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AFLP     amplified fragment length polymorphism 
Amp  ampicillin 
ANOVA analysis of variance 
APS  ammonium persulphate 
bp  base pairs 
BSA  bovine serum albumin / bulked segregant analysis   
cDNA  complementary deoxyribonucleic acid 
CAPS    cleaved amplified polymorphic sequence 
cM  centiMorgans 
dATP   deoxyadenosinetriphosphate 
dCTP   deoxycytosinetriphosphate 
dGTP   deoxyguanosinetriphosphate 
dTTP   deoxythymidinetriphosphate 
DH  doubled haploid 
DTT  dithiothreitol 
E. coli  Escherichia coli 
EDTA  ethylenediamine tetraacetic acid 
EST  expressed sequence tag 
EtBr  ethidium bromide 
EtOH  ethanol 
fAFLP     fluorescence-labelled AFLP 
FE  foliage earliness 
GLM  general linear models  
h  hour(s) 
IPTG   isopropylthio-β-o-galactopyranoside 
kb  kilo base 
LOD  logarithm of odds 
M         Molar 
MAS   marker-assisted selection 
min     minute(s) 
PCR    polymerase chain reaction 
QTL  quantitative trait loci 
rAFLP   radiolabelled AFLP 
RAPD  randomly amplified polymorphic DNA 
RFLP    restriction fragment length polymorphism 
RIL  recombinant inbred line 
RSC  reducing sugar content 
s          second(s) 
SCAR   sequence characterised amplified region 
SDS  sodium dodecyl sulfate 
SNP      single nucleotide polymorphism 
STS  sequence tagged site 
SSR  simple sequence repeat 
SSCP  single-strand conformational polymorphism 
SY          starch yield 
TSC  tuber starch content 
TY  tuber yield 
X- gal   5-bromo -4-chloro-3-indolyl-ß-D-galactopyranoside 
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1.  INTRODUCTION 

 

 

1.1  Taxonomy and importance of the potato 

Cultivated potato (Solanum tuberosum ssp. tuberosum) belongs to the large and diverse genus 
Solanum of the family Solanaceae. Solanaceae is one of the largest and economically most 
important families of angiosperms. Besides potato, other economically important species of 
the family are tomato (Lycopersicon  esculentum), egg-plant or aubergine (Solamun 
melongena), the garden peppers (Capsicum annuum) tobacco (Nicotiana tabacum) and 
pepino (Solanum  muricatum). A number of ornamentals, petunia (Petunia hybrida) for 
example, also belong to the Solanaceae. 

As a food crop, potato is one of the most important crops worldwide ranking 4th in terms of 
total world production after wheat, maize and rice. Potato tubers are valued for their high 
starch content. Starch can account for 80 % of the dry-weight of mature potato tubers (Kruger 
1997), thus, it is an especially rich source of energy. Compared to cereals, potato yields on 
average more food energy and protein per unit of land (Horton 1988). Potato tubers also 
contain nutritive compounds such as high-quality protein (2 % of fresh weight) and 
substantial amounts of essential vitamins, minerals and trace elements. The production of 
protein per unit area of crop is second only to soybean (Tarn et al. 1992). The lysine content 
of potato can complement cereal-based diets that are deficient in this amino acid (Ortiz 
1998). The importance of potato has been demonstrated by the devastating effect of the Irish 
famine in the 1840s. The continuing importance is reflected by the increasing growth rate of 
potato production, which has exceeded that of most other food crops in recent years in 
developing countries, particularly in Asia (Maldonado et al. 1998).  

1.2  Evolution of cultivated potato 

Potato is one of as many as 235 tuber-bearing Solanum species recognized to date, of which 
228 are wild and 7 are cultivated (Hawkes 1990). Four wild species including S. acaule, S. 
sparsipilum, S. leptophyes, and S. megistacrolobum were believed to be involved in the 
evolution of the 7 cultivated species including S. tuberosum ssp. andigena, S. tuberosum ssp. 
tuberosum, S. curtilobum, S. juzepczukii, S. stenotomum, S. chaucha, S. ajanhuiri, and S. 
phureja. They occur in a range of chromosome numbers from 24 (diploid), 36 (triploid), 48 



 
Introduction 

 

  

2 

(tetraploid) to 60 (pentaploid). The evolutionary relationships are schematically presented in 
Figure 1-1. 

    Wild species S. acaule (4x)  S. sparsipilum (2x)          S. leptophyes (2x)    S. megistacrolobum (2x) 

 

    Cultivated    S. tuberosum (4x)  S. stenotomum (2x)   S. ajanhuiri (2x) 
    Species                                           subsp. andigena  

 
 
                                   S. tuberosum                             S. chaucha (3x)                                        (Ajawiri)  
                               subsp. tuberosum (4x) 

                                      S.curtilobum (5x)              S. phureja  (2x) 

 

    S. juzepczkii (3x) 

 

Figure 1-1  Evolutionary relationships of cultivated potatoes and their ploidy levels (adapted from 

Hawkes, 1990) 

1.3  History of the cultivated potato 

Potato is one of the most important world crops, yet until the 16th century it was restricted to 
South America and remained unknown to the people of Europe, Asia, Africa and North 
America. It is generally believed that potato was introduced to Europe as early as 1565 
(Thornton, 1980) from Northern Colombia and further casually introduced in the 17th and 18th 
centuries (Bradshw and Mackay 1994). Potato was then introduced to China, India and Japan 
and part of Africa in the 17th century. The first European potatoes were short-day adapted 
tetraploid potatoes (Solanum tuberosum ssp. andigena) and restricted to the South of Spain 
and Italy (Hawkes, 1978). After a few centuries of natural and unconscious selection in 
Europe, plant could produce tubers under the long-day photoperiodic condition and became a 
popular crop in other parts of Europe. The cultivated potato in Europe today has the botanical 
name Solanum tuberosum ssp. tuberosum. 

1.4  Genetic features of the potato 

The cultivated potato is represented by both tetraploid and diploid forms with four and two 
homologous sets of 12 chromosomes, respectively. Most diploid potatoes (S. tuberosum ssp. 
tuberosum) exhibit self- incompatibility of the gametophytic type, in which the pollen self-
incompatibility is determined by the haploid genotype of the pollen. This self- incompatibility 
is controlled by the single, multi-allelic locus S (De Nettancourt 1977, Kaufmann et al. 1991) 
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which was mapped on chromosome I (Gebhardt et al. 1991). Tetraploid potato and other 
polyploid species are generally self-compatible because of the action of more than one S 
allele in the pollen grain (Crane et al. 1929). They suffer, however, inbreeding depression 
after a few generations of selfing. Consequently, potatoes are highly outcrossing and highly 
heterozygous with multiple alleles at virtually every locus. This implies that random pairing 

Table 1-1  Allele configurations in diploid and tetraploid potato and their progeny 

A 
*A1, A2, A3, …A8 are different alleles at one locus. For 
two given parental lines the number of segregating alleles 
could be as high as 4 and 8 for diploid and tetraploid plant, 
respectively. The possible genotypes of gametes (in bold 
italics) and zygotes are indicated as in A for diploid and B 
for tetraploid plants without considering chromatid 
segregation. 

B 

 

 

 

 

 

 

 

 

Table 1-2  Phenotypic segregation ratios of a dominant allele A for the crosses of tetraploid 
genotypes (without considering double reduction) 

       Gametes ?           Gametes ?                       Zygotes   

Type of crosses a AA Aa aa AA Aa aa A4 A3a A2a2 Aa3 a4 

PSRb 

a:A 

NxS   a4 x Aa3 - - 1 - 1 1 - - - 1 1 1:1 

NxD  a4 x A2a2 - - 1 1 4 1 - - 1 4 1 1:5 

SxS   Aa3 x Aa3 - 1 1 - 1 1 - - 1 2 1 1:3 

SxD   Aa3 x A2a2 - 1 1 1 4 1 - 1 5 5 1 1:11 

DxD  A2a2 x A2a2 1 4 1 1 4 1 1 8 18 8 1 1:35 

 

a N=Nulliplex, S=Simplex, D=Duplex. 
Other types of crosses such as NxN, NxT (T=triplex), NxQ (Q=quadruplex), SxT, SxQ, DxT, DxQ, TxT, 
TxQ, QxQ, which do not segregate in the progeny, are not shown in the table. 
b PSR= phenotypic segregation ratio. 

?  \ ?   A1*  A2 

A3  A1A3  A2A3 

A4   A1A4   A2A4 

?  \ ?  A1A2              A3A4            A1A3          A2A4        A1A4       A2A3 

A5A6  A1A2A5A6       A3A4A5A6       A1A3A5A6        A2A4A5A6        A1A4A5A6       A2A3A5A6 

A7A8      A1A2A7A8       A3A4A7A8       A1A3A7A8        A2A4A7A8        A1A4A7A8       A2A3A7A8 

A5A7  A1A2A5A7       A3A4A5A7       A1A3A5A7       A2A4A5A7         A1A4A5A7       A2A3A5A7 

A6A8  A1A2A6A8       A3A4A6A8       A1A3A6A8       A2A4A6A8         A1A4A6A8       A2A3A6A8 

A5A8  A1A2A5A8       A3A4A5A8       A1A3A5A8       A2A4A5A8         A1A4A5A8       A2A3A5A8 

A6A7      A1A2A6A7       A3A4A6A7       A1A3A6A7       A2A4A6A7         A1A4A6A7       A2A3A6A7 
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of four homologous chromosomes at meiosis results in a large number of possible allelic 
combinations at a single locus. In the most extreme case of tetrasomic inheritance, eight 
different alleles descending from both heterozygous parents could segregate independently in 
a population, resulting in 36 possible genotypic classes in the progeny. The possible allelic 
configurations of both disomic and tetrasomic inheritance is shown in Table 1-1 (on page 3). 
The phenotypic segregation ratios are variable, ranging from 1:1 to 1:35, which depend on 
the dosage of parental alleles considered (Table 1-2, on page 3). 

1.5  Molecular mapping in plants 

1.5.1  Mapping populations 

The construction of a linkage map is a process that follows the segregation of molecular 
markers in a segregating population and put them in linear order based on pair wise 
recombination frequencies . Thus, a mapping population with high number of polymorphisms 
over the total genome is highly desirable. Towards this end, various ways have been used to 
create mapping populations which are illustrated in Figure 1-2 (on page 5). Populations used 
for mapping are usually derived from F1 hybrids between two lines (either homozygous or 
heterozygous) which show allelic differences for selected probes.  Specific populations can 
be further developed by various ways depending on the genetic features of the plant species 
being analysed. The commonly used populations are doubled haploid (DH) lines, 
recombinant inbred lines (RIL), F1, F2 and backcross (BC) populations.  

Of these mapping populations, RILs offer unique advantages in QTL studies (Burr and Burr 
1991, Knapp and Bridges 1990, Austin and Lee 1996). First, a well-characterized RIL 
population can be permanently propagated and used indefinitely without further genotyping. 
Second, a trait value for each genotype can be evaluated on several sister plants, which 
minimizes the environmental variation and improves the accuracy of the QTL analysis. Third, 
experiments can be replicated over years and environments using identical genotypes thus 
allowing the detection of QTL that cause genotype-environment interactions. And finally, 
maps constructed using RILs have a higher genetic resolution as compared to F2 populations 
(Burr and Burr 1991), as chromosome pairing and recombination during an extended period 
of inbreeding increases the probability of chromosome recombination. The disadvantage of 
using RILs is that the development of RILs is time consuming and not readily accessible to 
self- incompatible species like cultivated potato. Furthermore, the dominant effects at QTL 
cannot be estimated as done in F2. RILs have been used in maize, rice, Arabidopsis, wheat 
and oat for various studies such as map construction (Cho et al. 1998), QTL mapping (Frova 
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and  Gorla 1993, Austin and Lee 1996, Lister et al. 1993, Alonso-Blanco et al. 1998) and 
candidate gene analysis (Faris et al. 1999, Kianian et al. 1999). 

 

                          P1 (inbred or outbred)          ×        P2 (inbred or outbred) 
 
                                             Inbred                                          outbred 

                                               F1               ×        (P1/P2)     ×         F1     F1     F1     F1    F1       
 

 

           Microspore Culture                          Selfing                                                Backcross                               
                                                                                                                     
 

     DH   DH   DH  DH   DH           F2     F2    F2     F2    F2            BC   BC   BC   BC   BC 

 

                                                       F3     F3    F3     F3    F3 
 
                                                        :        :        :        :        :     SSD 
                                                        :        :        :        :        : 
                                                       F8     F8    F8     F8    F8 

                                                       RIL  RIL   RIL   RIL   RIL   

 

Figure 1-2  Common strategies for the construction of mapping populations . A DH mapping 

population is generated from pollen of F1 by anther or microspore culture followed by doubling of 

haploid. Recombinant inbred lines (RIL) are developed by successively selfing single F2 plants by 

single-seed descent (SSD) method until homozygosity is achieved in the F8 generation. A  BC 

population is derived from the crossing of an F1 individual with one of the parents of F1. 

 

Due to the self- incompatibility of potato at the diploid level and inbreeding depression, the 
generation of specific genetic stocks like inbred lines for molecular mapping is not 
applicable. Instead, segregating F1 populations from highly heterozygous parents can be 
employed for mapping. Such mapping populations, which make efficient use of existing 
genetic stocks, have been successfully used for linkage analysis in potato (Gebhardt et al. 
1989, 1991). The estimation of recombination frequencies in such F1 populations has been 
investigated in detail by Ritter et al. (1990). 

SSD 

SSD 
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1.5.2  Molecular marker technologies for genetic mapping 

Molecular marker technology has changed dramatically during the past two decades. The first 
molecular markers were isozyme markers which were based on the different mobility of 
differently charged protein with the same enzymatic function on the gel. Enzyme markers 
have limited genome coverage and numbers. Thus, they have subsequently been replaced by 
DNA-based restriction fragment length polymorphism (RFLP) markers, which reveal neutral 
sites of variation at the DNA sequence level and are independent of the environment and 
developmental stages and are not limited in number (Gebhardt et al. 1989). After that, the 
development of PCR-based markers such as RAPD (random amplified polymorphic DNA), 
AFLP (amplified fragment length polymorphism), and SSR (simple sequence repeats) has 
greatly accelerated and simplified the mapping process. Currently, the advent of single 
nucleotide polymorphism (SNP) as a new molecular marker technology has opened a new 
possibility for plant genome analysis (Cho et al. 1999). 

RFLP 

RFLP was first proposed by Botstein et al. (1980) as a new source of genetic markers in 
humans. This technique involves restriction of genomic DNA followed by electrophoretic 
size separation of the fragments in a gel matrix. The fragments are then transferred to a 
membrane by Southern blotting and hybridized with a radioisotope- labelled probe. Many 
sources of DNA can serve as probes, such as a small piece of genomic DNA, cDNA 
sequence, or specific PCR products. Sometimes, probes can be adopted from other species as 
heterologous probes for comparative mapping which allows comparison of genome 
organization and evolution between the related species (Tanksley et al. 1988, Bonierbale et 
al. 1988, Lagercrantz et al. 1996, 1998). The polymorphisms detected by RFLP rely on the 
specific and characteristic nucleotide sequence which is recognised and cut by restriction 
enzymes. Insertions or deletions between restriction sites or mutations occurring at restriction 
sites result in length polymorphisms of restriction fragments. The range of fragment length 
and number of fragments depends on different enzymes. Six-base cutter enzymes generate 
fragments with 4096 bp in length on average, while a four-base cutter enzymes generates, on 
average, 256 bp fragments assuming that all four bases are randomly distributed and in equal 
amounts in the genome. As four-base cutters score more nucleotides per length unit of DNA 
than six-base cutters (Kreitman and Aquade 1986), therefore, they are more efficient in 
detecting point mutations. RFLP markers are often co-dominant and, therefore, very 
informative. However, generating RFLP data is labour intensive and time consuming and 
requires a relatively large amount of DNA. RFLP maps have been developed for a number of 
species like maize (Helentjaris et al. 1986, Helentjaris 1987), tomato (Bernatzky and 
Tanksley 1986a, Helentjaris et al. 1986, Zamir and Tanksley 1988), lettuce (Landry et al. 
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1987b), rice (McCouch et al. 1988), pepper (Tanksley et al. 1988), Arabidopsis (Chang et al. 
1988) and peanut (Halward et al. 1992). 

In potato, the first RFLP map, which consisted of 135 RFLP markers, was constructed using 
tomato cDNA and genomic DNA as probes in an interspecific mapping population 
(Bonierbale et al. 1988). This comparative map exhibited high collinearity of marker order in 
both species. Based on the evaluation of genetic diversity of 38 potato lines of Solanum 
tuberosum by RFLP, Gebhardt et al. (1989) demonstrated the feasibility of constructing of a 
potato RFLP map using an intraspecific mapping population. This RFLP map with 1034 cM 
in length and 80  % coverage of the genome was developed using a backcross population 
derived from two of the 38 lines (Gebhardt et al. 1991). Further RFLP maps have been 
constructed us ing different mapping populations for different purposes in subsequent studies 
(Gebhardt et al. 1991, 1994, Schäfer-Pregl et al. 1998).  

RAPD 

Random Amplified Polymorphic DNA (RAPD) (William et al. 1990, Welsh and McClelland 
1990) is a PCR-based technique for DNA fingerprinting. The generation of RAPD markers is 
relying on the probability that 10 bp single primers of arbitrary nucleotide sequence occur on 
both strands of DNA in inverted orientation within a distance amplifiable by PCR. RAPD 
markers are technically easy to detect, only small amount of DNA and no prior sequence 
information is needed. RAPDs can rapidly be used to construct linkage maps. These 
advantages have allowed mapping of a wide variety of plant genomes (Devos and Gale 1992, 
Waugh and Powell 1992, Tingey and Del Tufo 1993). RAPD markers were also instrumental 
for map-based cloning of disease-resistance genes (Jones et al. 1994, Mindrinos et al. 1994, 
Whitham et al. 1994, Martin et al. 1991, Michelmore et al. 1991). However RAPD markers 
are inherited usually in a dominant manner, are not transferable from one population to 
another and are poorly reproducible between different laboratories (Penner et al. 1993, Jones 
1997). Consequently, RAPD is largely being replaced by a more robust DNA fingerprinting 
technique termed amplified fragment length polymorphism (AFLP). 

AFLP 

AFLP is a relatively new PCR-based DNA fingerprint technique (Vos et al. 1995, Zabeau  
and Vos 1993). It involves restriction of genomic DNA followed by ligation of adaptors to 
restricted fragments and preselective and selective PCR amplification of a subset of these 
fragments. The amplified fragments are resolved on a sequencing gel and visualised either by 
autoradiography or fluorescent sequencing equipment or fluorescent scanner (Meksem et al. 
1995, Zhang et al. 1999, Schwarz et al. 1999, Huang et al. 2000, Huang and Sun 1999, Hartl 
and Seefelder 1998), depending on the method of labelling or silver                    (continue to page 9) 
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Restriction enzymes
( I and I)

and 
DNA ligase

Mse EcoR

MseI adaptor

EcoRI adaptor
+ +

(I) AFLP template preparation

Genomic DNA

(II) Restriction and ligation

(III) Pre-amplification 

(IV) Selective amplification
        (one primer combination shown)

(V) Electrophoresis and autoradiography or electrophoresis on 377 DNA sequencer

Figure 1-3. Schematic Representation of AFLP (modified  based on  Mueller et al. 1999)  Figure 1-3  Schematic representation of AFLP  (modified based on Mueller et al.1999) 
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(continued from page 7) 

staining (Cho et al. 1996). Most typically, visualisation of AFLPs is achieved by 
incorporating a 33PO4

- group from [γ33-P]-ATP into a dephosporylated 5’ end of one primer. 
This process, which involves radioactivity, was termed in the present study as radiolabelled 
AFLP (rAFLP). More recently, an improved AFLP technique, which was developed by 
Applied Biosystems (ABI), is performed by using fluorescence-labelled primers in 
combination with an automated sequencing system and software packages for data collection 
and scoring. The fluorescence-based detection of AFLPs (fAFLPs) offers a great 
improvement in fragment scoring and data handling. However, the few studies up to date 
using fAFLP as a tool are limited to genetic diversity study (Zhang et al. 1999), saturation 
mapping of a target region (Schwarz et al. 1999) and the chromosome assignment of fAFLP 
markers (Huang et al. 2000). The diagram summary of the AFLP technique is depicted in 
Figure 1-3 (on page 8). 

The notable advantage of AFLP is its capacity to analyse a large number of polymorphic loci 
simultaneously throughout the genome with a single primer pair on a single gel without prior 
sequence knowledge. In contrast to RAPD, AFLP is highly reproducible and also transferable 
between different populations (Jones 1997, Yin et al. 1999, Waugh et al. 1997, Li et al. 1998, 
Rouppe van der Voort et al. 1997). AFLP has been used effectively in a variety of organisms 
including bacteria (Keim et al. 1997), fungi (Rosendahl et al. 1997, Van Der Lee et al. 1997), 
animals (Ajmone-Marsan et al. 1997, Liu et al. 1998) and plants. One major limitation of 
AFLP is the dominant nature and the difficulty in identifying allelic variants at a specific 
locus although codominant AFLP markers have been found, however, in frequencies of 4-15 
% among all polymorphic AFLP markers (Waugh et al. 1997, Lu et al. 1998, Boivin et al. 
1999). Furthermore, AFLP banding pattern may be affected by differential methylation of 
DNA in different organs from which the template DNA was extracted (Donini et al. 1997). 

AFLP is now the first option to saturate a particular region of the genome when map-based 
cloning is applied to cloning target genes. AFLP has also been used in phylogenetic studies 
based on measures of genetic distance (Pakniyat 1997, Powell et al. 1996, Tohme et al. 1996, 
Russell 1997) and for identification of varieties (Schut et al. 1997). In addition, it has also 
been reported to monitor the differential expression of genes using cDNA from different 
plant organs (Bachem et al. 1996, Hartings 1999). Above all, one major application of AFLP 
is for molecular genetic mapping. It has been used to construct maps for barley (Becker et al. 
1995, Waugh et al. 1997, Qi et al. 1998), sugar beet (Schondelmaier et al. 1996), soybean 
(Keim et al. 1997), petunia (Gerats et al. 1995), rice (Maheswaran et al. 1997) and tomato 
(Haanstra et al. 1999).  

In potato, using 6 primer combinations of EcoRI/MseI primer set and a diploid mapping 
population, Van Eck et al. (1995) constructed an AFLP map which consisted of 264 AFLP 
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markers and had a map length of 1170 cM. Meyer et al. (1998) performed the first 
experiment of molecular mapping in tetraploid potato using a tetraploid breeding family in 
combination with AFLP marker technology. The linkage map consisted of 231 maternal and 
115 paternal AFLP markers with a total map length of 991 cM and 485 cM, respectively, 
representing approximately 25 % coverage of the tetraploid genome. 

SSR 

Simple sequence repeats (SSR), also termed microsatellite or short tandem repeats (STR), are 
di-.tri-, tetra- or pentanucleotide tandem repeats that are dispersed throughout the genome 
(Tautz 1989, Weber and May 1989). The basis of polymorphism lies in the variation of the 
number of tandemly repeated short nucleotide motifs which can be detected by PCR 
amplification (Saiki et al. 1988) using sequences flanking the repeats as primers. 
Microsatellite markers are inherited in a Mendelian fashion, they are codominant 
hypervariable (Saghai Maroof et al. 1994) and transferable within species from which 
primers were developed. SSRs have been used for the construction of linkage maps in 
Arabidopsis (Bell and Ecker, 1994), soybean (Akkaya et al. 1995), and maize (Senior et al. 
1996). SSRs have also been used to study the allelic profiles of genotypes for purposes of 
genotype identification in potato (Kawchuk et al. 1996, Schneider and Douches 1997), 
soybean (Morgante and Olivieri 1993, Cregan et al. 1994, Rongwen et al. 1995, Maughan et 
al. 1995), grape (Thomas and Scott 1993) and rapeseed (Kresovich et al. 1995) 

SNP 

SNPs, single nucleotide polymorphisms, are single base pair positions in genomic DNA at 
which different sequence alternatives (alleles) exist in normal individuals in natural 
populations (Brookes 1999). Significant efforts towards large-scale characterisation of SNPs 
were first initiated in human genome research. SNPs have since been shown to be the most 
common type of genetic variation in organisms. Of all the different types of sequence change 
including single nucleotide substitutions, insertions/deletions and copy number variation in 
nucleotide repeat motifs, SNP represents about 90 % of human DNA polymorphism (Collins 
et al. 1998). SNPs have been found to occur with a frequency as high as 1 in every 202 bp in 
the mouse genome and 1 in 1000 bp in the human genome (Lindblad-Toh et al. 2000, Wang 
et al. 1998). 

There are various methods for SNP detection and scoring. More commonly used are gel-
based sequencing and high-density variation-detection DNA chips (VDAs) (Wang et al. 
1998). In the gel-based sequencing method, sequence trace data are compared using the 
computer program Phred for base calling, Phrap for sequence assembly and Consed for 
sequence assembly editing (Nickerson et al. 1997). The VDA technique involves 
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hybridisation to high-density DNA probe arrays or DNA chips (Wang et al. 1998). In 
addition, public EST databases can be used directly to identify SNPs by comparing sequences 
from different sources (Picoult-Newberg et al. 1999). Similarly, various techniques have been 
invented for genotyping SNP on large scale. The most common ones are 1) microarrays 
(chips) by hybridisation to allele-specific oligos (Hacia et al. 1999), 2) MALDI-TOF (matrix-
assisted laser desorption ionisation mass spectrometry with time of flight) by detection of 
different molecular masses caused by the SNPs (Haff and Smirnov 1997), 3) 
minisequencing/single nucleotide primer extension by incorporation of specific fluorescence-
labelled ddNTPs at the SNP site (Syvanen 1999). Moreover, single strand conformation 
polymorphism (SSCP) (Orita et al. 1989) and heteroduplex (HD) (White et al. 1992), both of 
which are gel-based techniques to detect conformational polymorphisms of DNA, can also be 
used to detect SNPs with high sensitivity (Ganguly et al. 1993, Sheffield et al. 1993) and 
specific mutated nucleotides showing as SNPs can be readily determined by sequencing 
(Schneider et al. 2000). In addition, the allele-specific SCAR marker is actually the gel-based 
detection of SNPs at sites where primers were designed for detecting specific alleles. This has 
been used for molecular marker conversion and mapping (Van Heusden et al. 1999). 

SNP has many advantages and great potential for many applications. Since SNPs exist over 
the whole genome of organisms with a relatively high frequency, they could facilitate the 
development of highly dense genetic function maps that would be highly valuable for 
genome analysis. Moreover, as the sequence context of the SNPs is already known, it has the 
potential for automation and can facilitate the genetic study of associating sequence 
variations with heritable phenotypes on a large scale. Because of this, there has recently been 
considerable interest in SNP discovery and detection for genome analysis of plant (Cho et al. 
1999) 

1.5.3  Applications of molecular genetic map 

The invention of molecular marker technology such as RFLP, RAPD, AFLP, and SSR as 
outlined in the previous sections has opened up a new era for genetic analysis of plant 
genomes. Genetic mapping using molecular marker technology is of great significance to 
plant breeding, plant genetic and evolutionary studies. The most common applications of 
genetic linkage maps are concentrated on the following areas. First, genetic linkage map can 
be used for marker-assisted selection (MAS) in plant breeding. Linkage maps could help 
identification of DNA markers linked to single genes of major agronomic importance and the 
tightly linked DNA markers can be used as diagnostic tools for MAS. This is particularly 
suitable and powerful for screening for monogenic disease resistance. One of the successful 
examples is MAS for soybean cyst nematode resistance (SCN) (Cregan et al. 1999). The SSR 
marker Satt309, which is located 1-2 cM away from the gene rhg1 for resistance to SCN, has 
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been developed and used for tagging and tracking the gene through breeding programs, 
leading to the development of resistant lines. The use of SSR markers has largely decreased 
the time and effort involved as compared to phenotypic selection. Second, genetic linkage 
maps can be used for the genetic analysis of quantitative traits (see Sect. 1.7.1.1). With the 
construction of molecular linkage maps, characterization of quantitative traits has been 
greatly facilitated in identifying the genomic regions responsible for the traits, postulating the 
types of gene action and determining the role of epistatic effects and estimating the possible 
number of genetic factors controlling the traits of interest (Tanksley 1993). Third, genetic 
linkage mapping can be used to correlate the phenotypic traits with the genes controlling the 
trait, which includes map-based cloning of a gene of known heritable phenotype and 
postulating candidate genes for a trait with known biochemical basis. Finally, genetic linkage 
maps provide insights into chromosomal organization and could be useful in map-based 
evolutionary studies by comparative mapping.  

With respect to potato, a variety of studies have been accomplished using potato molecular 
mapping as a tool. Many genes controlling monogenic traits have been positioned on to the 
potato linkage map. The majority are single genes for resistance to various pathogens.  Rx1, 
Rx2, Nb and Rx, which condition resistance to potato virus X (PVX), were mapped on linkage 
groups XII and V (Ritter et al.1991, De Jong et al. 1997, Bendahmane et al. 1997). Ry for 
resistance to potato virus Y (PVY) were on linkage group XI (Brigneti et al. 1997, 
Hamalainen et al. 1997). Five out of 11 known single dominant factors conferring race-
specific resistance to P. infestans have been localised, R1 on linkage group V (Leonards-
Schippers et al. 1992, El-Kharbotly et al. 1994), R3, R6 and R7 on linkage group XI (El-
Kharbotly et al. 1994, 1996a) and R2 on linkage group IV (Li et al 1998). Gro1, H1 and 
GroVI conferring resistance to Globodera rostochiensis were mapped on to linkage group 
VII and V (Barone et al. 1990, Gebhardt et al. 1993, Jacobs et al. 1996). The Gpa2 gene for 
resistance to Globodera pallida was mapped on to linkage group XII (Rouppe van der Voort 
et al. 1997). Some tuber morphological traits were also mapped including tuber flesh colour Y 
on linkage group III (Bonierbale et al. 1988), flower colour loci D, F, and P on linkage group 
II, X and XI, respectively (Van Eck et al. 1993), tuber shape Ro on linkage group X (Van Eck 
et al. 1994a), tuber skin pigmentation PSC on linkage group X (Van Eck et al. 1994b, 
Gebhardt et al. 1991), tuber storage protein Patatin on linkage group VIII (Ganal et al. 1991, 
Gebhardt et al. 1991). In addition, a number of cloned genes of known function have also 
been mapped (Gebhardt et al. 1994).  

1.6  Function mapping 

Anonymous molecular markers such as RFLP, SSR, RAPD, AFLP usually have no known 
function. However, candidate genes analysis for QTL uses known genes as markers and  
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identifies their map position on chromosomes. To this end, several approaches can be 
employed. Southern hybridization with a cloned gene as probe is one approach to localize the 
gene on molecular linkage map (Gebhardt et al.1994). Alternatively, linkage maps based on 
expressed sequence tags (ESTs) are considered as done in rice (Kurata et al. 1994) and maize 
(Chao et al. 1994). This depends, however, on the availability of cloned genes and a 
hybridization-based marker is not suitable for marker-assisted selection (MAS) screening of 
plants on a large-scale.   

In the past decade,  intensive research in plant molecular biology has led to the constant and 
daily increase in the number of gene sequences becoming available in databases. For 
example, in potato, more than 4300 sequence entries (until writing the thesis) are present in 
the GenBank-EMBL sequence databases, of which at least 70 genes are directly or indirectly 
involved in carbohydrate metabolism and transport. These metabolic pathways are 
physiologically and biochemically related to agronomic traits of potato such as starch and 
reducing sugar content of tubers. It is thus timely to explore the possibility of using sequence 
sources from public databases for mapping functional genes that are of agronomic interest 
and, in parallel, to develop STS-based and gene-specific markers. 

Although many genes have been cloned and sequenced from plants and their number 
increases, the number of known genes available for a given species or a given pathway is still 
limited. This can be compensated by the use of amplified consensus genetic markers 
(ACGM) (Brunel et al. 1999). This approach takes advantage of high conservation of genes 
between related species and uses consensus sequence motifs as primers to amplify analogous 
sequences (Schneider et al.1999, Van Campenhout 2000). Another approach for 
complementing a set of functional genes is the use of ESTs. The putative function of 
expressed sequence tags (ESTs) can be deduced from sequence similarity to known genes 
from bacteria, animals or plants by database searching. Much effort has been spent on 
ESTsequencing of cDNA in Arabidopsis, rice and tomato (Sasaki et al. 1994, Delseny et al. 
1997, Ganal et al. 1998). 

1.6.1 Metabolic pathways relevant to starch and sugar content of potato tubers 

The amount of starch accumulated in mature potato tubers is the net result of a chain of 
biochemical processes starting from photosynthetic carbon fixation followed by synthesis of 
transient starch and conversion into sucrose in photosynthetically active source leaves, 
vascular transport of sucrose from the leaves to the developing sink tuber and starch synthesis 
and degradation in the tuber during the growth period. These processes are biochemically 
related to carbohydrate metabolism and transport which include, among others, the Calvin 
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cycle, the oxidative pentose phosphate pathway, glycolysis, the TCA (tricarboxylic acid) 
cycle, sucrose metabolism and transport, and starch metabolism.  

1.6.1.1  The Calvin cycle 

The Calvin cycle also known as the C3 cycle or reductive pentose phosphate pathway (Calvin 
and Bassham 1962), is the second phase of the dark reactions of photosynthesis. During 
photosynthesis, the biological energy forms (ATP and NADPH) which were converted from 
solar radiation in the photosynthetic light reaction, are used for fixation of carbon dioxide. 
The Calvin cycle has three phases including carboxylation, reduction and regeneration of 
sugar intermediates. The products are triose phosphates and 3-phosphoglycerate which are 
either transiently converted into starch by a series of reactions in chloroplast or exported to 
the cytosol for further metabolism such as respiration and sucrose biosynthesis. The enzymes 
and reactions involved are listed in Table 1-3 (on page 15) and schematically shown in Figure 
1-4 (on page 16).  

1.6.1.2  Respiratory pathways 

Glycolysis 

Glycolysis provides the cell with ATP and the reducing power of NADH, the cofactors to 
satisfy the biosynthetic needs particularly in nongreen tissues such as the fatty acid 
biosynthesis in leucoplasts (Dennis et al. 1997) Glycolysis also provides intermediates, by 
oxidation of glucose to pyruvate, for other biosynthetic pathways such as the synthesis of 
polysaccharides and lignin which are the components of cell walls (Dennis et al. 1997). Two 
glycolytic pathways exist in plants, one in the cytosol and one in plastids. These two 
pathways communicate through the transporters of the inner plastid envelope (Kammerer et 
al. 1998, Dennis et al. 1997). The enzymes catalysing the reactions within plastids are 
isozymes of their cytosolic counterparts  (Dennis et al. 1997) (see Table 1-3, Figure 1-4, on 
page 15-16).  

Oxidative pentose phosphate pathway 

The oxidative pentose phosphate pathway occurs, as glycolysis, in both the cytosol and in 
plastids. The function of this pathway is to generate the cofactor NADPH and intermediates 
for other biosynthetic pathways such as the biosynthesis of nucleic acids, amino acids, the 
polyphenols and lignin (Dennis et al. 1997).  The oxidative pentose phosphate pathway 
consists of two parts, the oxidative irreversible section, which is catalysed by  G6PDH and 
PGDH, producing NADPH, and a reversible section that is involved in the regeneration of 
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hexose from ribulose 5-phosphate by the action of ribulose 5-phosphate epimerase, ribose 5-
phosphate isomerase, transketolase, and transaldolase. The enzymes catalysing the reactions 
in the cytosol are isozymes of their plastidic counterparts (see Table 1-3 and Figure 1-4).  

Table 1-3  Major known enzymes involved in carbohydrate metabolism and transport  

                 (see Figure 1-4 for  functions)  

 Calvin Cycle  Pentose Phosphate Pathway 

1 ribulose bisphosphate carboxylase  34 glucose-6-phosphate dehydrogenase 
2 phosphoglycerate kinase 35 gluconate-6-phosphate lactonase 
3 glyceraldehyde-3-phosphate dehydrogenase 36 6-phosphogluconate dehydrogenase 

4 triosephosphate isomerase 37 phosphopentoisomerase 
5 plastidic aldolase 38 phosphopentoepimerase 
6 chloroplast fructose1,6-bisphosphatase 39 transketolase 

7 transketolase  40 transaldolase 
8 transaldolase    
9 sedoheptulose-bisphosphatase  Sucrose Metabolism 

10 
11 

pentose-5-phosphate 3- epimerase  
ribose-phosphate isomerase 

41 pyrophosphate-fructose-6-phosphate-1-
phosphotransferase 

12 phosphoribulokinase 42 fructose 1,6- bisphosphatase 

  43 UDP-glucose pyrophosphorylase 
  44 sucrose -phosphate synthase 
 Glycolysis 45 sucrose phosphatase 

13 hexokinase 46 sucrose synthase 
14 phosphoglucomutase 47 soluble acid invertase 
15 phosphoglucose isomerase 48 fructokinase 

16 phosphofructokinase 49 sucrose transporter 
17 aldolase 50 H+-ATPase 
18 triosephosphate isomerase 51 apoplastic invertase 

19 glyceraldehyde 3-phosphate dehydrogenase 52 glucose transporter 
20 phosphoglycerate kinase 53 glucose-6-P transporter 
21 phosphoglycerate mutase   

22 enolase  Starch Metabolism 

23 pyruvate kinase  54 ADP-glucose pyrophosphorylase 
  55 soluble starch synthase 
 TCA Cycle 56 granule bound starch synthase 

24 pyruvate dehydrogenase  57 4-α -glucanotansferase (D-enzyme) 
25 citrate synthase  58 branching enzyme 
26 aconitase  59 L-type starch phosphorylase 

27 isocitrate dehydrogenase  60 α-glucan phosphorylase 
28 α-ketoglutarate dehydrogenase 61 debranching enzyme 

29 succinate thiokinase 62 α-amylase 

30 succinate dehydrogenase  63 β-amylase 
31 fumarase  64 α-glucosidase 
32 malate dehydrogenase  65 hexokinase 

33 NAD-malic enzyme 66 phosphoglucomutase 
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References:  Frommer and Sonnewald (1995),  Quick et al. (1997),  Dennis et al. (1997),  Zubay (1998) 
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The oxidative pentose phosphate pathway is intimately linked to glycolysis. These two 
pathways share three common intermediates: glyceraldehydes 3-phosphate, fructose 6-
phosphate and glucose 6-phosphate. The metabolic flow through either of the pathways is 
determined by the metabolic needs of the cell. In general, carbon flow through the oxidative 
pentose phosphate pathway is relatively small as compared to other respiratory pathways 
such as glycolysis and TCA cycle (Dennis et al. 1997). 

TCA (tricarboxylic acid) cycle  

The TCA cycle, alternatively known as the citric acid cycle or Krebs cycle, occurs in 
mitochondria with pyruvate and malate as the main substrates. It operates as a catabolic 
pathway oxidizing a major portion of carbohydrates, lipids and amino acids. It has an 
important role in the biosynthesis of organic acids and amino acids which are the precursors 
for many biosynthetic pathways. In the anabolic process, the intermediates are replenished 
through the synthesis of oxaloacetate from phosphoenolpruvate by phosphoenolpruvate 
carboxylase (Hill 1997). Usually, important developmental stages of the plant life cycle are 
accompanied by increases in the rate of respiration and are often associated with increased 
biosynthesis of cellular constituents (Hill 1997).  

1.6.1.3  Sucrose metabolism 

Sucrose is the principal product of photosynthesis and the major form for transport and 
storage in plant. Sucrose synthesis operates in the cytosol via the pathway involving the 
enzymes: UGPase, sucrose phosphate synthase and sucrose phosphatase (Kruger 1997). 
Sucrose breakdown is catalysed by sucrose synthase and invertase. The former one catalyses 
the interconversion between sucrose, UTP, UDP-glucose and fructose, and the latter one 
catalyses the irreversible hydrolysis of sucrose to glucose and fructose (Table 1-3, Figure 1-4, 
on page 15-16).  

1.6.1.4  Starch metabolism 

Potato starch is a mixture of amylose and amylopectin which exist in semi-crystalline 
granules in plastids (amyloplasts).  Amylose contains 600-3000 1,4-α-glucosyl residues with 
a  1,6-α-glucosyl branch every 1000 residues. Amylopectin contains 6000-60000 glucosyl 
residues with an average of one 1,6-α-glucosyl linkage every 20 to 26 units (Kruger 1997). 
Starch synthesis involves AGPase, starch synthases and starch branching enzymes, which are 
all present in multiple forms in the plant. AGPase is a tetrameric enzyme comprising of two 
distinct polypeptides (Muller et al 1990, Nakata et al. 1991), a large subunit and a small 
subunit, both of which are encoded by several genes that are differentially expressed in 

(continued from page 14) 
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different tissues (Kruger 1997).   Storage tissues contain one or more soluble starch synthases 
(Abel et al. 1996) as well as granule-bound starch synthase (Edwards et al. 1995). Similarly, 
two distinguished classes of starch branching enzyme I and II were identified (Khoshnoodi et 
al. 1996, Larsson et al.1998). The activity of branching enzymes, together with that of  
debranching enzymes, determines the relative proportions of amylose and amylopectin 
(Kruger 1997). 

Starch can be degraded either hydrolytically or phosphorolytically. The former pathway 
involves enzymes like α-amylase, which catalyses the cleavage of the 1,4-α-glucosyl bond 
resulting in the production of a mixture of glucose, maltose, maltotriose and a range of 
branched dextrins. β-amylase can also degrade starch by catalysing the removal of successive 
maltose units from the non-reducing end of α-glucan chains. The maltose and other short 
maltosaccharides may be further hydrolysed to glucose by α-glucosidase (maltase) and 
subsequently phosphorylated by hexokinase. The phosphorolytic pathway involves starch 
phosphorylase which produces glucose 1-phosphate by successive removal of glucosyl 
residues at the end of an α-glucan. This enzyme can only metabolise oligosaccharides larger 
than maltotetraose. Further phosphorolytic cleavage may attribute to the action of a 
glucosyltransferase such as the D-enzyme which makes more of the glucan accessible to 
phosphorylase by increasing the degree of polymerization of short oligosaccharides (Kruger 
1997). The branch points of starch are removed by a debranching enzyme which catalyses the 
cleavage of 1,6-α-glucosyl bonds hydrolytically and produces oligosaccharides. 

1.6.1.5  Major transporters for carbon exchange between the cytosol and the plastid 

Metabolite exchange between the cytosol and plastids has been identified to be achieved by 
three main groups of plastidic phosphate translocators including triose phosphate/phosphate 
translocator (TPT) (Flügge and Heldt 1991), the phosphenolpyruvate/phosphate translocator 
(PPT) and the glucose 6-phosphate/phosphate antiporter (GPT) (Kammerer et al. 1998). 

The principal route for the exchange of carbon between the cytosol and the plastid is the 
phosphate trans locator which exchanges triose phosphate for inorganic phosphate. Other 
related translocators can transport other metabolites such as hexose phosphates and 
phosphoenolpyruvate (Borchert et al., 1993, Trimming and Emes, 1993). The TPT functions 
predominantly in photosynthetic tissues, GPT in root and reproductive organs, whereas, PPT 
appears to be ubiquitously expressed (Kammerer et al. 1998).  

Sucrose is the major form of photoassimilates for long distance transport from photosynthetic 
tissues to sink organs. This process involves generally three steps. First, sucrose is exported 
from the mesophyll cell to the vicinity of the sieve elements in the smallest veins of the leaf 
(short-distance transport) mainly via the symplast or through the apoplast (Frommer and 
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Sonnewald, 1995). This process is thought to occur by a passive mass flow. Second, sugars 
are transported into the sieve elements and companion cells for sieve element loading. The 
movement of sugars is driven by an active transport by the sucrose transport protein (SUT), 
from the apoplast against a concentration gradient, into the conducting complex. This is 
coupled with proton transport. The symport of sucrose and protons is driven by a membrane 
H+-ATPase which maintains an electrochemical proton gradient across the membrane. 
Finally, once inside the sieve elements, sucrose and other solutes are translocated through 
long-distance transport from the source to sink organs by a pressure flow mechanism.  

1.7  QTL analysis  

Many traits of agricultural and economical significance exhibit quantitative inheritance, such 
as yield, substrate content, plant maturity, disease resistance and stress tolerance. Quantitative 
traits show continuous phenotypic variation in a population resulting from the combined 
allelic effects of many genes and environmental conditions. The genetic loci which control 
quantitative traits are referred to as QTL (quantitative trait loci). QTL analysis has been a 
major area of genetical study for many decades. The earliest documented experiments on 
linkage analysis between quantitative effects and marker genotypes have been reported by 
Sax (1923) and Thoday (1961). However, for most of the period up to 1980, the study of 
quantitative traits has largely involved biometrical approaches based on means, variances, 
covariances of relatives and, consequently, very little is known about the biological nature of 
quantitative or natural variation in terms of number and location of the genes that underlie 
them (Fisher 1918, Wright 1934, Mather 1949, Falconer 1960). It is only during the past 
decade when the advent of efficient molecular marker technologies as outlined in Section 
1.5.2 and specific statistical methods that it was possible to follow the segregation of 
quantitative traits via linked markers (Tanksley 1993) and to detect effects, numbers and map 
positions of QTL.  

1.7.1  Approaches to QTL analysis  

The identification of QTL for economically important traits has been achieved primarily by 
two approaches, either through linkage mapping to anonymous markers as outlined in 
Sect.1.5.2. or through association studies involving candidate genes.  

1.7.1.1  QTL analysis through a molecular marker approach 

Most QTL analyses to date adopt the linkage mapping approach. RFLPs were initially used 
as markers (Beckman and Soller 1983, Patterson et al.1988, Lander and Bostein 1989) 
followed by PCR-based markers such as RAPD, SSR, and AFLP. The molecular markers, 
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which cover the total genome, provided the framework map based on which the QTL could 
be located. The principle of QTL mapping is to associate the phenotypically evaluated trait(s) 
with molecular markers using statistic tools. The map locations of QTL can then be estimated 
by the means of highly associated markers. Typically, the detection and location of the loci 
underlying quantitative trait variation involves three essential steps. First, a segregation 
population is created and characterized with molecular markers. This usually leads to the 
construction of a genome-wide genetic map of the population.  Second, the individuals of the 
same population are phenotypically evaluated for the traits under investigation.  Finally, 
genotypic molecular marker are analysed for association with the phenotypic trait data using 
appropriate statistical methods. This type of QTL analysis can lead to the elucidation of QTL 
parameters in terms of number, position, effects and interactions between them.  

1.7.1.2  QTL analysis through a candidate gene approach 

The candidate gene approach correlates a phenotype with its underlying biochemical or 
physiological basis by demonstrating that candidate genes are tightly linked to the genetic 
locus of interest. The candidate-gene approach is a powerful and robust method. Compared to 
the genome wide mapping strategy, the chances of finding markers linked to putative QTL  
are maximized, since the selection of candidate gene markers is based on known relationships 
between biochemistry, physiology and the agronomic character under study. This approach 
has been applied successfully in various QTL analyses, such as mapping QTL for defense 
response to diseases in wheat (Faris et al. 1999, Pflieger et al. 1999), for resistance to corn 
earworm in maize (Byrne et al. 1996, 1998) and early growth traits in maize (Causse et al. 
1995) and bud set and bud flush in Populus (Frewen et al. 2000). The candidate gene 
approach is sometimes limited by the understanding of the physiology and biochemistry of 
the trait of interest and by the requirement of prior identification of genes that potentially 
involved in the trait expression. The confirmation of the causal relationship between specific 
QTL and candidate genes has proven to be difficult. Molecular characterization of the QTL 
of interest is needed to determine whether the trait variation is caused by the alleles at the 
candidate gene locus or at tightly linked loci and their effects. The most direct confirmation 
could be accomplished by creating a series of transgenic plants with alterative QTL alleles in 
a common genetic background and observing the phenotypic effect of each allele. Unlike the 
genes controlling monogenic traits, the effect of QTL alleles are likely to be more subtle and 
cannot be phenotypically observable on all transgenic plants. Therefore, a large number of 
independent transformations is needed to provide a sufficient sample size for statistical test of 
the difference between transformed and control plants. A more practicable alternative is the 
detailed analysis in marker-generated near- isogenic lines (NILs). This approach has been 
used for the identification of an invertase gene (Inv) as a QTL controlling sugar content in 
tomato (Bernacchi et al. 1998, Fridman et al. 2000). 
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1.7.2  QTL analysis in potato 

The development of molecular linkage maps facilitates the dissection of complex traits into 
discrete quantitative trait loci or QTL. Thus, quantitative traits could be investigated with 
respect to number, effect and location of the underlying genetic factors. In potato, a number 
of agronomically important quantitative traits have been studied by this method such as 
potato tuberization, tuber shape, tuber dormancy (Van den Berg et al. 1996a, b, Simko et al. 
1997) and specific gravity (Freyre and Douches 1994). One of the most important aspects in 
potato genetics and breeding is on quantitative disease resistance particularly to late blight. 
QTL for resistance to late blight (P. infestans) have been detected on eleven out of twelve of 
the potato linkage groups (Bonierbale et al. 1994, Leonards-Schippers et al. 1994, 
Oberhagemann et al. 1999). Other quantitative traits that are of much significance in potato 
breeding are tuber starch content, tuber yield, chip colour, and plant maturity. These traits 
have also been addressed in several QTL mapping experiments. Using two diploid 
populations, K31 and LH, and RFLP markers, Schäfer-Pregl et al. (1998) identified 17 QTL 
for tuber starch content which were distributed on all of the 12 linkage groups of potato. 
Also, using diploid segregating potato, Collins et al. (1999) and Oberhagemann et al. (1999) 
identified QTL for foliage earliness with a major QTL on linkage group V. Six QTL for chip 
colour, which reflected the reducing sugar content of tubers, were detected on linkage group 
II, IV, V, and X (Douches and Freyre 1994).  

However, all these experiments outlined above were carried out at the diploid level to avoid 
the complexity of tetrasomic inheritance of tetraploid potato. The only mapping experiment 
performed at the tetraploid level was done by Meyer et al. (1998) and Bradshaw et al. (1998) 
in analysing QTL for resistance to late blight and Globodera pallida. No other published data 
has been reported using a tetraploid mapping population to identify QTL for agronomically 
important traits. 

1.8  Agronomic traits under investigation   

As outlined above, many agronomic traits of potato both qualitative and quantitative have 
been extensively studied regarding their nature of inheritance and map positions using diploid 
potato as experimental materials. In the present study particular efforts have been spent, in 
collaboration with potato breeding company, on the analysis of three traits: tuber starch 
content (TSC), reducing sugar content (RSC) and foliage earliness (FE). 

Tuber starch content (TSC) 

Potato tubers are the agronomic product of potato cultivation while starch is the major 
component of the potato tubers (Sect. 1.1). High starch yield is an important target, therefore, 
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in potato breeding. This could be achieved by improvement of both tuber starch content and 
tuber yield. The present study is more focused on the former component.  

Reducing sugar content (RSC) 

Reducing sugar content is of critical importance to processing quality of potato. High 
reducing sugar levels result in dark colored chips with an undesirable taste. This is due to a 
non-enzymic reaction known as the Maillard reaction by which the carbonyl group of the 
monosaccharide reducing sugars (glucose and fructose) react with the amino groups of free 
amino acids during the exposure to heat in processing (Habib and Brown 1959, Shallenberger 
et al. 1959). Thus, low reducing sugar content in mature tubers is required for potato cultivars 
used by the processing industry.  

Foliage earliness (FE) 

Early maturity is a prerequisite in Middle and Northern Europe where the growing period is 
limited. This character is determined by different phenotypic aspects such as earliness of 
flowering time, tuber initiation and maturity. In potato breeding, earliness is, in general, 
visually evaluated as foliage earliness based on the vegetative growth of a plant. 

1.9  Outline of the thesis 

The aim of this thesis was, first, to develop a molecular function map for potato using the 
diploid potato as a model system with emphasis on functional genes involved in carbohydrate 
metabolism and transport. The molecular function map was to be used for the identification 
of candidate genes controlling tuber starch content for which QTL have been mapped 
previously (Shäfer-Pregl et al. 1998). Second, to explore the possibility of discovering single 
nucleotide polymorphisms (SNPs) in candidate genes by sequencing directly PCR products. 
Third, to tag QTL for tuber starch content, reducing sugar content and foliage earliness in a 
tetraploid breeding family through the fAFLP approach and to clone the most significant 
markers via rAFLP. And fourth, to analyse the QTL through a candidate gene approach based 
on the function map. To achieve these goals, various experiments were performed: 

Nucleotide sequence databases EMBL and GenBank were mined for sequence information of 
genes of potato and other plant species. Exploration was focused on genes involved in 
carbohydrate metabolism and transport. A sequence-tagged site (STS) approach was adopted 
to amplify by PCR homologous or analogous genes in potato. Polymorphisms of the 
amplification products were revealed either directly as SCAR (sequence characterized 
amplification region) or as CAPS (cleaved amplified polymorphic sequence) after cleavage 
with restriction enzymes in two diploid mapping populations K31 and LH. A function map 
containing 56 functional genes was constructed in conjunction with a previously generated 
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RFLP marker framework. The comparison of map positions of the functional genes with 
position of previously mapped QTL using the same populations lead to the identification of 
putative candidate genes responsible for the phenotypic variation of tuber starch content 

SNPs in the candidate gene Stp23 were exploited by sequencing PCR products from 14 
different potato lines.  

QTL tagging by fAFLP was performed using a fluorescent sequenc ing system. Cloning of 
significant fAFLP fragments was carried out via rAFLP.  

Five genes, which are overlapped with QTL for starch content on linkage map of K31, were 
selected to test their effects on traits investigated in population Z3.  
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2.  MATERIALS AND METHODS 

 

2.1  Chemicals, enzymes and oligonucleotides 

The restriction enzymes were obtained from Boehringer-Mannheim (10 U/µl) currently 
renamed as Roche (Mannheim), Biolab (England), the Taq-Polymerase were purchased from 
Life Technologies (Freiburg) or Sigma (Deisenhofen) and used with the 10 ×  buffer supplied, 
unless otherwise stated. 

Laboratory reagents were obtained from following companies: Life Technologies, Pharmacia 
(Freiburg), Sigma (Deisenhofen), Merck (Darmstadt), Difco (USA), Roth (Karlsruhe), Serva 
(Heidelberg), unless otherwise stated. Filter membranes were obtained from Whatman. All 
types of kit were from Qiagen (Hilden) including gel-extraction kit (Qiaex II, Qiaquick). 
Plant genomic DNA extraction kit (DNeasy Plant Mini) and plasmid Mini and Midi Kit 
(QiaPrep). dNTP were from Pharmacia. Radioisotopes [α32P]-dCTP (10 µCi/µl) and [γ33P]-
ATP (10 µCi/µl) were purchased from Amersham Buchler (Braunschweig).  

Oligonucleotides were custom synthesized by MWG-Biotech (Munich), Life  Technologies 
(Freiburg) and ABI-PE (Weiterstadt). 

 

2.2  Plant material 

Diploid Mapping populations: K31 and LH 

K31 consisting of 157 lines is an outbred diploid F1 population developed at the Max-Planck-
Institute in Cologne from a cross between diploid lines: P3 (H80.557/1, Solanum tuberosum 
ssp. tuberosum.) as female parent and P38 (H80.576/16, Solanum tuberosum ssp. tuberosum.) 
as male parent (Gebhardt et al. 1989). 

LH was derived from crossing a diploid interspecific hybrid between T710 (S. chacoense) as 
female parent and 45c3 (S. tuberosum) as male parent. This population consists of 49 
individuals with 24 being high-starch genotypes (tuber starch content 23 % - 33 % on the 
basis of fresh weight) and 25 low-starch genotypes (11 % - 15 %) which have been selected 
from 451 F1 hybrids. For both of the populations K31 and LH, a RFLP map has been 
constructed and QTL analysis for tuber starch content and tuber yield has been performed 
(Schäfer-Pregl et al. 1998). 
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Tetraploid hybrid family: Z3 

Z3 was a tetraploid F1 population consisting of 200 individuals which was derived from the 
cross between Elles (S3) and 90-313-1 (S1). Population Z3 was provided and developed by 
SaKa-Ragis Pflanzenzucht GbR (Dr. Josef Strahwald, Windeby).  

Potato lines for detecting singl e nucleotide polymorphisms (SNPs) 

Diploid lines: P3, P38, 45C3, T710. 
Tetraploid lines: S1, S2, S3, Impala-L, Impala-S, Prior, Bodenkraft, Hansa, Quarta and Taiga. 

2.3  Bacterial strain and cloning vector  

The genotype of   Escherichia coli strain TG2: supE hsd∆5 thi ∆(lac-proAB) ∆(srl-
recA)306::Tn10(tetr) F’[traD36 proAB+ lacIq lacZ∆M15]    (Life Technologies).  

The E. coli plasmid vector pGEM-T that contains pMB1-ori, ampr and is present in 300-400 
copies per cell was used for cloning. This system provides blue and white selection for the 
transformant because the insertion of the cloned DNA interrupts the lacZ gene. The vector 
also contains the T7 and SP6 promoters that can serve as a priming site for insert 
amplification.  

2.4  Media  

Luria-Bertani (LB) 

Add distilled water and adjust pH to 7.0 with NaOH, bring 
to 1 liter with deionised water. Autoclave at 120ºC for 20 
min.  For plating, 15 g agar was added before autoclaving. 
After autoclaving, cool to 50ºC, and then pour the plates 
either directly without adding ampicillin, or alternatively, 

with ampicillin added to a final concentration of 100 µg/ml. 

SOC medium (100 ml) 

Add tryptone yeast extract, NaCl and KCl to 97 ml 
distilled water, stir to dissolve. Autoclave and cool to 
room temperature. Add filter sterilised Mg2+ stock 
solution and  filter sterilised glucose, each to a final 
concentration of 20 mM. Bring to 100 ml with sterile 
distilled water.  

2.0 g  tryptone 
0.5 g  yeast extract 
1 ml  1 M  NaCl 
0.25 ml  1 M  KCl 
1 ml  2 M  Mg2+ stock solution 
1 ml  2 M  glucose 

10 g/l tryptone 
5 g/l yeast extract 
5-10 g/l NaCl 
(15 g/l agar) for LB plating 
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2 M  Mg2+stock solution (100 ml) 

 

Add distilled water to 100ml, filter sterilise. 

White and blue selection medium (1 liter) 

Make the LB plating medium as above, supplement with 
ampicillin, X-gal and IPTG when the medium is cooled to 
50°C, and then pour the plates. 

 

2.5  Buffers and solutions 

50 ×  TAE 

         

   

TE10/0.1      

             

10 ×  TBE for RFLP                                        

 

 
10 ×  TBE  for rAFLP                   

 

 

30% Acrylamide   

 

 

rAFLP gel solution 

 

20.33 g  MgCl2•6H2O 
24.65 g  MgSO4•7H2O 

1000 ml  LB with 15 g agar 
2 ml  50 mg/ml Ampicillin 
2 ml  20 mg/ml X-gal 
40 µl  200 mg/ml IPTG 

 

10 mM  Tri-HCl 
0.1 mM  EDTA solution pH 8.0 

890 mM  Tris-HCl 
890 mM  boric acid 
25 mM  EDTA solution pH 8.0 

29.2 % (w/v) acrylamide,  
0.8 % (w/v) N-N'-methylene bisacrylamide 
dissolved in deionised water 

5 % acrylamide/bisacrylamide (20:1) 
7.5 M urea 
0.5 ×  TBE 
 

2 M  Tris-HCl 
50 mM  EDTA 
57.1 ml  glacial acetic acid

Adding distilled water to 1 liter,  
adjust pH to 8.0 

1 M  Tris-HCl 
1 M  boric acid 
20 mM  EDTA        
solution pH 8.3 (without adjusting) 

0.5 × TBE buffer was used 
as running buffer for rAFLP 
polyacrylamide-gel 
electrophoresis. 
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20 × TPE buffer (5 liters) 

                      

  

20 × SSC   

 

20 × SSPE  

 

 

 

2.6  DNA extraction  

2.6.1  Plant genomic DNA extraction   

Plant growing and leave material preparation 

For each of the Z3 individuals, a single tuber was planted in a 2- liter pot in the greenhouse 
under normal daylight conditions. 10 g  potato leaves are harvested, frozen in liquid nitrogen, 
freeze-dried and then stored at –20 °C for later use.  

Genomic DNA extraction  

10 mg freeze-dried leaf material was grinded under liquid nitrogen to fine powder. Total 
genomic DNA was extracted using DNeasy  Plant Mini Kit (Qiagen) following the 
supplier’s instructions. Extracted DNA was quantified as described in Sect. 2.6.5. 

2.6.2  DNA extraction from agarose gel 

PCR fragments, which were used for cloning or labelling as probes, were gel extracted using 
QIAquick Gel Extract Kit (Qiagen). The extraction procedures recommended by the supplier 
were followed. The concentration of extracted DNA was estimated as in Sect. 2.6.5.  

2.6.3  DNA extraction from polyacrylamide gel 

For cloning AFLP fragments, the QIAEXII Polyacrylamide Gel Extraction Kit (Qiagen) was 
used to extract DNA from polyacrylamide gel. The DNA fragment were excised from the 
polyacrylamide gel and crushed in 50 µl diffusion buffer followed by incubation at 50 °C for 

3 M  NaCl 
300 mM  sodium citrate 

200 mM  disodium hydrogen phosphate
20 mM  sodium dihydrogen phosphate  
3.6 M  NaCl  
20 mM  EDTA pH 8.0 

160 mM  Tris (96.5 g) 
4 mM  EDTA (7.5 g) 
pH 8.3 (with phosphoric acid) 

0.4 ×  TPE was used  
for electro-blotting 
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30 min or overnight. After centrifugation for 3 min, the 
supernatant was carefully transferred to a new Eppendorf tube to 
which 150 µl of Buffer QX1 was added. The 10 µl of QIAEXII 
were added subsequently after resuspending. DNA bound to the 
QIAEXII particles was eluted in 20 µl Buffer EB (10 mM Tris-
HCl, pH 8.5) after washing with PE buffer and air-drying.  2-5 µl 

of the eluate was taken as template for PCR reaction in 30 µl volume.    

2.6.4  Plasmid DNA extraction 

5 ml overnight-cultured bacteria were harvested by centrifugation and plasmid DNA was 
extracted using QIAprep Spin Miniprep Kit following the supplier’s protocol. The 
concentration of plasmid DNA was measured as in Sect. 2.6.5. 

2.6.5  Concentration measurement of DNA 

The quality and quantity of DNA were measured by comparison of band- intensity on 
ethidium bromide stained agarose ge ls with a DNA molecular weight standard, or 
alternatively, by the absorbance at 260 nm.  

2.7  Cloning of PCR and AFLP fragments 

2.7.1  Ligation of fragments in pGEM-T 

A-tailing of PCR product 

The pGEM-T needs an A-tailed PCR product for ligation. When us ing fresh PCR products, 
tailing was not necessary as Taq DNA polymerase has the function of adding adenosine at the 
end. Otherwise, an A-tailing was done before ligation.  

Tailing reaction 

 

 

 

 

Insert : vector molar ratios  

A molar ratio 3:1 of insert : vector was adopted to calculate the amount of PCR product for 

1-2 µl purified PCR product 
1 µl  10 ×  PCR buffer for Taq  DNA polymerase 
0.5 µl  50 mM  MgCl2 

1 µl  2 mM  dATP 
1 µl  Taq DNA polymerase (5 U/µl) 
add deionized water to 10 µl 
incubate at 70 °C for 15-30 min 

0.5 M  NH4Ac 
10 mM  MgAc2 
1 mM  EDTA pH 8.0 
0.1 %  SDS 

Diffusion buffer 
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the ligation reaction according to the following formula: 
PCR product (ng) = 3 × (50 ng vector) × (size of PCR product in kb)/3.0 kb vector 
Ligation was done according to the supplier’s instruction. 

Ligation reaction  

 

 

 

2.7.2  Transformation of E. coli 

Preparation of competent host cells  

Glycerol stock of E. coli strain TG2 was streaked on LB medium and incubated at 37 °C 
overnight. A single colony was picked and cultured overnight in 5 ml of LB liquid medium 
followed by subculture of 2 ml in 500ml LB in a 2.5- liter flask. When optical density (OD) 
was in the range of 0.5-0.6 OD, cells were harvested by centrifugation at 5000 rpm, 4 °C for 
10 min. Cells were washed 3 times by gently resuspending and centrifuging in sterile ice-cold 
water. Cells were then washed once using 10 ml 10 % glycerol. The cell pellet was gently 
resuspended in 2 ml of 10 % glycerol. The cell suspension was divided into 100 µl -aliquot, 
and frozen in liquid nitrogen and stored at –70 °C.   

Transformation 

For each transformation, 30 µl of competent cells of E. coli strain TG2, thawed on ice, were 
mixed with 1.6 µl of ligation mixture and transferred to the electroporation cuvette avoiding 
bubbles. Electroporation was done at 1.7 kV on an electroporator (BioRad). The cells were 
removed from the chamber in 300 µl SOC medium, transferred to a 5 ml culture tube and 
immediately incubated at 37 °C for 40-90 min. 100 µl of bacteria was plated on the white and 
blue selective LB media containing ampicillin (100 µg/ml), IPTG (8 µg/ml) and X-Gal (40 
µg/ml). Petri-dishes were incubated at 37 °C for 14-20 h. 

Screening 

Single white colonies was picked out with a sterile tip and dipped in a PCR master mix to 
amplify the target insert of plasmid using appropriate primer sets. In parallel, the single 
colony was also streaked on an LB plate. Once the correct PCR product was obtained, the 
corresponding colony was propagated for plasmid DNA isolation and sequencing.  

5 µl  2 ×  rapid ligation buffer for T4 DNA ligase
1 µl  pGEM-T  vector (50 ng/µl) 
3 µl  PCR product (concentration optimised) 
1 µl  T4 DNA ligase (3 U/µl) 
 

Incubate the 
reaction 
overnight at 4 °C 
before 
transformation. 
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2.8  DNA sequencing and sequence analysis 

PCR products were separated on a 1.5 % agarose gel and single bands were cut from the gel. 
DNA was recovered using the QIAquick Gel Extraction kit (Qiagen). Alternatively, PCR 
fragments were cloned into pGEM-T vector by transforming E. coli strain TG2. Plasmid 
DNA was extracted using QIAprep Spin Mini-prep Kit (Qiagen) (see Sect. 2.6.4). The ABI 
PRISM Dye Terminator cycle Sequencing Ready Reaction Kit was used (Applied 
Biosystems) for sequencing on an Applied Biosystems 377 DNA Sequencer (Applied 
Biosystems). 

Sequence analyses were performed using sequence analysis software package GCG 
(Wisconsin University, Version 9.1, UNIX, September 1997). Updated versions of the 
sequence databases GenBank and EMBL were searched for the sequences of functional genes 
available in the databases. For sequence comparison, the Bestfit or Pileup programs were 
used. 

2.9  Restriction fragment length polymorphism (RFLP) analysis 

2.9.1  Genomic DNA restriction and purification 

5 µg genomic DNA were digested overnight by 20 U TaqI or AluI in buffer B at 65°C or 
buffer A at 37°C. Digested DNA was mixed with 2 volumes of ice-cold 100 % ethanol and 
1/20 volume of 4 M NH4Ac, precipitated and collected by centrifugation at 14000 rpm for 30 
min. The pellet was washed with 70 % ethanol and air-dried, followed by adding 5 µl 
formamide loading buffer. The pellet was resuspended by vortexing, denatured at 95 °C for 5 
min and chilled on ice before loading.   

2.9.2  Fragment separation by electrophoresis 

DNA fragments were separated on a 4 % denaturing polyacrylamide gel as described by 
Kreitman and Aquade (1986) and modified by Gebhardt et al. (1989).  

Gel mix                                    

Gel mix was filtered through 0.2 
µm filter and degassed under 
vacuum for 5 min. After adding 200 
µl 25 % APS (ammonium 

persulfate) and 150 µl TEMED and gentle mixing, the gel was poured. The gel was 30 cm 
wide, 40 cm high and 0.1 cm thick with loading slots of 0.4 cm in width. Gel was 
polymerized for at least two hours at room temperature before loading the samples. The 

62.4 g  urea 
13 ml  40 %  polyacrylamide/ bisacrylamide (20:1) 
13 ml  10 × TBE 
add deionized water to130 ml 
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electrophoresis was run in 1 × TBE (1.8 liter) (see Sect. 
2.5) as running buffer. Power was set first to 15 W for 
15 min followed by a 5-6 h run at a constant power of 
50 W for until the xylene cyanol marker reached the 
bottom of the gel. 

 
2.9.3  Electro-blotting of DNA fragments 

Electro-transfer of DNA fragments onto Nylon-membrane (Pall, Biodyne) was performed in 
23 liters of  0.4 ×  TPE buffer in a home-made blotting chamber (45 cm long and 35 cm 
wide) for 1 hour at 35 V (5 V/cm). DNA was covalently cross- linked to the membrane by 
drying at 80°C for 30 min. The membrane was then used for hybridisation or stored in 2 ×  
SSC solution at 4 °C. 

2.9.4  Radioactive labelling of DNA probes 

5 ×  OLB buffer                                                                             Sephadex buffer              

 

 

 

 

Sephadex suspension                    Random primer labelling reaction (20 µl) 

50-100 ng of gel-
purified DNA was 
denatured in 12 µl 
volume at 95°C 
for 5 min and 

chilled immediately on ice. The random primer labelling method (Feinberg and Vogelstein 
1983, 1984) was used to label the probe DNA with [α32P]-dCTP (10 µCi/µl) in a total 
reaction volume of 20 µl.  

Leave the labelling reaction at room temperature overnight or at 37°C for 1h. The separation 
of labelled DNA-fragments from unincorporated nucleotides was done using a 1 ml-
Sephadex G-50 column. The 1 ml syringe was filled with sterile glass wool at the bottom and 
G-50 Sephadex equilibrated in buffer (G50-Sephadex suspension). The labelling reaction was  
mixed with 300 µl Sephadex suspension and eluted through the column. A second elution 

0.1 mM  dATP, dCTP, dGTP, dTTP 
1.0 M  HEPES, pH 6.6 
2.0 mg/ml Hexadesoxyribonucleotide pdN6 (Pharmacia) 
0.2 M Tris-HCl, pH 8.0 
3.7 x 10-5 M  MgCl2 

0.35 % (v/v) β-Mercaptoethanol 

10 mM  Tris-HCl, pH 7.5 
1 mM  EDTA 
0.3 mM  NaCl 
0.1 %  SDS 
 

filter sterilise or autoclave 

94 %  formamide 
0.05 %  xylene cyanol 
0.05 %  bromo phenol blue 
10 mM  EDTA pH 7.2 

Formamide loading buffer      

4 µl  5 × OLB 
1 µl  Klenow-Polymerase (2 U/µl) 
3 µl  of [α32P]-dCTP (10 µCi/µl) 
12 µl (50-100 ng) denatured DNA 

100 ml Sephadex buffer 
2 g  Sephadex-G50 
 
 autoclave 
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with the same amount of Sephadex suspension was performed and the second elution was 
collected. Labelling efficiency was checked using the radioactive counter. The DNA probe 
was mixed with 80 µl hering sperm DNA (5 mg/ml) and denatured at 95°C for 5 min. 

2.9.5  Hybridisation                     

Southern blot hybridization was performed in glass tubes 
(30 cm x 3.5 cm in diameter). Up to 3 membranes were 
hybridised in one tube. The membranes were stacked on 
top of each other, then rolled up with a plastic stick and 
unrolled around the inner wall of the tube. Tubes were 
tightly closed with plastic screw caps with sealing rubber 
inside. 10 ml 6 × SSC per membrane and 40 µg/ml 
denatured hering sperm DNA were added to the tube for 
pre-hybridisation and hybridisation. For pre-hybridization 
the tubes were incubated at 65 °C, rotating around the long 
axis in a hybridisation oven (Bachofer, Reutlingen, 
Germany) for at least 4 hours. After adding the denatured 
probe, the hybridisation was performed overnight under the 
same conditions as pre-hybridisation. 

After hybridisation the filters were washed at 65 °C in the 
hybridisation oven in the same tube three times 15 min 
each, using 50 ml of pre-heated washing solution (1 × SSC, 
0.1 % SDS). Then the filters were taken out from the tube 
and washed two times in a tank containing sodium 
phosphate buffer at room temperature for at least 30 min. 
The filters were wrapped in thin plastic foil (Saran film) 
and placed in cassettes with intensifying Trimax-screen. Kodak X-OMAT AR5 film was 
placed on the filter and exposed at –70°C for about 10 days before developing. Alternatively, 
filters were exposed on Fuji phosphoimage screens for 5 days. Fragment patterns were 
visualised using a Fuji BAS-2000 Phosphoimager (Fuji Photo Film Company Ltd., Japan). 

2.10  Sequence-tagged sites (STS) analysis 

2.10.1  Exploration of functional gene sequences in databases 

GenBank and EMBL databases were explored for sequence information of genes involved in 
carbohydrate metabolism including the Calvin cycle, the oxidative pentose phosphate 

55.2g/l NaCl  
26.4g/l Sodium citrate 
                        (pH7.0) 

7 % SDS 
0.12 M Na2HPO4 
1 mM EDTA 
40 µg/ml denatured  
       hering sperm DNA, 
                           (pH 7.0) 

1 × SSC 
0.1 %  SDS 

5 mM  Na2HPO4 
1 mM  EDTA 
0.2 %  SDS,  pH7.0 

6 × SSC 

Hybridising solution   

Washing buffer   

Sodium phosphate buffer 
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pathway, the citric acid cycle, glycolysis, sucrose and starch metabolism and intermediate 
transport. The exploration of functional genes was also expanded to other plant species such 
as tomato, tobacco and Arabidopsis in case when gene sequences are not available in potato.   

2.10.2  Nomenclature of the functional genes 

The rules of CPGN (the Commission on Plant Gene Nomenclature) were followed for gene 
nomenclature in potato. Genetic loci and corresponding genes were given italicised three-
letter designations, starting with one upper case letter. The three letters reflect a particular 
property of gene func tion. Different loci detected by the same gene were distinguished by the 
assignment of an additional letter a, b or c. Gene products were designated in non- italicised 
capital letters. When the same three-letter code has been assigned to genes in different 
species, the species two-letter code ‘St’ for potato, ‘Le’ for tomato and ‘At’ for Arabidopsis 
are added to gene names. 

2.10.3  Polymerase chain reaction (PCR)  

Primer design 

The following criteria were followed to design STS primers. First, primer design should 
avoid the intron-exon junctions since most of the available sequences in the public databases 
are cDNAs. Second, for detection of polymorphism, primer positions are ideally chosen to 
frame one or two introns since these regions are potentially variable at the intraspecific level 
(Weining and Langridge 1991; Tragoorung et al. 1992; Konieczny and Ausubel 1993; Cote-
Real et al. 1994). Finally, primers should have good characteristics for amplification with 
optimal annealing temperature of 55-60 °C and primer length between 22 and 24 bases. 

In cases when gene sequences were not available in potato, tomato sequences were employed 
instead. When neither a potato nor a tomato sequence was available, degenerate primers 
based on sequence conserved between genes from other plants were designed. Consequently, 
these primers were composed of a mixture of several different oligonucleotides supposedly in 
equivalent proportion.  

PCR reaction conditions  

PCR reaction was performed in 15-100 µl reaction volume depending on the amount of PCR 
product needed. Mostly, PCR reactions were set up in a final volume of 15 µl. The reactions 
mix was capped with a drop of mineral oil that was omitted when reactions were performed 
in a heating- lid thermo-cycler (Biometra, Göttingen). A ‘touchdown’ amplification protocol 
was employed (Kresovich et al. 1995) with the following conditions:  
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PCR reaction (15 µl) 

 

 

 

 

 

PCR conditions 
            94 °C denature 3 min 

                        5-10 cycles of  

 

                       25-30 cycles of 

 

                                 

                                                     72 °C extension 5 min                        4 °C hold 

2.10.4  Identification of sequence characterized amplified regions (SCAR)  

To discover SCAR polymorphisms, 5-10 individuals of populations K31 and LH were 
randomly selected for PCR amplification. PCR products were analysed by electrophoresis on 
1.5 % - 2 % agarose gel in 1× TAE. 1-kb ladder was used as size marker.  DNA fragments 
were visualised by ethidium bromide staining. 

2.10.5  Identification of cleaved amplified polymorphic sequences (CAPS) 

Monomorphic PCR products were digested for CAPS with a range of restriction 
endonucleases. These restriction enzymes were 4-bp cutter including AluI, RsaI, TaqI, HpaII, 
DdeI, HaeIII, MseI, and MboI. Two units of restriction enzyme, mixed with the reaction 
buffer, were added to 15 µl of the PCR reaction to final volume of 20 µl. The digests were 
incubated at least 3 h or overnight at the recommended temperature. CAPS polymorphisms 
were analysed by agarose gel electrophoresis as described above. 

94° C denature 1 min 
60 °C - 1 °C annealing 1 min 30 s 
72 °C extension 2 min 
 

94 °C denature 50 s 
50 ~ 55 °C annealing 1 min  
72 °C extension 1 min 30 s 

1.5 µl 10 × PCR buffer 
0.3 µl 50 mM MgCl2 
0.6 µl 10 mM dNTPs 
0.3 µl 10 µM each primer 
1.5 U Taq-polymerase (5 U/µl) 
18 ng genomic DNA 
add H2O to 15 µl 

 

10 × PCR buffer 

100 mM Tris-HCl, pH 8.3 
500 mM KCl 
15 mM  MgCl2 
with or without 0.01 % gelatin  
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2.11  Generation of segregation data and linkage analysis 

When the approaches as outlined in Sect. 2.10.4 and 2.10.5 detected a polymorphism, parents 
P3, P38 and 90-150 progeny of populations K31 and 49 progeny and parental lines T710 and 
45C3 of population LH were analysed by PCR. Fragments were scored as 0, 1 and 2 for 
absence, presence and missing value, respectively. The segregation data was then added to 
the existing RFLP framework data sets (Schäfer-Pregl et al. 1998). Recombination 
frequencies were computed using the software package MAPRF (version 2.1, E. Ritter). The 
recombination frequency between any two markers was displayed in the MAPDIC sub-
program. Linkage of a new marker to an existing linkage group was identified using the 
FIND command. The PATTERN command was used to check the recombinant genotypes for 
scoring errors (singletons). The genetic distance between marker pairs is measured by the 
recombination frequency. The linear order of the markers in a linkage group was determined 
based on pairwise recombination frequencies in two-, three-, or multiple-point estimates 
(Ritter et al. 1990). The recombination values were converted into map distances (cM) by 
Kosambi’s mapping function (Kosambi 1944). 

2.12  Detection of single nucleotide polymorphisms (SNPs) 

Gene Stp23 was selected as a case study for detecting SNPs in functional genes. Genomic 
DNA from 14 potato lines (see Sect. 2.2) was used to amplify the homologous segment of 
gene Stp23 by PCR. PCR products were bi-directionally sequenced. The PCR products of 
three lines P3, P38 and T710 were additionally cloned into pGEM-T vector prior to 
sequencing. Electropherograms of nucleotide sequence data were visually examined for 
alternative nucleotides (SNPs) at specific positions in individual genotypes. Sequence data of 
different lines were assembled by Pileup program of GCG software package (see Sect. 2.3). 
Each vertical slice of the resulting assembly was examined for nucleotide variation. Any such 
slice was considered a candidate SNP. 

2.13  Amplified fragment length polymorphisms (AFLP) 

2.13.1  Radioisotope-labelled amplified fragment length polymorphism (rAFLP) 
analysis 

DNA digestion and ligation of adaptors  

35-250 ng of genomic DNA was incubated for 1 h at 37 °C with 5 units of EcoRI and 5 units 
of MseI, 4 µl of 10 × RL buffer in a 40 µl reaction volume.  

Restriction reaction (40 µl) 
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Adaptors were prepared 
by mixing equal-molar 
amounts of both stands, 
denatured at 95 °C for 5 
min and renatured at room 
temperature over 10 min.  

10 µl of a solution containing 5 pMol of EcoRI-
adaptors, 50 pMol of MseI-adaptors, 1 µl of 10 mM 
ATP, 1 µl of 10 × RL buffer, and 1 unit of T4 DNA 
ligase was added to the restriction solution, and the 
incubation was continued for 3 h at 37 °C.  

After ligation, the reaction mixture was diluted 1-10 
fold with TE10/0.1 (see Sect. 2.5) buffer depending 

upon the amount of DNA used for restriction. The reference dilution was 10-fold when 250 
ng genomic DNA were used for the restriction and ligation. Reactions with different amounts 
of DNA were diluted based on the their proportion of DNA to that of the reference dilution. 
The calibrated restriction and ligation mixtures were stored at –20 °C. 

Preselective amplification  

Preselective amplification reaction (20 µl) 

Reaction conditions 

The pre-amplification reactions were performed for 
20 cycles with the following cycle profile: a 30 s 
DNA denaturation step at 94°C, a 30 s annealing 
step at 56 °C, and a 1 min extension step at 72°C. 
The amplification products were diluted 20-fold 
with TE10/0.1 buffer before proceeding to selective 

amplification. 

Labelling of primers and size marker with [γ33 P]-ATP 

Primer labelling reaction (12.5µl reaction volume for 25 selective amplification reactions) 

The labelling reaction mix was incubated at 37 °C for 45 min, and then stopped by incubating 
at 75 °C for 10 min. 

 

2 µl 10 ×  PCR buffer 
0.4 µl 50 mM MgCl2 
0.8 µl 10 mM dNTPs 
0.4 µl 10 µM each primer 
0.4 µl Taq-polymerase (5 U/µl) 
4 µl template DNA 
add H2O to 20 µl 

4 µl  10 × RL buffer 
2 µl  EcoRI (10 U/µl) 
2 µl  MseI (10 U/µl) 
35-250 ng  genomic DNA 
add deionised water to 40 µl 

10 × RL buffer 

100 mM Tris-HCl 
100 mM MgAc 
500mM KAc 

40 µl restriction mixture 
1 µl EcoRI-adaptors (5 pM/µl) 
1 µl MseI-adaptors (50 pM/µl) 
1 µl  10 mM  ATP 
1 µl  10 × RL buffer 
1 unit of T4 DNA ligase 
 

Ligation reaction (50 µl) 
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Size marker labelling 

30-330 bp AFLP DNA ladder, not dephosphorylated, was radioactively labelled either by the 
exchange reaction or as in previous part after dephosphorylation. 

Labelling by exchange reaction 

Set up reaction mix in 0.2 ml PCR tube: 

 

 

 

 
Collect solution by brief centrifugation, incubation for 10 min at 37 °C and stop the reaction 
by heating the tube 15 min at 65 °C. 

Before loading on the gel, add equal volume of loading buffer to AFLP samples. 

Dephosphorylation of marker DNA (40 µl)  

Incubate at 37 °C for 45 min, stop the 
reaction by addition of 0.5 µl 0.5 M 
EDTA (pH 8.0) and incubate at 75 °C 
for 10 min. The deposphorylated DNA 
marker can be use directly for labelling 
without precipitation and purification.  

Labelling the dephosphorylated AFLP DNA ladder  

Set up the labelling reaction in a 0.2 ml PCR tube (10 µl). Incubate for 45 min at 37 °C, 
followed by 10 min at 70 °C to stop the 
reaction. 1-2 µl was taken and added equal 
volume of AFLP loading buffer before gel 
loading. 

 
5 µl 30-330 bp AFLP DNA ladder (Life Tech.) 
4 µl 10 × SAP buffer  
2 µl Shrimp alkaline phosphatase (1 U/µl) 
29 µl H2O 

 

7.5 µl  dephosphorylated AFLP DNA ladder 
1 µl  10 ×  T4 PNK buffer  
1 µl [γ33 P]-ATP (10 µCi/µl) 
0.5 µl  T4 PNK (6 U/µl) 

1.3 µl  10 ×  T4 PNK buffer 
0.4 µl  T4 polynucleotide kinase (PNK) (6 U/µl) 
2.5 µl  EcoRI-primer (10 pM/µl) 
2 µl [γ33 P]-ATP (10 µCi/µl) 
add H2O to 13µl 

 

10 ×  T4 PNK buffer 

250 mM  Tris-HCl  pH 7.5 
100 mM  MgCl2 
50 mM   DTT 
5 mM  Spermidine-HCl 

1 µl  5 × Exchange reaction buffer  
2 µl  30-330bp AFLP DNA ladder  
1 µl [γ33 P]-ATP (10 µCi/µl) 
1 µl  T4  polynucleotide kinase (10 U/µl).  

 

5 × Exchange reaction buffer 

250 mM  imidazole (pH 6.4) 
60 mM  MgCl2  
5 mM  2-mercaptoethanol  
350 µM  ADP 
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Selective amplification 

Selective amplification was carried out with two oligonucleotide primers to which two more 
selective nucleotides had been added at the 3’ end. One of the two primers, EcoRI-primer, 
was end- labelled. PCR was performed in 20 µl reaction volume. 

Selective amplification reaction (20 µl) 

Selective amplification reaction conditions 

The AFLP reactions with primers having 
three selective nucleotides were performed 
for 36 cycles with the following cycle 
profile: a 30 s DNA denaturing step at 94 
°C, a 30 s annealing step, and a 1 min 
extension step at 72 °C. The annealing 
temperature was 65 °C in the first cycle, 

subsequently reduced by 0.7 °C per cycle for the next 12 cycles, finally stabilising at 56 °C 
for the remaining 23 cycles. All amplification reactions were carried out in a same 
thermocycler. 

Denaturing polyacrylamide gel analysis of AFLP  

The AFLP selective amplification products were mixed with an equal volume (20 µl) of 
formamide loading buffer.  

Formamide loading buffer for rAFLP 

The samples were denatured for 3 min at 95 °C, and then 
quickly chilled on iced. 4 µl of each sample were loaded on 
a 5 % denaturing polyacrylamide gel.  

 

The rAFLP gel mix 

 

 

 

The 5 % acrylamide / bisacrylamide (20:1) 
solution  was  degassed  5  min.  Then  750  µl 

2 µl  10 × PCR buffer 
0.4 µl  50 mM MgCl2 
0.4 µl  10 mM dNTPs 
0.6 µl  50 ng/µl non- labelled primer 
0.5 µl  labelled primer  
0.2 µl  Taq-polymerase (5 U/µl) 
5 µl  diluted preamplification products  
add H2O to 20 µl 

98 % formamide 
10 mM EDTA pH 8.0  
0.025 % bromophenol blue 
0.025 % xylene cyanol  

75 ml 5 % acrylamide/ bisacrylamide 
                                (20:1) solution 
50 µl  TEMED 
750 µl  10 %  APS 

      5 % acrylamide/ bisacrylamide  
           (20:1) solution (1 liter) 
 
250 ml acrylamide-bisacrylamide (20:1) 
450 g  urea 
50 ml  10 × TBE for AFLP 
add distilled water to 1 litre 
filter sterilised and stored at 4 °C  
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10 % APS (ammonium persulfate) and 50 µl TEMED were added and gently mixed. Gels 
were cast using a 38 × 50 cm gel glass plate apparatus (BioRad). The gels were fixed onto 
one of two glass plates, one had been treated with sticking solution (0.3 % acetic acid and 
0.015 % ?-methacryloxypropyltrimethoxysilane in ethanol) whereas the other one with  
repellent solution (Acrylease™, Stratagene, Heidelberg, Germany). The gel was polymerized 
for at least two hours or overnight at room temperature. A pre-run was performed for 30 min 
in pre-heated 0.5 × TBE buffer before loading the gel. The gel was run at a constant power of 
58 W for 2-3 h until the xylene cyanol marker reached the bottom of the gel.  

After electrophoresis, the gel on the glass plate was fixed in 10 % acetic acid for 30 min, 
followed by rinsing with distilled water. After drying in an oven at 80 °C for 1.5 h, the glass 
plate was wrapped with Saran film and exposed to a Kodak X-OMAT AR5 film at room 
temperature for 1-2 days before developing.  

2.13.2  Fluorescent dye-labelled amplified fragment length polymorphism 
(fAFLP) analysis 

Table 2-1  Adaptor and primer sequences and fluorescent labelling dye used for fAFLP analysis 

Primer/adaptor Labelling dye Sequence (5´-3´) 
EcoRI-adaptor  CTCGTAGACTGCGTACC 

        CATCTGACGCATGGTTAA 
   
EcoRI+1 primer  GACTGCGTACCAATTC-a  (=E) 
EcoRI+3 primers FAM (blue) 

JOE (green) 
TAMRA (yellow) 

E-aca, E-act 
E-aag, E-acg, E-agg 
E-agc, E-acc 

   
MseI-adaptor  GACGATGAGTCCTGAG 

            TACTCAGGACTCAT 
   
MseI+1 primer  GATGAGTCCTGAGTAA-c  (=M) 
MseI+3 primers  M-caa, M-cac, M-cag, M-cat, M-cta, 

M-ctc, Mctg, M-ctt 
   
HindIIII-adaptor  CTCGTAGACTGCGTACC 

        CATCTGACGCATGGTCGA 
   
HindIII+1 primer  AGACTGCGTACCAGCTT-a  (=H) 
HindIII+3 primer FAM (blue) 

JOE (green) 
TAMRA (yellow) 

H-act 
H-agt, H-aga 
H-ata 

   
TaqI-adaptor  GACGATTGAGTCCTGAC 

            TAACTCAGGACTGGC 
   
TaqI+1 primer  ATTGAGTCCTGACCGA-a  (=T) 

ATTGAGTCCTGACCGA-g 
   
TaqI+3 primer  T-agt, T-atg, T-gta, T-gat 
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For fAFLP genotyping with EcoRI/MseI primer sets, reagents including EcoRI adaptor pairs, 
MseI adaptors, preselective and selective amplification primers and AFLP Core Mix were 
obtained from Applied Biosystems (ABI). For screening with other primer sets such as 
EcoRI/HindIII, EcoRI/TaqI and HindIII/TaqI, primers and corresponding adaptors were 
designed and custom synthesised by MWG-Biotech (Munich). The sequences of adaptors and 
primers are shown in Table 2-1 (on page 39). The fAFLP procedures followed the supplier’s 
instructions (PE Applied Biosystems). 

Restriction and ligation reaction 

Annealing of the adaptors (see Sect. 2.13.1) 

Restriction enzyme master mix (for 50 DNA samples in 50 µl) 

 

 

 

 

 

Reaction mix  (11 µl) 

 

 

Mix thoroughly and spin down to the bottom 
of the tube. Incubate at 37 °C for 3 h using a 
thermal cycler with a heated lid to prevent 
EcoRI* (star) activity. 

Dilution of the restriction-ligation samples 

Dilution of restriction- ligation samples depended on the amount of DNA used. When 500 ng 
genomic DNA were used, the sample was diluted 20-fold by adding 189 µl of TE10/0.1. 
Otherwise, dilution was adjusted described in Sect. 2.13.1. 

 

5 µl 10 × T4 DNA ligase buffer with ATP 
5 µl  0.5 M  NaCl 
2.5 µl  1 mg/ml BSA 
50 U  MseI 
250 U EcoRI 
50 U T4 DNA ligase (400 U/µl) 
add sterile deionised water to 50 µl 

5.5 µl  (35 ng-500 ng) genomic DNA 
1 µl 10 ×  T4 DNA ligase buffer with ATP 
1 µl  0.5 M  NaCl 
0.5 µl  1 mg/ml BSA 
1 µl  EcoRI adaptor pair 
1 µl  MseI adaptor pair 
1 µl  restriction enzyme master mix 

1 ×  T4 DNA ligase buffer with ATP 

50 mM  Tris-HCl (pH 7.8) 
10 mM  MgCl2  
10 mM dithiothreitol  
1 mM  ATP 
 25 µg/ml bovine serum albumin 
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Amplification of target sequences 

Preselective amplification reaction 

* AFLP Core Mix was a reagent mixture including 
AmpliTaq enzyme, buffer and dNTPs that was 
provided by ABI.  

 

Preselective amplification reaction conditions 

The preselective amplification reactions were performed with the following PCR profile: first 
incubate at 72 °C for 2 min, then 20 cycles of a 1 s at 94 °C, a 30 s at 56 °C, 2 min at 72 °C, 
and finally, incubating at 60 °C for 30 min.  

Dilution of preselective amplification products 

The preselective amplification reaction products were diluted 20-fold with TE10/0.1 before 
proceeding to the selective amplification. 

Selective amplification reaction 

* the EcoRI primers were either 
labelled with 5-carboxy-fluorescein (5-
FAM, blue), 2’,7’-dimethoxy-4’,5’-
dichloro-6-carboxy-fluorescein (JOE, 
green) or N,N,N’,N’-tetramethyl-6-

carboxy-rhodamin (TAMRA, yellow). The internal size standard was Genescan-500 ROX 
length standard (PE Applied Biosystems) labelled with 6-carboxy-X-rhodamin (ROX, red).   

Selective amplification reaction conditions 

First cycle: 94 °C for 2 min, 65 °C for 30 s, 72 °C for 2 min, next 8 cycles: 94 °C for 1 s, 64 
°C for 30 s (with 1 °C decreased for each cycle) and 72 °C for 2 min, followed by 23 cycles 
of 94 °C for 1 s, 56 °C for 30 s and 72 °C for 2 min with a final step of incubation at 60 °C 
for 30 min.  

Samples preparation 

2 µl selective amplification product of each 
sample was mixed with 2.4 µl aliquot of 
loading dye denatured at 95 °C for 2 min, then 
immediately chilled on ice until ready for 
loading. 

4 µl  diluted restriction- ligation DNA 
1 µl  AFLP preselective primer pairs 
15 µl  AFLP Core Mix* 

1.5 µl diluted preselective amplification product 
0.5 µl  5 µM  MseI Primer 
0.5 µl  1 µM  dye- labelled EcoRI primer* 
7.5 µl  AFLP Core Mix 
 

Loading dye mix (for 100 samples) 

170 µl  formamide 
40 µl  blue dye (loading buffer, ABI) 
30 µl  size standard of GS-500 ROX 
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Gel electrophoresis on 377 DNA Sequencer 

Plate preparation 

Wash the plates two times with 2N NaOH and Alconox  alternately and rinse with distilled 
water, stand the plates up right and allow to air dry. Similarly, wash, rinse and dry the comb 
and the spacers. 

Gel preparation 

Stir the gel mix solution until 
urea is completely dissolved. 
Filter the solution through a 0.2 
µm cellulose nitrate filter and 
degas for 5 min. Add 350 µl 10 

% APS and 15 µl TEMED, swirl gently to mix and cast the gel by injecting the solution with 
a syringe in the space between the plates. Insert the comb avoiding to trap bubbles at the 
interface. Allow gel to polymerise for 2 h before use. 

Instrument set up   

Clean read region and comb area of the plates with Kimwipes™ and distilled water, then 
place the gel cassette against the heat transfer plate of the instrument. Fill the upper buffer 
chamber with 580-600 ml 1 × TBE (Roth) and check for leaks. Fill the lower buffer chamber 
with 1 × TBE until the bottom of the glass plates is covered. Place the front heat-transfer 
plate on the front of the cassette. Secure it with and attach the quick-connect water lines and 
ground cable. Plug in the electrode lead to the jacks extending from the buffer chambers. 

Software set up 

Restart the Macintosh computer and open the ABI PRISM™ 377 collection. Choose genetic 
analysis program and create a run file. Set parameters as follows: 
        Plate Check Module: plate check A 
        PreRun module:  
               GSPR 36A-2400 with constant voltage of 1100V and gel temperature of 51 °C 
        Run Module:  
                GS Run 36A-2400 with constant voltage of 3000V and gel temperature of 51 °C 
        Collection time: 4h 
        Gel’s Matrix File:  
                 GS Set A for detection of fluorescent dye: FAM, JOE, TAMRA and ROX 
        Well-to-Read distance: 36 cm 
        Lanes: 50, 66 or 96 depending on the number of samples to be analysed 
        Run Mode: XL Scan 

Gel mix for fAFLP 

21 g  urea (Merck) 
8.4 ml 30 % acrylamide/bisacrylamide (29:1) solution 
6 ml  10 ×  TBE (Roth) 
20 ml  H2O (Merck) 
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Before loading the gel, pre-run the gel to make sure the electrophoresis system is working 
properly and check for temperature equilibration. Pre-run the gel for 15 min under the 
conditions defined in the run file. 

 Sample sheet file 

Choose ‘new’ from the file menu, a sample sheet will appear by clicking the GeneScan Run 
icon. Fill out the form with relevant information of samples and save it.  

Loading the samples and starting the run 

Before loading the gel, click ‘Pause’ button to arrest the instrument. Pausing stops 
electrophoresis but maintains the temperature of the gel. 1.5 µl of each sample was loaded in 
an order identical to that of the sample sheet. After loading, click the ‘Cancel’ button to stop 
the pre-run and click the ‘Run’ button to start the run under the conditions defined in Run 
File. 

Data collection and fragment sizing by ABI GeneScan  

Automated AFLP fragment analysis was performed with GeneScan analysis software 
version 2.1 (Perkin-Elmer/ABI). In automated genotyping on a 377 sequencer, the 
fluorescence labelled DNA fragments are separated on the polyacrylamide gel. At the bottom 
of the gel, a laser excites the fluorescent dyes when the fragments pass, and detectors collect 
the emission intensities at specific wavelengths as defined in GS Set A. The laser and 
detectors scan the bottom of the gel continuously during electrophoresis in order to build a 
gel image in which each lane has a colour pattern of peaks, each peak corresponding to a 
fragments of particular length. The ABI GeneScan  software, running on a Macintosh 
computer, collects each fluorescent signal and then assigns a size to each fragment. 

The analysis parameter 

Analysis range: full range 
Size call range: all sizes 
Peak detection: all peaks higher than 50 were taken as real fAFLP fragments. 

GS-500 size standard 

Select a sample file containing GS-500 size standard and assign the known size in bp to each 
fragments of the size standard in the size standard dialog box. 

Samples Analysis  

Open the ‘project’ window containing the data, select the size standard, the analysis 
parameters and colours for all samples and the internal size standard. Click the ‘analyse’ 
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button for automated sizing of fragments. Before proceeding to allele scoring, each sample 
file was checked to be sure that the sizes of the size standard correspond well with what has 
been defined.  

Allele scoring by ABI GenoTyper™ 

In this study GenotyperTM analysis software version 2.0 (PE Applied Biosystems) was used 
for creation of data files. GenoTyper™  converts data from GeneScan files into the Excel 
format required by downstream applications. The following steps are involved in the 
processes: 

Importing result files from GeneScan files 

Creating categories 

The categories define the peaks of interest that need to be labelled. In case of AFLP, where 
no information of the AFLP fragments was available, categories were defined which took all 
fragments ranging from 50 bp to 500 bp into account. One base pair corresponds, therefore, 
to one category with a tolerance of + 0.49 bp. 

Labelling peaks 

Peak labelling was done either quantitatively as peak height, or qualitatively as presence 
versus absence. 

Making tables 

After auto- labelling, data tables for exporting were made which contained sample info, 
categories and other relevant information. These data can be exported in Excel format for 
QTL analysis.  

2.14  Evaluation of phenotypic traits 

Phenotypic data were evaluated in field trials at two locations (Gransebieth and Windeby) 
over three years (1997, 1998, and 1999) by the potato breeding company SaKa-Ragis 
Pflanzenzucht GbR (Dr. Josef  Strahwald). A short description is included here because the 
phenotypic data were an essential part of the QTL analysis. 

Trait evaluation was carried out on 150-200 individuals of Z3 in trials 1997 and 1998. In trial 
1999, evaluation was performed on 50 individuals, which were obtained by selecting 4-6 
individuals with high and low tuber starch content in pairwise from each of 9 categories for 
foliage maturity (1-9 scale). Phenotypic trait evaluated varied in different trials, however, 
present study concentrates on the analysis for the following traits. 
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Starch content 

Tuber starch content in percent was determined by measuring specific gravity (weight in air – 
weight in water) using a starch balance (Meku, Wennigsen, Germany) based on the method 
of Lunden (1956). 

Reducing sugars 

Reducing sugar content was measured by a Picric Acid Test. The degree of darkening of a 
solution of potassium picrate is a measure for the reducing sugar content of tubers. Picric acid 
reacts with reducing sugars to produce a red colour. In solutions containing excess picric 
acid, the red colour will combine with the yellow colour of the picric acid to produce a series 
of shades from yellow through orange to red. Reducing sugar content was estimated by 
comparing the colour with a series of colour standards which have been calibrated in terms of 
reducing sugar (see below).  

CTCa 1 2 3 4 5 6 7 8 9 

RSCb 0.059 0.12 0.20 0.28 0.38 0.49 0.67 0.95 1.35 

a CTC=Colour Test Classification;    b RSC=Reducing Sugar Content in % 

Foliage Earliness (Maturity) 

Foliage earliness was scored using a scale of 1 to 9  (1=very early maturing, 9=very late 
maturing) at an appropriate growth stage of the plants.  

2.15  QTL analysis 

QTL analysis was carried out in collaboration with Dr. Ralf Schäfer-Pregl (MPIZ). 

Several statistical methods can be used for the identification of QTLs depending upon the 
molecular marker types and scoring methods. In the present study, the statistical programs 
used for the QTL analysis include the t-test or one way ANOVA (analysis of variance) and 
GLM (general linear models). All analyses were performed with programs written using SAS 
software (SAS Institute Inc., 1990). 

t-test   

A t-test was applied to the fAFLP data which were divided into two genotype classes such as 
presence and absence of a DNA fragment. The means of the two classes are tested for 
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significant differences by estimating the probability of no difference between the means 
compared.  

ANOVA 

One-way ANOVA is an alternative to the t-test. This procedures tests the significance of the 
difference between the means of two subgroups by estimating the F value, the proportion of 
the variance between the two subgroups to the variance within each group, from which a P  
value or a LOD (logarithm of odds) value are derived. This procedure also gives the R2 value, 
indicating the proportion of the total variance that is explained at the marker locus 
considered. 

GLM  

In case when multiple alleles are informative at given locus and can be distinguished in a 
segregating population, GLM was applied to the QTL analysis by examining the variance 
among the phenotypic trait means of multiple marker-genotype classes. Using this method, 
the amount of variance explained by allelic differences at a marker locus (R2) can also be 
calculated. 

Regression analysis 

Regression analysis was applied to quantitative fAFLP data. This analysis reveals the 
correlation between the peak height and the phenotypic values. The square of the correlation 
coefficient reflects the proportion of the variance explained by regression to the total 
variance. 

Non-parametric test 

For the category phenotypic data, the Mann-Whitney U-test and the Kruskall-Wallis test were 
employed for the association analysis. The former is the non-parametric equivalent to the t-
test, while the latter one is the non-parametric counterpart of GLM. 

Thresholds for declaring a QTL present 

A marker-trait association was declared significant when the mean or median values of the 
two marker classes were significantly different at P<0.05 in two locations or two independent 
tests. Otherwise P<0.01 was selected as threshold.  
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3.  RESULTS 

 

3.1 Mapping functional genes involved in carbohydrate metabolism 

and transport 

3.1.1  PCR amplification of functional genes through an STS approach  

Genes involved in starch and sucrose metabolism, metabolite transport, Calvin cycle, 

oxidative pentose phosphate pathway, glycolysis and TCA cycles were explored in public 

databases of EMBL and GenBank for their sequences in potato, tomato or other species.  51 

gene-specific primer pairs were designed (Table 3-1, page 51-55), of which 45 primer pairs 

were derived directly from the DNA sequence of potato genes and three pairs from tomato 

genes (Eno, Ndpk, and Glo). For genes Ant, Rca and Pgkcp, which were not available either as 

a potato or as a tomato sequence, degenerate primers were designed based on sequence 

motifs conserved between the homologous genes of three to five other plant species 

(Schneider et al. 1999, Van Campenhout et al. 2000). The consensus sequence of a gene can 

be revealed by sequence analysis using the Pile-Up program of GCG software package 

(University of Wisconsin Genetics Computer Group, version 8). The example of a multiple 

sequence pileup of sequences of the Pgk gene from several species is shown in Figure 3-1 (on 

page 47-49).  Using potato genomic DNA as a template, most primer pairs generated a single 

fragment, only a few produced two fragments. Most frequently the PCR products were larger 

than expected from the transcript sequence, indicating the presence of introns. 

 

 

 

 

 

 

 

 

 

 

        551                                                600 
u37701  CGAAAGCTGA TGATTGTATT GGCCCAGAAG TGGAAAGCTT GGTGGCTTCT  
z48977  TGAAGGTTGA GGACTGCATT GGTCCAGAAG TTGAGAAGTT GGTTGCTTCA  
x68430  TGAAGGCTGA TGATTGCATT GGTCCAGATG TTGAGAAGTT GGTTGCTGAA  
x15233  AAAAAGCAGA AGATGTTATC GGCCCAGAAG TTGAGAAATT GGTGGCTGAC  
          ** *  **  **    **  ** ***** * * ** *  ** *** *** 
        601                                                650 
u37701  CTACCTGAAG GTGGAGTTTT GCTTCTTGAG AACGTCAGGT TTTACAAGGA  
z48977  CTTCCCGAGG GTGGTGTTCT TCTTCTCGAG AACGTGAGAT TCTACAAGGA  
x68430  CTCCCAGAAG GTGGCGTTCT TCTCCTTGAG AATGTTAGGT TCTACAAGGA  
x15233  CTGGCAAATG GTGCTGTTTT GCTCCTGGAA AACGTAAGAT TTTACAAGGA  
        **  *  * * ***  *** *  ** ** **  ** ** ** * * ******** 
        651                                                700 
u37701  GGAAGAGAAG AACGATCCTG AGTTTGCTAA GAAGCTTGCT TCTCTAGCTG  
z48977  GGAAGAGAAG AACGAACCTG AGTTTGCAAA GAAACTTGCA TCATTGGCAG  
x68430  AGAGGAAAAG AATGATCCAG AATTTGCAAA GAAGCTTGCT TCCTTGGCAG  
x15233  AGAGGAGAAG AATGACCCAG AGTTTGCAAA GAAGCTTGCG TCACTGGCAG  
         ** ** *** ** ** ** * * ***** ** *** *****  **  * ** * 
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        701                                                750 
u37701  ACCTTTATGT CAATGATGCT TTCGGAACTG CTCACAGAGC TCATGCTTCT  
z48977  ATCTTTATGT GAATGATGCA TTCGGTACAG CTCACAGAGC ACATGCCTCT  
x68430  ATCTGTATGT GAATGATGCT TTTGGCACTG CCCACAGAGC TCATGCATCA  
x15233  ATCTGTTTGT AAACGATGCA TTCGGAACAG CCCACAGAGC ACATGCCTCG  
        * ** * ***  ** *****  ** ** ** * * ********  ***** ** 
        751                                                800 
u37701  ACCGAAGGAG TCACTAAGTT CTTGAAGCCT TCAGTTGCTG GTTTCCTTTT  
z48977  ACAGAGGGAG TTACTAAATT TTTGAAGCCT TCTGTTGCAG GTTTCCTCTT  
x68430  ACCGAGGGAG TTACCAAATT TTTGAAGCCA TCTGTTGCTG GCTTCCTCTT  
x15233  ACTGAGGGAG TTACCAAGTT CTTGAAGCCT TCTGTTGCTG GATTCCTTTT  
        ** ** **** * ** ** **  ********  ** ***** * * ***** ** 
        801                                                850 
u37701  GCAAAAGGAA CTGGACTACC TAGTTGGTGC TGTTTCAAAC CCAAAGAGAC  
z48977  ACAAAAGGAA TTGGACTATT TAGTCGGGGC GGTTTCAAAT CCAAAGAGGC  
x68430  ACAGAAGGAA TTGGACTACC TTGTTGGAGC TGTTTCTAAC CCAAAGAGAC  
x15233  GCAGAAGGAA CTTGACTACC TGGATGGAGC TGTTTCAAAC CCTAAGCGCC  
         ** ******  * *****   * *  ** **  ***** AAY CCWAAGMGVC 
                                             degenerate primer 
        851                                                900 
u37701  CATTTGCAGC CATAGTGGGT GGTTCCAAAG TCTCATCCAA GATTGGAGTT  
z48977  CATTTGCTGC TATTGTGGGT GGTTCAAAGG TTTCATCCAA GATTGGAGTG  
x68430  CATTTGCTGC TATAGTTGGT GGTTCAAAGG TCTCTTCCAA AATTGGAGTA  
x15233  CATTTGCTGC CATTGTGGGT GGCTCAAAGG TGTCATCCAA GATTGGGGTT  
        CATTTGC **  ** ** *** ** ** ** * * ** ***** ****** ** 
        901                                                950 
u37701  ATTGAATCGC TTCTGGAGAA GTGTGATATT CTTCTTCTTG GTGGTGGAAT  
z48977  ATCGAATCAC TTTTAGAGAA ATGTGATATA TTGCTTTTGG GTGGAGGAAT  
x68430  ATTGAGTCAC TTTTGGAGAA ATGTGATATC CTACTCCTTG GAGGAGGAAT  
x15233  ATCGAATCCC TGTTGGAGAA GTGTGACATC CTTCTTTTGG GTGGTGGTAT  
        ** ** ** * *  * *****  ***** **   * **  * * * ** ** ** 
        951                                               1000 
u37701  GATCTTCACA TTCTACAAGG CACAGGGTCT TTCAGTTGGT TCGTCCCTTG  
z48977  GATCTTTACC TTCTACAAGG CTCAGGGTCT TTCAGTTGGT TCCTCCTTGG  
x68430  GATCTTTACA TTCTACAAAG CTCAAGGTAT GTCAGTTGGA TCTTCTCTGG  
x15233  GATCTTCACA TTTTACAAGG CACAAGGACT CTCAGTTGGT TCTTCCTTGG  
        ****** **  ** ***** * * ** **  *  ********  ** **  * * 
        1001                                              1050 
u37701  TTGAAGAAGA CAAGCTTGAA TTGGCTACAG AACTCCTTGC CAAAGCTAAG  
z48977  TTGAGGAAGA CAAACTAGAA CTCGCTACAT CACTCCTAGA GAAGGCCAAG  
x68430  TTGAAGAGGA TAAGCTTGAC CTTGCAACTT CTCTCCTCGC CAAGGCTAAG  
x15233  TTGAGGAAGA TAAACTTGAG CTGGCAACAT CTCTCCTTGC AAAGGCAAAG  
        **** ** **  ** ** *    * ** **     *****     **  * *** 
        1051                                              1100 
u37701  GCCAAAGGAG TCTCTCTTTT GTTGCCAACA GATGTTGTAG TTGCTGACAA  
z48977  GCGAAAGGAG TCAGTCTCTT GTTACCATCT GATGTTGTGA TTGCAGATAA  
x68430  GAAAAGGGCG TGTCTCTGTT GTTGCCTACT GATGTCGTTA TTGCGGACAA  
x15233  GCAAAGGGTG TCTCCCTTCT GTTGCCATCT GACGTTATCA TTGCTGATAA  
        *  ** ** * *    **  * *** **  *  ** **  *   **** ** ** 
        1101                                              1150 
u37701  GTTTGCTCCT GATGCCAACA GCAAGATTGT GCCTGCATCA GGCATTGAGG  
z48977  ATTTGCTCCT GATGCAAACA GCAAGATTGT GCCTGCATCT GCTATCCCAG  
x68430  GTTTGCTGCT GATGCAGACA GCAAGATTGT CCCCGCATCT GGAATCCCTG  
x15233  GTTTGCTCCT GATGCTAACA GTCAGACCGT CCCTGCATCT GCAATTCCTG  
         ****** ** *****  *** *  ***  **  ** *****  *  **    * 
        1151                                              1200 
u37701  ACGGATGGAT GGGACTGGAC ATTGGTCCAG ACTCTATCAA AACTTTCAAC  
z48977  ACGGTTGGAT GGGGTTGGAC ATTGGACCAG ACTCTGTTAA GACTTTCAAC  
x68430  ACGGATGGAT GGGATTGGAC ATTGGACCTG ATTCTATTAA GACATTTAGT  
x15233  ATGGTTGGAT GGGGCTGGAC ATTGGCCCAG ATTCAGTCAA AACATTTAAT  
        * **  **** ***  ***** ***** ** * * **  * **  ** **  
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Figure 3-1 Multiple alignment of partial cDNA sequences of the gene coding for phosphoglycerate 
kinase (PGK) from 4 different species showing the conserved sequence motifs used as primers for 
amplifying homologous genes in potato.  U37701, Z48977, X68430 and X15233 are cDNA sequences 
from Arabidopsis, tobacco, spinach and wheat, respectively. Asterisks indicate identical positions. 
Sequence motifs adopted for primers are highlighted in bold. 

 

3.1.2  Polymorphism Identification  

Most primer pairs were selected to flank introns which are potentially more variable when 

compared to exons (Tragoorung et al. 1992; Konieczny and Ausubel 1993; Corte-Real et al. 

1994). This allowed efficient identification of polymorphisms by SCAR or CAPS. In total, 

four primer pairs for genes SssI, Pk, Me and Ndpk generated directly polymorphic PCR 

        1201                                              1250 
u37701  GAAGCTCTGG ACACAACACA AACAGTCATT TGGAATGGAC CTATGGGAGT  
z48977  GATGCCTTGG ATACCACAAA AACAGTGATC TGGAATGGAC CTATGGGGGT  
x68430  GAAGCTTTGG ACACTACCCA GACCGTCATC TGGAATGGTC CCATGGGAGT  
x15233  GATGCCCTGG ACACAACACA GACAATCATT TGGAACGGAC CAATGGGTGT  
        ** **  *** * ** **  *  **  * **  ***** ** * * ***** ** 
        1251                                              1300 
u37701  TTTCGAGATG GAAAAGTTTG CGGCTGGAAC AGAGGCGATA GCGAATAAAC  
z48977  GTTTGAATTT GACAAGTTTG CTGTTGGAAC AGAGGCAATT GCAAAGAAGC  
x68430  TTTTGAATTC GAAAAGTTTG CTGCTGGTAC AGAGGCTATT GCTAAGAAGC  
x15233  CTTTGAATTT GACAAGTTTG CAGTAGGAAC TGAGTCTATT GCAAAGAAGT  
         **  *  *  ** ******* * *  ** **  *** * **  ** ** ** 
        1301                                              1350 
u37701  TAGCAGAGCT AAGTGAAAAA GGAGTGACAA CGATAATAGG AGGAGGAGAC  
z48977  TCGCGGACTT AAGTGGGAAA GGAGTGACGA CTATCATTGG AGGTGGAGAT  
x68430  TAGAGGAGAT AAGCAAGAAG GGTGCAACCA CAATTATCGG TGGTGGTGAC  
x15233  TGGCCGAGCT TAGCAAAAAG GGTGTGACAA CTATCATTGG AGGCGGAGAC  
        *     *  *   *    **  ** *  ** * * ** ** **  ** ** ** 
        1351                                              1400 
u37701  TCAGTGGCTG CAGTGGAGAA AGTAGGAGTA GCAGGAGTCA TGAGTCACAT  
z48977  TCTGTTGCAG CTGTTGAGAA AGTTGGAGTT GCTAGCGTGA TGAGCCACAT  
x68430  TCAGTTGCAG CAGTAGAGAA GGTAGGAGTG GCAGAGGCAA TGAGCCACAT  
x15233  TCCGTTGCGG CTGTTGAGAA GGTGGGAGTG GCTGATGTTA TGAGCCACAT  
        ** ** ** * * ** *****  ** *****  **    *  * ****  **** 
        1401                                              1450 
u37701  CTCCACTGGT GGTGGAGCCA GCTTGGAGCT GTTGGAAGGA AAAGTACTTC  
z48977  ATCCACTGGT GGTGGTGCCA GTTTGGAGCT ACTGGAAGGC AAGGTGCTCC  
x68430  ATCAACTGGT GGTGGAGCTA GTTTGGAGTT GTTAGAAGGG AAACAGCTTC  
x15233  CTCAACTGGT GGTGGCGCCA GCTTGGAGTT GTTGGAAGGA AAGGAGCTTC  
         ** TGACCA CCACCDCGRT CRAA**** *   * *****  **    ** * 
            degenerate primer 
        1451                                              1500 
u37701  CCGGTGTGAT CGCCCTTGAT GAAGCAATCC CAGTCACTGT TTAGAAACTC  
z48977  CCGGTGTCAT TGCTCTTGAT GAAGCAGACG CCCCCGTTGC TGTGTAAAAC  
x68430  CTGGAGTACT TGCTCTTAAT GAGGCCGACC CAGTTCCGGT TTAAGACCAC  
x15233  CTGGAGTCGT TGCACTTGAT GAAG..GTGT CATGACGAGG TCGGTGACCG  
        * ** **  *  ** *** ** ** *       *          *    
        1501                                              1550 
u37701  TTACCATCTA TAAGGCAAAC GCTGTATACT TAAAAGAGTT TCTTTCGCTT  
z48977  AATTTGTACT AATTCTTTTT TCTCCGGGGT CAACATAATC AGTGGTAATT  
x68430  TCTATACAAA TTCTTTTTTT CCCCCTCTCT TCACAGGTTC ATCCTCTTAA  
x15233  TATGAGGCTA AGCTTCATTT GTTGCATCTT AATTCCTTTC ATGTACCGTT 
                                       *         * 
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products of which Me detected two loci (SCAR markers, Table 3-1, page 51-55). PCR 

products of 45 genes were digested with a 4-base pair cutter restriction enzyme to generate 

segregating DNA fragments (CAPS markers, Figure 3-2). 43 of the 45 genes were mapped as 

CAPS markers using one of the following enzymes TaqI, RsaI and AluI. The remaining two 

genes were mapped using HaeIII and DdeI. The most informative restriction enzyme was 

TaqI followed by RsaI and AluI (Table 3-1, page 51-55). PCR products of all the genes were 

restricted with at least these three enzymes for CAPS to maximize the identification of loci 

even for the ones showing directly SCAR polymorphism. However, the increase of 

polymorphic fragments produced by different restriction enzymes did not increase the 

number of loci identified. Frequently, these polymorphic fragments, which were derived from 

the same genes, tagged an alternative allele of one parent or the other or common alleles of 

both. In the case of Pain-1 and Eno for example, CAPS assays with the enzymes DdeI and 

TaqI for Pain-1 and AluI and TaqI for Eno resulted in 3 polymorphic fragments with different 

segregation patterns which were all mapped at a single locus on linkage groups (LG) III and 

IX, respectively. The only exceptions was Ppe which identified three loci, two (LG III, LG 

V) by AluI and one (LG XII) by TaqI. Other genes with two loci being identified are Pha1, 

Glo and Fum1 by TaqI and RsaI (Table 3-1, on page 51-55). 

The PCR product of only one gene (Tk), which may contain no introns in the region 

investigated, did not segregate either as SCAR or as CAPS marker. Alternatively, by RFLP 

analysis using the PCR product as the probe, the Tk gene was successfully mapped on LG V 

(Table 3-1, on page 51-55).                                                                                            (continue to page 56) 

 

               

 

 

 

 

 

 

 

 

Figure 3-2  CAPS marker for the α-glucan phosphorylase gene Stp23 which was mapped on potato 

chromosome III. The uniform 2 kb PCR products, shown for the parents P1 and P2 of the LH mapping 

population (2nd and 3rd lane from left), were polymorphic after digestion with TaqI (4th and 5th lane) and 

segregated in the F1 plants (6th to 15th lane from left). M = size marker.  
 
                                                                                                                       

   2 kb 
 
 
 
0.5 kb 

1 kb 
 

 M    P1   P2    P1   P2   1      2      3     4     5      6      7     8      9    10     M 



 
 
 

 51                                                                                                                                                                                                                                                                                     
 

Table 3-1  Genes placed onto the potato molecular function map 
 
Enzyme EC 

number 
Accession 
number 

Reference Gene Linkage 
group 

Primer, 5’ to 3’ Popu- 
lation a 

PCR  
product

kb 

Marker 
Assay b 

 
A: Starch synthesis and degradation (chloroplasts, amyloplasts) 
ADP-glucose pyrophosphorylase B e 2.7.7.27 X55155 Mueller-Rober 

et al. 1990 
AGPaseB 

VII, XII 
- 1,2,3,4 - R, TaqI 

ADP-glucose pyrophosphorylase S e 2.7.7.27 X61186 Nakata et al. 
1991 

AGPaseS I, IV, 
VIII 

- 1,2,3,4 - R, RsaI, 
     TaqI 

Granule bound starch synthase I e 2.4.1.21 X52416 Rohde et al. 
1990 

GbssI 
(wx) 

VIII - 1, 3, 4 - R, RsaI 

Soluble starch synthase I 2.4.1.21 Y10416 Abel et al.  
unpublished 

SssI III f-cttcttactgcagacctggaac  
r-ctgtcagtatccgatcagcaac 

3 2.4  
2.6 

S 

Granule bound starch synthase II 2.4.1.21 X87988 Edwards et al. 
1995 

GbssII II f-gctgcaagtgctgatgaatcga 
r-ttagaccatggagcgcattctg 

3 1.8 C, TaqI 

Soluble starch synthase III 2.4.1.21 X94400 Abel et al. 
1996 

SssIII II f-aacaaaagttcaggtcctctctc 
r-aaatcccaccatcttctctctc 

3 1.3 C, AluI 

Starch branching enzyme I e 2.4.1.18 Y08786 Khoshnoodi et 
al. 1996 

SbeI IV - 1, 3, 4 - R, TaqI 

Starch branching enzyme II 2.4.1.18 AJ000004 Larsson et al. 
1998 

SbeII IX f-ctcgtagtgctacaggtatcac 
r-tgatggagtgtccatacgta 

3 1.8 C, AluI 

Disproportionating enzyme 2.4.1.25 X68664 Takaha et al. 
1993 

Dpe-P IV f-cactacttttcaatctcctatccc  
r-gcatagtcacgaacttttttcc 

3 3.0  C, TaqI 

Starch-granule-bound protein R1 - Y09533 Lorberth 
unpublished 

Gb-R1 V f-tccatcctgagactggagatac 
r-acttgtactgcaggactggaag 

4 1.7 C, RsaI 

Debranching enzyme 3.2.1.41 A52190 Kossmann  
patent 

Dbe XI f-ctgatgtcagcatctatgagct 
r-gatacgacaaggaccatttgca 

3 
4 

2.1 C, TaqI 
R, AluI 

α-Amylase e, g  3.2.1.1 -  AmyZ IV - 1, 2 - R, TaqI 
α-Glucosidase 3.2.1.20 AJ001374 Taylor et al. 

1998 
Agl IV f-accaagctgtggttaaccagag 

r-gcagttgcgaataactgtggca 
3 0.8 C, AluI 

H-type starch phosphorylase 2.4.1.1 - f  StpH IX f-gcatactatgctgctactgctg 
r-gcacatcatatgcaagagcctg 

3 1.8 C, RsaI 

L-type starch phosphorylase  2.4.1.1 X73684 Sonnewald et 
al. 1995 

Stp1 V f-acacactatgttctgcttctcttc 
r-actatcctccacctcaaccttc 

4 0.8 C, TaqI 
     RsaI 
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Table 3-1  Genes placed onto the potato molecular function map (continued) 
 
Enzyme EC 

number 
Accession 
number 

Reference Gene Linkage 
group 

Primer, 5’ to 3’ Popu- 
lation a 

PCR  
product

kb 

Marker 
Assay b 

α-Glucan phosphorylase 2.4.1.1 D00520 Nakano et al. 
1989 

Stp23 III f-atggcgactgcaaatggagca 
r-ccatacttgtacctaagtccatag 

4 1.6 C, TaqI, 
     RsaI, 
     AluI 

 
B: Sucrose metabolism (cytosol, apoplast) 
UDP-glucose pyrophosphorylase c 2.7.7.09 U20345 Borovkov  

unpublished 
UGPase XI - 1, 2, 4 - R, TaqI 

Fructose-1,6-bisphosphatase 3.1.3.11 X76946 Zrenner et al. 
1996 

Fbpcy IV f-tgcagggagaagatcaaaagaaac  
r-tgaagaaccatcagcgggatac 

3 1.4 C, RsaI 
     TaqI 

Pyrophosphate fructose-6-phosphate 
1-phosphotransferase, α subunit 

2.7.1.90 M55190 Carlisle et al. 
1990 

Pfp-α IV f-
cggacaaaagatcagattagaacgac  
r-ccctcaggcaacaggataacac 

3 2.5 C, AluI 

Pyrophosphate fructose-6-phosphate 
1-phosphotransferase, β subunit 

2.7.1.90 M55191 Carlisle et al. 
1990 

Pfp-β II f-gtcatgatagatgctcgatcaac 
r-acatcagcaatgtagtccgtaac 

4 2.5 C, RsaI 

Sucrose phosphate synthase g 2.4.1.14 X73477 Zrenner et al. 
1995 

Sps VII f-gaaagaggtcgcagagaagcag  
r-caagtgagtgaccagtgaaaag 

2, 4 1.3 C, TaqI 
R, TaqI 

Sucrose synthase 3 2.4.1.13 U24088 Fu et al. 1995 Sus3 VII f-catgacaaggaaagcatgacccc 
r-gcaaagtaaatcttatacatghtgacc 

4 1.2 C, TaqI 

Sucrose synthase 4 k 2.4.1.13 U24087 Fu et al. 1995 Sus4 XII f-caagctgacctggacaccacagt 
r-accacattgaaaaccataggaattct 

3 1.3 C, RsaI 

Soluble acid invertase 3.2.1.26 X70368 Zrenner et al. 
1996 

Pain-1 III f-gtcttcgataagacttttcgag 
r-cagtggtcgggtctctaaagt 

3 2.0 C, DdeI 
     TaqI 

Apoplastic invertase 3.2.1.26 Z22645 Hedley et al. 
1994 

Invap IX, X - 1 - R, TaqI 

 
C: Transport (membranes) 
Sucrose transporter  - X69165 Riesmeier et al. 

1993 
Sut1 XI f-agcttccatagctgctggtgtt 

r-cggactaaggttaaggctatgg 
1, 3 1.2 C, RsaI 

R, TaqI 
Triose phosphate translocator e - -  Tpt X - 2 - R, RsaI 
Glucose-6-phosphate translocator - AF020816 Kammerer et 

al. 1998 
Gpt V f-ggctcacacaattggtcatgtg 

r-ccaagattgcaatagcagcacc 
4 1.4 C, HaeIII 

Plasma membrane H+-ATPase 1 e 3.6.1.34 X76536 Harms et al. 
1994 

Pha1 III, VI f-tcctggagatggtgtctactct 
r-gcagtatcaatggcatcctggt 

2, 3 0.8 C, TaqI 
R, TaqI 

Results 



 
Results  

  

 

53 

Table 3-1  Genes placed onto the potato molecular function map (continued) 
 
Enzyme EC 

number 
Accession 
number 

Reference Gene Linkage 
group 

Primer, 5’ to 3’ Popu- 
lation a 

PCR  
product

kb 

Marker 
Assay b 

Plasma membrane H+-ATPase 2 e 3.6.1.34 X76535 Harms et al. 
1994 

Pha2 VII f-caaacatgtacccgtcagcatc 
r-agctatcaggcattggagatgg 

1, 4 0.9 R, TaqI  
C, TaqI 

Adenylate transporter - X65549 
X62123 
D12637 
X95864 
X68592 

 Ant XI f-tggagaggaaacactgcYaatgt l 
r-atgttRgcaccagcWcccttga l 

4 1.1 + 
0.9 

C, TaqI 

Inorganic phosphate transporter 1 - X98890 Leggewie et al. 
1997 

Pt1 IX f-tcagcagctgttaatggagtcg 
r-tgcaacaccttggacatgtcgt 

4 0.6 C, RsaI 

Inorganic phosphate transporter 2 - X98891  Pt2 III f-cgccacgatcatgtctgaatac 
r-taaacgccacggtgaaccagta 

4 0.7 C, AluI 

 
D: Calvin cycle, photorespiration (chloroplasts) 
Ribulose bisphosphate carboxylase 
activase 

- J03610 
AF037361 
X14212 
Z21794 

 Rca X f-acacYgtMaacaaccagatg l 
r-actctcttgacattctcttgc 

4 0.7 C, TaqI 

Ribulose bisphosphate carboxylase small 
subunit e 

4.1.1.39 - i  rbcS II (2) 
III 

- 1,3,4 - R, TaqI, 
     RsaI 

Phosphoglycerate kinase 2.7.2.3 U37701 
Z48977 
X68430 
X15233 

 Pgk cp VII f-aaYccWaagMgVccatttgc l 
r-aaRctRgcDccaccaccagt l 

4 0.9 C, TaqI 

Fructose-1,6-bisphosphatase 3.1.3.11 - h Kossmann et al. 
1992 

Fbpcp IX f-tactggagttcaaggtgctgtc 
r-tgcagagtaaggcttccgacta 

3 1.6 C, TaqI 

Transaldolase 2.2.1.2 U95923 Moehs et al. 
1996 

Tal1 XI f-attccttgtgtgtcaaatgctcc 
r-cgactaacgaagaatgaagcaac 

4 1.5 C, TaqI 

Transketolase 2.2.1.1 Z50099 Teige et al. 
1995 

Tk V f-gagacacggaaattgctttcac 
r-tcagcactaccaccaaggaaac 

4 0.6 R, TaqI 

Pentose-5-phosphate 3-epimerase 5.1.3.1 Z50098 Teige et al. 
1995 

Ppe III, V, XII f-tccgtccatcctttctgctaac 
r-aactccaccatcaacttcaatc 

3 3.0 C, AluI 
     TaqI 

Glycolate oxidase 1.1.3.15 X92888 Speirs et al. 
1995 

Glo VII, X f-cagcgttgaggaggttgcttca 
r-gacagccactcaatgccatagt 

4 1.7 C, TaqI 
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Table 3-1  Genes placed onto the potato molecular function map (continued) 
 
Enzyme EC 

number 
Accession 
number 

Reference Gene Linkage 
group 

Primer, 5’ to 3’ Popu- 
lation a 

PCR  
product

kb 

Marker 
Assay b 

 
E: Glycolysis, oxidative pentose phosphate pathway (cytosol) 
Fructokinase 2.7.1.4 Z12823 Smith et al. 

1993 
Fk VI f-gctttggcgttcgtgactctac 

r-agtggtgtcaacagtcttcacg 
3 2.0 C, TaqI 

Hexokinase g 2.7.1.1 X94302 Clericus 
unpublished 

Hxk III f-gattatattgcggctgagcttgc  
r-catctgccgttgacagagtatg 

2, 3 0.8 C, RsaI 
R, TaqI 

Glyceraldehyde 3-phosphate 
dehydrogenase d  

1.2.1.12 U17005 Schneider et 
al. 1995 

Gap C V - 1 - R, TaqI 

Enolase 4.2.1.11 X58108 Van der 
Straeten et al. 
1991 

Eno IX f-cttggtgcaaatgccatccttg 
r-cagcttcaatactctcggtcac 

3 2.1 + 1.9 C, AluI 
    TaqI 

Pyruvate kinase 2.7.1.40 X53688 Blakeley et al. 
1990 

Pk IV f-tcactgtatccacagactatacc 
r-cactctccccacttaacataac 

3 0.9 
0.8 

S 

Lactate dehydrogenase 2 g 1.1.1.28 AF067859 Dunford 
unpublished 

Ldh2 VIII (3) - 2 - R, TaqI 

Phosphoenolpyruvate carboxylase 4.1.1.31 X67053 Merkelbach et 
al. 1993 

Ppc X, XII - 1 - R, TaqI 

Glucose-6-phosphate dehydrogenase 1.1.1.49 X74421 Graeye et al. 
1994 

G6pdh II f-tcttctattttgctcttcctcc 
r-actcgtatttctgcctttcttg 

3 1.6 C, DdeI 

 
F: TCA cycle (mitochondria) 
Pyruvate dehydrogenase, E1α 1.2.4.1 Z26949 Grof et al. 

1995 
Pdh-E1α V f-tcaacaagccgagccattaac 

r-gattagcagcaccatcaccatac 
3 0.6 C, RsaI 

Citrate synthase 4.1.3.7 X75082 Landschutze et 
al. 1995 

Cis I f-ggtcacttggttgctagtgctt  
r-ctttcgcagaactccatgtcca 

3 1.5 C, TaqI 

Aconitase 4.2.1.3 X97012 Surpili 
unpublished 

Aco VII f-catggctcctgaatatggtgca 
r-atacaagtggtgcagccatagc 

4 1.3 C, AluI 
    HpaII 

Isocitrate dehydrogenase 1 1.1.1.42 X75638 Fieuw 
unpublished 

Icdh-1 I f-aaaatatccccagacttgtccc 
r-aacagcgtcaatgaactcttcc 

3 1.8 C, AluI 

Fumarase 4.2.1.2 X91615 Nast 
unpublished 

Fum1 VII, IX f-catgtgcatccaaatgaccatgt  
r-gaagcagccagggtatttaagg 

4 1.9 C, RsaI 

Malate dehydrogenase 1.1.1.39 Z23023 Winning et al. 
1994 

Mdh VIII f-acagtggattgttcagacgtcc  
r-gtcaagccgatgatcttgcagt 

4 3.0 C, AluI 
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Table 3-1  Genes placed onto the potato molecular function map  (continued) 
 
Enzyme EC 

number 
Accession 
number 

 Gene Linkage 
group 

Primer, 5’ to 3’ Popu- 
lation a 

PCR  
product

kb 

Marker 
Assay b 

NAD+-dependent malic enzyme 1.1.1.39 Z23002 Winning et al. 
1994 

Me III, V f-ccttggttcaataaggacacgg 
r-caacgagcatgaacagcttcca 

4 1.1 
1.2 

S 

 
G: Miscellaneous 
Soluble inorganic pyrophosphatase e 3.6.1.1 Z36894 Du Jardin et 

al. 1995 
Ppa1 VIII, 

XII 
- 1 - R 

GDP-mannose pyrophosphorylase 2.7.7.13 AF022716 Keller 
unpublished 

GMPase III f-gaaactgaaccacttggcactg 
r-ccctctccaatcttggcagatt 

4 0.6 C, AluI 

Uncoupling protein - Y11220 Laloi et al. 
1997 

Ucp IX 
 

f-gtatcgtacctgggttacatcg 
r-acattccaagatcccaagcgtc 

3 2.5 C, TaqI 

Pectin methyl esterase 3.1.1.11 S66607 Pear et al. 
1993 

Pme VII f-acttgctgaagcagttgctgca 
r-ttagccacagtgaacggcatag 

4 1.5, 1.2, 
1.0 

C, TaqI 

3-deoxy -D-arabino-heptulosonate 
7-phosphate synthase  

4.1.2.15 M95201 Zhao et al. 
1993 

ShkB XI f-catcttctccataaccctttacc 
r-gctcacagttctccacaaaatc 

3 1.2 C, RsaI 

Nucleoside diphosphate kinase 2.7.4.6 X75324 Harris et al. 
1994 

Ndpk  IX f-atgatcaagcctgatggtgtcca 
r-aagagtgaaggctgctctgcca 

3 1.1 
0.4 

S 

β-1,3-glucanase, basic e 3.2.1.39 AJ009932 Talarczyk et 
al. 1998 

Glu B I f-cagcctatcggagtatgctatg 
r-cattgaatccacaagggcatcg 

3 
1 

0.7 C, RsaI 
R 

β-1,3-glucanase, acidic 3.2.1.39 -  Glu A I - 1 - R, TaqI 
Chitinase, class I, basic e 3.2.1.14 -  Cht B X - 1, 3, 4 - R, TaqI 
Protein kinase 2.7.1.37 X90990 Meyer et al. 

1996 
Prk II f-ccatctgagtcaggaatcacct 

r-acattgatcgagcactcgttgg 
3 1.6 C, RsaI 

 
a Four populations were used for mapping: 1 = BC9162, 2 = F1840 (Gebhardt et al. 1991, 1994), 3 = K31, 4 = LH (Schäfer-Pregl et al. 1998)                       
b C = CAPS, S = SCAR, R = RFLP  
c The sequence of RFLP marker CP58 originating from leaf cDNA (Gebhardt et al. 1991) codes for the 3’ end of potato UGPase. 
d The sequence of the cold regulated cDNA  CI13 isolated from cold stored tubers (van Berkel et al. 1994) codes for GAP C (Schneider  1995). 
e Map position of this gene has been reported previously (Gebhardt et al. 1994, Du Jardin et al. 1995), they have been  included in the Table  based on their role in carbohydrate metabolism or transport.                                                            
f  Sequence from Mori et al. 1991                 
g Potato EST clone (unpublished results from this laboratory) was used as probe for RFLP mapping 
h Sequence from Kossmann et al. 1992                
i Sequence from Eckes et al. 1985, and Wolter et al. 1988 
k The Sus4  gene of potato corresponds to sh1 of maize (Gebhardt et al. 1991, Werr et al. 1985)    
l Y = C + T, W = A + T, M = A + C, R = A + G, V = A + C + G, D = A + G + T  
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(continued from page 50) 

3.1.3  Segregation analysis and function map construction  

To localise the genes, segregation data were created by scoring 1 for the presence and 0 for 

the absence of DNA fragments. When multiple polymorphic fragments were detected for a 

single gene, they were scored separately and all were subjected to linkage analysis without 

considering their possible allelism. The software program MAPRF© (E. Ritter, Version 2.1) 

was employed for segregation and linkage analysis in conjunction with previously generated 

RFLP marker framework data sets of the same mapping populations K31 or LH. Depending 

on the parental genotypes, two segregation patterns were expected for any given polymorphic 

fragment. One is a 1:1 ratio when the fragment is present in only one of the parents in 

heterozygous state, the other is a 3:1 ratio (presence versus absence) when the fragment 

originated from both parents. For the map construction, each gene was initia lly assigned to 

either a male or female linkage group depending on the donor parent of the fragments. A 

composite linkage map was subsequently constructed by integrating the male and female 

linkage groups based on common markers. The average recombination values between 

markers of the two parental maps were converted into map distance centiMorgans (cM) using 

Kosambi’s mapping function (Kosambi 1944).  The integrated function map of K31 is 

adopted to be the final function map shown in Figure 3-3 (on page 57). The genes mapped in 

the LH population are shown at their approximate position based on anchor RFLP markers 

between the two maps.  

 

 

 

 

 

 

Figure 3-3  Molecular function map of potato. The twelve potato chromosomes are shown as a composite 

map based on the K31 mapping population. Genetic distances, indicated in centiMorgans on the left side of 

the linkage groups, are the means of the same marker intervals on maternal and paternal linkage groups 

(Schäfer-Pregl et al. 1998). Framework RFLP markers (Gebhardt et al. 1994) are positioned to the left side 

of the linkage groups and gene markers are positioned on the right side (for gene identification see Table 3-

1). Relative positions of genes mapped in populations other than K31 (not connected to the vertical linkage 

group with a horizontal bar, see Table 3-1 for details) were inferred from reference RFLP markers. Small 

letters in parentheses indicate that more than one locus was identified with the same probe or PCR primer 

pair. Genes mapped by RFLP and STS approaches are shown in light blue and pink respectively. Map 

segments having QTL for TSC are shown as blue bars. QTL positions ts(a)  to ts(s), as identified by interval 

mapping (Schäfer-Pregl et al. 1998) are shown on the left side of the linkage groups. 
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3.1.4  Homology of PCR products to the reference sequences  

To verify the similarity of PCR products to the genes investigated, three PCR products 

obtained with potato gene primers and all the six PCR products obtained with tomato gene 

primers and with degenerate primer pairs were sequenced. The DNA sequences were 

between 80 % and 100 % identical to the DNA sequences of corresponding genes in the 

database (Table 3-2). The variation occurred most frequently at the 3rd position of a codon 

followed by the 1st position while mutation at the 2nd positions was relatively less frequent. 

The Pgk gene is as an example for which a sequence was not available either in potato or in 

tomato. Degenerate primers were derived from consensus sequences from four different 

species (tobacco, Arabidopsis, spinach and wheat) and used to amplify the homologous 

segment in potato (see Sect. 3.1.1). A single PCR product of Pgk gene was obtained  
                                                                                                                                                (continue to page 60) 

Table 3-2   Sequence similarity between the PCR products from potato and the corresponding 
reference sequences 

  
Number of mismatches 
within a codon 

Reference cDNA Accession 

Number 

Number of 
nucleotides 
compared 

Similarity on 
nucleotide level 
(%) 1st            2nd            3rd  

STP23 of potato a D00520 660 100 0 0 0 

SUS3 of potato b U24088 710 98.5 1 0 5 

SSSIII of potato c  X94400 333 100 0 0 0 

GLO of tomato d  X92888 118 96.6 0 1 3 

ENO of tomato e X58108 334 97.0 2 1 7 

NDPK of tomato f  X75324 390 94.4 5 2 15 

PGK of tobacco g  Z48977 428 95.6 3 1 15 

RCA of tomato h  AF037361 278 98.5 1 1 2 

ANT of            (I) 

Arabidopsis i   (II) 

X65549 428  

549 

81.5  

82.7 

22  

18 

7  

2 

50  

75 

 
a  STP23 = α-Glucan phosphorylase 
b  SUS3 = Sucrose synthase 3 
c  SSSIII = soluble starch synthase III   
d  GLO = Glycolate oxidase 
e  ENO = Enolase 
f  NDPK = Nucleoside diphosphate kinase      
g  PGK = phosphoglycerate kinase 
h RAC = Rubisco activase  
i ANT = adenylate transporter (two PCR fragments I and II were sequenced) 
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Figure 3-4  Comparison of the nucleotide sequence between potato PCR product of Pgk gene and 

one of the reference cDNA sequences of the gene (tobacco).  Different nucleotides are highlighted in 

bold and the corresponding triplet codon is underlined. The nucleotide sequence of the intron is in italics. 

The alternative nucleotides at the same positions of the two alleles (SNP) are shown in parentheses. The 

three-letter code of amino acids was given for the non-synonymous changes.   
 

     1                                                   50 

PCR  TGCTATTGTG GGTGGTTCAA AGGTTTCATC CAAGATTGGA GTGATTGAAT   

cDNA TGCTATTGTG GGTGGTTCAA AGGTTTCATC CAAGATTGGA GTGATCGAAT   

     51 

PCR  CACTTCTGGA GAAATGTGAT ATATTGCTTT TGGGTGGAGG AATGATCTTT 

cDNA CACTTTTAGA GAAATGTGAT ATATTGCTTT TGGGTGGAGG AATGATCTTT 

     101 

PCR  ACCTTCTACA AGGCTCAGGG TCTTTCAGTT GGTTCCTCCT TGGTTGAGGA    

cDNA ACCTTCTACA AGGCTCAGGG TCTTTCAGTT GGTTCCTCCT TGGTTGAGGA    

     151 

PCR  AGACAAACTA GAGCTTGCAA CATCACTCCT GGAAAAGGCC AAGGCAAAAG   

cDNA AGACAAACTA GAACTCGCTA CATCACTCCT AGAGAAGGCC AAGGCGAAAG   

     201 

PCR  GAGTCAGTCT CTTGTTACCA TCTGATGTTG TGATTGCAGA TAAATTTGCT 

cDNA GAGTCAGTCT CTTGTTACCA TCTGATGTTG TGATTGCAGA TAAATTTGCT 

     251                                              

PCR  CCTGATGC(C/A)A ACAGCAAGGT TTGCATTCTA AGCTTTTCTC ATATAAACCT  

cDNA CCTGATGC A A ACAGCAAG-- ---------- ---------- ---------- 

     301 

PCR  ATCTAACCTG AGAGCTTTCA TCTCTTGAGA TTCTTTAGAC TTGGATCTTG  

     351 

PCR  CATCTGTACT GTAATTGACA CTTAGTATCA GAATTTGTTA CTTATGGATT  

     401 

PCR  GTGTTGAAAA TACAATTTTG TTTTGGTTAT TCCAGATTGT GCCGGCATCT 

cDNA ---------- ---------- ---------- -----ATTGT GCCTGCATCT 

     451                                                Ile 

PCR  GCTATCCCAG ATGGTTGGAT GGGG(C/T)TAGAC ATTGGACCTG ACTCTATCAA 

cDNA GCTATCCCAG ACGGTTGGAT GGGG T TGGAC ATTGGACCAG ACTCTGTTAA 

     501                                                Val 

PCR  GACTTTCAA(T/C) GATGCTTTGG ATACCACAAA AACAGTGATC TGGAATGGAC 

cDNA GACTTTCAA C  GATGCCTTGG ATACCACAAA AACAGTGATC TGGAATGGAC                                                                          

     541                                Thr         

PCR  CTATGGGGGT GTTTGAATTT GACAAGTTTG CTACTGGAAC GGAGG    
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(continued from page 58) 

using genomic DNA of T710 (parent line of population LH) and the detailed sequence 

comparison between the PCR products and one of the reference gene sequences from tobacco 

is shown in Figure 3-4 (on page 59).  Several features were revealed from the sequence 

comparison. First, the PCR product of the Pgk gene showed 95.6% similarity at the 

nucleotide level to the tobacco reference sequence. Most of the variations were point 

mutations and occurred at the third position of a triplet codon without changing the encoded 

amino acid. The only exceptions are at the positions 496-498 and 583-585. The mutations at 

these positions resulted in the changes of the coded amino acid from valine to isoleucine and 

from valine to threonine, respectively (Figure 3-4, on page 59).  Second, sequence 

comparison of the PCR product of Pgk gene with the cDNA of tobacco revealed at position 

268 a 167 bp intron with the characteristic feature of GT and AG motifs at each of the 

borders. Furthermore, sequencing from purified PCR products of the Pgk gene revealed 

directly three single nucleotide polymorphisms (SNPs) displaying a heterozygous nucleotides 

at positions 259, 475, and 510. Sequencing of all other PCR product revealed similar 

characteristics (see Section 7. Appendix) 

3.1.5  An STS approach detected similar map positions as revealed by RFLP 

Of the genes mapped, seven genes (Sps ,Dbe, Sut1, Pha1,Pha2, Hxk, GluB)  were mapped by 

CAPS as well as by RFLP using different mapping populations (Table 3-3). The RFLP assays 

were previously performed by the lab of C. Gebhardt using the cloned genes as probes with 

the exception of Dbe, for 

which PCR product was 

used for RFLP mapping. 

In all seven cases, both 

marker assays identified 

similar loci. The case of 

Pha1 can be particularly 

mentioned. This gene 

identified two loci on LG 

III and LG VI  by the 

RFLP assay with 

  Mapping approach and population 

Gene Linkage group CAPS RFLP 

Hxk III K31 F1840 

Sps VII LH F1840 

Dbe XI K31 LH 

Pha1 III, VI K31 F1840 

Pha2 VII LH BC9162 

Sut1 XI K31 BC9162 

GluB I K31 BC9162 

Table 3-3  CAPS markers of seven genes localised to similar map 
positions as mapped by RFLP 
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restriction enzyme TaqI using population F1840. These two loci were also uncovered by 

CAPS using population K31 in combination with TaqI. 

3.1.6  Overview of the potato function map 

The current potato function map consists of 66 genes (including previously mapped genes) 

corresponding to 82 loci distributed over all 12 chromosomes (Table 3-1, page 51-55, Figure 

3-3, page 57). 56 genes are directly or potentially involved in carbohydrate metabolism and 

transport of which 16 are involved in starch synthesis and degradation, 9 in sucrose 

metabolism, 8 in transport, 8 in the Calvin cycle and photorespiration, 8 in glycolysis and the 

oxidative pentose phosphate pathway, and 7 in the TCA cycle. The majority of the genes 

were identified as a single locus, eight gene markers identified two loci (AGPaseB, Invap, 

Pha1, Glo, Ppc, Fum1, Me, Ppa1) and four gene markers detected three loci (AGPaseS, rbcS, 

Ppe, Ldh2).  

3.2 Identification of single nucleotide polymorphisms (SNPs) in 

Stp23 

14 potato lines with different genetic backgrounds and ploidy levels were selected to detect 

SNPs in Stp23 based on sequencing of PCR products. For all these lines the PCR products of 

Stp23 amplified with the primer pair shown in table 3-1 (on page 51-55) were bi-directionally 

sequenced. Apart from direct sequencing of the PCR products from all these lines, three lines 

P3, P38 and T710 were additionally cloned into the pGEM-T vector prior to sequencing. 

One clone of each line was sequenced except P3 for which three clones were sequenced 

revealing two different alleles. The sequence comparison of all lines is shown in Figure 3-5 

(on page 62-64).  Sequence data obtained from PCR products and cloned fragments had 

readable sequences of up to 500-800 bp and 900-1100 bp, respectively, from each end.  

Analysis of sequences obtained from the cloned fragments revealed overlaps between the 

sequences of both directions, thus allowing the determination of the complete sequence of the 

PCR product. The PCR fragment had 2161 bases in length containing three introns with 891, 

206 and 392 base pairs, respectively. For SNP identification, the low quality sequence of 360 

bases in the overlapping region was excluded, only the high quality sequence region of 1801 

bases was examined and compared to identify candidate SNPs. Of the nucleotide sequence 

examined, 653 bases are exonic while 1148 bases were intronic.                  (continue to page 64) 
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         *A  H  L  F  N  H  Y  S  S  N  S  R  F  I  H  F  T  S  R  N    
      01 ---------+---------+---------+---------+---------+---------+ 60  
CS       AGCACACTTGTTCAACCATTACAGCTCCAATTCCAGATTCATCCATTTCACTTCTAGAAA 
T710-C   AGCACACTTGTTCTACTATTACAGCTCCAATTCCAGATTCATCCATTTCACTTCTAGAAA 
                      Y  Y 
 
          T  S  S  K  L  F  L  T  K  T  S  H  F  R R  P  K   R  C  F    
      61 ---------+---------+---------+---------+---------+---------+ 120  
CS       CACAAGCTCCAAATTGTTCCTTACCAAAACCTCCCATTTTCGGAGACCCAAACGCTGTTT 
S3       CACAAGCTCCAAATTGTTCCTTACCAAAACCTCCCATNNTCGGAGACCCAAACGCTGTTT   
                                        (A/T/C)(T/C) 
                                        I/T/F/S/L/P 
 
           H  V  N  N  T  L  S  E  K  I  H  H  P  I  T  E  Q     
      121 ---------+---------+---------+---------+---------+---------+ 180  
CS        CCATGTCAACAATACCTTGAGTGAGAAAATTCACCATCCCATTACTGAACAAGGTCTCAC 
T710      CCATGTCAACAATACCTNGAGTGAGAAAATTCACCATCCCATTACTGAACAAGGTCTCAC 
                         (T/G) 
                           W 
      181 ---------+---------+---------+---------+---------+---------+ 240  
CS        TCTTATTTTCATGTATTAATTTACTATTCTGCAATTTGTTTCAATATCAAAATTTGGTAT 
S3        TCTTATTTTCATGTATTAATTTACTATTCTGCAATTTGTTTCAATATCAAAATTTGGTNT 
ImpL      TCTTATTTTCATGTATTAATTTACTATTCTGCAATTTGTTTCAATATCAAAATTTGGTNT 
T710      TCTTATTTTCATGTATTAATTTACTATTCTGCAATTNGTTTCAATATCAAAATTTGGTAT 
                                            (T/G)                 (A/G) 
 
      241 ---------+---------+---------+---------+---------+---------+ 300  
CS        CGAATCCATATCATTAAATATACTATTTCAATATTCAAAATGTGCTCTCCAAGTAGGGTA 
T710-C    CGAATCCATATCATTAAATATACTATTTCAATATTCAAAATGTGCACTCCAAGTAGGGTA 
 
      301 ---------+---------+---------+---------+---------+---------+ 360  
CS        GATGAACCAACATTTTATACATAAACTTTTTTCAATACGTGGACTCGTGTGTTGAAACCA 
S2        GATGAACCAACATTTTATACATAAACTTTTTTCAATACNTGGACTCGTGTGTTGAAACCA 
S3        GATGAACCAACATTTTATACATAAACTTTTTTCAATACNTGGACTCGTGTGTTGAAACCA 
Taig      GATGAACCAACATTTTATACATAAACTTTTTTCAATACNTGGACTCGTGTGTTGAAACCA 
45C3      GATGAACCAACATTTTATACATAAACTTTTTTCAATACNTGGACTCGTGTGTTGAAACCA 
T710      GATGAACCAACANTTTATACATAAACTTTTTTCAATACGTGGACTCGTGTGTTGAAACCA 
                    (T/C)                     (A/G) 
T710-C    GATGAACCAACACTTTATACATAAACTTTTTTCAATACATGGACTCGTGTGTTGAAACCA 
 
      361 ---------+---------+---------+---------+---------+---------+ 420  
CS        TTAGATCCATCTGCCTCTACATTTCGTGGGTTAGAAAAAAAAAGTTTGTTTGGACCTCCC 
T710-C    TTAGATCCATCTGCCTCTACATTTCGTGGGTTAGAAAAAAAAAAAGTTTGTTTGGACCTCCC 
P3-C1     TTAGATCCATCTGCCTCTACATTTCGTGGGTTAGAAGAAAAAAGTTTGTTTGGACCTCCC 
 
      421 ---------+---------+---------+---------+---------+---------+ 480  
CS        AATCTTGTTATTGATAAAATTTTATGTTTGTTTAAAGCACTCTTGCAGTATTCGGTGACT 
T710-C    AATCTTGTTATTGATCATATTTTATGTTTGTTTAAAGCACTCTTCCAGTATTCGGTGACT 
 
      481 ---------+---------+---------+---------+---------+---------+ 540  
CS-C     TCTTATTCATTTTGTACTCCCAATTTAAGTGTCTTAGTTTGACAGTTTATGATATTAATG  
 
      541 ---------+---------+---------+---------+---------+---------+ 600  
CS-C      GAGAATTTTGAATCTTGT........................GTTTTTGAAAATTTCTGG 
T710-C    GAGAATTTTGAATATTGTGATGTTAAATTAAACAAGTGTGTAGTTTTTGAAAATTTCTGG 
 
      601 ---------+---------+---------+---------+---------+---------+ 660  
CS-C      TCTTAGACTTGCCAGGTAGGATATTGAAATTGGAAGACTTACTAAATAGTACTCCCTCTG 
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      661 ---------+---------+---------+---------+---------+---------+ 720  
CS-C      TCTCAATTTATGTGACTTACTTTTCTTTTTAGTCAATCCAAAAAAGAATGACACATTTCT  
T710-C    TCCCTATTTATGTGACTTACTTTTCTTTTTAGTCAGTCCAAAAAAGAATAACACATTTCT 
 
      661 ---------+---------+---------+---------+---------+---------+ 720  
CS-C      ATATTAAATAACAATTTAACTATAAAATGTTTATTTTACCCTTAATGAAATAGTTTACAG 
T710-C    ATATTAAATAACAATTTAACTATAAAATGTCTATTTTACCCTTAATGAAATAATTTACAG 
 
      721 ---------+---------+---------+---------+---------+---------+ 780  
CS-C      CCACACAAATTTCTATCATTCGTTTTGGACCACATGTTTAAAAGTCTTCCTTACTTTCTT 
 
      781 ---------+---------+---------+---------+---------+---------+ 840  
T710-C    AAAACTCCGTGTCGAGTCAAACTACCTCACATGAAATGAGGCGGAGGGAGTATAAAAAAG 
 
      841 ---------+---------+---------+---------+---------+---------+ 900  
T710-C    AGACCCGACACTTCAAAAANGTATTAAAAAGATGTATGGGNGGGAGTNTNTTAATAATGG 
 
     901 ---------+---------+---------+---------+---------+---------+ 960 
         TGAAGCATCAGAAACCTTGATGTATGGATCTTAGGAATTACTTACCATGATTTATGTTTA 
 
     961 ---------+---------+---------+---------+---------+---------+ 1020 
T710-C   TTCCCATTGAACTTGTTGTACACGATTGTATTTCCCATTAGTTCCTTCCAATTTATTACT 
 
                                                   G  G  E  S  D  L  S   
     1021 ---------+---------+---------+---------+---------+---------+ 1080 
T710-C    TACATGATTTATGTTTATTCCCATTGCTTGACATATATATAGGTGGTGAGAGCGACCTGA 
 
            S  F  A  P  D  A  A  S  I  T  S  S  I  K  Y  H  A  E  F  T   
     1081 ---------+---------+---------+---------+---------+---------+ 1140 
CS-C      GTTCTTTTGCTCCTGATGCCGCATCTATTACCTCAAGTATCAAATACCATGCAGAATTCA 
T710-C    GTTCTTTTGCTCCTGATGCCGCATCTATTACCTCAAGTATCAAATACCATACAGAATTCA 
                                                            T 
            P  V  F  S  P  E  R  F  E  L  P  K  A  F  F  A  T  A  Q  S   
     1141 ---------+---------+---------+---------+---------+---------+ 1200 
CS-C      CACCTGTATTCTCTCCTGAAAGGTTTGAGCTCCCTAAGGCATTCTTTGCAACAGCTCAAA 
 
            V  R  D  S  L  L  I  N  W  N  A  T  Y  D  I  Y  E  K  L  N  
     1201 ---------+---------+---------+---------+---------+---------+ 1260 
CS        GTGTTCGTGATTCGCTCCTTATTAATTGGAATGCTACGTATGATATTTATGAAAAGCTGA 
P3-C1     GTGTTCGTGATTCGCTCCTTATTAATTGGCATGCTACGTATGATATTTATGAAAAGCTGA 
                                       H 
            M  K  Q  A  Y  Y  L  S  M  E  F  L  Q   
     1261 ---------+---------+---------+---------+---------+---------+ 1320 
CS        ACATGAAGCAAGCGTACTATCTATCCATGGAATTTCTGCAGGTATCTCATTATTCTTACT 
T710-C    ACATGAAGCAAGCGTACTATCTATCCATGGAATTTCTGCAGGTATCTCATTATTCTCACT 
 
     1321 ---------+---------+---------+---------+---------+---------+ 1380 
CS        TTCTCTTTTGCTCTTTTGTATGACTGTGCAGAGTGACCTTAAATTATATCTAGTAAGAAA 
T710-C    TTCTCTTTTGCTCTTTTGTATGACTGTGCAGAGTGACCTTAAATTATATCTAATAAGAAA 
 
     1381 ---------+---------+---------+---------+---------+---------+ 1440 
CS        TTAATCCGTTTGATATTTGCTGACAAATTAGACTGTATATTTACTGTTACACATGAGAGT 
T710-C    TTAATCCGTTTGATATTTGCTGACAAATTATACTGTATATTTACTGTTACACATGAGAGT 
     1441 ---------+---------+---------+---------+---------+---------+ 1500 
CS        TTCTGAAATTTATGCACAAACAACTCTTTGCGAGCTGAGTTTAATTTATGCCCTATCTAC 
 
                 G  R  A  L  L  N  A  I  G  N  L  E  L  T  G  A  F  A  
     1501 ---------+---------+---------+---------+---------+---------+ 1560 
CS                   TGTTTAGGGTAGAGCATTGTTAAATGCAATTGGTAATCTGGAGCTTACTGGTGCATTTGC 
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Figure 3-5  The alignment of partial sequences of Stp23 showing the features of single nucleotide 
polymorphisms between different alleles of different potato lines . Potential SNPs were highlighted in 
bold (red) and underlined. For simplicity, only the sequences differing from the majority were aligned with 
the majority consensus sequence (CS). Suffix ‘-C’ indicates that sequence data was based on a cloned PCR 
product, otherwise, sequence data directly from a PCR product was used. ‘*’ Single-letter code for amino 
acids and substitutions of amino acids are shown above and below the corresponding exonic nucleotide 
sequence. The dotted line indicates a gap in the sequence relative to the compared sequence. 

 
(continued from page 61) 

Sequence data obtained from PCR products was first examined for different bases at single 

positions, then sequences were aligned and each vertical slice of the resulting assembly was 

examined for disagreement. Any such slice was considered a candidate SNP. Sequencing 

directly from PCR products allowed the identification of multiple or alternative bases at the 

same positions within individuals. 8 bi-allelic SNPs were detected in diploid and tetraploid 

potato (Figure 3-5, Figure 3-6, on page 65). In one instance, a tri-allelic SNP was found in 

tetraploid potato line S3 (Figure 3-6, on page 65). Sequence comparison between different 

lines revealed single nucleotide differences between the alleles which compose the potential 

SNP at that position. In three instances, the alternative base observed in different lines was 

           E  A  L  K  N  L  G  H  N  L  E  N  V  A  S  Q   
     1621 ---------+---------+---------+---------+---------+---------+ 1680 
CS        GGAAGCTTTGAAAAACCTTGGCCATAATCTAGAAAATGTGGCTTCTCAGGTCAGTGTGAC 
 
     1741 ---------+---------+---------+---------+---------+---------+ 1800 
CS        TTTTATTTCACGCATCAGAAAAAACCTAGTTTTCCAAGTTCTTCTGTGTTTTACTCAACA 
 
     1801 ---------+---------+---------+---------+---------+---------+ 1860 
CS        ACAGTTGGACTATGTGTATTCATTTGTGACTTTGTGCATCGACTGTTATAATATTCAGAA 
Prio      ACAGTTGGACTATGTGTATTCATTTGTGACTTTGTGCATCGACTGTTATAANATTCAGAA     
Taig      ACAGTTGGACTATGTGTATTCATTTGTGACTTTGTGCATCGACTGTTATAANATTCAGAA 
                                                           (T/C) 
T710-C    ACAGTTGGACTATGTGTATTCATTTGTGACTTTGTGCATCGACTGTTATAATATACAGAA 
 
     1921 ---------+---------+---------+---------+---------+---------+ 1980 
CS        GCCATACATGCCATACTTGTTGTGTCTTTATGTTTTTATTTGGAGTTGACTACTTGTTAA    
T710-C    GCCATACATGCCATACTTGTTGTGTCTTTATGTTTTTATTTGGAGTTGACTACTTGTTAG 
P3-C1     GCCATACGTGCCATACTTGTTGTGTCTTTATGTTTTTATTTGGAGTTGACTACTTGTTAA 
 
                               E  P  D  A  A  L  G  N  G  G  L  G  R    
     2041 ---------+---------+---------+---------+---------+---------+ 2100 
CS        TTTTTGAATAATTATTGACAGGAACCAGATGCTGCTCTTGGAAATGGGGGTTTGGGACGG 
S3        TTTTTGAATAATTATTGACAGGANCCAGATGCTGCTCTTGGAAATGGGGGTTTGGGACGG   
Taig      TTTTTGAATAATTATTGACAGGANCCAGATGCTGCTCTTGGAAATGGGGGTTTGGGACGG 
                               (A/G) 
T710-C    TTTTTGAATAATTATTGACAGGAGCCAGATGCTGCTCTTGGAAATGGGGGTTTGGGACGG 
 
          L  A  S  C  F  L  D  S  L  A  T  L  N  Y  P  A  W  G  Y  G   
     2101 ---------+---------+---------+---------+---------+---------+ 2161 
CS        CTTGCTTCCTGTTTTCTGGACTCTTTGGCAACACTAAACTACCCAGCATGGGGCTATGGA 
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also observed within individual lines at the same position (position 314, 340 and 2065, Figure 

3-5, on page 62-64). In all, 31 positions were detected which could potentially be SNPs for 

Stp23 in the region examined, representing 1.7 % (31/1801) on average. 8 were in the coding 

region (cSNPs) whereas 23 were in introns with nucleotide diversity of 1.2% (8/653) and  2% 

(23/1148), respectively. Of the 8 potential cSNPs, 6 resulted in non-synonymous changes. 

One allele of T710, a wild species (S. chacoense), showed remarkably high variability as 

compared to the others with 20 disagreements with consensus being observed in the allele. 

When considering transitions versus transversions of SNPs, the frequencies of the two types  

A 

 

 
B 

 
 

Figure 3-6  Partial electropherogram of nucleotide sequence data from a PCR product of gene Stp23 

showing  the different types of SNP.   (A) bi-allelic SNP (indicated  by the arrows):  Homozygote (potato 

line Hands, upper panel) T vs. heterozygote (potato line Taiga, lower panel ) C/T  at position 89 and   A vs. 

G/A at position 181;  (B) tri-allelic SNP (marked yellow) in tetraploid potato line S3 at position 93. 
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of SNP were different. The majority of SNPs (19) involved a transition (C/T or G/A) while 

the remaining SNPs were transversions (C/A or G/T, C/G or G/C, T/A or A/T).  

3.3  Molecular tagging of QTL in tetraploid potato by fAFLP markers 

3.3.1 Genotyping of the Z3 family by an automated fAFLP system 

3.3.1.1  Screening primer combinations for fAFLP  

Efficient genotyping by AFLP depends on the restriction enzymes and primer combinations 

used. On one hand, restriction enzymes that generate fragments evenly distributed over a size 

of 50-500 bp facilitate data collection, thus it is highly desirable for AFLP marker generation. 

On the other hand, the degree of polymorphism between individuals may be variable with 

different primer combinations. Generation of a high degree of polymorphism between 

individuals could maximise the potential use of primer pairs in genotyping.  Therefore, the 

first step in the study has been a comparison of the efficiency of different primer sets and 

screening of primer combinations. To do this, 12 individuals were randomly selected from 

population Z3 to be tested with different primer sets and primer combinations for 

polymorphisms. The first round of screening was carried out to determine the primer sets 

from four candidate pairs of restriction enzymes including EcoRI/MseI, HindIII/MseI, 

EcoRI/TaqI and HindIII/TaqI.  

Of the four primer sets tested, HindIII/MseI produced less informative fragments than either 

HindIII/TaqI or EcoRI/TaqI, while the latter two generated larger (data not shown) and more 

fragments than EcoRI/MseI (Table 3-4, 3-5, on page 67). However, the number of 

polymorphic fragments did not increase. The EcoRI/MseI primer set, which generated more 

informative and more evenly distributed AFLP fragments within the size range of 50-500 bp, 

was selected and more primer combinations of this primer set were tested for the efficiency 

of generating informative fragments (Table 3-5, on page 67). A total of 29 primer 

combinations were further tested for primer set EcoRI/MseI (Table 3-5). 15 primer pairs 

generated more than 25 informative fragments. Based on the number of informative 

fragments generated and the selective nucleotide diversity of the primers, 7 of them were 

selected for genotyping all the individuals of breeding population Z3. The 7 primer 

combinations were E-aca/M-cat, E-act/M-cag, E-act/M-cta, E-aag/M-ctg, E-acg/M-cac, E-
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agg/M-caa and E-acc/M-cta, which were coded as B1, B2, B3, G1, G2, G3 and Y, 

respectively, for simplicity.   

 
Table 3-4  Number of  polymorphic versus total AFLP fragments generated by primer sets EcoRI/TaqI  
and Hind III/TaqI 
 

 T-gta T-gat T-atg T-agt M-acg M-aat 

H-agt   3/95  3/87 19/149 10/161 

H-aga    22/129 18/208 5/98 15/177 

H-act  39/209  20/216 20/205 15/130 12/197 

H-ata  22/121 15/103 6/152 8/139 12/96 5/90 

E-act 12/166 7/156     

E-aag 16/124 18/165     

 
 

Table 3-5 Number of  polymorphic versus total AFLP fragments generated by EcoRI/MseI primer sets* 

 M-ctg M-cat M-cag M-cac M-cta M-ctc M-caa M-ctt 

E-aag  31/115  9/96 24/115 5/96 15/101   

E-acg    29/126 27/92 19/90 14/90  8/94 

E-agg    28/101  8/106 25/106 38/129  

E-aca  6/57 26/151  25/103     

E-act   19/154 29/109 27128 27/117    

E-aac    10/110     6/99 

E-agc      18/135 15/104   

E-acc    29/105  40/108 23/117 40/149  

 
*Primer combinations used for genotyping the Z3 population are highlighted in bold  
 

3.3.1.2  fAFLP genotyping and data collection  

Of the seven primer combinations selected for genotyping, selective primers E-aca and E-act 

were fluorescently labelled with FAM (blue), E-agg, E-acg and E-aag were labelled with JOE 

(green) and E-acc with TAMRA (yellow). Selectively amplified products labelled with 

different fluorescent dyes were alternatively loaded and resolved by electrophoresis on a 377 

DNA sequencer. An example of a gel image on the 377 DNA sequencer is shown in Figure 3-

7 (on page 68). Figure 3-8A (on page 69) shows fragment patterns             (continue to page 69) 
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Figure 3-7 Electropherogram and gel view of fAFLP samples run on the ABI PRISM  377 DNA 

sequencer. Panel B shows gel image of fAFLP fragments generated with fluorescence-labelled primer 

pairs E-act/M-cag (blue) and E-aag/M-ctg (green). Red fragments are internal size standards with size in 

bp marked on the sides. Panel A and C show GeneScan®-generated electropherograms of two samples 

from the gel image.   

 

A                                                          B                                                      C 
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Figure 3-8  GeneScan-generated fAFLP electropherogram of four sampl es displayed in different 

colours. Primer pair used: E-act/M-cag,  A: overview of the fragment pattern over the range 50-500 bp; 

B: the enlarged details of fragments (1-9) around 100 bp showing homomorphic fragments (2, 3, 5, 6, 7, 

8) and polymorphic fragments (1, 4, 9). 
 
(continued from page 67) 

of four individuals distinguished by four colours in one panel and the Figure 3-8B shows 

partially enlarged details of the fragments displaying polymorphic and homomorphic 

fragment peaks and peak height variations. All the information in terms of both size and 

intensity of each fragment was collected and processed using the computer GeneScan 

software. Prior to automated genotyping using the software program Genotyper, the overall 

intensity of the fragments from each sample was proportionately adjusted by referring to the 

intensity of a pre-set reference sample. The variation of fragment intensity caused by 

environmental factors was therefore minimised. The final data files containing information of 

fragment size in base pairs and fragment intensity in peak height were created using computer 

software Genotyper and exported into an Excel file format which was subsequently used 

for QTL analysis. 

Characteristics of the fAFLP data 

The number of fragments within the size  range of 50-500 bp generated with the 7 primer 

combinations is shown in Table 3-6 (on page 70). Between 90-150 fragments were 

50bp 100bp 200bp 300bp 400bp 500 

A 

B 

   1    2           3      4           5       6        7                              8                                                                9 
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individually amplified with each of the 7 AFLP primer combinations. Of the fragments 

generated, 185 and 152 were derived from S1 and S3, respectively, while 469 descended 

from both parents (Table 3-6). In total, 806 different-sized fragments were scored with 

respect to their peak height which was detected and quantified automatically by GeneScan. 

More than 200 fragments were estimated  

to be polymorphic based on the pre-

screen data (Table 3-5, on page 67). 

For a given locus in the tetraploid  

population, the allele dosage ranged 

from nulliplex to quadruplex which may 

contribute to the variation of the 

phenotypic traits, while the fragment 

intensity quantified by the GeneScan 

software as fragment peak height 

reflected, to some extent, allele dosage. 

Thus, quantitatively (scored as peak 

height) and qualitatively (scored as 

presence and absence) scored fragments 

were both subjected to QTL analysis 

using appropriate statistical tools.   

3.3.2  Analysis of phenotypic traits and phenotypic data* 

150-200 individuals of population Z3 were evaluated for five phenotypic traits including 

tuber starch content (TSC), reducing sugar content (RSC), foliage earliness (FE) development 

(DEV) and tuber yield (TY). The phenotypic data for 1997, which was created from scoring a 

single plant individual (no replication), was not subjected to analysis separately but was 

merged with the data of 1998 for which the scores resulted from 5 different plants of each 

clone (Strahwald, 1999, personal communication). The combined data were used for further 

analysis. Heritability and correlation coefficients of the traits were calculated and are shown 

in Table 3-7 based on 1998 data.                                                                 (continue to page 72) 

 S1 S3  Common Total 

B1 36 35 80 151 

B2 24 31 53 108 

B3 19 24 74 117 

G1 35 19 61 115 

G2 27 7 58 92 

G3 27 22 80 129 

Y 17 14 63 94 

Total 185 152 469 806 

*Phenotypic data were evaluated in field trials at two locations (Gransebieth and Windeby) over three years 
(1997, 1998, and 1999) by the potato breeding company SaKa-Ragis (Dr. Josef  Strahwald). They are 
summarized here because the phenotypic data was an essential part of the QTL analysis. 
 

B1=E-aca/M-cat,   B2=E-act/M-cag ,  B3=E-act/M-cta  
G1=E-aag/M-ctg ,  G2=E-acg/M-cac ,  G3=E-agg/M-caa  
Y=E-acc/M-cta 

Table 3-6  Number of fAFLP markers generated by 
seven primer combinations in population Z3 and 
their origins 
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       Table 3-7  Heritability and correlation coefficient of the phenotypic traits evaluated*  

   r  

 H2 DEV FE TSC 

FE 0.65 0.27   

TSC 0.59 0.17 0.49  

RSC 0.62  -0.26 -0.62 

TY 0.14  -0.18  

DEV 0.32    

 
 
 

Figure 3-9  Frequency distribution of     

phenotypic scores for  

     A: reducing sugar content  

         (% fresh weight)  

     B: foliage earliness (1= very early,  

         9= very late);  

     C: tuber starch content 

          (% fresh weight) 

Based on the data collected from 

trial 1998 at two locations, 

Gransebieth (blank column) and  

Windeby (black column) using 

population Z3.  

200 individuals were evaluated for 

foliage earliness and tuber starch 

content, whereas 150 individuals were 

assessed for reducing sugar content.  
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FE= foliage earliness   
TSC= tuber starch content   
RSC= reducing sugar content
TY= tuber yield   
DEV= development   
H2= broad-sense heritability   
r= correlation coefficient 
       significance level: 0.01 
Correlation coefficients, 
which were not significant at 
this level, are not shown in 
the table. 
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 (continued from page 70) 

Of the five traits investigated, significant correlations were revealed among the traits (Table 

3-7, on page 71). It should be noted that TSC, RSC and FE showed significant correlations 

and relatively high correlation coefficients between each other. TSC had a significant 

negative correlation with RSC (r=-0.62, P<0.01) and positive correlation with FE (r=0.49, 

P<0.01, the higher the TSC, the later the foliage matures). There are also significant 

correlations between RSC and FE (r=-0.26, P<0.01, the higher the reducing sugar content, 

the earlier the foliage matures).  

Heritability of different traits was quite variable in the population studied. TSC, RSC and FE 

showed high heritability, while tuber yield and development had rather lower heritability 

(Table 3-7, on page 71). These observations indicated that the phenotypic variation observed 

for the former three traits resulted mainly from genetic variation, whereas, the latter two were 

largely caused by environmental factors. Therefore, further studies were only concentrated on 

the three high heritability traits TSC, RSC and FE.  

Based on the method used for evaluating the three traits (see Sect 2.14), it is obvious that the 

phenotypic data for FE and RSC were categorical since they were based on or converted from 

a 1-9 reference standard scale. Thus both data sets are discontinuous. The data for TSC is 

quantitative, continuous and normally distributed (Figure 3-9C, on page 71) which was 

indicated by a Kolmogorov-Smirnov test (p > 0.2). TSC ranged from 13.6 % to 25.8 % in 

Windeby and 7.1 % to 22.4 % in Gransebieth with mean values of 20.21% and 16.34 %, and 

standard deviation of 2.36 and 2.29, respectively. The phenotypic distribution of the three 

traits are graphically exhibited in histograms of Figure 3-9 (on page 71). The distributions 

were consistent with the assumed polygenic inheritance of the traits considered. According to 

the nature of the phenotypic data, parametric and non-parametric methods of statistical 

analysis were applied to detect marker-trait associations for TSC, RSC and FE. 

3.3.3  Identification of QTL associated with fAFLP fragments  

The QTL analysis was performed in collaboration with Dr. Schäfer-Pregl (MPIZ). The data 

collected from the two different locations were analysed to determine the significance and the 

amount of phenotypic variance explained by fAFLP markers. Statistical analysis as described 

in  Sect.  2.15  was  applied  to  identify  the  associations  of  phenotypic  traits  with   fAFLP 

                                                                                                                      (continue to page 74)  
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Table 3-8   fAFLP markers showing associations with QTL for TSC as detected by the t-test and 
regression analysis  

                                   t-test               Regression analysis 

     Gransebieth Windeby Gransebieth Windeby 

fAFLP  
marker 

LGa No -/+b χ2- 
test c 

Ori.d Pe R2f 

(%) 
Pe R2f 

(%) 
P R2f 

(%) 
P R2f 

(%) 
B3-409  138/51  S1 0.00017+ 6.0 0.0018+ 5.4 0.0075 3.9 0.0023 5.0 

B1-213  158/27  S3 0.014- 4.4 0.0053- 5.6 0.011 3.4 0.032 2.5 

B1-214  36/109 1:3 C 0.015- 3.6 0.0051- 4.7 0.0014 5.3 0.0047 4.2 

B2-429  138/42  S3 0.025- 3.1 0.04- 2.8 0.02 3.0 0.017 3.2 

G1-169  136/32  S3 0.0076- 3.2 0.014- 3.0 0.018 3.3 0.035 2.6 

G1-435  116/51  S1 0.022+ 3.1 0.0046+ 4.5   0.018 3.3 

B2-306  15/146 1:11 C 0.041- 3.5 0.026- 4.2   0.022 3.2 

B1-174 V 21/174 1:11 C 0.045+ 2.7 0.033+ 1.5     

B3-134  143/40  S1 0.022+ 1.6 0.017+ 2.8     

B3-397  137/45  S1 0.0023+ 5.1 0.041+ 2.2     

B1-124  36/158  C 0.033- 2.1 0.026- 2.7     

G3-393 I 133/46  S1 0.010- 4.7 0.024- 3.2     

B1-244  137/43  S3 0.018- 3.6   0.009 3.8   

B2-428  57/122  C 0.011+ 4.2   0.014 3.4   

B3-260 II 135/52  S1 0.011+ 3.1   0.01 3.6   

G1-325  118/24  C 0.016+ 3.3   0.024 2.7   

G2-187  49/137 1:3 C 0.0037- 4.2   0.0066 4.1   

G3-68  90/95  C 0.015- 3.2   0.024 2.7   

G3-101  75/110  C 0.0053- 4.1   0.027 2.6   

B1-316 III 67/119  C   0.0029- 4.7   0.0078 3.8 

B2-168 V 104/77  S1   0.048+ 2.2   0.043 2.3 

B2-352  116/65  S1   0.01- 3.8   0.033 2.5 

B3-121 IX 62/130  C   0.0035+ 3.8 0.034 2.4 0.0003 6.9 

G1-200  140/49  S1   0.032- 2.3   0.0094 3.5 

G3-163  49/132 1:3 C   0.028- 2.5   0.032 2.5 

G3-342 III 61/116  S3   0.043+ 2.6   0.01 3.7 

G1-156  20/171 1:11 C   0.045- 2.1 0.0066 3.8   

Y-167  57/97  S1 0.022- 3.3 0.043- 2.5     

B1-166 I 100/94 1:1 S3 0.0069- 3.7       

B2-76 V 90/95  C   0.0011- 5.7     

G3-490  49/122 1:3 C     0.002 5.2 0.022 2.9 

B1-107  191  C     0.013 3.2 0.018 2.9 

Gl-184  185  C     0.013 3.3 0.0022 5.0 

G1-109  190  C     0.0006 6.0   

G1-324  82/93 1:1 S1     0.0049 4.2   

G3-437  48/111  C     0.006 4.5   

B2-173 XII 186  C       0.0021 5.0 

B3-120  183  C       0.0057 4.1 

G1-330  49/140 1:3 C       0.0017 5.1 

G3-429  107/76  C       0.0058 4.1 

 
a LG= linkage group, inferred from map positions of common fAFLP markers in the reference diploid mapping population K31. 
b No. -/+, number of individuals analyzed showing absence/presence at the marker locus. 
c 1:N, segregation type confirmed by goodness-of-fit test. 
d Ori., origin of the marker with ‘C’ representing common marker from both parents. 
e P values followed by plus or minus indicate the direction of the tagged QTL effects with ‘+’ being increasing and ‘-’ being decreasing 
TSC. 
f R2= R square value in percent indicating the proportion of variance explained by the marker genotype. 
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(continued from page 72) 

markers. Briefly, parametric tests, a t-test and regression analysis, were applied to data of 

TSC, while the non-parametric Mann-Whitney U-test was used for association analysis 

between markers and traits for data of RSC and FE. The existence of a fAFLP-tagged QTL 

was accepted when the marker was consistently detected to be associated with one trait in 

both locations, or with two or more different traits at a threshold of P<0.05. Fragments for 

which association was detected in only one location with only one trait was considered of 

potential interest only when P<0.01. The fAFLP fragments, which meet the above criteria, 

are presented in the Sect. 3.3.3.1.  

3.3.3.1  Association of fAFLP fragments with tuber starch content (TSC) 

Association analysis using the t-test and linear regression resulted in a total of 40 fAFLP 

markers putatively associated with QTL for TSC with the threshold chosen. A nomenclature 

for fAFLP was adopted by starting with a primer combination code followed by the fragment 

size detected. The fAFLP markers, magnitude and direction of QTL effects are summarized 

in the order of their reproducibility in Table 3-8 (on page 73). Among the 40 fAFLP markers 

as identified by t-test and regression analysis, 5 markers (B3-409, B1-213, B1-214, B2-429, 

G1-169) were consistently detected at two locations and with two different tests; 3 markers 

(G3-490, B1-107, and G1-148) were repeatedly detected but only with regression analysis; 7 

markers (G1-435, B2-306, B1-174, B3-134, B3-397, B1-124, and G3-393) were reproducible 

at two locations using the t-test but not detected or detected only at one location using 

regression analysis. 15 markers were reproducibly detected using both the t-test and 

regression analysis in one of the locations. Others were detected only in a single test. Of the 

12 markers consistently detected at both locations using the t-test, markers B3-409, G1-435, 

B1-174, B3-134 and B3-397, which all originated from parent S1, showed a positive effect 

on TSC whereas other markers descending from both parents or from S3 only, showed 

negative effects on TSC. This observation suggested that the S1 allele at these marker loci 

was associated with an increase in TSC. These markers, by ANOVA, explained 1.5-6 % of 

the phenotypic variation individually. The most significant effect on TSC was associated with 

the marker B3-409. The allelic variation at this marker locus accounted for up to 6 % of the 

phenotypic variation. Given the broad-sense heritability of 59 % for TSC, this marker 

explained 10 % of the total genetic variance. 
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3.3.3.2  Association of fAFLP fragments with reducing sugar content (RSC) and foliage 

earliness (FE) 

Due to the discontinuous nature of the phenotypic data for the both traits, the non-parametric 

Mann-Whitney U-test was applied to the analysis for the marker-trait association. The results 

were shown in Table 3-9. 

fAFLP markers associated with RSC 

Over two locations, a total of 25 markers were associated with RSC (Table 3-9). 11 of these 

markers were consistent across two locations at the 5% or 1% significance level, the others 

were detected at only one location at the 1% level. The majority of the markers (10) tagged 

alleles of the parent S3 which contributed to increased RSC.                      (continue to page 76) 

Table 3-9  fAFLP markers showing associations with QTL for RSC and FE as detected by the Mann-
Whitney U-test 
 
             Reducing    sugar    content                       Foliage     earliness 

     Gransebieth Windeby Gransebieth Windeby 
fAFLP  
marker 

LGa No -/+b χ2- 
test c 

Ori.d Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 

B3-117  18/117  C 0.009- 3.9 0.0009- 12.6     
B3-413  40/96 1:3 C 0.019- 2.4 0.002- 5.7     
B3-69  75/70 1:1 S1 0.013- 3.7 0.027- 2.8     
B2-123  27/113 1:3 C 0.044+ 1.8 0.017+ 2.0     
B3-360  42/103 1:3 C 0.026+ 3.4 0.021+ 3.6     
G2-386  73/44  S3 0.003+ 7.2 0.002+ 5.2     
G3-102  9/128 1:11 C 0.034+ 2.7 0.016+ 3.3     
Y-452  40/91 1:3 C 0.037+ 3.8 0.045+ 3.1     
B1-330  94/47  S3 0.009+ 3.6 0.006+ 6.1 0.041- 1.6   
B3-215 V 84/60  S3 0.0004+ 6.6 0.0001+ 11.3 0.043+ 1.9   
G3-79  82/58  S3 0.005+ 7.8 0.029+ 2.9 0.005+ 4.6 0.001+ 5.2 
B1-158 II 42/149 1:3 C     0.043+ 2.8 0.027+ 2.3 
B1-225  147/33  S3     0.038+ 2.4 0.014+ 4.1 
B2-67  105/81 1:1 S1     0.039+ 3.2 0.042+ 2.1 
B2-153  94/88 1:1 S3     0.046+ 1.6 0.009+ 4.0 
B2-185  84/99 1:1 S3     0.0008+ 5.3 0.019+ 2.7 
B2-314  128/52  S1     0.008+ 3.2 0.003+ 4.6 
B3-53  5/188 1:35 C     0.019+ 2.1 0.019+ 3.0 
B3-100 XII 10/182 1:11 C     0.011+ 2.8 0.001+ 6.4 
B3-159  34/151 1:3 C     0.035+ 1.5 0.026+ 3.3 
B3-305  85/99 1:1 S3     0.036+ 2.3 0.019+ 3.3 
B3-327  100/90 1:1 S3     0.021+ 3.6 0.035+ 2.3 
B3-352  138/51  S3     0.027+ 2.7 0.051+ 2.2 
B3-425  132/44  S1     0.006+ 3.9 0.064+ 2.3 
G3-129  29/156  C     0.002+ 5.0 0.004+ 4.5 
G3-202 XII 115/65  S3     0.014+ 2.2 0.026+ 2.5 
Y-393  43/128  S1     0.024+ 2.0 0.030+ 3.0 
G3-54 IX 57/81  S1   0.034- 4.8 0.027- 2.8 0.010- 4.7 
B1-241  22/169 1:5 S3     0.003- 5.7 0.003- 5.0 
B2-58  58/124  C     0.004- 4.2 0.0005- 6.3 
B2-76 V 90/95  C     0.0004- 5.9 0.0005- 6.9 
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Table 3-9  (continued) 

             Reducing    sugar    content                       Foliage     earliness 

     Gransebieth Windeby Gransebieth Windeby 

fAFLP  
marker 

LGa No -/+b χ2- 
test c 

Ori.d Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
G3-206  44/138  S3     0.017- 2.7 0.017- 3.6 
Y-459  106/65  S3     0.018- 2.0 0.036- 2.8 
B1-182  26/115 1:3 C   0.044+ 2.8 0.034+ 2.7   
B1-330  68/73 1:1 S3 0.002+ 5.1   0.036- 1.9   
B3-330  72/70 1:1 S3 0.023+ 3.6   0.049- 1.6   
B1-77 XI 37/111 1:3 C 0.005+ 5.4       
B1-102  51/95  S3 0.002+ 7.3       
B1-455  90/52  S3 0.004+ 6.7       
B3-141 V 70/76 1:1 S1 0.005- 5.3       
B3-211 I 63/81  C 0.007+ 6.3       
G2-409  64/66 1:1 S1 0.006+ 4.1       
B1-140  8/140 1:11 C   0.009+ 4.0     
B1-261 IV 78/64 1:1 S1   0.005+ 5.4     
B1-423  66/77 1:1 S3   0.004+ 4.9     
B2-397  89/47  S3   0.004- 5.0     
G1-339  40/104 1:3 C   0.007+ 5.1     
Y-111  13/120 1:11 C   0.009+ 4.7     
B1-174 V 21/174 1:11 C     0.006+ 3.5   
B1-322  48/138 1:3 C     0.007+ 4.2   
B2-158  104/77  S1     0.001+ 4.5   
G2-67  115/78  C     0.007- 2.7   
B2-68  21/164 1:5 S3       0.006+ 4.0 
G1-132  137/51  S3       0.009+ 4.1 
G2-80  76/110  C       0.002- 4.1 
G2-120  35/157  C       0.004+ 4.7 
Y-83  83/92 1:1 S3       0.003- 4.5 

 
a LG= linkage group, inferred from map positions of common fAFLP markers in the reference diploid mapping population K31. 
b No. -/+, number of individuals analyzed showing absence/presence at the marker locus. 
c 1:N, segregation type confirmed by goodness-of-fit test. 
d Ori., origin of the marker with C representing common marker from both parents. 
e P values followed by plus-minus the indicating the direction of the tagged QTL effect with ‘+’ being increasing and ‘-’ being decreasing 
RSC or FE. 
f R2= R square value in percent indicating the proportion of variance explained by the marker genotype. 
 
 
(continued from page 75) 

The only exception was marker B2-397, which decreased RSC. Only four markers were 

derived from the S1 parent, with two increasing RSC and two reducing RSC. The most 

significant markers are B3-117, B3-413, B1-330, B3-215, and G3-79. Individually, these 

markers each explained between 2.4 to 12.6% of the phenotypic variation among individuals 

for RSC.  

fAFLP markers associated with FE  

Compared to RSC, more fAFLP markers (32) were detected to be significantly associated 

with FE (Table 3-9). Effects of 23 markers were reproducibly detected (continue to page 79)
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Table 3-10   fAFLP markers showing associations with multiple phenotypic traits 

                   Tuber   starch   content          Reducing   sugar   content               Foliage      earliness 

     Gransebieth  Windeby Gransebieth Windeby Gransebieth Windeby 

fAFLP  
marker 

LGa No -/+b χ2- 
test c 

Ori.d Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 

B3-409  138/51  S1 0.00017+ 6.0 0.0018+ 5.4   0.018- 3.9     

B3-134  143/40  S1 0.022+ 1.6 0.017+ 2.8   0.012- 5.0     

B1-214  36/109 1:3 C 0.015- 3.6 0.0051- 4.7 0.031+ 3.8       

B1-166 I 100/94 1:1 S3 0.0069- 3.7   0.050+ 2.2       

B1-77 XI 49/146 1:3 C 0.027- 2.9   0.005+ 5.4       

B1-390  83/59  C 0.045- 2.2   0.023+ 2.5       

B2-292  20/118 1:5 S1 0.013- 3.1   0.048+ 2.8       

B2-62  79/103  S1 0.021+ 2.9     0.039- 3.3     

G1-339  50/139 1:3 C 0.011+ 3.6     0.007+ 5.1     

G1-157  116/75  S1   0.025- 2.7   0.029+ 3.8   0.019- 2.6 

Y-452  51/120  S1   0.027- 2.8 0.037+ 3.8 0.045+ 3.1     

B1-112  77/117  C   0.035- 2.3 0.022+ 2.5       

B1-149 III 9/183  C   0.028- 3.1 0.031+ 2.8       

B1-364  112/70  C   0.040- 2.2 0.039+ 3.2       

B3-121 IX 62/130  C   0.0035+ 3.8 0.046- 2.3       

B1-174 V 21/174 1:11 C 0.045+ 2.7 0.033+ 1.5     0.006+ 3.5   

G2-187  49/137 1:3 C 0.0037- 4.2         0.010- 2.9 

B2-322  140/40  S1 0.019+ 3.2       0.024+ 4.7   

G3-199 IV 26/151 1:5 S1 0.019- 3.0         0.032- 1.8 

B1-244  137/43  S3 0.018- 3.6         0.048+ 1.9 

Y-393  43/128  S1 0.021- 2.9       0.024+ 2.0 0.030+ 3.0 

G1-200  140/49  S1   0.032- 2.3     0.016- 2.4   

B2-58  58/124  C   0.036- 2.8     0.004- 4.2 0.0005- 6.3 

B3-100 XII 10/182  C   0.013+ 2.2     0.011+ 2.8 0.001+ 6.4 

B2-76 V 90/95  C   0.0011- 5.7     0.0004- 5.9 0.0005- 6.9 

G1-205  103/86 1:1 S1   0.048- 2.0       0.047- 2.5 

B1-242  107/76  S1   0.029- 2.6       0.015- 2.5 

Results 
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Table 3-10 (continued) 

                   Tuber   starch   content          Reducing   sugar   content               Foliage      earliness 

     Gransebieth  Windeby Gransebieth Windeby Gransebieth Windeby 

fAFLP  
marker 

LGa No -/+b  Ori.c Pd R2e 

(%) 
Pd R2e 

(%) 
 R2e 

(%) 
Pd R2e 

(%) 
Pd R2e 

(%) 
Pd R2e 

(%) 

B1-330  94/47  S3     0.009+ 3.6 0.006+ 6.1 0.041- 1.6   

B3-215 V 84/60  S3     0.0004+ 6.6 0.0001+ 11.3 0.043+ 1.9   

G3-79  82/58  S3     0.005+ 7.8 0.029+ 2.9 0.005+ 4.6 0.001+ 5.2 

G3-54 IX 57/81  S1       0.034- 4.8 0.027- 2.8 0.010- 4.7 

B1-182  26/115 1:3 C       0.044+ 2.8 0.034+ 2.7   

B3-330  72/70 1:1 S3     0.023+ 3.6   0.049- 1.6   

 

 

a LG= linkage group, inferred from map positions of common fAFLP markers in the reference diploid mapping population K31. 
b No. -/+, number of individuals analysed showing absence/presence at the marker locus. 
c 1:N, segregation type confirmed by goodness-of-fit test. 
d Ori., origin of the marker with C representing common marker from both parents. 
e P values followed by plus-minus the indicating the direction of the tagged QTL effect with ‘+’ being increasing and ‘-’ being decreasing TSC or RSC or FE. 
f R2= R square value in percent indicating the proportion of variance explained by the marker genotype. 
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(continued from page 76) 
over two locations, 17 of which resulted in delayed foliage maturity (positive effect noted 

with ‘+’) while 6 lead to earlier maturity. The most significant ones were fragments B2-314, 

G3-129, B1-241, B2-58, B2-76, with effects accounting for phenotypic variation of 3.2 % - 

6.9 % individually (Table 3-9, on page 75-76). Among these 23 markers, two effects with 

opposite direction were observed for markers of different parental origin. S1 alleles at the 

marker locus of G3-54 and   S3 alleles at the marker loci of B1-241, G3-206, Y-459 were 

responsible for earlier foliage maturity, both S1 and S3 alleles at other marker loci resulted in 

delayed foliage maturity. 

3.3.3.3  Association of fAFLP fragments with multiple traits 

Of all the fAFLP markers analysed, 33 have been identified to be associated with more than 

one trait as detected by the t-test, regression analysis and the U-test. These markers were 

extracted and are shown in Table 3-10 (on page 77-78). 15 markers that were associated with 

TSC, also showed associations with RSC in at least one location. The most significant and 

reproducible ones were markers B3-409 and B3-134, which originated from S1 parent. These 

two markers exhibited effects of increasing TSC and decreasing RSC and thus, could be of 

potential use in potato breeding programs for MAS. It is worth noting that all markers had an 

opposite effect on the two traits, with the only exception being G1-339. In other words, 

markers with positive effects of increasing TSC would lead to decreased RSC or vice-versa. 

The results were in fairly good agreement with the phenotypic correlation relationship 

between the two traits as outlined in Section 3.3.2.  

12 fragments showed multiple associations with TSC and FE. The most significant ones are 

G2-187, B2-58 and B2-76. Most frequently, the fragments with increasing effects on TSC 

usually lead to delayed maturity and vice-versa. The only exception was marker Y-393 for 

which the presence of the fragment decreased TSC and delayed maturity.  

7 markers showed multiple associations with RSC and FE. The qualitative orientations of 

effects were variable among these markers. 3 markers (G1-157, B1-330, B3-330) with 

increasing effects on RSC lead to earlier maturity while 3 (B3-215, G3-79, B1-182) lead to 

delayed maturity. In one case, at locus G3-54, the decreased RSC was associated with earlier 

maturity.  

One marker, G1-157 of  S1  was  associated  with  all  three  traits  at one location (Windeby).  
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Presence of the marker decreased TSC, increased RSC and lead to earlier maturity. 

3.3.3.4  Association analysis on 50 selected genotypes in trial 1999 

In the trial 1999, 50 genotypes selected from the Z3 population were evaluated for various  

traits (see Sect.2.14). In addition to TSC and FE (RSC was not evaluated), other traits namely 

starch yield (SY) and tuber yield (TY) were also tested. The phenotypic data of these traits 

were, therefore, subjecteded to association analysis using the non-parametric U-test as 

described previously. The significantly associated fAFLP markers are shown in Table 3-11 

(on page 81). A total of 42 fAFLP markers showed associations with starch yield, of which 

18 and 21 were detected at either Gransebieth or at Windeby, and 3 were consistently 

detected at both locations. Of all these, 10 and 28 markers were also detected, at the same 

locations, to be associated with TSC and TY, respectively. This suggested that the effects of 

these markers on TSC and TY contributed to their effects on TY. 10 markers, which showed 

significant effects on either TSC or TY at the 1 % level, did not detect as having significant 

effects on SY. 

Of the markers showing association with the traits in trial 1999, markers highlighted in bold 

(G1-75, B3-397, B2-428, B3-305, B3-51, G3-111G1-169, B1-215, B3-215, G3-54, and B3-

352) were also detected, at least at the 5% level, as having association with the same traits in 

trial 1998. It is worth noting that for markers showing association with multiple traits, the 

directions of effects were uniformly in accordance to the phenotypic correlations (Table 3-11, 

page 81). In other words, the increase in either TSC or TY resulted in the increase of SY 

while leading to delayed maturity and vice versa. 

3.3.4  Analysis of the segregation ratios in the tetraploid population Z3 

Several segregation ratios were expected depending on the presence or absence of a fAFLP 

marker fragment in the parents. When a marker is present in only one parent, segregation 

ratios of 1:1 or 1:5 (absence versus presence) are expected for simplex and duplex markers, 

respectively. When a marker is present in both parents, segregation of 1:3, 1:11 and 1:35 

(absence versus presence) are expected for simplex-simplex, simplex-duplex and duplex-

duplex, respectively, without considering double reduction. Chi-square tests were performed 

to test for the goodness of fit to the expected segregation ratios. Markers fitting one of the 

expected segregation ratios were noted in Table 3-8, 3-9, and 3-10 (on page 73, 75-76, 77-

78).  
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Table 3-11  fAFLP markers associated with phenotypic traits as detected by the U-test based on 50 selected genotypes in trial 1999 
 

                  SYc               TSCc                TYc                 FEc 
 Pre/absb Ori./LG Gra Win  Gra Win  Gra Win  Gra Win  
B3-62 25/23 S3 0.012+ 0.020+ 0.0013+ 0.008+     
G1-133 25/23 S3 0.024+ 0.027+ 0.033+ 0.049+     
B1-144 36/12 C 0.028+ 0.0005+    0.0002+   
G1-75a 30/19 S1 0.0013+   0.036+ 0.0039+    
B3-269 16/25 S3/VIII 0.0028+    0.013+    
Y-60 30/15 S1 0.013+  0.021+      
G2-237 15/33 S1 0.038+  0.0081+      
G3-231 32/15 C 0.0078-  0.0073-      
G2-238 13/31 S3 0.019-  0.0048-      
G2-108 33/17 S3 0.032-  0.028-      
G2-301 21/29 S1 0.027+   0.013+     
B3-397 13/34 S1 0.029+   0.016+     
G1-106 34/15 S1/XII 0.040+   0.039+     
B1-464 19/28 C 0.039+     0.0067+   
G3-236 21/26 S1 0.010+    0.034+    
B3-305 25/20 S3/IV 0.011+    0.032+   0.046+ 
B3-223 40/7  C 0.014+    0.040+    
B2-428 30/18 C 0.029+    0.023+    
G1-105 27/18 S1 0.031+    0.034+    
B2-274 43/5  C 0.035+    0.0076+    
B2-324 15/33 S3 0.012-    0.022-    
B3-51 32/16 C  0.0025+ 0.0016+ 0.039+  0.013+ 0.016+ 0.013+ 
G2-120 40/9  C  0.0057+    0.019+ 0.029+ 0.037+ 
B2-185 22/26 S3  0.027+ 0.046+   0.048+ 0.0057+  
G3-111 33/14 C  0.0042+    0.026+   
B1-267 41/8  C  0.019+    0.0020+   
B3-104 43/5  C  0.023+    0.0059+  0.032+ 
B1-78 34/15 C  0.010+    0.009+   
B2-216 31/15 C  0.010+    0.013+   
G1-115 19/23 S1  0.013+    0.019+   
G2-164 18/25 S1  0.041+    0.0034+   
Y-393 38/8  S1  0.032+    0.012+   
B2-226 28/18 C  0.048+    0.049+   
G2-444 14/23 C/XII  0.031+ 0.017+      
G1-250 37/11 C  0.041- 0.045- 0.011-   0.019- 0.0038- 
B1-330 24/24 S3  0.0015-    0.0049-   
G3-387 20/22 S3  0.0048-    0.017-   
Y-97 34/12 S1  0.0064-    0.012-  0.043- 
B1-141 28/21 S3  0.028-    0.036-   
B1-179 28/21 C  0.024-    0.034-   
B1-387 21/27 S3  0.045-    0.014-   
G1-130 37/11 C  0.043-  0.017-     
G1-169 8/37 S3/XII   0.0028- 0.032-     
G3-171 34/10 C   0.0055+ 0.017+     
B1-101 38/10 C   0.031+ 0.032+     
G1-157 22/27 S1   0.0082-      
B3-98 41/6  C   0.015+   0.031+  0.023+ 
G2-199 25/24 S3/VIII   0.018+   0.014+   
Y-247 37/9  C   0.021+   0.016+   
B3-111 15/31 S1   0.046+    0.014+ 0.037+ 
B3-122 32/15 C/IX   0.039+    0.031+  
G3-338 26/18 C    0.0083+     
Y-120 39/7  C    0.0019+   0.017+  
G1-187 15/27 S1    0.049+   0.0086+  
B2-96 44/5  C    0.0082-     
B1-66 29/19 S1     0.007-    
B2-390 16/31 S3      0.0054+   
B1-215 35/10 S3      0.028+  0.041+ 
B1-133 40/9  C      0.034+   
B3-215 23/24 S3      0.047+ 0.035+ 0.017+ 
G3-358 16/29 S3      0.0018-   
B3-279 38/9  S3      0.0087-   
G3-54 32/14 C      0.011- 0.044-  
G3-206 38/8  S3      0.038-  0.045- 
B3-352 16/31 S3       0.0091+ 0.028+ 
B3-105 37/10 C       0.032+ 0.0088+ 
B1-483 20/28 S3       0.0078- 0.0053- 

 
a Markers highlighted in bold indicate that effects on the same traits were detected at least once at the 5% level in trial 1998 
b Number of individuals with the marker presence versus absence,     
c SY=starch yield,   TSC=tuber starch content,  TY=tuber yield,  FE=foliage earliness,      Gra=Gransebieth,    Win=Windeby 
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3.3.5  Assignment of map positions to QTL-linked fAFLP markers  

For fAFLP markers to be useful in a QTL study, they are ideally required to be assembled 

into maps showing their chromosomal locations. For this purpose, a strategy was adopted 

which is based on the assumption that fragments of identical size occupy the same map 

position in different mapping populations (van Eck et al. 1995). The reference mapping 

population K31 and LH was genotyped using the fAFLP technique with the same restriction 

enzymes and the same primer combinations as used for the Z3 population. Polymorphic 

fragments generated with the same primer pairs and having the same size as fAFLP markers 

of interest in the tetraploid Z3 population were selected for linkage analysis. The genotypic 

data, alongside the previously generated framework of RFLP data were analysed for linkages 

using the MAPRF© program (see Sect. 2.11). Of the fAFLP fragments that had shown 

associations with phenotypic traits (at 5 % significance level), 50 common fragments were 

identified which segregated in the reference diploid mapping population K31, and could be 

mapped, therefore, to potato linkage groups (Figure 3-10, on page 83). Of these, 9 fAFLP 

fragments (G3-393, B1-166, B3-260, G2-71, B1-316, B3-121, B3-130, B1-77, B1-103) 

which showed associations with TSC in Z3, were mapped within or closely linked to 

intervals of QTL for TSC as detected in K31 on LG I, II, III, IV, IX, X, XI and XII. 20 

fAFLP fragments, which were associated with RSC in Z3, were positioned on LG I, III, IV, 

VI, VII, IX, XI and XII. 16 fAFLP markers associated with FE were localised on LG II, III, 

IV, V, VI, VII, VIII, IX, XI and XII. These fAFLP markers were scattered throughout the 12 

linkage groups but were, to some extent, clustered, as seen on LG I, II, IV, V, VI, VII, IX, XI 

and XII. In many cases, clustered markers tagged QTL for the same traits, such as marker 

clusters for TSC on LG I, II, V, XII, and clusters for RSC on LG I, IV, V, XI. The most 

remarkable cluster of the fragments is on chromosome V where 9 fAFLP marker loci were 

clustered in a region of less than 30 cM. Most of these markers (6) showed associations with 

FE (Figure 3-10). 

3.3.6  QTL analysis through candidate gene strategy 

Five functional genes (Dbe, SssI, Stp23, Sut2 and Sus4) selected on the basis of known 

overlapping positions with QTL for TSC as identified in population K31 (Schäfer-Pregl et al. 

1998) were selected and tested for associations with putative QTL in population Z3. 

Genotypic CAPS data, which were generated from individuals of Z3 at the 5 gene loci, was 

analysed for associations with TSC, RSC, and FE using the appropriate      (continue to page 84) 
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(continued from  page 82) 

tests as described in Sect. 3.3.3. Of the 5 genes tested, Dbe-e and SssI, located on 

chromosomes XI and III, respectively, showed association with TSC in population Z3 at the 

1% level (Table 3-12). The effects were both from an S3 allele, the presence of the allele 

Dbe-e at locus Dbe resulted in increased TSC, while the allele at the SssI locus decreased 

TSC. The proportion of the  phenotypic variance explained by the two loci was 3.5 % and 4.3 

%, respectively. Besides the most significant allele Dbe-e, two other Dbe alleles from S3 

were also detected as having significant effects (5 % level) on TSC at Gransebieth. At other 

gene loci no effects on TSC were detected in the tetraploid Z3 population. However, these 

loci showed associations with RSC. For instance, Stp23 and Sut2, located on chromosomes 

III and V, respectively, were consistently detected to be associated with RSC at two locations 

at the 1 % level (Table 3-12). The alleles detected were from parent S3 at both loci and 

accounted for 3.7 % - 7 % of the phenotypic variance with increasing effects on RSC. No 

significant effects on FE were detected at these gene loci. 

In addition, multiple alleles were identified at loci Dbe, Sus4 and SssI which made possible 

the subdivision of the population at these loci into four or more genotypic classes. 

Comparison of the mean of median values of these genotypic classes was achieved by 

applying the Kruskall-Wallis H-test. Only SssI and Dbe showed significant effects (P<0.05) 

on starch and RSC respectively at Windeby (data not shown). 

 
Table 3-12   Functional gene markers showing associations with multiple phenotypic traits 

                   Tuber   starch   content          Reducing   sugar   content 

     Gransebieth  Windeby Gransebieth Windeby 

fAFLP  
marker 

LGa No -/+b χ2- 
test c 

Ori.d Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 
Pe R2f 

(%) 

Stp23 III 22/102 1:5 S3     0.008+ 4.7 0.002+ 7.0 

LeSUT2 V 63/89  S3     0.017+ 3.9 0.012+ 3.7 

Dbe-a XI 82/68 1:1 S1       0.014- 4.7 

Dbe-b XI 101/97 1:1 S1         

Dbe-c XI 129/58  S3 0.02+ 2.5       

Dbe-d XI 133/52  S3 0.04+ 2.0       

Dbe-e XI 143/52  S3 0.008+ 3.5       

Sus4* XII 78/66 1:1 S1     0.06- 2.3 0.038- 2.6 

SssI* III 93/98 1:1 S3   0.004- 4.3     

 

a,b,c,d,e,f   see Table 3-10 (on page 77-78) for references 
* two alleles of genes Sus4  and SssI were identified, only the ones showing significant associations with 
RSC and TSC in the t-test were included in the table. 
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3.3.7  Cloning of fAFLP fragments 

For breeding-oriented QTL analysis, it is highly desirable that significantly associated 

markers are amenable to marker-assisted selection. As a first step towards this purpose, 

fAFLP markers associated with a trait of interest need to be cloned. Since recovery of fAFLP 

DNA fragments directly from the automated fluorescent genotyping system is not technically 

accessible to date, this was bypassed by the use of the radioactive AFLP approach. Based on 

the results of association analysis, the five most significant and reproducible fAFLP 

fragments B3-117, 121, 215, 409, and 425 (see Tables 3-8, 3-9, 3-10, on page 73, 75-76, 77-

78) generated with primer combination E-act/M-cta (B3) were selected for cloning. 10 

individuals of Z3, for which the target fragments were well separated from the surrounding 

bands based on fAFLP fingerprinting, were tentatively selected for cloning. The same 

preamplification products of the two parents and ten selected individuals previously used for 

fAFLP were used directly for selective amplification. AFLP procedures were followed as 

described by Meksem et al. (1995). The AFLP size marker 30-330 bp with a 10 bp- ladder 

between neighbouring fragments was used to identify the fragments of interest. Of the five 

fragments examined, two fragments B3-409 and B3-215, at the expected position on an 

autoradiogram, gave rise to an identical segregation pattern to that of the fAFLP fragments. 

The other three fragments, which appeared faint on the autoradiogram, were not pursued 

further. The two identified bands were excised from the polyacrylamide gel, eluted and re-

amplified with the corresponding non-radiolabelled primer pair to recover the DNA. This was 

successfully achieved for fragment B3-215 but failed for B3-409. The re-amplified PCR 

product of B3-215 fragment was subsequently cloned into the pGEM-T vector. Putative 

recombinant colonies were either confirmed by colony PCR which was performed directly 

using bacterial colonies on agar plates as templates or alternatively, by digestion of the 

extracted plasmid DNA with restriction enzymes. Plasmid DNA from 10 confirmed colonies 

was prepared and subjected to sequencing. All 10 sequences showed the selective primer 

sequence of EcoRI at one end and the MseI primer sequence at the other. The analysis of the 

10 sequences revealed three different sequence classes. One was 218 bp in length; two were 

219 bp sequences; the third one was 217 bp in size with 7 members, which showed high 

similarity (98-99%) and differed from one another only by single nucleotides (Figure 3-11). 

The majority class had a 2 bp discrepancy from the expected 215 bp. This discrepancy may 

have resulted from the automated sizing by the GeneScan system by which size assignment 

may  have 1-2 bp  variations depending  on  the  size categories  defined. Taking into account 
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Figure 3-11  The combined consensus sequence from the 7 sequences of the cloned fAFLP 

fragment B3-215.  Nucleotide variations among the 7 sequences were indicated in parentheses. Primer 

sequences were underlined and lower case residues were selective nucleotides.  
 

 

this fact, the 7 sequences were assumed to be the correct ones. A  BLAST search for 

homologous sequences in the data bases indicated that this sequence showed 88% homology 

at the nucleotide level to a downstream sequence segment of the ORF of the gene coding for 

chlorophyll a/b binding protein (Lhcb1, accession No. AB012636) in Nicotiana sylvestris. 

For confirmation and PCR-marker conversion of this cloned fragment, various approaches 

were tested.  First, since the complete sequence was known, a primer pair was designed by 

adding four more sequence-specific nucleotides at the 3’ end of each selective primer. The 

idea was that using more selective  primer to amplify the pre-amplification product used for 

fAFLP generation would result in a single or few fragments resolvable on agarose gel with 

segregation pattern identical to the fAFLP B3-215 marker. Although a single fragment with 

the expected size was obtained under stringent amplification condition, no polymorphisms 

were exhibited between Z3 individuals.  This may be due to the fact that the selectivity of the 

primers was reduced or even lost after addition of the four sequence specific nucleotides at 

the 3’ end of the primers. An alternative option for confirmation could be DNA blotting, by 

which gel-electrophoresis-resolved AFLP fragments are transferred on to membrane followed 

by hybridization with a probe from the cloned AFLP fragment. This approach was, however, 

not applied in considering that the final goal was to convert the fAFLP marker into PCR-

based marker, which, when achieved, would also lead to the confirmation of the segregation 

pattern.  For marker conversion, more sequence information is needed. The high sequence 

similarity of the cloned AFLP fragment to the gene Lhcb1 of Nicotiana sylvestris was used to 

       Primer E-cta 

5’-GATGAGTCCTGAGTAActaGGTTCG(G/A)CAAACTTTTGTTTTCTTTTGCCTA 

   CTCCTCGGACACAACAACCAATATTTATTTCACTC(C/T)AAAAGA(G/T)TAC 

   AAGTGAAATACTACAAGAGAGAAAGAAGATCAAATGCCTTTGAAGAT(G/A)A 

   (G/A)AAGGCAAG(T/C)GAGAGGTGTGT(T/C)ACAAATGAATTAGGAACTAC 

   CTATTTAT(A/G/T)GGagtGAATTGGTACGCAGTC-3’ 

                                                                       Primer M-act 
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achieve the goal by amplification of the homologous gene segment in potato population Z3. 

A primer pair was designed with one primer being derived from the most conserved region of 

Lhcb1 gene, the other from the sequence of the cloned fragment. The two primers 

encompassed the MseI restriction site of the AFLP fragment. A single fragment of 500bp in 

size was amplified from both parents S1 and S3 using genomic DNA as template. This PCR 

product was digested with restriction enzyme MseI to test if the MseI site was the cause of 

yielding the fAFLP fragment. However, the cleavage of the PCR product with MseI did not 

detect CAPS between the two parents.  Sequencing of the PCR fragment from S1 revealed 

high sequence homology (93 %) to the cloned fragment B3-215 and also an MseI site as 

expected (Figure 3-12). The point mutations between S1 and S3 allowed designing allele-

specific primers, however, PCR amplification failed to distinguish them. This is not 

unexpected since the allele-specific primers were base on the difference of only one allele 

from S1 whereas the other three remained unknown. Consequently, the fAFLP fragments B3-

215, while successfully cloned, is still to be confirmed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-12  Extended nucleotide sequence of the cloned fAFLP fragment B3-215. Sequence was 

derived from parent S1, nucleotide residues in italics indicate the sequence of the cloned fAFLP 

fragment, others are extended sequence starting from MseI site (highlighted in bold). Primers sequences 

are underlined. 
 

 

    1  GAGAACCTTG  CTGACCACCT  TGCTGAAGTT  TGTGTCTTGC  GATTAGCAAT 

   51  CGTAGGGATT  TTCTTATAAC  AGGATCACAT  GATCGTTCCA  TACGACGTTG 

  101  GGATCGTACT  GATGATGAAG  CTCTTTTTAT  TGAGGTGTTA  TATTTTGCAT 

  151  CAGTTTTAGA  CAGTTAAAAA  GAATAATTTA  TAAAGTTGCT  ATTTGGAATT 

  201  GCAGGAAGAG  AAAGAAAAGA  GATTGGAAGA  GATGTTTGAA  TAAGATATCG 

  251  ATAATGTATT  TGAGAATAAG  TATGTGTTGT  TGAAGCCGAA  TATATAGAGA 

  301  GTAATGGAAT  CGCAGCTGCT  ATATCTAAAG  GTAGCTAATA  AATAGTAAAT 

  351  GAGATAACAA  TAAAAAGAAC  ACCATGAATT  AACGAGGTTC  GGCAAAATTT 

  401  TGATTTCTTT  TGCCTATTCC  TCGGACACAA  CCAACCAATA  TTTTTACCAT 

  451  TCCAAAAGAG  TACTAGTAAA  ATACTACAAG  AGAGAAAGAA  GATCAAATGC 

  501  CTTAGAAGAT  GAGAAGGCAA  GTGAGAGGTG  TGTTAC 
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4.  DISCUSSION 

 

4.1  Mapping functional genes involved in carbohydrate metabolism 

and transport 

4.1.1  STS as an approach for functional gene mapping 

In the past decade, many advances have been made in the construction of molecular maps for 

crop plants us ing various molecular marker tools such as RFLP, RAPD, SSR and AFLP. 

These types of molecular linkage maps play an important role in the genetic analysis of 

agronomic traits including map-based gene cloning and QTL analysis. However, all these 

types of markers are largely anonymous and of unknown function, limiting further 

exploration of the genetic basis underlying the marker-tagged agronomic traits studied. Thus, 

the construction of linkage maps with markers tagging known functional genes is highly 

desirable and, when achieved, could take genetic mapping to a further level. Typically, 

Southern hybridization of a segregating population with a cloned gene as probe is the 

common way to localize the gene on molecular linkage map and 22 genes have been mapped 

through this approach (Gebhardt et al. 1994). Although RFLP is notably reliable for mapping, 

the application is limited by the availability of a clone for the gene of interest and 

additionally, the marker created could hardly be incorporated into MAS for screening plants 

on a large-scale because the technique is laborious and time-consuming.  

In the present study, public databases were systematically searched for sequences of plant 

genes with a functional role in carbohydrate metabolism and transport. Sequence information 

was used to develop PCR-based marker assays that allowed localization of corresponding 

potato genes on existing RFLP linkage maps. This approach takes advantage of existing 

sequence resources in the databases for gene-specific markers, thus enabling the efficient and 

successful construction of molecular maps for functional genes with minimal additional 

requirements. The highly polymorphic mapping populations K31 and LH offer a good 

foundation for the positioning of functional genes on potato linkage maps through an STS 

approach. All of the genes in this investigation were mapped through this approach using one 

or other of the two populations except gene Tk for which no polymorphism was detected. 

Alternatively, Tk was mapped by a RFLP assay using a PCR product of Tk as a probe. Using 
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the STS approach in combination with RFLP, an initial potato molecular function map based 

on RFLP mapping of cloned genes (Gebhardt et al. 1994) was expanded about four-fold. 

To map functional genes efficiently and successfully through the STS approach, selection of 

the appropriate gene regions for primer design is critical since the majority of gene sequences 

available in databases are cDNA sequences. It was found to be important for primer design to 

avoid the exon- intron boundaries and to position the two primers at a distance of 500-800bp 

apart from each other on the cDNA sequence so that PCR products of sufficient length 

encompassing introns could be amplified for identifying polymorphisms. Two methods gave 

an indication of such exon- intron junctions. First, some sequence motifs such as CAGG or 

AAGG may be a hint of the junction sites (Lefebvre and Gellatly 1997). Thus primer design 

should avoid these sequence motifs. Second, if the genomic gene sequence of another related 

species is available, the comparison of the cDNA sequence with the genomic sequence could 

lead to the identification of putative introns.  

4.1.2  Validity of the STS approach for mapping functional genes 

In the present study, the first technical choice for function mapping was the STS approach 

because of  (i) the availability of large number of nucleotide sequence information of genes in 

the GenBank and EMBL databases; (ii) the ability to specifically detect by PCR genes known 

in different genomes using degenerate primers complementary to exon sequences (Larrick et 

al. 1989, Holland 1993, Gould et al. 1989, McPherson et al. 1991 and Van Campenhout et al. 

2000); (iii) the possibility of directly sequencing PCR products, which is the best way to 

validate gene homology and (iv) the feasibility of routine application of the markers in MAS. 

The reliability of the STS approach was confirmed by sequencing the PCR products and 

comparison of their map positions. First, the specificity of the PCR amplification was verified 

by sequencing three PCR products generated with primers from potato sequence and all six 

PCR products obtained with degenerate primers from other species than potato. The former 

cases showed 95 % -100 % similarity and the latter cases showed 80 % - 95 % similarity with 

the reference sequences. Second, seven genes were mapped by both the STS approach and by 

RFLP using different mapping populations and all were localized in similar positions on 

potato linkage map. This suggests that the employment of an STS approach for function 

mapping is reliable.  
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4.2  The potato function map 

4.2.1  PCR-based markers for genetic analysis and marker assisted selection 

The functional genes mapped by the STS approach in the present study, together with other 

previously mapped genes, creates a framework of 66 gene markers opening up new 

possibilities for various genetic studies in potato. On one hand, since the genes mapped are 

all genes with known function and mostly involved in carbohydrate metabolism and 

transport, thus candidate gene strategy becomes accessible to analyzing QTL for tuber starch 

and sugar content in different populations. This could be achieved by genotyping with the 

candidate gene markers for their segregation in populations considered and testing their 

significance of effects on the traits of interest. This approach can eliminate the generation of 

the genome-wide markers by anonymous marker technology, and has been proven fairly 

efficient in QTL studies as described in Section 3.3.6. On the other hand, since the gene 

markers as defined in this study are PCR based, these markers, together with previously 

developed sequence based anchor markers (Oberhagemann et al. 1999) are a valuable tool for 

genetic analysis and marker-assisted selection in potato. They (i) cover a considerable 

proportion of the potato genome, (ii) are available as locus specific sequence information and 

(iii) can be analyzed by PCR with small amounts of genomic DNA as template; (iv) may be 

further optimised for large-scale screening through the use of high throughput techniques like 

molecular beacons (Tyagi and Kramer 1995; Tyagi et al., 1998), thereby eliminating gel 

electrophoresis. Marker assays will have to be verified and adapted in order to be 

informative, however, when applied to germplasm other than the material used for gene 

mapping in this study.  

4.2.2  Molecular function maps for comparative studies of plant genomes 

Most of the genes for which map positions are reported in this paper are housekeeping genes 

functioning in general plant metabolism. Even distantly related plant species have in common 

these genes with similar functions and a high degree of sequence conservation. In different 

plant species, molecular maps based on common genes may be used not only for comparative 

studies of plant genome evolution, but also for functional comparisons. Few molecular maps 

are, however, currently available in plants for specific sets of genes of known biochemical 

and physiological effect. Similar studies have been carried out in maize and sugar beet 

(Causse et al. 1995, Schneider et al. 1999). The sequencing of whole plant genomes as done 
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for Arabidopsis (Bevan et al. 1998, Lin et al. 1999) or the construction of linkage maps based 

on expressed sequence tags as done in rice (Kurata et al. 1994) and maize (Chao et al. 1994) 

makes available information on genomic positions of functionally and structurally similar 

genes which can also be used for genomic comparisons. For the potato and tomato genomes, 

extensive colinearity has been demonstrated (Bonierbale et al. 1988). In tomato, a genetic 

map including isozyme loci and more than 300 randomly selected EST markers has been 

constructed (Tanksley et al. 1992). Based on their DNA sequence, putative functions have 

been assigned to tomato EST markers (Ganal et al. 1998). The availability of a potato 

function map made possible the evaluation of synteny between potato genes and tomato EST 

markers, to which the same functions have been assigned based on sequence similarity 

(Ganal et al. 1998, Tanksley et al. 1992). CAPS markers for potato genes Icdh-1 and Aco 

mapped to positions on linkage groups I and VII, respectively, which are in good agreement 

with isozyme loci Idh-1 and Aco-2 on the tomato molecular map. Potato genes UGPase on 

linkage group XI, Pgkcp and Pha2, both on linkage group VII, occupy similar map positions 

as tomato markers CT182, CT114 and CD54, respectively, which code for the same enzymes 

(Ganal et al. 1998, Tanksley et al. 1992). In four cases, the potato gene marker identified a 

single locus, whereas two or more loci were identified by the corresponding tomato EST 

marker. The four loci were: AmyZ (LG IV), Stp1, Tk (both LG V) and Ndpk (LG IX), which 

correspond to tomato marker loci CT224B, CD31A, CD38B and CT225A, respectively, to 

which the same function has been assigned based on sequence similarity (Ganal et al. 1998, 

Tanksley et al. 1992). In one instance, the CAPS marker for the potato Ppe gene identified 

three loci in potato on linkage groups III, V and XII, whereas tomato marker CT248 for Ppe 

detected only the locus on linkage group III. No correspondence between map positions was 

found for the potato Me gene for NAD+-dependent malic enzyme (LG III and V) and tomato 

marker CT201 which is similar to NADP+-dependent malic enzyme. The DNA sequences of 

the two markers share only 56 % similarity. The map positions of potato genes for fructose-

1,6-bisphosphatase (Fbpcp on LG IX and Fbpcy on LG IV) were both different from the 

position of tomato marker CD5 (LG X) which has sequence similarity with the same enzyme. 

The potato homologue of a tomato glycolate oxidase gene (Glo), although 96.6 % identical 

with the tomato sequence from which it was derived (Table 3-2), detected two loci on potato 

linkage groups VII and X, which were in disagreement with the position on tomato linkage 

group II of tomato marker CD79 which is identical to the tomato Glo gene sequence used for 

primer design (M. Ganal, personal communication). 
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In potato and tomato, orthologous genes with conserved sequences and the same function 

assignment are expected to occupy similar map positions. This was, in fact, observed for 

most of the genes examined, when taking also into account the different numbers of loci 

detected in several cases in the two species. The difference in the number of loci identified 

with the same gene marker might be due to (i) the fact that not all loci of a gene are identified 

due to the limited DNA variation in a given mapping population or limited power of the 

techniques used for mapping. For this reason, the number of loci detected may be considered 

as a minimum estimate. Consequently a locus may be detected in both species, another locus 

may be identified in one species but not in the other or vice versa; (ii) the nature of the 

marker assays used for mapping. The RFLP assay identifies, depending on the hybridization 

stringency used, loci with 80 % or less sequence identity with the probe, whereas a PCR-

based assay requires higher identity between primer and target sequence and is, therefore, 

more gene specific. Alternatively, the potato and tomato genomes may have indeed different 

numbers of copies of certain genes (Gebhardt et al. 1991). Three gene markers, however, did 

not occupy syntenic positions on the potato / tomato maps. First, this might be due to 

erroneous functional assignment when sequence similarity is not extremely high as in the 

case of malic enzyme (Me) where the potato gene shared only 56 % similarity with the 

tomato EST. Second, in the case of gene families with members that are not linked, different 

loci might be polymorphic in the two species compared. Third, members of gene families 

with high interspecific sequence conservation compared to other members of the same family 

may not always be truly orthologous. Differential selection pressure acting on members of a 

gene family after speciation may have resulted in higher sequence divergence between 

orthologous members than between paralogous members. This might explain why a glycolate 

oxidase (Glo) gene marker, although highly conserved between potato and tomato, was 

located on different linkage groups in the two genomes. 

4.2.3  Candidate genes for TSC (TSC) 

Quantitative trait loci (QTL) for TSC and tuber yield have been mapped in the populations 

K31 and LH (Schäfer-Pregl et al. 1998). The marker intervals with approximate positions of 

tuber starch QTL as previously identified are indicated in Figure 3-3. The same populations 

were used for PCR-based mapping of genes involved in carbohydrate metabolism and 

transport. Comparison of the QTL map with the molecular function map reveals a number of 

correlations between map positions of QTL for TSC and functionally related loci. This was 
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expected, due to the map coverage by both the QTL and the functionally related loci. 

Overlapping chromosomal positions are observed, either when the gene(s) responsible for a 

QTL effect are linked but functionally unrelated to a marker gene, or when the marker gene 

itself is responsible for the QTL effect. Evaluation of the latter possibility has to be 

knowledge-based, considering the physiological, biochemical and molecular role of candidate 

genes.  

The most direct candidates controlling TSC are genes encoding starch-metabolizing enzymes. 

Sixteen genes of this class were mapped yielding eighteen loci on the potato molecular 

function map (Gebhardt et al. 1994 and this study). ADP-glucose pyrophosphorylase is a key 

enzyme of starch biosynthesis (reviewed in Frommer and Sonnewald 1995). Markers for the 

two subunits S and B of potato AGPase identified five loci one of which, AGPaseS(a) on 

linkage group I, was positioned in the same 9 cM marker interval as the QTL ts(l) (Figure 3-

3) having a small effect on TSC (Schäfer-Pregl et al. 1998). One of four mapped starch 

synthase genes, SssI on linkage group III, is linked to QTL ts(h). Genes SbeI for starch 

branching enzyme I and Dbe for debranching enzyme are linked to QTL ts(k) and ts(n) on 

linkage groups IV and XI, respectively. Five genes coding for starch degrading enzymes were 

mapped: Stp23 on linkage group III, AmyZ and Agl both on linkage group IV, Stp1 on linkage 

group V and StpH on linkage group IX. All five loci are linked to QTL for TSC (Figure 3-3). 

The clearest positional correlation was between Stp23 and QTL ts(g) on linkage group III 

because both the QTL and the marker gene are most closely linked to the same anchor RFLP 

marker GP303 (Figure 3-3 and Schäfer-Pregl et al 1998). This suggests that natural allelic 

variants of genes controlling starch synthesis and degradation may contribute to quantitative 

effects on TSC. 

Accumulation of tuber starch also depends on availability of substrate for starch synthesis 

and, therefore, more indirectly on photosynthesis, sugar metabolism, transport and energy 

supply (reviewed in Frommer and Sonnewald 1995). Allelic variants of genes operating in 

these metabolic pathways may be responsible for variation of TSC. Known genes in these 

pathways were placed, therefore, onto the potato molecular function map. The list of the 

genes mapped is, by no means, complete. QTL for TSC were linked, among others, to loci for 

ribulose bisphosphate carboxylase, small subunit (rbcS-c and ts(c) on LG II, rbcS-1 and ts(g) 

on LG III), ribulose bisphosphate carboxylase activase (Rca and ts(f) on LG X), sucrose 

synthase 4 (Sus4 and ts(p) on LG XII), pyruvate kinase (Pk and ts(i) on LG IV), 

pyrophosphate fructose-6-phosphate 1-phosphotransferase, α subunit (Pfp-α and ts(k) on LG 
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IV), malic enzyme (Me(a) and ts(g) on LG III), plasma membrane H+-ATPase 2 (Pha2 and 

ts(b) on LG VII) and soluble inorganic pyrophosphatase (Ppa1(a) and ts(e) on LG XII), 

soluble acid invertase (Pain-1 and ts(g) on LG III) and apoplastic invertase (Inv-ap(a) and 

ts(f) on LG X) 

In many cases, the same QTL was linked to several candidate gene loci. For example, at least 

three loci, rbcS-1, Stp23 and Me(a), overlap with QTL ts(g) on linkage group III and three 

others, SbeI, AmyZ and Pfp-α, overlap with QTL ts(k) on linkage group IV. But from this 

study it is unclear whether all are contributing equally or if only one is the primary 

contributor to the overlapping QTL or if other unknown genes at these regions are 

responsible for the effects. Several strategies can be adopted for further study to validate a 

putative candidate gene. First, QTL analysis may be carried out based on activity 

measurements of the candidate enzymes as performed in maize (Causse et al. 1995); second, 

transformation of a genotype with various alleles may be conducted for expression analysis 

and functional analysis of molecular variants. In this case, however, allele-trait association 

may go undetected if different alleles have a similar influence on the trait. 

Three of the seventeen QTL for TSC (ts(s), ts(a) and ts(r) ) shown in Figure 3-3 were not 

linked to any known candidate gene locus. QTL ts(s) on linkage group I was linked to acidic 

and basic β-1,3-glucanase genes (GluA and GluB) which, like chitinases (ChtB on LG X), are 

related to pathogenesis and defense (Kombrink and Somssich 1997) response to diseases 

rather than to starch accumulation in tubers. Therefore, they are not considered as candidate 

genes for this trait despite their linkage to QTL for TSC. 

The present study focused mainly on the structural genes coding for various enzymes 

functioning in the carbohydrate metabolism and transport. It is clear that regulatory genes 

controlling transcription, translation and posttranslational modification of the starch 

metabolic enzymes play also a pivotal role in these processes. For example, the p1 locus in 

maize which encodes a transcription factor regulating the synthesis of compounds in the 

flavonoid pathway was proved to be an important regulatory locus as a QTL for resistance of 

maize to corn earworm (McMullen et al. 1998).  However, regulatory factors have not been 

reported for starch metabolism to date. While the physiology, biochemistry and molecular 

biology of carbohydrate metabolism and transport in plants have been extensively studied, 

the information on the total number of genes relevant to TSC is incomplete and will remain 

so for the foreseeable future.  Nevertheless, there are a few lines of evidence suggesting that a 



 
Discussion 

 

 
 

95 

molecular function map for the genes currently known to control carbohydrate metabolism 

and transport is a good basis for explaining at the molecular level QTL for starch- and sugar-

related agronomic traits in plants. Apart from the results of our study as outlined above, in 

maize, all mutations affecting the starch content of the kernel that have been identified at the 

molecular level affect enzymes of carbohydrate metabolism (Neuffer et al. 1997). QTL for 

sugar content of kernels and other traits of maize are linked, for example, to QTL for 

enzymatic activity of sucrose phosphate synthase (Causse et al. 1995). Moreover, a first QTL 

for sugar content of tomato fruits has been characterized on the molecular level and shown to 

be controlled by molecular variants of an apoplastic invertase gene (Fridman et al. 2000).  

4.3  Single nucleotide polymorphism (SNP) 

SNP is a new type of molecular marker that is very useful and robust in genetic association 

analysis. SNPs are detected by various techniques, for instance, by gel-based sequencing 

(Nickerson et al. 1997), high-density variation-detection DNA chips (VDAs) (Wang et al. 

1998), and direct approach based on public databases (Picoult-Newberg et al. 1999). In the 

present study, an attempt was made to identify the potential SNPs existing in the gene Stp23 

by sequencing PCR products of the gene derived from different genotypes. The template 

DNA used for sequencing was PCR product amplified with the same primers from both 

diploid and tetraploid potato lines. The objective was to investigate the feasibility of detecting 

potential SNPs by sequencing PCR products of the gene of interest and, to characterize the 

SNP distribution in functional genes. The results of SNP obtained, although they need to be 

confirmed, represent a promising beginning for further identification and application in 

potato genetic studies.  

In this study, the identification of SNPs has been demonstrated (Sect. 3.2) by visually 

examining the electropherogram of sequence data from a PCR product. Overlapping peaks at 

a single nucleotide position indicates a potential SNP (Figure 3-6). The SNPs identified by 

this way reflected the heterozygocity of the genotype.  When comparing the peak height of a 

nucleotide signal in the homozygous state with those in the heterozygous state (potential bi-

allelic SNPs), a characteristic drop in peak height at heterozygous positions for two peaks is 

observed on the electropherogram and the two peaks result frequently in a base called ‘N’ 

(Figure 3-6). This feature can be used to detect heterozygous positions (SNPs) from sequence 

data. The basis of this feature may be the different dosage of the single nucleotide templates. 



 
Discussion 

 

 
 

96 

In effect, when sequence data were based on a PCR product which is the mixture of two 

alleles (in diploids), nucleotide dosage of the template can be reflected by the signal intensity 

or peak height on the electropherogram. Obviously at heterozygous positions, the template of 

each nucleotide is only half concentrated compared to those at homozygous positions. Thus, a 

drop of peak height at SNP positions is expected on the electropherogram. This feature was 

observed for all bi-allelic SNPs identified with only exception of the consecutive tri-allelic 

and bi-allelic SNPs found in tetraploid line Taiga (Figure 3-6).  

The only drawback for the identification of SNPs through direct sequencing of PCR products 

is that it requires high quality sequence data to give a reliable discrimination between 

heterogeneity of alleles and signal noise. High quality sequence data is needed for 

confirmation of putative heterozygous / homozygous position. 

Sequencing from cloned PCR products gives high sequence quality, however, additional 

work like cloning of PCR products into vectors and multiple clones are required. For this 

reason, sequencing directly from PCR products has more advantages in terms of efficiency, 

particularly for tetraploid lines.  

Besides the identification of SNPs as heterozygous nucleotides within single lines, sequence 

assembly of different lines can detect mismatches for potential SNPs among different lines. 

Such SNPs reflect the frequency that a position within the assembly has heterogeneity in 

nucleotide composition. This depends on the number of sequences compared and the genetic 

diversity among them. 

For large-scale identification of SNP by sequencing, efficiency could be enhanced by 

sequencing pooled DNA of different sources rather than numerous individuals as done in the 

present experiment. Additionally, the procedures of sequence analysis could be automated by 

use of computer programs Phred for base calling, Phrap for sequence assembly and Consed 

for sequence assembly editing (Nickerson et al. 1997).  

In general, a potential SNP for a single copy gene may be considered as real when the 

fluorescence-based sequence was of high quality. However, care must be taken when 

interpreting the results. First, the base-calling error of sequencing exists, which can be 

overcome by repeated sequencing of the same sequence segment in different genotypes. 

Second, the possible paralogous of a gene family should be considered. In cases when the 

gene examined is a member of a multigene family, the candidate sites that appear 
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heterozygous in a sequence, may be the result of mismatches between paralogous members of 

the multigene family. This issue can be further addressed by assessing the genetic distance 

between members of the sequences. 

For aspects of application, SNP data of genes are required, which are representative for 

germplasm potentially used in breeding, so that SNPs identified are likely to be informative 

in any breeding families, thus increasing the potential of applicability of SNP data. Therefore, 

a survey of SNP using a sufficient number of materials is needed. The sequences assembled 

for SNP discovery in gene Stp23 represented some commercial and elite breeding lines used 

in breeding program. They may not be sufficient to achieve a good coverage of commercial 

breeding materials. They may also represent only a limited genetic base of potato since the 

cultivated potato in Europe was derived from a limited number of Solanum tuberosum ssp. 

andigena (Bradshaw et al. 1994). Therefore sequence differences observed in the 14 lines 

represent only part of the SNPs potentially existing in the potato gene pool. 

In the SNP analysis of gene Stp23, eight exonic SNPs were revealed, of which four derived 

from the T710 parent of population LH and one from the P3 parent of population K31. These 

SNPs resulted in amino acid changes, which may further modify the gene function and 

expression, and ultimately affect the phenotypic trait like TSC. Interestingly, a remarkable 

effect on TSC was observed at the locus Stp23 in both two populations K31 and LH (Schäfer-

Pregl et al. 1998). This coincidence may imply that Stp23 could be a causal gene affecting the 

TSC and the non-synonymous changes of amino acid observed in this gene could be the 

cause. It can not be ruled out, however, that SNPs at other regions, for example in the  

promoter region, could also be the cause for the phenotypic variation of TSC. When the gene 

causing the effect is validated, the effect of the allelic variations of the genes could be 

actually the real genetic factors affecting the quantitative trait, thus circumventing the map-

based cloning of the QTL. 

The SNPs identified occurred in exons as well as in introns. The former ones were much less 

frequent than the latter ones. This feature was also observed in other organisms (Li and 

Sadler 1991). In addition, SNPs are frequently distributed in the total genome of all 

organisms examined so far. For instance, a frequency as high as 1 in every 202 bp has been 

observed in mouse genome (Lindblad-Toh et al. 2000). Because of this, SNPs have many 

advantages and much potential for application. First, it can facilitate the development of high-

density genetic maps because of the high occurrence in the genome. Second, since the 
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detection of SNPs can be focused on structural genes which are more valuable than 

anonymous regions. Therefore, SNP, as a new marker system, can provide an alternative to 

the STS approach for function mapping. Third, this approach could identify a number of 

sequence variants in exons or promoter regions that may lead to the alteration of gene 

function or gene expression. This could be associated with phenotypic variation in the 

population. The allelic variations of the gene may actually be the genetic factors affecting the 

quantitative trait. Finally, as the sequence context of the SNPs is already known, it is possible 

to exploit some of the automated approaches available to genotype a population on a large 

scale. 

4.4  QTL analysis 

4.4.1  Strategy of QTL-tagging  

In potato, QTL analysis is largely constrained to the experimental diploid populations to 

avoid the complexities of tetrasomic inheritance (Bonierbale et al. 1994; Leonards-Schippers 

et al. 1994; Van Eck et al. 1994, Freyre et al. 1994, Van den Berg et al. 1996a, b; Douches 

and Freyre 1994; Freyre and Douches 1994; Schäfer-Pregl et al. 1998). Studies performed on 

diploids provide informative insight into the genetic nature of the trait studied. Making 

inferences from the diploid to the tetraploid level is not straightforward, however, since genes 

affecting quantitative traits might have different effects at the diploid and tetraploid ploidy 

levels (Groose et al. 1988). Thus, it is highly desirable that breeding-oriented QTL analysis is 

performed on tetraploids.   

In general, QTL analysis requires construction of a linkage map with markers evenly 

distributed over the genome using the population from which phenotypic data were collected. 

However, due to the complexity of tetraploid genome structure, linkage construction in 

tetraploid potato is difficult. First, a total of 96 linkage groups (four homologous groups of 12 

chromosomes for each parent) potentially exist for a tetraploid population of potato. For 

linkage mapping, an extremely large number of markers, preferably codominant have to be 

generated to have a sufficient number of markers on each group. Second, bridging markers 

need to be generated to identify the homologous groups. Apparently, the efforts leading to the 

linkage construction is expensive and time consuming, which has been demonstrated by 

Meyer et al. (1998). In their experiment, 573 AFLP markers that segregate in three 

segregation types (1:1, 1:3, 1:5) were selected for linkage analysis from the fragments 



 
Discussion 

 

 
 

99 

generated with 39 AFLP primer combinations. These markers could be organized into 30 and 

26 linkage groups for the maternal and  paternal maps, respectively, representing 25 % 

coverage of the genome. Only 8 homologous groups were identified because of the limited 

number of bridging AFLP markers linking homologous groups. 

In present study, without a prior construction of linkage map, QTL were tagged by fAFLPs 

using fluorescent sequencing system in combination with t-test regression analysis and U-

test. This is the first study on QTL tagging in a tetraploid crop plant using fAFLP marker 

technology. This strategy was adopted because, first, fAFLP is a semi-automated genotyping 

technique which allowed to generate with high efficiency sufficient amount of molecular 

markers in a short period of time compared to other available marker technologies.  Second, 

the dominant nature of fAFLP markers being scored as presence versus absence, meets the 

requirements for QTL tagging by parametric t-test or non-parametric U-test and the 

quantitative fAFLP data also allowed correlating fAFLP markers with phenotypic traits by 

regression analysis. The power of these statistic tools may not be equally high when applied 

to data of markers with different segregating types. For example, segregation ratio deviated 

from 1:1 may reduce the power of the t-test. However, these two methods, when combined, 

can complement to each other and could give a fairly good association test for markers with 

different segregation types. And finally, this strategy needs not to generate so many markers 

as required for linkage mapping in tetraploid. In effect, when sufficient markers are generated 

to cover 12 chromosomal linkage groups irrespective of the homologous groups, further 

increase in number of markers may enhance the precise detection of QTL but may not 

significantly lead to the identification of new QTL. In the present study, more than 200 

polymorphic fAFLP markers were estimated to be generated with 7 primer combinations (see 

Table 3-5). These markers, although much less than sufficient to generate linkage groups or 

even to identify marker pairs linked in coupling-phase, may give a fairly good overall 

chromosomal coverage. Van Eck et al. (1995) generated a total of 264 markers with six 

AFLP primer combinations and demonstrated a good overall genome coverage of the diploid 

potato genome. The fAFLP markers generated in this experiment, therefore, have the 

potential to tag the QTL dispersed in the total genome of Z3.  

This approach, while successful in QTL-tagging, suffers some inherent weakness. On one 

hand, despite the fact that a number of fAFLPs were inferred from common AFLP markers 

identified in diploid reference mapping population (see Sect. 3.3.5), most fAFLP markers of 

interest still remain unknown in terms of their chromosomal positions. Consequently, it 
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remains unclear (i) whether QTL markers which showed associations with the same trait 

were linked or independent, (ii) how many QTL were identified and, (iii) to what extent the 

QTL can be exploited for MAS in the population, which, in case when the number of QTL is 

known, can be estimated from the total proportion of phenotypic variance explained by all 

QTL. On the other hand, the dominant nature of AFLP prevented discrimination of allelic 

composition of the tagged loci in the parental lines, and thereby, analysis of configuration and 

the effect of different combinations on the trait of interest were not feasible. This is 

particularly important in polyploid genomes where a greater number of possible alleles at a 

locus exist. 

Despite the drawbacks, the fAFLP data of population Z3 does provide valuable information 

regarding the genetic components at all tagged loci for each individual of the population Z3. 

The fAFLP data can therefore be used, at least in population Z3, for informed selection of 

individuals harbouring superior allele combinations of QTL-linked fAFLP markers based on 

the origin of the markers and direction of effects on the traits studied.  

Studies on function mapping, SNP detection in the functional gene Stp23, QTL analysis using 

candidate genes offer new possibilities for future QTL analysis. On this basis, an improved 

strategy can be proposed. Since a large number of functional genes have been localized on 

the potato linkage map, functional genes can be readily selected based on the map positions 

and used as markers for QTL analysis for any traits of interest. As the genes are 

predominantly mapped by STS approach, the primer sets can be directly adopted from the 

present study to generate CAPS markers for the same genes in different populations provided 

that the same marker alleles are present. When sufficient SNPs are discovered for all these 

functional genes as done for Stp23, the genotyping process could be remarkably accelerated 

by automated detection and scoring of SNPs.  

This strategy could offer many advantages as compared to fAFLP-tagging. First, since STS 

and SNP markers are potentially codominant in nature and could detect multiple alleles for a 

given locus, a more powerful program such as interval mapping could be applied to the data 

for QTL analysis. Second, since the map position of the genes are known, more detailed 

parameters of QTL, such as the locations, number and degree of effects and the interaction 

between QTL, could be addressed without constructing a linkage map. Third, when the 

biochemical basis of a trait under study is highly relevant to carbohydrate metabolism, the 

candidate gene approach can be used for QTL analysis as performed in the present study. 
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And finally, once significant QTL are identified, the functional gene markers associated with 

the trait could be incorporated directly into breeding programs for marker-assisted selection. 

4.4.2  Magnitude of fAFLP-tagged QTL effects  

Based on threshold set for declaring marker-trait associations, many significant QTL were 

identified in both locations. Some QTL were expressed in one location but not in the other. 

Some of these potential QTL may be false positives which resulted simply by chance. The 

frequency of false positives could be tested by permutation tests (Churchill and Doerge 1994) 

which were, however, not applied in this study. Nevertheless, when a fragment consistently 

showed association with a trait in independent trials with the same direction of effect or when 

a fragment showed associations with different but related traits, it was more likely that the 

fragment is linked to a genuine QTL. Similarly, a QTL detected in single environment may 

be caused simply by chance. However, considering the stringent threshold P value used, most 

QTL detected in only one location are likely to be the result of genotype x environment 

interaction.  

The amount of variance explained by single fAFLP markers was small. The most significant 

marker accounted for 6 %, 12.6 % and 6.9 % of the variance of TSC, RSC and FE, 

respectively. This may be explained by several reasons. First, the genetic complexity of the 

traits which may be controlled by numerous genes. As described in Sect. 1.6, at least 70 

genes are known to be involved in carbohydrate metabolism and transport and may 

potentially contribute to the biosynthesis of starch and sugars. Many genes may be 

responsible as QTL for the variation of TSC and RSC depending on the segregation 

population used (see Sect. 4.2.3).  For FE, the knowledge of biochemical mechanisms 

underlying the trait is not well understood, however the polygenic nature is clearly 

demonstrated by its phenotypic distribution. There are reports indicating that 17, 6 and 7 QTL 

for TSC (Schäfer-Pregl et al. 1998), chip colour (reflecting the level of RSC) (Douches and 

Freyre 1994) and foliage maturity (Collins et al. 1999), respectively, have been identified in 

diploid mapping populations. Assuming that a similar number of QTL for TSC with additive 

effect were active in Z3, given the trait heritability of 59 %, it is conceivable that only 2 % - 6 

% of the variation was accounted for by individual markers. Second, the marker density in 

the tetraploid population may not have been very high, due to the limited number of primer 

combinations used for marker generation. Consequently, recombination occurred between 

markers and QTL resulted in the reduction of the effect that can be detected by the marker. 
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Moreover, the dominant nature of the AFLP markers could not allow more precise 

classification of genotypes based on their allele configuration except the two classes with 

marker present or absent. Finally, the variation in trait measurement decreased the heritability 

of the trait.  

4.4.3  Assignment of map positions of fAFLPs and segregation analysis 

AFLP polymorphisms are defined by nine nucleotides (six nucleotides for the enzyme 

recognition sites plus three selective nucleotides) at the EcoRI end and seven nucleotides 

(four nucleotides for the enzyme recognition sites plus three selective nucleotides) at the 

MseI end and the fragment size. It is likely that an AFLP fragment with the same size derived 

from different genetic backgrounds corresponds to the same locus. In contrary to RAPD 

markers which have an acute problem of transferability (Lynch et al. 1994; Black 1993), 

AFLP fragments mapped in one population can serve as chromosome-specific markers if they 

also segregate in another population. The transferability of AFLP markers has been 

demonstrated in barley (Waugh et al. 1997; Yin et al. 1999) and in potato (Li et al. 1998; 

Rouppe van der Voort et al. 1997). This observation provides the basis for inferring map 

positions of fAFLP markers derived from the tetraploid population Z3 from markers of 

identical size which are mapped in the reference mapping population K31.  

fAFLP was performed on the reference mapping population K31 under the same conditions 

with the same primer combinations as performed in Z3. 43 fAFLP markers segregating in 

K31 were detected to be in common between the two populations K31 and Z3. Segregation 

data created by GeneScan® and Genotyper™ were integrated into the RFLP framework data 

set of K31 and analysed for linkages. 18 fAFLP markers were localised with a recombination 

frequency of less than 5 % to the nearest reference markers and multipoint analysis of 

recombination frequency allowed confident positioning of these markers (Figure 3-10). For 

the remaining markers, the recombination frequency with the closest reference markers was 

between 5 % - 18 % which, in most cases, may be overestimated. This may be due to the fact 

that the adapted threshold of peak quality 50 for fragment calling may not be fully fit for all 

the cases under investigation. Consequently, this may result in erroneous scores leading to the 

overestimation of the recombination frequency.  Thus these markers were positioned only 

approximately.  
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The inferred map position of the fAFLP markers, although limited in number, could allow 

comparison of some fAFLP-tagged QTL with the ones previously detected in other studies. 

17 QTL for TSC have been reported in K31 (Schäfer-Pregl et al. 1998). Several fAFLP-

tagged  QTL for TSC in Z3 were positioned in the similar regions.  They are G3-393 (LG  I), 

B3-206, G2-71 (LG  II), B1-316, G3-342, SssI (LG III), G1-90 (LG IV), B2-168 (LG V), B3-

121 (LG IX), B3-130 (LG X), Dbe, B1-77 (LG XI), B1-103, B3-100, and G2-444 (LG XII). 

This finding suggests that these markers may have tagged the same gene or gene family 

controlling TSC as detected in the population K31. The QTL alleles are unlikely, however, 

the same since Z3 and K31 are genetically unrelated. The genetic variation of the QTL alleles 

in the two populations may be responsible for the potentially different degree of QTL effects.  

Six QTL for chip colour (reflecting the level of RSC) have been revealed (Douches and 

Freyre 1994) with two on chromosome II, one on IV, two on V and one on X.  Some fAFLP 

markers, were assigned to the same linkage groups such as G1-90 (LG IV), B3-215 (LG V), 

B3-141 (LG V), G1-342 (LG V), and B3-137 (LG V). Further comparison is not feasible due 

to the lack of common reference markers between the two populations investigated. Some 

fAFLP-tagged QTL for RSC were localized in the QTL regions for TSC in K31, such as B1-

166 (LG I), G3-83 (LG I), Stp23 (LG III), G1-90 (LG IV), B2-398 (LG VI), G3-54 (LG IX), 

Dbe (LG XI), G2-89 (LG XI), B1-77 (LG XI), G1-169 (LG XII). The localization of QTL for 

different traits in a similar regions on molecular linkage maps may be due to pleiotropic 

effects of single genes on multiple traits. It cannot be excluded, however, that such results 

may be due to the linkage of two or more functionally independent genes. The lack of a high-

resolution map prevents to distinguish these two possibilities. 

7 QTL for FE have been identified with the one on LG V linked to marker GP179 being the 

most significant, accounting for up to 70 % of the phenotypic variation (Collins et al. 1999). 

The functional gene Sut2, which was closely linked to GP179, was selected for tagging the 

QTL in Z3 (see Sect.3.3.6). No effect was detected at this locus for FE in Z3. It should be 

noted that 5 fAFLP markers showing associations with FE in Z3 were clustered in an 18 cM 

interval flanked by RFLP markers GP179 and GP234. These multiple markers proximal to 

the region reinforce that the markers tagged a genuine QTL for FE. However, no fAFLP 

markers in this region showed such a notably significant effects as detected in the population 

analysed by Collins et al. (1999). One explanation is that QTL alleles in this population are 

different from that in Z3. It is also possible that the fAFLPs tagged a closely linked but 
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functionally different gene(s), or breeders’ selection against very late genotype diminished 

the effects. 

The inferred map position of the fAFLP markers represent only a small part of the markers 

showing associations with the analysed traits. More detailed QTL parameters in terms of 

location, number, interaction (epistasis), reproducibility and degree of effect, would rely on 

the availability of map positions of all other markers. This could be compensated using 

various reference mapping populations. An initial step has been made by Rouppe van der 

Voort et al. (1998) for AFLP mapping in potato by which a number of AFLP markers have 

been positioned on different linkage groups. When more and more AFLP markers with their 

map positions become available, it may become more feasible to infer the position of a AFLP 

marker from a reference AFLP map without cloning and sequencing.  

The possible segregation type of fAFLP markers was determined based on a chi-square test 

for deviation from the segregation ratios of 1:1 and 1:5 expected for simplex- nullipex and 

duplex-nulliplex fragment configurations, respectively. Segregation ratios of 1:3, 1:11 and 

1:35 are expected for parental genotype of simplex-simplex, simplex-duplex and duplex-

duplex, respectively. 49 markers showed the expected segregation ratio as indicated in Tables 

3-8, 3-9, 3-10. However, caution must be taken when reviewing the results since the method 

of inferring the mode of segregation type may result in a false hypothesis when segregation 

ratios are highly distorted. In most cases, distorted segregation ratios that were observed 

mainly favoured the undetected alleles (absence). Some may be due to the occurrence of 

double reduction which increases the production of homozygous gametes as compared to 

random chromosome segregation and leads to alteration of segregation ratios (Ronfort et al. 

1998), others may be explained by the selection performed on the population by breeders. 

Distortion favouring the presence of a marker allele may also exist but cannot be tested 

reliably in the study because of the multiple alternative genetic models and the limited 

number of individuals available for testing, for example, goodness of fit for the ratio 1:35. 

4.4.4  Genetic basis of correlations between phenotypic traits  

A negative correlation (r=-0.62) was found for TSC and RSC in the population Z3. This 

relationship was also uncovered from QTL analysis. 15 marker loci were detected as having 

associations with both traits (Table 3-10). At each of these fAFLP loci, except G1-339, the 

alleles associated with increased TSC were associated with decreased RSC and vice versa. 
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This close association between QTL for TSC and RSC at these marker loci suggests that both 

traits may be controlled at least in part by the same gene(s) with pleiotropic effects.  

Similarly, TSC and FE were also correlated with a correlation coefficient of 0.49 (see Sect. 

3.3.2). Generally, high TSC is associated with delayed foliage maturity and vice versa. This 

was further confirmed in the QTL analysis by which 12 markers showed associations with 

TSC and FE. All markers except Y-393 and B1-244 had effects on both traits with direction 

congruent to their phenotypic correlation relationship, indicating that the same gene(s) with 

pleiotropic effects may be responsible for the QTL identified.  

Fewer markers (7) have been detected to be associated with both RSC and FE, and the 

direction of effect on the two traits, unlike the previous two cases, was variable (Table 3-10). 

3 markers were accordant in the direction of effect with the phenotypic correlation while 4 

markers were contradictory. The variability of the direction may indicate the genetic 

complexity of the two traits. Some fAFLP may have tagged genetic factors with pleiotropic 

effects while others may detect functionally different but closely linked genes.  

Overall, the marker-trait association analysis has revealed a number of fAFLP markers 

associated with single and multiple traits. The relationship between traits revealed by markers 

with multiple effects on the traits is consistent with their phenotypic correlations indicating 

that the fAFLP markers successfully tagged, at least in part, genetic factors contributing to 

the traits examined. The QTL analysis with fAFLP markers provide a genetic basis in terms 

of linkage or pleiotropy for the correlations observed between these traits. Briefly, the traits 

relationship between TSC and RSC, TSC and FE may be in part controlled by the same 

genetic factors with pleiotropic effects on different traits. It cannot be excluded, however, that 

functionally different but genetically closely linked genes are the cause of the correlations. 

Further work is required to get the definitive conclusions on this point.  

The nature of pleiotropic effects of QTL on TSC and RSC was in agreement with the 

expectation of potato breeding for high TSC and low RSC. The partially common or closely 

linked genetic factors for TSC and FE imply that it may be difficult to increase TSC without  

delaying the foliage maturity through conventional breeding procedures. In this case, the use 

of molecular markers for the simultaneous improvement of TSC and FE may be more 

efficient than direct selection based on the phenotype. This could be achieved by 

pyramidizing favourable alleles for both traits at independent QTL.   
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4.4.5  Cloning and conversion of fAFLP markers and comparison of the two 

genotyping systems fAFLP and rAFLP 

The marker-trait association analyses yield QTL being tagged by a number of fAFLP 

markers. The most significantly associated fAFLP markers need to be cloned and converted 

into easy-to-use markers for further investigation. To this end, a case study of cloning fAFLP 

fragments via radioactive AFLP was carried out using primer combina tion of B3. The 

experiment has demonstrated that it was possible to clone fAFLP markers via rAFLP 

approach. However, the efficiency of cloning was relatively low. There are reports indicated 

that successful cloning and conversion of AFLP markers was mostly limited to a range of 

smaller AFLP fragments (Reamon-Buettner and Jung 2000). In present study, cloning of 

fAFLP was bypassed using rAFLP. This technique change resulted in further decreasing of 

cloning efficiency since not all fragments could be re- identified unambiguously on 

autoradiograph. The conversion of the marker proved to be much more difficult than 

expected which could be attributed to the tetrasomic genome structure and the nature of the 

AFLP fragments. First, sequencing of ten clones revealed 7 nearly identical sequences which 

differed from one another by single nucleotides. The sequences were highly variable and the 

actual number of such sequences is likely more. Second, the polymorphism of the fAFLP 

fragment is based on the EcoRI and MseI sites and the three selective nucleotides of the 

primers. Primers that are designed in any other region may result in lost of specificity defined 

by AFLP (Shan et al. 1999). Third, allele specificity revealed by sequence comparison 

between two parents could be useful for designing allele-specific primers for diploid inbred 

species but may not be so in highly heterozygous tetraploids like potato. This is further 

complicated by the fact that the cloned fragment detected multiple copies. Taking all these 

factors into consideration, conversion of fAFLP markers is a technically difficult and time-

consuming exercise. 

Cloning of fAFLP fragments via rAFLP also allowed the comparison of the two genotyping 

systems. Compared to rAFLP, fAFLP offers many advantages. (1) fAFLP is performed with 

fluorescence- labelled primers in combination with DNA sequencer, thus precluding the 

necessity of working with radioactivity. (2) Since primers are labelled with different 

fluorescent dyes, fAFLP products could be mixed and loaded in one lane on the gel, thus 

significantly reducing the number of gels to be run per study. (3) Electrophoresis of fAFLP is 

viewable directly on the gel image at real time, and the process can be completed within 4 

hours using appropriate running parameters. The results that can be subjected to down stream 
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computer-aided analysis eliminating all steps like fixing, drying and exposure as required by 

rAFLP analysis. (4) Highly precise sizing with single base pair resolution and data output 

both qualitative (scored as presence and absence) and quantitative (scored as peak height) in 

Excel format can be achieved semi-automatically by GeneScan® and Genotyper™ software 

eliminating the possibility of errors occurring during manual data handling. (5) fAFLP 

generates fragments with a larger scorable size range from 50bp to 500bp or more if needed, 

while fragments out side the range of 100-500 bp were hardly scorable on autoradiographs. 

(6) fAFLP is extremely sensitive and powerful in detecting trace amount of product while for 

rAFLP, the trace products appear as faint bands which vary with the exposure time and the 

decay period of radioactivity of the label used.  Therefore, fAFLP generated much more 

scorable fragments than rAFLP. For example, a total of 117 scorable fragments were 

generated with primer pair E-act/M-cta using the automated fluorescent AFLP system, 

whereas only 72 fragments could be clearly identified on autoradiograph using radioactively 

labelled AFLP technique. This discrepancy is largely due to the faint bands that could hardly 

be unambiguously scored on autoradiographs. Similar observations were also reported by 

Zhang et al. (1999). 

While having these advantages, fAFLP technology has also inherent problems. Since it is 

extremely sensitive and detects even trace amounts of product, it can also easily generate 

environmental noise resulting from either the overlapping of the wavelengths between 

different colour dyes or the contamination of gel plates. To minimize the influence on the 

results, a quality thresho ld of 50 was selected for fragment scoring. In other words, only 

fragments that were higher than 50 in peak height were scored. In my experience, such 

threshold seemed optimal although it was chosen arbitrarily. Moreover, the overlapping of 

the wavelength between different dyes can cause spectral interference between the dye labels 

during analyses. Consequently, the size standard definition derived from one of the samples 

may not fully fit to those of others, which, when not verified, may result in an erroneous 

assignment of size to fAFLP fragments. Therefore, the size standards of all the samples have 

to be visually checked to eliminate this possibility before proceeding to data analysis with 

Genotyper™. In genotyping using Genotyper™ software, fragment calling is performed by 

converting fragment size into prior-defined size categories. In the present study, the range of 

size categories was limited to a single base pair. As a result, the same-size fragments may be 

split into two different ones in some cases due to slight lane-to-lane variation. A post viewing 

of the output data is also required to minimize such errors.  Finally, recovering of fAFLP 
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fragments of interest cannot be performed on the system itself to date but has to rely to 

rAFLP. Due to the difference of sensitivity of the two genotyping systems, rAFLP could not 

detect all the fragments which are identified on the fAFLP system.  

4.4.6  Function map-based QTL analysis  

The candidate gene strategy has been shown to be very useful and effective in the analysis of 

genetic factors controlling phenotypic traits with a known biochemical and physiological 

basis (Winkelman 1992, Causse et al. 1995, Faris et al. 1999). The basis of the candidate 

gene strategy is that relationships between functional genes and traits are known and that 

genome regions showing a QTL effect in one population also show marker-QTL associations 

in the same region in other populations (Oberhagemann et al.1999, Kearsey and Farquhar 

1998). In potato, the function map for genes involved in carbohydrate metabolism (see Sect. 

3.1) provides the framework for the application of candidate gene strategy in the QTL 

analysis for starch and RSC. Five functional genes selected on the basis of known 

overlapping positions with QTL for TSC identified in population K31 (Schäfer-Pregl et 

al.1998) were tested for association with phenotypic traits in population Z3. Association 

analysis indicated that genes Dbe and SssI were significantly associated with QTL affecting 

TSC in population Z3 at the 1 % leve l. No significant effect was detected at the other gene 

loci. More prominent results were obtained for RSC. Two loci Stp23 and Sut2, on 

chromosomes III and V, respectively, showed significant effects consistently detected at two 

locations at 1 % level. It is worth noting that Stp23 is closely linked to Pain-1 (coding for 

soluble acid invertase, see Figure 3-3 on page 57) which, based on its functional role, appears 

more likely to be the candidate for the QTL controlling RSC. The effects observed at Stp23 

may result from the linked Pain-1 gene. Gene Sut2, a member of sucrose transporter family, 

was repeatedly detected as a QTL affecting RSC. The observation is in accordance with the 

putative physiological role of Sut2, which is believed to act as sucrose sensor to control 

sucrose fluxes across the plasma membrane of sieve element (Barker et al. 2000). It should 

be noted that a major QTL for FE was identified at RFLP locus GP179 (Oberhagemann et al. 

1999, Collins et al. 1999), however, no such effects were detected at the Sut2 locus, which is 

closely linked to GP179, in the population Z3. The possible explanations may be that the 

effects were not large enough to be detected in the experiment with the statistical method 

used or alleles were homozygous at putative QTL loci or a PCR-based assay at locus Sut2 

may have detected a allele ineffective on the trait. 
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5.  SUMMARY 

 

5.1 Function mapping as an approach to the identification of genes 

controlling tuber starch content in potato 

Carbohydrates are the major storage compounds of cereal and tuber crops. In potato, tuber 

starch content, which is a quantitative character, is of agronomic importance and is controlled 

by genetic factors and environmental conditions. Genetic mapping using anonymous RFLP 

markers allowed the dissection of the genetic component of the quantitative trait into discrete 

quantitative trait loci (QTL) and their localization on the potato molecular map. QTL analysis 

alone does not reveal the identity of the gene(s) controlling the trait at the molecular level. 

Molecular linkage maps based on functional gene markers may shed light on this issue by 

correlating the relevant functional genes to QTL for the trait, thus leading to the identification 

of candidate genes underlying a quantitative trait. For this purpose, the nucleotide sequence 

databases EMBL and GenBank were explored for sequence information of genes from 

potato, tomato and other plant species. Priority was given to genes operating in carbohydrate 

metabolism and transport. Sequence information was used to amplify the homologous or 

analogous genes in potato by PCR. Polymorphisms of the amplification products were 

revealed either directly or after cleavage with restriction enzymes in two diploid mapping 

populations K31 and LH. Reliability of the mapping approach was confirmed by sequence 

comparison of the PCR products with the source genes and by comparing map positions of 

PCR products with corresponding loci previously determined by RFLP. A potato function 

map consisting of 82 loci was constructed based on 66 cloned genes of known biochemical 

function. The comparison of the molecular function map with the QTL map for tuber starch 

content, which was previously constructed using the same population, revealed a number of 

correlations between the map positions of QTL for tuber starch content and loci of function-

related genes. 14 out of 17 QTL for tuber starch content were linked to at least one known 

candidate gene locus. The clearest positional correlation was found between the Stp23 gene 

encoding starch phosphorylase and QTL ts(g) on linkage group III. 

The gene markers, as defined in this study, are a valuable tool for genetic analysis and 

marker-assisted selection since they are predominantly PCR-based and cover a considerable 
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proportion of the potato genome. To enhance further the efficiency of genotyping a 

population for a given functional gene, it is highly desirable that the gene markers are 

amenable to automatization. To this end, candidate gene Stp23 was selected as a case study 

for exploring single nucleotide polymorphisms (SNPs), which have much potential for 

automated detection and scoring. PCR products of 14 potato lines were sequenced. Bi-allelic 

and tri-allelic SNPs were revealed within single lines and sequence assembly of different 

lines revealed potential SNPs existing in potato genotypes. Together, 31 candidate SNPs were 

identified in a 1801 bp segment of Stp23, 8 of which were in coding regions and 23 were in 

introns.  

5.2   fAFLP tagging of genetic factors controlling tuber starch 

content, reducing sugar content and foliage earliness in tetraploid 

potato 

Tuber starch content, reducing sugar content and foliage earliness are three important 

agronomic traits in potato breeding program. QTL analysis for the traits has been addressed 

in a few studies using diploid potato. While providing insight into the genetic nature of the 

trait studied, studies performed on diploids may suffer from the disadvantage of ploidy 

manipulation and difference in QTL effects may exist at two ploidy levels (Groose et al. 

1988). Therefore in the second section of the study, a QTL analysis was carried out in 

collaboration with a breeding company in a tetraploid hybrid family Z3. An efficient fAFLP 

genotyping system performed on a 377 DNA sequencer was adopted for DNA marker 

generation.  A total of 806 fAFLP markers were tested for association with QTL for tuber 

starch content, reducing sugar content and foliage earliness. 40, 25, 32 fAFLP fragments 

were identified to be associated with tuber starch content, reducing sugar content and foliage 

earliness, respectively. 33 fAFLPs showed associations with two or more traits.  

To obtain positional information of these fAFLP markers on the potato map, the reference 

mapping population K31 was also genotyped in parallel with the same system and using the 

same primer combinations. Map positions of 50 fAFLP fragments were inferred from 

common markers mapped in the reference mapping population K31. Nine were located in 

map regions of previously identified QTL for tuber starch content.  
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For breeding-oriented QTL analysis, the most significantly associated markers are required to 

be cloned and converted into a marker type that is amenable to marker-assisted selection. To 

achieve this goal, radiolabelled AFLP was used for cloning fAFLP fragments of interest. 

However, cloning and conversion of fAFLP fragments via rAFLP was not efficient due to the 

difference in sensitivity between the two genotyping systems and the complexity of 

tetrasomic inheritance of tetraploid potato. Only one fragment, which was highly associated 

with reducing sugar content, was cloned and sequenced but failed to be converted into a 

‘easy-to-use’ marker.  

With the availability of the potato function map described in the first section, it become 

feasible to perform QTL analysis via a candidate gene approach for any given population. To 

test this, five candidate genes, which overlapped with QTL for tuber starch content on the 

map of K31, were selected to test for association with the traits investigated in population Z3. 

Genes Stp23 (starch phosphorylase) and Sut2 (sucrose transporter like) detected significant  

associations with reducing sugar content at two different locations. Three alleles of the gene 

Dbe, coding for a debranching enzyme, had an effect on tuber starch content at one location. 
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5.  ZUSAMMENFASSUNG 

 

5.1  Funktionelle Kartierung als ein Ansatz zur Identifikation von 

Genen, die den Stärkegehalt der Kartoffelknolle kontrollieren 

Kohlenhydrate sind in Getreidepflanzen und knollenbildenden Feldfrüchten die 

dominierenden Speicherverbindungen. Der Stärkegehalt der Kartoffelknolle ist ein 

quantitatives Merkmal von agronomischer Bedeutung und wird durch genetische Faktoren 

und Umwelteinflüsse reguliert. Dieses quantitative Merkmal konnte durch genetische 

Kartierung mit Hilfe von anonymen RFLP Markern in diskrete QTLs zerlegt werden, die auf 

der genetischen Karte der Kartoffel lokalisiert wurden. Die QTL-Analyse allein führt 

hingegen nicht zur Identifizierung der merkmalskontrollierenden Gene auf der molekularen 

Ebene. Hier können molekulare Kopplungskarten hilfreich sein, die auf funktionellen Gen-

Markern basieren. Die Korrelation von Merkmals-relevanten Genen mit QTLs für dieses 

Merkmal kann zur Identifikation von Kandidatengenen führen, die das quantitative Merkmal 

prägen. Zu diesem Zweck wurden die Sequenzdatenbanken EMBL und GenBank vorwiegend 

nach Kartoffel- und Tomatengenen, aber auch Genen anderer Pflanzen durchsucht, die dem 

Kohlenhydratstoffwechsel und -transport zuzuordnen sind. Von der Sequenzinformation 

dieser Gene wurden Primer abgeleitet, mit deren Hilfe homologe bzw. analoge Sequenzen 

aus der Kartoffel mittels PCR amplifiziert wurden. Segregierende Polymorphismen zeigten 

sich nach der Amplifikation von DNA der verschiedenen Pflanzen der diploiden  

Kartierungspopulationen K31 und LH, entweder direkt oder nach dem Restriktionsverdau der 

PCR-Produkte. Die Verläßlichkeit dieses Kartierungsansatzes wurde durch Vergleich der 

Nukleotidsequenz der PCR-Produkte mit der Datenbanksequenz, von der die Primer 

abgeleitet worden waren, und durch Vergleich der Positionen der gewonnenen PCR-Produkte 

auf der Genkarte mit den entsprechenden bereits vorher mittels RFLP bestimmten Loci 

überprüft. Hierdurch wurde eine funktionelle Genkarte der Kartoffel mit 82 Loci basierend 

auf 66 klonierten Genen von bekannter biochemischer Funktion erstellt. Die QTL-Karte des 

Kartoffelgenoms bezüglich des Stärkegehalts der Kartoffelknolle, welche von derselben 

Population konstruiert worden war, konnte nun mit der funktionelle Genkarte verglichen 

werden. Es wurde deut lich, daß sich eine bedeutende Anzahl an Positionen aus den beiden 

verschiedenen Kartierungsansätzen überlagerten. 14 der 17 QTLs konnten mindestens einem 

Locus für ein bekanntes Kandidaten-Gen zugeordnet werden. Die beste positionelle 
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Korrelation fand sich zwischen dem Stp23-Gen, das für eine Stärkephosphorylase codiert, 

und dem QTL ts(g) auf Chromosom III. 

Die von bekannten Genen abgeleiteten Marker, wie sie in dieser Arbeit vorgestellt werden, 

sind ein nützliches Hilfsmittel für die genetische Analyse und für die Marker gestützte 

Selektion, da sie hauptsächlich auf PCR-Techniken basieren und einen beträchtlichen Teil 

des Kartoffelgenoms abdecken. Zur Steigerung der Effizienz der genotypischen Analyse 

einer Population bezüglich eines gegebenen funktionellen Gens ist es wünschenswert, den 

Gen-Marker einer automatischen Analyse zugänglich zu machen. SNPs (single nucleotide 

polymorphisms) eignen sich besonders gut für eine automatische Detektion und Auswertung. 

Beispielhaft wurden hierzu PCR-Produkte des Kandidaten-Gens Stp23 von 14 Kartoffellinien 

sequenziert. Innerhalb einzelner Kartoffellinien wurden bi- und triallelische SNPs gefunden. 

Der Vergleich der Sequenzen verschiedener Genotypen führte zur Identifizierung 

potentieller,  für die Automatisierung geeigneter SNPs. So wurden insgesamt 31 SNPs in 

einem 1801 bp langen Segment des Stp23-Gens identifiziert von denen 8 in der codierenden 

Region und 23 in den Introns zu finden waren. 

5.2  fAFLP-Tagging von genetischen Faktoren, die den 

Stärkegehalt, den Gehalt von reduzierenden Zuckern der 

Kartoffelknolle und die Reifezeit kontrollieren 

In der Kartoffelzüchtung sind der Stärkegehalt der Knollen, der Gehalt an reduzierenden 

Zuckern bei der Lagerung und die Reifezeit Merkmale von herausragender Bedeutung. 

Einige Studien widmen sich der QTL-Analyse dieser agronomischen Merkmale unter 

Verwendung von diploiden Kartoffellinien. Diese liefern zwar einen aufschlußreichen 

Einblick in die genetische Natur der untersuchten Merkmale, reichen jedoch nicht zur 

Beschreibung von QTL-Effekten bei tetraploiden Kartoffellinien. Deshalb wurde  im zweiten 

Teil dieser Arbeit in Zusammenarbeit mit einem Kartoffelzuchtunternehmen eine QTL-

Analyse einer tetraploiden Hybridfamilie Z3 unternommen. Zur Gewinnung von DNA-

Markern wurden auf effizient Weise fAFLP Produkte mit einem 377 DNA-Sequenzierer 

analysiert. Insgesamt wurden 806 fAFLP Marker auf ihre Kopplung mit QTLs für den 

Stärkegehalt der Kartoffelknolle, den Gehalt an reduzierenden Zuckern und die Reifezeit hin 

untersucht. Davon waren 40 fAFLP Marker mit QTL für den Stärkegehalt, 25 mit QTL für 
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den Gehalt an reduzierenden Zuckern  und 32 mit QTL für die Reifezeit assoziiert. 33 fAFLP 

Marker waren mit zwei oder mehr Merkmalen gekoppelt. 

Um positionelle Information über diese fAFLP Marker auf der genetische Karte der Kartoffel 

zu erhalten, wurde auch die diploide Kartierungspopulation K31 mit derselben Technik unter 

Verwendung der gleichen Primerkombinationen untersucht. 50 fAFLP Fragmente waren mit 

bereits bekannten RFLP-Markern in der Referenzpopulation K31 gekoppelt. 9 fAFLP-

Fragmente wurden in Regionen lokalisiert, die zuvor als QTLs für den Stärkegehalt der 

Kartoffelknolle identifiziert worden waren.  

Will man die signifikantesten Marker für eine QTL-Analyse in einem Züchtungsprogramm 

nutzen, so müssen diese kloniert und in einen Markertyp umgewandelt werden, der in der 

Marker-gestützten Selektion leicht zu handhaben ist. Hierzu wurden  fAFLP-Fragmente in 

radioaktiv markierte rAFLP-Fragmente überführt. Es stellte sich allerdings heraus, daß die 

Klonierung und Umwandlung von fAFLP-Fragmenten über die Herstellung von rAFLP-

Fragmenten nicht effizient genug ist. Einerseits ist die Sensitivität der beiden 

Markierungstechniken der AFLP-Fragmente zu unterschiedlich, andererseits begrenzt die 

Komplexität der Vererbung der genetischen Faktoren bei tetraploiden Kartoffeln eine 

problemlose Umwandlung aller fAFLP-Fragmente in radioaktiv markierte, klonierbare 

AFLP-Produkte. Allerdings gelang es, ein AFLP-Fragment, das hoch signifikant mit dem 

Gehalt an reduzierenden Zuckern gekoppelt war, zu klonieren und zu sequenzieren. Ein 

einfach zu handhabender Marker konnte von diesem Fragment jedoch noch nicht abgeleitet 

werden. 

Mit der Verfügbarkeit einer funktionellen Karte des Kartoffelgenoms, so wie sie im ersten 

Abschnitt beschrieben wurde, ist es möglich, eine QTL Analyse mittels Nutzung der 

Sequenzinformation von Kandidaten-Genen für jede beliebige Population durchzuführen. 

Zum Test wurden fünf Kandidaten-gene, die mit QTLs für den Stärkegehalt der 

Kartoffelknolle in der Population K31 gekoppelt sind, auch in der Population Z3 auf 

Assoziation mit dem Stärkegehalt hin untersucht. Drei Allele des Dbe-Gens, das für das 

“debranching”-Enzym kodiert, zeigten einen Effekt auf den Stärkegehalt. Die Gene Stp23 

(Stärkephosphorylase) und Sut2 (Saccharosetransporter-ähnlich) zeigten eine signifikante 

Kopplung mit dem Gehalt an reduzierenden Zuckern. 
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7.  APPENDIX 
 
 
 

Six new nucleotide sequences of functional genes in potato* 
 
 
7.1  Partial potato genomic sequence of gene Rcaa  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.2  Partial potato genomic sequence of gene Anta  

Sequence I  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 

1 ACACCGTCAA  CAACCAGATG  GTGAATGCCA  CCCTCATGAA  CATTGCTGAC   

51 AACCCAACAA  ATGTCCAGCT  CCCCGGTATG  TACAACAAGC  AAGAGAACTG  

101 CAGGGTCCCC  ATTATTGTCA  CTGGTAACGA  CTTCTCCACA  TTGTATGCTC   

151 CTCTTATCCG  TGATGGTCGT  ATGGAGAAGT  TCTACTGGGC  ACCAACTAGG  

201 GAGGATAGAA  TTGGTGTTTG  CAAGGGTATT  TTCAGAACTG  ACAACGTGCC   

251 TGAGGAAGCT  GTTGTAAAGA  TTGTCGATTC  CTTCCCTGGA  CAATCTATTG   

301  GTACAAACAC  TAAAGAATTC  AAAATGAAAT  TTCTCTTTTA  A   

 
 

      

     1  TGGAGAGGAA  ACACTGCCAA  TGTTATCCGT  TATTTCCCCA  CTCAGGTTTA  

50 CCATTTGTCT  TCATTTTGAG  GGCTGTAATT  TATGCATCAA  AGATACATGC 

101 ACATTTATTG  CTCTGTTGTT  TGCTTAAGTC  GAGCATTGAC  NGACTGATGC 
                                                   (C/T) 

151  TCTGTTCCAC  AGGCCCTGAA  CTTTGCATTC  AAGGACTACT  TCAAGAGACT 

201 CTTCAACTTC  AAGAAGGACC  GTGATGGCTA  CTGGAAGTGG  TTTGCTGGCA 

251 ACCTTGCCTC  AGGTGGTGCT  GCTGGTGCTT  CTTCTTTGTT  CTTTGTCTAC  

301 TCCTTGGACT  ATGCTCGTAC  CCGTCTTGCT  AATGACGCCA  AGGCTTCAAA 

351 GAAGGGAGGT  GAGAGGCAGT  TCAATGGTTT  GGTTGATGTC  TACAAGAAGA  

401 CACTTAAATC  TGATGGAATT  GCTGGTCTAT  ACCGTGGATT  CAACATTTCA 

451  TGTGTTGGTA  TCATTGTTTA  CCGTGGTTTN  TACTTTGGAA  TGTACGACTC  
                                    (A/G) 

501 CTTGAAGCCT  GTCCTCTTGA  CAGGAAACCT  GCAGGTTAGT  GTTTTTATAA 

551  TGTTGGCTTT  GCTATGCTTG  TTCA   
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             Sequence II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.3  Partial potato genomic sequence of gene Ndpsa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
       1  CCTGGGTTGT TCCTGTTCCA TTTTTTTAAA GTATGGAATG CTGGTTAATA  

      51  TTGTGTTCCA CAGGCATTGA ACTTTGCATT TAAGGACTAC TTCAAGAGGC  

     101  TCTTCAACTT CAAGAAGGAC CGCGATGGCT ACTGGAAGTG GTTTGCAGGT  

     151  AACCTGGCAT CTGGTGGTGG TGCTGGTGCT TCCTCTTTGC TCTTTGTTTA  

     201  CTCCCTTGAC TATGCTCGTA CTCGTCTTGC AAATGATGCC AAGGCTGCAA  

     251  AGAAGGGAGG TGGTGGCAGA CAATTCGATG GGTTGGTTGA TGTCTACAGA  

     301  AAGACACTTA AATCTGATGG AGTTGCTGGC TTGTACCGTG GGTTTAACAT  

     351  TTCATGTGTT GGTATCATTG TGTACCGTGG TTTGTACTTT GGAATGTATG  

     401  ATTCATTGAA GCCAGTGCTG TTGACTGGAA AGATGGAGGT TAGTTATCCA  

     451  TCTATTTTTG GTATTTTCCC ATATTGCTAG TTTGCTATTT TGTGATGATA  

     501  TCATATGTTG ATAGTTATGT TCAGATGCTT ACAATACTTG GAGATTGTTG  

     551  CCTGTTACTT TGGAGTTGGG TTTTAGGATG TTATGGTTGG AATATGACTT  

     601  CATTCTATTT TTTTATTNTC TTGATGGTTG CAGGATAGTT TCTTTGCTAG  
                          (C/T) 

     651  CTTTGCTCTT GGATGGCTCA TCACCAATGG TGCTGGTCTT GCATCGTACC  

     701  CTATTGACAC AGTTAGGAGA AGAATGATGA TGACATCTGG TGAGGCAGTG  

     751  AAGTACAAGA GCTCGTTCGA TGCATTCAAC CAAATCCTTA AGAATGAGGG  

     801  TCCCAAATCA CTCTTCAAGG GAGCTGGTGC CAACAT 

 

      
1 ATGATCAAGC  CTGATGGTGT  CCAGTGGCCT  GGTTGGTGAG  ATTATCGGCA   

51 GATTTGAGAA  GAAAGGATTT  TCTTTGAAAG  GCTTGAAGCT  CATCACTGTG  

101 AACCATGCCT  TTGCTGAGAA  GCATTACGCT  GACTTGTCTG  CTAAGCCTTT  

151 CTTTAATGGG  CTTGTTGAGT  ATATTGTTTC  TGGACCTGTT  GTTGCTATGG 

201 TCTGGGAGGG  TAAGGGTGTA  GTTGCCACTG  GCAGGAAGAT  CATTGGAGCA 

251 ACCAACCCCT  TGGAGTCGGC  TGCTAGTACC  ATCCGTGGTG  ATTTTGCTAT 

301 TGATATTGGC  AGGAATGTTA  TTCATAGAAG  TGATGTTGTT  GAGAGTGCTA  

351 GGAAGGAGAT  TGCTTTTTGG  TTCCCCGAAG  GAATTGCAGA  GTGGCAGAGC  

401  AGCCTTCACT  CTT   
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7.4   Partial potato genomic sequence of gene Enob 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.5   Partial potato genomic sequence of gene Glob 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.6  Partial potato genomic sequence of gene Pgka (see Figure 3-4 on page 59) 
 

*  Italics residues indicate intron; primer sequences were underlined; ‘N’ represents potential bi-allelic  
 SNP with   alternative nucleotides given in parentheses.   
a  Sequence data based on PCR product as template 
b  Sequence data based on cloned PCR product as template 
 
Rca= ribulose bisphosphate carboxylase activase,  Ant= adenylate transporter,  Eno= enolase,   
Ndpk = nucleoside diphosphate kinase, Glo= glycolate oxidase,  Pgk= phosphoglycerate kinase 

     1 CTGATTTTCT  CCATTCATGC  TGTTGTTCCA  GGTTGTGAAA  GGGCACAAGG  
    51 CAGGATCCCT  GTATTCTTGG  ATGAAGGTGT  CCGCCGTGGA  ACAGATGTCT  
   101 TTAAAGCTTT  GGCACTTGGA  GCTTCAGGCA  TTTTTGTAAG  TACCATATAA  
   151 TGATTGGACC  TAGATTGGTG  GCACATAGCT  CAATCTTTTA  TCTTTATCTA  
   201 CTCACCAGTA  GACCAAGTAG  TGCCTTTTTC  CAAAATCTGC  CTTGAGAATG  
   251 GTCAACAATC  TGAAAGTGAT  TTTAAATCTC  CCTAATAGTC  GTAGTAATAC  
   301 AATAATTACG  CCTCAGTCCA  AAGCAAGTTT  AGTATCTTCC  CTTTTAAGCC  
   351 GCTATATTGG  GAAATTCAAA  GTTAATAGAA  GTCCCTTGCA  CTTTCGAGAA  
   401 CCAAGAAAAG  TAGGCATTAT  AATTTATACC  TACATAATCA  GTGAATGATA  
   451 AATAACAGCT  GGTAAAATAT  TGGAGAACAA  GTTCCATGGG  TAAATGGGAA  
   501 ATGGGACAGT  CTTAACACAT  TCCAAAACCA  GTTCATTGTT  GGCTAAGCAC  
   551 ACAGTTACAT  ATTATGCCAT  GTTTCCTTTT  CGTCTTCAAA  CATCTTAGCG      
   601 AGTGACATTC  TGTATTGTCC  TTAACAGATT  GGAAGGCCAG  TAGTTTTCTC  
   651 ATTGGCTGCT  GAAGGAGAAG  CTGGAGTCAA  AAAAGTGCTG  CAAATGTTGC  
   701 GCGATGAGTT  TGAGCTAACT  ATGGCATTGA  GTGGCTGTC  
 

    1 AGCTGTTGTT  AGATAATCTG  GTGGCTGAGA  TGATTTTCTG  TTTAGGTGGT  
   51 CATTGGAATG  GATGTTGCAG  CATCTGAATT  TTACGGAAAG  GACAAATCTT  
  101 ATGACCTGAA  CTTCAAAGAA  GAGGCAAGTA  CTGACTATTG  CTTCTTTCAC  
  151 ACATGCTTTT  CCGAGGTAGT  CTCGTAGTCA  AACTGTTCAT  ACGTTATTCA  
  201 GTTTTGCTCA  TATTTATTCT  TATTTGCAGA  GCAATGACGG  CTCACAAAAG  
  251 ATATCAGGTG  ACCAACTCAA  GGATTTGTAC  AAGTCATTTG  TGTCCGAGTA  
  301 CCCTATTGTT  TCAATTGAAG  ATCCATTTGA  CCAAGATGAC  TGGGAGACCT  
  351 ATGCTAAGCT  CACCACTGAG  ATTGGGGAGC  AAGTACAGAT  TGTCGGAGAT  
  401 GATCTCCTTG  TCACCAACCC  TAAGGTAAGA  TTGAAGCTTT  AACAATATTG  
  451 CTTGCATATC  AGAGTTGCTG  TTTCCATTGA  AAAGAAAAGC  AGACATCAAT  
  501 TTCTCTAGGT  GTTGATGTTT  ACCATGTATA  CTTATTTATA  ATGGTGTGCA  
  551 GAGGGTCGCC  AAGGCAATTG  CAGAGAAGAC  TTGCAATGCT  CTTCTTCTCA  
  601 AGGTATCATC  CTATCCAGCT  TATAGGTTGT  ATATTTCCGC  CATGATAATG  
  651 AGAGTTTCCT  CTTTGAGATG  TTATTAAATC  ATTTCTCTCT  CGATATGTGT  
  701 CAGGTTAACC  AAATTGGCAG  TGTGACCGAG  AGTATTGAAG  CTG  
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