = 22.
To save space we resort to run time data compression before the information are
stored to thedisk in binary format. Thismeansthat instead of using the standard C
functionf wri t e() directly, thereisacal tothegzi pf wrt () function defined
asfollows:

int gzipfwt
(void *ps,size_t size,size_t nitemns, FILE *strean){
static char *pc=NULL;
static int pcsize=0;
i nt conpsize, rc;
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i f((size*nitens)>pcsize) {

i f(pc!=NULL) free(pc);

pcsi ze=si ze*nitens*1. 01+12+1,;

pc=(char *)mal |l oc((unsi gned)pcsi ze);

i f(pc==NULL) {
fprintf(stderr,"Can’t get % bytes\n", pcsize);
exit(-1);

}

} . .

conpsi ze=pcsi ze;

i f((rc=conpress(pc, &conpsize, ps, size*nitens))) {
fprintf(stderr,"Error % in conpress\n",rc);
exit(-1);

}

fwite(&onpsize, sizeof (int),1,stream;

fwite(pc, (unsi gned)conpsi ze, 1, strean);

}

The function conpr ess() is part of Zib, a general purpose data compression
library [4]. It takesin input a pointer to the original array, the length (in bytes) of
the array, a pointer to the buffer which, on return, contains the compressed data
and a pointer to avariable which contains the length (in bytes) of the compressed
data. When the buffer with the compressed datais ready, its length and the buffer
itself are written to disk by meansof thef wri t e() function.

After the smulation ends, the results may be extracted by means of areverse
procedure caled gunzi pf rd(). The length of each data block is read along
with the data in compressed format. After that, unconpr ess() isinvoked on
the specified block of data.

All this machinery will naturally take CPU time but the advantage in saved disk
space are much more valuablefor long bit string simulations. 1nany case the com-
pression can be disabled at compiling time.

The compression ratio depends greatly on the number of zeroes to be saved.
This number can be roughly estimated given | and mc. If we do not consider the
small fluctuation due to the birth of new cells, the popul ation who reach consider-
able values are those who may get stimulated to proliferate, that isin other words,
those who match the antigen. Given, for example a single antigen with one epi-
tope (i.e. one hit string) the number of possible matches over the threshold m; are
given by thesum 3", .. (}). The compression ratio can be calculated dividing this
number by thetotal 2' (assuming the compression reducesto zero the space needed
for null values, which is clearly arough approximation). For a large typical sm-
ulation with | = 20 and m; = 15 the compression ratio is~ 97%. It decreases
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if we lower the affinity threshold m, because then we have more interacting cells,
that is, less population counters equal to zero. The compression performs better
on long bit string simulations. Test cases report acompression rate between about
75% and 82%.

B.4.1 Saving detailed information

Some other information (for example the number of cells for each allowed state)
are cumulative. It is possible to store directly their values at run time, even in
ASCII format. Thisfacilitates both the debugging and the monitoring of long sm-
ulations taking hours, since we can observe the evolution of the different popul a-
tionsjust plotting them on the fly.

B.5 The parallel version of the simulator

In CImmSim all the phases of the smulation runin paralel. The lymphnodeis
mapped onto a bi-dimensional triangular lattice (six neighbour sites) of L =L x L
sites, with periodic boundary conditions in both directions (up-down, left-right).
However, to make the internal management of the lists easier, the lattice sites of
the automaton are not arranged as a two-dimensiona array but as a linear vector.
The transformationis carried out by asmplefunctionN x N - N, Z=XxL+Y
and does not change the global toroidal topology of the body.

The lists which describe the entities are “local” to the processors. In other words,
thereis no single list split among the processors but as many independent lists as
the number of processorsin use.

Each Processing Element (PE) workson asubset of lattice sites. In case the Num-
ber of PE (NPE) is not an exact divisor of L, the reminder R of the sitesis spread
among the first R PE's instead of being assigned to a single PE. This technique
minimizesthe load unbal ance among the PE’s. No PE keepsa copy of listsor data
structures belonging to other PE’'s and in such away for afixed bit string length |
the memory required on a PE decreases linearly as NPE grows.

The problemisnot “embarrassingly parallel” because thereisadiffusion phase
in which cells and molecules may migrate from alattice site towards one of itssix
nearest neighbors (see figure EZN).

Elementsaredeleted fromor inserted in thelists of cellsand moleculeswhen acell
leavesthe“domain” of aPE to migrateto oneof the® nearest neighbor PE'S’. Since
the sites are distributed as if they were aone-dimensional array, each PE needs to
communicate, in aring topology, with at most with two other PE's. Theelement is
deleted from the original list and all the attributes are packed in a message sent to
the PE which now owns the cell (PEy). PE4 unpacks the message and inserts the
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attributes of the incoming cell in a new element that becomes the head of thelist.
Actually each PE packsall its outgoing cellsin just two messages for performance
reasons. Thefirst is directed to (PE4 — 1) mod NPE, whereas the second goes to
(PEg + 1) mod NPE.

FigIBal shows the various subtasks of NPE processes. The horizontal lines repre-
sent the communication among PE'’s.

Master (worker_0) worker_1 worker_{NPE-1}

Input Parameters

Spawn NPE-1
processes

Send parameters
to workets

..... Q Receive parameters

Receive parameters

Allocate mem M_0 Allocate mem M_1 | ... Allocate mem
M_{NPE-1}
repeat repeat = - repeat
Works on Works on Works on
domain M_0 domain M_1 domain M_{NPE-1}

Store data

until(end) untilend) - until(end)

Figure B.1 CImmSim communication pattern. NPE indicates the num-
ber of processing elements.

For CImmSim we have resorted to the primitives for parallel programming
defined by the PVM software package [©]. The main advantage of PVM is, for
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our application, the very smple mechanism for packing/unpacking multiple and
heterogeneous elements in a single message.

B.6 Computing requirements

For the run presented in section 2 we have employed 4 nodes of a SUN Ultra
Enterprise 10000. These are 333 MHz Ultra SPARC CPU’srunning SunOS5.5.1.
The run has required amost 11 hours of elapsed time; plot in figure B2 shows
the CPU time for each time step on node O (the landscape behavior isexplained in
the caption). The peak of memory allocation has been about 880 M Bytes per task
whereas the “working set” (that we define as the size shown in the RSS column
of the ps command output) is 260 MBytes for each dave plus 340 MBytes for
the master. The permanent storage requirements for the intermediate results have
been limited to 225 Mbytes thanks to the on-line compression (see section B2).
At the end of the run, the data have been extracted and filtered to get few Kbytes
corresponding to the most significant results.

CPU time for each time step of the simulation

10000 E T T T T T T T T T
1000 E
o g
©
? I
g
= 100 f E
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© [
c
;
10 E
l Il Il Il “V Il Il Il

0 20 40 60 80 100 120 140 160 180 200
time steps

Figure B.2 CPU time for each time step of the 24-bit simulation (see
section BH). The burst of CPU load follows exactly the clonal growth of
the cells (see the plots below) because the time required by the interaction
procedures depends on the number of cells in each lattice point.
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B.7 Timing

Three sets of runs have been performed to measure the efficiency of the parallel
code. The quality of these simulations is, from the immunology viewpoint, poor
because the set of input parameters is tuned to highlight the impact on the code
performance of some “key” parameters. The three set of runs are described in the
following paragraphs. All the timings we report are the sum of the user times on
all PE'sin seconds.

120 T T T

100 | T

60

Running time (seconds)

40 -

Number of PE's

[S<l© N V)
X

20 I - - 1 1
576 2304 9216

Lattice size (log scale)

Figure B.3  Scaling of the lattice size L. A set of threerunsfor 2, 4, 6
and 8 PE's: L = 242, L = 48 and L = 962; 30 time steps; | = 16; 15000
initial cells per type (for atotal of 75000 cells); oneinitial injection of 10*
antigens.

B.7.1 Scaling the lattice size

For this set of simulationswe chose thefollowing set of parameters: initial number
of cells 15000 per type(i.e. atotal of 75000 cells); oneinjection of 10000 antigens;
thelattice sizeisvaried from 24 x 24 t0 48 x 48 and 96 x 96.

From figure B33 it is apparent that the computing time decreases going from the
smallest gridto thelargest one. Theresultislesssurprising thanitlooksfor avery
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smple reason: in this model the computational |oad is determined by the concen-
tration of cellsin each lattice site (see paragraphBZZJ) rather thanthelatticesizeas
in most of other CA models. The interesting point isthat the total time increases
by using more processors. The straightforward explanation is that the computa-
tional complexity of these test cases does not justify the parallel-machinery. That
is, thetimethe CPU’s spend to exchange messages is higher than thetime required
to compute the interactions among cells.
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Number olf PE’s
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Number of receptor molecules represented (from |1=8 to 1=24, log scale)

Figure B.4  Scaling of the bit string length. A set of ninerunsfor 2, 4,
6 and 8 PE's: | from 8 to 24. 100 time steps on a 242 grid with 10* initial
cells per type and no injection of antigens.

B.7.2 Scaling the bit-string length

In the second set of tests we varied the bit string length from 8 to 24 with 5 affinity
classes (| -m. = 5). Lattice sizeis242?; 100 time steps; 10000 cells per type but no
antigens. In this case the simulation reproducesjust the aging process of the cells.
The outcomes (figurelB) show how the code isimproved compared to the previ-
ousversions [[25]. The computing time does not grow anymore when the bit string
lengthincreases. Notethat thetimegoesupfor | > 22 sincethe compression mech-
anism to save disk space (see section B3) is not active for | < 22,
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It is not yet clear why, with few processors, the total time is reduced when | in-
Creases.

B.7.3 Scaling the initial number of cells

Inthe last set of runs we have varied the initial number of cellson a48 x 48 grid.
Thebit string length | is fixed and equal to 16; the number of time stepsis 10. The
initial number of cellsis scaled from 1000 to 512000 for each type (that means
up to 2.56 millions of cells) whereas 10° antigens are injected for each time step
determining agreat load which triggers a quick response (cfr figure B3). Herewe
obtain aclassic scaling law for the elapsed time: growing with the number of cells
and decreasing with the number of processors.

Thisresult confirmsthat the computational complexity of CImmSim depends
essentially on the number of interacting elements.

10000

thber of PIE'S

1000

100

Running time (seconds, log scale)

10 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512

Number of initial cells per type (thousands, log scale)

Figure B.5 Scaling of theinitial number of cells. It determinesthe num-
ber of total interactions. A set of ten runsfor 2, 4, 6 and 8 PE's. One mil-
lion antigens are injected at each time step for 10 time steps. L = 482; the
number of distinct moleculesis 2% (i.e. bit string length | = 16).
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B.8 Porting to other platforms

The choice of the PVM programming model has made pretty easy the porting of
CImmSim to other platforms. Indeed, besides the original SP2 version, Clmm-
Sim runs on anumber of other platforms. from NOW (Network Of Workstations)
to the Cray/T3E supercomputer. However, the public domain version of PVM has
been used just on clusters. For performance reasons, for instance, we have been
forced to use our own version of PVM on the Sun Ultra Sparc. This version is
smilar to PVYMein design but it is specially tuned for shared memory architec-
tures [[L4].

Onthe T3E we haveresorted tothe Cray PVM environment. The only problem
of the Cray PVM isthat it follows strictly the SPMD philosophy, the pymspawn
primitiveis not supported and there is a one to one correspondence between task
and processor. These featureshave required slight changesin the ClmmSim code.
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Appendix
C

AM SE: parallel programming

Since we have more sophisticated agents than in [[24], more computing power is
required to carry on large scale simulations. To addressthisissue, the current ver-
sion of the code (AM SE ver 0.6) resortsto parallel processing.

C.1 The parallel version of the simulator

Theapproachtotheparallelizationissimilar to that described in [2€] (see appendix
B) for the smulation of the immune system response. However there are some
significant differences. First of all we have replaced PVM with MPI [ii] mainly to
exploit the better support for Collective Communication Primitives (CCP's) that
MPI offers. In the present code (AM SE), CCP' s are used to perform many reduce
operationsin parallel instead of collectingall dataonasingle node and then process
them sequentially.

The scheme which is shown in figureEZl can be summarized asfollows. Each
task of a paralel runisin charge of a subset of the total number of agents. All
phases of the smulation are executed in parallel and thereisno dependency onthe
total number of tasks. There are two phasesin which the tasksinteract: the* diffu-
sion” phase and the output phase. During the diffusion, agents may migrate from
atask to another and the communication is point-to-point. All receive operations
are posted in advance, to avoid any dependency on the internal buffering mech-
anisms of MPI. To evaluate global quantities required by all tasks (e.g. the price
change or the total volume) CCP's are employed. The same techniqueis applied
when data are collected from all tasks before writing resultsin thefiles.

As shown in figure[E3, the efficiency of the parallel code depends strongly
on the number of agents. Thisis not surprising since the overhead of the implicit
synchronization required by the CCP's is, for few agents, greater or equal to the
speedup due to the parallel processing.
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Appendix C  AMSE: parallel programming

Master (worker_0)

Input Parameters

|

Allocate mem M_0

|

repeat
Works on
domain M_0

mpi_irécv (1)
Propagate entities
mpi_send (N-1)

mpi_irecv (N-1)
Propagate entities
mpi_send (1)

worker_1 worker_{N-1}

Input Parameters Input Parameters

| |

Allocate mem M_1 | ... ARgeg e
repeat = - repeat
Works on Works on

domain M_1 domain M_{N-1}

mpi_ireev (0)
Propagate entities
mpi_send (N-2

mpi_iréev (2)
Propagate entities
mpi_send (0)

mpi_irécv (0)
Propagate entities
mpi_send (2)

data collection data collection | data collection
mpi_reduce mpi_reduce mpi_reduce
Store data

until(end) untillend) - until(end)

Figure C.1 AMSE Communication scheme. The numbersin parenthe-
ses represent the source, for the mpi _irecv, or the target, for the mpi _send,
of the point-to-point communication operations (e.g., npi i recv(1)
means receive message from worker_1, npi .send( N- 1) means send
message to worker_{N-1}).
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Figure C.2  Speedup for different system size smulations (thespeedupis
defined as T(1)/T(N), where T(N) isthe time with N processors). Timings
on aCray T3E with anumber of processors up to 128.

Owing to the MPI portability, exactly the same code runs on pretty different
platformslike the Sun Enterprise 10000, the Cray T3E and the IBM SP2.
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Appendix
D

Glossary of Notation

Symbol Meaning See page
MS microsimulation model 1
L linear dimension of alattice 6
S stochastic variable identifying a spin 6
LGA |attice gas automata 6
ILGA integer |attice gas automata 7
r(xt) the number of entities on each lattice site x at timet 7
ULG unbounded |attice gas automata 8
SFSM stochastic finite state machine 8
1S immune system 13
AND logical and 14
OR logical or 14
NOT logical not, negation 14
APL2O A Programming Language. ©Copyright IBM Corp. 17
ClmmSim Cversionof IMMSIM 18
IMMSIM Celada-Seiden computational model 18
MHC major histocompatibility complex 20
B lymphocyte B 20
Th lymphocyte T helper 20
Tk lymphocyte T killer, cytotoxic 20
APC generic antigen processing cell, macrophage 20
EP epithelial cell, generic virus-target cell 20
PLB lymphocyte plasma B 20
IFN interferon-+ 20
D danger signal 20



142 Appendix D Glossary of Notation
IC immune-complexes 20
Ag generic antigen or virus 20
Ab generic antibody 20
I bit-string length 21
v(m) affinity potential 23
Me affinity threshold 23
Po per-bit mutation probability 26
he hole in the repertoire 27
G2 information gain of the transition from state 1 to state 2 36
= isdefined as 37
fm, f(M,t) concentration of m-matching B-cells at timet 37
w(t) mean match number 39
H(t) entropy 39
G(t) information gain 39
~ roughly equal 40
Nm(X, t) number of B cellsin classmat sitex at timet 42
o(t) total affinity at timet 45
N set of natural numbers 53
{my} mutation probability matrix 54
m; probability to jump from classi to j by mutation 54
R(-) real part of the variable which appear between parenthesis 57
Ph error threshold 58
< much smaller than 60
x proportional to 60
Pt asset price at timet 69
Ap price change at timet 69
R net return 69
re log-return 69
£t Gaussian increment 69
o standard deviation of a probability distribution 69
i mean value of a probability distribution 69
NY SE New York Stock Exchange 70
S&P500  Standard and Poor 500 financial index 70
DJ Dow Jones Industrial Average financial index 70
i.i.d. independent identically distributed 70
EMH efficient market hypothesis 70
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PDF
P(-)

STL
N(u, %)
c(r)

probability distribution function

exponent of a power law or aLévy distribution

PDF of the random variable which appears between parenthe-
Ss

Scale-invariant Truncated Lévy distribution

excess kurtosis

standardized Gaussian distribution with mean ;. and standard
deviation o

autocorrelation function

volatility at timet

probability for atrader to be active at each time step
probability to occupy asite in a percolation lattice
percolation threshold

parale virtua machine

structure function

time average

time-lagged return

scaling exponent

A Model of Stock Exchange

decision to buy, sell or stay inactive of agent i at timet
amount of credits or money of agent i at timet
number of owned stock of agent i at timet

total wealth (stocks plus money) of agent i at timet

excess demand at timet
number of tradersin classe
number of funamentalists
number of noisy

number of chartists

influence strength of agent i

moving average computed over the time horizon h
filtered price p; + opy

filtered price p; — opy

much bigger than

probability of the elementary event between parenthesis
trading volume at timet

71
71
72

72
72
72

74
74

78
78
79
80
81
81
81
81
87

88
88
88

88

88
89
89
89

89
89
89
89
89
91
91
94
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MRS modified rescaled range statistics 102
Qn MRS statistics 102
NN neural networks 105
MLP multi-layer perceptrons 106
EBP error back propagation learning algorithm 107
n learning rate of the EBP algorithm 107
¢ momentum of the EBP algorithm 107
0 mean square error 110
O forecasted price at timet 110
ov mean square error on the validation set 110
S one-step sign prediction rate 111
HS Heaviside function 112
XOR bitwise logical exclusive OR 126
PE processing element 129
CCP collective communication primitives 137
MPI message passing interface 137
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Deutsche Zusammentassung

Die Enwicklung der Computertechnologiehat die Art und Weise zu Forschen stark
beinflusst und verandert. Betrachtet man zum Beispiel physikalische Systeme, so
werden diese Ublicherweise mit Hilfe mathematischer Modelle untersucht. Diese
Modell sind haufig analytisch sehr schwer oder gar nicht 10sbar, so dass approxi-
mative, d.h. numerische oder simulative, Verfahren zum Auffinden einer Losung
notwendig sind.

Bel der Untersuchung numerischer Modelleist der Computer auf Grund der rasan-
ten und stetigen Steigerung der Rechnerleistung ein effizientes Hilfsmittel, um die
Dynamik komplexer Systeme zu verstehen. Dartiber hinaus hat die Arbeitsweise
digitaler Rechner sogar zu einer vollkommen neuen Klasse von Modellen (Algo-
rithmen) gefuihrt, in der die Wechselwirkungen zwischen den Freiheitsgraden ei-
nes Systems durch Regel n zwischen diskreten Zustandsvari ablen ausgedriickt wer-
den. Diese Vorgehen ist oft sehr viel naher an der intuitiven Vorstellung Uiber das
Systemverhalten als physikalisch—mathematische M odell gl eichungen im kontinu-
ierlichen Zahlenraum.

In dieser Arbeit wird ein einheitlicher Rahmen vorgestellt, in dem sich komplexe
Systememit einer grof3en Zahl von Freiheitsgraden abbilden lassen. In Anlehnung
an die Beschreibung von Spinsystemen lasst sich ein Modell definieren, mit dem
sich unterschiedliche Simulationssysteme beschreiben lassen. Dieses neue Mo-
dell, “Unbounded-L attice-Gas’ genannt, ist ein Gittergasmodell, bei dem sich auf
jedem Gitterplatz eine unbegrenzte Anzahl von “Teilchen” (Zellen, Agenten, etc)
aufhalten kann. Die Teilchen gehoren zu unterschiedlichen Klassen und konnen
—in Abhangigkeit von ihrer Zugehorigkeit zu einer Klasse — verschiedene Mikro-
zustande annehmen. Anstatt wie bel Zellularautomaten mit Teilchen auf benach-
barten Gitterplatzen zu interagieren, findet die Wechselwirkung lokal zwischen
Teilchen an demselben Gitterplatz statt. Zusétzlich konnen sich die Teilchen frel
Uber das Gitter bewegen, ahnlich zum klass schen Brown'schen Diffusionprozess.

Jedes Teilchen (Entitat) des Systems besitzt eine komplexe innere Dynamik und
|&sst sich a's Sochastic Finite State Machine reprasentieren. Zustandswechsel des
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Teilchenswerden durch stochasti sche Erei gnisse ausgel 0st, diedurch die Wechsal -
wirkung mit anderen Entitaten (wieim Falle desimmunol ogischen Modells) oder
ausseren Feldern (wieim Falle des Borsenmodells) entstehen.

Der erste Teil der vorliegenden Arbeit, bestehend aus Kapitel [l — B, beschaftigt
sich mit der numerischen Immunologie (* computational immunology”), speziell
mit der Mikrosimulation der Reaktion des Immunsystems auf Antigene.

Ein sehr differenziertes Mikrosimulationsmodell (“ Celada—Seiden Modell”) wird
detailliert vorgestellt und die Antwort des Immunsystems auf Antigene mit Me-
thoden der statistischen Mechanik untersucht. Der Mechanismus, der zur kollek-
tiven Erkennung von Anitgenen durch das System fuhrt (d.h. der Erkennung der
Information, die die Antigene tragen), ist als Lernprozess beschreibar, der sich
kaskadenartig im Zustandsraum des Gesamtsystems ausbreitet (“learning casca
de’). In Kapitel @ wird ein anderer Zugang zum Verstandnis dieses komplexen
Vorgangs gewahlt. Ein System gekoppelter Differentialgleichungenwird in Form
von “coupled-maps’ behandelt. Es wird gezeigt, dass sich hiermit die Lernkaska
den, die zuerst im Mikrosimulationsmodell beobachtet wurden, reproduzieren und
erklaren lassen.

Der zweite Teil der Arbeit, Kapitel Bl —[@, beschaftigt sich mit dem noch jungen
Forschungsgebiet der Wirtschaftsphysik (*Econophysics’). Zunachst werden in
K apitel @ einige Grundbegriffe von Finanzmarkten eingefiihrt und empirische Be-
obachtungen beschrieben. Das anschliessende Kapitel B stellt kurz bereits exi-
stierende Modelle vor, wobei der Schwerpunkt auf der Beschreibung des “Cont-
Bouchaud Perkolations Modells™ liegt (Abschnitt BJl). Schliefflich wir in Kapitel
B dasim Rahmen dieser Arbeit entwickelte neue Mikorsimul ationsmodell zur Ab-
bildung von Aktivitaten an Finanzmarkten diskutiert.

Dasletzte Kapitel der Arbeit (Kapitel [ weicht von der ansonsten gewahlten Vor-
gehensweise der Arbeit ab und beschaftigt sich mit dem Problem der Vorhersage
von Zeitreithen auf Finanzmarkten. Auch hier wird jedoch ein Modell zur Anwen-
dung auf wirtschaftsphysikalische Probleme verwendet, das durch biologische Sy-
steme inspiriert wurde.

Durch die parallelisierte Implementierung beider Modelle konnte die Rechenzeit
soweit reduziert werden, dassesmoglichist, Systemerealistischer Grof3e zu smu-
lieren. Beide Implementierungen nutzen “Message Passing” und kdonnen so auf
Rechnerarchitekturen mit gemeinsamen und verteiltem Speicher betrieben wer-
den. Konkret verwendet ClmmSim die Bibliothek “Paralel Virtual Machine”
(PVM) und AM SE die “Message Passing Interface” (MPI). Auf Grund der un-
terliegenden Modellarchitektur des Unbounded Lattice Gas ergibt sich ein enor-
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mer Geschwindigkeitzuwachs (“Speedup”) fur beide Implementierungen bereits
mit einem “relativ einfachen” Schemader Parallelisierung.
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Short summary

The main question addressed in this dissertation is how to derive “the collective”
(i.e. macroscopic) properties of asystem starting from the knowledge of the laws
ruling the individual (i.e. microscopic) behaviour. We have presented a unify-
ing approach to model complex systems with large number of degree of freedom.
Starting from the definitions of spin systems, with little changes we have defined
amodel that iswell suited to describe two different smulation systems. The first
simulates the humoral and cellular immune response and is based on the model of
F. Celada and PE. Seiden. The second simulates the trading activity of agentsin
astock market. It is built borrowing some ingredients from other known models.
In addition, agroup atraders called moving average followersrepresents chartists
who base their decision upon the evolution of the price of the asset. Also, traders
group together to take collective decision to model the herding behaviour.

Kurzzusammenfassung

Bel der Untersuchung numerischer Modelleist der Computer auf Grund der rasan-
ten und stetigen Steigerung der Rechnerleistung ein effizientes Hilfsmittel, um die
Dynamik komplexer Systeme zu verstehen. Dartiber hinaus hat die Arbeitsweise
digitaler Rechner sogar zu einer vollkommen neuen Klasse von Modellen (Algo-
rithmen) gefuhrt, in der die Wechselwirkungen zwischen den Freiheitsgraden ei-
nes Systems durch Regel n zwischen diskreten Zustandsvari ablen ausgedriickt wer-
den. Diese Vorgehen ist oft sehr viel ndher an der intuitiven Vorstellung Uiber das
Systemverhalten al s physikalisch—mathemati sche M odel I glei chungen im kontinu-
ierlichen Zahlenraum. In dieser Arbeit wird ein einheitlicher Rahmen vorgestellt,
in dem sich komplexe Systeme mit einer grof3en Zahl von Freiheitsgraden ab-
bilden lassen. Ein sehr differenziertes Mikrosimulationsmodell (“ Celada—Seiden
Modell”) wird detailliert vorgestellt und die Antwort des Immunsystems auf Anti-
gene mit Methoden der statistischen Mechanik untersucht. Der zweite Tell der Ar-
beit, beschaftigt sich mit dem noch jungen Forschungsgebiet der Wirtschaftsphy-
sik (“Econophysics’). Zunachst werden in Kapitel B einige Grundbegriffe von Fi-
nanzmarkten eingefuhrt und empirische Beobachtungen beschrieben. Das ansch-
liessende K apitel B stellt kurz bereits existierende Modelle vor, wobei der Schwer-
punkt auf der Beschreibung des* Cont-Bouchaud PerkolationsModells’ liegt (Ab-
schnittBl). Schliefdlich wir in Kapitel @ dasim Rahmen dieser Arbeit entwickelte
neue Mikorsmulationsmodell zur Abbildung von Aktivitaten an Finanzmarkten
diskutiert.
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