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Kurzzusammenfassung

Der Basissatzsuperpositionsfehler (BSSE) stellt eines der größten Hindernisse in
quantenchemischen Berechnungen dar, die eine genaue Berechnung von Wechsel-
wirkungsenergien anstreben. Die Bedeutung eines BSSE Eliminierungsverfahrens ist
unter anderem darin begründet, dass der BSSE in der Größenordnung der zu berech-
nenden Wechselwirkungsenergie liegen kann und daher die Genauigkeit dieser sig-
nifikant beeinträchtigt.
In der vorliegenden Arbeit werden neue Ansätze vorgestellt, um den BSSE in wellen-
funktionsbasierten quantenchemischen Rechnungen an großen molekularen Clustern
effizient zu eliminieren. Die Anwendbarkeit der Methoden wurde ausführlich unter
anderem an Wasser Clustern diskutiert, deren Größe sich voneinem Wasser-Dimer
bis hin zu einem (H2O)20 Cluster erstreckte. Eine Übersicht über die in der Lite-
ratur bekannten BSSE Eliminierungsverfahren wird ebenfalls dargestellt und die hier
vorgestellten Methoden werden damit verglichen.
Die neu vorgestellten Verfahren bieten mit nur geringeren Einbußen in der Genauigkeit
der Rechnungen einen sehr effizienten Weg BSSE korrigierte Wechselwirkungsen-
ergien zu erhalten, welche sogar teilweise mit den verfügbaren Standardmethoden auf-
grund der Systemgröße nicht mehr zugänglich wären.
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Abstract

The basis set superposition error (BSSE) is one of the major obstacle occuring in quan-
tum chemical calculations which aim at a accurately prediction of interaction energies.
The importance of a BSSE elimination procedure is among other things manifasted by
the fact, that the magnitude of the BSSE can be as large as the interaction energy itself,
affecting the accuracy of the calculated interaction energies therefore significantly.
In this work new approaches to eliminate the BSSE efficientlyfrom wavefunction
based quantum chemical calculations on large molecular clusters are presented. The
applicability of these schemes is studied in great detail among others on a water clus-
ter series ranging in size from a water dimer up to even a (H2O)20 water cluster. An
overview of the correction schemes known from the literature is also given and the
newly developed schemes are compared with the literature ones.
The presented schemes allow to account with only small loss in accuracy very effi-
ciently for BSSE corrected interaction energies, which arepartly no more feasible to
calculate with standard methods due to the large system size.
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Chapter 1

Introduction

For the accurate evaluation of weak intermolecular interactions one has to apply high
level quantum chemical methods such as the coupled-cluster(CC) approach or Møller-
Plesset (MP) perturbation theory. The main drawback of the wavefunction-based cor-
relation methods is the strong dependence of their demand ofcomputational resources
on the size of the one-particle basis set. For small clustersthese calculations can be
done routinely with commercially available quantum chemical software, however for
large clusters in combination with large basis sets - which are clearly necessary for
an accurate description - the application of CCSD(T) or evenCCSD becomes quickly
very time consuming or impossible at all. Even the calculations of error measures
such as the basis set superposition error (BSSE, vide infra)becomes a difficult task for
large clusters. In this work different approximations to account for the BSSE correc-
tions for large clusters at high correlation level are introduced and compared among
each other with respect to their efficiency. Furthermore theincremental scheme, which
is a method from the large field of the so-called local correlation methods is applied to
account for correlation energies of large water cluster andother systems.
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Chapter 2

Theory

2.1 Methods of Quantum Chemistry

2.1.1 Hartree-Fock Theory

The Schrödinger equation 2.1 (here in its time-independentform):

ĤΨ = EΨ, (2.1)

is not soluble in closed form for the most systems of chemicalinterest. Thus it is
therefore necessary to introduce approximations. The Hartree-Fock (HF) [1,2] approx-
imation is central to computational chemistry, its outcomeis exploited as the starting
point for an more accurate solution to the Schrödinger equation. Within the HF theory
as described below relativistic effects are neglected and the Born-Oppenheimer (BO)
approximation is used, treating the nuclei as stationary sources of electrostatic fields.
From the BO model follows, that the nuclear kinetic energy isneglected, correlation in
the attractive electron-nuclear potential term is eliminated, and the repulsive nuclear-
nuclear potential energy term̂h0 (vide infra, Eq. 2.3) becomes constant for a given
geometry. Thus for the electronic Schrödinger equation:

ĤelΨel = EΨel, (2.2)

the electronic Hamiltonian for a n-electron wave function can be written in terms of
one-, two-, zero-electron terms as:

Ĥel =
n
∑

i

ĥi +
n
∑

i<j

ĝij + ĥ0 (2.3)

5



6 CHAPTER 2 THEORY

and reads in atomic units (a.u.) with the omission of the trivial additive constant̂h0 for
fixed nuclear positions:

Ĥel = −
n
∑

i

1

2
∇2

i −
n
∑

i

M
∑

I

ZI

riI
+

n
∑

i<j

1

rij
. (2.4)

In the HF theory [3] the electronic wave function, describing the ground state of an
n-electron system is approximated by a single Slater determinant (SD). A SD is an
antisymmetrized product of one-electron wave functions called spin orbitalsϕi, which
depend upon spatial coordinatesr i = {xi, yi, zi} and a spin partα or β:

Ψ0 = CÂΘ = CÂ

n
∏

i=1

ϕi(i). (2.5)

The normalization constant C equals(n!)
1

2 when the spin orbitals are orthonormal
(vide infra, Eq. 2.10),Â is the antrisymmetrize operator and the one-electron wave
function productΘ is called Hartree product. Eq. 2.5 satisfies two fundamentalre-
quirements of quantum mechanics. First the indistinguishability of electrons is ensured
and second the wave function is antisymmetric with respect to interchange of the co-
ordinates of any two electrons. The second statement is known as the Pauli principle,
the crucial quantity in Eq. 2.5 regarding the Pauli exclusion is the antrisymmetrizer:

Â =
n!
∑

k=1

(−1)pkP̂k, (2.6)

where the sum runs over then! possible Hartree products,̂Pk is the permutation op-
erator and(−1)pk describes the parity of the k-th permutation (equals either1 of -1,
depending on whether an even or odd number of permutations will be necessary).
The variational method [4] is utilized to solve Eq. 2.2 approximately, for arbitrary
functionsΦ we have:

E[Φ] =
〈Φ|Ĥel|Φ〉

〈Φ|Φ〉
≥ Ẽ0, (2.7)

with Ẽ0 being the exact ground state energy. Minimization ofE[Φ] for a reasonable
ansatzΦ leads to a approximate ground state energy, which is larger or in best case
equal toẼ0. If the energy functional (i.e., the expectation value) is stationary with
respect to all possible variationsδΦ in the functionΦ, thenΦ is the searched solution:

δΦE[Φ] = 0 (2.8)

Having selected a single determinant trial wave function, the variational principle can
be then applied to derive the HF equations by minimizing the expectation value with
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respect to the choice of spin orbitals:

min : E0[{ϕi}]
!
= 〈Ψ0|Ĥel|Ψ0〉 (2.9)

Choosing the spin orbitals to be orthonormal:
∫

ϕ∗
iϕjdτ = δij (2.10)

one can evaluate the matrix elements over one- and two-electron operators using the
Slater-Condon rules [5]. The expectation value from Eq. 2.9may be simplified to:

〈Ψ0|Ĥel|Ψ0〉 =
n
∑

i=1

〈ϕi|ĥ|ϕi〉+
1

2

n
∑

i,j

(

〈ϕiϕj|ĝ|ϕiϕj〉 − 〈ϕiϕj|ĝ|ϕjϕi〉
)

=

n
∑

i=1

〈ϕi|ĥ|ϕi〉+
1

2

n
∑

i,j

〈ϕi|Ĵj − K̂j |ϕi〉

(2.11)

The electron-electron interaction are represented via theCoulombĴj and exchange
operatorK̂j, both defined by their effects when operating on a spin orbital ϕi:

Ĵj(1)ϕi(1) =

[
∫

ϕ∗
j (2)ϕj(2)

r12
dτ2

]

ϕi(1) (2.12)

K̂j(1)ϕi(1) =

[
∫

ϕ∗
j(2)ϕi(2)

r12
dτ2)

]

ϕj(1) (2.13)

Note that the Coulomb interaction will always survive spin integration, whereas the
exchange interaction only occurs between electrons havingthe same spin, the motion
of electrons with parallel spins is therefore said to be correlated.1

Applying the variational principle to the energy expression from Eq. 2.11 yields the
HF equations:

ĥ(1)ϕi(1) +
∑

j

[

Ĵj(1)− K̂j(1)
]

ϕi(1) = ǫiϕi(1), (2.14)

where the Fock operator for electron (1):

f̂(1) = ĥ(1) + vHF (1) = ĥ(1) +
∑

j

[

Ĵj(1)− K̂j(1)
]

, (2.15)

is the sum of the core-Hamiltonian operatorĥ(1) and an effective one-electron po-
tential operator called the HF potentialvHF . The HF equations 2.14 may be written
as:

f̂(1)ϕi(1) = ǫiϕi(1), (2.16)

1Since the one-electron operator in case of the nonrelativistic Hamiltonian does not depend on spin,
spin integration also does not change the values of one-electron integrals.
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which is an eigenvalue equation with the spin orbitals as eigenfunctions and the en-
ergy of the spin orbitals as eigenvalues. The complicated many-electron problem has
been replaced by a one-electron problem in which the electron-electron repulsion is
accounted for in an average fashion. Each electron is considered to be moving in the
field of the nuclei and the average field of the other (n-1) electrons, therefore the HF
method is referred to as a mean-field approximation.
Roothaan [1,2] described matrix algebra equations that permitted HF calculations to be
carried out using a basis set approximation for the unknown molecular orbitals (MO).
Each MOϕi(r) is expanded in terms of known basis functionsχν(r), conventionally
called atomic orbitals (MO=LCAO, Linear Combination of Atomic Orbitals):

ϕi(r) =
K
∑

ν

cνiχν(r) i = 1, 2, ...K (2.17)

If the set{χν} was complete (infinite number of basis function), this wouldbe an exact
expansion. As the basis set approaches completeness, one approaches the HF-limit
(numerical HF solution), what is for practical computational reasons not reachable.
Substituting the linear expansion 2.17 into the HF equation2.16 and multiplying by
χ∗
ν on the left and integrating turns the coupled integro-differential HF equations into:

∑

ν

FµνCνi = ǫi
∑

ν

SµνCνi, (2.18)

which are known as Roothaan equations. The entire set of equations can be written as
the single matrix equation:

FC = SCǫ. (2.19)

The S matrix contains the overlap of basis function, the Fock matrix F is the matrix
representation of the Fock operator and depends on the expansion coefficientsC:

F = F(C). (2.20)

The Roothaan equations are therefore nonlinear and they need to be solved iteratively.
In order to find the eigenvectorsC and eigenvaluesǫ by diagonalizingF, the gener-
alized matrix eigenvalue Eq. 2.20 should be transformed into a conventional form.
That means the overlap matrix must be unity, which is ensuredwhen a transformed
set of basis functions form an orthonormal set. One can choose a real and nonsingular
transformation matrixX such thatXTSX=1 and obtain:

F̃C̃ = C̃ǫ with : F̃ = XTFX and C̃ = X−1C, (2.21)

where the matixX defines an orthonormal basis{φτ} expanded in the original basis
{χν}:

φτ (r) =
K
∑

ν

χν(r)Xντ (2.22)
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Before the self-consistent field (SCF) procedure is carriedout, the basis functions are
orthogonalized by exemplary symmetric or canonical orthogonalization procedure [5].
During the SCF iteration one employs MO coefficients from a previous iteration as an
orthonormal basis set.

2.1.2 Perturbation Theory

Another theory framework besides the variational principle used to solve the
Schrödinger equation 2.1 is the so-called perturbation theory (PT) [2, 6]. The cru-
cial characteristic within PT is that a solution of an approximate Schrödinger Eq. is
known:

Ĥ0Φi = EiΦi i = 0, 1, 2, ...∞ , (2.23)

and that this solution differs only slightly from the exact one. The exact Hamiltonian
Ĥ is divided into a reference or unperturbed Hamilton operator Ĥ0 and a perturbation
operatorĤ ′:

Ĥ = Ĥ0 + λĤ ′, (2.24)

Ĥ0 should closely represent the true Hamiltonian and for whichthe solutions form a
complete set as indicated in Eq. 2.23. The perturbation operator Ĥ ′ should capture
only a small fraction of the true Hamiltonian, so that the perturbation becomes small,
in Eq. 2.24λ is a dimensionless parameter that, as it varies from 0 to 1, mapsĤ0 into
Ĥ ′. The energy and wavefunction of Eq. 2.1Ψ are expanded in form of a Taylor series
in powers of the perturbation parameter:

E = E(0) + λE(1) + λ2E(2) + ...+ λpE(p) + ... (2.25)

Ψ = Φ(0) + λΦ(1) + λ2Φ(2) + ... + λpΦ(p) + ... , (2.26)

whereE(p) andΦ(p) are the p-th order correction to the reference energyE(0) and the
reference wavefunctionΦ(0) of the unperturbed system. Inserting Eqs. 2.24, 2.25 and
2.26 into the Schrödinger equation yields:

(Ĥ0 + λĤ ′)(Φ(0) + λΦ(1) + ...) = (E(0) + λE(1) + ...)(Φ(0) + λΦ(1) + ...) (2.27)

Since all terms in 2.27 are linearly independent, we can collect terms with the same
power ofλ to:

(E(0) − Ĥ0)Φ
(p) = (Ĥ ′ − E(1))Φ(p−1) −

p
∑

k=2

E(k)Φ(p−k) (2.28)

Eq. 2.28 may be further simplified if intermediate normalization (the overlap of the
perturbed with unperturbed wave function is equal to unity)is supposed, which is



10 CHAPTER 2 THEORY

equivalent with:

〈Φ(0)|Φ(0)〉 = 1 〈Φ(0)|Φ(p)〉 = 0 for all p > 0 (2.29)

and Eq. 2.28 may be simplified to:

E(p) = 〈Φ(0)|Ĥ ′|Φ(p−1)〉. (2.30)

Since the solutions 2.23 to the unperturbed system 2.28 (to the zero order) generate a
complete set of functions, one can expand the unknown higherorder correction to the
wave function in terms of these known functions:

Φ(1) =
∑

i

ciΦi. (2.31)

The first-order energy correction can now be evaluated and isequal to the expectation
value of the perturbation operator over the unperturbed wave function:

E(1) = 〈Φ(0)|Ĥ ′|Φ(0)〉. (2.32)

The major outcome is that the higher order correction - to theenergy and wavefunction
- may also be expressed in terms of matix elements of the perturbation operator over
unperturbed wave functions.
Møller and Plesset suggested using the sum over Fock operators for the unperturbed
Hamiltonian:

Ĥ0 =
∑

i

f̂i =
∑

i

(

ĥi +
∑

j

(Ĵj − K̂j)
)

=
∑

i

ĥi +
∑

i

∑

j

〈ĝij〉 =
∑

i

ĥi + 2〈V̂ee〉,

(2.33)
in which the (average) electron-electron repulsion is counted twice. The perturbation
operator returns the correct (electronic nonrelativistic) Hamiltonian and is therefore set
to be the exact electron-electron repulsion operatorV̂ee minus twice the〈V̂ee〉 operator
(which captures electron-electron repulsion as computed from summing over Fock
operators):

Ĥ ′ = Ĥ − Ĥ0 =
∑

i

∑

j>i

ĝij −
∑

i

∑

j

〈ĝij〉 = V̂ee − 2〈V̂ee〉. (2.34)

Since the zeroth-order wave function is the HF determinant,the zeroth-order energy in
MP theory is the sum of MO energies:

E
(0)
MP = 〈Φ(0)|Ĥ0|Φ

(0)〉 = 〈Φ(0)|
∑

i

f̂i|Φ
(0)〉 =

∑

i

ǫi. (2.35)
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And the first-order energy correction is the negative of the over-counted electron-
electron repulsion:

E
(1)
MP = 〈Φ(0)|Ĥ ′|Φ(0)〉 = 〈V̂ee〉 − 2〈V̂ee〉 = −〈V̂ee〉. (2.36)

Thus the HF energy is the energy corrected through first-order in Møller-Plesset per-
turbation theory, exactly the sum of Eqs. 2.35 - 2.36. Electron correlation is therefore
firstly accounted for when the MP second-order energy correction is evaluated. This
involves the evaluation of all possible excited Slater determinants. But within a fi-
nite basis set approximation, the ways to distribute the electrons in the HF orbitals are
also limited and hence the number of excited determinants isfinite what means that
the many-electron wave function is truncated. From the Condon-Slater rules follows
(since our perturbation operator is a two-electron operator) that only double and single
excited determinants have to be considered. Furthermore from the Brillouin’s theorem
follows that matrix elements between the closed-shell HF determinant and the singly
excited ones are zero. Second-order MP energy correction therefore only involves a
sum over doubly excited determinants:

E
(2)
MP =

occ
∑

i<j

vir
∑

a<b

〈Φ(0)|Ĥ ′|Φab
ij 〉〈Φ

ab
ij |Ĥ

′|Φ(0)〉

E0 −Eab
ij

, (2.37)

and matrix elements between the HF and a doubly excited stateare given by two-
electron integrals over MOs:

E
(2)
MP =

occ
∑

i<j

vir
∑

a<b

(〈φiφj |φaφb〉 − 〈φiφj|φbφa〉)

ǫi + ǫj − ǫa − ǫb
, (2.38)

where in the denominator the energy difference between two Slater determinants occur,
these quantities correspond to differences in MO energies.

2.1.3 Coupled-Cluster Theory

In Coupled-Cluster theory [7] the many-electron wave function is constructed through
an exponential ansatz of the cluster operator:

Ψ = eT̂ΨHF (2.39)

The cluster operator is defined as:

T̂ = T̂1 + T̂2 + T̂3 + ... + T̂n (2.40)
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where n is the number of electrons and theT̂i operators construct all possible determi-
nants having i excitations from the reference one, as exemplary shown forT̂2:

T̂2ΨHF =
occ
∑

i<j

vir
∑

a<b

tabijΨ
ab
ij , (2.41)

where i,j are the occupied MOs in the HF reference wave function and a,b are virtual
MOs in ΨHF . The excited determinants are obtained by exciting an electron from
occupied orbital(s) indicated by subscripts into the virtual orbitals indicated by super-
scripts. The amplitudest are determined by the constraint that Eq. 2.41 be satisfied.
One of the most appealing features of the CC theory (in contrast to a truncated Config-
uration Interaction expansion) is that it is size-consistent. Size consistency means that
the energy of an A-B system, where A and B are at infinite separation is equal to the
sum of the energies of A and B calculated individually. To illustrate this we consider
a truncated CC expansion with the usage of only the double excitation operator, as
indicated by the superscript CCD:

ΨCCD = eT̂2ΨHF =

(

1 + T̂2 +
T̂ 2
2

2!
+

T̂ 3
2

3!
+ ...

)

ΨHF , (2.42)

where the exponential function is expanded as a Taylor series. In Eq. 2.42 thêT2

generates double excited determinants, the square ofT̂2 quadruple excitations, the cube
T̂2 sextuple substitution and so on. The Taylor expansion is finite in practice due to
the finite number of occupied MOs and therefore a limited number of excitations. The
inclusion of these higher order excitations ensures the method to be size-consistent.
The CC Schrödinger equation reads:

ĤeT̂ |ΨHF 〉 = EeT̂ |ΨHF 〉 (2.43)

and it is solved by projecting the Schrödinger Eq. 2.43, which means left-multiplying
by a trial wave functions expressed as determinants of the HForbitals. This generates
a set of coupled, nonlinear equations in the amplitudes which have to be solved. With
these solution the CC energy may be calculated according to:

〈ΨHF |Ĥ|eT̂ΨHF 〉 = ECC (2.44)

Dependent on which contributions from the cluster operatorare included in the expo-
nential ansatz the CC energy is referred to CCS (only single excited determinants are
considered), CCSD (additionally the double excited are included) and so on.
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2.1.4 Explicitly correlated methods

Electron correlation treatment based on the finite one-particle basis function expansion
of the molecular wave function suffers from the frustratingly slow convergence with
respect to the size of the latter basis towards the complete basis set (CBS) limit. It has
been recognized that the slow convergence is due to a poor description of the so-called
correlation cusp (vide infra) when standard quantum chemical methods like CC or MP
theory are applied. One can bypass the slow convergence considering a wave function
that explicitly depend on the interelectronic distance, methods which incorporate these
dependence are therefore called explicitly correlated ones.
The discussion on the origin of these methods is given here for the ground state of the
helium atom with one electron fixed at a separation of 0.5a0 form the nucleus [3].
Within the HF theory the mean-field approximation causes that the motion of one
electron is unaffected by the instantaneous position of thesecond, meaning that the
wave function amplitude for one electron depends only on itsdistance to the nucleus
but not on the distance to the other electron. For the exact wave function the probability
amplitude for one electron is affected by the second fixed electron creating the so-
called Coulomb hole around this electron. The Coulomb hole is a classically forbidden
region and a good description is necessarily for an accuratetreatment of the so-called
short range dynamical correlation. The non-relativistic electronic helium Hamiltonian
with the origin at the nucleus (wherer 1 andr2 are the coordinates of the two electrons
and Z is the nuclear charge):

Ĥ = −
1

2

2
∑

i=1

∇2
i −

Z

|r1|
−

Z

|r2|
+

1

|r1 − r2|
, (2.45)

has singularities forr 1=0, r 2=0 and r 1=r 2. At the electron-electron and electron-
nucleus coalescence points, the exact solutions to the Schrödinger equation:

ĤΨ(r1, r2) = EΨ(r1, r2) (2.46)

must provide contributions to the productĤΨ that balance the singularities in 2.45
such that the local energy:

ǫ(r1, r2) =
ĤΨ(r1, r2)

Ψ(r1, r2)
(2.47)

remains constant and equal to the eigenvalueE. In an exact wave function these sin-
gularities must be exactly canceled by the kinetic energy operator. It is convenient to
employ the symmetry of the wave function and to express the helium Hamiltonian 2.45
in terms of three radial coordinatesr1, r2 andr12 (with r12 being the interelectronic
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distance andr1, r2 the distances of the electrons to the nucleus):

Ĥ =−
1

2

2
∑

i=1

(

∂2

∂r2i
+

2

ri

∂

∂ri
+

2Z

ri

)

−

(

∂2

∂r212
+

2

r12

∂

∂r12
−

1

r12

)

−

(

r1

r1
·
r12

r12

∂

∂r1
+

r2

r2
·
r21

r21

∂

∂r2

)

∂

∂r12
.

(2.48)

The singularities at the nucleus are balanced by the kineticenergy terms proportional
to 1/ri since:

(

2

ri

∂

∂ri
+

2Z

ri

)

Ψ

∣

∣

∣

∣

ri=0

= 0 ⇒
∂Ψ

∂ri

∣

∣

∣

∣

ri=0

= −ZΨ (ri = 0) (2.49)

where(∂Ψ/∂ri) = −ZΨ at ri = 0 is known as the nuclear cusp condition which can
be easily satisfied with the usage of Slater-type-orbitals (STOs). Likewise the terms
that multiply1/r12 at r12 = 0 must vanish inĤΨ:

(

2

r12

∂

∂r12
+

1

r12

)

Ψ

∣

∣

∣

∣

r12=0

= 0 (2.50)

imposing the additional condition:

∂Ψ

∂r12

∣

∣

∣

∣

r12=0

=
1

2
Ψ (r12 = 0) (2.51)

which is known as the Coulomb cusp condition. The Coulomb cusp condition is not
satisfied for the HF wave function:

∂ΨHF

∂r12

∣

∣

∣

∣

r12=0

= 0, (2.52)

since the Slater determinant does not depend on the interelectronic distance as elec-
trons approach one another. But within the single-determinant level the so-called
Fermi correlation is included which occur as a consequence of the Pauli antisymmetry.
In the Configuration Interaction (CI) approach the helium ground full CI wave function
constructed from STOs becomes:

ΨCI = exp [−ζ(r1 + r2)]
∑

ijk

Cijk(r
i
1r

j
2 + rj1r

i
2)r

2k
12 (2.53)

And since only even powers ofr12 are included the cusp condition cannot be satisfied:

∂ΨCI

∂r12

∣

∣

∣

∣

r12=0

= 0. (2.54)
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However when a linear term inr12 is included:

ΨCI
r12

= (1 +
1

2
r12)Ψ

CI (2.55)

the cusp condition is exactly satisfied since:

∂ΨCI
r12

∂r12

∣

∣

∣

∣

r12=0

=
1

2
ΨCI(r12 = 0) =

1

2
ΨCI

r12
(r12 = 0) (2.56)

The cusp condition can therefore always be satisfied by multiplication with a correlat-
ing functionγ:

γ = 1 +
1

2

∑

i>j

rij , (2.57)

which leads to the correct nondifferentiable cusp in the product functionγΨ. Methods
that employ correlating functions or otherwise make use of the interelectronic dis-
tancesrij are called explicitly correlated methods. A distinction isdrawn between
R12 method which includesrij linearly and the F12 method which includes a more
general (exponential) dependence onrij .

2.2 Incremental Scheme

The wide branch of the local correlation methods [8–24] and also the fragment-based
methods [25–38] aim at a substantial reduction of computational requirements for
medium-sized and large systems while maintaining the high accuracy of wavefunction-
basedab initio approaches. Among the fragment-based local correlation methods, the
incremental scheme devised by Stoll for finite-cluster calculations modeling 3D crys-
tals [39–41], related to earlier ideas of Nesbet for atoms [42], is quite unique due
to its wide range of applicability. It allows both wavefunction-based correlated elec-
tronic structure calculations of periodic systems using Wannier-type orbitals [43, 44]
and of medium-sized and large molecules using localized molecular orbitals [45]. The
adsorption of molecules on crystalline surfaces can also bestudied [46,47]. In its sim-
plest form the approach can be combined with any size-extensive correlation treatment
provided by standard quantum chemical program packages without changing the cor-
relation modules and thus extends their range of applicability beyond the one of the
standard wavefunction-based correlation methods.
The incremental procedure starts with the localization of the canonical HF orbitals.
The set of localized Hartree-Fock orbitals is then grouped into disjoint subsets, the so-
called one-site domains, which form the setD. The set of n-site domains is obtained
by adding all pairs, triples etc. to the one-site domains. The resulting outcome is the
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power set of the set of one-site domainsP(D). Correlation energy calculations are
carried out forP(D). The incremental correlation energy is expand as:

Ecorr =
∑

X

X∈P(D)∧|X|≤O

∆εX. (2.58)

The summation in Eq. 2.58 includes all terms ofP(D) with a cardinality less or equal
to the order of the expansion, denoted asO. The general correlation energy increment
∆εX is defined as:

∆εX = εX −
∑

Y

Y∈P(X)∧|Y|<|X|

∆εY, (2.59)

whereX andY are the summation indices defined in Eq. 2.58 and Eq. 2.59 respec-
tively. HereεX stands for the correlation energy obtained upon correlating all electrons
in X. The expansion described via Eq. 2.58 is exact when carried out to the highest ex-
pansion order but advantages with respect to computationalrequirements arise when
it is truncated at preferable low order. For example, a third-order expansion which
appear to be accurate enough (chemical accuracy with errorsbelow 1 kcal/mol) for a
large variety of systems [48] reads:

Ecorr =
∑

i

∆εi +
∑

i<j

∆εij +
∑

i<j<k

∆εijk, (2.60)

with the one-, two- and three-body increments:

∆εi = εi

∆εij = εij −∆εi −∆εj

∆εijk = εijk −∆εij −∆εik −∆εjk − εi − εj − εk.

(2.61)

Provided that Eq. 2.58 may be truncated at a low expansion order it further becomes
more computationally attractive when small incremental contribution (small with re-
spect to the energy they contribute to the overall expansionsum) are identified and
neglecteda priori and especially when the virtual space of the domains is reduced.
Low-order truncation of the incremental expansion and an efficient screening method
requires domains whose orbitals are spatially close to eachother, but remote to the or-
bitals of other domains. Since for larger systems it is quitetedious and also error prone
to set up the domains by inspection, a fully automated domaingeneration is crucial.
Friedrich et al. [49, 50] proposed a procedure to set up the domains automatically and
generated a computer code which also provides all needed input data to perform all
incremental correlation energy calculations to the highest order with external quantum
chemical codes.
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2.2.0.1 Construction of the valence domains

The centers of charge for the set of occupied valence orbitalsO are obtained from the
diagonal elements of the dipole integrals in MO basis:

φa 7→ ~Ra :=





〈φa |x| φa〉

〈φa |y|φa〉

〈φa |z| φa〉



 =





xa

ya
za



 , (2.62)

therefore the set ofO is mapped to a set of vectors inR3:

O → R
3. (2.63)

The distancesDab = |~Ra − ~Rb| between the centers of charge are used to construct
an edge-weighted graph. In order to arrive at disjoint sets of orbitals forming the
domains [50] a graph partitioning problem has to be solved. For this purpose the Metis
graph partitioning library [51] is used. The distancesDab = |~Ra − ~Rb| of all pairs of
centers of charge define the distance matrixD, from which a connectivity matrixC is
constructed:

Cab =















108, if Dab ≤ tcon ∧
q

Dab
≥ 108

q

Dab
, if Dab ≤ tcon ∧

q

Dab
< 108

0, if Dab > tcon

(2.64)

Here tcon is a distance threshold andq is a constant stretching factor set to104, the
factor of108 enters as an approximation of infinity in the representationof integers on
a computer. The connectivity matrix conditions enforce theconstruction of an edge-
weighted graph, where the orbital pairs (represented via center of charge) with short
distances get a large weight, and those with a large distanceget a small or a zero
weight. Metis partitions the graph under the side conditionthat the sum of weights of
the cut edges is a minimum. Hereby the number of resulting valence domains can be
controlled by specifying the so-called domain-size parameter (dsp) according to:

no. valence domains=
no. valence orbitals

dsp
. (2.65)

It should be noted that the choice of the domain size also influences the order of the
incremental expansion required for a desired accuracy as well as the computational
effort. Formally any choice between single-orbital domains and the treatment of the
whole system as a single domain, corresponding to the conventional calculation, is
possible. For a given target accuracy smaller domain sizes require a truncation at
higher order than larger domain sizes, i.e. they lead to a higher number of correlation
calculations. On the other hand, choosing too large domainsmay deteriorate the effi-
ciency despite a possible truncation at low order, since e.g. contributions for groups
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of orbitals are implicitly included and have to be evaluated, although from a numerical
point of view they could be neglected. Thus forn occupied valence orbitals the opti-
mum domain size is1 < dsp<< n and often can be chosen according to the physical
situation, e.g. dsp=4 is a suitable choice when treating water clusters, since a water
molecule has 4 valence orbitals.

2.2.0.2 Screening procedure

A sufficient screening of small incremental contributions exploits the property that the
incremental values decay with increasing order and for a given order with increasing
distances between the underlying domains. An order-dependent distance truncation
procedure according to:

tdist =
f

(i− 1)2
with: i ≥ 2, (2.66)

wheref is a variable parameter, excludes those increments for which all distances
between the centers of charge of two groups of underlying domains is larger thantdist.

2.2.0.3 Domain-specific basis set

The usage of a domain-specific basis set [52] within an incremental calculation pro-
vides a significant speed up in calculation time since the virtual space is reduced as well
as the number of the required integrals. Within this procedure the centers of charge
of the localized orbitals in a given domain are utilized to detect all atom coordinates
which will be treated with the original large AO basis. The selection is controlled with
a variable distance parametertmain and all atom centers not covered by this threshold
form the environment of the domains and are treated with the second smaller basis.
Once the domain-specific basis set is constructed a second HFcalculation followed by
a localization is performed. With a remapping of the center of charge from the first to
those from the second localization the occupied orbitals from a given domain are iden-
tified and the correlation calculation in the reduced basis set can be performed. Since
the remapping may not always be unique a template localization has to be used [53,54].

2.2.0.4 Incremental MP2 and CCSD(T) correlation energy contributions

In order to converge to the canonical MP2 or CCSD(T) energiesone has to take into
account that neither the canonical treatment of MP2 nor the canonical treatment of
the perturbative triples correction in CCSD(T) is invariant with respect to a unitary
transformation of the occupied orbitals. This problem can be circumvented with a
pseudo-canonical MO basis. For this purpose the Fock matrixin the local MO basis
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is diagonalized in the subspace of the domain and the corresponding transformation is
used to transform the local MOs to the pseudo-canonical MOs [55].

2.2.0.5 Evaluation of core and core-valence correlation energy contributions

Core correlation contributions are often neglected in studies of larger systems with
many cores. The reason is mostly the computational effort, not the insignificance of
the neglected effects. In order to treat the core correlation effects efficient, i.e. core-
core and core-valence correlation, within the incrementalframework disjoint sets of
localized core and valence orbitals are required [56]. Therefore the core and valence
orbitals are localized separately. The setD of one-site domains is split into the set
of one-site core domainsDc and the set of one-site valence domainsDv. With this
classification Eq. 2.58 may be rewritten in terms of three sums, which account for
the energy contributions arising from core-core∆εX, core-valence∆εY and valence-
valence∆εZ correlation effects separately.

Ecorr =
∑

X

∆εX +
∑

Y

∆εY +
∑

Z

∆εZ

X ∈ P(Dc) ∧ |X| ≤ O

Y ∈ P(D) \ [P(Dc) ∪ P(Dv)] ∧ |Y| ≤ O

Z ∈ P(Dv) ∧ |Z| ≤ O

(2.67)

If the expansions in Eq. 2.67 are carried out to the highest possible order and no
further approximations with respect to the local orbital character are made the incre-
mental correlation energyEcorr corresponds exactly to the total correlation energy ob-
tained with standard methods. Treating the core correlation on equal footing with
valence correlation may become quite expensive especiallywhen several larger cores
are present. However, from the physical point of view such a uniform treatment is not
really necessary, since core shells are usually quite compact and rather tightly bound.
Previous incremental CCSD investigations showed that for not too diffuse cores ne-
glecting inter-core correlation contributions is a significant simplification leading only
to negligible errors [57]. Thus, each core can be treated individually by evaluating
its intra-core correlation energy directly and applying anincremental expansion for its
core-valence correlation energy contributions. Since after localization the core orbitals
are more compact than the valence orbitals the order of the incremental core-valence
correlation energy expansion has to be at most the order usedfor evaluating the va-
lence correlation energy.
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According to these considerations Eq. 2.67 can be rewrittenas:

Ecorr =
∑

X

∆εX +
∑

Y

∆εY +
∑

Z

∆εZ

X ∈ P(Dc) ∧ |X| = 1

Y ∈ {Y ∈ P(D) | |Y ∩ Dc| = 1 ∧ 0 < |Y ∩ Dv| ≤ (O − 1)}

Z ∈ P(Dv) ∧ |Z| ≤ O

(2.68)

The partitioning of the valence orbitals has been already described above. The core
domains are constructed by mapping centers of charge of the localized core orbitals to
the closest atom coordinates. Therefore as many core domains occur as many atoms
with core orbitals are considered in a given calculation. Within this simple procedure
comparatively small local domains are obtained due to the local character of the core
orbitals. This procedure would not work sufficiently for thevalence domains since a
center of charge may be located in the middle of two atoms and therefore a unique
mapping would not be possible.

2.2.0.6 Scaling behavior of the incremental scheme

The formal scaling behavior of the incremental expansion Eq. 2.67 depends on the
number of individual calculations and the time needed to perform them. The total
amount of individual calculations is equal to:

N total
calc =

O
∑

i=1

(

|D|

i

)

, (2.69)

where the expansion orderO is equal to the number of the domainsD in the limiting
case when Eq. 2.58 is carried out to highest possible expansion order. Eq. 2.69 is also
applicable to the core-valence treatment without simplifications as described in Eq.
2.67 whenD is the unified set of coreDc and valenceDv domains. In the approximate
treatment of the core correlation, incremental energy calculations are excludeda priori
as describe via Eq. 2.68 and hence a reduced total number of individual calculations is
considered according to:

N core−val
calc =

O
∑

i=1

(

|Dv|

i

)

+ |Dc|+
O
∑

i=2

(

|Dv|

(i− 1)

)

|Dc|. (2.70)

Incremental energy calculation carried out in this work make use of of an implementa-
tion of the incremental scheme which contains an interface to the MOLPRO quantum
chemistry package [58]. The localization is performed using the Boys [59] functional



2.2 INCREMENTAL SCHEME 21

with the algorithm of Edmiston and Ruedenberg [60] separately for the core orbitals
and for the valence orbitals. The thresholds needed to specify the input data for the
incremental calculations are listed at the bottom of all tables presenting the results. In
order to reduce the error propagation arising from the recursive nature of the incremen-
tal expansion an energy convergence threshold Ethres was applied for the correlation
calculations entering at highest order, whereas for the lower orders the thresholds are
tightened dynamically [61].
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2.3 Basis Set Superposition Error

The basis set superposition error (BSSE, vide infra) was reported for the first time by
Kestner [62] in 1968, while trying to explain the too deep minimum on the potential
energy curve for the helium dimer. One year later Jansen and Ros [63] detected the
BSSE error when investigating the protonation of carbon monoxide. However the er-
ror was for the first time termed by Liu and McLean [64], who also investigated the
helium-helium interaction.
The BSSE occurs in every molecular electronic structure calculation whenever orbitals
are approximated by an expansion in terms of analytic basis functions (most commonly
ones used are Gaussians) [65]. That is, at the HF level of theory as well as at the corre-
lated level of theory when wavefunction based methods like CC or perturbation theory
are employed. But BSSE also exist for approximate Hamiltonians such as semiempir-
ical forms or density functional methods [66], it is also notnegligible for Slater-type
functions [66]. We may clearly identify the appearance of BSSE as a consequence
of the usage of a truncated basis set as there is no doubt in thetheoretical chemistry
literature that the BSSE is completely eliminated in the limit of a complete basis set.
BSSE is primarily related to the calculation of interactionenergies within the super-
molecule approach, which is widely used since it only requires as a prerequisite the
applied method to be size extensive, but unfortunately it suffers from the BSSE ef-
fect. Within the supermolecule approach the interaction energy for exemplary a dimer
is evaluated by subtracting the energies of the monomers from the one of the dimer.
However, in this prescription the BSSE arises from the more significant incomplete-
ness of the basis sets used for the monomers than for the one ofthe dimer. For a given
incomplete basis set the wavefunction of a supermolecule ismore flexible in the sense
that the energy of the individual monomers within this complex is artificially lowered
due to the partial use of the basis functions centered on the other monomer. This causes
an energy lowering and therefore too deep minima at too shortdistances on the poten-
tial energy surface (PES).
The magnitude of the BSSE is influenced by three fundamental issues. The first one
is the investigated type of system. Considering the interaction energies the BSSE frac-
tion with respect to the interaction energy depends upon thestrength of the molecular
interaction. The weaker the interaction energy is all the more the calculated interac-
tion energies are affected by the BSSE effect, which may evenbe of the order of the
interaction energy itself. Therefore it is mandatory to consider the BSSE whenever the
nature of interaction is due to dispersion or electrostaticforces or when investigations
are carried out on hydrogen-bonded systems. BSSE effects become less important
for chemically interacting systems which represent the strongest molecular interac-
tion. The level of theory is another factor affecting the magnitude of BSSE. The BSSE
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impact is known to be larger for post-Hartree-Fock methods then at the Hartree-Fock
level. However, by far the greatest effect on the size of the BSSE error has the quality
of the applied basis set, what is reasonable as the usage of a finite basis set is the reason
why the BSSE occurs. Since in theory the BSSE vanishes at the CBS limit, the closer
the energy converges to the later, the smaller the BSSE will be. Especially the so-
called correlation consistent basis sets introduced by Dunning and co-workers [67–69]
provide a well defined path to the CBS limit and hence these families of basis sets
provide an extremely powerful approximation in any quantumchemical application
which utilizes them.
Quite recently it has been recognized that the BSSE not only arises when computa-
tional chemistry describes the interaction of two or more species. The importance of
the so-called intramolecular BSSE has been understood recently [70–74]. Exemplary
it was reported that intramolecular BSSE is responsible formasking the expected min-
ima in a conformation equilibrium analysis for a dipeptide on the PES [75] or that
due to intramolecular BSSEab initio calculations predict wrongly benzene and arene
molecules to exhibit nonplanar minima [76,77].
The strategy of how to deal with the BSSE can be roughly devided into two categories.
One methodology aims at the omission of BSSE from the theory model [78–88] as
exemplary realized within the symmetry-adapted perturbation theory (SAPT) [89–92],
where the interaction energies are evaluated directly as a sum of physically distinct
contributions. Within the other methodology one corrects the BSSE in ana posteriori
fashion, by far the most widely useda posterioriprescription is the counterpoise (CP)
correction introduced by Boys and Bernardi [93]. Within this correction method the
energy calculations for the individual monomers are performed using the whole super-
molecular basis sets instead of only the appropriate monomer basis sets. A literature
survey indicates [94] that from the year of publication in 1970 the Boys and Bernardi
paper was 9416 times quoted, which is an enormously amount ofcitations and clearly
evidences the popularity of the CP scheme.



24 CHAPTER 2 THEORY



Chapter 3

Results and Discussion

3.1 Incremental evaluation of interaction energies

3.1.1 Introduction

Recently Wang and Paulus [95] proposed to calculate the binding energy of an inter-
molecular system, i.e. a H2S-benzene complex, without referring to monomer cal-
culations in the full dimer basis set. Instead they proposedto estimate the binding
energy by performing three correlated calculations on the dimer in a local orbital ba-
sis: calculations correlating only the occupied orbitals of one of the monomers in the
dimer, hereby treating the occupied orbitals localized on the other monomer as frozen
core, and a calculation correlating simultaneously the corresponding occupied orbitals
of both monomers in the dimer. The energy difference betweenthe dimer correlation
energy and the two monomer-in-dimer correlation energies was taken as an estimate
for the binding energy. Using this simple prescription Wangand Paulus obtained 99%
of the CCSD(T) binding energy of the H2S-benzene dimer, when only the valence or-
bitals on H2S and theπ-orbitals on benzene were included in the correlation treatment.
The authors emphasized that the evaluated binding energy isBSSE-free. Furthermore,
since the correlation energy difference used as an estimatefor the binding energy cor-
responds to a so-called two-body increment in the incremental expansion of the corre-
lation energy as proposed by Stoll [39], they use the name method of increments for
their approach.
The prescription of Wang and Paulus is applied here to calculate the interaction energy
of the helium, hydrogen sulfide, methane and water dimer and the accuracy of that
approach is compared to results obtained with standard methods.

25
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3.1.1.1 Methodology and computational details

The study is based on the assumption of weak interactions, for which the geometries of
the interacting monomers are essentially identical to the ones of the free monomers. In
this case the interaction energy∆E between two monomers is given by the difference
of the energy of the dimerEij

ij and the ones of the monomers in the monomer basisEi
i ,

Ej
j using their geometries in the dimer:

∆E = Eij
ij −Ei

i −Ej
j (3.1)

In Eq. 3.1 and onward the following notation is used: the basis sets are noted as
superscript, whereas the considered system is noted as subscript. In the case of a
dimer aggregate the most widely used prescription to correct for the BSSE is the full
counterpoise (CP) correction of Boys and Bernardi [93]. Within the CP scheme all
calculations, i.e. those for the dimerij as well as those for the monomersi andj are
carried out within the dimer basis set:

∆ECP = Eij
ij − Eij

i −Eij
j (3.2)

where theEij
i andEij

j energies are again evaluated at the geometries taken from the
dimer. Therefore for both Eq. 3.1 and Eq. 3.2 the relaxation energy contribution is
neglected.
In order to obtain values for the basis set limit of the total energy as a benchmark,
the two-pointX−3 extrapolation of Halkier et al. [96] to the complete basis set (CBS)
limit for the correlation energy has been used. To distinguish more easily between total
energies and correlation energies the symbolsE andε are used for them, respectively.

EXY = ECP
HF,Y +

X3εX − Y 3εY
X3 − Y 3

with X < Y (3.3)

HereX, Y denote the cardinal numbers of the applied basis sets andECP
HF,Y stands for

the CP-corrected Hartree-Fock (HF) energy obtained in the larger basis set with cardi-
nal numberY .
According to the introduced convention the notation for thecorrelation energy contri-
bution∆ε to the CP-uncorrected interaction energy of Eq. 3.1 is:

∆ε = εijij − εii − εjj (3.4)

and for the corresponding CP-corrected interaction energyof Eq. 3.2:

∆εCP = εijij − εiji − εijj (3.5)
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If one assumes a pure dispersion interaction one can calculate the interaction energy
in a local orbital basis as a difference between correlationenergies for the dimer and
the monomers in the dimer, i.e.

∆εMI = εijij − εiji − εijj (3.6)

The approximation∆E = ∆εMI has been advocated by Wang and Paulus for the
direct evaluation of the binding energy in the H2S-benzene complex at the CCSD(T)
level. Direct means that no calculations for separated monomers are needed and thus
also no BSSE-corrections have to be taken into account. Since Eq. 3.6 corresponds to
the definition of a two-body contribution in the incrementalexpansion of the correla-
tion energy the authors used the term method of increments (MI) for their procedure.
Note that Eq. 3.6 equals the second line of Eq. 2.61, however the notation here is
slightly different as for Eq. 2.61 in order to be able distinguish clearly between Eq.
3.4, Eq. 3.5 and Eq. 3.6.
In general the HF contribution to the interaction energy, which contains e.g. the Pauli
repulsion between the monomers, is not negligible and has tobe added to the incremen-
tal correlation contribution∆εMI in order to obtain reliable estimates. In this inves-
tigation the HF interaction energy∆EHF or the corresponding CP-corrected quantity
∆ECP

HF , evaluated with Eq. 3.2, has been used and therefore the approximate interac-
tion energy for the method of increments is evaluated according to:

∆EMI = ∆EHF +∆εMI , (3.7)

and in the CP-corrected case as:

∆ECP
MI = ∆ECP

HF +∆εMI . (3.8)

The calculation of the interaction energy for the H2S-benzene complex at the
CCSD(T)/aug-cc-pVDZ level of theory (compare Figs. 3.2 and3.1) indicates, as for
the other systems treated here, that∆εMI alone does not exhibit a minimum near the
equilibrium geometry.
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Figure 3.1: Correlation energy contribution to the interaction energyof the C6H6-H2S
complex calculated with aug-cc-pVDZ basis set at the CCSD(T) level of
theory as a function of the intermolecular sulfur atom - benzene plane
distance.

Thus the potential energy curve on the H2S-benzene system of Ref. [95] cannot be
solely based on Eq. 3.6 - it must contain HF contributions to the interaction energy.
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plex, calculated with aug-cc-pVDZ basis set at the CCSD(T) level of the-
ory as a function of the intermolecular sulfur atom - benzeneplane dis-
tance.
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Figure 3.3: RI-MP2/aug-cc-pVDZ equilibrium structures of methane, water and hy-
drogen sulfide dimers.

For the methane, water and hydrogen sulfide dimers geometry optimizations were car-
ried out at the RI-MP2/aug-cc-pVDZ [97,98] level of theory using the TURBOMOLE
5.10 program package [99] for fixed C-C, O-O and S-S distances, respectively. No
symmetry constraints were imposed. Pictures of the optimized equilibrium structures
are shown in Fig. 3.3. The interaction energies were calculated at RI-MP2 geome-
tries at the CCSD(T), CCSD and MP2 [100,101] levels of theoryusing the MOLPRO
program package [102] and basis sets of augmented correlation-consistent double-
through quadruple-ζ quality (aug-cc-pVXZ; X=D,T,Q) [67, 103]. Additional single
point calculations on the helium dimer were performed with double and triple aug-
mented correlation-consistent basis sets of double- through sextuple-ζ quality (y-aug-
cc-pVXZ; y=s,d,t; X=D,T,Q,5,6) [69]. The frozen-core approximation was applied in
all calculations except for He2.
In order to evaluate the correlation contribution to the interaction energies according
to Eq. 3.8 the implementation of the incremental scheme [104] was used to get the
necessary two-body increments. In order to obtain the proper fragments the domain
size parameter (dsp, refer to Eq. 2.65) was set to the number of correlated orbitals on
one fragment.
The convergence of the HF interaction energies was analyzedwith basis sets of aug-cc-
pVDZ through aug-cc-pV6Z quality at the equilibrium structures for the methane, hy-
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drogen sulfide and water dimers, see Fig. 3.4. The largest change in the CP-corrected
interaction energy of the quadruple-ζ basis set with respect to the sextuple-ζ basis set
is only -0.01 kcal/mol. Since the differences due to the correlation contributions dis-
cussed in this work are much larger, the CP-corrected HF energies of the quadruple-ζ
basis sets have been used as an approximation for the HF contributions to the extrapo-
lated energies according to Eq. 3.3.
The discussion is limited to the CCSD(T) results in the following. The findings for
the CCSD and MP2 methods show a similar behavior with respectto the accuracy and
applicability of the procedure discussed. Therefore the conclusions presented below
are also valid at CCSD and MP2 level of theory. The CCSD and MP2outcomes are
given in the Appendix A.
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Figure 3.4: Counterpoise corrected and uncorrected HF interaction energy of the
methane, hydrogen sulfide and water dimer at equilibrium distance with
respect to the aug-cc-pVXZ (X=D,T,Q,5,6) basis set series.
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3.1.2 Applications

The helium dimer was considered as a simple model system at the equilibrium separa-
tion of 5.61 Bohr [105]. The convergence behavior of Eq. 3.8 and Eq. 3.7 was checked
with respect to the y-aug-cc-pVXZ (y=s,d,t and X=D,T,Q,5,6) basis set series and the
results are presented in the chart of Fig. 3.5.
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Figure 3.5: Convergence behavior of the CCSD(T) interaction energy (inµEh) of
He2 at the equilibrium distance for the y-aug-cc-pVXZ (y=s,d,tand
X=D,T,Q,5,6) basis sets. The horizontal dashed line is the well depth
of He2 taken from [105].

From the convergence of the y-aug-cc-pVXZ basis sets at different augmentation
levels in Fig. 3.5 it is clear that a double augmentation is more accurate than the
single augmentation forX ≥ 3. The triple augmentation does not lead to a further
improvement of the interaction energy and the d-aug-cc-pVXZ and the t-aug-cc-pVXZ
energies are on top of each other. Therefore the double augmented basis sets have been
used to study the convergence of the correlation contribution to the interaction energy
for the approximations for∆ε, ∆εCP , ∆εMI as well as the CBS extrapolated ones at
the CCSD(T) level of theory. The results are presented in Fig. 3.6. The extrapolation
technique was applied both to the CP-corrected and uncorrected correlation energy
contributions to the interaction energies, labeled as∆εCP

XY and∆εXY respectively (see
legend of the chart in Fig. 3.6).
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basis set limit.

Table 3.1: Comparison of the CCSD(T) correlation energy errors (inµEh) for He2 at
a bond distance of 5.61 Bohr of∆εMI and∆εCP using the d-aug-cc-pVXZ
basis set series with respect to the 5-6 extrapolated CP-corrected interaction
energy∆εCP

56 . The percentages are calculated with respect to∆εCP
56 . The

BSSE, referred to as CP correction in the sixth column of thisTable, is
estimated as the difference between∆ε and∆εCP .

error error CP
X ∆εMI % ∆εCP % correction
2 13.85 77.91 18.94 69.80 -16.24
3 2.13 96.60 5.97 90.48 -10.67
4 -1.27 102.03 2.42 96.14 -3.96
5 -2.39 103.81 1.21 98.07 -2.31
6 -2.86 104.56 0.7 98.88 -1.14

Considering the counterpoise corrected two-point extrapolated interaction energy
(X=5, Y=6 in Eq. 3.3) as estimate for the basis set limit, one finds that the CP-corrected
correlation energy contribution to the interaction energyconverges monotonously
from above to the CBS limit. The uncorrected interaction energy ∆ε converges
monotonously from below for X=3 to 6. The two-pointX−3 extrapolated interac-
tion energies based on the uncorrected energies∆εXY are between the∆ε and∆εCP
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values except for the 2-3 extrapolated one. If the CP correction is applied in addition
to the CBS extrapolation the interaction energies∆εCP

XY are very close to the CBS limit
already for the 2-3 extrapolation. The errors of∆εMI and∆εCP with respect to the
5-6 extrapolated CP-corrected energy are presented in Tab.3.1. The∆εMI errors are
significantly smaller in comparison to the corresponding∆εCP errors for the double-,
triple- and quadruple-ζ basis sets. Using the quintuple- and sextuple-ζ basis sets, the
errors of the CP-corrected interaction energy are smaller than the errors for∆εMI . The
∆εMI results overestimate the CBS limit for the quadruple to sextuple-ζ basis sets by
2, 4 and 5%, respectively, whereas the∆εCP results converge smoothly to the CBS
limit.
On the basis of these results one may conclude so far that Eq. 3.6 yields reasonable
interaction energies for smaller basis sets, but it is not systematically improvable. The
potential energy curves (PEC) of the interaction energy forthe methane dimer at the
CCSD(T)/aug-cc-pVXZ (X=D,T and Q) levels of theory are given in Fig. 3.7. The
3-4 extrapolated PECs based on the CP-corrected as well as the uncorrected energies
are shown in all charts, in order to compare the results of thegiven basis set with the
CBS limit. The difference between the∆ECP

34 and∆E34 curves is very small indi-
cating that both∆ECP and∆E are suitable for the 3-4 extrapolation. The∆ECP

curve converges smoothly from above to the CBS limit with increasing basis set size,
whereas the interaction energy curve without BSSE correction ∆E approaches the
CBS limit from below when the basis set quality is improved. The BSSE is large for
the double- and triple-ζ basis sets and a BSSE correction scheme is even necessary
when the quadruple-ζ basis set is applied. The difference between the∆ECP

MI and
∆EMI curves corresponds directly to the BSSE at the SCF level. TheBSSE is re-
duced drastically for the triple-ζ basis set and almost vanishes when the quadruple-ζ

basis set is applied. The∆ECP
MI curve is almost identical with the extrapolated curves

for the double-ζ basis set, whereas the∆ECP curve underestimates the interaction
energy with respect to the CBS limit. At 3.8 , near the minimumof the extrapolated
curve, the underestimation of∆ECP with respect to∆ECP

34 equals 27%. The situation
changes when the triple-ζ and quadruple-ζ basis sets are considered. For the triple-ζ

basis set the∆ECP
MI curve is still between the∆E and∆ECP curves in a region near

the PEC minimum. Comparing∆ECP
MI to the∆ECP curve, we observe that the latter is

somewhat closer to the CBS limit. For the minimum structure∆ECP underestimates
∆ECP

34 by 7%, whereas∆ECP
MI overestimates∆ECP

34 by 11%. For the quadruple-ζ
basis set the∆ECP

MI curve is below the uncorrected∆E curve, exhibiting unacceptable
large errors with respect to the CBS limit, e.g. at 3.8∆ECP

MI overestimates∆ECP
34 by

15%.
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Figure 3.7: Potential energy curves of the interaction energy for the CH4 dimer, calcu-
lated with aug-cc-pVXZ (X=D,T and Q) basis sets at the CCSD(T) level of
theory as a function of the intermolecular C-C distance. The3-4 extrapo-
lated curves∆ECP

34 and∆E34 are based on CP-corrected and uncorrected
correlation energies respectively.
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For the hydrogen sulfide dimer the same analysis as for the methane dimer has been
performed. Fig. 3.8 shows the comparison of the corresponding PEC for (H2S)2. For
all applied basis sets the interaction energies∆E and∆ECP converge to the basis set
limit from below and above, respectively. Considering the performance of Eq. 3.8 a
good agreement with the CBS limit is found if the BSSE is eliminated at the HF level,
i.e. for ∆ECP

MI . Increasing the basis set to triple- or quadruple-ζ quality deteriorates
the results and the PEC fall even below the lower limit of∆E. The difference of
∆ECP

MI and∆EMI to the 3-4 extrapolated PEC for the triple and quadruple-ζ basis
sets strongly depends on the reaction coordinate of the interacting molecules. The
stronger the interaction the bigger the errors and vice versa. This is due to different
HF reference wavefunctions which are employed for the correlation treatment ofε12i
(i = 1, 2) andε12i (i = 1, 2). Within the incremental calculations we start with a HF
solution obtained for the whole complex, whereas in the CP scheme we consider
HF solutions for monomer units using the AO-basis of the dimer. This error source
causes larger difference of∆ECP

MI with respect to the 3-4 extrapolated PEC when the
interaction force is stronger.
In general one can conclude that if no calculations on the isolated monomers in
whatever form are performed, the results cannot yield accurate interaction energies
according to the supermolecular approach. Therefore the most accurate results
presented here so far are obtained for the system with the weakest interaction in this
study, i.e. the helium dimer.
As the last test case the water dimer is considered, where a dipole-dipole-interaction
is the leading contribution in the total interaction energy. The PECs for the various
methods are given in Fig. 3.9. Again one observe the convergence of the∆E to the
CBS-34 limit from below, whereas the CP-corrected PEC∆ECP converges from
above. In contrast to the other systems Eq. 3.8 breaks down completely in this
case. For all applied basis sets the PECs are below the lower bound defined by∆E.
Therefore Eq. 3.8 is not systematically improvable and alsonot generally applicable.
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Figure 3.8: Potential energy curves of the H2S dimer, for the aug-cc-pVXZ (X=D,T
and Q) basis sets at the CCSD(T) level of theory.
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Figure 3.9: Potential energy curves of the H2O dimer, for the aug-cc-pVXZ (X=D,T
and Q) basis sets at the CCSD(T) level of theory.
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A comparative summary of the∆ECP
MI and∆ECP errors for the equilibrium geome-

tries of the methane, water and hydrogen sulfide dimers with respect to∆ECP
34 is

presented in Tab. 3.2.

Table 3.2: CCSD(T) errors (kcal/mol) of∆ECP
MI and∆ECP with respect to∆ECP

34 at
the equilibrium geometries (as predicted by∆ECP

34 ) for the basis set series
aug-cc-pVXZ (X=D,T and Q).

error error
X ∆ECP

MI ∆ECP

CH4-CH4

2 0.03 (93%) 0.12 (73%)
3 -0.05 (111%) 0.03 (93%)
4 -0.07 (115%) 0.01 (97%)

H2S-H2S
2 -0.09 (105%) 0.4 (77%)
3 -0.26 (115%) 0.15 (91%)
4 -0.29 (117%) 0.07 (97%)

H2O-H2O
2 -0.9 (118%) 0.71 (86%)
3 -1.21 (124%) 0.29 (94%)
4 -1.32 (126%) 0.11 (98%)

With increasing cardinal number X the errors of the CP-corrected interaction energies
∆ECP are systematically reduced and the values approach the CBS limit. This is not
the case for∆ECP

MI , which tends to overestimate the CBS limit when larger basissets
are applied.
Beside the already mentioned different reference wavefunctions a second error source
should be considered. The virtual space in the calculationsof ε12i (i = 1, 2) is reduced
in comparison to the phantom orbital calculations ofε12i (i = 1, 2). The decrease of
the external orbitals is equal to the number of occupied orbitals frozen in the second
monomer unit, which are excluded from the correlation treatment. The reduced num-
ber of external orbitals yields less negativeε12i (i = 1, 2) energies with respect to the
CP-corrected outcomes and thus in turn causes an overestimation of the interaction
energy. As evidence by the following ordering:∆ε < ∆εMI < ∆εCP of the cor-
relation energy contribution to the interaction energy of the H2S-benzene complex as
presented in Fig. 3.1. The good agreement of∆ECP

MI with respect to the CBS limit for
the double-ζ basis sets (see Table 3.2) seems therefore to be rather a consequence of
a favorable error cancellation than of an accurate description of the interaction energy
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with the approach of Eq. 3.8. Note that the proposal of Wang and Paulus is indeed
in line with the so-called virtual counterpoise scheme (VCP) [106]. In this scheme
the monomer calculations are performed in a reduced dimer basis where the ’to be
occupied orbitals’ of the second monomer are projected out.The reason why Daudey
et al. [106] suggested the VCP scheme is strongly related to one of the most often
discussed issues regarding the counterpoise approach, that is the question whether a
CP method overcorrects the interaction energy or not. The physical explanation for
the validity of the VCP scheme is based on the Pauli exclusionprinciple. In a corre-
lated CP calculations on a monomer, the excitations to orbitals corresponding to the
occupied MOs of the second monomer are allowed, however in the dimer they are
not [107]. This approach was discussed in detail in a review article by van Duijneveldt
et al. [108]. It has been concluded on the basis of several studies [109–111] by com-
paring the results obtained with VCP and CP that only the latter scheme provides the
proper correction to the interaction energies [112, 113]. The argument that in the lim-
iting case of a complete dimer basis the monomer calculations should be performed in
this complete basis too (CP scheme) rather than in a reduced basis (VCP scheme) also
applies to the proposed scheme, which is thus bound to overestimate the interaction
energies for large basis sets. These findings are in line withthe discussion carried out
here on the errors caused by the reduced number of external orbitals.
It should be noted that the procedure defined by Eq. 3.8 is an extremely simplified
variant of the method of increments. The usage of the name incremental method for
this approach is even misleading. Eq. 3.8 simply approximates the correlation part
of the interaction energy of a dimer by a single two-body increment, i.e. the corre-
lation contribution Eq. 3.6 is formally obtained as the difference between a second-
order expansion for the dimer and first-order expansions forthe monomers under the
assumption, that the first-order contributions of these expansions completely cancel
when taking the difference. Thus the highest order increment in the dimer expansion
has to be evaluated, which corresponds to the full calculation, whereas the cheaper
evaluation of lower-order increments is avoided. In contrast to this the incremental
scheme [39, 42] aims at evaluating the total correlation energy of a system by consid-
ering only increments of relatively low order and thus avoids the expensive evaluation
of the high-order contributions [43, 104, 114, 115]. Thus, for the proposal of Paulus et
al. no advantage with respect to the computational effort isobtained. The computa-
tional cost of their procedure as well as of the CP approach isdominated by the most
expensive calculation for the dimer, which is completely equivalent for both schemes.
For the monomers one saves in the method suggested by Paulus et al. the HF calcula-
tions in the dimer basis. However, since a CP correction is necessary at the HF level
of theory, one does neither save CPU-time nor hand work.
From the presented results it is clearly evident that the recent attempt to identify the
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intermolecular second-order correlation energy increments as an approximation to the
counterpoise corrected interaction energies of weakly interacting monomers can not be
recommended as an accurate method in general. It is shown that the results obtained
via Eq. 3.8 are not systematically improvable and that the range of applicability is lim-
ited. The incremental correlation energies∆εMI overestimate the interaction energy
in a constant manner with respect to the counterpoise corrected energies. A compar-
ison of∆εMI and the complete basis set limit reveals that reasonable results for the
dimers of helium, hydrogen sulfide and methane are only obtained with basis sets of
moderate size, and the corresponding good results appear tobe due to a beneficial error
cancellation. For the water dimer with strong hydrogen bonding it was found that Eq.
3.8 yields unreasonable large errors. For the hydrogen sulfide and methane dimer in
quadruple-ζ basis set Eq. 3.8 also fails to estimate accurate interaction energies with
respect to the complete basis set limit as well as with respect to the counterpoise ap-
proach.
The overall conclusion is that the incremental method cannot provide a direct proce-
dure to determine BSSE-free interaction energies. One has to use one of the variousa
posterioricorrection methods. Concerning weak intermolecular interactions the incre-
mental scheme in fact can provide accurate total energies for the interacting system and
therefore also accurate interaction energies at reduced computational effort. Wowever
an efficient evaluation of the BSSE effect, especially when large molecular clusters are
considered, has not yet been introduced together with the incremental approach. This
is actually the goal of this work.
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3.2 BSSE correction schemes for n-body clusters

3.2.1 SSFC, PAFC and VMFC schemes

Within the supermolecule approach one can calculate the interaction energy (D) ofn-
body clusters from the energy difference of the cluster energyEij...n

ij...n and its individual
monomer fragments̄Ei

i according to:

D = Eij...n
ij...n −

n
∑

i

Ēi
i , (3.9)

where the bar inĒi
i indicates that the energy is calculated at the relaxed geometry.

Consistently with the notation of Eq. 3.9 the omission of thebar symbol atEij
i and

Eij
j in Eq. 3.2 means that these monomer energies are calculated at the monomer

geometry taken from the dimer.
In the limit of the complete basis set the dimer interaction energy calculated via Eq. 3.9
(for n=2) and Eq. 3.2 will not be affected by the BSSE. Howeverthe obtained results
will (except for diatomic systems) not converge to the same value since the monomer
energies are evaluated at different geometries (isolated monomer vs. monomer in the
complex) [116, 117]. In order to circumvent this discrepancy one has to account for
the geometry relaxation contribution terms∆Ei

rel and∆Ej
rel. So the counterpoise

corrected interaction energy∆ECP
rel which takes into account the relaxation energy in

case of a dimer is:
∆ECP

rel = ∆ECP +∆Ei
rel +∆Ej

rel, (3.10)

where we also assume that the CP-correction and the relaxation contributions behave
additiv. The fragment relaxation energies describe the energy penalty for distorting the
monomers from their isolated geometries to the ones in the complex:

∆Ei
rel = Ei

i − Ēi
i ,

∆Ej
rel = Ej

j − Ēj
j .

(3.11)

Similar consideration may be carried out also for n-body interaction energies. If we
aim to account for BSSE effects in n-body clusters, we may invoke the counterpoise
procedure and expand Eq. 3.2 according to:

D(fCP ) = Eij...n
ij...n −

n
∑

i

Eij...n
i , (3.12)

where all individual monomers calculated in the basis of thewhole supermolecule
Eij...n

i are subtracted from the cluster energyEij...n
ij...n . Again the omission of the bar

symbol atEij...n
i indicates that the geometries are those from the cluster andhence
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Eq. 3.12 is also referred to as full counterpoise corrected interaction energy (fCP).
The geometry relaxation contributions may also be generalized for the n-body case
according to:

n
∑

i

∆Ei
rel =

n
∑

i

(

Ei
i − Ēi

i

)

. (3.13)

Together with Eq. 3.12 and Eq. 3.13 we may finally formulate the BSSE corrected
interaction energy for n-body clusters which also take the fragment relaxation effects
into account as:

D(SSFC) = D(fCP ) +
n
∑

i

∆Ei
rel, (3.14)

recasting Eq. 3.14 leads to:

D(SSFC) = Eij...n
ij...n −

n
∑

i

Ēi
i +

n
∑

i

(

Ei
i −Eij...n

i

)

(3.15)

The last term in Eq. 3.15 is well-known from the literature [118] as a BSSE correction
for n-body interactions, called site-site function counterpoise (SSFC) correction:

SSFC =
n
∑

i

(

Ei
i −Eij...n

i

)

. (3.16)

Note that at the complete basis set limit Eq. 3.16 approacheszero and hence D(SSFC)
converges to D.
In the framework of the counterpoise method at least two moreextensions exist
which correct for BSSE in aggregates with various subunits.Wells and Wilson [118]
proposed a pairwise additive function counterpoise (PAFC)scheme which describes
the BSSE correction of the pairwise interaction of each monomer with every other
monomer in the cluster:

PAFC =
n
∑

i 6=j

(

Ei
i −Eij

i

)

. (3.17)

Valiron and Mayer [119], based on earlier work of White and Davidson [120], in-
troduced a hierarchical scheme, the so-called Valiron-Mayer function counterpoise
(VMFC) correction.

VMFC =

n
∑

i

(

Ei
i −Eij...n

i

)

+

n
∑

i<j

(

∆Eij
ij −∆Eij...n

ij

)

+

n
∑

i<j<k

(

∆Eijk
ijk −∆Eijk...n

ijk

)

+ ...

+

n
∑

i<j<...<(n−1)

(

∆E
ij...(n−1)
ij...(n−1) −∆Eij...n

ij...(n−1)

)

(3.18)
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The first-order term (VMFC(1)) from Eq. 3.18 equals to the SSFC scheme. Higher-
order BSSE energy contributions treat the basis set extension effects of all dimers,
trimers up to n-mers present in a cluster and are calculated in a recursive manner.
Exemplary the second-order of the VMFC scheme is given by Eq.3.19:

VMFC(2) =

n
∑

i<j

(

∆Eij
ij −∆Eij...n

ij

)

=

n
∑

i<j

(

(

Eij
ij − Eij

i −Eij
j

)

−
(

Eij...n
ij − Eij...n

i − Eij...n
j

)

)

,

(3.19)

whereas the third-order term reads as:

VMFC(3) =
n
∑

i<j<k

(

∆Eijk
ijk −∆Eijk...n

ijk

)

=

n
∑

i<j<k

(

(

Eijk
ijk −∆Eijk

ij −∆Eijk
ik −∆Eijk

jk

)

−
(

Eijk...n
ijk −∆Eijk...n

ij −∆Eijk...n
ik −∆Eijk...n

jk

)

)

.

(3.20)

Note that within the notation used in this work the sum of firstand second-order VMFC
corrections is indicated by VMFC(1,2), whereas the VMFC(2)term describes the en-
ergy contributions arising from second-order correctionsonly.
One important characteristic of these schemes is the computational cost they cause.
The number of individual calculations [121] which have to beperformed to calculate
the VMFC correction is equal to:

ncalc. =
n
∑

i=1

2n−i

(

n

i

)

. (3.21)

Obviously the amount of individual calculations increasesvery rapidly with increasing
cluster size n. Therefore the VMFC scheme is applicable onlyto small cluster sizes.
Exemplary the full VMFC BSSE correction calculation of nonsymmetric clusters with
n=6,8,10 and 12 subunits would require 665, 6305, 58025 and 527345 individual cal-
culations, respectively [121]. The scaling behavior of thePAFC is n2 and for the SSFC
2n, which is quite low in comparison to Eq. 3.21. However, thesize of the one-particle
basis set employed in the individual calculations is also a limiting factor determining
the computational cost of a BSSE calculation. From this perspective the PAFC method
is computationally the most attractive, since the most expensive calculations needed
are just in a dimer basis set, independent from the cluster size. The VMFC scheme is
definitely the most expensive one, not only due to the huge number of individual cal-
culations, but also because the most expensive ones are almost as large as the cluster
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calculation itself, namely the calculation ofEij...n

ij...(n−1). Even though the SSFC scheme
requires the smallest number of individual calculations itmay become computational
extremely demanding when BSSE corrections for larger cluster sizes are considered,
since any monomer has to be calculated in the presence of the wholen-mer basis set.

3.2.2 Approximate SSFC(R) and VMFC(2)(R)

As pointed out in contrast to the computationally less demanding PAFC scheme the
SSFC and mainly the VMFC methods cause an enormous computational effort. It is
therefore desirable to develop approximations to these schemes. The ones introduced
here aim at a reduction of the size of then-mer basis set. The basic assumption em-
ployed here is that standard Gaussian basis sets are utilized, e.g. basis sets optimized
for the corresponding atom and not aiming to describe functions of other centers. Since
atom-centered Gaussian basis functions are used we may expect that far distant func-
tions contribute only little to the additional flexibility of the wavefunction at a specific
monomer.
Due to the steep scaling of Eq. 3.21 the implementation of theVMFC scheme is re-
stricted to the second-order correction only. In order to carry out SSFC as well as
VMFC(2) calculations automatically one needs to partitionthe n-body cluster into its
monomer fragments. The fragmentation procedure is performed automatically with
the usage of a graph partitioning routine [51]. The partitioning into monomer frag-
ments is analogous to the construction of the one-site domains within the incremental
scheme. But the set of vectors from which the distance matrixis constructed is no
longer a set of centers of charge as in case of the incrementalscheme but simply the
set of atom coordinates of the cluster under consideration.Therefore one distinction
has to be drawn, the first condition in the connectivity matrix Eq. 2.64 is not needed
anymore as we may exclude the case that the distance between two atom coordinates
is smaller then10−4 Å.
Having the sets of coordinates which form the monomers constructed we turn our at-
tention to the superscripts which occur in the second sum of Eq. 3.16 and Eq. 3.19.
Firstly note that the individual calculations from the second sum in Eq. 3.16 and Eq.
3.19 are performed using so-called ghost atoms. The term ghost is used because these
atoms contribute only their basis functions but neither their nuclei nor electrons to a
quantum chemical calculation within the LCAO approach. Theoverall basis set is the
sum of basis functions which are contributed by the atom coordinates i (the lower in-
dex in Eq. 3.16 and Eq. 3.19) and all the remaining ghost atomsof a given cluster.
Therefore if we want to exclude in a given monomer ghost calculation basis func-
tions contributed by far away ghost atomsa priori, we need a procedure to identify
them. We employ the information about the distances of atom coordinates from a
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given monomer fragment to all possible ghost atom coordinates of the n-body cluster
in order to decide whether a basis function will significantly contribute to the BSSE
calculation or not. The reduced basis set for the BSSE calculation is constructed as
follows: use a distance threshold R to select all ghost atom coordinates from the whole
molecule, which have a smaller distance than R to at least oneatom of the fragment
i. Since these selected ghost coordinates are associated with atoms of the system, they
are associated with AO-basis functions, too. These AO-basis functions together with
those arising from the lower index in Eq. 3.16 are exactly thebasis setBi(R) of the
BSSE calculation. Having the set of the truncated ghost orbital space constructed, we
may rewrite Eq. 3.16 into the approximate one:

SSFC(R) =

n
∑

i

(

Ei
i − E

Bi(R)
i

)

(3.22)

Note that in the limit when the distance threshold reaches infinity, the approximate
SSFC(R) scheme is equal to SSFC:

SSFC(R → ∞) = SSFC. (3.23)

The distance-dependent screening procedure is also applied to the second-order VMFC
scheme and hence Eq. 3.19 is approximated via:

VMFC(2)(R) =
n
∑

i<j

(

(

Eij
ij − Eij

i −Eij
j

)

−
(

E
Bij(R)
ij − E

Bij(R)
i −E

Bij(R)
j

)

)

,

(3.24)

where the truncated ghost orbital space is formed through the unification of the proper
ghost coordinate sets for a given monomer pair:

Bij(R) = Bi(R) ∪ Bj(R). (3.25)

As indicated in Eq. 3.24 the evaluation of VMFC(2)(R) includes the calculation of
monomer and dimer energies with the dimer basis set as well asthe truncated basis
set. Analogously to Eq. 3.23 in the limit whenR → ∞ we arrive at the VMFC(2)
scheme:VMFC(2)(∞) = VMFC(2).
The proposed approximate scheme removes far distant functions in a systematic
fashion so that one can control the level of desired accuracyof the BSSE correction
on one hand and the gained savings in computational resources on the other hand.
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3.2.3 Approximate SSFCinc scheme

The approximate SSFCinc scheme is termed incremental approach because the under-
lying procedure used to account for SSFCinc closely reflects the expansion of the in-
cremental scheme as described in Eq. 2.58. The SSFCinc BSSE correction is evaluated
as a sum of fragmental BSSE contributions according to:

SSFCinc =
n
∑

i

(

n
∑

j
i 6=j

∆ǫiji +
n
∑

j<k
i 6=j,k

∆ǫijki + ...+
n
∑

j<k<...<m
i 6=j,k,..,m

∆ǫijk...mi

)

, (3.26)

where∆ǫiji refers to the fragmental first-order correction,∆ǫijki to the fragmental
second-order correction and finally∆ǫij...mi marks the highest possible correction order
which depends on the number of monomers present in the n-bodycluster.
The fragmental first-order BSSE contribution is evaluated as the difference between
the monomer energy in its own basisEi

i and a second monomerEij
i :

∆ǫiji = Ei
i − Eij

i (3.27)

The basis set enlargement built from basis function which correspond to ghost atoms
of the remaining monomers is systematically increased withincreasing order. Thus
the second-order BSSE increments read:

∆ǫijki = Ei
i −Eijk

i −∆ǫiji −∆ǫiki , (3.28)

whereEijk
i as well as the first-order correction∆ǫiji and∆ǫiki are subtracted from

the monomer in its own basisEi
i . The third-order BSSE correction is formulated

analogously:

∆ǫijkli = Ei
i − Eijkl

i −∆ǫijki −∆ǫijli −∆ǫikli −∆ǫiji −∆ǫiki −∆ǫili . (3.29)

So the general formula for the fragmental BSSE contributionreads:

∆ǫij...mi = Ei
i − Eij...m

i −
∑

i<j

∆ǫij...pomi −
∑

i<j

∆ǫij...poi

−
∑

i<j

∆ǫij...pi − ...−
∑

i<j

∆ǫiji .
(3.30)

Regarding the expansion order of Eq. 3.26 we can distinguishtwo limiting cases, once
the truncation of the series after first-order and on the other hand an expansion up to
the highest order. In the later case the SSFCinc scheme turns into the SSFC approach,
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what is exemplary proven for the case of a trimer cluster:

SSFCinc =
3
∑

i

(

3
∑

j
i 6=j

∆ǫiji +
3
∑

j<k
i 6=j,k

∆ǫijki

)

=∆ǫ121 +∆ǫ131 +∆ǫ1231 +∆ǫ212 +∆ǫ232 +∆ǫ2132 +∆ǫ313 +∆ǫ323 +∆ǫ3123

=∆ǫ121 +∆ǫ131 + E1
1 − E123

1 −∆ǫ121 −∆ǫ131 +

∆ǫ212 +∆ǫ232 + E2
2 − E123

2 −∆ǫ212 −∆ǫ232 +

∆ǫ313 +∆ǫ323 + E3
3 − E123

3 −∆ǫ313 −∆ǫ323

=E1
1 − E123

1 + E2
2 −E123

2 + E3
3 − E123

3

=

3
∑

i

(Ei
i −Eijk

i ) = SSFC

(3.31)

Whereas the SSFCinc first-order correction is the pairwise additive function counter-
poise scheme:

SSFCinc(first) =

n
∑

i

n
∑

j
i 6=j

∆ǫiji =

n
∑

i 6=j

(

Ei
i − Eij

i

)

= PAFC (3.32)

The number of individual calculations needed for the whole series of Eq. 3.26 is:

ncalc. = n+
n−1
∑

i=1

(

n− 1

i

)

n. (3.33)

Exemplary for cluster sizes with n=6,8,10 and 12 the evaluation of Eq. 3.33 yields 192,
1024, 5120 and 24576 individual calculations, respectively. Of course advantages over
the SSFC scheme will only occur when the expansion is truncated at a low order. The
restriction to second-order fragmental contributions, leads to 96, 232, 460 and 804 in-
dividual calculations for cluster sizes n=6,8,10 and 12 respectively. Even though the
number of individual calculations is still considerable high for a second-order expan-
sion, one should remember that the most expensive calculations are those ofEijk

i in
the basis of a trimer, independent from the size of the cluster.

3.2.4 Approximate SSFC(S) scheme

Finally we propose an approximation to the SSFC scheme basedon the findings of
Kalvoda et al. [122]. The autors calculated the cohesive energy of a GdN cluster
within the incremental method. As an estimate for the BSSE atthe HF level of theory
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they proposed to calculate the atomic energies of N and Gd with merely the diffuse
and polarization functions, respectively placed on the ghost centers surrounding either
N or Gd.
A procedure which aims at the elimination of the most dense basis functions and a
survival of the diffuse ones at the ghost centers may be realized with the inspection of
the overlap integrals from the overlap matrixS. We call this scheme SSFC(S) method
and introduce a reduced set of basis functions for every monomer iBi(S):

SSFC(S) =
n
∑

i

(

Ei
i −E

Bi(S)
i

)

. (3.34)

Partitioning a cluster according to the method outlined in 3.2.2, yields the information
which atoms correspond to either the set of ghost centers or the set of atoms forming
the active molecule, described by the subscript in 3.34. As aresult we gain a set of
active molecules, where each one in turn correspond to a set of atoms and every atom
map to a set of basis functions. Similar consideration applyto the sets of ghost centers.
In order to utilize the value of an overlap integral as a measure whether to incorporate
a given basis function on a ghost center or not we need to consider all values of the
overlap integrals from the set of basis functions of the active part to the set of basis
functions corresponding to the ghost centers. When only oneoverlap between a basis
function of the active part to a regarded basis function fromthe ghost set is greater
then a chosen S threshold then the corresponding basis function survives the screening
procedure.
This method allows to establish a systematically reduced set of basis functionsBi(S)

for each monomer i. The resulting reduced basis set will depend upon the exponents
of basis functions delivered within a chosen basis set, as well as the distance of the
atoms where the two basis functions are placed at.
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3.3 Applications

The performance and applicability of the approximate schemes SSFC(R), SSFC(S),
SSFCinc and the VMFC(2)(R) have been mainly tested for a water cluster series
(H2O)n with sizes n ranging from 6 to 20. The optimized structures ofthe investi-
gated clusters are shown in Fig. 3.35 and have been taken from[123].

a b c

d e f

g h i

Figure 3.10: Optimized structures of the water cluster series (H2O)n; n=6 boat struc-
ture (a), n=6 bag structure (b), n=8,10,...,20 (c-i) [123].

Furthermore the SSFC(R) scheme was also applied to calculate the BSSE of a
methanol cluster series, the optimized geometries has beentaken from [124] and are
presented in Fig. 3.11.
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a b

c

Figure 3.11: Optimized structures of the methanol cluster series (CH3OH)n; n=8 (a),
n=12 (b) and n=16 (c) [124].

In order to arrive at a proper partitioning of the methanol and water clusters the con-
nectivity parametertcon for the Metis routine was set to 1.3 (Å). The BSSE SSFC(R),
SSFCinc and VMFC(2)(R) calculations were carried out within the MOLPRO quantum
chemistry package [58, 100, 101]. Whereas the SSFC(S) calculations were performed
within the TURBOMOLE 6.3 program package [125].
Beside the BSSE correction itself we calculated also the stabilization energies of the
water clusters according to Eq. 3.9. The calculation of the total energy of the cluster
Eij..n

ij...n is carried out with the incremental scheme using the domain-specific basis set
approach [52]. For the description of the environment of thedomains we employed
Pople’s basis sets, namely the STO-3G for hydrogen and the 6-31G basis set for oxy-
gen [126, 127]. The size of this second basis is controlled with thetmain parameter
which was set to 3 Å.
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3.3.1 Comparison of the SSFC, PAFC and VMFC(2) schemes

Before starting to examine the applicability of the approximate BSSE correction
schemes the performance of SSFC, PAFC and VMFC(2) schemes ischecked in gen-
eral for the water cluster series (H2O)n (with n up to 20). Table 3.3 summarizes the
BSSE corrections according to Eq. 3.16, 3.17 and 3.19 at the CCSD(T), CCSD and
MP2 level of theory using aug-cc-pVDZ basis sets (and for the(H2O)6 cluster also for
the aug-cc-pVTZ basis sets).
The SSFC and PAFC BSSE values grow fast with the cluster size nat all the presented
theory levels. The SSFC and PAFC methods estimate the BSSE correction to be even
bigger than 40 kcal/mol for the biggest cluster sizes with n=18 and 20 at all correla-
tion levels. For moderate cluster sizes with n=12,14 and 16 aSSFC and PAFC BSSE
correction around 20 kcal/mol is observed. But even for the smallest clusters of the
water series the SSFC and PAFC BSSE values are still considerably high at least for
the double-ζ basis set and have definitely to be considered if one aims at anaccurate
description of interaction energies.
The aug-cc-pVDZ/CCSD(T) SSFC BSSE correction per monomer equals 0.97, 1.45,
1.48, 1.53, 1.63, 1.66 and 2.17 kcal/mol for n=6,8,...,18, respectively, growing slow but
continuously with the cluster size n. Analog considerations for the PAFC outcomes re-
veal the following sequence of BSSE corrections: 1.04, 1.63, 1.65, 1.68, 1.83, 1.86,
2.51 and 1.95 kcal/mol also for n=6,8,...,20, respectively.
In contrast to these results the magnitude of the second-order BSSE correction
VMFC(2) is very small with values around one tenths of a kcal/mol for n=6 and at
most 1.3 kcal/mol for n=12 for the CCSD(T) theory and 1.8 kcal/mol for n=16 at MP2
theory level. The VMFC(2) is therefore only a slight improvement to the SSFC scheme
which is according to Eq. 3.18 referred as the first-order of the VMFC scheme. The
percentage of the VMFC(2) fraction with respect to VMFC(1,2) increases rapidly with
the cluster size increasing from hexamer to octamer and stays rather constant for clus-
ters larger or equal than the water decamer. This behavior may be explained when
we refer to the geometry pattern of the investigated clusters. From the geometrical
arrangement of the water clusters presented in Fig. 3.35 we note, that every monomer
in the regarded boat structure of the water hexamer is coordinated to just two another
water monomers. Whereas the number of hydrogen bonds felt byeach monomer in
the larger clusters is at least and also mostly three. Altogether we may therefore say
that the VMFC(2) correction becomes more important when bigger cluster sizes are
considered. Note that the second-order BSSE correction contributes even around 7%
to the VMFC(1,2) value for cluster sizes between n=8 to n=12 for the CCSD(T) theory
level.
Regarding the BSSE magnitude with respect to different correlation treatment we find
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the highest and lowest BSSE estimates at CCSD(T) and CCSD level of theory respec-
tively for all correction schemes considered and the aug-cc-pVDZ basis set. The MP2
theory yields BSSE values in between CCSD and CCSD(T) estimates also irrespective
to the applied correction scheme for the aug-cc-pVDZ basis set. Note that this order-
ing is not found for the BSSE calculations on the water hexamer in the aug-cc-pVTZ
basis set indicating that the described dependence is not generally valid.
The comparison of the SSFC vs. PAFC scheme leads to the following observations:

• the PAFC results tend to overestimate the BSSE with respect to the SSFC results,

• the overestimation grows when the cluster size increases, but not smoothly, and

• the overestimation ranges from 7% for the water hexamer to even 16% for
octadeca-mer at the CCSD(T) level of theory.

A similar trend is also observed at the CCSD and MP2 level of theory, however both
methods predict the overestimation to be a little smaller.
As one expects from theory the increase of the basis set quality from double to triple-ζ
reduces the BSSE for the water hexamer. The BSSE correction calculated with the aug-
cc-pVTZ basis set is about 50% of the BSSE correction with theaug-cc-pVDZ basis set
for all correlation methods and BSSE correction schemes. The basis set increase also
decreases the ratio of PAFC/SSFC (%) for the water hexamer atall theory levels. This
can be rationalized by the fact that the BSSE disappears in the limit of the complete
basis set.
As a final remark note that the blank entries in Table 3.3 occurbecause the calculation
of particularly the VMFC(2) scheme becomes very quickly impossible to carry out
especially for bigger clusters and more demanding correlation treatments. But also the
calculation of the BSSE within the triple-ζ basis set (except for the smallest cluster or
the PAFC scheme) was hardly possible to carry out due to computational limitations.
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Table 3.3: Comparison of different BSSE correction schemes for (H2O)n n=6,8,...,20 (n=6 boat structure) clusters with aug-cc-
pVDZ (and aug-cc-pVTZ for n=6) basis sets at the CCSD and MP2 level. BSSE in kcal/mol.

n 6 6 (X=T) 8 10 12 14 16 18 20

CCSD(T)/aug-cc-pVXZ
SSFC 5.79 2.80 11.56 14.80 18.30 22.75 26.54 39.11
PAFC 6.22 2.95 13.01 16.45 20.19 25.66 29.68 45.18 39.05
PAFC/SSFC (%) 107.4 105.4 112.5 111.1 110.3 112.8 111.8 115.5
VMFC(1,2) 5.94 2.87 12.43 15.91 19.64
VMFC(2) 0.14 0.07 0.88 1.10 1.34
VMFC(2)/VMFC(1,2)(%) 2.36 2.44 7.08 6.91 6.82

CCSD/aug-cc-pVXZ
SSFC 5.20 2.64 10.45 13.39 16.55 20.63 24.05 35.50 31.55
PAFC 5.56 2.77 11.59 14.66 18.00 22.88 26.47 40.35 34.84
PAFC/SSFC (%) 106.9 104.9 110.8 109.5 108.8 110.9 110.1 113.7 110.4

VMFC(1,2) 5.27 2.68 11.17 14.29 17.65
VMFC(2) 0.06 0.04 0.72 0.91 1.10
VMFC(2)/VMFC(1,2)(%) 1.2 1.4 6.4 6.3 6.2

MP2/aug-cc-pVXZ
SSFC 5.40 2.85 10.84 13.89 17.18 21.39 24.95 36.96 32.72
PAFC 5.78 2.98 12.02 15.22 18.71 23.75 27.50 42.01 36.20
PAFC/SSFC (%) 106.9 104.8 110.9 109.6 108.9 111.1 110.2 113.7 110.6

VMFC(1,2) 5.51 2.91 11.48 14.70 18.16 22.96 26.69
VMFC(2) 0.10 0.06 0.64 0.81 0.99 1.57 1.75
VMFC(2)/VMFC(1,2)(%) 1.9 2.1 5.6 5.5 5.4 6.9 6.5
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3.3.2 Approximate SSFC(R) scheme applied to water clusters

The performance of the proposed approximate SSFC(R) schemeaccording to Eq. 3.22
has been investigated for the water cluster series with n=6,8,...,18 at the CCSD(T) with
the aug-cc-pVXZ (X=D,T) basis set applied. As a benchmark for the accuracy of the
SSFC(R) scheme the full SSFC correction according to Eq. 3.16 was calculated for
the aug-cc-pVDZ basis set.
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Figure 3.12: BSSE correction (in percentage) depending on the distance threshold R
(Å) with respect to the SSFC method and the corresponding absolute
aberration from SSFC calculated for the water cluster series (H2O)n (n=6
boat structure) at HF level of theory.
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The plots in Figures 3.12 and 3.13 illustrate the percentagecoverage of the CCSD(T)
SSFC(R) BSSE correction with respect to full SSFC scheme as well as the absolute
deviation from the full SSFC treatment depending on the distance threshold R. The
corresponding CCSD/aug-cc-pVDZ and MP2/cc-pVDZ results for clusters with even
20 monomers are given in the the Appendix B in Fig. B.1-B.2. Since the convergence
behavior of the MP2 and CCSD outcomes does not differ from theCCSD(T) results
the analysis of the data may be limited to the CCSD(T) findingsonly. Whenever it
will be necessary or worthwhile to consider also the MP2 and CCSD results we will
incorporate them into the discussion. Otherwise we will list the data in the Appendix.
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Figure 3.13: As Fig. 3.12 but for the correlation energy contribution at CCSD(T) level
of theory.
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The cutoff parameter R was chosen in a range between 2.5 Å and 6Å. Correlation
energies, labeled as CCSD(T)corr, are presented separately from the HF contributions
therein. The corresponding MP2 and CCSD plots are presentedin the Appendix B in
Figures B.1 and B.2 respectively.
The percentage coverage of the SSFC(R) results with respectto SSFC grows expo-
nentially when R increases at the HF and at the presented correlated levels of theory.
Already at the middle range of the cutoff parameter with R=3.5, 4 and 4.5 Å very
accurate results are observed. For example at R=4 and 4.5 Å the SSFC(R)/SSFC ra-
tio for both HF and CCSD(T)corr level is in between 90% to 97% and 95% to 99%
respectively. A further extension of the cutoff threshold to 5.5 Å and 6 Å yields virtu-
ally exact results. For R<3.5 Å however the percentage coverage becomes small and a
significant loss in accuracy is observed. Exemplary the SSFC(R=2.5) outcomes cover
just 50% to 60% of the BSSE correction at the presented theorylevels.
Regarding the absolute error of SSFC(R) with respect to SSFC(refer to the second
charts of Fig. 3.12 and Fig. 3.13) for the distance thresholdof R=4 and R=4.5 Å
deviations close to 1 kcal/mol or even smaller are gained. Negligible small errors of
a few tenths of a kcal/mol are obtained for R values equal to 5 Åand 6 Å. For the
smallest R value considered here with 2.5 Å the deviation is on the order of several
kcal/mol. In the following the deviation of SSFC(R) with respect to SSFC will be
discussed together with the percentage BSSE correction with respect to the calculated
interaction energies. This then allows to draw the most reliable conclusions regarding
the accuracy of certain thresholds.
For a more detailed analysis of the results refer to the zoom-charts in the plots of Fig-
ures 3.12 and 3.13. They display a cutout covering a range of Rin between 4 to 6 Å and
4 to 5.5 Å. Analyzing the results carefully we find that the accuracy of SSFC(R) for a
given R value depends on the cluster size following the trendthat for smaller cluster
sizes the results become more accurate as for the bigger ones. This is a consequence
of the SSFC(R) procedure itself since for small cluster sizes with a chosen R value a
relatively large fraction of ghost atoms are included with respect to all available ones.
This is not the case for larger clusters. In turn this causes amore complete basis set
for the n single BSSE calculations with respect to the whole n-mer basis for smaller
cluster sizes and is the reason why the percentage coverage of SSFC(R) with respect
to SSFC is bigger for small clusters.
In order to investigate this subject systematically the percentage coverage of the aver-
age number of basis functions (avg. no bf.) used to evaluate the second sum of Eq.
3.22 with respect to amount of basis functions used for SSFC calculations is plotted
against the distance threshold R for the different cluster sizes n in Fig. 3.14.
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Figure 3.14: Average number of basis functions used in the SSFC(R) monomer cal-
culations with respect to the SSFC method for the water cluster series
(H2O)n n=6,8,...20 (n=6 boat structure).

The avg. no bf. grows linearly with increasing R what clearlydemonstrates that the
approximate SSFC(R) procedure is carried out in a systematic fashion. Furthermore
we note that for a given R the percentage coverage of the avg. no bf. decreases with
increasing n. The findings in Fig. 3.14 may be used as a measureof the gained compu-
tational savings of the SSFC(R) scheme with respect to full SSFC method. Exemplary
choosing SSFC(R=4) as a sufficiently accurate approximation for a BSSE calculation
we omit almost 50% of the basis functions in average, if we consider the middle range
of n. The scaling behavior of CCSD(T), CCSD, MP2 and HF methods with respect
to the size of the one-particle basis set is N7, N6, N5 and N4, respectively. So if we
halve the size of the basis set, what we do in average for SSFC(R=4) method, we gain
in theory a computational speed up by a factor of 128, 64, 32 and 16 for the CCSD(T),
CCSD, MP2 and HF methods, respectively.
Another interesting observation is that the spread of the percentage coverage among
the cluster sizes for fixed R values becomes smaller when R increases. We observe
at R=4.5 Å a data spreading ranging from 94 to 99% whereas already at R=5.5 Å
the data range varies only between 98 and 100%. This is a valuable hint indicating
that if a certain amount of the nearest ghost atoms are employed in a single BSSE
calculation EBi

i (R) one can neglect the basis functions which correspond to the omit-
ted ghost atoms with almost no loss in accuracy. In order to support this conclusion
Table 3.4 summarizes the CCSD(T)/aug-cc-pVDZ SSFC(R) BSSEcorrection for the
(H2O)n=14,16,18 water clusters with R values also above 6 Å. Therein also the average
number of basis function is given.
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Table 3.4: CCSD(T)/aug-cc-pVDZ SSFC(R) BSSE correction (in kcal/mol) with re-
spect to R for three different water clusters (H2O)n and the deviation (in
kcal/mol and %) from the full SSFC method. Avg. no bf. = average num-
ber of basis functions with respect to the full SSFC scheme.

R (Å) 5 5.5 6 7 8 ∞

n=14
SSFC(R) 22.19 22.42 22.56 22.70 22.75
error 0.56 0.33 0.19 0.05 0
error (%) 2.46 1.45 0.84 0.22 0
avg. no bf. 402 446 471 529 574
avg. no bf. (%) 70 78 82 92 100

n=16
SSFC(R) 25.76 26.12 26.25 26.42 26.54
error 0.78 0.41 0.28 0.12 0
error (%) 2.94 1.56 1.07 0.45 0
avg. no bf. 415 479 501 554 656
avg. no bf. (%) 63 73 76 84 100

n=18
SSFC(R) 38.14 38.54 38.70 38.95 39.05 39.11
error 0.97 0.58 0.42 0.16 0.06 0
error (%) 2.48 1.47 1.07 0.42 0.16 0
avg. no bf. 457 497 530 626 674 738
avg. no bf. (%) 62 67 72 85 91 100

The deviation of the SSFC(R≥5) corrections for n=14,16 and 18 is very small with
at most 3% error and definitely negligible because just in theorder of few tenths of a
kcal/mol for BSSE corrections obtained with R>6 Å. From the data of Table 3.4 we
may also conclude that a highly accurate BSSE correction obtained with R≥6 Å leads
to a computational speed up. For distance threshold of 6 Å we neglect 18%, 24% and
26% basis functions in average for n=14,16 and 18 respectively. Whereas the usage
of R=7 Å still leads to the omission 8%, 16% and 15% basis functions in average for
n=14,16 and 18 respectively. And even for R=8 Å we neglect almost 10% of the basis
functions on average.
The reason why we continuously consider the average number of basis function is due
to the fact that the amount of basis functions exploited for asingle BSSE calculation
differs among the n monomer units. Recall that the number of ghost atoms covered
by a certain R threshold depends upon the distances of all thecoordinates from the
considered monomer to all the remaining coordinates in a cluster. The crucial factor
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influencing the amount of covered ghost atoms is therefore the geometrical arrange-
ment of the neighbor monomers surrounding the considered monomer fragment. From
these considerations follows that major differences with respect to the number of cov-
ered ghost atoms and therefore the size of applied basis set occur between monomer
fragments from the central region in a cluster compared to those arranged at the pe-
riphery.
To confirm this considerations we study the variation of the average number of basis
functions employed in the SSFC(R) calculation on the (H2O)18 cluster. In Fig. 3.15
the standard deviation from the average number of basis functions is plotted against R.
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Figure 3.15: Standard deviationδ from the average number of basis functions needed
for an approximate SSFC(R) calculation at a given R distancethreshold
for the water cluster (H2O)18 obtained with the aug-cc-pVDZ basis set.

The curve passes the maximum at R=6 Å and decays for smaller and greater R than
6 Å equably and therefore may be fitted according to a Gaussiandistribution. This
behavior is reasonable since the number of ghost atoms covered by small R values
are comparable for the n different monomers the standard deviation is therefore small.
The situation is similar for bigger R values since in this case the greatest fraction of
the ghost atoms employed to constructBi is already included and hence the standard
deviation is also small.
In order to emphasize the computational savings we present in Fig. 3.16 a comparison
between the calculation time of the proposed approximate SSFC(R) scheme at the
CCSD(T)/aug-cc-pVDZ level of theory with respect to the full SSFC approach with
respect to R for the water clusters with n=8,10,..,18. Note that the timings are obtained
from calculations done on a PC cluster frequently used by other jobs and therefore the
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results are meant to be rather a guide for the eye than a thorough investigation of the
timings.
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Figure 3.16: Relative computational time of SSFC(R) with respect to the SSFC
scheme at CCSD(T)/aug-cc-pVDZ level for the (H2O)n n=6,8,...,18 wa-
ter cluster series (n=6 boat structure).

For satisfactory accurate results at a cutoff parameter between 4 and 4.5 Å we need at
most 15 to 40% of the computational time compared to the full SSFC scheme. The
savings grow for larger cluster sizes at constant R values. Huge computational savings
up to 80% are obtained for cluster sizes with n> 10, even when R is equal to 6 Å.

3.3.3 Approximate SSFC(R) scheme applied to methanol clusters

The approximate SSFC(R) scheme was also used to account for BSSE effect of a
methanol cluster series (CH3OH)n with n=8,12 and 16 at the CCSD(T)/aug-cc-pVDZ
level of theory. Table 3.5 summarizes the results of calculations which were still fea-
sible to carry out. From the presented data we can firstly conclude that the SSFC(R)
scheme performs also well for other types of clusters, as thealready discussed water
clusters. The percentage coverage of SSFC(R) with respect to SSFC follows also an
exponential behavior when R increases. The employment of about 70% of the basis
functions in average, for the calculation of SSFC(R=4.5) yields satisfactory accurate
BSSE corrections with an error slightly above 1 kcal/mol forn=8.
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Table 3.5: SSFC(R) CCSD(T)/aug-cc-pVDZ BSSE correction with respectto R for
three different methanol clusters (CH3OH)n and the deviation (for n=8)
from the full SSFC scheme. Avg. no bf. = average number of basis func-
tions with respect the full SSFC scheme.

R SSFC(R) SSFC(R) error avg. no bf.
Å kcal/mol % kcal/mol %

n=8
4 13.35 85.66 2.23 341 52

4.5 14.36 92.15 1.22 438 67
5 14.94 95.90 0.64 497 76

5.5 15.31 98.25 0.27 568 87
∞ 15.58 100.00 0.00 656 100

n=12
4 23.28 366 37

4.5 25.15 459 47
5 26.34 551 56
∞ 984 100

n=16
4 37.65 438 33
∞ 1312 100

The important message so far is that we have an systematically improvable BSSE
correction scheme which can be applied for different cluster types and we can con-
trol both, the level of desired accuracy and the computational savings. Moreover the
scheme is also applicable to correct for BSSE artifacts where standard methods fail to
proceed.

3.3.4 Basis set dependency on the approximate SSFC(R) scheme

The influence of the basis set quality on the accuracy of the SSFC(R) results has been
investigated for a water hexamer (bag structure, Fig 3.35).Dunning’s aug′-cc-pVXZ
basis sets with cardinal numbers D,T,Q and 5 have been used. The prime indicates that
the augmented functions have not been applied on the hydrogen atoms. This basis set
has been frequently used in the computation of hydrogen bonded clusters [128, 129].
To obtain an estimate for the basis set limit we extrapolatedthe correlation energy
according to Eq. 3.3 using the quadruple-ζ and quintuple-ζ basis sets. The CCSD(T)
BSSE corrections obtained with the distance thresholds R=2.5, 3.5, 4.5 Å as well as for
R → ∞ and the corresponding BSSE corrected and uncorrected stabilization energies
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are summarized in Table 3.6. The influence of the basis set size on the stabilization
energy and on the BSSE correction at MP2 and CCSD level of theory, are shown in
Appendix B (Table B.2).

Table 3.6: CCSD(T) BSSE corrected and uncorrected stabilization energies of the
water cluster (H2O)6 (bag structure) and BSSE corrections obtained with
different schemes for the basis set series aug′-cc-pVXZ (X=D,T,Q,5).
(∆EBSIE= DCBS(Q,5)−Daug′-cc-pVXZ, all energies in kcal/mol, values in paren-
theses in %).

X D T Q 5 CBS(Q,5)

D -37.68 -39.15 -40.05 -40.08 -40.17
∆EBSIE 2.50 1.03 0.13 0.10 0

SSFC (R=2.5) 3.38 (61.50) 1.72 (69.40) 0.67 (68.28) 0.28 0
SSFC (R=3.5) 5.04 (91.19) 2.32 (93.47) 0.91 (93.21) 0.37 -0.1
SSFC (R=4.5) 5.50 (99.54) 2.47 (99.56) 0.97 (99.55)

SSFC 5.52 (100) 2.48 (100) 0.98 (100)

D(SSFC (R=2.5)) -34.30 -37.42 -39.38 -39.80 -40.20
D(SSFC (R=3.5)) -32.64 -36.83 -39.14 -39.71 -40.23
D(SSFC (R=4.5)) -32.18 -36.67 -39.07

D(SSFC) -32.16 -36.66 -39.07

Stabilization energies D were calculated according to Eq. 3.9. The analysis of the
data in Table 3.6 provides the encouraging observation thatwith the increase of the
cardinal number X=D to T, the percentage coverage of the approximate SSFC(R)
BSSE correction with respect to the SSFC scheme is growing. Exemplary the
CCSD(T)/aug′-cc-pVDZ BSSE correction at R=2.5 Å covers 61.5% of the full SSFC
BSSE treatment whereas with the aug′-cc-pVTZ basis set one obtains a percentage
rate equal to 69.4%. A small improvement of the percentage coverage arising
due to the increase from double-ζ to triple-ζ basis set is also observed when we
analyze the results obtained with the 3.5 Å cutoff parameterwhereas the outcomes
of SSFC(R=4.5) stay rather stable among different cardinalnumbers. Whereas the
CCSD(T)/aug′-cc-pVXZ SSFC(R)/SSFC ratio for X=T and Q is almost equal.
The BSSE error is reduced approximately by a factor of 2.2 when going from
double-ζ to triple-ζ and by a factor of 2.5 when increasing the basis sets from triple-ζ
to quadruple-ζ and from quadruple-ζ to quintuple-ζ at CCSD(T) level of theory. The
4,5-extrapolation leads to correlation energies very close to the basis set limit as the
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BSSE value is virtually zero for the SSFC(R=3.5,4.5) outcomes.
Considering the accuracy of the investigated R-dependent SSFC scheme we find
highly accurate stabilization energies when the BSSE erroris corrected with the
SSFC(R=4.5) values, the difference between D(SSFC(R=4.5)) and D(SSFC) is
negligible. Very good agreement with the full SSFC correction is observed for a
distance threshold of 3.5 Å, with errors of just a few tenths of a kcal/mol.
In theory any BSSE correction method aims to cure the basis set imbalance in
the evaluation of the interaction energy, but does not affect the so-called basis set
incompleteness error (BSIE) which also occurs due to the usage of finite basis sets.
In other words, the BSSE can be removed for any given basis set, whereas the BSIE
can only be reduced when the basis set quality is increased. It is also clear that at
the basis set limit both errors have to disappear. In Table 3.6 we present the BSIE
as a difference between the uncorrected interaction energyD for aug′-cc-pVXZ with
X=D,T,Q,5 and D at CBS(Q,5). For the CCSD(T) level we find a deviation from the
CBS(Q,5) limit equal to 2.5, 1, 0.1 and 0.1 kcal/mol for cardinal numbers X=D,T,Q
and 5 respectively. One should keep in mind the magnitude of the BSIE for a given X
when deciding on how accurate an approximate BSSE calculation should be carried
out. We believe that it is reasonable to account just for 92% BSSE correction as we do
when applying D(SSFC(R=3.5)) at the CCSD(T) level causing only a few tenths of a
kcal/mol deviation from the full correction scheme when at the same time the BSIE
error is of the order of several kcal/mol.
Another important advantage of the proposed SSFC(R) approach is that one can
carry out BSSE correction calculations which are no longer manageable with the
standard procedure. The D(SSFC(R=4.5)) calculation for the aug′-cc-pV5Z basis set
was not feasible anymore with our standard cluster nodes dueto insufficient memory
available. The calculated BSSE corrections at R=3.5 Å are therefore the best estimates
for the large aug′-cc-pV5Z basis set. Since we observed a very good agreement for
the full SSFC scheme for the basis sets with cardinal numbersX=T and Q, we may
also regard the D(SSFC(R=3.5)) aug′-cc-pV5Z outcomes as highly accurate.
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3.3.5 SSFC(R) corrected stabilization energies of the water cluster
series

In order to investigate the magnitude of the BSSE correctionon the different water
cluster sizes the stabilization energies (via Eq. 3.9) of the series were also calculated.
Correlation energies of the clusters have been calculated within the incremental
scheme at the CCSD(T), CCSD and MP2 level of theory and with the usage of
Dunning’s augmented correlation consistent polarized valence double- and triple-ζ
basis sets [67,68].
The incremental correlation energies at various correlation levels are listed in Table
3.7 and 3.8. The errors among the incremental CCSD(T), CCSD and MP2 results
are comparable among each other. Once the computational less demanding MP2
reference calculation is used to check the accuracy of the incremental MP2 expansion,
we may expect a similar accuracy also for the CCSD and CCSD(T)correlation
level. Exemplary the aug-cc-pVDZ/MP2corr(3) errors with respect to the canonical
calculation differ from the aug-cc-pVDZ/CCSDcorr(3) ones for n=12,14,16 and 18
by at most 0.05 kcal/mol. This is important since not every CCSD(T) or even CCSD
reference calculation could be carried out especially for larger cluster sizes. We note
that very good agreement with the canonical MP2 results is already achieved with
a third-order expansion with aberration around or smaller than 1 kcal/mol. For the
smallest water cluster a second-order expansion yields sufficiently accurate results
with errors of only a few tenths of a kcal/mol. Considering the accuracy of the results
obtained with different basis set sizes we find that for larger basis sizes the results
become even more accurate. For the bag and boat water hexamerclusters at all
correlation levels the second-order expansion using a triple-ζ basis set is by an order
of magnitude more accurate than the expansion for the double-ζ basis set.
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Table 3.7: CCSD(T), CCSD and MP2 incremental correlation energies forthe water cluster series (H2O)n compared to the canon-
ical results for the aug-cc-pVXZ (X=D,T) and aug′-cc-pVXZ (X=D,T,Q,5) basis sets. (tcon=3 Bohr; dsp=4; core=n;
tmain=3 Bohr; environment basis: H=STO-3G, O=6-31G; Order-dependent distance screening according to Eq. 2.66)

n Ethres X f O

au Bohr
6 1x10−6 D’ 30 2

bag 3

T’ 30 2
3

Q’ 30 2
3

5’ 30 2
6 1x10−7 D ∞ 2

boat 3

T ∞ 2
3

Q ∞ 2
3

8 1x10−7 D 30 2
3

T 2
3

10 1x10−7 D 30 2
3

T 2
3

CCSD(T)corr(i) error
au kcal/mol

-1.391342 -0.20
-1.390816 0.13

-1.694962 0.004
-1.694966 0.002

-1.793864
-1.793895

-1.827250
-1.400281 -0.18
-1.399988 0.01

-1.697929 -0.02
-1.697876 0.01

-1.793041
-1.793041
-1.881120
-1.879340

-2.278583
-2.277865
-2.351846 -1.19
-2.349557 0.25

-2.848559
-2.847519

CCSDcorr(i) error
au kcal/mol

-1.359579 -0.20
-1.359109 0.10

-1.641703 -0.03
-1.641653 0.00

-1.735815
-1.735781

-1.767427
-1.367002 -0.16
-1.366738 0.00

-1.644589 -0.04
-1.644519 0.00

-1.735304
-1.735268
-1.834522 -0.94
-1.832804 0.14

-2.205291
-2.204531
-2.293460 -1.14
-2.291314 0.20

-2.756865
-2.755795

MP2corr(i) error
au kcal/mol

-1.314954 -0.20
-1.314485 0.10

-1.614552 -0.01
-1.614521 0.01

-1.722963
-1.722976

-1.765951
-1.322291 -0.21
-1.321954 0.01

-1.617694 -0.07
-1.617565 0.01

-1.722931
-1.722865
-1.776090 -0.89
-1.774450 0.14

-2.170619
-2.169990
-2.220585 -1.12
-2.218465 0.21

-2.713687 -0.44
-2.712699 0.18
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Table 3.8: As Table 3.7, but for the water cluster series (H2O)n n=10,12,...,20.

n Ethres X f O

au Bohr
12 1x10−6 D ∞ 2

3

T ∞ 2
3

14 1x10−7 D 30 2
3

T 2
3

16 1x10−7 D 40 2
3
4

16 1x10−7 T 40 2
3

18 1x10−7 D 30/40/40 2
3

T 25 2
3

20 1x10−7 D 30/40/40 2
3

CCSD(T)corr(i) error
au kcal/mol

-2.823154
-2.820222

-3.419197
-3.417972
-3.299746
-3.295847

-3.995409
-3.993578
-3.772078
-3.766828
-3.768762

-4.566770
-4.564910
-4.298669
-4.291131

-5.195707
-5.190441
-4.719624
-4.713477

CCSDcorr(i) error
au kcal/mol

-2.752911 -1.31
-2.750138 0.43

-3.309014
-3.307739
-3.216932 -1.97
-3.213199 0.37

-3.865971
-3.864071
-3.677230
-3.672258
-3.673904

-4.418721
-4.416765
-4.184566 -4.04
-4.176431 1.07

-5.021122
-5.015435
-4.600392
-4.594102

MP2corr(i) error
au kcal/mol

-2.665757 -1.30
-2.663079 0.38

-3.257480
-3.256320
-3.115388 -1.90
-3.111716 0.40

-3.806086
-3.804281
-3.561605 -2.11
-3.556782 0.92
-3.558486 -0.15

-4.350688
-4.348796
-4.062820 -3.68
-4.055221 1.09

-4.953708
-4.948531
-4.455943
-4.449776
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In Table 3.9 we present the CCSD(T)/aug-cc-VXZ (X=D,T and CBS(D,T)) BSSE
corrected and uncorrected stabilization energies, as wellas the BSSE error obtained
according to Eq. 3.22 with a distance threshold of R=4 and 4.5Å. For the aug-cc-
pVDZ basis set the full SSFC BSSE correction is also presented in Table 3.9. The
corresponding CCSD and MP2 (with n up to 20) results are presented in the Appendix
B in Tables B.3-B.6.

Table 3.9: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE corrected and uncor-
rected stabilization energies for the water cluster series(H2O)n (n=6,8,10
and 12) at the CCSD(T)/aug-cc-VXZ (X=D,T and CBS(D,T)) level, all en-
ergies in kcal/mol, values in parentheses in %.

n 6 8 10 12

aug-cc-pVDZ
D -37.58 -65.95 -84.99 -104.71
SSFC(R=4) 5.39 (93.11) 11.17 (96.64) 13.98 (94.44) 17.06 (93.21)
SSFC(R=4.5) 5.60 (96.76) 11.37 (98.43) 14.40 (97.28) 17.61(96.21)
SSFC 5.79 (100) 11.56 (100) 14.80 (100) 18.30 (100)
D(SSFC(R=4)) -32.19 (16.75) -54.57 (20.47) -71.01 (19.69)-87.65 (19.46)
D(SSFC(R=4.5)) -31.98 (17.52) -54.44 (20.89) -70.59 (20.40) -87.10 (20.21)
D(SSFC) -31.79 (18.22) -52.94 (21.83) -70.19 (21.09) -86.41 (21.18)
aug-cc-pVTZ
D -39.16 -67.39 -86.71 -106.82
SSFC(R=4) 2.64 5.48 6.92 8.43
SSFC(R=4.5) 2.73 5.58 7.10 8.68
D(SSFC(R=4)) -36.53 (7.22) -61.91 (8.86) -79.80 (8.67) -98.39 (8.57)
D(SSFC(R=4.5)) -36.43 (7.50) -61.82 (9.02) -79.61 (8.91) -98.14 (8.82)
CBS(D,T)
D -39.75 -68.58 -88.14 -108.58
SSFC(R=4) 1.95 4.23 5.34 6.50
SSFC(R=4.5) 2.02 4.30 5.48 6.69
D(SSFC(R=4)) -37.80 (5.15) -64.35 (6.58) -82.79 (6.45) -102.08 (6.37)
D(SSFC(R=4.5)) -37.74 (5.35) -64.27 (6.70) -82.66 (6.62) -101.90 (6.55)
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Table 3.10:As Table 3.9, but for n=14,16 and 18.

n 14 16 18

aug-cc-pVDZ
D -128.53 -149.24 -184.47
SSFC(R=4) 20.87 (91.73) 24.29 (91.54) 36.20 (92.55)
SSFC(R=4.5) 21.68 (95.31) 25.12 (94.65) 37.48 (95.82)
SSFC 22.75 (100) 26.54 (100) 39.11(100)
D(SSFC(R=4)) -107.66 (19.38) -124.95 (19.44) -148.27 (24.42)
D(SSFC(R=4.5)) -106.85 (20.29) -124.12 (20.24) -146.99 (25.50)
D(SSFC) -105.78 (20.98) -122.70 (21.63) -146.32 (26.73)
aug-cc-pVTZ
D -130.48 -151.91 -185.55
SSFC(R=4) 10.28 11.94
SSFC(R=4.5)
D(SSFC(R=4)) -120.19 (8.56) -139.97 (8.53)
D(SSFC(R=4.5))
CBS(D,T)
D -132.63 -154.55 -188.91
SSFC(R=4) 8.00 9.24
SSFC(R=4.5)
D(SSFC(R=4)) -124.63 (6.42) -145.31 (6.36)
D(SSFC(R=4.5))

Stabilization energies exhibit large BSSE effects when theaug-cc-pVDZ basis set is
employed in the calculations. The CCSD(T) BSSE correctionsobtained with the SSFC
approach range in between 6 and almost 40 kcal/mol. The percentage BSSE correc-
tion with respect to D(SSFC) is in between 18 to 27% for the aug-cc-pVDZ basis
set. Regarding the water clusters ranging in between n=8,10,..,16 the BSSE fraction
of D(SSFC) is rather stable varying around 20%. For all investigated cluster sizes the
BSSE correction is reduced by about 50% when increasing the basis set from double-
ζ to triple-ζ using the approximate SSFC correction with R=4 and 4.5 Å. Theem-
ployment of the 2,3-extrapolation further reduces the BSSEcorrection. The failure to
account for the BSSE effect with the aug-cc-pVTZ basis set would lead to an over-
estimation of the stabilization energies by about 7 to 11% which is still considerably
large and the magnitude of the BSSE generated with the aug-cc-pVTZ basis set is still
between 3 and 18 kcal/mol. We note that the calculation of theBSSE within the whole
n-mer basis set for single ghost calculations at aug-cc-pVTZ level was not feasible for
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all investigated cluster sizes, even the less demanding calculation with R=4.5 Å was
difficult to carry out for larger cluster sizes.
Considering the accuracy of the truncated BSSE correction scheme we propose the
usage of D(SSFC(R=4)) for the water clusters. Note that the usage of larger distance
parameters for larger cluster sizes is hardly manageable for the more accurate aug-
cc-pVTZ basis set. Moreover, as already pointed out in Section 3.3.4 we may even
expect the results of D(SSFC(R=4)) to be more accurate when calculated with the
aug-cc-pVTZ compared to the aug-cc-pVDZ basis set. Therefore we recommend the
approximate D(SSFC(R=4)) BSSE correction as the optimum between a reasonable
good accuracy and the saved computational time.
We emphasize that the given recommendation is valid for water clusters. In a study on
BSSE corrected interaction energies using the distance approximation for other sys-
tems, one should verify the accuracy with respect to R using asmall basis set first.
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3.3.6 Approximate VMFC(2)(R) scheme

The accuracy of the proposed BSSE second-order correction VMFC(2)(R) with respect
to R has been tested for the water clusters with n=8,10 and 12 at the CCSD(T)/aug-cc-
pVDZ level of theory. The findings are summarized in Table 3.11. The MP2/aug-cc-
pVDZ results are also presented in the chart of Fig. 3.17 since it was possible to carry
out the full VMFC(2) calculation for cluster sizes up to n=16.

Table 3.11:Approximate second-order BSSE correction VMFC(2)(R) withrespect
to different R distance thresholds and the deviation from the VMFC(2)
scheme for the water cluster series (H2O)n at the CCSD(T)/aug-cc-pVDZ
level of theory.

R VMFC(2)(R) error VMFC(2)(R) error VMFC(2)(R) error
Å kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/mol

n=8 n=10 n=12
2 0.23 25.85 0.65 0.40 36.19 0.71 0.50 37.73 0.83

2.5 0.64 72.45 0.24 0.78 70.41 0.33 0.92 69.22 0.41
3 0.77 87.50 0.11 0.97 87.48 0.14 1.14 85.67 0.19

3.5 0.83 94.80 0.05 1.02 92.42 0.08 1.21 90.38 0.13
4 0.87 98.57 0.01 1.07 96.43 0.04 1.27 94.84 0.07

4.5 0.87 99.59 0.004 1.08 98.16 0.02 1.30 97.24 0.04
5 0.88 99.79 0.002 1.10 99.51 0.01 1.32 98.65 0.02

5.5 0.88 100 0 1.10 99.93 0.001 1.33 99.56 0.01
6 1.10 100 0.00 1.33 99.87 0.002
∞ 0.88 100 0 1.10 100 0 1.34 100 0

The chart in Fig. 3.17 and the percentage ratio presented in Table 3.11 clearly show
that the convergence behavior of VMFC(2)(R) follows an exponential distribution
with respect to R similarly to the SSFC(R) scheme. Highly accurate BSSE corrections
with a percentage coverage ranging from 90 to 95% for MP2 and CCSD(T) level
of theory for VMFC(R=3.5)(2) are achieved. Very small deviations of at most 0.1
kcal/mol occur for CCSD(T)/aug-cc-pVDZ second-order BSSEcorrections with
distance threshold of 3.5 Å (refer to Table 3.11). Interestingly the results only slightly
worsen for a given R when n increases.
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Figure 3.17: Approximate BSSE second-order VMFC correction (percentage) de-
pending on distance threshold R (Å) with respect to the full VMFC ap-
proach at the MP2 level for the (H2O)n n=8,10,...,16 water cluster series.

The computational savings for the CCSD(T)/aug-cc-pVDZ calculations of
VMFC(2)(R) with respect to VMFC(2) are presented in Fig. 3.18.

 0

 20

 40

 60

 80

 100

 120

 140

 160

8 10 12

tim
e 

w
ith

 r
es

pe
ct

 to
 V

M
F

C
(2

) 
(%

)

cluster size

R=2.5
R=3.0
R=3.5
R=4.0
R=4.5
R=5.0

Figure 3.18: Relative computational time of VMFC(2)(R) with respect to the
VMFC(2) scheme for the CCSD(T)/aug-cc-pVDZ method for the
(H2O)n n=6,8,12 water cluster series.

For the highly accurate results obtained with a cutoff radius equal to 3.5 Å we save
15%, almost 50% and 70% computational time with respect to the full second-order
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BSSE treatment for the water clusters with n=8,10 and 12, respectively. The results
confirm the trends already observed for the approximate first-order BSSE calculation,
namely that the computational savings grow with increasingcluster size.
However note that the calculation of VMFC(2)(R≥4.5) becomes slower than the full
one. This is due to a different number of individual calculations which have to be
performed for the VMFC(2) scheme in comparison to the approximate one. For each
n-mer cluster one needs6

(

n

2

)

energy calculations in order to evaluate Eq. 3.19. We
rewrite 6

(

n

2

)

into the sum4
(

n

2

)

+ 2
(

n

2

)

and assign the2
(

n

2

)

energy contributions to
the last two terms of Eq. 3.19, namely the monomer calculations in the wholen-mer
basis set:Eijk...n

i andEijk...n
j . Obviously one can distinguish n different contributions

out of2
(

n

2

)

and construct from n all the necessary2
(

n

2

)

energy terms. If no symmetry
elements of the molecule itself are taken into account, the total number of individual
calculations is therefore equal to4

(

n

2

)

+ n. Within the approximate VMFC(2)(R)
scheme calculated according to Eq. 3.24 we cannot reuse these calculations, because
then-mer basis set is no longer the whole one but a truncated basisset and therefore
different for every monomer fragment and also different foran union of basis functions
of two monomer fragments (provided that the sum over i and j isrestricted toi < j as
requested in Eq. 3.24). But even if we have to perform altogether3n2 − 3n instead of
2n2 − n calculations we want to emphasize that the presented implementation is still
already more efficient than the full VMFC(2) scheme for distance thresholds below 4
Å exhibiting at the same time very accurate BSSE corrections.
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3.3.7 Approximate SSFCinc scheme

The accuracy of the incremental BSSE correction scheme SSFCinc calculated accord-
ing to Eq. 3.26 was firstly analyzed for the smallest water cluster investigated in this
study namely the boat structure of the water hexamer. In Table 3.12 the MP2, CCSD
and CCSD(T) BSSE corrections for the basis set series aug-cc-pVXZ (X=D,T and Q)
are presented. The SSFCinc BSSE with respect to the expansion order i as well as the
percentage coverage of SSFCinc with respect to SSFC are given in Table 3.12.
As already pointed out in Section 3.2.3 the first-order of theSSFCinc scheme is equiva-
lent to the PAFC approach and as predicted from theory (referto Eq. 3.31) the SSFCinc

at highest possible expansion order i is equal the SSFC scheme. That is why SSFCinc

BSSE correction covers exactly the SSFC value at the fifth expansion order for the
(H2O)6 cluster.
Regarding the convergence behavior of the SSFCinc scheme with respect to i almost
no difference is observed for the different correlation treatments. The basis set change
from X=D to T and from X=T to Q affects the accuracy of the MP2/aug-cc-pVXZ
results only slightly. As already discussed in Section 3.3.1 the increase in basis set
quality from double to triple-ζ halves the BSSE irrespective to the applied correlation
level when the SSFC and PAFC schemes are considered. An increase in cardinal num-
ber X from T to Q (refer to results in Table 3.12) has a similar influence on the BSSE
at MP2 level of theory and causes almost 60% reduction of the CCSD(T) and CCSD
BSSE values obtained with the PAFC approach.
Considering the accuracy of the approximate SSFCinc scheme we find that the addition
of the fragmental second-order BSSE corrections to the first-order yields SSFCinc val-
ues which are in excellent agreement with the SSFC scheme forall presented levels of
theory. The aberration of SSFCinc(i=2) with respect to SSFC is at most 0.04 kcal/mol
and hence negligibly small. Therefore we may conclude that for the (H2O)6 cluster the
SSFCinc scheme works very good.
To draw a general conclusion we need to broaden the data set. We observed the conver-
gence behavior to be similar for CC and MP theory, therefore the SSFCinc correction
scheme at the MP2/aug-cc-pVDZ level of theory was applied toaccount for BSSE ef-
fects of the total set of (H2O)n water clusters (n=8,10,...,20).
The percentage coverage of SSFCinc scheme with respect to SSFC as a function of the
expansion order is presented in Fig. 3.19. For the water clusters with n=8 and 10 the
expansion is carried to the highest order. For the (H2O)12 water cluster the SSFCinc is
calculated up to the fourth-order and the fragmental BSSE expansion for the remaining
water clusters is truncated after the third-order.
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Table 3.12: Incremental SSFCinc BSSE correction as a function of the expansion order i with respect to the SSFC scheme for the
water hexamer (boat structure) at various levels of theory.

i-th order corr. SSFCinc
SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC

i kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol %

MP2 aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ
1 5.78 5.78 106.92 2.98 2.98 104.78 1.50 1.50 107.26
2 -0.39 5.39 99.71 -0.17 2.81 98.72 -0.11 1.39 99.35
3 -0.01 5.38 99.56 0.05 2.86 100.51 0.02 1.41 100.50
4 0.03 5.41 100.14 -0.02 2.84 99.88
5 -0.01 5.40 100.00 0.00 2.85 100.00

CCSD
1 5.56 5.56 106.89 2.77 2.77 104.90 1.17 1.17
2 -0.36 5.20 99.91 -0.15 2.61 99.03 -0.09 1.08
3 -0.02 5.18 99.47 0.04 2.65 100.45 0.01 1.08
4 0.04 5.21 100.15 -0.02 2.63 99.87
5 -0.01 5.20 100 0.00 2.64 100

CCSD(T)
1 6.22 6.22 107.41 2.95 2.95 105.40 1.25 1.25
2 -0.44 5.78 99.78 -0.18 2.77 98.84 -0.11 1.14
3 -0.02 5.76 99.44 0.05 2.82 100.48 0.01 1.16
4 0.04 5.80 100.17 -0.02 2.80 99.88
5 -0.01 5.79 100 0.00 2.80 100
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Considering the first expansion order we find that the percentage coverage of SSFCinc

is very similar for the different cluster sizes varying around 110% with respect to
SSFC. At the second-order expansion the SSFCinc scheme underestimates the SSFC
approach by up to 10% for different n. The situation changes dramatically when we
refer to the third expansion order, for which a large data spreading for the different
cluster sizes is observed. At i=3 the deviation from the SSFCscheme grows con-
stantly with the increase of the cluster size. The SSFCinc(i=3) approach overestimates
the SSFC BSSE corrections for the (H2O)8 cluster by 9% but already for n=14 the
overestimation equals 20% and for the (H2O)20 cluster almost 40% overestimation is
reached.
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Figure 3.19: MP2/aug-cc-pVDZ SSFCinc correction as a function of the expansion
order i with respect to SSFC in percentage for the water cluster series
(H2O)n.

Note that at the fourth expansion order the fragmental BSSE correction could not be
calculated for the whole cluster series, mostly because thecalculation wall time ex-
ceeded the available time limit. Exemplary at the SuGi (Sustainable Grid Infrastruc-
ture) Cluster from the the University of Cologne the limitation with respect to the cal-
culation time for a single node is limited to 30 days. But already the calculation time
of the SSFCinc(i=4) correction for the (H2O)12 cluster took 13 days and even 19 days
were necessary to account for SSFCinc(i=3) correction for (H2O)20 cluster. Since the
calculation time is extremely long, we emphasize once againthe importance of a low
order truncation as a basic prerequisite for an efficient approximation of the SSFCinc

scheme.
Nevertheless the data set is not complete at the fourth expansion order, from the avail-
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able results we may conclude that the data spreading observed at the third-order is also
present at the fourth-order. The SSFCinc(i=4) values underestimate the SSFC scheme
and we also expect a strong deviation of SSFCinc /SSFC with respect to growing clus-
ter sizes, as already observed for cluster sizes 6, 8, 10 and 12.
These observations lead to the conclusion that the fragmental BSSE correction di-
verges with the increase of the cluster size n. The results also show that the series in
fact converges at high expansion order, refer to the examples with n=6,8 and 10, but
unfortunately satisfactory accurate results are not achieved with a low order truncation.
Table 3.13 summarizes the absolute i-th order SSFCinc correction (in kcal/mol) as well
as the reference MP2/aug-cc-pVDZ SSFC correction for the cluster sizes considered
in the chart of Fig. 3.19. The oscillation of the i-th order correction around the ref-
erence SSFC value is unacceptable high and does not terminate even before the third
expansion order is reached. For smaller clusters, like (H2O)8 and (H2O)10, the SSFCinc

series must be even calculated to at least 6-th and 7-th orderin order to obtain highly
accurate BSSE estimates.

Table 3.13: Incremental SSFCinc BSSE correction with respect to the expansion order
i for the water cluster series (H2O)n at MP2/aug-cc-pVDZ level of theory.

i i-th order correction
kcal/mol

n 8 10 12 14 16 18 20
PAFC 12.02 15.22 18.71 23.75 27.50 42.01 36.20

2 -1.53 -1.97 -2.62 -3.93 -4.53 -9.10 -6.95
3 1.29 2.36 3.81 5.97 8.15 14.97 15.50
4 -1.85 -3.57 -6.16
5 1.24 2.90
6 -0.36 -1.35
7 0.04 0.29
8 0.02
9 -0.01

SSFC 10.84 13.89 17.18 21.39 24.95 36.96 32.72

The unfavorable convergence behavior to a certain extent may occur due to numerical
noises which in turn may be caused if a huge number of negligibly small BSSE cor-
rections are summed up. In order to gain insight into this issue, calculations with more
tight convergence thresholds than the default settings in the MOLPRO program have
been performed for the clusters, n=8 and 10 at MP2 and CCSD/aug-cc-pVDZ level
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of theory. The accuracy of the SSFCinc expansion with respect to default and tight
convergence thresholds for the SCF energy, density matrix and CCSD energy and co-
efficient threshold is summarized in Table 3.14 and Table 3.15 for (H2O)10 and (H2O)8
respectively, (the values of the thresholds are listed on top of each Table). In Table 3.15
the series has also been investigated with the Pople-type [126, 130] polarized valence
double-ζ basis set, with the addition of diffuse functions, 6-31++G** at MP2 level of
theory.
The convergence behavior is indeed affected by the convergence thresholds but the
influence is rather small. The MP2/aug-cc-pVDZb second- and third-order BSSE cor-
rection for n=10 are slightly decreased with respect to MP2/aug-cc-pVDZa and sim-
ilar findings are observed also for n=8 where up to the 7-th expansion order every
i-th order correction is found to be smaller by a few tenths ofkcal/mol when the tight
convergence thresholds are utilized in the calculation. The impact is smaller when
we compare the MP2/6-31++G** results for n=8 (Table 3.15) and also at the CCSD
level for n=10 (refer to Table 3.14). In general we find that the incremental BSSE
series is not very sensitive with the respect to more tight convergence thresholds. No
significant improvement of the convergence properties of the SSFCinc series could be
achieved with tight convergence thresholds, at least not for the two studied water clus-
ters (H2O)n=8,10.
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Table 3.14: Incremental SSFCinc BSSE correction as a function of the expansion order i with respect to the SSFC scheme for
the (H2O)10 water cluster at different level of theory. Comparison of the influence of defaulta and tight convergence
thresholds on the accuracy.
MOLPRO thresholds: SCF energy: (defaulta 1.00E-07 and tightb 1.00E-11); density matrix (defaulta 1.00E-05 and tightb 1.00E-06); CCSD
energy (defaulta 1.00D-06 and tightb 1.00D-08); CCSD coefficient (defaulta 1.00D-4 and tightb 1.00D-05).

i-th order corr. SSFCinc
SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC

i kcal/mol kcal/mol % kcal/mol kcal/mol % kcal/mol kcal/mol %

aug-cc-pVDZa MP2 CCSD CCSD(T)
1 15.22 15.22 109.59 14.66 14.66 109.48 16.45 16.45 111.13
2 -1.97 13.25 95.40 -1.81 12.84 95.92 -2.35 14.10 95.23
3 2.36 15.61 112.43 2.07 14.91 111.38 2.41 16.51 111.53
4 -3.57 12.04 86.70 -3.11 11.80 88.14 -3.50 13.01 87.88
5 2.90 14.94 107.59 2.45 14.25 106.40 2.78 15.79 106.67
6 -1.35 13.60 97.90 -1.06 13.19 98.50 -1.23 14.55 98.33
7 0.29 13.88 99.96 0.17 13.36 99.78 0.23 14.78 99.86
8 0.02 13.90 100.08 0.04 13.40 100.11 0.03 14.82 100.09
9 -0.01 13.89 100 -0.01 13.39 100 -0.01 14.80 100

aug-cc-pVDZb

1 15.20 15.20 109.42 14.66 14.66 109.50
2 -1.88 13.32 95.89 -1.82 12.84 95.88
3 2.15 15.47 111.39 2.09 14.92 111.47

aug-cc-pVTZb

1 7.90 7.90 106.70
2 -0.86 7.05 95.12
3 0.89 7.94 107.14



80 CHAPTER 3 RESULTS AND DISCUSSION

Table 3.15: Incremental SSFCinc BSSE correction as a function of the expansion order
i with respect to the SSFC scheme for the (H2O)8 water cluster at MP2
level calculated with different basis sets. Comparison of the influence of
defaulta and tight convergence thresholds on the accuracy.
MOLPRO thresholds: SCF energy (defaulta 1.00E-07 and tightb 1.00E-11) and density
matrix threshold (defaulta 1.00E-05 and tightb 1.00E-06).

i-th order corr. SSFCinc
SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC

i kcal/mol kcal/mol % kcal/mol kcal/mol %

aug-cc-pVDZa aug-cc-pVDZb

1 12.02 12.02 110.88 12.00 12.00 110.75
2 -1.53 10.49 96.74 -1.49 10.51 97.00
3 1.29 11.78 108.69 1.22 11.74 108.30
4 -1.85 9.93 91.58 -1.78 9.95 91.84
5 1.24 11.16 102.98 1.19 11.15 102.85
6 -0.36 10.80 99.66 -0.35 10.80 99.66
7 0.04 10.84 100.00 0.04 10.84 99.98

6-31++G**a 6-31++G**b

1 20.11 20.11 117.45 20.11 20.11 117.43
2 -2.92 17.19 100.40 -2.91 17.20 100.43
3 0.97 18.16 106.07 0.96 18.15 106.02
4 -1.83 16.33 95.38 -1.82 16.34 95.41
5 0.82 17.15 100.17 0.81 17.15 100.15
6 -0.01 17.14 100.10 -0.01 17.14 100.10
7 -0.02 17.12 100 -0.02 17.12 100

Interestingly we found the accuracy of the BSSE incrementalscheme to be affected by
the geometrical properties of the investigated system. TheSSFCinc BSSE correction
calculated for a linear conformer of hydrogen fluoride cluster (HF)10 at the MP2/aug-
cc-pVXZ (X=D and T) level of theory is given in Table 3.16. As already observed
for the water hexamer also the SSFCinc(i=2) BSSE correction for the (HF)10 cluster
is in excellent agreement with the SSFC scheme. The more tight convergence thresh-
olds applied for this cluster definitely eliminate any numerical noises. The third- and
fourth-order BSSE correction calculated with the tight convergence thresholds does
not contribute significantly to the expansion and hence the series is converged after the
second-order. The fragmental BSSE corrections obtained with the triple-ζ basis set
are also in excellent agreement with the SSFC scheme at the first-order and what is
even more important, the further expansion of the SSFCinc series does not worsen the



3.3 APPLICATIONS 81

accuracy.

Table 3.16: Incremental SSFCinc BSSE correction as a function of the expansion or-
der i with respect to the SSFC scheme for the (HF)10 cluster at MP2/aug-
cc-pVXZ (X=D and T) level of theory. Comparison of the influence of
defaulta and tightb convergence thresholds on the accuracy, MOLPRO
thresholds as in Table 3.15.
(HF)10 linear structure; geometrical parameters taken from a HF crystal structure
[131,132]: r(H−F )=0.92 Å; R(F−F )=2.50 Å and∡(HFH)=120◦.

i-th order corr. SSFCinc
SSFCinc
SSFC i-th order corr. SSFCinc

SSFCinc
SSFC

i kcal/mol kcal/mol % kcal/mol kcal/mol %

aug-cc-pVDZa aug-cc-pVDZb

1 10.99 10.99 106.92 10.99 10.99 106.92
2 -0.77 10.23 99.47 -0.79 10.20 99.21
3 0.01 10.23 99.55 0.13 10.33 100.50
4 0.23 10.46 101.78 -0.05 10.28 100.00
5 -0.39 10.07 97.98 -0.02 10.26 99.84
6 0.32 10.40 101.14
7 -0.16 10.24 99.62
8 0.05 10.29 100.06
9 -0.01 10.28 100

aug-cc-pVTZb

1 6.32 6.32 100.53
2 -0.002 6.32 100.49
3 -0.04 6.28 99.87

Finally we can conclude that the proposed approximation to the SSFC scheme based
on an incremental design cannot be recommended to account for BSSE effects in large
n-body clusters. In order to gain satisfactory accurate BSSE estimates one needs to
carry out the expansion series to high order which in turn causes the calculation to be
more expensive then the reference one. The convergence behavior of the approximate
SSFCinc scheme is not only found to be very sensitive with respect of the size and
type of the investigated systems but the oscillating behavior also prevents the SSFCinc

approach to account for BSSE efficiently.
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3.3.8 Approximate SSFC(S) scheme

The approximate SSFC(S) scheme has been tested at the CCSD and MP2 level of the-
ory for the entire water cluster series presented in Fig. 3.35. The calculations were
performed with the Ahlrichs-type SV(P) and TZVP [133, 134] basis sets available in
the TURBOMOLE [125] program package and in addition with Dunning’s correlation
consistent aug′-cc-pVDZ basis set (which is aug-cc-pVDZ without diffuse functions
on hydrogen). Since the convergence behavior of the SSFC(S)approach, similar to the
SSFC(R) scheme, is not affected by different theory level, the MP2 results as well as
the HF contributions are given in the Appendix B in Tables B.3, B.4 and B.5, and we
will limit the discussion to the CCSD outcomes only.
The values of the applied S threshold were chosen in a large interval in order to ensure
a detailed investigation of the SSFC(S) scheme. The overlapthreshold S runs from 0.1
to 0.01 and from 0.009 to 0.001 in 0.01 and 0.001 steps, respectively. Furthermore the
SSFC(S) correction has also been calculated for S>0.001 andS<0.1. Due to the rather
large data range we choose i.a. a logarithmic scale for the presentation of the SSFC(S)
results. The percentage coverage of SSFC(S) with respect toSSFC is plotted against
-log(S) in the interval of 0.3 to 8 for the three different basis sets SV(P), TZVP and
aug′-cc-pVDZ applied at the CCSD level of theory in Fig. 3.20.
An exponential increase of the SSFC(S)/SSFC ratio with respect to the chosen range
of S values is observed for the Ahrichs-type double and triple-ζ basis sets as well as
for Dunning’s double-ζ basis set. Regarding the accuracy of the SSFC(S) correction,
measured by the percentage coverage, we can divide the rangeof the logarithmic scale
into three categories. For -log(S)<1, the SSFC(S)/SSFC ratio falls below 70% and
yields therefore BSSE corrections which are too inaccurate. In the range above 3 on
the logarithmic scale the SSFC(S) percentage coverage goestowards 100% for all the
basis sets and all the different cluster sizes. The most interesting interval seems to be
1<-log(S)<3. This region is therefore shown in an enlarged fashion in the charts of
Fig. 3.20.
The slope of the curves is different in the range from -log(0.1)=1 to -log(0.01)=2
when we compare the SV(P) and TZVP results. In this interval the basis set exten-
sion from double to triple-ζ causes the SSFC(S)/SSFC curves to become smoother
and at the same time the SSFC(S)/SSFC ratio significantly higher. In contrast to this,
the SSFC(S) data sets between 2 and 3 on the logarithmic scaleshow very similar con-
vergence behavior for the Ahlrichs-type basis sets, yielding percentage coverage rates
beyond 96%.
The convergence behavior of the aug′-cc-pVDZ/CCSD SSFC(S) curves are somehow
different from the TZVP or SV(P) ones. The SSFC(S) percentage coverage grows
systematically with the decrease in cluster size n for the aug′-cc-pVDZ results what is
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neither observed for the SV(P) nor for the TZVP basis set.
The charts of Fig. 3.21 present the average number of basis functions for the three dis-
cussed basis sets with respect to the discussed S range. The upper two charts present
the average number of basis functions for SV(P) and TVZP basis sets separately for
odd and even number of n in (H2O)n. The iterate sequence of the orange and black
data points with respect to n indicates, that for a given S value more basis functions
are omitted on average with a double- than a triple-ζ basis set. We note that the dif-
ferences are rather small, as the orange and black data points lie almost on top of each
other. Generally the shape of the curves looks very similar.We also find, that for all
basis sets the percentage average number of basis function is growing as the cluster
size decreases with respect to S.
The basis set series introduced by Dunning is known to provide at the correlated level
a highly reliable pathway to the CBS limit also for interaction energies calculated with
basis sets of increased quality. Therefore we want to focus the analysis, regarding the
influence of basis sets on the SSFC(S) scheme, on the family ofDunning’s correlation
consistent basis sets.
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Figure 3.20: Percentage coverage of the approximate SSFC(S) scheme withrespect
to the full SSFC approach as a function of -log(S) at the CCSD level of
theory calculated with SV(P), TZVP and aug′-cc-pVDZ basis sets for the
(H2O)n water cluster series.
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Figure 3.21: Average number of contractions for the SV(P), TZVP and the aug′-cc-
pVDZ basis sets applied in the calculation of SSFC(S) for the(H2O)n
water clusters plotted against -log(S).
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Since the threshold which controls the exclusion of basis functions utilizes the magni-
tude of the overlap integral between two basis functions, hence the amount and kind
of omitted basis functions will depend upon the size and nature of the applied basis
set as well as the distance between the atoms at which the basis functions are put at.
The most simple model system simulating how many and what kind of basis functions
are excluded during a SSFC(S) calculation with respect to different S values is a water
dimer with a variety of distances between the water monomerscovering the range of
distances occurring between the nearest and farthest watermonomers in the regarded
water cluster series.
Therefore we analyzed the SSFC(S) scheme in detail with respect to the amount and
kind of incorporated basis functions at the counterpoise oxygen and hydrogen atoms
of a water dimer. This analysis has also advantage that larger basis sets can be very
fast investigated as the regarded system is small enough. And in addition as the cho-
sen distances between the two monomers from the dimer are increased in well defined
steps, the results enable us to clearly identify the trends within a SSFC(S) calculation
with respect to the omitted basis functions. The oxygen-oxygen distances R were cho-
sen between 3.0 to 8.0 Bohr in 0.5 steps and the SSFC(S) calculation were carried out
within Dunning’s aug′-cc-pVXZ (X=D,T and Q) basis sets at the CCSD level of the-
ory. Since within this model system only one water monomer needs to be treated with
ghost functions, we may analyze the percentage number of theemployed basis func-
tions for the aug′-cc-pVXZ (X=D,T and Q) directly and not in an average way. The
results with respect to -log(S) are presented in Figs. 3.22 and 3.23, where one chart
corresponds to a given oxygen-oxygen distance R. Analyzingthese charts we find the
following dependence of the results with respect to the three influencing parameters S,
R and X:

• The smaller the S threshold (the larger on the logarithmic scale -log(S)) the more
basis functions survive the screening,

• pulling the water molecules apart from one another cause thepercentage cover-
age of basis functions with respect to the full CP calculation to become system-
atically smaller,

• and with the basis set increase of X we find that the percentageof basis functions
slightly drops down for different R values, but this arrangement is not generally
valid as exceptions are observed exemplary in between -log(S)= 2 and -log(S)=
2.5 for R≥5 Bohr.
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Figure 3.22: Percentage number of aug′-cc-pVXZ (X=D,T,Q) basis functions em-
ployed in the counterpoise calculation of a water monomer from a dimer
with respect to the different oxygen-oxygen distances R plotted against
-log(S).
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Figure 3.23: As Fig. 3.22, but for charts corresponding to oxygen-oxygendistances
from R=7.0 to 8.0 Bohr.

Before we proceed to evaluate the data in-depth let us first shortly recapitulate the com-
position of the correlation consistent basis set series cc-pVXZ (X=D,T and Q and the
augmented counterpart of them) for hydrogen and the first rowatoms boron through
neon. In order to determine the optimum requirements for basis sets at the corre-
lated level, Dunning used as a measure of impact, which a given basis function has
on the electronic wave function, the correlation energy lowering caused by this func-
tion [135]. He investigated the energy lowering caused by the systematical addition of
basis functions of certain angular momentum symmetry l and found that basis func-
tions of different symmetry type may be grouped together as they cause a comparable
decrease in the correlation energy. The different sets of basis functions, with its mem-
bers having individually a comparable energetic impact on the correction energy, are
then systematically added to the different basis sets as X increases. The set with the
largest energetic influence on the correlation energy is thefirst one which is added.
These function are called the correlation set. Their exponentsζµ are optimized in an
so-called even-tempered expansion. In this scheme insteadof optimizing for a given
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l value the exponents in the Gaussian expansion individually, one uses the relation-
ship ζµ = αβµ−1 whereµ describes the contraction length. Therefore - irrespective
to the amount of primitives used in the expansion - one optimizes only the two pa-
rametersα andβ. The correlation consistent basis sets consist also of a so-called HF
set which in turn is a set of general contracted Gaussians with contraction coefficients
and exponents determined from atomic HF calculations. Summarizing the above one
finds for the oxygen atom that the smallest basis set, the cc-pVDZ one, to consist of
the contracted HF (16s3p) / [2s1p] functions plus a single s-,p- and d-function. The
triple-ζ is composed of the HF (16s3p) / [2s1p] functions and an optimized set of two
primitive s-, p-, and d-functions and a single f-function. Finally the cc-pVQZ basis set
has the (3s3p3d2f1g) functions as the correlation set and inaddition the HF (18s3p) /
[2s1p] set. For the hydrogen atom a similar set up occurs, with the HF (3s) / [1s] set of
functions plus the (1s1p), (2s2p1d) and (3s3p2d1f) correlation set for X=D,T and Q,
respectively. On top of that, all these basis sets may be further augmented with diffuse
functions, whose exponents have been optimized in HF calculations for anions when
the s-, p- exponents were considered and in CI calculations for d-,f- and g- exponents.
Keeping this knowledge in mind we now turn back into the discussion regarding the
type of omitted basis functions with respect to the overlap threshold and the oxygen-
oxygen distance R of the water dimer. The findings will be discussed on the basis of
the results presented in the graphs of Figs. 3.24, 3.25, 3.26and 3.27. In these charts
we present the appearance order of basis functions grouped according to their angu-
lar momentum symmetry with respect to R and S parameters and for a given basis
set X. The mentioned basis functions are those from the counterpoise oxygen atom
of the water dimer. In Fig. 3.24 all s-functions from the correlation and HF set are
investigated separately for the different basis sets, Fig.3.24 presents the p-functions
analysis for the X=D,T and Q, Fig. 3.26 refers to the d-functions and Fig. 3.27 shows
the behavior of f-functions for X=T and Q and g-functions forX=Q with respect to
S and R. The S threshold is set on the x-axis in a logarithmic scale, whereas the dif-
ferent oxygen-oxygen distances R are marked by different token, as indicated in the
legend. The position of the data points with respect to the y-axis only informs which
basis function has been added. All data points below a colored horizontal line have
achieved this certain configuration of basis functions defined in the legend. Note that
the displacement of the data set in between two colored lineswith respect to the y-axis
has no physical meaning and is only performed in order to ensure a more clear view of
the huge amount of data.
We begin the analysis with an overview introducing the sort of informations disclosed
in the charts, we may distinguish at least five different points:

• the order of the type of basis function systematically employed with respect to
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S can be read from the charts as one examines the appearance ofthe different
horizontal, colored lines and their explanation in the legend,

• when we analyze the data points with respect to fixed S values,we can see what
type of basis function occurs at which distance R,

• from the raise of the lines, from one colored line to another for different X, we
can analyze, at which distances R what value of S is needed to incorporate a
certain basis function

• how often a certain basis function combination occurs for a given R when S
increases can be interpreted when we analyze the length of data points for a
certain R series

• when regarding the amount of data points in between two colored lines we gain
informations about how often a certain type of configurationoccur in general.

We will proceed to analyze the charts from Figs. 3.24 to 3.27 with respect to the
pointed out type of information all together. The appearance of the s-, p-, d-, f- and g-
functions successively surviving the overlap screening procedure is besides one excep-
tion found to behave highly systematic. So we first consider the systematic behavior
and then the exception which is found for the order of the s-functions from the aug-cc-
pVTZ basis set. For any symmetry type, irrespective to the basis set size, it is always a
basis function from the augmented set of basis functions, which is the first one occur-
ring when S increases, refer to the legend of all turquois horizontal lines in the charts
from Figs. 3.24 to 3.27. The next functions following are always from the correlation
set of basis function. Whereas the most tight ones, those from the contacted HF sets,
are the last, which are added with the increase of -log(S). For the different primitive
functions from the correlation set a systematic order of appearance is found as well.
Whenever more than one basis function in a certain symmetry type occurs, as in the
(2s2p2d) and (3s3p3d2f) set of functions from the correlation set of the cc-pVTZ and
cc-pVQZ basis sets, respectively, we find their order of occurrence depending on the
basis function exponent. The more diffuse the s-, p-, d- or f-functions are, the smaller
their exponent is, the earlier this functions occur with respect to increase of -log(S)
when a given R is considered. Referring exemplary to the results from the aug-cc-
pVQZ chart of Fig. 3.24, with respect to our considerations,we can match the blue,
red and green line which correspond to the 1s, 2s and 3s basis function to the expo-
nents of: 0.2067, 0.5547 and 1.428, respectively.
This systematic behavior is also found for the two distinguishable s-functions from
the triple-ζ basis set. Here again the first one - which survives the screening - is the
one with the smaller exponent when comparing both, even though here we find the
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general order of basis functions to be slightly disturbed. This exception was already
mentioned in the beginning, as we find with the decrease of S the following sequence
of s-functions: (1s)aug/[1s] + (1s)/[1s] + (8s)/[1s] + (1s)/[1s] + (8s)/[1s]. So with re-
spect to the order found in general, in this case the third andfourth basis function are
interchanged. However note that no such disruption is foundwhen we refer to the or-
der of basis functions with higher angular momentum symmetry.
When we analyze the sequence of data points along lines parallel to the y-axis, so for
constant S values, we find the more basis functions on an counterpoise oxygen atom
the closer the two monomers approach each other. From this order no exception is
found, neither when we analyze different S values nor when werefer to different basis
set sizes X or different type of basis function angular momentum symmetry.
The inspection of the charts with respect to the third point listed in the beginning re-
veals the following findings. Apparently the larger the distances between two oxygen
atoms become the larger the -log(S) value has to be chosen to gain a certain basis func-
tion, irrespective to the type of basis function as well as the basis set size. There is even
more information hidden in the charts as in the third point ofthe overview indicated,
as we also can compare the appearance of basis functions of certain symmetry type
among the different basis sets X. For the s-, p- and d-functions from the augmented set
of basis functions, we find that with the increase of -log(S) the data points for different
R values are shifted to the left side with respect to the x-axis. Exemplary the (1s)aug

function of the double-ζ basis survives the screening for -log(S)<1 when R=3.0, 3.5,
4.0 and 4.5 Bohr (refer to Fig. 3.24). Whereas for the triple-and quadruple-ζ basis sets
we find one and two more counterpoise oxygen atoms (with larger R than 4.5 Bohr),
with the (1s)aug function put at. Compare in second and third charts of Fig. 3.24 data
points in the range -log(S)<1, for the R=5.5 Bohr, and R=5.5,6.0 Bohr for X=T and
Q, respectively. It is also clear that the reason for this order is again easily explainable
with the size of the exponent of these basis functions The augmented s-, p- and d- basis
function exponents become smaller with the increase of X. Therefore the arrangement
is observed, that for a given R a smaller S value (or larger on the -log(S) scale) is re-
quired for the diffuse s-, p- or d-function from the augmented set of basis function to
be incorporated on the oxygen atom. That is why we observe theleft shifting of data
points, which stand for the augmented basis function when wecompare the X=D,T
and Q charts for a given symmetry type. Let us again consider one example from the
charts of Fig. 3.26. The (1d)aug basis function is set on the counterpoise oxygen atom
when we refer to the R=5.5 series for the first time for -log(S)=1.4, 1.1 and 0.6 when
X=D,T and Q respectively. This characteristics is not only subject to the augmented
set of basis function, it is also found for the s-, p-, d- and f-functions from the correla-
tion set. Whenever we find the exponent for a given symmetry type to become smaller
with the increase of X, we observe the left shifting of all data points below a certain
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colored line. This behavior is found for all data points below:

• the blue horizontal lines in all charts of Fig. 3.24, as the exponents for the three
different primitive s-basis functions are equal to 0.3026,0.2384 and 0.2067 for
X=D,T and Q, respectively,

• the blue horizontal lines in the aug-cc-pVDZ and aug-cc-pVTZ charts of Fig.
3.25, as the exponents for the two primitive p-basis functions are equal to 0.2753
and 0.2140 for X=D and T, respectively,

• the red horizontal lines of the aug-cc-pVTZ and aug-cc-pVQZcharts of Fig.
3.25, as the exponents for the two primitive p-basis functions are equal to 0.7156
and 0.5302 for X=T and Q, respectively,

• the blue horizontal lines in all charts of Fig. 3.26, as the exponents for the three
different primitive d-basis functions are equal to 0.7156 and 0.5302 for X=D,T
and Q, respectively,

• the red horizontal lines of the aug-cc-pVTZ and aug-cc-pVQZcharts of Fig.
3.26, as the exponents for the two different primitive d-basis functions are equal
to 2.3140 and 1.30 for X=T and Q, respectively,

• and below the blue horizontal lines of the aug-cc-pVTZ and aug-cc-pVQZ (sec-
ond chart from above) charts of Fig. 3.27, as the exponents for the two different
primitive f-basis functions are equal to 1.428 and 0.859 forX=T and Q, respec-
tively.

The analysis of the stepwise shape of the different R-serieswith respect to -log(S)
does not follow any general pattern scheme. However there are a few interesting
points. Irrespective to the basis set size X, we find for the results obtained with
-log(S)<1.5 and the three smallest R values, that the data points proceed rather fast
from one occupation to another. Whereas at the middle range of -log(S) and R, the
data points stay more often at a given basis function configuration when -log(S)
increases. How often a certain basis function composition is hit with the increase of
-log(S) is nicely indicated by the length of data points for agiven R in between two
colored lines. For the results between 1 and 3 on the logarithmic scale the length of
the data with respect to different R values are rather comparable, although of course
shifted to the right side as larger -log(S) values are neededto incorporate a certain
basis function when R increases.
The investigation of the last point, from the key issues introduced in the beginning,
also does not allow us to formulate any general trend. Considering the amount of data
points between two colored lines for any basis function symmetry type or for any
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basis set size we find mostly no preference with respect to a certain basis function
configuration. But we also note that besides the two exceptions which we will discuss
shortly, that the amount of data between two colored lines iscomparable. One of the
two mentioned exceptions reveals a configuration of basis function which occurs very
seldom with respect to R and S, namely the (13s) / [5s]{91111} set of basis function
from the aug-cc-pVQZ basis set. But also the (10s) / [3s]{811} basis function
configuration, from the triple-ζ basis set, which is the one disrupting the expected
order of basis function when -log(S) increases, is found to be little less frequently
matched.
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Figure 3.24: Inclusion of s-symmetry bfs. from aug-cc-pVXZ (X=D, T and Q)basis
sets on one counterpoise oxygen atom from a water dimer with respect
to the overlap threshold S and different oxygen-oxygen distances R.
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Figure 3.27: Inclusion of f- and g-symmetry bfs. from aug-cc-pVXZ (X=T,Q) basis
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98 CHAPTER 3 RESULTS AND DISCUSSION

The results presented so far, grouped according to the type of basis functions, allowed
to confirm the expected systematic behavior in the basis function elimination proce-
dure of the SSFC(S) scheme with respect to S and R. But this wayof presentation
enables us to consider another important issue, namely the overall composition of the
resulting basis sets. The presentation of the results from Fig. 3.28 allows us to con-
sider also this issue. In contrast to the type of charts considered previously, the two
charts from Fig. 3.28 carry the overall number of contractions on the y-axis. The data
are plotted with respect to -log(S), again for the differentoxygen-oxygen distances R,
labeled by different token. Thus the charts present the distribution of the different basis
function configurations, whereas in the Table below, the contraction pattern of these
different configurations are explained. The separate presentation of the R-series into
two charts from Fig. 3.28 shall just ensure a clear overview.
For R≥6.0 Bohr (right hand side chart) we do not find a basis functioncomposition
which match the 17 or 14 number of contractions and the configurations correspond-
ing to 7, 12 and 13 are seldom found. Moreover in the interval between 1 and 2 with
respect to the x-axis either only the augmented (1s) basis function, or that one together
with the augmented (1p) basis function is found on the oxygenatom. In the interval
{-log(S)> 2 ∧ -log(S)< 3}, also mainly the (1s1p) functions survive the screening,
even though at closer distances R also the augmented (1d) function and primitive (1p)
function occurs. For the distribution of different basis function configurations for the
R<6.0 Bohr series (left hand side chart), we find for the -log(S) interval between 1 and
2 the configurations between 4 and 17 contractions frequently hit. Beyond 2 and below
3 on the logarithmic scale, almost all configuration correspond to 12 contractions, this
is the region, where to the correlation and augmented set of functions also the most
dense ones from the HF set are added.
From the results of Fig. 3.28 we find the following order of basis function occurring
on the oxygen atom with the increase of -log(S): (1s)aug + (1p)aug + (1p) + (1d)aug +
(1s) + (8s) / [1s] + (3p) / [1p] + (1d) + (8s) / [1s]. So the successively survival of basis
functions is also coupled to the angular momentum, as we find the basis functions of
s- ,p- and d-symmetry being added consecutively. This showsa well-balanced way of
putting different basis function on the counterpoise oxygen atom.
From the order in the series above, one exception seems to occur, when we com-
pare this order with all the possible contraction schemes from the Table of Fig. 3.28.
Starting from the (1s2p)/[1s2p] configuration we find two different possibilities for the
addition of the next basis function. The primitive (1d) fromthe correlation set com-
petes with the primitive (1s) basis function, to yield whether the (1s2p1d) or the (2s2p)
configuration. But the later is found only twice at -log(0.09)=1.05 and -log(0.08)=1.10
for R=4.0 Bohr, and the basis set composition following the (2s2p) at R=4.0 series is
the (2s2p1d) one.
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charts the contraction patterns for the possible number of basis functions are presented.



100 CHAPTER 3 RESULTS AND DISCUSSION

What we want to point out with these considerations is that, when once a basis function
survives the screening, we do not find it deleted later when -log(S) increases, as one
might wrongly interpret when analyzing just the contraction schemes which refer to
8,12 and 13 basis function from the Table of Fig. 3.28.
In order to complete our investigation we also want to consider the basis functions
appearance on the counterpoise hydrogen atom shortly sincethe findings do not differ
from the already discussed ones. The results of the analysisare shown in the fashion
of Fig. 3.28 for the cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets in Figs. 3.28, 3.30
and 3.31, respectively.
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Figure 3.29: Number of contractions put on one counterpoise hydrogen atom from
a water dimer with respect to the overlap threshold S and for different
oxygen-oxygen distances. The analysis is performed for thecc-pVDZ
basis set. Below the chart the contraction patterns for the possible num-
ber of basis functions are presented.

For the different (2s), (2p) and (3s), (3p) and (2d) primitives from the cc-pVTZ and
cc-pVQZ basis sets, again the order of appearance in the screening procedure depends
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upon the size of the exponent when referring to the same symmetry type. Since we
did not augment the cc-pVDZ basis set with diffuse functions, hence we have a rather
small set of basis functions to be considered, namely only (4s1p) / [2s1p]. The three
contracted s- and p-basis functions survive the screening in the order: (1s) / [1s] + (3s)
/ [1s] + (1p) / [1p] when -log(S) increases. From the chart of Fig. 3.29 we note, that
the (4s) / [2s] configuration is matched only for R=3.0 and 3.5Bohr distances within
{-log(S) > 1 ∧ -log(S) < 1.3}. All the remaining data points correspond to the sit-
uation where either no basis functions are added, or only thefirst one surviving the
screening, the (1s) occurs, or all the available ones are found at the CP H atom. All
data points with respect to the different R-series always run through the (1s) configu-
ration before occupying the highest possible, the (1s) basis function is therefore never
skipped.
The possible cc-pVTZ contraction pattern together with thegraphical illustration of
the distribution among different R and with respect to -log(S) values for the CP H
atom are summarized in Fig. 3.30. Beginning with the (1s) basis function two compet-
itive configurations occur, either the (2s) or the (1s1p), corresponding to the addition
of another primitive (1s) or the first primitive (1p). However both configuration oc-
cur only four times and it is instead found that both basis functions (1s1p) are added
simultaneously to yield the (2s1p) set of functions, counted to appear 24 times in the
whole series with respect to R and S. From these considerations the overall order of
basis functions which occur at the CP H atom for the triple-ζ basis set is: (1s) + (1s1p)
+ (3s)/[1s] + (1p) + (1d), and we once again face with the finding that the order de-
pends upon the basis function exponent as well as the angularmomentum of the basis
functions, where we have the successively addition of basisfunction of higher angular
momentum symmetry.
The basis function systematically incorporated on the counterpoise H atom from the
cc-pVQZ basis set are presented in Fig. 3.31. We can distinguish between 14 different
configurations of basis functions and therefore at the first glance it is not obviously
clear whether we can derive a general order according to which the basis functions
survive the screening. But within these 14 different composition four appear just once,
that are the ones corresponding to 2, 13, 17 and 25 contractions and the configuration
with 23 basis function in sum occurs also only twice. When we neglect these very
rarely emerging configurations, we can set up as a general order the following series:
(1s) + (1p) + (1s) + (1s) + (1p) + (1d) + (3s)/[1s] + (1p) +(1d1f).
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Even though we keep in mind that both schemes account in contrarious manner for the
BSSE corrections, nevertheless they have one important keyissue in common. Both
schemes aim at the omission of a certain amount of basis functions in order to reduce
the computational cost, and - at the same time - at a controlled and as small as possible
loss in accuracy. Therefore we want to pose the question, which of the two presented
schemes SSFC(R) or SSFC(S) delivers a more efficient way to account for BSSE ef-
fects in large n-body clusters. A reasonable comparison between both approaches is
assured, when the calculations are performed within the same quantum chemical pro-
gram. Therefore we recalculated the SSFC(R) BSSE correction, for the entire water
cluster series within the TURBOMOLE program using the aug′-cc-pVDZ basis set at
the CCSD level of theory.
The results are arranged according to a comparable range of the percentage cover-
age SSFC(X)/SSFC among X=R and S. This leads to a comparison of the SSFC(S)
data obtained with{S > 0.1 ∧ S < 0.01} and SSFC(R) corrections calculated within
{R > 6 Bohr∧ R < 10 Bohr}. The appropriate juxtaposition in the results is pre-
sented in Fig. 3.32. An analog comparison for the interval{S > 0.01 ∧ S < 0.001}

and{R > 10 Bohr∧ R < 15 Bohr} is summarized in Fig. 3.33.
Referring to the comparison from Fig. 3.32 the following remarks are important.
The SSFC(X)/SSFC ratio differs among the schemes, controlled by either X=S or
X=R more significantly for smaller cluster sizes. Whereas for larger n, we find the
SSFC(R)/SSFC and SSFC(S)/SSFC curves to resemble more and more each other.
The SSFC(R) data are also more spread out for a given R value than the SSFC(S) ones,
which are more compact with respect to a fixed S threshold. Since we can not claim to
deal with an analogous convergence behavior when we consider SSFC(S)/SSFC and
SSFC(R)/SSFC, we should carefully consider the comparisonof the advantages both
schemes deliver with respect to the saved computational resources, measured by the
omitted basis functions in average. As already discussed inSection 3.3.2, where the
SSFC(R) scheme for an almost equal interval with respect to Rwas considered, the
percentage average number of basis functions follows a linear fit, with curves shifted
parallel among each other and which are ordered accordinglyto the cluster size growth.
The percentage avgerage number of basis functions, within the SSFC(S) approach on
the other hand, can be fitted to a polynomial shape, again withcurves covering the
more basis functions in average the smaller the cluster sizebecomes and vice versa.
This allows us to conclude, that within the SSFC(S) scheme almost as accurate re-
sults are obtained as for the SSFC(R) calculations, especially when we consider larger
cluster sizes. Since more basis functions are neglected in average within the overlap
threshold approach, we can regard the SSFC(S) scheme as moreefficient at least in
terms of computational savings, when we refer to the range ofR and S thresholds
chosen for the calculations in Fig. 3.32.
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Figure 3.32: Performance of SSFC(X) for X=R with R∈ (6,..,10) and for X=S with S∈ (0.1,..,0.01) measured by SSFC(X)/SSFC
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Figure 3.33: As Fig. 3.32, but for: X=R with R∈ (10,..,15) and for X=S with S∈ (0.01,..,0.001).
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However a substantial difference occurs in the region whereboth schemes approach
the 100% limit of the SSFC amount, what is discussed on the basis of the comparison
from the results of Fig. 3.33. The avgerage number of basis functions follows for
both schemes in the regarded interval (refer to Fig. 3.33) a linear fit. We observe as
well, that the SSFC(S) lines are remarkably shifted to smaller number of basis function
when compared with the corresponding lines from the SSFC(R)approach. We find the
distance-dependent BSSE correction to be faster convergedto the full SSFC approach
than the overlap driven one. Exemplary for the water hexamer, octamer and decamer
100% of the full SSFC correction is already reached at distance threshold R=8.5, 9
and 12 Bohr respectively. The SSFC(S) scheme provides much more flexibility, for
the examined interval{S > 0.01 ∧ S < 0.001} of S thresholds, which account for
80 to 100% of the SSFC value, we gain a significantly larger range of systematically
improved BSSE corrections as in case of the SSFC(R) scheme. What is a direct conse-
quence of the different methodology employed in the construction of the ghost orbital
basis sets. The water hexamer exemplary offers just 15 ghostatoms and we can dis-
tinguish only between the two extreme possibilities eitherto choose all basis functions
from a regarded basis set on one CP atom or none. This in consequence leads to a
smaller range of R-dependent BSSE corrections in contract to the SSFC(S) scheme,
where we also may distinguish in between the set of basis functions from one CP
atom. The additional flexibility of the SSFC(S) scheme can beespecially seen when
referring to the results in the area beyond -log(S)>3, as presented in the charts of Fig.
3.20. Indeed when we zoom-in into these region, as shown in Fig. 3.34 for the SV(P),
TZVP and aug′-cc-pVDZ basis sets, we notice that the SSFC(S> 1e-4∧ S < 1e-8)
results are still not converged to the full SSFC approach. And since we discuss herein
a percentage coverage of beyond 99.70 for all basis sets and all cluster sizes, the re-
sulting aberration with respect to the SSFC is negligible. This highly accurate results
are obtained with still considerable large to even huge computational savings, as in-
dicated in the charts of Fig. 3.21. Exemplary the -log(0.0001) BSSE correction for
the (H2O)20 cluster at CCSD/aug′-cc-pVDZ level of theory is obtained with 22% basis
functions neglected in avgerage, and the aberration from the full SSFC treatment of
26.05 kcal/mol is just equal to 0.06 kcal/mol.

So far we still did not consider all pros and cons of both schemes and should not
claim too early the SSFC(S) to be the better approach just on the basis, that it provides
a generally more efficient way with respect to the saved number of basis function. The
advantage of the SSFC(R) scheme is, that the accuracy of the results are not coupled
to the usage of different basis sets. Indeed the SSFC(S) method eliminates the basis
functions from the regarded basis sets in a predictable manner. But further investi-
gations are necessary to check, whether the results obtained with different basis sets,
may be used to extrapolate the BSSE corrected correlation energies according to the
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Figure 3.34: Percentage coverage of the SSFC(S) scheme plotted against -log(S) in
the range of 4 to 8 for the (H2O)n water cluster at the CCSD level of
theory for the SV(P), TZVP and aug′-cc-pVDZ basis sets.
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known extrapolation schemes. The fear, that inconsistent results may occur, is based
on the observation that, the incorporated amount and kind ofbasis functions differ for
a chosen S value among the cardinal numbers X=D,T and Q. For the SSFC(R) scheme
in contrast we already could prove, that the two-point extrapolation worked fine for
SSFC(R=4.0, 4.5Å), cf. the results of Figs. 3.9 and 3.10.
Let us finally consider the last concerning issue. We observed frequently that with
both schemes a comparable percentage of BSSE is gained but with a different set of
basis functions. We shall therefore also invoke the question, how to compare these
two values with respect to a physical interpretation. In other words, we should also
judge the physical motivation behind both schemes. We can justify the R-dependent
approach with the well known behavior, that the BSSE betweentwo interacting sys-
tems decreases as the distance separating them increases. This is a reasonable justi-
fication, with the additional advantage, that it even becomes more and more signif-
icant as the cluster size increases. Within the SSFC(S) scheme we incorporate the
most diffuse basis functions from a given symmetry type and the dense ones are ne-
glected. So we basically made the assumption, that since a set of diffuse basis func-
tions is mandatory to describe weak interactions reasonably, we mainly utilize them
to account for the BSSE effect. It is rather difficult to judgethe validity of this in-
terpretation, so let us consider some valuable hints from the literature. Estarellas et
al. [136] examined the interaction energies of several complexes of benzene with alka-
line cations and s-triazine with halide anions. Whenever they performed all-electron
calculations without incorporating appropriate core-valence basis functions, the esti-
mated BSSE was enormously in comparison with the FC calculations. They also found
in contrast to the expected behavior, that the BSSE even increased with the increase
of basis set quality. The reported counterpoise BSSE estimates of MP2(FC)/aug-cc-
pVTZ vs. MP2(all-electron)/aug-cc-pVTZ are exemplary forthe Na+-benzene com-
plex: 0.6 kcal/mol (2.5%) vs. 10 kcal/mol (32%) and for the s-triazine-Br− interaction:
1.9 kcal/mol (21%) vs 4 kcal/mol (38%). Further investigations reported by Tzeli et
al. [137] also confirmed this erroneous behavior for strongly bound systems and also
weak and medium bond strengths. The important message relevant to our studies is,
that inappropriate balanced basis sets may affect the amount of BSSE and we should
therefore carefully handle the SSFC(S) results. The secondimportant conclusion from
the reported papers is, that core-correlation also has an influence on interaction ener-
gies, but we will discuss this issue in Section 3.4.
Summarizing these considerations we can say that both schemes have their strength
and weakness. Rather than recommend one or another approachwe believe that the
optimum would be to combine both schemes. So within a certainsphere, defined by
the R-distance approach all CP atoms would get all the available basis functions from a
regarded basis set and beyond that sphere one could use the overlap threshold scheme.
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For the CP atoms beyond the R threshold, a rigid S-value wouldbe favorable, since
with almost no loss in accuracy an additional speed-up of thecalculations would be
achieved.
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3.4 Incremental evaluation of core, core-valence and
valence correlation energies

3.4.1 Introduction

The scope of the presented study here is twofold, firstly the accuracy of the approxi-
mate incremental core-valence treatment as introduced in Section 2.2 is checked and
secondly an investigation regarding the importance of corecorrelation effects in the
evaluation of interaction energies is carried out. Therefore Eq. 2.68 is applied to three
test systems: a diallylmagnesium complex, a binuclear titanium complex and a tetra-
hedral mercury cluster, their optimized structures are shown in Fig. 3.35.

a b c

Figure 3.35: Optimized structures of the diallylmagnesium complex Mg(C3H5)2 (a),
titanium complex Ti2Cl4S2 (b), the mercury cluster Hg4 (c).

All of the test systems except the titanium complex presented here have been chosen
in such a way that a standard reference CCSD(T) calculation correlating also the cores
was still feasible on the hardware available at the Theoretical Chemistry Institute at
the University of Cologne in 2010 (cluster equipped with a 2.4 GHz Core 2 Quad pro-
cessor, 8 GByte RAM and 200 GByte disk space per node, PCs are connected with
1 GBit ethernet). The computational more demanding calculation on the Ti2Cl4S2

complex has required at the CCSD(T)/cc-pwCVTZ theory levelcorrelation of 112
electrons in 558 basis functions, and was no longer manageable due to insufficient
memory. The increase of the RAM up to 16 Gb (which was at the time also possible)
would make this calculations feasible but the estimated calculation time was of the
order of several months. In the next step the incremental core-valence scheme is used
to evaluate interaction energies in the formation of sodiumcation water complexes and
the corresponding sequential interaction energies. For all presented incremental results
a comparison with the reference canonical results is made. Therefore for each investi-
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gated system two additional canonical calculations are performed, one correlating all
orbitals and one using the frozen-core approximation. The difference between both
outcomes is taken as the correlation contribution of the core electrons.
The prerequisite for an accurate description of the core correlation is the usage of ap-
propriate tailored basis sets, since most of the standard basis sets have been designed to
treat valence correlation only. Suitable basis sets are particularly the core-valence basis
sets of Peterson and Dunning [138–140] denoted as cc-pCVXZ and the cc-pwCVXZ
basis set series [141] with a weighted core-valence prescription applied.

3.4.2 Applications

The optimized coordinates of the Mg(C3H5)2 complex are taken from [142] and have
been obtained with the B3PW91 method, using the aug-cc-pVTZbasis set for C and
H and the cc-pCVTZ for Mg. From the SCF results for the calculation on Mg(C3H5)2
one obtains 29 occupied orbitals. The 11 energetically lowest, corresponding to the 1s
carbon orbitals and the 1s2s2p magnesium orbitals are grouped into 7 core domains.
The remaining 18 valence orbitals are partitioned into 6 valence domains. The results
of the incremental CCSD(T)/cc-pCVDZ and MP2/cc-pCVDZ calculations are given
in Table 3.17. Therein the following notation:

Etotal
corr(i) = Ec

corr(1)+ Ecv
corr(i) + Ev

corr(i), (3.35)

is used to describe the sum up to a given expansion order i of the incremental core
(c), core-valence (cv) and valence (v) correlation energy contributions as introduced in
Eq. 2.68. The presented results are grouped into three blocks illustrating the accuracy
of the proposed expansion for core, core-valence, valence-only and total correlation
energy contributions separately.
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Table 3.17:Convergence of the incremental series for core (c), core-valence (cv), valence (v) and total CCSD(T) and MP2 cor-
relation energies of the diallylmagnesium complex Mg(C3H5)2 obtained with the cc-pCVDZ basis set. The results
are compared with the canonical CCSD(T) and MP2 correlationcalculation. (0 frozen orbitals, 11 correlated core
orbitals, 7 core domains, 18 valence orbitals, 6 valence domains, tcon=3 Bohr, dsp=3, Ethres=1e-5 au)

O Ec
corr Ecv

corr Ec,cv
corr (i) error Ec,cv

corr/Ecan. Ev
corr (i) error Ev

corr/Ecan. Etotal
corr(i) error Etotal

corr/Ecan.

au au au kcal/mol % au kcal/mol % au kcal/mol %
1 -0.361780 – -0.361780 26.20 89.65 -0.683126 184.88 69.87 -1.044907 211.08 75.65
2 0 -0.043069 -0.404850 -0.82 100.33 -0.982418 -2.93 100.48-1.387268 -3.75 100.43
3 0 0.001312 -0.403538 0.00 100.00 -0.977609 0.09 99.99 -1.381147 0.09 99.99
canonical CCSD(T) -0.403537 -0.977755 -1.381291

1 -0.344785 – -0.344785 26.71 89.01 -0.562545 196.88 64.20 -0.907329 223.59 71.80
2 0 -0.042541 -0.387326 0.01 99.99 -0.872003 2.69 99.51 -1.259329 2.70 99.66
3 0 -0.000009 -0.387335 0.01 100.00 -0.876210 0.05 99.99 -1.263546 0.06 99.99
canonical MP2 -0.387349 -0.876287 -1.263636
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For the sum of the core and core-valence CCSD(T) correlationenergies Ec-cv
corr(i) at

second-order an aberration of -0.82 kcal/mol from the canonical result is achieved,
being already within chemical accuracy of 1 kcal/mol (see results from Table 3.17).
The accuracy is significantly improved at third-order, where virtually exact agreement
with the canonical reference data is obtained. For the MP2 incremental treatment
of Mg(C3H5)2 a comparable high accuracy is even observed at the second-order of
the expansion. The third-order expansion does not deteriorate the accuracy. Both
MP2 and CCSD(T) convergence for Ev

corr is somewhat slower than for Ec,cv
corr. At

second-order the valence correlation energy contributions vary from the canonical
reference outcome still by around 3 kacl/mol. These errors are drastically reduced
to about 0.1 kcal/mol when going from second to third-order expansion. In the last
three columns in Table 3.17 the comparison of the accuracy ofthe total correlation
energies with respect to the canonical outcomes yield also small errors and hence the
overall accuracy of Eq. 2.68 is also satisfactory. Note thatthe convergence of the core
correlation contributions is faster than the one of the valence correlation contributions
and this behavior is even more significant for MP2 level of theory. The number of
individual calculations saved according to the comparisonof the outcomes between
Eq. 2.69 and Eq. 2.70 is equal to 21 at second-order and even to161 at third-order of
the incremental expansion, what corresponds to 23 and 43% savings, respectively.
The optimized structure of the binuclear titanium complex Ti2Cl4S2 was obtained at
the RI-BP86/SV(P) level of theory using the TURBOMOLE 5.10 [97, 98] program.
The analysis of the Hessian identified the stationary point as a local minimum. The
molecule was further investigated with Dunning’s correlation consistent triple-ζ basis
set (cc-pVTZ) and the corresponding core-valence analogon(cc-pwCVTZ) [143,144]
at incremental MP2 and CCSD(T) level of theory.
The Ti2Cl4S2 complex is a challenging system to examine the core-valencetreatment
since the core is composed of a total of 48 occupied orbitals.From the overall
72 occupied orbitals available, the 16 energetically lowest ones corresponding to
the [He]-shells of sulfur and chlorine atoms and the [Ne]-shell contributed by the
titanium atom are excluded from the correlation calculation. The 32 orbitals treated
as correlated core yield 8 core domains arising from the [Ne]-shells of sulfur and
chlorine atoms and the [Ar]-shell of titanium. The remaining 24 valence orbitals are
divided into 6 valence domains. The results for the incremental CCSD(T) and MP2
energies and the canonical reference with the cc-pVTZ and cc-pwCVTZ basis sets
applied are summarized in Tables 3.18-3.19.
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Table 3.18:Convergence of the incremental series for core (c), core-valence (cv) and valence (v) and total CCSD(T) and MP2
correlation energies of titanium complex Ti2Cl4S2 obtained with the cc-pVTZ basis set. (16 frozen orbitals, 32
correlated core orbitals, 8 core domains, 24 valence orbitals, 6 valence domains, tcon=3 Bohr, dsp=3, Ethres=1e-6 au,
Order-dependent distance screening according to: tdist=80 /i2 in Bohr)

O Ec
corr Ecv

corr Ec,cv
corr (i) error Ec,cv

corr/Ecan. Ev
corr (i) error Ev

corr/Ecan. Etotal
corr(i) error Etotal

corr/Ecan.

au au au kcal/mol % au kcal/mol % au kcal/mol %
1 -0.511892 – -0.511892 176.12 64.59 -1.421812 101.91 89.75-1.933704 278.02 81.36
2 0 -0.312134 -0.824026 -19.75 103.97 -1.614508 -19.01 101.91 -2.438533 -38.76 102.60
3 0 0.036512 -0.787513 3.16 99.36 -1.582135 1.31 99.87 -2.369649 4.47 99.70
4 0 -0.004404 -0.791917 0.40 99.92 -1.583746 0.29 99.97 -2.375664 0.69 99.95
canonical CCSD(T) -0.792549 -1.584215 -2.376765

1 -0.460855 – -0.460855 193.20 59.95 -1.265479 117.55 87.11-1.726334 310.75 77.71
2 0 -0.307639 -0.768494 0.16 99.97 -1.453275 -0.29 100.03 -2.221770 -0.14 100.01
3 0 0.000103 -0.768391 0.22 99.9 -1.452821 -0.01 100.005 -2.221211 0.21 99.98
canonical MP2 -0.768742 -1.452808 -2.221550
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Table 3.19:Convergence of the incremental series for core (c), core-valence (cv) and valence (v) and total CCSD(T) and MP2
correlation energies of titanium complex Ti2Cl4S2 obtained with the cc-pwCVTZ basis set. (16 frozen orbitals,32
correlated core orbitals, 8 core domains, 24 valence orbitals, 6 valence domains, tcon=3 Bohr, dsp=3, Ethres=1e-6 au,
Order-dependent distance screening according to: tdist=80 /i2 in Bohr)

O Ec
corr Ecv

corr Ec,cv
corr (i) error Ec,cv

corr/Ecan. Ev
corr (i) error Ev

corr/Ecan. Etotal
corr(i) error Etotal

corr/Ecan.

au au au kcal/mol % au kcal/mol % au kcal/mol %
1 -1.816912 -1.816912 -1.449396 103.52 89.78 -3.266308
2 0 -0.587040 -2.403952 -1.644325 -18.80 101.86 -4.048277
3 0 0.039782 -2.364170 -1.612392 1.24 99.88 -3.976562
4 0 -0.004309 -2.368479 -1.613901 0.29 99.97 -3.982380
canonical CCSD(T) -1.614366

1 -1.742465 – -1.742465 378.51 74.28 -1.290960 119.07 87.19-3.033425 497.58 79.28
2 0 -0.602513 -2.344977 0.43 99.97 -1.481162 -0.29 100.03 -3.826139 0.14 99.99
3 0 0.000087 -2.344890 0.48 99.97 -1.480715 -0.01 100.00 -3.825605 0.48 99.98
canonical MP2 -2.345659 -1.480704 -3.826363
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The convergence of the incremental expansions for MP2 as well as CCSD(T)
theory has already been proven not to be sensitive to the variation of different basis
sets [55, 57] what is also evidenced in the study on the cystein molecule as shown
in the Appendix C. Therefore one may expect the accuracy of the CCSD(T)/cc-
pwCVTZ incremental results to be comparable to the CCSD(T)/cc-pVTZ ones. The
CCSD(T)/cc-pVTZ results in Table 3.18 show that a fourth-order expansion of the
core-valence incremental series covers 99.92 % of the correlation energy correspond-
ing to an error of 0.4 kcal/mol. For the incremental valence-only contributions a
fourth-order expansion is needed to gain chemically accurate results with an error of
0.3 kcal/mol. The overall accuracy is satisfactory with 99.95 % of the correlation
energy and 0.7 kcal/mol aberration from the canonical result.
The extension of the basis sets from cc-pVTZ to cc-pwCVTZ quality has significant
effects on the size of the core correlation contribution (see Table 3.19), which is
about three times larger than for the cc-pVTZ results. The valence-only incremental
expansion calculated with the cc-pwCVTZ basis set is as accurate as the cc-pVTZ
results. As already mentioned in the introduction the reference calculation correlating
56 occupied orbitals at once was no longer feasible and therefore no comparison for
the core-valence correlation energies is quoted in Table 3.19.
The convergence of the MP2 incremental series with both cc-pwCVTZ and cc-pVTZ
basis sets is satisfactory, highly accurate results are obtained already at second-order
with the largest error of only 0.4 kcal/mol. Since for both basis sets the overall
correlation energy is covered by 99.98 % one can conclude that convergence behavior
is not affected by the use of different basis sets.
The employment of the core-valence treatment allows the reduction of 28 individual
calculations (31 %) at second-order and even 224 (62 %) and 826 (83 %) at third-
and fourth-order respectively. This yields a significant improvement in terms of
computational time. Additionally the usage of the order-dependent distance threshold
of 80 further reduces the amount of individual third and fourth calculations by 24 and
81 respectively.
The tetrahedral Hg4 cluster has been optimized with the RI-BP86/SVP gradient-
corrected density functional theory method [145, 146] as implemented in the
TURBOMOLE 5.6 quantum chemistry package [147].
For the incremental CCSD(T) and MP2 calculations a two-component relativis-
tic multi-configuration Dirac-Hartree-Fock adjusted pseudopotential of Figgen et
al. [148] with the correlation consistent core-valence basis set of double-ζ quality
cc-pwCVDZ [141] designed for the outer-core electron correlation has been applied.
The pseudopotential replaces the Hg 1s-4f shells, i.e. it removes 60 electrons, leaving
20 valence electrons per mercury atom. For the calculationspresented here the
remaining 5s5p shell was considered to be the outer-core shell whereas the 5d6s



118 CHAPTER 3 RESULTS AND DISCUSSION

shell comprises the valence electrons. Thus the 16 correlated outer-core orbitals were
partitioned into 4 core domains and the 24 valence orbitals were divided into 4 valence
domains. The incremental calculations are presented in Table 3.20 for CCSD(T) and
MP2 correlation energies, respectively.
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Table 3.20:Convergence of the incremental series for core (c), core-valence (cv), valence (v) and total CCSD(T) correlation
energies of the Hg4 cluster obtained with the MCDHF-PP/cc-pwCVDZ basis set. (0frozen orbitals, 16 correlated
core orbitals, 4 core domains, 24 valence orbitals, 4 valence domains, tcon=3 Bohr, dsp=3, Ethres=1e-5 au)

O Ec
corr Ecv

corr Ec,cv
corr (i) error Ec,cv

corr/Ecan. Ev
corr (i) error Ev

corr/Ecan. Etotal
corr(i) error Etotal

corr/Ecan.

au au au kcal/mol % au kcal/mol % au kcal/mol %
1 -0.263467 – -0.263467 325.79 33.66 -1.433329 14.20 98.45 -1.696796 339.99 75.80
2 0 -0.519521 -0.782988 -0.21 100.0 -1.456495 -0.34 100.44 -2.239483 -0.55 100.04
3 0 0.000335 -0.782653 0.00 100.0 -1.455955 0.00 100.00 -2.238608 0.00 100.00
canonical CCSD(T) -0.782646 -1.455961 -2.238607

1 -0.243710 – -0.243710 355.64 30.07 -1.503336 20.11 97.91 -1.747046 375.75 74.47
2 0 -0.566718 -0.810428 0.02 100.00 -1.535337 0.03 100.00 -2.345765 0.05 100.00
3 0 -0.000034 -0.810461 0.00 100.00 -1.535387 0.00 100.00 -2.345849 0.00 100.00
canonical MP2 0.810464 -1.535385 -2.345849
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The convergence behavior for CCSD(T) Ec-cv
corr(i) contributions is very good, the incre-

mental series is in satisfactory agreement with the canonical result already at second-
order and even a perfect agreement at third-order is observed. For the MP2 core and
core-valence increments as already observed in case of the titanium complex a faster
convergence behavior is found than for the CCSD(T) series, the incremental second-
order results are almost equal to the canonical one.
The reduction of the number of individual calculations whengoing from Eq. 2.69 to
Eq. 2.70 yield 17 % savings at second-order and 30 % at third-order with respect to a
calculation according to Eq. 2.67.
From these considerations together with the discussion on the diallylmagnesium and
the titanium complex the conclusion may be drawn that the approximations introduced
in Eq. 2.68 are well chosen and allow an efficient and at the same time accurate de-
scription of the core-valence effects for MP2 and CCSD(T) correlation energies within
the incremental framework. A third-order truncation of theincremental core-valence
expansion assured highly accurate results with errors of less than 0.1 kcal/mol for all
cases besides the titanium complex, where a fourth-order expansion was necessary to
gain chemically accurate results. The convergence behavior of the proposed scheme
is found to be quite insensitive to the basis set quality and compared to a standard in-
cremental expansion the omittance of inter-core correlation contributions allows the a
priori elimination of a significant number of correlation calculations.

3.4.2.1 Further approximations

It is clearly seen so far that the correlation of the core region is a highly demanding
task because the additional core orbitals which cause an enormously growth of the
applied basis set if particularly core-valence basis sets are considered. The increase
in the number of basis functions when comparing the cc-pVZX and cc-pCVXZ basis
sets for the following systems: Mg(C3H5)2 (X=D), Hg4 (X=D) and Ti2Cl4S2 (X=T)
equals to a factor of 1.2, 1.4, and 1.6, respectively. The omission of the additional
functions which occur in the CV-type basis sets would lead tosavings with respect to
the overall calculation time especially if higher order increments could be described
with a smaller basis size since these consume most of the CPU time. From a chemical
point of view such an approach would be appropriate for the valence only contribu-
tions but for the core-valence treatment one needs to examine such an approximation
very carefully with respect to its accuracy. Therefore in Fig. 3.36 the CCSD(T) and
MP2 third- and fourth-order incremental energy differences between the cc-pVXZ and
the corresponding core-valence basis sets cc-pCVXZ of the discussed test systems are
presented for the valence-only and core-valence contributions separately.
The fourth-order incremental valence-only contributionsare almost identically in size
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in both cc-pVXZ and cc-pCVXZ basis sets for the systems of this study. Interestingly
the same finding holds also for the difference of fourth-order core-valence correlation
contributions leading to the conclusion that a forth-ordertreatment with the cc-pVXZ
basis set in comparison to its core-valence analogous basisset would only cause little
loss in accuracy. The valence-only increments could also bedescribed at third-order
with the omission of core-valence functions since the greatest aberration is just 0.3
kcal/mol for the titanium complex at CCSD(T) theory level. This does not hold in
general for the core-valence incremental energy differences with respect to the ba-
sis set change when the third-order expansion is considered. Even though very good
agreement is found for all cases besides the titanium complex (as indicated by the
position of all points close to the line which marks zero), anapproximate third-order
CCSD(T)/cc-pVTZ description in case of Ti2Cl4S2 (X=T) would lead to an unaccept-
able high error of about 2 kcal/mol.
The outcomes of these considerations are very encouraging but a general advise re-
garding the question at which order one should start to use a smaller basis set can not
be formulated at this stage because not enough systems have been considered so far.
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3.4.2.2 Core-correlation influence on interaction energies

The core-valence correlation is especially important for systems containing atoms
with easily polarizable cores. Alkali and alkaline-earth atoms exhibit sizable core-
correlation effects which have to be considered for an accurate geometrical and ener-
getic description. Therefore Eq. 2.68 is applied to investigate the magnitude of the
core-correlation for the hydration of the singly charged sodium cation according to:

Na+ + n(H2O) −→ Na+(H2O)n. (3.36)

The interaction energies∆Eint were evaluated for n=2,3 and 4. The so-called sequential
interaction energies∆Eseq with n=2 and 3 have also been considered according to the
reaction scheme:

Na+(H2O)n +H2O −→ Na+(H2O)n+1. (3.37)

The sodium cation water clusters Na+(H2O)n (n=2,3 and 4) were optimized using the
RI-BP86/TZVPP gradient-corrected density functional theory method [145, 146] in
TURBOMOLE 5.10 [97, 98], with D2d, D3 and S4 symmetry constraints applied for
n=2,3 and 4, respectively, the optimized geometries are shown in Fig 3.37.

a b c

Figure 3.37: Optimized structures of di- to tetra-hydrate sodium complexes
Na+(H2O)n (n=2,3 and 4) (a-c).

Stationary points were characterized by analyzing the Hessian matrix in order to con-
firm that the obtained structures correspond to minimum energy conformations on the
respective potential energy surfaces.
The n valence domains consist of the 4 valence orbitals of each of the n water
molecules. The [Ne]-shell of the sodium cation is correlated at all times and con-
tributes one core domain, whereas each of then water molecules contributes one core
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domain consisting of the oxygen 1s shell. The incremental expansion for then valence
andn + 1 core domains were truncated at second-order. The calculations of a single
water molecule and the isolated sodium cation needed to determine∆Eint and∆Eseq

were performed with standard MP2 and CCSD(T) schemes.
Correlation-consistent core-valence basis sets of double- and triple-ζ quality have been
employed for the sodium cation and on the oxygen atom, diffuse functions were also
incorporated on the hydrogen and oxygen atoms to account forthe water polarizability
effects.

The incremental MP2 and CCSD(T) interaction and sequentialinteraction energies ob-
tained with different basis sets are presented in Tables 3.21 and 3.22, respectively. The
comparison of the incremental results with the canonical ones show remarkable good
agreement when the expansion is truncated already at second-order. The largest error
with respect to the reference calculations is just 0.07 kcal/mol. This is for the smallest
water cluster withn = 2 not surprising since the valence-only incremental correlation
energy in this case equals the canonical outcome since the expansion reaches the high-
est possible order. However, for the core-valence correlation treatments as well as for
n > 2 in the valence-only calculations, this is not the case. The related increase of
errors with respect to the canonical data set can be nevertheless regarded as negligible,
since as mentioned above the highest aberration equals to just -0.07 kcal/mol. There-
fore one can conclude that the application of Eq. 2.68 leads to highly accurate results
not only for absolute energies, but also when relative energies are considered. This
finding holds for both the CCSD(T) and the MP2 incremental treatment.
The difference between the results of the valence-only and the total energy calculations
illustrates the magnitude of errors due to the frozen-core approximation and shows at
least for these simple test reactions the importance of the core correlation treatment.
Omitting the core correlation effects at CCSD(T) level leads to an underestimation of
∆EV

int as well as∆EV
seq of about 0.5 up to even 5 kcal/mol, corresponding to a relative

error of 3 to 12%. Very similar outcomes are obtained at the MP2 level, where the
failure to consider the Ec,cv

int and Ec,cv
seq contributions to interaction energies causes 3 to

12% deviation from the total interaction energies. The basis set improvement from
double to triple-ζ quality does not affect the convergence of the incremental results.
However a somewhat significant influence is observed on the total interaction energies,
including an increase of the core correlation contributions by about 1 to 3%.
This study clearly demonstrated that the core-valence correlation has a significant con-
tribution to the total interaction energies as well as to thesequential interaction energies
for the hydration of the singly charged sodium cation. It could also be shown that a
computationally attractive second-order expansion is sufficient to obtain chemically
accurate interaction and sequential energies.
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Table 3.21:Comparison of the incremental valence-only (v), core-valence (cv) and
total interaction energies (in kcal/mol) with the canonical calculations
for Na+(H2O)n complexes. Correlation energies obtained at MP2 and
CCSD(T) level of theory with the cc-pCVXZ (X=D,T) basis set series at
Na+, aug-cc-pCVXZ (X=D,T) basis sets at O and aug-cc-pVXZ (X=D,T)
basis sets at H. Incremental expansion truncated at second-order (tcon=3
Bohr, dsp=3, dsp=4 for n=4, Ethres=1e-5 au).
E′ = ∆Ec,cv

int /∆Etotal
int

MP2 CCSD(T)
∆Ev

int ∆Etotal
int ∆Ec,cv

int E′ ∆Ev
int ∆Etotal

int ∆Ec,cv
int E′

kcal/mol % kcal/mol %
X=D, n=2
inc. 42.540 44.437 1.897 4 42.370 44.392 2.022 5
can. 42.540 44.453 1.913 42.370 44.410 2.041
error 0 -0.016 -0.016 0 -0.019 -0.019

X=T, n=2
inc. 42.573 45.129 2.556 6 42.441 45.202 2.761 6
can. 42.573 45.152 2.579 42.441 45.231 2.790
error 0 -0.024 -0.023 0 -0.029 -0.029
X=D, n=3
inc. 57.633 61.113 3.480 6 57.416 61.168 3.753 6
can. 57.634 61.159 3.526 57.413 61.206 3.793
error 0 -0.046 -0.046 0.002 -0.038 -0.040

X=T, n=3
inc. 57.158 61.680 4.523 7 56.984 61.938 4.955 8
can. 57.158 61.748 4.590 56.981 61.999 5.017
error 0 -0.068 -0.067 0.002 -0.060 -0.063
X=D, n=4
inc. 73.961 77.908 3.947 5 73.800 78.047 4.247 5
can. 73.961 77.950 3.990 73.791 78.067 4.276
error 0 -0.043 -0.043 0.009 -0.020 -0.029



126 CHAPTER 3 RESULTS AND DISCUSSION

Table 3.22:Comparison of the incremental valence-only (v), core-valence (cv) and
total interaction energies (in kcal/mol) with the canonical calculations
for Na+(H2O)n complexes. Correlation energies obtained at MP2 and
CCSD(T) level of theory with the cc-pCVXZ (X=D,T) basis set series at
Na+, aug-cc-pCVXZ (X=D,T) basis sets at O and aug-cc-pVXZ (X=D,T)
basis sets at H. Incremental expansion truncated at second-order (tcon=3
Bohr, dsp=3, dsp=4 for n=4, Ethres=1e-5 au).
E′ = ∆Ec,cv

seq/∆Etotal
seq

MP2 CCSD(T)
∆Ev

seq ∆Etotal
seq ∆Ec,cv

seq E′ ∆Ev
seq ∆Etotal

seq ∆Ec,cv
seq E′

kcal/mol % kcal/mol %
X=D, n=2
inc. 15.094 16.676 1.582 9 15.046 16.777 1.731 10
can. 15.094 16.707 1.613 15.044 16.796 1.752
error 0 -0.031 -0.030 0.002 -0.019 -0.021

X=T, n=2
inc. 14.585 16.552 1.967 12 14.543 16.737 2.194 13
can. 14.585 16.596 2.011 14.540 16.768 2.227
error 0 -0.044 -0.044 0.003 -0.031 -0.034
X=D, n=3
inc. 16.327 16.795 0.467 3 16.385 16.879 0.494 3
inc. 16.327 16.791 0.464 16.378 16.861 0.483
error 0 0.004 0.003 0.007 0.018 0.011
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3.4.2.3 Domain-specific basis sets

Although the emphasise of this work is the investigation of the accuracy of equation
2.68 for CCSD(T) and MP2 energies, a study regarding the efficiency of the incremen-
tal domain-specific basis set approach [52, 55] has also beencarried out. Within this
approximation a second smaller basis set is used to describethe environment of the
domains. For the studied Na+(H2O)4 complex, the smaller basis set is the STO-3G
minimal basis at the hydrogen atoms and the 6-31G basis at theoxygen atoms. The
environment basis is set on three water molecules at first- and two water molecules at
second-order. In Table 3.23 the efficiency of the domain-specific basis set is demon-
strated for the valence-only correlation for the Na+(H2O)4 complex using different
basis sets of the Dunning aug-cc-pVXZ series. The CPU times are relative to the stan-
dard CCSD(T) calculation with MOLPRO usingC2 symmetry. The computational
saving is about a factor of 4 for the triple and quadrupleζ-basis sets if the fullS4 sym-
metry of the complex is exploited. The wall time could be evenfurther reduced by
exploiting the parallelity of the incremental scheme [52,55]. Considering the accuracy
of the domain-specific basis set approach errors below 0.04 kcal/mol for all applied
basis sets are found, which is a very satisfactory accuracy.

Table 3.23:Comparison of computational savings for the CCSD(T)/aug-cc-pVXZ va-
lence only correlation energy for the Na+(H2O)4 molecule with respect to
canonical calculation. The errors with respect to the canonical calculation
are given in kcal/mol.

X rel. time rel. time error
inc. (C1) / can. (C2) inc. (S4) / can. (C2)

% % kcal/mol
D 129 43 0.03
T 72 25 -0.04
Q 80 26 -0.03

3.4.2.4 Variation of the domain size

The analysis of the influence of different domain sizes on computational time for
the Na+(H2O)4 complex is presented in Tab. 3.24. The relative computationtimes
among different domain size parameters (dsp) are compared and also the percentage
of calculation time relative to a given expansion order is shown. The accuracy of the
CCSD(T)/6-31G* correlation energies and the amount of the incremental energy cal-
culationsN (i) with respect to the expansion order are also given in Tab.3.24. A
distance screening reducing the number of individual calculations was not applied be-
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cause only the influence of dsp parameter on computational time will be considered
herein.

Table 3.24:Comparison of the relative computational time for different domain
sizes for the calculation of the CCSD(T)/6-31G* correlation energy of
Na+(H2O)4. The errors are with respect to the canonical calculation (in
kcal/mol). Number of individual calculationsN (i) at a given expansion
order i and percentage of calculation time relative to a given order are also
given.

dsp D x Orb. i error N (i) time at i rel. time
kcal/mol % %

1 16x1 1 264.392 16 0.5
2 -28.114 120 3.8
3 1.315 560 20.3
4 -0.008 1820 75.4 14600 (C1)

1 16x1 1 264.392 4 0.6
2 -28.114 32 4.5
3 1.315 140 20.8
4 -0.008 464 74.1 3412 (S4)

3 2x2 1 42.106 5 26
3x4 2 0.009 10 74 100 (C1)

4 4x4 1 0.740 4 29
2 -0.007 6 71 79 (C1)

4 4x4 1 0.740 1 27
2 -0.007 2 73 26 (S4)

5 2x4 1 0.624 3 32
1x8 2 -0.003 3 68 67 (C1)

The investigated different domain size parameters are equal 1, 3, 4 and 5 and divide
the system into 16, 5, 4 and 3 valence domainsD with a different amount of localized
orbitals grouped into the domains. Exemplary the dsp value of 3 lead to a partitioning
of two domains with two occupied localized orbitals and three domains with 4 orbitals,
as indicated in Table 3.24 within the short notation 2x2 and 3x4 respectively. The re-
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sults show that the optimum with respect to a given target accuracy and with respect
to computational time is achieved for dsp=5. But the calculation with dsp=4 is only
little slower and it has the great advantageous that the partitioning preserves the sym-
metry properties of the molecule. The calculation inS4 symmetry when dsp equals 4
is therefore the cheapest calculation at all. The worst scenario appears if a partitioning
into single orbital domains is considered. In order to obtain similar accuracy as for
dsp=3,4 and 5 with an aberration of just one hundredth of a kcal/mol the incremental
expansion has to be evaluated up to the fourth-order. In these cases the huge number
of individual calculations which have to be performed to obtain the desired accuracy
cause the calculation to become the most expensive one. Evenwhen theS4 symme-
try is exploited for dsp=1 the calculation time is by a factorof 3000 longer than the
computation with dsp=3.
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Chapter 4

Conclusion

In this contribution we proposed among others two approximations to the site-site
function counterpoise (SSFC) method and one to the second-order Valiron-Mayer
function counterpoise (VMFC) scheme, based on truncated ghost basis sets used for
the monomer calculations.
Within one procedure we employ as a criterion for a systematic choice of the trun-
cated orbital space, a distance threshold R acting on the geometry of a given structure.
Within the second approach, the reduced basis set is obtained via a systematically anal-
ysis of the magnitude of the overlap integrals.
The calculations carried out for a water and methanol cluster series evidence con-
vincingly that with only little loss in accuracy great savings with respect to the com-
putational requirements can be achieved with both proposals - the SSFC(R) and the
SSFC(S) - scheme. To a certain extent also the correspondingVMFC(2)(R) scheme
provides advantages over the full approach yielding at the same time highly accurate
results.
Furthermore the approximate approaches enable BSSE correction calculations for
larger cluster sizes where the standard procedure fails to proceed. In addition we em-
ployed the domain-specific basis set approach within the framework of the incremental
scheme to evaluate the total correlation energy of the clusters and demonstrated that
this method yields very accurate results with respect to thecanonical calculations.
We present accurate BSSE corrected stabilization energiesfor water clusters up to
20 subunits with the aug-cc-VXZ (X=D,T) basis sets at the MP2, CCSD and even
CCSD(T) (with n up to 18) levels of theory.
The approximate SSFC(R) and SSFC(S) schemes are robust methods to account for
BSSE corrections. With the variable use of the distance threshold or the overlap thresh-
old one is able to control the desired accuracy as well as the computational resources
needed to carry out the calculation.
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Appendix A

MP2 and CCSD incremental
interaction energies
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Figure A.1: Convergence behavior of the MP2 interaction energy of He2 at equilib-
rium distance for the y-aug-cc-pVXZ (y=s,d,t and X=D,T,Q,5,6) basis
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a function of the cardinal number X in the aug-cc-pVXZ basis set series.
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56 marks the estimated basis set limit.
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Figure A.3: As Fig. A.2, but for the d-aug-cc-pVXZ basis set series.
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Figure A.6: As Fig. A.5, but for the t-aug-cc-pVXZ basis set series.
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Figure A.7: Potential energy curves of the interaction energy for the CH4 dimer, cal-
culated with aug-cc-pVXZ (X=D,T and Q) basis sets at the CCSDlevel of
theory as a function of the intermolecular C-C distance. The3-4 extrapo-
lated curves∆ECP

34 and∆E34 are based on CP-corrected and uncorrected
correlation energies, respectively.
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Figure A.8: As Fig. A.7, but for the MP2 level of theory.
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Figure A.9: Potential energy curves of the interaction energy for the H2S dimer, cal-
culated with aug-cc-pVXZ (X=D,T and Q) basis sets at the CCSDlevel of
theory as a function of the intermolecular C-C distance. The3-4 extrapo-
lated curves∆ECP

34 and∆E34 are based on CP-corrected and uncorrected
correlation energies, respectively.
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Figure A.10: As Fig. A.9, but for the MP2 level of theory.
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Figure A.11: Potential energy curves of the interaction energy for the H2O dimer,
calculated with aug-cc-pVXZ (X=D,T and Q) basis sets at the CCSD
level of theory as a function of the intermolecular C-C distance. The 3-
4 extrapolated curves∆ECP

34 and∆E34 are based on CP-corrected and
uncorrected correlation energies, respectively.
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Figure A.12: As Fig. A.11, but for the MP2 level of theory.
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Figure B.1: BSSE correction (in percentage) depending on the distance threshold
R (Å) with respect to the SSFC method and the corresponding abso-
lute deviation from SSFC calculated for the water cluster series (H2O)n
n=6,8,...,20 (n=6 boat structure) at the CCSDcorr level of theory.
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Figure B.2: As Fig. B.1 but for the MP2corr level of theory.
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Table B.1: Approximate BSSE second-order VMFC correction with respect to differ-
ent distance thresholds at the aug-cc-pVDZ/CCSD level (∆E= VMFC(2) -
VMFC(2)(R)).

R VMFC(2)(R) n=8 VMFC(2)(R) n=10 VMFC(2)(R) n=12
Å kcal/mol % ∆ E kcal/mol % ∆ E kcal/mol % ∆ E
2 0.18 24.61 0.54 0.32 35.02 0.59 0.40 36.50 0.70

2.5 0.53 73.21 0.19 0.65 71.21 0.26 0.77 69.88 0.33
3 0.63 87.12 0.09 0.79 87.15 0.12 0.93 85.18 0.16

3.5 0.68 94.48 0.04 0.83 91.97 0.07 0.98 89.79 0.11
4 0.71 98.51 0.01 0.87 96.20 0.03 1.03 94.49 0.06

4.5 0.72 99.57 0.003 0.89 98.02 0.02 1.06 97.02 0.03
5 0.72 99.78 0.002 0.90 99.47 0.005 1.08 98.54 0.02

5.5 0.72 100 0 0.91 99.92 0.001 1.09 99.52 0.01
6 0.91 100 0 1.09 99.86 0.002
∞ 0.72 100 0 0.91 100 0 1.10 100 0

Table B.7: SSFC(R) BSSE correction (in kcal/mol) with respect to R for three dif-
ferent methanol clusters (CH3OH)n and the deviation (in kcal/mol and %)
from the full SSFC method for n=8.

R SSFC(R) SSFC(R) error SSFC(R) SSFC(R) error
Å kcal/mol % kcal/mol kcal/mol % kcal/mol

CCSD/aug-cc-pVDZ MP2/aug-cc-pVDZ
n=8

4.0 12.12 85.50 2.05 12.76 85.54 2.16
4.5 13.04 92.05 1.13 13.73 92.05 1.19
5.0 13.58 95.84 0.59 14.30 95.83 0.62
5.5 13.92 98.22 0.25 14.65 98.23 0.26
∞ 14.17 100 0.00 14.92 100 0.00

n=12
4.0 21.17 22.30
4.5 22.89 17.19
5.0 23.99 17.95

n=16
4.0 34.44 36.33
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Table B.2: CCSD and MP2 BSSE corrected and uncorrected stabilization energies of
the water cluster (H2O)6 (bag structure) and BSSE corrections obtained
with different schemes for the basis set series aug′-cc-pVXZ (X=D,T,Q
and 5).(∆EBSIE= DCBS(Q,5)− Daug′-cc-pVXZ, all energies in kcal/mol, values
in parentheses in %).

X D T Q 5 CBS(Q,5)

CCSD

D -36.52 -38.29 -39.24 -39.33 -39.43
∆EBSIE 2.91 1.15 0.19 0.11 0.00

SSFC (R=2.5) 3.01 (61.22) 1.58 (69.45) 0.62 (68.34) 0.25 0
SSFC (R=3.5) 4.48 (91.15) 2.12 (93.45) 0.84 (93.14) 0.34 0
SSFC (R=4.5) 4.89 (99.54) 2.26 (99.56) 0.90 (99.55)

SSFC 4.92 (100) 2.27 (100) 0.91 (100)

D (SSFC (R=2.5)) -33.52 -36.71 -38.62 -39.07 -39.46
D (SSFC (R=3.5)) -32.04 -36.16 -38.40 -38.99 -39.48
D (SSFC (R=4.5)) -31.63 -36.03 -38.34

D (SSFC) -31.61 -36.02 -38.34

MP2

D -37.84 -38.90 -39.75 -39.77 -39.85
∆EBSIE 2.01 0.95 0.10 0.08 0.00

SSFC (R=2.5) 3.15 (61.26) 1.73 (69.53) 0.79 (68.75) 0.39 0.1
SSFC (R=3.5) 4.69 (91.08) 2.33 (93.50) 1.08 (93.50) 0.52 0.1
SSFC (R=4.5) 5.13 (99.54) 2.48 (99.56) 1.15 (99.58)

SSFC 5.15 (100) 2.49 (100) 1.15 (100)

D (SSFC (R=2.5)) -34.68 -37.17 -38.95 -39.38 -39.77
D (SSFC (R=3.5)) -33.15 -36.57 -38.67 -39.25 -39.76
D (SSFC (R=4.5)) -32.71 -36.42 -38.60

D (SSFC) -32.69 -36.41 -38.59
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Table B.3: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE corrected and uncor-
rected stabilization energies for the water cluster series(H2O)n at the
CCSD/aug-cc-pVXZ (X=D,T and CBS(D,T)) level of theory, allenergies
in kcal/mol, values in parentheses in %.

n 6 8 10 12

aug-cc-pVDZ

D -36.68 -63.36 -81.71 -100.65
SSFC(R=4) 4.84 (92.98) 10.10 (96.58) 12.63 (94.32) 15.41 (93.06)

SSFC(R=4.5) 5.03 (96.68) 10.29 (98.40) 13.02 (97.22) 15.91(96.12)
SSFC 5.20 (100) 10.45 (100) 13.39 (100) 16.55 (100)

D (SSFC (R=4)) -31.84 (15.20) -53.07 (19.02) -69.08 (18.28)-85.25 (18.07)
D (SSFC (R=4.5)) -31.65 (15.90) -52.95 (19.43) -68.69 (18.95) -84.74 (18.67)

D (SSFC) -31.48 (16.53) -51.77 (20.19) -68.32 (19.60) -84.10 (19.68)

aug-cc-pVTZ

D -38.65 -65.32 -84.08 -103.56
SSFC(R=4) 2.48 5.19 6.55 7.98

SSFC(R=4.5) 2.57 5.28 6.72 8.21

D (SSFC (R=4)) -36.17 (6.85) -60.12 (8.64) -77.53 (8.44) -95.58 (8.35)
D (SSFC (R=4.5)) -36.08 (7.12) -60.04 (8.80) -77.36 (6.67) -95.34 (8.59)

CBS(D,T)

D -39.39 -66.72 -85.78 -105.66
SSFC(R=4) 1.96 4.27 5.39 6.55

SSFC(R=4.5) 2.03 4.35 5.53 6.74

D (SSFC (R=4)) -37.43 (5.23) -62.44 (6.84) -80.39 (6.70) -99.10 (6.61 )
D (SSFC (R=4.5)) -37.36 (5.43) -62.37 (6.97) -80.25 (6.88) -98.91 (6.81)
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Table B.4: As Table B.3, but for the water cluster series (H2O)n n=14,16,18,20.

n 14 16 18 20

aug-cc-pVDZ

D -123.25 -143.13 -172.38 -185.35
SSFC(R=4) 18.89 (91.59) 21.98 (91.39) 32.81 (92.41) 28.13 (89.18)

SSFC(R=4.5) 19.64 (95.23) 22.74 (94.56) 33.99 (95.74) 29.41 (93.24)
SSFC 20.63 (100) 24.05 (100) 35.50 (100) 32.72 (100)

D (SSFC (R=4)) -104.36 (18.10) -121.15 (18.14) -139.57 (23.51) -157.22 (17.89)
D (SSFC (R=4.5)) -103.61 (18.82) -120.39 (18.89) -138.39 (24.56) -155.94 (18.86)

D (SSFC) -102.62 (20.10) -119.08 (20.19) -137.77 (25.77) -153.81 (20.51)

aug-cc-pVTZ

D -126.11 -146.83 -174.61
SSFC(R=4) 9.74 11.31 16.31

SSFC(R=4.5)

D (SSFC (R=4)) -116.36 (8.37) -135.52 (8.35) -158.3 (10.30)
D (SSFC (R=4.5))

CBS(D,T)

D -128.65 -149.91 -178.44
SSFC(R=4) 8.07 9.32 13.14

SSFC(R=4.5)

D (SSFC (R=4)) -120.58 (6.69 ) -140.59 (6.63) -165.3 (7.95)
D (SSFC (R=4.5))
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Table B.5: SSFC, SSFC(R=4,4.5) BSSE corrections and BSSE corrected and uncor-
rected stabilization energies for the water cluster series(H2O)n at the
MP2/aug-cc-pVXZ (X=D,T and CBS(D,T)) level, (all energiesin kcal/-
mol, values in parentheses in %).

n 6 8 10 12

aug-cc-pVDZ

D -37.57 -65.40 -84.31 -104.00
SSFC(R=4) 5.03 (93.09) 10.47 (96.59) 13.10 (94.36) 16.00 ( 93.14 )

SSFC(R=4.5) 5.23 (96.73) 10.67 (98.42) 13.50 (97.23) 16.52(96.16)
SSFC 5.40 (100) 10.84 (100) 13.89 (100) 17.18 (100)

D (SSFC (R=4)) -32.54 (15.45) -54.73 (19.13) -71.21 (18.40)-88.01 (18.18)
D (SSFC (R=4.5)) -32.34 (16.16) -54.61 (19.54) -70.81 (19.04) -87.49 (18.88)

D (SSFC) -32.17 (16.80) -53.38 (20.31) -70.43 (19.72) -86.83 (19.78)

aug-cc-pVTZ

D -38.96 -66.67 -85.82 -105.84
SSFC(R=4) 2.68 5.55 7.01 8.55

SSFC(R=4.5) 2.77 5.64 7.19 8.80

D (SSFC (R=4)) -36.29 (7.38) -61.12 (9.08) -78.81 (8.90) -97.28 (8.79)
D (SSFC (R=4.5)) -36.19 (7.67) -61.03 (9.25) -78.63 (9.13) -97.03 (9.05)

CBS(D,T)

D -39.52 -67.78 -87.16 -107.48
SSFC(R=4) 2.16 4.62 5.85 7.12

SSFC(R=4.5) 2.24 4.70 6.00 7.33

D (SSFC (R=4)) -37.36 (5.78) -63.17 (7.31) -81.31 (9.17) -100.37 (7.09)
D (SSFC (R=4.5)) -37.28 (6.00) -63.09 (7.44) -81.16 (9.38) -100.16 (7.30)
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Table B.6: As Table B.5, but for the water cluster series (H2O)n n=14,16,18,20.

n 14 16 18 20

aug-cc-pVDZ

D -127.21 -147.98 -183.29 -191.43
SSFC(R=4) 19.60 (91.63) 22.81 (91.43) 34.18 (92.47) 29.19 (89.22)

SSFC(R=4.5) 20.37 (95.25) 23.59 (94.58) 35.40 (95.76) 30.52 (93.25)
SSFC 21.39 (100) 24.95 (100) 36.96 (100) 32.72 (100)

D (SSFC (R=4)) -107.62 (18.21) -125.17 (18.22) -149.12 (22.92) -162.23 (18.00)
D (SSFC (R=4.5)) -106.84 (18.93) -124.38 (18.97) -147.90 (23.93) -160.91 (18.96)

D (SSFC) -105.83 (20.21) -123.03 (20.28) -147.25 (25.10) -158.70 (20.62)

aug-cc-pVTZ

D -128.89 -150.24 -184.44
SSFC(R=4) 10.43 12.12 17.56

SSFC(R=4.5) 10.82 12.52 18.12

D (SSFC (R=4)) -118.46 (8.81) -138.12 (8.77) -166.88 (10.53)
D (SSFC (R=4.5)) -118.08 (9.16) -137.72 (9.09) -166.32 (10.89)

CBS(D,T)

D -130.93 -152.71 -187.82
SSFC(R=4) 8.75 10.11 14.35

SSFC(R=4.5) 9.07 10.46 14.80

D (SSFC (R=4)) -122.18 (7.16) -142.59 (7.09) -173.47 (8.27)
D (SSFC (R=4.5)) -121.86 (7.45) -142.25 (7.35) -173.02 (8.56)
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Figure B.3: Percentage coverage of the approximate SSFC(S) scheme withrespect
to the full SSFC approach as a function of -log(S) presented for various
range of -log(S) at the SCF level of theory calculated with SV(P) and
TZVP basis sets for the (H2O)n water cluster series.
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Figure B.4: As Table B.3, but for the MP2 level of theory.
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Figure B.5: Percentage coverage of the approximate SSFC(S) scheme withrespect
to the full SSFC approach as a function of -log(S) presented for various
range of -log(S) at the MP2 and HF level of theory calculated with aug′-
cc-pVDZ basis set for the (H2O)n water cluster series.
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Table C.1: Convergence of the incremental series for core (c), core-valence (cv) and
valence (v) CCSD(T) and MP2 correlation energy contribution of cysteine
using standard basis sets (6-31G**, cc-pVDZ, cc-pVTZ) and the basis sets
of Peterson et al. for the treatment of core correlation effects (cc-pCVDZ).
(0 frozen orbitals, 11 correlated core orbitals, 7 core domains, 21 valence
orbitals, 5 valence domains, tcon=3 bohr, dsp=4, Ethres=1e-5 au)

method order Ec,cv
corr(i) error Ec,cv

corr/Ecan. Ev
corr(i) error Ev

corr/Ecan.

au kcal/mol % au kcal/mol %
6-31G**
CCSD(T) 2 -0.020023 -0.26 102.13 -1.152773 -2.79 100.39

3 -0.019607 0.00 100.00 -1.148277 0.03 100.00
canonical -0.019606 -1.148331

MP2 2 -0.021226 0.01 99.93 -1.058695 1.24 99.81
3 -0.021239 0.00 99.99 -1.060675 0.00 100.00

canonical -0.021241 -1.060670
cc-pVDZ
CCSD(T) 2 -0.020425 -0.24 101.90 -1.181039 -3.01 100.41

3 -0.020044 0.00 100.00 -1.176176 0.04 99.99
canonical -0.020044 -1.176241

MP2 2 -0.021662 0.01 99.95 -1.083987 1.30 99.81
3 -0.021671 0.00 99.99 -1.086062 0.00 100.00

canonical -0.021673 -1.086058
cc-pVTZ
CCSD(T) 2 -0.125832 -0.55 100.70 -1.467314 -3.03 100.33

3 -0.124978 -0.01 100.01 -1.462440 0.03 100.00
canonical -0.124961 -1.462486

MP2 2 -0.123656 0.02 99.98 -1.359700 1.43 99.83
3 -0.123682 0.00 100.00 -1.361980 0.00 100.00

canonical -0.123687 -1.361975
cc-pCVDZ
CCSD(T) 2 -0.438931 -0.41 100.15 -1.194277 -3.05 100.41

3 -0.438296 -0.01 100.00 -1.189358 0.04 99.99
canonical -0.438284 -1.189423

MP2 2 -0.427408 0.01 100.00 -1.098076 1.30 99.81
3 -0.427417 0.00 100.00 -1.100150 0.00 100.00

canonical -0.427421 -1.100145
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