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Kurzzusammenfassung

Der Basissatzsuperpositionsfehler (BSSE) stellt eingsgd@3ten Hindernisse in
guantenchemischen Berechnungen dar, die eine genauehBengcvon Wechsel-
wirkungsenergien anstreben. Die Bedeutung eines BSSHri#imngsverfahrens ist
unter anderem darin begriundet, dass der BSSE in der Grdf$emay der zu berech-
nenden Wechselwirkungsenergie liegen kann und daher diausgkeit dieser sig-
nifikant beeintrachtigt.

In der vorliegenden Arbeit werden neue Ansatze vorgestetitden BSSE in wellen-
funktionsbasierten quantenchemischen Rechnungen aemgraBlekularen Clustern
effizient zu eliminieren. Die Anwendbarkeit der Methodenreaiausfihrlich unter
anderem an Wasser Clustern diskutiert, deren Gro3e sicleimem Wasser-Dimer
bis hin zu einem (KO),o Cluster erstreckte. Eine Ubersicht Gber die in der Lite-
ratur bekannten BSSE Eliminierungsverfahren wird ebéntidrgestellt und die hier
vorgestellten Methoden werden damit verglichen.

Die neu vorgestellten Verfahren bieten mit nur geringenai3en in der Genauigkeit
der Rechnungen einen sehr effizienten Weg BSSE korrigiedgehgélwirkungsen-
ergien zu erhalten, welche sogar teilweise mit den verfiggb&tandardmethoden auf-
grund der Systemgrol3e nicht mehr zuganglich wéaren.

Vil






Abstract

The basis set superposition error (BSSE) is one of the mbgiaole occuring in quan-
tum chemical calculations which aim at a accurately prexzhadf interaction energies.
The importance of a BSSE elimination procedure is among oiiregs manifasted by
the fact, that the magnitude of the BSSE can be as large astdradtion energy itself,
affecting the accuracy of the calculated interaction eesrtherefore significantly.

In this work new approaches to eliminate the BSSE efficiefrtyn wavefunction
based quantum chemical calculations on large moleculatertsi are presented. The
applicability of these schemes is studied in great detadragothers on a water clus-
ter series ranging in size from a water dimer up to even®{k water cluster. An
overview of the correction schemes known from the litemtisralso given and the
newly developed schemes are compared with the literaties.on

The presented schemes allow to account with only small losscuracy very effi-
ciently for BSSE corrected interaction energies, whichgaely no more feasible to
calculate with standard methods due to the large system size
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Chapter 1

Introduction

For the accurate evaluation of weak intermolecular inteyas one has to apply high
level quantum chemical methods such as the coupled-clg@&®rapproach or Mgller-
Plesset (MP) perturbation theory. The main drawback of thesfunction-based cor-
relation methods is the strong dependence of their demacohoputational resources
on the size of the one-particle basis set. For small clustexse calculations can be
done routinely with commercially available quantum cheahaoftware, however for
large clusters in combination with large basis sets - whiehckearly necessary for
an accurate description - the application of CCSD(T) or é¥€%$D becomes quickly
very time consuming or impossible at all. Even the calcalaiof error measures
such as the basis set superposition error (BSSE, vide ind@@mes a difficult task for
large clusters. In this work different approximations te@mt for the BSSE correc-
tions for large clusters at high correlation level are idtroed and compared among
each other with respect to their efficiency. Furthermorartbeemental scheme, which
is a method from the large field of the so-called local cotir@hamethods is applied to
account for correlation energies of large water clustera@hdr systems.






Chapter 2

Theory

2.1 Methods of Quantum Chemistry

2.1.1 Hartree-Fock Theory

The Schrodinger equation 2.1 (here in its time-indepenfbent):
HU = EU, (2.1)

is not soluble in closed form for the most systems of chemit&@rest. Thus it is
therefore necessary to introduce approximations. Theeétafock (HF) [1,2] approx-
imation is central to computational chemistry, its outcamexploited as the starting
point for an more accurate solution to the Schrédinger eguatVithin the HF theory
as described below relativistic effects are neglected hadBbrn-Oppenheimer (BO)
approximation is used, treating the nuclei as stationanycss of electrostatic fields.
From the BO model follows, that the nuclear kinetic energyaglected, correlation in
the attractive electron-nuclear potential term is elintedaand the repulsive nuclear-
nuclear potential energy terf, (vide infra, Eq. 2.3) becomes constant for a given
geometry. Thus for the electronic Schrédinger equation:

[:Iellpel - E\pela (22)

the electronic Hamiltonian for a n-electron wave functi@m de written in terms of
one-, two-, zero-electron terms as:

Hy=> hi+> G+ ho (2.3)

1<j

5



6 CHAPTERZ2 THEORY

and reads in atomic units (a.u.) with the omission of thear&dditive constank, for
fixed nuclear positions:

. L LUy AN |
HGIZ_ZEV?_ZZZﬁZE' (2.4)
7 ) I 1<J
In the HF theory [3] the electronic wave function, descrgpthe ground state of an
n-electron system is approximated by a single Slater détermh (SD). A SD is an
antisymmetrized product of one-electron wave functiotiedapin orbitalsp;, which
depend upon spatial coordinates= {x;, y;, z;} and a spin pard or 3:

Uy = CAO = CA] [ wili). (2.5)
i=1

The normalization constant C equdls!)z when the spin orbitals are orthonormal
(vide infra, Eq. 2.10)A is the antrisymmetrize operator and the one-electron wave
function productO is called Hartree product. Eq. 2.5 satisfies two fundamestal
guirements of quantum mechanics. First the indistingunsitaof electrons is ensured
and second the wave function is antisymmetric with respestterchange of the co-
ordinates of any two electrons. The second statement is kiagvthe Pauli principle,
the crucial quantity in Eq. 2.5 regarding the Pauli exclosgthe antrisymmetrizer:

n!

A= (—1)h, (2.6)

k=1

where the sum runs over the possible Hartree product®; is the permutation op-
erator and —1)P* describes the parity of the k-th permutation (equals eithef -1,
depending on whether an even or odd number of permutatidhiseviecessary).
The variational method [4] is utilized to solve Eq. 2.2 appmoately, for arbitrary
functions® we have: .
(O|Hy|P)
(®|®)

with E, being the exact ground state energy. Minimizatiorfi®] for a reasonable
ansatzd leads to a approximate ground state energy, which is langer loest case
equal toE,. If the energy functional (i.e., the expectation value)tatisnary with

respect to all possible variationg in the function®, then® is the searched solution:

E[®] = > . (2.7)

53 E[®] = 0 (2.8)

Having selected a single determinant trial wave functiba,ariational principle can
be then applied to derive the HF equations by minimizing tieetation value with
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respect to the choice of spin orbitals:
min : Eo[{gi}] = (Wo| Hu|Wo) (2.9)

Choosing the spin orbitals to be orthonormal:

/ @i pdT = bij (2.10)

one can evaluate the matrix elements over one- and twor@teoperators using the
Slater-Condon rules [5]. The expectation value from Eq.n2a§ be simplified to:

n

(Wol Hal Wo) = Y_(pilhler) + 5 Z(%mgwmﬂ (orpsldleson))
i=1

n

= (pilhle) + 5 Z%IJ K;jlp:)

i=1 2,]

(2.11)

The eIectron electron interaction are represented viaCkblelombj and exchange
operatork;, both defined by their effects when operating on a spin drbita

Ji(1)pi(1) = U %d@} ©i(1) (2.12)
K;(1)gi(1) = [/ %d@)} ©;(1) (2.13)

Note that the Coulomb interaction will always survive spitegration, whereas the
exchange interaction only occurs between electrons hdkimgame spin, the motion
of electrons with parallel spins is therefore said to bealated:

Applying the variational principle to the energy expressitom Eq. 2.11 yields the
HF equations:

D+ 3 [50) = K] ¢i(1) = i), (2.14)
j
where the Fock operator for electron (1):

F(1) = h(1) + )+ Z [j ~ K], (2.15)

is the sum of the core-Hamiltonian operatgl) and an effective one-electron po-
tential operator called the HF potentidf 7. The HF equations 2.14 may be written
as:

FWei(1) = epi(1), (2.16)

1Since the one-electron operator in case of the nonrelativigmiltonian does not depend on spin,
spin integration also does not change the values of onéreteintegrals.
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which is an eigenvalue equation with the spin orbitals asrdignctions and the en-
ergy of the spin orbitals as eigenvalues. The complicategyreectron problem has
been replaced by a one-electron problem in which the elealectron repulsion is
accounted for in an average fashion. Each electron is cereido be moving in the
field of the nuclei and the average field of the other (n-1)tebes, therefore the HF
method is referred to as a mean-field approximation.

Roothaan [1,2] described matrix algebra equations thatipexd HF calculations to be
carried out using a basis set approximation for the unknowiteaular orbitals (MO).
Each MOy;(r) is expanded in terms of known basis functiongr), conventionally
called atomic orbitals (MO=LCAO, Linear Combination of Atec Orbitals):

pi(f) =D cuixu(r) i=1,2,..K (2.17)

If the set{y, } was complete (infinite number of basis function), this wduddan exact
expansion. As the basis set approaches completeness, proacipes the HF-limit
(numerical HF solution), what is for practical computafbneasons not reachable.
Substituting the linear expansion 2.17 into the HF equa2d® and multiplying by
x5 on the left and integrating turns the coupled integro-déffgial HF equations into:

Z Fuucyi =€ Z Suucuia (218)

which are known as Roothaan equations. The entire set ofiegaa&an be written as
the single matrix equation:
FC = SCe. (2.19)

The S matrix contains the overlap of basis function, the Fock rdfris the matrix
representation of the Fock operator and depends on the ExparoefficientsC:
F = F(C). (2.20)

The Roothaan equations are therefore nonlinear and theltod® solved iteratively.
In order to find the eigenvectofS and eigenvalues by diagonalizingF, the gener-
alized matrix eigenvalue Eq. 2.20 should be transformeal antonventional form.
That means the overlap matrix must be unity, which is ensuiteeh a transformed
set of basis functions form an orthonormal set. One can @aaosal and nonsingular
transformation matrix such thatX” SX=1 and obtain:

FC = Ce with: F=XTFX and C=X"!C, (2.21)

where the matiXX defines an orthonormal basjs, } expanded in the original basis

) B
6 (r) =Y xu(1) X, (2.22)
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Before the self-consistent field (SCF) procedure is camwigd the basis functions are
orthogonalized by exemplary symmetric or canonical ortimadization procedure [5].

During the SCF iteration one employs MO coefficients fromevjmus iteration as an

orthonormal basis set.

2.1.2 Perturbation Theory

Another theory framework besides the variational prireiplsed to solve the
Schrddinger equation 2.1 is the so-called perturbatioorthéPT) [2, 6]. The cru-
cial characteristic within PT is that a solution of an appnoate Schrédinger Eq. is
known:

Hy®; = E;®; i=0,1,2,..00 , (2.23)

and that this solution differs only slightly from the exacteo The exact Hamiltonian
H is divided into a reference or unperturbed Hamilton operatpand a perturbation
operatord’:

H = Hy+ \H', (2.24)

H, should closely represent the true Hamiltonian and for whighsolutions form a
complete set as indicated in Eq. 2.23. The perturbationabpef’ should capture
only a small fraction of the true Hamiltonian, so that thetpdyation becomes small,
in Eq. 2.24) is a dimensionless parameter that, as it varies from 0 to pstHa into
H'. The energy and wavefunction of Eq. 2rlare expanded in form of a Taylor series
in powers of the perturbation parameter:

E=E9 4+ E®D £ N2E@ 4 4 \2E® 4 (2.25)

U =00 4 AW 4 N20@ 4 \d® 4 (2.26)

where E®) and®® are the p-th order correction to the reference enétgy and the
reference wavefunctio®® of the unperturbed system. Inserting Egs. 2.24, 2.25 and
2.26 into the Schrddinger equation yields:

(Hy + M H') (@O + 200 + ) = (BO + AED 4 ) (@@ 4 x0o® + ) (2.27)

Since all terms in 2.27 are linearly independent, we carecbterms with the same
power of\ to:

P
(E(O) . go)q)(p) _ (lﬁ]/ _ E(l))q)(p—l) _ ZE(k)q)(p—k) (2.28)
k=2

Eq. 2.28 may be further simplified if intermediate normaiza (the overlap of the
perturbed with unperturbed wave function is equal to unisysupposed, which is
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equivalent with:
(@00 =1 (@9p®)y =0 forall p>0 (2.29)
and Eq. 2.28 may be simplified to:
E® = (O H'|oP-D), (2.30)

Since the solutions 2.23 to the unperturbed system 2.28¢tadro order) generate a
complete set of functions, one can expand the unknown higyiger correction to the
wave function in terms of these known functions:

oM =3 ", (2.31)
The first-order energy correction can now be evaluated aedual to the expectation
value of the perturbation operator over the unperturbecevianction:

EW = (0| H'19O). (2.32)

The major outcome is that the higher order correction - teetiergy and wavefunction
- may also be expressed in terms of matix elements of therpattan operator over
unperturbed wave functions.

Mgller and Plesset suggested using the sum over Fock opefatahe unperturbed
Hamiltonian:

=S4 = (et 0, - ) = S+ S ) = S 2
(2.33)
in which the (average) electron-electron repulsion is tediwice. The perturbation
operator returns the correct (electronic nonrelativjsti@miltonian and is therefore set
to be the exact electron-electron repulsion opergtominus twice the(f/ee) operator
(which captures electron-electron repulsion as computech summing over Fock
operators):

H=H-Hy=Y > g- ZZ (915) = Vee = 2(Vie)- (2.34)
i >

Since the zeroth-order wave function is the HF determirtaetzeroth-order energy in
MP theory is the sum of MO energies:

Effp = (0©[Hp|0®) = °>|Zf|<1>°> => e (2.35)

7
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And the first-order energy correction is the negative of ther@ounted electron-
electron repulsion:

Epp = (O H'|00) = (V..) — 2(Vee) = —(Ve). (2.36)

Thus the HF energy is the energy corrected through firstrandelgller-Plesset per-
turbation theory, exactly the sum of Eqgs. 2.35 - 2.36. Etectiorrelation is therefore
firstly accounted for when the MP second-order energy cbomeds evaluated. This
involves the evaluation of all possible excited Slater deteants. But within a fi-

nite basis set approximation, the ways to distribute thetedas in the HF orbitals are
also limited and hence the number of excited determinarfisite what means that
the many-electron wave function is truncated. From the Gaorlater rules follows
(since our perturbation operator is a two-electron opey#tat only double and single
excited determinants have to be considered. Furthermometfie Brillouin’s theorem

follows that matrix elements between the closed-shell HErd@&nant and the singly
excited ones are zero. Second-order MP energy correcteeftre only involves a
sum over doubly excited determinants:

occ  vir (0)| 77| &Hab ab| 17| & (0)
2 (V[ H'|®f7) (D7 [H'| ™)
Eyfp=>.>" PR , (2.37)
- 0 ij

and matrix elements between the HF and a doubly excited atatgiven by two-
electron integrals over MOs:

5, = 3237 (0rtslontu) = (ot londu) .39

Y
€i+€j_€a_€b

where in the denominator the energy difference between tateiRieterminants occur,
these quantities correspond to differences in MO energies.

2.1.3 Coupled-Cluster Theory

In Coupled-Cluster theory [7] the many-electron wave figrcts constructed through
an exponential ansatz of the cluster operator:

U =T Wyp (2.39)
The cluster operator is defined as:

T=Ti+Ty+T5+..+1T, (2.40)
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where n is the number of electrons and Th@perators construct all possible determi-
nants having i excitations from the reference one, as examphown for75:

occ wvir

TyWpp = Y vy, (2.41)

i<j a<b

where i,j are the occupied MOs in the HF reference wave fanand a,b are virtual
MOs in V. The excited determinants are obtained by exciting an reledtom
occupied orbital(s) indicated by subscripts into the \dlorbitals indicated by super-
scripts. The amplitudesare determined by the constraint that Eq. 2.41 be satisfied.
One of the most appealing features of the CC theory (in cettoea truncated Config-
uration Interaction expansion) is that it is size-consist8ize consistency means that
the energy of an A-B system, where A and B are at infinite sejparégs equal to the
sum of the energies of A and B calculated individually. Tastrate this we consider

a truncated CC expansion with the usage of only the doublga¢ion operator, as
indicated by the superscript CCD:

; T2 TS

Uoop = e Uyp = (1 + 15 + 2—2' + 3—2' + ) Viyr, (2.42)
where the exponential function is expanded as a Taylorsefie Eq. 2.42 thel,
generates double excited determinants, the squdtefadruple excitations, the cube
T, sextuple substitution and so on. The Taylor expansion itefini practice due to
the finite number of occupied MOs and therefore a limited nemnald excitations. The
inclusion of these higher order excitations ensures thénotketo be size-consistent.
The CC Schrdédinger equation reads:

e |Wyr) = Bel | Wyr) (2.43)

and it is solved by projecting the Schroédinger Eq. 2.43, Wimeans left-multiplying
by a trial wave functions expressed as determinants of therHifals. This generates
a set of coupled, nonlinear equations in the amplitudeshwhave to be solved. With
these solution the CC energy may be calculated according to:

(U p|H|eTWyr) = Eoc (2.44)
Dependent on which contributions from the cluster operaterincluded in the expo-

nential ansatz the CC energy is referred to CCS (only singlgexl determinants are
considered), CCSD (additionally the double excited artioted) and so on.
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2.1.4 Explicitly correlated methods

Electron correlation treatment based on the finite onegbaiiasis function expansion
of the molecular wave function suffers from the frustralynglow convergence with
respect to the size of the latter basis towards the compéetis Bet (CBS) limit. It has
been recognized that the slow convergence is due to a pocnitésn of the so-called
correlation cusp (vide infra) when standard quantum chalmethods like CC or MP
theory are applied. One can bypass the slow convergenceleang a wave function
that explicitly depend on the interelectronic distancethrods which incorporate these
dependence are therefore called explicitly correlated.one

The discussion on the origin of these methods is given herigéoground state of the
helium atom with one electron fixed at a separation of £).5orm the nucleus [3].
Within the HF theory the mean-field approximation causes tina motion of one
electron is unaffected by the instantaneous position os#wnd, meaning that the
wave function amplitude for one electron depends only odiggance to the nucleus
but not on the distance to the other electron. For the exaa Wmction the probability
amplitude for one electron is affected by the second fixedtle creating the so-
called Coulomb hole around this electron. The Coulomb ho¢edlassically forbidden
region and a good description is necessarily for an accinegément of the so-called
short range dynamical correlation. The non-relativiskec&onic helium Hamiltonian
with the origin at the nucleus (wherg andr, are the coordinates of the two electrons
and Z is the nuclear charge):

Z V- I ;, (2.45)

|1“1| |1“2| r; — 13

has singularities for,=0, r,=0 andr,=r,. At the electron-electron and electron-
nucleus coalescence points, the exact solutions to thé&&idger equation:

HW(ry,r) = EW(ry,15) (2.46)

must provide contributions to the produbitl that balance the singularities in 2.45

such that the local energy:

HU(rq,r5)
U(ry,rp)

remains constant and equal to the eigenvdiuén an exact wave function these sin-
gularities must be exactly canceled by the kinetic energgratpr. It is convenient to
employ the symmetry of the wave function and to express therhédamiltonian 2.45
in terms of three radial coordinates, r» andr, (with 15 being the interelectronic

€(re,rp) = (2.47)
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distance anda,, r, the distances of the electrons to the nucleus):

2
A 1 0? 2 0 27 0? 2 0 1
H=—- -t —— |- === — =
2 Z <6rl2 T T aTi + T ) <8T%2 * T12 (97“12 T12)

i=1

_ (ﬁ.rﬁi LI mi) 9

r1 T12 O Ty To1 OTg 37’12.

(2.48)

The singularities at the nucleus are balanced by the kieetcgy terms proportional
to 1/r; since:

2 0 27
-t o
<TZ~ or; + r; )
where(0¥/0r;) = —Z WV atr; = 0 is known as the nuclear cusp condition which can

be easily satisfied with the usage of Slater-type-orbitalBJs). Likewise the terms
that multiply1 /7, atri, = 0 must vanish inf/ U

=0

r;=0

G| =AY i=0) (249)

r;=0

2 1
(—i + —) v =0 (2.50)
T2 0r1i2  T19 r12=0
imposing the additional condition:
ov 1
— =0 2.51
87’12 R 9 (T12 ) ( )

which is known as the Coulomb cusp condition. The Coulomip @sdition is not
satisfied for the HF wave function:

a\I/HF

67”12

=0, (2.52)

r12=0

since the Slater determinant does not depend on the int@ié distance as elec-
trons approach one another. But within the single-deteaintitevel the so-called
Fermi correlation is included which occur as a consequefiteedauli antisymmetry.
In the Configuration Interaction (Cl) approach the heliuwugnd full Cl wave function
constructed from STOs becomes:

VO = exp [—C(r1 +12)] > Cigplrird + rirb)ri (2.53)
ijk

And since only even powers of; are included the cusp condition cannot be satisfied:

8\1’01

67”12

— 0. (2.54)

r12=0
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However when a linear term in, is included:

1
m“e:u+§mgw“ (2.55)

T12

the cusp condition is exactly satisfied since:

owe! 1 1
12 — 0%y, =) = —pCT =0 2.56
o |, 2 (m2 = 0) 2 na(r12 = 0) ( )

The cusp condition can therefore always be satisfied by ptigkition with a correlat-
ing function~:
1

7_1+§;;w, (2.57)
which leads to the correct nondifferentiable cusp in thelpobd functiomyWw. Methods
that employ correlating functions or otherwise make usehefinterelectronic dis-
tancesr;; are called explicitly correlated methods. A distinctiondimwn between
R12 method which includes; linearly and the F12 method which includes a more
general (exponential) dependencergn

2.2 Incremental Scheme

The wide branch of the local correlation methods [8—24] ded the fragment-based
methods [25—-38] aim at a substantial reduction of computati requirements for
medium-sized and large systems while maintaining the hegbracy of wavefunction-
basedb initio approaches. Among the fragment-based local correlatidhods, the
incremental scheme devised by Stoll for finite-cluster walitons modeling 3D crys-
tals [39-41], related to earlier ideas of Nesbet for aton®, [ quite unique due
to its wide range of applicability. It allows both wavefuiwet-based correlated elec-
tronic structure calculations of periodic systems usingii@r-type orbitals [43, 44]
and of medium-sized and large molecules using localize@oubdr orbitals [45]. The
adsorption of molecules on crystalline surfaces can alstuzbed [46,47]. In its sim-
plest form the approach can be combined with any size-exeeosrrelation treatment
provided by standard quantum chemical program packagéswithanging the cor-
relation modules and thus extends their range of applitalbiéyond the one of the
standard wavefunction-based correlation methods.

The incremental procedure starts with the localizationhef ¢anonical HF orbitals.
The set of localized Hartree-Fock orbitals is then groupéal disjoint subsets, the so-
called one-site domains, which form the Bet The set of n-site domains is obtained
by adding all pairs, triples etc. to the one-site domainse fdsulting outcome is the
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power set of the set of one-site domaiRsD). Correlation energy calculations are
carried out forP (D). The incremental correlation energy is expand as:

Eeor= Y Aex (2.58)

XGP(]DJ)X/\\X\SO
The summation in Eq. 2.58 includes all terms®iiD) with a cardinality less or equal
to the order of the expansion, denoted’asThe general correlation energy increment
Acx is defined as:
Aex=ex— Y Aey, (2.59)
YeP(X)AY|<[X]
whereX andY are the summation indices defined in Eq. 2.58 and Eqg. 2.5@cesp
tively. Herecx stands for the correlation energy obtained upon corrgatiirelectrons
in X. The expansion described via Eqg. 2.58 is exact when carutiohe highest ex-
pansion order but advantages with respect to computatiegairements arise when
it is truncated at preferable low order. For example, a thider expansion which
appear to be accurate enough (chemical accuracy with dretogy 1 kcal/mol) for a
large variety of systems [48] reads:

Bor=» Asi+ Y Aey+ > Aciy, (2.60)
i 1<J 1<j<k
with the one-, two- and three-body increments:
Agi =£&;
Agij =& — ASZ‘ — Agj (261)

A&“m‘k = 5ijk — A&“m‘ — AEik — Ac‘fjk —&; — 8]' — Ek-

Provided that Eq. 2.58 may be truncated at a low expansiagr a@réurther becomes
more computationally attractive when small incrementaltabution (small with re-
spect to the energy they contribute to the overall expansion) are identified and
neglecteda priori and especially when the virtual space of the domains is extluc
Low-order truncation of the incremental expansion and &oieft screening method
requires domains whose orbitals are spatially close to etiwdr, but remote to the or-
bitals of other domains. Since for larger systems it is q@itlous and also error prone
to set up the domains by inspection, a fully automated domaireration is crucial.
Friedrich et al. [49, 50] proposed a procedure to set up theadlts automatically and
generated a computer code which also provides all needed dgpa to perform all
incremental correlation energy calculations to the higbesger with external quantum
chemical codes.



2.2 INCREMENTAL SCHEME 17

2.2.0.1 Construction of the valence domains

The centers of charge for the set of occupied valence cslditaire obtained from the
diagonal elements of the dipole integrals in MO basis:

a6\ ([
Ga > Ra = | (0alylda) | = | va | (2.62)
(¢a 2] ¢a) Za

therefore the set db is mapped to a set of vectorsity:
0 — R (2.63)

The distanced,;, = |}§a — ﬁb| between the centers of charge are used to construct
an edge-weighted graph. In order to arrive at disjoint sétsriitals forming the
domains [50] a graph partitioning problem has to be solvedtlis purpose the Metis
graph partitioning library [51] is used. The distandes = |R, — ﬁb| of all pairs of
centers of charge define the distance malri¥rom which a connectivity matrix’ is
constructed:

10°,if Dap < teon A pt > 10°

Cab = D(ib’ if Dab S tcon A Diab < 108 (264)

0, if Dab > teon

Heret.,, is a distance threshold andis a constant stretching factor set1o', the
factor of10® enters as an approximation of infinity in the representatidntegers on
a computer. The connectivity matrix conditions enforcedbastruction of an edge-
weighted graph, where the orbital pairs (represented \néecef charge) with short
distances get a large weight, and those with a large distgeta small or a zero
weight. Metis partitions the graph under the side conditiat the sum of weights of
the cut edges is a minimum. Hereby the number of resultingnea domains can be
controlled by specifying the so-called domain-size partam@lsp) according to:

no. valence orbitals

no. valence domains
dsp

(2.65)

It should be noted that the choice of the domain size alsoentlas the order of the
incremental expansion required for a desired accuracy dsawehe computational
effort. Formally any choice between single-orbital donsaamd the treatment of the
whole system as a single domain, corresponding to the ctiowah calculation, is

possible. For a given target accuracy smaller domain siggsine a truncation at
higher order than larger domain sizes, i.e. they lead to lagnigumber of correlation
calculations. On the other hand, choosing too large donmamsdeteriorate the effi-
ciency despite a possible truncation at low order, since eogtributions for groups
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of orbitals are implicitly included and have to be evaluatthough from a numerical
point of view they could be neglected. Thus fopoccupied valence orbitals the opti-
mum domain size i$ < dsp<< n and often can be chosen according to the physical
situation, e.g. dsp=4 is a suitable choice when treatingmautsters, since a water
molecule has 4 valence orbitals.

2.2.0.2 Screening procedure

A sufficient screening of small incremental contributiorpleits the property that the
incremental values decay with increasing order and for argawder with increasing
distances between the underlying domains. An order-degmgrdistance truncation
procedure according to:

tgiss = 0 —f1)2 with: P> 2, (2.66)

where f is a variable parameter, excludes those increments forhaddicdistances
between the centers of charge of two groups of underlyingailosnis larger thaty;.;.

2.2.0.3 Domain-specific basis set

The usage of a domain-specific basis set [52] within an inergad calculation pro-
vides a significant speed up in calculation time since theaisspace is reduced as well
as the number of the required integrals. Within this procede centers of charge
of the localized orbitals in a given domain are utilized toede all atom coordinates
which will be treated with the original large AO basis. Théséon is controlled with
a variable distance parametgy,;, and all atom centers not covered by this threshold
form the environment of the domains and are treated with ¢tersd smaller basis.
Once the domain-specific basis set is constructed a secowdlEliation followed by
a localization is performed. With a remapping of the cenfertharge from the first to
those from the second localization the occupied orbitalsfa given domain are iden-
tified and the correlation calculation in the reduced basi€an be performed. Since
the remapping may not always be unique a template localizats to be used [53,54].

2.2.0.4 Incremental MP2 and CCSD(T) correlation energy cotmibutions

In order to converge to the canonical MP2 or CCSD(T) energmeshas to take into
account that neither the canonical treatment of MP2 nor #mowical treatment of
the perturbative triples correction in CCSD(T) is invatiaith respect to a unitary
transformation of the occupied orbitals. This problem cancicumvented with a
pseudo-canonical MO basis. For this purpose the Fock miattixe local MO basis
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is diagonalized in the subspace of the domain and the camelspg transformation is
used to transform the local MOs to the pseudo-canonical N6 [

2.2.0.5 Evaluation of core and core-valence correlation emgy contributions

Core correlation contributions are often neglected in issidf larger systems with
many cores. The reason is mostly the computational effottthre insignificance of
the neglected effects. In order to treat the core correlagitects efficient, i.e. core-
core and core-valence correlation, within the incremefngahework disjoint sets of
localized core and valence orbitals are required [56]. &loee the core and valence
orbitals are localized separately. The Bebf one-site domains is split into the set
of one-site core domainB,. and the set of one-site valence domdihs With this
classification Eq. 2.58 may be rewritten in terms of three suwwhich account for
the energy contributions arising from core-cakeyx, core-valence\sy and valence-
valenceAc; correlation effects separately.

Eor=) Aex+) Aey+) A
X Y Z

XePD)A X[ <O (2.67)
Y € P(D) \ [P(D.) UPD,)] A Y| <O
ZePD,)AN|Z| <O

If the expansions in Eq. 2.67 are carried out to the highessipte order and no
further approximations with respect to the local orbitahiEdcter are made the incre-
mental correlation energk.or corresponds exactly to the total correlation energy ob-
tained with standard methods. Treating the core correlatio equal footing with
valence correlation may become quite expensive espegialgn several larger cores
are present. However, from the physical point of view suchifotm treatment is not
really necessary, since core shells are usually quite conapal rather tightly bound.
Previous incremental CCSD investigations showed that ébrtoo diffuse cores ne-
glecting inter-core correlation contributions is a sigrafit simplification leading only
to negligible errors [57]. Thus, each core can be treatetichahlly by evaluating
its intra-core correlation energy directly and applyingraremental expansion for its
core-valence correlation energy contributions. Sincer#ficalization the core orbitals
are more compact than the valence orbitals the order of ttrenmental core-valence
correlation energy expansion has to be at most the orderfosedaluating the va-
lence correlation energy.
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According to these considerations Eq. 2.67 can be rewrtsen

Eon=) Acx+) Aey+ Y Aeg
X Y Z

XePD)A[X[=1 (2.68)
Ye{yePD| [YND|=1A0<|YND,| < (O—1)}
ZePD,)N|Z| <O

The partitioning of the valence orbitals has been alreadgrnil@ed above. The core
domains are constructed by mapping centers of charge abtladized core orbitals to

the closest atom coordinates. Therefore as many core deroagur as many atoms
with core orbitals are considered in a given calculationth¥ldithis simple procedure
comparatively small local domains are obtained due to tbal lcharacter of the core
orbitals. This procedure would not work sufficiently for thedence domains since a
center of charge may be located in the middle of two atoms hecetore a unique

mapping would not be possible.

2.2.0.6 Scaling behavior of the incremental scheme

The formal scaling behavior of the incremental expansion E&7 depends on the
number of individual calculations and the time needed tdoper them. The total
amount of individual calculations is equal to:

Ntotal — i ‘ID)‘ (2 69)
calc i ; .

i=1

where the expansion ordér is equal to the number of the domaihsn the limiting
case when Eq. 2.58 is carried out to highest possible expaonsier. Eq. 2.69 is also
applicable to the core-valence treatment without simglifans as described in Eq.
2.67 whenD is the unified set of cor®.. and valenc&, domains. In the approximate
treatment of the core correlation, incremental energyutalons are excludea priori
as describe via Eqg. 2.68 and hence a reduced total numbetiwtinal calculations is
considered according to:

O /D] (D]
./\/’ccao;;e—val _ Z ( iv ) + |]D)c| + Z ((Z _U1>) |]D)C| (270)
1=2

i=1

Incremental energy calculation carried out in this work make of of an implementa-
tion of the incremental scheme which contains an interfadeé MOLPRO quantum
chemistry package [58]. The localization is performed gsire Boys [59] functional



2.2 INCREMENTAL SCHEME 21

with the algorithm of Edmiston and Ruedenberg [60] sepbrdte the core orbitals
and for the valence orbitals. The thresholds needed tofgpe input data for the
incremental calculations are listed at the bottom of alleslpresenting the results. In
order to reduce the error propagation arising from the saeeinature of the incremen-
tal expansion an energy convergence thresheldskas applied for the correlation
calculations entering at highest order, whereas for thetawders the thresholds are
tightened dynamically [61].
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2.3 Basis Set Superposition Error

The basis set superposition error (BSSE, vide infra) wasrteg for the first time by
Kestner [62] in 1968, while trying to explain the too deep mmam on the potential
energy curve for the helium dimer. One year later Jansen asd &3] detected the
BSSE error when investigating the protonation of carbon omate. However the er-
ror was for the first time termed by Liu and McLean [64], whoaalsvestigated the
helium-helium interaction.

The BSSE occurs in every molecular electronic structureutation whenever orbitals
are approximated by an expansion in terms of analytic basigions (most commonly
ones used are Gaussians) [65]. That s, at the HF level ofttfesowell as at the corre-
lated level of theory when wavefunction based methods li€eoCperturbation theory
are employed. But BSSE also exist for approximate Hamitosisuch as semiempir-
ical forms or density functional methods [66], it is also negligible for Slater-type
functions [66]. We may clearly identify the appearance oSESas a consequence
of the usage of a truncated basis set as there is no doubt thebeetical chemistry
literature that the BSSE is completely eliminated in thatlioha complete basis set.
BSSE is primarily related to the calculation of interacteEmergies within the super-
molecule approach, which is widely used since it only reggiiss a prerequisite the
applied method to be size extensive, but unfortunatelyfiessifrom the BSSE ef-
fect. Within the supermolecule approach the interacti@rgnfor exemplary a dimer
is evaluated by subtracting the energies of the monomens fr@ one of the dimer.
However, in this prescription the BSSE arises from the maeificant incomplete-
ness of the basis sets used for the monomers than for the ¢ine dimer. For a given
incomplete basis set the wavefunction of a supermolecutoig flexible in the sense
that the energy of the individual monomers within this coexgk artificially lowered
due to the partial use of the basis functions centered orthi®e monomer. This causes
an energy lowering and therefore too deep minima at too sl&tdnces on the poten-
tial energy surface (PES).

The magnitude of the BSSE is influenced by three fundamesgaks. The first one
is the investigated type of system. Considering the intemaenergies the BSSE frac-
tion with respect to the interaction energy depends upostiieagth of the molecular
interaction. The weaker the interaction energy is all thearbe calculated interac-
tion energies are affected by the BSSE effect, which may eeeof the order of the
interaction energy itself. Therefore it is mandatory tosider the BSSE whenever the
nature of interaction is due to dispersion or electrosfatices or when investigations
are carried out on hydrogen-bonded systems. BSSE effectsni®eless important
for chemically interacting systems which represent thengtest molecular interac-
tion. The level of theory is another factor affecting the miaigde of BSSE. The BSSE
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impact is known to be larger for post-Hartree-Fock methbés tat the Hartree-Fock
level. However, by far the greatest effect on the size of t8&B error has the quality
of the applied basis set, what is reasonable as the usagenaédfisis set is the reason
why the BSSE occurs. Since in theory the BSSE vanishes atBIseli@hit, the closer
the energy converges to the later, the smaller the BSSE will EBspecially the so-
called correlation consistent basis sets introduced bynibwgrand co-workers [67—69]
provide a well defined path to the CBS limit and hence thesalizsrof basis sets
provide an extremely powerful approximation in any quanthemical application
which utilizes them.

Quite recently it has been recognized that the BSSE not ardgsawhen computa-
tional chemistry describes the interaction of two or morecggs. The importance of
the so-called intramolecular BSSE has been understoodthe¢@é0—74]. Exemplary
it was reported that intramolecular BSSE is responsiblefasking the expected min-
ima in a conformation equilibrium analysis for a dipeptide tbe PES [75] or that
due to intramolecular BSS&b initio calculations predict wrongly benzene and arene
molecules to exhibit nonplanar minima [76, 77].

The strategy of how to deal with the BSSE can be roughly deMidk® two categories.
One methodology aims at the omission of BSSE from the themglah[78—88] as
exemplary realized within the symmetry-adapted pertimbaheory (SAPT) [89-92],
where the interaction energies are evaluated directly asraas physically distinct
contributions. Within the other methodology one correbsBSSE in ara posteriori
fashion, by far the most widely usedposterioriprescription is the counterpoise (CP)
correction introduced by Boys and Bernardi [93]. Withinstkbrrection method the
energy calculations for the individual monomers are pengéd using the whole super-
molecular basis sets instead of only the appropriate monbasss sets. A literature
survey indicates [94] that from the year of publication irv@9he Boys and Bernardi
paper was 9416 times quoted, which is an enormously amouwitiatibns and clearly
evidences the popularity of the CP scheme.
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Chapter 3

Results and Discussion

3.1 Incremental evaluation of interaction energies

3.1.1 Introduction

Recently Wang and Paulus [95] proposed to calculate thargrehergy of an inter-
molecular system, i.e. aJ8-benzene complex, without referring to monomer cal-
culations in the full dimer basis set. Instead they propdseestimate the binding
energy by performing three correlated calculations on theedin a local orbital ba-
sis: calculations correlating only the occupied orbitdlsme of the monomers in the
dimer, hereby treating the occupied orbitals localizedh@ndther monomer as frozen
core, and a calculation correlating simultaneously theesponding occupied orbitals
of both monomers in the dimer. The energy difference betvieerimer correlation
energy and the two monomer-in-dimer correlation energias taken as an estimate
for the binding energy. Using this simple prescription Wang Paulus obtained 99%
of the CCSD(T) binding energy of the,B-benzene dimer, when only the valence or-
bitals on HS and ther-orbitals on benzene were included in the correlation tneat.
The authors emphasized that the evaluated binding eneBfyS&-free. Furthermore,
since the correlation energy difference used as an estiimatiee binding energy cor-
responds to a so-called two-body increment in the increaterpansion of the corre-
lation energy as proposed by Stoll [39], they use the naméaadetf increments for
their approach.

The prescription of Wang and Paulus is applied here to catiethe interaction energy
of the helium, hydrogen sulfide, methane and water dimer hadatcuracy of that
approach is compared to results obtained with standardaudgeth

25
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3.1.1.1 Methodology and computational details

The study is based on the assumption of weak interactiong/ffich the geometries of
the interacting monomers are essentially identical to tles@f the free monomers. In
this case the interaction energyr between two monomers is given by the difference
of the energy of the dim@fj and the ones of the monomers in the monomer basis
L} using their geometries in the dimer:

AE =E] — E - E] (3.1)

In Eq. 3.1 and onward the following notation is used: the $asits are noted as
superscript, whereas the considered system is noted asriibdn the case of a
dimer aggregate the most widely used prescription to cbfoec¢he BSSE is the full
counterpoise (CP) correction of Boys and Bernardi [93]. HiFithe CP scheme all
calculations, i.e. those for the dimgras well as those for the monomeérand; are
carried out within the dimer basis set:

AEY = Ej — E — EY (3.2)
where theE;’ andE/ energies are again evaluated at the geometries taken fom th
dimer. Therefore for both Eq. 3.1 and Eg. 3.2 the relaxatiwgrgy contribution is
neglected.

In order to obtain values for the basis set limit of the tota¢rgy as a benchmark,
the two-pointX —3 extrapolation of Halkier et al. [96] to the complete basis(68S)

limit for the correlation energy has been used. To distigigonore easily between total
energies and correlation energies the symlabédes are used for them, respectively.

X3€X — Y3€y

EXY - EIC{?Y + X3 _Yy3

with X<Y (3.3)

Here X, Y denote the cardinal numbers of the applied basis setﬁéﬁg stands for
the CP-corrected Hartree-Fock (HF) energy obtained inafggel basis set with cardi-
nal numbery’.

According to the introduced convention the notation for¢beelation energy contri-
bution Ae to the CP-uncorrected interaction energy of Eq. 3.1 is:

Ae = 52 — gt — 5§ (3.4)
and for the corresponding CP-corrected interaction eneir@g. 3.2:

AgCP — 5” — 52:j — 5? (35)
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If one assumes a pure dispersion interaction one can ctddhla interaction energy
in a local orbital basis as a difference between correlatioergies for the dimer and
the monomers in the dimer, i.e.

] 7 ij
Aeyr=¢j; — €] —¢€; (3.6)

The approximatioMdFE = Ac,,;; has been advocated by Wang and Paulus for the
direct evaluation of the binding energy in the$benzene complex at the CCSD(T)
level. Direct means that no calculations for separated mems are needed and thus
also no BSSE-corrections have to be taken into accounte&ingc 3.6 corresponds to
the definition of a two-body contribution in the incremergapansion of the correla-
tion energy the authors used the term method of incrementjsf@their procedure.
Note that Eq. 3.6 equals the second line of Eq. 2.61, howé&eenotation here is
slightly different as for Eq. 2.61 in order to be able distirgh clearly between Eqg.
3.4, Eq. 3.5and Eq. 3.6.

In general the HF contribution to the interaction energyiclftontains e.g. the Pauli
repulsion between the monomers, is not negligible and hae émlded to the incremen-
tal correlation contributiom\e,,; in order to obtain reliable estimates. In this inves-
tigation the HF interaction energ¥ £, - or the corresponding CP-corrected quantity
AESE, evaluated with Eq. 3.2, has been used and therefore theapate interac-
tion energy for the method of increments is evaluated acogro:

AFEyT = AEpr + Ay, (3.7)
and in the CP-corrected case as:
AESH = AEGY + Aeyr. (3.8)

The calculation of the interaction energy for the3dbenzene complex at the
CCSD(T)/aug-cc-pVDZ level of theory (compare Figs. 3.2 &) indicates, as for
the other systems treated here, that,,; alone does not exhibit a minimum near the
equilibrium geometry.
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Figure 3.1: Correlation energy contribution to the interaction enastithe GHg-H,S
complex calculated with aug-cc-pVDZ basis set at the CC$D¥Vel of
theory as a function of the intermolecular sulfur atom - legez plane
distance.

Thus the potential energy curve on theSdbenzene system of Ref. [95] cannot be
solely based on Eg. 3.6 - it must contain HF contributionfi®itteraction energy.
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Figure 3.2: Potential energy curves of the interaction energy for thid&H>S com-
plex, calculated with aug-cc-pVDZ basis set at the CCSD€Véll of the-
ory as a function of the intermolecular sulfur atom - benzplame dis-
tance.
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P b
o4

Figure 3.3: RI-MP2/aug-cc-pVDZ equilibrium structures of methanetevand hy-
drogen sulfide dimers.

For the methane, water and hydrogen sulfide dimers geomgtirpiaations were car-
ried out at the RI-MP2/aug-cc-pVDZ [97, 98] level of theowsing the TURBOMOLE
5.10 program package [99] for fixed C-C, O-O and S-S distarmespectively. No
symmetry constraints were imposed. Pictures of the opéichequilibrium structures
are shown in Fig. 3.3. The interaction energies were cdledlat RI-MP2 geome-
tries at the CCSD(T), CCSD and MP2 [100, 101] levels of theming the MOLPRO
program package [102] and basis sets of augmented cooreledinsistent double-
through quadruplé- quality (aug-cc-pVXZ; X=D,T,Q) [67, 103]. Additional site
point calculations on the helium dimer were performed witluldle and triple aug-
mented correlation-consistent basis sets of double- girgextuple: quality (y-aug-
cc-pVXZ; y=s,d,t; X=D,T,Q,5,6) [69]. The frozen-core apgimmation was applied in
all calculations except for He

In order to evaluate the correlation contribution to thesiiattion energies according
to Eq. 3.8 the implementation of the incremental scheme][t@% used to get the
necessary two-body increments. In order to obtain the prispgments the domain
size parameter (dsp, refer to Eq. 2.65) was set to the nunflcerrelated orbitals on
one fragment.

The convergence of the HF interaction energies was analyitbdbasis sets of aug-cc-
pVDZ through aug-cc-pV6Z quality at the equilibrium struies for the methane, hy-



30 CHAPTER3 RESULTS ANDDISCUSSION

drogen sulfide and water dimers, see Fig. 3.4. The largesgeha the CP-corrected
interaction energy of the quadrup{dsasis set with respect to the sextuglbasis set
is only -0.01 kcal/mol. Since the differences due to theealation contributions dis-
cussed in this work are much larger, the CP-corrected HFgerseof the quadruple-
basis sets have been used as an approximation for the Hiotioins to the extrapo-
lated energies according to Eq. 3.3.

The discussion is limited to the CCSD(T) results in the feileg. The findings for
the CCSD and MP2 methods show a similar behavior with reg¢pebe accuracy and
applicability of the procedure discussed. Therefore theckhsions presented below
are also valid at CCSD and MP2 level of theory. The CCSD and BlR2omes are
given in the Appendix A.
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3.1.2 Applications

The helium dimer was considered as a simple model systena agthlibrium separa-
tion of 5.61 Bohr [105]. The convergence behavior of Eq. B@&B&q. 3.7 was checked
with respect to the y-aug-cc-pVXZ (y=s,d,t and X=D,T,Q)%ésis set series and the
results are presented in the chart of Fig. 3.5.
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Figure 3.5: Convergence behavior of the CCSD(T) interaction energyu(fify) of
He, at the equilibrium distance for the y-aug-cc-pVXZ (y=s,dnd
X=D,T,Q,5,6) basis sets. The horizontal dashed line is tk# depth
of He, taken from [105].

From the convergence of the y-aug-cc-pVXZ basis sets aeréifit augmentation
levels in Fig. 3.5 it is clear that a double augmentation igaraccurate than the
single augmentation foX > 3. The triple augmentation does not lead to a further
improvement of the interaction energy and the d-aug-cc-p¥Kd the t-aug-cc-pVXZ
energies are on top of each other. Therefore the double antgthkasis sets have been
used to study the convergence of the correlation contohub the interaction energy
for the approximations fors, As“F, Ae,,; as well as the CBS extrapolated ones at
the CCSD(T) level of theory. The results are presented in Ei§. The extrapolation
technique was applied both to the CP-corrected and undede@orrelation energy
contributions to the interaction energies, labeled\a§’. andAc vy respectively (see
legend of the chart in Fig. 3.6).
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Figure 3.6: CCSD(T) correlation energy contribution (in®},) to the interaction en-
ergy of He as a function of the cardinal number X in the d-aug-cc-pVXZ
basis set series. The horizontal dashed i€ marks the estimated
basis set limit.

Table 3.1: Comparison of the CCSD(T) correlation energy errors.i,) for He, at
a bond distance of 5.61 Bohr df=,; and A" using the d-aug-cc-pVXZ
basis set series with respect to the 5-6 extrapolated QRated interaction
energyAc$l. The percentages are calculated with respect4g”. The
BSSE, referred to as CP correction in the sixth column of Taisle, is
estimated as the difference betwesnand As“".

error error CP

Ae g % Ae“? 9%  correction
13.85 77.91 18.94 69.80 -16.24
213 96.60 5.97 90.48 -10.67
-1.27 102.03 2.42 96.14 -3.96
-2.39 103.81 1.21 98.07 -2.31
-2.86 10456 0.7 98.88 -1.14

o U1 D w N X

Considering the counterpoise corrected two-point extedpd interaction energy
(X=5, Y=6in Eqg. 3.3) as estimate for the basis set limit, onddithat the CP-corrected
correlation energy contribution to the interaction eneapynverges monotonously
from above to the CBS limit. The uncorrected interactionrgmels converges

monotonously from below for X=3 to 6. The two-poii—3 extrapolated interac-
tion energies based on the uncorrected eneryies, are between thé\e and A"
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values except for the 2-3 extrapolated one. If the CP coomeds applied in addition
to the CBS extrapolation the interaction energle$} are very close to the CBS limit
already for the 2-3 extrapolation. The errors/®f,;; and As“? with respect to the
5-6 extrapolated CP-corrected energy are presented in3TabTheAes,,; errors are
significantly smaller in comparison to the correspondixg’” errors for the double-,
triple- and quadruplé-basis sets. Using the quintuple- and sextupheasis sets, the
errors of the CP-corrected interaction energy are smal&r the errors fole,,;. The
Ae ) results overestimate the CBS limit for the quadruple towgaet( basis sets by
2, 4 and 5%, respectively, whereas the“” results converge smoothly to the CBS
limit.

On the basis of these results one may conclude so far that Bg/i€3ds reasonable
interaction energies for smaller basis sets, but it is nstesyatically improvable. The
potential energy curves (PEC) of the interaction energytiermethane dimer at the
CCSD(T)/aug-cc-pVXZ (X=D,T and Q) levels of theory are givie Fig. 3.7. The
3-4 extrapolated PECs based on the CP-corrected as wek asmtorrected energies
are shown in all charts, in order to compare the results ofien basis set with the
CBS limit. The difference between th®ES;” and AEs, curves is very small indi-
cating that botrAE“Y and AE are suitable for the 3-4 extrapolation. Thew¢”
curve converges smoothly from above to the CBS limit withréasing basis set size,
whereas the interaction energy curve without BSSE cooreN ' approaches the
CBS limit from below when the basis set quality is improvethe BSSE is large for
the double- and triplé-basis sets and a BSSE correction scheme is even necessary
when the quadruplé-basis set is applied. The difference between A¥{/, and
AFE); curves corresponds directly to the BSSE at the SCF level. BS®E is re-
duced drastically for the triplé-basis set and almost vanishes when the quadrple-
basis set is applied. Th& E{/; curve is almost identical with the extrapolated curves
for the double¢ basis set, whereas theE“? curve underestimates the interaction
energy with respect to the CBS limit. At 3.8, near the minimofnthe extrapolated
curve, the underestimation of 2“7 with respect taA E$,” equals 27%. The situation
changes when the tripleand quadruplé-basis sets are considered. For the triple-
basis set the\ £/ curve is still between th& E andAEY curves in a region near
the PEC minimum. Comparin £$/; to theAECF curve, we observe that the latter is
somewhat closer to the CBS limit. For the minimum structN#e“” underestimates
AESE by 7%, wherea\ES/; overestimateAES” by 11%. For the quadruple-
basis set the\ E{/; curve is below the uncorrecteslF curve, exhibiting unacceptable
large errors with respect to the CBS limit, e.g. at \&{/) overestimated ES” by
15%.
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Figure 3.7: Potential energy curves of the interaction energy for the Gikher, calcu-
lated with aug-cc-pVXZ (X=D, T and Q) basis sets at the CCSI&Vel of
theory as a function of the intermolecular C-C distance. J4eextrapo-
lated curvesﬁE?ip andAFEs, are based on CP-corrected and uncorrected
correlation energies respectively.
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For the hydrogen sulfide dimer the same analysis as for theanetdimer has been
performed. Fig. 3.8 shows the comparison of the correspg@EC for (H.5),. For
all applied basis sets the interaction energigs and A E¢" converge to the basis set
limit from below and above, respectively. Considering tleef@rmance of Eq. 3.8 a
good agreement with the CBS limit is found if the BSSE is etiated at the HF level,
i.e. for AE(Y. Increasing the basis set to triple- or quadruplgdality deteriorates
the results and the PEC fall even below the lower limitfof. The difference of
AESH and AE); to the 3-4 extrapolated PEC for the triple and quadrypheasis
sets strongly depends on the reaction coordinate of theartteg molecules. The
stronger the interaction the bigger the errors and viceaver#is is due to different
HF reference wavefunctions which are employed for the tatica treatment of 2
=12 and»sll_2 (z = 1,2). Within the incremental calculations we start with a HF
solution obtained for the whole complex, whereas in the ORers® we consider
HF solutions for monomer units using the AO-basis of the dinTénis error source
causes larger difference &fE{/; with respect to the 3-4 extrapolated PEC when the
interaction force is stronger.

In general one can conclude that if no calculations on th&atsd monomers in
whatever form are performed, the results cannot yield ateunteraction energies
according to the supermolecular approach. Therefore thst mccurate results
presented here so far are obtained for the system with thkeseamnteraction in this
study, i.e. the helium dimer.

As the last test case the water dimer is considered, whengodedilipole-interaction
is the leading contribution in the total interaction energye PECs for the various
methods are given in Fig. 3.9. Again one observe the conmeegef theAE to the
CBS-34 limit from below, whereas the CP-corrected PEE“? converges from
above. In contrast to the other systems Eq. 3.8 breaks dowpletely in this
case. For all applied basis sets the PECs are below the lawedidefined by\ F.
Therefore Eq. 3.8 is not systematically improvable and atsayenerally applicable.
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Figure 3.8: Potential energy curves of the,8 dimer, for the aug-cc-pVXZ (X=D,T
and Q) basis sets at the CCSD(T) level of theory.
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Figure 3.9: Potential energy curves of the,8 dimer, for the aug-cc-pVXZ (X=D,T
and Q) basis sets at the CCSD(T) level of theory.
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A comparative summary of thA E{Z and AECT errors for the equilibrium geome-
tries of the methane, water and hydrogen sulfide dimers veisipact toAES” is
presented in Tab. 3.2.

Table 3.2: CCSD(T) errors (kcal/mol) oA E$/, and A ECF with respect taA ES” at
the equilibrium geometries (as predicted AyS$,”) for the basis set series
aug-cc-pVXZ (X=D,T and Q).

error error
X  AESE AECP
CH,-CH,
2 0.03(93%) 0.12 (73%)
3 -0.05(111%) 0.03 (93%)

4 -0.07 (115%) 0.01 (97%)
H,S-HS

2 -0.09 (105%) 0.4 (77%)

-0.26 (115%) 0.15 (91%)

4 -0.29 (117%) 0.07 (97%)
H,O-H,O

w

2 -0.9(118%) 0.71 (86%)
3 -1.21(124%) 0.29 (94%)
4 -1.32 (126%) 0.11(98%)

With increasing cardinal number X the errors of the CP-aie® interaction energies
AEC? are systematically reduced and the values approach the i@&SThis is not
the case fo\E{/;, which tends to overestimate the CBS limit when larger bssis
are applied.

Beside the already mentioned different reference wavéiumea second error source
should be considered. The virtual space in the calculatbn¥ (i = 1,2) is reduced
in comparison to the phantom orbital calculations5f (i = 1,2). The decrease of
the external orbitals is equal to the number of occupiedtaldbirozen in the second
monomer unit, which are excluded from the correlation treatt. The reduced num-
ber of external orbitals yields less negatiVé (i = 1,2) energies with respect to the
CP-corrected outcomes and thus in turn causes an overéstinad the interaction
energy. As evidence by the following orderingke < Acy;;r < A9 of the cor-
relation energy contribution to the interaction energyha H,S-benzene complex as
presented in Fig. 3.1. The good agreemenhaf{; with respect to the CBS limit for
the double¢ basis sets (see Table 3.2) seems therefore to be rather eqoense of
a favorable error cancellation than of an accurate desaniptf the interaction energy
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with the approach of Eq. 3.8. Note that the proposal of WardyRawlus is indeed
in line with the so-called virtual counterpoise scheme (YCIG6]. In this scheme
the monomer calculations are performed in a reduced dimss lvéghere the 'to be
occupied orbitals’ of the second monomer are projected The. reason why Daudey
et al. [106] suggested the VCP scheme is strongly relatedéood the most often
discussed issues regarding the counterpoise approaths th& question whether a
CP method overcorrects the interaction energy or not. Tlysipal explanation for
the validity of the VCP scheme is based on the Pauli exclugiortiple. In a corre-
lated CP calculations on a monomer, the excitations to @sbdorresponding to the
occupied MOs of the second monomer are allowed, howevererdimer they are
not [107]. This approach was discussed in detail in a revig\el@ by van Duijneveldt
et al. [108]. It has been concluded on the basis of severdiextj109-111] by com-
paring the results obtained with VCP and CP that only thedatheme provides the
proper correction to the interaction energies [112, 118 @&rgument that in the lim-
iting case of a complete dimer basis the monomer calcusBbould be performed in
this complete basis too (CP scheme) rather than in a redwasesl ¥ CP scheme) also
applies to the proposed scheme, which is thus bound to diraegs the interaction
energies for large basis sets. These findings are in linethatldiscussion carried out
here on the errors caused by the reduced number of extetntlsr

It should be noted that the procedure defined by Eq. 3.8 is tieragly simplified
variant of the method of increments. The usage of the nanmrerimental method for
this approach is even misleading. Eq. 3.8 simply approxasiétte correlation part
of the interaction energy of a dimer by a single two-body émeent, i.e. the corre-
lation contribution Eqg. 3.6 is formally obtained as the eli#fince between a second-
order expansion for the dimer and first-order expansiongh®monomers under the
assumption, that the first-order contributions of theseaggmns completely cancel
when taking the difference. Thus the highest order increnmetihe dimer expansion
has to be evaluated, which corresponds to the full calarativhereas the cheaper
evaluation of lower-order increments is avoided. In casttta this the incremental
scheme [39, 42] aims at evaluating the total correlatiomggnef a system by consid-
ering only increments of relatively low order and thus agditge expensive evaluation
of the high-order contributions [43,104, 114, 115]. Thus,the proposal of Paulus et
al. no advantage with respect to the computational effopbisined. The computa-
tional cost of their procedure as well as of the CP approadboiisinated by the most
expensive calculation for the dimer, which is completelyieglent for both schemes.
For the monomers one saves in the method suggested by Paalughe HF calcula-
tions in the dimer basis. However, since a CP correction ¢ceseary at the HF level
of theory, one does neither save CPU-time nor hand work.

From the presented results it is clearly evident that theneattempt to identify the
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intermolecular second-order correlation energy incrésas an approximation to the
counterpoise corrected interaction energies of weakgraating monomers can not be
recommended as an accurate method in general. It is showthéheesults obtained
via Eg. 3.8 are not systematically improvable and that thgeaf applicability is lim-
ited. The incremental correlation energis,,; overestimate the interaction energy
in a constant manner with respect to the counterpoise ¢edemergies. A compar-
ison of Ae,,; and the complete basis set limit reveals that reasonahlésder the
dimers of helium, hydrogen sulfide and methane are only oétawith basis sets of
moderate size, and the corresponding good results appeaudice to a beneficial error
cancellation. For the water dimer with strong hydrogen lagd was found that Eq.
3.8 yields unreasonable large errors. For the hydrogerdsudind methane dimer in
quadruples basis set Eq. 3.8 also fails to estimate accurate interaenergies with
respect to the complete basis set limit as well as with rédpdatie counterpoise ap-
proach.

The overall conclusion is that the incremental method capravide a direct proce-
dure to determine BSSE-free interaction energies. Onechaset one of the variows
posterioricorrection methods. Concerning weak intermolecular atgons the incre-
mental scheme in fact can provide accurate total energig¢isdanteracting system and
therefore also accurate interaction energies at reduageg@uiational effort. Wowever
an efficient evaluation of the BSSE effect, especially wiaegd molecular clusters are
considered, has not yet been introduced together with trenmental approach. This
is actually the goal of this work.
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3.2 BSSE correction schemes for n-body clusters

3.2.1 SSFC, PAFC and VMFC schemes

Within the supermolecule approach one can calculate tkeaction energy (D) ofi-
body clusters from the energy difference of the clustergnél’ " and its individual
monomer fragment&! according to:

D=E7"-> E, (3.9)
where the bar in&! indicates that the energy is calculated at the relaxed gegme
Consistently with the notation of Eq. 3.9 the omission of liae symbol atEfj and
Ej” in Eq. 3.2 means that these monomer energies are calculated enonomer
geometry taken from the dimer.
In the limit of the complete basis set the dimer interactioargy calculated via Eq. 3.9
(for n=2) and Eq. 3.2 will not be affected by the BSSE. Howelerobtained results
will (except for diatomic systems) not converge to the saalaessince the monomer
energies are evaluated at different geometries (isolatatbmer vs. monomer in the
complex) [116, 117]. In order to circumvent this discrepanoe has to account for
the geometry relaxation contribution termsf? , and AE’ . So the counterpoise
corrected interaction energyES" which takes into account the relaxation energy in
case of a dimer is:

AECY = AECP  AE! , + AFE’

rel — rel’

(3.10)

where we also assume that the CP-correction and the radaxatntributions behave
additiv. The fragment relaxation energies describe theggreenalty for distorting the
monomers from their isolated geometries to the ones in thgptax:

AE!, = B! - E,

rel —

AE], = Ej - L3,

rel

(3.11)

Similar consideration may be carried out also for n-bodgrattion energies. If we
aim to account for BSSE effects in n-body clusters, we magkavhe counterpoise
procedure and expand Eq. 3.2 according to:

D(fCP)=Ej - B, (3.12)
where all individual monomers calculated in the basis ofli®le supermolecule
B are subtracted from the cluster energy . Again the omission of the bar

symbol atE”" indicates that the geometries are those from the clustethande

7
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Eq. 3.12 is also referred to as full counterpoise correateraction energy (fCP).
The geometry relaxation contributions may also be germdlfor the n-body case

according to:
Z AE!, = Z(E E) (3.13)

Together with Eq. 3.12 and Eq. 3.13 we may finally formulatee BSSE corrected
interaction energy for n-body clusters which also take thgrhent relaxation effects
into account as:

D(SSFC) = D(fCP) +ZA i (3.14)

recasting Eq. 3.14 leads to:
D(SSFC) = B — ZE’ +Z(EZ Ep") (3.15)

The lastterm in Eqg. 3.15 is well-known from the literatur&3] as a BSSE correction
for n-body interactions, called site-site function couptese (SSFC) correction:

SSFC = i (E - EJ”) (3.16)

Note that at the complete basis set limit Eq. 3.16 approantresand hence D(SSFC)
converges to D.
In the framework of the counterpoise method at least two nextensions exist
which correct for BSSE in aggregates with various subuiifslls and Wilson [118]
proposed a pairwise additive function counterpoise (PAs&)eme which describes
the BSSE correction of the pairwise interaction of each muogrowith every other
monomer in the cluster: .

PAFC = Z(E - Ejfj>. (3.17)

i#j

Valiron and Mayer [119], based on earlier work of White andvidaon [120], in-
troduced a hierarchical scheme, the so-called Valirondidynction counterpoise
(VMFC) correction.

varre =3 (B - E9)+ Y (A2 - AES )
g i<j
+ 3 (AE - ABZE) 4 (3.18)
1<j<k

D DI (2 i N N

1<j<...<(n-1)
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The first-order term (VMFC(1)) from Eg. 3.18 equals to the SSeheme. Higher-
order BSSE energy contributions treat the basis set extereffects of all dimers,
trimers up to n-mers present in a cluster and are calculatedrecursive manner.
Exemplary the second-order of the VMFC scheme is given by3Ef:

VMFC(2) = zn: (aB] - AaB]") =
< (3.19)

n

So((8 — B9 — ) — (B e )

i<j

whereas the third-order term reads as:

VMFC(3) = zn: (AEW — AE?j’f---n) —

ijk ijk
i<j<k
. ijk ijk ijk ijk 3.20
> (B3 - aBg - AET - ABJ) (3.20)
i<j<k

— (B AR ARR AE;gj---")).
Note that within the notation used in this work the sum of farstl second-order VMFC
corrections is indicated by VMFC(1,2), whereas the VMFQ&n describes the en-
ergy contributions arising from second-order correctionly.

One important characteristic of these schemes is the catipoal cost they cause.
The number of individual calculations [121] which have topgseformed to calculate
the VMFC correction is equal to:

Neale. = i 2n—i (ZL) . (321)

Obviously the amount of individual calculations increasery rapidly with increasing
cluster size n. Therefore the VMFC scheme is applicable tmgmall cluster sizes.
Exemplary the full VMFC BSSE correction calculation of ngmsnetric clusters with
n=6,8,10 and 12 subunits would require 665, 6305, 58025 2845 individual cal-
culations, respectively [121]. The scaling behavior ofAé-C is rf and for the SSFC
2n, which is quite low in comparison to Eqg. 3.21. However dize of the one-particle
basis set employed in the individual calculations is alsiondihg factor determining
the computational cost of a BSSE calculation. From thisgesatve the PAFC method
is computationally the most attractive, since the most egpe calculations needed
are just in a dimer basis set, independent from the cluster 3ihe VMFC scheme is
definitely the most expensive one, not only due to the hugebeurf individual cal-
culations, but also because the most expensive ones arstasitarge as the cluster
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calculation itself, namely the calculation EIZJJ("H_U Even though the SSFC scheme
requires the smallest number of individual calculationsday become computational

extremely demanding when BSSE corrections for larger etuskzes are considered,

since any monomer has to be calculated in the presence ofible wmer basis set.

3.2.2 Approximate SSFC(R) and VMFC(2)(R)

As pointed out in contrast to the computationally less dedimanPAFC scheme the
SSFC and mainly the VMFC methods cause an enormous congnahéffort. It is
therefore desirable to develop approximations to thesemsel. The ones introduced
here aim at a reduction of the size of thener basis set. The basic assumption em-
ployed here is that standard Gaussian basis sets are ditéizg basis sets optimized
for the corresponding atom and not aiming to describe fonstof other centers. Since
atom-centered Gaussian basis functions are used we magtélpefar distant func-
tions contribute only little to the additional flexibilityf the wavefunction at a specific
monomer.

Due to the steep scaling of Eq. 3.21 the implementation oMk&C scheme is re-
stricted to the second-order correction only. In order toycaut SSFC as well as
VMFC(2) calculations automatically one needs to partitio® n-body cluster into its
monomer fragments. The fragmentation procedure is peddrautomatically with
the usage of a graph partitioning routine [51]. The pantitigg into monomer frag-
ments is analogous to the construction of the one-site dweaithin the incremental
scheme. But the set of vectors from which the distance maroonstructed is no
longer a set of centers of charge as in case of the incremssitame but simply the
set of atom coordinates of the cluster under considerafitverefore one distinction
has to be drawn, the first condition in the connectivity mxalg. 2.64 is not needed
anymore as we may exclude the case that the distance betweetdm coordinates
is smaller therl0—* A.

Having the sets of coordinates which form the monomers cocistd we turn our at-
tention to the superscripts which occur in the second sungof¥&16 and Eq. 3.19.
Firstly note that the individual calculations from the sedsum in Eq. 3.16 and Eq.
3.19 are performed using so-called ghost atoms. The terst ghosed because these
atoms contribute only their basis functions but neitheirtheclei nor electrons to a
guantum chemical calculation within the LCAO approach. dterall basis set is the
sum of basis functions which are contributed by the atomadioates i (the lower in-
dex in Eq. 3.16 and Eq. 3.19) and all the remaining ghost atnasgiven cluster.
Therefore if we want to exclude in a given monomer ghost datmn basis func-
tions contributed by far away ghost atom$riori, we need a procedure to identify
them. We employ the information about the distances of atoordinates from a
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given monomer fragment to all possible ghost atom coordsat the n-body cluster
in order to decide whether a basis function will significargbntribute to the BSSE
calculation or not. The reduced basis set for the BSSE cloul is constructed as
follows: use a distance threshold R to select all ghost atmondinates from the whole
molecule, which have a smaller distance than R to at leasttom of the fragment
I. Since these selected ghost coordinates are associdtedtamns of the system, they
are associated with AO-basis functions, too. These AOslfasictions together with
those arising from the lower index in Eg. 3.16 are exactlylasis sei;(R) of the
BSSE calculation. Having the set of the truncated ghostalrgpace constructed, we
may rewrite Eqg. 3.16 into the approximate one:

SSFC(R) = i <E - E?W) (3.22)

i

Note that in the limit when the distance threshold reachésity, the approximate
SSFC(R) scheme is equal to SSFC:

SSFC(R — o0) = SSFC. (3.23)

The distance-dependent screening procedure is also dppliee second-order VMFC
scheme and hence Eq. 3.19 is approximated via:

VMFC(2)(R) = Z(( EY B EY)
i<j (3.24)
Bij(R) Bij(R) B;j(R)
- (B = B0 - ),
where the truncated ghost orbital space is formed throughnification of the proper
ghost coordinate sets for a given monomer pair:

Bi;(R) = Bi(R) UB;(R). (3.25)

As indicated in Eq. 3.24 the evaluation of VMFC(2)(R) inahsdthe calculation of
monomer and dimer energies with the dimer basis set as wéleasuncated basis
set. Analogously to Eq. 3.23 in the limit whe® — oo we arrive at the VMFC(2)
schemeVMFC(2)(c0) = VMEC(2).

The proposed approximate scheme removes far distant dmscin a systematic
fashion so that one can control the level of desired accunhtlye BSSE correction
on one hand and the gained savings in computational resoarcte other hand.
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3.2.3 Approximate SSFG,. scheme

The approximate SSKfe scheme is termed incremental approach because the under-
lying procedure used to account for SSEClosely reflects the expansion of the in-
cremental scheme as described in Eqg. 2.58. The SSBESE correction is evaluated

as a sum of fragmental BSSE contributions according to:

SSFCyp :Z(Z Ae/ + Z APt + ..+ Z AGT) (3.0

i<k j<k<..<m
#J i#£5,k i#5,k,..,m

where Ae” refers to the fragmental first-order correctiah¢”* to the fragmental

second-order correction and flnaﬂye” " marks the highest possible correction order
which depends on the number of monomers present in the ndjosier.

The fragmental first-order BSSE contribution is evaluatedhe difference between
the monomer energy in its own badi% and a second monomé}fj:

Ae? = E! — BV (3.27)

The basis set enlargement built from basis function whiaghespond to ghost atoms
of the remaining monomers is systematically increased witheasing order. Thus
the second-order BSSE increments read:

Ae?F = BI — BT AT — Ael®, (3.28)

where E/7* as well as the first-order correctiae” and Ae* are subtracted from
the monomer in its own basig:. The third-order BSSE correction is formulated
analogously:

AéF — B BIF _ AeTE ATt — AR — AT — At — At (3.29)
So the general formula for the fragmental BSSE contributézals:

Ae 2] .m Ez Ezy .m ZAem .pom ZAEU .po

1<j 1<j

— ZAezj"'p — = ZAE?.

i<j i<j

(3.30)

Regarding the expansion order of Eq. 3.26 we can distingwistimiting cases, once
the truncation of the series after first-order and on therdthed an expansion up to
the highest order. In the later case the S§EF€cheme turns into the SSFC approach,
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what is exemplary proven for the case of a trimer cluster:

SSFCip. = Z (Z Aé7 Z Ae”k)

i<k
Z#J i),k

=Ae® + A + A6123 + At + A’ + Aezl?’ + Aedt + Aed? + A6312
=Aei®> + Aei® + B — B2 — Ael? — Ae’+

AS T AP L EP - Ad APt

A E AR+ B - P - AS AP
S o N ) L o B

3
=> (B} - E*) = SSFC
(3.31)

Whereas the SSES. first-order correction is the pairwise additive functiorunter-
poise scheme:

n

SSFCon( first) = Z Z A = Z( E;‘J‘) — PAFC (3.32)

i#]
Z#J

The number of individual calculations needed for the whelges of Eq. 3.26 is:

n—1
—1
Neate. = N + Z (n ; )n (3.33)
i=1

Exemplary for cluster sizes with n=6,8,10 and 12 the evalnaif Eq. 3.33 yields 192,
1024, 5120 and 24576 individual calculations, respegtiv@f course advantages over
the SSFC scheme will only occur when the expansion is tredcait a low order. The
restriction to second-order fragmental contributionadkieto 96, 232, 460 and 804 in-
dividual calculations for cluster sizes n=6,8,10 and 1peetvely. Even though the
number of individual calculations is still considerablglnifor a second-order expan-
sion, one should remember that the most expensive calongagire those of7* in
the basis of a trimer, independent from the size of the dluste

3.2.4 Approximate SSFC(S) scheme

Finally we propose an approximation to the SSFC scheme baséke findings of
Kalvoda et al. [122]. The autors calculated the cohesiveggnef a GdN cluster
within the incremental method. As an estimate for the BSSBeaHF level of theory
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they proposed to calculate the atomic energies of N and Gd mwérely the diffuse
and polarization functions, respectively placed on thesghenters surrounding either
N or Gd.

A procedure which aims at the elimination of the most densgsbianctions and a
survival of the diffuse ones at the ghost centers may bezezhlivith the inspection of
the overlap integrals from the overlap mat8xWe call this scheme SSFC(S) method
and introduce a reduced set of basis functions for every menoB; (S):

SSFC(S) = zn: (E - E?“S)). (3.34)

7

Partitioning a cluster according to the method outlined.ih3 yields the information
which atoms correspond to either the set of ghost centefsemsdt of atoms forming
the active molecule, described by the subscript in 3.34. Assalt we gain a set of
active molecules, where each one in turn correspond to & agbms and every atom
map to a set of basis functions. Similar consideration afuplze sets of ghost centers.
In order to utilize the value of an overlap integral as a meastdnether to incorporate
a given basis function on a ghost center or not we need to d@enall values of the
overlap integrals from the set of basis functions of thevagtiart to the set of basis
functions corresponding to the ghost centers. When onlyoordap between a basis
function of the active part to a regarded basis function ftbenghost set is greater
then a chosen S threshold then the corresponding basisdascirvives the screening
procedure.

This method allows to establish a systematically reducedfdeasis functiond,(5)
for each monomer i. The resulting reduced basis set will dépgon the exponents
of basis functions delivered within a chosen basis set, dsasehe distance of the
atoms where the two basis functions are placed at.
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3.3 Applications

The performance and applicability of the approximate sae®SFC(R), SSFC(S),
SSFG,. and the VMFC(2)(R) have been mainly tested for a water cluséeies
(H20),, with sizes n ranging from 6 to 20. The optimized structureshef investi-
gated clusters are shown in Fig. 3.35 and have been taker[128h

LA
@ &

%Wy &

Figure 3.10: Optimized structures of the water cluster series@hi; n=6 boat struc-
ture (a), n=6 bag structure (b), n=8,10,...,20 (c-i) [123].

Furthermore the SSFC(R) scheme was also applied to cactiat BSSE of a
methanol cluster series, the optimized geometries hasta&en from [124] and are
presented in Fig. 3.11.
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Figure 3.11: Optimized structures of the methanol cluster series;@Hj),,; n=8 (a),
n=12 (b) and n=16 (c) [124].

In order to arrive at a proper partitioning of the methanal arater clusters the con-
nectivity parametet,.,,, for the Metis routine was set to 1.3 (A). The BSSE SSFC(R),
SSFC,.. and VMFC(2)(R) calculations were carried out within the MERO quantum
chemistry package [58, 100, 101]. Whereas the SSFC(S)latitms were performed
within the TURBOMOLE 6.3 program package [125].

Beside the BSSE correction itself we calculated also thailstation energies of the
water clusters according to Eg. 3.9. The calculation of tital energy of the cluster
Ej;’; is carried out with the incremental scheme using the dorspéeific basis set
approach [52]. For the description of the environment ofdbeains we employed
Pople’s basis sets, namely the STO-3G for hydrogen and B8i&®6basis set for oxy-
gen [126,127]. The size of this second basis is controlladl tiet,,,;, parameter

which was set to 3 A.
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3.3.1 Comparison of the SSFC, PAFC and VMFC(2) schemes

Before starting to examine the applicability of the appnoaie BSSE correction
schemes the performance of SSFC, PAFC and VMFC(2) schencesdged in gen-
eral for the water cluster series {8), (with n up to 20). Table 3.3 summarizes the
BSSE corrections according to Eq. 3.16, 3.17 and 3.19 at @@D0¢T), CCSD and
MP2 level of theory using aug-cc-pVDZ basis sets (and for(Hh®); cluster also for
the aug-cc-pVTZ basis sets).

The SSFC and PAFC BSSE values grow fast with the cluster sitalhthe presented
theory levels. The SSFC and PAFC methods estimate the BS®&ttion to be even
bigger than 40 kcal/mol for the biggest cluster sizes with&and 20 at all correla-
tion levels. For moderate cluster sizes with n=12,14 and $6B&C and PAFC BSSE
correction around 20 kcal/mol is observed. But even for thalkest clusters of the
water series the SSFC and PAFC BSSE values are still coabigdnigh at least for
the double¢ basis set and have definitely to be considered if one aims at@urate
description of interaction energies.

The aug-cc-pvVDZ/CCSD(T) SSFC BSSE correction per monomeals 0.97, 1.45,
1.48,1.53,1.63, 1.66 and 2.17 kcal/mol for n=6,8,...,&8pectively, growing slow but
continuously with the cluster size n. Analog consideragifar the PAFC outcomes re-
veal the following sequence of BSSE corrections: 1.04,,11635, 1.68, 1.83, 1.86,
2.51 and 1.95 kcal/mol also for n=6,8,...,20, respectively

In contrast to these results the magnitude of the secorel-dB&SE correction
VMFC(2) is very small with values around one tenths of a koal/for n=6 and at
most 1.3 kcal/mol for n=12 for the CCSD(T) theory and 1.8 kuoal for n=16 at MP2
theory level. The VMFC(2) is therefore only a slight impravent to the SSFC scheme
which is according to Eq. 3.18 referred as the first-ordehefW¥MFC scheme. The
percentage of the VMFC(2) fraction with respect to VMFCJir2reases rapidly with
the cluster size increasing from hexamer to octamer and s#dlyer constant for clus-
ters larger or equal than the water decamer. This behavigrbaaxplained when
we refer to the geometry pattern of the investigated clast&rom the geometrical
arrangement of the water clusters presented in Fig. 3.350tee that every monomer
in the regarded boat structure of the water hexamer is coatelil to just two another
water monomers. Whereas the number of hydrogen bonds felatly monomer in
the larger clusters is at least and also mostly three. Altmyeve may therefore say
that the VMFC(2) correction becomes more important whegdngluster sizes are
considered. Note that the second-order BSSE correctiotnilbotes even around 7%
to the VMFC(1,2) value for cluster sizes between n=8 to nat2He CCSD(T) theory
level.

Regarding the BSSE magnitude with respect to differentetation treatment we find
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the highest and lowest BSSE estimates at CCSD(T) and CCS®Ddetheory respec-
tively for all correction schemes considered and the augMidZ basis set. The MP2
theory yields BSSE values in between CCSD and CCSD(T) esds@dso irrespective
to the applied correction scheme for the aug-cc-pVDZ badisNote that this order-
ing is not found for the BSSE calculations on the water hexamthe aug-cc-pVTZ

basis set indicating that the described dependence is netaly valid.

The comparison of the SSFC vs. PAFC scheme leads to the faljovbservations:

¢ the PAFC results tend to overestimate the BSSE with respéeetSSFC results,
¢ the overestimation grows when the cluster size increasesdb smoothly, and

e the overestimation ranges from 7% for the water hexamer &ém é\6% for
octadeca-mer at the CCSD(T) level of theory.

A similar trend is also observed at the CCSD and MP2 level ebtin however both
methods predict the overestimation to be a little smaller.

As one expects from theory the increase of the basis setyjtralm double to triple¢
reduces the BSSE for the water hexamer. The BSSE correctiomated with the aug-
cc-pVTZ basis set is about 50% of the BSSE correction witlatilgecc-pVDZ basis set
for all correlation methods and BSSE correction schemes.bHsis set increase also
decreases the ratio of PAFC/SSFC (%) for the water hexanadirtheory levels. This
can be rationalized by the fact that the BSSE disappearseitirtiit of the complete
basis set.

As a final remark note that the blank entries in Table 3.3 obegause the calculation
of particularly the VMFC(2) scheme becomes very quickly asgible to carry out
especially for bigger clusters and more demanding corogléteatments. But also the
calculation of the BSSE within the triple¢basis set (except for the smallest cluster or
the PAFC scheme) was hardly possible to carry out due to ctatipoal limitations.



Table 3.3: Comparison of different BSSE correction schemes fo(gH n=6,8,...,20 (n=6 boat structure) clusters with aug-cc

pVDZ (and aug-cc-pVTZ for n=6) basis sets at the CCSD and MR&ll BSSE in kcal/mol.

n 6 6 (X=T) 8 10 12 14 16 18 20

CCSD(T)/aug-cc-pVXZ
SSFC 5.79 2.80 1156 14.80 18.30 22.75 26.54 39.11
PAFC 6.22 2.95 13.01 16.45 20.19 25.66 29.68 45.18 39.05
PAFC/SSFC (%) 1074 1054 1125 111.1 110.3 112.8 111.8 5115.
VMFC(1,2) 5.94 2.87 12.43 1591 19.64
VMFC(2) 0.14 0.07 088 1.10 1.34
VMFC(2)/VMFC(1,2)(%) 2.36 2.44 7.08 6.91 6.82

CCSD/aug-cc-pVXZ
SSFC 5.20 2.64 10.45 13.39 16.55 20.63 24.05 35.50 31.55
PAFC 5.56 2.77 1159 14.66 18.00 22.88 26.47 40.35 34.84
PAFC/SSFC (%) 106.9 1049 110.8 109.5 108.8 1109 110.1 711B10.4
VMFC(1,2) 5.27 2.68 11.17 14.29 17.65
VMFC(2) 0.06 0.04 0.72 091 1.10
VMFC(2)/VMFC(1,2)(%) 1.2 1.4 6.4 6.3 6.2

MP2/aug-cc-pVXZ
SSFC 5.40 2.85 10.84 13.89 17.18 21.39 2495 36.96 32.72
PAFC 5.78 2.98 12.02 15.22 18.71 23.75 27.50 42.01 36.20
PAFC/SSFC (%) 106.9 104.8 1109 109.6 108.9 111.1 110.2 711B10.6
VMFC(1,2) 5.51 291 11.48 14.70 18.16 22.96 26.69
VMFC(2) 0.10 0.06 064 081 099 157 175
VMFC(2)/VMFC(1,2)(%) 1.9 2.1 5.6 55 5.4 6.9 6.5

€ ¥3ILdVHD
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3.3.2 Approximate SSFC(R) scheme applied to water clusters

The performance of the proposed approximate SSFC(R) schetoeding to Eq. 3.22
has been investigated for the water cluster series with&)=618 at the CCSD(T) with
the aug-cc-pVXZ (X=D,T) basis set applied. As a benchmarktie accuracy of the
SSFC(R) scheme the full SSFC correction according to Eg6 ®ds calculated for
the aug-cc-pVDZ basis set.
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Figure 3.12: BSSE correction (in percentage) depending on the distdmesliold R
(A) with respect to the SSFC method and the correspondinglaties
aberration from SSFC calculated for the water cluster s¢HgO),, (n=6
boat structure) at HF level of theory.
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The plots in Figures 3.12 and 3.13 illustrate the percentagerage of the CCSD(T)
SSFC(R) BSSE correction with respect to full SSFC schemeeddisas the absolute
deviation from the full SSFC treatment depending on theadist threshold R. The
corresponding CCSD/aug-cc-pVDZ and MP2/cc-pVDZ resutscfusters with even
20 monomers are given in the the Appendix B in Fig. B.1-B.2c8ithe convergence
behavior of the MP2 and CCSD outcomes does not differ fromQ@&D(T) results
the analysis of the data may be limited to the CCSD(T) findiogly. Whenever it
will be necessary or worthwhile to consider also the MP2 a@$D results we will
incorporate them into the discussion. Otherwise we willthe data in the Appendix.
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Figure 3.13: As Fig. 3.12 but for the correlation energy contribution &SD(T) level
of theory.
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The cutoff parameter R was chosen in a range between 2.5 A @&nd®rrelation
energies, labeled as CCSD(J), are presented separately from the HF contributions
therein. The corresponding MP2 and CCSD plots are presamtbé Appendix B in
Figures B.1 and B.2 respectively.

The percentage coverage of the SSFC(R) results with resp&$FC grows expo-
nentially when R increases at the HF and at the presentedlad levels of theory.
Already at the middle range of the cutoff parameter with B=3. and 4.5 A very
accurate results are observed. For example at R=4 and 4.6 8SFC(R)/SSFC ra-
tio for both HF and CCSD(T),, level is in between 90% to 97% and 95% to 99%
respectively. A further extension of the cutoff threshadt5 A and 6 A yields virtu-
ally exact results. For R<3.5 A however the percentage epeebecomes small and a
significant loss in accuracy is observed. Exemplary the SBEEZ.5) outcomes cover
just 50% to 60% of the BSSE correction at the presented tHeweys.

Regarding the absolute error of SSFC(R) with respect to S@&f€r to the second
charts of Fig. 3.12 and Fig. 3.13) for the distance thresldlR=4 and R=4.5 A
deviations close to 1 kcal/mol or even smaller are gainedylijible small errors of
a few tenths of a kcal/mol are obtained for R values equal to&nd 6 A. For the
smallest R value considered here with 2.5 A the deviatiomishe order of several
kcal/mol. In the following the deviation of SSFC(R) with pext to SSFC will be
discussed together with the percentage BSSE correctidnrespect to the calculated
interaction energies. This then allows to draw the mosalpddi conclusions regarding
the accuracy of certain thresholds.

For a more detailed analysis of the results refer to the zobants in the plots of Fig-
ures 3.12 and 3.13. They display a cutout covering a rangerobBtween 4 to 6 A and
410 5.5 A. Analyzing the results carefully we find that thewecy of SSFC(R) for a
given R value depends on the cluster size following the ttead for smaller cluster
sizes the results become more accurate as for the bigger dhissis a consequence
of the SSFC(R) procedure itself since for small clusterssizigh a chosen R value a
relatively large fraction of ghost atoms are included wibpect to all available ones.
This is not the case for larger clusters. In turn this cause®i@ complete basis set
for the n single BSSE calculations with respect to the whelean basis for smaller
cluster sizes and is the reason why the percentage cover&gH&(R) with respect
to SSFC is bigger for small clusters.

In order to investigate this subject systematically theeetage coverage of the aver-
age number of basis functions (avg. no bf.) used to evalb&tsécond sum of Eq.
3.22 with respect to amount of basis functions used for SSH€ulations is plotted
against the distance threshold R for the different clusgess in Fig. 3.14.
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Figure 3.14: Average number of basis functions used in the SSFC(R) monoate
culations with respect to the SSFC method for the water etustries
(H20),, n=6,8,...20 (n=6 boat structure).

The avg. no bf. grows linearly with increasing R what cleatgmonstrates that the
approximate SSFC(R) procedure is carried out in a systerfethion. Furthermore
we note that for a given R the percentage coverage of the avf. decreases with
increasing n. The findings in Fig. 3.14 may be used as a meaktire gained compu-
tational savings of the SSFC(R) scheme with respect to &G method. Exemplary
choosing SSFC(R=4) as a sulfficiently accurate approximétioa BSSE calculation
we omit almost 50% of the basis functions in average, if westaT the middle range
of n. The scaling behavior of CCSD(T), CCSD, MP2 and HF meshedh respect
to the size of the one-particle basis set i5s N°, N°> and N, respectively. So if we
halve the size of the basis set, what we do in average for 8#J}(method, we gain
in theory a computational speed up by a factor of 128, 64, 82L&rfor the CCSD(T),
CCSD, MP2 and HF methods, respectively.

Another interesting observation is that the spread of thegmtage coverage among
the cluster sizes for fixed R values becomes smaller when iRases. We observe
at R=4.5 A a data spreading ranging from 94 to 99% whereaadjrat R=5.5 A
the data range varies only between 98 and 100%. This is abtalhant indicating
that if a certain amount of the nearest ghost atoms are employa single BSSE
calculation Ei(R) one can neglect the basis functions which correspond tortfie o
ted ghost atoms with almost no loss in accuracy. In order ppaeni this conclusion
Table 3.4 summarizes the CCSD(T)/aug-cc-pVDZ SSFC(R) B&BEection for the
(H20),,—14.16,1s Water clusters with R values also above 6 A. Therein alsokeage
number of basis function is given.
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Table 3.4: CCSD(T)/aug-cc-pVDZ SSFC(R) BSSE correction (in kcal/ywath re-
spect to R for three different water clusters,(®}),, and the deviation (in
kcal/mol and %) from the full SSFC method. Avg. no bf. = averagim-
ber of basis functions with respect to the full SSFC scheme.

R (A) 5 55 6 7 8 00
n=14
SSFC(R) 22.19 2242 2256 22.70 22.75
error 056 033 0.19 0.05 0
error (%) 246 145 0.84 0.22 0
avg. no bf. 402 446 471 529 574
avg. no bf. (%) 70 78 82 92 100
n=16
SSFC(R) 25.76 26.12 26.25 26.42 26.54
error 0.78 0.41 0.28 0.12 0
error (%) 294 156 1.07 0.45 0
avg. no bf. 415 479 501 554 656
avg. no bf. (%) 63 73 76 84 100
n=18
SSFC(R) 38.14 38,54 38.70 38.95 39.05 39.11
error 0.97 058 0.42 0.16 0.06 0
error (%) 248 147 1.07 042 0.16 0
avg. no bf. 457 497 530 626 674 738

avg. no bf. (%) 62 67 72 85 91 100

The deviation of the SSFC{5) corrections for n=14,16 and 18 is very small with
at most 3% error and definitely negligible because just irotigker of few tenths of a
kcal/mol for BSSE corrections obtained with-B A. From the data of Table 3.4 we
may also conclude that a highly accurate BSSE correctioaiméd with R>6 A leads
to a computational speed up. For distance threshold of 6 Aegéent 18%, 24% and
26% basis functions in average for n=14,16 and 18 respéctiVéhereas the usage
of R=7 A still leads to the omission 8%, 16% and 15% basis fonetin average for
n=14,16 and 18 respectively. And even for R=8 A we neglecbatrt0% of the basis
functions on average.

The reason why we continuously consider the average nunilbasse function is due
to the fact that the amount of basis functions exploited femgle BSSE calculation
differs among the n monomer units. Recall that the numbehotgatoms covered
by a certain R threshold depends upon the distances of atidbelinates from the
considered monomer to all the remaining coordinates in stetu The crucial factor
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influencing the amount of covered ghost atoms is therefaregdometrical arrange-
ment of the neighbor monomers surrounding the considergsmer fragment. From
these considerations follows that major differences wagpect to the number of cov-
ered ghost atoms and therefore the size of applied basizset between monomer
fragments from the central region in a cluster compared @asdtarranged at the pe-
riphery.

To confirm this considerations we study the variation of therage number of basis
functions employed in the SSFC(R) calculation on thed@MHg cluster. In Fig. 3.15
the standard deviation from the average number of basisitunsds plotted against R.
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Figure 3.15: Standard deviatiofi from the average number of basis functions needed
for an approximate SSFC(R) calculation at a given R distdmashold
for the water cluster (kD),s obtained with the aug-cc-pVDZ basis set.

The curve passes the maximum at R=6 A and decays for smatlegraater R than
6 A equably and therefore may be fitted according to a Gausksribution. This
behavior is reasonable since the number of ghost atomsexbvsr small R values
are comparable for the n different monomers the standarndtitavis therefore small.
The situation is similar for bigger R values since in thisectise greatest fraction of
the ghost atoms employed to constribgtis already included and hence the standard
deviation is also small.

In order to emphasize the computational savings we preséngi 3.16 a comparison
between the calculation time of the proposed approximateC8) scheme at the
CCSD(T)/aug-cc-pVDZ level of theory with respect to the 8EFC approach with
respect to R for the water clusters with n=8,10,..,18. Nio&t the timings are obtained
from calculations done on a PC cluster frequently used bgrgtibs and therefore the
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results are meant to be rather a guide for the eye than a thloiouestigation of the
timings.
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Figure 3.16: Relative computational time of SSFC(R) with respect to tI&GS
scheme at CCSD(T)/aug-cc-pVDZ level for the,(®),, n=6,8,...,18 wa-
ter cluster series (n=6 boat structure).

For satisfactory accurate results at a cutoff parametevewst 4 and 4.5 A we need at
most 15 to 40% of the computational time compared to the f8FS scheme. The
savings grow for larger cluster sizes at constant R valuageltomputational savings
up to 80% are obtained for cluster sizes witk 110, even when R is equal to 6 A.

3.3.3 Approximate SSFC(R) scheme applied to methanol clusts

The approximate SSFC(R) scheme was also used to accountSeE E:ffect of a
methanol cluster series (GBH),, with n=8,12 and 16 at the CCSD(T)/aug-cc-pVDZ
level of theory. Table 3.5 summarizes the results of catmria which were still fea-
sible to carry out. From the presented data we can firstlylodedhat the SSFC(R)
scheme performs also well for other types of clusters, asltieady discussed water
clusters. The percentage coverage of SSFC(R) with resp&S$FEC follows also an
exponential behavior when R increases. The employmentaitaf0% of the basis
functions in average, for the calculation of SSFC(R=4.8)ds satisfactory accurate
BSSE corrections with an error slightly above 1 kcal/molrieB.
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Table 3.5: SSFC(R) CCSD(T)/aug-cc-pVDZ BSSE correction with respgedr for
three different methanol clusters (§BH), and the deviation (for n=8)
from the full SSFC scheme. Avg. no bf. = average number ofsfasic-
tions with respect the full SSFC scheme.

R SSFC(R) SSFC(R) error avg. no bf.
A kcal/mol % kcal/mol %
n=8

4 13.35 85.66 2.23 341 52
45 14.36 92.15 1.22 438 67
5 14.94 95.90 0.64 497 76
55 1531 98.25 0.27 568 87
oo 15.58 100.00 0.00 656 100

n=12
4 23.28 366 37
4.5 25.15 459 47
5 26.34 551 56
o0 984 100
n=16
4 37.65 438 33
00 1312 100

The important message so far is that we have an systemwtiogirovable BSSE
correction scheme which can be applied for different clustpes and we can con-
trol both, the level of desired accuracy and the computatisavings. Moreover the

scheme is also applicable to correct for BSSE artifacts &eandard methods fail to
proceed.

3.3.4 Basis set dependency on the approximate SSFC(R) scleem

The influence of the basis set quality on the accuracy of tHeCES) results has been
investigated for a water hexamer (bag structure, Fig 3.Bbnning’s augcc-pvVXZ
basis sets with cardinal numbers D,T,Q and 5 have been ukedyrime indicates that
the augmented functions have not been applied on the hyaliaigens. This basis set
has been frequently used in the computation of hydrogendmbohlisters [128, 129].
To obtain an estimate for the basis set limit we extrapol#étedcorrelation energy
according to Eq. 3.3 using the quadruglend quintuple¢ basis sets. The CCSD(T)
BSSE corrections obtained with the distance thresholdsi33%5, 4.5 A as well as for
R — oo and the corresponding BSSE corrected and uncorrectedizitibn energies
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are summarized in Table 3.6. The influence of the basis setosizhe stabilization
energy and on the BSSE correction at MP2 and CCSD level ofyhace shown in
Appendix B (Table B.2).

Table 3.6: CCSD(T) BSSE corrected and uncorrected stabilizationgeeerof the
water cluster (HO)s (bag structure) and BSSE corrections obtained with
different schemes for the basis set series’-augpVXZ (X=D,T,Q,5).
(AEBSIE= DCBS(Q5)_ paud-ce-pVXZ 3|l energies in kcal/mol, values in paren-
theses in %).

X D T Q 5  CBS(Q,5)

D -37.68 -39.15 -40.05  -40.08  -40.17
AEBSIE 2.50 1.03 0.13 0.10 0

SSFC (R=2.5) 3.38(61.50) 1.72(69.40) 0.67 (68.28) 0.28 0

SSFC (R=3.5) 5.04(91.19) 2.32(93.47) 0.91(93.21) 037 1 -O.
SSFC (R=4.5) 5.50(99.54) 2.47(99.56) 0.97 (99.55)

SSFC 5.52 (100)  2.48 (100)  0.98 (100)
D(SSFC (R=2.5))  -34.30 -37.42 -39.38  -39.80 -40.20
D(SSFC (R=3.5))  -32.64 -36.83 -39.14  -39.71  -40.23
D(SSFC (R=4.5))  -32.18 -36.67 -39.07

D(SSFC) -32.16 -36.66 -39.07

Stabilization energies D were calculated according to EQ. Jhe analysis of the
data in Table 3.6 provides the encouraging observationwithtthe increase of the
cardinal number X=D to T, the percentage coverage of thecxppate SSFC(R)
BSSE correction with respect to the SSFC scheme is growingemilary the
CCSD(T)/au@cc-pVDZ BSSE correction at R=2.5 A covers 61.5% of the i8F&
BSSE treatment whereas with the aug-pVTZ basis set one obtains a percentage
rate equal to 69.4%. A small improvement of the percentagerage arising
due to the increase from doubjeto triple basis set is also observed when we
analyze the results obtained with the 3.5 A cutoff parametegreas the outcomes
of SSFC(R=4.5) stay rather stable among different cardinahbers. Whereas the
CCSD(T)/aug¢cc-pVXZ SSFC(R)/SSFC ratio for X=T and Q is almost equal.

The BSSE error is reduced approximately by a factor of 2.2nwvbeing from
double< to triple< and by a factor of 2.5 when increasing the basis sets frone(ip
to quadruplec and from quadruplé-to quintuple¢ at CCSD(T) level of theory. The
4,5-extrapolation leads to correlation energies veryeckosthe basis set limit as the
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BSSE value is virtually zero for the SSFC(R=3.5,4.5) outeem

Considering the accuracy of the investigated R-depend&mCSscheme we find
highly accurate stabilization energies when the BSSE asarorrected with the
SSFC(R=4.5) values, the difference between D(SSFC(Rr4bBY D(SSFC) is
negligible. Very good agreement with the full SSFC cor@ctis observed for a
distance threshold of 3.5 A, with errors of just a few tentha kcal/mol.

In theory any BSSE correction method aims to cure the bagisngealance in
the evaluation of the interaction energy, but does not afiee so-called basis set
incompleteness error (BSIE) which also occurs due to thgausé finite basis sets.
In other words, the BSSE can be removed for any given basisvbetreas the BSIE
can only be reduced when the basis set quality is increaded.also clear that at
the basis set limit both errors have to disappear. In Taller@ present the BSIE
as a difference between the uncorrected interaction er2rgy aug-cc-pVXZ with
X=D,T,Q,5 and D at CBS(Q,5). For the CCSD(T) level we find aidon from the
CBS(Q,5) limit equal to 2.5, 1, 0.1 and 0.1 kcal/mol for caadinumbers X=D,T,Q
and 5 respectively. One should keep in mind the magnitudesoBSIE for a given X
when deciding on how accurate an approximate BSSE calounlatiould be carried
out. We believe that it is reasonable to account just for 988 B correction as we do
when applying D(SSFC(R=3.5)) at the CCSD(T) level causinly a few tenths of a
kcal/mol deviation from the full correction scheme whenlest same time the BSIE
error is of the order of several kcal/mol.

Another important advantage of the proposed SSFC(R) apprsathat one can
carry out BSSE correction calculations which are no longanageable with the
standard procedure. The D(SSFC(R=4.5)) calculation fermiig-cc-pV5Z basis set
was not feasible anymore with our standard cluster nodesaumsufficient memory
available. The calculated BSSE corrections at R=3.5 A aefbre the best estimates
for the large augcc-pV5Z basis set. Since we observed a very good agreement f
the full SSFC scheme for the basis sets with cardinal numefisand Q, we may
also regard the D(SSFC(R=3.5)) &ug-pV5Z outcomes as highly accurate.
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3.3.5 SSFC(R) corrected stabilization energies of the wateluster
series

In order to investigate the magnitude of the BSSE correabiorihe different water
cluster sizes the stabilization energies (via Eq. 3.9) efs#ries were also calculated.
Correlation energies of the clusters have been calculatétirmthe incremental
scheme at the CCSD(T), CCSD and MP2 level of theory and wighubage of
Dunning’s augmented correlation consistent polarizeéna double- and triplé-
basis sets [67, 68].

The incremental correlation energies at various corlalevels are listed in Table
3.7 and 3.8. The errors among the incremental CCSD(T), CO8DMP2 results
are comparable among each other. Once the computatiosabégeanding MP2
reference calculation is used to check the accuracy of grenmental MP2 expansion,
we may expect a similar accuracy also for the CCSD and CCSbémelation
level. Exemplary the aug-cc-pVDZ/MBR,.(3) errors with respect to the canonical
calculation differ from the aug-cc-pVDZ/CCSD.(3) ones for n=12,14,16 and 18
by at most 0.05 kcal/mol. This is important since not everySOCT) or even CCSD
reference calculation could be carried out especiallydagdr cluster sizes. We note
that very good agreement with the canonical MP2 resultsresadl achieved with
a third-order expansion with aberration around or smaliantl kcal/mol. For the
smallest water cluster a second-order expansion yieldgisutly accurate results
with errors of only a few tenths of a kcal/mol. Considering #tcuracy of the results
obtained with different basis set sizes we find that for lafggsis sizes the results
become even more accurate. For the bag and boat water hextustars at all
correlation levels the second-order expansion using kettifpasis set is by an order
of magnitude more accurate than the expansion for the daubésis set.



Table 3.7: CCSD(T), CCSD and MP2 incremental correlation energieth®kvater cluster series {B), compared to the canon-
ical results for the aug-cc-pVXZ (X=D,T) and ducg-pVXZ (X=D,T,Q,5) basis sets. (=3 Bohr; dsp=4; core=n;
tmair=3 Bohr; environment basis: H=STO-3G, 0=6-31G; Order-dépet distance screening according to Eq. 2.66)

n Ehes X f O CCSD(T)or(i) error CCSDyo(i) error MP 2.0 (1) error
au Bohr au kcal/mol au kcal/mol au kcal/mol
6 1x10° D 30 2 -1.391342 -0.20 -1.359579 -0.20 -1.314954 -0.20
bag 3 -1.390816 0.13 -1.359109 0.10 -1.314485 0.10
T 30 2 -1.694962 0.004 -1.641703 -0.03 -1.614552 -0.01
3 -1.694966 0.002 -1.641653 0.00 -1.614521 0.01
Q 30 2 -1.793864 -1.735815 -1.722963
3 -1.793895 -1.735781 -1.722976
5 30 2 -1.827250 -1.767427 -1.765951
6 1x10" D oo 2 -1.400281 -0.18 -1.367002 -0.16 -1.322291 -0.21
boat 3 -1.399988 0.01 -1.366738 0.00 -1.321954 0.01
T o 2 -1.697929 -0.02 -1.644589 -0.04 -1.617694 -0.07
3 -1.697876 0.01 -1.644519 0.00 -1.617565 0.01
Q o~ 2 -1.793041 -1.735304 -1.722931
3 -1.793041 -1.735268 -1.722865
8 1x10" D 30 2 -1.881120 -1.834522 -0.94 -1.776090 -0.89
3 -1.879340 -1.832804 0.14 -1.774450 0.14
T 2 -2.278583 -2.205291 -2.170619
3 -2.277865 -2.204531 -2.169990
10 1x10" D 30 2 -2.351846 -1.19 -2.293460 -1.14 -2.220585 -1.12
3 -2.349557 0.25 -2.291314 0.20 -2.218465 0.21
T 2 -2.848559 -2.756865 -2.713687 -0.44
3 -2.847519 -2.755795 -2.712699 0.18

99

€ ¥3ILdVHD

NOISSNOSIJANY S1TNS3Y



Table 3.8: As Table 3.7, but for the water cluster series@), n=10,12,...,20.

n Ethres X f @
au Bohr

12 1x10% D %) 2
3

T %) 2

3

14 1x10" D 30 2
3

T 2

3

16 1x10" D 40 2
3

4

16 1x107 T 40 2
3

18 1x107 D 30/40/40 2
3

T 25 2

3

20 1x107 D 30/40/40 2

3

CCSD(T)on(i) error CCSDyor(i) error MP 2.0 (i) error
au kcal/mol au kcal/mol au kcal/mol
-2.823154 -2.752911 -1.31 -2.665757 -1.30
-2.820222 -2.750138 0.43 -2.663079 0.38
-3.419197 -3.309014 -3.257480
-3.417972 -3.307739 -3.256320
-3.299746 -3.216932 -1.97 -3.115388 -1.90
-3.295847 -3.213199 0.37 -3.111716 0.40
-3.995409 -3.865971 -3.806086
-3.993578 -3.864071 -3.804281
-3.772078 -3.677230 -3.561605 -2.11
-3.766828 -3.672258 -3.556782 0.92
-3.768762 -3.673904 -3.558486  -0.15
-4.566770 -4.418721 -4.350688
-4,564910 -4,416765 -4,348796
-4,298669 -4,184566 -4.04 -4.062820 -3.68
-4,291131 -4.176431 1.07 -4.055221 1.09
-5.195707 -5.021122 -4,953708
-5.190441 -5.015435 -4,948531
-4,719624 -4.600392 -4,455943
-4.713477 -4.594102 -4.449776

€€
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In Table 3.9 we present the CCSD(T)/aug-cc-VXZ (X=D,T andS{B,T)) BSSE
corrected and uncorrected stabilization energies, asagethe BSSE error obtained
according to Eq. 3.22 with a distance threshold of R=4 andf.Bor the aug-cc-
pVDZ basis set the full SSFC BSSE correction is also presemtdable 3.9. The
corresponding CCSD and MP2 (with n up to 20) results are pteden the Appendix
B in Tables B.3-B.6.

Table 3.9: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE correctedraior-
rected stabilization energies for the water cluster s€kk®), (n=6,8,10
and 12) at the CCSD(T)/aug-cc-VXZ (X=D,T and CBS(D,T)) lead en-
ergies in kcal/mol, values in parentheses in %.

n 6 8 10 12
aug-cc-pvDZz

D -37.58 -65.95 -84.99 -104.71
SSFC(R=4) 5.39(93.11) 11.17 (96.64) 13.98(94.44) 17.6&0
SSFC(R=4.5) 5.60 (96.76) 11.37 (98.43) 14.40(97.28) 1{R611)
SSFC 5.79 (100) 11.56 (100) 14.80 (100) 18.30 (100)

D(SSFC(R=4))  -32.19 (16.75) -54.57 (20.47) -71.01(19.697.65 (19.46)
D(SSFC(R=4.5)) -31.98 (17.52) -54.44 (20.89) -70.59 (@p.4-87.10 (20.21)

D(SSFC) -31.79 (18.22) -52.94 (21.83) -70.19 (21.09) -8624.18)
aug-cc-pVvVTZ

D -39.16 -67.39 -86.71 -106.82
SSFC(R=4) 2.64 5.48 6.92 8.43
SSFC(R=4.5) 2.73 5.58 7.10 8.68

D(SSFC(R=4))  -36.53(7.22) -61.91(8.86) -79.80(8.67) .3948.57)
D(SSFC(R=4.5)) -36.43(7.50) -61.82(9.02) -79.61 (8.91)98.14 (8.82)

CBS(D,T)

D -39.75 -68.58 -88.14 -108.58
SSFC(R=4) 1.95 4.23 5.34 6.50
SSFC(R=4.5)  2.02 4.30 5.48 6.69

D(SSFC(R=4)) -37.80 (5.15) -64.35(6.58) -82.79(6.45) 2:08 (6.37)
D(SSFC(R=4.5)) -37.74(5.35) -64.27(6.70) -82.66 (6.62)101-90 (6.55)
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Table 3.10: As Table 3.9, but for n=14,16 and 18.

n 14 16 18
aug-cc-pvDZ

D -128.53 -149.24 -184.47
SSFC(R=4) 20.87 (91.73) 24.29 (91.54) 36.20 (92.55)
SSFC(R=4.5) 21.68 (95.31) 25.12 (94.65) 37.48 (95.82)
SSFC 22.75 (100) 26.54 (100) 39.11(100)

D(SSFC(R=4))  -107.66 (19.38) -124.95 (19.44) -148.2742).
D(SSFC(R=4.5)) -106.85 (20.29) -124.12 (20.24) -146.9D5Q)

D(SSFC) -105.78 (20.98) -122.70 (21.63) -146.32(26.73)
aug-cc-pVvTZ

D -130.48 -151.91 -185.55
SSFC(R=4) 10.28 11.94

SSFC(R=4.5)

D(SSFC(R=4))  -120.19 (8.56) -139.97 (8.53)
D(SSFC(R=4.5))

CBS(D,T)

D -132.63 -154.55 -188.91
SSFC(R=4) 8.00 9.24

SSFC(R=4.5)

D(SSFC(R=4))  -124.63 (6.42) -145.31 (6.36)
D(SSFC(R=4.5))

Stabilization energies exhibit large BSSE effects whenating-cc-pVDZ basis set is
employed in the calculations. The CCSD(T) BSSE correctudrtained with the SSFC
approach range in between 6 and almost 40 kcal/mol. The mge BSSE correc-
tion with respect to D(SSFC) is in between 18 to 27% for the-easgpVDZ basis
set. Regarding the water clusters ranging in between nz8®the BSSE fraction
of D(SSFC) is rather stable varying around 20%. For all itigesed cluster sizes the
BSSE correction is reduced by about 50% when increasingasis ket from double-
¢ to triple< using the approximate SSFC correction with R=4 and 4.5 A. dine
ployment of the 2,3-extrapolation further reduces the BE&tection. The failure to
account for the BSSE effect with the aug-cc-pVTZ basis satlevtead to an over-
estimation of the stabilization energies by about 7 to 11%¢kvis still considerably
large and the magnitude of the BSSE generated with the aypd/€Z basis set is still
between 3 and 18 kcal/mol. We note that the calculation oB®SE within the whole
n-mer basis set for single ghost calculations at aug-ccpMVel was not feasible for
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all investigated cluster sizes, even the less demandimglesion with R=4.5 A was
difficult to carry out for larger cluster sizes.

Considering the accuracy of the truncated BSSE correctberase we propose the
usage of D(SSFC(R=4)) for the water clusters. Note that Hage of larger distance
parameters for larger cluster sizes is hardly manageablthéomore accurate aug-
cc-pVTZ basis set. Moreover, as already pointed out in 88@i3.4 we may even
expect the results of D(SSFC(R=4)) to be more accurate whtnlated with the
aug-cc-pVTZ compared to the aug-cc-pVDZ basis set. Thezef@ recommend the
approximate D(SSFC(R=4)) BSSE correction as the optimutwden a reasonable
good accuracy and the saved computational time.

We emphasize that the given recommendation is valid forwvedtisters. In a study on
BSSE corrected interaction energies using the distancezippation for other sys-
tems, one should verify the accuracy with respect to R ussmall basis set first.
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3.3.6 Approximate VMFC(2)(R) scheme

The accuracy of the proposed BSSE second-order correci3(2)(R) with respect
to R has been tested for the water clusters with n=8,10 andth2 &CSD(T)/aug-cc-
pVDZ level of theory. The findings are summarized in Tablel3.The MP2/aug-cc-
pVDZ results are also presented in the chart of Fig. 3.17sineas possible to carry
out the full VMFC(2) calculation for cluster sizes up to n=16

Table 3.11: Approximate second-order BSSE correction VMFC(2)(R) wiispect
to different R distance thresholds and the deviation froe\IMFC(2)

scheme for the water cluster series @), at the CCSD(T)/aug-cc-pVDZ
level of theory.

VMFC(2)(R) error  VMFC(2)(R) error  VMFC(2)(R) error
kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/ho
n=8 n=10 n=12
2 0.23 25.85 0.65 0.40 36.19 0.71 0.50 37.73 0.83
25 0.64 7245 0.24 0.78 70.41 0.33 0.92 69.22 0.41
3 0.77 8750 0.11 0.97 87.48 0.14 1.14 85.67 0.19
3.5 0.83 94.80 0.05 1.02 92.42 0.08 1.21 90.38 0.13
4 0.87 98.57 0.01 1.07 96.43 0.04 1.27 94.84 0.07
45 0.87 99.59 0.004 1.08 098.16 0.02 1.30 97.24 0.04
5 0.88 99.79 0.002 1.10 9951 0.01 1.32 98.65 0.02

> 0

5.5 0.88 100 0 1.10 9993 0.001 1.33 99.56 0.01
6 1.10 100 0.00 1.33 99.87 0.002
0.88 100 0 1.10 100 0 1.34 100 0

The chart in Fig. 3.17 and the percentage ratio presentedhbieB.11 clearly show
that the convergence behavior of VMFC(2)(R) follows an exdial distribution
with respect to R similarly to the SSFC(R) scheme. Highlyuaate BSSE corrections
with a percentage coverage ranging from 90 to 95% for MP2 a@&KT) level
of theory for VMFC(R=3.5)(2) are achieved. Very small déxmias of at most 0.1
kcal/mol occur for CCSD(T)/aug-cc-pVDZ second-order BSE&&rections with
distance threshold of 3.5 A (refer to Table 3.11). Interggi the results only slightly
worsen for a given R when n increases.
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Figure 3.17: Approximate BSSE second-order VMFC correction (percesjtate-
pending on distance threshold R (A) with respect to the flIRC ap-
proach at the MP2 level for the (&), n=8,10,...,16 water cluster series.

The computational savings for the CCSD(T)/aug-cc-pVDZ cufations of
VMFC(2)(R) with respect to VMFC(2) are presented in Fig.83.1
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Figure 3.18: Relative computational time of VMFC(2)(R) with respect tbet
VMFC(2) scheme for the CCSD(T)/aug-cc-pvVDZ method for the
(H20),, n=6,8,12 water cluster series.

For the highly accurate results obtained with a cutoff radiqual to 3.5 A we save
15%, almost 50% and 70% computational time with respecteduh second-order
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BSSE treatment for the water clusters with n=8,10 and 1eas/ely. The results
confirm the trends already observed for the approximatedndgr BSSE calculation,
namely that the computational savings grow with increaslogter size.

However note that the calculation of VMFC(2)¥R&.5) becomes slower than the full
one. This is due to a different number of individual calcaias which have to be
performed for the VMFC(2) scheme in comparison to the apprate one. For each
n-mer cluster one needf(g) energy calculations in order to evaluate Eq. 3.19. We
rewrite 6(3) into the sum4(}) + 2(}) and assign the(}) energy contributions to
the last two terms of Eg. 3.19, namely the monomer calculatio the wholen-mer
basis setzZ’"" and E/*". Obviously one can distinguish n different contributions
out of 2(%) and construct from n all the necessafy}) energy terms. If no symmetry
elements of the molecule itself are taken into account,dted humber of individual
calculations is therefore equal t{}}) + n. Within the approximate VMFC(2)(R)
scheme calculated according to Eq. 3.24 we cannot reuse thésulations, because
then-mer basis set is no longer the whole one but a truncated betseénd therefore
different for every monomer fragment and also differentioiunion of basis functions
of two monomer fragments (provided that the sum over i andgsgricted ta < j as
requested in Eq. 3.24). But even if we have to perform altegyeéin? — 3n instead of
2n? — n calculations we want to emphasize that the presented ingltation is still
already more efficient than the full VMFC(2) scheme for dis&thresholds below 4
A exhibiting at the same time very accurate BSSE corrections
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3.3.7 Approximate SSFG,. scheme

The accuracy of the incremental BSSE correction scheme gSfaltulated accord-
ing to Eq. 3.26 was firstly analyzed for the smallest watesteluinvestigated in this
study namely the boat structure of the water hexamer. IneTaldl2 the MP2, CCSD
and CCSD(T) BSSE corrections for the basis set series agpy¥Z (X=D,T and Q)
are presented. The SSRBSSE with respect to the expansion order i as well as the
percentage coverage of SSkQvith respect to SSFC are given in Table 3.12.

As already pointed out in Section 3.2.3 the first-order ofS8¢G,. scheme is equiva-
lent to the PAFC approach and as predicted from theory (teféqg. 3.31) the SSFg

at highest possible expansion order i is equal the SSFC schEéhat is why SSF.
BSSE correction covers exactly the SSFC value at the fifttaesion order for the
(H2O)s cluster.

Regarding the convergence behavior of the SRFE€heme with respect to i almost
no difference is observed for the different correlatiomtneents. The basis set change
from X=D to T and from X=T to Q affects the accuracy of the MR&fecc-pVXZ
results only slightly. As already discussed in Section13tBe increase in basis set
quality from double to triple: halves the BSSE irrespective to the applied correlation
level when the SSFC and PAFC schemes are considered. Amgegcirecardinal num-
ber X from T to Q (refer to results in Table 3.12) has a simifdiuence on the BSSE
at MP2 level of theory and causes almost 60% reduction of 88T) and CCSD
BSSE values obtained with the PAFC approach.

Considering the accuracy of the approximate SSFSCheme we find that the addition
of the fragmental second-order BSSE corrections to thedndr yields SSFf. val-
ues which are in excellent agreement with the SSFC schenadl fmesented levels of
theory. The aberration of SSEKi=2) with respect to SSFC is at most 0.04 kcal/mol
and hence negligibly small. Therefore we may conclude tratie (H,O); cluster the
SSFG,. scheme works very good.

To draw a general conclusion we need to broaden the data saib¥érved the conver-
gence behavior to be similar for CC and MP theory, therefloeeSSFG,. correction
scheme at the MP2/aug-cc-pVDZ level of theory was applieattmunt for BSSE ef-
fects of the total set of (5D),, water clusters (n=8,10,...,20).

The percentage coverage of SGEGcheme with respect to SSFC as a function of the
expansion order is presented in Fig. 3.19. For the wateterisisvith n=8 and 10 the
expansion is carried to the highest order. For the(}4h water cluster the SSK( is
calculated up to the fourth-order and the fragmental BS$fEm@sion for the remaining
water clusters is truncated after the third-order.



Table 3.12: Incremental SSFK. BSSE correction as a function of the expansion order i wispeet to the SSFC scheme for the
water hexamer (boat structure) at various levels of theory.

i-th order corr.  SSFfe e i-thordercorr.  SSFR.  >ce i-thorder corr.  SSFe  S5cr
i kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol %
MP2 aug-cc-pvDZ aug-cc-pVvVTZ aug-cc-pvQz
1 5.78 5.78 106.92 2.98 2.98 104.78 1.50 1.50 107.26
2 -0.39 5.39 99.71 -0.17 2.81 98.72 -0.11 1.39 99.35
3 -0.01 5.38 99.56 0.05 2.86 100.51 0.02 1.41 100.50
4 0.03 541 100.14 -0.02 2.84 99.88
5 -0.01 5.40 100.00 0.00 2.85 100.00
CCsD
1 5.56 5.56 106.89 2.77 2.77 104.90 1.17 1.17
2 -0.36 5.20 99.91 -0.15 2.61 99.03 -0.09 1.08
3 -0.02 5.18 99.47 0.04 2.65 100.45 0.01 1.08
4 0.04 5.21 100.15 -0.02 2.63 99.87
5 -0.01 5.20 100 0.00 2.64 100
CCSD(T)
1 6.22 6.22 107.41 2.95 2.95 105.40 1.25 1.25
2 -0.44 5.78 99.78 -0.18 2.77 98.84 -0.11 1.14
3 -0.02 5.76 99.44 0.05 2.82 100.48 0.01 1.16
4 0.04 5.80 100.17 -0.02 2.80 99.88
5 -0.01 5.79 100 0.00 2.80 100

€€
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Considering the first expansion order we find that the peacgntoverage of SSREE

is very similar for the different cluster sizes varying andul10% with respect to
SSFC. At the second-order expansion the SSFE€heme underestimates the SSFC
approach by up to 10% for different n. The situation changasdtically when we
refer to the third expansion order, for which a large dat&agping for the different
cluster sizes is observed. At i=3 the deviation from the SSEReme grows con-
stantly with the increase of the cluster size. The SREE3) approach overestimates
the SSFC BSSE corrections for the,(®)s cluster by 9% but already for n=14 the
overestimation equals 20% and for the, (), cluster almost 40% overestimation is
reached.

MP2/aug-cc-pVDZ
140

o n=8  +
n=10 X
130 (o) n=12 %
u n=14 O
g 1201 o 1 o
* =
8 1108 X n=20 °
) + X
2 +
¢ 5 *
+
B F e M
80 | *
70 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

expansion order i

Figure 3.19: MP2/aug-cc-pVDZ SSFg. correction as a function of the expansion
order i with respect to SSFC in percentage for the water etusgries

Note that at the fourth expansion order the fragmental BS8Eection could not be
calculated for the whole cluster series, mostly becausedlwilation wall time ex-
ceeded the available time limit. Exemplary at the SuGi (&nable Grid Infrastruc-
ture) Cluster from the the University of Cologne the limibatwith respect to the cal-
culation time for a single node is limited to 30 days. But athg the calculation time
of the SSFG,.(i=4) correction for the (HO), cluster took 13 days and even 19 days
were necessary to account for S§EE=3) correction for (HO),, cluster. Since the
calculation time is extremely long, we emphasize once atj@nmportance of a low
order truncation as a basic prerequisite for an efficient@pmation of the SSFf.
scheme.

Nevertheless the data set is not complete at the fourth sigraarder, from the avail-
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able results we may conclude that the data spreading olusattee third-order is also
present at the fourth-order. The SSE(=4) values underestimate the SSFC scheme
and we also expect a strong deviation of SRFSSFC with respect to growing clus-
ter sizes, as already observed for cluster sizes 6, 8, 10and 1

These observations lead to the conclusion that the fragth®8SE correction di-
verges with the increase of the cluster size n. The resudtsstlow that the series in
fact converges at high expansion order, refer to the exawpkh n=6,8 and 10, but
unfortunately satisfactory accurate results are not aeldiavith a low order truncation.
Table 3.13 summarizes the absolute i-th order SSFEGrrection (in kcal/mol) as well
as the reference MP2/aug-cc-pVDZ SSFC correction for thstet sizes considered
in the chart of Fig. 3.19. The oscillation of the i-th orderreation around the ref-
erence SSFC value is unacceptable high and does not teenevah before the third
expansion order is reached. For smaller clusters, lik©{kland (H,O),o, the SSFG.
series must be even calculated to at least 6-th and 7-th oraeder to obtain highly
accurate BSSE estimates.

Table 3.13: Incremental SSF§. BSSE correction with respect to the expansion order
i for the water cluster series (@), at MP2/aug-cc-pVDZ level of theory.

i i-th order correction
kcal/mol

n 8 10 12 14 16 18 20
PAFC 12.02 15.22 18.71 23.75 27.50 42.01 36.20

2 -1.53 -197 -2.62 -393 -453 -9.10 -6.95
3 129 236 381 597 815 1497 1550
4 -1.85 -3.57 -6.16

5 1.24 290

6 -0.36 -1.35

7 0.04 0.29

8 0.02

9 -0.01

SSFC 10.84 13.89 17.18 21.39 24.95 36.96 32.72

The unfavorable convergence behavior to a certain exteptomeur due to numerical
noises which in turn may be caused if a huge number of negyigiinall BSSE cor-
rections are summed up. In order to gain insight into thisassalculations with more
tight convergence thresholds than the default settinggariMOLPRO program have
been performed for the clusters, n=8 and 10 at MP2 and CC§RepVDZ level
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of theory. The accuracy of the SSECexpansion with respect to default and tight
convergence thresholds for the SCF energy, density matdxcCSD energy and co-
efficient threshold is summarized in Table 3.14 and Tablb &4 (H,0),, and (HO)s
respectively, (the values of the thresholds are listed pot@ach Table). In Table 3.15
the series has also been investigated with the Pople-tyg& IBO0] polarized valence
double¢ basis set, with the addition of diffuse functions, 6-31+*@t MP2 level of
theory.

The convergence behavior is indeed affected by the comeggthresholds but the
influence is rather small. The MP2/aug-cc-pV¥&cond- and third-order BSSE cor-
rection for n=10 are slightly decreased with respect to MBg/cc-pVDZ and sim-
ilar findings are observed also for n=8 where up to the 7-thaegn order every
i-th order correction is found to be smaller by a few tenthkazl/mol when the tight
convergence thresholds are utilized in the calculatione ifhpact is smaller when
we compare the MP2/6-31++G** results for n=8 (Table 3.15] afso at the CCSD
level for n=10 (refer to Table 3.14). In general we find that thcremental BSSE
series is not very sensitive with the respect to more tightegyence thresholds. No
significant improvement of the convergence properties ®3BFG,. series could be
achieved with tight convergence thresholds, at least mah#two studied water clus-

ters (HO)n—s,10-



Table 3.14: Incremental SSFg. BSSE correction as a function of the expansion order i witpeet to the SSFC scheme for $
the (H,O),, water cluster at different level of theory. Comparison & thfluence of defaultand tight convergence
thresholds on the accuracy. >
MOLPRO thresholds: SCF energy: (def&ult00E-07 and tight1.00E-11); density matrix (defadili..00E-05 and tight1.00E-06); CCSD S
energy (defauft 1.00D-06 and tight1.00D-08); CCSD coefficient (defatll.00D-4 and tigHt1.00D-05). %

i-th order corr.  SSFf. =2 i-thordercorr. SSFR % j-thordercorr.  SSF, i g

i kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol z
aug-cc-pvDzZ MP2 CCsD CCSD(T)

1 15.22 15.22 109.59 14.66 14.66 109.48 16.45 16.45 111.13

2 -1.97 13.25 95.40 -1.81 12.84 95.92 -2.35 14.10 95.23

3 2.36 15.61 112.43 2.07 14.91 111.38 241 16.51 111.53

4 -3.57 12.04 86.70 -3.11 11.80 88.14 -3.50 13.01 87.88

5 2.90 14.94  107.59 2.45 14.25 106.40 2.78 15.79 106.67

6 -1.35 13.60 97.90 -1.06 13.19 98.50 -1.23 14.55 98.33

7 0.29 13.88 99.96 0.17 13.36 99.78 0.23 14.78 99.86

8 0.02 13.90 100.08 0.04 13.40 100.11 0.03 14.82 100.09

9 -0.01 13.89 100 -0.01 13.39 100 -0.01 14.80 100
aug-cc-pvD2Z

1 15.20 15.20 109.42 14.66 14.66  109.50

2 -1.88 13.32 95.89 -1.82 12.84 95.88

3 2.15 15.47 111.39 2.09 1492 111.47
aug-cc-pVvT2Z

1 7.90 7.90 106.70

2 -0.86 7.05 95.12

3 089 7.94  107.14 3
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Table 3.15: Incremental SSFg. BSSE correction as a function of the expansion order
I with respect to the SSFC scheme for the @k water cluster at MP2
level calculated with different basis sets. Comparisorhefihfluence of
default and tight convergence thresholds on the accuracy.

MOLPRO thresholds: SCF energy (def&ult00E-07 and tight1.00E-11) and density
matrix threshold (defaufit1.00E-05 and tighit1.00E-06).

i-th order corr.  SSFf, >t i-thorder corr. SSFf, — Sotf

i kcal/mol kcal/mol sz;oc kcal/mol kcal/mol %
aug-cc-pvDZ2 aug-cc-pvVD2
1 12.02 12.02 110.88 12.00 12.00 110.75
2 -1.53 10.49 96.74 -1.49 10.51 97.00
3 1.29 11.78 108.69 1.22 11.74 108.30
4 -1.85 9.93 91.58 -1.78 9.95 91.84
5 1.24 11.16 102.98 1.19 11.15 102.85
6 -0.36 10.80 99.66 -0.35 10.80 99.66
7 0.04 10.84 100.00 0.04 10.84 99.98
6-31++G** 6-31++G**
1 20.11 20.11 117.45 20.11 20.11 117.43
2 -2.92 17.19 100.40 -2.91 17.20 100.43
3 0.97 18.16  106.07 0.96 18.15 106.02
4 -1.83 16.33 95.38 -1.82 16.34 95.41
5 0.82 17.15 100.17 0.81 17.15 100.15
6 -0.01 17.14 100.10 -0.01 17.14 100.10
7 -0.02 17.12 100 -0.02 17.12 100

Interestingly we found the accuracy of the BSSE incremesdfa¢éme to be affected by
the geometrical properties of the investigated system. S®eG,. BSSE correction
calculated for a linear conformer of hydrogen fluoride ctugHF),, at the MP2/aug-
cc-pVXZ (X=D and T) level of theory is given in Table 3.16. Abeady observed
for the water hexamer also the SSk(@=2) BSSE correction for the (HIy) cluster

is in excellent agreement with the SSFC scheme. The moredigivergence thresh-
olds applied for this cluster definitely eliminate any nuio&rnoises. The third- and
fourth-order BSSE correction calculated with the tighty@ngence thresholds does
not contribute significantly to the expansion and hence ¢hiesis converged after the
second-order. The fragmental BSSE corrections obtainéd the triple< basis set
are also in excellent agreement with the SSFC scheme at #tt@iftter and what is
even more important, the further expansion of the SSF€ries does not worsen the
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accuracy.

Table 3.16: Incremental SSFg. BSSE correction as a function of the expansion or-
der i with respect to the SSFC scheme for the (KE)uster at MP2/aug-
cc-pVXZ (X=D and T) level of theory. Comparison of the influenof
default and tight convergence thresholds on the accuracy, MOLPRO
thresholds as in Table 3.15.

(HF)1o linear structure; geometrical parameters taken from a HJstal structure
[131,132]: (- =0.92 A; R p_ )=2.50 A andd (7 7 1)=120°.

i-th order corr.  SSF. 53t j-thorder corr. SSFR i

i kcal/mol kcal/mol Ss‘;oc kcal/mol kcal/mol %
aug-cc-pvVDZ aug-cc-pvD2
1 10.99 10.99 106.92 10.99 10.99 106.92
2 -0.77 10.23 99.47 -0.79 10.20 99.21
3 0.01 10.23 99.55 0.13 10.33 100.50
4 0.23 10.46 101.78 -0.05 10.28 100.00
5 -0.39 10.07 97.98 -0.02 10.26 99.84
6 0.32 10.40 101.14
7 -0.16 10.24 99.62
8 0.05 10.29 100.06
9 -0.01 10.28 100
aug-cc-pVT2
1 6.32 6.32 100.53
2 -0.002 6.32 100.49
3 -0.04 6.28 99.87

Finally we can conclude that the proposed approximatiohn¢éoSSFC scheme based
on an incremental design cannot be recommended to accoBBRE effects in large
n-body clusters. In order to gain satisfactory accurate B8Stimates one needs to
carry out the expansion series to high order which in turrseaudhe calculation to be
more expensive then the reference one. The convergenceitebithe approximate
SSFG,. scheme is not only found to be very sensitive with respechefdize and
type of the investigated systems but the oscillating bedralso prevents the SSEC
approach to account for BSSE efficiently.
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3.3.8 Approximate SSFC(S) scheme

The approximate SSFC(S) scheme has been tested at the C@3IP&revel of the-
ory for the entire water cluster series presented in Fig5.3The calculations were
performed with the Ahlrichs-type SV(P) and TZVP [133, 134kls sets available in
the TURBOMOLE [125] program package and in addition with Dung’s correlation
consistent auecc-pVDZ basis set (which is aug-cc-pVDZ without diffusenéiions
on hydrogen). Since the convergence behavior of the SSFEE(Bpach, similar to the
SSFC(R) scheme, is not affected by different theory leve,MIP2 results as well as
the HF contributions are given in the Appendix B in Tables,BB3! and B.5, and we
will limit the discussion to the CCSD outcomes only.

The values of the applied S threshold were chosen in a latgeval in order to ensure
a detailed investigation of the SSFC(S) scheme. The ovértaghold S runs from 0.1
to 0.01 and from 0.009 to 0.001 in 0.01 and 0.001 steps, r&ésplc Furthermore the
SSFC(S) correction has also been calculated for S>0.00840d.. Due to the rather
large data range we choose i.a. a logarithmic scale for gseptation of the SSFC(S)
results. The percentage coverage of SSFC(S) with resp&3$k& is plotted against
-log(S) in the interval of 0.3 to 8 for the three different tsasets SV(P), TZVP and
aug-cc-pVDZ applied at the CCSD level of theory in Fig. 3.20.

An exponential increase of the SSFC(S)/SSFC ratio witheetsip the chosen range
of S values is observed for the Ahrichs-type double andefjpbasis sets as well as
for Dunning’s doubles basis set. Regarding the accuracy of the SSFC(S) correction
measured by the percentage coverage, we can divide theahtigelogarithmic scale
into three categories. For -log(S)<1, the SSFC(S)/SSFO falls below 70% and
yields therefore BSSE corrections which are too inaccuraté¢he range above 3 on
the logarithmic scale the SSFC(S) percentage coveragegeasds 100% for all the
basis sets and all the different cluster sizes. The mogesiieg interval seems to be
1<-log(S)<3. This region is therefore shown in an enlargeshion in the charts of
Fig. 3.20.

The slope of the curves is different in the range from -lof)®1 to -log(0.01)=2
when we compare the SV(P) and TZVP results. In this intetvalldasis set exten-
sion from double to triple- causes the SSFC(S)/SSFC curves to become smoother
and at the same time the SSFC(S)/SSFC ratio significanthyehign contrast to this,
the SSFC(S) data sets between 2 and 3 on the logarithmicsgtalevery similar con-
vergence behavior for the Ahlrichs-type basis sets, yigighiercentage coverage rates
beyond 96%.

The convergence behavior of the &ag-pVDZ/CCSD SSFC(S) curves are somehow
different from the TZVP or SV(P) ones. The SSFC(S) percentamyerage grows
systematically with the decrease in cluster size n for thigg-ecrpVDZ results what is
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neither observed for the SV(P) nor for the TZVP basis set.

The charts of Fig. 3.21 present the average number of basiiduas for the three dis-
cussed basis sets with respect to the discussed S range ppéetwo charts present
the average number of basis functions for SV(P) and TVZPskeetis separately for
odd and even number of n in {B),. The iterate sequence of the orange and black
data points with respect to n indicates, that for a given 8evahore basis functions
are omitted on average with a double- than a tripleasis set. We note that the dif-
ferences are rather small, as the orange and black data fieiatmost on top of each
other. Generally the shape of the curves looks very simie.also find, that for all
basis sets the percentage average number of basis funstgygowing as the cluster
size decreases with respect to S.

The basis set series introduced by Dunning is known to peoaidhe correlated level
a highly reliable pathway to the CBS limit also for interactienergies calculated with
basis sets of increased quality. Therefore we want to fdwaisbalysis, regarding the
influence of basis sets on the SSFC(S) scheme, on the fanfilyrfing’s correlation
consistent basis sets.
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Figure 3.20: Percentage coverage of the approximate SSFC(S) schemeesybct
to the full SSFC approach as a function of -log(S) at the CCS@llof
theory calculated with SV(P), TZVP and dw-pVDZ basis sets for the
(H;0),, water cluster series.
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Since the threshold which controls the exclusion of basistions utilizes the magni-
tude of the overlap integral between two basis functionacbeéhe amount and kind
of omitted basis functions will depend upon the size andneatdi the applied basis
set as well as the distance between the atoms at which thefoastions are put at.
The most simple model system simulating how many and what&itbasis functions
are excluded during a SSFC(S) calculation with respectfterdint S values is a water
dimer with a variety of distances between the water monom®rsring the range of
distances occurring between the nearest and farthest mateomers in the regarded
water cluster series.

Therefore we analyzed the SSFC(S) scheme in detail witreot$p the amount and
kind of incorporated basis functions at the counterpoisger and hydrogen atoms
of a water dimer. This analysis has also advantage thatrlaags sets can be very
fast investigated as the regarded system is small enougth.irAaddition as the cho-
sen distances between the two monomers from the dimer aesased in well defined
steps, the results enable us to clearly identify the trenttesma SSFC(S) calculation
with respect to the omitted basis functions. The oxygengexydistances R were cho-
sen between 3.0 to 8.0 Bohr in 0.5 steps and the SSFC(S) atidculvere carried out
within Dunning’s augcc-pVXZ (X=D,T and Q) basis sets at the CCSD level of the-
ory. Since within this model system only one water monomedséo be treated with
ghost functions, we may analyze the percentage number anipdoyed basis func-
tions for the augcc-pVXZ (X=D,T and Q) directly and not in an average way. The
results with respect to -log(S) are presented in Figs. 32323, where one chart
corresponds to a given oxygen-oxygen distance R. Analythiege charts we find the
following dependence of the results with respect to theetimBuencing parameters S,
R and X:

e The smaller the S threshold (the larger on the logarithmagesdog(S)) the more
basis functions survive the screening,

e pulling the water molecules apart from one another causpehsentage cover-
age of basis functions with respect to the full CP calcutatmbecome system-
atically smaller,

e and with the basis set increase of X we find that the percemifdggesis functions
slightly drops down for different R values, but this arramgt is not generally
valid as exceptions are observed exemplary in betweenS)ed? and -log(S)=
2.5 for R>5 Bohr.
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Figure 3.23: As Fig. 3.22, but for charts corresponding to oxygen-oxydistances
from R=7.0 to 8.0 Bohr.

Before we proceed to evaluate the data in-depth let us fiostiglmecapitulate the com-
position of the correlation consistent basis set serigewXZ (X=D,T and Q and the
augmented counterpart of them) for hydrogen and the firstatmms boron through
neon. In order to determine the optimum requirements forshsets at the corre-
lated level, Dunning used as a measure of impact, which andiesis function has
on the electronic wave function, the correlation energydomng caused by this func-
tion [135]. He investigated the energy lowering caused bystfstematical addition of
basis functions of certain angular momentum symmetry | authd that basis func-
tions of different symmetry type may be grouped togethehag tause a comparable
decrease in the correlation energy. The different setssi§lbanctions, with its mem-
bers having individually a comparable energetic impacthr@ndorrection energy, are
then systematically added to the different basis sets aci¢ases. The set with the
largest energetic influence on the correlation energy iditseone which is added.
These function are called the correlation set. Their exptatg are optimized in an
so-called even-tempered expansion. In this scheme insfeggtimizing for a given
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| value the exponents in the Gaussian expansion indiviguaiie uses the relation-
ship¢, = af*~! wherep describes the contraction length. Therefore - irrespectiv
to the amount of primitives used in the expansion - one og@sionly the two pa-
rametersy and . The correlation consistent basis sets consist also ofcaked HF
set which in turn is a set of general contracted Gaussiaisogittraction coefficients
and exponents determined from atomic HF calculations. Samamg the above one
finds for the oxygen atom that the smallest basis set, the/&Zpone, to consist of
the contracted HF (16s3p) / [2s1p] functions plus a single &nd d-function. The
triple-¢ is composed of the HF (16s3p) / [2s1p] functions and an op#ohset of two
primitive s-, p-, and d-functions and a single f-functiomadly the cc-pVQZ basis set
has the (3s3p3d2flg) functions as the correlation set aaddition the HF (18s3p) /
[2s1p] set. For the hydrogen atom a similar set up occurb, thé HF (3s) / [1s] set of
functions plus the (1s1p), (2s2p1d) and (3s3p2d1f) cdrogiaset for X=D,T and Q,
respectively. On top of that, all these basis sets may bedugugmented with diffuse
functions, whose exponents have been optimized in HF atlouk for anions when
the s-, p- exponents were considered and in Cl calculatmmd-ff- and g- exponents.
Keeping this knowledge in mind we now turn back into the déston regarding the
type of omitted basis functions with respect to the overlapghold and the oxygen-
oxygen distance R of the water dimer. The findings will be assed on the basis of
the results presented in the graphs of Figs. 3.24, 3.25,8186.27. In these charts
we present the appearance order of basis functions groupedding to their angu-
lar momentum symmetry with respect to R and S parametersana given basis
set X. The mentioned basis functions are those from the egomise oxygen atom
of the water dimer. In Fig. 3.24 all s-functions from the etation and HF set are
investigated separately for the different basis sets, 8ig4 presents the p-functions
analysis for the X=D,T and Q, Fig. 3.26 refers to the d-fumtsiand Fig. 3.27 shows
the behavior of f-functions for X=T and Q and g-functions ¥+rQ with respect to
S and R. The S threshold is set on the x-axis in a logarithn@tesevhereas the dif-
ferent oxygen-oxygen distances R are marked by differéq@rtpas indicated in the
legend. The position of the data points with respect to tlagig-only informs which
basis function has been added. All data points below a ablbegizontal line have
achieved this certain configuration of basis functions eefim the legend. Note that
the displacement of the data set in between two colored iithsespect to the y-axis
has no physical meaning and is only performed in order torerssmore clear view of
the huge amount of data.

We begin the analysis with an overview introducing the sbmfmrmations disclosed
in the charts, we may distinguish at least five different fin

e the order of the type of basis function systematically emypgtbwith respect to
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S can be read from the charts as one examines the appearatheedifferent
horizontal, colored lines and their explanation in the tedje

e when we analyze the data points with respect to fixed S valuesan see what
type of basis function occurs at which distance R,

e from the raise of the lines, from one colored line to anotloedifferent X, we
can analyze, at which distances R what value of S is needetttoporate a
certain basis function

e how often a certain basis function combination occurs foivergR when S
increases can be interpreted when we analyze the lengthtafpdénts for a
certain R series

e when regarding the amount of data points in between two edlbnes we gain
informations about how often a certain type of configurabeour in general.

We will proceed to analyze the charts from Figs. 3.24 to 3.2%h wespect to the
pointed out type of information all together. The appeagavicthe s-, p-, d-, f- and g-
functions successively surviving the overlap screenimg@dure is besides one excep-
tion found to behave highly systematic. So we first consiblersystematic behavior
and then the exception which is found for the order of theretions from the aug-cc-
pVTZ basis set. For any symmetry type, irrespective to tisesleet size, it is always a
basis function from the augmented set of basis functiongtwik the first one occur-
ring when S increases, refer to the legend of all turquoigzbatal lines in the charts
from Figs. 3.24 to 3.27. The next functions following are @y from the correlation
set of basis function. Whereas the most tight ones, those tine contacted HF sets,
are the last, which are added with the increase of -log(9)thedifferent primitive
functions from the correlation set a systematic order ofeapance is found as well.
Whenever more than one basis function in a certain symmybey déccurs, as in the
(2s2p2d) and (3s3p3d2f) set of functions from the corretesiet of the cc-pVTZ and
cc-pVQZ basis sets, respectively, we find their order of o@nce depending on the
basis function exponent. The more diffuse the s-, p-, d-fanttions are, the smaller
their exponent is, the earlier this functions occur withpexs to increase of -log(S)
when a given R is considered. Referring exemplary to theltsefiom the aug-cc-
pVQZ chart of Fig. 3.24, with respect to our consideratioms,can match the blue,
red and green line which correspond to the 1s, 2s and 3s hamisdn to the expo-
nents of: 0.2067, 0.5547 and 1.428, respectively.

This systematic behavior is also found for the two distispable s-functions from
the triple< basis set. Here again the first one - which survives the sorgens the
one with the smaller exponent when comparing both, evengintere we find the
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general order of basis functions to be slightly disturbetdisException was already
mentioned in the beginning, as we find with the decrease oé $ollowing sequence
of s-functions: (1sY¥[1s] + (1s)/[1s] + (8s)/[1s] + (1s)/[1s] + (8s)/[1s]. So Wite-
spect to the order found in general, in this case the thirdfamdh basis function are
interchanged. However note that no such disruption is fouinen we refer to the or-
der of basis functions with higher angular momentum symynetr

When we analyze the sequence of data points along linedgddcaihe y-axis, so for
constant S values, we find the more basis functions on an eaise oxygen atom
the closer the two monomers approach each other. From tties oo exception is
found, neither when we analyze different S values nor wherefer to different basis
set sizes X or different type of basis function angular motmensymmetry.

The inspection of the charts with respect to the third pasted in the beginning re-
veals the following findings. Apparently the larger the digtes between two oxygen
atoms become the larger the -log(S) value has to be chosairnta gertain basis func-
tion, irrespective to the type of basis function as well &lthsis set size. There is even
more information hidden in the charts as in the third pointhef overview indicated,
as we also can compare the appearance of basis functionstahcgymmetry type
among the different basis sets X. For the s-, p- and d-funstitom the augmented set
of basis functions, we find that with the increase of -log{®)data points for different
R values are shifted to the left side with respect to the s-akixemplary the (18}
function of the double&- basis survives the screening for -log(S)<1 when R=3.0, 3.5,
4.0 and 4.5 Bohr (refer to Fig. 3.24). Whereas for the tripled quadrupl€-basis sets
we find one and two more counterpoise oxygen atoms (with ddRgdan 4.5 Bohr),
with the (1s¥“9 function put at. Compare in second and third charts of Fig4 8ata
points in the range -log(S)<1, for the R=5.5 Bohr, and R=6.6,Bohr for X=T and
Q, respectively. Itis also clear that the reason for thi®orslagain easily explainable
with the size of the exponent of these basis functions Thenaaged s-, p- and d- basis
function exponents become smaller with the increase of Xr&fore the arrangement
is observed, that for a given R a smaller S value (or largehenlbg(S) scale) is re-
quired for the diffuse s-, p- or d-function from the augmeinget of basis function to
be incorporated on the oxygen atom. That is why we observiethshifting of data
points, which stand for the augmented basis function whemramepare the X=D,T
and Q charts for a given symmetry type. Let us again consideragample from the
charts of Fig. 3.26. The (1¥¥ basis function is set on the counterpoise oxygen atom
when we refer to the R=5.5 series for the first time for -log(S4, 1.1 and 0.6 when
X=D,T and Q respectively. This characteristics is not onlject to the augmented
set of basis function, it is also found for the s-, p-, d- ardrfetions from the correla-
tion set. Whenever we find the exponent for a given symmeprg tg become smaller
with the increase of X, we observe the left shifting of allalabints below a certain
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colored line. This behavior is found for all data points belo

e the blue horizontal lines in all charts of Fig. 3.24, as thpaments for the three
different primitive s-basis functions are equal to 0.302@384 and 0.2067 for
X=D,T and Q, respectively,

¢ the blue horizontal lines in the aug-cc-pVDZ and aug-cc-g\tharts of Fig.
3.25, as the exponents for the two primitive p-basis fumstiare equal to 0.2753
and 0.2140 for X=D and T, respectively,

e the red horizontal lines of the aug-cc-pVTZ and aug-cc-pVEpiérts of Fig.
3.25, as the exponents for the two primitive p-basis fumstiare equal to 0.7156
and 0.5302 for X=T and Q, respectively,

¢ the blue horizontal lines in all charts of Fig. 3.26, as thpanents for the three
different primitive d-basis functions are equal to 0.7156 8.5302 for X=D,T
and Q, respectively,

e the red horizontal lines of the aug-cc-pVTZ and aug-cc-pVEpérts of Fig.
3.26, as the exponents for the two different primitive dib&snctions are equal
to 2.3140 and 1.30 for X=T and Q, respectively,

e and below the blue horizontal lines of the aug-cc-pVTZ angtectpVQZ (sec-
ond chart from above) charts of Fig. 3.27, as the exponentbéawo different
primitive f-basis functions are equal to 1.428 and 0.859¢al and Q, respec-
tively.

The analysis of the stepwise shape of the different R-sevidsrespect to -log(S)

does not follow any general pattern scheme. However thexeadew interesting

points. Irrespective to the basis set size X, we find for theulte obtained with

-log(S)<1.5 and the three smallest R values, that the dataspproceed rather fast
from one occupation to another. Whereas at the middle rahgeg(S) and R, the

data points stay more often at a given basis function cordtgur when -log(S)

increases. How often a certain basis function composigdmitiwith the increase of
-log(S) is nicely indicated by the length of data points fagigen R in between two
colored lines. For the results between 1 and 3 on the logaigtscale the length of
the data with respect to different R values are rather coafgar although of course
shifted to the right side as larger -log(S) values are ne¢dedcorporate a certain
basis function when R increases.

The investigation of the last point, from the key issuesodtrced in the beginning,
also does not allow us to formulate any general trend. Cenisig the amount of data
points between two colored lines for any basis function swytayntype or for any
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basis set size we find mostly no preference with respect tataieeasis function
configuration. But we also note that besides the two exceptidhich we will discuss
shortly, that the amount of data between two colored line®imparable. One of the
two mentioned exceptions reveals a configuration of basistion which occurs very
seldom with respect to R and S, namely the (13s) / {84]111} set of basis function
from the aug-cc-pVQZ basis set. But also the (10s) / [8]11} basis function
configuration, from the tripl€- basis set, which is the one disrupting the expected
order of basis function when -log(S) increases, is foundddittle less frequently
matched.
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The results presented so far, grouped according to the typeses functions, allowed
to confirm the expected systematic behavior in the basigsifumelimination proce-
dure of the SSFC(S) scheme with respect to S and R. But thisofvayesentation
enables us to consider another important issue, namelyw#ralbcomposition of the
resulting basis sets. The presentation of the results frign 328 allows us to con-
sider also this issue. In contrast to the type of charts dened previously, the two
charts from Fig. 3.28 carry the overall number of contradion the y-axis. The data
are plotted with respect to -log(S), again for the differexygen-oxygen distances R,
labeled by different token. Thus the charts present theloligion of the different basis
function configurations, whereas in the Table below, theremtion pattern of these
different configurations are explained. The separate ptasen of the R-series into
two charts from Fig. 3.28 shall just ensure a clear overview.

For R>6.0 Bohr (right hand side chart) we do not find a basis functi@mposition
which match the 17 or 14 number of contractions and the corafiguns correspond-
ing to 7, 12 and 13 are seldom found. Moreover in the interealvben 1 and 2 with
respect to the x-axis either only the augmented (1s) basditn, or that one together
with the augmented (1p) basis function is found on the oxygem. In the interval
{-log(S) > 2 A -log(S) < 3}, also mainly the (1s1p) functions survive the screening,
even though at closer distances R also the augmented (latjdomnd primitive (1p)
function occurs. For the distribution of different basisdtion configurations for the
R<6.0 Bohr series (left hand side chart), we find for the ) ggterval between 1 and
2 the configurations between 4 and 17 contractions frequkittlBeyond 2 and below
3 on the logarithmic scale, almost all configuration corogspto 12 contractions, this
is the region, where to the correlation and augmented setraftibns also the most
dense ones from the HF set are added.

From the results of Fig. 3.28 we find the following order of ibdanction occurring
on the oxygen atom with the increase of -log(S): (4%} (1pyf*9+ (1p) + (1dy“9 +
(1s) + (8s) /[1s] + (3p) / [1p] + (1d) + (8s) / [1s]. So the suaiesly survival of basis
functions is also coupled to the angular momentum, as we liedbasis functions of
s- ,p- and d-symmetry being added consecutively. This slaowsll-balanced way of
putting different basis function on the counterpoise oxygem.

From the order in the series above, one exception seems tg, aghen we com-
pare this order with all the possible contraction schemas fthe Table of Fig. 3.28.
Starting from the (1s2p)/[1s2p] configuration we find twdeliént possibilities for the
addition of the next basis function. The primitive (1d) frahe correlation set com-
petes with the primitive (1s) basis function, to yield wheatthe (1s2p1d) or the (2s2p)
configuration. But the later is found only twice at -log(0#9.05 and -log(0.08)=1.10
for R=4.0 Bohr, and the basis set composition following 2&2¢) at R=4.0 series is
the (2s2p1d) one.
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What we want to point out with these considerations is thhEmonce a basis function
survives the screening, we do not find it deleted later wheg(S) increases, as one
might wrongly interpret when analyzing just the contractszhemes which refer to

8,12 and 13 basis function from the Table of Fig. 3.28.

In order to complete our investigation we also want to coersitie basis functions
appearance on the counterpoise hydrogen atom shortly tsiadmdings do not differ
from the already discussed ones. The results of the anayesishown in the fashion
of Fig. 3.28 for the cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets-igs. 3.28, 3.30

and 3.31, respectively.
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Figure 3.29: Number of contractions put on one counterpoise hydrogem dtom
a water dimer with respect to the overlap threshold S and ifeerent
oxygen-oxygen distances. The analysis is performed focthgVDZ
basis set. Below the chart the contraction patterns for dissiple num-

ber of basis functions are presented.

For the different (2s), (2p) and (3s), (3p) and (2d) prin@gvrom the cc-pVTZ and
cc-pVQZ basis sets, again the order of appearance in thersngeprocedure depends
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upon the size of the exponent when referring to the same symnype. Since we
did not augment the cc-pVDZ basis set with diffuse functjdrence we have a rather
small set of basis functions to be considered, namely ord§@4/ [2s1p]. The three
contracted s- and p-basis functions survive the screenitiggiorder: (1s) / [1s] + (3s)
/[1s] + (1p) / [1p] when -log(S) increases. From the chartigf B.29 we note, that
the (4s) / [2s] configuration is matched only for R=3.0 andBobir distances within
{-log(S) > 1 A -log(S) < 1.3}. All the remaining data points correspond to the sit-
uation where either no basis functions are added, or onlyittsteone surviving the
screening, the (1s) occurs, or all the available ones anmedfat the CP H atom. All
data points with respect to the different R-series alwapstimough the (1s) configu-
ration before occupying the highest possible, the (1sslasiction is therefore never
skipped.

The possible cc-pVTZ contraction pattern together withdhephical illustration of
the distribution among different R and with respect to -#®)gyalues for the CP H
atom are summarized in Fig. 3.30. Beginning with the (1sjdfasction two compet-
itive configurations occur, either the (2s) or the (1slpjresponding to the addition
of another primitive (1s) or the first primitive (1p). Howeuvaoth configuration oc-
cur only four times and it is instead found that both basiscfioms (1s1p) are added
simultaneously to yield the (2s1p) set of functions, codriteappear 24 times in the
whole series with respect to R and S. From these considesatie overall order of
basis functions which occur at the CP H atom for the tripleasis set is: (1s) + (1s1p)
+ (3s)/[1s] + (1p) + (1d), and we once again face with the figdimat the order de-
pends upon the basis function exponent as well as the angolaentum of the basis
functions, where we have the successively addition of basigion of higher angular
momentum symmetry.

The basis function systematically incorporated on the tanpoeise H atom from the
cc-pVQZ basis set are presented in Fig. 3.31. We can disshdpetween 14 different
configurations of basis functions and therefore at the filwhag it is not obviously
clear whether we can derive a general order according tohwthie basis functions
survive the screening. But within these 14 different contpmsfour appear just once,
that are the ones corresponding to 2, 13, 17 and 25 contnactiod the configuration
with 23 basis function in sum occurs also only twice. When wglect these very
rarely emerging configurations, we can set up as a generai trd following series:
(1s) + (1p) + (1s) + (1s) + (1p) + (1d) + (3s)/[1s] + (1p) +(1d1f)
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Even though we keep in mind that both schemes account inaraous manner for the
BSSE corrections, nevertheless they have one importaniskag in common. Both
schemes aim at the omission of a certain amount of basisifunsan order to reduce
the computational cost, and - at the same time - at a cordratid as small as possible
loss in accuracy. Therefore we want to pose the questiorghwdfithe two presented
schemes SSFC(R) or SSFC(S) delivers a more efficient wayctwuat for BSSE ef-
fects in large n-body clusters. A reasonable comparisond®st both approaches is
assured, when the calculations are performed within theegprantum chemical pro-
gram. Therefore we recalculated the SSFC(R) BSSE corredio the entire water
cluster series within the TURBOMOLE program using the’aagypVDZ basis set at
the CCSD level of theory.

The results are arranged according to a comparable randes gdercentage cover-
age SSFC(X)/SSFC among X=R and S. This leads to a comparistie SSFC(S)
data obtained witHS > 0.1 A S < 0.01} and SSFC(R) corrections calculated within
{R > 6 BohrA R < 10 Bohr}. The appropriate juxtaposition in the results is pre-
sented in Fig. 3.32. An analog comparison for the intef&b> 0.01 A S < 0.001}
and{R > 10 BohrA R < 15 Boht} is summarized in Fig. 3.33.

Referring to the comparison from Fig. 3.32 the following eks are important.
The SSFC(X)/SSFC ratio differs among the schemes, coetrdlly either X=S or
X=R more significantly for smaller cluster sizes. Whereasléoger n, we find the
SSFC(R)/SSFC and SSFC(S)/SSFC curves to resemble more @edeach other.
The SSFC(R) data are also more spread out for a given R vaunetie SSFC(S) ones,
which are more compact with respect to a fixed S threshold:eSire can not claim to
deal with an analogous convergence behavior when we corS8EC(S)/SSFC and
SSFC(R)/SSFC, we should carefully consider the compan$dine advantages both
schemes deliver with respect to the saved computationaliress, measured by the
omitted basis functions in average. As already discuss&kation 3.3.2, where the
SSFC(R) scheme for an almost equal interval with respect wa® considered, the
percentage average number of basis functions follows afifie with curves shifted
parallel among each other and which are ordered accordiogihe cluster size growth.
The percentage avgerage number of basis functions, whkiSEFC(S) approach on
the other hand, can be fitted to a polynomial shape, again auithes covering the
more basis functions in average the smaller the clustert@zemes and vice versa.
This allows us to conclude, that within the SSFC(S) schem®sil as accurate re-
sults are obtained as for the SSFC(R) calculations, edjyasiaen we consider larger
cluster sizes. Since more basis functions are neglectecerage within the overlap
threshold approach, we can regard the SSFC(S) scheme asfficient at least in
terms of computational savings, when we refer to the range ahd S thresholds
chosen for the calculations in Fig. 3.32.
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However a substantial difference occurs in the region whetd schemes approach
the 100% limit of the SSFC amount, what is discussed on this bathe comparison
from the results of Fig. 3.33. The avgerage number of basistions follows for
both schemes in the regarded interval (refer to Fig. 3.38)eat fit. We observe as
well, that the SSFC(S) lines are remarkably shifted to ssnalimber of basis function
when compared with the corresponding lines from the SSF&gRjoach. We find the
distance-dependent BSSE correction to be faster convéngld full SSFC approach
than the overlap driven one. Exemplary for the water hexaoatamer and decamer
100% of the full SSFC correction is already reached at degtdhreshold R=8.5, 9
and 12 Bohr respectively. The SSFC(S) scheme provides muocé fiexibility, for
the examined intervalS > 0.01 A S < 0.001} of S thresholds, which account for
80 to 100% of the SSFC value, we gain a significantly largegeanf systematically
improved BSSE corrections as in case of the SSFC(R) scherhat i¢/a direct conse-
guence of the different methodology employed in the corsitva of the ghost orbital
basis sets. The water hexamer exemplary offers just 15 ghasts and we can dis-
tinguish only between the two extreme possibilities eitberthoose all basis functions
from a regarded basis set on one CP atom or none. This in comseg) leads to a
smaller range of R-dependent BSSE corrections in contoatttee SSFC(S) scheme,
where we also may distinguish in between the set of basisibngfrom one CP
atom. The additional flexibility of the SSFC(S) scheme camr$j@ecially seen when
referring to the results in the area beyond -log(S)>3, asgmted in the charts of Fig.
3.20. Indeed when we zoom-in into these region, as showrgind34 for the SV(P),
TZVP and au@cc-pVDZ basis sets, we notice that the SSFC(9e-4A S < 1e-8)
results are still not converged to the full SSFC approachd gince we discuss herein
a percentage coverage of beyond 99.70 for all basis setsllacldsder sizes, the re-
sulting aberration with respect to the SSFC is negligibleisThighly accurate results
are obtained with still considerable large to even huge egatpnal savings, as in-
dicated in the charts of Fig. 3.21. Exemplary the -log(0)UBSSE correction for
the (H,O)y cluster at CCSD/augec-pVDZ level of theory is obtained with 22% basis
functions neglected in avgerage, and the aberration frafuth SSFC treatment of
26.05 kcal/mol is just equal to 0.06 kcal/mol.

So far we still did not consider all pros and cons of both sa®@ind should not
claim too early the SSFC(S) to be the better approach jusi@badsis, that it provides
a generally more efficient way with respect to the saved numidgasis function. The
advantage of the SSFC(R) scheme is, that the accuracy ofshés are not coupled
to the usage of different basis sets. Indeed the SSFC(S)osheliminates the basis
functions from the regarded basis sets in a predictable ararBBut further investi-
gations are necessary to check, whether the results obtaiitie different basis sets,
may be used to extrapolate the BSSE corrected correlatieryies according to the
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known extrapolation schemes. The fear, that inconsisemtlts may occur, is based
on the observation that, the incorporated amount and kiésis functions differ for
a chosen S value among the cardinal numbers X=D,T and Q. E&3FC(R) scheme
in contrast we already could prove, that the two-point gdfation worked fine for
SSFC(R=4.0, 4.5A), cf. the results of Figs. 3.9 and 3.10.

Let us finally consider the last concerning issue. We obskfreguently that with
both schemes a comparable percentage of BSSE is gainedthua different set of
basis functions. We shall therefore also invoke the questiow to compare these
two values with respect to a physical interpretation. Ineotvords, we should also
judge the physical motivation behind both schemes. We cstifjuhe R-dependent
approach with the well known behavior, that the BSSE betweeninteracting sys-
tems decreases as the distance separating them incredsess d reasonable justi-
fication, with the additional advantage, that it even becomere and more signif-
icant as the cluster size increases. Within the SSFC(S)yrsehvee incorporate the
most diffuse basis functions from a given symmetry type dnreddense ones are ne-
glected. So we basically made the assumption, that sinced défuse basis func-
tions is mandatory to describe weak interactions reasgnala mainly utilize them
to account for the BSSE effect. It is rather difficult to judipe validity of this in-
terpretation, so let us consider some valuable hints fragrliterature. Estarellas et
al. [136] examined the interaction energies of several dexas of benzene with alka-
line cations and s-triazine with halide anions. Whenevey therformed all-electron
calculations without incorporating appropriate coreewale basis functions, the esti-
mated BSSE was enormously in comparison with the FC calonktThey also found
in contrast to the expected behavior, that the BSSE eveerased with the increase
of basis set quality. The reported counterpoise BSSE ettgd MP2(FC)/aug-cc-
pVTZ vs. MP2(all-electron)/aug-cc-pVTZ are exemplary tbe N&-benzene com-
plex: 0.6 kcal/mol (2.5%) vs. 10 kcal/mol (32%) and for thigiazine-Br interaction:
1.9 kcal/mol (21%) vs 4 kcal/mol (38%). Further investigas reported by Tzeli et
al. [137] also confirmed this erroneous behavior for strgphglund systems and also
weak and medium bond strengths. The important messagantlevour studies is,
that inappropriate balanced basis sets may affect the anodBESE and we should
therefore carefully handle the SSFC(S) results. The seimopdrtant conclusion from
the reported papers is, that core-correlation also hasfarente on interaction ener-
gies, but we will discuss this issue in Section 3.4.

Summarizing these considerations we can say that both sshbave their strength
and weakness. Rather than recommend one or another appredatiieve that the
optimum would be to combine both schemes. So within a cegpalrere, defined by
the R-distance approach all CP atoms would get all the dlailzasis functions from a
regarded basis set and beyond that sphere one could usestitegpahreshold scheme.
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For the CP atoms beyond the R threshold, a rigid S-value woealthvorable, since
with almost no loss in accuracy an additional speed-up ot#ieulations would be
achieved.
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3.4 Incremental evaluation of core, core-valence and
valence correlation energies

3.4.1 Introduction

The scope of the presented study here is twofold, firstly toeii@acy of the approxi-

mate incremental core-valence treatment as introduceddctidh 2.2 is checked and
secondly an investigation regarding the importance of coreelation effects in the

evaluation of interaction energies is carried out. Thereteg. 2.68 is applied to three
test systems: a diallylmagnesium complex, a binucleanitita complex and a tetra-
hedral mercury cluster, their optimized structures arevsho Fig. 3.35.

a b c

Figure 3.35: Optimized structures of the diallylmagnesium complex Mg{9). (a),
titanium complex TCLS, (b), the mercury cluster HY«c).

All of the test systems except the titanium complex presehtre have been chosen
in such a way that a standard reference CCSD(T) calculatoelating also the cores
was still feasible on the hardware available at the Themak€hemistry Institute at
the University of Cologne in 2010 (cluster equipped with&4@Hz Core 2 Quad pro-
cessor, 8 GByte RAM and 200 GByte disk space per node, PCsarected with

1 GBIt ethernet). The computational more demanding cdlicuiaon the TiCl,S,
complex has required at the CCSD(T)/cc-pwCVTZ theory lesakelation of 112
electrons in 558 basis functions, and was no longer manégedale to insufficient
memory. The increase of the RAM up to 16 Gb (which was at the &iso possible)
would make this calculations feasible but the estimatedutalion time was of the
order of several months. In the next step the incrementalcalence scheme is used
to evaluate interaction energies in the formation of sodration water complexes and
the corresponding sequential interaction energies. Fpredented incremental results
a comparison with the reference canonical results is maldexefore for each investi-
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gated system two additional canonical calculations arfopeed, one correlating all
orbitals and one using the frozen-core approximation. Tifferdnce between both
outcomes is taken as the correlation contribution of the etectrons.

The prerequisite for an accurate description of the coreetation is the usage of ap-
propriate tailored basis sets, since most of the standaid bets have been designed to
treat valence correlation only. Suitable basis sets atepkarly the core-valence basis
sets of Peterson and Dunning [138—-140] denoted as cc-pC\id4tee cc-pwCVXZ
basis set series [141] with a weighted core-valence prasmniapplied.

3.4.2 Applications

The optimized coordinates of the Mg{s), complex are taken from [142] and have
been obtained with the B3PW91 method, using the aug-cc-pvasis set for C and
H and the cc-pCVTZ for Mg. From the SCF results for the calitoiaon Mg(GHs),
one obtains 29 occupied orbitals. The 11 energetically $byeorresponding to the 1s
carbon orbitals and the 1s2s2p magnesium orbitals are gdounpo 7 core domains.
The remaining 18 valence orbitals are partitioned into @wve¢ domains. The results
of the incremental CCSD(T)/cc-pCVDZ and MP2/cc-pCVDZ céédtions are given
in Table 3.17. Therein the following notation:

Er:%t?rl(i) = Egorr(l) + Eg\érr(i) + E\éorr(i)a (335)

is used to describe the sum up to a given expansion order ieointtremental core
(c), core-valence (cv) and valence (v) correlation eneagributions as introduced in
Eg. 2.68. The presented results are grouped into threedlihektrating the accuracy
of the proposed expansion for core, core-valence, valenbeand total correlation
energy contributions separately.



Table 3.17: Convergence of the incremental series for core (c), colenea (cv), valence (v) and total CCSD(T) and MP2 cor
relation energies of the diallylmagnesium complex M¢HE), obtained with the cc-pCVDZ basis set. The results
are compared with the canonical CCSD(T) and MP2 correlatadoulation. (O frozen orbitals, 11 correlated core

orbitals, 7 core domains, 18 valence orbitals, 6 valenceaitosnt,,=3 Bohr, dsp=3, E.=1€-5 au)

O  Eon Ecor EGov () eror  Eif/Ecan Elo () error  Ej/Ecan EQR()  error  EQR/Ecan
au au au kcdimol % au kcafmol % au kcalmol %

1 -0.361780 - -0.361780 26.20 89.65 -0.683126 184.88 69.87044907 211.08  75.65
2 0 -0.043069 -0.404850 -0.82 100.33 -0.982418 -2.93 1004887268 -3.75 100.43
3 0 0.001312 -0.403538 0.00 100.00 -0.977609 0.09 99.99 8114/ 0.09 99.99
canonical CCSD(T) -0.403537 -0.977755 -1.381291

1 -0.344785 — -0.344785 26.71 89.01 -0.562545 196.88 64.2D907329 223.59  71.80
2 0 -0.042541 -0.387326 0.01 99.99 -0.872003 2.69 99.51 59829 2.70 99.66
3 0 -0.000009 -0.387335 0.01 100.00 -0.876210 0.05 99.99263546 0.06 99.99
canonical MP2 -0.387349 -0.876287 -1.263636
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For the sum of the core and core-valence CCSD(T) correlaimargies ESY(i) at
second-order an aberration of -0.82 kcal/mol from the caabmesult is achieved,
being already within chemical accuracy of 1 kcal/mol (sesilts from Table 3.17).
The accuracy is significantly improved at third-order, véheirtually exact agreement
with the canonical reference data is obtained. For the MIEmental treatment
of Mg(CsHs), a comparable high accuracy is even observed at the secded-air
the expansion. The third-order expansion does not deateidhe accuracy. Both
MP2 and CCSD(T) convergence for/ k is somewhat slower than forgf. At
second-order the valence correlation energy contribatiary from the canonical
reference outcome still by around 3 kacl/mol. These errogsdaastically reduced
to about 0.1 kcal/mol when going from second to third-ordgramsion. In the last
three columns in Table 3.17 the comparison of the accuradiietotal correlation
energies with respect to the canonical outcomes yield atsol €rrors and hence the
overall accuracy of Eq. 2.68 is also satisfactory. Note tiwiconvergence of the core
correlation contributions is faster than the one of thevmedecorrelation contributions
and this behavior is even more significant for MP2 level ofbtige The number of
individual calculations saved according to the comparigbthe outcomes between
Eq. 2.69 and Eq. 2.70 is equal to 21 at second-order and evitat third-order of
the incremental expansion, what corresponds to 23 and 4gitgsarespectively.
The optimized structure of the binuclear titanium compl&CI;S, was obtained at
the RI-BP86/SV(P) level of theory using the TURBOMOLE 5.B7[98] program.
The analysis of the Hessian identified the stationary pa@rd éocal minimum. The
molecule was further investigated with Dunning’s corrielatconsistent triple:- basis
set (cc-pVTZ) and the corresponding core-valence anal¢gmpwCVTZ) [143,144]
at incremental MP2 and CCSD(T) level of theory.

The TLCl,S, complex is a challenging system to examine the core-valgregment
since the core is composed of a total of 48 occupied orbit&dsom the overall
72 occupied orbitals available, the 16 energetically ldweses corresponding to
the [He]-shells of sulfur and chlorine atoms and the [Nedfshontributed by the
titanium atom are excluded from the correlation calcutatidhe 32 orbitals treated
as correlated core yield 8 core domains arising from the {¥e]ls of sulfur and
chlorine atoms and the [Ar]-shell of titanium. The remam2y valence orbitals are
divided into 6 valence domains. The results for the incremle@CSD(T) and MP2
energies and the canonical reference with the cc-pVTZ argw&VTZ basis sets
applied are summarized in Tables 3.18-3.19.



Table 3.18: Convergence of the incremental series for core (c), colenea (cv) and valence (v) and total CCSD(T) and MP2
correlation energies of titanium complex,Ti,S, obtained with the cc-pVTZ basis set. (16 frozen orbitals, 3!
correlated core orbitals, 8 core domains, 24 valence dsbiavalence domains,t=3 Bohr, dsp=3, E.<=1e-6 au,

Order-dependent distance screening according;tg=80 42 in Bohr)

O Egorr Eg\(;rr Egb(:r¥ (I) error 6?'\1{/ Ecaﬂ- E\clorr (I) error Egorr/ Ecan. Eggﬁ’l(i) error Ec%t?rl/ Ecan.
au au au kcdimol % au kcafmol % au kcalmol %
1 -0.511892 — -0.511892 176.12 64.59 -1.421812 101.91 89.76933704 278.02 81.36
2 0 -0.312134 -0.824026 -19.75 103.97 -1.614508 -19.01 9101.-2.438533 -38.76 102.60
3 0 0.036512 -0.787513 3.16 99.36 -1.582135 1.31 99.87 9B88H 4.47 99.70
4 0 -0.004404 -0.791917 0.40 99.92 -1.583746 0.29 99.97 75B&4 0.69 99.95
canonical CCSD(T) -0.792549 -1.584215 -2.376765
1 -0.460855 — -0.460855 193.20 59.95 -1.265479 117.55 87.11.726334 310.75 77.71
2 0 -0.307639 -0.768494 0.16 99.97 -1.453275 -0.29 100.03221770 -0.14 100.01
3 0 0.000103 -0.768391 0.22 99.9 -1.452821 -0.01 100.00%221211 0.21 99.98
canonical MP2 -0.768742 -1.452808 -2.221550

D

S319Y3INT NOILY1IHHO0D

JONITIVA ANV FONITVATHOOD TH0D 40 NOILVYNIVAT TVLINIWNIHON]

GTT

Ve



Table 3.19: Convergence of the incremental series for core (c), colenea (cv) and valence (v) and total CCSD(T) and MP2
correlation energies of titanium complexTi,S, obtained with the cc-pwCVTZ basis set. (16 frozen orbital,
correlated core orbitals, 8 core domains, 24 valence dsbiBavalence domains,t=3 Bohr, dsp=3, E.<=1e-6 au,
Order-dependent distance screening according;tg=80 42 in Bohr)

oTT

O Egorr Eg\(;rr Egb(:r¥ (I) error Egoﬁ'\r// Ecaﬂ- E\clorr (I) error Egorr/ Ecan. Eggﬁ’l(i) error %t?rl/ Ecan.
au au au kcdimol % au kcafmol % au kcafmol %

1 -1.816912 -1.816912 -1.449396 103.52 89.78 -3.266308

2 0 -0.587040 -2.403952 -1.644325 -18.80 101.86 -4.048277

3 0 0.039782 -2.364170 -1.612392 1.24 99.88 -3.976562

4 0 -0.004309 -2.368479 -1.613901 0.29 99.97 -3.982380

canonical CCSD(T) -1.614366

1 -1.742465 — -1.742465 378.51 74.28 -1.290960 119.07 87-B033425 497.58 79.28

2 0 -0.602513 -2.344977 0.43 99.97 -1.481162 -0.29 100.03826339 0.14 99.99

3 0 0.000087 -2.344890 0.48 99.97 -1.480715 -0.01 100.0(825805 0.48 99.98

canonical MP2 -2.345659 -1.480704 -3.826363
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The convergence of the incremental expansions for MP2 a$ agelCCSD(T)
theory has already been proven not to be sensitive to thatiariof different basis
sets [55, 57] what is also evidenced in the study on the cystwilecule as shown
in the Appendix C. Therefore one may expect the accuracy ®fGESD(T)/cc-
pwCVTZ incremental results to be comparable to the CCSREIPNVTZ ones. The
CCSD(T)/cc-pVTZ results in Table 3.18 show that a fourtdesrexpansion of the
core-valence incremental series covers 99.92 % of thelatoe energy correspond-
ing to an error of 0.4 kcal/mol. For the incremental valenod¢ contributions a
fourth-order expansion is needed to gain chemically ateussults with an error of
0.3 kcal/mol. The overall accuracy is satisfactory withd®P% of the correlation
energy and 0.7 kcal/mol aberration from the canonical tesul

The extension of the basis sets from cc-pVTZ to cc-pwCVTZiguhas significant
effects on the size of the core correlation contributiore(3able 3.19), which is
about three times larger than for the cc-pVTZ results. THenge-only incremental
expansion calculated with the cc-pwCVTZ basis set is asratewas the cc-pvVTZ
results. As already mentioned in the introduction the exfee calculation correlating
56 occupied orbitals at once was no longer feasible andftirerao comparison for
the core-valence correlation energies is quoted in Talle. 3.

The convergence of the MP2 incremental series with bothweC\BTZ and cc-pVTZ
basis sets is satisfactory, highly accurate results ar@iraat already at second-order
with the largest error of only 0.4 kcal/mol. Since for bothsisasets the overall
correlation energy is covered by 99.98 % one can concludetmergence behavior
is not affected by the use of different basis sets.

The employment of the core-valence treatment allows theatezh of 28 individual
calculations (31 %) at second-order and even 224 (62 %) a6d &2 %) at third-
and fourth-order respectively. This yields a significanprovement in terms of
computational time. Additionally the usage of the ordepel®dent distance threshold
of 80 further reduces the amount of individual third and fbwalculations by 24 and
81 respectively.

The tetrahedral Hgcluster has been optimized with the RI-BP86/SVP gradient-
corrected density functional theory method [145, 146] agplémented in the
TURBOMOLE 5.6 quantum chemistry package [147].

For the incremental CCSD(T) and MP2 calculations a two-comept relativis-
tic multi-configuration Dirac-Hartree-Fock adjusted pdepotential of Figgen et
al. [148] with the correlation consistent core-valenceibagt of double: quality
cc-pwCVDZ [141] designed for the outer-core electron datren has been applied.
The pseudopotential replaces the Hg 1s-4f shells, i.embwes 60 electrons, leaving
20 valence electrons per mercury atom. For the calculatmesented here the
remaining 5s5p shell was considered to be the outer-cork whereas the 5d6s
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shell comprises the valence electrons. Thus the 16 coetktaiter-core orbitals were
partitioned into 4 core domains and the 24 valence orbitalewlivided into 4 valence
domains. The incremental calculations are presented ile 3B0 for CCSD(T) and

MP2 correlation energies, respectively.



Ve

Table 3.20: Convergence of the incremental series for core (c), colenga (cv), valence (v) and total CCSD(T) correlation
energies of the Hgcluster obtained with the MCDHF-PP/cc-pwCVDZ basis setfr¢@en orbitals, 16 correlated
core orbitals, 4 core domains, 24 valence orbitals, 4 vaeloenains,&,,=3 Bohr, dsp=3, Fes=1€e-5 au)

O Egorr Eg\(;rr Egb(:r¥ (I) error ’CV/ Ecaﬂ- E\clorr (I) error Egorr/ Ecan. Eggﬁ’l(i) error Ec%t?rl/ Ecan.

au au au kcdimol % au kcafmol % au kcalmol %

1 -0.263467 — -0.263467 325.79 33.66 -1.433329 14.20 98.45696796 339.99 75.80
2 0 -0.519521 -0.782988 -0.21 100.0 -1.456495 -0.34 100.24239483 -0.55 100.04
3 0 0.000335 -0.782653 0.00 100.0 -1.455955 0.00 100.00383@ 0.00 100.00
canonical CCSD(T) -0.782646 -1.455961 -2.238607

1 -0.243710 — -0.243710 355.64 30.07 -1.503336 20.11 97.91747046 375.75 74.47
2 0 -0.566718 -0.810428 0.02 100.00 -1.535337 0.03 100.045Z65 0.05 100.00
3 0 -0.000034 -0.810461 0.00 100.00 -1.535387 0.00 100.08458349 0.00 100.00
canonical MP2 0.810464 -1.535385 -2.345849
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The convergence behavior for CCSD(TJH:) contributions is very good, the incre-
mental series is in satisfactory agreement with the caabrésult already at second-
order and even a perfect agreement at third-order is obdefRa the MP2 core and
core-valence increments as already observed in case afaheim complex a faster
convergence behavior is found than for the CCSD(T) serisirtcremental second-
order results are almost equal to the canonical one.

The reduction of the number of individual calculations wigeing from Eq. 2.69 to
Eq. 2.70 yield 17 % savings at second-order and 30 % at thadravith respect to a
calculation according to Eq. 2.67.

From these considerations together with the discussiomemliallylmagnesium and
the titanium complex the conclusion may be drawn that theadmations introduced
in Eq. 2.68 are well chosen and allow an efficient and at theesamre accurate de-
scription of the core-valence effects for MP2 and CCSD(Tjelation energies within
the incremental framework. A third-order truncation of theremental core-valence
expansion assured highly accurate results with errorssgftlean 0.1 kcal/mol for all
cases besides the titanium complex, where a fourth-orgereston was necessary to
gain chemically accurate results. The convergence behaf/the proposed scheme
is found to be quite insensitive to the basis set quality ardpared to a standard in-
cremental expansion the omittance of inter-core cor@tatontributions allows the a
priori elimination of a significant number of correlation@aations.

3.4.2.1 Further approximations

It is clearly seen so far that the correlation of the coreards a highly demanding
task because the additional core orbitals which cause amensly growth of the
applied basis set if particularly core-valence basis setxcansidered. The increase
in the number of basis functions when comparing the cc-pVEX ec-pCVXZ basis
sets for the following systems: Mg¢8;), (X=D), Hg, (X=D) and T,CI;S, (X=T)
equals to a factor of 1.2, 1.4, and 1.6, respectively. Thessiom of the additional
functions which occur in the CV-type basis sets would leasadngs with respect to
the overall calculation time especially if higher orderrgrments could be described
with a smaller basis size since these consume most of the @GRIUErom a chemical
point of view such an approach would be appropriate for tHenee only contribu-
tions but for the core-valence treatment one needs to exasuich an approximation
very carefully with respect to its accuracy. Therefore ig.F8.36 the CCSD(T) and
MP2 third- and fourth-order incremental energy differenbetween the cc-pVXZ and
the corresponding core-valence basis sets cc-pCVXZ ofifuaisised test systems are
presented for the valence-only and core-valence conimisiseparately.

The fourth-order incremental valence-only contributians almost identically in size
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in both cc-pVXZ and cc-pCVXZ basis sets for the systems &f stuidy. Interestingly
the same finding holds also for the difference of fourth-ome-valence correlation
contributions leading to the conclusion that a forth-ordeatment with the cc-pVXZ

basis set in comparison to its core-valence analogous &aisigould only cause little
loss in accuracy. The valence-only increments could alsdeseribed at third-order
with the omission of core-valence functions since the gsahberration is just 0.3
kcal/mol for the titanium complex at CCSD(T) theory levelhi§ does not hold in

general for the core-valence incremental energy differengith respect to the ba-
sis set change when the third-order expansion is considé&nweeh though very good
agreement is found for all cases besides the titanium conpke indicated by the
position of all points close to the line which marks zero) aaproximate third-order
CCSD(T)/cc-pVTZ description in case of,Gl,S, (X=T) would lead to an unaccept-
able high error of about 2 kcal/mol.

The outcomes of these considerations are very encouraging ¢eneral advise re-
garding the question at which order one should start to useadlex basis set can not
be formulated at this stage because not enough systems éanvebnsidered so far.
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3.4.2.2 Core-correlation influence on interaction energe

The core-valence correlation is especially important fgsteams containing atoms
with easily polarizable cores. Alkali and alkaline-eartbras exhibit sizable core-
correlation effects which have to be considered for an ateugeometrical and ener-
getic description. Therefore Eq. 2.68 is applied to ingege the magnitude of the
core-correlation for the hydration of the singly chargedism cation according to:

Na® +n(H,O) — Na*(Hy0),. (3.36)

The interaction energieSE;; were evaluated for n=2,3 and 4. The so-called sequential
interaction energieaEgqWith n=2 and 3 have also been considered according to the
reaction scheme:

Na™ (HQO)n -+ HQO — Na+(H20)n+1. (337)

The sodium cation water clusters N&l,0), (n=2,3 and 4) were optimized using the
RI-BP86/TZVPP gradient-corrected density functionalottyemethod [145, 146] in
TURBOMOLE 5.10 [97, 98], with D,;, D3 and § symmetry constraints applied for
n=2,3 and 4, respectively, the optimized geometries areshoFig 3.37.

g

(™)

a b C

Figure 3.37: Optimized structures of di- to tetra-hydrate sodium comgde
Na"(H,0), (n=2,3 and 4) (a-c).

Stationary points were characterized by analyzing the idiegsatrix in order to con-
firm that the obtained structures correspond to minimumggneosnformations on the
respective potential energy surfaces.

The n valence domains consist of the 4 valence orbitals of eacthef:twater
molecules. The [Ne]-shell of the sodium cation is correlaae all times and con-
tributes one core domain, whereas each ofitlweater molecules contributes one core
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domain consisting of the oxygen 1s shell. The incremeniadesgion for the: valence
andn + 1 core domains were truncated at second-order. The calontatf a single
water molecule and the isolated sodium cation needed tondiete AE;,; and AEgeq
were performed with standard MP2 and CCSD(T) schemes.
Correlation-consistent core-valence basis sets of deahtttriple¢ quality have been
employed for the sodium cation and on the oxygen atom, diffuactions were also
incorporated on the hydrogen and oxygen atoms to accoutitdavater polarizability
effects.

The incremental MP2 and CCSD(T) interaction and sequenteiaction energies ob-
tained with different basis sets are presented in Tabldséhd 3.22, respectively. The
comparison of the incremental results with the canonicas@how remarkable good
agreement when the expansion is truncated already at secdad The largest error
with respect to the reference calculations is just 0.07/kaall This is for the smallest
water cluster withh = 2 not surprising since the valence-only incremental coticta
energy in this case equals the canonical outcome since gamsion reaches the high-
est possible order. However, for the core-valence coroglateatments as well as for
n > 2 in the valence-only calculations, this is not the case. Etated increase of
errors with respect to the canonical data set can be nelestheegarded as negligible,
since as mentioned above the highest aberration equalsttedj07 kcal/mol. There-
fore one can conclude that the application of Eq. 2.68 leadisghly accurate results
not only for absolute energies, but also when relative eesrgre considered. This
finding holds for both the CCSD(T) and the MP2 incrementadttreent.

The difference between the results of the valence-onlylamtbtal energy calculations
illustrates the magnitude of errors due to the frozen-cppr@imation and shows at
least for these simple test reactions the importance of dhe correlation treatment.
Omitting the core correlation effects at CCSD(T) level leéalan underestimation of
AEY, as well asAEZ,, of about 0.5 up to even 5 kcal/mol, corresponding to a reativ
error of 3 to 12%. Very similar outcomes are obtained at the2 NéRel, where the
failure to consider the 7' and Eg contributions to interaction energies causes 3 to
12% deviation from the total interaction energies. The $ast improvement from
double to triple¢ quality does not affect the convergence of the incremeeslits.
However a somewhat significant influence is observed on thkitteraction energies,
including an increase of the core correlation contribwgiby about 1 to 3%.

This study clearly demonstrated that the core-valencelamon has a significant con-
tribution to the total interaction energies as well as testhguential interaction energies
for the hydration of the singly charged sodium cation. Itldoalso be shown that a
computationally attractive second-order expansion ificeiit to obtain chemically
accurate interaction and sequential energies.
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Table 3.21: Comparison of the incremental valence-only (v), coreivede(cv) and
total interaction energies (in kcal/mol) with the canohicalculations
for Na"(H,O), complexes. Correlation energies obtained at MP2 and
CCSD(T) level of theory with the cc-pCVXZ (X=D,T) basis series at
Nat, aug-cc-pCVXZ (X=D,T) basis sets at O and aug-cc-pVXZ (XED,
basis sets at H. Incremental expansion truncated at semoied-(t,,=3
Bohr, dsp=3, dsp=4 for n=4 y<=1e-5 au).
E = AEY/AERH

int int

MP2 CCSD(T)
AEj AEST AER EOAE, AES AEY E
kcal/mol % kcal/mol %
X=D, n=2
inc. 42540 44.437 1.897 4 42370 44392 2022 5
can. 42540 44.453 1.913 42.370 44.410 2.041
error 0 -0.016 -0.016 0 -0.019 -0.019
X=T, n=2
inc. 42573 45.129 2556 6 42.441 45202 2.761 6
can. 42573 45.152 2.579 42.441 45.231 2.790
error 0 -0.024 -0.023 0 -0.029 -0.029
X=D, n=3
inc. 57.633 61.113 3480 6 57.416 61.168 3.753 6
can. 57.634 61.159 3.526 57.413 61.206 3.793
error 0 -0.046 -0.046 0.002 -0.038 -0.040
X=T, n=3
inc. 57.158 61.680 4.523 7 56.984 61.938 4.955 8
can. 57.158 61.748 4.590 56.981 61.999 5.017
error 0 -0.068 -0.067 0.002 -0.060 -0.063
X=D, n=4
inc. 73.961 77.908 3947 5 73.800 78.047 4.247 5
can. 73.961 77.950 3.990 73.791 78.067 4.276

error 0 -0.043 -0.043 0.009 -0.020 -0.029
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Table 3.22: Comparison of the incremental valence-only (v), coreivede(cv) and
total interaction energies (in kcal/mol) with the canohicalculations
for Na"(H,O), complexes. Correlation energies obtained at MP2 and
CCSD(T) level of theory with the cc-pCVXZ (X=D,T) basis seties at
Nat, aug-cc-pCVXZ (X=D,T) basis sets at O and aug-cc-pVXZ (XED,
basis sets at H. Incremental expansion truncated at semoied-(t,,=3
Bohr, dsp=3, dsp=4 for n=4 yfe<=1e-5 au).
E — AESY / AEtotaI

seq seq

MP2 CCSD(T)
AEL, AEQY AEXY E  AEL,, AEX AES E
kcal/mol % kcal/mol %
X=D, n=2
inc. 15.094 16.676 1582 9 15.046 16.777 1.731 10
can. 15.094 16.707 1.613 15.044 16.796 1.752
error 0 -0.031 -0.030 0.002 -0.019 -0.021
X=T, n=2
inc. 14585 16.552 1.967 12 14.543 16.737 2.194 13
can. 14.585 16.596 2.011 14540 16.768 2.227
error 0 -0.044 -0.044 0.003 -0.031 -0.034
X=D, n=3
inc. 16.327 16.795 0.467 3 16.385 16.879 0.494 3
inc. 16.327 16.791 0.464 16.378 16.861 0.483

error 0 0.004 0.003 0.007 0.018 0.011
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3.4.2.3 Domain-specific basis sets

Although the emphasise of this work is the investigationhaf &ccuracy of equation
2.68 for CCSD(T) and MP2 energies, a study regarding thaeffiy of the incremen-
tal domain-specific basis set approach [52, 55] has also ¢eeied out. Within this
approximation a second smaller basis set is used to degbebenvironment of the
domains. For the studied NéH,0), complex, the smaller basis set is the STO-3G
minimal basis at the hydrogen atoms and the 6-31G basis atjgen atoms. The
environment basis is set on three water molecules at firsttvwao water molecules at
second-order. In Table 3.23 the efficiency of the domaircifipebasis set is demon-
strated for the valence-only correlation for the™ld,O), complex using different
basis sets of the Dunning aug-cc-pVXZ series. The CPU timesstative to the stan-
dard CCSD(T) calculation with MOLPRO using, symmetry. The computational
saving is about a factor of 4 for the triple and quadrupleasis sets if the fulb, sym-
metry of the complex is exploited. The wall time could be eWarher reduced by
exploiting the parallelity of the incremental scheme [53], 8 onsidering the accuracy
of the domain-specific basis set approach errors below c@4rkol for all applied
basis sets are found, which is a very satisfactory accuracy.

Table 3.23: Comparison of computational savings for the CCSD(T)/acigp¢XZ va-
lence only correlation energy for the N@l,0), molecule with respect to
canonical calculation. The errors with respect to the caxraoalculation
are given in kcal/mol.

X rel. time rel. time error
inc. (C)/can. (G) inc. (S)/can. (G)
% % kcal/mol
D 129 43 0.03
T 72 25 -0.04
Q 80 26 -0.03

3.4.2.4 Variation of the domain size

The analysis of the influence of different domain sizes on matational time for
the Na (H,O), complex is presented in Tab. 3.24. The relative computdtinrs
among different domain size parameters (dsp) are compakadlao the percentage
of calculation time relative to a given expansion order igvat. The accuracy of the
CCSD(T)/6-31G* correlation energies and the amount of tieeemental energy cal-
culations (i) with respect to the expansion order are also given in Tal24. A
distance screening reducing the number of individual datmns was not applied be-
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cause only the influence of dsp parameter on computatianal will be considered
herein.

Table 3.24: Comparison of the relative computational time for diffdretomain
sizes for the calculation of the CCSD(T)/6-31G* correlatienergy of
Na(H,0),. The errors are with respect to the canonical calculation (i
kcal/mol). Number of individual calculation¥'(i) at a given expansion
order i and percentage of calculation time relative to amgmeler are also
given.

dsp DxOrb. i error  N() timeati rel. time
kcal/mol % %
1 16x1 1 264.392 16 0.5
2 -28.114 120 3.8
3 1.315 560 20.3
4 -0.008 1820 754 14600 (Y

1 16x1 1 264392 4 0.6

2 -28114 32 45

3 1315 140 20.8

4 -0.008 464 741  3412(%
3 2x2 1 42106 5 26

3x4 2 0.009 10 74 100 (@

4  4x4 1 0740 4 29
2 -0.007 6 71 79 (©

4  4x4 1 0740 1 27
2 -0.007 2 73 26 (9

5 2x4 1 0.624 3 32
1x8 2 -0.003 3 68 67 (Q

The investigated different domain size parameters areldqu& 4 and 5 and divide
the system into 16, 5, 4 and 3 valence domaingith a different amount of localized
orbitals grouped into the domains. Exemplary the dsp valiead to a partitioning
of two domains with two occupied localized orbitals and édemains with 4 orbitals,
as indicated in Table 3.24 within the short notation 2x2 ax#l i2spectively. The re-
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sults show that the optimum with respect to a given targetiraoy and with respect
to computational time is achieved for dsp=5. But the caloahawith dsp=4 is only
little slower and it has the great advantageous that théiparhg preserves the sym-
metry properties of the molecule. The calculatiorbinsymmetry when dsp equals 4
is therefore the cheapest calculation at all. The worstat@appears if a partitioning
into single orbital domains is considered. In order to ab&milar accuracy as for
dsp=3,4 and 5 with an aberration of just one hundredth of #rkoathe incremental
expansion has to be evaluated up to the fourth-order. Iretbases the huge number
of individual calculations which have to be performed toambtthe desired accuracy
cause the calculation to become the most expensive one. vidvem theS, symme-
try is exploited for dsp=1 the calculation time is by a faacdd3000 longer than the
computation with dsp=3.
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Chapter 4

Conclusion

In this contribution we proposed among others two approkona to the site-site
function counterpoise (SSFC) method and one to the secatet-&aliron-Mayer
function counterpoise (VMFC) scheme, based on truncatedtdbasis sets used for
the monomer calculations.

Within one procedure we employ as a criterion for a systesra@toice of the trun-
cated orbital space, a distance threshold R acting on theegeyp of a given structure.
Within the second approach, the reduced basis set is odtaiaa systematically anal-
ysis of the magnitude of the overlap integrals.

The calculations carried out for a water and methanol clusteies evidence con-
vincingly that with only little loss in accuracy great saggwith respect to the com-
putational requirements can be achieved with both propestie SSFC(R) and the
SSFC(S) - scheme. To a certain extent also the correspoi@itigC(2)(R) scheme
provides advantages over the full approach yielding at #meestime highly accurate
results.

Furthermore the approximate approaches enable BSSE tiomrezalculations for
larger cluster sizes where the standard procedure failsotwepd. In addition we em-
ployed the domain-specific basis set approach within thedveork of the incremental
scheme to evaluate the total correlation energy of thealsistnd demonstrated that
this method yields very accurate results with respect teémonical calculations.

We present accurate BSSE corrected stabilization enefgiesater clusters up to
20 subunits with the aug-cc-VXZ (X=D,T) basis sets at the MEZSD and even
CCSD(T) (with n up to 18) levels of theory.

The approximate SSFC(R) and SSFC(S) schemes are robustdadthaccount for
BSSE corrections. With the variable use of the distancestiolel or the overlap thresh-
old one is able to control the desired accuracy as well asdhgpatational resources
needed to carry out the calculation.
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Appendix A

MP2 and CCSD incremental
Interaction energies
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Figure A.1: Convergence behavior of the MP2 interaction energy of &tesquilib-
rium distance for the y-aug-cc-pVXZ (y=s,d,t and X=D,T,®)bbasis
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Figure A.2: MP2 correlation energy contribution to the interactionrggeof He, as
a function of the cardinal number X in the aug-cc-pVXZ bagisseries.
The horizontal dashed lina ES” marks the estimated basis set limit.



135

-30 |
AP+
=T 2 x ]
. o
“ | Deyy O 1
g Ae ™
w
< § e .
-50 AR - RV §
&
g =
-55 | e TR |
-60 ‘ | |

N

w
X
o

Figure A.3: As Fig. A.2, but for the d-aug-cc-pVXZ basis set series.
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Figure A.4: As Fig. A.2, but for the t-aug-cc-pVXZ basis set series.
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Figure A.5: CCSD(T) correlation energy contribution to the interactemergy of He
as a function of the cardinal number X in the aug-cc-pVXZ basit se-
ries. The horizontal dashed line ES,” marks the estimated basis set
limit.
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Figure A.6: As Fig. A.5, but for the t-aug-cc-pVXZ basis set series.
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lated curve&EﬁP andAFEs5, are based on CP-corrected and uncorrected
correlation energies, respectively.



138 GHAPTERA MP2 AND CCSDINCREMENTAL INTERACTION ENERGIES

aug—-cc—pvDZ

AECP
AE

-0.1
-0.2
-0.3
-0.4

-0.5

interaction energy (kcal/mol)

-0.6
0.7 | - X

_08 L L L L L L L L L L L
3.3 34 35 3.6 3.7 3.8 39 40 4.1 42 43 44 45 46 4.7 48

C-C distance (A)

aug-cc—pVvVTZ
AECP +
AE X
= cP i
S AEY ¥
(—3 AEy, O
cP
-‘; AEg, ®m
2 AEy, O
c
(0]
5 .
= oo B
g ..—-;1.;.%:,5;‘-
g . ;‘.“"‘ .
.......... x-
0.5 e D 1

3.3 34 3536 37 3839404142 43 44 45 4.6 4.7 4.8
C-C distance (A)

aug-cc—pvQZ

0

= -01r¢}
o
E
E

& -02r
>
>
2

o -03r
c
kel
g

5 04
E

_05 -

3.3 34 3536 37 3839404142 43 44 45 4.6 4.7 4.8
C-C distance (A)

Figure A.8: As Fig. A.7, but for the MP2 level of theory.



139

aug-cc—pvVDZ
-0.4 T T T
+
AECP  +

06 1 -y AE X ]
= cP
g 08 L " TSV
(—3 + AEN” m|
< -1, . AES, W T
5 ‘2 T AE o)
@ -12 96,3“ %'”ﬁ g oo +.3.fl. ot
(0] e

L B I

S -14 Ei . L P a—" L o HE
o L ek
© R T T RO RO * .
§ 16 L m- E TNROS Hrrere Forre e ¥ ‘Q .....
c B o £
- &,” """""" E-.. - g

-1.8 "R:-.-;_-@ ..................... - ST

-2
3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55
S-S distance (A)

aug-cc—pVvVTZ
-0.8 [ —
DESP +
-0.9 | ' e x]
E -1 a‘@ AESY % T
T o-11b oy o+ ARy, O
g L S AESY m
5 L2X Tk 3“ 4
E _1 3 I :‘"‘ lli;,’:l“ . e, . AE34__ " - Q"' _,:—
& b % R, gt
S -144 Tl B Lo
k3 ' )(‘u. X, v."e“=‘*=ﬁ"=‘-==i=‘*=‘ﬁ’"“eh *
© -1 5[1‘ *"‘E‘ i
T 16 b Bk, Lo O V. i |
> D o
| o, é* ...... Moo [ E-E‘ ______ |
' I I P LT TP Eideeeees T 1 I I I I I

3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55
S-S distance (A)

aug-cc—pvQzZ

I
o
©

interaction energy (kcal/mol)

3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55
S-S distance (A)
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Figure A.10: As Fig. A.9, but for the MP2 level of theory.
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Figure A.11:

aug-cc—pvDzZ

ggg AEAE

interaction energy (kcal/mol)

K1
- jgﬁ AESY
’ §% AEy,
o 2EST
AEz,

INg
i
N
[«))
N

0-0 distance (A)

aug-cc—pVTZ

.8 30 32 34 36 38 40 42 44 46 48 50

g

E e

é o AECP

g AE

IS AEG

5

s AEy,

ot
DBz,

24 26 28 3.0 32 34 36 38 40 42 44 46 48 50

0-0 distance (A)

aug-cc-pVvVQZz
Ore
L
i
~ -1L¢ a4
g P
E | ¥
3 \ ¢ e |
I 5 #
g -3¢ ) 1
% & -
c
.% -4} ’E AEy, * i
@
b3 ABEy O
= -5 AESY  m
AEzy O

24 26 28 3.0 32 34 36 38 40 42 44 46 48 50

0-0 distance (A)

Potential energy curves of the interaction energy for th® Himer,
calculated with aug-cc-pVXZ (X=D,T and Q) basis sets at tl@&S0
level of theory as a function of the intermolecular C-C dis& The 3-
4 extrapolated curveAE?iP andAFEs, are based on CP-corrected and
uncorrected correlation energies, respectively.



142 GHAPTERA MP2 AND CCSDINCREMENTAL INTERACTION ENERGIES

aug-cc—pvDzZ
0 \

= : f!r~ﬂ""!
o g
£ Pl
= . 1
S g@‘g .
> §& BES 4
o o S
5 : DEW K
g
5 ABEy O
= AESY m ]|

AEg, (o] |

24 26 28 3.0 3.2 34 36 38 40 42 44 46 48 50
0-0 distance (A)

aug-cc—pVTZ

+

e e x

‘ AESY % T

ABEy O
[

interaction energy (kcal/mol)

AEG,

DBy, O A

24 26 28 3.0 3.2 34 36 38 40 42 44 46 48 50
0-0 distance (A)

aug-cc-pVvVQz
OF
!:.- l
i
1 e
s [k s
E _wk ”
37 2% & 1
(S} i =
< b % ,gﬁ cp
? -3 % Jéﬁ AE + |
c i il LAE X
(6] XXy
§ 4r% X = AESY % T
2 i * g MI
sl L gt S O
£ 70 R cP 1
ﬁ g’ﬁ AEy, ®
-6 f ! . AEy, O
I E'ﬁ'ﬁ\ I I I I I I I I I

24 26 28 30 3.2 34 36 38 40 42 44 46 48 50
0-0 distance (A)

Figure A.12: As Fig. A.11, but for the MP2 level of theory.



Appendix B

SSFC(R), VMFC(2)(R) and SSFC(S)
results at the MP2 and CCSD levels of
theory

143



CHAPTERB SSFC(R), VMFC(2)(R)AND SSFC(S)RESULTS AT THEMP2
144 AND CCSDLEVELS OF THEORY

CCSD,,, / aug—cc—pVDZ

100 ‘ ‘

x i v !

95 - + ? .

90 + + i n=6 +
S 85 |- A n=8 X
Q 100
e i — X ﬁ—i‘ n=10 %

% 80 99 % ; ] .
= 98 * 'S n=12 O
z Or 97 i
o 96 n=14 =m
£ 70t o5 | % 8
17 94 - n=16 O
65 - 03 I 'y
+ 92 j i n=18 [ J
60
! 40 45 50 55 60 o A
55 Il Il Il Il Il Il
25 3.0 35 4.0 4.5 5.0 5.5 6.0
R (A)
CCSD,,, / aug-cc-pVDZ
10 ‘

9 16 =6+
= 14 n=8 X |
s 8 12 b
= 10 W n=10 % |
g 7 0.8 .

S 06O B n=12 O |
g 0.4 ¥
\6 5 0.2 % g i n=14 | | i
I 0.0 _
7! a 40 45 50 55 n=16 0O
| —
(Lf 3 [o) A n=18 @ i
N ] —
o 2 o 8 ﬁ n=20 A |
¥ i 4
0 ! ¥ . a
2.5 3.0 35 4.0 4.5 5.0 55 6.0

R
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SSFC(R), VMFC(2)(RAND SSFC(S)RESULTS AT THEMP2

AND CCSDLEVELS OF THEORY

Table B.1: Approximate BSSE second-order VMFC correction with respediffer-
ent distance thresholds at the aug-cc-pVDZ/CCSD leX&{ VMFC(2) -
VMFC(2)(R)).

R VMFC(2)(R) n=8 VMFC(2)(R) n=10 VMFC(2)(R) n=12

A kcal/mol % A E kcal/mol % A E kcal/mol % AE

2 0.18 2461 0.54 0.32 35.02 0.59 0.40 36.50 0.70
2.5 0.53 73.21 0.19 0.65 71.21 0.26 0.77 69.88 0.33
3 0.63 87.12 0.09 0.79 87.15 0.12 0.93 85.18 0.16
3.5 0.68 94.48 0.04 0.83 91.97 0.07 0.98 89.79 0.11
4 0.71 98.51 0.01 0.87 96.20 0.03 1.03 94.49 0.06
45 0.72 99.57 0.003 0.89 98.02 0.02 1.06 97.02 0.03
5 0.72 99.78 0.002 0.90 99.47 0.005 1.08 98.54 0.02
55 0.72 100 0 0.91 99.92 0.001 1.09 99.52 0.01
6 0.91 100 0 1.09 99.86 0.002

0.72 100 0 0.91 100 0 1.10 100 0

Table B.7: SSFC(R) BSSE correction (in kcal/mol) with respect to R taee dif-
ferent methanol clusters (GBH),, and the deviation (in kcal/mol and %)
from the full SSFC method for n=8.

R SSFC(R) SSFC(R) error
A kcal/mol

%

kcal/mol

SSFC(R) SSFC(R)

kcal/mol

error

% kcal/mol

CCSD/aug-cc-pvDZ

n=8
4.0 12.12
4.5 13.04
5.0 13.58
55 13.92
o0 14.17

n=12
4.0 21.17
45  22.89
50 23.99

n=16
4.0 34.44

85.50
92.05
95.84
98.22
100

2.05
1.13
0.59
0.25
0.00

MP2/aug-cc-pVDZ

12.76
13.73
14.30
14.65
14.92

22.30
17.19
17.95

36.33

85.54
92.05
95.83
98.23
100

2.16
1.19
0.62
0.26
0.00
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Table B.2: CCSD and MP2 BSSE corrected and uncorrected stabilizatiergees of
the water cluster (KD)s (bag structure) and BSSE corrections obtained
with different schemes for the basis set series-aagpVXZ (X=D,T,Q
and 5).(\EBSIE= DCBS(Q.5) _ paud-ccpVXZ g|| energies in kcal/mol, values
in parentheses in %).

X D T Q 5  CBS(Q,5)
CCSD
D -36.52 -38.29 -39.24  -39.33  -39.43
AEBSIE 2.91 1.15 0.19 0.11 0.00
SSFC (R=2.5)  3.01(61.22) 1.58(69.45) 0.62(68.34) 0.25 0
SSFC (R=3.5)  4.48 (91.15) 2.12(93.45) 0.84(93.14) 0.34 0
SSFC (R=4.5)  4.89(99.54) 2.26(99.56) 0.90 (99.55)
SSFC 4.92 (100)  2.27 (100)  0.91 (100)
D (SSFC (R=2.5))  -33.52 -36.71 -38.62  -39.07 -39.46
D (SSFC (R=3.5))  -32.04 -36.16 -38.40  -38.99 -39.48
D (SSFC (R=4.5))  -31.63 -36.03 -38.34
D (SSFC) -31.61 -36.02 -38.34
MP2
D -37.84 -38.90 -39.75  -39.77 -39.85
AEBSIE 2.01 0.95 0.10 0.08 0.00
SSFC (R=2.5)  3.15(61.26) 1.73(69.53) 0.79(68.75) 0.39 0.1
SSFC (R=3.5)  4.69 (91.08) 2.33(93.50) 1.08(93.50) 0.52 0.1
SSFC (R=4.5)  5.13(99.54) 2.48(99.56) 1.15 (99.58)
SSFC 5.15(100) 2.49 (100)  1.15 (100)
D (SSFC (R=2.5))  -34.68 -37.17 3895  -39.38 -39.77
D (SSFC (R=3.5))  -33.15 -36.57 -38.67  -39.25 -39.76
D (SSFC (R=4.5))  -32.71 -36.42 -38.60
D (SSFC) -32.69 -36.41 -38.59
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Table B.3: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE correctedrator-
rected stabilization energies for the water cluster seti€®©), at the
CCSD/aug-cc-pVXZ (X=D,T and CBS(D,T)) level of theory, alhergies
in kcal/mol, values in parentheses in %.

n 6 8 10 12
aug-cc-pvDZz
D -36.68 -63.36 -81.71 -100.65
SSFC(R=4) 4.84(92.98) 10.10(96.58) 12.63(94.32) 15.3100)
SSFC(R=4.5) 5.03(96.68) 10.29(98.40) 13.02(97.22) 1@e6nN2)
SSFC 5.20 (100) 10.45 (100) 13.39 (100) 16.55 (100)

D (SSFC (R=4)) -31.84(15.20) -53.07 (19.02) -69.08 (18.285.25 (18.07)
D (SSFC (R=4.5)) -31.65(15.90) -52.95(19.43) -68.69 (3B.9-84.74 (18.67)

D (SSFC) -31.48 (16.53) -51.77 (20.19) -68.32(19.60) -841P.68)
aug-cc-pVvTZ
D -38.65 -65.32 -84.08 -103.56
SSFC(R=4) 2.48 5.19 6.55 7.98
SSFC(R=4.5) 2.57 5.28 6.72 8.21

D (SSFC (R=4)) -36.17 (6.85) -60.12(8.64) -77.53(8.44) .58%8.35)
D (SSFC (R=4.5)) -36.08(7.12) -60.04(8.80) -77.36 (6.67)95.34 (8.59)

CBS(D,T)
D -39.39 -66.72 -85.78 -105.66
SSFC(R=4) 1.96 4.27 5.39 6.55
SSFC(R=4.5) 2.03 4.35 5.53 6.74

D (SSFC (R=4)) -37.43(5.23) -62.44(6.84) -80.39(6.70) .10996.61)
D (SSFC (R=4.5)) -37.36 (5.43) -62.37(6.97) -80.25 (6.88)98.91 (6.81)
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Table B.4: As Table B.3, but for the water cluster series @}, n=14,16,18,20.

n 14 16 18 20
aug-cc-pvDZ
D -123.25 -143.13 -172.38 -185.35
SSFC(R=4) 18.89 (91.59) 21.98 (91.39) 32.81 (92.41) 289318)
SSFC(R=4.5) 19.64 (95.23) 22.74 (94.56) 33.99(95.74) 12M@3.24)
SSFC 20.63 (100) 24.05 (100) 35.50 (100) 32.72 (100)

D (SSFC (R=4)) -104.36 (18.10) -121.15(18.14) -139.5752B. -157.22 (17.89)
D (SSFC (R=4.5)) -103.61(18.82) -120.39 (18.89) -138.305@) -155.94 (18.86)

D (SSFC) -102.62 (20.10) -119.08 (20.19) -137.77 (25.77p3-81 (20.51)
aug-cc-pVvTZ
D -126.11 -146.83 -174.61
SSFC(R=4) 9.74 11.31 16.31
SSFC(R=4.5)

D (SSFC (R=4)) -116.36(8.37) -135.52(8.35) -158.3 (10.30)
D (SSFC (R=4.5))

CBS(D,T)
D -128.65 -149.91 -178.44
SSFC(R=4) 8.07 9.32 13.14
SSFC(R=4.5)

D (SSFC (R=4)) -120.58(6.69) -140.59 (6.63) -165.3 (7.95)
D (SSFC (R=4.5))
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CHAPTERB SSFC(R), VMFC(2)(R)AND SSFC(S)RESULTS AT THEMP2
AND CCSDLEVELS OF THEORY

Table B.5: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE correctedrator-

rected stabilization energies for the water cluster setie®©), at the
MP2/aug-cc-pVXZ (X=D,T and CBS(D,T)) level, (all energigskcall/-

mol, values in parentheses in %).

n 6 10 12
aug-cc-pvDZz
D -37.57 -84.31 -104.00
SSFC(R=4) 5.03(93.09) 10.47(96.59) 13.10(94.36) 16.1®)
SSFC(R=4.5) 5.23(96.73) 10.67(98.42) 13.50(97.23) 1(@626)
SSFC 5.40 (100) 10.84 (100)

D (SSFC (R=4)) -32.54 (15.45)
D (SSFC (R=4.5)) -32.34 (16.16)

D (SSFC) -32.17 (16.80)
aug-cc-pVvTZ
D -38.96
SSFC(R=4) 2.68
SSFC(R=4.5) 2.77

D (SSFC (R=4))  -36.29 (7.38)
D (SSFC (R=4.5)) -36.19 (7.67)

CBS(D,T)
D -39.52
SSFC(R=4) 2.16
SSFC(R=4.5) 2.24

D (SSFC (R=4))  -37.36 (5.78)
D (SSFC (R=4.5)) -37.28 (6.00)

-54.73 (19.13)
-54.61 (19.54)
-53.38 (20.31)

-61.12 (9.08)
-61.03 (9.25)

-63.17 (7.31)
-63.09 (7.44)

13.89 (100)  17.18 (100)

-71.21 (18.4698.01 (18.18)
-70.81 (4p.0-87.49 (18.88)
-70.43 (19.72) -3618.78)

-85.82 -105.84
7.01 8.55
7.19 8.80

-78.81 (8.90) .2878.79)
-78.63 (9.13)97.63 (9.05)

-87.16 -107.48
5.85 7.12
6.00 7.33

-81.31(9.17) 0-30@ (7.09)
-81.16 (9.38)L00:16 (7.30)
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Table B.6: As Table B.5, but for the water cluster series @}, n=14,16,18,20.

n 14 16 18 20
aug-cc-pvDZ
D -127.21 -147.98 -183.29 -191.43
SSFC(R=4) 19.60 (91.63) 22.81(91.43) 34.18 (92.47) 2BADPR)
SSFC(R=4.5) 20.37 (95.25) 23.59 (94.58) 35.40 (95.76) B(®8.25)
SSFC 21.39 (100) 24.95 (100) 36.96 (100) 32.72 (100)

D (SSFC (R=4)) -107.62 (18.21) -125.17 (18.22) -149.1292p. -162.23 (18.00)
D (SSFC (R=4.5)) -106.84 (18.93) -124.38(18.97) -147.9093) -160.91 (18.96)

D (SSFC) -105.83 (20.21) -123.03 (20.28) -147.25(25.1068-10 (20.62)
aug-cc-pVvTZ
D -128.89 -150.24 -184.44
SSFC(R=4) 10.43 12.12 17.56
SSFC(R=4.5) 10.82 12.52 18.12

D (SSFC (R=4)) -118.46 (8.81) -138.12(8.77) -166.88 (1D.53
D (SSFC (R=4.5)) -118.08(9.16) -137.72(9.09) -166.32§a).

CBS(D,T)
D -130.93 -152.71 -187.82
SSFC(R=4) 8.75 10.11 14.35
SSFC(R=4.5) 9.07 10.46 14.80

D (SSFC (R=4)) -122.18(7.16) -142.59(7.09) -173.47 (8.27)
D (SSFC (R=4.5)) -121.86 (7.45) -142.25(7.35) -173.026B.5
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Table C.1: Convergence of the incremental series for core (c), cokenea (cv) and
valence (v) CCSD(T) and MP2 correlation energy contributbcysteine
using standard basis sets (6-31G**, cc-pVDZ, cc-pVTZ) dreldasis sets
of Peterson et al. for the treatment of core correlationce$fécc-pCVDZ).
(O frozen orbitals, 11 correlated core orbitals, 7 core dasy&1 valence
orbitals, 5 valence domaingei=3 bohr, dsp=4, Ees<=1€e-5 au)

method  order (i) error S /Ecan.  Elon(i) error  E./Ecan.
au kca)/mol % au kcalmol %
6-31G**
CCsD(T) 2 -0.020023 -0.26 102.13  -1.152773 -2.79 100.39
3 -0.019607 0.00 100.00 -1.148277 0.03 100.00
canonical -0.019606 -1.148331
MP2 2 -0.021226 0.01 99.93 -1.058695 1.24 99.81
3 -0.021239 0.00 99.99 -1.060675 0.00 100.00
canonical -0.021241 -1.060670
cc-pvDZ
CCsD(T) 2 -0.020425 -0.24 101.90 -1.181039 -3.01 100.41
3 -0.020044 0.00 100.00 -1.176176 0.04 99.99
canonical -0.020044 -1.176241
MP2 2 -0.021662 0.01 99.95 -1.083987 1.30 99.81
3 -0.021671 0.00 99.99 -1.086062 0.00 100.00
canonical -0.021673 -1.086058
cc-pVTZ
CCSD(T) 2 -0.125832 -0.55 100.70 -1.467314 -3.03 100.33
3 -0.124978 -0.01 100.01  -1.462440 0.03 100.00
canonical -0.124961 -1.462486
MP2 2 -0.123656 0.02 99.98 -1.359700 1.43 99.83
3 -0.123682 0.00 100.00 -1.361980 0.00 100.00
canonical -0.123687 -1.361975
cc-pCvDz
CCsD(T) 2 -0.438931 -0.41 100.15 -1.194277 -3.05 100.41
3 -0.438296 -0.01 100.00 -1.189358 0.04 99.99
canonical -0.438284 -1.189423
MP2 2 -0.427408 0.01 100.00 -1.098076 1.30 99.81
3 -0.427417 0.00 100.00 -1.100150 0.00 100.00
canonical -0.427421 -1.100145
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