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Abstract

Actinide- and Lanthanide based compounds are often considered as heavy
Fermion (HF) systems. The essential ingredient for these systems is a localized
d- or f-shell electron per lattice site which hybridizes with a non-interacting
conduction band of p- or d-shell electrons. For temperatures below the so
called coherence temperature Tc, the localized electrons stop to act like mag-
netic scatterers known from the Kondo effect. There the conduction band
electrons screen the local magnetic moments coherently. As a main effect the
conduction electrons build a Fermi liquid (FL) of quasiparticles with strongly
enhanced masses which exceed 10-1000 times the mass of the original electrons.
These enhancements can be seen experimentally in an increased heat capacity
coefficient and Pauli susceptibility.
In this work we employ the periodic Anderson model (PAM) to describe the

paramagnetic phase of the heavy Fermion compounds. To solve the compli-
cated many body problem the dynamical mean-field theory is adopted with
the numerical renormalization group technique as impurity solver.
We find that for low conduction band fillings Tc decreases drastically, which is

in accordance with the exhaustion effect predicted by Nozières [5]. Additionally
we find, that the form of the free conduction band density of states is decisive to
obtain a FL or a Mott insulating (MI) phase for strongly depleted conduction
band fillings.
Furthermore we investigate the PAM on a bipartite lattice, the coherence

temperatures for each sublattice and especially the case of vanishing hybridiza-
tion for one sublattice. In the latter case the system resembles a conduction
band with only half the localized moment sites coupled to it. Our results
show that it depends strongly on the chosen parameters if there is only one
scale for the whole lattice or two distinct scales for each sublattice. Especially
decoupling one sublattice leads to two separated scales.
In the last part the attention is focused on the two-impurity Anderson model

and its solution via the DMFT method. We investigate the Anderson model
and compare results to direct NRG calculations. Importantly, the two-impurity
DMFT method can be easier extended to multi-impurity systems than the
NRG on its own. This might lead to a method to efficiently examine multi-
impurity systems.





Kurzzusammenfassung

Materialien, die auf Elementen der Actinoide und Lanthanoide basieren, be-
zeichnet man häufig als schwere Fermionen (HF) Systeme. Im wesentlichen
sind dafür die in einem dichten Gitter angeordneten lokalisierten d- oder f-
Schalen Elektronen verantwortlich, welche mit einem wechselwirkungsfreien
Leitungsband aus p- oder d-Schalen Elektronen hybridisieren. Unterhalb einer
bestimmten Temperatur, der sogenannten Kohärenztemperatur Tc, hören die
lokalisierten Elektronen auf sich wie magnetische Streuquellen zu verhalten,
ähnlich wie man es vom Kondo Effekt her kennt. Hier fangen die Leitungs-
bandelektronen an die lokalen magnetischen Momente kohärent abzuschirmen.
Einer der wesentlichsten folgen daraus ist, dass die Leitungsbandelektronen ei-
ne Fermi Flüssigkeit (FL) aus Quasiteilchen mit stark erhöhten Massen bilden,
welche das 10-1000-fache der Elektronenmasse übersteigen können. Experi-
mentell kann man diese erhöhten Quasiteilchenmassen an einem vergrößerten
Koeffizienten der Wärmekapazität oder einer erhöhten Pauli Suszeptibilität
nachweisen.
Wir verwenden das periodische Anderson Modell (PAM) um die paramagne-

tische Phase von schweren Fermionenverbindungen zu beschreiben. Um dieses
komplexe Vielteilchenproblem zu lösen setzen wir die dynamische Mean-Field
Theorie (DMFT) ein, wobei die numerische Renormierungsgruppenmethode
zum lösen des dabei entstehenden Störstellenproblems genutzt wird.
Wir werden sehen das für niedrige Leitungsbandfüllungen Tc drastisch sinkt,

was mit dem sogenannten Exhaustion-Effekt im Einklang steht, der von No-
zières [5] geprägt wurde. Außerdem finden wir, dass die funktionale Form der
Zustandsdichte des freien Leitungsbandes eine entscheidende Rolle dabei spielt
ob wir eine FL oder eine Mott-Isolator (MI) Phase für ein stark entleertes Lei-
tungsband finden.
Des weiteren untersuchen wir das PAM auf einem bipartiten Gitter, die Ko-

härenztemperaturen für die einzelnen Untergitter und insbesondere den Fall
einer verschwindenden Hybridisierung auf einem der Untergitter. Im letzte-
ren Fall entspricht das System einem Leitungsband, an welchem nur noch die
Hälfte der lokalisierten Momente koppeln. Unsere Ergebnisse zeigen, dass es
stark von der Wahl der Parameter abhängt, ob nur eine Energieskala für das
gesamte System existiert oder ob zwei verschiedene Skalen für die jeweiligen
Untergitter existieren. Insbesondere das Entkoppeln eines Untergitters führt



zu einer Trennung der Energieskalen.
Im letzten Kapitel untersuchen wir das Zwei-Impurity Anderson Modell mit-

hilfe der DMFT. Wir vergleichen diese Ergebnisse mit direkten Rechnungen der
NRG. Hierbei ist von besonderer Bedeutung, dass sich die DMFT leichter auf
Multi-Impurity Systeme ausdehnen lässt als die NRG. Dies führt womöglich
zu einer Methode mit der sich Mulit-Impurity Systeme effizient untersuchen
lassen.
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1. Introduction

One of the most exciting problems for Condensed matter physicists for more
than 30 years has been to understand the rich physics of the heavy Fermion
(HF) compounds. They are a paradigm of strongly correlated systems and
show a plethora of different low temperature phases, such as paramagnetic
heavy Fermi liquid- or non-Fermi liquid phases, different kinds of long-range
magnetic order, unconventional superconductivity or coexistent magnetism
and superconductivity, which goes beyond the BCS theory of superconduc-
tivity.

The interest in HF compounds began in 1975, when Andres, Graebner and
Ott [1] discovered enormous magnitudes of the specific heat in CeAl3. This
large specific heat coefficient stems from a huge quasiparticle mass which is
up to 1000 times the mass of the bare electrons. Therefore the term “heavy
Fermions” was coined by Steglich, Aarts et al. [2] in 1976. It was realized that
the HF compounds usually consist of actinide- and lanthanide based com-
pounds with partially filled 4f- or 5f-shells. The localized spin-1

2
electrons of

the inner f-shell hybridize with the electrons of the conduction band and thus
build a dense lattice version of the single impurity Anderson model (SIAM)
which shows for a half filled f-band and a localized spin the well known Kondo
effect [3, 4]. The local moment develops due to the strong Coulomb interaction
between two f-electrons at the same impurity site. Therefore materials which
show the Kondo effect, and thus also the HF compounds, belong to the class
of strongly correlated electron systems.

The Kondo effect describes the physics of a single localized spin-1
2
moment

coupled to a conduction band. For high temperatures the spin is free and we
find a Curie magnetic susceptibility, whereas for low temperatures the spin gets
screened by the conduction band electrons and just acts as a spinless scattering
center. The crossover from the free local moment state at high temperatures
to the screened state at much lower temperatures is continuous and occurs at a
characteristic, exponentially small energy scale TK , the so called Kondo scale.
Below TK the screened moment acts as a strong potential scatterer and thus

1



1. Introduction

gives rise to an increased resistivity.

In the case of the HF compounds, the local moments are dense but can still
be coherently screened at a temperature much lower than the Kondo temper-
ature, the so called coherence scale Tc. The metallic behaviour below Tc can
be described within the Fermi liquid (FL) theory with effective quasiparticles
which have the same behaviour and quantum numbers as the original electrons
but with a strongly increased quasiparticle mass. But Nozières [5] raised the
question whether the local moments can still be screened in the case of low
conduction band filling, especially in the case where the number of f-band elec-
trons is much larger than the number of conduction band electrons, because
then there might be not enough conduction band electrons to screen all local
moments. This is known as the exhaustion problem. Nozières argued [5, 6]
then that the local moments can still be screened by the conduction electron
spins but with a reduced coherence scale for low fillings. His phenomenological
estimate relates the coherence scale with the Kondo scale, Tc ∝ T 2

k /ρ(0), with
ρ(0) the bare density of states at the Fermi energy.

The thesis is structured as follows:
The next chapter, Chap. 2, introduces impurity physics, the single impu-
rity Anderson model (SIAM) and the numerical renormalization group (NRG)
method as a numerically exact tool to solve the SIAM.

In Chap. 3 first the periodic Anderson model (PAM) is introduced, which is
assumed to capture the main physics of the paramagnetic heavy Fermi liquid
phase of the HF materials. Then the dynamical mean-field theory (DMFT) is
introduced, which is used to solve this model in the paramagnetic phase.

In Chap. 4 the Mott metal-insulator transition and its possible connection to
the exhaustion effect in the PAM is studied within the DMFT. We investigate
the coherence scale upon vanishing conduction band filling while the filling of
the f-orbitals is kept fix. We also inspect the influence of the bare density of
states on the coherence scale.

Chap. 5 is concerned about the PAM with a bipartite hypercubic lattice
structure. The main interest is the development of the coherence scale upon
reducing the hybridization between the local magnetic moments and the con-
duction band electrons on one of the sublattices. In the extreme case of a
vanishing hybridization the system represents a diluted system with half the
number of magnetic ions. This represents the first step in diluting the system
until it becomes a SIAM and is associated with the question how the coherence
scale evolves from the PAM to the SIAM.

2



In the last part, Chap. 6, our focus turns, in principle, to systems with
multiple magnetic moments, which contrasts the idea of the previous chapter.
Namely we investigate the development of the Kondo scale upon increasing the
number of impurities in the system. The idea is to perform DMFT calculations
for n-impurity Anderson models. The DMFT calculations will be compared to
exact NRG results and it will be discussed if it is a proper approximation to
treat multi-impurity systems within DMFT.
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2. Kondo effect

2.1. Metals at extremely low temperatures

In the beginning of the last century most physicists where convinced that for
vanishing temperatures metals show a monotonically decreasing resistivity be-
cause it is dominated by phonon scattering which rapidly decreases for low
temperatures (∝ T 5). But in 1934 de Haas et al. [11] found a resistance mini-
mum in gold, which could not be explained for the following 30 years (Fig. 2.1
a)). It was realized that 3d transition metal residues such as Fe are respon-
sible for the experimental results, since the temperature where the minimum
occurs does change upon varying the impurity concentration with Tmin ∝ n

1
5
imp

and a resistance minimum is accompanied by a Curie-Weiß behaviour in the
susceptibility (Fig. 2.1 b)). Thus the term impurity physics emerged.

2.2. Single impurity Anderson model

In 1961 Anderson [12] put forward the Anderson impurity model (also known
as single impurity Anderson model (SIAM)) where he modeled the gold with
a non-interacting conduction band and the 3d transition metal ions as inde-
pendent magnetic impurities. It is assumed that the electrons in the conduc-
tion band have extended wave functions such that their Coulomb interaction
is screened and can be absorbed into an effective dispersion. The resulting
quasiparticles behave like electrons with short range interactions and the in-
teractions are neglected. The d-electrons of the impurities (in lanthanide and
actinide based compounds the f-electrons) are closer to the nucleus, have short
ranged wave functions and thus the Coulomb interaction plays a crucial role.
In second quantized form the Hamiltonian Anderson considered is

H =
∑
k,σ

(
εk − µ

)
c†kσckσ +

∑
σ

εfnfσ + Unf↑n
f
↓ +

∑
kσ

(
Vkf

†
σckσ + V ∗k c

†
kσfσ

)
,

(2.1)
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2. Kondo effect

Figure 2.1.: Figure a) shows the resistivity in gold as a function of temperature with
an unpredicted upturn for low temperatures measured by de Haas et al. [11]. The
two curves correspond to two different resistances deriving from a small deformation
in one of the wires. Figure b) depicts a Curie-Weiß behaviour for the susceptibility
of iron alloyed copper in ppm as indicated at the curves. The inset shows small
deviations at very low temperatures. Measured by Hurd [19].

where f (†)
σ are the annihilation (creation) operators for an electron at the im-

purity site with spin σ, nfσ = f †σfσ is the particle number operator for the
impurity, c(†)

kσ the annihilation (creation) operator for an electron with mo-
mentum k and spin σ in the conduction band. εk is the dispersion and µ

the chemical potential of the conduction band; εf the on-site energy for an
electron on the impurity site and Vk is the tunneling matrix element between
the impurity and the conduction band which allows electron hopping to and
from the impurity site. U is the Coulomb interaction energetically penalizing
double occupancy of the impurity site.

For zero or double occupancy the impurity site contributes just as potential
scattering center which leads to a finite and essentially temperature indepen-
dent low temperature conductivity. This effect can not explain the resistance
minimum in Fig. 2.1. The more important case is where the impurity is singly
occupied, such that it acts as a magnetic moment. To expose the low en-
ergy features in the spinful case it is useful to write down an effective theory.
This can be achieved by the Schrieffer-Wolf (SW) [13] transformation, which
projects the Anderson Hamiltonian onto a Hamiltonian, which is singly occu-
pied. Excitations into empty or doubly occupied states are treated in second

6



2.2. Single impurity Anderson model

order perturbation theory in the hybridization, so called virtual excitations.
More detailed information can be found in [14]. For half filling, i.e. εf = −U

2
,

single occupancy |εk| � |εF − εf | and |εk| � |εF − εf −U | and assuming
the hybridization to be momentum independent and real, i.e. Vk = V , the
SIAM reduces to the famous Kondo model

H =
∑
k,σ

εkc
†
kσckσ + J S · s(r = 0), (2.2)

with

εF the Fermi energy,

J =
V 2

U
,

S =
∑
σσ′

f †σσσσ′fσ′ and

s(r = 0) =
1

2

∑
kk′σσ′

c†kσσσσ′ck′σ′ .

Here σµ,ν are the components of the Pauli matrices. One important fact is
that the virtual excitations lead to an effective antiferromagnetic coupling J .
Kondo [4] assumed that the impurity concentration is small enough such that

the impurities have no influence on each other and extended the calculation of
the resistivity for the Kondo model to third order perturbation theory in J .
He found the resistivity increasing logarithmically for vanishing temperature

Rmag(T ) ∝ nimpJ
2

[
1 + 2Jρ0(εF ) ln

(
D

kBT

)]
,

where ρ0(εF ) is the conduction band density of states at the Fermi energy
εF , nimp the impurity concentration, D the bandwidth and kB the Boltzmann
constant.
Combining the phonon scattering effect to the resistivity Rphonon ∝ T 5

and the scattering effect from the magnetic impurity Rmag(T ) = nimpR0 +

nimpR1 ln
(

D
kBT

)
, Kondo was able to explain the resistance minimum in sys-

tems with small amounts of impurities. Although these results explain the
resistance minimum very well, it is not consistent with experiments for very
low temperatures where a saturation of the resistance was found. In contrast,
the theoretical result predicted a divergent resistivity for T → 0. Calculation
of thermodynamic properties as the susceptibility, entropy or specific heat re-
vealed that perturbation theory breaks down when the logarithm becomes of

7



2. Kondo effect

the order of one, i.e.

2Jρ0(εF ) ln

(
D

kBTK

)
≈ O(1)

⇒TK :=
D

kB
e
− 1

2Jρ0(εF ) , (2.3)

which defines the Kondo temperature TK . The unphysical divergences below
the Kondo temperature became known as the Kondo problem. Attempts to
incorporate higher order terms in perturbation theory could not solve this
issue.

There have been numerous attempts to overcome the problem with the log-
arithmic divergence. In the following we want to concentrate on the renor-
malization group and the numerical renormalization group method to solve
the Kondo problem. For a survey of methods being used to solve the Kondo
model or the SIAM see e.g. [14] and [15] chapter 2.3.

In the next section the renormalization group concept is discussed and within
this context the solution of the Kondo problem will be explained.

2.3. Concept of the Renormalization Group

technique

Here we want to introduce just the general idea of the renormalization group
(RG) concept. Later on we give a more profound introduction to the numerical
renormalization group technique, which is employed as impurity solver for the
dynamical mean-field theory introduced in Chap. 3.

Concept of the Renormalization Group

The renormalization group (RG) approach in condensed matter physics was
largely put forward by Wilson in the beginning of the 1970s [16].

The basic idea of the RG is easy to grasp but is mathematically involved.
E.g. for critical phenomena in thermodynamic systems one is usually inter-
ested in the systems behaviour on large length scales and in quantities no
longer depending on all the microscopic parameters. Large length scales mean
also long wavelength whereas the short range fluctuations are of no interest.
The goal is to incorporate the high energy states into an effective low energy
theory. Thus the idea is to define some cutoff parameter Λ > 1 and inte-
grate out the high energy degrees of freedom at the band edges [−D,−DΛ−1]

8



2.3. Concept of the Renormalization Group technique

and [DΛ−1, D] to determine an effective Hamiltonian depending on effective
parameters. Successive repetition of this procedure with the reduced energy
band keeps track of the influence of the high energy states on the low energy
properties of the model and produces an effective low energy Hamiltonian. In
more mathematical terms the RG is a mapping

RΛ{H(K)} = H(K′)

which maps a Hamiltonian, depending on parameters K = (K1, . . . , Kn), onto
an equivalent Hamiltonian with renormalized parameters K′ = (K ′1, . . . , K

′
n).

The index Λ determines the change in length scale from one RG step to the
next. Despite its name, the renormalization group mapping does not build a
group but a semi-group since there exists no inverse element, more precisely
due to the integration we lose the detailed information of the high energy
states.
A key concept of the RG is that of fixed points (FP), i.e. points K∗ which

are invariant under the RG flow

RΛ{H(K∗)} = H(K∗).

Except the case where one is exactly at a FP, each RG step changes the
couplings, i.e. repeated RG mapping will by definition lead to a flow of the
coupling constants. Depending on the flow in the vicinity of a fixed point they
can be classified in three categories:

1. Stable fixed points: Fixed points where all flows are directed towards
the FP. These FPs represent stable phases of matter, because when the
system is released in the vicinity of such a FP it will always flow to the
fixed point. E.g. the paramagnetic phase of a Heisenberg model at high
Temperatures.

2. Unstable fixed points: Fixed points where all flows are directed away.
These are ideal fixed points, which cannot be reached, i.e. zero temper-
ature FPs.

3. Marginal fixed points: FPs where there exist some couplings flowing
towards and others away from the fixed point. These FPs are related to
phase transitions and thus are the most important ones.

For further details on the general concept and explicit application of the renor-
malization group see e.g. [7] chapter 8 or [16, 17].

9



2. Kondo effect

LM

Ueff

D

Γ
eff

D

H

H H
SCFO

Figure 2.2.: RG flow of the coupling constants for the symmetric SIAM. With Γeff =

πV 2
effρ(εf ), HFO the free orbital fixed point (FP), HLM the local moment FP and

HSC the strong coupling FP. Figure from Krishna-murthy et al. [18].

RG results for the SIAM

Figure 2.2 shows the flow diagram for the symmetric SIAM calculated by
Krishna-murthy et al. [18]. Ueff and Γeff = πρ0(εF )V 2

eff are the effective
couplings, D is the band width of the conduction band and ρ0(εF ) is the bare
density of states of the conduction band at the Fermi energy εF . The flow
diagram shows three distinct fixed points:

HFO : At high energies the symmetric SIAM is close to the free orbital FP. In
this case the effective Coulomb interaction and hybridization are zero,
Ũ = Ṽ = 0, and the impurity is decoupled from the conduction electrons.
The symmetry of the model requires 2U+εf = 0→ εf = U = 0 such that
the impurity site is four-fold degenerate (|0〉, |↑〉, |↓〉, |↑↓〉) and shows a
local entropy of S = 2 ln(2).

HLM : Lowering the temperature starting out from high energies for U >

πV ρ0(εF ), the local moment FP is approached at intermediate tempera-
tures. This point corresponds to a SIAM with effective couplings Ṽ → 0

and Ũ →∞ and due to half filling the impurity site is thus occupied with
exactly one electron. This case realizes the Kondo model with a local
moment interacting with the bath only via virtual magnetic scattering

10



2.4. Numerical Renormalization Group

processes. A Shrieffer-Wolff transformation gives the effective coupling
J̃ =

4|Ṽ 2|
Ũ

. The spin at the impurity site can be |↑〉 or |↓〉, thus the local
entropy is given by S = ln(2).

HSC : At lowest temperatures, T � TK , the system always flows to the strong
coupling FP. In this case the effective couplings approach Ũ → 0 and
Ṽ → ∞. Due to the strong hybridization, or after a Shrieffer-Wolff
transformation due to a strong antiferromagnetic coupling J̃ , the spin at
the impurity induces a many body ’Kondo singlet’ state with the con-
duction electrons such that the local moment is effectively screened. The
Kondo singlet is associated with a cloud of conduction electrons which
screen the impurity, the ’Kondo screening cloud’. Since only electrons
within the range of kBTK around the Fermi energy can participate in
the local moment screening, the length scale associated with the Kondo
cloud is ξK = ~vF

kBTK
. Here vF is the Fermi velocity and kB the Boltzmann

constant. Given that a singlet state has evolved, the entropy at the im-
purity site is zero, S = ln(1) and the resulting non-magnetic singlet acts
as a potential scatterer. The potential scattering yields a finite resistivity
and a local Fermi-liquid which solves the Kondo problem. At this point
universality sets in since TK is the only relevant energy scale.

2.4. Numerical Renormalization Group

The numerical renormalization group (NRG) method was developed by Wilson
[16] in 1975 to calculate static quantities for the Kondo model, e.g. entropy
or magnetic susceptibility. In 1980 the NRG was extended to also incorporate
the SIAM by Krishna-murthy et al. [18, 20]. Later on physicists improved
the NRG method to calculate dynamic quantities as spectral functions, Green
functions, etc. at zero temperature [21, 22, 23] and also for finite temperatures
[24]. Literature for more recent developments of the NRG can be found in
the review article by Bulla et al. [25]. Its most important advantage is that
it is non-perturbative in all system parameters and it incorporates all energies
from the band edges down to exponentially small energies. But the price to
pay is that the calculations can only be performed numerically and it is very
demanding to include multi-orbital physics, multi-impurity physics or increase
the number of independent bath’s coupled to the impurities. It should also be
mentioned that due to the logarithmic discretization it is much more difficult

11



2. Kondo effect

to obtain accurate high temperature results than for low temperatures.

The general procedure of the NRG consists of four main steps:

1. Its starting point is a logarithmic discretization of the conduction band
to incorporate all energy scales. Assuming a bandwidth of 2W , a dis-
cretization parameter Λ > 1 is introduced, such that the band is di-
vided into 2n intervals of decreasing width

[
−Λ−nW,−Λ−(n+1)W

]
and[

Λ−(n+1)W,Λ−nW
]
.

2. The second step is to map the impurity Hamiltonian onto a semi-infinite
chain Hamiltonian with the first site represented by the impurity.

3. In the third step of the NRG the semi-infinite chain is diagonalized itera-
tively, i.e. the impurity coupled to the first site of the conduction band is
diagonalized, then the next site is coupled to the diagonalized system and
so on. Since the Hilbert space is growing exponentially, it is truncated
and only a certain number of lowest-lying many-particle states are kept.
This approximation is justified, because the logarithmic discretization of
the conduction band gives rise to an exponential fall off of the hopping
parameters along the semi-infinite chain and allows for a clear separation
of the energy scales.

4. In the last step the calculated eigenenergies and matrix elements are used
to determine static and dynamic properties of the impurity system.

Let us give an idea of how to work out the aforementioned steps. For more
information and further description we refer to the original work of Wilson and
Krishna-murthy et al. [16, 18, 20] or the review article by [25].

Logarithmic discretization

The Hamiltonian for a general impurity model has the form

H = Himp +Hbath +Hhyb,

where Himp describes the impurity degrees of freedom, Hbath a non-interacting
bath and Hhyb the coupling between the impurity and the bath. We will
consider the SIAM only (see Eq. 2.1) because it serves as impurity solver for

12



2.4. Numerical Renormalization Group

the DMFT,

Himp =
∑
σ

εff †σfσ + Uf †↑f↑f
†
↓f↓ ,

Hbath =
∑
k,σ

(
εk − µ

)
c†kσckσ and

Hhyb =
∑
k,σ

(
Vkf

†
σckσ + V ∗k c

†
kσfσ

)
.

Usually the hybridization Vk is assumed to be real valued and momentum
independent. For the NRG only the impurity physics is of interest, i.e. to
proceed, the bath degrees of freedom are integrated out. This leads to the
hybridization function

∆(ω) = π
∑
k

|Vk|2δ(ω − εk) = πV 2ρ(ω) ,

which gives a full description of the influence of the bath on the impurity
physics. Here ρ(ω) =

∑
k δ(ω − εk) is the bare density of states of the con-

duction band. For convenience, the band width is set to [−1, 1], i.e. W = 1.
Then, as already mentioned, the interval is divided logarithmically with a dis-
cretization parameter Λ > 1 into shrinking intervals

[
−Λ−n,−Λ−(n+1)

]
and[

Λ−(n+1),Λ−n
]
with n ∈ N, see Fig. 2.3 (a).

Discretization of the conduction band and the semi-infinite chain

For the mapping of the SIAM onto a semi-infinite chain it is useful to write
down an energy representation of the SIAM Hamiltonian,

H = Himp +
∑
σ

∫ 1

−1

dε g(ε)a†εσaεσ +
∑
σ

∫ 1

−1

dε h(ε)(f †σaεσ + a†εσfσ), (2.4)

where g(ε) and h(ε) are related by

∆(ω) = π
dε

dω
h[dε(ω)]2 and g[ε(ω)] = ω (2.5)

and a†εσ and aεσ are fermionic operators. The functions ε(ω) and h[ε(ω)] are
not unique but have to be chosen such that they fulfill Eq. 2.5 (see Bulla et
al. [26]).

Introducing a complete set of orthonormal functions in each interval n,

13



2. Kondo effect

−Λ−1 Λ−3 Λ−2 Λ−1−3−Λ−Λ−2 ... ω

Δ(ω)

ω
−1

−1 1

1

Δ(ω)

ε ε ε ε

t tV t0 1 2

0 1 2 3

b)

a)

c)

Figure 2.3.: The Figures illustrate the first steps of the NRG for the SIAM, where an
impurity, filled circle, is coupled to a continuous conduction band via the hybridiza-
tion function ∆(ω): a) logarithmic discretization of the band via a discretization
parameter Λ > 1, b) introduction of discrete states approximating the continuous
spectrum and c) mapping of the discretized spectrum onto a semi-infinite chain with
εn the on-site energies and tn are the hoppings of the corresponding tight-binding
model. Figure taken from [25].

ψ±np(ε), the conduction band operators can be rewritten as

aεσ =
∑
np

[
anpσψ

+
np(ε) + bnpσψ

−
np(ε)

]
with

ψ±np(ε) =

 1√
dn
e±iωnp ε, for xn+1 < ±ε < xn

0, else
,

xn = ±Λ−n, n ∈ N, dn = Λ−n(1− Λ−1), p ∈ Z and ωn = 2π/dn.

The Hermitian conjugate operator a†εσ is defined accordingly and the operators
anpσ, bnpσ, a

†
npσ, b

†
npσ also fulfill the fermionic commutation relations.

By rewriting the Hamilton operator for the SIAM with the new operators,
only the p = 0 terms are taken into account. This approximation is motivated
by

14



2.4. Numerical Renormalization Group

(i) the p 6= 0 states are only coupled indirectly to the impurity via the p = 0

state,

(ii) the coupling between the p = 0 and the p 6= 0 states is reduced by
1−Λ−1, such that in the limit Λ→ 1 the approximation can be assumed
as a lowest order perturbation.

The resulting Hamiltonian has the form

H = Himp +
∑
nσ

(
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

)
+

[
1√
π

∑
σ

f †σ
∑
n

(
γ+
n anσ + γ−n bnσ

)
+ h.c.

]
,

(2.6)

where the index for p = 0 has been skipped and ξ±n and γ±n are given in detail
in [25]. We achieved to represent the SIAM Hamiltonian in a discretized form
as depicted in Fig. 2.3 b).
To reduce oscillation effects in the thermodynamic expectation values, in-

troduced by the discretization procedure, Oliveira and Oliveira [27] proposed a
z averaging (or z-Trick). They supposed to use several discretization schemes
with xn = Λ−n+z, z ∈ [0, 1) and perform one NRG calculation for each z. The
NRG results are then averaged to minimize the oscillation effects. It is espe-
cially interesting for Λ� 1, because in that case the number of discretization
points is small and the artificial oscillation effects are stronger. Importantly,
the z averaging is not the same as the continuum limit Λ→ 1.
Campo and Oliveira [28] introduced a renormalization of the hybridization

function ∆(ω)

∆(ω)→ 1

2

Λ + 1

Λ− 1
ln(Λ)∆(ω) ,

because in the discretized model ∆(ω) is systematically underestimated.
As illustrated in Fig. 2.3 the next step is to perform a basis transformation

to tridiagonalize (2.6) to a tight-binding Hamiltonian on a semi-infinite chain.
The result is

HTD = Himp +

√
ξ0

π

∑
σ

(
f †σc0σ + c†0σfσ.

)
+

∞∑
σ,n=0

[
εnc
†
nσcnσ + tn

(
c†nσcn+1σ + c†n+1σcnσ.

)]
,

(2.7)

where ξ0, the hopping tn and on-site energies εn can be calculated numerically,
for details see [29]. For a symmetric hybridization function all εn are zero and
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2. Kondo effect

for an additionally constant ∆(ω) in the interval [−1, 1] the hoppings are

tn =
(1 + Λ−1) (1− Λ−n−1)

2
√

1− Λ−2n−1
√

1− Λ−2n−3
Λ−n/2,

which in the limit of large n reduces to

tn →
1

2

(
1 + Λ−1

)
Λ−n/2,

see again Wilson [16].
The exponentially decreasing hopping strength with increasing distance from

the impurity site is a general property of the NRG calculations and is important
for the iterative diagonalization.

Iterative diagonalization

Starting with

H0 = Λ−1/2

(
Himp +

∑
σ

ε0c
†
0σc0σ +

√
ξ0

π

∑
σ

(
f †σc0σ + h.c.

))
,

the Hamiltonian (2.7) can be defined iteratively via

HN+1 =
√

ΛHN + ΛN/2
∑
σ

εN+1c
†
N+1σcN+1σ

+ ΛN/2
∑
σ

tN

(
c†NσcN+1σ + c†N+1σcNσ

)
,

(2.8)

with the identity
HTD = lim

N→∞
HN .

Beginning with the impurity coupled to the first site of the chain, we di-
agonalize the four state system. Then we adopt the iterative diagonalization
scheme as depicted in Fig. 2.4:
We assume that we have a diagonal system HN , consisting of the impurity
coupled to N conduction band sites with basis |r〉. Then we add a further site
|s(N + 1)〉 along the chain and diagonalize the new system numerically. This
procedure is repeated iteratively.

Fig. 2.5 shows the development of the eigenenergies of the Hamiltonians
HN with increasing chain length N . In (a) we have the diagonal system with
discrete eigenenergies for HN . For convenience, the ground state is chosen to
be zero. Then (b) the energy levels are rescaled by

√
Λ according to equation

2.8. In the following (c) the next site of the chain is added and diagonalized.
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ε

V t0

0 ε

tN−1

N

H :N

V

ε0

t0 tN−1

εN

|r,s
N+1
: |r

N
|s (N+1)

ε0

V t0 tN−1

εN

tN

εN+1

HN+1:

Figure 2.4.: The figure illustrates the iterative diagonalization. Starting from Hamil-
tonian HN , it is diagonalized and the new basis is |r〉. The tensor product of |r〉
and the basis of the newly added site |s(N + 1)〉 build the basis for the next step
Hamiltonian HN . Figure taken from [25].

Since the Hilbert space grows by a factor of four in each step and we have
to diagonalize it numerically, a truncation scheme is needed (d), e.g. keeping
only a certain number of eigenstates or keeping only the states up to a certain
energy. The truncation is a valid approximation since each new site added to
the chain comes with a prefactor Λ−1/2 and can be seen as a small perturbation.
So on the one hand Λ must not be to small, because then one has to keep to
many eigenstates, on the other hand Λ must not be to large otherwise the
approximation that only the p = 0 states are kept becomes erroneous. At last
the ground state energy is again shifted to zero.
The whole procedure can be understood as a renormalization group trans-

formation R, i.e.

HN+1 = R(HN).

Example for an energy flow diagram

Fig. 2.6 shows the flow for the lowest-lying many-particle levels EN(r) for the
SIAM during the iterative diagonalization. The NRG program therefore was
provided by Priv.-Doz. Dr. Ralf Bulla. It keeps 500 states and uses 120 chain
sites for the iterative diagonalization. The parameters for a) are U = 0.001,
ε = −U/2, V = 0.004 and Λ = 2. Due to even-odd oscillations, which always
appear in fermionic finite-size systems, the flow is shown only for odd iterations.
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E
N+1

(r)E
N
(r) E

N
(r)

1/2
Λ

a)
after truncation

b) c) d)

0

Figure 2.5.: Steps for the iterative diagonalization. (a) Many-particle spectrum in
the N-th iteration, ground state set to zero, (b) rescaling of the spectrum Eq. 2.8, (c)
adding the next site of the chain and diagonalization yields the spectrum EN+1(r)

for next step, (d) truncation of the spectrum and shifting the ground state to zero
again. Figure taken from [25].

The flow diagram exhibits three fixed points. The first fixed point (FP) is the
free orbital FP for N . 10, the second FP between 15 . N . 40 is the
local moment FP, and the third FP above N ∼ 50 is the strong coupling FP.
Between these fixed points, i.e. 10 . N . 15 and 40 . N . 50, there is a
crossover region. Using that each iteration step is related to a temperature,
we can estimate the Kondo temperature TK ≈ WΛN̄/2 = ΛN̄/2 with N̄ ≈ 55.

Fig. 2.6 b) shows the flow of the same energy levels, but with different
parameters, U = 0.0001, ε = −U/2, V = 0.004 and Λ = 3. Here the diagram
shows again the free orbital fixed point for N . 10. Differently here is a single
but broad crossover region, 10 . N . 25, directly to the strong coupling FP.

These two figures illustrate the two cases where in a) the flow of the couplings
approximates the local moment FP before converging to the strong coupling
FP while in b) the SC FP is approached directly, compare to Fig. 2.2.

Physical properties

Using the fact, that each iteration step corresponds to a energy scale given by
T ∝ Λ−N/2 and assuming that enough energy states per iteration are kept, it
is possible to calculate thermodynamic quantities. For example the impurity
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Figure 2.6.: Flow diagram for some of the lowest-lying many-particle levels of the
SIAM for a) U = 0.001, ε = −U/2, V = 0.004 and Λ = 2 and b) U = 0.0001,
ε = −U/2, V = 0.004 and Λ = 2. Q is the quantum number for the total charge and
S for the total spin.

contribution to the entropy Stot(T ) can be calculated via

Simp(T ) = Stot(T )− S(0)
tot (T )

S(N)/kB = β
〈
H(N)

〉
+ lnZ(N) with the expectation value

〈. . . 〉(N) =
1

Z(N)

∑
Q,Sz ,r

e−βEN (Q,Sz ,r)
N 〈Q,Sz, r| . . . |Q,Sz, r〉N and

Z(N) =
∑
Q,Sz ,r

e−βEN (Q,Sz ,r) .

(2.9)

Stot(T ) is the entropy of the full system, S(0)
tot the entropy of the system without

impurity, N is the iteration and thus indicates the temperature via

kBTN = Λ−(N−1)/2/β̄ (2.10)

with the Boltzmann factor kB and β̄ usually chosen ∼ O(1). 〈. . . 〉(N) is the
expectation value and Z(N) the partition function.

Some quantities require the calculation of local matrix elements, for example

N 〈Q,Sz, r| f †σfσ |Q,Sz, r〉N , which is needed to calculate the occupancy of the
impurity level. These elements are calculated from the (N−1)st step using the
basis transformation from the iterative diagonalization and the specific initial
values for the matrix elements of the added sites.

It is also possible to calculate dynamical properties, e.g. the Green’s function
or (of special interest concerning the DMFT in the next section) the self energy.
E.g. the spectral function at temperature T , which gives the imaginary part of
the Green’s function, can be calculated in each iteration using the Lehmann
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representation

ANσ (ω, T ) = − 1

π
Im [GSIAM(ω, T )]

=
1

ZN(T )

∑
rr′

∣∣MN
r,r′

∣∣2 (e−βENr + e−βE
N
r′

)
δ(ω − (EN

r′ − EN
r )),

with |r〉N and EN
r the eigenfunctions and eigenenergies of the Hamiltonian

HN |r〉 = EN
r |r〉 and the matrix elements MN

r,r′ = N〈r| fσ |r′〉N . There exist
several possibilities to combine the information from each iteration properly.
We use the method described by Bulla et al. in [31]. The resulting discrete
spectrum ANσ (ω, T ) is broadened using smooth distribution functions as Gaus-
sians

PG(ω ± EN
r ) =

1

b
√
π
e−((ω±ENr )/b)

2

,

Lorentzians [31]

PL(ω ± EN
r ) =

1

2π

b

(ω ± EN
r )2 + b2

or, as we use it, logarithmic Gaussians [22, 30, 31]

PLG(ω ± EN
r ) =

e−b
2/4

bEN
r

√
π
e−(ln(|ω|/ENr )/b)

2

,

with properly chosen broadening parameter b = 0.6. Applying the Kramers-
Kronig transformation, the real part of the Green’s function can be calculated

Re [GSIAM(ω, T )] =
1

π
P
∫ ∞
−∞

Im [GSIAM(ω′, T )]

ω′ − ω dω′,

where P indicates a principal value integral.
An improvement is the method introduced by Hofstetter [32]. The idea is to

calculate in a first run through the semi-infinite chain in each step the density
matrix

ρ̂ =
∑
r

e−βEr |r〉 〈r| (2.11)

and in a second run the Green’s function, given by

Gσ(t) = iΘ(t)Tr
(
ρ̂red

[
fσ(t), f †σ(0)

])
,

where the reduced density matrix ρ̂red is calculated from the density matrix
Eq. (2.11) by tracing out the low energy degrees of freedom, i.e. all energy
states beyond the actual chain site. This method is only adopted in Chap. 6
for the calculation of the two-impurity Anderson model with the NRG.
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One possibility to calculate the self energy Σσ(z) is to adopt the Dyson
equation

Σσ(z) = G0
σ(z)−1 −Gσ(z)−1 (2.12)

i.e. the inverse of the full Green function Gσ(z) subtracted from the inverse of
the non-interacting Green function G0

σ(z). But building numerical differences
is often a source of errors, so it is more convenient to follow Bulla et al. [33]
and calculate the self energy via

Σσ(z) = U
Fσ(z)

Gσ(z)

using the correlation functions Fσ(z) = 〈〈fσf †σ̄fσ̄; f †σ〉〉z and Gσ(z) = 〈〈fσ; f †σ〉〉z
defined by

〈〈A;B〉〉z := i

∫ ∞
0

eizt〈[A(t), B]〉dt

and the expectation value

〈. . . 〉 =
1

Z
Tr
(
. . . e−β(H−µN)

)
, Z = Tr

(
e−β(H−µN)

)
.

(2.13)

The next chapter will introduce the dynamical mean-field theory (DMFT).
The NRG method explained in this chapter is used as impurity solver for the
DMFT. Important to remember is that we have a numerical exact method at
hand which computes the self energy Σσ(z) for the SIAM with the hybridiza-
tion function ∆σ(z) and the impurity parameters only.
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3.1. Discovery and experimental results

As pointed out before, for more than 30 years physicists are highly interested in
heavy fermion (HF) compounds because they show numerous different physical
properties and phases as e.g. Fermi liquid and non-Fermi liquid behaviour,
different kinds of magnetic ordering, unconventional superconductivity and
superconductivity in the vicinity of magnetically ordered phases. They all have
in common a diverging effective electron mass m∗ up to thousand times the
bare electron mass for low temperatures. The effective electron masses can be
derived from a huge linear specific heat coefficient and the Pauli susceptibility.
Important examples are CeCu2Si2, Y bRh2Si2 and CeAl3.

Since their first discovery in 1975 by Andres, Graebner and Ott [1] many
other heavy Fermion compounds have been found. Their common structure is
a metallic host with a dense lattice of 4f- or 5f-orbital atoms, usually rare earth
or actinide elements. In the metallic host the electronic wave functions are very
widespread, such that the Coulomb interaction between the electrons can be
treated perturbatively. This is described within the Fermi-liquid theory, where
the electrons are replaced by non-interacting quasiparticles with renormalized
masses. The electrons of the rare earth elements are strongly localized and
thus are modeled as particles with strong Coulomb interaction. Interactions
and hopping between f-orbitals are assumed to be negligible such that they
only hybridize with the electrons of the conduction band.

3.2. The periodic Anderson model

The simplest models for these strongly correlated electron systems are lattice
version of the Kondo model or the single impurity Anderson model, called the
Kondo lattice model and the periodic Anderson model (PAM) respectively.
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The PAM consists of four parts:

H = Hc +Hf +Hhyb +Hint

Hc =
∑
k,σ

(
εk − µ

)
c†kσckσ

Hf =
∑
k,σ

εff †kσfkσ

Hhyb =
∑
k,σ

(
Vk c

†
kσfkσ + h.c.

)
Hint = U

∑
i

nfi↑n
f
i↓

(3.1)

Hc describes the non-interacting dispersion εk of the conduction band, i.e.
the metallic host, where c(†)

kσ is the annihilation (creation) operator for the
conduction band electrons with momentum k and spin σ, µ is the chemical
potential of the conduction band. In Hf the operators f (†)

kσ annihilate (create)
electrons at the impurity site and εf is the on-site energy of the localized
electrons. The hybridization term Hhyb models the overlap of the conduction
band with the localized f-orbitals. Vk is the hybridization, for simplicity often
assumed to be real valued and k-independent. The last term Hint with nfiσ =

f †iσfiσ is the interaction of the f-electrons, which punishes double occupancy
energetically due to the Coulomb repulsion U .

3.3. Perturbative and numerically exact

treatments

Unfortunately, due to the non-perturbative structure of these models, there
exist no theoretical tool to study them in a systematical manner in finite di-
mensions larger than one. E.g. perturbative treatments cannot capture strong
interactions, resummation of special diagram classes can only privilege special
features and mean-field theories are not able to describe spatial or tempo-
ral correlations. Bethe ansatz and bosonization techniques work only in one
dimensional systems.
Numerical treatments for these lattice systems have also strong limitations.

For example quantum Monte-Carlo techniques suffer the sign problem for
fermionic lattice problems. With exact diagonalization one is restricted to
very small system sizes in the order of ten lattice sites and the density matrix
renormalization group method is also restricted to one dimensional systems.
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3.4. Dynamical mean-field theory

3.4. Dynamical mean-field theory

Since our interest is focused on the low temperature and Fermi-liquid regime
of the periodic Anderson model (PAM), the method of choice is the dynami-
cal mean-field theory (DMFT) combined with the numerical renormalization
group (NRG) method as impurity solver. In the following the DMFT is in-
troduced as a powerful tool to investigate the low temperature regime of the
periodic Anderson model.

The Limit of Infinite Dimensions

The pioneering work of Metzner and Vollhardt [34] in the late 80’s started the
development of the dynamical mean-field theory which approximates strongly
correlated lattice models in a controlled manner. DMFT becomes exact in
the limit of infinite lattice connectivity, i.e. especially in the limit of infinite
dimensions.
For convenience we assume a d-dimensional hypercubic lattice with nearest

neighbour hoppings (indicated by the angular brackets below the sum) and
local interactions

H =
∑
〈i,j〉,σ

tc†iσcjσ + U
∑
i

c†i↑ci↑c
†
i↓ci↓, (3.2)

where c(†)
iσ is the annihilation (creation) operator for an electron at site i with

spin σ, t is the tunneling amplitude and U is the on-site interaction strength
resulting from the Coulomb interaction. This is the Hubbard model, the sim-
plest model for correlated electron systems. The following line of argument
can also be easily extended to other lattices or more complicated models like
the PAM.
The dispersion for a non-interacting Hubbard model on a d-dimensional

hypercubic lattice with nearest neighbour hopping and unit lattice spacing is

εk = −2t
d∑
i=1

cos(ki) .

The corresponding density of states (DOS) is

ρ(ω) =
∑
k

δ(ω − εk),

which is nothing but the probability density to find ω = εk for random k =

(k1, . . . , kd). Under the assumption of randomly chosen ki, εk is the sum of
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Figure 3.1.: Second order contribution to the self energy. Each free propagator line
comes with a prefactor of d−1/2 while summation over j gives a factor d. Thus this
diagram vanishes in the limit of d→∞ if i 6= j.

independent random numbers and in the limit d→∞ the central limit theorem
states

ρ(ω)
d�1−−→ 1

2t
√
πd

exp

[
−
(

ω

2t
√
d

)2
]
.

For the DOS not to be flat, broad and featureless in the limit of infinite di-
mensions (or coordination), i.e. for a non-trivial DOS, the hopping has to scale
as

t→ t∗√
d
, t∗ = const. (3.3)

Because of the local nature of the interaction term, the Coulomb interaction
U does not need to be rescaled.
Most importantly this leads to a local, i.e. momentum independent, self

energy for infinite dimensions

Σij(ω) = Σ(ω)δij, or Σk(ω) = Σ(ω) (3.4)

(cf. [34, 35, 36, 37]). This can be shown rigorously, but it can also be under-
stood qualitatively. Due to the scaling of the hopping amplitude t = t∗/

√
d

the non-interacting Green function for the Hubbard model is

G0
ij,σ ∝ O

(
1/
√
d
)
.

Thus, for example, for the second order self energy contribution Σ
(2)
ij (ω) shown

in Fig. 3.1 only the local term with i = j survives, because each free propagator
contributes ∝ d−1/2 and the sum of nearest neighbour sites j of i contributes
∝ d for i 6= j, thus

Σ
(2)
ij (ω) ∝ 1√

d

d→∞−−−→ 0 .

It can also be shown that only the local Hubbard interaction term remains
dynamic in the limit of infinite dimensions. All non-local interactions con-
tribute only statically via the Hartree-term.
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Construction of the DMFT

There are several possibilities to derive the dynamical mean-field equations.
Here we will follow the construction used by Georges, Kotliar, Krauth and
Rozenberg [38].
The partition function for the Hubbard model, Eq. (3.2), can be rewritten

as a functional integral of Grassman variables χ̄(τ) and χ(τ)

Z =

∫
D(χ̄, χ)e−S[χ̄iσ(τ),χiσ(τ)]

with an action

S[χ̄iσ, χiσ] =

∫ β

0

dτ

∑
i,σ

χ̄iσ(τ) (∂τ − µ)χiσ(τ)−
∑
〈i,j〉,σ

tijχ̄iσ(τ)χiσ(τ)

+U
∑
i

χ̄i↑(τ)χi↑(τ)χ̄i↓(τ)χi↓(τ)

)
.

(3.5)

The action (3.5) can be split into 3 parts

S = S0 + ∆S + S(0) with

S0 =

∫ β

0

dτ

(∑
σ

χ̄0σ(τ) (∂τ − µ)χ0σ(τ) + Uχ̄0↑(τ)χ0↑(τ)χ̄0↓(τ)χ0↓(τ)

)

∆S = −
∫ β

0

dτ
∑
i6=0,σ

(ti0χ̄iσ(τ)χ0σ(τ) + t0iχ̄0σ(τ)χiσ(τ))

S(0) =

∫ β

0

dτ

∑
i6=0,σ

χ̄iσ(τ) (∂τ − µ)χiσ(τ)−
∑

〈i,j〉,ij6=0,σ

tijχ̄iσ(τ)χiσ(τ)

+U
∑
i6=0

χ̄i↑(τ)χi↑(τ)χ̄i↓(τ)χi↓(τ)

)
.

Here S0 denotes the action for site zero only, ∆S the part which connects site
zero to the remaining lattice and S(0) is the action for a model where site
zero and its bonds are removed. Now a series expansion in ∆S reveals that
in the limit d → ∞ due to the scaling property (3.3) only the second order
contribution survives, thus the effective action after integrating out the bath
degrees of freedom is

Seff [χ̄0σ, χ0σ] =

∫ β

0

dτ
∑
σ

χ̄0σ(τ1)G−1
σ (τ1 − τ2)χ0σ(τ2)

+ U

∫ β

0

dτχ̄0↑(τ)χ0↑(τ)χ̄0↓(τ)χ0↓(τ)

(3.6)
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with the Weiß mean-field (or effective medium Green function)

G−1
σ (τ1 − τ2) = − (∂τ1 − µ) δτ1τ2 +

∑
i,j6=0,σ

ti0tj0G
(0)
ijσ(τ1 − τ2) . (3.7)

G
(0)
ijσ is the cavity Green function, where site 0 is removed, and it has to be

related to the full lattice Green function, i.e.

G
(0)
ijσ = Gijσ −Gi0σG

−1
00σG0jσ . (3.8)

This equation states that the cavity Green function consists of all paths of the
full Green function without the paths going through site 0. And in the limit
d → ∞ only paths that go once through 0 have to be counted. Insertion of
Eq. (3.8) into Eq. (3.7) and switching to Matsubara frequencies the effective
medium can be calculated to

G−1
σ (iωn) = Σσ(iωn) +

∫ ∞
−∞

ρ(ε)

iωn − ε+ µ− Σσ(iωn)
.

Analytic continuation provides real frequency properties

G−1
σ (z) = Σσ(z) +

∫ ∞
−∞

ρ(ε)

z − ε+ µ− Σσ(z)
,

with z = ω + iδ, where a small but finite δ replaces the infinitesimal offset in
our numerical calculations. In the next step this result will be compared to
the Green function of the SIAM.

Connection to the SIAM

Consider again the Hamiltonian of the single impurity Anderson model (2.1)

H =
∑
k,σ

(
εk − µ

)
c†kσckσ +

∑
σ

εfnfσ + Unf↑n
f
↓ +

∑
k,σ

(
Vkf

†
σckσ + V ∗k c

†
kσfσ

)
and rewrite it as an action for the grand canonical ensemble with Grassmann
fields χ̄, χ for the conduction band electrons and φ̄, φ for the impurity

S[χ̄, χ, φ̄, φ] =
∑
k,n,σ

(−iωn + εk) χ̄knσχknσ +
(
−iωn + εf

)
φ̄nσφnσ

+
∑
k,n,σ

(
Vkχ̄knσφnσ + V ∗φ̄nσχknσ

)
+ U

∫ β

0

dτnf↑(τ)nf↓(τ) .
(3.9)

Integrating out the conduction band degrees of freedom results in the action

S[φ̄, φ] =
∑
n

φ̄n,σ
[
GSIAMσ (iωn)

]−1
φn,σ + U

∫ β

0

dτnf↑(τ)nf↓(τ) (3.10)
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3.4. Dynamical mean-field theory

with [
GSIAMσ (iωn)

]−1
= iωn − εf −∆SIAM(iωn) (3.11)

with

∆SIAM(iωn) = − 1

π

∫ ∞
−∞

dω
∆(ω)

iωn − ω

and the hybridization function ∆(ω) is defined as

∆(ω) = π
∑
k

|Vk|2 δ(ω + εk) . (3.12)

The hybridization function ∆(ω) solely determines the influence of the bath
on the impurity. After analytical continuation, obviously the impurity Green
function GSIAMσ (z) (3.11) has to be compared to the effective medium Green
function Gσ(z) of the lattice model and we find

∆SIAM(z) = z − εf − Σσ(z)−
[
Glat
σ (z)

]−1
. (3.13)

Self-consistent solution

The single impurity problem has strong interactions and is still far from being
trivial. However, with the NRG (Chap. 2) at hand, we have a numerical
impurity solver that is ideally suited for the exponentially small temperature
regime.

Another problem is that the SIAM representing the effective medium for the
lattice problem is unknown. A solution is to solve the system self-consistently.
I.e. we start for example with an arbitrarily chosen hybridization function,
which should be positive and have a finite weight. Then we solve the cor-
responding SIAM and extract the local self energy Σσ(ω). Thereafter the
knowledge of the self energy Σσ(ω) is used to calculate the local Green func-
tion Glat

σ (ω) and with it we use Eq. (3.13) to finish the loop and recalculate
an improved hybridization function ∆(ω). This is schematically shown in Fig.
3.2. At this point it should be mentioned that it is also possible to calculate
momentum dependent properties. The momentum dependence returns into
the Green function by means of the dispersion relation εk. In the case of the
Hubbard model for example the momentum dependent Green function is

Gσ(k, z) =
1

z + µ− εk − Σσ(z)
.

29



3. Heavy Fermions

∆(ω)

NRG

Σ(ω)

(ω)G
lat

Figure 3.2.: Illustration of the DMFT cycle: Start with a hybridization function
∆(ω) as input for the NRG to calculate the self energy Σ(ω), then determine the
local lattice Green function and finally recalculate ∆(ω) using the self-consistency
relation Eq. (3.13). The spin index σ has been dropped because our calculations
concentrate on the paramagnetic phase.

DMFT and the most common impurity solvers

The DMFT is a powerful tool to investigate strongly correlated lattice models,
because it is non-perturbative and takes temporal correlations into account.
Its downside is the negligence of spatial correlations. Thus long-ranged corre-
lation effects as e.g. the emergence of spin ordered phases are not observable.
Another point is that DMFT is an approximation for high dimensional system.
Thus the DMFT method is not well suited for 1D and 2D systems with small
coordination number.

As mentioned before, we have chosen the NRG as impurity solver because it
is numerically exact, efficient and gives access to the exponentially low energy
scale, i.e. around and below the Kondo respectively coherence scale.
Other common choices with different advantages and regions of applicability
are

- Exact diagonalization (ED): This is also a numerically exact method that
gives access to the full spectrum of the SIAM. Generally it is possible to
compute physical properties at any given temperature. But due to the
exponential growth of the Hilbert space with system size, the method
is restricted to systems of the order of ten sites. As a result the energy
resolution is rather coarse.
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3.4. Dynamical mean-field theory

- Quantum Monte Carlo (QMC): The Hirsch-Fye QMC [41] method is
a successful and widely used tool to investigate impurity problems. It
can be applied to a wide range of problems with mostly minor changes
in the program. It provides numerically exact results for the imaginary
time Green function and other important physical quantities. Its greatest
disadvantage is the drastic increase in computation time with Uβ = U/T .
I.e. this method is not feasible for low temperatures and large interaction
strength. Another disadvantage is that the QMC works on the imaginary
time axis. Thus analytic continuations have to be performed to obtain
real frequency data as spectral functions or self energies. This is also a
numerically difficult task.

- Continuous-time (CT) QMC: CT QMC methods are recent improve-
ments of the QMC algorithm by Gull et al. [44]. They are based on
a diagrammatic expansion of the partition function in the interaction
term or the hybridization term. They combine the advantages of the
Hirsch-Fye QMC methods and an improved performance compared to
the discrete QMC version such that they allow access to much lower
temperatures. But they are still working on the imaginary time axis and
thus there still is the difficult task of the analytic continuation.
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4. Conduction band depletion

and exhaustion in the PAM

In this chapter we study the periodic Anderson model within the framework
of the DMFT. The results were obtained using essentially the programs, espe-
cially the NRG program, provided by Priv.-Doz. Dr. Ralf Bulla. We investigate
the behaviour of this model under strongly increasing interactions for different
lattice geometries. The Gaussian DOS, which resembles a hybercubic lattice
with nearest neighbour interactions, the semielliptical DOS produced by a
Bethe lattice, both in the limit of infinite dimensions, and for a constant DOS.

First we review the possible metallic and insulating phases of the PAM and
then the so called exhaustion effect, where only a few conduction electrons are
available to screen the local impurities at exponentially small energy scales.
Then we show DMFT results for the different densities of states. The last
part is concerned with the coherence scale, the temperature scale at which
conduction band electrons screen the f-electrons local moment coherently, in
connection to the lattice geometry and we show a zero temperature phase
diagram for the interaction strength U and the conduction band filling µ.

All DMFT calculations conducted in this and the following chapters are
performed at zero temperature and with the following general parameters,
which were tested properly.
The discretization parameter Λ = 2,
maximum number of states kept at each iteration Nmax = 500,
broadening of the discrete NRG data with logarithmic Gaussians b = 0.6

and the imaginary offset in z = ω + iδ, δ = 0.004.
Our calculations are performed in the paramagnetic phase. Therefore the spin
index σ can be omitted for the Green functions, self energies, spectral functions
and effective mediums.
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Figure 4.1.: Visualization of the hybridization gap in the PAM. Conduction band
(black line) and impurity band (red line) for the symmetric (µ = εf = 0) one
dimensional PAM with nearest neighbour hopping t = 1 and interaction U = 0 for
a) V = 0 and b) V = 0.1.

4.1. Metal-Insulator transitions

In our DMFT calculations we could confirm two different kind of insulating
phases for the PAM.

For the canonical choice of a local hybridization, i.e. a hybridization of the
local moments with conduction band electrons on the same site only, Vk = V ,
and vanishing interaction, U = 0, the one-particle bands can be obtained by
diagonalizing the Hamiltonian (3.1),

E±(k) =
1

2

(
µ− εf − εk ±

√
4V 2 + (εf + µ− εk)2

)
(4.1)

In the case of half-filling, µ = εf = 0, the Fermi energy lies in between the
two bands and thus the system is in a band insulating state, also known as
Kondo insulator, illustrated in Fig. 4.1. Switching on interactions U , but
keeping the model at half filling, i.e. εf = −U/2, correlations cause merely a
renormalization of the hybridization gap.

Another insulating state which shows up in the PAM is the Mott insula-
tor. This state was found in a class of materials that should be electrically
conducting under standard band theory. But due to odd integer filling and
strong Coulomb interactions these materials insulate at low temperatures. For
a qualitative understanding consider again the Hubbard model (3.2). Assum-
ing a given lattice structure, the model depends only on the ratio of hopping
and Coulomb interaction t/U , the electron density n = 1

N
〈ni↑ni↓〉 and the

temperature T .
At T = 0 and a small n� 1 the interaction term can be treated as perturba-
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Figure 4.2.: Evolution of the half-filled Hubbard model with a Gaussian bare DOS
for increasing Coulomb repulsion between two conduction electrons on the same site.

tion due to a low density of charge carriers and the system can be described as
weakly interacting Fermi liquid. For n ≈ 1 and U/t� 1 the system can still be
treated within perturbation theory and shows Fermi liquid properties. More
interesting is the case n ≈ 1 and U/t & 1 where the interaction makes hopping
costly and thus the electronic excitation spectrum splits up into two Hubbard
bands separated by a charge gap of width ∆ ≈ U . Finally for half-filling and
U/t → ∞ hopping is completely forbidden due to Coulomb interaction and
every neighbouring site is already occupied by one electron. This is the Mott
insulating state. More detailed information can be found in [7, 40].

Figure 4.2 shows the zero temperature spectral function for the Hubbard
model at half filling calculated using DMFT with the NRG. It shows that
for increasing Coulomb interaction a gap of the order of U opens at the Fermi
energy and thus the system becomes insulating. The emergence of the Hubbard
peaks at ≈ ±U/2 can also be seen, where all the spectral weight is shifted in
the insulating case.

The PAM shows also a Mott transition for T → 0, strong Coulomb repulsion
on the local orbitals and a total filling of ntot = 1 and ntot = 3, see e.g. Sordi
et al. [42, 43].
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4. Conduction band depletion and exhaustion in the PAM

4.2. Exhaustion

A different effect we investigate within the DMFT, first mentioned by Nozières
[5], is the effect of exhaustion. It is discussed intensively in the last two decades.
Exhaustion describes the effect of low conduction band fillings, such that there
are much more f-band electrons than electrons in the conduction band. In that
case it is assumed that the number of conduction band electrons is not sufficient
to screen all local moments of the f-orbital band.

The line of argumentation is as follows: The number of impurities is Nimp,
while the effective number of electrons Neff available to screen the impurities
are in a range of the (single impurity) Kondo temperature TK , see Eq. (2.3),
around the Fermi energy εF . So Neff = ρ(εF )TK with ρ(εF ) the DOS at the
Fermi energy. The dimensionless number

p =
Nimp

Neff

=
Nimp

ρ(εF )TK

is roughly the number of spins a single electron has to screen. The exhaustion
is measured by p. Noziéres argued further that the Kondo temperature TK ,
reduced by the scattering events necessary to isotropize the local moments
spin, gives an upper bound for the coherence scale

Tc =
TK
p

=
ρ(εF )T 2

K

Nimp

.

Thus, his arguments conclude that there exist two energy scales in the PAM
and that the coherence scale Tc is proportional to T 2

K .

4.3. Influence of the DOS

The self-consistency equations for the PAM (3.1) can be calculated in the
same manner as for the Hubbard model. A detailed derivation can be found in
appendices A and B. The local impurity band Eq. (A.1) and conduction band
Green functions Eq. (B.4) are

Gf (ω) =

∫ ∞
−∞

ρ(ε)

ω − εf − Σ(ω)− V 2

ω−ε+µ

dε

and
Gc(ω) =

∫ ∞
−∞

ρ(ε)

ω − ε+ µ− V 2

ω−εf−Σ(ω)

dε .

The Green functions depend on the lattice structure due to the density of
states ρ(ε). In the following we want to address the question how strong the
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Figure 4.3.: The DOS for an infinite dimensional hypercubic lattice of non-
interacting conduction electrons is given by a Gaussian.

scaling properties of the PAM depend on the specific form of the DOS and
if we find qualitative differences in the physics of the model. Therefore we
use three different kinds of DOS. The first one is a Gaussian, which is an
infinitely differentiable function with an infinite support. The second one is
a semi-elliptical function, which is continuous, but not differentiable at the
band edges and it has a finite support. The third functional form we use is
a constant DOS, which has also a finite support but is not continuous at the
band edges.
In all cases we have chosen a site independent next nearest neighbour hop-

ping

tij =

t = 1, if |i− j| = 1

0, else

and a constant local hybridization Vk = V . We investigate the behaviour of
the system while depleting the conduction band but keeping the impurity band
fixed to half filling, i.e. εf = −U/2.

4.3.1. Gaussian DOS

The first simulations are conducted with a Gaussian DOS, Fig. 4.3,

ρ(ε) =
1

t
√
π
e−( εt )

2

. (4.2)

This DOS is differentiable on the whole infinite support and has no singular-
ities. As described in Sec. 3.4, the corresponding lattice structure is a hyper-
cubic lattice with infinite coordination number.
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Figure 4.4.: Zero temperature spectral function for the f-band a) (the inset shows
an enlargement around the Fermi energy) and conduction band b) for the PAM with
µ = 0, εf = −U/2, V = 0.4. A band gap remains for both spectral functions for all
shown Coulomb interactions U . Af,c(ω = 0) > 0 is an artificial remnant from the
finite convergence generating factor δ from z = ω + iδ.

Figure 4.4 depicts the impurity band a) and conduction band spectral func-
tion b) in the symmetric case, µ = 0, εf = −U/2, and with hybridization
V = 0.4 at T = 0. The gap in the spectral functions around the Fermi energy
is clearly visible for all values of U . The finite values of the spectral functions
at the Fermi energy, Af,c(ω = 0) > 0, stems from the convergence generating
factor δ in z = ω + iδ. Similar to Fig. 4.2 a shift of the spectral weight to the
Hubbard satellites for increasing Coulomb interaction can be observed for the
impurity spectral function. The non-vanishing gap for all values of U confirms
that the gap is a result of the hybridization of the two bands.

Figure 4.5 shows zero temperature spectral functions for the impurities a)
and the conduction electrons b) and the imaginary and real part of the self
energy c) and d) for a gradual depletion of the conduction band electrons while
the other parameters are fixed U = 1, εf = −U/2 and V = 0.4. Both spectral
functions show for µ = 0 the same gap as already mentioned in Fig. 4.4. But
reducing the chemical potential below µ = −0.4, Af (ω) develops a strong
quasiparticle resonance. Although there is no quasiparticle resonance in the
conduction band spectral function, we find also a finite number of conduction
band electrons around the Fermi energy for µ . −0.4. This indicates metallic
behaviour in this parameter regime. The asymmetry in the conduction band
filling also induces an asymmetry in the filling of the impurity band.

The imaginary part of the self energy of the f-states 4.5 c) is quadratic in
ω around the Fermi energy for µ . −0.4, i.e. in the metallic phase. This is
accompanied by a linear ω-dependence of the real part d), where the slope
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Figure 4.5.: Spectral functions for the impurity band a) and conduction band b)
for U = 1, εf = −U/2 and V = 0.4. Depletion of the conduction band filling
turns the insulating state µ = 0 into a metallic state at µ ≈ −0.4. The asymmetry
in the conduction band also introduces an asymmetry in the f-band and a strong
quasiparticle peak at the Fermi energy. Fig. c) and d) show Fermi liquid properties
for µ . −0.4 indicated by ImΣ(ω) ∝ ω2 and the linear behaviour for ReΣ(ω) with
negative slope at ω = 0. (Insets show enlargement around the Fermi energy)

of the linear region is negative. As far as the self energy is concerned, this
confirms that the PAM is in a Fermi liquid state in this parameter range. The
quasiparticle weight Z for a Fermi liquid is defined as

Z−1 = 1− dReΣ(ω)

dω

∣∣∣∣
ω=0

=
m∗

m
, (4.3)

where m is the bare electron mass and m∗ is the quasiparticle mass or effective
mass of the quasiparticles. It can already be seen from the figures, that the
effective masses increase for a reduced conduction electron density. In Sec.
4.5 we will investigate the quasiparticle weight in more detail. In the band
insulating state, i.e. µ = 0, we do not expect Fermi liquid behaviour. This is
confirmed by the calculations, in Af (ω) there is no sharp quasiparticle peak,
the imaginary part of the self energy does not show the parabolic behaviour
and the linear part of ReΣ(ω) has a positive slope.
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Figure 4.6.: Zero temperature effective hybridization ∆(ω) with U = 1, εf = −U/2
and V = 0.4. The depletion of the conduction band leads to a reduction of ∆(ω) at
ω ≈ 0, which is interpreted as hallmark of Nozières exhaustion effect.

At last we want to examine the hybridization function ∆(ω), Fig. 4.6. There
is a strong peak for 0 ≥ µ & −0.4. Pruschke et al. [9] pointed out that the
peak stems from the quasiparticle band with f-character at the Fermi energy.
The peak reduces in size and vanishes at about µ = −0.6 for depletion of the
conduction electron band, i.e. when the system becomes metallic. Additionally
∆(ω) is reduced at ω ≈ 0 in the metallic phase. This has been interpreted
as a hallmark of Nozières exhaustion effect since the density of medium states
available at a given site should be reduced due to the screening at other sites.

Fig. 4.7 illustrates the effect of very strong depletion of the conduction band
electrons for U = 2, εf = −U/2 and V = 0.4. For µ . −1.4 the width of
the quasiparticle resonance becomes smaller than the resolution of the NRG
around the Fermi energy and thus the low energy structures around the Fermi
energy would vanish in all figures a) - d) for numerical reasons for further
reduction of conduction band electrons. Therefore µ = −1.4 is the lowest
conduction band filling resolvable here. Down to lowest conduction electron
densities resolvable we find stable quasiparticle states a) and a finite density of
states for the conduction- and the f-band a) and b). Fig. 4.7 c) and d) show also
that the self energy is in agreement with Landau’s Fermi liquid picture. The
main figure and the insets c) show clearly the quadratic behaviour of ImΣ(ω)

and in d) the linearity of ReΣ(ω) around ω = 0. The slope in d) decreases
enormously while reducing the average number of conduction electrons, which
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results in very small quasiparticle weights respectively in huge quasiparticle
masses. A detailed discussion of the evolution of the quasiparticle weights
will be given in Sec. 4.5. The last figure e) shows the effective hybridization
function ∆(ω) and the increasing impact of the exhaustion effect in the inset,
which shows an enlargement of ∆(ω) around the Fermi energy. The dip is
getting more pronounced for further reduction of conduction electrons.
Finally we state that the system is in a band insulating state at exactly

half filling. But depleting the conduction band leads to a phase transition to
a metallic phase and the calculations support the conclusion that we have a
Fermi liquid with strongly increased quasiparticle masses down to the lowest
fillings feasible with DMFT/NRG.
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Figure 4.7.: The figures show the influence of the depletion of the conduction band
for a Gaussian bare DOS and U = 2, εf = −U/2 and V = 0.4 at T = 0. The insets
show enlargements around the Fermi energy for the corresponding functions.
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Figure 4.8.: Semi-elliptical DOS for non-interacting conduction electrons on a Bethe
lattice with infinite coordination number and a hopping amplitude of t = 1.

4.3.2. Semi-circular DOS

Now we investigate the behaviour of the PAM on a Bethe lattice with infinite
coordination number and hopping amplitude t = 1. The bare density of states
is a normalized semi-circular function and not differentiable at the band edges
ω = ±1, see Fig. 4.8.

The spectral functions for the impurity- and the conduction band in Fig. 4.9
show again the hybridization gap in the half filled case µ = 0 and εf = −U/2,
except for the small offset due to the convergence generating factor. This is
shown exemplarily for V = 0.4 and increasing Coulomb interaction U . Fig.
4.9 a) depicts again the high energy Hubbard satellites at ≈ ±U/2. In 4.9
b) we observe that the general semi-elliptical structure of Ac(ω) is preserved
apart from the hybridization gap. But both spectral functions lose their non-
differentiable behaviour at the band edges due to the renormalizations of the
Coulomb interaction.

Starting from U = 2, εf = −U/2, µ = 0 and V = 0.4 and reducing the
number of conduction band electrons drives the system also away from the
band insulating to a metallic phase, see Fig. 4.10. The transition is between
−0.4 . µ . −0.2 and is indicated by the emerging strong quasiparticle res-
onance at the Fermi energy of the spectral functions Af,c(ω), in Fig. 4.10 a)
and b). In the metallic phase the imaginary and real part of the self energy,
c) and d), are also in agreement with Fermi liquid theory. The f-band spectral
function Af (ω) also shows the high-energy charge excitations at ±U .
Further reduction of the conduction electron filling reduces the width of the
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Figure 4.9.: Zero temperature spectral function for the f-band a) and conduction
band b) (the insets show enlargements around the Fermi energy) for the PAM with
µ = 0, εf = −U/2, V = 0.4 and a semi-elliptical bare DOS. A band gap remains for
both spectral functions for all shown Coulomb interactions U . Af,c(ω = 0) > 0 is an
artificial remnant from the finite convergence generating factor δ in z = ω + iδ.

quasiparticle resonance until it vanishes at a critical chemical potential µ and
finite U . Fig. 4.11 shows the electron densities for the impurity and conduction
electrons. The parameters are chosen as before, i.e. U = 2, εf = −U/2 and
V = 0.4. The spectral functions are finite at the Fermi energy, thus show
metallic behaviour for µ ≥ −1.1. But for µ ≤ −1.2 a gap around the Fermi
energy has emerged, which is more apparent in the insets, where the positive
energy part of the function is shown on a logarithmic scale. Unfortunately,
even though the zero temperature Mott metal-to-insulator transition is of first
order, we were not able to resolve a hysteresis. Fig. 4.12 shows clearly the
reduction of the conduction band filling (red line), while the impurity band is
roughly half filled (black line). Thus in total the system is on average filled
with one electron per unit cell (green line) in the insulating phase. This is in
agreement with a Mott insulating phase, which can only be realized for integer
filling.

Conclusively we can say that within the DMFT the PAM has a hybridization
gap for the Bethe lattice at half filling. Reducing the number of conduction
band electrons, the system becomes metallic, shows enhanced quasiparticle
masses and exhibits signs of the Nozières exhaustion scenario. Due to Coulomb
interactions the spectral weight is shifted in such a way that the conduction
band filling is still finite even though the Fermi energy is set below the band
edge of the bare DOS. But for a critical chemical potential the system crosses
a first order transition to the Mott insulating phase.
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Figure 4.10.: T = 0 spectral functions for the impurity band a) and conduction band
b) for U = 2, εf = −U/2 and V = 0.4 for a semi-elliptical bare DOS. Depletion of
the conduction band filling turns the insulating state µ = 0 into a metallic state for
µ . −0.4. The asymmetry in the conduction band spectral function also introduces
an asymmetry in the f-band spectral function. Also a strong quasiparticle peak at
the Fermi energy emerges in a). Fig. c) and d) show Fermi liquid properties for
µ . −0.4 indicated by ImΣ(ω) ∝ ω2 and the linear behaviour for ReΣ(ω) with
negative slope at ω = 0 (Insets show enlargement around the Fermi energy).
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Figure 4.11.: Zero temperature impurity band a) and conduction band b) spectral
function for U = 2, εf = −U/2 and V = 0.4 for the Bethe lattice with infinite
connectivity. The logarithmic plot in the insets displays the sudden disappearance
of the quasiparticle peak for µ . −1.2.
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of the PAM for U = 2, εf = −U/2 and V = 0.4.
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Figure 4.13.: Constant DOS for the DMFT for the PAM.

4.3.3. Constant DOS

In this section we explore the PAM for a constant bare DOS (Fig. 4.13),

ρ(ε) =
1

2
(Θ (ε+ 1)−Θ (ε− 1)) .

Due to the discontinuous behaviour of the DOS ρ(ε) at the band edges ε = ±1,
the model is expected to show unconventional properties, especially when the
Fermi energy approaches the lower band edge. In this situation the effects of
exhaustion are expected to have a stronger influence.
The main opportunity of a constant DOS is the possibility to observe the

coherence scale of the periodic Anderson model upon depleting the conduction
band without changing the Kondo scale (defined for the single impurity Kondo
model, Eq. (2.3))

TK ∝ exp

(
− U

4V 2ρ(εF )

)
.

Thus we are able to isolate the effects of exhaustion from the effects of a
reduced DOS at the Fermi energy εF .
But it turns out that the behaviour of the system with a constant DOS

is qualitatively the same as for the semi-elliptical DOS. Therefore we only
show exemplarily the spectral functions, Fig. 4.14, of the impurity band a)
and conduction band b), and discuss the main properties. For a discussion of
the coherence scale and its connection to the Kondo scale see section 4.5. The
hybridization function, self energy and fillings are in qualitative accordance
to the ones for a Bethe lattice DOS in Sec. 4.3.2. The logarithmic scale of ω
in the insets of Fig. 4.14 reveals the low energy behaviour more clearly. The
parameters are chosen U = 2, εf = −U/2 and V = 0.4. The conduction band
filling is reduced starting out from half filling, i.e. µ = 0 to µ = −1.2.
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Figure 4.14.: Zero temperature impurity band a) and conduction band b) spectral
function for U = 2, εf = −U/2 and V = 0.4 using a constant density of states.

Most important, we observe that the spectral functions have lost their dis-
continuity at the band edges, they are even differentiable due to the finite
interaction term U . Furthermore, Fig. 4.14 b) shows clearly on the logarith-
mic scale in the inset, that in the metallic regime −1 < µ < −0.4 the spec-
tral function Ac(ω) is fixed to its non-interacting value at the Fermi energy,
ρ(ω = 0).

For µ = 0 (black line) the system is band insulating, for −1 < µ < −0.4 it
shows a finite DOS at the Fermi energy, i.e. metallic phase and for µ < −1

it is Mott insulating. Depleting the conduction band shifts spectral weight of
Af (ω) from the resonance at the Fermi energy to the Hubbard satellites at
±U/2 = ±1.

4.4. Phase diagram for the PAM

In the last section we saw three different possible phases for the paramagnetic
PAM with different lattice types. With these results it is possible to construct
a phase diagram. Fig. 4.15 depicts the zero temperature phase boundaries in
a (U, µ)-diagram. Here the remaining parameters are εf = −U/2, i.e. f-band
filling nf ≈ 1, and V = 0.4. For µ ≈ 0, i.e. conduction band filling nc ≈ 1,
the systems with Gaussian, semi-elliptical and constant DOS all show a band
insulating phase. They also show a phase transition between the band insu-
lating (BI) and heavy Fermion (HF) phase between −0.5 . µ . −0.25 for all
values of Coulomb interactions U investigated. For intermediate conduction
band fillings, −1.2 . µ . −0.5 all systems show a Fermi liquid phase with
more pronounced heavy Fermion (HF) properties for increasing Coulomb inter-
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Figure 4.15.: Zero temperature (U, µ)-phase diagram of the periodic Anderson model
for decreasing conduction band occupation and three different bare DOS with V =

0.4 and εf = −U/2. On the right hand side is a band insulating (BI) phase for each
model. The Mott insulating (MI) phase on the left hand side is only realized for the
model with a semi-elliptical or a constant DOS. Each model shows a metallic heavy
Fermion (HF) phase. The blue line shows a fit to the phase boundary between the
HF and the MI phase for the semi-elliptical DOS

actions. Only for the semi-elliptical and the constant DOS the phase diagram
shows a parameter regime where the system is in a Mott insulating (MI) state.
The phase boundaries follow roughly U ∝ 1/(µ2 − 1), the blue line shows a
fit to the HF-MI phase boundary for the PAM with a Bethe lattice. For a
hypercubic lattice the system showed no sign of a MI phase.

Thus we conclude that the finite tails of the Gaussian DOS prevents the
system from a transition to the Mott insulating phase. Sharp band edges are
an essential ingredient for the diluted PAM to become Mott insulating.

4.5. Coherence scale

As mentioned before, the PAM follows Landau’s Fermi liquid picture in the
metallic phase. I.e. below a certain temperature scale, the coherence scale Tc,
which is proportional to the quasiparticle weight (4.3), the effective quasiparti-
cles have the quantum numbers of the original electrons (charge, spin, momen-
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Figure 4.16.: Spectral functions for the impurity band a) and conduction band b)
for εf = −U/2, µ = −1, V = 0.4 and a constant DOS. The frequencies are rescaled
by the coherence temperature Tc.

tum) but show renormalized parameters, as e.g. strongly enhanced masses m∗.
Fig. 4.16 depicts spectral functions for the impurity band a) and the conduc-
tion band b) for ε = −U/2, µ = −1, V = 0.4 and a constant DOS. The system
is metallic for all values of the Coulomb interaction shown. The energies are
rescaled by the coherence temperature extracted from the self energy using
Eq. (4.3). The rescaled spectral functions fit excellent on top of each other in
the low energy range, i.e. the quasiparticle peak structure below ω ≈ Tc. The
high energy features as the Hubbard satellites are not scale invariant for values
ω/Tc & 1 as can be seen in the insets, where the rescaled high energy regions
are depicted. We could not identify an energy scale which scales the spectral
functions properly for ω/Tc & 1.

Fig. 4.17 comprises the evolution of the coherence scale Tc for four different
fillings and three different density of states. The hybridization strength is
V = 0.4 . For vanishing interaction strength the coherence scale is always of
the order of one since there is no interaction reliable for any renormalizations.

The slope of the coherence scales for the different lattice structures is for
small values of U identical. But we observe that the fewer conduction electrons
are available for screening, the steeper the slope.
For very low conduction band fillings, µ = −1.5 and µ = −2.0, the coher-

ence scales for the constant and the Bethe lattice DOS drop off faster than
exponentially beyond the Mott transition. The reason is obviously that in the
Mott phase the Fermi liquid picture is not valid and the particles are com-
pletely localized. The coherence scale for the PAM on a hypercubic lattice,
which does not show a Mott insulating phase, follows an exponential law as
suggested in Eq. (4.3) down to lowest energy scales resolvable.
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Figure 4.17.: Evolution of the coherence scale Tc for increasing Coulomb interaction
U for different fillings. We have chosen a constant DOS and the hybridization is
fixed to V = 0.4.

In the case of higher conduction band fillings, µ = −0.6, all three coherence
scales are equal. For U . 0.4 the system is band insulating and thus Tc is not
well defined and the coherence scales show a kink at U ≈ 0.4. Beyond U ≈ 0.4

the coherence scales fall off exponentially. For µ = −0.6 we did not observe
a transition to the Mott insulating phase (compare Fig. 4.15) for the tested
DOS.

Shifting the Fermi energy to the band edge of the semi-elliptical DOS, i.e.
µ = −1, we observe a linear, negative slope for the Gaussian and the Bethe
lattice coherence scale. The constant DOS behaves identical up to U ≈ 0.8 but
shows a kink at that point and thereafter a slightly increased slope. Thus the
coherence scale for the hypercubic and the Bethe lattice follows an exponential
law. The reason is yet unknown, but it might stem from the fact that the Fermi
energy is shifted exactly to the discontinuity in the constant DOS.

Fig. 4.18 depicts the conduction band (black line), impurity band (red line)
and the total filling (green line) for four different chemical potentials µ for
the Gaussian (crosses), semi-elliptical (circles) and the constant (squares) bare
density of states. The figures show that the fillings depend only weakly on the
underlying bare DOS. Only for µ = −1 for the constant DOS, where the Fermi
energy is positioned at a discontinuity, the conduction band filling ncconst and
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Figure 4.18.: Conduction band (black), impurity band (red) and total filling (green)
of the PAM for different models - Gaussian DOS (crosses), semi-elliptical (circles)
and constant DOS (squares) - and four different chemical potentials µ.

as a result the total filling ntot,const is reduced compared to the other two cases.
This, together with the results from Fig. 4.17, stands in contrast to the idea
of exhaustion, because from exhaustion we would expect for a reduced filling
also a reduced coherence scale and not an increased one.

Conclusions

Within the DMFT approximation for the PAM with symmetric impurity band,
i.e. εf = −U/2, the form of the bare DOS is important for the realization of
a metal-Mott insulator transition. Only a DOS with a finite support gives
rise to a Mott insulating phase. Contrary to that, the form of the DOS has
in general a negligible influence on the band insulating - metal transition and
also on the Fermi liquid properties in the metallic phase. Thus the scaling for
a single impurity model at half filling, i.e. εf = −U/2, Eq. 2.3

TK =
D

kB
e
− V 2

4Uρ(εF ) ,

is not completely valid for the concentrated model, because although Tc scales
with exp(−U/V 2), the scaling does not depend on the form of the DOS ρ(ω)
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in the metallic phase. We found an exception to the last statement, when the
Fermi energy is situated at a discontinuity of the DOS. However, we were not
able to identify a second energy scale which could be related to the Kondo
scale as predicted by Nozières.
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5. PAM on a bipartite lattice

In this chapter we investigate the periodic Anderson model (PAM) on a bipar-
tite hypercubic lattice. First we will introduce the model and set up the DMFT
equations. Then we investigate the case of equal sublattices and whether the
model reduces to the standard PAM. Thereafter our research concentrates on
the model with one sublattice of f-orbitals with strong Coulomb interactions
and the other one with weak interactions. And finally we investigate the be-
haviour of the system while decoupling one sub lattice.

5.1. Introduction

The periodic Anderson model was proposed to describe heavy fermion com-
pounds, where a local spin-1

2
moment per unit cell is embedded in a host of

conduction electrons. There are two main reasons to extend this model onto
bipartite lattice systems.

On the one hand materials with two inequivalent f-shell ions per unit cell
have been discovered, e.g. Ce3Pd20Si6 by Kitagawa et al. [45]. These com-
pounds feature two inequivalent local spin-1

2
moments per unit cell. We will

model these systems with the PAM on a bipartite hypercubic lattice, where
we have the possibility to tune the impurity parameters for the sublattices
independently.

Another reason these models attract much attention is the possibility to
explore the crossover from single impurity behaviour to the behaviour of a
lattice impurity system, to understand the development of the Kondo scale TK
when more and more impurities added to a metallic host. Does the coherence
scale Tc emerge from the the Kondo scale or is it independent from TK? If the
latter is the case, how does the coherence scale emerge? Therefore, setting up
a bipartite lattice for the PAM and decoupling the impurities of one sublattice
in our model is the first step to simulate the crossover to the diluted system.
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5.2. Model and method

The Hamiltonian for the PAM is

H =
∑
〈ij〉,σ

tij c
†
iσcjσ +

∑
iσ

(
εc c
†
iσciσ + εif f

†
iσfiσ +

1

2
Ui n

f
i↑n

f
i↓ + Vi c

†
iσfiσ + h.c.

)
(5.1)

where tij is the hopping amplitude for the conduction electrons from site i to
site j, c†iσ creates and ciσ destroys a conduction electron on site i with spin
σ, f †iσ and fiσ work analogue for the f-electrons, εc is an energy shift for the
conduction electrons, εif = εAf if i on sublattice A and εBf if i on sublattice
B is the on-site energy for the f-electrons, UA,B is the Coulomb repulsion on
sublattice A respectively B and VA,B determines the hybridization between
conduction and impurity electrons on sublattice A respectively B. As usual
tij = t the hopping amplitude is site independent and only non-zero between
nearest neighbours.

The model is solved with the DMFT method (refer Chap. 3) and as impurity
solver we employ the NRG method (Chap. 2) from Priv.-Doz. Dr. Ralf Bulla
with the numerical parameters as in Chap. 4. The effective medium is (see
appendix D)

Gα(z) =
1(∑

k G̃
f,α
k (z)

)−1

+ Σα(z)

G̃f,α
k (z) =

εkVαVᾱ − zcV 2
ᾱ + zᾱ(z2

c − ε2
k)

V 2
αV

2
ᾱ − zczαV 2

ᾱ − zczᾱV 2
α − zαzᾱ(z2

c − ε2
k)

(5.2)

with

α ∈ {A,B} and ᾱ =

B, if α = A

A, if α = B

zα = z − εα − Σα(z)

zc = z − εc.

The self-consistency condition is given by

[Gα(z)]−1 !
=
[
GSIAM

0 (z)
]−1

= z − εα −∆α(z)

which concludes the hybridization functions for the two sublattices as

∆α(z) = z − εα − Σα(z)−
[
Gf,α(z)

]−1 with Gf,α(z) =
∑
k

G̃f,α
k (z).
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Figure 5.1.: DMFT cycle for the PAM on a bipartite lattice.

The self-consistent DMFT cycle for the PAM on a bipartite lattice is pictured
in Fig. 5.1. As starting point we choose proper hybridization functions ∆α(ω)

for each sublattice, then compute the self energies for each ∆α(ω) using the
NRG. Both self energies then contribute to each effective medium Gα(ω) (i.e. we
cannot split the calculations up into two independent DMFT cycles). To close
the cycle the sublattice Green functions and then the hybridization functions
have to be calculated using Eq. 5.2.

Limit of equal sublattices

Now using the limit, where all parameters on both sublattices are the same,
Eq. 5.2 yield

G(z) =
1(∑

k G̃
f
k(z)

)−1

+ Σ(z)
,

G̃f
k(z) =

1

z − εf − Σ(z)− V 2

z−εk−εc

,

(5.3)

which is the self-consistency condition for the PAM without sublattice struc-
ture. Also numerically this could be verified. Fig. 5.2 shows the f-electron
spectral functions for the homogeneous PAM (full lines) and the PAM with
a bipartite lattice, but all sublattice parameters are the same (dotted lines).
Since the spectral functions of the A and B sublattices are the same the sub-
lattice index is omitted. The inset shows an enlargement of the quasiparticle
peaks. The numerical results show that using the more complicated formula
Eq. 5.2 does not introduce additional numerical issues compared to the simpler
form Eq. 5.3.

5.3. Energy scales

Specific theories, e.g. slave Boson mean-field theory, predict two energy scales
for the Kondo lattice model, a Kondo scale TK and a coherence scale Tc at
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Figure 5.2.: The figure shows a comparison between the homogeneous PAM (straight
lines) and the PAM with a bipartite lattice (dotted lines) where εf = −U/2 respec-
tively εα = −Uα/2.

much lower temperatures (e.g. Burdin et al. [10]). Solving the model within
the DMFT method did not reveal a second energy scale up to now (see e.g.
Pruschke et al. [9], Chap. 4). For the Kondo lattice model with a bipartite
lattice Benlagra et al. [8] found even four distinct energy scales, a Kondo scale
and a coherence scale for each sublattice. We will investigate the PAM on
a bipartite lattice first by varying the Coulomb interaction on one sublattice
and later while varying the hybridization between the conduction band and
one sublattice.

5.3.1. Varying the Coulomb interaction on one sublattice

In this section we investigate the systems behaviour upon changing the Coulomb
interaction on one sublattice and focus our attention on the energy scales of
the system.

The applied DMFT method is described in Sec. 5.2. Because we have
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severe convergence problems within the DMFT method with a bipartite lattice,
we start from a point in parameter space where the model reduces to the
homogeneous case, i.e. UA = UB, VA = VB and εA = εB = −UA/2, where we
find appropriate convergence, and change only one parameter at a time and
in small steps. In this case it is the Coulomb interaction UA and therewith
εA = −UA/2, such that we have nearly half filled f-bands.

Fig. 5.3 shows the development of the f-electron spectral functions for both
sublattices with parameters UB = 2 and VA = VB = εc = 0.4. In all figures
appears the general three peak structure, the two charge excitation peaks at
ω ≈ ±U/2 and the Abrikosov-Suhl resonance at ω = 0. The charge excitation
peaks Fig. 5.3 a) and c) move away from the Fermi level with increasing UA as
expected, whereas the Hubbard satellites in b) and d) are fixed. I.e. that one
sublattice has no effect on the high energy excitations of the spectral function
of the other sublattice. But Fig. 5.3 a)-d) points out that the Abrikosov-Suhl
resonance at low energies changes drastically the low energy excitations on
both sublattices upon the variation of UA. That implies, of course, a strong
influence of UA on both sublattices at low energies. The spectral function on
sublattice A, Af,A(ω) shows a decreasing width for increasing UA, but while the
full width at half max (FWHM) decreases continuously, the height decreases
until it starts to increase at UA & 2.0. The Kondo resonance of the f-electron
spectral function Af,B(ω) shows at first a decreasing broad structure slightly
below the Fermi energy (inset Fig. 5.3 b)) for increasing UA, and develops
a small quasiparticle resonance at ω = 0 up to UA ≈ 2.0. Then the new
quasiparticle peak sharpens, i.e. becoming thinner and increases for UA > 2.

For all parameters the hybridization function Fig. 5.4 shows the bare density
of states (DOS) with additional structures due to interaction effects. Important
is the behaviour around the Fermi level. Since a reduction of ∆(0) is interpreted
as a hallmark of exhaustion physics, because the reduction of effective medium
DOS available at a special site is strongly reduced due to screening effects at the
other impurities, this dip in ∆(ω) is very interesting. Analogue to the spectral
function Af,A(ω) the hybridization function ∆A(ω) (5.4 a) and b)) shows a
continuously narrowing dip for increasing UA around the Fermi energy, whereas
its height, ∆A(0), first increases up to UA ≈ 2 and then decreases again for
increasing UA. ∆B(ω) has a broad dip below the Fermi energy which vanishes
for increasing UA and reveals a narrower and continuously deepening dip at
ω = 0. The dip below the Fermi level has completely vanished at UA = 2.

Now let us take a brief look on the self energies Σα(ω) in Fig. 5.5. All self en-
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Figure 5.3.: Evolution of the f-electron spectral function for the A and B sublattices
upon changing Coulomb interaction UA, UB = 2, VA = VB = εc = 0.4 and εα =

−Uα/2 with α ∈ {A,B}.

ergies show a quadratically vanishing imaginary part (insets show enlargement
of Σ(ω) around the Fermi level) which is common in Fermi liquids. Another
property of Fermi liquids is a linear real part of the self energy around ω = 0

in a region proportional to the FWHM of the Abrikosov-Suhl resonance of the
f-electron spectral function. This linear behaviour is also found in the bipartite
PAM, shown in Fig. 5.5.

Since the system depicts Fermi liquid behaviour with sharp quasiparticles
for each sublattice, we can properly define the quasiparticle weight Z or re-
spectively the quasiparticle mass m∗α for sublattice α ∈ {A,B}

Zα =
m

m∗α
=

1

1− ∂Σα(ω)
∂ω

∣∣∣
ω→0

(5.4)

and we assign an energy scale, the coherence scale Tα,c ∝ Z−1
α , to the corre-

sponding sublattice.
In Fig. 5.6 the quasiparticle masses for the two different sublattices and dif-

ferent UB are plotted against UA. The dark green line shows data for equal
sublattices, i.e. the homogeneous PAM. In this case, the coherence scale de-
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Figure 5.4.: Evolution of the hybridization functions ∆α(ω) for the A and B sub-
lattices upon changing Coulomb interaction UA, UB = 2, VA = VB = εc = 0.4 and
εα = −Uα/2 with α ∈ {A,B}.

creases exponentially in the whole parameter space as already shown in Fig.
4.17. The coherence scale for UB = 1.5 and UB = 2.0 is almost linear and
identical for the two sublattices between 1 < UA . 2. From this we conclude,
that the system has still only one energy scale in this parameter regime. This
behaviour of the energy scales does not apply for UB = 2.5, where severe con-
vergence problems made it impossible to investigate a larger parameter range.
Even though the point of highest symmetry is UA = 2.5 and there the DMFT
converges, there is no convergence beyond this point for varying UA in either
direction.

Beyond UA ≈ 2 the behaviour of the scales for the two sublattices changes
drastically for UB = 1.5 and UB = 2.0. The energy scales on sublattice A,
TA,c, drop and has a nearly linear but steeper slope on a log-scale, whereas
the energy scale on sublattice B has a pronounced local minimum. The region
where this behaviour of the energy scales sets in, denoted as U1

A, depends on
UB.
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Figure 5.5.: Evolution of the Self energy Σα(ω) for the A and B sublattices upon
changing Coulomb interaction UA, UB = 2, VA = VB = εc = 0.4 and εα = −Uα/2
with α ∈ {A,B}. The functions below zero show the real part of the self energy
Re Σα(ω) and the other ones the imaginary part Im Σα(ω). The upper insets show
an enlargement of Im Σα(ω) and the lower inset depicts Re Σα(ω).

Possible physical origin

For UA . UB ≤ 2 the coherence scales for the PAM on a bipartite lattice
are almost identical on each sublattice and have a reduced slope compared
to the coherence scale of the homogeneous model. The quasiparticles on the
two sublattices influence each other in a way that they build one coherent
Fermi liquid upon both sublattices with a coherence scale which corresponds
to a homogeneous system with U = 1

2
(UA + UB). This is possible because the

coherence scales of the two sublattices are of the same order. The result is that
the slopes for the coherence scales of the bipartite lattice model as a function
of UA are equal, TA,c(UA) = TB,c(UA) ∝ e−γUA/2, and have half the slope of
the homogeneous model Tc ∝ e−γUA . Here γ is a proportionality factor. That
would also explain why the slopes for UB = 1.5 and UB = 2 essentially match.

This simple reasoning is obviously wrong for very strong interactions as can
be seen for UA > UB. In this regime the scales are strongly separated. It seems
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Figure 5.6.: Behaviour of the coherence temperature Tα,c on the sublattices (SL)
α ∈ {A,B} as function of the Coulomb interaction UA, VA = VB = εc = 0.4 and
εα = −Uα/2 .

that TB,c returns to its initial value while TA,c turns downwards and has a slope
much smaller than for the homogeneous model. As a result the sublattices are
decoupled and the electrons of sublattice A have no influence on the electrons
of sublattice B and vice versa. The distinct energy scales do not allow for a
single global coherent state and thus two independent Fermi liquids arise.

For UB = 2.5 the scales for the sublattices are separated and approach each
other while approaching the point of high symmetry, i.e. UA = UB. Due to
convergence problems we were not able to approach UA = UB any further.
But here the energy scales of the two sublattices also split up for UA � UB

and, using the same line of argumentation as before, we end up with two
independent Fermi liquids.

5.3.2. Varying the hybridization on one sublattice

Now we will investigate the bipartite system upon reducing the hybridization
on one sublattice, here VB, until it vanishes. In the case of VB = 0 the impu-
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Figure 5.7.: Evolution of the impurity and conduction band spectral function for the
A and B sublattices upon changing the hybridization VB, UA = UB = 1, VA = εc =

0.5 and εα = −Uα/2 with α ∈ {A,B}.

rities of sublattice B are completely decoupled and thus the system shows the
behaviour of a system with only half the number of impurity sites compared
to the conduction electron sites.

Fig. 5.7 depicts the impurity and conduction band spectral functions, where
the hybridization VB ranges from 0.25 to 0.5 and the other parameters are
fixed at UA = UB = 1, VA = εc = 0.5 and εα = −Uα/2 with α ∈ {A,B}.
Again, for VB < 0.2, the DMFT calculations suffer from convergence problems
and we are not able to get results below VB = 0.25 but VB = 0.

In general, we can again identify the three-peak structure typical for Hubbard-
and periodic Anderson models except for the A-sublattice spectral function for
the conduction electrons (Fig. 5.7 c)), where we find nearly a gap, especially
for VB < 0.3. However, the width of the quasiparticle resonance is strongly
reduced for VB < 0.3 in Fig. a), b) and c). And although the conduction band
spectral function Ac,A(ω) has not the general three-peak structure, it has still
a small but finite amount of quasiparticle states at the Fermi energy and thus
shows metallic behaviour.
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Figure 5.8.: Hybridization function ∆α(ω) and imaginary part of the self energy
Im Σα(ω) for the A and B sublattices upon changing the hybridization VB, UA =

UB = 1, VA = εc = 0.5 and εα = −Uα/2 with α ∈ {A,B}.

In Fig. 5.8 the hybridization functions a), b) and the imaginary part of
the self energies c), d) for the A respectively B sublattices are shown. The
hybridization functions show strong peaks around ω ≈ −0.07 and ω ≈ 0.2 for
sublattice A and ω ≈ 0.2 for sublatticeB. Due to the logarithmic discretization
of the energy band the peaks have a crude resolution and are not smooth, which
is already the case for VB = 0.5, which resembles the case of the homogeneous
PAM. Because of the high energies where the peaks are situated and their
rough resolution we refrain to comment on them in the following. At the Fermi
energy the hybridization function reduces for decreasing VB as expected. The
imaginary part of the self energies in figures c) and d) show the quadratic ω-
dependence around the Fermi energy expected for Fermi liquids. The maxima
of ImΣA(ω) at ω ≈ −0.07 and ω ≈ 0.2 are remnants of the strong peaks in
the hybridization function, mentioned earlier.

Again, using the real part of the self energy to determine the quasiparticle
weight (Eq. 5.4) for each sublattice and using Z−1

α ∝ Tα,c, we can investigate
the coherence scale of the PAM while successively decoupling one sublattice,
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Figure 5.9.: Coherence scale for VA = εc = 0.5. From right to left we start from
a homogeneous PAM and reduce the hybridization VB such that we approach the
lattice where every second impurity is decoupled. Results for a homogeneous model,
i.e. VA = VB, are also added.
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Figure 5.10.: Fig. a) depicts the coherence scale upon V c
B, which shows good agree-

ment with an exponential decrease. The data are extracted from Fig. 5.9. The last
point is omitted in the linear regression as explained in the Text. Fig. b) shows that
V c might depend linear on the Coulomb interaction. Parameters are the same as in
Fig. 5.9.

i.e. VB → 0 (see Fig. 5.9). Starting from the homogeneous PAM with VA =

VB = εc = 0.5 and UA = UB, where the coherence scales have to be the same,
i.e. TA,c = TB,c, we find that the scales for the two sublattices coincide upon
decreasing VB until VB reaches a critical value V c

B. For UA = UB = 1 : V c
B =

0.35, for UA = UB = 2 : V c
B = 0.43, for UA = UB = 3 : V c

B = 0.48 and for
UA = UB = 1 : V c

B = 0.5. The scales are also slightly decreasing down to the
critical V c

B. Below that critical hybridization between the conduction band and
the impurities on sublattice B, the coherence scales of the two sublattices split
up. While TA,c increases a little bit higher than its initial value at VB = 0.5 and
then remains essentially constant, TB,c decreases exponentially. For different
Coulomb interactions, the coherence scales TB,c have the same slope below V c

B,
except for UA = UB = 3, which we are not able to explain so far. We added also
the results for VA = VB, i.e. the homogeneous PAM. Obviously the coherence
scale is for V c

B < VB < VA nearly the same as for the bipartite lattice. For
UA = UB = 4 the coherence scale for the different sublattices split as soon as
we move away from VB = 0.5. We assume that in this case V c

B & 0.5.

In Fig. 5.10 we depict the points (red crosses), where the coherence scales
split up, i.e. Tc(V c

B). The black line is a linear regression and shows the ex-
ponential decrease of V c

B with increasing Coulomb interaction UA = UB. We
excluded UA = UB = 4 for the reason explained before, namely that we expect
VB,c & 0.5. Fig. 5.10 b) depicts that V c

B is almost proportional to UA = UB,
where again the last data point is excluded. Extrapolating the black line to
UA = UB = 4 shows that V c

B would be larger than 0.5.
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Figure 5.11.: Filling of the sublattices for f- and c-band, f- and c-band filling for
the whole lattice and total filling as function of VB for a) UA = UB = 1 and b)
UA = UB = 2.

Taking a look at the fillings in Fig. 5.11 for different Coulomb interactions,
we observe a strong influence on the c-band filling nc,B and the f-band filling
nf,B for sublattice B (red and blue lines) and almost no influence for these
quantities on sublattice A (black and green lines) upon reducing VB. This
coincides with the results of Fig. 5.9, where TA,c shows only minor changes
compared to TB,c. The total f-band filling nftot = nf,A + nf,B is close to one
as expected, since we use 2εα + Uα = 0 with α ∈ {A,B}, and is even closer
to one for small values of VB, because then the system gains less energy for
hopping processes from and to the impurity site compared to the cost from
the Coulomb repulsion. V c

B is also reflected in the fillings of the sublattices in
Fig. 5.11 a) and b) such that upon decreasing VB the fillings stop decreasing
and stay essentially constant below V c

B.

68



5.4. Conclusions

Possible physical origin

From Fig. 5.9 we learn that for V c
B < VB < VA the energy scales for the two

sublattices are identical. I.e. a coherent Fermi liquid arises, which includes
both sublattices. It might again be possible to describe the single coherence
scale with an averaged parameter, i.e. in this case the hybridization average
V = 1

2
(VA + VB).

For VB < V c
B the energy scales of the two sublattices separate. While TB,c

falls off rapidly for decreasing VB, much faster than Tc for the homogeneous
model, TA,c is essentially constant. I.e. the sublattices are again decoupled and
the system hosts two independent Fermi liquids.
Again we find that for small interactions and for parameters describing the

bipartite PAM are close to the homogeneous PAM, the system is described
by a single energy scale. The larger the coherence scale of the correspond-
ing homogeneous model, the longer the scales of the two sublattices coincide.
Accordingly we observe to independent scales rather soon when at least one
sublattice coherence scale becomes very small and parameters are varied.

5.4. Conclusions

In this chapter we investigated the behaviour of the PAM on a bipartite lattice
for two different cases. On the one hand upon increasing the Coulomb inter-
action UA on sublattice A and on the other hand on progressively decoupling
one sublattice, which means in our case reducing the hybridization VB on sub-
lattice B. The development of the coherence temperature TA/B,c for sublattice
A respectively B, was of special interest, especially for VB → 0, i.e. sublattice
B is fully decoupled and we have effectively a system with half the number of
impurity sites. But again convergence problems prohibited calculations for VB
down to zero.
The numerical investigation revealed that it is possible to find two distinct

coherence scales, but not in all parameter regimes. Starting from the case of
equal sublattices with a relatively large initial coherence scale, we only find a
single energy scale which seems to be the same as for the homogeneous PAM
but with averaged parameters Ū = 1

2
(UA + UB) and V̄ = 1

2
(VA + VB). The

system develops one coherent Fermi liquid for both sublattices.
On the other hand we found critical values for the hybridization and the

Coulomb interaction, beyond which the picture of a single coherent Fermi
liquid failed. We observed that two independent energy scales emerge. The
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5. PAM on a bipartite lattice

coherence scale on the sublattice where the parameters are varied show a strong
influence on the parameter change. Whereas the coherence scale on the oppo-
site sublattice is essentially independent upon the parameter change.

In the extreme case of VB → 0 we can extrapolate the coherence scales
in Fig. 5.9 and assume that TB,c vanishes while TA,c stays constant. That
would mean in this limit again only one energy scale exists. But this is just
understandable, because for VB = 0 the impurities on sublattice B have no
influence on the system.

The convergence of the DMFT can be improved by using not only the last
hybridization function to calculate the next cycle, but to use a linear combi-
nation of the last n functions.

In this thesis we only scratched the tip of the iceberg. For example, it would
be interesting to know where the critical hybridization V c

B stems from. Or
in general, why two independent scales emerge. For example a simple second
order perturbation theory might shed some light on this issue.

It would also be interesting to extend this method to more than two sublat-
tices.
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6. DMFT for the two-impurity

Anderson model

In the last chapter we investigated a version of the PAM where we have the
possibility to decouple half of the impurities from the conduction band. This
was a first step to dilute the PAM towards the SIAM. In this chapter we develop
a DMFT approach for two-impurity Anderson models (2IAM). The results can
be compared to numerically exact NRG calculations which provides us with
the opportunity to test the viability of this approach. But the important point
is an easy expandability of this approach to multi-impurity systems which is
less demanding than a direct multi-impurity NRG calculation.

6.1. Introduction

We investigate the 2IAM for two different lattice structures exemplarily. The
first one is a semi-infinite chain of conduction electrons with two impurities
coupled to the same end of the chain. The second configuration is an infinite
chain where two impurities couple to different lattice sites with an even number
of sites separating the impurities. We start by setting up the self-consistency
equations for a general two-impurity Anderson model, then we derive the non-
interacting Green functions for the concrete models. Then we show the DMFT
results and compare the results for the second model to exact solutions from
NRG calculations. The two-impurity NRG calculations for the comparison
were performed by Dr. Andrew Mitchell. The NRG uses the z-trick with three
different z, at most 10.000 energy states and the density matrix method to
calculate dynamic quantities. Here also logarithmic Gaussians are used to
broaden the δ-peaks for the dynamic quantities.
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6. DMFT for the two-impurity Anderson model

6.2. Effective medium for the 2IAM

To set up the DMFT cycle we first calculate the effective medium for a general
two-impurity system, the impurities are labeled with A and B. Therefore we
adopt Eq. (C.2)

Geffii = Glat
ii +

∑
j

Glat
ij Σlat

jj Geffji −Glat
ii Σlat

ii Geffii .

The equations simplify due to the fact that there are only two impurity sites,
i.e. there are only four non-interacting Green functions Gαβ(z) and effective
mediums Geffαβ (z) and two self energies Σα(z), where α, β ∈ {A,B} refer to
impurity A and B.
Eq. (C.2) yields a system of coupled linear equations

GeffAA (z) = GAA(z) +GAB(z) ΣB(z)GeffBA (z)

GeffAB (z) = GAB(z) +GAA(z) ΣA(z)GeffAB (z)

GeffBA (z) = GBA(z) +GBB(z) ΣB(z)GeffBA (z)

GeffBB (z) = GBB(z) +GBA(z) ΣA(z)GeffAB (z)

which is solved to

Geffαα (z) =
1

1−Gᾱᾱ(z) Σᾱ(z)
×

× (Gαα(z) + Σᾱ(z) (Gαᾱ(z)Gᾱα(z)−Gαα(z)Gᾱᾱ(z))) ,

(6.1)

where α labels one impurity and ᾱ the residual one.
Thus the hybridization functions are

∆α(z) = z − εf − Σα(z)−
[
Geffαα (z)

]−1
.

Since both self energies contribute to each hybridization function, the DMFT
cycle follows exactly the scheme from Chap. 5, which is illustrated in Fig. 5.1.

6.3. Infinite chain

The first model we analyze consists of a one-dimensional, infinite conduction
band and the impurity sites couple to different conduction band sites and have
an even number of conduction band sites in between. Fig. 6.1 illustrates the
model with 2n conduction band sites between the impurities. For this model
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6.3. Infinite chain

right

t t t t t t t t

U, U,

t
V V

ε ε

00 −n −n

left

Figure 6.1.: A version of a one dimensional two-impurity Anderson model with an
infinite conduction band with hopping amplitudes t and the impurities couple to
different sites via a hybridization V with an even number of conduction band sites in
between. U is the on-site Coulomb repulsion and ε is the on-site energy per electron.
The model can be naturally divided into a left and a right part.

the Hamiltonian is

H =
∞∑

i=−n
σ,α

t
(
c†iσαci+1σα+ c†i+1σαciσα − µc†iσαciσα

)
+
∑
σ

t
(
c†−nσLc−nσR + c†−nσRc−nσL

)
+
∑
σα

V
(
f †σαc0σα + c†0σαfσα

)
+
∑
σα

εf †σαfσα +
∑
α

Uf †↑αf↑αf
†
↓αf↓α ,

(6.2)

where c(†)
iσα annihilates (creates) an electron on site i with spin σ and α ∈ {L,R}

labels the left or right hand site. Accordingly the f (†)
σα is the annihilation

(creation) operator for an electron at the left or right hand site with spin σ.
t is the nearest neighbour hopping amplitude, V the hybridization strength
between the impurity site and the conduction band, ε the on-site energy for
each electron on the f -level and U is the on-site Coulomb repulsion for a doubly
occupied impurity. The f-levels couple always to conduction band site zero,
and the number of conduction band sites in between the impurity sites is 2n.
For the DMFT equations we need the non-interacting Green functions

Gαβ = 〈〈fα; f †β〉〉z, with α, β ∈ {L,R} .

The spin indices are skipped as usual.
Performing a basis transformation to even and odd operators

c
(†)
i,e/o =

1√
2

(
c

(†)
iL ± c

(†)
iR

)
and

f
(†)
e/o =

1√
2

(
f

(†)
L ± f

(†)
R

)
,
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6. DMFT for the two-impurity Anderson model

the left and right hand site of the non-interacting Hamiltonian (6.2) decouple
to

H0 =
∞∑

i=−n
σ,α∈{e,o}

t
(
c†iσαci+1σα + c†i+1σαciσα −

µ

t
c†iσαciσα

)
(6.3)

+
∑

σ,α∈{e,o}

[
+εf †σαfσα + V

(
f †σαc0σα + c†0σαfσα

)]
(6.4)

+ t
(
c†−nσec−nσe − c†−nσoc−nσo

)
. (6.5)

Introducing Green functions for the even/odd-basis

Gγδ(z) = 〈〈fγ ; f †δ 〉〉z, γ, δ ∈ {e, o},

the non-interacting Green functions in the left/right-basis can be expressed as

GLL(z) = GRR(z) =
1

2
(Gee(z) +Goo(z)) and

GLR(z) = GRL(z) =
1

2
(Gee(z)−Goo(z)) .

Due to the decoupling of the Hamiltonian in the even/odd-basis, Geo(z) and
Goe(z) vanish. Employing the equations of motion (B.3) we find

[Gee(z)]−1 = z − ε− V 2

z + µ−X−n (z)−X(z)
and

[Goo(z)]−1 = z − ε− V 2

z + µ−X+
n (z)−X(z)

(6.6)

where X(z) is defined self-consistently and X±n (z) are continued fractions of
depth n

X(z) =
t2

z + µ−X(z)

X±n (z) =
t2

z + µ− t2

z+µ−... t2

z+µ±t

.

DMFT results for the infinite chain 2IAM

With the knowledge of the Green functions (6.6) and the self-consistency con-
dition (6.1) the DMFT method can be applied. Fig. 6.2 shows the resulting
spectral a) and hybridization b) function for V = 0.5, ε = −U/2 and t = 1.
Due to the symmetry of the Hamiltonian the results are only shown for one
impurity.
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6.3. Infinite chain
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Figure 6.2.: The spectral function a) and the hybridization function b) for the 2IAM
with an infinite chain and the impurities are separated by two conduction band sites
(compare to Fig. 6.1, n = 0). V = 0.5, ε = −U/2 and t = 1.

In the non-interacting case the spectral function is as expected symmetric
around the Fermi energy. But for increasing interactions it becomes asym-
metric and develops a peak around the Fermi energy. The inset shows an
enlargement around ω = 0.

The origin of the unphysical asymmetry in the impurity spectral function is
found in the hybridization function depicted in b). The inset shows the positive
frequency axis on a logarithmic scale. The peaks at the band energies ω ± 2

with its coarse resolution due to the logarithmic discretization are not causing
the unphysical behaviour. The problems stem from the negative double peak
close to ω = 0. Calculating the on-site- and hopping energies, εn and tn,
from the hybridization function for the NRG involves taking square roots, e.g.
see [25], which happen to be negative for negative spectral function values.
Therefore the DMFT cannot update the self energy and the method breaks
down.

The spectral- and hybridization functions in Fig. 6.2 for U = 0.1 and U = 0.2

thus do not show converged results. The simplest way to resolve this problem
is to cut off negative values. But after convergence the results had still all low
energy features cut off and the results are unimportant if correct at all.

Fig. 6.3 shows the spectral function a) and the hybridization function b) for
the 2IAM with an infinite chain. The impurities are separated by 22 conduction
band sites, V = 0.5, ε = −U/2 and t = 1. Of course the DMFT converged in
the non-interacting case. But it breaks down already for U = 0.2, with negative
sections in the effective hybridization. The inset depicts the hybridization
function on a logarithmic scale. It shows that the hybridization function for
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6. DMFT for the two-impurity Anderson model
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Figure 6.3.: The spectral function a) and the hybridization function b) for the 2IAM
with an infinite chain and the impurities are separated by 22 conduction band sites
(confer to Fig. 6.1, n = 20). V = 0.5, ε = −U/2 and t = 1.

U = 0.2 at ω = 0 is continuous.
At last we want to point out that the negative parts in the spectral function

are smooth and seem not to be numerical artifacts. We conclude that the non-
local parts of the self energy, which are missing in the DMFT approximation,
are important to capture the essential physics.

6.4. Semi-infinite chain

The second model we investigate is also one-dimensional, but the conduction
band is a semi-infinite chain with constant nearest neighbour hopping t, where
two impurities couple to the first site of the chain via a hybridization strength
Vα. The impurities have as usual an on-site Coulomb interaction Uα, which
energetically disfavours double occupation, and an on-site energy εα. The
second quantized Hamiltonian for this model is

H =
∞∑

i=0,σ

t
(
c†iσci+1σ + c†i+1σciσ

)
+

∑
α∈{A,B}

(∑
σ

[
Vα

(
c†0σfασ + f †ασc0σ

)
+ εαf

†
ασfασ

]
+ Uαf

†
α↑fα↑f

†
α↓fα↓

)
,

(6.7)

where c(†)
iσ is the annihilation (creation) operator for a conduction electron on

site i with spin σ and f (†)
ασ is the annihilation (creation) operator for an electron

on the impurity site α ∈ {A,B}. For convenience, the model is chosen to be
symmetric, i.e. VA = VB = V , εA = εB = ε and UA = UB = U . Fig. 6.4
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6.4. Semi-infinite chain
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ε

Figure 6.4.: Semi-infinite chain of non-interacting electrons with a nearest neighbour
hopping amplitude t. On the left hand site two identical impurity sites are coupled
to the chain with a hybridization strength V . On the impurity sites the electrons
experience an on-site energy ε and suffer an energy penalty U for double-occupation.

illustrates the semi-infinite chain model.
Using the equations of motion (B.3), the non-interacting Green functions of

the simplified version are

〈〈fα; f †α〉〉z = Gαα(z) =
1

z − ε− ∆̃(z)

〈〈fα; f †ᾱ〉〉z = Gαᾱ(z) =
∆̃(z)

z − εGαα(z) with

∆̃(z) =
V 2

z − V 2

z−ε − t2X(z)
=

V 2X(z)(z − ε)
z − ε− V 2X(z)

and

X(z) =
1

z − t2X(z)
,

where ᾱ = B if α = A and vice versa. We dropped the spin indices because
our calculations are performed in the paramagnetic phase.
Now we have all ingredients to do a full self-consistent DMFT calculation.
Adopting the Dyson equation

G−1 =
[
G0
]−1

− Σ , (6.8)

where the matrix form of the non-interacting Green function
[
G0
]−1

and the
local self energy Σ are

G0 =

(
GAA GAB

GBA GBB

)
and Σ =

(
ΣAA 0

0 ΣBB

)
,

we can calculate the full interacting Green functions for the impurity sites.

DMFT results for the semi-infinite chain 2IAM

Fig. 6.5 depicts the spectral function a) and hybridization function b) for the
2IAM for V = 0.5, ε = −U/2 and t = 1. Obviously the DMFT breaks down
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6. DMFT for the two-impurity Anderson model
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Figure 6.5.: The spectral function a) and the hybridization function b) for the 2IAM
with a semi-infinite chain computed with the DMFT. V = 0.5, ε = −U/2 and t = 1.
Fig. c) compares the spectral functions from exact NRG calculations with (NRG)
and without (DMFT) the non-local self energy components. Here U = 0.3, V = 0.08,
ε = −U/2 and t = 0.5.
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6.4. Semi-infinite chain

due to negative parts in the hybridization function. Thus the spectral function
shows the unphysical asymmetry. Fig. c) compares the spectral functions
AAA(ω) and AAB(ω), calculated from exact NRG self energy results, with
(black and green line) and without (red and blue line) the off-diagonal self
energy contributions with parameters U = 0.3, V = 0.08, ε = −U/2 and t =

0.5. Obviously, the diagonal and the off-diagonal spectral functions are missing
the resonance at the Fermi energy in the local self energy approximation used in
the DMFT. Thus we conclude that the failure of the DMFT is originated in the
negligence of the off-diagonal terms ΣAB = ΣBA in the DMFT approximation.
A solution for this problem is to perform again a basis transformation to

even and odd operators

f
(†)
e/o =

1√
2

(
f

(†)
A ± f

(†)
B

)
c

(†)
i,e/o =

1√
2

(
c

(†)
iA ± c

(†)
iB

)
.

The Dyson equation simplifies to

G−1 =

(
Gee 0

0 Goo

)−1

−
(

Σee 0

0 Σoo

)
, (6.9)

where GLL = GRR = Gee + Goo and GLR = GRL = Gee − Goo. Important is
that the self energy has a diagonal form in the new basis. The off-diagonal
self energies are absorbed into Σee = ΣLL + ΣLR and Σoo = ΣLL − ΣLR. The
self-consistency conditions are

∆α = z − ε− Σα −
[
Geffα

]−1 with

Geffα =
Gα −GαGᾱ Σᾱ

1−Gᾱ Σᾱ

,
(6.10)

where ᾱ = oo if α = ee and vice versa. Even though the Dyson equation Eq.
(6.9) seem to decouple, the DMFT equations do not because both self energies
contribute in the effective hybridization function ∆α (6.10).
Fig. 6.6 shows the NRG and DMFT results in the even/odd-basis. In a) the

even and odd spectral functions Aee(ω) and Aoo(ω) computed with the NRG
are compared to results from the DMFT for U = 0.3, V = 0.08, ε = −U/2
and t = 0.5. Figure b) depicts the corresponding hybridization functions. All
spectral functions show the same high energy features at roughly ±U/2. The
even spectral functions show a qualitative agreement, but the DMFT result
is smaller and has a broader quasiparticle peak at the Fermi energy than the
NRG result. The odd spectral functions are in good quantitative agreement
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6. DMFT for the two-impurity Anderson model

-0.4 -0.2 0 0.2 0.4
ω

0

10

20

30

40
A

(ω
)

Aee
NRG(ω)

Aee
DMFT(ω)

Aoo
NRG(ω)

Aoo
DMFT(ω)

a)

10-9 10-6 10-3 1
0

10

20

30

40

Aee
NRG(ω)

Aee
DMFT(ω)

Aoo
NRG(ω)

Aoo
DMFT(ω)

-1 -0.5 0 0.5 1
ω

0

0.2

0.4

0.6

∆(
ω

)

∆ee(ω)
∆oo(ω)

b)

10-6 10-3 10

0.2

0.4

0.6

∆ee(ω)
∆oo(ω)

Figure 6.6.: a) Numerically exact (NRG) and approximated (DMFT) even and odd
spectral functions for the 2IAM with U = 0.3, V = 0.08, ε = −U/2 and t = 0.5. b)
shows the converged even- and odd spectral functions.

except for 0.001 . ω . 0.1, where the NRG result shows a very broad and
relative small peak structure which is completely absent in the DMFT. Finally
the hybridization function in Fig. b) is positive in the whole support and the
DMFT converged.

6.5. Conclusions

In this chapter we have performed DMFT calculations for two different 2IAM’s.
We observed that unphysical negative values in the hybridization function usu-
ally led to a breakdown of the DMFT calculations. For the second model we
performed also NRG calculations which provided us with the full self energy
Matrix. We observed from comparison of the spectral functions, computed
from the self energy from the NRG, that the negligence of the off-diagonal
self energy contributions lead to wrong low energy physics. Without the off-
diagonal self energy contributions the Kondo resonance at ω = 0 vanishes.
This suggests that the local self energy approximation, central to the DMFT,
neglects important interactions between the two impurities and thus produces
unphysical negative values in the hybridization function, resulting in the break-
down of the DMFT.

A basis transformation for the second model, such that the Dyson equation
becomes diagonal, and rewriting the self-consistency equations in terms of
the Green functions for the new basis turns out to reduce the problems we
encountered so far. The hybridization function stays positive and the DMFT
converges. The resulting Green function is in qualitative agreement with the
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6.5. Conclusions

the numerical exact results from the NRG calculations.
We showed that it is possible to capture the essential physics of the 2IAM

within the DMFT. In future work this method could be extended in several
ways. Our calculations concentrated on models with a high symmetry, where
a simple basis transformation to an even/odd-basis removed off-diagonal self
energy terms, such that the self energy became diagonal. This is not possible
for two inequivalent impurities. Another possibility is to extend this method
to multi-impurity models or change the geometry of the bath.
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A. f-band Green function for

the PAM

To apply the DMFT calculations for the PAM we need the self-consistency
equation for the given Hamiltonian (3.1), i.e. especially the local f-band Green
function. We want to use the results for the Hubbard model (see Chap. 3.4),
so we just integrate out the conduction band degrees of freedom of the PAM.
We start out with an action representation for the Hamiltonian of the PAM

in the grand canonical ensemble in k-space and using Matsubara frequencies.
Assuming the self energy is known, the action is

SPAM [χ̄, χ, φ̄, φ] =
∑
k,n,σ

[
χ̄k,n,σ (−iωn + εk − µ)χk,n,σ+

+ φ̄k,n,σ

(
−iωn + εf + Σ(k, iωn)

)
φk,n,σ+

+ V
(
χ̄k,n,σφk,n,σ + φ̄k,n,σχk,n,σ

) ]
.

The action can be rewritten as

SPAM [χ̄, χ, φ̄, φ] =
∑
k,n,σ

[
χ̄k,n,σ (−iωn + εk − µ)χk,n,σ+

+ φ̄k,n,σ

(
−iωn + εf + Σ(k, iωn)− V 2

−iωn + εk − µ

)
φk,n,σ

]
where the fields for the conduction band have been rescaled to

χ̄k,n,σ → χ̄k,n,σ + φ̄k,n,σ
V

−iωn + εk − µ
and

χk,n,σ → χk,n,σ +
V

−iωn + εk − µ
φk,n,σ.

Integrating out the conduction band degrees of freedom, the effective action is

Seff [φ̄, φ] =
∑
k,n,σ

φ̄k,n,σ

(
−iωn + εf + Σ(k, iωn) +

V 2

iωn − εk + µ

)
φk,n,σ

and the f-band Green function after analytical continuation, iωn → z = ω+ iδ,
is

Gf (k, z) =
1

z − εf − Σ(k, z)− V 2

z−εk+µ

.
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A. f-band Green function for the PAM

Introducing again the DOS ρ(ε) =
∑

k δ(ε− εk) and using the locality of the
self energy the local f-band Green function for the PAM is

Gf (z) =

∫ ∞
−∞

ρ(ε)

z − εf − Σ(z)− V 2

z−ε+µ

dε , (A.1)

and the self-consistency condition is

∆(z) = z − εf − Σ(z)−
[
Gf (z)

]−1
.
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B. Equation of motion and the

conduction band Green

function for the PAM

The retarded Green function for a given Hamiltonian H(ck,σ, c
†
k,σ) consisting

of creation and annihilation operators c†k,σ, ck,σ with momentum k and spin σ
is defined as

Gσ(k, z) = 〈〈ck,σ; c†k,σ〉〉z, (B.1)

with

〈〈A;B〉〉z := −i
∫ ∞
−∞

Θ(t)eizt〈[A(t), B]η〉dt (B.2)

where Θ(t) is the Heaviside theta-function, η = ± for fermions/bosons, A,B
are operators, where A(t) refers to the Heisenberg representation and z =

ω + i0+ is a frequency with an additional convergence-generating factor. The
expectation value 〈. . . 〉 is as usual

〈. . . 〉 =
Tr(. . . exp(−β(H − µN)))

Tr(exp(−β(H − µN)))
.

Using Eq. (B.1), (B.2) and the equations of motion (EOM) Eq. (B.3)

〈[A,B]η〉 = z〈〈A;B〉〉z + 〈〈[H,A]− ;B〉〉z
= z〈〈A;B〉〉z − 〈〈A; [H,B]−〉〉z

(B.3)

we are able to establish a connection between the Green function for the im-
purity band Gf

σ(k, z) = 〈〈fk,σ; f †k,σ〉〉z and the conduction band Gc
σ(k, z) =

〈〈ck,σ; c†k,σ〉〉z of the periodic Anderson model (3.1):

Gc
σ(k, z) =

1

z − εk + µ
+

V 2

(z − εk + µ)2
Gf
σ(k, z)

=
1

z − εk + µ− V 2

z−εf−Σ(k,z)

85



Using the locality of the self energy and the DOS ρ(ε), the local spin-independent
conduction band Green function for the periodic Anderson model is

Gc(z) =

∫ ∞
−∞

ρ(ε)

z − ε+ µ− V 2

z−εf−Σ(z)

dε. (B.4)



C. A further DMFT

self-consistence scheme

In the following we introduce another way to compute the self-consistent
DMFT equations which is more adapted for our purpose. The ideas are brought
forward by Priv.-Doz. Dr. Ralf Bulla.
In Chap. 3 we learned that in the limit of infinite dimensions a given lattice

model can be mapped onto a single impurity Anderson model. In this case
there exists a SIAM with a self energy ΣSIAM(z) exactly the same as for the
lattice model Σlat

ii (z). Viewed as a functional, the lattice model self energy
can be considered as the single impurity model in terms of a given effective
medium Geff (z),

Σlat
ii (z) = ΣSIAM [Geff (z), U, T ], (C.1)

where U and T are the Coulomb interaction and the temperature of the system.
This functional dependence can be understood by writing down the diagrams
for the SIAM and the lattice model.
First take a look at the single impurity model. After integrating out the

conduction band degrees of freedom of the SIAM the impurity Green function
is purely local and thus the diagrammatic representation of the self energy
ΣSIAM(z) carries no spatial indices. Fig. C.1 a) shows first, second and fourth
order contributions to the self energy of the SIAM. The full lines represent the
non-interacting Green functions GSIAM

0 and the dotted lines the interaction
vertex.
On the other hand Fig. C.1 b) shows the diagrammatic expansion of the lat-

tice self energy Σlat
ij . As explained in Chap. 3.4 only local diagrams contribute

to the self energy of a given lattice model with infinite coordination number.
Thus we only need to consider a local self energy Σlat

ij = Σlat
ii δij. The straight

lines here represent the non-interacting Green functions of the lattice model
Glat
ij . The dotted lines represent the interaction vertices at site i. The differ-

ence between a) and b) is that the self energy of the SIAM consists of purely
local terms while the lattice self energy contains non-local virtual processes.

87



ΣSIAM = + + +
+ . . .

a)

Σlat
i = + + + + . . .

i i i i

ii

j j

j j

i i

i i

b)

Figure C.1.: First, second and fourth order contributions to the self energy ΣSIAM of
the SIAM and the self energy Σlat of the given lattice model. Straight lines represent
the non-interacting Green functions and the dotted lines the interaction term of the
corresponding model.

From the diagrammatic evaluation it can be seen that the lattice self energy
can be reproduced by the self energy of the SIAM if we replace GSIAM by an
appropriate effective medium Green function

Geffii = Glat
ii +

∑
j

Glat
ij Σlat

jj Geffji −Glat
ii Σlat

ii Geffii . (C.2)

Then Eq. (C.1) applies because the first two terms on the right hand site
reproduce all the non-local diagrams of the lattice and the third term corrects
the over counting of the contributions of the local diagrams, which are already
included in ΣSIAM in Fig. C.2 a).
With Eq. (C.2) we can calculate the effective medium for a given lattice

model. Assuming we have calculated the effective medium for the lattice
model, we have learned in Chap. 3 that the corresponding SIAM is com-
pletely determined by the hybridization function, which can be determined
using Eq. (3.11). With Geff we can calculate the hybridization function which
determines the effective SIAM for the lattice problem via

∆SIAM(z) = z − εf −
[
Geff (z)

]−1
.



The index i has been skipped because the lattice problem is translational
invariant.





D. DMFT for the bipartite PAM

To solve the self-consistency equation for the bipartite PAM (Chap. 5) we
adopt the method described in Appendix C, which means we have to solve

Gij = Gf
ij +

∑
lj

Gf
ilΣllGlj −Gf

ijΣjjGjj (D.1)

for the effective medium Gij between site i and j, where Gf
ij is the non-

interacting Green function for the f-electrons and Σjj the local self energy.
The spin indices are skipped.

A Fourier transformation in i and j yields

Gkq = Gf
kq +

∑
ijl

eikRi−iqRjGf
ilΣllGlj︸ ︷︷ ︸

=F 1
kq

−
∑
ij

eikRi−iqRjGf
ijΣjjGjj︸ ︷︷ ︸

=F 2
kq

. (D.2)

In section D.1 the non-interacting Green function is calculated using the equa-
tions of motion (see B.3). Then, in D.2, the effective medium for sublattice A
and B is calculated.

D.1. The non-interacting Green function

The full Hamiltonian for the PAM on a bipartite lattice is (see Chap. 5)

H =
∑
〈ij〉,σ

tij c
†
iσcjσ +

∑
iσ

(
εc c
†
iσciσ + εif f

†
iσfiσ +

1

2
Ui n

f
i↑n

f
i↓ + Vi c

†
iσfiσ + h.c.

)
(D.3)

and the Green function for a given Hamiltonian can be calculated via the
equations of motion (eom) (B.3).

In order to adopt the eom to the given Hamiltonian a Fourier transformation

fkσ =
1√
N

∑
j

fjσe
ikRj fjσ =

1√
N

∑
k

fkσe
−ikRj (D.4)
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is performed. And since only the non-interacting Green function is necessary,
the interaction term

∑
i Ui n

f
i↑n

f
i↓ can be neglected.

H =
∑
k,σ

(εk + εc)c
†
kσckσ

+
∑
kq,σ

f †kσfqσ
∑
i

εife
i(k−q)Ri

+
∑
kq,σ

(c†kσfqσ
∑
i

Vie
i(k−q)Ri + h.c.)

(D.5)

The middle term (analogue for the last term) of Eq. D.5 can be rewritten as

∑
i

εife
i(k−q)Ri =

εfA + εfB
2

∑
i

ei(k−q)Ri +
εfA − εfB

2

∑
i

ei(k−q)Ri−iQRi

where the factor exp(−iQRi) with Q = (π, . . . , π) is responsible to choose the
correct sublattice. In this case the origin of the lattice is placed in sublattice
A. We define

ε̄f =
εfA + εfB

2
, ∆εf =

εfA − εfB
2

, V̄ =
VA + VB

2
, ∆V =

VA − VB
2

and knowing that ∑
i

ei(k−q)Ri = δk,q

the Fourier transformation of Eq. D.5 is

H =
∑
k,σ

[
(εk + εc)c

†
kσckσ

+ε̄f †kσfkσ + ∆εf †kσfk+Qσ + (V̄ c†kσfkσ + ∆V c†kσfkσ + h.c.)
]
.

(D.6)

With Hamiltonian D.6 and the eom (Eq. B.3) we can derive a system of linear
equations

z � fk, f
†
q �z = δkq + ε̄� fk, f

†
q �z +∆ε� fk, f

†
q+Q �z

+ V̄ � fk, c
†
q �z +∆V � fk, c

†
q+Q �z

z � fk, c
†
q �z = (εq + εc)� fk, c

†
q �z

+ V̄ � fk, f
†
q �z +∆V � fk, f

†
q+Q �z



and therefrom deduce the non-interacting Green function

� fk, f
†
q �z = Gf,A

kq = −G1,f,A
kq δkq −G2,f,A

kq δkq+Q

G1,f,A
kq =

(V 2
A + V 2

B)(zcq + zcq+Q) + 2(εA + εB)zcqz
c
q+Q − 2VAVB(εq − εq+Q)− 4zzcqz

c
q+Q

4zAzBzcqz
c
q+Q + 4V 2

AV
2
B − 2(zAV 2

B + zBV 2
A)(zcq + zcq+Q))

G2,f,A
kq =

(V 2
B − V 2

A)(zcq + zcq+Q)− 2zcqz
c
q+Q(εA − εB)

4zAzBzcqz
c
q+Q + 4V 2

AV
2
B − 2(zAV 2

B + zBV 2
A)(zcq + zcq+Q))

(D.7)

where we introduced the abbreviations

zcq = z − εq − εc,
zA = z − εA and

zB = z − εB.

The calculation for the Green function where the origin of the lattice is on
sublattice B follows analogous to that of sublattice A:

� fk, f
†
q �z = Gf,B

kq = −G1,f,B
kq δkq −G2,f,B

kq δkq+Q

G1,f,B
kq =

(V 2
A + V 2

B)(zcq + zcq+Q) + 2(εA + εB)zcqz
c
q+Q − 2VAVB(εq − εq+Q)− 4zzcqz

c
q+Q

4zAzBzcqz
c
q+Q + 4V 2

AV
2
B − 2(zAV 2

B + zBV 2
A)(zcq + zcq+Q))

G2,f,B
kq =

(V 2
A − V 2

B)(zcq + zcq+Q)− 2zcqz
c
q+Q(εB − εA)

4zAzBzcqz
c
q+Q + 4V 2

AV
2
B − 2(zAV 2

B + zBV 2
A)(zcq + zcq+Q))

(D.8)

D.2. Self-consistency equation

Effective medium for sublattice A

Since the self energy Σll is assumed to be purely local, we can rewrite F1 and
F2 of Eq. D.2 to:

F 1
kq =

∑
ijl

eikRi−iqRjGf
il

1

2

[(
1 + eiQRl

)
ΣA +

(
1− eiQRl

)
ΣB

]
Glj (D.9)

=
∑
ijlm

eikRi−iqRjGf
ilδlm

1

2

[(
1 + eiQRm

)
ΣA +

(
1− eiQRm

)
ΣB

]
Gmj (D.10)

In the second line we introduced an additional one, written as a sum over
Kronecker-Deltas. Here the origin of the lattice is on sublattice A and Q =

(π, . . . , π)T . Rewriting the Kronecker-Delta to

δlm =
∑
p

e−ip(Rl−Rm) (D.11)



we get

F 1
kq =

∑
p

(
Gf,A
kp Σ̄Gpq +Gf,A

kp ∆ΣGp+Qq
)
, (D.12)

with Σ̄ =
1

2
(ΣA + ΣB), ∆Σ =

1

2
(ΣA − ΣB).

In the same way F 2
kq can be calculated to

F 2
kq = Gf,A

kq

(
Σ̄Ḡ + ∆Σ∆G

)
+Gf,A

kq+Q

(
Ḡ∆Σ + Σ̄∆G

)
, (D.13)

with Ḡ =
1

2

(
GA + GB

)
, ∆G =

1

2

(
GA − GB

)
and

Gjj =

 GA, if j ∈ sublattice A

GB, if j ∈ sublattice B
.

Gkq = Gf,A
kq +

∑
p

(
Gf,A
kp Σ̄Gpq +Gf,A

kp ∆ΣGp+Qq
)

+Gf,A
kq

(
Σ̄Ḡ + ∆Σ∆G

)
+Gf,A

kq+Q

(
∆ΣḠ + Σ̄∆G

) (D.14)

From Sec. D.1 we know that the non-interacting Green function is not diagonal
in momentum space, more precisely:

Gf,A
kq = G1,f,A

k δkq +G2,f,A
k+Q δkq+Q (D.15)

⇒ Gk0

(
1−G1,f,A

k Σ̄−G2,f,A
k+Q ∆Σ

)
= Gk+Q0

(
G2,f,A
k+Q Σ̄ +G1,f,A

k ∆Σ
)

+
(
G1,f,A
k +G2,f,A

k+Q

) (
1− ΣAGA

) (D.16)

Now shifting k in Eq. D.16 to k+Q and inserting the result in Eq. D.16 again
and doing an inverse Fourier transformation at site 0, i.e. just a sum over k,
the effective medium for sublattice A is

G00 = GA =
1(∑

k G̃
A
k

)−1

+ ΣA

, (D.17)

where
G̃A
k =

εkVAVB − zc V 2
B + zB (z2

c − ε2
k)

V 2
AV

2
B − zczAV 2

B − zczBV 2
A − zAzB(z2

c − ε2
k)

and

zA = z − εA − ΣA

zB = z − εB − ΣB

zc = z − εc .



Effective medium for sublattice B

The calculation for the effective medium for sublattice B is essentially the same
as before. The only difference now is that the origin of the lattice is chosen to
be on sublattice B. Thus analogue to Eq. D.10 we get

F 1
kq =

∑
ijlm

eikRi−iqRjGilδlm
1

2

[(
1− eiQRm

)
ΣA +

(
1 + eiQRm

)
ΣB

]
Gmj

=
∑
p

(
GkpΣ̄Gpq −Gkp∆ΣGp+Qq

)
and

F 2
kq =Gkq

(
Σ̄Ḡ + ∆Σ∆G

)
−Gkq+Q

(
Ḡ∆Σ + Σ̄∆G

)
.

And the effective medium for sublattice B finally is

GB =
1(∑

k G̃
B
k

)−1

+ ΣB

, (D.18)

where
G̃B
k =

εkVAVB − zc V 2
A + zA (z2

c − ε2
k)

V 2
AV

2
B − zczAV 2

B − zczBV 2
A − zAzB(z2

c − ε2
k)
.
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