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Abstract 

 

 

Plants adjust their developmental programmes to the surrounding environment, which allows them to 

colonise almost every habitat on earth. One key player in regulating different developmental processes 

in response to the environment in Arabidopsis thaliana is GIGANTEA (GI), a circadian-clock 

regulated protein that is most abundant in the evening. The precise timing of GI transcription is 

proposed to be crucial for it to fulfil its different functions such as the regulation of flowering time, 

raising the question of how GI itself is transcriptionally regulated. 

 

A combination of phylogenetic and genome-wide bioinformatic analysis as well as the study of 

transgenic promoter-reporter and complementation lines demonstrated that a highly conserved 700bp 

block within the GI promoter is important for many aspects of GI regulation and function. These 

include the response to light and temperature, control of hypocotyl growth and the regulation of 

flowering time. Moreover, conserved Evening Element (EE) motifs within this block were shown to 

be important for several specific features of GI transcription. Having shown the importance of EEs 

within the GI promoter, all EEs were mapped on a genome-wide level and co-occurrences with other 

circadian-clock related cis-regulatory elements were determined. This analysis revealed striking 

patterns between EEs and between other cis-elements that gave insights into the general transcriptional 

code in plants.  

 

Taken together, this thesis demonstrates that the pleiotropic functions of GI in light signalling, the 

circadian clock, freezing tolerance and the regulation of flowering time are reflected within its 

promoter. This work not only contributed to understanding the complex transcriptional regulation of 

GI and its function in the plant, but also provided novel insights into the regulation of co-expressed 

genes and the general transcriptional code in plants. 
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Zusammenfassung 

 

 

Pflanzen passen ihre gesamte Entwicklung an ihre natürliche Umgebung an, eine Fähigkeit, durch die 

sie fast jedes Habitat auf der Erde erobert haben. Ein Schlüsselregulatur in der Steuerung 

verschiedener umweltabhängiger Entwicklungsprozesse in Arabidopsis thaliana ist GIGANTEA (GI), 

ein durch die zirkadiane Uhr reguliertes Protein, welches am Abend in der größten Abundanz vorliegt. 

Es wird vermutet, dass die genaue Steuerung der GI Transkription entscheidend für die verschiedenen 

Funktionen von GI ist, wie z.B. die Regulation des Blühzeitpunktes. Dies wirft die Frage auf, wie GI 

selbst transkriptionell reguliert wird. 

 

Eine Kombination aus phylogenetischer und genom-weiter bioinformatischer Analyse sowie das 

Studium von Promoter – Reporter und Komplementationslinien hat gezeigt, dass ein hoch 

konservierter 700bp langer Block innerhalb des GI Promoters wichtig für viele Aspekte der GI-

spezifischen Regulation und Funktion ist. Dazu gehören die Antwort auf Licht- und 

Temperatursignale, die Kontrolle des Hypokotylwachstums sowie die Regulation des Blühzeitpunktes. 

Außerdem wurde gezeigt, dass bestimmte cis-regulatorische Elemente, die sogenannten Evening 

Elemente innerhalb dieses Blockes wichtig für verschiedene spezifische Merkmale der GI 

Transkription sind. Nachdem die Wichtigkeit dieser Evening Elemente für den GI Promoter gezeigt 

wurde, wurden die Positionen sämtlicher Evening Elemente und anderer cis-regulatorischer Elemente 

sowie deren Auftreten untereinander im gesamten Genom bestimmt. Diese Analyse zeigte 

bemerkenswerte Muster zwischen Evening Elementen und anderen cis-regulatorischen Elementen und 

vermittelte somit Einblicke in den generellen transkriptionellen Code in Pflanzen. 
 
Zusammenfassend zeigt diese Doktorarbeit, dass sich die vielfältigen Funktionen von GI in 

Lichtsignaltransduktionswegen, der zirkadianen Uhr, der Kältetoleranz und der Regulation des 

Blühzeitpunktes auch in seinem Promoter widerspiegeln. Diese Arbeit trägt nicht nur dazu bei, die 

komplexe Regulation GIGANTEAs und dessen Funktion für die Pflanze zu verstehen, sondern 

gewährt darüber hinaus auch neue Einblicke in die Regulation co-exprimierter Gene und dem 

generellen transkriptionellen Code in Pflanzen. 
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Introduction 
 

1.1 Preamble 
 

Plants provide the basis for almost every other life form on earth. Plants as photoautotrophic 

organisms fix carbon dioxide from the atmosphere and produce carbon-rich compounds such as sugars 

or starch, thus providing the basis for the nutrition of all heterotrophic organisms. Doing so, plants 

have also colonised almost every environment on earth, from the dense growing tropical rainforests to 

the hostile plains of Antarctica. Unlike most other organisms, plants are sessile and cannot move from 

their original location, therefore they have to cope with all environmental conditions to which they are 

exposed at that site. To this end plants have evolved an enormous capacity to respond to a wide range 

of environmental factors. This plasticity allows plants to adjust their entire development to the 

surrounding environment, such as over-growing their neighbours to forage more light, synchronizing 

reproduction with the changing seasons or coping with environmental stresses such as freezing 

temperatures.  

 

Genetic approaches in the model plant species Arabidopsis thaliana have proven a powerful means of 

identifying the molecular mechanisms underlying plant responses to their environment. Generally 

distinct, specific pathways confer responses to each environmental stimulus. However, some mutants 

show surprisingly pleiotropic effects, suggesting that the affected gene contributes to multiple 

pathways that were previously assumed to be independent. 

 

One of those is gigantea (gi), which was identified in the 1960s as a mutant that shows delayed 

flowering under long day conditions (Redei, 1962). This late flowering phenotype is accompanied by 

massive growth of these plants and hence the name of the mutant (Fig. 1.1). During the last 50 years, 

the underlying gene has been cloned (Fowler et al., 1999; Park et al., 1999) and even though the 

precise biochemical function of GIGANTEA protein still remains elusive, it clearly regulates many 

other responses including circadian rhythms, freezing tolerance and sugar accumulation in addition to 

flowering time.  

 

This thesis studies the transcriptional regulation of GI and how this contributes to these responses.  

 

 



2 Introduction 
 

1.2 The functions of GIGANTEA 
 

1.2.1 GI and its role in flowering time regulation 
 

The initiation of flowering is a key step in the life cycle of all higher plants, marking the transition 

from the vegetative to the reproductive state. Therefore, this process has been studied by plant 

scientists and breeders for at least 100 years (Bresinsky et al., 2008; Jung and Müller, 2009). In the last 

two decades research has focused on the application of genetics to the model species A.thaliana and a 

wealth of knowledge was gained. The decision to flower in this facultative long-day plant is regulated 

by a number of different, but partially overlapping flowering time pathways. These include the 

vernalisation pathway, the gibberelin pathway, the aging pathway, the autonomous pathway and the 

photoperiodic flowering pathway (Boss et al., 2004; Fornara et al., 2010). All these pathways respond 

to internal or external cues such as the age of the plant, regulation by hormones as gibberellins, the 

presence of a cold period or the length of the day. These pathways converge on transcriptional 

regulation of so called floral integrators such as FLOWERING LOCUS T (FT) or SUPRESSOR OF 

OVEREXPRESSION OF CONSTANS (SOC1) (Fornara et al., 2010). These genes integrate the signals 

from different floral pathways, which finally results in the reprogramming of a vegetative to a 

reproductive meristem. Ultimately this complex network of different flowering time pathways enables 

plants to flower at the most appropriate time of the year and therefore to secure optimal conditions for 

seed development and maturation.  

 

 

 

The photoperiodic flowering time pathway has been extensively studied at the genetic and molecular 

levels. A. thaliana is a facultative long-day plant: long day conditions induce rapid flowering whereas 

exposure to short days results in a pronounced delay in flowering. A number of mutants have been 

isolated that are late flowering under long day conditions, but flower almost like wt under short day 

conditions, such as co, ft, gi and fkf1 (Koornneef et al., 1991). An external coincidence model 

(Pittendrigh, 1966) was proposed and validated for the induction of flowering depending on the 

photoperiod. According to this model, CONSTANS (CO) transcription is regulated by the circadian 

clock so that its mRNA is abundant in the late evening from around 12h after dawn (Putterill et al., 

1995; Suarez-Lopez et al., 2001). This timing of mRNA transcription means that CO mRNA 

accumulates in the light under long days but only in darkness under short days. As CO protein is 

rapidly degraded in the dark, no CO can accumulate under short days, thus preventing flowering under 

these conditions. Under long days, however, the peak of CO mRNA occurs in the light phase, thus CO 

protein can accumulate and activate FT transcription which in turn leads to the induction of flowering 
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(Suarez-Lopez et al., 2001; Valverde et al., 2004). Recent studies suggest that FT is the long sought 

florigen, the proposed ‘flowering-hormone’ that transmits the signal for flowering from the leaves to 

the shoot apical meristem (Corbesier et al., 2007). 

 
Fig. 1.1 Flowering phenotype of gi mutants compared to 35S::GI and wildtype plants. Pictures show five 
week old plants grown under long days (16h light / 8h darkness), either in the Columbia (upper panel) or 
the Landsberg erecta (lower panel) background. 
 

 

GI was proposed to have a crucial function in the promotion of the photoperiodic flowering pathway, 

as different screens for late-flowering mutants yielded a number of different gi alleles and the late 

flowering of these mutants was always dependent on the photoperiod (Redei, 1962; Koornneef et al., 

1991; Fowler et al., 1999; Park et al., 1999) (Fig.1.1). The over-expression of GI leads to early 

flowering irrespective of the photoperiod (Mizoguchi et al., 2005). By genetic analysis GI could be 

placed upstream of CO and FT (Mizoguchi et al., 2005), but because the GI protein showed no 

homology to proteins of known function its biochemical role within the photoperiodic flowering time 

pathway remained elusive. 

FKF1 encodes the F-box containing protein FLAVIN-BINDING; KELCH-DOMAIN; F-BOX 

PROTEIN 1 (FKF1)(Nelson et al., 2000; Imaizumi et al., 2003). Both GI and FKF1 are clock 

regulated and display a peak in mRNA abundance in the evening. The GI and FKF1 proteins interact 
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in the nucleus when plants are exposed to blue light and FKF1 is stabilized by this interaction (Sawa et 

al., 2007), which suggested a mechanism by which GI might regulate CO transcription.  

The GI-FKF1 complex triggers ubiquitination of CYCLING OF DOF FACTORs (CDFs), which are 

then degraded in the proteasome. CDFs are transcriptional repressors that bind directly at the CO 

promoter (Sawa et al., 2007). This degradation of CDFs occurs in the evening, when the GI-FKF1 

complex is most abundant, which then leads to the accumulation of CO mRNA under long day 

conditions and finally to the expression of FT mRNA leading to induction of flowering (Sawa et al., 

2007; Fornara et al., 2009). Thus the abundance of GI at the precisely right time of the day is crucial 

for its function in inducing CO mRNA at a time that distinguishes LD and SD. This timing of GI 

expression is primarily achieved via the exact timing of GI mRNA accumulation in the evening 

(Fig.1.2).  

 

 
Fig. 1.2 The function of GI in the control of photoperiodic flowering in A. thaliana. GI and FKF1 mRNA 
as well as the respective proteins are most abundant in the evening and form a complex under the 
influence of blue light. This complex targets CDFs for degradation, thus allowing CO transcription in the 
evening. 
 
 

 

However, this evening-abundance of GI is not only achieved by the regulation at the transcriptional 

level, but also on the posttranscriptional level. Use of tagged versions of GI demonstrated that the 

protein accumulates in the evening even when being expressed from a strong constitutive promoter 

(David et al., 2006a). Therefore plants have apparently evolved two layers of regulation in order to 

ensure the evening-abundance of GI.  

Recently it was shown that a quintuple mutant, lacking GI and four CDFs, still retains diurnal 

expression of CO at a similar level as in wildtype plants (Fornara et al., 2009). This surprising result 
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demonstrates that other factors than GI and the CDFs contribute to the activation of CO transcription 

within the photoperiodic flowering time pathway, thus adding another layer of complexity to the 

network of photoperiodic flowering. 

 

GI has also been proposed to regulate the induction of flowering independently from CO. In gi-2 

plants, the level of miR172 is severely decreased (Jung et al., 2007). This Micro-RNA, in turn, 

represses TARGET OF EAT1 (TOE), an AP2 like protein that represses FT transcription. The 

mechanism by which GI regulates miR172 levels has not been described.  However this creates a CO-

independent layer of FT regulation (Jung et al., 2007).  

 

Taken together, the exact timing of GI mRNA expression in the evening seems to be crucial for plants 

to measure day-length and therefore for the decision to flower at the right time of the year. 

 

1.2.2 GI and its role in the plant circadian clock 
 

The earth rotates around its axis every 24h, thus creating day and night. For most organisms this daily 

change of light and dark periods has major consequences for their metabolism, physiology and 

behavior. This is especially true for phototrophic organisms such as plants, which directly rely on the 

exposure to light to ensure their nourishment. 

 

First observations of diurnal leaf movements in tropical tree species were made as early as the 4th 

century BC by the Greek chronicler Androsthenes, who was exploring the Arabian peninsula in order 

to prepare its conquest by Alexander the Great (Androsthenes; Bretzl, 1903). Since that time, such leaf 

movements were discovered and investigated in a number of different plant species. However, it took 

as long as the 1930s, until Erwin Brünning first proposed that the cause for such plant movements is 

an internal oscillator with a cycle time of approximately 24h (Bünning, 1936). Together with work 

from Aschhoff and Pittendrigh this set the basis for a completely new discipline in biology, which was 

called chronobiology (Dunlap et al., 2003). Soon it became clear that almost every organism on earth 

contains an internal pacemaker and that this inner pacemaker is regulating an enormous amount of 

physiological processes, from the leaf movements in plants (Dunlap et al., 2003) to sleep rhythms of 

humans (Hogenesch and Ueda, 2011). 

 

Circadian clocks enable organisms to match their internal rhythms to external rhythms and thus allow 

them to anticipate periodic events such as sunrise in the morning or sunset in the evening, an ability 

that was proposed to confer a selective advantage. In an elegant study by Dodd et al this was 

demonstrated for A. thaliana. Mutant plants with different period lengths were grown under different 
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day-night cycles of 20h, 24h or 28h. This study revealed that each plant performed best when the pace 

of its inner clock matched the external photoperiod (Dodd et al., 2005). Wildtype plants outcompeted 

mutant plants under 24h cycles, demonstrating the fitness advantage of a proper circadian clock in  

24h cycles (Dodd et al., 2005). Due to the importance of circadian clocks, a large proportion of 

transcripts is under circadian control in most organisms. In Arabidopsis, between approximately 6% 

(Harmer et al., 2000a) and 36% (Michael and McClung, 2003) of all transcripts are directly controlled 

by the circadian clock and up to 90% of all transcripts (Michael et al., 2008b) cycle at least under one 

environmental condition.  

 

 

All circadian clocks are characterised by a number of general features (McClung, 2006).  First, 

circadian rhythms have a period of approximately 24h, which is the basis of their name (circa = about, 

dies = day in latin). Second, the internal rhythm persists under constant conditions, such as continuous 

light or dark and constant temperature. Furthermore, circadian clocks show temperature compensation, 

a feature that enables them to operate over a range of physiological temperatures without changing the 

speed of the oscillator. Finally, circadian clocks can be re-set by strong external stimuli, such as light 

or temperature pulses. This resetting ensures that the clock can be continuously matched to the 

environment, a process that is called entrainment. Often the sensitivity of the clock to environmental 

signals is dependent on the time of day of this signal. 

In plants circadian clock research focuses mainly on the model plant A.thaliana. In numerous screens 

for circadian clock mutants many components of the plant circadian clock have been discovered. As 

for circadian clocks in fruitfly or mammals, a transcriptional feedback loop was proposed for the A. 

thaliana circadian clock. It was proposed that this central loop consists of three major components, 

TIMING OF CAB EXPRESSION 1 (TOC1) and the two MYB like transcription factors CIRCADIAN 

CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) (Alabadi et al., 

2001). Within this central oscillator, TOC1 activates the expression of LHY/CCA1 in the morning. 

This happens via interaction of TOC1 with the TCP transcription factor CCA1 HIKING 

EXPEDITION (CHE) and the resulting complex directly binds the CCA1 promoter (Pruneda-Paz, 

2009). Later during the day LHY/CCA1 represses the expression of TOC1, a process that is mediated 

by direct binding of LHY/CCA1 to the TOC1 promoter via Evening Elements (EEs) (Alabadi et al., 

2001; Perales and Mas, 2007). At dusk, when LHY/CCA1 levels decrease, TOC1 is activated again, 

thus completing the loop (Fig.3) (Alabadi et al., 2001).  
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Fig. 1.3 Simplified 3-loop model of the Arabidopsis circadian clock.   
 
 

However, the lhy/cca1 double mutant still retains rhythmicity under constant conditions (Mizoguchi et 

al., 2002b), indicating that additional factors play a role in clock function. To address this problem, a 

model with three interlocked feedback loops was proposed, comprising of the described central loop 

as well as morning and evening loops (Locke et al., 2006a) (Fig. 1.3). The morning loop contains 

PSEUDO RESPONSE REGULATOR 7 and 9 (PRR7 and PRR9) (Farre et al., 2005) that are 

positively regulated by LHY and CCA1 in the morning and in turn negatively regulate LHY/CCA1 

transcription during the day (Locke et al., 2006a). 

 

The evening loop was predicted to comprise TOC1 and the hypothetical factor Y (Locke et al., 2006a). 

According to the model by Locke et al, Y is repressed by LHY/CCA1 throughout the day and is a 

positive regulator of TOC1 in the evening, thus maintaining robust rhythmicity in the plant circadian 

clock. Furthermore the model proposed that Y is a transducer of light signaling, therefore making the 

clock sensitive to dusk entrainment and enabling it to measure day length. GIGANTEA was suggested 

to a likely candidate for factor Y (Locke et al., 2006a). 

 

GI interacts with ZEITLUPE (ZTL), a blue light photoreceptor and F-Box ubiquitin ligase related to 

FKF1 (Kim et al., 2007). This GI-ZTL complex is blue light dependent and targets TOC1 for 

degradation in the evening, thus directly regulating a core clock component from the central oscillator.  

Interestingly, ZTL is constitutively transcribed during the day, but ZTL protein shows an evening 

abundance similar to GI. Therefore, the correct timing of GI expression determines the abundance of 

the GI-ZTL complex in the evening and thus the precise negative regulation of TOC1 (Kim et al., 

2007). 

 

This indeed shows the importance of GI in maintaining rhythmicity and sharpening the circadian clock 

output.  However, it also shows that GI is not the proposed positive regulator of TOC1, as suggested in 

the model of Locke and colleagues (Locke et al, 2006). Collectively these data indicate that the 
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proposed evening loop of the A.thaliana circadian clock is more complex than initially thought and 

consequently recent clock models separate the function of GI and a still unknown component Y 

(Imaizumi, 2010).  

 

Apart from degradation of TOC1, GI also plays a role in temperature compensation of the circadian 

clock (Gould et al., 2006). The gi mutant shows impaired rhythmicity under low temperatures and a 

shorter period under higher temperatures, indicating that temperature compensation is impaired in 

these plants. However, the evening-phased expression pattern of GI mRNA seems to be almost 

unaffected between 12°C and 28°C (Gould et al., 2006). 

 

Interestingly, the effects of GI on the circadian clock and the regulation of flowering are separable. 

Whereas overexpression and mutation have opposite effects on flowering time (i.e. early flowering in 

the overexpressor and extreme late flowering in the mutant (Fig. 1.1) (Mizoguchi et al., 2005), both 

cause a short period and low amplitude phenotype (Mizoguchi, 2005). These transgenic data were 

further supported by the isolation of the gi-200 allele (Martin-Tryon et al., 2007). This mutant allele 

has the characteristic short period phenotype of all gi mutants, whereas it flowers like wildtype in LD. 

In SD, gi-200 flowers even earlier than wt, which is caused by a shift of CO mRNA expression 

towards the morning and therefore high FT mRNA expression occurs at the end of the day, a pattern 

that can be explained by the short period phenotype in gi-200 (Martin-Tryon et al., 2007). However, 

these data show that, although the timing of CO expression is changed in gi-200, its amplitude of 

expression is not reduced, as observed in other gi mutants. This proves the separable functions of GI 

within the circadian clock and CO activation. These different functions may be partly explained by the 

interaction of GI with two different F-Box proteins. Whereas the interaction between GI and ZTL 

controls clock function, interaction between GI and FKF1 controls flowering time.  

 

The circadian clock in A.thaliana is proposed to be cell autonomous so that every cell contains the 

same multiloop clock. However, surprisingly the clock in A.thaliana roots is different from the above 

described shoot clock (James et al., 2008). The root clock comprises only the morning loop with   

LHY/CCA1 and PRR7/9. Interestingly this was proposed to be due to the inability of LHY to bind 

EEs in roots, at least in the promoter of the CATALASE3 (CAT3) gene (James et al., 2008). Therefore 

LHY/CCA1 were proposed not to be able to bind EEs in the promoters of the evening-phased clock 

genes TOC1 and GI, which uncouples the morning loop from the central and the evening loop in roots 

(James et al., 2008). 

 

In summary, GI is proposed to be an essential component of the A. thaliana circadian clock in the 

shoot, whose precise pattern of expression in the evening is proposed to be crucial for it to fulfill its 

proper function. 
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1.2.3 Further functions of GIGANTEA in plants 
 

Plant development is characterised by a number of physiological processes, such as growth, the 

metabolism of sugars or the deposition of starch. Moreover plants have to cope with different kinds of 

stress during their life cycle, such as the response to extreme temperatures.  

 

Interestingly, GI seems to be involved in all the aforementioned processes, either directly or indirectly. 

As the biochemical function of GI within all of these processes is still elusive, predictions for GI 

function largely rely on the analysis of gi mutants. 

 

One well documented feature of the gi mutant is its long hypocotyl phenotype that occurs in red, but 

not in far-red light and is observed for different gi mutant alleles (Huq et al., 2000b). Whereas 

phytochrome A mediates the plant responses to far red light, phytochrome B is the mediator of 

hypocotyl elongation in red light (Quail et al., 1995). Therefore it was concluded that the gi mutation 

causes a reduction in PHYB signalling, but does not affect PHYA signalling (Huq et al., 2000b). 

However, no differences in phyA or phyB abundance were observed in gi, indicating that gi affects the 

PHYB signalling cascade downstream of the photoreceptor (Huq et al., 2000b). 

 

Furthermore it was shown that different gi mutants display a long hypocotyl phenotype also in blue 

and white light, but not in constant dark (Martin-Tryon et al., 2007). Together with the finding that red 

and blue light affect the amplitude of the CCR2::Luc marker in gi compared to wildtype plants, it was 

proposed that GI acts both in blue and in red light signalling to the clock (Martin-Tryon et al., 2007). 

Moreover, even though GI does not affect PHYA signalling under high light conditions, a role in the 

PHYA-mediated very-low-fluence response was described (Oliverio et al., 2007). 

 

 

For sessile organisms like plants a response to cold or freezing temperatures is crucial for their fitness 

and survival in environments where low temperatures occur. Therefore many plants from temperate 

regions mount a protective response to freezing temperatures when they are exposed to cold. This 

process called cold acclimation involves a massive reprogramming of the A.thaliana transcriptome 

(Fowler and Thomashow, 2002). The best characterised regulators of cold acclimation are the C-

REPEAT BINDING FACTORs (CBFs), CBF1, CBF2 and CBF3. These are AP2-type transcription 

factors that are immediately upregulated if the plant is exposed to cold temperatures (Gilmour et al., 

1998). CBFs in turn induce the expression of COLD REGULATED (COR) genes via direct binding to 

the C-Repeat promoter element ((Baker et al., 1994; Gilmour et al., 2000). The transcriptional 

response of the CBFs to cold is gated by the circadian clock (Fowler et al., 2005) and this gating is 



10 Introduction 
 

most probably dependent on direct binding of the core clock components LHY/CCA1 to EEs and CBS 

in the promoters of CBF1, 2 and 3 (Dong et al., 2011). 

 

Surprisingly, also GI transcripts were found to be upregulated five- to ten-fold in response to low 

temperatures (Fowler and Thomashow, 2002). These microarray data were confirmed in another study 

by semiquantitative PCR by the observation that gi-3 mutants were less sensitive to freezing 

temperatures (Cao et al., 2005). The increase in GI mRNA levels upon cold temperatures was also 

observed in Medicago truncatula (Paltiel et al., 2006)  and Brachypodium distachyon (Hong et al., 

2010). Therefore not only circadian-clock mediated evening expression, but also the induction of 

expression by exposure to cold temperatures is likely to be a conserved feature of GI in different plant 

species. 

 

Crosstalk between regulation of flowering time and resistance to cold temperatures has been reported 

for other mutants. The sfr6 mutant (Knight et al., 1999) is not only sensitive to freezing temperatures, 

but also displays a late flowering phenotype under LD conditions. The late flowering correlates with 

low levels of GI and FKF1 mRNA, which lead to low expression of CO mRNA and to no expression 

of FT (Knight et al., 2008). In order to identify downstream targets of SFR6, microarray analysis was 

performed and a set of 209 genes were found to be down-regulated at least 2 fold in sfr6. Interestingly, 

EEs were over-represented in the promoters of these putative targets of SFR6 (Knight et al., 2008), 

thus making it a candidate for an upstream regulator of GI. However, cloning of the sfr6 locus 

revealed that SFR6 encodes a 1268 amino acid protein without any known function or homology to 

any known protein (Knight et al., 2009). 

 

A number of additional phenotypes have been described for the gi mutant: It is more resistant to 

paraquat, a herbicide that causes oxidative stress (Kurepa et al., 1998). Moreover, gi accumulates 

starch in its leaves, not only at the adult stage, but also in seedlings (Eimert et al., 1995). GI was also 

reported to affect fruit set in A.thaliana and therefore to have an important ecological role (Brock et al., 

2007). A recent study suggests that GI is involved in the wall ingrowth deposition of phloem 

parenchyma cells of leaf minor veins in A.thaliana, a process that is induced by high light and cold 

temperatures (Edwards et al., 2010a). Finally GI physically interacts with SPINDLY (SPY), a negative 

regulator of gibberellin (GA) signalling. This study suggests that the GI-SPY complex in concert 

regulates hypocotyl growth and flowering time in A. thaliana (Tseng et al., 2004).  
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1.2.4 Summary 
 

Taken together, the gi mutant exhibits a complex pleiotropic phenotype. Apart from its well 

documented functions within the circadian clock and in the regulation of flowering time, it has 

additional roles in plant architecture, physiology, metabolism and stress responses. In how far all these 

different functions reflect related or independent traits remains to be elucidated. However, at least for 

its flowering time and circadian clock functions, the precise timing of GI abundance proposed to be 

crucial for its function, as this leads to the stabilisation of the related ubiquitin ligases FKF1 and ZTL 

at the appropriate time of the day. 

 

1.3 Transcriptional regulation 
 

1.3.1 General mechanism 
 

Nearly every cell of a multi cellular organism has the same genetic information encoded in the DNA 

of its nucleus. However, multi-cellular organisms consist of different cell types that are specialised for 

different tasks. A major source of this variety is the different transcriptional programming of distinct 

cell types. Transcriptional programming in multicellular organisms does not only change during the 

development of the cell, but also upon the response to internal and external stimuli, such as hormonal 

regulation or the response to environmental signals. 

 

This variation in gene transcription is often regulated by its 5’ upstream sequence, commonly defined 

as the promoter of a gene, but can also involve intronic or 3’ end sequences. Promoters comprise a 

core promoter region close to the transcriptional start site and further distal promoter elements (Alberts 

et al., 2007).  

 

Core-promoters are regions that are located close to the transcriptional start site und contain the region 

where the initial binding of the RNA polymerase ΙΙ (Pol ΙΙ) complex takes place. The best 

characterised core promoter element is the TATA-Box (Alberts et al., 2007). However, a number of 

other core-promoter motifs have been described, such as TC-rich repeats in plants (Bernard et al., 

2010). The distal promoter typically consists of a number of so called cis-regulatory elements, short 

stretches of DNA that are bound by transcription factors. Such cis-regulatory elements often occur 

clustered within promoters and are called cis-regulatory modules (Nguyen and Xu, 1998; Zinzen et al., 

2009). 
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The discovery of gene regulation emerged from the pioneering work of Jakob and Monod, who 

described the regulation of the Lac operon in Escherichia coli (Jacob and Monod, 1961). Subsequent 

research has revealed the basic concepts of transcription, so that a widely established model of the 

general transcriptional machinery has been described. Generally, transcription can be divided into 4 

phases: pre-initiation, initiation, elongation and termination (Alberts et al., 2007). In the pre-initiation 

phase, the Pol ΙΙ complex assembles at the core promoter, often in association with specific 

transcription factors bound to cis-regulatory elements. In the initiation phase Pol ΙΙ complex then binds 

to the core promoter and transcription can start. In the elongation step the polymerase moves along the 

template DNA strand and produces a messenger RNA in 5’3’ direction. Finally, in the termination 

phase, the polymerase uncouples from the DNA strand and the produced mRNA is released (Alberts et 

al., 2007). 

 

1.3.2 Recent concepts of transcription 
 

The basic concepts of transcription have been described to some detail in the second half of the 20th 

century.  However, a complete picture including the interplay of combinatorial, temporal and spatial 

transcriptional regulation is still missing even on the level of single genes. However, new techniques 

such as Next Generation Sequencing or ChIP-seq have yielded an enormous amount of genome-wide 

in vivo data and have increased our understanding of transcription tremendously. 

 

One outcome of such genome-wide studies is that transcription is occurring in most eukaryotic 

genomes even outside of protein-coding genes. In mammals, for instance, 80% of the genome is being 

transcribed whereas only 1% of the genome consists of protein coding regions (Kim et al., 2005; 

Heard et al., 2010). Similar observations were reported for the genomes of rice (Li et al., 2006) and 

yeast (David et al., 2006b)  The function of much of this pervasive transcription is still not clear. In 

most cases short stretches of non-coding RNA are being transcribed, especially in 5’ upstream regions 

of the transcriptional start site (Dutrow et al., 2008). Transcription of such non-coding RNAs can 

change the chromatin state of the promoter region and thus prepare the protein-coding gene for 

transcription (Hirota et al., 2008). Therefore it has been suggested that the pervasive transcription of 

the genome has an important regulatory function in transcription of classical protein-coding genes. 

 

Furthermore transcription occurs in well defined locations within the nucleus, which were named 

transcription factories (Osborne et al., 2004; Cook, 2010) and were found in different species, for 

instance in human erythroid cells (Fraser et al., 2010) or in fission yeast (Tanizawa et al., 2010). These 

transcription factories occur in different numbers in different cell types specialised transcription 

factories might transcribe co-regulated genes (Tanizawa et al., 2010). Indeed, such transcription 
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factories contain several polymerases and are capable of transcribing at least three different genes 

from three different chromosomes in parallel (Fraser et al., 2010).  

In plants, transcription factories have not been described so far. However, as the entire transcriptional 

machinery is well conserved in all eukaryotes, transcription factories are also likely to occur in plants.  

 

1.3.3 Circadian clock related cis-regulatory elements in Arabidopsis 
 

In plants, a number of clock-related cis-regulatory elements have been discovered and described. One 

well-characterised one is the Evening Element (EE).  This 9bp element (AAAATATCT) was shown to 

be overrepresented in the promoters of evening-phased genes and if multimerised within an artificial 

promoter construct confers evening expression in luciferase-marker based assays (Harmer et al., 

2000b; Harmer and Kay, 2005). Related elements are the CCA1 binding site (CBS, AAAAAATCT) 

(Michael and McClung, 2002) and a shorter version of the EE, called the short EE (SEE, AATATCT) 

(Mikkelsen and Thomashow, 2009). EEs are bound by Myb-like transcription factors such as LHY 

and CCA1. The best characterised example is the binding of LHY and CCA1 to an EE in the TOC1 

promoter, an interaction that is proposed to be crucial for circadian clock function (Alabadi et al., 

2001; Perales and Mas, 2007). Furthermore it was demonstrated that LHY and CCA1 can form homo- 

and hetero- dimers (Lu et al., 2009; Yakir et al., 2009) and that the binding of this LHY/CCA1 

complex to the EE is temperature compensated (O'Neill et al., 2011). 

 

However, LHY and CCA1 are not the only factors that bind EEs. A study using protein microarrays 

coupled to mass-spectrometric analysis revealed a number of candidate transcription factors that might 

be capable of binding EEs (Rawat et al., 2011). Most of these candidates belong to the REVEILLE 

family, Myb-like transcription factors that are related to LHY and CCA1 (Rawat et al., 2009). 

However, this screen also indentified a number of putative binding partners from other transcription 

factor families, such as the WRKY and WHIRLY families (Rawat et al., 2011). 

 

A number of other cis-elements that play a role in clock-mediated transcriptional regulation or related 

light responses have been described. Most of these elements were defined based on genome-wide 

analysis of transcriptomic data and identification of co-regulated genes. In these studies, a number of 

time course microarray-experiments were analysed and genes were clustered according to the peak 

expression of their transcripts (Michael et al., 2008a; Michael et al., 2008b). Subsequently the 

promoters of these genes were investigated for overrepresented motifs (Michael et al., 2008a; Michael 

et al., 2008b).  
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One cis-regulatory element discovered in these screens is the Hormone up at down Box (HUD Box, 

CACATG), which is a variant of the core binding site for bHLH transcription factors. This HUD-Box 

was found to be overrepresented in genes with a peak in expression around dawn (Michael et al., 

2008a). Multimerised versions of this element inserted adjacent to the luciferase open reading frame 

together with a minimal promoter conferred a dawn expression pattern, demonstrating that this HUD 

Box is indeed capable of driving diurnal expression. Moreover, the HUD Box is implicated to play a 

role in PHYB-mediated responses (Michael et al., 2008a). 

 

Another element discovered in these screens is the Protein Box (PBX, ATGGGCC), a cis-regulatory 

element that is overrepresented in the promoters of genes with the GO annotation ‘protein synthesis’ 

and confers peak expression in the early night in artificial luciferase constructs (Michael et al., 2008b). 

Two other elements, the Starch Box (SBX, AAGCCC) and the Telobox (TBX, AAACCCT) are over-

represented in promoters that confer night-specific expression as well, thus the PBX/TBX/SBX was 

defined as a night specific module. The SBX and the TBX, however, were only predicted based on 

computational analysis and no experimental proof has been reported regarding the biological function 

of these elements (Michael et al., 2008b). 

 

Two of the largest transcription factor classes in plants comprise bZIP and bHLH transcription factors 

that bind to a number of partially overlapping cis-regulatory elements, the so called E-Box, the G-Box 

and the C-Box (Quail, 2000). The best characterised of these three is the G-Box (CACGTG) (Giuliano 

et al., 1988), a cis-regulatory element that binds bHLH transcription factors such as PHYTOCHROME 

INTERACTING FACTOR 3 (PIF3) (Quail, 2000). 

 

Related to the G-Box and other bHLH-binding cis-regulatory elements are bZIP binding sites. 

These include the ABA Response element-like element (ABREL, CACGT), a variant of the core 

binding site for bZIP transcription factors (Suzuki et al., 2005). It was shown that these elements in 

concert with EEs drive the cold-dependent expression of COL1 and COR27 (Mikkelsen and 

Thomashow, 2009), suggesting that EEs and ABRELs might act in concert. 
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Name 

(Abbreviation) 

Consensus Description Reference 

Evening Element 

(EE) 

 

AAAATATCT 

Over-represented in evening phased genes, 

multimerised version confers evening 

expression, can be bound by LHY /CCA1 

and other Myb-like transcription factors 

 (Harmer et al., 

2000b; Harmer 

and Kay, 2005) 

CCA1 Binding Site 

(CBS) 

 

AAAAAATCT 

Very similar to the EE, presumably with the 

same function 

 (Michael and 

McClung, 2002) 

Short Evening  

Element (SEE) 

 

AATATCT 

Two nucleotides shorter than the EE.   (Mikkelsen and 

Thomashow, 

2009) 

LUX Binding Site 

(LBX) 

 

CGAATC 

Consensus sequence that binds LUX 

ARRHYTHMO with highest efficiency 

 (Kay et al., 

2011) 

ABA Response 

Element-like 

(ABREL) 

 

CACGT 

Core binding site for bZIP transcription 

factors; regulates cold responses of several 

genes together with EEs  

 (Suzuki et al., 

2005; Mikkelsen 

and Thomashow, 

2009) 

G-Box  

CACGTG 

Core binding-site for bHLH transcription 

factors 

 (Giuliano et al., 

1988) 

Morning Element 

(ME) 

 

CCACAC 

Overrepresented in the promoters of 

morning-phased genes 

 (Michael et al., 

2008b) 

Hormone Up at 

Dawn 

(HUD Box) 

 

CACATG 

Implicated in PHYB signalling  (Michael et al., 

2008a) 

Protein-Box (PBX)  

GGCCCAT 

 Overrepresented in the promoters of night-

phased genes 

 (Michael et al., 

2008b) 

Telobox (TBX)  

AAACCCT 

Overrepresented in the promoters of night-

phased genes 

(Michael et al., 

2008b) 

Starch-Box (SBX)  

AAGCCC 

Overrepresented in the promoters of night-

phased genes 

 (Michael et al., 

2008b) 

Tab. 1 Overview of circadian-clock related cis-regulatory elements in Arabidopsis thaliana 
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1.3.4 Combinatorial approaches 
 

Different cis-regulatory elements are often clustered within promoters and together form so-called cis-

regulatory modules. Depending on their regulatory functions, such modules are also termed as 

enhancer or silencer. Cis-regulatory modules have been investigated extensively in different species. 

In D. melanogaster, for instance, it was demonstrated that more then 2000 sites in the genome are 

targeted by more than eight different transcription factors und therefore these modules were called 

high occupancy target (HOT) regions (Negre et al., 2011). Similar patterns were discovered for 

C.elegans (Gerstein et al., 2010), suggesting that HOT regions are a common feature of eukaryotic 

promoters. Moreover, in Drosophila that such cis-regulatory modules can act redundantly, for instance 

to confer phenotypic robustness under non-optimum conditions (Frankel et al., 2010).  

 

Also in Arabidopsis thaliana such regulatory modules and the combinatorial action of different cis-

elements has been demonstrated, but only for a limited number of promoters and lesser detail. For 

CRABS CLAW (CRC), it was shown that a combination of conserved cis-regulatory modules drives 

the spatial expression pattern of CRC (Lee et al., 2005), whereas a combination of different cis-

regulatory elements is crucial for the correct expression pattern of COL1 (Mikkelsen and Thomashow, 

2009), COR27 (Mikkelsen and Thomashow, 2009) and ELF4 (Li et al., 2011). 

 

One implication from such combinatorial approaches is that a gene that responds to many different 

stimuli would have a more complex promoter with a higher number of cis-regulatory elements. Indeed 

such a correlation has been shown for D.melanogaster (Nelson et al., 2004), C.elegans (Nelson et al., 

2004) and A. thaliana (Walther et al., 2007). Interestingly, the study in Arabidopsis revealed that EEs 

and ABRELs were over-represented in the set of genes that respond to a large number of stimuli, with 

the ABREL having highest statistical significance from all cis-regulatory elements in this analysis 

(Walther et al., 2007). This indicates that these two elements are involved in a number of different 

developmental traits or environmental responses. 

 

1.3.5 GI transcriptional regulation 
 

The transcriptional regulation of GI has not been studied extensively. It shows characteristic evening 

expression, which was observed in every plant species investigated so far, such as Arabidopsis 

thaliana (Fowler et al., 1999), Medicago truncatula (Paltiel et al., 2006), Pisum sativum (Hecht et al., 

2007), Hordeum vulgare (Dunford et al., 2005), Brachypodium distachyon (Hong et al., 2010) or 

Oryza sativa (Hayama et al., 2002). Therefore it is likely that the evening expression of GI is an 

integral part of its function. In A.thaliana it was shown that this peak in expression depends on the 
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photoperiod and that the peak of GI expression tracks dusk ((Edwards et al., 2010b); Toth and Cremer, 

unpublished). Moreover, GI is strongly upregulated in light and upon the exposure to cold 

temperatures, a pattern that has been described in Arabidopsis (Fowler and Thomashow, 2002; Cao et 

al., 2005), Medicago (Paltiel et al., 2006) and Brachypodium (Hong et al., 2010). Collectively this 

suggests that GI is similarly regulated in a wide range of species and therefore similar cis- and trans-

regulatory factors might mediate these transcriptional responses. However, even though the expression 

pattern of GI has been described in some detail, the underlying cis- and trans- acting factors causing 

this complex transcriptional expression pattern of GI have remained completely elusive so far.  

 

1.3.5 Summary 
 

The regulation of transcriptional responses is key for all living organisms on earth. Although the basic 

concepts of transcriptional regulation have been described in the last decades, we still do not 

understand transcription in all its different aspects, neither on the level of single promoters nor on the 

level of entire cells or organisms. Although several promoters have been described in some detail, a 

complete picture about all binding sites and all transcription factors that regulate a single gene is still 

lacking. In plants a very limited number of promoters have been studied in detail. Due to the high 

conservation of the clock- light- and temperature-dependent expression pattern across different species 

GI is an ideal candidate for intensively studying the cis- and trans- regulatory factors that determine its 

precise expression pattern. 
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1.4 Phylogenetic analysis 
 

Comparative analyses of gene sequences between species are widely used to identify evolutionary 

conserved and mechanistically important segments in proteins. This concept is also used to study 

promoter sequences, which evolve faster than protein sequences. This method is called phylogenetic 

footprinting or phylogenetic shadowing. Both concepts are based on the idea that functionally 

important sequences are maintained during evolution und thus will be more conserved between related 

species than functionally non-important DNA. 

 

The term “phylogenetic footprinting” was introduced by Tagle and coworkers, who compared the 5’ 

upstream sequences of globulin encoding genes from a wide range of mammals in order to identify 

conserved cis-regulatory elements (Tagle et al., 1988). The term phylogenetic footprinting was chosen 

as the same conserved cis-regulatory elements were discovered with this approach as in previous 

DNase footprinting experiments (Tagle et al., 1988). Since then the term phylogenetic footprinting has 

been used for the comparison of promoter sequences from more distantly related species. The term 

“phylogenetic shadowing” was introduced in 2003 by Boffelli and co-workers who compared the 

human genome to orthologous sequences from different ape and monkey species (Boffelli et al., 2003). 

Due to the close relationship of the species used this comparison revealed larger conserved regions 

instead of single conserved cis-regulatory elements, thus this method was termed shadowing instead of 

footprinting. 

 

Both methods have been successfully applied in many species, for single promoters as well as on the 

genome-wide level. Genome-wide phylogenetic analysis was conducted in yeast (Kellis et al., 2003), 

fruitfly (Negre et al., 2011) and mammals (Waterston et al., 2002), revealing a huge number of novel 

and known binding sites and giving insights into the combinatorial action of such cis-regulatory 

elements. In plants, such genome-wide studies have not been reported so far, probably due to the lack 

of different sequenced plant genomes from the same family. Plant-related genome-wide approaches 

focus more on evolutionary aspects, such as the evolution of genome size (Hu et al., 2011) or the 

evolution of genome duplications (Van de Peer et al., 2009). However, for a few single loci intensive 

phylogenetic analyses were used in order to elucidate evolutionarily conserved cis-regulatory elements. 

Examples of such studies are for the first intron of AGAMOUS (AG) (Hong et al., 2003) or the 

promoters of CRC (Lee et al., 2005), LHY (Spensley et al., 2009)  or FT (Adrian et al., 2010).  
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1.5  Brassicaceae 
 

Flowering plants are classified into families based on their evolutionary relatedness. A number of 

these families are of particular interest to research and agriculture, such as the Poaceae (including the 

world’s three most important crops rice, maize and wheat) or the Solanaceae (including tomato, potato 

and tobacco). Another example is the mustard family (Brassicaceae / Crucifera), a taxon with more 

than 300 genera and around 3700 species (Bailey et al., 2006; Franzke et al., 2011). These include not 

only the well studied model plant Arabidopsis thaliana, but also a number of important crop plants 

such as rapeseed and the different cabbage varieties. Characteristic for the Brassicaceae family are 

flowers with four sepals, four cross-like arranged petals and six stamens of which two are shorter than 

the others. The pistil comprises two fused carpels, whereas the fruit is a capsule that is called silique or 

siliqule, depending on the ratio its length to its width (Bresinsky et al., 2008). Another characteristic is 

the production of glucosinolates, secondary metabolites that play a crucial role in defence against 

herbivores.  

 

Most Brassicaceae are annual, biennial or perennial herbs, but small shrubs or lianas have evolved in a 

number of genera (Franzke et al., 2011). Geographically the Brassicaceae occur around the world, 

with the highest diversity across Europe and Asia, especially in Asia Minor (Koch et al., 2006).  

The familiy Brassicaceae comprises the two major lineages Aethionemeae and the Core Brassicaceae, 

respectively. Recent reports estimate the divergence time between these two tribes to be 40 to 50 mya 

(Clauss, 2006). This coincides with a whole genome duplication that took place approximately 40 mya 

years ago (Franzke et al., 2011). Therefore it was suggested that this last genome duplication did not 

only divide the Aethionemeae from the Core Brassicaceae, but also provided the genetic basis for the 

adaptive radiation that occurred within the Core Brassicaceae after that duplication event (Franzke et 

al., 2011). The cradle of the Brassicaceae is still under debate with suggestions ranging from North 

America to Europe and Asia. However, some reports suggest an origin in Turkey, as the diversity of 

both Aethionemae and Core Brassicaceae is still highest here, coupled with extreme diverse 

ecosystems on a small scale, thus providing optimal conditions for such an adaptive radiation as took 

place for the Brassicaceae (Franzke et al., 2011). 

The sister family of the Brassicaceae within the order of Brassicales is the Cleomaceae (Schranz and 

Mitchell-Olds, 2006), a family that comprises many tropical species and reaches its highest diversity 

in South America. The order Brassicales contains a number of other agronomically important families, 

such as the Capparaceae (includes the caper bush), the Caricaceae (including Papaya, which has been 

sequenced) and the Resedaceae (including Dyer’s rocket, which was used for dying cloth in the past) 

(Schranz and Mitchell-Olds, 2006; Bresinsky et al., 2008). 
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Fig.1.4 Phylogeny of the Brassicaceae, adapted from Bailey et al, 2007. Species that were used for the 
phylogenetic analysis of the GI promoter (chapter 1) are highlighted with red boxes. Diplotaxis erucoides 
and Sinapis alba were added to the clade Brassiceae in a recent phylogeny (Franzke et al., 2011). 
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Fig. 1.5 Overview of Brassicaceae species that were used for the phylogenetic analysis of the GI promoter. 
a.) Arabis alpina Pajares; b.) Capsella rubella Monte Gargano; c.) Diplotaxis erucoides; d.) Arabidopsis 
thaliana Columbia; e.) Arabidopsis lyrata; f.) Turritis glabra; g.) Sinapis alba; not included: Brassica rapa 
ssp. pekiniensis; White bars = 10cm (a, b, c, f) or 5cm (d, e., f), respectively. 
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Arabidopsis. thaliana is the most intensively studied Brassicaceae species. It is an annual or biennial 

rosette plant that is native to the entire northern hemisphere (Kaul et al., 2000). Its rapid life cycle, 

small genome (125Mb (Kaul et al., 2000)) and an increasing number of available and easy-to-use 

genomic tools made it the model plant of choice and therefore a wealth of knowledge was 

accumulated in this model species.  

 

Arabidopsis lyrata is one of the closest relatives of A. thaliana (divergence time approximately 5mya 

(Clauss and Koch, 2006)) and has colonised temperate to mild regions of the northern hemisphere 

(Clauss and Koch, 2006). Unlike A. thaliana, it occurs in diploid as well as in polyploid forms and is 

self-incompatible. This makes it less accessible to genetic experiments, but makes it a good model to 

study these traits in comparison to A. thaliana. The genome of diploid A. lyrata is fully sequenced and 

has a size of 207Mb (Hu et al., 2011). 

 

The genus Capsella is one of the closest to the genus Arabidopsis within the Brassicaceae with a 

divergence time of 10-14mya (Clauss and Koch, 2006). Capsella rubella is an annual weed that is, as 

A. thaliana, diploid and self compatible. Together with its close relative, the self-incompatible 

tetraploid Capsella bursa-pastoris, it is an invasive weed that has colonised different habitats around 

the world (Hurka and Neuffer, 1997; Hintz et al., 2006). The genome size of Capsella rubella was not 

reported so far.  

 

The different varieties of Brassica rapa are important vegetable and oil crops. Within the genus 

Brassica, it has the smallest genome size (529 Mb (Mun et al., 2010)) and is therefore a good model 

for studying the polyploid genome structure in Brassica. Its divergence time from Arabidopsis was 

calculated, depending on the study, to a time between 13 – 17 mya (Mun et al., 2010) and 16 – 21 mya 

(Clauss and Koch, 2006). 

 

Arabis alpina is a perennial that is native to arctic-alpine habitats in Europe (Koch et al., 2006) and is 

diploid, self-fertile and susceptible to Agrobacterium-mediated transformation, thus making it an ideal 

model organism for perennial plant species (Wang et al., 2009). Calculated divergence times to 

Arabidopsis range from 19 – 25mya (Koch et al., 2001), to 16 - 50mya (Clauss and Koch, 2006), or 

based on fossile records approximately 43mya (Beilstein et al., 2010). Collectively this might suggest 

that the divergence time between Arabidopsis and Arabis could be approximately 30 million years. 

The genome size of A. alpina is approximately 370Mb (Nordstöm et al., unpublished). 

 

Other emerging model organisms within the Brassicaceae are Arabidopsis halleri (to study heavy 

metal tolerance (Hanikenne et al., 2008)), Capsella bursa-pastoris (to study flowering time and loss of 
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petals (Hintz et al., 2006; Ziermann et al., 2009)) or Cardamine hirsuta (to study leaf shape, (Hay and 

Tsiantis, 2006)). 

 

Taken together, there is a variety of different species from the mustard family that is used to study 

various different aspects of plant biology. This offers a rich source of comparative approaches within 

the mustard family, especially on the level of genome sequences. The availability of the full genomic 

sequence or large parts of it from A. thaliana, A. lyrata, C. rubella, B. rapa and A. alpina now makes it 

possible to use this information for different kinds of phylogenetic analyses. 

 

Moreover, the rough divergence time of 5mya (A. lyrata), 10mya (C. rubella), 20mya (B. rapa) and 

30mya (A. alpina) from A. thaliana provides an ideal ‘phylogenetic clockwork’ that allows 

comparisons at multiple levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 Introduction 
 

1.6 Aim of this study 
 

GIGANTEA has important functions in controlling flowering time and related environmental 

responses in Arabidopsis. 

 

The precise temporal transcriptional pattern of GI is highly conserved and has been proposed to be 

crucial for its function within the circadian clock, the regulation of flowering time and probably for its 

response to environmental stresses. The main scope of this study is to elucidate the cis- and trans- 

acting factors that control the precise temporal expression pattern of GI and to test whether these are 

required for the biological function of GI.  

 

I made use of a phylogenetic shadowing approach in order to indentify functional important cis-

regulatory modules and elements within the GI promoter. Subsequently, candidate modules and cis-

elements from this comparative analysis were tested for their biological function by subcloning or 

mutating respective fragments and using the luciferase reporter system to analyse the expression 

patterns conferred by these sequences under different conditions. In order to further investigate the 

contribution of these cis-regulatory modules and elements, GI was mis-expressed using these different 

promoter constructs in the background of a gi mutant. The resulting transgenic plants were analysed 

for a number of GI-specific traits, such as flowering time under different photoperiods or the response 

to freezing temperatures. 

 

Finally, knowledge gained from the GI promoter analysis was applied to study cis-regulatory elements 

in related promoters and ultimately on a genome-wide level. Therefore, statistical analyses of the co-

occurance of different cis-regulatory elements were conducted on a whole-genome level. This 

approach helped to better understand the mode of GI transcriptional regulation and provided insights 

into the general transcriptional code in plants. 
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Phylogenetic analysis of the GI promoter 
 

2.1 Perspective 
 

GIGANTEA is one of the key players in the regulation of flowering time and the circadian clock in 

Arabidopsis thaliana (Fowler et al., 1999). In all plant species investigated so far, GI shows an 

evening-phased expression, suggesting that this precise temporal expression pattern is an integral part 

of GI function. To reveal the molecular basis of the evening phase of GI transcription, I made use of a 

phylogenetic shadowing approach with the goal of identifying conserved regions and cis-regulatory 

elements in the GI promoter that are crucial for the precise light- and clock- dependent temporal 

pattern of GI transcription. 

 

2.2 Isolation of orthologous GI promoters 
 

Sequences of orthologous GI promoters from Brassicaceae species were isolated from databases or by 

amplification using PCR and subsequent sequencing as described in the Materials and Methods 

section. The length of promoter was defined as sequence between the translational start site and the 

last exon of the upstream gene, encoding POLYADENYLATE BINDING PROTEIN 3 (PAB3, 

At1g22760). 

Briefly, the sequences of Arabidopsis thaliana, Arabidopsis lyrata, Brassica rapa ssp. pekiniensis, 

Capsella rubella, and Arabis alpina were identified from databases, whereas the promoters from 

Diplotaxis erucoides, Sinapis alba and Turritis glabra (Bürstel and Cremer, unpublished) were 

amplified from plant material and then sequenced. 

 

2.3 Evolutionary conservation of the GI promoter in Brassicaceae 
 

Multiple sequence alignments are a valuable tool for comparing different numbers of orthologous 

sequences. However, it has been also shown that multiple sequence alignments can be misleading, 

especially for noncoding sequences (Tompa and Chen, 2010). Indeed several attempts to generate 

multiple sequence alignments at the beginning of this study with all eight Brassicacean promoters 

using the standard multiple alignment tools ClustalW (Larkin et al., 2007) and DIALIGN 

(Morgenstern, 2004) did not lead to satisfactory results (data not shown).  
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Fig. 2.1  Evolutionary conservation of the GI promoter in Brassicaceae 
 
a.) Conserved blocks 1-5, defined on the basis of high conservation between the GI promoters of 
A. thaliana and A.alpina. Yellow = Block 1, Green = Block 2, Red = Block 3, Dark Blue = Block 4, 
Blue = Block 5 
b.) Pairwise alignments of eight Brassicaceae GI promoters. Alignments performed with 
CHAOS / Shuffle-LAGAN and visualised with VISTA Browser. Sliding window=100bp; 
Conservation=70%; Red colour indicates regions where a sliding window of 100bp shows at 
least 70% of conservation. All sequences aligned to the 5kb GI promoter of A.alpina. 
c.) Multiple sequence alignment with seven GI promoter sequences aligned to the GI promoter of 
A.alpina; same scalebar for all figures. 
 

 

Pairwise alignments using LAGAN (Brudno et al., 2003c) can efficiently identify highly conserved 

regions within orthologous plant promoters, as demonstrated for the CRABS CLAW gene (Lee et al., 

2005). However, whereas the accuracy of a pairwise alignment is generally better than a multiple 

sequence alignment (Brudno et al., 2003a), a multiple sequence alignment contains more sequence 

information. In order to combine the strengths of both methods while minimising the disadvantages, I 

applied a sequential pipeline of first using a pairwise alignment tool to identify and extract highly 

conserved regions. In a second step these conserved regions were used for multiple sequence 

alignments and in a final step putatively functional cis-regulatory elements were selected based on a 

candidate list or high conservation of a >10bp motif. 

 

First, pairwise alignments of all GI promoters from eight Brassicaceae were made using the alignment 

tools CHAOS and Shuffle LAGAN. CHAOS first detects highly conserved regions between two 

sequences and uses them as anchor for the subsequent alignment. Shuffle-LAGAN then fills the gaps 

between the anchors and finishes the alignment (Brudno et al., 2003a). The resulting pairwise 

alignments were visualised using the VISTA Browser (Mayor et al., 2000; Brudno et al., 2007) with a 

sliding window of 100bp and a conservation threshold of 70%. Finally all pairwise alignments were 

piled up for each species, such as Fig 2.1b for Arabis alpina. VISTA Plots for the remaining seven 

species can be found in the Supplements. 

 

This analysis revealed high conservation within the GI promoter that occurs in five distinct blocks that 

were named Block1, Block2, Block3 and Block4/5 (Fig. 2.1a). The A.alpina promoter was used as a 

reference sequence for comparisons for several reasons. First, the A.alpina sequence is the most 

diverged one in this set of eight sequences (see Fig. 2.6), therefore making it ideal for comparisons to 

all other species. Second, it was shown that the 5kb GI promoter of A. alpina, fused to the luciferase 

open reading frame and stably transformed into Arabidopsis thaliana plants, confers the same 

expression pattern as the 2,5kb A. thaliana GI promoter (see chapter 4).  
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Therefore I concluded that important sequence information for the light- and clock-dependent 

transcriptional regulation of GI must be present in the conserved sequence between these two species. 

Thus the exact size of the blocks was defined on the basis of conservation between A.thaliana and A. 

alpina. (For detailed sequence information and VISTA plots of all species see Supplements).  

 

 
Fig. 2.2 Distribution of five conserved blocks within orthologous GI promoters of eight different 
Brassicaceae species.  Yellow = Block 1, Green = Block 2, Red = Block 3, Dark Blue = Block 4, 
Blue = Block 5 
 
 

Next, the spatial distribution of the previously defined conserved blocks was elucidated. Therefore all 

conserved blocks were marked within the respective sequences and a pile up performed for 

comparison (Figure 2.2). This analysis showed that the length of the different orthologous GI 

promoters was highly variable, reaching from 3,6kb in A.thaliana up to more than 8kb in B.rapa. 

Whereas size and synteny of the five conserved blocks were well conserved in all eight species, 

location and spacing were quite variable (Fig. 2.2). Interestingly, Block4/5 occurred as one contiguous 

block in most species apart from T. glabra and B. rapa, where it is separated. 
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As a 2,5kb fragment upstream of the translational start site in A.thaliana is sufficient to phenocopy the 

expression pattern of the endogenous GI promoter (Cremer et al., unpublished) and to complement the 

gi-mutant phenotype when fused to the GI cDNA (chapter 5), subsequent analysis focused on this 

2,5kb fragment, which includes the conserved blocks 1, 2 and 3.  

 

2.4 Block 2 contains a number of known cis-regulatory elements 
 

In order to discover important cis-regulatory elements I first compiled a candidate list of known 

elements that have been shown to play a role in light- and circadian clock-mediated transcriptional 

regulation (for overview see introduction, Table 1.1).  

Visual inspection of the full length A.thaliana GI promoter revealed that it contains many of the 

elements present in the candidate list. Even more strikingly, all these elements were almost exclusively 

located within conserved Block 2, suggesting that this 700bp region is of particular importance for the 

light- and clock mediated transcriptional regulation of the GI promoter.  

 

 

 
Fig. 2.3 Conserved cis-regulatory elements within Block2 of the GI promoter. 
ABREL= ABA Response Element-like; SBX=Starch Box; LBX=LUX ARRYTHMO Binding 
Site; ME=Morning Element; EE=Evening Element; PBX=Protein Box; HUD= Hormone Up at 
Dawn Box; CT = CT Element 
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Tab. 1 Overview about conserved cis-regulatory elements 
Overview of conserved cis-regulatory elements that have been described to play a role in light- 
or clock-mediated transcriptional regulation and that are found within Block 2; Degree of 
conservation is shown as WEBLOGO. 
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Fig. 2.4  Multiple sequence alignment of conserved Block 2 from eigth orthologous GI promoters  
At=Arabidopsis thaliana; Al=Arabidopsis lyrata; Br=Brassica rapa; Cr=Capsella rubella; 
De=Diplotaxis erucoides; Sa=Sinapis alba; Tg=Turritis glabra; Aa=Arabis alpina 
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Conserved cis-regulatory elements are highlighted with coloured boxes. 
ABREL= ABA Response Element-like; SBX=Starch Box; LBX=LUX ARRYTHMO Binding Site; 
ME=Morning Element; EE=Evening Element; PBX=Protein Box; HUD= Hormone Up at Dawn Box; 
CT = CT Element 
 

In order to further elucidate the conservation of specific cis-regulatory elements and to finish the 

phylogenetic shadowing pipeline, a multiple sequence alignment was made with conserved Block 2 

(Fig 2.4). For better representation, conservation of cis-regulatory elements was visualised using 

WEBLOGO (Crooks et al., 2004) and putative important conserved cis-regulatory elements are shown 

in Table 2.1 according to their appearance in Block 2. 

 

Among those conserved cis-regulatory elements were 2 Hormone Up at Dawn-Boxes (HUD-Box), 

elements that are proposed to play a role in phytochrome B mediated signalling and are a variant of the 

core recognition site for bHLH transcription factors (Michael et al., 2008a). Other elements present in 

Block 2 are a Morning Element (ME), a Protein Box (PBX) and a Starch Box (SBX), elements that 

have been identified as important for clock control in genome-wide screens (Chory et al., 2008). 

Furthermore, a LUX ARRYTHMO Binding Site (LBX) was identified (Kay et al., 2011), suggesting 

that the clock-related transcription factor LUX might directly bind the GI promoter. Moreover, three 

ABA Response Element-like elements (ABRELs) were found in Block2, cis-elements that are bound 

by bZIP transcription factors and have been shown to be important for the regulation of the cold 

response in two different promoters (Mikkelsen and Thomashow, 2009)(Fig. 2.3, Fig. 2.4; Table 2.1)  

 

Most notably, three Evening Elements (EEs) were found in Block 2 (Fig. 2.4). The EE was initially 

identified by analysing promoters of evening-expressed genes, where the EE was found to be over-

represented. Artificial promoter constructs with multimerised versions of the EE adjacent to a minimal 

promoter were able to confer evening-expression in luciferase-based assays, demonstrating that the EE 

is sufficient to drive evening expression (Harmer et al., 2000b; Harmer and Kay, 2005). Interestingly, 

a recent study reported that EEs and ABRELs in concert regulate the response to cold temperatures of 

the two evening-phased genes COL1 and COR27 (Mikkelsen and Thomashow, 2009). As both 

ABRELs and EEs occur three times within Block 2 of the GI promoter and as all of them show 

extreme conservation (Fig 2.3; Table 2.1), these particular elements seemed to be promising 

candidates for further biological analysis.  

 

In addition, highly conserved sequences within Block 2 were identified that do not have a previously 

described function, but might also be functionally important. Therefore stretches of at least six bases 

that are absolutely conserved in all species were aligned with surrounding sequence and are shown as 

WEBLOGOS in Table 2.2. Interestingly, these stretches contain also variants of already described cis-

regulatory elements as a DOF Binding Site (Yanagisawa and Schmidt, 1999), MYC binding sites that 



M.C. Berns 33 
 

are capable of binding INDUCER OF CBF EXPRESSION1 (ICE1) (Shirsat et al., 1989; Dunn et al., 

1998; Chinnusamy et al., 2003) and several others (Solano et al., 1995; Simpson et al., 2003). 

 

 
Tab. 2 Overview of highly conserved sequence fragments within Block 2 with no described 
function. Degree of conservation is shown as WEBLOGO. 
 

 

2.5 Core promoter elements at the end of Block 2 
 

Curiously, a conserved TC element was discovered at the end of Block 2. TC elements are over-

represented upstream of the transcriptional start sites of plant genes and appear to replace TATA-

Boxes in TATA-less promoters (Bernard et al., 2010). However, the TC element in Block 2 of the GI 

promoter is approximately 500bp from the described transcriptional start site of GI mRNA. In order to 

further elucidate the end of conserved Block 2, the last 80bp of this region were compared in a 

multiple alignment and the entire region is shown as WEBLOGO (Fig.2.5). Due to lower conservation 

of this region, only the sequences of the three closest relatives to A.thaliana were used for this 

alignment (A.lyrata, C.rubella and T.glabra). However, this analysis shows that this region contains 

the TC element  as well as a TATA Box and a CT repeat that was proposed to play a role in plant gene 
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expression (Pauli et al., 2004) and two different versions of the CAAT – Box. Therefore the end of 

Block 2, at least in A.thaliana and its close relatives contains all the features of a core promoter and 

thus transcription might initiate within this block. 

 

 
Fig. 2.5 Conservation of the last 80bp of Block 2. Conservation shown as WEBLOGO, sequences 
compared are from A.thaliana, A.lyrata, C.rubella and T.glabra. Conserved core promoter 
elements are highlighted with black boxes. 
 
 

2.6 Evolutionary conservation of the GI promoter in grass species 
 

Multiple sequence alignments of the GI promoters of Brassicaceae with more distant dicotyledonous 

species such as Medicago truncatula or Populus trichocarpa did not yield results because the 

sequences could not be aligned, although GI mRNA in M.truncatula is expressed in a similar temporal 

pattern to A. thaliana (data not shown). Also using the conserved Block 2 to detect conservation in GI 

promoters of more distant species was not successful, demonstrating that phylogenetic shadowing, at 

least for the GI promoter, is restricted to evolutionary closely related plant species.  

Therefore I analysed the GI promoters of the five grass species Oryza sativa, Hordeum vulgare, 

Setaria italica, Sorghum bicolor and Zea mays. All but the H.vulgare sequence were isolated from 

publically available databases. The H.vulgare promoter was isolated and sequenced from a BAC 

containing HvGI (Bürstel and Cremer, unpublished). The Brachypodium distachyon sequence was not 

used due to gaps in the sequence upstream of BdGI. Interestingly, two copies of GI were discovered in 

Z.mays and therefore both promoters were analysed.  
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Fig. 2.6 Evolutionary conservation of the grass GI promoter 
Pairwise alignments of six grass GI promoters. Alignments performed with CHAOS / Shuffle-
LAGAN and visualised with VISTA Browser. Sliding window=50bp; Conservation=80%; Red 
colour indicates regions where a sliding window of 80bp shows at least 80% of conservation. All 
sequences aligned to the 2,5kb upstream region of the Oryza sativa GI. 
 

 
Tab. 3 Overview of conserved cis-regulatory elements with a light- or clock- function and are 
found in the GI promoters of six grass species and that were previously described in Arabidopsis. 
Conservation is shown as WEBLOGO. 
 
Similarly to the analysis of the GI promoters in the Brassicaceae, high conservation was discovered in 

distinct regions of the grass GI promoters. However, in contrast to the Brassicaceae the highest 

conservation occurred in a 400bp region directly upstream of the translational start site (Block1), 

whereas conservation in more distal parts of the promoters was restricted to much smaller patches 

(Block2 and Block3) (Fig. 2.7). As for the Brassicaceae, conserved sequences were isolated and 
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analysed for known cis-regulatory elements. Strikingly, this analysis revealed one CBS, one ABREL 

and one EE-related motif that were conserved within five grass species (Table 2.3), demonstrating that 

similar cis-regulatory elements are conserved between such distant clades as the Brassicaceae and the 

Poaceae, although their position, spacing and order are unrelated.  

 

2.7 Evolutionary conservation of the PRR9 promoter 
 

In order to use the described phylogenetic shadowing pipeline for a limited number of already 

sequenced Brassicaceae, I analysed the promoter of the clock gene PRR9 from A.lyrata, C.rubella and 

A.alpina. This analysis revealed high conservation of a region starting 200bp upstream to 

approximately 80bp downstream of the transcriptional start site of PRR9 (Fig 2.8, Fig 2.9). Further 

inspection of this conserved region also revealed an absolutely conserved EE as well as a highly 

conserved LBS (Fig 2.9). These two elements appear in the same configuration as in the GI promoter, 

with the LBS being located approximately 150 bp upstream of the EE. Furthermore two conserved G-

Boxes were found in this region, cis-regulatory elements can be bound by bHLH transcription factors 

and that have been shown to play a role in light-mediated transcriptional responses. Notably, also the 

PRR9 promoter contains conserved CT motifs, both upstream and downstream of the transcriptional 

start site (Fig 2.9). 

Fig. 2.7 Evolutionary conservation of the PRR9 promoter  

Pairwise alignments of the A.thaliana PRR9 promoter to orthologous Arabidopsis lyrata, Capsella 
rubella and Arabis alpina promoters shown as VISTA plots. Red color indicates regions where a 
sliding window of 30 base pairs has at least 70% conservation. Conserved Region 1 is 
highlighted with a black frame. Vertical bars indicate the position of highly conserved LBS / EE 
and the transcriptional start site. Conservation of LBS and EE is shown as WEBLOGO. 
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Fig. 2.8  Multiple sequence alignment of Conserved Region 1 of the PRR9 promoter.  
Highly conserved cis-regulatory elements that are known to play a role in light- or clock-
mediated transcriptional regulation are highlighted with red boxes. The predicted TATA Box 
and the transcriptional start site (based on TAIR annotation in Arabidopsis thaliana) are 
highlighted in blue. At=Arabidopsis thaliana, Al=Arabidopsis lyrata; Cr =Capsella rubella; 
Aa=Arabis alpina TSS=transcriptional start site 
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2.8 Discussion 
 

Using a phylogenetic shadowing approach, I identified five highly conserved blocks within the 

orthologous GI promoters of eight Brassicaceae, including Block 2, a 700bp region with very high 

conservation.  

Further inspection of Block 2 showed that it contains a number of highly conserved cis-regulatory 

elements proposed to play roles in light- and clock-mediated transcriptional regulation. Such blocks 

containing combinations of different cis-regulatory elements regulate complex transcriptional 

responses in a wide range of different organisms including yeast (Barbaric et al., 1999), Drosophila 

(Negre et al., 2011) and Arabidopsis (Mikkelsen and Thomashow, 2009), suggesting that such a 

combinatorial mechanism also mediates the precise light- and clock dependent regulation of GI.  

 

Among the conserved elements were 3 EEs, cis-regulatory motifs that can be bound by Myb-like 

transcription factors such as LHY/CCA1 (Alabadi et al., 2001; Perales and Mas, 2007) or REVEILLE 

(REV) (Gong et al., 2008). Moreover, the peak in GI mRNA is shifted earlier to the morning in 

lhy/cca1 double mutants (Mizoguchi et al., 2002a; Mizoguchi et al., 2005). Such results support 

mathematical models proposing that LHY and CCA1 repress GI transcription in the morning by 

binding to their EEs (Locke et al., 2005; Locke et al., 2006b).  

Furthermore, EEs are overrepresented in evening-phased genes and confer evening expression in an 

artificial promoter system (Harmer et al., 2000b), thus making them ideal candidates for further 

analysis in biological assays of intact promoters. However, further interesting candidates for such an 

analysis are also the bZIP binding sites ABRELs as well as the bHLH binding HUD Boxes. These 

HUD Boxes are implied to play a role in phytochromeB-mediated light signalling, a process where it 

was shown that GI plays an important role (Huq et al., 2000b). Studying such elements in situ in full 

length promoters allows study of how they combine to confer complex diurnal patterns of regulation. 

 

  

Phylogenetic analysis of the PRR9 promoter revealed high conservation directly upstream of the 

transcriptional start site. Interestingly, as in the GI promoter, both a highly conserved EE and a LBS 

were found in the PRR9 promoter. Recently, it was proposed that a complex comprising the clock 

proteins ELF3/ELF4/LUX directly binds to the promoters of PRR9 and GI (Herrero, Kolmos, 

unpublished). The occurrence of the same highly conserved cis-regulatory elements within these two 

promoters provides further evidence for this hypothesis, although direct binding of ELF3 to the GI 

promoter could not be shown (Dixon et al., 2011) . 

 

These examples also demonstrate the power of the presented shadowing method in detecting 

evolutionary conserved blocks and cis-elements. The sequential pipeline of first performing pairwise 
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alignments with CHAOS and Shuffle-LAGAN, then using the identified conserved blocks for multiple 

alignments using ClustalW or DIALIGN followed by detection of conserved cis-regulatory motifs by 

visual inspection based on a candidate list provided a set of functionally important motif candidates. 

Some of these were subsequently validated both for the GI promoter (chapter 4 and 5) and the PRR9 

promoter (Herrero, Kolmos, unpublished). 

 

The power of related shadowing approaches was demonstrated previously (Lee et al., 2005; Adrian et 

al., 2010). These studies, as well as this study of the GI promoter, relied largely on  PCR – based 

amplification and subsequent sequencing of orthologous promoters from related species, a process that 

is time-consuming and not always straight forward. Recent advances in sequencing whole genomes of 

various plant species will make it possible to directly carry out such a phylogenetic shadowing without 

any wet-lab step, as demonstrated here for the PRR9 promoter in the Brassicaceae or the GI promoter 

of five grass species, respectively.  

 

In particular this study highlights the usefulness of the A. alpina genome for comparative genomics 

with A.thaliana, especially on the level of transcriptional regulation. Given the evolutionary distance 

of approximately 30 million years between these two species (see chapter 1.5)(Wang et al., 2009), this 

provides an excellent evolutionary resolution for phylogenetic analyses. This was not just 

demonstrated for the promoters GI and PRR9 as shown here, but also for the promoters of the 

flowering-time genes CONSTANS (Simon et al., unpublished), FLOWERING LOCUS T (Adrian et al., 

2010) and LEAFY (Wagner et al., unpublished).  

 

The shadowing pipeline developed here is well-suited to computer-based automation and is not 

restricted to particular plant species. Further development and automation could lead to powerful tools 

for detecting cis-regulatory elements in the future, not only for any plant promoter of interest, but also 

for analysing the transcriptional code of entire biological networks. 

 

In summary, the bioinformatic analysis of GI promoters provided excellent candidates for testing their 

biological significance in experimental assays, both on the level of larger regions (conserved Block 2) 

as well as on the level of cis-regulatory elements (EE, ABRELs, HUD-Box, LBS). 
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Genome-wide bioinformatic analysis 
 

 

3.1 Perspective 
 

Phylogenetic shadowing of the GI promoter has revealed a number of evolutionary conserved cis-

elements within one highly conserved block (chapter two), suggesting that the combinatorial interplay 

of those elements is crucial for the precise temporal regulation of GI. For a wide range of eukaryotic 

organisms including yeast (Lam et al., 2008) or Drosophila (Negre et al., 2011) it has been proposed 

that transcriptional regulation is mediated by enhancers containing multiple transcription factor 

binding sites and that these enhancers are bound by different combinations of transcription factors 

(Negre et al., 2011). Genome-wide analysis of promoter elements in co-regulated genes of A.thaliana 

is one approach to identify clusters of conserved elements and propose how such combinatorial 

regulation might work in plants. 

 

 

3.2 Identification and analysis of promoters enriched for EEs 
 

As the phylogenetic shadowing analysis (Chapter 2) suggested an important role for EEs within the GI 

promoter and this importance was confirmed by biological experiments (see chapter 4 and 5) I was 

interested in studying the significance of EEs and related cis-regulatory elements on a genome-wide 

level. First I asked the question how EEs are distributed within the genome of A. thaliana. All EEs and 

CBS in the A. thaliana genome were mapped and assigned a position relative to transcribed regions 

(calculations done by Karl Nordström). Not surprisingly, both the EE and the CBS showed high 

overrepresentation in intergenic regions, reflecting their role as cis-regulatory elements (Fig. 3.1). In 

coding regions, in contrast, the EE, and the CBS, appears at a frequency similar to that expected by 

chance. Interestingly, also 5’ UTRs and introns are enriched in EEs and in the CBS (Fig.3.1). 

 

Next, all EEs in intergenic regions in the A.thaliana genome were mapped and assigned to promoters 

of genes (lists generated by Karl Nordstöm). Promoters were defined as the 3kb upstream of the 

translational start site. This analysis showed that 15,7% of all promoters contain EEs, most of them a 

single one (Fig 3.2).  
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Fig. 3.1 Genomic Distribution of Evening Elements (EE) and CCA1-Binding-Sites (CBS) in 
A.thaliana. Random value describes the expected occurrence of a 9bp element if all bases would 
be distributed by chance. 
 

 

84,3% Without EE

13,7% -->1 EE

1,7% --> 2 EEs

0,3% --> 3 or more
EEs

 
Fig. 3.2 Genome-wide distribution of the EE (AAAATATCT) within 3kb upstream region of the 
translational start site 
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ID No  of EEs  Name 

AT1G10760 3  SEX1 

AT1G22770 3  GI (GIGANTEA)  

AT1G65360 3  AGL23  

AT1G68050 3  FKF1 

AT2G21660 4  CCR2 

AT3G07650 3  COL9  

AT4G25470 4  CBF2  

AT4G25480 3  CBF3  

AT4G25490 3  CBF1  

AT5G24470 5  PRR5 

Tab. 4 Well characterised genes with 3 or more EEs in their promoters. Circadian-clock-related 
genes are marked in bold 
 

 

EE-enriched promoters containing at least 3 EEs in their promoters were focused on because these 

have a similar configuration as the GI promoter. Ninety nine promoters were originally identified to 

contain at least 3 EEs. Double counts and small annotated ORFs within promoters were removed, 

which resulted in a final list of 71 genes with at least 3 EEs in their promoters (see in Suppl. Material). 

Manual inspection of this list revealed a number of well-characterised clock-related genes, such as GI, 

FKF1, PRR5 or CCR2 (Tab.4). Next gene ontology term (GO term) analysis of the 71 EE-enriched 

promoters was performed using FatiGO from the Babylomix server (Al-Shahrour et al., 2004; Al-

Shahrour et al., 2007). As expected, an over-representation of the GO term ‘circadian rhythm’ was 

discovered in the list of EE-enriched promoters, reflecting the previous findings of clock-related genes 

in that list. However, more surprisingly, an over-representation of cold stress related GO terms was 

also found, with higher statistical significance than for the circadian rhythm related GO-term. Further 

GO term analysis with a number of different tools revealed the same GO terms being over-represented 

(data not shown), supporting the results obtained with FatiGO. Genes whose promoters contain only 1 

or 2 EEs did not show overrepresentation for cold- and clock-related GO terms (data not shown). 
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Fig. 3.3  GO-term analysis of genes with 71 EE-enriched promoters using FatiGO. p-value for 
statistical significance of over-representation (highlighted with red colour):  0,005. 

 

The list with EE enriched promoters contains a number of cold-related genes, including the well 

characterised transcription factors CBF1, 2 and 3 (Tab 3.1). This suggests that EEs do not only have a 

prominent role in the regulation of clock related processes, but also in the regulation of cold-stress.  

 

Some members of the list of 71 genes are well characterised regarding their role in clock- and / or 

cold-stress-related networks. However, for most of the 71 genes no function has been proposed for one 

of these processes. To further investigate the roles of these genes, the complete list of EE-enriched 

genes was compared to publicly available microarray data.  This analysis revealed that almost all 

genes with at least 3 EEs in their promoters have a circadian expression pattern and that the peak-time 

almost exclusively occurs in the late afternoon or evening (Fig. 3.4).   
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Fig. 3.4  Phase analysis of EE-enriched promoters. 71 genes whose promoters contain at least 3 
EEs were subjected to phase analysis using Phaser (Mockler et al., 2007) 
a.) Phase of the 71 genes calculated from 4 different microarray datasets 
b.) Statistical analysis of the same data. Overrepresentation at distinct time points is indicated 
by positive values, under-representation by negative values.  
 
LD-SM (12h Long Day, Smith dataset (Smith et al, 2004)); LD-ST (12h Long Day, Stitt dataset 
(Blasing et al., 2005) LL-LL-HC (continuous light, Chory dataset1) LL-LD-HC (continuous light, 
Chory dataset 2) 
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Comparison of EE enriched promoters with microarray data of cold-induced genes (Fowler, 

Thomasshaw) revealed an overlap of 8 genes (Fig. 3.5). Strikingly, these genes also include GI, 

suggesting that GI might be upregulated in an EE-dependent manner both by clock and temperature. 

Moreover, all 3 CBFs as well as RESPONSIVE TO HIGH LIGHT (RHL41), CHLOROPLAST BETA 

AMYLASE (CT-BMY) and two unknown genes overlap between EE-enriched promoters and the cold-

induced gene lists. To further investigate the cold-induced expression pattern of EE-enriched 

promoters, the list of EE-containing genes was also compared to a second series of microarray 

experiments (Kilian et al., 2007).  In this study different durations of cold treatment were applied, 

ranging from 30min to 24h. The 10 selected genes from Table 4 were investigated (CBF1 as 

representative for the 3 CBFs) and the cold-dependent expression pattern was visualised using the Bar 

EFP Browser (Winter et al., 2007). Strikingly, all ten genes were up-regulated in response to low 

temperatures, most of them after a continuous cold treatment of at least 6h (Fig. 3.6).  

 

Taken together, this analysis suggests a link between clock and cold-stress regulation for genes 

containing multiple EE in their promoters. This link would exist not only for the well described genes 

on the list, but also for some for which a clock- or cold-dependent function has not been described as 

well as for a number of unknown genes. 

 
Fig. 3.5  Cold induction of genes with EE-enriched promoters1 
a.) List with 71 genes having EE-enriched promoters was compared to public available 
microarray data of transiently and long-time upregulated genes upon cold exposure; (Fowler et 
al., 1999) Venn Diagramm illustrated overlaps between these 3 lists  
b.) Genes that overlap between lists as described in a.) 
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Fig. 3.6 Expression pattern after a cold treatment of the 10 genes with EE-enriched promoters 
from Tab. 3.1 . Pictures show transcript accumulation after cold exposure for 0,5h, 1h, 3h, 6h, 
12h or 24h. Control is untreated GI sample. CBF1 was taken as representative for all three 
CBFs, who have a similar expression pattern. 
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3.3 Conservation of EEs in different promoters 
 

As shown in Chapter 2, phylogenetic shadowing is a powerful tool to reveal functionally important 

promoter regions and cis-regulatory elements. Moreover, A.alpina was shown to be on an appropriate 

evolutionary distance from A.thaliana to allow efficient comparisons. Therefore the EE-enriched 

promoters of FKF1and CCR2 were also subjected to a phylogenetic shadowing analysis and the 

conservation, position and orientation of all EEs were mapped and compared to the situation in the GI 

promoter. This analysis revealed that all EEs in the three investigated promoters were located within 

highly conserved regions (Fig 3.7). Moreover, all EEs found in the respective A. thaliana promoters 

were absolutely conserved in the A. alpina promoters. This observation suggests that the EEs in the 

promoters of FKF1 and CCR2 are likely to be functional. Furthermore, the distance and orientation of 

all EEs were also highly conserved between A.thaliana and A.alpina (Tab 3.2). Together with the 

genome-wide analysis of promoter elements (see Fig. 3.8 and 3.9) this highlights the importance of 

distance and orientation of cis-regulatory elements that are clustered within modules. Interestingly, 2 

EEs in the promoters of GI and FKF1 have exactly the same spacing (i.e. 177bp) in A.thaliana, 

suggesting that the same transcription factor complex might bind these two promoters to regulate their 

evening expression pattern.  

 

 

 
Fig. 3.7  Conservation of EE-enriched promoters 
A.thaliana promoters of GI, FKF1 and CCR2 were compared to their respective A.alpina 
orthologues and visualised using VISTA Browser (Brudno). Sliding window: 100bp, 
Conservation: 70%; Base genome: A.thaliana; highly conserved regions containing EEs are 
highlighted with blue bars. 
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    EE1 
Distance 
[bp] EE2 

Distance 
[bp] EE3 

Distance 
[bp] EE4 

EEs in 
conserved Block 

GI At For 23 Rev 177 For     yes 
  Aa For 23 Rev 188 For     yes 
                    
FKF1 At For 178 Rev 177 Rev     yes 
  Aa For 151 Rev 182 Rev     yes 
                    
CCR2 At Rev 12 Rev 15 For 136 For yes 
  Aa Rev 13 Rev 23 For 130 For yes 

Tab. 6  Location and orientation of conserved EE in the promoters of GI, FKF1 and CCR2; For: 
Orientation in 5’3’ direction Rev: orientation  in 3’ 5’ direction; distance between the 
respective EE is given in bp; At = A. thaliana; Aa = A. alpina. 
 

 

3.4 Genome-wide interactions between cis-regulatory elements 

 
Both the phylogenetic shadowing of the GI-promoter as well as the analysis of genes with EE-

enriched promoters suggests that clustering is a key feature of the EE. This leads to the question of 

how these multiple EEs might interact with each other. 

 

To answer these questions all EEs in intergenic regions were further investigated regarding their 

location, orientation and the position with respect to neighbouring elements (calculations performed 

by Karl Nordström, unpublished). This analysis was performed separately for the EE (AAAATATCT), 

the CBS (AAAAAATCT), and the SEE (AATATCT) as well as for all three elements together. As the 

results for the single elements were comparable, data in Fig 3.8 is shown for all 3 elements considered 

together and for the rest of this chapter these three elements together will all be considered as EEs 

(data with separate analysis in Supplements). 
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Fig. 3.8 Clustering of EEs within promoters 
 
All EEs (AAAATATCT), SEE (AATATCT) and CBS (AAAAAATCT) were mapped in relation 
to neighbouring EEs. a.) Orientation of EE not considered; b.) Different orientation of 
neighbouring EEs; c.) Same orientation of neighbouring EEs; Asterisks indicate statistical 
significance p<0,05 
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This data clearly shows that EEs are clustered within the genome and that their preferential distance 

lies between 20 and 40bp from each other (Fig 3.8a). A second sharp peak appears at a distance of 

260bp, indicating that different distances between EEs might play a role in EE-mediated regulation. 

Next the significance of EE orientation was investigated.  This analysis showed that the 2 groups of 

over-representation were separable depending on the orientation of the EEs. Over-representation at a 

distance of about 260bp mainly occurs if the two elements are located in the opposite direction (Fig. 

3.8b). In stark contrast, EEs that are clustered within a distance of 20 to 100 bp mainly show an over-

representation if located on the same strand (Fig. 3.8c). Moreover, these closely spaced EEs can be 

divided into two classes: the first class appeared almost normally distributed around a distance of 30bp, 

whereas the second class is represented by a sharp peak around 90bp. These data suggest that 

orientation and spacing of EEs combine to confer important functional information on promoters.   

The GI promoter does not only comprise 3 highly conserved EEs, but also a number of other 

conserved cis-regulatory elements such as ABRELs, HUD Boxes and a LBX (see chapter 2). This 

suggests that combinations of different transcription factors regulate the precise temporal expression 

pattern of GI. However, all these above mentioned elements are variants of elements that can be bound 

by classes of well-characterised transcription factors. The ABREL can be bound by bZIP transcription 

factors, the HUD Box is a variant of the core binding site for bHLH transcription factors and the LBX 

can be bound by GARP-type transcription factors such as LUX. Therefore, cis-elements were divided 

into 4 major classes according to their binding capacity for different transcription factors, i.e. Myb-

binding (containing EE, CBS and SEE), bHLH-binding, bZIP binding and GARP-binding as indicated 

in table 3.3.   

 

Class Sequence Name 
Myb AAAATATCT Evening Element (EE) 
  AAAAAATCT CCA1 Binding Site (CBS) 
  AATATCT Short Evenin Element (SEE) 
      
bZIP GACGTC C-Box (CBX) 
  ACGTG ABA Response Element-like (ABREL) 
      
bHLH CACATG HUD-Box (HUD) 
  CACGTG G-Box (GBX) 
      
GARP GATTCG LUX Binding Site (LBS) 

Tab. 7  Different classes of transcription factor binding sites as defined for genome-wide analysis 
undertaken in Fig 3.9. 
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Fig. 3.9  Relationship of EEs to other cis-regulatory elements. All EEs, SEEs and CBS were 
clustered in relation to neighbouring cis-regulatory elements  
a.) Relationship of EEs to the bHLH binding cis elements G-Box (CACGTG) and HUD-Box 
(CACATG) 
b.) Relationship of EEs to the bZIP binding cis elements C-Box GACGTC) and ABREL 
(ACGTG)  
c.) Relationship of EEs to the LUX Binding Site (LBX, GATTCG)Asterisks indicate statistical 
significance p<0,01 
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In order to analyse the relationship of EEs to the above mentioned binding sites, distances between all 

EEs and surrounding elements capable of binding bZIP or bHLH transcription factors or the GARP-

transcription factor LUX were calculated. As the sequences of bZIP and bHLH binding sites are fully 

or partially palindromic, no differences of orientation of these elements could be calculated. 

 

Comparing the positions of LUX binding sites to the location of EEs revealed no statistical significant 

over-representations (Fig. 3.9c). However, the analysis of the other combinations revealed some 

striking correlations. Both bZIP and bHLH binding cis-elements were over-represented at sharply 

defined distances from the EEs, (Fig. 3.9a and Fig. 3.9b). For both classes of binding sites, equal 

distances of over-representation were discovered at a distance of 37, 49, 207 and 219bp from an EE 

(Tab. 3.4), possibly due to the high similarity between bHLH and bZIP binding sites (Tab.3.3). 

Interestingly, the distance between the two more proximal peaks was the same as for the two more 

distal peaks: 12bp (Tab. 3.4). The significance of this pattern remains to be uncovered; however it 

suggests a combinatorial function of bHLH or bZIP binding sites and EEs. 

 

 Peak1 [bp] Peak2 [bp] Peak3 [bp] Peak4 [bp] Distance 1/2 

[bp] 

Distance 

3/4 [bp] 

bHLH 37 49 207 219 12 12 

bZIP 37/39 49 207 219 10/12 12 

Tab. 8 Overrepresented distances of bHlH and bZIP binding sites in relation to EEs. Only 
statistical significant hits (p<0,01) from Fig. 3.9 are shown.  
 

 

3.5 Discussion 
 

Genome-wide investigation of EEs revealed that they occur in a large number of plant promoters. 

However, a relatively small fraction of genes, including GI, has 3 or more EEs in their promoters. 

Further analysis of these 71 promoters showed that the corresponding genes are regulated by the 

circadian clock and that the large majority show a peak in expression in the afternoon or in the evening. 

This is in agreement with how the EE was originally discovered by studying promoters of genes with a 

peak in expression in the evening to identify enriched motifs (Harmer et al., 2000b). However, 

unexpectedly, GO term analysis also revealed a high over-representation of cold-stress related terms. 

It has been shown recently, that EEs in concert with the bZIP binding ABRELs can regulate the cold-

dependent up-regulation of COL1 and COR27 (Mikkelsen and Thomashow, 2009). This suggests that 

EEs are not only functional in clock-related processes as shown before, but also in the regulation of 

cold stress. 



54 Genome-wide bioinformatic analysis 
 

 

Comparison of genes with multiple EEs and genes that are up-regulated in the cold revealed that GI 

transcript was found to be increased in abundance after exposure to cold in Arabidopsis (Fowler and 

Thomashow, 2002; Cao et al., 2005) and other species (Paltiel et al., 2006; Hong et al., 2010). 

Moreover, gi mutants are less sensitive to freezing temperatures compared to wildtype plants (Cao et 

al., 2005), suggesting that GI indeed might play a role in cold-stress related processes. 

The GI promoter does not only comprise 3 highly conserved EEs within its promoter, but also 3 highly 

conserved ABRELs (chapter 2), suggesting that these elements might act combinatorially to 

upregulate GI transcription during cold exposure. 

 

So far this analysis highlighted the importance of multiple EEs within promoters. However, must EEs 

be present in multiple copies to be functional? Probably not, as a single EE in the promoter of TOC1 

plays a crucial role within the central loop of the circadian clock (Alabadi et al., 2001; Perales and 

Mas, 2007). One possibility is that multiple EEs simply provide redundancy within promoters. This is 

highlighted by recent findings that show loss of EE-mediated transcription only if multiple EEs are 

mutagenised (Mikkelsen and Thomashow, 2009). However, the massive over-representation of 

specific distances between EEs in my genome-wide analysis suggests that this pattern could have an 

important biological function. This is underlined by the finding that orientation and spacing of the EEs 

is highly conserved – at least in the promoters of GI, FKF1 and CCR2. Therefore it seems more likely 

that multiple EEs provide promoters with additional regulatory functions, perhaps including cold 

regulation. 

 

The genome-wide analysis of location and spacing of different cis-regulatory elements revealed 

relationships between EEs and bZIP and bHLH binding sites. Most strikingly, the overrepresented 

distances between EEs and bZIP or bHLH binding elements were the same. One explanation for this 

might simply be that bZIP and bHLH transcription factors bind to similar sequences and thus the same 

sequences are responsible for these peaks. This could be tested by biological experiments such as 

ChIP-seq analysis with different bZIP and bHLH transcription factors. 

Another outcome of this analysis is that the distance between peaks of bZIP or bHLH binding sites 

was 12bp, both proximal and distal to the EEs. A possibility is that bZIP and bHLH binding sites at a 

distance of 37 and 49bp from the EEs form one regulatory unit and that the the two more distant peaks 

constitute the same pattern one ncleosome distant from the first peaks. Considering the average length 

of nucleosomes (178bp,(Alberts et al., 2007)) this would fit well to the distance of 170bp observed in 

this study (207 – 37 or 219 - 49 =170).  

 

This analysis provided important insights into possible combinatorial action of different cis-regulatory 

elements and is one step in revealing the transcriptional code in clock and cold-regulated genes of 
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A.thaliana. However, many interesting questions remain to be resolved. Which genes have specific 

patterns of over-representation or interactions between cis-regulatory elements within their promoters? 

Apart from bZIP and bHLH binding sites do other cis-regulatory elements cluster or interact in a 

similar way as EEs? Could such an analysis discover previously undescribed cis-regulatory elements? 

Future analysis is required to answer these and related questions. 

 

In summary, these data suggest that EEs are functional in multiple promoters and that they regulate 

both circadian clock and cold-stress related processes. This study provides evidence that such action 

requires multiple EEs as well as the combinatorial interaction of EEs with different cis-regulatory 

elements. 
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Analysis of luciferase reporter lines 
 

4.1 Perspective 
 

Phylogenetic shadowing is a powerful tool to predict functionally important cis-regulatory modules 

and elements. However, to verify the significance of such conserved cis-regulatory modules, 

biological experiments are necessary. One common way to do so is the use of promoter fragments 

fused to a reporter gene. Here I make use of the luciferase reporter system in order to study the 

significance of conserved modules and putative important cis-regulatory elements within the GI 

promoter of A. thaliana that were predicted by the phylogenetic analysis in chapter two. This will 

allow the in planta functional analysis of these elements and thereby reveal their contribution to 

different transcriptional features of GI such as the response to different photoperiods or the gated 

effect of a light pulse. 

 

4.2 The GI promoters of A. thaliana and A. alpina confer similar 
expression patterns 
 

One important assumption in doing phylogenetic shadowing approaches is that the orthologous 

sequences that are compared have the same function in the different organisms. To test this for the 

present study, a 5kb GI promoter fragment from the A. alpina GI promoter (that covers the entire 

intergenomic region between GI and its upstream gene PAB3) was cloned, fused to the luciferase open 

reading frame and stably introduced into A. thaliana by Agrobacterium-mediated transformation (done 

by Ingmar Bürstel and Frédéric Cremer, unpublished). The pattern of luciferase activity in these plants 

was compared to plants carrying a 2,5kb promoter fragment of the A. thaliana GI promoter fused to 

the luciferase open reading frame (done by Hailong An). 

 

Three independent homozygous lines of the AaGI::Luc plants were selected and compared to the 

reference line of AtGI::Luc. This analysis revealed strong expression conferred by the AaGI::Luc 

transgene, at a comparable level to the AtGI::Luc reference line, demonstrating that both constructs 

confer a similar expression level in A. thaliana (Fig. 4.1a). Subsequently, the diurnal expression 

pattern under LD 16 conditions was determined. This analysis revealed the same diurnal expression of 

the three AaGI::Luc constructs compared to AtGI::Luc (Fig. 4.1b). Both constructs confer a strong 

peak in expression in the late afternoon and a small peak at the onset of light in the morning. This 

demonstrates that the GI promoters of A. thaliana and A. alpina confer the same expression pattern 
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and therefore conserved regions between these two sequences are likely to be important for generating 

GI evening expression in these two species.  

 

 
Fig. 4.1  The GI promoters of A. thaliana and A. alpina confer a comparable expression pattern 
a.) Average luciferase expression per seedling of three independent lines with the AaGI::Luc construct 
compared to the reference line of AtGI::Luc over a four day period; Errorbars = Standard Deviation 
b.) Diurnal expression pattern of three independent lines with the AaGI::Luc construct compared to the 
reference line of AtGI::Luc 
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4.3 Conserved Block 2 can drive a GI-like expression pattern  
 

The phylogenetic shadowing analysis revealed 5 conserved blocks within the GI promoters of 8 

Brassicaceae, 3 of them located within the 2,5kb GI promoter fragment used in this study (chapter 2). 

In order to test the contribution of the three conserved blocks within the 2,5 kb promoter fragment of 

GI, conserved Blocks 1, 2 and 3 as well as the full 2,5kb GI promoter fragment were fused to a 105bp 

fragment carrying the NOPALINE SYNTHASE (NOS) minimal promoter and inserted upstream of the 

luciferase open reading frame (Puente et al., 1996). The Agrobacterium NOS promoter is one of the 

best described promoters that confers expression in plants and this 105bp minimal promoter has been 

used in previous circadian-clock associated studies in plants (Puente et al., 1996; Harmer and Kay, 

2005). These four constructs were stably introduced into A. thaliana, homozygous lines were 

established and luciferase expression of three independent lines derived from each construct was 

analysed.   

 

The 2,5kb GI promoter fragment in combination with the pnos minimal promoter drives expression in 

a similar pattern to GI::Luc without the minimal promoter, but with slightly reduced amplitude (not 

shown). Subsequently the expression pattern of this construct was compared to each of three 

independent homozygous lines of the B1-pnos::Luc, B2-pnos::Luc and B3-pnos::Luc construct. B1 

and B3 conferred extremely low expression and none of the seedlings in those lines displayed 

rhythmic expression, demonstrating that these constructs are not capable of driving rhythmic 

expression on their own. 

In contrast, all three B2 constructs conferred robust expression almost at the level of the GI-pnos::Luc 

control. In order to further examine the expression pattern of B2-pnos::Luc, plants were grown under 

diurnal conditions (LD 16) and then released to constant light. Under LD conditions, all three 

independent lines gave a peak in expression in the evening that was comparable to that of the GI-

pnos::Luc control (Fig. 4.2b). Moreover, as for the 2,5kb promoter construct all lines displayed a rapid 

response to light in the morning, which was stronger in Line 1 compared to the other two B2-

pnos::Luc lines and the GI-pnos::Luc control. Under LL conditions, the rhythmic expression in the 

evening continued in all three lines, indicating that this rhythmic expression is controlled by the plant 

circadian clock. In contrast, the morning peak disappeared in LL, confirming that it is a direct 

response to the dark/light transition. Overall the expression pattern conferred by the B2-pnos::Luc 

construct is similar to the expression pattern of the full length promoter, suggesting that Block 2 is 

important for GI regulation. 

Collectively this data shows that conserved Block 2 – in combination with a pnos minimal promoter – 

can confer a robust GI-like expression pattern. 
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Fig. 4.2 Conserved Block 2 can drive a GI-like expression pattern  

a.) Average luciferase expression per seedling of each three independent lines with the B1-pnos::Luc, B2-
pnos::Luc and B3-pnos::Luc construct compared to one line of AtGI-pnos::Luc over a five days; Errorbars 
= Standard Deviation 
b.) Expression pattern of three independent lines of the B2-pnos::Luc construct compared to GI-pnos::Luc. 
Plants were grown under long days (LD 16) and then released to continuous light conditions 
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4.4 Strategy for mutagenesis of conserved elements in the GI promoter 
 

The fusions to the pnos minimal promoter demonstrated the importance of conserved Block 2. 

Moreover, the previous phylogenetic analysis revealed a number of conserved cis-regulatory elements 

within Block 2 that are implicated in light and clock-mediated transcriptional responses. Among these 

were three EEs, cis-regulatory elements that are over-represented in the promoters of evening 

expressed genes and can drive evening expression in artificial promoter systems (Harmer et al., 2000b). 

 

 

To test the significance of these conserved EEs, all three were mutagenised by site-directed 

mutagenesis. In order to investigate the role of the EEs specifically within Block 2, the three EEs were 

also mutagenised only in the context of Block 2 and fused to the previously described 105bp fragment 

of the pnos minimal promoter. Both mutagenised fragments were cloned upstream of the luciferase 

open reading frame and stably introduced into A. thaliana. At least two homozygous lines were 

established for each line and characterised for aspects of expression characteristic of the GI promoter. 

 

ID Background Description 

GI::Luc Ler 2,5kb GI promoter fused to luciferase 

GI-pnos::Luc Ler 2,5kb GI promoter +105bp nos minimal promoter, fused to 

luciferase 

TEE::Luc Ler 2,5kb GI promoter, fused to luciferase, 3 EEs mutated 

B2-pnos::Luc Ler conserved Block 2 (700bp) +105bp nos minimal promoter, fused 

to luciferase 

B2TEE-

pnos::Luc 

Ler conserved Block 2 (700bp) +105bp nos minimal promoter, fused 

to luciferase, 3 EEs mutated 

Tab. 9 Nomenclature and overview of some transgenic constructs frequently used in chapter 4 
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4.5 Mutating EEs results in altered GI expression 
 

Different studies suggest that the precise timing of GI expression in the evening is crucial for its 

function within the photoperiodic flowering time pathway. In order to analyse the possible 

contribution of EEs and Block 2 to this evening specific expression pattern, 2 homozygous lines for 

each of the TEE::Luc, B2-pnos::Luc and B2TEE-pnos::Luc constructs were grown under LD 16 

conditions with cool white light of approximately 70µE and luciferase expression was compared to the 

reference GI::Luc. 

The GI promoter displays a small peak in the morning with a subsequent suppression of expression 

during the day and then reaches its peak in expression in the early evening around ZT 12 under LD 16 

conditions. The TEE::Luc constructs, in contrast, behave differently. Upon the onset of light in the 

morning the expression level constantly rises until it reaches a plateau-like peak in the early afternoon 

(Fig. 4.3a). Repression in the morning as observed for the unmutated GI promoter does not take place. 

Apart from these differences in waveform, the peak time itself is approximately 2h earlier under long 

day conditions in the TEE::Luc lines.  

As described earlier in this chapter, the B2-pnos::Luc construct confers similar expression 

characteristics as the full length GI promoter. However, the amplitude was reduced and the repression 

in the morning was weaker in these lines compared to the GI::Luc control (Fig 4.3b). The strongest 

phenotype was displayed by the B2TEE-pnos::Luc construct witch showed a severely disrupted 

rhythmicity. In the morning these lines display an immediate very low amplitude upregulation in Luc 

expression at the onset of light (Fig 4.3c). However, after approximately 2h, this increase in GI::Luc 

expression reaches a plateau during the rest of the day. 

In summary, the three different types of GI promoter constructs all give a specific expression pattern 

under long day conditions. Mutation of three EEs in the full-length promoter leads to an earlier phase 

and a broader peak, Block 2 confers GI-like expression with lower amplitude and mutating the three 

EEs within Block 2 largely abolishes rhythmicity. 
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Fig. 4.3  Different GI promoter constructs confer different patterns of Luc expression 
Two independent lines each of the TEE::Luc, B2-pnos::Luc and the B2TEE-pnos::Luc constructs were 
compared to the reference line of GI::Luc. All data was normalised to the average expression of the time 
course. Error Bars=Standard Error a.) TEE::Luc b.) B2-pnos::Luc c.) B2TEE-pnos::Luc 
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4.6 Tracking of dusk is impaired in transgenic GI promoter constructs 
 

Under LD 16 conditions the four different GI promoter reporter fusions showed clearly different 

expression patterns, which is reflected by the different peak times in expression. The peak time of GI 

expression differs under SD 8 and LD 16 conditions (Fowler et al., 1999). Moreover, the GI peak in 

expression tracks dusk during different photoperiods (Edwards et al., 2010b). The current model of 

photoperiodic flowering suggests that this dusk-tracking of GI is crucial for the degradation of CDFs 

at the right time of the day and therefore for CO mRNA upregulation in long days. 

 

In order to test the contribution of EEs and Block 2 on GI::Luc tracking of dusk, plants with the 

previously described luciferase constructs were grown under different photoperiods from 4h light / 

20h darkness to 16h light / 8h darkness. Subsequently all peak times were calculated and compared.  

As reported previously, GI::Luc expression tracked dusk at photoperiods between 4h and 12h, 

whereas between photoperiods of 12h and 16h peak time changed only mildly (Fig.4.4a). In contrast, 

two independent TEE lines showed a different pattern. For photoperiods between 10h and 16h of light 

a clear difference of approximately 1,5h in peak time was detected compared to GI::Luc plants, 

however between photoperiods of 4h and 8h of light the peak time was the same as for GI::Luc (Fig. 

4.4a). This shows that the tracking of dusk is impaired in these plants, with a critical point between 8h 

light / 16h darkness and 10h light / 14h of darkness.   

 

The B2-pnos construct, in contrast, displayed a delayed peaktime compared to the GI::Luc construct 

(Fig. 4.4b). This was most pronounced under short day conditions of SD4 and SD6. Under all other 

photoperiods that were studied this effect was more subtle, with a phase delay of approximately 0.5h.  

As previously described, the B2TEE-pnos construct is largely arrhythmic. Nevertheless peak times 

were calculated for all photoperiods and revealed a tracking of dusk under SD4 and SD 6, whereas the 

remaining measured points display a huge variety (Fig 4.4b). This is due to the plateau-like level of 

Luc expression conferred by this construct, which distributes the highest level of expression in each 

seedling throughout the day. 

 

Taken together, all three of these GI promoter constructs impair the correct tracking of dusk that is 

displayed by the GI promoter. 
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Fig.4. 4 Tracking of dusk is impaired in transgenic GI promoter constructs 
Seedlings were grown under different photoperiods from 4h light / 20h dark to 16h light / 8h dark. Peak 
time of GI expression was calculated and plotted against the respective photoperiod. Error Bars = 
Standard Error; white and gray areas indicate light and dark, diagonal line indicates dusk. 
a.) Two independent lines of the TEE::Luc construct compared to GI::Luc  
b.) One line of the B2-pnos::Luc and the B2TEE-pnos::Luc construct compared to GI::Luc 
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Fig. 4.5  TEE constructs show an acute response to different light qualities 
Seedlings carrying the different constructs were grown under LD 16 conditions and then transferred to 
continuous dark. At ZT 36, plants were exposed to a light pulse of blue, red, far-red or white light. 
Control plants were kept in dark. Luminescence is presented as normalised values of at least 16 seedlings 
per line.a.) GI::Luc b.) TEE::Luc_1 c.) TEE::Luc_2 
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Fig. 4.6  B2-pnos and B2TEE-pnos constructs show an acute response to different light qualities 
Seedlings of the different constructs were grown under LD 16 conditions for 7d and then transferred to 
continuous dark. At ZT 36, plants were exposed to a light pulse of blue, red, far-red or white light. 
Control plants were kept in dark. Luminescence is presented as normalised values of at least 16 seedlings 
per line.a.) B2-pnos::Luc b.) B2TEE-pnos::Luc 
 

4.7 Mutation of EEs within the GI promoter impairs the acute response 
to light 
 

One of the key features of the GI promoter is its induction by light at dawn and in the evening, which 

may contribute to clock entrainment (Toth et al., unpublished). This induction by light is gated during 

the day and can be caused by red, far-red or blue light (Toth et al., unpublished). 
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In order to test if this is still true for the EE depleted lines, all lines were grown in DD and a light pulse 

of 30min was applied in order to induce GI. As for the GI::Luc fusion, all constructs showed clear 

induction to all light conditions used. For all constructs, blue and white light gave the strongest 

response, whereas the far-red light pulse had the weakest effect (Fig. 4.5/ Fig. 4.6). Overall, however, 

this acute response to light was strongest in GI::Luc, whereas the B2TEE-pnos::Luc construct 

displayed a reduced response(Fig. 4.5a/ Fig. 4.6a,b). The TEE::Luc lines displayed an intermediate 

response (Fig. 4.5b,c). Collectively this data shows that Block 2 can mediate light induction and that 

the mutation of EEs might weaken this effect, but does not prevent it.   

 

The acute response of the GI promoter is gated by the circadian clock (Toth et al., unpublished). As 

for other gated responses (Fowler et al., 2005), the effect of the light pulse is strongest at the time of 

maximum expression. As the TEE::Luc constructs confer an earlier peak time compared to the 

GI::Luc construct, this might also alter the timing of the gated acute response making it difficult to 

compare different constructs at the same time. 

In order to overcome these difficulties, a full timecourse experiment was conducted. Seedlings were 

grown under LDs, transferred to the dark and subsequently replicate seedlings were subjected to a 

white light pulse of 30min every 2,5h. Plants were transferred back to darkness and luciferase 

expression was measured before and after the treatment. The acute response was then calculated by 

subtracting the pre-treatment values from those after the treatment with a light pulse.   

The data clearly demonstrated the gated response to the light pulse for the GI::Luc construct (Fig. 

4.7a). The maximum peak in induction correlated with the peak in expression of GI. Moreover, the 

maximum induction in the subjective evening was approximately sevenfold higher compared to the 

minimum induction in the subjective morning (Fig. 4.7a). In contrast, this gated response to a light 

pulse was much weaker in a representative TEE::Luc line (Fig. 4.7b) and almost depleted in a 

representative B2TEE-pnos line (Fig. 4.7c). Moreover, the differences between minimum and 

maximum induction during the day are much smaller compared to those observed with the full GI 

promoter.  

 

Taken together, mutating EEs within the GI promoter reduces the gated response to a light pulse, most 

pronounced in the background of the Block 2 construct.  
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Fig. 4.7  Circadian clock-gated light induction is impaired in transgenic GI promoter lines 
Seedlings of the GI::Luc, TEE::Luc and B2TEE-pnos::Luc constructs were grown under LD 16 conditions 
for 7d and then transferred to continuous dark. Replicate samples received a white light pulse of 30min at 
different times between ZT 25 and ZT 54 and luciferase expression was measured continuously before and 
after this treatment. Acute response was calculated by subtracting the luminescence values before the 
treatment from those after the treatment. Gray line represents the untreated dark-sample.  
a.) GI::Luc b.) TEE::Luc_1 c.) B2TEE-pnos::Luc_1 
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4.8 Other factors than LHY/CCA1 contribute to the EE-mediated 
transcriptional regulation of GI 
 

It has been shown that the lhy/cca1 double mutation causes a peak in GI expression in the morning 

(Mizoguchi et al., 2005). This led to the proposal that LHY/CCA1 binds the EEs in the GI promoter in 

the morning to repress GI transcription. During the day, LHY and CCA1 are degraded and therefore 

GI transcription can take place with a peak in the evening. Thus the phase-shift of GI expression 

towards the morning in the lhy/cca1 double mutant could be caused by the loss of the direct repressors 

LHY and CCA1 that bind the EEs within the GI promoter in the morning. 

 

In order to test these assumptions, the TEE::Luc, the B2-pnos::Luc and the B2TEE-pnos::Luc 

constructs were stably introduced into lhy/cca1 double mutant plants and the luciferase expression of 

homozygous lines was measured and compared to an already established GI::Luc line in the lhy/cca1 

background (Cremer, unpublished). As previously reported for the RNA abundance of GI in a lhy/cca1 

double mutant (Mizoguchi et al., 2005), luciferase expression of GI::Luc in lhy/cca1 peaks in the 

morning around ZT5 (Fig. 4.8a). The TEE::Luc constructs displayed a largely comparable expression 

pattern compared to GI::Luc. However, the peak in Luc expression in these transformants was slightly 

shifted earlier and as for the TEE::Luc constructs in the wildtype background, these constructs 

displayed a broader, flatter peak (Fig. 4.8a). The B2-pnos::Luc constructs displayed a similar 

expression pattern as the full length GI::Luc, with a slightly earlier expression peak (Fig. 4.8b). The 

B2TEE-pnos::Luc constructs, however, showed the strongest effect of all constructs in the lhy/cca1 

background. In these plants rhythmicity of luciferase expression was severely disrupted and only a 

weak peak in the morning was detected (Fig 4.8c).  

If LHY/CCA1 were unique repressors of GI via direct binding to the EEs within the GI promoter, the 

deletion of these EEs would have no additional effect in the lhy/cca1 background. As this is clearly not 

true for the B2TEE-pnos::Luc constructs compared to the B2-pnos::Luc, this shows that other factors 

regulate GI via EEs. 

 

Taken together, all constructs in the lhy/cca1 background showed a similar expression pattern as in the 

wt background, with the difference that the peak in expression was generally shifted towards the 

morning in the lhy/cca1 background. Collectively this shows that other factors than LHY/CCA1 are 

important for the EE-mediated transcriptional response. 
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Fig. 4.8 Other factors than LHY/CCA1 contribute to the EE-mediated transcriptional regulation of GI 
Each 2 independent lines of the TEE::Luc, B2-pnos::Luc and the B2TEE-pnos::Luc constructs in the 
background of the lhy/cca1 double mutation were compared to the reference line of GI::Luc in lhy/cca1. 
All data was normalised to the average expression of the measured time frame. Error Bars=Standard 
Error a.) TEE::Luc b.) B2-pnos::Luc c.) B2TEE-pnos::Luc 
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4.9 Block 2 can drive expression without a minimal promoter  
 

The phylogenetic shadowing showed that the 3’ end of Block 2 comprises a number of core promoter 

elements, such as a TATA Box and a CT rich repeat (see chapter 2). Moreover, a weak expression of 

RNA in this region was detected by real time PCR (data not shown). Together this provides evidence 

that Block 2 might be capable of driving transcription. In order to test if Block 2 can confer a 

transcriptional start site, stably transformed A. thaliana lines with Block 2 as well as Block 2 with the 

three mutated EEs fused to the luciferase open reading without the pnos minimal promoter were 

established.  

Surprisingly, these two constructs gave a very clear expression pattern comparable to the respective 

pnos minimal promoter constructs (Fig. 4.10). Moreover, the peak in relative expression in the Block 2 

lines exactly matched the timing of the GI::Luc control, whereas the B2TEE::Luc lines showed a 

broader peak with lower amplitude and an earlier peak in expression (Fig. 4.10).  No expression was 

detected for the B1 and the B 3 fragments fused to luciferase (data not shown). 

Therefore Block 2 contains a transcriptional start site capable of driving a GI-like pattern of Luc 

expression even in the absence of a minimal promoter. 

 
Fig. 4.9  Block 2 can drive luciferase expression without the pnos minimal promoter  
Each 2 independent lines of the, B2::Luc and the B2TEE::Luc constructs without the pnos minimal 
promoter were grown under LD 16 conditions and compared to the reference line of GI::Luc. Luciferase 
expression was normalised to the average expression of the measured time frame. Error Bars=Standard 
Error 
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4.10 Trichostatin A delays the phase of GI expression 
 

Epigenetic regulation provides an additional layer of transcriptional regulation by modifying the tails 

of histones and thus making the chromatin generally more or less accessible to transcription factors 

(general review). In the plant circadian clock it was shown that the chromatin state of the TOC1 

promoter is regulated in a circadian rhythm and that the proper timing of TOC1 expression relies on 

the acetylation and de-acetylation of histones within its promoter (Perales 2008).  

 

In order to test if histone acetylation and de-acetylation also play a role for GI transcriptional 

regulation, seedlings harbouring the GI::Luc transgene were grown for 7d and then transferred to 

medium containing different concentrations of Trichostatin A (TSA). TSA is a potent inhibitor of 

histone de-acetylases (Pikaard and Chang, 2005), thus leading to hyperacetylation of histones, which 

generates a more open chromatin state and therefore enhances transcription. 

 

Exposing seedlings to increasing concentrations of TSA caused a shift in GI::Luc expression towards 

the evening with a maximum phase shift of almost 3h compared to control plants (Fig.4.11a). To 

investigate a general clock effect of TSA, the average period of TSA-treated plants was calculated 

under the different conditions. This analysis revealed no significant differences between the differently 

treated seedlings (Fig. 4.11b). 

 

Taken together, TSA caused a delay in GI phase, suggesting that chromatin state is important for GI 

transcriptional regulation, although it remains to be tested whether this is a direct effect on the GI 

promoter or an indirect effect through a GI regulator.  
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Fig. 4.10  Trichostatin A affects the Phase of GI::Luc  expression 
At least 12 seedlings with the GI::Luc construct were grown under LD 16 conditions for 7d. Subsequently, 
plants were transferred to medium containing the indicated concentration of Trichostatin A. Phase was 
calculated the following day in DD. Values represent mean values +/- SE. 
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4.11 Discussion 
 

In order to test conserved cis-regulatory modules and elements that were predicted by the phylogenetic 

shadowing, stable transgenic Arabidopsis lines carrying the luciferase reporter system were used. 

 

A 2,5kb GI promoter construct was used as the basis for all GI promoter studies. Previous experiments 

with this 2,5kb construct of A.thaliana demonstrated that it confers the same diurnal expression pattern 

of luciferase expression as GI RNA abundance measured by qPCR in previous reports (Fowler et al., 

1999; Park et al., 1999). Moreover, this 2,5kb GI promoter fragment (Cremer et al., unpublished) is 

used in the laboratory for a number of different experimental approaches, such as chemical genetic 

screens (Toth, Nougalli et al, unpublished) and in the search for natural variation within the 

Arabidopsis circadian clock (de Montaigu et al, unpublished). The intergenic region between GI and 

its upstream gene, PAB3, has a length of 3,6kb and was used for the phylogenetic analysis. Conserved 

block 4/5 is not present in the 2,5kb fragment, whereas Block 1, Block 2 and Block 3 are present. 

Nevertheless a previously reported transgenic luciferase construct with the full 3,6kb promoter gave 

the same expression pattern as the 2,5kb construct (Onai et al., 2004).  

Taken together, the 2,5kb fragment reflects GI transcriptional regulation and is therefore used as the 

basis for the GI promoter analysis within this study. Moreover, the 2,5kb fragment fused to the GI 

cDNA fully complements the gi mutation (see chapter 5). 

 

A phylogenetic shadowing approach is based on the assumption that the compared orthologous 

sequences retain the same function, e.g. the same expression pattern on orthologous genes. The 

AaGI::Luc lines in A. thaliana give strong evidence that this is the case for the GI promoters of the 

Brassicaceae. Moreover, as the AaGI promoter is heterologously expressed in A. thaliana and confers 

the same expression, this indicates that not only the promoters, but also the upstream regulators of GI 

are conserved between A. thaliana and A. alpina. As all plant species investigated so far, including 

distantly related species such as Arabidopsis and rice, show evening expression of GI (Hayama et al., 

2003)  it is not surprising that two species within the same family display the same expression pattern. 

As AtGI and AaGI promoters have the same activity, consequently the definition of the five conserved 

blocks within the GI promoters of eight Brassicaceae was based on the conservation between A. 

thaliana and A. alpina. 

 

Analysis of conserved Block 1, Block 2 and Block 3 revealed that Block 2 is capable of conferring a 

GI-like expression pattern on luciferase, whereas Block 1 and Block 3 are only capable of driving a 

very weak luciferase expression pattern, which most likely reflects the basal expression pattern 

conferred by the pnos minimal promoter (Puente et al., 1996). Block 2 is therefore likely to be 

important for GI regulation. However, the weaker amplitude of the B2-pnos::Luc constructs compared 
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to GI-pnos::Luc demonstrates that other parts of the promoter are important for high level GI 

expression as well. Block 1 and Block 3 are the most likely candidates for such enhancers, even if they 

are not capable of conferring robust GI expression on their own. Moreover, Block 2 is capable of 

responding to different light spectra, demonstrating that this integral part of GI regulation is encoded 

within Block 2. The phylogenetic shadowing analysis also showed that Block 2 comprises a large 

number of previously described clock-associated cis-regulatory elements. Among these were 3 

conserved EEs, which were promising candidates for generating GI evening expression.  

 

The mutations in TEE::Luc and the B2TEE-pnos::Luc constructs have related effects. However, 

deletion of the 3 EEs has a strongly enhanced effect if carried out only in the context of Block 2. This 

demonstrates that EEs are active within the GI promoter, but that within the GI promoter outside 

Block 2 there is some redundancy. Such a redundancy could be conferred by other EE-like elements, 

for instance by a CBS that is located in the proximal part of the GI promoter.  

 

The data presented here suggest that mutation of EEs in the GI promoter has two major effects: It 

shifts the peak in expression of GI towards the morning and it impairs the gated response to a light 

pulse. In contrast, mutating an EE in fragments from other clock-related genes such as PRR9 or CCR2 

caused complete arhythmicity in such transgenic plants (Harmer and Kay, 2005). However, these 

fragments were only 20-30bp long and then fused to a pnos minimal promoter. This shows that EEs 

can confer rhythmicity, but it does not give further insights into the interaction of EEs with 

surrounding DNA. 

 

Mutagenesis of individual EEs within the full length GI promoter was expected to progressively shift 

the peak in expression towards the morning and finally result in an expression pattern as in the 

background of the lhy/cca1 double mutation. Even though Luc expression is shifted towards the 

morning in the TEE::Luc plants, this effect is less pronounced as in a lhy/cca1 mutant. One possibility 

for this pattern is that the GI promoter still contains redundant elements to the mutagenised EEs in 

Block 2 and LHY/CCA1 can still repress GI during the day, possibly due to binding of a CBS in the 

proximal part of the promoter. 

 

However, data from the B2-pnos::Luc and B2TEE-pnos constructs argue that other factors recognise 

the EEs in lhy/cca1 double mutants. If LHY/CCA1 were unique repressors of GI via EEs in Block 2, 

no difference between the mutated and the non-mutated constructs would be discovered in lhy/cca1 

double mutants. However, rhythmicity is completely disrupted in the B2TEE-pnos lines compared to 

the B2-pnos lines in the double mutant. The pattern of the two different constructs in the lhy/cca1 

double mutant is very similar to the pattern observed in wildtype plants, suggesting that an EE-binding 

factor that is not LHY/CCA1 mediates the rhythmic expression of GI.   
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The lhy/cca1 double mutation causes transcriptional miss-programming of many clock controlled 

genes (Alabadi et al., 2001; Carre et al., 2001; Schaffer et al., 2001; Alabadi et al., 2002; Mizoguchi et 

al., 2002a). Therefore the morning expression of GI in the lhy/cca1 double mutant might be caused by 

indirect effects, such as altered expression of unknown transcription factors that regulate GI. Moreover, 

it was shown recently that LHY associates with the GI promoter (Lau et al., 2011), suggesting that at 

least LHY directly regulates GI.  

 

In summary, data obtained during this study suggests that LHY/CCA1 regulates GI probably by a 

combination of direct and indirect mechanisms. 

 

One interesting feature of Block 2 within the GI promoter is that it can confer expression in the 

absence of a minimal promoter, indicating that it encodes a transcription start site within its sequence. 

Nevertheless, Block 2 is 500bp upstream of the established transcriptional start site of GI. Core 

promoter elements were identified by the phylogenetic analysis at the 3’ end of Block 2 and are likely 

to be the cause of this ability to initiate transcription. It is so far unclear what might be the biological 

function of such a second transcription start. Compared to the pnos-constructs, the expression pattern 

generated by the B2 constructs is more similar to the GI expression as the B2-pnos constructs, possibly 

due to interference of two different transcriptional start sites. 

 

Experiments with the histone deacetylase inhibitor TSA demonstrated an effect on the peak time of GI 

transcription. However, TSA generally affects acetylation of histones and therefore might cause a 

general transcriptional reprogramming. Therefore it is not clear if this effect on GI phase is direct or 

indirect. For the transcriptional regulation of the evening gene TOC1 a similar phase shift upon TSA 

treatment was reported (Perales and Mas, 2007). Moreover, it was shown that the chromatin state at 

the TOC1 promoter is directly regulated by the circadian clock. Therefore one can propose that similar 

mechanisms might confer the phase shift of GI, another evening expressed gene. Moreover, the 

absence of period changes upon TSA treatment suggests that the plant circadian clock is not generally 

changed in TSA treated plants, thus also supporting the hypothesis of a direct effect on GI 

transcriptional regulation. 

 

Taken together, the luciferase data highlight the importance of Block 2 and the EEs within the GI 

promoter of A. thaliana. Three different GI promoter constructs confer a variety of different 

expression patterns of GI and therefore provide an effective tool to test the effect of missexpression of 

GI conferred by these promoters in transgenic plants. 
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Functional characterisation of different GI expression 
patterns 
 

5.1 Perspective 
 

One method to analyse promoters in different organisms is the use of marker gene fusions in which 

promoter fragments are to a reporter gene such as luciferase (e.g. this study, (Spensley et al., 2009)) or  

Beta-glucuronidase (Adrian et al., 2010). Although this approach provides important insights into 

sequences required for promoter activity, it does not necessarily test the biological relevance of these 

promoter regions or cis-regulatory elements. 

Here I follow different approaches in order to directly study the effects of cis-regulatory modules and 

elements within the GI promoter on the ability of GI to confer its biological function in plants. The 

approaches used include the analysis of T-DNA insertion mutants, the analysis of natural variation 

within the GI promoter using a broad range of natural accessions as well as the generation and analysis 

of transgenic gi complementation lines. Combining the data obtained by these approaches with the 

luciferase results described in chapter 4 will further elucidate the functionality of cis-regulatory 

modules and elements within the GI promoter and relate this to the biological function of the gene.  

 

5.2 Analysis of plants with a T-DNA insertion within the GI promoter 
 

A.thaliana libraries of T-DNA insertion mutants are frequently used for reverse genetics (Alonso et al., 

2003). Commonly such lines are exploited to study the function of a gene that harbours a T-DNA 

insertion and therefore is likely to be mutant for that gene (Alonso et al., 2003). However, for the 

analysis of promoter functions T-DNA insertion lines might also be a promising tool. The part of the 

promoter that is upstream of the T-DNA insertion may be so far separated from the rest of the gene 

that it no longer influences transcription. 

 

In order to further elucidate the function of the GI promoter, seven T-DNA insertions located at 

different positions across the GI promoter were identified in the SALK or the SAIL T-DNA 

collections. Lines were assigned numbers from 1 to 7 according to their location within the GI 

promoter (Fig. 5.1) and homozygous plants were selected for all seven lines. Subsequently flowering 

time of these T-DNA insertion mutants was analysed under long day conditions (LD 16). 

This analysis revealed that lines 1 to 3 flowered comparably to the wildtype control, whereas lines 4 to 

7 showed a subtle late flowering phenotype (Fig. 5.1). This late flowering was most pronounced in 
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line 5 that flowered with approximately 8 leaves more compared to the wildtype. Nevertheless, all T-

DNA insertion mutants flowered clearly earlier than the gi-2 mutant, indicating that GI is expressed 

and functional in all these lines. Lines 1 and 2 harbour the T-DNA insertion upstream of the conserved 

Block2, lines 3 and 4 within Block 2 and lines 6 and 7 have the T-DNA insertion between Block 2 and 

conserved Block 1. Line 5, which shows the most pronounced late flowering phenotype, harbours the 

T-DNA at the end of Block 2, thus probably uncoupling this conserved region from the rest of the 

promoter. Taken together, these data show that T-DNA insertions within the GI promoter affect 

flowering time in A. thaliana, presumably due to reductions in or changes in the spatial or temporal 

pattern of GI mRNA.  

 

 
Fig.5. 1 Flowering time of lines carrying T-DNA insertions within the GI promoter 
a.) Location of T-DNA insertion within the GI promoter. Yellow triangles indicate number and insertion 
site of T-DNA within the GI promoter. Colored boxes indicate location of conserved blocks as described in 
chapter 1; Bars within Block 2 indicate location of EEs. Locations of the T-DNA insertions are given in 
the Materials and Methods.      
b.) Flowering time of 7 T-DNA insertion lines under long day conditions (LD 16). A second independent 
experiment gave similar results. 
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5.3 Natural variation within the GI promoter of Arabidopsis 
 

Many plants from the same species colonise different geographic regions and are adapted to these 

local habitats. This adaption is reflected by differences in the DNA sequence between different local 

accessions. In A. thaliana this natural variation within different accessions has been used in various 

reverse genetics approaches (de Meaux and Koornneef, 2008). 

 

 
Fig.5. 2 Phylogenetic tree of the 1,8kb GI promoter of 42 different A. thaliana accessions; Distance of 
0,0005 corresponds to 1 SNP between different promoters 
 
 

In order to identify SNPs in cis-regulatory elements within the GI promoter, a 1,7kb upstream region 

measured from the translational start site (which contains conserved Block 2 almost completely) of 42 

different Arabidopsis accessions was compared (Fig. 5.2). These 42 sequences were obtained from 

different databases and by sequencing (see Material and Methods). Approximately half of the GI 

promoters from this dataset varied in a range of 3 to 4 SNPs, whereas the other half contained up to 20 

SNPs. Interestingly, the majority of these SNPs occurred in the regions between conserved blocks 

(data not shown). No variation was detected in any EE or CBS within this set of GI promoters. 

Inspection of other putatively important cis-regulatory elements within the GI promoter revealed that 

there were 2 different accessions that harbour the same SNP within ABREL 3. These accessions are 
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Edi-1 (from Edinburgh, Great Britain) and Mrk-0 (from Märkt am Rhein, Germany), where the SNP 

changes ABREL3 from CACGT to CACAT, which might be an interesting subject of future studies.  

 

 

5.4 Natural variation within the GI promoter of Capsella rubella 
 

During the phylogenetic analysis (chapter 2), GI promoter sequences from two different Capsella 

rubella accessions were obtained. One is from the ‘Monte Gargano’ accession, which was collected 

from the Monte Gargano region in western Italy and is the strain that is being sequenced by an 

international consortium (Barbara Neuffer, personal communication). The second sequence is from an 

accession that was obtained from IPK in Gatersleben. The true origin of this accession is unclear, 

because it was obtained from a botanical garden in Portugal, but there is no record of its initial 

collection site. Therefore this accession is referred to as ‘IPK’. Another C. rubella accesession which 

is used by the international community is ‘Circus Maximus’, which was collected in Rome, Italy. So 

far no GI promoter fragment was obtained from this accession. 

 

 
Fig. 5.3 Flowering time of three different C. rubella accessions grown under long day conditions (LD 16) 
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Interestingly, the ‘IPK’ and the ‘Monte Gargano’ accession have relatively diverse GI promoters, 

which include an SNP in EE2 of the IPK accession. As EE1 is mutated in Capsella (chapter 2), the GI 

promoter of the IPK accession only harbours one full length EE (EE3). 

 

Luciferase data from chapter 4 suggest that the loss of EE1 and EE2 changes timing of the peak in 

expression of GI and therefore might change the flowering behaviour of these two different Capsella 

accessions. Therefore, flowering time of the three aforementioned accessions was determined under 

LD conditions. This analysis revealed that the ‘IPK’ and the ‘Circus Maximus’ accessions flowered 

clearly earlier than the ‘Monte Gargano’ accession. ‘Circus Maximus’ flowered at approximately 20 

leaves, ‘IPK’ at approximately 30 leaves and ‘Monte Gargano’ at approximately 120 leaves under 

long day conditions and without vernalisation (Fig. 5.3). This shows that there is tremendous variation 

in flowering time between different accessions of C. rubella. Analysis of GI mRNA in these 

accessions will determine whether its timing of expression is affected by polymorphisms in the 

promoter region. 

 

5.5 Analysis of transgenic gi complementation lines 
 

Analysis of T-DNA insertions within the GI promoter and the search for natural variation within the 

GI promoter of different Arabidopsis accessions did not reveal which cis- regulatory modules or 

elements are crucial for the effect of GI on flowering time. 

To precisely answer these questions a set of GI promoter fragments was fused to the cDNA of GI and 

introduced into the gi-2 mutant via Agrobacterium-mediated transformation. In order to compare these 

transgenic plants with the previously obtained results from the luciferase reporter lines, the same GI 

promoter fragments were used in both experiments: These were the full length GI promoter, the full 

length GI promoter with all three EEs mutated, conserved Block2 and conserved Block2 with all three 

EEs mutated (Tab. 4.1).  

Homozygous lines were established for the four constructs and different experiments were carried out 

in order to characterise these transgenic plants. A focus was set on gi - related phenotypes and 

therefore flowering time under different photoperiods, length of the hypocotyl and the response to 

freezing stress were analysed in the transgenic plants. 

Name Background Description 

GI::GI gi-2 2,5kb GI promoter fused to the GI cDNA 

TEE gi-2 2,5kb GI promoter fused to the GI cDNA, 3 EEs mutated 

B2 gi-2 conserved block 2 (700bp) fused to the GI cDNA 

B2 TEE gi-2 conserved block 2 (700bp) fused to the GI cDNA, 3 EEs mutated 

Tab. 10 Overview of transgenic gi complementation lines  
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5.5.1 Flowering time of GI promoter fusion containing transgenic lines 
under different day lengths 
 

In order to analyse the flowering phenotype of transgenic gi complementation lines, flowering time 

was first analysed under long day (16h light / 8h darkness) and under short day conditions (8h light / 

16h darkness). Under both conditions, the GI::GI plants flowered like wildtype, demonstrating that the 

construct is fully functional und thus can complement the gi mutation (Fig 5.4).  

Under long day conditions, 8 independent T-DNA insertion lines (4 shown in Fig. 5.4) with the TEE 

construct flowered comparably to wildtype plants. The same was true for two independent lines 

carrying the B2 construct or the B2 TEE construct. This shows that all three different types of 

construct can fully rescue the gi mutant flowering phenotype under long day conditions similarly to 

the GI::GI construct. 

 

Under short day (SD 8) conditions, all gi complementation lines flowered as late as wt plants. The gi-2 

mutants only flowered slightly later than wt and GI::GI plants, whereas 35S::GI plants flowered 

clearly earlier (Fig. 5.4). These data indicate that none of the constructs caused a GI overexpression 

phenotype under SDs. 

 

In order to further investigate the response to different photoperiods in the gi complementation lines, 

the flowering times of all transgenic lines were determined under the three intermediate photoperiods 

of 14h light / 10h darkness, 12h light / 12h darkness and 10h light / 14h darkness. At least two 

independent transgenic lines were analysed for each genotype and compared to 35S::GI, gi-2 and 

GI::GI plants. GI::GI and wt plants (not shown) were almost equally late flowering under SD 8 and 

SD10 (Fig. 5.5). Lengthening photoperiod led to pronounced acceleration of flowering with the 

greatest acceleration in flowering time between SD 10 and LD 12.  

In contrast, 35S::GI plants flowered early, largely irrespective of the photoperiod. The gi-2 mutants 

flowered late in all photoperiods. However, longer days slightly accelerate flowering even in gi-2, 

especially under LD 16 conditions. Flowering time of the three gi complementation lines TEE, B2 and 

B2 TEE plants was very similar to GI::GI control plants under all different photoperiods. Slight 

differences were detected under the SD 10 condition between these lines: TEE and B2 TEE plants 

flowered slightly later as GI::GI, but almost as late as gi plants under these conditions (Fig. 5.5). 

 

Taken together, no strong differences in flowering time were detected between the 3 lines carrying 

derivates of the GI promoter and those carrying the full wt promoter under 5 different photoperiods.  
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Fig. 5.4 Flowering times of different gi complementation lines 
a.) long day conditions (LD 16) b.) short day conditions (SD 8);  
Representative data of two independent experiments with same results 
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Fig. 5.5  Flowering times of different gi complementation lines under different photoperiods.  
a.) Flowering time of one representative TEE line compared to GI::GI, 35S::GI and gi-2   
b.) Flowering time of one representative B2 and B2 TEE line compared to GI::GI, 35S::GI and gi-2 
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5.5.2 Flowering time under non-optimal conditions 
 

Motifs within promoters exhibit a high degree of redundancy, which has been observed in many 

organisms. In Drosophila, for instance, it was shown that so called shadow enhancers confer fitness 

advantages under non-optimal conditions (Frankel et al., 2010). These sequences confer a similar 

expression pattern as primary enhancers, but their deletion did not lead to a visible phenotype under 

standard laboratory conditions, but showed a strong phenotype under extreme temperature conditions 

(Frankel et al., 2010). As the gi complementation lines did not display a clear phenotype under 

different photoperiods and as GI is proposed to play a role in temperature compensation to the 

circadian clock (Gould et al., 2006), the set of gi complementation lines was grown under different 

temperature regimes.  

The ‘Heat Stress’ experiments were performed in a greenhouse without where the temperatures ranged 

between 16 and 38°C degrees, depending on the outside temperature. Under this condition, all 

genotypes flowered earlier than under the previously described LD conditions. However, no clear 

difference in flowering time was detected between any of the transgenic gi complementation lines and 

wildtype plants, even though the B2 and the B2 TEE lines all flowered slightly later under this 

condition (Fig. 5.6). 

The ‘Cold Stress’ experiment was done in a cold chamber at a temperature of 4°C, in combination 

with high light intensity (approximately 250 µmol m-2s-1) under long day conditions (16h/ 8h). Due to 

the strong radiation of the vapour discharge lamps that were used temperatures at the plant level were 

well above the surrounding air temperatures, thus resulting in day temperatures of approximately 12°C 

and night temperatures of approximately 4°C. 

Under this ‘Cold Stress’ condition, the two B2 as well as the two B2TEE lines did flowered later than 

the respective wt and GI::GI control plants (Fig. 5.6). The TEE lines flowered slightly later than wt 

plants, whereas SAIL 5 plants showed a clear gi like phenotype and flowered almost as late as gi-2 

plants under this cold stress condition (Fig.5.6). Interestingly, 35S::GI plants flowered almost as late 

as wildtype plants under this condition and were almost indistinguishable in size from wildtype (not 

shown). 

 

In Summary, the ‘Cold Stress’ condition seems to enhance the phenotype if GI expression is strongly 

changed or abolished (as in B2, B2TEE, SAIL 5 and gi-2), whereas no strong differences in phenotype 

were observed under the ‘Heat Stress’ condition. 
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Fig.5. 6 Flowering time of different gi complementation lines under different stress conditions 
a.) Heat stress condition b.) Cold stress condition; horizontal black line indicates wt value. 
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5.5.3 Hypocotyl growth 
 

One of the well-defined phenotypes of the gi mutant is its long hypocotyl under red light conditions 

(Huq et al., 2000a; Martin-Tryon et al., 2007). In order to analyse whether Block 2 and the EEs 

contribute to these phyB-mediated processes, gi complementation lines were grown under different 

light regimes and the hypocotyls of 1 week old seedlings were analysed. 

 

 
Fig. 5.7  Hypocotyl length of soil-grown TEE lines under white light;  
Representative data of two independent experiments with same results 
 

First, three independent TEE lines were grown in SDs under cool white light on soil and their 

hypocotyls compared to controls after 1 week. This analysis revealed no difference between wildtype 

plants and the transgenic lines, whereas gi-2 plants had a clearly elongated hypocotyl (Fig. 5.7).  

Subsequently all four different gi complementation lines were grown under red, blue and white light as 

well as in darkness on agar. As under the previous condition, no difference was detected between 

transgenic lines and wildtype plants under all conditions (Fig. 5.8). In accordance with previous 

publications, the hypocotyl of gi-2 plants was elongated under red and under white light (Fig.5.8). 

 

In summary, no hypocotyl phenotype was discovered for any of the gi complementation lines under 

any of the different light regimes, demonstrating that Block 2 is sufficient to mediate the short 

hypocotyl phenotype of wildtype plants and that EEs play no role in mediating this response. 
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Fig. 5.8  Hypocotyl length of different gi complementation lines under different light conditions 
a.) red light b.) blue light c.) darkness d.) white light 
 

 

5.5.4 Tolerance to freezing stress 
 

GI transcription is up-regulated under cold temperatures in various species (Fowler and Thomashow, 

2002; Paltiel et al., 2006; Hong et al., 2010) and Arabidopsis gi mutants are more sensitive to freezing 

temperatures compared to wildtype plants (Cao et al., 2005). Moreover, EEs play a crucial role in 

upregulating transcription of the COL1 and COR27 genes in response to cold (Mikkelsen and 

Thomashow, 2009). Finally, the bioinformatic analysis in chapter 3 revealed a strong over-

representation for cold-stress related GO terms within EE-enriched promoters. Collectively this 

suggests that the EEs within the GI promoter might play a role in regulating the cold-induced up-

regulation of GI. 
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The gi-3 mutant was described to be more susceptible to freezing stress compared to wt plants (Cao et 

al., 2005). In order to confirm these results, freezing stress tolerance of gi mutants in the Col (gi-2) and 

Ler (gi-3) backgrounds was compared to the respective overexpressor and wildtype plants. This was 

done both with and without an acclimation period before the cold stress treatment.  

Therefore, plants were grown 3 weeks in long day conditions and then exposed to -9°C for 5h. 

Acclimated plants were placed to 4°C 1d before the cold treatment. After a recovery time of 5 days 

survival of all plants was scored. 

 
Fig.5. 9 Tolerance to freezing stress of different Arabidopsis genotypes.  
Black bars = without acclimation; grey bars = with 1d acclimation at 4°C; Representative data of two 
independent experiments with similar results. 
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This analysis revealed that for both backgrounds gi mutants were more tolerant to the freezing 

treatment than the wildtype plants (Fig. 5.9). In the Ler background, 35S::GI plants were more 

sensitive to the freezing treatment, whereas there was no difference between over-expressor and 

wildtype in the Col background. These data show that gi mutants are more tolerant to freezing stress 

than wildtype plants, which is the opposite of the published results (Cao et al., 2005). In all these lines, 

acclimation increases freezing tolerance, indicating that acclimation is not affected by loss or miss-

expression of GI in gi mutants or gi complementation lines.  

 

As additional controls, more genotypes were exposed to the same freezing treatment. For the lhy/cca1 

and the sfr6 mutants, a decreased tolerance to freezing temperatures has been described before. TIC is 

implicated to play a role in many different metabolic and stress-related processes, probably also in 

freezing tolerance (Sanchez et al., unpublished). The lhy/cca1 double mutants were more sensitive to 

freezing, especially when not being acclimated. sfr6 mutants were slightly less tolerant than the 

wildtype regardless of an acclimation period, whereas the tic-2 mutant showed enhanced tolerance to 

the freezing treatment.  

 

Subsequently, the TEE, the B2 and the B2 TEE transgenic plants were tested for their tolerance to a 

freezing treatment. Whereas B2 and TEE plants had a similar freezing tolerance as wt plants, B2 TEE 

and SAIL5 plants were more tolerant to the freezing stress than wt plants in this experiment (Fig. 5.10). 

This suggests that the B2TEE construct can not fully complement the effect of the gi mutation on 

enhanced freezing tolerance.  

 

Taken together, this analysis shows that gi mutants are more tolerant to freezing stress conditions as 

wt plants. Moreover this analysis suggests that B2 TEE and SAIL_5 plants have an intermediate 

freezing tolerance phenotype between wt and gi-2, suggesting that the EEs are involved in conferring 

sensitivity to freezing. 
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Fig. 5.10 Tolerance to freezing stress of different Arabidopsis genotypes;  
Horizontal black line indicates wt value; Representative data of two independent experiments with similar 
results 
 

 

5.5.5 Summary of gi complementation lines 
 

Taken together, 4 different gi complementation constructs were created and a number of gi specific 

traits were analysed in these plants. Under standard laboratory conditions, none of the gi 

complementation lines showed a visible phenotype for flowering time or for the length of the 

hypocotyl compared to wt plants. By contrast under cold stress conditions, differences were observed 

in flowering time and tolerance to freezing stress between wt plants and the gi complementation lines.  
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5.6 Discussion  
 

In order to study directly the contributions of cis-regulatory elements within the GI promoter on the 

plant phenotype, several experimental approaches were taken. 

 

Arabidopsis lines harbouring a T-DNA insertion within the GI promoter only displayed a weak 

flowering phenotype compared to gi mutants. SAIL 5, a line that harbours the T-DNA insertion 

directly downstream of conserved Block 2, displayed the strongest phenotype. This indicates that the 

function of this block might be disrupted in these plants and therefore highlights the importance of 

conserved Block 2 in the role of GI in flowering time.  

The other T-DNA lines were from the SALK collection and therefore it cannot be completely 

excluded that differences between the transgenes in the T-DNA collections of SAIL and SALK could 

influence their effect on GI expression. Measuring the GI mRNA abundance in SAIL 5 and the other 

SALK T-DNA insertion lines will show if GI expression is impaired in these plants.  

 

In a comparable study (Adrian et al., unpublished) T-DNA insertions within the promoter of FT did 

not show any obvious flowering phenotype. Together this indicates that the insertion of a T-DNA does 

not necessarily disrupt promoter function, either because the upstream DNA is still functional despite 

the insertion or that at least motifs within the promoters of FT and GI are redundant so that they can 

compensate for the effect of an inserted T-DNA.  

 

 

The analysis of natural variation in 42 Arabidopsis accessions did not identify SNPs within EEs in 

those accessions, indicating that there is little intra-species variatiation in these motifs. This is 

consistant with their strong conservation between Brassicaceae as shown in chapter 2. By contrast, 

SNPs were detected within the ABRELs of some Arabidopsis accessions and within EE2 of Capsella 

rubella. This might suggest that that this ABREL can confer a differential expression of GI. In C. 

rubella a connection between variation of EEs within the GI promoter and GI mRNA expression has 

not yet been tested. Interestingly the different accessions from geographically relatively close 

locations (approximately 250km between Rome and the Monte Gargano region) showed large 

differences in flowering time, but their relationship to GI expression remains to be tested. 

 

Even tough no SNPs in EEs have been found within the GI promoters of 42 Arabidopsis accessions 

within this study, the approach of searching desired mutations within sequenced strains of different 

species  will be a promising tool in the future. The revolution in sequencing technologies has led to an 

enormous increase in available whole genome sequences, a process that certainly will accelerate in the 

future (Heard et al., 2010). This is especially true for the re-sequencing of different accessions of the 
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same species, as demonstrated by the ongoing 1001 genome initiative for A. thaliana (Weigel and 

Mott, 2009), thus making it possible to screen a multitude of different accessions to find SNPs at a 

desired position in the future. As long as direct DNA-targeting techniques such as homologous 

recombination are not available for A. thaliana, such an analysis of natural occurring variation within 

different accessions will provide a great resource for studying the effect of cis-regulatory and other 

point mutations directly in plants.  

 

As the analysis of T-DNA insertion mutants and natural variation within the GI promoter only 

provided subtle insights into functionality, a set of transgenic gi complementation lines was generated. 

This approach allowed to specifically pose questions about the contribution of conserved Block 2 and 

the EE to GI promoter function. Moreover, it directly allowed comparison with the luciferase reporter-

lines (chapter 5), which were generated with the same GI promoter fragments as fused to luciferase. 

 

Surprisingly, the gi mutation was either fully or partially complemented by all 4 transgenic constructs. 

This demonstrated the importance of conserved Block 2, which was capable of fully complementing 

the hypocotyl and flowering phenotypes to carry out these functions of gi-2 under standard laboratory 

conditions, showing that all necessary transcribed information for GI for is encoded within that 700bp 

region. This is further supported by the SAIL 5 line, where Block 2 is most probably uncoupled from 

the proximal part of the GI promoter, thus causing an intermediate gi mutant phenotype in flowering 

time and for freezing tolerance. However, under cold stress conditions, Block 2 cannot fully rescue the 

gi-2 mutation. This indicates that under this condition, other promoter regions are required for the full 

response. Such an effect has been described previously in other organisms: In Drosphila, so called 

shadow enhancers are necessary for the correct expression pattern of the developmental gene 

shavenbaby (Frankel et al., 2010) under extreme temperature conditions, whereas no effect was 

observed under standard laboratory conditions (Frankel et al., 2010). 

The full complementation of the gi mutation by the 2,5kb GI::GI construct demonstrates that such 

shadow enhancers within the GI promoter must be located within these 2,5kb. The most likely 

candidates for shadow enhancers within the GI promoter are conserved Blocks 1 and 3. As shown in 

the previous chapter, these blocks cannot drive luciferase expression on their own, but their high 

degree of conservation suggests an important role in GI regulation. This function could be the 

propagation of GI expression under cold temperatures. Such cold temperature conditions with strong 

diurnal temperature differences between day and night  in combination with a high light intensity is a 

condition that Arabidopsis plants are exposed to regularly in their natural habitat (Wilczek et al., 2009).  

Therefore it is likely that the shadow enhancers within the GI promoter would have a more important 

function under natural environmental conditions.  
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Various gi mutant alleles display a long hypocotyl phenotype under white and red light, but not under 

far-red light, thus suggesting a role for GI downstream of PHYB (Huq et al., 2000a). Whereas a 

clearly elongated hypocotyl of gi-2 mutants was reproduced under white light conditions, all gi 

complementation lines displayed a hypocotyl phenotype similar to wildtype plants. Under different 

light conditions, only a slightly elongated hypocotyl of gi-2 was observed, compared to more extreme 

phenotypes under red (Huq et al., 2000a) and blue (Martin-Tryon et al., 2007) light. This is most 

probably due to different light intensities in the different studies: whereas approximately 50 µmol m-2s-

1 of red and blue light were used in the present study, the strongest effects between different gi mutants 

and wildtype plants were reported between 0.1 and 1 µmol m-2s-1 (Huq et al., 2000a).However, under 

none of the light conditions was there an obvious hypocotyl difference between any of the gi 

complementation lines and wildtype plants. This indicates that EEs within the GI promoter are not 

involved in the GI-dependent regulation of hypocotyl growth in Arabidopsis. However, the full rescue 

of the hypocotyl phenotype by the B2 lines suggests that other cis-regulatory elements within Block 2 

might be involved in this process. Candidate elements would be the two conserved HUD boxes within 

Block 2. HUD boxes are bHLH-binding cis-regulatory elements that have been proposed to play a role 

in PHYB-mediated responses, thus making them good candidates for mediating hypocotyl growth-

related processes within the GI promoter (Michael et al., 2008a). 

 

The freezing stress experiments showed that two different gi mutant alleles both in the Ler and in the 

Col background are more tolerant to freezing temperatures and that the overexpression of GI – at least 

in the case of the Ler background – decreases the tolerance to freezing stress. This conclusion is the 

opposite of what has been published before. Cao et al. found that gi-3 plants are less resistant to 

freezing temperatures (Cao et al., 2005). These studies, however, were carried out with 10 day old 

seedlings on agar plates, compared to the 3 week old plants on soil used to obtain the data shown in 

this study. Therefore one possibility is that the age of the plants or the growth conditions might be 

responsible for this observed difference. However, experiments performed in this study with 10 day 

old seedlings grown on soil showed an enhanced freezing tolerance of gi-2 as well (data not shown), 

indicating that the age of plants is not responsible for this discrepancy. I also tested plants grown on 

agar plates and obtained very inconsistent results that were not reproducible (data not shown) for most 

genotypes (including wt and gi-3). Therefore, in my hands freezing tolerance experiments with agar-

grown seedlings are not a sufficient method to determine freezing tolerance in plants and such 

inconsistencies might provide an explanation for the conclusions by Cao and colleagues. 

 

It was demonstrated that gi mutants have an altered carbohydrate metabolism (Eimert et al., 1995). As 

the carbohydrate status of Arabidopsis is crucial for its freezing tolerance (Yano et al., 2005; Nagele et 

al., 2011), the altered starch degradation pattern in gi-2 might explain its enhanced freezing tolerance. 

Moreover, gi-2 mutants constitutively over-express COR genes (Fornara et al. unpublished), which 
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provides a further explanation for the enhanced freezing tolerance phenotype of gi mutants.  Analysis 

of freezing tolerance from other circadian clock mutants gave interesting insights into the cross-talk 

between the circadian clock and freezing tolerance: lhy/cca1 double mutants were less tolerant to 

freezing temperatures in my experiments, a result which has been published recently (Dong et al., 

2011). A role for tic mutants in freezing tolerance has also been proposed (Alfredo Sanchez, 

unpublished). As TIC, similar to GI, is involved both in the circadian clock and in metabolism 

(Sanchez, unpublished), it will be interesting to see if these two proteins act in the same or in different 

pathways. 

The TEE lines and the B2 lines did not display differences in freezing tolerance compared to wt plants, 

whereas the B2 TEE lines showed an intermediate freezing tolerance phenotype between wt and gi-2 

plants. This indicates that EEs are important for the sensitivity of B2 plants to freezing. Moreover, it 

demonstrates redundancy within the GI promoter, because the mutation of EEs in the context of Block 

2 has a strong effect, but this is not true for the full length promoter, suggesting that other elements 

within the 2,5kb might be capable of compensating for their function. One possible candidate is a CBS 

located in conserved Block 1. However, the B2 TEE lines are still less resistant to freezing 

temperatures than gi-2, suggesting that further cis-regulatory elements within Block 2 are involved in 

this process. Like the B2 TEE lines, SAIL 5 displays an intermediate freezing tolerance phenotype. 

This might be caused by the insertion of the T-DNA close to EE3 within the GI promoter, which could 

disrupt the function of this EE and probably of further cis-regulatory elements within Block 2. 

 

In summary, different approaches were taken to directly study GI promoter function on the plant 

phenotype. Collectively these approaches demonstrate the importance of conserved Block 2 within the 

GI promoter, as suggested by the phylogenetic analysis (chapter 2) and by the luciferase experiments 

(chapter 4). Moreover, an enhanced freezing tolerance phenotype of the gi mutant that was not 

previously described was analysed and further assays suggest that this phenotype is partially 

dependent on the conserved EEs within the GI promoter. 
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General Discussion and Outlook 
 

6.1. Phylogenetic shadowing and genome-wide analysis 
 

The phylogenetic shadowing approach as presented here was successful in identifying conserved cis-

regulatory elements and modules within the GI promoter. As shown by luciferase-reporter lines and gi 

complementation lines, Block 2 promotes patterns of Luc expression similar to the GI promoter and 

can complement the gi mutation under standard long day conditions. Also conserved cis-regulatory 

elements such as the EEs predicted by the phylogenetic analysis were important in Block 2. 

 

Such an extensive phylogenetic study combined with the streamlined analysis of reporter and 

complementation constructs as well as genome-wide analysis for identified cis-regulatory elements 

has not been carried out before for a plant promoter. Nevertheless other studies have combined 

phylogenetic analysis with the use of transgenic reporter or complementation constructs. However, in 

several of these analyses the phylogenetic analysis was conducted after the experimental work, for 

instance for the promoters of LHY (Spensley et al., 2009) or FT (Adrian et al., 2010). Other studies 

have used specific fragments directly based on phylogenetic analysis, but use only two different 

species in comparison to A. thaliana (Lee et al., 2005). 

 

The phylogenetic shadowing of the GI promoter might be further improved by comparison of the GI 

promoters from more distant species in order to provide a better resolution for highly conserved 

elements. However, various approaches to amplify the GI promoters of species from the order 

Brassicales such as Cleome spinosa or Tropaeolum majus (Schranz and Mitchell-Olds, 2006) with the 

degenerated primers employed for other species were not successful. It is not known if the synteny of 

GI and its upstream gene PAB3 is still conserved in these species, which would be necessary for a 

PCR-based amplification of the GI promoter with these primers to work. The GI promoters of more 

distant species within the Angiosperms, such as Populus trichocarpa or Medicago truncatula could 

not be aligned to any GI promoter from the Brassicaceae (data not shown). 

The genus Aethionema represents the most basal Brassicaceae (Franzke et al., 2011) and therefore 

might provide a good evolutionary distance for further comparative analyses. A recently obtained 

BAC library of Aethionema might facilitate the identification of the orthologous GI promoter. Such an 

Aethionema sequence would most probably further decrease the conserved regions within the GI 

promoter and thus might allow better predictions about functional cis-regulatory elements. 

 

However, the main potential improvement of future phylogenetic analysis as presented in this thesis 

will be the reduction of work and time consuming steps. Primarily this tackles the PCR based 
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amplification of orthologous promoters. Recent and future advances in sequencing entire genomes of 

different Brassicaceae already provide the necessary sequence information for such an analysis. 

Analysis of the PRR9 promoter demonstrates that an informative phylogenetic analysis is possible by 

using A. lyrata, C. rubella and A. alpina, three species whose full genome sequences will be available 

soon. 

Moreover, the comparisons of the A. thaliana promoters from FKF1 and CCR2 to their orthologs from 

A. alpina show that these two species have an appropriate evolutionary distance to compare 

transcriptional features. The second step that can be simplified is the phylogenetic pipeline itself that 

involved a number of manual steps as done for the GI promoter. 

Future tools might automatically identify the orthologous regions within a sequence of interest, extract 

conserved cis-regulatory modules based on pairwise alignments and finally identify potentitial cis-

regulatory elements based on databases with known elements and based on their conservation.  

Such tools would greatly facilitate phylogenetic analyses and make them applicable to understanding 

transcriptional regulation within a wide range of biological processes in plants. 

 

As for the phylogenetic analysis, the statistical analysis of the co-occurrence of different cis-regulatory 

elements gave some interesting insights into combinatorial cis-regulatory networks. However, one 

general problem of genome-wide analysis is that it provides statistical over-representations and does 

not give any direct information about the functional significance of elements. A particular difficulty is 

that cis-regulatory elements are relatively short sequences and therefore are expected to occur 

frequently in genomes by chance, as demonstrated by the background levels in Fig 3.8 and 3.9. One 

option to overcome this problem is the experimental validation of putative important cis-elements (as 

conducted in this study for the GI promoter), but this is time-consuming and therefore not applicable 

on a genome-wide level.  

Phylogenetic shadowing approaches are another powerful tool to predict functionally important 

sequences. On the level of comparative genomics for transcriptional regulation, the upcoming draft 

genome sequence of A.alpina is of particular interest. The evolutionary distance of this species from 

A.thaliana allows efficient comparison of promoters, which is not only demonstrated here for the 

promoters of GI, FKF1, CCR2 and PRR9, but also by others for the promoters of FT (Adrian et al., 

2010), CO (Simon et al., unpublished) or LFY (Wagner et al., unpublished). Thus a genome-wide 

comparison of A. thaliana promoters to the respective orthologs from A.alpina will provide an 

enormous amount of information on conserved promoter regions and cis-elements that have a high 

probability of being functional within their respective promoters. Analysis of several EE-enriched 

promoters within this thesis already demonstrates the power of this method.  

Combining genome-wide phylogenetic shadowing together with statistical analysis of cis-regulatory 

elements is likely to greatly reduce the background of non-functional cis-elements identified in silico 

and reveal important insights into the transcriptional network of A. thaliana. Such methods are 
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applicable for clock- and stress-mediated transcriptional responses, but also any other transcriptional 

network such as hormonal pathways or the transcriptional response to pathogen stress. Therefore 

extensive phylogenetic and statistical analysis of such networks will contribute to cracking the general 

transcriptional code in plants. 

 

Understanding this cis-regulatory code is key for understanding transcriptional regulation of general 

biological processes not only in plants, but all organisms. Already in 1975 differences in 

transcriptional regulation and not in protein coding genes were proposed to be mainly responsible for 

the differences between humans and chimpanzees (King and Wilson, 1975). In support of this idea, the 

sequencing of whole genomes and subsequent extensive comparisons between the human and the 

mouse or chimpanzee genomes indeed showed surprisingly few differences in protein coding genes 

(Waterston et al., 2002; Waterston et al., 2005). An elegant study by Wilson et al. provides more direct 

evidence for this hypothesis. The heterologous expression of human chromosome 21 in mouse liver 

cells resulted in the same mRNA expression pattern as observed in human liver cells, whereas the 

orthologous mouse chromosome in the mouse cells was expressed differently (Wilson et al., 2008). 

Therefore Wilson et al. concluded that not the cellular environment, but the sequence itself mainly 

determines the expression patterns (Wilson et al., 2008). Cis-regulatory changes have also been shown 

to have profound effects in plants as well. In the promoter of the Flaveria 

PHOSPOENOLPYROVATE CARBOXYLASE (PEPC), for instance, point mutations are responsible 

for its mesophyll-specific expression pattern and thus determine one of the key features of C3 / C4 

photosynthesis  (Akyildiz et al., 2007). 

 

6.2 Combinatorial regulation of GI  
 

Multiple studies in different organisms highlighted the importance of cis-regulatory modules for the 

regulation of complex transcriptional patterns (Nguyen and Xu, 1998; Zinzen et al., 2009).  The data 

obtained from the phylogenetic shadowing approach combined with the luciferase-reporter lines and 

the gi complementation constructs all imply that conserved Block 2 represents such a cis-regulatory 

module within the GI promoter. Therefore current and ongoing work on the GI promoter mainly 

focuses on Block 2. The phylogenetic shadowing analysis correctly predicted the functionality of the 

conserved EEs within Block 2, suggesting that other conserved cis-elements within Block 2 are likely 

to be functional as well.  

 

ABRELs in combination with EEs are responsible for the cold-induced up-regulation of COL1 and 

COR27 (Mikkelsen and Thomashow, 2009). Moreover, the statistical analysis of co-occurrence of 

promoter elements performed here demonstrated that ABRELs occur at high frequency certain 
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distances from EEs, suggesting a combinatorial interaction between these elements in multiple 

promoters. As the phylogenetic analysis revealed three absolutely conserved ABRELs within Block 2 

upstream of the EEs, this implies a combinatorial action of EEs and ABRELs within Block 2. Freezing 

stress experiments with B2TEE::cDNA lines suggested that these lines are more resistant to freezing 

temperatures and have an intermediate phenotype between B2::cDNA lines and gi-2 mutants 

(Fig.5.10). This implies that the mutation of the EEs in the context of Block 2 is partly responsible for 

the phenotype of gi and other elements are necessary to confer the full response. The most likely 

candidates for these additional elements are the ABRELs. In order to test these hypotheses the 

ABRELs are currently being mutagenised and the effects of these mutations will then be studied 

separately and in concert with the EE mutations. 

 

Further candidates for site-directed mutagenesis within Block 2 are the two HUD Boxes as well as the 

LBS. HUD Boxes are closely related to G Boxes and are implicated in PHYB-mediated processes 

(Michael et al., 2008a). Analysis of the luciferase reporter lines demonstrated that Block 2 is still 

induced by light even in the absence of functional EEs. Moreover, the hypocotyl measurements of gi 

complementation lines demonstrate that all constructs, including the B2TEE::cDNA lines, fully rescue 

the gi mutant phenotype. Collectively this suggests that other cis-regulatory elements than EEs confer 

wavelength dependent light-sensitivity to the GI promoter and the HUD boxes are likely candidates 

for that.  

Finally, the LBS is another promising candidate to test its functionality, as recent reports suggest that 

LUX in a complex with ELF3 and ELF4 binds the GI promoter (Herrero et al., unpublished). 

In order to further dissect conserved Block 2, three subfragments A, B and C were cloned, fused to the 

105bp fragment of the pnos minimal promoter inserted upstream of the luciferase open reading frame. 

These three fragments were defined in a way that fragment A contains the 3 ABRELs, fragment B the 

3 EEs and fragment C the 2 HUD Boxes (Fig.6.1). Mutagenesis of the EEs and the ABRELs will 

make it possible to specifically study the contribution of these different cis-regulatory elements to GI 

expression on their own and in concert.  

Ultimately this set of constructs will allow study of the possible combinatorial interactions between 

EEs and other cis-regulatory elements within Block 2, such as the ABRELs and the HUD-Boxes. 

Therefore these transgenic plants will provide a good tool to further dissect the GI promoter and its 

features on a molecular level by studying gating responses or induction by different light spectra. 

Moreover, these mutagenised GI promoter fragments might be useful to identify novel upstream 

regulators of GI in the future by Yeast-1-Hybrid (Y1H) assays or EMSA gelshift assays (discussed 

below). 
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Fig. 6.1 Overview of sub fragments of Block 2  
Five sub fragments of Block 2 were fused to the pnos minimal promoter and subsequently cloned 
upstream of the luciferase open reading frame. 
 
ABREL = ABA Response Element-like; LBX = LUX Binding Site; EE = Evening Element; HUD = 
Hormone Up at Dawn Box; CT = CT repeat 
 

One classical approach in promoter analysis is the reduction in length from the distal 5’end towards 

the 3’ end proximal to the transcriptional start. In order to further analyse the contribution of Block 2, 

two different constructs that either include (1,8kb GI promoter) or exclude Block 2 (1.1kb GI 

promoter) were constructed and fused to luciferase. Luciferase expression from multiple independent 

T1 plants harbouring these two different transgenes shows a pronounced decrease in luciferase 

expression in the lines missing Block 2 (data not shown), thus further supporting the importance of 

Block 2.  
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One surprising finding is that Block 2 confers luciferase expression and complements the gi- mutant 

phenotype if fused to a GI cDNA without a transcriptional start site provided by a minimal promoter. 

An explanation might be provided by the phylogenetic shadowing analysis, which revealed a number 

of conserved core promoter motifs within the last 80bp at the 3’ end of Block 2. In order to test the 

functionality of these elements, a fragment of Block 2 without the last 80bp was fused to luciferase 

with and without the pnos minimal promoter (Fig. 6.1, 2-D). The resulting transgenic plants will show 

whether the core promoter elements in these 80bp of Block 2 can drive transcription and are therefore 

capable of driving the robust expression of the constructs without a minimal promoter.  

 

However, what is the biological function of this striking pattern? Does this region provide another 

transcriptional start site for GI?  This seems unlikely, as mapping the transcription start site of GI by 

different groups resulted in identification of the annotated start site closer to the translational start 

(Terryn et al., 1997; Fowler et al., 1999; Park et al., 1999). However, it would be interesting to map 

the TSS in the B2pnos::Luc and the B2::Luc plants in order to reveal where luciferase transcription 

initiates. 

 

Another possible explanation is provided by the annotation of a protein-coding gene (At22767) within 

Block 2 of the GI promoter, suggesting that this potential transcriptional start might be associated with 

At22767. The prediction of this putative 44 amino acid protein without any known function is based 

on a study by Hanada and colleagues (2007). In this study low level expression measured by tiling 

arrays was correlated to computationally calculated open reading frames on a genome-wide level 

(Hanada et al., 2007). This analysis revealed more than 3000 putative, novel protein-coding genes 

within the A. thaliana genome, including At22767 (Hanada et al., 2007). 

However, comparisons of the putative protein coding region in the eight different Brassicaceae 

revealed that the open reading frame is only present in A. thaliana, whereas the entire region is highly 

conserved in all eight species. This demonstrates that the conservation of this promoter region is 

evolutionary older as the putative open reading frame. Nevertheless, novel genes can arise from 

intergenic regions, as shown for the Polymorphic derived intron-containing (Poldi) gene in mice 

(Heinen et al., 2009). At22767 may be such a novel gene in A. thaliana. However, a line carrying a T-

DNA insertion located within putative At22767 (which is line SALK 4 from the flowering time 

experiment in Chapter 5, see Methods) did not show any obvious phenotype under standard laboratory 

conditions, demonstrating that putative At22767 at least does not have an important biological function 

under these conditions.  

 

A third possibility is that the transcription starting in Block 2 has a regulatory function for GI 

transcription itself. It was demonstrated for different organisms that a large part of the non protein 

coding sequence is transcribed (Kim et al., 2005; David et al., 2006b; Li et al., 2006; Heard et al., 
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2010). Such pervasive transcription was shown to play a role in the regulation of transcription of 

protein-coding genes. In a study by Hirota et al. it was demonstrated that stepwise transcription within 

the upstream region of the fructose-1,6-bis-phosphatase (fbp1+) gene in fission yeast is responsible 

for loosening the chromatin in that region and is necessary for proper transcription of the protein 

coding gene (Hirota et al., 2008). Similar processes might act at the GI promoter. Indeed the 

experiments conducted with Trich A during this thesis suggest that histone modifications play a 

regulatory role in determining the precise timing of GI expression, even though it is unclear whether 

this effect is direct or indirect.  

Moreover, the co-occurence of conserved sequence and the prediction of nucleosome occupancy 

(Segal et al., 2006) imply that this pattern is significant. If this prediction is true, conserved regions of 

the GI promoter are densely occupied by nucleosomes. Generally it is assumed that regions that are 

occupied by histones are less accessible to transcription factors and are therefore less likely to be 

important for regulation (Bryant et al., 2008; Segal and Widom, 2009). However, it was shown that 

this is not necessarily the case and regions of high nucleosome occupancy often correlate with 

important regulatory promoter regions (Bryant et al., 2008; Oren et al., 2010; Tillo et al., 2010).   

More research is required to elucidate the epigenetic impact on GI transcriptional regulation. ChIP 

experiments using histone-specific antibodies could reveal the occupation of histones at the GI locus 

and therefore would clarify if the clustering of nucleosomes indeed co-occurs with conserved regions 

as predicted bioinformatically. Moreover, further experiments with Trich A would give insights into 

possible contributions of histone modifications of GI specific features such as the gated response to a 

light pulse. 

 

6.3. Upstream regulators of GI 
 

One goal of this project was to elucidate trans-acting factors that regulate GI specific evening 

expression. At the beginning of this study, nothing was known about such direct regulators of GI. 

However, based on mathematical modelling (Locke et al., 2006a) and genetic data (Mizoguchi et al., 

2002a; Mizoguchi et al., 2005) it was proposed that the Myb transcription factors LHY and CCA1 

repress GI transcription in the morning, probably due to direct binding to the EEs in the GI promoter 

(Cremer et al., unpublished; (Mizoguchi et al., 2005)).  

 

In order to test this hypothesis, Chromatin Imunoprecipitation (ChIP) experiments were conducted 

with polyclonal antibodies raised against LHY and CCA1 protein. Transgenic B2TEE::Luc plants 

were used for these ChIP experiments and two sets of primers that could distinguish between the 

endogenous GI promoter with the full EEs and the transgenic GI promoter fragment with the mutated 

EEs were used. However, no reproducible binding of LHY or CCA1 to GI promoter regions was 
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detected during these ChIP experiments (data not shown). Therefore future ChIP experiments will 

focus on available tagged versions of LHY and CCA1 that are expressed under their native promoters 

and fully complement the respective mutant plants (Yakir et al., 2011). Recently it was demonstrated 

by ChIP assays that LHY indeed associates with the GI promoter in the region of EE1 and EE2 (Lau et 

al., 2011). Consistent with LHY protein abundance, this binding was stronger at ZT0 compared to 

ZT12 (Lau et al., 2011). 

 

Nevertheless different GI promoter constructs fused to luciferase in the background of the lhy/cca1 

double mutant used in this study demonstrated that other factors than LHY /CCA regulate GI in an EE 

dependent way. The identity of these factors is unknown. However, in a recent study various EE-

binding transcription factors from several different families were identified (Rawat et al., 2011). Most 

candidates were Myb-like transcription factors such as the REVEILLE proteins, which are closely 

related to LHY and CCA1. Most of these RVEs show circadian-clock regulated expression in the 

morning, such as RVE1, RVE3 and RVE8 (Rawat et al., 2011).  This makes them possible candidates 

for regulating GI in an EE-dependent manner in the morning. 

 

Different strategies could be applied in order to test possible binding of RVEs to the GI promoter. 

These strategies would include ChIP experiments using tagged RVE lines or in vitro EMSA gelshift 

assays using recombinant RVE protein. In order to test specifically binding to the EEs within the GI 

promoter, the GI promoter fragment with mutated EEs would provide a further useful tool. 

 

 

Despite the importance of EEs within the GI promoter, Block 2 contains a number of other highly 

conserved cis-regulatory elements. Therefore the GI promoter could also be bound by a number of 

different unknown transcription factors such as the bZIP and the bHLH family transcription factors 

predicted to bind to ABREL or HUD motifs.  

Yeast-1-Hybrid screens would be a classical approach to identify candidate transcription factors that 

directly regulate GI. The focus in such Y1H assays would be the three subfragments of conserved 

Block 2, which would provide an ideal basis for such an approach. This analysis would most probably 

yield a number of different candidates, which would then be further tested by genetic and biochemical 

experiments.  

An alternative strategy to identify novel direct regulators of GI would be EMSA gelshift experiments 

with crude plant extracts. Putative GI promoter binding transcription factors from protein-DNA 

complexes on the EMSA gel could be purified by DNA affinity chromatography and subsequently 

analysed via mass spectrometry. Performing such EMSA experiments with extracts harvested at 

different times of the day might identify different transcription factors that bind the GI promoter 

specifically in the morning or in the evening. Moreover, the generated EE and ABREL mutagenised 
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fragments can be used as controls in order to identify transcription factors that bind specifically to the 

EEs or the ABRELs within the GI promoter. However, one general disadvantage of EMSA gelshift 

assays is that it the DNA-Protein complex has to survive the electrophoresis step on a gel, which is not 

always the case (Carey, 2008). 

 

One putative upstream regulator of GI suggested by previous work and current experiments was SFR6 

(Knight et al., 1999). The sfr6 mutant was shown to be late-flowering due to downregulation of GI 

mRNA (Knight et al., 2008). Moreover, it was shown that EEs were the most overrepresented motifs 

in the promoters of genes downregulated in sfr6, thus suggesting SFR6 as an upstream regulator of GI 

(Knight et al., 2008). However, establishing transgenic lines harbouring different GI promoter 

luciferase constructs and creating sfr6/gi double mutants was not successful during this thesis. 

Moreover, the later cloning of SFR6 showed that it is a protein of unknown function without  

transcription factor activity (Knight et al., 2009). Furthermore the bioinformatics analysis in Chapter 3 

has demonstrated an over-representation of EEs in promoters of cold-regulated genes. As sfr6 

regulates cold related pathways, this likely explains the over-representation of EEs in the promoters of 

its targets.  

Taken together, SFR6 regulates photoperiodic flowering upstream of GI via unknown mechanisms 

that likely do not involve direct regulation of GI. 

 

Although no direct interaction between a transcription factor and the GI promoter could be 

demonstrated within this study, it nevertheless provided novel insights into the likely nature of such 

transcription factors. Moreover, material that was generated during this thesis will be helpful to 

identify novel direct regulators of GI in the future. 

 

6.4. Implications of different GI expression patterns  
 

One intriguing conclusion from the comparison of luciferase reporter lines and gi complementation 

lines is that the earlier expression of GI from mutated promoters has no effect on flowering time under 

standard laboratory conditions. However, these conclusions are based on the assumption that the 

luciferase expression in the transgenic plants reflects the GI mRNA and GI protein abundance in the gi 

complementation lines. 

 

All expression data is based on the analyses performed with the luciferase reporter system (Millar et 

al., 1992; Millar et al., 1995). This system has been proven to be extremely reliable for in vivo 

experiments within different species (Hooper et al., 1990; Contag and Bachmann, 2002) and gives 

comparable results to RNA abundance measured by RT-PCR in different studies (Mizoguchi et al., 
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2005). Moreover, the luciferase expression conferred by GI::Luc gives the same expression pattern as 

GI mRNA abundance determined by RT-PCR at 4h intervals (Cremer et al., unpublished)(Mizoguchi 

et al., 2005). 

Nevertheless it cannot be excluded that GI mRNA in the transgenic gi complementation lines is not 

precisely the same as luciferase expression in the transgenic reporter lines. One possibility would be 

that RNA degradation or post transcriptional processes are differentially regulated in the transgenic gi 

complementation lines. In order to test this hypothesis, timecourse RT-PCR experiments will be 

conducted with the transgenic gi complementation lines in order to compare the GI mRNA abundance 

with the luciferase expression. 

Moreover, this analysis would also allow quantifying the mRNA abundance of CO and FT and thus 

addressing whether the photoperiodic flowering time pathway is normally activated in these plants or 

not. However, both luciferase expression data and mRNA abundance still do not necessarily reflect GI 

protein abundance in transgenic plants. The peak in GI protein follows the peak in mRNA of GI 

(David et al., 2006a). However, plants constitutively over-expressing GI under the control of a 35S 

promoter still maintain the evening abundance of GI protein (David et al., 2006a). This clearly 

demonstrates that post-transcriptional and / or posttranslational mechanisms control GI protein 

abundance in A. thaliana and thus create one layer of redundancy to maintain an evening-specific 

abundance of GI. As all tested gi complementation constructs display a robust level of GI expression 

(based on luciferase data), it is possible that such a post-translational mechanism also maintains the GI 

evening abundance in the gi complementation lines and therefore no flowering phenotype is detected 

under standard laboratory conditions. 

 

One way to test this hypothesis would be the detection of GI protein in the gi-complementation lines 

with a specific polyclonal antibody raised against A. thaliana GI. However, such an antibody is not 

available despite many attempts to raise one (Kishore Panigrahi, personal communication). An 

alternative strategy would be the detection of GI protein via tagged protein versions. However, this 

would require the generation of transgenic plants with a tagged version of GI which is expressed under 

the control of the 4 promoter constructs analysed in the background of a gi mutant. 

 

In addition to controlling flowering GI is an important component of the plant circadian clock, so that 

the EEs within the GI promoter may also contribute to plant circadian clock function. In the different 

gi complementation lines the clock might be changed due to the mis-expression of GI. In order to test 

this, the different gi complementation lines were crossed to GI::Luc and CCR2::Luc marker lines and 

luciferase expression of the resulting plants will be compared. Another strategy would be the analysis 

of mRNA abundance of different clock genes such as TOC1 or LHY/CCA1 under LL conditions. As 

the functions of GI are genetically separable between the regulation of flowering and the circadian 
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clock (Mizoguchi et al., 2005; Martin-Tryon et al., 2007), the mutation of EEs might have a more 

pronounced effect on the clock than on the flowering traits assayed here. 

 

One problem that is generally poorly addressed in plants is the underlying tissue specificity of 

transcriptional regulation. Mostly transcriptional regulation is studied in plants by analysis of entire 

seedlings and therefore the contribution of different tissues or even different cell types are not 

represented. For GI its expression in the vasculature is crucial to fulfil its function in propagating 

flowering time (Sawa and Kay, 2011). As the plant circadian clock is proposed to be cell autonomous 

(Dunlap et al., 2003), it is likely that GI is required in every plant cell for its clock function. How far 

different regions of the GI promoter regulate tissue-specific expression is unclear. Promoter fragment 

GUS lines would be one method to study possible tissue specificities within different GI promoter 

regions. 

A recent study has shown that the circadian clock works differently between the shoot and the root and 

implies that this difference is due to non-binding of LHY/CCA1 to the EEs in TOC1 and GI (James et 

al., 2008). This shows that EE-mediated regulation in the GI promoter is at least partially tissue 

specific.  

 

 
Fig. 6.2  Overview of the proposed network that controls freezing tolerance in A. thaliana 
Arrows indicate positive regulation; blunt arrows indicate negative regulation.  
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A role for GI in freezing stress has been proposed before, but the position of GI within the previously 

described network of cold-induced genes remained unclear so far (Cao et al., 2005; Cao et al., 2007). 

GI and the three CBFs share a number of transcriptional features. Both the three CBFs as well as GI 

have a peak in expression in the evening and are strongly transcriptionally induced after the plant is 

exposed to cold temperatures (Fowler and Thomashow, 2002; Mizoguchi et al., 2002a; Fowler et al., 

2005; Dong et al., 2011). Moreover, both have several EEs within their promoters and LHY binds the 

region of these EEs in both promoters (Dong et al., 2011; Lau et al., 2011). However, the lhy/cca1 

mutation causes different effects on the regulation of both genes. The peak in GI mRNA expression is 

shifted towards the morning in the lhy/cca1 background, but its expression remains rhythmic 

(Mizoguchi et al., 2005). In contrast, CBF1 and CBF3 expression are completely arrhythmic in a 

lhy/cca mutant, whereas CBF2 displays impaired rhythmicity (Dong et al., 2011). Therefore 

LHY/CCA1-mediated effects seem to be opposite between CBFs and GI and consequently on COR 

mRNA. Moreover, CBFs induces the expression of COR genes (Gilmour et al., 1998), whereas GI 

represses them (Fornara et al., unpublished). 

 

 

However, when wildtype plants are subjected to cold temperatures, COR genes are clearly upregulated, 

indicating that the CBF pathway overcomes repression by the GI pathway (Baker et al., 1994; Gilmour 

et al., 1998). However, under natural conditions this apparently contrary system might have a 

regulatory function that sharpens the correct expression pattern of COR genes. Further experiments are 

required to untangle this network and to reveal the functions of EEs within the promoters of GI and the 

three CBFs for the response to cold temperatures. This will include the analysis of GI mRNA 

abundance after cold treatments in the different gi complementation lines as well as electrolyte leakage 

assays, which will provide a more quantitative output of freezing tolerance in the different lines. 

 

 

The data obtained within this thesis demonstrate that results from promoter-reporter lines require 

careful interpretation. Profound changes in transcriptional expression of GI did not cause a visible 

phenotype under standard growth conditions, suggesting that such effects might be also true for other 

genes. On the other hand, not detecting a phenotype does not exclude different transcriptional 

regulation of underlying genes. Therefore it appears to be necessary to study as many different aspects 

of transcriptional regulation and its impact in order to form a complete picture. This especially 

includes the exposure of plants to non standard conditions, as phenotypes might be visible only under 

extreme conditions.  
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Fig. 6.3 Model of multiple inputs that regulate GI via Block 2 
The circadian clock, cold temperatures and light regulate the precise timing of GI expression via Block 2. 

 

 

Plants have evolved enormous plasticity that allows them to cope with many different environmental 

factors. However, this ‘external plasticity’ seems to be reflected in a number of different, but 

interconnected regulatory mechanisms. In the case of GI, redundancy within the GI promoter, post-

translational regulation and probably epigenetic regulation together display an ‘internal plasticity’ that 

seems to manifest the evening abundance of GI. Similar effects are observed for the flowering time 

gene CO and other regulatory proteins such as PIFs. These results emphasise that responsiveness to 

environmental stimuli is conferred by mechanisms acting on different regulatory layers of gene 

expression. 
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 Final Conclusions and Perspective 
 

The aim of this study was to elucidate cis- and trans acting factors that determine the precise 

expression pattern of GI and to elucidate its functions for the plant. Therefore the GI promoter was 

studied intensively by combining phylogenetic, genetic and biochemical methods. The combination of 

these different approaches demonstrated that a highly conserved 700bp block within the GI promoter 

is crucial for many aspects of GI regulation. Moreover, conserved EEs within this block determine the 

precise timing of GI expression dependent on the photoperiod.  However, this work also shows that 

the GI promoter is highly redundant and the mis-expression of GI can be buffered under many 

conditions by unknown mechanisms. Having shown the importance of EEs within the GI promoter, all 

EEs were mapped on a genome-wide level and interactions with other circadian-clock related cis-

regulatory elements were determined. This analysis revealed some striking patterns between such 

elements and gave insights into the general transcriptional code in plants.  

 

Future work will aim in two different directions. First, conserved Block 2 will be further dissected in 

order to study combinatorial interactions of different cis-regulatory elements within the GI promoter. 

Due to the high conservation of its expression pattern and to the multiple cues the promoter can 

respond to, the GI promoter provides a unique model in plants to further study biological processes 

such as gating or the induction by light at a molecular level. Moreover, this work is lays the basis to 

further study known and novel direct regulators of GI. The second direction will aim at the genome-

wide level in order to further decipher the cis-regulatory code in plants. A combination of statistical 

analysis and the evolutionary conservation of promoter regions will give interesting insights into the 

general transcriptional code embedded in cis-regulatory elements.  

 

Almost 50 years after the identification of the gi mutant and intensive studies of its pleiotropic 

phenotype this study demonstrates that these pleiotropic functions of GI in light signalling, circadian 

clock, freezing tolerance and the regulation of flowering time are also reflected within its promoter. 

Taken together, this work has not only contributed to the understanding of the complex transcriptional 

regulation of GI and its functions in the plant, but also gave novel insights into the regulation of co-

expressed genes and the general transcriptional code in plants. 
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Materials and Methods 

 

8.1 Isolation of GI promoters 
 

All sequences from Arabidopsis thaliana and Arabidopsis lyrata were obtained from TAIR or 

Phytozome, respectively. Capsella rubella sequences were assembled from raw sequence reads 

available at NCBI (http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi ). 

The sequence reads of Capsella rubella were assembled using Newbler (version 2.1) resulting in a 

genome assembly of 132 Mb (~22x coverage) with an estimated gene space coverage of 98% (Ver 

Loren van Themaat, unpublished). 

All Arabis alpina sequence was identified from the A.alpina sequencing project at the MPIPZ Cologne 

(Nordström, Albani, Castaings and Coupland, unpublished). The Brassica rapa sequence was obtained 

from the Brassica Genome Project (brassica.info). 

Sequences from Turritis glabra, Diplotaxis erucoides and Sinapis alba were amplified from genomic 

DNA using degenerated primers (Bürstel and Cremer, unpublished). Seeds from Turritis glabra, 

Diplotaxis erucoides and Sinapis alba were obtained from the IPK Gatersleben. 

 

All GI promoter sequences used in this thesis are attached in the Supplementary Information. 

 

8.2 Phylogenetic analysis 
 

All pairwise alignments were done with Shuffle LAGAN using default settings (Brudno et al., 2003b). 

VISTA Plots were made with the VISTA Browser (Mayor et al., 2000), with a calculation window of 

100 base pairs and a consensus identity of 70%. For the multiple VISTA plot, the A.alpina sequence 

was fixed as reference and the number of perfect matches from the other 7 sequences at each position 

was counted. The data was smoothened by averaging over a sliding window of 100 bp (done by Karl 

Nordström, unpublished). 

Multiple sequence alignments were done with DIALIGN (Morgenstern, 2004) or CLUSTALW 

(Larkin et al., 2007) using default parameters. Conserved cis-regulatory elements were visualized with 

WEBLOGO (Crooks et al., 2004). Conserved Blocks were defined based on conservation between 

A.thaliana and A.alpina. Regions were a stretch of 100bp or longer showed at least 70% conservation 

was considered as conserved Block. Sequences of conserved Blocks 1-5 from A.thaliana are attached 

in the Supplementary Information.  
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8.3 Analysis of co-expressed genes 
 

Analysis of genes with at least 3 EEs in their promoters was done with PHASER (Michael et al., 

2008b), FatiGO (Al-Shahrour et al., 2004; Al-Shahrour et al., 2005; Al-Shahrour et al., 2007) or data 

available from the eFP browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Further information is 

provided in the respective figures. 

 

8.4 Co-occurrence of cis-regulatory elements 
 

All calculations were performed by Karl Nordström. The TAIR9 data set containing 3000 bp upstream 

of each translation start was downloaded from the TAIR website (www.arabidopsis.org) and used for 

all calculations. Matches for each motif were identified on both strands of all promoter regions. To 

compare two groups of motifs, the absolute distances between all valid pairs in each promoter were 

calculated. Furthermore, the total number of motifs for each motif and promoter was counted.  

 

A random background was generated by bootstrapping. The number of motifs for each group was 

sampled from the true distribution of counts, then the given number of positions was sampled from the 

true distribution of positions. If the strand was considered, the sampled positions were randomized to 

either strand with equal probability. This process was repeated 1,000,000 or 2,000,000 times, 

depending on whether the strand was considered or not. For each random promoter, the absolute 

distances between all valid pairs were calculated.  

 

For distances below 500bp, counts for bins with the size of two base pairs were generated for both the 

true distribution and the randomized background. For each bin, the probability is to find at least as 

many motifs at the given distances as found in the true distribution. This was done with a binomial 

distribution. The probability of success in a single draw equaled the percentage of distances in the 

current bin in the randomized background. The number of draws was the total number of distances in 

the true distribution. The calculations were made in the statistical software R and each probability was 

adjusted with the internal method p.adjust. Values below 0,05 (EE comparison) or 0,01 (bHLH-bZIP-

LBS comparison) were considered significantly, respectively. 

 

 

 
 
 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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8.5 Plasmid constructions 
 

Desired fragments were amplified with primer pairs containing GATEWAY recombination sites using 

a proofreading polymerase (Expand High Fidelity Tag, Invitrogen, Carlsbad, CA). Primer 

combinations and fragments are described in the primer tables (Supplementory Materials).  

 

Mutagenic primers were used for site directed mutagenesis. In a first PCR reaction, two fragments 

were amplified with flanking primers MB38 and MB39 and the respective mutagenic primers. In a 

second PCR reaction these two fragments were combined with the flanking primers MB38 and MB39, 

but without the mutagenic primers. Primer combinations and mutated elements are described in the 

primer tables.  

 

Amplified and mutated promoter fragments were recombined with entry vector pDONR 207 

(Invitrogen, Carlsbad, CA) in a BP reaction according to the user’s manual, but with 50% of the 

recommended reaction volume overnight (Invitrogen , Carlsbad, CA). E. coli strain DH5 alpha was 

transformed with 1µl of this BP reaction by heat shock and transformed bacteria were selected on 

Gentamycin-containing LB media. Plasmids from liquid grown cultures were isolated with the 

NucleoSpin MiniPrep Kit (Macherey-Nagel, Düren, Deutschland) according to the user manual and 

inserts were fully sequenced. 

Subsequently plasmids were recombined with the desired binary vector in a LR reaction (Invitrogen , 

Carlsbad, CA) according to the user’s manual, but with 50% of the recommended reaction volume 

overnight. E. coli strain DH5 alpha was transformed with 1µl of this LR reaction by heat shock and 

transformed bacteria were selected on Kanamycin-containing LB media. 

Binary vectors from liquid grown cultures were isolated with the NucleoSpin MiniPrep Kit 

(Macherey-Nagel, Düren, Germany) according to the user manual. 

 

These binary vectors were introduced into Agrobacterium tumefaciens strain GV3101 containing the 

helper plasmid pSOUP via electroporation. Transformed bacteria were selected on LB medium 

containing the appropriate antibiotics and presence of the plasmid was verified by colony PCR.  

 

8.6 Construction of the pLucGW_pnos vector  
 

A 105bp fragment of the NOS promoter was amplified from vector pLucGW (Cremer et al., 

unpublished) using primers containing Hind 3 restriction sites (MB14 and MB15).  The amplified 

fragment was digested with Hind3 and cloned into the Hind3 restriction site of the pLucGW vector 
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upstream of the luciferase open reading frame, thus creating pLucGW_pnos (done by Samson Simon, 

unpublished). The insert was verified by sequencing. 

 

8.7 Generation of transgenic plants 
 

Binary Plasmids were transformed into Arabidopsis plants by the floral dip method (Clough and Bent, 

1998) or by a simplified floral dip method (Davis et al., 2009) 

T1 plants carrying the plasmid were selected on soil based on their resistance to BASTA (Bayer, 

Leverkusen, Germany). T2 were identified based on segregation analysis on ½ strength Murashige and 

Skoog medium supplemented with 1% of sucrose and containing 12μg/ml Phosphinotricin (PPT). 

Lines that showed a segregation ratio between 1:2 and 1:4 (based on 40-60 seedlings) were considered 

for further analysis. At least two independent homozygous lines were established in the T3 generation 

for all constructs that are described in this thesis. 

 

8.8 Flowering Time Experiments 
 

All plants were grown in separate 9*9 cm square pots. If not otherwise stated, plants were grown 

under cool white light (approx. 80 µE) without additional incandescent lambs and at a temperature of 

22°C during the light phase and 18°C or 20°C during the dark phase. The photoperiod is indicated in 

the figures of each experiment. 

Different lines were randomised across the growth space and rosette and cauline leaves were counted 

from a minimum of 10 plants from each line. Error bars represent Standard Errors. 

 

8.9 Hypocotyl measurements 
 

Seeds were surface sterilised, stratified for 3d at 4°C and seedlings were either grown on soil or on ½ 

strength Murashige and Skoog medium supplemented with 1% of sucrose for 7d under the indicated 

light condition. Dark controls were placed for 8h in red light to induce germination. For hypocotyl 

measurements, at least 20 seedlings from each genotype and each condition were transferred to agar 

plates. A picture was taken together with a size standard and hypocotyl length was determined with 

ImageJ (http://rsb.info.nih.gov/ij/). 
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8.10 Freezing tolerance assays 
 

Seeds were stratified for 3d at 4°C and each 4 seeds were transferred to the corners of 7*7 cm pots. At 

least 50 plants from each genotype were grown under long day conditions (LD 16) for 21d and then 

treated with a temperature of -9°C for 5h between ZT 3 and ZT 8 and then transferred back to the 

intitial conditions. Acclimated plants were transferred to 4°C for 1d before the freezing treatment. 

Survival of plants was scored 5d after the freezing treatment.  

 

8.11 Isolation of GI promoters 

 

GI promoters from Lip-0 and Dijon-G were amplified from genomic DNA (primers MB 16 / MB 17) 

and sequenced.  

The sequence of the following promoters were obtained from the 1001 genomes initiative 

(http://www.1001genomes.org) 

Bay-0, Bor-4, Br-0, Bur-0, C24, Col-0, Cvi-0, Est-1, Fei-0, Got-7, Ler-1, Lov-5, Nfa-8, Rrs-10, Rrs-7, 

Sha, Tamm-2, Ts-1, Tsu-1, Van-0 

 

A 1,7kb fragment of the GI promoter of the following accessions was obtained from Genbank based 

on a study on natural variation in flowering (Flowers et al., 2009). 

Ag-0 An-1, Bay-0, Br-0, C24, Ct-1, Cvi-0, Edi-1, Ei-2, Ga-0, Gy-0, Kas-2, Ll-0, Mrk-0, Ms-0, Mt-0, 

Nd-1, Nok-3, Oy-0, Sorbo, Wa-1, Wei-0, Ws-0, Wt-5 

 

All sequences were combined and duplicates were removed, which resulted in a final dataset of 42 

different 1,7kb GI promoter accessions. The phylogenetic tree was built with MEGA5 (Tamura et al., 

2011).   

 

8.12 T-DNA insertion lines 
 

T-DNA insertion lines that carry a T-DNA insertion were identified by TAIR (www.arabidopsis.org) 

and homozygous lines were established based on genotyping with primers MB40 – MB59. Lines were 

assigned names from 1 to 7 according to table below.  Location of the T-DNA insertion was 

determined based on flanking sequence done by TAIR (respective Genbank accession number of these 

sequences is given in the table below). 

 

 

 

http://www.arabidopsis.org/
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ID SALK Line  Accession No / Sequence 

SALK 1 SALK_005476.42.35 ED606671 

SALK 2 SALK_005474.30.35 ED606669 

SALK 3 SALK_005475.53.85 ED606670 

SALK 4 SALK_057774.34.10 CC179053 

SAIL 5 SAIL_147_D11 CL470741.1 

SALK 6 SALK_114233.29.05 BZ379925 

SALK 7 SALK_086534.47.80 BH855163 

Tab. 11 Overview about SALK and SAIL lines used for flowering time experiments.  
 

 

8.13 Luminescence measurements 
 

Seeds were surface sterilised, stratified for 3d at 4°C and grown for 7d under cool white light 

(approximately 70µE) on ½ strength Murashige and Skoog medium supplemented with 1% of sucrose. 

Seedlings were then manually transferred into 96 well opaque microtiter plates with each 200µl of ½ 

strength Murashige and Skoog medium supplemented with 1% of sucrose. 20 μl of 1 mM D-luciferin 

was added for each plant and luminescence was measured from the next day in a TopCount 

(PerkinElmer Inc; Waltham, Massachusetts, USA). Each plate was manually transferred every 30Min 

from cool white light (approximately 70µE) to the TopCount to measure luminescence.  

 

For Trichostatin A experiments, plants were grown for 7d under LD 16 conditions and were then 

transferred into 96 well opaque microtiter plates with each 200µl of ½ strength Murashige and Skoog 

medium supplemented with 1% of sucrose and the indicated concentration of Trichostatin A. 

 

For all measurements, expression of 12-36 seedlings was normalised to the average expression during 

the time measured with Microsoft Excel (Microsoft, Redmond, WA). Error bars represent Standard 

Errors. Peak times were calculated with the Excel Macro BRASS. Period lengths of free running 

cycles were estimated from at least 72 h of luminescence measurements starting 12h after transfer into 

DD using BRASS (Plautz et al., 1997). 
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Abbreviations 

 
 
ABA absisic acid 

ABREL ABA Response Element-like Element 

AG AGAMOUS  

AP2 APETALA2 

B1 Block 1 

B2 Block 2 

B3 Block 3 
bHLH basic helix loop helix 

bp base pair 
bZIP leucine zipper 

CAT3 CATALASE3  

CBF C-REPEAT BINDING FACTOR 

CBS CCA1 Binding Site 
CCA1 CIRCADIAN CLOCK ASSOCIATED 1  

CCR2 CLOCK AND COLD REGULATED 2 

CDF CYCLING OF DOF FACTOR 

cDNA complementary DNA 

CHE CCA1 HIKING EXPEDITION  

ChIP Chromatin Imunoprecipitation  

CO CONSTANS 

Col Columbia 
COR COLD REGULATED  

CRC CRABS CLAW  

CT-BMY CHLOROPLAST BETA AMYLASE  

DD constant darkness 

EE Evening Element 

ELF3 EARLY FLOWERING3 

EMSA electromobility shift assay 

FKF1 FLAVIN-BINDING; KELCH-DOMAIN; F-BOX PROTEIN 1 

FT FLOWERING LOCUS T 
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GA gibberellin  

GI GIGANTEA 
Go term gene ontology term  

HOT high occupancy target  

HUD Box  Hormone Up at Down Box 

ICE1 INDUCER OF CBF EXPRESSION1 

LD Long Day 

Ler Landsberg erecta 
LFY LEAFY 

LHY LATE ELONGATED HYPOCOTYL  

LL continuous light 

LUX LUX ARHYTHMO  

ME Morning Element 

mRNA messanger RNA 
NOS NOPALINE SYNTHASE  

ORF open reading frame 

PAB3 POLYADENYLATE BINDING PROTEIN 3  

PBX Protein-Box 

PCR polymerase chain reaction 

PEPC PHOSPOENOLPYROVATE CARBOXYLASE  

PHY PHYTOCHROME   
PIF3 PHYTOCHROME INTERACTING FACTOR 3 

Pol ΙΙ RNA polymerase ΙΙ 

PRR7 PSEUDO RESPONSE REGULATOR7  

RVE REVEILLE 

SBX Starch-Box 

SD short day 
SEE short EE  

SEX1 STARCH EXCESS 1 
sfr6 SENSITIVE TO FREEZING 6 

SNP single nucleotide polymorphism 

SOC1 SUPRESSOR OF OVEREXPRESSION OF CONSTANS1 

SPY SPINDLY  
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TBX Telobox 

TCP TEOSINTE BRANCHED1, CYCLOIDEA and PCF  

TEE triple Evening Element mutation 

TIC TIME FOR COFFEE 

TOC1 TIMING OF CAB EXPRESSION 1  

TOE TARGET OF EAT1 

TSA Trichostatin A  

TSS transcriptional start site 

UTRs untranslated region 

wt wildtype 

Y1H Yeast-1-Hybrid  

ZTL ZEITLUPE  
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Side project - Tissue specific cell sorting 
 

The most important processes during the initiation of flowering in response to day length occur in the 

vascular tissue. FT, for example, is almost exclusively expressed in the vasculature (Corbesier et al., 

2007). Thus it would be of enormous interest to study the transcriptome of the vascular tissue, i.e. 

phloem companion cells. Therefore, phloem companion cells have to be separated efficiently from the 

surrounding tissue. I was aiming to separate these cells via FACS (Fluorescence Activated Cell 

Sorting), which has been shown to work efficiently to sort different root tissues (Birnbaum et al., 

2003; Birnbaum et al., 2005). Therefore, the target cells have to be labeled with a specific fluorescence 

marker.  To do so, I took a construct that fuses YFP (YELLOW FLUORESCENT PROTEIN) to 

Histone 2b under the control of the SUC2 (SUCROSE-PROTON SYMPORTER 2) promoter, an 

overexpressing promoter that is exclusively active in phloem companion cells (Stadler and Sauer, 

1996). The same fusion construct was also made under the control of the KNAT2 (KNOTTED-LIKE 

FROM ARABIDOPSIS THALIANA 2) promoter, whose expression is restricted to the meristem 

(Lincoln et al., 1994). Both constructs were kindly provided by Daniel Schubert’s group in Düsseldorf 

(Lafos et al., unpublished) 

 A. thaliana plants were transformed with these constructs and homozygous T3 plants were analysed 

for YFP expression under a CLSM (Confocal Laser Scanning Microscope).  

10 selected lines with the SUC2 construct showed fluorescence in the vasculature, though with a 

differing intensity. The three strongest expressing lines were selected.  Additionally, one KNAT2-line 

with pronounced fluorescence in the meristem was selected. Protoplasting of seedlings with both 

constructs were successful and fluorescent a limited amount of protoplasts was detected under a 

CLSM.  However, the future challenge will be to collect a sufficient number of fluorescent cells to 

conduct a subsequent transcriptome analysis.   
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Fig. S1 CLSM pictures of homozygous T3 plants containing the SUC2::H2b:YFP transgene; 10d old seedlings 
were analysed; a.) root  b.) rosette c.) leaf vains;  
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Additional VISTA plots 
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Fig. S2 Pairwise alignments of eight Brassicaceae GI promoters. Alignments performed with 
CHAOS / Shuffle-LAGAN and visualised with VISTA Browser. Sliding window=100bp; 
Conservation=70%; Red colour indicates regions where a sliding window of 100bp shows at 
least 70% of conservation. Base genome is indicated in respective panel. 
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Additional figures 

 
Fig. S3 Co-occurance of conservation and putative nucleosome positioning in the GI promoter.  
Nucleome prediction was calculated with 
http://genie.weizmann.ac.il/software/nucleo_prediction.html (Segal et al., 2006) 
 

http://genie.weizmann.ac.il/software/nucleo_prediction.html
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Fig. S4 All transgenic GI constructs confer robust GI expression 
a.) Average luciferase expression per seedling of each 2 independent lines with the TEE::Luc, B2-
pnos::Luc and B2TEE-pnos::Luc  construct compared to the reference line of AtGI::Luc over 24h grown 
under LD 16; Errorbars = Standard Deviation  
a.) All constructs in the background of Ler wt b.) All constructs in the background of the lhy/cca1 double 
mutation 
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Fig.S5 Clustering of EEs within promoters 
EEs (AAAATATCT) and CBS (AAAAAATCT) were mapped in relation to neighbouring EEs; a.) /b.) 
only EEs, same and different orientation; c.) / d.) only CBS, same and different orientation e.) / f.): All 
EEs, SEEs and CBS together, same and different direction (e.) and f.) are same data as in Fig. 3.8 a.) and 
b.); Asterisks indicate statistical significance p<0,05 
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List of 71 genes whose promoters contain at least 3 EEs 
 
ID # EE # ABREL Description 
AT1G07040 5 3  unknown protein  
AT1G10760 3 11  SEX1 (STARCH EXCESS 1); alpha-glucan, water dikinase  
AT1G21945 3 12  transposable element gene  
AT1G22770 3 4  GI (GIGANTEA)  
AT1G28060 3 5  small nuclear ribonucleoprotein family protein  
AT1G42650 3 6  transposable element gene  
AT1G44100 3 0  AAP5; amino acid transmembrane transporter 
AT1G45332 3 8  mitochondrial elongation factor, putative  
AT1G45474 3 5  LHCA5; pigment binding  
AT1G48330 3 4  unknown protein  
AT1G54410 3 1  dehydrin family protein  
AT1G60270 3 4  pseudogene, glycosyl hydrolase family 1 
AT1G65360 3 0  AGL23 (AGAMOUS-LIKE 23); transcription factor  
AT1G68050 3 6  FKF1 (FLAVIN-BINDING, KELCH REPEAT, F BOX 1) 
AT1G70650 3 12  zinc finger (Ran-binding) family protein  
AT1G71710 3 2  inositol polyphosphate 5-phosphatase, putative  
AT1G75790 3 14  sks18 (SKU5 Similar 18); copper ion binding / pectinesterase  
AT2G15880 3 6  leucine-rich repeat family protein / extensin family protein  
AT2G21660 4 4  CCR2 (COLD, CIRCADIAN RHYTHM, AND RNA BINDING 2) 
AT2G21680 4 5  FUNCTIONS IN: molecular_function unknown 
AT2G25190 3 2  unknown protein  
AT2G33830 3 1  dormancy/auxin associated family protein  
AT2G34840 3 2  coatomer protein epsilon subunit family protein 
AT3G05790 3 4  LON4 (LON PROTEASE 4); ATP binding  
AT3G05800 3 5  transcription factor  
AT3G07650 3 2  COL9 (CONSTANS-LIKE 9); transcription factor 
AT3G14270 3 3  phosphatidylinositol-4-phosphate 5-kinase family protein  
AT3G15450 3 3  unknown protein  
AT3G15830 3 2  phosphatidic acid phosphatase-related / PAP2-related  
AT3G20800 3 1  rcd1-like cell differentiation protein, putative  
AT3G42050 3 2  vacuolar ATP synthase subunit H family protein  
AT3G45190 3 1  SIT4 phosphatase-associated family protein  
AT3G51400 3 5  unknown protein  
AT3G61570 3 7  GDAP1 (GRIP-RELATED ARF-BINDING DOMAIN-CONTAINING ARABIDOPSIS PROTEIN 1) 
AT3G61580 3 6  delta-8 sphingolipid desaturase (SLD1)  
AT4G03530 3 2  transposable element gene  
AT4G16860 4 2  RPP4 (recognition of peronospora parasitica 4) 
AT4G16890 3 1  SNC1 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1) 
AT4G17090 3 1  CT-BMY (CHLOROPLAST BETA-AMYLASE); beta-amylase  
AT4G25470 4 3  CBF2 (C-REPEAT/DRE BINDING FACTOR 2) 

AT4G25480 3 10 
 DREB1A (DEHYDRATION RESPONSE ELEMENT B1A); 
CBF3  

AT4G25490 3 6  CBF1 (C-REPEAT/DRE BINDING FACTOR 1)r  
AT4G25500 3 10  ATRSP35; RNA binding / nucleic acid binding  
AT4G26530 3 2  fructose-bisphosphate aldolase, putative  
AT4G29190 3 2  zinc finger (CCCH-type) family protein  
AT4G30190 3 1  AHA2; ATPase/ hydrogen-exporting ATPase 
AT4G31360 3 2  selenium binding  
AT4G31410 4 0  unknown protein  
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AT4G31875 3 2  unknown protein  
AT4G33980 4 7  unknown protein  
AT5G01050 3 2  laccase family protein / diphenol oxidase family protein  
AT5G03940 3 6  CPSRP54 (CHLOROPLAST SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT) 
AT5G05400 3 6  disease resistance protein (CC-NBS-LRR class), putative  
AT5G09450 3 5  pentatricopeptide (PPR) repeat-containing protein  
AT5G12270 4 9  oxidoreductase, 2OG-Fe(II) oxygenase family protein  
AT5G15980 3 7  pentatricopeptide (PPR) repeat-containing protein  
AT5G23550 3 2  FUNCTIONS IN: molecular_function unknown 
AT5G23570 3 0  SGS3 (SUPPRESSOR OF GENE SILENCING 3)  

AT5G24470 5 2 
 APRR5 (ARABIDOPSIS PSEUDO-RESPONSE 
REGULATOR 5) 

AT5G39910 3 4  glycoside hydrolase family 28 protein  
AT5G41830 3 2  F-box family protein-related  
AT5G47020 4 2  glycine-rich protein  
AT5G48250 3 3  zinc finger (B-box type) family protein  
AT5G50130 3 2  short-chain dehydrogenase/reductase (SDR) family protein  
AT5G51510 3 7  unknown protein  
AT5G56260 4 3  dimethylmenaquinone methyltransferase family protein  
AT5G56270 3 3  WRKY2; transcription factor  
AT5G56490 3 4  FAD-binding domain-containing protein  
AT5G59810 3 6  SBT5.4; identical protein binding / serine-type endopeptidase  
AT5G59820 3 5  RHL41 (RESPONSIVE TO HIGH LIGHT 41) 
AT5G64400 3 1  FUNCTIONS IN: molecular_function unknown 

Suppl. Tab. 1 List of 71 genes whose promoters contain at least 3 EEs. 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 



154 Sequences 
 

Sequences  
 
 

GI promoter sequences of 8 Brassicaceae as used for the phylogenetic 
analysis 
 
 
>Arabidopsis_thaliana 
ctaccaccgactgaaatttgcaatgcgtttgctcaactctgttttcttcttttagttttgatatcgactccttttcttttcttttttgggttttagtcttcctttactattttagcagtttttttttgtttacttagt
ttatggtttttgtgtctttaacttagtttatggtgtttttctttttctttggacaatgatgatttcttaataatctgagtagacttcttcttccgaatccccaaataatccatctctacttgaaatttaagttgt
tcggtattcatggtcagcaacaagggacaatccttctattatggtagcagccttctattatgaatttattcgaatgtgtctactcataatttgtggtttgtatttcaacttgtagttgatatcaattata
tgcacacagactttttctttttgaggggttggaagcaagcgattcaatgattgtaccactcatttcataatagtgtttgatatgacgttaatttgaatggtttatgttgatcgaaaatactctcagtc
acaacaagaatctaattcgattaatttatttgaaaaacatatgttggcatggtacatgaaccagctcgttcatatgaaaatattttaaaaagtcaacatcagtgctaatttcaaattgaccataca
ttagcacacaagaagactaacaaaaaaaatgagtgaataaagaagagagtgagtggggttgatacatgtcaccgtccaaaatgtgtctgacccttctcattggagctacaagagccga
ccctttgcctcatcatttgttgacttcactctccttttacatatttaaattataacttgctcatatttccattcattgtgttcggttctagattgttccatccactttcttttttctcttactttgaaatttagaa
atatatgaatacttgacaaatatttgaatattgtaactgatttgtttgttcgtaatacttgacaaacttttttgaatatacacctttacatatattttgagttgagataaaaagggaattatgttagtttat
ggattatattatgtaaataccacatctaactatgatcggatgaaaactaaaccagcatatctctaatcagtaatatttactaaatttatatatcattaaagattttttgaatttagcaaaaaaagaa
gaagatatcattaaagatttttaaatttaaagtataacataatgaataaatcaagtgttgagcttagtttcgcgttgcaaagatgttcatttgatttttttttttttttttccatttgatttttcttatactaa
attgattgatgtcacggtccttctgtgaaaaaagtatattgtactgtataaatttataatagtcatacttgaagataactaatatcattttctaaaggttttgttgacaatgaaatgggtaatgatga
acatctcgtttgctaaaccacaaaagaaataattcgttggactataacttaaacttataatatatcaactgaaatgcctacaatttgagaatacgccttttcaaaaagttttagaattttataaaaa
tttctccaccataatattactttaataaaagcttgttattaaaatgatatattaacaaaaaaaaaagaggtaggcaaagtagcttttattaaaattaatgttttccctaattggtaaatcataaacca
aaaaattgaggtaattcttaatatatttactatgattagaatgatacattaatgtaacattttatcatcttcattaataatagtaagttctcctcaaaattacaatttgatatcaaaaaatatatttgtatt
acaagcaattactgaaaaattaaaattacaatttagcccagttacataactccacgtaaggtttgagcccatcacatcacatggtacatgaccaaagcccagttatgttaccatggagtattc
ttcagacaagagccatccagacagaagtggaccacacaatcacgaatcgtatggagatcattacaatatattgctcacatcttattgcgccacgtctcttatttggcgagtgatcaacgtcc
acagatctcttgctccactctgattggtacacgtcatcattttattgtgctacttgtttatgtggtacagtagagacaagtggtaagattttaaaatatcttaaaagatgtgtgaggcccatttaga
tattttctcaacgggctgttcctcaaaagctgcccgtttatctacaaccatcgaacggctcgaaactattctgggctagctgcccgaaatctcttaaaggaatttgttgagtgggcttgaatca
acggtggataattcgaaggtgtacgtaacatctcgtagcatctgaacttagctcccctcaaaatatctgtggacatatgtcactagctttttttttgtgtaatgaaactattaattaattaggcaat
cacatgagagatgttatatacttaaattaataactcaataatacaatcatgaccaccaaaccttgaaataaaataatctctctgattacttgtacaaattctttaccaatatatgccatactgtgaa
tgtaatggtttattttaaaacagccaaatattattgatataattatatgtttaagtagattttaaacttagctcatggttaaaaatagacagaattttggagtaaatctgagtttacaaaatttatttatt
aggattaaaattaattacttaaattggcaaacatttttcttggtgattgtaacatacaatatacgaatttgaattcgcattgtgattccaaaacaacactaacataaactaccagtaaaattttttaa
aataaaatttcatatatatatgcttaaaaaatgtaacaaaaatatggtaaattttttaaccatggtatgggtggagatgtatgtgggatgatgatggttatatggtaatggcgcataaaggtggt
ggcaaaggcaaggaaatatcgatgacacgtaagcagacgggaaatcttaaaccgagtggagaagcctccaaatctcttttttctctctctctctcctaaggccaccacaatctcttcttctg
tgtatgtattctttttttctccgatattcgtcgatctctcaaaaatatcctcaaagccaaaaaaaagcaagagtagagataaccaaccaacaaactcataggaagacatatttactttcaggtct
ttcttctactacctttttcgtggtttttggttgattgattctcagatgagattttttcccgaatcatttgatgtcttttttttttaaataagttcttggtaaatcactgtttctactagcattttttgttttctcag
cttagatttgttgtttgatttgacatcttatctgattgagattttgttcttctgaattgttgttacagggtttagctgtttgattcagcttcgatttagtgtacagtgtgttgattagtataaaaaggattta
aaagaatctgggagatgtgtatagtgattgttcttgctggcgaatgttaacactacgtcgtattgattctcgattgatagtagaagaaaggtgttagttagattgttcgttcatctagttggggtt
tagtttcggttcctggatg 
 
 
>Arabidopsis_lyrata 
cagtacaagccttctattatgaaattattcgaatgtgtcatactcaaactttgtggtttgtattcaatatgtagttgatatcaattatatgcacacaagacttcttttttttttttcttttttttttgaggggt
tgaatataagagactctttatgtttttataattggaagcaagcaattcaatgattgtatttcataataaatgtttgatatgacgttaatttgaatggtttatgttgatcgaatatactttcagtcacaac
aagaatctaaatacaattactaaactatatatcagctgagttctgaccatactttataagaagatttaaaaaaatgattgaataaagaagagagtgagtggggttgatacgtgtcaccgtcca
caatgtgtctgactctgacccttctcattggagctatactagccgaccctttgcctcatcatttgttgacttcactcaccttttgcatattttttaaatgaacttgctaatgtttccattcattgttcgat
tctagattgttccattcactttcttttttctctttgacgtaattaagaatatactaacatagtaaatatttgacaaaattttaggatttaggtttttacatctatcttgagttgagataaaaatggaattat
gataggttagggattattttatgtaaataccacatctaaactatgacggatgacacactaaaccaacatatcttatttactaaatttagatatgatcgttaaagatttttaaatttaaagtataatat
aatgaataaatcaaattttgagcttaatttggtttgaggattttctaaatcccgcgttgcaaagatattcgattatattttttgtctataaattgattgatgtcacggctcttttgtcaaaaaagtatatt
gtataatgtcaaaaaaaaaaaaggtatataaatttataatagagtaatacttgaagaaaaataatagcattttcaaaggttgtattgacaatgaaaggggtaatgaatatctcgcttgctaaac
cacaaaagaatcaattcattggactataacttaaacatataatatatctaccgaaatgtctacaatttgtgaatgcgacttttcaaaaagttttagaattttataaaattttctccactatagtattac
tttaataaaagattgctaataaaatgatatcttaattcacaacaaaaaagtaggcaaagtagctttattagaaaactaaatggtttttttttttttgttaatggtaaatcataaacctaaatttaagct
aattgcaaaacgcgtttactatgatcagcatgatacatcaatgtaacaatttaacgtcttgattagtatctaattagtaaattatcctcaaaattacaatttgacataaaaaaatatatttgttttaca
agcaatcacagtgaaaaatagattgttttctcttaaattacaattattttttagcccagttacataactgcacgtatggtttgagactttgagcccatcacattacatggtacatgaccaaagccc
agttatgttaccatattattcagacaagagccgccatccagacagaagtggaccacacaatcaagaatcgtatggagagcattacaatatattgctcgcatcttattgtgccacgtctcttg
gtaggcgagagatcaacgtccacagatctcttgctccactctggttggtacacgtcatcatatttatgttctacttgtttatgtagacgttcatgtagacaagtgggaagatttaaaaatatctt
aaagcaagtgtgaggcccatttagatatttctcaacgggctgttcctcaaaagctgcccgttgatcaaacggctccaaactgttctgggcaagctgcccgaaatcttataaaggaaattgt
ggagtgggactgaatcaacggtggagaattcgagggtgtacgtaacaactcgtagtatctgaacttagcttctctcaaaatatctgtggacatatgtcactagtttttgtttgtgaaagtatta
actaattaggcaatcacatgagaggttgatatagtaaaatacaatcatgaccacaaaacttttaaataaataatctctctgattacttctgcaaattctttaccaatatttgccatactgtgaatct
agagttttatttaaaaacaactactatgaatttttgatatgatttcatgtttaaggagatttagacagaattttggagtaaatctgagtttacaaaatatattattaggattaaaaactaattacttaa
attggtaaatatatttgttggtaatttgaattcgaattgtaatccaaaaacaacactaaaacaaactactagactattttaaaaattagaattcttatgactgagtgatgaatcatatatacttcttct
gtttctttttaggaaattttgtttgtttcattatatttgacttttccaagttgctagacaatttgaatatagtataaaattgttgaattaatttcatgatgcattaaataatagtttttcaatttttgtgtgtttt
agtaaaaaaaaaaaatcttatataaagaaatggagggagtattagatgcttaaaaaataaagacaaatatgataaaattgtaattatagtatgtatggttaacacaagaatttgattcgactaa
aattcaaaaacaacaaactactaaactatttttaaaagtagaattgttttcattgagtgataaaccatatatgaattgtttaaaaattaagaaaaatatgataaaattttaaccataacatatatgtg
aggatgatgatgatggtcatatggtaatggagcataaaggtcgtggcaaggctagggaatatcgatgacacgtaagcggacgggaaatcttaaaccgagtggagaagcctccaaatc
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tctttctctctctctccaaaggccaaagccaccacaatctctcttgtgtgtatgtattgcttcagaatccttttttgatattcttcttcttttttctccgattttcttccatctctcaaaaaaatatcctcaa
agctaaaagaacagcaagactaggtgatgataatcaacaatcttaggtctttcttttattatgatttattttttccgtggtttttgcttgattgatttgtcagatgagtttttttaccgaatcatttggtg
tttggtgaattttttgttgattgattctccttgatttgcttaatttctccagttttgtgttgtgtgtgttggttttcgtcactgtttctacttgcattttttttttctcagcttagatttcatttttttttttgttatcac
tgattgagattttgttcttctgaattgtaacaggaaggagcgaataacaaagacatagcgttttaattcagcttcgatttagtgtacagtgtgttggtagtataaaaggagttaaatctgggtga
tgtgtatagagtttgttcttgccggcgacgacgtattgattctcgactggtagaagaaaggtgttagttagttagattgtgtaaatcaatcattctagtgagggattagtttcggtttctggtttta
cttcttctggatg 
 
>Brassica_rapa  
tctatttttttagttcaactttagagtatttcttttagtatttttattaattttttttaacttaatttatgattttgaaacttttaacttaatgtggttggtccattttatttagagtctttaacgctacatgaaattt
aattgtttatcatttggtagtgattgtcagcaataggaagccactcaatcatatatggttactgtttagtgacatgatggtgcgaatccaaacgtgggtgttttctgtaaatgaattgattcgaat
gtgtcctacttgaaatttgtggttctgcagtcaacatgcttggtttcagttatatacacacaaacgtcttttaaaacatttatggttttagaatcggaaattaatgagcaaaactgaatgattatac
cattttcatttcataaaaaaatggtttgatatgacgttgattataatggtttatgttgatcgaatattctccgaacgagagcaagaatctaattcattttagtttattcggaaaacacatgtttgcata
taatactagggtcggcccgccctacgggcgggatatactttacttgtgatcattttattatttttgtatgattttatagttagtgttttaagttttcatttgcgtgaaatatgtatgatacactacaaaa
attcatattatatcacataaatagtatcagaaatataaatgataaataaattatgatgtattctagggttctgatttgagaataatgtcacttatgtattatttttaaattgatggtcatgtttttaggcg
tttagtaagattttttttccagttaaattgatatgtgaatgcatgattgagtttgttttgtctattatccatattttgtattaatgaactttagttattgggttattagtggactttaacttgattgggtacat
caaaattaaacgaaaggttaactgaactaaaaaagaaaaaaaaagttcttttattgtttttctctcagccgactaaacctaattttcttatttctttcactatctcatccgacccgtattcttttttcat
cacctcaccttcgtcttcacctcctcaccgtatcttcttcatcacctaatctcccttttcatctcatccatcttcttcgtttaaccacctcaccttcttctttaccacctgaccccatcttcttcttcacc
acctaatctcccttttcatctaattatgcttcgtcgttcactttcttcttttctgttttacttgataaattaggatttgatttacagttcatcaacataaagtgacagtattttatctgtttggttcaattatat
agatatttttcagtctgaaaaaaaaacagaaaacagtttaacttaatcgattttttccagatttacctaattcgcaggcttagatgtaatctttaggagtttttgacggaaaaaagtttgtttggatt
aaaaaaatgcttggattacagatgtgatttgtctcagtttttttggttggagaaaaggttggatggtggctcagaaaataattttcaataactcatttaataaaaacggaagcccactcatgaa
gcccaaaaaaaaacaaattaaaaagatgaaataaccagagttgaacacgtgtcatactaagaagaattgacttagtgacgtggatgcacaggagtgaagcgaacatttttttatatatata
gattagttttgctgagacttcttgtcagatttttgtttttattaaattatgagatggtacatgcaattagtgaataaacaatctctgttcatgtgaagtagtatattattaaaagtcaacatcagtgctc
tatttttcaaattgactatacttataaaatgattgaacaaagaagagatggtgagtgggtttgatacgtgtcaccggccaaaatgtggctgccccttctcattggagcttcactagccgacctt
tgcctcatcatttgttgacttcactcgccttttttacatatttttactcaaaactcatttctttcggtttctagattgttccacccactttggttctttctttgaaactcaagttcattatatcaacgtagtg
aatgaatttattttcgtgtgtttgcaaaattttaatcgaatttagatcttttcatttatttggtgtttaagtcctaatatgcaaagaaacactagaacgagttagttctggtggtaaatagactgtgctt
gtaactcccatcacccatattcaatttgctgtaagaaagactatttataatgtttggactctggtaactatttatgtaaacaccacatctaaattatgacataatgacactaaaacaaggtaatat
cataagtaatggtggtgtttgaaaaaaaatctaatcagtattggtgaattctacatttagatatatatcataaaagatcaaagtataacctaatgagcgaatcaagtttgagtttagttttattaac
gttgcgttttgaaatctacatcggttggaaaaaatttcgattctcttatattatattgattactgtcacggttctccgatgaaaaaagtatgtaacataataatagagtaacacttgaagacgaat
aaaaaagactgttgacaatgtaaggtgtaatgaatatctggctcagtaaaccacaatagaatcgattcattggactataacttaaattaaatctaaagaaatgtctaccgtctgagagcttac
gacttttcaaaaagcttttttgaagtttcgtaaaaagttttctccaccatagtatcacttttaatagaatatggttttaaacatgatataataacaaaaagtagacacgctagctttattagacctga
atactctttagattaacaatttatttttcacaaaggtaaatattaaacacaaattgaagccaagttcaatgaataaagcttttgttgccactcttaaaaagattgcaatgaccttcacaagaaaca
cagtctgataatcaataataatgaatatttatttgtgtacaagtttggttattacaacaatcatacaactgctttctgagtcgttataagtcaactgctagaaaatatagaaagtattacactgaga
ggcagtttcaagtttaatattacactataaggtagtttgtgctactacggtagttttttctaaccaagcttattttctattcataaactaactaaataaatttgtaaacaaaagaaagtgggttccatt
tacttaacatatgatttctatagaatttagtcaccgttcttcctagcaaacaaaagaaagtggaccccatatatcttcttcttcgtttctttttctttagttcttcatttttttgtaaaatgattgttgtttttt
cagaacattcttttaataaaatatgtttataattagtatcttcattattcaatctatcttttgatatatatcaagctaatgttattatacactgcaaatcacggtcacaaaagctccaccgccacagtc
tcctttcttttccacgagacttatcttttgtggtgtttcaagtccggtgggagcttcaacgtcataccctatgctacatctttgccgtgatcttagcctctctccatgacctccggcggactatca
agcgaagccgctgttgcaccgagatgttgatcgccattgttgagctttgagaagaagtttctttaattttcagttttggtccttgtaattttaaatgtttccattgttgtctcaaaacatctagatttg
catataagtcatgtttaattagcccaaaactttcaaatgtgaactttagaccttgtcaaatgcaaataaacaaaaataaacaaatatatgcaccaaatacctctaaatacatactaaaattattta
catgaggtaaatgcaaatgttaaaacctactaaaattatgagttaccaatgaacaacatatttacataagttgagtaggtcatattgactcattttttgtatcatattgaccatacaaataacgaa
acttgcaatttgtgtacaaaaatgatctggtgttcatgtattattgtacaaatcaataagtgtacatgcgaactattgtacgcatggatgaaaaatatttgtgtacatagtatagtgtacacatca
aatagcttttaaagttacaattttttaccgtataaatattgtaatttgcaaatgtgcctaaaacatttatcaggtgtgcatttgaatccttgcaaataaatctaaaatactgtctggtgtccatatatta
ttgtacaaattaattgatgaacatgtgcattattgtatatgtggatagaataaaatttatgtacgtattgtcgggatttttctattgtttatgtatggccacatgtacgctgaattttcaatatccatgt
gtacgaaagatcatgtgtacacctaaatccggtaagagactgagttaccaaatcgatagaaagtgatagagagtatcacagttagtactgatgctggttgtgagttatccaaatcatgctct
catcatgttttagtagaagagaccgaaaaatccaaaccttgtcttatctccgacgatgtttactcaaaagacaacttctgaaagaggttaaaacaccataatcaaaaccataacacatatgc
atgtgtgcatgtagctccttatgaacttaatattgtgaatttatgtttcatcttcttcttcatctaaatttacttctctttcttataagaataattttagaaatgtatacatgtagatgtgtatgcacgtgta
catgtagattttataaaaatggaaacatagaaattgtgtaatcattttgtgtcggtgtccacgaatttaggttgtacacatgcacattaaattcatatgttgtccacagttatgatatttacatgtac
actaattctacatatatgtggtcatgttttaaggttaataatttgttttaggtttaagtgcttaggatttattataaggggttattgagttgtaaatctgagttcttttgttcatatatatgtactataatgt
ttttgcgaatgtgtacaattaagttctttaatacaattaagttttccggcaattagctgaatgtgtacatttaataaattatttatgcgagagtgtacaagtaagcgagatggtaaggcgcttgtttt
tattcttagactctgtttctattaacgttttcatcatctaagttttacttaatttttttaatgagtggtaatttcgtaataacttcatcttcttgttagggcttcttgagtttcctgcaaatatatctcagagc
cgccattgatttttatcatgcaatcttcattatattttgtgtgttttaactctagaacttataaatattttacagtttaactgattaggacccaaaacccagaaaaaacaagttttaatttcccataact
aaattccccatatccaaatctatggatagttaattccgacgtctggacacgtgattcatcttaggaatggtaatgagttttaaaaatctaactatttgacatgaattctagcggaactgcgtgat
atatgatatacaggttgattgaaagaagaaaaccgatgagaaaaaaataaaagatctgagatttatgttttggagaggctgagatacaatgagttttttctaaatcaattttctgttataaaag
aaagaaaaaacgagatcaatggagaagaaattcaggaaagagaagatgataggtcccactaattagaaaagtaactttgtttggtcttagttaagggcactaaagtaaacaaccataata
aactaccctagtagctgaatctgtctttggatgtaataaaatcttagaaactgccctatactgtaaaatactcgaaaatatataaacatgcaagaacagagagaaatagtcaatgtcatttag
aacatgggtgtggtgttatcttagaggttagatcgatacatctagcatcccttctgatatcacatcattagaacatatatgtgcttcatatgttgaaacaatgataggttccataaattattggga
agagcaaatgatgtgatgttcgtttgtttattttatgcgttaatgcttacggggttcatttacatcaaccatcgaactattaattatcaaaaaaataagtaactacacataatgttcaaagagtcta
tagcaaatcatcaatatcagccattcacaaatttgaggtataagaaaatttaaattatttatttttatttctaatattcaatataattaagtattatatttattttttcaaattttaaaatgttatattaacttt
aaaagtagttacagcgcttaataattaaaaaaaaactattttcttattaaaatggcaaatattttcagcccagttacaagtctccacgtatggtttagagcccatcgcatacatatagaagagc
atgaccatgaaaagcccacagttatgttccatgttcagacaccaacctgccagccatccaccagagtgtggaccccacacccacgaatcgtatggtagatcactacaatatattgctggc
atcctgttgcgccacgtcgtcgttaggaggaagatcaacgtccatatatctcttgcgcctctctcattggtacacatcgttttgttatatttcaacttgtttatgtggtagagtggacaagtggg
aagaagaagataaatatctaaaaagagtgtgggccttatgtgtagtcttgagatattttctcaacgggctgtctccacgaaaagctgccccgttaatcaatacacaccatcagacggctcg
aatctcttcaggtcaagctgcccgaaaactttgccgaggaatttgtgtgggactcactcaccactgaaatcaacggcggaaatttcgaaggtgtacgtaacactgcgtagcatctgaatat
agctcctctgaaaatatctagggacacatgtcacttagctttgtaagaaaagcaattaactaatcacatgacagagcttatagttaaactaataaaaaggaggaaataatacaatcatgacc
acctttaaataatgtaattaatggggaagagtttatttaaccgaactcaccataccatgaactagagtttaaaaaaaataaagtaaacaaaaataagcttgtttattatctatacacaattttactt
gtatttttttgttttcagaaacttttcttttgtccaaagtaaaagaaacatttcttttttaatttagaatataccaaattttgaagtaaaacaaaagtaaaatcagaatttatagtatatattataactaaa
agttaaatacaaaattagttgaaattaactgaatttgtaatattttaacagtcaaaaatctatttggaatataaaattaaattagttaatttacttagaataagaaaaaaaacaaaggtaaaaaatt
aaaaaaaaaacaaaggggatgatgcaatgtaatgtatgtgagaggggaatagtaatgtttgatgatggccatggggacatggaggagggaagggtgagatctaaaaaatgagagag
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cataaagaaaggggtcgtggtggcaaaggcagaagaagtatcggtacgccacgtcaggttcggggaaatcttaaaccgagtggagaaagcctccaaaatctctttctctcttcctcttc
ctcttccatttccacaaagacacaatctctcgtcttctcctctctctcttttctgtaataataataataataatcctcctctccagaaaatcacttctctgatatttctttctttctttcctcctaaatctttt
ctctctctttcaccactgatattcttcccctcatctattttttttagctctcaaataaaacaaaatcgtaaaagggaaccaaaccagagcaatctcatagaagattccttctgacaagtccgtgttt
ggttttctatggttggttcttcagattatatgagatcttgtagttaaattgtgacgaattctttgtacttgcattttctgtcagcaaagatctgttctttatcactgtgtccatttcaaataacacaatctt
gtcttttcttatatctgattgagatttttcttcttcttcttgattgtgttgtatctacaggaaggagcctatatcagttttaaccagcccttgtataagagatattcccttttttttatagaaagaactcga
tttactgtattagagtagatcaagaaccgttacgacccattgattctcgattggttagaaaaaagggtttgtaaaccattctctctagatg 
 
>Capsella_rubella_MG 
 
TAAAATTCGCAATGCGTTTGCTGAACTTTGTTTCTTTTCTTTAGTTTCCTTGTGGACTCGTTTTCTTTTTTCTTTTT
TTATAGCATTTTTCTAAACTTAGTTTATGGTTTTTGTGTCTTTTAACTTAGTTTATGAAGTTTTTTTTATCTGAGC
AATGAAGATTTTTTTAAATAATCTGCGGAAACAAAGCATTGTCTCAATTTCCGACCTCCAAAATCTTTATACCT
AGAAAAATAAAATGAATGGACATGTAGCGACATACTTAAAATTTAGGTTGTTCATGGTCAGCAAAAAGAGACA
AAAGCCCTTCTATCATGGTAGTAGTACAGTACTATACTGATGTGAGTGTGTACAGTTATGAATTGATTCGAATG
TGTCCTACATCAAAATTTGTGGTTTTTATTCGACATGGTTCGTTTCAATTATATGCACACATGATTACTCCTTTTT
CTTTTTTGGATGATATGTAGAATGAATACAAGAGTCTCTTTATGTTTTTATAGTCGGAAACAAAGCCATTCAAT
TTCAATGATTGTAACATTCATTTCATTAGTATATGTTTTGATATGACGTTGAATCAGAATGGTTTATGTTGATCG
GAATATACTCTCAGTCACAACAAGAATCTAATTATTCAATTAGTTTATTCGGAAACACACATGGTGGCATATAA
CTATACTAGCTGAGAGATATTATAAAAAAGTTTGGTACATGAACCATCTCTCTCTGGTCATGTAAAAAGATATT
ATGAAAAGTCAACATTAGTGCTAATTTCAAATTGACCATGCTCTAACGCACAAGAAGATTTGTTTATATAATAA
AGATGCTTGAATAAAGAAAGAGAAGAGTGTGAGTGGGGGTTGATACGTGTCACCGTCCAAAATGCGTCTGACC
CTTCTCATTGGAGCTACACTAGCCGACCCTTTTGCCTCATCATTTGTTGACTTCAGTCACCTTTTTTTACATAATT
TTAATTAGCTTACTTAATAATGTTTCCATTCATCGTCTGATTCTAGATGGTTCCATCCACTTTCATTTTTCTCTTT
GACATTTACTTTCAAACGTAGAAATCATATTAACGTAGTATATGATTTGTTTGTTTTTAGAATTTGACAAAAAA
ACAAAATTGAATTTGATCATTGTATGTATCTTTTTTGAGTTGAGATGATAGGTTAGTATGTTAATATCACAACTA
AATTTTAATGACACTTATTTTTTTTACTTTTTTATCTGAATAGTAAATAAAAACAATCTAATCCATAAATAAATA
TATCTGCCTCAACCGCCATTAACCATTAAATCTCTAAATATGTTTGAGGTTCCGTTTTCTAAACTTATGCGTTTG
CAAAGATGATGTCCGATTTGATTTTTCTTGTAACAAATTGATTGATGTCACGGTCATTCTGTGAATAAAAGTAT
CTTGTGTCAAAGAAGGAAAAGAAAGTATATTGTATAAATTTTATAGTAGAGTTAATAACTTGAAGAAAAATAA
TGGCATTTTATAAAGGTTTTGTTTGACAATGAAAGGGGTAATGAATATCTAGCTTGCTAAACCACAAAAGAATC
AATTCATTGGACTATAACTTAAACATATAATATATTTATAGCTAAGCGAAATGTCTACAATTTGAGAATACGAC
TTTTTCGAAAAAGTTAATAGAACTCTTATATAAAATTTCTCCACCATAATGTTACTTTATTAAAGCTTAAGTATT
AAATTGATATATATATTTACAATAATATAAAAAAATGTAGGCAAAGTAGCTTTAAATAAAATTATTTGTCTTTT
CGCTAATGGTAAAACATAAACCAAAATTTGAGCTAATTCTGAAACGCGTTTTACCATGATCAGCATAATACATC
AATGTTATAACACTTTCATCATCTTGATTAATAATATCTAATCAGTAAGTTCTCCTTAAAACACTTTAATAAGCT
AAAGTTGTTTGTTAATTTTCTCTTCATCTCTTCTCTCAAGATATCTACTGGAACAAATAAATAATGTATATCGTG
TAACACAGTAATAATTACTAATATATTTTTATTATATATACAAATAATTAATGAGTATAAAAAGTAAAAATTGC
TATCATTTAGAAAACTTTATATTTGTTTCACTGTTAATTCTAGAACAAAAAAAATGCGGTATTGTTTATTATAAT
TAGATCGTGAAAAATATGATAGTTAAAATGTAAATTTATATTTATTAAAAAAATAATTATAGTATAAACATAA
AATAATTTATTTTAATTATTGTAATTGAGTTATTTTCAGTCCAGTTATGCAGCTCCACGTATGGTTTGAGCCCAT
GACATTAACATGGTTACATGACCATGAAAAAGGCCCAGTTATGTTCACCATATTCAGAGTTTCAGACACAGAC
ACCAGCCAAGCGATCCAGACAGAACACACAAGTGGACAGCACCAATCACGAATCGTATGGAGATCTGAATAC
AATATATTGCTCGCATCTTATTGCGCCACGTCTGTTTGTTTTTTAAGGCGCAAGATCAACGTCCATAGATCTCTT
GCTCCACTCTGATTGGTACACGTCACCTCGGTTATGTGGTATAGAGTAGTAGACAAGTGGGAGAAAGATTAAA
TTAATATCTTAAAGGGAAATTGTGAGGCCCATTTAGATATTTTCTCAACGGGCTGATCTCAAAAGCTGCCCGGT
TTATTTTACAGCCATCCGACGGCTCAAAACTGTTCCGGGAAAGCTGCCCGAAACTTTTTAAAGGAATTTTATAG
GTGGCACTCACTGATGAGTGAATCGACGGCGGAAAAATTCGAAGGTGTACCCAACATCTCGTAGCATCTGAAC
AAAGCTCCTCCCAAAATATCTGTGGACACATGTCATGTCACTAGTTTTTGTTTGGGCGAAAATATTAATTAAGT
AGGCAATCACATGAGAGGGTTATATAGTTAAATTAATAAAAATAGGAGAATAATACAATCATGACCATACCAA
ACCTTTAAAAATAAATAATCTCTGCTTACTTCAACAAATTCTTTACCAAATATTTACCATACACACTGAATCTGT
ATAGTTTTTATTTTAAAACAACCACATTTCCGGGGTAATTTTATGATGTAAGGAGATTTTTAGAAACTTTACTTG
TGGCTTAATAGATCAATTTTTGGAGTAAATCAAGTTTACAAACAAAAACTTGTTTATTCAGATTTAGAAAACTT
AATATTTAAATATTTCCTTGTTAACAACATGCAATATACATATTTGAATAAAATTTGACAAGAATACATATTTG
AATAAAATTTTGATTCGGAAACAACAATACAAGCACAAACCATTATACTGTTTAAGAAATAAAAATTACCGGA
GTTGGGTTTAAGTTAAATAAATGAGGGATAAATAATCCTTTGTTTCAAATTAAAAATGATTACAACGGGAAAA
AATTAGTCTTTGAACTAAACTATTTTTTATTTACTGTGTTATAATTTCGTAGTGGTAAAGATTCAAACAAAAATT
GAAAAAAACAGGTTTGATGAATTTATCCATTTTAACTGTGGTAACCATAGTTGGTAAATTTTTGTTTTTAACCGT
AGTATGAGATGGACATGTATGTTAATGGTGAGGAGGGTGATGGTATGTGGCTATGTGCCATAGTGCCATGGTA
CCAATAGGCGCATAAACAAAAAAAAAGGGTACGTGGCAACGCTAGGAAAATATCGATGACACGTCAGCCGGA
CGGGAAATCTTAAACCGAGTGGAGAAGCCTCTCCAAATCTCTTCCTCTTTCTCTCTCTCTCTCTTCCTCTCAAAA
GGCCACCACCACAATCTCAATCTCTTCTCTGTATTTTTTCTTGCTTCAGAATCCTTTTTTTCTTTCTCTCTTGATAT
TTTTTCCTCATCTTTTTCTCCGATCTCTCAGAAAAATATCCTCATAGCTCAAAAAGCAAAGAGTAGAGAGAGAT
AAATCAACAAATCTCATAGGAAGATTCCTTACAGGTCTTTCTTCTACTTTACTTGTGTGTGTCTTTTTCTTTCTTC
TTTTGGGATTGATTGATTCTCAGATGAGTTTTTTTCTTTCTGAATCATTTGGTAATTTTTTTGTTTGATTTGCTTA
ATTTTTCCCAGTTTGGTGTTTGTGTGGTGTTCGTTCTCGTTACTGTTTCTACTTGCATTTTTATTTTCTTCCTCAGC
TTAGATTTGTTGTTTGATTTTTCAAATTTCTTTGTATCACATCTCGTATTGTTTTATCTGATTGAGAATTTTTGTTT
TCCCTCTACAGGAAGGAGCGAATATATAAGAGAGACACAGACACACACGGATTTAGCGTAATAACTCAGCTTC
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GATTGACTGTACAGTGTTTTGGTTAGTTTAAAATCTTAGGAGGGTAGTGATTGTTCTGAATCTCGCCGGGGAAT
GTTAAAACTAGGACGTATTGAAAGGTGTTGGAGATCAAGGGTGTAAAGAGATTCTTCATTTTTAGTTTCGGGTT
TCTGGTATATTTTTATTCTTCTGAGATG 
 
 
>Diplotaxis_erucoides 
tacacctgatagagtccccagatgcactcaagtcttaaatttctgaagctttggatgttggctagtttaacgttggagtatttttttagttttcttagtaatttttatttaattttaaacttagcctatgtt
tttgaaactttaactcaatggggttggtccattttattaatatttaacgctacatgaaatttaagctgttatcatttggtattgccattgtcagcaactggaagccactcaatcatagtatctgcact
gttgagtgacatgatgatgcgaatccaaacgtgggagtttgctgtaatgaattgattcgaatgtgtcctacttcacatttgtggtttggagtcagcatgcttgatttcaataacatatacccaca
aacttattttttgtggttttaaaattggaaacgaacaactcaatgattataccattttataacaaatggttttttgatatgacgttgattacaatggtttatgttgatcgaatattctctgaacaagag
caagaatctaactcattttagtttattcggaaaactcattttggcatataataatggttttgctgagacttcatcagatttttgttttgattaaaatgtgagatgtcacatgcaatgagtgaaggaac
aatctctgttcatgtgaaatttattattagtagtcaacatcagtgctctaatttttcaaattgactcgttataaaatatgattgaacaaagaacagatggtgagtgggtttgatacgtggcaccgg
ccaaaatgtggctgccccttctcattggagcttcactagccgacttttgtcttatcatttgttgacttcaccaaccttttttacatatttttaatgaaattgaaaactcatttctttcggtttctagattg
ttccatccactttgtttcttttgtattaacctagtgaatgaacatatttctgtttgtgtttgtatattttaccgggatttagatactttcatttatttggtgttgaaaacaagatgaattataattgaaaatg
gatcctaatatgcaaggaagctattttatgtaaacagttaaacaccacacctaaactacgacctaattacagtaaaactgcaaaacaaggtaatatataatcagtaatggtgaattctacattt
agatattataaaagattaaagtatgacctaattagttaatcaagtttgagtttagttttgttgaagttgcgttttgaaacctacctcggttggaaaaatgttcgattctcttatattaaattgattaatg
tcacagttctcctgtgaataaagtatgtaacataataaataatagagtaacacttgaagacgaataaaaaagactgttgacaatgcaaggtgtaatgaatatctcgctcagtaaaccacaat
agaatcgattcattggacaaaaacttaaattaaatcaaaagaaatgtctaccgtgtgagagcttatgacttttcaaaaagcttttgaagttttgtaaaaagttttctccaccatcgtatcacttta
aatagaatatggttttcaacatgatataataacaaaaaagtagacacgctagctttatcagacctgaatactctttagattaacaatcttttaattcagaaaggtaaatagtaaaccaaaattga
agctaagttcaatgaataaagcttttgtatcgccactcttaataagtttgcaatgaccttcacaagaaacacaatctgataatcaataataatgaatatttgtgtacaagtttggttattagaaca
atcatgcaactgctttgtgagtcgttataagtaactaggtcaactgcgctaggaaatacataaacatgcaagaacatagagaaatagtcaatgtcatttagaacatggatgtggtgtgtcat
cttagaggttagttcggcaatcctgcagcaattatcatcccttctgatatcacatcattagaacatatacgtgcttcatatgttgaaacaatgatagcttccataaattattgggaaacgcaaat
gatgtgatgttcgtttgtttattttatacgttagtgcttatgaaattcatttacatcaaccattgagctattaattatataaaaagggtatcacacataacgttcaagtcatcaatttcaacaatcata
aatttgaggtataagaaaatttacattatttatttttctttctaatgttcaatataattaaagatagtattttaaaattttcagaataaactatactctctccgtttcatattaagtgtcaccgtaaagaaa
atttttcgttgcaaaataaatgtcgttttagtatttcaatgcaacatttattaattttatttttcagattatttttctattggttgaaatatgagtagatgtatgagaaatgatgtttttatattgaaaataaa
tataaaattaaatgatttattaatttatgtgcagaagtttaaaatgacacttataatgaaacagagtgataatgagtatggaagtagttacagtgctttataattaaaaataaatagatattttatatt
aaaatggaaataattttcagcccagttacaagtctccacgtatagagcccatcccatatatatgcatgaccatgaaaagcccacagttatgttctatgttcagacaccaacctgccagccat
ccaccagagtgtggaccccacacaccacgaatcgtatggtagatcgctacgatatattgctggcatcctgttgcgccacgtcttcgttaggaggaagatcaacgcccatatatctcttgc
gcctctctcattggtacacatcgttttgttatatattcaacttgtttatgtggtggagtggacaagtgggaagaagatgataaatatctaaaaagagtgtgggtcacagtttaggcttgagatat
tttcacaacgggctgtctccacgaaaagctgcctccttaaccgatacccaccatcagacggctcgaatctcttcgggtcaagctgcccgaaaaactttgttgaggaatttgtgtgggactc
acccaccactgagatcaacggaggaaatttcgaaggtgcacgtaacacatcgtagcatctgaacgtagctccttcgaaaatatctagggacacatgtcactttgctttgtaagaaaagta
attaactaatcacatgacagagtttagtgttattaaactaataaaaaggaggtaataatacaatcatgacccacctgtaaataacagtatgttattaacggggaagagtttatttaaccgatct
caccataccatgataccataaattaggtttttaatatttaaataaacaacagataagcttatttatttatacacaattttgatggtaaattttgttttcagaactttttttttgtcgaaagaaaaataaa
attttctttttaatttagaatatagcagattttgaagtataccaaataaacaatcagattttataatatgttatatatgaataaaaattataacaattaaatattaaattagttaaaatgaactgaatttg
taatttttttacagtaaaaatgtcaatttggagtttaaattagttaatttactgaggacaaaacaaaacaatggtaaattaaaaaaaccaagggggaatgcatgtatgtgatgatgcaaatggg
catggacatggaggaggacgagatctaaaaacgagagcataaagaaagggtcgtggtggcaaaggcagagaagaatcggtagtacgccacgtcagggtcgggaaatcttaaacc
gagtggagaagcctccaaaatctctttctcgcttcctctcatttttacaaagtacacacccaatctctctctctctctctttctttctttatctcctcctctttgtgtgataataatcctccagaatcat
ctctgatatttctttccacctaaatcttttctctttccccactactgattattcatccctcaccgagtttctttagctctcacaaaaatatccagaaaaaatagacagagacagaactaaagcaga
gcaaactcatagaggacgattccatctgacaggttcgtgtttggtttcttctcttcttcttcgatatggttgattcttcagattatatgagatcttgtagtaaaactcctgtcgaattctccttaattta
gttttttttttctacttgcatttctctcaccaaagatctgttctttctcgctctgttcatttcaaaagaccacatcttgtctttgtcttttgtctgattgagattctttcttctttgtatctacaggaaggagc
caatatcagttttaccagccttgttataagagtgattccttttttagagaaaataactctatagtttacagttaattctccagcttcgatctactactatgctgtgtgttccgtagtggagtagatca
aggactattgattctcgattgatagaaaaaaaagttggagctttttatttttggtttactggtggtggttaaggttgtaaccaattctctctagatg 
 
> Sinapis_alba 
tgaaatctgcaatgcgttaatcgagctcaatttttattttcttttaatttatttctagttttgttatggattatttctttactctttttagcattttttttttctttttaacttagtttatgtttttatgtcttttaatttaa
tgaggttgatcattctagttagagtttttgtccggacgatgatgatcttaatttctaataatctgccattatacgattagtctctctagaaatctgaatgaactttgtcgtctacgtatcttgggttaa
gaagcaacattagtaatggtcattgatctcattaaaggtaaattcgaccgtctcttctgtcccgcattgagggtctttaccatgaaattaacttttcctcacgtgttatgtcagattgtcagaatat
gattgaatgatatgaccaaaccatgtaacttagtagtttgtattagtgaggtatacgtgacaactatacatattgttgacataagtatatttatgattggatggtatatgttcttgaaaaatttaagt
tgttcagtagtcattgtcagcaaaaacatgccttctattatggtagcagtacagtgagtgtgtcatactcaaatttgtggtttatattcatatcatggttgatttcaattatgtgcacacagactcat
cttttttttttctctctatttttataattggaaacaagcaattcaatgataataacattcatttcataataaatgtttgatatgacgttaatttgaatggcttatgttgatcgaatataccctcaatcccaa
ctagaatctagttcacttaacttattcggaaaacacataggtggcatgtagtgtgtaaactatatatgtattagctgagacttattattataggagagagtacatgaatgaaccatctctgttcat
gtgaaagatattataaagagtcaacatcagtgctaatttcaactatactttagcaccttaagaagattaaaaaacga 
ttgaataaataagtgggtaagtggggttgatacgtgtcaccgtccaaaatgtggctgacgacccttctgattggagctatagccgaccctttgcctcatcatttgttgacttaagtcaccttta
catattttaattaacttgccatcgctcaactcattcttcggttctagattgttccatacattttcgttttctcttttacatttactttgaatttcgaaacgtaaaatatattaacgtagtaaatgagtagtt
cttttgtaatatttgaccaaattttgaatttagatccttacatctattatgagttgaaattaaaataaatcataatacgtaagtaatttattgtatgtaacaccacatctacgattctaaactatgatcc
gatgacactaaaacaacacatctccaagcagtaatattaactacgtatataacttaagattttcaaatctaaagtataacttaatgaataaaccaaattttgagcttaattttgttgaggttgcgtt
ttatgttttgcgttggttcctttgcaaaaatgttcgatttgaatttttgtttttcgtttcttctattaattgattgatgtcacggtccttctatgagaaattattattgtataatgtcagaaaaagaaaaaa
gaaagtatattgtataatagagtaatacttgaagaaaaataatagcatcgtaaaggttttattgacaatgaaaggggtaatgaatatctcgcttgctaaaccacaaaagaatcaattcattggt
ctataacttaaacatataatatatctaccaaaatgtctaccatttgagaaaacgactttaaaaaaaagttttcgagctttataaaattttccccaccatagtattactttaataaaagcttgttattaa
aatgataaaaaaaaagaaagtaggcaaagtagctttattataattaatgtttttctctaatggtaaaccataaaccaaaaattaatggttt 
tcgctaaagcttctaatttttgttttcactgccatgtataacgcgtttactatgatcaacatgatacatcttaacatcaatgttacacttcatcatctagatatataactttataatttgtttcagtgtta
gttcttatttgttacatataatttgacgacttgagaaatatatgcattatataatctgatttttgtttttaatactaaaatacgattattttcagcccagtaacatgtctccacgtatggtttgagcccat
agcatacacatggaacatgaccatgaaaagcccagttatgtgtccatctccagacaccagccatcgacagaagtggaccacacaatcacgaatcgtatggtgattactacaatataatg
ctcgcatcttattgcgccacgtctgttgtttggcggaagatcaacgtccatatatcttatgctccattatgattggtacacgtcatcttgttatgttctacttgtttatgtggtggcgtagacaagt
gggaagaagaaaatatctttaaaggaagccttggacccatttagatattttgaacgggctggttcttcaaaagctgcccgttgatctatacccatcatcaagacgggtctatactcttccgg
gcaaagctgcccgaagttttttaaaagaattttgtaggtgggactcactcaacactgaatcaacggtggaaaaattcgagggtgtacgtaacacctcgtagcatctgaacgtagctcctcc
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caaaatatcttcggacacatgtcactagtttcgtaaactattaacttaaatcagagaatcacatgagagaccatatagtttaaattaattaaaaggaaattatgcaatcatggaccaacaaact
tttaaataatgatctgtaaggttagctatacaaaattctttaccaatattaccattctctgaatctagagttttattttaaaacaattacaatttttctgctaattttatgttt 
gagtctttgaggaggtaagcagtgcaattcaaatagtaacaaaaatacatatatatatatatatatatagatattttgacactattacgatactgttgcagtgcagttttggagtgcggtatggtt
accatttagagcctagttttggagtaaattaagttaacaagtacactagattttgtgatatacttttaccgtcaaaatctatttttaatattaggattaaaaattaaattacttaattattgagaacaa
atatttgtaaacagtattttaaagagatgagtcatatactgtattaccaaatatgaatttcttgatttgacacaaaagtcttataaattcaaaatcaaacagttttaacacgaggaataagcaaag
agatgagtaataacatgtatgtgtaatgtgtatggtgatgtgatgttatgttatgggatgatgaaatgtataatggcgcataaaggtcaggaaatatcgatgccacgtcaaacggaaatctta
aaccgagtggagaagcctccaaatctctttctctctctctctccttcctcctcctcaaaggccacaatctcctctgtgtgtatgcttcacaatcttttctgattttatttcttcttcacctatattcttc
catccctcaaaagtatccacaaagctaaaagctagacaaagggaagagagatataatcagattcctgacaggtgtctttctttcttctctacttgtcatgtgtctttttgttgaattctcagatga
gatttttccgattcatttggtaaaacctttgaggatagatttgcttaatttctcaaatttggtgtttagttttgtttactgtttctaacttgcatttttttctcagcttagatttgttgtctttctctgtgtttaat
aacttttctgatttgaggtttttttttcttcttctgaattgttgtatccacaggaaggatcttatacttttggtcttcgctatagagataaa 
agccctcaagtgttaaccaacaacaacacacaggatttagcgtcttttcttcagccctcggattttactgtacagtgtgttggttgattaaaggagttatttctgggggatgctgttgtgtatag
tgattgttcttgctggcgaatgttaaactacgacctattgattctcgattggtagaaaggtgtttggagatcagactcttgttgcctcttttaaaaaaaagattcttctttttggtcttgttagattgg
tgtaatcaaatcactctagtgggttagttttggtttctggtattgattcttctggatg 
 
>Turritis_glabra 
tgaaatctgcaatgcgtttgctgaactctactttttctagttttgttatggaatctttctttactctttttagcagttttaaatttagcttatgattcttgtgtctttaacttagtttatggagtttttgtctgga
cgatgatgatttcttaattatctgcgattagccgactagtctttttagaaatctaagtaaatttcctcttggaattcctaaccgtactgtcctaaaatcttatgcctaaaaatatatagggtgtagag
ttatagagggaataacgcggcaatcccaaatggatccttaatcacaaattttacctcgtcggatgaatcaacatgaccacgctattcctgagtgaggatcttaccagtgtctaatcatgaaa
ttaactttccctcacaaatgtgttatctattctagttaggtctgaatatggttgggtggtgtggccatgacggatatatagcgacttagtgatttgtgataggggtgtttgtgcaacaccacccg
ggttaagtccacgtataatgcatgttattgacgagaaaaacaaatatatgatcgaatgatctatgttatgatgtttgtttctttatgacctgaatttcagatgctgtatgttttggaagaaaaagtt
aatagtttcaacaacaacaaaaaaaaaatgaactgaaaagaccgaactgacttgctgaattcccaaatgcccaactctacttgaaattttggttgttcggtagtcttggtcaacaacagtaat
atactgacgggaatccatatgtgagtgtgtatagtaatgaatttattcgaatgtgtcctacataaaatttgtggtttgtattggacatggttgatttcaattatatgcacgcactctcttttgtggttt
gtattcaacatagttgatttcaattatatgcacacaactcttttcttggggtgttgaatataagaggctctttatatttttataattggaagcaagccct 
tcaatgattgtaacattcatttcactatacatgttttgatatgacgttaatcagaatggtttaagttgatcgaatatactctcaatcacaacaagaatctacaattcaattgatttattcggaaaaca
catggtggcatataatattatatactagctgagagttcttactagattttatttttgagatggtacacgaaccatctctggtcatgtaaaagatagtataaaaagtcaacatcagtgctaatttca
aatttagcgcacaagaagatttaaaaaaatgattgaataaagaagagagtgagtggggttgatacgtgtcaccgtccaaaatgtgtctgacccttctcattggagctacactagccgacc
ctttgcctcatcatttgttgacttaagtcgccttttacatattttaattaactttgctaatgtttccattcattgttcgattttctagattgttccatccactttctttttctctttgacatttactttgaaacgt
agaaacatattaacgtagtataggatttgtttgtttttagtatttgacaaaattttgaatttagatccttatatctattttgagtagagataaaaatgaaattatgttaggttagggagtatttaatgtta
ataccacatctaaattatgatcgggtgacacaaaaacaacatatctctaatcagtaatctttaatacatttatatatcattaaaaagattcacaaatttgaagtataacatattgaataaatcaagt
tttgagcttaaatttgtttgaggttgcgttttctaaattttgcgttgcaaagatgttcgatttgatttttcttataatagttgattgatgtcacggtccttctgtgaaaaaagtatcttgtgttaatgtcaa
agaagaaaaataaattatattgtacaaatttataataatagagtaatacttgaagaaaaaataatagcattttaaaggttatgttgaca 
atgaaaaaggggtaatgaatatctcgcttgcgaaaccacaaaagaatcaattcattggactataacttaaatatataatatatgtagcgaaatgtctacaatttgagaatacgacttttcaaaa
aagttatagaactcttataaaatttttctccaccataatcttactttataaaagcttagtattaaaatgatatatttacaataaaaaaaagtaggcaaagtagctttattaaaattaatgtctttcgct
aatggtaaaacataaaccaaaatttgagctaattgcgaaacgcgtgaaatgatcagcatgatacatcaatgtaacacttcatcatcttgattaatatctaatcagtaagttctcctcaaaacac
tttttataagctatttgtaagctaatgttttctccatctcttctctgtggatgtctattgaaacaaagaaatattgcataacgtgtaaacatacatagtaattaccttttaatatataaaatttattaatta
gtataaaacaaaataaaaaattgctataatttataaaactctataatttgttcagcgttaatctataactaaaaaatatatgcagtatgatttattatatttagacagaaaaaatatacattattattta
ttttaaaagcaattacagtgctaaataataattaaccaaatgattgttttctattattacagttattttcagcccagttacataactccacgtatggtttgagcccatcacattaacatggtgcatac
catagcccagtgatgtaaccatattcagacaccagccatccagacagaagtagactccgcaaacacgaatcgtatggagatcactacaatatattgctcgcatcttattgcgccacgtct
gttgttgggaggaagatcaacgtccatagatctcttgctccactctgattggtacacgtcatcttggttatgttttacttgtttatgtggtagagtggccaa 
gtgggaggattataaaatatcttaaagcaagtgtgaggcccattttagatattttctcaacgggctgttcctcaaaagctgcccgttaatctacagccatcgaacggttcgaaactgttctgg
gcaagctgcccgaaactttttaagggaatttgtgggtgggactcactcgtaactgaatcgacggtggaagatttgagggtgtacgtaacacctcatagcatctgaacgtatctcctcccaa
aatatctgtggacacacgtcactagttctttgtgaaactattaagttattaggcaatcacatgagaggggttatattgttaaataaataaaaaggaaataatacaatcatgaccacaccaaac
ctttaaaaatatataatctctgattacctcaacaaattctttaccaaatattgccatattgtgaatctatagttctattttaaaacaaccacaatttttggggttaattttatgttttaagaagagtttaa
aactcaactcatgactaaaaaaaaaaattataattttggagtaaatcgaatttacagtcagatttgttctacttttacaggtaaaattgtttattaaaaactaattatgtaaatcagtaaacattttttt
tgttaataacatgtaatatacgaatatgaattcgaattgtgattcaaaaacaacactagaacaaaccactaaactatttaaaaaacaaaactagaattgtgtataattgagctgatgaatcaga
taactttaaaaattaagaaaaaaaaggtaaaattttttaaccaatagtatatggaatggacgtgtaagtgattgtgaggatgatggtatgtaccaatgggggcataaaaaaggtcgtggcaa
agctaggaaatatcgatgacacgtcagccggacgggaaatcttaaaccgagtggagaagcctctccaaatccctttctctctctcctcttcccctcaaaggccaccacaatcaaa 
tctcttctgtgtatgtttttgcttcagaatccttttttttcttctttctgataatttgttttcatatttttctccgatacttttcgatctctcaaaaaatatcctcaaagctaaaagcaaagagtagagatata
atcaacaatctcataggaagattccttgcaggtctttcttcttctactacttgtgtatctttttttttcgggttgattgattctcagattagtttttttccgaatcacttggtgctttttattttttgaatttctt
ggtgaatttttgttcatggattttccttgatttacttaatttctccagttttggtgttgtgtgtgtgtgtttgttctcgtcactgtttctacttgcattttttttttctttctcagcttagatttgttgtttgatttca
atttttttgtatcacatctttgtcccgttttatctgattgagattattttatttacaggaaggagcgaacatctaagagacacacggatttagagttataattcagcttcgattaactgtacagtgtgt
tggtagtataaaaggagtttaaatcttgggagggtgatgtgtatagagtttgttgttcttgctggcgaatgttagacgacgacgtattgaaaggtgttggagatcaaggctagtgcacttttgt
tgcctcgattcttctgtgggtgttagattgtgttatcaatcattagtttcggtttctggtaattaattcttctgggatg 
 
 
> Arabis_alpina 
AAATTCTCTAAAATCTCATTTTGCTAGTTGTTTTTTGTTTGCTTGATTTCTAGTTTTGTTATGGAGTCTTTC 
TTTCTTTATTTACTATCATTAGTTGTTTAATTTTTTTAACTTAGTTTATGGTTTTTGAGTCTTTGATTTTAT 
GTAGTTCGCGTTATTTAGAGTTTTTGTTCCGAAAGATTATGATCTCTTCTTAATAATTTTTTATTAGCCGAT 
TAGCATTTTTTAGAAATCTGAGTGAAATACTTGAATTTCAGATTTTATATGCATTTGATACAAAAAAGGGAT 
AATAGTTTCTGATTTTTTTTATAAGAAAAATCTTTATTGAAACTGGATTTATGAATGACCAAATGCCCACAA 
CTCTACTTGAAACTGAAGTTGTTTGTAGTATCAACAACAAGAAGCTTTGTATTGTGGTTGCAGTAGAGTAAG 
ATATTCACAACAGTAATGAATTTATTCGGATGTGTCCTACAAATAATTTGGTGCTTGTACAATTCATGGTTA 
ATTTCTGTTATACCACAGATACATTTTTGTTTTGTTTTGTTTTGTGTCTGTTGAATTTGCTAACATAGAATT 
ATGTTTTTATAATTGGAAATAAGTAATTCAATGATTATAACATTCATTTCGTGATATGACGTTGTTTAAAAT 
GGTTTATGTTGATGGAATATACTCTCAATTACAAGAAGAATCTAGTTCAGTTAATTTATTCGGAAATCACAT 
TACACATAAAATAATAACGTGGGATGATACATGATTGATGTTTGTGGAAGATATTATGAAAAGCCAACATCA 
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GTGCTTCTAATTTGGAATTGACCATACTTTTAATTAGCAAATTAAAAAAATGATTGAATTAAAGAAGAGAGT 
GAGTGGGGTTGATACTTGTCAGTGTCACCGTCCAAAATGTGGCTGACCCTTTCTCATTGGTGCGACACTAGC 
CGACCTTTGCCTGCCTCATCATTTGTTGACTTTGGTCACCTTTTTTAAACTATTTTCTTGTCGTCATTTTA 
ATCAAACTTTTAAGCAATGTTCATTGTTTGGTTCTAGATTGTTCCATTTCATTTTATGTTTCTCTCTCTCTT 
TGACATATTAGTTTTAAACTTTACATTATAGTATTCAGTGTATTTTTTTAGTATTTTGAATTTTGATCCTTA 
CATCTATGTTGAGTTGAAATTGAAATGGAATACGTTACGGGATAATTTATGCAAACATTAGATGATCCGATG 
GTATAAGAAAACAACATTTCTTAATTTTATTTTATAAACCATTTAAAATTTGATGGTAATATATTGACAACA 
TTAGTACAAATCAGTGAATCACTACGTTATATATCATCGTCTAAACATAACTATATTCATCTATATTCAGTA 
GTATTTGCCACATTTGTAATTCATTGTTATATTAAAAGTATGGTCCAATGAGCCACTCAAGTTTGCTCCTAT 
TTTTTCTATAAAAAAAAAGTTTGCTCCTAATTTTGTTAAATATTTTTTTTTTTAAATAAATTTTAGAAGTTC 
CAAATTTTTAATCTATGAGTTCTTCCGGTATCTAAAATCAATTGTCGATAATAGTATGTTTATAACGTAGAT 
CATCATGTGTATAAAAGATTTAATAAAAAGAAAATTATGGGTATATCTTTCTTTTGAGAAAAAAATTATAGG 
TGCTGAATTAGTGGCTTTAAATATTTTCAAAAGCCAAGAGATTATAGTTCATGGTGTATTATATAGAATAAA 
AAAATGGAAGCAAAATATGTTTGGATCCACTATACTGTATTAAAGTAAAAAACTTGGTATCGAATATTTTAA 
TTTTTTCCAGCATAAATTTGTTCAATAGATAAAAGTGGTGGGTAGATTTATTCTAATATGGTAAATCTAAAA 
AAATGATTTACTTGATCCAACTTTATTATTCTATTATAACATACGAGTCACACCTGGTTATTTTTATTTATT 
TATGTAATTTCGTTTTAAATCTCTACGTTGCAAAATTAGTGGTCAATCGGAATTTGTATTTCTTTCTTATAT 
TAAATTGATTGATGTCACGGATCTGCCATCTGCCGTGAAAAAAGTTTATTGTATAAACTGAGTAATAATACA 
TGGAGAAAAATAATACTATCAATTAAAAGTTGAAAATGAAAGGGGTAATGAATATCTCGCTCACTATACCAC 
AATAGAATCAATTCATTGGAGTATAACTTAAACATATAATATATCCAACGAAATGTCTACCGTTTGAGAATA 
CCACTTTAAAAAAAAATATTAAAAATTCTTCACTATAGTTACACTTTAATAAAAAAAAAAATTGGTATTACA 
AAATAGTAAATTGTATATCTACAAATTTATGGAAATTTTTTTAAAATGTCACAAACGTTAAAAATCTAATGT 
AAACGTATTTCTATTAATTTGCATATTTATTAATTATTATATTATTTGGAGATCGAATCTCATATATTTTTT 
GGTAAACCGTTTAAAAAGTATTTTTTTTTTAAACGTCTGAATTTTTTTTTTTACAAATTAGGAAACTATTAC 
ATCGACGATTCTACGATGAGCATGTCTTCCGTCTTGATGTACACCACACCATACGCTTTTACCCTACTCCAA 
ATTGAAGATCTCCTGCAAACTTGTCTCCATTCATCTGCAAATATAATAAACTGCATATTCAAATATTCGAAC 
CCCAAATATTTTGGTGTAAAATTTTTATAGCCCTTAGTTAATCACTACGTCAACGGAGCTTCTAAGCTCCAC 
TAATTTTTGGGTGTTTATAAGAGATTTAAAAATAGAATGTTTTCCACTAAATTAGAAATGATTATAAGCCCA 
ATTACGTACGAATCTCCACGTATGGTCTGAGCCCATCCATACATGGGAGGCTCAAGGCTGGGAGCATGCATG 
ACCATGAAAAAGCCCATTCATCTTCAGACTCCAGCCATCTAAAGAGTGGACCCCACACACCACGAATCGTAT 
GGAGATCATTACAATAAATTGCTCGCATCTTATTGCGCCACGTCTTCCTTTAGGCGGAAGATCAACGTCCAT 
ATATCTCTTGCTCTACTTTCATTGGTCCACGTCATCGTGCTACTTGTTTATGTGGTAGACTAGACAAGTGGG 
AAAATTATAAAATATCTTAAAAGGAGCATGGGACCCATTTAGATATTTTTCTCAACGGGCTGTGTCCTCAAA 
AGCTGCCCGTTAATCCATATCCATCAAACGGCTTGAAACTCTTCCGGGTAGAAGCCCGAAAACTTTGTAAAG 
GAATTTGTGTGTAGGACTCACTTATCACTGAATCAACGGTCGAGAGTTGAAGGTGTACGTAACATCTCGTAG 
CATCTGAACGTGGCTCCTCACAAAATATCTTTGGACACACATGTCACTAGTTCTCGTAAACTAATTAACTAA 
TCAGGCAATCACATGAGAGCTTGTAGTTAAATAAATTAATAAATGGAAATAATACAATCATTCATGACCAAA 
CAAAGTAACAAACCTTTAAAAATTCCGTGATTAGTTTATTCATATTCTTTCCCAATACTACCGAATTTTTGT 
GTAAACCAGAATTTAAAATTAGGTTGTGTGATATTTTTTCTTTTTTTTTGTCATAGGTTTTGTGATATTTCT 
GTGGCTAAATTCTGTAATGAAAAATTGAATTATTTAACTATCAAAAATAAATCTGTTTATATATATATATGG 
CATATAGTCTAACACATTGTGCAAATTGATTTGATCGTGCAATAGTAATTTTAAATCCCATATAGTCTAATA 
CTTTGTGTAATCTAATGGTAAATACCACTAGATGTCGTCGTATGGTAGTGGTTAAGCGCAAATGTTGGTTTT 
GTTGTGCTCCTATTTCAAATCCCCGGTGGGAAGGATGTTTTACGCCATGTTATAAGATATTAGCAAAAAATA 
ATCCCGAGCTTTGGGAAAGATTAAGGCCAACTCCTCCTAGTTATCAAAAAAAAAAACATAATGGTAAATAAT 
TTGTTAAAAAACATAATTTGTTAAAAAAAACGTAAAATTTTACTTTTGTAAAATTCAATTTTCAGGCACAGA 
CAATTATATTATGAGATGAATAATAGAACTTATTGATAAATATGTTTTTCCGCTAAGCATGATCTAATATCG 
AAACTAAATCAACTCTACTAGACTTAGAATATTAGTATACGTCTTTGGAGTCGTTGCTAGTGGCGAACCTAT 
ATCACAAGTAGATGATACATTTGTCCATCATAATTTATTATTTTTCCCTTGAGTTTTCTTTAAGCAATTAGT 
TGAATACCTCCGTTTGGATCACTAAAAAATTACTACTAATATATATATGAATAACATTTTAAGAAGTTAAAA 
CATAGTAATTTTAACCATACATTATATAAAAAAAAACATATCAATCCACTTATTTGCCTGTATGCGAGTGA 
GAGGATGATGATGGTATGACCCATGGATGGTTGATGGATGATGGATGATGGATGATGGATGATGGATGGTAT 
GAGCCGGGGGCATAAAGGTCGTGGCAAGTGCAGAAAATATCGATGCCACGTCAGCGGAAATCTTAAACCGAG 
TGGAGAAGCCTCCAAATCTCTTTCTCTTCTCTCTCTCTCCCAACGCCACAATTTCACGACTTGTATCCTCTC 
CACAATCATTTTTTTTCTCTTTTTTTCACTCGCCGACTTTTATCTCTCCAAAATATCCAACCACATACAAGA 
GATTATTCTTCATACAGGTCTTGTTCTTGTTCTTGTTCTTGTTCTTGTTTTGGTAGATTCTCAGATAAGATT 
TGTTGTGTTGATTTCACATCTCGCTGATTTGAGAGTTTTTTTCTTATCTACAGGAAGGGAGACGAATATCAG 
TTTTACAATCCATCTACACTAGTTTTGATAGAGTGATTCCTTTTTAGGAACCAGATTCGATTTTACTGTACA 
GAGTGTTGTTGGTAGATCAAACGACTAATCTGAGGTTTTATTGTATAGTGTTGTGTTCTTGACGGCAAATGT 
TAAACTACGACCCGTATTGATTCCAGATCAAAGGGTTTAGGGATTTTTTTCTTTTGTTGGTGTTAGTCTGTA 
ACCATTTCTAGTTAGTTTAGTTAGTTTCTGTTTTTTATTTGGATG 
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Sequence of 5 conserved blocks in the GI promoter of A.thaliana 
 
 
>Block_1 
TGTGGGATGATGATGGTTATATGGTAATGGCGCATAAAGGTGGTGGCAAAGGCAAGGAAATATCGATGACAC
GTAAGCAGACGGGAAATCTTAAACCGAGTGGAGAAGCCTCCAAATCTCTTTTTTCTCTCTCTCTCTCCTAAGGC
CACCACAATCTCTTCTTC 
 
 
>Block_2 
TAAAATTACAATTTAGCCCAGTTACATAACTCCACGTAAGGTTTGAGCCCATCACATCACATGGTACATGACCA
AAGCCCAGTTATGTTACCATGGAGTATTCTTCAGACAAGAGCCATCCAGACAGAAGTGGACCACACAATCACG
AATCGTATGGAGATCATTACAATATATTGCTCACATCTTATTGCGCCACGTCTCTTATTTGGCGAGTGATCAAC
GTCCACAGATCTCTTGCTCCACTCTGATTGGTACACGTCATCATTTTATTGTGCTACTTGTTTATGTGGTACAGT
AGAGACAAGTGGTAAGATTTTAAAATATCTTAAAAGATGTGTGAGGCCCATTTAGATATTTTCTCAACGGGCTG
TTCCTCAAAAGCTGCCCGTTTATCTACAACCATCGAACGGCTCGAAACTATTCTGGGCTAGCTGCCCGAAATCT
CTTAAAGGAATTTGTTGAGTGGGCTTGAATCAACGGTGGATAATTCGAAGGTGTACGTAACATCTCGTAGCATC
TGAACTTAGCTCCCCTCAAAATATCTGTGGACATATGTCACTAGCTTTTTTTTTGTGTAATGAAACTATTAATTA
ATTAGGCAATCACATGAGAGATGTTATATACTTAAATTAATAACTCAATAATACAATCATGACCACCAAACCTT
GAAATAAAATAATCTCTCTGATTACTTGTACAAATTCTTTACCAATATATG 
 
 
>Block_3 
GAGCTTAGTTTCGCGTTGCAAAGATGTTCATTTGATTTTTTTTTTTTTTTTTCCATTTGATTTTTCTTATACTAAAT
TGATTGATGTCACGGTCCTTCTGTGAAAAAAGTATATTGTACTGTATAAATTTATAATAGTCATACTTGAAGAT
AACTAATATCATTTTCTAAAGGTTTTGTTGACAATGAAATGGGTAATGATGAACATCTCGTTTGCTAAACCACA
AAAGAAATAATTCGTTGGACTATAACTTAAACTTATAATATATCAACTGAAATGCCTACAATTTGAGAATACGC
CTTTTCAAAAAGTTTTAGAATTTTATAAAAATTTCTCCACCATAATATTACTTTAATAAAAGCTTGTTATTAAAA
TGATATATTAACAAAAAAAAAAGAGGTAGGCAAAGTAGCTTTTATTAAAATTAATGTTTTCCCTAATTGGTAA
ATCATAAACCAAAAAATTGAGGTAATTCTTAATATATT 
 
 
 
>Block_4 
ATATGAAAATATTTTAAAAAGTCAACATCAGTGCTAATTTCAAATTGACCATACATTAGCACACAAGAAGACT
AACAAAAAAAATGAGTGAATAAAGAAGAGAGTGAGTGGGGTTGATACATGTCACCGTCCAAAATGTGTCTGA
CCCTTCTCATTGGAGCTACAAGAGCCGACCCTTTGCCTCATCATTTGTTGACTTCACTCTCCTTTTACATATTTA
AATTATAACTTGCTCATATTTCCATTCATTGTGTTCGGTTCTAGATTGTTCCATCCACT 
 
 
>Block_5 
TTGGAAGCAAGCGATTCAATGATTGTACCACTCATTTCATAATAGTGTTTGATATGACGTTAATTTGAATGGTT
TATGTTGATCGAAAATACTCTCAGTCACAACAAGAATCTAATTCGATTAATTTATTTGAAAAACATATGTTGGC
A 
 

 

Sequence of conserved Block 2 from 7 Brassicaceae 
 
>Arabidopsis_lyrata 
taaattacaattattttttagcccagttacataactgcacgtatggtttgagactttgagcccatcacattacatggtacatgaccaaagcccagttatgttaccatattattcagacaagagcc
gccatccagacagaagtggaccacacaatcaagaatcgtatggagagcattacaatatattgctcgcatcttattgtgccacgtctcttggtaggcgagagatcaacgtccacagatctct
tgctccactctggttggtacacgtcatcatatttatgttctacttgtttatgtagacgttcatgtagacaagtgggaagatttaaaaatatcttaaagcaagtgtgaggcccatttagatatttctc
aacgggctgttcctcaaaagctgcccgttgatcaaacggctccaaactgttctgggcaagctgcccgaaatcttataaaggaaattgtggagtgggactgaatcaacggtggagaattc
gagggtgtacgtaacaactcgtagtatctgaacttagcttctctcaaaatatctgtggacatatgtcactagtttttgtttgtgaaagtattaactaattaggcaatcacatgagaggttgatata
gtaaaatacaatcatgaccacaaaacttttaaataaataatctctctgattacttctgcaaattctttaccaatatttg 
 
>Brassica rapa 
TAAAATGGCAAATATTTTCAGCCCAGTTACAAGTCTCCACGTATGGTTTAGAGCCCATCGCATACATATAGAAG
AGCATGACCATGAAAAGCCCACAGTTATGTTCCATGTTCAGACACCAACCTGCCAGCCATCCACCAGAGTGTG
GACCCCACACCCACGAATCGTATGGTAGATCACTACAATATATTGCTGGCATCCTGTTGCGCCACGTCGTCGTT
AGGAGGAAGATCAACGTCCATATATCTCTTGCGCCTCTCTCATTGGTACACATCGTTTTGTTATATTTCAACTTG
TTTATGTGGTAGAGTGGACAAGTGGGAAGAAGAAGATAAATATCTAAAAAGAGTGTGGGCCTTATGTGTAGTC
TTGAGATATTTTCTCAACGGGCTGTCTCCACGAAAAGCTGCCCCGTTAATCAATACACACCATCAGACGGCTCG
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AATCTCTTCAGGTCAAGCTGCCCGAAAACTTTGCCGAGGAATTTGTGTGGGACTCACTCACCACTGAAATCAAC
GGCGGAAATTTCGAAGGTGTACGTAACACTGCGTAGCATCTGAATATAGCTCCTCTGAAAATATCTAGGGACA
CATGTCACTTAGCTTTGTAAGAAAAGCAATTAACTAATCACATGACAGAGCTTATAGTTAAACTAATAAAAAG
GAGGAAATAATACAATCATGACCACCTTTAAATAATGTAAGGAAATAATACAATCATGACCACCTTTAAATAA
TGTA 
 
>Capsella rubella 
AATTATTGTAATTGAGTTATTTTCAGTCCAGTTATGCAGCTCCACGTATGGTTTGAGCCCATGACATTAACATG
GTTACATGACCATGAAAAAGGCCCAGTTATGTTCACCATATTCAGAGTTTCAGACACAGACACCAGCCAAGCG
ATCCAGACAGAACACACAAGTGGACAGCACCAATCACGAATCGTATGGAGATCTGAATACAATATATTGCTCG
CATCTTATTGCGCCACGTCTGTTTGTTTTTTAAGGCGCAAGATCAACGTCCATAGATCTCTTGCTCCACTCTGAT
TGGTACACGTCACCTCGGTTATGTGGTATAGAGTAGTAGACAAGTGGGAGAAAGATTAAATTAATATCTTAAA
GGGAAATTGTGAGGCCCATTTAGATATTTTCTCAACGGGCTGATCTCAAAAGCTGCCCGGTTTATTTTACAGCC
ATCCGACGGCTCAAAACTGTTCCGGGAAAGCTGCCCGAAACTTTTTAAAGGAATTTTATAGGTGGCACTCACTG
ATGAGTGAATCGACGGCGGAAAAATTCGAAGGTGTACCCAACATCTCGTAGCATCTGAACAAAGCTCCTCCCA
AAATATCTGTGGACACATGTCATGTCACTAGTTTTTGTTTGGGCGAAAATATTAATTAAGTAGGCAATCACATG
AGAGGGTTATATAGTTAAATTAATAAAAATAGGAGAATAATACAATCATGACCATACCAAACCTTTAAAAATA
AATAATCTCTGCTTACTTCAACAAATTCTTTACCAAATATTT 
 
>Diplotaxis erucoides 
TAAAATGGAAATAATTTTCAGCCCAGTTACAAGTCTCCACGTATAGAGCCCATCCCATATATATGCATGACCAT
GAAAAGCCCACAGTTATGTTCTATGTTCAGACACCAACCTGCCAGCCATCCACCAGAGTGTGGACCCCACACA
CCACGAATCGTATGGTAGATCGCTACGATATATTGCTGGCATCCTGTTGCGCCACGTCTTCGTTAGGAGGAAGA
TCAACGCCCATATATCTCTTGCGCCTCTCTCATTGGTACACATCGTTTTGTTATATATTCAACTTGTTTATGTGGT
GGAGTGGACAAGTGGGAAGAAGATGATAAATATCTAAAAAGAGTGTGGGTCACAGTTTAGGCTTGAGATATTT
TCACAACGGGCTGTCTCCACGAAAAGCTGCCTCCTTAACCGATACCCACCATCAGACGGCTCGAATCTCTTCGG
GTCAAGCTGCCCGAAAAACTTTGTTGAGGAATTTGTGTGGGACTCACCCACCACTGAGATCAACGGAGGAAAT
TTCGAAGGTGCACGTAACACATCGTAGCATCTGAACGTAGCTCCTTCGAAAATATCTAGGGACACATGTCACTT
TGCTTTGTAAGAAAAGTAATTAACTAATCACATGACAGAGTTTAGTGTTATTAAACTAATAAAAAGGAGGTAA
TAATACAATCATGACCCACCTGTAAATAACAGTATGTTATTAACGGGGAAGAGTTTATTTAACCGATCTCA 
 
>Sinapis alba 
TAATACTAAAATACGATTATTTTCAGCCCAGTAACATGTCTCCACGTATGGTTTGAGCCCATAGCATACACATG
GAACATGACCATGAAAAGCCCAGTTATGTGTCCATCTCCAGACACCAGCCATCGACAGAAGTGGACCACACAA
TCACGAATCGTATGGTGATTACTACAATATAATGCTCGCATCTTATTGCGCCACGTCTGTTGTTTGGCGGAAGA
TCAACGTCCATATATCTTATGCTCCATTATGATTGGTACACGTCATCTTGTTATGTTCTACTTGTTTATGTGGTG
GCGTAGACAAGTGGGAAGAAGAAAATATCTTTAAAGGAAGCCTTGGACCCATTTAGATATTTTGAACGGGCTG
GTTCTTCAAAAGCTGCCCGTTGATCTATACCCATCATCAAGACGGGTCTATACTCTTCCGGGCAAAGCTGCCCG
AAGTTTTTTAAAAGAATTTTGTAGGTGGGACTCACTCAACACTGAATCAACGGTGGAAAAATTCGAGGGTGTA
CGTAACACCTCGTAGCATCTGAACGTAGCTCCTCCCAAAATATCTTCGGACACATGTCACTAGTTTCGTAAACT
ATTAACTTAAATCAGAGAATCACATGAGAGACCATATAGTTTAAATTAATTAAAAGGAAATTATGCAATCATG
GACCAACAAACTTTTAAATAATGATCTGTAAGGTTAGCTATACAAAATTCTTTACCAATATTAC 
 
>Turritis glabra 
TATTATTACAGTTATTTTCAGCCCAGTTACATAACTCCACGTATGGTTTGAGCCCATCACATTAACATGGTGCAT
ACCATAGCCCAGTGATGTAACCATATTCAGACACCAGCCATCCAGACAGAAGTAGACTCCGCAAACACGAATC
GTATGGAGATCACTACAATATATTGCTCGCATCTTATTGCGCCACGTCTGTTGTTGGGAGGAAGATCAACGTCC
ATAGATCTCTTGCTCCACTCTGATTGGTACACGTCATCTTGGTTATGTTTTACTTGTTTATGTGGTAGAGTGGCC
AAGTGGGAGGATTATAAAATATCTTAAAGCAAGTGTGAGGCCCATTTTAGATATTTTCTCAACGGGCTGTTCCT
CAAAAGCTGCCCGTTAATCTACAGCCATCGAACGGTTCGAAACTGTTCTGGGCAAGCTGCCCGAAACTTTTTAA
GGGAATTTGTGGGTGGGACTCACTCGTAACTGAATCGACGGTGGAAGATTTGAGGGTGTACGTAACACCTCAT
AGCATCTGAACGTATCTCCTCCCAAAATATCTGTGGACACACGTCACTAGTTCTTTGTGAAACTATTAAGTTAT
TAGGCAATCACATGAGAGGGGTTATATTGTTAAATAAATAAAAAGGAAATAATACAATCATGACCACACCAAA
CCTTTAAAAATATATAATCTCTGATTACCTCAACAAATTCTTTACCAAATATTG 
 
>Arabis alpina 
CTAAATTAGAAATGATTATAAGCCCAATTACGTACGAATCTCCACGTATGGTCTGAGCCCATCCATACATGGGA
GGCTCAAGGCTGGGAGCATGCATGACCATGAAAAAGCCCATTCATCTTCAGACTCCAGCCATCTAAAGAGTGG
ACCCCACACACCACGAATCGTATGGAGATCATTACAATAAATTGCTCGCATCTTATTGCGCCACGTCTTCCTTT
AGGCGGAAGATCAACGTCCATATATCTCTTGCTCTACTTTCATTGGTCCACGTCATCGTGCTACTTGTTTATGTG
GTAGACTAGACAAGTGGGAAAATTATAAAATATCTTAAAAGGAGCATGGGACCCATTTAGATATTTTTCTCAA
CGGGCTGTGTCCTCAAAAGCTGCCCGTTAATCCATATCCATCAAACGGCTTGAAACTCTTCCGGGTAGAAGCCC
GAAAACTTTGTAAAGGAATTTGTGTGTAGGACTCACTTATCACTGAATCAACGGTCGAGAGTTGAAGGTGTAC
GTAACATCTCGTAGCATCTGAACGTGGCTCCTCACAAAATATCTTTGGACACACATGTCACTAGTTCTCGTAAA
CTAATTAACTAATCAGGCAATCACATGAGAGCTTGTAGTTAAATAAATTAATAAATGGAAATAATACAATCAT
TCATGACCAAACAAAGTAACAAACCTTTAAAAATTCCGTGATTAGTTTATTCATATTCTTTCCCAATACTAC 
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